To my daughter Olivia, who was born during second year of my Ph.D. studies Particularly I want to thanks Prof. E. Z. Gusakov for very important discussion related to theoretical models and data analysis. Also I want to thank Dr. Mikhail Irzak for useful mail exchange which allowed me to use reciprocity theorem.

Very big computations performed in this work would be impossible without help of bwUniCluster in Baden-Württemberg. I wish to acknowledge the support and help of my friends: Mr. Dr. Jordan Cavalier, Artur Vander Sande, Dr. Antom Bogomolov, Dr. Rennan Marales. Jordan Ledig, Homam Betar, Julien Médina, Oleg Krutkin, Liza Sytova, Richard Deutsch, Anton Kyyanytsa, Dr. Georgiy Kichin, Krishnan Srinivasarengan and others. If I forgot somebody it doesn't mean I don't appreciate your help, it is just my "good" memory. I want to thanks members of the music bands where I was playing. These people helped me to mix my scientific work with some art and make it more interesting and productive. Dr. Yusuf Bhujwalla, Masha Usoltceva, Valentin Pascu, Aaron Ho, Marcella Tizo, Michal Kuczynski, Wojciech Trl and a cover band from Cadarache. I want to thank my wife Vitalina for giving me the Daughter and supporting me all the time. My daughter Olivia which was my ray of light in the final part of the Ph.D.

In the end I want to thank my parents which always were always supporting my interest in physics and mathematics. Thanks you, you made me to be who I am. 

Аннотация

Abstract

Anomalous energy and particle transport is closely related to micro-turbulence. Therefore plasma turbulence studies are essential for successful operation of magnetic confinement fusion devices. This thesis deals with the development of interpretative models for Ultra-Fast Swept Reflectometry (USFR), a diagnostic used for the measurement of turbulence radial wave-number spectra in fusion devices. While the interpretation of reflectometry data is quite straightforward for small levels of turbulence, it becomes much trickier for larger levels as the reflectometer answer is no longer linear with the turbulence level. It has been shown for instance that resonances due to probing field trapping can appear in turbulent plasma and produce jumps of the signal phase. In the plasma edge region the turbulence level is usually high and can lead to a non-linear regime of the reflectometer response. The loss of probing beam coherency and beam widening when the probing beam crosses the edge turbulence layer can affect USFR core measurements. Edge turbulence with a long correlation length leads to small beam widening and strong distortion of the probing wave phase. However backscattering effects from turbulence with short correlation lengths are also able to cause reflectometer signal change.

To study turbulence wave-number spectra as well as reflectometer signal phase variations, signal amplitude variations can be analized. Unlike signal phase variation, amplitude does not suffer from resonant jumps, and can give more clear qualitative evaluation of turbulence structure. In the case when the turbulence amplitude peaked in the edge region, it can be detected as spectral peak near local Bragg resonance wavenumber. USFR with a set of receiving antennas arranged poloidally was proposed to obtain more information on the edge turbulence properties. A displacement of the spectral peak appears when the receiving antenna is misaligned with the emitting one. Peak displacement measurements could provide additional information on probing beam shaping and turbulence properties and help in coherent mode observation as well.

A 2D full wave code was applied as a synthetic diagnostic to Gysela gyro-kinetic code data to study Tore-Supra tokamak core turbulence. Radial correlation lengths computed from the amplitude of multi-channel fixed frequency reflectometry signals have shown good agreement with the turbulence correlation length directly computed from the simulation. The synthetic diagnostic was then applied to analyse the correlation length and wave-number spectra obtained by USFR in the ASDEX-Upgrade tokamak. A comparison between 1D and 2D results have shown different behaviour.

However correlation lengths measured with UFSR signals are in the same order with turbulence ones. Chapter 1 European countries, after some time this growth should slow down. However even at current consumption rate, the ecological situation requires new green energy sources.
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1

.1 Sources of the energy

It is possible to separate available energy sources in 3 groups [START_REF] Wagner | Electricity generation by intermittent sources[END_REF].

• Chemical energy: coal, oil, gas, fossil fuels;

• Nuclear energy: fission of uranium or thorium, fusion of light elements(deuterium, tritium);

• Renewable energy: hydro, wind, solar, thermal, photo voltaic, geothermal [START_REF] Moné | Cost of Wind Energy Review[END_REF], [START_REF] Twidell | Renewable energy sources[END_REF], [START_REF] Melaina | Wind Energy Biography: A Review of Wind Turbine Technology and Economics[END_REF] Figure 1.2: Primary energy consumption by fuel with extrapolation in time. Sourced from [START_REF]BP Statistical Review of World Energy[END_REF] Electricity production from chemical energy usually connects with large 𝐶𝑂 2 emission and air pollution with substances such as nitrogen oxides [START_REF]Air quality guidelines for Europe[END_REF] which are very harmful for life nature. Figure 1.2 shows that in the past and at this moment the main part of the energy production comes from the first category, chemical energy. This has produced a big impact on the "global warming problem" [START_REF] Norby | [END_REF]. Considering renewable energy sources (RES), wind and sun energy at the moment covers only 3% of the total With limited use of nuclear power plants and burning of fossil, fuels countries should rely more on RES. Power generated by these sources vary much in time. An example of solar generated power variation is presented on figure 1.3. To provide power level able to support peaks of the power consumption, a wide network of different types of RES should be created [START_REF] Wagner | Electricity generation by intermittent sources[END_REF]. This network should include backup systems in case there will be temporal decrease of RES output power, for instance backup gas power plant can be used. At the moment there is no technology to store big amounts of energy. It was shown that the entire RES network in Europe and the United States is not efficient unless some technological breakthroughs will happen [START_REF] Wagner | Electricity generation by intermittent sources[END_REF][START_REF] Bryce | Maintaining the Advantage: Why the U.S. Should Not Follow the EU's Energy Policies[END_REF].

Nuclear fusion

Another solution which can become available in the end of the century is magnetic confinement nuclear fusion. In this section we will have a look on plasma tokamak confinement basics and highlight concepts needed for this thesis work presentation.

However more precise information could be found in the following sources [START_REF] Wesson | Tokamaks" 3d edition[END_REF][START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF].

Introduction to nuclear fusion

The idea behind nuclear fusion comes from the sun. Sun energy is produced by fusion of light atoms. But unlike the sun, earth fusion will use more effective is sense of energy yield deuterium-tritium (D-T) reaction and in perspective D-D reaction. In order to fuse atoms should first overcome an electric repulsion. This is possible only at very high energy (10 -20𝑘𝑒𝑉 ). Ionized gas where particles have that energy should be confined to maintain the required high density. High densities are needed to have high fusion rate (1.1):

𝑓 𝑟 = 𝑛 1 𝑛 2 < 𝜎𝑣 > (1.1)
where 𝑛 1 and 𝑛 2 are the density of fusion species, 𝜎 is the fusion reaction cross-section, and 𝑣 is the relative velocity of fusing atoms. This expression gives information on how many reactions are produced per second in the volume unit. Because of a relatively larger cross-section for smaller energies, deuterium-tritium (D-T) plasma reaction was chosen to make earth fusion. tion. This fast neutron's energy is then to be transferred to electricity. Alpha particles resulting from the same reaction will be used to transfer its energy to the main plasma species. Hydrogen is the most distributed nuclei in universe. Its isotope deuterium is stable and distributed quite well on the Earth. In the ocean, for 6420 atoms of hydrogen there is one atom of deuterium. Tritium will be produced using lithium and fast energy source as amount of deuterium and tritium is enough to power humanity for millions of years [START_REF] Ongena | Energy For Future Centuries. Will Fusion Be An Inexhaustible, Safe And Clean Energy Source?[END_REF]. Cross-sections of the two 𝐷 -𝐷 reactions are very close to each other, which gives a probability of 50% each. However these cross-sections are much smaller than the cross-section of 𝐷 -𝑇 and 𝐷 -𝐻𝑒 3 2 reactions.

Ignition criterion

As shown in figure 1.4, fusion requires very high temperatures. But to be used as energy source fusion reactors should fulfil a few other conditions. Hot plasmas have quite strong convection and diffusion of heat and particles, which means that in any case energy losses take place. They can be described by energy confinement time 𝜏 𝐸 , which is the characteristic time of energy loss by the plasma without external heating.

Fusion plasmas can be heated by fast fusion alpha particles and external heating. Now we can express the energy balance when the total plasma heating is equal to the plasma losses.

𝑃 𝐻𝑒𝑥 + 𝑃 𝐻𝛼 = 𝑃 𝑙𝑜𝑠𝑠𝑒𝑠 (1.2)
Where 𝑃 𝐻𝑒𝑥 is an external heating power, 𝑃 𝐻𝛼 is the plasma heating power received from alpha particles. Let's look on what plasma parameters are crucial for fusion device.

𝑃 𝐻𝛼 = 1 4 𝑛 2 < 𝜎𝑣 > 𝐸 𝛼 𝑉 (1.3) Expression (1.
3) is calculated for the most optimal case when the plasma consists only of deuterium and tritium in equal proportions. 𝐸 𝛼 = 3.56𝑀 𝑒𝑉 is in the fusion 𝛼 particle born energy, 𝑉 is the plasma volume, and 𝑛 is the plasma density.

𝑃 𝑙𝑜𝑠𝑠𝑒𝑠 ≈ 3𝑛𝑘 𝑏 𝑇 𝑉 /𝜏 𝐸 (1.4)
3𝑛𝑘 𝑏 𝑇 𝑉 is an estimating formulation of the plasma kinetic energy content, where 𝑇 is the temperature and 𝑘 𝑏 -the Boltzmann constant. From formulas (1.2-1.4) one can express the needed external heating power to maintain burning plasma conditions:

𝑃 𝐻𝑒𝑥 = ( 3𝑛𝑘 𝑏 𝑇 𝜏 𝐸 - 1 4 𝑛 2 < 𝜎𝑣 > 𝐸 𝛼 )𝑉 (1.5)
Without external heating we will achieve the so-called ignition criterion when losses are fully compensated by fusion 𝛼 particles power.

𝑛𝜏 𝐸 > 12𝑘 𝑏 𝑇 < 𝜎𝑣 > 𝐸 𝛼 (1.6)
< 𝜎𝑣 > of the 𝐷 -𝑇 reaction can be approximated with 10% accuracy in the range of 6-20 keV to:

< 𝜎𝑣 >≈ 1.1 • 10 -24 𝑇 2 (1.7)
This allows us to calculate the so-called triple product criterion.

𝑛𝜏 𝐸 𝑇 > 3 • 10 21 [𝑚 -3 𝑘𝑒𝑉 𝑠] (1.8)
This simple estimation can give us an idea on the main parameters values which should be achieved for successful fusion reactor prototype construction. At the moment there are 2 main concepts: inertial fusion, and magnetic confinement fusion (MCF). In inertial fusion solid state fuel target is compressed and heated by multiple laser rays homogeneously distributed over its surface. With this method plasma density is very high while energy confinement time is short. On the contrary magnetic confinement fusion relies on energy confinement time of few seconds and small densities. Typical target values that MCF tries to achieve are: 𝑛 = 10 20 𝑚 -3 , 𝑇 = 10𝑘𝑒𝑉 , and 𝜏 𝐸 = 3𝑠

To describe reactor efficiency when additional heating is applied to the plasma, Figure 1.5: Charged particle drift in magnetic field with external force. Plasma ions and electrons are drifting in opposite directions. Picture has been taken from [START_REF] Brunner | 3d circle course at Centre de Recherches en Physique des Plasmas[END_REF] efficiency coefficient 𝑄 can be estimated as:

𝑄 = 𝑃 𝑛𝑒𝑢𝑡𝑟𝑜𝑛 /𝑃 𝐻𝑒𝑥 (1.9)
Here we don't take into account the energy transfer efficiency from energetic neutrons to electricity. This will be done by transfer heat from the blanket wall which will be irradiated by fusion neutrons. Also it is important to mention that most neutron yield is coming from the high energy tail of ion velocity distribution function. Heating methods like neutral beam injection, ion cyclotron resonance heating (ICRH) or lower hybrid resonance heating and current drive (LHCD) enlarge the high energy tail of the velocity distribution function. These fast ions are expected to generate significant part of fusion neutrons.

Magnetic confinement fusion

The sun confines its fusion plasma using strong gravitation forces. On the Earth this mechanism is not applicable. As plasmas consist of charged particles they can be caged by magnetic field. With the magnetic field charged particles are moving as spirals, around magnetic lines with the Larmor radius 𝑟 𝑙 = 𝑚𝑣 ⊥ 𝑞𝐵 . Here 𝑣 ⊥ is the particle velocity projection on perpendicular direction to magnetic field. If an external force applied to the particles it creates a constant velocity motion called drift (1.10).

⃗ 𝑣 𝐵×𝐹 = 1 𝑞 [ ⃗ 𝐹 × ⃗ 𝐵] 𝐵 2 (1.10)
Here ⃗ 𝐹 and ⃗ 𝐵 are vectors of external force and magnetic field respectively. Figure 1.5

shows particle trajectories during drift motion. In MCF this force can be created by gravitation, electric field, magnetic field gradient, temperature or pressure gradients and magnetic lines curvature. There are two main machine design concepts that are designed to limit this motion in a predefined volume. They are tokamaks and stellarators. Both are based on the similar idea to close magnetic lines in a circle. This will create a toroidal magnetic configuration in which particles are moving along magnetic lines. But such a configuration results in magnetic field that decreases with the major radius. This magnetic field gradient creates a drift of plasma ions and electrons (1.11).

v B×gradB = 𝐾 ⊥ 𝑞𝐵 [ ⃗ 𝐵 × 𝑔𝑟𝑎𝑑𝐵] 𝐵 2 (1.11)
Where 𝐾 ⊥ is perpendicular kinetic energy. This drift is directed in opposite directions for ions and electrons. It creates charge separation and vertical electric field. Vertical electric field will also create a drift (1.12) which will move the whole plasma outside the torus and limit energy confinement time by this movement.

v E×B = [ ⃗ 𝐸 × ⃗ 𝐵] 𝐵 2
(1.12)

Simple toroidal magnetic configuration results in plasma self movement, the same way as did famous Baron Münchhausen.

Not far from the other side I fell into the bog. Here I would have undoubtedly died, if not the strength of my own arm, grabbing my own pigtail, had pulled me, including my horse-which I squeezed tightly between my legs-out of it (Baron Münchhausen)

The way how this problem is solved is the main difference between tokamaks and stellarators. More details will be given in next section.

Tokamak magnetic configuration

To avoid vertical electric field effect one can twist the magnetic lines around small cross-section of the torus (in poloidal direction). As ions and electrons move freely along the magnetic lines, in other words plasma conductivity along the magnetic lines is very high (see section 2.1.1), this poloidal magnetic lines transformation will connect upper and down sides of the machine with magnetic lines. Current along these magnetic lines will remove the electric field produced by vertical charge separation.

The current which cancel this electric field is called Pfirsch-Schlüter current. The main difference between tokamaks and stellarators is that stellarators produce such a magnetic field poloidal rotation using complex shape of magnetic coils whereas tokamaks have a toroidal plasma current which creates a poloidal twist of the magnetic field lines (figure 1.6). In this work we will focus on the tokamak geometry. Readers can find more information about stellarators in [START_REF] Wakatani | Stellarator and Heliotron Devices[END_REF]. In the tokamak configuration toroidal coils which create the toroidal magnetic field are combined with the central solenoid column.

The column itself is a transformer core and the plasma loop is a secondary coil. This solenoid is made to drive the plasma toroidal current. Due to horizontal forces which try to expand the plasma loop, additional coils are required for the equilibrium. These forces are:

1)Pressure: Along the magnetic lines over one magnetic surface, the pressure stays constant. However the inner surface of the torus is smaller than the outer surface.

This results in pressure force that is stronger on outer side than on inner one.

2)Toroidal current: the current loop always has an expanding force created by interaction with its own magnetic field.

To compensate these forces in the tokamak, vertical magnetic field coils are used. These coils create a vertical magnetic field which interacts with the plasma current, then creating a horizontal force directed towards the plasma current loop center. In modern tokamaks plasmas usually are shaped to be elliptically elongated and triangular. In divertor tokamaks [START_REF] Keilhacker | [END_REF] the last closed magnetic surface has a so-called X-point. This X-point directs plasma flow from the separatrix to a specially designed plate (divertor).

This technology helps to decrease the power loads on the first wall. Additional shaping coils are used to obtain the desirable magnetic eqilibrium. On figure 1.7 is represented the magnetic coil configuration of the ASDEX-upgrade tokamak.

Parameters of the tokamaks used in this work

In my thesis work part of the reflectometry computations were done using real tokamak geometry and density profiles. These tokamaks are: Tore-Supra, JET (Joint European Torus), and ASDEX-Upgrade (Axially Symmetric Divertor EXperiment). In this section main parameters of these machines are introduced. 

Plasma turbulence

Heat and particle transport in tokamak plasmas

In tokamak plasmas density and temperature are not homogeneous. Due to the tokamak geometry and radial transport, particle density and temperature are peaked in the plasma core. Plasma density profile can vary with minor radius up to a few orders of magnitude. In section 1.2.2 we saw that for advanced performances of a fusion power plant, energy confinement time 𝜏 𝐸 is a very critical parameter. This parameter is mostly defined by plasma instabilities and plasma turbulence as they drive heat and particle transport in a tokamak. Turbulence is usually present in tokamak discharges. Numerous experiments have shown fluctuations of many plasma parameters as plasma density 𝛿𝑛, temperature 𝛿𝑇 , plasma potential 𝛿𝜑, plasma current density 𝛿𝐽, electric and magnetic fields 𝛿𝐸, 𝛿𝐵. Further information can be found in N. Bretz's paper [16].To express the connection between turbulence and anomalous transport let us look at the generalized form of the transport coefficients. Anomalous fluxes of bilinear correlations of perturbations can be written according to Ross [17] 

Γ 𝑗 = -𝐷 𝑛 𝜕𝑛 𝑗 𝜕𝑟 -𝐷 𝑇 𝜕𝑇 𝑗 𝜕𝑟 + 𝑣𝑛 𝑗 + Γ 𝜕 𝑗 (1.13) 𝑄 𝑗 = -𝜒 𝑗𝑇 𝑛 𝑗 𝜕𝑇 𝑗 𝜕𝑟 -𝜒 𝑗𝑛 𝑇 𝑗 𝜕𝑛 𝑗 𝜕𝑟 + 𝑣𝑛 𝑗 𝑇 𝑗 + 5 2 𝑘 𝑏 𝑇 𝑗 Γ 𝑗 + 𝑄 𝛿 𝐽 (1.14)
Where Γ 𝑗 and 𝑄 𝑗 are ambipolar particle and energy fluxes of species 𝑗. The total flux consists of a sum of terms defined by Coulomb collisions (neoclassical transport)

and Γ 𝛿 fluxes associated with turbulence (anomalous transport), 𝐷 and 𝜒 are respectively transport coefficients of particle and temperature, 𝑣 is the convectional velocity.

Anomalous particle and energy fluxes driven by 𝐸 × 𝐵 drift can be associated with variations of electric field 𝛿𝐸 as one expects the magnetic particle diffusion term to be negligible. Assuming a specific type of turbulence, one can simplify the task. Electrostatic drift waves are driven by plasma pressure gradient and could appear in many regions of tokamak plasmas. For all electrostatic modes a general expression can be written.

Γ 𝛿𝐸 𝑗 = ⟨𝛿𝑛 𝑗 𝛿𝑣 𝑟 ⟩ = ⟨𝛿𝐸 𝜃 𝛿𝑛 𝑗 ⟩/𝐵 𝜑 (1.
𝛿𝑛 𝑒 𝑛 𝑒 𝑠𝑖𝑛(𝜓) = 𝑒𝛿Φ 𝑘 𝑏 𝑇 𝑒 ; 𝑘 𝜑 𝛿Φ = -𝛿𝐸 𝜑 (1.17)
In this expression 𝜓 is the phase between 𝛿𝑛 𝑒 and 𝛿Φ -the plasma potential. The particle flux in this case can be expressed as:

Γ 𝛿𝐸 𝑗 = 𝑛 𝑒 𝜐 𝑇 𝑒 𝜌 𝑐𝑒 ⟨ 𝛿𝑛 2 𝑒 𝑛 2 𝑒 𝑘 𝜃 sin(𝜓)⟩ (1.18) 
Here 𝜐 𝑇 𝑒 𝜌 𝑐𝑒 = 𝑐 𝑇 𝑒 𝑒𝐵 𝜑 and 𝜐 𝑇 𝑒 = √︀ 𝑘 𝑏 𝑇 𝑒 /𝑚 𝑒 is the thermal speed, and 𝜌 𝑐𝑒 = 𝜐 𝑇 𝑒 /𝜔 𝑐𝑒 is the electron cyclotron radius. There is a theory [18] as well as experimental observations [19] to express the phase 𝜓. However in this subsection, for simplicity we will consider limiting the expression under conditions of strong turbulence which is called mixing length limit, when 𝛿𝑛 𝑒 /𝑛 𝑒 ≈ 1/𝑘 𝑟 𝐿 𝑛 ≪ 1, sin(𝜓) ≈ 1 where 𝐿 𝑛 is the density gradient length 1/𝐿 𝑛 = -𝑑(ln(𝑛 𝑒 ))/𝑑𝑟. Under isotropy assumption 𝑘 𝑟 ≈ 𝑘 𝜃 we can find:

𝐷 𝛿𝐸 𝑛 (𝑠𝑡𝑟𝑜𝑛𝑔𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒) ≈ 𝜐 𝑇 𝑒 𝜌 𝑐𝑒 𝛿𝑛 𝑒 𝑛 𝑒 (1.19)
Such conditions are typical for plasma core where density fluctuation 𝛿𝑛 𝑒 /𝑛 𝑒 < 1%

Another way to estimate the particle diffusion coefficient is based on the general random walk using averaged space step across the magnetic field and correlation time.

