
HAL Id: tel-01867755
https://theses.hal.science/tel-01867755

Submitted on 4 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex lot Sizing problem with parallel machines and
setup carryover

Xueying Shen

To cite this version:
Xueying Shen. Complex lot Sizing problem with parallel machines and setup carryover. Other [cs.OH].
Université Paris sciences et lettres, 2017. English. �NNT : 2017PSLED057�. �tel-01867755�

https://theses.hal.science/tel-01867755
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de
PSL Research University

Préparée à -Dauphine

Soutenue le
par

cole Doctorale de Dauphine ED 543

Spécialité

Dirigée par

Complex lot Sizing problem with parallel machines and
setup carryover

28.11.2017
Xueying SHEN

Virginie GABREL

Université Paris-Dauphine

Mme Virginie GABREL

Université Paris-Dauphine

M. Fabio FURINI

M. Filippo FOCACCI

DecisionBrain

M. Stéphane DAUZERE-PERES

Ecole des Mines de Saint-Etienne

Mme Safia KEDAD-SIDHOUM

Université Paris 6

M. Chengbin CHU

ESIEE Paris

M. Roberto WOLFLER CALVO

Université Paris 13

M. Vincent GIARD

Université Paris-Dauphine, EMINES

Informatique

Directrice de thèse

Membre du jury

Membre du jury

Membre du jury

Rapporteure

Rapporteur

Membre du jury

Président du jury

Abstract

In this thesis, we study two production planning problems motivated by challenging

real-world applications.

In the first part of this manuscript, a production planning problem for an apparel

manufacturing company is studied and an optimization tool is developed to tackle it.

We propose a decomposition framework composed by an aggregated model and a de-

tailed model, which are solved in sequence. The aggregated problem is shown to be

the bottleneck of the approach, which corresponds to a complex capacitated lot sizing

problem with setup carryover, parallel machines, production time windows, backlogging

and lost sales. This problem is shown to be NP-hard even without the setup costs.

Several Mixed Integer Programming (MIP) formulations are proposed and compared

from a theoretical and a computational point of view. Moreover, several constructive

and local search heuristics are developed to find good quality solutions for large scale

instances. We propose two sets of benchmark instances to evaluate the performances of

the models and the heuristics. Thanks to extensive computational tests, we showed that

the constructive heuristic (called First-Solution Heuristic) together with a Fix&Optimize

algorithm is able to compute the best solutions in terms of optimality gap. Finally, the

whole production planning approach is presented and its performance is analyzed.

In the second part of this manuscript, a restricted version of the capacitated lot sizing

problem with sequence dependent setups is studied, where the setup sequences for each

time bucket have to follow the order of a given sequence. Compared to the capacitated

lot sizing problem with sequence dependent setup, the new model reduces the number

of candidate setup sequences from O(n!) to O(n2n) where n is the number of products.

This problem is shown to be NP-hard. A special case with only two possible setup values

is studied and we prove that also in this case the problem remains NP-hard. Moreover,

product-oriented and sequence-oriented MIP formulations are developed. A column gen-

eration heuristic is also proposed based on the sequence-oriented formulations. Finally,

we perform computational tests to evaluate their respective computational performance.

ii

To my dearest grandfather Shen Fengzhi.

iii

“Don’t worry, Gromit. Everything’s under control!”

— The Wrong Trousers, Aardman Animations, 1993

iv

Acknowledgments

I would like to thank my supervisors Dr. Virginie Gabrel, Dr. Fabio Furini, Dr. Filippo

Focacci and Mr. Daniel Godard. You gave this wonderful chance to pursue my study

and guide me through my research with tremendous patience and profound knowledge.

Without your supervision and constant help, this dissertation would not have been

possible.

Deep thanks are owed to Dr. Stéphane Dauzère-Pérès, I would not have accomplished

what I have without your insight and expertise that greatly assisted the research. My

deep gratitude to the thesis committee member Dr. Safia Kedad-Sidhoum, Dr. Chengbin

Chu, Dr. Roberto Wolfler Calvo and Dr. Vincent GIARD, for your precious time and

valuable comments on this work.

I would like to express my appreciation to all of my colleagues, it is a great pleasure

to work with such cheerful and talented people like you. Special thanks to Kiat Shi Tan,

Issam Mazhoud, David Gravot, Giulia Burchi and Désiree Rigonat that you generously

shared your experience and knowledge with me and accompanied me through my PhD.

Finally, I would like to express my sincere gratitude to my parents, my husband

Alexandre Menif and my dear friends, my deep love to all of you.

v

Contents

Abstract ii

Acknowledgments v

Contents vi

List of Tables viii

List of Figures x

1 Industrial and Scientific Context 1

1.1 Introduction . 2

1.2 Production Planning: Lot Sizing Problem 4

1.3 Production Planning in An Apparel Manufacturing Application 12

1.3.1 An Apparel Manufacturing Application 13

1.3.2 Production Planning Problem Modeling 16

1.4 Contributions . 17

2 Complex Capacitated Lot Sizing Problem: Formulations and Bench-

marks 18

2.1 Problem Definition . 19

2.2 Literature Review . 22

2.3 MIP Formulations . 28

2.4 Benchmark Instances . 35

2.4.1 Benchmark IAP: Real-World Instances and Data Analysis 35

2.4.2 Benchmark IRG: Pseudo-Randomly Generated Instances 43

2.5 Empirical Evaluations . 48

2.5.1 MIP Formulation Comparison Considering Setup Cost 48

2.5.2 MIP Formulation Comparison without Considering Setup Cost . . 52

vi

2.5.3 Impact Analysis of Problem Features 54

2.5.4 Computational Results on Benchmark IAP-B and IRG-B 56

2.6 Conclusions . 62

3 Complex Capacitated Lot Sizing Problem: Heuristics 63

3.1 Introduction . 64

3.2 Constructive Heuristic Algorithms . 64

3.2.1 Fix&Relax Algorithm . 64

3.2.2 Product Decomposition Based Algorithm 67

3.2.3 First Solution Heuristic Algorithm Based on LP Relaxation 75

3.3 Fix&Optimize algorithm . 81

3.4 Computational Results . 81

3.4.1 Algorithm Parameter Evaluation 82

3.4.2 Algorithm Comparison Results . 86

3.5 Conclusions . 99

4 Production Planning Solution to the Apparel Application 100

4.1 Decomposition Approach . 101

4.2 Application Performance Analysis . 105

4.3 Conclusions . 106

5 Capacitated Lot Sizing Problem with A Fixed Product Sequence 107

5.1 Capacitated Lot Sizing Problem with Sequence Dependent Setup 108

5.2 Problem Definition . 110

5.3 Problem Formulation . 116

5.4 A Special Case Study . 122

5.5 Column Generation Approach . 127

5.6 Computational Results . 130

5.7 Conclusions . 133

6 General Conclusion and Future Work 134

Appendix A Data Analysis and Computational Results 137

A.1 CLSC Computational Results . 139

A.2 CLSP-FS1 Computational Results . 149

vii

List of Tables

1.1 Production planning example: demands 2

1.2 Production planning example: minimum manufacturing cost solution . . . 3

1.3 Production planning example: minimum inventory cost solution 3

1.4 Production planning example: minimum overall cost solution 3

1.5 Overview of review papers of deterministic dynamic LSP 7

1.6 Apparel manufacturing production: learning curve example 15

1.7 Modeling apparel production planning to lot sizing problem 16

2.1 CLSC Example 2.1 data: setups . 21

2.2 CLSC Example 2.1 data: capacities . 21

2.3 CLSC formulation size comparison . 32

2.4 CLSC benchmark instances summary . 35

2.5 CLSC real-world benchmark instances . 36

2.6 CLSC pseudo-randomly generated benchmark instances 43

2.7 CLSC instance generator parameters . 43

2.8 CLSC formulation comparison with setup cost 51

2.9 CLSC formulation comparison without setup cost 53

2.10 CLSC feature - complexity analysis . 55

2.11 Computational results: CPLEX on IAP-B 56

2.12 Computational results: CPLEX on IRG-B (1) 57

2.13 Computational results: CPLEX on IRG-B (2) 58

2.14 Computational results: CPLEX on IRG-B (3) 59

3.1 PD algorithm: sorting criteria . 68

3.2 PD algorithm: sub-problem . 69

3.3 Comparison results: F&R algorithm variations 83

3.4 Comparison results of PD algorithm variations: sub-problems 84

3.5 Comparison results of PD algorithm variations: sorting criteria 85

viii

3.6 Computational results: FSH algorithm on IAP-B 86

3.7 Computational results: FSH algorithm on IRG-B (1) 88

3.8 Computational results: FSH algorithm on IRG-B (2) 89

3.9 Computational results: FSH algorithm on IRG-B (3) 90

3.10 Computational results: heuristic algorithm on IAP-B 92

3.11 Computational results: heuristic algorithm on IRG-B summary 93

3.12 Computational results: heuristic algorithm on IRG-B summary by type . 94

3.13 Computational results: heuristic algorithm on IRG-B (1) 96

3.14 Computational results: heuristic algorithm on IRG-B (2) 97

3.15 Computational results: heuristic algorithm on IRG-B (3) 98

4.1 Detailed and aggregated model in planning phase 103

4.2 Application planning solution evaluation 106

5.1 CLSP-FS1 Example 5.1 data . 113

5.2 Theorem 5.2 proof CLSP-FS1-LT instance parameters 123

5.3 Computational results: CLSP-FS1 formulation comparison 130

5.4 Computational results: column generation heuristic based on AG-SO . . . 131

5.5 Computational results: CLSP-FS1-LT formulation comparison 132

ix

List of Figures

1.1 DecisionBrain production planning applications 4

1.2 Technical structure of lot sizing problem in Glock et al. [55] 6

1.3 Apparel manufacturing application: plant structure 13

1.4 Apparel manufacturing application: production procedure 14

2.1 Setup carryover . 20

2.2 Time window of demand . 20

2.3 CLSC Example 2.1 data: time windows 21

2.4 CLSC Example 2.1 optimal solution with setup cost 22

2.5 CLSC instance R5 analysis: machine capacity distribution 37

2.6 CLSC instance R5 analysis: production time distribution 38

2.7 CLSC instance R5 analysis: setup time distribution 38

2.8 CLSC instance R5 analysis: product-demand distribution 39

2.9 CLSC instance R5 analysis: demand quantity distribution 39

2.10 CLSC instance R5 analysis: demand time window distribution 40

2.11 CLSC instance R5 analysis: demand release/due date distribution 41

2.12 CLSC instance R5 analysis: capacity requirement by time interval 42

2.13 CLSC instance R5 analysis: tardiness cost distribution 42

2.14 LPR time on different types of instances 60

2.15 MIP gap on different types of instances 61

2.16 MIP number of nodes on different types of instances 61

3.1 FR-T algorithm procedure Absi and Kedad-Sidhoum [3] (modified) 66

3.2 PD algorithm flow chart . 68

3.3 PD-SI algorithm capacity update example 73

3.4 FSH algorithm flow chart . 76

3.5 CLSC Example 2.1 optimal solution (no setup cost) 77

3.6 CLSC Example 2.1 optimal LP relaxation solution (no setup cost) 77

x

3.7 PD algorithm gap and computational time on pilot benchmark 85

3.8 FSH algorithm computational time on different types of instances 91

3.9 Heuristic algorithm comparison results on pilot instances 93

4.1 Apparel manufacturing decomposition approach 101

5.1 Color change in production . 111

5.2 Definition 5.1 illustration . 112

5.3 CLSP with sequence dependent setup Example 5.1 optimal solution . . . 113

5.4 CLSP-FS1 Example 5.1 optimal solution 113

5.5 Theorem 5.1 CLSP-FS1 instance optimal solution structure 114

5.6 CLSP-FS1 graph representation of setup sequence 119

5.7 Theorem 5.2 reduction from CLSP with single product to CLSP-FS1-LT . 123

5.8 CLSP-FS1 network representation of the pricing problem 128

xi

Chapter 1

Industrial and Scientific Context

In this manuscript, our research focuses on production planning. The problem is to

optimize production plan in manufacturing industry to achieve high customer service

level and cost efficiency. Due to our industrial background, we have been exposed to

various types of real-world applications. Therefore, all our research is motivated by real-

istic requirements that we have encountered in building industrial production planning

solutions. First, we have studied a production planning problem from apparel manu-

facturing industry. This problem is brought to our attention by a project that we have

worked with a market leader in the apparel industry, which produces 60% of the T-shirts

sold in the US. Our research result, including modeling and algorithm design, has been

implemented inside the engine of their production planning and scheduling software and

improves the daily production efficiency. Second, we have studied a restricted version of

a classical production planning problem: capacitated lot sizing problem with sequence

dependent setups, which is known to be hard to solve. This newly proposed model con-

siders the planners knowledge in certain industries and therefore simplifies the classical

model. By doing so, there is a better chance to deliver reasonable production planning

solutions for industries where our model is applicable.

This chapter is organized as follows: In Section 1.1, we present our research back-

ground and introduce our study interest at production planning. In Section 1.2, we

describe a general picture of production planning, i.e., lot sizing problem. In Section

1.3, the real-world application of production planning problem in apparel manufacturing

is introduced. Finally, we summarize major contributions of our research in Section 1.4

as a reading guide for the rest of this manuscript.

1

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 2

1.1 Introduction

Our research is performed under the CIFRE program (Conventions Industrielles de For-

mation par la REcherche) [30]. Therefore, it is a collaboration between Paris Dauphine

University and DecisionBrain (https://www.decisionbrain.com). DecisionBrain is a soft-

ware company that delivers advanced analytics and optimization solutions to innovative

companies who want to apply a scientific approach to decision making. Building pro-

duction planning and scheduling solution is one of DecisionBrain’s expertise.

Generally speaking, production planning is to decide the production for a future

period of time (planning horizon) given limited resources and/or production restrictions

to achieve optimal customer service level and cost efficiency. Here is a small example

modified from [108] to illustrate the concept. An apparel manufacturer produces different

types of costumes. One specific type of costumes requires a high setup cost due to the

special technique and equipment needs, therefore at most one batch can be produced

in one month. Given 200 units of stock at the end of the year, the goal is to plan the

production of this costume for the next 8 months (January to August) to minimize the

cost while satisfy all forecasted demands. The cost includes: setup cost as $5000 if there

is a positive production in a month, unitary processing cost $100, and unitary inventory

cost $5. The demand forecast for the next 8 months is given in Table 1.1 and we need

to decide the production quantity for each month.

Table 1.1: Production planning example: demands

Jan Feb Mar Apr May Jun Jul Aug

400 400 800 800 1200 1200 1200 1200

If it is only to minimize the manufacturing cost (setup cost and production cost),

we can produce only once in January to satisfy total demands till August. The solution

is given in Table 1.2 and the total cost equals to $859,000. This cost includes $700,000

(7,000 x 100) processing cost, $154,000 (30,800 x 5) inventory cost and $5,000 (5,000 x

1) setup cost. If it is only to minimize the inventory cost, we can follow the just-in-time

rule and produce in each month the amount it requires. The total cost becomes $740,000

and the solution is given in Table 1.3. However, if it is to minimize the overall cost, the

optimal solution has total cost equals to $736,000 and the optimal solution is given in

Table 1.4. In the optimal solution, there are two months (February and April) that have

no production.

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 3

Table 1.2: Production planning example: minimum manufacturing cost solution

Jan Feb Mar Apr May Jun Jul Aug Total

Demand 400 400 800 800 1,200 1,200 1,200 1,200 7,200

Production 7,000 0 0 0 0 0 0 0 7000

Proc. cost 700,000 0 0 0 0 0 0 0 700,000

Setup cost 5,000 0 0 0 0 0 0 0 5,000

Inventory 6,800 6,400 5,600 4,800 3,600 2,400 1,200 0 30,800

Inv. cost 34,000 32,000 28,000 24,000 18,000 12,000 6,000 0 154,000

*Initial inventory = 200

Table 1.3: Production planning example: minimum inventory cost solution

Jan Feb Mar Apr May Jun Jul Aug Total

Demand 400 400 800 800 1,200 1,200 1,200 1,200 7,200

Production 200 400 800 800 1,200 1,200 1,200 1,200 7000

Proc. cost 2,000 4,000 8,000 8,000 12,000 12,000 12,000 12,000 700,000

Setup cost 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 40,000

Inventory 0 0 0 0 0 0 0 0 0

Inv. cost 0 0 0 0 0 0 0 0 0

*Initial inventory = 200

Table 1.4: Production planning example: minimum overall cost solution

Jan Feb Mar Apr May Jun Jul Aug Total

Demand 400 400 800 800 1,200 1,200 1,200 1,200 7,200

Production 600 0 1,600 0 1,200 1,200 1,200 1,200 7,000

Proc. cost 60,000 0 160,000 0 120,000 120,000 120,000 120,000 700,000

Setup cost 5,000 0 5,000 0 5,000 5,000 5,000 5,000 30,000

Inventory 400 0 800 0 0 0 0 0 1,200

Inv. cost 2,000 0 4,000 0 0 0 0 0 6,000

*Initial inventory = 200

Even in this toy example, we can have an insight of the benefit that production

planning may bring to the industry. Kellogg Company reports annual cost savings of

4 million dollars by performing optimization to plan the production and distribution

decisions for its cereal and convenience foods business [108]. Thanks to the development

of IT technology and commercial optimization software, it becomes possible to tackle

large scale real-world production planning problems using optimization. Therefore, more

and more companies start to realize that introducing scientific method to optimize the

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 4

decision process could have a non-negligible impact on their profits and competences.

Another reason of the tremendous interest shown in literature in production planning

is that different manufacturing industry implies different production planning problems.

Therefore production planning problems occur with many variations each with its own

complexity and challenges. For instance, to the best of our knowledge, production

planning problems studied in this manuscript have never been addressed before.

There are several production planning projects explored in DecisionBrain from dif-

ferent industries, such as apparel manufacturing, semi conductor assembling and test-

ing, and disposable table-ware production (Figure 1.1). Research presented in this

manuscript is mainly motivated by the project with an apparel company, which is to

build a production planning and scheduling software to arrange mid term and short term

productions. The details of this application is presented in Section 1.3. But first of all,

we give a general introduction on the production planning problem in Section 1.2, which

is also referred as lot sizing problem.

Figure 1.1: DecisionBrain production planning applications

1.2 Production Planning: Lot Sizing Problem

Lot sizing problem

Lot Sizing Problem (LSP) is to plan production resources and activities, especially de-

termine production quantities, to achieve the economical cost and/or more intangible

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 5

objectives such as customer service level. The history of LSP can be traced back to the

publication of Harris [71], which proposes the Economic Order Quantity (EOQ) model.

This problem has continuous time model with infinite time horizon, and all parame-

ters such as demand quantity and inventory holding cost are constant. The solution of

this problem can be obtained by a formula directly. Later, different extensions of EOQ

have been studied such as Economic Lot Scheduling Problem (ELSP), which extends the

problem to multi-item and considers capacity constraints. It is shown to be NP-hard in

Gallego and Shaw [52]. However, both EOQ and ELSP consider constant parameters,

which is not always the case in real applications. The Wagner-Whitin (WW) model was

studied in the seminal papers of Wagner and Whitin [131] and Manne [96] in late 50’s.

In this model, the planning horizon is decomposed into time buckets and demand quan-

tities vary with time buckets. Therefore, the WW model extends constant parameters

to dynamic parameters varying with time and thus is referred to dynamic LSP.

The WW model is defined as follows: Given a planning horizon with T time buckets,

let dt be the product demand quantity for each time bucket t ∈ {1, 2, . . . , T}. The unit

inventory holding cost is ht. Moreover, in each time bucket, to produce a positive quan-

tity of products, there is a setup cost sct. The problem is to determine the production

quantity in each time bucket so that all demands are satisfied with minimum cost. This

problem can be formulated as follows:

min

T∑

t=1

htIt + sctzt

s.t. It−1 + xt = dt + It t ∈ {1, 2, . . . , T}
I0 = IT = 0

xt ≤ btzt t ∈ {1, 2, . . . , T}
x ∈ RT+, I ∈ RT+1

+ , z ∈ {0, 1}T

(1.1)

where bt is the maximum production quantity in time bucket t.

Different classification schemes are used in literature reviews of LSP such as De Bodt

et al. [33], Drexl and Kimms [40], Staggemeier and Clark [123] and Guner Goren et al.

[64]. One of the classification scheme divide LSP from two dimensions: models with

stationary or dynamic parameters, models with deterministic or stochastic parameters

(see Figure 1.2). According to this classification scheme, the EOQ and ELSP will lie

in the stationary model whereas the WW model and its extensions lie in the dynamic

model.

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 6

Figure 1.2: Technical structure of lot sizing problem in Glock et al. [55]

In this manuscript, our focus is the deterministic extensions of the WW model, which

is Deterministic Dynamic LSP with finite time horizon (DDLS). Giving a comprehensive

survey on the literature of DDLS becomes an “impossible mission” due to the flourish

research in this domain. For more than half a century development of DDLS, more

than 30 literature review papers and books have been published and even two reviews

of literature reviews on production planning and inventory management are given by

Glock et al. [55] and Guiffrida et al. [62]. To avoid duplication but still provide a set of

references for interested readers, we summarize the survey papers related to DDLS in

Table 1.5. They are from Glock et al. [55] and Guiffrida et al. [62] together with several

papers and books that we believe worth mentioning.

Some papers are not included in the table since their focus is not lot sizing problem.

For example, Gelders [53] mainly focuses on the state of the art progress in the production

planning, where LSP takes only one section. It covers the WW model, multi-level

uncapacitated LSP, capacitated LSP and ELSP, mainly from the perspective of heuristic

algorithms. Bitran and Yanasse [17] studies the capacitated LSP and gives complexity

analysis over various cost structures. Nahmias [101] gives an overview of the perishable

ordering policy, only one paper about deterministic LSP is mentioned, which has random

decay.

C
H
A
P
T
E
R

1.
IN

D
U
S
T
R
IA

L
A
N
D

S
C
IE

N
T
IF

IC
C
O
N
T
E
X
T

7

Table 1.5: Overview of review papers of deterministic dynamic LSP

Reference Content Classification

Aggarwal [5] General view of inventory models. Dynamic/static model, number of items, number of loca-

tions and echelons, characteristics of demand, research ob-

jective.

De Bodt et al. [33] Dynamic LSP with constant costs over time. Fixed/rolling horizon, deterministic/probabilistic model,

single/ multi level.

Bahl et al. [13] General review from both practitioner and research based

literature.

Single/multi level, unconstrained/constrained resources.

Aksoy and Selcuk Erenguc [7] Multi-item single stage inventory systems with joint setup

costs.

Deterministic (static/dynamic models) and stochastic (con-

tinuous review/periodic review).

Maes and Wassenhove [95] Classification and computational review on heuristic algo-

rithms of the multi-item single-level capacitated LSP.

Single-resource heuristics (special-purpose methods), and

mathematical-programming-based heuristics (general).

Zoller and Robrade [137] A review and experimental comparison of algorithms of the

WW model with rolling horizon.

Gupta and Keung [66] Multi-stage lot-sizing. Constant/dynamic demands, rolling horizon.

Raafat [111] Mathematical modelling of deteriorating inventory system

especially deterioration as a function of the on-hand level of

inventory.

Deteriorating features, LSP features.

Kuik et al. [91] General view on models. Strategic/tactical/operational, modeling elements in the

LSP (such as planning horizon, static/dynamic demands).

Wolsey [132] Single item uncapacitated LSP.

Benton and Park [16] LSP with several types of discount schemes. Four discount types are surveyed from both the buyer point

of view and the supplyer point of view.

Drexl and Kimms [40] General review of the LSP and scheduling. Single/multi level. For the single level, discrete time and

continuous time model are considered.

Goyal and Giri [61] The deteriorating inventory literature review as a continua-

tion of Raafat [111].

Shelf life, demand variations and other conditions or con-

straints.

Rizk and Martel [113] Material flow planning in a supply chain, and in particular

with deterministic lot-sizing methods.

Single/multiple facility, single/multiple level, single/ mul-

tiple items, capacitated/uncapacitated, deterministic/

stochastic, static/dynamic demand.

C
H
A
P
T
E
R

1.
IN

D
U
S
T
R
IA

L
A
N
D

S
C
IE

N
T
IF

IC
C
O
N
T
E
X
T

8

Table 1.5: Overview of review papers of deterministic dynamic LSP (continue)

Reference Content Classification

Staggemeier and Clark [123] LSP and scheduling models and its algorithms. Time period, multi machines and other constraints.

Karimi et al. [88] Models and algorithms of capacitated LSP with single level. Planning horizon, number of levels, number of prod-

ucts, capacity or resource constraints, deterioration

items, static/dynamic/deterministic/stochastic demand,

setup structure, inventory shortage.

Brahimi et al. [22] Single item LSP. Big/small time buckets, uncapacitated (extensions such as

backlogging, multiple facilities) and capacitated (different

cost structures).

Pochet and Wolsey [108] Mixed integer programming formulations for the LSP and

its variants

Zhu and Wilhelm [136] LSP and scheduling with sequence dependent setup.

Jans and Degraeve [84] An overview of the use of meta-heuristics for solving LSP. Algorithm representation, evaluation, neighborhood defini-

tion and genetic operators.

Jans and Degraeve [85] Modeling deterministic single-level dynamic LSP based on

various industrial extensions.

Basic LSP models and their extensions from two directions:

modeling the operational aspects in more details, or is more

towards tactical and strategic models.

Quadt and Kuhn [109] Extensions of the capacitated LSP: back-orders, setup carry-

over, sequencing, and parallel machines.

Back-orders, setup carry-over, sequencing, and parallel ma-

chines.

Allahverdi et al. [8] LSP with setup cost and setup times.

Robinson et al. [114] Updates the review by Aksoy and Selcuk Erenguc [7] of the

coordinated LSP.

Single/multiple items, coordinated/uncoordinated setup

cost structures, capacitated/uncapacitated.

Buschkühl et al. [25] Mainly survey the algorithms for the dynamic capacitated

LSP for single level and multi level.

Mathematical programming heuristics, Lagrangian heuris-

tics, decomposition and aggregation heuristics, metaheuris-

tics, problem-specific greedy heuristics.

Guner Goren et al. [64] A review of applications of genetic algorithms in LSP. Static/dynamic, single/multi level, capaci-

tated/uncapacitated

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 9

Capacitated Lot sizing problem

Among all problems in the domain of DDLS, our focus is at one type of LSP which

considers the limited resource/machine capacity, called Capacitated Lot Sizing Problem

(CLSP). Considering different features and cost structures will lead to different types

of CLSP. Based on problems studied in this manuscript, we introduce the CLSP model

with following parameters:

• N = {1, 2, . . . , N} a set of N products.

• T = {1, 2, . . . , T} a set of T time periods.

• capt: machine capacity in each time period t ∈ T .

• dit: demand of each product i ∈ N in time period t ∈ T .

• pti: unitary production time of each product i ∈ N .

• hcit: unitary inventory cost of each product i ∈ N in time period t ∈ T .

• bit: maximum amount of production i that can be produced in t ∈ T .

• sti: setup time to product i ∈ N .

• sci: setup cost to product i ∈ N .

CLSP is to decide the production quantity of each product in each time bucket so that

all demands are satisfied with a minimum total cost while respecting machine capacities.

Due to the capacity constraints, the problem is shown to be NP-hard even when

there is only a single product by Florian et al. [47] and Bitran and Yanasse [17]. In

the case of multiple products, Chen and Thizy [28] proved that it is strongly NP-hard.

Karimi et al. [88] have done a nice survey focusing on CLSP with production cost and

its solution approaches. Quadt and Kuhn [109] have provided a survey of CLSP with

extensions including back-orders, setup carryover, sequencing and parallel machine.

Developing mathematical formulations is the very first step of our research since

problems studied in this manuscript have not been studied before to the best of our

knowledge. Therefore, in this section, we recall three Mixed Integer Programming (MIP)

formulations of CLSP that have been studied and often adapted to other extensions of

CLSP in the literature. These formulations are aggregated formulation, facility location

formulation and network formulation.

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 10

Aggregated (AG) formulation is an intuitive formulation and was proposed by

Trigeiro et al. [129]. We introduce following variables for each product i ∈ N and time

bucket t ∈ T :

• xit ∈ R+: quantity of product i produced in time bucket t;

• Iit ∈ R+: inventory of product i at the end of time bucket t;

• zit ∈ {0, 1}: it equals to 1 if product i is produced in time bucket t, 0 otherwise.

The formulation is given as follows:

min
∑

i∈N ,t∈T
hcitIit +

∑

i∈N ,t∈T
scizit (1.2)

s.t. Ii,t−1 + xit = Iit + dit i ∈ N , t ∈ T (1.3)
∑

i∈N
ptixit +

∑

i∈N
scizit ≤ capt t ∈ T (1.4)

xit ≤ bitzit i ∈ N , t ∈ T (1.5)

xit, Iit ≥ 0, Ii,0 = 0 i ∈ N , t ∈ T (1.6)

zit ∈ {0, 1} i ∈ N , t ∈ T (1.7)

The objective function (1.2) is to minimize the total cost including inventory cost
∑

i∈N ,t∈T hcitIit and setup cost
∑

i∈N ,t∈T scizit. Constraints (1.3) ensure material bal-

ance for each product i in each time bucket t that the total inflow (last bucket ending

inventory and production quantity) equals to the outflow (demand dit and ending in-

ventory). Constraints (1.4) guarantee the capacity usage does not exceed the available

capacity in each time bucket. Finally, constraints (1.5) link production with setup:

there is only a production if there is a corresponding setup for each product in each time

bucket.

Facility Location (FL) formulation was first proposed by Krarup and Bilde [90]

for cases without capacity restrictions. It is also referred as the transportation problem

formulation [34] and simple plant location formulation [90]. Later it has been adapted

to other LSP [124]. We introduce decision variables as follows for each product i ∈ N ,

time bucket t, k such that t ≤ k ∈ T :

• xitk ∈ R+: quantity of product i produced in time bucket t to satisfy demand in

later time bucket k;

• zit ∈ {0, 1} is defined as before, it equals to 1 if product i is produced in time

bucket t, 0 otherwise.

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 11

The formulation is given as follows:

min
∑

i∈N ,t∈T
hcit


 ∑

s∈T :s≤t

∑

k∈T :t<k

xisk


+

∑

i∈N ,t∈T
scizit (1.8)

s.t.
∑

k∈T :k≤t
xikt = dik i ∈ N , t ∈ T (1.9)

∑

i∈N
pti


 ∑

k∈T :t≤k
xitk


+

∑

i∈N ,t∈T
stizit ≤ capt t ∈ T (1.10)

xitk ≤ min{bit, dik}zit i ∈ N , t ∈ T , t ≤ k ∈ T (1.11)

xitk ≥ 0 i ∈ N , t ∈ T (1.12)

zit ∈ {0, 1} i ∈ N , t ∈ T (1.13)

There is a direct link between variables introduced in AG model and those introduced

in FL formulation:

xit =
∑

k∈T :t≤k
xitk Iit =

∑

s∈T :s≤t

∑

k∈T :t<k

xisk

Therefore, the objective function is a simple substitution. Constraints (1.9) state that

the total production quantity dedicated for demand dik equals to the demand quantity.

Constraints (1.11) link the production quantity xitk with the corresponding setup zit.

Here the upper bound of xitk is no greater than the upper bound of xit, which is the

main reason that FL is stronger than AG formulation in the sense of better lower bound

from Linear Programming (LP) relaxation. The price for the tighter lower bound is the

number of variables, which is increased to O(NT 2).

Network (NW) formulation was first proposed by Eppen and Martin [42]. It

is also referred as shortest path/route formulation [34, 122]. We introduce decision

variables as follows for each product i ∈ N , time bucket t, k such that t ≤ k ∈ T :

• uitk ∈ [0, 1]: fraction of total demand from time bucket t through k of item i that

is produced in t;

• zit ∈ {0, 1} is defined as before, it equals to 1 if product i is produced in time

bucket t, 0 otherwise.

We also define following constant for simplicity of the formulation:

Ditk =

k∑

v=t

div, Hitk =

k∑

v=t+1

hi,v−1Divk, IDitk
=

{
1 if Ditk > 0

0 otherwise

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 12

The formulation is given as follows:

min
∑

i∈N ,t∈T ,k∈T :k≥t
Hitkuitk +

∑

i∈N ,t∈T
scizit (1.14)

s.t.
∑

i∈N ,k∈T :k≥t
ptiDitkuitk +

∑

i∈N ,t∈T
stizit ≤ capt t ∈ T (1.15)

∑

t∈T
ui1t = 1 i ∈ N (1.16)

∑

k∈T :k≤t−1

ui,k,t−1 =
∑

k∈T :k≥t
uitk i ∈ N , 1 < t ∈ T (1.17)

∑

k∈T :k≤t
IDitk

uitk ≤ zit i ∈ N , t ∈ T (1.18)

uitk ≥ 0 i ∈ N , t ∈ T (1.19)

zit ∈ {0, 1} i ∈ N , t ∈ T (1.20)

The formulation is easier to understand if we see variables uitk only as binary value.

Then based on the proof in [42], the formulation is still valid when uitk ∈ [0, 1]. When

uitk = 1, its corresponding production quantity equals to Ditk and inventory cost equals

to Hitk. The objective function (1.14) is still to minimize the inventory cost and setup

cost. Constraints (1.15) ensure capacity restriction in time bucket t. Constraints (1.16)

and (1.17) represent flow balance constraints for the source node and other nodes in the

underlying network. Constraints (1.18) link production with its corresponding setup for

each product i in time bucket t.

FL and NW models are stronger reformulation of AG model for CLSP. Nemhauser

and Wosley [104] has shown that in the uncapacitated case, both LP relaxations of FL

and NW define the convex hull of the problem. Denizel et al. [34] further proved the

equivalence of the LP relaxations of FL and NW formulations for CLSP with constant

unitary inventory cost hi. They also point out that FL formulation has more constraints

while its constraint matrix is less dense and has smaller coefficients, therefore different

characteristics may be exploited to choose between these two reformulations.

In the next section, we start from another perspective and introduce the real-word

application that motivates the first part of our research.

1.3 Production Planning in An Apparel Manufacturing

Application

The main problem studied in this manuscript is brought to our attention by a project

in manufacturing industry. The company is a market leader in the apparel industry,

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 13

which produces 60% of the T-shirts sold in the US. On-time delivery, low production

and shipping cost is a critical competitive advantage for the company. To achieve this

goal on such large scale, it is essential to optimize production planning and scheduling

to perform efficient production. To model and solve the underlying production planning

problem, we need to first understand the manufacturing procedure and bottlenecks in

this particular case study. Hence, in Section 1.3.1, we first present the apparel company,

its manufacturing procedure and bottlenecks. In section 1.3.2, we present the modeling

of the problem, which leads to the CLSP studied in Chapters 2 - 4.

1.3.1 An Apparel Manufacturing Application

The company has 10 manufacturing plants over Asia, however, they are independent on

the production planning and scheduling level. Therefore, the problem scope is considered

as a single plant. A plant layout example is shown in Figure 1.3. In each plant, there

are several work centers, each of which corresponds to a production operation. In other

words, to produce one piece of clothes, it has to go through several work centers to finish.

Moreover, there are normally more than one machine in each work center. Therefore,

the production planning has to decide the production quantity for each production line.

This implies parallel machines in the underlying lot sizing problem and leads to the first

difficulty of the problem.

Figure 1.3: Apparel manufacturing application: plant structure

To produce one piece of clothes, all or some of following operations have to be done in

sequence which includes cutting, embroidery, sewing, washing, ironing/dipping, packing

and cartoning. In Figure 1.4, we show the entire manufacturing processes. Each product

has a specific production routing. Some orders will route through all the operations,

while some orders may skip certain operations (such as washing). On the other hand,

some orders will go through the ironing operation, while some orders will go through

dipping operation instead. Among all these processes, we could identify a bottleneck

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 14

step, which is the sewing process. This is not only because that it mainly depends on

workers instead of machines but also because that it consumes most of the time during

the production cycle. Due to this reason, we only model the production planning on the

sewing process, which leads to the lot sizing problem with single level. Sewing process is

the craft of fastening or attaching objects using stitches made with a needle and thread.

There are about 20 to 60 sewing lines in each plant. Each sewing line is a group of

sewing workers who share the same working shift schedule. Different sewing lines may

have different number of workers and different working hours per day, which results

in different machine capacities in the lot sizing problem. This together with multiple

productions lines leads to the second difficulty because all parallel machines are not

identical.

Figure 1.4: Apparel manufacturing application: production procedure

As an apparel company, it produces different types of products such as T-shirts, pants

and costumes. In fact, each client demand corresponds to one particular product. This is

the third difficulty of our problem that 400 to 1000 products have to be produced in the

realistic instances. Different products have different unitary processing time therefore

can not be aggregated directly.

Products can be grouped into about 400 different styles in total, which can be further

grouped into about 50 style families (currently they are regrouping them to 150+ style

families). On a sewing line, changing the style family from one to another requires a

setup and an efficiency loss, which is known as learning curve. In this application, the

learning curve is given as a list of worker efficiency over 10 working days instead of a

function (see example in Table 1.6). Given a product, the processing time of sewing is

given by the time needed to process one item divided by the efficiency of the sewing line

(which is 1 maximum). To achieve the best efficiency, the same style family is usually

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 15

kept for a few days (1 to 2 style families per week) on a sewing line. For small orders,

style family can be changed daily. Within the same style family, a style change will also

cause a setup cost and setup time, which is minor comparing to style family change.

This leads to the fourth difficulty of our problem that setup is sequence dependent, i.e.,

it depends not only on the current product but also the previous product. LSP with

sequence dependent setup is known to be very hard to solve since there is Traveling

Salesman Problem embedded inside.

Table 1.6: Apparel manufacturing production: learning curve example

Day Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Day10

Efficiency 0.6 0.65 0.7 0.8 0.9 1.0 1.0 1.0 1.0 1.0

Each sales order, i.e., demand, specifies the product required, the quantity, the ship-

ping destination and the due date. It is allowed to delay the delivery or even cancel

the delivery of a sale order, however, corresponding penalty will be charged accordingly.

There are two levels of tardiness cost. The first level corresponds to a shipment cost by

airplane instead of maritime to catch up the due date. The second level corresponds to

a compensation for the orders delivered too late. This leads to a different model from

classical LSP that we have introduced in Section 1.2 that demands can be delayed or

lost with penalty cost, and the cost is defined during a interval. This feature is often

referred as lost sale and backlogging in the literature.

Some aspects are out of the scope of this project. First, the ordering and management

of raw material. The existing MRP system will generate the earliest available date for all

the raw materials in an order. This date will be used as the earliest possible start time

for an order. Second, demand forecasting. All work orders confirmed or forecasted are

treated the same as an input to our system. However, as one way to reduce uncertainty,

forcasted demands also have a start date to prevent them from producing too early.

Therefore, we have a release date for each demand that only after which the production

for this demand can start.

To make use of the planning resources efficiently, the company would like to plan its

production activities for a future period of time, which is called planning horizon. The

duration of the planning horizon considered is between 24 weeks to 56 weeks. The major

objective of the production planning includes: maximization of the on-time delivery rate,

minimization of the late shipment cost (including expediting transportation cost and

sales loss cost), minimization of the learning curve loss and setup costs on the sewing

lines. The minimization of the labor cost (due to overtime) is also one goal which is not

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 16

considered in the project currently.

1.3.2 Production Planning Problem Modeling

To be able to optimize the production planning in this apparel project, we first have

to extract the mathematical model out of the context. Modeling large scale real-world

application is always a trade-off between accuracy and solvability, and often has a big

impact on the solution quality. In Table 1.7, we present the mapping between the

application aspects presented in previous section to a lot sizing problem we will study

in following chapters.

Table 1.7: Modeling apparel production planning to lot sizing problem

Application Lot sizing Problem

Planning horizon 20 - 30 weeks Weekly time buckets

7 production process step Bottleneck sewing process, single level LSP

Multiple sewing production lines Non-identical parallel machines

300 - 1000 products, 1 - 80 style families Aggregated product for each style family

Sequence dependent learning curve Setup carryover

Demand release date Production time window

Demand can be lost or delayed Lost sales and backlogging

Lot sizing problem with up to seven levels is very complex. Therefore, we only model

the bottleneck process and study the single level LSP. Modeling setup and learning

curve accurately on the sewing production line will dramatically increase the problem

complexity. In order to achieve reasonable performance, we simplify the problem in the

production planning level and deal with them in the scheduling phase. First, all setup

between styles within the same style family is ignored. Second, each learning curve is

transformed to a total capacity loss. In our example in Table 1.6, the efficiency loss

equals to (1 − 0.6) + (1 − 0.65) + (1 − 0.7) + (1 − 0.8) + (1 − 0.9) = 1.35. Then the

capacity loss will be 1.35 × dailyCapacity and the new setup time equals to capacity

loss, which depends on both products and production lines. Third, we relax the sequence

dependent setup to setup carryover so that the model still prefers to keep the same style

family on a production line, but with less complexity.

In summary, the lot sizing problem based on this project consists of single level

production, multiple products, parallel machines, backlogging, lost sale, production time

window and setup carryover. To the best of our knowledge, this problem is first studied

in this manuscript. We will formally define the problem and perform study on it in the

following chapters. In the next section, we summarize our major contributions.

CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 17

1.4 Contributions

In this section, we provide a contribution summary of our research, which can be used

as a reading guide for the rest of this manuscript.

First of all, a complex capacitated lot sizing problem with setup carryover is formu-

lated and studied, which is based on the real-world application introduced in Section

1.3. The problem is shown to be NP-hard and different MIP formulations are proposed

in Chapter 2. Two sets of benchmark instances are presented to evaluate these formu-

lations. One set consists of real-world application instances, whereas the other set is

pseudo-randomly generated and simulates characteristics observed from real-world in-

stances. The computational results show that the problem can not be solved within rea-

sonable time limit by the standard MIP solver CPLEX. Therefore, heuristic algorithms

are developed to tackle this problem in Chapter 3. Both constructive and improving

heuristic algorithms are developed. We perform experimental tests to evaluate perfor-

mances of all developed heuristic algorithms and show the efficiency of our algorithms

compared to the standard MIP solver CPLEX. In Chapter 4, our study results are im-

plemented in the production planning engine for the apparel company and we show the

complete industrial production planning solution.

Second, a special case of capacitated lot sizing problem with sequence dependent

setup is studied in Chapter 5, which is called CLSP with a fixed product sequence. In

many manufacturing industry, switching production from one product to another will

cause setup operations. The setup will consume limited machine capacity and/or cause

a setup cost. When the setup depends on the production sequence, i.e., the setup to

produce current product depends on both itself and the previous produced product, it

is called sequence dependent setup [46, 63]. In this case, both lot sizing and sequencing

decisions have to be made. The difficulty of this problem lies in the factorial number of

setup sequence candidates to be chosen from for each time bucket. However, in certain

manufacturing industries, this number may be reduced if we restrict the model based on

the planners’ knowledge. We consider a restricted model in which the number of potential

setup sequences is reduced to O(n2n) compared to O(n!) for the CLSP with sequence

dependent setups. The problem is shown to be NP-hard, and a column generation

heuristic is developed. A set of benchmark instances is tested and computational results

are presented to evaluate the algorithm performance.

Chapter 2

Complex Capacitated Lot Sizing

Problem: Formulations and

Benchmarks

A complex capacitated lot sizing problem is constructed from the apparel manufactur-

ing application presented in the previous chapter. This capacitated lot sizing problem

consists of complex features including parallel machines, production time windows, back-

logging, lost sales and setup carryover [48]. These features have been studied in different

context of lot sizing problems. However, to the best of our knowledge, they are first

considered together in this application. In this chapter, we formally define, formulate

and analyze the problem.

The chapter is organized as follows: In Section 2.1, we formally define the complex

capacitated lot sizing problem. In Section 2.2, we present the literature review of lot

sizing problem closely related to our problem classified by features. In Section 2.3, four

mixed integer programming formulations are proposed and compared theoretically. In

Section 2.4, benchmark instances are presented, including both application instances

and pseudo-randomly generated instances with realistic characteristics. In Section 2.5,

computational results are presented to evaluate developed formulations. Finally, we

conclude in Section 2.6.

18

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 19

2.1 Problem Definition

Input parameters of the problem are:

• T = {1, 2, . . . , T}: set of time buckets.

• R = {1, 2, . . . , R}: set of resources/machines.

• N = {1, 2, . . . , N}: set of products.

• D = {1, 2, . . . , D}: set of demands.

• caprt: capacity of machine r in time bucket t (r ∈ R, t ∈ T).

• pti: unitary processing time of product i (i ∈ N).

• stir: setup capacity for product i on machine r (i ∈ N ,r ∈ R).

• scir: setup cost for product i on machine r (i ∈ N ,r ∈ R).

• pd ∈ N : required product of demand d (d ∈ D).

• qd: quantity of product pd required by demand d (d ∈ D).

• bd ∈ T : release date of demand d (d ∈ D).

• e1
d ∈ T : first due date of demand d (d ∈ D). No extra cost in interval [bd, e

1
d).

• e2
d ∈ T : second due date of demand d (d ∈ D).

• tc1
d: unitary tardiness cost of demand d satisfied at or after e1

d (d ∈ D).

• tc2
d: unitary tardiness cost of demand d satisfied at or after e2

d (d ∈ D).

• lcd: unitary lost sale cost of demand d (d ∈ D, lcd > tc1
d + tc2

d).

• Di ⊆ D: the subset of demands such that pd = i, i.e., Di := {d ∈ D|pd = i}.

The problem is to decide for each machine r ∈ R and in each time bucket t ∈ T ,

how much to produce of each product i ∈ N . The objective is to minimize the total

cost including lost sale cost, tardiness cost and setup cost. The restriction includes three

parts: first, the machine capacities caprt must not be exceeded by the capacity usage for

each machine r ∈ R and time bucket t ∈ T ; second, the production to satisfy demand d

can only start from its release date; last, setup carryover is considered. This means that

to produce product i on machine r during time bucket t, there has to be a setup for i

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 20

on r during t. However, if product i is the last product produced in the previous time

bucket t− 1 on machine r, there is no setup needed to produce product i on machine r

during time bucket t anymore.

t− 1 t t+ 1

Setup Production

Figure 2.1: Setup carryover

We assumes that there is no more than one setup for each product on each machine

during each time bucket. A pseudo formulation may serve to summarize the problem as

follows. To the best of our knowledge, it is the first time that this CLSP is studied, we

denote it as CLSC for simplicity.

(CLSC) min LostSaleCost+ TardinessCost+ SetupCost

s.t. Material flow conservation constraints

Machine capacity constraints

Time windows of demands

Setup carryover

Based on the definition, we notice that CLSC is different from classical CLSP at the

demand definition. In CLSP, demands are normally aggregated by products and time

buckets. Hence, a demand is defined for each product in each time bucket. However, in

our case it is important to consider individual time window of each demand based on its

release date and due dates. Therefore, we separate the concept of product and demand.

Each demand d requires one product pd with quantity qd, and is given with a release

date rd, two due dates e1
d, e

2
d, their associated tardiness cost tc1

d, tc
2
d and lost sale cost

lcd. In other words, one product is required by a set of demands but each demand is

associated to one product.

0 bd e1
d e2

d
T

0 tc1
d tc1

d + tc2
d

Figure 2.2: Time window of demand

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 21

Another difference is that there is no inventory to be taken into consideration. Not

only there is no inventory cost, but also the produced product is used to satisfy demands

directly, i.e., immediate delivery. These two differences imply that CLSC has certain

scheduling features since the cost and material flow are directly connected to demand

delivery.

We illustrate the problem in Example 2.1.

Example 2.1. We consider 2 machines, 3 products and 5 time buckets. Parameters are

given in the Table 2.1, Table 2.2 and Figure 2.3. Production time pti equals to 1 for all

3 products.

Table 2.1: CLSC Example 2.1 data: setups

stir r1 r2

i1 1 1

i2 1 1

i3 1 1

scir r1 r2

i1 5 5

i2 3 3

i3 3 3

Table 2.2: CLSC Example 2.1 data: capacities

caprt t1 t2 t3 t4 t5

r1 2 1 2 1 2

r2 1 2 1 2 1

d [pd, qd, lcd, tc
1
d, tc

2
d] bd e1d e2d

t1 t2 t3 t4 t5

d1[i1, 1, 100, 1, 5]

d2[i1, 2, 100, 1, 5]

d3[i2, 2, 100, 1, 5]

d4[i2, 2, 100, 1, 5]

d5[i3, 3, 100, 1, 5]

t1 t2 t3 t4 t5

Figure 2.3: CLSC Example 2.1 data: time windows

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 22

Demand parameters is given in Figure 2.3. For example, demand d3 requires 2 units

of product i2. We can start to produce for d3 from its release date t2. If we deliver

before its first due date t3, i.e., within [t2, t2], it is on time. If we deliver at or after the

first due date but before the second due date t4, i.e., within [t3, t3], it is delayed and a

unitary tardiness cost of 1 is charged per unit of delivery quantity. If we deliver at or

after the second due date t4, i.e., within [t4, t5], it is delayed and a unitary tardiness cost

of 6=1+5 is charged per unit of delivery quantity. If we do not fulfill d3, a lost sale cost

100 per unit is paid.

The optimal solution is described in Figure 2.4 with total cost 6. The lost sale cost is

0 since all demands are satisfied. There is only one setup on machine r2 in time bucket

t3 for product i3, hence the setup cost is 3. Demand d3, d4 and d5 are delayed, so the

tardiness cost is 3. For instance, demand d3 is delivered in two lots: time bucket t2 and

time bucket t3. The first delivery is on time whereas the second delivery is late with a

tardiness cost of 1 = 1× 1. Therefore, the tardiness cost of demand d3 is 1.

r2

r1

t1 t2 t3 t4 t5

d3(1) d3(1) d4(1) d4(1)

d1(1) d2(2) setup d5(2) d5(1)

d (quantity)

Figure 2.4: CLSC Example 2.1 optimal solution with setup cost

Theorem 2.1. CLSC is strongly NP-hard.

