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Abstract

In this thesis, we study two production planning problems motivated by challenging
real-world applications.

In the first part of this manuscript, a production planning problem for an apparel
manufacturing company is studied and an optimization tool is developed to tackle it.
We propose a decomposition framework composed by an aggregated model and a de-
tailed model, which are solved in sequence. The aggregated problem is shown to be
the bottleneck of the approach, which corresponds to a complex capacitated lot sizing
problem with setup carryover, parallel machines, production time windows, backlogging
and lost sales. This problem is shown to be NP-hard even without the setup costs.
Several Mixed Integer Programming (MIP) formulations are proposed and compared
from a theoretical and a computational point of view. Moreover, several constructive
and local search heuristics are developed to find good quality solutions for large scale
instances. We propose two sets of benchmark instances to evaluate the performances of
the models and the heuristics. Thanks to extensive computational tests, we showed that
the constructive heuristic (called First-Solution Heuristic) together with a Fix&Optimize
algorithm is able to compute the best solutions in terms of optimality gap. Finally, the
whole production planning approach is presented and its performance is analyzed.

In the second part of this manuscript, a restricted version of the capacitated lot sizing
problem with sequence dependent setups is studied, where the setup sequences for each
time bucket have to follow the order of a given sequence. Compared to the capacitated
lot sizing problem with sequence dependent setup, the new model reduces the number
of candidate setup sequences from O(n!) to O(n2™) where n is the number of products.
This problem is shown to be NP-hard. A special case with only two possible setup values
is studied and we prove that also in this case the problem remains NP-hard. Moreover,
product-oriented and sequence-oriented MIP formulations are developed. A column gen-
eration heuristic is also proposed based on the sequence-oriented formulations. Finally,

we perform computational tests to evaluate their respective computational performance.
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To my dearest grandfather Shen Fengzhi.



“Don’t worry, Gromit. Everything’s under control!”

— The Wrong Trousers, AARDMAN ANIMATIONS, 1993
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Chapter 1

Industrial and Scientific Context

In this manuscript, our research focuses on production planning. The problem is to
optimize production plan in manufacturing industry to achieve high customer service
level and cost efficiency. Due to our industrial background, we have been exposed to
various types of real-world applications. Therefore, all our research is motivated by real-
istic requirements that we have encountered in building industrial production planning
solutions. First, we have studied a production planning problem from apparel manu-
facturing industry. This problem is brought to our attention by a project that we have
worked with a market leader in the apparel industry, which produces 60% of the T-shirts
sold in the US. Our research result, including modeling and algorithm design, has been
implemented inside the engine of their production planning and scheduling software and
improves the daily production efficiency. Second, we have studied a restricted version of
a classical production planning problem: capacitated lot sizing problem with sequence
dependent setups, which is known to be hard to solve. This newly proposed model con-
siders the planners knowledge in certain industries and therefore simplifies the classical
model. By doing so, there is a better chance to deliver reasonable production planning
solutions for industries where our model is applicable.

This chapter is organized as follows: In Section we present our research back-
ground and introduce our study interest at production planning. In Section [1.2] we
describe a general picture of production planning, i.e., lot sizing problem. In Section
the real-world application of production planning problem in apparel manufacturing
is introduced. Finally, we summarize major contributions of our research in Section

as a reading guide for the rest of this manuscript.
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1.1 Introduction

Our research is performed under the CIFRE program (Conventions Industrielles de For-
mation par la REcherche) [30]. Therefore, it is a collaboration between Paris Dauphine
University and DecisionBrain (https://www.decisionbrain.com). DecisionBrain is a soft-
ware company that delivers advanced analytics and optimization solutions to innovative
companies who want to apply a scientific approach to decision making. Building pro-
duction planning and scheduling solution is one of DecisionBrain’s expertise.

Generally speaking, production planning is to decide the production for a future
period of time (planning horizon) given limited resources and/or production restrictions
to achieve optimal customer service level and cost efficiency. Here is a small example
modified from [I0§] to illustrate the concept. An apparel manufacturer produces different
types of costumes. One specific type of costumes requires a high setup cost due to the
special technique and equipment needs, therefore at most one batch can be produced
in one month. Given 200 units of stock at the end of the year, the goal is to plan the
production of this costume for the next 8 months (January to August) to minimize the
cost while satisfy all forecasted demands. The cost includes: setup cost as $5000 if there
is a positive production in a month, unitary processing cost $100, and unitary inventory
cost $5. The demand forecast for the next 8 months is given in Table and we need

to decide the production quantity for each month.

Table 1.1: Production planning example: demands

Jan Feb Mar Apr May Jun Jul  Aug

400 400 800 800 1200 1200 1200 1200

If it is only to minimize the manufacturing cost (setup cost and production cost),
we can produce only once in January to satisfy total demands till August. The solution
is given in Table and the total cost equals to $859,000. This cost includes $700,000
(7,000 x 100) processing cost, $154,000 (30,800 x 5) inventory cost and $5,000 (5,000 x
1) setup cost. If it is only to minimize the inventory cost, we can follow the just-in-time
rule and produce in each month the amount it requires. The total cost becomes $740,000
and the solution is given in Table However, if it is to minimize the overall cost, the
optimal solution has total cost equals to $736,000 and the optimal solution is given in
Table In the optimal solution, there are two months (February and April) that have

no production.
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Table 1.2: Production planning example: minimum manufacturing cost solution

Jan Feb Mar Apr May Jun Jul Aug Total
Demand 400 400 800 800 1,200 1,200 1,200 1,200 7,200
Production 7,000 0 0 0 0 0 0 0 7000
Proc. cost 700,000 0 0 0 0 0 0 0 700,000
Setup cost 5,000 0 0 0 0 0 0 0 5,000
Inventory 6,800 6,400 5,600 4,800 3,600 2,400 1,200 0 30,800
Inv. cost 34,000 32,000 28,000 24,000 18,000 12,000 6,000 0 154,000

*Initial inventory = 200

Table 1.3: Production planning example: minimum inventory cost solution

Jan Feb Mar Apr May Jun Jul Aug Total
Demand 400 400 800 800 1,200 1,200 1,200 1,200 7,200
Production 200 400 800 800 1,200 1,200 1,200 1,200 7000
Proc. cost 2,000 4,000 8,000 8,000 12,000 12,000 12,000 12,000 700,000
Setup cost 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 40,000
Inventory 0 0 0 0 0 0 0 0 0
Inv. cost 0 0 0 0 0 0 0 0 0

*Initial inventory = 200

Table 1.4: Production planning example: minimum overall cost solution

Jan  Feb Mar  Apr May Jun Jul Aug Total
Demand 400 400 800 800 1,200 1,200 1,200 1,200 7,200
Production 600 0 1,600 0 1,200 1,200 1,200 1,200 7,000
Proc. cost 60,000 0 160,000 0 120,000 120,000 120,000 120,000 700,000
Setup cost 5,000 0 5,000 0 5,000 5,000 5,000 5,000 30,000
Inventory 400 0 800 0 0 0 0 0 1,200
Inv. cost 2,000 0 4,000 0 0 0 0 0 6,000

*Initial inventory = 200

Even in this toy example, we can have an insight of the benefit that production
planning may bring to the industry. Kellogg Company reports annual cost savings of
4 million dollars by performing optimization to plan the production and distribution
decisions for its cereal and convenience foods business [108]. Thanks to the development
of IT technology and commercial optimization software, it becomes possible to tackle
large scale real-world production planning problems using optimization. Therefore, more

and more companies start to realize that introducing scientific method to optimize the
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decision process could have a non-negligible impact on their profits and competences.
Another reason of the tremendous interest shown in literature in production planning
is that different manufacturing industry implies different production planning problems.
Therefore production planning problems occur with many variations each with its own
complexity and challenges. For instance, to the best of our knowledge, production
planning problems studied in this manuscript have never been addressed before.

There are several production planning projects explored in DecisionBrain from dif-
ferent industries, such as apparel manufacturing, semi conductor assembling and test-
ing, and disposable table-ware production (Figure . Research presented in this
manuscript is mainly motivated by the project with an apparel company, which is to
build a production planning and scheduling software to arrange mid term and short term
productions. The details of this application is presented in Section [1.3] But first of all,
we give a general introduction on the production planning problem in Section [I.2] which

is also referred as lot sizing problem.

Figure 1.1: DecisionBrain production planning applications

1.2 Production Planning: Lot Sizing Problem

Lot sizing problem

Lot Sizing Problem (LSP) is to plan production resources and activities, especially de-

termine production quantities, to achieve the economical cost and/or more intangible



CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 5

objectives such as customer service level. The history of LSP can be traced back to the
publication of Harris [71], which proposes the Economic Order Quantity (EOQ) model.
This problem has continuous time model with infinite time horizon, and all parame-
ters such as demand quantity and inventory holding cost are constant. The solution of
this problem can be obtained by a formula directly. Later, different extensions of EOQ
have been studied such as Economic Lot Scheduling Problem (ELSP), which extends the
problem to multi-item and considers capacity constraints. It is shown to be NP-hard in
Gallego and Shaw [52]. However, both EOQ and ELSP consider constant parameters,
which is not always the case in real applications. The Wagner-Whitin (WW) model was
studied in the seminal papers of Wagner and Whitin [I31] and Manne [96] in late 50’s.
In this model, the planning horizon is decomposed into time buckets and demand quan-
tities vary with time buckets. Therefore, the WW model extends constant parameters
to dynamic parameters varying with time and thus is referred to dynamic LSP.

The WW model is defined as follows: Given a planning horizon with 7" time buckets,
let d¢ be the product demand quantity for each time bucket ¢ € {1,2,...,T}. The unit
inventory holding cost is h;. Moreover, in each time bucket, to produce a positive quan-
tity of products, there is a setup cost sc;. The problem is to determine the production
quantity in each time bucket so that all demands are satisfied with minimum cost. This

problem can be formulated as follows:

T
min g hely + sciz
t=1

st. Ly +xp=di+ I tE{l,Q,...,T}
(1.1)
Io=1Ip =0
x < bz tE{l,Z,...,T}

zeRY, TeRIM 2 € {0,1}7

where b; is the maximum production quantity in time bucket ¢.

Different classification schemes are used in literature reviews of LSP such as De Bodt
et al. [33], Drex] and Kimms [40], Staggemeier and Clark [123] and Guner Goren et al.
[64]. One of the classification scheme divide LSP from two dimensions: models with
stationary or dynamic parameters, models with deterministic or stochastic parameters
(see Figure . According to this classification scheme, the EOQ and ELSP will lie
in the stationary model whereas the WW model and its extensions lie in the dynamic

model.
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Lot-sizing
problems

[
I |

Stationary model Dynamic model
parameters parameters

l—l—ll—‘—\

Deterministic Stochastic Deterministic Stochastic
models models models models

SDLS SSLS DDLS DSLS

Figure 1.2: Technical structure of lot sizing problem in Glock et al. [55]

In this manuscript, our focus is the deterministic extensions of the WW model, which
is Deterministic Dynamic LSP with finite time horizon (DDLS). Giving a comprehensive
survey on the literature of DDLS becomes an “impossible mission” due to the flourish
research in this domain. For more than half a century development of DDLS, more
than 30 literature review papers and books have been published and even two reviews
of literature reviews on production planning and inventory management are given by
Glock et al. [55] and Guiffrida et al. [62]. To avoid duplication but still provide a set of
references for interested readers, we summarize the survey papers related to DDLS in
Table They are from Glock et al. [55] and Guiffrida et al. [62] together with several
papers and books that we believe worth mentioning.

Some papers are not included in the table since their focus is not lot sizing problem.
For example, Gelders [53] mainly focuses on the state of the art progress in the production
planning, where LSP takes only one section. It covers the WW model, multi-level
uncapacitated LSP, capacitated LSP and ELSP, mainly from the perspective of heuristic
algorithms. Bitran and Yanasse [17] studies the capacitated LSP and gives complexity
analysis over various cost structures. Nahmias [I0I] gives an overview of the perishable
ordering policy, only one paper about deterministic LSP is mentioned, which has random

decay.



Table 1.5: Overview of review papers of deterministic dynamic LSP

Reference

Content

Classification

Aggarwal [5]

De Bodt et al. [33]

Bahl et al. [13]

Aksoy and Selcuk Erenguc [7]

Maes and Wassenhove [95]

Zoller and Robrade [137]

Gupta and Keung [66]

Raafat [1171]

Kuik et al. [91]

Wolsey [132]
Benton and Park [16]

Drex!] and Kimms [40]

Goyal and Giri [61]

Rizk and Martel [113]

General view of inventory models.

Dynamic LSP with constant costs over time.

General review from both practitioner and research based
literature.

Multi-item single stage inventory systems with joint setup
costs.

Classification and computational review on heuristic algo-
rithms of the multi-item single-level capacitated LSP.

A review and experimental comparison of algorithms of the
WW model with rolling horizon.

Multi-stage lot-sizing.

Mathematical modelling of deteriorating inventory system
especially deterioration as a function of the on-hand level of
inventory.

General view on models.

Single item uncapacitated LSP.

LSP with several types of discount schemes.

General review of the LSP and scheduling.

The deteriorating inventory literature review as a continua-
tion of Raafat [11I].
Material flow planning in a supply chain, and in particular

with deterministic lot-sizing methods.

Dynamic/static model, number of items, number of loca-
tions and echelons, characteristics of demand, research ob-
jective.

Fixed/rolling horizon, deterministic/probabilistic model,
single/ multi level.

Single/multi level, unconstrained/constrained resources.

Deterministic (static/dynamic models) and stochastic (con-
tinuous review/periodic review).
Single-resource heuristics (special-purpose methods), and

mathematical-programming-based heuristics (general).

Constant/dynamic demands, rolling horizon.

Deteriorating features, LSP features.

Strategic/tactical/operational, modeling elements in the

LSP (such as planning horizon, static/dynamic demands).

Four discount types are surveyed from both the buyer point
of view and the supplyer point of view.

Single/multi level. For the single level, discrete time and
continuous time model are considered.

Shelf life, demand variations and other conditions or con-
straints.

Single/multiple facility, single/multiple level, single/ mul-
tiple items, capacitated/uncapacitated, deterministic/

stochastic, static/dynamic demand.

T HAILAVHD
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Table Overview of review papers of deterministic dynamic LSP (continue)

Reference

Content

Classification

Staggemeier and Clark [123]

Karimi et al. [88]

Brahimi et al. [22]

Pochet and Wolsey [108]

Zhu and Wilhelm [136]

Jans and Degraeve [84]

Jans and Degraeve [85]

Quadt and Kuhn [I09]

Allahverdi et al. [§]
Robinson et al. [114]

Buschkiihl et al. [25]

Guner Goren et al. [64]

LSP and scheduling models and its algorithms.
Models and algorithms of capacitated LSP with single level.

Single item LSP.

Mixed integer programming formulations for the LSP and
its variants
LSP and scheduling with sequence dependent setup.

An overview of the use of meta-heuristics for solving LSP.

Modeling deterministic single-level dynamic LSP based on

various industrial extensions.

Extensions of the capacitated LSP: back-orders, setup carry-
over, sequencing, and parallel machines.

LSP with setup cost and setup times.

Updates the review by Aksoy and Selcuk Erenguc [7] of the
coordinated LSP.

Mainly survey the algorithms for the dynamic capacitated

LSP for single level and multi level.

A review of applications of genetic algorithms in LSP.

Time period, multi machines and other constraints.
Planning horizon, number of levels, number of prod-
ucts, capacity or resource constraints, deterioration
items, static/dynamic/deterministic/stochastic demand,
setup structure, inventory shortage.

Big/small time buckets, uncapacitated (extensions such as
backlogging, multiple facilities) and capacitated (different

cost structures).

Algorithm representation, evaluation, neighborhood defini-
tion and genetic operators.

Basic LSP models and their extensions from two directions:
modeling the operational aspects in more details, or is more
towards tactical and strategic models.

Back-orders, setup carry-over, sequencing, and parallel ma-

chines.

Single/multiple items, coordinated/uncoordinated setup
cost structures, capacitated/uncapacitated.

Mathematical programming heuristics, Lagrangian heuris-
tics, decomposition and aggregation heuristics, metaheuris-
tics, problem-specific greedy heuristics.

Static/dynamic, single/multi level, capaci-

tated /uncapacitated
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Capacitated Lot sizing problem

Among all problems in the domain of DDLS, our focus is at one type of LSP which
considers the limited resource/machine capacity, called Capacitated Lot Sizing Problem
(CLSP). Considering different features and cost structures will lead to different types
of CLSP. Based on problems studied in this manuscript, we introduce the CLSP model

with following parameters:

e N ={1,2,...,N} aset of N products.

T ={1,2,...,T} aset of T time periods.
e cap;: machine capacity in each time period t € T.

di;: demand of each product i € NV in time period t € T.

e pt;: unitary production time of each product i € N.

heig: unitary inventory cost of each product ¢ € N in time period ¢t € T.

e b;;: maximum amount of production i that can be produced int € T.
e st;: setup time to product i € N.
e sc;: setup cost to product i € V.

CLSP is to decide the production quantity of each product in each time bucket so that
all demands are satisfied with a minimum total cost while respecting machine capacities.
Due to the capacity constraints, the problem is shown to be NP-hard even when
there is only a single product by Florian et al. [47] and Bitran and Yanasse [17]. In
the case of multiple products, Chen and Thizy [28] proved that it is strongly NP-hard.
Karimi et al. [88] have done a nice survey focusing on CLSP with production cost and
its solution approaches. Quadt and Kuhn [109] have provided a survey of CLSP with
extensions including back-orders, setup carryover, sequencing and parallel machine.
Developing mathematical formulations is the very first step of our research since
problems studied in this manuscript have not been studied before to the best of our
knowledge. Therefore, in this section, we recall three Mixed Integer Programming (MIP)
formulations of CLSP that have been studied and often adapted to other extensions of
CLSP in the literature. These formulations are aggregated formulation, facility location

formulation and network formulation.



CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 10

Aggregated (AG) formulation is an intuitive formulation and was proposed by
Trigeiro et al. [129]. We introduce following variables for each product i € N and time
bucket t € T

o 1; € Ry: quantity of product ¢ produced in time bucket ¢;
e [;; € R,: inventory of product ¢ at the end of time bucket ¢;
o zi; € {0,1}: it equals to 1 if product 7 is produced in time bucket ¢, 0 otherwise.

The formulation is given as follows:

min Z heg Iy + Z SC; Zit (1.2)

iENLET ieNteT

st Lig—1 +ai = I +dy ieN,teT (1.3)
Zptz‘xz‘t + Z 5CiZip < capy teT (1.4)
ieN ieN
Tit < bitzit ieN,teT (1.5)
xit, it >0, I;p =0 ieN,teT (1.6)
zir € {0,1} ieEN,teT (1.7)

The objective function is to minimize the total cost including inventory cost
Zie NteT heitl;+ and setup cost Zie N teT SCiZit- Constraints ensure material bal-
ance for each product ¢ in each time bucket ¢ that the total inflow (last bucket ending
inventory and production quantity) equals to the outflow (demand d;; and ending in-
ventory). Constraints guarantee the capacity usage does not exceed the available
capacity in each time bucket. Finally, constraints link production with setup:
there is only a production if there is a corresponding setup for each product in each time
bucket.

Facility Location (FL) formulation was first proposed by Krarup and Bilde [90]
for cases without capacity restrictions. It is also referred as the transportation problem
formulation [34] and simple plant location formulation [90]. Later it has been adapted
to other LSP [124]. We introduce decision variables as follows for each product i € N,
time bucket ¢,k such that t < k € T

e 1, € Ry: quantity of product ¢ produced in time bucket ¢ to satisfy demand in

later time bucket k;

o ziy € {0,1} is defined as before, it equals to 1 if product ¢ is produced in time

bucket ¢, 0 otherwise.
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The formulation is given as follows:

min Z heg Z Z Tisk | + Z SC; Zit (1.8)

ieNteT s€T:s<t keT t<k ieEN teT

s.t. Z Tikt = dik 1€ N,t eT (19)

keT k<t

Zpti Z Tk | + Z stizir < capy teT (1.10)

EN keT t<k iEN teT

Ty < min{bi, ik }2it ieN,teT, t<keT (1.11)
Ttk > 0 ieN,teT (1.12)
zit € {0,1} ieN,teT (1.13)

There is a direct link between variables introduced in AG model and those introduced

in FL formulation:

Tip = Z Ttk Iiy = Z Z Tisk

keT t<k s€T :s<tkeT:t<k

Therefore, the objective function is a simple substitution. Constraints state that
the total production quantity dedicated for demand d;; equals to the demand quantity.
Constraints link the production quantity x;; with the corresponding setup z.
Here the upper bound of z; is no greater than the upper bound of x;, which is the
main reason that FL is stronger than AG formulation in the sense of better lower bound
from Linear Programming (LP) relaxation. The price for the tighter lower bound is the
number of variables, which is increased to O(NT?).

Network (NW) formulation was first proposed by Eppen and Martin [42]. It
is also referred as shortest path/route formulation [34, 122]. We introduce decision

variables as follows for each product i € N, time bucket ¢, k such that t < k € T

o uyy € [0,1]: fraction of total demand from time bucket ¢ through k of item ¢ that

is produced in t;

e 2y € {0,1} is defined as before, it equals to 1 if product ¢ is produced in time

bucket ¢, 0 otherwise.

We also define following constant for simplicity of the formulation:

k k
Ditk = div, Hir= Y hiwv1Dik, Ip,, =
v=t v=t+1

{ 1 if Dyp > 0

0 otherwise
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The formulation is given as follows:

min Z Hiouwi + Z 8¢ Zit (1.14)

1EN GET keT k>t 1ENteT
s.t. Z pti Dipptier + Z stizi < capy teT (1.15)
1EN EET k>t ieENteT
Zuilt =1 ieN  (1.16)
teT
Z Uj ft—1 = Z With 1€ N, l<teT (1.17)
keT :k<t—1 keT k>t
> Ip ik <z ieN,teT  (1.18)
keT k<t
Ui > 0 iteN,teT (1.19)
zit € {0,1} ieN,teT (1.20)

The formulation is easier to understand if we see variables u; only as binary value.
Then based on the proof in [42], the formulation is still valid when w; € [0, 1]. When
usr, = 1, its corresponding production quantity equals to Dy, and inventory cost equals
to Hj;. The objective function is still to minimize the inventory cost and setup
cost. Constraints ensure capacity restriction in time bucket ¢t. Constraints
and represent flow balance constraints for the source node and other nodes in the
underlying network. Constraints link production with its corresponding setup for
each product ¢ in time bucket .

FL and NW models are stronger reformulation of AG model for CLSP. Nemhauser
and Wosley [104] has shown that in the uncapacitated case, both LP relaxations of FL
and NW define the convex hull of the problem. Denizel et al. [34] further proved the
equivalence of the LP relaxations of FL. and NW formulations for CLSP with constant
unitary inventory cost h;. They also point out that FL formulation has more constraints
while its constraint matrix is less dense and has smaller coefficients, therefore different
characteristics may be exploited to choose between these two reformulations.

In the next section, we start from another perspective and introduce the real-word

application that motivates the first part of our research.

1.3 Production Planning in An Apparel Manufacturing
Application

The main problem studied in this manuscript is brought to our attention by a project

in manufacturing industry. The company is a market leader in the apparel industry,
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which produces 60% of the T-shirts sold in the US. On-time delivery, low production
and shipping cost is a critical competitive advantage for the company. To achieve this
goal on such large scale, it is essential to optimize production planning and scheduling
to perform efficient production. To model and solve the underlying production planning
problem, we need to first understand the manufacturing procedure and bottlenecks in
this particular case study. Hence, in Section [I.3.1] we first present the apparel company,
its manufacturing procedure and bottlenecks. In section [1.3.2] we present the modeling
of the problem, which leads to the CLSP studied in Chapters [2|- [4

1.3.1 An Apparel Manufacturing Application

The company has 10 manufacturing plants over Asia, however, they are independent on
the production planning and scheduling level. Therefore, the problem scope is considered
as a single plant. A plant layout example is shown in Figure [I.3] In each plant, there
are several work centers, each of which corresponds to a production operation. In other
words, to produce one piece of clothes, it has to go through several work centers to finish.
Moreover, there are normally more than one machine in each work center. Therefore,
the production planning has to decide the production quantity for each production line.
This implies parallel machines in the underlying lot sizing problem and leads to the first

difficulty of the problem.

Y
WorkCenter 2

WorkCenter 3

WorkCenter 1

Machine6

| Machine3 | | Machine4 | Machine5

Machine2

Machine1

Figure 1.3: Apparel manufacturing application: plant structure

To produce one piece of clothes, all or some of following operations have to be done in
sequence which includes cutting, embroidery, sewing, washing, ironing/dipping, packing
and cartoning. In Figure|l.4] we show the entire manufacturing processes. Each product
has a specific production routing. Some orders will route through all the operations,
while some orders may skip certain operations (such as washing). On the other hand,
some orders will go through the ironing operation, while some orders will go through

dipping operation instead. Among all these processes, we could identify a bottleneck
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step, which is the sewing process. This is not only because that it mainly depends on
workers instead of machines but also because that it consumes most of the time during
the production cycle. Due to this reason, we only model the production planning on the
sewing process, which leads to the lot sizing problem with single level. Sewing process is
the craft of fastening or attaching objects using stitches made with a needle and thread.
There are about 20 to 60 sewing lines in each plant. Each sewing line is a group of
sewing workers who share the same working shift schedule. Different sewing lines may
have different number of workers and different working hours per day, which results
in different machine capacities in the lot sizing problem. This together with multiple
productions lines leads to the second difficulty because all parallel machines are not

identical.

Raw » _
material 7{

W AR

L (Vg
Embr:

butting

Pars

S s {
Finished « F « R
goods S N
Cartoning Lgé'

Ironing/Di
pping

Figure 1.4: Apparel manufacturing application: production procedure

As an apparel company, it produces different types of products such as T-shirts, pants
and costumes. In fact, each client demand corresponds to one particular product. This is
the third difficulty of our problem that 400 to 1000 products have to be produced in the
realistic instances. Different products have different unitary processing time therefore
can not be aggregated directly.

Products can be grouped into about 400 different styles in total, which can be further
grouped into about 50 style families (currently they are regrouping them to 150+ style
families). On a sewing line, changing the style family from one to another requires a
setup and an efficiency loss, which is known as learning curve. In this application, the
learning curve is given as a list of worker efficiency over 10 working days instead of a
function (see example in Table [1.6)). Given a product, the processing time of sewing is
given by the time needed to process one item divided by the efficiency of the sewing line

(which is 1 maximum). To achieve the best efficiency, the same style family is usually
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kept for a few days (1 to 2 style families per week) on a sewing line. For small orders,
style family can be changed daily. Within the same style family, a style change will also
cause a setup cost and setup time, which is minor comparing to style family change.
This leads to the fourth difficulty of our problem that setup is sequence dependent, i.e.,
it depends not only on the current product but also the previous product. LSP with
sequence dependent setup is known to be very hard to solve since there is Traveling

Salesman Problem embedded inside.

Table 1.6: Apparel manufacturing production: learning curve example

Day Dayl Day2 Day3 Day4 Dayb5 Day6 Day7 Day8 Day9 Dayl0

Efficiency 0.6 0.65 0.7 0.8 0.9 1.0 1.0 1.0 1.0 1.0

Each sales order, i.e., demand, specifies the product required, the quantity, the ship-
ping destination and the due date. It is allowed to delay the delivery or even cancel
the delivery of a sale order, however, corresponding penalty will be charged accordingly.
There are two levels of tardiness cost. The first level corresponds to a shipment cost by
airplane instead of maritime to catch up the due date. The second level corresponds to
a compensation for the orders delivered too late. This leads to a different model from
classical LSP that we have introduced in Section that demands can be delayed or
lost with penalty cost, and the cost is defined during a interval. This feature is often
referred as lost sale and backlogging in the literature.

Some aspects are out of the scope of this project. First, the ordering and management
of raw material. The existing MRP system will generate the earliest available date for all
the raw materials in an order. This date will be used as the earliest possible start time
for an order. Second, demand forecasting. All work orders confirmed or forecasted are
treated the same as an input to our system. However, as one way to reduce uncertainty,
forcasted demands also have a start date to prevent them from producing too early.
Therefore, we have a release date for each demand that only after which the production
for this demand can start.

To make use of the planning resources efficiently, the company would like to plan its
production activities for a future period of time, which is called planning horizon. The
duration of the planning horizon considered is between 24 weeks to 56 weeks. The major
objective of the production planning includes: maximization of the on-time delivery rate,
minimization of the late shipment cost (including expediting transportation cost and
sales loss cost), minimization of the learning curve loss and setup costs on the sewing

lines. The minimization of the labor cost (due to overtime) is also one goal which is not
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considered in the project currently.

1.3.2 Production Planning Problem Modeling

To be able to optimize the production planning in this apparel project, we first have
to extract the mathematical model out of the context. Modeling large scale real-world
application is always a trade-off between accuracy and solvability, and often has a big
impact on the solution quality. In Table we present the mapping between the
application aspects presented in previous section to a lot sizing problem we will study

in following chapters.

Table 1.7: Modeling apparel production planning to lot sizing problem

Application Lot sizing Problem

Planning horizon 20 - 30 weeks Weekly time buckets

7 production process step Bottleneck sewing process, single level LSP
Multiple sewing production lines Non-identical parallel machines

300 - 1000 products, 1 - 80 style families Aggregated product for each style family
Sequence dependent learning curve Setup carryover

Demand release date Production time window

Demand can be lost or delayed Lost sales and backlogging

Lot sizing problem with up to seven levels is very complex. Therefore, we only model
the bottleneck process and study the single level LSP. Modeling setup and learning
curve accurately on the sewing production line will dramatically increase the problem
complexity. In order to achieve reasonable performance, we simplify the problem in the
production planning level and deal with them in the scheduling phase. First, all setup
between styles within the same style family is ignored. Second, each learning curve is
transformed to a total capacity loss. In our example in Table the efficiency loss
equals to (1 —0.6) + (1 —0.65) + (1 —0.7) + (1 —0.8) + (1 — 0.9) = 1.35. Then the
capacity loss will be 1.35 x datlyCapacity and the new setup time equals to capacity
loss, which depends on both products and production lines. Third, we relax the sequence
dependent setup to setup carryover so that the model still prefers to keep the same style
family on a production line, but with less complexity.

In summary, the lot sizing problem based on this project consists of single level
production, multiple products, parallel machines, backlogging, lost sale, production time
window and setup carryover. To the best of our knowledge, this problem is first studied
in this manuscript. We will formally define the problem and perform study on it in the

following chapters. In the next section, we summarize our major contributions.



CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT 17

1.4 Contributions

In this section, we provide a contribution summary of our research, which can be used
as a reading guide for the rest of this manuscript.

First of all, a complex capacitated lot sizing problem with setup carryover is formu-
lated and studied, which is based on the real-world application introduced in Section
The problem is shown to be NP-hard and different MIP formulations are proposed
in Chapter [2l Two sets of benchmark instances are presented to evaluate these formu-
lations. One set consists of real-world application instances, whereas the other set is
pseudo-randomly generated and simulates characteristics observed from real-world in-
stances. The computational results show that the problem can not be solved within rea-
sonable time limit by the standard MIP solver CPLEX. Therefore, heuristic algorithms
are developed to tackle this problem in Chapter Both constructive and improving
heuristic algorithms are developed. We perform experimental tests to evaluate perfor-
mances of all developed heuristic algorithms and show the efficiency of our algorithms
compared to the standard MIP solver CPLEX. In Chapter |4, our study results are im-
plemented in the production planning engine for the apparel company and we show the
complete industrial production planning solution.

Second, a special case of capacitated lot sizing problem with sequence dependent
setup is studied in Chapter [5, which is called CLSP with a fixed product sequence. In
many manufacturing industry, switching production from one product to another will
cause setup operations. The setup will consume limited machine capacity and/or cause
a setup cost. When the setup depends on the production sequence, i.e., the setup to
produce current product depends on both itself and the previous produced product, it
is called sequence dependent setup [40, [63]. In this case, both lot sizing and sequencing
decisions have to be made. The difficulty of this problem lies in the factorial number of
setup sequence candidates to be chosen from for each time bucket. However, in certain
manufacturing industries, this number may be reduced if we restrict the model based on
the planners’ knowledge. We consider a restricted model in which the number of potential
setup sequences is reduced to O(n2™) compared to O(n!) for the CLSP with sequence
dependent setups. The problem is shown to be NP-hard, and a column generation
heuristic is developed. A set of benchmark instances is tested and computational results

are presented to evaluate the algorithm performance.



Chapter 2

Complex Capacitated Lot Sizing
Problem: Formulations and

Benchmarks

A complex capacitated lot sizing problem is constructed from the apparel manufactur-
ing application presented in the previous chapter. This capacitated lot sizing problem
consists of complex features including parallel machines, production time windows, back-
logging, lost sales and setup carryover [48]. These features have been studied in different
context of lot sizing problems. However, to the best of our knowledge, they are first
considered together in this application. In this chapter, we formally define, formulate
and analyze the problem.

The chapter is organized as follows: In Section we formally define the complex
capacitated lot sizing problem. In Section we present the literature review of lot
sizing problem closely related to our problem classified by features. In Section four
mixed integer programming formulations are proposed and compared theoretically. In
Section benchmark instances are presented, including both application instances
and pseudo-randomly generated instances with realistic characteristics. In Section
computational results are presented to evaluate developed formulations. Finally, we

conclude in Section 2.6l

18
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2.1

Problem Definition

Input parameters of the problem are:

T ={1,2,...,T}: set of time buckets.

R =1{1,2,...,R}: set of resources/machines.

N ={1,2,...,N}: set of products.

D =1{1,2,...,D}: set of demands.

capyy: capacity of machine r in time bucket t (r € R, t € T).
pt;: unitary processing time of product i (i € N).

sti: setup capacity for product ¢ on machine r (i € N;r € R).
scip: setup cost for product ¢ on machine r (i € N,r € R).

pa € N: required product of demand d (d € D).

qq: quantity of product pg required by demand d (d € D).

by € T: release date of demand d (d € D).

el € T first due date of demand d (d € D). No extra cost in interval [bq, e}).

e € T: second due date of demand d (d € D).

tch: unitary tardiness cost of demand d satisfied at or after e} (d € D).
tc2: unitary tardiness cost of demand d satisfied at or after €2 (d € D).
lcg: unitary lost sale cost of demand d (d € D, lcq > tcl + tc).

D! C D: the subset of demands such that pg = i, i.e., D' := {d € D|py = i}.

19

The problem is to decide for each machine r € R and in each time bucket ¢t € T,

how much to produce of each product i € A. The objective is to minimize the total

cost including lost sale cost, tardiness cost and setup cost. The restriction includes three

parts: first, the machine capacities cap,+ must not be exceeded by the capacity usage for

each machine r € R and time bucket ¢ € T; second, the production to satisfy demand d

can only start from its release date; last, setup carryover is considered. This means that

to produce product ¢ on machine r during time bucket ¢, there has to be a setup for i



CHAPTER 2. CLSC FORMULATIONS AND BENCHMARKS 20

on r during t. However, if product ¢ is the last product produced in the previous time
bucket £ — 1 on machine r, there is no setup needed to produce product ¢ on machine r

during time bucket ¢ anymore.

Setup Production

t—1 t t+1

Figure 2.1: Setup carryover

We assumes that there is no more than one setup for each product on each machine
during each time bucket. A pseudo formulation may serve to summarize the problem as
follows. To the best of our knowledge, it is the first time that this CLSP is studied, we
denote it as CLSC' for simplicity.

(CLSC) min LostSaleCost + TardinessCost + SetupCost
s.t. Material flow conservation constraints
Machine capacity constraints
Time windows of demands

Setup carryover

Based on the definition, we notice that CLSC is different from classical CLSP at the
demand definition. In CLSP, demands are normally aggregated by products and time
buckets. Hence, a demand is defined for each product in each time bucket. However, in
our case it is important to consider individual time window of each demand based on its
release date and due dates. Therefore, we separate the concept of product and demand.
Fach demand d requires one product pg with quantity g4, and is given with a release
date rg4, two due dates eall, 63, their associated tardiness cost tccll, tcz and lost sale cost
lcg. In other words, one product is required by a set of demands but each demand is

associated to one product.

Figure 2.2: Time window of demand
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Another difference is that there is no inventory to be taken into consideration. Not
only there is no inventory cost, but also the produced product is used to satisfy demands
directly, i.e., immediate delivery. These two differences imply that CLSC has certain

scheduling features since the cost and material flow are directly connected to demand

delivery.

We illustrate the problem in Example

Example 2.1. We consider 2 machines, 8 products and 5 time buckets. Parameters are
given in the Table Table [2.3 and Figure[2.3. Production time pt; equals to 1 for all

3 products.

Table 2.1: CLSC Example data: setups

stir 71 T2 SCir 1 T2
i1 1 1 11 5

@92 1 1 12

i3 1 1 i3

Table 2.2: CLSC Example data: capacities

caprt ty to ts ta 5]
r1 2 1 2 1 2
ro 1 2 2 1
1 2
d [pa; qa; lca, teh, tc?)] ba K €d
e el =
t1 to t3 tq
dslis, 3,100, 1, 5]
S
daliz, 2,100, 1, 5]
dsliz, 2,100, 1, 5]
Y S -
dali1, 2,100, 1, 5]
dy[i1,1,100,1, 5]
r T L =
t1 to t3 tq

Figure 2.3: CLSC Example data: time windows

ts

ts
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Demand parameters is given in Figure|2.5. For example, demand d3 requires 2 units
of product ia. We can start to produce for ds from its release date ty. If we deliver
before its first due date ts, i.e., within [to,ta], it is on time. If we deliver at or after the
first due date but before the second due date ty, i.e., within [ts,ts], it is delayed and a
unitary tardiness cost of 1 is charged per unit of delivery quantity. If we deliver at or
after the second due date ty, i.e., within [t4,t5], it is delayed and a unitary tardiness cost
of 6=1+5 is charged per unit of delivery quantity. If we do not fulfill d3, a lost sale cost
100 per unit is paid.

The optimal solution is described in Figure with total cost 6. The lost sale cost is
0 since all demands are satisfied. There is only one setup on machine ry in time bucket
ts for product i3, hence the setup cost is 3. Demand d3, dy and ds are delayed, so the
tardiness cost is 3. For instance, demand ds is delivered in two lots: time bucket t5 and
time bucket t3. The first delivery is on time whereas the second delivery is late with a

tardiness cost of 1 =1 x 1. Therefore, the tardiness cost of demand ds is 1.

d (quantity)

[ ds() | [ds(D)] [da(D)] [ da() ]
1t : : : : {
| di()) || da(2) | setup ds(2) ds(1)
T2 | % % % % {
t1 to t3 tq ts

Figure 2.4: CLSC Example optimal solution with setup cost

Theorem 2.1. CLSC is strongly NP-hard.

Proof. The result follows from the fact that CLSP is strongly NP-hard [28], which can

be seen as a special case of CLSC. O
Theorem 2.2. CLSC without setup cost is NP-hard.

Proof. Trigeiro et al. [129] proved that CLSP is NP-hard even without setup cost, there-
fore as an extension of CLSP, CLSC without setup cost is NP-hard. 0

2.2 Literature Review

In this section, we review the state-of-the-art literature of LSP that are related to CLSC.
Specially, we present the overview based on features, including setup carryover, parallel

machines, production time windows, backlogging and lost sale.
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Setup carryover. Setup carryover is also called linked lot size or linked production
quantities (Haase [69]). In each time bucket, producing a positive amount of products
causes a setup time and/or a setup cost. However, if the first product produced in ¢ is
the same as the last product produced in the previous time bucket ¢ — 1, then in time
bucket t we can continue to produce the same product without additional setup. This is
called setup carryover. The setup carryover is always considered in CLSP with multiple
products.

