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ABSTRACT 
 

Fractured rock masses modeling is a issue in many field of industry including but not limited 
to oil and gas exploitation. In the literature, fractured rock masse is in many cases recognized 
as double permeability medium in which fracture network provides the primary permeability 
and rock matrix plays as the second one. The idea of dissociation of flow inside the fracture 
network and the matrix, the double permeability, is still challenged for fractured reservoirs. 
Numerous contributions on this issue have been presented in the past could be cast in two 
main approaches: continuum media approach and discontinuum approach. Each approach has 
its advantages and limitations. To overcome the limitation and to take advantage of these two 
approaches, the Embedded Fractured Continuum Approach (EFCA) which borrows the 
concept of continuum models and also incorporates the effect of explicit fractures is 
considered in this thesis. The principal idea of this approach lies on the concept of fracture 
cell representing a porous medium that has their own properties calculated from the 
properties of porous matrix and fractures intersecting it.  

The development in this work was conducted by using the library source code DEAL.II 
https://www.dealii.org/. The accuracy of EFCA was investigated through different 
verifications. Through some applications: determination of effective hydro-mechanical 
properties of an actual site, estimation of well production in which necessary fractures are 
modeled explicitly, we demonstrate the performance of the EFCA in the modeling fractured 
rock masses as well as the effect of double porosity and double permeability on behaviours of 
fractured reservoirs. 

Keywords: fractured reservoirs, fracture network, hydro-mechanical modeling, double 
porosity, double permeability, fracture cell, embedded fractured continuum approach, finite 
element method, DEAL.II, hanging node. 
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RÉSUMÉ 
 

La modélisation des massifs rocheux fracturés est un problème important dans de nombreux 
secteurs industriels, y compris, mais sans s'y limiter à l'exploitation pétrolière et gazière. 
Dans la littérature, les roches fracturées sont reconnues comme des milieux à double porosité 
et double perméabilité dans lesquels le réseau de fractures fournit la perméabilité primaire et 
la matrice rocheuse la perméabilité sécondaire. L'idée de la dissociation de l'écoulement à 
l'intérieur du réseau de fractures et de la matrice, la double perméabilité, est toujours 
contestée pour les réservoirs fracturés. De nombreuses contributions sur cette question ont été 
présentées dans la littérature et les méthodes utilisées pourraient être classées dans deux 
approches principales : approches continues et discontinues. Chaque approche a ses 
avantages et ses limites. Pour surmonter les limites en gardant les avantages de ces deux 
approches, une approche nommée Embedded Fracture Continumm Approach (EFCA) qui 
emprunte le concept du modèle continu et intègre également l'effet des fractures explicites est 
considérée dans cette thèse. L'idée principale de cette approche repose sur le concept de la 
« cellule fracturée » représentant un milieu poreux qui a ses propres propriétés calculées à 
partir des propriétés de la matrice poreuse et des fractures qui la traversent. Le code de calcul 
développé dans le cadre de ce travail est basé sur la bibliothèque source DEAL.II 
https://www.dealii.org/. L'exactitude de l'EFCA a été étudiée à travers différents tests. 
Plusieurs applications traitées dans ce travail comme la détermination des propriétés hydro-
mécaniques effectives d'un site réel, estimation de la production de puits dans laquelle les 
fractures sont modélisées explicitement, démontrent la performance de l'EFCA dans la 
modélisation des roches fracturées ainsi que l'effet de la double porosité et de la double 
perméabilité aux comportements des réservoirs fracturés. 

Mots-clés: réservoirs fracturés, réseau de fractures, modélisation hydromécanique, double 
porosité, double perméabilité, cellule de fracture, approche du continuum fracturé intégré, 
méthode des éléments finis, DEAL.II, nœud suspendu. 
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GENERAL INTRODUCTION 
 

In the context of oil field recovery, waste disposal, CO2 storage, geothermal exploitation, a 
geologic reservoir represents a geological massif whose porous space is susceptible to 
deserve as a storage for fluids. For these reservoirs, a huge amount of fluid is trapped in 
natural porous and fractured rocks. Fractures make the flow in reservoir quite complex and 
significantly impact the production rate as well as elapsed time on oil recovery or geothermal 
sources. The porosity of the matrix constitutes the primary porosity and the essential storage 
capacity of reservoir while the capacity storage of fractures represents only some fraction of 
the total porosity. Likewise, the hydraulic conductivity of such fractured reservoirs is 
composed by the conductivity of the rock matrix (pores and their connectivity) and the 
conductivity of cracks/fractures; the later one is of some orders greater than the former. The 
idea of dissociation of flow inside the fracture network from that of the matrix is first 
proposed by Barenblatt and Zheltov (1960) and almost simultaneously by Warren and Root 
(1963). Since, the double permeability system is still used as a common nomination for 
fractured reservoirs.   

Albeit a huge number of studies on fractured reservoirs in the past, their modeling is yet a 
challenging and dynamic research topic, with two principal trends grouping continuum and 
discontinuum approaches. 

Following the first approach the effect of fractures (double porosity/double permeability) is 
considered implicitly to reservoirs by equivalent parameters of the effective media (Royer et 
al., 2002; Marmier, 2007). The problem is then solved as a problem of effective media using 
various techniques of upscaling. This approach allows solving large scales problems with 
high densities of fractures. However, their results may be sensitive to the domain’s size 
especially when the studied domain is smaller than the representative elementary volume. 
Otherwise, this approach cannot capture correctly the behaviour of fractured reservoir 
particularly near well and hence the well productivity may be different from reality. A 
particular form of continuum approach is dual-continued model in which the fractures and the 
porous matrix are represented as two distinct and interacting continua, one consisting of the 
network of fractures and the other of the porous blocks (Kazemi et al., 1976;  Bibby, 1981; 
Huyakorn, 1983; Arbogast, 1993; Karimi-Fard and Firoozabadi, 2001; Gong, 2007). The 
main drawbacks of the dual-porosity model are the limitation of its use only for conditions 
when the sugar-cube representation of fractured reservoirs is acceptable and the difficulties to 
evaluate the transfer function between matrix and fractures. 

In the second approach the fractures network is taking into account explicitly by modeling 
the fractured medium as an assemblage of blocks (discrete elements) bounded by a number of 



 

14 
 

intersecting discontinuities (interface between blocks). Although this approach can better 
describe the behaviour of fractured medium at small scale, it can be very expensive on 
computer memory and time simulation particularly for the problem at large scale. The main 
issue for this approach is the reproduction by numerical models of the complexity of in field 
fractures. In fact, because of the complexity and variation of fracture properties at a given 
site, the statistics of geometric characteristics and the properties of fractures/cracks are issued 
from limited and potentially biased field measurements, (e.g. one-dimensional (1D) borehole 
imaging or two-dimensional (2D) outcrop mapping). The challenge here is not only how to 
input a great number of fractures in to model but also the conceptual model to express 
fracture network and its connectivity. Numerous studies in the past which used low-
dimensional element (Bruel, 1995; Watanabe, 2011; Watanabe et al 2000, 2012; Taleghani, 
2009; Mohammadnejad, 2013, Blum et al., 2003, 2005; Min and Jing, 2003; Min et al., 
2004a, 2004b, 2005; Eloranta 2000; Anderson et al., 2005, Baghbanan 2008) to express 
fractures in porous medium. This method has advantages of express fractures with a reduced 
number of cells as compared to the equidimensional elements (or called instructed grid) 
(Tatomir, 2007; Monteagudo et al., 2011). However, this method may be difficult to be 
applied for complex behaviours such as cracking propagations.  

To overcome the limitations as well as to take advantage of these two approaches, another 
method which borrows the concept of continuum models and also incorporates the effect of 
fractures explicitly is considered in this thesis work. The principal idea of this approach 
(called Embedded Fractured Continuum Approach, EFC approach) lies on the concept of 
fracture cell which represents a cell in grid mesh intersected by one or many fractures. Due to 
the presence of fractures, the properties of fracture cell which are no longer ones of the 
porous matrix will be determined as properties of an equivalent porous medium (porous 
matrix and fractures). This approach was studied and applied successfully for flow problems 
(Svensson, 2001; Lee et al., 2010; McKenna & Reeves, 2006; Reeves et al., 2008a, b; Botros 
et al., 2008; Li & Lee 2008; Moinfar 2013; Shakiba, 2014; Xu 2015; Sakhaee-Pour & 
Wheeler, 2016; Gong, 2016, Yan et al. 2016). However, coupled hydro mechanical modeling 
is still challenging and there are relatively few studies (Moinfar, 2013; Moinfar et al., 2013; 
Figueiredo et al., 2015, 2017). Principal features which were not studied in literature are 
evaluation of accuracy of EFC approach for inclined fractures as well as coupled hydro 
mechanical behaviour of fractures.  

In this context, developing a new home made numerical code for coupled hydro mechanical 
modeling for not only fractured reservoirs but also for heterogeneous porous medium is of 
great importance, allowing to add complex features in further studies. The open source 
library used as a base for developing the FEM software for EFC implementation is 
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Differential Equation Analysis Library (DEAL.II) (Bang and Kanschat, 1999; Bang et al 
2007) because of some its advantages such as a common versatile environment (C++), many 
available documents, strong mathematical tools in solving equations and existing works on 
phase field method implemented (Wick et al, 2014; Wheeler et al, 2014; Heister et al, 2015; 
Mikelic et al 2014, 2015; Lee et al 2016). 

The main objective of this thesis is to develop, implement and evaluate an approach for 
modeling of hydromechanical behaviour of large scale fractured porous rock 
masses/reservoirs. For that, based on DEAL.II library, the modules for modeling HM 
behaviour porous media is firstly performed.  While modeling of simple hydraulic or simple 
mechanical behaviour of continuous media in DEAL.II, is an easy task, there is no coupling 
HM approach already implemented and the above cited problems are solved separately.  

As a first step to achieve the main objective, the coupling of hydraulic and mechanical 
response of porous media must be performed as well as a very flexible input data mechanism 
should be adopted/adapted. As a first result a FEM code is developed, making possible input 
of a variety of data such as isotropic and transversely isotropic material, heterogeneous media 
properties following a given spatial distribution of properties, as well as a variety of 
calculation options: mechanics only, hydraulic only or hydro mechanical coupling. In 
particular, the input should be flexible enough to allow the description of heterogeneous 
materials given a spatial distribution of material properties.  

As a second step towards the main objective, the fracture /discontinuity modeling 
using alternative approach is performed. The difficulties of some commercial software to deal 
with dead bound cracks/fracture, were overpassed using some numerical strategies offered by 
the environment of DEAL.II. The crack propagation under stress and/or pore pressure are 
discussed in an exploration attempt of the effects of hydromechanical coupling on this 
phenomenon.  

As a third step the EFC approach in framework of hydro mechanical coupling should 
be developed and implemented in DEAL.II. The problem of evaluation of properties of 
fracture cell as a function of matrix properties and fracture geometry and properties is a 
challenging task that will be performed using various theories and strategies. 

Finally, in order to illustrate, in one hand the behaviour of double permeable/double 
porosity media, and in the other hand the capacities of the EFC and that of the developed 
software, a large scale, real fractured rock mass site is considered.  

This dissertation is organized as follows: 

Chapter 1 devotes to present the definition of fractured reservoirs, double porosity and also 
double permeability. Concept models for modeling fractured reservoirs are outlined. 
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Governing equations for hydro mechanical coupling of fractured reservoirs are summarized 
for isotropic and anisotropic material. 

Chapter 2 overviews and summaries briefly the current status of the open source DEAL.II. 
The coupling of mechanical and hydraulic calculations developed in DEAL.II is presented 
here. Several verifications were carried out to ensure the correct of coupling process in the 
developed code. 

Chapter 3 contains the implementation of embedded fracture continuum approach in DEAL.II 
including how to assemble fractures in to the code which is developed in the chapter 2 and 
the development of the EFC approach for fracture modeling. Hanging node and refined mesh 
method is selected and implemented in the developed code to enhance the accuracy, 
performance and robustness of the EFC approach. Some fundamental tests were done to 
evaluate the accuracy and to point out some items which affect to the accuracy of the EFC 
approach. 

Chapter 4 presents an application of the versatile software to model a fractured rock mass and 
a fractured reservoir. The methodology of generation of fracture network is presented based 
on overall information of the well-known Sellafield site. The effective mechanical properties 
and permeability of fractured rock masses in which fracture network is introduced explicitly 
are calculated and compared to other available results conform again the accuracy, 
performance and robustness of the EFC approach. The effect of double porosity and double 
permeability of fractured reservoir through comparison results between two models: 
homogenized model and explicit fracture model will be highlighted in this chapter.  

Finally, the general conclusions of the thesis point out the achievements as well as the further 
perspectives of this work. 
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CHAPTER 1: BIBLIOGRAPHIC STUDY ON HYDRO 
MECHANICAL MODELING OF FRACTURED RESERVOIR 

 

1.1 Introduction of double porosity and double permeability fractured 

reservoirs 

Significant oil and gas production is recorded from the various types of fractured reservoir 
(Saidi, 1987) as in the following examples: basement granite in Amarillo (Texas), Mara-la-
Paz, (Venezuela); Jurassic metamorphic schists in Los Angeles area (California), Permian 
Siltstones in Spraberry (Texas), Ordovician carbonates in Scipio-Albion trend (Michigan), 
Oligocene-Miocene Asmari limestones in Iran and Iraq, Miocene Monterey Chert in Santa 
Maria district (California). Carbonate rocks commonly display various typologies of 
fractures, characterized by different statistical behaviours (Guerriere et al, 2013); for 
example, some fracture sets show a self-similarity of morphology whilst some others are size 
restricted. Fractures do also behave statistically significantly different with respect to spatial 
fracture distribution (e.g. random, clustered, and regular) and probability distribution of 
fracture aperture, length, orientation and location (figure 1-1a). Bear and Berkowitz (1987) 
distinguish between primary porosity (porosity of the rock matrix) and secondary porosity 
(porosity of fractures). The rock matrix provides the primary storage of fluid (or production) 
while fractures serve very little fluid and provide a high permeability (Moinfar et al., 2013). 
Such reservoirs are identified typically as double-porosity system. 

In such fractured reservoirs, the fractures connect themselves and create a network. The 
permeability of fracture network system plays a role in the overall permeability of fractured 
reservoirs. The idea of dissociation of flow inside the fracture network and the matrix is first 
proposed by Barenblatt and Zheltov (1960), Warren and Root (1963). Double permeability 
system is still named for fractured reservoirs up to now.  

Fractured reservoirs have been still received attention from oil and gas industry. A huge 
amount of hydrocarbon is trapped in natural fractured carbonate reservoirs. Fractures add 
complexity into reservoir flow and significantly impact the production rate and ultimate 
recovery (Lei, 2016). Albeit, plenty of studies in fractured reservoirs in the past, the modeling 
of fractured reservoir is still a challenging and dynamic research topic. In this context, 
fractured reservoirs are of a great interest in many fields of research: oil field prediction and 
recovery, CO2 storage, nuclear waste storage, hydraulic fracturing risk assessment and 
prediction (Figure 1-1b). 
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(a) An example of representative volume of fractured reservoirs  
(Legend: red color denotes fractures and green color denotes matrix) 

 
(b) Options for storing CO2 in deep underground geological formations (IPCC Special 

Report and Cook, 1999). 
Figure 1-1: An example of representative volume of fractured reservoirs (a) and options for storing CO2 

in deep underground geological formations (b) 
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1.1.1 Porous media 

A porous medium is composed of a matrix (solid phase) and a porous space, the latter could 
eventually be filled by a fluid (Coussy, 2004). The connected porous space is the space 
through which the fluid actually flows and whose two points can be joined by a path lying 
entirely within it so that the fluid phase remains continuous. The matrix is composed of both 
a solid part and a possible occluded porosity, whether saturated or not, but through which no 
filtration occurs. The connected porosity is the ratio of the volume of the connected porous 
space to the total volume. In what follows the term ‘porosity’, used without further 
specification, refers to the entire connected porosity. 

In the following we present several main assumptions adopted by Coussy (1995), Coussy 
(2004) which may be considered as the basic framework for development of the poroelastic 
models. Full version of assumptions is provided in above mentioned references 

• The porous media is considered as a continuous and homogeneous solid-fluid mixture 
which consists of the matrix and the porous space filled fully or partially by fluids and the 
fluids can freely move through the connected pores. Accordingly, as illustrated in figure 
1.2, any infinitesimal volume can be treated as the superimposition of two material 
particles.  

The first is the skeleton particle formed from the matrix and the connected porous space of 
fluid drained.  

The second is the fluid particle formed from the fluid saturating the connected porous 
space and from the remaining space without the matrix.  

 
Figure 1-2: A schematic of the porous media idealization (Coussy, 2004) 

• The strain-stress relations obey the small deformation theory and followed Hooke’s law in 
elastic behaviour. 

• The interstitial fluid flow is assumed to be laminar and can be described by Darcy's law 
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1.1.2 Fractures and fracture network  

According to different points of view various definitions can be given, but from a strict geo-
mechanical point of view a fracture is the surface in which a loss of cohesion has taken place 
(Van Golf-Racht, 1982). In general, two main kinds of fractures are fault and joint. A fracture 
in which relative displacement has occurred can be defined as a fault, while a fracture in 
which no noticeable displacement has occurred can be defined as a joint (Figure 1-3). 

 
Figure 1-3:  Schematic presentation of a fault and a joint in (Van Golf-Racht, 1982). 

A fracture can also be defined, in a more general way, as the discontinuity which breaks the 
rock beds into blocks along cracks, fissures, joints or whatever they may be referred to as, 
and along which there is no displacement parallel with the planes of discontinuity (Van Golf-
Racht, 1982). Basically, whether a fracture is considered a joint or a fault depends on the 
scale of investigation, but in general, that is called a fracture corresponds to a joint (Van 
Golf-Racht, 1982). Figure 1-4 is an example of fractures in which fractures can be found on 
the whole range of scales (Bonnet et al. 2001; Silberhorn-Hemminger 2002; Tatomir, 2007). 

 
Figure 1-4: Fractures occurring on different scales (Silberhorn-Hemminger, 2002; Tatomir, 2007) 

It is a challenging issue the understanding and modeling the impact of fractures to the 
hydromechanical properties (e.g. strength, deformability, permeability and anisotropy) of 
highly disordered geological formations (Zimmerman and Main, 2004). A variety of 
engineering applications including the extraction of hydrocarbons, the production of 
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geothermal energy, the remediation of contaminated groundwater, and the geological disposal 
of radioactive waste (Rutqvist and Stephansson, 2003) related to the presence of fracture on 
rock masses. Three main key issues on fractured rock characterization and modeling are 
summarized by Lei (2016) as below: 

The first problem is how to characterize and represent the geometry complex three-
dimensional (3D) discontinuity systems based on limited and potentially biased field 
measurements, e.g. one-dimensional (1D) borehole imaging or two-dimensional (2D) outcrop 
mapping (Dershowitz and Einstein, 1988). Fracture statistics are usually obtained from 
lower-dimensional observations with respect to density, trace lengths, orientation, spacing, 
and frequency. 2D or 3D synthetic discrete fracture networks (DFN) can be created 
stochastically (Long et al., 1985; Long and Billaux, 1987) and the DFN can be generated by 
conducting Monte Carlo simulations. 

The second problem is how to take into account the discontinuous behaviours of rock media. 
These behaviours are the interaction of multiple discrete bodies (Jing, 2003), the fracturing 
and fragmentation of intact rocks (Hoek and Martin, 2014), the opening, shearing and dilation 
of rough fractures (Bandis et al., 1983; Barton et al, 1985), and the fluid flow through 
fractured reservoirs (Berkowitz, 2002), and the coupled hydromechanical or multi-physical 
processes (Rutqvist and Stephansson, 2003; Figueiredo et al, 2017).  

The third issue concerns upscaling method in which the results of small scale modeling are 
used for large-scale simulation and application. Effective medium theory has been developed 
to estimate mechanical and hydraulic properties of fractured rocks (Long et al. 1982; 
Kachanov, 1992) on a homogenisation scale. However, in homogenization method, the 
geological system may not have any representative elementary volume due to the fractal and 
scaling of natural fracture patterns (Bonnet et al. 2001). Thus, other upscaling methods based 
on small-scale simulation results to predict multiscale, multiphysical properties of fractured 
rocks are used for engineering applications. 

 1.2 Modeling concepts of fractured reservoirs 

The modeling of fractured rock masses in generally and fractured reservoirs in particular, 
could be performed using various approaches based on various concepts and assumptions 
such as continuum effective medium, dual porosity or/and dual permeability media, discrete 
fractures network or discrete fractures on a porous continuum media. Figure 1-5 shows the 
sketch of models as in Dietrich et al (2005) 
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Figure 1-5: Model concepts for the description of fractured porous media (Dietrich et al, 2005) 

Each model/approach is distinguished by how it takes into account the fracture density (or 
equivalent statistics), at which scales these fractures are considered and how the spatial and 
distribution of fractures is.  

Depending on the kind of problem treated in one study, on the same rock masses various 
approaches could be followed (figure 1-6). For instance on the rock masses schematically 
presented in the figure 1-6 for a problem treated in cut-out A a continuum model could be 
used.  For the cut-out B one could consider using a continuum model with an equivalent flow 
and transport properties or dual-porosity or/and dual-permeability model. The problems in 
cut-out C can be treated using a discrete fracture model, while for problems in cut-out D a 
combination of discrete fractures model and continuum model or dual continuum model 
could be a good approach 
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Figure 1-6: Fractured groundwater aquifer with different discontinuities (Silberhorn-Hemminger, 2002; 

Tatomir, 2007) 

These modeling concepts are briefly described in the following. In general, the modeling one 
could distinguish two main trends in fractured rock modeling: equivalent continuum 
approach and discrete fracture approach. 

1.2.1 Equivalent continuum approach 

Averaged parameters for rock matrix and fractured systems are used in the equivalent 
continuum approach. The transport problem is transformed from the microscopic level to a 
macroscopic scale at which the problem is expressed in terms of averages of the microscopic 
quantities. The size of representative elementary volume (REV) must be much larger than the 
heterogeneity size and much smaller than the macroscopic length-scale. It means that an REV 
needs to be determined in an equivalent continuum approach (Royer et al., 2002; Marmier, 
2007) 

Two kinds of continuous models are usually used: single-continuum model and dual-
continuum model. 

+ The single-continuum model: the whole fracture porous domain is represented as an 
equivalent porous medium. The single-porous model (or single-continuum model) provides 
the accuracy, but it is not practical due to very large number of grids. A large number of grids 
are required because of the two different length scales (matrix size and fracture thickness). 
When the ratio of the two length scales are in a fractured system, the single-porosity approach 
becomes very inefficient numerically (Tatomir, 2007). Royer et al. (2002) presented a 
method of homogenization for upscaling by multiple scales expansions and obtained different 
macroscopic single-continuum transport models.  

+ The dual-continuum model: the fracture porous media is represented as two distinct and 
interacting continua, one consisting of the network of fractures and the other of the porous 
blocks. The first idea which dissociates the flow inside the fracture network and the matrix; 
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and models the exchange between the two-media’s using a transfer function is dual-porosity 
model from Barenblatt and Zheltov (1960), Warren and Root (1963) (figure 1-7). A complete 
set of equations for slightly compressible single-phase flow was written for both the fractures 
and the matrix by Barenblatt and Zheltov (1960), and transfer between them was assumed to 
occur at pseudo-steady state (Gong, 2007). Warren and Root (1963) presented a practical 
model for fractured systems in which a set of identical rectangular parallelepipeds, 
representing the matrix blocks, is separated by fractures. Kazemi et al. (1976) presented an 
extension of the dual-porosity model of Warren and Root (1963) to two-phase flow. For 
transport of contaminant, dual-continuum model has been employed in Bibby (1981) and  
Huyakorn et al. (1983). Despite of originally developed based on physical considerations, the 
dual-porosity model has since been derived rigorously using two-scale homogenization 
procedures (Gong, 2007) for example Marmier (2007) and Arbogast (1993) considered single 
and two-phase flow in uniformly fractured systems and showed that the dual-porosity 
description is recovered via homogenization.  

The main advantage of dual porosity model is cheap computational time in compared with 
discretely fractures model. However, a number of approximations were commonly used in 
these models that are not always appropriate. For example, spatial variation within local 
matrix regions was neglected in many dual-porosity implementations; i.e., they modeled 
pressure and saturation as constant within the matrix (Gong, 2007). The disadvantage of the 
dual-porosity model is that they can be mainly used for sugar-cube representation of fractured 
media (Karimi-Fard and Firoozabadi, 2001). Another limitation is that the method cannot be 
applied to disconnected fractured media and cannot represent the heterogeneity of such a 
system. Another shortcoming is the complexity in the evaluation of the transfer function 
between the matrix and the fractures (Tatomir, 2007). 

 
Figure 1-7: An idealized sugar cube representation of a fractured reservoir (Warren and Root, 1963). 

A special case of continuum media approach is stochastic continuum modeling in which an 
equivalent homogeneous porous medium is obtained with a random spatial function of 
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regions (blocks) hydraulic conductivities (Niemi et al., 2000; Ohman and Niemi, 2003) due to 
the various scales of fractures, and their statistics distribution (density, trace lengths, 
orientation, spacing, and frequency). This approach is more applicable to densely fractured 
rock masses and larger scales. Limitations on the available data and computational resources 
promote the stochastic continuum approach as an alternative approach for modeling flow and 
transport in fractured media (Botros et al., 2008) 

1.2.2 Discrete fractures approaches 

Discrete fracture model is required when the continuum approach to the description of the 
transport problem is not applicable. In the discrete model, fractures are considered as discrete 
structures. This kind of modeling open the possibility to model flow and transport the process 
in a very similar way as it happens in the nature (Reichenberger et al. 2004). Fractures can be 
modeled as equidimensional elements (which implies very high demands on fracture network 
generation and the numerical tools for solving the resulting equation system) (Tatomir 2007), 
or lower dimensional elements (also referred in literature as mixed dimensional elements 
(Bruel (1995), Watanabe (2011) and Watanabe et al (2010, 2012)). Some of the literatures for 
the discrete fractured model have been reviewed in Sahimi (2011). 

The Figure 1-8 shows an example of modeling fractured reservoir as equidimensional 
element by finite element method (FEM) (left) and phase field method (right). In the FEM, 
conformed mesh is required along fracture intersection (Tatomir, 2007). The limitations of 
this method are (1) fined mesh around fractures and (2) re-fined mesh if cracking propagation 
is considered. 

A development of FEM is Phase Field Method that uses a very simple and versatile way to 
describe the fracture network:  a phase field function is used and defined such that its value is 
0 for fractures or 1 for porous matrix. This method introduces an energy to be minimized 
with respect to the admissible displacements and to the fracture itself. The energy function 
that is minimized in practice is a Г-convergent approximation. This energy regularizes the 
displacement field based on a phase field variable that interpolates between the unbroken and 
the broken states of the material (Formaggia et al, 2013). This method has simplicity in 
indicating fracture areas and re-mesh is not required during cracking propagation, so the 
method is used preferentially in crack propagation context.  Using phase field method, and 
based on the Griffith energy (1921) theory for crack propagation, Heister et al (2015) studied 
the crack propagation in a linear elastic medium by implementing a fully coupling between 
state variables of continuum medium and variables of phase field. Borden et al (2012) uses 
phase field method to investigate the dynamic brittle fracture. Wick et al (2014), Wheeler et 
al (2014), Mikelic et al (2014, 2015) and Lee et al (2016) implemented and developed phase 
field method to solve hydro mechanical coupling of isotropic porous medium. 
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a) FEM method. 

 

b) Phase field method 

Figure 1-8: Modeling fracture by equidimension element: a) FEM by Tatomir (2007) and b) Phase field 
method by Borden et al (2012) 

For modeling fractured reservoir as low-dimensional element, eXtended Finite Element 
Method (XFEM) in which fractures are expressed by enrichment elements is suggested. The 
Figure 1-9 shows an example of modeling fractured reservoir as low-dimensional element by 
XFEM (Taleghani, 2009; Mohammadnejad and Khoei, 2013). Although the re-mesh is not 
required in XFEM, the enrichment of elements involved cracking propagation is required and 
complicated. 

 
Figure 1-9: Modeling fracture by low-dimensional element (XFEM in  Taleghani (2009)) 

 

One of the discrete fractures approaches is discrete fracture network model (DFN) developed 
to address network-scale fluid flow and solute transport behaviour. This approach assumes 
that fluid flow through a low-permeability rock mass is controlled by interconnected fractures 
of a network with negligible contribution from the rock matrix (Indraratna, 1999). This 
means fluid flow can only occur within fractures for a DFN simulation. Hence, detailed site 
characterization is required for the identification and inclusion of deterministic structures into 
the model domain. 
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The DFN requires property information of the fracture network such as distribution of 
fracture size, orientation. Due to the uncertainty of fracture network, stochastic introduction 
of background features is commonly required for discrete fracture simulations (Munier, 
2004). This approach is computationally intensive and requires large number of input 
parameters; therefore, DFN simulations become limitation to applications where large scales 
are required, although extensions based on particle travel statistics have been developed 
(Schwartz and Smith, 1988). 

A relatively new trend in the family of discrete fracture approaches, used in modeling flow 
through fractured reservoir, is used under different names: “fracture continuum approach” 
(Svensson 2001a, 2001b; McKenna and Reeves, 2006; Botros et al. 2008) or “fracture-cell 
model” (Sakhaee-Pour & Wheeler, 2016; Gong, 2016) or “embedded discrete fracture 
model” (Lee et al., 2010; Li & Lee, 2008; Moinfar, 2013; Shakiba, 2014; Xu, 2015; Yan et 
al., 2016)  

Fracture continuum approaches (Svensson 2001a, 2001b) are based on the conversion of 
discrete fractures, or more commonly fracture zones, to permeability structures on a model 
grid instead of representing discrete fractures as continuous line elements in 2-D or planes in 
3-D. However, this technique is limited to a sparsely fractured rock with a conductivity field 
dominated by major fractures and fracture zones. In the worst case, when fractures are 
inclined, in relation to the grid, a difference up to 16% between the finite-difference grid and 
DFN in the simulated flow was reported. Commonly, the origin of these differences is 
thought to be from the non-correspondence of the fracture (aperture), in relation to the grid 
size. In order to minimize the error, this author recommended that the fracture zones modeled 
by this approach should have widths comparable to grid cell size (i.e., the ratio of fracture 
width and grid cell size is suggested not to decrease below 0.1). The selection between a 
discrete fracture network model (DFN) and fracture continuum approach model (FC) is 
dependent on scale; DFN models are favored at smaller scales where they remain 
computationally feasible and FC models are used for larger-scale models (Svensson, 2001b). 
However, comparisons between DFN and FC models have shown that both methods are 
equally capable of capturing key aspects of flow and transport in fractured crystalline rock 
masses (Svensson, 2001b). 

McKenna and Reeves (2006) also developed another fracture continuum technique, which 
they called fractured continuum model (FCM). This model is based on the DFN model with 
the help of stochastic continuum approach. They assumed the critical properties of the 
fracture network to be spatially random variables and assigned these random variables to 
finite-difference grid elements. As summarized by Botros et al. (2008), the critical properties 
of this model are the number of fractures within each grid block, coordination number (a 
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measure of fracture connectivity), and the permeability class for each grid block (a flag to 
show if the cell is a fracture cell or a matrix cell). All three random variables are defined at 
each grid block and derive a hydraulic conductivity value for the grid blocks which is then 
used to get the effective medium. Grid block conductivities are assumed isotropic. 

A number of simple fracture network cases, a group of fractures that connect two opposite 
faces or simple fracture networks (uniform fracture size, random orientation, and uniform 
transmissivity), were studied and converted to continuum models using one of these fracture 
continuum approaches by Svensson (2001a, 2001b), McKenna and Reeves (2006) among 
others.  The results of the flow problem on the DFN and the continuum grid were studied and 
compared for these simple cases. However, there is no comparison between the flow 
prediction from the DFN approach towards the same predictions from the continuum grid for 
more complicated networks; therefore, the evaluation of the pertinence of these approaches is 
yet an open question. Reeves et al., (2008) and Botros et al., (2008) developed a new fracture 
continuum approach for fully saturated single-phase flow system in which some of the 
limitations of the previous approaches in Svensson (2001a, 2001b) and McKenna and 
Reeves, (2006) are avoided. The condition of ratio of fracture width to cell size pointed out as 
a source of error in Svensson (2001a, 2001b), is not any more a problem; different fracture 
densities and orientations can be modeled reasonably well in Botros et al., (2008). Basically, 
the approach proposed by these authors consists of mapping the fracture network onto a grid 
where a hydraulic conductivity is modified for each grid cell in each direction such that the 
total flow is conserved (figure 1-10). Therefore, two correction factors are introduced to 
ensure equivalence between the total flow of the grid and the original fracture network in 
Reeves et al., (2008) and Botros et al., (2008). The first correction depends on the fracture 
alignment with the grid due to the difference between the flow path in the actual fracture and 
the representative path. The other correction acounts for areas in the grid where high fracture 
density is occurred. The same idea, using a correction factor when mapping fracture onto 
grid, is used and further developed on Sakhaee-Pour & Wheeler (2016) and Gong (2016) for 
curved fractures under the named “fracture-cell model”.   
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Figure 1-10: Sketch of a hypothetical rock fracture network (Reeves et al., 2008a,b). 

Likewise, the alternative approaches that do not use mapping of the fracture onto the grid, the 
equivalent permeability of a regular fracture-matrix system is obtained using also some kind 
of correction factor for equivalent permeability (Parsons, 1966; Sarkar et al., 2004). Of 
course, there is no coincidence between these correction factors since their physical meaning 
is not the same: for the mapping-of- fracture-onto-grids approach this correction factor 
acounts for a longer fracture path in mapped situation as compared to real flow Reeves et al., 
(2008a, b), Botros et al., (2008), Sakhaee-Pour & Wheeler (2016) and Gong (2016). For the 
equivalent permeability approach, the correction factor acounts for differences of the gradient 
pressure on corresponding grid direction (Parsons, 1966; Sarkar et al., 2004). 

Note that all above studies based on “fracture continuum approach” or “fracture-cell model” 
or “embedded discrete fracture model” are focused on the hydraulic behaviour of rock masses 
or flow in the fracture network system, with no mention on mechanical behaviour. 