Proof. The result follows from the fact that CLSP is strongly NP-hard [28], which can

be seen as a special case of CLSC.

Theorem 2.2. CLSC without setup cost is NP-hard.

Proof. Trigeiro et al. [129] proved that CLSP is NP-hard even without setup cost, there-

fore as an extension of CLSP, CLSC without setup cost is NP-hard.

2.2 Literature Review

In this section, we review the state-of-the-art literature of LSP that are related to CLSC.

Specially, we present the overview based on features, including setup carryover, parallel

machines, production time windows, backlogging and lost sale.

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 23

Setup carryover. Setup carryover is also called linked lot size or linked production

quantities (Haase [69]). In each time bucket, producing a positive amount of products

causes a setup time and/or a setup cost. However, if the first product produced in t is

the same as the last product produced in the previous time bucket t − 1, then in time

bucket t we can continue to produce the same product without additional setup. This is

called setup carryover. The setup carryover is always considered in CLSP with multiple

products.

The LSP with setup carryover are first studied in Dillenberger et al. [36, 37]. Since

then, most of the research on setup carryover has been focused on the formulation

and heuristic algorithm design. In Dillenberger et al. [36, 37], a MIP model has been

proposed and a fix-and-relax heuristic algorithm has been developed. In Gopalakrishnan

et al. [58], a MIP model has been proposed and a real-world instances with multiple

machines and product families is solved by using the solver LINDO. In Haase [69], the

setup carryover is restricted to at most one time bucket, a MIP model has been proposed

and a priority rule based heuristic algorithm is developed. In Sox and Gao [122], two

MIP models are proposed while one is based on the shortest path formulation. Also, a

decomposition heuristic algorithm is developed which is based on Lagrangian relaxation.

In Gopalakrishnan [56], they extend the formulation in Gopalakrishnan et al. [58] so that

it incorporates product dependent setup times and costs. Later in Gopalakrishnan et al.

[57] a Tabu Search (TS) algorithm is proposed for this model. In Suerie and Stadtler

[124], another formulation is proposed and it is furthermore extended by introducing

extra variables and valid inequalities. A MIP solver together with a procedure to add cuts

is used to solve the problem. In Briskorn [24], the Lagrangian relaxation based heuristic

algorithm proposed in Sox and Gao [122] is modified so that subproblems are guaranteed

to be solved optimally. In Karimi et al. [89], a CLSP model is studied which considers

multi-item, setup carryover and backlogging. A TS heuristic algorithm is developed

for it. In Nascimento and Toledo [102], the problem is extended to multiple plants,

therefore the possibility of transporting products between plants is considered. A MIP

formulation is proposed and a Greedy Randomized Adaptive Search Procedure (GRASP)

heuristic algorithm is designed. In Sahling et al. [116], a multi level CLSP with setup

carryover is studied, a MIP formulation is proposed and a MIP based fix-and-optimize

heuristic algorithm is developed. In Goren et al. [60], a hybrid approach combining

genetic algorithms and a fix-and-optimize heuristic is proposed. It is compared to the

TS algorithm developed in Gopalakrishnan et al. [57] and is shown to have a better

solution quality with longer computational time. In Gören and Tunal [59], another

hybrid approach combining Genetic Algorithms (GAs) and a fix-and-optimize heuristic

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 24

is proposed, which is different from that of Goren et al. [60]. In Goren et al. [60], the

fix-and-optimize heuristic is embedded in the GA procedure so solve each subproblem,

while in Gören and Tunal [59] it runs GAs for a predetermined number of generations

and use the overall best solution as the initial solution for the fix-and-optimize heuristic.

Parallel machines. Parallel machines are commonly taken into account in practical

production planning such as pharmaceutical industry, disposable products and so on.

The introduction of parallel machines may lead to a large amount of symmetric solutions,

therefore it increases the difficulties of the problem.

In Özdamar and Birbil [106], a lot sizing and loading problem studied deals with

the issue of determining the lot sizes of product families/end items and loading them on

parallel facilities to satisfy dynamic demand over a given planning horizon. The facilities

here have similar functions as parallel machines. A hybrid algorithm combining TS, GA

and Simulated Annealing (SA) is developed. It is further extended to multi-stage model

in Ozdamar and Barbarosoglu [105], where a hybrid algorithm based on Lagrangian re-

laxation, SA and GA is also proposed. In Kang et al. [87], a LSP on parallel machines

with sequence dependent setup costs is studied. The problem is solved by a branch and

bound algorithm based on column generation. In Meyr [98], a CLSP model with micro

time buckets, parallel machines and minimum lot size is studied. A heuristic algorithm

combining threshold acceptance and SA with dual re-optimization is also developed. In

Quadt and Kuhn [110], a CLSP model with setup times, setup carryover, back-orders,

and parallel machines is studied. To find a solution of the original model, the aggregate

model is embedded in a lot sizing and scheduling procedure. In Tempelmeier and Copil

[126], a CLSP model with parallel machines, sequence dependent setup, shelf life and a

single common setup resource is studied. Two MIP based heuristic algorithms including

a fix-and-optimize heuristic and a fix-and-relax heuristic are proposed and tested. Some

heuristic algorithms are based on Lagrangian relaxation on capacity constraints such as

in Toledo and Armentano [128] or demand constraints such as Fiorotto and de Araujo

[44] to be able to decompose the problem into sub problems. In Fiorotto et al. [45],

a DantzigWolfe decomposition is applied to the demand constraints where the master

problem is solved by a combination of Lagrangian relaxation and DantzigWolfe decom-

position in a hybrid form. The parallel machines are also considered in Nattaf et al.

[103], Almada-Lobo et al. [10] and the bc-prod system see Belvaux and Wolsey [14].

Most cases considering parallel machines are in the context of scheduling, for a though

survey we refer to Charrua et al. [26]. There are other papers considering multiple

resources without considering setup on machines but only resource capacity or usage

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 25

cost and so on. In Diaby et al. [35], the setup is counted for each time bucket which

means when a setup is paid once in a time bucket, all machines are able to produce the

corresponding product. In Hindi [73], no setup is considered but there is a unit machine

usage cost and capacity per machine per time bucket.

Production time windows. In the LSP model with production time windows, each

demand has a release date and a due date, during which the production for this demand

must be fulfilled. Therefore, the release date and the due date of a demand become its

time window. Moreover, there are two cases: customer-specific or non-customer-specific

time windows. In the customer-specific case, each demand has a specific release date

and the release quantity can not be used to satisfy other demands. In the non-customer-

specific case, products produced in s can be used to satisfy any demand that require

this product. The release date is used to model raw material availability and customer

confirmation date. A customer order can still be canceled before its confirmation date

and we would like to avoid producing before it is confirmed.

The LSP model with production time windows is first studied in Brahimi [19],

Dauzère-Pérès et al. [32], Brahimi et al. [21]. In Dauzère-Pérès et al. [32], the uncapaci-

tated case is studied and a general dynamic programming pseudo-polynomial algorithm

is presented for the customer-specific problem and a polynomial time O(T 4) algorithm

is proposed for the non-customer-specific case. In Brahimi et al. [21], the capacitated

case is studied which also extends the problem to multi-item. Lagrangian relaxations

based heuristics are developed for both cases. In Wolsey [133], for the customer-specific

case, tight extended formulations are proposed for both the constant capacity and unca-

pacitated problems with Wagner-Whitin (non-speculative) costs. For the non-customer-

specific case, it is shown to be equivalent to the basic lot-sizing problem with upper

bounds on the stocks. Also, polynomial time dynamic programming algorithms and

tight extended formulations for the uncapacitated and constant capacity models with

general cost are also developed. In Hwang [80], different cost structures are studied

and a dynamic programming algorithm with O(T 5) is proposed. In van den Heuvel and

Wagelmans [130], four LSP variants are shown to be equivalent which includes the LSP

with a remanufacturing option [112], the LSP with production time windows, the LSP

with cumulative capacities [120] and the LSP with bounded inventory [94]. In Brahimi

et al. [23], the CLSP with multi-item, non-customer-specific production time windows

and setup times is studied. A Lagrangian relaxation based heuristic algorithms is devel-

oped and a reformulation is proposed. In Absi et al. [4], the production time window is

studied together with lost sale as well as early production, backlog on the uncapacitated

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 26

LSP. Several properties of the optimal solution are presented for different variants of

the problem when production time windows are non-customer specific. Exact dynamic

programming algorithms are developed with computational complexity O(T 2).

Backlogging. Backlogging is also called inventory shortage, or backorder in Millar and

Yang [99]. If it is possible to satisfy a demand after its due date, it is called backlogging.

Together with lost sale, they are common features in practice when there is insufficient

capacity or for simulation analysis purpose.

This feature backlogging has been widely studied in the literature. Here we review

the literature which is most related to our problem. In Zangwill [134], backlogging is first

studied in an LSP model with concave production costs and piecewise concave inventory

costs. A dynamic programming algorithm is also proposed. In Pochet and Wolsey [107],

mixed integer programming reformulations of the uncapacitated lot-sizing problem with

constant cost and backlogging is studied. The linear programming reformulations solves

the problem directly, while a cut generation algorithm is also developed with a family of

cuts. In Choo and Chan [29], a simple class of heuristic algorithms two-way eyeballing

heuristic (TWEH) is presented which first determine the backlogging periods and then

the production quantities. This algorithm is further compared in Hsieh et al. [74] with

modified algorithms which are originally designed for LSP, the result shows that TWEH

is the simplest algorithm with good performance. In Federgruen and Tzur [43], time-

variant cost starts to be considered in the model and a O(T log T) exact algorithm is

developed. In Chen et al. [27], a LSP model with piecewise linear costs and capacity

restrictions on both production and inventory is studied, also a dynamic programming

algorithms is developed. In Millar and Yang [100], the multi-item CLSP with backorder-

ing is studied and two heuristic algorithms based on a network-based formulation and

Lagrangian decomposition are developed. In Robinson Jr. and Gao [115], backlogging

is considered together with coordinated replenishment. A mixed-integer programming

formulation is proposed and dual ascent based branch-and-bound algorithm is devel-

oped. In Ozdamar and Barbarosoglu [105], the multi-stage CLSP with backlogging on

the last stage is studied and a hybrid algorithm is developed which embeds SA and GA

into Lagrangean relaxation. In Hung et al. [79], a CLSP model with parallel machines,

setup and backlogging is studied and different GA algorithms are used to make setup

decisions. In Hung and Chien [78], a multi-level CLSP considers multiple demand classes

with backlogging is studied, where the MIP models corresponding to each demand class

is solved in sequence. Three heuristic algorithms including TS, GA and SA are de-

veloped and compared. In Belvaux and Wolsey [15], different formulation techniques

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 27

for a range of LSP is discussed which includes backlogging, start-ups, changeovers and

so on. Papers that consider backlogging also include Gupta and Brennan [65], Hung

et al. [77], Jans and Degraeve [83], Duda [41], Karimi et al. [89], Megala and Jawahar

[97], Gaafar [50], Kämpf and Köchel [86], Huai-En Chiao et al. [76].

There are many papers considering backlogging which considers other topics such as

ELSP in Zangwill [135], Blackburn and Kunreuther [18], Hsu and Lowe [75], or based on

inventory system in one period in Atkins and Sun [12], Sun and Atkins [125], or integrate

pricing and LSP on infinite planning horizon in Abad [1].

Lost sale. Lost sale is also called stockout in Sandbothe and Thompson [118], where

it is possible to not meet demands with a penalty cost.

Comparing to backlogging, there are much fewer papers considering LSP with lost

sales. The CLSP with lost sale is first studied in Sandbothe and Thompson [118] with

constant cost over time period, in which two necessary optimality conditions are stated

and two forward algorithms are developed for the constant capacity case and non-

constant capacity case. In Sandbothe and Thompson [119], the problem is extended

to include also capacity constraints on inventory, optimality conditions are also stated

together with a forward algorithm of asymptotically linear time. In Aksen et al. [6], an

uncapacitated single-item LSP with lost sales is studied which have a time-variant cost

structure. Several structural properties of optimal solutions are proposed and an exact

algorithm in linear time O(T 2) is developed. In Absi et al. [4], the lost sale is studied

together with production time windows as well as early production, backlog on the un-

capacitated LSP. Several properties of the optimal solution are presented for different

variants of the problem when production time windows are non customer specific. Exact

dynamic programming algorithms are developed with computational complexity O(T 2).

There a few other papers considering lost sale as well such as Abad [1], Teng et al.

[127], Huai-En Chiao et al. [76], Abad [2], Ghosh et al. [54]. However, they focus on

an integration of pricing and lot sizing with infinite time horizon with perishability or

deteriorating inventories.

Among all these features related to CLSC, setup carryover and parallel machines

contribute the most to the problem complexity. Without setup, the problem can be

solved as a continuous optimization problem. Parallel machines not only increase the

problem size but also make the LP relaxation solution provide less guidance to the MIP

solution due to the fact that the production in the LP solution will be distributed to

all machines. Therefore it is interesting for to study this problem and hopefully develop

efficient algorithms for it.

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 28

2.3 MIP Formulations

In this section, we present MIP formulations for CLSC. The first three formulations

are aggregated formulations with different ways to model setup carryover. The last

formulation is adapted from facility location reformulation.

Aggregated Formulation 1 (Form1)

For each product i ∈ N , each machine r ∈ R, each time bucket t ∈ T and each demand

d ∈ D, we first introduce the following decision variables:

• xirt ∈ R+: the production quantity of product i on machine r during time t.

• ydt ∈ [0, qd]: the satisfied quantity of demand d in time bucket t ≥ bd.

• yd ∈ [0, qd]: the unsatisfied quantity of demand d.

In Haase [67], a MIP formulation for CLSP on a single machine with setup carryover

has been introduced. We adapt this formulation to our problem and introduce setup

variables for each product i ∈ N , each machine r ∈ R and each time bucket t ∈ T as

follows:

• vrt ∈ [0, 1], vrt > 0 indicates if more than one product is produced in time bucket

t on machine r.

• zirt ∈ {0, 1} equals to 1 if a setup state for product i on machine r exists in time

bucket t and 0 otherwise.

• zcirt ∈ {0, 1} equals to 1 if the setup state for product i is carried over from time

bucket t− 1 to time bucket t on machine r and 0 otherwise.

Then the first formulation (Form1) is formally given as follows (T̃ = T \ {1}):

min
∑

d∈D
lcdyd +

∑

d∈D,t∈T :t≥e1d

tc1
dydt +

∑

d∈D,t∈T :t≥e2d

tc2
dydt +

∑

i∈N ,r∈R,t∈T
scir(zirt − zcirt)

(2.1)

s.t.
∑

r∈R
xirt =

∑

d∈D:pd=i,t≥bd
ydt i ∈ N , t ∈ T (2.2)

∑

bd≤t∈T
ydt + yd = qd d ∈ D (2.3)

∑

i∈N
ptixirt +

∑

i∈N
stir(zirt − zcirt) ≤ caprt r ∈ R, t ∈ T (2.4)

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 29

xirt ≤ Θirtzirt i ∈ N , r ∈ R, t ∈ T (2.5)
∑

i∈N
zcirt ≤ 1 r ∈ R, t ∈ T (2.6)

zcirt ≤ zir,t−1 i ∈ N , r ∈ R, t ∈ T̃ (2.7)

zcirt ≤ zirt i ∈ N , r ∈ R, t ∈ T (2.8)

zcirt + zcir,t−1 + vr,t−1 ≤ 2 i ∈ N , r ∈ R, t ∈ T̃ (2.9)

Nvrt ≥
∑

i∈N
zirt − 1 r ∈ R, t ∈ T (2.10)

0 ≤ xirt i ∈ N , r ∈ R, t ∈ T (2.11)

0 ≤ ydt, yd ≤ qd d ∈ D, t ≥ bd (2.12)

zcirt, zirt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ T (2.13)

vrt ∈ [0, 1] r ∈ R, t ∈ T (2.14)

where Θirt = min{ caprtpti
,
∑

d∈Di,bd≤t qd}. In the objective (2.1), it minimizes the cost

including lost sale cost
∑

d∈D lcdyd, first level tardiness cost
∑

d∈D,t∈T :t≥e1d tc
1
dydt, second

level tardiness cost
∑

d∈D,t∈T :t≥e2d tc
2
dydt, and setup cost

∑
i∈N ,r∈R,t∈T scir(zirt − zcirt).

Note that according to setup carryover, a setup cost has to be paid when there is a setup

(zirt = 1) which is not carried over from the last time bucket (zcirt = 0). Constraints (2.2)

state flow balance for each product in each time bucket, the inflow (production) equals

to the outflow (demand satisfaction). Constraints (2.3) ensure that for each demand, the

unsatisfied demand quantity plus the unsatisfied demand quantity equals to the demand

quantity. Constraints (2.4) ensure that the capacity is not exceeded on each machine

in each time bucket, where the setup capacity consumption is formulated similarly to

the setup cost. Constraints (2.5) link the production and the setup since a positive

production of i on r at t requires a setup state for i on r at t. Constraints (2.6) - (2.10)

model setup carryover. There is at most one setup state to be carried over to the next

time bucket, which is guaranteed by constraints (2.6). A setup state of i on r carried

over from t − 1 to t implies that this state is included in both t − 1 (2.7) and t (2.8).

If there is more than one setup state in one time bucket, i.e., vrt > 0, the initial setup

state and the last setup state are necessarily different. This is formulated as constraints

(2.9). Finally, to fulfill the definition of variable vrt, we have the constraints (2.10).

Aggregated Formulation 2 (Form2)

In Sox and Gao [122], two MIP formulations for CLSP on single machine with setup

carryover are presented. One is aggregated formulation while the other one is network

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 30

formulation. Here we adapt the aggregated formulation to CLSC. Besides variables

xirt, ydt and yd as introduced above, we introduce the following setup variables for each

product i ∈ N , each machine r ∈ R and each time bucket t ∈ T :

• z0
irt ∈ {0, 1} equals to 1 if the initial setup state is for product i on machine r in

time bucket t, implying that the final setup state for t− 1 on r is for product i.

• z+
irt ∈ {0, 1} equals to 1 if there is a state switch for product i on machine r in

time bucket t.

Then the second formulation (Form2) is formally given as follows:

min
∑

d∈D
lcdyd +

∑

d∈D,t∈T :t≥e1d

tc1
dydt +

∑

d∈D,t∈T :t≥e2d

tc2
dydt +

∑

i∈N ,r∈R,t∈T
scirz

+
irt (2.15)

s.t.
∑

r∈R
xirt =

∑

d∈Di,t≥bd
ydt i ∈ N , t ∈ T (2.16)

∑

bd≤t∈T
ydt + yd = qd d ∈ D (2.17)

∑

i∈N
ptixirt +

∑

i∈N
stirz

+
irt ≤ caprt r ∈ R, t ∈ T (2.18)

xirt ≤ Θirt(z
0
irt + z+

irt) i ∈ N , r ∈ R, t ∈ T (2.19)
∑

i∈N
z0
irt = 1 r ∈ R, t ∈ T (2.20)

z0
irt ≤ z0

ir,t−1 + z+
ir,t−1 i ∈ N , r ∈ R, t ∈ T̃ (2.21)

z+
jr,t−1 ≤ 2− z0

ir,t−1 − z0
irt i, j 6= i ∈ N , r ∈ R, t ∈ T̃ (2.22)

0 ≤ xirt i ∈ N , r ∈ R, t ∈ T (2.23)

0 ≤ ydt, yd ≤ qd d ∈ D, bd ≤ t ∈ T (2.24)

z0
irt, z

+
irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ T (2.25)

The total setup cost is formulated as
∑

i∈N ,r∈R,t∈T scirz
+
irt since the setup cost has to

be paid only when there is a setup switch (z+
irt = 1). Constraints (2.18) ensure that

the total used capacity does not exceed the available capacity, where the setup capacity

consumption is formulated similarly to the setup cost. Constraints (2.19) link the setup

and production since a positive production of i on r at t requires a setup state for i on

r at t, which is either from an initial setup state (z0
irt = 1) or a setup switch (z+

irt = 1).

There is a unique initial setup state for each time bucket on each machine, which is

established by constraints (2.20). Also, the initial setup state must be one of the setup

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 31

states in the previous time bucket (2.21). However, constraints (2.22) ensure that, on

machine r during time bucket t, no setup switch is possible when the initial setup state

and the last setup state of t (i.e., the initial setup state of the next time bucket t + 1)

are both for the same product.

Aggregated Formulation 3 (Form3)

In Suerie and Stadtler [124], a MIP formulation for CLSP on multiple unrelated machines

with setup carryover is presented. This formulation is similar to the Form2. In addition

to the previously defined binary variables z0
irt and z+

irt, additional variables wrt are

introduced for each machine r ∈M and time bucket t ∈ T :

• wrt ∈ [0, 1] equals to 0 if there is a setup switch on r in t, it is greater than 0

otherwise.

Then the third formulation (Form3) is formally given as follows:

min (2.15)

s.t. (2.16)− (2.21), (2.23)− (2.25)

z0
irt + z0

ir,t−1 ≤ 1 + wr,t−1 i ∈ N , r ∈ R, t ∈ T̃ (2.26)

z+
irt + wrt ≤ 1 i ∈ N , r ∈ R, t ∈ T (2.27)

0 ≤ wrt ≤ 1 ∀r ∈ R, t ∈ T (2.28)

Basically, we substitute constraints (2.22) with constraints (2.26) - (2.28). Constraints

(2.26) implies that on machine r, the initial setup states at t−1 and t have to be different

when more than one product is produced during t − 1 (wr,t−1 = 0). Constraints (2.27)

ensures that wrt = 0 when there are more than one setup state during time bucket t.

Facility Location Based Reformulation (Form3FL)

In section 1.2 we introduce two reformulations of CLSP. Here we adapt facility location

reformation of CLSP to CLSC. For all d ∈ D, bd ≤ t ∈ T and r ∈ R, we introduce

• Qdrt ∈ R+: the production quantity of product pd on machine r during time t to

satisfy demand d.

Then it is straightforward to build the relationship between previously defined variables

xirt, ydt, yd and Qdrt:

xirt =
∑

d∈Di,t≥bd
Qdrt

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 32

ydt =
∑

r∈R
Qdrt

yd = qd −
∑

r∈R,bd≤t∈T
Qdrt

Here we apply these newly defined production variables on the Form3. However, it

is not hard to see that we can also reformulate Form1 and Form2. The formulation is

formally given as follows:

min
∑

d∈D,t∈T :t≥e1d

tc1
d

∑

r∈R
Qdrt +

∑

d∈D,t∈T :t≥e2d

tc2
d

∑

r∈R
Qdrt

+
∑

d∈D
lcd(qd −

∑

r∈R,bd≤t∈T
Qdrt) +

∑

i∈N ,r∈R,t∈T
scirz

+
irt (2.29)

s.t.
∑

r∈R,bd≤t∈T
Qdrt ≤ qd d ∈ D (2.30)

∑

i∈N ,d∈Di,bd≤t
ptiQdrt +

∑

i∈N
stirz

+
irt ≤ caprt r ∈ R, t ∈ T (2.31)

Qdrt ≤ Θ′drt(z
0
irt + z+

irt) d ∈ D, r ∈ R, bd ≤ t ∈ T (2.32)
∑

d∈Di

Qdrt ≤ Θirt(z
0
irt + z+

irt) i ∈ N , r ∈ R, t ∈ T (2.33)

0 ≤ Qdrt ≤ qd d ∈ D, r ∈ R, bd ≤ t ∈ T (2.34)

(2.20)− (2.21), (2.25), (2.26)− (2.28)

where Θ′drt = min{qd,Θpd,r,t}.
A comparison of the formulation size is summarized in Table 2.3. They all have

the same number of binary variables, while Form2 has less continuous variables than

Form1 and Form3. The number of constraints increases in the order Form3, Form1

and Form2. We compare the formulation Form3 and Form3FL, the latter has more

continuous variables and more constraints.

Table 2.3: CLSC formulation size comparison

Form # Variables # Binaries # Constraints

Form1 3NRT +RT +DT +D 2NRT O(NRT)

Form2 3NRT +DT +D 2NRT O(N2RT)

Form3 3NRT +RT +DT +D 2NRT O(NRT)

Form3FL DRT + 2NRT +RT 2NRT O(DRT)

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 33

We compare different formulations theoretically and have following conclusions:

Theorem 2.3. The optimal objective function values of the LP relaxations of formula-

tions Form1, Form2 and Form3, represented by Obj∗LP (Form1), Obj∗LP (Form2) and

Obj∗LP (Form3), have following relationship

Obj∗LP (Form2) = Obj∗LP (Form3) ≥ Obj∗LP (Form1)

Proof. Let (x̃, ỹ, z̃c, z̃, ṽ), (x̄, ȳ, z̄0, z̄+) and (ẋ, ẏ, ż0, ż+, ẇ) be optimal solutions of the LP

relaxation of Form1, Form2 and Form3 respectively, while f1(x̃, ỹ, z̃c, z̃, ṽ), f2(x̄, ȳ, z̄0, z̄+)

and f3(ẋ, ẏ, ż0, ż+, ẇ) are the corresponding optimal objective function values.

First, we prove that f2(x̄, ȳ, z̄0, z̄+) ≥ f3(ẋ, ẏ, ż0, ż+, ẇ). Define

w̄rt = min
i∈N
{1− z̄+

irt},

then we claim that solution (x̄, ȳ, z̄0, z̄+, w̄) is a feasible solution of Form3. The only

constraints in Form3 that are not in Form2 is (2.26) and (2.27). Since (2.27) is satisfied

by definition of w̄, we only need to show that (2.26) holds.

z̄0
ir,t+1 + z̄0

irt ≤ min
j∈N
{2− z̄+

jrt} = 1 + min
j∈N
{1− z̄+

jrt} = 1 + w̄rt.

The first inequality is due to constraints (2.22), while the third equality is due to def-

inition of w̄. Moreover, f3(x̄, ȳ, z̄0, z̄+, w̄) equals to f2(x̄, ȳ, z̄0, z̄+) by definition of the

objective. Therefore f2(x̄, ȳ, z̄0, z̄+) = f3(x̄, ȳ, z̄0, z̄+, w̄) ≥ f3(ẋ, ẏ, ż0, ż+, ẇ).

Second, we prove that f2(x̄, ȳ, z̄0, z̄+) ≤ f3(ẋ, ẏ, ż0, ż+, ẇ). More specifically, we

will show that solution (ẋ, ẏ, ż0, ż+) is feasible for Form2, and has the same objective

function value as f3(ẋ, ẏ, ż0, ż+, ẇ). The only constraints in Form2 that do not appear

in the Form3 is (2.22). For any j 6= i ∈ N , we have

ż0
ir,t+1 + ż0

irt ≤ 1 + ẇrt ≤ 1 + 1− ż+
jrt = 2− ż+

jrt.

The first inequality is due to (2.26) while the second inequality is due to (2.27). There-

fore, f2(x̄, ȳ, z̄0, z̄+) ≤ f2(ẋ, ẏ, ż0, ż+) = f3(ẋ, ẏ, ż0, ż+, ẇ).

Third, we show that f2(x̄, ȳ, z̄0, z̄+) ≥ f1(x̃, ỹ, z̃c, z̃, ṽ). First of all, we point out that

there exists an optimal solution of Form1 satisfying that

z̄0
irt + z̄+

irt ≤ 1.

This is due to the fact that in constraints (2.19), Θirt is the upper bound of the production

quantity xirt. Define

z̄irt = z̄0
irt + z̄+

irt

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 34

ẑcirt = min{z̄0
irt, z̄ir,t−1, z̄irt}

v̄rt =

∑
i z̄irt − 1

N

we will show that the solution (x̄, ȳ, z̄, ẑc, v̄) is a feasible solution for Form1 which has

the same objective function value as f2(x̄, ȳ, z̄0, z̄+). Constraints (2.5), (2.6), (2.7), (2.8)

and (2.10) hold due to the definition of the variables. For constraints (2.9),

v̄rt =

∑
i z̄irt − 1

N
=

∑
i(z̄

0
irt + z̄+

irt)− 1

N

=

∑
i z̄

0
irt +

∑
i z̄

+
irt − 1

N
=

∑
i z̄

+
irt

N
≤ max

i
z̄+
irt

Hence,

z0
ir,t+1 + z0

irt ≤ 2−max
j
z+
jrt ≤ 2− v̄rt.

Therefore, f2(x̄, ȳ, z̄0, z̄+) = f1(x̄, ȳ, z̄, ẑc, v̄) ≥ f1(x̃, ỹ, z̃0, z̃, ṽ).

This theorem shows that the LP relaxation of Form2 and Form3 provide equiva-

lently lower bounds no worse than Form1.

Theorem 2.4. The formulation Form3FL is stronger than the formulation Form3 in

the sense that its optimal objective function value of the LP relaxation Obj∗LP (Form3FL)

is greater than or equal to that of the Form3 Obj∗LP (Form3).

Obj∗LP (Form3) ≤ Obj∗LP (Form3FL)

Proof. Let (Q̊, z̊0, z̊+, ẘ) be the optimal solution of the LP relaxation of Form3FL, we

will show that there always exists a corresponding solution of Form3 which shares the

same objective function value. For each i ∈ N , r ∈ R and t ∈ T , define

ẍirt =
∑

d∈D:pd=i,t≥bd
Q̊drt (2.35)

ÿdt =
∑

r∈R
Q̊drt (2.36)

ÿd = qd −
∑

bd≤t∈T
ÿdt (2.37)

First, we will show that (ẍ, ÿ, z̊0, z̊+, ẘ) is a feasible solution of Form3. Since

∑

r∈R
ẍirt =

∑

r∈R

∑

d∈D:pd=i

x̊irtd =
∑

d∈D:pd=i

∑

i=pd,r∈R
x̊irtd =

∑

d∈D:pd=i

ÿdt

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 35

constraints (2.16) hold. Constraints (2.17) hold due to the definition of ÿd, whereas

constraints (2.18) hold due to the definition of ẍirt. As for the production and setup

linking constraints (2.5), it holds due to constraints (2.33).

Second, the solution (ẍ, ÿ, z̊0, z̊+, ẘ) and (Q̊, z̊0, z̊+, ẘ) share the same objective func-

tion value due to the fact that the objective function of Form3FL is based on the sub-

stitution of (2.35) - (2.37). Therefore, the theorem holds.

2.4 Benchmark Instances

To perform experimental study on the problem CLSC, we introduce two sets of bench-

mark instances in this section. One set consists of real-world instances of the apparel

application, whereas the other one comes from a pseudo-random instance generator de-

signed to simulate real-world problems. The benchmark instances are summarized in

Table 2.4, in which we present the type of the instances (Type), its notation (Notation),

the number of instances it contains (Size) and some comments.

Table 2.4: CLSC benchmark instances summary

Type Notation Size Comment

Application instances IAP-A 3

(IAP) IAP-B 4

Randomly generated IRG-A 810 small size

(IRG) IRG-B 108 medium to big size

We present the real-world instances, their characteristics and the data analysis in

Section 2.4.1. Based on the real data analysis, the instance generator and characteristics

of pseudo-randomly generated instances are given in Section 2.4.2.

2.4.1 Benchmark IAP: Real-World Instances and Data Analysis

We have collected 7 real-world instances so far. The characteristics of our application

instances are summarized in Table 2.5, which include instance type, instance name,

number of time buckets T , number of machines R, number of products N , number of

demands D and the capacity requirement ratio Γ defined as

Γ :=

∑
d∈D ptpdqd∑

r∈R,t∈T caprt
. (2.38)

Although Γ does not consider the setup consumed capacity, it is an indicator of the

machine loads. The larger it is, the more the machine is used. Moreover, instance R6

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 36

(R8) is based on instance R5 (R7) that it eliminates frozen horizon activities based on

the current production plan.

Table 2.5: CLSC real-world benchmark instances

Type Instance T R N D Γ(%) Comment

IAP-A R1 27 3 3 313 99

R2 36 28 18 1188 30

R3 30 29 1 595 33

IAP-B R5 25 30 46 668 91

R6 25 30 36 431 74 R5 with frozen horizon

R7 20 31 80 1428 40

R8 20 31 73 1404 41 R7 with frozen horizon

Calculation of the capacity requirement ratio is actually data analysis. Performing

data analysis in a real-world application is often necessary and important. First, it helps

to detect possible data error which is a common issue in practice. Second, it helps to

discover the data structure and may lead to efficient tailored heuristics. Third, due to

the fact that data collection and verification might be a long and struggling process,

randomly generated instances are needed to develop optimization engine for production

planning. Therefore, in the rest of this section, we take instance R5 as a representative to

perform analysis. There are many parameters in our problem, therefore we group these

parameters into following features first and perform analysis from these perspectives:

1. Problem size: N , R, D, T .

2. Machine capacity: caprt.

3. Production time: pti.

4. Setup time and cost: stir and scir.

5. Product and demand distribution: pd.

6. Demand quantity: qd.

7. Time window of demand: bd, e
1
d, e

2
d.

8. Demand cost structure: tc1
d, tc

2
d, lcd.

First of all, the size of instance R5 is given in Table 2.5, which has 25 time buckets

corresponding to around 6 months planning horizon, 46 products, 30 parallel machines

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 37

with different capacities and 668 demands. The detailed data analysis is given in Table

A.1 - A.5 in Appendix.

In Figure 2.5, for each machine r, we give its minimum capacity, maximum capacity

and average capacity over its nonzero-capacity time buckets, and capacities for each time

bucket. We have following observations: 1) Machine capacities vary between 1,000,000

and 4,000,000. Parallel machines have very different capacity layout. 2) Even for one

machine, its capacity changes from time bucket to time bucket. However, it seems

that over most time buckets, the capacity is relatively stable around one level for most

machines. In other time buckets, the capacity has a decrease. 3) Although there are

irregular machines such as r3 which only has nonzero-capacity in t2, the overall capacity

trends for all machines have similar pattern. For example, in time bucket t10 and t12,

there is a decrease for all machines’ capacities. This is mainly due to national holidays.

Figure 2.5: CLSC instance R5 analysis: machine capacity distribution

In Figure 2.6, we present the unit production time for each product. For example,

to produce one unit of product 1, the production time is 1529. For each product,

the number of demands |Di| is also shown in the right axis. We cannot conclude a

distribution pattern for the production time, and there is no relationship between the

production time and its demand size. In most cases, the production time is between

1000 and 2000 seconds.

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 38

Figure 2.6: CLSC instance R5 analysis: production time distribution

In Figure 2.7, for each machine, we give the average setup time over its capacity ratio,

which is calculated as
1/N ·∑i∈N stir∑
t∈T ,caprt>0 caprt∑

t∈T ,caprt>0 1

. We observe that the setup time is on average

very large that it takes 40% to 50% of the capacity in each time bucket. The setup cost

equals to the setup time times unitary labor cost.

Figure 2.7: CLSC instance R5 analysis: setup time distribution

In Figure 2.8, we show the product distribution. For each product i, the left vertical

axis represents the number of demands that require this product, i.e., |Di|. For each

product i, the right vertical axis shows the percentage of its required capacity over all

products, which is calculated by
∑

d∈Di ptiqd∑
j∈N

∑
d∈Dj ptjqd

. For example, product 1 has 7 de-

mands and is responsible for 1.19% of total capacity requirement. We have the following

observations: 1) Number of demands and capacity requirement of each product are not

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 39

always positively correlated. For example, Product 4 has most number of demands as

123, but its capacity requirement takes 19.77%, which is less comparing to Product 33.

This is due to difference in production time of different demands. 2) There are several

“big” products, such as Product 33 and Product 4. Overall, 20% products covers more

than 80% of demand capacity requirement.

Figure 2.8: CLSC instance R5 analysis: product-demand distribution

In Figure 2.9, the quantity of each demand is sorted in nondecreasing order. The

quantity distribution seems to share the same shape as an exponential function.

Figure 2.9: CLSC instance R5 analysis: demand quantity distribution

In Figure 2.10, . The release time and the first due date construct a on-time time

window for each demand, the length of which equals to e1
d−rd. The same also applies to

the second due date and first due date. In Figure 2.10, the horizontal axis represents all

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 40

possible time window length while the vertical axis represents the number of demands

that falls into this category. The blue lines corresponds to the length of interval between

release date and first due date e1
d − rd, the orange lines corresponds to the length of

interval between first due date and second due date e2
d − e1

d. For example, there are 91

demands the length e1
d − rd equals to 1, which means that they have 1 time bucket to

be produced and satisfied on time. We observe that more than 95% of demands has the

time interval value e1
d − rd and e2

d − e1
d less than or equals to 4. Moreover, more than

45% of demands has the value e1
d− rd = 4 and more than 68% of demands has the value

e2
d− e1

d = 4. This is in accordance with the fact that there is normally 1 month between

the release date and the first due date.

Figure 2.10: CLSC instance R5 analysis: demand time window distribution

Next we analyze the demand release date, first due date and second due date dis-

tribution. In Figure 2.11, the horizontal axis represents the time bucket t ∈ T , while

the vertical axis represents the number of demands. The blue curve corresponds to the

number of demands that are released at t, i.e., rd = t. The red curve corresponds to

the number of demands that are first due at t, i.e., e1
d = t, whereas the green curve

corresponds to the number of demands that are second due at t, i.e., e2
d = t.

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 41

Figure 2.11: CLSC instance R5 analysis: demand release/due date distribution

We have following observations:

• 99% of demands are released in the first 60% time buckets (t = 1 to t = 15).

Moreover, the number of released demands has a peak in the middle of these time

buckets.

• 99% of demands are due in the first 76% time buckets (t = 1 to t = 19). This

matches the on-time window length we have observed before.

• 88% of demands have second due date in the last 60% time buckets (t = 1 to

t = 19). This matches the window length e2
d − e1

d we have observed before.

• All dates distribution seem to have a similar shape as the possibility density func-

tion of nominal distribution.

Based on this analysis, we can analyze the capacity requirement based on time win-

dow instead of on the whole time horizon. For each consecutive time window with length

4 [t, t+ 3], we calculate the set of demands Dt that have [rd, e
1
d− 1] ⊆ [t, t+ 3]. Then for

each time interval [t, t+ 3], the percentage of demands |Dt|
D is given as the blue columns

on the left vertical axis, while their total required capacity ratio as
∑

d∈Dt
ptpdqd∑

r∈R,t≤s≤t+3 caprt
is

given as the orange dot in the right vertical axis. This value reflect that to produce and

satisfy all demands on time, what is the required capacity. For example, in the time

interval [t1, t4], we have 7.63% demands released and should be satisfied in this interval

to be on time. Their required production capacity takes 115% of the total available

capacity in this interval. By looking at the graph and values, we observe that most of

demands requirement are concentrated on the first 68% of the time horizon. Therefore,

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 42

the capacity constraint is tight on this part of the time horizon and if there is not enough

capacity many demands will be pushed late.

Figure 2.12: CLSC instance R5 analysis: capacity requirement by time interval

Finally, we analyze the cost structure. In this instance, the unit lost sale cost lcd

is set artificially as 1000, while the first level tardiness cost is 2.5 and the second level

tardiness cost is 14 for all demands. To have a better view, we show the tardiness cost

structure of instance R7 in the following Figure 2.13. We have following observations:

1) For the first level tardiness cost, 80% of demands have tc1
d as 2.5 and 8% of demands

have tc1
d as 1.8. 2) For the second level tardiness cost, all of them have the cost as 14.

Based on these two instances, we conclude that the first level tardiness cost has a large

possibility to be 2.5 while the second level tardiness cost equals to 14.

Figure 2.13: CLSC instance R5 analysis: tardiness cost distribution

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 43

2.4.2 Benchmark IRG: Pseudo-Randomly Generated Instances

Due to the limited number of real-world instances, it requires us to generate benchmark

instances to perform computational test. In this section, we propose an instance gener-

ator and 2 sets of instances, of which the number of contained instances are summarized

in Table 2.6:

Table 2.6: CLSC pseudo-randomly generated benchmark instances

Notation Size T N R D Γ(%)

IRG-A 810 {4,9,13} {4,8,12} {1,5,10} {50,100,200} {75,90}
IRG-B 108 {25} {50,75,100} {15,20,30} {500,750,1000} {75,90}

Instance Generator

We introduce an instance generator which is able to produce instances of CLSC with

different characteristics.

The input parameters for the instance generator is given in Table 2.7:

Table 2.7: CLSC instance generator parameters

Data IG Parameter Description

T,R,N,D T , R, N , D Instance size

pd size(p),

weight(p)

Approximately weight(p) % of demands belong to

the first size(p) % of products.

pti lbd(pt), ubd(pt) ptd ∈ [lbd(pt), ubd(pt)], pti =
⌈∑

d∈Di ptdqd∑
d∈Di qd

⌉

qd lbd(q), mbd(q),

ubd(q), mpt(q)

Approximately with possibility mpt(q), qd ∈
[lbd(q),mbd(q)]; otherwise, qd ∈ [mbd(q), ubd(q)].

e1
d size1(d),size2(d),

prob1(d),

prob2(d)

With possibility prob1(d), e1
d ∈ first size1(d)% part

of time horizon; with possibility prob2(d), e1
d ∈ sec-

ond size1(d)% part of time horizon; otherwise, e1
d ∈

remaining part of time horizon.

rd pf(dr) With possibility pf(dr), rd = max{1, e1
d − 4}; other-

wise, rd ∈ max{1, [e1
d − 3, e1

d − 1]}.

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 44

Table 2.7: CLSC instance generator parameters (continued)

Data IG Parameter Description

e2
d pf(dd) With possibility pf(dd), e2

d = min{T + 1, e1
d + 4};

otherwise, e2
d ∈ min{T + 1, [e1

d + 1, e1
d + 3]}. If e2

d ==

T + 1, it implies that there is no second due date.

tc1
d lbd(tc1), ubd(tc1) tc1

d ∈ [lbd(tc1), ubd(tc1)]

tc2
d lbd(tc2), ubd(tc2) tc2

d ∈ [lbd(tc2), ubd(tc2)]

lcd lbd(lc), ubd(lc) lcd ∈ [lbd(lc), ubd(lc)]

caprt R, Type(cap) Types of capacity allocation and target demand ca-

pacity ratio.

stir lbd(st), ubd(st) stir ∈ [lbd(st)caprt, ubd(st)caprt]

scir lbd(sc), ubd(sc) scir ∈ [lbd(sc), ubd(sc)] and is positively proportional

to stir.

The procedure of the instance generator is described in the following, which uses

above parameters to realize all instance data. Let randI(l, u) represent a random inte-

ger number between l and u inclusively following uniform distribution, while randD(l, u)

represent a random real number between l (inclusive) and u (exclusively) following uni-

form distribution.

1. Instance size T , M , N , D is given by parameters directly. Without loss of gener-

ality, N ≤ D.

2. Demand product pd: α← randD(0, 1) and β ← bN · size(p)c.
If α < weight(p) and β > 0, pd ← randI(1, β).

Otherwise, pd ← randI(β + 1, N).

3. pti: for each demand d ∈ Di, ptd = randI(lbd(pt), ubd(pt)), then pti =
⌈∑

d∈Di ptdqd∑
d∈Di qd

⌉
.

4. Demand quantity qd: α← randD(0, 1).

If α < mpt(q), qd ← randI(lbd(q),mbd(q)).

Otherwise, qd ← randI(mbd(q), ubd(q)).

5. Demand first due date e1
d: α← randD(0, 1), β ← bT ·size1(d)c, γ ← bT ·size2(d)c.

If α ≤ prob1(d) and β > 0, e1
d ← randI(1, β).

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 45

Else if α ≤ prob2(d) and γ > 0, e1
d ← randI(β + 1, γ).

Otherwise, e1
d ← randI(γ + 1, T).

6. Demand release time bd: α← randD(0, 1).

If α ≤ pf(dr), rd = max{1, e1
d − 4}.

Otherwise, rd ∈ max{1, [e1
d − 3, e1

d − 1]}.

7. Demand second due date e2
d: α← randD(0, 1).

If α ≤ pf(dd), e2
d = min{T + 1, e1

d + 4}.
Otherwise, e2

d ∈ min{T + 1, [e1
d + 1, e1

d + 3]}.
If e2

d == T + 1, it implies that there is no second due date.

8. Demand tardiness cost tc1
d ← randI(lbd(tc1), ubd(tc1)), tc2

d ← randI(lbd(tc2), ubd(tc2)).

9. Demand lost sale cost lcd ← randI(lbd(lc), ubd(lc)).

10. Machine capacity: let lbd = b0.75bc, ubd = b1.25bc where b =
∑

d∈D ptiqd
M ·T ·R .

• If Type(cap) = Constant, capr ← randI(lbd, ubd), caprt = capr for r ∈ R.

• If Type(cap) = V arious, caprt ← randI(lbd, ubd).

• If Type(cap) = TwoLevel, let lowCapRatio = 0.5 and lowTBSize = 0.2,

– Randomly select a subset of time buckets T̂ ⊆ T and |T̂ | = blowTBSize ·
T c.

– For each machine r ∈ R, avgCapr ← randI(lbd, ubd),

uCapr ← bavgCapr/((1− lowTBSize) + lowTBSize ∗ lowCapRatio)c,
lCapr ← ucapr · lowCapRatio.

– For t ∈ T , if t ∈ T̂ caprt ← lCapr; otherwise, caprt ← uCapr.

11. Setup time stir: For r ∈ R, let avgCapr =
⌊ ∑

t∈T caprt∑
t∈T ,caprt>0 1

⌋
. For i ∈ N , stir ←

randI(blbd(st) · avgCaprc, bubd(st) · avgCaprc).

12. Setup cost. Let minSt = mini∈N ,r∈R stir, maxSt = maxi∈N ,r∈R stir, which are

the minimum and maximum of setup time.

a := (ubd(sc) − lbd(sc))/(maxSt − minSt); b := (lbd(sc) ∗ maxSt − ubd(sc) ∗
minSt)/(maxSt−minSt);
If minST == maxST , set all scir ← lbd(sc).

Otherwise scir ← a · stir + b.

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 46

Pseudo-randomly generated benchmark Instances

To study the problem property from computational point of view, as well as develop-

ing efficient heuristic algorithms to tackle it, we propose two sets of pseudo randomly

generated instances in this section with different characteristics.

Simple structure instances First of all, we generate a set of small size instances of

which the optimal objective value might be reached. In this way, we may easily compare

the performances of different MIP formulations. For each possible combination of the

parameters, we generate 5 instances to limit bias. Other parameters for the randomly

generated instances are described as follows:

• All combinations of T,M,N,D with following values T ∈ {4, 9, 13}, M ∈ {1, 5, 10},
N ∈ {4, 8, 12}, D ∈ {50, 100, 200}.

• size(p) = 100.0, weight(p) = 100.0

• lbd(pt) = 20, ubd(pt) = 40. Also, pti :=
⌊∑

d∈Di ptd∑
d∈Di 1

⌋

• lbd(q) = 1, mbd(q) = 10, ubd(q) = 10, mpt(q) = 1.0

• size1(d) = 30,size2(d) = 70, prob1(d) = 0.1, prob2(d) = 0.9

• bd has 80% possibility to be set as max{0, e1
d − a} and 20% possibility to be set as

max{0, e1
d − a/2} where a = d

√
T e.

• e2
d has 80% possibility to be set as max{0, e1

d− a} and 20% possibility to be set as

e1
d.

• lbd(tc1) = 1, ubd(tc1) = 1

• lbd(tc2) = 5, ubd(tc2) = 5

• lbd(lc) = 20, ubd(lc) = 20

• caprt = rand(0.75b, 1.25b) where b =
∑

d∈D capdqd
M ·T .

• stir = sti = rand(0.75c, 1.25c) where c = 0.1 ·
∑

r∈R,t∈T caprt
M ·T .

Application based instances. In Section 2.4.1, we have presented the data analysis

based on a real application instance. Based on this analysis, we propose our first set of

testing instances with following instance generator parameter values:

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 47

• Three size of instance including (T,M,N,D) = (25, 15, 50, 500), (25, 20, 75, 750)

and (25, 30, 100, 1000).

• size(p) = 0.2, weight(p) = 0.8

• lbd(pt) = 100, ubd(pt) = 200

• lbd(q) = 1, mbd(q) = 1000, ubd(q) = 5000, mpt(q) = 0.95

• size1(d) = 20, size2(d) = 60, prob1(d) = 0.1, prob2(d) = 0.85

• pf(dr) = 0.5

• pf(dd) = 0.7

• lbd(tc1) = 1, ubd(tc1) = 2

• lbd(tc2) = 10, ubd(tc2) = 10

• lbd(lc) = 200, ubd(lc) = 200

• R ∈ {0.75, 0.90}, Type(cap) = TwoLevel

• lbd(st) = 0.4, ubd(st) = 0.5

• lbd(sc) = 0, ubd(sc) = 0

To introduce certain level of varieties, propose following instances with different fea-

tures. All instances have the same instance generator parameters value unless specified:

• Equally distributed products (ProdEven):

– size(p) = 100.0, weight(p) = 100.0

• Constant capacity (Capconst):

– Type(cap) = Constant

• Different capacity (Capdiff):

– Type(cap) = V arious

• Small setup time ratio (STLow):

– lbd(st) = 0.1, ubd(st) = 0.2

• Evenly distributed demand due date (DemEven):

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 48

– size1(d) = 100, prob1(d) = 1.0, size2(d) = 0, prob2(d) = 0.0

For each possible combination of the parameters, we generate 3 different instances

to limit bias.