𝐷 𝛿𝐸 𝑛 (𝑟𝑎𝑛𝑑𝑜𝑚𝑤𝑎𝑙𝑘) ≈ 𝑙 2 𝑛𝑐 /𝜏 𝑛𝑐 (1.20)
where 𝑙 𝑛𝑐 and 𝜏 𝑛𝑐 are correlation length and time of density fluctuations across the magnetic field.

Using these expressions one can conclude that to experimentally investigate particle and energy transport nature one has to measure fluctuations of density 𝛿𝑛, temper- ature 𝛿𝐸, plasma potential 𝛿Φ, electric and magnetic fields 𝛿𝐸 and 𝛿𝐵. This thesis work will be focused on density perturbations properties measurements with microwave reflectometry.

Tokamak turbulence wave-number spectrum

Aside from electrostatic drift wave turbulence which was considered in previous section 1.3.1 other electrostatic modes were found to be source of anomalous transport: MHDlike modes driven by magnetic field curvature, ripple losses, viscosity, plasma current, electromagnetic skin depth modes [START_REF] Kodomtsev | Theory of electron transport in a strong magnetic field[END_REF], and thermal instabilities in plasma edge [START_REF] Thayer | Thermally driven convective cells and tokamak edge turbulence[END_REF].

MHD-like modes have significantly longer wavelength comparing to skin depth mode and drift wave modes are sitting in between them.

In a tokamak, the turbulence energy obtained from free energy of pressure gradient can be transferred between turbulent modes with different wavelengths and frequencies.

Moreover this energy can be exchanged with zonal flows and geodesic acoustic modes (GAM). GAM will be discussed in section 1.3.5. Frequency and wave-number spectra contain very important information, which allow us to verify theoretical models used in numerical modelling.

Numerous theoretical works were done to describe the turbulence behaviour. Kolmogorov's well-known work [START_REF]Колмогоров, доклад академии наук[END_REF] describes homogeneous isotropic turbulence in 3D fluid.

This model gives turbulence energy cascades in the direction of small scale turbulence (so called direct cascade) with spectral behaviour 𝑘 -5/3 figure 1.8(a). Energy propagates to smaller scale turbulence where viscosity plays a major role and leads to energy dissipation.

Figure 1.9: illustration of drift wave developing mechanism for adiabatic electrons.

Reproduced from [START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF] As tokamak plasmas are not isotropic due to the magnetic field 2D description is more natural. Under such conditions Kraichnan-Leith-Batchelor's (KLB) model was developed [23]. This model predicts direct energy cascade with typical 𝑘 -3 dependence towards high wave-number direction from energy injection region (scale where energy is received by turbulence from kinetic instabilities), and energy cascade in the direction of smaller wave-number (inversed cascade) with 𝑘 -5/3 (figure 1.8(b)).

Drift wave turbulence

Drift wave instability is a basic linear instability. It could appear in plasmas with homogeneous magnetic field and density gradient. Periodic perturbation of electric field potential 𝛿Φ perpendicular to the direction of density gradient is assumed. Because of the electrons low mass they react fast on these perturbations. This results in charge separation in the direction perpendicular to the density gradient. The electric field appearing during this charge separation together with the magnetic field produces a particle drift. Under the approximation of adiabatic electrons (𝛿𝑛 𝑒 = 𝑒𝛿Φ 𝑇𝑒 𝑛 𝑒 ) the phase relation between potential variation phase and density perturbation doesn't make this perturbation unstable but leads to vertical drift with diamagnetic velocity (see figure 1.9). But in the case of collisions (plasma resistivity) this phase difference changes and the density perturbation becomes unstable and particles from higher density regions moves to smaller density regions.

Core plasma instabilities

In the plasma core region the density gradient doesn't reach high values as in the plasma edge region. However temperature profile is peaked closer to the plasma center. In this region ITG (ion temperature gradient), which is believed to be a major reason of anomalous ion temperature transport [24,25], dominates ETG (electron temperature gradient) [26], trapped electron mode (TEM) [START_REF] Kadomtsev | Plasma instability due to particle trapping in a toroidal geometry[END_REF], and trapped ion mode(TIM) [28,29,30]. These turbulent modes have different typical scale lengths. The scale is connected to Larmor radius 𝜌 for passing particles and banana orbit width 𝛽 for trapped particles.

In the case of typical tokamak setup:

𝛽 𝑖 > 𝜌 𝑖 ≥ 𝛽 𝑒 > 𝜌 𝑒 (1.21)
where indexes 𝑒 and 𝑖 mean electrons and ions.

Ion temperature gradient modes: small wave-number turbulence. Usually the most important modes in tokamak in terms of transport. It is driven by ion temperature gradient and can be stabilized by density gradient. They can also be stabilized by increase of impurities concentration. However impurities can have their own ITG instability with different frequencies due to their mass.

Trapped ion modes: the largest scale instabilities. Because of their scale they can induce strong transport. But these instabilities generally make small contribution to total transport. However when ITG are suppressed TIM should be taken into account for good turbulence representation [28].

Electron temperature gradient modes: Large wave-number instabilities. Because of their small scale they don't contribute much to transport. In the case of electron heating they can give large contribution to electron transport [31].

Trapped electron modes: Rising from temperature or density gradient, from interaction between electromagnetic waves and trapped electrons. They can be damped by collisionality as it vanishes velocity distribution function and decreases the number of trapped electrons. Also the magnetic shear can cause a stabilizing effect [32]. Where 𝑘 𝜃 is poloidal wave-number. Picture inspired by [START_REF] Li | Multi-scale turbulence experiment in HT-7 tokamak[END_REF] 1.3.5 Geodesic acoustic mode (GAM)

Geodesic acoustic modes were named after similar phenomena in the planet atmosphere and were first discovered by N. Winsor [START_REF] Winsor | [END_REF]. Local (zonal) flows oscillate proportionally to the sound velocity 𝑣 𝑐 divided by the major radius. These flows are caused by radial potential variations. In the round cross-section toroidal tokamak shape these potential perturbations can be expressed as:

Φ 𝐺 (𝑟) = 𝐴 𝐺 (𝑟)𝑒𝑥𝑝(-𝑖𝜔𝑡) (1.22)
And the electric field which is associated with this potential can be found as 𝐸 𝐺 = -𝑑Φ 𝐺 /𝑑𝑟. This electric field leads to a poloidal plasma drift in addition to the main rotation caused by not perturbed radial field (see figure 1.11).

𝑣 𝐺 = -𝑐𝐸 𝐺 /𝐵 (1.23)
Particle flows created by this velocity are called zonal flows. In inhomogeneous magnetic field divergence of such fluxes does not equal to zero. It should be compensated by particle flows along magnetic field lines. These flows will change their direction with initial potential variations. Amplitude of these flows is proportional to cos(𝜃), where 𝜃 is the poloidal angle. Parallel velocity is equal to: 

𝑣 𝐺 ‖ (𝜃) = 𝑣 𝐺 ‖0 cos(𝜃) (1.24)
𝑛 𝐺 = 𝑛 𝐺 0 sin(𝜃) (1.25)
To summarize, radial electric potential fluctuations give birth to poloidal and toroidal zonal flows, which lead to electric field perturbation modes with poloidal wave number 𝑚 = 0, and density perturbation mode with 𝑚 = 1. GAMs correspond to coherent structure which we will try to detect using reflectometry in the next chapters.

Scope of the work

Good understanding of turbulent transport and its prediction possibilities are essential for thermonuclear reactor design and operation. Diagnostic of plasma turbulence demands high temporal and spatial resolution. In the case of thermonuclear reactor there are limited number of diagnostics available. Plasma region situated close to the first wall can be investigated using Langmuir probes which is limited to operation in relatively cold plasmas [37]. Turbulence in the tokamak plasma core can be studied using technique called beam emission spectroscopy (BES) [38]. A very well-established technique that is expected to be the main turbulence diagnostic in ITER [39] is reflec-tometry [START_REF] Doyle | Reflectometry application to ITER, Diagnostics for Experimental Thermonuclear Fusion Reactors[END_REF]. It is very flexible and can measure different turbulent modes as well as MHD instabilities, it has minimal excess requirements and can be used under strong neutron yield from plasma.

In this work applicability of the ultra-fast swept reflectometry (UFSR) will be investigated using 2D full wave code. The plan of the report is as follows:

Chapter 2: Electromagnetic waves in plasma physics basics will be introduced. Principle of reflectometer work will be explained.

Chapter 3: Numerical methods for reflectometry synthetic diagnostic will be highlighted.

Chapter 4: Reflectometer signal change by strong edge turbulence layer will be studied.

Chapter 5: Synthetic diagnostic will be applied to gyro-kinetic code data in Tore-Supra tokamak and based on experimental data in ASDEX-Upgrade tokamak.

Chapter 2

Ultra fast sweeping reflectometry

In this chapter I will highlight the theory behind wave propagation in magnetized plasmas. Also reflectometer principles and basic signal analysis will be presented.

Waves in magnetized plasmas

Next we will highlight basic physics behind reflectometer electromagnetic wave propagation into magnetized tokamak plasmas.

Plasma dielectric tensor

Now let us look on plasma particles motion in high frequency electromagnetic waves.

Plasmas consist of ions and free electrons. Motion equations for these species look like:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝑑𝑣 (𝛼)𝑥 /𝑑𝑡 = 𝑞 𝛼 𝐸 𝑥 /𝑚 𝛼 + 𝑞 𝛼 𝑣 (𝛼)𝑦 𝐵 𝑧 /𝑚 𝛼 𝑑𝑣 (𝛼)𝑦 /𝑑𝑡 = 𝑞 𝛼 𝐸 𝑦 /𝑚 𝛼 -𝑞 𝛼 𝑣 𝑥 𝐵 𝑧 /𝑚 𝛼 𝑑𝑣 (𝛼)𝑧 /𝑑𝑡 = 𝑞 𝛼 𝐸 𝑧 /𝑚 𝛼 (2.1)
This expression is written for strongly magnetized plasmas. This is to say collision frequency 𝜈 < 𝜔 𝑐 . Magnetic field is directed parallel to z direction. There are no relativistic terms. This approximation is called cold plasma approximation. We will look for oscillating field solution with circular frequency 𝜔 -𝐸, 𝑣, 𝐵 ∝ 𝑒 -𝑖𝜔𝑡 . Next in this section by 𝐸, 𝐵, 𝑣 we will mean amplitude of complex fields. Then (2.1) becomes: 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ -𝑖𝜔𝑣 ( 
∧ 𝜎 𝛼 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝜔𝜖 0 𝜔 2 (𝛼)𝑝 𝜔 2 -𝜔 2 (𝛼)𝑐 𝑖𝜔 2 (𝛼)𝑐 𝜖 0 𝜔 2 (𝛼)𝑝 𝜔 2 -𝜔 2 (𝛼)𝑐 0 -𝑖𝜔 2 (𝛼)𝑐 𝜖 0 𝜔 2 (𝛼)𝑝 𝜔 2 -𝜔 2 (𝛼)𝑐 𝜔𝜖 0 𝜔 2 (𝛼)𝑝 𝜔 2 -𝜔 2 (𝛼)𝑐 0 0 0 𝑖𝜔𝜖 0 𝜔 2 (𝛼)𝑝 /𝜔 2 ⎤ ⎥ ⎥ ⎥ ⎦ (2.5) 
Where 𝜔 2 𝑝 = 𝑛𝛼𝑞 2 𝛼 𝑚𝛼𝜖 0 , 𝜖 0 is the vacuum dielectric permittivity. With the help of conductivity tensor one can calculate the plasma dielectric permittivity tensor given by following expression:

𝜖 𝑥𝑦 = 𝛿 𝑥𝑦 - ∑︁ 𝛼 𝜎 (𝛼)𝑥𝑦 𝑖𝜔𝜖 0 (2.6)
Where 𝛿 𝑥𝑦 is Kronecker delta,

𝛿 𝑥𝑦 = 1 if 𝑥 = 𝑦, 𝛿 𝑥𝑦 = 0 if 𝑥 ̸ = 𝑦. From (2.4) and
(2.6) one can express components of the dielectric tensor. As 𝜔 𝑝𝑒 >> 𝜔 𝑝𝑖 here ion contribution can be neglected.

∧ 𝜖 = ⎡ ⎢ ⎢ ⎣ 1 - 𝜔 2 𝑝𝑒 𝜔 2 -𝜔 2 𝑐𝑒 𝑖 𝜔𝑐𝑒 𝜔 𝜔 2 𝑝𝑒 𝜔 2 -𝜔 2 𝑐𝑒 0 -𝑖 𝜔𝑐𝑒 𝜔 𝜔 2 𝑝𝑒 𝜔 2 -𝜔 2 𝑐𝑒 1 - 𝜔 2 𝑝𝑒 𝜔 2 -𝜔 2 𝑐𝑒 0 0 0 1 - 𝜔 2 𝑝𝑒 𝜔 2 ⎤ ⎥ ⎥ ⎦ (2.7)
For tokamak plasmas the probing electromagnetic wave of reflectometer is directed usually perpendicular to magnetic field line direction. There are two polarization options (modes). First is ordinary mode (O-mode) with electric field parallel to the magnetic field direction and extraordinary mode (X-mode) with electric field directed perpendicular to the magnetic field. In the case of ordinary mode, square of the refractive index is given by expression:

Ordinary mode (O-mode)

𝑁 2 = 1 - (︁ 𝜔 𝑝𝑒 𝜔 )︁ 2 (2.8)
This expression is the same as for plasmas without external magnetic field. It does not depend on magnetic field. This wave is linearly polarized with its electric field parallel to the external magnetic field and its magnetic field perpendicular to the external magnetic field. Such waves propagate inside the plasma when 𝜔 > 𝜔 𝑝𝑒 . With higher density when 𝜔 𝑝𝑒 reaches 𝜔 plasma wave encounters a cut-off and reflects. The density at which it happens is called the critical density or cut-off density:

𝑛 𝑐 = 𝑚 𝑒 𝜖 0 𝜔 2 𝑒 2 (2.9)
Using this expression, the refraction index formula can be rewritten:

𝑁 2 = 1 - 𝑛 𝑛 𝑐 (2.10)

Extraordinary mode (X-mode)

Extraordinary mode has elliptical polarization with wave electric field vector ⃗ 𝐸 directed in perpendicular direction to external magnetic field. Neglecting ion mobility, the refraction index is given by next expression: As one can see propagation of extraordinary wave depends on both plasma density and magnetic field.

𝑁 2 𝑥 = 1 - 𝜔 2 𝑝𝑒 𝜔 2 (1 - 𝜔 2 𝑝𝑒 𝜔 2 ) 1 - 𝜔 2 𝑝𝑒 𝜔 2 -𝜔 2 𝑐𝑒 𝜔 2 (2.11)

Electromagnetic wave cut-off and resonances

Cut-off positions:

When on the way, the wave refraction index approaches to zero, the wave slows down and reflects or makes a turn. For O-mode the cut-off position is where the wave frequency is equal to the plasma oscillation frequency.

𝜔 = 𝜔 𝑝𝑒 (2.12)
There is no energy loss during wave propagation when 𝜔 < 𝜔 𝑝𝑒 . Reflection or turn of the wave near 𝜔 ≈ 𝜔 𝑝𝑒 also occurs with energy conservation. Extraordinary wave has two cut-off frequencies which correspond to solutions of equation 𝑁 2 = 0. In some special conditions the denominator of the refractive index can become zero and its value can go to infinity. In this case phase velocity of the wave becomes close to zero and wave energy absorption takes place. Ordinary mode does not have resonances.

𝜔 𝐿 = 1 2 [︁√︁ 𝜔 2 𝑐𝑒 + 4𝜔 2 𝑝𝑒 -𝜔 𝑐𝑒 ]︁ (2.13) 𝜔 𝐻 = 1 2 [︁√︁ 𝜔 2 𝑐𝑒 + 4𝜔 2 𝑝𝑒 + 𝜔 𝑐𝑒 ]︁ (2.14)
However X-mode refractive index can become infinite and wave can be absorbed by upper hybrid resonance.

𝜔 2 𝑈 𝐻 = 𝜔 2 𝑝𝑒 + 𝜔 2 𝑐𝑒 (2.15)
On figure 2.3 one can see an example of cut-off and resonance frequencies. These frequencies were computed for ASDEX tokamak L-mode profiles.

Wave propagation trough inhomogeneous plasmas

In experimental setup such as tokamak, plasma density and magnetic field are not homogeneous along the electromagnetic beam trajectory. Toroidal magnetic field component is much stronger than the poloidal one. This field is produced by central solenoid and decreases with major radius as 1/𝑅. The plasma density and temperature are peaked in the plasma core and decrease towards the plasma edge [START_REF] Wesson | Tokamaks" 3d edition[END_REF]. As it is mentioned in section 1.2.3, often the toroidal plasma cross-section is not circular, but has elongation and triangularity. Such a configuration can lead to probing beam deviation and reflection. As phase velocity of the beam is connected to the magnetic field and the plasma density, phase of the beam changes when it crosses the plasma.

In next sections we will have a look on the basic principles of these processes.

Approximation of Wentzel-Kramer-Brillouin

In inhomogeneous plasmas the refraction index 𝑁 depends on the position.

𝑘 2 = 𝑤 2 /𝑐 2 • 𝑁 2 = 𝑘 2 0 𝑁 2 (2.16)
If the variation of the refractive index is small over the wavelength Wentzel-Kramer-Brillouin (WKB) approximation can be applied. We will look for solution of the Helmholtz equation (2.18) in form of

𝐸 = 𝐸 0 (𝑟)𝑒 𝑖𝜑(𝑟) 𝑒 𝑖𝜔𝑡 .
(2.17)

More details about the Helmholtz equation can be found in further chapter (section 3.1).

∇ 2 𝐸 + 𝑘 2 (𝑟)𝐸 = 0 (2.18) 
Using solution (2.17) equation (2.18) can be expressed as:

𝐸 ′′ 0 -𝑖𝐸 0 𝜑 ′′ -2𝑖𝐸 ′ 0 𝜑 ′ + (𝑘 2 -𝜑 ′2 )𝐸 0 = 0 (2.19)
Under the assumption (2.17), the phase 𝜑 changes much faster than the amplitude 𝐸 0 and we can neglect second derivative of the amplitude 𝐸 ′′ 0 . To fulfil equation (2.19) imaginary and real part of left side should be equal to 0.

𝑘 2 -𝜑 ′2 = 0 ⇒ 𝜑 = ± ∫︁ 𝑘(𝑟)𝑑𝑟 (2.20) 𝐸 0 𝜑 ′′ -2𝐸 ′ 0 𝜑 ′ = 0 ⇒ 𝐸 0 (𝑟) = 𝐸 𝑣 / √︀ 𝜑 ′ (𝑟) = 𝐸 𝑣 / √︀ 𝑘(𝑟) (2.21)
Where 𝐸 𝑣 is the wave amplitude in the vacuum. Using last results together with expression (2.16) the total electric field can be expressed as

𝐸 = 𝐸 𝑣 √︀ 𝑁 (𝑟) 𝑒 ±𝑖𝑘 0 ∫︀ 𝑁 (𝑟)𝑑𝑟 𝑒 𝑖𝜔𝑡 (2.22)
Such expression is valid when ‖𝐸 ′′ 0 ‖ is much smaller than other components of equation (2.19). This is the case of geometrical optics approximation where the amplitude of the wave does not change much on the length of one local wave-length.

Wave propagation through a turbulent medium

Tokamak plasmas usually are very turbulent media. Density perturbations along the plasma profile cause wave scattering and change wave properties such as amplitude, phase and propagation direction. Scattering of the probing wave follows conservation low of energy and momentum:

⃗ 𝑘 𝑠𝑐𝑎𝑡 = ⃗ 𝑘 𝑖𝑛𝑐 + ⃗ 𝑘 𝑡𝑢𝑟𝑏 (2.23) ⃗ 𝜔 𝑠𝑐𝑎𝑡 = ⃗ 𝜔 𝑖𝑛𝑐 + ⃗ 𝜔 𝑡𝑢𝑟𝑏 (2.24)
Here subscription 𝑠𝑐𝑎𝑡 refers to scattered wave, 𝑖𝑛𝑐 -to incident wave, 𝑡𝑢𝑟𝑏 to turbulence wave. 𝑘 is the wave-length and 𝜔 is the wave circular frequency. Relations or magnetic field are present, the wave refractive index is also perturbed. To investigate how each wave-number of the turbulence interacts with the probing wave, we will consider monochromatic perturbation with amplitude envelop centred in 𝑥 𝑓 .

