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Une Approche Modulaire avec Délégation de contrôle pour les Réseaux
Programmables

Résumé: Les opérateurs de réseau sont confrontés à de grands défis en termes
de coût et de complexité pour intégrer les nouvelles technologies de communication
(e.g., 4G, 5G, fibre optique) et pour répondre aux demandes croissantes des nou-
veaux services réseau adaptés aux nouveaux cas d’utilisation. La "softwarization"
des opérations réseau à l’aide des paradigmes SDN (Software Defined Networking) et
NFV (Network Function Virtualization) est en mesure de simplifier le contrôle et la
gestion des réseaux et de fournir des services réseau de manière efficace. Les réseaux
programmables SDN permettent de dissocier le plan de contrôle du plan de données
et de centraliser le plan de contrôle pour simplifier la gestion du réseau et obtenir
une vision globale. Cependant, ceci amène des problèmes de passage à l’échelle diffi-
ciles à résoudre. Par ailleurs, en dissociant la partie matérielle de la partie logicielle
des routeurs, NFV permet d’implanter de manière flexible et à moindre coût toutes
sortes de fonctions réseau. La contrepartie est une dégradation des performances
due à l’implantation en logiciel des fonctions réseau qui sont déportées des routeurs.

Pour aborder les problèmes de passage à l’échelle et de performance des paradigmes
SDN/NFV, nous proposons dans la première partie de la thèse, une architecture mod-
ulaire de gestion et de contrôle du réseau, dans laquelle le contrôleur SDN délègue
une partie de ses responsabilités à des fonctions réseau spécifiques qui sont instan-
ciées à des emplacements stratégiques de l’infrastructure réseau. Nous avons choisi
un exemple d’application de streaming vidéo en direct (comme Facebook Live ou
Periscope) utilisant un service de multicast IP car il illustre bien les problèmes de
passage à l’échelle des réseaux programmables. Notre solution exploite les avantages
du paradigme NFV pour résoudre le problème de scalabilité du plan de contrôle
centralisé SDN en délégant le traitement du trafic de contrôle propre au service mul-
ticast à des fonctions réseau spécifiques (appelées MNF) implantées en logiciel et
exécutées dans un environnement NFV localisé à la périphérie du réseau. Notre ap-
proche fournit une gestion flexible des groupes multicast qui passe à l’échelle. De
plus, elle permet de bénéficier de la vision globale du contrôle centralisé apportée
par SDN pour déployer de nouvelles politiques d’ingénierie du trafic comme L2BM
(Lazy Load Balance Multicast) dans les réseaux de fournisseurs d’accès à Internet
(FAI) programmables. L’évaluation de cette approche est délicate à mettre en œuvre
car la communauté de recherche ne dispose pas facilement d’infrastructure SDN à
grande échelle réaliste. Pour évaluer notre solution, nous avons élaboré l’outil DiG
qui permet d’exploiter l’énorme quantité de ressources disponibles dans une grille de
calcul, pour émuler facilement de tels environnements. DiG prend en compte les con-
traintes physiques (mémoire, CPU, capacité des liens) pour fournir un environnement
d’évaluation réaliste et paramétrable avec des conditions contrôlées.

La solution que nous proposons délègue le contrôle et la gestion du réseau con-
cernant le service de multicast aux fonctions spécifiques MNF exécutées dans un
environnement NFV. Idéalement, pour davantage d’efficacité, toutes ces fonctions
spécifiques devraient être implantées directement au sein des routeurs avec du hard-
ware programmable mais cela nécessite que ces nouveaux routeurs puissent exécuter



de manière indépendante plusieurs fonctions réseau à la fois. Le langage de pro-
grammation P4 est une technologie prometteuse pour programmer le traitement des
paquets de données dans les routeurs programmables (hardware et logiciels). Cepen-
dant, avec P4 il n’est pas possible d’exécuter sur le même routeur des programmes
d’applications qui ont été développés et compilés de manière indépendante. Dans la
deuxième partie de la thèse, nous proposons une approche originale pour résoudre ce
problème. Cette solution, appelée P4Bricks, permet à des applications développées
de manière indépendante de pouvoir contrôler et gérer leur trafic de données par le
biais de routeurs hardware programmables.

Mots-clés: Réseaux Programmables, SDN, NFV, Multicast, Plan de don-
nées modulaire, P4, Composition du programme de réseau



Towards Network Softwarization: A Modular Approach for
Network Control Delegation

Abstract: Network operators are facing great challenges in terms of cost and com-
plexity in order to incorporate new communication technologies (e.g., 4G, 5G, fiber)
and to keep up with increasing demands of new network services to address emerging
use cases. Softwarizing the network operations using Software-Defined Networking
(SDN) and Network Function Virtualization (NFV) paradigms can simplify control
and management of networks and provide network services in a cost effective way.
SDN decouples control and data traffic processing in the network and centralizes
the control traffic processing to simplify the network management, but may face
scalability issues due to the same reasons. NFV decouples hardware and software
of network appliances for cost effective operations of network services, but faces
performance degradation issues due to data traffic processing in software.

In order to address scalability and performance issues in SDN/NFV, we propose in
the first part of the thesis, a modular network control and management architecture,
in which the SDN controller delegates part of its responsibilities to specific network
functions instantiated in network devices at strategic locations in the infrastructure.
We have chosen to focus on a modern application using an IP multicast service for live
video streaming applications (e.g., Facebook Live or Periscope) that illustrates well
the SDN scalability problems. Our solution exploits benefits of the NFV paradigm
to address the scalability issue of centralized SDN control plane by offloading pro-
cessing of multicast service specific control traffic to Multicast Network Functions
(MNFs) implemented in software and executed in NFV environment at the edge of
the network. Our approach provides smart, flexible and scalable group management
and leverages centralized control of SDN for Lazy Load Balance Multicast (L2BM)
traffic engineering policy in software defined ISP networks. Evaluation of this ap-
proach is tricky, as real world SDN testbeds are costly and not easily available for
the research community. So, we designed a tool that leverages the huge amount of
resources available in the grid, to easily emulate such scenarios. Our tool, called DiG,
takes into account the physical resources (memory, CPU, link capacity) constraints
to provide a realistic evaluation environment with controlled conditions.

Our NFV-based approach requires multiple application specific functions (e.g.,
MNFs) to control and manage the network devices and process the related data traf-
fic in an independent way. Ideally, these specific functions should be implemented
directly on hardware programmable routers. In this case, new routers must be able
to execute multiple independently developed programs. Packet-level programming
language P4, one of the promising SDN-enabling technologies, allows applications to
program their data traffic processing on P4 compatible network devices. In the sec-
ond part of the thesis, we propose a novel approach to deploy and execute multiple
independently developed and compiled applications programs on the same network
device. This solution, called P4Bricks, allows multiple applications to control and
manage their data traffic, independently. P4Bricks merges programmable blocks
(parsers/deparsers and packet processing pipelines) of P4 programs according to
processing semantics (parallel or sequential) provided at the time of deployment.



Keywords: Network Softwarization, SDN, NFV, Data plane program-
ming, Multicast, Modular Data plane, P4, Network Program Composi-
tion
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1 Overview

Contents
1.1 SDN and NFV enabling Network Softwarization . . . . 1
1.2 Issues with Network Softwarization . . . . . . . . . . . . 2
1.3 Thesis Proposal: Modular Network Control and Man-

agement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Part I: Modular Approach for Network Control Delegation 5
1.4.2 Part II: Modular SDN Data Plane Architecture . . . . . . . 7

1.1 SDN and NFV enabling Network Softwarization

Over the past decade, the Software Defined Networking (SDN) paradigm has shown
a great potential in simplifying control and management of networks compared to
traditional distributed networking. It has facilitated rapid transition of research in-
novations into production to address ever changing requirements of various types of
networks such as data centers, Internet Service Providers (ISPs), Telecommunication
Service Providers (TSPs), enterprise and wide-area networks. For instance, Google
has deployed software defined Wide-area network (WAN) (B4 [Jain et al. 2013]) con-
necting its data center to achieve its traffic engineering requirement at low cost and
reduced over-provisioning of network link capacities. However, while SDN provides
simplified network control and management due to its architectural principles, it
still faces several challenges. Separation of control and data traffic processing and
centralization of the control are the core principles of SDN (See Figure 1.1). B4 has
successfully leveraged one of the core principles of SDN, the centralized control over
the forwarding devices in the network, to engineer its traffic requirements. However,
the same centralized control poses scalability challenges for the network control ap-
plications and functions requiring fine-grained control over frequent network control
events (e.g., flow arrival, statistics collection) in Mahout [Curtis et al. 2011a] and
DevoFlow [Jain et al. 2013]. Numerous proposals studying pros and cons of SDN
principles on different network control applications like routing, traffic engineering,
statistics collector, in-network load-balancing and multicast have helped to evolve
SDN as a promising approach for easy network control and management [Yeganeh
et al. 2013,Bifulco et al. 2016].

In parallel to the SDN paradigm for simplified network control and management,
Network Function Virtualization (NFV) [Chiosi et al. 2012] has emerged as a flexi-
ble and cost-effective way of accelerating the deployment of new network services to
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Figure 1.1: Network Softwarization using SDN/NFV

mitigate demanding and rapidly changing service requirements from network end-
users and business use-cases. Deploying proprietary and specialized hardware with
dedicated software for the required packet processing to enable new network services
incurs a heavy cost, huge production delays and hinders innovations. The NFV
paradigm separates packet processing hardware from its software and advocates the
use of IT standard Consumer-Off-The-Shelf (COTS) hardware located at strategic
places in the network. This helps in accelerating the deployment of new network
services in a cost effective way and provides the needed agility to service providers
for innovations. Indeed, services can be developed, deployed, test and integrated
using software only without developing costly ASIC based hardware. Technological
evolution in virtualization has enabled packet processing in software using pool of
cheap COTS hardware resources. However, although performance metrics of packet
processing in software are encouraging, they are still not comparable with native
processing using proprietary hardware. NFV shifts in-network data traffic process-
ing functions into virtualized environment. Consequently, line rate data traffic is
required to make a round-trip to the COTS hardware resources that execute Virtual
Network Functions(VNFs), see Figure 1.1. Basically, NFV trades packet processing
performance of network services for their flexible and cost-effective deployment.

SDN provides softwarized control over the forwarding devices in the network by allow-
ing to modify their behavior from outside the devices. The NFV paradigm advocates
to rely only on network function specific software and use general purpose COTS com-
pute hardware to deploy the software, either in virtualized or native environments.
These together have enable software programs to transform network operations ac-
cording to demands of network services, enabling Network Softwarization .

1.2 Issues with Network Softwarization

SDN and NFV both aim to accelerate the deployment of innovative ideas and new
network services. Even though independently conceptualized, SDN/NFV together
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provide cost-effective approach for simplified network management and network ser-
vice deployment by softwarizing the network. Particularly, SDN is used for providing
connectivity and controlling the forwarding devices, whereas NFV is used for more
complex data traffic processing than merely forwarding, as shown in Figure 1.1.

However, the centralized SDN control plane suffers from scalability issues due to con-
trol applications processing frequent network events in the control plane. Section 2.2
describes various control and data plane enhancements proposed in the literature
to address these issues. New control plane architectures (distributed, hierarchical
and hybrid) are proposed to scale the processing of frequent network events while
maintaining logically centralized abstractions. However, these approaches increase
complexity of the control plane (e.g., consistency issue [Reitblatt et al. 2011,Kuzniar
et al. 2014], restricted global network view, high response time to network events in
data plane, controller placement issue [Heller et al. 2012], etc.) and do not provide
the required level of flexibility to scale according to requirements of control appli-
cation and function. Also, deploying a control application that processes frequent
network events using these architectures still poses scalability threats to all other
applications. Indeed, when an application processes frequent network events in the
control plane, it congests the control plane and thereby, can affect performance of
the other applications. Using a stateful data plane can allow forwarding devices
to maintain the required local state for local processing of frequent network events.
However, it is difficult to estimate the scale of required memory to store and manage
the elaborate state information in the forwarding devices. Hence, a stateful data
plane does not provide enough flexibility to scale according to the network service
and traffic demands.

In the NFV paradigm, the data traffic is steered to the COTS compute hardware
resources located in the network to be processed by VNFs. This degrades the overall
performance of the network due to round trip of line rate data traffic outside the
SDN data plane and its processing in software, without customized hardware.

In this thesis, we propose a modular network control and management architecture
to address (1) the scalability issue of the centralized SDN control plane and (2) the
performance degradation issue of the NFV paradigm.

1.3 Thesis Proposal: Modular Network Control and
Management

In order to address the scalability issue of the centralized SDN control plane, we
delegate the applications specific network control traffic processing to the functions
running in the virtualized environment. We allow VNFs to control and manage traf-
fic pertaining to the applications. So, VNFs executed on COTS computer hardware
can push their line rate data traffic processing in the forwarding devices of SDN data
plane. This approach requires multiple independently developed network control
applications and functions to allow control and management of data traffic and for-
warding devices in the network. Our proposal keeps maximum processing of data
traffic in the SDN data plane for VNFs, thereby saving the round trip to COTS
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Figure 1.2: Modular Network Control and Management using SDN/NFV

Figure 1.2 depicts the architecture of modular network control and management.
A modular control plane allows the deployment of multiple independently written
control applications or functions (e.g., F2 and F3 shown in Figure 1.2) to process
shared data traffic in the network without a centralized hypervisor (e.g., CoVisor [Jin
et al. 2015]) composing the applications and functions. In addition, it facilitates con-
trol delegation, where control functions pertaining to specific applications and traffic
can be executed in NFV environment. For example, control function F1 processes
control traffic using COTS compute hardware in the virtualized environment pro-
vided by NFV. Modular network control plane allows each application and function
to define its own control data plane interface. Each application can receive only
specified network events to process without interfering processing of other control
applications. The computational power for control traffic processing can be flexibly
scaled on demand by leveraging the NFV paradigm.

Current SDN data plane architectures provide exclusive control of forwarding devices
to the monolithic centralized control plane. However, some SDN-enabling technolo-
gies, under special configuration, can allow control and management of the same
forwarding device from multiple controlling agents.1 In such a case, all the agents
can modify data traffic processing behavior of the device configured by any agent.
This may result in nondeterministic and inconsistent data traffic processing by the
forwarding device. Hence, to deploy modular network control and management, it is
imperative that each control application or function be able to add and remove its
data traffic processing functionality in the shared forwarding devices with a process-
ing semantic. Network operators should be able to define the resultant processing
behavior of the device by composing combining packet processing functionalities of all
the applications and functions using different composition semantics. SDN-enabled

1Multiple OpenFlow-enabled SDN controller can control and manage the same OpenFlow-
enabled forwarding device using EQUAL mode.
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network devices must be able to be programmed, controlled and managed by mul-
tiple control applications and functions. Hence, modularity in the SDN data plane
becomes essential to perform modular network control delegation. We propose a
modular SDN data plane, where each application can independently specify its data
traffic processing behavior in the SDN data plane. For example, F1, F2 and F3 can
specify their individual data traffic processing behavior to the required forwarding
devices in the network. Those forwarding devices are controlled and managed in
a simultaneous way by multiple control applications and functions. They allow to
compose packet processing functionalities of all the applications and functions using
composition semantics like sequential (F1 followed by F2 ) or Parallel (simultaneous
packet processing using F1 and F2 ).

We consider that modularized network control and management is paramount to
realize softwarization of networks. It may be perceived that modularized network
control and management is indeed a distribution control plane approach, but we
argue that a distributed control plane splits the network control from a centralized
abstraction. On the other hand, our modularized network control and management
approach splits the network control from forwarding devices in the SDN data plane
and still maintains a centralized abstraction for control applications and functions.

Next, we outline the thesis structure along with our contributions.

1.4 Thesis Outline

In Chapter 2, we introduce network softwarization. First we describe basic tenets
of the SDN paradigm and its evolution in the past decade in Section 2.1 includ-
ing technologies enabling SDN paradigm in Section 2.1.1. Then in Section 2.2, we
discuss about various control architectures to implement network services (e.g., IP
Multicast) for SDN enabled networks. Next, we briefly introduce notions of NFV in
Section 2.3 along with its enabler technologies. We discuss amalgamation of SDN,
NFV and Network Programming in Section 2.4. The rest of the thesis comprises of
two parts: (I) Modular Approach for Network Control Delegation and (II) Modular
SDN Data Plane Architecture.

1.4.1 Part I: Modular Approach for Network Control Delegation

In the first part of the thesis, our primary proposal is to offload application specific
control traffic to a function running in a virtualized environment. In Chapter 3, we
employ this application specific control delegation to provide flexible scaling capa-
bility to IP multicast services.

We have selected live high quality video streaming as one of the network services
requiring agile deployment and flexible scaling capability to satisfy its traffic de-
mands. Indeed, the massive increase of live video traffic on the Internet and the
advent of High Definition (HD), Ultra High Definition (UHD) videos have placed a
great strain on ISP networks. IP Multicast is a well-known technology, which can
be used to implement flexible, bandwidth-efficient and scalable multicast delivery
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services. However, multicast has failed to achieve Internet-wide support so far [Diot
et al. 2000]. Even for the limited deployment in managed networks for services such
as IPTV, it requires complex integration of specialized multicast enabled routers and
protocols, traffic engineering and QoS mechanisms in the networks. This increases
the complexity of network management along with its associated cost due to the
need of specialized routers in the infrastructure.

In Chapter 3, we use network softwarization while modularizing network control to
deploy IP multicast services in ISP networks for live video streaming applications
(e.g., Facebook Live and Periscope). Multicast routers need to maintain multicast
group membership specific state in their memory, execute group membership man-
agement protocols (e.g., Internet Group Management Protocol (IGMP) and Pro-
tocol Independent Multicast (PIM)) and appropriately replicate IP packets in the
network to deliver them from a single source to multiple recipients. We use the NFV
approach and separate hardware and software of the specialized routers by (1) del-
egating the multicast group membership management functionality to the functions
implemented in software, called Multicast Network Functions (MNFs), and (2) using
SDN enabled network devices to achieve high performance packet forwarding for live
video stream network services, Essentially, we delegate application specific network
control and state management to dedicated function running in NFV environment.
Use of specialized network functions to process group membership management mes-
sages addresses the scalability issue emerging from centralized control plane of the
SDN architecture. This eliminates requirement of specialized multicast routers and
provides scaling flexibility in deploying the service in a cost effective way by using
SDN enabled network devices only. Use of NFV provides dynamic, flexible and cost
effective way to scale IP multicast capability of the network based on traffic demands.

Also, we propose a traffic engineering mechanism, Lazy Load Balancing Multicast
(L2BM) [Soni et al. 2017], to provide bandwidth guarantee to packet streams of
live videos, which leverages simplified network control and management facilitated
by the SDN paradigm. Providing bandwidth guarantee to network services requires
continuous statistics collection of network’s links utilization and network resource
sharing between the network services and best-effort traffic in the network. Statistics
collection is costly and may generate frequent network events depending on variations
in traffic. Our L2BM proposal addresses this issue thanks to a global network view
provided by the SDN paradigm. We evaluate L2BM by simulating complex real world
traffic scenarios in ISP core networks for live video streaming network services and
also by emulating an ISP core network with resource guarantee using an automation
tool we designed, called Data centers in the Grid (DiG) [Soni et al. 2015].

In Chapter 4, we present the DiG tool, which emulates SDN-enabled networks with
resource guarantee. Most SDN enabled network experiments are performed with
traffic traces using emulators (e.g., Mininet [Lantz et al. 2010], Maxinet [Wette
et al. 2014]) or simulators (e.g. ns-3 [Consortium 2008]) due to restricted access
to real SDN enabled networks. Therefore, experiment results may be biased or
noisy due to modeling techniques of simulators or unaccounted and excessive usage
of physical resources in case of emulation(Figure 4 in [Tazaki et al. 2013]). DiG
employs virtualization technologies used for NFV to emulate SDN enabled network
topologies with guaranteed resource allocation on parallel and distributed computing
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infrastructure like Grid’5000 [Balouek et al. 2013]. It emulates network links of given
capacity, hosts with demanded CPU, memory and disk I/O bandwidth guarantee,
while respecting constraints on the available physical resources present in the grid.
We use DiG to emulate an ISP core network and evaluate L2BM with IP multicast
traffic.

Our contributions related to the first part are following.

1. H. Soni, W. Dabbous, T. Turletti and H. Asaeda, “NFV-Based Scalable
Guaran-teed-Bandwidth Multicast Service for Software Defined ISP Networks,”
in IEEE Transactions on Network and Service Management, vol. 14, no. 4,
pp. 1157-1170, Dec. 2017. doi: 10.1109/TNSM.2017.2759167

2. H. Soni, W. Dabbous, T. Turletti and H. Asaeda, “Scalable guaranteed-bandwi-
dth multicast service in software defined ISP networks,” 2017 IEEE Inter-
national Conference on Communications (ICC), Paris, 2017, pp. 1-7. doi:
10.1109/ICC-.2017.7996652

3. H. Soni, D. Saucez and T. Turletti, “DiG: Data-centers in the Grid,” 2015
IEEE Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN), San Francisco, CA, 2015, pp. 4-6. doi: 10.1109/NFV-
SDN.2015.7387391

1.4.2 Part II: Modular SDN Data Plane Architecture

In our NFV-based proposal (Part I, Chapter 3), MNFs process multicast group
membership management related control traffic in the ISP network and manage
forwarding devices only for some specific traffic to deploy live video streaming net-
work services. Meanwhile, the rest of the control traffic in the network is processed
by a centralized SDN controller, which also manages all the forwarding devices in
the network. This delegation of application specific network control requires multi-
ple control applications to manage forwarding devices in the SDN enabled network.
Hence, modularized control and management of networks is required to offload appli-
cation specific control traffic by delegating network control to its NF. Also, it allows
data packet processing VNFs to maximize the number of packets processed within
the SDN data plane for performance benefits. The functionality based on modular-
ized network control requires multiple control applications and network functions to
manage forwarding devices in the SDN enabled network.

To achieve modularized deployment, control and management of control applications
and functions in the network, it is mandatory to allow every control application
and function independently program datapath of the devices and directly manage
network devices according to its packet processing requirements. Also, every control
application and function should have dedicated communication channel and control
interface to control and manage its programmed datapath.

In the second part of the thesis, we describe a modular SDN data plane. Using
the packet processing P4 [Bosshart et al. 2014] language, control applications and

https://hal.inria.fr/hal-01596488
https://hal.inria.fr/hal-01596488
https://hal.inria.fr/hal-01596488
https://hal.inria.fr/hal-01596488
https://hal.inria.fr/hal-01400688
https://hal.inria.fr/hal-01400688
https://hal.inria.fr/hal-01400688
https://hal.inria.fr/hal-01400688
https://hal.inria.fr/hal-01251228
https://hal.inria.fr/hal-01251228
https://hal.inria.fr/hal-01251228
https://hal.inria.fr/hal-01251228
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functions can program the datapath and define the communication channel for for-
warding devices in the data plane. P4 provides higher flexibility to program func-
tionalities for programmable network devices. It allows to program extraction of
protocol headers (using programmable parsers/deparsers), processing of headers and
their reassembly to form a packet. It enables a network control application or func-
tion to control and manage the devices directly using the communication interface
defined in the program. Particularly, P4 brings higher programmability and flexi-
bility in the SDN paradigm along with simplified network control and management.
However, it usually requires to describe all packet processing functionalities for a
given programmable network device within a single program. This approach mo-
nopolizes the device by a single large program, which prevents possible addition of
new functionalities by other independently written network control applications and
services. However, if multiple independently written P4 programs are executed on
the same forwarding devices, a modular deployment along with control and man-
agement of packet processing behavior can be done. In Chapter 5, we present the
design of P4Bricks to enable modularized deployment, control and management of in-
dependently written control applications and functions. It allows to execute multiple
independently developed P4 programs of network control applications and services
on the same network device according to their packet processing requirements.

Finally, in Chapter 6, we conclude our proposal and discuss future research directions
and avenues opened by modular delegation of network control.

Our contributions related to the second part is following.

1. Hardik Soni, Thierry Turletti, Walid Dabbous. P4Bricks: Enabling multi-
processing using Linker-based network data plane architecture. HAL Report,
2018. (hal-01632431v2)

https://hal.inria.fr/hal-01632431
https://hal.inria.fr/hal-01632431
https://hal.inria.fr/hal-01632431


9

2 Introduction to Network
Softwarization
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2.1 Software Defined Networking

In the traditional distributed networking paradigm, independent and self-governing
devices are connected together to share, forward and transport data among each
other. These network devices are custom built to perform one or more functions
in the network such as routing, firewall and Network Address Translation (NAT),
as shown in Figure 2.1. The network devices are managed and configured using
protocols like Simple Network Management Protocol (SNMP) [Schönwälder 2008]
and NETCONF [Enns et al. 2011]. However, they autonomously control the func-
tion specific packet processing behavior according to control information exchanged
using the distributed protocols and algorithms. Indeed, network devices process
data packets based on autonomously and intelligently gathered control and manage-
ment information from multiple sources with different mechanisms. The software and
hardware devices residing in the paths of the control information exchange constitute
the control plane of the network and those residing in the paths of the data pack-
ets form the data plane. In the distributed networking paradigm, the independent
and self-governing devices pose various control and management challenges. They
are costly and customized for intelligent protocols, packet processing and algorithms
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with propriety hardware as well software. This makes maintenance, debugging and
management of different types of independent devices complex for network operators.
Once the devices are deployed, their packet processing behavior can not be changed
to implement new solutions. Moreover, deploying innovative solutions for new re-
quirements face long production delays and huge development cost of hardware and
software of network devices, making them closed.

