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THÈSE présentée par

BERK CELIK

pour obtenir le

Grade de Docteur de
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ABSTRACT

Grid modernization through philosophies as the Smart Grid has the potential to help
meet the expected world increasing demand and integrate new distributed generation
resources at the same time. Using advanced communication and computing capabilities,
the Smart Grid offers a new avenue of controlling end-user assets, including small units
such as home appliances. However, with such strategies, decisions taken independently
can cause undesired effects such as rebound peaks, contingencies, and instabilities in the
network. Therefore, the interaction between the energy management actions of multiple
smart homes is a challenging issue in the Smart Grid.

Under this purpose, in this work, the potential of coordination mechanisms established
among residential customers at the neighborhood level is evaluated through three stud-
ies. Firstly, coordinative home energy management is presented, with the aim to increase
local renewable energy usage in the neighborhood area by establishing energy trading
among smart homes, which are compensated by incentives. The control algorithm is
realized in both centralized and decentralized manners by deploying a multi-agent sys-
tem, where neighborhood entities are modeled as agents. Simulations results show that
both methods are effective on increasing local renewable energy usage and decreasing
the daily electricity bills of customers. However, while the decentralized approach gives
results in shorter time, the centralized approach shows a better performance regarding
costs.

Secondly, two decentralized energy management algorithms are proposed for day-ahead
energy management in the neighborhood area. A dynamic pricing model is used, where
price is associated to the aggregated consumption and grid time-of-use scheme. The ob-
jective of the study is to establish a more advanced coordination mechanism (compared
to previous work) with residual renewable energy is shared among smart homes. In this
study, the performance of the algorithms is investigated with daily and annual analyses,
with and without considering forecasting errors. According to simulations results, both
coordinative control models show better performance compared to baseline and selfish
(no coordination) control cases, even when considering forecasting errors.

Lastly, the impact of photovoltaic systems on a residential aggregator performance (in a
centralized approach) is investigated in a neighborhood area. In the proposed model,
the aggregator interacts with the spot market and the utility, and proposes a novel pricing
scheme to influence customers to control their loads. Simulation results show that when
the penetration level of residential photovoltaics (PV) is increased, the aggregator profit
decreases due to self-consumption ability with PV in the neighborhood.

Overall, developed coordination mechanisms provide benefits to both the neighborhood
(peak load reduction) and the home levels (daily costs). The vital outcome of this dis-
sertation, no matter the type of the smart home (with/without generation and storage), all
smart homes achieved to reduce their daily electricity bills, thus the participation of the
end-users secured with the influence of the economical benefits. Moreover, the presented
methods contribute to the reduction of carbon-dioxide emission in two ways: increasing
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renewable energy utilization, and decreasing dependency on peaking generators.

Keywords: Smart grid, demand response, demand-side management, multiple house-
holds coordination, rebound peak, residential energy management



RÉSUMÉ

La modernisation des réseaux électriques via ce que l’appelle aujourd’hui les réseaux
intelligents (ou smart grids) promet des avancées pour permettre de faire face à une
augmentation de la demande mondiale ainsi que pour faciliter l’intégration des ressources
décentralisées. Grâce à des moyens de communication et de calcul avancés, les smart
grids offrent de nouvelles possibilités pour la gestion des ressources des consommateurs
finaux, y compris pour de petits éléments comme de l’électroménager. Cependant, ce
type de gestion basée sur des décisions prises indépendamment peuvent causer des
perturbations tels qu’un rebond de consommation, ou des instabilités sur le réseau. La
prise en compte des interactions entre les décisions de gestion énergétique de différentes
maisons intelligentes est donc une problématique naissante dans les smart grids.

Cette thèse vise à évaluer l’impact potentiel de mécanismes de coordination en-
tre consommateurs résidentiels au niveau de quartiers, et ce à travers trois études
complémentaires. Tout d’abord, une première stratégie pour la gestion coordonnée de
maisons est proposée avec l’objectif d’augmenter l’utilisation locale d’énergie renouve-
lable à travers la mise en place d’échanges d’énergie électrique entre voisins. Les
participants reçoivent en échange une compensation financière. L’algorithme de ges-
tion est étudié dans une configuration centralisée et une configuration décentralisée en
faisant appel au concept de système multi-agents, chaque maison étant représentée
par un agent. Les résultats de simulation montrent que les deux approches sont ef-
ficaces pour augmenter la consommation locale d’énergie renouvelable et réduire les
coûts énergétiques journaliers des consommateurs. Bien que l’approche décentralisée
retourne des résultats plus rapidement, l’approche centralisée a une meilleure perfor-
mance concernant les coûts.

Dans une seconde étude, deux algorithmes de gestion énergétiques à J-1 sont proposés
pour un quartier résidentiel. Un modèle de tarification dynamique est utilisé, où le prix
dépend de la consommation agrégée du quartier ainsi que d’une forme de tarification
heures creuses-heures pleines. L’objectif est ici de concevoir un mécanisme de coordi-
nation plus avancé (par rapport au précédent), en permettant des échanges d’énergie
renouvelable résiduelle au sein du quartier. La performance des algorithmes est étudiée
sur une période d’une journée puis d’une année, en prenant ou non en compte les er-
reurs de prévision. D’après les résultats de simulation, les deux algorithmes proposés
montrent de meilleurs performances que les méthodes de référence (sans contrôle, et
algorithme égoı̈ste), même en considérant les erreurs de prévision.

Enfin, dans une troisième étude, l’impact de l’introduction de production photovoltaı̈que
résidentielle sur la performance d’un agrégateur est évaluée, dans une configuration cen-
tralisée. L’agrégateur interagit avec le marché spot et le gestionnaire de réseau, de façon
à proposer un nouveau modèle de tarification permettant d’influencer les consomma-
teurs à agir sur leur consommation. Les résultats de simulation montrent quand le taux
de pénétration de photovoltaı̈que résidentiel augmente, le profit de l’agrégateur diminue,
du fait de l’autoconsommation dans le quartier.
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Dans l’ensemble, les mécanismes de coordination ont des avantages à la fois au niveau
des quartiers (réduction du pic de demande) que des maisons individuelles (réduction
des coûts énergétiques). Un des résultats importants de ce travail est que quel que
soit le type de maison et sa configuration (avec ou sans production et stockage), tous
les consommateurs peuvent réduire leur facture énergétique, ce qui permet d’assurer un
niveau minimum de participation des consommateurs. De plus, les méthodes présentées
contribuent à la réduction des émissions de dioxyde de carbone en permettant une
meilleure utilisation locale des énergies renouvelables ainsi qu’en diminuant le recours
à des générateurs de pointe.

Mots-clés : Réseau intelligent, effacement diffus, gestion de la demande, maison intelli-
gente, quartier intelligent, gestion de l’énergie résidentielle
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1
DEMAND-SIDE MANAGEMENT IN THE

SMART GRID

The philosophy of the Smart Grid (SG) has emerged with the rapid modernization of the
conventional electricity grid, by integration of many features from the fields of informa-

tion and communication technology (ICT). The SG offers innovative power engineering
solutions for sustainable energy management through integrated sensor, monitor, com-
munication and automation technologies. An official definition of the SG by the European
Technology Platform of Smart Grids is as follows: “a smart grid is an electricity network
that can intelligently integrate actions of all users connected to it—generators, consumers
and those that assume both roles— in order to efficiently deliver sustainable, economic
and secure electricity supplies” [151].

To integrate SG features into the current electric grid, it has become necessary to gather
information from all parts of the grid, process large amount data to determine efficient
and reliable control strategies, and perform these actions in real time. Furthermore, the
SG vision includes active end-user participation, which means that customers must have
the ability to play a role in electricity markets and control operations through the ICT
infrastructure.

Additionally, the SG vision contains new challenges to address issues such as global
warming, increasing demand and energy prices, depletion of carbon-based fuel re-
sources, and human health and safety concerns. It is thus a necessary concept to enable
modified economic, social and environmental policies that could provide short-term and
long-term benefits [148, 148]. To deal with these novel challenges, the SG enables to
adapt new types of sources in the current electricity network, and offers opportunities for
realizing a sustainable and reliable energy future [152].

SG systems are considered as the future of power systems, in that their features can
contribute to resolve the above issues. However, the SG is a generic subject for power
engineers, that contains a wide-range of topics. Thus, the implementation of the SG and
its various applications into the current electricity network became popular and attracted
significant attention by the power engineering community over the last few years. In this
chapter, the concept of SG is briefly introduced for the residential, commercial, industrial
and transportation sectors. Parts of this chapter are adapted from a published article
[145].
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CHAPTER 1. DEMAND-SIDE MANAGEMENT IN THE SMART GRID

1.1/ CONCEPT OF SMART GRID

Developments in ICT, control, communication, and associated applications have provided
new tools for modernizing the traditional electricity grid. The evolution of the SG heralds a
more interactive, distributed, and flexible role for the end-user in the day-to-day operations
of the infrastructure. Consumers are provided access to near real-time information and
can benefit from technologies such as two-way communication, distributed generation
(DG) and controllable loads, thus changing from passive to active participants in the SG
[92].

Electricity grid operators respond to the changing demand of consumers by adjusting
generation and ensuring that transmission and distribution (T&D) assets are carrying no
more than their rated value, efficiently and reliably. Historically, generation capacity was
built to accommodate consumption peaks, i.e., the highest demand. But such peaks tend
to increase over the years, for example due to population increase and the introduction of
new consumption habits and devices (such as the personal computer in the 1990s and
the projected electric vehicles growth in the coming decades). Although the increased
electricity demand can be met by central bulk generation plants, the T&D system must
be upgraded—at high cost—to accommodate these higher capacities. However, this kind
of approach would be costly and too slow. On the other hand, distributed energy re-
sources (DER)—located in proximity to end-user loads—provide a promising alternative
to grid reinforcements, building new centralized bulk generation capacity, or building new
or upgraded transmission lines.

DER are relatively small energy sources, with rated capacity ranging from a few kWs in
residential buildings to several MWs on the distribution grid. DER can also be either con-
ventional (e.g., micro-turbines and diesel generators) or renewable energy sources (RES)
(e.g., solar photovoltaic (PV), wind turbines and biomass converters). Due to growing
concerns of climate change, RES are increasingly preferred to conventional sources.

One of the issues related to RES integration is their intermittent generation characteristic
[49]. The stochasticity of RES output, combined with the uncertain behavior of the con-
sumer, implies greater difficulties in ensuring a real-time balance between generation and
demand for system operators. The uncertainty in availability of generation and demand
can be mitigated using energy storage, but this solution is currently either prohibitively
costly or inefficient at bulk levels, or fraught with environmental constraints (such as for
pumped hydro storage systems). A recent change is that connecting additional RES
is becoming less expensive than traditional grid reinforcements. However, this requires
advanced control methods adequately integrate these sources in current electricity infras-
tructures.

Another approach is to increase the flexibility of demand-side resources, i.e., the electric
loads. Such approaches require extensive, reliable information on the whole system. This
data can be accessible through ICT, typically using sensors and supervisory control and
data acquisition (SCADA) on the T&D system. This in turn enables monitoring and control
of resources such as DER and storage, which may then result in reverse energy flows,
from consumers to the utility. Through such local resources, end-users are thus able to
actively participate in electric network operations. This is a major shift from traditional bulk
power generation, as many more small-scale producers are expected to connect to the
grid. Moreover, consumers can also be small-scale producers (prosumers) by investing
in DER, and benefit from market opportunities by deploying SG technologies [41]. This in
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turn facilitates improving energy efficiency for a better utilization of resources, at all levels
of the networks, with bidirectional exchange of information and power. The concept of SG
is illustrated in Fig. 1.1.

Figure 1.1: Conceptual model of the SG.

1.2/ ELECTRIC ENERGY MANAGEMENT

With the implementation of the advanced metering infrastructure (AMI) [42], customers
become active participants by generating or storing energy, and/or changing their con-
sumption patterns. Therefore, customer interaction plays a key role in network operations
for the successful implementation of electric management strategies.

1.2.1/ DEMAND SIDE MANAGEMENT

Demand side management (DSM) approaches focus on improving the efficiency of uti-
lization of energy resources in the customer domain. However, DSM can be applied to all
types of energy resources, not just electricity. DSM is commonly defined as “the planning,
implementation, and monitoring of those utility activities designed to influence customer
use of electricity in ways that will produce desired changes in the utility’s load shape, i.e.,
changes in the time pattern and magnitude of a utility’s load. Utility programs falling under
the umbrella of demand-side management include: load management, new uses, strate-
gic conservation, electrification, customer generation, and adjustments in market share”
[129, 45].
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The following DSM approaches are listed in the literature according to their objectives
[123]:

• Peak shaving, or reduction of the system peak load, aims to decrease peak power
consumption during on-peak hours. Peak shaving can help reduce the necessary
peaking capacity and hence lower operating costs and dependence on fossil fuels.

• Valley filling aims to increase demand during low consumption hours, in order to
profit from lower prices, while decreasing the overall cost and improving the system
efficiency.

• Load shifting reduces demand during on-peak hours by deferring loads to off-peak
hours. It is commonly achieved by scheduling load operation times to flatten the
consumption curve, and improve efficient generator use.

• Strategic conversation aims to reduce in the general load profile, for example via
increased energy efficiency measures.

• Strategic load growth aims to “intelligently” increase the total load over the time
horizon, beyond valley filling. This growth can result from transfers between types
of energy, for example, related to the integration of heat pumps or electric vehicles.

• Flexible load shaping is a form of advanced consumption shaping, that sets load-
limits at specific hours on the requirements of the grid, such as system reliability
and planning constraints.

Peak shaving, strategic conservation and load shifting aim to reduce the load and are the
most frequently listed techniques in the literature, as they enable deferring or canceling
heavy investments in equipment with higher capacity (such as power lines and transform-
ers). An illustration of the impact of the different approaches is shown in Fig. 1.2.

Figure 1.2: DSM approaches, adapted from [123]: (a) load shifting, (b) peak shaving, (c)
strategic conservation, (d) strategic load growth, (e) valley filling, (f) flexible load.
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1.2.2/ DEMAND RESPONSE

The demand response (DR) concept was introduced several decades ago, but has only
gained widespread popularity over last few years due to progress in ICT and AMI appli-
cations. The terms DR and DSM have relatively close meanings, but are used to address
different philosophies. The goal of DR is to change end-users’ consumption (i.e., the load
curve), typically in the range of 1-4 h, as a result of interactions with a service provider,
while the objective of DSM is to improve the efficiency of consumption from the customer
side. A common definition of DR is: “changes in electricity usage by end-use customers
from their normal consumption patterns in response to changes in the price of electricity,
or incentive payments designed to induce lower electricity use at time of high wholesale
market prices or when system reliability is jeopardized” [13, 11].

In the literature, DR programs are mainly divided into two main groups [122]: incentive-
based programs (IBP) and price-based programs (PBP). IBP and PBP programs are
further subdivided by the Federal Energy Regulatory Commission (FERC) [44] as shown
in Fig. 1.3.

Figure 1.3: Types of DR programs.

IBP can be classified into six categories depending on their control modes: direct load
control (DLC) [97, 126], interruptible/curtailable (I/C) [110], demand bidding (DB) [29],
emergency DR (EDR) [103, 18], capacity market (CM) [26], and ancillary services market
(AS) [111, 124]. In IBP, the participants receive a financial incentive if they change their
consumption according to terms defined in a contract.

• In DLC, the service provider has a remote access to the loads of the customers and
can directly control them.

• In I/C, the service provider only offers discounts to customers for a specific amount
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of consumption reduction.

• DB, customers bid for load reduction at a given price, and if the bid is cleared,
customers decrease their consumption, otherwise they are penalized by the service
provider.

• In EDR, financial incentives are only offered for load reductions when the system
reliability is in danger.

• In CM, load reductions are committed before the occurrence of the critical condi-
tions.

• In AS, customers bid load reductions on the ancillary services market. If their bid is
accepted, they perform the curtailment and receive the market price as a compen-
sation.

In PBP, the utility indirectly affects the electricity consumption of the customers using time-
varying pricing schemes, usually in order to reduce the peak consumption of demand. In
other words, the time-varying pricing mechanisms (shown in Fig. 1.4) are designed to
modify the behavior of the customer, thus the customer is able to change the amount and
time of electricity energy usage depending on its preferences. Various pricing algorithms
are used to encourage customers to actively participate [80, 121]:

• Time-of-use (TOU) is a pricing mechanism in which different rates are used depend-
ing on the time of the day. Several blocks of hours are defined as off-peak, average
load and on-peak periods. The rate is designed to be higher during the on-peak
periods, and lower during the off-peak periods [138].

• Real-time pricing (RTP) has dynamic rates that change for every hour of the day.
The forecasts of these rates are given a day or an hour in advance by the service
provider to the customers. RTP is more fluctuating than TOU and better reflects the
real-time balance between generation and demand [119].

• Critical peak pricing (CPP) is a pricing mechanism that is sometimes used in addi-
tion to TOU in order to present higher charges to the customers during times when
operating conditions are critical, such as during contingencies, and is therefore only
used a few times a year [143].

DR programs are a key concept not only to reduce the electricity cost, but also to decrease
carbon-dioxide (CO2) emissions by reducing the need for polluting peaking power plants.
As a consequence, DR is able to provide benefits for both the customers and the service
provider. On the one hand, customers can change their consumption habits so that their
electricity expenses are reduced, and on the other hand, DR helps the service provider by
reducing the stress of operation on grid assets, decreasing outage risk, providing efficient
utilization of RES, and securing grid reliability and stability.

1.3/ FLEXIBILITY OF DEMAND-SIDE RESOURCES

Understanding the operation of the different load types and user consumption habits on
the customer side—residential, commercial, industrial and transportation—plays a key
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Figure 1.4: DR pricing shemas: (a) TOU, (b) CPP, (c) RTP.

role to determine flexibility options for DSM programs. Typically, flexibility is needed for
applying load control algorithms in which customers respond to price signals, and/or en-
able remote control of their devices through DR programs. However, the provided flexi-
bility capacity will be different for each sector, due the diversity of equipment types and
consumption purposes. Therefore, load curves and the participation opportunities of each
electricity sector should be explored and classified for engagement of load-management
models.

In Fig. 1.5, the electricity consumption percentage of each sector provided by the Eu-
ropean Environment Agency for EU-27 countries in 2010 is shown [75]. The consumed
electric energy is relatively close in residential, commercial and industrial sectors, which
account for approximately 95% of all consumed electric energy. On the other hand, the
transportation sector still has a small share with 2.4%. However, the highest energy con-
sumption (i.e., not only electricity) is for the transportation sector with 31.7% (in Fig. 1.5)
which means that other sources like petroleum and natural gas are the most commonly
preferred resources for energy supply in the transportation sector.

1.3.1/ RESIDENTIAL SECTOR

Households are the main consumption sources in this sector, which represents 30% of
the total energy consumption. Understanding the flexibility opportunities in this sector is
non-trivial due to the distributed architecture and self-interested character of the users.
Privacy concerns, levels of comfort, and diversity in household structures and equipment
types are the primary obstacles.

However, over the last few years, classical residential building technologies have evolved
to include more advanced features so as to enable the transformation of traditional struc-
tures into so-called “smart homes” [92]. These homes typically include schedulable ap-
pliances, DG, energy storage, electrical vehicle (EV), and a home energy management
system (HEMS) controller providing access to near real-time information on electricity
consumption, weather, changing electricity rates, and enabling technologies such as the
Internet-of-things. Fig. 1.6 depicts the smart home concept with its components.

HEMS are responsible for managing the energy consumption, generation, and storage
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Figure 1.5: Total energy and electric energy breakdown for each sector.

Figure 1.6: Smart home architecture.

needs of customers while meeting their comfort and economic requirements. Communi-
cation between the service provider and the customer is achieved through AMI and smart
meters. Using the information provided by the service provider (e.g., forecast and real-
time prices, DR requests) and local information on generation and loads, HEMS attempt
to change the electricity profile of smart homes by adequately scheduling the use of local
and grid resources.

In smart homes, the power consumption of the various loads can be measured by “smart
plugs” [10], and additional information may be collected by sensors for environmental fac-
tors such as temperature and irradiance [81]. The gathered information is typically cen-
tralized by the HEMS, through wireline or wireless communication, together with the price
signal. A graphical user interface (GUI), commonly delivered to the user via a computer
interface or a smartphone app provides the user with information on current conditions
(e.g., consumption, price). Such information is vital for making informed decisions, setting
preferences for using smart appliances, or for overriding automatic schedules.
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Household appliances are often divided into three categories, according to their oper-
ational characteristics and controllability, although terms may vary: baseline loads (not
controllable), burst loads (fully controllable), and regular loads (partially controllable) [52]:

• Baseline loads, also called non-deferrable loads or must-run appliances, include
appliances which are run directly by the customers, and are not controlled by an
automated HEMS algorithm. As the usage of such loads is entirely dependent on
end-user behavior, there are no exact operation time intervals for them. As a con-
sequence, models of these loads typically rely on historical load profiles. Lighting,
computers, televisions, ovens, music players and other electronic devices are ex-
amples of baseline loads.

• Burst loads, also called deferrable-shiftable or scheduable loads, have specific op-
eration time intervals with a given energy consumption defined by the technical
characteristics of the appliance. These loads can be shifted in time, and may also
be paused at specific predefined cycle times. This ability enables significant energy
consumption flexibility. For example, a washing machine cycle includes several
phases. At the end of each phase, the machine can stop and resume its cycle a
few minutes or hours later [107]. Similarly, a clothes dryer usually operates after
a washing machines cycle is over. Therefore, the clothes dryer cycle may also be
shifted several hours later [71].

• Regular loads, also called deferrable-thermal loads, are periodically working appli-
ances with varied operation cycles, and that are affected by environmental con-
ditions. These loads can be interruptible and manageable for short periods of
time, depending on end-user preferences. Thermal loads such as electric water
heaters, space heating, air conditioning and refrigerators are included in this cate-
gory [68, 66].

In the residential sector, each end-user has different energy consumption habits depend-
ing on behavioral patterns, house occupancy, geographic location, climate conditions,
and economics. Therefore, in addition to the technical characteristics of appliances, his-
torical information about the end-user must also be taken into account while modeling the
energy consumption of a house [50].

1.3.2/ COMMERCIAL SECTOR

The commercial sector consists of a wide variety of buildings, such as retail, banks, ho-
tels, real estate, education centers (e.g., universities, institutes), and electricity, gas and
water supply services. Compared to the residential section, the commercial sector has
a more centralized structure as each building has a higher energy consumption, such as
for hotels (hundreds of rooms with big halls and various facilities). Most of the consump-
tion sources are the same as in the residential sector, however a larger amount of such
sources is to be considered compared to households.

Commercial buildings are high consumption sources, and thereby can provide ancillary
services to the utility (by load curtailment) in the distribution grid. Demand-side solutions
(load-management and DG integration) can provide significant operational cost reduction
while reducing the peak load consumption of buildings in critical conditions by deferring
unit operation, such as with Heating-Ventilation-Air-Conditioners (HVAC) devices [142].
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However, such methods require detailed and accurate modeling of the building structure
to estimate and control indoor temperature without violating user preferences in the facil-
ities.

On the other hand, when outages occur on the main grid, commercial buildings can dis-
connect from the main grid to keep critical services alive. To enable this feature, backup
power sources must be installed to provide electric energy during blackouts [133]. Most
commonly, outages are often backed up with diesel generators, which are generally more
expensive (in terms of operational expenditures) compared to grid prices [142]. Hence,
RES and storage units can be used as an alternative to diesel generators. However, such
a change requires more detailed analysis by taking into account the intermittent nature of
RES.

1.3.3/ INDUSTRIAL SECTOR

Industrial loads consume the highest amount of energy compared to other sectors. Hun-
dreds of different types of industries (e.g., automotive, textile, furniture, electronics) exist
with various types of electric machinery (e.g., engines, turbines, valves, pumps, compres-
sors). Therefore, the industrial sector can provide various opportunities for demand-side
management in the electricity network.

As in the commercial sector, industry has a centralized structure with high power electric
machines that are used for different tasks, such as carrying, lifting, crushing and melting.
Load profiles exhibit differences as different products and materials are used. Therefore,
understanding and using the flexibility opportunities with industrial loads is more difficult
than for other sectors [3]. However, the impact of DSM tools is more effective compared to
other sectors, hence the flexibility of the loads in this area plays a crucial role for ancillary
services.

However, the delay of operation of a single unit can cause losses amounting to thousands
of dollars or more. Thus, load-management sometimes may not be possible for specific
loads and/or during specific times. For example, a particular process may be inter-locked
with other processes, or sometimes certain processes are continuous hence it is not
possible to stop them [6]. In such cases, the loads are must be controlled in a coordinated
manner and, if necessary, some storage space can be placed between two processes.
Efficiency and effectiveness of the load-management algorithms can then be secured.
Consequently, DR has to be adapted to each customer, so it is difficult to have a generic
solution for all types of customers.

1.3.4/ TRANSPORTATION SECTOR

Although the transportation sector consumes the lowest amount of electric energy, it is
responsible for the highest energy consumption among all other sectors. The reason is
that most of the energy is from carbon-based energy resources (i.e., petroleum). The
transportation sector consists of many forms of vehicles such as personal cars, buses,
trains, boats and ships. Many of these vehicles currently do not use electric motors.
Therefore, combustion engines are still common in transportation, which impacts CO2
emissions.

In this respect, due to environmental concerns, and over the last few decades, the in-
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terest in electric vehicles (EV) has increased for cars, buses and trains. However, these
changes threaten the reliability and the stability of the electricity network. Charging of
an EV (i.e., a personal car) can require two or three times more power compared to a
typical single home power consumption. Therefore, as mentioned earlier, the grid should
be reinforced with increasing capacity in transmission and distribution, which is costly
and slow. Otherwise, intelligent charging strategies should be deployed to protect grid
reliability and customer comfort.

1.4/ PROBLEM STATEMENT

SG technology is based on the collection of relevant data, and the implementation of
control strategies to increase the efficiency of resource utilization in addition to ensuring
grid reliability. However it is certainly not possible to process data from every level of
the electrical network, which may contain billions of resources. Therefore, decentralized
control strategies are required.

Especially, as DG gains in popularity throughout the world, neighborhoods are expected
to turn into small microgrids (MG) (also known as nanogrids) that can operate indepen-
dently from the rest of the main grid. This feature is only possible if such neighborhoods
are constructed with AMI, and homes are equipped with smart meters and HEMS to
make local resources (appliances, DG, storage, and electric vehicles) accessible and
controllable. This, in turn, enables self-consumption mechanisms, where smart homes
consume their own generated energy, or through cost-efficient electric energy manage-
ment. Thus, with SG technologies, customers gain the opportunity to become active
participants through smart homes, e.g. by controlling their appliances in response to
system conditions [130, 108].