𝑁 2 = 1 - 𝜔 2 𝑝𝑒 𝜔 2 = 1 - 𝑛 0 𝑛 𝑐 - 𝛿𝑛 𝑛 𝑐 cos(𝑘 𝑓 (𝑥 -𝑥 𝑓 -𝑑 𝑓 ))) (2.25)
Where 𝑑 𝑓 is the semi length of the envelop and 𝑎 𝑓 is the envelop amplitude. We will make the assumption that inside turbulence amplitude envelop

[𝑥 ∈ [𝑥 𝑓 -𝑑 𝑓 , 𝑥 𝑓 + 𝑑 𝑓 ]]
the plasma is homogeneous. This assumption is justified by Floquet theorem. Now

Helmholtz equation can be reduced to Mathieu equation [START_REF] Colin | Modélisation d'un réflectométre mode X en vue de caractériser les fluctuations de densité et de champ magnétique : applications aux signaux de Tore Supra[END_REF][START_REF] Mathieu | Mémoire sur Le Mouvement Vibratoire d'une Membrane de forme Elliptique[END_REF]:

𝑑 2 𝐸 𝑑𝜉 2 + (𝑝 -2𝑞 cos 2𝜉)𝐸 = 0 (2.26)
Where 𝜉 = 𝜋 4 -1 2 𝑘 𝑓 (𝑥 -𝑥 𝑓 -𝑑 𝑓 ), 𝑝 describes position and in some sense the relation between local wave-number and turbulence wave number, 𝑞 represents perturbation amplitude. Solution stability of Mathieu equation in a plane of 𝑝, 𝑞 can be expressed by infinite progression of functions 𝑎 𝑖 (𝑞) and 𝑏 𝑖 (𝑞). This functions can be expressed in different ways [44] [45]. 𝑎 𝑖 < 𝑝 < 𝑏 𝑖+1 :stable solution one can find stable and unstable zones of Mathieu equation. Expressions for variables 𝑝 and 𝑞 for ordinary and extraordinary modes can be found in [START_REF] Colin | Modélisation d'un réflectométre mode X en vue de caractériser les fluctuations de densité et de champ magnétique : applications aux signaux de Tore Supra[END_REF]. Small turbulence level corresponds to 𝑞 ≈ 0, in this case only one unstable solution can be reached it represents normal Bragg scattering condition. With higher turbulence amplitude (increase of 𝑞 value) more high 𝑞 unstable zones start to be active. [START_REF] Udintsev | presentation for 1st Int. Conference on Frontiers in Diagnostic Technologies[END_REF] In the reality of complex geometry which leads to limited space for diagnostics, it is very important to have good plasma density profile and plasma position measurement tools as well as a plasma turbulence diagnostic tool which is compact and accurate.

Reflectometer description

Reflectometery basic principle

Plasma microwave reflectometry uses very small vacuum chamber port with one or two small antennas. This diagnostic is based on a radar technique where ordinary or extraordinary electromagnetic wave is launched into the plasma with a frequency that permits to have a cut-off layer with a reflection like from a mirror [START_REF] Mazzucato | [END_REF] [48]. It uses ultra fast frequency swept signal which allows to scan the density profile with a time scale which is much smaller than the plasma turbulence correlation time. After the reflection, the wave goes out of the plasma and gets received by a receiving antenna. Along the way through the plasma the electromagnetic wave gain an additional phase 𝜑 and time delay.

Based on WKB (see section2.1.6) approximation, Bottollier-Curtet technique [49,50] allows us to rebuild density profile. However plasma turbulence perturbs density profile and to measure plasma density profile one have to make an average of the UFSR phase, which is assumed to be WKB phase. Moreover reflectometer phase fluctuations after removal of the phase average can give an information about turbulence wave-number spectrum (see equation (2.27)).

𝜑 = ⟨𝜑⟩ + 𝛿𝜑 (2.27)
Measurements can be done from the low field side(LFS) and high field side(HFS) with both "X" and "O" modes. Almost zero cut-off frequencies near the plasma edge make O-mode reflectometry inapplicable for plasma edge density measurements. If magnetic field is very high especially on HFS X-mode cut off frequency can become very high, and measurements are difficult due to reflectometry hardware limitations. Depending on magnetic field strength, small density region in HFS can not be reachable because of upper hybrid resonance.

In Ultra-Fast Swept Frequency Reflectometry(USFR) the phase that the probing beam gains due to the plasma density and magnetic field is not measured directly. To

give an example of beam phase calculation let us assume that probing wave frequency is changing in time as:

𝐹 (𝑡) = 𝑓 0 + 𝑣 𝑓 • 𝑡 (2.28) 
Where 𝑣 𝑓 [𝐺𝐻𝑧/𝑚𝑠] is the frequency sweep speed. In this case the initial signal phase looks like:

𝜑 0 (𝑡) = 2𝜋𝑓 0 𝑡 + 2𝜋𝑣 𝑓 𝑡 2 2 (2.29)
Then reflected from the plasma, the signal phase can be expressed as:

𝜑 𝑟 (𝑡) = 2𝜋𝑓 0 𝑡 + 2𝜋𝑣 𝑓 𝑡 2 2 + 𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 (𝑡) + 𝜑(𝑡) (2.30)
Here 𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 is the phase gained in the vacuum region and transmission lines. In a basic experimental setup initial signal 𝐴 0 cos(𝜑 0 ) is split and part of it is transited avoiding plasma. Then this signal goes to a multiplier and is mixed with reflected

signal 𝐼 0 = 𝐴 𝑟 cos(𝜑 𝑟 ) 𝐴 0 𝐴 𝑟 cos(𝜑 0 ) cos(𝜑 𝑟 ) = 𝐴 0 𝐴 𝑟 2 [cos(4𝜋𝑓 0 𝑡 + 2𝜋𝑣 𝑓 𝑡 2 + 2𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 (𝑡) +𝜑(𝑡)) + cos(𝜑 + 𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 )] (2.31)
Filtering out high frequency signal one can obtain 𝐴 0 𝐴 𝑟 cos(𝜑 + 𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 ) where 𝐴 𝑟 is a received beam amplitude and 𝜑 is a phase obtained due to propagation through the plasma. This phase observed as beating frequency signal 𝜑 = 𝐹 𝑏 𝑡, where 𝐹 𝑏 is a beating frequency.

Such a system with single frequency is called homodyne detection. Using this method it is impossible to calculate simultaneously amplitude and phase of the reflectometer signal without certain assumptions.

Homodyne IQ detection

To determine signal phase and amplitude separately, IQ detection technique can be used. Reflectometer reference signal split on 2 parts and 𝜋/2 phase is introduced to one of the parts. These reference parts can be expressed as:

𝐼 𝑠 = 𝐴 0 sin(𝜑 𝑟𝑒𝑓 ) (2.32) 𝐼 𝑐 = 𝐴 0 cos(𝜑 𝑟𝑒𝑓 ) (2.33)
The signal reflected from the plasma (𝐼 𝑟𝑒𝑓 ) is then multiplied with both 𝐼 𝑠 and 𝐼 𝑐 .

𝐼 𝑠 𝑟𝑒𝑓 • 𝐼 0 = 1 2 𝐴 𝑟𝑒𝑓 𝐴 0 [sin(𝜑 𝑟𝑒𝑓 + 𝜑 0 ) + sin(𝜑 𝑟𝑒𝑓 -𝜑 0 )] (2.34) 𝐼 𝑐 𝑟𝑒𝑓 • 𝐼 0 = 1 2 𝐴 𝑟𝑒𝑓 𝐴 0 [cos(𝜑 𝑟𝑒𝑓 + 𝜑 0 ) + cos(𝜑 𝑟𝑒𝑓 -𝜑 0 )] (2.35) 
Both resulting signals can be processed to filter high frequency part(𝜑 𝑟𝑒𝑓 + 𝜑 0 ). This permits to get real and complex parts of the signal(IQ):

1 2 𝐴 0 ℜ(𝐼) = 1 2 𝐴 𝑟𝑒𝑓 𝐴 0 cos(𝜑) (2.36) 1 2 𝐴 0 ℑ(𝐼) = 1 2 𝐴 𝑟𝑒𝑓 𝐴 0 sin(𝜑) (2.37)
Signal amplitude and phase can be calculated as:

𝐴 𝑟𝑒𝑓 = √︀ ℜ 2 (𝐼) + ℑ 2 (𝐼) 𝜑 = arctan(ℑ(𝐼)/ℜ(𝐼)) (2.38) 
This method allows us to calculate amplitude and phase separately. Homodyne swept frequency reflectometry was widely used in the past on various tokamaks such as JET [51], ASDEX [52], TFTR [53] and others.

Swept signal sources always have relatively strong phase noise. Because of this, to extract phase from small beating frequency one will face low signal-noise ratio.

Heterodyne IQ detection

Signal to noise ratio can be improved using heterodyne system. Heterodyne system was first applied to Russian T-10 tokamak [54]. This system is based on 2 signal sources with different frequencies. The probing signal is modulated with low frequency oscillator (𝐹 𝑚 ). Then the same procedure which was highlighted in previous section is applied and the resulting signal has frequency 𝐹 𝑏 + 𝐹 𝑚 . With the increase of frequency, the signal to noise ratio improves [55]. At a final step, modulation frequency used to get imaginary and real parts of IQ signal.

Usually in tokamak, turbulence is stronger near the edge. This turbulence can lead to back scattering on the probing wave. With a frequency sweeping this backscattered part of the probing wave can be received earlier than the part reflected at the cut-off position. Part of the wave also can be trapped between cut-off and edge turbulence.

These fields mix together with noise make IQ detection method inapplicable without special filtering [START_REF] Medvedeva | Experimental study of turbulence at the plasma edge of ASDEX Upgrade tokamak with an ultra-fast swept reflectometer[END_REF]. Example of time of flight spectrogram is shown on figure 2.7.

Filtering of the signal can change the reflectometer phase response which is crucial for turbulent wave-number spectra reconstruction. 

Other reflectometry types

Beside UFSR there are other types of reflectometry able to provide information on plasma turbulence and plasma density profile [START_REF] Mazzucato | [END_REF]58].

Short pulse reflectometry: instead of fast frequency sweep it uses short pulse (𝑡 ≈ 1𝑛𝑠) [59,60]. Using such a technique one can avoid phase description of reflectometer signal. Time of flight is measured directly. However reflection before cut-off and multi-reflection in this case are also able to affect of measurements.

Fixed frequency normal incidence reflectometry: uses fixed frequency to measure signal variation in time. With frequency one can fix the cut-off position.

Under the assumption that the reflectometer signal relies on cut-off vicinity frequency spectra and signal time coherency can be measured [61]. Using multiple frequencies simultaneously one can also extract turbulence radial correlation length [62].

Doppler reflectometry: beam directed not perpendicular to the cut-off layer, resulting in ray makes turn instead of cut-off [63,64]. Using ray-tracing codes it is possible to evaluate position of turning point and local probing wave-number. Assuming that the main part of the signal comes from the turning point it is possible to measure frequency spectra, which can be used to calculate poloidal plasma rotation of certain wave-number. Tilting the antenna angle it is possible to change probing wave-number at the turning point and by doing this scan turbulence wave-number spectra. [65].

Poloidal correlation reflectometry: This type of reflectometer uses several poloidally displaced receiving antennas and single emitting antenna. This enables to associate the signal received by each antenna with a certain poloidal angle. Correlation between signals of different antennas can give an information on poloidal plasma rotation and turbulence correlation time [START_REF] Prisiazhniuk | Development and application of poloidal correlation reflectometry to study turbulent structures in the ASDEX Upgrade tokamak[END_REF][START_REF] Krämer-Flecken | [END_REF].

Imaging reflectometry: instead of receiving antenna one can use an array of antennas closely distributed in a relatively small area [68,69]. Each receiving antenna from this array is associated with a certain position in the plasma. With such a configuration one can get 2D turbulence profile. However due to poor signal localization and non-linear effects, resolution of such a system is not very high.

Closed loop algorithm

Reflectometer signal processing to extract plasma properties is very tricky. With help of synthetic diagnostics such as full-wave codes or reduced models it is possible to calculate reflectometer response for given plasma parameters. However to link reflectometer phase variation power spectrum to density variation power spectrum inverse problem should be solved. To introduce algorithm to solve this problem let's make the assumption that reflectometer signal phase power spectra obtained from area near coordinate 𝑅 0 depends only on turbulence near 𝑅 0 . Under this assumption we can introduce power spectra transfer function:

𝑆 𝑝𝑜𝑤 𝛿𝑛 (⃗ 𝑟, 𝑡) = 𝑆 𝑝𝑜𝑤 𝛿𝜑 (⃗ 𝑟, 𝑡) • 𝑇 𝑟(𝑆 𝑝𝑜𝑤 𝛿𝑛 (⃗ 𝑟, 𝑡)) (2.39)
Where 𝑆 𝑝𝑜𝑤 𝛿𝑛 is the density perturbations power spectrum, 𝑆 𝑝𝑜𝑤 𝛿𝜑 -is the swept reflectometer phase power spectrum, and 𝑇 𝑟 is the transfer function. In case of Born approx- imation which is valid when turbulence is weak, transfer function 𝑇 𝑟 does not depend on turbulence spectrum and can be expressed with analytical expression [70]. However when turbulence root mean square level reaches a few % from cut-off density, phase behaviour becomes not linear and in this case transfer function 𝑇 𝑟 should depend also on turbulence power spectrum. Transfer function can be found using so called closed loop algorithm [START_REF] Gerbaud | Density fluctuation measurements with fast-sweep X-mode reflectometry[END_REF]. Algorithm diagram is illustrated on figure 2.8. Closed loop algorithm uses synthetic diagnostic for direct problem solution. Experimental density profile and assumed density turbulence with power spectrum 𝑆 𝑝𝑜𝑤 𝛿𝑛,0 are used in synthetic diagnostic computation. Then using computation result and experimental data transfer function can be computed 𝑇 𝑟 0 = 𝑆 𝑝𝑜𝑤 𝛿𝑛,0 /𝑆 𝑝𝑜𝑤 𝛿𝜑,0 . After it can be applied to experimental data to generate new turbulence 𝑆 𝑝𝑜𝑤 𝛿𝑛,𝑖+1 = 𝑆 𝑝𝑜𝑤 𝛿𝜑 0 • 𝑇 𝑟 𝑖 . This action should be repeated until computation result will match experimental data. As synthetic diagnostic 1D [START_REF] Fanack | Etude analytique et numérique de la réflectométrie dans un plasma fluctuant. Modeéles á une et deux dimensions[END_REF][START_REF] Colin | Modélisation d'un réflectométre mode X en vue de caractériser les fluctuations de densité et de champ magnétique : applications aux signaux de Tore Supra[END_REF],

2D or 3D [65,72] full wave codes can be used as well as simplified models [START_REF] Bulanin | Consideration Doppler reflectometry in Born approximation[END_REF]. Under our current assumption we can replace real inhomogeneous turbulence by turbulence with same spectrum and amplitude all over the density profile. This assumption gives very good convergence of the method [START_REF] Gerbaud | Density fluctuation measurements with fast-sweep X-mode reflectometry[END_REF]. However it is not very realistic in fusion plasmas. For more realistic description of the turbulence one can make turbulence level inhomogeneous. Moreover recent studies were made using fully inhomogeneous turbulence [START_REF] Medvedeva | Experimental study of turbulence at the plasma edge of ASDEX Upgrade tokamak with an ultra-fast swept reflectometer[END_REF]. Method does not guaranty good convergence and unique stable solution.

In this work we will focus on synthetic diagnostics and we will study in more details different turbulence observation regimes and look on changes of the reflectometer signal due to strong turbulence that possibly will affect closed loop interpretation results.

Chapter 3

Reflectometer response computation methods

In this section I will highlight the computation methods which will be used in the rest of the thesis work. Here we will speak about numerical and analytical solutions.

Helmholtz equation

Let us look on Maxwellian equations for the harmonic solution

𝐸 = 𝐸 𝜔 (𝑥, 𝜔)𝑒 -𝑖𝜔𝑡 ⎧ ⎨ ⎩ 𝑟𝑜𝑡 ⃗ 𝐸 𝜔 = 𝑖𝜔𝜇 0 ⃗ 𝐻 𝜔 𝑟𝑜𝑡 ⃗ 𝐻 𝜔 = ⃗ 𝐽 𝜔 -𝑖𝜔𝜖 0 ⃗ 𝐸 𝜔 (3.1)
We will apply 𝑟𝑜𝑡 on the first equations (3.1).

𝑟𝑜𝑡(𝑟𝑜𝑡 ⃗ 𝐸

𝜔 ) = 𝑖𝜔𝜇 0 𝑟𝑜𝑡 ⃗ 𝐻 𝜔 (3.2)
Plasma current ⃗ 𝐽 𝜔 can be expressed through conductivity ⃗ 𝐽 𝜔 = 𝜎 ⃗ 𝐸 𝜔 . Using expression "𝑟𝑜𝑡(𝑟𝑜𝑡𝑋) = 𝑔𝑟𝑎𝑑(𝑑𝑖𝑣𝑋)-△𝑋" and replacing 𝑟𝑜𝑡 ⃗ 𝐻 𝜔 in the right parts of the original Maxwell's expression we get:

-△ ⃗ 𝐸 𝜔 = 𝜔 2 𝑐 2 (1 - ∧ 𝜎 𝑖𝜔𝜖 0 ) ⃗ 𝐸 𝜔 (3.3)
In this expression we use only the diagonal components of the tensor 𝜎(2.5). Using expression (2.6) we obtain:

△ ⃗ 𝐸 𝜔 + ⃗ 𝑘 ⃗ 𝐸 𝜔 = 0 (3.4)
This expression is called Helmholtz equation. Using this expression it is possible to calculate the reflectometer probing beam stationary field distribution. However to calculate reflectometer phase responses, the incident field should be removed (see section 2.2.1). To make it in 2D, special boundary condition method should be used [START_REF] Ирзак | Диссертация на соискание ученой степени кандидата физикоматематических наук (Санкт-Петербург[END_REF]. In 1D, the solution becomes much simpler. In the case of full reflection, the incident and the reflected waves have the same amplitude and the solution takes the form of a standing wave.

cos(𝜔𝑡 + 𝑘𝑥) + cos(-𝜔𝑡 + 𝑘𝑥 + 𝜑 0 + 𝛿𝜑) = 2 cos(𝑘𝑥 + 𝜑 0 2 + 𝛿𝜑 2 ) cos(𝜔𝑡 + 𝜑 0 2 + 𝛿𝜑 2 ) (3.5)
Here 𝜑 0 is the received field phase obtained without turbulence, 𝛿𝜑 is defined by turbulence. As wee see in expression (3.5) phase computed from standing wave zero position using Helmholtz equation equals to half of the phase measured in an experiment. As we will show in section 3.4 the stationary solution can be different from the time dependent one. Moreover in experimental data analysis (section 2.2.3) for one to be able to track the phase beating frequency, the spectrum should be filtered to have only the main reflection taken into account (no multi-reflections) [START_REF] Clairet | [END_REF]76]. And after filtering also wave scattering from the edge does not have direct influence on the received signal.

But in some cases, for example when the edge turbulence level is much higher than the core one, scattering from the plasma edge can dominate. We will look more closely on this problem in next sections.

Solution of 1D Helmholtz equation

One dimensional form of this equation is widely used for reflectometry simulation and data analysis. Developed numerical methods allow to compute the electric field distribution very fast and with very good accuracy. Next we will closer look on the precision on the Numerov's method (3.4).

4th Order Numerov's method for Helmholtz equation

Using Numerov's method [START_REF] Fanack | Etude analytique et numérique de la réflectométrie dans un plasma fluctuant. Modeéles á une et deux dimensions[END_REF] it is possible to rewrite one dimensional Helmholtz equation (3.4) as a 4th order discretized differential scheme.

Λ = (1 + ℎ 2 12 𝑑 2 𝑑𝑥 2 ) (3.6)
With Numerov's method, operator Λ (3.6) will be applied on the Helmholtz equation (3.4).

(1 + ℎ 2 12 𝑑 2 𝑑𝑟 2 ) 𝑑 𝐸 𝑧 (𝑟) 𝑑𝑟 2 + 4𝜋𝑁 2 0 (𝑟)𝐸 𝑧 (𝑟) + ℎ 2 12 𝑑 2 𝑑𝑥 2 (4𝜋𝑁 2 0 (𝑟)𝐸 𝑧 (𝑟)) = 0 (3.7)
Here we got discrete differential scheme of 4th order.