2.5 Empirical Evaluations

In this section, we present experimental results to study CLSC from computational

perspective. All experiments run on computer with Intel Core i7-4790 2.50 GHz 3.60,

16 GB shared memory, under the Linux Ubuntu 12.4 operating system.

First of all, different MIP formulations are compared. All developed formulations

are solved for benchmark IRG-A and IAP-A with standard MIP solver CPLEX 12.6.1.

In the practical application, lost sales cost and tardiness cost have higher priority than

setup cost. Therefore, tests are done considering setup cost and without considering

setup cost in Section 2.5.1 and Section 2.5.2 respectively.

Second, many features are involved in CLSC. In Section 2.5.3, we test different

variants of CLSC on one application instance by relaxing one feature at a time. In this

way, we analyze the impact of features to the problem difficulty.

Furthermore, based on the insight given by the formulation comparison test, one

formulation with overall best performance is chosen. Benchmark IRG-B and IAP-B are

solved with the chosen formulation by standard MIP solver CPLEX 12.6.1 on full cores

given 1 hour time limit. The results are given in Section 2.5.4.

2.5.1 MIP Formulation Comparison Considering Setup Cost

In the Table 2.8, we present the summary computational results using CPLEX to solve

the MIP models and their LP relaxations on the benchmark instances IRG-A and IAP-A

with standard MIP solver CPLEX 12.6.1 on one thread given 10 minutes time limit.

In the table, the computing time is expressed in seconds. For each instance parameter

(T , R, D, N , Γ) and values, we give the average results over all instances that have

the corresponding value. In the Row T/A, averages values over all tested instances are

reported while its Column Opt reports the total number of optimally solved instances for

each formulation. In the first two columns, we present the parameters and their values.

For example, for number of time buckets T , there are three values {4, 9, 13} for IRG-A

instances. In Column Opt and Time, we report the number and the average computing

time over all instances with given parameter value solved to prove optimality within the

time limit. In Column Nodes and Gap, we report the number of explored nodes and the

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 49

exit gap when CPLEX terminates. This gap represents the relative difference between

the primal and the dual bounds computed by the CPLEX at the time limit. In Column

LPT, it reports the average computational time to solve the LP relaxation over all the

instances sharing this parameter value. In Column LPG, we measure the quality of the

LP relaxation which is calculated as

LPG =
BestMip− LPV al

BestMip
, (2.39)

where bestMip is the best known MIP solution of all formulations and LPV al is the

optimal LP relaxation objective value of the given formulation. On all instances except

two, the three formulations Form1, Form2 and Form3 are characterized by the same

LPV al. In the remaining two cases the difference is less than 0.001, thus we only report

the LPG once under column Form3. For IAP-A instances, we report the objective

function values returned by the solver in Column Obj.

As far as the computing time necessary to calculate the LP relaxation is concerned,

the average values over all tested instances are 0.37 seconds, 0.74 seconds and 0.30

seconds for Form1, Form2 and Form3 respectively. For IRG-A instances, the average

computational time of the LP relaxation are 0.24, 0.26 and 0.20 seconds, which are quite

close. Therefore, the difference mainly comes from IAP-A instances. Thanks to the

shortest average computing time for the LP relaxation, Form3 is able to explore more

nodes within the given time limit.

According to the Column Opt, the table shows that as the problem size increases,

instances become more difficult to solve. The parameter N , which has an impact on the

number of binary variables, affects most the solvability of the instances. Take Form2

for example, when N increases from 4 to 12, the number of instances decreases from

258 to 59, whereas when D increases from 50 to 200, the number is only reduced by 36.

The number of time buckets T has a smaller impact on the computing time. We can

observe that Form1 explores a higher number of nodes, this is probably due to the fact

that it struggles to find good quality integer solutions. On the other hand, Form2 and

Form3 explore almost the same number of nodes for the randomly generated instances,

while the Form3 explores more nodes for the 3 real-world instances. Regarding the

number of randomly generated instances solved to be proven optimality, Form3 solves

416 instances and Form2 solves 411 instances, while Form1 solves only 379. A similar

behavior can be also observed for the exit gap. For the real-world instances, we observe

similar results, i.e., the Form3 shows the best performance. Hence, according to the

computational experiments, Form3 shows the best overall computational performance.

This is due to the fact that it has the least number of constraints with the same number

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 50

of binary variables compared to the other two formulations, and its LP relaxation can

be solved faster.

Next we compare two models of different production quantity decisions. Since Form3

performs best among three different setup models, we fix the setup carryover model

based on Form3 therefore compare the formulation Form3 and Form3FL. The average

computational time of the LP relaxation of Form3FL on IRG-A is 1.60 seconds while

for Form3 it is only 0.2. For the real instance R2, CPLEX even fails to solve the

LP relaxation of Form3FL optimally given 10 minutes time limit. With the price of

longer computational time, Form3FL shows a lower LP Gap, as proven in the Theorem

2.4. However, even though Form3FL has a stronger lower bound, due to its longer

computational time on each node, it only solves 365 instances out of 810 instances to

optimality. In summary, Form3 still gives better performance comparing to Form3FL,

therefore gives overall best performance among all presented formulations.

C
H
A
P
T
E
R

2.
C
L
S
C

F
O
R
M
U
L
A
T
IO

N
S
A
N
D

B
E
N
C
H
M
A
R
K
S

51

Table 2.8: CLSC formulation comparison with setup cost

Form1 Form2 Form3 Form3FL

Para Val Opt Time Nodes Gap LPT Opt Time Nodes Gap LPT Opt Time Nodes Gap LPT LPG Opt Time Nodes Gap LPT LPG

T 4 165 32 85970 4.64 0.0 175 35 49088 4.16 0.0 178 36 55347 3.89 0.0 31.01 158 39 18641 5.66 0.5 16.20
9 123 69 41168 15.81 0.2 128 61 26469 15.28 0.2 131 65 31207 14.95 0.2 51.19 115 89 17907 18.98 1.6 35.92

13 91 112 35839 24.17 0.5 108 102 20961 23.34 0.5 107 97 25667 23.13 0.4 59.98 92 105 16089 27.11 2.7 48.74

R 1 212 48 18748 2.70 0.0 217 55 12988 2.50 0.0 218 53 13563 2.75 0.0 65.30 226 48 21390 2.34 0.0 32.36
5 97 68 50892 23.18 0.2 101 46 30784 22.46 0.2 105 58 37983 21.93 0.1 48.48 83 93 16101 27.17 1.1 41.29

10 70 104 93338 18.74 0.5 93 91 52746 17.82 0.6 93 81 60674 17.29 0.5 28.40 56 136 15145 22.25 3.7 27.21

N 4 231 47 58790 1.40 0.1 258 47 25497 0.51 0.0 258 44 22985 0.59 0.0 35.07 212 59 9025 2.98 0.6 23.91
8 87 95 64440 17.23 0.2 94 87 46402 16.48 0.2 94 86 55293 16.25 0.2 49.80 89 104 21291 19.95 1.6 35.04

12 61 83 39746 25.99 0.4 59 81 24619 25.78 0.5 64 93 33943 25.12 0.4 57.31 64 68 22321 28.83 2.6 41.92

D 50 151 66 63995 11.75 0.2 156 53 35211 11.13 0.2 159 58 43104 10.64 0.1 46.81 149 56 23920 13.58 0.4 36.91
100 126 56 47988 15.78 0.2 135 60 32839 15.06 0.3 137 57 37585 14.76 0.2 48.18 129 89 18361 17.67 1.0 33.79
200 102 68 50994 17.09 0.3 120 72 28469 16.60 0.4 120 70 31532 16.56 0.3 47.19 87 73 10355 20.51 3.4 30.17

Γ 75 211 60 41299 14.53 0.2 226 50 23728 14.01 0.2 230 52 29214 13.60 0.1 49.07 206 67 13839 16.77 1.2 33.88
90 168 68 67353 15.22 0.3 185 74 40617 14.51 0.3 186 72 45600 14.37 0.3 45.72 159 77 21252 17.74 2.0 33.36

T/A 379 63 54326 14.87 0.2 411 61 32173 14.24 0.3 416 61 37407 13.99 0.2 47.39 365 72 17546 17.25 1.6 33.62

Inst Obj Time Nodes Gap LPT Obj Time Nodes Gap LPT Obj Time Nodes Gap LPT LPG Obj Time Nodes Gap LPT LPG

R1 654,807 12 1827 0.00 0.1 654,807 2.6 434 0.00 0.0 654,807 3.1 404 0.00 0.0 14.25 654,807 34.7 469 0.00 0.5 14.03
R2 2,239,793 600 2 97.36 107.9 29,619,416 600 0 99.80 395.8 1,086,637 600 452 94.56 78.2 100 1E9 600 0 100 600 -
R3 10,672 0 0 0.00 0.0 10,672 0.0 0 0.00 0.0 10,672 0.0 0 0.00 0.0 0.00 10,672 2.1 0 0.00 0.9 0.00

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 52

2.5.2 MIP Formulation Comparison without Considering Setup Cost

In the apparel application, setup cost has secondary priority comparing to lost sale

cost and tardiness cost. In other words, minimizing lost sale cost and tardiness cost

is the most important objective. Therefore, in this section, we perform experiments

on benchmark instances without setup cost but only setup time. In the Table 2.9, we

present the summary computational results using CPLEX to solve the MIP models and

its LP relaxations on the benchmark instances IRG-A and IAP-A with standard MIP

solver CPLEX 12.6.1 on one thread given 10 minutes time limit. The table has the same

layout as Table 2.8.

First of all, the optimal objective function values of LP relaxation of formulations

Form1, Form2 and Form3 are the same except for 15 instances. For these 15 instances,

Form2 and Form3 have larger objective function values than Form1, but the relative

difference is less than 0.0001. Therefore, we only show the LP Gap under Form3 column

defined as (2.39).

For the performance of formulations to solve the problem, we observe similar results

as CLSC with setup cost. First, if we look at the overall performance over 810 instances

of IRG-A, Form3 solved 476 instances to prove optimality with the average absolute

gap equals to 4.06%. The number of instances that are solved to optimality for Form1,

Form2 and Form3FL are 460, 468 and 424 respectively. Hence, the experimental results

shows the superior performance among all developed formulations.

For the IAP-A instances, without setup cost, all of them are solved to prove opti-

mality within a few seconds. However, due to the large formulation size, Form3FL took

around 4 minutes to prove optimality of the solution.

C
H
A
P
T
E
R

2.
C
L
S
C

F
O
R
M
U
L
A
T
IO

N
S
A
N
D

B
E
N
C
H
M
A
R
K
S

53

Table 2.9: CLSC formulation comparison without setup cost

Form1 Form2 Form3 Form3FL

Para Val Opt Time Nodes Gap LPT Opt Time Nodes Gap LPT Opt Time Nodes Gap LPT LPG Opt Time Nodes Gap LPT LPG

T 4 205 33.0 57230 0.34 0.0 211 45.0 33768 0.32 0.0 214 39.4 36530 0.29 0.0 16.84 186 60.9 16830 0.58 0.2 6.9
9 127 75.6 40526 5.10 0.1 123 40.1 26566 5.20 0.3 127 58.4 29364 5.11 0.2 25.58 104 47.2 16316 7.06 1.0 15.3

13 128 35.8 31595 7.08 0.3 134 49.5 22915 6.92 0.6 135 42.4 25327 6.79 0.4 24.35 134 45.2 14521 9.73 1.5 17.2

R 1 214 37.2 18963 3.57 0.0 213 41.4 16839 3.81 0.0 215 37.8 17276 3.82 0.0 53.99 222 31.8 21773 3.43 0.0 25.3
5 137 56.0 54654 5.44 0.1 145 59.5 29227 5.17 0.2 149 61.8 31683 5.05 0.2 8.78 119 84.4 13909 7.15 0.7 8.4

10 109 48.7 55735 3.50 0.4 110 32.8 37183 3.46 0.7 112 37.7 42261 3.32 0.5 3.99 83 62.6 11985 6.79 2.0 5.7

N 4 219 24.8 33367 0.46 0.1 224 20.7 23845 0.35 0.0 227 29.3 23535 0.37 0.1 14.38 194 32.2 8974 1.33 0.4 8.1
8 143 54.8 48945 4.49 0.2 147 54.0 30907 4.27 0.2 148 48.0 31840 4.24 0.2 23.91 130 68.4 17905 5.77 0.8 13.9

12 98 78.3 47039 7.56 0.3 97 87.3 28498 7.83 0.7 101 77.5 35845 7.58 0.4 28.47 100 71.6 20788 10.28 1.6 17.4

D 50 153 44.1 59071 3.28 0.1 159 48.8 35406 3.11 0.3 161 44.4 40181 2.96 0.2 20.44 145 47.4 22467 3.76 0.3 14.8
100 156 49.0 37713 3.97 0.2 155 45.8 26664 4.00 0.3 160 54.8 30210 3.92 0.2 22.93 143 47.4 15504 5.28 0.8 12.6
200 151 43.4 32567 5.26 0.2 154 40.3 21179 5.34 0.4 155 36.5 20829 5.31 0.3 23.39 136 63.5 9696 8.32 1.7 12.0

Γ 0.75 299 36.3 34915 2.41 0.1 298 34.6 22200 2.43 0.2 299 29.0 25081 2.24 0.1 19.41 286 45.6 11490 2.95 0.5 9.3
0.90 161 62.7 51319 5.93 0.3 170 63.2 33299 5.87 0.5 177 72.9 35733 5.89 0.4 25.10 138 66.9 20288 8.63 1.4 16.9

T/A 460 45.2 43117 4.17 0.2 468 44.7 27750 4.15 0.3 476 45.0 30407 4.06 0.2 22.25 424 52.8 15889 5.79 0.9 13.1

Inst Obj Time Nodes Gap LPT Time Nodes Gap LPT Time Nodes Gap LPT LPG Time Nodes Gap LPT LPG

R1 442,906 0.5 51 0.00 0.1 0.3 14 0.00 0.0 0.3 8 0.00 0.1 0.83 19.5 400 0.00 0.4 0.83
R2 59,153 5.8 0 0.00 1.1 11.7 0 0.00 12.7 4.8 0 0.00 1.2 0.00 241.1 0 0.00 91.4 0.00
R3 10,672 0.1 0 0.00 0.1 0.1 0 0.00 0.0 0.1 0 0.00 0.0 0.00 2.2 0 0.00 1.3 0.00

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 54

2.5.3 Impact Analysis of Problem Features

CLSC consists of many features studied in CLSP. Here we perform experiments to under-

stand the impact of each feature to the problem difficulty. Due to the priority difference

of demand cost (lost sale cost and tardiness cost) and setup cost in the application, we

solve CLSC without setup cost. As a reference, the original problem and its LP relax-

ation are solved as well and their results are shown in the row MIP and LP respectively.

The formulation is Form3 since it gives the overall best performance. Other variants

include:

• Parallel machines: all parallel machines are aggregated into one machine 0 with

capacity cap0t =
∑

r∈R caprt for t ∈ T .

• Lost sale: no lost sales so that all demands must be satisfied.

• Tardiness: each demand has only the first due date and it is either satisfied on

time or lost.

• Due dates: each demand has no due dates and can be satisfied any time by the

end of the planning horizon without penalty cost.

• First due date: each demand has only the second due date e2
d. It is considered to

be on time if satisfied before e2
d and it is considered to be delayed if satisfied at or

after e2
d with a unitary tardiness cost of tc1

d + tc2
d.

• Release date: each demand has release date bd equals to the beginning of the time

horizon so that it can be satisfied from the very first time bucket.

The computational result is presented in Table 2.10. Each variant is solved by

CPLEX with time limit 2 hours. For each problem, the returned objective function

value, the computational time, the exit gap, the best lower bound returned by CPLEX

and the number of explored nodes are given in Column Obj, Time, Gap, LB and #

Nodes respectively.

We have following observations: first of all, the original problem is hard to solve that

after 2 hours solving, the solution still has gap of 86%. Moreover, parallel machines

contribute a lot to the problem difficulty that if we aggregate all machines, the problem

can reach 0.1% gap after 2 hours of solving. Also, lost sales help CPLEX to find feasible

solution. Actually, with developed heuristic algorithm, we find the near optimal solution

of instance R5 and the lost sale cost equals to 0. However, when we set demands’ satis-

faction as a constraints, CPLEX has difficult time to find feasible solution. Eventually,

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 55

after 2 hours, no integer solution has been found and the feasibility of the problem is

reported unknown. Without considering backlogging, each demand can either be on

time or lost. We observe a small gap as 6.3% for this variant. However, the objective

function value is on the level of 3 × 108, which might be the reason of the small gap.

Therefore, we can not conclude that this variant is easier. In the case of Due dates,

different from Tardiness, all demands can be satisfied any time after its release date and

be considered on time. Therefore, it is equivalent to optimize only lost sale cost and

provide a feasible solution to the original problem. Moreover, its objective represents

the lost sale cost of the solution. Comparing to solving the original problem, the real

objective function value of this solution (> 37,900,675) is worse. The exit gap is 100%

due to the lower bound of 0. Next variant is First due date, which ignores the first due

date and has a simpler cost structure. So the solution of this problem is also feasible

for the original problem and its cost represents the lost sale cost and partial tardiness

cost (tardiness cost due to second level due dates). Similar to no due dates, the solution

quality is worse than that of the original problem. Therefore, considering backlogging

seems to make the problem easier for CPLEX to solve. Finally, we cancel all the release

dates, and the problem solution is quite similar to the original problem. On one hand,

we were expecting a lower objective function value than the original problem if both

this one and the original problem are solved to optimality because that there are less

constraints on the demand satisfaction time. On the other hand, it is also possible that

the release date function as cuts and speed up the solving processing. Therefore, the

result is a bit unexpected and we will continue to test once we collect more realistic

instances. In summary, parallel machines make the problem more difficult to solve while

backlogging and lost sales seem to make the problem easier to solve, at least for the

tested standard MIP solver.

Table 2.10: CLSC feature - complexity analysis

Variants Time Obj LB Gap(%) # Nodes

LP 104 2,935,797 - - -

MIP T.L. 22,564,237 2,975,645 86.8 0

Parallel machines T.L. 3,082,657 3,078,520 0.1 151056

Lost sale T.L. - - - -

Tardiness T.L. 359,044,010 336,491,186 6.3 30

Due dates T.L. 37,900,675 0 100.0 0

First due date T.L. 113,773,295 634,788 99.4 0

Release date T.L. 20,720,657 2,774,592 86.6 0

*Time unit in seconds, T.L. = 7200s

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 56

2.5.4 Computational Results on Benchmark IAP-B and IRG-B

We have performed formulation comparison on benchmark instances IAP-A and IRG-A.

It is shown that formulation Form3 gives the best overall performance. Therefore, in this

section, we present test on benchmark IAP-B and IRG-B without considering setup cost

with Form3 to evaluate the problem difficulty and analyze the computational behavior

on standard MIP solver. Computational results of CPLEX for benchmark IAP-B with

1 hour time limit is given in Table 2.11, while the result for benchmark IRG-B is given

in Table 2.12 - 2.14.

For each instance, its characteristic are given in first six columns including the num-

ber of time buckets T , the number of machines R, the number of products N , the

number of demands D and the capacity requirement ratio Γ defined as (2.38). We show

the optimal objective value and the computational time of the LP relaxation in Column

LP/Obj and LP/Time respectively. The computational results of CPLEX of the original

MIP model are given in the MIP section. The returned objective function values, com-

putational times, best known lower bounds and number of explored nodes are given in

Column MIP/Obj, MIP/Time, MIP/LB and MIP/#Node. The Column BestLB gives

best known lower bounds, which is the maximum between the optimal objective func-

tion value of the LP relaxation and the best known lower bound returned from the MIP

solving max{Lbd, LP/Obj}. The relative gap based on this best known lower bound,

which equals to MIP/Obj−BestLB
max{1,MIP/Obj} is given in the Column MIP/Gap.

Table 2.11: Computational results: CPLEX on IAP-B

Characteristics LP MIP

Inst T R N D Γ Obj Time Obj Time Gap LB #Node BestLB

R5 25 30 46 668 91 2,935,797 79 35,511,200 3600 91.6 2,973,702 0 2,973,702

R6 25 30 36 425 74 1,277,107 18 1,456,011 3600 7.7 1,344,501 97 1,344,501

R7 20 31 80 1428 40 2,217,260 118 2,692,957 3601 16.7 2,244,422 29 2,244,422

R8 20 31 73 1404 41 2,081,921 83 2,597,838 3600 18.7 2,111,181 0 2,111,181

AVG 2,128,021 74 10,564,501 3600 33.7 2,168,451 32 2,168,451

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 57

Table 2.12: Computational results: CPLEX on IRG-B (1)

Characteristics LP MIP

Inst T R N D Γ Type Obj Time Obj Time Gap Lbd #Node BestLB

B1 25 15 50 500 741 DF 0 22 329607 3600 100.0 0 0 0

B2 25 15 50 500 771 DF 0 20 769798 3600 100.0 0 0 0

B3 25 15 50 500 758 DF 0 18 69398 3600 100.0 0 398 0

B4 25 15 50 500 924 DF 136154 32 9485931 3600 98.5 144520 0 144520

B5 25 15 50 500 841 DF 0 23 1084421 3600 100.0 0 0 0

B6 25 15 50 500 896 DF 0 31 6291857 3600 100.0 0 0 0

B7 25 20 75 750 766 DF 0 81 88795819 3600 100.0 0 0 0

B8 25 20 75 750 732 DF 0 106 83386167 3600 100.0 0 0 0

B9 25 20 75 750 784 DF 0 85 85466741 3600 100.0 0 0 0

B10 25 20 75 750 851 DF 0 109 83980195 3600 100.0 0 0 0

B11 25 20 75 750 907 DF 0 134 90015737 3600 100.0 0 0 0

B12 25 20 75 750 871 DF 0 94 89549343 3600 100.0 0 0 0

B13 25 30 100 1000 758 DF 0 359 115106676 3600 100.0 0 0 0

B14 25 30 100 1000 739 DF 0 240 121228481 3600 100.0 0 0 0

B15 25 30 100 1000 737 DF 0 355 12857474 3600 100.0 0 0 0

B16 25 30 100 1000 898 DF 0 602 123816283 3600 100.0 0 0 0

B17 25 30 100 1000 938 DF 12126 309 127298893 3600 100.0 0 0 12126

B18 25 30 100 1000 909 DF 11563 329 116072579 3600 100.0 0 0 11563

AVG 164

B19 25 15 50 500 692 ProdEven 0 39 132638 3600 100.0 0 0 0

B20 25 15 50 500 758 ProdEven 0 40 58077709 3600 100.0 0 0 0

B21 25 15 50 500 764 ProdEven 0 47 8404981 3600 100.0 0 0 0

B22 25 15 50 500 890 ProdEven 35419 45 13053180 3600 99.5 66276 0 66276

B23 25 15 50 500 914 ProdEven 0 60 62081602 3600 100.0 0 0 0

B24 25 15 50 500 852 ProdEven 0 53 10247860 3600 100.0 0 0 0

B25 25 20 75 750 769 ProdEven 0 163 92162919 3600 100.0 0 0 0

B26 25 20 75 750 769 ProdEven 0 171 91068198 3600 100.0 0 0 0

B27 25 20 75 750 758 ProdEven 0 152 67557529 3602 100.0 0 0 0

B28 25 20 75 750 941 ProdEven 5897 146 43534412 3600 99.9 23468 0 23468

B29 25 20 75 750 920 ProdEven 87616 151 32120464 3600 99.6 112633 0 112633

B30 25 20 75 750 931 ProdEven 15132 182 35640301 3600 99.9 37008 0 37008

B31 25 30 100 1000 789 ProdEven 0 599 127510049 3600 100.0 0 0 0

B32 25 30 100 1000 728 ProdEven 0 528 120922514 3600 100.0 0 0 0

B33 25 30 100 1000 784 ProdEven 0 637 119911245 3600 100.0 0 0 0

B34 25 30 100 1000 922 ProdEven 26135 391 118721109 3600 100.0 0 0 26135

B35 25 30 100 1000 924 ProdEven 203073 375 120294447 3600 99.8 0 0 203073

B36 25 30 100 1000 912 ProdEven 0 747 110465941 3600 100.0 0 0 0

AVG 251

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 58

Table 2.13: Computational results: CPLEX on IRG-B (2)

Characteristics LP MIP

Inst T R N D Γ Type Obj Time Obj Time Gap Lbd #Node BestLB

B37 25 15 50 500 731 Capconst 0 18 23204 3600 100.0 0 1612 0

B38 25 15 50 500 785 Capconst 0 33 1163883 3600 100.0 0 0 0

B39 25 15 50 500 776 Capconst 0 21 625842 3600 100.0 0 0 0

B40 25 15 50 500 910 Capconst 0 41 18011097 3601 100.0 45 0 45

B41 25 15 50 500 843 Capconst 0 24 5487443 3600 100.0 0 0 0

B42 25 15 50 500 942 Capconst 18404 36 8834308 3600 99.7 30688 0 30688

B43 25 20 75 750 760 Capconst 0 70 83214545 3600 100.0 0 0 0

B44 25 20 75 750 694 Capconst 0 98 4254029 3600 100.0 0 0 0

B45 25 20 75 750 750 Capconst 0 59 5242020 3600 100.0 0 0 0

B46 25 20 75 750 919 Capconst 3292 84 92254335 3600 100.0 6124 0 6124

B47 25 20 75 750 906 Capconst 0 127 88539706 3600 100.0 0 0 0

B48 25 20 75 750 943 Capconst 48861 138 92440700 3600 99.9 65835 0 65835

B49 25 30 100 1000 753 Capconst 0 244 121162208 3600 100.0 0 0 0

B50 25 30 100 1000 750 Capconst 0 231 14690362 3600 100.0 0 0 0

B51 25 30 100 1000 792 Capconst 0 269 111052268 3600 100.0 0 0 0

B52 25 30 100 1000 900 Capconst 0 447 114397623 3600 100.0 0 0 0

B53 25 30 100 1000 928 Capconst 65636 291 114067019 3600 99.9 0 0 65636

B54 25 30 100 1000 949 Capconst 84790 287 113712126 3600 99.9 -30208 0 84790

AVG 140

B55 25 15 50 500 752 Capdiff 0 23 257750 3600 100.0 0 0 0

B56 25 15 50 500 742 Capdiff 0 20 85133 3600 100.0 0 880 0

B57 25 15 50 500 738 Capdiff 0 22 18704 3600 100.0 0 1661 0

B58 25 15 50 500 894 Capdiff 0 32 7976495 3600 100.0 0 0 0

B59 25 15 50 500 897 Capdiff 0 31 7333092 3601 100.0 0 0 0

B60 25 15 50 500 898 Capdiff 2153 33 11514296 3600 99.8 21153 0 21153

B61 25 20 75 750 754 Capdiff 0 79 86537869 3600 100.0 0 0 0

B62 25 20 75 750 757 Capdiff 0 78 91957690 3600 100.0 0 0 0

B63 25 20 75 750 748 Capdiff 0 126 92125122 3600 100.0 0 0 0

B64 25 20 75 750 906 Capdiff 0 166 87013629 3600 100.0 0 0 0

B65 25 20 75 750 901 Capdiff 0 150 70307604 3600 100.0 0 0 0

B66 25 20 75 750 908 Capdiff 1098 78 20872475 3600 100.0 3773 0 3773

B67 25 30 100 1000 752 Capdiff 0 256 123548573 3600 100.0 0 0 0

B68 25 30 100 1000 751 Capdiff 0 260 117798084 3600 100.0 0 0 0

B69 25 30 100 1000 749 Capdiff 0 249 13873785 3600 100.0 0 0 0

B70 25 30 100 1000 897 Capdiff 0 473 113178684 3600 100.0 0 0 0

B71 25 30 100 1000 904 Capdiff 0 689 117260538 3600 100.0 0 0 0

B72 25 30 100 1000 907 Capdiff 427 171 117514463 3600 100.0 1653 0 1653

AVG 163

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 59

Table 2.14: Computational results: CPLEX on IRG-B (3)

Characteristics LP MIP

Inst T R N D Γ Type Obj Time Obj Time Gap Lbd #Node BestLB

B73 25 15 50 500 753 STLow 0 10 0 37 0.0 0 0 0

B74 25 15 50 500 753 STLow 0 11 0 84 0.0 0 0 0

B75 25 15 50 500 752 STLow 0 14 0 277 0.0 0 0 0

B76 25 15 50 500 905 STLow 0 29 5148006 3600 100.0 0 0 0

B77 25 15 50 500 963 STLow 78579 25 7241378 3600 98.8 87085 0 87085

B78 25 15 50 500 944 STLow 128953 26 5381298 3601 97.5 132912 0 132912

B79 25 20 75 750 754 STLow 0 35 0 465 0.0 0 0 0

B80 25 20 75 750 767 STLow 0 59 0 1200 0.0 0 0 0

B81 25 20 75 750 755 STLow 0 40 0 1008 0.0 0 0 0

B82 25 20 75 750 907 STLow 0 78 87599277 3600 100.0 0 0 0

B83 25 20 75 750 961 STLow 142893 78 15890973 3600 99.1 146115 0 146115

B84 25 20 75 750 895 STLow 0 74 88968761 3600 100.0 0 0 0

B85 25 30 100 1000 747 STLow 0 184 0 1745 0.0 0 0 0

B86 25 30 100 1000 778 STLow 0 180 0 1809 0.0 0 0 0

B87 25 30 100 1000 767 STLow 0 175 0 2127 0.0 0 0 0

B88 25 30 100 1000 893 STLow 0 251 116164709 3600 100.0 0 0 0

B89 25 30 100 1000 900 STLow 0 332 120352296 3600 100.0 0 0 0

B90 25 30 100 1000 888 STLow 0 535 121208248 3600 100.0 0 0 0

AVG 119

B91 25 15 50 500 757 DemEven 0 16 7154 3600 100.0 0 1698 0

B92 25 15 50 500 717 DemEven 0 20 1 3600 100.0 0 1845 0

B93 25 15 50 500 758 DemEven 0 19 21171 3600 100.0 0 1747 0

B94 25 15 50 500 874 DemEven 0 24 54451635 3600 100.0 0 0 0

B95 25 15 50 500 874 DemEven 0 29 7334313 3600 100.0 0 0 0

B96 25 15 50 500 902 DemEven 0 35 13755823 3600 100.0 0 0 0

B97 25 20 75 750 722 DemEven 0 56 83679 3600 100.0 0 0 0

B98 25 20 75 750 737 DemEven 0 61 93744125 3600 100.0 0 0 0

B99 25 20 75 750 757 DemEven 0 78 91176566 3600 100.0 0 0 0

B100 25 20 75 750 944 DemEven 0 141 86302661 3600 100.0 0 0 0

B101 25 20 75 750 987 DemEven 150352 185 92421684 3600 99.8 213992 0 213992

B102 25 20 75 750 895 DemEven 0 95 89646764 3600 100.0 0 0 0

B103 25 30 100 1000 724 DemEven 0 312 121114882 3600 100.0 0 0 0

B104 25 30 100 1000 779 DemEven 0 414 115605436 3600 100.0 0 0 0

B105 25 30 100 1000 761 DemEven 0 366 118987924 3600 100.0 0 0 0

B106 25 30 100 1000 918 DemEven 0 710 100250337 3600 100.0 0 0 0

B107 25 30 100 1000 902 DemEven 0 427 114328741 3600 100.0 0 0 0

B108 25 30 100 1000 885 DemEven 0 441 112508993 3600 100.0 0 0 0

AVG 190

First, we show the computational time of LP relaxation in Figure 2.14. For each

instance size, we show the LPR time for different types of generated instances. All

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 60

instance types have similar trend that the LPR time goes up when the instance size

increases. Also, when the required capacity ratio R increases from 75% to 90%, the

LPR time increases as well for most cases. For type ProdEven, of which each product

has the same number of demands statistically, the LPR time is larger than others except

the last instance size. Moreover, the objective function value based on the LP relaxation

are zero in most cases. This is due to the instance generation have required capacity

ratio as 90% maximum, therefore with relaxed setup in LP relaxation, most of the work

order can be fulfilled fully on time.

Figure 2.14: LPR time on different types of instances

Second, we show the MIP gap in Figure 2.15. It shows a clear trend that type STLow

instances with capacity requirement ratio R = 75 are easy to solve. In fact, the type

STLow instances, there are 9 instances out of 18 are solved to optimality. This is mainly

due to the low setup time and capacity requirement, which makes instances easier to

solve since capacity is the bottleneck of our problem. All other type of instances have

gap near 100%, this may all because they are hard to solve, but also due to the reason

of the poor lower bounds given by LP relaxation. As we mentioned, in most of case, the

LP relaxation objective value is 0.

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 61

Figure 2.15: MIP gap on different types of instances

To understand better the instance difficulty and the solution quality given by CPLEX,

we show the number of nodes explored in Figure 2.16. We can see that only for the in-

stances with size T25 −M15 − D500 − N50 − R75, there are nodes explored. For all

other instances, CPLEX got stuck at the first heuristic solution and returns a big gap

around 99%. It fails to explore more nodes other than the root node.

Figure 2.16: MIP number of nodes on different types of instances

Based on this computational result, we conclude that CPLEX has bad performance

due to the bad lower bound based on the LP relaxation and the large problem size which

prevent its embedded heuristics to find good solution.

CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 62

2.6 Conclusions

We study a new variant of the CLSP, which is based on a real-world application. The

problem combines, for the first time, several classical features of the LSP such as setup

carryover and production time windows. We present and compare three different MIP

formulations of the problem. We prove that one of the formulations is weaker since it

may provide worse LP relaxation bounds. A set of instances are randomly generated

and extensive computational experiments are conducted to compare these formulations.

The results show that one of the formulation Form3 gives the overall best performance

on both real-world instances and randomly generated instances. A library of instances

is available online, and we hope that this can stimulate further research on this very

challenging rich real-world LSP (http://decisionbrain.com/ISCO2016).

Chapter 3

Complex Capacitated Lot Sizing

Problem: Heuristics

In the previous chapter, we have introduced the complex capacitated lot sizing prob-

lem CLSC. It is shown to be NP-hard and cannot be solved efficiently by a standard

MIP solver based on our computational experiments. Therefore, we develop heuristic

algorithms to tackle CLSC in this chapter.

The chapter is organized as follows: In Section 3.1, we present the introduction. In

Section 3.2, different constructive algorithms are developed, while in Section 3.3 a Fix

& Optimize algorithm is presented. Computational results are given in Section 3.4 to

evaluate algorithm performances. Finally, we conclude the chapter in Section 3.5.

63

CHAPTER 3. CLSC HEURISTICS 64

3.1 Introduction

In the apparel application, the service level key performance indicator has superior pri-

ority than operational cost. In other words, tardiness cost and lost sale cost are much

more important than setup cost. Our goal is to address the production planning prob-

lem from the application. Therefore, we only consider CLSC without setup cost in this

chapter.

All heuristic algorithms we have developed are based on the MIP formulation of

the problem. As shown before, formulation Form3 gives the best overall performance.

Therefore, we use Form3 to develop and test the algorithm whenever the MIP formu-

lation of CLSC is required.

In the following sections, we present both constructive heuristics and improvement

heuristics.

3.2 Constructive Heuristic Algorithms

In this section, we propose three heuristic algorithms to construct feasible solutions to

CLSC. They include Fix&Relax algorithm, which is a classical algorithm widely used

for CLSP, product decomposition based algorithm which explores real instances structure,

and first solution heuristic algorithm based on the LP relaxation, which has a general

framework. We adapt the Fix&Relax algorithm based on the time bucket and the

machine decomposition, and it solves a series of MIP models. The PD algorithm is based

on the product decomposition, which is also based on solving a series of MIP model.

However, its MIP models are on a smaller scale compared to those in the Fix&Relax

algorithm. Finally, the first solution heuristic algorithm is based on variables fixation and

it solves a series of LP models. Therefore, all constructive heuristics utilize mathematical

models but have difference models and scales. For some algorithms, different variations

and configurations are developed, and their analysis and comparison results are presented

in Section 3.4.

3.2.1 Fix&Relax Algorithm

Fix&Relax (F&R) algorithm [108] is one of the most commonly used heuristic algorithm

in practice for CLSP. The algorithm has a general framework and is easy to implement.

Furthermore, it gives decent performance in many cases as shown in [3, 72]. Therefore,

we adapt F&R algorithm to CLSC in this section.

The essence of F&R algorithm is to decompose a problem, so that in each iteration

CHAPTER 3. CLSC HEURISTICS 65

a simpler and smaller sub-problem is solved to construct part of the feasible solution.

Normally the problem is divided into three parts:

• Frozen window: integer variables in this set are fixed at a given value.

• Decision window: all variables in this set are defined as in the original problem to

be decided.

• Approximation window: integer variables in this set are relaxed to be continuous.

Intuitively, there are three decomposition strategy: period-oriented, product-oriented

and machine-oriented. However, due to the setup carryover, the F&R algorithm can

not be adapted directly to our problem. Decomposing the problem by products and fix

the related setup variables may easily lead to infeasibility. Therefore, we only develop

the F&R algorithm based on the time period and the machine decomposition. The

product-oriented decomposition method is presented in the next section.

Period-oriented F&R algorithm

The F&R algorithm with period-oriented decomposition (FR-T) decomposes the prob-

lem by time buckets. Absi and Kedad-Sidhoum [3] provided a nice presentation on the

procedure of FR-T algorithm, we cite it here in Figure 3.1. In kth iteration, we have

a time window [ak, bk], of which the length is σ. Time buckets t ∈ [1, ak) are frozen

window, which means all binary variables are fixed at the value of the solution from

the previous iteration. Time buckets t ∈ [ak, bk] are decision window, in which all deci-

sion variables remain the same as in the original problem. The remaining time buckets

t ∈ (bk, T] are approximation window that all binary variables are relaxed to continu-

ous variables. We solve this problem and obtain solution solk. Note that in solk, all

binary variables belong to time buckets [1, bk] have binary values, while the rest can be

fractional. Then in the next iteration k+ 1, the decision window is moved forward by a

step size δ where 0 < δ < σ. Therefore we have new decision window [ak+1, bk+1] where

ak+1 ← ak + δ, bk+1 ← min{bk + δ, T}. Comparing to the sub-problem considered in

iteration k, binary variables belonging to [ak, ak+1− 1] are fixed and variables belonging

to [bk + 1, bk+1] are set back to binary variables. We solve this updated sub-problem in

iteration k + 1 and the process is repeated until the end of the time horizon is reached.

T

Frozen windowDecision window Approximation window

CHAPTER 3. CLSC HEURISTICS 66

Step 1 T

a1 b1

σ

Step k T

ak bk

σ

Step k + 1 T

ak+1 bk+1

σδ

Step K T

aK bK = T

σ

Figure 3.1: FR-T algorithm procedure Absi and Kedad-Sidhoum [3] (modified)

Given time window [a, b] and initial solution sol0, we define the following sub-problem

PFRT ([a, b], sol0):

(PFRT ([a, b], sol0)) min (2.15)

s.t. (2.16)− (2.21), (2.23)− (2.25), (2.26)− (2.28)

z0
irt = sol0(z0

irt), z
+
irt = sol0(z+

irt) i ∈ N , r ∈ R, t ∈ [1, a− 1]

z0
irt, z

+
irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ [a, b]

z0
irt, z

+
irt ∈ [0, 1] i ∈ N , r ∈ R, t ∈ [b+ 1, T]

We give the pseudo code of FR-T in Algorithm 1.

Algorithm 1: F&R algorithm with period-oriented decomposition (FR-T)

Input: σ length of decision window, δ step size

Result: xirt, z
0
irt, z

+
irt, ydt and yd

1 k ← 1, ak ← 1, bk ← min{σ, T}, sol0 = ∅;
2 while ak ≤ T do

3 solk ← Solve sub-problem PFRT ([ak, bk], sol
k−1);

4 ak+1 ← ak + δ, bk+1 ← min{bk + δ, T}, k ← k + 1;

5 end

Machine-oriented F&R algorithm

The F&R algorithm with machine-oriented decomposition (FR-M) decomposes the de-

cision by machine. Given two non-intersect subsets of machines RF ,RO ⊆ R and initial

solution sol0, we define the sub-problem PFRM (RF ,RO, sol0) as follows:

(PFRM (RF ,RO, sol0) min (2.15)

CHAPTER 3. CLSC HEURISTICS 67

s.t. (2.16)− (2.21), (2.23)− (2.25), (2.26)− (2.28)

z0
irt = sol0(z0

irt), z
+
irt = sol0(z+

irt) i ∈ N , t ∈ T , r ∈ RF

z0
irt, z

+
irt ∈ {0, 1} i ∈ N , t ∈ T , r ∈ RO

z0
irt, z

+
irt ∈ [0, 1] i ∈ N , t ∈ T , r ∈ R\{RF ∪RO}

We give the pseudo code of FR-M in Algorithm 2.

Algorithm 2: F&R algorithm with machine-oriented decomposition (FR-M)

Input: σ length of the decision window, δ step size, π a permutation of all

machines

Result: xirt, z
0
irt, z

+
irt, ydt and yd

1 k ← 1, ak ← 1, bk ← min{σ,R}, sol0 = ∅;
2 while ak ≤ R do

3 RF ← {πl ∈ R : 1 ≤ l ≤ ak − 1};
4 RO ← {πl ∈ R : ak ≤ l ≤ bk};
5 solk ← Solve sub-problem PFRM (RF ,RO, solk−1);

6 ak+1 ← ak + σ, bk+1 ← min{bk + σ,R}, k ← k + 1;

7 end

Even though F&R algorithm with product decomposition can not be directly applied

to our problem, in the next section, we develop a heuristic algorithm based on the product

decomposition.

3.2.2 Product Decomposition Based Algorithm

In this section, we develop a constructive algorithm based on some observation from the

application data. Data analysis in Section 2.4.1 shows that even though there are many

products, normally 20% of products cover 80% of demands. This feature can actually be

observed in many industrial cases. Therefore, we would like to develop an algorithm to

make use of this knowledge. One idea is to decompose the problem based on products,

and solve a sequence of sub-problems based on each product. We call it the Product

Decomposition (PD) based algorithm.

The PD algorithm flow chart is shown in Figure 3.2. First, we sort all products to

obtain an order π based on certain criteria. Then for each product i = π(k), a sub-

problem PPD(i) is built and solved by a standard MIP solver. After each iteration, the

current production plan is updated and it moves to the next product π(k + 1).

CHAPTER 3. CLSC HEURISTICS 68

Compute product order π

Build and Solve PPD(π(k))

Update status, k ← k + 1

Return solution

k ← 1

k > N

k ≤ N

Figure 3.2: PD algorithm flow chart

There are two critical components in PD algorithm: sorting criteria and definition

of the sub-problem. In the rest of the section, we introduce several variants of PD based

on different strategies of these two components and complete the algorithm.

Sorting criteria

All products can be sorted with increasing or decreasing order based on an assigned

value. We introduce two ways to define this value: demand capacity and release date.

Therefore based on increasing or decreasing direction, we have four sorting criteria, which

are summarized in Table 3.1.

Table 3.1: PD algorithm: sorting criteria

Criteria Value Direction

CI demand capacity dc(i) (defined in (3.1)) Increase ↗
CD demand capacity dc(i) (defined in (3.1)) Decrease ↘
RI Release date rd(i) (defined in (3.2)) Increase ↗
RD Release date rd(i) (defined in (3.2)) Decrease ↘

For a given product i, define the demand capacity as the total required capacity of

the demands for this product as follows:

dc(i) =
∑

d∈Di

ptiqd (3.1)

For a given product i, define the release date as the earliest release date of all its

demands as follows:

rd(i) = min
d∈Di

rd (3.2)

CHAPTER 3. CLSC HEURISTICS 69

As shown in Table 3.1, we have four different criteria. For example, the criteria CI

represents ordering products according to the increasing value of dc(i). In the Example

2.1, the order of product is π = (i1, i3, i2) based on CI with the demand capacity value

dc(i1) = 3, dc(i2) = 4, dc(i3) = 3.

Sub-problem definition

For each product, we define a sub-problem, which only plans the production of the cur-

rent product. On one hand, each sub-problem optimizes the original objective including

lost sale cost and tardiness cost for demands belonging to current product. On the other

hand, it also has to consider to leave capacity for remaining products to be planned. In

the rest of this section, we explain two types of sub-problems, which are summarized in

Table 3.2.

Table 3.2: PD algorithm: sub-problem

Sub-problem StartupCost IdleCost FullyUsage

SI X X ×
F X × X

Sub-problem with start-up and idle cost For one product sub-problem, instead

of setup carryover, we consider start-up as well as the idle cost. Due to the start-up

cost, the solution prefers production in continuous time buckets on a machine. However,

if there is only start-up cost, some time buckets will be used partially just to make

production continuous and avoid a new start-up. Therefore, we introduce idle cost,

which tries to reduce capacity waste for products not planned yet.

Given a product j and available capacity avlcap(r, t) defined for each machine r in

time bucket t, we introduce following variables for each machine r ∈ R and time bucket

t ∈ T :

• xjrt is defined as in formulation Form3 for CLSC, it represents the production

quantity of product j on machine r during time bucket t.

• γrt ∈ {0, 1} equals to 1 if machine r in time bucket t is used, i.e., there is a positive

production for j.

• θrt ∈ {0, 1} equals to 1 if there is a start up in t for machine r, which means that

machine r is not used in t− 1 (γr,t−1 = 0) whereas it is used in t (γr,t−1 = 0).

CHAPTER 3. CLSC HEURISTICS 70

Let wsp ≥ 0 and wic ≥ 0 be the weight of start-up cost and idle cost respectively.

The sub-problem PPDSI (j) with start-up and idle cost is defined as follows:

(PPDSI (j)) min
∑

d∈Dj

lcdyd +
∑

d∈Dj ,t∈T :t≥e1d

tc1
dydt +

∑

d∈Dj ,t∈T :t≥e2d

tc2
dydt

+ wsp
∑

r∈R,t∈T
θrt

+ wic
∑

r∈R,t∈T
(avlcap(r, t)γrt − ptjxjrt − stjrθrt) (3.3)

s.t.
∑

r∈R
xjrt =

∑

d∈Dj

ydt t ∈ T (3.4)

∑

t∈T :t≥bd
ydt + yd = qd d ∈ Dj (3.5)

ptjxjrt + stjrθrt ≤ avlcap(r, t)γrt r ∈ R, t ∈ T (3.6)

xjrt ≤ Θjrtγrt r ∈ R, t ∈ T (3.7)

xjrt ≥ γrt r ∈ R, t ∈ T (3.8)

θrt ≥ γrt − γr,t−1 r ∈ R, t ∈ T (3.9)

γrt, θrt ∈ {0, 1} r ∈ R, t ∈ T (3.10)

xjrt ≥ 0 r ∈ R, t ∈ T (3.11)

ydt ≥ 0, yd ≥ 0 d ∈ Dj , bd ≤ t ∈ T (3.12)

In the objective (3.3), we minimize not only the lost sale cost and tardiness cost, but

also the start-up cost and idle cost. As in Form3 for CLSC problem, constraints (3.4)

ensure the material flow balance in each time bucket while constraints (3.5) state the

flow balance for each demand, i.e., the satisfied quantity plus the unsatisfied quantity of

each demand should equal to its total required quantity. Constraints (3.6) require total

used capacity is no more than the total available capacity on each machine for each time

bucket. The total used capacity includes production used capacity ptjxjrt and start-up

used capacity stjrθrt. On the other hand, the given available capacity is avlcap(r, t)γrt,

which equals to 0 when the capacity is not used (γrt = 0) and equals to avlcap(r, t) when

the capacity is used (γrt = 1). Constraints (3.7) link production with setup usage that

there is a positive production only if the capacity is used. On the other hand, constraints

(3.8) ensure at least 1 unit is produced when the capacity is used. Finally, we define

start-up variables with constraints (3.9) that given machine r if capacity is not used in

t− 1 but used in t, there is a start-up in time bucket t.

CHAPTER 3. CLSC HEURISTICS 71

Note that in the objective function, we mix two types of objectives together: original

objective (including lost sale cost and tardiness cost) and capacity usage cost (including

start-up cost and idle cost). Obviously, they do not have the same priority and serve

different purpose. Hence, we need to treat them differently. One way is to adjust the

coefficient wsp and wic accordingly to distinguish different levels of importance (which

is actually hard to define in practice). Another way is to use goal programming. Since

original objective dominates capacity usage objective, we choose to use goal program-

ming. In the first rank, we try to minimize lost sale cost and tardiness cost, while in the

second rank we try to minimize start-up cost and idle cost.

Given a MIP defined as minx∈X f1(x) + f2(x), the goal programming with objective

f1(·) as rank 1 and f2(·) as rank 2 is to solve following two optimization problems in

sequence:

1) z∗1 = min
x∈X

f1(x)

2) min
x∈X ,f1(x)≤z∗1

f2(x)

Therefore, for each product, we solve two sub-problems PPDSI1 (j) and PPDSI2 (j) in sequence,

which are defined as follows:

(PPDSI1 (j)) min
∑

d∈Dj

lcdyd +
∑

d∈Dj ,t∈T :t≥e1d

tc1
dydt +

∑

d∈Dj ,t∈T :t≥e2d

tc2
dydt

s.t. (3.4)− (3.12)

Let obj(PPDSI1 (j)) be the obtained objective function value of problem PPDSI1 (j),

(PPDSI2 (j)) min wsp
∑

r∈R,t∈T
θrt + wic

∑

r∈R,t∈T
(avlcap(r, t)γrt − ptjxjrt − stjrθrt)

s.t. (3.4)− (3.12)
∑

d∈Dj

lcdyd +
∑

d∈Dj ,t∈T :t≥e1d

tc1
dydt +

∑

d∈Dj ,t∈T :t≥e2d

tc2
dydt ≤ obj(PPDSI1 (j))

(3.13)

In the first rank, we try to minimize the lost sale cost and tardiness cost in problem

PPDSI1 (j). Given the obtained feasible objective function value obj(PPDSI1 (j)), we minimize

the start-up cost and idle cost in rank 2. However, constraint (3.13) ensures that the

lost sale cost and tardiness cost is not worse than what we have achieved in rank 1.