Studies on hydro-mechanical coupling in fractured reservoir, fractured rock masses have been 
conducted using different numerical methods, such as discrete and combined continuum–
discrete fracture models. As reviewed by Figueiredo et al. (2015), discrete fracture models 
are more realistic for discontinuous media such as fractures. However, discrete fracture 
models have the limitation of not considering permeable intact rock and are time consuming 
for modeling hydro-mechanical behaviour of fractured rock domains  

The equivalent parameters of fracture cell, joint model for mechanical behaviour and 
Poisseuille’s law for hydraulic behaviour, were used for fractures with filling material to the 
simulation of hydro mechanical coupling in Figueiredo et al. (2015) (see figure 1-11). The 
results indicated that the equivalent permeability of the fractured rock domain is most 
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sensitive to the fractures normal stiffness, the permeability of the tension failure regions and 
the power-law exponent for permeability change. Further, Figueiredo et al. (2017) used this 
approach, to study how geological structures such as confining formations, pre-existing 
bedding planes and faults influence fracture propagation during hydraulic fracturing 
operations. A model based on degradation of material properties is implemented in FLAC3D 
(Itasca, 2012) by these authors, to simulate fracture propagation in a continuous medium. 
Through this study, the effectiveness of using a continuum based model to simulate the 
fracture propagation, influence of complex geological settings (e.g. confining formations, a 
pre-existing bedding plane and fault) to fracture propagation and the changes of pore pressure 
and permeability induced by the interaction between the propagating fracture and preexisting 
geological structures were highlighted.  

 
Figure 1-11. Mesh of the finite-difference model to study the hydro-mechanical behaviour of the fractured 

rock domain in Figueiredo et al. (2015) 
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1.3 Governing equations of hydro mechanical coupling of fractured 

reservoir  

The term “hydro mechanical (HM) coupling” denotes to the physical interaction between 
hydraulic and mechanical processes (Rutqvist and Stephansson, 2003). In geological media 
(e.g., soils and rocks), HM interactions commonly occur because such medium contains pore 
and/or fractures which are filled by fluid and are deformable. In general, a porous medium or 
a fractured rock can deform as a result either of change in the external load or of change in 
the internal pore-fluid pressure (Figure 1-12).  

 
Figure 1-12: Schematic overview of a fractured geological medium composed of an intact porous rock 

matrix and macrofractures in Rutqvist (2003) 

1.3.1 Linear mechanical behaviour 

Under the quasi-static assumption for earth displacement, the governing equation for 
mechanical deformation of the solid-fluid system can be expressed stress equilibrium 
equations as below 

 ij, j iσ = f−  or . 0σ+ρg =∇  (1.1) 

where  

ijσ  denote the Cartesian components of the symmetric stress tensor 
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i if = ρg is the body force per unit volume of the bulk material, 1 s fρ= ( φ)ρ +φρ− is the bulk 

density, sρ is the solid density, fρ is the fluid density and φ  is the porosity.  

.∇  is the divergence operator, σ  is the Cauchy total stress tensor, g is the gravity vector. 

Linear, isotropic mechanical behaviour is the simplest constitutive model for a material and 
could be taken as a base for a first approach as described in abound literature (Detournay and 
Cheng (1993), Coussy (1995)). In the framework of linear elasticity, the rock masses 
behaviour could be described reasonably well by an orthotropic elastic solid for which three 
mutually perpendicular planes of symmetry exist at any point. For a such material, the stress-
strains relation is given by equation (1.2). 

 eσ ε= D (1.2)

in which eD  is drained elastic modulus tensor that is given by following relation (Cheng, 
1997): 
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The inverse of the stress-strains relation is commonly written as 
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(1.4)

where  iE  is the Young’s modulus along axis i. 

 ijG  is the shear modulus in direction j on the plane whose normal is in direction i. 



 

33 
 

 ijυ  is the Poisson’s ratio that corresponds to a contraction in direction j when an 

extension is applied in direction i. 

Note that x yx y xyE Eυ υ= ; x zx z xzE Eυ υ= ; y zy z yzE Eυ υ=   

Under plane strain conditions (2-dimensional plane), 0zzε = , Hook’s law for an orthotropic 

material takes the form of equation (1.5) or (1.6). 
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with  (1 )(1 ) ( )( )xz zx yz zy yx zx yz xy zy xzm υ υ υ υ υ υ υ υ υ υ= − − − + +  

For sedimentary rocks, very often the properties in one plane (generally the stratification 
plan) are isotropic (e.g. xz plan in figure 1-13, also known as the isotropic plane) whereas the 
properties in the direction normal to this plane are different. These materials are known as 
transversely isotropic materials. 

In a transversely isotropic material, with axis of symmetry coinciding with y axis, one could 

write x zE E= ; zx xzυ υ= , yx yzυ υ= , xy zyυ υ=  and yx xy

y xE E
υ υ

= . The Hook’s law for an transversly 

isotropic material takes the form of equation (1.7) or (1.8). 

 
Figure 1-13: A stratified (transversely isotropic) material 
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with 2(1 )(1 ) (1 ) (1 )x yz x yz
xz yz yz xz xz
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The isotropic material has the property which is invariant under translation and rotation. For 

linear isotropic poroelastic solid skeleton case, is become in (1.9) 
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(1.9)

Thus, the input parameters for 2-dimensional problem are 

+ x yE E E= =  and yz yx xzυ υ υ υ= = =  for isotropic material. 

+ xE , yE , xyG , xzυ , yzυ  for transversely isotropic material which is transversed of axis y  

1.3.2  Hydraulic behaviour 

The hydraulic behaviour of fractures is perhaps the the most discussed in the literature 
including mathematical model formulations of the complex flow behaviour for single -phase 
flow fracture systems. Multi-phase flow systems are described in literature by Chen et al 
(2006) and are not expressed in the thesis. Flow in porous media is treated by Darcy’s law 
while Navier-Stokes, Stokes or the local cubic law (Poisseuille) could be applied for 
modeling flow in fractures. 

a) Darcy’s law 

The flow of a fluid through a porous medium can be described by the well-known Darcy’s 
law. The law was proposed in 1856 by Henry Darcy based on the results of experiments on 
the water flow through sand layers. Based on the assumptions of the laminar and Newtonian 

eD
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flow, and a nonslip boundary condition of fluid-solid interfaced at the microscopic scale 
(Bear, 1972; Detournay and Cheng, 1993; Chen et al, 2006), the generalized Darcy’s law 
describes the movements of fluid in the porous media. The velocity vector ν  is related to the 

gradient of the pressure p  by equation (1.10) 

 ( )p gν ρ
μ

= − ∇ −
K

 
(1.10)

where µ represents the dynamic viscosity, p the pressure, and the K the intrinsic permeability 
tensor. We neglect the effect of gravity and assume that K  is a diagonal tensor. The velocity 
vector becomes 

 
pν

μ
∇

= −
K

 
(1.11)

where 
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If xx yy zzk k k k= = = , the porous medium is isotropic. 

b) Navier-Stokes equations; 

The Navier-Stokes equations which express momentum and mass conservation over the 
fracture (Brush and Thomson, 2003) for the steady laminar flow of a Newtonian fluid with 
constant density and viscosity through a fracture with impervious walls. The equation of the 
momentum conservation in fracture is expressed by equation (1.12) 

 2( . )u u u pρ μ∇ = ∇ −∇ (1.12)

Where ρ is the fluid density, 

 μ  is the fluid viscosity, 

 ( , , )x y zu u u u= is the velocity vector at point (x,y,z), 

 ( , , )p x y z is the hydrodynamic pressure.  

And, mass conservation in fracture is equation (1.13): 

 0u∇ = (1.13)

The Navier Stokes equations form a nonlinear system of partial differential equations that are 
difficult to solve in irregular geometries and even in domains with simple geometry (Tatomir, 
2007). Hence, some expressions are derived from the Navier- Stokes equations by making 
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certain assumptions and simplifications which are proposed to model flow in fractures such 
as Stockes equation or Poisseuille equation.  

c) Stokes equation 

The fist level of simplification is to assume that the inertial forces in the flow field are 
negligibly small compared with the viscous and pressure forces. The momentum conservation 
of Stokes equation becomes to equation (1.14) and the mass conservation equation is kept as 
equation (1.13) in fracture  

 20 u pμ= ∇ −∇ (1.14)

To ensure the neglecting of inertial forces, a common measure of the relative strength of 
inertial forces to viscous forces in flowing fluids is the Reynolds number. The critical 
Reynolds number marking the beginning of turbulence and the dominance of inertial forces 
in the flow field is approximately 1200 based on experimental observations of flow through 
smooth parallel plates (Brush and Thomson, 2003; Tatomir, 2007) 

d) Poisseuille equation 

Poiseuille flow is a pressure-driven flow between stationary parallel plates which presented in 
Zimmerman and Bodvarsson (1996). Incorporating the no-slip condition (u=0) at the fracture 
walls, the resulting parabolic velocity distribution given by equation (1.15) is shown on the 
right of Fig 1-15. 
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Figure 1-14: Parallel-plate fracture of aperture h, with uniform pressures Pi and Po imposed on two 

opposing faces. 

The average velocity is found by dividing the flux by the cross-sectional area 

 
2

12x
HU P
μ
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(1.16)

Where H is the local aperture parallel to the y-axis 
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In general, permeability of fracture is in form of tensor. 
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The flow along fracture can be equaled to Darcy’s law with the average permeability as 
below 
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(1.17)

The flow perpendicular fracture yyk  can be equaled to the value in longitudinal direction. 

Hence, the hydraulic behaviour of fractures can be isotropic. 

1.3.3 Hydro mechanical coupling theory of porous media 

The concept of the poroelastic medium had first appeared in the works of Karl von Terzaghi. 
Since then, it was later interpreted generally in the works of Maurice Anthony Biot. During 
the years of 1935-1957, Biot developed the theory of dynamic poroelasticity also called 
Biot’s theory. In his theory of linear poroelasticity, Biot’s theory has employed by Detournay 
and Cheng (1993), Verruijt (2013) and Coussy (2004) in the following equations: (1) 
equations of linear elasticity for the solid matrix is the stress-strain relation in which changes 
in total stress and fluid pressure are related to changes in strain and fluid content by Biot’s 
theory such as Biot (1941), Coussy (2004) and (2) diffusion equations for fluid is the 
equation that comes from mass and linear-momentum conservation laws. We assume single-
phase flow of a slightly compressible fluid, small deformation, isotropic and anisotropic 
materials in this study. The hydro mechanical theory of unsaturated porous media is 
expressed in chapter 6 of Coussy (2004) and is not included in this thesis.  

(1)  Equations of linear elasticity for the solid matrix  

The stress equilibrium equations with the consideration of pore pressure are based on Biot 
theory as follow: 

 0 0
eσ σ = (p p )− −D E-B (1.18)

Where σ  and 0σ  are the Cauchy total stress tensor at the current status and the initial status 

 eD is stress strain tensor 

E  is the strain tensor 

B  is the Biot tensor 

p  and 0p are the pressure at the current status and the initial status  
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(2) Diffusion equations for fluid  

The diffusion equation for fluid is combined with the continuity equation of fluid, 
constitutive equation and transport law. Considerations of mass conservation of a 
compressible fluid yields the local continuity equation 

 ,i iq
t
ζ γ∂
+ =

∂  
(1.19)

where γ is the source density (the rate of injected fluid volume per unit volume of the porous 
solid).  

ζ is variation of fluid content per unit volume of porous media 

The transport law is conformed to the Darcy’s law for the flow of fluid through the porous 
matrix which is introduced in item 1.3.2. The fluid volume flux, 0/ f,v = q ρ , is given by 

Darcy’s law 

 
pν

μ
∇

= −
K

 
(1.20)

where K is the permeability tensor, 

μ  is fluid viscosity. 

Constitutive equations for porous media: 

 ( )0 :p p M ζ− = −B E (1.21)

in which   

p  and 0p are the pressure at the current status and the initial status 

B  is the Biot second ordre tensor 

E  is the Cauchy second order strain tensor 

M is the Biot modulus 

The equation (1.21) is rewritten  

 0
1:= + (p p )
M

ζ −B E
 

(1.22)

For isotropic material, b=B I  where I is the identity tensor, the equation (1.22) becomes 

 0
1

vb + (p p )
M

ζ ε= −
 

(1.23)

For orthotropic material, the equation (1.22) can be rewritten: 
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 0
1

xx xx yy yy zz zzb b b + (p p )
M

ζ ε ε ε= + + −
 

(1.24)

Combination of Darcy’s law (1.20), the continuity equation (1.19), and the constitutive 
relation (1.23), we have the diffusion equation for isotropic material (Detournay and Cheng, 
1993) with the neglecting of source density 

 
1 . vp p+ ( )= b
M t μ t

ε∂∂ ∇
∇ − −

∂ ∂
K

 
(1.25)

In generalization, combination of Darcy’s law (1.20), the continuity equation (1.19), and the 
constitutive relation (1.22), the diffusion equation for orthotropic material can be written with 
the neglect of source density 

 
1 . :p p+ ( )=
M t μ t
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(1.26)

Thus, the Biot parameters for 2-dimensional problem are 

+ Biot modulus M  and Biot coefficient b  for isotropic material. 

+ Biot modulus M and Biot coefficient in two directions xxb , yyb for isotropic transversely 

material with isotropic axis coinciding with one of this axis 

 

1.3.4 Hydro mechanical coupling theory of fractured reservoirs 

Hydromechanical effects within fractured media is a major field of scientific interest in 
geosciences especially the impact of fluid pressure to mechanical response and also aperture 
variation to fluid flow in fracture (Cappa et al, 2008). At the scale of a fracture network, the 
understanding of interactions between fluid flow and mechanical processes are complicated 
due to the complex geometry and the great variability in properties, such as fracture aperture 
and stiffness (Cappa et al., 2005).  

Coupled hydro mechanical behaviours of fractured rock masses are expressed depending on 
conceptual model used for modeling of fractured rock masses. As presented in the item 1.2, 
two main approaches can be used to model fractured reservoirs: equivalent continuum 
approach and discrete fractures approach. For equivalent continuum approach, the effect of 
fractures will be taken into account by equivalent matrix. In this approach, fractured reservoir 
will play as porous media and governing equation detailed in item 1.3.3 could be used with 
the equivalent parameters which combined the properties of matrix and fractures. 
Additionally, pore pressure changes caused by production from a reservoir or injection into a 
reservoir can induce rock deformations (Moinfar, 2013). Fluid-flow characteristics of porous 
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media (especially in case of reservoirs), such as permeability and pore compressibility, can be 
very sensitive to effective stress changes caused by changes in pore pressure. Several studies 
in the past such as Settari and Mourits (1998), Chin et al. (2000), Raghavan and Chin (2004), 
Gutierrez et al. (2001), Samier et al. (2006) and Marmier (2007) attempted to take in to 
account the effect of mechanics state od rock masses to porosity and permeability of porous 
media changes by updating porosity of porous media in each elapsed time.  

The hydromechanical effects of fractures may be considered as one-way coupling (H->M) in 
case the mechanical effect to pressure distribution is neglected. On the other hand, the hydro 
mechanical coupling is generally complete and occurs fracture-fluid interaction (H<->M). 
For discrete fracture approach, the governing equations are presented hereafter for both 
approaches. 

a) One-way coupling 

The mass balance of single phase flow (saturated material), in case of neglecting the 
mechanical effect to pressure distribution in fractures, is presented in Chen et al (2006) and 
Mikelic et al (2014). Fracture aperture is kept constant as its initial value in this case 

 
( )

. )f f
f H H(q = q q

t
ϕ ρ

γ + −∂
+∇ + +

∂  
(1.27)

where 

fϕ  is porosity and equals to 1 in fracture 

γ  is external source and sinks 

Hq+  and Hq− are the leak-off flux from each side of the fracture surfaces to the surrounding 

porous media and are not required to be calculated explicitly (Woodbury and Zhang, 2001; 
Segura and Carol, 2004; Wantanabe, 2011; Liu et al, 2015). 

0poi poi
f f fq ρ u ρ u= ≈ is conformed to the Poisseuille’s law presented in the item 1.3.2.  

 0 0
poi

poi
f f f

pq v =
μ

ρ ρ ∇
= −

K

 
(1.28)

Where  

poiK is the permeability tensor of fracture presented in item 1.3.2d, with poi  denoting to 

Poisseuille’s law, 

fρ is density of fluid, for slightly compression flow, we assume ( )0
01 ( )f f fc p pρ ρ= + − , 

fc  is fluid compressibility 
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0
fρ  and 0p  are the initial density of fluid and initial pressure, respectively. 

The diffusion equation for hydraulic behaviour in fractures is combination of mass balance 
and transport law. Neglect the effect of gravity and external source and sinks, we have 

 . 0poi
f

pc p =
t μ

⎛ ⎞∂
−∇ ∇⎜ ⎟∂ ⎝ ⎠

K

 
(1.29)

The mechanical equation is similar to (1.18)  

 0 0
e
F Fσ σ = ε (p p )− − −D B (1.30)

Where e
FD  and FB  are strain stress tensor and Biot tensor of fractures. 

b) Two-way coupling 

In this case, the variation of fracture aperture can induce a variation of pressure in fracture as 
well as the fracture’s permeability. The volume balance equation for the discrete fracture can 
be described in its local coordinates, writing in low-dimensional form, from the mass balance 
law as (Wantanabe, 2011) 

 ( ). 0m
m s h f H H

bpb S b b q q q =
t t

+ −∂∂
+ +∇ + +

∂ ∂  
(1.31)

where b is Biot is coefficient for fractures. It denotes the mechanical effect to pressure 

distribution in fracture. 

mb  and hb  denotes a mechanical and hydraulic (hydraulically effective) aperture, 

respectively.  

1
s lS

K
= is specific storage coefficient for a fracture with lK  the compressibility of liquid.  

.∇  is the divergence operator in local coordinate system.  

The volumetric change of unit space due to change in the stress field is expressed as mb
t

∂
∂

. 

Hq+  and Hq− are the leak-off flux from each side of the fracture surfaces to the surrounding 

porous media and are not required to be calculated explicitly (Woodbury and Zhang, 2001; 
Segura and Carol, 2004; Wantanabe, 2011; Liu et al, 2015). 

The term of “writing in low-dimensional form” denotes one-dimensional calculation for two-
dimensional problem. 

With the ignore of leak-off flux, the mass balance becomes 
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 ( ). 0m
m s h H

bpb S b b q =
t t

−∂∂
+ +∇

∂ ∂  
(1.32)

In case fracture length is too long in compared fracture width, the deformation long fracture 

can be neglected, we have m v
m

b b
t t

ε∂ ∂
=

∂ ∂
 

Assumption of h mb b= , the mass balance becomes 

 ( ). v
s f

pS q = b
t t

ε∂∂
+∇ −

∂ ∂  
(1.33)

0poi poi
f f fq ρ u ρ u= ≈ is conformed to the Poisseuille’s law presented in the item 1.3.2.  

Combined equation (1.33) and (1.28), we have diffusion equation for fractures in equi-
dimensional form 

 
(t). :F

s F
pS p =
t μ t

⎛ ⎞∂ ∂
−∇ ∇ −⎜ ⎟∂ ∂⎝ ⎠

K E
B

 
(1.34)

The mechanical equation is similar to (1.18)  

 0 0
e
F Fσ σ = ε (p p )− − −D B (1.35)

Where e
FD  and FB  are strain stress tensor and Biot tensor of fractures. 

(t)K is the intrinsic permeability tensor of fracture at time t. 

The hydro mechanical parameters of fracture need to be determined and should be provided 

to simulate. They include mechanical parameters ( FE Fν , etc...), hydraulic parameter ( (t)FK

) and coupling parameters ( FM , FB ). Determining these parameters is challenging due to the 

complexity of fractures: nominally planar or rough surfaces. The surfaces are typically in 
contact with each other in some locations, but separated in others. It is usually classified as a 
fault if the fracture has undergone substantial shear, otherwise, it is denoted as a joint 
(Zimmerman and Main, 2004). Some experiments conducted by Makurat and Gutierrez 
(1996), Cappa et al (2005, 2006) and studies by Lorenz (1999) showed that the transmissivity 
of fracture depends on normal stress action on that fracture and varies during production. 
Fractures with stress transfer through surface contacts is a more realistic scenario because it 
enables to consider changes in fractures aperture caused by changes in the effective stress 
normal to the fractures. Min et al (2004b) studied the fracture aperture change in a 
complicated fracture network with an impermeable material using a two-dimensional distinct 
element method program UDEC (universe distinct element code). Bagheri and Settari (2008), 
Monteagudo et al. (2011) attempted to update permeability of fractured blocks by calculating 
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on the basis of the orientation and spacing of fracture sets and aperture of fracture sets from 
the previous step. There have been very few attempts to couple flow and geomechanics in 
discrete fractures models. Tao et al. (2009), and Ranjbar et al. (2011) incorporated fracture 
geomechanics into modeling of naturally fractured reservoirs. Monteagudo et al. (2011) 
coupled a finite-element poroelastic code with a control volume discrete fracture flow 
simulator. We briefly introduce some basic theories of modeling closure or opening of 
fractures as below: 

The deformation behaviour of fractures prior to an ultimate failure was studied by Goodman 
in 1970 (Rutqvist and Stephansson, 2003). He expressed normal and shear deformation of 
fractures as a function of stiffness and applied stress. The force-displacement law relates 

incremental normal and shear forces ( '
nσΔ , '

sσΔ ) which develop at contacts directly to the 

amount of incremental relative displacement ( nuΔ , suΔ ): 

 
'

'
n n n

s s s

k u

k u

σ

σ

Δ = Δ

Δ = Δ  
(1.36)

where nk  and sk  are the contact normal and shear stiffness 

 
Figure 1-15 Sketch of mechanical behavoir of fracture (UDEC’s manual, 1989) 

The normal stiffness of a fracture is dependent on the size of the contact area between the 
fracture surfaces and the quality of the surfaces. The rate of fracture closure and stiffness has 
been studied in the laboratory by Bandis et al. (1983) and Barton et al. (1985). Based on their 
experimental data, Bandis et al. (1983) and Barton et al. (1985) suggested a hyperbolic model 
for the normal deformation of fractures as given below: 

 
' Dn
n

na bD
σ =

−  
(1.37)

where '
nσ  is the effective normal stress and Dn initw w= −  is the normal closure of fracture, 

initw and w  are fracture aperture at initial state and current state '
nσ . Also, a  and b  are 

constants related to two joint parameters, initial normal stiffness and maximum joint closure. 
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For very large values of normal stress, the fracture closure reaches its maximum in equation 
(1.38) 

 ,max
aDn b

=
 

(1.38)

where ,maxDn is the maximum normal closure of fracture. Also, joint normal stiffness ( nk ) can 

be obtained from the derivative of equation (1.37) 
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 (1.39)

The normal stiffness at zero effective normal stress is called the initial normal stiffness ( initk ) 

can be determined by equation (1.40) 

 
1

initk
a

=
 

(1.40)

Hence, with two basic joint parameters, initial normal stiffness and maximum normal closure, 
we can calculate the normal fracture closure in terms of joint parameters and normal effective 
stress (using Equations 1.37, 1.38, and 1.40), which is given by equation (1.41) 

 
'

,max
'

,max

D
D

D
n n

n
init n nk

σ
σ

=
+  

(1.41)

By rewriting equation (1.41), we can calculate the fracture aperture by equation (1.42) 
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D
w D

D
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k
k σ

=
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(1.42)

Recently, Baghbanan and Jing (2008) proposed another equation to express the normal 
stiffness as below: 

 
2(10 )

9
n nc

n
nc init

k
w

σ σ
σ
+

=
 

(1.43)

where nσ is the normal stress. 

 [ ] 0.487 [ ] 2.51nc initMPa w mσ μ= + (1.44)

The symbols initw  and ncσ  are initial fracture aperture and critical normal stress, respectively. 

It can be seen that fracture normal stiffness also is correlated with fracture trace length. 
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Zimmerman and Bodvarsson (1996) sought to find a way to describe the hydraulic aperture in 
a more geometrically sound way than the cubic law, which is based on the Navier-Stokes 
equations and assume laminar flow in smooth parallel plates. A modified form of the cubic 
law (equation (1.16)) governs fluid flow in fractures (Rutqvist and Stephansson, 2003): 

 
3( )

12
hi nb f U w gq hρ

μ
+ Δ

= ∇
 

(1.45)

where q  is the flow rate, hib  is the initial hydraulic aperture at the initial effective stress, f  

is a factor reflecting the influence of the roughness on the tortuosity of the flow, nUΔ  is the 

change in the fractures normal displacement, w  is the fracture width, ρ is the fluid density, g 

is the gravitational acceleration, μ is the fluid dynamic viscosity, and h  is the gradient in 
hydraulic head.  

 
 

1.4 Summary  

The literature about characteristics of double porosity and double permeability of fractured 
reservoirs is reviewed in this chapter. Rock matrix provides the primary storage of production 
such as oil, gas while the fractures serve as highly conductive flow paths.  

In this chapter, the conceptual model as well as previous works for fractured reservoirs is 
summarized in two main approaches: equivalent approach (or called continuum approach) 
and discrete fracture approach (or called discontinuum approach). Also, a new approach, 
which combines the superiority of continuum and discontinuum approaches, identified and 
studied by some former authors under different names fracture continuum approach, fracture-
cell model, or embedded discrete fracture model for hydraulic behaviours is presented briefly. 

Finally, governing equations of porous medium and fractured rock masses that will further 
used in this thesis are briefly described based on major references on the field. 
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CHAPTER 2 PORO-ELASTIC COUPLING OF POROUS 
MEDIA: IMPLEMENTATION IN DEAL.II  

 

2.1  Introduction 

In this chapter, the implementation of the poro-elastic coupling of the porous media in an 
open source library will be detailed. The well-known source code DEAL.II which has been 
utilized and developed since the last two decades (Bang and Kanschat, 1999; Bang et al, 
2007; http://www.dealii.org/) will be chosen for this purpose. Thanks for the available 
mechanical and hydraulic module in this library source code, a sequential strategy to couple 
the poro-elastic behaviour of the porous geomaterial will be applied. The implementation of 
this module allows to simulate the hydro-mechanical behaviour of the isotropic as well as the 
transversely isotropic porous media which will be extended later in the context of the 
fractured porous media as detailed in the next chapter.      

The organization of this chapter is as follows. Firstly, a brief presentation of the open source 
code DEAL.II is conducted. Then after a bibliographic study on different methods to couple 
the hydro-mechanical behaviour of the porous media, we will focus on the interactive 
coupling technique which is widely used in the literature to couple an available 
geomechanical code with another available fluid flow code. The implementation details of 
this iterative coupling in DEAL.II will be followed by some numerical investigations which 
aim to validate the developed procedure.      

2.2  Open library source code DEAL.II 

DEAL.II or Deal.II (Differential Equation Analysis Library) is a free, open library 
source code to solve the partial differential equations using the finite element method 
(FEM).  Starting from the pioneering work of Numerical Methods Group at Heidelberg 
University in Germany with the first public release (version 3.0.0) in 2000, this software has 
received a lot of contributions of the community scientific  (http://dealii.org/authors.html) 
illustrated by hundreds of publications (http://dealii.org/publications.html) in different fields. 
The current version 8.5.0 is released in February 2016. The primary maintainers, coordinating 
the worldwide development of the library, are today located at Texas A&M University, 
Clemson University and Heidelberg University.  

DEAL.II was written and developed based on the principal aims (Bangerth and Kanschat, 
1999) as follows: 

Flexibility: DEAL.II provided a library which enables users to try and test their ideas in a 
way as quick as possible. The library is easily extendible with respect to the most common 
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approaches in numerical analysis, i.e., different variational formulations, different space 
dimensions, different finite element spaces, and different linear solvers.  

High level interfaces: The library is designed as simple to use as possible. The interface 
shows only the basic data structure and hides the complex data structures. For example, 
locally refined grids are quite complex data structure and users can use this library without all 
necessary knowledge about the grid handling details.  

Efficiency: The computations involved in finite element calculations are often highly time 
consuming and their required memories are enormous. Therefore, efficiency has to be 
considered as well. 

Obviously, some of these criteria are contradictory and must be traded against each other. In 
almost cases, DEAL.II traded efficiency in favor of safety and flexibility. However, some 
decisions were also made with the performance aspect in mind. One important decision for 
simplicity against flexibility in DEAL.II was the reduction to hypercube (line, quadrilateral, 
hexahedron) cells and their transformations to the physical space only. Experiences of 
running combined mesh of simplicial elements (triangle, tetrahedron) and hypercube 
elements exhibit complicated data structures and violate the safety. The final decision was 
only hypercube (line, quadrilateral, hexahedron) cells in DEAL.II. Below some essential 
aspects of DEAL.II are outlined:  

 This source code uses C++ (http://www.cplusplus.com/info/description/) as the 
programming language due to some main reasons. Firstly, C++ is widely available and is 
a compiler that runs on almost any platform, including personal computers for home use, 
workstations and supercomputers. It is a popular language in nearly all fields of 
computing, so acquiring skilled programmers is less difficult than with other 
programming languages. Secondly, C++ is a standardized language, so the programmer is 
able to rely on language features and can write portable programs that are guaranteed to 
run in the future as well. Furthermore, with a large library of generic data containers and 
algorithms C++ allows to program significantly faster than using other languages. Also, 
C++ is a highly structured software that is fast, opposed to teaching focused languages 
like Pascal and languages for network and interactive applications like Java. Therefore, it 
offers features like templates and inline functions, that enable a good compiler to mostly 
eliminate structural overhead. The last one is in-code documentation. In practice, for a 
rather small group of developers it is impossible to keep a good technical documentation 
up to date unless this can happen within the source code itself. Documentation is written 
directly at the point where modifications occur, making it much easier to keep program 
and documentation in a matching state. 
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 This code treats a huge kind of finite elements of any order:  continuous and 
discontinuous Lagrange elements (Cangiani et al, 2011), Raviart-Thomas elements 
(Raviart and Thomas, 1977), and other combinations. 

 Parallelization using multithreading through massively parallel using MPI (Message 
Passing Interface) is implemented in DEAL.II (it has been shown to scale to at least 
16,000 processors as confirmed by Bangerth et al. 2011) 

 Mesh refinement in this source code bases on the multigrid method with local smoothing 
using the adaptively refined meshes (Bangerth and Rannacher, 2003 ; Kanschat, 2004; 
Janssen and Kanschat, 2011). The adaptive refined meshes with the hanging nodes 
technique will be presented in the next chapter. 

 All documentation about this code is available online in a logical tree structure which 
allow users fast access to the information. The documents comprise more than 500 pages 
of tutorials, several reports, and more than 5,000 pages of programming interface 
documentation with explanations of all classes, functions, and variables. All 
documentation comes with the library on user’s computer after installation, is available 
on the World Wide Web http://www.dealii.org/ as well as updated every day. 

DEAL.II is structured in different steps and each step solved a particular problem. As for 
example, the basic steps 1, 2, 3, 4, 5 and 6 talk about the triangulation, degree of freedom, 
Laplace matrix, boundary condition, adaptive local refinement and hanging node handing etc 
which are essential to solve each required problem. Based on these six basic steps, users can 
implement a simple problem by themselves. From the step 7, DEAL.II classified tutorial into 
some topics: advance techniques, fluid dynamics, solid mechanics, and time-dependent 
problems. However, this classification is only reference and users need to understand what 
they want DEAL.II to supply to solve a problem and what DEAL.II can supply. For a 
complicated problem, users need to combine two or more steps into a unified code. The chart 
of the step structure in DEAL.II is in the figure 2-1. The other features of DEAL.II will be 
captured in appendix A to simplify the presentation. 
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Figure 2-1: Structure of all steps in DEAL.II 

Legend: 

 

Concerning the hydraulic and mechanical phenomena, DEAL.II provided some steps which 
solve however separately the corresponding hydraulic and mechanical behaviour of the 
material which are summarized in table 2-1 and table 2-2, respectively. Hydraulic problems 
solved in DEAL.II consist of the Darcy, Stoke or Navier Stock diffusion. These equations are 
solved with some kinds of boundary such as pressure imposed, saturation imposed, velocity 
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imposed. The obtained results from these steps could be pressure of all nodes and velocity at 
faces of element. Correspondingly, the mechanical problems solved in DEAL.II are elastic, 
visco-elastic, plastic and hyper-elastic behaviours of isotropic material. Similar to hydraulic 
phenomena, the differential equations of the mechanical behaviour can be solved with the 
provided Newman and Dirichlet boundaries while the obtained results are displacements of 
all nodes. 

Items Equations solved Boundary condition Results 

Step 20 Darcy equation 
(saturated material) 

Pressure imposed Velocities 
Pressure 

Step 21 Darcy equation 
Balance equation of mass 

Saturation and 
Pressure imposed 

Velocities 
Pressure 
Saturation 

Step 22 Stoke equations Load imposed Pressure 
Velocities 

Step 26 Diffusion equation Pressured imposed Pressure 

Step 35 Navier-Stokes equation in 
isotropic behaviour 

Velocities Velocities 
Pressure 

Step 43 Darcy equation 
(unsaturated material) 

Saturation and 
Pressure imposed 

Velocities 
Pressure 
Saturation 

Table 2-1 : Available hydraulic examples implemented in DEAL.II 

 

Items Equations solved for isotropic 
material 

Boundary 
condition 

Results 

Step 8  
Step 17 

Elastic linear  Displacement 
imposed 

Displacement 
 

Step 18 Visco-elasticity Displacement and 
stress imposed 

Displacement 

Step 42 Elasto-plastic  Stress imposed Displacement 

Step 44 Hyperelasticity Displacement 
imposed 

Displacement 

Table 2-2: Available mechanical examples implemented in DEAL.II 

Recently, Heister et al (2015) implemented in this code the phase-field method (which 
consider two variables: displacement and phase field) to study the cracking-propagation 
problem in an elastic material by using the fully coupling based on the Griffith energy (1921). 
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Some other studies of Wick et al (2014), Wheeler et al (2014), Mikelic et al (2014, 2015) and 
Lee et al (2016) about cracking propagation were also conducted in DEAL.II with an 
extension for the isotropic porous medium.  

Concerning the hydro-mechanical behaviour of fractured porous medium, with the 
knowledge of authors, until now no development in DEAL.II is available. This issue will 
contribute as one of the main objectives of the present thesis and will be focused on the next 
chapter. However, in this chapter, the hydro-mechanical of a homogeneous porous medium is 
the first important step to obtain this purpose. The available hydraulic and mechanical 
examples implemented in DEAL. II (steps 8, 26) will be used as the starting point of this 
coupling. These present steps limited in the isotropic behaviour of the material will be 
extended in the transversely isotropic for the future applications.      

2.3  Hydro-mechanical coupling strategy 

There exist in the literature different approaches to couple the fluid flow and geomechanics 
(hydro-mechanical behaviour) in the porous medium. In general, one can classify them in 
three main approaches (Gai, 2004; Jha, 2005; Kim et al, 2009, 2011; Kim 2010):  

- The first approach known as the fully coupling involves solving all the coupled governing 
equations (of both hydraulic and mechanical problems) simultaneously and the obtained 
results at each node after every time step are the pressure and displacements. This strategy of 
coupling is unconditionally stable but can be computationally expensive when it has 
substantial local memory and complex solvers. (Wan, 2002; Gai, 2004). 