𝐸 𝑧 (𝑟 𝑖 + ℎ)𝐶 𝑖 + 𝐸 𝑧 (𝑟 𝑖 -ℎ)𝐴 𝑖 + 𝐸 𝑧 (𝑟 𝑖 )𝐵 𝑖 = 0 (3.8)
Where

𝐴 𝑖 = (1+4𝜋 2 ℎ 2 12 𝑁 2 0 (𝑟 𝑖 -ℎ)), 𝐵 𝑖 = (2-4𝜋 2 5ℎ 2 6 𝑁 2 0 (𝑟 𝑖 ))
, and 𝐶 𝑖 = (1+4𝜋 2 ℎ 2 12 𝑁 2 0 (𝑟 𝑖 + ℎ)) 1D Helmholtz equation can be rewritten as system of linear equations

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐵 1 𝐶 1 0 . . . 0 𝐴 2 𝐵 2 𝐶 2 . . . . . . 0 . . . . . . . . . 0 . . . . . . 𝐴 𝑁 -1 𝐵 𝑁 -1 𝐶 𝑁 -1 0 . . . 0 𝐴 𝑁 𝐵 𝑁 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐸 1 𝐸 2 . . . 𝐸 𝑁 -1 𝐸 𝑁 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐷 1 𝐷 2 . . . 𝐷 𝑁 -1 𝐷 𝑁 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.9)
Where vector 𝐷 is defined by boundary conditions.

Electric field amplification phenomena

To find limitations of the Numerov's numerical scheme for Helmholtz equation we will use special electron density profile with several cut-off positions, for which exact solutions can be written. In these special conditions big amplification of the electric field can take place, as illustrated in the following example. Although such a density profile is not very realistic, this example is very good for verification of the computation method.

Refractive index of the ordinary wave is given by:

𝑁 2 = 1 - 𝑛(𝑥) 𝑛 𝑐 (3.10)
Where 𝑛(𝑥) is the plasma electron density, and 𝑛 𝑐 is the critical density. To analyze resonance solution with extreme field amplification we will look at the simplest case with analytical solution of the 1D Helmholtz equation.

⎡ ⎣ 𝑛(𝑥) = 𝐿-𝑥 𝐿 𝑛 𝑐 + 𝑛 0 : 𝑥 < 𝑥 0 𝑛(𝑥) = 𝐿-𝑥 𝐿 𝑛 𝑐 : 𝑥 ≥ 𝑥 0 (3.11)
Here 𝐿 is the distance from cut-off position to plasma edge. This density profile is not very realistic. Square of refractive index is depicted on figure 3.2. One can find information on wave amplitude amplification in more realistic cases [77]. In this case to get exact solution we need to divide the space in two areas. First 𝑥 < 𝑥 0 and 𝑥 > 𝑥 0 .

Amplitude of electric field in these regions can be expressed as

⎡ ⎣ 𝐸 = 𝐴 1 𝐴𝑖(η) + 𝐵1𝐴𝑖(η) : 𝑥 < 𝑥 0 𝐸 = 𝐴 2 𝐴𝑖(𝜂) : 𝑥 ≥ 𝑥 0 (3.12)
Where Ai and Bi are first and second Airy functions, and 𝜂 is a normalized radius:

𝜂 = (𝑘 0 𝐿) 2/3 𝑥/𝐿; η = (𝑘 0 𝐿) 2/3 (𝑥 + 𝐿𝑛 0 𝑛 )/𝐿 (3.13)
To find constants 𝐴 1 and 𝐴 2 we will use properties of the electromagnetic wave structure such as continuity of the electric field value and its derivative. These values should be connected near 𝑥 𝑚𝑎𝑥 .

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝐴 1 𝐴𝑖( η0 ) + 𝐵 1 𝐵𝑖( η0 ) = 𝐴 2 𝐴𝑖(𝜂 0 ) 𝐴 2 𝐴𝑖 ′ ( η0 ) + 𝐵 1 𝐵𝑖 ′ ( η0 ) = 𝐴 2 𝐴𝑖 ′ (𝜂 0 ) 𝐴 2 = 1 (3.14) 
With 𝜂 0 = 𝜂(𝑥 0 ), η0 = η(𝑥 0 ), and 𝐴𝑖 ′ = 𝑑𝐴𝑖 𝑑𝑥 . In order to find analytical solution we have fixed parameter 𝐴 2 = 1. From system (3.14) we can express coefficient 𝐴 1 and

𝐵 1 . ⎧ ⎨ ⎩ 𝐴 1 = 𝐴𝑖 ′ (𝜂 0 )𝐵𝑖( η0 )-𝐴𝑖(𝜂 0 )𝐵𝑖 ′ ( η0 ) 𝐴𝑖 ′ ( η0 )𝐵𝑖( η0 )-𝐴𝑖( η0 )𝐵𝑖 ′ ( η0 ) 𝐵 1 = 𝐴𝑖 ′ (𝜂 0 )𝐴𝑖( η0 )-𝐴𝑖(𝜂 0 )𝐴𝑖 ′ ( η0 ) 𝐵𝑖 ′ ( η0 )𝐴𝑖( η0 )-𝐵𝑖( η0 )𝐴𝑖 ′ ( η0 ) (3.15)
In the vacuum region the total field can be expressed through incident and reflected waves similar to expression (3.16).

𝐸 𝑡𝑜𝑡 = 𝐸 𝑖𝑛 cos(𝑘𝑥) + 𝐸 𝑜𝑢𝑡 cos(𝑘𝑥 + 𝜑 0 + 𝛿𝜑) (3.16)
As we do not have any wave energy absorption, then 𝐸 𝑖𝑛 here is equal to 𝐸 𝑜𝑢𝑡 .

𝐸 𝑡𝑜𝑡 = 𝐸 𝑖𝑛 cos(𝑘𝑥 + 𝜑 0 /2 + 𝛿𝜑/2) cos(𝜑 0 /2 + 𝛿𝜑/2) (3.17)
This means that solving Helmholtz equation does not allow to separate incident and reflected waves. But phase difference can be calculated from the total field distribution.

To study field amplification effect we will use field amplification coefficient computed as ratio of the electric field amplitude coefficient 𝐴 2 and amplitude of the total field in the vacuum region. Far from the cut-off area (𝜂 < -1) the Airy function solution can be expressed with asymptotic formula:

𝐴𝑖(𝜂) = 1 √ 𝜋𝑧 1/4 sin (︂ 3 2 𝜂 3/2 + 𝜋/4 )︂ ; 𝐵𝑖(𝜂) = 1 √ 𝜋𝑧 1/4 cos (︂ 3 2 𝜂 3/2 + 𝜋/4 )︂ (3.18)
Using this (3.18) expression we can find the total field in the vacuum region.

𝐴 1 𝐴𝑖(𝜂) + 𝐵 1 𝐵𝑖(𝜂) = √︀ 𝐴 2 1 + 𝐵 2 1 √ 𝜋(𝑘 0 𝐿) 1/6 cos (︂ arctan(𝐴 1 /𝐵 1 ) - 3 2 𝜂 3/2 -𝜋/4 )︂ (3.19)
One can see that field amplitude in the vacuum region is equal to

𝐴 0 = √ 𝐴 2 1 +𝐵 2 1 √ 𝜋(𝑘 0 𝐿) 1/6
. And the amplification factor:

𝛾 = 𝐴 2 /𝐴 0 = (︃ √︀ 𝐴 2 1 + 𝐵 2 1 √ 𝜋(𝑘 0 𝐿) 1/6
)︃ -1 (3.20) 

Numerical precision of the Numerov's method in the case of strong electric field amplification

The case with single cavity represents an easy explanation of the field amplification phenomena. However for comparison with numerical solution we will use a plasma density profile with square gap near the cut-off region.

⎡ ⎣ 𝑛(𝑥) = 𝐿-𝑥 𝐿 𝑛 𝑐 + 𝑛 0 : 𝑥 ∈ [𝑥 𝑚𝑖𝑛 ; 𝑥 𝑚𝑎𝑥 ] 𝑛(𝑥) = 𝐿-𝑥 𝐿 𝑛 𝑐 : 𝑥 ∈ (-∞; 𝑥 𝑚𝑖𝑛 ) ∪ (𝑥 𝑚𝑎𝑥 ; +∞) (3.21)
Here 𝑥 𝑚𝑖𝑛 and 𝑥 𝑚𝑎𝑥 are start and end positions of the density jump and 𝑛 0 is amplitude of the jump. Solution of this equation is the superposition of Airy functions. If we divide the space into 3 areas, each of them will have analytical solution with unknown coefficients.

⎡ ⎢ ⎢ ⎢ ⎣ 𝐸 = 𝐴 1 𝐴𝑖(𝜂) + 𝐵 1 𝐴𝑖(𝜂) : 𝑥 < 𝑥 𝑚𝑖𝑛 𝐸 = 𝐴 2 𝐴𝑖(η) + 𝐵 2 𝐵𝑖(η) : 𝑥 ∈ [𝑥 𝑚𝑖𝑛 ; 𝑥 𝑚𝑎𝑥 ] 𝐸 = 𝐴 3 𝐴𝑖(𝜂) : 𝑥 > 𝑥 𝑚𝑎𝑥 (3.22)
𝜂 and η can be found in expression (3.13). By solving the system of equations (3.22) which connects values and derivatives of electric field 𝐸 near 𝑥 𝑚𝑖𝑛 and 𝑥 𝑚𝑎𝑥 one can calculate coefficients 𝐴 1 , 𝐵 1 , 𝐴 2 , 𝐵 2 . And in order to find a solution, we will fix 𝐴 3 = 1.

For electric field amplification factor we will use same expression (3.20) as in previous section. For comparison this coefficient can be also computed using numerical Helmholtz equation solution with Numerov's method.

Comparing exact and numerical solutions, we have found that near the resonance, amplification factors behave differently. Resonance positions are also not the same (Figure 3.3). These peaks correspond to the resonance at the fundamental cavity With growth of density jump amplitude, the fundamental resonance peak becomes more narrow. And double precision for the cavity position is not enough to reach maximum of the electric field amplification factor (see figure 3.6). However we see Figure 3.6: Amplification factor 𝛾 as function of cavity size close to fundamental resonance that numerical and exact solutions are in very good agreement when 𝑛 0 /𝑛 𝑐 < 6 -7%.

This value corresponds to electric field amplification factor 𝛾 ≈ 3 • 10 6 . This means that even in extreme conditions Helmholtz equation solution has very good precision.

On the figure 3.6 one can see detailed picture of the peak. Due to very small step of the density cavity size which is close to computational precision it is not possible to reproduce accurately the resonance peak. As one can see on figure 3.5 the exact solution for amplification factor saturates even faster than the numerical solution. Here we can conclude that 1D Numerov's Helmholtz solver has a very good precision even in very extreme conditions.

Numerical precision of the Numerov's method with noisy density profile

The same field amplification phenomena can be seen when noise is added onto the density profile. With noise, the resonance does not disappear but becomes stronger.

Figure 3.7 represents the electric field propagating in a steady state noisy (white noise) plasma fulfilling resonant conditions, which are extremely narrow. A numerical precision of 13 digits is required to requires to determine 13 digits to reach these resonant conditions. To avoid negative densities the noise is contained in an appropriate enve- Going from Maxwell's equations

⎧ ⎨ ⎩ 𝑟𝑜𝑡 ⃗ 𝐸 = -𝜕𝐵/𝜕𝑡 𝑟𝑜𝑡 ⃗ 𝐵 = 𝜇 0 [ ⃗ 𝐽 + 𝜖 0 𝜕 ⃗ 𝐸/𝜕𝑡] (3.23)
Where ⃗ 𝐽 is a plasma current density. Applying 𝑟𝑜𝑡 to the first equation, in the case of independence of time and position coordinates, and using again relation 𝑟𝑜𝑡(𝑟𝑜𝑡 ⃗ 𝐴) = 𝑔𝑟𝑎𝑑(𝑑𝑖𝑣 ⃗ 𝐴) -△ ⃗ 𝐴 we get:

𝑔𝑟𝑎𝑑(𝑑𝑖𝑣 ⃗ 𝐸) -△ ⃗ 𝐸 = - 𝜕 𝜕𝑡 𝑟𝑜𝑡 ⃗ 𝐵 (3.24)
Replacing 𝑟𝑜𝑡 ⃗ 𝐵 by second equation from (3.23) taking into account plasma quasi-neutrality 𝑑𝑖𝑣 ⃗ 𝐸 = 𝜌/𝜖 0 = 0 we obtain the wave equation for a plasma:

𝑐 2 △ ⃗ 𝐸 = 1 𝜖 0 𝜕 𝜕𝑡 ⃗ 𝐽 + 𝜕 2 ⃗ 𝐸 𝜕𝑡 2 (3.25)
In this section for comparison with Helmholtz solver we will consider O-mode probing beam. Under collisionless cold plasma approximation, using electron motion equation (2.1) one can express the current time derivative as 𝜕𝐽 𝑧 /𝜕𝑡 = 𝜖 0 𝜔 2 𝑝 𝐸 𝑧 . Here the magnetic field is directed along 𝑧 axes. 1D O-mode wave equation can be written as:

𝑐 2 𝜕 2 𝐸 𝑧 𝜕𝑥 2 = 𝜔 2 𝑝 𝐸 𝑧 + 𝜕 2 𝐸 𝑧 𝜕𝑡 2 (3.26)
Where 𝑥 is the direction of wave propagation.

For a numerical solution we will use the second order finite difference time domain method.

𝐸 𝑛+1 𝑖 = -𝜔 2 𝑝 𝐸 𝑛 𝑖 𝑑𝑡 2 + 2𝐸 𝑛-1 𝑖 (1 -( 𝑐𝑑𝑡 𝑑𝑥 ) 2 ) + ( 𝑐𝑑𝑡 𝑑𝑥 ) 2 (𝐸 𝑛 𝑖+1 + 𝐸 𝑛 𝑖-1 ) -𝐸 𝑛-1 𝑖 (3.27) 
In this finite difference time domain scheme, 𝑖 is the space coordinate index, 𝑛 -time step index, 𝑑𝑥 and 𝑑𝑡 are space and time discretization steps values. The numerical solution is stable when 𝑑𝑥/𝑑𝑡 > 𝑐. For our computations we have fixed 𝑑𝑥/𝑑𝑡 = 2𝑐. In this case it is very convenient to express vacuum perfectly match layer on the boundaries of computation domain.

𝐸 𝑛+1 1 = 𝐸 𝑛-1 2 
(3.28)

𝐸 𝑛+1 𝑁 = 𝐸 𝑛-1 𝑁 -1 (3.29)
Here 𝑁 is a number of spacial points on the computation grid.

1D Wave equation solver IQ detection technique

To simulate IQ detection technique in the frame of wave equation solver, 2 computations were done. These two computations had source signals with an initial phase difference of 𝜋/2. Source signals can be expressed as:

𝐼 𝑠 0 = 𝐴 0 sin(𝜑 0 ) (3.30) 𝐼 𝑐 0 = 𝐴 0 cos(𝜑 0 ) (3.31)
And the received signal:

𝐼 𝑠 𝑟𝑒𝑓 = 𝐴 𝑟𝑒𝑓 sin(𝜑 𝑟𝑒𝑓 + 𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 ) (3.32) 𝐼 𝑐 𝑟𝑒𝑓 = 𝐴 𝑟𝑒𝑓 cos(𝜑 𝑟𝑒𝑓 + 𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 ) (3.33)
Using these signals real complex part of complex signal 𝐼 = 𝐴 𝑟𝑒𝑓 𝑒𝑥𝑝(𝜑) can be calculated.

ℜ(𝐼) = 𝐴 𝑟𝑒𝑓 cos(𝜑 𝑟𝑒𝑓 -𝜑 0 -𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 ) = 𝐴 𝑟𝑒𝑓 [cos(𝜑 𝑟𝑒𝑓 ) cos(𝜑 0 + 𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 ) + sin(𝜑 𝑟𝑒𝑓 ) sin(𝜑 0 + 𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 )] = 1 𝐴 0 [𝐼 𝑐 𝑟𝑒𝑓 𝐼 𝑐 0 + 𝐼 𝑠 𝑟𝑒𝑓 𝐼 𝑠 0 ]
(3.34)

ℑ(𝐼) = 𝐴 𝑟𝑒𝑓 sin(𝜑 𝑟𝑒𝑓 -𝜑 0 -𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 ) = 𝐴 𝑟𝑒𝑓 [sin(𝜑 𝑟𝑒𝑓 ) cos(𝜑 0 + 𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 ) -cos(𝜑 𝑟𝑒𝑓 ) sin(𝜑 0 + 𝜑 𝑣𝑎𝑐𝑢𝑢𝑚 )] = 1 𝐴 0 [𝐼 𝑠 𝑟𝑒𝑓 𝐼 𝑐 0 -𝐼 𝑐 𝑟𝑒𝑓 𝐼 𝑠 0 ] (3.35) 
Signal amplitude and phase can be calculated as:

𝐴 𝑟𝑒𝑓 = √︀ ℜ 2 (𝐼) + ℑ 2 (𝐼) 𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛(ℑ(𝐼)/ℜ(𝐼)) (3.36)
In the reality due to fast frequency sweeping, sin and cos beam waves behave differently in the plasma and signals can have different phase and amplitude.

𝐼 𝑡𝑜𝑡 = 𝐼 + Ĩ (3.37)
And as a result signal 𝐼 also contains fast oscillating part Ĩ. This content can be filtered out.

Comparison between 1D Helmholtz equation solver and time dependant 1D wave equation solver

In this section we will highlight few examples of turbulence on a linear plasma density profile. First we will show a small level homogeneous turbulence, then example with weak core turbulence with long correlation length and strong edge turbulence with short correlation length will be considered. In tokamak plasmas typically plasma turbulence is not homogeneous. Turbulence is stronger near plasma edge (see figure 3.17). Near the plasma boundary turbulence can reach levels up to 20-30% root mean square value (RMS) of the local density [START_REF] Medvedeva | Density fluctuations measurements with an Ultra-Fast-Swept Reflectometer in ASDEX Upgrade[END_REF]. Such a turbulence leads to nonlinear phase variation behaviour which complicates wavenumber spectra measurements with USFR. Usually core turbulence is much weaker compared to the edge one. But to measure it, the probing beam should first cross strong edge turbulence layer. It will be shown and studied more carefully in the next chapter that strong edge turbulence can cause enhanced scattering of the probing beam and trap part of the beam between cut off and edge turbulence. In the next example we are using the same homogeneous turbulence as in previous computation, except that we have added another turbulence map with Gaussian shape amplitude envelop centred near the plasma edge. Example of cut off frequency profile is depicted on [65]. Numerical schemes principle can be found in [65]. The code solves Maxwell's equations and electron motion equation in cold plasma approximation. The code can make computations in 1,2 and 3 dimensional space for ordinary, extraordinary and mixed modes. As receiving and emitting antenna patterns the code use Gaussian beams. This allows to easily extract incident field on the receiver antenna for reflectometer signal computation. Instead of real frequency sweeping in the code set of frequencies within the probing band are launched into the plasma simultaneously. After stationary solution is reached signal on the antenna can be recorded, then processed with Fourier transform to separate signals by frequencies. This makes the code be very fast comparing with real frequency sweep codes [72]. Such a type of solution is similar to Helmholtz equation solver in 2D as it also searches for stationary solution. An advantage is that no artificial boundary conditions and processing methods are needed to separate incident and reflected beams.

t[s] τ[ns]
On the other hand this method in some situations, as shown in previous section 3.4, can change the results comparing to real IQ detection modelling [72]. here is homogeneous, and isotropic. In this chapter and everywhere further in this work turbulence is made using inverse Fourier transform. To create 2D spectral map from which 2D Fourier transform will be performed, an iterative algorithm to match desired 1D (or projected) spectrum was used (see Appendix A). The projected spectrum is presented on figure 3.23. Turbulence RMS amplitude is equal to 1%. It is homogeneous and isotropic. These computations can give an idea about poloidal wave-number and poloidal plasma curvature effects on reflectometry measurements. On figure 3.24 one can see the probing beam electric field distribution in case of poloidaly curved plasma (𝑅 𝑐𝑢𝑟𝑣 = 10𝑐𝑚) and slab geometry plasmas (𝑅 𝑐𝑢𝑟𝑣 = 3𝑚). 

Reciprocity theorem approach

Let us consider a monochromatic radiation from the plasma resulting from current

density ⃗ 𝐽(⃗ 𝑟). ⃗ 𝐸 = ⃗ 𝐸 𝜔 𝑒 -𝑖𝜔𝑡 (3.38) ⃗ 𝐻 = ⃗ 𝐻 𝜔 𝑒 -𝑖𝜔𝑡 (3.39)
Such electric and magnetic field can be described using further equations:

𝑟𝑜𝑡 ⃗ 𝐸 𝜔 -𝑖𝜔 ⃗ 𝐵 𝜔 = 0 (3.40) 𝑟𝑜𝑡 ⃗ 𝐻 𝜔 + 𝑖𝜔 ⃗ 𝐷 𝜔 = ⃗ 𝐽 (3.41)
Let us consider the same plasma but with transposed dielectric tensor and without source currents. This field distribution will describe the receiving antenna pattern:

𝑟𝑜𝑡 ⃗ 𝐸 (+) 𝜔 -𝑖𝜔 ⃗ 𝐵 (+) 𝜔 = 0 (3.42) 𝑟𝑜𝑡 ⃗ 𝐻 (+) 𝜔 + 𝑖𝜔 ⃗ 𝐷 (+) 𝜔 = 0 (3.43)
Where (+) refers to transposed dielectric tensor. The microwave radiation received by this antenna can be expressed through complex coefficient 𝐴 𝜔 .