Sub-problem with fully capacity usage Another way of compact capacity usage

is to force almost full capacity usage unless it is a switch-off time bucket. It means that

CHAPTER 3. CLSC HEURISTICS 72

if several continuous time buckets are used, then the capacity in all time buckets but the

last one should be fully used. So on machine r, if time bucket t and t+ 1 are used, then

capacity in t must be fully used. In this way, each sub-problem also considers leaving

capacity for remaining products to be planned. This sub-problem is defined as follows:

(PPDF (j)) min
∑

d∈Dj

lcdyd +
∑

d∈Dj ,t∈T :t≥e1d

tc1
dydt +

∑

d∈Dj ,t∈T :t≥e2d

tc2
dydt

+ wsp
∑

r∈R,t∈T
θrt

s.t. (3.4)− (3.12)

ptjxjrt + stjrθrt ≥ avlcap(r, t)(γrt + γr,t+1 − 1) r ∈ R, t ∈ T \{T}
(3.14)

We also consider to use goal programming, where the first rank is also to minimize the

lost sale cost and tardiness cost while the second rank is to minimize the start-up cost.

PD algorithm variants

In this section, we complete two variants of PD algorithm.

First of all, once we solve sub-problems for all products, we use following model to

recover the setup values for the original problem. Given solution value γirt and θirt for

i ∈ N , r ∈ R and t ∈ T , we define the problem as follows:

(P (γirt, θirt)) min 0

s.t.
∑

i∈N
z0
irt = 1 r ∈ R, t ∈ T

z0
irt ≤ z0

ir,t−1 + z+
ir,t−1 i ∈ N , r ∈ R, t ∈ T \{1}

z0
irt + z0

ir,t+1 ≤ 1 + wrt i ∈ N , r ∈ R, t ∈ T \{T}
z+
irt + wrt ≤ 1 i ∈ N , r ∈ R, t ∈ T
z0
irt = 1 If γirt = 1, θirt = 0 i ∈ N , r ∈ R, t ∈ T
z0
irt + z+

irt = 1 If θirt = 1 i ∈ N , r ∈ R, t ∈ T
z+
irt = 0 If γirt = 0 i ∈ N , r ∈ R, t ∈ T

The PD algorithm with start-up and idle cost (PD-SI) is given in the Algorithm 3.

The crucial part is to update the available capacities for the next sub-problem. After

planning one product, the available capacity includes non-used time bucket and the

remaining capacity in the switch-off time bucket. As shown in the example in Figure

CHAPTER 3. CLSC HEURISTICS 73

3.3, time buckets tb1 and tb4 are never used therefore their capacity is available for the

next product. Moreover, the time bucket tb3 and tb5 are switch-off time buckets therefore

their remaining capacity is also available for the next product. However, time bucket

tb2 is partially used and is not a switch-off time bucket, therefore even though there is

capacity left but is considered nonavailable for the next product.

Figure 3.3: PD-SI algorithm capacity update example

The PD algorithm with start-up and fully capacity usage (PD-F) is given in the

Algorithm 4.

CHAPTER 3. CLSC HEURISTICS 74

Algorithm 3: The PD-SI algorithm

Input: Chosen sorting criteria SortCriteria

Result: xirt, z
0
irt, z

+
irt, ydt and yd

1 for each product i, each machine r, time bucket t do

2 γirt ← 0, θirt ← 0,;

3 recap(r, t)← caprt;

4 S(r, t) = ∅;
5 end

6 Sort products, π ← ComputeProductOrder(SortCriteria) ;

7 for k = 1 to N do

8 j ← π(k);

9 for each machine r, time bucket t do

10 if S(r, t) ∩ S(r, t+ 1) = ∅ then

11 avlcap(r, t)← recap(r, t);

12 end

13 else

14 avlcap(r, t)← 0;

15 end

16 end

17 (x′jrt, y
′
dt, y

′
d, γ
′
rt, θ

′
rt)← Solve sub-problem PPDSI (j) with capacity avlcap(r, t);

18 for each machine r, time bucket t, demand d ∈ Dj do

19 xjrt ← x′jrt, ydt ← y′dt, yd ← y′d;

20 recap(r, t)← recap(r, t)−
(
ptjx

′
jrt + stjrθ

′
rt

)
;

21 γirt ← γ′rt, θirt ← θ′rt,;

22 S(r, t)← S(r, t) ∪ {j};
23 end

24 end

25 (z0
irt, z

+
irt)← Solve P (γirt, θirt);

CHAPTER 3. CLSC HEURISTICS 75

Algorithm 4: The PD-F algorithm

Input: Chosen sorting criteria SortCriteria

Result: xirt, z
0
irt, z

+
irt, ydt and yd

1 for each product i, each machine r, time bucket t do

2 γirt ← 0, θirt ← 0,;

3 recap(r, t)← caprt;

4 S(r, t) = ∅;
5 end

6 Sort products, π ← ComputeProductOrder(SortCriteria) ;

7 for k = 1 to n do

8 j ← π(k);

9 for each machine r, time bucket t do

10 avlcap(r, t)← recap(r, t);

11 end

12 (x′jrt, y
′
dt, y

′
d, γ
′
rt, θ

′
rt)← Solve sub-problem PPDF (j) with capacity avlcap(r, t);

13 for each machine r, time bucket t, demand d ∈ Dj do

14 xjrt ← x′jrt, ydt ← y′dt, yd ← y′d;

15 recap(r, t)← recap(r, t)−
(
ptjx

′
jrt + stjrθ

′
rt

)
;

16 γirt ← γ′rt, θirt ← θ′rt,;

17 S(r, t)← S(r, t) ∪ {j};
18 end

19 end

20 (z0
irt, z

+
irt)← Solve P (γirt, θirt);

3.2.3 First Solution Heuristic Algorithm Based on LP Relaxation

In the previous section, we have introduced the PD algorithm, which is based on the

special feature that we have observed in the application instances. In this section, we

develop a rather general constructive heuristic algorithm which is based on the MIP

formulation and its LP relaxation.

The algorithm flow chart is shown in Figure 3.4. First, we solve the LP relaxation

of the problem. Based on this continuous solution, a set of binary variables is selected

to be fixed. The LP relaxation of the updated formulation is solved again with fixed

variables and new binary variables are selected to be fixed. We repeat this process

until either there is no more variable that fulfills our condition to be selected, or the

LP relaxation is infeasible. In the first case, we solve the resulting MIP formulation

CHAPTER 3. CLSC HEURISTICS 76

with fixed variables. In the second case, a repair process is performed and we solve the

resulted MIP formulation with fixed variables. Eventually, if a solution is returned by

solving this final MIP formulation, we obtain a feasible solution to the original problem.

P ′ ← P

Solve LP(P ′)

Select variables to fix F

Solve MIP(P ′)

P ′ ← {P ′|var = F (var) var ∈ F}

Repair

Solved

F = ∅

F 6= ∅

Figure 3.4: FSH algorithm flow chart

There are two issues to consider when we fix variables: first, what variables should

be fixed; second, how to avoid infeasibility. We address these two issues in the following.

Variable selection

First we analyze the LP solution of the problem to understand which variables should

be fixed. In the Example 2.1, we give the optimal MIP solution without setup cost

in Figure 3.5 and the optimal LP relaxation solution in Figure 3.6. In time bucket t2

on machine r1, there is not enough capacity to produce and setup for both product i1

and i2. However, the LP relaxation solution have them both produced by sharing the

initial state (z0
i2,r1,t2 = 1

3 , z0
i3,r1,t2 = 2

3). Producing both products in t2 is a potential

conflict and if we help the LP solver to resolve this conflict, i.e., make a decision and set

z0
i1,r1,t2 = 1, then only product i1 will be produced in t2. Therefore, the idea is that for

each machine r, we select a time bucket with highest potential conflict, then a variable

is selected to be fixed to resolve this conflict.

CHAPTER 3. CLSC HEURISTICS 77

r2

r1

t1 t2 t3 t4 t5

d1(1) d2(1) d2(1) setup d5(1) setup d4(1)

d3(2) d4(1) setup d5(1) d5(1)

Figure 3.5: CLSC Example 2.1 optimal solution (no setup cost)

r2

r1

t1 t2 t3 t4 t5

d1(2
3

) d2(1
3

) d3(2
3

) d2(2
3

) d4(4
3

) setup d5(1
2

) d5(1)

d1(1
3

) d2(2
3

) d3(4
3

) d2(1
3

) d4(2
3

) setup d5(4
3

) d5(1
6

)

Figure 3.6: CLSC Example 2.1 optimal LP relaxation solution (no setup cost)

The selection strategy is as follows: for each machine r, define

vio(r, t) =





∑
i∈N stirdz+

irte − caprt if ∃i s.t. z0
irt = 1

∑
i∈N stirdz+

irt + z0
irte − caprt otherwise

(3.15)

It represents the potential capacity violation when we round up fractional setup variable

values to integers. When vio(r, t) ≤ 0, it implies that even if we setup all the prod-

ucts indicated in the LP relaxation solution, there is enough capacity in (r, t). When

vio(r, t) > 0, it means that the LP relaxation solution might be making a wrong decision

that there is not enough capacity to produce all the products indicated in the continuous

solution.

To simplify the algorithm description, we introduce following notations which has

the same structure as Map in Java.

Definition 3.1. Let B represent the set of all binary variables in a MIP problem. Given

a set F ⊆ B × {0, 1}, which is a set of variable and binary value pair, we introduce the

notation

• Denote var ∈ Fv if there exists val ∈ {0, 1} such that (var, val) ∈ F .

• Given var ∈ B, define

F (var) :=




val such that (var, val) ∈ F if var ∈ Fv
−1 otherwise

Given a continuous solution of CLSC, the variable selection in FSH algorithm is given

as follows in Algorithm 5:

CHAPTER 3. CLSC HEURISTICS 78

Algorithm 5: The variable selection algorithm of FSH algorithm

Input: solLPR as a continuous solution, a set of variables already fixed

F 0 ⊆ B × {0, 1} ;

Result: A subset of binary variables F ⊆ B × {0, 1}
1 F ← ∅;
2 for each r ∈ R do /* Select one variable for each r */

3 for each t ∈ T do

4 Compute vio(r, t) as (3.15) based on solLPR;

5 end

6 if maxt vio(r, t) > 0 then /* If exists conflict */

7 Let t∗ such that vio(r, t∗) = maxt∈T vio(r, t) ; /* t with max conflict

*/

8 Let N ∗ ⊆ N be the subset of products such that z0
irt /∈ F 0, z+

irt /∈ F 0;

9 Let i∗ ∈ N ∗ such that pti∗sol
LPR(xi∗,rt) = maxi∈N ∗ ptisolLPR(xirt);

; /* i with max production capacity */

10 if z0
i∗,rt /∈ F 0 then

11 F ← F ∪ {(z0
i∗,rt, 1)};

12 F ← F∪ UpdateBounds(z0
i∗,rt, 1);

13 end

14 else

15 F ← F ∪ {(z+
i∗,rt, 1)};

16 F ← F∪ UpdateBounds(z+
i∗,rt, 1);

17 end

18 end

19 end

“UpdateBounds(var,val)” is a function to propagate bounds of other variables after

fixing var at val according to the rules introduced in the following section. It returns a

set of variables and their fixed values.

Infeasibility issue

If the fixing strategy is proper, we may even prevent the situation of infeasible LP

relaxation or MIP, therefore guarantees to return a feasible solution. Due to the nature

of our problem, the major infeasiblity comes from the relations between setup variables

z0
irt and z+

irt. Therefore, one way is to introduce analysis rules and perform constraint

propagation. All the propagation rules are summarized as follows:

CHAPTER 3. CLSC HEURISTICS 79

• If set z0
irt = 0

– If z+
irt = 0, set z0

ir,t+1 = 0

– If z0
ir,t+1 = 1, set z+

irt = 1

• If set z0
irt = 1

– For i 6= j ∈ N , set z0
jrt = 0

– Set z+
irt = 0

– If z0
ir,t+1 = 1, for i 6= j ∈ N , set z+

jrt = 0

– If there exits j, i 6= j ∈ N , set z0
ir,t+1 = 0

– If z0
ir,t−1 = 1, for j ∈ N , set z+

jr,t−1 = 0

– If z0
ir,t−1 = 0, set z+

ir,t−1 = 1

– If z+
ir,t−1 = 0, set z0

ir,t−1 = 1

– If there exits j ∈ N such that z+
jr,t−1 = 1, set z0

ir,t−1 = 0

– If z0
ir,t−1 and z+

ir,t−1 are both free, For i 6= j ∈ N , if recap(r, t− 1) < stjr, set

z+
jr,t−1 = 0

• If set z+
irt = 0

– If z0
irt = 0, set z0

ir,t+1 = 0

– If z0
ir,t+1 = 1, set z0

irt = 1

• If set z+
irt = 1

– For i 6= j ∈ N , if z+
jrt is free and recap(r, t) < stjr, set z+

jrt = 0

– Set z0
irt = 0

– For j ∈ N , if z0
jrt = 1, set z0

jr,t+1 = 0

– For j ∈ N , if z0
jr,t+1 = 1, set z0

jrt = 0

– For j ∈ N , if z+
jrt = 0, set z0

jr,t+1 = 0

where recap(r, t) = caprt −
∑

i∈N ,z+irt is fixed to 1 stir.

Unfortunately, we can not guarantee that the LP relaxation and the final MIP are

feasible based on the above rules. One future research direction is to develop a general

constraint propagator which can detect infeasibility and we can have roll back function

to recover from the infeasible fixation.

CHAPTER 3. CLSC HEURISTICS 80

Repair Procedure

If infeasibility is detected at the kth iteration during running FSH, we try to repair by

rolling back to the previous iteration. Let F (k) be the set of all variables fixed after

the kth iteration and Fk be the set of all variables fixed during the kth iteration. We

recover all variables var ∈ Fk back to free binary variables and solve the original MIP

model with variables var ∈ F (k)\F k fixed to the given value during FSH.

First solution heuristic algorithm (FSH)

The pseudo code of the FSH algorithm is given in Algorithm 6.

Algorithm 6: FSH algorithm

Input: P as the original problem. ;

Result: sol

1 Initialize: P ′ ← P , F all ← ∅, F pre ← ∅;
2 while do

3 solLPR ←Solve the LP Relaxation of P ′;

4 if solLPR == NULL then /* LPR infeasible */

5 F all ← F all\F pre;
6 P ′ ← {P ′ : var = val ∀(var, val) ∈ F all};
7 Break;

8 end

9 F cur ← SelectVariablesToFix(solLPR, F all);

10 if F cur == ∅ then /* No variables to fix */

11 Break;

12 end

13 else

14 FFea ← Recursively set var at val for (var, val) ∈ F cur based on

feasibility rules;

15 F cur ← F cur ∪ FFea;
16 end

17 F pre ← F cur, F all ← F all ∪ F cur;
18 P ′ ← {P ′ : var = val ∀(var, val) ∈ F all};
19 end

20 sol← Solve P ′ as MIP;

CHAPTER 3. CLSC HEURISTICS 81

3.3 Fix&Optimize algorithm

In previous sections, we introduce several constructive heuristic algorithms to build up

a solution for CLSC from scratch. In this section, we develop a local search algorithm to

further improve the solution quality. Fix&Optimize (F&O) algorithm [108] is another

commonly used method for LSP. The algorithm starts from an initial solution. Then in

each iteration, partial variables are fixed, while the remaining variables are optimized

to try to improve the solution quality. After each iteration, variables in the decision

window are updated and the process is repeated until certain criteria is reached. The

final solution is no worse than the initial solution. The idea is to solve a smaller MIP

problem in each iteration to search for a better solution.

In this section, we develop a F&O algorithm based on period-oriented decomposition.

Given a feasible solution of CLSC as sol0, we define the problem PFO([ak, bk], sol
0) as

follows:

(PFO([a, b], sol0)) min (2.15)

s.t. (2.16)− (2.21), (2.23)− (2.25), (2.26)− (2.28)

z0
irt = sol0(z0

irt), z
+
irt = sol0(z+

irt)

i ∈ N , r ∈ R, t ∈ [1, a− 1] ∪ [b+ 1, T]

z0
irt, z

+
irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ [a, b]

The algorithm is formally presented in Algorithm 7:

Algorithm 7: The Fix&Optimize (F&O) algorithm for CLSC

Input: σ length of the decision time window, δ step size

Result: xirt, z
0
irt, z

+
irt, ydt and yd

1 k ← 1, ak ← 1, bk ← min{σ, T}, sol0 = ∅;
2 while ak ≤ T do

3 solk ← Solve sub-problem PFO([ak, bk], sol
k−1);

4 ak+1 ← ak + δ, bk+1 ← min{bk + δ, T}, k ← k + 1;

5 end

3.4 Computational Results

In this section, we present computational results of above developed heuristic algorithms

to evaluate and compare their performance. First, parameter evaluation is performed on

the pilot benchmark instances to evaluate different configurations of the F&R algorithm

CHAPTER 3. CLSC HEURISTICS 82

and the PD algorithm. Then all developed heuristic algorithms are compared based on

their chosen configurations which give the overall best performance.

3.4.1 Algorithm Parameter Evaluation

We use benchmark IAP-B, which includes four real-world instances, as pilot benchmark

instances. Computational results of pilot instances with CPLEX given 1 hour time

limit is used as a reference, we recall the computational results here, which have been

presented in Table 2.11 in Section 2.5.4:

Table 2.11: Computational results: CPLEX on IAP-B

Characteristics LP MIP

Inst T R N D Γ Obj Time Obj Time Gap LB #Node BestLB

R5 25 30 46 668 91 2,935,797 79 35,511,200 3600 91.6 2,973,702 0 2,973,702

R6 25 30 36 425 74 1,277,107 18 1,456,011 3600 7.7 1,344,501 97 1,344,501

R7 20 31 80 1428 40 2,217,260 118 2,692,957 3601 16.7 2,244,422 29 2,244,422

R8 20 31 73 1404 41 2,081,921 83 2,597,838 3600 18.7 2,111,181 0 2,111,181

AVG 2,128,021 74 10,564,501 3600 33.7 2,168,451 32 2,168,451

Parameter evaluation of Fix&Relax (F&R) algorithm

Parameters for the F&R algorithm include decomposition strategy, decision window size

σ and step size δ. We test following combinations of different parameters:

• Decomposition strategy: TO, MO

• (σ, δ): {(2, 1), (3, 1), (3, 2)}

The computational results are shown in Table 3.3. The time limit of each iteration

is set to 600 seconds.

CHAPTER 3. CLSC HEURISTICS 83

Table 3.3: Comparison results: F&R algorithm variations

FR-TO-(2,1) FR-TO-(3,1) FR-TO-(3,2)

Instance Obj Time Gap Obj Time Gap Obj Time Gap

R5 - - - - - - - - -

R6 1,413,088 5387 4.9 1,391,377 5854 3.4 1,422,186 3181 5.5

R7 4,322,763 5553 48.1 3,458,993 5195 35.1 4,274,910 3080 47.5

R8 - - - 3,292,260 5465 35.9 3,935,323 3036 46.4

AVG 2,867,925 5470 26.5 2,714,210 5505 24.8 3,210,806 3099 33.1

FR-MO-(2,1) FR-MO-(3,1) FR-MO-(3,2)

Instance Obj Time Gap Obj Time Gap Obj Time Gap

R5 - - - - - - - - -

R6 1,442,343 4111 6.8 1,430,022 6292 6.0 1,423,001 2260 5.5

R7 2,448,047 14661 8.3 2,432,500 16572 7.7 2,468,958 8371 9.1

R8 2,309,079 10990 8.6 2,266,813 12583 6.9 2,363,615 6718 10.7

AVG 2,066,490 9921 7.9 2,043,112 11816 6.9 2,085,191 5783 8.4

According to the computational results, we have following observations:

1) For all tested configurations, the F&R algorithm fails to solve the instance R5. The

reason is that it fails to find a feasible solution in the first iteration within the time limit

set on each iteration (600 seconds). We have also tried to increase this time limit from

600 seconds to 1200 seconds, we observe the same result for instance R5 that the F&R

algorithm still fails to find a feasible solution to the sub-problem in the first iteration.

This implies that the sub-problems constructed in F&R is still too hard to solve for

CPLEX based on tested instances and formulation.

2) We observe the overall best solution quality on the F&R algorithm with machine-

oriented decomposition, decision window length as 3 and step size as 1 (FR-MO-(3,1)).

It returns an average gap of 6.9%, whereas it is 33.7% for CPLEX. However, the average

computational time of FR-MO-(3,1) is more than 3 hours. Therefore, we observe a

natural trade-off between solution qualities and computational times.

3) Comparing the two decomposition strategies of the F&R algorithm, MO based F&R

algorithm offers better solution quality than TO based F&R algorithm, but with a much

longer computational time. Also, one does not dominate the other since we observe that

the algorithm FR-TO-(2,1) obtains better solution than its counter part FR-MO-(2,1).

4) Comparing the different decision window sizes and step sizes, the parameter (3, 1)

gives best solution quality on average for both decomposition strategies. In fact, it is

true for all cases except one that the FR-MO-(3,2) algorithm gives better solution than

CHAPTER 3. CLSC HEURISTICS 84

FR-MO-(3,1) for instance R6.

In summary, F&R algorithm based on machine decomposition with decision window

size and step size as (3,1) gives the overall best performance. However, the F&R algo-

rithm can not address the most difficult instance R5. Also, the computational time of

F&R is on average very long, which exceeds 3 hours for some configurations. Hence, we

conclude that F&R algorithm is not efficient enough on our problem, therefore we stop

testing it on other benchmark instances.

Parameter evaluation of PD algorithm

The parameter for the PD algorithm includes sorting criteria and sub-problem definition.

• Sorting criteria: the demand capacity dc(·) and the release date rd(·) in increasing

and decreasing order.

• Sub-problem definition: the sub-problem with the start-up and the idle cost (SI),

the sub-problem with full usage (F).

We first evaluate two sub-problems based on the same sorting criteria: the demand

capacity dc(·) in decreasing order. The computational results are presented in Table 3.4.

Table 3.4: Comparison results of PD algorithm variations: sub-problems

PD-SI-DC PD-F-DC

Instance Obj Time Gap Obj Time Gap

R5 5,740,173 70 48.2 5,738,345 74 48.2

R6 2,574,221 8 47.8 2,450,901 7 45.1

R7 3,713,166 154 39.6 3,800,412 315 40.9

R8 4,211,277 180 49.9 4,159,586 285 49.2

AVG 4,059,709 103 46.3 4,037,311 170 45.9

Based on the same sorting criteria of decreasing required capacity, the PD algorithm

based on the SI sub-problem (PD-SI-DC) and the PD algorithm based on the F sub-

problem (PD-F-DC) obtain solutions with similar quality. Over tested instances, the

average gap of PD-SI-DC and PD-F-DC are 46.3% and 45.9%, which implies that the

PD-F-DC algorithm have slightly better performance on average. However, there is no

dominance between these two variants. Moreover, we observe a longer average compu-

tational time on the PD-F-DC (170 seconds) algorithm than PD-SI-DC (103 seconds).

This is due to the fact that the almost-full-capacity-usage constraints introduces more

difficulty to the sub-problems.

CHAPTER 3. CLSC HEURISTICS 85

We then evaluate the sorting criteria based on the same sub-problem definition SI.

The computational result is shown in Table 3.5.

Table 3.5: Comparison results of PD algorithm variations: sorting criteria

PD-SI-DC PD-SI-IC PD-SI-DR PD-SI-IR

Instance Obj Time Gap Obj Time Gap Obj Time Gap Obj Time Gap

R5 5,740,173 70 48.2 56,347,969 117 94.7 66,499,812 87 95.5 31,158,680 146 90.5

R6 2,574,221 8 47.8 3,576,452 19 62.4 3,573,873 16 62.4 2,539,376 72 47.1

R7 3,713,166 154 39.6 4,083,438 344 45.0 3,986,194 365 43.7 3,693,703 325 39.2

R8 4,211,277 180 49.9 4,159,176 271 49.2 3,982,998 271 47.0 3,886,077 368 45.7

AVG 4,059,709 103 46.3 17,041,759 188 62.9 19,510,719 185 62.1 10,319,459 228 55.6

We observe that the variant with decreasing demand capacity (PD-SI-DC) gives the

overall best performance, since it has the lowest average gap and the shortest average

computational time. Its average gap is 46.3%, whereas the average gap is more than

55% for other criteria. The major improvement comes from the instance R5. Compared

to CPLEX with 1 hour time limit, within 70 seconds, the PD-SI-DC algorithm reduces

the gap from 91% to 48.2%.

We also present Figure 3.7 to show the comparison of computational time and relative

gap between PD variants. In summary, PD algorithm is computationally efficient and

tackles the most difficult instance R5. Also, the algorithm PD-F-DC gives the overall

best performance.

Figure 3.7: PD algorithm gap and computational time on pilot benchmark

CHAPTER 3. CLSC HEURISTICS 86

3.4.2 Algorithm Comparison Results

In previous sections, we have presented the parameter analysis on the F&R algorithm

and PD algorithm. In this section, we select following parameters which give the best

overall performance for each algorithm, and perform test on benchmark IAP-B and

IRG-B to evaluate their performances.

• CPLEX with 1 hour time limit (presented in Section 2.5.4).

• PD-F-DC algorithm, iteration time limit for each sub-problem as 60 seconds.

• FSH algorithm, iteration time limit as 600 seconds.

• F&O algorithm with optimization window size as 3 and step size as 1, iteration

time limit as 60 seconds.

FSH results

We first present the detailed computational results of the FSH algorithm. In Table 3.6

we show the computational results on the benchmark IAP-B while in Table 3.7-3.9 we

show the FSH results on benchmark IRG-B.

As we presented before, the FSH algorithm consists of two steps: LP phase, when a

series LP relaxation problems are solved and a subset of binary variables are fixed during

each iteration. MIP phase, the restricted MIP model is solved to obtain a feasible

solution. Therefore, we present detailed results to analyze that how each component

performs and contributes to the algorithm.

In the following table, for each instance, we present the obtained objective function

value (Obj), total computational time (Time), the relative gap based on the best known

lower bound (Gap), the number of iteration of solving LP relaxation and fixing variables

(#Iter), the percentage of the number of variables fixed to 1 over the number of all

binary variables (#FixedTo1), and the computational time to solve the restricted MIP

problem.

Table 3.6: Computational results: FSH algorithm on IAP-B

Inst Obj Time Gap #Iter #FixedTo1(%) MIPTime

R5 14,160,409 216 79.0 19 1.3 3

R6 5,761,670 64 76.7 17 1.4 2

R7 8,835,804 376 74.6 21 1.5 5

R8 6,549,786 316 67.8 24 1.6 3

AVG 8,826,917 243 74.5 20 1.5 3

CHAPTER 3. CLSC HEURISTICS 87

Based on results of real application instances IAP-B, we observe that

1) The FSH algorithm addresses the difficult instance R5. Compared to CPLEX, the ob-

jective function value is reduced from 35,511,200 to 14,160,409, while the gap is reduced

from 91.6% to 79.0%. Moreover, its computational time is within 4 minutes. However,

this does not apply to all instances. For relatively easier to solve instances R6, R7 and

R8, the solution quality is worse than that of CPLEX.

2) On average, the average computational time is around 4 minutes to construct feasible

solutions. In FSH algorithm, the most time consuming part is to solve the LP relax-

ation sub-problem in each iteration. Therefore, we can expect that as the problem size

increases, the FSH algorithm will consume more computational time as well.

3) For the LP phase, the FSH algorithm goes through 20 iterations on average and fixes

near 1.5% of binary variables to 1. However, it is enough to solve the resulted MIP in

less than 5 seconds. This is mainly due to the structure of the setup carryover that if we

fix all initial setup states, then all other z0
irt variables are fixed to 0 accordingly. To build

up the first solution, the major computational time is spent on solving LP relaxation

problems. Therefore the bottleneck of the problem speed is at solving LP relaxation

problems.

CHAPTER 3. CLSC HEURISTICS 88

Table 3.7: Computational results: FSH algorithm on IRG-B (1)

Inst Obj Time Gap #Iter #FixedTo1 MIPTime

B1 569496 261 100.0 28 1.5 2

B2 857700 252 100.0 28 1.4 2

B3 1332316 238 100.0 31 1.5 2

B4 3154699 310 95.4 31 0.9 4

B5 1627483 294 100.0 29 1.3 2

B6 2687665 315 100.0 27 1.2 3

B7 3006613 947 100.0 30 1.0 6

B8 2675949 893 100.0 32 1.1 5

B9 1925285 1040 100.0 31 0.9 6

B10 3301737 1081 100.0 30 0.8 7

B11 4475709 1242 100.0 27 0.8 7

B12 3183505 1111 100.0 27 0.8 7

B13 1421072 3480 100.0 29 0.7 20

B14 1477498 3505 100.0 31 0.8 23

B15 1004987 3530 100.0 29 0.7 22

B16 120095966 1216 100.0 0 0.0 600

B17 7721458 3932 99.8 29 0.5 25

B18 4892235 3842 99.8 30 0.5 26

AVG 1527 100 28 0.9 43

B19 1885162 328 100.0 30 1.7 2

B20 2435489 379 100.0 28 1.5 3

B21 3068139 389 100.0 28 1.5 3

B22 5863879 374 98.9 28 1.3 3

B23 6120530 372 100.0 33 1.2 3

B24 4924154 410 100.0 28 1.3 3

B25 5299304 1531 100.0 28 1.0 9

B26 4432748 1492 100.0 32 1.0 7

B27 4074232 1349 100.0 31 1.0 7

B28 10067139 1371 99.8 29 0.8 7

B29 11750265 1367 99.0 30 0.8 6

B30 10401358 1383 99.6 29 0.8 6

B31 4458564 5328 100.0 31 0.7 26

B32 4216738 4989 100.0 30 0.8 23

B33 119181317 1216 100.0 0 0.0 601

B34 13215539 4146 99.8 32 0.6 17

B35 12392793 3701 98.4 28 0.6 21

B36 114132867 1216 100.0 0 0.0 601

AVG 1741 100 26 0.9 75

CHAPTER 3. CLSC HEURISTICS 89

Table 3.8: Computational results: FSH algorithm on IRG-B (2)

Inst Obj Time Gap #Iter #FixedTo1 MIPTime

B37 983010 239 100.0 30 1.6 3

B38 1412074 281 100.0 31 1.4 2

B39 1255719 273 100.0 30 1.4 2

B40 3909024 312 100.0 32 1.2 2

B41 1734686 296 100.0 27 1.2 3

B42 3277156 354 99.1 29 1.1 2

B43 2011864 930 100.0 30 1.0 7

B44 1114294 782 100.0 31 1.1 8

B45 2145942 832 100.0 30 1.0 6

B46 5709567 1127 99.9 32 0.8 7

B47 3407334 1101 100.0 30 0.8 7

B48 6654652 1327 99.0 29 0.7 6

B49 1790740 3516 100.0 31 0.7 22

B50 2460050 3310 100.0 30 0.8 20

B51 2398138 3833 100.0 30 0.7 21

B52 4685339 4049 100.0 31 0.6 26

B53 5921797 3660 98.9 30 0.5 24

B54 6485383 3934 98.7 28 0.5 24

AVG 1675 100 30 1.0 11

B55 909994 259 100.0 30 1.4 2

B56 816435 247 100.0 31 1.5 2

B57 736264 243 100.0 30 1.5 2

B58 2247744 331 100.0 27 1.1 3

B59 2298256 310 100.0 28 1.1 3

B60 2278970 322 99.1 26 1.1 3

B61 1842306 934 100.0 30 1.0 5

B62 2518664 1022 100.0 31 1.0 7

B63 2300055 1088 100.0 29 1.0 7

B64 5192475 1142 100.0 29 0.7 9

B65 5255345 1204 100.0 29 0.8 8

B66 4610617 1031 99.9 27 0.7 8

B67 1937528 3542 100.0 29 0.7 22

B68 1845334 3469 100.0 29 0.7 27

B69 2948951 3554 100.0 33 0.7 21

B70 4781314 4690 100.0 30 0.6 31

B71 115751239 1216 100.0 0 0.0 600

B72 5652817 3296 100.0 28 0.5 27

AVG 1550 100 28 0.9 44

CHAPTER 3. CLSC HEURISTICS 90

Table 3.9: Computational results: FSH algorithm on IRG-B (3)

Inst Obj Time Gap #Iter #FixedTo1 MIPTime

B73 1027 66 100.0 44 2.2 4

B74 2166 71 100.0 42 2.3 3

B75 5079 113 100.0 44 2.2 4

B76 118275 276 100.0 37 1.6 2

B77 1290034 341 93.2 30 1.2 3

B78 626638 276 78.8 30 1.3 2

B79 11036 135 100.0 45 1.5 9

B80 19799 544 100.0 39 1.4 11

B81 3116 446 100.0 41 1.4 10

B82 495908 952 100.0 33 1.1 6

B83 1431220 1028 89.8 29 0.8 7

B84 110817 910 100.0 35 1.1 6

B85 4838 2013 100.0 43 1.1 26

B86 5088 680 100.0 42 1.1 22

B87 2812 2249 100.0 47 1.1 25

B88 13799 3327 100.0 37 0.8 21

B89 207862 4165 100.0 49 0.8 20

B90 78039 3991 100.0 38 0.7 25

AVG 1199 98 39 1.3 11

B91 870570 213 100.0 29 1.5 2

B92 460278 233 100.0 32 1.6 2

B93 776054 236 100.0 29 1.5 2

B94 1624274 310 100.0 28 1.2 3

B95 2211051 319 100.0 26 1.2 3

B96 2455140 338 100.0 26 1.1 3

B97 1625407 803 100.0 30 1.1 6

B98 2150486 966 100.0 31 1.0 4

B99 1720532 936 100.0 30 1.0 6

B100 6485075 1142 100.0 30 0.7 7

B101 9240132 1262 97.7 27 0.7 7

B102 3928379 1127 100.0 28 0.8 8

B103 1436398 3410 100.0 31 0.8 18

B104 2097677 3616 100.0 30 0.7 19

B105 1882524 3606 100.0 30 0.7 19

B106 123496124 1215 100.0 0 0.0 600

B107 4693908 4228 100.0 30 0.6 23

B108 3453669 4800 100.0 29 0.6 25

AVG 1598 100 28 0.9 42

For the test on benchmark IRG-B, first we show the computational time of FSH

algorithm in Figure 3.8. The speed of the algorithm depends on the LP relaxation,

therefore the curve has similar form as that of the computational time of the LP relax-

ation presented in Figure 2.14.

CHAPTER 3. CLSC HEURISTICS 91

Figure 3.8: FSH algorithm computational time on different types of instances

Out of 108 instances, there are 5 instances that the FSH algorithm do not fix any

variables due to the failure of solving the LP relaxation problem in the first iteration

given 600 seconds time limit. Therefore, the returned results of the FSH algorithm is to

solve the original model given 600 seconds time limit. For other instances, the average

iterations for fixing variables are from 26 to 39 for different types of instances with around

1% of binary variables fixed to 1. This is similar to the results of the IAP-B instances.

Moreover, the resulted restricted MIP model are solved within 1 minutes. Also, for

tested instances, the constraint propagation manages to avoid infeasibility during the

variable fixation. Without the constraint propagation, the FSH algorithm easily get into

infeasibility which leads to no solution found in most cases. However, as we mentioned

before, the completeness of the propagation rule is not proved. At last, for the solution

quality, the relative gap is still very high based on our best known lower bounds. The

further analysis are given in comparison with other heuristic algorithms in the next part.

All heuristic algorithm comparison results

Finally, we compare all developed heuristic algorithms in Table 3.10 - 3.15. The detailed

results are given in Appendix Table A.6 - A.11. For CPLEX results, we present the

computational time, the objective function value and the relative gap based on the

best known lower bound as reference. For other heuristic algorithms, we show the

computational time and the relative gap or the relative improvement defined as impro =

max{−1, objC−objA
max{1,objC}} · 100%, where objA and objC are the objective function value of

the corresponding algorithm and CPLEX. We compare the improvement instead of gap

is because that in many cases of IRG-B, the best known lower bound is 0, which leads

CHAPTER 3. CLSC HEURISTICS 92

to 100% gap for any positive objective function value. Therefore we use the value impro

to measure the improvement of objective function value with reference of CPLEX.

Table 3.10: Computational results: heuristic algorithm on IAP-B

CPLEX FSH PD FSH+FO PD+FO

Inst Obj Time Gap Time Gap Time Gap Time Gap Time Gap

R5 35,511,200 3600 91.6 216 79.0 74 48.2 662 14.2 478 35.8

R6 1,456,011 3600 7.7 64 76.7 7 45.1 492 5.9 181 19.0

R7 2,692,957 3601 16.7 376 74.6 315 40.9 823 9.2 756 12.0

R8 2,597,838 3600 18.7 316 67.8 285 49.2 762 6.9 734 17.7

AVG 10,564,501 3600 33.7 243 74.5 170 45.9 685 9.0 537 21.1

Comparison results on IAP-B instances are shown in Table 3.10 and in Figure 3.9.

First, besides CLPEX, the computational time always follows the order PD < FSH < PD

+ F&O < FSH + F&O on these 4 instances. On the other hand, the gap always follows

the order FSH > PD > PD + F&O > FSH + FO. Second, between two constructive

heuristic algorithm, it seems that more computational effort does not lead to better

solution quality. On average, the computational time of FSH is 243 seconds while it is

170 seconds for PD algorithm. However, the average gap of FSH algorithm is 74.5%,

which is almost double of that of PD algorithm (45.9%). However, the effort pays off

when the constructive algorithm is followed with the improving algorithm. With the

same improving local search mechanism as F&O algorithm, FSH + F&O gives better

results than PD + F&O on all instances. It implies that a better starting solution does

not mean a better final solution for F&O algorithm. Third, comparing to CPLEX, both

algorithm FSH + F&O and PD + F&O manages to provide better solutions in shorter

computational time. The average gap of FSH + F&O algorithm is 9.0% whereas the

average gap of PD + F&O is 21.1%. For CPLEX, the average gap is 33.7%. Especially for

the most difficult instance R5, the gap is reduced from 91.6% (CPLEX) to 14.2% (FSH

+ F&O). This shows the efficiency of our developed heuristic algorithms comparing to

CPLEX. For the apparel application, a decent solution is provided in a reasonable time

(< 12 minutes) by our heuristic algorithm. At last, we observe that the F&O algorithm

improves the solution quality quite well, especially for FSH algorithm. Therefore, F&O

algorithm remains efficient for our LSP as well as for many cases in the literature in

spite of its simple structure.

CHAPTER 3. CLSC HEURISTICS 93

Figure 3.9: Heuristic algorithm comparison results on pilot instances

In the next, we present the results on pseudo-randomly generated testedbed IRG-B

and analyze the results. We first give a summary results over all 108 instances in Table

3.11 and 3.12. The comparison results for each instance is given in Table 3.13 - 3.15.

Table 3.11: Computational results: heuristic algorithm on IRG-B summary

CPLEX FSH PD FSH+FO PD+FO

Inst Time Gap Time Gap Impro Time Gap Impro Time Gap Impro Time Gap Impro

AVG 3381 91.6 1548 99.5 44.7 248 99.6 57.8 3671 88.3 85.1 1149 90.9 77.4

Based on this summary results, we observe similar trend on computational time and

solution quality (measured by value impro). Therefore, the performance is consistent on

both benchmark instances. The only difference is that PD + F&O algorithm takes even

shorter time than FSH algorithm, which is opposite for the real application instances.

In terms of computational time, FSH algorithm (1548 seconds) takes much longer than

PD algorithm (248 seconds). This is because the instance size of some IRG-B instances

is much larger than that of IAP-B, therefore the LP relaxation problem in each iter-

ation gets harder to solve. Even the F&O algorithm computational time are different

when the initial solution is provided by FSH algorithm or by PD algorithm. FSH +

F&O algorithms takes 3671 seconds on average while PD + F&O algorithm takes 985

seconds on average. Therefore, the average time of FSH + F&O is longer than that

of CPLEX already, even though it provides better solution than CPLEX. In terms of

solution quality, on average, all heuristic algorithms obtain better solution quality com-

paring to CPLEX with 1 hour time limit. However, the improvement is not well shown

CHAPTER 3. CLSC HEURISTICS 94

by gap. One of the reason is as we have mentioned before: when the best lower bound is

0, then any positive objective function value gives a gap 100%. Another reason is that

some IRG-B instances might be more difficult to solve due to the larger instance size

and the instance generating algorithm. The best average gap is given by FSH + F&O

algorithm, which equals 88.3%. We have gained less than 3% in terms of relative gap

comparing to CPLEX. Therefore, the gap may not be a good indicator in this case. If we

look at the value impro instead, then the improvement of solution quality by heuristic

algorithms are more obvious. For example, FSH algorithm improve objective function

value by 44.7% on average, which is the worst case in all 4 heuristic algorithms.

In Table 3.12, we show the summary result on different types of generated instances.

Since the relative gap does not provide too much information, we only show the compu-

tational time and the impro value for each heuristic algorithm.

Table 3.12: Computational results: heuristic algorithm on IRG-B summary by type

CPLEX FSH PD FSH+FO PD+FO

Inst type Time Gap Time Impro Time Impro Time Impro Time Impro

DF 3600 99.9 1527 52.8 201 75.7 3818 94.8 1197 89.1

ProdEven 3600 99.9 1741 62.2 380 73.1 4202 90.9 1499 87.2

Capconst 3600 100.0 1675 59.2 176 79.2 3990 93.0 1146 90.0

Capdiff 3600 100.0 1550 52.5 266 66.6 3840 95.3 1203 80.9

STLow 2286 49.7 1199 -2.3 215 -5.8 2342 49.4 807 36.7

DemEven 3600 100.0 1598 43.8 251 58.2 3835 87.2 1042 80.3

All 3381 91.6 1548 44.7 248 57.8 3671 85.1 1149 77.4

We observe that

1), on average comparing to CPLEX, the FSH algorithm takes half of the computational

time while improves at least 43% objective function value for all types but the STLow

type instances. According to CPLEX results, STlow type instances are easier to solve

than other types. Therefore, the FSH algorithm performs better on relatively difficult

instances.

2), PD algorithm has a big advantage on short computational time comparing to other

algorithms. On average, PD algorithm takes less than 5 minutes and improves the

solution quality of CPLEX for most instances. On average, PD algorithm manages

to improve solution quality by 57.8% comparing to CPLEX. Like FSH algorithm, PD

algorithm fails to obtain better solution quality than CPLEX on STLow type instances.

However, the average improvement is better than FSH on all types instances. Therefore

we can conclude that PD algorithm is efficient and can provide a feasible solution with

CHAPTER 3. CLSC HEURISTICS 95

reasonable quality in short time.

3), by combining FSH algorithm with F&O algorithm, the solution quality is further

improved, the objective function value is improved by 85.1% over all instances comparing

to CPLEX. Actually, for 107 instances over 108, the algorithm gives better solution

than CPLEX. However, the computational time of FSH + F&O algorithm is on average

around 5 minutes higher than CPLEX.

4), by combining PD algorithm with F&O algorithm, the solution quality is also improved

comparing to PD algorithm. The F&O phase increases the average computational time

from 248 seconds to 985 seconds, while increases the improving value from 38% to 56%.

CHAPTER 3. CLSC HEURISTICS 96

Table 3.13: Computational results: heuristic algorithm on IRG-B (1)

CPLEX FSH PD FSH+FO PD+FO

Inst Gap Time Obj Time Impro Time Impro Time Impro Time Impro

B1 100.0 3600 329607 261 -72.8 48 50.0 2343 95.7 1027 87.5

B2 100.0 3600 769798 252 -11.4 82 79.5 2435 96.1 1041 94.5

B3 100.0 3600 69398 238 -100.0 43 -100.0 2462 53.8 893 -11.5

B4 98.5 3600 9485931 310 66.7 16 64.4 1023 86.6 399 81.0

B5 100.0 3600 1084421 294 -50.1 39 38.4 2354 92.0 1133 79.1

B6 100.0 3600 6291857 315 57.3 110 59.3 1811 93.8 634 88.9

B7 100.0 3600 88795819 947 96.6 154 98.7 3334 99.9 1254 99.7

B8 100.0 3600 83386167 893 96.8 204 99.8 3541 100.0 937 99.9

B9 100.0 3600 85466741 1040 97.7 77 99.7 3804 99.9 1244 99.8

B10 100.0 3600 83980195 1081 96.1 217 97.9 3630 99.5 1344 99.2

B11 100.0 3600 90015737 1242 95.0 95 95.5 3528 98.5 1145 97.7

B12 100.0 3600 89549343 1111 96.4 120 95.9 3723 99.1 780 97.9

B13 100.0 3600 115106676 3480 98.8 314 99.8 6010 99.9 1474 99.9

B14 100.0 3600 121228481 3505 98.8 454 99.8 6156 99.9 1487 99.9

B15 100.0 3600 12857474 3530 92.2 406 97.8 5935 99.7 1520 98.9

B16 100.0 3600 123816283 1216 3.0 447 96.9 3658 97.0 1823 98.5

B17 100.0 3600 127298893 3932 93.9 369 93.0 6699 96.7 1713 94.8

B18 100.0 3600 116072579 3842 95.8 426 96.1 6273 98.7 1703 97.6

AVG 99.9 3600 1527 52.8 201 75.7 3818 94.8 1197 89.1

B19 100.0 3600 132638 328 -100.0 81 -100.0 2738 60.7 1007 6.7

B20 100.0 3600 58077709 379 95.8 176 99.1 3070 99.8 1426 99.7

B21 100.0 3600 8404981 389 63.5 155 76.0 2883 96.7 1236 95.5

B22 99.5 3600 13053180 374 55.1 40 53.5 1882 80.1 354 77.7

B23 100.0 3600 62081602 372 90.1 92 87.1 2210 95.4 851 94.6

B24 100.0 3600 10247860 410 51.9 82 58.3 2368 89.7 1025 85.9

B25 100.0 3600 92162919 1531 94.3 434 95.7 4294 99.3 1765 99.2

B26 100.0 3600 91068198 1492 95.1 257 97.0 4256 99.4 1525 99.2

B27 100.0 3602 67557529 1349 94.0 331 98.7 4113 99.6 1605 99.4

B28 99.9 3600 43534412 1371 76.9 288 71.2 3829 85.2 1534 84.7

B29 99.6 3600 32120464 1367 63.4 84 59.1 3290 77.1 874 73.8

B30 99.9 3600 35640301 1383 70.8 321 63.5 3510 83.1 1461 80.8

B31 100.0 3600 127510049 5328 96.5 729 98.7 8094 99.1 2072 99.2

B32 100.0 3600 120922514 4989 96.5 742 99.4 7756 99.6 1983 99.6

B33 100.0 3600 119911245 1216 0.6 1166 97.6 3983 96.4 2463 99.1

B34 100.0 3600 118721109 4146 88.9 496 86.0 6913 93.3 1853 91.4

B35 99.8 3600 120294447 3701 89.7 613 87.4 6468 92.6 1953 91.6

B36 100.0 3600 110465941 1216 -3.3 754 86.8 3982 88.7 2004 91.1

AVG 99.9 3600 1741 62.2 380 73.1 4202 90.9 1499 87.2

CHAPTER 3. CLSC HEURISTICS 97

Table 3.14: Computational results: heuristic algorithm on IRG-B (2)

CPLEX FSH PD FSH+FO PD+FO

Inst Gap Time Obj Time Impro Time Impro Time Impro Time Impro

B37 100.0 3600 23204 239 -100.0 69 -100.0 2433 35.6 914 19.8

B38 100.0 3600 1163883 281 -21.3 75 77.2 2657 95.1 785 88.4

B39 100.0 3600 625842 273 -100.0 40 67.9 2570 88.4 750 83.4

B40 100.0 3601 18011097 312 78.3 53 81.2 1631 93.3 453 89.1

B41 100.0 3600 5487443 296 68.4 51 94.5 2814 97.4 977 96.3

B42 99.7 3600 8834308 354 62.9 57 52.1 1544 82.0 485 71.0

B43 100.0 3600 83214545 930 97.6 190 99.8 3575 99.9 1295 99.9

B44 100.0 3600 4254029 782 73.8 80 95.5 2973 99.9 944 98.6

B45 100.0 3600 5242020 832 59.1 85 96.1 3405 99.1 1095 98.3

B46 100.0 3600 92254335 1127 93.8 82 93.7 3118 97.3 1205 96.0

B47 100.0 3600 88539706 1101 96.2 87 96.5 3581 98.7 1033 98.1

B48 99.9 3600 92440700 1327 92.8 107 90.0 3069 95.8 1242 93.2

B49 100.0 3600 121162208 3516 98.5 394 99.8 6167 100.0 1534 99.9

B50 100.0 3600 14690362 3310 83.3 255 97.9 5962 99.6 1338 98.5

B51 100.0 3600 111052268 3833 97.8 490 99.7 6600 99.9 1723 99.8

B52 100.0 3600 114397623 4049 95.9 263 95.8 6815 98.8 1469 97.7

B53 99.9 3600 114067019 3660 94.8 469 94.6 6306 97.3 1691 96.7

B54 99.9 3600 113712126 3934 94.3 323 92.7 6602 96.3 1698 95.3

AVG 100.0 3600 1675 59.2 176 79.2 3990 93.0 1146 90.0

B55 100.0 3600 257750 259 -100.0 128 43.5 2526 92.5 820 74.3

B56 100.0 3600 85133 247 -100.0 115 -100.0 2612 86.2 982 13.6

B57 100.0 3600 18704 243 -100.0 60 -100.0 2300 72.2 888 -65.0

B58 100.0 3600 7976495 331 71.8 37 78.1 1526 96.8 758 94.8

B59 100.0 3601 7333092 310 68.7 206 61.8 1420 93.0 580 80.6

B60 99.8 3600 11514296 322 80.2 54 70.8 1340 95.0 712 88.7

B61 100.0 3600 86537869 934 97.9 277 99.7 3464 99.9 1311 99.8

B62 100.0 3600 91957690 1022 97.3 301 99.6 3778 99.9 1389 99.7

B63 100.0 3600 92125122 1088 97.5 140 99.7 3735 99.9 1236 99.8

B64 100.0 3600 87013629 1142 94.0 157 93.8 3611 97.6 806 96.3

B65 100.0 3600 70307604 1204 92.5 123 90.7 3623 96.4 777 95.0

B66 100.0 3600 20872475 1031 77.9 244 77.6 3494 93.7 1127 87.1

B67 100.0 3600 123548573 3542 98.4 491 99.8 6089 99.9 1591 99.9

B68 100.0 3600 117798084 3469 98.4 398 99.8 6066 99.9 1525 99.9

B69 100.0 3600 13873785 3554 78.7 488 97.6 6207 99.4 1618 99.0

B70 100.0 3600 113178684 4690 95.8 542 96.3 7456 98.3 1892 98.2

B71 100.0 3600 117260538 1216 1.3 614 96.1 3983 96.4 2000 98.2

B72 100.0 3600 117514463 3296 95.2 411 94.0 5895 98.4 1632 96.4

AVG 100.0 3600 1550 52.5 266 66.6 3840 95.3 1203 80.9

CHAPTER 3. CLSC HEURISTICS 98

Table 3.15: Computational results: heuristic algorithm on IRG-B (3)

CPLEX FSH PD FSH+FO PD+FO

Inst Gap Time Obj Time Impro Time Impro Time Impro Time Impro

B73 0.0 37 0 66 -100.0 34 -100.0 77 0.0 44 0.0

B74 0.0 84 0 71 -100.0 59 -100.0 82 0.0 70 0.0

B75 0.0 277 0 113 -100.0 59 -100.0 125 0.0 555 0.0

B76 100.0 3600 5148006 276 97.7 59 93.4 2414 98.6 586 96.4

B77 98.8 3600 7241378 341 82.2 40 44.5 1516 96.7 831 81.0

B78 97.5 3601 5381298 276 88.4 44 89.4 2043 95.7 985 93.7

B79 0.0 465 0 135 -100.0 116 -100.0 200 0.0 163 0.0

B80 0.0 1200 0 544 -100.0 123 -100.0 763 0.0 761 -100.0

B81 0.0 1008 0 446 -100.0 284 -100.0 576 0.0 323 0.0

B82 100.0 3600 87599277 952 99.4 92 95.6 3628 100.0 1128 99.2

B83 99.1 3600 15890973 1028 91.0 227 76.0 3171 97.5 1301 90.9

B84 100.0 3600 88968761 910 99.9 148 97.4 3403 100.0 1181 99.7

B85 0.0 1745 0 2013 -100.0 417 -100.0 2103 0.0 475 0.0

B86 0.0 1809 0 680 -100.0 454 -100.0 769 0.0 905 -100.0

B87 0.0 2127 0 2249 -100.0 520 -100.0 2359 0.0 726 0.0

B88 100.0 3600 116164709 3327 100.0 441 99.6 5361 100.0 1434 99.9

B89 100.0 3600 120352296 4165 99.8 413 99.5 6813 99.9 1552 99.7

B90 100.0 3600 121208248 3991 99.9 347 99.5 6757 100.0 1509 99.7

AVG 49.7 2286 1199 -2.3 215 -5.8 2342 49.4 807 36.7

B91 100.0 3600 7154 213 -100.0 105 -100.0 1181 100.0 519 94.3

B92 100.0 3600 1 233 -100.0 180 -100.0 1415 -100.0 243 100.0

B93 100.0 3600 21171 236 -100.0 58 -100.0 1812 99.2 910 100.0

B94 100.0 3600 54451635 310 97.0 84 97.3 2695 99.8 1186 99.7

B95 100.0 3600 7334313 319 69.9 89 60.5 2855 97.9 1064 92.1

B96 100.0 3600 13755823 338 82.2 48 73.8 2185 96.0 794 92.3

B97 100.0 3600 83679 803 -100.0 286 91.5 1929 99.0 327 100.0

B98 100.0 3600 93744125 966 97.7 265 100.0 3730 100.0 543 100.0

B99 100.0 3600 91176566 936 98.1 201 100.0 3596 100.0 962 100.0

B100 100.0 3600 86302661 1142 92.5 199 91.0 3818 95.8 1021 95.1

B101 99.8 3600 92421684 1262 90.0 234 89.7 2725 93.1 1060 92.6

B102 100.0 3600 89646764 1127 95.6 182 95.6 3814 99.1 1477 98.1

B103 100.0 3600 121114882 3410 98.8 639 100.0 5985 100.0 1032 100.0

B104 100.0 3600 115605436 3616 98.2 472 100.0 6383 100.0 1448 100.0

B105 100.0 3600 118987924 3606 98.4 557 100.0 6373 100.0 797 100.0

B106 100.0 3600 100250337 1215 -23.2 454 93.9 3982 92.2 1840 97.2

B107 100.0 3600 114328741 4228 95.9 325 96.6 6994 98.5 1711 98.9

B108 100.0 3600 112508993 4800 96.9 437 97.4 7566 99.2 1824 99.1

AVG 100.0 3600 1598 43.8 251 58.2 3835 87.2 1042 80.3

CHAPTER 3. CLSC HEURISTICS 99

3.5 Conclusions

In this chapter, we have developed three constructive heuristic algorithms: F&R al-

gorithm, FSH algorithm and PD algorithm and one improvement heuristic algorithm:

F&O algorithm.