At the scale of a smart home, several resources can be used: DG, typically in the form
of PV panels, energy storage (batteries), and DSM in the form of DR. By enabling some
loads to be stopped or shifted in order to reduce the energy consumption at a given time,
DR programs bring flexibility to the customer side in neighborhoods. However, comfort
and cost reduction levels are crucial issues for active participation: end-users need to
find a trade-off between the loss of comfort and the expected savings. If an end-user
thinks that the signed DR program may not be worth using, he/she may decide to turn the
controller off, and become a passive customer again [14]. Moreover, DR programs should
take into account end-user preferences, which are typically determined by their living
habits. Depending on usage and characteristics, appliances need to be categorized (non-
deferrable, deferrable–shiftable, and deferrable–interruptible) to ease the control process
without impacting user comfort.

Although individual customers are encouraged to take advantage of participation in DR
programs, uncoordinated decision-making (single home load-management) may limit the
overall performance of the proposed algorithms. This may lead, for example, to unex-
pected issues in the distribution grid, such as rebound peaks, overloading, or contingen-
cies [39]. An example is shown in Fig. 1.7, where the peak load is higher after DR than
before, as most loads were shifted to the same period. As a consequence, the system
stability can be put at risk. Hence, the design of coordination mechanisms for smart
homes is necessary in neighborhoods, so that smart homes can adjust their strategies
without negative side-effects for the utility or the community as whole.
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Figure 1.7: Rebound peak effect with uncoordinated DR.

Under this purpose, this dissertation focuses on the development of coordination mech-
anisms established among smart homes in a neighborhood area. Various coordination
mechanisms are presented and compared, using different control approaches (central-
ized and decentralized), and various pricing schema, with two complementary objectives:
economic well-being (cost reductions) for end-users and grid reliability (peak reduction)
for the utility.

1.5/ ORGANIZATION OF THE DISSERTATION

The remainder of this dissertation is organized in five chapters as follows. In chapter
2, a detailed state-of-art review is presented for electric energy management strate-
gies through the coordination of multiple smart homes. The chapter starts by giving an
overview of load-modeling techniques and single home energy management using DR
programs. After that, this chapter explains why coordination mechanisms are required
and how smart homes can be controlled in a coordinated manner in neighborhoods. Ac-
cordingly, coordination mechanisms are classified based on the used control and com-
munication architecture, and popular coordination techniques are listed by reviewing se-
lected studies. Lastly, the chapter is concluded with a summary of the reviewed coordina-
tion studies from the literature. Parts of this chapter are adapted from a published journal
article [145].

In chapters 3, 4 and 5, several centralized and decentralized coordination mechanisms
are proposed. These methods are compared with a baseline scenario (without control
and coordination)—in all chapters—and with selfish control (without coordination)—in
chapters 3 and 4—to evaluate the effectiveness of the presented algorithms. In chapter
3, an energy trading algorithm is presented where smart homes are sellers and buyers
in the neighborhood. To increase the interest in energy trading inside the area, a neigh-
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borhood pricing scheme is proposed with an enhanced grid TOU, a feed-in tarrif (FIT)
and incentives. In the neighborhood, customers only trade with each other using self-
generated renewable energy. End-users are the owners of DG and the energy storage
in the neighborhood area. Centralized and decentralized control algorithms (schedul-
ing electricity appliances and battery charging/discharging) are developed and compared
with each other in terms of cost reduction and computation times. In the centralized
one, the aggregator is the controller that determines the control decisions using the re-
ceived household information. In the decentralized one, HEMSs are the controllers in
the smart homes. They optimize themselves, and the aggregator is the advisor which
informs HEMSs about the electricity price and the neighborhood electricity (consumption,
generation and storage) situation. Parts of this chapter are adapted from a published
book chapter [132].

In chapter 4, two decentralized coordination algorithms are proposed as an extension of
the work in chapter 3. Compared to it, the control and communication architecture is
improved, although there are similarities with the proposed coordination mechanisms. In
this work, a dynamic pricing structure is based on the neighborhood consumption and the
grid TOU price is used to bill customers for their electricity consumption. Moreover, the
effects of forecasting errors on the consumption and generation profiles are also consid-
ered. The performance of the control algorithms are evaluated with annual simulations
through three novel metrics. Parts of this chapter are adapted from a journal publication
[144].

In chapter 5, the impact of residential PVs on aggregator and customer profits is analyzed.
The aggregator interacts with the spot market and the utility as well as smart homes to
control electricity appliances, by proposing an alternative price called customer incentive
pricing (CIP). The aggregator achieves to make profit as long as it proposes a convincing
price (i.e., lower than spot and/or utility price) for controlling home electricity appliances.
The existing control algorithm is modified to integrate residential PVs, and simulation
results are compared with a no-PV case. Parts of the explanations related to this work,
which was developed in collaboration with Colorado State University, are based on an
accepted conference publication [146].

Lastly, the contributions of this work are overviewed, and the possible future works are
listed in chapter 6. After that, this dissertation is concluded.
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2
STATE-OF-THE-ART REVIEW

HEMS create opportunities to develop flexibility strategies for the residential sector
through smart meters and AMI. The proposed control algorithms motivate users via

economic profits, but also benefit service providers by reducing operation expenses as
well as maintaining the reliability of the system. Moreover, these approaches can also be
combined with RES and energy storage to try to balance generation and consumption
under the concepts of self-consumption and self-sufficiency.

However, most of the time, uncoordinated HEMS are not able to reach their target ob-
jectives in terms of economic and environmental efficiency. Moreover, based on the
area electricity profile, these methods may lead to the occurrence of unexpected conse-
quences (e.g. contingencies). Hence, proper control methodologies should be explored
to overcome efficiency and reliability issues through coordination between entities in the
residential sector.

This chapter discusses several aspects related to coordination, from load modeling to
multiple-home energy management. With respect to this defined objective, literature pa-
pers between 2010 and 2016 are reviewed and classified according to their similarities
and differences.

2.1/ LOAD MODELING TECHNIQUES

Designing efficient and reliable HEMS usually requires load models to estimate the impact
of control strategies on home energy consumption. In the literature, two main approaches
are followed for modeling residential loads: top-down and bottom-up approaches. While
top-down approaches model each home or the whole residential area as a single unit,
bottom-up approaches investigate the energy consumption of each individual load (or
group of loads), and aggregate these to obtain the consumption of the whole area or
house. A comparison between two approaches is given in Table 2.1. A comparative
review of such models for the residential sector may also be found in [23].

2.1.1/ TOP-DOWN APPROACHES

The principle of the top-down approach is to aggregate all energy consumption units
in one spot (e.g., a home or several ones); thus only the total energy consumption of a
house or a residential area is known [55]. Top-down models often rely on historical data to
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model the energy consumption of an area, and are typically used to investigate the effect
of long term changes (five years or more) on load profiles. The main advantage of this
approach is simplicity, as load profiles. Such data is commonly available, for example from
distribution transformers. On the other hand, the main drawback of this method is that
information about individual peaks, types of loads, load factors and customer behavior
are overlooked. As a consequence, precise control strategies cannot be studied, used,
or developed with such models.

2.1.2/ BOTTOM-UP APPROACHES

Contrary to the top-down approach, the bottom-up approach investigates the energy con-
sumption of each household appliance (or group of appliances) separately. By aggregat-
ing the consumption of each appliance, the load curve for a single home or several ones
may be easily obtained [85]. Bottom-up models give control system designers the ability
to identify areas of potential improvement. However, a drawback of bottom-up models is
the difficulty to obtain such detailed data on the consumption of each appliance, as this is
typically not readily available in standard homes due to limited instrumentation. Moreover,
a validation of the model is required, e.g., by comparing the aggregated load curves with
actual measurements from top-down approaches.

On the other hand, grouping household appliances helps in identifying which appliances
can be controlled and how long they can be managed over a certain time horizon. The
flexibility of the house demand can then be investigated. Therefore, bottom-up ap-
proaches enable understanding the behavior of each appliance as well as each home
using statistical analysis. It is thus a requirement to enable the precise control of smart
home resources using DR and related techniques.

2.2/ HOME ENERGY MANAGEMENT IN THE RESIDENTIAL SECTOR

With the concept of smart home, HEMS with DR programs in the residential sector have
been a topic of interest, but only gained significant momentum recently, with the advent of
what is now known as the SG. This led to publications in both scientific [67] and popular
[101, 22] literature, indicating an interest from researchers as well as from the general
public. In the following, single home energy management studies with DR programs are
briefly reviewed.

Table 2.1: Residential energy consumption modeling approaches [23].

Advantages Disadvantages Typical scale

Top-down Simplicity, easy access to
data.

Limited information on in-
dividual behaviors.

Neighborhood, city, re-
gion, or nation.

Bottom-up Detailed information on
individual behaviors.

High model complexity,
difficulty of data acquisi-
tion.

Individual or groups of
residences.
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2.2.1/ INCENTIVE-BASED SINGLE HOME ENERGY MANAGEMENT

The following paragraphs review selected IBP methods, with a focus on single home
energy management. In [61], a load commitment formulation is extended with a DLC pro-
gram to control responsive loads in emergency conditions (e.g., the loss of a large genera-
tor or transmission line), and to provide lower electricity costs and peak-to-average (PAR)
values through appliance scheduling. The gained profit is related to consumer comfort,
and is determined by the electricity cost reduction. When the household consumption
is decreased in the emergency condition, the electricity tariff decreases. Compared to
the base case, when the consumer tariff decreases in the emergency condition, the con-
sumer neglects its comfort, and a cost reduction is obtained for the simulation duration.
However if he consumer gives priority to its comfort, the total cost slightly increases.

In [113], the HEMS problem is formulated as a mixed-integer nonlinear program (MINLP)
with an inconvenience factor that corresponds to the difference between the baseline and
optimal results. An incentive reward for power reduction during peak hours is considered.
The MINLP program schedules 10 controllable appliances with operation time limits and
power rates, as defined by the customer. Incentives are defined for early morning and
after working hours. Compared to the reference scenario, customers can save up to 25%
in electricity costs.

In [117], incentive rewards are used with battery and PV management for controlling
household area consumption. The used method takes into account the stochastic behav-
ior of price, water usage, PV generation and loads. Incentive rewards are offered based
on the participation of the customer to the DR event. Results show that DR can decrease
the customer electricity bill by 18%.

The above studies show that using IBP, in critical conditions, the utility can satisfy grid se-
curity requirements and consumers can reduce their electricity bills. However, consumers
cannot benefit from frequent cost reductions, as they depend on utilities for receiving in-
centives. Moreover, if a consumer accepts the IBP contract and does not participate in
the program when the request from the utility is received, he/she will be penalized. Also,
if DR requests are too frequent and its comfort is impacted more often than expected, the
customer may choose to opt-out of the program. Another difficulty lies in determining the
baseline load profile for the end-user, so the financial compensation can be determined.
While there is little difficulty in achieving this for selected types of industrial and commer-
cial users, it may be more complex for residential ones due to the high number of small
loads running.

2.2.2/ PRICE-BASED SINGLE HOME ENERGY MANAGEMENT

As for IBP, a short review of selected PBP methods is proposed below. In [54], TOU
is used to minimize the electricity bill of consumers while taking into account end-user
preferences and managing overload conditions. User preferences include the acceptable
time intervals for appliances to run. TOU is used in three simulation scenarios, each with
a different objective: (a) avoiding overload, (b) optimizing savings, and c) participating in
a DR program. Simulation results show that all strategies achieve their expected goal;
however, although b) can include a), c) considers different constraints and cannot be
directly compared with others.

In [87], a decision-support tool with forecasting and scheduling capabilities is developed.
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An adaptive neural fuzzy inference system (ANFIS) is used for forecasting the expected
electricity demand, then a branch-and-bound method is used for appliance scheduling.
This study takes into account TOU tariffs with power availability at specific time intervals
and consumer comfort. Results show a reduction in the total cost of deferrable appliances
electricity cost from $0.19 to $0.14, for the simulation duration.

In [40], a performance comparison is presented for different HEM applications for con-
sumer benefit. The impact of TOU, RTP, and priority-based scheduling are compared.
Simulations are performed for 210 days. Cost reductions are determined for several sce-
narios: 30% with TOU, 45 % with TOU and PV with FIT, 27% without the FIT, 9% with
priority-based scheduling, and 18 % with an RTP program.

In [51], scenario-based stochastic and robust optimization algorithms are presented to
schedule household appliances using 5-min intervals with RTP pricing. The presented
methods also take into account RTP uncertainties while minimizing operation costs. Both
optimization methods are compared in terms of performance and computation time. Re-
sults show that while stochastic optimization achieves 26.6% cost reduction, robust op-
timization exhibits lower performance with 24.3% reduction. However, the computation
time for robust optimization is shorter than for stochastic optimization.

In [77], an HEMS is presented to reduce the cost of consumed energy under RTP by
scheduling resources and PV and battery operations. It uses a framework called Action
Dependent Heuristic Dynamic Programming (ADHDP) that relies on neural networks. An
online and an offline particle swarm optimization (PSO) algorithm are used to determine
the optimal schedule, as well as for pre-training the networks and improve algorithm per-
formance. While the online PSO algorithm works only in the current time period, the
offline PSO algorithm also uses data on forecast RES generation, load and prices near
the current state. Results are compared in four different cities. Depending on the consid-
ered city, savings can reach 9.3%, and ADHDP with offline PSO pre-training returns the
best results.

In [72] and [100], authors combined the RTP price with incremental block rates (IBR). IBR
is a pricing scheme where the unit price increases with the amount of electricity consump-
tion, i.e., the higher the consumption, the higher the unit price. In [72], two approaches
are considered for HEM design: deterministic and stochastic. The stochastic approach
considers uncertainties in appliance operation time and consumed energy through an
energy adaptation variable β, while the deterministic approach, based on linear program-
ming, does not. A total load consumption limit is defined for the smart home, so that
excess loads are tripped. Compared to the baseline case, results show that to the total
cost can be reduced by up to 41%.

In [100], the authors combine RTP with IBR and compare full and partial flexibility in load
scheduling. In the full flexibility approach, individuals only focus on profit (or savings)
and preferences are not considered, while for the partial flexibility approach, customer
preferences are also taken into account in the scheduling process. Both are formulated as
mixed integer linear optimization problems. Results show that end-user costs decrease
on average by about 20% when the schedule is partially flexible.

In [95], an HEMS is developed with a two-horizon algorithm (THA) and a rolling-horizon
technique. Goals are to increase computational efficiency compared to traditional
moving-window algorithms, and to achieve load management with TOU, RTP and a pre-
defined peak demand charge (PDC) paid for electricity bought during peak periods. The
algorithm uses two time horizons: one is for short-term scheduling with a high time reso-
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lution (THA-s) and the other is for longer term scheduling with a lower resolution (THA-l).
THA-s is combined with THA-l in the rolling horizon technique to reduce the computa-
tional burden of the energy management algorithm. The study shows that the proposed
THA algorithm returns 18% better results with RTP than with TOU for a one-week simula-
tion. Results show that when the PDC price increases, the THA algorithm achieves more
cost reduction.

Through time-varying price signals, the utility or the aggregator provides opportunities
for consumers to reduce their bills. Consumers, on the other hand, try to find the right
balance between the induced loss of comfort and the financial gains from the DR pro-
gram. Overall, PBP can be expected to provide more frequent cost reduction opportuni-
ties compared to IBP, as they are not necessarily linked with grid conditions. However,
PBP approaches introduce some uncertainty for the utility, as the achieved load reduc-
tion amount depends on end-user response to prices. Moreover, due to their frequent
and hard to predict variations, schemes such as RTP are difficult for end-users to adapt
to, and may be rejected.

2.3/ NEIGHBORHOOD ENERGY MANAGEMENT

In the previous sections, the proposed methodologies ignored the energy consumption
of other households while controlling their own loads. Such myopic HEM strategies may
potentially lose the benefits of a global optimum in energy management goals. In typ-
ical DR programs, all customers receive the same signal from the utility, thus posing a
potentially significant risk that they may all shift their appliances to run during the same
hours [57, 125]. In this case, although the objective of the DR program was to reduce
demand during high price periods, an unexpected peak demand called “rebound peak”
may occur immediately after the DR event has ended. This effect may lead to an even
higher demand peak that the DR program tried to avoid in the first place and that may
in turn threaten grid stability [63, 70]. For this reason, from the perspective of the utility,
such narrowly focused individual customer-side optimization can reduce the effectiveness
of DR programs [28]. Coordination mechanisms are therefore required for neighborhood
energy management.

In this section, the concept of neighborhood-level coordination is introduced. The com-
munication and control structures, the roles of entities (utility, aggregator, and end-users),
and the coordination mechanisms used in the literature are described with their respective
underlying theories.

2.3.1/ CONCEPT OF NEIGHBORHOOD AREA

Smart neighborhoods rely on individual smart homes, that are interconnected through
an electricity and a communication network. These networks enable a variety of mecha-
nisms for managing energy at the neighborhood level.
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2.3.1.1/ NEIGHBORHOOD AREA STRUCTURE

A neighborhood area may be defined as a group of houses located in the same geo-
graphical area. Its size may range from a few houses to possibly a few hundreds. A
neighborhood area network (NAN) enables smart homes to communicate and coordinate
their actions. The NAN is formed by a collection of smart homes equipped with smart
meters to collect consumption and generation data from resources (DG, storage devices,
loads). Each meter has two-way communication ability in the NAN. Information is usu-
ally aggregated at the feeder or substation level by a concentrator or gateway [76]. This
concentrator can then communicate with the utility information system or the aggregators.

Aggregators are new entities that, as the name implies, aggregate energy or power from
small scale consumers and try to sell this aggregated capacity on markets. Aggregators
typically aggregate load reduction capacity from many customers and sell it on markets,
hence generating revenue for the participating customers [56, 78].

Depending on the size of the area and local legislation, none, one or multiple aggre-
gators may be available [84, 27]. An aggregator may not be required if the local utility
communicates directly with each home. However, for large regions serving hundreds of
thousands of customers, the number of controllable assets increases dramatically and
aggregators can facilitate the coordination of these resources. Aggregators can thus act
as intermediaries between the utility and customers for specific needs. In a restructured
market, multiple aggregators may be competing with each other, and also potentially with
suppliers as in Fig. 2.1.

2.3.1.2/ ROLE OF ENTITIES

In this subsection, the roles of the various entities depicted in Fig. 2.1 are reviewed.

• Utility operator: At the top level, the utility has to ensure reliable electricity delivery
to end-users. As issues such as T&D congestion may occur, DG and DR programs
may be useful for the utility to increase local generation or decrease load. The
utility can communicate with aggregators and possibly customers to coordinate their
actions, e.g., for DR.

• Aggregator: At the middle level, aggregators have three roles depending on oper-
ation conditions: a) The aggregator negotiates with end-users (customers) in the
neighborhood to provide DR services to the utility. In this condition, from the end-
user perspective, the aggregator temporarily undertakes part of the role of the util-
ity operator, and influences electricity consumption patterns through price/energy-
volume signals in the retail market; b) The aggregator receives ancillary service
requests from the utility operator to secure the system; c) The aggregator acts as
an independent entity and tries to profit from electricity trade, by selling negative
load on markets [120].

• End-users: With the increase in penetration of DG and storage devices, end-users
can play several roles [32]. Depending on the electricity balance between house-
hold electricity components (e.g., loads, DG, storage units, and EV), end-users are
alternatively taking the role of consumer or producer from the perspective of the
aggregator.
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Figure 2.1: System architecture with neighborhood area networks (CES: Community en-
ergy storage).

This structure provides a basic infrastructure for electricity and information flow, that co-
ordination algorithms use to achieve their objectives.

2.3.2/ COORDINATION STRUCTURE AND OBJECTIVES

In this section, two coordination structures, namely centralized and decentralized, are
distinguished, depending on the used communication and control architectures.

2.3.2.1/ CENTRALIZED COORDINATION

In this framework, as shown in Fig. 2.2, there is one central operator, which can be the
utility or an aggregator. This central operator manages (a part of) the electricity usage of
all smart homes. It has direct access to all information on end-users’ household electricity
appliances through secure AMI networks. Smart meters and HEMS send information
about their electricity usage and preferences to the central operator. The operator then
optimizes electricity consumption by scheduling appliances operation for each household.
The decisions taken by the central operator are then sent to smart homes and the strategy
is applied.

In the following, selected papers that use centralized coordination schemes are reviewed.
In [58], a day-ahead DSM strategy coordinated by a central operator is proposed for a
large residential area including 2600 smart appliances. The goal is to minimize electricity
consumption while reducing the PAR of the demand profile. To obtain the desired load
consumption, the proposed DSM algorithm uses load shifting to bring the actual load
curve as close as possible to an objective (target) load curve derived from the objective
of the DSM strategy, i.e., to minimize costs. The proposed DSM method achieves a 5.0%
cost reduction, and a 18.3% peak load reduction for the area.
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In [86], three centralized control algorithms are proposed for demand management in a
neighborhood area. The main purpose of the presented algorithms is to decrease elec-
tricity consumption during on-peak hours by controlling refrigerators. The first proposed
algorithm is a synchronous model in which a central controller sends on/off signals to
all refrigerators in the area at the same time. Secondly, an asynchronous algorithm is
proposed to trigger on/off signals at different times. Thirdly, a dynamic temperature in-
terval management algorithm is proposed. In the latter method, the lowest and highest
temperature points are sent rather than the on/off signals. Results show that while the
synchronous model is effective to decrease peak load (close to zero), it also leads to a
significant rebound peak. The asynchronous model results in a lower rebound peak but
only achieves a 21.4% peak load reduction. The last strategy seems to provide the best
results, with a peak load reduction of up to 41.5% and a negligible rebound peak.

In [109], a joint optimization algorithm for EV charging and HVAC control is proposed.
The goal is to minimize the total electricity cost for the residential community while con-
sidering user preferences. In the neighborhood, parked EVs may also charge other EVs
and provide electricity to HVAC units, in order to minimize electricity imports from the
utility. Here, the aggregator collects information about the EVs and HVAC units, such as
thermal dynamics, user climate comfort preferences, battery state, user travel patterns,
and household occupancy. The community scale optimization result is compared with
individual optimization for 100 households. According to results, the proposed algorithm
manages to reduce the aggregated electricity cost by 22.8% for a hot summer day.

In [115], a centralized scheduling algorithm is proposed to minimize electricity imports
from the main grid by allocating the loads and EV charging to periods when RES gen-
eration is high. A feed-in tariff program is presented that favors the discharge of EV to
supply other household appliances in the grid. Three simulation results for centralized op-
timization are compared: naive (base case), optimal without EV discharge, and optimal
with EV discharge. Compared to the base case, the optimal case without EV discharge
returns a 4.3% cost reduction for 10 EV and around 75% for 400 EV, and the case with
EV discharge returns a 8.5% cost reduction for 10 EV and 175% for 400 EV.

In [74], a real-time load management and optimal power generation algorithm is pre-

Figure 2.2: Principle of centralized coordination (DM: decision making).
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sented for an islanded grid. A central coordinator is responsible for the cost and capacity
limit of a backup generator, RES, and storage devices. Each household informs the
central operator about the electricity consumption of its appliances, then the operator
responds with an optimal scheduling strategy that considers the capacity limits of gener-
ation and storage units. Two algorithms are proposed: an offline algorithm that relies on
forecasts, and an online algorithm that handles disturbances in real-time. Based on sim-
ulation results, the offline control method reduces the total electricity cost from $11.12 to
$8.03 for the simulation duration, when disturbances are neglected. On the other hand,
the online scheduler, when uncertainty on solar generation and appliance operation is
considered, reduces the total electricity cost from $10.8 to $7.80.

In [120], an aggregator-based control approach for DR is proposed. The aggregator tries
of maximize its profit by selling on markets the capacity aggregated from customer smart
appliances. Each customer can choose in real-time between buying electricity from the
aggregator (at a price called customer incentive price) or from the utility (at the real-time
price). The aggregator gathers settings from end-users and computes optimal set points
using a genetic algorithm for 5,555 households and 56,642 appliances. Results show
that customers can save from $0.02 to $0.33, while the aggregator generates a profit of
$947.9.

Several other studies using centralized coordination focus on specific aspects. For exam-
ple, in [140], authors propose an algorithm capable of allocating a fair share of distribu-
tion transformer capacity among users. In [139], model predictive control is used for the
centralized coordination of smart buildings and considers the stochasticity of renewable
energy sources and loads.

Overall, studies show that centralized approaches enable finding the optimal strategy for
efficient electric energy use, as well as for maximizing the utilization of DG. A drawback
is however the computation burden required by the optimization, especially for a large
number of assets to control [120]. Centralized control is thus not suitable for large-scale
applications where computation time would become prohibitive. Nevertheless, results
from centralized coordination can be used as a reference for comparison with other coor-
dination methods [112].

2.3.2.2/ DECENTRALIZED COORDINATION

While in centralized coordination, the central operator has access to information about all
consumers, in decentralized coordination, the end-users schedule their assets directly,
without any omniscient central entity. To achieve this, smart homes have to communicate
with each other or with a central entity to gather sufficient information about the neighbor-
hood electricity profile. Depending on the communication structure in the neighborhood
and the level of decentralization, three approaches are distinguished: fully-independent,
partially-independent and fully-dependent:

• In the fully-dependent structure (Fig. 2.3), smart homes receive information on the
neighborhood electricity profile through a central entity without sharing any data
with each other. Neighborhood communication is dependent on the central entity.
The difference with centralized coordination is that the decisions are taken by the
smart homes, and not by the central entity.

• In the fully-independent structure (Fig. 2.4), smart homes communicate with each
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other in the neighborhood, without any central entity. They are able to communicate
with each other directly, and share data on the neighborhood load profile.

• In the partially-independent structure (Fig. 2.5), smart homes communicate with
each other, and also interact with a central entity.

Figure 2.3: Fully-dependent decentralized coordination (DM: decision making).

Figure 2.4: Fully-independent decentralized coordination (DM: decision making).

In the following, selected papers that use a decentralized coordination structure are re-
viewed. In [57], the rebound peak issue due to uncoordinated load shifting of appli-
ances to off-peak hours is addressed. To solve it, a fully-dependent optimization algo-
rithm is used to coordinate electricity consumption in the neighborhood. As the same
DR program—triggered by the same price signal—is used in all smart homes, all con-
trollable appliances in the area are shifted to the same off-peak hours, which may cause
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Figure 2.5: Partially-independent decentralized coordination (DM: decision making).

another peak. To avoid the resulting rebound peak effect, four techniques are compared,
each with different DR and price signals: random DR scheduling without and with flatten-
ing, different prices for different homes (although the legal feasibility of this approach is
questionable), and maximum power constraint. Compared to a base case, the various
techniques return peak and cost reductions ranging from 19.4% to 33.9%, with the last
technique providing the best results.