- The second approach called as iterative coupling is a sequential procedure where either the 
flow or the mechanical problem is solved first and the other problem is solved by using the 
intermediate solution information. At each step, the procedure is iterated until the solution 
converges within an acceptable tolerance (Gai, 2004; Jha, 2005; Kim et al, 2009, 2011; Kim 
2010). The fully coupled and sequential solutions are expected to be the same for a given 
time step, at convergence, if they both employ the same spatial discretization schemes of the 
flow and mechanical problems (Kim et al, 2009). In principle, a sequential scheme offers 
several advantages (Mainguy and Longuemare, 2002), including working with separate 
modules for flow and mechanics, each with its own advanced numeric and engineering 
functionality. It also facilitates the use of different computational domains for the flow and 
mechanical problems. The schematics of fully coupling and iterative coupling is sketched in 
figure 2-2. Note that as a special case of the iterative coupling where only one iteration is 
taken, we can find in the literature the staggered (or single – pass sequential) coupling.  

-  The third approach is usually called as the loose or explicit coupling. Follow that, the 
coupling between the two problems is resolved only after a certain number of flow time steps. 
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As consequence, the results of this strategy of coupling are less accurate in comparison with 
the fully and sequential coupling.  

 

Figure 2-2: Schematics of the fully coupled (top) and the iteratively coupled (bottom) methods (Kim, 
2010) 

 

 

Given the enormous investment in software development and the high computational cost of 
the fully coupled flow–mechanics simulation, it is desirable to develop the sequential method 
that can be competitive with the fully coupled approach. The sequential calculation can be 
done by using the corresponding geomechanics and fluid flow codes or in only one codes 
with the separate modules for mechanics and flow. This is the main reason why iterative 
coupling is of interest in many areas of science and engineering. In this work, this coupling 
strategy is also chosen.   

In the sequential coupling, one distinguishes four schemes (Figure 2-3) which are 
respectively the drained split, the undrained split, the fixed strain split and the fixed stress 
split. An excellent overview of these schemes can be found for example in (Kim et al., 2009, 
2011; Kim, 2010) and below some of these schemes will be briefly presented.  
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Figure 2-3: Coupling fluid flow and geomechanics: four iterative coupling schemes (Kim, 2010).  

 

As summarized in Tables 2-1 and 2-2, currently in DEAL.II the diffusion equation (step 26) 
of the single-phase flow and the elastic equation (step 8) are already solved. The available 
source code of these two problems will be used in this work by and adapted to solve a hydro 
mechanical coupling using the drained split, undrained split and fixed-stress split.  

Recalling now two coupled governing equations in (1.18) and (1.26):  

 0 0
eσ σ = (p p )− −D E-B

 
(2.1)

 
1 . :p p+ ( )=
M t μ t

∂ ∇ ∂
∇ − −

∂ ∂
K E

B
 

(2.2)

where σ  and 0σ  are the current and initial Cauchy total stress tensor; eD , E, B  designate 

respectively the stiffness, strain and Biot tensors; p  and 0p are the current and initial 

pressure while the hydraulic parameters M , K , μ  indicate the Biot modulus, the 

permeability tensor and the viscosity of the fluid. 

As the simplest method to solve sequentially the HM coupling, one can use the drained split 
in which at each iteration the mechanical equation (2.1) is solved firstly by considering that 
there is no variation of pore pressure during this calculation. Then the diffusion equation (2.2) 
are solved in a sequence using the previous solutions of the mechanical problem.  This split 
scheme is simple and quite easy for the implementation but it is conditional convergence, for 

example in case of the isotropic material this condition 
2

1
dr

b M
K

≤  must be satisfied ( drK is the 

drained bulk modulus, the readers can refer to Kim et al, 2009 for more details).  

To improve the convergence of iterative coupling method, the undrained split and the fixed-
stress split are usually proposed. In the undrained split, the mechanical equation (2.1) is 
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solved firstly but with a modification to satisfy the undrained condition of flux 0m =δ . In 
case of isotropic material the undrained condition is written: 

 
10 v= b ε p
M

δ δ+
 

(2.3)

Substituting equation (2.3) into equation (2.1), the mechanical equation for undrained split 
can be expressed in form: 

 ( ) 2
0 0ud vσ σ = ε b p p b Mε− − − −D I I

 
(2.4)

in which 2
ud dr= +b MD D Iwith I  the fourth order identity tensor. 

After solving the mechanical problem, the diffusion equation (2.2) will be solved normally as 
in the previous drained split. 

Inversely, in the fixed-stress split, the diffusion equation (2.2) will be solved in the first step 

but a modification is also conducted to satisfy the condition of mean total stress
.

0v =δ σ . 

Always in case of the isotropic material, the diffusion equation taking into account this last 
constraint is developed in form (Kim, 2010; Almani et al, 2016):    

 
2 21 . vεb p b pp = b

M t μ t tλ λ
⎛ ⎞ ⎛ ⎞ ∂∂ ∂

+ −∇ − ∇ − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

K

 
(2.5)

where λ  is the first coefficient of Lame and vε represents the volumetric strain.  

The sequential coupling continues by solving the mechanical problem (Equation 2.1) using 
the solution of pore pressure obtained from the first step.   

 

2.4  Implementation of sequential hydro-mechanical coupling in DEAL.II 

In this part, the sequential hydro-mechanical coupling developed in the context of the finite 
element method is detailed, including theoretical bases for its implementation in the source 
code in DEAL.II.  

2.4.1 Time and space discretization of governing equations 

We present the formulations of time and space discretization of coupled hydro mechanical 
equations in iterative coupling scheme (drained split, undrained split and fixed-stress split). 
The 2-dimensional problem is considered in two kinds of material: isotropic material and 
transversely isotropic material. 
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The finite element formations of isotropic material are referred to Wan (2002) Jha (2006), 
Wang (2014), Kim et al (2009, 2011) and Kim (2010) for the drained / undrained split 
methods and are referred to Almani et al (2016) for the fixed-stress split method. To assign 
the initial stage (the condition prior to excavation), Mestat (2011) is referred. Equations of the 
transversely isotropic material are generalized from isotropic material. 

a) Mechanical formulations 

a1) Drained split and fixed-stress split 

The equation (2.1) can be rewritten in the equation (2.6) 

 '. 0σ p∇ − ∇ =B (2.6)

Using integration by parts, the Eulerian-Lagrangian form (weak form) is 

 ( ) ( ) ( ) ( ). ( 0'
dr Ω Ω ΩΩ

σ p,w = ε(w),D ε u) + ε(w), p + w,q
∂

∇ − ∇ − =B B
 

(2.7)

where  w is weight function of displacement (u), q is boundary pressure and drD  is stress-

strain tensor (stiffness tensor) in item 1.3.1.  

The equation (2.7) can be cast into equation (2.8) 

 
 
( ) ( ) ( )(dr Ω Ω Ω
ε(w), ε u) = ε(w), p + w,q

∂
D B

 
(2.8)

In finite element method, when the variables are the displacement of nodes u , the discrete 
strain vector is expressed by the equation (2.9)  

 ε u=T
 

(2.9)

where displacement vector u  is a 8x1 vector for quadrilateral finite elements (4 

nodes) are used ( ) ( )1 1 2 2 3 3 4 4T

x y x y x y x yu u u u u u u u u=  

T  is the strain interpolation matrix, a 3x4 matrix of vectors, if quadrilateral finite 
elements are used: 

  ( )1 2 3 4T T T T=T  

where aT  is a 3x2 strain interpolation matrix associated with vertex a in a finite 

element eΩ  
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Equation (2.8) in matrix form could be written as  

 e e e eu = +k l f
 

(2.11)

where  [ ]e
abk=k  is locally stiffness matrix of element e .   

e

T T
ab i a dr b jk e T T d e

Ω

= Ω∫ D
 

drD is the stress strain tensor, 

1 ,   and 1 ,sd eni j n a b n≤ ≤ ≤ ≤  

ie  is the i-th Cartesian unit basis vector; 

enn is the number of displacement element nodes; 

sdn is the number of displacement's degree of freedom; 

a,b are the local displacement element node number; 

el and ef  are matrix associated with element e corresponding to the component of 
pore pressure distributed inside the element or pressure distributed around the element 
boundary (Neumann boundary). 

[ ]e
al=l  and [ ]e

af=f  

e
a e e al p dϕ

Ω

= ∇ Ω∫ B
 

a af q dϕ
∂Ω

= Ω∫  for Neumann boundary 

aϕ is shape function associated with displacement node a. 
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ep  and aB is pore pressure and Biot tensor associated with element  e  

q  is pressure associated with boundary ∂Ω  

Finally, globally linear equation for mechanical behaviour in matrix form could be written as  

 u = +K L F
 

(2.12)

where K is globally stiffness matrix and defined by 1( )eln e
e=K = kA  in which 1

eln
e=A

denotes the finite element assembly operator which assembles the contribution of element e  
to the global matrix/vector.  

Land F are matrix defined similarly by 1( )eln e
e=L = lA  and 1( )eln e

e=F = fA  

- Stage construction 

For calculating a ground excavation, the initial stage (the condition prior to excavation) is 
considered to mechanical equation. The equation of mechanics for the drained split or the 
fixed-stress split is rewritten as in Mestat (2011) 

 ( ) ( ) ( ) ( )0 0
dr drΩ Ω Ω Ω

ε(w), ε(δu) = ε(w), p + w,q ε(w ), ε(u )
∂
−D B D

 
(2.13)

where superscript 0 refers to the stage before excavating underground 

a2) Undrained split 

Similar to the case of drained split, the Eulerian-Lagrangian form (weak form) is 

 ( ) ( ) ( ) ( )ud Ω Ω Ω Ω
ε(w), ε(u) = ε(w),bp + w,q + ε(w),M

∂
⊗D B B : E

 
(2.14)

where udD is stress-strain relationship in undrained case ud dr= + M ⊗D D B B

(Dormieux et al, 2006).  

For isotropic material, udD  becomes 2
ud dr= +b MD D I   where I  is the identity 

tensor. 

Similar to drained split, equation (2.14) in matrix form for undrained split becomes to 
equation (2.15) 

 e e e e eu = + +k l f q
 

(2.15)

where ek is locally stiff matrix in undrained condition defined similar to equation 

(2.11) but in this case 
e

T T
ab i a ud b jk e T T d e

Ω

= Ω∫ D  
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el and ef    is matrix defined similarly in equation (2.11) 

eq is matrix defined [ ]e
aq=q  where ( )

e
a e e e aq p M dϕ

Ω

= + ⊗ ∇ Ω∫ B B B : E  

b) Pressure formulations 

b1) Drained split and undrained split 

The weak form hydraulic equations for isotropic and transversely isotropic media are 
presented hereafter 

For isotropic material the pressure diffusion equation (2.2) is written in discretized implicit 
Euler form as  

 11 . v,n v,nn n
n

n n

(ε ε )p p M p = bM
k μ k

−−
⎡ ⎤−⎛ ⎞−

− ∇ ∇ −⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

K

 
(2.16)

with 

 np  and 1np − being the pressure at time step n and n-1, respectively,  

nk  is the time step, 1n n nk t t −= − ,  

v,nε , 1v,nε −  are the volume strain at time step n, n-1, respectively. 

K is permeability tensor 
0

0
K

κ
κ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦  

κ  is the scalar value of permeability. 

In space discretization, the weak formulation is expressed by: 

 1( , ) ( , ) ( . , ) ( , )n n n n np p k M p = lϕ ϕ ϕ ϕ
μΩ − Ω Ω Ω− − ∇ ∇
K

 
(2.17)

where 1v,n v,n
n

n

(ε ε )
l bM

k
−−

=  

Use integrating by parts ( , ) ( , ) ( , )u = u uϕ ϕ ϕΩ ∂Ω Ω∇ − ∇ , the equation (2.17) becomes  

 1( , ) ( , ) ( , ) ( , ) ( , )n n n n n np p k M p p = lϕ ϕ ϕ ϕ ϕ
μ μΩ − Ω ∂Ω Ω Ω

⎛ ⎞
− − ∇ − ∇ ∇⎜ ⎟

⎝ ⎠

K K

 
(2.18)
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where ( , )np ϕ
μ ∂Ω∇
K  denotes Neumann boundary conditions. If fluid velocity v  is 

applied in boundary, then v p
μ

= ∇
K

,  the Neumann boundary become   

( , ) ( , )n N Np vϕ ϕ
μ ∂Ω ∂Ω∇ =
K .  If only Direchlet boundary is applied, the item 

( , )n Dp ϕ
μ ∂Ω∇
K will be zero. 

Since for isotropic case as assumed here  κK= I   the equation (2.18) can be rewritten into 
equation (2.19) with κ being the permeability value: 

 1( , ) ( , ) ( , ) ( , ) ( , )n n n n n n Np p k M p = l k M vκϕ ϕ ϕ ϕ ϕ
μΩ − Ω Ω Ω ∂Ω− + ∇ ∇ +

 
(2.19)

The matrix form of the diffusion equation (2.19) in discretized form becomes  

 ( ) 1
e e e e e

n n n n nk p = p −+ + +m a m l f
 

(2.20)

where em  is locally mass matrix of element e : [ ]e
abm=m  with ab a bm dϕ ϕ

Ω

= Ω∫   

in which a, b =1,…, n.  

n is the number of degree freedom of element e  

ea  is locally Laplace matrix [ ]e
aba=a with  ( )

e

T
ab a ba M dκ ϕ ϕ

μ
Ω

= ∇ ∇ Ω∫
 

e
nl  is the component of mechanical effect to pressure in the element e at time step n. 

e e
n al⎡ ⎤= ⎣ ⎦l  with a n al l dϕ

Ω

= Ω∫  

e
nf is the component of velocity effect (Neumann boundary) to pressure in the element 

e at time step n. e e
n af⎡ ⎤= ⎣ ⎦f  with a n af k M v dϕ

∂Ω

= Ω∫  

Finally, the matrix form of the diffusion equation in discretized form becomes  

 np = + +M Q L F
 

(2.21)
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where M is the matrix defined by 1( )eln e e
e nk= +M = m aA  in which 1

eln
e=A denotes the 

finite element assembly operator which assembles the contribution of element e  to the global 
matrix/vector.  

Q , Land F are matrix defined by 1 1( p )eln e
e n= −L = mA , 1( )eln e

e=L = lA  and 1( )eln e
e=F = fA  

For transversely isotropic material (with material axis coinciding with axis x and y) the 
pressure diffusion (2.2) is written in time discretization much similarly to the isotropic case  

 
, 1,, 1,1 . ( )n yy n yyn xx n xxn n

n xx yy
n n n

p p M p = M b b
k μ k k

ε εε ε −−−
⎡ ⎤−−⎛ ⎞−

− ∇ ∇ − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦

K

 
(2.22)

where K is permeability tensor 
0

0
xx

yy

κ
κ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

K  

The weak form formulation is then deduced straightforwardly: 

 ( ) ( )1, ( , ) , ( , )n n n n n n Np p k M p = l k M vϕ ϕ ϕ ϕ
μ− Ω ∂ΩΩ

− + ∇ ∇ +
K  (2.23)

where , 1,, 1,( )n yy n yyn xx n xx
n xx yy

n n

l M b b
k k

ε εε ε −− −−
= +  

In the matrix form, these equations are written as 

 ( ) 1
e e e e e

n n n n nk p = p −+ + +m a m l f
 

(2.24)

where em , e
nl and e

nf  are similar to the equation (2.20) and 

ea  is locally Laplace matrix, in this case, [ ]e
aba=a with ( )

e

T
ab a ba M dϕ ϕ

μ
Ω

= ∇ ∇ Ω∫
K  

b2) Fixed-stress split  

For isotropic material the diffusion equation (2.5), for this splitting scheme could be written 
in times implicit form as  

 
2

11 1
2 2 2

1 .
1 1 1

k
v,n v,nn n n n

n
n n n

(ε ε )p p p pb bp =
k μ k kb b b

M M M
λ

λ λ λ

−− −

⎡ ⎤
⎢ ⎥−⎛ ⎞− −⎢ ⎥− ∇ ∇ − +⎜ ⎟ ⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎝ ⎠+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

K

 (2.25)

where λ  is Lame’s first parameter 
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 k
np is the pressure at time step n and iterative step k  

In space discretization, the fixed-stress split equation of isotropic material becomes: 

 
( ) ( )1 2 2

, ( , ) , ( , )
1 1

n n
n n n n N

k kp p p = f v
b b

M M

ϕ ϕ ϕ ϕ
μ

λ λ

− Ω ∂ΩΩ Ω
− + ∇ ∇ +

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

K
 

(2.26)

where 
2

1 1
2 21 1

k
v,n v,n n n

n
n n

(ε ε ) p pb bl
k kb b

M M
λ

λ λ

− −− −
= +
⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The matrix form becomes finally:  

 ( ) 1
e e e e e

n n n n nk p = p −+ + +m a m l f  (2.27)

where em , e
nl and e

nf  are similar to the equation (2.20) and 

ea  is locally Laplace matrix, in this case, [ ]e
aba=a with 

( )2

1
1 e

T
ab a ba d

b
M

ϕ ϕ
μ

λ
Ω

= ∇ ∇ Ω
⎛ ⎞

+⎜ ⎟
⎝ ⎠

∫
K

 

For transversely isotropic material (with material axis coinciding with axes x and y) the 
diffusion equation for fixed-stress split is written in following form 

 
2 22 21 . ( )yy yy yyxx xx xx

xx yy
xx yy xx yy

b bb bp p( p)= b b
M E E t μ t t E E t

εε⎛ ⎞ ⎛ ⎞∂∂∂ ∂
+ + +∇ − ∇ − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

K

 
(2.28)

The time-discretized diffusion equation is then written 

 

22
, 1,, 1,

1
22

22

22

( )
1 .

1 1
1 1

yyxxn yy n yyn xx n xx
xx yy

xx yyn n n n
n

n yyxx

yyxx yy xx

yy xx yyxx

xx yy

bb
b b E Ep p k kp =

k μbb
bM E E Mb

b M E Eb
E E

ε εε ε −−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎛ ⎞−−⎢ ⎥ +⎜ ⎟+ ⎜ ⎟⎢ ⎥⎛ ⎞− ⎝ ⎠+ ∇ ∇ − +⎜ ⎟ ⎢ ⎥⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎢ ⎥+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎛ ⎞⎜ ⎟⎝ ⎠ + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠+⎜ ⎟⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

K 1
22

k
n n

nyyxx

xx yy

p p
kbb

E E

−−
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

 
(2.29)

where k
np is the pressure at time step n and iterative step k  

Spatial discretization of this equation leads, for the fixed-stress split equation of transversely 
isotropic material, to  
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( ) ( )1 2 22 2

, ( , ) , ( , )
1 1

n n
n n n n N

yy yyxx xx

xx yy xx yy

k kp p p = l v
b bb b

M E E M E E

ϕ ϕ ϕ ϕ
μ− ∂ΩΩ Ω

− + ∇ ∇ +
⎛ ⎞ ⎛ ⎞

+ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

K  
(2.30)

where 

22
, 1,, 1,

1
2 22 2

( )

1 1

yyxxn yy n yyn xx n xx
xx yy k

xx yyn n n n
n

nyy yyxx xx

xx yy xx yy

bb
b b E Ek k p pl

kb bb b
M E E M E E

ε εε ε −−

−

⎛ ⎞−− +⎜ ⎟+ ⎜ ⎟ −⎝ ⎠= +
⎛ ⎞ ⎛ ⎞

+ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The matrix form of this last equation is written as below: 

 ( ) 1
e e e e e

n n n n nk p = p −+ + +m a m l f
 

(2.31)

where em , e
nl and e

nf  are similar to the equation (2.20) and 

ea  is locally Laplace matrix, in this case, [ ]e
aba=a with 

( )22

1
1 e

T
ab a b

yyxx

xx yy

a d
bb

M E E

ϕ ϕ
μ

Ω

= ∇ ∇ Ω
⎛ ⎞

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

∫
K

 

 

 

 

2.4.2 Algorithm and implementation in DEAL.II 

The algorithms of drained, undrained and fixed-stress split are presented in the Figure 2-4. 
Note that for the fixed-stress split, the order of mechanical simulation and pressure simulation 
has changed: pressure simulation first and mechanical simulation after that. 

0. Calculation of initial parameters: time step spacing n n n-1k = t t− , etc.. 

1. Initialization of the starting time: 0 inip = p and 0 iniu = u  

2. At time step, n  ( n is started from 1) 

a) At iterative step 0: assign 0( )
n n 1p = p − ,  

b) At iterative step k  ( k  is started from 1) 
- Mechanical simulation 
 + Governing equation is the equation (2.1) for drained & fixed-stress splits and the 
equation (2.4) for undrained split 

 + Input data is the pressure of the previous iterative step 1(k )
np −  
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 + Results are the displacement (k)
nu  and the volumetric strain (k)

v,nε  

- Pressure simulation 
 + Governing equation is the equation (2.2) for drained & undrained splits and is 
equation (2.5) for fixed-stress split 

 + Input data is volumetric strain of the current iterative step (k)
v,nε  and the pressure of 

the previous time step 1np −  

 + Results is the pressure (k)
np  

c) Check for the convergence of both results (k)
nu and (k)

np by 2 Error NormL  

Criteria: 
1(k) (k )

n n
u(k)

n

u u
TOL

u

−−
≤  and 

1(k) (k )
n n

p(k)
n

p p
TOL

p

−−
≤  

If the criteria is NO, go to step 2.b with iterative step 1k +  

If the criteria is YES, end of iterative step and update (k)
n nu = u and (k)

n np = p  

3. If n  < total time step required, go to item 2 with time step n  

    If n  = total time step required, end of time step  
Figure 2-4: Algorithm of iterative coupling: drained, undrained and fixed-stress split 

Legends: 

nt and n-1t are the interval calculated time at the step n  and 1n− , respectively. 
1(k )

np − denotes pressure value at the iterative step 1k − of the time step n  

inip and iniu are the initial pressure and initial displacement of simulation domain. 

uTOL and pTOL are the required tolerance. 

The structure of the hydro mechanical coupling code is presented in the Fig 2-5. Six parts are 
in the code including MESH, MATERIALS, INITIAL CONDITION, BOUNDARY 
CONDITIONS, CALCULATION and POST-PROCESSING.  The mesh of simulation is 
inputted from an “.inp” file which can be generated by another software or by DEAL.II. 
Materials are inputted through a text file with the strictly form presented in Appendix D. Two 
kinds of material which can be inputted into the code are isotropic and transversely isotropic. 
Initial conditions can be default if the initial stresses are zero or by calculating a balance state 
to get the initial condition, if the initial stresses are not zero. Boundary condition of 
mechanics and hydraulic are controlled separately by Dirichlet boundary or by Neumann 
boundary. The code can simulate the mechanical problem only, the hydraulic only or a 
coupled hydro mechanical problem. For hydraulic calculation, transient state or steady state 
can run into the code in according the purpose of simulation. The last part is the post 
processing, in which all information is post processed, for example the section which we 
want to output the result, etc…, is controlled by a text file. 
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Figure 2-5: Structure of hydro mechanical coupling code. 

Legends (*) Default initial condition is state which initial pressure can be inputted directly while initial stresses 
need to be zero 

(**) Balance calculation to get initial condition is the state which initial stresses are not zero.  
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2.5  Validations 

Two problems are selected to validate the coupling of hydro mechanical calculation. One is 
the Mandel’s problem (Mandel, 1953) in transversely isotropic material and another one is 
tunnel excavation problem (Torres and Zhao, 2009). The Mandel’s problem is used to 
validate the coupling of hydro mechanical processing to the code with the transient state, 
while the tunnel excavation problem is used to validate the assignment of initial condition to 
the code as well as transient process of water drained out of tunnel. 

2.5.1 Mandel’s problem in transversely isotropic materials 

The classical case of Mandel’s original solution, in which the fluid and the soil particles are 
incompressible, is rewritten in Verruijt (1963). Later in the more general case, with 
compressible fluid and soil particles, the problem is presented by Cheng and Detourney 
(1988). Abousleiman et al, (1996) has developed a solution of Mandel’s problem into 
transversely isotropic material (Appendix B).  

The geometry of Mandel’s problem in anisotropic case sketched in Fig 2-6 involves an 
infinitely long rectangular specimen (0.2m x 0.2m) sandwiched at the top and the bottom by 
two rigid frictionless plates. The lateral sides are free from normal, shear stress, and pore 
pressure. At t = 0, a force of 2F is applied to the rigid plates. The parameters of porous media 
are selected as in the Abousleiman et al, (1996) and summarized in the table 2-4. One fourth 
of the specimen is carried out in the code of hydro mechanical coupling and compared to 
analytical solution (Abousleiman et al, 1996). Three items are compared; the first one is 
pressure distribution at the section y=0 in transient state (section 1-1); the second and third 
ones are the x-displacement at the section y=0 (section 1-1) and the y-displacement at the 
section x=0 (section 2-2). The second and the third ones are only comparison at time of 1000s 
because the variation of displacement is in small interval transient states. 

The pressure distribution is in Figure 2-7 and the comparison of pressure at the section 1-1 
between numerical result (the developed code in DEAL.II) and analytical result at transient 

state (100s, 1000s, 2000s, 3000s, 4000s) is the Figure 2-8. The 2  Error NormL  

(numerical) (analytical)
n n

(analytical)
n

p p

p

−

 
of difference between analytical and numerical results is less than 1% 

The displacements in the x-direction of the section 1-1 and in the y-direction of the section 2-
2 are compared to analytical solution in the Figure 2-9. 
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Figure 2-6: Sketch of (a) Mandel’s problem and (b) One fourth of Mandel’s problem in model 

 
Symbol Name Value Unit 

xb  Biot coefficient 0.733  

yb  Biot coefficient 0.749  

xE  Young’s modulus 20 600 MPa 

yE  Young’s modulus 17 300 MPa 

zxν  Poisson ratio 0.189  

 Poisson ratio 0.246  

xyG  Shear modulus 7 230 MPa 

M Biot modulus 15 800 MPa 

φ Reservoir porosity 0.4  

xxK  Reservoir permeability 10-7 Darcy 

yyK  Reservoir permeability 82*10−  Darcy 

μ  Viscosity of water 610−  kPa.s 

q Applying total pressure 10 MPa 

 Table 2-3 Parameters of Mandel problem in transversely isotropic material 

 

yxν
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a) At 100s 

 
b) At 1000s 

Figure 2-7: The pressure distribution in specimen at interval state (100s, 1000s) 

 
Figure 2-8: Comparison of pore pressure at section y = 0.0 m 

 
Figure 2-9: Comparison of x-displacements at section 1-1 and the y-displacement at section 2-2 at time of 

1000s 
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2.5.2 Tunnel excavation problem in isotropic and transversely isotropic porous medium 

In this part, the developed HM coupling module in DEAL.II will be used to simulate the 
behaviour of deep tunnel excavated in the poro-elastic media. The obtained results will be 
compared with some referent results which allow to validate our developed code. For this 
purpose, two examples are considered: the first example presents the tunnel excavated in an 
isotropic porous medium that the available analytical solutions provided by Torres and Zhao 
(2009) at steady state flow is used as the referent solution (Appendix B). The other studied 
example is the excavated tunnel in the transversely isotropic porous medium taking into 
account the transient fluid flow. Our results will be compared with the ones conducted from 
the commercial code FLAC3D (Itasca, 2006). 

a) Deep tunnel in isotropic porous medium 

The problem to be validated is represented in Figure 2-10. A section of cylindrical tunnel of 
radius r=1.0m is excavated in an elastic porous media. Symmetry conditions for geometry 
and loading will be assumed (i.e., gravity will be disregarded), so the problem in Figure 2-10 
is representative of the case of a deep tunnel excavated in elastic ground subject to uniform 
initial stresses. 

 
Figure 2-10: The sketch of tunnel excavation problem.  

 Prior to excavation, the total stresses in the medium are uniformed and equal to 

12.5V H M Paσ σ= = −  (note here that the compressional stress takes the negative value, the 

sign convention adopted throughout this work) and the pore pressures in the ground are also 

uniformed and equal to 4.7ffp MPa= . The tunnel is then excavated without support. We 

assume that the calculated area of simulation (2A x 2B = 48m x 48m) is large enough for the 

tunnel radius in which the pressure at boundary is kept constant of the far-field value ffp in 

both analytical solution (Torres and Zhao, 2009) and numerical simulation. Note that the 
analytical solution obtained only in the stead flow regime in which the radius of pore pressure 
distribution is prior determined, thus in this first example, the numerical simulation is also 
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done in the same condition. Two boundary conditions around the tunnel are considered which 

correspond to the undrained condition (the pressure around the tunnel 0p  is kept as the initial 

value 4.7 MPa and 0 0σ = ) and the drained condition (the pressure around the tunnel 0p  is 

down to 0 MPa and 0 0σ = ).  

One fourth of tunnel (A=24m and B=24m) is used for numerical calculation. Parameters of 
medium are in the table 2-6. The steady state which the pore pressure is distributed around 
radius of 12m (after about 15 years) is obtained to compare with analytical result (Torres, 
2009) (Appendix B). Two stages of running code are presented below: 

- The first stage is to establish the initial condition. The initial effective stresses in two 
directions are '

V V bpσ σ= + =-12.5+4.7=-7.8 MPa and '
H H bpσ σ= + =-12.5+4.7=-7.8 MPa. 

The results of assigning the initial effective stresses and pressure are presented in Figure 2-11 

- The second stage is to calculate the displacement, pressure, radial effective stress around the 
tunnel. The result of radial displacement distribution around the tunnel is shown in Figure 2-
12 corresponding to the steady state (after about 15years; note that the results after 1 year and 
10 years are added for reference of the steady state). The comparisons of radial displacement, 
radial effective stress and pressure around the tunnel are presented in Figure 2-13 and 2-14. A 
very good agreement between the analytical and numerical results can be stated which 
demonstrated the correctness of our code in the steady state flow condition of the isotropic 
porous medium.  

Symbol Name Value Unit 

b Biot’s coefficient 1  

E Young’s modulus 4 000 MPa 

ν Poisson’s ratio 0.3  

M Biot’ modulus 6 000 MPa 

K  Porous media permeability 1.33x10-20 m2 

μ Viscosity of water 10-3 Pa.s 

Table 2-4 Parameters of tunnel excavation problem in isotropic material 

 
a) Effective horizontal stress 

 
b) Effective vertical stress 

 
c) initial pressure 

Figure 2-11: The resuts of establishing initial effective stress in two directions  
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a) Undrained condition 

 
b) Drained condition 

Figure 2-12: The resut of radial displacement   

Figure 2-13: A comparison of radial displacement around tunnel 
 

 
Figure 2-14: A comparison of radial effective stress and pressure of undrained case and drained condition 
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b) Deep tunnel in transversely isotropic porous medium 

We consider in this part the deep tunnel excavated in a transversely isotropic porous medium. 
The simulation is carried out in the transient state of fluid flow and our obtained results by 
DEAL.II will be compared with the result furnished from the commercial code Flac3D 
(Itasca, 2006). 

The initial condition, boundary conditions and geometry are similar as the previous problem 
in which initial stress 12.5V H M Paσ σ= = −  (negative value of total stress denotes for 

compression), initial pore pressure 4.7ffp Mpa= . Similarly, due to the symmetric of the 

problem only one-fourth of the geometry is used to model the tunnel of 1m of radius. All the 
necessary parameters of the transversely poro-elastic of the porous medium is summarized in 
table 2-5. 

As the first results, in Figure 2-15 are highlighted the isovalues of the pore pressure and 
displacement around the tunnel taken at the instant of 1 hour after the excavation. A quite 
similar results can be observed from the isovalues. Furthers, in Figure 2-16 are illustrated the 
results of pore pressure and effective radials stress following the horizontal cut (Ox axis) and 
vertical cut (Oy direction) at the center of tunnel at different instants of 1 hour, 1day, 1 
month, 1 year and 5 years after the excavation. These results are obtained from our developed 
HM module in DEAL.II and Flac3D. It shows that our results agree very well with ones 
conducted in Flac3D which demonstrated the accuracy of our developed code.  

Symbol Name Value Unit 

bx=by Biot’s coefficient 0.6  

Ex Young’s modulus in x-direction 5 600 MPa 

Ey Young’s modulus in y-direction 4 000 MPa 

νxz Poisson’s ratio 0.3  

νyx Poisson’s ratio 0.142  

Gxy Shear modulus 1 600 MPa 

M Biot’ modulus 8 676 MPa 

Kxx horizontal permeability 4.0x10-20 m2 

Kyy vertical permeability 1.33x10-20 m2 

Table 2-5 Parameters of tunnel excavation problem in transversely isotropic material 
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a) Pore pressure by DEAL.II b) Pore pressure by Flac3D 

c) x-displacement by DEAL.II d) x-displacement by Flac3D 

e) y-displacement by DEAL.II f) y-displacement by Flac3D 
Figure 2-15: Isovalue of pore pressure and displacement: left by the developed code (DEAL.II) and right 

by Flac3D 
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a) Pore pressure of x-axis b) Pore pressure of y-axis 

c) effective radial stress of x-axis 
 

d) effective radial stress of y-axis 
Figure 2-16: Pore pressure, effective radial stress at two sections: x-axis (left) and y-axis (ritght) 

2.6  Summary 

In this chapter, we developed a code in the frameworks of hydro mechanical coupling in 
which four mains item were done: 

- Expand the two current steps of DEAL.II (step 26 for diffusion equation and step 8 for 
linear mechanical equation) for isotropic material into transversely isotropic material. Variety 
initial conditions were added: as default or by balance calculation. 

- Couple the two above steps (step 26 and step 8) into hydro mechanical coupling calculation 
with two kinds of coupling: one-way coupling (H->M) and two-way coupling (H<->M).  

 - Control all input data (mesh, materials, boundary conditions, time step calculation, post-
processing, etc…) by txt file outside of code body. Hence, it helps user easy to run the code. 

- Validate the code with the known analytical solutions and show that the code runs correctly. 
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CHAPTER 3: FRACTURE MODELING IN POROUS 
MEDIUM: EMBEDDED FRACTURE CONTINUUM 

APPROACH 
 

3.1. Introduction 

Fractured media modeling is usually conducted through two main approaches such as the 
continuum and discontinuum approach (Sahimi, 2011; Min and Jing, 2003; Min et al 
2004a,b; Jaeger, Cook & Zimmerman, 2007; Marmier 2007; Botros et al., 2008; Rutqvist et 
al., 2013; Lei 2016). In the former approach, the fractured medium is replaced by an 
equivalent continuum medium whose properties are derived from the upscaling procedure by 
using a homogenization technique. Thus, for this latter approach, the effect of fractures is 
implicitly accounted for in the equivalent constitutive model that can be described by the 
principles of continuum mechanics. This approach has the advantage for solving problems of 
large scales with the high densities of fractures but its results may be sensitive to the 
domain’s size especially when the studied domain smaller than the representative elementary 
volume (Rutqvist et al., 2013). Otherwise, the homogenization-based continuum model may 
not take into account the connectivity effect of fractures, the effect of clustering and spatial 
distribution of fractures or the individual characteristics of a fracture since these 
characteristics are, at best, taken into account through some statistical features of all crack 
sets.    

In the second approach, the fractured medium is represented as an assemblage of blocks 
(discrete elements) bounded by a number of intersecting discontinuities (Sahimi, 2011; Min 
and Jing, 2003; Min et al 2004a,b; Jiang & Younis, 2015; Lei 2016). The overall behaviour of 
the fractured medium is mainly affected by the interactions between the matrix blocks and 
fractures (interface between blocks). Even if this approach can better investigate the 
behaviour of fractured medium at small scale, it can be very expensive on computer memory 
and time simulation particularly for the problem at large scale. It is the principal reason that 
this approach has not been widely used in the industry for field-scale reservoir simulation.  

To overcome the limitation as well as to take advantage of these two-mentioned approaches, 
another method which borrows the concept of continuum models and also incorporates the 
effect of fractures explicitly was introduced. In the literature, it could be known as the 
“fracture continuum approach” (Svensson, 2001; McKenna & Reeves, 2006; Reeves et al., 
2008a,b; Botros et al., 2008; Hao et al., 2012; Kalinina et al., 2014), “fracture-cell model”  
(Sakhaee-Pour & Wheeler, 2016; Gong, 2016) or “embedded discrete fracture model” (Lee et 
al., 2010; Li & Lee 2008; Moinfar 2013; Shakiba, 2014; Xu 2015; Yan et al. 2016). The 
common point of these studies which represents also the principal idea of this kind of 
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approach lies on the concept of fracture cell which represents the grid cell of the discretized 
medium that are intersected by one or many fractures in the medium. Each fracture cell 
presents a porous medium that has their own properties calculated from the contributed 
properties of intact matrix and fractures and hence the behaviour of fracture cell can be 
different with respect to the intact matrix. This approach was applied with success 
particularly to study the flow problem (Svensson, 2001; McKenna & Reeves, 2006; Reeves et 
al., 2008; Botros et al., 2008; Sakhaee-Pour & Wheeler, 2016; Gong, 2016) or coupled flow 
and heat transfer process (Hao et al., 2012; Kalinina et al., 2014) in the fractured reservoir.  
Some applications were recently conducted for the coupled hydro-mechanical problem 
(Moinfar, 2013; Moinfar et al., 2013; Figueiredo et al., 2015; 2017).   

In this work, this last approach, call hereafter as the embedded fracture continuum approach 
(EFC) is chosen to study the couple hydro-mechanical behaviour of the fractured porous 
media. The structure of this chapter is organized as follows. Following this introduction, we 
will detail the fracture cell concept and its implementation in the code DEAL.II. Next the 
question of how to determine the equivalent (poro-elastic and hydraulic) properties of 
fracture cell is addressed. Finally, some verification tests that aim to validate the 
implementation of the embedded fracture continuum approach in the code cloture the chapter.  

3.2. Implementation of embedded fracture continuum approach in 
DEAL.II 

The principal idea of the embedded fracture continuum approach lies on the concept of 
fracture cell and its properties by taking into account the contribution of the embedded 
fracture in the cell. We recall that a fracture cell as defined in the literature (Svensson, 2001; 
McKenna & Reeves, 2006; Reeves et al., 2008; Botros et al., 2008; Sakhaee-Pour & Wheeler, 
2016; Gong, 2016) represents a grid cell (continuum homogenous media) that is intersected at 
least by one fracture.  Otherwise to distinguish from the fracture cell we call the grid cells 
that are not intersected by any fracture as matrix cell as illustrated in Figure 3-1. The matrix 
cell represents a porous media (porous matrix) and hence it has the physical properties of this 
porous matrix. Due to the presence of fracture, the properties of fracture cell which are no 
longer ones of the porous matrix will be determined as properties of an equivalent porous 
medium which will be detailed in the next section.    

Based on the fracture-cell concept, the simple mesh such as the Cartesian mesh will be used 
in the embedded fracture continuum approach. However, in some previous works (Svensson, 
2001; McKenna & Reeves, 2006; Reeves et al., 2008; Botros et al., 2008; Moinfar, 2013; 
Moinfar et al., 2013; Sakhaee-Pour & Wheeler, 2016; Gong, 2016; Figueiredo et al., 2015; 
2017) it shown that a quite fine mesh is usually required to satisfy the computational error 
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tolerance and to fit at some acceptable levels the real geometry of fractures. This could lead 
to very heavy numerical calculation. In order to satisfy the exigencies of the tolerated 
numerical error, and minimize the number of degree of freedom (D.O.F) of numerical models 
in many cases one use some local mesh refining strategies (a global refinement would lead to 
a great number of  D.O.F). For this aim, in this work, a local refinement technique based on 
the hanging node method is used. 

 

Figure 3-1: Sketch of fracture-cell and matrix cell concept with hanging nodes obtained from the local 
refinement of mesh.                                                                                                      

Local refinement using the hanging node in DEAL II 

It is well known that there are three basic approaches available for the refinement of mesh 
(Karlsson, 2012). The first approach is h-adaptivity in which the mesh connectivity is 
changed and refined by adding points, thus reducing the size of the cell. The second approach 
is p-adaptivity which is obtained by increasing or decreasing the order of accuracy of the 
underlying numerical scheme, thus the mesh connectivity is remained in this second method. 
The last approach is r-adaptivity in which both the mesh connectivity and order of accuracy 
are kept constant but the points are repositioned to minimize the computational error. In 
numerical practice, h-adaptivity is the most common used scheme and is known as adaptive 
mesh refinement. For example, we want to get more accuracy of results at the point “A” by 
refinement technique (Figure 3-2a). Numerous refined nodes need to be added if h-adaptivity 
is used. Hence, the total degree of freedoms is increase rapidly (Figure 3-2b). The number of 
nodes is remained for other methods, but the polynomial degree (p) is increase in p-adaptivtiy 
and reposition of nodes is required in r-adaptivity (Figure 3-2c,d).  
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Figure 3-2. Three approaches for mesh refinement: h-adaptivity, p-adaptivity and r-adaptivity 

In DEAL.II the adaptive mesh refinement (called also as local refinement of mesh) is based 
on the hanging node technique (Rheinboldt and Mesztenyi, 1980; Demkowicz et al., 1989; 
Bornemann et al., 1993; Bangerth and Kanschat, 1999; Bangerth et al., 2007; Heister, 2011 
and Karlsson, 2012). This adaptive meshing refinement is the one of the original goals 
developed in DEAL.II (Bangerth and Kanschat, 1999; Bangerth et al, 2007). Otherwise, 
when performing an adaptive mesh refinement, we usually distinct two kinds of refinement: 
isotropic and anisotropic refinement (Karlsson, 2012). In isotropic mesh refinement, the mesh 
is refined in all directions (for example one quadrilateral is split into four quadrilaterals) 
while anisotropic mesh is refined in only one direction (a quadrilateral gets split into two 
following one direction). Isotropic mesh refinement is provided in DEAL.II  

The notion of hanging nodes is used to represent the irregular nodes. If one cell is refined 
while its neighbor is not refined, the face between the two cells has an irregular point. We 
recalled the definition of regular and irregular point by Demkowicz et al (1989) in which a 
point is called regular if it constitutes a vertex (corner) for each of the neighboring cells; 
otherwise it is irregular. In two-dimensional meshes, the index of irregularity is the maximum 
number of irregular nodes on an element face: for example, meshes which has the index of 
irregularity equaled to one are called 1-irregular meshes. In this case, the point connecting the 
neighbor and the two refined cells is called a “hanging node” (Karlsson, 2012). An example 
of a hanging node in 2D is sketched in Figure 3-3 in which point 8, 9 are hanging nodes. The 
1-irregular meshes were proposed and implemented in DEAL.II.  



 

79 
 

Corresponding to the local refinement using the hanging node technique, triangulation objects 
in DEAL II do not only store the respective finest cells but also their (now inactive) 
ancestors. As consequence, a triangulation has information of a collection of trees, where the 
cells of the coarsest mesh form the roots and children branch of their parent cells. DEAL.II 
supports regular (bisection) refinement of cells, leading to 2, 4, or 8 children per cell in 1D, 
2D, and 3D, respectively (Bangerth et al., 2007). Thus, the cells in DEAL.II can be formed 
binary trees, quad-trees, or oct-trees, respectively. A simple example of an adaptively refined 
2D mesh along with its tree of cells is shown in Figure 3-4. Such triangulation can be read 
from a file (with different accepted formats in DEAL.II) or can be started from a coarse mesh 
which will be refined recursively (global refinement or local refinement) by users (Bangerth 
and Rannacher, 2003). 

 

Figure 3-3. An example of global enumerations of degrees of freedom on the mesh for Q1 elements with 
each node has one degree of  freedom (Bangerth and Kanschat, 1999) 

 

Figure 3-4. A simple two-dimensional mesh with cells number based on their refinement level and index 
within a level (left) and the corresponding quad-tree of cells (right) (Bangerth and Kanschat, 1999) 

 

One of the most important point in the local refinement is to ensure the consistency the finite 
element functions between the refined and the coarse part of the mesh. The most common 
technique is the transition elements (Bornemann et al 1993) which are however complicated 
or impossible to construct for all-quadrilateral and all-hexahedral meshes in the 3D case 
(Bangerth and Kanschat, 1999; Bangerth et al, 2007). Instead, in DEAL.II the adopted 
technique based on hanging nodes ensures this consistency by using the additional constraints 
in the linear system (Rheinboldt and Mesztenyi, 1980). Such constraints will be computed for 
all faces with hanging nodes and all conforming finite element spaces and then they will be 
gathered into a system of constraints represented by constraint matrix (see details in Bangerth 
et al, 2007).  As an example, let’s consider the cell mesh presented in Figure 3-4 in the 
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context of classical Laplacian problem when each node has one degree of freedom. The finite 
element function written in this cell is (Bangerth et al, 2007):  

 
13

0
( ) ( )h i

i
u x U xϕ

=

= ∑       (3.1)

where  
x is the point in the cell, 

 iU  is the degree of freedom (numbering from 0 to 13 as shown in Figure 3-3), 

( )xϕ is the interpolation function 

The consistency of structure is ensured by using the following constraint equations at two 
nodes 8 and 9. 

 8 3 5
1 1
2 2

U U U= +      and     9 3 7
1 1
2 2

U U U= +  (3.2)

Such constraints need to be computed for all faces with hanging nodes and all conforming 
finite element spaces also. Then, they can be combined into a system =CU 0  of constraints. 

In case of no hanging node in the system, all components of matrix C should be zero. On 
other hand, in case of there are some hanging nodes, for the simple example above, the 
matrix C  should have the components corresponding to the D.O.F of these hanging nodes. In 

this case, the matrix C would have the form:  

 0 0 0 1/ 2 0 1/ 2 0 0 1 0 0 0 0 0
0 0 0 1/ 2 0 0 0 1/ 2 0 1 0 0 0 0

− −⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

C (3.3)

Note: the equation (3.3) shows only the two rows 8 and 9 of the constraint matrix C  

 

Workflow to model explicitly fractures in the porous medium 

With all above fracture-cell, matric cell concept and hanging node technique to refine locally 
the mesh, we can extend easily the hydro-mechanical code in DEAL.II as developed in 
chapter 2 to model explicitly the embedded fractures in the porous medium. Concretely, each 
matrix cell or fracture-cell in our model now represent a porous medium. For the sake of 
clarity, in Figure 3-6 is resumed our procedure to model fracture based on of the embedded 
fracture continuum approach in DEAL.II. In detail, from the global coarse mesh which can be 
imported from a text file (for example an “.inp” file), the fracture network will be explicitly 
defined in the model. Then another input text file (.txt file) including all necessary geometric 
information of fractures like the center, length, width and oriented angle is imported defining 
characteristics of each crack/fracture. All cells intersected by the fractures netwok will be 
found automatically and then the local refinement is applied to refine these cells around 
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fractures while the level of local refinement is controlled by users. Figure 3-5 shows as an 
example an embedded fracture which can be modeled with the differential level of local 
refinement. Based on the properties of the matrix and fracture, the equivalent properties of 
fracture-cell are calculated and distributed to each fracture-cell.  

Figure 3-5: Fracture-cell elements with the differential level of local refinement: two times of local 
refinement (on the left) and four times of local refinement (on the right) with respect to the global mesh.  

Note: red elements denote fracture-cell elements and blue elements denote matrix elements. 
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Figure 3-6: Structure of assembling fractures into the hydro mechanical coupling code. 
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3.3. Determination of the equivalent properties of fracture cell 

In this part, the determination of the equivalent poro-elastic and hydraulic properties of the 
fracture cell will be presented. In general, we distinguish two types of fracture-cell: type I 
represents the cell intersected by only one fracture while type II gather all fracture-cells 
intersected by multiple fractures (more than one fracture) as indicated in figure (3-6).   

 

  
(a)                                                               (b) 

Figure 3-7 Two types of fracture cells: type I represents cell intersected by only one fracture (a) and type 
II indicates cell intersected by more than one fracture (b). 

 

3.3.1. Equivalent poro-elastic properties of fracture cell 

Equivalent poro-elastic based on micromechanical solution 

In the literature, some scholars (Rutqvist et al., 2013; Figueiredo et al., 2015) attempt to 
determine the equivalent properties of fracture-cell by using the micromechanical solution. 
As for instance, in their study (Rutqvist et al., 2013) divided the fractured domain into 
different elements and they used the Oda’s crack tensor theory to calculate the upscaled 
properties for each element. By comparing the results with the alternative DFN models, a 
reasonably good agreement was observed by these authors. However, the authors pointed out 
that some difficulties can be encountered in this approach based on the Oda’s crack tensor 
when the size of element becomes small or/and only one or a few fractures intersect the 
element. Recently, Figueiredo and collaborators (Figueiredo et al., 2015, Figueiredo et al., 
2017) propose to determine the Young’s modulus of the elements intersected by a fracture 
from the following equation: 
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      1 1 1
fc

m nE k hE
= +  (3.4)

where Em, kn and h indicate respectively the Young’s modulus of intact matrix, the normal 
stiffness of fracture and the element size.  

In effect, this formula is extracted from the solution of the joint model as detailed below. It is 
important to note that in their works, Figueiredo and co-authors (Figueiredo et al., 2015, 
Figueiredo et al., 2017) assumed that the equivalent properties are isotropic and 
homogeneous for all fracture cells. However, the determination of other equivalent 
poroelastic properties like the Biot coefficient and Biot’s modulus was not discussed in the 
above-mentioned reference. To validate the proposed solution, Figueiredo and co-authors 
(Figueiredo et al., 2015, Figueiredo et al., 2017) compared their numerical results with the 
analytical solution in a simple case of one vertical and completely open fracture. The 
difference of stress concentration near the fracture smaller than 5% was observed following 
these authors.  

Although that the application of the micromechanical solution on determining the equivalent 
properties of the fracture-cell is questionable, particularly for small cell which usually 
violates the condition of the existence of a representative elementary volume (REV), we can 
state however its efficiency as demonstrated in the above-mentioned works. While the 
micromechanical approach based on the Oda’s crack tensor is a good choice for the medium 
with high density of fractures embedded in a quite large fracture-cell, the joint model seems 
to be more appropriate for small cell with only one or few fractures intersected the element. 
This observation is consistence with the discussion of (Maghous et al. 2011) who studied the 
poroelastic behaviour of jointed rock by using micromechanics approach. Following these 
authors, the homogenization techniques based on the well-known Eshelby’s theory (Eshelby 
1957) can be used for short joints as a limiting situation of embedded ellipsoidal inclusions 
(known as cracked medium) while for the long joints cross-cutting the REV, the joint model 
is suggested.   

In this work, because the fracture cell’s size conducted in our work will be small (by using 
the hanging node technique to refine mesh) and each cell can be intersected with only one or 
few fractures, the joint model will be chosen. The detail about this type of model was largely 
discussed in the literature (see Maghous et al. 2011 and different references cited therein), 
hence in what it follows, only some important results of this model will be captured. 
Otherwise, in our study, we assume that all the joints have the same Biot coefficient (which is 
equal to 1) while the Biot modulus of fracture is very large, thus the overall poro-elastic 
properties of the jointed medium can be written as follow (Maghous et al. 2011):  
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where homS , mS , iS  are respectively the compliance tensor of the overall medium, intact matrix 
and ith joint family; kn

i and kt
i
 designate the normal and shear stiffness while ni, ti and ti

’ 
indicate the unit normal and tangential vectors and the parameter di is the spacing of the ith 
joint set.  

We consider now as the simplest case a fracture-cell intersected by one horizontal fracture 
(the normal vector of the fracture is parallel to the vertical axis n=e3). Supposing that the 
isotropic intact matrix is characterized by the elastic modulus (Em,nm and Gm= Em/(2(nm+1)), 
we can deduce without difficulty from equation (3.5) the equivalent poro-elastic properties of 
the fracture cell which belong to the transversely isotropic material class:  
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 (3.6)

For the more general case of the fracture-cell intersected by an inclined fracture (fracture cell 
type I) as shown in Figure 3-8, its equivalent properties in the global reference (e1, e2, e3) can 
be determined from ones calculated in the local coordinate system associated with the 
fracture (n, t, t’) by rotating an angle q (with qœ[0, p]) around the horizontal axis e1. Note that 
in the local reference (n, t, t’), the equivalent poroelastic of fracture cell are calculated directly 
from ones obtained in the case of horizontal fracture (equation 3.6). The difference lies only 
on the spacing parameter d which is equal to the element size of element (d=h) in the case of 
horizontal fracture while for the inclined fracture it is calculated as: 

      [ ] [ ]
[ ]

. cos 0, / 4 3 / 4,
.sin / 4,3 / 4

h if
d

h if
θ θ π π π
θ θ π π

⎧ ∈ ∪⎪= ⎨ ∈⎪⎩
 (3.7)
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Figure 3-8: fracture-cell intersected by an inclined fracture which is characterized by an inclination angle 
q (qŒ[0, p]). 

Then by rotating an angle q around the horizontal axis e1, the equivalent poro-elastic 
properties of the fracture-cell intersected by inclined fracture in the global reference (e1, e2, e3) 
become anisotropic with the stiffness tensor (inverse of the compliance tensor) and Biot 
tensor written in the matrix form as follow: 
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The non-zero components of the compliance tensor, Biot tensor as well as the Biot modulus 
of the fracture-cell which are function of the elastic modulus (Em,nm) of intact matrix, the 
mechanical properties (kn, kt) of fracture and the inclination angle q are written in the global 
coordinate system (e1, e2, e3) as:   
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(3.9)

For the fracture-cell intersected by multiple fractures (fracture cell type II), its equivalent 
poro-elastic properties using the solution of joint model (equation 3.5) own the same 
anisotropic characteristic as case of type I. Similarly, for fracture cell type II, its compliance 
tensor, Biot tensor and Biot modulus depend on the elastic modulus (Em,nm) of intact matrix, 
the mechanical properties (kn

i, kt
i) as well as the corresponding inclination angle qi

i of each 
fracture i that intersect the cell.  

Masonry model 

The joint model as presented previously is largely used in the literature to model 
crack/fracture or default owing a small aperture with respect to the large size of the studied 
domain. It means that in our context, the width of fracture (w) is small with respect to the size 
h of fracture cell. However, if the fracture’s aperture is comparable with the size of cell, the 
simplified solution of joint model is not adequate. In this latter case, the solution using in the 
masonry model (see for example Rekik and Lebon, 2012 and references cited therein) may be 
more appropriate. Following that, the effective transversely isotropic properties coinciding to 
vertical direction e3 (see Appendix A of Rekik and Lebon, 2012) of the stratified brick/mortar 
(see Figure 3-9) can be deduced as follows: 

       (3.10)
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Where Em,nm,Gm (and Ef,nf,Gf) are the Young’s modulus, Poisson’s ratio and shear modulus 
of brick (corresponding mortar).  

 

Figure 3-9: Masonry stratified brick/mortar model: the equivalent properties of the homogenized 
medium are calculated from the properties of brick and mortar (Rekik and Lebon, 2012) 

Application in our study, brick represents the intact matrix while mortar can be considered as 
the fracture. Note that, for the fracture of width w we have the following relationships 
between the Young’s modulus, Poisson’s ratio, shear modulus (Ef,nf,Gf) and the normal and 
shear stiffness of joint (kn, kt) as follows:  
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n t t n t

f f f t
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E G w k
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− −
= = =
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 (3.11)

Thus from the equations (3.10) and (3.11) we obtain the equivalent mechanical properties of 
fracture-cell as function of the mechanical properties of intact matrix (Em,nm,Gm), normal and 
shear stiffness (kn, kt) of joint, fracture’s aperture w and cell size h. Knowing the compliance 
tensors of matrix and of the overall medium, the coupling hydro-mechanical properties (Biot 
coefficients and Biot modulus) can be then calculated using the formula presented in equation 
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(3.5). Particularly, as a limit case, by taking w→0 the solution of the masonry model reduces 
to the well-known solution of joint model (equation 3.6).  

 

Isotropic approximations of the equivalent poro-elastic properties of fracture-cell 

As mentioned above, in their work Figueiredo and co-authors (Figueiredo et al., 2015, 
Figueiredo et al., 2017) considered that the Young’s modulus of all fracture cells in the whole 
medium have the same elastic modulus as one determined in the fracture cell intersected by a 
horizontal fracture: 

      3 ; ;fc fc
iso fc iso mE E ν ν= =  (3.12)

with Efc3 is defined in equation (3.6).  

Thus, in these last works they do not distinguish fracture cells intersected by one or many 
fractures. Otherwise, this approximation is applicable only for fractures owing the same 
mechanical properties. 

In this work, other approximations will be considered. We can mention for example the 

isotropic approximation of an anisotropic tensor aniC proposed in (Bornert, Bretheau & 
Gilormini, 2001) by taking the following projection:  
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with the tensors ;  J K  are defined as: 
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Application to our case for an anisotropic tensor f cC  (see equation 3.8), the isotropic elastic 
modulus of the fracture cell is approximated as:  
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The corresponding Biot coefficient and Biot modulus can be obtained as function of the 
isotropic elastic modulus of intact matrix and ones of fracture-cell as follow: 
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The formula present in equation (3.12) can be used for both types of fracture cells and the 
contribution of different families of fracture owing different mechanical properties is 
accounted for in this approximation.     

Another isotropic approximation is proposed in this work. Following that we consider the 
Young’s modulus and Poisson’s ratio of fracture cells intersected by the same inclined 
fracture (fracture cell type I) as: 
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While for the fracture cells of type II (cell intersected by multiple fractures), we can take the 
general formula:  
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(3.18)

To distinguish with this latter isotropic approximation, we call hereafter the approximations 
proposed in equations (3.12) and (3.15) as Figueiredo and Bornert isotropic approximations 
respectively  

Transversely isotropic approximations of the equivalent poro-elastic properties of fracture 
cell 

Another type of approximation was also conducted in this work when we approximate the 
anisotropic stiffness tensor f cC  of fracture cell as a transversely isotropic with the vertical 
symmetric axis (noted as VTI medium). As the first approximation, we can take the following 
projection:   
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where 1 2 3 4 5 6;  ;  ;  ;  ;  E E E E E E  is the well-known transversely isotropic base of Walpole (Walpole 

1979) which are defined in Appendix C. 
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The development shows that the five independent parameters of the approximated VTI 
fracture cell can be calculated from thirteen parameters of the anisotropic tensor Cij

fc (see 
equation 3.8) as follows: 
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Analogically, we can determine easily the Biot coefficients and Biot modulus from these five 
parameters of the VTI fracture cell:  
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The second approximation that will be proposed in this work by replacing the five 
independent parameters of the VTI fracture cell in equation (3.20) by: 
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Hereafter the first VTI approximation (equation 3.20) will be called as Walpole VTI 
approximation (due to the fact that it is done by using the projection conducted on the 
Walpole’s base) to distinguish with the second VTI approximation (equation 3.22). 
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3.3.2. Equivalent permeability of fracture cell 

The determination of the equivalent permeability of the fracture-cell has been discussed in a 
lot of work since several decades (Parsons, 1966; Nelson 2001; Sarkar et al. 2004; Reeves et 
al., 2008; Botros et al. 2008; Sakhaee-Pour && Wheeler, 2016). In general, all studies based 
on the hypothesis that the flow in the fractured element is principally conducted through the 
fracture inside the domain by considering that the permeability of intact matrix is negligible 
with respect to the permeability of fracture. Note that it is largely accepted that the 
permeability of the fracture Kf is calculated from the fracture’s width w. In the 2D case, flow 
in fracture is assumed to be laminar between two infinite parallel smooth plates, thus the 
permeability Kf is defined as follow (Kranz et al. 1979; Witherspoon et al., 1980):  

 
2

12f
wK =  (3.23)

We consider now a square fracture-cell (of size h) intersected by a inclined fracture (of width 
w) characterized by the inclination angle q. On its lateral boundaries, the fracture cell is 
imposed respectively a constant pressure 1p  on the left and 2p on the right while the top and 

bottom sides of the cell are considered to be impermeable.  

Knowing the pressure at two ends of the fracture, the flux flow through the length l of 
fracture is: 
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=  (3.24)

Hence it is not difficult to calculate the flux in the horizontal direction xq by taking into 

account the fact that l=h/cos(q):  
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(3.25)

Similarly, the flux ,x fcq flow through fracture-cell element is determined as:  
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(3.26) 

By neglecting the flow in matrix (permeability of matrix is small with respect to the 
permeability of fracture), the flux flow through fracture-cell must be equal to one through the 

fracture ( ,x x fcq q= ), thus from two equations (3.25) and (3.26) we can deduce:  
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As the particular case, if fracture is horizontal (q=0), the permeability of fracture-cell is 
simplified to: 

 x
fc f

wK K
h

=
 

(3.28)

The obtained result in equations (3.25) and (3.27) mean that if a fracture is inclined with 
respect to the axis of pressure gradient, it will work as a horizontal fracture with the 

permeability of fracture which is corrected by a factor 2cos ( )θ . This result is largely adopted 

in standard reservoir engineering (Parsons 1966; Nelson 2001; Sakhaee-Pour & Wheeler, 
2016). Otherwise, the permeability of fracture cell is calculated from this corrected 
permeability by multiplying the ratio of fracture’s width and cell size (w/h).  

Note however that some other corrected parameters were introduced in the literature. For 

example, (Sarkar et al., 2004) proposed the correction factor cos( )θ instead of 2cos ( )θ based on 

a backed numerical analysis. In other contributions (Reeves et al., 2008; Botros et al. 2008) 

the authors introduce the correction factor as ( )sin( ) cos( )θ θ+ .  

In this work, the formulae presented in equation (3.27) will be used to determine the 
equivalent permeability of fracture cell of type I. More precisely, for the sake of simplicity, 
we assume that all fracture cell intersected by the same fracture owe the same isotropic 
permeability which is calculated from equation (3.27).  

For the fracture cell type II, the presence of multiple fractures is added up meaning that:  
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Figure 3-10 Flux through fracture-cell element intersected by one fracture. 
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3.4. Verification tests 

In this section, some numerical tests will be conducted to verify the accuracy of the EFC 
approach. In the first stage, two examples which represent correspondingly the purely 
mechanical and purely hydraulic problems are considered which aim to investigate the 
convergence solution of EFC with respect to the fracture-cell size as well as to verify the 
correctness of different approximations of the equivalents properties of fracture-cell. For the 
first purpose, the size of fracture-cell will be gradually decreased by using the local 
refinement of mesh based on the hanging node technique. For the second purpose, we will 
compare the results obtained from different approximations with ones obtained from the 
referent numerical simulation based on the conformed mesh. Finally, the coupling hydro-
mechanical problem will also be considered in the third example which allows to cloture the 
validation process.   

3.4.1 Purely mechanical test 

We consider in this first example an elastic medium with dimension L=1.0m of width and 
H=1.25m in height as shown in Figure 3-11. The medium is intersected by a fracture with 
0.13mm of width which could be inclined with respect to the horizontal axis an angle φ . Due 

to the symmetric reason, we consider only the inclination angle φ varying from 0° to 45° 

(with interval 5° for each case of study). The elastic properties of the isotropic medium 

consist of Young’s modulus =84.6mE  (GPa) and Poisson ratio =0.24ν while the normal and 

shear stiffness of the fracture are respectively k =434n  (GPa/m) and k =86.8t  (GPa/m). These 

parameters referred from the Sellafield (UK) site (Nirex 1997a, 1997b) which will be 
presented in detail in the next chapter. The limit conditions of the considered model consist of 
applying a normal stress 24.46 MPa on top boundary while the displacement is fixed on the 
bottom boundary. For the comparison and validation purpose, a controlled point “A” located 
on the middle of the top boundary is chosen whose vertical displacement will be determined 
and compared in different studied cases and with referent results. 
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Figure 3-11: Sketch of the purely mechanical test 

In the first stage, we investigate the influence of the fracture-cell size on the obtained results 
by changing the local refinement level. More precisely, as introduced in the previous section, 
a text file which contains the mesh information including geometry, boundary identify, 
material identify is provided. Mesh generated directly from the text file is the root mesh 
(Figure 3-12a) known also as global refinement of the mesh to distinguish with local 
refinement of the mesh around the fracture. In Figure 3-12 (a,b) we present two cases of 
global refinement of the mesh with the corresponding level of refinement N=2 and N=4 to 
define an inclined fracture. This means that the global square cell size equal respectively to 
∆=L/22 and ∆=L/24. No local refinement was conducted in these cases meaning also that the 
fracture cell size equal to the global cell size h=∆. Respectively in Figure 3-12(c-f) are 
presented the inclined fracture which is now modeled by using the local refinement of the 
mesh with different level of refinement N=5 to N=8. In these last cases, the global mesh size 
is maintained at ∆=L/24 while the fracture cell size is decreased respectively from h= L/25 to 
h= L/28. Thus, by comparing with the global mesh, the fracture cell size equal to ∆/2 (N=4) 
and to ∆/16 (N=8) while regarding with the fracture aperture w this cell size ranges from 
478w to 30w. Figure 3-13 is highlighted the model of fracture using the local refinement with 
N=9 as well as a zoom around the fracture. Then for the illustration purpose in Figure 3-14 
we present the model of the fractured medium by considering different inclination angle 
(from 0° to 45°) and in all these cases the size of the global cell and fracture cell are fixed at 
∆=L/24 and h= L/27 (or corresponding to the case N=7 and h=∆/8). We note also that 
corresponding to the variation of inclination angle, the number of fracture-cell mesh increase 
from 992 for horizontal fracture to 1328 for fracture oriented at 45°. In what it follows, we 
clarify that in all our verification tests, the root mesh size is fixed at ∆=L/24.  
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In Figure 3-15 are presented the vertical displacement of the controlled point A calculated 
with different level of local refinement of the mesh N to model the fracture. The calculations 
were conducted with five approximations of the equivalent elastic properties of fracture-cell 
which consists of three isotropic approximations (Figueiredo, Bornert and isotropic 
approximation proposed in this work) and two transversely isotropic approximations 
(Walpole approximation and our proposed transversely isotropic approximation). In general, 
we can state that the vertical displacement of the controlled point decreases with respect to 
the local refinement level (N). This decrease is most pronounced for the case of inclined 
fracture at 45° and it seems to be more slightly when the inclination angle decreases. 
Concretely, a maximum variation about 6% between N=4 and N=9 can be noted for the 
Bornert approximation while with the two other isotropic approximations it is about 4%. 
Concerning the transversely isotropic approximation, it is shown that the maximum variation 
is more important with about 20% and 10% for the Walpole approximation and our proposed 
approximation, respectively. From this test, we can remark that for all isotropic 
approximations, at the local refinement level N=7 the result attaints its asymptote (no 
significant difference can be observed between N=7 and N=9 illustrating the variation is 
smaller than 1%). However, for the transversely isotropic approximations, it seems that the 
more important level of local refinement is required when the results converge at N=8.    

In the second stage of this purely mechanical test, we compare our results with ones obtained 
from the simulation conducted on the commercial code Flac3D (Itasca, 2006). In this last 
numerical simulation, the same geometric model, boundary conditions and material as the 
previously presented model are used. The principal difference lies on the way to model 
fracture when in Flac3D code, fracture is represented by interface elements (see Figure 3-16). 
To simulate the 2D plane strain condition as one conducted in DEAL.II, the model thickness 
in Flac3D is chosen small (0.1mm) while the uniform mesh with size about 7.81mm, which is 
equivalent to L/27, is considered. In Figure 3-17 are highlighted the displacement of the 
controlled point calculated from five approximations model and from Flac3D. The first 
observation is concerned to the results obtained from the Bornert isotropic approximation: no 
variation of displacement with respect to the inclination angle of fracture can be stated and 
these results seem very far from the results of Flac3D which is confirmed by an important 
relative error (from 14% to 25%) as shown in Figure 3-18. A quite similar comment can be 
attributed to the results calculated from the Walpole transversely isotropic approximation 
while at only small inclination angle, the results of this latter approximation method is near 
the referent results of Flac3D. From the inclination angle 30° the results calculated from the 
Bornert isotropic and Walpole transversely isotropic approximations are quite analog. The 
Figueiredo isotropic approximation presents a higher accuracy, with differences to Flac3D 
calculs inferior to 5% for the inclination angle ranging from 0° to 20° attaining 8% at for 
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higher inclination angle (maximum difference for an angle of about 35°). With the same 
range of inclination angle from 0° to 20°, the most concordance with the results of Flac3D is 
ones obtained from the transversely isotropic approximation proposed in this work (the 
relative error is inferior to 3%). However, the discrepancy of this latter approximation with 
the referent results is much more pronounced with the increase of the inclination angle when 
it can reach about 16% at inclination angle 45°. The most interesting results reserves to ones 
of the isotropic approximation proposed in this work. For all considered cases of inclined 
fracture, the difference between this last approximation method and the Flac3D simulation is 
smaller than 3% when the displacement curve of the controlled point match quite well with 
the reference result. Finally, for the illustration purpose, in Figure 3-19 are captured the 
isovalues of vertical displacement in the whole model with inclined fracture of 30°. These 
isovalues are obtained from Flac3D and EFC method by using our proposed isotropic 
approximation and a quite similitude can be state from these results.  

 (a) Root mesh with N=2 (b) Root mesh with N=4 (c) Local refinement of the 
mesh with N=5 

 
(d) Local refinement of the 

mesh with N=6 
(e) Local refinement of the 

mesh with N=7 
(f) Local refinement of the 

mesh with N=8 
Figure 3-12: modeling of fracture oriented 30° by using: root mesh (global refinement of the mesh) with 

N=2 (a) and N=4 (b); local refinement of the mesh with N=5 (c), N=6 (d), N=7 (e) and N=8 (f). 
Note: red elements denote fracture-cell elements and green elements denote matrix elements. 
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Figure 3-13: modeling of fracture oriented 30° by using local refinement of the mesh N=9 (left) and a 

zoom around fracture (right). 

 
 

 
(a) 0 degree (b) 5 degree  (c) 10 degree  

( d) 15 degree  (e) 20 degree  (f) 25 degree  
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(g) 30 degree  (h) 35 degree  (i) 40 degree  

 

 
(k) 45 degree  

 
 

Figure 3-14: modeling of inclined fracture (with inclined angle varies from 0 degree to 45 degree) by using 
the local refinement of the mesh N=7. 
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(a) Figueiredo isotropic approximation 

 
(b) 

 

 
(c) Bornert isotropisation approximation 

 
(d) 

 

 
(e) our proposed isotropic approximation 

 
(f) 
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(g) Walpole transversely isotropisation approximation 

 
(h) 

 
(k) our proposed transversely isotropic approximation 

 
(l) 

Figure 3-15:  Vertical displacement (on the left) and the ratio U -coar / U -finey yse  at the controlled point 

“A” between coarse fracture-cell size and finest fracture-cell size (on the right) by different 
approximations: (a,b) Figueiredo approximation, (c,d) Bornert isotropisation approximation, (e,f) our 

proposed isotropic approximation, (g,h) Walpole transversely isotropisation approximation, and (k,l) our 
proposed transversely isotropic approximation. 
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Figure 3-16: Geometric model conducted in the Flac3D code by using the interface elements to model 
fracture (top) and a zoom around fracture (bottom) 
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Figure 3-17: Vertical displacement at the controlled point A obtained: from the embedded fracture 
continuum approach by using different approximations of the equivalent properties of fracture-cell and 

from Flac3D using the interface elements. 

 

 
Figure 3-18: Comparison of the displacement at the controlled point A obtained: from the embedded 

fracture continuum approach by using different approximations of the equivalent properties of fracture-
cell with the result calculated from Flac3D using the interface elements.  
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Figure 3-19: isovalue of vertical displacement obtained from FLAC3D (fracture modeled as interface 
elements) (top) and from Deal II by using EFC method with our proposed isotropic approximation 

(bottom). In these figure the inclined fracture of 30 degree is considered.  
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3.4.2 Purely hydraulic test 

In this second test, the same geometric model as the previous example is used but the matrix 
is now porous characterizing by a hydraulic permeability (see Figure 3-20). Otherwise, for 
the validation purpose, we intend to compare the results obtained from the EFC approach 
(fracture-cell model) with ones determined from the other numerical simulation based on the 
conform mesh. More precisely, in this latter simulation the fracture will be modeled explicitly 
with his real width and the used mesh conform with the geometry of fracture (see Figure 3-
22). For the sake of simplicity, the fracture aperture in this study is assumed to be equal to 
w=1mm. Corresponding to this aperture, the permeability of fracture calculated from 
Poisseuille’s law is Kf=w2/12=8.33 x 10-8 (m2). The permeability of the porous medium 
referred from the Sellafield (UK) site (Namdari, 2016) is about 2.4 x 10-15(m2) which seems 
to be neglected with respect to the permeability of fracture. The viscosity and compressibility 
of fluid are 0.001(Pa.s) and 5.0×10−10 (Pa−1), respectively. Note that the permeability of 
fracture cell is supposed to be isotropic and calculated from the permeability of fracture 
following equation (3.27). As shown in Figure 3-20 the top and bottom boundaries of the 
model are considered to be impermeable, while a constant gradient pressure is imposed on 
two lateral boundaries by applying the pressure P1=10(MPa) on the left and P2=0 (MPa) on 
the right of the model.  

 

Figure 3-20: Geometry and boundary conditions of the purely hydraulic test 
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Similar to the previous mechanical test, in the first stage, we will investigate the convergence 
of EFC approach by modeling the fracture with different local refinement level which 
induces different values of fracture-cell size. For the comparison purpose, we will calculate 

only the horizontal fluid flux xq passing though the medium. By changing the local 

refinement level from N=4 to N=9 to model the fracture, the respective ratio of fracture-cell 
size and fracture aperture ranges from h/w=62.5 to h/w=4. 

The results of fluid flux xq calculated from different study cases of inclined fracture are 

illustrated in Figure 3-21a. Otherwise in Figure 3-21b, we present the relative difference 
between the fluid flux calculated at each level of refinement (N) with respect one calculated 
at the level N=9. The Figure 3-21b shows a difference about 4% at N=4 for the fracture 
inclined 45° which reduces to about 1% at N=6. Moreover, it can be stated that from the local 
refinement level N=7 the results seem converge when the difference is negligible (difference 
is inferior to 0.5% for all inclination angle of fracture as shown in Figure 3-21b).   

 
(a) 

 
(b) 

 

Figure 3-21: (a) flux going through fracture and (b) relative difference -coar / -fineq qx xse  between coarse 

fracture-cell size and fine fracture-cell size. 

In the second stage, we compare the results calculated from the EFC approach with the 
results conducted from the conform-mesh simulation. In this latter calculation, the explicit 
fracture (with 1mm of width) is modeled by fine meshes which conform to the geometry of 
fracture. In Figure 3-22 are illustrated the geometric model of the conform-mesh simulation 
with different inclined fracture (from 0° to 45°). In Figure 3-23 are presented the curve of 

fluid flux xq as function of inclination angle calculated from the EFC method and conform-

mesh model. Two curves seem match quite well when the highest relative error   

( )fracture_cell conformed_mesh conformed_mesh/q q qx x x− is less than 5%.     
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(a) 0 degree (b) 5 degree (c) 10 degree 

 
(d) 15 degree 

 
( e) 20 degree (f) 25 degree 

 
(g) 30 degree 

 
(h) 35 degree 

 
(k) 40 degree 
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(l) 45 degree 

 
(m) a zoom around fracture  

 Figure 3-22: conformed explicit fracture mesh for fracture oriented from 0 degree to 45 degree.  

(Note: red elements denote fracture elements and green elements denote matrix elements). 

 

 

Figure 3-23: flux going through the medium in EFC approach and conformed mesh method. 

 

Figure 3-24: relative error (%) of flux going through the medium between EFC approach and conformed 
mesh method. 
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3.4.3 Coupled HM test  

As the last verification test, we consider the problem in the context of the hydro-mechanical 
coupling. The same geometry, mechanical properties as well as hydraulic properties of the 
porous matrix as the two previous examples are used. Concretely, the properties of the porous 

medium are characterized by Young’s modulus =84.6mE  (GPa), Poisson ratio =0.24ν and 

permeability 2.4 x 10-15(m2). In addition, the two HM coupling parameters of the porous 
matrix which are respectively the Biot coefficient b=0.8 and Biot modulus M=20.8(GPa) are 
also referred from the Sellafield (UK) site as summarized in Table 3-1. Regarding with the 
fracture, a shorter fracture (l=0.6m) which lies in the middle and does not cross-cutting the 
boundary of the medium is considered (Figure 3-25). Nevertheless, the aperture w=1mm and 

the properties of the fracture such as normal and shear stiffness k =434n  (GPa/m) and 

k =86.8t  (GPa/m) and the permeability Kf=w2/12=8.33 x 10-8 (m2) are maintained. In the first 

stage, the saturated domain which is fixed on the left, right and bottom boundaries is assumed 

to be sealed. Corresponding to an applied uniaxial stress 1=24.46σ  MPa on top boundary 

(which is impermeable), an excess pore pressure in the medium up to 3.54 MPa is induced. In 
the next stage, the top boundary is opened which allows water to drain out of the medium 
while the uniaxial stress of 24.46 MPa is maintained (Figure 3-25). As shown in Figure 3-25, 
two controlled points “A” and “B” located at (0.5m, 1.25m) and (1.0m, 0.0m) respectively as 
well as a cutting-section “CC” at x = 0.5m are selected to observe the results during this 
second transient stage. For the validation purpose, the similar scenario as in the hydraulic test 
is used when we will compare the results obtained from EFC approach (shown in Figure 3-
26) with ones calculated from the conform-mesh simulation.  In the conform-mesh 
simulation, the elastic parameters of fractures are obtained from equation (3.11) while the 

Biot’s coefficient and Biot modulus are taken as 11;  M
cf f

f

b = =
 
with c f is the fluid 

compressibility. 
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Figure 3-25: Sketch of hydro mechanical test 

  
(a) 25 degree (b) 45 degree 

 Figure 3-26: EFC approach to model the hydro-mechanical problem with fracture oriented: 25 degrees 
(a) and 45 degrees (b) in the porous medium.  

Note: red elements denote fracture-cell elements and green elements denote matrix elements. 

Matrix 
(porous 
medium) 

Young’s modulus Em (GPa) 84.6 

Poisson ratio νm 0.24 

Biot coefficient 0.8 

Biot modulus (GPa) 20.8 

Permeability (m2) 152.4*10−  

Table 3-1: Poromechanical properties of porous medium (matrix) 
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To simplify the presentation, in this test, only the equivalent mechanical properties of 
fracture-cell calculated from our proposed isotropic approximation (equations 3.17) are used 
while the permeability and coupling HM properties are determined respectively from 
equations (3.27) and (3.16). Moreover, the local refinement level N=7 will be used. The 
results obtained from the two previous examples can explain our choices here when at N=7 
both the purely mechanical and hydraulic results seem converge while our proposed isotropic 
approximation matches the best with the reference results. Otherwise, the observation from 
the previous tests also highlights that the maximum difference between the EFC approach 
and the referent simulation are usually stated at the inclination angle of 25° and 45°, thus in 
this last test the simulation is carried out with only these two inclination angles of fracture.       

In Figures 3-26 and 3-27 are illustrated respectively the variation of vertical displacement of 
point “A” and of excess pore pressure at point “B” versus elapsed time. As expected, the 
decrease of the excess pore pressure (because water drains out at the top boundary) induces 
an increase of effective stress which explains the increase as well of the displacement in the 
medium as function of time. This well-known consolidation phenomenon in porous medium 
has been described since long-time as the Mandel–Cryer effect (Mandel, 1953; Cryer, 1963, 
Abousleiman et al, 1996). By comparing the results of two approaches (EFC and conform-
mesh method) a good agreement can be observed when the relative error is smaller than 3% 
for all transient calculation instants (see Figure 3-29). The accordance of the results is also 
illustrated in Figure 3-42 and 3-32 in which are presented the distribution of pore pressure 
following the vertical “CC” at different instants (1s, 10s, 20s) of fluid diffusion for both cases 
of inclined fracture. Finally, as an illustration, in Figures 3-31 and 3-32 are captured the iso-
values of the pore pressed and vertical displacement in the whole medium at instant t=10s. 
The results calculated from two approaches (EFC and conform-mesh) for two inclination 
angles of fracture (θ=25° and θ=45°) show the very similar distribution of pressure and 
displacement in the model.  
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Figure 3-27: vertical displacement at point “A” versus elapsed time for fracture oriented 25 degrees (left) 
and 45 degrees (right). 

 (*) values in vertical axis are displacement *105 (m) 

 

Figure 3-28: pore pressure at point “B” versus elapsed time for fracture oriented 25 degrees (left) and 45 
degrees (right). 
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Figure 3-29: relative error (%) of vertical displacement at point “A” and of pore pressure at point “B” 
between the two approaches (EFC and conform-mesh method). 

 
Figure 3-40: Distribution of pore pressure following the vertical cut “CC” at different instants (case of 

inclined fracture 25°). 
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Figure 3-41: Distribution of pore pressure following the vertical cut “CC” at different instants (case of 

inclined fracture 45°). 

 
(a) Conformed-mesh method (θ=25°) 

 
(b) EFC approach (θ=25°) 

  
(c) Conform-mesh method (θ=45°) 

  
(d) EFC approach (θ=45°) 

Figure 3-42: Distribution of pore pressure in the medium at instant 10s obtained from conform-mesh 
simulation (a,c) and EFC approach (b,d).   
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(a) Conform-mesh method (θ=25°) 

 
(b) EFC approach (θ=25°) 

 
(c) Conform-mesh method (θ=45°) 

 
(d) EFC approach (θ=45°) 

Figure 3-43: vertical displacement in the medium at instant 10s obtained from conform-mesh simulation 
(a,c) and EFC approach (b,d).  

 

3.4 Summary. 

In this chapter, an approach called embedded fracture continuum approach (EFCA) is 
presented to model explicitly the fracture network in the porous medium. This approach takes 
advantages of the two well-known continuum and discontinuum approaches when it could 
borrow the concept of continuum models while fracture effect can be incorporated explicitly. 
The principal idea of this approach lies on the utilization of fracture-cell concept which 
represents an equivalent porous medium. The determination of the properties of this last 
medium by accounting for the contribution of fracture embedded in the element-cell 
intersected by this fracture is a primordial task of this approach. In the present work, based on 
the theory of joint model we highlighted that the equivalent properties of the fracture-cell are 
anisotropic. Some approximations by assuming that equivalent properties of the fracture-cell 



 

116 
 

are isotropic or transversely isotropic are then presented. The implementation of the EFC 
approach in DEAL.II is detailed and we emphasize the utility of the local refinement 
technique by using the hanging node to model the fracture in our approach. Then through 
some verifications tests, we investigate the correctness of the EFC approach and different 
approximations. The results show that the accuracy of the EFC depends on the fracture-cell 
size which can be controlled through the local refinement level. At a required refinement 
level, the comparison with the referent results conducted from the conform-mesh method 
highlight a good agreement when the isotropic approximation proposed in this work is used. 
In the next chapter, this approach based on the isotropic approximation and the hanging node 
technique will be applied to simulate the hydro-mechanical behaviour in a real fractured 
reservoir.  
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CHAPTER 4: APPLICATION OF EFC APROACH ON THE 
MODELING OF FRACTURED ROCK MASSES IN REAL 

FIELD 
 

4.1  Introduction  

This chapter is devoted to demonstrate the capabilities of EFC approach and developed 
software in modeling the behaviour of fractured rock masses at industrial scale. Basically, 
two problems are treated: (1) determination of the effective mechanical and hydraulic 
properties of the fractured rock masses, (2) effects of hydro mechanical coupling and of 
double-permeability in well production.  

For the first problem the well-known Sellafield site was selected to get fracture information 
as well as material properties of matrix and fractures. This choice is mainly orientated form 
the plenitude of public information from United Kingdom Nirex Limited as part of the second 
Bench Mark Test (BMT2) of the international collaborative program DECOVALEX III 
(Nirex 1997a, 1997b). The information of the site is well organized and classified and there is 
a number of studies performed by some former authors such as Blum et al (2003, 2005), Min 
and Jing (2003) Min et al (2004a, 2004b, 2005), Anderson et al (2005), Marmier (2007), 
Baghbanan (2008). These works served firstly for a cross checking of properties and crack 
geometry during the phase of crack network generation and secondly as a base for 
comparison with results of this work. Based on overall fracture information of Sellafield site 
such as fracture density, law distribution of length, orientation and location of fractures, the 
fracture network generation was performed using the procedure developed during this work. 
For generation of the fracture network the information of each fracture such as fracture 
center, fracture length, fracture aperture and fracture orientation must be prior provided. The 
effective mechanical properties as well as effective permeability of fractured rock mass are 
then deduced from EFC approach and by explicitly use of a number of fractures. As 
compared to the former studies form Min and Jing (2003), Min et al (2004b) the fundamental 
difference in present study is the consideration of the contribution of the matrix permeability 
in the overall effective permeability, not to talk about effective mechanical properties.  

For the second application (2), a fractured reservoir should be considered in order to 
demonstrate the double-permeability and double porosity effect. For simplicity, and in order 
to take advantage from information on fractures geometry and properties of already described 
Sellafield site, information very often confidential for real reservoirs, we considered an 
hypothetical reservoir, with crack geometry as that of Sellafield, but with a much higher 
matrix porosity, characteristic of reservoir rocks.   
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Since in large scale simulation the hydromechanical behaviour of the rock masses is thought 
to be dominated by behaviour of few large fractures, for this problem only long fractures with 
big opening are explicitly modeled. Production rate and cumulative production of a reservoir 
are estimated using single-phase flow approach. Taking advantage from EFC approach 
developed in this study, the local closure of fracture in response to the decrease of the fluid 
pressure in fracture, as proposed in Bandis et al. (1983) and Barton et al. (1985) is modeled 
and the subsequent effects on production rate and elapsed time are evaluated 

 

4.2  Real field data used in the modeling 

In this part, the data used for the modeling taken from the real field (Sellafield site in UK) 
will be briefly synthetized. It consists of all necessary data about the fractures such as length, 
orientation, location as well as fractures’ aperture which will be used as the input data for the 
generation of the discrete fractures network (DFN) in our modeling. The abundancy of 
information about this site explain our motivation to consider its modeling. In fact, 
geotechnical data (among others) of the site is available in the literature thanks to the 
investigation program performed by United Kingdom Nirex Limited (Nirex 1997a,1997b). 
Part of this information is provided as input data for Bench Mark Test (BMT2) of the 
international collaborative program DECOVALEX III (Blum et al., 2003, 2005; Min and 
Jing, 2003; Min et al., 2004a, 2004b, 2005; Eloranta 2000; Anderson et al., 2005, Marmier 
2007, Baghbanan 2008).  The site was studied in respect with the nuclear waste disposals in 
the earlier nineties.  

4.2.1 Fracture trace lengths 

Analysis of the fracture data for the repository host rock in the Sellafied site indicates that a 
power-law fracture length distribution can describe the fracture network geometry (Blum et 
al, 2003, 2005; Min and Jing, 2003; Min et al, 2004a, 2004b, 2005; Anderson et al, 2005; 
Marmier, 2007; Baghbanan, 2008). The power-law distribution of the fracture length is given 
by the following equation: 

 . D
FN C L−=

 
(4.1)

where FN  is the number of fractures (with fracture length greater than the length L) per unit 

area; C  is the constant density and D is the fractal dimension.  

Using this Eq. (4.1), we can calculate number of fracture in a range of fracture length ( aL , bL

) as: 
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 ( )ab D D
F a bN C L L− −= −

 (4.2)

The parameters C  and D can be chosen depending on the intensity of fractures of the site. 
This intensity is not uniform and schematically three zones with density from low to high are 
distinguished. Correspondingly, the following values are proposed for these two parameters 
of crack length distribution (Blum et al, 2003, 2005; Min and Jing, 2003; Min et al, 2004a, 
2004b, 2005; Anderson et al, 2005; Marmier, 2007; Baghbanan, 2008; Nirex, 1997a, 1997b): 
C=1.2 and D=2.0 for low-density zone;  C=2.17 and D=2.08 for median-density crack zone 
and  C=4.0 and D=2.2 for high-density crack zone (see Table 4.1). With these fractal 
dimensions, more than 95% of fractures have trace lengths less than 2m (Baghbanan, 2008), 
and the calculated mean trace length is about 0.92 m (Nirex, 1997a; Nirex, 1997b).  For 
illustration purpose, in Figure 4-1 are presented these power-law distributions for fracture 
length with three cases of fractures density. The figure is taken from Nirex report (1997b) as 
shown in Figure 4-1a and replotted in this work using the parameters C and D as mentioned 
above (Figure 4-1b). 

Otherwise, as described in the many contributions (Blum et al, 2003, 2005; Min and Jing, 
2003; Min et al, 2004a, 2004b, 2005; Anderson et al, 2005; Marmier, 2007; Baghbanan, 
2008; Nirex, 1997a, 1997b), only fractures greater than 0.5 m of length were recorded in the 
site investigation and this is why the fractures length from 0.5m to 250m are usually chosen 
as the minimum cut-off length and the maximum cut-off length of the power-law (Blum et al, 
2003, 2005; Min and Jing, 2003; Min et al, 2004a, 2004b, 2005). The corresponding fracture 

intensity 20P  (defined as the number of fractures per meter square) 4.8, 9.19 and 18.3 were 

determined for the low, median and high crack density zones, respectively. Another fracture 

intensity known as the total trace length per meter square (the parameter 21P ) were calculated 

by UoB/NIREX teams University of Birmingham/Nirex (UK) (Anderson et al, 2005) with the 
corresponding values 4.85, 8.92 and 16.91 for zones with low, medium and high crack 
density. 
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(a) from Nirex, 1997b 

 

(b) from parameters in the table 4-1 

Figure 4-1 Power law distribution of fracture length in the Sellafied site from the Nirex report (1997b) (a) 
and reploted in this work using the proposed parameters C and D (b). 

 
Cases C D 20P   21P  (m/m2) 

Low-density 1.20 2.00 4.80 4.85 

Medium-density 2.17 2.08 9.19 8.92 

High-density 4.00 2.20 18.38 16.91 

Table 4-1 Parameters for fracture length of the Sellafied site (Nirex, 1997a, 1997b, Blum, 2003; Andeson et al, 2005). 

4.2.2 Orientations of fractures 

As commonly assumed in DFN modeling, the orientations of fractures in Sellafied site seem 
to follow a Fisher distribution (Nirex, 1997a, 1997b; Eloranta, 2000; Blum et al, 2003, 2005; 
Min and Jing, 2003; Min et al, 2004a, 2004b, 2005; Anderson et al, 2005; Marmier, 2007; 
Baghbanan, 2008). It was pointed out that in this site there are four principal sets of fracture 

as resumed in table (4.2). The probability of the fracture with the direction angle θ  that 
deviates from the mean orientation angle of a fracture set is calculated as follow (Baghbanan, 
2008):   
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P( )
K K

K K
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e e
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where K is the Fisher constant, which is assigned for each fracture set according to Table 4.2 
(Nirex, 1997a; Nirex, 1997b).  

 

Joint Set Dip/Dip direction 
(degree) 

Fisher constant 
(K) 

Max/Min Spacing 
(m) 

Mean Spacing 
(m) 

1 8/145 5.9 5.35/0 0.29 

2 88/148 9.0 2.21/0 0.26 

3 76/21 10.0 2.01/0 0.28 

4 69/87 10.0 3.54/0 0.31 

Table 4-2: Parameters used for fracture orientation of the Sellafied site (Nirex, 1997a; Nirex, 1997b; Eloranta, 2000) 

 

4.2.3 Location of the fractures 

Concerning the location of fractures (i.e, the spatial distribution of their centres), a Poisson 
distribution has been largely assumed for the fracture midpoints (Min and Jing, 2003; Min et 
al, 2004a, 2004b, 2005; Anderson et al, 2005; Baghbanan, 2008). In a DFN approach of crack 
geometry modeling, the locations of fracture centers are generated by generating random 
numbers based on a recursive algorithm. If the generation space is defined in terms of two 

coordinate ranges ( minx , maxx ) and ( miny , maxy ) along a local set of Cartesian axes, one can 

generate midpoint coordinates ( ix and iy ) of every fracture through the following equations 

(Baghbanan, 2008): 

 
min , max min

min , max min

( )
(y )

i x i

i y i

x x R x x
y y R y
= + −

= + −  (4.4)

where ,x iR , y,iR are number in the range [0,1] 
 

4.2.4 Aperture of fractures 

In general, by definition, the apparent aperture of fracture is the distance between the two 
surfaces of the fracture. However, depending on the real applications, one distinguishes the 
hydraulic aperture which is back-calculated using cubic law equation from laboratory test 
results of flow rates (Ge, 1997), and mechanical aperture when one considers the problem of 
applied stress acting normal to the mean fracture plane (Renshaw, 1995). In this study, the 
term “aperture” means the hydraulic aperture unless specifically stated and the validity of 
cubic law for laminar fluid flow through fractures is also assumed.  
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Studying the correlation between fracture aperture and trace length, Baghbanan (2008) 

showed that the fracture aperture in Sellafield site can vary from 1 to 200 μm and the 

lognormal distribution was proposed (see Figure 4-2). Blum et al. (2004) indicated that the 

mean hydraulic apertures ranged between 0.3μm and 180.7μm depending on the mechanical 

properties and the applied stresses state. However, to simplify the implementation, the initial 
fracture aperture usually is assumed as being uniform. The value chosen of this uniform 

aperture is however disperse: for example, in Min et al. (2004a ,2004b) it was taken 30μm or 

65μm; while in other works it was: 65μm or 200μm in Baghbanan (2008), 85μm in Namdari 

et al. (2016) or 130.7μm in Blum et al. (2003). This difference comes from the different 
critical normal stress (corresponding to different depth of given samples) as reported by 

Nirex (1997c). In Min et al. (2004a) the initial aperture 65 μm was chosen corresponding to 

the normal stress 30 MPa.  

 
Figure 4-2: Fracture aperture versus trace length for different values of standard deviation (Baghbanan, 

2008) 

 

4.2.5 Mechanical properties of rock and fractures 

For the modeling, the mechanical properties of the rock matrix and of fractures is crucial. In 
this work, the mechanical properties of rock matrix (intact rock), assumed isotropic as 
resumed in Table 4-3 are taken from Nirex reports (1997a, 1997b) which are as well 
represented by various authors such as Eloranta, 2000; Blum et al. 2003, 2005; Min and Jing 
2003; Min et al. 2004a, 2004b, 2005; Anderson et al. 2005; Marmier 2007; Baghbanan, 2008. 
Concerning the mechanical properties of joints, the normal and shear modulus 
(kn=434GPa/m, ks=86.6GPa/m) are reported in these last works which are also chosen in our 
modeling. 
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Rock 
matrix 

Bulk density ρ [kg/m3] 2750 

Young’s modulus Eblock [GPa] 84 

Poisson ratio ν 0.24 

Fractures 
Joint normal stiffness kn [GPa/m] 434 

Joint shear stiffness ks [GPa/m] 86.8 

Table 4-3: Parameters used for rock matrix and fractures 

4.2.6 Initial stresses  

To complete this synthetic part, we note that the in-situ stress field (MPa) is described by the 
following equations (Nirex 1997c): 

 
0.0294 0.26622
0.03113 1.88747

V

H

D
D

σ
σ

= +

= +  
(4.5)

where Vσ  is vertical stress, Hσ  is horizontal stress and D  is depth below ground level [m]. 

In this study, we consider that the center of the studied domain lies at the depth 725m from 

the ground surface, thus Vσ = 18.35 MPa and Hσ =24.46 MPa from the Eq. (4.6). 

4.3  Generation of the discrete fractures network  

The synthetized data as presented in the previous part will be used as input for the generation 
of the fractures network. For the clarity of the purpose, the methodology to generate DFN 
realizations is detailed in following steps as below: 

Step 0: Read the input of different fractures network’s parameters including the fractal 
dimensions (C, D), the Fisher constant (K) of different principal sets of fractures and the 
dimension of the geometrical model (A).  

Step 1: Calculate the number of fractures to be generate from each class of fractures length 

[ al  , bl ] based on the power law distribution (Eq. 4.2). The corresponding mean value of 

fracture length of each class is 
2

a b
ab

l ll +
= . Then the total number of fractures in the model 

can be evaluated. 

Step 2: Corresponding to each principal fracture set, determine the number of fracture in each 

angle interval [ aθ  , bθ ] by using the Fisher distribution (Eq. 4.3). The mean value of fracture 

angle is taken as
2

a b
ab

θ θθ +
=  will be then stored in a list. 
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Step 3: Using the Poisson distribution (Eq. 4.4), another list of the center coordinates of all 
fractures is generated.  

Step 4: Distribute three parameters (length, angle, and center) for each fracture. 

With each fracture length lab in step 2 (we begin fracture generation from the longest to the 
shortest fracture), its location and orientation are randomly taken from the list of orientation 
angle (step 2) and list of center coordinates (step 3). With the chosen position of the fracture 
center, if 20% (*) of fracture length is outside of the domain, this last center is suppressed 
and another center is generated following the same steps.  

Step 5: Adjust the fracture length and the fracture center. 

The fracture length and the fracture center will be adjusted to keep the difference of total 
trace length of fractures between the model and the input data be less than 5%. 

*
21

21

5%
p A L

p A

⎛ ⎞−
⎜ ⎟<
⎜ ⎟
⎝ ⎠

 

where *L is the total trace length of fractures in the model, 21p is fracture intensity (taken from 

the table 4-1), A is the area of representative element volume. 

The fracture length will be increased or reduced by factor k  in the equation adjust
ab abl kl=  

where 21 21
*

*

1

N

ab

p A p Ak
L l

= =

∑
 with *

abl  is the trace length of fracture before adjustment.  

From the result of fracture adjustment, fracture center will be updated. 

The output of DFN (center, length, orientation, total trace length) will be saved in a text file 
which will be imported in DEAL II for the simulations. Note that at the end of this step, the 
DFN is successfully generated which takes into account all the dead-end fractures as well as 
isolated fractures. 

Step 6: Eliminate dead-ends and isolated fractures (**).  

- step 6a: For each fracture, its intersection with the boundaries and other fractures will be 
counted. If number of intersection points is less than 2, this fracture will be deleted. 

- step 6b: If the number of intersections is more than 2, this fracture is adjusted to the 
maximum distance of its intersection points. Fracture center and fracture length are then 
updated. We call this process is “cutting fracture”. 

- step 6c: Eliminate isolated fractures. To this end, in the first stage we define four boundaries 
as four interconnected fractures while all the other fractures (obtained from the previous step 
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6b) are set as isolated fractures. We check in the second stage that if there is an isolated 
fracture which connects to an interconnected fracture. If it is the case, the status of this former 
fracture will be changed and it is classified to the interconnected fracture class. This step will 
be repeated and finished only if there is any isolated fracture changing its status. 

-Step 6d: Output the information of all interconnected fractures to another text file which can 
be imported in DEAL II to model the DFN without dead-end and isolated fractures. 

(*) The proposed value of 20% is tentative value. In reality, the total trace length of all 
fractures (the P21) may approach the required value if this tentative value (20%) is reduced 
but our results show that the procedure to re-find the new center of fracture can become much 
more expensive in this case.  

(**) Generally, natural fracture systems comprise a network of conductive fracture segments, 
which at both endpoints connect to either the conductive network or to the domain boundary, 
and a number of non-conductive fracture segments, which connect only at one end-point (see 
Figure 4-3). We refer to these non-conductive segments as "dead-ends" (Birkholzer and 
Karasaki, 1996).   As a matter of fact these dead-ends segments need not to be suppressed in 
EFC we developed and some analyses further on in this study they are kept. But, in works 
performed by other authors that used DFN approach on this site, these dead-ends could not be 
managed. In order to compare our results with results of these authors we added this last 
elimination of dead-ends in some of our analyses. When this happened, it is explicitely 
indicated in the text.  

 
a)  

 
b)  

Figure 4-3. DFN with dead-end and isolated fractures (a), DFN without dead-end and isolated fractures 
(b) (Birkholzer and Karasaki, 1996). 

 

4.4  Representative elementary volume (REV) of the fractured rock mass 

The DFN generation process is used to construct the REV of the fractured medium (Sellafield 
site) through which the effective hydro-mechanical properties can be calculated using the 
numerical upscaling method. In the literature, this subject was discussed in different 
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contributions, mainly based on the discontinuum approach.  For example, in their works, Min 
and his collaborators (Min and Jing 2003, Min et al 2004a) used the UDEC code to 
investigate the existence and the size of REV. Study was conducted on a square model with 
the size varying from 0.25m x 0.25m to 8m x 8m. Considering the purely mechanical 
problem, these authors showed that for this fractured rock mass, the REV exist and its size 
can be chosen from 2m to 6m with the coefficient of variation is from 10% to 5%, 
respectively. The coefficient of variation is defined as the ratio of standard deviation over the 
mean value (Min et al, 2004a). The same observation REV size was obtained for the 
hydraulic problem of this fractured rock. More precisely, in their work Min et al. (2004a) 
proposed that the REV size for the effective permeability can be taken from 2 m to 8m with 
the coefficient of variation is 30%, 20% and 10% corresponding to REV of 2m, 5m and 8m, 
respectively. From these discussions, it seems that a REV with the smallest size about 2m 
(corresponding about two times of the mean length of the DFN in Sellafield site) can be 
chosen to calculate the effective mechanical properties as well as the effective permeability 
of this fractured rock mass. 

Below, we present an example of the DFN generated for a REV with 2m of size. Firstly, in 
Table 4-4 and 4-5 are detailed the number of fractures for each length group and orientation 
group as well as the total number of fracture corresponding to the high-density crack zone of 
fracture distributed in the area of the VER (P20=18.38 as shown in Table 4-1 and hence the 

total number of fracture 20 A 73N p= =  fractures). The distribution of fractures for each 

group respects the theoretical power law distribution as showed in figure 4-4 and 4-5. Note 
here that the fractures are generated in the horizontal plane Oxy with the x-axis represents the 
North direction. Figure 4-6 illustrates the results of step 4 (draft sample), step 5 (sample with 
dead-end and isolated fractures) and step 6 (sample without dead-end fractures). 

Length arrange 
Number

  Length arrange 
Number 

la lb   la lb 
0.5 0.55 14   1 1.2 5 

0.55 0.6 10   1.2 1.4 3 
0.6 0.65 8   1.4 1.6 2 

0.65 0.7 6   1.6 1.8 1 
0.7 0.8 9   1.8 2 1 
0.8 0.9 6   2 2.83 (*) 4 
0.9 1 4   Total 73 

Table 4-4: Number of fractures distributed in each group of fracture length (result of step 1) 

(*) 2.83m is the maximum trace length which could be obtained in the VER with 2m of size (
2 2 2.83m= ) 
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Figure 4-4: Number of fracture versus fracture length (following the theoretical power law distribution) 

 
Angle to x direction N° of principal fractures set Total 

fractures theta(a) theta(b) 1 2 3 4 
-5 5 2 2 3 0 7 
5 15 1 1 3 0 5 

15 25 1 0 1 0 2 
25 35 0 0 2 0 2 
35 45 0 0 3 1 4 
45 55 0 0 2 1 3 
55 65 0 0 1 2 3 
65 75 0 0 0 3 3 
75 85 0 0 0 2 2 
85 95 1 0 0 1 2 
95 105 1 1 0 3 5 

105 115 2 1 0 3 6 
115 125 2 2 0 2 6 
125 135 2 3 0 1 6 
135 145 1 2 0 0 3 
145 155 1 1 0 0 2 
155 165 2 2 1 0 5 
165 175 2 3 2 0 7 

Total 18 18 18 19 73 
Table 4-5: Number of fractures distributed in each group of fracture orientation (result of step 2) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 4-5: Number of fracture versus the direction angle corresponding to four principal fracture sets 
(a,b,c,d) and total fracture distribution (e). 
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(a) draft sample 

 
(b) sample with dead-ends  

 
(c) sample without dead-ends 

  
(d) a zoom around fractures 

 
Figure 4-6: The DFN genration process: (a) draft sample (result of step 4), (b) sample after adjustment 

(result of step 5),  (c) sample without dead-end (result of step 6) and (d) a zoom around fractures. 

 

4.5  Determination of the effective elastic properties and permeability of 
fractured rock masses in Sellafield site 

4.5.1 Methodology for the determination of the effective elastic properties  

The determination of the effective elastic properties of fractured rock masses in Sellafield site 
was carried out in the work of Min and Jing (2003) based on the distinct element method 
implemented in the UDEC code. In this study, the dead-end fractures and isolated fractures 
were not considered in the DFN. However, Yang et al (2014) by using the finite element 
method to study another type of fractured rock highlighted that ignoring the dead-end and 
isolated fractures can cause change of stress distribution and may leads to wrong results.  
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In this work, this topic will be reconsidered by using our developed EFC approach. Similar to 
the previous works, the effective elastic properties of fractured rock masses in Sellafield site 
will be investigated by using the 2D plane strain analysis. In this condition, the linear elastic 
behaviour of a general anisotropic media is given by  

 mn mnpq pqSε σ= (4.7)

in which the matrix form gives (see Min and Jing, 2003; Yang et al, 2014): 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

zz zz

xx xx

yy yy

xy xy

S S S S
S S S S
S S S S
S S S S

ε σ
ε σ
ε σ
ε σ
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⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

 
(4.8)

(Note that the coordinate Oxyz presents global coordinate (z =1, x =2, y =3) as shown in the 
Figure 3-8) 

The same methodology to determine the effective compliance matrix in Eq. (4.8) proposed in 
(Min and Jing, 2003; Yang et al, 2014) will be adopted here. Follow that, we assume that the 
Young modulus and Poisson ratios in the z-direction are remained as ones of the intact matrix 

( zx zy mν ν ν= = , z mE E= ). Correspondingly, we have 12 21 13 31
m

m

S S S S
E
ν

= = = = − 11
1

m

S
E

= . 

The study of Min and Jing (2003) also revealed that the values of 14 24 41 42, ,  , S S S S are small in 

compared with other components while 34 43,  S S  are equals to zero due to the fact that shear 

stress xyσ  does not affect the z-direction deformation. Thus, the compliance tensor in Eq. 

(4.8) can be rewritten in a more compact form: 
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⎜ ⎟
⎝ ⎠

 
(4.9)

Calculating the effective elastic properties of the fractured rock masses reduces to the 

determination of only the five components 22 23 32 33 44, ,  , ,  S S S S S  which can be conducted 

through three numerical experiments as illustrated in Figure (4-7). Let us consider a 

rectangular domain with the corresponding dimensions xL  (in x direction) and yL  (in y 

direction) and the sides of the domain are numbered from (1) to (4). We run three following 
loading cases (see Yang et al, 2014, Pouya and Ghoreychi 2001): 
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- Case a: Compression in x direction with free boundaries in y-direction: the boundary 

(1) is fixed in x-direction and a compressional stress ( )a
xf is prescribed on the 

boundary (3). The average displacements Ux in the boundary (3) and Uy in boundaries 
(2), (4) are then calculated.  

- Case b: Compression in y direction with free boundaries in x-direction: the boundary 

(2) is fixed in y-direction and a compressional stress ( )b
yf is prescribed on the 

boundary (4). We calculate the average of displacements Ux of the boundaries (1), (3) 
and Uy of the boundary (4). 

- Case c: Shear in xy-direction: a shear stress τ  with the same magnitude but opposite 
direction is prescribed on each pair of the boundaries (1) and (3) as well as (2) and (4). 
The average displacement of all boundaries is then calculated. 

 
Figure 4-7 Sketch of side number and schematic diagram of three loading sets: (a) compression in x 

direction; (b) compression in y direction; (c) pure shear.  

 

In case a, we have ( ) ( )a a
zz m fσ ν= by imposing ( ) 0a

zzε = . The equation (4.9) is reduced to: 
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= −
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(4.10)

in which the two components 22S  and 32S are calculated as function of Young modulus mE and 

Poisson ratio mν of intact matrix: 
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(4.11)

Similar to case a, two components 23S  and 33S  can be calculated from the case b as follows:  
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(4.12)

In theory, 32S  must be equal to 23S  due to the symmetric characteristic of the compliance 

tensor. However, numerical simulation would show a little difference between them and the 
representative value will be taken as the mean value of calculated ones. 

Finally, the component 44S  can be determined from the case c with: 

 
( ) ( )

44

2 c c
xy xyS
ε γ
τ τ

= =
 

(4.13)

From these components of the effective compliance tensor, we can deduce without difficulty 
the effective Young modulus, Poisson ratio and shear modulus in xy plan of the equivalent 
medium:  
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(4.14)

4.5.2 Methodology for the determination of the effective permeability 

The evaluation of the effective permeability of the fractured rock masses in each direction (x 
or y) is calculated with a constant hydraulic pressure gradient imposed on the boundaries of 
the corresponding direction (x or y) and no-flow boundaries of the other direction (see Figure 
4-10). By adopting the Darcy’s law for anisotropic and homogeneous porous media (Min et 
al., 2004a), the calculation is done from the following equation (gravity is ignored):  

 x
x

K PQ A
xμ

∂
=

∂
and y

y

K PQ A
yμ

∂
=

∂  
(4.15)
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where xQ  and yQ  are the flow rates at the boundaries of the corresponding x and y directions; 

A is the cross-sectional area; xK  and yK  are the permeability in the x and y directions, 

respectively; μ is the dynamic viscosity of fluid and P is the hydraulic pressure applied. In the 

numerical simulations, all terms on the right-hand side of equation (4.15), except for xK and 

yK , are specified while xQ  and yQ  are calculated numerically. Thus, without difficulty, xK  

and yK  can be back-calculated using equation (4.16): 
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Figure 4-8 Boundary conditions for the effective permeability calculation 

 

4.5.3 Effect of fracture-cell size on the effective properties 

As discussed in the chapter 3, the accuracy of the EFC approach depends on the fracture-cell 
size h. In this part, the effect of this latter which can be represented through the effect of the 
local refinement level N (because of the relationship h=L/2N) on the effective properties will 
be investigated.  

In Figure 4-9 are presented a square sample (L=Lx=Ly=2m) of the Sellafield site. The DFN 
with and without dead-ends and isolated fractures was generated for the three cases of high, 
median and low density of fractures (the corresponding total number of fractures of these 
three cases are 73, 36 and 18). For the sake of clarity, all the necessary parameters of the 
matrix and fracture properties as synthetized previously are summarized in the table 4-6. Note 
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that, corresponding to the aperture 65(μm), the permeability of fracture is about Kf=3.52*10-10(m2) 

while the permeability of intact matrix is Km= 152.4 *10−  (m2).  

 

Rock 
matrix 

Bulk density ρ [kg/m3] 2750 

Young’s modulus Eblock [GPa] 84.6 

Poisson ratio ν 0.24 

Biot modulus [GPa] 10.5 

Biot coefficient 0.8 

Permeability [m2]  152.4 *10−  

Fractures 

Joint normal stiffness Kn [GPa/m] 434 

Joint shear stiffness Ks [GPa/m] 86.8 

Aperture [μm] 65 

Permeability [m2] 3.52*10-10 

Table 4-6: Rock matrix and fracture properties used in the numerical simulation of effective properties of rock 
masses  

 

In Figure 4-10, as an illustration purpose, we present the contours of the isotropic Young’s 
modus and isotropic permeability distributed in the high density DFN sample with and 
without dead-ends fractures. Although all the fractures own the same aperture, the isotropic 
Young’s modulus and isotropic permeability in the fracture-cells of different fractures are not 
similar but depends on the orientation of the corresponding fracture (see the Eqs. (3.17) and 
(3.27)). The heterogeneity of the elastic properties and permeability of the fracture cells 
induces a heterogeneous distribution of stress (Figure 4.11) and pore pressure (4.12) in the 
fractured rock sample. The comparison of the isovalues of stress and pressure obtained from 
two cases of DFN with and without dead-ends show a significant disturbance due to the 
concentration of stress and pressure at the dead-ends of fractures. This observation can 
explain the difference of the effective properties calculated in these two cases of DFN as 
detailed below.       
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(a) high density sample with dead-ends   

(b) high density sample without dead-ends 

 
(c) median density sample with dead-ends 

 
(d) median density sample without dead-ends 

 
(e) low density sample with dead-ends 

 
(f) low density sample without dead-ends 

  
Figure 4-9: A 2m x 2m square sample of Sellafield rock masses: DFN in the sample with and without 

dead-ends fractures was generated with three cases of high, median and low density of fractures. 

.     
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(a) Distribution of isotropic Young’s modulus in 
the high density DFN sample without dead-ends  

 
(b) Distribution of isotropic permeability in the 

high density DFN sample without dead-ends  

  
(c) Distribution of isotropic Young’s modulus in 

the high density DFN sample with dead-ends 
 

(d) Distribution of isotropic permeability in the 
high density DFN sample with dead-ends 

 
(e) Distribution of isotropic Young’s modulus in 
the sample (zoom around fractures) (unit: kPa) 

 
(f) Distribution of isotropic permeability in the 

sample (zoom around fractures) (unit:m2) 
 

Figure 4-10: Isovalue of isotropic Young’s modulus (Ex=Ey) and isotropic permeability (Kx=Ky) of 
fracture cells and matrix cells for the high density DFN sample without dead-ends (a and b) or with dead-

ends fractures (c and d) and a zoom around fractures (e and f) 
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     (a) x-stress (DFN without dead-ends)  

 
(b) y-stress (DFN without dead-ends)       Legend (MPa) 

 
     (c) x-stress (DFN with dead-ends) 

             
(d) y-stress (DFN with dead-ends) 

Figure 4-11 Isovalues of heterogeneous distribution of stress in the fractured rock masses: case of high 
density fractures without dead-ends (a,b) and with dead-ends (c,d). 
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(a) x-direction (DFN with dead-ends)  

(b) y-direction (DFN with dead-ends)   Legend (MPa) 

 
(c) x-direction (DFN without dead-ends) 

 
(d) y-direction (FN without dead-ends) 

Figure 4-12 Isovalues of the pore pressure in the fractured rock masses: case of high density fractures 
with dead-ends (a, b) and without dead-ends (c, d). 

 

In Figures (4-13 and 4-14) are presented the results of the effective Young’s modulus and 
permeability calculated with respect to two directions X and Y and with different levels of 
local refinement using the hanging node technique. A convergence of the obtained results can 
be noted for both types of DFN (with and without dead-ends fractures) in rock masses and 
with all cases of fractures density. For the most critical case (case of high density of 
fractures), a difference smaller than 10% can be stated when the local refinement is chosen 
from N=7 (case of DFN without dead-ends) or from N=8 (case of DFN with dead-ends). 
With respect to the decrease of fractures density (case of median and low density), the results 
(see Tables 4-7 and 4-8) show that the local refinement level N=6 (DFN without dead-ends) 
and N=7 (DFN with dead-ends) can be chosen to ensure a maximal difference of 10%. 
Moreover, as expected, the results presented in Figures (4-13 and 4-14) showed that the 
effective elastic properties decrease with respect to the fractures density while for the 
hydraulic problem a higher density will increase the effective permeability. A significant 
difference of the effective elastic properties obtained in two cases of DFN (with and without 
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dead-ends fractures) is also revealed. For example, at the local refinement N=8 (Table 4-9), 
this difference is most important in the case of low density (about 23%) and decreases to 17% 
in case of median density and is smallest in the case of high density of fractures (about 14 %). 
The results obtained in this work confirmed the discussion of Yang et al. (2014) who noted 
that ignoring of the dead-ends fractures can change the stress distribution (as shown in Figure 
4-11) and induce a great deviation in determination of the effective compliance matrix. For 
the hydraulic problem, the difference of the effective permeability calculated in two cases of 
DFN with and without dead-ends is not significant. For all cases of fractures density, a 
difference smaller than 6% was noted.  

Comparison of these results with those of previous work in the literature, show a general 
good agreement. For example, in the case of high density of fractures, our results of the 
effective Young’s modulus (see Table 4-9) is about 28GPa (in both directions) which seems 
consistent with the results of (22GPa to 32 GPa) presented by Min and Jing (2003) who 
studied only the DFN without dead-ends. This consistence of results is also observed for the 
effective permeability when using EFC we obtain Kx=1.02*10-13 (m2) and Ky=9.48*10-14 (m2) 
which are in the range of 14 26 *10 ( )m−  to 13 21.8 *10 ( )m−  concluded in Min et al., 2004a and 

Baghbanan, 2008 by using the UDEC code.  
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(a) Effective Young’s modulus Ex (b) Ratio of Ex  

 

(c) Effective Young’s modulus Ey  
 

(d) Ratio of Ey  

 
Figure 4-13: Effective Young’s modulus Ex (a), Ey (c), and its corresponding ratio calculated with different 

sizes of fracture cells (local refinement level N<9) with respected to ones calculated with N=9. 

 
Refined 

level 
(N) 

Fracture-
cell size 

(mm) 

DFN sample without dead-
ends DFN sample with dead-ends 

High Medium Low High Medium Low 
4 125 0.59 0.68 0.88 0.54 0.62 0.74 
5 62.5 0.71 0.81 0.93 0.65 0.74 0.84 
6 31.25 0.83 0.90 0.97 0.78 0.86 0.92 
7 15.625 0.91 0.95 0.98 0.89 0.93 0.96 
8 7.8125 0.97 0.98 0.99 0.96 0.98 0.99 
9 3.90625 1.00 1.00 1.00 1.00 1.00 1.00 

Table 4-7: The ratio of effective Young’s modulus Ey calculated with different sizes of fracture cells (local refinement 
level N<9) with respected to ones calculated with N=9. 
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(a) Effective permeability Kx  (b) Ratio of Kx 

  

 
(c) Effective permeability Ky  (d) Ratio of Ky 

 
Figure 4-14: Effective permeability Kx (a), Ky (c), and its corresponding ratio calculated with different 

sizes of fracture cells (local refinement level N<9) with respected to ones calculated with N=9. 

 
Refined 

level 
(N) 

Fracture-
cell size 

(mm) 

DFN sample without dead-
ends DFN sample with dead-ends 

High Medium Low High Medium Low 
4 125 1.90 1.77 1.09 2.45 2.93 2.61 
5 62.5 1.47 1.29 1.07 1.82 1.93 2.09 
6 31.25 1.20 1.10 1.03 1.41 1.35 1.15 
7 15.625 1.10 1.04 1.03 1.17 1.09 1.09 
8 7.8125 1.03 1.00 1.01 1.06 1.03 1.01 
9 3.90625 1.00 1.00 1.00 1.00 1.00 1.00 

Table 4-8: The ratio of effective permeability Kx calculated with different sizes of fractures cells (local refinement 
level N<9) with respect to ones calculated with N=9. 
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Case 
study Sample xE  (GPa) yE  (GPa) yxν  xyν  xyG  (GPa) 

High 
density 

With dead-ends 24.57 24.78 0.209 0.205 9.75 

Without dead-ends 28.66 28.35 0.215 0.214 11.26 
Relative ratio  

(with/without dead-ends) 0.86 0.87 0.97 0.96 0.87 

Medium 
density 

With dead-ends 33.42 35.19 0.242 0.232 13.43 

Without dead-ends 39.04 42.59 0.247 0.236 16.03 
Relative ratio  

(with/without dead-ends) 0.86 0.83 0.98 0.98 0.85 

Low 
density 

With dead-ends 51.01 50.82 0.225 0.230 20.16 

Without dead-ends 64.31 65.87 0.234 0.234 26.18 
Relative ratio  

(with/without dead-ends) 0.79 0.77 0.96 0.98 0.77 

Table 4-9 Effective elastic properties (Ex, Ey, υyz, υxy, Gxy) in two cases of DFN with and without dead-ends fractures 
(results calculated at the local refinement level N=8). 

DFN samples 
Effective permeability (m2) 

xK  yK  

High 
density 

With dead-ends 1.11E-13 1.06E-13 

Without dead-ends 1.07E-13 1.02E-13 
Relative ratio 

(without/with dead-ends) 0.96 0.96 

Medium 
density 

With dead-ends 3.79E-14 5.47E-14 

Without dead-ends 3.58E-14 5.17E-14 
Relative ratio 

(without/with dead-ends) 0.94 0.94 

Low 
density 

With dead-ends 1.70E-14 1.72E-14 

Without dead-ends 1.62E-14 1.61E-14 
Relative ratio 

(without/with dead-ends) 0.95 0.94 

Table 4-10 Effective permeability (Kx, Ky) in two cases of DFN with and without dead-ends fractures (results 
calculated at the local refinement level N=8). 

4.5.4. Monte Carlo simulation of the effective properties of Sellafield fractured rock 

masses 

The previous results discussed up to here are obtained using a realization of statistical 
properties (length, position) of cracks.  To obtain the representative results, the Monte Carlo 
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simulation was conducted. More precisely, ten realizations of the REV of 5m (Figure 4-15) 
were generated and for each realization we calculate the effective properties of the fractured 
rock masses. Note that in this study, to complete the results in the literature (Min et al., 2003; 
Min et al., 200a; Marmier, 2007; Baghbanan 2008) who concentrated in the case of high 
density fractured rock masses, we consider only the case of median density of fractures and 
for all the calculations we use the local refinement level N=8.  

The effective elastic properties and permeability calculated for all samples are summarized in 
Tables (4-11) and (4-12). The results showed an anisotropic behaviour of the equivalent 
medium of the fractured rock masses. However, the anisotropic degree, represented by the 
Young’s modulus ratio (Ex/Ey) and permeability ratio (Kx/Ky), seems very moderate. These 
ratios determined from the mean values of ten realizations are respectively Ex/Ey=1.02 and 
Kx/Ky=1.14. Thus, the behaviour of the fractured rock mass in Sellafield site can be assumed 
isotropic.  

 

 
  

Figure 4-15: Ten realizations of the REV with 5m of size of the Sellafield fractured rock masses used in 
the Monte Carlo simulation of the effective properties. 
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Sample Ex (GPa) Ey (GPa) yxν  xyν  Gxy (GPa) 

1 34.01 32.47 0.222 0.231 12.86 

2 32.59 31.24 0.229 0.237 12.74 

3 32.34 32.23 0.236 0.237 12.99 

4 33.58 32.45 0.220 0.231 12.82 

5 31.53 31.68 0.236 0.237 12.73 

6 32.77 32.19 0.229 0.233 12.81 

7 33.79 33.51 0.222 0.225 12.88 

8 33.78 34.37 0.225 0.222 13.14 

9 32.97 32.17 0.227 0.235 12.81 

10 33.32 33.36 0.226 0.225 12.86 

Average 33.07 32.57 0.227 0.231 12.86 
Standard 
deviation 0.740 0.879 0.005 0.005 0.114 

Coefficient of 
variance (%) 2.24 2.70 2.38 2.32 0.89 

Table 4-11 Effective elastic properties of the Sellafield fractured rock mass obtained from ten realizations 

 
Sample Kx (m2) Ky (m2) 

1 5.38E-14 4.04E-14 

2 5.89E-14 4.77E-14 

3 5.15E-14 4.49E-14 

4 6.04E-14 5.12E-14 

5 5.91E-14 5.34E-14 

6 5.42E-14 4.92E-14 

7 5.37E-14 4.89E-14 

8 5.54E-14 5.51E-14 

9 5.54E-14 5.20E-14 

10 5.92E-14 4.96E-14 

Average 5.61E-014 4.92E-014 
Standard 
deviation 2.86E-15 4.03E-15 

Coefficient of 
variance (%) 5.10 8.19 

Table 4-12: Effective permeability of the Sellafield fractured rock mass obtained from ten realizations 
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4.6   Primary depletion modeling of fractured reservoir: effect of double 
porosity and double permeability  

In this section, the EFC approach will be used to model a hypothetical reservoir whose 
natural fractures coincides with that of Sellafield site. The objective is to in one hand to 
demonstrate the capacities of EFC approach in modeling such complex problems and on the 
other hand to illustrate the effects of double porosity/double permeability media on the state 
evolution of a reservoirs. The choice to use the data of Sellafield is motivated only by the 
completeness of the data, which is unfortunately not valuable to us for a real reservoir. As 
such, further on, some variations on rock properties of Sellafield site (namely porosity) will 
be assumed in order to obtain typical values of these property for a reservoir rock.  

The study consists of simulating the production of a vertical well (primary depletion) with 1m 
of diameter. To this end, the 2D plane strain assumption is adopted. Otherwise, to simplify 
the problem, only a quarter of the model will be considered (Figure 4-16). Regarding with the 
dimension of the well, the saturated reservoir of 200m-width and 200m-length (with respect 
to the center of well) was selected. The initial pore pressure and total isotropic horizontal 
stress are assumed respectively equal to 10.0 MPa and 24.46 MPa which corresponds to the 
values measured at the depth 725m in the Sellafield site (see sub-section 4.2.6 in this 
chapter). Otherwise, concerning the boundaries conditions, we consider that the top and right 
boundaries are closed and fixed while a zero-constant pressure is imposed on the wall of well.  

The simulation will be conducted with different scenarios. As the first scenario, we replace 
the fractured medium by the homogeneous equivalent poro-elastic medium obtained from the 
previous section. This classical study case is largely adopted in the literature, particularly in 
the modeling of real field (Jensen et al., 1998; Lee et al., 2000; Marmier, 2007 and different 
references cited therein). However, the fact of using the equivalent medium in the modeling 
means that the porous space and permeability of rock matrix as well as ones of the fractures 
network are gathered and characterized through only a single porosity and a single 
permeability represented by the overall (effective) permeability as detailed in the last section. 
Thus this study case (called hereafter as homogenized model) consider only the effect of the 
single porosity and single permeability. The advantage and limitation of using the effective 
single continuum approach were discussed in (Jensen et al., 1998; Lee et al., 2000) by 
comparing with the traditional dual continuum model of Warren and Root (1963). These 
authors discussed that this approach can captures the baffled flow effect while the dual 
continuum approach is better equipped to enhance flow through the fracture system which is 
however limited for the models they used, in the regular and orthogonal fracture geometry. 
Otherwise, the unsteady-state flow effects between fracture and matrix (matrix – fracture 
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transfer) are not considered in the effective single continuum approach which however can be 
more easily addressed in the dual continuum model by using the matrix-fracture transfer 
functions (sugar cube-like matrix and fracture geometry). Thus, as detailed by Lee et al. 
(2000), the effective single continuum modeling approach can be applied when the unsteady-
state between matrix and surrounding fractures is not a dominant feature. This is also the 
hypothesis adopted in the present work. 

In the second scenario, the fractures are explicitly introduced in the model. The question of 
what fracture should be considered explicitly in a model is an open question. In fact, in every 
modeling approach (and this is valuable for all models not only for fractures), the 
discontinuities of lower scale than that of observation are neglected. For example when a 
rock sample is tested in laboratory the pores or cracks not detectable by naked observation 
are neglected. Where cracks in site are observed the cracks under a given value are simply 
neglected and the media under this scale is considered as continuum. Recall that for Sellafield 
the lower cut-off for crack distribution is 0.5m. Likewise in, in our model, only the long 
fractures with length superior of the REV size established before will be considered explicitly 
which limits the number of explicit fracture to the longest ones and with highest apertures 
(fractures with apertures much more important than the mean aperture of the DFN as 
described above will be taken into account explicitely). These fractures are embedded in the 
fractured matrix (matrix surrounds the DFN with uniform aperture of 65 µm) which is now 
replaced by the equivalent homogeneous medium as in the first scenario. This concept can be 
explained by the fact that in reality, the fractured rock mass is highly heterogeneous, and the 
assumption of using the uniform aperture of the fractures networks to simplify the modeling 
by using the equivalent medium through the upscaling approach can over/underestimate the 
problem. Otherwise, in such heterogeneous media, there is a high probability of the existence 
of several initial fractures/faults (or even induced fractures during drilling) with a large 
aperture. The consideration of these fractures in the classical upscaling approach can violate 
the notion of REV: if the REV is always existed and if it is the case what is the evolution of 
the REV size? The scenario proposed in this work can be an alternative approach to simplify 
the problem and matches well with the idea proposed by some other scholars (Lee et al., 
2000; Li and Lee, 2008). In their work, Lee et al. (2000) proposed a hierarchical approach for 
modeling fluid flow in a naturally fractured reservoir with multiple length-scale fractures. 
They classified the fractures as short, medium-length and long fractures. The short and 
medium-length fractures were associated with the matrix through the homogenization 
technique to define the effective porous medium while the long fractures (considered as the 
major conduits) are separated and modelled explicitly in the model. The flexibility and 
performance of this hierarchical approach were demonstrated by these authors in the 
modeling complex fractured rock masses.   
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The second scenario will be separated in two cases which aim to investigate in more detail 
the effect of these fractures on a hypothetical well behaviour (well production notably). In the 
first case we consider that at least one of these long fractures intersects the well (called 
hereafter as conductive fractures model) and in the other case, any long fractures intersect the 
well (called as non-conductive fractures model) as highlighted in Figure 4-16. The 
implementation of these fractures in the model at the present stage seems easy by using the 
EFC approach based on the fracture cells concept. Note that each fracture-cell in the model 
represents a porous medium which has its own porosity and permeability and different with 
the ones of the fractured matrix. These models represent in effect the double porosity and 
double permeability medium to distinguish with the initial scenario based on the single 
effective medium. Otherwise, as mentioned above, in all calculations, we neglected the 
unsteady-state feature between matrix and fractures in this fractured matrix.          

 

 
Figure 4-16 One quarter of the fractured reservoir model used in the well production simulation. 
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For these calculations, the following poro-elastic properties of the equivalent porous matrix 
and long fractures are chosen:  

-For the equivalent fractured matrix:  the effective properties calculated in the previous 
section will be used. As observed from these last calculations, the anisotropic degree of this 
fractured rock is low thus we can consider it as isotropic material. In this case, Biot modulus 
and Biot coefficient can be determined from the following equations: 

 

hom hom
hom

hom1 1 ;
3 (1 2 )

iso iso
iso

s s iso
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K K ν
= − = −

−  
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b -1 iso
f
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c
M K

ϕ ϕ= +
 

(4.17)

where sK is bulk modulus of skeleton of rock matrix ( sK =271.2 GPa) and homϕ is porosity of 

the homogenized porous matrix hom 0 fracturesϕ ϕ ϕ= +  (the initial porosity of the intact matrix is 

taken as 0 18.6%ϕ = ). The viscosity and compressibility of fluid (oil) are 0.01(Pa.s) and 

5.0×10−10 (Pa−1), respectively. 

Ehom 
(GPa) νhom bhom Mhom 

(GPa) 
K 

(m2) 

32.82 0.229 0.87 10.4 5.3E-014 

Table 4-13 Isotropic poro-elastic properties of the equivalent porous matrix (obtained from the effective properties of 
the fractured rock masses calculated in the previous section). 

 

-For long fractures: as an example, only 6 fractures longer than 100m with 1mm of width are 
modeled explicitly (Figure 4-16). The properties of fractures like the normal and shear 

stiffness are taken to 2.0 /init
nk GPa m=  and 0.4 /init

tk GPa m=  at the initial state. The 

corresponding permeability of these fractures based on the cubic law is Kf=8.33*10-8 (m2). 

In what it follows, for each model, the fluid flow simulation will be conducted. In this type of 
simulation, we consider that the fluid flow toward the well (drawdown effect) and hence well 
production (primary depletion) are from the contribution of both the permeable fractured 
matrix and long fractures. The mechanical effect will be ignored in the first stage by 
considering the constant aperture and hydraulic properties of long fractures and will be then 
considered (but in an implicit manner) in the second stage by varying the aperture and 
hydraulic properties of long fractures during the transient flow. More precisely, in the latter 
case, closure of fractures (updated aperture and permeability of fractures) will be taken into 
account as consequence of the mechanics effect. From several contributions (see Moinfar, 
2013; Moinfar et al., 2013 and different references cited therein), it showed that 
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geomechanics can impact the fluid flow notably through the closure/opening of fractures 
which in turn induces a variation of the fractures’ permeability. To account for this effect, 
many authors proposed to use an empirical stress-dependent function of the fractures 
aperture. Among different functions presented in the literature, the following relationship 
proposed by Bandis et al. (1983) and Barton et al. (1985) (called Bandis & Barton model) is 
the most commonly used:  

'

ww w
w

init
n init

f init init
n init n

k
k σ

=
+Δ    (4.18) 

Following this model, the closure/opening of fractures is principally affected by the effective 

normal stress acting on their surfaces (shear stress is neglected). In Eq. (4.18), winit and init
nk  

are the aperture and normal stiffness of fracture at the initial state; w f  is the actual fracture 

aperture calculated from the variation of the effective normal stress ' ' '
, n n n oσ σ σΔ = −  ( '

nσ and 

'
, n oσ indicate the actual and initial effective normal stress acting on the fracture plane). 

Otherwise, through the definition of the effective stress ' .n n b pσ σ= −  (we can consider as the 

simplest case b=1), if the variation of the total stress is negligible, the evolution of fracture 

aperture can be defined as function of the pressure drawdown drawdownp :   

ww w
w

init
n init

f init init
n init drawdown

k
k p

=
+  (4.19) 

This last equation will be used in our flow simulations to activate the fracture aperture w f

corresponding to the actual pressure ( initial drawdownp p p= − ) during the transient fluid flow. For 

the illustration purpose, this empirical relation is presented in Figure 4-17 by using the 
properties the long fractures as mentioned above. Note that, in our code, this pressure 
drawdown is calculated as the mean value of pressure drawdown in each fracture cell, it 
means that the fracture aperture and permeability will be updated at the end of each time step 
for each segment of fracture embedded in the fracture cell.     
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Figure 4-17 : Fracture aperture as function of pressure drawdown in fracture 

 

The configuration of problems considered here is quite similar as ones studied in the work of 
Li and Lee (2008) (see also Moinfar et al., 2013). In their work, these last authors would like 
to elucidate the influence of well and long fractures intersection on the productivity of well. 
However, in comparison with this last contribution, there are some essential differences in the 
present study. In effect, to consider the communication between porous matrix and fractures, 
as well as fractures and well, Li and Lee (2008) used the transport index between matrix-
fracture and the fracture transmissibility to the well. This later parameter is determined by 
using directly the Peaceman’s productivity index (PI) which is largely used in practice for the 
well drilled in the medium without fracture intersection. For this purpose, these authors 
assumed that the pressure drop along the fracture inside the well block is negligible and the 
productivities from the fracture and well are superposed. This assumption means that the 
fractures connected with a well become part of extended well geometry. Otherwise, as the 
fracture surface is much larger than the well surface, the production from the fracture surface 
will be much larger than that from the well surface. Inversely, in the present work, we interest 
only the production calculated from the well surface. This well surface is explicitly 
considered in our model (see Figure 4-20) through which the production rate (fluid flux) will 
be calculated directly while the drop of pressure in the fractures is decided by the transient 
flow in their corresponding fracture cells.   

In the Figures 4-18 and 4-19 are presented respectively the production rate and cumulative 
production of the well for the three considered models. As the first observation, we can note 
that there is a significant difference for the third case when the long fractures intersected with 
the well keeping their initial aperture during the simulation. With respect to the other case, 
the production rate of this last case is much higher (about twenty times) in the first days of 
production and drops quickly after one month. This statement is well illustrated in Figure 4-
19 with a linear variation of the cumulative production which attaints finally its asymptotic 
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after this mentioned period. The difference of production rate is however much smaller 
(about four times) when the aperture of the conductive fractures is updated during the 
simulation by considering the geomechanical effects described through the Bandis and 
Barton model. A rapid drop of pressure in the conductive fractures in the firsts days induced a 
closure of aperture and hence induce the decrease the fractures permeability. Therefore, the 
production rate and cumulative production decrease versus elapsed time. The production is 
over at about 11 months (Table 4-14). The results obtained from homogenized model or non-
conductive fractures model present no significant difference regardless of the aperture of 
fractures. The similar rate and cumulative production were stated in the whole simulation 
time with only moderate difference at the end days of the production process. The influence 
of the fracture closure as highlighted in the Figures (4-18 and 4-19) is really negligible. The 
production in the non-conductive models is finished at about 17 months while for the single 
effective medium scenario it is about 19 months.          

For more information about the well behaviours in these studied scenarios, we presented in 
Figures (from 4-20 to 4-22) the distribution of pore pressure, fracture aperture determined at 
different instants (10h and 1 month) of fluid flow simulation. A drop of pressure in the 
fracture cells of the corresponding fracture intersected the well is well captured. Comparison 
with the case that the fracture aperture is updated, this drop is much more pronounced if the 
fracture aperture is kept constant during the simulation. It is important to note also that this 
drop is not instantaneous nor uniform in the fractures but mostly concentrated around the well 
(about 30m to 40m with respect to the center of well). It seems that the drop along the 
conductive fracture could play an important role on the productivity of well and cannot be 
neglected as assumed in the work of Li and Lee (2008). Corresponding to this latter case, the 
drawdown of the initial pressure (pinitial=10MPa) finish at the instant of 1 month as shown in 
Figure 4-21d. Besides, due to the rapid drawdown of pressure, the aperture of the conductive 
fractures decreases quickly which is about half of the initial aperture of 1mm after 10h and 
attains its maximal closure after 1 month (the corresponding final aperture about 0.2mm). All 
these observations are confirmed in Figures 4-23 and 4-24 in which the variation of pore 
pressure, fractures aperture and permeability at two predefined points (points A located at 
(38.3m, 32.14m) and B located at (25.0m, 43.30m))  in Figure 4-16 which located at the same 
positions on the three models) with respect to elapsed time are highlighted. A quite similar 
results of pore pressure evolution were noted for all studied case excepted for the conductive 
pressures case with constant aperture. The controlled point A which belongs to the long 
conductive fractures networks presents a drop of pressure at the very early instant. We 
observe also the drop of pressure at the controlled point B which has the same distance to the 
center of wellbore as the point A but belongs to the fractured matrix but this drop begins later 
at about 100h.               
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The results obtained in this part confirm the conclusion of Li and Lee (2008) who showed 
that the intersection of fractures and well plays a significant role on the well productivity. In 
this context, one observed a high production rate in the first stage which is followed by a 
quick drop in the second stage. This is also illustrated by the fact that the cumulative 
production will attain rapidly the maximum in comparison with the other cases of equivalent 
single medium or non-intersected well and fractures. The geomechanics effect described in 
an implicit manner by using a pressure-dependent function will reduce this production rate 
and delay the primary depletion time. As mentioned in the first paragraph of this section, the 
two scenarios considered here represent in effect the single porosity/single permeability 
medium and double porosity/double permeability. Thus, thanks for these simulations, we also 
highlighted the effect of these two concepts on the behaviour of the fractured reservoir.  

 

 
Figure 4-18  Production rate versus elapsed time 
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Figure 4-19 Cumulative production versus elapsed time 

 
Models Levels of coupling Elapsed time (months) 

Homogenized model Coupled hydro mechanics 19 

Conductive fractures 
model 

Constant aperture 1 

Closure of aperture  
 (Bandis and Barton model) 

11 

Non-conductive 
fractures model 

Constant aperture 17 

Closure of aperture  
 (Bandis and Barton model) 

17 

Table 4-14 Elapsed time at which the cumulative production attains its asymptotic value in different model 
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a) Homogenized model 

 
 
 
 
 
 
 

 
Legend 

Unit: kPa 

 
b) Non-conductive fractures model with constant 

aperture 

 
c) Non-conductive fractures model with 
closure (using Bandis & Barton model) 

 
d) Conductive fractures model with constant 

aperture 

 
e) Conductive fractures model with closure 

(using Bandis & Barton model)   
Figure 4-20 Distribution of pore pressure in the model after 10 hours 
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a) Homogenized model 

 
Legend 

Unit: kPa 

 
b) Non-conductive fractures model with constant 

aperture 

 
c) Non-conductive fractures model with closure 

(using Bandis & Barton model) 

 
d) Conductive fractures model with constant 

aperture 

 
e) Conductive fractures model with closure 

(using Bandis & Barton model)   
Figure 4-21 Distribution of pore pressure in the model after 720 hours (1 month) 
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a) Non-conductive fractures model - 10 hours 

 
b) Conductive fractures model – 10 hours 

 
Legend, unit: meter 

 
c) Non-conductive fractures model - 720 

hours 

 
d) Conductive fractures model – 720 hours 

Figure 4-22 Aperture distribution after 10hours and  720 hours in the explicit - Bandis & Barton model 
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Figures 4-23 the variation of pore pressure at the controlled point A located on the fracture 

 

 
 
Figures 4-24 the variation of pore pressure at the controlled point B located on the fractured matrix-point 

 
 

Finally, a parametric study was carried out which aim to highlight the effect of the initial 
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productivity of well. The results illustrated in Figure 4-25 and 4-26 show that the higher the 
initial normal stiffness of fractures is, the higher production rate is induced. The production is 
finishes earlier in the case that the initial normal stiffness is more important. These results can 
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be explained by the fact that the closure of aperture and the permeability of fractures is less 
affected when the normal stiffness increases.   

 
Figure 4-25  Production rate versus elapsed time in parametric study (kn) 

 
 

 Figure 4-26 Cumulative production versus elapsed time in parametric study (kn) 
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accessible information. The synthetic data of this site is used to generate the DFNs in the 
model. The EFC approach in combination with mesh refinement based on the hanging node 
technique presents its performance to simulate this fractured rock owing a high density of 
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fractures. The Monte Carlo simulation was then conducted in which we applied the EFC 
approach to calculate the effective hydraulic and mechanical properties of this fractured rock 
(process known as homogenization technique). Both two cases of DFN with and without 
dead-ends fractures were considered in the present works which highlighted the necessary to 
consider the dead-end fractures on the behaviour of rock mass (particular for the mechanical 
behaviour). A consistence of the obtained results with ones presented in the literature was 
noted. Note however that these latter obtained principally from the UDEC code limit in case 
of the DFN without dead-ends fractures.  The EFC approach was then used to simulate the 
primary depletion of the oil fractured reservoir. Different scenarios were considered. In the 
first scenario, all the contribution of fractures and intact porous matrix was represented 
through the single effective medium, result of the homogenization technique.  In the second 
scenarios, we separate the contribution of the long fractures (considered as the major 
conduits) from the others of the DFN. This long fracture network embedded explicitly in the 
fractured matrix which is also obtained from the homogenization procedure as the first 
scenario. This scenario present in effect the double porosity and double permeability medium 
which represent respectively the fractured matrix and long fractures. Two configurations are 
studied in this scenario depending on the relative position of long fracture network with 
respect to the well. When the fractures intersect well, it can play a significant role on the 
productivity of well. Inversely, if the well is not intercepted by the long fractures, there is no 
significant difference between the single effective medium and double porosity/double 
permeability model. The geomechanical effect was considered implicitly in this work by 
using an empirical pressure-dependent of fracture aperture. As expected, the closure of 
fracture during production will reduce the production rate and delay the time production.  
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CONCLUSIONS AND PERSPECTIVES 

The objectives of this work is to develop an approach of modeling the behaviour of double 
porosity and double permeability of fractured reservoir by taking into account explicitly the 
fractures network. The use of this approach to study the impact of the double porosity and the 
double permeability on behaviour of rock masses and fractured reservoirs was the second 
principal objective of the thesis. 

 After a review of existing literature, we observed that all modeling approaches developed so 
far fall either in the group of continuous approaches or in that of discontinuous approaches. 
The advantages as well as limitations of these two approaches are highlighted. The former 
approach has the advantage for solving problems of large scales with the help of REV 
properties and has been used since long time for different applications in the field. The later 
approach aims to take into account explicitly the fractures network in the medium. This 
approach can better investigate the local effects of fractures into fractured medium at small 
scale.  

Borrowing the merits of these two approaches, in this work the embedded fracture continuum 
(EFC) approach was developed to model the fractured reservoir accounting for the hydro 
mechanical coupling. The principal idea of this approach lies on the notion of fracture-cell 
which was introduced in different works notably for the hydraulic simulation. The extension 
of this approach in the coupled HM problem reveals the necessity of determining the 
poroelastic properties of fracture-cell which contributes as the novelty of this work. The joint 
model was used as theoretical support for the determination of these properties. Some 
approximations for these calculated properties were then proposed in this work.  

The implementation of this approach in the open library source code DEAL.II is conducted. 
For this purpose, in the first step, an iterative coupling strategy of the hydro-mechanical 
problem is chosen by profiting the two available modules in DEAL. II (step 8 for elastic 
mechanical problem and step 26 for the single-phase diffusion equation). Follow that, the 
developed code can easily switch from hydraulic calculation (H) to mechanical calculation 
(one-way coupling H-M) and vice versa (two-way coupling H-M). The accuracy of these 
developments in DEAL.II was investigated for different types of materials like isotropic, 
transversely isotropic poroelastic homogeneous and heterogeneous materials. Then, the 
discrete fracture network is introduced explicitly in the porous media. To this goal, the 
methodology to generate the fracture network based on the overall information of fractures 
such as distribution of fracture length, orientation and center is detailed. For the real fractured 
reservoirs owing a high density of fractures, the classical mesh refinement could increase 
significantly the number of degree of freedom and hence the computational time. To 
overcome this limitation, the developed code incorporates the hanging node technique which 
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allows to refine mesh locally on the area around fractures while preserving the use of simple 
cartesian grid mesh.      

 The accuracy of this EFC approach was investigated through different tests. The 
comparisons between the EFC approach and conformed mesh allow to validate the EFC 
approach using the isotropic approximation of the fracture-cell properties. It shows that ratio 
of fracture size with respect to the aperture of fracture play an essential role on the accuracy 
of the EFC approach. A good agreement of the results obtained from the conform-mesh 
method and from EFC approach (using the isotropic approximation proposed in this work) is 
observed if a sufficient local refinement of mesh is carried out.  

The efficiency of the developed EFC approach was then demonstrated through the study 
conducted at industrial scale. An investigation of the effective mechanical and hydraulic 
properties of the fractured rock masses taken from the well-known Sellafield was conducted. 
Our results are consistent with ones presented in the literature using alternative approaches 
such as  Distinct Element Method  (DEM) implemented in the UDEC code and limited only 
in case of non-dead ends fractures. The EFC method presents among other the advantage of 
dealing with dead-ends fractures then can be accounted for in the DFN. Our results 
highlighted that the effective permeability determined from the fractures network with and 
without dead-ends are not much different (less than 6%) while regarding the effective 
mechanical properties these two DFN configurations present significant differences (up to 
23%. Thus, ignoring of the dead-ends fractures can underestimate the effective properties of 
fractured rock mass. 

As the second industrial application example, the EFC approach was used to simulate the 
primary depletion of an hypothetical oil fractured reservoir. Study was conducted as 
comparison among two scenarios of fractured rock mass: a single porosity and single 
permeability equivalent medium with the help of REV properties;  a double porosity and 
double permeability medium in which a significant number of big fractures are explicitly 
introduced in the porous-fractured matrix with properties obtained from the homogenization 
procedure at the first scenario. The results show that when the long fractures intersect well 
(conductive fractures), it can play a significant role on the productivity of well. However, if 
the well is not intercepted by the long fractures (non-conductive fractures), there is no 
significant difference between the single effective medium and double porosity/double 
permeability model. The closure of fracture (consequence of the geomechanical effect on the 
behaviour of fracture) is also considered in this work by using an empirical pressure-
dependent of fracture aperture. The results show that the closure of fracture during production 
will reduce the production rate and delay the time production. 
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As a first, immediate and short time perspective in continuity of this work is the evaluation of 
the pertinence of EFC method in comparison with the phase field method (PFM). The later 
one, was studied for a while during this work (not presented here) and presents some 
interesting features in modeling evolutionary fracture network (either fracture propagation or 
fracture opening/closing). The choice of EFC for our work is justified by its simplicity and 
the power of the method to deal with problems discussed here, for which EFC has clearly the 
advantage to PFM. If fracture propagation should be concerned the PFM is worthy to be re-
evaluated. We have already observed that the use of PFM in simple configurations of crack 
propagation in porous media counting for hydro mechanical coupling, gives very good 
results. In perspectives, the feasibility of the extension of PFM for the case of intersecting 
fractures, or fractures in anisotropic porous media should be evaluated and compared with the 
perspectives to develop these features using EFC.  

The presented EFC approach could be upgraded to the multiphase flow in which the 
hydraulic path will be needed some modification while mechanical path is remained. To 
upgrade the multiphase flow, the step 21 in DEAL.II developed for two-phase flow in simple 
porous media can be used as the starting point. The extension of the approach for fractured 
media and explicit presence of fracture, using EFC, seems a short-time perspective, once a 
theoretical model for multiphase flow in a fracture is adopted.   

The software tool developed based on library DEAL.II could certainly be ameliorated and 
completed in many ways. To begin with, a more versatile input-output module should be 
developed. The concept of “fracture class” should be revisited in order to allow for a run-time 
updating of fracture-cell properties during variation of the fracture aperture. This update is for 
the moment performed using a special post-treatment and the Bandis & Barton model 
(Bandis et al., 1983 and Barton et al., 1985) and it is limited only on hydraulic properties.   

The 3D extension of this work is quasi immediate and does not present a challenge other than 
computer capacities to deal with a high number of degree of freedom problem. In fact all 
theoretical and software elements are already in DEAL.II and only the 3D inherent 
difficulties (crack network visualization and apprehension, huge assembled matrix) could be 
seen as obstacles of such extension. 

An extension of the EFC approach in the more general context of thermo-hydromechanical 
coupling can be done without difficulty using the same  sequential coupling strategy used for 
HM coupling in this work. It basically consist initially to calculate thermal effective 
properties for the fracture-cell elements using the geometry and thermal properties of matrix 
and fracture. Then for problem solving, the temperature distribution as well as heat flux on 
the rock mass are calculated (much similar to hydraulic calculs). The mechanical effect of the 
temperature are calculate after. This order of T->M coupling is justified be done due to the 
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fact that the change of energy due to mechanical deformation is small and could be neglected  
Concerning the thermal effect to fluid flow (T->H), this coupling exists only in terms of 
changes in the fluid parameters (density, viscosity) with temperature. More sophisticated 
thermo-hydric coupling can be accounted for by modeling the convective heat transfer 
between the fluid flowing through the joints and the rock matrix. 

While sequential coupling is used in our works (and has been suggested for further 
developments) a full coupling reformulation of problem could be worthy in some particular 
cases such as very long term transient problems , for which sequential coupling has a high 
cost in calculation time. This perspective however lead to fundamental changes of the 
philosophy of some key-stone concepts in DEAL.II and need a high investment in  code 
developing.    
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APPENDIX A: BRIEFLY INTRODUCTION OF DEAL.II 

Overall, there are some main modulus of DEAL.II presented in Fig A-1 including 
Triangulation, Finite Element, Quadrature, DoFHandler, Mapping, FEValues, Linear 
Systems, Linear Solvers and Output. The aim of these modules is outlined below. 

 

Figure A-1: Struture of modules in DEAL.II 

Triangulation: Triangulations are collections of cells and their lower-dimensional boundary 
objects. Cells are images of the reference hypercube [0, 1] dim under a suitable mapping in the 
module on Mappings between reference and real cell. 

Finite Element: Finite element classes describe the properties of a finite element space as 
defined on the unit cell. This includes, for example, how many degrees of freedom are 
located at vertices, on lines, or in the interior of cells. In addition to this, finite element 
classes of course have to provide values and gradients of individual shape functions at points 
in the unit cell. 

Quadrature: As with finite elements, quadrature objects are defined on the unit cell. They 
only describe the location of quadrature points in the unit cell, and the weights of quadrature 
points thereon. 

DoFHandler: DoFHandler objects are the confluence of triangulations and finite elements: 
the finite element class describes how many degrees of freedom it needs per vertex, line, or 
cell, and the DoFHandler class allocates this space so that each vertex, line, or cell of the 
triangulation has the correct number of them. It also gives them a global numbering. 

Mapping: it is necessary to map the shape functions, quadrature points, and quadrature 
weights from the unit cell to each cell of a triangulation. They describe how to map points 
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from unit to real space and back, as well as provide gradients of this derivative and Jacobian 
determinants. 

FEValues: The next step is to actually take a finite element and evaluate its shape functions 
and their gradients at the points defined by a quadrature formula when mapped to the real 
cell. 

Linear Systems: If one knows how to evaluate the values and gradients of shape functions on 
individual cells using FEValues and friends, and knows how to get the global numbers of the 
degrees of freedom on a cell using the DoFHandler iterators, then the next step is to use the 
bilinear form of the problem to assemble the system matrix (right hand side) of the linear 
system. We will then determine the solution of our problem from this linear system. 

Linear Solvers: In order to determine the solution of a finite-dimensional, linear system of 
equations, one needs linear solvers 

Output: Finally, once one has obtained a solution of a finite element problem on a given 
triangulation, one will often want to post-process it using a visualization program. 

To implement a FEM calculation of hydro mechanical coupling, following steps need to be 
done such as Mesh, Materials, Initial condition, boundary conditions, Solve and Output. We 
present these steps in the following items. 

A-1 Mesh 

In DEAL.II, A mesh can be thought of a collection of cells; if the mesh has been refined 
(possibly in an adaptive way), and then this collection is grouped into a hierarchy of 
refinement levels. 

Note that DEAL.II only implements triangulations made up of linear, quadrilateral, and 
hexahedral cells; triangles and tetrahedral are not supported. 

In general, the mesh can be established in two steps: grid generation and refined mesh. 

Grid generation 

There are three ways to create a mesh: 

+ Creation by the GridGenerator class; 

+ Reading from a file; 

+ Creation by hand. 

Firstly, the GridGenerator class provides functions that can generate the simplest and most 
common geometries automatically. For example, rectangular (or brick) geometry as well as 
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circles, spheres, or cylinders can generate with the functions in this class. 
http://www.dealii.org/8.4.1/doxygen/deal.II/namespaceGridGenerator.html 

GridGenerator::hyper_cube (triangulation, left, right, colorize) or  

GridGenerator::hyper_cube (triangulation, left, right) with colorize of false as default. 

Initialize the given triangulation with a hypercube (line in 1D, square in 2D, etc) consisting of 
exactly one cell. The hypercube volume is the tensor product interval [left, right] dim in the 
present number of dimensions, where the limits are given as arguments. They default to zero 
and units, then producing the unit hypercube. If the argument colorize is false, all boundary 
indicators are set to zero ("not colorized") for 2d and 3d. If it is true, the boundary is 
colorized as in hyper_rectangle In 1d the indicators are always colorized, 
see hyper_rectangle(). 

GridGenerator::hyper_rectangle (triangulation, p1, p2, colorize) or 

GridGenerator::hyper_rectangle (triangulation, p1, p2) with colorize of false as default. 

Create a coordinate-parallel brick from the two diagonally opposite corner points: p1 and p2. 
If the colorize flag is set, the boundary_ids of the surfaces are assigned, such that the lower 
one in x-direction is 0, the upper one is 1. The indicators for the surfaces in y-direction are 2 
and 3, the ones for z are 4 and 5. 

triangulation The Triangulation<dim, spacedim> to create. It needs to be empty upon calling 
this function. dim is the number of coordinate working on this Triangulation. 
spacedim is the number of all coordinates working on the code. 

p1 First corner point. 

p2 Second corner opposite to p1. 

colorize Assign different boundary ids if set to true 

An example 

In 2-dimensional geometry: 
Triangulation<2 > triangulation; 

GridGenerator::hyper_cube (triangulation, 0, 

1); 

 

Or  
Triangulation<2> triangulation; 

Point<2>(0,0); Point<2>(1,1). 

GridGenerator::hyper_rectangle 

(triangulation, p1, p2); 
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In 3-dimensional geometry 
Triangulation<3> triangulation; 

GridGenerator::hyper_cube (triangulation, 0, 

1); 

 

 

 

GridGenerator::hyper_cube_with_cylindrical_hole (triangulation, inner_radius, 
outer_radius, L, repetitions, colorize) or in 2-dimensional plane 

GridGenerator::hyper_cube_with_cylindrical_hole (triangulation, inner_radius, 
outer_radius) 

This class produces a square in the xy-plane with a circular hole in the middle. Square and 
circle are centered at the origin. In 3d, this geometry is extruded in z direction to the 
interval [0, L]. 

triangulation The triangulation to be filled. 

inner_radius Radius of the internal hole. 

outer_radius Half of the edge length of the square. 

L Extension in z-direction (only used in 3d). 

repetitions Number of subdivisions along the z-direction. 

colorize Whether to assign different boundary indicators to different faces. The colors 
are given in lexicographic ordering for the flat faces (0 to 3 in 2d, 0 to 5 in 3d) 
plus the curved hole (4 in 2d, and 6 in 3d). If colorize is set to false, then flat 
faces get the number 0 and the hole gets number 1. 

An example 

In 2-dimensional geometry: 

  Triangulation<2 > triangulation; 

  GridGenerator::hyper_cube_with_cylindrical_hole (triangulation, 1, 2) 

//Set manifold for circle 

  double r=1; double fx; 

  Point<2> p_center(0,0); 

  Triangulation<2>::active_cell_iterator  

cell = triangulation.begin_active(),  

endc = triangulation.end(); 
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  for (; cell!=endc; ++cell) 

    for (unsigned int f=0; f<GeometryInfo<2>::faces_per_cell; ++f) 

    {   

      fx = (cell->face(f)->center()[0] - p_center[0]) 

*(cell->face(f)->center()[0] - p_center[0]) 

        + (cell->face(f)->center()[1] - p_center[1]) 

  *(cell->face(f)->center()[1] - p_center[1]); 

      if (fx <= (r*r)) cell->face(f)->set_all_manifold_ids (10); 

     } 

   static const SphericalManifold<2> boundary_description(p_center); 

   triangulation.set_manifold (10, boundary_description); 

 

//Mesh refinning            

   triangulation.refine_global (2); 

Result of running 

GridGenerator::subdivided_hyper_rectangle(triangulation ,repetitions, left, right) 

Same as hyper_cube() but with the difference that not only one cell is created but each 
coordinate direction is subdivided into repetitions cells. Thus, the number of cells filling the 
given volume is repetitionsdim. 

The above function, subdivided_hyper_rectangle, is active only in rectangular. It is a 
limitation on modeling fractured reservoir which fractures are clined. A development of that 
function is implemented by author for quadrilateral as below 

void subdivided_hyper_quadrilateral (triangulation, repetitions, p1, p2, p3, p4) 
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Figure A-2: Sketch of subdivided hyper rectangle and subdivided hyper quadrilateral 

Secondly, it is possible to read in meshes from an input file in a number of different formats 
using the GridIn class. Using this class, it is possible to read meshes with several 10 or 100 
thousand cells, although this is not really recommended: the power of adaptive finite element 
methods only comes to bear if the initial mesh is as coarse as possible and there is room for a 
number of adaptive refinement steps.  

An example of reading a *.inp file 

std::string grid_name; 

grid_name = "rectangle.inp"; 

GridIn<dim> grid_in; 

grid_in.attach_triangulation(triangulation); 

std::ifstream input_file(grid_name.c_str()); 

grid_in.read_ucd(input_file); 

and the content of rectangle.inp file 

4 5 0 0 0 

0 0 0 0 

1 1 0 0 

2 0 1 0 

3 1 1 0 

0 1 quad 0 1 3 2 

1 0 line 2 0 

2 1 line 1 3 

3 2 line 0 1 

4 3 line 3 2 

 

The third way is to create a mesh by hand, by building a data structure that describes the 
vertices and cells of triangulation. This is useful in cases of moderate complexity where a 
mesh can still be built by hand without resorting to a mesh generator, but where the domain is 
not one of those already supported by the GridIn class. In this method, the data structure is 
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built and handed to the triangulation. create_triangulation() function of 
the Triangulation class.  

Besides the three method of grid generation, we can merge or remove the triangulation using 
the two command lines below 

GridGenerator::merge_triangulations(triangulation_1, triangulation_2, triangulation_result) 

Given the two triangulations, triangulation_1, triangulation_2, specified as the first two 
arguments, create the triangulation, triangulation_result, that contains the cells of both 
triangulation and store it in the third parameter. Previous content of triangulation_result will 
be deleted. 

GridGenerator::create_triangulation_with_removed_cells(input_triangulation, 
cells_to_remove, triangulation_result) 

This function creates a triangulation that consists of the same cells as are present in the first 
argument, except those cells that are listed in the second argument.  

[in] input_triangulation The original triangulation that serves as the template from which 
the new one is to be created. 

[in] cells_to_remove A list of cells of the triangulation provided as first argument that 
should be removed (i.e., that should not show up in the result. 

[out] Triangulation_result The resulting triangulation that consists of the same cells as are 
in input_triangulation, with the exception of the cells listed 
incells_to_remove. 

An example of merging and removing triangulation 

Triangulation<2> tria_1, tria_2, tria_3; 

// Tria_1 

   std::vector< unsigned int > repetitions(2); 

   repetitions[0] = 6;  repetitions[1] = 6; 

   GridGenerator::subdivided_hyper_rectangle (tria_1, repetitions, 

Point<2>(0.0,0.0),Point<2>(12.0,12.0)); 

// Tria_2 

   std::set< typename Triangulation<2>::active_cell_iterator > 

cells_to_remove; 

   Triangulation<2>::active_cell_iterator cell = tria_1.begin_active(), 

endc = tria_1.end(); 

   for (; cell!=endc; ++cell) 

     for (unsigned int v=0; v< GeometryInfo<2>::vertices_per_cell; ++v) 

          if ((cell->vertex(v)[0]==6.0) && (cell->vertex(v)[1]== 6.0)) 
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               { 

                   cells_to_remove.insert(cell); 

                   break; 

               } 

   GridGenerator::create_triangulation_with_removed_cells (tria_1, 

cells_to_remove, tria_2); 

 

// Tria_3 

   GridGenerator::hyper_cube_with_cylindrical_hole(tria_3, 0.25, 2); 

//Note that the center of result object always is (0,0,0), thus we need to 

//move the result object if necessary.  

   cell = tria_3.begin_active();    endc = tria_3.end(); 

   for (; cell!=endc; ++cell) 

       for (unsigned int i=0; i<GeometryInfo<2>::vertices_per_cell; ++i) 

            { 

               Point<2> &v = cell->vertex(i); 

               v(0) += 3.0; 

               v(1) += 3.0; 

             } 

// Merge 

   GridGenerator::merge_triangulations (tria_2, tria_3, triangulation); 

Result of running 

 

 

 

The grid which generated from DEAL.II can be outputted and stored in a *.inp file for other 
running by command line, write_ucd(), as below 

std::ofstream out_ucd ("*.inp"); 

 GridOut grid_out_ucd; 

   GridOutFlags::Ucd flags; 

 flags.write_faces = true; 

 flags.write_lines = true; 

 grid_out_ucd.set_flags (flags); 

 grid_out_ucd.write_ucd (triangulation, out_ucd); 
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Grid refinement and hanging nodes 

The mesh obtained from the previous step, grid generation, will be assigned to level 0 of 
mesh structures. To smooth the mesh, grid refinement class can be applied. Principle of this 
class is that cells will be divided into two uniform parts per command time.  

We can refine all cells of triangulation by command line triangulation.refine_global(times) or 
a part of cells which are already make up by a piece of code which used command line 
triangulation.execute_coarsening_and_refinement().   

Triangulation<2>::active_cell_iterator cell = 

   triangulation.begin_active(), endc = triangulation.end(); 

for (; cell!=endc; ++cell) 

 if (cell is in boundary refined) cell->set_refine_flag(); 
triangulation.execute_coarsening_and_refinement(); 

More functions of grid refinement are available in the Triangulation class 
https://www.dealii.org/8.4.1/doxygen/deal.II/classTriangulation.html 
All nodes and cells which are generated by refinement will be assigned to level 1, 2 … 

In DEAL.II, hanging nodes is allowed for refining mesh and it is an strong point of this 
library. 

 

Figure A-3: Sample of hanging node and refined mesh in DEAL.II 

 

Boundary identification 

If mesh was generated by DEAL.II, the boundary indicator will be identified automatically in 
one id if colorize is false or in differential id number if colorize is true (see item 1) 

Boundary indicator can be assigned in *.inp file or can be re-assigned during compile by a 
piece of code: 
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Triangulation<2>::active_cell_iterator cell = triangulation.begin_active(), 

endc = triangulation.end(); 

for (; cell!=endc; ++cell) 

 for (unsigned int f=0; f<GeometryInfo<2>::faces_per_cell; ++f) 

   if (cell->face(f) is in boundary id)  
cell->face(f)->set_boundary_indicator (id); 

Note that the definition of positive vector for each boundary related to axis direction is 
presented in Figure D-2 of appendix D. 

Group of cells 

If mesh was obtained from importing a *.inp file, group of cells can be determined. Group of 
cells also can be assigned by a piece of code: 

Triangulation<2>::active_cell_iterator cell = triangulation.begin_active(), 

endc = triangulation.end(); 

for (; cell!=endc; ++cell) 

if (cell is in id group)cell->set_material_id(id); 

 

A-2 Material 

In DEAL.II, material properties are assembled in to system matrix and right hand side matrix. 

In general case, but not in all cases, the finite element system equation will be formed: 

{ }{ } { }M u R=     

in which { }M  is the matrix of system obtained from material properties, mechanical 

behaviour, hydraulic behaviour, etc.. 

{ }u  is the vector of degree of freedoms 

{ }R  is the vector of right hand side obtained from boundary conditions, initial 

condition, etc... 

To calculate the { }M  and { }R  in conjunction with { }u , DEAL.II provide some classes to 

implement such as FESystem <dim>,  DoFHandler<dim>, ConstraintMatrix, etc… The 
details of these classes are expressed in DEAL.II library and brief below. 

FEM system setup 

DEAL.II provides some finite elements such as scalar Lagrange finite element (FE_Q), 
discontinuous finite element (FE_DGQ), Raviart-Thomas (RT) elements 
(FE_RaviartThomas),  
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+ FE_Q yields the finite element space of continuous, piecewise polynomials of 
degree p in each coordinate direction. 

+ FE_DGQ is a discontinuous finite element based on tensor products of Lagrangian 
polynomials. 

+ FE_RaviartThomas generate vector fields with normal components continuous 
between mesh cells. 

Addition, FESystem is used for combined finite element, for example 

FESystem<dim> fe(FE_Q<dim>(p), dim); for dim finite elements of FE_Q<dim>, p is 
the polynomials of degree. dim is the number of spaces. 

After, the degree of freedom needs to be distributed from triangulation by command line 

DoFHandler<dim> dof_handler; 

dof_handler.distribute_dofs (fe); 

std::cout << " Number of active cells: " << triangulation.n_active_cells()    

<< std::endl; 

std::cout << " Number of degrees of freedom: " << dof_handler.n_dofs()    

<< std::endl; 

To constraint degree of freedoms in boundary conditions as well as hanging nodes in 
DEAL.II, ConstraintMatrix is built by following command lines: 

ConstraintMatrix     constraints; 

constraints.clear(); 

DoFTools::make_hanging_node_constraints (dof_handler, constraints); 

constraints.close(); 

 

 Shape function and constructing system matrix, right hand side matrix 

DEAL.II provide some classes to control shape function and weight function in finite element 
method,  

QGauss<dim>   quadrature_formula(n); 

Generate a formula with n quadrature points (in each space direction) 

FEValues<dim, spacedim> fe_values(fe, quadrature_formula, update_flags); 

For face elements: 

QGauss<dim-1>   face_quadrature_formula(n); 

FEFaceValues <dim, spacedim> fe_face_values(fe, face_quadrature_formula, update_flags); 
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This allows us to evaluate values or derivatives of shape functions at the quadrature points of 
a quadrature formula when projected by a mapping from the unit cell onto a cell in real space. 

 

Usually, an object of FEValues, FEFaceValues is used in integration loops over all cells of a 
triangulation (or faces of cells). A typical piece of code, adding up local contributions to the 
Laplace matrix looks like this: 

FEValues values (mapping, finite_element, quadrature, flags); 

for (cell = dof_handler.begin_active (); cell != dof_handler.end(); ++cell) 

{ 

values.reinit(cell); 

for (unsigned int q=0; q<quadrature.size(); ++q) 

for (unsigned int i=0; i<finite_element.dofs_per_cell; ++i) 

for (unsigned int j=0; j<finite_element.dofs_per_cell; ++j) 

A(i,j) += fe_values.shape_value(i,q) * 

fe_values.shape_value(j,q) * 

fe_values.JxW(q); 

... 

} 

The functions of this class fall into different categories: 

• shape_values(), shape_grad(), etc: return one of the values of this object at a time. These 
functions are inlined, so this is the suggested access to all finite element values. There 
should be no loss in performance with an optimizing compiler. If the finite element is 
vector valued, then these functions return the only non-zero component of the requested 
shape function. However, some finite elements have shape functions that have more than 
one non-zero component (we call them non-"primitive"), and in this case this set of 
functions will throw an exception since they cannot generate a useful result. Rather, use 
the next set of functions. 

• shape_value_component(), shape_grad_component(), etc: This is the same set of 
functions as above, except that for vector valued finite elements they return only one 
vector component. This is useful for elements of which shape functions have more than 
one non-zero component, since then the above functions cannot be used, and you have to 
walk over all (or only the non- zero) components of the shape function using this set of 
functions. 

• get_function_values(), get_function_gradients(), etc.: Compute a finite element function 
or its derivative in quadrature points. 
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• reinit: initialize the FEValues object for a certain cell. This function is not in the present 
class but only in the derived classes and has a variable called syntax. See the docs for the 
derived classes for more information. 

From above loop, we can construct plural required matrices, vectors for finite element system 
equations. 

 

Using MatrixCreator, VectorTools classes. 

To get mass matrix and laplace matrix quickly, MatrixCreator and VectorTools class 
provides the functions to do it. At present there are functions to create the following matrices: 

• create_mass_matrix: create the matrix with entries ( ) ( ) ( )ij i jm a x x x dxϕ ϕ
Ω

= ∫  by numerical 

quadrature. Here, ( )i xϕ  is the basis function of the finite element space given and ( )a x is 

a function. 

• create_laplace_matrix: create the matrix with entries ( ) ( ) ( )ij i ja a x x x dxϕ ϕ
Ω

= ∇ ∇∫ by 

numerical quadrature. 

MatrixCreator::create_mass_matrix(dof_handler, Gauss<dim>(fe.degree+1), 

                mass_matrix, (const Function<dim> *)0, constraints); 

MatrixCreator::create_laplace_matrix(dof_handler,QGauss<dim>(fe.degree+1, 

laplace_matrix, (const Function<dim> *)0, constraints); 

• create_right_hand_side: creation of right hand side vectors ( ) ( )ij if f x x dxϕ
Ω

= ∫ by 

numerical quadrature. 

RightHandSide<dim> rhs_function(); 
VectorTools::create_right_hand_side(dof_handler, Gauss<dim>(fe.degree+1), 

rhs_function, tmp); 

For other functions https://www.dealii.org/8.4.1/doxygen/deal.II/namespaceVectorTools.html 
https://www.dealii.org/8.4.1/doxygen/deal.II/namespaceMatrixCreator.html. 

A-3 Initial condition and boundary conditions 

A-3.1. Initial condition 

There are two kinds of initial condition: direct initial condition, and indirect initial condition. 

If variable has initial value, it is direct initial condition and can be assigned directly by 
command line 

VectorTools::interpolate(dof_handler, InitialValues<dim>(initial_value), 



 

188 
 

 solution); 

in which InitialValues<dim>(initial_value)is a class written by user to control initial 
values. Normally, the form of InitialValues is as below: 

template<int dim> 

class InitialValues : public Function<dim> 

  { 

  public: 

    InitialValues (const double init_p): Function<dim>() 

    { 

       _init_p = init_p; 

    } 

    virtual double value (const Point<dim> &p,  

  const unsigned int component = 0) const; 

    double _init_p; 

  }; 

 

 template<int dim> 

 double InitialValues<dim>::value (const Point<dim> &p,  

const unsigned int component) const 

  { 

    Assert (component == 0, ExcInternalError()); 

    Assert (dim == 2, ExcNotImplemented()); 

    return _init_p; 

  } 

This method can be applied for pressure initial condition, displacement initial conditions. 

If initial value is not for variable, indirect initial condition needs to be considered by a piece 
of code implemented by user. 

 

A-3.2 Boundary conditions 

a) Dirichlet boundary:  

VectorTools::interpolate_boundary_values(dof_handler, boundary_id, boundary_function, 
boundary_values); or 

VectorTools::interpolate_boundary_values( mapping, dof_handler, boundary_id,  

boundary_function, boundary_values, component_mask); 

Compute Dirichlet boundary conditions. This function makes up a map of degrees of freedom 
subject to Dirichlet boundary conditions and the corresponding values to be assigned to them, 
by interpolation around the boundary. For each degree of freedom at the boundary, if its 
index already exists in boundary_values then its boundary value will be overwritten, 



 

189 
 

otherwise a new entry with proper index and boundary value for this degree of freedom will 
be inserted into boundary_values. 

The flags in the last parameter, component_mask denote which components of the finite 
element space shall be interpolated. If it is left as specified by the default value (i.e. an empty 
array), all components are interpolated. As an example, assume that you are solving the 
Stokes equations in 2d, with variables (u,v,p) and that you only want to interpolate boundary 
values for the velocity, then the component mask should correspond to (true,true,false). 

 

VectorTools::interpolate_boundary_values(dof_handler, boundary_id,  

BoundaryValues<dim>(1), boundary_values); 

MatrixTools::apply_boundary_values (boundary_values, system_matrix,  

solution, system_rhs); 

If boundary is fixed, the ZeroFunction<dim>(dim) will replaced for 
BoundaryValues<dim>(1) 

 

b) Neumann boundary 

We need impose the Neumann boundary by a piece of code 

for (unsigned int face_number=0; 

face_number<GeometryInfo<dim>::faces_per_cell; ++face_number) 

 if (cell->face(face_number)->at_boundary() 

&&(cell->face(face_number)->boundary_indicator() == 3)) 

  { 

   fe_face_values.reinit (cell, face_number); 

   boundary_values.value_list(fe_face_values.get_quadrature_points(), 

      boundary_values); 

   for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point) 

    { 

     const Tensor<1, dim> neumann_value  = (boundary_values[q_point])* 

fe_face_values.normal_vector(q_point); 

     for (unsigned int i=0; i<dofs_per_cell; ++i) 

     { 

 const unsigned int component_i=fe.system_to_component_index(i).first; 

cell_rhs(i) += (neumann_value[component_i] * 

fe_face_values.shape_value(i,q_point)  

* fe_face_values.JxW(q_point)); 

     } 

    } 

  } 

What about the Neumann boundary in case Neumann value is 0?(to be answered later) 
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A-4 Solve 

There are some methods of solving equations, the conjugate gradient method (SolverCG), 
the generalized minimal residual method (SolverGMRES), etc… 

SolverCG: 

SolverCG<>   cg (solver_control); 

cg.solve(A,x,b,precondition); 

Solve the linear system Ax=b for x. 

For example: 

SolverControl           solver_control (1000, 1e-12); 

SolverCG<>              cg (solver_control); 

PreconditionSSOR<> preconditioner; 

preconditioner.initialize(system_matrix, 1.0); 

cg.solve (system_matrix, solution, system_rhs, preconditioner); 

constraints.distribute (solution); 

SolverGMRES 

SolverGMRES<>   gmres (solver_control); 

gmres.solve(A,x,b,precondition); 

Solve the linear system Ax=b for x. 

For example 

SolverControl solver_control(1000, system_rhs.l2_norm()*1e-12); 

SolverGMRES<> gmres(solver_control); 

PreconditionSSOR<> preconditioner; 

preconditioner.initialize(system_matrix, 1.0); 

gmres.solve(system_matrix, solution, system_rhs, preconditioner); 

constraints.distribute(solution); 

A-5 Output and post processing 

A-5.1 Output results of variables 

Class Dataout is the main class to provide output of data described by finite element fields 
defined on a collection of cells. The only thing this class offers is the 
function build_patches() which loops over all cells of the triangulation stored by the 
attach_dof_handler() function of the base class and converts the data on these to actual 
patches which are the objects that are later output by the functions of the base classes. 

An example of outputting solution to *.vtk file 

DataOut<dim> data_out; 
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data_out.attach_dof_handler (dof_handler); 

data_out.add_data_vector (solution, solution_names); 

data_out.build_patches (); 

data_out.write_vtk (output); 

A-5.2 Output of other items. 

If other items such as velocity, stress need to be outputted, a calculation function needs to be 
implemented. There functions will be written in the post processing stage. 
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APPENDIX B: ANALYTICAL SOLUTION OF MANDEL’S 
PROPBLEM AND EXCAVATION PROBLEM 

 

B-1 Mandel’s problem 

The geometry of Mandel’s problem in anisotropic case is sketched in Figure B-1. A 
rectangular sample subjected to a constant applying stress at its top, through a rigid and 
frictionless plate of width 2a, with drainage to the two sides in lateral direction. (Mandel, 
1963) 

 
Figure B-1: Sketch of Mandel geometry in anisotropic case 

 

The analytical solution is provided by Abousleiman et al, (1996) as briefly presented below 

Pressure distribution on the x-coordinate is 
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x-displacement on the x-coordinate (y=0) is 
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y-displacement on the y-coordinate (x=0) is 
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In which 
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For ijM are the drained elastic moduli defined by the generalized Hook’s law 
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For properties of undrained material: 

 MbbMM jiij
u
ij +=  (B.6)

B-2 Excavation problem 

The problem to be analyzed is represented in Figure B-2 (Torres and Zhao, 2009). A section 
of cylindrical tunnel of radius a is excavated in an elastic porous material characterized by 
Young’s modulus E and Poisson’s ratio υ. Axi-symmetry conditions for geometry and 
loading will be assumed (i.e., gravity will be disregarded), so the problem in Figure B-2 is 
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representative of the case of a deep tunnel excavated in elastic ground subject to uniform 
initial stresses. 

Prior to excavation, the total stresses in the medium are uniformed and equal to V Hσ σ=  and 

the pore pressures in the ground are also uniformed and equal to ffp . The tunnel is then 

excavated and water is drained from inside the tunnel, leading to the non- uniform pore 
pressure distribution. We assume that the calculated area of simulation (2A x 2B) is large 
enough for the tunnel radius in which the pressure at boundary is kept constant of the far-field 

value ffp in analytical solution (Torres and Zhao, 2009).  

 

 
Figure B-2: The axi-symmetrical problem of excavation of a cylindrical tunnel in a saturated elastic 

porous material Torres and Zhao (2009) 

The analytical solution: 

The solution of the problem in Figure B-2 is expressed in terms of a transformed radial 
distance variable ρ, defined in terms of the radial distance r  and the tunnel radius a  as 
follows: 

 
a
r

ρ =
 (B.7)

The pore pressure for region A and region B is as  
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[ ]B 0
w wp (ρ)= p  

The radial displacement for region A and region B are, respectively  
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The radial effective stress for region A and region B are, respectively 

 

0
2 2

0 0 2ln 1 1 2ln
2 2G ln

'
r r w

f
i w w

s w w

σ (ρ)= σ (ρ) p (ρ)

p pGσ (σ p p )ρ + ρ+( ρ )( ρ) p (ρ)
(λ+ ) ρ

−

− ⎡ ⎤= − − − − − −⎣ ⎦

and 

 
0

2 2 2 2
0 0 2 1 2 ln

2 2G ln

'
θ θ w

f
i w w

s w w

σ (ρ)= σ (ρ) p (ρ)

p pGσ (σ p p )ρ + ρ ρ + (ρ) ρ) p (ρ)
(λ+ ) (ρ) ρ

−

− ⎡ ⎤= − − − − −⎣ ⎦  

(B.10)

  



 

197 
 

APPENDIX C: DECOMPOSITION IN THE WALPOLE BASE 
 

We introduce the Walpole base (Walpole, 1981) notations for fourth-order tensors 
with symmetry of transverse isotropic type. This base makes it possible, in particular, to carry 
out the double-contract product and inverting these tensor operations without great difficulty.  
The elements of the Walpole base are defined by 

 

1

2

3 1

4

5
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1( )
2

( )

( )

( )

( )

( )

k k

k k
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E
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(C.1)

where 2
1  and k kξ ξ
ξ

⊥= ⊗ = −I k

    

with the condition 0ξ ≠   

The product doubly contracted two elements of the base of Walpole is given in the table 
below 

 1( )ξE  2 ( )ξE  3( )ξE  4 ( )ξE  5( )ξE  6 ( )ξE  

1( )ξE  1( )ξE  0 0 0 0 6( )ξE  

2 ( )ξE  0 1( )ξE  0 0 5( )ξE  0 

3( )ξE  0 0 3( )ξE  0 0 0 

4( )ξE  0 0 0 4( )ξE  0 0 

5( )ξE  0 5( )ξE  0 0 0 2 2( )ξE  

6 ( )ξE  6 ( )ξE  0 0 0 2 1( )ξE  0 

 

Any fourth-order isotropic transverse tensor can be represented in the base of Walpole: 

 1 1 2 2 3 3 4 4 5 5 6 6( ) ( ) ( ) ( ) ( ) ( )a a a a a aξ ξ ξ ξ ξ ξ= + + + + +A E E E E E E
 (C.2)

A  is symmetric if 5 6a a= . Consider a second tensor of fourth order, Band note by b1, .., b6 

its components in the base of Walpole. The doubly contracted product of A by Bis: 
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1 1 6 5 1 2 2 5 6 2 3 3 3

4 4 4 2 5 5 1 5 1 6 6 2 6

( 2 ) ( ) ( 2 ) ( ) ( )

            ( ) ( ) ( ) ( ) ( )

a b a b a b a b a b

a b a b a b a b a b

ξ ξ ξ

ξ ξ ξ
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+ + +

A : B + E + E E

E + E + E  (C.3)

The inverse of A  is 

 
1 5 62 1

1 2 3 4 5 6
3 4

1 1( ) ( ) ( ) ( ) ( ) ( )a aa a
a a

ξ ξ ξ ξ ξ ξ− = + + + − −
Δ Δ Δ Δ

A E E E E E E
 (C.4)

with 1 2 5 62a a a aΔ = − . This relation induces dynamically conditions of invertibility of the 

considered tensor. 

The decomposition on ( )n ξE of the identity of fourth order, I , and isotropic tensors 

=K I-Jand 1
3

i i= ⊗J  are written 

 ( ) ( )

( ) ( )

1 2 3 4

1 2 3 4 5 6

1 2 5 6
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I E E E E

K E E E E E E

J E E E E

 (C.5)

Green tensor 0 ( )ξΓ and 0 ( )ξΔ are given by 
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For tensor, 0
0 03 2λ μ= +C J I  (and ( ) 10 0 −

=S C ), we have 
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we have 
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For all ( )a ξ  satisfying the property 0 : ( ) : ( ) 0aξ ξ ξ≠ =Q , we have : ( ) : ( ) 0n aξ ξ ξ∀ =E  for 

n=1,3,5. Therefore: 

 0 00 : ( ) : : ( ) ( )a aξ ξ ξ ξ∀ ≠ Γ =C
 (C.9)

For all ( )a ξ satisfying the property 0 : ( ) : ( ) 0aξ ξ ξ≠ =Q , we have : ( ) : ( ) 0n aξ ξ ξ∀ =E  for 

n=2,4,6. Therefore: 

 0 00 : ( ) : : ( ) ( )a aξ ξ ξ ξ∀ ≠ Δ =S
 (C.10)
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APPENDIX D: MANUAL’S USER AND SOME EXAMPLES OF THE 
DEVELOPED CODE  
In this appendix, we present the manual of the developed code as well as some examples of 
using it for example Mandel’s problem in transversely isotropic porous media. 

D-1 Manual 

a) Overall parameters 

To carry out all above items, a parameter file, *.prm, is provided; the structure of *.prm is 
divided into four main sections: MESH SECTION, MATERIAL SECTION, INITIAL CONDITION 
AND BOUNDARY CONDITIONS and SOLVE SECTION. 

The purpose of this file is control all overall input data of simulation. Details of parameter 
data will be separately in detailed files 

subsection MESH SECTION 
  set geometry file   =*.inp 
  set geometry file in next stage =*.inp 
  set crack file    = N/A 
  set number global refinement =? 
  set number local refinement   =? 
end 
 
subsection MATERIAL SECTION 
  set material file   = *.txt 
  set fluid viscosity   = ? 
end  
 
subsection INITIAL CONDITION AND BOUNDARY CONDITIONS 
  set initial pressure    = ? 
  set initial mechanics   = ? 
  set boundary file   = *.txt 
end 
 
subsection SOLVE SECTION 
  set calculation type        = ?  
  set time step parameter file = *.txt 
  set running stage   = ?  
end 

Fig. D-1: Structure of input parameter file 

The versatile software can be run from linux (Ubuntu) environment by command line: 

./software_version parameter_file.prm  

b) Detailed data of input parameters 

 (1) The detail of geometry (mesh) information is provided in *.inp file 
triangulation.inp for example. If we have stage calculation (for construction stage), the 
file of geometry file in next stage is provided. 
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The geometry file can be obtained from other softwares such as ABAQUS software or from 
the output, write_ucd(), of DEAL.II libarary or from manual implementation. 

Structure of *.inp file 

Number_of_nodes Number_of_cells_and_line 0 0 0 

// provide all nodes in structure: 

Node_id x y z  //Node_id is started from 0 

x x x x 

//provide all cells in structure 

No. Cell_material_id Cell_type Node_id … //No. is started from 0 

x x quad x x x x 

//provide all lines of boundaries in structure 

No. Boundary_id Node_id Node_id 

x x line x x 

(2) All kinds of materials are in *.txt file, for example in material.txt file. 

Structure of *.txt file for all materials is formed 

Number_of_materials 

Material_id  Material_type   

1 IO_M  E ν 
2 IO_H  K 
3 IO_HM  E ν M b K 
4 IT_M_Y Exx Eyy νxz νyx Gxy 
5     IT_H  Kxx Kyy 
6 IT_HM_Y Exx Eyy νxz νyx Gxy  M    bxx   byy   Kxx   Kyy 
7     Crack poi   kn    kt    b     w_aperture  

(3) The initial condition can be set as default (no initial condition for mechanics and pressure, 
all are zero) if we set initial pressure = 0 and set initial mechanics = N/A. 

We can calculate the initial condition by inputting value of initial pressure, inputting 
boundary conditions of mechanical behaviour in file boundary.txt and set running 
stage = 0. 

We can read initial condition from the previous stage by   

  set initial pressure    = previous_stage 
 set initial mechanics   = previous_stage 

(4) All boundary conditions are in boundary.txt file 

Boundary conditions are provided in *.txt file with below form 

Number_of_boundaries 

Boundary_id Boundary_type 

 M dis_xx dis_yy normal_stress tangentiel_stress  

 H pressure flux  

 HM dis_xx dis_yy normal_stress tangentiel_stress pressure flux  

The definition of positive vector for each boundary is related to axis direction in Fig 2-4 
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. . 
Fig. D-2: Definition of positive value of normal stress, tangential stress, flux 

(5) For specified purpose, we can calculate separately mechanical only, hydraulic only in 
steady state or transient, one way hydro mechanical coupling, and hydro mechanical coupling 
in steady state or transient by  

set calculation type  = HM_transient  

#H_steady   #H_transient #M  

#HM_steady  #H1M_steady  

#HM_transient #H1M_transient 

All time steps of calculation are provided in *.txt file with below form 

Number_of_timestep_type 

Timestep_id Staring_time Ending_time Time_step 

c) Fractures assembled 

The geometry of fractures is indicated one text file, cracks.txt for example, in which the 
structure of text file is below: 

number_of_fractures 
fracture_id fracture_type x_center y_center a_length b_length angle 
…  

 For example in below file: 

2 
1 rec 2.40 2.93 1.22 0.15 45.89 #rec denotes for rectangular fracture 
2 rec 6.63 2.39 1.42 0.05 26.11 

 
Fig. D-3: Sketch of inputted fracture. 

 



 

204 
 

D-2 Example of Mandel’s problem (item 2.5.1) 

The command line of running code is: ./HyMe_Fr_v1 parameter_2d.prm in which the 
parameter file is below 

subsection MESH SECTION 
  set geometry file   =meshes/triangulation.inp 
  set geometry file in next stage =N/A 
  set number global refinement = 4 
  end 
 
subsection MATERIAL SECTION 
  set material file   = meshes/material.txt 
  set fluid viscosity   = 1.0e-9 #(MPa.s) 
end  
 
subsection INITIAL CONDITION AND BOUNDARY CONDITIONS 
  set initial pressure    = 0 
  set initial mechanics   = N/A 
  set boundary file   = meshes/boundary.txt 
end 
 
subsection SOLVE SECTION 
  set calculation type        = HM_transient  
  set time step parameter file = meshes/time_step_parameter.txt 
  set running stage   = 1  
end 
 
subsection OTHER PARAMETERS 
  set iterative accuracy       = 0.001 
  set max no iterative steps    = 1000   
end 

Content of meshes/triangulation.inp file 

4 5 0 0 0 
1 0 0 0 
2 0.1 0 0 
3 0 0.1 0 
4 0.1 0.1 0 
1 1 quad 1 2 4 3 
2 1 line 1 3 
3 2 line 2 4 
4 3 line 1 2 
5 4 line 4 3 

 

Content of meshes/material.txt file 

1 
1 IT_HM_Y 20600 17300 0.189 0.246 7320 15800 0.733 0.749 1E-19 2E-20 

Boundary conditions are meshes/boundary.txt file with below form 

4 
1 HM N/A N/A N/A N/A N/A N/A 
2 HM N/A N/A N/A N/A N/A N/A 
3 HM N/A 0   N/A N/A N/A N/A 
4 HM N/A N/A 10  N/A N/A N/A 
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All time steps of calculation are provided in meshes/time_step_parameter.txt file 

1 
0 0 1000 10 

D-3 Example of Excavation problem (item 2.5.2)  

Two stages were carried out in this test. The first one is setup the initial condition (initial pore 
pressure = 4.7 MPa, and total initial stress = 12.5 MPa); and the second one is excavation 
process. 

D-3-1. Establish the initial condition 

subsection MESH SECTION 
  set geometry file   = meshes/triangulation.inp 
  set geometry file in next stage = meshes/triangulation_with_tunnel.inp 
  set crack file                    = N/A 
  set number global refinement = 2 
  set number local refinement       = 0 
  end 
 
subsection MATERIAL SECTION 
  set material file   = meshes/material.txt 
  set fluid viscosity   = 1.0e-9 #(MPa.s) 
end  
 
subsection INITIAL CONDITION AND BOUNDARY CONDITIONS 
  set initial pressure    = 4.7  # (MPa) 
  set initial mechanics   = N/A 
  set boundary file   = meshes/boundary.txt 
end 
 
subsection SOLVE SECTION 
  set calculation type        = HM_steady  
  set time step parameter file = meshes/time_step_parameter.txt 
  set running stage   = 0 
end 
 
subsection OTHER PARAMETERS 
  set iterative accuracy       = 0.001 
  set max no iterative steps    = 1000   
end 

Content of meshes/triangulation.inp and meshes/triangulation_with_tunnel.inp 
files 

meshes/triangulation.inp meshes/triangulation_with_tunnel.inp 

39 28 0 0 0 
1 8 0 0 
2 8 8 0 
3 0 8 0 
4 2 0 0 
5 1.414214 1.414214 0 
6 0 2 0 
7 24 0 0 
8 24 24 0 
9 0 24 0 
10 8 4 0 
11 4 8 0 

30 20 0 0 0 
1 8 0 0 
2 8 8 0 
3 0 8 0 
4 2 0 0 
5 1.414214 1.414214 0 
6 0 2 0 
7 24 0 0 
8 24 24 0 
9 0 24 0 
10 8 4 0 
11 4 8 0 
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12 5 0 0 
13 4.7071 4.7071 0 
14 1.84776 0.765366 0 
15 0 5 0 
16 0.765366 1.84776 0 
17 16 0 0 
18 16 16 0 
19 24 12 0 
20 0 16 0 
21 12 24 0 
22 4.87114 2.36084 0 
23 2.36084 4.87114 0 
24 16 8 0 
25 8 16 0 
26 1 0 0 
27 0.92388 0.382684 0 
28 0.707106 0.707106 0 
29 0.382684 0.92388 0 
30 0 1 0 
31 0 0 0 
32 0.3 0 0 
33 0 0.3 0 
34 0.3 0.3 0 
35 0.6 0 0 
36 0.6 0.3 0 
37 0 0.6 0 
38 0.3 0.6 0 
39 0.6 0.6 0 
1 1 quad 22 13 5 14  
2 1 quad 12 22 14 4  
3 1 quad 10 2 13 22  
4 1 quad 1 10 22 12  
5 1 quad 23 15 6 16  
6 1 quad 13 23 16 5  
7 1 quad 11 3 15 23  
8 1 quad 2 11 23 13  
9 1 quad 24 19 8 18  
10 1 quad 10 24 18 2  
11 1 quad 17 7 19 24  
12 1 quad 1 17 24 10  
13 1 quad 25 21 9 20  
14 1 quad 11 25 20 3  
15 1 quad 18 8 21 25  
16 1 quad 2 18 25 11  
17 1 quad 26 4 14 27  
18 1 quad 27 14 5 28  
19 1 quad 28 5 16 29  
20 1 quad 29 16 6 30  
21 1 quad 32 34 33 31  
22 1 quad 35 36 34 32  
23 1 quad 34 38 37 33  
24 1 quad 36 39 38 34  
25 1 quad 26 27 36 35  
26 1 quad 27 28 39 36  
27 1 quad 28 29 38 39  
28 1 quad 29 30 37 38  
2 1 line 1 3 
3 2 line 2 4 
4 3 line 1 2 
5 4 line 4 3 

12 5 0 0 
13 4.7071 4.7071 0 
14 1.84776 0.765366 0 
15 0 5 0 
16 0.765366 1.84776 0 
17 16 0 0 
18 16 16 0 
19 24 12 0 
20 0 16 0 
21 12 24 0 
22 4.87114 2.36084 0 
23 2.36084 4.87114 0 
24 16 8 0 
25 8 16 0 
26 1 0 0 
27 0.92388 0.382684 0 
28 0.707106 0.707106 0 
29 0.382684 0.92388 0 
30 0 1 0 
1 1 quad 22 13 5 14  
2 1 quad 12 22 14 4  
3 1 quad 10 2 13 22  
4 1 quad 1 10 22 12  
5 1 quad 23 15 6 16  
6 1 quad 13 23 16 5  
7 1 quad 11 3 15 23  
8 1 quad 2 11 23 13  
9 1 quad 24 19 8 18  
10 1 quad 10 24 18 2  
11 1 quad 17 7 19 24  
12 1 quad 1 17 24 10  
13 1 quad 25 21 9 20  
14 1 quad 11 25 20 3  
15 1 quad 18 8 21 25  
16 1 quad 2 18 25 11  
17 1 quad 26 4 14 27  
18 1 quad 27 14 5 28  
19 1 quad 28 5 16 29  
20 1 quad 29 16 6 30 
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Content of meshes/material.txt file 

1 
0 IO_HM 4000 0.3 6000 1 1.333E-20 

Boundary conditions are meshes/boundary.txt file with below form 

4 
1 HM 0 N/A N/A N/A N/A N/A 
2 HM N/A N/A 12.5 N/A N/A N/A 
3 HM N/A 0 N/A N/A N/A N/A 
4 HM N/A N/A 12.5 N/A N/A N/A 

All time steps of calculation are provided in meshes/time_step_parameter.txt file 

1 
0 0 1 1 

 

The result of this stage is two text file which contained the information of the initial stage 
(Figure 2-11 and Figure 2-12) 

D-3-2. Excavation stage 

Note that we highlighted yellow color for the items which are changed in campared with the 
initial condition for easy reading. 

subsection MESH SECTION 
  set geometry file   = meshes/triangulation_with_tunnel.inp 
  set geometry file in next stage = N/A 
  set crack file                    = N/A 
  set number global refinement = 2 
  set number local refinement       = 0 
  end 
 
subsection MATERIAL SECTION 
  set material file   = meshes/material.txt 
  set fluid viscosity   = 1.0e-9 #(MPa.s) 
end  
 
subsection INITIAL CONDITION AND BOUNDARY CONDITIONS 
  set initial pressure    = previous_stage 
  set initial mechanics   = previous_stage 
  set boundary file   = meshes/boundary.txt 
end 
 
subsection SOLVE SECTION 
  set calculation type        = HM_steady  
  set time step parameter file = meshes/time_step_parameter.txt 
  set running stage   = 1 
end 
 
subsection OTHER PARAMETERS 
  set iterative accuracy       = 0.001 
  set max no iterative steps    = 1000   
end 

Boundary conditions are meshes/boundary.txt file with below form 
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5 
1 HM 0 N/A N/A N/A N/A N/A 
2 HM N/A N/A 12.5 N/A 4.7 N/A 
3 HM N/A 0 N/A N/A N/A N/A 
4 HM N/A N/A 12.5 N/A 4.7 N/A  
5 HM N/A N/A N/A N/A 0 N/A      #0: drained case and 4.7: undrained case 

D-4 Example of effective properties (item 4.5.3)  

Note that we highlighted yellow color for the items which are new in compared with the 
previous examples for easy reading. 

subsection MESH SECTION 
  set geometry file   = meshes/triangulation.inp 
  set geometry file in next stage = N/A 
  set crack file                    = meshes/cracks.txt 
  set number global refinement = 4 
  set number local refinement       = 5 
end 
 
subsection MATERIAL SECTION 
  set material file   = meshes/material_fracture.txt 
  set fluid viscosity   = 1.0e-6 #(kPa.s) 
end  
 
subsection INITIAL CONDITION AND BOUNDARY CONDITIONS 
  set initial pressure    = 0  # (kPa) 
  set initial mechanics   = N/A 
  set boundary file   = meshes/boundary.txt 
end 
 
subsection SOLVE SECTION 
  set calculation type        = M # or H 
  set time step parameter file = meshes/time_step_parameter.txt 
  set running stage   = 1 
end 
 
subsection OTHER PARAMETERS 
  set iterative accuracy       = 0.001 
  set max no iterative steps    = 1000   
end 

Content of meshes/triangulation.inp file 

4 5 0 0 0 
1 -1 -1 0 
2 1 -1 0 
3 -1 1 0 
4 1 1 0 
1 1 quad 1 2 4 3 
2 1 line 1 3 
3 2 line 2 4 
4 3 line 1 2 
5 4 line 4 3 

 

Content of meshes/cracks.txt file 

73 
0 rec 0 0 1 0.000065 70 
1 rec 0.4 0.2 1 0.000065 120 
2 rec 0.4 -0.2 1 0.000065 60 
3 rec 0 0 1 0.000065 80 

 
37 rec 0.6 0.8 0.35 0.000065 110 
38 rec -0.6 0 0.35 0.000065 0 
39 rec -0.2 -0.8 0.35 0.000065 60 
40 rec 0.8 0.4 0.35 0.000065 170 
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4 rec -0.2 0.6 0.9 0.000065 0 
5 rec -0.2 0.2 0.85 0.000065 160 
6 rec 0 -0.2 0.8 0.000065 100 
7 rec -0.4 0.4 0.75 0.000065 50 
8 rec 0 -0.4 0.7 0.000065 20 
9 rec -0.4 -0.8 0.65 0.000065 0 
10 rec 0.6 0.2 0.65 0.000065 130 
11 rec -0.6 -0.6 0.6 0.000065 130 
12 rec -0.2 0.4 0.6 0.000065 110 
13 rec 0.4 0.6 0.55 0.000065 30 
14 rec -0.6 0.2 0.55 0.000065 40 
15 rec 0.6 0.4 0.55 0.000065 140 
16 rec 0.6 0.6 0.5 0.000065 30 
17 rec 0.8 0 0.5 0.000065 70 
18 rec -0.6 0.6 0.5 0.000065 40 
19 rec -0.6 -0.2 0.5 0.000065 130 
20 rec 0 0.4 0.45 0.000065 50 
21 rec 0.8 -0.4 0.45 0.000065 90 
22 rec 0.6 -0.2 0.45 0.000065 130 
23 rec -0.2 -0.4 0.45 0.000065 90 
24 rec -0.2 -0.6 0.45 0.000065 130 
25 rec 0.2 0.4 0.45 0.000065 130 
26 rec -0.4 0.2 0.4 0.000065 160 
27 rec 0 0.8 0.4 0.000065 10 
28 rec -0.2 -0.2 0.4 0.000065 150 
29 rec -0.8 0.8 0.4 0.000065 70 
30 rec -0.6 -0.8 0.4 0.000065 160 
31 rec 0.8 -0.6 0.4 0.000065 110 
32 rec 0 0.6 0.4 0.000065 170 
33 rec -0.4 -0.2 0.4 0.000065 170 
34 rec -0.8 -0.8 0.4 0.000065 20 
35 rec 0.8 0.8 0.35 0.000065 120 
36 rec -0.8 -0.6 0.35 0.000065 60 

41 rec 0.2 0.2 0.325 0.000065 10 
42 rec -0.8 -0.2 0.325 0.000065 50 
43 rec 0.2 -0.4 0.325 0.000065 100 
44 rec 0.6 0 0.325 0.000065 0 
45 rec 0 0.2 0.325 0.000065 140 
46 rec 0.2 -0.6 0.325 0.000065 0 
47 rec 0.6 -0.8 0.325 0.000065 100 
48 rec -0.8 0.4 0.325 0.000065 140 
49 rec 0 -0.8 0.3 0.000065 110 
50 rec -0.4 -0.4 0.3 0.000065 150 
51 rec 0.8 -0.8 0.3 0.000065 120 
52 rec -0.4 0.6 0.3 0.000065 100 
53 rec -0.8 -0.4 0.3 0.000065 160 
54 rec 0.4 -0.4 0.3 0.000065 110 
55 rec 0.4 -0.6 0.3 0.000065 110 
56 rec 0.4 0.8 0.3 0.000065 170 
57 rec -0.6 0.8 0.3 0.000065 100 
58 rec -0.8 0.6 0.3 0.000065 40 
59 rec 0.4 -0.8 0.275 0.000065 40 
60 rec 0.6 -0.4 0.275 0.000065 10 
61 rec -0.8 0 0.275 0.000065 160 
62 rec 0.4 0 0.275 0.000065 120 
63 rec 0.8 0.2 0.275 0.000065 170 
64 rec 0.4 0.4 0.275 0.000065 120 
65 rec -0.4 -0.6 0.275 0.000065 120 
66 rec -0.6 0.4 0.275 0.000065 0 
67 rec 0 -0.6 0.275 0.000065 10 
68 rec 0.2 0 0.275 0.000065 80 
69 rec 0.8 0.4 0.275 0.000065 0 
70 rec -0.6 -0.4 0.275 0.000065 10 
71 rec 0.2 0.6 0.275 0.000065 170 
72 rec 0.2 0.8 0.275 0.000065 170 

 

Content of meshes/material.txt file 

2 
0 IO_HM 84600000 0.24 20400000 0.8 2.4E-15 
1 Crack poi 434000000 86800000 1 0.000065 

Boundary conditions are meshes/boundary.txt file with below form 

4 
1 HM N/A N/A N/A N/A N/A N/A 
2 HM N/A N/A N/A N/A N/A N/A 
3 HM N/A 0 N/A N/A N/A N/A 
4 HM N/A N/A 1000 N/A N/A N/A 

All time steps of calculation are provided in meshes/time_step_parameter.txt file 

1 
0 0 1 1 
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MODÉLISATION DU COMPORTEMENT HYDROMÉCANIQUE DES RÉSERVOIRS 
FRACTURÉS À DOUBLE POROSITÉ ET DOUBLE PERMEABILITÉ 

 
Résumé: 

 La modélisation des massifs rocheux fracturés est un problèmes important dans de nombreux secteurs 
industriels, y compris, mais sans s'y limiter à l'exploitation pétrolière et gazière. Dans la littérature, les 
roches fracturées sont reconnues comme des milieux à double porosité et double perméabilité dans 
lesquels le réseau de fractures fournit la perméabilité primaire et la matrice rocheuse la perméabilité 
sécondaire. L'idée de la dissociation de l'écoulement à l'intérieur du réseau de fractures et de la matrice, 
la double perméabilité, est toujours contestée pour les réservoirs fracturés. De nombreuses contributions 
sur cette question ont été présentées dans la littérature et les méthodes utilisées pourraient être 
classées dans deux approches principales : approches continues et discontinues. Chaque approche a 
ses avantages et ses limites. Pour surmonter les limites en gardant les avantages de ces deux 
approches, une approche nommée Embedded Fracture Continumm Approach (EFCA) qui emprunte le 
concept du modèle continu et intègre également l'effet des fractures explicites est considérée dans cette 
thèse. L'idée principale de cette approche repose sur le concept de la « cellule fracturée » représentant 
un milieu poreux qui a ses propres propriétés calculées à partir des propriétés de la matrice poreuse et 
des fractures qui la traversent. Le code de calcul développé dans le cadre de ce travail est basé sur la 
bibliothèque source DEAL.II. L'exactitude de l'EFCA a été étudiée à travers de différents tests. Plusieurs 
applications traitées dans ce travail comme la détermination des propriétés hydro-mécaniques effectives 
d'un site réel, estimation de la production de puits dans laquelle les fractures sont modélisées 
explicitement, démontrent la performance de l'EFCA dans la modélisation des roches fracturées ainsi 
que l'effet de la double porosité et de la double perméabilité aux comportements des réservoirs fracturés. 

Mots-clés: réservoirs fracturés, réseau de fractures, modélisation hydromécanique, double porosité, 
double perméabilité, cellule de fracture, approche du continuum fracturé intégré, méthode des éléments 
finis, DEAL.II, nœud suspendu. 

A HYDRO MECHANICAL MODELING OF DOUBLE POROSITY 
AND DOUBLE PERMEABILITY FRACTURED RESERVOIRS 

 
Summary: 

Fractured rock masses modeling is a challenge issue in many field of industry including but not limited to oil 
and gas exploitation. In the literature, fractured rock masse are in many cases recognized as double 
permeability medium in which fracture network provides the primary permeability and rock matrix plays as 
the second one. The idea of dissociation of flow inside the fracture network and the matrix, the double 
permeability, is still challenged for fractured reservoirs. Numerous contributions on this issue have been 
presented in the past could be cast in two main approaches: continuum media approach and discontinuous  
approach. Each approach has its advantages and limitations. To overcome the limitation and to take 
advantage of these two approaches, the Embedded Fractured Continuum Approach (EFCA) which borrows 
the concept of continuum models and also incorporates the effect of explicit fractures is considered in this 
thesis. The principal idea of this approach lies on the concept of fracture cell representing a porous medium 
that has their own properties calculated from the properties of porous matrix and fractures intersecting it. 
The development in this work was conducted by using the library source code DEAL.II. The accuracy of 
EFCA was investigated through different verifications. Through some applications: determination of 
effective hydro-mechanical properties of an actual site, estimation of well production in which necessary 
fractures are modeled explicitly, we demonstrate the performance of the EFCA in the modeling fractured 
rock masses as well as the effect of double porosity and double permeability on behaviours of fractured 
reservoirs. 

Keywords: fractured reservoirs, fracture network, hydro-mechanical modeling, double porosity, double 
permeability, fracture cell, embedded fractured continuum approach, finite element method, DEAL.II, 
hanging node. 
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