First different variants of F&R algorithm and PD algorithm are tested on real-world

application instances IAP-B to perform parameter analysis. The result shows that F&R

algorithm is not adapted to our problem since it takes very long computational time. This

is due to that the partially relaxed problem in each iteration remains hard for CPLEX

to solve. Moreover, one type of PD algorithm PD-F-DC has slightly better performance

than other its peers therefore is selected to be tested on a larger benchmark instances

IRG-B.

All heuristic algorithms except the F&R algorithm are tested on both real application

instances IAP-B and pseudo-randomly generated instance IRG-B. On both benchmark

instances, all heuristic algorithms have consistent behavior on solution quality. The

average impro values of algorithm FSH, PD, PD + F&O and FSH + F&O follows

increasing order. In other words, FSH algorithm gives the worst performance whereas

FSH + F&O algorithm has the best performances based on our experiments. As for the

computational time, on benchmark IAP-B, the computational time of algorithm PD,

FSH, PD + F&O and FSH + F&O follows increasing order. However, on benchmark

IRG-B, PD + F&O algorithm even has shorter computational time than FSH algorithm.

PD algorithm has the advantage of short computational time. It seems to have better

performance on relatively difficult instances, which has worse performance on relatively

easy instances comparing to CPLEX. FSH algorithm has the same attribute on this that

it performance better on relatively difficult instances. On average, it takes longer time

than PD algorithm, and obtains worse solution quality. However, when we combine

the constructive algorithm with F&O algorithm, FSH + F&O returns better solution

and PD + F&O algorithm. Therefore, F&O algorithm does not guarantee a better

final solution given a better initial solution. Actually, FSH + F&O algorithm almost

always provide better solution than CPLEX, therefore has the best overall performance.

However, the bottleneck is the computational time spent on solving LP relation problem

in each iteration.

In summary, PD algorithm or PD + F&O algorithm has the advantage of speed,

which can be used when computational time is rare resource. FSH algorithm and FSH

+ F&O algorithm has non negligible computational time, especially when the problem

size gets large. However, it returns best solution over all developed algorithm.

Chapter 4

Production Planning Solution to

the Apparel Application

Motivated by the apparel manufacturing application introduced in the first chapter,

we extracted a complex capacitated lot sizing problem CLSC and have studied it from

different points of view. In fact, this problem is constructed by simplifying constraints

and aggregating products. In this chapter, we refocus on the application and display

the entire production planning solution. The methodology is based on a decomposition

approach, and CLSC is solved as the first step of the production planning engine.

The chapter is organized as follows: in Section 4.1, we present the decomposition

approach in the application production planning engine. In Section 4.2, we use one

application instance to analyze different scenarios and evaluate the system performance.

Finally, we conclude in Section 4.3.

100

CHAPTER 4. APPLICATION SOLUTION 101

4.1 Decomposition Approach

The project scope is production planning and scheduling, and the decomposition frame-

work is shown in Figure 4.1. The production planning problem is solved first, which is

followed by a scheduling phase.

Figure 4.1: Apparel manufacturing decomposition approach

In the planning phase, we build a detailed model and simplify it into an aggregated

model, which is CLSC studied in previous chapters. The detailed model has each demand

corresponding to a product, but the setup still incurs between style/product families.

The aggregated model is solved first. Then we fix the setup of detailed model according

to the aggregated model solution. Eventually, the restricted detailed model is solved to

obtain a planning solution for the apparel application.

In the scheduling phase, activities on each sewing production line are decided by

the planning solution. For each demand on each machine, if the production quantity is

nonzero, we combine its productions in all time buckets into one production activity in

the scheduling phase. This is due to the fact that we rarely split production of a work

order on one production line. Each sewing activity is projected to an activity on other

process step. First, scheduling of pre-sewing steps are solved by a greedy algorithm.

Then based on the pre-sewing solution, we restrict the starting date of sewing activities

based on pre-sewing solution and schedule sewing activities with a commercial constraint

scheduling solver CPLEX CPO optimizer. At last, we schedule after-sewing process steps

and obtain a complete scheduling solution.

CHAPTER 4. APPLICATION SOLUTION 102

Since our work is mainly the production planning phase, in the following, we focus

on explaining detailed steps of the production planning phase in the decomposition

approach.

Planning Phase Detailed Model

The aggregated model CLSC have been defined and studied in previous chapters. There-

fore, in the following, we formally define the detailed model. The input parameters of

the detailed model are:

• T = {1, 2, . . . , T}: set of time buckets.

• R = {1, 2, . . . , R}: set of machines.

• N = {1, 2, . . . , N}: set of product families.

• D = {1, 2, . . . , D}: set of demands.

• caprt: capacity of machine r in time bucket t (r ∈ R, t ∈ T).

• stir: setup capacity for product family i on machine r (i ∈ N ,r ∈ R).

• scir: setup cost for product family i on machine r (i ∈ N ,r ∈ R).

• ptd: capacity required by unitary production of product d (d ∈ D).

• pcd: unitary production cost of product required by demand d (d ∈ D).

• pd ∈ N : the required product family of the demand d (d ∈ D).

• qd: quantity of product required by demand d (d ∈ D).

• bd: release date of demand d (d ∈ D).

• e1
d: first due date of demand d (d ∈ D). No extra cost in interval [bd, e

1
d).

• e2
d: second due date of demand d (d ∈ D).

• tc1
d: unitary extra cost for demand d satisfied at or after e1

d (d ∈ D).

• tc2
d: unitary extra cost for demand d satisfied at or after e2

d (d ∈ D).

• lcd: unitary cost for unsatisfied demand d (d ∈ D, lcd > tc1
d + tc2

d).

• Di ⊆ D: the subset of demands such that pd = i, i.e., Di ⊆ D.

CHAPTER 4. APPLICATION SOLUTION 103

• θdr: minimum split size for product of demand d on machine r.

The problem is to decide for each machine r ∈ R and for each time bucket t ∈ T ,

how much to produce of each demand d ∈ D. The objective is to minimize the total cost

including lost sale cost (first priority), tardiness cost (first priority), setup cost (second

priority) and production cost (second priority). The restriction includes four parts: 1),

the production to satisfy demand d can only start from its release date; 2), the machine

capacities caprt must not be exceeded by the capacity usage for each machine r and

time bucket t (r ∈ R, t ∈ T); 3), setup occurs for the product families and setup

carryover is considered; 4), for each demand d on each machine r, the total production

quality of d has to be greater than equals to its minimum split size θdr if there is a

positive production. It comes from the application requirement that each demand can

be produced on multiple lines. However, on each production line the production must

continue for a minimum number of days. This formulation is very close to the Form3FL

formulation of CLSC introduced in Section 2.3.

The link between the CLSC and the detailed model is shown in Table 4.1. Each style

family is seen as a product in the aggregated model, whereas each demand corresponds

to a product in the detailed model. Therefore, the unitary production time are defined

differently. Moreover, we have minimum split size constraints introduced in the detailed

model.

Table 4.1: Detailed and aggregated model in planning phase

Parameter AggregatedModel DetailedModel

N Products Product families

D Demands Demands and products

pt pti =

∑
d∈Di ptd

|Di| ptd

θdr × X

We introduce following MIP formulation for the detailed model. For each i ∈ N ,

r ∈ R, t ∈ T , d ∈ D, we introduce following variables:

• xdrt ∈ R+: the production quantity of product i on machine r during time t.

• zdr ∈ {0, 1}: it equals to 1 if there is positive production of demand d on machine

r.

• z0
irt ∈ {0, 1} equals to 1 if the initial setup state is for product family i on machine

r in time bucket t, implying that the final setup state for t− 1 on r is for product

family i.

CHAPTER 4. APPLICATION SOLUTION 104

• z+
irt ∈ {0, 1} equals to 1 if there is a state switch for product family i on machine

r in time bucket t.

• wrt ∈ [0, 1] is zero if there is more than one product setup on machine r in time

bucket t.

The formulation is formally given as follows (T̃ = T \ {1}):

min First priority :
∑

d∈D
lcd(qd −

∑

r,t

xdrt)

︸ ︷︷ ︸
lost

+
∑

d∈D,r∈R,t∈T :t≥e1d

tc1
dxdrt +

∑

d∈D,r∈R,t∈T :t≥e2d

tc2
dxdrt

︸ ︷︷ ︸
tardiness

(4.1)

Second priority :
∑

i∈N ,r∈R,t∈T
scirz

+
irt

︸ ︷︷ ︸
setup

+
∑

d∈D,r∈R,t∈T
pcdxdrt

︸ ︷︷ ︸
production

s.t.
∑

r∈R,t∈T
xdrt ≤ qd d ∈ D (4.2)

∑

d∈D
ptdxdrt +

∑

i∈N
stirz

+
irt ≤ caprt r ∈ R, t ∈ T (4.3)

xdrt ≤ Θdrt(z
0
irt + z+

irt) d ∈ D, r ∈ R, t ∈ T (4.4)
∑

t∈T
xdrt ≤ qdzdr d ∈ D, r ∈ R, t ∈ T (4.5)

∑

t∈T
xdrt ≥ θdrzdr d ∈ D, r ∈ R, t ∈ T (4.6)

∑

i∈N
z0
irt = 1 r ∈ R, t ∈ T (4.7)

z0
irt ≤ z0

ir,t−1 + z+
ir,t−1 i ∈ N , r ∈ R, t ∈ T̃ (4.8)

z0
irt + z0

ir,t−1 ≤ 1 + wr,t−1 i ∈ N , r ∈ R, t ∈ T̃ (4.9)

z+
irt + wrt ≤ 1 i ∈ N , r ∈ R, t ∈ T (4.10)

z0
irt, z

+
irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ T (4.11)

zdr ∈ {0, 1} d ∈ D, r ∈ R (4.12)

0 ≤ wrt ≤ 1 r ∈ R, t ∈ T (4.13)

xdrt ∈ [0, qd] i ∈ N , r ∈ R, bd ≤ t ∈ T (4.14)

Constraints (4.2) guarantee production quantity of demand d is not greater than its

required quantity. Constraints (4.3) ensure capacity usage is less than the available

CHAPTER 4. APPLICATION SOLUTION 105

capacity, where the capacity usage consists of both production and setup. Constraints

(4.4) link the production xdrt and its setup variable z0
irt and z+

irt. Constraints (4.5) link

total production quality of d on machine r with the binary variable zdr. Constraints (4.6)

force the minimum split size for each production that if there is a positive production,

then it has to be equal to or greater than the given minimum split size. Constraints

(4.7) - (4.10) are setup carryover related constraints for product families. Remaining

constraints are to define the introduced variables.

Planning Phase Decomposition Approach

The decomposition approach is described in Algorithm 8.

Algorithm 8: Planning Phase Decomposition Approach

1 (x̄irt, z̄
0
irt, z̄

+
irt)← Solve aggregated model;

2 Fix setup variables z0
irt ← z̄0

irt, z
+
irt ← z̄+

irt in detailed model;

3 Solve detailed model with only first priority objective.

4.2 Application Performance Analysis

In this section, we perform computational test to evaluate the performance of the sys-

tem. The test is performed on the application instance R5, which is the most difficult

instance we have. The computational results are given in Table 4.2. We have tested the

decomposition approach with FSH + FO algorithm developed in the previous chapter,

of which the result is reported in Row DA. Moreover, the result for aggregated model

and the detailed model is given in Row DA.Aggregated and DA.Detail. We have also

tested to solve the instance directly by CPLEX within 2 hours time limit on the above

proposed formulation. The result is given in Row Detail MIP whereas its LP relaxation

solution is reported in Row Detail LP. For each approach, we present the objective func-

tion value including lost sale cost and tardiness cost in Column Obj. Lost sale cost and

tardiness cost are given in Column Lost and Tardiness as well for reference. Also given

are the computational time and relative Gap in percentage. To be able to compare the

gap, we use the LP relaxation value LPV of the corresponding model (reported in Table

2.11) and define the gap as Obj−LPV
Obj .

CHAPTER 4. APPLICATION SOLUTION 106

Table 4.2: Application planning solution evaluation

Algorithm Obj Lost Tardiness Time Gap (%)

DA.Aggregated 3,443,159 0 3,443,159 1208 14.74

DA.Detail 3,449,146 0 3,449,146 0 21.10

DA 3,449,146 0 3,449,146 1208 21.10

Detailed MIP 1.12E+09 1.12E+09 0 T.L. 99.76

Detailed LP 2,721,535 0 2,721,535 3295 -

*Time unit in seconds, T.L. = 7200s

We observe the efficiency of the proposed decomposition algorithm. Without ap-

plying the decomposition method and solve the detailed model directly, the gap is 99%

after 2 hours of running and apparently CPLEX got stuck at the first trivial solution

that all demands are lost sales. By applying decomposition approach, the gap is reduced

to 21% for the detailed model. Moreover, almost all computational time is spent on

the aggregated model. Once the aggregated model is solved and we fixed the setup in

detailed model, the restricted detailed problem became trivial to solve to optimality.

Therefore, even though we probably lose certain optimality at the detailed problem, the

solution quality is much better than solving it directly.

4.3 Conclusions

To conclude this section, we have developed a decomposition strategy for the production

planning phase in the apparel manufacturing application. The decomposition method

provides decent planning solution, which cannot be achieved by solving the detailed

model directly using standard MIP solver.

Chapter 5

Capacitated Lot Sizing Problem

with A Fixed Product Sequence

In many manufacturing industry, switching production from one product to another will

cause setup operations. The setup will consume limited machine capacity and/or cause

a setup cost. When the setup depends on the production sequence, i.e., the setup to

produce current product depends on both itself and the previous produced product, it

is called sequence dependent setup [46, 63]. In this case, both lot sizing and sequencing

decisions have to be made. The difficulty of this problem is the factorial number of setup

sequence candidates to be chosen from. However, in certain manufacturing industries,

this number may be reduced if we restrict the model based on the planners’ knowledge.

In this chapter, we study a special case of CLSP with sequence dependent setup, which

is called capacitated lot sizing problem with a fixed product sequence.

The chapter is organized as follows: In Section 5.1, the classical CLSP with sequence

dependent setup is presented with problem definition and literature review. In Section

5.2, we introduce the study motivation and formally define our problem. In Section

5.3 - 5.6, we present study results of this problem which include MIP formulations, a

special case study, a column generation heuristic and computational results. Finally, we

conclude in Section 5.7.

107

CHAPTER 5. CLSP-FS1 108

5.1 Capacitated Lot Sizing Problem with Sequence Depen-

dent Setup

The CLSP with sequence dependent setup we address in this manuscript is defined as

follows:

• N = {1, 2, . . . , N} a set of N products.

• T = {1, 2, . . . , T} a set of T time buckets

• capt: machine capacity in each time bucket t ∈ T .

• dit: demand of each product i ∈ N in time bucket t ∈ T .

• pti: unitary production time of each product i ∈ N .

• hcit: unitary inventory cost of each product i ∈ N in time bucket t ∈ T .

• bit: the maximum amount of production i ∈ N that can be produced in t ∈ T .

• stij : setup time from product i ∈ N to product j ∈ N .

• scij : setup cost from product i ∈ N to product j ∈ N .

The problem CLSP with sequence dependent setup is to decide the production sequence

and the production quantity of each product in each time bucket so that all demands are

satisfied with a minimum total cost while respecting the machine capacities, which are

consumed by production and setup. Moreover, to clarify the problem we are studying,

following assumptions are made:

• The setup state is carried over between time buckets, even preserved over idle time.

• No setup crossover, i.e., the setup has to be finished in one time bucket.

• Only single lot is considered unless it is the first product of the sequence. This

implies that one product appears at most once in the setup sequence each time

bucket. However, the first product could be the same as the last product in the

selected setup sequence.

Let S be the set of available sequences to schedule products on the machine for each

time bucket. Based above assumption, the cardinality of S equals to O(n!).

Different MIP formulations of this problem are compared in [63], here we only present

one of them to further describe the problem. For each sequence s ∈ S, we define its length

CHAPTER 5. CLSP-FS1 109

as L(s), the associated setup cost and setup time as sc(s) and st(s). For each product

i ∈ N , each time bucket t ∈ T and each candidate sequence s ∈ S, we introduce following

variables:

• xit ∈ R+: quantity of product i produced in time bucket t;

• Iit ∈ R+: inventory of product i at the end of time bucket t;

• wst ∈ {0, 1}: it equals to 1 if sequence s is chosen for time bucket t, 0 otherwise;

Then the problem can be formulated as follows:

min
∑

i∈N ,t∈T
hcitIit +

∑

s∈S,t∈T
sc(s)wst (5.1)

s.t. Ii,t−1 + xit = Iit + dit i ∈ N , t ∈ T (5.2)
∑

i∈N
ptixit +

∑

s∈S
st(s)wst ≤ capt t ∈ T (5.3)

xit ≤ bit
∑

s∈S:i∈s
wst i ∈ N , t ∈ T (5.4)

∑

s∈S
wst = 1 t ∈ T (5.5)

∑

s∈S:s1=i

ws,t+1 =
∑

s∈S:sL(s)=i

wst i ∈ N , t ∈ T \{T} (5.6)

xit, Iit ≥ 0, Ii0 = 0 i ∈ N , t ∈ T (5.7)

wst ∈ {0, 1} s ∈ S, t ∈ T (5.8)

The objective function (5.1) includes the inventory cost and setup cost. The material

flow balance constraints are formulated as (5.2). Constraints (5.3) ensure that the used

capacity does not exceed the available capacity. Constraints (5.4) express that there

can be a production for product i only if there is a setup for i, which implies that a

sequence containing i is selected. One and only one sub-sequence can be chosen, which

is guaranteed by Constraints (5.5). At last, Constraints (5.6) express the consistence of

the chosen sequences from one bucket to the next, which means that the last product of

bucket t should be the same as the first product of time bucket t+ 1.

In CLSP with sequence dependent setup, both lot sizing and sequencing decisions

have to be made. Therefore, it is often classified as lot sizing and scheduling problem

[51, 63]. Sequence dependent setup has been first studied with only setup costs in differ-

ent context: discrete lot sizing and scheduling like problem [121], discrete lot sizing and

scheduling problem [46], proportional lot sizing and scheduling problem [67], uncapaci-

tated LSP [38] and CLSP [68]. Then setup time is also incorporated in the model and

CHAPTER 5. CLSP-FS1 110

has been studied [39, 70, 117]. Generally, introducing setup times makes the problem

more difficult to solve since the feasibility depends on the sequencing decisions as well.

Copil et al. [31] present a review paper on lot sizing and scheduling problem recently.

In this survey, all above mentioned models with sequence dependent setups are reviewed

and classified. Specially, the literature on CLSP with sequence dependent setups is pre-

sented in Section 3.2. The research on CLSP with sequence dependent setups have two

major directions: problem modeling and heuristic algorithm design. As for the prob-

lem modeling, Guimarães et al. [63] classified and compared different MIP formulations

for the CLSP with sequence dependent setup. Based on the sequencing decision, they

group MIP formulations into sequence-oriented and product-oriented. The sequence-

oriented formulation has binary variables representing the selection of sequences explic-

itly. Therefore, it has exponential number of variables. The product-oriented formulation

formulate the setup sequence as a path in a graph, and subtour elimination constraints

are needed to prevent disconnected subtours in the chosen setup sequence. Therefore,

we have polynomial number of variables but some models have exponential number of

constraints. Due to the difficulty of the problem, different heuristics are developed for

different variants of the problem, such as production-balancing algorithm [68, 81], tabu

search algorithm [92], variable neighborhood based search algorithm [9, 11], and MIP

formulation based algorithm such as fix and relax algorithm [82] and fix and optimize

algorithm [93, 126] that we have used previously for CLSP-SC.

5.2 Problem Definition

As mentioned before, the difficulty of CLSP with sequence dependent setup is due to the

exponential size of candidate setup sequence that can be chosen for each time bucket.

However, in certain industries, this situation might be improved by considering planners

knowledge to redefine the model.

We take the color change in production as an example shown in Figure 5.1. There is

a most efficient production sequence as 〈 white, yellow, orange and black 〉. When the

production follows the given sequence from left to right, there are minor setups incurred

due to additive color. For instance, when we switch the production from white cups

to yellow cups, we need to add the yellow color to the machine. However, if we switch

the production from a later product to a previous product in the sequence, there is a

major setup occurred due to the machine cleaning. For instance, when the production

is switched from black cups to white cups, we need to clean up the entire machine to be

able to produce qualified white cups.

CHAPTER 5. CLSP-FS1 111

Figure 5.1: Color change in production

In this case, ideally, the chosen setup sequence should follow this given product

sequence as much as possible to reduce major setups and capacity loss. In other words,

the selected setup sequence should satisfy following conditions:

1. Products position follows the same order as the given sequence.

Sequence white → orange → yellow is not efficient.

2. Allow to skip products.

It is possible to switch production from white to black directly without producing

the middle products.

3. Allow to restart the sequence.

Sequence black→ white→ orange is also valid which has one major setup incurred.

This is the essential concept and motivation of our interest at this restricted model.

In the next, we formally define our problem.

Definition 5.1. Given two sequences ω = 〈ω1, ω2, . . . , ωn〉 and α = 〈α1, α2, . . . , αm〉
(m ≤ n+ 1), we say α follows the order of ω, denoted by α � ω, if

1. αi ∈ ω for i ∈ {1, 2, . . . ,m}.

2. αi 6= αj for i 6= j ∈ {1, 2, . . . ,m} and {i, j} 6= {1,m}.

3. Let i be the index such that ωi = α1 and define sequence

β(i) = 〈ωi, ωi+1, . . . , ωn, ω1, ω2, . . . , ωi−1, ωi〉 (5.9)

There exists a subset Ω′ = {ωi1 , ωi2 , . . . , ωinm
} such that

〈α1, ωi1 , ωi2 , . . . , ωin1
, α2, ωin1+1 , ωin1+2 , . . . , ωin2

, α3, . . . , αm, ωinm−1+1 , . . . , ωinm
〉 equals

to β(i).

The Figure 5.2 illustrates the above definition. The first condition ensures that

entries of sequence α are from sequence ω. The second condition excludes repeating

CHAPTER 5. CLSP-FS1 112

element unless they are the first and the last product. For example, (ω1, ω2, ω3, ω2) is

not allowed. Finally, the third condition restricts α to be a “sub-sequence” of ω which

can reach β(i) at maximum. Based on the definition, β(i) tries to keep element position

as ω as much as possible while gives the possibility to revert the production with a major

setup. Moreover, we keep the possibility to skip some elements. For example, given a

sequence ω = 〈A,B,C,D,E〉, the sequence a = 〈B,C,A〉 satisfies that a � ω. However,

sequence 〈A,E,C,B〉 6� ω.

β(i) 〈ωi ωi+1 . . . ωn ω1 ω2 . . . ωi〉

α 〈α1 αj αm〉

Figure 5.2: Definition 5.1 illustration

Parameters of the CLSP with a fixed product sequence are given as follows:

• N = {1, 2, . . . , N} a set of N products.

• T = {1, 2, . . . , T} a set of T time buckets.

• capt: machine capacity in each time bucket t.

• dit: demand of each product i in time bucket t.

• pti: unitary production time of each product i.

• hcit: unitary inventory cost of each product i in time bucket t.

• bit: the maximum amount of production i that can be produced in t.

• stij : setup time from product i to product j.

• scij : setup cost from product i to product j.

• A permutation of N : ω = 〈ω1, ω2, . . . , ωN 〉.

The problem CLSP with a fixed product sequence, denoted as CLSP-FS1, is to decide

the production sequence and the production quantity of each product in each time bucket

so that all demands are satisfied with a minimum total cost while respecting the machine

capacities. Moreover, the chosen setup sequence of each time bucket has to follow the

order of ω.

CHAPTER 5. CLSP-FS1 113

Example 5.1. We consider three products and four time buckets. The capacity capt

equals to 5 for all t = 1, 2, 3. The demand and setup is given in Table 5.1. For i ∈ N
and t ∈ T , define pti = 1, hcit = 1, bit = 1. The given sequence ω = 〈1, 2, 3〉.

Table 5.1: CLSP-FS1 Example 5.1 data

dit t1 t2 t3 t4

i1 0 0 1 1

i2 0 0 1 0

i3 1 0 1 0

stij i1 i2 i3

i1 0 1 1

i2 1 0 1

i3 1 1 0

scij i1 i2 i3

i1 0 10 10

i2 10 0 10

i3 10 10 0

If we do not consider the fixed sequence and solve the problem as a CLSP with

sequence dependent setup, then the optimal objective function value is 20 with only setup

cost, and the optimal solution is given in Figure 5.3.

t1 t2 t3 t4

i3(1) i3(0) i3(1) i2(1) i1(1) i1(1)

i (quantity)

Figure 5.3: CLSP with sequence dependent setup Example 5.1 optimal solution

However, the optimal objective function value of CLSP-FS1 is 21 due to the restric-

tion on production sequence that 〈3, 2, 1〉 is not a feasible sequence. Therefore, we can

not produce all products in time bucket t3. The optimal solution is given in Figure 5.4.

t3 t3 t3 t4

i3(1) i3(1) i2(0) i2(1) i1(1) i1(1)

i (quantity)

Figure 5.4: CLSP-FS1 Example 5.1 optimal solution

In the literature of CLSP with sequence dependent setup, a concept of “efficient”

sequence is proposed by Haase and Kimms [70]. The similar part of two concepts is

that once we decide the first product, the last product and other appearing products,

the sequence itself is decided. However, the computation of this sequence is polyno-

mial whereas the computation of the “efficient” sequences requires to solve a traveling

salesman problem hence intractable.

CHAPTER 5. CLSP-FS1 114

Theorem 5.1. CLSP-FS1 is strongly NP-hard.

Proof. We prove the statement by reduction from CLSP defined in Section 1.2.

Given an instance P1 of CLSP defined as Section 1.2, We construct following CLSP-

FS1 instance P2: there are N + 2T products, T time buckets. Let the time bucket set

be the same as defined in CLSP as T and the product set be N ′ = N ∪N s ∪N e where

N = {1, 2, . . . , N}, N s = {pts : t ∈ T } and N e = {pte : t ∈ T }. We define:

• Capacity in t equals to capt for t ∈ T .

• For i ∈ N , demand of i in time bucket t equals to dit. For t ∈ T , demand of

product pts (pte) in time bucket t equals to dpts,t = 1 (dpte,t = 1), otherwise 0.

• Production time of product i ∈ N equals to pi. Production time of product

i ∈ N s ∪N e equals to 0.

• Holding cost of product i ∈ N in time bucket t equals to hit. Holding cost of

product i ∈ N s ∪N e in time bucket t equals to ∞.

• Setup cost (time)

scij(stij) =





0 If j ∈ N e

∞ If i ∈ N and j ∈ N s

0 If i ∈ N e ∪N s and j ∈ N s

scj(stj) If i ∈ N ∪N s and j ∈ N

∞ If i ∈ N e and j ∈ N

• ω = 〈 pTs , pT−1
s , . . . , p1

s 1, 2, . . . , N p1
e, p

2
e, . . . , p

T
e 〉

In the following, we show the optimal objective function value of P1 equals to P2

with three steps. The idea of the proof is to show that any optimal solution of P2 has

structure shown in Figure 5.5, and it has a corresponding solution to P1 which shares

the same objective function value.

Figure 5.5: Theorem 5.1 CLSP-FS1 instance optimal solution structure

CHAPTER 5. CLSP-FS1 115

For any solution to P2, it consists of the production quantity of each product i in

time bucket t represented as xit, the inventory represented as Iit and the setup sequence

st in time bucket t.

First, we show that any feasible solution to P1 can be transformed into a feasible

solution to P2 with the same objective value. Let S1 be a feasible solution in the form

of decision variables’ values in formulation (1.2) - (1.7). For example, S1(xit) represents

the production quantity of product i in time bucket t of solution S1. We construct a

solution S2 of P2 as follows: S2(xit) = S1(xit) for i ∈ N and t ∈ T . S2(Iit) = S1(Iit)

for i ∈ N and t ∈ T . S2(xpts,t′) = 1 for t′ = t ∈ T , 0 otherwise. S2(xpte,t′) = 1 for

t′ = t ∈ T , 0 otherwise. S2(Iit) = 0 for i ∈ N s ∪ N e and t ∈ T . For t ∈ T , let

α = 〈α1, α2, . . . , αn〉 be a sequence such that S1(zαi,t) = 1 for αi ∈ α and αi < αj for

i < j. The chosen sequence in t > 1 is S2(st) = 〈pt−1
e , pts, α, p

t
e〉 and S2(st) = 〈pts, α, pte〉

for t = 1. We claim that S2 is a feasible solution to P2. For product i ∈ N , material flow

constraints are guaranteed by the feasibility of S1. For product i ∈ N e ∪ N s, material

flow constraints are guaranteed by the construction that there is no inventory during

the planning horizon. The chosen sequences’ setup time (cost) equals to
∑

j:S1(zit)=1 stj

(
∑

j:S1(zit)=1 scj) by definition of sequence S2(st). Therefore, the capacity constraints

hold since production and setup of product i 6∈ N do not consume capacities and S1 is

a feasible solution to P1. Finally, sequence S2(st) follows the order of ω and together

form a valid planning sequence over the entire time horizon. Moreover,

obj(S2) =
∑

i∈N ′,t∈T
S2(Iit) +

∑

t∈T
S2(st)sc(st)

=
∑

i∈N ,t∈T
S2(Iit) +

∑

t∈T

∑

i∈N :S1(zit)=1

sci = obj(S1)

Second, we show that any optimal solution S2 of P2 must either satisfy following

properties or can be transformed to an equivalent optimal solution satisfying following

properties:

• S2(xpst ,t′) = 1 for t = t′ ∈ T , 0 otherwise.

• S2(xpet ,t′) = 1 for t = t′ ∈ T , 0 otherwise.

• S2(Iit) = 0 for i ∈ N s ∪N e and t ∈ T .

• S2(st) = 〈pst−1, p
s
t , α, p

e
t 〉 where α is a subsequence of N α ⊆ N for 1 < t ∈ T .

• S2(st) = 〈pst , α, pet 〉 where α is a subsequence of N α ⊆ N for t = 1.

CHAPTER 5. CLSP-FS1 116

The first three conditions ensure the demand satisfaction of products in N s∪N e without

any inventories since the unitary inventory cost equals to∞. To prove last two conditions

hold, we first point out that first three conditions implies that we only have positive

production of products in the set N ∪ {pst , pet} in time bucket t. Moreover, having setup

of products not in this set does not improve the solution. Due to the setup cost from

any product i ∈ N to pst is ∞ and the setup cost from pet to any product i ∈ N is ∞,

in the chosen sequence S2(st), p
s
t must be before any i ∈ N while pet must be after any

i ∈ N . In other words, S2(st) = 〈..., pst , i1, ..., in, pet , ...〉. Finally, due to the last product

of t− 1 is pet−1, the setup sequence in t will start from pet−1. Hence, all properties hold.

Third, any optimal solution of P2 can be transformed into a solution to P1 with

the same objective value. Based on the second statement, let S2 be an optimal solution

to P2 satisfying above properties. Then we construct a feasible solution S1 to P1 as

follows: S1(xit) = S2(xit) for i ∈ N and t ∈ T . S1(Iit) = S2(Iit) for i ∈ N and t ∈ T .

S1(zit) = 1 if i ∈ S2(st) for i ∈ N and t ∈ T . Due to the above properties, S1 is feasible

and share the same objective function value as S2.

CLSP with only setup cost is still NP-hard. Therefore based on our proof procedure,

we have

Corollary 5.1. CLSP-FS1 with only setup cost is NP-hard.

Actually, CLSP can be seen as a special case of CLSP-FS1 with scii = sci, stii = sti

for all products i. Therefore, the complexity result holds directly. However, with our

proof, we prove that even under the case that scii = 0, stii = 0, the problem is still

strongly NP-hard.

Corollary 5.2. CLSP-FS1 with setup scii = 0, stii = 0 for i ∈ N is still strongly

NP-hard.

5.3 Problem Formulation

In this section, we introduce MIP formulations for CLSP-FS1. There are two types

of decisions to make: lot sizing and sequencing. For lot sizing, we have the classical

aggregated formulation and facility location based formulation inherited from CLSP

(see Section 1.2). For sequencing, we have product-oriented formulation with compact

size and sequence-oriented formulation with exponential size. In the next, we introduce

them in details.

CHAPTER 5. CLSP-FS1 117

Aggregated sequence-oriented formulation (AG-SO)

Let S = {s : s � ω}. Given a sequence s ∈ S with length L(s), its associated setup cost

sc(s) and setup time st(t) are defined as follows:

sc(s) =

L(s)−1∑

k=1

scsk,sk+1
st(s) =

L(s)−1∑

k=1

scsk,sk+1

We introduce the following variables for i ∈ N , t ∈ T and s ∈ S:

• xit ∈ R+: quantity of product i produced in time bucket t;

• Iit ∈ R+: inventory of product i at the end of time bucket t;

• wst ∈ {0, 1}: it equals to 1 if sequence s is chosen for time bucket t, 0 otherwise.

The problem can be formulated as follows:

min
∑

i∈N ,t∈T
hcitIit +

∑

s∈S,t∈T
sc(s)wst (5.10)

s.t. Ii,t−1 + xit = Iit + dit i ∈ N , t ∈ T (5.11)
∑

i∈N
ptixit +

∑

s∈S
st(s)wst ≤ capt t ∈ T (5.12)

xit ≤ bit
∑

s∈S:i∈s
wst i ∈ N , t ∈ T (5.13)

∑

s∈S
wst = 1 t ∈ T (5.14)

∑

s∈S
s1ws,t+1 =

∑

s∈S
sL(s)wst t ∈ T \{T} (5.15)

xit, Iit ≥ 0, Ii0 = 0 i ∈ N , t ∈ T (5.16)

wst ∈ {0, 1} s ∈ S, t ∈ T (5.17)

The objective function (5.10) includes the inventory cost and the setup cost. The mate-

rial flow balance constraints is formulated as (5.11). Constraints (5.12) ensure that the

used capacity does not exceed the available capacity. Constraints (5.13) express that

there can be a production for product i only if there is a setup for i, which implies a sub-

sequence containing i is selected. One and only one sub-sequence can be chosen, which

is guaranteed by constraints (5.14). At last, constraints (5.15) express the consistence

of the chosen sequences between time buckets, which means that the last setup product

of time bucket t should be the same as the first setup product of time bucket t+ 1.

CHAPTER 5. CLSP-FS1 118

Aggregated product-oriented formulation (AG-PO)

In this section, we introduce a product-oriented formulation which does not have the

sequence as a variable explicitly. The setup sequence can be represented as a path in

the graph.

First of all, we have following observations regarding the valid setup sequences in

CLSP-FS1:

Observation 5.1. Given a sequence ω, any sequence α with length L(α) ≤ 2 and

αi ∈ ω ∀i follows the order of ω: α � ω.

Observation 5.2. Given a sequence ω, if the first product, the last product and its

appearing products of a sequence s are known, and s � ω, then the sequence s is fixed.

This holds due to the definition. In other words, we only need to know all elements

and the first and the last element of a sequence to build up the whole information if it

follows the order of a given sequence.

Property 5.1. CLSP with sequence dependent setup has O(n!) valid sequences, while

CLSP-SD has O(n2n) sequences.

We define the CLSP-FS1 associated graph G = (V,E) as follows:

• Vertex V

– Source P and sink Q

– V t
i := {vti0} ∪ {vtij : j ∈ N} for t ∈ T , i ∈ N .

• Edge E

– E1: (P, v1
i0) for i ∈ N .

– E2: (vtij , v
t
ik) for i ∈ N , j < k ∈ N and t ∈ T .

– E3: (vtij , v
t+1
j0) for i ∈ N , j ∈ N and t ∈ T \{T}.

– E4: (vTij , Q) for i ∈ N and j ∈ N .

Except the source and the sink node, each node v represents a product p(v) and belongs

to a time bucket t(v) which is defined as follows:

p(vti0) = ωi p(vtij) = (β(i))j+1 t(vti0) = t t(vtij) = t ∀j ∈ N

CHAPTER 5. CLSP-FS1 119

where β(i) is defined as (5.9) and (β(i))j is the jth element of β(i). We also introduce

following notations to link products i ∈ N and time buckets t ∈ T with the graph:

E(i, t) := {(u, v) ∈ E|p(u) = i and t(u) = t}
E(t) := {(u, v)|t(u) = t}

Moreover, we define the setup cost/time of each edge (u, v) ∈ E accordingly as

follows:

sc(u, v) =





scp(v),p(v) (u, v) ∈ E1

scp(u),p(v) (u, v) ∈ E2, E3

0 (u, v) ∈ E4

(5.18)

st(u, v) =





stp(v),p(v) (u, v) ∈ E1

stp(u),p(v) (u, v) ∈ E2, E3

0 (u, v) ∈ E4

(5.19)

An example with 3 products A, B, C and 2 time buckets is given in Figure 5.6 for

illustration:

Figure 5.6: CLSP-FS1 graph representation of setup sequence

Property 5.2. A valid setup sequence of the entire planning horizon for CLSP-FS1 is

a path from source node P to sink node Q in the graph G = (V,E).

According to the Property 5.2, we decide the setup sequence by forming a path in the

product-oriented formulation. Let G = (V,E) be the induced graph presented before.

We introduce following variables for each edge (u, v) ∈ E:

CHAPTER 5. CLSP-FS1 120

• Tuv ∈ {0, 1} equals to 1 if the edge (u, v) ∈ E is selected, 0 otherwise.

Then the product oriented formulation (AG-PO) can be formally formulated as follows:

min
∑

i∈N ,t∈T
hcitIit +

∑

(u,v)∈E
sc(u, v)Tuv (5.20)

s.t. Ii,t−1 + xit = Iit + dit i ∈ N , t ∈ T (5.21)
∑

i∈N
ptixit +

∑

(u,v)∈E(t)

st(u, v)Tuv ≤ capt t ∈ T (5.22)

xit ≤ bit
∑

(u,v)∈E(i,t)

Tuv i ∈ N , t ∈ T (5.23)

∑

(P,v)∈E
TPv = 1 (5.24)

∑

(v,Q)∈E
TvQ = 1 (5.25)

∑

(u,v)∈E
Tuv =

∑

(v,u)∈E
Tvu v ∈ V \{P,Q} (5.26)

xit, Iit ≥ 0, Ii0 = 0 i ∈ N , t ∈ T (5.27)

Tuv ∈ {0, 1} (u, v) ∈ E (5.28)

Like the previous formulation, the objective is to minimize the total cost including

inventory cost and setup cost. Specially, the setup cost is defined as the total cost of

selected edges. Constraints (5.21) are to maintain material flow balance as in previous

formulation. Constraints (5.22) guarantee the machine capacity is not exceeded by the

used capacity. The setup time is defined similarly as setup cost. Constraints (5.23) link

production and setup. Constraints (5.24) - (5.26) are flow balance constraints for each

node in graph G = (V,E) to form a path, which is a valid setup sequence for entire time

horizon.

Facility location based sequence-oriented formulation (FL-SO)

Another straightforward formulation for the CLSP-SD is the facility location based for-

mulation. Instead of production variables xit, we introduce following variables for each

product i ∈ N and time bucket t ≤ k ∈ T :

• xitk: the production quantity of product i in time bucket t to satisfy the demand

in time bucket k.

CHAPTER 5. CLSP-FS1 121

Then the FL sequence-oriented formulation (FL-SO) is formally defined as follows:

min
∑

i∈N ,t∈T
hcit

t∑

k=1

T∑

l=t+1

xikl +
∑

s∈S,t∈T
sc(s)wst (5.29)

s.t.

t∑

k=1

xikt = dit i ∈ N , t ∈ T (5.30)

∑

i∈N

T∑

k=t

ptixitk +
∑

s∈S
st(s)wst ≤ capt t ∈ T (5.31)

xitk ≤ min{bit, dik}
∑

s∈S:i∈s
wst i ∈ N , t ≤ k ∈ T (5.32)

∑

s∈S
wst = 1 t ∈ T (5.33)

∑

s∈S
s1ws,t+1 =

∑

s∈S
sL(s)wst t ∈ T \{T} (5.34)

xitk ≥ 0 i ∈ N , t ≤ k ∈ T (5.35)

wst ∈ {0, 1} s ∈ S, t ∈ T (5.36)

There is a direct relation between variables xit, Iit and newly introduced variable xitk

that xit =
∑T

k≥t xitk and Iit =
∑t

k=1

∑T
l=t+1 xikl. Therefore, the objective function

(5.29) is to minimize the inventory cost and setup cost by substitution. Constraints

(5.30) ensure demands satisfaction.

Facility location based product-oriented formulation (FL-PO)

The previous formulation is based on the sequence-oriented formulation, therefore an-

other formulation will be combining aggregated lot sizing decision with product-oriented

sequencing formulation. The facility location based product-oriented formulation (FL-

PO) is given as follows:

min
∑

i∈N ,t∈T
hcit

t∑

k=1

T∑

l=t+1

xikl +
∑

(u,v)∈E
sc(u, v)Tuv (5.37)

s.t.

t∑

k=1

xikt = dit i ∈ N , t ∈ T (5.38)

∑

i∈N

T∑

k=t

ptixitk +
∑

(u,v)∈E
st(u, v)Tuv ≤ capt t ∈ T (5.39)

xitk ≤ min{bit, dik}
∑

(u,v)∈E(i)

Tuv i ∈ N , t ≤ k ∈ T (5.40)

CHAPTER 5. CLSP-FS1 122

∑

(P,v)∈E
TPv = 1 (5.41)

∑

(v,Q)∈E
TvQ = 1 (5.42)

∑

(u,v)∈E
Tuv =

∑

(v,u)∈E
Tvu v ∈ V \{P,Q} (5.43)

xitk ≥ 0 i ∈ N , t ≤ k ∈ T (5.44)

Tuv ∈ {0, 1} (u, v) ∈ E (5.45)

5.4 A Special Case Study

Given a product sequence, if the production follows the given sequence, the setup is

minor. However, when we need to reverse products in the sequence, there will be a

major setup occurred. Here we study an extreme case to have the minor setup as zero

and the major setup as a positive number. More specifically, we define

stωi,ωj =





0 i ≤ j
∆st otherwise

scωi,ωj =





0 i ≤ j
∆sc otherwise

where ∆st > 0 and ∆sc > 0. Without loss of generality, we can assume the fixed

sequence is 〈1, 2, . . . , N〉 by reindexing. Then the setup matrices {stij}i,j∈N , {scij}i,j∈N
have following structure:




0 0 0 . . . 0 0

∆st 0 0 . . . 0 0

∆st ∆st 0 . . . 0 0
...

...
. . .

. . .
...

...

∆st ∆st ∆st
. . . 0 0

∆st ∆st ∆st . . . ∆st 0







0 0 0 . . . 0 0

∆sc 0 0 . . . 0 0

∆sc ∆sc 0 . . . 0 0
...

...
. . .

. . .
...

...

∆sc ∆sc ∆sc
. . . 0 0

∆sc ∆sc ∆sc . . . ∆sc 0




We refer this special case of CLSP-FS1 as CLSP-FS1-LT since its setup matrices are

lower triangle. In the following theorem, CLSP-FS1-LT is shown to be NP-hard.

Theorem 5.2. CLSP-FS1-LT is NP-hard.

Proof. The proof is based on reduction from CLSP with single product.

Given a CLSP instance P1 with one product and T ′ time buckets, for each time

bucket t, the demand is d′t, the unitary holding cost is hc′t, the unitary processing time

is pt′ and the setup cost is sc′. The capacity for each time bucket t is cap′t. Without

CHAPTER 5. CLSP-FS1 123

loss of generality, we assume pt′ > 0, otherwise the solution is trivial. This problem is

NP-hard [20].