The SDN paradigm addresses the control and management challenges of network
devices by separating the intelligent control plane from the data plane of software
and hardware network devices (see Figure 2.2). It keeps only fundamental packet
processing abstractions in network’s data plane devices, which is used to program the
required packet processing in the network by the control plane devices. Data plane
devices are built based on fundamental abstractions of packet processing defined
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by the SDN enabling technology for the data plane devices, like OpenFlow [McK-
eown et al. 2008], ForCES (Forwarding and Control Element Separation) [Halpern
et al. 2010], POF (Protocol-oblivious Forwarding) [Song 2013] and P4 [Bosshart
et al. 2014]. In the SDN terminology, data plane devices are often referred as for-
warding devices. The packet processing behavior of data plane devices are controlled
by a logically centralized control plane of the network. The centralized control plane
controls all the devices in the network’s data plane, essentially providing a global net-
work view to simplify control and management of the network and its data traffic.
The entity implementing the logically centralized control plane is generally termed
as the SDN controller. A SDN controller provides control APIs to network functions
such as NAT or firewall to control their packet processing behavior in the network.
The SDN control plane uses configuration and management protocols and technolo-
gies (e.g., OpenFlow, ForCES, POF), which provides standardized open interfaces to
manage devices in the data plane and control their packet processing behavior. Sep-
aration of control and data plane along with open interfaces to communicate between
them makes the data plane network devices open to modify their packet processing
behavior, programmatically even after their deployment. P4 is a programming lan-
guage for protocol-independent packet processing, which can program reconfigurable
forwarding devices (e.g., RMT [Bosshart et al. 2013b], Intel FlexPipe). It allows each
program to define its own communication interface between control and data plane
to manage and control the programmed packet processing behavior of the device. P4
extends the SDN principles by opening network devices in order not only to control
their packet processing behavior, but also to program them. Specifically, it allows to
write packet parsing in order to extract the required fields, process the parsed fields
and reassemble the packet using the processed fields.

2.1.1 SDN Enabling Technologies

Even though principles of the SDN paradigm have gained more traction with the
advent of OpenFlow [McKeown et al. 2008], ForCES has used the separation of
control and data plane since 2003 to simplify the internal architecture of network
devices. However, ForCES does not centralize the control plane of all the devices
in the network. ForCES merely separates the control plane from the data plane to
enable modular development of network devices, which allows forwarding hardware
residing in the data plane to be combined with any control logic software with ease
and flexibility. The ForCES approach keeps the control plane of the device in close
vicinity of its forwarding element or in the same physical hardware. Meanwhile, SDN
with OpenFlow not only separates the control plane of the devices but centralizes it at
the network controller. It renders network devices with only their data plane element
implementing OpenFlow’s packet processing abstractions. OpenFlow based network
controllers implement a centralized control plane and can be located anywhere in
the network. POF enhances the OpenFlow’s packet processing abstractions, which
provides better flexibility in controlling and managing data plane elements. We
briefly introduce OpenFlow and POF, as they have become widely known SDN
enabling technology in recent years, attracting major attention from industry as well
as academia.
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2.1.1.1 OpenFlow

With the distributed networking paradigm, every proprietary network device built
for specific network function implements some form of flow-tables and uses similar
primitive functions to process packets at line rate. A flow is a set of packets with
matching values for the given set of fields in each packet headers and a flow-table
consists of field values for different flows and corresponding functions to process the
packet. OpenFlow, in its simplest form, provides flow-table based packet processing
abstraction for OpenFlow-enabled forwarding devices. It implements the identified
common set of packet processing functions in the devices. Also, OpenFlow provides
an open and standardized protocol to manage the flow-tables from control plane
devices, specifically the SDN controllers. SDN controllers communicate with the
forwarding devices with a secure channel using this open protocol.

OpenFlow-enabled forwarding devices consist of three components: Flow-Tables, the
OpenFlow agent and a secure channel (see Figure 2.3). Flow-tables and a common
set of packet processing functions reside in the datapath of the devices, which pro-
cesses packets at line rate and is generally implemented in hardware. The OpenFlow
protocol agent and the secure channel are located in the control path of the devices,
implemented in software. A flow is defined using a set of fields along with values for
each field to match against the ones presents in packets. An entry in flow-table com-

Flow Tables
Datapath

Controlpath

OpenFlow-enabled 
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Secure Channel

Hardware

OpenFlow Agent

Ports

Controller

OpenFlow
Protocol

Software

Figure 2.3: Architecture of OpenFlow-enabled forwarding device

prises of three fields: (1) Flow matching rule to match packets, (2) Action functions
associated to the flow match rule and (3) Statistics to record packet and byte counts
associated with the flow along with time elapsed since last match. A flow match-
ing rule can have packet header fields, hardware specific fields (e.g., ingress port)
and metadata fields as match fields. Action functions in the entry are a subset of
the common set of packet processing functions used to process the matched packet.
However, OpenFlow-enabled forwarding devices are not limited to these common set
of functions and can process packets using extended action functions. On a packet
arrival, datapath of the device parses the packet to extract values for header fields
of various protocols such as Ethernet, IPv4, IPv6, TCP, UDP, VLAN or VXLAN. It
performs look-up in a flow-table using the matching rule to find an entry correspond-
ing to the extracted values of packet header fields along with metadata and hardware
specific field values. If there is a table-hit as a result of the look-up, this means that
a matching flow-entry is found and so, the datapath executes the action functions
associated with the entry. Otherwise, it executes actions defined by the table-miss
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flow entry for the table. Every table must have actions defined to handle a table-
miss; the actions could be for instance sending the packet to controller, dropping the
packet or continue the look-up with other flow tables. Packet processing abstractions
of OpenFlow datapath have evolved considerably since their inception in order to in-
corporate the needs of requirement of various network functions. OpenFlow version
1.1 and higher provide an abstraction for flow-table pipeline processing of packets,
in which multiple flow-tables can be programmed along with their execution order
to process a packet.

OpenFlow-enabled forwarding devices and the controller communicate using the
OpenFlow protocol on a secure transport channel (e.g., Secure Sockets Layer (SSL)
or Transport Layer Security (TLS)). Hence, transport layer connectivity between the
controller and forwarding devices are prerequisite to exchange OpenFlow messages.
The SDN controller is responsible for providing connectivity among forwarding de-
vices in the data plane. If the controller resides within the network of data plane
elements, it is referred as in-band controller. In such a scenario, separate distributed
protocol or static configuration is required to establish initial connectivity between
the controller and the forwarding devices. If the controller resides in a separate
network, referred as out-of-band controller, each forwarding device uses a static con-
figuration to establish transport connectivity to the controller.

The OpenFlow protocol messages are classified in three major types, Controller-to-
switch, Asynchronous and Symmetric. Controller-to-switch messages aim to manage
flow-tables, entries within the flow-tables and interfaces, to retrieve statistics and
to inspect other state information of the device. Asynchronous messages originated
from the device are used to notify the controller for events like new packet or table-
miss in datapath, flow-entry expiry and interface up-down. Symmetric messages
are triggered by either the device or the controller and sent without specific request
from the other side. They provide basic utilities for peer connection (e.g., message
exchange on connection setup, check liveness, notify failure and notify experimental
capability to peer). Also, the OpenFlow protocol allows to extend messages to
manage and configure extended packet processing abstraction (e.g., action functions)
supported by the device.

Using OpenFlow, a controller can connect to OpenFlow-enabled forwarding devices
in three roles: Master, Slave and Equal. There can be only one master controller
for each forwarding device in the network, which is allowed to control, manage and
program the datapath of the device. However, a device can have multiple slave con-
trollers, which receive all the network events and have read-only access to datapath
of the device. Controllers with equal role can simultaneously control, manage and
program the datapath of the same forwarding device. A forwarding device with a
master controller can not have another controller with equal role.

Flow-tables in the datapath of OpenFlow follow match+action based packet pro-
cessing. Datapath of OpenFlow-enabled forwarding devices are required to support
parsing of header fields of every possible protocol with their header types to facilitate
creation of any flow match rule. Indeed, this hinders programming of datapath from
the controller and restricts packet processing to only supported header types by the
device. OpenFlow does not allow to maintain application specific per packet state
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information in the forwarding devices. P4 [Bosshart et al. 2014] and POF extend
OpenFlow to mitigate these limitations and provide more flexible packet processing
abstraction for enhanced programming, configuration of datapath.

2.1.1.2 Protocol-oblivious Forwarding (POF)

POF extends OpenFlow packet processing abstractions by introducing three new ca-
pabilities in the datapath of the forwarding devices. First, POF removes dependency
on protocol-specific configuration of flow match rules of flow-tables in the datapath
of forwarding devices. It uses the {offset, length} pair to locate data in the bitstream
of the packet. Second, POF makes agnostics all packet processing action functions in
the datapath protocol header fields, by defining a generic flow instruction set. Third,
it allows to store and manage flow metadata, which has lifespan of the entire flow in
the forwarding devices. It can store state information for a flow and use it to process
the packet of the flow throughout its lifetime.

2.1.1.3 Programming Protocol-independent Packet Processors (P4) in
brief

P4 is a high-level language, based on programmable blocks, which is used for pro-
gramming protocol-independent packet processors. The programmable parser, de-
parser and logical match-action pipeline are the main programmable data plane
blocks. Parser blocks are programmed by defining packet header types and fields,
declaring instances of the types and defining Finite State Machine (FSM) to extract
the header instances from the packets’ bit streams. Match-action units are defined
as tables (MATs) using match keys and actions. Match keys can be header fields
or program’s state variables and actions may modify and create header instances,
their fields and hardware target specific fields. To create the control flow required
for packet processing, programmers can use if and switch constructs to select next
tables to process based on processing logic. Finally, packets are reassembled using
the processed header instances by programming the deparser control block. Apart
from programmable blocks, P4 provides APIs and a control interface to manage flow
entries in MATs at runtime. P4 is described in more detail in Section 5.2.1

2.1.1.4 SDN enabling tools and software

The first specification for OpenFlow v1.0 was drafted in year 2008. Since then SDN
has significantly changed thanks to open source as well industrial efforts and more
importantly huge development efforts to build tools to support the SDN ecosystem.
SDN controller and SDN-enabled forwarding devices (switches) supporting Open-
Flow protocol have been major focus of development for industry and academic
research communities. Here, we provide only a highlight of development efforts to
build tools and software enabling SDN. NOX [Nicira Networks 2008], C++ based,
and its python counterpart POX were early SDN controller developed to program
OpenFlow 1.0 enabled switches. Beacon [Erickson 2013] written in Java and Ruby
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based Trema [Takamiya et al. 2017] are result of some more development effort for
SDN controller platforms. However, Ryu [Ryu SDN Framework Community 2014],
Floodlight [Big Switch Networks 2013], ONOS [The ONOS Community 2014] and
OpenDayLight [The OpenDaylight Foundation 2013] are widely adopted and have
been able to continuously evolve with advances in SDN technologies. In Chapter 3,
we use Floodlight for implementing our proposed L2BM traffic engineering policy.

Apart from controllers, OpenFlow-enabled forwarding devices are necessary to re-
alize the SDN paradigm. Among many open source projects, Open vSwitch [Pfaff
et al. 2015] has been widely used and adopted by the community. It is based on
the Linux bridge legacy source code and has evolved with OpenFLow specification
versions by including new features. Moreover, it supports many other protocols and
features to support traditional distributed networking.

2.2 SDN Control and Data Plane Architectures

Network control applications and functions managing specific networks (e.g., data
centers with new intensive traffic flow [Benson et al. 2010]) or requiring fine-grained
control over frequent network events incur heavy load on the controller [Curtis
et al. 2011b]. The reason is that the centralized SDN architecture concentrates the
control traffic generated by such network events at the controller, which is imple-
mented in software and has limited compute power. The control and management of
concentrated control traffic depends on functional characteristics of applications im-
plemented using the centralized controller. Applications like elephant flow detection
(requiring statistics collection), stateful firewall, DNS-tunnel detection etc., gener-
ate frequent network events, which can be handled and processed without requiring
global network information. However, network functions like routing requires a global
network view as routing decisions are made considering network topology and links
information. Next we discuss various control and data plane architectures proposed
in the literature to scale network control applications and functions considering their
control requirement over network events.

2.2.1 Hierarchical Control Plane

Kandoo [Yeganeh & Ganjali 2012] and Hierarchical SDN (HSDN) [Fang et al. 2015]
structure control and data plane elements in hierarchy to address scalability issues
emerging from fine-grained control over network.

The Kandoo framework employs two layers of controllers and distinguish between
global and local network control applications. Local controllers at the bottom layer
does not possess the global network view and processes frequent events that do not
require network-wide state information but can be handled using forwarding de-
vice specific local states. Local controllers reside near to forwarding devices in data
plane and they execute local control applications. The root controller at the top
layer is logically centralized; it maintains the global network view and controls the
local controllers. It solicits local controllers to relay network events pertaining to
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global control applications, which require network-wide state information to pro-
cess. Kandoo uses framework specific messages to communicate between global and
local controllers. Kandoo’s logically centralized root controller offloads processing
of frequent network events to local controllers for local control applications requir-
ing fine-grained control over network (e.g., elephant flow detection). The bottom
layer controller maintains the state information required to process frequent network
events for local control applications and controls one or more forwarding devices using
the OpenFlow protocol. Essentially, Kandoo uses the local controllers to maintain
the state information required to process frequent network events near to forwarding
devices in the data plane.

HSDN specifically focuses on routing in data center networks to achieve hyper scal-
ability and elasticity. It follows a proactive approach to handle high rate of new flow
arrivals instead of reactively processing them. It pre-programs flow-tables in forward-
ing devices to establish all the paths in the network and uses labels to identify all
the entire paths instead of only the destinations. HSDN uses a divide-and-conquer
approach to partition the data plane network and arrange the network’s forwarding
devices in multi-layered hierarchy. The control plane of HSDN can make use of a
MPLS based label stack or any labeling mechanism to implement ECMP and Traffic
Engineering (TE). HSDN logically structures forwarding devices in the data plane to
achieve hyper scalability for routing, ECMP and TE applications. Unlike Kandoo,
HSDN does not use a multi-layer of control nodes. It structures them in a hierarchy
and maintain application specific state information at the bottom layer controllers
near the data plane forwarding devices. Next, we discuss an alternative approach
allowing forwarding devices to maintain application specific state information, so
that they can be programmed using the controller to process frequent events in their
datapaths.

2.2.2 Stateful Data Plane and Packet Processing Abstractions

DevoFlow [Jain et al. 2013], SmartSouth [Schiff et al. 2014], OpenState [Bianchi
et al. 2014] and Stateful Data Plane Architecture (SDPA) [Sun et al. 2017] enhance
the OpenFlow’s stateless match+action processing abstraction and allow to store
application specific per packet state in forwarding devices. Forwarding devices can
independently process network events incorporating stored local state information in
the match+action processing abstraction.

DevoFlow introduces rule cloning and local actions to devolve control to forwarding
devices. It allows forwarding devices to clone and derive new flow match rules from
existing flow entries and state information stored in a boolean flag. Also, forward-
ing devices can take actions without invoking controller to handle port failure and
provide multipath support for load balancing. DevoFlow enables forwarding devices
with Triggers, Reports and Approximate Counters processes frequent events related
to statistics collection locally. Essentially, DevoFlow adds some control intelligence
in the forwarding devices using state information and local actions to delegate pro-
cessing of network events, which do not require network-wide state.



2.2. SDN Control and Data Plane Architectures 17

SmartSouth [Schiff et al. 2014] implements a template function in the forwarding
devices to offload event processing from the controller to forwarding devices. A tem-
plate function can be used for different applications like Snapshot, Anycast, Black-
hole and Critical node detection and it minimizes the involvement of the centralized
controller.

OpenState provides eXtended Finite State Machines (XFSM) based packet process-
ing abstractions along with stateless stages of flow-table for packet processing. Open-
State allows packet processing using stateful match+action stages implemented using
a State table and an XFSM table per stage. It uses a state table to match packet
headers and find the corresponding state value. The XFSM table matches with
packet header and state values to find the corresponding action and accordingly pro-
cess the packet. OpenState allows programming of flow-tables of OpenFlow and per
packet state for stateful packet processing in the forwarding devices. SDPA pro-
vides infinite state machine based stateful packet processing abstraction in addition
of OpenState’s XFSM. It uses two tables (State Transition and Action tables) to
realize the functionality of the OpenState’s XFSM table.

Usually, SDN controller handles message exchanges required to support specific pro-
tocols like ARP (Address Resolution Protocol) and ICMP (Internet Control Mes-
sage Protocol). Such protocols require to maintain complex state for interaction and
based on the state generate various types of packets. Handling complex protocols
message exchange at SDN control provides great flexibility but impacts performance
and scalability of SDN controller for large scale networks. InSPired Switches [Bifulco
et al. 2016] allow in-switch generation of packets. It provides APIs to program packet
generation within the switch by specifying trigger conditions, packet header formats,
fields to set and forwarding action to takes on the generated packet. SDN controller
can delegate message exchanges of protocols to forwarding devices.

SNAP [Arashloo et al. 2016] is a programming language that provides a stateful
network-wide packet processing abstraction along with a centralized network pro-
gramming model by considering the network as a one big switch having global and
persistent arrays to read/write state information. The SNAP compiler generates
forwarding match+action rules for each forwarding device and determines the place-
ment of program state (arrays) across them. The forwarding rules make sure that
packets travel through forwarding devices with the required states for processing.

DevoFlow and SmartSouth introduce specific packet processing mechanisms to pro-
cess frequent network events using stored state information, whereas OpenState and
SDPA provide a more general state-machine based packet processing abstraction for
the same. SNAP enables programming of stateful data plane with a centralized con-
trol abstraction to simplify programming and management of distributed of stateful
devices in the network data plane.

2.2.3 Distributed Control Plane

The centralized SDN control plane is vulnerable to single point of failure. Hence,
this poses scalability as well as reliability issues for the controller in the network.
Onix [Koponen et al. 2010], HyperFlow [Tootoonchian & Ganjali 2010], ONOS [Berde
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et al. 2014], ElastiCon [Dixit et al. 2014] and Beehive [Yeganeh & Ganjali 2014]
propose physically distributed implementations of the logically centralized control
plane to address scalability and reliability issues. These early proposals of distributed
SDN control planes consider stateless forwarding devices in the network data plane.
As the distributed control plane is realized by running multiple instances of controller,
it requires to distribute and provide a consistent global network view across all the
instances. Onix stores the global network view as a Network Information Base (NIB)
in form of a graph, where each node represents a network entity within the topology.
Onix replicates and distributes the NIB data across multiple running instances of the
SDN controller. It hides the complexity of maintaining the consistent global network
view from control applications and provides general APIs to manage the network.
Onix allows applications to use scalability mechanisms like partitioning, aggregating
and structuring instances in a hierarchy or a federation. It provides applications the
control to manage the trade-off between consistency and the durability of network
state as required.

HyperFlow is a distributed event-based SDN control plane. Instead of maintain-
ing the global network view in a data structure like NIB of Onix, HyperFlow con-
troller instances use the publish/subscribe messaging mechanism to synchronize their
network-wide views. Each controller instance publishes network events that update
the global network view and other instances replay all the published events to recon-
struct the global network view. Each controller processes the local network events
without generating traffic in publish/subscribe channels, hence reducing the message
exchange and increasing the scalability. Onix and HyperFlow require a number of
running instances of controllers to be configured statically. ElastiCon allows dynamic
increase and decrease of controller instances and balance the control traffic generated
due to network events across them according to load conditions.

Beehive provides an asynchronous event based framework to program centralized
control applications. It considers control applications as asynchronous message han-
dlers capable of storing their state in dictionaries. Beehive automatically deducts
the state to message mapping and guarantees that each key in dictionaries is ac-
cessed and managed by only one instance of the control applications. It converts a
centralized application into distributed one by replicating it state, instrumenting it
at runtime and dynamically changing the placement of its instances.

2.2.4 Hybrid Control Plane

Hierarchical control plane architectures can process frequent network events near
data path and provide fine-grained control over network. However, hierarchical con-
trol plane architectures may not provide the shortest path between nodes, which
poses the path stretch problem. As the number of levels in the hierarchy increases to
scale large networks, path stretch between nodes increases. Distributed control plane
architectures face a super-linear computation complexity problem for applications
like routing in presence of large networks. In flat plane mode, they can communicate
using distributed protocols to reduce the path stretch. Orion [Fu et al. 2015] provides
an hybrid control plane architecture to address these problems. It allows controller
instances to be structured in a hierarchy and in a flat plane.
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2.3 Network Function Virtualization

The primary goal of networks is to provide data and communication services to
share information in various forms across heterogeneous endpoint devices (e.g., mo-
bile, television, data centers, desktop, etc.). Networks consist of a geographically
scattered myriad of specialized network appliances, called middleboxes, to enable
network services across endpoints. As the novel and demanding use cases for new
network services emerge due to user growth and technological advancements (e.g.,
4G, 5G, fiber, 4K video streaming), new and innovative revenue generating services
have to be deployed in the network within critical time frame. Hence, network op-
erators need to procure off-the-shelf middleboxes or design, develop and test new
ones with customized hardware and software. Also, those new appliances have to
be integrated into the existing network without interfering with already deployed
services. This inhibits rapid and on-time deployment of new services, incurs heavy
CAPEX to enable them and OPEX due to increase in diversity of middleboxes and
network complexity.

To address all these problems, a large number of network operators came together
in 2012 and led an effort by drafting an introductory white paper on Network Func-
tion Virtualization (NFV) [Chiosi et al. 2012]. This study focuses on transforming
the network architecture and its operations for easy development and deployment of
services at low cost. The fundamental principle of NFV is to separate the software
from the customized proprietary hardware of network appliances. One of the easi-
est approach proposed by industry is to employ the virtualization technology widely
used in compute and IT domain to host services in Clouds and Data Centers. NFV
advocates to use industry standard servers, switching and storage devices capable of
running packet processing softwares for network services or specific functions. Net-
work operators can instantiate software on these devices to add new network services
without deploying other service specific middleboxes. These software components are
usually termed as Virtual Network Functions (VNFs). Standard hardware devices
can be located in network operator’s data centers, aggregation sites and customer
premises and can be moved and integrated in various locations in the network as
required. The hardware and software components required to deploy and manage
VNFs are termed as the NFV Infrastructure (NFVI). NFVI provides the virtualized
environment to execute network applications and service specific functions in soft-
ware. Indeed, the SDN paradigm with open forwarding devices in the data plane
can be the primary choice to deploy NFV’s commodity hardware infrastructure.

2.3.1 NFV Use Cases and Enabling Factors

The NFV paradigm opens up many opportunities to transform network architecture
and services. NFV can be employed to process data plane traffic and execute control
plane functions of services in Telecommunication Service Providers (TSPs) and ISP
networks. Hence, use cases for NFV are not limited to only existing network services,
instead NFV can deploy new network services, which were not previously feasible
due to prohibitively high cost, complex integration of technologies and incompati-
ble deployment environments. Some of the elementary network devices performing
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switching and security functions are obvious candidates to move to NFV, which
include switching elements like routers, NAT, gateways and security devices fire-
walls, IDS/IPS, virus and span scanners, etc. As the physical layer communication
technology evolves, TSP/ISPs require to roll out new mobile network technology by
deploying functions to support related protocol stacks, communication transport and
core network technologies. TSP’s core and access network nodes enabling mobile ser-
vices like 3G, 4G, VoLTE, 5G etc. can tremendously benefit from the NFV approach.
Some other use cases are network monitoring, measurement and diagnosis functions;
authentication, access and policy control; application and network optimization to
deploy CDN (Content Distribution Network) nodes, caches, etc.

Cloud computing technologies are considered as primary enablers of NFV. Virtual-
ization is the heart of cloud computing mechanisms. Hardware virtualization acceler-
ated by native hardware for performance and software switches (e.g., Open vSwitch)
to connect virtualized machines are primary enablers of NFV. Advances in virtual-
ization technology like lightweight container based virtualization, though comes with
dependency on native platform, have also propelled NFV. As NFV uses virtualiza-
tion for processing packet at line rate, it requires high speed packet processing in
software on industry standard compute servers. This can be achieved using high
volume multi-core CPUs with high I/O bandwidth, smart NICs, TCP offloading
and advanced technology like Data Plane Development Kit (DPDK) [Linux Founda-
tion 2013] and Vector Packet Processing (VPP) [FD.io 2017] to process packets in
software on these standard compute servers. Apart from virtualization, cloud tech-
nologies provide automation tools and mechanisms to control and manage network
functions for resiliency and efficient utilization of hardware resources. For example,
orchestration and management systems of cloud technology can provide means to
instantiate virtual network functions, allocate physical resources to them, support
failover, migrate, and snapshot the virtual functions.

The use of standard high volume compute servers built using general purpose com-
pute architecture (x86, ARM etc.,) replaces customized and expensive ASIC hard-
ware built for network services. A high volume availability of the servers and their
components provide cost effective and a more economical way for packet processing
compared to specialized middleboxes.

2.3.2 Benefits of NFV

The NFV paradigm reduces hardware equipment costs and other OPEX by aggregat-
ing scattered appliances to cloud, data center or aggregation sites, leveraging more
economical industry standard high performance servers compared to function specific
middlebox hardware built using ASICs. NFV allows rapid innovation and roll-out of
new services. Network operators can target services based on geographic or customer
sets. They do not have to rely on high scale and revenue generating demand to cover
investment on the service specific hardware. NFV enables easy test, integration and
development process, as it can run production and test software on the same stan-
dard high performance servers. NFV provides on demand scaling of network services,
thereby providing a great flexibility in deployment network services according to traf-
fic requirements and end-user demands. Its software-based approach opens network
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service development market for smaller enterprises, academia, etc., bringing more
innovation and creating healthy ecosystems. NFV can leverage power management
features of standard servers, switches and storage devices and employ workload op-
timization to reduce energy consumptions of the hardware infrastructure. NFV can
support in-service software upgrade by launching new VMs, redirecting traffic and,
if required, synchronize the state of old and new VMs.