The LSP with setup carryover are first studied in Dillenberger et al. [36, 37]. Since
then, most of the research on setup carryover has been focused on the formulation
and heuristic algorithm design. In Dillenberger et al. [36] [37], a MIP model has been
proposed and a fix-and-relax heuristic algorithm has been developed. In Gopalakrishnan
et al. [58], a MIP model has been proposed and a real-world instances with multiple
machines and product families is solved by using the solver LINDO. In Haase [69], the
setup carryover is restricted to at most one time bucket, a MIP model has been proposed
and a priority rule based heuristic algorithm is developed. In Sox and Gao [122], two
MIP models are proposed while one is based on the shortest path formulation. Also, a
decomposition heuristic algorithm is developed which is based on Lagrangian relaxation.
In Gopalakrishnan [56], they extend the formulation in Gopalakrishnan et al. [58] so that
it incorporates product dependent setup times and costs. Later in Gopalakrishnan et al.
[57] a Tabu Search (TS) algorithm is proposed for this model. In Suerie and Stadtler
[124], another formulation is proposed and it is furthermore extended by introducing
extra variables and valid inequalities. A MIP solver together with a procedure to add cuts
is used to solve the problem. In Briskorn [24], the Lagrangian relaxation based heuristic
algorithm proposed in Sox and Gao [122] is modified so that subproblems are guaranteed
to be solved optimally. In Karimi et al. [89], a CLSP model is studied which considers
multi-item, setup carryover and backlogging. A TS heuristic algorithm is developed
for it. In Nascimento and Toledo [102], the problem is extended to multiple plants,
therefore the possibility of transporting products between plants is considered. A MIP
formulation is proposed and a Greedy Randomized Adaptive Search Procedure (GRASP)
heuristic algorithm is designed. In Sahling et al. [IT6], a multi level CLSP with setup
carryover is studied, a MIP formulation is proposed and a MIP based fix-and-optimize
heuristic algorithm is developed. In Goren et al. [60], a hybrid approach combining
genetic algorithms and a fix-and-optimize heuristic is proposed. It is compared to the
TS algorithm developed in Gopalakrishnan et al. [57] and is shown to have a better
solution quality with longer computational time. In Géren and Tunal [59], another

hybrid approach combining Genetic Algorithms (GAs) and a fix-and-optimize heuristic
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is proposed, which is different from that of Goren et al. [60]. In Goren et al. [60], the
fix-and-optimize heuristic is embedded in the GA procedure so solve each subproblem,
while in Goéren and Tunal [59] it runs GAs for a predetermined number of generations

and use the overall best solution as the initial solution for the fix-and-optimize heuristic.

Parallel machines. Parallel machines are commonly taken into account in practical
production planning such as pharmaceutical industry, disposable products and so on.
The introduction of parallel machines may lead to a large amount of symmetric solutions,
therefore it increases the difficulties of the problem.

In Ozdamar and Birbil [106], a lot sizing and loading problem studied deals with
the issue of determining the lot sizes of product families/end items and loading them on
parallel facilities to satisfy dynamic demand over a given planning horizon. The facilities
here have similar functions as parallel machines. A hybrid algorithm combining TS, GA
and Simulated Annealing (SA) is developed. It is further extended to multi-stage model
in Ozdamar and Barbarosoglu [105], where a hybrid algorithm based on Lagrangian re-
laxation, SA and GA is also proposed. In Kang et al. [87], a LSP on parallel machines
with sequence dependent setup costs is studied. The problem is solved by a branch and
bound algorithm based on column generation. In Meyr [98], a CLSP model with micro
time buckets, parallel machines and minimum lot size is studied. A heuristic algorithm
combining threshold acceptance and SA with dual re-optimization is also developed. In
Quadt and Kuhn [I10], a CLSP model with setup times, setup carryover, back-orders,
and parallel machines is studied. To find a solution of the original model, the aggregate
model is embedded in a lot sizing and scheduling procedure. In Tempelmeier and Copil
[126], a CLSP model with parallel machines, sequence dependent setup, shelf life and a
single common setup resource is studied. Two MIP based heuristic algorithms including
a fix-and-optimize heuristic and a fix-and-relax heuristic are proposed and tested. Some
heuristic algorithms are based on Lagrangian relaxation on capacity constraints such as
in Toledo and Armentano [128] or demand constraints such as Fiorotto and de Araujo
[44] to be able to decompose the problem into sub problems. In Fiorotto et al. [45],
a DantzigWolfe decomposition is applied to the demand constraints where the master
problem is solved by a combination of Lagrangian relaxation and DantzigWolfe decom-
position in a hybrid form. The parallel machines are also considered in Nattaf et al.
[103], Almada-Lobo et al. [I0] and the bc-prod system see Belvaux and Wolsey [14].

Most cases considering parallel machines are in the context of scheduling, for a though
survey we refer to Charrua et al. [26]. There are other papers considering multiple

resources without considering setup on machines but only resource capacity or usage
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cost and so on. In Diaby et al. [35], the setup is counted for each time bucket which
means when a setup is paid once in a time bucket, all machines are able to produce the
corresponding product. In Hindi [73], no setup is considered but there is a unit machine

usage cost and capacity per machine per time bucket.

Production time windows. In the LSP model with production time windows, each
demand has a release date and a due date, during which the production for this demand
must be fulfilled. Therefore, the release date and the due date of a demand become its
time window. Moreover, there are two cases: customer-specific or non-customer-specific
time windows. In the customer-specific case, each demand has a specific release date
and the release quantity can not be used to satisfy other demands. In the non-customer-
specific case, products produced in s can be used to satisfy any demand that require
this product. The release date is used to model raw material availability and customer
confirmation date. A customer order can still be canceled before its confirmation date
and we would like to avoid producing before it is confirmed.

The LSP model with production time windows is first studied in Brahimi [19],
Dauzere-Péres et al. [32], Brahimi et al. [2I]. In Dauzere-Péres et al. [32], the uncapaci-
tated case is studied and a general dynamic programming pseudo-polynomial algorithm
is presented for the customer-specific problem and a polynomial time O(T*) algorithm
is proposed for the non-customer-specific case. In Brahimi et al. [2I], the capacitated
case is studied which also extends the problem to multi-item. Lagrangian relaxations
based heuristics are developed for both cases. In Wolsey [133], for the customer-specific
case, tight extended formulations are proposed for both the constant capacity and unca-
pacitated problems with Wagner-Whitin (non-speculative) costs. For the non-customer-
specific case, it is shown to be equivalent to the basic lot-sizing problem with upper
bounds on the stocks. Also, polynomial time dynamic programming algorithms and
tight extended formulations for the uncapacitated and constant capacity models with
general cost are also developed. In Hwang [80], different cost structures are studied
and a dynamic programming algorithm with O(T?) is proposed. In van den Heuvel and
Wagelmans [130], four LSP variants are shown to be equivalent which includes the LSP
with a remanufacturing option [112], the LSP with production time windows, the LSP
with cumulative capacities [120] and the LSP with bounded inventory [94]. In Brahimi
et al. [23], the CLSP with multi-item, non-customer-specific production time windows
and setup times is studied. A Lagrangian relaxation based heuristic algorithms is devel-
oped and a reformulation is proposed. In Absi et al. [4], the production time window is

studied together with lost sale as well as early production, backlog on the uncapacitated
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LSP. Several properties of the optimal solution are presented for different variants of
the problem when production time windows are non-customer specific. Exact dynamic

programming algorithms are developed with computational complexity O(T?).

Backlogging. Backlogging is also called inventory shortage, or backorder in Millar and
Yang [99]. If it is possible to satisfy a demand after its due date, it is called backlogging.
Together with lost sale, they are common features in practice when there is insufficient
capacity or for simulation analysis purpose.

This feature backlogging has been widely studied in the literature. Here we review
the literature which is most related to our problem. In Zangwill [I34], backlogging is first
studied in an LSP model with concave production costs and piecewise concave inventory
costs. A dynamic programming algorithm is also proposed. In Pochet and Wolsey [107],
mixed integer programming reformulations of the uncapacitated lot-sizing problem with
constant cost and backlogging is studied. The linear programming reformulations solves
the problem directly, while a cut generation algorithm is also developed with a family of
cuts. In Choo and Chan [29], a simple class of heuristic algorithms two-way eyeballing
heuristic (TWEH) is presented which first determine the backlogging periods and then
the production quantities. This algorithm is further compared in Hsieh et al. [74] with
modified algorithms which are originally designed for LSP, the result shows that TWEH
is the simplest algorithm with good performance. In Federgruen and Tzur [43], time-
variant cost starts to be considered in the model and a O(T'logT) exact algorithm is
developed. In Chen et al. [27], a LSP model with piecewise linear costs and capacity
restrictions on both production and inventory is studied, also a dynamic programming
algorithms is developed. In Millar and Yang [100], the multi-item CLSP with backorder-
ing is studied and two heuristic algorithms based on a network-based formulation and
Lagrangian decomposition are developed. In Robinson Jr. and Gao [I15], backlogging
is considered together with coordinated replenishment. A mixed-integer programming
formulation is proposed and dual ascent based branch-and-bound algorithm is devel-
oped. In Ozdamar and Barbarosoglu [105], the multi-stage CLSP with backlogging on
the last stage is studied and a hybrid algorithm is developed which embeds SA and GA
into Lagrangean relaxation. In Hung et al. [79], a CLSP model with parallel machines,
setup and backlogging is studied and different GA algorithms are used to make setup
decisions. In Hung and Chien [7§], a multi-level CLSP considers multiple demand classes
with backlogging is studied, where the MIP models corresponding to each demand class
is solved in sequence. Three heuristic algorithms including TS, GA and SA are de-

veloped and compared. In Belvaux and Wolsey [15], different formulation techniques
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for a range of LSP is discussed which includes backlogging, start-ups, changeovers and
so on. Papers that consider backlogging also include Gupta and Brennan [65], Hung
et al. [77], Jans and Degraeve [83], Duda [41], Karimi et al. [89], Megala and Jawahar
[97], Gaafar [50], Kémpf and Kochel [86], Huai-En Chiao et al. [76].

There are many papers considering backlogging which considers other topics such as
ELSP in Zangwill [135], Blackburn and Kunreuther [I§], Hsu and Lowe [75], or based on
inventory system in one period in Atkins and Sun [I2], Sun and Atkins [125], or integrate

pricing and LSP on infinite planning horizon in Abad [I].

Lost sale. Lost sale is also called stockout in Sandbothe and Thompson [I18], where
it is possible to not meet demands with a penalty cost.

Comparing to backlogging, there are much fewer papers considering LSP with lost
sales. The CLSP with lost sale is first studied in Sandbothe and Thompson [I18] with
constant cost over time period, in which two necessary optimality conditions are stated
and two forward algorithms are developed for the constant capacity case and non-
constant capacity case. In Sandbothe and Thompson [I19], the problem is extended
to include also capacity constraints on inventory, optimality conditions are also stated
together with a forward algorithm of asymptotically linear time. In Aksen et al. [6], an
uncapacitated single-item LSP with lost sales is studied which have a time-variant cost
structure. Several structural properties of optimal solutions are proposed and an exact
algorithm in linear time O(T?) is developed. In Absi et al. [4], the lost sale is studied
together with production time windows as well as early production, backlog on the un-
capacitated LSP. Several properties of the optimal solution are presented for different
variants of the problem when production time windows are non customer specific. Exact
dynamic programming algorithms are developed with computational complexity O(T?).

There a few other papers considering lost sale as well such as Abad [I], Teng et al.
[127], Huai-En Chiao et al. [76], Abad [2], Ghosh et al. [54]. However, they focus on
an integration of pricing and lot sizing with infinite time horizon with perishability or
deteriorating inventories.

Among all these features related to CLSC, setup carryover and parallel machines
contribute the most to the problem complexity. Without setup, the problem can be
solved as a continuous optimization problem. Parallel machines not only increase the
problem size but also make the LP relaxation solution provide less guidance to the MIP
solution due to the fact that the production in the LP solution will be distributed to
all machines. Therefore it is interesting for to study this problem and hopefully develop

efficient algorithms for it.
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2.3 MIP Formulations

In this section, we present MIP formulations for CLSC. The first three formulations
are aggregated formulations with different ways to model setup carryover. The last

formulation is adapted from facility location reformulation.

Aggregated Formulation 1 (Forml)

For each product i € N, each machine r € R, each time bucket ¢ € T and each demand

d € D, we first introduce the following decision variables:
e 7;+ € RT: the production quantity of product 4 on machine r during time ¢.
o yg € [0,qq): the satisfied quantity of demand d in time bucket ¢ > bg.
e yg € [0,qq): the unsatisfied quantity of demand d.

In Haase [67], a MIP formulation for CLSP on a single machine with setup carryover
has been introduced. We adapt this formulation to our problem and introduce setup
variables for each product ¢ € N, each machine » € R and each time bucket t € T as

follows:

e v, € [0,1], v,y > 0 indicates if more than one product is produced in time bucket

t on machine r.

e 2y € {0,1} equals to 1 if a setup state for product ¢ on machine r exists in time

bucket ¢ and 0 otherwise.

o 2¢, € {0,1} equals to 1 if the setup state for product i is carried over from time

bucket ¢t — 1 to time bucket ¢t on machine r and 0 otherwise.

Then the first formulation (Forml) is formally given as follows (T = 7 \ {1}):

min Y leaya+ Y, tewa+ Y tqya+ Y, scir(zin — 25)

deD dEDET t>e) deDteT t>e? iEN TERLET
(2.1)
s.t. Z Tirt = Z Yt teN,teT (2.2)
reR d€D:pg=i,t>by
> i+ i = aa deD  (2.3)
ba<teT
Zptixm + Z Stir (zirt — 250) < capyy reR,teT (2.4)

ieN ieEN
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Tirt < OirtZirt ieN,reR,teT (2.5)
>z, <1 reRr,teT (2.6)
ieN

25y < Zirg—1 ieN,reRteT (2.7)
260 < Zint ieN,reR,teT (2.8)
Zipt + Zippo1 T Urt—1 < 2 ieN,reR,teT (2.9)
Nug =Yz — 1 reR,teT  (2.10)

ieN

0 < zips 1eEN,reR,teT (2.11)
0 < Ydt, Yd < qd deD,t>by (2.12)
2y zirt € {0,1} ieN,reR,teT (2.13)
vt € [0, 1] reR,teT (2.14)

where 0, = min{ CZ’t':t,ZdGDi7det gq}. In the objective , it minimizes the cost
including lost sale cost ) ;- lcqyq, first level tardiness cost ) deD teT t>e} tccllydt, second
level tardiness cost ZdeD,teT:t2e§ tcﬁydt, and setup cost ZiEN,TGR,tET SCir(Zirt — 254)-
Note that according to setup carryover, a setup cost has to be paid when there is a setup
(zirt = 1) which is not carried over from the last time bucket (z{., = 0). Constraints ([2.2))
state flow balance for each product in each time bucket, the inflow (production) equals
to the outflow (demand satisfaction). Constraints ensure that for each demand, the
unsatisfied demand quantity plus the unsatisfied demand quantity equals to the demand
quantity. Constraints ensure that the capacity is not exceeded on each machine
in each time bucket, where the setup capacity consumption is formulated similarly to
the setup cost. Constraints link the production and the setup since a positive
production of ¢ on r at ¢ requires a setup state for ¢ on r at t. Constraints -
model setup carryover. There is at most one setup state to be carried over to the next
time bucket, which is guaranteed by constraints . A setup state of i on r carried
over from ¢ — 1 to ¢t implies that this state is included in both ¢t — 1 and t .
If there is more than one setup state in one time bucket, i.e., v,+ > 0, the initial setup

state and the last setup state are necessarily different. This is formulated as constraints
(2.9). Finally, to fulfill the definition of variable v,;, we have the constraints (2.10)).

Aggregated Formulation 2 (Form2)

In Sox and Gao [122], two MIP formulations for CLSP on single machine with setup

carryover are presented. One is aggregated formulation while the other one is network
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formulation. Here we adapt the aggregated formulation to CLSC. Besides variables
Tirt, Yar and yq as introduced above, we introduce the following setup variables for each

product i € N, each machine r € R and each time bucket ¢ € T

o 20

it € 10,1} equals to 1 if the initial setup state is for product i on machine r in

time bucket ¢, implying that the final setup state for ¢t — 1 on r is for product 1.

e 2z, € {0,1} equals to 1 if there is a state switch for product i on machine r in

time bucket t.

Then the second formulation (Form2) is formally given as follows:

min z leqyq + Z tccllydt + Z tczydt + Z scirzitt (2.15)

deD deD,teTt>el, deD,teT:t>e? ieEN,reReT

s.t. Z Tirt = Z Yar ieN,teT (2.16)

reR deDi t>by
> Yat+ya=aa deD (217

ba<teT
Zptixirt + Z Stirzitt < capr¢ reR,teT (2.18)
ieN ieN
Tirt < Oure(2iy + 2i1,) PieEN,TERLET  (2.19)
Z Zipy = reR,teT (2.20)
ieN
Ziny < Zipg1 T 7 iceN,reR,teT (2.21)
z;-;,t,l <2- z?m_l — 20, ihjtieN,reRteT (2.22)
0 < @it ieN,reR,teT (2.23)
0 < ¥dt,Ya < qa deD,byg<teT (2.24)
Zoye 7oy € {0, 1} ieN,reRtET (2.25)

The total setup cost is formulated as Y ;czrrer teT scirz;;t since the setup cost has to
be paid only when there is a setup switch (z;, = 1). Constraints (2.18)) ensure that

irt
the total used capacity does not exceed the available capacity, where the setup capacity
consumption is formulated similarly to the setup cost. Constraints (2.19) link the setup

and production since a positive production of 7 on r at ¢ requires a setup state for i on

0 _

9, =1) or a setup switch (2}, = 1).

r at t, which is either from an initial setup state (z vt
There is a unique initial setup state for each time bucket on each machine, which is

established by constraints (2.20). Also, the initial setup state must be one of the setup
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states in the previous time bucket (2.21). However, constraints (2.22)) ensure that, on
machine r during time bucket ¢, no setup switch is possible when the initial setup state
and the last setup state of ¢ (i.e., the initial setup state of the next time bucket ¢ + 1)

are both for the same product.

Aggregated Formulation 3 (Form3)

In Suerie and Stadtler [124], a MIP formulation for CLSP on multiple unrelated machines
with setup carryover is presented. This formulation is similar to the Form2. In addition

+

e, additional variables wy; are

to the previously defined binary variables Z?T,t and z

introduced for each machine r € M and time bucket ¢t € T

e wy € [0,1] equals to 0 if there is a setup switch on r in ¢, it is greater than 0

otherwise.

Then the third formulation (Form3) is formally given as follows:

min
s.t. (2.16) — (2.21)), (2.23]) — (2.25))

Zo + 21 S L+ wre ieNreRLET (2.26)
2y T W <1 ieN,reRteT (2.27)
0<wy<1 VreR,teT (2.28)

Basically, we substitute constraints (2.22]) with constraints (2.26)) - (2.28)). Constraints
(2.26)) implies that on machine r, the initial setup states at t—1 and ¢ have to be different

when more than one product is produced during ¢t — 1 (w,;—1 = 0). Constraints (2.27)

ensures that w,; = 0 when there are more than one setup state during time bucket ¢.

Facility Location Based Reformulation (Form3f’)

In section we introduce two reformulations of CLSP. Here we adapt facility location
reformation of CLSP to CLSC. For all d € D, by <t €T and r € R, we introduce

e Q4+ € RT: the production quantity of product py on machine r during time ¢ to

satisfy demand d.

Then it is straightforward to build the relationship between previously defined variables

Tirts Ydt> Ya and Qgr:

Lirt = Z Q drt

deDi t>by
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yar = Y Qurt

reR

va=di— Y, Quan

reR,bg<teT

Here we apply these newly defined production variables on the Form3. However, it
is not hard to see that we can also reformulate Forml and Form?2. The formulation is

formally given as follows:

min Z tc}i Z Qart + Z tC?i Z Qart

deD,teT:t>e) rerR deD,teT:t>e? reR
+ Z lea(qa — Z Qart) + Z SCirZiny (2:29)
deD reR,bg<teT ieEN,reReT
st > Qa<q deD  (2.30)
TGR,detGT
> ptiQare+ Y stinzih, < capy reRteT  (2.31)
1EN,AED by <t ieN
Qart < Oz + 271,) deDreRb<teT (232
> Qart < Oine(2 + 231) ieNreRteT (2.33)
deDt
0 < Qart < qd deD,reR,bg<teT (2.34)

@.20) — @.21), @.25), @-26) — [@.28)

where ©/, , = min{qq, Op, ¢}

A comparison of the formulation size is summarized in Table They all have
the same number of binary variables, while Form2 has less continuous variables than
Forml and Formd3. The number of constraints increases in the order Form3, Forml
and Form2. We compare the formulation Form3 and Form3f!, the latter has more

continuous variables and more constraints.

Table 2.3: CLSC formulation size comparison

Form # Variables # Binaries # Constraints
Forml 3NRT + RT + DT + D 2NRT O(NRT)
Form?2 3NRT + DT + D 2NRT O(N?RT)
Form3 3NRT + RT + DT + D 2NRT O(NRT)

Form3FL DRT + 2NRT + RT 2NRT O(DRT)
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We compare different formulations theoretically and have following conclusions:

Theorem 2.3. The optimal objective function values of the LP relaxations of formula-
tions Forml, Form2 and Form3, represented by Obj} p(Forml), Obj} p(Form?2) and
Obj} p(Form3), have following relationship

Obji p(Form?2) = Obji p(Form3) > Obji p(Forml)

Proof. Let (,7, 2¢,2,0), (Z,7, 2°, 21) and (2,7, 2%, 2T, ) be optimal solutions of the LP
relaxation of Form1, Form2 and Form3 respectively, while f(Z, 9, 2, 2,0), f2(Z,9, 2%, 2")

+

and f3(2,7,2% 2%, ) are the corresponding optimal objective function values.

First, we prove that fo(z,9,2% 27) > f3(2,9, 2%, 21, ). Define
— _ . 7+
Wre = min{l = Z;;,},

then we claim that solution (z,7, 2%, 2%, w) is a feasible solution of Form3. The only

constraints in Form3 that are not in Form?2 is (2.26)) and (2.27)). Since (2.27) is satisfied
by definition of w, we only need to show that (2.26]) holds.

0 0 . v . o _
Zip41 T Zipg S %%{2 —Zjp =1+ ?éb\r}{l =z} =1+ W

The first inequality is due to constraints , while the third equality is due to def-
inition of w. Moreover, f3(Z,%,2°,z%,w) equals to fo(z,7, 2, 27) by definition of the
objective. Therefore f»(Z,7, 2%, 27) = f3(z,7, 2°, 27, w) > f3(i, 5, 20, 21, ).

Second, we prove that fo(Z,7,2", 27) < f3(&,9, 20 2%,w). More specifically, we
will show that solution (,7, 20, 2%) is feasible for Form2, and has the same objective

function value as f3(i,7, 2%, 21,4). The only constraints in Form2 that do not appear

in the Form3 is (2.22)). For any j # i € N, we have

-0 -0 . 4 -+
Zipgp1 T Zimg S 1ty S1+1—250, =227,

The first inequality is due to ([2.26]) while the second inequality is due to (2.27). There-
fore, f2<j7 gv 207 2+) S f2<j:.7 yv '7;07 Z+) = f3(':t.7 yv 207 7:/+7 ’U))
Third, we show that fo(z, 7, 2°,27) > f1(2, 7, 2, Z,0). First of all, we point out that

there exists an optimal solution of Forml satisfying that

0 _

Zipy + Zipy < 1.
This is due to the fact that in constraints (2.19)), O, is the upper bound of the production
quantity x;.+. Define

S0
Zirt = Zipt T Zipy
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e 0 = _
Zipe = min{Zy, Zirg—1, Zirt }

_ Zz Eirt -1

we will show that the solution (Z, 7, z, 2¢,v) is a feasible solution for Forml which has

the same objective function value as fo(Z,7, 2, z7). Constraints (2.5, (2.6), (2.7), (2.8)
and (2.10)) hold due to the definition of the variables. For constraints (2.9)),

Y En -1 Y (E, +En) -1

Upt = N = N
50 >+ >+
i Bt il i E < max 5+
N N I
Hence,
+20, <2 T <2
Ziptrl T Zirt S max z;.; Urt
Therefore, f?(i‘a Y, 207 §+) = fl (:’Ea Y, 7, 2(3’ 6) > fl (:Ea Qa 205 27 6) O

This theorem shows that the LP relaxation of Form2 and Form3 provide equiva-

lently lower bounds no worse than Forml.

Theorem 2.4. The formulation Form3tl

is stronger than the formulation Form3 in
the sense that its optimal objective function value of the LP relaxation Obsz(Form?)FL)

is greater than or equal to that of the Form3 Obj} p(Form3).
Obj; p(Form3) < Obj; p(Form3t'L)

Proof. Let (Q, 20, 2% 1b) be the optimal solution of the LP relaxation of Form3fL, we
will show that there always exists a corresponding solution of Form3 which shares the

same objective function value. For each ¢ € N/, r € R and t € T, define

Fe= > Qar (2.35)
dGD:pd:i,thd
jar = Qart (2.36)
reR
ja=qa— Y it (2.37)
ba<teT

First, we will show that (#,4, 20, 2%, ) is a feasible solution of Form3. Since

Z Tirt = Z Z iirtd = Z Z iirtd = Z ydt

reR reR deD:pg=i de€D:pg=ii=pq,rER deD:pg=i
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constraints hold. Constraints hold due to the definition of {j;, whereas
constraints hold due to the definition of #;;. As for the production and setup
linking constraints , it holds due to constraints .

Second, the solution (&, #j, 2, 27, 1) and (Q, 20, 2% 1b) share the same objective func-
tion value due to the fact that the objective function of Form3f is based on the sub-
stitution of - . Therefore, the theorem holds. O

2.4 Benchmark Instances

To perform experimental study on the problem CLSC, we introduce two sets of bench-
mark instances in this section. One set consists of real-world instances of the apparel
application, whereas the other one comes from a pseudo-random instance generator de-
signed to simulate real-world problems. The benchmark instances are summarized in
Table in which we present the type of the instances (Type), its notation (Notation),

the number of instances it contains (Size) and some comments.

Table 2.4: CLSC benchmark instances summary

Type Notation  Size Comment
Application instances IAP-A 3
(IAP) IAP-B 4
Randomly generated IRG-A 810 small size
(IRG) IRG-B 108 medium to big size

We present the real-world instances, their characteristics and the data analysis in
Section Based on the real data analysis, the instance generator and characteristics

of pseudo-randomly generated instances are given in Section [2.4.2]

2.4.1 Benchmark TAP: Real-World Instances and Data Analysis

We have collected 7 real-world instances so far. The characteristics of our application
instances are summarized in Table which include instance type, instance name,
number of time buckets 7', number of machines R, number of products N, number of

demands D and the capacity requirement ratio I' defined as

ZdeD Ptp,qd

.= .
ZreR,teT Caprt

(2.38)

Although T'" does not consider the setup consumed capacity, it is an indicator of the

machine loads. The larger it is, the more the machine is used. Moreover, instance R6
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(R8) is based on instance R5 (R7) that it eliminates frozen horizon activities based on

the current production plan.

Table 2.5: CLSC real-world benchmark instances

Type Instance T R N D T'(%) Comment
IAP-A R1 27 3 3 313 99
R2 36 28 18 1188 30
R3 30 29 1 595 33
IAP-B R5 25 30 46 668 91
R6 25 30 36 431 74  Rb5 with frozen horizon
R7 20 31 80 1428 40
R8 20 31 73 1404 41  R7 with frozen horizon

Calculation of the capacity requirement ratio is actually data analysis. Performing

data analysis in a real-world application is often necessary and important. First, it helps

to detect possible data error which is a common issue in practice. Second, it helps to

discover the data structure and may lead to efficient tailored heuristics. Third, due to

the fact that data collection and verification might be a long and struggling process,

randomly generated instances are needed to develop optimization engine for production

planning. Therefore, in the rest of this section, we take instance R5 as a representative to

perform analysis. There are many parameters in our problem, therefore we group these

parameters into following features first and perform analysis from these perspectives:

1. Problem size: N, R, D, T.

2. Machine capacity: capy;.

3. Production time: pt;.

4. Setup time and cost: st;- and sc;,.

5. Product and demand distribution: pg,.

6. Demand quantity: qq.

7. Time window of demand: by, e}j, eé.

8. Demand cost structure: tccll, tc?l, leg.

First of all, the size of instance R5 is given in Table which has 25 time buckets

corresponding to around 6 months planning horizon, 46 products, 30 parallel machines
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with different capacities and 668 demands. The detailed data analysis is given in Table
- in Appendix.

In Figure for each machine r, we give its minimum capacity, maximum capacity
and average capacity over its nonzero-capacity time buckets, and capacities for each time
bucket. We have following observations: 1) Machine capacities vary between 1,000,000
and 4,000,000. Parallel machines have very different capacity layout. 2) Even for one
machine, its capacity changes from time bucket to time bucket. However, it seems
that over most time buckets, the capacity is relatively stable around one level for most
machines. In other time buckets, the capacity has a decrease. 3) Although there are
irregular machines such as 3 which only has nonzero-capacity in ¢2, the overall capacity
trends for all machines have similar pattern. For example, in time bucket t10 and ¢12,

there is a decrease for all machines’ capacities. This is mainly due to national holidays.
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Capacity
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2000000

1000000
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Figure 2.5: CLSC instance R5 analysis: machine capacity distribution

In Figure 2.6] we present the unit production time for each product. For example,
to produce one unit of product 1, the production time is 1529. For each product,
the number of demands |D?| is also shown in the right axis. We cannot conclude a
distribution pattern for the production time, and there is no relationship between the
production time and its demand size. In most cases, the production time is between
1000 and 2000 seconds.
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Figure 2.6: CLSC instance R5 analysis: production time distribution

In Figure for each machine, we give the average setup time over its capacity ratio,

. . 1/N->. st; . .
which is calculated as Zte/ — c%;’e’;fo pr- We observe that the setup time is on average
s Tt

ZtET,cath>0 1

very large that it takes 40% to 50% of the capacity in each time bucket. The setup cost

equals to the setup time times unitary labor cost.
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Figure 2.7: CLSC instance R5 analysis: setup time distribution

In Figure we show the product distribution. For each product i, the left vertical
axis represents the number of demands that require this product, i.e., |D?|. For each

product i, the right vertical axis shows the percentage of its required capacity over all
> qepi Ptidd

jeN 2udepi Plida’

mands and is responsible for 1.19% of total capacity requirement. We have the following

products, which is calculated by T For example, product 1 has 7 de-

observations: 1) Number of demands and capacity requirement of each product are not
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always positively correlated. For example, Product 4 has most number of demands as
123, but its capacity requirement takes 19.77%, which is less comparing to Product 33.
This is due to difference in production time of different demands. 2) There are several
“big” products, such as Product 33 and Product 4. Overall, 20% products covers more
than 80% of demand capacity requirement.
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Figure 2.8: CLSC instance R5 analysis: product-demand distribution

In Figure the quantity of each demand is sorted in nondecreasing order. The

quantity distribution seems to share the same shape as an exponential function.
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Figure 2.9: CLSC instance R5 analysis: demand quantity distribution

In Figure 2.10, . The release time and the first due date construct a on-time time
window for each demand, the length of which equals to e}l —r4. The same also applies to

the second due date and first due date. In Figure 2.10] the horizontal axis represents all
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possible time window length while the vertical axis represents the number of demands
that falls into this category. The blue lines corresponds to the length of interval between
release date and first due date e}i — rq, the orange lines corresponds to the length of
interval between first due date and second due date e?l — e}i. For example, there are 91
demands the length e}j — rgq equals to 1, which means that they have 1 time bucket to
be produced and satisfied on time. We observe that more than 95% of demands has the
time interval value eé —rqg and 63 — e}l less than or equals to 4. Moreover, more than
45% of demands has the value e} —ry = 4 and more than 68% of demands has the value
e2 — el = 4. This is in accordance with the fact that there is normally 1 month between

the release date and the first due date.

Demand time windows
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Figure 2.10: CLSC instance R5 analysis: demand time window distribution

Next we analyze the demand release date, first due date and second due date dis-
tribution. In Figure the horizontal axis represents the time bucket ¢ € 7T, while
the vertical axis represents the number of demands. The blue curve corresponds to the
number of demands that are released at t, i.e., 74 = t. The red curve corresponds to
the number of demands that are first due at t, i.e., elli = t, whereas the green curve

corresponds to the number of demands that are second due at ¢, i.e., efl =t
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Figure 2.11: CLSC instance R5 analysis: demand release/due date distribution

We have following observations:

e 99% of demands are released in the first 60% time buckets (t = 1 to t = 15).
Moreover, the number of released demands has a peak in the middle of these time

buckets.

e 99% of demands are due in the first 76% time buckets (¢ = 1 to ¢ = 19). This

matches the on-time window length we have observed before.

o 88% of demands have second due date in the last 60% time buckets (t = 1 to

t = 19). This matches the window length e? — e} we have observed before.

e All dates distribution seem to have a similar shape as the possibility density func-

tion of nominal distribution.

Based on this analysis, we can analyze the capacity requirement based on time win-
dow instead of on the whole time horizon. For each consecutive time window with length

4 [t,t+ 3], we calculate the set of demands D, that have [rq, el — 1] C [¢t,¢+ 3]. Then for

each time interval [t, ¢ + 3], the percentage of demands % is given as the blue columns

>_dep, Ptrgdd
reR,t<s<t43 CaPrt
given as the orange dot in the right vertical axis. This value reflect that to produce and

on the left vertical axis, while their total required capacity ratio as 5=

satisfy all demands on time, what is the required capacity. For example, in the time
interval [t1,t4], we have 7.63% demands released and should be satisfied in this interval
to be on time. Their required production capacity takes 115% of the total available
capacity in this interval. By looking at the graph and values, we observe that most of

demands requirement are concentrated on the first 68% of the time horizon. Therefore,
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the capacity constraint is tight on this part of the time horizon and if there is not enough

capacity many demands will be pushed late.
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Figure 2.12: CLSC instance R5 analysis: capacity requirement by time interval

Required Capacity Ratio

Finally, we analyze the cost structure. In this instance, the unit lost sale cost lcg

is set artificially as 1000, while the first level tardiness cost is 2.5 and the second level

tardiness cost is 14 for all demands.

To have a better view, we show the tardiness cost

structure of instance R7 in the following Figure We have following observations:
1) For the first level tardiness cost, 80% of demands have tc}; as 2.5 and 8% of demands

have tc} as 1.8. 2) For the second level tardiness cost, all of them have the cost as 14.

Based on these two instances, we conclude that the first level tardiness cost has a large

possibility to be 2.5 while the second level tardiness cost equals to 14.
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Figure 2.13: CLSC instance R5 analysis: tardiness cost distribution
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2.4.2 Benchmark IRG: Pseudo-Randomly Generated Instances

Due to the limited number of real-world instances, it requires us to generate benchmark

instances to perform computational test. In this section, we propose an instance gener-

ator and 2 sets of instances, of which the number of contained instances are summarized

in Table 2.6}

Instance Generator

Table 2.6: CLSC pseudo-randomly generated benchmark instances

Notation  Size

T N R D T'(%)

IRG-A 810
IRG-B 108

{4,9,13} {4,8,12} {1,5,10} {50,100,200}  {75,90}
{25}  {50,75,100} {15,20,30}  {500,750,1000}  {75,90}

We introduce an instance generator which is able to produce instances of CLSC with

different characteristics.

The input parameters for the instance generator is given in Table

Table 2.7: CLSC instance generator parameters

Data

IG Parameter

Description

T,R,N,D T, R, N, D

Instance size

Dd size(p), Approximately weight(p) % of demands belong to
weight(p) the first size(p) % of products.

pt; lbd(pt), ubd(pt)  pta € [Ibd(pt), ubd(pt)], pt; = | See L ]

depi 9d

qd lbd(q), mbd(q), Approximately with possibility mpt(q), q4 €
ubd(q), mpt(q) [1bd(q), mbd(q)]; otherwise, g4 € [mbd(q), ubd(q)].

el sizel(d),size2(d), With possibility probl(d), e} € first sizel(d)% part
probl(d), of time horizon; with possibility prob2(d), e} € sec-
prob2(d) ond sizel(d)% part of time horizon; otherwise, e} €

remaining part of time horizon.
Tq pf(dr) With possibility pf(dr), rq = max{1, e} — 4}; other-

wise, 74 € max{1, [e} — 3, e} — 1]}.
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Table CLSC instance generator parameters (continued)

Data IG Parameter Description

e2 pf(dd) With possibility pf(dd), €5 = min{T + 1,e} + 4};
otherwise, €2 € min{T + 1, [e} + 1, e} + 3]}. If €2 ==
T + 1, it implies that there is no second due date.

tch Ibd(tc'), ubd(tc')  tcl € [Ibd(tc), ubd(tc')]

tc2 Ibd(tc?), ubd(tc®)  tc2 € [Ibd(tc?), ubd(tc?))]

leq Ibd(lc), ubd(lc) leqg € [lbd(lc), ubd(lc)]

Capr R, Type(cap) Types of capacity allocation and target demand ca-
pacity ratio.

Stir Ibd(st), ubd(st) stiy € [Ibd(st)capys, ubd(st)capyt]

SCiy lbd(sc), ubd(sc) sciy € [lbd(sc), ubd(sc)] and is positively proportional

to st;p.

The procedure of the instance generator is described in the following, which uses

above parameters to realize all instance data. Let randI(l,u) represent a random inte-

ger number between [ and u inclusively following uniform distribution, while randD(l, u)

represent a random real number between [ (inclusive) and u (exclusively) following uni-

form distribution.

1. Instance size T', M, N, D is given by parameters directly. Without loss of gener-

ality, N < D.

2. Demand product pg: « < randD(0,1) and 5+ | N - size(p)].
If a < weight(p) and B > 0, pg < randI(1, ).
Otherwise, pg < randI (B + 1, N).

3. pt;: for each demand d € D¢, pty = randI(Ibd(pt),ubd(pt)), then pt; = [M-‘ .

Zdepi qd

4. Demand quantity g4: a < randD(0,1).
If o < mpt(q), qq < randI(lbd(q), mbd(q)).
Otherwise, gq < randI(mbd(q), ubd(q)).

5. Demand first due date eb: a < randD(0,1), 8 < |T-sizel(d)], v < |T-size2(d)].
If a < probl(d) and 8 > 0, e}l «— randI(1, ).
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Else if o < prob2(d) and v > 0, e} « randI(8 +1,7).
Otherwise, e} « randI(y+ 1,T).

6. Demand release time bg: o < randD(0,1).
If o < pf(dr), rqg = max{1,e} — 4}.

Otherwise, ry € max{1, [e} — 3, e} — 1]}.

7. Demand second due date €2: «  randD(0,1).
If « <pf(dd), e = min{T + 1,e} + 4}.
Otherwise, €3 € min{7 + 1, [e} + 1,¢e} + 3]}.
If e?l ==T + 1, it implies that there is no second due date.

8. Demand tardiness cost tc} < randI(Ibd(tc), ubd(tc')), tc? < randI(Ibd(tc?), ubd(tc?)).
9. Demand lost sale cost lcg <— randI(Ibd(lc), ubd(lc)).
10. Machine capacity: let [bd = |0.75b], ubd = |1.25b| where b = &ﬁ_piﬁ;%.

e If T'ype(cap) = Constant, cap, < randI(lbd, ubd), cap,s = cap, for r € R.
o If T'ype(cap) = Various, capys < randl(lbd, ubd).
o If T'ype(cap) = TwoLevel, let lowCapRatio = 0.5 and lowT BSize = 0.2,

— Randomly select a subset of time buckets 7' C T and |T'| = |lowT BSize-
T|.

— For each machine r € R, avgCap, + randI(lbd,ubd),
uCap, < |avgCap, /((1 — lowT BSize) 4+ lowT BSize x lowCapRatio)],
Cap, < ucap, - lowCapRatio.

— Fort € T, ift € T capys + ICapy; otherwise, capys < uCapy.

11. Setup time st;.: For r € R, let avgCap, = {EtETimp”lJ For i € N, st «

tET capp>0
randl(|lbd(st) - avgCapy |, |ubd(st) - avgCapy, |).

12. Setup cost. Let minSt = min;en rer Stir, maxSt = max;en rer Stir, which are
the minimum and maximum of setup time.
a := (ubd(sc) — lbd(sc))/(maxSt — minSt); b := (Ibd(sc) * maxSt — ubd(sc) *
minSt)/(maxSt — minSt);
If minST == maxST, set all sc;, < lbd(sc).

Otherwise sc;. < a - sty + b.
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Pseudo-randomly generated benchmark Instances

To study the problem property from computational point of view, as well as develop-
ing efficient heuristic algorithms to tackle it, we propose two sets of pseudo randomly

generated instances in this section with different characteristics.