Now we build a CLSP-FS1-LT instance P2 based on P1. Let N = {1, 2} and T =

{1, 2, . . . , 2T ′}. Define T 1 = {2t− 1 ∈ T : 1 ≤ t ≤ T ′} and T 2 = {2t ∈ T : 1 ≤ t ≤ T ′}.
If t ∈ T 1, capt = 0; otherwise, capt = cap′t/2. Other parameters of P2 are summarized

in Table 5.2. The given product sequence is 〈1, 2〉. Therefore, all sequences are feasible,

including 〈1〉, 〈1, 2〉, 〈1, 2, 1〉, 〈2〉, 〈2, 1〉 and 〈2, 1, 2〉.

Table 5.2: Theorem 5.2 proof CLSP-FS1-LT instance parameters

i = 1 i = 2

Parameter t ∈ T 1 t ∈ T 2 (u = t
2

) t ∈ T 1 t ∈ T 2 (u = t
2

)

dit 0 d′u 1 0

hit 0 h′u ∞ ∞
pti pt′ 0

stij 1 2

1 0 0

2 st′ 0

scij 1 2

1 0 0

2 sc′ 0

We claim that P1 and P2 are equivalent in the sense that P1 is feasible if and only

if P2 is feasible and its optimal objective value is less than ∞. The idea of the problem

is to show that any optimal solution of P2 has structure shown in Figure 5.7, and it

corresponds to a solution to P1 which shares the same objective function value.

Figure 5.7: Theorem 5.2 reduction from CLSP with single product to CLSP-FS1-LT

This statement is proved by following 3 arguments.

1. Any feasible solution of P1 corresponds to a feasible solution S2 to P2 and they

share the same objective function values. Let S1 be an optimal solution of P1, S1(xt),

S1(zt) and S1(It) represent the solution value of the production quantity, the setup and

the inventory in time bucket t. Then we construct solution S2 to problem P2 in the

form of decision variables shown in formulation AG-SO as follows: S2(x1,2t) = S1(xt),

S2(x1,2t−1) = 0 for 1 ≤ t ≤ T ′. S2(x2,2t) = 0, S2(x2,2t+1) = 1 for 1 ≤ t ≤ T ′.

S2(I1,2t) = S2(I1,2t−1) = S1(It) for 1 ≤ t ≤ T ′. S2(I1,1) = 0. S2(I2,t) = 0 for all t ∈ T .

If t ∈ T 1, S2(st) = 〈2〉. If t ∈ T 2, S2(st) = 〈2, 1, 2〉 if S1(zt) = 1; S2(st) = 〈2〉 if

CHAPTER 5. CLSP-FS1 124

S1(zt) = 0. First, by construction, we have

Obj(S2) =
∑

i∈N ,t∈T
hcitS2(Iit) +

∑

t∈T
sc(S2(st))

=
∑

1≤t≤T ′
hc′tS1(It) +

∑

t∈T
sc(S2(st))

=
∑

1≤t≤T ′
hc′tS1(It) +

∑

t∈T 2

sc(S2(st))

=
∑

1≤t≤T ′
hc′tS1(It) +

∑

1≤t≤T ′,S1(zt)=1

sc′ = Obj(S1)

The second equation is by construction of S2. The third and fourth equation is because

of the sequence construction in S2. For t ∈ T 1 there is no setup since the selected

sequence is always 〈2〉, while for t ∈ T 2 there is a setup if and only if the selected

sequence is 〈2, 1, 2〉, which implies S1(zt) = 1 by construction. Therefore, the objective

function value of S2 equals to that of SI. Moreover, S2 is a feasible solution of P2.

First, the capacity restriction is respected on t ∈ T 1 due to that the only production

is one unit of product 2 which consumes 0 capacity and there is no setup. For t ∈ T 2,

we have S2(x1,t)pt1 + S2(x2,tpt2) = S2(x1,t)pt1 = S1(xt)pt
′ ≤ cap′t = capt. Second,

the production sequence is consistent from one time bucket to the next one due to

construction.

2. Given an optimal solution S2 to P2, S2 satisfies following properties or it can be

transformed to an equivalent optimal solution with the same objective function value

that follows properties:

• For t ∈ T 1, S2(x2,t) = 1; for t ∈ T 2, S2(x2,t) = 0.

• For t ∈ T , S2(I2,t) = 0.

• For t ∈ T 1, S2(x1,t) = 0.

• For t ∈ T 1, S2(st) = 〈2〉.

• For t ∈ T 2, S2(st) = 〈2〉 if S2(x1,t) = 0 or S2(st) = 〈2, 1, 2〉 otherwise.

The first two properties guarantee that product 2 is produced only in the demanding

time bucket without any inventory since the unitary holding cost is ∞. The third

property holds because there is no capacity to perform production of product 1 in time

bucket t ∈ T 1. Based on the first three properties, the nonzero production in t ∈ T 1

can only be product 2 and the nonzero production in t ∈ T 2 can only be product 1.

CHAPTER 5. CLSP-FS1 125

Therefore, we can always have the setup sequence S2(st) = 〈2〉 in t ∈ T 1 and S2(st) = 〈2〉
or 〈2, 1, 2〉 in t ∈ T 2. Other sequences are either equivalent or not optimal.

3. An optimal solution S2 to P2 corresponds to a feasible solution S1 to P1 and they

share the same objective function value. Due to the second argument, we assume that

S2 satisfies above properties as an optimal solution. Then we can build a solution S1 of

problem P1 as follows: for t ∈ T ′, S1(xt) = S2(x1,2t), S1(It) = S2(I1,2t), S1(zt) = 1 if

S1(xt) > 0.

First, by construction, we have

Obj(S1) =
∑

t∈T ′
hc′tS1(It) +

∑

t∈T ′
sc′S1(zt)

=
∑

t∈T 2

hc1,tS2(I1,t) +
∑

t∈T 2:S2(x1,t)>0

sc′

=
∑

i∈N ,t∈T
hcitS2(Iit) +

∑

t∈T
sc(S2(st)) = Obj(S2)

Therefore, the objective function value of S2 equals to that of S1. The feasibility of S1

comes from the feasibility of S2 that capacity is respected in time bucket t ∈ T 2 and

the flow balance is conserved on product 1.

From above arguments, P1 and P2 are equivalent in the sense that the optimal

objective function value of P1 equals to that of P2. Therefore, CLSP-FS1-LT is NP-

hard.

From the proof procedure, we have following result holds:

Corollary 5.3. In the Definition 5.1, if we require α to be a sub-sequence of β(i), i.e.,

without the possibility to skip some products in the middle, the problem is still NP-hard.

Due to the special structure of the setup matrix and the definition of the problem,

we have one direct observation

Observation 5.3. Given a feasible solution to CLSP-FS1-LT, there is maximum one

nonzero setup occurred in each time bucket. Moreover, if a nonzero setup occurs, then

all products can be setup in this time bucket.

In this special case, the sequencing decision to make is simplified to decide the first

(last) product of each time bucket and to decide whether we perform a major (nonzero)

setup or not in this time bucket. Therefore, we can reformulate it to a simplified model.

For each product i ∈ N and time bucket t ∈ T , we introduce following sequencing

variables:

CHAPTER 5. CLSP-FS1 126

• zt ∈ {0, 1}: it equals to 1 if there is a major setup in time bucket t.

• fit ∈ {0, 1}: it equals to 1 if product i is the first product in the setup sequence in

time bucket t. It also represents the last product in the time bucket t− 1.

• zit ∈ {0, 1}: it equals to 1 if there is a setup for product i in time bucket t.

Together with variables xit and Iit as introduced before, the reformulation of CLSP-FS1-

LT is given as follows:

min
∑

i∈N ,t∈T
hcitIit +

∑

t∈T
∆sczt (5.46)

s.t. Ii,t−1 + xit = Iit + dit i ∈ N , t ∈ T (5.47)
∑

i∈N
ptixit + ∆stzt ≤ capt t ∈ T (5.48)

xit ≤ bitzit i ∈ N , t ∈ T (5.49)

fi,t+1 ≤
∑

j∈N :j≤i
fjt + zt i ∈ N , t ∈ T (5.50)

fi,t+1 ≤
∑

j∈N :j≥i
fjt + (1− zt) i ∈ N , t ∈ T (5.51)

zit ≤ (zt − 1) + (
∑

j∈N :j≤i
fjt +

∑

j∈N :j≥i
fj,t+1) i ∈ N , t ∈ T (5.52)

zit ≤ (1− zt) + (
∑

j∈N :j≤i
fjt +

∑

j∈N :j≥i
fj,t+1) i ∈ N , t ∈ T (5.53)

∑

i∈N
fit = 1 t ∈ T ∪ {T + 1} (5.54)

xit, Iit ≥ 0, Ii0 = 0 i ∈ N , t ∈ T (5.55)

zt ∈ {0, 1} t ∈ T (5.56)

zit, fit ∈ {0, 1} i ∈ N , t ∈ T (5.57)

Recall that we assume ω = 〈1, 2, . . . , N〉. Constraints (5.50) and (5.51) link the last

product in time bucket t fi,t+1 (i.e., the first product in time bucket t+ 1) with the first

product in t fit and the major setup decision zt. If there is no major setup (zt = 0), the

last product can only be a product after i in the sequence ω. In other words, when there

is no major setup occurred in t, i might be last product in t only if a product j before i

is the first product in t, which is stated by (5.50). If there is a major setup (zt = 1), the

last product can only be a product before i in the sequence ω to trigger a major setup,

which is stated by (5.51). Constraints (5.52) and (5.53) link the product setups zit with

CHAPTER 5. CLSP-FS1 127

the first setup product fit, the last setup product fi,t+1 and the major setup decision zt.

If there is no major setup (zt = 0), product i can have a setup only if it is between the

first product and the last product, which is ensured by constraints (5.52). If there is a

major setup (zt = 1) and the first product is j, then all products in ω after j can be

included in the setup sequence. If there is a major setup (zt = 1) and the last product

is j, then all products in ω products from 1 to j can be included in the setup sequence.

In other words, if there is a major setup in t, product i can be setup if it is after the

first product or before the last product in the ω. This is ensured by constraints (5.53).

Other constraints are explained as before.

5.5 Column Generation Approach

In this section, we develop a heuristic algorithm for the problem CLSP-FS1. This algo-

rithm is based on the formulation AG-SO (5.10) - (5.17). Due to the exponential number

of variables, we use column generation to solve the LP relaxation. Then the problem is

solved as MIP with generated columns to obtain a feasible solution to CLSP-FS1.

Given subset S ′ ⊆ S, the master problem and its dual problem are defined as follows:

(FSM (S ′)) min
∑

i∈N ,t∈T
hcitIit +

∑

s∈S′,t∈T
sc(s)wst

s.t. Ii,t−1 + xit = Iit + dit i ∈ N , t ∈ T
∑

i∈N
ptixit +

∑

s∈S′
st(s)wst ≤ capt t ∈ T

xit ≤ bit
∑

s∈S′:i∈s
wst i ∈ N , t ∈ T

∑

s∈S′
wst = 1 t ∈ T

∑

s∈S′:s1=i

ws,t+1 =
∑

s∈S′:sL(s)=i

wst i ∈ N , t ∈ T \{T}

xit, Iit ≥ 0, Ii0 = 0 i ∈ N , t ∈ T
wst ∈ {0, 1} s ∈ S ′, t ∈ T

(FSD(S ′)) min
∑

i∈N ,t∈T
ditαit +

∑

t∈T
captβt +

∑

t∈T
σt

s.t. αit + ptiβt + γit ≤ 0 i ∈ N , t ∈ T

CHAPTER 5. CLSP-FS1 128

− αit + αi,t+1 ≤ hcit i ∈ N , t ∈ T
st(s)βt −

∑

i∈s
bitγit + σt + ζsL(s),t − ζs1,t−1 ≤ sc(s) s ∈ S ′, t ∈ T

βt ≤ 0 t ∈ T
γit ≤ 0 i ∈ N , t ∈ T

The pricing problem is to use reduced cost to price out a new setup pattern s ∈ S to

be able to add to the master problem. It is actually the graph presented with AG-PO

formulation considering only one time bucket. Let graph G′ = (V ′, E′), where V ′ is the

vertex set defined as {vij : i ∈ N , j ∈ N ∪ {0}} ∪ {P,Q}, and E′ is the edge set defined

as E′ = E′1 ∪ E′2 ∪ E′4. E′1 = {(P, vi0) : i ∈ N}, E′2 = {(vij , vik) : i ∈ N , j < k ∈ N}
and E′4 = {(vij , Q) : i, j ∈ N}. The produce presented by each node and the setup

cost/time for each edge are also defined as (5.18), (5.19). The network representation of

the pricing problem example with 3 products is given in the Figure 5.8.

Figure 5.8: CLSP-FS1 network representation of the pricing problem

As we have shown in Section 5.3, the path from source P to Q will form a setup

sequence, in this case, a valid setup sequence for one time bucket. To formulate the

pricing problem, we introduce the following variables for (u, v) ∈ E′:

• Tuv ∈ {0, 1}: it equals to 1 if the edge (u, v) is selected, 0 otherwise.

• zi ∈ {0, 1}: it equals to 1 if there exists an edge (u, v) is selected such that p(u) = i

or p(v) = i.

Given an optimal solution of dual problem (α∗, β∗, γ∗, σ∗, ζ∗), we have the pricing

CHAPTER 5. CLSP-FS1 129

problem defined as follows:

(FSP (S ′, t)) max
∑

(u,v)∈E′
cuvTuv +

∑

i∈N
cizi + σ∗t (5.58)

s.t.
∑

(P,v)∈E′
TPv = 1 (5.59)

∑

(v,Q)∈E′
TvQ = 1 (5.60)

∑

u∈V ′:(u,v)∈E′
Tuv =

∑

u∈V ′:(v,u)∈E′
Tvu v ∈ V ′\{P,Q} (5.61)

zi ≤
∑

(u,v)∈E′(i)
Tuv i ∈ N (5.62)

Tuv ∈ {0, 1} (u, v) ∈ E′ (5.63)

zi ∈ {0, 1} i ∈ N (5.64)

where the cost is defined as follows:

ci = −bitγ∗it (5.65)

cuv =





−ζ∗p(v),t−1 (u, v) ∈ E1

st(u, v)β∗t − sc(u, v) (u, v) ∈ E2

ζ∗p(u),t (u, v) ∈ E4

If the optimal objective function value of above pricing problem is positive, the

sequence defined by the optimal solution should be added into the master problem. We

solve the LP relaxation of the master problem with newly added columns and repeat

this process until no column is pricing out. This implies that the LP relaxation of the

master problem is optimally solved. Based on generated columns, we solve the MIP

model of the master problem to obtain a feasible solution to the original problem. The

column generation heuristic is formally defined in Algorithm 9.

Algorithm 9: Column generation heuristic

1 Initialize the set S ′ with the initial heuristic solution;

2 Solve the FSM (S ′) by column generation, and update set S ′ by adding the

generated columns (setup sequences);

3 Solve FSM (S ′) with an MIP solver by considering the subset of variables

wst, s ∈ S ′.

CHAPTER 5. CLSP-FS1 130

5.6 Computational Results

CLSP-FS1 Computational Results

We first compare four formulations that we have developed: AG-SO, AG-PO, FL-SO,

FL-PO. The benchmark instances consists of 10 instances from [63], with only the first 10

products and 10 time buckets. The summary result is given in Table 5.3, while detailed

results for each instance is given in Table A.12 - A.15.

For the MIP formulation, we present the objective function value (MIP/Obj), the

computational time (MIP/Time), the exit gap when CPLEX terminates (E.Gap), the

relative gap comparing to the best known lower bound defined as Obj−BestKnownLB
Obj

(R.Gap), the number of columns (Cols), the number of binary variables (Bin), the num-

ber of constraints (Rows) and number of explored nodes for each formulation (Nodes).

Moreover, for the LP relaxation of each MIP formulation, the optimal objective function

value (LP/Obj) and its computational time (LP/Time) are also presented.

Table 5.3: Computational results: CLSP-FS1 formulation comparison

MIP LP

Form. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

AG-PO 42,235 569 2.8 1.7 41,038 6,710 6,510 1,312 133,075 9,038 0.1

AG-SO 42,817 600 12.2 3.1 37,582 102,500 102,300 310 15,622 11,486 2.0

FL-PO 42,118 524 1.5 1.4 41,498 7,060 6,510 1,762 132,359 37,138 0.3

FL-SO 42,252 600 4.1 1.7 40,496 102,850 102,300 760 27,175 39,991 8.3

According to the average results over 10 tested instances, we observe that

1) Formulation FL-PO has the best solution quality, which gives the lowest average

relative gap as 1.4%. On the other hand, formulation AG-SO shows the worst solution

quality that its average relative gap is 3.1%, which is largest among all four formulations.

2) Formulation FL-PO also has the shortest computational time comparing to other

formulations.

3) Although the exit gap and the relative gap are consistent for all formulations, we still

observe that there is a difference between them. For instance, the formulation AG-SO

has average exit gap as large as 12.2% whereas its relative gap is 3.1%. It implies that

this formulation obtains better solution quality than what its optimality gap has shown.

4) For the lower bound given by the LP relaxation, formulation FL-SO gives the best

bound while formulation AG-PO gives the worst lower bound. There seems to be a

dominance relationship of the formulations strength in terms of lower bounds given by

the LP relaxations. However, it is not proven yet.

CHAPTER 5. CLSP-FS1 131

Next, we present our column generation algorithm based on the formulation AG-SO

in Table 5.4. One observation based on our experiments is that the column generation

heuristic gives average gap of 12.9%, which is worse than solving the problem directly

by a standard MIP solver CPLEX. This is mainly due to the lower bound given by the

linear relaxation is not strong enough based on AG-SO algorithm. This is because that

when capacity is not tight, and we just need to generate all the single-product sequence

〈i〉 for i ∈ N . The linear relaxation will chose a fraction of each singe-product sequence

so that the total setup cost is zero and many products can be produced.

Table 5.4: Computational results: column generation heuristic based on AG-SO

Inst Obj Time R.Gap (%) Generated Cols Pricing time Master time MIP time

A1 47742 23 12.4 600 22 0.1 1

A2 44705 22 9.9 603 20 0.1 2

A3 50550 22 12.2 591 20 0.2 1

A4 43576 19 14.9 568 18 0.1 1

A5 49064 21 13.6 575 19 0.1 1

A6 48396 21 14.9 575 19 0.1 1

A7 47776 22 13.5 576 20 0.1 1

A8 48615 22 13.3 572 20 0.1 1

A9 49797 21 12.5 580 19 0.1 1

A10 43286 20 11.5 584 18 0.1 1

AVG 47351 21 12.9 582 20 0.1 1

CLSP-FS1-LT Computational Results

To compare different formulations on CLSP-FS1-LT, we also generate instances based

on the above tested instances. For each instance, we modify the setup values as follows

to transform CLSP-FS1 instances into CLSP-FS1-LT instances:

1. ω = 〈1, 2, . . . , N〉

2. ∆st = b capmax

2 c+ 1 where capmax = maxt∈T capt

3. ∆sc =
∑

i,j∈N scij
N2

4. stij = ∆st if i > j, 0 otherwise.

5. scij = ∆sc if i > j, 0 otherwise.

Moreover, in such instance, at most one nonzero setup can be performed in each time

bucket. Therefore, we can also use the MIP formulation for CLSP with sequence depen-

dent setup to solve the instances. According to the results presented in [63], we choose

CHAPTER 5. CLSP-FS1 132

the product-oriented formulation with single commodity flow, which is represented as

SCM.

In Table 5.5, we present the formulation comparison results for all eight formulations

by combining 2 lot sizing formulations (AG and FL) and 4 sequencing formulation (LT,

PO, SO and SCM) where LT represents for the tailored formulation of CLSP-FS1-LT.

Detailed results are given in Table A.16 - A.23.

Table 5.5: Computational results: CLSP-FS1-LT formulation comparison

MIP LP

Form. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

AG-LT 10,623 0.3 0.00 0.00 10,623 420 220 621 278 1,243 0.0

AG-PO 10,623 56.4 0.01 0.00 10,623 6,710 6,510 1,312 29,993 882 0.1

AG-SO 10,630 253.6 2.68 0.05 10,291 102,500 102,300 310 17,703 1,245 2.0

AG-SCM 10,623 3.9 0.00 0.00 10,623 2,510 1,210 1,731 3,914 0 0.0

FL-LT 10,623 0.2 0.00 0.00 10,623 770 220 1,071 - 6,586 0.0

FL-PO 10,623 145.6 0.30 0.00 10,588 7,060 6,510 1,762 53,507 6,419 0.3

FL-SO 10,623 29.3 0.00 0.00 10,623 102,850 102,300 760 775 6,586 2.2

FL-SCM 10,623 3.0 0.00 0.00 10,623 2,860 1,210 2,181 2,219 0 0.0

We have following observations:

1) Out of 8 formulations, 6 of them solve all the tested instances to prove optimality. In

fact, the maximum relative gap we obtained is less than 0.01%. Therefore, the problem

CLSP-FS1-LT seems easier to solve than the general version CLSP-FS1.

2) Overall, the FL formulations provide better solution quality than the AG formulations

on tested instances. Based on te relative gap, all of the FL formulations have solved

tested instances to optimality (may not be proven by the corresponding formulation),

while one AG formulation (AG-SO) fails to solve 2 instances to optimality.

3) We measure the formulation performance based on the lexicographical order of rel-

ative gap, exit gap and computational time. Then for the AG formulations, we have

formulation AG-LT, AG-SCM, AG-PO and AG-SO in the order of decreasing perfor-

mances. For the FL formulations, we have FL-LT, FL-SCM, FL-SO and FL-PO in the

order of decreasing performance. In other words, the LT formulation always gives best

performance as expected. Moreover, the SCM formulation also gives the second best

performance in our experiments. This might be due to the smaller size of the SCM

formulation, which has less binary variables comparing to the PO and SO formulations.

In summary, for the special case CLSP-FS1-LT problem, the tailored formulation LT is

most promising among all tested formulations. Moreover, the SCM formulation, which

CHAPTER 5. CLSP-FS1 133

was developed for general CLSP with sequence dependent setups, can also solves CLSP-

FS1-LT efficiently in comparison to our developed PO and SO formulation.

5.7 Conclusions

In this chapter, we have studied a restricted model of CLSP with sequence dependent

setup. The problem reduces the number of candidate setup sequences from O(n!) to

O(n2n). However, the sequencing decision is still exponential and the problem is proven

to be strongly NP-hard. We have studied two types of formulations including exponential

size sequence-oriented formulation and polynomial size product-oriented formulation.

Moreover, both formulations are reformulated according to the facility location based

model. We perform preliminary experiments on developed formulations and column

generation heuristic. Formulation FL-SO gives the overall best lower bound from LP

relaxation and FL-PO gives the best MIP solution quality.

A special case is studied, which considers only two setup values. However, it still

captures the essence of our problem with a major setup and a minor setup. It is proven

to be NP-hard as well. Due to the special structure, we simplify the MIP formulation

for this special case, and comparing to the product-oriented formulation for the general

problem, the number of binary variables is reduced from O(N3T) to O(NT).

However, more experiments need to be done to further evaluate formulation perfor-

mance, and more efficient heuristic algorithms are to be designed.

Chapter 6

General Conclusion and Future

Work

In this manuscript, we have presented our research motivated by challenging real-world

applications. We can summarize the main results in two areas.

In the first part of the manuscript, a challenging production planning problem

brought to our attention by an apparel manufacturing project is studied. We designed

an optimized software tool to efficiently tackle this industrial problem. A decomposi-

tion framework has been developed, which solves an aggregated model and a detailed

model in sequence. The aggregated problem, called for brevity CLSC, is shown to be the

bottleneck of the approach and it has been studied from different perspectives. CLSC

corresponds to a complex capacitated lot sizing problem, and it has been shown to

be NP-hard even without the setup costs. Several Mixed Integer Programming (MIP)

formulations are developed for CLSC. To computationally evaluate the different MIP

formulations, two sets of benchmark instances have been designed. The first set consists

of realistic data while the second set consists of pseudo-randomly generated instances

with realistic characteristics and different features. Thanks to extensive computational

tests, we have identified that one formulation computationally outperforms the others.

Average-size instances can be solved directly using CPLEX, but large scale instances can-

not be solved to proven optimality within short computational time. Therefore, several

effective heuristic algorithms are developed based on constructive phases and enhanced

by local search phases. We designed a Fix & Relax (F&R) heuristic algorithm based

on the Linear Programming (LP) relaxation of the compact formulations. This heuris-

tic provides good quality solutions but it requires long computational times. Then, in

134

CHAPTER 6. GENERAL CONCLUSION AND FUTURE WORK 135

order to obtain good quality solutions in short computational time, we designed a Prod-

uct Decomposition (PD) algorithm based on the observation that 20% of the product

families covers 80% of the demands (for realistic instances). We experienced a natural

trade-off of solution quality and computational time when comparing the performances

of F&R and PD. In addition, a constructive heuristic is developed and is called First

Solution Heuristic (FSH). The FSH algorithm is based on the LP relaxation of the

compact model and variable fixing with the goal of constructing good quality feasible

solutions. Thanks to extensive computational tests, we observed that the PD algorithm

outperforms the FSH algorithm in terms of computational time and solution quality (for

the tested benchmark instances). However, we observed that the positive effect of the

local search phase is stronger for the FSH algorithm than for the PD algorithm. Finally,

combining FSH and F&O allows us to achieve overall best performance. For real-world

instances, a maximum optimality gap of 15% is observed between the feasible solutions

and the LP relaxation values. These results outperforms the optimality gap of CPLEX

directly applied to the compact formulations, which is greater than 30% on average con-

sidering within similar time limit of 1 hour CPU time. As far as the randomly generated

benchmarks are concerned, if we compare the solution of CPLEX and the ones of the

algorithm FSH + F&O, we observed an improvement in their quality of 85%. As far as

the other heuristics are concerned, they also outperform CPLEX in computing feasible

solutions within short computational time. All the developed heuristic algorithms have

been included into the production planning tool of DecisionBrain improving in this way

the efficiency of the optimization system.

In the second part the manuscript, we studied a restricted version of the capaci-

tated lot sizing problem with sequence dependent setups, where the setup sequences for

each time bucket have to follow the order of a given sequence. This problem is called

capacitated lot sizing problem with a fixed product sequence (CLSP-FS1). Also this

problem comes from a real-world application. Compared to the capacitated lot sizing

problem with sequence dependent setups, CLSP-FS1 reduces the number of candidate

sequences from O(n!) to O(n2n). In many real-world applications, an “ideal” sequence

is known and only sequences following that order can be chosen. This problem is shown

to be NP-hard and four MIP models are developed based on sequence-oriented and

product-oriented (setup) formulations. We performed preliminary computational tests

to compare these formulations to a classical reformulation. We observed that one newly

proposed formulation guarantees the best performance overall for the tested benchmark

instances. For the sequence-oriented (setup) formulation, a simple column generation

heuristic has been developed and tested. Even if the quality of the LP relaxation bound is

CHAPTER 6. GENERAL CONCLUSION AND FUTURE WORK 136

superior to its counter part of the compact formulations, the feasible solutions computed

by the column generation heuristic are inferior to those computed by CPLEX applied

to the compact formulation. Moreover, we studied a special case of CLSP-FS1, which

has a lower triangle form of setup matrices and is called CLSP-FS1-LT. For this variant

of the problem, if the production plan follows the order of the given sequence, then no

setup incurs. However, if the production plan reverses the order of products in the given

sequence, a big setup has to be paid. Hence, what has to be decided is when to perform

the major (nonzero) setup. Also, this problem variant is shown to be NP-hard and a

tailored MIP formulation is developed. Comparing to the product-oriented formulation

with O(N3T) binary variables, the tailored MIP formulation of CLSP-FS1-LT has only

O(NT) binary variables.

Summarizing this thesis, we tacked challenging production planning problems and

we designed advanced mathematical models and effective heuristic algorithms. These

tools allow us to compute good quality feasible solution, however, several possible future

lines of research remain open.

Regarding the CLSC problem, we observed a large optimality gap larger than 50%

on difficult benchmark instances IRG-B. Therefore, other families of heuristic algorithms

can be developed possibly based on stronger formulations. More in details, a promising

line of research can be the study of the network reformulation of the CLSC, or a hybrid

MIP formulation could also be developed based on recently proposed in the literature.

With regards to the problem CLSP-FS1, our study offers a first glance into this

problem and only preliminary experiments have been conducted thus far. Therefore,

we would like to test developed formulations on a larger scale instances especially on

structured instances where our model applies, and they should be compared with the

classical sequence dependent model.

At last, the study presented in Chapter 2 have been published in the conference

paper [48]. We have also started another project regarding Temporal Bin Pacing Prob-

lem (TBPP). It is an extension of the Bin Packing Problem, where items consume the

bin capacity during a time window only. Both a polynomial-size formulation and an

extensive formulation are studied. Moreover, various heuristic algorithms are developed

and compared, including greedy-type heuristics and a column generation based heuristic.

The study of TBPP has been published in the conference paper [49]. Since TBPP does

not follow the line of production planning, we have not included it in this manuscript.

Appendix A

Data Analysis and Computational

Results

137

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 138

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 139

A.1 CLSC Computational Results

Table A.1: CLSP-SC real-world instance R5 analysis: product feature

Product i |Di| UnitReqCap ReqCaps Percentage AvgSetupCap AvgSetupCost

1 7 1529 19,474,873 1.2 1,146,038 234,686

2 26 1207 8,917,432 0.5 1,031,701 211,272

3 1 1852 18,520 0.0 1,202,585 246,266

4 123 1599 324,863,641 19.8 1,016,619 208,183

5 4 1637 4,764,544 0.3 1,078,964 220,950

6 6 1894 3,678,084 0.2 1,133,420 232,102

7 15 1608 23,920,684 1.5 1,099,995 225,257

8 67 616 85,304,296 5.2 1,710,857 350,349

9 4 1952 3,733,368 0.2 1,204,352 246,627

10 65 1343 34,583,566 2.1 1,205,671 246,897

11 6 1523 722,308 0.0 1,123,788 230,130

12 6 1539 14,443,330 0.9 1,101,936 225,655

13 3 1747 13,718,184 0.8 1,030,382 211,002

14 21 806 4,238,754 0.3 1,707,149 349,590

15 9 1526 5,347,104 0.3 1,155,397 236,602

16 4 1308 673,663 0.0 1,004,075 205,615

17 3 1289 7,898,992 0.5 1,362,518 279,017

18 8 1673 25,095,000 1.5 1,159,951 237,535

19 15 1696 11,983,155 0.7 1,096,162 224,472

20 3 1295 2,101,154 0.1 1,392,260 285,107

21 4 1253 5,042,094 0.3 1,162,490 238,055

22 8 1553 9,054,286 0.6 1,741,569 356,638

23 19 1174 3,995,880 0.2 1,127,024 230,792

24 2 1967 1,384,768 0.1 1,135,386 232,504

25 1 1527 679,515 0.0 1,323,618 271,050

26 23 1898 67,254,286 4.1 1,187,801 243,238

27 16 1775 97,858,468 6.0 1,133,544 232,127

28 2 2030 2,261,951 0.1 1,210,176 247,820

29 29 2028 17,982,756 1.1 1,327,923 271,932

30 1 1015 1,023,120 0.1 1,151,738 235,853

31 8 2128 4,917,220 0.3 1,313,164 268,910

32 2 1235 1,993,290 0.1 1,052,408 215,512

33 109 1513 748,092,322 45.5 1,120,403 229,436

34 2 1960 5,064,640 0.3 1,070,079 219,131

35 11 1636 1,884,672 0.1 1,224,910 250,837

36 4 1994 16,488,386 1.0 1,129,438 231,286

37 1 1732 1,584,780 0.1 1,103,703 226,016

38 4 1777 11,865,029 0.7 1,125,257 230,430

39 2 1296 177,552 0.0 1,213,387 248,477

40 6 1792 9,533,067 0.6 1,130,135 231,429

41 4 1240 10,549,920 0.6 1,051,413 215,308

42 6 1734 12,220,270 0.7 996,260 204,014

43 2 2005 2,860,220 0.2 1,145,018 234,477

44 2 1468 3,376,944 0.2 1,141,011 233,656

45 2 2657 5,446,850 0.3 1,435,590 293,980

46 2 1431 5,276,868 0.3 1,448,209 296,564

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 140

Table A.2: CLSP-SC real-world instance R5 analysis: demand feature

TimeBucket ReleaseDate FirstDueDate SecondDueDate

1 38 24 0

2 24 12 1

3 14 5 5

4 32 18 4

5 33 15 14

6 78 46 2

7 87 45 9

8 98 47 22

9 34 36 8

10 41 44 59

11 38 50 41

12 19 87 44

13 31 15 31

14 67 54 72

15 29 37 48

16 0 18 69

17 1 37 9

18 0 48 61

19 2 25 26

20 0 0 21

21 2 1 39

22 0 0 55

23 0 2 13

24 0 0 0

25 0 2 1

Table A.3: CLSP-SC real-world instance R5 analysis: demand feature

Length first - release second-first

< 0 16 4

0 56 10

1 91 1

2 55 5

3 114 181

4 303 458

5 25 0

6 7 9

7 1 0

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 141

Table A.4: CLSP-SC real-world instance R5 analysis: capacity feature

Interval NumDemand ReqCapRatio

[t1,t4] 7.63 1.15

[t2,t5] 4.49 0.53

[t3,t6] 6.89 0.53

[t4,t7] 11.68 0.59

[t5,t8] 14.07 0.72

[t6,t9] 14.22 0.47

[t7,t10] 9.73 0.31

[t8,t11] 7.49 0.27

[t9,t12] 4.34 0.11

[t10,t13] 1.35 0.08

[t11,t14] 2.84 0.11

[t12,t15] 2.69 0.13

[t13,t16] 2.54 0.18

[t14,t17] 3.44 0.25

[t15,t18] 0.9 0.07

[t16,t19] 0 0

[t17,t20] 0 0

[t18,t21] 0 0

[t19,t22] 0 0

[t20,t23] 0 0

[t21,t24] 0 0

[t22,t25] 0 0

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 142

Table A.5: CLSP-SC real-world instance R5 analysis: capacity feature

Machine avgCap minCap maxCap avgSetupCap minSetupCap maxSetupCap

r1 2,329,699 1,428,300 2,768,970 1,060,070 880,638 1,539,450

r2 2,089,478 1,273,049 2,225,250 996,465 827,800 1,447,083

r3 2,217,635 1,366,200 2,333,925 932,861 774,962 1,354,716

r4 3,487,490 2,181,780 3,643,200 1,441,695 1,197,668 2,093,652

r5 3,574,976 2,252,160 3,848,130 1,441,695 1,197,668 2,093,652

r6 3,008,788 1,821,600 3,449,655 1,314,486 1,091,991 1,908,918

r7 3,215,400 1,987,200 3,415,500 1,272,084 1,056,766 1,847,340

r8 3,334,425 2,111,400 3,622,500 1,349,179 1,120,812 1,959,300

r9 2,320,183 1,424,160 2,539,200 1,017,667 845,413 1,477,872

r10 2,584,539 1,583,550 2,925,600 1,166,077 968,702 1,693,395

r11 2,896,103 1,676,700 3,187,800 1,229,680 1,021,540 1,785,761

r12 4,079,481 2,527,469 4,340,100 1,616,446 1,342,840 2,347,428

r13 2,916,000 1,242,000 3,105,000 1,272,084 1,056,766 1,847,340

r14 1,912,162 1,117,799 2,421,900 954,063 792,575 1,385,505

r15 3,112,130 1,970,640 3,381,000 1,259,235 1,046,092 1,828,680

r16 2,426,845 1,523,520 2,784,840 1,060,070 880,638 1,539,450

r17 4,031,382 2,527,469 4,257,990 1,590,104 1,320,957 2,309,175

r18 2,188,478 1,366,200 2,539,200 1,017,667 845,413 1,477,872

r19 2,137,045 1,366,200 2,428,110 932,861 774,962 1,354,716

r20 2,516,028 1,475,910 2,815,200 1,166,077 968,702 1,693,395

r21 3,008,788 1,821,600 3,449,655 1,314,486 1,091,991 1,908,918

r22 6,557,759 6,557,759 6,557,759 3,053,000 2,536,238 4,433,616

r23 2,426,845 1,523,520 2,784,840 1,060,070 880,638 1,539,450

r24 2,804,821 1,753,290 2,998,050 1,116,607 927,605 1,621,554

r25 1,981,479 1,140,570 2,372,910 890,459 739,736 1,293,138

r26 1,390,278 870,435 1,450,725 699,646 581,221 1,016,037

r27 1,878,438 1,170,585 2,051,024 954,063 792,575 1,385,505

r28 2,392,143 1,490,399 2,860,050 1,102,472 915,864 1,601,028

r29 1,529,040 950,130 2,119,680 848,056 704,511 1,231,560

r30 1,893,877 1,229,579 2,231,460 848,056 704,511 1,231,560

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 143

Table A.6: Computational results: FSH and FO algorithm on IRG-B (1)

FSH FSH+FO

Inst Obj Time Gap #Iter #FixedTo1 MIPTime Obj Time Gap

B1 569496 261 100.0 28 1.5 2 14220 2343 100.0

B2 857700 252 100.0 28 1.4 2 30347 2435 100.0

B3 1332316 238 100.0 31 1.5 2 32043 2462 100.0

B4 3154699 310 95.4 31 0.9 4 1268281 1023 88.6

B5 1627483 294 100.0 29 1.3 2 86697 2354 100.0

B6 2687665 315 100.0 27 1.2 3 389124 1811 100.0

B7 3006613 947 100.0 30 1.0 6 121681 3334 100.0

B8 2675949 893 100.0 32 1.1 5 8182 3541 100.0

B9 1925285 1040 100.0 31 0.9 6 97418 3804 100.0

B10 3301737 1081 100.0 30 0.8 7 381594 3630 100.0

B11 4475709 1242 100.0 27 0.8 7 1393145 3528 100.0

B12 3183505 1111 100.0 27 0.8 7 774781 3723 100.0

B13 1421072 3480 100.0 29 0.7 20 62269 6010 100.0

B14 1477498 3505 100.0 31 0.8 23 78058 6156 100.0

B15 1004987 3530 100.0 29 0.7 22 38147 5935 100.0

B16 120095966 1216 100.0 0 0.0 600 3726046 3658 100.0

B17 7721458 3932 99.8 29 0.5 25 4137600 6699 99.7

B18 4892235 3842 99.8 30 0.5 26 1463073 6273 99.2

AVG 9189521 1527 100 28 0.9 43 783484 3818 99.3

B19 1885162 328 100.0 30 1.7 2 52074 2738 100.0

B20 2435489 379 100.0 28 1.5 3 135957 3070 100.0

B21 3068139 389 100.0 28 1.5 3 276295 2883 100.0

B22 5863879 374 98.9 28 1.3 3 2597011 1882 97.4

B23 6120530 372 100.0 33 1.2 3 2862285 2210 100.0

B24 4924154 410 100.0 28 1.3 3 1059845 2368 100.0

B25 5299304 1531 100.0 28 1.0 9 607896 4294 100.0

B26 4432748 1492 100.0 32 1.0 7 511110 4256 100.0

B27 4074232 1349 100.0 31 1.0 7 303425 4113 100.0

B28 10067139 1371 99.8 29 0.8 7 6458050 3829 99.6

B29 11750265 1367 99.0 30 0.8 6 7363777 3290 98.5

B30 10401358 1383 99.6 29 0.8 6 6025335 3510 99.4

B31 4458564 5328 100.0 31 0.7 26 1180039 8094 100.0

B32 4216738 4989 100.0 30 0.8 23 466260 7756 100.0

B33 119181317 1216 100.0 0 0.0 601 4321073 3983 100.0

B34 13215539 4146 99.8 32 0.6 17 7946626 6913 99.7

B35 12392793 3701 98.4 28 0.6 21 8878757 6468 97.7

B36 114132867 1216 100.0 0 0.0 601 12516305 3982 100.0

AVG 18773345 1741 100 26 0.9 75 3531229 4202 99.6

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 144

Table A.7: Computational results: FSH and FO algorithm on IRG-B (2)

FSH FSH+FO

Inst Obj Time Gap #Iter #FixedTo1 MIPTime Obj Time Gap

B37 983010 239 100.0 30 1.6 3 14942 2433 100.0

B38 1412074 281 100.0 31 1.4 2 56629 2657 100.0

B39 1255719 273 100.0 30 1.4 2 72866 2570 100.0

B40 3909024 312 100.0 32 1.2 2 1212755 1631 100.0

B41 1734686 296 100.0 27 1.2 3 143503 2814 100.0

B42 3277156 354 99.1 29 1.1 2 1591917 1544 98.1

B43 2011864 930 100.0 30 1.0 7 50310 3575 100.0

B44 1114294 782 100.0 31 1.1 8 2302 2973 100.0

B45 2145942 832 100.0 30 1.0 6 45059 3405 100.0

B46 5709567 1127 99.9 32 0.8 7 2508003 3118 99.8

B47 3407334 1101 100.0 30 0.8 7 1168334 3581 100.0

B48 6654652 1327 99.0 29 0.7 6 3902549 3069 98.3

B49 1790740 3516 100.0 31 0.7 22 28248 6167 100.0

B50 2460050 3310 100.0 30 0.8 20 54707 5962 100.0

B51 2398138 3833 100.0 30 0.7 21 154890 6600 100.0

B52 4685339 4049 100.0 31 0.6 26 1399951 6815 100.0

B53 5921797 3660 98.9 30 0.5 24 3055235 6306 97.9

B54 6485383 3934 98.7 28 0.5 24 4203031 6602 98.0

AVG 3186487 1675 100 30 1.0 11 1092513 3990 99.6

B55 909994 259 100.0 30 1.4 2 19346 2526 100.0

B56 816435 247 100.0 31 1.5 2 11763 2612 100.0

B57 736264 243 100.0 30 1.5 2 5208 2300 100.0

B58 2247744 331 100.0 27 1.1 3 257911 1526 100.0

B59 2298256 310 100.0 28 1.1 3 511325 1420 100.0

B60 2278970 322 99.1 26 1.1 3 578207 1340 96.3

B61 1842306 934 100.0 30 1.0 5 69887 3464 100.0

B62 2518664 1022 100.0 31 1.0 7 90160 3778 100.0

B63 2300055 1088 100.0 29 1.0 7 91142 3735 100.0

B64 5192475 1142 100.0 29 0.7 9 2084179 3611 100.0

B65 5255345 1204 100.0 29 0.8 8 2548560 3623 100.0

B66 4610617 1031 99.9 27 0.7 8 1321694 3494 99.7

B67 1937528 3542 100.0 29 0.7 22 62085 6089 100.0

B68 1845334 3469 100.0 29 0.7 27 82770 6066 100.0

B69 2948951 3554 100.0 33 0.7 21 83002 6207 100.0

B70 4781314 4690 100.0 30 0.6 31 1880378 7456 100.0

B71 115751239 1216 100.0 0 0.0 600 4244626 3983 100.0

B72 5652817 3296 100.0 28 0.5 27 1881746 5895 99.9

AVG 9106906 1550 100 28 0.9 44 879111 3840 99.8

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 145

Table A.8: Computational results: FSH and FO algorithm on IRG-B (3)

FSH FSH+FO

Inst Obj Time Gap #Iter #FixedTo1 MIPTime Obj Time Gap

B73 1027 66 100.0 44 2.2 4 0 77 0.0

B74 2166 71 100.0 42 2.3 3 0 82 0.0

B75 5079 113 100.0 44 2.2 4 0 125 0.0

B76 118275 276 100.0 37 1.6 2 69647 2414 100.0

B77 1290034 341 93.2 30 1.2 3 238513 1516 63.5

B78 626638 276 78.8 30 1.3 2 230945 2043 42.4

B79 11036 135 100.0 45 1.5 9 0 200 0.0

B80 19799 544 100.0 39 1.4 11 0 763 0.0

B81 3116 446 100.0 41 1.4 10 0 576 0.0

B82 495908 952 100.0 33 1.1 6 4519 3628 100.0

B83 1431220 1028 89.8 29 0.8 7 398953 3171 63.4

B84 110817 910 100.0 35 1.1 6 3169 3403 100.0

B85 4838 2013 100.0 43 1.1 26 0 2103 0.0

B86 5088 680 100.0 42 1.1 22 0 769 0.0

B87 2812 2249 100.0 47 1.1 25 0 2359 0.0

B88 13799 3327 100.0 37 0.8 21 0 5361 0.0

B89 207862 4165 100.0 49 0.8 20 66902 6813 100.0

B90 78039 3991 100.0 38 0.7 25 17031 6757 100.0

AVG 245975 1199 98 39 1.3 11 57204 2342 37.2

B91 870570 213 100.0 29 1.5 2 0 1181 0.0

B92 460278 233 100.0 32 1.6 2 5755 1415 100.0

B93 776054 236 100.0 29 1.5 2 166 1812 100.0

B94 1624274 310 100.0 28 1.2 3 121190 2695 100.0

B95 2211051 319 100.0 26 1.2 3 152603 2855 100.0

B96 2455140 338 100.0 26 1.1 3 544955 2185 100.0

B97 1625407 803 100.0 30 1.1 6 842 1929 100.0

B98 2150486 966 100.0 31 1.0 4 6905 3730 100.0

B99 1720532 936 100.0 30 1.0 6 29277 3596 100.0

B100 6485075 1142 100.0 30 0.7 7 3623037 3818 100.0

B101 9240132 1262 97.7 27 0.7 7 6400344 2725 96.7

B102 3928379 1127 100.0 28 0.8 8 789585 3814 100.0

B103 1436398 3410 100.0 31 0.8 18 3155 5985 100.0

B104 2097677 3616 100.0 30 0.7 19 35075 6383 100.0

B105 1882524 3606 100.0 30 0.7 19 43186 6373 100.0

B106 123496124 1215 100.0 0 0.0 600 7824869 3982 100.0

B107 4693908 4228 100.0 30 0.6 23 1671870 6994 100.0

B108 3453669 4800 100.0 29 0.6 25 911956 7566 100.0

AVG 9478204 1598 100 28 0.9 42 1231376 3835 94.3

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 146

Table A.9: Computational results: PD and FO algorithm on IRG-B (1)

PD PD+FO

Inst Obj Time Gap Obj Time Gap

B1 164824 48 100.0 41083 1027 100.0

B2 157580 82 100.0 42608 1041 100.0

B3 145923 43 100.0 77369 893 100.0

B4 3378237 16 95.7 1802414 399 92.0

B5 668287 39 100.0 226697 1133 100.0

B6 2563782 110 100.0 700792 634 100.0

B7 1113790 154 100.0 265497 1254 100.0

B8 200636 204 100.0 101699 937 100.0

B9 229043 77 100.0 142183 1244 100.0

B10 1777419 217 100.0 651238 1344 100.0

B11 4083545 95 100.0 2049581 1145 100.0

B12 3693503 120 100.0 1900927 780 100.0

B13 223826 314 100.0 115884 1474 100.0

B14 258130 454 100.0 117655 1487 100.0

B15 284868 406 100.0 142262 1520 100.0

B16 3820282 447 100.0 1863076 1823 100.0

B17 8876278 369 99.9 6655287 1713 99.8

B18 4501086 426 99.7 2831314 1703 99.6

AVG 2007836 201 99.7 1095976 1197 99.5

B19 278413 81 100.0 123732 1007 100.0

B20 497369 176 100.0 189411 1426 100.0

B21 2019686 155 100.0 378180 1236 100.0

B22 6064520 40 98.9 2909949 354 97.7

B23 7991949 92 100.0 3374718 851 100.0

B24 4275062 82 100.0 1440811 1025 100.0

B25 3925330 434 100.0 752207 1765 100.0

B26 2719359 257 100.0 692292 1525 100.0

B27 889276 331 100.0 386731 1605 100.0

B28 12551842 288 99.8 6653551 1534 99.6

B29 13123882 84 99.1 8404438 874 98.7

B30 13000493 321 99.7 6837244 1461 99.5

B31 1660838 729 100.0 1007841 2072 100.0

B32 667081 742 100.0 480884 1983 100.0

B33 2861996 1166 100.0 1128450 2463 100.0

B34 16566442 496 99.8 10165015 1853 99.7

B35 15187035 613 98.7 10143799 1953 98.0

B36 14542025 754 100.0 9856305 2004 100.0

AVG 6601255 380 99.8 3606976 1499 99.6

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 147

Table A.10: Computational results: PD and FO algorithm on IRG-B (2)

PD PD+FO

Inst Obj Time Gap Obj Time Gap

B37 71152 69 100.0 18614 914 100.0

B38 265139 75 100.0 135173 785 100.0

B39 200942 40 100.0 104088 750 100.0

B40 3390405 53 100.0 1966819 453 100.0

B41 301904 51 100.0 203349 977 100.0

B42 4235634 57 99.3 2559574 485 98.8

B43 201591 190 100.0 92852 1295 100.0

B44 190307 80 100.0 59365 944 100.0

B45 203421 85 100.0 88307 1095 100.0

B46 5778783 82 99.9 3664870 1205 99.8

B47 3072701 87 100.0 1661221 1033 100.0

B48 9289926 107 99.3 6260173 1242 98.9

B49 203402 394 100.0 77507 1534 100.0

B50 313893 255 100.0 213961 1338 100.0

B51 382684 490 100.0 238909 1723 100.0

B52 4759802 263 100.0 2589047 1469 100.0

B53 6199666 469 98.9 3786746 1691 98.3

B54 8327873 323 99.0 5326919 1698 98.4

AVG 2632735 176 99.8 1613750 1146 99.7

B55 145649 128 100.0 66342 820 100.0

B56 203327 115 100.0 73563 982 100.0

B57 115540 60 100.0 30857 888 100.0

B58 1743807 37 100.0 416272 758 100.0

B59 2797638 206 100.0 1422255 580 100.0

B60 3365225 54 99.4 1301320 712 98.4

B61 277617 277 100.0 169776 1311 100.0

B62 384096 301 100.0 244576 1389 100.0

B63 307630 140 100.0 155711 1236 100.0

B64 5408696 157 100.0 3203130 806 100.0

B65 6551910 123 100.0 3533088 777 100.0

B66 4671602 244 99.9 2692260 1127 99.9

B67 255589 491 100.0 146812 1591 100.0

B68 264806 398 100.0 125522 1525 100.0

B69 338952 488 100.0 139664 1618 100.0

B70 4163398 542 100.0 2015908 1892 100.0

B71 4576418 614 100.0 2142634 2000 100.0

B72 7051053 411 100.0 4260084 1632 100.0

AVG 2367942 266 100.0 1229987 1203 99.9

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 148

Table A.11: Computational results: PD and FO algorithm on IRG-B (3)