2.3.3 Challenges for NFV

The biggest challenge NFV face is performance degradation. Even though NFV
employs high volume industry standard servers, virtualized network functions may
not match packet processing performance of proprietary hardware appliances built
using ASICs. The primary goal is to minimize the degradation in performance using
appropriate software technology so that latency, throughput and processing over-
head is decreased. A clear separation of software and hardware using virtualization
must allow execution of any virtual appliance in different but standard datacenters
or cloud platforms. In this aspect, the challenge is to define an unified interface to
decouple software appliances and hardware infrastructure. The NFV architecture
must co-exist with operators’ legacy network equipments, creating a hybrid network
in which virtual as well physical network appliance operate together. The NFV
paradigm can succeed, only if a unified and standardized management and orches-
tration architecture exists to easily integrate new functions or virtual appliances into
the operators’ hardware infrastructure. Also, control and management automation
of functions is mandatory to scale NFV. As NFV aggregates hardware and shares it
with multiple network functions and services, it is necessary to provide guarantee on
service performance and network stability, avoiding interferences from other services.

2.3.4 Tools, software and open-source initiatives for NFV

Virtualization technologies are at the core of the NFV paradigm. Indeed, the success
of virtualization technologies in IT operations in enterprises and for compute services
has motivated network operators to separate hardware and software for packet pro-
cessing using network functions. To enable NFV, hardware to lightweight process-
level virtualization technologies (e.g., VirtualBox, Qemu, Linux containers, Docker)
are not sufficient. A more comprehensive approach is required to enable NFV, where
orchestration and management tools are responsible for launching virtual instances
on compute resources, diverting network traffic towards the instances, allocating com-
pute and network resources, providing service guarantee, robustness and resiliency
for the virtualized network functions. Hence, the European Telecommunications
Standards Institute (ETSI) has developed specifications for Open Source NFV Man-
agement and Orchestration (MANO) software stack, called OSM [The ETSI OSM
Community 2016]. Apart from ETSI effort, OpenStack and Apache CloudStackTM

are widely used and represent popular platforms to enable NFV or virtualize cloud
infrastructures.
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2.4 SDN, NFV and Network Programming

In the SDN paradigm, network control applications like routing, topology discov-
ery, statistics collection etc., process control traffic generated by network events by
centralized (at least logically) control plane of the network. Early SDN proposals
advocated to keep forwarding devices in the data plane as dumb switches, which are
not capable of storing state information and locally process frequent network events
as dictated by the controller. They used a distributed architecture for logically cen-
tralized control plane as outlined in Section 2.2.3. SDN controllers could not delegate
specific control traffic processing to dumb forwarding devices in data plane. In order
to offload control traffic processing and delegate network control, hierarchical con-
trol plane, stateful data plane and hybrid control plane approaches were proposed,
as described in Section 2.2.1, 2.2.2 and 2.2.4.

In the NFV paradigm, various NFs like firewall (stateful or stateless), NAT, Intrusion
Detection/Prevention Systems (IDS/IPS), DNS tunnel detection, load-balancers etc.,
process the data plane traffic at line rate and are executed in virtualized environment
on low cost COTS. These VNFs are deployed in NFVI available at various locations in
the network and traffic is steered through them. They are instantiated, migrated or
deactivated according to change in traffic conditions in the network. This deployment
approach using network softwarization restricts the network operator to implement
custom, fine-grained packet processing functions and reuse common modules for
packet processing across multiple VNFs, as many of these VNFs perform similar
processing steps on the same packet. For example, packet processing modules for
checksum computation, statistics computation of traffic flows or filtering can be
shared across multiple VNFs. Moreover, migrating an entire middlebox in virtualized
environment poses performance issues.

To address the above issues, OpenBox [Bremler-Barr et al. 2016] and Slick [An-
wer et al. 2015] use the SDN and NFV principles together to provide programming
abstractions in order to develop, deploy and manage NFs.

They provide common processing blocks (OBIs in OpenBox) or elements (in Slick)
for reusability and to develop and efficiently deploy new NFs. Network controllers in
OpenBox and Slick steer the traffic through OBIs and elements, respectively, running
on in-network compute machines, specialized hardware or VMs. They use the same
centralized network controller to manage instances of common processing blocks in
the network (OBI instances or Slick elements), thereby extending the centralized
SDN control plane for NF programming and management. Slick and OpenBox pro-
vide general message construct configure and a protocol, respectively, to develop,
deploy and manage NFs from the centralized controller. Slick provides programming
abstraction to specify a high-level packet processing policy, which indicates sequence
of elements to process for a particular traffic flow.

Instead of deploying on in-network compute machines, specialized hardware or VMs,
many of the common processing blocks (e.g., HeaderClassifier, RegexClassifier, Alert
in OpenBox) or NFs can be implemented in the datapath of forwarding devices by
programming or configuring them, directly. Such an architecture allows a high num-
ber of packets to be processed in multiple NFs within the datapaths of the forwarding
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devices in the SDN data plane. It can enhance the overall network performance by
maximizing the traffic processing within the SDN data plane. In particular, this ap-
proach eliminates the round-trip of packets from interfaces of NF to the forwarding
devices and also saves computing power of COTS machines used to process packets at
line rate in the fastpath of NFs. However, to maximize data traffic processing within
the SDN data plane, it is imperative that the SDN data plane supports modular pro-
gramming. Part II describes our proposal for a modular SDN data plane architecture
using the P4 packet processing language.
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New applications where anyone can broadcast high quality video are becoming very
popular. ISPs may take the opportunity to propose new high quality multicast ser-
vices to their clients. Because of its centralized control plane, Software Defined Net-
working (SDN) enables the deployment of such a service in a flexible and bandwidth-
efficient way. But deploying large-scale multicast services on SDN requires smart
group membership management and a bandwidth reservation mechanism with QoS
guarantees that should neither waste bandwidth nor impact too severely best effort
traffic. In this chapter, we propose; (1) a scalable multicast group management mech-
anism based on a Network Function Virtualization (NFV) approach for Software De-
fined ISP networks to implement and deploy multicast services on the network edge,
and (2) the Lazy Load Balancing Multicast (L2BM) routing algorithm for sharing
the core network capacity in a friendly way between guaranteed-bandwidth multicast
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traffic and best-effort traffic and that does not require costly real-time monitoring
of link utilization. We have implemented the mechanism and algorithm, and evalu-
ated them both in a simulator and a testbed. In the testbed, we experimented the
group management at the edge and L2BM in the core with an Open vSwitch based
QoS framework and evaluated the performance of L2BM with an exhaustive set of
experiments on various realistic scenarios. The results show that L2BM outperforms
other state-of-the art algorithms by being less aggressive with best-effort traffic and
accepting about 5-15% more guaranteed-bandwidth multicast join requests.

3.1 Introduction

The massive increase of live video traffic on the Internet and the advent of Ultra High
Definition (UHD) videos have placed a great strain on ISP networks. These networks
follow a hierarchical structure for providing Internet access to millions of customers
spread over large geographical areas and connected through heterogeneous access
technologies and devices. Recently, Periscope1 and Facebook Live Stream2 over-
the-top (OTT) applications, where anyone can broadcast their own channel, became
very popular on both smartphones and computers. To support such new streaming
applications and satisfy the users’ demands, ISPs may decide to deploy high-quality
multicast services in their networks. One solution is to use built-in multicast within
their infrastructure to implement flexible, bandwidth-efficient and scalable multicast
delivery services. Such an approach may enable the efficient deployment of many-
to-many broadcast services such as Periscope, which could be extended to handle
multicast group creation transparently on behalf of users. However, multicast has
failed to achieve Internet-wide support so far [Diot et al. 2000], and even for the lim-
ited deployment in managed networks for services such as IPTV, it requires complex
integration of specialized multicast enabled routers and protocols, traffic engineering
and QoS mechanisms in the networks.

Software Defined Networking (SDN) appears to be an attractive approach to im-
plement and deploy innovative multicast routing algorithms in ISP networks [Yap
et al. 2010, Marcondes et al. 2012, Bondan et al. 2013, Tang et al. 2014, Craig
et al. 2015, Zhang et al. 2015, Ruckert et al. 2016], thanks to its logically cen-
tralized control plane. More specifically, in Software Defined ISP networks, live
video streaming applications can benefit from QoS guaranteed dynamic multicast
tree construction algorithms [Kodialam et al. 2003, Chakraborty et al. 2003, Seok
et al. 2002,Crichigno & Baran 2004,Youm et al. 2013] that exploit the global view
of the network.

In addition, ISPs could exploit fine-grained control over QoS guaranteed multicast
and best-effort traffic to implement traffic engineering policies that are friendly to
low priority best-effort traffic. Several advanced multicast routing algorithms in-
tegrating load balancing techniques have been proposed in the literature to better
utilize the network bandwidth, avoid traffic concentration and limit congestion in
the network [Tang et al. 2014,Craig et al. 2015,Kodialam et al. 2003,Chakraborty

1Periscope URL: https://www.periscope.tv/.
2Facebook Live Stream URL: https://live.fb.com/

https://www.periscope.tv/ 
https://live.fb.com/
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et al. 2003, Seok et al. 2002, Crichigno & Baran 2004]. However, these approaches
require costly real-time monitoring of link utilization to allow network resources shar-
ing between the QoS guaranteed and best effort traffic classes according to ISP traffic
management policies.

Moreover, SDN-based centralized architectures suffer from well-known scalabil-
ity issues. Different approaches based on either distributed [Yeganeh & Gan-
jali 2016, Phemius et al. 2014, Koponen et al. 2010, Dixit et al. 2014] and hierar-
chical [Yeganeh & Ganjali 2012, Fu et al. 2015] control planes or on stateful data
planes [Bianchi et al. 2014,Song 2013] have been proposed to address SDN scalability
issues in general. Distributed controllers usually need costly state synchronization
mechanisms. Therefore, only the approaches that propose delegation [Yeganeh &
Ganjali 2012,Santos et al. 2014] could be followed but they require to implement the
whole functionalities of controllers at each router. Indeed, in the presence of large-
scale multicast applications, extra processing is required at edge routers to handle
locally all Internet Group Management Protocol (IGMP) membership messages [Cain
et al. 2015] that would otherwise be flooded to the controller.

In this chapter, we address the two following problems: (1) how to avoid implosion
of IGMP group membership messages at the SDN controller and (2) how to deploy
guaranteed-bandwidth multicast services in Software Defined ISP networks with low
cost and while being friendly with best effort traffic.

To address the first problem, we propose to exploit the hierarchical structure of ISP
networks and to use Network Function Virtualization (NFV). In short, we delegate
when needed the multicast group membership management through specific virtual
network functions (VNFs) running at the edge of the network.

To address the second problem, we propose a novel threshold-based load balancing
algorithm in which a certain amount of link capacity in the ISP’s infrastructure is
reserved in priority for guaranteed-bandwidth traffic. This means that in absence
of guaranteed-bandwidth traffic, best-effort traffic can use the capacity reserved for
guaranteed-bandwidth traffic. Hence, we dynamically increase the capacity share by
gradually increasing the threshold. This approach is friendly to best-effort traffic
and helps in indirectly load balancing the guaranteed-bandwidth traffic without the
need of real-time link traffic monitoring mechanisms, as the controller is responsible
for accepting or rejecting multicast subscription requests and is aware of bandwidth
requirements and network link capacities.

Our contributions in this chapter are the following: (1) an original solution to han-
dle multicast group management in a scalable way on Software Defined ISPs with
multicast networking functions running locally on NFV Infrastructure Point of Pres-
ences (NFVI-PoPs) and NFV-based Central Offices (NFV-based COs); (2) a smart
multicast routing algorithm called L2BM (Lazy Load Balancing Multicast) for large-
scale live video streaming applications, which runs on the SDN controller to route
the streams across the NFVI-PoPs or NFV-based COs and follows a threshold-based
traffic engineering policy for capacity sharing; (3) an implementation of our frame-
work including the scalable group management approach and the L2BM multicast
routing algorithm in Open vSwitches (OVS) [Pfaff et al. 2015] based QoS Frame-
work using OpenFlow and Floodlight controllers and the evaluation of the L2BM
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algorithm, with comparisons with state-of-the-art solutions. We provide a web site3

that includes the implementation of our framework, the simulation code, the sce-
narios scripts to reproduce all the experiments and extended results obtained with
scenarios not shown in the chapter.

The rest of the chapter is organized as follows: Section 3.2 presents our architec-
tural approach for deploying scalable, flexible and hierarchical control for multicast
group membership management at the network edge, Section 3.3 presents L2BM,
Section 3.4 describes the implementation of our framework, Section 3.5 presents the
evaluation of our multicast routing algorithm L2BM, Section 3.6 discusses the related
work and Section 3.7 concludes the work.

3.2 Scalable Multicast Group Management for Software
Defined ISPs

In this section, we tackle the problem of deploying multicast functionalities in a
scalable and flexible way on Software Defined ISP networks.

Traditional multicast routing and management protocols such as PIM-SM (revised
RFC) [Fenner et al. 2016] and IGMPv3 (revised RFC) [Cain et al. 2015] effectively es-
tablish and maintain multicast communication paths between sources and receivers.
Multicast routers run complex state machine for group membership management
of interfaces. In brief, they handle IGMP membership report messages sent by the
receivers to manage group membership state, and accordingly send PIM Join/Prune
messages to the upstream routers to coordinate the multicast routing paths. Deploy-
ing multicast functionalities in SDN without taking precautions can lead to conges-
tion issues at the controller as edge SDN routers need to forward all IGMP, because
they can not run complex group membership state machines neither store state in-
formation to take decisions in an autonomous way.

Let us consider a hierarchical ISP network as shown in Figure 3.1. With the advent of
NFV, network aggregation points at central offices (COs) are being transformed into
mini-datacenters. These NFV-based COs gather commercial-off-the-shelf (COTS)
hardware that can run any network functions such as NATs, firewalls or caches [Chiosi
et al. 2012]. Access networks aggregate the customers’ access lines at the COs at the
frontier of the metro ISP network. The metro ISP network interconnects the COs
using relatively high capacity links compared to access network links. Similarly, the
core network interconnects gateway Central offices serving as Points of Presence and
including NFV infrastructure that we call NFVI-PoPs. With SDN, a controller is
responsible for programming packet forwarding in its own domain. We refer to it as
the Network Controller (NC) of a given domain.

In our approach, NCs delegate multicast group management functionalities to virtual
network functions (VNFs) running at NFV Infrastructure at the edge of the metro
networks. We call these functions MNFs for Multicast Network Functions, and define
MNFs-H and MNFs-N. MNFs-H running in NFV-based COs exchange IGMP query

3See https://team.inria.fr/diana/software/l2bm/
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Figure 3.1: Example of Software Defined ISP Network with NFVI-PoPs

and report messages with the downstream receivers. MNFs-N running in NFVI-PoPs
process PIM Join/Prune signals sent by MNFs-H based on the membership states of
their NFV-based CO. Unlike traditional PIM Join/Prune messages, these signals do
not update trees by themselves, but instead inform the corresponding MNFs-N to
coordinate multicast tree update with the NC. Indeed, delegating group membership
management processing at NFV-based COs can greatly reduce the concentration of
control traffic emerging from multicast applications. Our solution aims to achieve
scalability similarly to traditional distributed multicast protocols in SDN architec-
ture in spite of its centralized control plane. It gives flexibility using NFV to enable
multicast support on demand and does not put the burden of requiring multicast
state management functionality on all the routers and especially core routers. NCs
communicate with the NFV orchestrators that run on each NFV-based CO of the
domain to instantiate MNFs when necessary. Note that NFV orchestrators are re-
sponsible for scaling in/out their VNFs according to the group membership traffic
load, providing flexibility. We emphasize that implementing the MNFs functional-
ities requires several features that are not compatible with hardware SDN routers,
which are usually dumb devices. In particular, it is necessary to run a state ma-
chine for implementing IGMP and for generating periodically membership queries
to the multicast receivers. As described earlier, we argue that the presence of mini-
datacenters in central offices (NFV-based COs) as shown in Figure 3.1 will enable
running the MNFs functionalities as VNFs. If such datacenters are not deployed in
central offices in the near future, MNFs could either be implemented as middleboxes
running next to edge routers or integrated within software routers as switching at
the edge is becoming virtual, handled on x86 cores as anticipated by SDNv24.

Let us now examine our proposed architecture with an example. At the start, in
absence of MNFs running at the access NFV-based COs, the first group join re-
quest among the receiver hosts is forwarded as a packet-in to the metro NC. If the
corresponding source or the multicast tree is already present in the metro network,

4See article "Time for an SDN Sequel? Scott Shenker Preaches SDN Version 2," www.
sdxcentral.com/articles/news/scott-shenker-preaches-revised-sdn-sdnv2/2014/10/.

www.sdxcentral.com/articles/news/scott-shenker-preaches-revised-sdn-sdnv2/2014/10/
www.sdxcentral.com/articles/news/scott-shenker-preaches-revised-sdn-sdnv2/2014/10/
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then the metro NC establishes5 the bandwidth guaranteed path for the requested
multicast flow between the edge router that receives the join request at the access
NFV-based CO and the multicast tree. At the same time, the metro NC interacts
with the NFV orchestrator of the access NFV-based CO to instantiate an MNF-H and
with the NFV orchestrator co-located at the NFVI-PoP to instantiate an MNF-N.
After that, the group specific IGMP traffic received by the edge router is redirected
to the MNF-H and handled locally. In addition, the PIM Join/Prune signaling traffic
is redirected to the MNF-N that manages group membership of all the NFVI-based
COs and communicates with the metro NC to update the multicast tree for each
group in the metro network. In case the access NFV-based CO is already receiv-
ing the requested multicast flow, the MNF-H is responsible for configuring the edge
router to forward the multicast flow to the port where the IGMP membership report
has been received. Once the processing of IGMP messages are delegated to MNF-H,
both the metro NC and MNF-H can configure the SDN edge routers. This design
makes all the flow tables in the edge router vulnerable to unauthorized modification
from the corresponding MNF. Hence, careful programming of MNFs is required to
avoid race conditions on flow tables and maintain consistency in routers tables.

Metro NCs inform upper level NCs in the hierarchy of the presence of all the multi-
cast sources in their domain and also exchange this information with peering ISPs’
NCs. We assume that the streaming application implements the required signaling
protocols such as SIP, SAP and MSDP to announce and discover multicast groups.

On detecting a multicast source, an NC communicates with the orchestrator on its
local NFVI-PoP to instantiate an MNF-N if the latter is not yet running, in order to
store information on the new multicast source and process future Join/Prune signals.
If neither the source nor the multicast tree corresponding to the PIM Join signal
belongs to the domain, the MNF-N forwards the PIM Join signal to the upstream
network through the upstream route set by the NC. If the source and the receivers
are not in the same ISP, the Join signal will propagate through the peering link to
reach the MNF-N corresponding to the source’s ISP and a bandwidth guaranteed
path will be established on both ISPs.

MNF-Hs are responsible for aggregating the group membership reports received from
their NFV-based CO networks, and according to the state machine, they can send
Join/Prune signals to the MNF-N for the different multicast groups. Hence, similar
to multicast routers in traditional multicast protocols, MNFs can maintain the group
membership state of their downstream receiver hosts. Figure 3.2 illustrates our
approach.

Without the deployment of the MNF-H, the edge routers do not maintain multicast
state and do not take decision to replicate the multicast stream to the required down-
stream interfaces in the centralized SDN based approach. Hence, all the multicast
group membership messages are forwarded to the NC. In our proposed approach,
once the MNF-H at the access NFVI-based CO receives a multicast stream, all the
successive IGMP join requests received for the group at the edge router from the
downstream access network are locally handled by the MNF-H. Hence, irrespective

5The algorithm used to dynamically construct multicast trees with bandwidth guarantee is de-
scribed in Section 3.3.
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of the number of multicast group membership messages received for a group from
end hosts in an access network, only the first IGMP join and the last IGMP leave
requests result in sending a PIM Join/Prune signal from MNF-N to the metro NC
in order to add/remove the NFVI-based CO from the multicast tree of the group.
Therefore, with this mechanism NC is involved only for routing in core network and
does not have to maintain IGMP state machines at any of the end hosts.

In Section 3.4, we describe the proof-of-concept implementation of MNFs with Open
vSwitches that we use to validate our proposal of delegating group membership
management to VNFs for scalability.

3.3 Lazy Load Balancing Multicast routing Algorithm
(L2BM)

In this section, we describe L2BM, a threshold-based load balancing routing algo-
rithm proposed to deploy a guaranteed-bandwidth multicast service in ISP networks.
L2BM dynamically builds a multicast tree to deliver traffic to member NFVI-PoPs
in Core networks or NFVI-based COs in ISP’s Metro. It routes multicast streams
on-demand to the member NFVI-PoPs or NFVI-based COs in the Core or Metro
network, respectively, by programming SDN enabled forwarding devices in the net-
work. L2BM attempts to be friendly with best-effort traffic and remove the need of
real-time link measurement mechanisms, which are usually required when deploying
load balancing mechanisms.

The main idea is to reserve in priority a certain fraction of link capacity, referred as
the threshold, for guaranteed-bandwidth multicast services and to restrict the corre-
sponding traffic to this threshold through traffic shaping. Then, to make sure that the
best-effort traffic can use the reserved link capacity in the absence of guaranteed-
bandwidth traffic, we use in forwarding devices Hierarchical Token Bucket [Dev-
era 2002], which is a classful queuing discipline that allows sharing the link capacity
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with flows of different priorities. More precisely, we associate a threshold parameter
to each multicast group join request received at NFV-based COs. While connecting
the NFV-based CO serving as a node to the multicast tree of the requested group, the
L2BM algorithm avoids the links with utilization equal or greater than the current
threshold value. L2BM attempts to reserve the required bandwidth on the minimum
length reverse path from the receiver to any neighboring node in the multicast tree.
If no reverse path to the tree can be found, L2BM increases the threshold value
to consider previously avoided links and retries to attach the receiver to the target
multicast tree. In presence of multiple shortest paths length with equal threshold
value, L2BM selects the one with the least maximum utilization for guaranteed traf-
fic among its links. This information is available at no cost at the NC as it keeps
track of previous requests.

Algorithm 1 shows the pseudo-code of L2BM for adding a new node in the multicast
tree, using notations defined in Table 3.1.

Table 3.1: Notations used in Algorithm 1

Symbols Definition
E set of edges
V set of nodes
VT V for multicast tree T of group M
evu edge from v to u
Bvu link bandwidth consumption of evu
Cvu link capacity of evu
Uvu link utilization of evu; Uvu = Bvu/Cvu

θ threshold parameter
θinit Initial value of θ
θmax Maximum value of θ
r new receiver for group M
b bandwidth requirement of group M
P FIFO queue, stores pruned nodes
Q FIFO queue, stores nodes to be explored
u head node of the P queue

Path[v] set of edges constructing path from v to r
len(v) path length from node v to r

Umax(Path[v]) Max. link utilization of edges in Path[v]

Line 2 initializes the FIFO queue Q of graph nodes to be explored and path related
variables. These graph nodes represent the SDN enabled forwarding devices in the
Core or Metro network that compose the multicast tree. Then, the graph search
starts with the initial value of the threshold (θinit) to find a reverse-path from the
new receiver, r, to the closest node in the multicast tree of the requested group.
The threshold, θinit, allows the links to be loaded to a specified value, before start-
ing spreading the multicast traffic by taking longer paths. The algorithm performs
Breadth First Search (BFS) to find a path to the tree considering only edges uti-
lized below current threshold θ and pruning the rest. In line 5, the ThresholdBFS
function initializes the prune queue P and sets the local parameter θnext to 1. The
θnext variable is used to record the minimum θ value required for the next recursive
call of the ThresholdBFS function. Queue P stores the nodes having any of their
edges pruned due to an utilization higher than the threshold θ. In case none of the
tree nodes is found, a recursive call to the function is done with queue P (the pruned
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nodes) and θ set to θnext to continue the search. The loop in line 6 starts the graph
search from u, the head node of the queue P. If node u is part of the tree for the
requested multicast group, the algorithm terminates (lines 8-9). Line 10 adds node
u in the visited set. The algorithm expands the search by considering each incoming
edge evu to node u (line 11). It computes Unew, the new link utilization of the
edge evu by adding the bandwidth demand b (line 12). If Unew is higher than the
maximum capacity, θmax, allocated for guaranteed traffic it discards the edge (lines
13-14). Otherwise, it further checks Unew against the current value of the threshold
θ (line 15). If Unew is below θ, Pathnew and lennew are computed to reach v via u
(lines 16,17). If another path of the same length to v already exists, the algorithm
updates Path[v] with the one having the lowest maximum edge utilization of the
two (lines 18-20). Otherwise, node v is added in the queue Q and Path and len are
updated for v (lines 21-24). If Unew is above θ (lines 25-27), node u is added in
prune queue P and θnext is set to the minimum edge utilization value among all the
pruned edges. If no tree node is found in the current search, the algorithm removes
the nodes stored in P from visited set to consider pruned nodes in the next recursive
call (line 29). Then, it makes the recursive call to the function with prune queue P,
round up to tenth of θnext and visited set as input parameters (lines 28-30).