In [96], a fully-dependent decentralized energy management algorithm is proposed. The
proposed greedy algorithm tries to minimize electricity bills by optimizing the start time
and operation mode of appliances in smart homes. The cost of electricity is modeled by
a time-dependent unit retail price, which means that the electricity price changes with the
aggregated consumption in the neighborhood. To determine the price, the utility receives
information on the consumption of each individual house, and sends a price signal to
each consumer. Depending on the price, consumers schedule their controllable appli-
ances to decrease their expenses. Then, depending on the scheduled consumption, the
utility aggregates the total load again and determines the new electricity price. After that,
consumers, depending on the new price, schedule their appliances again. This process
continues until the difference between consecutive decisions becomes negligible. Re-
sults show that individual users are able to reach cost reductions of about 20%, and that
results for the proposed distributed method are close to the ones obtained using classical
sequential optimization.

In [79], a fully-dependent energy management algorithm is presented to decrease the
total electricity cost of a neighborhood. The neighborhood area includes a central oper-
ator called load serving entity (LSE) and multiple households with RES, storage devices,
and controllable and non-controllable loads. Each household, depending on information
received from the LSE, solves an optimization problem to minimize its electricity bill using
an approach called Lyapunov-based cost minimization. After the LSE has received the
consumption information from each household, it determines the electricity price for the
defined period, and each household solves the optimization problem again with the new
price. This process continues until convergence is obtained. In the results, the proposed
algorithm is compared with two other cases: no storage and no DR (case 1), and with
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storage and no DR (case 2). Over a six month period, the presented control method
reduces electricity costs by 20% and 13% compared to cases 1 and 2, respectively.

In [141], a fully-dependent two-level load control strategy is proposed to address the
rebound peak issue. The proposed method does not rely on a specific electricity pric-
ing scheme, hence customers are free to select the scheme (flat, TOU or RTP) of their
choice. To eliminate the rebound peak and minimize costs at the same time, two different
optimization algorithms are defined. First, homes receive the electricity price, optimize
their assets schedule, and send the results to the service provider. This service provider
then calculates the aggregated profile and sends it with a desired (flatter) aggregated
profile back to the customers. As a second step, customers optimize their profile again
to flatten the area profile and try not to jeopardize their previous cost results. Compared
to non-coordinated control (i.e., with only the first step), the proposed method achieves a
16.8% additional peak load reduction.

In [98], two fully-independent selfish DSM algorithms are presented. The neighborhood
is modeled as a graph, and close neighbors exchange messages with each other. These
messages enable two coordination mechanisms: synchronous agreement-based, and
asynchronous gossip-based mechanisms. In the synchronous agreement-based algo-
rithm, consumers estimate and share the predicted aggregated consumption at the same
time using information on their own consumption. The coordination process ends when
consumers agree on the aggregated consumption of the neighborhood. In the asyn-
chronous gossip-based algorithm, consumers update their knowledge of the aggregated
consumption at different times. The electricity cost and the PAR value are reduced by
33.34% and 30.31%, respectively, with the proposed DSM programs. Although both al-
gorithms return similar results, the gossip-based algorithm requires more iterations due
to the asynchronous nature of the communication.

In [99], a partially-independent, selfish scheduling algorithm based on game theory is
presented for the purpose of minimizing the PAR of the load profile. A central oper-
ator sends price information to the end-users, who have the ability to exchange data
about their demand power. For each iteration, if the consumer changes his/her last de-
cision, he/she needs to inform others. Scheduling is then performed while considering
temporally-coupled constraints. For example, an EV should be fully charged by the time
the driver expects to leave home, hence the scheduler can only shift the corresponding
asset schedule to a certain limit to enable a full charge. In results, the PAR of three cus-
tomers are reduced from 2.6, 2.7, and 2.4, to 2.1, 2.2 and 2.0, respectively. The scalability
of the algorithm is also investigated, and results show that the approach could be scaled
to real-world problems.

In [30], a partially-independent coordination structure aims to minimize the electricity bills
of the end-users while taking into account the aggregated neighborhood consumption.
End-users participate in a scheduling game to reduce their electricity bill, as well as the
PAR of the neighborhood demand. The electricity provider determines the electricity price
according to the aggregated consumption profile. End-users are charged based on the
ratio of their individual consumption over the aggregated consumption. As a result, the
aggregated electricity cost of the residential area is reduced from $44.77 to $37.90 for
the simulation duration, and the PAR is decreased from 2.1 to 1.8.

In [70], a partially-independent collaborative energy management algorithm is presented
to reduce the real-time power balancing electricity cost of a neighborhood. While con-
sumers are connected to an aggregator or retailer, they coordinate their actions by ex-
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changing messages with each other. In the presented study, the retailer pays a price
higher than the real-time electricity market price, which is different from the wholesale
day-ahead electricity market due to uncertainties in demand. The proposed algorithm
focuses on the minimization of the total cost in the real-time electricity market. It is com-
pared with selfish scheduling, which causes a rebound peak in the aggregated consump-
tion profile, while the proposed approach does not. Cooperative scheduling also returns
the lowest aggregated deviation compared to cases without scheduling and with selfish
scheduling.

Additional papers introduce interesting methods based on a decentralized approach. In
[137], decentralized coordination is achieved with a two-level optimization in which cus-
tomers optimize their utility function and the aggregator determines the lower and upper
bounds of the consumption of each customer. In [136], a detailed mathematical model
is presented for decomposing the centralized optimization problem into a set of indepen-
dent decentralized problems. Finally, in [135], energy trading between smart homes with
PV and centralized energy storage and the grid is studied using a decentralized game
theoretic approach.

Overall, the reviewed papers show that decentralized coordination leaves more freedom
of choice to the end-users; however the aggregated cost is usually higher than for central-
ized coordination. On the other hand, some individual homes may be gaining more than
others, e.g., when they have more flexibility. As this approach requires frequent commu-
nication and sometimes a large number of iterations to converge, a drawback is that the
necessary bandwidth and the convergence time may be significant.

2.3.3/ COORDINATION TECHNIQUES

This section focuses on how houses cooperate, compete, or coordinate their actions to
achieve certain pre-determined goals. Three main approaches are discussed: a) multi-
agent systems (MAS); b) game theory (GT); and c) optimization techniques.

2.3.3.1/ MULTI-AGENT SYSTEMS

MAS are widely studied and used in various fields, ranging from economics to computer
science, mainly due to their suitability for distributed problem solving [73]. Over the last
few years, especially as a consequence of the rapid penetration of DG installations in the
distribution grid and the associated need for decentralized control, MAS have become a
technique of interest to power control engineers [12, 89]. Applications range from building
energy management [91] to microgrids [33], distribution systems [125] and power plants
[88].

According to [24], an “agent is a software or hardware entity that is situated in some
environment and is able to autonomously react to changes in that environment.” In this
definition, autonomy means that each agent can make its own decisions in order to attain
its objectives. The environment corresponds to everything surrounding the agent, except
itself. According to [12], agents have three main properties: i) reactivity: the ability of
an agent to react to changes in its environment; ii) proactivity: the ability of an agent to
proactively behave according to its defined objectives; and iii) social ability: the ability of
an agent to negotiate (compete or cooperate) with other agents.
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A MAS is a group of agents with the ability to communicate with each other to cooperate
or compete for achieving their objectives in a changing environment. Under the scope
of this dissertation (coordination of multiple houses), agents are usually the controllers
of the HAN in the smart homes. They meter and control the household appliances; ad-
ditionally, they also communicate with other HAN and NAN agents in the neighborhood.
Through such communication, they can observe the grid condition and act on it if required
(reactivity), cooperate (social ability) to ensure the reliability of the system (proactivity) or
compete (social ability) with each other to minimize their electricity bills (proactivity). As
a consequence, while MAS may not be considered as an algorithm, they are an enabler
for decentralized coordination techniques.

The organizational structure is an important characteristic of a MAS and includes the fol-
lowing types: hierarchies (the most commonly used for power system applications), hol-
archies, coalitions, teams, congregations, societies, federations and marketplaces [89].

In a hierarchical MAS, the electricity network is divided into several levels, typically three.
Agents are categorized into these levels depending on their duties or objectives [106].
The upper level is the system control level that decides about operation strategies and
operation modes. The middle level is the central control level with tasks such as energy
generation and consumption forecasting, voltage and frequency control, supply-demand
matching, and day-ahead optimal DG scheduling operations. The bottom level is the local
control level for coordinating local resources. Three types of agents are typically defined
at the bottom level, such as a) DG agent: responsible for controlling (whenever possible)
the output of a DG; b) storage agent: responsible for the charge and discharge operation
of a storage device; c) household agent: responsible for organizing the schedules and
shedding operations of appliances (including PV units) with the objective of minimizing
electricity bills while ensuring a minimum impact on consumer comfort. With the devel-
opment of transportation electrification, EV may also be modeled as agents for charging
(home-to-vehicle: H2V) and discharging (vehicle-to-home: V2H) [59].

In [83], a MAS-based DSM algorithm is proposed for an islanded grid with multiple
sources. A four-layer structure is used for modeling the network, with: a) a prediction
layer, b) an activation layer, c) an intelligent supervisory layer, and d) a control layer. Pre-
diction layer agents estimate the future electricity generation from PV panels and wind
turbines. Activation layer agents use frequency control to decide whether or not to acti-
vate load shedding depending on the frequency fluctuations. The activation layer agents
use the prediction information received from the prediction layer agents and storage in-
formation received from the control layer agents (e.g., fuel cell agent, desalination unit
agent, and electrolyzer agent). In the intelligent supervisory layer, the supervisor agents
of the households negotiate with each other to decide whether to turn-on or off household
appliances, after receiving the control signal from the activation layer. In the control layer,
control agents are responsible for controlling home appliances. Simulation results show
that shedding is activated for a total of 62 hours in summer.

In [105], electricity trading inside and outside of a neighborhood is studied. Consumers
are modeled as agents and decide about selling, buying, or storing electricity. To take
decisions, consumer agents communicate with each other and take decisions on their ac-
tions using a rule-based algorithm. For example, the agents can decide whether to store
excess energy or sell it inside the neighborhood (first priority), or to sell it to the utility
(second priority). After scheduling their appliances, agents can then choose to buy either
from the utility or from inside the neighborhood. To minimize electricity bills, consumers
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thus have four options: load shifting, purchasing electricity from the neighborhood, bat-
tery charge or discharge, and selling excess energy to the grid or the neighborhood.
Results show that customers could benefit from diversity in end-user types, in the form of
increased savings (up to 10%). Depending on the assumed penetration rate of PV and
battery units, end-users could also expect to save up to 40% on their electricity bill.

In [53], DR and DG management are combined to study the overloading issue in islanded
grids while taking into account plug-in hybrid vehicles (PHEV). In the proposed study, a
three-level hierarchical MAS structure is used. From top to bottom: grid agents control
grid resources (battery, wind turbine and DG), control agents communicate with the grid
and resident agents for satisfying the balance between generation and consumption, and
resident agents collect information on demand and PHEV battery state-of-charge. Control
actions are determined by defining a critical peak price in the microgrid to shed low priority
loads, reduce electricity consumption, and decide about the charging modes of the PHEV.
Three cases are presented and compared. Results show that the peak load in the studied
system can be reduced from 900 to 800 kW, i.e., by 11%.

The above reviewed studies show that a MAS advantage is the possibility to have a
decentralized intelligence, with numerous homes modeled after a single template agent
while all can have different characteristics (e.g., appliance count and preferred operation
times). Agents can also automatically adapt to environmental changes such as changes
in the structure of the neighborhood (e.g., a new home), without requiring any major in-
terruption and changes in the algorithm. Drawbacks include the cost of such approaches,
that result from a larger number of communicating entities. Additionally, few standards
(e.g., IoT standards) currently exist, which makes development longer and costlier.

2.3.3.2/ GAME-THEORETIC APPROACHES

GT is a strategic decision-making process, originally developed by J. von Neumann and
O. Morgenstern [17]. GT is the science of strategy that determines the relationship and
interactions between players, and analyzes their behaviors under some given circum-
stances, called games. In these games, players choose the best strategy as an action
to achieve the best outcome by anticipating the strategy of other players. Although GT is
mostly used in economics [1, 5], it has also been widely applied to other fields such as
computer science [4, 8] and electrical engineering [7].

According to the previous definition, GT may be applied to power systems with the follow-
ing adaptations: a) participants (typically, end-users) are defined as rational and strategic
decision-makers [20]; b) players select the best strategy they can by anticipating the ac-
tions of other players [116]; c) consumers make their own decisions through decentralized
problem solving [30, 94].

Games consist of three components (player, strategy and payoff function), and are usually
noted G = {U, {L}, {F }}. U represents the households set. L represents the strategy
space of the game, hence Lu = {lu(1), lu(2), lu(3), ..., lu(t)} is the set of strategies (generally,
the consumption for the home) for home u. F represents the set of payoff functions
(electricity costs or savings). A Nash equilibrium is reached when the following condition
is met:

Fu(L∗u,L
∗
−u) ≥ Fu(Lu,L

∗
−u) (2.1)

L∗u is the strategy of house u at the Nash Equilibrium, and L∗−u is the strategy of other

31



CHAPTER 2. STATE-OF-THE-ART REVIEW

players, also at the Nash Equilibrium. Lu represent the deviant strategy of player u, i.e.,
a strategy that does not lead to a Nash equilibrium. In other words, a Nash equilibrium
represents a balanced state where players can no longer improve their payoff by changing
their optimal strategy when considering others’ strategies as fixed [93, 9]. The outline
of a Nash equilibrium game algorithm for multiple smart homes with one aggregator is
described in Algorithm 1.

Algorithm 1 Outline of a simple Nash equilibrium game algorithm.

1: The aggregator initializes the game by determining the aggregated area profiles
and/or the area electricity price.

2: repeat
3: All users receive the necessary information (area profile and/or electricity price)

from the aggregator.
4: Users optimize their payoff functions by minimizing their electricity bills and/or

maximizing the incentive gains.
5: Users send to the aggregator the determined individual home consumption pro-

files.
6: The aggregator receives the updated home profiles and updates the aggregated

area profile and/or area electricity price.
7: The aggregator sends the updated data to all users again.
8: until convergence is achieved, when nobody changes its decision anymore.

In the following, selected studies from the literature employing GT are reviewed. In [60],
a scheduling game is formulated to reduce the PAR of the neighborhood with a retail
pricing model. Consumers try to minimize their own electricity costs by participating in
a non-cooperative game for optimum energy consumption and storage management. In
this algorithm, the price signal is received by the consumers from the utility through a ded-
icated communication link. When consumers receive the price signal, they optimize their
local energy consumption individually and send it to the energy provider. Based on the
new aggregated energy consumption, the utility calculates the new electricity price and
sends it back to the consumers. This process continues until convergence is obtained. In
the results, the PAR value of the system is reduced from 1.87 to 1.33 for the reference
(centralized) case, to 1.39 for a case with DR and battery storage, and to 1.65 for a case
with DR but without battery storage.

In [93], a non-cooperative game is developed to control the charge and discharge of
household batteries. Consumers schedule their household appliances depending on the
electricity price during the day and charge their batteries with residual electric power (i.e.,
power not used to supply other loads). Consumers can then use the electric energy from
their battery during on-peak hours. Therefore, two pricing schemes are determined. The
first is an RTP scheme for household appliances, and the second is the charging price
for the battery charging game to encourage consumers to charge their batteries. The
charging price is lower than the regular pricing tariffs, but as charging requests increase,
this price comes close to the regular price and becomes less attractive. Consumers
define their charging strategies based on their earliest starting time, deadlines, and the
amount of requested power for charging. Depending on the surplus energy, load, and
the state-of-charge of the batteries, the households optimize their payoffs. The proposed
game is tested on three houses and is compared with a reference case.

In [48], a scheduling game is proposed for a neighborhood area. Consumers pay the
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same average daily unit price, and their costs are proportional to their electricity con-
sumption. Consumers receive the TOU rate in order to establish the initial schedule of
their appliances. They then receive the scheduling plans of other consumers. Based on
the aggregated consumption, a dynamic price is calculated according to the TOU price by
each smart home. Using this price, consumers optimize the schedule of their appliances
to decrease the overall electricity cost of the neighborhood. The game continues until
consumers make no more change in their scheduling plan. Results for the distributed co-
ordination model return a total cost of £36.69, against £38.20 for selfish scheduling over
the simulation duration.

Overall, GT appears as a promising tool for residential load management, and especially
for decentralized coordination. Smart homes (players) control their electricity profile to
increase their payoff function, i.e., to minimize their own electricity costs. This type of
game is defined as a non-cooperative game [130], where players only focus on their own
benefits. Games may also be designed in a cooperative way, as in [128], where players
can form coalitions to reach higher individual payoffs while increasing the total gain for
the group. However, due to fairness concerns, coalitions are not permitted in most coun-
tries. GT has the advantage of providing flexible games, where the participation of new
players does not require changes in the game. However, frequent message exchanges
are required for decentralized coordination.

2.3.3.3/ OPTIMIZATION TECHNIQUES

In HEMS, optimization techniques are typically used to allocate the run time of household
appliances over a given time horizon and with a specific objective. The goal generally
is to decrease electricity bills or the PAR ratio to obtain flatter load curves. In the litera-
ture, problems can take into account grid conditions (e.g., congestion) in the optimization.
Formulations can also consider stochastic problems (e.g., with uncertainty on consump-
tion [79] and renewable generation [43]), multiple objectives [82, 102], or other objectives
such as maintaining voltage stability [65] or decreasing active power losses [104].

Optimization problems are typically formulated as follows, for a simple decentralized case:

minimize
T∑

t=1

Pc
u(t) · λ(t) (2.2)

subject to Pc
u(t) ∈ Ψu(t) (2.3)

where Pc
u(t) is the power consumption of house u at time t, and λ(t) is the price at time t.

For the centralized case, the equation becomes:

minimize
U∑

u=1

T∑
t=1

Pc
u(t) · λ(t) (2.4)

subject to


Pc

u(t) ∈ Ψu(t), ∀u
U∑

u=1
Pc

u(t) ∈ Φ(t)
(2.5)

Equation (2.3) represents the constraints set for smart homes, where Ψu(t)i represents
the set of feasible power values (e.g., due to the operation time limits of appliances).
Equation (2.5) represents the constraints set for smart homes and the grid, where Φ(t)
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represents the set of feasible power values (e.g., due to the operation time limits of the
electricity network [61, 51]). As mentioned earlier, other objectives and constraints may
be considered [117, 90]. For decentralized optimization, typical objective formulations
only sum on t and not on u, as each home optimizes its own consumption.

In [82], a multi-objective problem aims for cost minimization and load factor maximization.
The forecast area load profile is used in a fitness function to optimize electricity usage
with a multi-objective genetic algorithm. Penalty and rebate terms are generated by the
utility based on a normal distribution curve over the load. As a uniform load distribution
is desired, customers pay a penalty or receive a rebate depending on the difference
between their load and the curve. Compared to the base case, cost reductions reach
74% and PAR reductions 42%.

In [104], the optimization problem aims to minimize the users’ electricity bill, and consid-
ers the cost of active power losses, as well as the need to avoid line overload. Investiga-
tions focus on the optimal coordination of residential resources, in a distributed fashion,
and consider private objectives as well as objectives common to all consumers (here,
minimizing losses). Numerical examples show that the proposed decentralized algorithm
achieves results similar to what is obtained with a reference centralized algorithm. How-
ever, with this algorithm, when losses are considered in the optimization, losses decrease
by 4.2%.

Overall, optimization techniques are commonly used in energy management studies, and
have the advantage of providing optimal or near optimal solutions, whether it is for individ-
ual customers in a selfish fashion, or for entire neighborhoods with coordination. Draw-
backs of these techniques are similar to the ones of centralized coordination (both are
commonly combined). They include high computational requirements that increase with
problem size, and significant detailed information on end-user resources, which may raise
some privacy issues. A more comprehensive study focused on optimization algorithms
used for DR can be found in [127].

2.4/ OVERVIEW OF THE STATE-OF-THE-ART

HEMS are an important development in the smart grid concept, to control household
loads, generation, and storage devices. With DR programs, end-users are no longer
considered as passive participants; they can actively participate in electricity markets (di-
rectly or through aggregators) and schedule appliance run times to reduce their electricity
consumption and bills with limited impact on their comfort. Appliance scheduling does not
only provide benefits for end-users, but also for utilities. For example, utility companies
are responsible for providing electric energy to consumer at all times, including during
peaks when utilities need to generate more (or purchase additional) power. However,
demand peaks occur only for short durations in a year, and the additional and usually
expensive generation capacity [31] remains idle most of the time during the year. Other
applications of DR lie in the provision of ancillary services by the neighborhood to the
utility. Utility companies thus use “smart” pricing mechanisms or incentives to influence
customers to change their consumption patterns, and hence change the load and, at the
same time, enable end-users to reduce their electricity bills. However, when households
selfishly schedule their electricity appliances, rebound peaks may appear at unexpected
hours [125]. To avoid this situation, coordinating smart homes is an important requirement
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for neighborhood energy management, especially when considering DG and storage de-
vices.

Several aspects should be considered when comparing approaches to neighborhood en-
ergy management: pricing mechanisms, coordination structures, and coordination tech-
niques. Financial mechanisms are basic tools for utilities to help shape load profiles,
through specific pricing schemes or incentive mechanisms. The coordination structure of
a neighborhood can be organized around a single entity—a utility or third-party like an
aggregator—or by multiple households interacting with each other to take decisions. Co-
ordination mechanisms can then enable strategic energy management, e.g., to prevent
the emergence of a rebound peak.

To avoid demand peaks, utilities can resort to various mechanisms that provide an in-
centive for the end-user to modify electricity consumption. Mechanisms can be based on
an incentive (IBP) the customers receive when they reduce their demand, or on specific
pricing schemes (PBP, such as TOU or RTP) designed to favor electricity consumption
during low-demand periods. While IBP comparatively provide a higher level of confidence
for the utility in terms of load reduction, PBP have the advantage of requiring less enabling
technologies. On the other hand, complex pricing schemes may not be accepted by all
customers, who may suffer for increased bills if they are not able to properly understand
how to suitably adapt their consumption.

These mechanisms by themselves are however insufficient to enable efficient
neighborhood-level coordination. Communication and coordination are enabled through
various structures. In centralized coordination, a central operator can directly optimize
appliances schedules for each household or can influence customers by sending price
signals, as in [120]. Such coordination typically has better performance than other struc-
tures. Having access to all required information, the central entity is able to find the opti-
mal schedule for the entire neighborhood area, or for each individual end-user. However,
the scalability of such approaches is limited, as they require significant computational
resources for large neighborhood areas.

Algorithms with variable degrees of decentralization are also able to coordinate house-
holds scheduling processes, by enabling end-users to exchange information about their
consumption profiles, as in [131]. Rather than sending all information to a central en-
tity, end-users can only share selected information and decide on a management strat-
egy themselves. Three types of decentralized coordination may then be distinguished,
depending on the independence level from the central entity: fully-dependent, partially-
independent and fully-independent (see Table 2.2):

• The fully-dependent one is the most commonly studied structure, where the central
entity only influences the consumers with a price signal and transmits information
on the aggregated electricity profile of the area.

• In partially-dependent structures, customers communicate with each other by shar-
ing information about their decisions. The central entity influences customers by
calculating the electricity price according to the aggregated consumption profile.
This central entity enables the utility not to disclose information on its profits.

• The fully-independent structure is the least studied method so far. Customers have
the ability to communicate with each other directly and no central entity is used in
the decision-making process.
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Table 2.2: Comparison of coordination structures.

Properties Centralized Decentralized
Fully-dep. Partially-indep. Fully-indep.

Communication Customer via
utility

Customer via
utility

Customer
via customer
and/or utility

Customer via
customer

Decision-maker
(optim.)

Utility Customer with
or without utility

Customer with
or without utility

Customer

Privacy issues High (customer) High (customer) Low (customer) High (customer
and utility)

Communication
burden

Medium to high Low Medium Medium to high

Computation
burden

High Low Low Low

Iterative pro-
cess

No Yes Yes Yes

Scalability Limited Yes Yes Yes
Number of stud-
ies reviewed

High High Medium Low

The main differences between these approaches are thus the degree of centralization
of information, and the resulting performance (e.g., costs and PAR). While decentralized
structures tend to return less efficient results than centralized ones, they better respect
the need for privacy of the customers, which is a growing concern [21]. End-users prefer
not to share too much information with their neighbors, as it can give details about their
life habits.

In terms of coordination techniques, three main types of algorithms are used in the lit-
erature: MAS, GT, and optimization. While they are not an algorithm per se, MAS have
the advantage of inherently enabling advanced, distributed coordination between homes.
Moreover, MAS enable modeling each component or agent separately and define their
interactions, as in a real system. Optimization is commonly used to determine optimal
schedules, either for individual smart homes or for the entire neighborhood. Various ob-
jectives (e.g., costs, losses) may be used, together with multiple sets of user or system-
level constraints. As optimization is commonly used with centralized coordination, both
approaches suffer from a limited scalability to large system dimensions. Game theory is
another approach that provides decision-making ability to independent players [130, 64],
i.e., smart homes, whether the game is cooperative or not [93, 60]. Like MAS, GT is es-
pecially suitable for decentralized coordination, and can easily include new players to the
game. However, the difficulty to reach an equilibrium state in a large system increases
with its size.

Table 2.3 summarizes the studies analyzed in the previous sections. An analysis of this
table shows that PBP are the most commonly used DR type for both centralized and de-
centralized coordination studies. Decentralized coordination is more frequently studied at
the neighborhood level than centralized approaches. Among decentralized coordination
papers, while the fully-dependent method is the most used, the fully-independent method
is little researched so far, due to the difficulty in obtaining efficient results with limited
computation and communication resources. Regarding coordination techniques,
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optimization is clearly the most commonly used. However, studies mostly focus on deter-
ministic problem solving, and few consider the uncertainty on load, generation and con-
sumer behavior. While MAS and GT have recently been popular tools in power system
research, they are still little used for the coordination of multiple smart homes. Studies
also typically test techniques on small-scale system, with less than 100 appliances. Only
a few validate their approach on large systems with over 1000 appliances.

Lastly, although some studies consider RES and storage systems, these resources are
usually located at the community scale, and not in individual houses. Moreover, most
papers do not focus on maximizing the local use of RES but rather on minimizing costs.