⃗ 𝐸 𝑜𝑢𝑡 = 𝐴 𝜔 ⃗ 𝐸 𝑤𝑔 (3.44) ⃗ 𝐻 𝑜𝑢𝑡 = 𝐴 𝜔 ⃗ 𝐻 𝑤𝑔 (3.45)
Where ⃗ 𝐸 𝑜𝑢𝑡 and ⃗ 𝐻 𝑜𝑢𝑡 are electric and magnetic fields inside the receiving waveguide and ⃗ 𝐸 𝑤𝑔 and ⃗ 𝐻 𝑤𝑔 are fundamental waveguide mode electric and magnetic field normalized as:

1 2 ∫︁ [ ⃗ 𝐸 𝑤𝑔 × ⃗ 𝐻 * 𝑤𝑔 ]𝑑 ⃗ 𝑆 = 1 (3.46)
Where 𝑆 is a surface inside the waveguide. 

𝑑𝑖𝑣[ ⃗ 𝐸 𝜔 × ⃗ 𝐻 (+) 𝜔 + ⃗ 𝐻 𝜔 × ⃗ 𝐸 (+) 𝜔 ] + 𝑖𝜔[ ⃗ 𝐸 (+) 𝜔 ⃗ 𝐷 𝜔 -⃗ 𝐷 (+) 𝜔 ⃗ 𝐸 𝜔 ] = ⃗ 𝐽 ⃗ 𝐸 (+) 𝜔 (3.47)
Let us integrate the whole expression over an infinite volume.

∫︁ 𝑑𝑖𝑣[ ⃗ 𝐸 𝜔 × ⃗ 𝐻 (+) 𝜔 + ⃗ 𝐻 𝜔 × ⃗ 𝐸 (+) 𝜔 ]𝑑𝑉 + 𝑖𝜔 ∫︁ [ ⃗ 𝐸 (+) 𝜔 ⃗ 𝐷 𝜔 -⃗ 𝐷 (+) 𝜔 ⃗ 𝐸 𝜔 ]𝑑𝑉 = ∫︁ ⃗ 𝐽 ⃗ 𝐸 (+) 𝜔 𝑑𝑉 (3.48)
According to [80,[START_REF] Landau | Electromagnetic of Continuous Media[END_REF], expression

∫︀ [ ⃗ 𝐸 (+) 𝜔 ⃗ 𝐷 𝜔 -⃗ 𝐷 (+)
𝜔 ⃗ 𝐸 𝜔 ]𝑑𝑉 vanishes with integration and can be neglected. Volume integral in the left part of the equation (3.48) can be transformed to a surface integral. Outside the waveguide, the integral will be zero as all contributions under it will cancel each other.

∫︁ [ ⃗ 𝐸 𝜔 × ⃗ 𝐻 (+) 𝜔 + ⃗ 𝐻 𝜔 × ⃗ 𝐸 (+) 𝜔 ]𝑑 ⃗ 𝑆 𝑤𝑔 = ∫︁ ⃗ 𝐽 ⃗ 𝐸 (+) 𝜔 𝑑𝑉 (3.49)
Using properties of the fundamental mode of the waveguide and equation (3.46) it is possible to admit that:

1 2 ∫︁ [ ⃗ 𝐸 𝜔 × ⃗ 𝐻 (+) 𝜔 + ⃗ 𝐻 𝜔 × ⃗ 𝐸 (+) 𝜔 ]𝑑 ⃗ 𝑆 𝑤𝑔 = 2𝐴 𝜔 (3.50)
Finally we can achieve expression for 𝐴 𝜔 .

𝐴 𝜔 = 1 4 ∫︁ ⃗ 𝐽 ⃗ 𝐸 (+) 𝜔 𝑑𝑉 (3.51)
In next section we will have a look on the application of this result to reflectometer signal computation.

Reciprocity theorem in application to reflectometry modeling

In the Born approximation, the received signal in the reflectometer waveguide can be expressed as superposition of unperturbed signal(from a plasma without turbulence)

and the fluctuating signal associated with turbulence.

𝐼(𝜔) = 𝐼 𝑖𝑛 (𝜔) + 𝐼 𝑠 (𝜔) (3.52)
Here 𝐼(𝜔) is the total signal with angular probing beam frequency 𝜔 which is composed of 𝐼 𝑖𝑛 is the unperturbed reflected signal (computed without turbulence) and 𝐼 𝑠 -the field scattered from the turbulence received by the antenna. In a tokamak the turbulent modes are elongated along the magnetic field lines in the toroidal direction. Neglecting the toroidal curvature effects, which is often assumed in a tokamak, computations in the 2D poloidal plane can be considered. We will use Cartesian coordinates system with tokamak magnetic field ⃗ 𝐵 0 ‖ 𝑥, 𝑧 is a radial direction, and 𝑦 ⊥ ⃗ 𝐵 0 is a poloidal direction.

𝐼 𝑖𝑛 (𝜔) = ∫︁ 𝐺(𝑧 𝑎 , 𝑦)𝐸 𝑖𝑛 (𝑧 𝑎 , 𝑦)𝑑𝑦 (3.53)
Where 𝑧 𝑎 is the antenna position in the radial direction, 𝐺 is the antenna pattern, and 𝐸 𝑖𝑛 is the unperturbed field of the reflected wave. A probing beam field scattered by the turbulence and received by the antenna can then be expressed as:

𝐼 𝑠 (𝜔) = 1 4 ∫︁ 𝑑𝑦 ′ ∫︁ 𝑑𝑧𝑑𝑦 ⃗ 𝐽 ⃗ 𝐸 (+) 𝜔 • ⃗ 𝐸 𝑤𝑔 (𝑦 ′ ) (3.54)
Depending on the polarization, the radiating current ⃗ 𝐽 can be expressed through conductivity tensor 𝜎. Relation for O-mode is very simple and will be presented here.

Radiation current in the case of reflectometry is the current associated with turbulence. For O-mode this current can be expressed as:

𝐽 𝑧 = 𝑖𝜔𝜖 0 𝑛 𝑐 𝐸 𝑧 (𝜔) • 𝛿𝑛 (3.55)
Where 𝑛 𝑐 is the so-called critical density for the probing frequency. And a final formula for the scattered signal received by the reflectometer antenna can be written as:

𝐼 𝑠 (𝜔) = 𝑖𝜔𝜖 0 4𝑛 𝑐 ∫︁ 𝑑𝑦 ′ ∫︁ 𝑑𝑧𝑑𝑦𝛿𝑛𝐸 𝑧(𝜔) 𝐸 (+) 𝑧(𝜔) • ⃗ 𝐸 𝑤𝑔 (𝑦 ′ ) (3.56)
To use this expression one should first calculate the unperturbed electric field distribution resulting from the launched electromagnetic beam by emitting and receiving antennas. This can be done using full-wave codes [65,72] and analytical models [START_REF] Bulanin | Consideration Doppler reflectometry in Born approximation[END_REF] taking in account the exact phase relation between the total field and the received unperturbed signal. Very similar expression can be found in so called weighting function method [START_REF] Holzhauer | [END_REF]. In this method, the reflectometer phase response to turbulence density fluctuations 𝛿𝑛 are integrated with weighting function 𝑊 .

𝑊 = 𝐸 𝑧(𝜔) 𝐸 (+) 𝑧(𝜔) (3.57) 
This expression together with (3.44) gives possibility to extract scattered by turbulence field received antenna. In next section we will look more closely on the application of this formula for USFR.

Reduced reciprocity theorem approach

For ultra fast swept reflectometry one should calculate around 1000 points for different frequencies to follow the phase variation. Big amount of data should be processed each time the phase response is computed. To reduce the amount of data and make the method more applicable let us consider the mono static antenna case with both the received and the emitted waves assumed to be plan waves. This is possible in the slab geometry with smooth plasma profile. Under such conditions we will express the incident electric field in the vacuum region.

| 𝐸 𝑧(𝜔) | 𝑒 𝑖(𝜔𝑡+𝜑 0 ) =| 𝐸 𝑖𝑛 | 𝑒 𝑖(𝑘𝑧+𝜔𝑡+𝜑 1 ) + | 𝐸 𝑜𝑢𝑡 | 𝑒 𝑖(𝑘𝑧-𝜔𝑡+𝜑 2 ) (3.58)
Where 𝑘 is the probing beam vacuum wave number, 𝐸 𝑖𝑛 and 𝐸 𝑜𝑢𝑡 are incident and reflected waves. Receiving antenna field 𝐸 (+) 𝑧(𝜔) can be expressed the same way. Under current assumptions | 𝐸 𝑜𝑢𝑡 |=| 𝐸 𝑖𝑛 |. Consequently the total field will have a form of standing wave 𝐸 𝑧(𝜔) = sin(𝑘 𝑧 + 𝜑 𝑘 ) cos(𝜔𝑡 + 𝜑 0 ). In this case the weighting function will look like:

𝑊 = 𝐸 𝑧(𝜔) • 𝐸 (+) 𝑧(𝜔) =| 𝐸 𝑖 | 2 𝑒𝑥𝑝(𝑖2𝜑 0 ) (3.59)
The phase 𝜑 1 is defined by initial conditions. However the difference between weighting function phase 𝜑 0 and received field phase 𝜑 1 is not fixed and should be taken into account when the phase variation is computed. To simplify the computation we will use expression for the phase variation written assuming 𝜑 0 = 𝜑 1 = 0 but to compensate effects of different phases between scattered field and unperturbed field as well as beam wave-front curvature we have introduced the parameter 𝜂(𝜔) . This leads to:

𝛿𝜑 = arctan(𝜂(𝜔)𝐼 𝑠 /𝐼 𝑖𝑛 ) (3.60)
Where 𝜂 is a normalization coefficient which has to be computed for each density profile.

For the UFSR phase response it was found that the coefficient 𝜂 is proportional to the square root of the unperturbed reflected signal amplitude received by the reflectometer antenna.

𝜂(𝑤) ∝| 𝐼 𝑖𝑛 | 1/2 (3.61)

Reduced reciprocity theorem application example

The reduced reciprocity theorem model which was introduced in previous section can be successfully applied in the case of slab geometry plasmas and small divergence probing beams. In this section we will apply it on JET tokamak experimental data. Density profile is depicted on figure 3.26. Probing area is located in the core region. For the of computations can be found on figure 3.31. We can see that in the case of relatively large beam width and slab geometry and small turbulence the RRT approach gives very similar to 2D full-wave modelling result. However 1D computation results have higher amplitude and different wave-number slope. RRT approach can be used as synthetic diagnostic for closed loop algorithm in the case of small turublence level. 

Chapter 4

Strong edge turbulence effects on reflectometer plasma core measurements

In this chapter we will have a look on possible effects on reflectometer signal caused by a strong edge turbulence. First we will look at probing beam widening and phase change in turbulent plasmas. Then edge turbulence effects on phase variation will be investigated in slab geometry using separation of turbulence wave-numbers in the edge and core turbulences. Furthermore a case of more realistic turbulence spectrum in slab geometry will be studied and based on experimental data turbulence for Tore-Supra tokamak with 2D profile with poloidal curvature. To explore the limits of the reduced reciprocity theorem approach it will be also applied to the data and compared with full wave computation. However results of IPF-FD3D code in this case could be not comparable with experimental data due to different signal extraction and processing techniques (see section 3.6).

Probing beam propagation through turbulent plasma

Launched by the emitting antenna the probing beam suffers widening and changes of its phase. In this section we will have a closer look on loss of coherency process [83],

and the wave widening process explained in [84].

First let us consider a 1D plasma with plan wave which can be described by 1D

Helmholtz equation (3.4). Under WKB approximation let us introduce 1D density perturbation. The phase perturbation caused by turbulence with the first order accuracy according to [START_REF] Taranskiy | Wave propagation in the turbulent atmosphere[END_REF], [START_REF] Gusakov | [END_REF] can be expressed as:

𝛿𝜑 = - 𝜔 2 2𝑐 2 ∫︁ 𝑅 0 0 ℎ 𝑒 𝛿𝑛 𝑛 𝑐 𝑘 𝑑𝑅 (4.1)
Here 𝑘 is the local probing beam wave-number, 𝑅 0 -phase observation coordinate, ℎ 𝑒 = 1 in the case of ordinary mode. X-mode expression gives [87]:

ℎ 𝑒 = (𝜔 2 -2𝜔 2 𝑝𝑒 )(𝜔 2 -𝜔 2 𝑐𝑒 ) + 𝜔 4 𝑝𝑒 (𝜔 2 -𝜔 2 𝑝𝑒 -𝜔 2 𝑐𝑒 ) 2 (4.2)
According to [83] [84] the O-mode phase correlation function is given by:

< 𝛿𝜑 𝑖 , 𝛿𝜑 𝑗 >= 𝜔 2 4𝑐 4 ∫︁ 𝑅 0 0 𝑑𝑅 1 ∫︁ 𝑅 0 0 𝑑𝑅 2 < 𝛿𝑛 𝑖 (𝑅 1 ), 𝛿𝑛 𝑗 (𝑅 2 ) > 𝑘(𝑅 1 )𝑘(𝑅 2 )𝑛 2 𝑐 (4.3)
Where 𝜑 𝑖 is the beam phase after propagation through plasma turbulence realization 𝛿𝑛 𝑖 , < ... > is a statistical averaging. In the case of homogeneous turbulence < 𝛿𝑛 𝑖 , 𝛿𝑛 𝑗 > is equal to density perturbation correlation function.

< 𝛿𝑛 𝑖 , 𝛿𝑛 𝑗 >=< 𝛿𝑛 2 > 𝐾(𝑅 𝑖 -𝑅 𝑗 ) (4.4) 
Where 𝐾 is normalized turbulence autocorrelation function: 𝐾(0) = 1. The average electric field can be expressed as:

< 𝐸 >= 𝐸 0 𝑒 𝑖𝜑 0 < 𝑒 -𝑖(𝛿𝜑 𝑖 -𝛿𝜑 𝑗 ) >= 𝐸 0 𝑒 𝑖𝜑 0 𝑒 -<𝛿𝜑 𝑖 ,𝛿𝜑 𝑗 > 2 = 𝐸 0 𝑒 𝑖𝜑 0 𝑒 -𝜅 2 (4.5)
Using normalized correlation function expression (4.3) can be transformed to:

𝜅 =< 𝛿𝜑 𝑖 , 𝛿𝜑 𝑗 >= 𝜔 4 4𝑐 4 ∫︁ 𝑅𝑐 0 𝑑𝑅 𝑘 2 [ 𝑅𝑀 𝑆(𝛿𝑛) 𝑛 𝑐 ] 2 ∫︁ 𝑑∆𝐾(∆) (4.6)
Where ∆ is equal to 𝑅 𝑖 -𝑅 𝑗 .

The obtained simple expression allows us to estimate loss of coherency of the probing beam when it crosses turbulence layer. Effect on averaged field is stronger when ∫︀ 𝐾𝑑∆ is larger. This corresponds to longer turbulence correlation lengths.

Beam properties change in turbulent plasma. Modeling examples

Full-wave modelling is a very good tool for basic processes understanding. Using numerical modelling one can look on some parameters that are not available in real experiments. In this section we will check turbulence impact on the O-mode probing beam properties such as beam shape and phase change. According to (4.6) short correlation length turbulence is expected to influence more the waves phase change. As a result of past turbulence tokamak observation it was found that correlation length in the plasma edge region, where plasma turbulence amplitude reaches highest values, is usually smaller than in the plasma core region. However 2D effects caused by Bragg back scattering is more complex and in this section we will not focus on them. For further analysis we will use slab geometry density profile without wave reflection(figure. We will place a strong turbulence layer near 𝑅 = 6.3𝑐𝑚. The turbulence is isotropic.

It has an Gaussian shape amplitude envelop with half amplitude width of 4.2𝑚𝑚(figure 4.2). To avoid negative density formation due to the turbulence, a special algorithm was used to smoothly increase density in negative density areas. Here the turbulence correlation wavelength is equal to 4.2𝑚𝑚. In the literature correlation length is defined differently [START_REF] Hornung | [END_REF]100]. In our computations it is computed as With 10% turbulence amplitude maximum and correlation length of 4.2𝑚𝑚 half of the beam loses its coherency and spreads in a wide range of directions. Next we will call this part of the beam the incoherent beam part. Other part of the beam does not change its phase and shape (coherent beam part). Using theory introduced in a section 4.1 with help of equation (4.5) one can calculate the coherent field part relative amplitude 𝑒 -𝜅/2 = 𝑀 𝐴𝑋(< 𝐸 >)/𝑀 𝐴𝑋(𝐸 0 ). Here 𝐸 0 is the field computed without turbulence layer. For both numerical and analytical solutions close results of attenuation around 0.5 were obtained. This example is very interesting in terms of understanding the physics but in the case of such turbulence not coherent part of the beam will not be seen by the reflectometer antenna as widening angle (𝛼 ∝ 1/𝑙 𝑐 [84]) is very big and only small part of not coherent signal will be received by the reflectometer.

Except maybe in the cases when the antenna is situated very close to the plasma edge turbulence.

To decrease the coherent field part amplitude and the incoherent part widening angle, let us analyse the case when 𝑘 𝑚𝑎𝑥 = 0.1𝑘 0 . This turbulence has a correlation length of 3.6𝑐𝑚. Spectrum of such a turbulence is depicted on fig. 4.8. Electric field structure from one run is depicted on figure 4.9. As before we will analyse the electric field after the beam crosses the turbulence. Averaged power and averaged electric fields were calculated for turbulence profiles with maximum amplitude of 5%, 7% and 10% (see figures 4.10-4.12). From electric field averaging the coherent part attenuation coefficient was calculated, then permitting us to extract coherent beam part power from power plots < 𝐸 2 > -(𝑀 𝐴𝑋(< 𝐸 >)/𝑀 𝐴𝑋(𝐸 0 )) 2 • 𝐸 2 0 . The same coefficient was calculated using (4.5) (see figure 4.13). As a result we have obtained the incoherent 

Study of edge turbulence effects on reflectometer signal

To study UFSR measurements in the presence of strong edge turbulence, we present a series of full wave calculations. We will focus on measurements when the cut-off position is located behind the edge turbulence layer. This will allow us to see the influence of beam widening and loss of coherency, caused by the turbulence, on the phase measurements. Few different cases will be highlighted. First, to separate the phase variations spectra produced by plasma edge and core turbulences we will show computation results where edge turbulence has only small wave-numbers and core turbulence has a gap in this region. As in the case of isotropic turbulence high knumbers will be always projected on smaller ones, it is impossible to create a turbulence without small k-number part of the spectrum. In a second part Gaussian turbulence wave-number spectra will be processed in slab geometry. Methods to detect high edge turbulence will be investigated. Then the possibility to get information about single mode core turbulence in the case of strong edge turbulence will be studied. Using 2D geometry of Tore-Supra tokamak and experimental density and turbulence profiles we will look at effects of poloidal plasma curvature and Bragg back scattering.

Edge turbulence effects on reflectometer phase spectra using edge-core k-spectra separation

Here we have carried out swept reflectometry modeling with the "IPF-FD3D" full-wave code [65] for O-mode wave. The turbulence is assumed to be isotropic, homogeneous with small level ( 0.5% of cut-off density) of density perturbations in the plasma core and high level with Gaussian amplitude envelope in the plasma edge region (see figure 4.15). In order to discriminate the contribution from high level edge turbulence and from the core region we use mostly high wave-numbers for the core turbulence and only small wave-numbers for the edge turbulence (see figure 4 .17: Phase fluctuation spectra: red -without edge turbulence, magenta -5% edge turbulence level 𝑘 < 0.2𝑘 0 , black -2.5% edge turbulence level 𝑘 < 0.1𝑘 0 , green -5% edge turbulence level 𝑘 < 0.1𝑘 0 , blue -10% edge turbulence level 𝑘 < 0.1𝑘 0 One can see results of these full-wave computations on figure 4.17. As a result we notice that the reflectometry response from high k-numbers (plasma core) becomes higher when the edge turbulence level increases. Phase variation in Born approximation depends on scattered and unperturbed signals(see section 3.5). Strong small wave-number edge turbulence reduces unperturbed edge signal and introduces stronger scattered field. Moreover large scale turbulence structure can introduce phase gradient over a sweep (see figure 4.18). These phase gradients introduce a wide spectrum which decays in direction of high wave-numbers. More information can be found in appendix C. On figure 4.17 we can see that some effects start playing a role from very high values of turbulence amplitude. Non-linear effects with high values of density perturbations with long correlation length (3.6𝑐𝑚) result from the fact that widening of the incoherent part is quite small and major part of randomized phase signal can be received by antenna. However if the antenna position is far from the turbulence region, the incoherent beam becomes so wide that the antenna receives only a very small part of it. As the incoherent beam widening increases with shorter correlation length of the turbulence, wider spectrum of turbulence does not change the phase spectrum up to higher values of perturbations amplitude and thickness of the turbulent layer (magenta curve in figure 4.17). This means that in most of the cases, without back scattering regimes, edge turbulence does not break the linear approximation assumption when probing the plasma core region. In these cases we can use the analytical model (section 3.5) to determine the scattered field and the resulting phase variations. This result was found with relatively small thickness of turbulence layers (16 vacuum wavelengths). If the turbulence layer is thicker it decreases the limit of turbulence amplitude up to which the edge turbulence does not affect core measurements.