Simple structure instances First of all, we generate a set of small size instances of
which the optimal objective value might be reached. In this way, we may easily compare
the performances of different MIP formulations. For each possible combination of the
parameters, we generate 5 instances to limit bias. Other parameters for the randomly

generated instances are described as follows:

e All combinations of T', M, N, D with following values T' € {4,9,13}, M € {1,5,10},
N € {4,8,12}, D € {50,100, 200}.

e size(p) = 100.0, weight(p) = 100.0

o Ibd(pt) = 20, ubd(pt) = 40. Also, pt; == L%J

e [bd(q) =1, mbd(q) = 10, ubd(q) = 10, mpt(q) = 1.0

e sizel(d) = 30,size2(d) = 70, probl(d) = 0.1, prob2(d) = 0.9

e by has 80% possibility to be set as max{0, e} — a} and 20% possibility to be set as
max{0, e} — a/2} where a = [VT].

e 2 has 80% possibility to be set as max{0, e} — a} and 20% possibility to be set as
el

o [bd(tc') = 1, ubd(tc') = 1

o Ibd(tc?) =5, ubd(tc*) =5

o [bd(lc) = 20, ubd(lc) = 20

e cap,; = rand(0.75b,1.25b) where b = W_

doreR.teT CaPrt

e st; = st; = rand(0.75¢,1.25¢) where ¢ = 0.1 - ST

Application based instances. In Section we have presented the data analysis
based on a real application instance. Based on this analysis, we propose our first set of

testing instances with following instance generator parameter values:
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e Three size of instance including (7, M, N, D) = (25,15, 50, 500), (25,20, 75,750)
and (25,30, 100, 1000).

o size(p) = 0.2, weight(p) = 0.8

e [bd(pt) = 100, ubd(pt) = 200

e [bd(q) =1, mbd(q) = 1000, ubd(q) = 5000, mpt(q) = 0.95
e sizel(d) = 20, size2(d) = 60, probl(d) = 0.1, prob2(d) = 0.85
o pf(dr) =05

o pf(dd) =0.7

o Ibd(tc') = 1, ubd(tc') = 2

o [bd(tc?) = 10, ubd(tc?) = 10

o [bd(lc) = 200, ubd(lc) = 200

e R € {0.75,0.90}, Type(cap) = TwoLevel

o [bd(st) = 0.4, ubd(st) = 0.5

e [bd(sc) =0, ubd(sc) =0

To introduce certain level of varieties, propose following instances with different fea-

tures. All instances have the same instance generator parameters value unless specified:
e Equally distributed products (ProdEven):

— size(p) = 100.0, weight(p) = 100.0

Constant capacity (Capconst):

— Type(cap) = Constant

Different capacity (Capdiff):

— Type(cap) = Various

Small setup time ratio (STLow):

— lbd(st) = 0.1, ubd(st) = 0.2

Evenly distributed demand due date (DemEven):
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— sizel(d) = 100, probl(d) = 1.0, size2(d) = 0, prob2(d) = 0.0

For each possible combination of the parameters, we generate 3 different instances

to limit bias.

2.5 Empirical Evaluations

In this section, we present experimental results to study CLSC from computational
perspective. All experiments run on computer with Intel Core i7-4790 2.50 GHz 3.60,
16 GB shared memory, under the Linux Ubuntu 12.4 operating system.

First of all, different MIP formulations are compared. All developed formulations
are solved for benchmark IRG-A and TAP-A with standard MIP solver CPLEX 12.6.1.
In the practical application, lost sales cost and tardiness cost have higher priority than
setup cost. Therefore, tests are done considering setup cost and without considering
setup cost in Section [2.5.1] and Section [2.5.2] respectively.

Second, many features are involved in CLSC. In Section [2.5.3] we test different
variants of CLSC on one application instance by relaxing one feature at a time. In this
way, we analyze the impact of features to the problem difficulty.

Furthermore, based on the insight given by the formulation comparison test, one
formulation with overall best performance is chosen. Benchmark IRG-B and IAP-B are
solved with the chosen formulation by standard MIP solver CPLEX 12.6.1 on full cores
given 1 hour time limit. The results are given in Section

2.5.1 MIP Formulation Comparison Considering Setup Cost

In the Table [2.8] we present the summary computational results using CPLEX to solve
the MIP models and their LP relaxations on the benchmark instances IRG-A and TAP-A
with standard MIP solver CPLEX 12.6.1 on one thread given 10 minutes time limit.

In the table, the computing time is expressed in seconds. For each instance parameter
(T, R, D, N, I") and values, we give the average results over all instances that have
the corresponding value. In the Row T/A, averages values over all tested instances are
reported while its Column Opt reports the total number of optimally solved instances for
each formulation. In the first two columns, we present the parameters and their values.
For example, for number of time buckets 7', there are three values {4,9,13} for IRG-A
instances. In Column Opt and Time, we report the number and the average computing
time over all instances with given parameter value solved to prove optimality within the

time limit. In Column Nodes and Gap, we report the number of explored nodes and the
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exit gap when CPLEX terminates. This gap represents the relative difference between
the primal and the dual bounds computed by the CPLEX at the time limit. In Column
LPT, it reports the average computational time to solve the LP relaxation over all the
instances sharing this parameter value. In Column LPG, we measure the quality of the
LP relaxation which is calculated as

BestMip — LPVal
BestMip

LPG = (2.39)

where bestMip is the best known MIP solution of all formulations and LPVal is the
optimal LP relaxation objective value of the given formulation. On all instances except
two, the three formulations Forml, Form?2 and Formd3 are characterized by the same
LPVal. In the remaining two cases the difference is less than 0.001, thus we only report
the LPG once under column Form3. For IAP-A instances, we report the objective
function values returned by the solver in Column Obj.

As far as the computing time necessary to calculate the LP relaxation is concerned,
the average values over all tested instances are 0.37 seconds, 0.74 seconds and 0.30
seconds for Forml, Form2 and Form3 respectively. For IRG-A instances, the average
computational time of the LP relaxation are 0.24, 0.26 and 0.20 seconds, which are quite
close. Therefore, the difference mainly comes from IAP-A instances. Thanks to the
shortest average computing time for the LP relaxation, Form3 is able to explore more
nodes within the given time limit.

According to the Column Opt, the table shows that as the problem size increases,
instances become more difficult to solve. The parameter [N, which has an impact on the
number of binary variables, affects most the solvability of the instances. Take Form?2
for example, when N increases from 4 to 12, the number of instances decreases from
258 to 59, whereas when D increases from 50 to 200, the number is only reduced by 36.
The number of time buckets T has a smaller impact on the computing time. We can
observe that Forml explores a higher number of nodes, this is probably due to the fact
that it struggles to find good quality integer solutions. On the other hand, Form2 and
Form3 explore almost the same number of nodes for the randomly generated instances,
while the Form3 explores more nodes for the 3 real-world instances. Regarding the
number of randomly generated instances solved to be proven optimality, Florm3 solves
416 instances and Form?2 solves 411 instances, while Form]l solves only 379. A similar
behavior can be also observed for the exit gap. For the real-world instances, we observe
similar results, i.e., the Form3 shows the best performance. Hence, according to the
computational experiments, F'orm3 shows the best overall computational performance.

This is due to the fact that it has the least number of constraints with the same number
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of binary variables compared to the other two formulations, and its LP relaxation can
be solved faster.

Next we compare two models of different production quantity decisions. Since Form3
performs best among three different setup models, we fix the setup carryover model
based on Form3 therefore compare the formulation Form3 and Form3™”. The average
computational time of the LP relaxation of Form3f’ on IRG-A is 1.60 seconds while
for Formd3 it is only 0.2. For the real instance R2, CPLEX even fails to solve the
LP relaxation of Form3™" optimally given 10 minutes time limit. With the price of
longer computational time, Form3f? shows a lower LP Gap, as proven in the Theorem
However, even though Form3™” has a stronger lower bound, due to its longer
computational time on each node, it only solves 365 instances out of 810 instances to
optimality. In summary, Form3 still gives better performance comparing to Form3f'L,

therefore gives overall best performance among all presented formulations.



Table 2.8: CLSC formulation comparison with setup cost

Forml Form2 Form3 Form3FL
Para Val Opt Time Nodes Gap LPT Opt Time Nodes Gap LPT Opt Time Nodes Gap LPT LPG Opt Time Nodes Gap LPT LPG
T 4 165 32 85970 4.64 0.0 175 35 49088 4.16 0.0 178 36 55347 3.89 0.031.01 158 39 18641 5.66 0.516.20
9 123 69 4116815.81 0.2 128 61 2646915.28 0.2 131 65 3120714.95 0.251.19 115 89 17907 18.98 1.635.92
13 91 112 3583924.17 0.5 108 102 2096123.34 0.5 107 97 25667 23.13 0.459.98 92 105 16089 27.11 2.748.74
R 1 212 48 18748 2.70 0.0 217 5512988 2.50 0.0 218 53 13563 2.75 0.065.30 226 48 21390 2.34 0.032.36
5 97 68 5089223.18 0.2 101 46 3078422.46 0.2 105 58 3798321.93 0.148.48 83 93 1610127.17 1.141.29
10 70 104 9333818.74 0.5 93 91 5274617.82 0.6 93 81 6067417.29 0.528.40 56 136 1514522.25 3.727.21
N 4 231 47 58790 1.40 0.1 258 47 25497 0.51 0.0 258 44 22985 0.59 0.035.07 212 59 9025 2.98 0.623.91
8 87 95 6444017.23 0.2 94 87 4640216.48 0.2 94 86 55293 16.25 0.249.80 89 104 2129119.95 1.635.04
12 61 83 3974625.99 0.4 59 81 2461925.78 0.5 64 93 3394325.12 0.457.31 64 68 2232128.83 2.641.92
D 50 151 66 6399511.75 0.2 156 53 3521111.13 0.2 159 58 43104 10.64 0.146.81 149 56 2392013.58 0.436.91
100 126 56 4798815.78 0.2 135 60 3283915.06 0.3 137 57 3758514.76 0.248.18 129 89 1836117.67 1.033.79
200 102 68 50994 17.09 0.3 120 72 2846916.60 0.4 120 70 3153216.56 0.347.19 87 73 1035520.51 3.430.17
r 75 211 60 41299 14.53 0.2 226 50 23728 14.01 0.2 230 52 2921413.60 0.149.07 206 67 1383916.77 1.233.88
90 168 68 6735315.22 0.3 185 74 4061714.51 0.3 186 72 45600 14.37 0.345.72 159 77 2125217.74 2.033.36
T/A 379 63 54326 14.87 0.2 411 61 3217314.24 0.3 416 61 37407 13.99 0.247.39 365 72 1754617.25 1.633.62
Inst Obj Time Nodes Gap LPT Obj Time Nodes Gap LPT Obj Time Nodes Gap LPT LPG Obj Time Nodes Gap LPT LPG
R1 654,807 12 1827 0.00 0.1 654,807 2.6 434 0.00 0.0 654,807 3.1 404 0.00 0.014.25 654,807 34.7 469 0.00 0.514.03
R2 2,239,793 600 297.36 107.9 29,619,416 600 099.80 395.8 1,086,637 600 45294.56 78.2 100 1E9 600 0 100 600 -
R3 10,672 0 0 0.00 0.0 10,672 0.0 0 0.00 0.0 10,672 0.0 0 0.00 0.0 0.00 10,672 2.1 0 0.00 0.9 0.00

SMUVIWHONALT ANV SNOLLV'IANYHOA DSTO ¢ H4LdVHO
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2.5.2 MIP Formulation Comparison without Considering Setup Cost

In the apparel application, setup cost has secondary priority comparing to lost sale
cost and tardiness cost. In other words, minimizing lost sale cost and tardiness cost
is the most important objective. Therefore, in this section, we perform experiments
on benchmark instances without setup cost but only setup time. In the Table we
present the summary computational results using CPLEX to solve the MIP models and
its LP relaxations on the benchmark instances IRG-A and TAP-A with standard MIP
solver CPLEX 12.6.1 on one thread given 10 minutes time limit. The table has the same
layout as Table

First of all, the optimal objective function values of LP relaxation of formulations
Forml, Form?2 and Forma3 are the same except for 15 instances. For these 15 instances,
Form?2 and Form3 have larger objective function values than Forml, but the relative
difference is less than 0.0001. Therefore, we only show the LP Gap under Form3 column
defined as (2.39).

For the performance of formulations to solve the problem, we observe similar results
as CLSC with setup cost. First, if we look at the overall performance over 810 instances
of IRG-A, Form3 solved 476 instances to prove optimality with the average absolute
gap equals to 4.06%. The number of instances that are solved to optimality for Forml,
Form2 and Form3"™ are 460, 468 and 424 respectively. Hence, the experimental results
shows the superior performance among all developed formulations.

For the IAP-A instances, without setup cost, all of them are solved to prove opti-
mality within a few seconds. However, due to the large formulation size, Form3" took

around 4 minutes to prove optimality of the solution.



Table 2.9: CLSC formulation comparison

without setup cost

Forml Form2 Form3 Form3FL

Para Val Opt Time Nodes Gap LPT Opt Time Nodes Gap LPT Opt Time Nodes Gap LPT LPG Opt Time Nodes Gap LPT LPG
T 4 205 33.0 57230 0.34 0.0 211 45.0 33768 0.32 0.0 214 39.4 36530 0.29 0.0 16.84 186 60.9 16830 0.58 0.2 6.9
9 127 75.6 40526 5.10 0.1 123 40.1 26566 5.20 0.3 127 58.4 29364 5.11 0.2 25.58 104 47.2 16316 7.06 1.0 15.3

13 128 35.8 31595 7.08 0.3 134 49.5 22915 6.92 0.6 135 42.4 25327 6.79 0.4 24.35 134 45.2 14521 9.73 1.5 17.2

R 1 214 37.2 18963 3.57 0.0 213 41.4 16839 3.81 0.0 215 37.8 17276 3.82 0.0 53.99 222 31.8 21773 3.43 0.0 25.3
5 137 56.0 54654 5.44 0.1 145 59.5 29227 5.17 0.2 149 61.8 31683 5.05 0.2 8.78 119 84.4 13909 7.15 0.7 8.4

10 109 48.7 55735 3.50 0.4 110 32.8 37183 3.46 0.7 112 37.7 42261 3.32 0.5 3.99 83 62.6 11985 6.79 2.0 5.7

N 4 219 24.8 33367 0.46 0.1 224 20.7 23845 0.35 0.0 227 29.3 23535 0.37 0.1 14.38 194 32.2 8974 1.33 04 8.1
8 143 54.8 48945 4.49 0.2 147 54.0 30907 4.27 0.2 148 48.0 31840 4.24 0.2 23.91 130 68.4 17905 5.77 0.8 13.9

12 98 78.3 47039 7.56 0.3 97 87.3 28498 7.83 0.7 101 77.5 35845 7.58 0.4 28.47 100 71.6 20788 10.28 1.6 17.4

D 50 153 44.1 59071 3.28 0.1 159 48.8 35406 3.11 0.3 161 44.4 40181 2.96 0.2 20.44 145 47.4 22467 3.76 0.3 14.8
100 156 49.0 37713 3.97 0.2 155 45.8 26664 4.00 0.3 160 54.8 30210 3.92 0.2 22.93 143 47.4 15504 5.28 0.8 12.6

200 151 43.4 32567 5.26 0.2 154 40.3 21179 5.34 0.4 155 36.5 20829 5.31 0.3 23.39 136 63.5 9696 8.32 1.7 12.0

r 0.75 299 36.3 34915 2.41 0.1 298 34.6 22200 2.43 0.2 299 29.0 25081 2.24 0.1 19.41 286 45.6 11490 2.95 0.5 9.3
0.90 161 62.7 51319 5.93 0.3 170 63.2 33299 5.87 0.5 177 72.9 35733 5.89 0.4 25.10 138 66.9 20288 8.63 1.4 16.9
T/A 460 45.2 43117 4.17 0.2 468 44.7 27750 4.15 0.3 476 45.0 30407 4.06 0.2 22.25 424 52.8 15889 5.79 0.9 13.1
Inst Obj Time Nodes Gap LPT Time Nodes Gap LPT Time Nodes Gap LPT LPG Time Nodes Gap LPT LPG
R1 442906 0.5 51 0.00 0.1 0.3 14 0.00 0.0 0.3 8 0.00 0.1 0.83 19.5 400 0.00 0.4 0.83
R2 59,153 5.8 0 0.00 1.1 11.7 0 0.00 12.7 4.8 0 0.00 1.2 0.00 241.1 0 0.00 91.4 0.00
R3 10,672 0.1 0 0.00 0.1 0.1 0 0.00 0.0 0.1 0 0.00 0.0 0.00 2.2 0 0.00 1.3 0.00

SMUVIWHONALT ANV SNOLLV'IANYHOA DSTO ¢ H4LdVHO
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2.5.3 Impact Analysis of Problem Features

CLSC consists of many features studied in CLSP. Here we perform experiments to under-
stand the impact of each feature to the problem difficulty. Due to the priority difference
of demand cost (lost sale cost and tardiness cost) and setup cost in the application, we
solve CLSC without setup cost. As a reference, the original problem and its LP relax-
ation are solved as well and their results are shown in the row MIP and LP respectively.
The formulation is Form3 since it gives the overall best performance. Other variants

include:

o Parallel machines: all parallel machines are aggregated into one machine 0 with
capacity capor = ZTGR capyt for t € T.

o Lostsale: no lost sales so that all demands must be satisfied.

e Tardiness: each demand has only the first due date and it is either satisfied on

time or lost.

e Due-dates: each demand has no due dates and can be satisfied any time by the

end of the planning horizon without penalty cost.

o First-due-date: each demand has only the second due date 63. It is considered to
be on time if satisfied before 63 and it is considered to be delayed if satisfied at or

after e?l with a unitary tardiness cost of tc(li + tcg.

o Release-date: each demand has release date by equals to the beginning of the time

horizon so that it can be satisfied from the very first time bucket.

The computational result is presented in Table Each variant is solved by
CPLEX with time limit 2 hours. For each problem, the returned objective function
value, the computational time, the exit gap, the best lower bound returned by CPLEX
and the number of explored nodes are given in Column Obj, Time, Gap, LB and #
Nodes respectively.

We have following observations: first of all, the original problem is hard to solve that
after 2 hours solving, the solution still has gap of 86%. Moreover, parallel machines
contribute a lot to the problem difficulty that if we aggregate all machines, the problem
can reach 0.1% gap after 2 hours of solving. Also, lost sales help CPLEX to find feasible
solution. Actually, with developed heuristic algorithm, we find the near optimal solution
of instance R5 and the lost sale cost equals to 0. However, when we set demands’ satis-

faction as a constraints, CPLEX has difficult time to find feasible solution. Eventually,
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after 2 hours, no integer solution has been found and the feasibility of the problem is
reported unknown. Without considering backlogging, each demand can either be on
time or lost. We observe a small gap as 6.3% for this variant. However, the objective
function value is on the level of 3 x 10®, which might be the reason of the small gap.
Therefore, we can not conclude that this variant is easier. In the case of Due-dates,
different from Fardiness, all demands can be satisfied any time after its release date and
be considered on time. Therefore, it is equivalent to optimize only lost sale cost and
provide a feasible solution to the original problem. Moreover, its objective represents
the lost sale cost of the solution. Comparing to solving the original problem, the real
objective function value of this solution (> 37,900,675) is worse. The exit gap is 100%
due to the lower bound of 0. Next variant is First-due-date, which ignores the first due
date and has a simpler cost structure. So the solution of this problem is also feasible
for the original problem and its cost represents the lost sale cost and partial tardiness
cost (tardiness cost due to second level due dates). Similar to no due dates, the solution
quality is worse than that of the original problem. Therefore, considering backlogging
seems to make the problem easier for CPLEX to solve. Finally, we cancel all the release
dates, and the problem solution is quite similar to the original problem. On one hand,
we were expecting a lower objective function value than the original problem if both
this one and the original problem are solved to optimality because that there are less
constraints on the demand satisfaction time. On the other hand, it is also possible that
the release date function as cuts and speed up the solving processing. Therefore, the
result is a bit unexpected and we will continue to test once we collect more realistic
instances. In summary, parallel machines make the problem more difficult to solve while
backlogging and lost sales seem to make the problem easier to solve, at least for the

tested standard MIP solver.

Table 2.10: CLSC feature - complexity analysis

Variants Time Obj LB Gap(%) # Nodes
LP 104 2,935,797 - - -
MIP T.L. 22,564,237 2,975,645 86.8 0
Parallelmachines T.L. 3,082,657 3,078,520 0.1 151056
Lost-sale T.L. - - - -
Fardiness T.L. 359,044,010 336,491,186 6.3 30
Due-dates T.L. 37,900,675 0 100.0 0
First-due-date T.L. 113,773,295 634,788 99.4 0
Releasedate TL. 20,720,657 2,774,592 86.6 0

*Time unit in seconds, T.L. = 7200s
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2.5.4 Computational Results on Benchmark TAP-B and IRG-B

We have performed formulation comparison on benchmark instances ITAP-A and IRG-A.
It is shown that formulation Formd gives the best overall performance. Therefore, in this
section, we present test on benchmark IAP-B and IRG-B without considering setup cost
with Form3 to evaluate the problem difficulty and analyze the computational behavior
on standard MIP solver. Computational results of CPLEX for benchmark TAP-B with
1 hour time limit is given in Table while the result for benchmark TRG-B is given
in Table 2.12]- 214

For each instance, its characteristic are given in first six columns including the num-
ber of time buckets 7', the number of machines R, the number of products N, the
number of demands D and the capacity requirement ratio I' defined as ([2.38). We show
the optimal objective value and the computational time of the LP relaxation in Column
LP/Obj and LP/Time respectively. The computational results of CPLEX of the original
MIP model are given in the MIP section. The returned objective function values, com-
putational times, best known lower bounds and number of explored nodes are given in
Column MIP/Obj, MIP/Time, MIP/LB and MIP/#Node. The Column BestLB gives
best known lower bounds, which is the maximum between the optimal objective func-
tion value of the LP relaxation and the best known lower bound returned from the MIP
solving max{Lbd, LP/Obj}. The relative gap based on this best known lower bound,

Ai‘gj{/lo %;}f /6525]{3 is given in the Column MIP/Gap.

which equals to

Table 2.11: Computational results: CPLEX on TAP-B

Characteristics LP MIP
Inst T R N D T Obj Time Obj Time Gap LB #Node BestLB
R5 25 30 46 668 91 2,935,797 79 35,511,200 3600 91.6 2,973,702 0 2,973,702
R6 25 30 36 425 74 1,277,107 18 1,456,011 3600 7.7 1,344,501 97 1,344,501
R7 20 31 80 1428 40 2,217,260 118 2,692,957 3601 16.7 2,244,422 29 2,244,422
RS 20 31 73 1404 41 2,081,921 83 2,597,838 3600 18.7 2,111,181 0 2,111,181

AVG 2,128,021 74 10,564,501 3600 33.7 2,168,451 32 2,168,451
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Table 2.12: Computational results: CPLEX on IRG-B (1)
Characteristics LP MIP

Inst T R N D T Type Obj Time Obj Time Gap Lbd #Node BestLB
Bl 2515 50 500 741 DF 0 22 329607 3600 100.0 0 0 0
B2 2515 50 500 771 DF 0 20 769798 3600 100.0 0 0 0
B3 2515 50 500 758 DF 0 18 69398 3600 100.0 0 398 0
B4 25 15 50 500 924 DF 136154 32 9485931 3600 98.5 144520 0 144520
B5 25 15 50 500 841 DF 0 23 1084421 3600 100.0 0 0 0
B6 25 15 50 500 896 DF 0 31 6291857 3600 100.0 0 0 0
B7 2520 75 750 766 DF 0 81 88795819 3600 100.0 0 0 0
B8 2520 75 750 732 DF 0 106 83386167 3600 100.0 0 0 0
B9 2520 75 750 784 DF 0 85 85466741 3600 100.0 0 0 0
B10 25 20 75 750 851 DF 0 109 83980195 3600 100.0 0 0 0
B11 25 20 75 750 907 DF 0 134 90015737 3600 100.0 0 0 0
B12 25 20 75 750 871 DF 0 94 89549343 3600 100.0 0 0 0
B13 25 30 100 1000 758 DF 0 359 115106676 3600 100.0 0 0 0
B14 25 30 100 1000 739 DF 0 240 121228481 3600 100.0 0 0 0
B15 25 30 100 1000 737 DF 0 355 12857474 3600 100.0 0 0 0
B16 25 30 100 1000 898 DF 0 602 123816283 3600 100.0 0 0 0
B17 25 30 100 1000 938 DF 12126 309 127298893 3600 100.0 0 0 12126
B18 25 30 100 1000 909 DF 11563 329 116072579 3600 100.0 0 0 11563
AVG 164

B19 25 15 50 500 692 ProdEven 0 39 132638 3600 100.0 0 0 0
B20 25 15 50 500 758 ProdEven 0 40 58077709 3600 100.0 0 0 0
B21 25 15 50 500 764 ProdEven 0 47 8404981 3600 100.0 0 0 0
B22 25 15 50 500 890 ProdEven 35419 45 13053180 3600 99.5 66276 0 66276
B23 25 15 50 500 914 ProdEven 0 60 62081602 3600 100.0 0 0 0
B24 25 15 50 500 852 ProdEven 0 53 10247860 3600 100.0 0 0 0
B25 25 20 75 750 769 ProdEven 0 163 92162919 3600 100.0 0 0 0
B26 25 20 75 750 769 ProdEven 0 171 91068198 3600 100.0 0 0 0
B27 25 20 75 750 758 ProdEven 0 152 67557529 3602 100.0 0 0 0
B28 25 20 75 750 941 ProdEven 5897 146 43534412 3600 99.9 23468 0 23468
B29 25 20 75 750 920 ProdEven 87616 151 32120464 3600 99.6 112633 0 112633
B30 25 20 75 750 931 ProdEven 15132 182 35640301 3600 99.9 37008 0 37008
B31 25 30 100 1000 789 ProdEven 0 599 127510049 3600 100.0 0 0 0
B32 25 30 100 1000 728 ProdEven 0 528 120922514 3600 100.0 0 0 0
B33 25 30 100 1000 784 ProdEven 0 637 119911245 3600 100.0 0 0 0
B34 25 30 100 1000 922 ProdEven 26135 391 118721109 3600 100.0 0 0 26135
B35 25 30 100 1000 924 ProdEven 203073 375 120294447 3600 99.8 0 0 203073
B36 25 30 100 1000 912 ProdEven 0 747 110465941 3600 100.0 0 0 0
AVG 251
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Table 2.13: Computational results: CPLEX on IRG-B (2)
Characteristics LP MIP

Inst T R N D T Type Obj Time Obj Time Gap Lbd #Node BestLB
B37 25 15 50 500 731 Capconst 0 18 23204 3600 100.0 0 1612 0
B38 25 15 50 500 785 Capconst 0 33 1163883 3600 100.0 0 0 0
B39 25 15 50 500 776 Capconst 0 21 625842 3600 100.0 0 0 0
B40 25 15 50 500 910 Capconst 0 41 18011097 3601 100.0 45 0 45
B41 25 15 50 500 843 Capconst 0 24 5487443 3600 100.0 0 0 0
B42 25 15 50 500 942 Capconst 18404 36 8834308 3600 99.7 30688 0 30688
B43 25 20 75 750 760 Capconst 0 70 83214545 3600 100.0 0 0 0
B44 25 20 75 750 694 Capconst 0 98 4254029 3600 100.0 0 0 0
B45 25 20 75 750 750 Capconst 0 59 5242020 3600 100.0 0 0 0
B46 25 20 75 750 919 Capconst 3292 &4 92254335 3600 100.0 6124 0 6124
B47 25 20 75 750 906 Capconst 0 127 88539706 3600 100.0 0 0 0
B48 25 20 75 750 943 Capconst 48861 138 92440700 3600 99.9 65835 0 65835
B49 25 30 100 1000 753 Capconst 0 244 121162208 3600 100.0 0 0 0
B50 25 30 100 1000 750 Capconst 0 231 14690362 3600 100.0 0 0 0
B51 25 30 100 1000 792 Capconst 0 269 111052268 3600 100.0 0 0 0
B52 25 30 100 1000 900 Capconst 0 447 114397623 3600 100.0 0 0 0
B53 25 30 100 1000 928 Capconst 65636 291 114067019 3600 99.9 0 0 65636
B54 25 30 100 1000 949 Capconst 84790 287 113712126 3600 99.9 -30208 0 84790
AVG 140

B55 25 15 50 500 752  Capdiff 0 23 257750 3600 100.0 0 0 0
B56 25 15 50 500 742  Capdiff 0 20 85133 3600 100.0 0 880 0
B57 25 15 50 500 738  Capdiff 0 22 18704 3600 100.0 0 1661 0
B58 25 15 50 500 894  Capdiff 0 32 7976495 3600 100.0 0 0 0
B59 25 15 50 500 897  Capdiff 0 31 7333092 3601 100.0 0 0 0
B60 25 15 50 500 898  Capdiff 2153 33 11514296 3600 99.8 21153 0 21153
B61 25 20 75 750 754 Capdiff 0o 79 86537869 3600 100.0 0 0 0
B62 25 20 75 750 757 Capdiff 0 78 91957690 3600 100.0 0 0 0
B63 25 20 75 750 748  Capdiff 0 126 92125122 3600 100.0 0 0 0
B64 25 20 75 750 906 Capdiff 0 166 87013629 3600 100.0 0 0 0
B65 25 20 75 750 901  Capdiff 0 150 70307604 3600 100.0 0 0 0
B66 25 20 75 750 908  Capdiff 1098 78 20872475 3600 100.0 3773 0 3773
B67 25 30 100 1000 752  Capdiff 0 256 123548573 3600 100.0 0 0 0
B68 25 30 100 1000 751  Capdiff 0 260 117798084 3600 100.0 0 0 0
B69 25 30 100 1000 749  Capdiff 0 249 13873785 3600 100.0 0 0 0
B70 25 30 100 1000 897  Capdiff 0 473 113178684 3600 100.0 0 0 0
B71 25 30 100 1000 904 Capdiff 0 689 117260538 3600 100.0 0 0 0
B72 25 30 100 1000 907 Capdiff 427 171 117514463 3600 100.0 1653 0 1653
AVG 163
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Table 2.14: Computational results: CPLEX on IRG-B (3)

99

Characteristics LP MIP

Inst T R N D I Type Obj Time Obj Time Gap Lbd #Node BestLB
B73 2515 50 500 753  STLow 0 10 0 37 0.0 0 0 0
B74 2515 50 500 753 STLow 0 11 0 84 0.0 0 0 0
B75 2515 50 500 752 STLow 0 14 0 277 0.0 0 0 0
B76 2515 50 500 905 STLow 0 29 5148006 3600 100.0 0 0 0
B77 2515 50 500 963 STLow 78579 25 7241378 3600 98.8 87085 0 87085
B78 2515 50 500 944 STLow 128953 26 5381298 3601 97.5 132912 0 132912
B79 2520 75 750 754 STLow 0 35 0 465 0.0 0 0 0
B80 2520 75 750 767 STLow 0 59 0 1200 0.0 0 0 0
B8l 2520 75 750 755 STLow 0 40 0 1008 0.0 0 0 0
B82 2520 75 750 907 STLow 0 78 87599277 3600 100.0 0 0 0
B83 2520 75 750 961 STLow 142893 78 15890973 3600 99.1 146115 0 146115
B84 2520 75 750 895 STLow 0 74 88968761 3600 100.0 0 0 0
B85 25 30 100 1000 747 STLow 0 184 0 1745 0.0 0 0 0
B86 25 30 100 1000 778  STLow 0 180 0 1809 0.0 0 0 0
B87 25 30 100 1000 767 STLow 0 175 0 2127 0.0 0 0 0
B88 25 30 100 1000 893  STLow 0 251 116164709 3600 100.0 0 0 0
B89 25 30 100 1000 900  STLow 0 332 120352296 3600 100.0 0 0 0
B90 25 30 100 1000 888  STLow 0 535 121208248 3600 100.0 0 0 0
AVG 119
B91 25 15 50 500 757 DemEven 0 16 7154 3600 100.0 0 1698 0
B92 25 15 50 500 717 DemEven 0 20 1 3600 100.0 0 1845 0
B93 25 15 50 500 758 DemEven 0 19 21171 3600 100.0 0 1747 0
B94 2515 50 500 874 DemEven 0 24 54451635 3600 100.0 0 0 0
B95 25 15 50 500 874 DemEven 0 29 7334313 3600 100.0 0 0 0
B96 25 15 50 500 902 DemEven 0 35 13755823 3600 100.0 0 0 0
B97 2520 75 750 722 DemEven 0 56 83679 3600 100.0 0 0 0
B98 2520 75 750 737 DemEven 0 61 93744125 3600 100.0 0 0 0
B99 2520 75 750 757 DemEven 0 78 91176566 3600 100.0 0 0 0
B100 25 20 75 750 944 DemEven 0 141 86302661 3600 100.0 0 0 0
B101 25 20 75 750 987 DemEven 150352 185 92421684 3600 99.8 213992 0 213992
B102 25 20 75 750 895 DemEven 0 95 89646764 3600 100.0 0 0 0
B103 25 30 100 1000 724 DemEven 0 312 121114882 3600 100.0 0 0 0
B104 25 30 100 1000 779 DemEven 0 414 115605436 3600 100.0 0 0 0
B105 25 30 100 1000 761 DemEven 0 366 118987924 3600 100.0 0 0 0
B106 25 30 100 1000 918 DemEven 0 710 100250337 3600 100.0 0 0 0
B107 25 30 100 1000 902 DemEven 0 427 114328741 3600 100.0 0 0 0
B108 25 30 100 1000 885 DemEven 0 441 112508993 3600 100.0 0 0 0
AVG 190

First, we show the computational time of LP relaxation in Figure For each

instance size, we show the LPR time for different types of generated instances. All
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instance types have similar trend that the LPR time goes up when the instance size
increases. Also, when the required capacity ratio R increases from 75% to 90%, the
LPR time increases as well for most cases. For type ProdEven, of which each product
has the same number of demands statistically, the LPR time is larger than others except
the last instance size. Moreover, the objective function value based on the LP relaxation
are zero in most cases. This is due to the instance generation have required capacity
ratio as 90% maximum, therefore with relaxed setup in LP relaxation, most of the work
order can be fulfilled fully on time.

—o—DF ——ProdEven Capconst =>=Capdiff =—#=STLow DemEven

700

TIME

INSTANCE SIZE

Figure 2.14: LPR time on different types of instances

Second, we show the MIP gap in Figure It shows a clear trend that type STLow
instances with capacity requirement ratio R = 75 are easy to solve. In fact, the type
STLow instances, there are 9 instances out of 18 are solved to optimality. This is mainly
due to the low setup time and capacity requirement, which makes instances easier to
solve since capacity is the bottleneck of our problem. All other type of instances have
gap near 100%, this may all because they are hard to solve, but also due to the reason
of the poor lower bounds given by LP relaxation. As we mentioned, in most of case, the

LP relaxation objective value is 0.
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—o—DF ——ProdEven Capconst =>=Capdiff =—#=STLow DemEven
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Figure 2.15: MIP gap on different types of instances

To understand better the instance difficulty and the solution quality given by CPLEX,
we show the number of nodes explored in Figure We can see that only for the in-
stances with size 725 — M15 — D500 — N50 — R75, there are nodes explored. For all
other instances, CPLEX got stuck at the first heuristic solution and returns a big gap

around 99%. It fails to explore more nodes other than the root node.
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Figure 2.16: MIP number of nodes on different types of instances

Based on this computational result, we conclude that CPLEX has bad performance
due to the bad lower bound based on the LP relaxation and the large problem size which

prevent its embedded heuristics to find good solution.
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2.6 Conclusions

We study a new variant of the CLSP, which is based on a real-world application. The
problem combines, for the first time, several classical features of the LSP such as setup
carryover and production time windows. We present and compare three different MIP
formulations of the problem. We prove that one of the formulations is weaker since it
may provide worse LP relaxation bounds. A set of instances are randomly generated
and extensive computational experiments are conducted to compare these formulations.
The results show that one of the formulation Form3 gives the overall best performance
on both real-world instances and randomly generated instances. A library of instances
is available online, and we hope that this can stimulate further research on this very
challenging rich real-world LSP (http://decisionbrain.com/ISC0O2016).



Chapter 3

Complex Capacitated Lot Sizing

Problem: Heuristics

In the previous chapter, we have introduced the complex capacitated lot sizing prob-
lem CLSC. It is shown to be NP-hard and cannot be solved efficiently by a standard
MIP solver based on our computational experiments. Therefore, we develop heuristic
algorithms to tackle CLSC in this chapter.

The chapter is organized as follows: In Section we present the introduction. In
Section different constructive algorithms are developed, while in Section a Fix
& Optimize algorithm is presented. Computational results are given in Section to

evaluate algorithm performances. Finally, we conclude the chapter in Section [3.5

63
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3.1 Introduction

In the apparel application, the service level key performance indicator has superior pri-
ority than operational cost. In other words, tardiness cost and lost sale cost are much
more important than setup cost. Our goal is to address the production planning prob-
lem from the application. Therefore, we only consider CLSC without setup cost in this
chapter.

All heuristic algorithms we have developed are based on the MIP formulation of
the problem. As shown before, formulation Form3 gives the best overall performance.
Therefore, we use Form3 to develop and test the algorithm whenever the MIP formu-
lation of CLSC is required.

In the following sections, we present both constructive heuristics and improvement

heuristics.

3.2 Constructive Heuristic Algorithms

In this section, we propose three heuristic algorithms to construct feasible solutions to
CLSC. They include Fix&Relax algorithm, which is a classical algorithm widely used
for CLSP, product decomposition based algorithm which explores real instances structure,
and first solution heuristic algorithm based on the LP relaxation, which has a general
framework. We adapt the Fix&Relax algorithm based on the time bucket and the
machine decomposition, and it solves a series of MIP models. The PD algorithm is based
on the product decomposition, which is also based on solving a series of MIP model.
However, its MIP models are on a smaller scale compared to those in the Fix&Relax
algorithm. Finally, the first solution heuristic algorithm is based on variables fixation and
it solves a series of LP models. Therefore, all constructive heuristics utilize mathematical
models but have difference models and scales. For some algorithms, different variations
and configurations are developed, and their analysis and comparison results are presented
in Section [3.41

3.2.1 Fix&Relax Algorithm

FizéRelax (F&R) algorithm [I0§] is one of the most commonly used heuristic algorithm
in practice for CLSP. The algorithm has a general framework and is easy to implement.
Furthermore, it gives decent performance in many cases as shown in [3, [72]. Therefore,
we adapt F&R algorithm to CLSC in this section.

The essence of F&R algorithm is to decompose a problem, so that in each iteration
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a simpler and smaller sub-problem is solved to construct part of the feasible solution.

Normally the problem is divided into three parts:
e Frozen window: integer variables in this set are fixed at a given value.

e Decision window: all variables in this set are defined as in the original problem to
be decided.

e Approximation window: integer variables in this set are relaxed to be continuous.

Intuitively, there are three decomposition strategy: period-oriented, product-oriented
and machine-oriented. However, due to the setup carryover, the F&R algorithm can
not be adapted directly to our problem. Decomposing the problem by products and fix
the related setup variables may easily lead to infeasibility. Therefore, we only develop
the F&R algorithm based on the time period and the machine decomposition. The

product-oriented decomposition method is presented in the next section.