PD PD+FO

Inst Obj Time Gap Obj Time Gap

B73 13650 34 100.0 0 44 0.0

B74 23520 59 100.0 0 70 0.0

B75 163447 59 100.0 0 555 0.0

B76 341374 59 100.0 184993 586 100.0

B77 4020239 40 97.8 1373028 831 93.7

B78 569385 44 76.7 339286 985 60.8

B79 143936 116 100.0 0 163 0.0

B80 202415 123 100.0 4840 761 100.0

B81 94001 284 100.0 0 323 0.0

B82 3860227 92 100.0 682297 1128 100.0

B83 3806156 227 96.2 1452931 1301 89.9

B84 2270256 148 100.0 242469 1181 100.0

B85 19310 417 100.0 0 475 0.0

B86 248104 454 100.0 90 905 100.0

B87 144974 520 100.0 0 726 0.0

B88 521868 441 100.0 168839 1434 100.0

B89 614865 413 100.0 321989 1552 100.0

B90 580113 347 100.0 303851 1509 100.0

AVG 979880 215 98.4 281923 807 58.0

B91 74582 105 100.0 410 519 100.0

B92 11195 180 100.0 0 243 0.0

B93 84762 58 100.0 3 910 100.0

B94 1472665 84 100.0 176225 1186 100.0

B95 2897150 89 100.0 579829 1064 100.0

B96 3598958 48 100.0 1059709 794 100.0

B97 7120 286 100.0 0 327 0.0

B98 17238 265 100.0 427 543 100.0

B99 38003 201 100.0 1098 962 100.0

B100 7808451 199 100.0 4190866 1021 100.0

B101 9554091 234 97.8 6836055 1060 96.9

B102 3977100 182 100.0 1718978 1477 100.0

B103 5691 639 100.0 1074 1032 100.0

B104 51029 472 100.0 3601 1448 100.0

B105 37558 557 100.0 204 797 100.0

B106 6150546 454 100.0 2835681 1840 100.0

B107 3937592 325 100.0 1238442 1711 100.0

B108 2904031 437 100.0 969104 1824 100.0

AVG 2368209 268 99.9 1089539 1042 88.7

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 149

A.2 CLSP-FS1 Computational Results

Table A.12: Computational results of CLSP-FS1 formulation: AG-SO

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1 43,411 600 9.68 2.32 39,210 102,500 102,300 310 14,500 11,262 2.1

A2 41,612 600 14.03 3.17 35,772 102,500 102,300 310 14,298 11,494 2.1

A3 46,398 600 11.59 3.78 41,021 102,500 102,300 310 17,652 11,977 2.7

A4 38,081 600 12.13 2.67 33,461 102,500 102,300 310 6,357 11,186 1.7

A5 44,182 600 12.52 3.77 38,650 102,500 102,300 310 15,095 11,817 2.6

A6 43,659 600 15.04 2.02 37,093 102,500 102,300 310 13,273 11,697 2.0

A7 42,899 600 13.47 2.99 37,120 102,500 102,300 310 16,594 11,339 1.8

A8 43,495 600 13.96 4.73 37,423 102,500 102,300 310 20,133 11,567 1.6

A9 45,056 600 8.26 2.31 41,334 102,500 102,300 310 22,191 11,654 2.0

A10 39,377 600 11.79 2.85 34,736 102,500 102,300 310 16,130 10,869 1.8

AVG 42,817 600 12.25 3.06 37,582 102,500 102,300 310 15,622 11,486 2.0

Table A.13: Computational results of CLSP-FS1 formulation: AG-PO

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1 42,873 600 2.65 1.10 41,735 6,710 6,510 1,312 136,294 8,742 0.1

A2 40,751 600 2.94 1.12 39,552 6,710 6,510 1,312 130,389 9,069 0.1

A3 45,514 600 3.39 1.91 43,973 6,710 6,510 1,312 149,275 9,456 0.1

A4 37,069 286 0.01 0.01 37,065 6,710 6,510 1,312 64,068 8,609 0.1

A5 43,231 600 2.45 1.66 42,170 6,710 6,510 1,312 115,580 9,315 0.1

A6 43,023 600 2.36 0.57 42,008 6,710 6,510 1,312 147,601 9,301 0.1

A7 42,274 600 2.50 1.55 41,217 6,710 6,510 1,312 138,486 9,024 0.1

A8 43,030 600 3.70 3.70 41,439 6,710 6,510 1,312 125,851 9,079 0.1

A9 44,982 600 3.20 2.15 43,544 6,710 6,510 1,312 168,123 9,253 0.1

A10 39,599 600 4.85 3.40 37,680 6,710 6,510 1,312 155,080 8,530 0.1

AVG 42,235 569 2.80 1.72 41,038 6,710 6,510 1,312 133,075 9,038 0.1

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 150

Table A.14: Computational results of CLSP-FS1 formulation: FL-SO

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1 42,960 600 3.41 1.30 41,493 102,850 102,300 760 29,400 41,162 7.5

A2 40,504 600 3.42 0.52 39,118 102,850 102,300 760 34,560 38,542 4.8

A3 45,904 600 5.37 2.74 43,441 102,850 102,300 760 21,408 43,044 9.9

A4 37,069 600 0.80 0.01 36,771 102,850 102,300 760 36,018 35,532 6.0

A5 43,231 600 3.97 1.66 41,514 102,850 102,300 760 22,567 41,202 9.5

A6 43,363 600 5.04 1.35 41,177 102,850 102,300 760 21,394 40,738 10.3

A7 42,152 600 4.56 1.27 40,231 102,850 102,300 760 31,603 39,711 9.2

A8 42,820 600 4.64 3.23 40,835 102,850 102,300 760 25,358 40,261 9.1

A9 44,854 600 4.15 1.87 42,991 102,850 102,300 760 24,064 42,665 9.1

A10 39,665 600 5.74 3.56 37,388 102,850 102,300 760 25,373 37,057 8.1

AVG 42,252 600 4.11 1.75 40,496 102,850 102,300 760 27,175 39,991 8.3

Table A.15: Computational results of CLSP-FS1 formulation: FL-PO

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1 42,658 600 0.60 0.60 42,403 7,060 6,510 1,762 147,216 38,244 0.3

A2 40,299 366 0.01 0.01 40,295 7,060 6,510 1,762 92,967 36,006 0.3

A3 45,557 600 2.00 2.00 44,644 7,060 6,510 1,762 154,849 40,090 0.3

A4 37,069 114 0.01 0.01 37,066 7,060 6,510 1,762 27,597 32,316 0.3

A5 43,231 600 1.66 1.66 42,515 7,060 6,510 1,762 169,998 38,403 0.3

A6 42,782 564 0.01 0.01 42,778 7,060 6,510 1,762 153,500 37,910 0.3

A7 42,232 600 1.45 1.45 41,618 7,060 6,510 1,762 155,701 36,977 0.3

A8 42,820 600 3.34 3.23 41,388 7,060 6,510 1,762 106,436 37,198 0.3

A9 44,854 600 1.87 1.87 44,017 7,060 6,510 1,762 145,601 39,813 0.3

A10 39,678 600 3.59 3.59 38,254 7,060 6,510 1,762 169,723 34,420 0.3

AVG 42,118 524 1.45 1.44 41,498 7,060 6,510 1,762 132,359 37,138 0.3

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 151

Table A.16: Computational results of CLSP-FS1-LT formulation: AG-LT

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1-LT 8,987 0.2 0.00 0.00 8,987 420 220 621 216 1,217 0.0

A2-LT 8,969 0.3 0.00 0.00 8,969 420 220 621 265 1,227 0.0

A3-LT 14,204 0.3 0.00 0.00 14,204 420 220 621 374 1,286 0.0

A4-LT 7,871 0.2 0.00 0.00 7,871 420 220 621 89 1,217 0.0

A5-LT 9,179 0.2 0.00 0.00 9,179 420 220 621 325 1,288 0.0

A6-LT 12,833 0.4 0.00 0.00 12,833 420 220 621 551 1,241 0.0

A7-LT 9,088 0.2 0.00 0.00 9,088 420 220 621 392 1,271 0.0

A8-LT 10,247 0.2 0.00 0.00 10,247 420 220 621 80 1,253 0.0

A9-LT 11,798 0.3 0.00 0.00 11,798 420 220 621 182 1,237 0.0

A10-LT 13,058 0.2 0.00 0.00 13,058 420 220 621 305 1,197 0.0

AVG 10,623 0.3 0.00 0.00 10,623 420 220 621 278 1,243 0.0

Table A.17: Computational results of CLSP-FS1-LT formulation: AG-PO

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1-LT 8,987 18.6 0.00 0.00 8,987 6,710 6,510 1,312 4,268 858 0.2

A2-LT 8,969 22.7 0.00 0.00 8,969 6,710 6,510 1,312 9,353 848 0.1

A3-LT 14,204 31.1 0.01 0.00 14,203 6,710 6,510 1,312 15,796 934 0.1

A4-LT 7,871 3.4 0.00 0.00 7,871 6,710 6,510 1,312 1,821 891 0.1

A5-LT 9,179 16.9 0.00 0.00 9,179 6,710 6,510 1,312 5,150 876 0.1

A6-LT 12,833 373.8 0.01 0.00 12,832 6,710 6,510 1,312 214,606 868 0.1

A7-LT 9,088 27.6 0.01 0.00 9,087 6,710 6,510 1,312 13,224 901 0.2

A8-LT 10,247 3.7 0.00 0.00 10,247 6,710 6,510 1,312 3,248 905 0.1

A9-LT 11,798 55.6 0.01 0.00 11,797 6,710 6,510 1,312 28,387 889 0.1

A10-LT 13,058 10.8 0.01 0.00 13,057 6,710 6,510 1,312 4,077 848 0.2

AVG 10,623 56.4 0.01 0.00 10,623 6,710 6,510 1,312 29,993 882 0.1

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 152

Table A.18: Computational results of CLSP-FS1-LT formulation: AG-SO

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1-LT 8,987 80.6 0.00 0.00 8,987 102,500 102,300 310 6,675 1,217 2.1

A2-LT 8,969 274.3 0.01 0.00 8,968 102,500 102,300 310 28,498 1,227 2.2

A3-LT 14,273 600.1 3.79 0.48 13,733 102,500 102,300 310 35,556 1,287 2.2

A4-LT 7,871 31.4 0.00 0.00 7,871 102,500 102,300 310 2,531 1,218 1.9

A5-LT 9,179 106.4 0.00 0.00 9,179 102,500 102,300 310 4,411 1,292 2.2

A6-LT 12,833 600.1 13.11 0.00 11,151 102,500 102,300 310 36,286 1,242 1.4

A7-LT 9,088 139.3 0.01 0.00 9,087 102,500 102,300 310 16,909 1,271 1.8

A8-LT 10,247 62.1 0.00 0.00 10,247 102,500 102,300 310 6,495 1,257 1.6

A9-LT 11,798 600.2 9.88 0.00 10,633 102,500 102,300 310 36,275 1,240 2.2

A10-LT 13,058 41.7 0.00 0.00 13,058 102,500 102,300 310 3,396 1,199 2.1

AVG 10,630 253.6 2.68 0.05 10,291 102,500 102,300 310 17,703 1,245 2.0

Table A.19: Computational results of CLSP-FS1-LT formulation: AG-SCM

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1-LT 8,987 1.9 0.00 0.00 8,987 2,510 1,210 1,731 2,416 0 0.0

A2-LT 8,969 2.9 0.01 0.00 8,969 2,510 1,210 1,731 4,130 0 0.0

A3-LT 14,204 2.7 0.00 0.00 14,204 2,510 1,210 1,731 3,774 0 0.0

A4-LT 7,871 1.1 0.00 0.00 7,871 2,510 1,210 1,731 642 0 0.0

A5-LT 9,179 1.7 0.00 0.00 9,179 2,510 1,210 1,731 1,104 0 0.0

A6-LT 12,833 15.6 0.01 0.00 12,832 2,510 1,210 1,731 15,018 0 0.0

A7-LT 9,088 2.7 0.00 0.00 9,088 2,510 1,210 1,731 2,271 0 0.0

A8-LT 10,247 1.1 0.00 0.00 10,247 2,510 1,210 1,731 464 0 0.0

A9-LT 11,798 7.4 0.01 0.00 11,797 2,510 1,210 1,731 8,066 0 0.0

A10-LT 13,058 1.5 0.00 0.00 13,058 2,510 1,210 1,731 1,258 0 0.0

AVG 10,623 3.9 0.00 0.00 10,623 2,510 1,210 1,731 3,914 0 0.0

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 153

Table A.20: Computational results of CLSP-FS1-LT formulation: AG-LT

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1-LT 8,987 0.2 0.00 0.00 8,987 770 220 1,071 0 6,081 0.0

A2-LT 8,969 0.2 0.00 0.00 8,969 770 220 1,071 0 6,036 0.0

A3-LT 14,204 0.2 0.00 0.00 14,204 770 220 1,071 0 7,719 0.0

A4-LT 7,871 0.1 0.00 0.00 7,871 770 220 1,071 0 5,892 0.0

A5-LT 9,179 0.1 0.00 0.00 9,179 770 220 1,071 0 6,289 0.0

A6-LT 12,833 0.3 0.00 0.00 12,833 770 220 1,071 0 7,246 0.0

A7-LT 9,088 0.2 0.00 0.00 9,088 770 220 1,071 0 6,240 0.0

A8-LT 10,247 0.1 0.00 0.00 10,247 770 220 1,071 0 6,363 0.0

A9-LT 11,798 0.2 0.00 0.00 11,798 770 220 1,071 0 7,062 0.0

A10-LT 13,058 0.1 0.00 0.00 13,058 770 220 1,071 0 6,936 0.0

AVG 10,623 0.2 0.00 0.00 10,623 770 220 1,071 0 6,586 0.0

Table A.21: Computational results of CLSP-FS1-LT formulation: AG-PO

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1-LT 8,987 50.6 0.01 0.00 8,986 7,060 6,510 1,762 27,784 6,023 0.3

A2-LT 8,969 79.3 0.01 0.00 8,968 7,060 6,510 1,762 33,716 5,894 0.3

A3-LT 14,204 69.1 0.01 0.00 14,203 7,060 6,510 1,762 48,768 7,309 0.3

A4-LT 7,871 4.1 0.00 0.00 7,871 7,060 6,510 1,762 2,395 5,880 0.3

A5-LT 9,179 28.5 0.01 0.00 9,179 7,060 6,510 1,762 9,282 6,227 0.3

A6-LT 12,833 555.6 0.01 0.00 12,832 7,060 6,510 1,762 219,805 6,929 0.3

A7-LT 9,088 55.3 0.01 0.00 9,087 7,060 6,510 1,762 21,037 6,173 0.3

A8-LT 10,247 6.7 0.01 0.00 10,246 7,060 6,510 1,762 5,855 6,292 0.3

A9-LT 11,798 600.0 2.98 0.00 11,446 7,060 6,510 1,762 160,870 6,796 0.3

A10-LT 13,058 6.9 0.00 0.00 13,058 7,060 6,510 1,762 5,559 6,670 0.3

AVG 10,623 145.6 0.30 0.00 10,588 7,060 6,510 1,762 53,507 6,419 0.3

APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS 154

Table A.22: Computational results of CLSP-FS1-LT formulation: AG-SO

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1-LT 8,987 34.4 0.00 0.00 8,987 102,850 102,300 760 416 6,081 1.9

A2-LT 8,969 49.9 0.00 0.00 8,969 102,850 102,300 760 3,868 6,036 2.1

A3-LT 14,204 26.5 0.00 0.00 14,204 102,850 102,300 760 119 7,719 2.3

A4-LT 7,871 13.3 0.00 0.00 7,871 102,850 102,300 760 0 5,892 2.0

A5-LT 9,179 27.6 0.00 0.00 9,179 102,850 102,300 760 0 6,289 1.6

A6-LT 12,833 47.3 0.00 0.00 12,833 102,850 102,300 760 1,893 7,246 2.7

A7-LT 9,088 29.8 0.00 0.00 9,088 102,850 102,300 760 573 6,240 2.0

A8-LT 10,247 11.6 0.00 0.00 10,247 102,850 102,300 760 0 6,363 2.1

A9-LT 11,798 33.7 0.00 0.00 11,798 102,850 102,300 760 880 7,062 2.7

A10-LT 13,058 18.9 0.00 0.00 13,058 102,850 102,300 760 0 6,936 2.5

AVG 10,623 29.3 0.00 0.00 10,623 102,850 102,300 760 775 6,586 2.2

Table A.23: Computational results of CLSP-FS1-LT formulation: AG-SCM

MIP LP

Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time

A1-LT 8,987 1.3 0.01 0.00 8,986 2,860 1,210 2,181 976 0 0.0

A2-LT 8,969 1.8 0.00 0.00 8,969 2,860 1,210 2,181 813 0 0.0

A3-LT 14,204 2.4 0.00 0.00 14,204 2,860 1,210 2,181 2,341 0 0.0

A4-LT 7,871 1.0 0.00 0.00 7,871 2,860 1,210 2,181 384 0 0.0

A5-LT 9,179 1.5 0.00 0.00 9,179 2,860 1,210 2,181 352 0 0.0

A6-LT 12,833 14.1 0.00 0.00 12,833 2,860 1,210 2,181 10,667 0 0.0

A7-LT 9,088 1.6 0.00 0.00 9,088 2,860 1,210 2,181 1,566 0 0.0

A8-LT 10,247 1.2 0.00 0.00 10,247 2,860 1,210 2,181 319 0 0.0

A9-LT 11,798 2.7 0.01 0.00 11,797 2,860 1,210 2,181 3,559 0 0.0

A10-LT 13,058 2.0 0.00 0.00 13,058 2,860 1,210 2,181 1,212 0 0.0

AVG 10,623 3.0 0.00 0.00 10,623 2,860 1,210 2,181 2,219 0 0.0

Bibliography

[1] Abad, P. (2003). Optimal pricing and lot-sizing under conditions of perishability,
finite production and partial backordering and lost sale. European Journal of Opera-
tional Research, 144(3):677–685.

[2] Abad, P. L. (2008). Optimal price and order size under partial backordering incor-
porating shortage, backorder and lost sale costs. International Journal of Production
Economics, 114(1):179–186.

[3] Absi, N. and Kedad-Sidhoum, S. (2007). MIP-based heuristics for multi-item capac-
itated lot-sizing problem with setup times and shortage costs. RAIRO - Operations
Research, 41(2):171–192.

[4] Absi, N., Kedad-Sidhoum, S., and Dauzère-Pérès, S. (2011). Uncapacitated lot-
sizing problem with production time windows, early productions, backlogs and lost
sales. International Journal of Production Research, 49(9):2551–2566.

[5] Aggarwal, S. C. (1974). A review of current inventory theory and its applications.
International Journal of Production Research, 12(4):443–482.

[6] Aksen, D., Altinkemer, K., and Chand, S. (2003). The single-item lot-sizing problem
with immediate lost sales. European Journal of Operational Research, 147(3):558–566.

[7] Aksoy, Y. and Selcuk Erenguc, S. (1988). MultiItem Inventory Models with Coordi-
nated Replenishments: A Survey. International Journal of Operations & Production
Management, 8(1):63–73.

[8] Allahverdi, A., Ng, C. T., Cheng, T. C. E., and Kovalyov, M. Y. (2008). A survey
of scheduling problems with setup times or costs. European Journal of Operational
Research, 187:985–1032.

[9] Almada-Lobo, B., Carravilla, M., and Oliveira, J. (2008). Production planning
and scheduling in the glass con- tainer industry: a vns approach. Int J Prod Econ,
114(1):363375.

[10] Almada-Lobo, B., Clark, A., Guimarães, L., Figueira, G., and Amorim, P. (2015).
INDUSTRIAL INSIGHTS INTO LOT SIZING AND SCHEDULING MODELING.
Pesquisa Operacional, 35(3):439–464.

[11] Almada-Lobo, B. and James, R. (2010). Neighbourhood search meta-heuristics for
capacitated lot-sizing with sequence-dependent setups. Int J Prod Res, 48(3):861878.

155

BIBLIOGRAPHY 156

[12] Atkins, D. and Sun, D. (1995). 98%-Effective Lot Sizing for Series Inventory Systems
with Backlogging. Operations Research, 43(2):335–345.

[13] Bahl, H. C., Ritzman, L. P., and Gupta, J. N. D. (1987). OR Practice–Determining
Lot Sizes and Resource Requirements: A Review. Operations Research, 35(3):329–345.

[14] Belvaux, G. and Wolsey, L. A. (2000). bc - prod: A Specialized Branch-and-Cut
System for Lot-Sizing Problems. Management Science, 46(5):724–738.

[15] Belvaux, G. and Wolsey, L. A. (2001). Modelling Practical Lot-Sizing Problems as
Mixed-Integer Programs. Management Science, 47(7):993–1007.

[16] Benton, W. C. and Park, S. (1996). A classification of literature on determining
the lot size under quantity discounts. European Journal of Operational Research,
92(2):219–238.

[17] Bitran, G. R. and Yanasse, H. H. (1982). Computational Complexity of the Capac-
itated Lot Size Problem. Management Science, 28(10):1174–1186.

[18] Blackburn, J. D. and Kunreuther, H. (1974). Planning Horizons for the Dynamic
Lot Size Model with Backlogging. Management Science, 21(3):251–255.

[19] Brahimi, N. (2004). Planification de la production: modéles et algorithmes pour les
problems de demensionnementde lots. PhD thesis, Université Nants.

[20] Brahimi, N., Absi, N., Dauzere-Peres, S., and Nordli, A. (2017). Single-item dy-
namic lot-sizing problems: An updated survey. European Journal of Operational
Research, pages –.

[21] Brahimi, N., Dauzère-Pérès, S., and Najid, N. M. (2006a). Capacitated Multi-Item
Lot-Sizing Problems with Time Windows. Operations Research, 54(5):951–967.

[22] Brahimi, N., Dauzere-Peres, S., Najid, N. M., and Nordli, A. (2006b). Single item
lot sizing problems. European Journal of Operational Research, 168(1):1–16.

[23] Brahimi, N., Dauzere-Peres, S., and Wolsey, L. A. (2010). Polyhedral and La-
grangian approaches for lot sizing with production time windows and setup times.
Computers & Operations Research, 37(1):182–188.

[24] Briskorn, D. (2006). A note on capacitated lot sizing with setup carry over. IIE
Transactions, 38(11):1045–1047.

[25] Buschkühl, L., Sahling, F., Helber, S., and Tempelmeier, H. (2010). Dynamic
capacitated lot-sizing problems: A classification and review of solution approaches,
volume 32.

[26] Charrua, F., Brojo, F., and M., P. (2012). Lot Sizing and Scheduling in Parallel
Uniform Machines A Case Study. In Simulated Annealing - Advances, Applications
and Hybridizations. InTech.

BIBLIOGRAPHY 157

[27] Chen, H.-D., Hearn, D. W., and Lee, C.-Y. (1994). A dynamic programming al-
gorithm for dynamic lot size models with piecewise linear costs. Journal of Global
Optimization, 4(4):397–413.

[28] Chen, W. H. and Thizy, J. M. (1990). Analysis of relaxations for the multi-item
capacitated lot-sizing problem. Annals of Operations Research, 26(1):29–72.

[29] Choo, E. U. and Chan, G. H. (1990). Two-way eyeballing heuristics in dynamic lot
sizing with backlogging. Computers & Operations Research, 17(4):359–363.

[30] CIFRE. http://www.anrt.asso.fr/.

[31] Copil, K., Wörbelauer, M., Meyr, H., and Tempelmeier, H. (2017). Simultaneous
lotsizing and scheduling problems: a classification and review of models. OR Spectrum,
39(1):1–64.

[32] Dauzère-Pérès, S., Brahimi, N., Najid, N. M., and Nordli, A. (2005). Uncapacitated
Lot-Sizing Problems with Time windows. Technical report, Ecole des Mines de Saint-
Etienne.

[33] De Bodt, M. A., Gelders, L. F., and Van Wassenhove, L. N. (1984). Lot sizing under
dynamic demand conditions: A review. Engineering Costs and Production Economics,
8(3):165–187.

[34] Denizel, M., Altekin, F. T., Süral, H., and Stadtler, H. (2008). Equivalence of the
LP relaxations of two strong formulations for the capacitated lot-sizing problem with
setup times. OR Spectrum, 30(4):773–785.

[35] Diaby, M., Bahl, H. C., Karwan, M. H., and Zionts, S. (1992). A Lagrangean Relax-
ation Approach for Very-Large-Scale Capacitated Lot-Sizing. Management Science,
38(9):1329–1340.

[36] Dillenberger, C., Escudero, L. F., Wollensak, A., and Zhang, W. (1993). On Solving
a Large-Scale Resource Allocation Problem in Production Planning. In Operations
Research in Production Planning and Control, number 2, pages 105–119. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[37] Dillenberger, C., Escudero, L. F., Wollensak, A., and Zhang, W. (1994). On practi-
cal resource allocation for production planning and scheduling with period overlapping
setups. European Journal of Operational Research, 75(2):275–286.

[38] Dilts, D. M. and Ramsing, K. D. (1989). Joint Lot Sizing and Scheduling of Multiple
Items with Sequence Dependent Setup Costs. Decision Sciences, 20(1):120–133.

[39] Dobson, G. (1992). The cyclic lot scheduling problem with sequence-dependent
setups. Operations Research, 40:736–749.

[40] Drexl, a. and Kimms, a. (1997). Lot sizing and scheduling Survey and extensions.
European Journal of Operational Research, 99(97):221–235.

BIBLIOGRAPHY 158

[41] Duda, J. (2005). Lot-Sizing in a Foundry Using Genetic Algorithm and Repair
Functions. In EvoCOP 2005, Lecture Notes in Computer Science 3448, pages 101–
111.

[42] Eppen, G. D. and Martin, R. K. (1987). Solving Multi-Item Capacitated Lot-Sizing
Problems Using Variable Redefinition. Operations Research, 35(6):832–848.

[43] Federgruen, A. and Tzur, M. (1993). The dynamic lot-sizing model with backlog-
ging: A simpleo(n logn) algorithm and minimal forecast horizon procedure. Naval
Research Logistics, 40(4):459–478.

[44] Fiorotto, D. J. and de Araujo, S. A. (2014). Reformulation and a Lagrangian
heuristic for lot sizing problem on parallel machines. Annals of Operations Research,
217(1):213–231.

[45] Fiorotto, D. J., de Araujo, S. A., and Jans, R. (2015). Hybrid methods for lot sizing
on parallel machines. Computers & Operations Research, 63(May 2015):136–148.

[46] Fleischmann, B. (1994). The discrete lot-sizing and scheduling problem with
sequence-dependent setup costs. European Journal of Operational Research,
75(2):395–404.

[47] Florian, M., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1980). Deterministic
Production Planning: Algorithms and Complexity. Management Science, 26(7):669–
679.

[48] Focacci, F., Furini, F., Gabrel, V., Godard, D., and Shen, X. (2016). MIP Formula-
tions for a Rich Real-World Lot-Sizing Problem with Setup Carryover, pages 123–134.
Springer International Publishing, Cham.

[49] Furini, F. and Shen, X. (2018). Matheuristics for the temporal bin packing problem.
In: Amodeo L., Talbi EG., Yalaoui F. (eds) Recent Developments in Metaheuristics.
Operations Research/Computer Science Interfaces Series, 62.

[50] Gaafar, L. (2006). Applying genetic algorithms to dynamic lot sizing with batch
ordering. Computers and Industrial Engineering, 51(3):433–444.

[51] Gagne, C., Price, W., and Gravel, M. (2002). Comparing an ACO algorithm with
other heuristics for the single machine scheduling problem with sequence-dependent
setup times. The Journal of the Operational Research Society, 53:895–906.

[52] Gallego, G. and Shaw, D. (1997). Complexity of the elsp with general cyclic sched-
ules. IEEE Transactions, 29:109–130.

[53] Gelders, L. F. L. N. W. (1981). Production planning: a review. European Journal
of Operational Research, 7(2):101–110.

[54] Ghosh, S., Khanra, S., and Chaudhuri, K. (2011). Optimal price and lot size
determination for a perishable product under conditions of finite production, partial
backordering and lost sale. Applied Mathematics and Computation, 217(13):6047–
6053.

BIBLIOGRAPHY 159

[55] Glock, C. H., Grosse, E. H., and Ries, J. M. (2014). The lot sizing problem: A
tertiary study. International Journal of Production Economics, 155(September):39–
51.

[56] Gopalakrishnan, M. (2000). A modified framework for modelling set-up carryover
in the capacitated lotsizing problem. International Journal of Production Research,
38(14):3421–3424.

[57] Gopalakrishnan, M., Ding, K., Bourjolly, J.-M., and Mohan, S. (2001). A Tabu-
Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover. Man-
agement Science, 47(6):851–863.

[58] Gopalakrishnan, M., Miller, D. M., and Schmidt, C. P. (1995). A framework for
modelling setup carryover in the capacitated lot sizing problem.

[59] Gören, H. G. and Tunal, S. (2015). Solving the capacitated lot sizing problem
with setup carryover using a new sequential hybrid approach. Applied Intelligence,
42(4):805–816.

[60] Goren, H. G., Tunali, S., and Jans, R. (2012). A hybrid approach for the capacitated
lot sizing problem with setup carryover. International Journal of Production Research,
50(6):1582–1597.

[61] Goyal, S. K. and Giri, B. C. (2001). Recent trends in modeling of deteriorating
inventory. European Journal of Operational Research, 134(1):1–16.

[62] Guiffrida, M. A. B., Alfred, Jaber, M., and Khan, M. (2015). A review of inventory
lot sizing review papers. Management Research Review, 38(3):283–298.

[63] Guimarães, L., Klabjan, D., and Almada-Lobo, B. (2014). Modeling lotsizing and
scheduling problems with sequence dependent setups. European Journal of Operational
Research, 239(3):644–662.

[64] Guner Goren, H., Tunali, S., and Jans, R. (2010). A review of applications of genetic
algorithms in lot sizing. Journal of Intelligent Manufacturing, 21(4):575–590.

[65] Gupta, S. and Brennan, L. (1992). Lot Sizing and Backordering in Multi-Level
Product Structures. Production and Inventory Management Journal, 33(1):27.

[66] Gupta, Y. P. and Keung, Y. (1990). A Review of Multistage Lotsizing Models.
International Journal of Operations & Production Management, 10(9):57–73.

[67] Haase, K. (1994). Lotsizing and Scheduling for Production Planning, volume 408 of
Lecture Notes in Economics and Mathematical Systems. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[68] Haase, K. (1996). Capacitated lot-sizing with sequence dependent setup costs.
Operations-Research-Spektrum, 18(1):51–59.

[69] Haase, K. (1998). Capacitated Lot-Sizing with Linked Production Quantities of
Adjacent Periods 1 Introduction. Beyond Manufacturing Resource Planning (MRP
II), pages 127–146.

BIBLIOGRAPHY 160

[70] Haase, K. and Kimms, A. (2000). Lot sizing and scheduling with sequence-
dependent setup costs and times and efficient rescheduling opportunities. Interna-
tional Journal of Production Economics, 66(2):159–169.

[71] Harris, F. (1913). How many parts to make at once. Factory - The Magazine of
Management, 10(2):135–136, 152.

[72] Helber, S. and Sahling, F. (2010). A fix-and-optimize approach for the multi-
level capacitated lot sizing problem. International Journal of Production Economics,
123(2):247 – 256.

[73] Hindi, K. S. (1995). Algorithms for Capacitated, Multi-Item Lot-Sizing without
Set-Ups. The Journal of the Operational Research Society, 46(4):465–472.

[74] Hsieh, H., Lam, K. F., and Choo, E. U. (1992). Comparative study of dynamic lot
sizing heuristics with backlogging. Computers and Operations Research, 19(5):393–
407.

[75] Hsu, V. N. and Lowe, T. J. (2001). Dynamic Economic Lot Size Models with Period-
Pair-Dependent Backorder and Inventory Costs. Operations Research, 49(2):316–321.

[76] Huai-En Chiao, Hui-Ming Wee, and Po-Chung Yang (2008). A deteriorating in-
ventory model with tow storage facilities, partial backordering and quantity discount.
In 2008 International Conference on Machine Learning and Cybernetics, volume 7,
pages 3903–3908. IEEE.

[77] Hung, Y. F., Chen, C. P., Shih, C. C., and Hung, M. H. (2003). Using tabu
search with ranking candidate list to solve production planning problems with setups.
Computers and Industrial Engineering, 45(4):615–634.

[78] Hung, Y.-F. and Chien, K.-L. (2000). A Multi-Class Multi-Level Capacitated Lot
Sizing Model. The Journal of the Operational Research Society, 51(11):1309.

[79] Hung, Y.-f., Shih, C.-c., and Chen, C.-p. (1999). Evolutionary Algorithms for
Production Planning Problems with Setup Decisions. The Journal of the Operational
Research Society, 50(8):857–866.

[80] Hwang, H.-C. (2007). Dynamic lot-sizing model with production time windows.
Naval Research Logistics, 54(6):692–701.

[81] I, S., H, K., H, D., and D, L. (2011). A two-stage heuristic for single machine
capacitated lot-sizing and scheduling with sequence-dependent setup costs. Comput
Ind Eng, 61(4):920929.

[82] James, R. J. W. and Almada-Lobo, B. (2011). Single and parallel machine ca-
pacitated lotsizing and scheduling: New iterative MIP-based neighborhood search
heuristics. Computers and Operations Research, 38(12):1816–1825.

[83] Jans, R. and Degraeve, Z. (2004). An industrial extension of the discrete lot-sizing
and scheduling problem. IIE Transactions, 36(1):47–58.

BIBLIOGRAPHY 161

[84] Jans, R. and Degraeve, Z. (2007). Meta-heuristics for dynamic lot sizing: A review
and comparison of solution approaches. European Journal of Operational Research,
177(3):1855–1875.

[85] Jans, R. and Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review.
International Journal of Production Research, 46(March 2015):1619–1643.

[86] Kämpf, M. and Köchel, P. (2006). Simulation-based sequencing and lot size op-
timisation for a production-and-inventory system with multiple items. International
Journal of Production Economics, 104(1):191–200.

[87] Kang, S., Malik, K., and Thomas, L. J. (1999). Lotsizing and Scheduling on Parallel
Machines with Sequence-Dependent Setup Costs. Management Science, 45(2):273–
289.

[88] Karimi, B., Fatemi Ghomi, S. M. T., and Wilson, J. M. (2003). The capacitated
lot sizing problem: A review of models and algorithms. Omega, 31(5):365–378.

[89] Karimi, B., Ghomi, S. M. T. F., and Wilson, J. M. (2006). A tabu search heuristic for
solving the CLSP with backlogging and set-up carry-over. Journal of the Operational
Research Society, 57(2):140–147.

[90] Krarup, J. and Bilde, . (1977). Plant location, set covering and economic lot size: An
o(mn) algorithm for structural problems. Numerische Methoden bei Optimierungsauf-
gabeen, Band 3: Optimierung bei graphentheoretischen und ganzzahligen Probleme, 36.

[91] Kuik, R., Salomon, M., and van Wassenhove, L. N. (1994). Batching decisions:
structure and models. European Journal of Operational Research, 75(2):243–263.

[92] Laguna, M. (1999). A heuristic for production scheduling and inventory control in
the presence of sequence-dependent setup time. IIE Trans, 31(2):125134.

[93] Lang, J. and Shen, Z. (2011). Fix-and-optimize heuristics for capacitated lot-sizing
with sequence-dependent setups and substitutions. Eur J Oper Res, 214(3):595605.

[94] Love, S. F. (1973). Bounded production and inventory models with piecewise con-
cave costs. Management Science, 20(3):313–318.

[95] Maes, J. and Wassenhove, L. V. (1988). Multi-Item Single-Level Capacitated Dy-
namic Lot-Sizing Heuristics: A General Review. The Journal of the Operational
Research Society, 39(11):991–1004.

[96] Manne, A. (1958). Programming of economic lot sizes. Management Science, 4:115–
135.

[97] Megala, N. and Jawahar, N. (2006). Genetic algorithm and Hopfield neural network
for a dynamic lot sizing problem. International Journal of Advanced Manufacturing
Technology, 27(11-12):1178–1191.

[98] Meyr, H. (2002). Simultaneous lotsizing and scheduling on parallel machines. Eu-
ropean Journal of Operational Research, 139(2):277–292.

BIBLIOGRAPHY 162

[99] Millar, H. H. and Yang, M. (1993). An application of Lagrangean decomposition
to the capacitated multi-item lot sizing proble. Computers and Operations Research,
20(4):409–420.

[100] Millar, H. H. and Yang, M. (1994). Lagrangian heuristics for the capacitated
multi-item lot-sizing problem with backordering. International Journal of Production
Economics, 34(1):1–15.

[101] Nahmias, S. (1982). Perishable inventory theory: A review. Operations Research,
30(4):680–708.

[102] Nascimento, M. C. V. and Toledo, F. M. B. (2008). A hybrid heuristic for the multi-
plant capacitated lot sizing problem with setup carry-over. Journal of the Brazilian
Computer Society, 14(4):7–15.

[103] Nattaf, M., Artigues, C., Lopez, P., Medina, R., Parada, V., and Pradenas, L.
(2015). A batch sizing and scheduling problem on parallel machines with different
speeds, maintenance operations, setup times and energy costs. In 2015 International
Conference on Industrial Engineering and Systems Management (IESM), pages 883–
891. IEEE.

[104] Nemhauser, G. and Wosley, L. (1988). Integer and combinartorial optimization.
Wiley, New York.

[105] Ozdamar, L. and Barbarosoglu, G. (1999). Hybrid Heuristics for the Multi-Stage
Capacitated Lot Sizing and Loading Problem. The Journal of the Operational Research
Society, 50(8):810–825.

[106] Özdamar, L. and Birbil, e. l. (1998). Hybrid heuristics for the capacitated lot sizing
and loading problem with setup times and overtime decisions. European Journal of
Operational Research, 110(3):525–547.

[107] Pochet, Y. and Wolsey, L. A. (1988). Lot-size models with backlogging: Strong
reformulations and cutting planes. Mathematical Programming, 40-40(1-3):317–335.

[108] Pochet, Y. and Wolsey, L. A. (2006). Production Planning by Mixed Integer Pro-
gramming. Springer-Verlag New York.

[109] Quadt, D. and Kuhn, H. (2008). Capacitated lot-sizing with extensions: A review.
4or, 6:61–83.

[110] Quadt, D. and Kuhn, H. (2009). Capacitated lot-sizing and scheduling with parallel
machines, back-orders, and setup carry-over. Naval Research Logistics, 56(4):366–384.

[111] Raafat, F. (1991). Survey of literature on continuously deteriorating inventory
models. Journal of the Operational Research Society, 42(1):27–37.

[112] Richter, K. and Sombrutzki, M. (2000). Remanufacturing planning for the reverse
wagner/whitin models. European Journal of Operational Research, 121(2):304 – 315.

BIBLIOGRAPHY 163

[113] Rizk, N. and Martel, a. (2001). Supply chain flow planning methods: a review of
the lot-sizing literature. Quebec City, QC, Canada: Université Laval, (January):1 –
66.

[114] Robinson, P., Narayanan, A., and Sahin, F. (2009). Coordinated deterministic
dynamic demand lot-sizing problem: A review of models and algorithms. Omega,
37(1):3–15.

[115] Robinson Jr., E. P. and Gao, L.-L. (1996). A dual ascent procedure for multi-
product dynamic demand coordinated replenishment with backlogging. Management
Science, 42(11):1556–1564.

[116] Sahling, F., Buschkühl, L., Tempelmeier, H., and Helber, S. (2009). Solving a
multi-level capacitated lot sizing problem with multi-period setup carry-over via a
fix-and-optimize heuristic. Computers & Operations Research, 36(9):2546–2553.

[117] Salomon, M., Solomon, M., Wassenhove, L. V., Dumas, Y., and Dauzere-Peres,
S. (1997). Solving the discrete lotsizing and scheduling with sequence dependent set-
up costs and set-up times using the travelling salesman problem with time windows.
European Journal of Operational Research 100, 100:494–513.

[118] Sandbothe, R. A. and Thompson, G. L. (1990). A Forward Algorithm for the
Capacitated Lot Size Model with Stockouts. Operations Research, 38(3):474–486.

[119] Sandbothe, R. A. and Thompson, G. L. (1993). Decision horizons for the capaci-
tated lot size model with inventory bounds and stockouts. Computers and Operations
Research, 20(5):455–465.

[120] Sargut, F. Z. and Romeijn, H. E. (2007). Lot-sizing with non-stationary cumulative
capacities. Operations Research Letters, 35(4):549 – 557.

[121] Schrage, L. (1982). The multiproduct lot scheduling problem. M.A.H. Dempster et
al. (Eds.), Deterministic and Stocastic Scheduling, Dordrecht/Holland, pages 233–244.

[122] Sox, C. and Gao, Y. (1999). The capacitated lot sizing problem with setup carry-
over. IIE Transactions, 31(2):173–181.

[123] Staggemeier, A. T. and Clark, A. (2001). A survey of lot-sizing and scheduling
models.

[124] Suerie, C. and Stadtler, H. (2003). The Capacitated Lot-Sizing Problem with
Linked Lot Sizes. Management Science, 49(8):1039–1054.

[125] Sun, D. and Atkins, D. (1997). 98%-Effective Lot-Sizing for Assembly Inventory
Systems with Backlogging. Operations Research, 45(6):940–951.

[126] Tempelmeier, H. and Copil, K. (2015). Capacitated lot sizing with parallel ma-
chines, sequence-dependent setups, and a common setup operator. OR Spectrum.

[127] Teng, J.-T., Ouyang, L.-Y., and Chen, L.-H. (2007). A comparison between two
pricing and lot-sizing models with partial backlogging and deteriorated items. Inter-
national Journal of Production Economics, 105(1):190–203.

BIBLIOGRAPHY 164

[128] Toledo, F. M. B. and Armentano, V. A. (2006). A Lagrangian-based heuristic for
the capacitated lot-sizing problem in parallel machines. European Journal of Opera-
tional Research, 175(2):1070–1083.

[129] Trigeiro, W. W., Thomas, L. J., and McClain, J. O. (1989). Capacitated Lot Sizing
with Setup Times. Management Science, 35(3):353–366.

[130] van den Heuvel, W. and Wagelmans, A. P. (2008). Four equivalent lot-sizing
models. Operations Research Letters, 36(4):465–470.

[131] Wagner, H. M. and Whitin, T. M. (1958). Dynamic version of the economic lot
size model. Management Science, 5(1):89–96.

[132] Wolsey, L. A. (1995). Progress with single-item lot-sizing. European Journal of
Operational Research, 86(3):395–401.

[133] Wolsey, L. A. (2006). Lot-sizing with production and delivery time windows.
Mathematical Programming, 107(3):471–489.

[134] Zangwill, W. I. (1966). A Deterministic Multi-Period Production Scheduling Model
with Backlogging. Management Science, 13(1):105–119.

[135] Zangwill, W. I. (1969). A Backlogging Model and a Multi-Echelon Model of a
Dynamic Economic Lot Size Production SystemA Network Approach. Management
Science, 15(9):506–527.

[136] Zhu, X. and Wilhelm, W. E. (2006). Scheduling and lot sizing with sequence-
dependent setup: A literature review. IIE Transactions, 38(11):987–1007.

[137] Zoller, K. and Robrade, A. (1988). Dynamic lot sizing techniques: Survey and
comparison. Journal of Operations Management, 7(3-4):125–148.

PROBLÈMES COMPLEXES DE

DIMENSIONNEMENT DE LOTS DE

PRODUCTION

AVEC MACHINES PARALLÈLES

ET REPORT DE CONFIGURATION

Chapitre 1

Introduction

Nos recherches sont réalisées dans le cadre du programme CIFRE (Conventions Indus-

trielles de Formation par la REcherche) [30]. C’est donc une collaboration entre l’Univer-

sité Paris Dauphine et DecisionBrain (https ://www.decisionbrain.com). DecisionBrain

est une société de logiciels qui fournit des solutions avancées d’analyse et d’optimisation

pour les entreprises innovantes qui souhaitent mettre en œuvre une démarche scientifique

à la prise de décisions. La réalisation de solution de planification et d’ordonnancement de

la production fait partie de l’expertise de DecisionBrain. Grâce à ce contexte industriel,

nous avons été confronté à différents types d’applications réelles. Dans cette thèse, nous

étudions deux problèmes de planification de la production motivés par des applications

réelles complexes.

Dans la première partie de ce manuscrit, nous étudions un problème de planification

de la production pour une entreprise de fabrication de vêtements et mettons au point un

outil d’optimisation pour le résoudre. Nous proposons un framework de décomposition

composé d’un modèle agrégé et d’un modèle détaillé, qui sont résolus en séquence. Le

problème agrégé est le goulot d’étranglement de l’approche, et correspond à un problème

de lot-sizing à capacité finie avec report de setup, machines parallèles, délais de production,

arriérés et pertes de ventes. Ce problème s’est avéré NP-difficile, même sans les coûts de

setup. Plusieurs formulations de programmation linéaire mixte (MIP) sont proposées et

comparées d’un point de vue théorique et expérimental. De plus, plusieurs heuristiques de

recherche constructives et locales sont développées pour trouver des solutions de bonne

qualité sur les instances de grande taille. Nous proposons deux ensembles d’instances

de benchmark pour évaluer les performances des modèles et des heuristiques. Grâce à

des tests expérimentaux approfondis, nous avons montré que l’heuristique constructive

(appelée Heuristic First-Solution) associée à un algorithme Fix&Optimize détermine les

solutions approchées s’écartant le moins des valeurs optimales. Enfin, l’ensemble de la

1

démarche de planification de la production est présentée et sa performance est analysée.

Dans la deuxième partie de ce manuscrit, nous étudions une version restreinte du

problème de lot-sizing à capacité finie avec setups dépendants de la séquence, où les

séquences de setup pour chaque période doivent suivre l’ordre d’une séquence donnée. Par

rapport au problème de lot-sizing à capacité finie avec setups dépendantes de la séquence,

le nouveau modèle réduit le nombre de séquences de setup candidates de O(n!) à O(n2n).

Ce problème s’avère être NP-difficile. Un cas particulier avec seulement deux valeurs

de setup possibles est étudié : nous prouvons que, dans ce cas également, le problème

reste NP-difficile. De plus, des formulations MIP orientées produits et séquentielles sont

développées. Une heuristique de génération de colonnes est également proposée à partir

des formulations séquentielles. Enfin, nous effectuons des tests de calcul pour évaluer leurs

performances respectives.

2

Chapitre 2

Problème complexe de lot-sizing :

formulations et benchmarks

Nous construisons un problème complexe de lot-sizing à capacité finie basé sur une

application de fabrication de vêtements. Ce problème de lot-sizing à capacité finie est

composé d’éléments complexes tels que les machines parallèles, les fenêtres de temps de

production, l’arriéré, les pertes de ventes et le report de setup [48]. Ces caractéristiques

ont été étudiées dans différents contextes de problèmes de lot-sizing. Cependant, à notre

connaissance, ils sont pour la première fois considérés ensemble dans cette application.

Dans ce chapitre, nous définissons, formulons et analysons formellement le problème.

Les paramètres d’entrée du problème sont :

— T = {1, 2, . . . , T} : ensemble des périodes.

— R = {1, 2, . . . , R} : ensemble des ressources/machines.

— N = {1, 2, . . . , N} : ensemble des produits.

— D = {1, 2, . . . , D} : ensemble des demandes.

— caprt : capacité de la machine r dans la période t (r ∈ R, t ∈ T).

— pti : temps de traitement unitaire du produit i (i ∈ N).

— stir : capacité de setup pour le produit i sur la machine r (i ∈ N ,r ∈ R).

— scir : coût de setup du produit i sur la machine r (i ∈ N ,r ∈ R).

— pd ∈ N : produit requis par la demande d (d ∈ D).

— qd : quantité de produit pd requise par la demande d (d ∈ D).

— bd ∈ T : date de début de la demande d (d ∈ D).

— e1
d ∈ T : première échéance de la demande d (d ∈ D). Pas de frais supplémentaires

dans l’intervalle [bd, e
1
d).

— e2
d ∈ T : deuxième échéance de la demande d (d ∈ D).

— tc1
d : coût unitaire de retard de la demande d satisfait à ou après e1

d (d ∈ D).

3

— tc2
d : coût unitaire de retard de la demande d satisfait à ou après e2

d (d ∈ D).

— lcd : coût de vente perdu unitaire de la demande d (d ∈ D, lcd > tc1
d + tc2

d).