The algorithm is now explained through a simple example. Figure 3.3 shows a
network with 4 nodes and a sequence of 3 events marked with numbers from T0 to T2.
In this example, all links have the same capacity of 100 units. The current load and
percentage link utilization are shown for each link evu using the notation (Cvu, Uvu).
T0 (in black) corresponds to the initial network state with existing multicast traffic.
At T1 (in red), receiver R1 from node B joins a new multicast group with source S
at A, which requires 20 units of bandwidth. As the link utilization of both eAB and
eDB is equal to 0.1, the algorithm will explore both the edges, but will select tree
node A increasing UAB up to 0.3. At T2 (in green), receiver R2 from node D joins
the same multicast group with source S. Again L2BM starts with θ = 0.1, but ends
up selecting the path A-C-D.
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Figure 3.3: Example of L2BM functioning

When all the members from an access network leave a particular group, the MNF
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Algorithm 1: Lazy Load Balancing Multicast
1 Function AddReceiverInTree(): Path
2 Q.Enqueue(r), len(r) = 0, visited← ∅
3 return ThresholdBFS(Q, θinit, visited)
4 Function ThresholdBFS(Q, θ, visited): Path
5 P : To store pruned nodes, θnext = 1
6 while Q 6= ∅ do
7 u← Q.Dequeue()
8 if u ∈ VT then
9 return Path[u]

10 visited← visited ∪ u
11 foreach evu and v not in visited do
12 Unew ← Uvu + b

Cvu

13 if Unew ≥ θmax then
14 continue

15 if Unew ≤ θ then
16 Pathnew ← Path[u] ∪ evu
17 lennew ← len(u) + 1
18 if v ∈ Q then
19 if len(v) = lennew and

Umax(Path[v]) > Umax(Path
new) then

20 Path[v]← Pathnew

21 else
22 Q.Enqueue(v)
23 len(v)← lennew

24 Path[v]← Pathnew

25 else
26 P.Enqueue(u)
27 θnext = min(θnext, U

new)

28 if P 6= ∅ then
29 visited← visited \ {v : ∀v ∈ P}
30 return ThresholdBFS(P, dθnext × 10e/10, visited)
31 return NULL
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from the corresponding NFV-based CO has to notify the NC to remove its mem-
bership from the multicast tree. Node deletion from the tree is done by recursively
removing the non-branch nodes in the reverse path of the stream till a branch node
is encountered. This approach does not perturb the existing multicast tree, which
prevents packet loss and reordering problems that could have emerged when restruc-
turing the tree.

For each multicast join request, L2BM starts with an initial threshold value of θinit.
L2BM performs BFS using only edges with utilization below or equal the threshold.
Nodes with higher link utilization are saved in prune queue P to continue, if needed,
the search with increased threshold value through recursive calls. Let us consider
the worst case scenario in which each call of ThresholdBFS visits only one node
and the rest of the nodes are enqueued in P. This leads to at most 10 consecutive
calls of ThresholdBFS as the algorithm increases θ and rounds it up to tenth of the
minimum of all link utilization operating above current θ, and each edge is visited
exactly once. Hence, the order of run time cost of L2BM is the same as the one of
BFS, O(|V|+ |E|).

3.4 Testbed and Simulator Evaluation Frameworks

In this section, we first describe the proof-of-concept framework, based on an SDN
controller and Open vSwitches, which implements the MNFs with the edge-based
group management support and L2BM algorithm for Software Defined ISP networks.
Then we present the simulator we implemented to evaluate the performance of L2BM
on networks with high link capacity using different traffic scenarios, in a time effi-
cient manner. The performance evaluation mechanisms and results are described in
Section 3.5 using both setups.

3.4.1 Open vSwitch based QoS Framework

Providing guaranteed-bandwidth multicast services in Software Defined ISP networks
requires allocating bandwidth resources on the multicast trees’ links in a program-
matic way. In particular, data plane network devices in the networks have to support
QoS-based forwarding on the traffic flows and should be programmable. However,
existing SDN protocols such as OpenFlow (OF) [McKeown et al. 2008] have limited
support to program QoS on switches. To demonstrate the feasibility of guaranteed-
bandwidth routing for multicast services in real networks, we implemented an SDN-
controller module that provides the mechanisms to allocate bandwidth resources at
the granularity of flow definition. In the following, we describe the implementation
choices made for the SDN-controller module.

The OpenFlow protocol has gained widespread acceptance to implement the south-
bound interface of SDN, even though its specifications and features are still evolving.
From the very first version of OpenFlow, programmable QoS support6 was provided
through simple queuing mechanisms, where one or multiple queues are attached to

6Note that queue creation and configuration are outside the scope of the OpenFlow version1.3.
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the switch ports and flows are mapped to a specific queue to satisfy QoS requirements.
In practice, the OF controller uses the ofp_queue_get_config_request message to
retrieve queue information on a specific port. Then, OF switches reply back to the
controller with ofp_queue_get_config_reply messages providing information on the
queues mapped to the port. The OpenFlow version 1.3 and later versions specify the
Meter Table feature to program QoS operations on a per-flow basis. However, traffic
policing mechanisms such as rate-limiting throttle the bandwidth consumption of
links by dropping packets, which may be problematic especially for time-sensitive
flows. So, we rely instead on the Linux kernel QoS features and in particular, on the
tc Linux command to configure Traffic Control (e.g., shaping, scheduling, policing
and dropping) in a way it allows supporting bandwidth guarantee without loss in
order to provide high QoE video [Evans et al. 2011].

LINC [linc dev 2015], CPqD [Lajos Kis et al. 2017] and Open vSwitch (OVS) are
widely used software switches among existing implementations of OF-based soft-
ware switches. We chose OVS because it has been shown that it can be ported to
hardware [PICA8 2009] and achieve carrier-grade switching capability using specific
acceleration software [6WIND 2017]. OVS offers a wide range of protocols like sFlow,
NetFlow but it does not implement any QoS mechanism itself. However, it provides
the support to configure its OF-enabled switch ports with a subset of Linux kernel
QoS features that is sufficient to implement guaranteed-bandwidth multicast routing.
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Figure 3.4: Queue-based QoS integration with OVS and Floodlight

To summarize, OVS is a multi-process system whose daemon called ovs-vswitchd is
used to control all the software switch instances running on the hosting machine.
ovs-vswitchd reads configuration from a database called Open vSwitch Database
(OVSDB). While OF is used to program flow entries, the Open OVSDB management
protocol is used to configure OVS itself through the ovs-vsctl command-line utility.
The latter connects to the ovsdb-server process that maintains the OVS configuration
database. ovs-vsctl is particularly important because it can create/delete/modify
bridges, ports, interfaces and configure queues using the Linux kernel QoS features.
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In order to provide an API for handling queues on remote software switches, we imple-
mented a wrapper for ovs-vsctl and added it as a module to the Floodlight controller.
We chose floodlight because of its simple and modular architecture along with ease
of use. The controller module exposes APIs for queue management on data plane
interfaces of OF forwarding devices, and through these APIs, other applications can
perform traffic shaping, policing and scheduling features provided by linux-tc. This
approach creates dependency on ovs-vsctl utility, but it avoids re-implementation of
the OVSDB management protocol [Pfaff & Davie 2013] on the SDN controller. We
evaluated our multicast service deployment solution in the Open vSwitch based QoS
framework considering a two-level hierarchy ISP network, i.e., with metro and access
networks.

3.4.2 Multicast Application Control Delegation to MNFs

MNFs implement IGMP and PIM message handlers. Those handlers require to
maintain elaborate multicast state to aggregate membership messages received from
downstream networks. MNFs also communicate with the controller to handle groups
join/leave when needed and to receive the corresponding multicast streams based
on membership status on downstream networks. We implemented MNF-H as a
standalone control application to process IGMP messages to align with our proposal
of delegating application specific network control to VNFs. For ease of experiments
in absence of COTS and NFVI, we executed MNFs-H within the same operating
system environment as Open vSwitches.

On the other hand, MNF-N is implemented as an independent server module in
the Floodlight controller. The MNF-N server communicates with MNF-H to receive
PIM Join/Prune signals but does not use the OpenFlow channel. We took this
implementation decision to align it with the approach described in Figure 3.1.

The major functions of MNFs-H are to maintain multicast state, aggregate the IGMP
messages received from the switch interfaces and update the flow tables in the switch
accordingly. MNFs-H handle group membership management for IGMP messages
received from end receivers. This requires updating the flow table in the switch
programmatically. Hence, we use the lightweight OpenFlow driver libfluid [Vidal
et al. 2014] to program the Open vSwitch and update the multicast group table as
required. Such a use of specific network functions to process of group membership
messages offloads group membership management traffic from SDN controller by
preventing the repetitive forwarding of the messages from the same edge nodes to
the controller. However, it requires to employ two control applications, MNF-H
and the global SDN controller, to program the same OpenFlow-enabled edge switch.
OpenFlow provides three roles, Master, Slave and Equal, to SDN controllers. We
assign the Equal role to both the control applications so that both controllers can
control, manage and program datapath of the same switch. Clearly, this approach
has drawbacks and limitations, which we describe next.
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3.4.2.1 Drawbacks and Limitations

OpenFlow does not restrict a controller to modify the datapath programmed by other
controllers to process their traffic, when multiple controllers are configured with equal
role for the same switch. In particular, it does not provide such a traffic isolation and
security against malicious control applications. Considering the more general case
where multiple applications are required to process the same packet, OpenFlow does
not allow to specify packet processing operators to compose a policy comprising the
applications to process the same packet. Also, all network events are broadcast to
all the controllers. Hence, all the applications receive network events that they may
not need to or must not process. In the part II of the thesis, we propose a modular
SDN data plane architecture to address these drawbacks and limitations.

3.4.3 The Simulator

We have implemented a simulator that is able to generate different traffic scenarios,
execute extensive experimental runs in time efficient manner and store a snapshot of
network link utilization metrics after each multicast join and leave event in the net-
work. Concerning link capacity allocation, the OVS-based L2BM testbed explicitly
allocates link capacities to provide bandwidth guarantee to the multicast streams
without the need of costly link monitoring system. To do that, it maintains the
graph data structure of the topology, updates the links’ consumption and allocates
the bandwidth using the OVS-wrapper. Our simulator has exactly the same behavior
without the need for emulating the network and making OVS-wrapper calls to allo-
cate link capacity. More precisely, it simulates the Internet2-AL2S network topology
by maintaining a graph data-structure and update the bandwidth consumption of
each link based on routing decisions made by the multicast algorithms for each event.
In this way, the most recent network view is provided to the running algorithm after
each event.

However, in the testbed, multicast events may be processed in a different order than
their arrival order. This mismatch is due to the controller implementation (e.g., single
or multi-thread) and to delay variation in packet_in events sent to the controller by
the switches. The simulator generates the multicast events trace with time stamped
events according to traffic scenarios and sequentializes the events with nanosecond
precision before feeding the event trace to the different algorithms. It does not wait
between two events, thereby accelerating the execution of experiment run.

Unlike the testbed, the simulator does not run any SDN controller. Instead, it
converts multicast join and leave events into function calls in the implementation to
add or remove the receiver in the target multicast group. Hence, in the simulator,
all the algorithms receive each event in the same order for a given experimental run
even if the events are generated with very small time difference. However, in the
case of the testbed, the events received in time duration of order of microseconds are
simultaneously received by the controller without guaranteeing a specific processing
order in the same experimental run across all the algorithms.
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To compare the performance results between the testbed and the simulator, we ex-
ecuted 20 runs of the different workload experiments in the testbed environment,
recorded these 20 event traces and fed them to the simulator. The results of Fig-
ure 3.6a with 95% confidence intervals show the same behavior of the routing algo-
rithms in the simulator and in the testbed. For more details, see Section 3.5.5.

3.5 Evaluation of L2BM

In this section, we study the performance of L2BM for routing guaranteed-bandwidth
multicast flows in a single domain ISP. The evaluation is done using the testbed and
the simulator that are both described in Section 3.4. Without loss of generality,
we consider that the guaranteed-bandwidth traffic is allowed to use the whole link
capacity of the network (i.e., θmax = 1). We also assume that routers implement the
Hierarchical Token Bucket queuing discipline so that best effort traffic can use the
reserved bandwidth in the absence of guaranteed-bandwidth traffic.

3.5.1 Alternative Algorithms for L2BM

We compare L2BM with two multicast routing algorithms that implement greedy
heuristics of the Dynamic Steiner Tree (DST) [Waxman 1988] algorithm with two
different metrics: path-length (DST-PL) and link utilization (DST-LU). L2BM al-
locates the required bandwidth along the path to the new receiver. If it cannot
find a path with enough available bandwidth for the multicast group requested
by the new receiver, then it rejects the join request. We also implemented the
guaranteed-bandwidth and admission control features in DST-PL and DST-LU al-
gorithms. Note that DST-PL with guaranteed-bandwidth and admission control is
an alternative implementation of NNFDAR presented in [Youm et al. 2013]. Both
L2BM and DST-PL follow a nearest node approach with the path length metric pro-
posed in [Waxman 1988], but in addition, L2BM attempts to limit the maximum
link utilization below some threshold. With DST-LU, new receivers join the existing
multicast tree using the path with the minimum total link utilization. As the initial
threshold (θinit) controls the multicast traffic load allowed on links before triggering
load balancing, we use L2BM with low (0.1, 0.2), medium (0.4) and high (0.6) initial
thresholds, θinit, to study load balancing for different initial traffic loads on links.

3.5.2 Testbed and ISP Network Topology

Testing our bandwidth allocation implementation with Open vSwitches and Flood-
light requires a testbed capable of emulating QoS-oriented SDN experiments. Exist-
ing emulation tools like Mininet [Lantz et al. 2010] do not consider physical resource
constraints, hence the experiments can suffer from errors emerging from resource
limitations of the host physical machines. We used the DiG [Soni et al. 2015] tool to
automate the procedure of building target network topologies while respecting the
physical resources constraints available on the testbed. Regarding the network topol-
ogy, we chose INTERNET2-AL2S Figure 3.5 to represent an ISP network with 39
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nodes and 51 bidirectional edges. Then we virtualized this topology using DiG on the
Grid’5000 large-scale testbed. DiG implements routers using Open vSwitches and
we configured it to allocate sufficient processing power (i.e., two computing cores)
at each router for seamless packet switching at line rate. As the grid network uses
1Gbps links and INTERNET2-AL2S operates with 100Gbps links, we had to scale
down the link capacity to 100Mbps in our testbed experiments. But, we use the
simulator for the same network with 1, 10 and 100Gbps link capacities that are rep-
resentative of links in different tier ISP networks. We present results with network
of 1Gbps links and other results made are available7.
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Figure 3.5: INTERNET2-AL2S Network Topology8

3.5.3 Multicast Traffic Scenarios

Properties of the multicast traffic vary according to the level we are in the hierarchy
of ISP networks. The controller of a lower level ISP backbone network may be
exposed to high end-viewers churn for a multicast session. Indeed, as each NFV-
based CO covers a smaller number of end-receivers, their group memberships can
be more volatile than for NFVI-PoPs of higher level ISP networks, which have a
higher probability of maintaining their group memberships. To account for that in
our evaluation, we generate workloads without churn and workloads with churn to
simulate traffic conditions at a high and low level, respectively, in the hierarchy of
ISPs networks. At a high level in the hierarchy, each NFVI-PoP aggregates a large
number of multicast end receivers, resulting in static multicast sessions. In this case,
NFVI-PoPs dynamically join multicast groups, but do not leave their groups, so such
a traffic consumes the reserved network capacity θmax, rapidly. Conversely, at a low
level, end-receivers in the network join and leave multicast groups during the runs
and NFV-based COs also change group membership, frequently.

7See URL https://team.inria.fr/diana/software/l2bm/
8From URL https://noc.net.internet2.edu/i2network/advanced-layer-2-service/

maps-documentation/al2s-topology.html

https://team.inria.fr/diana/software/l2bm/
https://noc.net.internet2.edu/i2network/advanced-layer-2-service/maps-documentation/al2s-topology.html
https://noc.net.internet2.edu/i2network/advanced-layer-2-service/maps-documentation/al2s-topology.html
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In all the simulations, we generate different multicast traffic workloads by varying the
number of multicast groups from 10 to 150 for a network with 1 Gbps link capacities
to load the links sufficiently. We uniformly select multicast group session bandwidth
demands for each multicast group in the workload from 1, 2, 5, 9, 12, 25, 50, 80 Mbps
representative of different qualities of live video streams (SD, HD, UHD). Concerning
the testbed, as we used 100 Mbps link capacity due to physical resource constraints,
we generate workloads with lower bandwidth demands for multicast groups uniformly
selected from 2, 5 and 8 Mbps.

To generate the workloads without churn, we launch multicast group senders with
inter-arrival time exponentially distributed with a mean of 3s in order to avoid flash
crowd and still have reasonably short simulation time. Once the sender of a mul-
ticast group appears in the system, join requests from receivers are sent with an
inter-instantiation time exponentially distributed with a realistic mean 1/λ set to
5s [Veloso et al. 2002]. We generate the workloads with churn in a similar way but
additionally enforce receiver nodes to leave the multicast group sessions at exponen-
tially distributed time with a mean 1/µ empirically set to 75s. With this setup, each
multicast group session in workload with churn has an average number of (λ/µ = 15)
receivers at steady state. We chose to have a moderate number of users in order to
avoid full broadcast scenarios, in which all routers in the metro network would be-
long to the multicast tree. We simulate the churn of receiver nodes in each multicast
group session for a duration of 300s. Note that we do consider source popularity
in this study. This could be an interesting future work using our publicly available
source code.

Furthermore, as proposed in [Hagiya et al. 1993], we consider two types of multi-
cast traffic: Homogeneous and Concentrated. Workloads with Homogeneous mul-
ticast traffic (called Homogeneous workloads) generate multicast flows by utilizing
the whole network in equal proportion. Such workloads are useful to compare the
results obtained from the testbed and the ad-hoc simulator without limiting the
experiments to a specific scenario. By contrast, workloads with Concentrated multi-
cast traffic (called Concentrated workloads) aim to capture the congestion and traffic
concentration on critical links for real-world scenarios, e.g., increase in video traf-
fic during peak hours, live transmission of local events, etc. This usually results in
higher load in some parts of the network.

We use Homogeneous workloads without churn to validate the results obtained from
the ad-hoc simulator against the ones from the testbed. To this end, we distribute
receiver and source nodes uniformly across the network and select traffic demands of
multicast groups with a uniform probability from 2, 5 and 8 Mbps. To generate the
Homogeneous workloads, we distribute the location of sender and receivers of each
multicast group in a uniform way across the nodes in the network and we associate
13 receivers to each multicast group. Then we make 20 workload runs to compare the
results obtained from the testbed and from the simulator as shown in Section 3.5.5.1.

Concentrated workloads are used to emulate realistic traffic concentration scenarios
while analyzing the performance of the different load-balancing algorithms with the
simulator. To generate them, we use a non-uniform probability distribution to select
sources and receivers among network nodes. More precisely, we randomly select a
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node, representing a hotspot, with a uniform distribution for each workload run.
Then we compute the shortest path lengths from this node to all the other nodes in
the network. We use the negative of these path lengths as exponents to compute the
exponentially scaled distances from the node to all the other nodes. After that, we
divide the exponentially scaled distance of each node with the sum of the distances
of all the nodes to obtain the probability distribution of the nodes. To generate
the Concentrated workloads without churn, we enforce congestion in hotspots with
traffic generated by a subset of nodes in the vicinity. More precisely, we select 13
out of 39 nodes as receivers in the network and a source with the above probability
distribution of the nodes for each multicast group. This set up has been chosen
empirically to create congestion only on small parts of the network, not in the whole
network. Finally, to generate Concentrated workloads with churn, we select the
source nodes using only 33% of total network nodes. Then we instantiate 20 receivers
for each multicast group, similar to multicast group sessions without churn and use an
M/M/∞ queue for each group to generate churn for a duration of 300s. We execute
500 simulation runs of each workload for each algorithm to allow fair comparison
among DST-PL, DST-LU and L2BM routing algorithms.

3.5.4 Evaluation Metrics

Measure of Link Utilization: We compute the three following measures of link uti-
lization to evaluate the performance of the different multicast routing algorithms
with the workloads described above: 1) Average (Avg) refers to the average utiliza-
tion of all the links in the network, 2) Standard Deviation (StdDev) estimates the
imbalance of traffic spread across the links and 3) Critical Links denotes the per-
centage of links with utilization higher than 90%. These three different measures of
link utilization are used to analyze the network bandwidth consumption and quali-
tatively estimate the impact of guaranteed-bandwidth flows on best-effort traffic for
the different algorithms. A high Avg value means that best-effort traffic will have
less overall network bandwidth available. The StdDev measure illustrates uneven
spread of available bandwidth across the network links. In particular, a high value of
StdDev means a high probability of congestion for best-effort flows and unfair share
of link capacities across the network between best-effort and guaranteed-bandwidth
traffic. Finally, the Critical Links measure is used to estimate the concentration of
guaranteed-bandwidth traffic in the network.

In the case of scenarios without churn, we use a snapshot of network links’ utilization
once all receivers have joined their multicast groups. Then we compute the average
of the metrics over all the runs of the workload with the same number of multicast
groups. We use the workloads by varying the number of multicast groups from 10
to 150 to study the behavior of the algorithms when increasing the traffic.

Regarding scenarios with churn, we take a snapshot of network links’ utilization at
every second, compute the Avg, StdDev and Critical Links metrics along with the
Exponential Moving Average of the metrics to study the behavior of the different
algorithms over the run duration. We validate the M/M/∞ queue based simulation
model as described in Section 3.5.3 by studying the link metrics over the entire
period of a single workload run involving 130 multicast groups. For all the metrics,
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we compute an exponential moving average with a smoothing factor of 0.6 for the
whole run duration. Apart from validating the simulation model, we study the
performance of all the algorithms over multiple runs similar to the scenarios without
churn. Also, instead of taking a single snapshot of network links’ utilization, we
compute the average over the entire run of experiments.

Apart from link utilization metrics, we use the Bandwidth Demands Acceptance Ratio
to compare the performance of the different algorithms. This ratio is obtained by
computing the number of successful join group requests over the total number of join
group requests sent. We compute this metric for scenarios with and without churn
and for each run of the workload experiments. Then we average it over multiple runs
and we plot the 95% confidence interval.

3.5.5 Results and Analysis

First, we study in Section 3.5.5.1 the link evaluation metrics obtained by running
experiments on the testbed and on the ad-hoc simulator using the same workloads.
After this analysis, all the results shown in the rest of the paper are obtained using
the ad-hoc simulator and with the Concentrated workloads. Second, we study the
performance of the different algorithms with the Concentrated workloads without
churn in 3.5.5.2. Third, we validate the M/M/∞ queue model for the Concentrated
workloads with churn in 3.5.5.3 then we analyze the performance results obtained
with the Concentrated workloads with churn in 3.5.5.4.

3.5.5.1 Validation of the Simulator with the Testbed

In order to compare performance results obtained with the testbed and the simulator,
we perform 20 runs of each Homogeneous workloads without churn and plot average
for each metric with 95% confidence interval in 3.6. Figures 3.6a-d show superim-
posed Avg and StdDev measures of link utilization along with the Critical Links met-
ric obtained with the simulator and the testbed experiments for DST-PL, DST-LU
and L2BM and for three different values of the initial threshold θinit = {0.1, 0.4, 0.6}.

As we can observe, the performance obtained with the simulator for each algorithm
closely follows the results obtained in the testbed environment, which validates the
implementation of the simulator. From now on, we use the simulator along with the
Concentrated workloads to further study the performance of the different algorithms.

3.5.5.2 Simulation Results using Workloads without Churn

Here we evaluate the algorithms using multicast group session without churn of
receiver nodes with the Concentrated workloads described in 3.5.3. Figures 3.7a-d
show the Avg and StdDev measures of links’ utilization, along with the Critical Links
and bandwidth demands acceptance ratio metrics obtained without churn. DST-PL
obtains 5-15% lower Avg, 5% higher StdDev and 5-12% lower bandwidth demands
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Figure 3.6: Comparison of Testbed and Simulation results

acceptance ratio compared to L2BM with θinit = 0.1. Indeed, DST-PL computes the
shortest path to the multicast tree, which rapidly congest the critical links around
the hot spots of network. For low traffic workloads (i.e., 10 to 60 multicast groups),
all the algorithms accept 100% of the bandwidth demands. We recall that for all the
algorithms, multicast join requests are satisfied only if sufficient bandwidth can be
reserved on the links. The three variants of L2BM (particularly, θinit = 0.10) have
5% higher Avg link utilization than DST-LU and DST-PL. But unlike the rest of the
algorithms, at low traffic the L2BM algorithms obtain zero Critical Links because it
aggressively minimizes the maximum utilization of the links by not using the links
operating above current threshold, see Figure 3.7c. We can note that the StdDev
for DST-LU and L2BM does not vary significantly, so the two algorithms equally
distribute the traffic across the network. However, we can observe for moderate
traffic workloads (i.e., with 70 to 100 multicast groups) that DST-LU suffers from
congestion on few Critical Links. At heavy traffic workloads (i.e., with more than
100 multicast groups) L2BM suffers from more congestion with 5% more critical
links compared to DST-PL and DST-LU as shown in Figure 3.7c. In return, L2BM
improves the bandwidth demands acceptance ratio by 5% and 15% compared to
DST-LU and DST-PL, respectively. Overall, for a given reserved link capacity for
guaranteed-bandwidth multicast traffic, L2BM is able to serve a higher percentage
of bandwidth demand multicast requests compared to DST-LU and DST-PL.
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Figure 3.7: Results using Concentrated workloads without churn

3.5.5.3 Validation of the M/M/∞ Model using Workloads with Churn

Next, we validate theM/M/∞ queue based on the simulation model for the scenario
with churn and the above mentioned link utilization metrics. We take an example
run of moderate traffic workload of 130 multicast groups with Concentrated traffic
scenario to assess the performance of the algorithms over the run duration to study
the traffic pattern generated by the model over the run. Figures 3.8a, 3.8b and 3.8c
show the Exponential Moving Average of the Avg and StdDev measures and the
Critical Links metric at every second of the workload run. As we can observe, after
continuous initial increase till 150 seconds in the value of all the metrics, the effect of
churn begins and the links’ utilization metrics maintain the value of all the metrics in
a small range, e.g., the Avg link utilization value ranges from 0.3 to 0.4 for DST-PL,
0.4 to 0.5 for DST-LU and 0.6 to 0.6 for L2BMs. This can be explained by a first
period in which multicast receivers join, followed by a period where receivers both
join and leave based on M/M/∞ queue model. Concerning the StdDev and the
Critical Links metrics in Figures 3.8b and 3.8c, the performance of the algorithms
are indistinguishable during the execution period. Therefore, we execute 500 runs of
the workload and study the bandwidth demands acceptance ratio metric as shown
in Figure 3.8d. The x-axis shows different values (1, 2, 5, 9, 12, 25, 50 and 80 Mbps)
of bandwidth demands corresponding to multicast join requests whereas the y-axis
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Figure 3.8: Results using Concentrated workloads with churn and 130 multicast
groups

shows the acceptance ratio obtained for each demand. For this workload, L2BM-
0.1 accepts 2-3% more requests than DST-LU whatever bandwidth demands values
of join requests. We note that none of the algorithms are heavily biased towards
some bandwidth demands values of join requests. For all the algorithms, the join
request acceptance ratio gradually drops when increasing the values of the bandwidth
demands. The main reason is that low bandwidth demands values can be satisfied
using small residual capacity available on heavily utilized links.

