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RÉSUMÉ EN FRANÇAIS

Introduction

La microscopie corrélative, ou “correlative microscopy” en anglais (CM), combine dif-

férentes techniques de microscopie pour étudier un échantillon biologique. Imager un

objet selon deux ou plusieurs approches différentes permet de fournir des informations

importantes et complémentaires sur cet échantillon.

Les techniques utilisées en CM relèvent généralement de la microscopie optique (par

exemple, microscopie de contraste de phase, microscopie de fluorescence, etc.), dénom-

mée "light microscopy" en anglais (LM), et de la microscopie électronique, "electron

microscopy" en anglais (EM) (par exemple, microscopie électronique à balayage, micro-

scopie électronique à transmission, etc.), constituant un schéma particulier, dénommé

“correlative light and electron microscopy” (CLEM) en anglais. LM permet l’imagerie

d’échantillons vivants, fournissant des informations dynamiques à une résolution spa-

tiale relativement faible, tandis que EM acquiert des images extrêmement détaillées au

prix de la fixation de l’échantillon, chimiquement ou par congélation. EM et LM sont

deux techniques fondamentales de microscopie dont les caractéristiques se complètent,

ce qui est la raison pour laquelle elles sont couramment adoptées en CM. Cependant,

d’autres techniques de microscopie peuvent être employées dans CM, à deux et trois

dimensions.

L’acquisition d’images CLEM est une tâche difficile où la préparation de l’échantillon

est cruciale. Elle dépend du type d’études biologiques et des techniques de microscopie

utilisées [26, 145, 149]. Habituellement, l’échantillon est d’abord préparé et coloré pour

LM. Les images optiques sont alors acquises. A la suite de l’identification d’un événe-

ment ou d’un contenue d’intérêt, l’échantillon est fixé pour le préparer à l’acquisition

EM. La figure 1 illustre un pipeline d’acquisition CLEM usuel. Certes, cette description

est une vue simplifiée. Le processus complet est généralement étalé sur plusieurs jours.
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Les spécificités de chaque étape du pipeline ont des effets différents sur l’échantillon,

certaines d’entre elles introduisant des artefacts ou des déformations, rendant la corre-

spondance entre les images plus difficile à réaliser. De plus, les acquisitions LM et EM

sont généralement effectuées sur deux équipements différents et l’échantillon doit être

transporté de l’un à l’autre, ce qui provoque des différences significatives dans la dispo-

sition et l’orientation de l’échantillon pendant les acquisitions.

Fig. 1: Pipeline d’acquisition CLEM.

L’association de la microscopie optique et de la microscopie électronique délivre des

informations fonctionnelles et dynamiques ainsi que structurelles à haute résolution, ce

qui peut aider à la compréhension des mécanismes cellulaires et intracellulaires. Cepen-

dant, les images EM et LM sont très différentes, en termes de contenu, d’apparence, de

résolution, de taille d’image et de champ de vue; par conséquent, le recalage des images

EM et LM nécessaire à la fusion des informations acquises n’est pas simple. Une illus-

tration des différences mentionnées entre les images EM et LM est fournie à la figure 6,

où le cadre orange dans l’image 2D LM englobe toute la zone imagée en 2D EM. Nous

pouvons également en déduire la grande différence dans les orientations des images EM

et LM, dans ce cas, proche d’une rotation de 90°. La taille de cette image LM est de 1392

×1040 alors que la taille de l’image EM est de 4008×2664. La résolution du pixel LM

est environ dix fois inférieure à celle de l’image EM. L’image EM peut être acquise à un

encore plus fort grossissement, ce qui augmente d’autant l’écart de résolution. Enfin, la

dissemblance des intensités et des structures présentes dans les images est remarquable.

La combinaison de différentes modalités d’imagerie offre de nombreuses possibilités

mais laisse à l’utilisateur le défi d’apparier et de superposer les images résultantes. En

pratique aujourd’hui, de interventions manuelles sont nécessaires à différentes étapes

du pipeline, par exemple lors de la localisation d’une région d’intérêt dans l’échantillon

pour l’acquisition EM après avoir acquis des images en LM, ou dans la sélection et

l’appariement d’amers pour la calcul du recalage. Une fois le calcul du recalage effectué

les images sont généralement superposées pour une bonne compréhension de leur con-

tenus respectifs et de leur juxtaposition. Ces différentes interventions manuelles sont

exigeantes et difficiles et le résultat final peut être insatisfaisant. De plus, les dispositifs

de CLEM vont se multiplier et l’acquisition d’un toujours plus grand nombre d’images
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Fig. 2: Différences de champ de vue, d’apparence, de contenu et de résolution entre les

images EM et LM dans une expérience CLEM.

posera le problème du passage à l’échelle. Pour cette raison, la nécessité d’automatiser

la phase de recalage s’impose de plus en plus.

Recalage automatique d’images CLEM 2D

Au cours de ce travail, nous avons défini plusieurs méthodes visant à créer une procé-

dure automatique pour aligner correctement les images CLEM en 2D et en 3D. Cet

alignement ou recalage résulte du calcul de transformations géométriques entre les im-

ages LM et EM. Il existe deux grandes approches de recalage. La première est de nature

géométrique. Elle extrait d’abord des points caractéristiques des deux images, les ap-

parie, puis à partir de ces appariements, calcule la transformation géométrique établis-

sant le recalage. La seconde approche s’appuie directement sur les intensités des im-

ages et cherche à estimer la transformation géométrique à travers la minimisation d’une

mesure de similarité.

Compte tenu des différences entre les images EM et LM, illustrées sur la figure 6,

un important écart est attendu entre les positions et orientations des échantillons dans

les deux images. Bien que les méthodes de recalage basées sur des points caractéris-

tiques soient capables de traiter de grands écarts initiaux, l’extraction et l’appariement

automatique de points communs entre images EM et LM est une tâche très ardue. Par

ailleurs, la plupart des méthodes de recalage basées directement sur l’intensité ne sont

pas capables de gérer de gros écarts initiaux. En conséquence, une étape de pré-recalage

est impérative afin d’aligner grossièrement les images EM et LM et de faciliter ensuite

l’estimation d’une transformation pour le recalage final. Actuellement, une telle étape

de pré-recalage est effectuée manuellement.
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Quand on traite des images multimodales, deux stratégies peuvent être mises en œu-

vre. La première est l’utilisation de métriques de similarité capables de gérer les inten-

sités multimodales des images, telle que l’information mutuelle, “mutual information”

(MI) en anglais. L’autre approche consiste à adapter une image à la modalité de l’autre,

ou à transformer les deux images en une troisième modalité commune. Nous adoptons

ce dernier schéma pour l’étape de pré-recalage, en exploitant le Laplacien de Gaussien

(LoG). La transformation LoG a l’avantage supplémentaire de lisser le bruit tout en met-

tant en évidence les structures importantes, ce qui en fait un choix efficace [7].

Le recalage entre images EM et LM est souvent défini autour d’une région d’intérêt

(“region of interest” -ROI- en anglais) contenant des structures partagées. La définition

d’une ROI est nécessaire puisque les images CLEM ont des contenus souvent très dif-

férents. Généralement, le ROI est déterminé dans l’une des images CLEM, alors que son

emplacement correspondant dans l’autre image est inconnu. Ces images sont respec-

tivement la source et la cible.

Comme il n’y a en général aucune information a priori concernant l’emplacement

du ROI dans l’image cible, ni sur son orientation, nous proposons de mettre en œuvre

une recherche exhaustive par patch dans l’image cible, du ROI prédéfini délimité dans

l’image source. En comparant le contenu du ROI source avec le contenu des patchs

testés dans l’image cible, le patch correspondant au ROI peut être localisé. Pour faciliter

cette étape de pré-recalage, nous utilisons pour cette recherche exhaustive la représen-

tation LoG des images CLEM. Un descripteur invariant à l’échelle et à la rotation est

nécessaire pour comparer chaque patch avec la ROI initiale. Ainsi, deux méthodes à

base d’histogrammes ont été définies. L’écart entre l’emplacement du patch sélectionné

dans la cible et celle du ROI fournit une première estimation de la translation entre les

images LM et EM.

Pour la suite des étapes de recalage, il nous faudra tenir en compte de la nature

multimodale du problème, ainsi que des différences précédemment mentionnées en-

tre les images EM et LM. Par conséquent, nous adoptons l’information mutuelle comme

mesure de similarité. Une fois que le patch correspondant au ROI a été localisé, l’image

source est mise à l’échelle et déplacée vers l’emplacement de ce patch. L’échelle utilisée

est connue à partir du rapport de résolution entre les images EM et LM fourni dans les

métadonnées associées aux images acquises. Ensuite, une première rotation entre les

images est calculée par une approche exhaustive dans un ensemble de valeurs quan-

tifiées d’angle de rotation 2D dans l’image. Elle est suivie de l’estimation, toujours par

minimisation de l’information mutuelle, d’une transformation rigide puis affine pour

obtenir le recalage final des images EM et LM.
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Notre approche a été testée avec succès sur sept paires d’images CLEM 2D réelles

fournies par l’institut Curie, comprenant une variété de contenus et de configurations en

termes de taille d’image, de champ de vue, de résolution et de structures imagées [157].

Détection multi-échelle de spots

Parallèlement à notre recherche principale sur le recalage CLEM, nous avons étudié

deux problèmes complémentaires. Le premier concerne une méthode de segmentation

multi-échelle dans les images de microscopie. La détection de structures ponctuelles

de différentes tailles est nécessaire pour de nombreuses applications de traitement

d’image. Les images peuvent contenir des objets tels que des voitures dans la surveil-

lance du trafic routier, des bateaux sur l’océan en télédétection, des étoiles et des objets

célestes en astronomie, des animaux dans des vidéos de scènes naturelles, des éléments

cellulaires et subcellulaires en imagerie microscopique, entre autres. Ces objets peu-

vent apparaître comme des structures locales, qu’on nommera “spots”, de taille et de

forme partagées. Pour segmenter de façon fiable ces spots il devient crucial de connaître

l’échelle appropriée pour les détecter correspondant à leur taille. En conséquence,

nous avons introduit une méthode efficace capable de détecter des spots de différentes

tailles contenues dans des images corrompues par le bruit. Nous avons défini un critère

original de type a contrario pour sélectionner automatiquement les échelles significa-

tives, c’est-à-dire les échelles correspondant aux tailles des structures pertinentes dans

l’image. Nous avons de plus élaboré une méthode de segmentation multi-échelles afin

d’extraire les spots associés à chaque échelle significative. Des images simulées et réelles

ont été utilisées pour tester l’efficacité et la précision de notre méthode. Nous avons

montré qu’elle surpasse les méthodes de segmentation multi-échelles existantes [156].

Nous avons exploité notre méthode de segmentation de spots pour compléter notre

méthode de recalage de CLEM 2D par une dernière étape de recalage affine à partir de

points. Comme les images sont très proches à ce stade, nous pouvons apparier les points

extraits respectivement de l’image LM et de l’image EM selon le critère du plus proche

voisin. Ensuite, il est aisé de calculer une transformation affine complémentaire. Cela a

permis d’améliorer encore la précision obtenue dans le recalage 2D des images CLEM.

Nous adoptons la méthode “random sampling consensus” (RANSAC) en anglais, pour

calculer cette dernière transformation. Notre approche a été testée avec succès sur cinq

paires d’images de CLEM 2D.
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Sélection robuste de modèles de mouvement

Le deuxième module que nous avons développé était motivé par le besoin de savoir

quel modèle paramétrique peut le mieux décrire la transformation géométrique en-

tre deux images. Nous avons plus généralement attaqué le problème du modèle de

mouvement global entre deux images successives dans une séquence d’images. Des

modèles paramétriques de mouvement sont couramment utilisés dans le recalage

d’images, l’analyse du mouvement, le suivi, la stabilisation vidéo, entre autres applica-

tions. Pour estimer les paramètres d’un modèle global de mouvement, un cadre robuste

d’estimation du mouvement est nécessaire pour appréhender la présence fréquente

d’outliers vis-à-vis du mouvement dominant, ce dernier étant généralement dû au mou-

vement de la caméra et les premiers à des objets mobiles indépendants de la scène. Dé-

cider du modèle paramétrique de mouvement le plus adapté pour estimer le mouve-

ment dans une séquence est une tâche importante. Certains critères traitent déjà de ce

problème, mais la plupart d’entre eux ne sont pas conçus dans un cadre d’estimation

robuste. Nous proposons deux critères statistiques de sélection robuste de modèles de

mouvement. Le premier est basé sur la statistique de Fisher, tandis que le second est

une extension robuste du critère d’information de Takeuchi (TIC). Les deux critères ont

été largement testés sur des séquences d’images générées par calcul avec vérité-terrain,

ainsi que sur de nombreuses séquences vidéo réelles, démontrant leur efficacité. Enfin,

dans le but de tester davantage les performances de nos critères de sélection robuste de

modèles de mouvement et d’analyser si le recalage final est amélioré, nous l’avons ap-

pliqué sur quelques unes de nos paires d’images CLEM 2D recalées. Comme l’estimation

des modèles de mouvement paramétriques est basée sur l’hypothèse de conservation de

l’intensité, nous avons utilisé la représentation LoG des patchs d’images EM et LM.

Recalage d’images CLEM 3D

Pour étudier plus d’aspects du problème de recalage pour la CLEM, nous avons étendu

notre travail à la CLEM 3D. L’alignement manuel de volumes de CLEM 3D est une tâche

beaucoup plus difficile et fastidieuse que l’alignement des images CLEM 2D. Elle peut

prendre des dizaines de minutes pour obtenir un résultat satisfaisant. Dans la plupart

des problèmes de recalage multimodal 3D, il existe à nouveau deux approches princi-

pales pour réaliser l’alignement des volumes ou piles d’images : soit à partir de points

caractéristiques, soit par l’utilisation directe de l’intensité. Cependant, des difficultés

similaires au cas de la CLEM 2D apparaissent. Une illustration de piles d’images CLEM

est montrée à la figure 3, où des différences flagrantes dans le champ de vue, le contenu
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de l’image et l’apparence rendent l’application des schémas de recalage classiques peu

évidente. L’extraction et l’appariement de caractéristiques est une tâche compliquée

car de nombreux éléments présents dans la pile d’images EM sont sans correspondants

dans la pile d’images LM. D’autre part, la mise en œuvre directe d’une méthode de

recalage itérative basée sur l’intensité sera difficile compte tenu des écarts importants

d’orientation et de localisation des contenus respectifs des volumes d’images LM et EM.

De plus, contrairement aux situations multimodales en imagerie médicale, il existe une

forte anisotropie des volumes ou piles d’images de microscopie. Les volumes compor-

tent peu de couches en Z comparé à la résolution latérale en X et Y des images.

(a) Pile d’images LM (b) Pile d’images EM

Fig. 3: Piles d’images 3D CLEM (images provenant de The Francis Crick Institute, UK)

Motivés par notre méthode de recalage en CLEM 2D, nous avons conçu un schéma

de recalage CLEM 3D étendant certaines des étapes définies pour le problème 2D.

Comme en CLEM 2D, la grande différence de localisation des structures d’intérêt rend

nécessaire la mise en œuvre d’une étape de pré-recalage entre les piles d’images EM

et LM. Dans de nombreuses acquisitions CLEM 3D, la différence majeure entre les em-

placements des ROI se situe dans le plan X Y , tandis que les emplacements respectifs le

long de l’axe Z sont plus proches. Par conséquent, nous proposons de traiter d’abord

l’écart de recalage en X Y . Pour pouvoir appliquer la méthode de recherche exhaustive,

nous devons associer les piles LM et EM à une modalité commune. Nous exploitons à

nouveau la transformation LoG compte tenu des avantages précédemment mentionnés.

Une fois que les intensités des piles LM et EM sont ainsi transformées, nous réduisons les

piles d’images à deux dimensions en projetant la pile LM en 2D et en sélectionnant un

ensemble de couches EM 2D intersectant une ROI 3D prédéfinie. La projection de la pile

LM en une carte 2D est obtenue par projection sur le plan X Y du maximum d’intensité
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en chaque point (x, y) le long de l’axe des Z , dit en anglais “Maximum Intensity Projec-

tion” (MIP). Ensuite, nous implémentons une recherche exhaustive par patch similaire

à celle du schéma de CLEM 2D, en essayant de localiser les ROI 2D extraits des couches

EM 2D dans la projection LM-MIP. Nous obtenons ainsi une ensemble de candidats de

localisation, et une moyenne pondérée robuste de l’emplacement des patchs candidats

fournit le patch sélectionné. Les coordonnées de son centre sont utilisées pour déplacer

la pile LM au centre du ROI EM. Une fois les piles pré-recalées, une méthode de recalage

3D à plusieurs étapes (transformation rigide puis affine) peut être appliquée en utilisant

l’information mutuelle comme mesure de similarité. Notre méthode a été testée sur trois

jeux de données de CLEM 3D, avec des résultats prometteurs.

Conclusion

Il n’existe à ce jour que peu d’études d’automatisation du recalage CLEM et encore moins

en 3D. Notre travail représente une contribution novatrice à la fois pour la CLEM 2D et

la CLEM 3D. Nous avons obtenu des résultats satisfaisants, tant visuellement que quan-

titativement. De plus, nos résultats ont été validés par des biologistes impliqués dans

l’acquisition des jeux de données CLEM utilisés dans nos expériences. Néanmoins,

la conception de méthodes supplémentaires pour améliorer encore l’alignement final

des images CLEM 2D et surtout 3D, tout en diminuant encore plus le temps de cal-

cul est toujours nécessaire. Actuellement, le temps de calcul du recalage en CLEM 2D

est en moyenne de 1,2 minutes et en CLEM 3D de 3,5 minutes sur un processeur In-

tel Core i7 2,8 GHz avec RAM de 16 GB. Idéalement, les futures méthodes de recalage

CLEM devront être plus robustes au manque de structures correspondantes et aux dif-

férences d’orientation, d’échelle et de champ de vue. Des expériences supplémentaires

sont également nécessaires pour valider davantage notre méthode de recalage pour la

CLEM 3D, néanmoins l’accès aux données reste délicat, et la disponibilité de dispositifs

de CLEM 3D encore limitée.
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INTRODUCTION

Many microscopy techniques currently exist to study small objects and structures in

live sequences. Each technique has specificities, benefits and limitations and their ap-

plication is usually dependent on the biological problem. The main types of micro-

scopes can be divided in optical (light) and electron microscopes, although other kinds

of microscopes also exist (micro-computer tomography or microCT, x-ray microscope,

ultrasonic microscope, etc.). Given the particular characteristics of each technique it

is natural to envision that fusing different techniques could generate new information

to help researchers solve problems in many different fields. Still, merging microscopy

techniques is not straightforward and new challenges emerge. The combination of dif-

ferent microscopy techniques to study a single object is denominated correlative mi-

croscopy (CM) and it has become a widely used method in disciplines such as cell bi-

ology [105, 111], cancer research [69, 109], neuroscience [4, 21] and marine microbiol-

ogy [113]. Our work will be primarily connected to cell biology applications. The most

commonly techniques incorporated in CM are light microscopy(LM) and electron mi-

croscopy(EM), creating a new technique denominated correlative light and electron mi-

croscopy (CLEM).

Light microscopy

The light microscope is the most widely used tool in microbiology laboratories, with ap-

plications going back to the 19th century. The phase contrast microscope was invented

in 1932 allowing to clearly observe microorganisms and it is still extensively used nowa-

days, since it requires no staining of the sample. From there, many different light mi-

croscopy techniques have been developed. A detailed listing of existing light microscopy

techniques can be found in [78, 124]. Some of the current light microscopy techniques

include:
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1. Transmitted light microscopy: in this kind of microscopes, the light is sent from a

source on the opposite side of the sample to the objective lens. A magnified image

of the illumined sample is created after the light passes through the sample and the

lens. Transmitted-light microscopes are used to study thin sections of transparent

or semitransparent samples. Other microscopy techniques such as phase contrast,

dark and bright field, among others, depend upon the transmitted light path.

2. Bright field microscopy: one of the most widely used microscopy imaging tech-

niques, bright field microscopy captures the magnified image of the sample after

applying a strong illumination. Some of the light is absorbed by dense areas of the

sample, stained structures and other elements, which creates contrast. Then, the

image appears as a collection of dark or highly colored structures against a bright

background, from which the name of the technique is derived.

3. Dark field microscopy: to imagine the sample, oblique rays of light illuminate the

sample and no direct light enters the lens. Then, the only light captured is the one

diffracted by the sample, resulting in a bright sample against dark background.

4. Phase contrast microscopy: in this technique, phase shifts due to light diffracted

by an object are converted to amplitude changes, creating contrast for imaging a

sample. Staining of the sample is not required.

5. Fluorescence microscopy (FM): one of the most important light microscopy tools

is the fluorescence microscopy. As stated by its name, fluorescence microscopy

is used for imaging objects that emit fluorescent light. However, most biologi-

cal molecules do not fluorescence on their own. Then, biological molecules are

linked with fluorescent molecules named fluorochromes or fluorophores. These

molecules can emit light upon light excitation. Several varieties of fluorophores

exist and can selectively stain tissues or cells, which is called fluorescent labeling.

Fluorophores can be found in the literature as markers, tags, dyes, indicators, etc.

Depending on the kind of fluorophores used, a specific wavelength of light is used

to illuminate the sample, causing the fluorophores to emit the energy as a longer

wavelength. The imaging is performed by either transmitted or reflected illumina-

tion (epi-illumination). Many microscopy techniques derived from fluorescence

microscopy, such as confocal laser scanning microscopy, two-photon microscopy,

scanning disk confocal microscopy, total internal reflection and super-resolution

microscopy. A more comprehensive description of these methods can be found

in [136].

6. Light sheet fluorescence microscopy: is an alternative to traditional light mi-

croscopy techniques, where the optical illumination and detection share the same
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path. By decoupling the optical illumination and detection pathways, unneces-

sary excitation of out-of-focus fluorescent elements is avoided. In addition, since

lower illumination intensities are required, the signal to noise ratio is improved

and faster acquisition is achieved. Further information can be found in [168].

Two main benefits are provided by light microscopy in the study of biological problems.

Using light microscopy, living cellular and subcellular specimens can be imagined, pro-

ducing abundant and valuable details on fundamental life processes such as cellular

proliferation, cell mitosis and apoptosis, and cell migration [71]. Additionally, fluores-

cent labeling provides dynamic contrast and helps to localize events of interest and to

distinguish similar structures. Nevertheless, light microscopy techniques are limited in

spatial resolution to approximately 0.2µm due to the wavelength of light. Recently de-

veloped superresolution optical microscopy techniques are able to increase the reso-

lution of optical-based microscopy imaging methods, allowing to capture images with

a higher resolution than the diffraction limit. Stimulated emission depletion (STED)

microscopy [52] creates super-resolution images by employing a second laser to selec-

tively deactive fluorophores localized off the center of the excitation, reaching a resolu-

tion of 50nm-90nm. High-precision localization of single fluorophores was developed

in [31,102], which led to microscopy techniques such as photoactivated localization mi-

croscopy [13] employs fluorescent probes that can switch between light and dark states.

Then, two close probes can be distinguished by being activated at different times with

resolution levels in the tens of nm. The joint advances in this new technologies were re-

cently awarded a Nobel Prize in 2014 in the field of chemistry for the works presented in

[13,52,102]. Still, details of the ultrastructure of cells are still not effectively resolved with

optical microscopy approaches, even with super-resolution microscopy techniques [58].

Electron microscopy

Electron microscopes differ from light microscopes by producing an image of a sample

using a beam of electrons instead of a light beam. Given that electrons have shorter

wavelength than light, they are capable of reaching very high resolutions, allowing to ex-

amine from samples containing multiple cells to subcellular ultrastructures, molecules

and even atomic structures. To imagine a sample using a electron microscope the sam-

ple must be placed in a vacuum along to being subjected to fixation or freezing, making it

impossible to imagine living samples. Electron microscopy can be divided in two types:

scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
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• Transmission electron microscopy: in this microscopy technique, a beam of elec-

trons is transmitted through a sample to produce an image. The contrast neces-

sary for imaging is given by the electron scattering. However, since most biological

elements do not scatter electrons, additional preparation steps must be under-

taken, such as adding heavy metals to the sample. The sample is cut into ultrathin

slices to be imagined by TEM. The sectioning of the sample along with the ad-

ditional steps needed such as fixation, embedding or freezing, makes preserving

the original structure of the sample a challenge. Several different protocols and

methods have been developed for TEM acquisition. TEM is often used to imagine

detailed ultrastructure of cells. Extensive information can be found in [172].

• Scanning electron microscopy: to produce an image using this technique, a beam

of electrons is moved back and forth across the surface of a sample. Energy is

lost when the electron beam interacts with the sample. This loss is converted to

other kinds of signals, which are detected and mapped to create an image. Since

SEM scans the surface of the sample, sample preparation for sectioning is reduced.

Additionally, SEM is capable of producing good 3D images due to its great depth

of field. Further information can be found in [43].

Important advances in the sample preparation process improve the preservation of

the sample for EM acquisition. Cryo-electron microscopy (CryoEM) is a method where

the sample is rapidly cooled, allowing the imaging of molecules near their native state. A

Nobel prize in chemistry in 2017 was awarded for the works presented in [32, 37, 53].

Although high spatial resolution is achieved using electron microscopy techniques,

it is limited to taking only still images of key stages in biological processes, lacking the

capacity of observing real-time dynamic events. Additionally, structures similar to other

structures or structures with unknown characteristics can be hard to distinguish [77].

CLEM

It is evident that neither light microscopy or electron microscopy techniques are able

to provide all the information a biologist might need. Given the complex nature of bio-

logical processes, integrating two different microscopy imaging approaches can help in

increasing the knowledge of cellular dynamic behavior and the associated morphology

to decipher life mechanisms. As previously mentioned, LM is fast and allows the study

of dynamic events as well as fixed samples, labeling structures of interest for localization

and analysis at low resolution, while EM visualizes different elements such as membrane

shapes, organelle architecture and cellular ultrastructure, both labeled and unlabeled at

4



INTRODUCTION

high resolution. Then, analyzing events of interest with LM followed by ultrastructural

EM could help to address important cell biological issues. A list of general fundamental

characteristics of transmitted light microscopy, fluorescence microscopy and electron

microscopy is presented in Table 1 to better visualize the complementary qualities of

these microscopy techniques.

Fluorescence
microscopy

Transmitted light
microscopy

Electron
microscopy

Spatial
resolution

Low Low High

Observation of living
cells

Yes Yes No

Identification of
labeled structures

Strong Regular Regular

Identification of
unlabeled structures

Not possible Regular Regular

Table 1: Imaging features of fluorescence and electron microscopy

An example of a CLEM acquisition 1 is illustrated in Fig. 4. Reconstructed epider-

mis samples are imaged following the protocol described in [51]. After live LM acqui-

sition, a quick freeze substitution was conducted, allowing the preservation of fluores-

cence in the sample. Afterwards, the sample is sectioned. The LM images are acquired

with epifluorescence Nikon Te2000, in multiple different channels, including transmit-

ted light. The section was then post-stained with Lead Citrate and imaged by a Tecnai

Spirit FEI transmission electron microscopy (TEM) [50]. Four fluorescent channels in-

cluding mCherry, green fluorescent protein (GFP), Hoechst and Cy5 are used to label

different parts of the sample. Along with the FM acquisition, a transmitted light mi-

croscopy image is also captured to help in the correlation of the LM image with the EM

image.

As observed in Fig. 4, the information provided by each LM channel and the EM im-

age is vastly different, highlighting the appeal of combining such different modalities to

draw new knowledge. The fluorescent channels depict only the labeled structures while

the rest of the sample is not visible. Transmitted light microscopy images all the sample

at low resolution, but without the additional information provided by the fluorescent

labels.

CLEM has been developed in the last decades by combining a broad range of light

1We thank X. Heiligenstein and P. Paul-Gilloteaux from UMR 144, Institut Curie, Paris, for providing us
the images and the associated explanations.
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(a) mCherry fluorescence channel (b) GFP fluorescence channel

(c) Hoeschst fluorescence channel (d) Cy5 fluorescence channel

(e) Transmitted light channel (f) EM image

Fig. 4: CLEM acquisition of a single sample. (a) - (e) Four fluorescent channels plus a

transmitted light image make the LM acquisiton. (f) EM image of the same sample.
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and electron microscopy techniques, both in 2D and 3D. Very specific workflows are de-

signed depending on the microscopy techniques adopted for CLEM and the biological

problem to be studied. In most CLEM experiments, the usual process is to first acquire

a LM image of a sample labeled using fluorescent tags, followed by preparation of the

sample for EM imaging, such as fixation/freezing, embedding, inmunolabeling and sec-

tioning, always depending of the specific subject of study. Then, the resulting images

are aligned to be jointly analyzed, generally creating an overlay of the images. A detailed

workflow of the most popular CLEM techniques is illustrated in Fig. 5. General informa-

tion on CLEM workflow is presented in [19]. Further information on CLEM acquisition

and sample preparation is reviewed in [29].