— Di ⊆ D : le sous-ensemble des demandes telles que pd = i, i.e., Di := {d ∈ D|pd =

i}.
Le problème est de décider pour chaque machine r ∈ R et dans chaque période t ∈ T ,

la quantité à produire de chaque produit i ∈ N . L’objectif est de minimiser le coût total,

y compris les frais de vente perdus et le coût des retards. Le coût de setup est secondaire

par rapport aux autres coûts. Les contraintes sont de trois types : premièrement, il existe

des contraintes de capacité limitée caprt sur chaque machine r ∈ R et période t ∈ T ;

deuxièmement, la production pour satisfaire la demande d ne peut commencer qu’à partir

de sa date de début ; troisièmement, les contraintes concernant le report de setup. Les

contraintes de setup exprime le fait que, pour produire le produit i sur la machine r

pendant la période t, il doit y avoir un setup pour i sur r pendant t. Cependant, si le

produit i est le dernier produit fabriqué dans la periode précédente t− 1 sur la machine

r, il n’y a plus besoin de setup pour produire le produit i sur la machine r pendant la

periode t. Nous supposons qu’il existe au plus un setup par produit sur chaque machine

pendant chaque période.

t− 1 t t+ 1

Setup Production

Figure 2.1 – Report de setup

Une pseudo-formulation peut servir à résumer le problème comme suit. Au meilleur

de notre connaissance, c’est la première fois que ce problème de lot-sizing est étudié, nous

l’appelons CLSC pour plus de simplicité.

(CLSC) min Coût des ventes perdues+ Coût de retard (+ Coût de setup)

s.t. Contraintes liées à la conservation du flux de matières premières

Contraintes de capacité des machines

Fenêtres temporelles des demandes

Report de setup

En se basant sur la définition, nous remarquons que le CLSC est différent du CLSP

classique par rapport à la définition de la demande. Dans CLSP, les demandes sont

4

généralement agrégées par produits et par périodes. Ainsi, une demande est définie pour

chaque produit dans chaque période. Toutefois, dans notre cas, il est important de tenir

compte de la fenêtre temporelle individuelle de chaque demande en fonction de sa date

de début et des dates d’échéance. Par conséquent, nous séparons le concept de produit

et de demande. Chaque demande d concerne un seul produit pd à produire en quantité

qd à une date rd, accompagnée de deux dates d’échéance e1
d, e

2
d et leurs coûts de retard

associés tc1
d, tc

2
d et lcd. En conséquence, un produit peut être requis par un ensemble de

demandes.

0 bd e1
d e2

d
T

0 tc1
d tc1

d + tc2
d

Figure 2.2 – Fenêtre Temporelle de la demande

Une autre différence concerne le stockage : il n’ y a pas de problème de stockage, et

donc pas de coût de stockage à considérer. Un produit fabriqué est directement utilisé

pour satisfaire les demandes, c’est-à-dire que la livraison est immédiate.

Quatre formules de programmation linéaire mixte (MIP), appelées Form1, Form2,

Form3 et Form3FL, ont été développées pour modéliser CLSC. Dans ce résumé, nous

présentons uniquement la formulation Form3.

min
∑

d∈D
lcdyd +

∑

d∈D,t∈T :t≥e1d

tc1
dydt +

∑

d∈D,t∈T :t≥e2d

tc2
dydt (+

∑

i∈N ,r∈R,t∈T
scirz

+
irt) (2.1)

s.t.
∑

r∈R
xirt =

∑

d∈Di,t≥bd

ydt i ∈ N , t ∈ T (2.2)

∑

bd≤t∈T
ydt + yd = qd d ∈ D (2.3)

∑

i∈N
ptixirt +

∑

i∈N
stirz

+
irt ≤ caprt r ∈ R, t ∈ T (2.4)

xirt ≤ Θirt(z
0
irt + z+

irt) i ∈ N , r ∈ R, t ∈ T (2.5)
∑

i∈N
z0
irt = 1 r ∈ R, t ∈ T (2.6)

z0
irt ≤ z0

ir,t−1 + z+
ir,t−1 i ∈ N , r ∈ R, t ∈ T̃ (2.7)

z0
irt + z0

ir,t−1 ≤ 1 + wr,t−1 i ∈ N , r ∈ R, t ∈ T̃ (2.8)

z+
irt + wrt ≤ 1 i ∈ N , r ∈ R, t ∈ T (2.9)

5

0 ≤ xirt i ∈ N , r ∈ R, t ∈ T (2.10)

0 ≤ ydt, yd ≤ qd d ∈ D, bd ≤ t ∈ T (2.11)

z0
irt, z

+
irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ T (2.12)

0 ≤ wrt ≤ 1 ∀r ∈ R, t ∈ T (2.13)

Pour comparer ces quatre formulations, nous avons prouvé de thèorème ci-dessous.

Theorem 2.1. Les valeurs optimales des fonctions objectives des relaxations linéaires des

formulations Form1, Form2, Form3 et Form3FL, notées Obj∗LP (Form1), Obj∗LP (Form2),

Obj∗LP (Form3) et Obj∗LP (Form3FL), vérifie

Obj∗LP (Form3FL) ≥ Obj∗LP (Form3) = Obj∗LP (Form2) ≥ Obj∗LP (Form1)

Pour pouvoir étudier expérimentalement le problème CLSC, nous générons deux en-

sembles d’instances de référence. L’un des ensembles est constitué d’instances réelles de

l’application de fabrication de vêtements, tandis que l’autre provient d’un générateur

d’instances pseudo-aléatoires conçu pour simuler des problèmes réels. Les instances de

référence sont résumées dans le Tableau 2.1, dans lequel nous présentons le type d’ins-

tances (Type), sa notation (Notation), le nombre d’instances qu’il contient (Taille) et

quelques commentaires. Les détails de chaque ensemble d’instances de benchmark sont

donnés dans le Tableau 2.2 et le Tableau 2.3.

Table 2.1 – Résumé des instances de référence du CLSC

Type Notation Taille Commentaire

Instances de l’application IAP-A 3
(IAP) IAP-B 4

Instances générées aléatoirement IRG-A 810 petite taille
(IRG) IRG-B 108 taille moyenne et grande

Table 2.2 – Instances de référence du CLSC provenant de l’application

Type Instance T R N D Γ(%) Commentaire

IAP-A R1 27 3 3 313 99
R2 36 28 18 1188 30
R3 30 29 1 595 33

IAP-B R5 25 30 46 668 91
R6 25 30 36 431 74 R5 avec horizon gelé
R7 20 31 80 1428 40
R8 20 31 73 1404 41 R7 avec horizon gelé

6

Table 2.3 – Instances de référence du CLSC générées pseudo-aléatoirement

Notation Taille T N M D Γ(%)

IRG-A 810 {4,9,13} {4,8,12} {1,5,10} {50,100,200} {75,90}
IRG-B 108 {25} {50,75,100} {15,20,30} {500,750,1000} {75,90}

Tout d’abord, différentes formulations MIP sont comparées pour le CLSC avec et sans

le coût de setup. Toutes les formulations développées sont résolues pour le benchmark

IRG-A et IAP-A avec le solveur standard MIP CPLEX 12.6.1 et avec une limite de temps

de 10 minutes. Le résumé des résultats est donné dans le tableau 2.4 et dans le tableau

2.5. Dans les tableaux, le temps de calcul est exprimé en secondes. Pour chaque paramètre

d’instance (T , R, D, D, N , Γ) et pour chaque valeur, nous donnons les résultats moyens

sur toutes les instances correspondantes. Dans la rangée T/A, les valeurs moyennes sur

toutes les instances testées sont rapportées tandis que sa colonne Opt indique le nombre

total d’instances résolues de manière optimale pour chaque formulation. Dans les deux

premières colonnes, nous présentons les paramètres et leurs valeurs. Par exemple, pour le

nombre de périodes T , il y a trois valeurs 4, 9, 13 pour les instances IRG-A. Dans les co-

lonnes Opt et Temps, nous rapportons le nombre et le temps de calcul moyen sur toutes les

instances, avec les valeurs des paramètres donnés, résolues pour prouver l’optimalité dans

le délai imparti. Dans les colonnes Nœuds et Écart, nous signalons le nombre de nœuds

explorés et l’écart de sortie lorsque CPLEX termine. Cet écart représente la différence

relative entre les limites primale et duale calculées par CPLEX à la date limite. Dans

la colonne LPT, nous rapportons le temps de calcul moyen pour résoudre la relaxation

linéaire sur toutes les instances partageant cette valeur de paramètre. En Colonne LPG,

nous mesurons la qualité de la relaxation linéaire qui est calculée comme suit

LPG =
BestMip− LPV al

BestMip
, (2.14)

où bestMip est la meilleure solution entière (parmi toutes les formulations) et LPV al

est la valeur optimale de la relaxation linéaire de la formulation correspondante. Dans

tous les cas sauf deux, les trois formulations Form1, Form2 et Form3 aboutissent à la

même valeur LPV al (dans les deux cas la différence est inférieure à 0,001 !). Nous ne

présentons le LPG qu’une seule fois sous la colonne Form3. Pour les instances IAP-A,

nous reportons, dans la colonne Obj, les valeurs de la fonction objectif obtenues par le

solveur.

Nous observons que la formulation Form3 donne la meilleure performance globale. Par

exemple, sur les 810 instances d’IRG-A avec coûts de setup, Form3 résout (avec preuve

d’optimalité) 416 instances alors que Form2 n’en résout que 411 instances, Form1 379

7

instances et form3FL 365 instances. Sur les 810 instances d’IRG-A sans coût de setup,

Form3 résoud à l’optimalité 476 instances alors que Form1, Form2 et Form3FL n’en

résolvent respectivement que 460, 468 et 424.

8

T
a
b
l
e

2.
4

–
C

om
p
ar

ai
so

n
d
es

fo
rm

u
la

ti
on

s
C

L
S
C

av
ec

co
û
t

d
e

se
tu

p

F
o
r
m

1
F
o
r
m

2
F
o
r
m

3
F
o
r
m

3
F
L

P
a
ra

V
a
l

O
p

t
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

O
p

t
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

O
p

t
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

L
P

G
O

p
t

T
em

p
s

N
o
eu

d
s

É
ca

rt
L

P
T

L
P

G

T
4

1
6
5

3
2

8
5
9
7
0

4
.6

4
0
.0

1
7
5

3
5

4
9
0
8
8

4
.1

6
0
.0

1
7
8

3
6

5
5
3
4
7

3
.8

9
0
.0

3
1
.0

1
1
5
8

3
9

1
8
6
4
1

5
.6

6
0
.5

1
6
.2

0
9

1
2
3

6
9

4
1
1
6
8

1
5
.8

1
0
.2

1
2
8

6
1

2
6
4
6
9

1
5
.2

8
0
.2

1
3
1

6
5

3
1
2
0
7

1
4
.9

5
0
.2

5
1
.1

9
1
1
5

8
9

1
7
9
0
7

1
8
.9

8
1
.6

3
5
.9

2
1
3

9
1

1
1
2

3
5
8
3
9

2
4
.1

7
0
.5

1
0
8

1
0
2

2
0
9
6
1

2
3
.3

4
0
.5

1
0
7

9
7

2
5
6
6
7

2
3
.1

3
0
.4

5
9
.9

8
9
2

1
0
5

1
6
0
8
9

2
7
.1

1
2
.7

4
8
.7

4

R
1

2
1
2

4
8

1
8
7
4
8

2
.7

0
0
.0

2
1
7

5
5

1
2
9
8
8

2
.5

0
0
.0

2
1
8

5
3

1
3
5
6
3

2
.7

5
0
.0

6
5
.3

0
2
2
6

4
8

2
1
3
9
0

2
.3

4
0
.0

3
2
.3

6
5

9
7

6
8

5
0
8
9
2

2
3
.1

8
0
.2

1
0
1

4
6

3
0
7
8
4

2
2
.4

6
0
.2

1
0
5

5
8

3
7
9
8
3

2
1
.9

3
0
.1

4
8
.4

8
8
3

9
3

1
6
1
0
1

2
7
.1

7
1
.1

4
1
.2

9
1
0

7
0

1
0
4

9
3
3
3
8

1
8
.7

4
0
.5

9
3

9
1

5
2
7
4
6

1
7
.8

2
0
.6

9
3

8
1

6
0
6
7
4

1
7
.2

9
0
.5

2
8
.4

0
5
6

1
3
6

1
5
1
4
5

2
2
.2

5
3
.7

2
7
.2

1

N
4

2
3
1

4
7

5
8
7
9
0

1
.4

0
0
.1

2
5
8

4
7

2
5
4
9
7

0
.5

1
0
.0

2
5
8

4
4

2
2
9
8
5

0
.5

9
0
.0

3
5
.0

7
2
1
2

5
9

9
0
2
5

2
.9

8
0
.6

2
3
.9

1
8

8
7

9
5

6
4
4
4
0

1
7
.2

3
0
.2

9
4

8
7

4
6
4
0
2

1
6
.4

8
0
.2

9
4

8
6

5
5
2
9
3

1
6
.2

5
0
.2

4
9
.8

0
8
9

1
0
4

2
1
2
9
1

1
9
.9

5
1
.6

3
5
.0

4
1
2

6
1

8
3

3
9
7
4
6

2
5
.9

9
0
.4

5
9

8
1

2
4
6
1
9

2
5
.7

8
0
.5

6
4

9
3

3
3
9
4
3

2
5
.1

2
0
.4

5
7
.3

1
6
4

6
8

2
2
3
2
1

2
8
.8

3
2
.6

4
1
.9

2

D
5
0

1
5
1

6
6

6
3
9
9
5

1
1
.7

5
0
.2

1
5
6

5
3

3
5
2
1
1

1
1
.1

3
0
.2

1
5
9

5
8

4
3
1
0
4

1
0
.6

4
0
.1

4
6
.8

1
1
4
9

5
6

2
3
9
2
0

1
3
.5

8
0
.4

3
6
.9

1
1
0
0

1
2
6

5
6

4
7
9
8
8

1
5
.7

8
0
.2

1
3
5

6
0

3
2
8
3
9

1
5
.0

6
0
.3

1
3
7

5
7

3
7
5
8
5

1
4
.7

6
0
.2

4
8
.1

8
1
2
9

8
9

1
8
3
6
1

1
7
.6

7
1
.0

3
3
.7

9
2
0
0

1
0
2

6
8

5
0
9
9
4

1
7
.0

9
0
.3

1
2
0

7
2

2
8
4
6
9

1
6
.6

0
0
.4

1
2
0

7
0

3
1
5
3
2

1
6
.5

6
0
.3

4
7
.1

9
8
7

7
3

1
0
3
5
5

2
0
.5

1
3
.4

3
0
.1

7

Γ
7
5

2
1
1

6
0

4
1
2
9
9

1
4
.5

3
0
.2

2
2
6

5
0

2
3
7
2
8

1
4
.0

1
0
.2

2
3
0

5
2

2
9
2
1
4

1
3
.6

0
0
.1

4
9
.0

7
2
0
6

6
7

1
3
8
3
9

1
6
.7

7
1
.2

3
3
.8

8
9
0

1
6
8

6
8

6
7
3
5
3

1
5
.2

2
0
.3

1
8
5

7
4

4
0
6
1
7

1
4
.5

1
0
.3

1
8
6

7
2

4
5
6
0
0

1
4
.3

7
0
.3

4
5
.7

2
1
5
9

7
7

2
1
2
5
2

1
7
.7

4
2
.0

3
3
.3

6

T
/
A

3
7
9

6
3

5
4
3
2
6

1
4
.8

7
0
.2

4
1
1

6
1

3
2
1
7
3

1
4
.2

4
0
.3

4
1
6

6
1

3
7
4
0
7

1
3
.9

9
0
.2

4
7
.3

9
3
6
5

7
2

1
7
5
4
6

1
7
.2

5
1
.6

3
3
.6

2

In
st

O
b

j
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

O
b

j
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

O
b

j
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

L
P

G
O

b
j
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

L
P

G

R
1

6
5
4
,8

0
7

1
2

1
8
2
7

0
.0

0
0
.1

6
5
4
,8

0
7

2
.6

4
3
4

0
.0

0
0
.0

6
5
4
,8

0
7

3
.1

4
0
4

0
.0

0
0
.0

1
4
.2

5
6
5
4
,8

0
7

3
4
.7

4
6
9

0
.0

0
0
.5

1
4
.0

3
R

2
2
,2

3
9
,7

9
3

6
0
0

2
9
7
.3

6
1
0
7
.9

2
9
,6

1
9
,4

1
6

6
0
0

0
9
9
.8

0
3
9
5
.8

1
,0

8
6
,6

3
7

6
0
0

4
5
2

9
4
.5

6
7
8
.2

1
0
0

1
E

9
6
0
0

0
1
0
0

6
0
0

-
R

3
1
0
,6

7
2

0
0

0
.0

0
0
.0

1
0
,6

7
2

0
.0

0
0
.0

0
0
.0

1
0
,6

7
2

0
.0

0
0
.0

0
0
.0

0
.0

0
1
0
,6

7
2

2
.1

0
0
.0

0
0
.9

0
.0

0

9

T
a
b
l
e

2.
5

–
C

om
p
ar

ai
so

n
d
es

fo
rm

u
la

ti
on

s
C

L
S
C

sa
n
s

co
û
t

d
e

se
tu

p

F
o
r
m

1
F
o
r
m

2
F
o
r
m

3
F
o
r
m

3
F
L

P
a
ra

V
a
l

O
p

t
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

O
p

t
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

O
p

t
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

L
P

G
O

p
t

T
em

p
s

N
o
eu

d
s

É
ca

rt
L

P
T

L
P

G

T
4

2
0
5

3
3
.0

5
7
2
3
0

0
.3

4
0
.0

2
1
1

4
5
.0

3
3
7
6
8

0
.3

2
0
.0

2
1
4

3
9
.4

3
6
5
3
0

0
.2

9
0
.0

1
6
.8

4
1
8
6

6
0
.9

1
6
8
3
0

0
.5

8
0
.2

6
.9

9
1
2
7

7
5
.6

4
0
5
2
6

5
.1

0
0
.1

1
2
3

4
0
.1

2
6
5
6
6

5
.2

0
0
.3

1
2
7

5
8
.4

2
9
3
6
4

5
.1

1
0
.2

2
5
.5

8
1
0
4

4
7
.2

1
6
3
1
6

7
.0

6
1
.0

1
5
.3

1
3

1
2
8

3
5
.8

3
1
5
9
5

7
.0

8
0
.3

1
3
4

4
9
.5

2
2
9
1
5

6
.9

2
0
.6

1
3
5

4
2
.4

2
5
3
2
7

6
.7

9
0
.4

2
4
.3

5
1
3
4

4
5
.2

1
4
5
2
1

9
.7

3
1
.5

1
7
.2

R
1

2
1
4

3
7
.2

1
8
9
6
3

3
.5

7
0
.0

2
1
3

4
1
.4

1
6
8
3
9

3
.8

1
0
.0

2
1
5

3
7
.8

1
7
2
7
6

3
.8

2
0
.0

5
3
.9

9
2
2
2

3
1
.8

2
1
7
7
3

3
.4

3
0
.0

2
5
.3

5
1
3
7

5
6
.0

5
4
6
5
4

5
.4

4
0
.1

1
4
5

5
9
.5

2
9
2
2
7

5
.1

7
0
.2

1
4
9

6
1
.8

3
1
6
8
3

5
.0

5
0
.2

8
.7

8
1
1
9

8
4
.4

1
3
9
0
9

7
.1

5
0
.7

8
.4

1
0

1
0
9

4
8
.7

5
5
7
3
5

3
.5

0
0
.4

1
1
0

3
2
.8

3
7
1
8
3

3
.4

6
0
.7

1
1
2

3
7
.7

4
2
2
6
1

3
.3

2
0
.5

3
.9

9
8
3

6
2
.6

1
1
9
8
5

6
.7

9
2
.0

5
.7

N
4

2
1
9

2
4
.8

3
3
3
6
7

0
.4

6
0
.1

2
2
4

2
0
.7

2
3
8
4
5

0
.3

5
0
.0

2
2
7

2
9
.3

2
3
5
3
5

0
.3

7
0
.1

1
4
.3

8
1
9
4

3
2
.2

8
9
7
4

1
.3

3
0
.4

8
.1

8
1
4
3

5
4
.8

4
8
9
4
5

4
.4

9
0
.2

1
4
7

5
4
.0

3
0
9
0
7

4
.2

7
0
.2

1
4
8

4
8
.0

3
1
8
4
0

4
.2

4
0
.2

2
3
.9

1
1
3
0

6
8
.4

1
7
9
0
5

5
.7

7
0
.8

1
3
.9

1
2

9
8

7
8
.3

4
7
0
3
9

7
.5

6
0
.3

9
7

8
7
.3

2
8
4
9
8

7
.8

3
0
.7

1
0
1

7
7
.5

3
5
8
4
5

7
.5

8
0
.4

2
8
.4

7
1
0
0

7
1
.6

2
0
7
8
8

1
0
.2

8
1
.6

1
7
.4

D
5
0

1
5
3

4
4
.1

5
9
0
7
1

3
.2

8
0
.1

1
5
9

4
8
.8

3
5
4
0
6

3
.1

1
0
.3

1
6
1

4
4
.4

4
0
1
8
1

2
.9

6
0
.2

2
0
.4

4
1
4
5

4
7
.4

2
2
4
6
7

3
.7

6
0
.3

1
4
.8

1
0
0

1
5
6

4
9
.0

3
7
7
1
3

3
.9

7
0
.2

1
5
5

4
5
.8

2
6
6
6
4

4
.0

0
0
.3

1
6
0

5
4
.8

3
0
2
1
0

3
.9

2
0
.2

2
2
.9

3
1
4
3

4
7
.4

1
5
5
0
4

5
.2

8
0
.8

1
2
.6

2
0
0

1
5
1

4
3
.4

3
2
5
6
7

5
.2

6
0
.2

1
5
4

4
0
.3

2
1
1
7
9

5
.3

4
0
.4

1
5
5

3
6
.5

2
0
8
2
9

5
.3

1
0
.3

2
3
.3

9
1
3
6

6
3
.5

9
6
9
6

8
.3

2
1
.7

1
2
.0

Γ
0
.7

5
2
9
9

3
6
.3

3
4
9
1
5

2
.4

1
0
.1

2
9
8

3
4
.6

2
2
2
0
0

2
.4

3
0
.2

2
9
9

2
9
.0

2
5
0
8
1

2
.2

4
0
.1

1
9
.4

1
2
8
6

4
5
.6

1
1
4
9
0

2
.9

5
0
.5

9
.3

0
.9

0
1
6
1

6
2
.7

5
1
3
1
9

5
.9

3
0
.3

1
7
0

6
3
.2

3
3
2
9
9

5
.8

7
0
.5

1
7
7

7
2
.9

3
5
7
3
3

5
.8

9
0
.4

2
5
.1

0
1
3
8

6
6
.9

2
0
2
8
8

8
.6

3
1
.4

1
6
.9

T
/
A

4
6
0

4
5
.2

4
3
1
1
7

4
.1

7
0
.2

4
6
8

4
4
.7

2
7
7
5
0

4
.1

5
0
.3

4
7
6

4
5
.0

3
0
4
0
7

4
.0

6
0
.2

2
2
.2

5
4
2
4

5
2
.8

1
5
8
8
9

5
.7

9
0
.9

1
3
.1

In
st

O
b

j
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

T
em

p
s

N
o
eu

d
s

É
ca

rt
L

P
T

T
em

p
s

N
o
eu

d
s

É
ca

rt
L

P
T

L
P

G
T

em
p

s
N

o
eu

d
s

É
ca

rt
L

P
T

L
P

G

R
1

4
4
2
,9

0
6

0
.5

5
1

0
.0

0
0
.1

0
.3

1
4

0
.0

0
0
.0

0
.3

8
0
.0

0
0
.1

0
.8

3
1
9
.5

4
0
0

0
.0

0
0
.4

0
.8

3
R

2
5
9
,1

5
3

5
.8

0
0
.0

0
1
.1

1
1
.7

0
0
.0

0
1
2
.7

4
.8

0
0
.0

0
1
.2

0
.0

0
2
4
1
.1

0
0
.0

0
9
1
.4

0
.0

0
R

3
1
0
,6

7
2

0
.1

0
0
.0

0
0
.1

0
.1

0
0
.0

0
0
.0

0
.1

0
0
.0

0
0
.0

0
.0

0
2
.2

0
0
.0

0
1
.3

0
.0

0

10

A la lumière de ces résutats, nous choisissons donc la formulation la plus performante,

à savoir Form3, pour résoudre les instances IRG-B et IAP-B à l’aide du solveur MIP

standard CPLEX 12.6.1 (en exploitant tous les coeurs du processeur et avec un temps

limite d’une heure). Le résumé des résultats obtenus sur les instances IRG-B est reporté

dans le Tableau 2.6. L’écart relatif moyen constaté entre la valeur de la solution entière

obtenue en 1 heure et la valeur de la relaxation linéaire sur les instances IAP-B est

supérieur à 30%. En particulier pour l’instance R5, l’écart est supérieur à 91%.

Sur la base de ces tests préliminaires, nous concluons que la performance médiocre

de CPLEX est dûe, d’une part, à la faiblesse de la relaxation linéaire et, d’autre part, à

la taille élévée des intances, sur lesquelles l’heuristique intégrée de CPLEX n’arrive pas

à trouver de bonnes solutions de départ. Par conséquent, des algorithmes heuristiques

efficaces doivent être développés. Ceux-ci sont présentés dans le chapitre suivant.

Table 2.6 – Résultats computationnels : CPLEX sur IAP-B

Characteristics LP MIP

Inst T R N D Γ Obj Temps Obj Temps Écart LB #Noeuds BestLB

R5 25 30 46 668 91 2,935,797 79 35,511,200 3600 91.6 2,973,702 0 2,973,702
R6 25 30 36 425 74 1,277,107 18 1,456,011 3600 7.7 1,344,501 97 1,344,501
R7 20 31 80 1428 40 2,217,260 118 2,692,957 3601 16.7 2,244,422 29 2,244,422
R8 20 31 73 1404 41 2,081,921 83 2,597,838 3600 18.7 2,111,181 0 2,111,181
AVG 2,128,021 74 10,564,501 3600 33.7 2,168,451 32 2,168,451

11

Chapitre 3

Problème complexe de lot-sizing à

capacité finie : Heuristiques

Dans le chapitre précédent, nous avons présenté le problème complexe de lot-sizing

CLSC. Nous montrons qu’il est NP-difficile et ne peut être résolu efficacement par un

solveur MIP standard d’après nos expériences de calcul. Dans ce chapitre, nous proposons

donc des algorithmes heuristiques afin de résoudre CLSC.

Pour l’application de fabrication de vêtements, l’indicateur clé de performance concerne

le niveau de satisfaction de la demande. En d’autres termes, les coûts dûs au retard ou

à la non-satisfaction de la demande sont beaucoup plus importants que le coût de setup.

Notre objectif étant de résoudre le problème de planification de la production issu de

l’application, nous considérons par la suite uniquement le CLSC sans coût de setup.

Tous les algorithmes heuristiques que nous avons développés sont basés sur la formu-

lation MIP du problème. Comme montré précédemment, la formulation Form3 donne les

meilleures performances globales. Par conséquent, nous utilisons Form3 pour développer

et tester l’algorithme à chaque fois que la formulation MIP du CLSC est requise.

Nous proposons trois algorithmes heuristiques pour construire des solutions réalisables

au CLSC : l’algorithme Fix&Relax, qui est une adaptation d’un algorithme classique lar-

gement utilisé pour résoudre CLSP, l’algorithme basé sur la décomposition des produits

(PD) qui explore la structure des instances réelles, et l’algorithme heuristique avec solution

initiale basé sur la relaxation LP. L’algorithme Fix&Relax, basé sur la décomposition par

périodes et machines, résout une série de modèles MIP. De la même façon, l’algorithme

PD est basé sur la décomposition du produit, et résout également une série de modèles

MIP à plus petite échelle que ceux de l’algorithme Fix&Relax. Enfin, l’algorithme heu-

ristique avec solution initiale est basé sur la fixation des variables et résout une série de

12

modèles LP. Par conséquent, toutes les heuristiques constructives utilisent des formula-

tions mathématiques, mais avec des modèles et des tailles différentes.

Nous développons ensuite un algorithme de recherche locale pour améliorer la qualité

de la solution. Fix&Optimize (F&O) algorithm [108] est une autre méthode couramment

utilisée pour résoudre LSP. Partant d’une solution initiale, chaque itération consiste à fixer

une partie des variables, tandis que les variables restantes sont optimisées pour essayer

d’améliorer la qualité de la solution. Après chaque itération, les variables de la fenêtre

de décision sont mises à jour et le processus est répété jusqu’à ce que certains critères

soient atteints. La solution finale ne peut pas être pire que la solution initiale. L’idée est

de résoudre un problème MIP plus petit à chaque itération pour trouver une meilleure

solution.

Tous les algorithmes heuristiques à l’exception de l’algorithme F&R sont testés à la fois

sur des instances d’application réelles IAP-B et sur des instances pseudo-aléatoires IRG-

B. Les résultats de calcul obtenus sur les instances IAP-B, sont donnés dans le Tableau

3.1.

Table 3.1 – Résultats expérimentaux : algorithmes heuristiques sur IAP-B

CPLEX FSH PD FSH+FO PD+FO

Inst Obj Temps Écart Temps Écart Temps Écart Temps Écart Temps Écart

R5 35,511,200 3600 91.6 216 79.0 74 48.2 662 14.2 478 35.8
R6 1,456,011 3600 7.7 64 76.7 7 45.1 492 5.9 181 19.0
R7 2,692,957 3601 16.7 376 74.6 315 40.9 823 9.2 756 12.0
R8 2,597,838 3600 18.7 316 67.8 285 49.2 762 6.9 734 17.7

MOY 10,564,501 3600 33.7 243 74.5 170 45.9 685 9.0 537 21.1

Tout d’abord, à l’exception de CLPEX, le temps de calcul suit toujours l’ordre PD

< FSH < PD < PD + F&O < FSH + F&O sur ces 4 instances. Par contre, l’écart suit

toujours l’ordre FSH > PD > PD > PD + F&O > FSH + FO. Deuxièmement, entre

deux algorithmes heuristiques constructifs, il semble qu’un effort de calcul plus important

ne mène pas à une meilleure qualité de solution. En moyenne, le temps de calcul de FSH

est de 243 secondes alors qu’il est de 170 secondes pour l’algorithme PD. Toutefois, l’écart

moyen de l’algorithme FSH est de 74,5%, soit presque le double de celui de l’algorithme

PD (45,9%). Cependant, l’effort est payant lorsque l’algorithme constructif est suivi de

l’algorithme d’amélioration. Avec le même mécanisme de recherche locale amélioré que

l’algorithme F&O, FSH + F&O donne de meilleurs résultats que PD + F&O sur toutes les

instances. Cela implique qu’une meilleure solution de départ ne signifie pas une meilleure

solution finale pour l’algorithme F&O. Troisièmement, par rapport à CPLEX, l’algorithme

FSH + F&O et PD + F&O parvient à fournir de meilleures solutions en un temps de

calcul plus court. L’écart moyen de FSH + algorithme F&O est de 9,0% alors que l’écart

13

moyen de PD + F&O est de 21,1%. Pour CPLEX, l’écart moyen est de 33,7%. Surtout

pour l’exemple le plus difficile R5, l’écart est réduit de 91,6% (CPLEX) à 14,2% (FSH +

F&O). Ceci démontre l’efficacité de nos algorithmes heuristiques développés par rapport

à CPLEX. Pour l’application de fabrication de vêtements, une solution acceptable est

fournie dans un délai raisonnable (< 12 minutes) par notre algorithme heuristique. Enfin,

nous observons que l’algorithme F&O améliore relativement la qualité de la solution,

surtout celle obtenue avec l’algorithme FSH. Par conséquent, l’algorithme F&O reste

efficace pour résoudre LSP ainsi que pour de nombreux cas dans la littérature malgré la

simplicité de sa structure.

Pour les deux benchmark de référence, tous les algorithmes heuristiques ont un com-

portement constant sur la qualité de la solution. En résumé, l’algorithme PD ou PD +

F&O a l’avantage de la vitesse, et peut être utilisé lorsque le temps de calcul est une

ressource rare. L’algorithme FSH et l’algorithme FSH + F&O ont un temps de calcul non

négligeable, surtout lorsque la taille du problème devient trop grande. Cependant, parmi

tous les algorithmes développés, ce sont eux qui retournent la meilleure solution.

14

Chapitre 4

Problème de lot-sizing avec une

séquence fixe de produits

Dans de nombreuses industries manufacturières, le transfert de la production d’un

produit à un autre entrâıne des opérations de setup. Le setup consomme une quantité

limitée de capacité des machines et/ou engendre un coût de setup. Lorsque le setup dépend

de la séquence de production, c’est-à-dire lorsque le setup pour produire le produit actuel

dépend à la fois de lui-même et du produit précédent, on parle de setup dépendant de la

séquence [46,63]. Dans ce cas, il est nécessaire de prendre une décision pour le lot-sizing et

le séquençage. La difficulté de ce problème réside dans le nombre factoriel de séquences de

setup possibles. Toutefois, dans certaines industries manufacturières, ce nombre peut être

réduit en utilisant les connaissances des planificateurs. Dans ce chapitre, nous étudions

un cas particulier de CLSP avec setup dépendant de la séquence, appelé problème de

lot-sizing à capacité finie et séquence fixe de produits.

Definition 4.1. Étant données deux séquence ω = 〈ω1, ω2, . . . , ωn〉 et α = 〈α1, α2, . . . , αm〉
(m ≤ n+ 1), on dit que α suit l’ordre de ω, noté α � ω, si

1. αi ∈ ω pour tout i ∈ {1, 2, . . . ,m}.
2. αi 6= αj pour tout i 6= j ∈ {1, 2, . . . ,m} et {i, j} 6= {1,m}.
3. Soient i un indice tel que ωi = α1 et une séquence

β(i) = 〈ωi, ωi+1, . . . , ωn, ω1, ω2, . . . , ωi−1, ωi〉 (4.1)

Il existe un sous-ensemble Ω′ = {ωi1 , ωi2 , . . . , ωinm
} tel que

〈α1, ωi1 , ωi2 , . . . , ωin1
, α2, ωin1+1 , ωin1+2 , . . . , ωin2

, α3, . . . , αm, ωinm−1+1 , . . . , ωinm
〉 est égal

à β(i).

Les paramètres du CLSP avec une séquence fixe de produits sont donnés comme suit :

15

— N = {1, 2, . . . , N} un ensemble de N produits.

— T = {1, 2, . . . , T} un ensemble de T périodes.

— capt : capacité de la machine sur la période t.

— dit : demande de chaque produit i sur la période t.

— pti : temps de production unitaire de chaque produit i.

— hcit : coût d’inventaire unitaire de chaque produit i sur la période t.

— bit : la quantité maximale de production i qui peut être produite sur t.

— stij : temps de setup du produit i au produit j.

— scij : coût de setup du produit i au produit j.

— Une permutation de N : ω = 〈ω1, ω2, . . . , ωN〉.
Le problème CLSP avec une séquence fixe de produits, noté CLSP-FS1, consiste à

décider de la séquence de production et de la quantité de production de chaque produit

dans chaque période, de façon à ce que toutes les demandes soient satisfaites avec un coût

total minimum, tout en respectant les capacités des machines. De plus, la séquence de

setup choisie pour chaque période doit suivre l’ordre donné par ω.

Theorem 4.1. CLSP-FS1 est fortement NP-difficile.

Démonstration. Cette affirmation se démontre par réduction au CLSP.

Diverses formulations MIP pour CLSP-FS1 sont proposées. Il y a deux types de

décisions à prendre : le lot-sizing et le séquençage. Pour le lot-sizing, nous avons la for-

mulation classique agrégée et la reformulation basée sur le problème de l’emplacement

d’installations en CLSP. Pour le séquençage, nous proposons une formulation compacte

orientée produit et, une formulation orientée séquence avec un nombre exponentiel de

variables.

En fonction d’une séquence de produit, si la production suit la séquence donnée, le

setup est mineur. Cependant, lorsque nous avons besoin d’inverser les produits dans la

séquence, le setup devient majeur. Ici nous étudions un cas extrême où le setup mineur

vaut zéro et où le setup majeur est un nombre positif. Plus précisément, nous définissons

stωi,ωj
=





0 i ≤ j

∆st sinon
scωi,ωj

=





0 i ≤ j

∆sc sinon

où ∆st > 0 et ∆sc > 0. Sans perte de généralité, on peut supposer que la séquence fixe

est 〈1, 2, . . . , N〉 par réindexation. Les matrices de setup {stij}i,j∈N , {scij}i,j∈N ont alors

la structure suivante :

16




0 0 0 . . . 0 0

∆st 0 0 . . . 0 0

∆st ∆st 0 . . . 0 0
...

...
.

...
...

∆st ∆st ∆st
. . . 0 0

∆st ∆st ∆st . . . ∆st 0







0 0 0 . . . 0 0

∆sc 0 0 . . . 0 0

∆sc ∆sc 0 . . . 0 0
...

...
.

...
...

∆sc ∆sc ∆sc
. . . 0 0

∆sc ∆sc ∆sc . . . ∆sc 0




Nous faisons référence à ce cas particulier de CLSP-FS1 par la notation CLSP-FS1-LT

puisque ses matrices de setup forment des triangles inférieurs. Dans le théorème suivant,

CLSP-FS1-LT est montré comme étant NP-difficile.

Theorem 4.2. CLSP-FS1-LT est NP-difficile.

Démonstration. La preuve est basée sur une réduction à CLSP avec un seul produit.

En raison de la structure particulière, nous simplifions la formulation du MIP. Par

rapport à la formulation orientée produit du problème général, le nombre de variables

binaires est réduit de O(N3T) à O(NT).

Dans la suite, nous effectuons une étude expérimentale. Nous comparons quatre for-

mulations que nous avons développées : AG-SO, AG-PO, FL-SO, FL-PO. Les instances

de référence sont 10 instances de [63], avec seulement les 10 premiers produits et 10

périodes. De plus, aucune vente perdue n’est considérée. Par conséquent, toutes les de-

mandes doivent être satisfaites. Le résumé des résultats est donné dans le tableau 4.1.

D’après les résultats moyens sur 10 cas pilotes, nous observons que la formulation FL-

PO donne l’écart moyen le plus faible à 2,1%. D’autre part, la formulation AG-SO donne

l’écart le plus grand avec 3,8%. De plus, la formulation FL-PO possède également le temps

de calcul le plus court par rapport aux autres formulations. Pour la borne inférieure donnée

par la relaxation linéaire, la formulation FL-SO donne la meilleure borne tandis que la

formulation AG-PO donne la plus mauvaise borne inférieure. Il semble y avoir une relation

de dominance entre les relaxations linéaires de ces différentes formulations.

Table 4.1 – Comparaison des formulations : résulats computationnels

MIP LP

Inst Obj Temps Écart LB Cols Bin Lignes Noeuds Obj Temps

AG-SO 42921 600 3.8 37383 102501 102300 320 15448 11486 6
FL-SO 42200 601 2.2 40516 102851 102300 770 27462 39991 15
AG-PO 42277 581 2.4 40612 6712 6511 1312 159063 9038 0
FL-PO 42178 560 2.1 41188 7062 6511 1762 154882 37138 0

17

Chapitre 5

Conclusion générale et travaux

futurs

Dans ce manuscrit, nous avons présenté nos recherches motivées par des applications

réelles. Nous pouvons résumer les principaux résultats en deux parties.

Dans la première partie du manuscrit, nous avons étudié un problème de planification

de la production qui nous a été soumis par un projet de fabrication de vêtements. Nous

avons conçu un outil logiciel optimisé pour répondre efficacement à ce problème industriel.

Un cadre de décomposition a été développé, qui résout successivement un modèle agrégé

et un modèle détaillé.

Le problème agrégé, noté CLSC, s’avère être le goulot d’étranglement de l’approche et

a été étudié sous différents angles. Le CLSC correspond à un problème complexe de lot-

sizing à capacité finie, et il a été démontré comme étant NP-difficile, même sans les coûts

de setup. Plusieurs formules de programmation linéaire mixtes (MIP) sont développées

pour le CLSC. Afin d’évaluer expérimentalement les différentes formulations MIP, deux

ensembles d’instances de référence ont été conçus. Le premier ensemble est constitué

de données réelles, tandis que le deuxième ensemble est constitué d’instances pseudo-

aléatoires avec des caractéristiques réalistes et des propriétés différentes. Grâce à ces

évaluations expérimentales approfondies, nous avons pu constater qu’une formulation

donne de meilleurs résultats que les autres.

Les instances de taille moyenne peuvent être résolues directement à l’aide de CPLEX,

mais l’optimalité ne peut pas être prouvée pour les instances de grande taille en un

temps de calcul court. Par conséquent, plusieurs algorithmes heuristiques efficaces sont

développés à partir de phases constructives et améliorés par des phases de recherche locale.

Nous avons conçu un algorithme heuristique Fix & Relax (F&R) basé sur la relaxation

de la programmation linéaire (LP) des formulations compactes. Cette heuristique fournit

18

des solutions de bonne qualité, mais elle nécessite des temps de calcul importants. Ensuite,

afin d’obtenir des solutions de bonne qualité en un temps de calcul court, nous avons

conçu un algorithme de décomposition des produits (PD) basé sur l’observation que 20%

des familles de produits couvrent 80% des demandes (sur les instances réalistes). Nous

avons fait l’expérience d’un compromis naturel entre la qualité des solutions et le temps de

calcul en comparant les performances de F&R et PD. De plus, une heuristique constructive

est développée, appelée First Solution Heuristic (FSH). L’algorithme FSH est basé sur la

relaxation linéaire du modèle compact et la fixation des variables dans le but de construire

des solutions réalisables de bonne qualité. Grâce à des expériences de calcul intensives,

nous avons pu constater que l’algorithme PD est plus performant que l’algorithme FSH

en terme de temps de calcul et de qualité de solution (pour les instances considérées).

Cependant, nous avons observé que l’effet positif de la phase de recherche locale est plus

fort pour l’algorithme FSH que pour l’algorithme PD.

Enfin, la combinaison FSH et F&O nous permet d’atteindre la meilleure performance

globale. Dans la pratique, un écart d’optimalité maximum de 15% est observé entre les

solutions réalisables et les valeurs optimales des relaxations linéaires. Ces résultats sur-

passent l’écart d’optimalité de CPLEX appliqué directement sur les formulations com-

pactes, qui est supérieur à 90% en moyenne si l’on considère le même temps CPU d’une

heure. En ce qui concerne les instances générées aléatoirement, si l’on compare la solution

de CPLEX et celle de l’algorithme FSH + F&O, on constate une amélioration de leur

qualité de 85%. En ce qui concerne les autres heuristiques, elles sont également plus per-

formantes que CPLEX pour ce qui est du calcul des solutions réalisables en peu de temps.

Tous les algorithmes heuristiques développés ont été intégrés dans l’outil de planification

de production de DecisionBrain, améliorant ainsi l’efficacité du système d’optimisation.

Dans la deuxième partie du manuscrit, nous avons étudié une version restreinte du

problème de lot-sizing à capacité finie et setup dépendant de la séquence, où les séquences

de setup pour chaque période doivent suivre l’ordre d’une séquence donnée. Ce problème

est appelé problème de lot-sizing à capacité finie et séquence de produit fixe (CLSP-FS1).

Ce problème vient d’une application du monde réel. Par rapport au problème de lot-

sizing à capacité finie et setup dépendant de la séquence, CLSP-FS1 réduit le nombre

de séquences candidates de O(n!) à O(n2n). Dans de nombreuses applications du monde

réel, une séquence “idéale” est connue et seules les séquences suivant cet ordre peuvent

être choisies. Il est démontré que ce problème est de type NP-difficile. Quatre modèles

MIP sont développés à partir de formulations orientées séquence et produit (setup). Nous

avons effectué des tests computationnels préliminaires pour comparer ces formulations à

une reformulation classique. Nous avons observé qu’une nouvelle formulation proposée

19

garantit la meilleure performance globale pour les instances de référence testées. Pour

la formulation orientée séquence, une heuristique simple de génération de colonne a été

développée et testée. Même si la qualité de la relaxation linéaire de cette formulation

est meilleure que celle de la formulation compacte, les solutions réalisables calculées par

l’heuristique de génération de colonne sont moins bonnes que celles calculées par CPLEX

en utilisant la formulation compacte. De plus, nous avons étudié un cas particulier de

CLSP-FS1, dont les matrices de setup ont une forme triangulaire inférieure, noté CLSP-

FS1-LT. Pour cette variante du problème, si le plan de production suit l’ordre de la

séquence donnée, aucun setup n’est effectuée. Toutefois, si le plan de production inverse

l’ordre des produits dans la séquence donnée, une coût de setup important doit être

payée. Par conséquent, la décision cruciale concerne l’exécution du setup dominant (non

nulle). De plus, cette variante de problème s’avère être NP-difficile et une formulation MIP

sur mesure est développée. Comparativement à la formulation orientée produit avec des

O(N3T) variables binaires, la formulation MIP sur mesure de CLSP-FS1-LT ne contient

que O(NT) variables binaires.

Pour résumer cette thèse, nous avons abordé des problèmes complexes de planifica-

tion de la production et nous avons conçu des modèles mathématiques avancés et des

algorithmes heuristiques efficaces. Ces outils nous permettent de calculer des solutions

réalisables de bonne qualité, mais plusieurs pistes de recherche restent ouvertes.

En ce qui concerne le problème du CLSC, nous avons observé un saut d’intégrité im-

portant, de plus de 50% sur les instances difficiles IRG-B. Par conséquent, d’autres familles

d’algorithmes heuristiques peuvent être développées à partir de formulations renforcées.

Plus en détail, une ligne de recherche prometteuse peut être l’étude de la reformulation en

réseau du CLSC, ou une formulation hybride MIP pourrait aussi être développée à partir

de la littérature récemment proposée.

En ce qui concerne le problème CLSP-FS1, notre étude offre un premier regard sur ce

problème et seules des expériences préliminaires ont été menées à ce jour. Par conséquent,

nous aimerions tester les formulations développées sur des instances de plus grande échelle,

en particulier sur les instances structurées où notre modèle s’applique, et elles devraient

être comparées avec le modèle dépendant de la séquence classique.

Enfin, l’étude présentée au chapitre 2 a fait l’objet d’une publication en conférence [48].

Nous avons également lancé un autre projet concernant le problème de Temporal Bin

Pacing (TBPP). Il s’agit d’une extension du problème de bin packing, où les produits

consomment la capacité du bin pendant une période de temps seulement. Une formula-

tion polynomiale et une formulation extensive sont étudiées. De plus, divers algorithmes

heuristiques sont développés et comparés, dont l’heuristique de type gloutonne et une

20

heuristique basée sur la génération de colonnes. L’étude du TBPP a aussi fait l’objet

d’une publication en conférence [49]. Comme TBPP ne concerne pas la planification de

la production, nous ne l’avons pas incluse dans ce manuscrit.

21

Résumé

Mots Clés

Abstract

Keywords

Dans cette thèse, nous étudions deux problèmes
de planification de production motivés par des
applications du monde réel. Tout d'abord, un
problème de planification de production pour un
projet de fabrication de vêtements est étudié et
un outil d'optimisation est développé pour le
résoudre. Deuxièmement, nous étudions un
problème particulier de dimensionnement de lots
de production avec contraintes de capacités et
de paramétrages des machines dépendantes de
la séquence produite. Diverses formulations
mathématiques sont développées et une analyse
de complexité est effectuée pour donner une
première analyse du problème.

In this thesis, we study two production planning
problems motivated by challenging real-world
applications. First, a production planning
problem for an apparel manufacturing project is
studied and an optimization tool is developed to
tackle it. Second, a restricted version of the
capacitated lot sizing problem with sequence
dependent setups is explored. Various
mathematical formulations are developed and
complexity analysis is performed to offer a first
glance to the problem.

Planification de Production,
Problème de lot-sizing,
Programmation linéaire mixte
Heuristiques

Production Planning,
Lot Sizing Problem,
Mixed Integer Programming,
Heuristics

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Industrial and Scientific Context
	Introduction
	Production Planning: Lot Sizing Problem
	Production Planning in An Apparel Manufacturing Application
	An Apparel Manufacturing Application
	Production Planning Problem Modeling

	Contributions

	Complex Capacitated Lot Sizing Problem: Formulations and Benchmarks
	Problem Definition
	Literature Review
	MIP Formulations
	Benchmark Instances
	Benchmark IAP: Real-World Instances and Data Analysis
	Benchmark IRG: Pseudo-Randomly Generated Instances

	Empirical Evaluations
	MIP Formulation Comparison Considering Setup Cost
	MIP Formulation Comparison without Considering Setup Cost
	Impact Analysis of Problem Features
	Computational Results on Benchmark IAP-B and IRG-B

	Conclusions

	Complex Capacitated Lot Sizing Problem: Heuristics
	Introduction
	Constructive Heuristic Algorithms
	Fix&Relax Algorithm
	Product Decomposition Based Algorithm
	First Solution Heuristic Algorithm Based on LP Relaxation

	Fix&Optimize algorithm
	Computational Results
	Algorithm Parameter Evaluation
	Algorithm Comparison Results

	Conclusions

	Production Planning Solution to the Apparel Application
	Decomposition Approach
	Application Performance Analysis
	Conclusions

	Capacitated Lot Sizing Problem with A Fixed Product Sequence
	Capacitated Lot Sizing Problem with Sequence Dependent Setup
	Problem Definition
	Problem Formulation
	A Special Case Study
	Column Generation Approach
	Computational Results
	Conclusions

	General Conclusion and Future Work
	Appendix Data Analysis and Computational Results
	CLSC Computational Results
	CLSP-FS1 Computational Results