3.5.5.4 Simulation Results using Workloads with Churn

We further evaluate the algorithms using workloads with churn and different num-
ber of multicast groups varying from 10 to 150. Figures 3.9a and 3.9b show the Avg
and StdDev measures of links’ utilization. L2BM-0.1 uses 5% and 15% more Avg
link utilization compared to DST-LU and DST-PL, respectively. see Figure 3.9a.
Similar to the scenario without churn, all the algorithms accept 100% of guaranteed-
bandwidth multicast requests for the low traffic workloads with 10 to 60 multicast
groups, see Figure 3.9d. However, for the same workloads, L2BM does not use any
link above 90% of the capacity as shown in Figure 3.9c. There is no significant differ-
ence between DST-LU and L2BM for bandwidth acceptance ratio in moderate traffic
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Figure 3.9: Results of L2BM, DST-PL and DST-LU using Concentrated workloads
with churn

workloads(i.e., 70 to 100 multicast groups), but DST-LU suffers from congestion on
3-4% more links as shown in Figure 3.9c. As we increase the workload to heavy
traffic, L2BM increases the percentage of Critical Links by 2-3%, but it increases the
Bandwidth Demand Acceptance Ratio by 8-10% and 3-4% compared to DST-PL and
DST-LU, respectively for θinit = 0.1.

Overall, in presence of low concentrated traffic, L2BM increases the Avg link uti-
lization (due to the early load balancing that results in using paths longer than the
shortest one) but minimizes the traffic concentration on a set of links near hot spots.
Thereby, it provides more residual bandwidth on these links from θmax link capac-
ity allocated for guaranteed-bandwidth multicast traffic, being more accommodating
and friendly to the best-effort traffic on these links. When the traffic is highly concen-
trated, L2BM is able to accept a higher number of guaranteed-bandwidth multicast
requests than the other algorithms by using the threshold based technique. By doing
so, L2BM allows to accept more join requests at the cost of slightly increasing the
number of Critical Links as shown in 3.7c. Hence, it is able to more efficiently utilize
the allocated network bandwidth on the links.
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3.6 Related Work

Several approaches have been proposed to provide multicast solutions that leverage
the logically centralized SDN control plane [Yap et al. 2010,Marcondes et al. 2012,
Bondan et al. 2013, Craig et al. 2015, Tang et al. 2014, Zhang et al. 2015, Ruckert
et al. 2016]. However, they do not address the specific scalability issue emerging
from centralized processing of group membership messages at the controllers and do
not provide low-cost best-effort friendly traffic engineering policy in presence of QoS
guaranteed multicast traffic.

On the Scalability of the SDN Control Plane and of Multicast Group
Management

First, we study the approaches addressing multicast group membership manage-
ment regarding the SDN centralized control plane. In [Yap et al. 2010], authors
have proposed an SDN-based multicasting scheme to implement XMPP chat ses-
sions, referred as P2PChat. They propose to run a P2PChat Server to aggregate
XMPP subscription messages, assign multicast IP addresses and submit IPs of the
subscribers to a controller. However, this approach is not scalable because every
join/leave request from the subscribers will result in an update message from the
P2PChat Server to the controller. Also, the work does not address scenarios involv-
ing inter-domain multicast and group membership management in ISP networks,
unlike us. CastFlow [Marcondes et al. 2012] proposes a clean-slate approach for mul-
ticast with membership churn, which does not use IGMP. A server component named
Topology Server is responsible for multicast group configuration, and handles group
join and leave events, but the replacement mechanism for IGMP messages is not
detailed. Also, CastFlow does not address the scalability issue arising from central-
ized processing of group membership messages from receivers in real-world multicast
scenarios. MultiFlow [Bondan et al. 2013] is another clean-slate approach that uses
IGMP messages for group membership management. The work focuses on decreasing
the delay in the configuration of the multicast groups. In [Craig et al. 2015], some
optimization is proposed to prevent IGMP flooding in the network domain of the
controller but still, all the IGMP membership messages have to reach the controller,
which may overwhelm it for large multicast sessions.

In [Ruckert et al. 2016], authors have proposed the Software Defined Multicast (SDM)
service and some APIs for efficient delivery of OTT multicast traffic in ISP networks.
However, SDM relies on a centralized group management mechanism for its imple-
mentation in ISP networks and group management events are received from OTT
content providers via some APIs, instead of using IGMP messages. Transparent to
OTT clients, the SDM service converts OTT unicast traffic to multicast and vice
versa. Multicast-to-unicast translation at the edge switches in the network may be
an interesting approach for small groups but it is not able to scale with very large
groups.
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Regardless multicast, distributed [Yeganeh & Ganjali 2016,Phemius et al. 2014,Ko-
ponen et al. 2010] and hierarchical [Yeganeh & Ganjali 2012, Fu et al. 2015] ap-
proaches have been proposed in the literature to increase the scalability of the SDN
control plane. However, sharing the network view and applications state across mul-
tiple controller instances is complex, costly and can lead to unacceptable latency to
handle data plane events. Dynamically increasing the number of controllers (Elasti-
Con [Dixit et al. 2014]) and redistributing switches across them can help to handle
surge in control workload (i.e., IGMP join/leave requests) [Dixit et al. 2014], but
control elements still have to receive and handle all the IGMP messages and to
coordinate to ensure a consistent view, which is problematic for large-scale multi-
cast. Concerning hierarchical approaches, they require southbound protocol specific
mechanisms to maintain consistency across the controllers within different hierar-
chies, which decreases the visibility of the global network. Our approach exploits the
hierarchy of the network but does not use specific control messages or event type of
southbound protocols as it is the case in Kandoo [Yeganeh & Ganjali 2012] to com-
municate between controllers at different levels in the hierarchy. Instead, messages
exchanges among MNFs are done independently of the southbound protocol. This
gives flexibility in programming network functions with the required degree of dis-
tributed processing and state management without altering the southbound control
protocols neither the controllers.

Recently, adding stateful programmable control logic in the switches has been pro-
posed to offload logically centralized controllers in OpenState [Bianchi et al. 2014],
POF [Song 2013], P4 [Bosshart et al. 2014] and SNAP [Arashloo et al. 2016]. With
the availability of Protocol Independent Switch Architecture [Bosshart et al. 2013a],
it might be possible to provide the MNFs functionality by programming the switches.
As switch technology evolves and provides stateful programmable control logic, it
would be interesting to explore the possibility of implementing MNFs using such
approaches.

In [Zhang et al. 2015], a network architecture similar than ours is proposed, where
the SDN controller is responsible for setting up routing paths and NFV nodes to
run specific NFs like packet filtering and video transcoding. However, they do not
tackle the group membership scalability issue and their multicast routing algorithm
targets a different objective than ours, minimizing the sum of network link and node
utilization.

On Multicast Routing with Guaranteed-Bandwidth

Multicast routing with QoS guarantee and traffic engineering has a rich litera-
ture. However, due to limited deployment of multicast and distributed archi-
tecture of ISP networks, the bulk of the proposed algorithms e.g., [Kodialam
et al. 2003,Chakraborty et al. 2003,Seok et al. 2002,Crichigno & Baran 2004,Youm
et al. 2013] have never been used in practice by multicast routing protocols like
DVMPR, PIM, and MOSPF. Note that none of these algorithms considers the im-
pact of guaranteed-bandwidth multicast flows on best-effort or other lower priority
guaranteed-QoS traffic.
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In [Kodialam et al. 2003], authors have defined the Maximum Multicast Flow (MMF)
problem. They propose to update the link weights and to use a greedy heuristic of
nearest neighbor for the Dynamic Steiner Tree. In contrast, L2BM does not make
such assumption neither requires prior knowledge of future demands. Also, the
computational time complexity of our algorithm is equivalent to the one of breadth-
first search, while to update the link weights, MMF has O(|E|2 ∗ log2Max(Cuv))
time complexity.

Multiple QoS constrained Dynamic Multicast Routing (MQ-MDR) [Chakraborty
et al. 2003] is a mechanism proposed to guarantee jitter, delay and loss metrics
apart from bandwidth and to minimize the traffic load in the network. However,
unlike L2BM, MQ-MDR requires that multicast join requests are tagged with some
participation duration information, which are used to assign weights to the links.

Other objectives like minimizing the maximum link utilization can be used to effi-
ciently serve future multicast join requests. For instance, the Hop-count Constrained
Multicast Tree heuristic [Seok et al. 2002] aims to find a path connecting a receiver to
the existing multicast tree that minimizes the maximum link utilization of the path
and with a shorter length than with the Hop-count constraint. The Multi-objective
Multicast routing Algorithm (MMA) [Crichigno & Baran 2004] considers the tree
cost as another metric to minimize along with maximum link utilization. However,
decreasing the Avg link utilization does not guarantee a higher acceptance ratio of
guaranteed-bandwidth join requests as we show in Section 3.5.5. L2BM attempts
both to reduce the Avg link utilization (to be friendly with best-effort traffic) and to
accept more guaranteed-bandwidth join requests.

In [Youm et al. 2013], the Nearest Node First Dijkstra Algorithm (NNFDA) is pro-
posed, corresponding to DST-PL described in Section 3.5.1. Our results show that
L2BM is able to perform better than DST-PL both in terms of load-balancing and
bandwidth demands acceptance ratio. An alternative load-balancing solution for
multicast traffic consists in splitting each multicast flow in multiple thin-streams sent
in different multicast trees, as proposed in DYNSDM [Ruckert et al. 2016]. However
such an approach requires packets reordering at the receivers of the multicast stream,
which increases jitter.

3.7 Conclusion

In this chapter, we propose an NFV-based approach to overcome the multicast scal-
ability issue of centralized SDN architectures. Then we present a novel threshold-
based load balancing algorithm to deploy at low cost a guaranteed-bandwidth mul-
ticast service that nicely cohabits with best effort traffic. Our solution uses a traffic
engineering mechanism to split the network bandwidth between best-effort traffic
and guaranteed-bandwidth multicast traffic. We show that it is able to accept 5%
more bandwidth demands compared to state-of-the-art algorithms for traffic scenar-
ios representing flash crowd and prime-time streaming of videos. The source code
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and scripts used to evaluate our solution are made available to the community to
ease reproduction of the experimental results9.

Next, in Chapter 4, we describe our automation tool, DiG, developed to execute SDN
experiments using high volume compute devices available in a grid. We used DiG to
evaluate the L2BM traffic engineering mechanism for ISP core networks proposed in
this chapter.

Then, in part II of the thesis, we use the P4 packet processing language to increase
further programmability for in-network state management and computation at the
edge of ISP networks. Particularly, we address drawbacks and limitations of realizing
network control delegation with OpenFlow described in 3.4.2.1.

9See URL https://team.inria.fr/diana/software/l2bm/

https://team.inria.fr/diana/software/l2bm/
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We are witnessing a considerable amount of research work related to SDN-enabled
data center, cloud and ISP infrastructures but evaluations are often limited to small-
scale scenarios as very few researchers have access to a real infrastructure to con-
front their ideas to reality. In this chapter, we present our experiment automation
tool, DiG (Data centers in the Grid), which explicitly allocates physical resources
in grids to emulate SDN-enabled data center, cloud or ISP networks. We used DiG,
in Section 3.5, to evaluate the L2BM traffic engineering mechanism, proposed in
Section 3.3 for ISP’s SDN enabled core networks. DiG allows one to utilize grid
infrastructures to evaluate research ideas pertaining to SDN-enabled network envi-
ronments at massive scale and with real traffic workload. We have automated the
procedure of building target network topologies while respecting available physical
resources in the grid against the demand of links and hosts in the SDN-enabled
experimental network. DiG can automatically build a large network topology com-
posed of hundreds of servers and execute various traffic intensive workloads e.g.,
Hadoop Benchmarks to generate data center traffic. Also, we show that not only
available physical resource capacity should be respected, but it is necessary to take
into account resources’ performance degradation due to tools and technologies used
for emulation or virtualization. Hence, it is required to find Operational Region of re-
source considering performance degradation. Also, experimental networks should be
emulated on physical infrastructure considering every physical resource’s operational
region as its available capacity for the emulation and virtualization technology.
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4.1 Introduction

Most SDN experiments having data center, cloud and ISP network scenarios are
performed with traffic traces using emulators (e.g., Mininet [Lantz et al. 2010], Max-
inet [Wette et al. 2014]) or simulators (e.g. ns-3 [Consortium 2008]) due to restricted
access to real production environments of companies like Amazon, Google, or Face-
book. Therefore, experiment results may be biased or noisy due to modeling tech-
niques of simulators or unaccounted and excessive usage of physical resources in case
of emulation.

Prior to release of DiG [Soni et al. 2015], many tools were already available like
Mininet [Lantz et al. 2010] and Maxinet [Wette et al. 2014] for running SDN exper-
imentations. Among them, Maxinet is the closest to our work. However, it targets
scalable emulation to create SDN enabled data center environments and relies on
synthetic traffic generation models. Maxinet is built using Mininet, which has the
capability to run real world applications to generate traffic. However, at the scale of
hundreds of hosts, running such applications on emulated hosts consume computing
resources and hinders emulation’s scaling capability of network experiments. [Tazaki
et al. 2013] Neither Maxinet nor Mininet provides guarantee on allocation of com-
puting power (i.e., CPU cores) for emulated hosts to the scale of entire experiment
with a minimum amount of physical resources.

In parallel of DiG, a Mininet-based Virtual Testbed for Distributed SDN Develop-
ment (VT-D-SDN) [Lantz & O’Connor 2015] have been proposed. VT-D-SDN is
more lightweight approach compared to emulation technology used by DiG. Also,
it avoids configuration files and simplifies experimentations. However, VT-D-SDN
do not provide resource guarantee. It does not take into account overhead of its
cross-server tunneling technology while emulating experimental network links on the
physical network links.

DISTributed systems EMulator (DISTEM) [Sarzyniec et al. 2013] can emulate com-
plex network topologies, add heterogeneity (nodes and links with varying perfor-
mance) and add faults to create special conditions in the experimental environment.
However, early version of DISTEM [Sarzyniec et al. 2013] does not provide support
to emulate SDN-enabled network environment with resource guarantee. Recently,
authors of DISTEM1 have added support for large SDN experiments with CPU core
and link capacity allocation in their tool.

In this chapter we show importance using physical resources within their operational
margin for resource guarantee to emulated network, which none of the emulation
based testbed proposals have thrown light on. Using DiG, we aim (1) to create
network topologies while respecting operational margin of available compute and
network resource constraints and (2) to run real world applications and traffic on
top of it. Since very few researchers have access to production SDN-enabled network
environments and the majority of them has access to grid computing environments
like Grid5000 [Balouek et al. 2013], the primary goal of our system is to build test
environments for SDN-enabled networks in grid physical infrastructures. Using DiG,

1Distem Advanced Experiments http://distem.gforge.inria.fr/tuto_advanced.html#
mapping-virtual-nodes-using-alevin September, 2016 http://cloud-days16.i3s.unice.fr/

http://distem.gforge.inria.fr/tuto_advanced.html#mapping-virtual-nodes-using-alevin
http://distem.gforge.inria.fr/tuto_advanced.html#mapping-virtual-nodes-using-alevin
http://cloud-days16.i3s.unice.fr/


4.2. Operational Region and Resource Guarantee 57

we can build overlay experimental networks by explicitly allocating available phys-
ical resources, like CPU and link capacity, up to their operational margins to the
requirements of experimental network topologies, allowing to run real world data
center applications on top of a grid with performance guarantees.

4.2 Operational Region and Resource Guarantee

DiG can instantiate network hosts by running virtual machines (VMs) or Docket
containers. It creates forwarding devices using OpenFlow enabled switches on grid
nodes. While emulating a experimental network, it is important to take into account
operational regions of the available computing power of the grid nodes and the phys-
ical link capacity between each pair of grid nodes. In most of the cases, the physical
network connectivity along with the computing power of the grid nodes are known
by the experimenters. However, operational margins of the physical resources may
not be known for the installed operating system and emulation technology available
on grid infrastructure. In this section, we study an impact of emulation or virtual-
ization technology used in DiG on available physical resources, with link capacity as
a resource example.

We profile physical links for a layer 2 tunneling technology used in DiG to study
performance degradation of its bandwidth capacity due to the technology along with
native operating system environment. We create a pseudo-wire using L2TPv3 (Layer
2 Tunnelling Protocol Version 3) protocol to emulate a link between every node in
the network. We use L2TPv3 tunneling protocol and regulate bandwidth of the
tunnel using linux traffic-control to emulate a virtual link of a given capacity. We
execute iperf to measure TCP throughput on both end of the tunnel to compute
effective bandwidth on the emulated link. Figure 4.1a shows results of emulating
a single link of varying capacities on a physical link with capacity 10Gbos. For
each emulated link capacity, we perform 20 runs of the profiling experiment and
plot the measured TCP throughput with 95% confidence interval. We can observe
that beyond 2000 Mbps, TCP throughput does not linearly with increase in allotted
bandwidth to experimental link. Therefore, physical link’s operational region for
L2TPv3 emulation technology can be considered up to 2000 Mbps instead of physical
bandwidth of 10000 Mbps.

Next, we simultaneously emulated multiple links of different capacities on the same
physical link with capacity 10000 Mbos. As we already know that operational mar-
gin of the physical link is 2000 Mbps, we restrict total capacity of the emulated links
within 2000 Mbps. We perform 20 runs of this profiling experiment and plot the mea-
sured TCP throughput with 95% confidence interval for each emulated link capacity,
as shown in Figure 4.1b. None of the emulated links shows performance degradation.
because we allocated the physical link capacity within its operational margin. Every
SDN experiments does not require to profile physical resources for their operational
margin. Hence, DiG assumes that physical resources are already profiled for per-
formance degradation due to emulation technology and their operational regions are
known.
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Figure 4.1: Link emulation using L2TPv3 tunneling on a physical link with 10 Gbps

4.3 System Description

The DiG system is able to create experimental networks that carry real traffic be-
tween nodes running protocol stacks as in real world SDN-enabled networks. To
achieve this, DiG implements a layer 2 overlay network on a grid infrastructure
(see Figure 4.2) while respecting available physical resources and their operational
margins. Having a layer 2 overlay network as an experimental network provides a
bare-metal network environment to the SDN controllers and forwarding devices.

Figure 4.2 shows an example of embedding k=4,fat-tree SDN-enabled experimental
network to physical hosts connected in a star topology in Grid5000 network. DiG
system uses only hosts in the grid network to embed experimental network, be-
cause in most cases grid network devices like routers and switches are administrated
by hosting organization. However, their physical network topologies are publicly
available2. Similarly, Available physical resources can either publicly available 3 or
trivially learned.

DiG creates out-of-band SDN-enabled experimental network by allowing experi-
menters to control and manage the network from outside the data plane. Exper-
imenters can run a SDN controller of their preference and connect emulated for-
warding devices in the data plane. DiG provides resource guarantees for data plane
forwarding devices, links and hosts in the network. It allows to specify SDN con-
troller’s network location (IP address) to connect to forwarding devices using the
same or different physical links, if available. DiG launches experiments network em-
ulation from a centralized node, referred as Deployment Node in Figure 4.2. It allows
to manage and monitor experiments from a centralized location.

2An example Grid5000 Network Topology at Rennes https://www.grid5000.fr/mediawiki/
index.php/Rennes:Network

3An example Grid5000 Hardware Resource at Rennes https://www.grid5000.fr/mediawiki/
index.php/Rennes:Hardware

https://www.grid5000.fr/mediawiki/index.php/Rennes:Network
https://www.grid5000.fr/mediawiki/index.php/Rennes:Network
https://www.grid5000.fr/mediawiki/index.php/Rennes:Hardware
https://www.grid5000.fr/mediawiki/index.php/Rennes:Hardware
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Figure 4.2: Embedding SDN-enabled experimental network with resource guaranteed

4.3.1 DiG Technical Description

The main challenge when designing DiG is to find the right trade-off between flexibil-
ity and ease of running SDN-enabled network experiments with resource guarantee.
As DiG emulates networks with resource guarantee, it requires physical network in-
formation along with a SDN-enabled experimental network. Also, it can emulate a
given network only if enough resources are available that satisfy the demand of the
experimental network. Finally, using a single-click approach, it is able to create a
layer-2 overlay network. We used a modular approach for DiG to provide flexibility
and control to experimenters at various stages of the automation.

DiG maps the experimental network on the compute hosts of a physical grid network
while satisfying the computing power requirements of all the nodes in the experimen-
tal network and not exceeding the computing capacity of grid hosts. Similarly, layer
2 overlay links are mapped by satisfying the demand of all the links in experimental
topology while not utilizing physical links beyond their specified operational mar-
gin. So, the problem is reduced to the resolution of a Virtual Network Embedding
(VNE) [Fischer et al. 2013] problem with constraints on nodes computing power and
links capacity.

DiG comprises of three modules (see Figure 4.3) and uses three phases to set up
experimental networks on grid infrastructures. Each phase generates an output in the
form of text files and these files are used in the next phase as an input. This makes
the system more flexible and facilitates modifications and integration of different
phases implementations. The names of the three phases are Experimental Network
Embedding, Configuration Generation, and Deployment. Note that each phase can
be run in an independent way with appropriate input files, without the need of
executing other phases. For example, Node Mapping can be generated by new VNE
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algorithm, tool or even manually for required solution not generated or supported
by algorithms in ALEVIN.
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Figure 4.3: DiG Module interaction

4.3.1.1 Experimental Network Embedding

DiG solves a VNE problem using the ALEVIN [Beck et al. 2014] framework, which
is used to generate the mapping between the experimental network and the grid
physical infrastructure. ALEVIN is fed with the experimental and grid networks
described in DOT language 4 in a text file. The experimental network is annotated
with CPU cores requests for nodes, link capacity requests and other application-
specific attributes like Hadoop node type for automation usage. The grid network
is annotated with operational margin of CPU core capacity for grid nodes and link
bandwidth capacity for physical links. The hosts are also annotated with IP addresses
for automation purpose. ALEVIN uses CPU cores and link bandwidth attributes for
both experimental and grid networks and it generates a node mapping file as shown
in Fig. 4.3. The node mapping file is a text file that identifies the set of experimental
network nodes mapped on each physical node.

4.3.1.2 Configuration Generator for Experimental Network

The Configuration Generator phase takes as input the mappings generated from the
Experimental Network Embedding phase along with the descriptions of the experi-
mental and grid networks in DOT format. However, the mapping file can be gener-
ated by any means, and not necessarily with the technique presented in Sec. 4.3.1.1.
This allows (1) running different tools and algorithms for the network embedding
step and (2) relaxing the strong dependency on the performance of embedding algo-
rithms.

4DOT Language http://www.graphviz.org/doc/info/lang.html/

http://www.graphviz.org/doc/info/lang.html/
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The Configuration Generator phase prepares the configuration files for each physical
host based on the mapping. It contains the meta-data to instantiate the mapped
part of the experimental network on physical hosts. The meta-data contains the ap-
propriate commands and the parameters to instantiate the virtual machines and to
map the virtual hosts to the physical nodes. It also contains the necessary informa-
tion (e.g., source-destination UDP port numbers, IPs of grid nodes, tunnel unique
IDs etc.) to create layer 2 tunneling protocol (i.e., L2TPv3) endpoints and links
capacity information satisfying the experimental network bandwidth demand based
on the mapping. Along with the experimental network configuration files, this phase
generates files to bring up basic network utility (e.g., assigning IP to experimental
network interface, routing etc.) in the hosts.

4.3.1.3 Deployment of Experimental Network

The last phase consists of the deployment of the experimental network using config-
uration files on the physical machines. DiG instantiates the virtual hosts in the ex-
perimental network on grid nodes, creates OpenFlow [McKeown et al. 2008] switches
interconnected with L2TPv3 tunnels and controls the link bandwidth according to
the requirements of the experimental network to emulate. It is also responsible to
launch applications on virtual hosts of the experimental network. The Linux Traffic
Control utility (tc) is used to control the bandwidth at the tunnel interfaces according
to the links capacity requirements of the experimental network.

4.3.2 Management Network

Different versions of DiG tool emulate hosts with different virtualization technology.
Experimenters can use DiG to virtualize complete host machines using qemu-kvm or
lighter virtualzation technology Docker container. DiG creates dedicated manage-
ment network to control and manage nodes of the experimental network emulated
using complete machine virtualization. DiG uses physical network to manage con-
tainers running on remote physical hosts, if lightweight container based host virtu-
alization is used.

4.3.2.1 Emulating hosts with complete machine virtualization

As mentioned above, the deployment phase launches applications in virtual hosts.
DiG uses a designated node called Manager node in the grid infrastructure to launch
the deployment phase in a centralized way. All the communications required for
deployment purpose and management of experimental network are carried out on
a dedicated management network isolated by experimental networks, as depicted in
Fig. 4.4.

Each virtual host in the experimental network includes a management network in-
terface. A management bridge is created on all the grid nodes including the manager
node, as shown in Fig. 4.4. The virtual hosts of the experimental network running
on a grid node are connected to the management bridge on the grid node through
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Figure 4.4: Experimental Overlay Network with Management Network

their management interface. The management bridge on each grid node is connected
to the management bridge on the manager node. The Deployment tool is executed
on the manager node; it uses the management network to dispatch the commands
to launch applications on different VMs in the experimental network. This approach
prevents any possible management traffic interfering in the experimental network
that could distort experimental results.

4.4 Showcase and Usage

The primary goal of DiG is to create SDN-enabled experimental network with re-
source guarantee to imitate real world SDN-based data center and ISP topologies
with high level of realism. Such network environments can be used for instance to
test and evaluate performance of SDN controllers or routing algorithms with different
real time traffic or topologies. We demonstrated the DiG in IEEE NFV-SDN, 2015
at San Francisco, USA. We showcased how to automatically emulate an OpenFlow
data center k=4 Fat-tree topology in Grid5000 5.

We use DiG to emulate a ISP core network topology to evaluate our traffic engi-
neering proposal L2BM described in Chapter 3.3. Also, we use DiG to emulate
data center topology k=8 Fat-tree to evaluate flow placement algorithm aOFFI-
CER [Nguyen 2016]. We run Hadoop benchmark programs to generate data center
traffic to evaluate aOFFICER. Hadoop is used in many real world data centers and
many benchmark suites exist (e.g., HiBench 6). Interestingly, Hadoop MapReduce
applications generate a substantial amount of traffic during the data shuffling phase
and particularly the TestDFSIO and TeraSort are MapReduce benchmark appli-
cations. Hence, they are primary choices for data-center workload generation to
demonstrate the effectiveness of DiG.

5The video of the demo is available at https://youtu.be/wa1po2jmf7g
6https://github.com/intel-hadoop/HiBench

https://youtu.be/wa1po2jmf7g
https://github.com/intel-hadoop/HiBench
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4.5 Conclusion

In this chapter, we presented the DiG tool to create SDN data center and ISP net-
works on a Grid infrastructure. We also showed the need of knowing performance cost
of emulation and virtualization technology. DiG runs network embedding algorithms
to emulate SDN-enabled network infrastructures in a Grid with performance guaran-
tees. It automatically creates L2 overlay experimental networks and hosts based on
the output of the embedding algorithms and can launch any off-the-shelf application
on the experimental hosts to generate workload on the data center to evaluate. DiG
is available to the community at URL http://team.inria.fr/diana/software/.

http://team.inria.fr/diana/software/
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Part II

Modular SDN Data Plane
Architecture
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In this part, we describe a novel SDN data plane architecture required to realize
modular network control and management. In part I of the thesis, we use a modular
approach for application specific network control delegation and allow NFs running in
NFVI to control and manage the pertaining traffic. Our modular control delegation
approach requires to allow network control applications and functions to process
the shared data traffic or isolate an application specific traffic from the rest of the
applications.

Network hypervisors like CoVisor [Jin et al. 2015] also aim to modularize the deploy-
ment of network control applications or functions. CoVisor relies on a fixed control
data plane interface, OpenFlow, and its properties. It decreases the programmatic
flexibility of individually developed network control applications and functions and
also constrain them through OpenFlow and its properties. This hypervisor approach
adds an extra layer of OpenFlow communication. The CoVisor’s centralized control
plane remains vulnerable to scalability issues. Its composition of control applications
can degrade performance of all the deployed applications and functions in the case
only one of them is processing, inefficiently, frequent network events in its control
plane. CoVisor enables modular deployment of applications but does not modularize
the control and management of packet processing behavior of forwarding devices in
the network.

Orthogonal to the CoVisor approach of composing packet processing functionalities
of modularized control applications and functions in control plane, we compose the
module’s functionality in the fastpath of forwarding devices in the SDN data plane.
We use the P4 packet processing language that provides more flexible packet pro-
cessing abstraction than OpenFlow. In the next chapter, we describe the modular
SDN data plane architecture, P4Bricks, which enables multiprocessing of control ap-
plications and functions developed and deployed as individual modules for packet
processing functionalities in the network. P4Bricks also addresses the limitations of
our OpenFlow based implementation mentioned in Section 3.4.2.
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Packet-level programming languages such as P4 usually require to describe all packet
processing functionalities for a given programmable network device within a single
program. However, this approach monopolizes the device by a single large net-
work application program, which prevents possible addition of new functionalities by
other independently written network applications. We propose P4Bricks, a system
which aims to deploy and execute multiple independently developed and compiled
P4 programs on the same reconfigurable hardware device. P4Bricks is based on a
Linker component that merges the programmable parsers/deparsers and restructures
the logical pipeline of P4 programs by refactoring, decomposing and scheduling the
pipelines’ tables. It merges P4 programs according to packet processing semantics
(parallel or sequential) specified by the network operator and runs the programs on
the stages of the same hardware pipeline, thereby enabling multiprocessing. In this
work, we present the initial design of our system with an ongoing implementation
and study P4 language’s fundamental constructs facilitating merging of indepen-
dently written programs.

5.1 Introduction

P4 [The P4 Language Consortium 2017] is a high-level language for programming
protocol-independent packet processors. It allows reconfiguring packet processing
behavior of already deployed data plane hardware devices, introducing new protocols
and their processing to the devices, hence decoupling packet processing hardware
from software. This provides high degree of flexibility for programming new network
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applications and packet processing functionalities using reconfigurable hardware like
RMT [Bosshart et al. 2013c] and Intel FlexpipeTM. With P4, a network operator
can execute one program at a time on the target reconfigurable network device.
However, as the number of features or network applications to be supported by the
device grows, P4 programs increase in complexity and size. The development and
maintenance of such monolithic P4 programs containing all the possible features is
error prone and needs huge time and effort as program complexity grows. On the
other hand, this approach does not allow to easily compose independently written
modules in a single P4 program. Network devices can have different packet processing
requirements according to their role and location in the network. Deploying one
large program for a small subset of applications results in inefficient utilization of
the reconfigurable device resources.

P5 [Abhashkumar et al. 2017] optimizes resource utilization by leveraging policy in-
tents specifying which features are required to remove excess applications and packet
processing functionalities. However, with P5 there is still a large monolithic program
to be configured based on the policy intents. ClickP4 [Zhou & Bi 2017] proposes a
smart modular approach in which separate modules can be developed within the
ClickP4 programming framework and then manually integrated into ClickP4 config-
uration files to create a large program. However, programmers are required to know
the code of the ClickP4 library modules to integrate a new module into the ClickP4
framework as source code modifications may be required for modules on the already
developed code base. Basically, P5 allows removing extra modules and features from
already composed small P4 programs, whereas ClickP4 gives choice to select from
a list of modules. Most importantly, with both P5 and ClickP4, packet processing
functionalities on a device can not be easily composed using independently developed
and compiled P4 programs.

Hyper4 [Hancock & van der Merwe 2016], HyperV [Zhang et al. 2017a] and MPVi-
sor [Zhang et al. 2017b] propose virtualization of programmable data plane in order
to deploy and run independently developed multiple P4 programs on the same net-
work device at the same time. In these approaches, a general purpose P4 program
working as a hypervisor for programmable data plane is developed, which can be
configured to achieve functionally equivalent packet processing behavior of multiple
P4 programs hosted by it. However, virtualization requires minimum 6-7× and 3-5×
more match-action stages for every P4 program compared to its native execution
for Hyper4 and HyperV, respectively. Also, such approaches show significant perfor-
mance degradation for bandwidth and delay, thereby nullifying the benefit of high
performance reconfigurable hardware.

Meanwhile, executing efficiently multiple P4 programs at a time on a same target
device is highly desirable. We believe that a network operator should be able to
easily add any features on its target device with programs potentially developed by
different providers.

We present the design and architecture of P4Bricks, our under development system
that aims to deploy and execute multiple independently developed and compiled
P4 programs on the same reconfigurable device. P4Bricks comprises two compo-
nents, called Linker and Runtime. The Linker component merges the programmable
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parsers and deparsers and restructures the logical pipeline of P4 programs by refac-
toring, decomposing and scheduling their match-action tables (MATs). The Run-
time component translates the dynamic table updates from the control planes of
different applications into the tables of the merged pipeline. P4Bricks merges and
executes MATs of multiple compiled P4 programs on the stages of the same hard-
ware pipeline, thereby enabling multiprocessing. The idea is to provide a seamless
execution environment for P4 programs in a multiprogram environment without any
changes required in its control interface and MATs definitions. With P4Bricks net-
work operators can specify the packet processing policy on the target device in terms
of compiled P4 programs and composition operators using a simple command line
interface.

This report presents the initial design of our system with an ongoing implementation
and studies P4 language’s fundamental constructs facilitating merging of indepen-
dently written programs. It is organized as follows. Section 5.2 provides an overview
of the P4Bricks system. Section 5.3 describes Linker, which composes compiled P4
programs using the only knowledge of MATs definitions. Then, Section 5.4 describes
the Runtime module that interacts with the Linker component and the control plane
of P4 programs to manage flow entries in the MATs of the programs.

5.2 System Overview

In this section, we provide a brief overview of the P4 language and we then intro-
duce our system, describing merging of programmable blocks at link time and their
management at runtime.

5.2.1 P4 background

P4 [The P4 Language Consortium 2017] is a high-level language, based on pro-
grammable blocks, used to define protocol-independent packet processing by pro-
gramming data plane of reconfigurable target devices. A P4-compatible target man-
ufacturer provides P4 architecture defining the programmable blocks and describing
several hardware related information. Essentially, the P4 architecture of a target
provides programmable components and declares interface to program them and
exposes specific and already implemented constructs(e.g., checksum units and al-
gorithms) that can be used and manipulated through APIs. The programmable
parser, deparser and logical match-action pipeline are the main blocks used to pro-
gram the data plane of packet processing targets. In addition of providing data
plane programmability, P4 generates the APIs for control plane of the target device
to communicate with the data plane. The APIs allow to manage the state of data
plane objects from the control plane.

P4 provides the following fundamental abstractions to program reconfigurable target
devices.

• Header types - to describe the format (ordered sequence of fields and their
size) of headers within a packet.
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• Parser - to describe all the possible sequences of headers within received
packets, mechanism to identify the header sequences, headers and the values
of the fields.

• Actions - are already implemented in the target, hence their behaviors are
fixed. They are used manipulate header fields and metadata, also may take
data as input from control plane at runtime.

• Tables - allows P4 programmer to define match keys and associate them with
actions. A Match key can have multiple header and metadata fields. A Match
key provides complex match and decision capabilities.

• Match-action unit - implements a table for execution at runtime. It performs
table lookup using the match key to search associated actions and data, and
executes the actions.

• Control Flow - to describe packet processing program, which includes invoking
sequence of Match-action units. Packet reassembly can also be defined using
control flow.

• extern - are architecture and hardware specific objects and implementations,
which can be manipulated but not programmed. Because, their processing
behaviors are implemented in the target.

• Intrinsic metadata - are architecture and target specific entities associated
with each packet(e.g., interfaces)

• User-defined metadata - are data structures and variables defined in a program
to maintain the program specific per packet state during packet processing.

The P4 language is constituted of four different sub-languages used for different
purposes.

1. The core language - to describe types, variables, scoping, declarations, state-
ments etc.

2. A sub-language for describing parsers - having specific constructs to describe
packet parsing.

3. A sub-language for describing processing - using match-action units and to
define traditional imperative control flow for packet processing

4. A sub-language for describing architecture - to define and declare types of
programmable blocks for the target, architecture specific data and functions.

Next, we briefly discuss sub-languages for parsers and packet processing along with
some of their fundamental constructs used to program Parsers, Deparser and logical
match-action pipeline.

5.2.1.1 Programmable Parser and Packet Parsing in P4

All the packet processing targets must identify packets’ protocol headers and their
fields to determine how packets can be processed. Identifying and extracting protocol
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headers and their fields within packets is called packet parsing. Packet parsing is a
complex and challenging as the packet size, protocol header types and their payload
vary across the networks and packets within the same network. Header type defines
the format of a protocol header within a packet, programmers can describe it by
specifying sequence of fields and their sizes. An example of header type definitions
in P4 language for Ethernet_h and IPv4_h header types is given in 5.1. Every header
type has a length field and an identifier field indicating length of the current header
and encapsulated protocol type, respectively, to facilitate extraction of header fields
and subsequent protocols headers. The first protocol header fields are extracted
based on the network type from the start of packet bit-stream. Parser identifies the
next protocol header to extract from the values of current protocol header’s fields
using a given parse graph, which captures all possible sequences of protocol headers
using a DAG. Fixed parsers can parse packets according to the parser and protocol
types defined at design time of the target. Where as programmable parsers allow
to modify the parse graph and protocol headers types at any time according to new
packet processing requirements.

P4 allows to define programmable parser blocks for P4-compatible reconfigurable
target. Parser blocks are programmed by defining packet header types and fields,
declaring instances of the types and defining a Finite State Machine (FSM) to ex-
tract the header instances from the packets’ bit streams. The parse graph is encoded
as FSM in P4. The FSM structure is described by defining states and transitions
among the states. The programmer must define one start state for FSM of a P4
parser. P4 provides two logical final states named accept and reject, which are not
part of the FSM defined by the programmer. The programmer can define next tran-
sition to accept state or reject state from any state of the parser to notify successful
completion or failure packet in parsing, respectively (see code listing 5.1 for exam-
ple definitions of states start and parse_ipv4 states). Each state has a name and a
body comprising of a sequence of statements. The statements within a state’s body
describe the processing to perform when the parser transits to the state. As shown
in code listing 5.1, they can be local variable declarations, assignments, function in-
vocation(e.g., verify - to validate already parsed data) and method calls (to process
parsed fields using extract and invoke other parser blocks defined within the same
program). P4-compatible target implements the parser FSM in their programmable
parser unit [Gibb et al. 2013], where FSM is converted into state transition table
and loaded into the unit’s memory blocks. Packets parsed into header using defined
parser blocks instances are further processed using control blocks.

Listing 5.1: An example of Header Types and Parser in P4 [The P4 Language Con-
sortium 2017]

typedef bit <48> EthernetAddress;
typedef bit <32> IPv4Address;
// Standard Ethernet header

header Ethernet_h {
EthernetAddress dstAddr;
EthernetAddress srcAddr;
bit <16> etherType;

}
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// IPv4 header (without options)
header IPv4_h {

bit <4> version;
bit <4> ihl;
bit <8> diffserv;
bit <16> totalLen;
bit <16> identification;
bit <3> flags;
bit <13> fragOffset;
bit <8> ttl;
bit <8> protocol;
bit <16> hdrChecksum;
IPv4Address srcAddr;
IPv4Address dstAddr;

}

// Structure of parsed headers
struct Parsed_packet {

Ethernet_h ethernet;
IPv4_h ip;

}

// Parser section
// User -defined errors that may be signaled during parsing
error {

IPv4OptionsNotSupported ,
IPv4IncorrectVersion ,
IPv4ChecksumError

}

parser TopParser(packet_in b, out Parsed_packet p) {
Checksum16 () ck; // instantiate checksum unit

state start {
b.extract(p.ethernet);
transition select(p.ethernet.etherType) {

0x0800: parse_ipv4;
// no default rule: all other packets rejected

}
}

state parse_ipv4 {
b.extract(p.ip);
verify(p.ip.version == 4w4, error.IPv4IncorrectVersion);
verify(p.ip.ihl == 4w5, error.IPv4OptionsNotSupported);
ck.clear ();
ck.update(p.ip);
// Verify that packet checksum is zero
verify(ck.get() == 16w0, error.IPv4ChecksumError);
transition accept;
}

}
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5.2.1.2 Control Block

P4 provides a specific language constructs to program control block describing pro-
cessing of the parsed headers and other metadata in the parser block. Actions and
tables are among the fundamental packet processing abstractions declared within the
body of control block. P4 uses the same control block but with specialized signature
as the programming interface deparsing.

5.2.1.3 Programming match-action units

P4 language construct tables are used to describe packet processing in match-action
units of targets. In this thesis, we use Match-Action Tables (MATs) to refer tables
declared in P4 programs. Every definition of MAT must have a key (match key), ac-
tions and optionally, can have a default action, entries and additional properties, as
shown in example code listing 5.2 for ipv4_match table. The key specifies data plane
entities like header fields, program variables or metadata to be used to match values
at runtime in hardware lookup table of a match-action unit. A key is described using
a list of (field, match_kind) pairs, where field is a data plane entity and match_kind
is a constant specifying an algorithm to match the values at runtime in the lookup
table of the match-action unit. match_kind constants are useful to allocate specific
memory type and resources to implement lookup table and generate control plane
APIs used to manage entries in the MAT. Actions are code fragments processing
data(e.g., header fields, metadata etc.,) in data plane and may additionally contain
data that can be written by control plane and read by data plane. Actions used in
every MAT must be defined in the P4 program. A MAT must declare all the possible
actions which may appear in lookup table at runtime by assigning list of the actions
to its actions property. For example, Drop_action and Set_nhop actions are de-
clared in ipv4_match table definition in the example code listing 5.2. Actions allow
control plane to influence packet processing behavior of data plane, dynamically. P4
allows to declare default action for MATs, which can be dynamically changed using
control plane APIs. The default actions of a MAT is executed by the corresponding
match-action unit, whenever key values do not match any entry in the lookup table.
If the definition of a MAT does not have default action property declared and key
values do not match any entry in the lookup table, then packet processing continues
without any effect from the MAT. P4 allows to initialize look up tables by declaring
a set of entries in definitions of MATs. These entries are constant and can not be
changed by control plane at runtime, they can be only read. P4 allows to spec-
ify target architecture specific properties to pass additional information to compiler
back-end of the target (e.g., table size, lookup table implementation hints etc.,).

Listing 5.2: An example of match-action table in P4 [The P4 Language Consor-
tium 2017]

// Match -action pipeline section
control TopPipe(inout Parsed_packet headers ,

in error parseError , // parser error
in InControl inCtrl , // input port
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out OutControl outCtrl) {
IPv4Address nextHop; // local variable

/**
* Indicates that a packet is dropped by setting the
* output port to the DROP_PORT
*/
action Drop_action () {
outCtrl.outputPort = DROP_PORT;

}

/**
* Set the next hop and the output port.
* Decrements ipv4 ttl field.
* @param ivp4_dest ipv4 address of next hop
* @param port output port
*/

action Set_nhop(IPv4Address ipv4_dest , PortId port) {
nextHop = ipv4_dest;
headers.ip.ttl = headers.ip.ttl - 1;
outCtrl.outputPort = port;

}

/**
* Computes address of next IPv4 hop and output port
* based on the IPv4 destination of the current packet.
* Decrements packet IPv4 TTL.
* @param nextHop IPv4 address of next hop
*/

table ipv4_match {
key = { headers.ip.dstAddr: lpm; } // longest -prefix match
actions = {

Drop_action;
Set_nhop;

}
size = 1024;
default_action = Drop_action;

}

...
// More Table definitions
...

// Programming control flow
apply {

if (parseError != error.NoError) {
Drop_action (); // invoke drop directly
return;

}
ipv4_match.apply (); // Match result will go into nextHop
if (outCtrl.outputPort == DROP_PORT) return;

...

...
}
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In control block, programmers can invoke a MAT using its apply method, which is
a language construct provided by P4. Call to an apply method on a MAT instance
execute the MAT using match-action unit of the target. The call returns a struct
having a boolean and an enum as its fields. The return type struct and its member
enum are automatically generated by the P4 compiler. The boolean member specifies
if a matching entry is found in the lookup table or not. The enum member indicates
the type of action executed as a result the execution. The boolean and enum fields
can be used in if and switch construct to program packet processing control in the
control block.

5.2.1.4 Deparser Control Block

Packets are reassembled using the processed header instances by programming the
deparser control block. Deparsing is described using a control block having a manda-
tory specific parameter of type packet_out, as shown in code listing 5.3. P4 provides
a language construct, emit, to reassemble the packet. Emit takes header instance
as an argument and if the header instance is valid, it is appended to the packet. If
the header is not valid, no operation is performed. An example deparser block in
Section 5.3 appends Ethernet header, computes validity of IP header and if it is valid
(modified), computes a new checksum before appending it to the packet.

Listing 5.3: An example of deparser block in P4 [The P4 Language Consortium 2017]
// deparser section
control TopDeparser(inout Parsed_packet p, packet_out b) {

Checksum16 () ck;
apply {

b.emit(p.ethernet);
if (p.ip.isValid ()) {

ck.clear (); // prepare checksum unit
p.ip.hdrChecksum = 16w0; // clear checksum
ck.update(p.ip); // compute new checksum.
p.ip.hdrChecksum = ck.get();

}
b.emit(p.ip);

}
}

5.2.2 The P4Bricks System

P4Bricks enables network operators to deploy and execute multiple independently
developed and compiled P4 programs on the same reconfigurable target device.
P4Bricks allows network operator to define packet processing policy of the device
using P4 programs and composition operators. It merges P4 programs according to
packet processing semantics (parallel or sequential) specified by the network oper-
ator and runs the programs on the stages of the same hardware pipeline, thereby
enabling multiprocessing. P4Bricks comprises two components, called Linker and
Runtime. Linker takes as input the data plane configuration files generated by P4
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compiler from source files of independently written P4 programs along with composi-
tion operators to apply on the programs, see Figure 5.1. It merges the programmable
parser, pipeline and deparser blocks defined in the compiled configuration files of P4
programs according to packet processing policy described using parallel and sequen-
tial composition operators. It restructures the logical pipeline of P4 programs by
refactoring, decomposing and scheduling their match-action tables (MATs). Linker
does not assume knowledge of flow entries in MATs of P4 programs while merg-
ing the pipelines at link time. On the other hand, Runtime processes the MATs
flow updates from the control plane of P4 programs at runtime, in accordance with
composition operators and traffic isolation enforced by the network operator. The
Runtime component translates the dynamic table updates from the control planes
of different applications into the tables of the merged pipeline.

In order to merge the parsers, Linker has to identify equivalent header types and
header instances present in the different P4 programs to enable sharing of common
header types and instances. Two packet header types are said equivalent if they have
the same format. Linker maps header types to Unique IDentifiers (UIDs) and stores
the mappings between program specific IDs and UIDs in a table called header types
UID Table (UIDT). Equivalent packet header instances are identified while merging
the parse graphs defined in parser block of P4 programs. The parse graphs are merged
by matching the sampling locations of parsers in the packet bit stream and the
instances of header types extracted from the location. The mapping between program
specific IDs and UIDs is also stored in a table called header instances UIDT. As
merging parsers of two programs creates another parser, the composition operators
can be recursively applied to merge parsers of any number of programs.

P4Bricks considers the packet header instances (extracted or emitted) along
with User-defined and Intrinsic metadata associated with each packet as data plane
resources. We consider the packet header instances and intrinsic metadata as shared
data plane resources accessed for packet processing by the logical pipelines of the
different P4 programs. However, we do not share user-defined metadata of one pro-
gram with the other P4 programs because they are used by programmers to store
the program specific state during packet processing. Linker replaces program specific
IDs of header types and instances given by the compiler with the mapped ones in
UIDTs before merging pipelines according to the composition operators. This unifies
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different references (IDs and names) for equivalent header types and instances used
in P4 programs, thereby identifying sharing of data plane resources. As Intrinsic
metadata represents data structures and variable related to architecture and target,
they are uniformly referenced across independently developed P4 programs. User-
defined metadata of every program is always given a unique ID using program’s name
to restrict other programs from accessing it.

P4 allows to program packet deparsing using a control block having at least one
parameter of a specialized type, packet_out. A deparser control block allows to
generate the emit sequence of header instances to reassemble the packet, as defined by
the programmer. If the instance is valid, emitting a header instance will append the
instance to the outgoing packet. Similar to parser, two deparser blocks can be merged
if the P4 compiler generates a DAG of emit instances, which encodes all possible
emits functions after appending a header instance. However, as the P4 compiler
generates a list to append header instances, the topological order (providing relative
location of appending the header instance) can not be identified. The topological
order is essential requirement to merge instances of different header types at the
same level of the network stack. Let us consider that deparser of program PA emits
header instances in the order of Ethernet, IPv4, ICMP and TCP, whereas deparser
of program PB provides emit sequence of Ethernet, VLAN, IPv6 and UDP. Because
of the semantics of emit calls that append the header instance only if it is valid, and
the strict order imposed by the sequences of these calls, it is not possible to identify
the correct merged emit order of header instances. In particular, it is not possible
to deduct that the Ethernet header can be followed by either VLAN, IPv6 or IPv4.
In our current P4Bricks implementation, we use the merged parse graph to identify
the topological order among the header instances to be compatible with current P4
specifications. We note that if a future version of P4 makes use of DAGs to represent
deparser control block, this could allow merging of deparsers without dependence to
the parser block.

In P4, MATs are defined using 1) match keys composed of header fields and runtime
state data of the program, and 2) actions to be taken based on matching on the
keys. The packet processing control flow in the compiled configuration file of a
P4 program is commonly represented as a DAG, called control flow graph (CFG),
with each node representing packet processing using a MAT. The edges in CFG
represent control dependency among MATs capturing packet processing order in the
program. For each pipeline of a program, Linker decomposes the MATs CFG by
adding resources as nodes, splitting each MAT node into match and action control
nodes, and adding dependencies between control nodes and resource nodes according
to resources accessed. Linker generates read-write operation schedule graph (OSG)
for each resource from the decomposed CFG to capture all possible access orders
and types (read or write) of operations executed on the resource due to packet
processing control flow in the pipeline. Linker merges packet processing CFGs of all
the P4 programs and the OSGs generated from them for each resource according to
composition operators. Then, Linker refactors the MATs, regenerates the CFG and
maps the refactored MATs to physical pipeline stages while respecting the merged
read-write OSG for each resource, the MAT control flow of all the P4 programs and
available physical match memory type and capacity in the stages. We introduce two
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concepts to facilitate this restructuring : 1) Vertically decomposing the MATs into
sub MATs and 2) Performing out-of-order write operations in OSG of any resource.
These techniques allow mapping of a sub MAT on available physical match memory
type (e.g., exact, ternary or Longest Prefix Match) in the physical pipeline stage, even
if the complete MAT can not be scheduled to the stage due to control dependency.
Apart from creating new MATs and CFGs, Linker produces the mappings between
new MATs mapped to physical pipeline stages and the MATs of all the P4 programs.
It also prepares the MATs mappings and update schedules of the decomposed MATs
that will be used by the Runtime component, as shown in Figure 5.1.

Runtime executes in the control plane of the target device and acts as a proxy to the
control plane of P4 programs in order to manage their MATs defined in configuration
files. It uses UIDTs and MAT mappings generated during linking to translate MATs
update from the control plane of programs to the tables mapped to physical pipeline
stages by Linker. Runtime is responsible for maintaining referential integrity across
the sub MATs of a decomposed MAT to provide consistent MAT update. For every
decomposed MAT with its sub MATs mapped to different stages of physical pipeline,
Runtime updates the entries of the sub MATs according to the schedule generated
by Linker. Moreover, it regulates the flow updates from the control plane of all the
P4 programs to enforce flow space isolation dictated by the network operator.

5.3 Linker

In this section, we describe the static linking process of compiled configuration files
of multiple independently written P4 programs.

5.3.1 Merging Parsers and Deparsers

The parser block in P4 is modeled as a FSM, which encodes a directed acyclic parse
graph. Each vertex represents a state and the edges describe the state transitions.
A P4 parser FSM has one start state and two logical final states, accept and reject.
We call programmers defined states having transition to accept and reject states
as accept-transition and reject-transition states, as shown in Figure 5.2. Using extract
construct of P4, each state can extract zero or more header instances by advancing the
current index in the bit stream of the incoming packet according to the header type
definition. The other fundamental select construct of P4 allows to specify lookup
fields and value to program state transitions or identify next header types in the
packet. Apart from extract and select, P4 provides other constructs namely verify, set
and lookahead respectively for error handling, variable assignments and reading the
bits in the stream beyond the current index without incrementing it. If the boolean
condition in argument of verify statement evaluates to true, execution of successive
statements in the state continues without any interference. Otherwise, it results in
immediate transition to reject state. Hence, we consider the states consisting verify
statements as reject-transition states.
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Figure 5.2: Parser FSM Structure

Essentially, merging of two parsers requires creating a union of their Directed Acyclic
Graphs (DAGs) encoded as FSMs. However, as programs are independently imple-
mented, they may not use the same identifiers and names. So, it is necessary to
identify the equivalent header types, instances and parse states defined in the parser
blocks. Also, explicit state transitions to accept and reject states and implicit tran-
sitions to these states resulting from error handling function call verify are required
to merge for semantically correct merging of two parser FSMs. In the following we
define the notion of equivalence of header types, parse states and header instances
between two programs and explain how to find the equivalence relationship. Then,
we describe our method to merge the states and create union of DAGs and thereby
FSMs.

5.3.1.1 Equivalence of Header Types

A header type is defined as an ordered sequence of fields with bit-widths. Two fixed-
length header types are equivalent if their ordered sequences of bit-widths are the
same. Regarding variable length types, the length of the variable bit-width fields
must depend on the same fixed width field in the header types and their maximum
lengths must be identical. The length indicator field is uniquely identified by its bit-
width and its offset from the start of the header. Using these definitions, we create a
UID for each header type as an ordered sequence of bit-widths corresponding to its
fields. In case of a variable length type, a UID is created considering its maximum
possible length and the identifiers of the length indicator field. Header types UIDT
maintains the mapping between UIDs and program specific identifiers for all the
header types in all the programs.

5.3.1.2 Equivalence of Parse States and Header Instances

Parse states extract the bit streams into instances of header types defined in the
program. So, the equivalence of parse states and header instances are correlated.
The instances extracted from equivalent parse states are mapped to each other in
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the instance UIDT. A parse state of a P4 program’s parser is equivalent to a parse
state of another program’s parser if they satisfy the following conditions:

C1: both states extract bits from the same location in the bit stream of the packet.
So, the current bit index points to the same location in the bit stream of the
packet when the parsers visit the states.

C2: both states advance the current bit index by the same number of bits and
extract the equivalent header types.

C3: if both states have select expression, then the lookup fields used in the expres-
sions should be equivalent1.

These conditions cover the scenario of lookahead construct also, where the states
do not advance the current bit index but read the same set of bits to identify next
transition states or store the value.

Algorithm 2: Identifying equivalent parse states and header instances
input : Parse graphs PGA = (SA, TA) & PGB = (SB, TB) of programs A & B
output: EquivalentStatesMap - Equivalent States mapping

UIDTHeaderInstance - Header Instances mapping

1 while SA 6= ∅ ∨ SB 6= ∅ do // Topological-order traversal of parse graphs
2 StatesA ← GetNodesWithoutIncomingEdge(SA) // Nodes with

0-indegree
3 StatesB ← GetNodesWithoutIncomingEdge(SB)
4 foreach sA in StatesA do // Mapping equivalent pairs of states
5 foreach sB in StatesB do
6 if ExtrHdrType(sA) ≡ ExtrHdrType(sB) and

LookupFields(sA) ≡ LookupFields(sB) then // Verifying
conditions C2 and C3

7 Add (sA, sB) in EquivalentStatesMap
8 Map instances extracted from sA, sB in UIDTHeaderInstance

9 Remove sA, sB and their outgoing edges
10 break

11 for remaining s in StatesA ∪ StatesB do // Add mappings for unique
states

12 Add (s, s) in EquivalentStatesMap // Maps unique state to itself
13 Map instance extracted from s to itself in UIDTHeaderInstance

14 Remove s and its outgoing edges

Let us take an example of merging two parse graphs of P4 programs to process Data
center and Enterprise2 network traffic, shown in Figures 5.3a and 5.3b, respectively.
The parse graph of Data center has two VLAN states extracting double tagged
headers in two VLAN instances a and b, whereas the parse graph of the Enterprise

1We assume all keyset expressions in select to be known values at compile time.
2The parse graphs are inspired from Figure 3 in [Gibb et al. 2013].
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Figure 5.3: Merging parse graphs of two parsers

network has a single VLAN state extracting header into the single instance named
x. As shown in Figures 5.3c and 5.3d, when merging the two parse graphs, V LANx

should be equivalent to V LANa but not to V LANb. Indeed, only V LANx and
V LANa states extract the bits from the same current bit in the topological order
to satisfy condition C1. Algorithm 2 describes the steps to identify equivalent parse
states and header instances. First, we select the set of nodes (i.e., states) having 0
in-degree at each iteration for each parser graph in order to traverse the parse graphs
in topological order (lines 2-3). Then, we find the equivalence states by verifying C2
and C3 conditions for all possible pairs of states from the two sets (line 6). After that,
we remove the 0 in-degree nodes with their outgoing edges and continue iterating
till all the nodes are visited. In the worst case scenario, each parse graph can have a
start state connected to all the remaining nodes (i.e., star topology), foreach loops in
lines 4-5 will execute the if condition in line 6 for every pair of states (sA, sB) from
SA × SB. Hence, the worst case time complexity of Algorithm 2 is O(|SA| × |SB|).

5.3.1.3 Traffic Isolation and Error Handling

Parsers of two programs may transit to different final states (accept or reject) while
parsing the same packet’s bit stream. In case of error detected by the verify statement
in a parse state of one parser, the parser transits to reject state. However, the
equivalent state from another parser may not have verify statement with the same
condition and can transit to different states instead of the final reject state. Moreover,
we illustrate the need of traffic isolation emerging from different possible transitions
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from equivalent states of two parsers with the example shown in Figure 5.3, where
one parser transits to a final state and another to an intermediate state from the
equivalent state. In case of double tagged VLAN packet, the Enterprise program
transits to reject state after extracting first VLAN header (V LANx). However, the
Data center program continues extracting next VLAN header. Hence, parsed packet
headers of double tagged VLAN traffic should be exclusively processed by the MATs
of the Data center program and MATs of the Enterprise program should process
VLAN traffic only if the packets have a single tag. Another example, if the match
keys of MATs defined in both the programs use only TCP header fields, the IPv6
based TCP traffic should not be processed by the MATs of the Data center program.
In order to provide traffic isolation emerging from parsers resulting in different final
states for the same packet and seamless error handling to all the parsers, we devise
an error handling mechanism constituting an intrinsic metadata field and P4Bricks
target specific implementation of the verify call.

We add an intrinsic metadata field, called indicator, with a bit width equal to the
number of P4 programs to be merged. Each bit of this field indicates validity of the
packet header instances for a program. In every state of the merged parse graph,
we add an assignment statement masking the indicator field with a binary code.
The binary code specifies per program validity of the packet if the parser transits
to the state. Moreover, we appropriately set the bits of binary code, while merging
parsers’ accept-transition and reject-transition states to indicate the validity of packet
header instances for the programs according to the final states in their parse graphs.

We prepare a binary code for each merged state while merging equivalence parse
states of parsers. First, we assign the binary code according to the equivalence re-
lationship among the parsers states. For instance, in the example of Figure 5.3c,
V LANb and IPV 6 will mask the indicator field with 0b01 and 0b10 binary codes.
Next, when an accept-transition state from one parser (UDP of Enterprise, Fig-
ure 5.3b) is required to merge with equivalent intermediate state (UDP of Data
Center, Figure 5.3a) from another, we set the bit in the binary code correspond-
ing to the former parser (Enterprise) in all successive states in the merged parser.
Hence, V XLAN will mask the indicator field with binary code 0b11, even if it does
not have any equivalent state in Enterprise parser. The merged parse graph transits
to final reject state only when all the parsers transit to their logical reject state,
otherwise merged parser transits to final accept state.

Linker replaces the verify statements in compiled P4 configuration file to P4Bricks
data plane architecture specific implementation with the following signature.

extern void verify(in bool condition , in error err , in int
program_id , inout bit <W> indicator);

For each P4 program, Linker allocates the parser error variable to hold error code
generated by the program’s parser, if the error base type is defined in configuration
files of the program. Here, program_id is used to identify the parser error variable
and set it to err, if condition evaluates to false. Also, the bit associated with
the caller P4 program in indicator is set to 0 to indicate invalidity of the packet
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header instances for the program. The semantics of the verify statement for P4Bricks
enabled data plane architecture is given below.

P4BricksParserModel.verify(bool condition , error err , int
program_id , bit <W> indicator) {
if (condition == false) {

P4BricksParserModel.parseError[program_id] = err;
indicator = indicator & (~(1 << n));

}
if (indicator == 0)

goto reject;
}

We emphasize here that P4 programmers use the verify statement with the signature
provided by the P4 language. The Linker component in P4Bricks is responsible
for translating the verify statements of each program by invoking the calls with
appropriate values of the indicator field and program_id arguments.

5.3.1.4 Merging of Parse Graphs

We begin with merging the select transitions (i.e., edges in parse graphs) of two
equivalent states by taking union of their keysets to create a single state. Regarding
transition state of each select case, we find their equivalent state from the mappings
and recursively merge them as described in Algorithm 3. If the two states have the
same keyset, the corresponding transition states must be equivalent and we merge
them too. We note that for a same keyset, two parsers can not transit to two different
states. For instance, the value 0x0800 of EtherType can not be used to transit to
IPv4 state by one parser and to IPv6 state by the other. Allowing such ambiguous
transitions creates non-deterministic FSM, resulting in a scenario where a packet can
be parsed in different ways, which creates an ambiguity during packet processing. In
the worst case scenario, there may not be any equivalent pair of parse states. Hence,
Algorithm 3 will call MergeStates function (|SA| + |SB|) times, accessing all the
states the parse graphs once and merging their transitions based on keysets. Hence,
the worst case time complexity of the algorithm is O(|SA|+ |SB|+ (|TA| × |TB|)).

In the case of sequential processing, merging the parsers of two programs is not
sufficient to find the equivalent header instances between them. Let us consider
an example of chaining of encapsulation-decapsulation network functions, where the
first program pushes new header instances and the second parses the pushed header
instances to process traffic in the network. Executing them on the same target
with sequential composition requires identifying the equivalence relationship between
header instances. For this purpose, we map the topological order of instances parsed
from the merged parse graph to the sequence of emitted header instances in the
deparser control block of the first program. Algorithm 4 describes detailed steps
for it. In algorithm 4, we iteratively map 0 in-degree instances from the merged
parser to the emitted instance from the deparser of the first program in sequence
and removing instances from both. At each iteration, we search for an unmapped
instance of merged parser having equivalent header type to the emitted unmapped
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Algorithm 3: Merging of parse graphs
input : Parse graphs PGA = (SA, TA) & PGB = (SB, TB) of programs A & B

EquivalentStatesMap - States mapping

1 Function MergeParseGraph(PGA, PGB)
2 InSA ← InitState(SA), InSB ← InitState(SB)
3 MergeStates (InSA, InSB, 0b0) // Merge init states of both parse graphs

4 Function MergeStates(SA, SB, IndF lag) // Recursively merge parse states
5 if SA and SB are already merged then
6 return merged state SMab

7 Set bits for program A and B in IndMaskMab

8 IndMaskMab ← IndMaskMab ‖ IndF lag
// Merge state transitions using select case-lists of SA and SB

9 SB.KeysetToNextStateMap ← CreateMap (SB.SelectCaseList)
10 foreach (KeysetA, NSA) pair in SA.SelectCaseList do
11 NSB ← SB.KeysetToNextStateMap.Find(KeysetA)
12 if NSB then // SA & SB have transitions for the same keyset

// Next States must be Equivalent
13 Assert (EquivalentStatesMap (NSB, NSA) == 1)
14 Remove KeysetA from SB.KeysetToNextStateMap

15 else // Unique keyset across the case-lists
16 NSB ← EquivalentStatesMap.Find(NSA))

17 if SA is accept-transition state then
18 set bit for program A in IndF lag // packet valid for program A

19 NSMab ← MergeStates (NSA, NSB, IndF lag) // Recursive call
20 SMab.AddSelectCase(KeysetA, NSMab) // Add Merged State

transitions

21 for remaining (KeysetB, NSB) pairs in SB.KeysetToNextStateMap do
22 Repeat lines 16-20 using KeysetB, NSB, SB
23 return SMab
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instance. If there is any such instance pair, we create an equivalence mapping be-
tween them. Similar to Algorithm 2, the worst case time complexity of Algorithm 4
is O(|EmitHIList| × |SM |).

Algorithm 4: Identifying equivalent header instances in sequential processing
input : PGMerged = (SM , TM ) Merged Parse graph

EmitHIList - Emit order sequence of header instances

1 while EmitHIList not empty ∨ SM 6= ∅ do
2 StatesB ← GetNodesWithoutIncomingEdge(SM)
3 foreach hiE in EmitHIList do // Mapping instances using header type
4 foreach sM in StatesB do
5 hiM ← GetHeaderInstanceExtractedFromState (sM )
6 if HdrTypeof(hiE) ≡ HdrTypeof(hiM) and hiM is unmapped

then
7 Map (hiE , hiM ) in UIDTHeaderInstance

8 Remove sM and their outgoing edges
9 break

10 Remove hiE from the list

Apart from select, extract and verify, parse states may have assignment, variable and
constant declarations statements. Variables and constants declared in any program
are user-defined metadata and are not shared with other programs. We concatenate
the lists of assignment, variable and constant declaration statements used in equiv-
alent states along with translated verify statements, even though they may perform
redundant operations (e.g., verifying checksum or fields’ value). Our current design
for Linker fails to merge parsers of P4 programs and stops linking, if any of the
equivalent parse states has assignment and method call statements modifying the
shared data plane resources.

5.3.1.5 Deparser

P4 programmers can use emit function calls in a specialized control block defined for
packet deparsing. If the header instance specified in a function argument is valid,
it is appended to the packet else the function call does not perform any operation.
To merge deparsers, we use merged parse graph to identify topological order of
header instances. We note that the use of merged parse graph is not a semantically
correct approach for finding the topological order among header instances in the
deparsers of programs. Indeed, a parser may use a completely different network
protocol stack to extract and process header instances than the one used in the
deparser to reassembly the packet. More precisely, P4 programmer may (1) define
parser to extract instances of some of the defined header types thereby decapsulating
packet data from the header instances, (2) process the packet and finally (3) emit
instances of disjoint header types to encapsulate the packet data before forwarding
it to a interface. In such scenario, use of merged parse graph does not provide
topological order among header instances to be emitted before sending out packets.
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Hence, we restrict merging to P4 programs, which use the same network protocol
stack for parsing and deparsing of packets and do not perform encapsulations. This
allows the merging of P4 programs to be compatible with semantics of deparser
control block described in current P4-16 language specification version 1.0.0 and still
find topological order of header instances emitted by deparsers. In this work, we
generate emit sequence of header instances by performing topological sort on the
merged parse graph. We note that, we can perform sequential merging of parsers
of an encapsulating P4 program followed by a decapsulating P4 program, because
DAG in parser of decapsulating program is indirectly providing topological order
of encapsulated header instance. However, in case of merging deparsers of multiple
decapsulating programs, the topological order of header instances being emitted can
not be identified with the current P4 specifications, thereby restricting the use of our
proposal.

5.3.2 Logical Pipelines Restructuring

First, we replace all the occurrences of program specific identifiers of header types
and instances with their UIDs using the mappings in the UIDTs generated while
merging the parser and deparser blocks. Then, we decompose CFG stored in each
P4 program’s configuration file generated by P4 compiler. We create an OSG for
each data plane resource from the decomposed CFG of each P4 program to capture
all possible sequences of operations performed on the resource by the program. We
describe decomposition of CFG and construction of OSG in Section 5.3.2.1. For
each data plane resource, we apply composition operators on its OSGs generated
from multiple P4 programs and create a single OSG for the resource, as explained in
Section 5.3.2.2. This OSG captures all possible sequences of operations performed
on the resource under given composition of P4 programs. Next, we merge decom-
posed CFGs of P4 programs according to composition operator by adding required
control dependencies across the nodes of CFGs (Section 5.3.2.3). Also, we add de-
pendencies from indicator metadata field to the control node without incoming edge
in decomposed CFG of each P4 program. Such a control node specifies entry point
of packet processing control flow of a given P4 program. Using the decomposed-
and-merged CFGs and each data plane resource’s OSG, we refactor original MATs
of P4 programs and map them on physical pipeline stages. In Section 5.3.2.4, we
describe the mechanism to map and refactor MATs on physical pipeline stages. To
facilitate refactoring of MATs and mapping them on physical pipeline stages while
respecting dependencies in merged OSGs and decomposed CFGs, we introduce 1)
Vertically decomposing the MATs into sub MATs and 2) Performing out-of-order
write operations in OSG of any resource in Sections 5.3.2.5 and 5.3.2.6, respectively.

5.3.2.1 Decomposing CFGs and Constructing Operation Schedules

First we decompose CFGs and capture schedules of the operations performed on
each data plane resources. Each CFG node represents packet processing by a MAT
involving match and action phases. We split each CFG node and reinterpret the
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Figure 5.4: An example of CFG decomposition and OSG construction for a resource

packet processing phases as match and action control nodes operating on shared
data plane resources, as shown in Figure 5.4a.

Match control nodes can only perform read operations on resources representing key
fields. Action control nodes can perform read and write operations on resources,
because all the actions declared within a table may take resources as input and
modify them.

We add stage dependency from match to action control node of the same table. We
decompose the CFG shown in 5.4b using this MAT representation. Figure 5.4c shows
an example where several control nodes in the pipeline access a single resource R1.
The decomposed CFG captures all control dependencies of the P4 program among
control nodes and their operations on the data plane resources. CFGs generated by
the P4 compiler are DAGs, but decomposed CFG may not be DAG. Because, we
added every data plane resource as a graph node and a resource can be accessed by
different control node for read and write operations, thereby creating cycles. Fig-
ure 5.4c does not explicitly show any cycle, because resource node R1 is repeated for
legible pictorial view of decomposed CFG diagram. Otherwise, R1-M1-A1-M2-A2-R1
is one of the many possible cycles.

We create an operation schedule graph (called OSG) for each resource from the de-
composed CFG to capture all possible sequences of operations that could be per-
formed on the resource at runtime. As the CFG generated by P4 compiler for a P4
program is a DAG, so is the OSG of each resource derived from the CFG. Because,
we merely split each CFG node into match and action control nodes, add stage de-
pendency between them but do not add any packet processing control edge in CFG
for decomposition. Within an OSG, nodes can be of two types (node-R, node-W ),
depending on the type of operation (i.e., read or write) performed on the resource by
either a match or an action control node. Figure 5.4d shows the OSG for resource R1
created from the graph of Figure 5.4c. Even if the decomposed CFG of a program
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Figure 5.5: Two Different Merging of Resource’s OSGs

has cycles, all the access to resource nodes in a cycle follows a directed path in OSGs
of the resources. For each data plane resource, we create one OSG per P4 program
(derived from its CFG) and we merge all the OSGs by applying the composition
operators specified by the network operator.

5.3.2.2 Applying Composition Operators on Resources

Multiple P4 programs can process traffic in parallel provided that they are processing
disjoint data plane resources (or traffic flows). When processing disjoint data plane
resources, there can only be one program with write operations on a given data
plane resource and all the read operations on this resource from other programs
must complete before any possible write operation.

Figure 5.5a and 5.5b show an example of OSGs for a resource derived from CFGs of
two programs X and Y. All the read operations of the graph from Ymust be scheduled
before any write operations of the graph from X. To apply parallel composition for
shared traffic flows, we add dependencies from all possible last reads of schedule
graph from Y to all possible first writes of schedule graph from X, as shown in
Figure 5.5d. In case of programs operating on disjoint traffic flows, we do not add
any node dependency across the OSGs and consider merged graph as disconnected
acyclic graph. In this case, Runtime enforces isolation of flows of programs in their
MATs.

In case of sequential composition, once the first program completes all its operations
on a data plane resource then and only then the next program is allowed to access the
resource. We take an example of merging resource’s OSGs from two programs X and
Z, shown in Figures 5.5a and 5.5c, according to X after Z sequential composition. To
apply the sequential composition’s constraints, we add dependencies from all possible
last operations of X to all possible first operations of Z as shown in Figure 5.5e.
Similarly, we can merge resource’s OSGs using any number of P4 programs by adding
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appropriate node dependencies among them, according to the specified operators and
order. We use the merged OSGs of all the data plane resources, while restructuring
the logical pipelines and mapping the MATs to physical pipeline stages.

5.3.2.3 Merging Decomposed CFGs

We merge decomposed CFGs by creating union of their nodes (i.e., data plane re-
source and control nodes) and edges. Every decomposed CFG has unique control
nodes and control edges compared to other programs’ decomposed CFGs. Because
P4 programs may access shared data plane resources and perform operation on them,
graph union connects decomposed CFGs of the programs through common resource
nodes. If programs are accessing disjoint set of data plane resources, union of de-
composed CFGs creates disconnected graph. The disconnected graph implies that
merged program can have multiple control flows and MATs of each CFG can be
scheduled and mapped on physical pipeline stages without any dependency from
other CFGs’ MATs. We add dependencies between indicator metadata field, created
while merging parsers, and the match control node representing entry point of packet
processing control flow in decomposed CFG of each P4 program. It allows to enforce
required packet processing isolation emerging from packet parsing using the merged
parser.

In case of parallel composition, we do not need to add any dependencies across the
control nodes, as all the programs should process the assigned traffic flows. In case of
sequential composition, some actions from the first program must be executed before
the next program can start processing, even if there is no dependencies between op-
eration schedules of any shared data plane resource from the composition constraint.
For example, drop actions from a firewall program must be scheduled before any
possible action for the next program. Therefore we add control node dependencies
from such specific action control nodes of the first program to all the control nodes
without incoming control edge of next program.

The merging of decomposed CFGs captures all possible control flow paths of each
P4 program’s CFG under specified composition. Similar to decomposed CFG,
decomposed-and-merged CFGs can also have cycles. Every access sequence on every
resource node resulting from a cycle should follow a corresponding directed path in
the resource’s merged OSG. However, under parallel composition, there may not ex-
ist a directed path for access sequences of all the resources in their respective merged
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Figure 5.7: DAG representation of physical pipelines in reconfigurable devices [Jose
et al. 2015]

OSGs. Such a scenario emerges when program P1 writes on a set of resources read
by program P2 and P1 reads a disjoint set of resources written by P2. Figures 5.6a
and 5.6b shows decomposed CFGs of single table programs P1 and P2 both accessing
resource R1 and R2. The cycle, R1-M1-A1-R2-M2-A2-R1, results in a sequence of
operations (M1-R, A2-W) on resource R1 and (A1-W, M2-R) on resource R2 in the
decomposed-and-merged CFG(Figure 5.6c). In the merged OSG of resource R1, a
corresponding path can be found for the sequence of operations on it. However, for
resource R2 no corresponding path can be found in its merged OSG (Figure 5.6e).
If we consider the other direction R2-M2-A2-R1-M1-A1-R2 in the cycle, no corre-
sponding path can be found in merged OSG of resource R1 instead of R2. So, in
any case either of the resources is operated out of its scheduled order represented
in OSG of the resource. To perform required operation sequence resulting from a
cycle on a resource, we perform out-of-order write operation with respect to the re-
source’s merged OSG not having directed path according to the operation sequence.
We describe the procedure to schedule out-of-order write operation in OSGs in Sec-
tion 5.3.2.6. Next, we discuss usage of merged OSGs and decomposed CFGs of the
P4 programs to refactor MATs defined in the programs and map them on physical
pipeline stages.

5.3.2.4 Refactoring MATs and mapping to physical pipeline stages

Physical pipeline of a hardware target can be modeled as a DAG of stages, as shown in
Figure 5.7, with each stage having different memory types with finite capacities and
match capabilities, as described in [Jose et al. 2015]. The DAG provides the execution
order of stages and possible parallelism among them. Moreover, decomposed-and-
merged CFGs and merged resources’ OSGs provide the scheduling order constraints
on 1) match and action control nodes and 2) operations performed by these nodes
on the resources. We refactor MATs and orderly map them to the physical pipeline
stages by recomposing match and actions control nodes of the decomposed-and-
merged CFG while respecting the scheduling order and the match stage constraints,
as outlined in Algorithm 5.

In OSG of a resource, a node-W (specifying write operation on the resource) with-
out any incoming edge is considered as schedule-ready. Schedule-ready nodes satisfy
all scheduling constraints and are considered as available to map to pipeline stages.
Also, a node-R (read operation) without any incoming edge along with its exclusive
descendants with read operation type are considered schedule-ready; e.g., A2Z-W ,
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M1Z-R and M1Y -R, M1X -R, A2Y -R, M3Y -R in Figures 5.5c and 5.5d, respec-
tively, are schedule-ready nodes. In a decomposed CFG, a control node without any
incoming control edge is considered as control-ready. If a control node has all of its
read operations on resources in ready state, it is considered as complete read-ready.
A control node without any incoming edge is considered as schedule-ready having no
control dependency as well as all of its operations on resources are schedule-ready.
Essentially, a complete read-ready and control-ready node is schedule-ready. We se-
lect the physical pipeline stages according to their execution order (topological order)
to map the refactored MATs while respecting the constraints of stages (line 2). To
efficiently utilize the match stage’s memory, we relax memory capacity constraints
originating from the width of MATs by vertically decomposing them. This allows
allocating the match stage memory at the granularity of individual key field instead
of all the key fields required to match the control node.

Memory allocation may map either a subset or all of the key fields of a match control
node, thereby creating sub matches of the logical MAT. We allocate memory of the
current physical match stages by selecting schedule-ready node-R pertaining to match
control nodes from OSGs for all resources while respecting memory match type and
capacity constraints of physical stages (line 5). This approach may map the logical
match of a MAT defined in a program to multiple nonparallel match stages. We focus
on realizing match stage memory allocation at granularity of match operation on
individual data plane resources (i.e., individual key field) rather than presenting any
specific algorithm to select match operations to map on memory stages. Thereby, we
omit the description of SelectionOperations function used in line 5 in Algorithm 5.
Note that we skip the time complexity analysis of Algorithm 5, as it depends on the
implementation the function SelectionOperations, which is not described in this
thesis. Once read-ready operations of resources are mapped to the match stage, we
remove the nodes and edges from the schedule graphs by making all their predecessors
point to their respective successors (lines 9-11). For all the sub matches and match
control node not having its action node in complete read-ready state, we create sub
MATs as described in section 5.3.2.5 and allocate the actions to the action stage
of the physical pipeline (lines 15-18). If any control-ready and complete read-ready
match node is mapped to the stage, we schedule its dependent action node provided
that it is at least complete read-ready. Also, if any write operation from the action
node is not schedule-ready (line 20), we perform out-of-order write to map the MAT
by recomposing match and action control nodes as detailed in 5.3.2.6.

5.3.2.5 Decomposing logical MATs into sub MATs

For every match control node, we recompose a MAT using schedule-ready read op-
erations allocated by a selection algorithm to map on multiple nonparallel stages.
If all the read operations from a match control node are not mapped to the same
stage by used selection algorithm, recomposition creates a sub MAT and vertically
decomposes the logical MAT corresponding to the match control node. We create
a new data plane resource of user-defined metadata type for every decomposition of
a logical MAT. We term this resource as the foreign key field associated with the
recomposed sub MAT and its logical MAT. The bit width of the foreign key field
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Algorithm 5: Mapping MATs to Physical Pipeline Stages
input : PGphysical = (S, E) - DAG of physical pipeline stages S & edges E

OSGm(r) - merged OSG of all the resource r ∈ R
dCFGm - merged all the program’s decomposed CFGs

output: MATMappings - Maps every MAT to Ordered list of its Sub MATs

1 while S is not empty do // Topological-order traversal of PGphysical

2 Smatch ← GetNodesWithoutIncomingEdge(S)
3 foreach r in R do
4 ReadyMatchOps[r] ← GetSchedReadyReadMatchOpNodes (OSGm(r))

5 AllocatedOps[r] ← SelectionOperations (ReadyMatchOps[r], Smatch)
6 foreach r in R do
7 foreach Op in AllocatedOps[r] do
8 Remove edge representing Op in dCFGm

9 foreach PrevOp in Predecessor (Op) do
10 foreach SuccOp in Successor (Op) do
11 Add PrevOp to SuccOp directed edge in the OSGm(r)

12 MappedMatchCN ← GetMatchControlNodesFromOps (AllocatedOps)
13 foreach MatchCN in MappedMatchCN do
14 ActionCN ← GetNextActionControlNode (MatchCN)
15 if MatchCN or ActionCN is not complete read-ready or MatchCN is

not control-ready then
16 Create a sub MAT using schedule-ready Ops by MatchCN
17 Add Foreign key field resource node in S
18 Push sub MAT in mapped ordered list for the logical MAT in

MATMappings

19 else // MatchCN is schedule-ready and ActionCN is complete read-ready
20 if ActionCN has not schedule-ready write op on a resource r then
21 Perform out-of-order write in OSGm(r)

22 Remove Smatch from PGphysical with their incident edges

23 return MATMappings
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depends on the length of the logical MAT defined in its program. We vertically de-
compose logical MAT and add a new data plane resource field in order to efficiently
use the memory of physical pipeline stages. We expect that the size of key fields of
the sub MAT mapped on the physical stage is larger than or equal to the width of
the foreign key field, thereby efficiently utilizing memory in the current match stage.
In this sub MAT, we add a new action setting the foreign key field to the given

row ID on successful match at runtime. We consider sub MAT as secondary table
having an action setting the foreign key field. Next, we remove dependency edges to
the match control node from the selected key field resources. We add the resource
dependency of the foreign key field to the match control node and add corresponding
read-ready operations in the OSG of the field. In successive iterations of mapping
physical stages, a sub MAT recomposed with the foreign key field resource in its
match key fields is considered as the primary table being referenced by foreign key
of the secondary table. A sub MAT can be primary table associated to multiple
secondary tables referenced by their respected foreign keys. This creates multiple
sub MATs using subsets of the match key set, hence vertically decomposing the MAT
into multiple sub MATs. We store mappings between the decomposed MAT and its
sub MATs (line 18). To realize flow updates in the decomposed MAT, all of its sub
MATs are required to be updated with consistency at runtime. As the logical MAT
is decomposed in multiple sub MATs with foreign key references, we create update
schedule for sub MATs of every vertically decomposed logical MAT. The schedule
provides a sequence to update sub MATs such that primary sub MAT is followed
by its secondary, thereby maintaining referential integrity and consistency across the
sub MATs for match and actions on foreign key fields. We arrange sub MATs of
a vertically decomposed MAT in reverse topological order of their mapped physical
pipeline stages. We push new sub MAT in front of the update sequence of sub MATs
for the vertically decomposed MAT (line 18). The Runtime system uses this schedule
to update the sub MATs mapped to the stages of the pipeline.

5.3.2.6 Out-of-order Write Operation

To explain scheduling of out-of-order write operations in an OSG, we start with the
simplest case of an operation schedule (OS) list, followed by an OS tree and we
finally address the directed acyclic graph case for OSG, as shown in Figure 5.8. Let
us consider the first case shown in Figure 5.8a, where a resource’s operation schedule
is a list describing the sequence of operations on it. A3-W is scheduled out-of-order
by performing all the ancestor operations of the node on the dummy resource R1’,
hence we split the schedule into two and move the one with all the ancestors to the
dummy resource R1’. In case of a tree (shown in Figure 5.8b with A4-W as out-of-
order write node), we additionally move all the read operation nodes (e.g., M2-R)
before any write operation, exclusively reachable from the ancestors (e.g., M1-R) of
the out-of-order write node. Finally, a tree can be transformed to a DAG by adding
edges or paths from a node’s siblings or ancestors to its descendants or itself, as
shown in Figure 5.8c. In this case, the descendants of an out-of-order write node
reachable using alternative (not involving the write node, e.g., M5-R) paths from its
ancestors can be scheduled only once all of its other predecessor nodes (e.g., M2-R)
are scheduled, including the predecessor of the out-of-order write node (i.e., M1-R).
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Also, the value to be used for such nodes (M5-R) depends on two resources (R1
and R1’) and during execution either of the resource will hold valid value depending
on control flow of the execution at runtime. Hence, we add a flag as a data plane
resource, a match (MX) and an action node (AX) nodes to copy the value of R1’
to R1 by matching on the flag as shown in Figure 5.8d. This adds one MAT in the
merged pipeline in order to recompose and map the MAT to the current pipeline
stage using actions node not having all the write operations in ready state.
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Figure 5.8: Out-of-order Write Operations (OWOs) and Types of Operation Sched-
ules

5.4 Runtime

The Runtime system aims to manage the MATs refactored and mapped to the physi-
cal pipeline stages by Linker while restructuring the logical pipelines. It allows every
P4 program’s control plane to insert only the subset of flows assigned to the program
by the network operator into the MATs of the pipelines. In order to apply parallel
composition operator on disjoint traffic flows, Runtime only needs to enforce traffic
flow assignment constraints on programs, because Linker does not merge MATs of
the different programs while restructuring the pipelines. Runtime receives the MAT’s
flow update from every P4 program’s control plane and uses the header instances
UIDT to translate the flow updates from program’s header IDs to UIDs given by the
Linker. The other major functionality of Runtime is to provide consistency while
updating the decomposed MAT, whose sub MATs are mapped to multiple nonparal-
lel stages of the physical pipeline. Runtime provides consistency for updates logical
MATs of a program, because MATs may be vertically split by Linker when logical
pipelines are restructured. Runtime maintains referential integrity among the sub
MATs of a decomposed MAT while performing Add, Delete and Modify flow updates.
Runtime adds, updates and modifies flow entries in a decomposed MATs while re-
specting the update schedule of sub MATs of the decomposed MAT, generated by
the Linker.
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Algorithm 6: Add Flow at Runtime in a Decomposed MAT
input : Flow F = {Mkfv, A} with match Mkfv of key field-value & actions set A

mat - UUID of the table to update flow F
MATMappings - Maps every MAT to ordered list of its Sub MATs

1 Function AddFlow(F , mat, UpdateSchedList)
2 UpdateSchedList ← MATMappings.get(mat)
3 ActionSet ← F (A), MatchKFSet ← F (Mkfv)
4 foreach secondary SubMAT in ReverseOrder (UpdateSchedList) do
5 if not HasMatch (SubMAT, MatchKFSet) then
6 Create a new rowID for ForeignKeyField in Action of SubMAT

7 else
8 ForeignKeyField, rowID ← GetActionEntry (SubMAT, MatchKFSet)

9 ActionSet.Add(SetActionEntry (ForeignKeyField, rowID))
10 MatchKFSet.Add(MatchKeyValue (ForeignKeyField, rowID))

11 foreach SubMAT in UpdateSchedList do
12 if SubMAT has no flow entry for its subset of MatchKFSet then
13 Add Flow entry using subsets of MatchKFSet & ActionSet
14 Remove Mkfv & A of SubMAT from MatchKFSet & ActionSet

Linker may decompose a logical MAT by creating sub MATs using subsets of its
match key fields. Flow entries of a decomposed MAT may have the same values for
match key fields of some of its sub MATs. As sub MATs match flows using subsets
of key fields of decomposed MATs, multiple flow entries of a decomposed MAT may
share the same flow entry in sub MATs. At runtime, every secondary sub MAT
assigns a row ID value, unique across the entries in the sub MAT, to its foreign key
field in its action on successful match its key fields. Primary sub MATs match flows
using the foreign key fields and other key fields of the decomposed MAT to further
specialize the match on the flow entry and eventually execute the actions specified
for the flow entry in the decomposed MAT.

Algorithm 6 realizes addition of new flow entry in a decomposed MAT. Before per-
forming insertion, we match key fields of each sub MAT in reverse order of update
schedule (packet processing order) to identify every sub MAT already having flow
entry for its subset key fields of new flow of the decomposed MAT (line 4). If a sub
MAT does not have matching flow with its subset key fields of new flow (line 5), we
create new row IDs for the foreign key field of the sub MAT. We create a match and
an action for the foreign key field (lines 9-10). Next, we insert flow entries in all the
sub MATs in order of update schedule generated by the Linker. If a sub MAT does
not have flow entry with its subset of key fields and foreign key fields, we add the
corresponding new flow entry in the sub MAT (lines 12-14).

To delete a flow entry of a decomposed MAT (see Algorithm 7), we need to identify
the flow entry stored across the sub MATs with intermediate foreign key fields. We
match sub MATs in packet processing oder to find values of all the foreign key
fields set by actions in sub MATs and store the sub MAT and foreign key field
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Algorithm 7: Delete Flow at Runtime in a Decomposed MAT
input : Flow F = {Mkfv, A} with match Mkfv of key field-value & actions set

A
mat - UUID of the table to update flow F
MATMappings - Maps every MAT to ordered list of its Sub MATs

1 Function DeleteFlow(F , mat, UpdateSchedList)
2 UpdateSchedList ← MATMappings.get(mat)
3 MatchKFSet ← F (Mkfv),
4 foreach SubMAT in ReverseOrder (UpdateSchedList) do
5 ForeignKeyField, rowID ← GetActionEntry (SubMAT, MatchKFSet)
6 MatchKFSet.Add(MatchKeyValue (ForeignKeyField, rowID))
7 KeyMATMap.Add(ForeignKeyField, SubMAT)

8 foreach SubMAT in UpdateSchedList do
9 if SubMAT is in KeyMATMap then

10 Delete Flow entry fsub having subset of MatchKFSet

11 foreach (ForeignKeyField, rowID) in fsub do
12 if HasMatch (SubMAT, (ForeignKeyField, rowID)) then
13 SecSubMAT ← KeyMATMap.GetSubMAT(ForeignKeyField)
14 Remove SubMAT match keys from MatchKFSet

mapping.(lines 4-7). We match key field values of sub MATs in order of update
schedule to delete flow entry of a decomposed MAT (line 8). We delete match entry
from a secondary sub MAT (line 9) only if the foreign key fields values, set by the
corresponding action, are not used for matching in primary sub MATs along with
key fields of the decomposed MAT. If a primary sub MAT has multiple match entries
having the same values for foreign key fields and different values for flow key fields,
we do not further delete entries from secondary sub MATs of the decomposed MAT
(lines 11- 14).

To update a flow entry of a decomposed MAT (Algorithm 8), we identify the flow
entry stored across the sub MATs along with intermediate foreign key fields. We
match key fields of flow pertaining to each sub MAT in reverse order of the update
schedule (lines 4-8). The last primary sub MAT matching the remaining key fields of
the flow and the foreign key fields uniquely identifies match entry of the decomposed
MAT (line 9). Finally, we update action entry in the primary sub MAT (line 10).

A logical MAT can be decomposed in a number of sub MATs equals to the number
of physical pipeline stages. Hence, the time complexity of Algorithms 6, 7 and 8 is
O(|S|), where S stands for the set of stages in the physical pipeline.

5.5 Conclusion

In this chapter, we outline our first design to compose independently written P4
programs. We describe methods used to merge parser blocks, use ID mappings
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Algorithm 8: Modify Flow at Runtime in a Decomposed MAT
input : Flow F = {Mkfv, A} with match Mkfv of key field-value & actions set

A
mat - UUID of the table to update flow F
MATMappings - Maps every MAT to ordered list of its Sub MATs

1 Function ModifyFlow(F , mat, UpdateSchedList)
2 UpdateSchedList ← MATMappings.get(mat)
3 MatchKFSet ← F (Mkfv),
4 foreach SubMAT in ReverseOrder (UpdateSchedList) do
5 fsub(Mkfv)← GetKeyFieldValues (MatchKFSet, SubMAT (Mkf ))
6 ForeignKeyField, rowID ← GetActionEntry (SubMAT, MatchKFSet)
7 Remove SubMAT match keys from MatchKFSet
8 MatchKFSet.Add(MatchKeyValue (ForeignKeyField, rowID))
9 if MatchKFSet is empty then

10 Update Flow entry with match fsub(Mkfv) with actions set A
11 return

generated by them in merging of the pipelines. We show that it is possible to merge
logical pipelines by considering packet headers and fields as shared resources and by
applying composition operations to these shared resources. Deparser is represented
as a control block in the P4 language, but we hope that our work provide a good
motivation to rethink the design of the deparser to facilitate conceptually correct
merging.

The current implementation status includes merging of parsers (5.3.1.1 to 5.3.1.4)
and restructuring of pipelines (5.3.2.1 to 5.3.2.3 and 5.3.2.5) with out-of-order write
operations.
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6 Conclusions and Future Work
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6.1 Summary and Conclusions

Advances in communication (e.g., 4G, 5G, fiber) and compute (smart devices) tech-
nologies with their pervasive usage have made the world communication-oriented,
network-centric and more connected than ever. Leveraging the technological ad-
vances, a variety of use cases (e.g., live video streaming using mobile devices) and
business models have emerged. Network operators are facing a great challenge in
incorporating new communication technologies and to keep up with increasing and
evolving demands of new network services addressing the emerging use cases. Neces-
sity to innovate, develop, test, deploy and integrate new network devices, upgrade
existing ones and configure them using vendor-specific tools at a rapid pace have
made networks more complex and costly to operate.

SDN and NFV paradigms together promise to transform network architecture by soft-
warizing it, which can simplify network operations in a cost effective way and address
the emerging use cases and the challenges. SDN decouples control and packet pro-
cessing logic from forwarding devices and centralizes the control and intelligence of all
the forwarding devices in the network, thereby allowing simplified control and man-
agement of network. On the other hand, NFV decouples software from hardware of
network devices performing a fixed and specialized packet processing function in the
network, thereby providing a cost effective softwarized approach for network service
development, deployment, integration and management and upgradation. However,
SDN and NFV face various challenges to realize the softwarization of networks vision.
SDN applications processing frequent network events pose scalability challenges due
to centralized control of the network. NFV faces performance issues due to data
packet processing in without function-specific hardware. A lack of easy access to
tools and testbed to perform SDN experiments with real world scenarios is also a
major concern affecting evaluation of innovations in SDN research. With a paradigm
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shift like distributed networking to centralize SDN, it is important to have a thriving
ecosystem of tools and testbeds supporting new paradigm.

Live video streaming applications, which allows anyone to broadcast high quality live
streams at anytime and from anywhere, are becoming widely-popular, as everyone
having high access bandwidth and powerful smart devices at their disposal. IP
multicast provides an efficient approach to enable network services to support such
live video streaming applications. However, IP multicast is not widely adopted in the
current distributed-network architecture. Even though SDN and NFV face critical
challenges, they still hold great potential to enable next generation high bandwidth
consuming applications like live video streaming in a cost effective way using IP
multicast technology.

In Chapter 3, we propose to delegate multicast application specific network control
to MNFs deployed in NFV environments. This allows to process massive group mem-
bership management traffic and offload the SDN controller to mitigate the scalability
issue emerging from centralized SDN control. It provides a flexible to scale multi-
cast capability of the network on demand by leveraging capability of NFV paradigm.
OpenFlow does not provide composition features required to process the same traffic
by multiple control applications and functions. Also, OpenFlow-enabled reconfig-
urable devices does not allow to enforce control isolation among different control
applications and functions.

Also, in Chapter 3, we propose L2BM that leverages the global network view pro-
vided by centralized control to implement new traffic engineering policies with a
great ease. In chapter 4, we described our automation tool DiG, which can emulate
large scale SDN-enabled network providing required guarantee on performance of
emulated resources like CPU cores, link capacity etc. We employed virtualization
technologies used by NFV to emulate SDN-enabled networks. Also, we highlighted
that performance degradation due to virtualization must be taken into account to
provide performance guarantee for emulated resources.

From our experience with OpenFlow to control the same forwarding device with
multiple SDN controllers, we learned that it is not sufficient to have modular SDN
control plane, but it is also important to have modular SDN data plane to achieve
modularized network control and management. We turned towards packet processing
language P4, a more powerful and flexible packet processing abstraction to realize
the SDN paradigm, to enable modularity in SDN data plane. P4 allows to describe
parsing, deparsing and match-action pipeline to program packet processing in re-
configurable forwarding devices. However, all the packet processing functionalities
of the device are required to be described in a single P4 program. This makes
programs bloated, difficult to develop, test, debug and maintain. Also, it does not
allow several network functions independently developed by different vendors to be
deployed on the same device.

In Chapter 5, we proposed the design of the P4Bricks system to execute multiple in-
dependently developed P4 programs on the same reconfigurable hardware. Network
operators can describe a composition of P4 programs using parallel and sequential
operators. P4Bricks merges parsers, deparsers and match-action pipelines using se-
mantics of composition operators and their order in composition. It considers header
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fields and intrinsic metadata as a shared resources and applies composition operators
to merge packet processing behavior of multiple independently written P4 programs.
P4Bricks provides a modular SDN data plane architecture, hence it can enable mod-
ularized network control and management.

6.2 Future Works and Perspectives

In this thesis, we explored various avenues of the SDN and NFV paradigms in order
to realize softwarized network control. We used NFV for flexible offloading of net-
work control to specialized VNFs, which motivated us to enable modular network
control and management. To achieve modular network control and management, we
proposed a modular SDN data plane architecture using low level packet processing
language P4. Also, we employed virtualization technologies to design a SDN ex-
perimentation tool with resource guarantee, which allows to conduct SDN research
experiments using COTS compute devices available in a grid. We believe that for
effective softwarization of networks, modularity in the SDN data plane is essential.
Next, we describe some of our ongoing work and immediate research aspirations
along with possible future directions of each avenue of SDN-NFV paradigm explored
in this thesis.

6.2.1 Ongoing Work

We presented the design only for modular SDN data plane architecture in Chapter 5,
our implementation of P4Bricks system is ongoing. We plan to evaluate P4Bricks and
compare the hardware resource overhead with data plane virtualization approaches
such as Hyper4 and HyperV, mentioned in 5.1. Also, we will implement MNFs using
P4 to offload IGMP and group membership management control traffic processing.

6.2.2 Inter-domain IP Multicast Revival

Softwarization of networks with modular control and management will allow various
new inter-domain multicast architecture to be deployed with ease. For example,
deployment issues mentioned in ODMT [Basuki et al. 2012] can be addressed by
deploying dedicated network functions for Controller Node (CoN), Forwarding Node
(FoN) and Controller node Resolver (CR) described in the paper. Indeed, modularity
in the SDN data plane can allow to push network control at the edge of ISP networks
and allow functions running at the edges to program the core, that too on demand.



104 Chapter 6. Conclusions and Future Work

6.2.3 Performance Guaranteed Virtualization for Testbed and
Cloud Platform

In Chapter 4, we demonstrated the need of finding operational margins of resources
with a given virtualization technology. New tools and approaches should be devel-
oped to automate profiling of physical resources with various virtualization technolo-
gies and find resources’ operational margins to guarantee performance of allocated
resources. An automation tool to profile the hardware resources of infrastructure
in different configurations of their allocation should be embedded in every emula-
tion based testbed. Enabling OpenStack with such automated profiling tool can
tremendously help to guarantee performance of resources with high confidence.

6.2.4 Modular SDN Data Plane

We believe modular SDN data plane will provide great flexibility for modular network
control and management. This will unravel many more future research topics, which
we enlist here.

6.2.4.1 Enhancements in Data Plane Programming Language

We believe our proposed P4Bricks system will motivate to reconsider the design
for deparser control block. The deparser block, like parser block should have dedi-
cate sub-language to capture the detailed programming logic and use it to compose
the deparser blocks of P4 programs. P4Bricks should motivate to add more fea-
tures and constructs (e.g., partial header types and definitions) in the P4 language
for ease of programming and simplified composition of the programs. We consider
P4 an apt candidate to extend and use to program OPP (Open Packet Proces-
sor) [Bianchi et al. 2016] devices. The OPP extension of P4 may require OpenState
specific constructs to leverage all the packet processing abstractions provided by
OpenState [Bianchi et al. 2014].

6.2.4.2 Dismantle and Reassemble SDN controller

It will be necessary to reconsider the design of network operating systems like
ONOS [Berde et al. 2014]. However, the change would be surprisingly subtle and
may not affect control APIs and management applications using them. Current im-
plementations of SDN controllers only have a single channel to control and manage
the datapath of forwarding devices. They distribute network events received from
the channel to functionalities implemented as code-modules. They receive network
events by either event based or service oriented architecture and expose APIs. A
modular SDN data plane will allow all the code-modules to directly control the de-
vices while still exposing the same APIs. For instance, a topology discovery module
still exposes the same control APIs (east-west) to interact with other modules but
it can have its own control data plane protocol and receive network events required
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only to manage its datapath. This subtle change should improve the performance
and increase flexibility in software development of SDN controllers.

6.2.4.3 Programmable Deep Packet Processing

P4, POF and OpenState allow stateful packet processing in the datapath, but capa-
bility of packet processing devices based reconfigurable hardware architectures (e.g.,
RMT [Bosshart et al. 2013b], d-RMT [Chole et al. 2017], OPP) to maintain complex
state in memory is debatable. It would be interesting to explore the possibilities of
processing complex stateful and layer 4 and above protocols in the TCP/IP stack
using the available state memory of current reconfigurable devices and architectures.

6.2.4.4 An Operating System for Reconfigurable Devices

Our modular SDN data plane approach obviously leads us to develop an OS for
reconfigurable devices. P4Bricks can deploy a packet processing graph described
with P4 programs and composition operators. However, adding and removing P4
programs at runtime without device downtime is still a research problem to address.
We are working on extending P4Bricks to address live updates and transform the
system into an OS for reconfigurable devices in the SDN data plane.
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