Edge turbulence effects on reflectometer signal in slab geometry

After crossing the edge turbulence region, the probing beam suffers some radial and poloidal change of the phase and widening. To investigate how the edge turbulence region affects core reflectometry measurements and find a way to identify in which cases the edge turbulence plays a role, we will study the reflectometer responses for a linear plasma density profile (see figure 4. 19) and realistic density fluctuation spectrum and amplitude in slab geometry. Computations were performed using ordinary mode wave. In these computations the density fluctuations are created by superimposing two different turbulence maps. First there is background turbulence (red curve in figure 4. 19) which is distributed everywhere in the plasma. This turbulence is homogeneous, isotropic and has a Gaussian k-spectrum with a correlation length of 6.8cm 1 . The RMS amplitude of these perturbations equals to 0.5% of the maximum swept frequency cutoff density 𝑛 𝑐 . An edge turbulence map with a Gaussian amplitude envelope centred in the edge region is added to the background turbulence (blue curve on fig. 4.19). The edge turbulence spectrum also has a Gaussian shape. Its correlation length is of 3.4cm.

The correlation length values were chosen in agreement with the range of possible correlation lengths typically measured in Tore-Supra plasmas [START_REF] Hornung | [END_REF]. Turbulence maps are The spectra were averaged over 50 computations with different turbulence realizations. The number of 50 was chosen as a good compromise to extract the relevant information while keeping the computation time acceptable. We can see that the phase fluctuation spectrum carried out with the simplified reciprocity theorem approach doesn't change very much as long as the edge turbulence peak amplitude is below 7.5%. When the maximum of the edge turbulence reaches 10% of the cut-off density, the phase fluctuation spectrum amplitude computed with the full-wave code is more than two times higher than without edge turbulence. However the shape of the spectrum doesn't change significantly and the simplified reciprocity theorem method reproduces it well. Here one can see that nonlinear edge turbulence effects play a major role in the signal phase variations, and the simplified reciprocity theorem method is unable to describe these effects. This result means that assuming that the phase spectrum is connected only to cut-off vicinity leads to an overestimation of the turbulence level and the impossibility to see any signature of the strong edge turbulence. Using USFR signal amplitude "𝐴" analysis it is possible to extract more information about turbulence level and correlation length. For these analyses we use a technique based on receiving the signal simultaneously in a poloidal array of antennas. Such a technique has been applied on TEXTOR and ASDEX-Upgrade tokamaks and new Wendelstein 7-X stellarator for the measurements of the poloidal plasma rotation and turbulence correlation time with a fixed frequency reflectometry diagnostic [89,90,91].

With this setup we can look on the average received signal amplitude decay for the maximum swept frequency (as shown in fig. in that case can be estimated from the theory [84]. Another way to extract information about the edge turbulence using multi-antenna configuration is to look at the UFSR signal amplitude variation spectrum.

𝑆 𝐴 = ⃒ ⃒ ⃒ ⃒ ⟨ ∫︁ [𝐴 -⟨𝐴⟩ 𝑅 ]𝑒𝑥𝑝(-𝑖𝑘𝑅)𝑑𝑅 ⟩ 𝑡 ⃒ ⃒ ⃒ ⃒ (4.7) 
Where ⟨...⟩ 𝑅 and ⟨...⟩ 𝑡 are averaged over the radial cut-off position and over the time wave-numbers, which we see with the antenna shift. These peaks also appear in the amplitude variation spectrum when the edge turbulence reaches a 𝑅𝑀 𝑆(𝛿𝑛)/𝑛 𝑐 = 7.5%

but they are smaller and don't move much with the receiving antenna poloidal shift.

Mono wave-number mode observation through strong turbulence level

To understand how the wave behaves between the cut-off and edge turbulence layers and check the possibility to detect single mode structures such as GAM [93] or quasicoherent mode [?] through strong edge turbulence (𝑅𝑀 𝑆(𝛿𝑛)/𝑛 𝑐 = 10%), simulations were carried out in the same conditions than in the previous section replacing the core turbulence by a localized single mode with Gaussian shape amplitude envelope with the same size as edge turbulence envelope and maximum value of 0.5%. It is situated between the highest frequency cut-off position and the edge turbulence with the center near 𝑛 = 0.75𝑛 𝑐 (see figure 4.24). The turbulence has a single wave-number chosen to fulfil the Bragg scattering condition (𝑘 = 0.9𝑘 0 ). This mode is tilted with an arbitrary angle of 15 𝑜 with respect to the probing beam direction. We can see that the coherent mode is clearly observed on the spectrogram even through very high levels of edge turbulence. Some small peaks near 𝑘/𝑘 0 = 1.6 can be seen. These peaks can be explained by second unstable zone of Mathieu equation.

One can notice that the main peak in the amplitude variation spectrum (𝑘/𝑘 0 = 0.8) is doubled as well as for the phase variation spectrum. First, the smallest wave-number peak does not change much in amplitude and position with the antenna shift. Second, higher wave number peak decreases in amplitude and moves towards the direction of higher wave-numbers with the antenna misalignment. To analyse the nature of this when probing wave amplitude is much smaller after cut-off reflection. For the first scattering occurrence, as the turbulence wave-number is fixed, the Bragg scattering rule is satisfied for slightly higher wave-numbers. When the receiving antenna is shifted, the effective direction to receive scattered signal is changing and the scattering wavenumber value is increasing. However, the absence of the unique beam direction after the cut-off reflection makes the second scattering spectral peak to be stationary.

𝑆 𝑐 = ⟨⃒ ⃒ ⃒ ⃒ ∫︁ 𝐴 • 𝑒𝑥𝑝(𝑖𝜑)𝑒𝑥𝑝(-𝑖𝑘𝑅)𝑑𝑅 ⃒ ⃒ ⃒ ⃒ ⟩ 𝑡 (4.8) 

Edge turbulence effects on reflectometer signal for Tore-Supra 2D profile

The poloidal plasma curvature and steeper density gradient in the edge region can change the typical influence of the edge turbulence on core radial wave-number measurements using UFSR. In this section instead of slab geometry we perform simulations with a realistic 2D geometry of the Tore-Supra tokamak (see figure 4.28). We use a typical experimental density profile, and the turbulence spectrum and amplitude used are based on the calculations done with a Helmholtz equation solver in a closed loop algorithm [START_REF] Clairet | Plasma turbulence measured by fast sweep reflectometry on TORE SUPRA[END_REF]. Figure 4.29 shows the turbulence spectrum that we used in these computations. To simulate realistic turbulence, three isotropic homogeneous turbulence 

where 𝑎, 𝑏, 𝜁, 𝜁 2 are fitting constants. The fitting function (4.9) allows us to choose the edge turbulence amplitude by changing parameter 𝑏. In the simulation presented here [START_REF] Clairet | Plasma turbulence measured by fast sweep reflectometry on TORE SUPRA[END_REF] the maximum edge RMS amplitude is equal to 1.9% of the highest probing frequency cut-off density. The frequency sweeping covers a radial zone of 12cm in the plasma core.

Another difference with the slab geometry computations is the turbulence correlation length. Here the edge turbulence correlation length is 12𝑚𝑚. Such a small correlation length can cause strong Bragg back scattering. The poloidal plasma curvature makes the incident beam wider. The probing beam amplitude decays faster up to the cut-off vicinity region, which makes the diagnostic more sensitive to the edge turbulence than to the core turbulence. On future large scale devices such as ITER the probing beam attenuation will be more pronounced which will increase even more the sensitivity to the edge turbulence layer. On figure 4.31 is represented the signal phase variation spectrum for different edge turbulence amplitudes computed in a 2D toroidal cross-section both with the IPF-FD3D full-wave code and simplified reciprocity theorem approach. Here we have the case of strong Bragg back scattering. Scattering from the edge turbulence strongly changes the phase variation spectral amplitude. The simplified reciprocity theorem method fails to reliably describe the influence of the edge turbulence. Now let us see if it is possible to detect the presence of the edge turbulence amplitude peak in the reflectometer amplitude variation spectrum (see fig. 4.32). We can note that even with small turbulence levels it is possible to see a strong edge turbulence signature (the k-spectral peak near 𝑘/𝑘 0 ≈ 1 observed in the spectrum) in the case of small turbulence correlation lengths and poloidal plasma curvatures. With a receiving antenna poloidal shift the k-spectral peak shifts towards the direction of smaller wavenumbers, as observed in previous cases. With such a correlation length and turbulence level, the beam widening is not significant. However the beam widening produced by the poloidal plasma curvature can have also the same effect on the peak movement than a widening of the turbulence poloidal spectrum. In this case it is not possible to measure turbulence properties by looking on the averaged receiving amplitude in antennas at different poloidal positions.

Chapter 5 Application to gyro-kinetic simulations data and experimental measurements

In this chapter we will have a look at the applications of methods described in previous chapters. In the first section we will apply IPF-FD3D code on results of GYSELA gyrokinetic code [START_REF] Grandgirard | [END_REF] computations for correlation length measurements in the Tore-Supra tokamak. In the second chapter, IPF-FD3D code will be applied to ASDEX-Upgrade density profile with experimental (discharge 31287) turbulence spectra.

Synthetic diagnostic application to GYSELA gyrokinetic simulation

To validate gyro-kinetic codes their data should be compared with experiments. For this, synthetic diagnostic will be applied to get virtual multichannel fixed frequency reflectometer response. This data then can be compared directly with experimental results. Here GYSELA code data was used. This code was applied to Tore-Supra discharge number 45511. GYSELA is a flux-driven 5D gyro-kinetic code suitable to model typical features of plasma turbulence such as zonal flows or Ion Temperature Gradient (ITG) modes [96]. The turbulence from GYSELA (see figure 5.2) used as input of our full-wave simulations are typical of Tore Supra L-mode Deuterium discharges. X-mode waves ware launched in the plasma. Cut-off frequencies and probing frequencies are presented in figure 5.1. The level of density fluctuations is ballooned in the mid-plane low field side region and larger in the mid-radius region (2.55𝑚 < 𝑅 < 2.95𝑚) (see figure 5.3). In this section we will focus on radial correlation length measurements. Reflectometer signal radial positions here were taken cut-off position computed with the mid-plane density profile. In the reality, because of poloidal curvature and beam width, the cut-off layer is not limited by one point. Because of magnetic field X-mode cut-off doesn't curve enough to follow density isolines. Because of this, the reflectometer does not collect information from one radial position. This moves the effective cut-off position closer to the reflectometer antennas. On figure 5.6 we see some small, about 2 cm, displacement of the signals. Overall discrepancy between measured correlation lengths and turbulence ones is small. However this particular GYSELA simulation did not include edge turbulence which may change the reflectometer response.

ASDEX-Upgrade UFSR synthetic diagnostic

USFR which was developed in Cadarache [97] was used in the ASDEX-Upgrade tokamak. The main advantage of this diagnostic is related to the sweeping time of 1𝜇𝑠.

Such a short seeping time is smaller than turbulence characteristic time. That allows to measure the density profile and to get phase fluctuation with high spatial and temporal resolutions. USFR was used together with fixed frequency multi-channel reflectometry. This allows to get information on frequency spectra and density variation amplitude much easily using the theory presented in [83,[START_REF] Shubert | Full-wave test of analytical theory for fixed frequency fluctuation reflectometry[END_REF]. In this section we will use the results that were obtained by the closed loop algorithm for analysis of discharge number 31287. Here 1D Helmholtz equation solver was used as synthetic diagnostic.

Cut-off frequency together with used probing frequencies are depicted on figure 5.7.

To take into account realistic turbulence geometry one should create inhomogeneous 

Phase fluctuation and amplitude fluctuation spectra

The phase fluctuation power amplitude < 𝛿𝜑 2 > computed using IPF-FD3D code is depicted on figure 5.11. Computations here were done using a given density perturbations level (figure 5.10) and using various reduced turbulence levels (0.8𝛿𝑛, 0.67𝛿𝑛, .05𝛿𝑛, 0.33𝛿𝑛, 0.2𝛿𝑛). One can see that phase variation amplitude increases with turbulence level. However in some points, especially near the density perturbations amplitude peak (𝑅 ≈ 2.1), the phase variation amplitude doesn't change with the turbulence level. Such a behaviour can be connected to statistical error due to a relatively small number of density perturbation samples. One can find similar results of 1D Helmholtz solver on figure 5.12. Here we see much more pronounced phase variation amplitude in the edge region. With turbulence level drop, the phase variation level becomes flatter with the radius 𝑅. This means triggering of non-linear regime of 1D solution. The phase variation amplitude computed with 2D code is higher than the computed one using 1D code. This differs with our previous results (see section 3.5. 𝜋 jumps in the reflectometer phase signal. To properly trace these jumps, very small frequency steps should be used. To do so we were facing some computational time limits and some phase jumps when we probe areas near and above edge turbulence amplitude peak are present in the computed signal. Phase jumps introduce very wide spectral noise which can hide wave-number spectral structure and affect correlation length measurements. The local phase gradient which was observed in section 4.2.1 also takes place here. which is similar to turbulence wave-number spectra knee. This knee is more pronounced with smaller turbulence levels. Overall spectral shape is very similar for 1D and 2D computations. In the region behind the turbulence level peak (𝑅 ≈ 2.07𝑚 -2.12𝑚)

where strongest multi reflection takes place, the phase variations spectral shape and amplitude are almost identical for a given turbulence level. However in this region there are most frequent appearances of the phase jumps. The biggest differences in spectral shape between 1D and 2D computations were obtained near the relative turbulence level maximum (black curve on figure 5.11). On none of the phase fluctuation spectra we can see a spectral peak which would signify strong edge turbulence layer as it was observed in previous chapter with amplitude variations spectra. One can see 115 Experimental phase variations also suffer from phase runaway. Because of frequent signal amplitude losses, phase often jumps, and these jumps change the spectra. In such conditions it is often impossible to evaluate the phase variations spectrum properly.

However phase variation from frequency sweep without efficient phase runaway can be visually compared with one of phase variations obtained using IPF-FD3D code (see figure 5.17). One can see that both signals behave very similarly.

Turbulence correlation length measurements

From USFR phase and amplitude variation spectra one can calculate the correlation lengths. To see the link between the correlation length of density perturbations and the correlation lengths of the amplitude and the phase variation, they were calculated As before will will make calculations for different turbulence amplitudes. Overall in the vicinity of turbulence maximum, the phase variation correlation length computed from 1D Helmholtz solver results is smaller than the turbulence one. On A clear dependence on the density perturbation amplitude is seen. With increase of the turbulence level, the amplitude variation correlation length decreases. An unexpected radial behaviour was found, when turbulence correlation length increases in the direction to plasma core, amplitude variation correlation length decreases. The reason for this behaviour can be triggering of second unstable zone of Matieu equation which results in smaller wave number scattering that decrease correlation length.

In could be concluded that correlation length observation using UFSR signal demands some interpretation procedure. In past works theory was developed to process data from multi-channel fixed frequency reflectometry for correlation length calculations [100,101]. Different reflectometer sensitivity to different turbulence wave-number makes correlation length measurement not direct. 

Conclusions and discussion

Resonance UFSR phase jumps can change the phase variation spectra and the density profile measurements and should be taken into account to calculate turbulence wavenumber spectrum with closed loop algorithms. Another change of phase variation spectra is caused by phase fluctuation gradient. This effect is connected to a slight change of the probing beam properties with frequency in the strong turbulence region.

Taking into account all difficulties, phase variations samples inferred from simulations appear to be very similar to experimental phase variations.

Correlation lengths obtained using amplitude and phase variation for both 1D and 2D computations behave very differently. However all of them are the same order of magnitude than for turbulence data. Phase fluctuation correlation length computed using 1D Helmholtz equation solver behaviour is the closest to real 𝑙 𝑐 . Probably due to 2D effects IPF-FD3D code 𝑙 𝑐 computation results do not increase in the plasma core.

It is clear that some more advanced processing has to be applied to reflectometer signal data.

However the wave reflection, in this case, can be seen with longer time of flight. Usually used filtering techniques are also able to change the resonant phase behaviour. In general phase jumps can be a source of very wide wave-number spectral noise. Another phase behaviour was detected in the presence of edge turbulence. Phase variation response in this case can contain a gradient effect. This is to say 𝛿𝜑 0 + 𝑘 𝑔 𝑅 where 𝑅 is a radial position, 𝛿𝜑 0 is the phase variation without the gradient effect, and 𝑘 𝑔 is a slope coefficient.

2D effects on reflectometry signal were investigated using the IPF-FD3D code. In the linear regime (𝛿(𝑁 2 ) ∝ 𝛿𝜑) the poloidal turbulence wave-number spectrum reduces the amplitude of phase variations as in this case signals from different poloidal lines mix-up together. However it almost does not affect wave-number spectra measurements. It was found that the poloidal curvature can partially cancel the effects of poloidal wave-number spectra, thus increasing the phase variations. This is due to the probing beam widening induced by the plasma density poloidal curvature, which leads to smaller number of rays received by the antenna. Not homogeneous 2D turbulence was generated using a set of different homogeneous turbulence maps with amplitude envelops. In the case of inhomogeneous, isotropic, small level turbulence difference in phase wave-number spectral shapes were found between 1D and 2D computations.

Linear regime of the reflectometer signal behaviour is typical for turbulence parameters in the tokamak core region. However in the plasma edge vicinity one can usually find strong turbulence leading to non-linear behaviour of the reflectometer signals. Numerical computations have shown that when the probing beam crosses a turbulent layer it divides in two beams. One part stays unaffected by the turbulence and remains with the same phase and wave shape (coherent beam) whereas another part of the beam has a random phase due to the turbulence, and has its beam wave-front distorted and widened by turbulence poloidal wave-number(incoherent beam). The beam separation was studied by looking at the average beam power distribution and average field. The amplitude ratio between these 2 beams can be theoretically estimated with good accuracy using a simple WKB-based approach. Beside the dependence on turbulence amplitude the beam structure behind the turbulence layer depends also on the correlation length. Longer correlation length turbulences cause stronger coherent beam attenuation but lead to smaller incoherent beam widening. Shorter correlation length turbulences do not change much the probing beam and small amplitude incoherent beam spreads trough a very wide angle. However turbulence with a very short correlation length can cause strong Bragg back-scattering which will change the reflectometry signal.

To shade some light on the edge turbulence influence on reflectometer core mea-surements first O-mode computations were carried out in slab geometry and for a linear density profile. Turbulence in these computations was composed by 2 isotropic turbulence maps with different wave-number spectra. One of the maps together with Gaussian amplitude envelop was located in the edge region and another weak amplitude one was located everywhere. To study a challenging case for reflectometry interpretation, edge turbulence with long correlation length was chosen. In this scenario we were expecting to get more incoherent beam to be received by the antenna because of its high relative amplitude and small widening. Another reason to use long correlation length turbulence in the edge region is because it is then possible to have turbulence with only small wave-numbers and observe core turbulence high wave-numbers separately from the direct edge turbulence influence. Computations have shown that edge turbulence can affect the core measurements especially when its correlation length is smaller. Interaction between wave cut-off and edge turbulence can cause phase runaway and change the phase variation slope resulting in a wide additional spectrum. In the next step a more realistic Gaussian spectral shape turbulence was chosen. Computations have shown similar behaviour of the phase spectra with respect to previous computations. Additional information was obtained using amplitude variation spectra. Amplitude variations do not suffer from resonance phase jumps and contain more spectral information on the edge region turbulence. Turbulence amplitude peak in the edge region, according to Bragg scattering rule, is able to generate strong scattering which can be seen as a spectral peak near twice the local probing wave-number value.

New technique was used to obtain experimental data. Poloidal reflectometry technique

where receiving antennas are poloidally shifted from the emitting antenna was used with ultra-fast frequency-sweeping source. With the receiving antenna poloidal displacement this spectral peak can be observed slightly shifted to a smaller wave-number position. This is because in average scattering in the direction of shifted receiver antennas take place deeper in the edge amplitude envelope, corresponding to smaller probing wave-numbers.

To investigate the influence of the poloidal plasma curvature in the presence of edge turbulence swept reflectometry numerical simulation of core probing were done using the IPF-FD3D code. A typical 2D curved density profile of the Tore-Supra tokamak was taken as input data. Turbulence properties here were based on experimental observations. Varying the edge turbulence amplitude envelop it was found that the edge turbulence changes the plasma core reflectometry signal. Spectral peaks due to enhanced scattering signal amplitude variation were also observed. With the given turbulence parameters we do not see strong wave widening and the spectral peak displacement with the antenna shift might be connected to beam widening due to poloidal 123 plasma curvature.