Although the concept of CLEM is associated with the joint analysis of the EM and

LM images at the final stage of the CLEM framework, the combination of LM and EM

images is exploited in several different ways. The most simple and conventional way LM

is used along with EM, is when transmission light microscopy is used as a guide for EM

acquisition by identifying specific regions or structures of interest in a sample [145]. LM

is used to locate a region of interest (ROI) in [87], then a Focus Ion Beam Scanning Elec-

tron Microscopy (FIBSEM) is performed. Afterwards, axons and dendrites are imaged

using manual selection and seed growing.

CLEM is also implemented when acquiring large-scale LM and EM images [145].

Imaging large areas at high magnification is usually done by capturing several EM and

LM images at different locations and stitching them together. The samples are corre-

lated by locating parts of the holder visible in the images or by identifying structures in

the sample. Then, the LM and EM images are aligned by partly manually scaling, ro-

tating and shifting the images. Large-scale studies generate great quantities of valuable

information, and some more automated approaches have been developed [4, 21].

A CLEM protocol is clearly not as straightforward as illustrated in Fig. 5. Each stage

is usually subdivided into several highly specific consecutive steps, involving different

physical setups and equipment. Therefore, it is expected that the handling of the sample

through all these steps will introduce changes in the orientation of the sample, making

it hard to locate and follow a ROI between each step. Multiple efforts have been made in

retrieving the ROI, most of them focused on introducing visible marks on the sample [98]

or the use of marks or grids in the holders [162]. However, adding marks to the sample

can introduce artifacts, and the use of grids may partially occlude the sample [137]. A

different localization technique implements a laser dissection, creating a mapping sys-

tem to locate the ROI [72].

Other mechanisms are exploited to retrieve the ROI during the CLEM process, such
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Fig. 5: General CLEM workflow. LM may occur at two different stages, imaging the sample

when it is alive and after fixation for EM.
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as photoconversion [97], inmunolabeling [164] and the use of fluorescent proteins. The

latter is one of the most widely used methods of correlating EM and LM images. Many

current CLEM workflows use fluorescent proteins for live-cell imaging followed by EM

acquisition thanks to the preservation of the fluorescence for EM imaging by cryo-

freezing of the sample [50, 77], chemical fixation [167] and high-pressure freezing [64].

Specialized software for CLEM alignment by exploiting fluorescent proteins and other

markers have been developed [51, 137].

Recently, advances have been made in performing LM and EM imaging in a single

physical setup. Integrating two microscopy modalities in one setup allows the LM imag-

ing of a sample following immediately by EM imaging, consequently producing images

that are already aligned. A module to set the sample is developed in [2], in a way that

FM is first performed and then the sample is rotated 90° for EM acquisition. This way,

the ROI can be easily localized in both modalities. In another integrated setup for 3D

CLEM acquisition, a laser is used to create patterns that facilitate the orientation and lo-

calization of a structure of interest in both LM and EM images [151]. However, integrated

setups are highly specific, limiting the options a biologist has to combine different imag-

ing modalities and to select diverse sample preparation techniques [55].

Integrating two microscopy imaging techniques by correlating the images produced

by each one generates additional and substantial information. However, CLEM is a com-

plex process that can take several days. A detailed protocol of CLEM acquisition with

specific times delineated for each step of the process is presented in [87]. The analysis

and alignment (also called registration) of CLEM images involves the relocation of the

ROI identified in LM, in the EM (or vice versa). As previously stated, this relocation is

more frequently done manually, with the help of grids, fiducial markers, laser marks and

cell features. In some CLEM workflows, the sample is first analyzed at low magnification

in order to identify the particular cell of interest, before increasing the magnification to

visualize the ultrastructure within that cell and the precise location of fluorescent labels.

What all the CLEM works previously cited have in common, is that the LM and EM im-

ages are registered at least partly manually, most of the time creating image overlays.

Manually relocating and aligning or registering the LM and EM images is usually a diffi-

cult and time consuming task in an already long and complicated process. Furthermore,

a certain level of expertise is required for the manual registration of CLEM images, as

well as previous knowledge of the current dataset. Even then, the resulting alignment

may not be entirely satisfactory. In consequence, the development of accurate auto-

matic CLEM registration tools is crucial.

The manipulation of the sample during the different stages of the CLEM framework

most certainly will introduce distortions and alter the orientation of the sample. Along
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with the inherited differences between the LM and EM images in terms of intensity, pixel

resolution, imaged structures, image size and field of view, automatic CLEM registration

is a highly challenging problem. An example of this is illustrated in Fig. 6. In this exper-

iment, significant differences can be easily observed between the EM and LM images.

Intensities are remarkably dissimilar, as well the level of detail present in the images. A

rotation of more than 90° is present. Some of the few shared structures of interest are the

dark spots enclosed in orange in the LM image. Additionally, the orange frame indicates

the region that contains the whole area imagined by EM. All the listed discrepancies fur-

thermore establish automatic CLEM registration as a complex problem.

Fig. 6: Differences between EM and transmitted-LM images in a CLEM experiment in

terms of orientation, field of view, pixel resolution, imaged structures, image size and in-

tensity. The width of the EM image is 45 µm and the width of the LM image is 153 µm.

The different sections of this doctoral thesis work are focused in developing a

method to automatize the registration of LM and EM images, focusing on the different

areas of the problem: pre-alignment of the images, 2D multimodal image registration,

feature detection, and the estimation of the optimal transformation between LM and

EM images. We deal with a frequently implemented CLEM workflow described in Fig. 5,

although other workflows also exist where our method could be exploitable.

Contributions

Various contributions to CLEM image registration and image analysis in general are pre-

sented in this thesis manuscript.
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• A novel 2D CLEM registration method capable of overcoming multiple large dif-

ferences in terms of appearance, pixel resolution, image size, image content, field

of view and orientation between EM and LM images. Large initial discrepancies in

intensity distribution and sample position (frequently expected in CLEM acquisi-

tions) can be significantly diminished by mapping the multimodal CLEM images

to a common modality and implementing a search stage of a pre-defined ROI. Us-

ing this approach, an overlay of EM and LM images can be generated, allowing

the simultaneous analysis of functional, dynamic and ultrastructural information

of biological samples. This contribution was published in the proceedings of one

of the most important conferences in the biomedical image field, the 2016 IEEE

International Symposium on Biomedical Imaging (ISBI) [157].

• An approach for 3D CLEM registration was also developed. This approach, resem-

bling to the one developed for 2D CLEM, allows the alignment of 3D LM and EM

image stacks while dealing with large discrepancies between the stacks. Our ap-

proach comprises two major steps, involving a two-dimensional pre-registration

step followed by a three-dimensional registration refinement. This important tool

can facilitate the analysis of 3D CLEM datasets, saving biologists significant time

and effort. This contribution will be presented in the 2018 IEEE International Sym-

posium on Biomedical Imaging (ISBI) [158].

• An important contribution in the microscopy imaging field as well as in the gen-

eral image processing field is the multiscale spot segmentation method developed

in this thesis work. By exploiting the LoG transform, the meaningful scales repre-

senting the sizes of the spots present in an image can be automatically selected.

Multiple applications can be benefited from this approach, particularly the anal-

ysis of fluorescence microscopy images of live cells. This contribution was pub-

lished in the proceedings of the 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) [156].

• A final contribution is the development of two robust motion model selection

criteria for parametric image motion estimation. The first criterion is based on

the Takeuchi information criterion while the second is based on the Fisher statis-

tic. This new criteria allow to establish which motion model better describes the

dominant motion in an image sequence. This provides valuable information ex-

ploitable in fields such as motion detection, image stitching, video stabilization,

tracking, crowd analysis, among many others. We applied it to the 2D CLEM regis-

tration issue. The Fisher statistic-based part of the contribution was published in

the proceedings of the 2016 IEEE International Conference on Image Processing

(ICIP) [16].
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Organization of the thesis manuscript

The structure of the thesis manuscript is organized as follows, knowing that a general in-

troduction and a conclusion along with perspectives of the work envelop the five chap-

ters.

Chapter 1. This chapter introduces existing methods for semi-automatic and auto-

matic CLEM registration. The most commonly used approaches for medical image reg-

istration are addressed, since they are may be exploited also for biological images. Given

the fact that EM and LM are different modalities, multimodality tools are reviewed.

Chapter 2. A detailed description of the methods we developed for 2D CLEM auto-

mated registration is presented in Chapter 2. Our 2D CLEM registration approach has

two main parts: a pre-registration step and a fine registration step. A patch-based ex-

haustive search of a ROI pre-defined in one image is implemented in the other image to

compute a pre-alignment of the EM and LM images. The pre-registration part involved

four sub-steps: a common representation of the two microscopy modalities, the defini-

tion of the patch geometry, the search of the patch corresponding to the ROI and a coarse

computation of the rotation between the CLEM images. Afterwards, we introduce the re-

fine registration part, where a set of consecutive transformations are estimated to refine

the alignment of the EM and LM images. Results on seven real CLEM experiments are

presented, disclosing the outcome of each step in the registration workflow, along with

a visual and quantitative evaluation of the resulting alignments.

Chapter 3. A novel method for the extraction of multiscale spots from images is pre-

sented in Chapter 3. This chapter introduces a spot detection method based on the

Laplacian of Gaussian transform, which allows the estimation of a set of scales repre-

senting the spots sizes present in the processed image. A coarse-to-fine scheme for the

segmentation of the spots is also defined. Extensive synthetic experiments to assess the

performance of our method are reported, as well as results of the method on real images.

Then, a robust point-based registration refinement for 2D CLEM is presented, exploit-

ing this multiscale spot detection methods. Quantitative evaluation is included for all

experiments.

Chapter 4. This chapter presents two robust motion model selection criteria for 2D

image sequences. The goal is to select which model from a set of parametric motion

models better describes the motion between two frames in an image sequence. Two

criteria for the selection of motion models are presented, one based on the Takeuchi in-

formation criterion and the other one based on the Fisher statistic. The chapter includes
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a thorough evaluation of the criteria on a large set of synthetic experiments and on real

images. Finally, an implementation of the robust motion model selection approach is

applied on 2D CLEM pre-registered images aiming to generate information regarding

the most appropriate motion model that could be used for improving the final registra-

tion.

Chapter 5. An extension of CLEM registration to 3D is introduced in this final chap-

ter. Here, an approach for registering EM and LM image stacks using an intensity-based

method is presented. This approach, analogous to the work presented in Chapter 2,

is based on a common representation of the EM and LM image stacks to reduce the

complexity of the problem. A pre-registration step is defined to improve the initial mis-

alignment of the stacks, followed by a 3D registration by estimating successively rigid

and affine 3D transformations. Experimental results are included in this chapter, where

visual and quantitative evaluation assess the performance of the method.

13
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CHAPTER1
OVERVIEW OF CORRELATIVE

MICROSCOPY REGISTRATION METHODS

Correlative light and electron microscopy (CLEM) is a widely used technique that com-

bines two different imaging modalities, electron microscopy (EM) and light microscopy

(LM), in a to overcome their respective limitations. LM microscopy, and especially with

fluorescence microscopy (FM), allows the analysis of live biological samples and the

identification of labeled cellular structures. However, these techniques are limited by

the resolution of the light microscope, preventing the imaging of fine structural details.

Conversely, EM offers much-improved resolution, revealing crucial ultrastructural infor-

mation at the expense of fixing the sample and with a limited field of view. Then, by fus-

ing images from these two imaging techniques, it is possible to relate dynamic biological

events to structural information at high resolution.

The analysis of CLEM images is frequently performed by aligning the resulting EM

and LM images containing the same structures of interest. Such alignment, also called

registration or overlay, can be defined as determining the transformation that maps all

the elements in an image (known as source) to the space of another image (known as

target). CLEM registration is not a straightforward task, as stressed in the introduction

chapter of this thesis manuscript. Large differences in terms of appearance, image con-

tent, pixel resolution, image size, orientation and field of view complicate the location

of the features shared between the two CLEM images and their registration. Currently,

this challenging task involves strong manual interactions, requiring significant time, ex-

pertise and previous knowledge of the dataset and its acquisition. Yet, sometimes the

resulting alignment may not be completely accurate or satisfactory. Then, the need for
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an automatic registration method to assist in the analysis stage of CLEM is of great rele-

vance.

1.1 Correlation methods

Alignment between LM and EM images is mostly performed at two different stages of

the CLEM workflow: first, after acquisition of LM and after preparation of the sample

for EM acquisition, where the sample is relocated manually by visually identifying grids

or marks on the sample holder, fiducial markers added to the sample or features within

the sample itself. The other stage where CLEM alignment is performed is at the final

stage of the workflow, where the EM and LM images are registered and overlayed to be

jointly analyzed. Typically, the alignment at any of these two stages is currently carried

out with manual intervention of the biologist. For instance, to observe magnetotactic

bacteria, the correlation and overlay between FM and EM images is done manually using

ImageJ [173], with the EM image rotated and the FM image scaled and rendered partially

transparent.

Some semi-automatic registration tools have been developed, most of them through

the user selection of points of interest (points of reference, fluorescent markers, cell fea-

tures, etc.).

1.1.1 Coarse CLEM alignment

Alignment of the EM and LM images is sometimes done during the CLEM acquisition.

Marks on the sample holder are exploited for location of an LM-ROI to manually orient

and align the sample for EM acquisition at low-magnification [55]. 2D coordinate sys-

tems exploiting marks and grids on the holder are designed to facilitate the location of

ROIs after coarse manual alignment of the LM image with a low-magnification EM using

grids on the holder [39].

1.1.2 Manual feature selection for semi-automatic registration

Most semi-automatic registration approaches are based on the manual selection of fea-

tures visible on both modalities. A fluorescent fiducial-based correlation is developed

to correlate fluorescence with ultrastructural information in [76]. Fluorescent micro-

spheres are used as fiducial markers, which are manually picked and paired by the user
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to correlate the EM and LM images. A geometric transformation is then computed

through a point-based method using the paired fiducials. Several transformations are

computed using a minimum of three fiducial pairs. To select the optimal transforma-

tion, the location of the predicted positions of the fiducials is compared to the actual

location of the fiducials. Then, the transformation is applied to the LM image to align it

with the EM image. The software for CLEM registration developed in this work has been

used in other investigations [141].

In a similar approach, three reference points are chosen, for instance, the corners of

an identified square of the holder grid, and a transformation is computed to relocate the

LM features in the EM image [137]. A combination of different techniques is presented

in [47], where microscopic X-ray computed tomography (microCT) is used along with

LM and EM for the analysis of small biological samples. Using the software Amira®, the

three modalities are observed within the same view, after manual registration of LM and

EM images, and semi-automatic registration of LM and microCT images.

A comparison between the fusion of confocal laser scanning microscopy (CLSM) and

focused ion beam - scanning electron microscopy (FIB-SEM), and the fusion of com-

puted array tomography (CAT) and scanning electron microscopy shows that any of

the two can replace ultrastuctural investigations performed by transmitted electron mi-

croscopy (TEM) in 3D studies [85]. Once again, manual pre-alignment is performed on

the datasets, and the fine alignment is improved using Amira®.

A CLEM study over HeLa cells using FM and TEM in [164] achieves registration by

manually scaling and applying rigid rotation over the FM in order to align it with the

TEM image.

Besides the software presented in [76], other software have been developed for

feature-base registration. CorrelativeJ [46] is an ImageJ plugin with two procedures. The

first procedure consist of transferring the positions of features selected by the user from

an FM image to an EM image to act as system coordinates. The second procedure con-

sists of directly registering the transmitted light microscopy images and the transmitted

electron microscopy images using the grid squares observed in both modalities as ref-

erence objects. ecCLEM [51] is a novel software that allows the user to manually select

features from the LM and EM images to compute a transformation to register them. It

contains an additional feature where an automatic registration of CLEM images is pos-

sible, based on the automatic extraction of features by an external software.
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1.1.3 Automatic CLEM registration

Very few investigations have been undertaken so far from an image processing perspec-

tive to make the registration more automatic. A method for feature-based registration

is proposed in [104], where structural information such as cell centers or nucleus is ex-

ploited as descriptive features to compute a transformation. The cell centers are de-

tected using a gradient-based method, where a shifted Gaussian kernel and mean shift

are applied onto a single-pass voting algorithm. Yet, the registration accuracy heavily

depends on the presence of sufficiently salient structures and their correct segmenta-

tion, and the method is designed for pre-aligned CLEM images. In another study, an

automated refined registration for 3D CLEM is proposed based on mutual information

to compute a rigid transformation after a manual coarse registration using Amira® [83].

In [114], the image superposition is achieved by exploiting the auto-fluorescence

which exhibits strong enough contours. Following a template-based approach, affine

transformations are then applied until the one supplying the highest cross-correlation

score is found, first with an EM image at low magnification, then for progressively higher

magnifications. A very different approach is proposed in [20]. It aims at transforming the

two-modality issue into a single modality image registration problem. They introduce

the so-called paradigm of image analogies and exploit a sparse representation model to

obtain these image analogies. Convincing results are reported but this scheme requires

a prior supervised learning stage which is not always affordable.

1.2 Multimodal biomedical image registration

The study of strategies suitable for generating automatic methods for CLEM registra-

tion is closely related to the study of medical image registration. Medical imaging com-

prises multiple imaging modalities, such as X-ray, ultrasound (US), computed tomog-

raphy (CT), magnetic resonance imaging (MRI), positron emission tomography (PET),

single-photon emission computed tomography (SPECT), functional MRI (fMRI), among

others. The information provided by each medical imaging technique is different, there-

fore, it is logical that combining two different modalities will offer very unique and valu-

able insight, useful for medical diagnosis, treatment or surgery. Hence, the two images

must be aligned in order to analyze them and gather knowledge from their combina-

tion [54].
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Roughly speaking, medical, biological or traditional image registration methods can

be classified as intensity-based methods and feature-based methods [178].

1.2.1 Feature-based registration

Feature-based registration methods involve the extraction of corresponding 2D or 3D

features in the images to be aligned, inferring the transformation needed. Usually, the

features are represented by the coordinates of representative points, which can be either

the centers of mass, the geometrical centers, corners, etc. The usual process for feature-

based registration involves three main stages: feature detection, feature matching, and

estimation of the transformation. Each step of the process has their own challenges de-

pending on the kind of images to be registered, and selecting the right tool for each one is

crucial. Feature-based methods are typically fast while being able of handling large ini-

tial misregistrations, however, they are highly dependent on the correct extraction and

matching of significant features.

The extraction of reliable features from biomedical images is a complex task with

many active investigations. In the computer vision field, countless studies in the extrac-

tion of features currently exist. A review of the detection of key points in images can

be found in [140, 160]. In biomedical image processing applications, feature detection

methods are usually developed for specific problems, but the basis for most of the devel-

oped methods comes from computer vision techniques, specially from object detection

and segmentation methods. Detection of blob-like features has been proposed by [82],

where a scale-space is built by applying a Laplacian of Gaussian (LoG) transform to an

image. Another approach for detecting blob-like features is by thresholding with differ-

ent values and tracking the stability of regions in the image through the process [93].

A widely used image descriptor, denominated scale invariant feature transform

(SIFT), was proposed by [84]. In SIFT, feature points are detected by exploiting a scale-

space representation built using the Difference of Gaussians. Many SIFT variants have

been proposed [42], which have been applied to many different image processing prob-

lems, both in computer vision and biomedical imaging [24, 175]. Several detection and

segmentation methods for different medical imaging problems can be found in [90]

and [107]. In [6], a survey on automatic segmentation evaluates their performance on

optical images of mammalian cells. However, most detection and extraction of features

of interest on medical images is tailored to specific organs and structures that are not ap-

plicable for CLEM registration. A survey and experimental comparison of spot detectors

dedicated to bioimaging can be found in [146]
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Once features are extracted from an image, they must be matched. The aim is to

assign every feature from one image its corresponding feature from the other image.

The correspondence between points usually relies on the closeness of their locations.

In addition, geometrical constraints can be established to avoid mismatching [150]. An

evaluation of spot detection methods and matching strategies can be found in [99].

Finally, after detection and matching of features, the transformation can be com-

puted. Many algorithms incorporate the matching and computation of the transfor-

mation in a single scheme. One of the most well-known approaches for inferring the

matching and transformation is the iterative closest point method (ICP) [12], where a

correspondence is established based on a closest neighbor principle and the transfor-

mation can be computed based on the pairings. The HAMMER algorithm [144] com-

putes the matching of features based on a local search for the best matching. A robust

method for feature matching and computation of the transformation is the Random

Sample Consensus (RANSAC) [34]. This method computes an optimal transformation

by implementing a voting scheme, given a set of features containing inliers and out-

liers. RANSAC-based methods for segmentation and registration have been vastly inves-

tigated. For instance, serial confocal microscopy images of axons are registered using

RANSAC in [56]. A multimodality registration of human retina captured using Fundus

imaging and spectral domain-optical coherence tomography (SD-OCT), also exploits

RANSAC and histograms of oriented gradients (HOG) [100].

Although feature-based registration methods are expected to be robust to initial con-

ditions and large misregistrations [150], its application on CLEM image pairs may not be

sufficient to successfully register them, due to the large discrepancies between the orien-

tation, field of view and content of both images, which complicate the correct detection

and matching of significant features. At the beginning of our CLEM investigation, we

tested several widely used methods for feature detection on two sets of 2D CLEM im-

ages with diverse results. SIFT detected a large number of features on both EM and LM

images, complicating the matching necessary for computing the transformation. Harris

corner detector [48], a well known feature detector based on spatial derivatives, is invari-

ant to rotation, scale and illumination variation. When applied to CLEM images, it was

able to detect spots of interest along with many other spurious detections. Similar results

were obtained with the FAST (features from accelerated segment test) method [127],

which analyzes the intensities of the pixels around a pixel p to determine if p is a cor-

ner. Speed-Up Robust Features (SURF) [10], a feature detector inspired by SIFT, detects

a large number of features on EM but failed to detect all the features of interest in LM

images. All these feature detection methods would require an additional criterion to dis-

criminate detections when applied to 2D CLEM images.
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1.2.2 Intensity-based registration

Registration of two images based on their intensity values is the process of searching iter-

atively the values of the parameters of the transformation by optimizing some similarity

measure. Intensity-based methods take into account all the information in an image,

consequently increasing the computation time.

Selecting the similarity measure is the most important part of an intensity-based reg-

istration method, since it must be tailored to the intensity relation between the images

to be registered. Similarity measures can be divided on two main fields: those suitable

for images from a single modality, and those designed for multimodality problems.

In single modality image registration, the corresponding structures in the images are

expected to have similar intensity values. Then, methods such as the sum of squared

differences (SSD) or the sum of absolute differences (SAD) can be used as similarity cri-

teria. Other widely used similarity measures are cross correlation (CCor) and correlation

coefficient (CCoef) [150]. However, simply using similarity metrics may not be sufficient

to obtain satisfactory registration. Then, the incorporation of attribute-based methods

and regularization constraints allow to improve registration. A regularization scheme

for nonrigid image registration to account for the preservation of topology is presented

in [79], where the proposed scheme is applied to MRI brain images. In microscopy image

registration, other problems arise due to the specific characteristics of the acquisition.

For instance, when implementing intensity-based registration methods, it is important

to account for the anisotropic image formation process. An intensity-based registration

method for 3D fluorescence microscopy is introduced in [23], where the source and tar-

get images are re-blurred with transformed forms of the point-spread-function (PSF),

mapping the images to a more comparable representation in order to optimize a mean

squared intensity difference to compute the transformation to register them.

Multimodal registration is more challenging, and the selection of the appropriate

methods and similarity criteria is not simple. Two main ways to deal with multimodal-

ity are commonly adopted. The first one is the use of information theory for similarity

computation. Mutual information (MI) [88, 166] is one of the most important similarity

measures designed for multimodality registration, since it does not assume any relation-

ship between the images intensities. Ample information about MI and its many variants

and applications can be found in [117]. Multiple techniques incorporate MI with spa-

tial information to create more robust metrics [116, 129, 130, 152]. Other information

theory-based metrics, such as Renyi Entropy [120] have been adapted for image regis-

tration [49].
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The second approach is reducing the multimodality to a single modality. It is pos-

sible to apply an intensity mapping function to a source image to create a new image

with similar intensity characteristics to the target image. Then, single modality similar-

ity metrics can be used for registration. Rigid registration of US images mapped to the

intensity space of MRI images is presented in [123], and in [170]. US images are mapped

to CT intensities for rigid and affine registration.

A similar approach is to create new representations of the source and target images

such that, although the target and source image are very different from each other, their

new representation are quite similar. One way to implement this is by applying scale-

space derivatives to both images in order to generate new representations that highlight

their edges [33, 89]. This way, registration can be achieved by using single modality sim-

ilarity metrics such as cross-correlation.

Intensity-based methods are sensitive to large initial misalignments. Therefore, ap-

plying a pre-registration transformation to decrease the initial misalignment between

the source and target images, will increase the likelihood of finding an optimal final

transformation [107].

The existing semi-automatic CLEM registration methods exploit some of the strate-

gies previously listed: feature-based registration [104], which is specific to certain types

of CLEM images and dependent on the presence and correct extraction of cell fea-

tures; mapping of multimodality to single modality [20], which requires a training step

which is not always affordable; cross-correlation of the FM and auto-fluorescence in the

EM [114], relying on the existence of highly similar template-like features; and MI for

computing a rigid transformation [83], which, as most of these methods, is applied after

manual pre-alignment of the image, which can be complicated and time-consuming. In

some cases, the CLEM protocol has to be specifically modified to include this manual

step.

Then, we observe the need for a fully automatic CLEM registration framework ca-

pable of dealing with the significant differences between EM and LM images, aiming to

eliminate manual intervention in both the pre-alignment of the images and estimation

of a fine registration. In the next chapters we will explore ways to adapt different mul-

timodal image registration strategies to build an automatic CLEM registration method.

We will validate each developed approach on real 2D and 3D CLEM images, demonstrat-

ing the efficacy and potential use of our method.
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CHAPTER2
2D CORRELATIVE LIGHT ELECTRON

MICROSCOPY REGISTRATION

Correlative light-electron microscopy (CLEM) allows to relate dynamic and functional

information provided by different light microscopy (LM) techniques, with structural in-

formation given by electron microscopy (EM) methods for a better understanding of cel-

lular and subcellular mechanisms. Registration has many occurrences in 2D/2D, 2D/3D

and 3D/3D CLEM frameworks, depending on the subject to be studied. However, as pre-

viously mentioned, LM and EM images are of very different size, spatial resolution, field

of view, content and appearance. Therefore, registration of LM and EM modalities is a

timely, important but difficult open problem, which still requires some manual assis-

tance in current applications. In this chapter, we will focus on 2D CLEM registration.

As the main objective of our thesis work, we have designed an original automated

CLEM search-and-registration method. The search stage involves a common represen-

tation of EM and LM images with an adaptive associated scale (or blurring), the spec-

ification of the search patch geometry and the appropriate descriptors and similarity

criterion for the EM/LM patch search. The registration stage concerns the use of mul-

timodality registration techniques to align and overlay the EM and LM images, allowing

the simultaneous analysis of the information provided by both techniques. The effi-

ciency of our method is demonstrated on a set of real and diverse CLEM images.
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2.1 Introduction

Light microscopy and electron microscopy are two fundamental investigation tools

in cell biology. LM imaging allows the visualization of live cellular and subcellular

behaviors but at relatively low spatial resolution, although recently developed super-

resolution LM methods have been improving the attainable resolution [59], such as stim-

ulated emission depletion (STED) microscopy [52] and photoactivated localization mi-

croscopy [13].

Different probes, dyes, markers and fluorescent labels are usually employed to make

the elements of interest visible. In certain LM techniques, such as fluorescent light mi-

croscopy (FLM), the unlabeled structures are usually not perceivable and even more so

not recognizable. Phase-contrast LM images are frequently acquired along with FLM im-

ages to help in the visualization and localization of unlabeled structures. LM is usually

acquired on live samples, allowing the generation of temporal sequences in both two

and three dimensions. However, LM is also exploitable on fixed samples, as long as the

labels are correctly preserved for techniques such as FLM.

In contrast, EM imaging enables the examination of the whole cellular ultrastructure

at very high spatial resolution, but at the cost of fixating or freezing the sample. The main

downside of EM is its inherent inability to perform live-cell imaging, since the fixation or

freezing stage will cease normal life functions in the sample.

Correlative light-electron microscopy (CLEM) is then of key interest to combine the re-

spective complementary strengths of LM and EM. However, managing to do it is not that

straightforward. In recent years, research has been active in biology and microscopy to

design efficient setups and protocols to achieve effective consecutive LM and EM acqui-

sitions of the same sample [50, 114, 137, 151].

As described in Chapter 1, broadly speaking, the usual workflow is to first acquire a

LM image sequence of the living sample, and after detecting and locating the event of in-

terest, the sample is then chemically fixated or frozen to acquire the EM images. Usually,

another LM acquisition is performed after fixation or freezing, acting as an intermediate

between living LM and EM acquisitions. This additional step is helpful considering that

the freezing or fixation process can alter the sample, making the correlation between

living LM and EM images more difficult.
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Registering LM and EM images stands as a very difficult problem due to the big dif-

ferences in spatial resolution, field of view and appearance. CLEM registration may re-

spond to different needs: guiding the EM acquisition with the LM location of interest, re-

tracing the object of interest from one image to the other, overlaying the two images for

simultaneous analysis. CLEM registration usually requires manual interventions and the

use of artificial landmarks (fiducial markers as beads, marker grids) at different stages of

the overall CLEM workflow. The manual relocation and registration of LM and EM im-

ages is time consuming and demanding, therefore, it is important to develop accurate

automated registration tools [55].

We present an original automated approach to search for the EM (or LM) patch cor-

responding to the LM (or EM) region of interest (ROI) and to register them. It comprises

two main stages: a pre-registration stage and a registration refinement stage. The pre-

registration can be divided in two main components: the shift given by the retracing of

the patch containing the ROI, and the rotation computed between the matched EM and

LM patches. The search stage involves a common representation for the LM and EM im-

ages with an adaptive associated scale (or blurring), the determination of the geometry

of the search patch and the similarity criterion for the search. The second stage concerns

a multimodality registration process of the selected patch and the ROI. Our method was

tested on a series of real CLEM images with highly dissimilar contents, demonstrating its

efficiency and accuracy on different scenarios.

2.2 Automated 2D CLEM Registration

We propose a novel method to achieve automatic pairing and registration between 2D

LM and EM images. This method is able to manage significant differences in appear-

ance, field of view, spatial resolution and content scale between both modalities. As in

any registration process, there is a target image IT and a source IS image. Initially, we ex-

plored the 2D CLEM registration problem by setting the EM image as target, and the LM

image as source for the retracing step [157]. However, since then we have also explored

the application of our method using LM image as target and EM image as source. The

overall workflow is divided as follows:

1. Pre-registration

(a) Common LoG representation of 2D EM and LM images with scale adapta-

tion.
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(b) Determination of the search-patch geometry given a ROI and a resolution

ratio between EM and LM.

(c) Search of ROI extracted from the source image in the target image.

(d) Computation of the rotation angle between the ROI and the paired patch in

the other image.

2. Registration refinement

(a) Estimation of rigid transformation between paired patch in the target image

and ROI in the source image.

(b) Estimation of affine transformation between patch and ROI.

The diagram of Figure 2.1 summarizes the overall framework and the interactions

between the listed steps of the 2D CLEM registration process. Each step will be described

in the following subsections.

Fig. 2.1: 2D CLEM registration workflow.

2.2.1 Common LOG representation for EM and LM images

The multimodality nature of the CLEM images causes a great difference in terms of ap-

pearance, content and resolution between LM and EM images, thus the selection of an

appropriate matching criterion for the search is a hard task. When facing multimodal-

ity registration problems, there are usually two main strategies: the use of information
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theory-based methods [117, 123] and the reduction of the multimodality problem to a

“single-modality" one [150]. Both strategies have been explored during our thesis work.

We adopted the latter for the first pre-registration stage. The former will be used in the

second registration stage as explained in subsection 2.2.3. Indeed, the initial EM and

LM images are likely to be badly misregistered, making it extremely difficult to directly

estimate any kind of transformation between them.

By boiling down the multimodality issue to something equivalent to a single-

modality issue, a simplification of the problem is expected. There are two ways to

achieve this reduction. One is to simulate one modality from another based on a learning

stage, in such a way that both images are expressed in the modality of one of them, as il-

lustrated in [20]. The other way is to map both images to a third common modality, hop-

ing that structures present in both images will provide the necessary correspondences

to achieve their registration. We adapt this idea and propose to map CLEM images to a

common representation, which will allow us to retrace the ROI and roughly register EM

and LM images.

The idea is to find an intensity transformation of both 2D LM and EM images which

produces images of closer appearance. When mapping two different modalities to a sin-

gle one, it is advantageous to apply a filter that can help to extract geometrical informa-

tion. The Laplacian of Gaussian (LoG) filter is a good candidate, since it is well known

for suppressing local linear intensity variations and enhancing high spatial frequencies,

while being linear, simple to apply, producing scalar values and enabling scale adapta-

tion. LoG successively applies two filters: a Gaussian filter of variance σ2 to smooth the

image, and a Laplacian filter to enhance contrast. This filter was employed as a second-

order edge detector [9]. It is also the most commonly used spot detector [7]. The LoG

filter of an image I with domain Ω can be written as follows:

∀p ∈Ω, Lσ(I (p)) =∆(Gσ∗ I (p)), (2.1)

Where ∆ denotes the Laplacian operator and Gσ the Gaussian filter of standard deviation

σ.

To compute the LoG representation of LM and EM images and select the right scales

sLM and sE M corresponding to the Gaussian variance σ2, we use the first stage of the

spot detection method ATLAS [7]. ATLAS automatically detects the characteristic scale

of the objects of interest from a set of scales S, by exploiting the Lindeberg’s scale-space

approach [81]. The scale-space representation L I of an image I is defined as

∀(p, s) ∈Ω×S,L I (p, s) = Ks ∗K ⊤
s ∗∇

2I (p) (2.2)
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where Ks is a Gaussian kernel of scale s, ⊤ denotes the transposition operation, ∇2 is the

Laplacian operator. Then, a normalized discrete LoG filter HI is adopted as follows:

∀(p, s) ∈Ω×S, HI (p, s) =α(s)∇2L I (p, s)

=α(s)(Ks ∗K ⊤
s ∗∇

2I )(p)
(2.3)

where α is a normalization function. ATLAS follows the concept of blob given in [82].

A blob b = (pb , sb) ∈Ω×S is defined as as a local minimum (conversely maximum, de-

pending on the problem) of HI :

∀(p, s) ∈ ν(b) HI (pb , sb) ≤ HI (p, s) (2.4)

where ν(b) is a neighborhood in Ω×S. Let Bs(I ) be the set of blobs at scale s of image I ,

the blob density is then given by:

∀s ∈ S, ρs(I ) =
‖Bs(I )‖

A(I )
(2.5)

where ‖‖ denotes the cardinality and A(I ) = |Ω| is the area of I in square pixels.

The scale at which the number of blobs is the highest is the sought one, but we need

also to counterbalance noise influence. Assuming that the input image I is affected by

additive Gaussian noise, then I can be separated into a noise-free image I0 containing

only structures and a noise image ε:

I = I0 +ε. (2.6)

If I0 does not contain any structures, the blob density at each scale s would be ρs(ε).

Consequently, the scale s at which the difference between ρs(I ) and ρs(ε) is the largest

will be the one where more structures are present in I . Then, we adopt the following

criterion [7]:

s⋆ = argmax
s∈S

ρs(I )

ρs(ε)
(2.7)

The set of scales S is defined as S = {s0r n ,n ∈ [1,N]}, where s0 is a strictly positive real

number and r is an odd integer.

The ability of fixing σ2 values adapted to the LM and EM content respectively, will

allow us to mitigate the difference in content scale of LM and EM images. The selected

scale is expected to be higher for the EM image, yielding a stronger blurring of the EM

image. These scales should not be confused with the pixel resolution ratio between the

EM and LM images.

The impact the application of the LoG filter has over a set of CLEM images is illus-

trated in Figure 2.2. The difference between the intensities of LM and EM images (Fig-

ures 2.2a and 2.2b, respectively) is visibly large, while their LoG representations exhibit

a much closer appearance (Figures 2.2c and 2.2d).
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(a) Input LM image (b) Input EM image

(c) LoG of input LM image (d) LoG of input EM image

Fig. 2.2: Impact of the LoG filter applied to a CLEM image set.

In the experiment presented in Fig.2.2, the ROIs are enclosed by a green frame. By ob-

serving the shape of the rectangles containing the ROI and the distribution of the struc-

tures inside of it, we can infer that the initially acquired images are greatly misregistered.

The location of the respective ROIs are far apart from each other and their orientations

are very different, indicating a big rotation between both images. In any registration

problem where such big misalignments are present a pre-registration step is required.

To pre-align the LM and EM images, we developed a method based on the matching

of the ROI from the source image with a patch in the target image containing the same

structures. First, we need to delineate the ROI in the LoG-source image. This ROI is

supposed to encompass a dynamic event of interest, only observable through LM, or it

can also contain meaningful structures highly detailed by EM. In a given application,

such an event could be automatically detected using an appropriate method. In our

study we assume that the ROI is already available and it can be delineated it either on

the LM or the EM image, depending on the subject of the study for which they were

acquired.
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2.2.2 Searching LoG-IS-ROI in LoG-IT

To automatically retrace the LoG-IS-ROI in the LoG-IT image, we carry out a patch-

based exhaustive search. There is a considerable geometrical transformation (combina-

tion of rotation, shift, magnification,...) between LM and EM images. Hence, we resort

to histograms since they are invariant to rotation and scale. We designed two histogram-

based methods to find the patch in the LoG-IT image corresponding to the LoG-IS-ROI.

The first one involves the LoG-value histograms and the second one exploits Local Di-

rectional Pattern (LDP) [61].

We thoroughly tested several histogram distances to measure the similarity between

LoG-IS-ROI and LoG-IT patch: KL-divergence, Jeffrey-divergence, cosine similarity, his-

togram intersection, χ2 distance, Bhattacharyya distance and Kolmogorov-Smirnov dis-

tance [22]. The best results were obtained with the cosine similarity and the histogram

intersection, respectively defined as:

dcos(HLM , HE M ) =

∑V
ν=1 HLM (ν)HE M (ν)

√

∑V
ν=1 H 2

LM
(ν)

√

∑V
ν=1 H 2

E M
(ν)

,

dhi (HLM , HE M ) =
V
∑

ν=1
min(HLM (ν), HE M (ν)), (2.8)

where HLM is the histogram computed over the LoG-IS-ROI, and HE M is the histogram

computed on the LoG-IT patch, ν denotes the histogram bin and V the total number of

bins. Histogram values are normalized over [0,1].

Histograms of LoG values can be computed as explained above. A more elaborate

descriptor may be necessary to capture more information. LDP is a local descriptor,

used primarily for recognizing human faces [61]. It creates a pattern from an eight-bit

binary code at each pixel of the input image I . Using Kirsch masks defined in Fig.2.3,

the code is calculated by comparing the edge response values of a pixel in eight different

orientations. The pattern records only the k most significant directions (with the corre-

sponding bits) and the rest of the bits are set to 0. With k=3, the LDP may generate up

to 56 distinct patterns, creating an encoded image DI . We apply this operation to the

LoG-IS-ROI and the LoG-IT patch, producing encoded subimages, respectively denoted

DIS and DIT , and histograms of these values are computed. We use the same histogram

distances as in (2.8).

Since no a priori information is available on the possible location of the patch corre-

sponding to the source ROI in the target image and the geometric transformation of the

30



CHAPTER 2. 2D CORRELATIVE LIGHT ELECTRON MICROSCOPY
REGISTRATION

Fig. 2.3: Kirsch masks used to create a pattern for LDP.

ROI locations between EM and LM images, can be considerable, there is no straightfor-

ward way to reduce the search space. Therefore, we implement a patch-based exhaus-

tive search to explore all potential locations in the LoG-IT image. Initially, to specify the

patch to be searched in the LoG-IT image, we started from the rectangular shape of the

IS-ROI of length l and width w . Then, we took into account the (known) resolution ratio

η between the EM and LM images. We conducted two searches with two orientations

of LoG patches (with a very coarse quantization of the rotation angle at this stage, but

easy to implement): horizontal rectangle of dimensions r l ×r w and vertical rectangle of

dimensions r w × r l (i.e., after a π/2 rotation). The selected patch was the optimal one

over the two searches. However, in a later version, we implemented the slightly different

process to establish the geometry of the search patch. Now, the patch is defined as a disk,

in order to avoid the double exhaustive search for the shift.

2.2.3 Mutual information-based for image registration

Information theory-based methods are commonly adopted when dealing with multi-

modality registration problems in medical image registration problems [117]. Since

there is not physical relationship between LM and EM intensities, intensity-based are

not really appropriate to compute the geometric transformation between the ROI and

the selected patch (SP) of the target image. We have explore Mutual Information (MI)

[25, 171] to determine if it is a method suitable to our problem, given that MI does not

assume any explicit one-to-one relationship between the intensities of the images. MI is

a measure of the mutual dependence between two random variables.

To define MI it is necessary to first define entropy. Entropy is a measure of informa-

tion. It is low when a distribution has a few sharply defined dominant peaks, and it is

high when all outcomes have the same chance of occurring. An image with low entropy
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will have a small variation of its intensities, indicating that the information it contains is

poor. On the other hand, an image rich in information will have a dispersed distribution

of its intensity values and in consequence, a high entropy value. The entropy of two im-

ages or joint entropy is defined as a 2D joint histogram combining the gray values in each

of the two images for all corresponding points. When two images are correctly aligned,

the corresponding structures overlap and the join histogram will display clusters corre-

sponding to their gray values. This implies that the dispersion in the distribution will be

low, meaning the joint entropy of the two images is low when two images are correctly

registered [117].

To measure the dispersion of the joint histogram of two random variables A and B

with marginal probability distributions p(a) and p(b) and joint probability distribution

p(a,b), the approach most commonly used is the Shannon entropy:

−
∑

a,b
p(a,b) log p(a,b) (2.9)

MI can be explained as the measure of the amount of information two images share.

Let MI(I A , IB ) be the mutual information between images I A and IB expressed in terms

of the entropy of the images as:

MI(I A , IB ) = H(I A)+H(IB )−H(I A , IB ) (2.10)

where H(I A) and H(IB ) are the entropies of images I A and IB , and H(I A , IB ) their joint

entropy. The goal is then to maximize MI(I A , IB ), that is, minimizing the joint entropy

H(I A , IB ). An equivalent representation of MI uses the Kullback-Leibler distance. Then,

the mutual information of images I A and IB in terms of their distribution is given by:

MI(I A , IB ) =
∑

a,b
p(a,b) log

p(a,b)

p(a)p(b)
(2.11)

where a and and b are intensity values of images I A and IB , respectively.

This definition measures the distance between the joint distribution of the gray val-

ues p(a,b) and the product of the distributions of the images p(a) and p(b). When the

images are correctly aligned the maximum value of MI is reached.

The number of bins used to compute the histograms for MI can be set arbitrarily or

using some criterion. We decided to implement Sturge’s rule [153], since it is a well es-

tablished method to estimate the number of bins, known to be reliable when the number

of samples is large. This rule is defined by:

k = [1+ log2 n] (2.12)

where k is the number of bins and n is the number of samples.
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2.2.4 MI-based multi-step image registration

Following the search step, several geometrical transformations are computed in turn,

in order to complete the registration between the EM and LM images. These transfor-

mations are computed between the ROI and the patch selected by the search step in

their original intensity values. First, the orientation between the two CLEM images has

to be estimated, since the CLEM images are expected to be largely misaligned. A rigid

transformation is first computed and then a non-rigid transformation to achieve a faster

convergence and robustness [107].

1. Rotation and pre-registration. A large difference in between the orientations of

the EM and LM images is commonly expected in CLEM registration problems, as

illustrated in Fig.2.2. Since there is no a priori information regarding this issue, it

is necessary to implement an additional exhaustive step to estimate the rotation

angle between the ROI and the patch selected by the search step. First, the selected

patch is magnified according to the known resolution ratio η between the LM and

EM images. The rotation angle α is inferred by applying a rotation centered on the

selected patch with different angle values and computing the MI value between

the patch and the rotated ROI. For all experiments, the tested angles in degrees are

α ∈ {0°,5°,10°, . . . ,355°}. The angle at which the MI is maximum is selected and it

is used to apply the rotation to the source image, along with the known resolution

ratio, after shifting the center of the ROI cROI = (xcROI , ycROI ) to the selected patch

cSP = (xcSP , ycSP ). The center coordinates will be expressed in homogeneous co-

ordinates. The first part of the transformation is related to the shift given by the

search step. It relates the center of the ROI cROI with the center cSP of the SP and

is given by:

T = cROI −cSP (2.13)

The second part of the transformation is given by the rotation angle α and the size

ratio η, as defined:

SR =







ηcosα ηsinα 0

−ηsinα ηcosα 0

0 0 1






(2.14)

Then, any points p = [x y 1]⊤ of the source image IS will be mapped its corre-

sponding point in the target image IT by:

p′
= SRp+T (2.15)
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where p′ = [x ′ y ′ 1]⊤. This transformation acts as a pre-registration step. The

following transformations will be computed between the selected patch and the

transformed ROI.

2. Rigid transformation. A rigid transformation comprising a 2D rotation and 2D

translation is computed between the pre-registered patch and the ROI. The rigid

transformation is defined as:

GR (p,a) =







cos a0 sin a0 a1

−sin a0 cos a0 a2

0 0 1













x

y

1






=







x cos a0 + y sin a0 +a1

−x sin a0 + y cos a0 +a2

1






(2.16)

where a = [a0 a1 a2] are the parameters of the rigid transformation and p =

[x y 1]⊤. Now, we have estimated a more precise rotation while refining the

translation, since we previously used discrete values and now the estimation is

performed using real values.

3. Affine transformation. A 6-parameter 2D affine transformation is then computed

after applying the rigid transformation. This transformation is defined as p′ = Ap,

where A is a 3×3 matrix containing parameters representing rotation, scaling and

shearing transformations, and b is a 2D translation. The affine transformation

preserves the parallelism of lines, but not their lengths or their angles, introducing

a given level of non rigid transformation. The affine transformation is defined by:

A =







a0 a1 a2

a3 a4 a5

0 0 1






, (2.17)

The parameters of the affine transformation are given by the vector a =

[a0 a1 . . . a5].

A multi-resolution workflow was implemented in ITK [66] for the estimation of the

rigid and affine transformations using MI as defined in [95] and a gradient descent op-

timization. Multi-resolution or pyramidal strategies are often exploited with the aim of

achieving a faster convergence while avoiding local optima. Usually, pyramidal strate-

gies down-sample the source and target images at different scales. The registration is

computed from the lowest to the highest resolution images, using the transformation

found in the previous step as the initial transformation for the next step. Although MI

is by definition a maximization problem, the MI-based registration presented in [95]

employs the negative of MI to transform the registration into a minimization problem.

Once the rigid and affine registrations are estimated, we apply them to the source

image IS to overlay it over the target image IT around the ROI area.
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Our full 2D registration framework was tested on a set of real CLEM image pairs and

the results will be presented in the next section.

2.3 Experimental results

We tested our method on seven sets of LM and EM images acquired at Institut Curie1. Re-

constructed epidermis samples are imaged following the procol described in [51]. After

live LM acquisition, a quick freeze substitution was conducted, allowing the preserva-

tion of fluorescence in the sample. Afterwards, the sample is sectioned. The LM images

are acquired with epifluorescence Nikon Te2000, in multiple different channels, includ-

ing transmitted light. The section was then post-stained with Lead Citrate and imaged

by a Tecnai Spirit FEI transmission electron microscopy (TEM) [50].

For the following series of experiments, we use the transmitted light channel, since

it contains the most exploitable information to correlate the image content between EM

and LM images. A throughout demonstration of the performance of every stage of our

method is reported for all the experiments. To evaluate the registration accuracy, EM and

LM spots are manually selected and paired from the overlay images, and the distance

between the corresponding pairs of spots is calculated. The mean, median, standard de-

viation (SD), maximum and minimum registration errors are listed for each experiment.

In the first experiment, the studied cell elements are endosomes, which are dark,

dense biological material stored in round bags, visible both in transmitted light and EM.

The LM image depicts several cells while the EM image also contains several cells at dif-

ferent magnification and orientation. This first experiment involves a 1392× 1040 LM

image and a 4008×2664 EM image. The input image pair is displayed in Fig.2.4. In this

experiment, the ROI is delineated on the LM image to be searched in the EM image. We

have framed the LM-ROI and the ground-truth EM corresponding patch in green, both

being defined by a biologist. The difference between LM and EM image contents is re-

markable, both in appearance, size, content and orientation. If we observe the aligned

dark semi-circular structures inside the LM-ROI (Fig. 5.1a), and then analyze the corre-

sponding EM ground truth patch, we can visualize the same alignment of dark structures

(Fig. 5.1b) with a far different orientation, indicating the presence of a large rotation be-

tween the EM and LM images.

1We thank X. Heiligenstein from UMR 144, Institut Curie, Paris, for providing us the images and the asso-
ciated explanations.
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(a) Input LM image (b) Input EM image

Fig. 2.4: Experiment 1. Input LM and EM images with LM-ROI and ground-truth EM

patch marked with green circles.

As explained in the description of the method, we aim to map both EM and LM im-

ages to a common LoG representation that minimizes the difference of appearance be-

tween them. We use ATLAS to get the appropriate scale for the LoG transform of the EM

and LM images. For this first experiment, they are respectively estimated as sE M = 8.91

and sLM = 2.48. The LoG representation can be observed in Fig. 2.40 where, as expected,

the difference of appearance is significantly decreased.

(a) LoG of input LM image (b) LoG of input EM image

Fig. 2.5: Experiment 1. LoG representation of input images.

For the first shift and rotation steps with exhaustive search, the source is the LM

image and the target the EM image, since the ROI is defined in the LM image. To locate

the EM patch corresponding to the LM-ROI, we set the EM searched patch with a disk

shape, with a radius defined by the radius of the LM-ROI magnified by the resolution

ratio η, which is available as a metadata in the image files. As the LM pixel resolution is

110 nm, while the EM one is 11.3 nm, we get η= 9.7 to define the EM patch dimensions.
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In the search stage, we applied a patch-based exhaustive search to locate the patch in

LoG-EM image corresponding to the LoG-LM-ROI, by comparing a patch from the LoG-

EM image and the LoG-ROI with both LoG-value histograms and LDP. We first tested

EM patch locations at intervals of 2.3% of the x-dimension and 3.6% of the y-dimension

(with 95% overlap). Then, we refined the search around the primarily selected location.

By comparing Fig. 2.5b and 2.6 we can visually state that the EM patch location was

correctly retrieved. The distance between the center of the ground-truth patch and the

finally selected one is 17 EM pixels (0.35% of the image diagonal). The best retracing

result was given by the LDP and the histogram intersection distance, although similar

results were obtained with the cosine distance as well with a rectangle-shaped patch.

Fig. 2.6: Experiment 1. Patch selected on EM by the search step.

From this point on, all transformations are computed using the original intensity

values of LM and EM images, the LM-ROI now as target image and the EM selected patch

as source, since the final goal is to overlay the EM image onto the LM image around the

ROI. First, the EM-SP is downscaled using η, then the rotation angle is computed using

the coarse exhaustive approach previously described. For all experiments, the tested

angles in degrees are α ∈ {0°,5°,10°, . . . ,355°}. The angle obtained between the LM-ROI

and the EM-SP is 115°. Figure 2.7 shows the EM image overlaid on the LM-ROI after

applying the pre-registration step, along with a closeup of the overlay between the LM-

ROI and the selected EM patch using the same coordinates of the LM-ROI. For a better

visualization of the alignment, the spots of interest in the LM-ROI are marked in red

while the spots in the transformed EM patch are marked in blue. The purple circles

indicate a good alignment of the spots, while the yellow circles show a misalignment of

the spots.

Afterwards, a rigid transformation followed by an affine transformation are com-

puted between the EM patch and the LM-ROI using mutual information (MI). The re-

sulting overlay of each step is displayed in Fig.2.8. Inside the purple circles in both the
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(a) Overlay of full EM and LM images (b) Overlay of EM patch and LM-ROI

Fig. 2.7: Experiment 1. Pre-registration overlay of EM and LM images.

rigid and affine registrations, the correct alignment of the blue (EM) and red (LM) spots

can be observed, while the yellow circles indicate misregistrations. We can notice that

after affine registration, no distinguishable misalignments are present in the overlay.

(a) Overlay of EM patch and LM-ROI after
rigid registration

(b) Overlay of EM patch and LM-ROI after
affine registration

Fig. 2.8: Experiment 1. Registration overlay of EM and LM patches after rigid and affine

transformation steps.

Registration errors of experiment 1 are collected in Table 2.1. Errors are expressed

in terms of LM-pixels. In Table 2.1, we can observe that the error decreases significantly

after each successive registration steps, supporting the visual evaluation of the overlays

in Figures 2.7b, 2.8a and 2.8b.

In the second experiment, the subcellular elements of interest are endosomes. The

LM image contains several structures and some acquisition artifacts while the EM is fo-

cused on the cell of interest. In this experiment, the dimensions of the LM image and

the EM image are 512×383 and 4056×3970, respectively. Fig. 2.9 shows the input im-

ages, where the LM-ROI and the corresponding EM ground truth patch are marked with

a green circle. The diameter of the patch is defined by magnifying the diameter of the

LM-ROI by η= 38.7. Similar to experiment 1, if we observe the structures aligned inside
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Pre-registration Rigid registration Affine registration
Mean 4.80 2.54 0.22
SD 4.64 2.79 0.27
Median 3.40 1.40 0.17
Max. 12.55 7.13 0.67
Min. 0.47 0.33 0.0

Table 2.1: Experiment 1. Registration errors in LM pixels.

the LM-ROI and the EM-ROI, we can infer a significant rotation between the images.

Additionally, the resolution ratio between both images is considerable, as well as the

difference in image content. This is more apparent by noticing the absence of the de-

lineation of the cell of interest inside the LM-ROI, where only the structures of interest

(melanosomes) are discernible (Fig. 5.1a).

(a) Input LM image (b) Input EM image

Fig. 2.9: Experiment 2. Input LM and EM images with LM-ROI and ground-truth EM

patch.

For this second experiment the scales selected by ATLAS are sE M = 6.19 and sLM =

1.44. The LoG representation of the EM and LM images are shown in Fig.2.10. The ap-

pearance difference between the EM and LM images is significantly reduced, while the

shared structures of interest are highlighted. A two step exhaustive search was com-

pleted. First, we tested EM patch locations at intervals of 5.8% of the x-dimension and

6.9% of the y-dimension, with 90% overlap. Then, we refined the search around the

primarily selected location. The LoG-EM patch containing the elements of interest is
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(a) LoG of input LM image (b) LoG of input EM image

Fig. 2.10: Experiment 2. LoG representation of input images.

correctly retrieved using LoG-value histograms and the cosine distance, with both a rect-

angular and a disk-shaped patch. This selection can be visually assessed by comparing

Fig. 2.10b and 2.11. The distance between the center of the ground-truth patch and the

finally selected one is 66 EM pixels (1.18% of the image diagonal).

Fig. 2.11: Experiment 2. Patch selected on EM by the search step.

From now on, the source image will be the EM-SP and the target image the LM-ROI.

To compute all the needed transformations, the EM-SP is downscaled by η = 38.7. The
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rotation angle computed between the EM-SP and the LM-ROI by the exhaustive search is

75°. The overlay of EM image on LM-ROI after this first pre-registration step is shown in

Fig. 2.12, in addition to a close-up of the ROI. Following the distribution of the elements

of interest, marked in red in the LM image and in blue in the EM image, it is easy to

distinguish a small misalignment in the pre-registration.

(a) Overlay of full EM and LM images (b) Overlay of EM patch and LM-ROI

Fig. 2.12: Experiment 2. Pre-registration overlay of EM and LM images.

For the final registration, rigid an affine transformations are computed in turn be-

tween the EM patch and the LM-ROI. The overlay of the two registrations is shown in

Fig. 2.13. We can observe that the resulting alignment is good, although not completely

accurate. Registration errors are reported in Table 2.2.

(a) Overlay of EM patch and LM-ROI after
rigid registration

(b) Overlay of EM patch and LM-ROI after
affine registration

Fig. 2.13: Experiment 2. Registration overlay of EM and LM patches after rigid and affine

registration.

Registration errors in Table 2.2 are expressed in terms of LM-pixels. From Table 2.2
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and the visual evaluation of Figures 2.12b, 2.13a and 2.13b, we can confirm that the error

decreases after each registration step, although the difference between the result of the

rigid and the affine registration is small.

Pre-registration Rigid registration Affine registration
Mean 8.36 2.28 2.17
SD 3.97 1.46 1.36
Median 8.03 2.00 1.70
Max. 14.47 4.53 4.24
Min. 3.07 0.74 0.67

Table 2.2: Experiment 2. Registration errors in LM pixels.

MNT1 cells are studied in the CLEM images of the third experiment, with endosomes

are elements of interest. Like most of the following experiments, the LM image contains

several cells while the EM image is a high magnification of a single cell. Hence, the ROI

will be delineated in the EM image and the corresponding patch will be searched in the

LM image. This experiment involves a 696×520 LM image and a 4008×2664 EM image,

both displayed in Fig. 2.14, where the EM-ROI and the corresponding LM ground truth

patch are circled in green. The diameter of the LM-patch is defined by dividing the diam-

eter of the EM-ROI by η= 20.96. Several acquisition artifacts can be noticed in the input

LM image (Fig. 2.14a), making the elements of interest hard to perceive and increasing

the vast difference in terms of content between the EM and LM images.

(a) Input LM image (b) Input EM image

Fig. 2.14: Experiment 3. Input LM and EM images with EM-ROI and ground-truth LM

patch.
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The LoG representation of the EM and LM images is shown in Fig.5.7. The scales se-

lected by ATLAS are respectively sE M = 6.19 and sLM = 1.44. By applying the LoG trans-

form, many of the artifacts present in the input LM image (Fig. 2.14a) are smoothed and

the structures of interest are more salient.

(a) LoG of input LM image (b) LoG of input EM image

Fig. 2.15: Experiment 3. LoG representation of input images.

The LoG-LM patch corresponding to the LoG-EM-ROI is correctly retrieved using

LoG-value histograms with cosine distance, with both a rectangular and a disk-shaped

patch. Similar results are obtained with the histogram intersection distance. The first

exhaustive search step was implemented with LM patch locations at intervals of 1.7% of

the x-dimension and 2.3% of the y-dimension (with 95% overlap), followed by a refined

search around the selected location. The selected patch is displayed in Fig. 2.16, whose

location is close to the ground truth displayed in Fig. 2.15a. The distance between the

center of the ground-truth patch and the finally selected one is 22.36 LM pixels (2.67%

of the image diagonal).

Fig. 2.16: Experiment 3. Patch selected on LM by the search step.
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The EM-ROI is downscaled by η= 20.96 to compute the rest of the transformations.

The rotation angle computed between the EM-ROI and the LM-SP is 130°. The overlay of

the EM image on LM-SP after the pre-registration step is shown in Fig. 2.17, along with

a closeup of the ROI. The elements of interest are marked in red in the LM image and in

blue in the EM image. The alignment is harder to observe in this experiment, given the

little saliency of the spots of interest and the lack of clear distributions of the structures.

However, the registration can be evaluated by following the lines enclosed in yellow in

Fig. 2.17b.

(a) Overlay of full EM and LM images (b) Overlay of EM-ROI and LM patch

Fig. 2.17: Experiment 3. Pre-registration overlay of EM and LM images.

For the final registration, consecutive rigid an affine transformations are computed

between the EM-ROI and the LM-SP. The overlay of the two registrations is shown in

Fig. 2.18. The misalignment of the lines inside the yellow square decreases from the

rigid (Fig. 2.18a) to the affine registrations (Fig. 2.18b). Registration errors are reported

in Table 2.3.

(a) Overlay of EM-ROI and LM-SP after rigid
registration

(b) Overlay of EM-ROI and LM-SP after affine
registration

Fig. 2.18: Experiment 3. Registration overlay of EM and LM patches after rigid and affine

registration.
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Registration errors are expressed in terms of LM-pixels. From the visual evaluation of

Figures 2.17b, 2.18a and 2.18b and the errors in Table 2.3, we can confirm that the error

decreases after each registration step, generating an accurate alignment after the affine

registration step.

Pre-registration Rigid registration Affine registration
Mean 8.19 6.76 1.09
SD 7.65 7.01 0.76
Median 4.61 3.30 0.70
Max. 21.21 16.92 2.12
Min. 2.00 1.12 0.50

Table 2.3: Experiment 3. Registration errors in LM pixels.

Experiment 4 is different from the previous three experiments in terms of the resolu-

tion ratio between the EM and LM images, with η = 8.5 indicating the lowest difference

in resolution of all the experiments, due to the EM image being of low magnification.

However, the difference in image content is significant, since just some of the elements

of interest present in the LM image are visible in the EM image, as observable in Fig. 2.19,

where the ROI and the corresponding ground truth location are circled in green. Again

in this experiment, the ROI is delineated in the EM image and it will be sought in the LM

image. Both images contain several cells. LM image dimensions are 512×512 while EM

image dimensions are 4008×2664.

(a) Input LM image (b) Input EM image

Fig. 2.19: Experiment 4. Input LM and EM images with EM-ROI and ground-truth LM

patch.

The common LoG representation of the EM and LM images are shown in Fig.2.20,

with LoG scales sE M = 6.19 and sLM = 1.44. LoG transform brings the appearance of
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EM and LM images closer, while highlighting the structures of interest of each image, as

observed in Figures 2.20a and 2.20b.

(a) LoG of input LM image (b) LoG of input EM image

Fig. 2.20: Experiment 4. LoG representation of input images.

For the searching step of the EM-ROI in the LM image, the diameter of the searched

patch is defined by dividing the diameter of the EM-ROI by η = 8.5. The first exhaus-

tive search step was implemented with LM patch locations at intervals of 8.2% of the

x-dimension and 8.2% of the y-dimension (with 95% overlap), followed by a refined

search around the selected location. The LM patch containing the elements of interest is

correctly retrieved by both LoG-value histograms and LDP using cosine and histogram

intersection distances. As observed in Figures 2.20a and 2.21, the search area is signifi-

cantly smaller compared to the rest of the experiments. However, the use of the search

step provides a good initialization of the final registration. The distance between the

center of the ground-truth patch and the selected patch is 20 LM pixels (2.77% of the

image diagonal).

The EM-ROI is downscaled by η= 8.5 to compute the rotation between the EM-ROI

and the LM-SP, giving an angle of 85°. The pre-registration overlay is shown in Fig. 2.22.

To visually assess the pre-registration, we can take the line crossing the top of images,

marked in blue in the EM image and in red in the LM image. We can notice that there

is still a significant misalignment; nonetheless, the pre-registration step is still useful to

fully register the EM and LM images, as it will be demonstrated in the results of the next

steps of the registration process.

Rigid an affine transformations are consecutively estimated between the EM-ROI

patch and the LM-SP. The overlay of the two registered images is given in Fig. 2.23. The

rigid registration is capable of compensating the misalignment of the pre-registered im-

ages.
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Fig. 2.21: Experiment 4. Patch selected on EM by the search step.

Fig. 2.22: Experiment 4. Pre-registration overlay of EM and LM images.
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(a) Overlay of EM-ROI and LM-SP after rigid registration

(b) Overlay of EM-ROI and LM-SP after affine registration

Fig. 2.23: Experiment 4. Registration overlay of EM and LM patches after rigid and affine

transformation steps.
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Registration errors in Table 2.4 are expressed in terms of EM-pixels. The misalign-

ment of the pre-registered LM and the EM is large as outlined by visually evaluating the

overlay of Fig. 2.22 and the errors of the pre-registration step in Table 2.4. However, the

MI-based rigid registration is capable of overcoming this, as shown in Fig. 2.23a. Then,

the affine registration step has minimum effect over the final registration, as seen in

Fig. 2.23b.

Pre-registration Rigid registration Affine registration
Mean 171.2 8.43 6.60
SD 67.9 5.30 3.61
Median 196.4 6.70 6.70
Max. 209.90 16.96 10.81
Min. 50.26 3.00 2.99

Table 2.4: Experiment 4. Registration errors in EM pixels.

Experiment 5 contains a structure that is considerably different from the rest of the

experiments, as depicted in Fig. 2.24. The shape of the cell is elongated, preventing the

use of disk-shaped patches. Therefore, the EM-ROI will be defined as a rectangle as plot-

ted in Fig. 2.24b, along with the corresponding LM patch. The LM-patch ground truth is

presented in Fig. 2.24a. The resolution ratio is η= 8.9 and the LM and EM image dimen-

sions are 1392×1040 and 4008×2664 respectively. Following the shape of the structure

in the EM-ROI and the LM-patch ground truth, a large difference in terms of orientation

and size obviously appears, while their content is rather similar.

(a) Input LM image (b) Input EM image

Fig. 2.24: Experiment 5. Input LM and EM images with EM-ROI and ground-truth LM

patch.

The common LoG representation of the EM and LM images is shown in Fig.2.25, with

49



2.3. EXPERIMENTAL RESULTS

scales sE M = 6.19 and sLM = 1.44. As expected, the appearance difference is significantly

reduced.

(a) LoG of input LM image (b) LoG of input EM image

Fig. 2.25: Experiment 5. LoG representation of input images.

For the search of the EM-ROI in the LM image, the dimensions of the search patch

are defined by downscaling the dimensions of the EM-ROI by η= 8.9. The LM patch con-

taining the elements of interest is correctly retrieved by LDP and histogram intersection

distance. The first exhaustive search step was implemented with LM patch locations at

intervals of 1.4% of the x-dimension and 1.9% of the y-dimension (with 95% overlap),

followed by a refined search around the selected location. This selection can be visu-

ally assessed by comparing Fig. 2.25a and 2.26. The distance between the center of the

ground-truth patch and the finally selected one is 37.85 LM pixels (2.17% of the image

diagonal).

Fig. 2.26: Experiment 5. Patch selected on LM by the retracing step.
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To further compute all the rigid and affine transformations, the EM-ROI is down-

scaled by the resolution ratio η = 8.9. The rotation angle found with the exhaustive

search step between EM-ROI and LM-SP is 80°. The overlay of the EM image on the

LM-ROI after this first pre-registration step is shown in Fig. 2.27. By comparing the over-

laid structures of interest, marked in blue in the EM image and in red in the LM image,

we can visually evaluate the quality of the pre-registration, noting that a misalignment is

present between the two images.

(a) Overlay of full EM and LM images (b) Overlay of EM-ROI and LM-SP

Fig. 2.27: Experiment 5. Pre-registration overlay of EM and LM images.

For the final registration stage, rigid an affine transformations are consecutively

computed between the EM-ROI and the LM-SP. The overlay of the two registered im-

ages is displayed in Fig. 2.28. The rigid registration is mostly capable of compensating

the misalignment of the pre-registration, although there is still a small misalignment no-

ticeable in the white structure in the EM image.

Registration errors of experiment 5 are collected in Table 2.5. The errors are ex-

pressed in terms of LM-pixels. The registration error decreases after each successive

registration step, although the final registration could still be improved, as noticeable in

the last affine registration displayed in Fig. 2.28b and their corresponding errors.

MNT1 cells corresponding to human skin cells are the subject of the CLEM images

in experiment 6. The resolution ratio between the EM and LM images is η = 17.5. LM
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(a) Overlay of EM-ROI and LM-SP after rigid
registration

(b) Overlay of EM-ROI and LM-SP after
affine registration

Fig. 2.28: Experiment 5. Registration overlay of EM and LM patches after rigid and affine

transformation steps.

Pre-registration Rigid registration Affine registration
Mean 35.21 18.39 4.98
SD 24.10 6.90 3.61
Median 33.41 16.52 4.00
Max. 69.26 29.55 9.43
Min. 5.83 9.85 1.00

Table 2.5: Experiment 5. Registration errors in LM pixels.
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image dimensions are 696×520 while EM image dimensions are 4008×2664. As in pre-

vious experiments, the high magnification EM image is focused on a single cell while

the LM image contains multiple cells. Contrary to the rest of the experiments, the inten-

sity appearance of these CLEM images is similar. Still, large differences in terms of size,

orientation, and visible structures of interest are prevalent, as confirmed in Fig. 2.29.

(a) Input LM image (b) Input EM image

Fig. 2.29: Experiment 6. Input LM and EM images with EM-ROI and ground-truth LM

patch circled in green.

For this sixth experiment the LoG scales selected by ATLAS are sE M = 6.19 and sLM =

3.58. The LoG representation of the EM and LM images is displayed in Fig.2.30, where

the use of the LoG transform visibly highlights the structures present in both images,

specially in the LM image.

(a) LoG of input LM image (b) LoG of input EM image

Fig. 2.30: Experiment 6. LoG representation of input images.

For the search of the EM-ROI in the LM image, the diameter of the searched patch
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is defined by downscaling the diameter of the EM-ROI by η = 17.5. The first exhaus-

tive search step was implemented with LM patch locations at intervals of 2.0% of the

x-dimension and 2.7% of the y-dimension (with 95% overlap), followed by a refined

search around the selected location. The LM patch containing the elements of interest

is correctly retrieved using LoG-value histograms and LDP with both cosine similarity

and histogram intersection distance, either using a rectangular or a disk-shaped patch.

This selection can be visually assessed by comparing Fig. 2.30a and 2.31. The distance

between the center of the ground-truth patch and the finally selected one is 10.82 LM

pixels (1.24% of the image diagonal).

Fig. 2.31: Experiment 6. Patch selected in LM image by the search step.

Then, the EM-ROI is downscaled by the resolution ratio η= 17.5. The rotation angle

coarsely found between EM-ROI and LM-SP is 30°. The overlay of EM on LM after the

pre-registration step is shown in Fig. 2.32. By looking at the overlay of the red structures

of the LM image with the dark region of the EM image at the top of the ROI, as well as the

location of the adjacent blue and red structures, we can visually evaluate the alignment

of the images.

For the final registration, rigid and affine transformations are computed in turn be-

tween the EM-ROI and the LM-SP. The overlay of the registered images is depicted in

Fig. 2.33. A good alignment is achieved at every registration step, with a small improve-

ment after each step.

Registration errors of experiment 6 are expressed in terms of LM-pixels in Table 2.6.

As mentioned before, a good alignment was already obtained in the pre-registration step,

and every subsequent step slightly improves the alignment of the EM and LM images.

Experiment 7 involves the biggest resolution ratio between the EM and LM images,
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(a) Overlay of full EM and LM images (b) Overlay of EM-ROI and LM-SP

Fig. 2.32: Experiment 6. Pre-registration overlay of EM and LM.

(a) Overlay of EM-ROI and LM-SP after rigid
registration

(b) Overlay of EM-ROI and LM-SP after
affine registration

Fig. 2.33: Experiment 6. Registration overlay of EM and LM patches.
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Pre-registration Rigid registration Affine registration
Mean 5.45 5.44 3.76
SD 3.92 2.25 1.72
Median 5.58 5.75 4.06
Max. 9.82 8.02 5.59
Min. 1.41 1.80 1.00

Table 2.6: Experiment 6. Registration errors in LM pixels.

with η = 41. As for previous experiments, the biological structures imaged are MNT1

cells containing melanosomes. In this experiment, the LM image contains many config-

urations of melanosomes, which makes the retracing of the EM-ROI more challenging,

as seen in Fig. 2.34. LM image dimensions are 771×613, while EM image dimensions are

4008×2664.

(a) Input LM image (b) Input EM image

Fig. 2.34: Experiment 7. Input LM and EM images with EM-ROI and ground-truth LM

patch framed in green.

The scales selected by ATLAS are sE M = 6.19 and sLM = 1.73 and the LoG representa-

tion of the EM and LM images is shown in Fig.2.35.

For the search of the EM-ROI in the LM image, the diameter of the searched patch

is defined by downscaling the diameter of the EM-ROI by η= 41. A two-step exhaustive

search was carried out. The first exhaustive search step was implemented with LM patch

locations at intervals of 0.9% of the x-dimension and 1.4% of the y-dimension (with 95%

overlap), followed by a refined search around the selected location. The LM patch cor-

responding to the EM-ROI is correctly retrieved using LoG-value histograms with both

cosine similarity and histogram intersection distance, using both a rectangular and a

disk-shaped patch. This selection can be visually assessed by comparing Fig. 2.30a and
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(a) LoG of input LM image (b) LoG of input EM image

Fig. 2.35: Experiment 7. LoG representation of input images.

2.36. The distance between the center of the ground-truth patch and the finally selected

one is 7.28 LM pixels (0.74% of the image diagonal).

Fig. 2.36: Experiment 7. Patch selected in the EM image by the search step.

Then, EM-ROI is downscaled by the resolution ratio η = 17.5. The rotation an-

gle found with the exhaustive search between EM-ROI and LM-SP is 145°. The pre-

registration overlay of the full EM and LM images is shown in Fig. 2.37, along with a

close-up of the ROI. The configuration of the melanosomes resembles an uppercase “M”

letter, marked in blue in the EM image and in red in the LM image. A small noticed of

the structures can be observed in the pre-registration overlay.

Finally, rigid an affine transformations are successively computed between the EM-

ROI and the LM-SP. The resulting overlays are displayed in Fig. 2.38. Once again, the

registration improves after each step, as confirmed by the registration errors collected in

Table 2.7.
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(a) Overlay of full EM and LM images (b) Overlay of EM-ROI and LM-SP

Fig. 2.37: Experiment 7. Pre-registration overlay of EM and LM images.

(a) Overlay of EM-ROI and LM-SP after rigid
registration

(b) Overlay of EM-ROI and LM-SP after
affine registration

Fig. 2.38: Experiment 7. Registration overlay of EM and LM patches after rigid and affine

transformation steps.
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Registration errors of experiment 7 are expressed in Table 2.7 in terms of LM-pixels.

As illustrated in Figures 2.37, 2.38a and 2.38b, the alignment improves after each step,

however, leading to a good accuracy after the affine registration.

Pre-registration Rigid registration Affine registration
Mean 15.86 14.91 1.66
SD 5.02 4.86 1.60
Median 16.10 16.60 1.08
Max. 21.02 19.89 4.74
Min. 9.55 6.57 0.47

Table 2.7: Experiment 7. Registration errors in LM pixels.

2.4 LM-guided low to high magnification EM acquisition

Imaging a sample using EM is a complex process that comprises many stages. EM ac-

quisition is usually performed from lower to higher magnification. During this pro-

cess, location and relocation of the region of interest is frequently needed. A different

microscopy modality is used for this purpose in many CLEM acquisition frameworks.

Normally, LM is used as guide for EM acquisition at different magnifications. First, the

LM image is acquired, providing a wide field of view of the sample. Afterwards, a low-

magnification EM image is captured covering roughly the same area imaged by LM. A

region of interest is visually localized in the LM image and then is visually retrieved in

the low-magnification EM image, and a high-magnification EM acquisition is performed

next. Multiple EM images with higher magnifications can be acquired focused in the

same ROI located in the EM, with magnifications increasing as high as necessary, de-

pending on the particular biological subject. Our pre-registration stage can be exploited

within this part of the CLEM framework. As previously mentioned, the pre-alignment

of EM and LM images is achieved by the implementation of a patch-based exhaustive

search of a pre-defined ROI contained in one image in the other image. The images

intensities are transformed to a common representation using the LoG transform, facil-

itating the implementation of intensity-based similarity metrics for comparing a given

EM patch with the LM-ROI. In this case, the ROI would be delineated in the LM image

and the search would be carried out in the EM image. Once the EM patch corresponding

to the LM-ROI is selected, a high-magnification acquisition would be performed focused

in the selected EM patch, followed by automatic registration and overlaying of the high-

magnification EM and LM images.

Experiment 1 is an example emulating these type of application. The LM image
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presents a wide field of view of the sample, as observed in Fig. 2.39a. A low-magnification

EM image is then acquired, as seen in Fig. 2.39b. A ROI is delineated in the LoG-LM

image, enclosed in green in Fig. 2.40a. The corresponding patch is located in the LoG

representation of the low-magnification EM, enclosed in orange in Fig. 2.40b.

(a) Input LM image with ROI marked
with green circle.

(b) Input low-magnification EM image

Fig. 2.39: Experiment 1. Input LM image and low-magnification EM image.

(a) LoG-LM image with ROI marked
with green circle.

(b) LoG-EM image. The selected patch is enclosed in
the orange circle.

Fig. 2.40: Experiment 1. LoG representation of input images.

A shift is computed from the difference between the center of the LM-ROI and the

center of the EM-SP. Then, the rotation is computed as explained in Subsection 2.2.4 and

the LM is transformed by applying the shift, a magnification ofη= 9.7, and the computed

rotation. Finally, a registration refinement is computed by estimating rigid and affine

transformations between the pre-registered LM image and the high-magnification EM

image, using mutual information as similarity criterion. The final overlay is displayed
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in Fig. 2.41, with the structures of interest in the LM image in red color and the same

structures in the EM image in blue color.

Fig. 2.41: Experiment 1. Overlay of high-magnification EM and registered LM images.

This approach could be implemented within different CLEM setups to assist in the

acquisition of consecutive low-to-high magnification EM images guided by LM images.

Further testing is necessary to assess the extended usefulness or our method within dif-

ferent CLEM acquisition frameworks.

2.5 Conclusion

We have defined a fully automated method for the search and registration stages in the

CLEM framework, which is a very challenging task due the great differences in appear-

ance, resolution, image size, content and field of view between LM and EM images.

Given these vast differences, the estimation of transformations to directly register CLEM

images is not possible, making a pre-registration stage necessary. For that reason, we

have proposed to implement a patch-based search step where a predefined ROI will be

searched in the target image. The pre-registration is composed by the shift given by the

search step, a coarse rotation computed with a MI-based exhaustive method, bringing

the EM and LM images closer in order to estimate the final registration. To make match-

ing manageable, we map the multimodal LM and EM images to a common representa-

tion supplied by the LoG transform, which provides additional advantages as decreasing

noise in the image while highlighting structures in the images. To be invariant to size,

scaling and rotation, we adopted normalized histograms of LoG values or LDP values,
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in the search step. This pre-registration stage was successfully tested on all the experi-

ments.

We reported convincing results on seven real CLEM image sets for the full registra-

tion and the final overlay of LM and EM images. Each of the CLEM image pairs present

a different challenge regarding differences of content, image size, appearance, resolu-

tion and orientation. Accurate registration results evaluated both visually and quantita-

tively are obtained for almost all experiments. Apart from experiment 5, the overall final

registration accuracy is between 0.2 and 2.1 pixels, assessing the good performance of

our registration method for 2D CLEM images. Given the variety of the experiments car-

ried out, the achieved results demonstrate the good performance of our novel approach.

The pre-registration step is essential to the registration process, due to the challenges

stated throughout the introduction to the CLEM registration problem. Starting from the

pre-registration, different techniques can be applied to complete the final registration

stage. We adopted a classical mutual information-based registration framework, given

its highly proved efficiency in multimodal registration problems.

Further improvements and additions of the registration framework will be presented

in Chapters 3 and 4, respectively, a point-based geometrical refinement step exploiting

our multiscale spot detection method, and the choice of the most appropriate transfor-

mation based on our robust motion model selection method.
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CHAPTER3
MULTISCALE SPOT SEGMENTATION

WITH SELECTION OF IMAGE SCALES

Detecting spot structures of different sizes in images is required for many applications.

Multiple image scales must then be considered for reliable spot segmentation. Mi-

croscopy image analysis is our primary goal but the developed method can be applied

to other types of images and videos as well. We present an efficient method able to de-

tect spots of various sizes corrupted by noise. We define an original criterion based on

the a contrario approach to automatically select the meaningful scales. Our coarse-to-

fine spot segmentation scheme performs well even for spots in close proximity while

preserving their true size and involving minimal parameter setting. We demonstrate on

simulated and real images of different types that our method outperforms other existing

methods.

In many cases, image content may consist of a collection of elements, such as cars

in traffic monitoring, boats on the ocean in remote sensing, stars in astronomy, animals

in videos of natural scenes, cells and subcellular elements in microscopy imaging, to

name a few. If they are small enough or seen from a distance, they usually appear as

similar spots of a more or less regular shape. Thus, detecting spots in images is a com-

mon prerequesite in many applications. In order to countervail noise resulting from the

image acquisition or the presence of spurious elements, selecting the right image scale

is required to correctly detect the spots of interest. For a given scale, a spot detection

framework is usually divided in three sub-steps : first, preprocessing of the image to re-

duce noise; second, signal enhancement to highlight the spots to be detected; third, spot

detection by thresholding; the two first ones being often merged in a single operator.
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However, elements of interest may be not all of the same image scale, if the collection

includes subgroups of different sizes or if perspective effects occur. Then, the need is

not merely the selection of the optimal scale, but of all the meaningful scales. We will

deal with the problem of multiscale spot detection with an automated selection of the

meaningful scales. As already pointed out, our primary interest is to detect particles in

microscopy images, but our method can be applied to other types of images as well. Our

method adopts the a contrario approach for multiscale selection, and performs locally

adaptive thresholding across scales for spot segmentation.

The remainder of the chapter will be organized as follows. In Section 5.2, we will

provide a brief review of spot detection methods. Section 3.2 will be devoted to the pre-

sentation of our multiscale spot detection method. In Section 3.3, we will report experi-

mental results on simulated data with an objective comparative evaluation, and on real

images of different kinds. After, an important application of our segmentation method

is presented, we will exploit our multiscale spot detection method to construct a point-

based registration framework to be applied on 2D CLEM images. Finally, Section 3.5 will

contain concluding remarks.

3.1 Related work

Many efforts have been made towards automatic spot detection in images, specially in

biological microscopy images. Detailed information on existing methods along with

experimental comparative evaluation of several spot detection methods can be found

in [7, 132, 146]. Spot detection methods can be divided in single-scale and multiscale

approaches.

Single-scale methods [119, 133, 155] extract spots from an image, corresponding to

one given size. The scale parameter is usually predefined according to the application.

In [155] and [110], a mixture of Gaussian models is used to detect overlapping spots,

while approaches based on the top hat scheme are used in [17] and [148]. Methods based

on h-dome [121, 147, 165] can deal with close particles by detecting domes or local in-

tensity maxima. In [133], a single-scale spot-enhancing filter (SEF) is presented, where

the Laplacian of Gaussian (LoG) filter is used to detect spots in fluorescence microscopy

images. The LoG filter enhances structures of a determined size, corresponding to the

variance of the Gaussian filter involved, while smoothing the image, and removing (to a

certain extent) background structures.

However, the standard deviation of the Gaussian filter within the LoG transform
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needs to be adapted to the size of the particles to be detected. A statistical criterion was

introduced in [7] to automatically select one single optimal scale, based on the scale-

space paradigm of [80] and a discrete version of the Gaussian filter. The selected scale is

the one corresponding to the maximum number of spots normalized by the number of

blobs in a pure noise image at the same scale, where blobs designate local extrema in the

scale-space domain.The resulting spot detection method, named ATLAS, was proven to

outperform existing methods on several benchmarks. ATLAS was applied to vesicle seg-

mentation in total internal reflection fluorescence microscopy (TIRFM) images [7].

Conversely, multiscale detection methods are able to extract spots of different sizes

from an image. In [82] a general Gaussian scale-space framework was investigated to se-

lect multiple scales for blob and junction detection. [115] locally selects the most salient

scale for region contour points to drive the PDE-based image segmentation. In [45] a

non-linear scale-space representation employing a differential morphological decom-

position, is used for multiscale corner detection. In [177], an isotropic undecimated

wavelet method is designed to detect biological particles of different sizes, exploiting

the wavelet multiscale product introduced in [108]. In [73], a generalized Laplacian of

Gaussian allows to detect circular and elongated structures, while estimating their di-

mensions and orientations. In [63], a multiscale spot detection scheme, exploiting the

LoG transform, is developed and used together with a multi-frame association algorithm

to track virus particles. Multiscale LoG scheme was also adopted for pulmonary nodule

detection in [65], with 150 predefined LoG kernels of incrementally increasing sizes. In

most of these approaches, several parameters must be predetermined to optimize their

performance.

We propose a new multiscale spot detection method based on the LoG transform,

able to automatically select the meaningful scales in the processed image. Moreover, we

will design a locally adaptive thresholding process across scales to come up with the final

map of segmented spots.

3.2 Multiscale spot detection

In this section, we present our multiscale spot detection method. It is divided in two

main stages: the multiscale selection step, where we recover the meaningful scales cor-

responding to the significant objects in the image, and the detection step, where we ex-

ploit the selected scales to compose the binary map of segmented spots of different sizes.

For both stages, we will rely on the LoG transform. First, it is the main component of the
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scale-space framework of [80] that we will adopt. Second, LoG filtering of the input im-

age has been proven to be efficient enough for spot detection. LoG is a bandpass filter

able to enhance spots of a specific size. For multiscale spot detection, we will combine

the LoG output obtained at different scales to create a single segmented binary image.

3.2.1 A contrario selection of multiple scales

We rely on the a contrario approach [30], to select the meaningful scales. Briefly speak-

ing, the a contrario approach can be viewed as a hypotheses test, where only the null

hypothesis H0 needs to be specified. H0 is called the background model accounting for

randomness. A structured element is likely to appear under H0 only with a very low

probability. This approach has been successful for several pattern detection problems,

as motion detection [163]. To our knowledge, it is applied to scale selection for the first

time. In [44], it was used to predict the detectability of spots in textured images.

Let us consider an image f over the domain Ω⊂ Z2, containing spots of various sizes

and corrupted by Gaussian noise. The issue is how to automatically select the meaning-

ful scales. We start from a set of scales S ⊂ R∗
+, as in [7], defined by S = {s0r n ,n ∈ [0,ν]},

where s0 is taken equal to 1, r is close to 1 (e.g., 1.2), and ν depends on the range of possi-

ble scales in the given application. Given S , we build a scale-space representation of the

image following [80], with a LoG transform based on a discrete analogous of the Gaus-

sian filter to be able to deal with arbitrary scale values. We come up with a 3-dimensional

map H f , where each slice corresponds to the LoG filtered image for a given scale s ∈S :

∀(p,s) ∈Ω×S , H f (p,s) = (Ks ∗ f )(p,s), (3.1)

where Ks denotes the LoG kernel of variance s. The response of a bright spot of size ς

and located at point p, to the multiscale LoG transform is be minimum at p ∈ Ω and

scale s ∈S , where s is the closest value to ς. Such a scale-space minimum is named blob,

following [80].

To detect spots as reliably as possible, we need to find the scales at which LoG best

enhances them, while reducing noise. To do so, we elaborate a probability measure to

account for the ability of the LoG to distinguish noise and spots. We have no prior in-

formation on the spots, but we suppose that the noise is Gaussian. Thus, we construct

a model representing the situation where no spots are present in the image (H0 hypoth-

esis), that is, an image containing only uncorrelated Gaussian noise. Then, we denote

by Ns the random variable representing the number of blobs at scale s in such a random

image.

66



CHAPTER 3. MULTISCALE SPOT SEGMENTATION WITH SELECTION OF
IMAGE SCALES

We can assume that the probability for any point p ∈Ω to be a blob at scale s follows

a binomial distribution of mean µs. Then, the variable Ns of the number of blobs at

scale s is Poisson-distributed of mean λs = µs |Ω|, where |.| denotes the cardinality of

the set. Let G = {gi ,1 ≤ i ≤ K } be a set of K such random images, and let ns(gi ) be the

computed number of blobs in gi at scale s. It was shown in [7] that ns(gi ) is unchanged

when adding any constant to gi or multiplying gi by any positive number. Therefore, we

merely consider a normalized Gaussian noise, ∀p ∈ Ω, gi (p) ∼ N (0,1). We empirically

estimate λs as the average number of blobs at scale s in the set G of noise image samples:

λ̂s =
1

K

K
∑

i=1
ns(gi ). (3.2)

Meaningful scales in image f will be those for which the probability of the measured

number of blobs in H f is the least likely to be high under the "no-spot" H0 hypothesis,

hence, the name of a contrario approach. To do so, we count the number ns( f ) of blobs

in H f at every scale s ∈ S , and we evaluate the probability that so many blobs may ex-

ist under the "no-spot" H0 hypothesis. We refer to it as the probability of false alarm

PFA(s, f ), which can be estimated as:

PFA(s, f ) = P(Ns ≥ ns( f ))

= 1−Φλs
(ns( f )) ≈ 1−Φλ̂s

(ns( f )) (3.3)

where Φλ̂s
is the cumulative density function (CDF) of the Poisson distribution of mean

λ̂s:

Φλ̂s
= e−λ̂s

ns( f )
∑

i=0

λ̂i
s

i !
. (3.4)

We come up with a set of probabilities {PFA(s, f ),s ∈ S}, and we can simply select the

subset of ǫ-meaningful scales S⋆ ⊂S as given by:

S⋆
= {s ∈S | PFA(s, f ) < ǫ}. (3.5)

Let denote |S⋆| = η. In practice, since we look for very low PFA(s, f ), we arbitrarily fix ǫ

to 0.1. Alternatively, in case we know a priori the number η of relevant spot sizes, we can

select the scales corresponding to the η lowest PFAs.

3.2.2 Spot detection at a given scale

Once the set of scales S⋆ is determined, we can build a spot detection binary map

∆s : Ω → {0,1} for each scale s ∈ S⋆. We will again exploit the LoG transform, since it

smooths noise while enhancing spots. This will be achieved by thresholding the lowest

(resp. highest) values of the corresponding LoG map H f (·,s), s ∈ S⋆, if spots are bright
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(resp. dark) in the image. We will automatically inferred the threshold value τs which

will be adapted for every point p ∈Ω from local statistics of the LoG map H f (·,s) in the

vicinity of p. It is assumed that the local background in the LoG map is smooth and cor-

rupted by a white Gaussian noise. For every point p ∈ Ω, we estimate the local mean

µs(p) and variance σ2
s (p) over a Gaussian window Ws(p). The likelihood Ls of belonging

to the background of the LoG map in the vicinity of p at scale s ∈S⋆ is then given by:

L(p) =Φ

(

H f (p,s)−µs(p)

σs(p)

)

(3.6)

where Φ denotes the Gaussian density function. Equation (3.6) is inverted to get a

threshold value below which a point is detected as spot, according to a user-selected

p-value α:

τs : Ω→R; p 7→σ(p)φ−1(α)+µ(p) (3.7)

α is not related to the local image properties, but only depends on the reliability level

required in the application. It can be fixed by the user once for all for the whole experi-

ment. In our case, we fixed α to 1e-3 for all experiments.

3.2.3 Multiscale spot detection

When detecting spots of different sizes, it is important to correctly combine results of

spot segmentation obtained at different scales. Similarly to [63], we adopt a coarse-to-

fine approach. The scheme is defined as follows. Let us consider the input image f and

the set of the η meaningful scales selected at the first stage of our method, S⋆ = {sl , l =

1, ...,η}, ranked in decreasing order. We define a filtered image ψ(p, sl ) with sl ∈S
⋆ as:

ψ(p, sl ) = H f (p,sl)∆sl−1 (p) (3.8)

where ∆sl−1 (p) is the spot detection binary map computed at scale sl−1. For l = 1, cor-

responding to the coarsest scale or level, by definition we take ∆s0 (p) = 1,∀p ∈ Ω. The

spot detection binary map at a given scale operates as a mask for spot detection at the

subsequent finer scale. Indeed, this way, spurious spot detections are avoided at coarser

scales, while at finer scales spots in close proximity can be further resolved. Thus, we

can perform the multiscale spot detection map for several scales automatically selected

on the processed image f , and there is just one single user-friendly parameter to set for

the segmentation step, that is, the p-value α.

In contrast, the max, min and number of scales (for a regular scale sampling) have to

be predefined by the user in [63], along with parameters in the thresholding and masking

operations. This is also the case for [177], where the user has to set the threshold, max

and min scales and the false discovery rate.

68



CHAPTER 3. MULTISCALE SPOT SEGMENTATION WITH SELECTION OF
IMAGE SCALES

In addition, for comparison purpose we have implemented a variant, denoted AS-

MSSEF, combining the coarse-to-fine spot detection framework of [63] with our auto-

mated scale selection. It will allows us to evaluate the improvement brought by our au-

tomated multiscale selection paradigm on its own.

The overall multiscale spot detection framework is illustrated in Fig. 3.1, where the

different stages for generating the final binary map are delineated.

Fig. 3.1: Multiscale spot segmentation pipeline.

3.3 Experimental results

We have evaluated the performance of our method on both synthetic and real images.

We have compared our multiscale method with other multiscale methods: MSSEF [63],

MS-VST [177], and our variant AS-MSSEF.
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(a) Input image (b) Our method (c) Variant AS-MSSEF (d) MSSEF [63] (e) MS-VST [177]

(a) Input image (b) Our method (c) Variant AS-MSSEF (d) MSSEF [63] (e) MS-VST [177]

Fig. 3.2: Spots segmented (in black) by the four compared methods on a real TIRFM cell

image (top row), and on a real astronomy image (bottom row).

3.3.1 Simulated data

We report two series of experiments, each one comprising 20 images containing three

different spot sizes, with respectively S = {2.6,4,6}, and S = {3,5,7}. 100 Gaussian spots

are randomly sampled in each simulated image over a uniform zero-valued background.

We added Gaussian noise to the image, with µ = 2 and σ = 0.6, the spot peak intensity

value is 10. The objective evaluation is divided in three steps: multiple scale selection,

spot detection (spot center location), and spot segmentation. For the two last steps, we

compare our method to the three other methods.

To assess multiscale selection, we compute precision and recall scores. 100% recall

means that all the true scales are correctly selected. 100% precision means that all the

selected scales correspond to true scales. Since we start with a set of 18 predefined scales

S = {1,1.2,1.44, ...,18.49,22.19}, a true scale is stated as recovered if the scale the closest

to it is selected among the tested ones. In the first experiment, precision of our multi-

scale selection method amounts to 100% and recall to 90%. In the second experiment,

we get precision of 95% and recall of 95%.

To evaluate spot detection, we compute F-measure scores on the binary maps sup-

plied by the tested methods. Detection is stated as correct if the distance between the

detected spot center and its corresponding ground truth center is less than four pixels

following [147]. We report statistics on results of the two experiments in Table 3.1. For

the forty images, detected spot locations were the most accurate with our method. In

several images, the variant AS-MSSEF has the same performance as our method, indi-

cating that our multiscale selection has a strong impact on the whole process.
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Our method AS-MSSEF MSSEF MS-VST
F-m. Jacc. F-m. Jacc. F-m. Jacc. F-m. Jacc.

Mean 0.982 0.724 0.978 0.664 0.937 0.645 0.961 0.357
SD 0.008 0.052 0.009 0.068 0.037 0.048 0.015 0.019
Min. 0.966 0.641 0.955 0.565 0.866 0.589 0.926 0.331
Max. 0.995 0.790 0.995 0.745 0.989 0.708 0.989 0.386

Table 3.1: Statistics over the 40 simulated images of the two experiments on the F-measures

and Jaccard index, obtained with the four compared methods.

Regarding spot segmentation assessment, we compute the overlap between the seg-

mented spots in the binary map delivered by each method and the ground truth us-

ing the Jaccard index, defined as J (A,B) = |A ∩B |/|A ∪B |. As reported in Table 3.1, our

method yields the best scores, meaning that our method better recovers size and shape

of spots.

(a) (b)

(c) (d)

Fig. 3.3: Spots segmented (in black) by our method on a SAR satellite image including ships

(top row) and an aerial color image depicting a sheep herd in a meadow (bottom row).

3.3.2 Real images

We have also carried out experiments on a set of diverse real images. Since there is no

ground truth available, we rely only on visual assessment of spot segmentation, when

comparing our method to others. We report two of them: on a total internal reflection

fluorescence microscopy (TIRFM) cell image and on an astronomical image. Fig.3.2 con-

tains the TIRFM input image (resp. astronomy image) and the maps of segmented spots

71



3.4. POINT-BASED 2D CLEM REGISTRATION REFINEMENT

obtained with our method, the variant AS-MSSEF, MSSEF and MS-VST. Our method se-

lects 5 scales, S⋆ = {1.728,2.073,2.488,3.583,6.191}, in the first real image (resp. 5 scales,

S⋆ = {1.440,1.728,5.159,8.916,15.407}, in the second one) as representative scales of the

objects present in the image. Clearly, our method outperforms the three others, since we

are closer to the right amount of objects to detect (after visual examination) and are able

to more accurately segment them.

We report additional results in Fig.3.3, showing that our method can handle very

different types of images with the same accuracy. Regarding computation time, it takes

1.25s to select the meaningful scales and segment the associated spots in an image of

size 500×500 on a laptop with 2,8 GHz Intel Core i7 processor and 16 GB memory.

3.4 Point-based 2D CLEM registration refinement

A relevant application of our multiscale spot segmentation method is its use to segment

2D CLEM images with the purpose of implementing a point-based registration. Blob-

like objects of different sizes can be expected to be present in 2D CLEM images, due to

the nature of the biological samples from which they are acquired. These blobs can be

exploited to register the electron microscopy (EM) and light microscopy (LM) images

leading to the need for a method to locate and extract them.

First, we applied our multiscale segmentation method to the unprocessed EM and

LM images. In Figures 3.5 and 3.4 we can observe the results of our multiscale spot de-

tection method on two CLEM images. After visual analysis, it becomes apparent that the

existence of highly similar configurations of sets of blobs would probably cause existing

point-based registration methods to fail, since the correct matching of corresponding

spots would be difficult to implement in a unsupervised way. This is illustrated in Figure

3.5, where the distribution of the spots inside the regions outlined in red is similar to

the distribution of the spots inside the region of interest (ROI) outlined in blue. In ad-

dition, the transformation mapping the spot distribution in the LM-ROI onto the spot

distribution in the corresponding EM-ROI is obviously very large.

Although the segmentation of blobs in CLEM images may not be directly exploitable

for automated registration, it can be employed further in our CLEM registration process

as a final refinement step. Indeed, applying our multiscale spot segmentation method

on the aligned CLEM images can help to improve their final registration and overlay. In

this part of our work, we apply our segmentation method on the registered EM and LM
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Fig. 3.4: Multiscale spot segmentation (right) of the LM image(left) of experiment 1. ROI is

enclosed in the orange rectangle.

Fig. 3.5: Multiscale spot segmentation (right) of the EM image(left) of experiment 1. ROI is

enclosed in the blue rectangle. Red rectangles denote regions where the blob distribution is

visually similar to the one inside the ROI.
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patches obtained with the registration framework described in Chapter 2. Then, em-

ploying a point-based algorithm, we compute an affine transformation. We can expect

that a point-based method, when automatically exploitable, can be more accurate than

an intensity-based method.

The location of the segmented blobs is given by their centroid coordinates. The cen-

troids of the spots are extracted using connected components [135]. Connected com-

ponents is a widely known algorithm for the labeling of an image. It is used in image

processing to detect connected regions in binary images, although it can also be used in

color images. All the pixels in an image are grouped into regions of connected pixels and

assigned a label. Once the different connected components of the registered EM and

LM binary images are identified, the centroid of each component is computed using the

moments of the binary images.

The 2D image moments are defined as:

Mi , j =

Ï

Ω

xi y j I (x, y)d x d y (3.9)

From 3.9, the centroid is computed as {x, y} = {M10/M00, M01/M00}.

Registration refinement is achieved by implementing a Random sample consensus

(RANSAC) image registration procedure. RANSAC [34] is an iterative algorithm to esti-

mate the parameters of a mathematical model to register two sets of data containing

outliers (S0 and S1). RANSAC algorithm can be described by steps of the pseudo-code

of Algorithm 1.

Two sets of matching pairs of points are used to estimate a geometric transformation.

Each set of points corresponds to the coordinates of the centroids of the detected spots

in the EM and LM images. The detected spots are matched using a nearest neighbor

approach. In an iterative way, random points are selected from each set and are used to

estimate the affine transformation. The estimated transformation is applied to the rest

of the points on the set corresponding to the source image and its fitness is evaluated by

measuring the distance between the transformed points and their corresponding match

in the set of points associated to the target image.
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Algorithm 1 RANSAC algorithm

1: procedure RANSAC(S0,S1, Niter,ηin,Trsh)
2: i ← 0 ⊲ Iteration number
3: Nbest ← 0 ⊲ Best inlier number
4: Mbest ← 0 ⊲ Best estimated transformation
5: while (i < Niter) do ⊲ Iterative process
6: Nin ← 0 ⊲ Inlier points number
7: χ←;

8: s0 ∈S0, s1 ∈S1 ⊲ Select randomly N probable inlier points for both data sets
9: M = transformation(s0, s1) ⊲ Estimate the possible transformation using s0 and s1

10: for all (p0 ∈S0|p0 6= s0) and (p1 ∈S1|p1 6= s1) do
11: p2 =transform(p0,M)
12: d = p1 −p2

13: if (|d| < Trsh) then
14: χ← p0,p0 ⊲ p0 and p1 are inlier points
15: Ni n ← Ni n +1 ⊲ Increase the number of inlier points

16: if (Nin ≥ ηinNpts) and (Nin > Nbest) then
17: Nbest ← Nin

18: Mbest ← M

19: i ← i +1
20: return Mbest

where Niter is the maximum number of iterations, ηin ∈ (0,1] is the ratio of minimum

inlier points and Trsh is the threshold of minimum distance to consider an inlier point.

In our case, we propose to estimate an affine model such that the data set S0, corre-

sponding to the centroids of the segmented blobs of the LM pre-registered ROI, matches

the data set S1, corresponding to the centroids of the segmented blobs of the EM ROI.

We randomly select three points as s0 and s1:

s0 =







x0 y0

x1 y1

x2 y2






(3.10)

s1 =







x ′
0 y ′

0

x ′
1 y ′

1

x ′
2 y ′

2






(3.11)

The affine transformation is defined as a matrix M ∈R
2×3:

M =

[

a b c

d e f

]

(3.12)
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We applied our point-based registration method directly on the spot maps shown in

Figures 3.4 and 3.5. Knowing that the initial misalignment is very large, it is likely that the

estimation of the geometric transform between these images will not yield good results,

since the matching of the spots is likely to be incorrect. The resulting overlay is shown in

Figure 3.6, where the ROI in the EM image is framed in blue and the ROI in the LM image

is framed in red. As expected, the registration is incorrect, suggesting that the direct

point-based registration between the segmented input EM and LM images might not be

able to generate satisfactory results. Then, point-based registration is only applicable

as a refinement step in an automated framework, and an intensity-based registration

framework is more suitable for the correct alignment of EM and LM images.

Fig. 3.6: Overlay of the EM and LM images after direct point-based registration computed

from the spots maps of Figures 3.4 and 3.4.

The method was tested on four 2D CLEM pre-registered image pairs, and the results

are presented in the next subsection.

3.4.1 Spot segmentation on real 2D CLEM datasets

To demonstrate the performance of our multiscale spot segmentation method, we apply

it on a subset of the 2D CLEM datasets. Figures 3.7 to 3.16 present for several exam-

ples the unprocessed whole EM and LM images and the segmented spots given by our

method, along with a visual comparison with ATLAS (single scale spot detection), MSSEF

and the variant AS-MSSEF.

Figure 3.7 displays the input LM image of experiment 1, where the ROI is enclosed in

the orange frame. From left to right and top to bottom, we can observe the binary maps
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obtained with our multiscale spot segmentation method, the single scale segmentation

method ATLAS [7], the variant of our method AS-MSSEF, and the segmentation given by

MSSEF. The ROI is enclosed in orange in all of these binary maps. By visual examination,

we can notice that the most distinct blobs within the ROI of the LM image are correctly

segmented by both our multiscale method and the single scale method ATLAS, however,

the single scale method also includes many detections that can be considered as noise.

Both AS-MSSEF and MSSEF fail at segmenting all the blobs within the ROI, as well as

other noticeable blobs outside the ROI.

(a) Input LM1 image (b) Our method

(c) ATLAS (d) AS-MSSEF

(e) MSSEF

Fig. 3.7: From top to bottom and left to right: input LM image of experiment 1, spot seg-

mentation using respectively our method, ATLAS, AS-MSSEF and MSSEF.
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The input EM image of experiment 1 is displayed in Figure 3.8 along the binary maps

given by our multiscale spot segmentation method, ATLAS, AS-MSSEF and MSSEF (from

top to bottom, left to right). The ROI in all images is enclosed in the orange frame. Similar

to the results of the previous LM image of the same experiment 1, both our method and

ATLAS correctly segment the noticeable blobs inside the ROI, however, ATLAS displays

more spurious detections, which can affect the spot-based registration refinement. The

variant AS-MSSEF also detects the noticeable blobs of the EM-ROI but produces more

noise than the previous two methods. MSSEF detects some of the distinct blobs within

the EM-ROI but does not correctly preserve their size or shape.

(a) Input EM1 image (b) Our method

(c) ATLAS (d) AS-MSSEF

(e) MSSEF

Fig. 3.8: From top to bottom and left to right: input EM image of experiment 1, spot seg-

mentation using respectively our method, ATLAS, AS-MSSEF and MSSEF.
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Figure 3.9 contains the input LM image corresponding to the second experiment,

and the spot maps detected respectively with our method, ATLAS, AS-MSSEF and

MSSEF. In this case, our method, ATLAS and AS-MSSEF yield similar spots maps, with

the three of them extracting correctly the blobs of interest within the ROI, enclosed in

orange in all images. MSSEF does not detect any of the blobs within the ROI, most likely

due to its inability to automatically adapt the range of scales it employs to segment an

image.

(a) Input LM2 image (b) Our method

(c) ATLAS (d) AS-MSSEF

(e) MSSEF

Fig. 3.9: From top to bottom and left to right: input LM image of experiment 2, spot seg-

mentation using respectively our method, ATLAS, AS-MSSEF and MSSEF.
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For the EM image of experiment 2, Figure 3.10 displays the input EM image and the

outputs given by the four compared spot segmentation methods. In this example, our

multiscale spot segmentation method clearly outperforms all the other segmentation

methods, segmenting and preserving the right size and shape of the blobs of interest

inside the ROI while discarding small noisy spots.

It is more difficult to visualize the spots inside the ROI framed in orange in the input

LM image of experiment 3 in Figure 3.11a. However, we can observe in the spots maps

shown in Figures 3.11b - 3.11d that the extracted spots pinpoint to the location of the

spots in the input LM. Our method, ATLAS, and AS-MSSEF generate similar results, and

our method is clearly able to preserve the size and shape of the spots of interest while

eliminating noisy points. AS-MSSEF misses several spots. As in the input LM image of

experiment 2, MSSEF fails to segment the spots of interest.

For the EM image of experiment 3 (Fig. 3.12a), our method, ATLAS and AS-MSSEF

present similar results, however, our method once again is able to extract the spots with

the right shape and size. ATLAS and AS-MSSEF have slightly worse results and MSSEF

fails in both detecting many of the spots of interest and preserving their size and shape.

In experiment 4, for both EM and LM images shown in Figures 3.13a and 3.14a, our

method is able to extract the blobs of interest inside the ROI, followed closely by ATLAS

and AS-MSSEF, both also detecting the majority of the spots of interest. When segment-

ing the EM image, our method misses some spots in the upper left part of the image,

which are correctly detected by AS-MSSEF. As in the previous experiments, MSSEF omits

some detections for both EM and LM images, and in the case of the EM image, it loses

important morphological information.

In the last experiment, both EM and LM images (Fig. 3.15a and Fig. 3.16a) are cor-

rectly segmented by our method, as well by ATLAS and AS-MSSEF. In the two cases, our

method delivers good extraction of the spots present in the image, eliminating spots that

could be considered noisy. ATLAS has a very close performance to our method, and AS-

MSSEF has some blobs of big size that could be separated in smaller blobs. In both EM

and LM images, MSSEF detects some of the spots of interest but misses many impor-

tant ones, and fails to preserve both the size and shape of the spots. Once again, this is

probably due to the fixed range of scales that are used to detect and segment the images.
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(a) Full EM2 (b) Our method

(c) ATLAS (d) AS-MSSEF

(e) MSSEF

Fig. 3.10: From top to botton and left to right: input EM image of experiment 2, spot seg-

mentation using respectively our method, ATLAS, AS-MSSEF and MSSEF.
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(a) Input LM3 image (b) Our method

(c) ATLAS (d) AS-MSSEF

(e) MSSEF

Fig. 3.11: From top to botton and left to right: input LM image of experiment 3, spot seg-

mentation using respectively our method, ATLAS, AS-MSSEF and MSSEF.
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(a) Input EM3 image (b) Our method

(c) ATLAS (d) AS-MSSEF

(e) MSSEF

Fig. 3.12: From top to bottom and left to right: input EM image of experiment 3, spot

segmentation using respectively our method, ATLAS, AS-MSSEF and MSSEF.
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(a) Input LM4 image (b) Our method

(c) ATLAS (d) AS-MSSEF

(e) MSSEF

Fig. 3.13: From top to bottom and left to right: input LM image of experiment 4, spot

segmentation using respectively our method, ATLAS, AS-MSSEF and MSSEF.
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(a) Input EM4 image (b) Our method

(c) ATLAS (d) AS-MSSEF

(e) MSSEF

Fig. 3.14: From top to bottom and left to right: input EM image of experiment 4, spot

segmentation using respectively our method, ATLAS, AS-MSSEF and MSSEF.
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(a) Input LM5 image (b) Our method

(c) ATLAS (d) AS-MSSEF

(e) MSSEF

Fig. 3.15: From top to bottom and left to right: input LM image of experiment 5, spot

segmentation using respectively our method, ATLAS, AS-MSSEF and MSSEF.
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(a) Input EM5 image (b) Our method

(c) ATLAS (d) AS-MSSEF

(e) MSSEF

Fig. 3.16: From top to bottom and left to right: full EM image of experiment 5, spot seg-

mentation using respectively our method, ATLAS, AS-MSSEF and MSSEF.
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3.4.2 Point-based registration refinement

Results of the point-based registration refinement in 2D CLEM images are presented in

this subsection. The point-based registration algorithm was implemented to improve

the alignment between pre-registered EM and LM patches, exploiting our multiscale

spot detection method and the fact that spots of interest are constantly present in these

2D CLEM images. This is a prerequisite to run the point-base registration. We take now

as input the pre-registered EM and LM patches issued from the intensity-based regis-

tration described in Chapter 2, and we apply our spot segmentation method on both

patches.

In Figures 3.17 to 3.21 the spot segmentation of the pre-registered patches and their

overlay are displayed, as well as the resulting refinement after applying the point-based

registration.

Through visual analysis of Figures 3.17 to 3.21, we can assess than the five experi-

ments the registration between the pre-registered LM and EM patches is noticeably im-

proved, demonstrating that our point-based registration refinement framework using

multiscale spot segmentation can overcome small and large misregistrations.

In experiment 1 (Fig. 3.17), experiment 2 (Fig. 3.18), experiment 3 (Fig. 3.19), and

experiment 5 (Fig. 3.19), we can observe that the initial misalignment between the EM

and LM patches is small and the refinement step aligns almost perfectly the images. In

contrast, in experiment 4 (Fig. 3.20) the gap is greater and our method is capable of

improving the registration, bringing the LM and EM patches much closer than the pre-

registration step.

To further evaluate the registration refinement, we computed the registration errors

collected in Table 3.2. The errors are computed by manually selecting corresponding

points in the LM and EM images, both pre-registered and after the registration refine-

ment. We can infer from the computed errors that our point-based registration re-

finement is capable of significantly improving the final registration between the pre-

registered patches of the 5 experiments.
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(a) LM pre-registered patch (b) Multiscale spot segmentation of 3.17a

(c) EM pre-registered patch (d) Multiscale spot segmentation of 3.17c

(e) Overlay of pre-registered EM and LM
patches

(f) Overlay of EM and LM patches after
point-based refinement of registration

Fig. 3.17: Experiment 1. From top to bottom and left to right: pre-registered LM patch

and its spot segmentation using our multiscale approach. Pre-registered EM and its spot

segmentation. Overlay of pre-registered LM and EM patches. Overlay after point-based

refinement of the registration.
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(a) LM pre-registered patch (b) Multiscale spot segmentation of 3.18a

(c) EM pre-registered patch (d) Multiscale spot segmentation of 3.18c

(e) Overlay of pre-registered EM and LM
patches

(f) Overlay of EM and LM patches after
point-based refinement of registration

Fig. 3.18: Experiment 2. From top to bottom and left to right: pre-registered LM patch

and its spot segmentation using our multiscale approach. Pre-registered EM and its spot

segmentation. Overlay of pre-registered LM and EM patches. Overlay after point-based

refinement of the registration.

90



CHAPTER 3. MULTISCALE SPOT SEGMENTATION WITH SELECTION OF
IMAGE SCALES

(a) LM pre-registered patch (b) Multiscale spot segmentation of 3.19a

(c) EM pre-registered patch (d) Multiscale spot segmentation of 3.19c

(e) Overlay of pre-registered EM and LM
patches

(f) Overlay of EM and LM patches after
point-based refinement of registration

Fig. 3.19: Experiment 3. From top to bottom and left to right: pre-registered LM patch

and its spot segmentation using our multiscale approach. Pre-registered EM and its spot

segmentation. Overlay of pre-registered LM and EM patches. Overlay after point-based

refinement of the registration.
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(a) LM pre-registered patch (b) Multiscale spot segmen-
tation of 3.20a

(c) EM pre-registered patch

(d) Multiscale spot segmen-
tation of 3.20c

(e) Overlay of pre-registered
EM and LM patches

(f) Overlay of EM and LM
patches after point-based re-
finement of registration

Fig. 3.20: Experiment 4. From top to bottom and left to right: pre-registered LM patch

and its spot segmentation using our multiscale approach. Pre-registered EM and its spot

segmentation. Overlay of pre-registered LM and EM patches. Overlay after point-based

refinement of the registration.
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(a) LM pre-registered patch (b) Multiscale spot segmentation of 3.21a

(c) EM pre-registered patch (d) Multiscale spot segmentation of 3.21c

(e) Overlay of pre-registered EM5 and LM5
patches

(f) Overlay of EM and LM patches after
point-based refinement of registration

Fig. 3.21: Experiment 5. From top to bottom and left to right: pre-registered LM patch

and its spot segmentation using our multiscale approach. Pre-registered EM and its spot

segmentation. Overlay of pre-registered LM and EM patches. Overlay after point-based

refinement of the registration.
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3.5. CONCLUSION

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
Error Pre-reg. Refined Pre-reg. Refined Pre-reg. Refined Pre-reg. Refined Pre-reg. Refined
Mean 4.80 0.48 2.17 1.76 1.09 1.05 4.98 4.79 3.76 1.02

SD 4.64 0.68 1.36 0. 95 0.76 0.74 3.61 2.08 1.72 1.10
Median 3.40 0.20 1.70 1.37 0.70 0.68 4.00 5.39 4.06 1.00

Max. 12.55 1.41 4.24 3.35 2.12 2.10 9.43 7.00 5.59 2.05
Min. 0.47 0.00 0.67 1.00 0.50 0.48 1.00 2.24 1.00 0.00

Table 3.2: Final registration errors for experiments 1-5 in LM pixels.

3.5 Conclusion

We have defined an original coarse-to-fine multiscale spot detection method where we

automatically select multiple scales according to a criterion based on the a contrario ap-

proach. Experiments on simulated images with objective evaluation, and on real images

with visual assessment, demonstrated that our method outperforms existing spot seg-

mentation methods. Without introducing any critical parameter setting, our method is

able to automatically select the relevant scales corresponding to spot-like objects of dif-

ferent sizes in the image, and to correctly segment spots, even in close proximity. Tests

performed on real images containing different types of objects illustrate the possible di-

verse application of our method. Additionally, we exploit our multiscale spot segmenta-

tion method to further register CLEM images pre-aligned with the intensity-based reg-

istration framework of Chapter 2. We extract spots of interest present in the EM and

LM pre-registered patches and compute a point-based registration refinement, which

allow us to still improve the CLEM registration. We tested this framework on five differ-

ent datasets with good results, indicating that our spot segmentation and point-based

registration refinement framework can be an additional tool in the automated CLEM

registration problem.
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CHAPTER4
TWO ROBUST MODEL SELECTION

CRITERIA FOR PARAMETRIC IMAGE

MOTION ESTIMATION

Parametric motion models are commonly used in image sequence analysis for different

tasks. A robust estimation framework is usually required to reliably compute the mo-

tion model over the estimation support in presence of outliers, while the choice of the

right motion model is also important to properly perform the task. However, dealing

simultaneously with both issues remains an open question. We have defined two new

robust motion model selection methods. The first one is an extension of the Takeuchi

information criterion (TIC). The second one is built from the Fisher statistic. We also de-

rive an interpretation of the latter as a robust Mallows’ CP criterion. Both robust motion

model selection criteria are straightforward to compute. We have conducted a compar-

ative objective evaluation on computer-generated image sequences with ground truth,

along with experiments on real videos, for the parametric estimation of the dominant

motion corresponding to the 2D apparent motion of the static scene background due to

the camera motion. They demonstrate the interest and the efficiency of the proposed

robust model selection methods.

Resorting to parametric models is a common practice in motion analysis, image reg-

istration, and more generally in dynamic scene analysis. Video stabilization [94], im-

age stitching [154], motion detection [163], motion layer segmentation [28], optical flow

computation [14, 35, 174], tracking [143, 176], action recognition and localization [62],
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crowd motion analysis [112], to name a few, all may rely on parametric motion esti-

mation. Two key issues then arise: how to choose the right motion model and how to

reliably estimate it?

The former issue can be circumvented by settling for empirical choice. The affine

motion model is often claimed as a good trade-off between efficiency and representa-

tiveness without any available information on the dynamic scene. However, a princi-

pled method is more satisfying to properly solve the motion model selection problem

[36, 41, 159] The most commonly-used model selection criteria are undoubtedly Akaike

information criterion (AIC) [3], Bayesian information criterion (BIC) [142], or Takeuchi

information criterion (TIC) [18]. Broadly speaking, it starts from the maximum likeli-

hood, and amounts to add to the quadratic model fit, a weighted penalty term on the

model complexity, or model dimension, given by the number of the model parameters.

The definition of the weight depends on the statistical information criterion. The likeli-

hood term accounts for a Gaussian distribution of the residuals involved in the regres-

sion issue. A comparative study of several of them is reported in [161] for classification

in pattern recognition. Let us add the Mallows’ CP criterion [91] and the Minimum De-

scription Length criterion (MDL) [122] respectively equivalent to AIC and BIC under cer-

tain hypotheses. Finally, let us mention the Akaike criterion with a correction for finite

sample sizes (AICc) [18].

Regarding the latter issue, robust motion estimation [14, 96, 106, 143] is the required

framework to cope with the presence of outliers in the model estimation support, due to

local independent motions, occlusions, or any local violation of the assumptions associ-

ated with motion computation. Indeed, least-square estimation is generally biased. As

a consequence, the aforementioned information criteria involving a quadratic (or Gaus-

sian) likelihood term are not in line with robust regression.

However, combining model selection and robust estimation for parametric motion

computation has rarely been investigated [159]. In this chapter, we propose two sta-

tistical criteria for robust motion model selection. The first one is an extension of the

Takeuchi information criterion. The second one tackles this problem from a different

perspective based on the Fisher statistic. An interpretation as a robust version of the

Mallows’ CP criterion [91] is also provided. A preliminary work was presented in the

conference paper [16]. The present chapter is a significant extension of the latter. We

have added a new criterion, the robust TIC, improvements of the Fisher-based criterion,

an augmented related-work section, a revisited objective comparative evaluation, more

experiments on real videos, and more detailed comments throughout the sections.
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CHAPTER 4. TWO ROBUST MODEL SELECTION CRITERIA FOR PARAMETRIC
IMAGE MOTION ESTIMATION

The remainder of the chapter is organized as follows. Section 2 is devoted to re-

lated work and positioning of our approach. In Section 3, we recall a robust estimation

method of motion models, and formulate the model fit. Section 4 describes our first

robust motion model selection method called Robust Takeuchi Information Criterion

(RTIC). In Section 5, we present our second original method for robust motion model

selection, called Fisher-based robust information criterion (FRIC). Objective compar-

isons on computer-generated examples with ground-truth are reported in Section 6,

along with experiments on real videos, to assess the performance of our two criteria.

Concluding remarks are given in Section 7.

4.1 Related work and positioning

4.1.1 State of the art

Statistical information criteria have been exploited in computer vision for years [41],

sometimes with specific formulations and characteristics. Geometric counterparts of

AIC and MDL, respectively termed GAIC and GMDL, were proposed in [68] to take into

account a different formulation of model fitting along with the dimension of the man-

ifold involved in a 3D geometric transformation. AIC and BIC were tested in [36] for

2D affine motion model classification, but they were experimentally proven less effi-

cient than a succession of hypothesis tests deciding in turn on the nullity of each affine

motion parameter. Indeed, AIC tends to overestimate the complexity of the underlying

model. In [169], the most appropriate model among 2D polynomial motion models for

motion estimation from normal flows, was selected with a penalization factor given by

the Vapnik’s measure; the resulting algorithm was favourably compared to AIC, BIC and

generalized cross-validation. In [139], a MDL-based criterion was designed for model

selection in 3D multibody structure-and-motion from images. A MDL principle is also

adopted in [92] for non rigid image registration. On the other hand, AICc was used in [8]

for a pixel-wise motion model selection with a view to crowd motion analysis in video

sequences.

Robust model selection on its own was explored in the robust statistics literature

along several directions [1, 74, 101, 118, 125, 134]. In [125], a robust extension of AIC

(RAIC), was defined, coming up with substituting a general robust estimator ρ of the

model parameters θ for the maximum likelihood estimator. M-estimators are incorpo-

rated in BIC and the asymptotic performance is studied in [86]. A special case is the

use of the Huber robust function [60], leading to the RBIC criterion. The Mallows’ CP
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criterion is revisited in [126] to yield a robust version. The generalized information cri-

terion (GIC), described in [74], can be applied to evaluate statistical models constructed

by other procedures than maximum likelihood, such as robust estimation or maximum

penalized likelihood.

In contrast, only a few investigations of that type have been undertaken regarding

motion estimation and segmentation. In [5], the authors designed a global energy func-

tion for both the robust estimation of mixture models and the validation of a MDL cri-

terion. The overall goal is to get a layering representation of the moving content of an

image sequence. The MDL encoding acts on the overall cost of the representation com-

prising the number of layers, residuals and motion parameters. However, the primary

purpose was parsimonious motion segmentation, and not motion model selection per

se. In [159], a robust extension of the Geometric Information Criterion (GIC) [67], termed

GRIC, is proposed in the vein of RAIC. It was applied to the selection of the 3D geometric

transformation attached to a rigid motion and estimated through the matching of image

interest points. Geometrical and physical constraints are also explored in [40] for im-

age motion segmentation, with the so-called surface selection criterion (SSC) primarily

designed by the authors for range data segmentation. Better performance is reported

than with several information criteria, but the use of SSC in this work is comparable to a

regularization approach.

4.1.2 Our approach

However, all the previous approaches were not explicitly concerned with jointly maxi-

mizing the inlier set size attached to the motion model. The problem of robust motion

model selection is in fact three-fold: i) to maximize the motion model fit to the data,

ii) to penalize the motion model complexity, iii) to account for the motion of the largest

possible set of points in the estimation support (the whole image or a given image region

depending on the motion analysis problem). Indeed, the two latter ones must be simul-

taneously satisfied, which might be contradictory. By definition, this is an issue specific

to robust model selection. It apparently did not draw interest in the robust statistics lit-

erature, while it is of key importance in motion analysis. In this chapter, we introduce

two robust motion model selection methods in that perspective. In addition, the second

method follows a novel approach based on Fisher statistic.

To make the robust motion model selection problem concrete, we will deal with the

dominant image motion estimation issue. The dominant (or global) image motion is

usually due to the camera motion, and then corresponds to the background motion, i.e.,

the apparent motion of the static scene in the image sequence. Computing the dominant
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Motion model Dimension Mathematical expression

Translation (T) 2 wθ = (a1, a4)T

Pan-tilt (PT) 2 wθ(p) = (a1 +a1x2 +a4x y, a4 +a1x y +a4 y2)T

Translation + Rotation (TR) 3 wθ(p) = (a1 +a3 y, a4 −a3x)T

Translation + Scale (TS) 3 wθ(p) = (a1 +a2x, a4 +a2 y)T

Translation + Rotation + Scale (TRS) 4 wθ(p) = (a1 +a2x +a3 y, a4 −a3x +a2 y)T

Full affine (FA) 6 wθ(p) = (a1 +a2x +a3 y, a4 +a5x +a6 y)T

a4 +a2 y +a1x y +a4 y2)T

Planar surface 8 wθ(p) = (a1 +a2x +a3 y +a7x2 +a8x y,
rigid motion (PSRM) a4 +a5x +a6 y +a7x y +a8 y2)T

Full quadratic (FQ) 12 wθ(p) = (a1 +a2x +a3 y +a7x2 +a8x y +a9 y2,
a4 +a5x +a6 y +a10x2 +a11x y +a12 y2)T

Table 4.1: Set of 2D polynomial motion models

motion has numerous applications such as image stabilization, background subtraction

for a free moving camera, image stitching or simply image registration. Nevertheless, the

proposed scheme can be applied to other issues as well, for instance to select the right

motion model on each image region for motion layer segmentation.

4.2 Robust motion model estimation

We will first recall the main principles of the robust estimation of parametric motion

models. The estimation process relies on the brightness constancy assumption, and is

embedded in a coarse-to-fine scheme to handle large displacements. We will present it

in the frame of the motion model computation over the whole image domain Ω, but it

can be straightforwardly adapted to the computation of the motion model over a given

area in the image. Then, we will define the motion model fit for the estimated motion

model parameters. Finally, we will describe the set of 2D parametric motion models that

will be considered, appertaining to the category of polynomial models.

4.2.1 Computation of motion model parameters

We consider a set of 2D polynomial motion models. They will be precisely defined in

Section 4.2.3 and Table 4.1. Let θm denote the parameters of model m, that is, the poly-

nomial coefficients for the two components of the velocity vector. The full model will be

denoted by M , if we have M models to test. wθm
(p) is the velocity vector supplied by the

motion model m at point p = (x, y) of the image domain Ω.

To estimate the parameters of the motion model, we exploit the usual brightness
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constancy assumption [35], leading to the linear regression equation relating the motion

model parameters, through the velocity vector, and the spatio-temporal derivatives of

the image intensity I :

∇I (p).wθm
(p)+ It (p) = 0. (4.1)

Let us denote rθm
(p) the left member of (4.1). The estimation of the motion model pa-

rameters is formulated as:

θ̂m = argmin
θm

∑

p∈Ω

ρ(rθm
(p)), (4.2)

where ρ denotes a robust penalty function. As examples, the Lorentzian function is used

in [14], in [143] the Hampel estimator is preferred, and in [106] the Tukey’s function is

adopted.

Equation (4.1) is in fact the linearization of the more general constraint I (p +

wθm
(p))− I (p, t ) = 0. As a consequence, it only holds for small displacements. A usual

way to overcome this problem, is to resort to a coarse-to-fine scheme based on im-

age multiresolution and incremental motion estimation [35]. The minimization of (4.2)

is achieved by an iterative algorithm, the Iterated Reweighting Least Squares (IRLS)

method [57]. The IRLS method iteratively updates weights at every point p ∈ Ω. The

weights express the influence of each point p in the estimation of the motion model pa-

rameters. These weights can be further exploited to determine the inlier set associated

with the estimated motion model m.

4.2.2 Motion model fit

Once we compute an estimate θ̂m of the motion model parameters, we get the residuals

rθ̂m
(p), for all p ∈ Ω, measuring the discrepancy between the input data and the esti-

mated motion model. To evaluate how the estimated motion model fits the input data

over the associated inlier set, we consider the residual sum of squares (RSS) obtained for

the robustly estimated parameters θ̂m of the motion model m given by:

RSSm =
∑

p∈Im

r 2
θ̂m

(p), (4.3)

where Im represents the set of inliers associated with the estimated motion model m.

The residual is formally defined by:

rθ̂m
(p) = I (p +wθ̂m

(p), t +1)− I (p, t ), (4.4)

knowing that the left member of (4.1) is a linearized version of (4.4).
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We compute RSSm on the inlier set Im and not on the overall domain Ω, to obtain

the model fit evaluation precisely on the subset of points whose motion conforms with

the estimated motion model.

Furthermore, we introduce the expression RSS+
m , which represents the residual sum

of squares computed over the inlier set Im attached to model m, but for the full model

M :

RSS+
m =

∑

p∈Im

r 2
θ̂M

(p). (4.5)

As aforementioned, solving for the minimization (4.2) amounts to apply the Itera-

tively Reweighted Least Squares algorithm within a coarse-to-fine framework. At con-

vergence, the final weights αm(p), p ∈Ω, are given by:

αm(p) =
ψ(rθ̂m

(p))

rθ̂m
(p)

, (4.6)

where the influence function ψ(.) is the derivative of the robust function ρ(.), ψ(r ) =
dρ(r )

dr
. In practice, we adopt the robust estimation method defined in [106], and we use

the publicly available Motion2D1 software implementing this method.

4.2.3 Set of parametric motion models

We are dealing with 2D polynomial motion models ranging from translation (polynomial

of degree 0) to quadratic models (polynomials of degree 2), including different affine

models (polynomials of degree 1). They are forming a set of models which is partly

nested. The model complexity ranges from dimension 2 to dimension 12. The full set

of motion models is given in Table 4.1 with their main features. The explicit equivalence,

when available, between the 2D polynomial models and physical motions assumes a

perspective projection for the image formation.

Let us mention that the constant part of the affine motion model does not necessarily

mean that the underlying physical motion has actually a translation component. Indeed,

the constant part is merely the velocity vector given by the motion model at the origin

of the image coordinate system. The in-plane rotation is not necessarily centered at the

origin. The same holds for the focus of expansion in case of scale motion, knowing that

the scale motion in the image is due to a translation of the camera along its axis of view.

The 8-parameter quadratic motion model exactly corresponds to a rigid motion between

1http://www.irisa.fr/vista/Motion2D/
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a planar surface and the camera. The 2-parameter quadratic model also exactly accounts

for a pan-tilt camera motion.

4.3 Robust motion model selection with RTIC

4.3.1 TIC criterion

We start from the Takeuchi information criterion (TIC) which is a more general deriva-

tion of Akaike’s information criterion [18], and we will derive a robust version of it in the

vein of RAIC and RBIC ones. TIC can be written as follows:

TIC(m) = 2K(θ̂m)+2 tr(P (θ)Q(θ)−1), (4.7)

where K denotes the contrast function (or equivalently the negated logarithm of the

likelihood or pseudo-likelihood function), and "tr" the trace of the matrix. The two mxm

matrices P (θ) and Q(θ) respectively involve first and second partial derivatives of the

likelihood function w.r.t. model parameters. In the regression case, the two matrices P

and Q are defined by:

P (θ) = E [
∂

∂θ
g (rθ(p))

∂

∂θ
g (rθ(p))T ]

Q(θ) = E [
∂2

∂θ∂θ
g (rθ(p))], (4.8)

where g (.) is defined by K(θm) =
∑

p g (rθm
(p)), rθm

(p) acts as the regression residual, and

E denotes expectation.

4.3.2 Robust TIC

Let us move to the robust estimation context. The g function is specified by a robust

penalty function ρ(.), as introduced in eq.(4.2). We come out with the following expres-

sion of the Takeuchi information criterion, which we will call Robust Takeuchi Informa-

tion Criterion (RTIC) to make it short:

RTIC(m) = 2
∑

p∈Ω

ρ(rθ̂m
(p))+2qm

E [ψ(rθ(p))2]

E [ψ′(rθ(p))] |θ=θ̂m

, (4.9)

where qm is the dimension (i.e., number of parameters) of model m, ψ(.) is the influence

function as defined in subsection 4.2.2, and ψ′ its derivative.

102



CHAPTER 4. TWO ROBUST MODEL SELECTION CRITERIA FOR PARAMETRIC
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We will develop two versions of RTIC for two robust penalty functions, the Talwar

and Huber penalty functions. The Talwar function is defined by:

ρt al (r ) =

{

r 2/2 if |r | ≤α

α2/2 if |r | >α
(4.10)

Knowing that the inlier set Im corresponds to the points p such that |rθm
(p)| ≤ α, we

estimate the expectation as:

E [ψ(rθ(p))2] ≃
1

|Ω|

∑

p∈Ω

ψ(rθ(p))2
=

1

|Ω|

∑

p∈Im

r 2
θ (p),

and E [ψ′(rθ(p))] ≃
|Im |

|Ω|
, (4.11)

where |.| denotes the cardinality of the set. We come up with the following expression of

RTIC for the Talwar penalty function:

RTICt al (m) = 2
∑

p∈Ω

ρ(rθ̂m
(p))+

2qm

|Im |

∑

p∈Im

r 2
θ̂m

(p). (4.12)

We make the same development for the Huber function defined as follows:

ρhub(r ) =

{

1
2 r 2 if |r | ≤α

α(|r |− 1
2α) if |r | >α

(4.13)

and we obtain as RTIC expression:

RTIChub(m) = 2
∑

p∈Ω

ρ(rθ̂m
(p))+

2qm

|Im |

(

∑

p∈Im

r 2
θ̂m

(p)

+
∑

p∈Ω\Im

α2
)

. (4.14)

The selected model m̃ will be the one minimizing RTICt al (m) (respectively RTIChub(m))

among the tested models. The parameters θ̂m are obtained from 4.2 with the Talwar

(resp. Huber) ρ-penalty function. In contrast to RAIC and RBIC, the size of the inlier set,

|Im |, explicitly intervenes in the second term of the expression of the two RTIC variants

(4.12) and (4.14). Minimizing RTIC implies to maximize the size of the inlier set.

4.4 Robust motion model selection with FRIC

We propose a second robust motion model selection criterion which follows a very dif-

ferent approach than those proposed so far for robust model selection. As in [36], we

adopt a two-class hypothesis test approach. This is motivated in particular by the fact
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that we are dealing with an unnested set of parametric motion models. For instance,

both the rotation and the scaling models involve three parameters as described in Sec-

tion 4.2.3, but respectively account for quite different motions. In addition, we aim to

select the model m which explains the motion of the maximum number of points in the

estimation support (which may be the whole image domain Ω or a given image region),

that is, with the largest possible inlier set. Indeed, we are not interested in selecting a

simple motion model if it can only account for a too limited part of the estimation sup-

port. Let us remind that retaining the as less complex as possible motion model, while

maximizing the size of the inlier set, may be contradictory.

4.4.1 Fisher statistic

First, we want to compare any model m of the set of tested models to the full model M .

To this end, we resort to the Fisher statistic [128] formulated in our case as:

F (m) =
(RSSm −RSS+

m)/(qM −qm)

RSS+
m/(|Im |−qM )

, (4.15)

where again |.| designates the set cardinality, qm represents the number of parameters of

model m. Both RSSm and RSS+
m are evaluated on the inlier set Im attached to the tested

model m. To really deal with Fisher statistic, both model parameters, θm and θM , must

be estimated on the same set too. Therefore, we re-estimate θm and θM over Im in a

least-square setting, before evaluating F (m). By the way, it also improves the estimated

parameters of model m, and consequently, the model fit.

To make (4.15) an actual Fisher statistic, we must also check that |Im | can be consid-

ered as a deterministic variable. We can at least empirically assess it, by providing his-

tograms of weights computed for the estimation of the motion parameters in the IRLS

procedure, as explained in subsection 4.2.1. Examples are supplied in Fig.4.1 for the use

of the Tukey function in the motion model parameter estimation. The plots show that

the weight histograms are clearly bimodal, with one mode close to 0 and the second one

close to 1. Then, the inlier set Im is easy to get, and this step does not introduce any

randomness. It is even simpler in the case of the Talwar function since the weights are

null for outliers and strictly positive for inliers.

The denominator of expression (4.15) can be interpreted as a non-biased empirical

estimate of the full model variance computed on Im , which will be denoted by:

σ̂2
M (Im) =

RSS+
m

|Im |−qM
. (4.16)
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Fig. 4.1: Histograms of weights supplied by the IRLS procedure in the robust estimation of

the image dominant motion for two different experiments.

The statistic F (m) allows us to decide whether model m is a more significant rep-

resentation of the unknown true motion than the full model M over Im which is the

validity domain of model m in Ω. However, it will supply all the models m of that type.

We need to take into account the dimension qm of model m to further select the right

one.

4.4.2 Fisher-based robust information criterion (FRIC)

Starting from (4.15), and penalizing the complexity of the model expressed by the num-

ber qm of model parameters, we define:

S1(m) =F (m)(qM −qm)+2qm . (4.17)

Under the assumption of validity of model m, F (m) follows a Fisher distribution F (qM −

qm , |Im |−qM ). Then, the first term of the right member of (4.17) (approximately) follows

a χ2 distribution with qM −qm degrees of freedom.

We can now write the test for selecting the best motion model m̃ in this robust model

selection framework:

m̃ = argmin
m

S1(m). (4.18)

The theoretical behavior of this test can be qualitatively described as follows. S1(m) is

supposed to decrease when evaluating in turn the first successive models in decreasing

(or equivalently increasing) complexity order up to the optimal model m∗, and then to

increase for the subsequent models. This is confirmed by Fig.4.2 which contains plots of

S1(m) values for several experiments.
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Fig. 4.2: Plots of S1(m) values corresponding to the set of tested motion models for several

experiments. Tested motion models the models listed in Table 4.1, and ordered according

to the number of parameters. The true model is FA.

We design a second version of the Fisher-based robust model selection criterion, by

incorporating the number of inliers in the model complexity penalization as in the BIC

criterion, that is:

S2(m) =F (m)(qM −qm)+2log(|Im |)qm . (4.19)

4.4.3 Interpretation of FRIC as robust Cp

We now provide another interpretation of the Fisher-based robust information criterion

(FRIC) defined in (4.17). Let us first make σ̂2
M (Im) appear in the expression of S1(m) as

follows:

S1(m) =
(RSSm −RSS+

m)

σ̂2
M

(Im)
+2qm , (4.20)

By exploiting (4.3) and (4.16), it can be further developed into:

S1(m) =
1

σ̂2
M

(Im)

∑

p∈Im

r 2
θ̂m

(p)−|Im |+qM +2qm . (4.21)

If we neglect qM which is a constant term for the test (4.18), expression (4.21) can be

viewed as the Mallows’ CP criterion [91], computed over the inlier set attached to model

m with |Im | as the number of observations. Then, our test (4.18) could also be inter-

preted as a robust version of the Mallows’ CP criterion.

Let us point out that (4.21) explicitly involves the aforementioned trade-off between

maximizing the size |Im | of the inlier set and minimizing the complexity (i.e., the num-

ber qm of parameters) of the selected motion model. In contrast, in existing robust
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model selection criteria as RAIC or RBIC of the form:

R AIC =
∑

p∈Ω

ρ(rθ̂m
(p))+qm , (4.22)

RB IC =
∑

p∈Ω

ρ(rθ̂m
(p))+ log |Ω| qm , (4.23)

the model selection is only implicitly influenced by the size of the inlier set attached

to model m through the values of the robust function ρ(.) at the outlier points. Hence,

the impact depends on the asymptotic behavior of the robust function. The same holds

for [126] where in addition the penalty term requires additional expensive computation

to be evaluated.

4.5 Experimental results

4.5.1 Statistical objective evaluation

To assess the performance of the model selection criteria we carried out a compara-

tive objective evaluation through synthetic experiments. We generated a series of image

pairs by applying a velocity field to a real image, as demonstrated in Fig.4.3. The velocity

field involves two parametric subfields chosen from the list given in Table 4.1. The first

parametric motion subfield is the dominant motion, and the outliers, forming a rectan-

gular region in the middle of the image, undergo the second one. Three groups of 3000

synthetic image pairs were generated, each group formed by different dominant and

secondary motions. The first group involves a translation (T) motion model as domi-

nant motion model and a full affine (FA) as secondary motion. The second set has a FA

model as dominant motion and a planar surface rigid motion (PSRM) as secondary mo-

tion model. The last group has a PSRM model as the dominant one and a T model as

the secondary one. Each group is divided in two sub-groups of 1500 image pairs each

depending on the range used for the values of the parameters of the dominant motion,

as summarized in Table 4.2. For each motion model used to create the image pairs, the

value of its parameters is randomly selected in the interval given in Table 4.2.

We proceed to the selection of the dominant motion model in each experiment for

each tested criterion as illustrated in Fig.4.4. In all the experiments and for all the four

compared robust motion model selection criteria, we use the Talwar penalty function.

Scores are given in percentage of the total number of the images in each experiment.

Overall, criterion S2 outperforms S1 and RB IC . It successfully selects the true motion

model in at least 74.4% of frames in a group, with a maximum of 83.4%. S1 also provides
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Dominant a1, a4 a2, a3, a5, a6 a7, a8
motion model

T 1 [-10,10] - -
T 2 [-10,-1]∪[1,10] - -

F A1 [-10,10] [-0.001,0.001] -
F A2 [-10,-1]∪[1,10] [-0.1,-0.001]∪[0.001,0.1] -

PSRM1 [-5,5] [-0.01,0.01] [-0.001,0.001]
PSRM2 [-10,-1]∪[1,10] [-1e10−4,-1e10−2]∪[-1e10−4,-1e10−2] [-1e10−5,-1e10−4]∪[1e10−5,1e10−4]

Table 4.2: Range of parameter values for the different motion models.

Fig. 4.3: From left to right: the input image, the outlier subset (in black) in the middle of

the image, typical velocity field applied to the input image formed by a dominant motion

and a secondary one.

good results, but it has a lowest success rate with a minimum of 61.2% and a maximum

of 82.1%. In general, RBIC has a close but lower success rate than all the other criteria,

with the lowest value at 38.6% for one of the experiments. RTIC, on the other hand, has a

lower success rate in the T1 experiment. However, when the complexity of the dominant

motion models used to generate the image pairs increases, RTIC produces better results,

scoring over a 94% success rate in a couple of experiments. Overall, RTIC yields the best

performance.

Tables 4.3 and 4.4 detail the scores obtained with S2 and RTIC for all the tested mod-

els and for the six subsets of experiments, respectively. As expected, selection errors are

spread and concern mostly more complex models than the true one.

4.5.2 Results on real image sequences

In order to analyse the behaviour of the proposed criteria on real image sequences, we

performed experiments on two types of video sequences. For these experiments, we

adopt a subset of the models presented in Table 4.1, {T,T R,T S,PSRM ,FQ}. FA was

removed since it does not physically correspond to any given camera motion. PT was
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Fig. 4.4: Results for each group of experiments obtained with the four model selection cri-

teria (given in percentage of the total number of examples in each experiment).

True dominant motion models
Tested models T T FA FA PSRM PSRM

T 76.9 76.4 0.1 1.5 0.1 0.1
TR 9.3 7.7 0.7 0.6 0.1 0.2
TS 1.4 11.8 0.3 1.1 0.1 0.1

TRS 0.1 0.6 2.1 0.2 0.3 0.2
FA 0.4 0.3 80.5 83.4 0.2 2.1
PT 2.1 0.7 0.1 3.9 0.9 2.4

PSRM 1.3 0.4 7.3 6.9 74.4 74.7
FQ 8.5 2.1 8.9 2.4 23.9 20.2

Table 4.3: Scores obtained with criterion S2 for all the tested models and for the six exper-

iments.

True dominant motion models
Tested models T T FA FA PSRM PSRM

T 80.3 60.7 0 0 0 0
TR 11 15.9 0 0 0 0.1
TS 4 17.2 0 0 0 0

TRS 0.4 3.2 0.2 0 0 0
FA 0.6 0.5 95 87.3 0 0.2
PT 3.4 1 0 0.4 0 0

PSRM 0 0.7 1.1 9.1 87.5 94.4
FQ 0.3 0.8 3.7 3.2 12.5 5.3

Table 4.4: Scores obtained with criterion RTIC for all the tested models and for the six

experiments.

109



4.5. EXPERIMENTAL RESULTS

removed since it only has two parameters, the same as T. The first set of real image se-

quences used in these tests were produced using a camera mounted on a Cartesian co-

ordinate robot. The setup allows us to apply a determined motion model to the robot,

in order to move the camera while capturing an image sequence. Ideally, the motion ap-

plied to the robot induces the dominant motion of the image sequence, therefore pro-

viding ground truth. Since we deal with robust motion selection able to handle the pres-

ence of outliers, we introduce a secondary motion using an additional single axis robot

bearing a flat object and moving in the field of view of the camera. The complete setup

is shown in Fig.4.5.

Fig. 4.5: Robotic setup for the acquisition of image sequences. The scene is a planar surface

formed by a poster.

We report two of these experiments. In the first experiment, a rotation around the

view axis is applied to the robot to produce an image sequence of 146 frames as illus-

trated in Fig.4.6. Since the rotation axis does not pass by the optical center, the expected

dominant motion model is the combination of a translation and a in-plane rotation (TR).

Table 4.5 contains the model selection results provided by our criteria S1, S2 and

RTIC, along with RBIC. S2 and RTIC select the assumed true motion model (TR) with a

good percentage rate of 64.8% and 76% respectively. S1 selection is spread between TR

and the full model FQ, while RBIC selects the full model in almost the whole sequence.

For the second experiment using the robotic setup, a translation along the camera

optical axis is applied to the robot, producing a divergent motion in the image, but the

focus of expansion is not at the origin. Then, the expected dominant motion model

is TS. A sequence of 170 frames was acquired. Results are collected in Table 4.6. This

experiment illustrates that the problem is not that simple and the criteria may fail. The
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Fig. 4.6: First and last frames of the first robot sequence, and the dominant flow between

frames 0 and 1 computed with TR model.

T TR TS PSRM FQ
S1 0 46.4 0 7.8 45.8
S2 0 64.8 0 6.7 28.5

RT IC 0 76 0 0.5 23.5
RB IC 0.6 0 0 3.9 95.5

Table 4.5: Selected motion models over the sequence of Fig.4.6 for the four compared crite-

ria (in percentage of the total number of frames).
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three proposed criteria mostly select PSRM as dominant motion model. RTIC and S1

select FQ in second place and TS in third place, while S2 selects TS (the assumed true

dominant motion model) in second place. Meanwhile, RBIC still selects the full model.

However, the expected true model (TS) may possibly be questionable, since the robot

expected motion may slightly depart from the specified command. The PSRM yet is also

a relevant choice since the surface is planar and the robot motion is rigid.

T TR TS PSRM FQ
S1 0 0 23.5 47.7 28.8
S2 0 0 28.2 49.4 22.4

RT IC 0 0.6 15.3 42.9 41.2
RB IC 0 0 4.1 3.5 92.4

Table 4.6: Motion models selected by the compared criteria over the second robot sequence

(in percentage of the total number of frames).

We now report results on three real image sequences taken from the net. The first

one depicts a field scene acquired from an airborne camera. The sequences contains 84

frames and the scene is almost planar. The outlier moving object is the reaping machine

with the dust cloud behind it (Fig.4.7). It is difficult to infer the precise ground truth from

the video alone, we do not know the type of camera motion. However, it can be assumed

that the PRSM model should be the most relevant one.

Fig. 4.7: First and last frames of the field scene sequence, and the dominant flow between

frames 0 and 1 computed with PSRM model.
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As observed in Table 4.7, the three proposed criteria S1, S2 and RTIC all select PSRM

as the dominant motion of the sequence, both S1 and S2 with a rate of 73.8% and RTIC

in 54.8% of the image pairs. RBIC selects the full model as dominant motion, with PSRM

in second place.

T TR TS PSRM FQ
S1 9.5 0 3.6 73.8 13.1
S2 9.5 0 3.6 73.8 13.1
RT IC 0 0 2.4 54.8 42.8
RB IC 0 1.2 13.1 34.5 51.2

Table 4.7: Selected motion models over the field sequence of Fig.4.7 for the four compared

criteria.

The second real video consists of a sequence of 54 frames (Fig.4.8). Visually, the cam-

era moves away from the scene, which leads to consider TS as the true dominant motion

model. As in the previous sequence, the scene is almost planar and the vehicles present

in it constitute the outliers to the dominant motion.

We report in Table 4.8 the selection scores of the compared criteria for the five tested

Fig. 4.8: First and last frames of the roundabout sequence and the computed dominant

motion at the time point corresponding to the first image, computed with TS model.

motion models in the sequence of Fig.4.8. The right motion model TS is correctly se-

lected by S1 and S2, but not by RTIC nor RBIC, both selecting the FQ model.
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T TR TS PSRM FQ
RB IC 0 0 0 16.7 83.3
RT IC 0 5.6 0 16.6 77.8
S1 16.6 0 72.2 5.6 5.6
S2 16.6 0 72.2 5.6 5.6

Table 4.8: Motion models selected by the compared criteria over the roundabout sequence

of Fig.4.8.

The last real video example involves a sequence where a partly planar scene is

recorded from an aerial camera (Fig.4.9). A passing train introduces outliers to the dom-

inant motion, The camera motion is parallel to the ground with a slight rotation. We can

assume that the TR motion model is the true one. Table 4.9 shows the results of this

Fig. 4.9: First and last frames of the train sequence and the dominant motion between the

first and second frames computed with TR model.

experiment. S1 and S2 select TR as dominant motion, both with a rate of 45.9%. They

also select T and TS in almost half of the sequence, which are still reasonable choices.

RTIC and RBIC incorrectly select the full model for most of the sequence.

4.6 Robust motion model selection for 2D CLEM registration

As mentioned in Chapter 1, there are many different techniques to acquire CLEM im-

ages. Deformation of the sample can be generated when using chemical fixation, during
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T TR TS PSRM FQ
S1 25 45.9 20.8 8.3 0
S2 25 45.9 20.8 8.3 0
F RIC 0 0 0 4.2 95.8
RB IC 0 8.3 8.3 0 83.4

Table 4.9: Motion models selected by the compared criteria over the train sequence of

Fig.4.9.

sectioning of the sample, when introducing markers for location, etc. Significant de-

formations can be avoided using more recent techniques, such as cryoEM, where the

sample is frozen shortly after the live LM images have been acquired. In most cases,

since the acquisition of LM and EM images is not performed using integrated setups,

different kinds of geometrical transformations can be introduced between the LM and

EM images, depending on the protocol used. The choice of the transformation to be es-

timated when registering CLEM images can have an impact on the accuracy of the regis-

tration. Even when registration has been performed, it is profitable to know if a rigid, an

affine or a more complex transformation model is needed to improve the alignment of

the images. In consequence, applying our robust motion model selection method could

provide important information for the 2D CLEM registration problem.

When first exploring the options to perform registration of 2D CLEM images, we

tested Motion2D to estimate the transformation between the pre-registered EM and LM

images [157]. Although it delivered acceptable results, it was necessary to investigate

options more adapted to the multimodality of CLEM images. As noted before, the dif-

ferences between EM and LM are vast, including a significant discrepancy between the

respective intensity of the images. This discrepancy can be appreciated in Figure 4.10,

where the displaced frame difference (DFD) between the EM and LM images of experi-

ment 1 after final registration is displayed. The DFD is defined as follows,

DF D(p,d) = I2(p +d)− I1(p) (4.24)

where I1 and I2 are the intensity of the two images, p =
[

x y
]

is a pixel of the image grid

Ω and d = (d x,d y) is the displacement vector.

It can be observed in the histogram plot of Fig.4.10e that the difference between the

intensities of LM (Fig.4.10a) and EM (Fig.4.10b) images is far too great to be overcome

by an intensity-based registration method, such as the one implemented in Motion2D.

However, the difference in intensities (Fig.4.10f) between the LoG representations of LM

(Fig.4.10c) and EM (Fig.4.10b) images is manageable by intensity-based methods. There-

fore, we decided to test our robust motion model selection on LoG-EM and LoG-LM
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(a) Registered LM image (b) Registered EM image

(c) LoG of registered LM image (d) LoG of registered EM image

(e) DFD of registered LM and EM images (f) DFD of registered LoG-LM and LoG-EM
images

Fig. 4.10: images and histograms of DFD for the CLEM experiment 1.
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patches registered with the mutual information (MI) method described in Chapter 2 to

investigate if the registration can be further improved and which motion model is the

most suitable to do so. We could also apply it in place of the MI-based affine registration

refinement step, but previous testing demonstrated that the results were not accurate

enough.

The first test was performed on the registered CLEM patches displayed in Figures

4.11a and 4.11b. To apply our method, the LoG representation of these images is

used, as shown in Figures 4.11c and 4.11d. The overlay of the patches after the mu-

tual information-based registration can be observed in Fig.4.11e. In this experiment, TR

motion model was selected by our criterion S1 while the T model was selected by S2,

RTIC and RBIC. The selection of these models is comprehensible since the initial overlay

is quite accurate already, therefore no significant transformation is needed between the

two datasets. Let us stress that the registration is the most improved with the TR model

selected by criterion S1The registration errors of the initial registration, the refined reg-

istration using T model and the refined registration using TR model are detailed in Table

4.10, where we include the mean, standard deviation (SD), median, minimum (Min.)

and maximum (Max.) of the errors computed from the corresponding overlays, in LM

pixels.

Errors Initial registration T TR
Mean 0.22 0.24 0.20

SD 0.27 0.32 0.27
Median 0.17 0.20 0.15

Max. 0.67 0.71 0.50
Min. 0.00 0.00 0.00

Table 4.10: Registration errors for experiment 1 after applying the robust motion model

selection method with criteria S2, RTIC and RBIC for T and criterion S1 for TR.

In experiment 2 (Fig.4.12) the MI-based alignment between EM and LM patches is

good, although not as accurate as experiment 1. S1 and RTIC selected FQ as the motion

model between EM and LM images, while S2 selected TR model and RBIC selected T

model. The registration improves slightly using both models, as observed in the error

Table 4.11, and in Figures 4.12f, 4.12g and 4.12h. In this experiment, TR is the one which

further decreases the registration error, making S2 the most appropriate criterion.

Similar to experiment 1, in experiment 3, presented in Fig.4.13, the registration be-

tween LM and EM images is already accurate and not much improvement is expected.

Both S1 and S2 select PSRM as motion model between the CLEM images, while RTIC
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(a) Registered LM patch (b) Registered EM patch

(c) LoG of registered LM patch (d) LoG of registered EM patch

(e) Overlay of registered EM and LM
patches

(f) Overlay after backwarping using the
TR model, selected by S1

(g) Overlay after backwarping using
the T model, selected by S2, RTIC and
RBIC.

Fig. 4.11: Experiment 1. From top to botton and left to right: Registered LM patch and EM

patch. LoG representation of registered LM and EM patches. Overlay of registered LM and

EM patches. Overlay after backwarping using the models T and TR selected respectively by

S1, and by S2 or RTIC.

Errors Initial registration TR FQ T
Mean 2.17 2.05 2.43 2.17

SD 1.36 1.20 1.40 1.52
Median 1.70 1.40 1.60 1.67

Max. 4.24 4.07 4.61 4.71
MIN 0.67 0.40 0.40 0.67

Table 4.11: Registration errors for experiment 2 after applying the robust motion model

selection method with criteria S1 and RTIC for FQ, criterion S2 for TR and criterion RBIC

for T model.
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(a) Registered LM patch (b) Registered EM patch

(c) LoG of registered LM patch (d) LoG of registered EM patch

(e) Overlay of registered EM and LM
patches

(f) Overlay after backwarping using the
TR model, selected by S2

(g) Overlay after backwarping using
the FQ model, selected by S1 and RTIC

(h) Overlay after backwarping using
the T model, selected by RBIC

Fig. 4.12: Experiment 2. From top to bottom and left to right: Registered LM patch and EM

patch. LoG representation of registered LM and EM patches. Overlay of registered LM and

EM patches. Overlay after backwarping using the models T, TR and FQ.
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selects FQ and RBIC selects TS. There is not significant visual improvement in the final

registration between EM and LM, as observed in Figures 4.13e, 4.13f and 4.13g and in

Table 4.12, where the error is computed in the EM image. However, we can infer from

Table 4.12 that PSRM is more adapted than FQ, since the former decreases the error reg-

istration error. Then, S1 and S2 perform better.

Errors Initial registration PSRM FQ TS
Mean 6.6 6.46 7.49 7.3

SD 3.61 3.61 2.95 3.5
Median 6.7 5.99 6.71 6.68

Max. 10.81 10.37 11.99 10.95
MIN 2.99 2.99 3.24 2.99

Table 4.12: Registration errors of experiment 3 after applying the robust motion model

selection method with criteria S1 and S1 for PSRM, criterion RTIC for FQ and criterion

RBIC for TS.

The registration in experiment 4 is good enough although it can be improved. In

this particular case, the intensity values of EM and LM images are similar, therefore Mo-

tion2D can be applied directly on the original intensity images. After testing our robust

motion model selection, all criteria select PSRM as the motion model which better suits

the displacement between the EM and LM patches. We can notice in Figures 4.14c and

4.14d and in Table 4.13 that the alignment is slightly improved.

Errors Initial registration PSRM
Mean 3.76 2.53

SD 1.72 0.76
Median 4.06 2.50

Max. 5.59 3.6
MIN 1.0 1.58

Table 4.13: Registration errors of experiment 4 after applying the robust motion model

selection method with criteria S1, S1, RTIC and RBIC for PSRM.

4.7 Conclusion

We have proposed two new robust motion model selection criteria. The first one is a

robust version of the Takeuchi information criterion. The second one departs from the

usual approaches by starting from the Fisher statistics. We propose two variants of the

later. All three are easy to compute. The two criteria explicitly tackle the tradeoff between
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(a) Registered LM patch (b) Registered EM patch

(c) LoG of registered LM patch (d) LoG of registered EM patch

(e) Overlay of registered EM and LM
patches

(f) Overlay after backwarping using the
PSRM model, selected by S1 and S2

(g) Overlay after backwarping using the FQ
model, selected by RTIC

(h) Overlay after backwarping using the TS
model, selected by RBIC

Fig. 4.13: Experiment 3. From top to bottom and left to right: Registered LM patch and EM

patch. LoG representation of registered LM and EM patches. Overlay of registered LM and

EM patches. Overlay after backwarping using the models PSRM, FQ and TS.
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(a) Registered LM patch (b) Registered EM patch

(c) Overlay of registered EM and LM
patches

(d) Overlay after backwarping using the TR
model, selected by S1, S2 and RTIC

Fig. 4.14: Experiment 4. From top to bottom and left to right: Registered LM patch and EM

patch. LoG representation of registered LM and EM patches. Overlay of registered LM and

EM patches. Overlay after backwarping using the models PSRM.
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the size of the inlier set (to be maximized) and the complexity of the motion model (to be

minimized). In addition, the FRIC criterion can be viewed as a proposition for a robust

Mallows’ CP criterion. Experiments on synthetic and real image sequences, along with

comparison with RBIC, demonstrate that our criteria provide superior performance. The

application of our robust motion model selection method can be tricky in CLEM images

due to their multimodality nature and the fact that the geometrical transformation to

align them cannot be strictly compared to the global motion model between two succes-

sive images of a video sequence If we exploit the LoG representation of the two images

first registered with the MI-based registration method to be closer to the usual video se-

quence configuration, our robust motion model criteria can still provide useful informa-

tion about the remaining transformation between EM and LM images, which can help

to improve the final overlay.
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CHAPTER5
3D CLEM

Correlative microscopy (CM) enables the study of cellular and subcellular elements in

different and complementary ways by incorporating two different microscopy imaging

techniques in the study of a single sample. Notably, the combination of light and elec-

tron microscopy offers a wide range of information for biological applications.

To profit from CLEM a reliable registration between the pair of images is essential.

We have already proposed a general automatic registration method for 2D CLEM with

promising results, and in consequence, we pursue to develop a new method for auto-

matic 3D CLEM registration. Due to the large discrepancies in appearance, field-of-

view, resolution and position expected to occur in most 3D CLEM acquisitions, a pre-

alignment stage is required before any 3D fine registration stage. As for the 2D CLEM

registration, we define an intensity-based method for both stages, which leverages a

common representation of the two involved image modalities. We report experimen-

tal results on different real datasets of 3D correlative microscopy, demonstrating time

efficiency and overlay accuracy.

5.1 Introduction

As previously mentioned, correlative microscopy has recently become an important and

powerful tool in the bioimaging field. It combines two (or more) microscopy modali-

ties, allowing the study of biological specimens in complementary ways and at different

resolutions. Current tools used by biologists require manual intervention. In the case

of 3D CLEM, this is an utterly complicated and burdensome task, from visually locating
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elements of interest to correlate the CLEM image stacks to applying the necessary trans-

formations by hand. As stated by biologists, this task can take up dozens of minutes for

each pair of image stacks when having the advantage of using a specialized software such

as ec-CLEM [51], which facilitates a semi-automatic registration of 3D CLEM images by

manually picking matching pairs of points and computing a geometric transformation

to register the stacks. When no such tools are available, the registration may take even

more time.

Consequently, one key challenge in this area is to make the image overlay between

modalities as automatic as possible for an easier and more efficient CM workflow, en-

abling the handling of large amount of images. This is particularly crucial for 3D acquisi-

tion. It will also favour the dissemination of 3D correlative microscopy as a valuable tool

for biologists. Then, our goal is precisely to propose an automated registration method

for 3D correlative microscopy.

The most frequent combination of correlative microscopy is between light mi-

croscopy (LM) and electron microscopy (EM), referred to as correlative light and electron

microscopy (CLEM). As already outlined for 2D CLEM, fluorescence LM allows identifi-

cation and tracking of labeled biomolecules, and provides information on their dynam-

ics and interactions. However, the diffraction limits their resolution. Additionally, flu-

orescence LM cannot visualize unlabeled cellular structures. On the other hand, EM

displays much higher resolution, and it can delineate cellular ultrastructure but at the

cost of fixing the sample. Since there are several types of 3D LM and EM modalities,

any combination results in a specific 3D CLEM method, also dependent on the biolog-

ical problems under study. Other imaging techniques may accompany CLEM, such as

microCT, or X-rays [47, 70, 138].

The technological and technical differences between EM and LM images are in many

aspects: field of view, pixel resolution, image size, content, appearance, raising impor-

tant and specific challenges for automated registration in 3D correlative microscopy.

Furthermore, large gaps occur between the initial locations and orientations of the ob-

jects of interest in the respective LM and EM stacks in the data acquisition workflow.

Then, geometrical and appearance discrepancies between LM and EM stacks hamper a

direct computation of the 3D transformation mapping one image stack to the other.

3D multimodal image registration has a long story in medical imaging [90]. Recall-

ing Chapter 2, there are two main kinds of approaches for registration [178]. The first

one is the geometric approach, which relies on extracting specific points in each image,

matching them, and computing the 3D registration transformation from the matched
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pairs of points. This approach has the advantage of being able to handle large transfor-

mations. However, because of CM being multimodal and the differences in orientation,

field of view and resolution, extracting points that can be correctly matched may not be

the most dependable approach. The second kind of approach is intensity-based, which

iteratively computes the parameters of a 3D transformation by minimizing a similarity

criterion such as mutual information (MI), adopted in many multimodal applications.

Intensity-based methods implicitly assume that an initial positioning is given not too

far from the optimal solution. However, as we have already stated, 3D CM registration

will probably start from a big misalignment. Therefore, 3D correlative microscopy raises

specific issues, which makes both approaches not straightforwardly applicable for an

automatic workflow.

Geometric registration approaches are the ones usually adopted in the existing semi-

automatic 3D correlative microscopy workflows, but the selection and pairing of corre-

sponding points are typically manually performed. In contrast, existing automatic seg-

mentation methods cannot deliver repeatable point extraction in all 3D LM and EM im-

ages. Indeed, these methods may not extract a sufficient amount of reliable point pairs

in the two image modalities, in particular due to the lack of structure and texture in flu-

orescence images. Intensity-based approaches for direct 3D registration computation

are usually employed in medical imaging, since they can benefit from close initializa-

tion and isotropic volumes. This does not stand for correlative microscopy, which then

requires a pre-alignment stage [75].

This chapter is organized as follows. First, we briefly survey related work in 3D CLEM.

Then, we introduce the datasets used in our experiments and the corresponding image

properties. Afterwards, we present the two stages of our method. We report experimen-

tal results, providing a comparison with manual interaction using eC-CLEM [51]. Finally,

we present our concluding remarks.

5.2 Related work in 3D CLEM

In current 3D CLEM setups, registration is performed by a first global pre-alignment fol-

lowed by a refined alignment, usually involving significant user interaction. The man-

ual pre-alignment or matching of the EM and LM stacks is commonly performed by

biologists, either during the acquisition step and/or during the post-acquisition regis-

tration step. During acquisition, the pre-alignment relies on visually identifying pre-

defined marks on the sample holder, or exploiting fiducial markers introduced in the

sample [38, 111]. Likewise, during the registration stage, the biologist has to select pairs
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of points in the two images, whatever they are (fiducial markers, distinctive features on

the sample, among others) [11, 27]. The landmark pairs are then used to compute the

3D geometric transformation between EM and LM stacks [15, 39, 131]. The matching

step is a demanding and tedious task, especially if a large amount of data must be pro-

cessed [87]. Such semi-automatic framework is adopted in [47] for registering 3D mi-

croCT and LM images, in [51] with the recently released eC-CLEM software for 3D cor-

relative microscopy, or in [103] to overlay Scanning EM (SEM) and confocal LM volumes.

In the above works, the registration is addressed by pairing corresponding points,

and the user has to iteratively re-apply this procedure (picking points, computing the

transformation) until the final alignment is acceptable enough. A few works propose an

automated refined registration (the pre-alignment being still manual). In [103], the cell

membrane is segmented in the SEM stack and modified to a resolution similar to the one

of LM. Then, EM and LM volumes are registered with an affine transformation and nor-

malized correlation. [83] proposes an automated refined registration based on mutual

information and rigid transformation. In [51], an extension to an automatic registration

was also proposed, provided spots can be correctly detected in both images, but it was

only tested on 2D real CLEM.

Our goal is to propose automated procedures for both the pre-alignment and the

refined registration for 3D correlative microscopy. Our method is intensity-based for

both stages, and involves the common representation based on the LoG transform of

EM and LM images already used for 2D CLEM registration

5.3 3D CLEM framework

To motivate our contribution, we first present the three 3D correlative microscopy sets

we will work with, and we give information on the acquired images. The first set1 is com-

posed of a serial block face (SBF) SEM image stack and a confocal image stack. HeLa cells

were imaged for LM in a 710 LSM Zeiss inverted confocal microscope; afterwards, they

were fixed, stained and embedded for SBF-SEM imaging and acquired using a Sigma VP

scanning electron microscope (Carl Zeiss). The LM stacks has two channels: transmit-

ted light and one fluorescent channel, with volume size of 1024×1024×16 and pixel size

of 0.22µm in X and Y , and 0.6µm in Z , knowing that the X Y -space corresponds to the

lateral dimensions of the stack and the Z -axis to the vertical dimension of the stack. The

size of the EM stack is 666×903×247 and its pixel size is 0.14µm in X and Y , and 50nm

in Z , which is rather low-magnification EM. A 3D rendering is displayed in Fig. 5.1.

1CLEM dataset provided by the Francis Crick Institute, UK.
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(a) Input fluroescence LM stack

(b) Input EM stack

Fig. 5.1: Experiment 1. Input LM and EM stacks.
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The second 3D CM2 set depicts whole brain tissue. The EM stack of size 2048×2048×

300 has pixel size of 16nm in X and Y and 50nm in Z . The LM stack comprises two flu-

orescence channels, the red fluorescent protein (RFP) channel depicting mitochondrial

structures and the green fluorescent protein (GFP) channel depicting axonal structures.

The dimensions of these LM stacks are 1024×1024×27 and their pixel size is 94nm in X

and Y , and 1µm in Z . A 3D rendering of the stacks is displayed in Fig. 5.2.

(a) Input EM stack

(b) Input RFP LM stack (c) Input GFP LM stack

Fig. 5.2: Experiment 2. Input LM and EM stacks.

2We thank Robert Lees from Ashby lab group, University of Bristol, UK for providing us the dataset and
the associated explanations.
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The third set3 is of a different type and does not correspond to 3D CLEM. Instead,

it includes a stack of microCT and a two-photon fluorescence microscopy (FM) stack.

The microCT stack of size 1084×896×1094 has pixel size of 1µm in X and Y and 1µm

in Z , while the FM stack of size 1024×1024×107 has pixel size of 0.59µm in X , 0.59µm

in Y and 3.0µm in Z . A corresponding pair of slices from the FM and microCT stacks is

shown in Fig.5.3.

(a) Slice 414 of microCT stack (b) Slice 81 of LM stack

Fig. 5.3: Experiment 3. 3D microCT and fluorescence LM

In the three datasets, the 3D stacks are anisotropic and have significant differences in

terms of volume size, pixel resolution, content, appearance, and location of structures

of interest between modalities. Nevertheless, in these examples, it turns out that the

discrepancy between the two volumes in terms of shift along the Z -axis and of rotation

in the X Y plane are not that significant, but other discrepancies remain.

5.4 Our automated overlay method

5.4.1 Intensity-based XY pre-alignment

CLEM overlay may be performed in both ways, EM to LM stacks, or LM to EM stacks.

To address the large gap between the initial positions of EM and LM stacks, we have de-

fined an intensity-based prealignment method. We restrict the shift to the X Y -space,

since it is expected to be the larger component of misalignment (which is often the case

3Dataset provided by EMBL, Heidelberg, Germany.
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in CLEM registration problems). To compute this initial X Y shift, we accordingly reduce

the dataset to two dimensions. We compute a projection along the Z -axis of the LM

stack, using the maximum intensity projection (MIP), which yields a good distribution

of the volume content. If the LM stack is of size m×n×l , LM-MIP is a 2D m×n image ob-

tained by scanning LM intensities along the Z -axis and selecting the highest one among

the l intensity values for each (x, y) location of the image grid. The same cannot be ap-

plied to the EM stack, since the resulting MIP image will be saturated due to the high

resolution and great quantity of elements imagined by EM. Then, we simply select a few

slices in the EM stack for the pre-alignment stage intersecting the predefined region of

interest (ROI) delineated in the EM stack. The overlay is indeed focused on a region of

interest (ROI) of the biological sample, which may involve a specific cell or a subcellular

structure in a cell, and is specific to each biological project. The ROI is expected to be

delineated either by the biologist (which will be in that case the only user interaction),

or by an algorithm able to detect the content of interest.

In our case, we start with the EM stack. Given a 3D ROI delineated in the EM stack,

we take the corresponding 2D ROIs in the selected EM slices, and we search for their

corresponding patch in the LM-MIP image. The patch dimensions of the LM-MIP im-

age are inferred from the EM-ROI ones, while taking into account the ratio between pixel

resolutions available in the metadata attached to the acquisition. To facilitate the search,

we require a comparable appearance for the two images. To do so, we use the Laplacian

of Gaussian (LoG) transform we introduced in Chapter 2 for 2D CLEM registration. The

LoG transform maps a 2D EM image and a 2D LM image to closer representation, de-

creasing the big difference in appearance between the images, as illustrated in Fig.5.5.

The LoG transform enhances high spatial frequencies while suppressing local linear in-

tensity variations. The LoG transform of an image I is expressed as:

Lσ(I ) =∆(Gσ∗ I ), (5.1)

where the Gaussian standard deviation σ acts as an adaptable scale linked to the size of

the objects of interest in I . It is automatically selected by using the method described

in [7] which exploits the Lindeberg’s scale-space approach. We select the scale with the

maximum number of blobs, which are local minima in the constructed scale-space do-

main. By adapting the LoG scale to the EM and LM image content, we lessen the differ-

ence in content scale of LM and EM images.

Once a common representation of EM and LM images is created, we have to match

the 2D LoG-EM-ROI with its corresponding patch in the 2D LoG-LM-MIP image. We

handle several 2D LoG-EM-ROIs, one by EM slice, to ensure robustness by making the
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matching not dependent on one particular 2D EM slice. Then, a 2D patch-based ex-

haustive search is carried out over the LoG-LM-MIP. Due to the differences in orienta-

tion between the LM and EM images, it is necessary to adopt a similarity measure that is

invariant to rotation and scaling. As already discussed in Chapter 2, we take histogram-

based descriptors for the matching process. We have used two types of histograms: the

LoG-values histogram and the Local Directional Pattern (LDP) [61]. We have also imple-

mented two histogram distances as similarity measures: the cosine similarity and the

histogram intersection distance to evaluate the similarity of the LoG-EM-ROI with each

tested LoG-LM-MIP patch.

If we use n EM slices taken from the EM stack, we have n candidate patches sp for

the ROI location in the 2D LM-MIP image, as illustrated in Fig. 5.4. The final ROI center

location in the LM-MIP image is selected using a robust technique since outliers may

occur, i.e., due to wrong matching. This robust technique comprises the following steps:

1. The median of the center location of all candidate patches is computed,

median(sp).

2. The median absolute deviation of all center locations, mad(sp), is computed.

3. To discard outliers, the absolute distance of all patches centers with respect to the

median, d(sp,median(sp)), is used as follows:

if d(spi ,median(sp)) ≤ mad(sp) then inliers ← spi , i ∈N, i ≤ n (5.2)

4. The location of the finally selected patch is computed as a weighted average of the

center positions of the inlier patch candidates. The weights are defined as an in-

verse of the distance between the center of the patch and the median of the centers

positions of inlier patches candidates:

wi =







1
d(spi ,median(sp))2 if d(spi ,median(sp)) 6= 0

1 if d(spi ,median(sp)) = 0
(5.3)

5. The finally selected patch is defined as

sp f =

∑n
i=1 wi spi
∑n

i=1 wi
(5.4)

The difference between the center location of the finally selected patch in the LoG-

LM-MIP image and the center of any 2D EM-ROI (since the 2D EM-ROIs are vertically

aligned in the 3D EM-ROI stack) yields the 2D shift in the X Y -space. Then, the full LM

stack is shifted in the X Y plane by applying the estimated 2D translation.
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Fig. 5.4: ROIs extracted from multiple LoG-EM slices to be located in the LoG-LM-MIP image

To summarize, our pre-alignment method comprises four main steps:

1. Maximum intensity projection of the LM stack to a 2D image

2. LoG representation of 2D-LM-MIP image and 2D EM slices

3. Matching of the ROI of every LoG-EM slice with a patch selected in LoG-LM-MIP

image

4. Pre-alignment of EM and LM stacks by the estimated X Y -shift

We implemented a reproducibility test in order to validate the need for a pre-

alignment stage in the 3D registration framework. This test can be found in Annex A.

5.4.2 3D ROI-based registration

Once the pre-alignment is achieved, we can estimate the 3D transformation which will

allow to overlay the 3D LM stack onto the 3D EM stack. The 3D transformation is com-

puted between the 3D EM-ROI and the pre-aligned 3D LM-ROI. The transformed LM

stack is resampled to fit the same size in the Z-dimension as the EM stack using a bilinear

interpolator. The 3D interpolated LM-ROI is then recovered using the same coordinates

of the 3D EM-ROI.

The contents of the two CM stacks are different enough so that a point-to-point

intensity-difference similarity measure cannot provide satisfactory results. We resort

again to mutual information (MI) as a similarity measure, due to its well-known capa-

bility of handling multimodal images. First, a 3D rigid transformation (composed of a

rotation and a translation) is estimated. However, given the 3D CLEM workflow, it is not

sufficient to fully account for the geometric relationship between the LM and EM stacks.

The EM slices do not lie in the same plane as the LM slices, and distortions between
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stacks may occur during the acquisition. Consequently, we further refine the registra-

tion with a 3D affine transform.

Our overall method does not involve any extraction of image features from the EM

and LM stacks. It is merely intensity-based, which prevents from any possible segmenta-

tion errors and saves computation time. Furthermore, it does not require any parameter

setting by the user. We use ITK libraries in C++ for the MI-based registration.

5.5 Experimental results

Experiment 1: EM and LM modalities. To pre-align the EM and LM stacks, we follow the

2D search process described in Section 5.4.1. A 2D projection of the LM stack is gener-

ated using MIP. EM slices 107-118 were selected to extract 2D ROIs, whose LoG repre-

sentation (Fig.5.5a) is matched within the LoG-LM-MIP image following an exhaustive

search. Using [7], we obtain an approximate scale for the LoG transform of EM and LM

images, respectively estimated as σE M = 4.3 and σLM = 2.5.

A corresponding patch in the LoG-LM-MIP is found for each LoG-EM-ROI by the patch-

(a) LoG-EM slice (b) LoG-LM-MIP image

Fig. 5.5: Experiment 1. a) Slice 107 of LoG-EM stack with the ROI delineated in green, b)

LoG-LM-MIP image with patch candidates overprinted in magenta and the finally selected

one in light blue.

based search, with a 90% overlap between tested patches, using LoG-value histograms
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along with both cosine and histogram intersection distances. Then, we robustly com-

pute the finally selected patch from the weighted average of the centers of the patch

candidates (Fig.5.5b). The computed 3D rigid registration corresponds to a 3D transla-

tion of (−1.21,−0.5,7.17), and a rotation of angles −7.52◦,−2.63◦ and −1.46◦ around the

X , Y and Z axis respectively. The final overlay of the registered EM and LM ROIs is shown

in Figure 5.6. The accuracy can be appreciated by observing the fluorescence (in green)

correctly surrounding the cell nucleus in the EM slice. By picking corresponding points

in LM and EM stacks, we evaluated an average registration error of 6.5 EM pixels.

Fig. 5.6: Final overlay for experiment 1. The fluorescence LM is overprinted in green. Top:

Overlay visualized for one given slice. Bottom: Overlay visualized on the full 3D stack.

To compute this registration, it takes 92.4 seconds for the pre-alignment and 13.5

seconds for the 3D registration. Comparatively, manual correlation by a trained biologist
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on a known dataset using eC-CLEM took about 20 minutes, most of the time being

dedicated to primary orientation. Once the initial rotation, translation and scaling

are achieved (the first four points required in eC-CLEM), the fine correlation can be

estimated to 5 minutes per points-pair until the desired resolution is reached. On an

unknown dataset, initial correlation can take more than one hour.

Experiment 2: EM and LM modalities. In the second experiment, slices 100-120 from

the EM stack are used to extract a set of 2D ROIs after generating their LoG representa-

tion. The location corresponding to each 2D ROI is searched in the LoG representation

of the MIP of the LM stack. The LoG scales estimated for the EM slices and the LM-MIP

are σE M = 22.2 and σLM = 18.5, respectively. Fig. 5.7 displays the LoG representation of

the LM-MIP and the slice 60 of the EM slice, where the ROI is delineated in green.

(a) LoG-LM-MIP image (b) LoG-EM slice

Fig. 5.7: Experiment 2. a) Slice 60 of LoG-EM stack with the ROI delineated in green, b)

LoG-LM-MIP image with patch candidates overprinted in magenta and the finally selected

one in light bue.

An exhaustive search for each 2D ROI extracted from the LoG-EM slices is performed

over the LoG-LM-MIP image using the same parameters and procedure as in the previ-

ous experiment. The resulting patch candidates are plotted in Fig. 5.7 in magenta, along

with the weighted patch computed from the set of candidates, framed in light blue. After

applying the X Y shift corresponding to this pre-alignment step, a 3D rigid transforma-

tion followed by an affine transformation are computed between the 3D EM-ROI and the

3D LM selected patch (LM-SP) to create the final overlay displayed in Fig. 5.8. The reg-

istration accuracy can be visualized by observing the red fluorescence overlapping the
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white structure of the EM image. 88.2 seconds are necessary for the pre-alignment step,

while the 3D registration takes 70.56 seconds. The average error computed is 10.8 EM

pixels.

Experiment 3: MicroCT and LM modalities. In this experiment, slices 15-25 are ex-

tracted from the microCT stack, and a 2D ROI is extracted from each of their LoG rep-

resentations. Then, a MIP of the LM stack is computed. The estimated LoG scales are

σµC T = 22.2 and σLM = 2.1. The full LM stack is pre-aligned by applying the shift given

by the first stage. Then, we compute the 3D rigid transformation and the affine one.

Computation time is 234 seconds for the pre-alignment stage and 15.4 seconds for the

3D registration. Visual evaluation of the overlay is given in Fig.5.9. It is normal that most

of the elongated shapes are not overlaid, since they are present in only one of the two

modalities. The average registration error is 10.6 pixels.

5.6 Conclusion

We have defined an original and efficient intensity-based method for automatically over-

laying 3D image stacks of different modalities in correlative microscopy (CM). Whereas

existing workflows require substantial user interaction, our method can cope with large

appearance, resolution and position discrepancies in an automatic way. It proceeds in

two stages: 2D pre-alignment and 3D fine registration. It does not involve any parameter

setting, and then, is straightforward to use by biologists. Results on several combinations

of 3D correlative microscopy show its genericity. Registration accuracy is satisfying for

a fully automatic overlay of the two 3D image stacks. Future work will deal with still

more general handling of the pre-alignment (fully 3D shift) and possibly non-rigid 3D

registration, while continuing to validate the proposed method on other types of 3D CM

datasets, when more datasets would be available.
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Fig. 5.8: Final overlay for experiment 2. The fluorescence LM is overprinted in red. Top:

Overlay visualized for one given slice. Bottom: Overlay visualized on the full 3D stack.
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Fig. 5.9: Final overlay for experiment 3. The fluorescence LM is overprinted in green. Top:

Overlay visualized for one given slice. Bottom: Overlay visualized on the full 3D stack.
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Contributions

Correlative microscopy is a recent methodology where two different microscopy imag-

ing techniques are combined to generate new and important information about a bi-

ological sample. It has many different applications in the fields of cell biology, can-

cer research, marine biology and neuroscience. Different imaging modalities can be

employed for CLEM studies, such as light microscopy (LM), electron microscopy (EM),

micro-computed tomography (microCT), x-ray microscopy, ultrasound microscopy, etc.

although the most commonly used are light microscopy and electron microscopy, de-

noted as correlative light electron microscopy (CLEM). Light microscopy techniques al-

low the observation of living samples and the labeling of cellular elements through the

use of fluorescent markers. However, LM has relatively low resolution and poor struc-

tural information. Electron microscopy, on the other hand, has very high resolution,

allowing the observation of ultrastructural details. However, a sample must be fixed to

be imaged with EM, which effectively eliminates any living specimen. It is evident that

the complementary nature of EM and LM techniques, and their combination have pro-

vided biologists with highly valuable information to answer many kinds of biological

questions.

Multiple different protocols exist for CLEM acquisition, and they are usually defined

depending on the subject of study. As output of the CLEM pipeline, the resulting images

are registered, generally creating an overlay of the EM and LM images. Existing CLEM

acquisition protocols may extend through several days.

We have mainly focused our research work on the last stage of the general CLEM

workflow, the registration of EM and LM images. Currently, the greatest part of the ex-

isting investigations regarding CLEM images are focused on the biological part of the
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problem, developing new CLEM setups and protocols, or adopting existing ones to dif-

ferent kinds of problems. To analyze the resulting images, it is necessary to align them,

so that the information they contain can be visually and quantitatively examined. This

implies that on image (or both images) is rotated, scaled, shifted, and sometimes de-

formed to match or correlate the shared imaged structures and overlay the images. In

these works, the alignment or registration process is completely or partly carried out in

an intensive interactive way using an image editing software. This is a difficult task, since

visually locating the shared structures of interest and applying the necessary transforma-

tions can be burdensome and time-consuming and it could still produce unsatisfactory

results. Additionally, it requires a certain level of expertise and previous knowledge of

the current dataset. Very few automatic 2D CLEM registration approaches have been in-

vestigated so far, and the majority is designed for pre-registered images. Semi-automatic

CLEM registration tools are also available, based on the manual selection of features of

interest to compute the targeted transformation.

Consequently, we proposed methods for automatic 2D CLEM registration. Due to

significant differences in terms of intensity values, pixel resolution, image size, field of

view, orientation of the sample and content, automatic registration of EM and LM im-

ages is not a straightforward process. EM and LM images are expected to be initially

largely misregistered. Different methods must be found to tackle each of the discrep-

ancies aforementioned in a fast and effective way. Throughout our research project, we

explored different image processing techniques to find which were more amenable to

the CLEM registration problem. General image registration approaches can be classified

in two ways: feature-based registration and intensity-based registration. Feature-based

registration methods are usually able to handle large transformations, provided that

enough features are extracted from the images and their pairing can be found. Intensity-

based methods exploit information from the whole image to compute the transforma-

tion needed for registration by optimizing a similarity metric. It is profitable when reli-

able features cannot be extracted, but it assumes that the initial misregistration between

the images is small.

After analyzing the results of the application of different feature detection ap-

proaches, we concluded that a feature-based registration method would likely be unable

of producing satisfactory results, since the extracted features were often not repeatable

in the two types of images, and when common to the two images, were too far from each

other, making their correct automatic pairing difficult. corresponding features are not

guaranteed to be extracted. Therefore, intensity-based methods were selected.

The implementation of intensity-based registration methods is very straightforward

in single modality problems, where numerous similarity metrics exist for computing

142



CONCLUSIONS AND PERSPECTIVES

the transformation. However, the implementation becomes more complicated when

dealing with multimodal images. We adopted the mutual information scheme to cre-

ate our CLEM registration framework. Beforehand, to perform the search step for pre-

alignment, we decreased the appearance difference between EM and LM images in

terms of intensity, by adopting a Laplacian of Gaussian (LoG) transform equipped with

an automatic scale selection framework. We came up with a common representation of

the input images making them easier to compare, while smoothing out noise and en-

hancing structures in the image.

Given an initial large misregistration is expected, directly computing a transforma-

tion to register the input EM and LM images would not generate satisfactory results for

sure. Then, we designed a pre-alignment step to bring the EM and LM images far closer.

Since a region of interest (ROI) is assumed to be delineated either on the LM or the EM

image, we designed a patch-based exhaustive search method to locate the patch match-

ing the ROI in the other image. The ROI is extracted from the LoG representation of the

source image (either LM or EM) and is located in the LoG representation of the target im-

age (EM or LM) by exploiting histogram-based similarity measures, which are invariant

to scale and rotation. The search patch is defined from the geometry of the ROI and the

resolution ratio between the EM and LM images. This step supplies a shift transforma-

tion. We tested this pre-registration step on seven CLEM image pairs, all containing very

different structures, image intensities and fields of view. In all cases, a patch contain-

ing the ROI was correctly located, demonstrating the effectiveness of our patch-based

exhaustive search approach.

Once the shift transformation is applied to the source image, the ROI is extracted

from both target and source input images. Then, we implemented a mutual informa-

tion (MI) based registration process. First, since the difference between the orientation

of the input images is expected to be large, we computed a coarse rotation angle by an

exhaustive method. Then, after applying the rotation, we compute rigid followed by

affine transformations to obtain the final registration of the EM and LM images. By vi-

sually evaluating the overlays created from the registered EM and LM ROIs and comput-

ing registration errors, we observed that our 2D CLEM registration framework performs

satisfactorily, in some cases with registration errors around 1 pixel in the LM image. Al-

though it is expected that semi-automatic registration methods where the user manually

picks corresponding features to register CLEM images have lesser registration errors, our

method provides good results for a fully automatic approach.

Additionally, we explored feature extraction methods for spot-like structures in im-

ages. Since many of the elements imagined by fluorescence microscopy techniques are
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shaped like spots of various sizes, we developed a multiscale spot detection and segmen-

tation method. One of the most widely known methods for spot detection is the use of

the LoG transform. By specifying the Gaussian scale, which is related to the size scale of

elements of interest in the image, spots of such scale will be highlighted and a method for

their segmentation can be implemented. Based on a a contrario approach, we designed

a method for automatically selecting the of meaningful scales in the processed image.

Then, by an adaptive thresholding, the spots associated to each selected scale can be

extracted. Finally, we defined a coarse-to-fine approach for generating a final segmen-

tation map containing all spots detected at the different scales. We successfully tested

our method on both synthetic and real images. Afterwards, we defined a registration re-

finement step based on our multiscale spot detection method. By applying our method,

we extracted significant spots from pre-registered CLEM images. Our objective was to

improve the final registration by implementing a point-based registration method based

on a random sample consensus (RANSAC) technique and nearest neighbor pairing. We

validated it on five CLEM datasets with satisfactory results. Then, we can conclude that

a feature-based registration can still improve the registration of 2D CLEM images, pro-

vided a correct extraction of features is available.

Knowing the motion model that better describes the global motion between two im-

ages can very helpful in many computer vision problems. We developed two robust

motion model selection criteria. Based on the robust estimation of a set of paramet-

ric motion models between two frames in an image sequence, our two criteria can select

the motion model that better fits the global motion between two successive images of

the sequence. One criterion is a robust extension of the Takeuchi information criterion,

while the other one is based on the Fisher statistic. We tested extensively our method

on synthetic and real video sequences with very satisfactory results. Additionally, we ex-

ploited our criteria on registered 2D CLEM image pairs to infer information on which

motion model would better fit the remaining transformation between the images. Since

the images were already well registered, our method mostly selects simple motion mod-

els, such as translation and translation plus rotation, which is to be expected.

Finally, we extended our research work to 3D CLEM registration. Similar to 2D CLEM,

very few investigations have been undertaken regarding automatic 3D CLEM registra-

tion, while most works focus on semi-automatic approaches based on user-assisted se-

lection and matching of features. Manual alignment of 3D CLEM images is even more

complicated than in the 2D case, taking significantly more time, requiring more exper-

tise and more prone to registration errors. Discrepancies similar to 2D CLEM are to be

expected between 3D EM and 3D LM images in terms of appearance, content, field of

view, orientation, volume size and pixel resolution. We proposed a method analogous
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to the approach developed for 2D CLEM, where we exploit the common LoG represen-

tation of the 3D CLEM images to compute a pre-registration step. A robust patch-based

exhaustive search approach is implemented to locate the ROI in the target image by cre-

ating 2D representations of the image stacks. After the X Y pre-alignment step, a 3D

MI-based registration is performed by computing rigid and affine transformations. We

tested our method on three 3D CLEM datasets with good results for an automatic regis-

tration approach.

Perspectives

Short-term perspectives

Occasionally, deformation can be introduced to the sample during the CLEM workflow

due to the fixation, embedding or sectioning. We have limited of our method to rigid

and affine transformations to register EM and LM images. However, further estimation

of deformable methods could provide valuable results on cases where the sample is dis-

torted. In addition, incorporating spatial information for topology preservation through

the use of regularization terms in both 2D and 3D registration frameworks is likely to be

profitable for improving the final registration step. Although we have good computation

times for the 2D and 3D registration experiments, they can still be improved through

optimization of the code.

Further testing on 2D and especially 3D CLEM datasets will help to assess the robust-

ness or our method.

We have successfully tested our method in a simulated low-to-high magnification

acquisition of EM images guided by the registered LM image. Additional testing of simi-

lar cases will add to the versatility of our method.

Developing a plug-in of our code our within a specialized biological image process-

ing software such as ICY4 could help spread the use of our method as a valuable tool for

biologists.

4http://icy.bioimageanalysis.org/
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Long-term perspectives

A new application of our method within the CLEM framework could be envisioned.

Given that LM provides a wide field of view of the sample, our method could be uti-

lized as a positioning system acquisition protocol. If multiple ROIs are delineated in the

LM image, their correspondence is sought for in a low-magnification EM image of the

same sample using our method. Then, high magnification EM images can be acquired

for all the localized regions. This could improve and speed up the acquisition workflow

within the CLEM framework.

Exploring the generation of synthetic 2D and 3D CLEM datasets for validation of our

method and other automatic registration approaches is of the utmost importance. Ad-

ditionally, exploring emerging technologies such as machine learning techniques may

help to create interesting new strategies. However, to implement any machine learning

method it is important to have access to far more annotated data.

Although we have successfully tested our 2D and 3D CLEM registration frameworks

on real datasets, it is obvious that more testing needs to be carried out. Unfortunately,

the availability of 3D CLEM dataset is low, even though CLEM setups and protocols have

been popularized in recent years. Many datasets are confidential and openly sharing

data is still a "sensitive" topic in the biological community. However, we expect that the

diffusion of tools like the one created in this thesis project will help in propagating and

creating new collaborations.
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Reproducibility test

Implementing a pre-registration stage in the CLEM registration framework seems like an

obvious choice, specially for 2D CLEM images. However, when working with 3D CLEM,

the need for a pre-registration stage may not be as clear, given that the ROI and ground

truth location on the source and target 3D stacks appear to be closer than in the 2D

CLEM case, at least in the datasets that we analyzed. To validate the importance of the

pre-registration stage, we implemented a reproducibility test. The main objective is to

analyze the impact of the X Y shift given by the pre-alignment step on the 3D MI-based

stage of the registration workflow. As previously explained, the 2D pre-alignment is de-

fined in the X Y plane since it is where the biggest discrepancy is expected. The 2D shift

is computed from the distance between the x and y coordinates of the center of a pre-

delineated ROI in the first image and the coordinates of the corresponding patch in the

second image, obtained through a robust patch-based exhaustive search approach. Af-

ter applying the 2D shift to the 3D LM stack, 3D rigid and affine transformations are

estimated to register the LM and EM stacks, using mutual information as similarity met-

ric.

A X Y translation of various random magnitudes is applied over the finally registered

3D LM stack, generating a set of altered 3D LM stacks. Then, the consecutive 3D rigid and

affine transformations are computed to register the altered 3D LM and EM stacks, in the

same way as the registration computed for the unaltered 3D LM stack in the experiment

presented in Section 5.5 of Chapter 5. Then, the error between the altered LM stacks and
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the unaltered LM stack after registration is computed by measuring the average distance

between the coordinates of the 8 vertices of the bounding box of the 3D LM patches after

registration and the coordinates of the 3D EM-ROI. This process is illustrated in Fig. A.1.

Fig. A.1: Registration process for 3D CLEM. First, a 2D shift in the XY space is computed

to prealign the 3D LM and EM stacks. Then, the 3D registration is estimated. For the

reproducibility test, 2D translations are applied to the registered LM stack to create a series

of altered LM stacks. Then, the 3D registration is re-estimated.

Starting from the registered location, XY translation is drawn at random within

[−130,−2] ∪ [2,130] for X and Y (independently). The drawn translation is rejected if

its magnitude lies outside the disc defined by
√

t x2 + t y2 ≤ 130, where t x and t y are the

translations drawn for X and Y respectively. A set of 650 altered 3D LM patches were cre-

ated by applying an X Y translation of random magnitudes ranging from 2 to 130 pixels

to the registered 3D LM of the first experiment presented in Chapter 5. In this experi-

ment, the 2D shift computed between the center of the pre-delineated EM-ROI and the

corresponding patch in the LM-MIP image is (−205.9,30.5) pixels in the XY space and it

has a magnitude of 208.2 pixels, while the estimated 2D translation induced by the 3D

registration is (10.0,50.1) pixels in the XY space, with magnitude of 50.99 pixels. The dis-

tance mentioned in the previous paragraph is computed between the bounding boxes

of each 3D altered LM patch and 3D EM-ROI after estimating the 3D rigid and affine

transformations. The resulting distance values are presented in Fig. A.2 in terms of the

magnitude of the translation applied to generate the 3D altered LM stack.

It can be observed that the average distance (or error) between the vertices is mild

for translations of magnitudes between 2 and approximately 98 pixels. The resulting

registrations are classified as good by visually examining the overlay of the registered LM

patches and 3D EM-ROI. Then, there is a clear transition around translations of mag-

nitude 98, where large errors occur and the resulting registrations are not satisfactory.

Two examples of the registration of altered LM patches and the EM-ROI are displayed in
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Fig. A.2: Average distance between translated 3D LM patches after registration and 3D

EM-ROI.

Fig. A.3. The registration of the EM-ROI and an altered LM patch, translated by 37.9 pix-

els in the X Y plane is displayed in Fig. A.3a, where the green fluorescent structures are

correctly overlaid on the border of the EM structure. Additionally, the registration of the

EM-ROI and a LM patch translated by 97,8 pixels is shown in Fig. A.3b, where the green

LM fluorescent structures and the white EM structures are clearly misregistered.

(a) Overlay of altered LM patch and EM-
ROI on a given slice. X Y translation of
magnitude of 37.9 pixels.

(b) Overlay of altered LM patch and EM-
ROI on a given slice. X Y translation of
magnitude of 97.8 pixels.

Fig. A.3: Overlay after registration of EM-ROI and altered LM patch. The registration can

be assessed by observing the green fluorescent structures overlaid on the border of the EM

structure.

In this experiment, it is observed that the value of the magnitude of the XY trans-

lation after which the distance between the vertices significantly increases and the 3D

registration is not correctly estimated is ≈ 98 pixels. This magnitude is less than 50%

of the magnitude of the 2D shift obtained in the pre-alignment stage. Therefore, from

this experiment it can be concluded that the 2D pre-registration step is really required.
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It is a crucial part in the overall 3D CLEM registration framework. This experiment also

demonstrates that the pre-alignment is not required to be very accurate, since the 3D

pose can be retrieved even for not that small deviation from the estimated registration.

In future developments on the 3D CLEM registration problem, a full 3D pre-registration

stage should be explored to compensate the initial misalignment of 3D correlative mi-

croscopy stacks.
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Résumé
Cette thèse porte sur la définition d’un schéma de recalage automatique en microscopie corrélative
2D et 3D, en particulier pour des images de microscopie optique et électronique (CLEM). Au cours des
dernières années, la CLEM est devenue un outil d’investigation important et puissant dans le domaine
de la bio-imagerie. En utilisant la CLEM, des informations complémentaires peuvent être collec-
tées à partir d’un échantillon biologique. La superposition des différentes images microscopiques est
généralement réalisée à l’aide de techniques impliquant une assistance manuelle à plusieurs étapes,
ce qui est exigeant et prend beaucoup de temps pour les biologistes. Pour faciliter et diffuser le
procédé de CLEM, notre travail de thèse est axé sur la création de méthodes de recalage automatique
qui soient fiables, faciles à utiliser et qui ne nécessitent pas d’ajustement de paramètres ou de con-
naissances complexes. Le recalage CLEM doit faire face à de nombreux problèmes dus aux différences
entre les images de microscopie électronique et optique et leur mode d’acquisition, tant en termes de
résolution du pixel, de taille des images, de contenu, de champ de vision et d’apparence. Nous avons
conçu des méthodes basées sur l’intensité des images pour aligner les images CLEM en 2D et 3D. Elles
comprennent plusieurs étapes : représentation commune des images LM et EM à l’aide de la transfor-
mation LoG, pré-alignement exploitant des mesures de similarité à partir d’histogrammes avec une
recherche exhaustive, et un recalage fin basé sur l’information mutuelle. De plus, nous avons défini
une méthode de sélection robuste de modèles de mouvement, et un méthode de détection multi-
échelle de spots, que nous avons exploitées dans le recalage CLEM 2D. Notre schéma de recalage au-
tomatisé pour la CLEM a été testé avec succès sur plusieurs ensembles de données CLEM réelles 2D et
3D. Les résultats ont été validés par des biologistes, offrant une excellente perspective sur l’utilité de
nos développements.

Mots clés - Recalage multimodal d’images biologiques, microscopie corrélative, microscopie op-
tique, microscopie électronique.

Abstract
This thesis is concerned with the definition of an automated registration framework for 2D and 3D
correlative microscopy images, in particular for correlative light and electron microscopy (CLEM) im-
ages. In recent years, CLEM has become an important and powerful tool in the bioimaging field. By
using CLEM, complementary information can be collected from a biological sample. An overlay of the
different microscopy images is commonly achieved using techniques involving manual assistance at
several steps, which is demanding and time consuming for biologists. To facilitate and disseminate
the CLEM process for biologists, the thesis work is focused on creating automatic registration meth-
ods that are reliable, easy to use and do not require parameter tuning or complex knowledge. CLEM
registration has to deal with many issues due to the differences between electron microscopy and light
microscopy images and their acquisition, both in terms of pixel resolution, image size, content, field
of view and appearance. We have designed intensity-based methods to align CLEM images in 2D and
3D. They involved a common representation of the LM and EM images using the LoG transform, a
pre-alignment step exploiting histogram-based similarities within an exhaustive search, and a fine
mutual information-based registration. In addition, we have defined a robust motion model selection
method, and a multiscale spot detection method which were exploited in the 2D CLEM registration.
Our automated CLEM registration framework was successfully tested on several real 2D and 3D CLEM
datasets and the results were validated by biologists, offering an excellent perspective in the usefulness
of our methods.

Keywords - Multimodal biological image registration, correlative microscopy, light microscopy,
electron microscopy.
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