Period-oriented F&R algorithm

The F&R algorithm with period-oriented decomposition (FR-T) decomposes the prob-
lem by time buckets. Absi and Kedad-Sidhoum [3] provided a nice presentation on the
procedure of FR-T algorithm, we cite it here in Figure In kth iteration, we have
a time window [ag, by, of which the length is 0. Time buckets ¢ € [1,a;) are frozen
window, which means all binary variables are fixed at the value of the solution from
the previous iteration. Time buckets ¢ € [ay, bg] are decision window, in which all deci-
sion variables remain the same as in the original problem. The remaining time buckets
t € (bg,T] are approximation window that all binary variables are relaxed to continu-
ous variables. We solve this problem and obtain solution sol*. Note that in sol*, all
binary variables belong to time buckets [1, bx] have binary values, while the rest can be
fractional. Then in the next iteration k + 1, the decision window is moved forward by a
step size 6 where 0 < 6 < o. Therefore we have new decision window [aj1, bg+1] where
ag+1 < ag + 0, bry1 < min{by + 0,7}. Comparing to the sub-problem considered in
iteration k, binary variables belonging to [ak, ax+1 — 1] are fixed and variables belonging
to [br + 1,b41] are set back to binary variables. We solve this updated sub-problem in
iteration k£ 4+ 1 and the process is repeated until the end of the time horizon is reached.

bed-d-—b-4--k- [ [ | 1

Decision window : Frozen window : Approximation window
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Figure 3.1: FR-T algorithm procedure Absi and Kedad-Sidhoum [3] (modified)

Given time window [a, b] and initial solution sol®, we define the following sub-problem
PEET ([a,b], sol?):
(PEET([a,b], 50%))  min (2.15)
st (2.16) — (2.21), (2.23) — (2.25), (2.26) — (2.28)
20, =s0l%(20,), 2, =s0l%(2),) i €N, reRtE[l,a—1]
2zt €{0,1} i € Nyr € Rt € [a,b]
szt €00, ieN,reRtEb+1,T]

We give the pseudo code of FR-T in Algorithm

Algorithm 1: F&R algorithm with period-oriented decomposition (FR-T)
Input: o length of decision window, ¢ step size

Result: x;;, z?rt, z;;t, Yar and yq
1 k<1, a, + 1, b, < min{o, T}, sol® = ();
2 while a; <7T do
3 sol® < Solve sub-problem PF%T ([ay,, by], sol*~1);
4 a1 < ag + 0, bgry < min{by + 6, T} k + k+1;

5 end

Machine-oriented F&R algorithm

The F&R algorithm with machine-oriented decomposition (FR-M) decomposes the de-
cision by machine. Given two non-intersect subsets of machines R, R® C R and initial

solution s0l°, we define the sub-problem PFEM(RE RO s0l%) as follows:

(PFEM(RE RO s0l%) min (2.15)



CHAPTER 3. CLSC HEURISTICS 67

st. (216) — @21), 223) - @.25), @26) — [2.29)
2oy = s0l(20,), 2, =s0l’(zt,) ieN,teT,reRF
2 2k €{0,1} i €N teT,reR
22t €10,1] i eNteT,r e RA{RF URY}

irt

We give the pseudo code of FR-M in Algorithm

Algorithm 2: F&R algorithm with machine-oriented decomposition (FR-M)
Input: o length of the decision window, ¢ step size, ™ a permutation of all

machines

Result: x4, z?rt, z;;t, yar and yq
1 k<1, ap + 1, by, < min{o, R}, sol® = (;
2 while a;, < R do
3 R« {meR:1<I<a,—1};
4 | RO+ {meR ar <1<y}
5 sol® < Solve sub-problem PFEM(RE RO solk~1);
6 ag+1 < ag + 0, bpp1 < min{by + o, R}, k + k + 1,

7 end

Even though F&R algorithm with product decomposition can not be directly applied
to our problem, in the next section, we develop a heuristic algorithm based on the product

decomposition.

3.2.2 Product Decomposition Based Algorithm

In this section, we develop a constructive algorithm based on some observation from the
application data. Data analysis in Section [2.4.1] shows that even though there are many
products, normally 20% of products cover 80% of demands. This feature can actually be
observed in many industrial cases. Therefore, we would like to develop an algorithm to
make use of this knowledge. One idea is to decompose the problem based on products,
and solve a sequence of sub-problems based on each product. We call it the Product
Decomposition (PD) based algorithm.

The PD algorithm flow chart is shown in Figure First, we sort all products to
obtain an order 7w based on certain criteria. Then for each product i = 7w(k), a sub-
problem PFP(4) is built and solved by a standard MIP solver. After each iteration, the

current production plan is updated and it moves to the next product 7(k + 1).
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Compute product order 7

lk<—1

Build and Solve PPP (n(k))

k<N l

Update status, k < k+ 1

lk>N

Return solution

Figure 3.2: PD algorithm flow chart

There are two critical components in PD algorithm: sorting criteria and definition
of the sub-problem. In the rest of the section, we introduce several variants of PD based

on different strategies of these two components and complete the algorithm.

Sorting criteria

All products can be sorted with increasing or decreasing order based on an assigned
value. We introduce two ways to define this value: demand capacity and release date.
Therefore based on increasing or decreasing direction, we have four sorting criteria, which

are summarized in Table 311

Table 3.1: PD algorithm: sorting criteria

Criteria Value Direction
CI demand capacity dc(i) (defined in 1j Increase
CD demand capacity dc(z) (defined in 1i Decrease \
RI Release date rd(:) (defined in lj Increase
RD Release date rd(:) (defined in |j Decrease \

For a given product i, define the demand capacity as the total required capacity of

the demands for this product as follows:

de(i) = > ptiqa (3.1)
deD?
For a given product i, define the release date as the earliest release date of all its

demands as follows:

d(i) = mi 3.2
rd(i) min rq (3.2)



CHAPTER 3. CLSC HEURISTICS 69

As shown in Table we have four different criteria. For example, the criteria CI
represents ordering products according to the increasing value of dc(i). In the Example
the order of product is m = (i1,143,i2) based on CI with the demand capacity value
de(il) = 3, de(i2) = 4, dc(i3) = 3.

Sub-problem definition

For each product, we define a sub-problem, which only plans the production of the cur-
rent product. On one hand, each sub-problem optimizes the original objective including
lost sale cost and tardiness cost for demands belonging to current product. On the other
hand, it also has to consider to leave capacity for remaining products to be planned. In

the rest of this section, we explain two types of sub-problems, which are summarized in

Table

Table 3.2: PD algorithm: sub-problem

Sub-problem  StartupCost  IdleCost  FullyUsage

SI v v X
F v X

Sub-problem with start-up and idle cost For one product sub-problem, instead
of setup carryover, we consider start-up as well as the idle cost. Due to the start-up
cost, the solution prefers production in continuous time buckets on a machine. However,
if there is only start-up cost, some time buckets will be used partially just to make
production continuous and avoid a new start-up. Therefore, we introduce idle cost,
which tries to reduce capacity waste for products not planned yet.

Given a product j and available capacity avicap(r,t) defined for each machine r in
time bucket ¢, we introduce following variables for each machine r € R and time bucket

teT:

e 2 is defined as in formulation Form3 for CLSC, it represents the production

quantity of product j on machine r during time bucket t.

e v+ € {0,1} equals to 1 if machine 7 in time bucket ¢ is used, i.e., there is a positive

production for j.

o 0.+ € {0,1} equals to 1 if there is a start up in ¢ for machine r, which means that

machine 7 is not used in t — 1 (y,¢—; = 0) whereas it is used in ¢ (7,1 = 0).
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Let wg, > 0 and w;. > 0 be the weight of start-up cost and idle cost respectively.
The sub-problem Péle (j) with start-up and idle cost is defined as follows:

(PEP () min > leaya+ Y tehya+ S tcar

deDi deDi teTt>el, deDi teT:t>e2

+ Wep Z Ot
reRLET

+ Wwie Z (avlcap(r, t)yre — Dtixjre — Stjrbrt) (3.3)
reERET

s.t. Z Tjrt = Z Ydt teT (3.4)

r€R deDj

> Yartya=da deDl (3.5)
tET t>by
ptizire + stjpbre < avleap(r,t) vy reR,teT (3.6)
Tjrt < OjrgYrt reR,teT (3.7)
Tjrt = Yrt reR,teT (3.8)
Ort > Yrt — Yrt—1 reR,teT (3.9)
Yrt, Ort € {0,1} reR,teT (3.10)
Zjre >0 reRteT (3.11)
Yar > 0,y4 >0 deDlbg<teT (3.12)

In the objective , we minimize not only the lost sale cost and tardiness cost, but
also the start-up cost and idle cost. As in Form3 for CLSC problem, constraints
ensure the material flow balance in each time bucket while constraints state the
flow balance for each demand, i.e., the satisfied quantity plus the unsatisfied quantity of
each demand should equal to its total required quantity. Constraints require total
used capacity is no more than the total available capacity on each machine for each time
bucket. The total used capacity includes production used capacity pt;z;; and start-up
used capacity stj.0,+. On the other hand, the given available capacity is avlcap(r,t) vy,
which equals to 0 when the capacity is not used (y,+ = 0) and equals to avicap(r,t) when
the capacity is used (y,+ = 1). Constraints link production with setup usage that
there is a positive production only if the capacity is used. On the other hand, constraints
(3.8) ensure at least 1 unit is produced when the capacity is used. Finally, we define
start-up variables with constraints that given machine r if capacity is not used in

t — 1 but used in ¢, there is a start-up in time bucket t.
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Note that in the objective function, we mix two types of objectives together: original
objective (including lost sale cost and tardiness cost) and capacity usage cost (including
start-up cost and idle cost). Obviously, they do not have the same priority and serve
different purpose. Hence, we need to treat them differently. One way is to adjust the
coefficient ws, and wj. accordingly to distinguish different levels of importance (which
is actually hard to define in practice). Another way is to use goal programming. Since
original objective dominates capacity usage objective, we choose to use goal program-
ming. In the first rank, we try to minimize lost sale cost and tardiness cost, while in the
second rank we try to minimize start-up cost and idle cost.

Given a MIP defined as mingcx f1(z) + fa2(x), the goal programming with objective
f1(+) as rank 1 and fo(-) as rank 2 is to solve following two optimization problems in

sequence:

1)z =min fi(z)

9 .
) L fa(x)

Therefore, for each product, we solve two sub-problems Pg}f (j) and Pglg (7) in sequence,

which are defined as follows:

(P§7(j)) min Z leaya + Z tehyar + Z tciya
deDi deDI teTt>el, deDi teT:t>e2

st @) - @I

Let obj(PLE (7)) be the obtained objective function value of problem PL% (5),

(PEB() min wey > Outwie Y (avlcap(r,t)ye — ptizjee — stjrOr)
reRteT reRET

st. B4 - @1
Z leqya + Z tegyar + Z tc2ya < obj(PER (5))
deDi deDi teT:t>e) deDi teT:t>e?
(3.13)

In the first rank, we try to minimize the lost sale cost and tardiness cost in problem
PER (). Given the obtained feasible objective function value obj(PEE (5)), we minimize
the start-up cost and idle cost in rank 2. However, constraint ensures that the
lost sale cost and tardiness cost is not worse than what we have achieved in rank 1.
Sub-problem with fully capacity usage Another way of compact capacity usage

is to force almost full capacity usage unless it is a switch-off time bucket. It means that
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if several continuous time buckets are used, then the capacity in all time buckets but the
last one should be fully used. So on machine r, if time bucket ¢ and ¢+ 1 are used, then
capacity in ¢t must be fully used. In this way, each sub-problem also considers leaving

capacity for remaining products to be planned. This sub-problem is defined as follows:

(P£P(j))  min Z leaya + Z teyya + Z tciyas
deDi deDi teTt>el, deDi teT:t>e

+ Wsp Z 07‘t

reR,teT

st. (B4) - B
ptizjre + Stipbre > avlcap(r,t)(Vee + yre41 — 1) 1€ Rt € T\{T'}
(3.14)

We also consider to use goal programming, where the first rank is also to minimize the

lost sale cost and tardiness cost while the second rank is to minimize the start-up cost.

PD algorithm variants

In this section, we complete two variants of PD algorithm.
First of all, once we solve sub-problems for all products, we use following model to
recover the setup values for the original problem. Given solution value ~;+ and 6;,.; for

i €N, reRandte€ T, we define the problem as follows:

(P(’Yirt’ eirt)) min 0

s.t. Zz?rtzl reR,teT
ieN
Zipt < 21+ 2 ieN,reR,teT\{1}
z?rt+’z?r,t+1§1+wrt ieN,reR,teT\{T}
Zh At we <1 1eEN,reRteT
20y =1 Ifvire =1,0i0 =0 teN,reR,teT
Z?rt+zi+rt:1 If O;ry = 1 1eN,reR,teT
25, =0 Ifv =0 ieN,reRteT

The PD algorithm with start-up and idle cost (PD-SI) is given in the Algorithm
The crucial part is to update the available capacities for the next sub-problem. After
planning one product, the available capacity includes non-used time bucket and the

remaining capacity in the switch-off time bucket. As shown in the example in Figure
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time buckets tb; and tby are never used therefore their capacity is available for the
next product. Moreover, the time bucket tbg and tbs are switch-off time buckets therefore
their remaining capacity is also available for the next product. However, time bucket
the is partially used and is not a switch-off time bucket, therefore even though there is

capacity left but is considered nonavailable for the next product.

[l used Capacity
Available Capacity

A L I

thy thy ths thy bs

Figure 3.3: PD-SI algorithm capacity update example

The PD algorithm with start-up and fully capacity usage (PD-F) is given in the
Algorithm [4
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Algorithm 3: The PD-SI algorithm
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Input: Chosen sorting criteria SortCriteria
Result: x4, z?rt, z;;t, yar and yq

for each product i, each machine r, time bucket t do

Yirt = 0, Oirt < 055
recap(r,t) <— capy;
S(r,t) = 0;
end
Sort products, m <— Compute ProductOrder(SortCriteria) ;
for k=1 to N do
j < m(k);
for each machine r, time bucket t do
if S(r,t)NS(r,t+1) =0 then
‘ avlcap(r,t) < recap(r,t);
end
else
‘ avleap(r,t) < 0;
end
end
(T)t» Yaes Ya» Vre» U74) < Solve sub-problem PEP(j) with capacity avicap(r,t);
for each machine r, time bucket t, demand d € D? do
Tjrt 4= Thp, Yat < Yagg» Yd < Y
recap(r,t) < recap(r,t) — (ptjx;-rt + sth9;t>;
Yirt < Vrts irt < Ors;
S(r,t) < S(r,t)U{j};
end
end
(Zir» Z;;t) « Solve P(Yirt, Oirt);
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Algorithm 4: The PD-F algorithm
Input: Chosen sorting criteria SortCriteria

) 0+
Result: x4, 25,4, 254, Yar and yq

=

for each product i, each machine r, time bucket t do

2 Yirt < 07 airt <~ O,;

w

recap(r,t) <— capy;
S(r,t) = 0;

5 end

S~

=]

Sort products, m <— Compute ProductOrder(SortCriteria) ;
7 for k=1 tondo

8 j « m(k);
9 for each machine r, time bucket t do
10 ‘ avlcap(r,t) < recap(r,t);
11 end
12 (Tts Yags Ya» Vre» Op4) = Solve sub-problem PEP(5) with capacity avicap(r,t);
13 for each machine r, time bucket t, demand d € D’ do
14 Tjrt 4= Ty, Yat < Yagg» Yd < Y
15 recap(r,t) < recap(r,t) — (ptjx;rt + stjrﬁ;t);
16 Virt <= Vpos Oirt 4 Opps;
17 S(ryt) < S(r,t)U{j};
18 end
19 end

20 (29, 2:5,) « Solve P(virt, Oirt);

3.2.3 First Solution Heuristic Algorithm Based on LP Relaxation

In the previous section, we have introduced the PD algorithm, which is based on the
special feature that we have observed in the application instances. In this section, we
develop a rather general constructive heuristic algorithm which is based on the MIP
formulation and its LP relaxation.

The algorithm flow chart is shown in Figure First, we solve the LP relaxation
of the problem. Based on this continuous solution, a set of binary variables is selected
to be fixed. The LP relaxation of the updated formulation is solved again with fixed
variables and new binary variables are selected to be fixed. We repeat this process
until either there is no more variable that fulfills our condition to be selected, or the

LP relaxation is infeasible. In the first case, we solve the resulting MIP formulation
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with fixed variables. In the second case, a repair process is performed and we solve the
resulted MIP formulation with fixed variables. Eventually, if a solution is returned by

solving this final MIP formulation, we obtain a feasible solution to the original problem.

P+ P

Solve LP(P’)

|

P’ + {P'|var = F(var) var € F} Solved
T Select variables to fix F' Repair
F#£0
F=10

Solve MIP(P’)

Figure 3.4: FSH algorithm flow chart

There are two issues to consider when we fix variables: first, what variables should

be fixed; second, how to avoid infeasibility. We address these two issues in the following.

Variable selection

First we analyze the LP solution of the problem to understand which variables should
be fixed. In the Example we give the optimal MIP solution without setup cost
in Figure and the optimal LP relaxation solution in Figure In time bucket ¢
on machine 71, there is not enough capacity to produce and setup for both product il
and 2. However, the LP relaxation solution have them both produced by sharing the
initial state (zzOQ,rl,t? = %, Zz%,rl,tQ = %) Producing both products in ¢2 is a potential
conflict and if we help the LP solver to resolve this conflict, i.e., make a decision and set
ZZQLTLtQ = 1, then only product 71 will be produced in ¢2. Therefore, the idea is that for
each machine r, we select a time bucket with highest potential conflict, then a variable

is selected to be fixed to resolve this conflict.
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di(1) da(1) da(1) | setup | ds(1) Jsebup’ | da(1)

EC o % [

[ ds2) ] [da(D)] setup. | ds(1) d5 (1)

T2 } } } } } i
t1 t2 t3 ta ts

Figure 3.5: CLSC Example optimal solution (no setup cost)

[di(2)] [da($)][d3(3)][d2(3)][da(3)] setup’ ds(3)] ds(1)
71| } } } } {
ldi(3)] (da(2)|[ds(3)][da(3)][da(2)] setup’ | ds(3) |ds (L)
T2 } } } } t {
t1 t2 t3 ta ts

Figure 3.6: CLSC Example optimal LP relaxation solution (no setup cost)

The selection strategy is as follows: for each machine r, define

Y ien Stir (2,1 — capyt if Ji st 20, =1

vio(r,t) = (3.15)

Y ien Stir [z, + 29,1 — cap,t  otherwise

It represents the potential capacity violation when we round up fractional setup variable
values to integers. When vio(r,t) < 0, it implies that even if we setup all the prod-
ucts indicated in the LP relaxation solution, there is enough capacity in (r,t). When
vio(r,t) > 0, it means that the LP relaxation solution might be making a wrong decision
that there is not enough capacity to produce all the products indicated in the continuous
solution.

To simplify the algorithm description, we introduce following notations which has

the same structure as Map in Java.

Definition 3.1. Let B represent the set of all binary variables in a MIP problem. Given
a set ' C B x {0,1}, which is a set of variable and binary value pair, we introduce the

notation
o Denote var € F, if there exists val € {0,1} such that (var,val) € F.

o Given var € B, define

val such that (var,val) € F' if var € F,
F(var) :=

-1 otherwise

Given a continuous solution of CLSC, the variable selection in FSH algorithm is given
as follows in Algorithm
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Algorithm 5: The variable selection algorithm of FSH algorithm
ZLPR

Input: so as a continuous solution, a set of variables already fixed
FOC Bx{0,1};
Result: A subset of binary variables F' C B x {0, 1}
1 F <« 0
2 for each r € R do /* Select one variable for each r */

3 for each t € T do

4 ‘ Compute vio(r,t) as (3.15) based on sol“"'F;

5 end

6 if max;vio(r,t) > 0 then /* If exists conflict */

7 Let t* such that vio(r,t*) = maxe7 vio(r,t) ; /* t with max conflict
*/

8 Let N* C N be the subset of products such that 2, ¢ F°, 2z ¢ FY;

9 Let i* € N* such that pt;sol“PT (2 1) = maxiens ptisol PR (w4);

; /* ¢ with max production capacity */

10 if 2. ,, ¢ F° then

11 F— FU{(z,, D}

12 F « FU UpdateBounds(z{. ., 1);
13 end

14 else

15 F« FU{(zf,, D}

16 F«+ FuU UpdateBounds(z;:mt, 1);
17 end

18 end

19 end

“UpdateBounds(var,val)” is a function to propagate bounds of other variables after
fixing var at val according to the rules introduced in the following section. It returns a

set of variables and their fixed values.

Infeasibility issue

If the fixing strategy is proper, we may even prevent the situation of infeasible LP
relaxation or MIP, therefore guarantees to return a feasible solution. Due to the nature

of our problem, the major infeasiblity comes from the relations between setup variables

20

irt Therefore, one way is to introduce analysis rules and perform constraint

+
and z;,.

propagation. All the propagation rules are summarized as follows:
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o Ifset 29, =0

+ _ 0 _
— If 2z, =0, set Zip 141 = 0

0 — < +
— If Zipr1 = 1, set z, =1
0 _
o Ifset z;, =1

— Fori#jeN, set 2, =0

— Set 2, =0

— I 25 =1, fori#jeN, set 2, =0
— If there exits j, i # j € N, set 2., =0
— If z?m_l =1, for j € N, set z]t’tfl =0
- If z?m_l =0, set Z;;,tq =1

+ _ 0 _
— If Zippq = 0, set Zip o1 = 1

— If there exits j € N such that z?tfl =1, set z?m_l =0

J
— If z?m_1 and z;;,tfl are both free, For ¢ # j € N, if recap(r,t — 1) < st;r, set
+ _
er,t—l =0

o Ifset 2z, =0

0 _ 0 _
— If z;,, = 0, set Zipt41 = 0

0 — 0 _
— Iz =1, set 25, =1

o If set z;;t =1

Fori# j e N, if z;-“t is free and recap(r,t) < stj,, set z;;t =0

r

— Set z?rt =0

For j € NV, if Z?rt =1, set Z?r,t—i—l =0

For j € NV, if z?mH =1, set z?rt =0

For j e NV, if z;;t =0, set 29, =0

where recap(r,t) = capp — ZieN"Z;t is fized to 1 Stir-

Unfortunately, we can not guarantee that the LP relaxation and the final MIP are
feasible based on the above rules. One future research direction is to develop a general
constraint propagator which can detect infeasibility and we can have roll back function

to recover from the infeasible fixation.
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Repair Procedure

If infeasibility is detected at the kth iteration during running FSH, we try to repair by
rolling back to the previous iteration. Let F(k) be the set of all variables fixed after
the kth iteration and Fj be the set of all variables fixed during the kth iteration. We
recover all variables var € F}j back to free binary variables and solve the original MIP

model with variables var € F(k)\F* fixed to the given value during FSH.

First solution heuristic algorithm (FSH)

The pseudo code of the FSH algorithm is given in Algorithm [6]

Algorithm 6: FSH algorithm

Input: P as the original problem. ;
Result: sol
1 Initialize: P’ < P, F& < (), FPre « ();

2 while do

3 sol"PR «Solve the LP Relaxation of P’

4 if sol’’f == NULL then /* LPR infeasible */
5 el all\ pore,

6 P' « {P':var =val Y(var,val) € F?};

7 Break;

8 end

9 Feur < SelectVariablesToFix(sol “PE | fally:;
10 if Fe" == () then /* No variables to fix */
11 Break;
12 end
13 else
14 FFea « Recursively set var at val for (var,val) € F" based on

feasibility rules;

15 peur ( eur |y pFea.
16 end
17 Fpre  peur pall  pall | preur,
18 P' « {P':var = val Y(var,val) € F};

19 end
20 sol < Solve P’ as MIP;
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3.3 Fix&Optimize algorithm

In previous sections, we introduce several constructive heuristic algorithms to build up
a solution for CLSC from scratch. In this section, we develop a local search algorithm to
further improve the solution quality. Fix&Optimize (F&O) algorithm [I0§] is another
commonly used method for LSP. The algorithm starts from an initial solution. Then in
each iteration, partial variables are fixed, while the remaining variables are optimized
to try to improve the solution quality. After each iteration, variables in the decision
window are updated and the process is repeated until certain criteria is reached. The
final solution is no worse than the initial solution. The idea is to solve a smaller MIP
problem in each iteration to search for a better solution.

In this section, we develop a F&O algorithm based on period-oriented decomposition.
Given a feasible solution of CLSC as sol’, we define the problem P79 ([ay,by], s0l°) as

follows:

(PFO([a,b], s0l°)) min (2.15)
s.t. [@16) — @21), @23) — @25), @26) — (2.28)
2oy = 501 (24y), 25, = s0l°(27,)
ieN,reR,tel,a—1]U[b+1,T]
22t €40,1} i e N,r € R,t € [a,b]

The algorithm is formally presented in Algorithm

Algorithm 7: The Fix&Optimize (F&O) algorithm for CLSC
Input: o length of the decision time window, J step size

Result: z;,4, z?m zl-tt, yar and yq
1 k<1, a, + 1, b, < min{o, T}, sol® = {);
2 while a; < T do
3 sol* < Solve sub-problem P¥©([ay, bg], solk~1);
4 ag41 < ap + 0, bpr1 < min{by +0, T}, k + k+ 1;

5 end

3.4 Computational Results

In this section, we present computational results of above developed heuristic algorithms
to evaluate and compare their performance. First, parameter evaluation is performed on

the pilot benchmark instances to evaluate different configurations of the F&R algorithm
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and the PD algorithm. Then all developed heuristic algorithms are compared based on

their chosen configurations which give the overall best performance.

3.4.1 Algorithm Parameter Evaluation

We use benchmark IAP-B, which includes four real-world instances, as pilot benchmark
instances. Computational results of pilot instances with CPLEX given 1 hour time
limit is used as a reference, we recall the computational results here, which have been
presented in Table in Section [2.5.4

Table [2.11} Computational results: CPLEX on TAP-B

Characteristics LP MIP
Inst T R N D T Obj Time Obj Time Gap LB #Node BestLB
R5 25 30 46 668 91 2,935,797 79 35,511,200 3600 91.6 2,973,702 0 2,973,702
R6 25 30 36 425 74 1,277,107 18 1,456,011 3600 7.7 1,344,501 97 1,344,501
R7 20 31 80 1428 40 2,217,260 118 2,692,957 3601 16.7 2,244,422 29 2,244,422
R8 20 31 73 1404 41 2,081,921 83 2,597,838 3600 18.7 2,111,181 0 2,111,181
AVG 2,128,021 74 10,564,501 3600 33.7 2,168,451 32 2,168,451

Parameter evaluation of Fix&Relax (F&R) algorithm

Parameters for the F&R algorithm include decomposition strategy, decision window size

o and step size §. We test following combinations of different parameters:
e Decomposition strategy: TO, MO

e (0,0): {(2,1),(3,1), (3,2)}

The computational results are shown in Table The time limit of each iteration

is set to 600 seconds.
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Table 3.3: Comparison results: F&R algorithm variations

FR-TO-(2,1) FR-TO-(3,1) FR-TO-(3,2)
Instance Obj Time Gap Obj Time Gap Obj Time Gap
R5 - - - - - - - - -
R6 1,413,088 5387 4.9 1,391,377 5854 3.4 1,422,186 3181 5.5
R7 4,322,763 5553 48.1 3,458,993 5195 35.1 4,274,910 3080 47.5
R8 - - - 3,292,260 5465 35.9 3,935,323 3036 46.4

AVG 2,867,925 5470 26.5 2,714,210 5505 24.8 3,210,806 3099 33.1

FR-MO-(2,1) FR-MO-(3,1) FR-MO-(3,2)
Instance Obj Time Gap Obj Time Gap Obj Time Gap
R5 - - - - - - - - -
R6 1,442,343 4111 6.8 1,430,022 6292 6.0 1,423,001 2260 5.5
R7 2,448,047 14661 8.3 2,432,500 16572 7.7 2,468,958 8371 9.1
RS 2,309,079 10990 8.6 2,266,813 12583 6.9 2,363,615 6718 10.7

AVG 2,066,490 9921 7.9 2,043,112 11816 6.9 2,085,191 5783 8.4

According to the computational results, we have following observations:

1) For all tested configurations, the F&R algorithm fails to solve the instance R5. The
reason is that it fails to find a feasible solution in the first iteration within the time limit
set on each iteration (600 seconds). We have also tried to increase this time limit from
600 seconds to 1200 seconds, we observe the same result for instance R5 that the F&R
algorithm still fails to find a feasible solution to the sub-problem in the first iteration.
This implies that the sub-problems constructed in F&R is still too hard to solve for
CPLEX based on tested instances and formulation.

2) We observe the overall best solution quality on the F&R algorithm with machine-
oriented decomposition, decision window length as 3 and step size as 1 (FR-MO-(3,1)).
It returns an average gap of 6.9%, whereas it is 33.7% for CPLEX. However, the average
computational time of FR-MO-(3,1) is more than 3 hours. Therefore, we observe a
natural trade-off between solution qualities and computational times.

3) Comparing the two decomposition strategies of the F&R algorithm, MO based F&R
algorithm offers better solution quality than TO based F&R algorithm, but with a much
longer computational time. Also, one does not dominate the other since we observe that
the algorithm FR-TO-(2,1) obtains better solution than its counter part FR-MO-(2,1).
4) Comparing the different decision window sizes and step sizes, the parameter (3,1)
gives best solution quality on average for both decomposition strategies. In fact, it is

true for all cases except one that the FR-MO-(3,2) algorithm gives better solution than
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FR-MO-(3,1) for instance R6.

In summary, F&R algorithm based on machine decomposition with decision window
size and step size as (3,1) gives the overall best performance. However, the F&R algo-
rithm can not address the most difficult instance R5. Also, the computational time of
F&R is on average very long, which exceeds 3 hours for some configurations. Hence, we
conclude that F&R algorithm is not efficient enough on our problem, therefore we stop

testing it on other benchmark instances.

Parameter evaluation of PD algorithm

The parameter for the PD algorithm includes sorting criteria and sub-problem definition.

e Sorting criteria: the demand capacity de(-) and the release date rd(-) in increasing

and decreasing order.

e Sub-problem definition: the sub-problem with the start-up and the idle cost (SI),
the sub-problem with full usage (F).

We first evaluate two sub-problems based on the same sorting criteria: the demand

capacity dc(-) in decreasing order. The computational results are presented in Table

Table 3.4: Comparison results of PD algorithm variations: sub-problems

PD-SI-DC PD-F-DC
Instance Obj Time Gap Obj Time Gap
R5 5,740,173 70 48.2 5,738,345 T4 48.2
R6 2,574,221 8 47.8 2,450,901 7 45.1
R7 3,713,166 154 39.6 3,800,412 315 40.9
R8 4,211,277 180 49.9 4,159,586 285 49.2

AVG 4,059,709 103 46.3 4,037,311 170 45.9

Based on the same sorting criteria of decreasing required capacity, the PD algorithm
based on the SI sub-problem (PD-SI-DC) and the PD algorithm based on the F sub-
problem (PD-F-DC) obtain solutions with similar quality. Over tested instances, the
average gap of PD-SI-DC and PD-F-DC are 46.3% and 45.9%, which implies that the
PD-F-DC algorithm have slightly better performance on average. However, there is no
dominance between these two variants. Moreover, we observe a longer average compu-
tational time on the PD-F-DC (170 seconds) algorithm than PD-SI-DC (103 seconds).
This is due to the fact that the almost-full-capacity-usage constraints introduces more

difficulty to the sub-problems.
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We then evaluate the sorting criteria based on the same sub-problem definition SI.

The computational result is shown in Table|3.5

Table 3.5: Comparison results of PD algorithm variations: sorting criteria

PD-SI-DC PD-SI-IC PD-SI-DR PD-SI-IR
Instance Obj Time Gap Obj Time Gap Obj Time Gap Obj Time Gap
R5 5,740,173 70 48.2 56,347,969 117 94.7 66,499,812 87 95.5 31,158,680 146 90.5
R6 2,574,221 8 47.8 3,576,452 19 62.4 3,573,873 16 62.4 2,539,376 72 47.1
R7 3,713,166 154 39.6 4,083,438 344 45.0 3,986,194 365 43.7 3,693,703 325 39.2
RS 4,211,277 180 49.9 4,159,176 271 49.2 3,982,998 271 47.0 3,886,077 368 45.7
AVG 4,059,709 103 46.3 17,041,759 188 62.9 19,510,719 185 62.1 10,319,459 228 55.6

We observe that the variant with decreasing demand capacity (PD-SI-DC) gives the
overall best performance, since it has the lowest average gap and the shortest average
computational time. Its average gap is 46.3%, whereas the average gap is more than
55% for other criteria. The major improvement comes from the instance R5. Compared
to CPLEX with 1 hour time limit, within 70 seconds, the PD-SI-DC algorithm reduces
the gap from 91% to 48.2%.

We also present Figure[3.7]to show the comparison of computational time and relative
gap between PD variants. In summary, PD algorithm is computationally efficient and
tackles the most difficult instance R5. Also, the algorithm PD-F-DC gives the overall

best performance.
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Figure 3.7: PD algorithm gap and computational time on pilot benchmark
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3.4.2 Algorithm Comparison Results

In previous sections, we have presented the parameter analysis on the F&R algorithm
and PD algorithm. In this section, we select following parameters which give the best
overall performance for each algorithm, and perform test on benchmark IAP-B and

IRG-B to evaluate their performances.
e CPLEX with 1 hour time limit (presented in Section [2.5.4]).
e PD-F-DC algorithm, iteration time limit for each sub-problem as 60 seconds.
e FSH algorithm, iteration time limit as 600 seconds.

e F&O algorithm with optimization window size as 3 and step size as 1, iteration

time limit as 60 seconds.

FSH results

We first present the detailed computational results of the FSH algorithm. In Table
we show the computational results on the benchmark IAP-B while in Table we
show the FSH results on benchmark IRG-B.

As we presented before, the FSH algorithm consists of two steps: LP phase, when a
series LP relaxation problems are solved and a subset of binary variables are fixed during
each iteration. MIP phase, the restricted MIP model is solved to obtain a feasible
solution. Therefore, we present detailed results to analyze that how each component
performs and contributes to the algorithm.

In the following table, for each instance, we present the obtained objective function
value (Obj), total computational time (Time), the relative gap based on the best known
lower bound (Gap), the number of iteration of solving LP relaxation and fixing variables
(#Iter), the percentage of the number of variables fixed to 1 over the number of all
binary variables (#FixedTol), and the computational time to solve the restricted MIP

problem.

Table 3.6: Computational results: FSH algorithm on TAP-B

Inst Obj Time Gap #lter #FixedTol(%) MIPTime
R5 14,160,409 216 79.0 19 1.3 3
R6 5,761,670 64 76.7 17 1.4 2
R7 8,835,804 376 74.6 21 1.5 5
R8 6,549,786 316 67.8 24 1.6 3

AVG 8,826,917 243 T74.5 20 1.5 3
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Based on results of real application instances IAP-B, we observe that

1) The FSH algorithm addresses the difficult instance R5. Compared to CPLEX, the ob-
jective function value is reduced from 35,511,200 to 14,160,409, while the gap is reduced
from 91.6% to 79.0%. Moreover, its computational time is within 4 minutes. However,
this does not apply to all instances. For relatively easier to solve instances R6, R7 and
R8, the solution quality is worse than that of CPLEX.

2) On average, the average computational time is around 4 minutes to construct feasible
solutions. In FSH algorithm, the most time consuming part is to solve the LP relax-
ation sub-problem in each iteration. Therefore, we can expect that as the problem size
increases, the FSH algorithm will consume more computational time as well.

3) For the LP phase, the FSH algorithm goes through 20 iterations on average and fixes
near 1.5% of binary variables to 1. However, it is enough to solve the resulted MIP in
less than 5 seconds. This is mainly due to the structure of the setup carryover that if we
fix all initial setup states, then all other 20, variables are fixed to 0 accordingly. To build
up the first solution, the major computational time is spent on solving LP relaxation
problems. Therefore the bottleneck of the problem speed is at solving LP relaxation

problems.
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Table 3.7: Computational results: FSH algorithm on IRG-B (1)

Inst Obj Time Gap #lter #FixedTol MIPTime
B1 569496 261 100.0 28 1.5 2
B2 857700 252 100.0 28 1.4 2
B3 1332316 238 100.0 31 1.5 2
B4 3154699 310 954 31 0.9 4
B5 1627483 294 100.0 29 1.3 2
B6 2687665 315 100.0 27 1.2 3
B7 3006613 947 100.0 30 1.0 6
B8 2675949 893 100.0 32 1.1 5
B9 1925285 1040 100.0 31 0.9 6
B10 3301737 1081 100.0 30 0.8 7
B11 4475709 1242 100.0 27 0.8 7
B12 3183505 1111 100.0 27 0.8 7
B13 1421072 3480 100.0 29 0.7 20
B14 1477498 3505 100.0 31 0.8 23
B15 1004987 3530 100.0 29 0.7 22
B16 120095966 1216 100.0 0 0.0 600
B17 7721458 3932 99.8 29 0.5 25
B18 4892235 3842 99.8 30 0.5 26
AVG 1527 100 28 0.9 43
B19 1885162 328 100.0 30 1.7 2
B20 2435489 379 100.0 28 1.5 3
B21 3068139 389 100.0 28 1.5 3
B22 5863879 374 98.9 28 1.3 3
B23 6120530 372 100.0 33 1.2 3
B24 4924154 410 100.0 28 1.3 3
B25 5299304 1531 100.0 28 1.0 9
B26 4432748 1492 100.0 32 1.0 7
B27 4074232 1349 100.0 31 1.0 7
B28 10067139 1371 99.8 29 0.8 7
B29 11750265 1367 99.0 30 0.8 6
B30 10401358 1383 99.6 29 0.8 6
B31 4458564 5328 100.0 31 0.7 26
B32 4216738 4989 100.0 30 0.8 23
B33 119181317 1216 100.0 0 0.0 601
B34 13215539 4146 99.8 32 0.6 17
B35 12392793 3701 98.4 28 0.6 21
B36 114132867 1216 100.0 0 0.0 601
AVG 1741 100 26 0.9 75

88
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Table 3.8: Computational results: FSH algorithm on IRG-B (2)

Inst Obj Time Gap #lter #FixedTol MIPTime
B37 983010 239 100.0 30 1.6 3
B38 1412074 281 100.0 31 1.4 2
B39 1255719 273 100.0 30 1.4 2
B40 3909024 312 100.0 32 1.2 2
B41 1734686 296 100.0 27 1.2 3
B42 3277156 354 99.1 29 1.1 2
B43 2011864 930 100.0 30 1.0 7
B44 1114294 782 100.0 31 1.1 8
B45 2145942 832 100.0 30 1.0 6
B46 5709567 1127 99.9 32 0.8 7
B47 3407334 1101 100.0 30 0.8 7
B48 6654652 1327 99.0 29 0.7 6
B49 1790740 3516 100.0 31 0.7 22
B50 2460050 3310 100.0 30 0.8 20
B51 2398138 3833 100.0 30 0.7 21
B52 4685339 4049 100.0 31 0.6 26
B53 5921797 3660 98.9 30 0.5 24
B54 6485383 3934 98.7 28 0.5 24
AVG 1675 100 30 1.0 11
B55 909994 259 100.0 30 1.4 2
B56 816435 247 100.0 31 1.5 2
B57 736264 243 100.0 30 1.5 2
B58 2247744 331 100.0 27 1.1 3
B59 2298256 310 100.0 28 1.1 3
B60 2278970 322 99.1 26 1.1 3
B61 1842306 934 100.0 30 1.0 5
B62 2518664 1022 100.0 31 1.0 7
B63 2300055 1088 100.0 29 1.0 7
B64 5192475 1142 100.0 29 0.7 9
B65 5255345 1204 100.0 29 0.8 8
B66 4610617 1031 99.9 27 0.7 8
B67 1937528 3542 100.0 29 0.7 22
B68 1845334 3469 100.0 29 0.7 27
B69 2948951 3554 100.0 33 0.7 21
B70 4781314 4690 100.0 30 0.6 31
B71 115751239 1216 100.0 0 0.0 600
B72 5652817 3296 100.0 28 0.5 27
AVG 1550 100 28 0.9 44

89
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Table 3.9: Computational results: FSH algorithm on IRG-B (3)

Inst Obj Time Gap #lter #FixedTol MIPTime
B73 1027 66 100.0 44 2.2 4
B74 2166 71 100.0 42 2.3 3
B75 5079 113 100.0 44 2.2 4
B76 118275 276 100.0 37 1.6 2
B77 1290034 341 93.2 30 1.2 3
B78 626638 276 78.8 30 1.3 2
BT79 11036 135 100.0 45 1.5 9
B80 19799 544 100.0 39 1.4 11
B81 3116 446 100.0 41 1.4 10
B82 495908 952 100.0 33 1.1 6
B8&3 1431220 1028 89.8 29 0.8 7
B84 110817 910 100.0 35 1.1 6
B85 4838 2013 100.0 43 1.1 26
B86 5088 680 100.0 42 1.1 22
B87 2812 2249 100.0 47 1.1 25
B88 13799 3327 100.0 37 0.8 21
B89 207862 4165 100.0 49 0.8 20
B90 78039 3991 100.0 38 0.7 25
AVG 1199 98 39 1.3 11
B9I1 870570 213 100.0 29 1.5 2
B92 460278 233 100.0 32 1.6 2
B93 776054 236 100.0 29 1.5 2
B94 1624274 310 100.0 28 1.2 3
B95 2211051 319 100.0 26 1.2 3
B96 2455140 338 100.0 26 1.1 3
B97 1625407 803 100.0 30 1.1 6
B98 2150486 966 100.0 31 1.0 4
B99 1720532 936 100.0 30 1.0 6
B100 6485075 1142 100.0 30 0.7 7
B101 9240132 1262 97.7 27 0.7 7
B102 3928379 1127 100.0 28 0.8 8
B103 1436398 3410 100.0 31 0.8 18
B104 2097677 3616 100.0 30 0.7 19
B105 1882524 3606 100.0 30 0.7 19
B106 123496124 1215 100.0 0 0.0 600
B107 4693908 4228 100.0 30 0.6 23
B108 3453669 4800 100.0 29 0.6 25
AVG 1598 100 28 0.9 42

90

For the test on benchmark IRG-B, first we show the computational time of FSH

algorithm in Figure |3.8

The speed of the algorithm depends on the LP relaxation,

therefore the curve has similar form as that of the computational time of the LP relax-

ation presented in Figure
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Figure 3.8: FSH algorithm computational time on different types of instances

Out of 108 instances, there are 5 instances that the FSH algorithm do not fix any
variables due to the failure of solving the LP relaxation problem in the first iteration
given 600 seconds time limit. Therefore, the returned results of the FSH algorithm is to
solve the original model given 600 seconds time limit. For other instances, the average
iterations for fixing variables are from 26 to 39 for different types of instances with around
1% of binary variables fixed to 1. This is similar to the results of the IAP-B instances.
Moreover, the resulted restricted MIP model are solved within 1 minutes. Also, for
tested instances, the constraint propagation manages to avoid infeasibility during the
variable fixation. Without the constraint propagation, the FSH algorithm easily get into
infeasibility which leads to no solution found in most cases. However, as we mentioned
before, the completeness of the propagation rule is not proved. At last, for the solution
quality, the relative gap is still very high based on our best known lower bounds. The

further analysis are given in comparison with other heuristic algorithms in the next part.