38



II
COORDINATION MECHANISMS

39





3
INCENTIVE-BASED RENEWABLE

ENERGY TRADING AMONG SMART
HOMES

The share of RES in electricity generation is steadily increasing in both developed
and developing countries, especially in the residential sector. Although the capital

costs are high, the FIT offered by utilities (often with government support) incentivize
customers to sell their generation back to the main grid. Specifically, while customers
are able to produce and consume their own generated energy, they can also earn some
profit by selling their surplus generation with FIT. This enables increasing the penetration
level of RES in the electric grid, while customers benefit from financial incentives through
self-consumption and FIT.

However, RES are not dispatchable, and their output cannot be controlled over the time
horizon. Hence, when there is high RES generation, reverse power flow can occur on
the distribution grid, which leads to increased losses, and transformers might become
overloaded. Curtailment methods are thus needed. Under these circumstances, the
efficient utilization of RES generation in the local area becomes a vital subject to study.

This chapter presents an incentive-based day-ahead electric energy management to in-
crease renewable generation usage inside the neighborhood area by coordinating smart
homes and enabling energy trading among users. For electricity pricing, TOU and FIT
are used, and an incentive is defined to increase the interest in coordination and energy
trading inside the neighborhood. In this respect, two types of coordination methodologies
are presented (centralized and decentralized), and their performance is compared. The
contributions of this chapter are listed as follows:

• The performance of the coordination mechanisms is evaluated by comparing the
cost results with those for baseline and selfish scenarios.

• RES trading enables energy transfer among smart homes, hence the local renew-
able energy utilization is increased in the neighborhood.

• Multiple time resolutions are used for modeling electricity profiles, communication
and optimization of energy storage.

• The pros and cons of the presented centralized and decentralized algorithms are
investigated.
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The rest of this chapter is organized as follows. In Section 3.1, the smart home and
the neighborhood models are described, with the electricity pricing scheme. In Section
3.2, the proposed control and coordination algorithms are introduced. In Section 3.4,
simulation results are presented, and in Section 3.5 the chapter is concluded.

3.1/ SYSTEM MODEL

In this study, an agent-based two level hierarchical neighborhood structure is deployed
for modeling the electricity network. In the neighborhood, we assume that an aggregator
and set of U users are located in U smart homes. A MAS (described in Section 2.3.3.1)
is used for modeling entities in the neighborhood as agents, here the smart homes and
the aggregator.

3.1.1/ HOME ENERGY SYSTEM

Smart homes are equipped with a home controller and are referred in the following as
home agents. An example smart home is shown in Fig. 3.1. Although each electricity ap-
pliance can be modeled as an agent that can control appliance operation, we considered
and modeled the HEMS as an agent that determines each appliance operation.

Figure 3.1: Smart home model (SM: smart meter).

Home agents measure environmental and electrical quantities, and communicate price
and electrical data through AMI with other agents. We assume that each home has a
user interface, e.g., in the form of a website or a smart phone application, where users
can monitor their own consumption, generation and storage profile, and enter their pref-
erences. Thus, a home agent controls its resources by coordinating with other entities
in the neighborhood to accomplish their objectives, and while taking into account user
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preferences (i.e., reducing daily bills using local generation). All electricity profiles in the
smart home and the neighborhood are modeled with a 1-minute time resolution.

3.1.1.1/ CONSUMPTION MODEL

Based on their controllability, appliances are divided into two groups: non-controllable and
controllable appliances. In total, 13 types of appliances are modeled. 10 of these (iron,
toaster, etc.) are considered as non-controllable, and three of these (washing machine,
clothes dryer and dish washer) are modeled as controllable-shiftable appliances (assets).
The listed three controllable appliances are typically used in the literature [90]. In Table
3.1, home appliances and their respective power ratings are given.

Table 3.1: Amount, power rating and controllability of appliances (X: controllable, −: non-
controllable)

Appliances Amount Power rating (W) Controllability

Lights 5 25 × 5 −

Kettle 1 450 −

Microwave 1 800 −

Vacuum cleaner 1 1,700 −

Television 1 150 −

Computer 1 250 −

Iron 1 650 −

Hair dryer 1 200 −

Toaster 1 500 −

Coffee marker 1 350 −

Washing machine 1 800 X
Clothes dryer 1 1,000 X
Dish washer 1 850 X

Each smart home u has Xu non-controllable and Yu controllable-shiftable appliances. Over
the time horizon t ∈ T, the operation interval of each appliance x ∈ Xu and y ∈ Yu is
denoted with binary values ωx

u(t) ∈ 0, 1 and ωy
u(t) ∈ 0, 1 (0 for off and 1 for on) as:

ωx
u(t) =

1 , if t ∈
[
rs

x, re
x
]

0 ,elseif t ∈ T −
[
rs

x, re
x
] , ∀x ∈ Xu (3.1)

ω
y
u(t) =

1 , if t ∈
[
rs

y, re
y

]
0 ,elseif t ∈ T −

[
rs

y, re
y

] , ∀y ∈ Yu (3.2)

where, rs
x and re

x are the non-controllable appliances start and end times; and rs
y and re

y
are the controllable-appliances start and end times, respectively. Each appliance power
rating is denoted Prx

u and Pry
u . Their consumption power is assumed to remain constant

while the appliance is running, thereby the total electricity consumption of the smart home
Pc

u(t) is formulated with non-controllable Px
u(t) and controllable appliance Py

u(t) profiles as:

Px
u(t) = Prx

u · ω
x
u(t), ∀t ∈ T (3.3)
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Py
u(t) = Pry

u · ω
y
u(t), ∀t ∈ T (3.4)

Pc
u(t) =

Xu∑
x=1

Px
u(t) +

Yu∑
y=1

Py
u(t), ∀t ∈ T (3.5)

In this study, the operation start time and operation duration of appliances are modeled
probabilistically using Gaussian distributions in the form of N(µ, σ2). Probability distribu-
tion parameters are defined arbitrarily. Start times and operation duration parameters are
given in Table 3.2.

Table 3.2: Start time and operation duration parameters of appliances.

Appliances Start time (h) Duration (h)
Mean Std. dev. Mean Std. dev.

Lights 5.5, 18.5 0.1, 0.1 1.5, 2.0 0.1, 0.1
Kettle 8.5, 13.5 0.1, 0.1 1.5, 1.5 0.1, 0.1
Microwave 5.5, 18.5 0.2, 0.2 1.5, 1.5 0.1, 0.1
Vacuum cleaner 13.5 0.1 1.5 0.1
Television 6.5, 19.5 0.1 1.5, 2 0.1, 0.1
Computer 11.0, 21.0 0.1, 0.1 1.5, 1.5 0.1, 0.1
Iron 21.5 0.1 1.5 0.1
Hair dryer 7.5 0.1 0.5 0.08
Toaster 6.5, 10.5 0.1, 0.1 0.5, 0.5 0.08, 0.08
Coffee marker 6.5, 20.5 0.1, 0.1 0.5, 0.5 0.08, 0.08
Washing machine 16.5 0.2 1.5 0.1
Clothes dryer 18.5 0.2 1.5 0.1
Dish washer 18.5 0.2 1.5 0.1

3.1.1.2/ PV GENERATION MODEL

PV systems are the most commonly used RES in the residential sector due their modular
structure [118]. Moreover, PV systems can be easily integrated in building structures
[69]. Therefore, we assume that building-integrated PV systems are used as RES in the
neighborhood for local renewable generation. The power output of the installed PV array
Pg

u(t) is formulated as:

Pg
u(t) = N s

u · N
p
u · P

pv
u ·

(
I(t)

IS TC

)
(3.6)

where N s
u and N p

u are the number of series and parallel connected PV modules, respec-
tively (see Fig. 3.2); Ppv

u is the recorded power output of a single PV module in standard
test conditions (STC) where the irradiance is 1000 W/m2 and the temperature is 25 ◦C.
I(t) is the measured irradiance value on the PV module surface and IS TC is the irradiance
value in STC.
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Figure 3.2: PV system structure.

3.1.1.3/ ENERGY STORAGE MODEL

As RES are not dispatchable energy resources, their output power cannot be controlled.
Therefore, most of the time, the produced renewable power is fed back to the grid without
being used in the smart home. To increase flexibility in the smart home as well as the
local utilization of renewable energy, storage systems (such as lithium-ion batteries) are
assumed to be installed. Surplus renewable generation can then be stored in the home
storage system for later use when consumption is higher.

In this study, batteries are used to store renewable generation from residential PV sys-
tems. The injection and battery powers are denoted as PI

u(t) and Pb
u(t), respectively, and

the state-of-charge (S OCu(t)) value is computed by:

Pb
u(t) =

PI
u(t) · ηc

u, if PI
u(t) > 0

PI
u(t)/ηd

u, else PI
u(t) ≤ 0

(3.7)

S OCu(t) = S OCu(t − 1) +

(
Pb

u(t) · 4t
)

Ebat
u

(3.8)

where ηc
u and ηd

u are the battery charging and discharging efficiencies, respectively; Ebat
u

is the battery energy capacity; and 4t is the simulation time step (4t = 1/60 for 1-minute
resolution). According to (3.7), PI

u(t) is positive while charging (Pb
u(t) > 0), and PI

u(t) is
negative while discharging (Pb

u(t) ≤ 0) the battery. Lastly, operation constraints of the
battery for state-of-charge and battery power are given by:

ρd
u

ηd
u
≤ Pb

u(t) ≤ ρc
u · η

c
u (3.9)

S OCmin
u ≤ S OCu(t) ≤ S OCmax

u (3.10)

where ρc
u and ρd

u are the maximum battery charging and discharging power limits; and
S OCmin

u and S OCmax
u are the minimum and maximum state-of-charge values of the home

batteries.

3.1.2/ NEIGHBORHOOD AREA

A two-layered hierarchical neighborhood MAS architecture is used. The power and com-
munication schemas are given in Fig. 3.3. All home agents are assumed to have two-
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way communication ability through AMI, and to exchange messages with the aggregator
agent. Smart homes are directly connected to the electricity grid for supplying their de-
mand load, hence the aggregator agent does not have the ability to directly control the
neighborhood electricity grid and/or smart appliances in the smart homes.

Figure 3.3: Neighborhood agent model with power and communication structures.

The aggregator agent is located at the upper level and only advises home agents through
message exchanges (i.e., price and power data). At the bottom level, home agents re-
ceive and send data from/to the aggregator agent, and perform actions based on the
coordination model (centralized or decentralized). In this study, it is assumed that home
agents do not communicate with each other due to privacy concerns, hence they only
communicate with the aggregator agent as in the centralized or fully-dependent decen-
tralized models described in Section 2.3.2.

3.1.3/ ELECTRICITY PRICING: NEIGHBORHOOD INCENTIVE MODEL

To bill home users, TOU pricing λTOU(t) and FIT schema λFIT are used and combined
based on French policy [147, 134]. TOU and FIT are assumed fixed throughout the year,
and do not change with seasons. TOU is utilized for consumption, and FIT is defined
for selling surplus generation to the main grid. However, classic TOU and FIT are not
able to increase interest in self-consumption in smart homes and/or the neighborhood.
Therefore, an incentive λi is defined to enable and coordinate electricity trading among
smart homes. The grid and enhanced neighborhood price with incentive are given in
Table 3.3 and Fig. 3.4. As for FIT, the incentive could be supported by governmental
entities (i.e., tax offices) under the aim of increasing local renewable energy usage in the
neighborhood.

In this work, the benefits of self-consumption in the smart homes and of selling electricity
to neighbors are considered to be more beneficial than selling energy back to main grid
using the incentive price. While smart homes earn (λFIT + λi/2) for selling electricity to
their neighbors, they also earn (λFIT + λi − λTOU(t)) for self-consumption, without paying
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anything to the main grid (as their net load is zero) Beside that, purchasing electricity
from neighbors costs less than buying from the grid. Thus, electricity trading among
smart homes is encouraged by the proposed incentive.

Table 3.3: Electricity grid and neighborhood trading tariffs.

Source Tariffs Period Time (h) e/kWh

Grid
TOU price

off-peak (12:00–15:00) (22:00–06:00) 0.127
on-peak (06:00–12:00) (15:00–22:00) 0.156

FIT — (00:00–24:00) 0.246

— Incentive — (00:00–24:00) 0.020

Neighborhood
Import price

off-peak (12:00–15:00) (22:00-06:00) 0.117
on-peak (06-00–12:00) (15:00–22:00) 0.146

Export price — (00:00–24:00) 0.256

Figure 3.4: TOU, FIT and neighborhood pricing.

3.2/ PROBLEM FORMULATION

In this section, two base scenarios (baseline and selfish) and two proposed algorithms
(decentralized and centralized) are formulated to show how home agents control their
resources and/or coordinate their actions with each other. In Table 3.4, an overview and
comparison of the presented algorithms are given.

3.2.1/ BASELINE SCENARIO

The first algorithm serves as a reference scenario to show the effectiveness of the pro-
posed algorithm. In this scenario, home agents have no active role (no control and
communication ability) in the household environment. Therefore, in battery-equipped
smart homes, the battery charges when there is surplus PV generation and discharges
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Table 3.4: Comparison of the algorithms ( X: used, -: not used).

Baseline Selfish Decentralized Centralized

Asset control - X X X

Communication - X X X

Trading - - X X

Objective

Basic asset
manage-
ment

Minimizing the
electricity bill
of the smart
homes

Minimizing the
electricity bill
of the smart
homes with
trading

Minimizing the
total electric-
ity bill of the
neighborhood
with trading

whenever there is more consumption than PV generation. The battery cannot efficiently
charge/discharge for the benefit of the customers. Moreover, in all smart homes, smart
appliances are considered as baseline appliances, therefore they cannot be scheduled
over the time horizon. Accordingly, the net consumption Pnc

u (t) and surplus generation
Psp

u (t) in a smart home are formulated as:

Pn
u(t) = Pc

u(t) − Pg
u(t) + Pb

u(t) (3.11)

Pnc
u (t) =

Pn
u(t) , if Pn

u(t) > 0
0 ,else Pn

u(t) ≤ 0
(3.12)

Psg
u (t) =

0 , if Pn
u(t) > 0

−Pn
u(t) ,else Pn

u(t) ≤ 0
(3.13)

where Pn
u(t) is called the net (load) profile of a smart home. A negative Pn

u(t) means that
there is surplus generation the smart home. In this work, the same neighborhood pricing
scheme (given in Table 3.3) is used for fair comparison in all simulation cases. Thereby,
the surplus generation is sold to the main grid with λFIT and self-consumption is rewarded
with λi as follows:

Psc
u (t) = Pc

u(t) − Pnc
u (t) (3.14)

Cu = 4t ·
T∑

t=1

Pnc
u (t) · λTOU(t) − Psg

u (t) · λFIT − Psc
u (t) · (λFIT + λi − λTOU(t)) (3.15)

where Psc
u (t) is the self-consumption power and Cu is the daily electricity cost of smart

homes in the baseline scenario.

3.2.2/ SELFISH SCENARIO

In the selfish scenario, home agents receive pricing information (λTOU(t), λFIT , and λi) to
selfishly control their assets without sharing any information with the aggregator and other
houses. Hence, home agents cannot trade energy with each other, as they do not know
the neighborhood electricity profile. In this case, an optimization algorithm is formulated
by taking into account the following assumptions:
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Figure 3.5: Representation of the appliance control interval over 24 hours. Each block
represents a 60-minute time interval.

• Appliance assets cannot be shifted to operate on the next scheduling day, so the
total energy consumption in a day is conserved,

• For battery optimization, a new time resolution (called battery control interval) is
defined instead of the actual one (used for modeling electricity profiles) to control
charging/discharging/idle operations, in order to reduce the computation burden.

Firstly, we assume that users define the control interval of each asset for load scheduling,
as shown in Fig. 3.5. In the control interval, home agents pick the most beneficial time to
run assets (mostly during low-price periods). This interval must be at least equal to the
appliance operation duration, however it preferably needs to be wide enough for gaining
more profit from the scheduling operation. In other words, the larger the flexibility, the
higher the potential gains. The constraint for asset scheduling is given by:[

rs
y, re

y

]
⊆

[
ts
y, te

y

]
(3.16)

where ts
y and te

y are the user-defined acceptable start and end times, respectively. In the
smart home, the operation of some assets, such as the washing machine and clothes
dryer are not independent. For instance, the clothes dryer should always operate af-
ter the washing machine has finished its work. Therefore, during the modeling and the
optimization, an additional constraint is formulated as:

rs
wm < rs

cd −
(
re

wm − rs
wm

)
(3.17)

ts
wm < ts

cd −
(
re

wm − rs
wm

)
(3.18)

Secondly, as a reminder from Section 3.1.1, all smart homes and the neighborhood elec-
tricity profiles are modeled with a 1-minute time resolution in this chapter. Related to that,
in total, 1,440 inputs are required to determine the battery output for one day in the op-
timization problem. Using such a high number of inputs increases the computation time
of the optimization problem. Therefore, a larger time step (15 minutes as in Fig. 3.6)
is used to reduce the size of the optimization problem and return results in reasonable
computation time.
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The battery output power is determined with two time indexes: the actual one “t ∈ T” ,
and “z ∈ Z”, with the battery control time resolution. Accordingly, the output power of the
battery is determined with binary variables γb

u(z) ∈ {0, 1} (defined for logically controlling
battery charging/discharging/idle status) as:

Pb
u(t) =


(
Pg

u(t) − Pc
u(t)

)
· ηc

u , if γb
u(z) = 0, Pg

u(t) > Pc
u(t)

0 ,elseif γb
u(z) = 0, Pg

u(t) ≤ Pc
u(t)(

Pg
u(t) − Pc

u(t)
)
/ηd

u ,else γb
u(z) = 1

(3.19)

where γb
u(z) is the optimization input parameter used for determining battery output power.

In total, Z = T /15 inputs are required for optimizing battery output. At last, home agents
solve the following optimization problem individually for the selfish scenario:

minimize

Cu = 4t ·
T∑

t=1

Pnc
u (t) · λTOU(t) − Psg

u (t) · λFIT − Psc
u (t) · (λFIT + λi − λTOU(t))


s.t. (3.1), (3.2), (3.9), (3.10), (3.16), (3.17), (3.18)

(3.20)

3.2.3/ DECENTRALIZED COORDINATION

The first proposed method is referred to as “decentralized coordination”. In this algorithm,
a two-way communication link is required between home agents and the aggregator for
frequently exchanging messages. The message transfer and the algorithmic operation
principles of the home agents and the aggregator are shown in Fig. 3.7, and can be
explained in four steps as follows:

Step I:

Firstly, home agents initialize their electricity profiles simultaneously, and the aggregator
sends the price information (λTOU(t), λFIT , and λi) to all home agents. Then, home agents
optimize their daily electricity bill by scheduling and controlling battery output according
to the optimization problem formulated in (3.20). Home agents optimize electricity costs
as in the selfish scenario, due to not having any additional information about the neigh-
borhood electricity profile. It should also be noted that home agents act simultaneously
at each step, thereby they optimize and send messages at the same time, and wait until
others have finished. At the end of the optimization, home agents generate two types of
data: the net consumption (3.12) and the surplus generation (3.13) profiles.

Figure 3.6: Representation of the battery control interval (15 minutes) in one hour.
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To inform the aggregator agent, home agents send these electricity profiles through AMI.
However, they first calculate the average of each electricity profile for certain time intervals
“L”, as in Fig. 3.8. A new time resolution “l ∈ L” is defined for communication, for the
following reasons:

• Taking the average of the actual data for certain time intervals is a basic privacy
protection method. In this case, customers do not want to share exact information
with the aggregator, hence they only send average data.

• To reduce the communication burden of the aggregator, as message size is reduced
from T to T /L for an electricity profile.

Pnc
u (t)→ P̂nc

u (l) (3.21)

Psg
u (t)→ P̂sg

u (l) (3.22)

Figure 3.8: Actual and communication data of a consumption profile.

Step II:

At the beginning of the second step, the aggregator receives the individual profiles of the
smart homes and aggregates them to determine the neighborhood electricity profiles.

P̂nc
agg(l) =

U∑
u=1

P̂nc
u (l) (3.23)

P̂sg
agg(l) =

U∑
u=1

P̂sg
u (l) (3.24)

After that, the aggregator agent sends the aggregated profiles with the price data to
the home agents. When home agents receive the electricity profiles, they determine
the neighborhood profile by subtracting their electricity profiles (called perspective aggre-
gated profiles in the smart homes):

P̂nc
agg, u(l) = P̂nc

agg(l) − P̂nc
u (l) (3.25)
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P̂sg
agg, u(l) = P̂sg

agg(l) − P̂sg
u (l) (3.26)

Then, they convert the perspective profiles from the communication data structure to the
actual data structure (i.e., from the l-domain to the t-domain):

P̂nc
agg, u(l)→ Pnc

agg, u(t) (3.27)

P̂sg
agg, u(l)→ Psg

agg, u(t) (3.28)

Now, home agents have additional information in addition to price data: neighborhood
net consumption and surplus generation profiles. Using these two additional informa-
tion, home agents in battery-equipped smart homes can discharge their batteries to sell
battery energy to neighbors, and all smart homes can purchase energy from neighbors
surplus generation. To do that, home agents determine the net area profile Pn

agg, u(t) by:

Pn
agg, u(t) = Pnc

agg, u(t) − Psg
agg, u(t) (3.29)

Then, they calculate their battery output profile by making condition comparisons between
electricity profiles (Pc

u(t), Pg
u(t), and Pn

agg, u(t)) as follows:

Pb
u(t) =



(
Pg

u(t) − Pc
u(t)

)
· ηc

u , if γb
u(z) = 0, Pg

u(t) > 0, Pg
u(t) > Pc

u(t), Pn
agg, u(t) ≤ 0

0 ,elseif γb
u(z) = 0, Pg

u(t) > 0, Pg
u(t) ≤ Pc

u(t), Pn
agg, u(t) ≤ 0(

Pg
u(t) − Pc

u(t) − Pn
agg,u(t)

)
· ηc

u ,elseif γb
u(z) = 0, Pg

u(t) > 0, Pn
agg, u(t) > 0, Pg

u(t) > Pn
agg, u(t)(

Pg
u(t) − Pc

u(t) − Pn
agg,u(t)

)
/ηd

u ,elseif γb
u(z) = 0, Pg

u(t) > 0, Pn
agg, u(t) > 0, Pg

u(t) ≤ Pn
agg, u(t)

−Pc
u(t)/ηd

u ,elseif γb
u(z) = 0, Pg

u(t) = 0, Pn
agg, u(t) ≤ 0(

−Pc
u(t) − Pn

agg, u(t)
)
/ηd

u ,elseif γb
u(z) = 0, Pg

u(t) = 0, Pn
agg, u(t) > 0(

Pg
u(t) − Pc

u(t)
)
· ηc

u ,elseif γb
u(z) = 1, Pg

u(t) > 0, Pg
u(t) > Pc

u(t)

0 ,elseif γb
u(z) = 1, Pg

u(t) > 0, Pg
u(t) ≤ Pc

u(t)
0 ,elseif γb

u(z) = 1, Pg
u(t) = 0, Pn

agg, u(t) ≤ 0
−Pc

u(t)/ηd
u ,else γb

u(z) = 1, Pg
u(t) = 0, Pn

agg, u(t) > 0
(3.30)

Compared to (3.19), home agents apply a more advanced control method for char-
ing/discharging/idle operations, in other words to determine the battery output power
while taking into account the neighborhood profile. In (3.30), home agents are also able
to discharge their battery for neighborhood consumption to increase their profit using the
incentive price “λi”. Therefore, home agents need to determine how much energy to sell
to the neighborhood from the calculated battery power with:

Pbs
u (t) =


0 , if γb

u(z) = 0, Pc
u(t) ≥ −Pb

u(t)
−Pb

u(t) − Pc
u(t) ,elseif γb

u(z) = 0, Pc
u(t) < −Pb

u(t)
0 ,else γb

u(z) = 1

(3.31)

According to (3.31), the discharged energy is firstly used for self-consumption and then
sold for neighborhood electricity consumption. After that, home agents calculate their net
profile with:

Pn
u(t) = Pc

u(t) − Pg
u(t) + Pb

u(t) + Pbs
u (t) (3.32)
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Next, home agents separate the net consumption Pnc
u (t) from the surplus generation Psg

u (t)
using (3.12) and (3.13). Thus, home agents calculate the purchased surplus generation
Psp

u (t) from neighbors using:

Psp
u (t) =

Pnc
u (t) , if Psg

agg, u(t) > Pnc
agg, u(t) + Pnc

u (t)

Psg
agg, u(t) ·

(
Pnc(t)

Pnc
agg, u(t)+Pnc

u (t)

)
,else Psg

agg, u(t) ≤ Pnc
agg, u(t) + Pnc

u (t)
(3.33)

After that, home agents update the net electricity by adding surplus generation, then
apply (3.12) and (3.13), and calculate the self-consumption profile:

Pn
u(t) = Pc

u(t) − Pg
u(t) + Pb

u(t) + Pbs
u (t) − Psp

u (t) (3.34)

Psc
u (t) = Pc

u(t) − Pnc
u (t) − Psp

u (t) (3.35)

Finally, home agents optimize their resources by solving the following problem:

minimize


Cu = 4t ·

T∑
t=1

Pnc
u (t) · λTOU(t) − Psg

u (t) · λFIT + Psp
u (t) · (λTOU(t) − λi/2)

−Psc
u (t) · (λFIT + λi − λTOU(t)) − Pbs

u (t) · (λFIT + λi/2)


s.t. (3.1), (3.2), (3.9), (3.10), (3.16), (3.17), (3.18)

(3.36)

At the end of the optimization problem, home agents inform the aggregator agent after
determining the communication data in the l-domain (in addition to (3.21) and (3.22)):

Pbs
u (t)→ P̂bs

u (l) (3.37)

Psp
u (t)→ P̂sp

u (l) (3.38)

where P̂bs
u (l) and P̂sp

u (l) are the communication data of sold power with battery discharge
and the purchased surplus power in the smart home, respectively.

In this work, home agents do not have any knowledge about the buyers and sellers in the
neighborhood. For instance, home agents only have information about the aggregated
surplus generation and the net consumption profiles of the neighborhood. Hence, if they
want to purchase energy, they purchase from the aggregated profile, thereby they do not
need to find who is selling energy. Thus, buyers and sellers do not need to be matched
during the optimization process. Secondly, incentive revenue is provided for both buyers
and sellers. The revenue is shared equally (i.e., λi/2) between buyers and sellers, so
that they can both gain some benefit from the coordination. It should be noted that the
divided revenue is added to the FIT for sellers (λFIT + λi/2), and subtracted from the TOU
price for buyers (λTOU(t)− λi/2). However, home agents can also gain the entire incentive
revenue by themselves, only if the produced renewable energy consumed in the same
smart home for self-consumption (λFIT + λi − λTOU(t)).

Step III:

At the beginning of the third step, home agents send the following information in order,
and the aggregator agent sums individual profiles (in addition to (3.25) and (3.26)):

P̂bs
agg(l) =

U∑
u=1

P̂bs
u (l) (3.39)
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P̂sp
agg(l) =

U∑
u=1

P̂sp
u (l) (3.40)

After that, the aggregator agent sends the aggregated profiles to the home agents. When
home agents receive the aggregated profiles, they create the perspective profiles (in ad-
dition to (3.25) and (3.26)):

P̂bs
agg, u(l) = P̂bs

agg(l) − P̂bs
u (l) (3.41)

P̂sp
agg, u(l) = P̂sp

agg(l) − P̂sp
u (l) (3.42)

Then, they convert all of them from communication to actual data structure (in addition to
(3.27) and (3.28)):

P̂bs
agg, u(l)→ Pbs

agg, u(t) (3.43)

P̂sp
agg, u(l)→ Psp

agg, u(t) (3.44)

Home agents use (3.29), (3.30) and (3.31) to determine the battery output power and the
sold power with battery discharge, respectively. However, home agents, after (3.31), need
to correlate their sold power with battery discharge by taking into account the decisions
of others (on sold power):

Pbs
u (t) =

Pbs
u (t) , if Pnc

agg, u(t) ≥ Pbs
agg,u(t) + Pbs

u (t)
Pnc

agg, u(t) − Pbs
agg,u(t) ,else Pnc

agg, u(t) < Pbs
agg,u(t) + Pbs

u (t)
(3.45)

Later, home agents use (3.32), (3.12), (3.13) and (3.33), in this order, to calculate the
purchased surplus energy. At the end of this step, home agents optimize with (3.36), and
convert electricity profiles from actual to communication resolution using (3.21), (3.22),
(3.37), and (3.38). Then, the process is repeated until the number of iterations is reached.

Step IV:

When the iterations have ended, the aggregator agent gathers the latest decisions of the
home agents and calculates the daily electricity bill of each smart home. However, the
aggregator firstly needs to balance the sold and bough powers inside the neighborhood by
matching the electricity profiles. To do that, a method called proportional source matching
is applied for these mismatch conditions. Mismatches occur because:

• Home agents are all optimizing simultaneously, so they might take the same de-
cision for selling and/or purchasing for the same consumption and/or generation
units. Hence, the aggregated trading decisions during the optimization might be
higher than the actual electricity profiles.

• Home agents communicate with average data rather than actual data. Therefore,
there might be some ups and downs in the actual data during the communication
time interval (i.e., 30 minutes). As a result, there can be differences between the
actual and the decided profiles, that need to be corrected.

At the final steps, the aggregator checks the existence of mismatch conditions and makes
decisions on behalf of home agents by using proportional source matching. Basically, the
method distributes the amount of sold and bought power according to the ratio of the
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smart home electricity profile (decision at latest iteration) with respect to the aggregated
power profile.

Accordingly, the purchased surplus Psp
u (t) and the sold surplus generation Pss

u (t) powers
are formulated as:

Psp
u (t) =



Pnc
u (t) , if Psg

agg(t) ≥ Psp, d
agg (t), Psp, d

u (t) > Pnc
u (t)

Psp, d
u (t) ,elseif Psg

agg(t) ≥ Psp, d
agg (t), Psp, d

u (t) ≤ Pnet
u (t)

Pnc
u (t) ,elseif Psg

agg(t) < Psp, d
agg (t), Psg

agg(t) ·
(

Psp, d
u (t)

Psp, d
agg (t)

)
> Pnc

u (t)

Psg
agg(t) ·

(
Psp, d

u (t)
Psp, d

agg (t)

)
,else Psg

agg(t) < Psp, d
agg (t), Psg

agg(t) ·
(

Psp, d
u (t)

Psp, d
agg (t)

)
≤ Pnc

u (t)

(3.46)

Pss
u (t) =


Psg

u (t) , if Psg
agg(t) > Psg

u (t), Psp
agg(t) = Psg

agg(t)

Psp
agg(t) ·

(
Psg

u (t)
Psg

agg(t)

)
,elseif Psg

agg(t) > Psg
u (t), Psp

agg(t) < Psg
agg(t)

Psg
u (t) ,elseif Psg

agg(t) = Psg
u (t), Psp

agg(t) = Psg
u (t)

Psp
agg(t) ,else Psg

agg(t) = Psg
u (t), Psp

agg(t) < Psg
u (t)

(3.47)

where Psp, d
u (t) and Psp, d

agg (t) are the home and aggregated neighborhood purchased surplus
generation at the latest iteration, respectively. After that, Pnc

u (t) and Pnc
agg(t) are updated to

determine the purchased Pbp
u (t) and sold Pbs

u (t) power with battery discharge as follows:

Pnc
u (t) = Pnc

u (t) − Psp
u (t) (3.48)

Pnc
agg(t) = Pnc

agg(t) −
U∑

u=1

Psp
u (t) (3.49)

Pbp
u (t) =


Pnc

u (t) , if Pnc
agg(t) > Pnc

u (t), Pbs, d
agg (t) ≥ Pnc

agg(t)

Pbs, d
agg (t) ·

(
Pnc

u (t)
Pnc

agg(t)

)
,elseif Pnc

agg(t) > Pnc
u (t), Pbs, d

agg (t) < Pnc
agg(t)

Pnc
u (t) ,elseif Pnc

agg(t) = Pnc
u (t), Pbs, d

agg (t) ≥ Pnc
agg(t)

Pbs, d
agg (t) ,else Pnc

agg(t) = Pnc
u (t), Pbs, d

agg (t) < Pnc
agg(t)

(3.50)

Pbs
u (t) =


Pbp

agg(t) , if Pbs, d
agg (t) = Pbs, d

u (t), Pbs, d
u (t) > Pbp

agg(t)
Pbs, d

u (t) ,elseif Pbs, d
agg (t) = Pbs, d

u (t), Pbs, d
u (t) = Pbp

agg(t)

Pbp
agg(t) ·

(
Pbs, d

u (t)
Pbs, d

agg (t)

)
,elseif Pbs, d

agg (t) > Pbs, d
u (t), Pbs, d

agg (t) > Pbp
agg(t)

Pbs, d
u (t) ,else Pbs, d

agg (t) > Pbs, d
u (t), Pbs, d

agg (t) = Pbp
agg(t)

(3.51)

where Pbs, d
u (t) and Pbs, d

agg (t) are the home and aggregated neighborhood sold energy with
battery discharge at the latest iteration, respectively. As seen in (3.46), (3.47), (3.50) and
(3.51), proportional source matching is used when the electricity sources are insufficient
and when mismatches occur due to the above listed reasons (e.g., when the generated
real-time surplus generation is not enough to provide the decided purchased surplus
power by the neighborhood home agents).

Finally, the aggregator agent calculates the daily electricity bills of the users in real-time.
First, the total home sold Psold

u (t) and purchased Ppurchased
u (t) powers are calculated:

Psold
u (t) = Pss

u (t) + Pbs
u (t) (3.52)
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Ppurchased
u (t) = Psp

u (t) + Pbp
u (t) (3.53)

Then, the net profile is updated:

Pn
u(t) = Pc

u(t) − Pg
u(t) + Pb

u(t) + Psold
u (t) − Ppurchased

u (t) (3.54)

After that, the net consumption is separated from surplus generation using (3.12) and
(3.13), and the self-consumption power is determined as follows:

Psc
u (t) = Pc

u(t) − Pnc
u (t) − Ppurchased

u (t) (3.55)

At the end, the daily bills of the users are calculated using:

Cu = 4t ·


T∑

t=1

Pnc
u (t) · λTOU(t) − Psg

u (t) · λFIT + Ppurchased
u (t) · (λTOU(t) − λi/2)

− Psc
u (t) · (λFIT + λi − λTOU(t)) − Psold

u (t) · (λFIT + λi/2)

 (3.56)

With (3.56), the decentralized coordination model is ended for the day-head scheduling.
We should emphasize that, to trade electricity among the smart homes, there should be
some surplus generation in the smart homes as an output of the installed PV system.
Thus, home agents can share energy by trading with each other rather than feeding back
the surplus power to the main grid. To sum up, the pseudo-code for the decentralized
coordination is given in Algorithm 2.

3.2.4/ CENTRALIZED COORDINATION

In this chapter, the second proposed method is referred as “centralized coordination”.
In this algorithm, the optimization problem is solved by the central entity (the aggrega-
tor agent in this case) by gathering detailed consumption/generation/storage information
from all home agents. As in the decentralized model, a two-way communication link is re-
quired to receive information from the home agents and send back the control decisions.
However, differently, the optimization problem is only solved one time by the aggregator
agent in the centralized model, hence an iterative approach is not required (see Fig. 3.9).

The following optimization problem is solved by the aggregator agent:

minimize


C = 4t ·

U∑
u=1

T∑
t=1

Pnc
u (t) · λTOU(t) − Psg

u (t) · λFIT + Ppurchased
u (t) · (λTOU(t) − λi/2)

−Psc
u (t) · (λFIT + λi − λTOU(t)) − Psold

u (t) · (λFIT + λi/2)


s.t. (3.1), (3.2), (3.9), (3.10), (3.16), (3.17), (3.18)

(3.57)

In the centralized model, the aggregator agent focuses on minimizing the total electricity
cost of the neighborhood. To do that, the aggregator agent also minimizes the daily
electricity bill of the smart homes in parallel to the neighborhood total cost. The proposed
centralized model can be expected to obtain near optimal solutions, as all information is
available. However, this model requires more computation time, as it requires solving a
larger optimization problem compared to the decentralized model. The pseudo-code of
the centralized coordination model is given in Algorithm 3.
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3.3/ SIMULATION SETUP

In this section, the studied test case and the programming details for the simulation design
are introduced.

Algorithm 2 Decentralized coordination algorithm.
PDS : Price data set,
HDS t: home data set (t – domain), , HDS l: home data set (l – domain),
ADS t: aggregated data set (t – domain), ADS l: aggregated data set (l – domain),
APS t: perspective data set (t domain), APS l: perspective data set (l – domain),

1: Step I
2: The aggregator agent sends PDS = {λTOU(t), λFIT , λi} to all home agents, ∀u ∈ U.
3: ∀u ∈ U get PDS , and solve (3.20).
4: ∀u ∈ U determine HDS t =

{
Pc

u(t), Pg
u(t), Pb

u(t), Pnc
u (t), Psg

u (t), Psc
u (t)

}
.

5: ∀u ∈ U convert
{
Pnc

u (t), Psg
u (t)

}
to HDCl =

{
P̂nc

u (l), P̂sg
u (l)

}
and send HDS l to the aggre-

gator agent.
6: The aggregator agent determines ADS l =

{
P̂nc

agg(l), P̂sg
agg(l)

}
, and sends it to ∀u ∈ U

with PDS .
7: ————————-

Step II
8: ∀u ∈ U get PDS and ADS l, and determine APS l =

{
P̂nc

agg, u(l), P̂sg
agg, u(l)

}
.

9: ∀u ∈ U convert APS l to APS t =
{
Pnc

agg, u(t), Psg
agg, u(t)

}
, and solve (3.36).

10: ∀u ∈ U determine HDS t =
{
Pc

u(t), Pg
u(t), Pb

u(t), Pnc
u (t), Psg

u (t), Psc
u (t), Pbs

u (t), Psp
u (t)

}
11: ∀u ∈ U convert

{
Pnc

u (t), Psg
u (t), Pbs

u (t), Psp
u (t)

}
to HDS l =

{
P̂nc

u (l), P̂sg
u (l), P̂bs

u (l), P̂sp
u (l)

}
,

and send HDS l to the aggregator agent.
12: The aggregator agent determines ADS l =

{
P̂nc

agg(l), P̂sg
agg(l), P̂bs

agg(l), P̂sp
agg(l)

}
, and sends

it to ∀u ∈ U with PDS .
13: ————————-

Step III
14: while k ≤ kmax do
15: ∀u ∈ U get PDS and ADS l, and determine APS l ={

P̂nc
agg, u(l), P̂sg

agg, u(l), P̂bs
agg, u(l), P̂sp

agg, u(l)
}
.

16: ∀u ∈ U convert APS l to APS t =
{
Pnc

agg, u(t), Psg
agg, u(t), Pbs

agg, u(t), Psp
agg, u(t)

}
, and solve

(3.36).
17: ∀u ∈ U determine HDS t.
18: ∀u ∈ U convert HDS t to HDS l, and send HDS l to the aggregator agent.
19: The aggregator agent determines ADS l, and sends it to ∀u ∈ U with PDS .
20: end while
21: ————————-

Step IV
22: The aggregator agent applies proportional source matching using (3.46), (3.47),

(3.50) and (3.51)
23: The aggregator agent calculates the daily electricity bill of ∀u ∈ U using (3.56) in

real-time.
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Figure 3.9: Flowchart of the centralized coordination method.

3.3.1/ SIMULATION PARAMETERS

We assume that the neighborhood is formed by U = 5 smart homes, including 2 homes
with PV and battery, 1 with just PV, and 2 with none (no PV and no battery). The installa-
tion capacity of the resources in smart homes is given in Fig. 3.10. All smart homes are
equipped with an HEMS to control their appliances and communicate with the aggrega-
tor agent. The day is divided into 1-minute time intervals, and the day-ahead problem is
solved for two days (T = 2, 880) using the rolling horizon approach shown in Fig. 3.11.

The objective of the deployed rolling horizon algorithm is to solve the optimization problem
for two days. By taking the output results of the first day at t = 1, 440 as an input for the
second day, the process is repeated for the next two days. Thus home agents in smart
homes with battery systems foresee the next day consumption and might decide to save
some energy in their batteries for the next day rather than discharge for the current day
electricity consumption. Another important assumption is that assets are not able to be
scheduled to the next day, although the optimization problem is solved for the two days.
Therefore, the total consumed energy in the smart home remains constant in all scenarios
and coordination algorithms. Lastly, communication data is determined with the average
of every L = 30 minutes, and battery decisions are determined for every Z = 15 minutes.

Algorithm 3 Centralized coordination algorithm.

1: ∀u ∈ U send all appliance, PV system and battery system information to the aggre-
gator agent.

2: The aggregator agent solves (3.57).
3: The optimization results (control decisions) are sent back to ∀u ∈ U.
4: ∀u ∈ U applies the control decisions.
5: The aggregator agent calculates the daily electricity bill of ∀u ∈ U using (3.56) in real

time.
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Figure 3.10: Installation capacity of the resources in the neighborhood. (a) PV capacities,
(b) battery capacities in smart homes.

3.3.2/ CO-SIMULATION PLATFORM

To model the system and perform optimization, a co-simulation platform is designed and
adapted from [34] using Java Agent DEvelopment (JADE) and MATLAB, as shown in Fig.
3.12. Homes and aggregator agents are modeled using the JADE framework, which en-
ables communication between agents. In MATLAB, the genetic algorithm (GA) from the
optimization toolbox is used for solving the formulated optimization problems. The two
software are interconnected by using Transmission Control Protocol / Internet Protocol
(TCP/IP). Each home agent is assigned to a TCP/IP port to send the electricity profiles
and receive the results to/from MATLAB. Lastly, the simulations are performed on a desk-

Figure 3.11: Rolling horizon approach principle.
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top computer with an Intel Core i7 3.40 GHz processor and 8 GB RAM with a 64-bit
Ubuntu 16.04.2 LTS operating system.

Figure 3.12: Co-simulation platform.

3.4/ PERFORMANCE EVALUATION

Simulation results are given for one day by simulating for the 1st and 2nd days using the
rolling horizon method. After that, the scalability of the algorithm is tested for four different
neighborhood areas with a different number of smart homes (5, 10, 15, and 20 smart
homes).

3.4.1/ COST AND COMPUTATION TIME ANALYSIS

The cost results of the smart homes and the neighborhood for one-day simulation are
given in Table 3.5. According to these results, the decentralized coordination method
shows a better performance compared to the baseline and selfish scenarios. Moreover,
each smart home reduced its electricity bill, which means that all users benefit from co-
ordination and trading in the neighborhood.

Table 3.5: Smart homes and total neighborhood electricity costs (∗∗: smart home with PV
and battery, ∗ smart home with PV).

Smart homes Baseline (e) Selfish (e) Decentralized (e) Centralized (e)

Home 01∗∗ -1.83 -1.91 -2.48 -3.27
Home 02∗∗ -1.40 -1.49 -1.96 -2.97
Home 03∗ 0.89 -0.97 -1.02 -1.04
Home 04 1.90 1.88 1.85 1.82
Home 05 2.07 1.99 1.95 1.93

Total 1.63 -0.5 -1.66 -3.53

Compared to the decentralized coordination method, the centralized control algorithm
yields the best results for the neighborhood and each home user. However, the cen-
tralized coordination method requires more time than the decentralized one to solve the
optimization problem. While the centralized method needs 27 minutes to optimize the
electricity profiles of the smart homes, decentralized coordination requires approximately
20 seconds (in smart homes with battery) to solve the optimization problem for each itera-
tion. In total, the decentralized method requires about 1 minute to finalize the coordination
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process. Therefore, although the centralized method provides better results in terms of
cost, the decentralized algorithm offers significant advantage in terms of computation
time.

3.4.2/ POWER AND ENERGY ANALYSIS

In this section, the algorithms are analyzed by comparing the power and energy results
of each smart home and the neighborhood. From Fig. 3.13 to Fig. 3.15, the load and net
consumption profiles of each smart home for each case are given.

In smart home 01 (with PV and battery), the electricity is only consumed during early
morning hours due to the lack of stored energy in the battery (in baseline, selfish and
decentralized cases). Significant consumption is observed in centralized case. The rea-
son is that the aggregator agent focuses on decreasing the total electricity cost of the
neighborhood, hence it is not optimizing for increasing the individual benefits of this user.
However, the smart home has more economic income (as seen in Table 3.5) due to sell-
ing more energy than in other cases, although it consumes more. Therefore, less energy
is left at the end of the day (see Fig. 3.16), which means that the stored energy is used
for selling to the neighbors.

In smart home 03 (with PV and without battery), the generated PV energy is only used
during sunny hours, and the rest of the generation is fed back to the main grid due to
the absence of a battery system (in baseline and selfish cases). However, the smart
home can sell the surplus generation to the other smart homes in the decentralized and
centralized cases. Furthermore, it can purchase energy through the trading ability from
other battery-equipped smart homes in decentralized and centralized control cases, in
order to receive the proposed incentive.

In the selfish case, the home agent can only schedule the assets in smart home 04 to
decrease the daily electricity bill. With the decentralized and centralized cases, smart
home 04 (without PV and battery) has the ability to purchase energy from neighbors with
only PV and neighbors with PV and battery-equipped smart homes. It can also be seen
that the smart home purchases more energy in the centralized case compared to the
decentralized case, hence it achieves more cost reduction.

For a more detailed analysis, the energy profiles of all smart homes are shown for both
decentralized and centralized cases in Fig. 3.17 and 3.18. When the two coordination
methods are compared, it can be seen there is a significant difference in terms of cost,
power profiles and energy profiles. The reason is that while smart homes with battery sys-
tems are using their stored energy mostly for their own consumption in the decentralized
case, they sell the stored energy to other smart homes in the centralized case.

62



CHAPTER 3. INCENTIVE-BASED RENEWABLE ENERGY TRADING AMONG
SMART HOMES

Fi
gu

re
3.

13
:S

m
ar

th
om

e
01

(w
ith

P
V

an
d

ba
tte

ry
)e

le
ct

ric
ity

co
ns

um
pt

io
n

pr
ofi

le
s:

(a
)b

as
el

in
e,

(b
)s

el
fis

h,
(c

)d
ec

en
tra

liz
ed

(d
)c

en
tra

liz
ed

.

63



CHAPTER 3. INCENTIVE-BASED RENEWABLE ENERGY TRADING AMONG
SMART HOMES

Fi
gu

re
3.

14
:

S
m

ar
t

ho
m

e
03

(w
ith

P
V

an
d

w
ith

ou
t

ba
tte

ry
)

el
ec

tr
ic

ity
co

ns
um

pt
io

n
pr

ofi
le

s:
(a

)
ba

se
lin

e,
(b

)
se

lfi
sh

,
(c

)
de

ce
nt

ra
liz

ed
(d

)
ce

nt
ra

liz
ed

.

64



CHAPTER 3. INCENTIVE-BASED RENEWABLE ENERGY TRADING AMONG
SMART HOMES

Fi
gu

re
3.

15
:

S
m

ar
th

om
e

04
(w

ith
ou

tP
V

an
d

ba
tte

ry
)e

le
ct

ric
ity

co
ns

um
pt

io
n

pr
ofi

le
s:

(a
)b

as
el

in
e,

(b
)s

el
fis

h,
(c

)d
ec

en
tra

liz
ed

(d
)c

en
tra

l-
iz

ed
.

65



CHAPTER 3. INCENTIVE-BASED RENEWABLE ENERGY TRADING AMONG
SMART HOMES

Figure 3.16: State-of-charge of the battery system for each case.

Figure 3.17: Energy analysis of the smart homes in the decentralized coordination.

As a result of this, smart homes with no battery system purchase more energy in the
centralized case. As a reminder, we emphasize that the aggregator agent aims to min-
imize total neighborhood electricity cost, hence using energy for trading among smart
homes or utilizing it for self-consumption does not make any difference in the optimiza-
tion function. However, as a result of optimizing all smart homes profiles in one spot, the
locally generated PV energy is traded more and batteries are discharged more than in
the decentralized case.

Overall, simulation results show that the proposed coordination algorithms achieve more
cost reduction than the baseline and selfish scenarios. Moreover, all smart homes, no
matter the type of equipment they have (PV and/or battery), achieve to reduce their daily
electricity bill by utilizing more PV energy inside the neighborhood.
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Figure 3.18: Energy analysis of the smart homes in the centralized coordination.

3.4.3/ SCALABILITY ANALYSIS

In this section, a scalability analysis is performed by varying the number of smart homes
in the neighborhood area. The simulations are performed for four different neighborhood
area sizes (5, 10, 15, and 20). The numbers of PV and battery owners are given in
Table 3.6. The simulation results are given and enable comparing the achieved profit

Table 3.6: Neighborhood area number of resource owners.

Neighborhood Number of PV and
battery owners

Number of PV
owners

Number of no PV and
battery owners

5 smart homes 2 1 2
10 smart homes 4 2 4
15 smart homes 6 3 6
20 smart homes 8 4 8

against the baseline case. In Fig. 3.19, the determined profits for each control and each
neighborhood area size are given. The results show that total profit is increased for each
control method when the number of the smart homes increases. Furthermore, simulation
results also show that the profit gained by the decentralized control method gets close to
the profit gained by the centralized control method. Lastly, this scalability analysis proves
that the presented control algorithms provide cost-beneficial coordination strategies for
different sizes of neighborhoods.

3.5/ CONCLUSION

This chapter has presented two coordination algorithms (centralized and decentralized)
for electric energy management in a neighborhood area using MAS. The neighborhood
area is formed by the aggregator and smart homes equipped with distributed energy
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Figure 3.19: Determined neighborhood profits for each control method and neighborhood
size.

resources (appliances, PV and battery). The presented coordination algorithms rely on
TOU, FIT and an incentive price, combined to a form of DR program. In the centralized
method, the aggregator agent gathers all available information from the smart homes
and controls the assets and batteries to minimize the total neighborhood cost. In the
decentralized method, on the other hand, home agents focus on their own benefit by using
price and aggregated data information from the aggregator agent. Both control methods
aim to increase the utilization of locally produced renewable energy in the neighborhood
by adapting energy trading ability among smart homes. To do that, home agents enable
scheduling their assets to surplus generation hours, as well as discharging their batteries
during high consumption hours. In this regard, the presented coordination algorithms
are compared with two base scenarios (baseline: no control, no trading; selfish: with
control, no trading), and gave better results in terms of daily cost reduction. Between the
two coordination algorithms, while the centralized method outperforms the decentralized
one in terms of cost reduction, the decentralized method solves the optimization and
converges faster than the centralized one.
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4
DYNAMIC PRICING-BASED

DECENTRALIZED HOME ENERGY
SHARING COORDINATION

W ith the increasing integration of DER and HEMS into distribution systems, decen-
tralized energy management is becoming relevant for smart neighborhoods. Hence,

designing a coordination mechanism for efficient load management in neighborhoods us-
ing suitable pricing schemes is now necessary. In this regard, service providers (i.e.,
utilities) can use time-varying price models (TOU, as described in Section 1.2.2) to influ-
ence user electricity consumption habits in return for some profit or savings. However,
these pricing structures remain fixed, and prices do not change dynamically based on the
electricity load in the neighborhood area. Therefore, the performance of the proposed
control methods may not be as efficient as predicted in terms of peak reduction even if
users change their consumption patterns.

In this chapter, we introduce two decentralized coordination strategies (group-based and
turn-based) based on a dynamic pricing structure. The neighborhood electricity price is
determined by merging a TOU tariff from the main grid which remains constant during
the optimization, together with a quadratic function that changes the price during the
optimization according to the area electricity profile. Thereby, the main grid price and the
neighborhood electricity profile are affected by the decision-making process in the smart
homes using a single pricing schema. This chapter, which is an extension of Chapter 3,
also focuses on decentralized energy management with energy sharing in neighborhood
areas. Howsever, although the control algorithms and coordination models of both works
have some similarities, there also have distinct differences, as listed in Table 4.1.

Table 4.1: Comparison of proposed methods in Chapters 3 and 4.

Chapter 3 Chapter 4

Objective Cost reduction Cost and peak reduction
Pricing schema Static (TOU, FIT, and an incen-

tive)
Dynamic (TOU and quadratic)

Communication Exchanges four data types Exchange two data types
Trading/sharing Incentive required No incentive required
RES utilization (priority) Home self-consumption Neighborhood consumption

Basically, we present an advanced model of the previous work by modifying the formula-
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tion of the optimization problem and proposing a new coordination model. Furthermore, in
this chapter, forecasting errors are taken into account while evaluating the performance of
the algorithms, and simulations are performed over a horizon of one year to take into ac-
count seasonal differences on the generation profile. The key contributions of this chapter
are summarized as follows:

• Two decentralized (fully-dependent) coordination mechanisms are presented by for-
mulating and solving one optimization problem. The impact of the sequence of op-
eration of agent actions (group-based vs. turn-based) is analyzed in terms of cost,
peak reduction, and computation time with annual simulations.

• Three different success metrics (SM-01, SM-02, and SM-03) are introduced to de-
termine the performance of the annual simulations compared to base scenarios
(baseline and selfish).

• Uncertainty in consumption and renewable generation profiles is considered by tak-
ing into account forecasting errors in day-ahead electricity profiles.

The rest of the chapter is organized as follows: the system model is presented in Section
4.1. The optimization problem for the control algorithm is formulated in Section 4.2, and
coordination mechanisms are introduced in Section 4.3. In Section 4.4, the simulation
results are given, and in Section 4.5, the chapter is concluded.

4.1/ SYSTEM MODEL

The agent-based two-level hierarchical model introduced in Section 3.1 is used and im-
proved in this work. The same notations are used in the modeling and the formulation of
the optimization problem. For instance, U smart homes are located in the neighborhood
area with Xu non-controllable and Yu controllable appliances (assets) in each smart home
u ∈ U. Compared to the model of Chapter 3, a more detailed probabilistic model is used
to increase diversity among the smart homes in the neighborhood area. To do that, a new
parameter called “consumption rate” is introduced, and five rates are defined to charac-
terize smart homes consumption. The probability values of these consumption rates are
given in Fig. 4.1.

This level of assigned consumption rate is used for determining the number of appliances,
as well as PV modules and battery installation capacities in the smart homes. For exam-
ple, if the consumption rate is “very high”, the ownership probability of the appliances,
PV and battery systems with their installation capacity are high compared to other rates.
As a consequence, a higher consumption rate will imply a high energy consumption, and
thus the user will be more willing to invest in additional resources, such as PV and battery
systems.

4.1.1/ HOME ENERGY SYSTEM

In smart homes, 13 types of electricity appliances are modeled by using the same power
ratings given in Table 3.1. Based on the assigned consumption rate of a smart home, the
number of appliances and their ownership probabilities are given in Table 4.2. As shown
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Figure 4.1: Breakdown of the probability values of the different consumption rates among
smart homes.

in this table, for realistic modeling, the number of some appliances can reach eight in a
household, such as for lights. The number of some other appliances cannot be more
than one, such as for assets. We emphasize that the parameters are chosen arbitrarily,
however they can be easily adapted to model different usage habit (i.e., with a survey
analysis) in different regions or countries.

At a second step of the modeling, appliance operation times are determined probabilisti-
cally. In Table 4.3, each appliance duration and operation mode is given. The operation
mode describes how many times the appliances are used by the user during the day. If
the operation mode is “single”, the appliance is used only one time, otherwise it can be
used multiple times. For example, a vacuum cleaner can only be used one time, for 30
minutes, during the day. On the other hand, lights can be used multiple times with a mini-
mum of 15 minutes. For instance, when a light is used for 15 minutes, it can be used again
for another 15 minutes without waiting, or it can be used at any other time. According to
this principle, the operation start times of the appliances are determined probabilistically
during the day. From Fig. 4.2 to Fig. 4.14, the probability values of each appliance start
times during the day are given, based on the consumption rate of the smart homes.

Using the given probability profiles, the electricity consumption profiles of the non-
controllable appliances are determined. Controllable appliances are assumed to have
changing probabilistic profiles according to appliance usage history over the previous
days. For example, the run probability value of the washing machine is assumed to be
70% from 17:00 to 23:00. This value is a maximum, hence when the washing machine
is used during a day, this 70% value decreases to 10% for the next day utilization. After
that, if this appliance is not used during the next day, the 10% value increases to 20%
for the following day, and this process continues until 70% is reached again, or until the
appliance is used.

This strategy aims to create realistic consumption scenarios for asset usage, hence the
assets are not used for all days during the year. Lastly, in this work, we assume that users
choose scheduling intervals of the assets between times with probability values. Thereby,

71



CHAPTER 4. DYNAMIC PRICING-BASED DECENTRALIZED HOME ENERGY
SHARING COORDINATION

Table 4.2: Number of smart home appliances and corresponding probabilities.

Amount Very Low Low Medium High Very High

Lights

2 40% - - -
3 40% - - - -
4 20% 40% - - -
5 - 40% 40% - -
6 - 20% 40% 40% 40%
7 - - 20% 40% 40%
8 - - - 20% 20%

Kettle
0 50% 50% - - -
1 50% 50% 100% 100% 100%

Microwave
0 50% 50% - - -
1 50% 50% 100% 100% 100%

Vacuum 0 50% 25% - - -
cleaner 1 50% 75% 100% 100% 100%

Television

0 25% 15% - - -
1 75% 85% 15% 15% -
2 - - 85% 85% 15%
3 - - - - 85%

Computer

1 100% - - - -
2 - 100% 75% 50% -
3 - - 25% 25% 50%
4 - - - 25% 25%
5 - - - - 25%

Iron
0 25% 15% - - -
1 75% 85% 100% 100% 100%

Hair dryer
0 25% 15% - - -
1 75% 85% 100% 100% 100%

Coffee 0 25% 15% - - -
Maker 1 75% 85% 100% 100% 100%

Toaster
0 25% 15% - - -
1 75% 85% 100% 100% 100%

Washing 0 25% 15% - - -
machine 1 75% 85% 100% 100% 100%

Clothes 0 75% 50% 25% 15% -
dryer 1 25% 50% 75% 85% 100%

Dish 0 75% 50% 25% - -
washer 1 25% 50% 75% 100% 100%
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Table 4.3: Appliance operation duration and mode.

Appliance Duration
(minutes) Mode Appliance Duration

(minutes) Mode

Lights 15 Multiple Hair dryer 10 Multiple
Kettle 15 Multiple Coffee maker 10 Multiple
Microwave 10 Multiple Toaster 10 Multiple
Vacuum
cleaner

30 Single Washing ma-
chine

90 Single

Television 30 Multiple Clothes dryer 90 Single
Computer 30 Multiple Dish washer 60 Single
Iron 30 Single

Figure 4.2: Start time probability of lights. Figure 4.3: Start time probability of the kettle.

Figure 4.4: Start time probability of the mi-
crowave.

Figure 4.5: Start time probability of the vac-
uum cleaner.

a washing machine cannot be shifted to hours later than 23:00, and a clothes dryer and a
dish washer can only be operated until 01:00, because of the users’ noise preferences. In
other words, they are not willing to be disturbed by appliance operation during late night
hours (after 01:00).

For modeling RES generation and energy storage, PV and battery systems are consid-
ered in the smart home environment. The installation capacities of both systems are
determined based on the assigned consumption rate in the smart home, as shown in
Table 4.4. Accordingly, smart homes with a higher consumption rate are more willing to
install PV and battery systems because they can afford it.

73



CHAPTER 4. DYNAMIC PRICING-BASED DECENTRALIZED HOME ENERGY
SHARING COORDINATION

Figure 4.6: Start time probability of the televi-
sion.

Figure 4.7: Start time probability of the com-
puter.

Figure 4.8: Start time probability of the iron. Figure 4.9: Start time probability of the hair
dryer.

Figure 4.10: Start time probability of the coffee
maker.

Figure 4.11: Start time probability of the
toaster.

Figure 4.12: Start time probability of the washing
machine.

Figure 4.13: Start time probability of the
clothes dryer.

4.1.2/ FORECASTING ERROR MODEL

Forecasting errors are considered for non-controllable appliances consumption and the
output of PV generation. We assume that operation details of the assets are already
defined and entered into the HEMS by users in the previous days. For non-controllable
appliances, Gaussian distributions are used to model the start time and the operation
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Figure 4.14: Start time probability of the dish washer.

Table 4.4: PV and battery systems ownership and ratings.

Consumption
Rate

PV ownership
probability

Series mod-
ules N s

u

Parallel
modules N p

u

Module power
rating Ppv

u

Battery
ownership

Very low 30% 1 — 4 1 — 4 160 — 200 20%
Low 40% 2 — 5 1 — 4 160 — 200 30%
Medium 50% 2 — 5 2 — 5 180 — 200 40%
High 60% 3 — 6 2 — 5 220 — 240 50%
Very high 70% 3 — 6 3 — 6 220 — 240 60%

duration of the appliances as follows:

rs,e
x = rs

x + ε s
x (4.1)

de
x = dx + εd

x (4.2)

where ε s
x and rs,e

x are the error value for the start time, and the start time with forecasting
error, respectively; and εd

x and de
x are the error value for the operation duration and the

duration with forecasting error, respectively. The error values (ε s
x and εd

x ) are determined
by a Gaussian Distribution N

(
µ, σ2

)
[114]. The mean value µ is chosen equal to zero,

and the standard deviation σ is assumed to be variable in terms of minutes according to
the quantity and the appliance type. Note that we assume that home agents know the
exact power rating of each appliance (e.g., using smart plugs).

Each home agent forecasts its own generation profile individually, hence the errors are
calculated differently in each smart home. To consider the forecasting error in the genera-
tion profile, the received solar irradiance is modeled by including forecasting errors using
the Gamma distribution [2]:

Ge
u(t) = G(t) × εg (4.3)

where Ge
u(t) and εg are the solar irradiance with forecasting error and the prediction error

parameter for solar irradiance, respectively. The error value (εg) is determined using
gamma noise with distribution G(κ, θ), where κ = 210 is the shape parameter, and θ =

0.005 is the scale parameter.

4.1.3/ ELECTRICITY PRICING: DYNAMIC MODEL

In the neighborhood area, users are charged for their electricity consumption based on
a dynamic pricing model. The utilized pricing structure is formed by merging a TOU
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price with a quadratic function. We assume that the service provider, at the upper level,
determines the base price (TOU pricing “λTOU(t)” in this case) for each time slot (typically
hourly). Thus, the service provider, based on the upper level condition, also influences the
neighborhood schedules through the base price. Then, the aggregator agent determines
the electricity price in the neighborhood associated to the base price λTOU(t) and the
aggregated neighborhood profile at the point of common coupling (PCC). The PCC of the
neighborhood and the variable Pa

agg(t) are shown in Fig. 4.15.

Figure 4.15: Neighborhood agent model with PCC.

To model the dynamic fluctuations in the neighborhood price which occur based on Pa
agg(t),

a dynamic part q(t,Pa
agg(t)) is formulated using a quadratic function as follows:

q(t,Pa
agg(t)) = a(t) · |Pa

agg(t)|2 + b(t) · |Pa
agg(t)| + c(t) (4.4)

where a(t) > 0, b(t) ≥ 0 and c(t) ≥ 0 are positive time-dependent parameters. Note that
these parameters are assumed constant during the day in this work, however they can be
considered variable in some cases [130]. Then, the dynamic part is merged with a base
price to determine the full dynamic price λd(t,Pa

agg(t)) in the neighborhood using:

λd(t,Pa
agg(t)) =

λTOU(t) − q(t,Pa
agg(t)) , if Pa

agg(t) ≤ 0
λTOU(t) + q(t,Pa

agg(t)) ,else Pa
agg(t) > 0

(4.5)

Overall, the aggregator enables users to control their assets not only according to the
aggregated profile, but also according to the base structure, due to the main grid connec-
tion. Furthermore, the presented dynamic model is used for both consuming and selling
energy in the smart homes, hence reverse power flow is enabled when generation is
higher than consumption. The important feature of this price model is the consumption
will be more desirable with decreased λd(t,Pa

agg(t)) when there is high surplus generation,
and oppositely, the sharing energy will be more beneficial when there is high consumption
with increased λd(t,Pa

agg(t)). Moreover, the surplus generation hours will be undesirable
for the producers to share energy, because they are less profitable (as shown in Fig.
4.16). As an example, dynamic pricing is shown with the aggregated electricity profile in
Figs. 4.17 and 4.18.
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Figure 4.16: Full dynamic price in the neighborhood (condition 1: when surplus genera-
tion is increased, condition 2: when electricity consumption is increased).

Figure 4.17: Neighborhood net load profile.

4.2/ PROBLEM FORMULATION

In this work, two base scenarios and two decentralized coordination models are simu-
lated, and their performance is compared with each other. The baseline and selfish sce-
narios were described in Sections 3.2.1 and 3.2.2. However, in this chapter, these base
scenarios are reformulated (due to the use of different pricing algorithms) as follows:

• Baseline scenario: daily electricity bill of the smart homes using the battery output
power function (3.7) without optimization.

Cu = 4t ·
T∑

t=1

(
Pc

u(t) − Pg
u(t) + Pb

u(t)
)
· λd(t,Pa

agg(t)) (4.6)
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Figure 4.18: Base and full dynamic electricity pricing.

• Selfish scenario: optimization problem using the battery output power function
(3.19).

minimize

Cu = 4t ·
T∑

t=1

(
Pc

u(t) − Pg
u(t) + Pb

u(t)
)
· λd(t,Pa

agg(t))


s.t. (3.1), (3.2), (3.9), (3.10), (3.16), (3.17), (3.18)

(4.7)

To sum up base scenarios, in Baseline, smart homes do not communicate with the ag-
gregator, share energy, nor control their assets. They are modeled as passive users. In
Selfish, homes can control their electricity appliances and batteries according to the TOU
price without coordination and energy sharing.

Also, as a reminder, asset scheduling is formulated as in Fig. 3.5, with control intervals
defined by users for the Selfish scenario, and decentralized control algorithm. Again, we
consider that the clothes dryer should operate after the washing machine.

In the decentralized control problem, the battery power output Pb
u(t) is determined us-

ing the aggregated electricity profiles (aggregated net profile Pn
agg(t) and aggregated sold

power profile with battery discharge Pbs
agg(t)) and dynamic price λd(t,Pa

agg(t)) received from
the aggregator agent. Note that while home agents are sending four data types (Pnc

u (t),
Psg

u (t), Pbs
u (t) and Pbp

u (t)) in Chapter 3, they only exchange two types of data (Pn
u(t) and

Pbs
u (t)) with the aggregator agent in this chapter. For the battery control, the same as-

sumptions are also valid here, and are listed below:

• A home agent can use its battery for its own consumption and/or for sharing energy
with its neighbors, but cannot discharge the battery to sell energy back to the main
grid. This feature is left as future work, in which the utility (the upper level of the
neighborhood) requires energy from the neighborhood.

• To decrease the computation burden, an additional time resolution “z ∈ Z” is defined,
rather than using the actual time resolution “t ∈ T” as represented in Fig. 3.6.

To determine battery power, home agents firstly determine perspective electricity profiles
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Rn
agg, u(t) (net profile) and Rbs

agg, u(t) (power sold with battery discharge) as in Section 3.2.3
with:

Rn
agg, u(t) = Pn

agg(t) − Pn
u(t) (4.8)

Rbs
agg, u(t) = Pbs

agg(t) − Pbs
u (t) (4.9)

Home agents then calculate the battery output power using binary variables γb
u(z) ∈ {0, 1}

for controlling the battery as follows:

Pb
u(t) =


fullcharge · ηc

u , if γb
u(z) = 0, Pg

u(t) > 0
idle ,elseif γb

u(z) = 0, Pg
u(t) ≤ 0

charge · ηc
u ,elseif γb

u(z) = 1, Pg
u(t) > Pc

u(t) + Rn
agg, u(t) − Rbs

agg, u(t)
discharge/ηd

u ,elseif γb
u(z) = 1, Pg

u(t) ≤ Pc
u(t) + Rn

agg, u(t) − Rbs
agg, u(t)

(4.10)

The numerical outputs for battery operation are defined as:

fullcharge → Pg
u(t)

idle → 0
charge → Pg

u(t) −
(
Pc

u(t) + Rn
agg, u(t) − Rbs

agg, u(t)
)

discharge → −
(
Pc

u(t) − Pg
u(t) + Rn

agg, u(t) − Rbs
agg, u(t)

) (4.11)

According to (4.11), fullcharge means charging the battery using PV generation and
charge means charging with surplus generation after using it firstly for consumption. For
battery discharge, the home agent discharges the battery only when the logical input is
γb

u(z) = 1. After that, battery power sold with battery discharge is calculated by:

Pbs
u (t) = Pb

u(t) − Pc
u(t) (4.12)

Thus, the battery power sold is Pbs
u (t) ≥ 0 when the battery output power is Pb

u(t) ≤ 0.
According to (4.11) and (4.10), if there are home and neighborhood consumption at the
same time when battery discharging is decided, the discharged power is firstly used for
home consumption, and then sold to the neighbors.

Lastly, home agents determine the net electricity profile of the smart homes and optimize
the following objective function, with the set of constraints to minimize the daily electricity
bill of the users.

Pn
u(t) = Pc

u(t) − Pg
u(t) + Pb

u(t) + Pbs
u (t) (4.13)

minimize

Cu = 4t ·
T∑

t=1

(
Pn

u(t) − Pbs
u (t)

)
· λd(t,Pa

agg, u(t))


s.t. (3.1), (3.2), (3.9), (3.10), (3.16), (3.17), (3.18)

(4.14)

Note that Pbs
u (t) is removed in (4.13) and added in (4.14). These variables are needed

separately during the data exchange with the aggregator agent for implementing the co-
ordination mechanisms described in Section 4.3.
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4.3/ COORDINATION MECHANISMS

Two coordination models are proposed (group-based and turn-based), and differ in the
decision-making principle of the home agents. In both models, the same optimization
problem is solved and the same data structure is used for communication by the home
agents, as shown in Fig. 4.19. Note that home agents do not communicate with each
other, and take the average of the actual data over a given time interval “L” for com-
municating with the aggregator, as in Chapter 3. In this respect, as a reminder, when
a message is sent, the data size is modified from [1 × T ] to [1 × T /L], and reconverted
from [1 × T /L] to [1 × T ] when a message is received.

Home Agents

Optimization:

Communication Data:

Aggregator Agent

Aggregated Pro�le Update:

Dynamic Price Update:

Figure 4.19: Communication diagram of the neighborhood agents.

4.3.1/ GROUP-BASED COORDINATION

The pseudo-code of the group-based coordination mechanism is given in Algorithm 4.

Algorithm 4 Group-based coordination model.

1: All users ∀u ∈ U receive λ̂d(l, P̂a
agg(l)) = d̂(l), P̂n

agg(l) = 0 and P̂bs
agg(l) = 0 from the

aggregator agent.
2: repeat
3: ∀u ∈ U generate R̂n

agg, u(l) and R̂bs
agg, u(l) with (4.8) and (4.9).

4: ∀u ∈ U convert: Rn
agg, u(t)← R̂n

agg, u(l),Rbs
agg, u(t)← R̂bs

agg, u(l)
5: ∀u ∈ U solve (4.14) with (4.10)-(4.13).
6: ∀u ∈ U create and send P̂n

u(l) and P̂bs
u (l).

7: The aggregator generates λ̂d(l, P̂a
agg(l)), P̂n

agg(l), P̂bs
agg(l) and sends them to ∀u ∈ U.

8: The aggregator calculates:
T /L∑
l=1

P̂a
agg(l) · λ̂d(l, P̂a

agg(l)) · 4l

9: until convergence is achieved (Section 4.3.3).

At the beginning of the coordination (at the first iteration, k = 1), the aggregator sends
λ̂d(l, P̂a

agg(l)) = λ̂TOU(l), P̂n
agg(l) = 0, and P̂n

agg(l) = 0 to home agents. Home agents re-
ceive the data and solve the optimization problem with (4.14), simultaneously. After that,
the home net profile P̂n

u(l) and the home sold battery power profile P̂s
u(l) are sent to the

aggregator agent. Then, the aggregator agent determines the aggregated profiles and
the dynamic price in the neighborhood, and sends them back to the home agents. This
process continues until convergence is reached (see Section 4.3.3).
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Figure 4.20: Coordination diagram of the group-based mechanism.

As all agents run the optimization simultaneously with Algorithm 4, Pbs
agg(t) may become

higher than the aggregated consumption Pn
agg(t) (which can lead to mismatches) during

the procedure on two occasions: i) at the end of each iteration, or ii) when final decisions
are converted from the l-domain to the t-domain (as in Section 3.2.3). Therefore, for the
first case, the aggregator agent determines the price by comparing P̂bs

agg(l) and P̂n
agg(l) in

(4.15). There is a possibility that home agents can discharge their battery for neighbor-
hood consumption at the same time due to simultaneous optimization, which may lead to
P̂n

agg(l) ≤ P̂bs
agg(l) when P̂n

agg(l) > 0.

P̂a
agg(l) =


0 : P̂n

agg(l) > 0, P̂n
agg(l) ≤ P̂bs

agg(l)
P̂n

agg(l) − P̂bs
agg(l) : P̂n

agg(l) > 0, P̂n
agg(l) > P̂s

agg(l)
P̂n

agg(l) : P̂n
agg(l) ≤ 0

 (4.15)

For the second case, a new defined proportional source matching method is applied,
where the sold power of home agents is proportionally determined according to the total
decided sold power after convergence is reached (see Section 3.2.3). If there is one
seller (Pbs

agg(t) = Pbs
u (t)) and the sold battery discharge power is less than or equal to

the aggregated consumption (Pn
agg(t) ≥ Pbs

u (t)), no extra calculation is required (Pbs
u (t) =

Pbs, d
u (t)). Otherwise, when the number of sellers is higher than one, Pbs

agg(t) > Pbs
u (t) and

Pbs
agg(t) > Pn

agg(t), then:

Pbs
u (t) = Pn

agg(t) ·
Pbs, d

u (t)

Pbs, d
agg (t)

(4.16)

If a mismatch occurs between the l-domain and the t-domain, the aggregator stabilizes
the system by determining Pbs

u (t) for each user based on the ratio between Pbs,d
u (t) and

Pbs,d
agg (t)) in real time. The coordination diagram for the group-based mechanism is shown

in Fig. 4.21.

4.3.2/ TURN-BASED ALGORITHM

The pseudo-code of the turn-based coordination mechanism is given in Algorithm 5.
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Algorithm 5 Turn-based coordination model.

1: All users ∀u ∈ U receive λ̂d(l, P̂a
agg(l)) = λTOU(l), P̂n

agg(l) = 0 and P̂s
agg(l) = 0 from the

aggregator agent.
2: repeat
3: u = 1
4: while u ≤ U do
5: User u generates the perspective data with (4.8) and (4.9).
6: User u converts: Rn

agg, u(t)← R̂n
agg, u(l),Rbs

agg, u(t)← R̂bs
agg, u(l).

7: User u solves (4.14) using (4.10)-(4.13).
8: User u creates and sends them P̂n

u(l) and P̂bs
u (l).

9: The aggregator generates λ̂d(l, P̂a
agg(l)), P̂n

agg(l), P̂bs
agg(l) and sends to u = u + 1.

10: end while

11: The aggregator calculates:
T /L∑
l=1

P̂a
agg(l) · λ̂d(l, P̂a

agg(l)) · 4l

12: until convergence is achieved (in Section 4.3.3)

The main difference between the group-based and turn-based models is that home
agents are communicating with the aggregator agent and solve the optimization prob-
lem one after another in the turn-based model, while it is done simultaneously in the
group-based one. Hence, they do not need to apply (4.13), because they are informed of
the changes after each home optimization (P̂a

agg(l) = P̂n
agg(l) − P̂bs

agg(l)). In this model, k is
increased after the U-th home agent optimization. Then, if convergence is not achieved,
each user u ∈ U runs the optimization again. The coordination diagram for the turn-based
mechanism is shown in Fig. 4.21.

Figure 4.21: Coordination diagram of the turn-based mechanism.
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4.3.3/ CONVERGENCE

For both proposed coordination models, Algorithm 6 is defined with the pseudo-code for
the convergence criteria.

Algorithm 6 Convergence criteria of Algorithms 4 and 5.
1: k ← 1, ε ← 0
2: while k ≤ kmax do
3: Apply Algorithm 1 or 2

4: ε =
U∑

u=1
|(Ck

u −C∗u)|

5: if k > kmin then
6: if ε < εe then
7: break while;
8: end if
9: end if

10: k ← k + 1
11: end while

where ε is the cost deviation at the last iteration, εe is the acceptable cost deviation for
convergence, Ck

u is the cost of the smart home at the last iteration, and C∗u is the best
achieved cost (minimum) of the smart home among all iterations. Lastly, kmin is the min-
imum iteration limit and kmax is the maximum iteration limit of the coordination process.
According to Algorithm 5, the system reaches convergence when the total cost does not
fluctuate more than εe. Otherwise, iterations continue until the maximum allowed number
iterations is reached. Then, the aggregator agent ends the process and considers the
latest decision of smart homes at kmax as the final one.

4.4/ PERFORMANCE EVALUATION

The same co-simulation platform as the one described in Section 3.3.2 is used to perform
the simulations for a neighborhood formed by U = 25 smart homes. The number of
appliances in each smart home (Fig. 4.22) and PV (Fig. 4.23) and battery installation
capacities (Fig. 4.24) are determined probabilistically. In total, 400 appliances are placed
(352 non-controllable and 48 controllable) in the neighborhood. 11 smart homes are
equipped with PV and 3 smart homes are deployed with PV and battery systems. An
example electricity consumption and generation profile is given in Fig. 4.25.

The asset consumption and the PV generation ratio with respect to the total neighborhood
consumption vary between 3–8% and 5–70%, respectively. The cause of these small
ratios in the asset consumption share is that these appliances are not working every day
in a year. A total of 229 assets are available in the neighborhood, and are used 8,044
times in a year (much less than 48 × 365 = 17, 520 times).

Home agents solve the optimization problem for two days (T = 2, 880) using the rolling
horizon technique, as in Section 3.3.1. For communication, home agents send average
data for each L = 30 minutes and the battery control interval is defined equal to Z = 15
minutes. Simulations are performed on the same desktop computer described in Chapter
3. Lastly, the scalability of the algorithm is tested for four different neighborhood area
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Figure 4.22: Assets and non-controllable appliance numbers in smart homes.
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Figure 4.23: PV installation capacities in smart homes.
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Figure 4.24: Battery installation capacities in smart homes.

sizes by varying the number of smart homes (25, 50, 75, and 100 smart homes).
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Figure 4.25: Smart home electricity profile example.

4.4.1/ DAILY SIMULATION RESULTS

Firstly, we run the simulations with and without considering forecasting errors for an arbi-
trarily chosen day (the 250th day) of the year. The prediction errors are calculated by the
symmetrical mean absolute percentage errors (SMAPE) for the aggregated consumption
(22.65 %) and generation profiles (5.08 %) of the neighborhood. The SMAPE formulation
is defined as follows:

S MAPE =
100
T

T∑
t=1

|Fv(t) − Av(t)|
(|Av(t)| + |Fv(t)|) /2

(4.17)

where Fv(t) is the forecast value and Av(t) is the actual value of the parameter. The
cost and peak consumption results are given in Table 4.5, with absolute and percentage
values. Percentages are calculated with respect to baseline results.

Table 4.5: Daily electric energy management results with (WE) and without (WoE) fore-
casting errors.

Baseline Selfish Group-based Turn-based

Cost (e)
WoE 34.51 33.33 32.46 32.14
WE — 33.90 32.47 32.23

Cost (%)
WoE — 3.41 5.94 6.83
WE — 1.77 5.91 6.63

Peak (kW) WoE 52.42 44.42 43.97 41.09
WE — 50.56 47.15 45.16

Peak (%) WoE — 15.26 16.11 21.61
WE — 3.54 10.05 13.85

The coordination methods show better performance compared to the baseline scenario,
in terms of cost and peak demand reduction. The turn-based method shows a slightly bet-
ter performance, and enables saving 0.32emore compared to the group-based method.
The selfish algorithm seems effective compared to the baseline scenario, but it is less ef-
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fective than the proposed coordination mechanisms. Especially, when forecasting errors
are taken into account, cost and peak reductions are decreased significantly, while the
presented approaches show better performance.

Secondly, energy comparisons are shown in Fig. 4.26. Even though there is no coordi-
nation for baseline and selfish control, some energy is shared during high PV generation
hours, which occurs naturally (physically, if there is enough load, surplus energy during
daylight is used locally inside the neighborhood instead of being fed back to the main
grid). Also, self-consumption is higher in these two algorithms as sharing energy by
battery discharge is not allowed. Therefore, batteries are just discharged for the own
consumption of the smart homes. On the other hand, home agents increase energy
sharing and decrease self-consumption by discharging batteries for the neighborhood
with both group-based and turn-based methods. These algorithms achieve decreasing
the energy purchased from the utility. As there is no coordination, home agents discharge
their batteries only for their own consumption in Fig. 4.27. On the other hand, with this co-
ordination algorithm, home agents are able to discharge their batteries for neighborhood
consumption, and decrease the purchased energy amount from the utility.
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Figure 4.26: Comparison of the energy consumption breakdown for the different strate-
gies.

Lastly, as expected, forecasting errors negatively impact all algorithms for both cost and
peak reduction efficiencies. However, numerical results show that the proposed algo-
rithms still provide better performance compared to the baseline due to their coordination
and energy sharing ability.

4.4.2/ ANNUAL SIMULATION RESULTS

In this section, annual results are determined for both with and without considering fore-
casting errors. In Figs. 4.28 and 4.29, the neighborhood cost and peak consumption
without considering forecasting errors are shown for a year. For all algorithms, total peak
and cost results exhibit differences due to changes in PV generation during the seasons.
Although there is a slight difference in the results, the presented group-based and turn-
based coordination methods provide more benefits in lowering the peak consumption and
the neighborhood cost during the year.
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Figure 4.27: Smart home electricity profile example, using the different strategies.
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Figure 4.28: Annual neighborhood cost profiles.

To further analyze the presented methods in details, numerical results are given in Table
4.6.

Finally, we define three performance metrics to investigate the success rates (SR) of the
presented coordination methods as follows:

• SR-01 is the percentage of the smart homes which have reduced their electricity
bills.

• SR-02 is the percentage of the successful days for which the neighborhood cost
has been reduced.

• SR-03 is the percentage of the successful days for which the neighborhood con-
sumption has been reduced.

For SR-01, it can be seen that all smart homes succeed to decrease their electricity bill
with both coordination methods, while with the selfish method, 8 of the smart homes lost
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Figure 4.29: Annual neighborhood peak consumption profiles.

money. For the home energy management, all smart homes should earn some benefit
in return for their efforts. Users may otherwise not be interested in active participation.
In this respect, the proposed algorithms show 100% performance with coordination and
energy sharing by the battery discharge in the neighborhood. For SR-02, both coordina-
tion mechanisms reduce the electricity cost for a minimum of 328 days, while the selfish
algorithm reaches a maximum of 267 days. Lastly, for SR-03, both presented methods
achieve to reduce the peak consumption for around 330 days, while the selfish algorithm
reduces them only for 245 days.

Table 4.6: Annual electric energy management with (WE) and without (WoE) forecasting
errors.

Baseline Selfish Group-based Turn-based

Cost (ke)
WoE 16.377 16.092 16.028 15.965
WE — 16.136 16.068 15.979

Cost (%)
WoE — 1.74 2.13 2.52
WE — 1.47 1.89 2.43

Avg. peak (kW) WoE 48.50 47.64 47.05 46.62
WE — 48.03 47.23 46.67

Avg. peak (%) WoE — 1.77 2.98 3.97
WE — 0.97 2.62 3.77

SR - 01 (%)
WoE — 92 100 100
WE — 92 100 100

SR - 02 (%)
WoE — 73.15 90.68 94.52
WE — 69.58 89.86 90.68

SR - 03 (%)
WoE — 67.12 92.05 93.69
WE — 66.30 90.68 91.50
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Overall, the turn-based method returns the best performance in terms of cost and peak
reduction, while the group-based method shows a slightly lower performance. However,
the turn-based algorithm requires more computation time (maximum 1255 sec.) to co-
ordinate the home agent strategies compared to the group-based model (maximum 75
sec.) In small neighborhoods, the turn-based approach can solve the coordination prob-
lem in acceptable time limits. However, for larger neighborhoods (such as with 1000 smart
homes), the group-based method seems preferable. Lastly, results show that the selfish
algorithm is not effective for scheduling and battery management in the neighborhoods.

4.4.3/ SCALABILITY ANALYSIS

In this section, a scalability analysis is performed by varying the number of smart homes
in the neighborhood area. The simulations are performed for four different neighborhood
area sizes (25, 50, 75, and 100). The numbers of PV and battery owners are given in Table
4.7.

Table 4.7: Neighborhood area number of resource owners.

Neighborhood Number of PV and
battery owners

Number of PV
owners

Number of no PV and
battery owners

25 smart homes 3 8 14
50 smart homes 8 24 18
75 smart homes 15 22 38
100 smart homes 20 35 45

The simulation results are given below, and enable comparing the achieved profit and
peak consumption reductions against the baseline scenario. In Table 4.8, the determined
profits and peak reductions are given for each control method with and without consid-
ering forecasting errors. This scalability analysis proves that the presented control algo-
rithms provide cost-beneficial coordination strategies for different sizes of neighborhoods.
It should be noted that simulations are performed for the same day (the 250th day), and
that the number of the PV and battery owners clearly impact the performance of the al-
gorithm. Although, there is no regular pattern on the results of Table 4.7, the proposed
coordination algorithms show a better performance compared to the baseline and selfish
scenarios in every neighborhood area size.

4.5/ CONCLUSION

This chapter has presented two decentralized coordination mechanisms (group-based
and turn-based) for energy management and sharing in a neighborhood area consider-
ing forecasting errors. This chapter, as an extension of the previous chapter, has focused
on increasing renewable energy usage in the neighborhood area by deploying more ad-
vanced decentralized coordination methods with a dynamic price structure. This price
structure is modeled by merging grid a TOU price and a quadratic price function associ-
ated to the neighborhood electricity profile at the PCC. In both coordination mechanisms,
the same optimization problem is solved by the home agents in a different order. Home
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Table 4.8: Determined neighborhood profits and peak reductions for each control method
and neighborhood size.

Neighborhood Methods Profits (e) Peak reductions (kW)
WoE WE WoE WE

25 smart homes
Selfish 1.18 0.61 8.00 1.86
Group-based 2.05 2.04 8.45 5.27
Turn-based 2.37 2.28 11.33 7.26

50 smart homes
Selfish 1.10 0.63 1.89 0.14
Group-based 4.79 1.11 2.22 0.39
Turn-based 8.04 6.98 5.36 4.79

75 smart homes
Selfish 3.58 0.32 1.86 0.54
Group-based 5.50 1.55 2.24 1.18
Turn-based 33.45 31.16 16.91 12.83

100 smart homes
Selfish 1.14 0.58 1.01 0.94
Group-based 13.18 11.86 4.32 3.23
Turn-based 47.42 35.14 21.13 16.64

agents optimize their power profiles to reduce their daily electricity bill by scheduling their
assets and controlling their battery system. In the group-based method, home agents op-
timize simultaneously, while they do it one-by-one in the turn-based method. The results
of the coordination methods are compared with two base scenarios (baseline and selfish),
by performing annual simulations. The performance of the presented algorithms is eval-
uated according to cost and peak reductions, and with the three proposed metrics. The
new metrics are evaluating the performance of the algorithms based on the determined
cost and peak reductions in a year. Both methods show good performance compared
to the base scenarios in terms of cost and peak reductions, and on the proposed met-
rics. Between the algorithms, the turn-based method gives the best results, while the
group-based method is ranked second. However, the group-based method solves the
optimization problem and converges significantly faster than the turn-based one.
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5
AGGREGATOR-BASED ASSET

CONTROL WITH RESIDENTIAL PV
GENERATION

An aggregator is a market participant that bridges the gap between bulk generation and
the emerging active users (mostly smart homes in the residential sector) by efficiently

scheduling and/or allocating resources to meet certain objectives on behalf of users or the
utility. In this respect, the aggregator is a third-party entity that aggregates the electricity
utilization of the users and provides a value proposition to the bulk electricity market. The
aggregator seeks to increase its revenue by obtaining economic benefits for the users,
by controlling their assets, as well as by providing ancillary services to the grid operator.
Therefore, in order to achieve market integration between users and the grid operator,
aggregators are required to coordinate control operations, for instance with DR programs.
By applying the control operations of assets, the aggregator aims to earn and increase
its profit in return for its services. The location of the aggregator in the system and its
purposes were defined in Section 2.3.1.

In the previous chapters, the interactions between the aggregator and the rest of the grid
were assumed to be already arranged, and the profit of the aggregator was not deter-
mined. This chapter focuses on the determination of the aggregator profit with DR pro-
grams (denoted as smart grid resource allocation (SGRA) problem), and investigates the
impact of residential PV systems integration on the economic performance of an aggre-
gator. In this work, the aggregator is the central controller of the neighborhood area, and
interacts with the local distribution utility and the bulk electricity market. Based on these
interactions, the aggregator provides users an alternative pricing called CIP, introduced
in [120], for incentivizing participation in the DR program. Through this, customers re-
duce their daily electricity bills while the aggregator also decreases the aggregated peak
consumption of the area and generates a profit.

In this respect, the main aim of the aggregator is to improve its profitability by incentivizing
the users in return for scheduling their assets. The aggregator achieves this by offering
an alternative, yet competitive, pricing mechanism to the utility RTP. However, the aggre-
gator must also take into account the PV generation in smart homes while determining
the offered pricing and scheduling the assets. Therefore, in this chapter, we investigate
the effect of RES penetration on the aggregator profit as an extension of previously pub-
lished work in [120]. Moreover, we perform simulations over multiple days to evaluate
the performance of the control algorithm compared to a baseline scenario. Furthermore,
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using parallel processing techniques, the computation time of the optimization process is
decreased.

The rest of the chapter is organized as follows: the system model is presented in Section
5.1. In Section 5.2, the optimization problem is formulated, and parallel processing meth-
ods are studied in Section 5.3. Simulation results are given in Section 5.4. In Section 5.5,
the chapter is concluded.

5.1/ SYSTEM MODEL

We consider an electricity network and a market structure, where one utility, one aggre-
gator and U smart homes are operating. As this chapter is an extension of previously
published research, we used the same modeling approach as the one described in [120].
Therefore, in this chapter, MAS are not used for modeling entities of the electricity network
as agents.

5.1.1/ SMART HOME

In smart homes, electricity appliances are divided into two groups, as in Chapters 3 and
4: non-controllable and controllable. In total, 31 types of non-controllable and 18 types
of controllable appliances (assets) are used to model the daily consumption profile of the
smart homes. The non-controllable loads are probabilistically generated for each user
based on data in [62], and assets are modeled probabilistically using the data in Table
5.1. The penetration rate is used to refer to the probability that the appliance exists in the
smart home. All electricity profiles in smart homes and the neighborhood are modeled
with a 15-minute time resolution.

Residential PV systems are considered as RES. The existence probability of PV in smart
homes is defined arbitrarily. In Section 5.4, various cases studies are described based on
the defined probability values of the PV system, in order to compare the effect of various
PV penetration levels in the neighborhood area. The PV generation output is formulated
using (3.6).

5.1.2/ ELECTRICITY NETWORK

The considered electricity network is shown in Fig. 5.1. The aggregator interacts with
the residential customers (through their HEMS) in the neighborhood to provide them with
cost-beneficial consumption options by scheduling their appliances. It offers an alter-
native pricing, so users can earn some profit in return for their efforts. To do that, the
aggregator interacts with the bulk spot market and the utility to receive electricity pric-
ing data (forecast and real-time data) from both sources. The data for the spot market
price and and utility price are obtained from PJM and ComEd, respectively. PJM is an
American independent regional organization that operates competitive wholesale elec-
tricity markets and manages the high-voltage electricity grid to ensure its reliability [38].
ComEd (Commonwealth Edison Company) is a utility company that provides electricity
services across Northern Illinois [36]. Examples of PJM and ComEd pricing data are
given in Figs. 5.2 and 5.3.
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Table 5.1: Modeling parameters of assets [120].

Penetration
(%)

Power rating
mean (kW)

Power rating
std. dev. (kW)

Duration
(15-minutes)

Start time
mean (h)

Start time
std. dev. (h)

70 0.5 0.05 4 7 1
70 0.5 0.05 4 14 3
70 0.5 0.05 4 17 1
50 0.75 0.10 3 7 1
50 0.75 0.10 3 14 3
50 0.75 0.10 3 17 1
30 1.0 0.20 2 7 1
30 1.0 0.20 2 14 3
30 1.0 0.20 2 17 1

100 0.25 0.01 8 1 1
100 0.25 0.01 8 14 3
100 0.25 0.01 8 17 1
10 1.5 0.30 2 7 1
10 1.5 0.30 2 14 3
10 1.5 0.30 2 17 1
80 0.4 0.05 6 7 1
80 0.4 0.05 6 14 3
80 0.4 0.05 6 17 1

5.2/ PROBLEM FORMULATION

In this section, the SGRA problem is formulated with and without considering the inte-
gration of residential PV systems into smart homes, and is solved by the aggregator. A
day-ahead centralized control methodology (see Section 2.3.2.1) is applied in both cases,

Figure 5.1: Electric and communication systems architecture.
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Figure 5.2: Forecast spot-market (PJM) and utility prices (ComEd) for July, 20 2017.

Figure 5.3: Actual spot market (PJM) and utility prices (ComEd) for July, 20 2017.

wherein the aggregator controls the controllable appliances (assets) in the smart homes.
However, to convince the customers to participate in the transactions with the aggrega-
tor, a customer incentive pricing (CIP), which is a competitive price compared to the utility
price for the residential customers, is offered by the aggregator.

In this respect, prior to each day, the aggregator receives price data from the spot market
and the utility, and scheduling intervals of the assets. After that, the aggregator deter-
mines the operation start time of each asset with the CIP. As in Section 3.2, the assets
are scheduled according to user-defined scheduling intervals, hence the same constraint
(3.16) is formulated in the optimization problem. As the algorithm has no knowledge
about appliance types, the interdependence among assets is not considered in this work.
We assume that all assets operate independently from each other, thereby constraints
(3.17) and (3.18) are not considered in the optimization problem.

However, users may not be willing to allow scheduling their assets in return for modest
savings; rather, they might expect significant savings for their efforts in participating in
the DR program. Therefore, customer willingness δu,y is formulated as a constraint for
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allowing each asset y ∈ Yu to be controlled by the aggregator. To consider that, the same
model as in [120] is used to determine a threshold profit for each asset scheduling using
α modeling. The customer willingness for each asset is formulated by:

δu,y =

1 , if csch
u,y ≤ αu,y · c0

u,y

0 ,else csch
u,y > αu,y · c0

u,y
(5.1)

where δu,y is the customer willingness to allow scheduling of an asset (δu,y = 0 disallows
and δu,y allows scheduling); αu,y is a threshold metric in percent; csch

u,y and c0
u,y are the costs

of consumption with and without scheduling, respectively. The costs for scheduled and
non-scheduled conditions are calculated with:

csch
u,y =

t=tsch
u,y +(teu,y−ts

u,y)∑
t=tsch

u,y

λCIP(t) · Pu,y(t) · 4t (5.2)

c0
u,y =

t=teu,y∑
t=ts

u,y

λRT P(t) · Pu,y(t) · 4t (5.3)

where λCIP(t) and λRT P(t) are the CIP and utility RTP prices; and tsch
u,y is the aggregator-

defined start time of an asset.

Figure 5.4: αu,y modeling for appliance scheduling.

According to (5.1) (also see Fig. 5.4), the aggregator can only schedule an asset if the
cost reduction satisfies the threshold condition. Otherwise, the aggregator is disallowed
from controlling the asset. Based on this principle, the aggregator aims to maximize its
own profit Ap by offering the CIP and controlling assets. The optimization problem is then
formulated by:

maximize

Ap =

U∑
u=1

Yu∑
y=1

δu,y ·
(
S u,y + Nu,y − Bu,y

)
s.t. (3.1), (3.2), (3.16), (5.1)

(5.4)
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where S u,y is the income from selling energy for appliance consumption; Nu,y is the income
from selling negative load (i.e., the deferred peak) to the spot market; and Bu,y is the
expense for buying energy from the spot market. In both cases (with and without PV), the
aggregator calculates its profit using the same parameters for (5.4). However, due to local
generation, parameters (S u,y, Nu,y, and Bu,y) are formulated differently. Therefore, we first
introduce the optimization problem of SGRA without PV from [120], and then re-formulate
the S u,y, Nu,y, and Bu,y parameters based on the local generation in the neighborhood area.

5.2.1/ SGRA WITHOUT CONSIDERING RESIDENTIAL PV GENERATION

Originally, the SGRA optimization problem was formulated without considering PV gen-
eration, hence there is no negative load (PV generation can be considered as a negative
load) in the neighborhood electricity profile, as shown in Fig. 5.5. The power flow is uni-
directional, and assets operation times are only displaced in time due to the DR event.
Thereby, the neighborhood electricity load is always positive. According to that, S u,y, Nu,y,
and Bu,y are calculated as follows:

S u,y = 4t · δu,y

t=tsch
u,y +(teu,y−ts

u,y)∑
t=tsch

u,y

λCIP(t) · Pu,y(t) (5.5)

Nu,y = 4t · δu,y ·

t=teu,y∑
t=ts

u,y

·λspot(t) · Pu,y(t) (5.6)

Bu,y = 4t · δu,y ·

t=tsch
u,y +

(
teu,y−ts

u,y

)∑
t=tsch

u,y

λspot(t) · Pu,y(t) (5.7)

where λspot(t) is the spot market electricity price. The aggregator profit Ap only depends
on the scheduled asset profiles. According to (5.5)-(5.7), the aggregator profit Ap only
depends on the asset consumption profiles before and after solving the SGRA optimiza-
tion problem. Therefore, the aggregated net electricity profile Pn

agg has no influence on
the aggregator profit, hence the calculation of the base appliances consumption profiles
is unnecessary for the scenario where there is no PV penetration. Overall, according
to (5.7), the aggregator aims to decrease the electricity consumption of the neighbor-
hood during high electricity price hours (most probably during high consumption hours)
by scheduling assets to low price hours (most probably during low consumption hours).

5.2.2/ SGRA WITH CONSIDERING RESIDENTIAL PV GENERATION

In this part, the SGRA optimization problem is formulated while considering residential
PV generation in the neighborhood area, hence there can be negative load (surplus PV
generation based on the daily irradiance and PV system penetration) in the neighborhood,
as shown in Fig. 5.6. In this case, the power flow is bidirectional, so the changed asset
consumption profile can increase or decrease the consumption profile as well as the
generation profile of the neighborhood. Therefore, the neighborhood net profile must be
taken into account during the optimization process.
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Figure 5.5: Aggregated electricity profile of the neighborhood without considering resi-
dential PV generation.

Figure 5.6: Aggregated electricity profile of the neighborhood considering residential PV
generation.

According to that, at the beginning of the procedure, the aggregator clusters the elec-
tricity profiles according the type of units in three groups: base consumption Pu,x(t), PV
generation Pg

u(t) and asset consumption Pu,y(t). After that, as shown in Fig. 5.7, the sum
of the base and generation electricity profiles are calculated to create the aggregated net
profile Pa

agg(t) of the neighborhood with:

Pa
agg(t) =

U∑
u=1


 Xu∑

x=1

Pu,x(t)

 − Pg
u(t)

 (5.8)

Note that PV generation is a negative load in the distribution system. In the next step,
the consumption of assets (based on the customer willingness δu,y) are divided into two
groups: consumption of scheduled and non-scheduled assets, as shown in Fig. 5.8.
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Figure 5.7: Aggregated electricity profile of the neighborhood with base loads and PV
generation (PV generation is a negative load).

Non-scheduled assets consumption is included in the aggregated net profile by:

Pa
agg(t) =

U∑
u=1


 Xu∑

x=1

Pu,x(t)

 − Pg
u(t) +

 Yu∑
y=1

Pu,y(t) , if δu,y = 0
0 ,else δu,y = 1


 (5.9)

Figure 5.8: Aggregated electricity profile of the neighborhood with base loads, PV gener-
ation and non-scheduled assets.

After that, the aggregator starts to calculate its own profit by calculating the S u,y, Nu,y and
Bu,y terms for each scheduled asset, one after another, as shown in Fig. 5.9. Firstly, S u,y

is formulated as:

S u,y = 4t · δu,y

t=tsch
u,y +(teu,y−ts

u,y)∑
t=tsch

u,y

λCIP(t) · Pu,y(t) (5.10)

According to (5.10), the S u,y term is not effected by PV generation (as in (4.2)). Thus, the
consumption power of the asset (after scheduling) is provided by the aggregator using
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Figure 5.9: Aggregated electricity profile of the neighborhood with base loads, PV gener-
ation, non-scheduled assets and a scheduled asset.

CIP without being affected by local PV generation. Secondly, Nu,y is calculated with:

Nu,y = 4t · δu,y ·

t=te
u,y∑

t=ts
u,y

λspot(t) · Pu,y(t) , if Pa
agg(t) +

∑y−1
i=1 δu,i · Pu,i(t) > 0, Pa

agg(t) + (
∑y−1

i=1 δu,i · Pu,i(t)) − Pu,y(t) ≥ 0
λspot(t) ·

(
Pa

agg(t) + Pu,y(t)
)

,elseif Pa
agg(t) +

∑y−1
i=1 δu,i · Pu,i(t) ≤ 0, Pa

agg(t) + (
∑y−1

i=1 δu,i · Pu,i(t)) − Pu,y(t) < 0
0 ,else Pa

agg(t) +
∑y−1

i=1 δu,i · Pu,i(t) ≤ 0, Pa
agg(t) + (

∑y−1
i=1 δu,i) · Pu,i(t) − Pu,y(t) < 0

(5.11)

where i is a temporary index to refer to all calculated assets until asset y (i.e., i < y < Yu).
In (5.11), if there is surplus generation in the neighborhood (reverse power flow) at the
original operation time of the asset (before scheduling), the aggregator is not able to
decrease the electricity consumption by scheduling the asset at that time. Hence, the
earning of Nu,y is decreased due to PV generation, as shown in Fig. 5.10. Lastly, Bu,y is

Figure 5.10: Calculation of parameter Nu,y.
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calculated as follows:

Bu,y = 4t · δu,y ·

t=tsch
u,y +(te

u,y−ts
u,y)∑

t=tsch
u,y

λspot(t) · Pu,y(t) , if Pa
agg(t) +

∑y−1
i=1 δu,i · Pu,i(t) ≥ 0

λspot(t) ·
(
Pa

agg(t) + Pu,y(t)
)

+ λRT P(t) · Pa
agg(t) ,


elseif Pa

agg(t) +

y−1∑
i=1

δu,i · Pu,i(t) < 0,

Pa
agg(t) + (

y−1∑
i=1

δu,i · Pu,i(t)) + Pu,y(t) ≥ 0


λRT P(t) · Pa

agg(t) ,


else Pa

agg(t) +

y−1∑
i=1

δu,i · Pu,i(t) < 0,

Pa
agg(t) + (

y−1∑
i=1

δu,i · Pu,i(t)) + Pu,y(t) < 0



(5.12)

If there is surplus generation at the scheduled asset operation time, the aggregator buys
energy from the neighborhood, not from the spot market, as shown in Fig. 5.11. There-
fore, the aggregator has to buy energy with the utility RTP. The reason for this is that the
utility RTP is used for both selling and buying energy in the smart homes. Thereby, the
aggregator solves (5.4) using (5.10)-(5.12) to maximize its profit.

Figure 5.11: Calculation of parameter Bu,y.

5.3/ PARALLEL PROCESSING METHODS

Any new control technique proposed for aggregation should be tested with extensive sim-
ulations for long periods of times (i.e., days, weeks, etc.) before real-world implementa-
tion. However, testing such an aggregator-based (centralized) control problem may take
long simulation times depending on the test case duration and the number of controlled
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resources. Therefore, parallel processing techniques with multi-core computers is essen-
tial for reducing simulation and computation time. Parallel processing is used for dividing
a large optimization problem into smaller sub-problems and to solve them simultaneously
using multi-core computers. It should be noted that the result of a sub-problem must
not affect the result of any other sub-problem; thus each sub-problem must be modeled
independently.

Open Multi-Processing (OpenMP) and Message Passing Interface (MPI) are the most
commonly used programming styles in various applications for parallel processing [19].
The basic difference between these two styles is that the former uses a shared-memory
architecture and the latter uses a distributed-memory architecture. Although OpenMP
and MPI have their own qualities, both are effective and efficient for reducing computation
time. In this section, the basics of parallel programming using the OpenMP and MPI pro-
gramming approaches are discussed. Further, we use the above-mentioned approaches
in three parallelization schemes for solving the multi-day SGRA problem.

5.3.1/ PARALLEL PROCESSING WITH OPENMP

OpenMP is an application programming interface that provides a parallel processing
framework using multi-threading (T threads→ T cores) on a shared-memory architecture
[150]. The set of threads/cores run simultaneously, i.e., in parallel, to execute sub-tasks
or solve sub-problems. It is important to note that the specified task is divided among the
threads and each thread has access to the same information (e.g., variable, parameter,
objects) in the shared-memory. OpenMP supports multi-processing programming in C,
C++ and Fortran languages on most platforms [47]. The OpenMP flow model is shown in
Fig. 5.12.

Figure 5.12: OpenMP flow model.

In the SGRA study, to solve the optimization problem with the OpenMP parallelization,
the smart appliances are distributed among T threads to determine the profit of the ag-
gregator. Fig. 5.13 depicts the implementation of OpenMP programming for SGRA.

In the shared-memory, each thread (associated with a computer core) accesses a certain
number of assets and individually determines Nu,y, S u,y, and Bu,y for each asset. After that,
the aggregator profit, Ag, is determined for every scheduled asset and then each thread
sums the determined Ag values with every other thread to create one cumulative result
for the aggregator profit.
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5.3.2/ PARALLEL PROCESSING WITH MPI

MPI is a specification for message-passing library interface that addresses parallel pro-
gramming models on a distributed-memory architecture [149]. MPI is a communication
protocol that supports both point-to-point and collective communication routines. It was
developed for cooperative parallel computing among computer cores running on dis-
tributed memory. With MPI, multiple tasks run simultaneously on separate cores defined
by the user and each core has its own private memory. MPI programming does not use
a shared-memory architecture; thus, cores are not able to access the same information
stored in the memory. Therefore, cores need to use a messaging protocol, standardized
by MPI, if information from other cores are needed. Language bindings of MPI are de-
fined for C, C++ and Fortran. Fig. 5.14 depicts the MPI application model. The basic
difference between OpenMP and MPI is that the written code is run for a defined number
of MPI task times simultaneously while OpenMP solves optimization problems in parallel
according to a user-defined method (in this case, assets parallelization) inside the task.

To implement the parallel processing of SGRA using MPI, the total number of days (in the
multi-day SGRA problem) is distributed among cores. The goal of this effort is to deter-
mine the aggregator profit for each day using a single core. For each day, the optimization
problem (representing the same application albeit with different daily input) is solved si-
multaneously by cores in a distributed memory for each task. Message passing is not
needed in this implementation because each day’s optimization is totally independent
from the other days; hence, no core has the need to wait for a message from another.
The implementation of the MPI parallelization for the SGRA problem is shown in Fig.
5.15.

Figure 5.13: OpenMP implementation of SGRA (T cores).
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Figure 5.14: MPI application utilization model.

Figure 5.15: MPI implementation of SGRA (D cores).

5.3.3/ PARALLEL PROCESSING WITH OPENMP/MPI

Hybrid applications use both the OpenMP and the MPI models together for parallelism.
A hybrid model requires a more sophisticated programming paradigm than either type of
the constituents so as to manage shared and distributed memory allocations with multiple
cores. We aim to use a higher number of cores in the HPC system and reduce the com-
putation time. It is worthwhile to mention again that we are not dealing with the technical
challenges of using these parallelization methods. In this paper, we are simply aiming
to provide information on basic programming models and compare their performances in
terms of computation time. In Fig. 5.16, the hybrid parallelization model for the SGRA
study is presented.

With the hybrid model, D tasks are created for separating and solving days simultane-
ously, and T threads are used for each task to distribute the assets among threads to
determine the aggregator profit for each day. In this way, T × D cores are used through
hybrid parallelization. For example, consider that five MPI tasks are defined and each
task is deployed on three OpenMP threads to solve an optimization problem, thus totally
15 cores are utilized at the same time.
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Figure 5.16: OpenMP plus MPI implementation of SGRA (T × D cores).

5.3.4/ PERFORMANCE OF PARALLEL PROCESSING TECHNIQUES

The implementation of the above parallel processing techniques is strictly dependent on
the formulated optimization problem. We would like the emphasize that the optimization
problem of SGRA with PV is not suitable for implementation with the OpenMP style par-
allel processing technique. The reason is that each scheduled asset affects the results of
the next scheduled asset results through terms Nu,y and Bu,y (using i index). Hence, divid-
ing the main problem into an asset based sub-problem is not implementable. Therefore,
only the MPI style parallel processing technique can be used to reduce the computation
time of the multi-day SGRA problem with PV.

However, the OpenMP, the MPI and the hybrid parallelization methods can be imple-
mented on multi-day SGRA problem with no PV as the aggregated net profile is always
positive Pa

agg(t) ≥ 0 due to the absence of PV generation, so there is no dependency
among scheduled asset profits. Therefore, we analyze the performance of the parallel
processing methods by testing them on SGRA problem.

To determine the full performance of the parallel processing techniques, we used the
Summit Colorado State University (CSU) and the University of Colorado Boulder high
performance computing (HPC) system [15, 16]. Summit is a heterogeneous supercom-
puting cluster with 380 Haswell CPU nodes with 9,120 cores, ten GPU nodes, five hi-
mem nodes, two storage gateway nodes, two Omnipath Architecture (OPA) interconnect
fabric management nodes, with 100 GB/sec OmniPath interconnect, one Petabyte DDN
SFA14K scratch storage, and a 40Gb uplink to the Science Ethernet Network. The Sum-
mit HPC uses a batch queuing system for execution. Finally, the SGRA problem was
programmed in C++ and compiled with the gnu-c++-compiler on Summit.

The above-mentioned parallel processing techniques for the SGRA problem with no PV
are performed on a test system with 5,555 customers, 56,605 controllable assets, and
151,773 base loads. For the spot market and utility electricity prices, real data corre-
sponding to July 1-7, 2011 are used from PJM and ComEd, respectively [37], [35]. To
solve the SGRA problem, which is heuristic in nature, Genitor—a modular genetic algo-
rithm (GA) package [46]—is used as an optimization solver. Genitor creates two chil-
dren from the initially generated population (100 members) at each iteration by applying
crossover and mutation operations. We assume that the optimization is completed when
the result of the best fitness function does not change for 10,000 consecutive iterations
or if the total number of iterations reaches 500,000.
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Figure 5.17: Number of hybrid threads and tasks versus (a) total simulation time and (b)
computation time of per-GA-iteration.

In Fig. 5.17, the results in terms of simulation time (hours) and computation time of
per-GA-iteration (seconds) are given for all three parallelization methods, with a varying
number of OpenMP threads and MPI tasks combinations. Firstly, the effect of the num-
ber of OpenMP threads are analyzed (MPI tasks: 1, OpenMP threads: variable). The
computation time is recorded over the range of (6, 15) hours; where the maximum time
occurs when one thread (i.e., the base case with one core) is used and the minimum time
of 6.5 hours occurs when seven threads are used; thus, a 60.24% reduction in computa-
tion time is achieved. Note that there is an exponential relation between the computation
time and the number of OpenMP threads. Therefore, the biggest reduction in compu-
tation time between two OpenMP cases—43.12%—is achieved among thread numbers
one and two. Beyond that, when the thread number is increased from two to seven, only
17.12% additional reduction in computation is achieved as compared to the base case.
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However, the reduction in computation time can be misleading for accurate comparison
because of the difference in the total number of iterations. When the computation times
of per-GA-iteration are compared, a 57.74% reduction compared to one thread in com-
putation time is achieved with seven threads. It should be noted that more than seven
threads—up to a theoretical maximum number equaling the number of assets—can be
defined for the studied case. For fair comparison with the MPI case, we limited the num-
ber of threads to seven.

After that, the results of the MPI model for a varying number of tasks are analyzed (MPI
tasks: variable, OpenMP threads: 1). The minimum simulation time recorded was 197
minutes when seven MPI tasks are utilized. Here, we see a reduction of 79.57% in
simulation time and 77.56% in computation time of per-GA-iteration achieved. This indi-
cates a better performance when compared to the previous case of OpenMP with seven
threads. In other words, when the same number of cores are considered, MPI outper-
forms OpenMP in executing the SGRA problem due to the absence of any serial parts.
Note that we used a maximum of seven MPI tasks to match the number of days in the
multi-day example defined in the test case.

Lastly, the results of the hybrid OpenMP/MPI model are presented and compared for a
varying number of OpenMP threads and MPI tasks combinations. When combining the
two methods in a hybrid mode, more cores can be used (such as seven threads times
seven tasks) with greater efficiency based on the problem formulation. In our case, the
core numbers can be increased when using OpenMP only, which is less efficient than
MPI. On the other hand, the number of cores used by MPI to solve the SGRA problem is
defined by the number of days in the multi-day SGRA. For instance, even though there
are 9,120 general purpose Haswell CPU cores available in the Summit HPC, the multi-day
SGRA problem (for seven days) uses a smaller subset of those cores (i.e., a maximum
of 49 cores). In Fig. 5.17, the classic SGRA problem from the above examples is solved
in 100 minutes—corresponding to a 89.46% reduction using 49 cores. By using 42 extra
cores, approximately 10% additional simulation time reduction is achieved as compared
to the seven MPI tasks-one OpenMP thread case (see Fig. 5.17(a)).

These results can however not be generalized, but they provide an insight into the use
of the three parallelization methods for the SGRA problem. As we embark on the task of
parallelizing the SGRA problem for larger test systems for longer time horizons, this effort
should serve as an early indicator for the choice of the technique.

5.4/ PERFORMANCE EVALUATION

For evaluating the performance of the methods, the same test system as described for the
comparison of parallel processing techniques in Section 5.3.4 is used (5,555 customers,
56,605 controllable assets, and 151,773 base loads with price data corresponding to July
1-7, 2011). Irradiance data corresponding to July 1-7, 2010 is taken from the National
Solar Radiation Data Base [25]. Simulations are performed for five different PV penetra-
tion levels (0%, 25%, 50%, 75%, and 100%) in the same neighborhood. The penetration
level is given according to smart homes with PV over the total number of smart homes.
For parallel processing, due to the dependency among scheduled assets, the MPI-based
parallel processing model is used with seven MPI tasks. Simulations are performed on
same desktop computer as in Chapter 3. Lastly, the impact of PV penetration is analyzed
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in two part: daily and weekly simulation results.

5.4.1/ DAILY RESULTS OF SGRA WITH/WITHOUT PV

Simulations are performed for July 1st, 2011 (price data) and 2010 (irradiance data). In
Fig. 5.18, the aggregator forecast and actual profits are given for each PV penetration
level. The deviation between forecast and actual results are due to the forecasting error
on the price profile. As a reminder, note that the forecast and the actual price data are
gathered from PJM [37] and ComEd [35]. The maximum aggregator profit is determined
when there is no PV penetration in the neighborhood area, and the aggregator profit is
decreased in direct proportion to the increase on the PV penetration level. Hence, the
aggregator earns less when the local generation is increased in the neighborhood area,
which is not a desirable solution for the aggregator.
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Figure 5.18: Aggregator profits on July 1st for each PV penetration level.

In Fig. 5.19, the total profits of the customers are given for each PV penetration level. The
profits of the customers from the DR program significantly decrease when they invest in
a residential PV system. However, it should be noted that customers pay less compared
to the case with no PV integration due to self-consumption and selling energy to the main
grid. However, they achieve to gain less by participating to the DR program when they
install PV in their smart home.

In Fig. 5.20, the number of controlled assets by the aggregator is given in the neighbor-
hood. With no PV integration, the aggregator controls 45,017 of 56,605 assets (79.53%),
while it is only 41.19% with 100% PV penetration. Although the same α modeling tech-
niques with the same parameters is used in each case, the controlled number of appli-
ances decrease when the PV penetration increases. Therefore, the aggregator and the
total customers profits decrease as less assets are scheduled. As a result, besides α

modeling, the PV generation is an obstacle for the scheduling ability of the aggregator
with a DR program.

In Fig. 5.21, the total neighborhood electricity profiles before and after DR are given
for each PV penetration case. When PV is installed in smart homes, the consumption
from the main grid is decreased during sunny hours. As long as the PV penetration
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Figure 5.19: Total profits of customers on July 1st for each PV penetration level.

Figure 5.20: Total controlled assets number on July 1st for each PV penetration level.

increases, reverse power flows from neighborhood to main grid increases with surplus
PV generation. Moreover, the range of the surplus generation over the time horizon
increases with the increased PV penetration.

In Fig. 5.22, the total assets consumption profiles before and after DR are given for each
case. The aggregator is able to reduce the two peaks of assets consumption, one in the
morning and one at night, by scheduling the assets to the early morning, noon and/or
late night hours. However, the morning peak slightly increases instead of decreasing.
The reason is that there is high PV consumption on the total electricity profile during the
morning hours (for example, around 30 × 15/60→ 7 : 30), hence reducing consumption is
not possible (there is none). Therefore, the aggregator is not scheduling the assets that
start at those times, which explains the decrease in controlled asset numbers shown in
Fig. 5.20.
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Lastly, in Figs. 5.23 and 5.24, the forecast and actual price profiles (ComEd, PJM and
CIP) are shown, respectively. Firstly, the actual profit of the aggregator is lower than
the forecast profit, because the actual price is lower than the forecast price. The lower
actual price has a negative impact, due to the decreasing S u,y term. Recall that S u,y is the
parameter that describes how the aggregator gains profit with λspot after scheduling the
assets. Therefore, the gained profit decreases when λspot decreases, hence the expected
profit is lower than what is actually obtained. Secondly, the CIP is decided higher by the
aggregator for hours when PV generation is higher. Normally the aggregator should offer
a lower price than the utility to convince the customers, but also as high as possible
to increase its revenue (see Fig. 5.23(a)). However, scheduling of some assets is not
profitable anymore when PV integration is considered, hence the aggregator no longer
needs to take them into account during the optimization. Therefore, it offers the maximum
CIP (i.e., equal to the RTP) to increase its revenue as much as possible with limited
controlled assets.

5.4.2/ WEEKLY RESULTS OF SGRA WITH/WITHOUT PV

The impact of the PV is analyzed by simulating the SGRA problem with different PV pen-
etration levels, and by using MPI programming to simulate each day optimization problem
simultaneously on a multi-core computer. For each case, seven MPI tasks are defined
(equal to the number of days) for solving the multi-day SGRA problem. In Fig. 5.25,
the total simulation time of each PV penetration case is given for solving the optimization
problem formulated in 5.4 with equations listed in Section 5.2.2. Simulation times vary
between 6 and 7 hours, which is much less than the initial 16 hours (see Fig. 5.17).
However, the simulation took more time than expected (3 hours more) due to the use of
a different formulation and processor.

In Figs. 5.26 and 5.27, the aggregator forecast and actual profits are given for one week.
Based on the ComEd and PJM prices, the gained aggregator profits show differences
from one day to another, and the profit still decreases when the PV penetration is in-
creased in the neighborhood. The total actual profit is decreased by 76.58% when all
smart homes are equipped with a PV system.

Lastly, in Figs. 5.28 and 5.29, the total customer profits and the total controlled asset
numbers are given for each day and each PV penetration level. As for daily results,
the total customer profits and the total controlled asset numbers are decreased as PV
penetration increases. However, another important results is that customer savings on
July 5th are much higher than savings on the other days (the same trend is observed
for all PV penetration cases), although almost the same number of assets is controlled.
The reason of this outcome is related the utility and spot market prices and the difference
between the forecast and actual price profiles.

5.4.3/ SCALABILITY ANALYSIS

In this section, a scalability analysis is performed by varying the number of the smart
homes in the neighborhood area. The simulations are performed for five different neigh-
borhood area sizes (1111, 2222, 3333, 4444, and 5555), and run for two PV penetration
levels (0% and 50%) for July 1st. The results are given for forecast and actual aggregator
profiles in Figs. 5.30 and 5.31. According to the figures, the aggregator increases its
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Figure 5.25: Total simulation time for each PV penetration level.

Figure 5.26: Weekly forecast aggregator profits for each PV penetration level.

Figure 5.27: Weekly actual aggregator profits for each PV penetration level.
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Figure 5.28: Weekly total profits of customers for each PV penetration level.

Figure 5.29: Weekly total controlled assets numbers for each PV penetration level.

profit when it serves more smart homes and controls more assets in the neighborhood.
Thus, the aggregator revenue depends on the number of smart homes located in the
neighborhood, and simulation results show that the presented SGRA algorithm can keep
working efficiently in various neighborhood areas.

5.5/ CONCLUSION

This chapter has presented an aggregator-based (centralized) coordination mechanism
for scheduling the assets of users by taking into account the impact of residential PV pen-
etration on the SGRA problem. The aggregator interacts with users as well as the utility
and the spot market to determine and to offer cost-beneficial consumption strategies to
users by scheduling their assets with CIP. The focus of the aggregator is to increase its
own revenue by scheduling the assets of users. The aggregator achieves to schedule
the assets of users as long as it provides the threshold benefit for each asset scheduling
defined with α modeling. The impact of residential PV integration is investigated for dif-
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Figure 5.30: Weekly total forecast aggregator profits.
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Figure 5.31: Weekly total actual aggregator profits.

ferent PV penetration levels and results are compared with the no-PV case. Simulation
results show that the aggregator and customer profits are highly dependent on PV gener-
ation in smart homes (as well as utility and spot market prices, user preferences and the
size of the neighborhood area), and PV integration has a negative impact. The reason
is that local PV generation is an obstacle in front of the presented control algorithm as
it reduces the net consumption and decreases the ability of the aggregator to schedule
assets. Thereby, it proves that the aggregator profit is also dependent on local generation
in the smart homes.

Secondly, this chapter has presented three parallel processing methods to reduce the
computation time of the optimization problem. The parallelization procedure of each
technique is demonstrated for the SGRA problem. Due to dependency in the profit of
each asset schedule on SGRA with the PV case, the performance of three parallel pro-
cessing techniques is evaluated on the SGRA problem with no PV. The performance
of the methods is quantified in terms of reductions in simulation time and computation
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time per-GA-iteration, and the results are compared against the number of cores utilized.
The results show that all parallelization methods can significantly affect the computation
time for solving the SGRA problem. The computation time appears to fall exponentially
with the number of utilized core number. Among the parallelization methods, the hybrid
OpenMP/MPI model showed the best performance when a higher number of cores are
available, and the MPI model was the second best. However, it should be noted that the
performance of the methods is highly dependent on the programming of the optimization
problem and the solver.
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6
CONCLUSION

As the previous chapters have shown, SG technology is enabling new local energy
management strategies, for example for neighborhoods, that can benefit both elec-

tricity providers (utilities) and end-users if adequate coordination is enabled. This chapter
reviews the contributions of this dissertation, discusses its results, and lists several pos-
sible avenues for future works.

6.1/ CONTRIBUTIONS

This dissertation has focused on the coordination of smart homes in neighborhood ar-
eas, and has presented several centralized and decentralized control methods for electric
energy management. Its key contributions are summarized as follows:

1. A thorough literature review has proposed an overview of the state-of-the-art on the
topic. The studied scientific works were categorized according to their characteris-
tics, and the advantages and disadvantages of each approach were listed.

2. The presented coordination methods do not only consider appliance scheduling with
DR programs, but also include PV and battery systems in the process. Advanced
control algorithms are introduced for enabling energy trading or sharing.

3. An adaptive time resolution process is used to reduce computation burden in the
optimization problem, a s well as the required communication bandwidth. A high
time resolution is used for modeling electricity appliances, and a lower one is used
for controlling battery output in decentralized algorithms.

4. User privacy concerns are taken into account, in that another time resolution is
introduced to mask actual high resolution data by taking average values of home
electricity profiles over a given period.

5. The performance of the proposed decentralized algorithms is compared with base-
line and selfish scenarios to emphasize the importance and effectiveness of the
coordination mechanisms, not only in terms of costs but also on peak reduction
values.

6. Three novel metrics are introduced to evaluate the performance of the control algo-
rithms for annual simulations.
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7. The aggregator performance is investigated under different penetration levels of
residential PV generation.

8. Finally, three parallel processing methods based on two programming techniques
are introduced to reduce the computation time of simulations by using multi-core
processors.

Overall, it is hoped that this work can serve as a basis for utilities and researchers to
develop community-scale energy management systems or microgrids, where energy can
be locally generated, shared and utilized. With the development of DG, such approaches
can be expected to gain further momentum in the future.

6.2/ SUMMARY OF WORKS

This dissertation has outlined that the coordination of energy consumption of multiple
households equipped with HEMS can benefit both sides of the electricity distribution
grid, i.e., the utility and the end-users. Several coordination mechanisms were proposed,
tested, and analyzed. Results have then shown that while utilities can reduce the peak
consumption of the neighborhood and thus the associated generation costs, users can
also potentially reduce their daily electricity bills by enabling the control of their assets,
such as appliances and batteries.

At first, a state-of-the-art review of the literature was presented to cluster studies ac-
cording to the used coordination structures and techniques. DSM and DR were first
introduced by reviewing energy management studies in single smart homes. Then co-
ordination mechanisms were divided into two groups: centralized and decentralized,
based on the communication and decision-making strcture in the neighborhood area.
The decentralized coordination structure is further subdivided into three groups: fully-
dependent, partially-dependent and fully-independent. As a result, it has been shown
that neighborhood-level coordinated home energy management is a timely and increas-
ingly popular subject that needs to be studied in SG. Morevoer, the reviw also showed
that there was room for further contributions, especially for decentralised coordination
techniques.

At the second step, two coordination mechanisms (centralized and fully-dependent de-
centralized) were developed for controlling assets and battery units in smart homes by
combining TOU, FIT and an incentive. The incentive is used to increase renewable en-
ergy utilization inside the neighborhood area. MAS are used for modeling neighborhood
entities as agents through home and aggregator agents. While home agents receive the
full incentive for self-consumption, they share the offered incentive with others when they
trade with each other. Thereby, home agents are more interested in selling and buy-
ing surplus generation than in selling and buying from the main grid. The results are
compared with those of the baseline and selfish scenarios, where home agents optimize
without sharing data and energy. While the centralized method aims to reduce the neigh-
borhood cost, home agents focus on decreasing their electricity bill in the decentralized
one. As a result, the fully-dependent decentralized method seems more appropriate and
promising, as it can increase the overall benefit of the neighborhood while increasing
renewable energy usage and coordinating home agent actions in reasonable time.
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At the third step, two fully-dependent decentralized coordination mechanisms (group-
based and turn-based) are presented by improving the previously proposed decentral-
ized method. Compared to previous method, home agents share less information during
communication, and the algorithm does not require offering an incentive to coordinate the
actions of home agents. However, electric energy management is obtained by schedul-
ing users assets and controlling their batteries. To bill users, a dynamic price structure is
used by merging grid TOU and a dynamic price associated to the neighborhood electricity
profile. Home agents solve the same formulated optimization problem in both methods
(group-based and turn-based), but in a different order. While all home agents solve the
optimization problem simultaneously in the group-based method, they do the same one-
by-one in the turn-based method. Furthermore, the forecasting errors are considered in
base appliance consumption and PV generation profiles, and algorithms are simulated
over a horizon of one year. Accordingly, three novel metrics are introduced to evaluate
the success rate of the proposed algorithms. Algorithms are compared with baseline and
selfish scenarios, and provided better results in terms of cost and peak reduction, as well
as on the three proposed success metrics. Although the same optimization problem is
used, the turn-based method performes better than the group-based method. However,
the turn-based method is not suitable for use in larger neighborhoods, as it requires more
computation time to achieve convergence.

At the last step, the aggregator interactions with upper-level entities were taken into ac-
count. The coordination of smart home actions in the neighborhood by asset scheduling
considering residential PV integration is achieved while studying the performance of an
aggregator serving the area. In this work, the optimization problem that was previously
formulated in [120] was updated by considering residential PV integration in the neigh-
borhood. The aggregator interacts with the utility and the spot market to receive the RTP
and spot market price, and offers a CIP to customers for controlling their assets. The
impact of residential PV is investigated for different PV penetration levels. Simulation
results show that residential PV penetration has a negative impact on the performance
of the control algorithm. When PV penetration is increased the aggregator performance
decreases as well as the number of controlled assets. For this study, parallel processing
methods were studied to use multi-core processors for reducing simulation time of the
optimization. Three parallelization techniques were modeled using two programming ap-
proaches (OpenMP and MPI). The presented parallelization methods were then tested
on the case without PV. Simulation results show that MPI gives better performance com-
pared to OpenMPI. Moreover, more processor cores can be used with the hybrid model
(OpenMP/MPI) to significantly reduce computation time, if core utilization efficiency is not
neglected.

6.3/ FUTURE WORKS

This dissertation has shown that the coordination of multiple smart homes in neighbor-
hoods is both a useful and interesting subject, which can help ensure economic, efficient
and reliable electric energy management in neighborhood areas. However, there are a
number of challenges, listed below, that still need to be considered in future works:

1. Two-way battery charging: battery systems were only allowed to charge from local,
self-generated electricity, due to the specific focus on increasing renewable energy
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utilization in the neighborhood. However, batteries could also be allowed to charge
from upper-level grid resources, which may provide even better efficiency in the
coordination.

2. Integration of EV: over the past few years, interest in EV has increased steadily due
to environmental issues. However, high EV penetration rate can significantly affect
residential load profiles, with low very load during the day (due to PV generation)
and high loads in the evening (due to EV charging). Therefore, coordinating EV
charge is another research avenue for the future. Additionally, EV can also be used
as secondary storage units in smart homes when they are parked, for example to
provide energy to the smart home and/or the neighborhood via vehicle-to-home
(V2H) and vehicle-to-grid (V2G) paradigms.

3. Payback time of the investments: although the presented methods return higher
profit or savings than the base scenarios, the capital cost of RES and energy stor-
age units were not considered. By integrating the (age and use-related) degradation
of RES and storage units, the payback times of these resources can be calculated.
This would provide a complete picture to end-users, showing the costs and ex-
pected benefits from such investments.

4. Constraints on the distribution system: the presented coordination algorithms do
not consider distribution system constraints, such as congestion due to line and
transformer capacity. For example, although the algorithms decrease the neigh-
borhood peak consumption at the PCC with trading and sharing, there can still be
high stress on the distribution lines due to energy transfers among smart homes.
Therefore, these constraints should be considered in the optimization problem.

5. Penetration of central energy resources: the penetration rates of central energy
resources (such as wind turbines, community-scale battery storage, large PV sys-
tems, etc.) are increasing in distribution systems. The utilization of these utility or
third party-owned resources can provide opportunities for consuming even cheaper
and cleaner energy in smart homes.

6. Coordination of multiple aggregators: multiple aggregators can connect to the same
distribution grid to serve different neighborhoods or customers. Thereby, the smart
homes of each aggregator may be located in different geographic areas, hence
they could have different consumption and generation profiles. To ensure adequate
coordination, aggregators would thus need to share information and energy, for
example through an upper level coordination approach, so as be able to profit both
neighborhoods and the utility while generating profit.

7. Transactive energy: the concept of transactive energy has emerged recently to
describe decentralized economic and control approaches used to manage power
flows. While this work matches several of the properties of existing transactive en-
ergy frameworks, further work could also focus on creating local, short-lived and
reconfigurable markets at the neighborhood scale, or integrating blockchain tech-
nologies.

8. Coordination in islanded MG: MG can equipped with DER (conventional and/or
RES), and can operate while connected to the main grid or disconnected from
it (i.e., they operate in islanded mode). Reasons for islanding include reliability
and power quality requirements in the face of critical conditions on the distribution
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system, the need to reduce costs (assuming local generation is cheaper than grid
power), minimizing emissions, supplying a remote area, etc. In this case, the MG
energy management system could integrate a coordination mechanism to integrate
DER use and energy sharing among smart homes.
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