The IPF-FD3D code was used as a synthetic diagnostic to calculate X-mode multichannel fixed-frequency reflectometer response with Gysela gyro-kinetic code simulation of Tore-Supra core turbulence. Given the turbulence time-step it was unfortunately impossible to track reflectometer phase variation, however it was possible to analyse the reflectometer signal amplitude. Using cross correlation between signals obtained from different radial positions, the signal amplitude correlation length was calculated.

The result was compared with the turbulence correlation length, resulting in strong similarity in absolute values and general behaviours.

A next application of the X-mode UFSR synthetic diagnostic was done for ASDEX-Upgrade tokamak discharge number 31287. Turbulence parameters obtained by closed loop algorithm with 1D Helmholtz equation solver were used as input. Unlike the Tore-Supra tokamak ASDEX-Upgrade has non circular magnetic surfaces. Here to generate inhomogeneous turbulence, magnetic surfaces were approximated using Miller tokamak equilibrium approximation. This makes us able to create turbulence envelopes that follow the plasma geometry. IPF-FD3D code results were compared with 1D Helmholtz solver results. Both 2D and 1D computations have shown strong edge turbulence influence on the measured signal, which result in physical phase runaways.

In such non-linear regimes USFR phase variation spectra computed with 1D and 2D codes were different. Phase variation amplitude computed using 1D code appeared to be more sensitive to turbulence amplitude changes. Correlation length was calculated from signal phase and amplitude from 2D computation and signal phase from 1D computation. It was found that correlation lengths computed with different methods behave differently. However all of the correlation length results are on the same order of magnitude.

Further work on UFSR data interpretation has to be done. Potentially the diagnostic can become a very good tool for turbulence wave-number spectra measurements.

Strong edge turbulence which is usually present in the plasma edge vicinity drives the reflectometer response into the non-linear regime. In this case advanced signal filtering techniques should be developed and tested with time dependent 2D codes. To interpret the phase variation amplitude according to the turbulence level, additional information should be used as non-linear effects can change amplitudes and spectra of the phase variations. Each turbulence scenario has to be studied using full-wave codes to find the main dependencies and signatures, while analysing more data such as the signal amplitude, and using multi-antenna configurations.

Résumé

L'un des paramètres cruciaux pour un bon fonctionnement de la fusion par confinement magnétique est le temps de confinement de l'énergie. Ce temps est principalement défini par les mécanismes de transport des particules et de l'énergie, ce qui permet une bonne compréhension de ce qui se passe dans les plasmas de fusion, qui est également fortement liée à l'étude de la turbulence. Pour cette étude, une comparaison avec l'expérience devrait être faite. La réflectométrie à balayage ultra-rapide en fréquence est un bon candidat pour des mesures de spectres de nombre d'ondes radiales de turbulence avec une bonne résolution spatiale et temporelle.

Le travail d'investigation des données de réflectométrie liées à la turbulence restent difficile à interpréter et requiert une modélisation du diagnostique. Un examen des différentes méthodes de simulation pour reproduire le signal du réflectomètre a été effectué. Les calculs peuvent être effectués à l'aide de codes à 1, 2 ou 3 dimensions. À une dimension, en utilisant l'équation de Helmholtz, il a été montré à la fois analy- Plasma turbulence studies are essential for successful operation of magnetic confinement fusion devices. Ultra-Fast Swept Reflectometry (USFR), a diagnostic widely used for the measurement of turbulence radial wave-number spectra. While the interpretation of reflectometry data is quite straightforward for small levels of turbulence, it becomes much trickier for larger levels as the reflectometer answer is no longer linear with the turbulence level. It has been shown for instance that resonances due to probing field trapping can appear in turbulent plasma and produce jumps of the signal phase. In the plasma edge region the turbulence level is usually high and can lead to a non-linear regime of the reflecetometer response. The loss of probing beam coherency and beam widening when the probing beam crosses the edge turbulence layer can affect USFR core measurements. Edge turbulence with a long correlation length leads to small beam widening and strong distortion of the probing wave phase. However backscattering effects from turbulence with short correlation lengths are also able to cause reflectometer signal change. To study turbulence wave-number spectra together with reflectometer signal phase variations, signal amplitude variations can be analyzed. Unlike signal phase variation, amplitude does not suffer from resonant jumps, and can give more clear qualitative evaluation of turbulence structure. In the case when the turbulence amplitude peaked in the edge region, it can be detected as spectral peak near local Bragg resonance wave-number. USFR with a set of receiving antennas arranged poloidally was proposed to obtain more information on the edge turbulence properties. A displacement of the spectral peak appears when the receiving antenna is misaligned with the emitting one. In perspective peak displacement measurements can provide additional information on probing beam shaping and turbulence properties and help in coherent mode observation. A 2D full wave code was applied as a synthetic diagnostic to Gysela gyro-kinetic for study of Tore-Supra tokamak core turbulence. Radial correlation lengths computed from the amplitude of multi-channel fixed frequency reflectometry signals have shown good agreement with the turbulence correlation length. The synthetic diagnostic was then applied to analyze the correlation length and wave-number spectra obtained by USFR in the ASDEX-Upgrade tokamak. A comparison between 1D and 2D results have shown different behavior. However correlation lengths measured with UFSR signals are in the same order with turbulence ones. Key-words: plasma, fusion, reflectometry, turbulence La thèse porte sur l'interprétation des données de réflectométrie pour extraire les caractéristiques de la turbulence construites à partir de simulations numériques bidimensionnelles. Il a été démontré que la résonance due au piégeage de l'onde peut apparaître dans le plasma fluctuant et produire des sauts de phase. Cette interprétation à faible niveau de turbulence est directe. Cependant, le niveau de turbulence du bord du plasma est généralement élevé menant ainsi le réflectomètre à un comportement non linéaire. En conséquence, il y a une perte de cohérence de l'onde de sondage et un élargissement du faisceau-sonde après la traversée de la couche de turbulence. Cette étude a montré qu'une petite longueur de corrélation de la turbulence conduit à un faible élargissement et à de fortes variations de la phase du faisceau-sonde. Pour étudier comment une forte turbulence de bord affecte le signal de réflectométrie à balayage ultra rapide en fréquence (USFR) obtenu lors d'un sondage. Pour étudier cela des séries de simulations 2D ont été réalisées. Simultanément les spectres de variations de phase et de variations d'amplitude du réflectomètre ont été analysés. Il a été constaté que des pics spectraux correspondant à une diffusion accrue dans la région de turbulence de bord peuvent être observés dans les spectres de variations d'amplitude du signal. Un USFR utilisant une configuration de réflectométrie poloïdale a été proposé pour accéder à plus d'informations sur la turbulence de bord où le déplacement poloïdal des antennes réceptrices entraîne un glissement du pic de diffusion. En perspective, ces mesures peuvent fournir des informations supplémentaires sur, la déformation du faisceau-sonde, les propriétés de la turbulence et faciliter la mesure du signal cohérent porteur de l'information sur la turbulence de coeur du plasma. En plus, le code 2D "full-wave" a été appliqué en tant que diagnostic synthétique aux données de simulation gyro-cinétique du code de turbulence Gysela pour une décharge du tokamak de Tore-Supra. Les signaux de réflectométrie à fréquence fixe ont montré une bon accord entre la longueur de corrélation d'amplitude du signal avec celle de la turbulence utilisée comme donnée d'entrée. Il en a été de même pour analyser la longueur de corrélation et les spectres de nombre d'onde obtenus par un USFR pour le tokamak ASDEX-Upgarde.

Mots clés : plasma, fusion, turbulence, reflectometrie
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  Ыстық плазмадағы энергия мен бөлшектерге ауытқыма ауысуы турбуленттiлiкпен тығыз байланысты. Сондықтан болашақ термоядролық электростанциялардың тиiмдiлiгiн арттыруда турбуленттiлiктi зерттеу өте маңызды. Бұл жұмыс тығыздық профилiн және плазма турбуленттiлiгiнiң толқындық радиалды спектрiн өлшеуге арналған, бүкiл әлемде таралған ТОКАМАКтарда кеңiнен қолданылатын шамадан тыс рефлектометрия мәлiметтерiн талдауға арналған. Турбуленттiлiктiң төмен деңгейiнде рефлетометр дыбысын талдау өте қарапайым, ол тығыздықтың жоғары деңгейдегi наразылығы жағдайында қиындай түседi. Мысалы, бұл жұмыста зондтау толқынының бұғатталуы әсерiнен пайда болатын резонанстар рефлектометр фазасының ауытқуын тудыруға қабiлеттi екенi көрсетiлген. Әдетте турбуленттiлiктiң ең жоғары деңгейi плазмалық бағанның шекарасында байқалады. Турбуленттiлiк қабатымен қиылысында фазаның өзгеруi және сынақ сәулесiнiң кеңейуi плазмалық бағанның орталық аймақтарындағы спектрдi өлшеуге әсер етуi мүмкiн. Оның әсерi ұзын корреляциялық ұзындығы жағдайында күшейедi. Алайда, қысқа корреляция ұзындығы керi Брегг шашырауына алып келедi және ол да дыбысты өзгертуге қабiлеттi. Турбуленттiлiктiң толқындық сандарын зерттеуде рефлектометр дыбысының фазасымен қатар дыбыстың амплитудасы да қолданылуы мүмкiн. Дыбыс фазасымен салыстырғанда амплитуда резонанстық секiрулерге ұшырамайды, сонымен қатар, дыбыс амплитудасын зерттеу арқылы турбуленттiлiктi әлдеқайда сапалы сипаттау мүмкiн болады. Турбуленттiк амплитудасы плазмалық шекарада максималға жеткен жағдайда оны жергiлiктi Брегг резонансы аймағында спектралды шыңның көмегiмен тiркеуге болады. Полоидальды тартылған антеннамен жабдықталған шамадан тыс рефлектометрия көмегiмен антеннаның орын ауыстыруымен бiрге спектральды шыңның орын ауыстыруын бақылауға болады. Шыңның орын ауыстыруы турбуленттi қабаттың күйi мен қасиеттерi туралы қосымша ақпарат алуға мүмкiндiк бередi. Tore-Supra Токамагында GYSELA гиро-кинетикалық кодының ақпараттарын талдаушы көпжиiлiктi рефлектометрия жағдайында синтетикалық дигностиканы үлгiлеуде екiөлшемдi толық толқынды код қолданылды. Дыбыс амплитудасы көмегiмен өлшенген радиалды корреляциялық ұзындық турбуленттiлiктiң корреляциялық ұзындығына сәйкес келедi. Толық толқынды код, сонымен қатар, ASDEX-Upgrade Токамагында шамадан тыс рефлектометрия жағдайында толқындық спектрдi және корреляциялық ұзындықты талдауда қолданылды. Бiрөлшемдi кодпен салыстыру әр түрлi нәтижелер көрсеттi. Алайда, екiөлшемдi және бiрөлшемдi кодтар негiзiндегi синтетикалық диагностика көмегiмен есептелген корреляциялық ұзындық турбуленттiлiктiң корреляциялық ұзындығымен бiрдей реттi мәндердi қабылдайды.
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 11 Figure 1.1: Primary energy consumption by different regions in the last 50 years with time extrapolation. Sourced from [1]
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 13 Figure 1.3: An example of produced solar power during one year in Germany. Figure taken from [8]
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 14 Figure 1.4: Cross-sections of possible nuclear reactions. Averaging is done using Maxwellian velocity distribution function. Figure source: "Encyclopedia of Energy", Volume 4. (Elsevier Inc., 2004)
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 18 Figure 1.8: (a) Turbulence energy spectrum by Kolmogorov's theory. Direct cascades with 𝑘 -5/3 dependence; (b) Turbulence energy spectrum predicted by Kraichnan-Leith-Batchelor's model, with direct cascade 𝑘 -3 and inverse cascade 𝑘 -5/3
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 110 Figure 1.10: Instability growth rate 𝛾 as a function of normalized wave-number 𝑘 𝜃 𝜌 𝑖 .Where 𝑘 𝜃 is poloidal wave-number. Picture inspired by[START_REF] Li | Multi-scale turbulence experiment in HT-7 tokamak[END_REF] 
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 111 Figure 1.11: Toroidal tokamak cross-section with zonal GAM flows and radial electric field variation. Picture source -[36] 
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 21 Figure 2.1: Ordinary mode wave components orientation, 𝐸 ‖ 𝐵 0

Figure 2 . 2 :

 22 Figure 2.2: Extraordinary mode wave components orientation, ⃗ 𝐸 ⊥ ⃗ 𝐵 0

Figure 2 . 3 :

 23 Figure 2.3: Magenta -low X-mode cut-off frequency; Green -high X-mode cut-off frequency; Blue -O-mode cut-off frequency; Red -electron cyclotron frequency; Yellow -upper hybrid resonance frequency. For ASDEX tokamak profiles (𝐵 𝑎𝑥𝑒𝑠 = 2.5𝑇 , 𝑀 𝐴𝑋(𝑛 𝑒 ) = 3 • 10 19 𝑚 -3 ), discharge number 31287
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 224 Figure 2.4: Brag scattering rule illustration. 𝑘 𝑠𝑐𝑎𝑡 -wave-number of the scattered wave, 𝑘 𝑖𝑛𝑐 -wave-number of the incident wave, 𝑘 𝑡𝑢𝑟𝑏 -wave-number of the turbulence

Figure 2 . 5 :

 25 Figure 2.5: Mathieu equation solution stability areas. 𝑎 𝑖 < 𝑝 < 𝑏 𝑖+1 :stable solution, 𝑏 𝑖 < 𝑝 < 𝑎 𝑖 :unstable solution. Figure source[START_REF] Colin | Modélisation d'un réflectométre mode X en vue de caractériser les fluctuations de densité et de champ magnétique : applications aux signaux de Tore Supra[END_REF] 
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 26 Figure 2.6: Basic reflectometer radar principle technique. Image source[START_REF] Udintsev | presentation for 1st Int. Conference on Frontiers in Diagnostic Technologies[END_REF] 
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 27 Figure 2.7: time of flight spectrogram for Tore-Supra discharge (shot 44959) with strong backscattering. Source of the picture: [57]

Figure 2 . 8 :

 28 Figure 2.8: Closed loop algorithm diagram. Experimental parameters together with assumed turbulence power spectrum 𝑆 𝑝𝑜𝑤 𝛿𝑛,0 =| 𝑆 𝛿𝑛,0 | 2 processed with synthetic diagnostic. Transfer function 𝑇 𝑟 𝑖 = 𝑆 𝑝𝑜𝑤 𝛿𝑛,𝑖 /𝑆 𝑝𝑜𝑤 𝛿𝜑,𝑖 is computed and applied to experimental phase power spectrum 𝑆 𝑝𝑜𝑤 𝛿𝑛,𝑖+1 = 𝑆 𝑝𝑜𝑤 𝛿𝜑 0 • 𝑇 𝑟 𝑖 . Then synthetic diagnostic is used again and full circle repeats until 𝑆 𝑝𝑜𝑤 𝛿𝜑,𝑖 = 𝑆 𝑝𝑜𝑤 𝛿𝜑 0
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 33132 Figure 3.1 shows an example of the amplification factor variation(blue line) with the density discontinuity position. This example was computed using 𝐿 = 200𝜆 and 𝑛 0 /𝑛 𝑐 = 5%. One can notice that the amplification factor has a few resonance peaks.First one is very narrow fundamental resonance peak. On figure 3.1 it does not reach its maximum due to insufficient numerical resolution. With the increase of resonance cavity, the size peaks become smaller and wider. After 𝑥 0 < -10𝜆 there is no second cut-off any more and amplification factor fluctuations comes only from the interplay between ongoing and outgoing waves with changing phase relation between them. On the same figure3.1 the resonance phase variation term arctan(𝐴 1 /𝐵 1 ) is depicted. One can see that when resonance is reached phase jumps of 𝜋 take place. With increase on resonance peak order, the phase jump become smoother. After 𝑥 0 < -10𝜆 the phase jump amplitude start to decrease. On figure 3.2 one can see an example of the electric field structure together with the used 𝑁 2 profile. Here 𝑥 0 = -6.16𝜆. This corresponds to positions in the second resonance peak vicinity.
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 3334 Figure 3.3: Amplification factor computed with numerical solution (blue), and exact solution (green)

Figure 3 . 7 : 7 2 × 10 7 3 × 10 7 4 × 10 7 δnFigure 3 . 8 : 7 δnFigure 3 . 9 :Figure 3 . 10 :

 37777738739310 Figure 3.7: Spatial evolution of the plasma density and electric field when the maximum of the resonance is reached. The spatial coordinate is expressed in points where 20 points corresponds to a vacuum wavelength. The density gradient length is equal to 145 vacuum wavelengths and the amplification factor of the electric field is 1.55 • 10 7
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 311 Figure 3.11: Evolution of the amplification factor as a function of the noise level using extended precision. The trapping regimes change when the density fluctuations are truncated. Peaks are present when the extended precision is used.

3. 3

 3 Time dependent wave-equation numerical solution Usually tokamak turbulence studied by UFSR is very strong especially at the edge. Wave multi-reflections, reflection far from cut off position, wave trapping can take place during measurements. In this case signals from different positions will be mixed together in the antenna at some moment of time. However these signals will have different beat frequency. To separate signal from the cut-off reflection sliding window filtering of the spectrogram should be done. It is not possible to simulate such a problem using Helmholtz equation. In this section we will have a look on comparison of 1D Helmholtz equation solver results versus 1D wave equation solver in the case of O-mode wave.
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 3 Figure 3.12: O-mode cut-off frequency (blue) computed from density with homogeneous, isotropic turbulence
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 3313314 Figure 3.13 shows the phase variation. Phase variation was computed as a difference
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 3 Figure 3.15: time of flight spectrogram computed by FDTD algorithm without turbulence
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 3163173319 Figure 3.16: time of flight spectrogram computed by FDTD algorithm. Computation is done for chosen turbulence realization
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 320321 Figure 3.20: Time of flight spectrogram computed with FDTD for edge turbulence maximum RMS values of 5%(left) and 10%(right)

3. 4

 4 .1 2D FDTD algorithm 2D effects are very important in reflectometer signals both in linear and nonlinear regimes. Poloidal turbulence spectra, finite beam size, 2D plasma profile, all these parameters can change reflectometer responses. Another important thing is the possibility to receive less beam energy than what was launched to the plasma. This changes the phase fluctuation spectrum and amplitude relation between scattered and unperturbed (computation without turbulence) fields in Born approximation (see section 3.5) which compose the total reflectometer signal. In my thesis I use IPF-FD3D -a finite difference time domain code developed at IGVP, Stuttgart, Germany
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 322 Figure 3.22: Electromagnetic wave cut-off frequency
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 3323324325 Figure 3.23: Turbulence wave-number spectrum
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 326327328329330 Figure 3.26: JET tokamak density profile with minimal and maximal cut-off positions
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 331 Figure 3.31: Phase fluctuation spectra: red -2D IPF-FD3D computation results, blue -reduced reciprocity theorem approach computation result, yellow -1D Helmholtz equation solver computation results
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 41 Figure 4.1: O-mode cut-off frequency profile(blue), probing wave frequency(red)
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 42 Figure 4.2: Turbulence root mean square amplitude envelop with a maximum of 10% of the critical density 𝑛 𝑐
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 4344 Figure 4.3: Turbulence spectrum. 𝑘 𝑚𝑎𝑥 = 𝑘 0
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 45 Figure 4.5: Electric field distribution snapshot. 𝑘 𝑚𝑎𝑥 = 𝑘 0
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 4647 Figure 4.6: Electric field power distribution averaged over 1000 turbulence realizations. Computation without turbulence(red), and computation with turbulence(blue)
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 484941041110412 Figure 4.8: Turbulence spectrum. 𝑘 𝑚𝑎𝑥 = 0.1𝑘 0

Figure 4 . 13 :

 413 Figure 4.13: Coherent beam part attenuation computed with analytical formula(blue), and attenuation computed using IPF-FD3D code (orange)
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 4154164 Figure 4.15: Density profile(green), edge turbulence RMS envelop with 5% maximum level(blue), core turbulence RMS envelop(red)

Figure 4 . 18 :

 418 Figure 4.18: Phase variation sample for 10% edge turbulence level 𝑘 < 0.1𝑘 0

1Figure 4 . 19 :

 419 Figure 4.19: Radial plasma density profile (green) and turbulence level, composed of edge turbulence root mean square value (blue) and background turbulence root mean square value (red)

Figure 4 . 20 :Figure 4 . 21 :

 420421 Figure 4.20: Probing beam electric field map computed with turbulence printed on density profile (𝑟𝑚𝑠(𝛿𝑛) = 10%𝑛 𝑐 ) (computed with FD3D full-wave code)

Figure 4 . 22 :

 422 Figure 4.22: Averaged signal amplitude received by the receiver antenna as function of the poloidal antenna positions. 𝐴 0 is the emitting antenna amplitude

(Figure 4 . 23 :

 423 Figure 4.23: Signal amplitude variation spectrum at different receiver poloidal positions. The maximum RMS edge turbulence amplitude is 10% of the cut-off density

Figure 4 .Figure 4 . 24 :Figure 4 . 25 :

 4424425 Figure 4.25 shows the phase variation spectrum. One can see that it is possible to detect the coherent mode through a strong turbulence layer in the edge region. To get a smoother curve here 100 runs with different turbulence realizations were used. It can be noticed from equation (3.57) that the diagnostic is more sensitive to core turbulence compared to edge turbulence with the receiving antenna shift. This is due to the fact that the receiving and emitting antennas electric fields have stronger overlap in the core region than at the edge when antennas are not aligned. The spectral peak associated

Figure 4 .