All heuristic algorithm comparison results

Finally, we compare all developed heuristic algorithms in Table - The detailed
results are given in Appendix Table - [A711] For CPLEX results, we present the
computational time, the objective function value and the relative gap based on the
best known lower bound as reference. For other heuristic algorithms, we show the

computational time and the relative gap or the relative improvement defined as impro =

0bj€ —obj4
> max{1,0b5¢}

the corresponding algorithm and CPLEX. We compare the improvement instead of gap

max{—1 } - 100%, where obj* and 0bjC are the objective function value of

is because that in many cases of IRG-B, the best known lower bound is 0, which leads
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to 100% gap for any positive objective function value. Therefore we use the value impro

to measure the improvement of objective function value with reference of CPLEX.

Table 3.10: Computational results: heuristic algorithm on IAP-B

CPLEX FSH PD FSH+FO PD+FO
Inst Obj Time Gap Time Gap Time Gap Time Gap Time Gap
R5 35,511,200 3600 91.6 216 79.0 74 48.2 662 14.2 478 35.8
R6 1,456,011 3600 7.7 64 76.7 7 45.1 492 5.9 181 19.0
R7 2,692,957 3601 16.7 376 74.6 315 40.9 823 9.2 756 12.0
R8 2,597,838 3600 18.7 316 67.8 285 49.2 762 6.9 734 17.7
AVG 10,564,501 3600 33.7 243 74.5 170 45.9 685 9.0 537 21.1

Comparison results on IAP-B instances are shown in Table [3.10] and in Figure 3.9
First, besides CLPEX, the computational time always follows the order PD < FSH < PD
+ F&O < FSH + F&O on these 4 instances. On the other hand, the gap always follows
the order FSH > PD > PD + F&O > FSH + FO. Second, between two constructive
heuristic algorithm, it seems that more computational effort does not lead to better
solution quality. On average, the computational time of FSH is 243 seconds while it is
170 seconds for PD algorithm. However, the average gap of FSH algorithm is 74.5%,
which is almost double of that of PD algorithm (45.9%). However, the effort pays off
when the constructive algorithm is followed with the improving algorithm. With the
same improving local search mechanism as F&O algorithm, FSH + F&O gives better
results than PD 4+ F&O on all instances. It implies that a better starting solution does
not mean a better final solution for F&O algorithm. Third, comparing to CPLEX, both
algorithm FSH + F&O and PD + F&O manages to provide better solutions in shorter
computational time. The average gap of FSH + F&O algorithm is 9.0% whereas the
average gap of PD + F&O is 21.1%. For CPLEX, the average gap is 33.7%. Especially for
the most difficult instance R5, the gap is reduced from 91.6% (CPLEX) to 14.2% (FSH
+ F&O). This shows the efficiency of our developed heuristic algorithms comparing to
CPLEX. For the apparel application, a decent solution is provided in a reasonable time
(< 12 minutes) by our heuristic algorithm. At last, we observe that the F&O algorithm
improves the solution quality quite well, especially for FSH algorithm. Therefore, F&O
algorithm remains efficient for our LSP as well as for many cases in the literature in

spite of its simple structure.
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Figure 3.9: Heuristic algorithm comparison results on pilot instances

In the next, we present the results on pseudo-randomly generated testedbed IRG-B

and analyze the results. We first give a summary results over all 108 instances in Table

and The comparison results for each instance is given in Table -

Table 3.11: Computational results: heuristic algorithm on IRG-B summary

CPLEX FSH PD FSH+FO PD+FO

Inst Time Gap Time Gap Impro Time Gap Impro Time Gap Impro Time Gap Impro

AVG 338191.6 1548 99.5 44.7 248 99.6  57.8 3671 88.3 85.1 1149 90.9 77.4

Based on this summary results, we observe similar trend on computational time and
solution quality (measured by value impro). Therefore, the performance is consistent on
both benchmark instances. The only difference is that PD + F&O algorithm takes even
shorter time than FSH algorithm, which is opposite for the real application instances.
In terms of computational time, FSH algorithm (1548 seconds) takes much longer than
PD algorithm (248 seconds). This is because the instance size of some IRG-B instances
is much larger than that of IAP-B, therefore the LP relaxation problem in each iter-
ation gets harder to solve. Even the F&O algorithm computational time are different
when the initial solution is provided by FSH algorithm or by PD algorithm. FSH +
F&O algorithms takes 3671 seconds on average while PD + F&O algorithm takes 985
seconds on average. Therefore, the average time of FSH + F&O is longer than that
of CPLEX already, even though it provides better solution than CPLEX. In terms of
solution quality, on average, all heuristic algorithms obtain better solution quality com-

paring to CPLEX with 1 hour time limit. However, the improvement is not well shown
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by gap. One of the reason is as we have mentioned before: when the best lower bound is
0, then any positive objective function value gives a gap 100%. Another reason is that
some IRG-B instances might be more difficult to solve due to the larger instance size
and the instance generating algorithm. The best average gap is given by FSH + F&O
algorithm, which equals 88.3%. We have gained less than 3% in terms of relative gap
comparing to CPLEX. Therefore, the gap may not be a good indicator in this case. If we
look at the value impro instead, then the improvement of solution quality by heuristic
algorithms are more obvious. For example, FSH algorithm improve objective function
value by 44.7% on average, which is the worst case in all 4 heuristic algorithms.

In Table [3:12] we show the summary result on different types of generated instances.
Since the relative gap does not provide too much information, we only show the compu-

tational time and the impro value for each heuristic algorithm.

Table 3.12: Computational results: heuristic algorithm on IRG-B summary by type

CPLEX FSH PD FSH+FO PD+FO
Inst type Time Gap Time Impro Time Impro Time Impro Time Impro
DF 3600 99.9 1527  52.8 201 75.7 3818 94.8 1197  89.1
ProdEven 3600 99.9 1741 62.2 380 73.1 4202 90.9 1499 87.2
Capconst 3600 100.0 1675  59.2 176 79.2 3990 93.0 1146  90.0
Capdiff 3600 100.0 1550 52.5 266 66.6 3840 95.3 1203 80.9
STLow 2286 49.7 1199 -2.3 215 -5.8 2342 494 807 36.7
DemEven 3600 100.0 1598 43.8 251 58.2 3835 87.2 1042  80.3
All 3381 91.6 1548 447 248  57.8 3671 85.1 1149 774

We observe that

1), on average comparing to CPLEX the FSH algorithm takes half of the computational
time while improves at least 43% objective function value for all types but the STLow
type instances. According to CPLEX results, STlow type instances are easier to solve
than other types. Therefore, the FSH algorithm performs better on relatively difficult
instances.

2), PD algorithm has a big advantage on short computational time comparing to other
algorithms. Omn average, PD algorithm takes less than 5 minutes and improves the
solution quality of CPLEX for most instances. On average, PD algorithm manages
to improve solution quality by 57.8% comparing to CPLEX. Like FSH algorithm, PD
algorithm fails to obtain better solution quality than CPLEX on STLow type instances.
However, the average improvement is better than FSH on all types instances. Therefore

we can conclude that PD algorithm is efficient and can provide a feasible solution with
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reasonable quality in short time.

3), by combining FSH algorithm with F&O algorithm, the solution quality is further
improved, the objective function value is improved by 85.1% over all instances comparing
to CPLEX. Actually, for 107 instances over 108, the algorithm gives better solution
than CPLEX. However, the computational time of FSH + F&O algorithm is on average
around 5 minutes higher than CPLEX.

4), by combining PD algorithm with F&O algorithm, the solution quality is also improved
comparing to PD algorithm. The F&O phase increases the average computational time

from 248 seconds to 985 seconds, while increases the improving value from 38% to 56%.
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Table 3.13: Computational results: heuristic algorithm on IRG-B (1)

CPLEX FSH PD FSH+FO PD+FO
Inst Gap Time Obj Time Impro Time Impro Time Impro Time Impro
B1 100.0 3600 329607 261 -72.8 48  50.0 2343 95.7 1027 87.5
B2 100.0 3600 769798 252 -11.4 82 79.5 2435  96.1 1041 94.5
B3 100.0 3600 69398 238 -100.0 43 -100.0 2462 53.8 893 -11.5
B4 98.5 3600 9485931 310 66.7 16 644 1023 86.6 399 81.0
B5 100.0 3600 1084421 294 -50.1 39 384 2354  92.0 1133 79.1
B6 100.0 3600 6291857 315 57.3 110  59.3 1811 93.8 634 88.9
B7 100.0 3600 88795819 947  96.6 154 98.7 3334  99.9 1254  99.7
B8 100.0 3600 83386167 893 96.8 204  99.8 3541 100.0 937 99.9
B9 100.0 3600 85466741 1040 97.7 7T 99.7 3804 99.9 1244  99.8
B10 100.0 3600 83980195 1081 96.1 217 97.9 3630 99.5 1344 99.2
B11 100.0 3600 90015737 1242 95.0 95 955 3528 98.5 1145 97.7
B12 100.0 3600 89549343 1111 96.4 120 95.9 3723 99.1 780 97.9
B13 100.0 3600 115106676 3480 98.8 314  99.8 6010 99.9 1474 99.9
B14 100.0 3600 121228481 3505 98.8 454 99.8 6156  99.9 1487  99.9
B15 100.0 3600 12857474 3530 92.2 406 97.8 5935  99.7 1520 98.9
B16 100.0 3600 123816283 1216 3.0 447  96.9 3658 97.0 1823 98.5
B17 100.0 3600 127298893 3932 939 369 93.0 6699  96.7 1713 94.8
B18 100.0 3600 116072579 3842  95.8 426 96.1 6273  98.7 1703 97.6
AVG 999 3600 1527 52.8 201 75.7 3818 94.8 1197  89.1
B19 100.0 3600 132638 328 -100.0 81 -100.0 2738  60.7 1007 6.7
B20 100.0 3600 58077709 379 95.8 176 99.1 3070  99.8 1426  99.7
B21 100.0 3600 8404981 389 63.5 155 76.0 2883  96.7 1236  95.5
B22 99.5 3600 13053180 374 55.1 40 535 1882  80.1 354 777
B23 100.0 3600 62081602 372 90.1 92 87.1 2210 954 851 94.6
B24 100.0 3600 10247860 410 51.9 82 58.3 2368 89.7 1025 85.9
B25 100.0 3600 92162919 1531 94.3 434 95.7 4294  99.3 1765 99.2
B26 100.0 3600 91068198 1492 95.1 257 97.0 4256 99.4 1525  99.2
B27 100.0 3602 67557529 1349 94.0 331 98.7 4113 99.6 1605 99.4
B28 99.9 3600 43534412 1371 76.9 288 71.2 3829 852 1534 84.7
B29 99.6 3600 32120464 1367 63.4 84 59.1 3290 771 874 73.8
B30 99.9 3600 35640301 1383 70.8 321 63.5 3510 83.1 1461  80.8
B31 100.0 3600 127510049 5328 96.5 729  98.7 8094 99.1 2072 99.2
B32 100.0 3600 120922514 4989  96.5 742 99.4 7756 99.6 1983 99.6
B33 100.0 3600 119911245 1216 0.6 1166 97.6 3983 96.4 2463  99.1
B34 100.0 3600 118721109 4146  88.9 496  86.0 6913 93.3 1853 914
B35 99.8 3600 120294447 3701 89.7 613 874 6468 92.6 1953 91.6
B36 100.0 3600 110465941 1216 -3.3 754  86.8 3982 88.7 2004 91.1

AVG  99.9 3600 1741 62.2 380 73.1 4202 90.9 1499 87.2
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Table 3.14: Computational results: heuristic algorithm on IRG-B (2)

CPLEX FSH PD FSH+FO PD+FO
Inst Gap Time Obj Time Impro Time Impro Time Impro Time Impro
B37 100.0 3600 23204 239 -100.0 69 -100.0 2433  35.6 914 198
B38 100.0 3600 1163883 281 -21.3 75 T7.2 2657  95.1 785 88.4
B39 100.0 3600 625842 273 -100.0 40 679 2570 88.4 750 83.4
B40 100.0 3601 18011097 312 783 53 81.2 1631 93.3 453  89.1
B41 100.0 3600 5487443 296 68.4 51 945 2814 974 977  96.3
B42 99.7 3600 8834308 354 629 57 52.1 1544  82.0 485 71.0
B43 100.0 3600 83214545 930 97.6 190 99.8 3575 99.9 1295 99.9
B44 100.0 3600 4254029 782 73.8 80 95.5 2973 99.9 944  98.6
B45 100.0 3600 5242020 832 59.1 85 96.1 3405 99.1 1095 98.3
B46  100.0 3600 92254335 1127  93.8 82 93.7 3118 97.3 1205 96.0
B47 100.0 3600 88539706 1101 96.2 87 96.5 3581  98.7 1033 98.1
B48 99.9 3600 92440700 1327 928 107 90.0 3069 95.8 1242 93.2
B49 100.0 3600 121162208 3516 98.5 394  99.8 6167 100.0 1534 99.9
B50 100.0 3600 14690362 3310 83.3 255  97.9 5962 99.6 1338 98.5
B51 100.0 3600 111052268 3833 97.8 490 99.7 6600 99.9 1723 99.8
B52 100.0 3600 114397623 4049  95.9 263 95.8 6815 98.8 1469 97.7
B53 99.9 3600 114067019 3660 94.8 469 94.6 6306 97.3 1691 96.7
B54 99.9 3600 113712126 3934 94.3 323 92.7 6602 96.3 1698 95.3
AVG 100.0 3600 1675  59.2 176 79.2 3990 93.0 1146 90.0
B55 100.0 3600 257750 259 -100.0 128 43.5 2526 92.5 820 74.3
B56  100.0 3600 85133 247 -100.0 115 -100.0 2612  86.2 982 13.6
B57 100.0 3600 18704 243 -100.0 60 -100.0 2300 722 888 -65.0
B58 100.0 3600 7976495 331 718 37 78.1 1526  96.8 758 94.8
B59 100.0 3601 7333092 310 68.7 206 61.8 1420 93.0 580 80.6
B60 99.8 3600 11514296 322 80.2 54 70.8 1340 95.0 712 88.7
B61 100.0 3600 86537869 934 979 277 99.7 3464  99.9 1311 99.8
B62 100.0 3600 91957690 1022 973 301  99.6 3778  99.9 1389 99.7
B63 100.0 3600 92125122 1088 97.5 140  99.7 3735  99.9 1236 99.8
B64 100.0 3600 87013629 1142 94.0 157 93.8 3611  97.6 806 96.3
B65 100.0 3600 70307604 1204 92.5 123 90.7 3623  96.4 777 95.0
B66 100.0 3600 20872475 1031  77.9 244 77.6 3494  93.7 1127 87.1
B67 100.0 3600 123548573 3542 984 491  99.8 6089 99.9 1591  99.9
B68 100.0 3600 117798084 3469 984 398  99.8 6066  99.9 1525 99.9
B69 100.0 3600 13873785 3554  78.7 488 97.6 6207 994 1618  99.0
B70 100.0 3600 113178684 4690 95.8 542 96.3 7456  98.3 1892 98.2
B71 100.0 3600 117260538 1216 1.3 614 96.1 3983 964 2000 98.2
B72 100.0 3600 117514463 3296  95.2 411 94.0 5895 98.4 1632 96.4
AVG 100.0 3600 1550 52.5 266 66.6 3840 95.3 1203  80.9
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Table 3.15: Computational results: heuristic algorithm on IRG-B (3)

CPLEX FSH PD FSH+FO PD+FO
Inst Gap Time Obj Time Impro Time Impro Time Impro Time Impro
B73 0.0 37 0 66 -100.0 34 -100.0 77 0.0 44 0.0
B74 0.0 84 0 71 -100.0 59 -100.0 82 0.0 70 0.0
B75 0.0 277 0 113 -100.0 59 -100.0 125 0.0 555 0.0
B76 100.0 3600 5148006 276 97.7 59 934 2414 98.6 586 96.4
B77 98.8 3600 7241378 341 82.2 40 445 1516  96.7 831 81.0
B78 97.5 3601 5381298 276 88.4 44 894 2043  95.7 985 93.7
B79 0.0 465 0 135 -100.0 116 -100.0 200 0.0 163 0.0
B&0 0.0 1200 0 544 -100.0 123 -100.0 763 0.0 761 -100.0
B81 0.0 1008 0 446 -100.0 284 -100.0 576 0.0 323 0.0
B82 100.0 3600 87599277 952  99.4 92  95.6 3628 100.0 1128  99.2
B8&3 99.1 3600 15890973 1028 91.0 227 76.0 3171 97.5 1301  90.9
B84 100.0 3600 88968761 910 99.9 148 974 3403 100.0 1181  99.7
B85 0.0 1745 0 2013 -100.0 417 -100.0 2103 0.0 475 0.0
B&6 0.0 1809 0 680 -100.0 454 -100.0 769 0.0 905 -100.0
B&7 0.0 2127 0 2249 -100.0 520 -100.0 2359 0.0 726 0.0
B88 100.0 3600 116164709 3327 100.0 441 99.6 5361 100.0 1434  99.9
B89 100.0 3600 120352296 4165 99.8 413 99.5 6813 99.9 1552 99.7
B90 100.0 3600 121208248 3991 999 347  99.5 6757 100.0 1509 99.7
AVG  49.7 2286 1199 -2.3 215 -5.8 2342 494 807 36.7
B91 100.0 3600 7154 213 -100.0 105 -100.0 1181 100.0 519 94.3
B92  100.0 3600 1 233 -100.0 180 -100.0 1415 -100.0 243 100.0
B93 100.0 3600 21171 236 -100.0 58 -100.0 1812  99.2 910 100.0
B94 100.0 3600 54451635 310 97.0 84 973 2695 99.8 1186  99.7
B95 100.0 3600 7334313 319  69.9 89 60.5 2855  97.9 1064 92.1
B96 100.0 3600 13755823 338 82.2 48 T73.8 2185 96.0 794 92.3
B97  100.0 3600 83679 803 -100.0 286 91.5 1929  99.0 327 100.0
B98 100.0 3600 93744125 966 97.7 265 100.0 3730 100.0 543 100.0
B99 100.0 3600 91176566 936 98.1 201 100.0 3596 100.0 962 100.0
B100 100.0 3600 86302661 1142 92.5 199  91.0 3818 95.8 1021  95.1
B101 99.8 3600 92421684 1262 90.0 234  89.7 2725  93.1 1060 92.6
B102 100.0 3600 89646764 1127  95.6 182 95.6 3814 99.1 1477  98.1
B103 100.0 3600 121114882 3410 98.8 639 100.0 5985 100.0 1032 100.0
B104 100.0 3600 115605436 3616  98.2 472 100.0 6383 100.0 1448 100.0
B105 100.0 3600 118987924 3606 98.4 557 100.0 6373 100.0 797 100.0
B106 100.0 3600 100250337 1215 -23.2 454 93.9 3982 922 1840 97.2
B107 100.0 3600 114328741 4228  95.9 325 96.6 6994 98.5 1711 98.9
B108 100.0 3600 112508993 4800 96.9 437 974 7566  99.2 1824 99.1
AVG 100.0 3600 1598 43.8 251 58.2 3835 87.2 1042  80.3
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3.5 Conclusions

In this chapter, we have developed three constructive heuristic algorithms: F&R al-
gorithm, FSH algorithm and PD algorithm and one improvement heuristic algorithm:
F&O algorithm.

First different variants of F&R algorithm and PD algorithm are tested on real-world
application instances IAP-B to perform parameter analysis. The result shows that F&R
algorithm is not adapted to our problem since it takes very long computational time. This
is due to that the partially relaxed problem in each iteration remains hard for CPLEX
to solve. Moreover, one type of PD algorithm PD-F-DC has slightly better performance
than other its peers therefore is selected to be tested on a larger benchmark instances
IRG-B.

All heuristic algorithms except the F&R algorithm are tested on both real application
instances IAP-B and pseudo-randomly generated instance IRG-B. On both benchmark
instances, all heuristic algorithms have consistent behavior on solution quality. The
average impro values of algorithm FSH, PD, PD + F&O and FSH + F&O follows
increasing order. In other words, FSH algorithm gives the worst performance whereas
FSH + F&O algorithm has the best performances based on our experiments. As for the
computational time, on benchmark IAP-B, the computational time of algorithm PD,
FSH, PD + F&O and FSH + F&O follows increasing order. However, on benchmark
IRG-B, PD + F&O algorithm even has shorter computational time than FSH algorithm.

PD algorithm has the advantage of short computational time. It seems to have better
performance on relatively difficult instances, which has worse performance on relatively
easy instances comparing to CPLEX. FSH algorithm has the same attribute on this that
it performance better on relatively difficult instances. On average, it takes longer time
than PD algorithm, and obtains worse solution quality. However, when we combine
the constructive algorithm with F&O algorithm, FSH + F&O returns better solution
and PD + F&O algorithm. Therefore, F&O algorithm does not guarantee a better
final solution given a better initial solution. Actually, FSH + F&O algorithm almost
always provide better solution than CPLEX, therefore has the best overall performance.
However, the bottleneck is the computational time spent on solving LP relation problem
in each iteration.

In summary, PD algorithm or PD + F&O algorithm has the advantage of speed,
which can be used when computational time is rare resource. FSH algorithm and FSH
+ F&O algorithm has non negligible computational time, especially when the problem

size gets large. However, it returns best solution over all developed algorithm.



Chapter 4

Production Planning Solution to

the Apparel Application

Motivated by the apparel manufacturing application introduced in the first chapter,
we extracted a complex capacitated lot sizing problem CLSC and have studied it from
different points of view. In fact, this problem is constructed by simplifying constraints
and aggregating products. In this chapter, we refocus on the application and display
the entire production planning solution. The methodology is based on a decomposition
approach, and CLSC is solved as the first step of the production planning engine.

The chapter is organized as follows: in Section we present the decomposition
approach in the application production planning engine. In Section [4.2] we use one
application instance to analyze different scenarios and evaluate the system performance.

Finally, we conclude in Section

100
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4.1 Decomposition Approach

The project scope is production planning and scheduling, and the decomposition frame-
work is shown in Figure The production planning problem is solved first, which is
followed by a scheduling phase.

/ Decomposition strategy \
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Figure 4.1: Apparel manufacturing decomposition approach

In the planning phase, we build a detailed model and simplify it into an aggregated
model, which is CLSC studied in previous chapters. The detailed model has each demand
corresponding to a product, but the setup still incurs between style/product families.
The aggregated model is solved first. Then we fix the setup of detailed model according
to the aggregated model solution. Eventually, the restricted detailed model is solved to
obtain a planning solution for the apparel application.

In the scheduling phase, activities on each sewing production line are decided by
the planning solution. For each demand on each machine, if the production quantity is
nonzero, we combine its productions in all time buckets into one production activity in
the scheduling phase. This is due to the fact that we rarely split production of a work
order on one production line. Each sewing activity is projected to an activity on other
process step. First, scheduling of pre-sewing steps are solved by a greedy algorithm.
Then based on the pre-sewing solution, we restrict the starting date of sewing activities
based on pre-sewing solution and schedule sewing activities with a commercial constraint
scheduling solver CPLEX CPO optimizer. At last, we schedule after-sewing process steps

and obtain a complete scheduling solution.
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Since our work is mainly the production planning phase, in the following, we focus

on explaining detailed steps of the production planning phase in the decomposition

approach.

Planning Phase Detailed Model

The aggregated model CLSC have been defined and studied in previous chapters. There-

fore, in the following, we formally define the detailed model. The input parameters of

the detailed model are:

T ={1,2,...,T}: set of time buckets.

R =1{1,2,...,R}: set of machines.

N ={1,2,...,N}: set of product families.

D =1{1,2,...,D}: set of demands.

capyy: capacity of machine r in time bucket t (r e R, t € T).

sti: setup capacity for product family ¢ on machine r (i € N,r € R).
scir: setup cost for product family ¢ on machine r (i € N';r € R).

ptq: capacity required by unitary production of product d (d € D).
pcg: unitary production cost of product required by demand d (d € D).
pa € N: the required product family of the demand d (d € D).

qq: quantity of product required by demand d (d € D).

ba: release date of demand d (d € D).

el: first due date of demand d (d € D). No extra cost in interval [bg, el).
e2: second due date of demand d (d € D).

tcl: unitary extra cost for demand d satisfied at or after e} (d € D).
tc2: unitary extra cost for demand d satisfied at or after €2 (d € D).
lcg: unitary cost for unsatisfied demand d (d € D, leg > tcgl + tcg).

D' C D: the subset of demands such that pg = i, i.e., D' C D.
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e (4.: minimum split size for product of demand d on machine r.

The problem is to decide for each machine r € R and for each time bucket ¢t € T,
how much to produce of each demand d € D. The objective is to minimize the total cost
including lost sale cost (first priority), tardiness cost (first priority), setup cost (second
priority) and production cost (second priority). The restriction includes four parts: 1),
the production to satisfy demand d can only start from its release date; 2), the machine
capacities cap,+ must not be exceeded by the capacity usage for each machine r and
time bucket ¢ (r € R, t € T); 3), setup occurs for the product families and setup
carryover is considered; 4), for each demand d on each machine r, the total production
quality of d has to be greater than equals to its minimum split size 64 if there is a
positive production. It comes from the application requirement that each demand can
be produced on multiple lines. However, on each production line the production must
continue for a minimum number of days. This formulation is very close to the Form3®*
formulation of CLSC introduced in Section 2.3

The link between the CLSC and the detailed model is shown in Table Each style
family is seen as a product in the aggregated model, whereas each demand corresponds
to a product in the detailed model. Therefore, the unitary production time are defined
differently. Moreover, we have minimum split size constraints introduced in the detailed

model.

Table 4.1: Detailed and aggregated model in planning phase

Parameter AggregatedModel DetailedModel

N Products Product families

D Demands Demands and products
_ Zaepi Pld

pt pti = =S5 — ptq

adr X v

We introduce following MIP formulation for the detailed model. For each i € N,
reR,t€T,de D, we introduce following variables:

e 74+ € RT: the production quantity of product i on machine r during time t.

e z4 € {0,1}: it equals to 1 if there is positive production of demand d on machine

r.

o 20

it € {0,1} equals to 1 if the initial setup state is for product family ¢ on machine

r in time bucket ¢, implying that the final setup state for ¢ — 1 on r is for product

family 1.
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e 21, € {0,1} equals to 1 if there is a state switch for product family 7 on machine

irt

r in time bucket ¢.

e wy € [0,1] is zero if there is more than one product setup on machine 7 in time

bucket t.

The formulation is formally given as follows (7 = 7 \ {1}):

min First priority : Z lea(qa — Z Tart) + Z tcéxdrt + Z tchdrt
deD rt deD,reR teT t>el, deD,reR teT t>e?
lost tardiness
(4.1)
Second priority : Z scirz;;t + Z PCAT drt
ieEN,reRET deD,reReT
setup prod;rction
st > Tae < qa deD (4.2)
reRteT
Zptdxdrt + Z Stirz;t < caprt re R, teT (43)
deD 1eN
Tare < Oare (254 + z) deD,reR,teT (4.4)
vadrt < QdZdr deD,reR,teT (4.5)
teT
Zxdrt > Odrzdr deD,reR,teT (46)
teT
2, =1 reR,teT (4.7)
ieN
Zz(']rt < Zzor,tﬂ + Z:;,t_1 ieN,reR,te T (4.8)
Zopp + Zinp1 S 1+ wrp ieEN,reRtET (4.9)
Zh A+ we <1 ieEN,reR,teT (4.10)
Zoyes 2y € 0,13 ieEN,reRLET (4.11)
zar € {0, 1} deD,reR (4.12)
0<wy<1 reR,teT (4.13)
Tart € [0, qd] iEN,TERby<teT (4.14)

Constraints (4.2)) guarantee production quantity of demand d is not greater than its
required quantity. Constraints (4.3) ensure capacity usage is less than the available
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capacity, where the capacity usage consists of both production and setup. Constraints
link the production x4+ and its setup variable Z?Tt and zitt. Constraints 1' link
total production quality of d on machine r with the binary variable zg4,.. Constraints (4.6])
force the minimum split size for each production that if there is a positive production,
then it has to be equal to or greater than the given minimum split size. Constraints
- are setup carryover related constraints for product families. Remaining

constraints are to define the introduced variables.

Planning Phase Decomposition Approach

The decomposition approach is described in Algorithm

Algorithm 8: Planning Phase Decomposition Approach

1 (Zirt, 204, Z;,) < Solve aggregated model;

0 +

. . _0 _+ . . .
2 Fix setup variables z;,, < Z;,, z;,, < Z,, in detailed model;

3 Solve detailed model with only first priority objective.

4.2 Application Performance Analysis

In this section, we perform computational test to evaluate the performance of the sys-
tem. The test is performed on the application instance R5, which is the most difficult
instance we have. The computational results are given in Table We have tested the
decomposition approach with FSH 4+ FO algorithm developed in the previous chapter,
of which the result is reported in Row DA. Moreover, the result for aggregated model
and the detailed model is given in Row DA.Aggregated and DA.Detail. We have also
tested to solve the instance directly by CPLEX within 2 hours time limit on the above
proposed formulation. The result is given in Row Detail MIP whereas its LP relaxation
solution is reported in Row Detail LP. For each approach, we present the objective func-
tion value including lost sale cost and tardiness cost in Column Obj. Lost sale cost and
tardiness cost are given in Column Lost and Tardiness as well for reference. Also given
are the computational time and relative Gap in percentage. To be able to compare the

gap, we use the LP relaxation value LPV of the corresponding model (reported in Table
D and define the gap as Obja%.
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Table 4.2: Application planning solution evaluation

Algorithm Obj Lost Tardiness Time Gap (%)
DA.Aggregated 3,443,159 0 3,443,159 1208 14.74
DA .Detail 3,449,146 0 3,449,146 0 21.10
DA 3,449,146 0 3,449,146 1208  21.10
Detailed MIP 1.12E4-09 1.12E+09 0 T.L. 99.76
Detailed LP 2,721,535 0 2,721,535 3295 -

*Time unit in seconds, T.L. = 7200s

We observe the efficiency of the proposed decomposition algorithm. Without ap-
plying the decomposition method and solve the detailed model directly, the gap is 99%
after 2 hours of running and apparently CPLEX got stuck at the first trivial solution
that all demands are lost sales. By applying decomposition approach, the gap is reduced
to 21% for the detailed model. Moreover, almost all computational time is spent on
the aggregated model. Once the aggregated model is solved and we fixed the setup in
detailed model, the restricted detailed problem became trivial to solve to optimality.
Therefore, even though we probably lose certain optimality at the detailed problem, the

solution quality is much better than solving it directly.

4.3 Conclusions

To conclude this section, we have developed a decomposition strategy for the production
planning phase in the apparel manufacturing application. The decomposition method
provides decent planning solution, which cannot be achieved by solving the detailed

model directly using standard MIP solver.



Chapter 5

Capacitated Lot Sizing Problem
with A Fixed Product Sequence

In many manufacturing industry, switching production from one product to another will
cause setup operations. The setup will consume limited machine capacity and/or cause
a setup cost. When the setup depends on the production sequence, i.e., the setup to
produce current product depends on both itself and the previous produced product, it
is called sequence dependent setup [46, [63]. In this case, both lot sizing and sequencing
decisions have to be made. The difficulty of this problem is the factorial number of setup
sequence candidates to be chosen from. However, in certain manufacturing industries,
this number may be reduced if we restrict the model based on the planners’ knowledge.
In this chapter, we study a special case of CLSP with sequence dependent setup, which
is called capacitated lot sizing problem with a fixed product sequence.

The chapter is organized as follows: In Section[5.1] the classical CLSP with sequence
dependent setup is presented with problem definition and literature review. In Section
we introduce the study motivation and formally define our problem. In Section
- we present study results of this problem which include MIP formulations, a
special case study, a column generation heuristic and computational results. Finally, we

conclude in Section [5.7

107
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5.1 Capacitated Lot Sizing Problem with Sequence Depen-
dent Setup

The CLSP with sequence dependent setup we address in this manuscript is defined as

follows:

e N ={1,2,...,N} aset of N products.

T ={1,2,...,T} aset of T time buckets

e cap;: machine capacity in each time bucket t € T.

e d;;: demand of each product ¢« € N in time bucket ¢t € T.
e pt;: unitary production time of each product i € N.

heig: unitary inventory cost of each product ¢ € A in time bucket ¢t € T.

b;: the maximum amount of production i € N that can be produced in t € T.

sti;: setup time from product i € N to product j € N.
e sc;;: setup cost from product i € N to product j € N.

The problem CLSP with sequence dependent setup is to decide the production sequence
and the production quantity of each product in each time bucket so that all demands are
satisfied with a minimum total cost while respecting the machine capacities, which are
consumed by production and setup. Moreover, to clarify the problem we are studying,

following assumptions are made:
e The setup state is carried over between time buckets, even preserved over idle time.
e No setup crossover, i.e., the setup has to be finished in one time bucket.

e Only single lot is considered unless it is the first product of the sequence. This
implies that one product appears at most once in the setup sequence each time
bucket. However, the first product could be the same as the last product in the

selected setup sequence.

Let S be the set of available sequences to schedule products on the machine for each
time bucket. Based above assumption, the cardinality of S equals to O(n!).
Different MIP formulations of this problem are compared in [63], here we only present

one of them to further describe the problem. For each sequence s € S, we define its length
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as L(s), the associated setup cost and setup time as sc(s) and st(s). For each product
i € N, each time bucket t € T and each candidate sequence s € S, we introduce following

variables:
o 1z; € Ri: quantity of product ¢ produced in time bucket ¢;
e [;; € R,: inventory of product ¢ at the end of time bucket ¢;
e wy € {0,1}: it equals to 1 if sequence s is chosen for time bucket ¢, 0 otherwise;

Then the problem can be formulated as follows:

min Z hei i + Z sc(s)wst (5.1)

iEN LT seSteT

st Lig—1+ai = I +dy ieN,teT (5.2)
Zptiiﬂit + Z st(s)wst < capy teT (5.3)
ieN seS
Tit < bit Z Wit ieEN,teT (5.4)

seS:i€s
Zwst =1 teT (5.5)
seS
Y we= Y, wa ieN,te T\{T}  (5.6)

sES:s1=1 SESisp(s)=1
zit, Ly > 0, Lip =0 ieN,teT (5.7)
ws € {0,1} seS,teT (5.8)

The objective function includes the inventory cost and setup cost. The material
flow balance constraints are formulated as (5.2). Constraints ensure that the used
capacity does not exceed the available capacity. Constraints express that there
can be a production for product i only if there is a setup for ¢, which implies that a
sequence containing 7 is selected. One and only one sub-sequence can be chosen, which
is guaranteed by Constraints . At last, Constraints express the consistence of
the chosen sequences from one bucket to the next, which means that the last product of
bucket ¢ should be the same as the first product of time bucket ¢ + 1.

In CLSP with sequence dependent setup, both lot sizing and sequencing decisions
have to be made. Therefore, it is often classified as lot sizing and scheduling problem
[51L, 63]. Sequence dependent setup has been first studied with only setup costs in differ-
ent context: discrete lot sizing and scheduling like problem [121], discrete lot sizing and
scheduling problem [46], proportional lot sizing and scheduling problem [67], uncapaci-

tated LSP [38] and CLSP [68]. Then setup time is also incorporated in the model and
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has been studied [39, [70, 117]. Generally, introducing setup times makes the problem
more difficult to solve since the feasibility depends on the sequencing decisions as well.

Copil et al. [31] present a review paper on lot sizing and scheduling problem recently.
In this survey, all above mentioned models with sequence dependent setups are reviewed
and classified. Specially, the literature on CLSP with sequence dependent setups is pre-
sented in Section 3.2. The research on CLSP with sequence dependent setups have two
major directions: problem modeling and heuristic algorithm design. As for the prob-
lem modeling, Guimaraes et al. [63] classified and compared different MIP formulations
for the CLSP with sequence dependent setup. Based on the sequencing decision, they
group MIP formulations into sequence-oriented and product-oriented. The sequence-
oriented formulation has binary variables representing the selection of sequences explic-
itly. Therefore, it has exponential number of variables. The product-oriented formulation
formulate the setup sequence as a path in a graph, and subtour elimination constraints
are needed to prevent disconnected subtours in the chosen setup sequence. Therefore,
we have polynomial number of variables but some models have exponential number of
constraints. Due to the difficulty of the problem, different heuristics are developed for
different variants of the problem, such as production-balancing algorithm [68, 8], tabu
search algorithm [92], variable neighborhood based search algorithm [9, [11], and MIP
formulation based algorithm such as fix and relax algorithm [82] and fix and optimize

algorithm [93], 126] that we have used previously for CLSP-SC.

5.2 Problem Definition

As mentioned before, the difficulty of CLSP with sequence dependent setup is due to the
exponential size of candidate setup sequence that can be chosen for each time bucket.
However, in certain industries, this situation might be improved by considering planners
knowledge to redefine the model.

We take the color change in production as an example shown in Figure There is
a most efficient production sequence as ( white, yellow, orange and black ). When the
production follows the given sequence from left to right, there are minor setups incurred
due to additive color. For instance, when we switch the production from white cups
to yellow cups, we need to add the yellow color to the machine. However, if we switch
the production from a later product to a previous product in the sequence, there is a
major setup occurred due to the machine cleaning. For instance, when the production
is switched from black cups to white cups, we need to clean up the entire machine to be

able to produce qualified white cups.
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Figure 5.1: Color change in production

In this case, ideally, the chosen setup sequence should follow this given product
sequence as much as possible to reduce major setups and capacity loss. In other words,

the selected setup sequence should satisfy following conditions:

1. Products position follows the same order as the given sequence.

Sequence white — orange — yellow is not efficient.

2. Allow to skip products.
It is possible to switch production from white to black directly without producing

the middle products.

3. Allow to restart the sequence.

Sequence black — white — orange is also valid which has one major setup incurred.

This is the essential concept and motivation of our interest at this restricted model.

In the next, we formally define our problem.

Definition 5.1. Given two sequences w = (wi,wa,...,wp) and o = (Q1,Q2,...,0y)

(m <n+1), we say a follows the order of w, denoted by o < w, if
1. a; €w forie{1,2,...,m}.
2. oy # oy fori#je{l,2,...,m} and {i,j} # {1, m}.

3. Let i be the index such that w; = a1 and define sequence

/B(Z) == <wivwi+17 e, Wn, W1, W2, ... 7wi—lawi> (59)
There exists a subset Q' = {w;,,wiy, ..., wi, } such that
(O, Wiy Wigy « o vy Wiy 5 O2, Wiy 415 Wiy 2 -+ + 3 Wiy » X35 -+ » Yy Wi 1y Wi, ) equals

to B(i).

The Figure illustrates the above definition. The first condition ensures that

entries of sequence « are from sequence w. The second condition excludes repeating
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element unless they are the first and the last product. For example, (w1, ws,ws,ws) is
not allowed. Finally, the third condition restricts « to be a “sub-sequence” of w which
can reach (i) at maximum. Based on the definition, (i) tries to keep element position
as w as much as possible while gives the possibility to revert the production with a major
setup. Moreover, we keep the possibility to skip some elements. For example, given a
sequence w = (A, B, C, D, E), the sequence a = (B, C, A) satisfies that a < w. However,
sequence (A, E,C,B) A w.
BE)  Awi Wi+l e wn w1 W2 e wy)

! (a1 @ Qm)

Figure 5.2: Definition illustration

Parameters of the CLSP with a fixed product sequence are given as follows:

N ={1,2,...,N} aset of N products.

o T ={1,2,...,T} aset of T time buckets.

e cap:: machine capacity in each time bucket t.

e d;;: demand of each product 7 in time bucket .

e pt;: unitary production time of each product i.

e hcy: unitary inventory cost of each product ¢ in time bucket t.

e b;: the maximum amount of production ¢ that can be produced in ¢.
e st;;: setup time from product ¢ to product j.

® sc¢;j: setup cost from product 4 to product j.

A permutation of N: w = (w1,wa,...,wn).

The problem CLSP with a fixed product sequence, denoted as CLSP-FS1, is to decide
the production sequence and the production quantity of each product in each time bucket
so that all demands are satisfied with a minimum total cost while respecting the machine
capacities. Moreover, the chosen setup sequence of each time bucket has to follow the

order of w.
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Example 5.1. We consider three products and four time buckets. The capacity cap;
equals to 5 for all t = 1,2,3. The demand and setup is given in Table[5.1. Fori € N
and t € T, define pt; =1, heyy =1, by = 1. The given sequence w = (1,2,3).

Table 5.1: CLSP-FS1 Example data

d;t t1 to t3 ta stij 71 12 i3 SCij 71 72 i3
i1 0 0 1 1 i1 0 1 1 i1 0 10 10
@9 0 0 1 0 09 1 0 1 2 10 0 10
i3 1 0 1 0 13 1 1 0 i3 10 10 0

If we do not consider the fized sequence and solve the problem as a CLSP with
sequence dependent setup, then the optimal objective function value is 20 with only setup

cost, and the optimal solution is given in Figure[5.3

i (quantity)

iz(1)

t1

Figure 5.3: CLSP with sequence dependent setup Example optimal solution

However, the optimal objective function value of CLSP-FS1 is 21 due to the restric-
tion on production sequence that (3,2,1) is not a feasible sequence. Therefore, we can

not produce all products in time bucket t3. The optimal solution is given in Figure[5.4).

i (quantity)

is() {20 {20 F{am —{am]

t3 t3 t4

Figure 5.4: CLSP-FS1 Example optimal solution

In the literature of CLSP with sequence dependent setup, a concept of “efficient”
sequence is proposed by Haase and Kimms [70]. The similar part of two concepts is
that once we decide the first product, the last product and other appearing products,
the sequence itself is decided. However, the computation of this sequence is polyno-
mial whereas the computation of the “efficient” sequences requires to solve a traveling

salesman problem hence intractable.
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Theorem 5.1. CLSP-FS1 is strongly NP-hard.

Proof. We prove the statement by reduction from CLSP defined in Section [1.2

Given an instance P1 of CLSP defined as Section We construct following CLSP-
FS1 instance P2: there are N + 27" products, T time buckets. Let the time bucket set
be the same as defined in CLSP as 7 and the product set be N7 = A UN?® UN® where
N={1,2,..., N} N5 ={p : t € T} and N¢ = {p. : t € T}. We define:

e Capacity in t equals to cap; for t € T.

e For + € N, demand of i in time bucket ¢ equals to d;;. For t € T, demand of
product p} (pL) in time bucket ¢ equals to dy ;, = 1 (dy , = 1), otherwise 0.

e Production time of product ¢ € N equals to p;. Production time of product
i € N¥ UN¢ equals to 0.

e Holding cost of product i € AN in time bucket ¢ equals to hj. Holding cost of
product i € N¥ UN® in time bucket ¢ equals to co.

e Setup cost (time)

0 If j e N¢
00 Ifie N and j € N'*
scij(stij) = 40 Ifie N°UN?® and j € N*
sci(st;)  Ifie NUN® and j e N
[ o0 IfieN®andjeN
e w=(pl pl=t . pl1,2,... NpLp?.. .,pl')

In the following, we show the optimal objective function value of P1 equals to P2
with three steps. The idea of the proof is to show that any optimal solution of P2 has
structure shown in Figure [5.5) and it has a corresponding solution to P1 which shares

the same objective function value.

OB DT DD - DD

Figure 5.5: Theorem CLSP-FS1 instance optimal solution structure
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For any solution to P2, it consists of the production quantity of each product 7 in
time bucket t represented as x;;, the inventory represented as I;; and the setup sequence
$; in time bucket t.

First, we show that any feasible solution to P1 can be transformed into a feasible
solution to P2 with the same objective value. Let S1 be a feasible solution in the form
of decision variables’ values in formulation - . For example, S1(z;) represents
the production quantity of product ¢ in time bucket ¢t of solution S1. We construct a
solution S2 of P2 as follows: S2(x;) = S1(xy) for i € N and t € T. S2(I;;) = S1(1i)
fori € Nandt € T. S2(xpy) = 1 for t' =t € T, 0 otherwise. S2(zp ) = 1 for
t' =t € T, 0 otherwise. S2(I;) = 0 fori € N*UN® and t € T. For ¢t € T, let
a = (oq,az,...,a,) be a sequence such that S1(zq,¢) = 1 for a; € @ and «; < o for
i < j. The chosen sequence in t > 1is S2(s;) = (p. =1, pL, o, pL) and S2(s;) = (pL, o, pL)
for t = 1. We claim that S2 is a feasible solution to P2. For product : € N, material flow
constraints are guaranteed by the feasibility of S1. For product i € N'¢ U N, material
flow constraints are guaranteed by the construction that there is no inventory during
the planning horizon. The chosen sequences’ setup time (cost) equals to }_;.g1(,,,)=1 55
(22}:51(2:)=1 5¢j) by definition of sequence S2(s¢). Therefore, the capacity constraints
hold since production and setup of product ¢ € N do not consume capacities and S1 is
a feasible solution to P1. Finally, sequence S2(s;) follows the order of w and together

form a valid planning sequence over the entire time horizon. Moreover,

0bj(S2) = Y S2(In)+ Y S2(st)sc(se)

ieN' teT teT
= Y S2T)+>., > sci=obj(S1)
iENtET teT i€N:S1(2i)=1

Second, we show that any optimal solution S2 of P2 must either satisfy following
properties or can be transformed to an equivalent optimal solution satisfying following

properties:
o S2(xps ) = 1for t =t € T, 0 otherwise.
o S2(xpe ) =1fort =t €T, 0 otherwise.
e S2(Iy) =0forie N*UN®and t € T.
o S2(sy) = (pf_q,pi, o, pf) where « is a subsequence of N « C N for 1 <t e T.

o S2(sy) = (pf,a, pf) where « is a subsequence of N o C N for t = 1.
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The first three conditions ensure the demand satisfaction of products in N'* UN ¢ without
any inventories since the unitary inventory cost equals to co. To prove last two conditions
hold, we first point out that first three conditions implies that we only have positive
production of products in the set N'U {p§, pf} in time bucket ¢. Moreover, having setup
of products not in this set does not improve the solution. Due to the setup cost from
any product ¢ € N to pf is oo and the setup cost from p§ to any product i € N is oo,
in the chosen sequence S2(s;), pi must be before any ¢ € N while p§ must be after any
i € N. In other words, S2(s¢) = (..., D, i1, ..., in, DS, ...). Finally, due to the last product
of t —11is pj_,, the setup sequence in ¢ will start from pf ;. Hence, all properties hold.
Third, any optimal solution of P2 can be transformed into a solution to P1 with
the same objective value. Based on the second statement, let S2 be an optimal solution
to P2 satisfying above properties. Then we construct a feasible solution S1 to P1 as
follows: S1(x;) = S2(xy) fori € N and t € T. S1(I;) = S2(Ly) for i e N and t € T.
S1(zy) = 11if i € S2(s¢) for i € N and ¢t € T. Due to the above properties, S1 is feasible

and share the same objective function value as S2.
O

CLSP with only setup cost is still NP-hard. Therefore based on our proof procedure,

we have
Corollary 5.1. CLSP-FS1 with only setup cost is NP-hard.

Actually, CLSP can be seen as a special case of CLSP-FS1 with sc;; = sc¢;, st = st;
for all products 7. Therefore, the complexity result holds directly. However, with our
proof, we prove that even under the case that sc; = 0, st;; = 0, the problem is still

strongly NP-hard.

Corollary 5.2. CLSP-FS1 with setup sc;; = 0, st;; = 0 for i € N is still strongly
NP-hard.

5.3 Problem Formulation

In this section, we introduce MIP formulations for CLSP-FS1. There are two types
of decisions to make: lot sizing and sequencing. For lot sizing, we have the classical
aggregated formulation and facility location based formulation inherited from CLSP
(see Section . For sequencing, we have product-oriented formulation with compact
size and sequence-oriented formulation with exponential size. In the next, we introduce

them in details.



CHAPTER 5. CLSP-FS1

Aggregated sequence-oriented formulation (AG-SO)

117

Let S = {s: s X w}. Given a sequence s € S with length L(s), its associated setup cost

sc(s) and setup time st(t) are defined as follows:

L(s)—1 L(s)-1

sc(s) = Z SCsy5k+1 st(s) = Z SCsyskt1
k=1 k=1

We introduce the following variables for i € N, t € T and s € S:
o z; € Ri: quantity of product ¢ produced in time bucket ¢;

e [;; € Ry: inventory of product ¢ at the end of time bucket ¢;

o wg € {0,1}: it equals to 1 if sequence s is chosen for time bucket ¢, 0 otherwise.

The problem can be formulated as follows:

min Z heqdy + Z sc(s)wst

1ENLET SEStET

s.t. Ii,t—l +xy = Iy + dy 1€ N,t eT
Zptﬂit + Z st(s)wse < capy teT
ieN s€S
mitgbit Z Wt iEN,tGT

SES:i€s

d wa=1 teT
SES
D s1weer1 =Y Sp(sWws teT\{T}
seS seS
ity It > 0, Iig =0 iEN,tGT
we € {0,1} seS;teT

(5.13)
(5.14)

(5.15)

The objective function (5.10)) includes the inventory cost and the setup cost. The mate-
rial flow balance constraints is formulated as (5.11)). Constraints (5.12]) ensure that the

used capacity does not exceed the available capacity. Constraints (5.13)) express that

there can be a production for product ¢ only if there is a setup for ¢, which implies a sub-

sequence containing 7 is selected. One and only one sub-sequence can be chosen, which
is guaranteed by constraints (5.14)). At last, constraints (5.15]) express the consistence

of the chosen sequences between time buckets, which means that the last setup product

of time bucket ¢ should be the same as the first setup product of time bucket ¢ + 1.
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Aggregated product-oriented formulation (AG-PO)

In this section, we introduce a product-oriented formulation which does not have the
sequence as a variable explicitly. The setup sequence can be represented as a path in
the graph.

First of all, we have following observations regarding the valid setup sequences in
CLSP-FS1:

Observation 5.1. Given a sequence w, any sequence o« with length L(a) < 2 and

a; € w Vi follows the order of w: o < w.

Observation 5.2. Given a sequence w, if the first product, the last product and its

appearing products of a sequence s are known, and s = w, then the sequence s is fized.

This holds due to the definition. In other words, we only need to know all elements
and the first and the last element of a sequence to build up the whole information if it

follows the order of a given sequence.

Property 5.1. CLSP with sequence dependent setup has O(n!) wvalid sequences, while
CLSP-SD has O(n2"™) sequences.

We define the CLSP-FS1 associated graph G = (V, E) as follows:

e Vertex V

— Source P and sink @
— Vii={vjpyufvljeNtforteT,icN.

e Edge FE
— Bl (Pv)) fori € N.
— E?: (vj;,vf) forie N, j<keNandteT,
- E3: (v, ;E)H)foriE/\/,jGNandtG’T\{T}.
— EY: (v};,Q) fori € N and j € V.

Except the source and the sink node, each node v represents a product p(v) and belongs

to a time bucket t(v) which is defined as follows:

p(vip) = wi plviy) = (B(i))j+1 tlvig) =t tvj;) =t VjeEN
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where 3(i) is defined as (5.9) and (8(4)); is the jth element of 5(i). We also introduce
following notations to link products ¢ € A/ and time buckets ¢t € T with the graph:

E(i,t) :=={(u,v) € Elp(u) =i and t(u) =t}
E(t) == {(u,v)[t(u) = t}

Moreover, we define the setup cost/time of each edge (u,v) € E accordingly as

follows:
(spor) (u0) € !
sc(u,v) = SCp(u)p(v) (U, V) € E? E3 (5.18)
L0 (u,v) € B4
Stpw)pw)  (u,0) € B!
st(u,v) = € sty p)  (U,v) € B2, E3 (5.19)
0 (u,v) € B4

An example with 3 products A, B, C' and 2 time buckets is given in Figure for

illustration:

Figure 5.6: CLSP-FS1 graph representation of setup sequence

Property 5.2. A wvalid setup sequence of the entire planning horizon for CLSP-FS1 is
a path from source node P to sink node @Q in the graph G = (V, E).

According to the Property [5.2] we decide the setup sequence by forming a path in the
product-oriented formulation. Let G = (V, E) be the induced graph presented before.

We introduce following variables for each edge (u,v) € E:
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o Ty, € {0,1} equals to 1 if the edge (u,v) € E is selected, 0 otherwise.

Then the product oriented formulation (AG-PO) can be formally formulated as follows:

min Z heqlis + Z se(u, v) Ty (5.20)

ieNteT (u,w)EE

st Lig—1 +xi = Li + dit ieN,teT (5.21)
Zptiwit + Z st(u, v)Tyy < capy teT (5.22)
ieN (uv)EE()
Tit < byt Z T ieEN,teT (5.23)

(u,v)EE(i,t)

(Pw)EE

Y Tp=1 (5.25)
(v,Q)EFE

Z Tuv = Z Tvu v E V\{Pa Q} (526)
(u,v)eE (vyu)eE
Tit, Lit > 0, Lio =0 ieN,teT (5.27)
Tuw € {0,1} (u,v) € E (5.28)

Like the previous formulation, the objective is to minimize the total cost including
inventory cost and setup cost. Specially, the setup cost is defined as the total cost of
selected edges. Constraints are to maintain material flow balance as in previous
formulation. Constraints guarantee the machine capacity is not exceeded by the
used capacity. The setup time is defined similarly as setup cost. Constraints link
production and setup. Constraints - are flow balance constraints for each
node in graph G = (V, E) to form a path, which is a valid setup sequence for entire time

horizon.

Facility location based sequence-oriented formulation (FL-SO)

Another straightforward formulation for the CLSP-SD is the facility location based for-
mulation. Instead of production variables x;+, we introduce following variables for each

product i € N and time bucket t < k € T:

e x;: the production quantity of product ¢ in time bucket ¢ to satisfy the demand

in time bucket k.
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Then the FL sequence-oriented formulation (FL-SO) is formally defined as follows:

t T
min Z hCitZ me—i- Z se(s)wst

ieN teT k=11=t+1 seSteT

t
s.t. E Tkt = dit
k=1

T
DO ptiwak + Y st(s)w < capy

ieN k=t seS
zap < min{by, dig} Y wa

sES:iEs
D ws =1
seES
Z S1Ws t+1 = Z SL(s)Wst
seS seS
Litk > 0
Wgt € {0, 1}

ieN,teT

teT
ieENt<keT
teT
teT\{T}

ieENt<keT
seS,teT

(5.29)

(5.30)

(5.31)
(5.32)

(5.33)

There is a direct relation between variables x;;, I;; and newly introduced variable x;:

that z;; = Z;}th Ty and I = 22:1 Z;‘F:Hl z;r1- Therefore, the objective function
(5.29)) is to minimize the inventory cost and setup cost by substitution. Constraints

(5.30) ensure demands satisfaction.

Facility location based product-oriented formulation (FL-PO)

The previous formulation is based on the sequence-oriented formulation, therefore an-

other formulation will be combining aggregated lot sizing decision with product-oriented

sequencing formulation. The facility location based product-oriented formulation (FL-

PO) is given as follows:

t T
min Z hCitZ Z Tikl + Z sc(u, v) Ty

ieNteT k=11=t+1 (uv)eE

t
s.t. Z Tkt — dit
k=1

T
Z Zptﬁitk + Z st(u, v)Tyy < capy

iEN k=t (u,v)eEE

Ttk < min{bita dzk} Z i
(u,v)EE(1)

1eN,teT

teT

1eEN,t<keT

(5.37)

(5.38)

(5.39)

(5.40)
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Z Tp, = 1 (5.41)

(Pv)eE

Y Tp=1 (5.42)
(v,Q)EE

Y Tw= Y T veEVVP,QY  (5.43)
(u,v)eE (vyu)eE
Tk > 0 ieN,t<keT  (544)
Ty € {0,1} (u,v) € E (5.45)

5.4 A Special Case Study

Given a product sequence, if the production follows the given sequence, the setup is
minor. However, when we need to reverse products in the sequence, there will be a
major setup occurred. Here we study an extreme case to have the minor setup as zero

and the major setup as a positive number. More specifically, we define

0 1<j 0 1<
8Cu; w; =
Ag  otherwise Ag. otherwise

Stwl Wi T

where Ag > 0 and Az > 0. Without loss of generality, we can assume the fixed
sequence is (1,2,...,N) by reindexing. Then the setup matrices {st;;}ijen, {5¢ij}ijen

have following structure:

[0 0 1 o ]
Ast 0 Asc

Ag Ag 0 ... 0 0 Age Ase 0 ... 0 0
Ast Ast Ast e 0 0 Asc Asc Asc e 0 0
Ast Ast Asi& cee Ast 0 Asc Asc Asc cee Asc 0

We refer this special case of CLSP-FS1 as CLSP-FS1-LT since its setup matrices are
lower triangle. In the following theorem, CLSP-FS1-LT is shown to be NP-hard.

Theorem 5.2. CLSP-FS1-LT is NP-hard.

Proof. The proof is based on reduction from CLSP with single product.
Given a CLSP instance P1 with one product and 7’ time buckets, for each time
bucket ¢, the demand is d}, the unitary holding cost is hcj}, the unitary processing time

is pt’ and the setup cost is s¢/. The capacity for each time bucket t is cap;,. Without
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loss of generality, we assume pt’ > 0, otherwise the solution is trivial. This problem is
NP-hard [20].

Now we build a CLSP-FS1-LT instance P2 based on P1. Let N = {1,2} and T =
{1,2,...,27"}. Define T! = {2t —1€T:1<t<T}and T2 ={2t€T:1<t<T'}.
If t € T, cap; = 0; otherwise, cap; = cap, /2" Other parameters of P2 are summarized
in Table The given product sequence is (1,2). Therefore, all sequences are feasible,
including (1), (1,2), (1,2,1), (2), (2,1) and (2,1, 2).

Table 5.2: Theorem proof CLSP-FS1-LT instance parameters

i=1 =2
Parameter t€ 7' teT? (u=2%) teT  teT? (u=1%) stij 12 scij 12
Rt 0 n, 00 00 2 st' 0 2 s 0
pt; pt’ 0

We claim that P1 and P2 are equivalent in the sense that P1 is feasible if and only
if P2 is feasible and its optimal objective value is less than co. The idea of the problem
is to show that any optimal solution of P2 has structure shown in Figure and it

corresponds to a solution to P1 which shares the same objective function value.

i=1] [

P1 t'=1 t'=2 t=3

P2 ‘ t=2

Figure 5.7: Theorem reduction from CLSP with single product to CLSP-FS1-LT

This statement is proved by following 3 arguments.

1. Any feasible solution of P1 corresponds to a feasible solution S2 to P2 and they
share the same objective function values. Let S1 be an optimal solution of P1, S1(x}),
S1(z:) and S1(I¢) represent the solution value of the production quantity, the setup and
the inventory in time bucket ¢. Then we construct solution S2 to problem P2 in the
form of decision variables shown in formulation AG-SO as follows: S2(x12:) = S1(x¢),
S2(z19i-1) = 0 for 1 <t < T'. S2(x99) = 0, S2(x224+1) = 1 for 1 < ¢ < T".
S2(Ih2t) = S2(L12e—1) = S1(Ly) for 1 <t <T". S2(I;;) =0. S2(Iz;) =0forallt € T.
Ift € T, S2(sy) = (2). Ift € T2 S2(s;) = (2,1,2) if S1(z) = 1; S2(s¢) = (2) if
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S1(z¢) = 0. First, by construction, we have

Obj(S2) = D heuS2(Iu) + > s¢(S2(st))

ieN teT teT
= Z heiS1(1;) + Z sc(S2(s))
1<e<T” teT
= Z heiS1(1;) + Z sc(S2(s))
1<t<T’ teT?
= Z heiS1(1;) + Z s’ = Obj(S1)
1<t<T’ 1<t<T",51(z)=1

The second equation is by construction of S2. The third and fourth equation is because
of the sequence construction in S2. For ¢ € T there is no setup since the selected
sequence is always (2), while for ¢+ € 72 there is a setup if and only if the selected
sequence is (2, 1,2), which implies S1(z;) = 1 by construction. Therefore, the objective
function value of S2 equals to that of SI. Moreover, S2 is a feasible solution of P2.
First, the capacity restriction is respected on t € 7' due to that the only production
is one unit of product 2 which consumes 0 capacity and there is no setup. For ¢t € T2,
we have S2(xy.)pti + S2(zaspte) = S2(x1)pti = S1(ze)pt’ < cap, = capy. Second,
the production sequence is consistent from one time bucket to the next one due to
construction.

2. Given an optimal solution S2 to P2, 52 satisfies following properties or it can be
transformed to an equivalent optimal solution with the same objective function value

that follows properties:

e Fort € TY, S2(z94) = 1; for t € T2, S2(wa+) = 0.

For t € T, 52(12,13) =0.

e Forte Tt S2(z1,4) =0.

For t € T, S2(s;) = (2).

For t € T2, S2(st) = (2) if S2(z14) = 0 or S2(s¢) = (2,1,2) otherwise.

The first two properties guarantee that product 2 is produced only in the demanding
time bucket without any inventory since the unitary holding cost is oco. The third
property holds because there is no capacity to perform production of product 1 in time
bucket t € T'. Based on the first three properties, the nonzero production in ¢t € 7!

can only be product 2 and the nonzero production in ¢ € 7?2 can only be product 1.
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Therefore, we can always have the setup sequence S2(s;) = (2) int € 7' and S2(s;) = (2)
or (2,1,2) in t € T2. Other sequences are either equivalent or not optimal.

3. An optimal solution S2 to P2 corresponds to a feasible solution S1 to P1 and they
share the same objective function value. Due to the second argument, we assume that
S2 satisfies above properties as an optimal solution. Then we can build a solution S1 of
problem P1 as follows: for ¢t € T/, S1(z;) = S2(x1,2¢), S1(I;) = S2(L1,2¢), S1(z) = 1 if
S1(zy) > 0.

First, by construction, we have

Obj(S1) =Y " heiS1(L) + Y sc'S1(z)
teT’ teT’

= Z hey 1S2(1h4) + Z sc

teT? teT2:52(x1,:)>0
= Y heaS2(In) + Y sc(S2(s)) = Obj(S2)
ieN teT teT
Therefore, the objective function value of S2 equals to that of S1. The feasibility of S1
comes from the feasibility of S2 that capacity is respected in time bucket ¢ € 72 and
the flow balance is conserved on product 1.

From above arguments, P1 and P2 are equivalent in the sense that the optimal
objective function value of P1 equals to that of P2. Therefore, CLSP-FS1-LT is NP-
hard.

O

From the proof procedure, we have following result holds:

Corollary 5.3. In the Deﬁnition if we require « to be a sub-sequence of 5(i), i.e.,
without the possibility to skip some products in the middle, the problem is still NP-hard.

Due to the special structure of the setup matrix and the definition of the problem,

we have one direct observation

Observation 5.3. Given a feasible solution to CLSP-FS1-LT, there is maximum one
nonzero setup occurred in each time bucket. Moreover, if a nonzero setup occurs, then

all products can be setup in this time bucket.

In this special case, the sequencing decision to make is simplified to decide the first
(last) product of each time bucket and to decide whether we perform a major (nonzero)
setup or not in this time bucket. Therefore, we can reformulate it to a simplified model.
For each product i € N and time bucket ¢ € T, we introduce following sequencing

variables:
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e 2z € {0,1}: it equals to 1 if there is a major setup in time bucket ¢.

126

e fir € {0,1}: it equals to 1 if product 7 is the first product in the setup sequence in

time bucket ¢t. It also represents the last product in the time bucket ¢ — 1.

e 2;; € {0,1}: it equals to 1 if there is a setup for product 7 in time bucket t.

Together with variables x;; and I;; as introduced before, the reformulation of CLSP-FS1-

LT is given as follows:

min

s.t.

Z heg Iy + Z Agezy

ieNteT teT

Lit—1+xy = Iy +dyy

Z ptizis + A2y < capy

ieN

it < birzit

figs1 < Z fit+ 2
JEN:G<i

fin <) fut+(1—2)

JEN >0

zip < (2 — 1) + Z fit + Z fit+1)

JEN 5 <i JEN >0

Zit < (1 —2t) + Z fit + Z fie1)

jE./\/]<l JEN >0
> fu=1

ieN
Tit, Iy > 0, Iip =0
2t € {07 1}

Zits fit S {07 1}

ieN,teT
teT

teN,teT
teN,teT

ieN,teT
ieN,teT
ieN,teT
te TU{T+1}

ieN,teT
teT
ieN,teT

(5.52)
(5.53)
(5.54)

(5.55)
(5.56)
(5.57)

Recall that we assume w = (1,2,...,N). Constraints (5.50) and (5.51)) link the last
product in time bucket ¢ f; ;41 (i.e., the first product in time bucket ¢ 4 1) with the first

product in ¢ f;; and the major setup decision z;. If there is no major setup (z; = 0), the

last product can only be a product after ¢ in the sequence w. In other words, when there

is no major setup occurred in ¢, ¢ might be last product in ¢ only if a product j before i

is the first product in ¢, which is stated by (5.50)). If there is a major setup (z; = 1), the

last product can only be a product before 4 in the sequence w to trigger a major setup,
which is stated by (5.51]). Constraints (5.52)) and (5.53)) link the product setups z;; with
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the first setup product f;;, the last setup product f; 1 and the major setup decision z;.
If there is no major setup (z; = 0), product i can have a setup only if it is between the
first product and the last product, which is ensured by constraints . If there is a
major setup (z; = 1) and the first product is j, then all products in w after j can be
included in the setup sequence. If there is a major setup (z; = 1) and the last product
is 7, then all products in w products from 1 to j can be included in the setup sequence.
In other words, if there is a major setup in ¢, product ¢ can be setup if it is after the
first product or before the last product in the w. This is ensured by constraints .

Other constraints are explained as before.

5.5 Column Generation Approach

In this section, we develop a heuristic algorithm for the problem CLSP-FS1. This algo-
rithm is based on the formulation AG-SO - . Due to the exponential number
of variables, we use column generation to solve the LP relaxation. Then the problem is
solved as MIP with generated columns to obtain a feasible solution to CLSP-FSI.

Given subset 8’ C S, the master problem and its dual problem are defined as follows:

(FSM(S"))  min Z heiliy + Z sc(s)wst

iEN teT seS' teT
st Iip 1+ xi = Ly +dy 1eN,teT
Zptil‘z’t + Z st(s)wse < capy teT
ieN seS’
xitébz‘t Z Wt iEN,tGT
seSiEs
Y wg=1 teT
seS’!
Z Wst+1 = Z Wst (&S Nvt € T\{T}
s€S:s1=t SES181(5)=10
xit,IitZO, Ip=0 iGN,tGT
we € {0,1} seSteT

(FSP(S")) min Z dirouir + Z cap: Bi + Z ot

ieN teT teT teT
st ag +ptiBy + i <0 ieN,teT
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— it + a1 < hey ieEN,teT

st(s)B — Z bitvit + 0t + Copayt — Csrt—1 < sc(s) seS,teT
ics

B <0 teT

vit <0 ieN,teT

The pricing problem is to use reduced cost to price out a new setup pattern s € S to
be able to add to the master problem. It is actually the graph presented with AG-PO
formulation considering only one time bucket. Let graph G' = (V', E’), where V' is the
vertex set defined as {vij : i € N,7 € NU{0}} U{P,Q}, and E' is the edge set defined
as B' = EMUE?UE". E" = {(Pvg) :i € N}, E? = {(vij,vix) :i €N,j <k €N}
and E'* = {(vi;,Q) : i,j € N'}. The produce presented by each node and the setup
cost /time for each edge are also defined as , . The network representation of

the pricing problem example with 3 products is given in the Figure 5.8

™
A
A

Figure 5.8: CLSP-FS1 network representation of the pricing problem

As we have shown in Section the path from source P to ) will form a setup
sequence, in this case, a valid setup sequence for one time bucket. To formulate the

pricing problem, we introduce the following variables for (u,v) € E’:
o Ty €{0,1}: it equals to 1 if the edge (u,v) is selected, 0 otherwise.

e 2; € {0,1}: it equals to 1 if there exists an edge (u, v) is selected such that p(u) =i
or p(v) =1i.

Given an optimal solution of dual problem (a*,3*,~v*,0*,(*), we have the pricing
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problem defined as follows:

(FST(S',t))

max

where the cost is defined as follows:

Cyv =

Z CuvTuw + Z Cizi + U;(
(u,v)EE! 1eN
> T
(Pu)eE!
>, To=1
(v,Q)EE’
Y Tw= Y, Tw veV\{PQ}
ueV':(uw)EE’ ueV’:(v,u)EE’
%< Y. Tw i€N
(u,0)EE’ (1)
Tw € {0,1}  (u,v) € E
2,€{0,1} ieN
ci = =i
— ;(U)7t_1 (u,v) € E*
st(u,v)B; — sc(u,v) (u,v) € E?
C;(uM (u,v) € B4

129

(5.58)

(5.59)

(5.60)

(5.61)

(5.65)

If the optimal objective function value of above pricing problem is positive, the

sequence defined by the optimal solution should be added into the master problem. We

solve the LP relaxation of the master problem with newly added columns and repeat

this process until no column is pricing out. This implies that the LP relaxation of the

master problem is optimally solved. Based on generated columns, we solve the MIP

model of the master problem to obtain a feasible solution to the original problem. The

column generation heuristic is formally defined in Algorithm [9]

Algorithm 9: Column generation heuristic

1 Initialize the set &’ with the initial heuristic solution;

2 Solve the FSM(S’) by column generation, and update set S’ by adding the

generated columns (setup sequences);

3 Solve F'SM(S') with an MIP solver by considering the subset of variables

wst, S E S
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5.6 Computational Results

CLSP-FS1 Computational Results

We first compare four formulations that we have developed: AG-SO, AG-PO, FL-SO,
FL-PO. The benchmark instances consists of 10 instances from [63], with only the first 10
products and 10 time buckets. The summary result is given in Table while detailed
results for each instance is given in Table -

For the MIP formulation, we present the objective function value (MIP/ODbj), the
computational time (MIP/Time), the exit gap when CPLEX terminates (E.Gap), the

relative gap comparing to the best known lower bound defined as 2%=8 esgi;mw"LB

(R.Gap), the number of columns (Cols), the number of binary variables (Bin), the num-
ber of constraints (Rows) and number of explored nodes for each formulation (Nodes).
Moreover, for the LP relaxation of each MIP formulation, the optimal objective function

value (LP/Obj) and its computational time (LP/Time) are also presented.

Table 5.3: Computational results: CLSP-FS1 formulation comparison

MIP LP
Form. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
AG-PO 42235 569 2.8 1.7 41,038 6,710 6,510 1,312 133,075 9,038 0.1
AG-SO 42,817 600 12.2 3.1 37,582 102,500 102,300 310 15,622 11,486 2.0
FL-PO 42,118 524 15 1.4 41,498 7,060 6,510 1,762 132,359 37,138 0.3
FL-SO 42,252 600 4.1 1.7 40,496 102,850 102,300 760 27,175 39,991 8.3

According to the average results over 10 tested instances, we observe that

1) Formulation FL-PO has the best solution quality, which gives the lowest average
relative gap as 1.4%. On the other hand, formulation AG-SO shows the worst solution
quality that its average relative gap is 3.1%, which is largest among all four formulations.
2) Formulation FL-PO also has the shortest computational time comparing to other
formulations.

3) Although the exit gap and the relative gap are consistent for all formulations, we still
observe that there is a difference between them. For instance, the formulation AG-SO
has average exit gap as large as 12.2% whereas its relative gap is 3.1%. It implies that
this formulation obtains better solution quality than what its optimality gap has shown.
4) For the lower bound given by the LP relaxation, formulation FL-SO gives the best
bound while formulation AG-PO gives the worst lower bound. There seems to be a
dominance relationship of the formulations strength in terms of lower bounds given by

the LP relaxations. However, it is not proven yet.
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Next, we present our column generation algorithm based on the formulation AG-SO
in Table One observation based on our experiments is that the column generation
heuristic gives average gap of 12.9%, which is worse than solving the problem directly
by a standard MIP solver CPLEX. This is mainly due to the lower bound given by the
linear relaxation is not strong enough based on AG-SO algorithm. This is because that
when capacity is not tight, and we just need to generate all the single-product sequence
(i) for i € N'. The linear relaxation will chose a fraction of each singe-product sequence

so that the total setup cost is zero and many products can be produced.

Table 5.4: Computational results: column generation heuristic based on AG-SO

Inst Obj Time R.Gap (%) Generated Cols Pricing time Master time MIP time

Al 47742 23 12.4 600 22 0.1 1
A2 44705 22 9.9 603 20 0.1 2
A3 50550 22 12.2 591 20 0.2 1
A4 43576 19 14.9 568 18 0.1 1
A5 49064 21 13.6 575 19 0.1 1
A6 48396 21 14.9 575 19 0.1 1
A7 47776 22 13.5 576 20 0.1 1
A8 48615 22 13.3 572 20 0.1 1
A9 49797 21 12.5 580 19 0.1 1
Al10 43286 20 11.5 584 18 0.1 1
AVG 47351 21 12.9 582 20 0.1 1

CLSP-FS1-LT Computational Results

To compare different formulations on CLSP-FS1-LT, we also generate instances based
on the above tested instances. For each instance, we modify the setup values as follows
to transform CLSP-FS1 instances into CLSP-FS1-LT instances:

1. w=(1,2,...,N)

2. Ay = |“Bpex | + 1 where capmar = MaxyeT cap;

3. A = 2 i jeN SCij
. Ssc — N2

4. st;j = Ag if © > 7, 0 otherwise.
5. sc;j = Age if > j, 0 otherwise.

Moreover, in such instance, at most one nonzero setup can be performed in each time
bucket. Therefore, we can also use the MIP formulation for CLSP with sequence depen-

dent setup to solve the instances. According to the results presented in [63], we choose
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the product-oriented formulation with single commodity flow, which is represented as
SCM.

In Table we present the formulation comparison results for all eight formulations
by combining 2 lot sizing formulations (AG and FL) and 4 sequencing formulation (LT,
PO, SO and SCM) where LT represents for the tailored formulation of CLSP-FS1-LT.

Detailed results are given in Table -

Table 5.5: Computational results: CLSP-FS1-LT formulation comparison

MIP LP
Form. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
AG-LT 10,623 0.3 0.00 0.00 10,623 420 220 621 278 1,243 0.0
AG-PO 10,623 56.4 0.01 0.00 10,623 6,710 6,510 1,312 29,993 882 0.1
AG-SO 10,630 253.6 2.68 0.05 10,291 102,500 102,300 310 17,703 1,245 2.0
AG-SCM 10,623 3.9 0.00 0.00 10,623 2,510 1,210 1,731 3,914 0 0.0
FL-LT 10,623 0.2 0.00 0.00 10,623 770 220 1,071 - 6,586 0.0
FL-PO 10,623 145.6 0.30 0.00 10,588 7,060 6,510 1,762 53,507 6,419 0.3
FL-SO 10,623 29.3 0.00 0.00 10,623 102,850 102,300 760 775 6,586 2.2
FL-SCM 10,623 3.0 0.00 0.00 10,623 2,860 1,210 2,181 2,219 0 0.0

We have following observations:

1) Out of 8 formulations, 6 of them solve all the tested instances to prove optimality. In
fact, the maximum relative gap we obtained is less than 0.01%. Therefore, the problem
CLSP-FS1-LT seems easier to solve than the general version CLSP-FS1.

2) Overall, the FL formulations provide better solution quality than the AG formulations
on tested instances. Based on te relative gap, all of the FL formulations have solved
tested instances to optimality (may not be proven by the corresponding formulation),
while one AG formulation (AG-SO) fails to solve 2 instances to optimality.

3) We measure the formulation performance based on the lexicographical order of rel-
ative gap, exit gap and computational time. Then for the AG formulations, we have
formulation AG-LT, AG-SCM, AG-PO and AG-SO in the order of decreasing perfor-
mances. For the FL formulations, we have FL-LT, FL-SCM, FL-SO and FL-PO in the
order of decreasing performance. In other words, the LT formulation always gives best
performance as expected. Moreover, the SCM formulation also gives the second best
performance in our experiments. This might be due to the smaller size of the SCM
formulation, which has less binary variables comparing to the PO and SO formulations.
In summary, for the special case CLSP-FS1-LT problem, the tailored formulation LT is

most promising among all tested formulations. Moreover, the SCM formulation, which
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was developed for general CLSP with sequence dependent setups, can also solves CLSP-

FS1-LT efficiently in comparison to our developed PO and SO formulation.

5.7 Conclusions

In this chapter, we have studied a restricted model of CLSP with sequence dependent
setup. The problem reduces the number of candidate setup sequences from O(n!) to
O(n2™). However, the sequencing decision is still exponential and the problem is proven
to be strongly NP-hard. We have studied two types of formulations including exponential
size sequence-oriented formulation and polynomial size product-oriented formulation.
Moreover, both formulations are reformulated according to the facility location based
model. We perform preliminary experiments on developed formulations and column
generation heuristic. Formulation FL-SO gives the overall best lower bound from LP
relaxation and FL-PO gives the best MIP solution quality.

A special case is studied, which considers only two setup values. However, it still
captures the essence of our problem with a major setup and a minor setup. It is proven
to be NP-hard as well. Due to the special structure, we simplify the MIP formulation
for this special case, and comparing to the product-oriented formulation for the general
problem, the number of binary variables is reduced from O(N3T) to O(NT).

However, more experiments need to be done to further evaluate formulation perfor-

mance, and more efficient heuristic algorithms are to be designed.



Chapter 6

General Conclusion and Future

Work

In this manuscript, we have presented our research motivated by challenging real-world
applications. We can summarize the main results in two areas.

In the first part of the manuscript, a challenging production planning problem
brought to our attention by an apparel manufacturing project is studied. We designed
an optimized software tool to efficiently tackle this industrial problem. A decomposi-
tion framework has been developed, which solves an aggregated model and a detailed
model in sequence. The aggregated problem, called for brevity CLSC, is shown to be the
bottleneck of the approach and it has been studied from different perspectives. CLSC
corresponds to a complex capacitated lot sizing problem, and it has been shown to
be NP-hard even without the setup costs. Several Mixed Integer Programming (MIP)
formulations are developed for CLSC. To computationally evaluate the different MIP
formulations, two sets of benchmark instances have been designed. The first set consists
of realistic data while the second set consists of pseudo-randomly generated instances
with realistic characteristics and different features. Thanks to extensive computational
tests, we have identified that one formulation computationally outperforms the others.
Average-size instances can be solved directly using CPLEX, but large scale instances can-
not be solved to proven optimality within short computational time. Therefore, several
effective heuristic algorithms are developed based on constructive phases and enhanced
by local search phases. We designed a Fix & Relax (F&R) heuristic algorithm based
on the Linear Programming (LP) relaxation of the compact formulations. This heuris-

tic provides good quality solutions but it requires long computational times. Then, in
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order to obtain good quality solutions in short computational time, we designed a Prod-
uct Decomposition (PD) algorithm based on the observation that 20% of the product
families covers 80% of the demands (for realistic instances). We experienced a natural
trade-off of solution quality and computational time when comparing the performances
of F&R and PD. In addition, a constructive heuristic is developed and is called First
Solution Heuristic (FSH). The FSH algorithm is based on the LP relaxation of the
compact model and variable fixing with the goal of constructing good quality feasible
solutions. Thanks to extensive computational tests, we observed that the PD algorithm
outperforms the FSH algorithm in terms of computational time and solution quality (for
the tested benchmark instances). However, we observed that the positive effect of the
local search phase is stronger for the FSH algorithm than for the PD algorithm. Finally,
combining FSH and F&O allows us to achieve overall best performance. For real-world
instances, a maximum optimality gap of 15% is observed between the feasible solutions
and the LP relaxation values. These results outperforms the optimality gap of CPLEX
directly applied to the compact formulations, which is greater than 30% on average con-
sidering within similar time limit of 1 hour CPU time. As far as the randomly generated
benchmarks are concerned, if we compare the solution of CPLEX and the ones of the
algorithm FSH + F&O, we observed an improvement in their quality of 85%. As far as
the other heuristics are concerned, they also outperform CPLEX in computing feasible
solutions within short computational time. All the developed heuristic algorithms have
been included into the production planning tool of DecisionBrain improving in this way
the efficiency of the optimization system.

In the second part the manuscript, we studied a restricted version of the capaci-
tated lot sizing problem with sequence dependent setups, where the setup sequences for
each time bucket have to follow the order of a given sequence. This problem is called
capacitated lot sizing problem with a fixed product sequence (CLSP-FS1). Also this
problem comes from a real-world application. Compared to the capacitated lot sizing
problem with sequence dependent setups, CLSP-FS1 reduces the number of candidate
sequences from O(n!) to O(n2"). In many real-world applications, an “ideal” sequence
is known and only sequences following that order can be chosen. This problem is shown
to be NP-hard and four MIP models are developed based on sequence-oriented and
product-oriented (setup) formulations. We performed preliminary computational tests
to compare these formulations to a classical reformulation. We observed that one newly
proposed formulation guarantees the best performance overall for the tested benchmark
instances. For the sequence-oriented (setup) formulation, a simple column generation

heuristic has been developed and tested. Even if the quality of the LP relaxation bound is
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superior to its counter part of the compact formulations, the feasible solutions computed
by the column generation heuristic are inferior to those computed by CPLEX applied
to the compact formulation. Moreover, we studied a special case of CLSP-FS1, which
has a lower triangle form of setup matrices and is called CLSP-FS1-LT. For this variant
of the problem, if the production plan follows the order of the given sequence, then no
setup incurs. However, if the production plan reverses the order of products in the given
sequence, a big setup has to be paid. Hence, what has to be decided is when to perform
the major (nonzero) setup. Also, this problem variant is shown to be NP-hard and a
tailored MIP formulation is developed. Comparing to the product-oriented formulation
with O(N3T) binary variables, the tailored MIP formulation of CLSP-FS1-LT has only
O(NT) binary variables.

Summarizing this thesis, we tacked challenging production planning problems and
we designed advanced mathematical models and effective heuristic algorithms. These
tools allow us to compute good quality feasible solution, however, several possible future
lines of research remain open.

Regarding the CLSC problem, we observed a large optimality gap larger than 50%
on difficult benchmark instances IRG-B. Therefore, other families of heuristic algorithms
can be developed possibly based on stronger formulations. More in details, a promising
line of research can be the study of the network reformulation of the CLSC, or a hybrid
MIP formulation could also be developed based on recently proposed in the literature.

With regards to the problem CLSP-FS1, our study offers a first glance into this
problem and only preliminary experiments have been conducted thus far. Therefore,
we would like to test developed formulations on a larger scale instances especially on
structured instances where our model applies, and they should be compared with the
classical sequence dependent model.

At last, the study presented in Chapter [2| have been published in the conference
paper [48]. We have also started another project regarding Temporal Bin Pacing Prob-
lem (TBPP). It is an extension of the Bin Packing Problem, where items consume the
bin capacity during a time window only. Both a polynomial-size formulation and an
extensive formulation are studied. Moreover, various heuristic algorithms are developed
and compared, including greedy-type heuristics and a column generation based heuristic.
The study of TBPP has been published in the conference paper [49]. Since TBPP does

not follow the line of production planning, we have not included it in this manuscript.
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A.1 CLSC Computational Results

Table A.1: CLSP-SC real-world instance R5 analysis: product feature

Product i |D?  UnitReqCap ReqCaps  Percentage AvgSetupCap  AvgSetupCost
1 7 1520 19,474,873 1.2 1,146,038 234,686
2 26 1207 8,917,432 0.5 1,031,701 211,272
3 1 1852 18,520 0.0 1,202,585 246,266
4 123 1599 324,863,641 19.8 1,016,619 208,183
5 4 1637 4,764,544 0.3 1,078,964 220,950
6 6 1894 3,678,084 0.2 1,133,420 232,102
7 15 1608 23,920,684 1.5 1,099,995 225,257
8 67 616 85,304,296 5.2 1,710,857 350,349
9 4 1952 3,733,368 0.2 1,204,352 246,627
10 65 1343 34,583,566 2.1 1,205,671 246,897
11 1523 722,308 0.0 1,123,788 230,130
12 1539 14,443,330 0.9 1,101,936 225,655
13 1747 13,718,184 0.8 1,030,382 211,002
14 21 806 4,238,754 0.3 1,707,149 349,590
15 9 1526 5,347,104 0.3 1,155,397 236,602
16 4 1308 673,663 0.0 1,004,075 205,615
17 3 1289 7,898,992 0.5 1,362,518 279,017
18 8 1673 25,095,000 1.5 1,159,951 237,535
19 15 1696 11,983,155 0.7 1,096,162 224,472
20 1295 2,101,154 0.1 1,392,260 285,107
21 1253 5,042,094 0.3 1,162,490 238,055
22 1553 9,054,286 0.6 1,741,569 356,638
23 19 1174 3,995,880 0.2 1,127,024 230,792
24 2 1967 1,384,768 0.1 1,135,386 232,504
25 1 1527 679,515 0.0 1,323,618 271,050
26 23 1898 67,254,286 4.1 1,187,801 243,238
27 16 1775 97,858,468 6.0 1,133,544 232,127
28 2 2030 2,261,951 0.1 1,210,176 247,820
29 29 2028 17,982,756 1.1 1,327,923 271,932
30 1 1015 1,023,120 0.1 1,151,738 235,853
31 2128 4,917,220 0.3 1,313,164 268,910
32 1235 1,993,290 0.1 1,052,408 215,512
33 109 1513 748,092,322 45.5 1,120,403 229,436
34 2 1960 5,064,640 0.3 1,070,079 219,131
35 11 1636 1,884,672 0.1 1,224,910 250,837
36 4 1994 16,488,386 1.0 1,129,438 231,286
37 1 1732 1,584,780 0.1 1,103,703 226,016
38 4 1777 11,865,029 0.7 1,125,257 230,430
39 2 1296 177,552 0.0 1,213,387 248,477
40 6 1792 9,533,067 0.6 1,130,135 231,429
41 4 1240 10,549,920 0.6 1,051,413 215,308
42 6 1734 12,220,270 0.7 996,260 204,014
43 2 2005 2,860,220 0.2 1,145,018 234,477
44 2 1468 3,376,944 0.2 1,141,011 233,656
45 2 2657 5,446,850 0.3 1,435,590 293,980
46 2 1431 5,276,368 0.3 1,448,209 296,564
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Table A.2: CLSP-SC real-world instance R5 analysis: demand feature

TimeBucket ReleaseDate FirstDueDate SecondDueDate
1 38 24 0
2 24 12 1
3 14 5 5
4 32 18 4
5 33 15 14
6 78 46 2
7 87 45 9
8 98 47 22
9 34 36 8
10 41 44 59
11 38 50 41
12 19 87 44
13 31 15 31
14 67 54 72
15 29 37 48
16 0 18 69
17 1 37 9
18 0 48 61
19 2 25 26
20 0 0 21
21 2 1 39
22 0 0 55
23 0 2 13
24 0 0 0
25 0 2 1

Table A.3: CLSP-SC real-world instance R5 analysis: demand feature

Length

first - release

second-first

=]

N O Ot W N = O A

16
56
91
55
114
303
25

4
10
1

5
181
458
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Table A.4: CLSP-SC real-world instance R5 analysis: capacity feature

Interval NumDemand ReqCapRatio

[t1,t4] 7.63 1.15
[£2,t5] 4.49 0.53
[£3,56] 6.89 0.53
[t4,57] 11.68 0.59
[t5,t8] 14.07 0.72
[£6,9] 14.22 0.47
[t7,610] 9.73 0.31
[t8,611] 7.49 0.27
[t9,612] 4.34 0.11
[£10,613] 1.35 0.08
[t11,614] 2.84 0.11
[t12,t15] 2.69 0.13
[t13,£16] 2.54 0.18
[t14,617] 3.44 0.25
[t15,618] 0.9 0.07
[£16,£19] 0 0
[£17,£20] 0 0
[£18,621] 0 0
[£19,622] 0 0
[£20,t23] 0 0
[£21,624] 0 0
[£22,625] 0 0
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Table A.5: CLSP-SC real-world instance R5 analysis: capacity feature

Machine avgCap minCap maxCap avgSetupCap minSetupCap maxSetupCap
rl 2,320,609 1,428,300 2,768,970 1,060,070 880,638 1,539,450
r2 2,089,478 1,273,049 2,225,250 996,465 827,800 1,447,083
r3 2,217,635 1,366,200 2,333,925 932,861 774,962 1,354,716
rd 3,487,490 2,181,780 3,643,200 1,441,695 1,197,668 2,093,652
5 3,574,976 2,252,160 3,848,130 1,441,695 1,197,668 2,093,652
r6 3,008,788 1,821,600 3,449,655 1,314,486 1,091,991 1,908,918
r7 3,215,400 1,987,200 3,415,500 1,272,084 1,056,766 1,847,340
r8 3,334,425 2,111,400 3,622,500 1,349,179 1,120,812 1,959,300
r9 2,320,183 1,424,160 2,539,200 1,017,667 845,413 1,477,872
rl0 2,584,539 1,583,550 2,925,600 1,166,077 968,702 1,693,395
rll 2,896,103 1,676,700 3,187,800 1,229,680 1,021,540 1,785,761
rl2 4,079,481 2,527,469 4,340,100 1,616,446 1,342,840 2,347,428
rl3 2,916,000 1,242,000 3,105,000 1,272,084 1,056,766 1,847,340
rl4 1,912,162 1,117,799 2,421,900 954,063 792,575 1,385,505
rl5 3,112,130 1,970,640 3,381,000 1,259,235 1,046,092 1,828,680
116 2,426,845 1,523,520 2,784,840 1,060,070 880,638 1,539,450
rl7 4,031,382 2,527,469 4,257,990 1,590,104 1,320,957 2,309,175
rl8 2,188,478 1,366,200 2,539,200 1,017,667 845,413 1,477,872
rl9 2,137,045 1,366,200 2,428,110 932,861 774,962 1,354,716
20 2,516,028 1,475,910 2,815,200 1,166,077 968,702 1,693,395
r21 3,008,788 1,821,600 3,449,655 1,314,486 1,091,991 1,908,918
r22 6,557,759 6,557,759 6,557,759 3,053,000 2,536,238 4,433,616
r23 2,426,845 1,523,520 2,784,840 1,060,070 880,638 1,539,450
r24 2,804,821 1,753,290 2,998,050 1,116,607 927,605 1,621,554
r25 1,981,479 1,140,570 2,372,910 890,459 739,736 1,293,138
r26 1,390,278 870,435 1,450,725 699,646 581,221 1,016,037
r27 1,878,438 1,170,585 2,051,024 954,063 792,575 1,385,505
r28 2,392,143 1,490,399 2,860,050 1,102,472 915,864 1,601,028
r29 1,529,040 950,130 2,119,680 848,056 704,511 1,231,560
r30 1,893,877 1,229,579 2,231,460 848,056 704,511 1,231,560
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Table A.6: Computational results: FSH and FO algorithm on IRG-B (1)

FSH FSH+FO
Inst Obj Time Gap #lIter #FixedTol MIPTime Obj Time Gap
B1 569496 261 100.0 28 1.5 2 14220 2343 100.0
B2 857700 252 100.0 28 1.4 2 30347 2435 100.0
B3 1332316 238 100.0 31 1.5 2 32043 2462 100.0
B4 3154699 310 95.4 31 0.9 4 1268281 1023 88.6
B5 1627483 294 100.0 29 1.3 2 86697 2354 100.0
B6 2687665 315 100.0 27 1.2 3 389124 1811 100.0
B7 3006613 947 100.0 30 1.0 6 121681 3334 100.0
B8 2675949 893 100.0 32 1.1 5 8182 3541 100.0
B9 1925285 1040 100.0 31 0.9 6 97418 3804 100.0
B10 3301737 1081 100.0 30 0.8 7 381594 3630 100.0
B11 4475709 1242 100.0 27 0.8 7 1393145 3528 100.0
B12 3183505 1111 100.0 27 0.8 7 774781 3723 100.0
B13 1421072 3480 100.0 29 0.7 20 62269 6010 100.0
B14 1477498 3505 100.0 31 0.8 23 78058 6156 100.0
B15 1004987 3530 100.0 29 0.7 22 38147 5935 100.0
B16 120095966 1216 100.0 0 0.0 600 3726046 3658 100.0
B17 7721458 3932 99.8 29 0.5 25 4137600 6699 99.7
B18 4892235 3842 99.8 30 0.5 26 1463073 6273 99.2
AVG 9189521 1527 100 28 0.9 43 783484 3818 99.3
B19 1885162 328 100.0 30 1.7 2 52074 2738 100.0
B20 2435489 379 100.0 28 1.5 3 135957 3070 100.0
B21 3068139 389 100.0 28 1.5 3 276295 2883 100.0
B22 5863879 374 98.9 28 1.3 3 2597011 1882 97.4
B23 6120530 372 100.0 33 1.2 3 2862285 2210 100.0
B24 4924154 410 100.0 28 1.3 3 1059845 2368 100.0
B25 5299304 1531 100.0 28 1.0 9 607896 4294 100.0
B26 4432748 1492 100.0 32 1.0 7 511110 4256 100.0
B27 4074232 1349 100.0 31 1.0 7 303425 4113 100.0
B28 10067139 1371 99.8 29 0.8 7 6458050 3829 99.6
B29 11750265 1367 99.0 30 0.8 6 7363777 3290 98.5
B30 10401358 1383 99.6 29 0.8 6 6025335 3510 99.4
B31 4458564 5328 100.0 31 0.7 26 1180039 8094 100.0
B32 4216738 4989 100.0 30 0.8 23 466260 7756 100.0
B33 119181317 1216 100.0 0 0.0 601 4321073 3983 100.0
B34 13215539 4146 99.8 32 0.6 17 7946626 6913 99.7
B35 12392793 3701 984 28 0.6 21 8878757 6468 97.7
B36 114132867 1216 100.0 0 0.0 601 12516305 3982 100.0
AVG 18773345 1741 100 26 0.9 75 3531229 4202 99.6
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Table A.7: Computational results: FSH and FO algorithm on IRG-B (2)

FSH FSH+FO
Inst Obj Time Gap #lter #FixedTol MIPTime Obj Time Gap
B37 983010 239 100.0 30 1.6 3 14942 2433 100.0
B38 1412074 281 100.0 31 1.4 2 56629 2657 100.0
B39 1255719 273 100.0 30 1.4 2 72866 2570 100.0
B40 3909024 312 100.0 32 1.2 2 1212755 1631 100.0
B41 1734686 296 100.0 27 1.2 3 143503 2814 100.0
B42 3277156 354 99.1 29 1.1 2 1591917 1544 98.1
B43 2011864 930 100.0 30 1.0 7 50310 3575 100.0
B44 1114294 782 100.0 31 1.1 8 2302 2973 100.0
B45 2145942 832 100.0 30 1.0 6 45059 3405 100.0
B46 5709567 1127 99.9 32 0.8 7 2508003 3118 99.8
B47 3407334 1101 100.0 30 0.8 7 1168334 3581 100.0
B48 6654652 1327 99.0 29 0.7 6 3902549 3069 98.3
B49 1790740 3516 100.0 31 0.7 22 28248 6167 100.0
B50 2460050 3310 100.0 30 0.8 20 54707 5962 100.0
B51 2398138 3833 100.0 30 0.7 21 154890 6600 100.0
B52 4685339 4049 100.0 31 0.6 26 1399951 6815 100.0
B53 5921797 3660 98.9 30 0.5 24 3055235 6306 97.9
B54 6485383 3934 98.7 28 0.5 24 4203031 6602 98.0
AVG 3186487 1675 100 30 1.0 11 1092513 3990 99.6
B55 909994 259 100.0 30 1.4 2 19346 2526 100.0
B56 816435 247 100.0 31 1.5 2 11763 2612 100.0
B57 736264 243 100.0 30 1.5 2 5208 2300 100.0
B58 2247744 331 100.0 27 1.1 3 257911 1526 100.0
B59 2298256 310 100.0 28 1.1 3 511325 1420 100.0
B60 2278970 322 99.1 26 1.1 3 578207 1340 96.3
B61 1842306 934 100.0 30 1.0 5 69887 3464 100.0
B62 2518664 1022 100.0 31 1.0 7 90160 3778 100.0
B63 2300055 1088 100.0 29 1.0 7 91142 3735 100.0
Bo64 5192475 1142 100.0 29 0.7 9 2084179 3611 100.0
B65 5255345 1204 100.0 29 0.8 8 2548560 3623 100.0
B66 4610617 1031 99.9 27 0.7 8 1321694 3494 99.7
B67 1937528 3542 100.0 29 0.7 22 62085 6089 100.0
B68 1845334 3469 100.0 29 0.7 27 82770 6066 100.0
B69 2948951 3554 100.0 33 0.7 21 83002 6207 100.0
B70 4781314 4690 100.0 30 0.6 31 1880378 7456 100.0
B71 115751239 1216 100.0 0 0.0 600 4244626 3983 100.0
B72 5652817 3296 100.0 28 0.5 27 1881746 5895 99.9
AVG 9106906 1550 100 28 0.9 44 879111 3840 99.8
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Table A.8: Computational results: FSH and FO algorithm on IRG-B (3)

FSH FSH+FO
Inst Obj Time Gap #lIter #FixedTol MIPTime Obj Time Gap
B73 1027 66 100.0 44 2.2 4 0 77 0.0
B74 2166 71 100.0 42 2.3 3 0 82 0.0
B75 5079 113 100.0 44 2.2 4 0 125 0.0
B76 118275 276 100.0 37 1.6 2 69647 2414 100.0
B77 1290034 341 93.2 30 1.2 3 238513 1516 63.5
B78 626638 276 78.8 30 1.3 2 230945 2043 42.4
B79 11036 135 100.0 45 1.5 9 0 200 0.0
B80 19799 544 100.0 39 1.4 11 0 763 0.0
B81 3116 446 100.0 41 1.4 10 0 576 0.0
B82 495908 952 100.0 33 1.1 6 4519 3628 100.0
B83 1431220 1028 89.8 29 0.8 7 398953 3171 63.4
B&4 110817 910 100.0 35 1.1 6 3169 3403 100.0
B85 4838 2013 100.0 43 1.1 26 0 2103 0.0
B86 5088 680 100.0 42 1.1 22 0 769 0.0
B87 2812 2249 100.0 47 1.1 25 0 2359 0.0
B88 13799 3327 100.0 37 0.8 21 0 5361 0.0
B89 207862 4165 100.0 49 0.8 20 66902 6813 100.0
B90 78039 3991 100.0 38 0.7 25 17031 6757 100.0
AVG 245975 1199 98 39 1.3 11 57204 2342 37.2
B91 870570 213 100.0 29 1.5 2 0 1181 0.0
B92 460278 233 100.0 32 1.6 2 5755 1415 100.0
B93 776054 236 100.0 29 1.5 2 166 1812 100.0
B94 1624274 310 100.0 28 1.2 3 121190 2695 100.0
B95 2211051 319 100.0 26 1.2 3 152603 2855 100.0
B96 2455140 338 100.0 26 1.1 3 544955 2185 100.0
B97 1625407 803 100.0 30 1.1 6 842 1929 100.0
B9g 2150486 966 100.0 31 1.0 4 6905 3730 100.0
B99 1720532 936 100.0 30 1.0 6 29277 3596 100.0
B100 6485075 1142 100.0 30 0.7 7 3623037 3818 100.0
B101 9240132 1262 97.7 27 0.7 7 6400344 2725 96.7
B102 3928379 1127 100.0 28 0.8 8 789585 3814 100.0
B103 1436398 3410 100.0 31 0.8 18 3155 5985 100.0
B104 2097677 3616 100.0 30 0.7 19 35075 6383 100.0
B105 1882524 3606 100.0 30 0.7 19 43186 6373 100.0
B106 123496124 1215 100.0 0 0.0 600 7824869 3982 100.0
B107 4693908 4228 100.0 30 0.6 23 1671870 6994 100.0
B108 3453669 4800 100.0 29 0.6 25 911956 7566 100.0
AVG 9478204 1598 100 28 0.9 42 1231376 3835 94.3
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Table A.9: Computational results: PD and FO algorithm on IRG-B (1)

PD PD+FO
Inst Obj  Time Gap Obj Time Gap
B1 164824 48  100.0 41083 1027  100.0
B2 157580 82 100.0 42608 1041  100.0
B3 145923 43 100.0 77369 893  100.0
B4 3378237 16 95.7 1802414 399 92.0
B5 668287 39  100.0 226697 1133 100.0
B6 2563782 110  100.0 700792 634  100.0
B7 1113790 154  100.0 265497 1254  100.0
B8 200636 204  100.0 101699 937  100.0
B9 229043 77 100.0 142183 1244  100.0
B10 1777419 217 100.0 651238 1344 100.0
B11 4083545 95 100.0 2049581 1145  100.0
B12 3693503 120 100.0 1900927 780  100.0
B13 223826 314 100.0 115884 1474  100.0
B14 258130 454 100.0 117655 1487  100.0
B15 284868 406  100.0 142262 1520  100.0
B16 3820282 447 100.0 1863076 1823  100.0
B17 8876278 369 99.9 6655287 1713 99.8
B18 4501086 426 99.7 2831314 1703 99.6
AVG 2007836 201 99.7 1095976 1197 99.5
B19 278413 81 100.0 123732 1007  100.0
B20 497369 176 100.0 189411 1426  100.0
B21 2019686 155  100.0 378180 1236  100.0
B22 6064520 40 98.9 2909949 354 97.7
B23 7991949 92  100.0 3374718 851  100.0
B24 4275062 82 100.0 1440811 1025 100.0
B25 3925330 434 100.0 752207 1765 100.0
B26 2719359 257 100.0 692292 1525 100.0
B27 889276 331  100.0 386731 1605 100.0
B28 12551842 288 99.8 6653551 1534 99.6
B29 13123882 84 99.1 8404438 874 98.7
B30 13000493 321 99.7 6837244 1461 99.5
B31 1660838 729  100.0 1007841 2072 100.0
B32 667081 742 100.0 480884 1983  100.0
B33 2861996 1166  100.0 1128450 2463  100.0
B34 16566442 496 99.8 10165015 1853 99.7
B35 15187035 613 98.7 10143799 1953 98.0
B36 14542025 754 100.0 9856305 2004 100.0
AVG 6601255 380 99.8 3606976 1499 99.6
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Table A.10: Computational results: PD and FO algorithm on IRG-B (2)

PD PD+FO
Inst Obj Time Gap Obj Time Gap
B37 71152 69 100.0 18614 914  100.0
B38 265139 75 100.0 135173 785  100.0
B39 200942 40  100.0 104088 750  100.0
B40 3390405 53  100.0 1966819 453  100.0
B41 301904 51  100.0 203349 977  100.0
B42 4235634 57 99.3 2559574 485 98.8
B43 201591 190  100.0 92852 1295 100.0
B44 190307 80 100.0 59365 944  100.0
B45 203421 85 100.0 88307 1095 100.0
B46 5778783 82 99.9 3664870 1205 99.8
B47 3072701 87 100.0 1661221 1033 100.0
B48 9289926 107 99.3 6260173 1242 98.9
B49 203402 394  100.0 77507 1534  100.0
B50 313893 255 100.0 213961 1338  100.0
B51 382684 490  100.0 238909 1723  100.0
B52 4759802 263  100.0 2589047 1469  100.0
B53 6199666 469 98.9 3786746 1691 98.3
B54 8327873 323 99.0 5326919 1698 98.4
AVG 2632735 176 99.8 1613750 1146 99.7
B55 145649 128 100.0 66342 820 100.0
B56 203327 115  100.0 73563 982  100.0
B57 115540 60  100.0 30857 888  100.0
B58 1743807 37 100.0 416272 758  100.0
B59 2797638 206  100.0 1422255 580  100.0
B60 3365225 54 99.4 1301320 712 98.4
B61 277617 277 100.0 169776 1311  100.0
B62 384096 301 100.0 244576 1389  100.0
B63 307630 140  100.0 155711 1236  100.0
B64 5408696 157 100.0 3203130 806  100.0
B65 6551910 123 100.0 3533088 777 100.0
B66 4671602 244 99.9 2692260 1127 99.9
B67 255589 491  100.0 146812 1591  100.0
B68 264806 398  100.0 125522 1525  100.0
B69 338952 488  100.0 139664 1618  100.0
B70 4163398 542 100.0 2015908 1892  100.0
B71 4576418 614  100.0 2142634 2000 100.0
B72 7051053 411  100.0 4260084 1632  100.0
AVG 2367942 266  100.0 1229987 1203 99.9
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Table A.11: Computational results: PD and FO algorithm on IRG-B (3)

PD PD+FO
Inst Obj Time Gap Obj Time Gap
B73 13650 34 100.0 0 44 0.0
B74 23520 59  100.0 0 70 0.0
B75 163447 59  100.0 0 555 0.0
B76 341374 59  100.0 184993 586  100.0
B77 4020239 40 97.8 1373028 831 93.7
B78 569385 44 76.7 339286 985 60.8
B79 143936 116 100.0 0 163 0.0
B80 202415 123 100.0 4840 761  100.0
B81 94001 284  100.0 0 323 0.0
B82 3860227 92 100.0 682297 1128  100.0
B83 3806156 227 96.2 1452931 1301 89.9
B84 2270256 148  100.0 242469 1181  100.0
B85 19310 417 100.0 0 475 0.0
B86 248104 454 100.0 90 905  100.0
B87 144974 520 100.0 0 726 0.0
B88 521868 441 100.0 168839 1434  100.0
B89 614865 413 100.0 321989 1552 100.0
B90 580113 347 100.0 303851 1509  100.0
AVG 979880 215 98.4 281923 807 58.0
B91 74582 105  100.0 410 519  100.0
B92 11195 180  100.0 0 243 0.0
B93 84762 58 100.0 3 910 100.0
B94 1472665 84 100.0 176225 1186  100.0
B95 2897150 89  100.0 579829 1064 100.0
B96 3598958 48  100.0 1059709 794  100.0
B97 7120 286  100.0 0 327 0.0
B98 17238 265  100.0 427 543  100.0
B99 38003 201  100.0 1098 962  100.0
B100 7808451 199  100.0 4190866 1021  100.0
B101 9554091 234 97.8 6836055 1060 96.9
B102 3977100 182 100.0 1718978 1477  100.0
B103 5691 639  100.0 1074 1032  100.0
B104 51029 472 100.0 3601 1448  100.0
B105 37558 557  100.0 204 797  100.0
B106 6150546 454 100.0 2835681 1840  100.0
B107 3937592 325  100.0 1238442 1711  100.0
B108 2904031 437 100.0 969104 1824 100.0
AVG 2368209 268 99.9 1089539 1042 88.7
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A.2 CLSP-FS1 Computational Results

Table A.12: Computational results of CLSP-FS1 formulation: AG-SO

MIP LP
Inst. Obj Time E.Gap(%) R.Gap(%) LB  Cols Bin Rows Nodes Obj Time
Al 43,411 600 9.68 2.32 39,210 102,500 102,300 310 14,500 11,262 2.1
A2 41,612 600 14.03 3.17 35,772 102,500 102,300 310 14,298 11,494 2.1
A3 46,398 600 11.59 3.78 41,021 102,500 102,300 310 17,652 11,977 2.7
A4 38,081 600 12.13 2.67 33,461 102,500 102,300 310 6,357 11,186 1.7
Ab 44,182 600 12.52 3.77 38,650 102,500 102,300 310 15,095 11,817 2.6
A6 43,659 600 15.04 2.02 37,093 102,500 102,300 310 13,273 11,697 2.0
A7 42,899 600 13.47 2.99 37,120 102,500 102,300 310 16,594 11,339 1.8
A8 43,495 600 13.96 4.73 37,423 102,500 102,300 310 20,133 11,567 1.6
A9 45,056 600 8.26 2.31 41,334 102,500 102,300 310 22,191 11,654 2.0
A10 39,377 600 11.79 2.85 34,736 102,500 102,300 310 16,130 10,869 1.8
AVG 42,817 600 12.25 3.06 37,582 102,500 102,300 310 15,622 11,486 2.0

Table A.13: Computational results of CLSP-FS1 formulation: AG-PO

MIP LP
Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
Al 42,873 600 2.65 1.10 41,735 6,710 6,510 1,312 136,294 8,742 0.1
A2 40,751 600 2.94 1.12 39,552 6,710 6,510 1,312 130,389 9,069 0.1
A3 45,514 600 3.39 1.91 43,973 6,710 6,510 1,312 149,275 9,456 0.1
A4 37,069 286 0.01 0.01 37,065 6,710 6,510 1,312 64,068 8609 0.1
A5 43,231 600 2.45 1.66 42,170 6,710 6,510 1,312 115,580 9,315 0.1
A6 43,023 600 2.36 0.57 42,008 6,710 6,510 1,312 147,601 9,301 0.1
A7 42,274 600 2.50 1.55 41,217 6,710 6,510 1,312 138,486 9,024 0.1
A8 43,030 600 3.70 3.70 41,439 6,710 6,510 1,312 125,851 9,079 0.1
A9 44,982 600 3.20 2.15 43,544 6,710 6,510 1,312 168,123 9,253 0.1
A10 39,599 600 4.85 3.40 37,680 6,710 6,510 1,312 155,080 8,530 0.1

AVG 42,235 569 2.80 1.72 41,038 6,710 6,510 1,312 133,075 9,038 0.1
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Table A.14: Computational results of CLSP-FS1 formulation: FL-SO

MIP LP

Inst.

Obj Time E.Gap(%) R.Gap(%)

LB Cols Bin Rows Nodes Obj Time

Al
A2
A3
A4
A5
A6
A7
A8
A9
Al0
AVG

42,960
40,504
45,904
37,069
43,231
43,363
42,152
42,820
44,854
39,665
42,252

600
600
600
600
600
600
600
600
600
600
600

3.41
3.42
5.37
0.80
3.97
5.04
4.56
4.64
4.15
5.74
4.11

1.30 41,493 102,850 102,300 760 29,400 41,162 7.5
0.52 39,118 102,850 102,300 760 34,560 38,542 4.8
2.74 43,441 102,850 102,300 760 21,408 43,044 9.9
0.01 36,771 102,850 102,300 760 36,018 35,532 6.0
1.66 41,514 102,850 102,300 760 22,567 41,202 9.5
1.35 41,177 102,850 102,300 760 21,394 40,738 10.3
1.27 40,231 102,850 102,300 760 31,603 39,711 9.2
3.23 40,835 102,850 102,300 760 25,358 40,261 9.1
1.87 42,991 102,850 102,300 760 24,064 42,665 9.1
3.56 37,388 102,850 102,300 760 25,373 37,057 8.1
1.75 40,496 102,850 102,300 760 27,175 39,991 8.3

Table A.15: Computational results of CLSP-FS1 formulation: FL-PO

Inst.

MIP LP

Obj

Time E.Gap(%) R.Gap(%)

LB Cols Bin Rows Nodes Obj Time

Al
A2
A3
A4
A5
A6
AT
A8
A9
A10
AVG

42 658
40,299
45,557
37,069
43,231
42,782
42,232
42,820
44,854
39,678
42,118

600
366
600
114
600
564
600
600
600
600
524

0.60
0.01
2.00
0.01
1.66
0.01
1.45
3.34
1.87
3.59
1.45

0.60
0.01
2.00
0.01
1.66
0.01
1.45
3.23
1.87
3.59
1.44

42,403 7,060 6,510 1,762 147,216 38,244 0.3
40,295 7,060 6,510 1,762 92,967 36,006 0.3
44,644 7,060 6,510 1,762 154,849 40,090 0.3
37,066 7,060 6,510 1,762 27,597 32,316 0.3
42,515 7,060 6,510 1,762 169,998 38,403 0.3
42,778 7,060 6,510 1,762 153,500 37,910 0.3
41,618 7,060 6,510 1,762 155,701 36,977 0.3
41,388 7,060 6,510 1,762 106,436 37,198 0.3
44,017 7,060 6,510 1,762 145,601 39,813 0.3
38,254 7,060 6,510 1,762 169,723 34,420 0.3
41,498 7,060 6,510 1,762 132,359 37,138 0.3
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Table A.16: Computational results of CLSP-FS1-LT formulation: AG-LT

MIP LP
Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
Al-LT 8,987 0.2 0.00 0.00 8,987 420 220 621 216 1,217 0.0
A2-LT 8,969 0.3 0.00 0.00 8,969 420 220 621 265 1,227 0.0
A3-LT 14,204 0.3 0.00 0.00 14,204 420 220 621 374 1,286 0.0
A4-1T 7,871 0.2 0.00 0.00 7,871 420 220 621 89 1,217 0.0
A5-LT 9,179 0.2 0.00 0.00 9,179 420 220 621 325 1,288 0.0
A6-LT 12,833 04 0.00 0.00 12,833 420 220 621 551 1,241 0.0
A7-LT 9,088 0.2 0.00 0.00 9,088 420 220 621 392 1,271 0.0
A8LT 10,247 0.2 0.00 0.00 10,247 420 220 621 80 1,253 0.0
A9-LT 11,798 0.3 0.00 0.00 11,798 420 220 621 182 1,237 0.0
A10-LT 13,058 0.2 0.00 0.00 13,058 420 220 621 305 1,197 0.0
AVG 10,623 0.3 0.00 0.00 10,623 420 220 621 278 1,243 0.0

Table A.17: Computational results of CLSP-FS1-LT formulation: AG-PO

MIP LP
Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
AL-LT 8,987 186 0.00 0.00 8,987 6,710 6,510 1,312 4,268 858 0.2
A2-LT 8,969 22.7 0.00 0.00 8,969 6,710 6,510 1,312 9,353 848 0.1
A3-LT 14,204 31.1 0.01 0.00 14,203 6,710 6,510 1,312 15,796 934 0.1
A4-LT 7,871 3.4 0.00 0.00 7,871 6,710 6,510 1,312 1,821 891 0.1
A5-LT 9,179 16.9 0.00 0.00 9,179 6,710 6,510 1,312 5,150 876 0.1
A6-LT 12,833 373.8 0.01 0.00 12,832 6,710 6,510 1,312 214,606 868 0.1
A7-LT 9,088 27.6 0.01 0.00 9,087 6,710 6,510 1,312 13,224 901 0.2
A8-LT 10,247 3.7 0.00 0.00 10,247 6,710 6,510 1,312 3,248 905 0.1
A9-LT 11,798 55.6 0.01 0.00 11,797 6,710 6,510 1,312 28,387 889 0.1
A10-LT 13,058 10.8 0.01 0.00 13,057 6,710 6,510 1,312 4,077 848 0.2
AVG 10,623 56.4 0.01 0.00 10,623 6,710 6,510 1,312 29,993 882 0.1
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Table A.18: Computational results of CLSP-FS1-LT formulation: AG-SO

MIP LP
Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
Al-LT 8,987 80.6 0.00 0.00 8,987 102,500 102,300 310 6,675 1,217 2.1
A2-LT 8,969 274.3 0.01 0.00 8,968 102,500 102,300 310 28,498 1,227 2.2
A3-LT 14,273 600.1 3.79 0.48 13,733 102,500 102,300 310 35,556 1,287 2.2
A4LT 7871 314 0.00 0.00 7,871 102,500 102,300 310 2,531 1,218 1.9
A5-LT 9,179 106.4 0.00 0.00 9,179 102,500 102,300 310 4,411 1,292 2.2
A6-LT 12,833 600.1 13.11 0.00 11,151 102,500 102,300 310 36,286 1,242 1.4
AT7-LT 9,088 139.3 0.01 0.00 9,087 102,500 102,300 310 16,909 1,271 1.8
A8-LT 10,247 62.1 0.00 0.00 10,247 102,500 102,300 310 6,495 1,257 1.6
A9-LT 11,798 600.2 9.88 0.00 10,633 102,500 102,300 310 36,275 1,240 2.2
A10-LT 13,058 41.7 0.00 0.00 13,058 102,500 102,300 310 3,396 1,199 2.1
AVG 10,630 253.6 2.68 0.05 10,291 102,500 102,300 310 17,703 1,245 2.0

Table A.19: Computational results of CLSP-FS1-LT formulation: AG-SCM

MIP LP
Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
A1-LT 8,987 1.9 0.00 0.00 8,987 2,510 1,210 1,731 2,416 0 00
A2-LT 8,969 2.9 0.01 0.00 8,969 2,510 1,210 1,731 4,130 0 0.0
A3-LT 14,204 2.7 0.00 0.00 14,204 2,510 1,210 1,731 3,774 0 0.0
A4-LT 7,871 1.1 0.00 0.00 7,871 2,510 1,210 1,731 642 0 0.0
A5-LT 9,179 1.7 0.00 0.00 9,179 2,510 1,210 1,731 1,104 0 00
A6-LT 12,833 15.6 0.01 0.00 12,832 2,510 1,210 1,731 15,018 0 0.0
A7-LT 9,088 2.7 0.00 0.00 9,088 2,510 1,210 1,731 2,271 0 0.0
A8LT 10,247 1.1 0.00 0.00 10,247 2,510 1,210 1,731 464 0 0.0
AO-LT 11,798 7.4 0.01 0.00 11,797 2,510 1,210 1,731 8,066 0 00
A10-LT 13,058 1.5 0.00 0.00 13,058 2,510 1,210 1,731 1,258 0 0.0
AVG 10,623 3.9 0.00 0.00 10,623 2,510 1,210 1,731 3,914 0 0.0

152



APPENDIX A. DATA ANALYSIS AND COMPUTATIONAL RESULTS

Table A.20: Computational results of CLSP-FS1-LT formulation: AG-LT

MIP LP
Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
Al-LT 8,987 0.2 0.00 0.00 8,987 770 220 1,071 0 6,081 0.0
A2-LT 8,969 0.2 0.00 0.00 8,969 770 220 1,071 0 6,036 0.0
A3-LT 14,204 0.2 0.00 0.00 14,204 770 220 1,071 0 7,719 0.0
A4-1T 7,871 0.1 0.00 0.00 7,871 770 220 1,071 0 5,892 0.0
A5-LT 9,179 0.1 0.00 0.00 9,179 770 220 1,071 0 6,289 0.0
A6-LT 12,833 0.3 0.00 0.00 12,833 770 220 1,071 0 7,246 0.0
AT7-LT 9,088 0.2 0.00 0.00 9,088 770 220 1,071 0 6,240 0.0
A8LT 10,247 0.1 0.00 0.00 10,247 770 220 1,071 0 6,363 0.0
A9-LT 11,798 0.2 0.00 0.00 11,798 770 220 1,071 0 7,062 0.0
A10-LT 13,058 0.1 0.00 0.00 13,058 770 220 1,071 0 6,936 0.0
AVG 10,623 0.2 0.00 0.00 10,623 770 220 1,071 0 6,586 0.0

Table A.21: Computational results of CLSP-FS1-LT formulation: AG-PO

MIP LP
Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
ALLLT 8987 50.6 0.01 0.00 8,986 7,060 6,510 1,762 27,784 6,023 0.3
A2-LT 8,969 79.3 0.01 0.00 8,968 7,060 6,510 1,762 33,716 5,894 0.3
A3-LT 14,204 69.1 0.01 0.00 14,203 7,060 6,510 1,762 48,768 7,309 0.3
A4-LT 7,871 4.1 0.00 0.00 7,871 7,060 6,510 1,762 2,395 5,880 0.3
ASLT 9,179 285 0.01 0.00 9,179 7,060 6,510 1,762 9,282 6,227 0.3
A6-LT 12,833 555.6 0.01 0.00 12,832 7,060 6,510 1,762 219,805 6,929 0.3
AT-LT 9,088 55.3 0.01 0.00 9,087 7,060 6,510 1,762 21,037 6,173 0.3
A8-LT 10,247 6.7 0.01 0.00 10,246 7,060 6,510 1,762 5,855 6,292 0.3
A9-LT 11,798 600.0 2.98 0.00 11,446 7,060 6,510 1,762 160,870 6,796 0.3
A10-LT 13,058 6.9 0.00 0.00 13,058 7,060 6,510 1,762 5,559 6,670 0.3
AVG 10,623 145.6 0.30 0.00 10,588 7,060 6,510 1,762 53,507 6,419 0.3
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Table A.22: Computational results of CLSP-FS1-LT formulation: AG-SO

MIP LP
Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
Al-LT 8,987 34.4 0.00 0.00 8,987 102,850 102,300 760 416 6,081 1.9
A2-LT 8,969 49.9 0.00 0.00 8,969 102,850 102,300 760 3,868 6,036 2.1
A3-LT 14,204 26.5 0.00 0.00 14,204 102,850 102,300 760 119 7,719 23
A4-LT 7,871 13.3 0.00 0.00 7,871 102,850 102,300 760 0 5,892 2.0
A5-LT 9,179 27.6 0.00 0.00 9,179 102,850 102,300 760 0 6,289 1.6
A6-LT 12,833 47.3 0.00 0.00 12,833 102,850 102,300 760 1,893 7,246 2.7
A7-LT 9,088 29.8 0.00 0.00 9,088 102,850 102,300 760 573 6,240 2.0
A8LT 10,247 11.6 0.00 0.00 10,247 102,850 102,300 760 0 6,363 2.1
A9-LT 11,798 33.7 0.00 0.00 11,798 102,850 102,300 760 880 7,062 2.7
A10-LT 13,058 18.9 0.00 0.00 13,058 102,850 102,300 760 0 6,936 2.5
AVG 10,623 29.3 0.00 0.00 10,623 102,850 102,300 760 775 6,586 2.2

Table A.23: Computational results of CLSP-FS1-LT formulation: AG-SCM

MIP LP
Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
Al-LT 8,987 1.3 0.01 0.00 8,986 2,860 1,210 2,181 976 0 0.0
A2-LT 8,969 1.8 0.00 0.00 8,969 2,860 1,210 2,181 813 0 0.0
A3-LT 14,204 24 0.00 0.00 14,204 2,860 1,210 2,181 2,341 0 0.0
A4-LT 7,871 1.0 0.00 0.00 7,871 2,860 1,210 2,181 384 0 0.0
A5-LT 9,179 1.5 0.00 0.00 9,179 2,860 1,210 2,181 352 0 00
A6-LT 12,833 14.1 0.00 0.00 12,833 2,860 1,210 2,181 10,667 0 0.0
A7-LT 9,088 1.6 0.00 0.00 9,088 2,860 1,210 2,181 1,566 0 0.0
A8LT 10,247 1.2 0.00 0.00 10,247 2,860 1,210 2,181 319 0 0.0
AO-LT 11,798 2.7 0.01 0.00 11,797 2,860 1,210 2,181 3,559 0 00
A10-LT 13,058 2.0 0.00 0.00 13,058 2,860 1,210 2,181 1,212 0 0.0
AVG 10,623 3.0 0.00 0.00 10,623 2,860 1,210 2,181 2,219 0 0.0
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PROBLEMES COMPLEXES DE
DIMENSIONNEMENT DE LOTS DE
PRODUCTION
AVEC MACHINES PARALLELES

ET REPORT DE CONFIGURATION



Chapitre 1
Introduction

Nos recherches sont réalisées dans le cadre du programme CIFRE (Conventions Indus-
trielles de Formation par la REcherche) [30]. C’est donc une collaboration entre 1'Univer-
sité Paris Dauphine et DecisionBrain (https ://www.decisionbrain.com). DecisionBrain
est une société de logiciels qui fournit des solutions avancées d’analyse et d’optimisation
pour les entreprises innovantes qui souhaitent mettre en ceuvre une démarche scientifique
a la prise de décisions. La réalisation de solution de planification et d’ordonnancement de
la production fait partie de I'expertise de DecisionBrain. Grace a ce contexte industriel,
nous avons été confronté a différents types d’applications réelles. Dans cette these, nous
étudions deux problemes de planification de la production motivés par des applications
réelles complexes.

Dans la premiere partie de ce manuscrit, nous étudions un probleme de planification
de la production pour une entreprise de fabrication de vetements et mettons au point un
outil d’optimisation pour le résoudre. Nous proposons un framework de décomposition
composé d'un modele agrégé et d’'un modele détaillé, qui sont résolus en séquence. Le
probleme agrégé est le goulot d’étranglement de ’approche, et correspond a un probleme
de lot-sizing a capacité finie avec report de setup, machines paralleles, délais de production,
arriérés et pertes de ventes. Ce probleme s’est avéré NP-difficile, méme sans les cotits de
setup. Plusieurs formulations de programmation linéaire mixte (MIP) sont proposées et
comparées d’un point de vue théorique et expérimental. De plus, plusieurs heuristiques de
recherche constructives et locales sont développées pour trouver des solutions de bonne
qualité sur les instances de grande taille. Nous proposons deux ensembles d’instances
de benchmark pour évaluer les performances des modeles et des heuristiques. Grace a
des tests expérimentaux approfondis, nous avons montré que I’heuristique constructive
(appelée Heuristic First-Solution) associée a un algorithme Fix&Optimize détermine les

solutions approchées s’écartant le moins des valeurs optimales. Enfin, I’ensemble de la



démarche de planification de la production est présentée et sa performance est analysée.

Dans la deuxieme partie de ce manuscrit, nous étudions une version restreinte du
probleme de lot-sizing a capacité finie avec setups dépendants de la séquence, ou les
séquences de setup pour chaque période doivent suivre I'ordre d'une séquence donnée. Par
rapport au probleme de lot-sizing a capacité finie avec setups dépendantes de la séquence,
le nouveau modele réduit le nombre de séquences de setup candidates de O(n!) a O(n2").
Ce probleme s’avere etre NP-difficile. Un cas particulier avec seulement deux valeurs
de setup possibles est étudié : nous prouvons que, dans ce cas également, le probleme
reste NP-difficile. De plus, des formulations MIP orientées produits et séquentielles sont
développées. Une heuristique de génération de colonnes est également proposée a partir
des formulations séquentielles. Enfin, nous effectuons des tests de calcul pour évaluer leurs

performances respectives.



Chapitre 2

Probleme complexe de lot-sizing :

formulations et benchmarks

Nous construisons un probleme complexe de lot-sizing a capacité finie basé sur une
application de fabrication de vétements. Ce probleme de lot-sizing a capacité finie est
composé d’éléments complexes tels que les machines paralleles, les fenétres de temps de
production, I'arriéré, les pertes de ventes et le report de setup [48]. Ces caractéristiques
ont été étudiées dans différents contextes de problemes de lot-sizing. Cependant, a notre
connaissance, ils sont pour la premiere fois considérés ensemble dans cette application.
Dans ce chapitre, nous définissons, formulons et analysons formellement le probleme.

Les parametres d’entrée du probleme sont :

— T ={1,2,...,T} : ensemble des périodes.

— R =1{1,2,..., R} : ensemble des ressources/machines.

— N =1{1,2,...,N} : ensemble des produits.

— D ={1,2,...,D} : ensemble des demandes.

— cap, : capacité de la machine r dans la période t (r € R, t € T).

— pt; : temps de traitement unitaire du produit i (i € N).

— sty : capacité de setup pour le produit ¢ sur la machine r (i € N,r € R).

— 8¢ ¢ cott de setup du produit ¢ sur la machine r (i € N';r € R).

— pg € N : produit requis par la demande d (d € D).

— g : quantité de produit py requise par la demande d (d € D).

— by € T : date de début de la demande d (d € D).

— e} € T : premiere échéance de la demande d (d € D). Pas de frais supplémentaires

dans lintervalle [by, €}).

— €2 € T : deuxitme échéance de la demande d (d € D).

— tcl i cout unitaire de retard de la demande d satisfait & ou apres e} (d € D).



— tcZ : cout unitaire de retard de la demande d satisfait & ou apres €2 (d € D).

— lcg : cotit de vente perdu unitaire de la demande d (d € D,lcq > tc) + tc3).

— D' C D : le sous-ensemble des demandes telles que pg = 4, i.e., D' := {d € D|pg =

Le probleme est de décider pour chaque machine € R et dans chaque période t € T,
la quantité & produire de chaque produit ¢ € N. L’objectif est de minimiser le cotit total,
y compris les frais de vente perdus et le colit des retards. Le cotlit de setup est secondaire
par rapport aux autres cotits. Les contraintes sont de trois types : premierement, il existe
des contraintes de capacité limitée cap,; sur chaque machine r € R et période t € T ;
deuxiemement, la production pour satisfaire la demande d ne peut commencer qu’a partir
de sa date de début; troisiemement, les contraintes concernant le report de setup. Les
contraintes de setup exprime le fait que, pour produire le produit ¢ sur la machine r
pendant la période ¢, il doit y avoir un setup pour ¢ sur r pendant t. Cependant, si le
produit 7 est le dernier produit fabriqué dans la periode précédente ¢ — 1 sur la machine
r, il n’y a plus besoin de setup pour produire le produit ¢ sur la machine r pendant la
periode t. Nous supposons qu’il existe au plus un setup par produit sur chaque machine

pendant chaque période.

Setup Production

t—1 t t+1

FI1GURE 2.1 — Report de setup

Une pseudo-formulation peut servir a résumer le probleme comme suit. Au meilleur
de notre connaissance, c’est la premiere fois que ce probleme de lot-sizing est étudié, nous

I’appelons CLSC' pour plus de simplicité.

(CLSC) min Cout des ventes perdues + Cout de retard (+ Cout de setup)
s.t.  Contraintes liées a la conservation du flux de matiéres premiéres
Contraintes de capacité des machines
Fenétres temporelles des demandes

Report de setup

En se basant sur la définition, nous remarquons que le CLSC est différent du CLSP

classique par rapport a la définition de la demande. Dans CLSP, les demandes sont



généralement agrégées par produits et par périodes. Ainsi, une demande est définie pour
chaque produit dans chaque période. Toutefois, dans notre cas, il est important de tenir
compte de la fenétre temporelle individuelle de chaque demande en fonction de sa date
de début et des dates d’échéance. Par conséquent, nous séparons le concept de produit
et de demande. Chaque demande d concerne un seul produit p; a produire en quantité
qa & une date r4, accompagnée de deux dates d’échéance e}, €3 et leurs cotits de retard
associés tch, tc2 et lcg. En conséquence, un produit peut étre requis par un ensemble de
demandes.
0 tey : teg + teg

l ! ! |

0 ba el e? T

FIGURE 2.2 — Fenétre Temporelle de la demande

Une autre différence concerne le stockage : il n’ y a pas de probleme de stockage, et
donc pas de cout de stockage a considérer. Un produit fabriqué est directement utilisé
pour satisfaire les demandes, c’est-a-dire que la livraison est immédiate.

Quatre formules de programmation linéaire mixte (MIP), appelées Forml, Form2,
Form3 et Form3¥", ont été développées pour modéliser CLSC. Dans ce résumé, nous

présentons uniquement la formulation Form3.

min Zlcdyd+ Z tehyar + Z tya (+ Z scpzity)  (2.1)

deD dG'D,tE’T:tZeb dGD,tGT:tZefl 1EN TEREET
s.t. me = Z Yar ieN,teT (2.2)
reR deDt t>by
Z Yat +Ya = qa deD (2.3)
ba<teT
Zptixirt + Z stipzih, < cappy reR,teT (2.4)
1EN 1EN
Tirt < Ount(zp + 2i74) ieNreRteT (2.5)
2 =1 reR,teT (2.6)
iEN
2oy < 2y 1+ 2y ieN,reR,teT (2.7)
Z?rt + Z?r,t—l < T+ we ieN,reR,te T (2.8)
i+ we <1 ieN,reR,teT (2.9)



0 < T ieN,reR,teT (2.10)
0 < Yat, Ya < qa deD, by <teT (2.11)
20,z € {0, 1} ieN,reR,teT (2.12)
0<w, <1 Vre R, teT (2.13)

Pour comparer ces quatre formulations, nous avons prouvé de theoreme ci-dessous.

Theorem 2.1. Les valeurs optimales des fonctions objectives des relaxations linéaires des
formulations Form1, Form2, Form3 et Form3fL, notées Obji p(Forml1), Obji p(Form2),
Obji p(Form3) et Obji p(Form3™l), vérifie

Obj; p(Form3™) > Obj; n(Form3) = Obj; p(Form2) > Obj; p(Form1)

Pour pouvoir étudier expérimentalement le probleme CLSC, nous générons deux en-
sembles d’instances de référence. L'un des ensembles est constitué d’instances réelles de
I’application de fabrication de vétements, tandis que l'autre provient d’un générateur
d’instances pseudo-aléatoires concu pour simuler des problemes réels. Les instances de
référence sont résumées dans le Tableau 2.1, dans lequel nous présentons le type d’ins-
tances (Type), sa notation (Notation), le nombre d’instances qu’il contient (Taille) et
quelques commentaires. Les détails de chaque ensemble d’instances de benchmark sont
donnés dans le Tableau 2.2 et le Tableau 2.3.

TABLE 2.1 — Résumé des instances de référence du CLSC

Type Notation  Taille Commentaire
Instances de I’application TAP-A 3
(IAP) IAP-B 4
Instances générées aléatoirement IRG-A 810 petite taille
(IRG) IRG-B 108  taille moyenne et grande

TABLE 2.2 — Instances de référence du CLSC provenant de I’application

Type Instance T R N D T'(%) Commentaire
IAP-A R1 27 3 3 313 99
R2 36 28 18 1188 30
R3 30 29 1 595 33
IAP-B R5 25 30 46 668 91
R6 25 30 36 431 74  Rb avec horizon gelé
R7 20 31 80 1428 40
R8 20 31 73 1404 41  RT avec horizon gelé




TABLE 2.3 — Instances de référence du CLSC générées pseudo-aléatoirement

Notation  Taille T N M D I'(%)
IRG-A 810 {4,9,13} {4812}  {15,10}  {50,100,200} {75,90}
IRG-B 108 {25}  {50,75,100} {15,20,30}  {500,750,1000}  {75,90}

Tout d’abord, différentes formulations MIP sont comparées pour le CLSC avec et sans
le cout de setup. Toutes les formulations développées sont résolues pour le benchmark
IRG-A et IAP-A avec le solveur standard MIP CPLEX 12.6.1 et avec une limite de temps
de 10 minutes. Le résumé des résultats est donné dans le tableau 2.4 et dans le tableau
2.5. Dans les tableaux, le temps de calcul est exprimé en secondes. Pour chaque parametre
d’instance (T, R, D, D, N, I') et pour chaque valeur, nous donnons les résultats moyens
sur toutes les instances correspondantes. Dans la rangée T /A, les valeurs moyennes sur
toutes les instances testées sont rapportées tandis que sa colonne Opt indique le nombre
total d’instances résolues de maniere optimale pour chaque formulation. Dans les deux
premieres colonnes, nous présentons les parametres et leurs valeurs. Par exemple, pour le
nombre de périodes T', il y a trois valeurs 4,9, 13 pour les instances IRG-A. Dans les co-
lonnes Opt et Temps, nous rapportons le nombre et le temps de calcul moyen sur toutes les
instances, avec les valeurs des parametres donnés, résolues pour prouver I'optimalité dans
le délai imparti. Dans les colonnes Neeuds et Ecart, nous signalons le nombre de nceuds
explorés et I'écart de sortie lorsque CPLEX termine. Cet écart représente la différence
relative entre les limites primale et duale calculées par CPLEX a la date limite. Dans
la colonne LPT, nous rapportons le temps de calcul moyen pour résoudre la relaxation
linéaire sur toutes les instances partageant cette valeur de parametre. En Colonne LPG,

nous mesurons la qualité de la relaxation linéaire qui est calculée comme suit

BestMiwp — LPVal
BestMip ’

LPG = (2.14)

ou bestMip est la meilleure solution entiere (parmi toutes les formulations) et LPVal
est la valeur optimale de la relaxation linéaire de la formulation correspondante. Dans
tous les cas sauf deux, les trois formulations Forml, Form?2 et Form3 aboutissent a la
méme valeur LPVal (dans les deux cas la différence est inférieure a 0,001!). Nous ne
présentons le LPG qu’une seule fois sous la colonne Form3. Pour les instances TAP-A,
nous reportons, dans la colonne Obj, les valeurs de la fonction objectif obtenues par le
solveur.

Nous observons que la formulation Form3 donne la meilleure performance globale. Par
exemple, sur les 810 instances d'TRG-A avec couts de setup, Form3 résout (avec preuve

d’optimalité) 416 instances alors que Form2 n’en résout que 411 instances, Forml 379



instances et form3™% 365 instances. Sur les 810 instances d’TRG-A sans coiit de setup,
Form3 résoud & 'optimalité 476 instances alors que Forml, Form2 et Form3** n’en

résolvent respectivement que 460, 468 et 424.
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A la lumiere de ces résutats, nous choisissons donc la formulation la plus performante,
a savoir Florm3, pour résoudre les instances IRG-B et IAP-B a l'aide du solveur MIP
standard CPLEX 12.6.1 (en exploitant tous les coeurs du processeur et avec un temps
limite d’une heure). Le résumé des résultats obtenus sur les instances IRG-B est reporté
dans le Tableau 2.6. L’écart relatif moyen constaté entre la valeur de la solution entiere
obtenue en 1 heure et la valeur de la relaxation linéaire sur les instances TAP-B est
supérieur a 30%. En particulier pour I'instance R5, I’écart est supérieur a 91%.

Sur la base de ces tests préliminaires, nous concluons que la performance médiocre
de CPLEX est due, d'une part, a la faiblesse de la relaxation linéaire et, d’autre part, a
la taille élévée des intances, sur lesquelles 'heuristique intégrée de CPLEX n’arrive pas
a trouver de bonnes solutions de départ. Par conséquent, des algorithmes heuristiques

efficaces doivent étre développés. Ceux-ci sont présentés dans le chapitre suivant.

TABLE 2.6 — Résultats computationnels : CPLEX sur [AP-B

Characteristics LP MIP
Inst T R N DT Obj Temps Obj Temps Ecart LB #Noeuds BestLLB
R5 25 30 46 668 91 2,935,797 79 35,511,200 3600 91.6 2,973,702 0 2,973,702
R6 25 30 36 425 74 1,277,107 18 1,456,011 3600 7.7 1,344,501 97 1,344,501
R7 20 31 80 1428 40 2,217,260 118 2,692,957 3601 16.7 2,244,422 29 2,244,422
R8 20 31 73 1404 41 2,081,921 83 2,597,838 3600 18.7 2,111,181 0 2,111,181
AVG 2,128,021 74 10,564,501 3600 33.7 2,168,451 32 2,168,451
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Chapitre 3

Probleme complexe de lot-sizing a

capacité finie : Heuristiques

Dans le chapitre précédent, nous avons présenté le probleme complexe de lot-sizing
CLSC. Nous montrons qu’il est NP-difficile et ne peut étre résolu efficacement par un
solveur MIP standard d’apres nos expériences de calcul. Dans ce chapitre, nous proposons
donc des algorithmes heuristiques afin de résoudre CLSC.

Pour I'application de fabrication de vétements, I'indicateur clé de performance concerne
le niveau de satisfaction de la demande. En d’autres termes, les couts dus au retard ou
a la non-satisfaction de la demande sont beaucoup plus importants que le cout de setup.
Notre objectif étant de résoudre le probleme de planification de la production issu de
I’application, nous considérons par la suite uniquement le CLSC sans cotit de setup.

Tous les algorithmes heuristiques que nous avons développés sont basés sur la formu-
lation MIP du probleme. Comme montré précédemment, la formulation F'orm3 donne les
meilleures performances globales. Par conséquent, nous utilisons Form3 pour développer
et tester 'algorithme a chaque fois que la formulation MIP du CLSC est requise.

Nous proposons trois algorithmes heuristiques pour construire des solutions réalisables
au CLSC : I'algorithme Fix&Relax, qui est une adaptation d’un algorithme classique lar-
gement utilisé pour résoudre CLSP, l'algorithme basé sur la décomposition des produits
(PD) qui explore la structure des instances réelles, et [’algorithme heuristique avec solution
initiale basé sur la relaxation LP. L’algorithme Fix&Relax, basé sur la décomposition par
périodes et machines, résout une série de modeles MIP. De la méme facon, ’algorithme
PD est basé sur la décomposition du produit, et résout également une série de modeles
MIP a plus petite échelle que ceux de 'algorithme Fix&Relax. Enfin, 'algorithme heu-

ristique avec solution initiale est basé sur la fixation des variables et résout une série de
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modeles LP. Par conséquent, toutes les heuristiques constructives utilisent des formula-
tions mathématiques, mais avec des modeles et des tailles différentes.

Nous développons ensuite un algorithme de recherche locale pour améliorer la qualité
de la solution. Fix&Optimize (F&O) algorithm [108] est une autre méthode couramment
utilisée pour résoudre LSP. Partant d’une solution initiale, chaque itération consiste a fixer
une partie des variables, tandis que les variables restantes sont optimisées pour essayer
d’améliorer la qualité de la solution. Apres chaque itération, les variables de la fenétre
de décision sont mises a jour et le processus est répété jusqu'a ce que certains criteres
soient atteints. La solution finale ne peut pas étre pire que la solution initiale. L’idée est
de résoudre un probleme MIP plus petit a chaque itération pour trouver une meilleure
solution.

Tous les algorithmes heuristiques a I’exception de I'algorithme F&R sont testés a la fois
sur des instances d’application réelles IAP-B et sur des instances pseudo-aléatoires IRG-
B. Les résultats de calcul obtenus sur les instances IAP-B, sont donnés dans le Tableau
3.1.

TABLE 3.1 — Résultats expérimentaux : algorithmes heuristiques sur IAP-B

CPLEX FSH PD FSH+FO PD+FO
Inst Obj Temps Ecart Temps Ecart Temps Ecart Temps Ecart Temps Ecart
R5 35,511,200 3600 91.6 216 79.0 74 48.2 662 14.2 478 35.8
R6 1,456,011 3600 7.7 64 76.7 7 45.1 492 5.9 181 19.0
R7 2,692,957 3601 16.7 376 74.6 315 40.9 823 9.2 756 12.0
R8 2,597,838 3600 18.7 316 67.8 285 49.2 762 6.9 734 17.7
MOY 10,564,501 3600 33.7 243 745 170 45.9 685 9.0 537 21.1

Tout d’abord, a l'exception de CLPEX, le temps de calcul suit toujours 'ordre PD
< FSH < PD < PD + F&O < FSH + F&O sur ces 4 instances. Par contre, ’écart suit
toujours 'ordre FSH > PD > PD > PD + F&O > FSH + FO. Deuxiemement, entre
deux algorithmes heuristiques constructifs, il semble qu’'un effort de calcul plus important
ne mene pas a une meilleure qualité de solution. En moyenne, le temps de calcul de FSH
est de 243 secondes alors qu’il est de 170 secondes pour 1'algorithme PD. Toutefois, 1’écart
moyen de I'algorithme FSH est de 74,5%, soit presque le double de celui de I’algorithme
PD (45,9%). Cependant, l'effort est payant lorsque I’algorithme constructif est suivi de
I’algorithme d’amélioration. Avec le méme mécanisme de recherche locale amélioré que
I'algorithme F&O, FSH 4+ F&O donne de meilleurs résultats que PD + F&O sur toutes les
instances. Cela implique qu’'une meilleure solution de départ ne signifie pas une meilleure
solution finale pour I'algorithme F&O. Troisiemement, par rapport a CPLEX, I'algorithme
FSH + F&O et PD + F&O parvient a fournir de meilleures solutions en un temps de
calcul plus court. L’écart moyen de FSH + algorithme F&O est de 9,0% alors que ’écart
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moyen de PD + F&O est de 21,1%. Pour CPLEX, I’écart moyen est de 33,7%. Surtout
pour I'exemple le plus difficile R5, I'écart est réduit de 91,6% (CPLEX) a 14,2% (FSH +
F&O). Ceci démontre 'efficacité de nos algorithmes heuristiques développés par rapport
a CPLEX. Pour I'application de fabrication de vétements, une solution acceptable est
fournie dans un délai raisonnable (< 12 minutes) par notre algorithme heuristique. Enfin,
nous observons que l'algorithme F&O améliore relativement la qualité de la solution,
surtout celle obtenue avec l'algorithme FSH. Par conséquent, 'algorithme F&O reste
efficace pour résoudre LSP ainsi que pour de nombreux cas dans la littérature malgré la
simplicité de sa structure.

Pour les deux benchmark de référence, tous les algorithmes heuristiques ont un com-
portement constant sur la qualité de la solution. En résumé, ’algorithme PD ou PD +
F&O a lavantage de la vitesse, et peut étre utilisé lorsque le temps de calcul est une
ressource rare. L’algorithme FSH et ’algorithme FSH + F&O ont un temps de calcul non
négligeable, surtout lorsque la taille du probléeme devient trop grande. Cependant, parmi

tous les algorithmes développés, ce sont eux qui retournent la meilleure solution.
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Chapitre 4

Probleme de lot-sizing avec une

séquence fixe de produits

Dans de nombreuses industries manufacturieres, le transfert de la production d’un
produit a un autre entraine des opérations de setup. Le setup consomme une quantité
limitée de capacité des machines et/ou engendre un cout de setup. Lorsque le setup dépend
de la séquence de production, c¢’est-a-dire lorsque le setup pour produire le produit actuel
dépend a la fois de lui-méme et du produit précédent, on parle de setup dépendant de la
séquence [46,63]. Dans ce cas, il est nécessaire de prendre une décision pour le lot-sizing et
le séquencage. La difficulté de ce probléeme réside dans le nombre factoriel de séquences de
setup possibles. Toutefois, dans certaines industries manufacturieres, ce nombre peut étre
réduit en utilisant les connaissances des planificateurs. Dans ce chapitre, nous étudions
un cas particulier de CLSP avec setup dépendant de la séquence, appelé probleme de

lot-sizing a capacité finie et séquence fixe de produits.

Definition 4.1. Etant données deuz séquence w = (Wi, wWa, .y wy) et = (g, Q. .., Q)
(m <n+1), on dit que « suit l'ordre de w, noté a <X w, si

1. o; € w pour tout i € {1,2,...,m}.

2. a; # oy pour tout i # j € {1,2,...,m} et {i,j} # {1, m}.

3. Soient © un indice tel que w; = oy et une séquence

ﬁ(’l) == <wi7wi+17 sy Wh, W, W, .. 7(*)7;717("]7;) (41)
Il existe un sous-ensemble 0 = {w;,,wiy, ..., w;, } tel que
(01, Wiy Wiy ooy Wiy 5 2y Wiy s Wi gy e e ey Wiy OB+ e oy Oy Wiy s e, Wiy, ) €5t €gal

a B).

Les parametres du CLSP avec une séquence fixe de produits sont donnés comme suit :
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— N ={1,2,..., N} un ensemble de N produits.

— T ={1,2,...,T} un ensemble de T périodes.

— capy : capacité de la machine sur la période t.

— dj; : demande de chaque produit ¢ sur la période t.

— pt; : temps de production unitaire de chaque produit .

— hcy o cout d'inventaire unitaire de chaque produit ¢ sur la période t.

— b : la quantité maximale de production ¢ qui peut étre produite sur t.

— st;; : temps de setup du produit ¢ au produit j.

— 8¢5 @ colit de setup du produit ¢ au produit j.

— Une permutation de N : w = (wy,wa, ..., wy).

Le probleme CLSP avec une séquence fixe de produits, noté CLSP-FS1, consiste a
décider de la séquence de production et de la quantité de production de chaque produit
dans chaque période, de fagon a ce que toutes les demandes soient satisfaites avec un cott
total minimum, tout en respectant les capacités des machines. De plus, la séquence de

setup choisie pour chaque période doit suivre 'ordre donné par w.
Theorem 4.1. CLSP-FS1 est fortement NP-difficile.

Démonstration. Cette affirmation se démontre par réduction au CLSP. m

Diverses formulations MIP pour CLSP-FS1 sont proposées. Il y a deux types de
décisions a prendre : le lot-sizing et le séquencage. Pour le lot-sizing, nous avons la for-
mulation classique agrégée et la reformulation basée sur le probleme de I’emplacement
d’installations en CLSP. Pour le séquencage, nous proposons une formulation compacte
orientée produit et, une formulation orientée séquence avec un nombre exponentiel de
variables.

En fonction d’'une séquence de produit, si la production suit la séquence donnée, le
setup est mineur. Cependant, lorsque nous avons besoin d’inverser les produits dans la
séquence, le setup devient majeur. Ici nous étudions un cas extréme ou le setup mineur

vaut zéro et ou le setup majeur est un nombre positif. Plus précisément, nous définissons

0 1< 0 1<
Stu;w; = ‘ SCuiwy = .
Ay sinon Ag.  sinon

ou Ay > 0 et A,. > 0. Sans perte de généralité, on peut supposer que la séquence fixe
est (1,2,...,N) par réindexation. Les matrices de setup {st;;}i jen, {5¢i;}ijen ont alors

la structure suivante :

16



0 0o o0 ... 0 o] Jo |
Ay 0 0 ... 0 0 Ase

Ag Ay 0 ... 0 0 Age Age

Ast Ast Ast B O 0 Asc Asc Asc B O O
_Ast Ast Ast s Ast 0_ _Asc Asc Asc s Asc 0_

Nous faisons référence a ce cas particulier de CLSP-FS1 par la notation CLSP-FS1-LT
puisque ses matrices de setup forment des triangles inférieurs. Dans le théoreme suivant,
CLSP-FS1-LT est montré comme étant NP-difficile.

Theorem 4.2. CLSP-FS1-LT est NP-difficile.

Démonstration. La preuve est basée sur une réduction a CLSP avec un seul produit. [J

En raison de la structure particuliere, nous simplifions la formulation du MIP. Par
rapport a la formulation orientée produit du probleme général, le nombre de variables
binaires est réduit de O(N3T) a O(NT).

Dans la suite, nous effectuons une étude expérimentale. Nous comparons quatre for-
mulations que nous avons développées : AG-SO, AG-PO, FL-SO, FL-PO. Les instances
de référence sont 10 instances de [63], avec seulement les 10 premiers produits et 10
périodes. De plus, aucune vente perdue n’est considérée. Par conséquent, toutes les de-
mandes doivent étre satisfaites. Le résumé des résultats est donné dans le tableau 4.1.
D’apres les résultats moyens sur 10 cas pilotes, nous observons que la formulation FL-
PO donne I’écart moyen le plus faible a 2,1%. D’autre part, la formulation AG-SO donne
Iécart le plus grand avec 3,8%. De plus, la formulation FL-PO posseéde également le temps
de calcul le plus court par rapport aux autres formulations. Pour la borne inférieure donnée
par la relaxation linéaire, la formulation FL-SO donne la meilleure borne tandis que la
formulation AG-PO donne la plus mauvaise borne inférieure. Il semble y avoir une relation

de dominance entre les relaxations linéaires de ces différentes formulations.

TABLE 4.1 — Comparaison des formulations : résulats computationnels

MIP LP
Inst Obj Temps Ecart LB  Cols Bin Lignes Noeuds Obj Temps
AG-SO 42921 600 3.8 37383 102501 102300 320 15448 11486 6
FL-SO 42200 601 2.2 40516 102851 102300 770 27462 39991 15
AG-PO 42277 581 2.4 40612 6712 6511 1312 159063 9038 0
FL-PO 42178 560 2.1 41188 7062 6511 1762 154882 37138 0
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Chapitre 5

Conclusion générale et travaux

futurs

Dans ce manuscrit, nous avons présenté nos recherches motivées par des applications
réelles. Nous pouvons résumer les principaux résultats en deux parties.

Dans la premiere partie du manuscrit, nous avons étudié un probleme de planification
de la production qui nous a été soumis par un projet de fabrication de vétements. Nous
avons cong¢u un outil logiciel optimisé pour répondre efficacement a ce probleme industriel.
Un cadre de décomposition a été développé, qui résout successivement un modele agrégé
et un modele détaillé.

Le probleme agrégé, noté CLSC, s’avere étre le goulot d’étranglement de ’approche et
a été étudié sous différents angles. Le CLSC correspond a un probleme complexe de lot-
sizing a capacité finie, et il a été démontré comme étant NP-difficile, méme sans les cotits
de setup. Plusieurs formules de programmation linéaire mixtes (MIP) sont développées
pour le CLSC. Afin d’évaluer expérimentalement les différentes formulations MIP, deux
ensembles d’instances de référence ont été congus. Le premier ensemble est constitué
de données réelles, tandis que le deuxieme ensemble est constitué d’instances pseudo-
aléatoires avec des caractéristiques réalistes et des propriétés différentes. Grace a ces
évaluations expérimentales approfondies, nous avons pu constater qu’une formulation
donne de meilleurs résultats que les autres.

Les instances de taille moyenne peuvent étre résolues directement a 1’aide de CPLEX,
mais l'optimalité ne peut pas étre prouvée pour les instances de grande taille en un
temps de calcul court. Par conséquent, plusieurs algorithmes heuristiques efficaces sont
développés a partir de phases constructives et améliorés par des phases de recherche locale.

Nous avons congu un algorithme heuristique Fix & Relax (F&R) basé sur la relaxation

de la programmation linéaire (LP) des formulations compactes. Cette heuristique fournit
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des solutions de bonne qualité, mais elle nécessite des temps de calcul importants. Ensuite,
afin d’obtenir des solutions de bonne qualité en un temps de calcul court, nous avons
congu un algorithme de décomposition des produits (PD) basé sur I'observation que 20%
des familles de produits couvrent 80% des demandes (sur les instances réalistes). Nous
avons fait 'expérience d'un compromis naturel entre la qualité des solutions et le temps de
calcul en comparant les performances de F&R et PD. De plus, une heuristique constructive
est développée, appelée First Solution Heuristic (FSH). L’algorithme FSH est basé sur la
relaxation linéaire du modele compact et la fixation des variables dans le but de construire
des solutions réalisables de bonne qualité. Grace a des expériences de calcul intensives,
nous avons pu constater que 'algorithme PD est plus performant que ’algorithme FSH
en terme de temps de calcul et de qualité de solution (pour les instances considérées).
Cependant, nous avons observé que 'effet positif de la phase de recherche locale est plus
fort pour I'algorithme FSH que pour ’algorithme PD.

Enfin, la combinaison FSH et F&O nous permet d’atteindre la meilleure performance
globale. Dans la pratique, un écart d’optimalité maximum de 15% est observé entre les
solutions réalisables et les valeurs optimales des relaxations linéaires. Ces résultats sur-
passent ’écart d’optimalité de CPLEX appliqué directement sur les formulations com-
pactes, qui est supérieur & 90% en moyenne si I'on considere le méme temps CPU d’une
heure. En ce qui concerne les instances générées aléatoirement, si 'on compare la solution
de CPLEX et celle de l'algorithme FSH 4+ F&O, on constate une amélioration de leur
qualité de 85%. En ce qui concerne les autres heuristiques, elles sont également plus per-
formantes que CPLEX pour ce qui est du calcul des solutions réalisables en peu de temps.
Tous les algorithmes heuristiques développés ont été intégrés dans 1’outil de planification
de production de DecisionBrain, améliorant ainsi 'efficacité du systeme d’optimisation.

Dans la deuxieme partie du manuscrit, nous avons étudié une version restreinte du
probleme de lot-sizing a capacité finie et setup dépendant de la séquence, ou les séquences
de setup pour chaque période doivent suivre 'ordre d’une séquence donnée. Ce probleme
est appelé probleme de lot-sizing & capacité finie et séquence de produit fixe (CLSP-FS1).
Ce probleme vient d’une application du monde réel. Par rapport au probleme de lot-
sizing a capacité finie et setup dépendant de la séquence, CLSP-FS1 réduit le nombre
de séquences candidates de O(n!) & O(n2"). Dans de nombreuses applications du monde
réel, une séquence “idéale” est connue et seules les séquences suivant cet ordre peuvent
étre choisies. Il est démontré que ce probleme est de type NP-difficile. Quatre modeles
MIP sont développés a partir de formulations orientées séquence et produit (setup). Nous
avons effectué des tests computationnels préliminaires pour comparer ces formulations a

une reformulation classique. Nous avons observé qu’une nouvelle formulation proposée
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garantit la meilleure performance globale pour les instances de référence testées. Pour
la formulation orientée séquence, une heuristique simple de génération de colonne a été
développée et testée. Méme si la qualité de la relaxation linéaire de cette formulation
est meilleure que celle de la formulation compacte, les solutions réalisables calculées par
I’heuristique de génération de colonne sont moins bonnes que celles calculées par CPLEX
en utilisant la formulation compacte. De plus, nous avons étudié un cas particulier de
CLSP-FS1, dont les matrices de setup ont une forme triangulaire inférieure, noté CLSP-
FS1-LT. Pour cette variante du probleme, si le plan de production suit l'ordre de la
séquence donnée, aucun setup n’est effectuée. Toutefois, si le plan de production inverse
I'ordre des produits dans la séquence donnée, une cout de setup important doit étre
payée. Par conséquent, la décision cruciale concerne 1'exécution du setup dominant (non
nulle). De plus, cette variante de probleme s’avere étre NP-difficile et une formulation MIP
sur mesure est développée. Comparativement a la formulation orientée produit avec des
O(N3T) variables binaires, la formulation MIP sur mesure de CLSP-FS1-LT ne contient
que O(NT) variables binaires.

Pour résumer cette these, nous avons abordé des problemes complexes de planifica-
tion de la production et nous avons con¢u des modeles mathématiques avancés et des
algorithmes heuristiques efficaces. Ces outils nous permettent de calculer des solutions
réalisables de bonne qualité, mais plusieurs pistes de recherche restent ouvertes.

En ce qui concerne le probleme du CLSC, nous avons observé un saut d’intégrité im-
portant, de plus de 50% sur les instances difficiles IRG-B. Par conséquent, d’autres familles
d’algorithmes heuristiques peuvent étre développées a partir de formulations renforcées.
Plus en détail, une ligne de recherche prometteuse peut étre I’étude de la reformulation en
réseau du CLSC, ou une formulation hybride MIP pourrait aussi étre développée a partir
de la littérature récemment proposée.

En ce qui concerne le probleme CLSP-FS1, notre étude offre un premier regard sur ce
probleme et seules des expériences préliminaires ont été menées a ce jour. Par conséquent,
nous aimerions tester les formulations développées sur des instances de plus grande échelle,
en particulier sur les instances structurées ot notre modele s’applique, et elles devraient
étre comparées avec le modele dépendant de la séquence classique.

Enfin, ’étude présentée au chapitre 2 a fait ’'objet d’une publication en conférence [48].
Nous avons également lancé un autre projet concernant le probleme de Temporal Bin
Pacing (TBPP). Il s’agit d’'une extension du probleme de bin packing, ou les produits
consomment la capacité du bin pendant une période de temps seulement. Une formula-
tion polynomiale et une formulation extensive sont étudiées. De plus, divers algorithmes

heuristiques sont développés et comparés, dont I'heuristique de type gloutonne et une
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heuristique basée sur la génération de colonnes. L’étude du TBPP a aussi fait 'objet
d’une publication en conférence [49]. Comme TBPP ne concerne pas la planification de

la production, nous ne ’avons pas incluse dans ce manuscrit.
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Résumé

Dans cette thése, nous étudions deux problemes
de planification de production motivés par des
applications du monde réel. Tout d'abord, un
probléme de planification de production pour un
projet de fabrication de vétements est étudié et
un outil d'optimisation est développé pour le
résoudre. Deuxiémement, nous étudions un
probléme particulier de dimensionnement de lots
de production avec contraintes de capacités et
de paramétrages des machines dépendantes de
la séquence produite. Diverses formulations
mathématiques sont développées et une analyse
de complexité est effectuée pour donner une
premiéere analyse du probleme.

Mots Clés

Planification de Production,
Probléme de lot-sizing,
Programmation linéaire mixte
Heuristiques

Abstract

In this thesis, we study two production planning
problems motivated by challenging real-world
applications. First, a production planning
problem for an apparel manufacturing project is
studied and an optimization tool is developed to
tackle it. Second, a restricted version of the
capacitated lot sizing problem with sequence
dependent setups is explored. Various
mathematical formulations are developed and
complexity analysis is performed to offer a first
glance to the problem.
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Production Planning,
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Heuristics
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