 4 Figure 4.26 shows the amplitude fluctuation spectrum for different receiving antenna position. We can see that the coherent mode is clearly observed on the spectrogram

Figure 4 . 26 :

 426 Figure 4.26: Signal amplitude fluctuation spectrum computed at different receiving antenna positions. The maximum RMS edge turbulence amplitude is 10% of the cutoff density

Such spectra are shown on figure 4 . 27 .Figure 4 . 27 :

 427427 Figure 4.27: Complex signal fluctuation spectrum computed at different receiving antenna poloidal positions. The maximum RMS edge turbulence amplitude is 10% of the cut-off density

Figure 4 . 28 : 52 Figure 4 . 29 :

 42852429 Figure 4.28: Contour maps of the probing wave field superimposed with a 3D plot of the density profile

Figure 4 . 30 :

 430 Figure 4.30: Spatial evolution of the density fluctuations profiles used as input for different cases of simulation[START_REF] Clairet | Plasma turbulence measured by fast sweep reflectometry on TORE SUPRA[END_REF] 
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 431432 Figure 4.31: Signal phase variation spectrum computed for different edge turbulence amplitudes
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 51525354 Figure 5.1: Cut-off frequencies for typical Tore-Supra discharge number 45511
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 56 Figure 5.6: radial RMS turbulence amplitude profile 𝑅𝑀 𝑆(𝛿𝑛)/𝑛
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 5758 Figure 5.7: ASDEX-Upgrade cut-off frequencies profile for discharge number 31287, maximum and minimum probing frequency range

Figure 5 . 9 :

 59 Figure 5.9: Turbulence spectra for different radial positions. Different amplitudes correspond to different RMS levels according to Parseval's theorem
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 513 Figure 5.13: Phase variation power spectra obtained near R=2m with different amplitude levels
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 514515 Figure 5.14: Phase variation power spectra obtained near R=2.07m with different amplitude levels
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 516517 Figure 5.16: Amplitude variation spectra computed with IPF-FD3D code for various radial positions using a given turbulence

Figure 5 . 18 :

 518 Figure 5.18: Magenta -turbulence correlation length 𝑙 𝑐 , Dashed lines phase variation correlation length computed with IPF-FD3D code with different turbulence levels

Figure 5 . 18 show

 518 the phase variation correlation length computed from results of 2D IPF-FD3D code. One can see that the phase correlation length does not change much with amplitude and probing position. It stays close to the edge turbulence correlation length value which is differ much with turbulence correlation length closer to the core. It can be connected to strong edge turbulence influence. It is an expected result taking into account that the phase fluctuation spectra does not differ much (see figures 5.13-5.15). The correlation length was also computed from 1D Helmholtz solver computation result. Because of smaller sensitivity to higher wave numbers one can expect overestimation of correlation length. Here due to limited analysed zone and finite statistics smal wave-number values are not observed arr observed with small smaller amplitude. On figure 5.19 we can see that the phase fluctuation correlation length follows the change of the turbulence correlation length. Near 𝑅 = 2.1𝑚, where turbulence amplitude has a maximum phase variation, the correlation length computed for smaller turbulence level is smaller than the same value computed with higher turbulence level. However closer to the plasma core figure 5.19 shows opposite results.
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 519 Figure 5.19: Magenta -turbulence correlation length 𝑙 𝑐 , Dashed lines amplitude variation correlation length computed with 1D Helmholtz equation solver with different turbulence levels
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 520 Figure 5.20: Magenta -turbulence correlation length 𝑙 𝑐 , Dashed lines signal amplitude variation correlation length computed with IPF-FD3D code with different turbulence levels
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 12124 Figure A.1: Example of iterative algorithm to find isotropic spectrum central cut that will match wanted projection (1D spectrum)

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1

 1 

	fusing species	products and its energies
	𝐷 + 𝑇	𝐻𝑒 4 2 (3.56𝑀 𝑒𝑉 ) + 𝑛𝑒𝑢𝑡𝑟𝑜𝑛(14.03𝑀 𝑒𝑉 )
	𝐷 + 𝐷	𝐻𝑒 3 2 (0.82𝑀 𝑒𝑉 ) + 𝑛𝑒𝑢𝑡𝑟𝑜𝑛(2.45𝑀 𝑒𝑉 )
	𝐷 + 𝐷	𝑇 (1.01𝑀 𝑒𝑉 ) + 𝐻(3.02𝑀 𝑒𝑉 )
	𝐷 + 𝐻𝑒 3 2	𝐻𝑒 4 2 (3.71𝑀 𝑒𝑉 ) + 𝐻(14.64𝑀 𝑒𝑉 )

.1 shows possible reactions and reaction product energy from D-T plasmas. Figure

1

.4 represents cross-sections of these reactions. As

Table 1 .

 1 

1: Fusion reactions and products one can see from this figure, 𝐷 -𝑇 reaction has the highest rate with a maximum reached for temperatures near 100𝑘𝑒𝑉 . A 14.03𝑀 𝑒𝑉 neutron is a product of this reac-

  𝑘 𝑏 𝑛 𝑗 ⟨𝛿𝐸 𝜃 𝛿𝑇 𝑗 ⟩/𝐵 𝜑 + 3 2 𝑘 𝑏 𝑇 𝑗 ⟨𝛿𝐸 𝜃 𝛿𝑛 𝑗 ⟩/𝐵 𝜑 𝜑 ⟨𝛿𝐸 𝜃 𝛿𝑛 𝑒 ⟩ can be calculated if both 𝛿𝑛 𝑒 and 𝛿𝐸 𝜑 are measured simultaneously. However by means of wave scattering, reflectometry, electron cyclotron emission, and beam emission spectroscopy only 𝛿𝑛 of 𝛿𝑇 can be measured and additional assumptions should be added to compute energy and particle fluxes.

	can be expressed the same way.
	𝑄 𝛿𝐸 𝑗 = -	3 2	(1.16)
	Convectional flux 𝑄 𝛿𝐸 𝑐𝑜𝑛𝑣 = 5 2	𝑘 𝑏 𝑇𝑒 𝐵
	and ⊥ signs are related to the magnetic field direction. Drift turbulence energy flux

[START_REF] Keilhacker | [END_REF] 

Here 𝜃 is the poloidal angle, 𝜑 is the toroidal angle, 𝑟 means radial coordinate, and ‖

  𝛼)𝑥 = 𝑞 𝛼 𝐸 𝑥 /𝑚 𝛼 + 𝑞 𝛼 𝑣 (𝛼)𝑦 𝐵 𝑧 /𝑚 𝛼 -𝑖𝜔𝑣 (𝛼)𝑦 = 𝑞 𝛼 𝐸 𝑦 /𝑚 𝛼 -𝑞 𝛼 𝑣 𝑥 𝐵 𝑧 /𝑚 𝛼 -𝑖𝜔𝑣 (𝛼)𝑧 = 𝑞 𝛼 𝐸 𝑧 /𝑚 𝛼 ∑︀ 𝛼 𝑞 𝛼 𝑛 𝛼 ⃗ 𝑣 𝛼 ,where 𝑛 𝛼 is the plasma species density.

	From the first two equations one can express 𝑥 and 𝑦 velocities.
		⎧ ⎪ ⎪ ⎪ ⎪ 𝑣 (𝛼)𝑥 = -𝑞𝛼 𝑚𝛼 ⎨ ⎪ ⎪ ⎪ ⎩ 𝜔𝑚𝛼 𝑣 (𝛼)𝑧 = 𝑖𝑞𝛼𝐸𝑧 ⎪ 𝑣 (𝛼)𝑦 = 𝑞𝛼 𝑚𝛼 𝑤 2 -𝑤 2 𝑤𝑐 𝑤 2 -𝑤 2 (𝛼)𝑐 𝑤 (𝛼)𝑐 (𝛼)𝑐 𝐸 𝑥 + 𝑖 𝑞𝛼 𝐸 𝑦 + 𝑖 𝑞𝛼 𝑚𝛼 𝑚𝛼 𝑤 2 -𝑤 2 𝑤 𝑤 2 -𝑤 2 (𝛼)𝑐 𝑤 (𝛼)𝑐 𝐸 𝑦 𝐸 𝑥		(2.3)
	With cyclotron frequency 𝑤 𝑐 = 𝑞𝐵/𝑚. Knowing particles velocities the current density
	can be calculated ⃗ 𝐽 =			
	⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎪	𝐽 𝑥 = 𝑗𝐽 𝑧 = ∑︀ ∑︀ 𝑖𝑛𝛼𝑞 2 -𝑛𝛼𝑞 2 𝛼 𝑚𝛼 𝜔𝑚𝛼 𝛼 𝐸𝑧 𝑤 2 -𝑤 2 𝑤𝑐 (𝛼)𝑐 𝐽 𝑦 = ∑︀ 𝑛𝛼𝑞 2 𝛼 𝑚𝛼 𝑤 (𝛼)𝑐 𝑤 2 -𝑤 2 (𝛼)𝑐 𝐸 𝑥 + 𝐸 𝑦 + ∑︀ ∑︀ 𝑖 𝑛𝛼𝑞 2 𝛼 𝑖 𝑛𝛼𝑞 2 𝛼 𝑚𝛼 𝑚𝛼	𝑤 𝑤 2 -𝑤 2 (𝛼)𝑐 𝑤 (𝛼)𝑐 𝑤 2 -𝑤 2	𝐸 𝑥 𝐸 𝑦	(2.4)
	From these expressions using Ohm's law ⃗ 𝐽 =	∧ 𝜎 ⃗ 𝐸 one can calculate the plasma conduc-
	tivity tensor				
						(2.2)

∧

𝜎:

<δ φ 2 > (δ n) <δ φ 2 > (0.8δ n) <δ φ 2 > (0.67δ n) <δ φ 2 > (0.5δ n)

  3, figure 3.31). Figure 5.12: black -RMS relative density perturbation level, dashed lines -< 𝛿𝜑 2 > computed with 1D Helmholtz equation solver for different turbulence levels Due to high turbulence level, resonant wave trapping (see sections 3.2.2, 3.4) produces
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	Figure 5.11: black -RMS relative density perturbation level, dashed lines -< 𝛿𝜑 2 >
	computed in 2D with IPF-FD3D code for different turbulence levels
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  Le fait que des résonances puissent avoir lieu pendant une expérience de réflectométrie à la fois avec une fréquence fixe ou une fréquence de balayage est très important parce qu'à la traversée de la condition de résonance, un saut de la phase du signal du réflectomètre apparaît. Différentes techniques de calcul peuvent interpréter cette phase de saut différemment. Ceci est dû au comportement des ondes dans la zone de piégeage. Si un balayage de fréquence est modélisé en utilisant des codes dépendant du temps, seule une petite quantité d'énergie est transmise dans la région de résonance. Les techniques de filtrage généralement utilisées sont également capables de modifier le comportement de la phase lors d'une résonance. En général, les sauts de phase peuvent être une source de bruit spectral très large. Un autre comportement de phase a été détecté en présence de turbulence de bord. La variation de phase dans ce cas peut contenir de l'information sur un gradient. C'est-à-dire 𝛿𝜑 0 + 𝑘 𝑔 𝑅 où 𝑅 est une position radiale, 𝛿𝜑 0 est la variation de phase sans l'effet de gradient, et 𝑘 𝑔 est un coefficient de pente.Les effets 2D sur le signal de réflectométrie ont été étudiés en utilisant le code IPF-FD3D basé sur le schéma de Yee. En régime linéaire (𝛿(𝑁 2 ) ∝ 𝛿𝜑), le spectre de nombre d'ondes de turbulence poloïdal réduit la variation cohérente des variations de phase. Dans ce cas le signal provient du mélange de différentes lignes de visée poloïdales ce qui réduit l'amplitude des variations de la phase totale. Cependant, il n'affecte presque pas les mesures de spectres de nombre d'ondes. Il a été constaté que la courbure du plasma peut partiellement annuler les effets des spectres de nombre d'onde

tiquement et numériquement que dans le cas de la réflexion d'onde avant la position de coupure principale, le piégeage d'ondes de résonance peut avoir lieu sous l'action de la turbulence. En présence du bruit stationnaire, le calcul d'état d'étude 1D a montré que la résonance ne disparaît pas mais devient plus forte. Toutefois la dépendance temporelle tend à détruire les résonance car les conditions de résonance ne sont plus satisfaites. Cependant, la réflexion principale, dans ce cas, peut être vu avec un temps de vol augmenté. En utilisant la technique de détection en quadrature dite IQ, il est possible de constater que les événements de résonance auront une influence différente suivant l'utilisation d'une l'interprétation basée sur des solutions stationnaires ou non station-naires. poloïdal augmentant la variation de phase. Ceci est dû à l'élargissement du faisceau de sondage dû à la courbure du profil de densité du plasma. Ceci conduit à une plus grande sélectivité les rayons accédant à l'antenne limitant ainsi le brouillage des ondes parasites diffusées par les modes poloïdaux. Une turbulence 2D non homogène a été générée en utilisant des enveloppes d'amplitude et un ensemble de différentes cartes de turbulence homogènes. Dans le cas d'une turbulence à faible amplitude inhomogène, isotrope, il a été trouvé une différence dans la forme du spectre en nombre d'ondes entre les calculs 1D et 2D d'où peut être une signature du brouillage du aux modes poloïdaux de la turbulence. Le comportement du signal du réflectomètre linéaire est typique des paramètres de turbulence dans la région centrale du tokamak. Cependant, dans le voisinage du bord du plasma, il est généralement trouver de fortes turbulences capables d'induire un comportement non linéaire des signaux du réflectomètre. Les résultats des simulations numériques ont montré que lorsque le faisceau de sonde traverse le bord turbulent, il apparaît deux faisceaux dont l'un conserve la même phase et la même forme

élargissement.ne raison supplémentaire d'utiliser une longue longueur de corrélation dans le bord est qu'il est possible de faire une séparation d'échelles avec une turbulence de bord avec seulement de petits nombres d'onde, puis d'observer les grands nombres d'onde de la turbulence du plasma de coeur en la séparant l'influence du bord. Les calculs ont montré que la turbulence de bord peut affecter les mesures du coeur, en particulier lorsque la longueur de corrélation se rapproche de la longueur d'onde de l'onde sonde. L'interaction entre les fluctuations de densité à la coupure et la turbulence des bords peut provoquer un emballement de la phase et un changement de la pente de variation de phase, conduisant à une extension du spectre vers les grands nombres d'ondes. L'étape suivante porte sur l'étude d'une turbulence de forme spectrale gaussienne plus réaliste.Les simulations ont montré le même comportement que pour les calculs précédents des spectres de phase. Cependant, des informations supplémentaires ont été obtenues en utilisant des spectres des variations d'amplitude.Ceci est du au fait que les variations d'amplitude ne présentent pas de sauts et donnent accès à plus d'informations spectrales sur la turbulence de la région de bord. Le pic d'amplitude de turbulence dans la région de bord, selon la règle de diffusion de Bragg, est capable de générer une forte diffusion qui peut être vue comme un pic spectral proche de la valeur double du nombre d'onde de sondage local. Une nouvelle méthode de détection a été utilisée pour obtenir de nouvelles données expérimentales. Basé sur la technique de réflectométrie poloïdale où les antennes réceptrices sont à différentes positions poloïdales par rapport à l'antenne émettrice, cette dernière a toutefois été
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Results obtained in this section show the potential of turbulence characterization with USFR. When the beam crosses a turbulent layer it can be represented as superposition of 2 beams: one for which the phase and shape are conserved and another one which has random phase. It was found that the phase variations spectrum is very sensitive to edge turbulence when core turbulence is measured. In the case of small turbulence correlation length, strong attenuation of the coherent beam part takes place, small correlation length turbulence generates Bragg-backscattering. These effects change phase variation spectrum in core measurements. It was found that analysing the reflectometer amplitude spectrum it is possible to get information about the edge turbulence. A new swept reflectometry detection method with multiple receiving antennas was proposed.

Using this technique it is possible to see not just the amplitude variation spectral peaks but also see a change in the peak position. This change can be explained by Braggbackscattering rule and beam propagation through the edge turbulent layer. However for good edge turbulence characterization in experiment, a series of modelling should be performed to investigate absolute values of the peak amplitude and spectral shift.

Using spectral peak position shift it might be possible to calculate the position of the turbulent layer. However as scattering process in non-linear regime is hard to analyse analytically, a series of modelling possibly can help in these peak analysis. To recover absolute values of phase variation and amplitude in experiments, modelling should be done in 3D. This statement can be explained by Born approximation solution in the reciprocity theorem approach. Unperturbed signal's level will decrease in relation to scattered signal because of toroidal beam widening. This can change the amplitude of phase and amplitude variations.

Summary

If any gentleman will say he doubts the truth of this story, I will fine him a gallon of brandy, and make him drink it at one draught!

The surprising adventures of Baron Munchausen.

Rudolf Erich Raspe

One of the crucial parameter for successful operation of MCF(Magnetic Confinement Fusion) machines is the energy confinement time. This time is mainly limited by particles and energy transport mechanisms, the good understanding of which is strongly connected to turbulence study. The validation of turbulence models relies on comparison with the experiment observations. Ultra-fast swept reflectometry is a good candidate for turbulence radial wave-number spectra measurements with good spatial and temporal resolutions.

The work carried out in the thesis deals with reflectometry interpretation for turbulence measurements by use of diagnostic modelling. A review of different simulation methods to reproduce reflectometer signal was done. Computations can be done with the help of 1,2 or 3 dimensional codes. In one dimension, using Helmholtz equation, it was shown both analytically and numerically that in the case of wave reflection before the main cut-off position resonance wave trapping can take place. In the presence of the noise, 1D steady state computations have shown that resonance does not disappear but becomes stronger. The fact that resonances can take place during reflectometry experiment both with fixed or sweeping frequency is very important because crossing resonance condition, a jump of the reflectometer signal phase can appear. Different computation techniques can interpret this phase jump differently, due to the wave behaviour in the trapping zone. If a frequency-sweep reflectometer is modelled using time dependent codes small amount of energy is transmitted in the resonance region.

Appendix A

Isotropic turbulence generation

Using inverse fast Fourier transform it is very easy to generate 1D turbulence. To create 2D isotropic turbulence with a given 1D spectrum the same way, first 2D sepctral map should be created. Usually by turbulence spectrum people mean spectra of 1D turbulence from one line from 2D turbulence map. This spectrum corresponded to projection of 2D spectral map to the given direction taking into account phase of each mode. This results in spectral traces from each mode towards smaller wave-numbers. to find 2D spectral map which results into given 1D spectrum special algorithm was used. Algorithm has 3 steps:

, first approximation of the spectrum is computed. Where 𝑆 1 is the first approximation of the spectrum, 𝑆 0 = 𝑆 𝑔𝑖𝑣𝑒𝑛 Second step: spectral traces increase slope of the spectrum. Here we will adjust the slope multiplying our function by 𝑘 𝑛 . Third step: When the slope is adjusted final spectrum is generated as

Example of the matlab code: To generate 2D turbulence which will follow the shape of tokamak magnetic surfaces with elongated and triangular shape Miller magnetic surface approximation [99] can be used.

In this formulation we are using 2 coordinate system of magnetic surface index coordinate 𝜌 𝑀 which is usually given as normalized poloidal magnetic flux, and related to the poloidal angle coordinate 𝜃 𝑀 . Tokamak magnetic surfaces can be fitted using 4 functions: small radius 𝑟, triangularity 𝜅 𝑀 , elongation 𝑙 𝑀 , and Shapranov shift 𝑅 𝑆𝐻 .

Conventional poloidal angle can be expressed as 𝜃 = arctan(𝑍/(𝑅 -𝑅 𝑆𝐻 )).

Inhomogeneous, isotropic turbulence which follows magnetic surfaces shape can be made using mix of homogeneous turbulence maps with amplitude envelops shaped using Miller equilibrium. --------------------------------------------------- It was observed that during core turbulence observation with USFR in presence of strong edge turbulence reflectometer phase suffer phase jumps due to resonant multireflections and phase gradient. In this section we will have a look how these phenomena affect phase variation spectra.

Phase jumps: When wave trapping appear during USFR measurements can introduce phase jump of 𝜋. These phase jumps mathematically can be express as Heaviside functions. Spectra of these functions can be expressed analytically. Here 𝛿 is the delta function. To evaluate influence on the total phase variation spectra let us consider arbitrary reflectometer phase variation with introduced phase jumps.

Phase gradient: During USFR core observation with the strong edge turbulence can introduce additional phase 𝜑 𝐺 (𝐹 ) = 𝑘 𝑃 𝐻𝐼 𝐹 . Analytically spectra of such expression can be found: