
HAL Id: tel-01869604
https://theses.hal.science/tel-01869604

Submitted on 6 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aggregated Search of Data and Services
Mohamed Lamine Mouhoub

To cite this version:
Mohamed Lamine Mouhoub. Aggregated Search of Data and Services. Web. Université Paris sciences
et lettres, 2017. English. �NNT : 2017PSLED066�. �tel-01869604�

https://theses.hal.science/tel-01869604
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à l’Université Paris Dauphine

Recherche Agrégée de Données et Services

Aggregated Search of Data and Services

École doctorale no543

ÉCOLE DOCTORALE DE DAUPHINE

Spécialité INFORMATIQUE

Soutenue par
Mohamed Lamine MOUHOUB
le 11 Décembre 2017

Dirigée par Daniela GRIGORI

COMPOSITION DU JURY :

M. Bernd AMANN
Université Pierre et Marie Curie
Président du jury

Mme Daniela GRIGORI
Université Paris Dauphine
Directrice de thèse

Mme Maude MANOUVRIER
Université Paris Dauphine
Co-directrice de thèse

Mme Salima BENBERNOU
Université Paris Descartes
Rapporteure

M. Dan Vodislav
Université de Cergy-Pontoise
Rapporteur

M. Matteo Luigi PALMONARI
Université de Milan-Bicocca
Membre du jury

To my first baby boy Mohamed Abderrahmane

and for his brothers and sisters to come ...

Acknowledgements

As the arabic proverb says, "Who doesn’t thank people, doesn’t thank God". I would like

to express my sincere gratitude to my supervisors Pr. Daniela Grigori and Dr.HDR.

Maude Manouvrier for their continuous support, motivation and their immense patience

during the last five years. I will never be grateful enough and never forget our fruitful

exchanges, our outstanding collaboration and more importantly our last-minute paper

submissions.

Besides my supervisors, I would like to thank the rest of my thesis committee: Pr.

Salima Benbernou who also was in my mid-term defense and had the patience to read me

twice as well as Pr. Dan Vodislav and Pr. Bernd Amann for their insightful comments and

encouragement. Very special thanks go to Dr Matteo-Luigi Palmonari for his previous

research work that inspired my thesis for traveling from Milano to Paris just to attend

my defense as a committee member.

I would like to thank my fellow doctoral students, the old and the new, for the time

we spent together during those years, for the good mood that was dominating our desks

and relationships. My thoughts and best wishes go for those who are still on the way.

In addition I would like to express my gratitude to the staff Paris Dauphine University,

especially the LAMSADE and Library staff for their helpfulness and .

I would like to thank my friends for expecting nothing less than excellence from me.

Last but not the least, I would like to thank my family: my parents without whom I would

have never been so far, my sister and my wife for supporting me spiritually throughout

writing this thesis and throughout my whole life my as well as all my family members

and in-laws.

Abstract

The last years witnessed the success of the Linked Open Data (LOD) project as well as

a significantly growing amount of semantic data sources available on the web. However,

there are still a lot of data not being published as fully materialized knowledge bases like

as sensor data, dynamic data, data with limited access patterns, etc. Such data is in

general available through web APIs or web services. Integrating such data to the LOD

or in mashups would have a significant added value. However, discovering such services

requires a lot of efforts from developers and a good knowledge of the existing service

repositories that the current service discovery systems do not efficiently overcome.

In this thesis, we propose novel approaches and frameworks to search for semantic

web services from a data integration perspective. Firstly, we introduce LIDSEARCH, a

SPARQL-driven framework to search for linked data and semantic web services. More-

over, we propose an approach to enrich semantic service descriptions with Input-Output

relations from ontologies to facilitate the automation of service discovery and composi-

tion. To achieve such a purpose, we apply natural language processing techniques and

deep-learning-based text similarity techniques to leverage I/O relations from text to on-

tologies.

We validate our work with proof-of-concept frameworks and use OWLS-TC as a

dataset for conducting our experiments on service search and enrichment.

Key words : Web Services, Service Discovery, Service Description Enrichment, Se-

mantic Web, Linked Data, Natural Language Processing.

Résumé

Ces dernières années ont témoigné du succès du projet Linked Open Data (LOD) et

de la croissance du nombre de sources de données sémantiques disponibles sur le web.

Cependant, il y a encore beaucoup de données qui ne sont pas encore mises à disposition

dans le LOD telles que les données sur demande, les données de capteurs etc. Elles sont

néanmoins fournies par des API des services Web. L’intégration de ces données au LOD

ou dans des applications de mashups apporterait une forte valeur ajoutée. Cependant,

chercher de tels services avec les outils de découverte de services existants nécessite une

connaissance préalable des répertoires de services ainsi que des ontologies utilisées pour

les décrire.

Dans cette thèse, nous proposons de nouvelles approches et des cadres logiciels pour

la recherche de services web sémantiques avec une perspective d’intégration de données.

Premièrement, nous introduisons LIDSEARCH, un cadre applicatif piloté par SPARQL

pour chercher des données et des services web sémantiques.

De plus, nous proposons une approche pour enrichir les descriptions sémantiques de

services web en décrivant les relations ontologiques entre leurs entrées et leurs sorties

afin de faciliter l’automatisation de la découverte et de la composition de services. Afin

d’atteindre ce but, nous utilisons des techniques de traitement automatique de la langue

et d’appariement de textes basées sur le deep-learning pour mieux comprendre les de-

scriptions des services.

Nous validons notre travail avec des preuves de concept et utilisons les services et les

ontologies d’OWLS-TC pour évaluer nos approches proposées de sélection et d’enrichissement.

Mots clés : Services Web, Découverte de services, Web Sémantique, Données Liées,

Traitement Automatique de la Langue.

Contents

Abstract i

Résumé ii

1 Introduction 1

Introduction 1

1.1 Context . 1

1.1.1 Linked Data and Linked Open Data cloud 2

1.1.2 Semantic Web services and APIs 4

1.2 Motivations and contributions . 5

1.3 Manuscript Outline . 7

2 Background and State of the Art 9

2.1 Semantic Web Background . 9

2.1.1 Resource Description Framework (RDF) 9

2.1.2 RDF Vocabularies . 11

2.1.3 SPARQL . 13

2.1.4 Linked Data and LOD . 16

2.2 Semantic Data Querying in the LOD . 17

2.2.1 Centralized (or Data Warehousing) approaches 17

2.2.2 Distributed approaches . 20

2.3 Web Services Background . 23

2.3.1 Web Services . 24

2.3.2 Semantic Web Services (SWS) . 26

2.4 Serice Discovery . 27

2.4.1 Search environment architectures 27

2.4.2 Service selection techniques . 29

2.5 Automatic composition of web services 31

3 Data and Service Search 35

3.1 Related works on Data and Service Search 35

vi Contents

3.2 Data and Service querying . 38

3.3 Service discovery with SPARQL . 42

3.3.1 Service Request Extraction . 43

3.3.2 Semantics Lookup . 45

3.3.3 Service Query Generation . 52

3.4 Service Ranking . 53

3.4.1 Functional based ranking . 53

3.4.2 Word2Vec based ranking . 54

3.5 Automatic service composition . 55

3.5.1 Service Dependency Graph . 56

3.5.2 Service composition algorithm . 57

3.6 Implementation and experiments . 59

3.6.1 Framework architecture . 59

3.6.2 Optimizing service discovery with cache 61

3.6.3 Evaluation . 62

3.7 Conclusion . 64

4 Enriching Service Descriptions with I/O relations 65

4.1 Introduction . 65

4.2 Related works . 68

4.2.1 Semantic annotation of web services 68

4.2.2 Relationship extraction . 70

4.3 Approach Overview . 70

4.4 Extracting I/O relations from ontologies 71

4.4.1 SPARQL-based extraction . 72

4.4.2 Extraction Enhancements . 74

4.5 I/O relation extraction from textual descriptions 77

4.5.1 Service description’s text pre-processing 77

4.5.2 I/O recognition in text descriptions 82

4.5.3 Relation extraction . 84

4.6 Evaluating I/O relations . 85

4.6.1 Relation embedding using aggregated word2vec vectors 86

4.6.2 Relation matching . 88

4.7 Implementation . 89

4.8 Evaluation and experimental results . 92

Contents vii

4.8.1 Evaluation setup . 93

4.8.2 Experimental results . 94

4.9 Conclusion . 97

5 Conclusion 99

5.1 Contributions . 101

5.1.1 LIDSEARCH: Linked Data and Service Search 101

5.1.2 Service Description Enrichment 101

5.2 Perspectives . 102

List of figures 119

List of tables 121

Résumé étendu en français 121

Chapter 1

Introduction

In the internet era, data is considered as one of the most valuable currencies. If it is

the most valuable resource in the 21st century as oil was in the 20th century, then data

search and information extraction are for data what oil exploration and extraction are for

oil. Although data is somewhat cleaner than oil, a data search on the internet does not

always return all the results to be found nor exactly what one is looking for. Data on the

internet is raw, structured, semi-structured, clean, unclean, open, restricted, proprietary,

static, on-demand, etc. Data on the internet is mainly human-readable but also machine-

readable. Thanks to the advent of semantic web and Linked Data, a machine-readable

version of the web is made possible and makes it possible for machines to answer search

queries more efficiently. This thesis is about searching for data and data sources from a

machine-as-a-user perspective.

1.1 Context

Today’s World Wide Web (WWW) offers access to tons of data through different for-

mats and access methods. General purpose search of data in such a huge network is

today nowhere similar to looking for a needle in a haystack thanks to the advanced

search engines like Google, Yahoo, Bing, etc and the underlying technologies used for

this purpose. However, in order for search engines and the machines behind to better

understand the user needs and respond efficiently to his queries, web data has to rely on

structured models. Schema.org1 is an effort by major internet companies towards such

a machine-understandable web. Furthermore, when it comes to automating the genera-

tion, consumption, reasoning and integration of data, web data has to respect a number

of conditions in order to make it readable, understandable and autonomously usable by

machines. Linked data is another huge effort towards such aims.

1http://schema.org/

2 Chapter 1. Introduction

1.1.1 Linked Data and Linked Open Data cloud

Since the advent of the semantic web to make the web machine-understandable and

the web data more structured, many organizations like DBpedia and Geonames started

publishing their data in a semantic web format. Later in 2006 [Bizer et al., 2009], the

World Wild Web inventor Tim Berners Lee coinded the term "Linked Data" and defined

it as "semantic web done right". It is about a set of best practices and rules called "Linked

Data Principles" to publish semantic web data (aka web of data) properly and making

it interlinked, explorable and "universally" understandable.

The large adoption of the Linked Data principles resulted in the Linked Open Data

Cloud (LOD), a large network of linked datasets released under open licenses. It includes

inter alia public sector data published by several government initiatives, life science and

scientific data facilitating collaboration, linguistic data, social media, geographic data,

academic publications data such as dblp, cross-domain data like DBpedia, Freebase,

YAGO, etc. It contains about 150 billion RDF triples (LODstats2). Figure 1.1 shows the

growth of the Linked Open Data cloud since 2007. In the last three years (2014-2017),

the number of linked datasets has doubled. A visual of the actual diagram of the LOD

is given in Fig. 1.2.

M
ay

20
07

O
ct

20
07

N
ov

20
07

Fe
b
20

08

M
ar

20
08

Se
p
20

08

M
ar

20
09

Ju
l 2

00
9

Se
p
20

10

Se
p
20

11

A
ug

20
14

Ja
n
20

17

0

200

400

600

800

1,000

1,200

N
u
m

b
er

o
f
D

a
ta

se
ts

Figure 1.1: Growth in linked open datasets in the LOD since 2007

However, as mentioned in [Speiser and Harth, 2011a] there are still a lot of data that

will not be published as a fully materialized knowledge base such as:

2Statistics as of July 2017. Source: http://stats.lod2.eu/

1.1. Context 3

Figure 1.2: The linking Open Data Cloud Diagram as of August 20173

• dynamic data issued from sensors,

• data that is computed on demand depending on a large sets of input data, e.g. the

faster public transport connection between two city points,

• data with limited access patterns, e.g. prices of hotels may be available for specific

requests in order to allow different pricing policies.

Such data is in general available through web APIs or web services. In the next sub-

section we present semantic web services and Web APIs and how they can be integrated

with the LOD.

3http://lod-cloud.net/

4 Chapter 1. Introduction

Ja
n
20

06

Ja
n
20

07

Ja
n
20

08

Ja
n
20

09

Ja
n
20

10

Ja
n
20

11

Ja
n
20

12

Ja
n
20

13

Ja
n
20

14

Ja
n
20

15

Ja
n
20

16

Ja
n
20

17

0

5, 000

10, 000

15, 000

N
u
m

b
er

o
f
A

P
Is

(a) Growth in web APIs hosted listed by Pro-

grammableWeb since 2005

So
ci
al

To
ol
s

E
-C

om
m
er
ce

Fi
na

nc
ia
l

M
ob

ile

M
ap

pi
ng

Se
ar
ch

M
es
sa
gi
ng

E
nt
er
pr

is
e

D
at
a

0

500

1,000

1,500

N
u
m

b
er

o
f
A

P
Is

(b) Top 10 API categories in ProgrammableWeb

in 2016

Figure 1.3: Web API statistics in ProgrammableWeb

1.1.2 Semantic Web services and APIs

Web services emerged long before the semantic web that we know today, however, they

were originally motivated by a common purpose. The world wide web is static in a sense

that it was designed for an interaction between humans and applications (machines) and

doesn’t allow applications to be easily reusable out of their pre-destined contexts and

scenarios [Fensel et al., 2011]. Web services emerged to allow applications to interact,

interoperate and share information while being reusable in different contexts. From this

perspective, semantic web and web services both aim to democratize the web for machines,

although the first addresses data while the second addresses applications.

Web APIs are a simplified category of web services that promote simplicity of design

and ease of use by developers. They have known a great success over the last years as

shown in Fig. 1.3a . According to ProgrammableWeb4, the biggest repository of web APIs,

the number of available web APIs have doubled in the last five years and it continues to

grow significantly by more than 10% every year as indicated in Table 1.1.

Web services offer the possibility to create mashups or composite services that interact

with different services and data sources to provide new added value that takes form in

aggregated data or new services.

In order to allow web services to be automatically discovered and composed, research

4https://www.programmableweb.com/

1.2. Motivations and contributions 5

Table 1.1: API count growth in ProgrammableWeb as of 2017

Total new APIs added since 2014 5,946

Average new APIs added yearly 1,982

Average new APIs added monthly 165

works in the domain of the semantic web proposed to use machine-readable semantic

markup for their description. Semantic web services (SWS) approaches include expressive

languages like OWL-S5, WSMO6 for complex business services or, more recently, simple

vocabularies like MSM7 to publish various service descriptions as linked data. Most of

the SWS description languages are RDF8-based (such as OWL-S, MSM) or offer an RDF

representation (WSML). Therefore, existing tools for publishing SWS like iServe9 are

basically RDF stores that allow access via SPARQL endpoints and therefore, they can

be considered also as a part of the LOD.

1.2 Motivations and contributions

The integration of LOD data and semantic web services (SWS) offers great opportunities

for creating mashups and automatic service compositions. Moreover, such integration

solves some existing issues and open challenges of the LOD that affect its data quality

such as:

• Missing data: Some entities do not exist on the LOD yet. For example, the lists

of all movies by a director or the books of a given author are not complete on the

LOD as many of them don’t have dedicated wikipedia/dbpedia pages yet. However,

for this example, such data can be easily found using Amazon API10, OMDbAPI11,

etc.

• Incomplete data: Some information about an entity (some of its attributes) can be

missing on the LOD. For example, the information on book prices, where to buy

5http://www.w3.org/Submission/OWL-S
6http://www.w3.org/Submission/WSMO/
7http://kmi.github.io/iserve/latest/data-model.html
8http://www.w3.org/RDF/
9http://iserve.kmi.open.ac.uk/

10http://developer.amazonservices.fr/
11http://www.omdbapi.com/

6 Chapter 1. Introduction

them, theaters in which movies are played, etc are additional pieces of information

that don’t exist on the LOD.

• Nonexistent data: These issues are due to the nonexistence of some categories of

data in the LOD. For example, business repositories, the social networks data, social

graphs, connections, tweets, dynamic data, on-demand data , etc.

• Outdated data: The LOD data can be outdated quickly depending on its type like

statistics, prices, etc. For example, statistics about population and share prices of

companies are not updated for many entries in DBpedia.

However, services that would be suitable for solving the aforementioned data quality

issues need to be discovered, and in case they don’t exist, they need be composed from

atomic services. To achieve such a goal, a developer who wants to integrate data and

services should:

• have an awareness of the existing SWS repositories on the web,

• have a knowledge of the heterogeneous SWS description languages,

• express his needs in terms of the vocabulary used by different repositories

• find relevant services from different repositories and use service composition tools

in case a service satisfying his goal does not exist.

This manual process requires a lot of knowledge and effort from the user. We aim

to provide a framework for searching data and related services on the LOD that might

bring some added value to the data.

This thesis was initially inspired by the research work in [Palmonari et al., 2011] which

portrays an approach to search for data and services at the same time using an SQL-like

querying language by leveraging non-semantic web services with semantic annotations.

This work builds on top of this motivation and makes the following contributions:

1. We introduce LIDSEARCH (LInked Data and Service Search)([Mouhoub et al.,

2014], [Mouhoub et al., 2015]), a SPARQL-driven framework to search for linked

data and relevant semantic web services over the LOD that might add new value

to the data, all effortlessly from a user perspective and with the same query. LID-

SEARCH presents some interesting features and novelties.

1.3. Manuscript Outline 7

• LIDSEARCH works on-the-fly and searches for data and services in the LOD

without any pre-processing.

• LIDSEARCH uses only SPARQL for querying data sources and service repos-

itories for a maximum compatibility.

• LIDSEARCH is extensible to any RDF-based service descriptions.

• LIDSEARCH extends search results with semantically similar results using a

semantic-similarity approach that relies on the linked data principles.

• We propose a word2vec-based (deep-learning-based) technique to rank relevant

services based on their relevance to the data query.

• We sketch an adaptation of a service composition algorithm to automatically

create composite web services relevant to data queries when no actual ones are

found.

2. We introduce an approach that uses natural language processing techniques towards

automatically enriching semantic web service descriptions with precise information

about their functionality to facilitate their automatic discovery, composition and

integration with other data ([Mouhoub et al., 2017]).

1.3 Manuscript Outline

In chapter 2, we briefly recall some background concepts, definitions and standards re-

lated to our work including semantic web, semantic web services and natural language

processing. After that, we portray the state of the art in the aforementioned domains,

especially the recent works related to our work or the works that have most inspired ours.

In chapter 3, we present the first part of our work related to data and service search

called LIDSEARCH. We present its aforementioned features, we describe step-by-step its

underlying process and we explain each step by a running example.We dedicate a section

to our sketched approach for an automatic service composition which has not yet been

fully implemented within LIDSEARCH but deserves some attention. We also present our

published experimentation results on OWLS-TC services and discuss its limitations and

potential improvements.

Chapter 4 is dedicated to our most recent work that aims to facilitate automatic

service discovery by enriching its formal description. We also explain the underlying

process step-by-step with a running example.

8 Chapter 1. Introduction

In the conclusion chapter, Chapter 5, we recall our main contributions and the chal-

lenges we. We also discuss some perspective ideas including a potential combination of

our both major works.

Chapter 2

Background and State of the Art

2.1 Semantic Web Background

In this section, we recall some important notions and concepts in the semantic web

domain that we use or make mention of in this thesis. For a short introduction to the

semantic web technologies, the reader can refer to the reference book about semantic web

in [Domingue et al., 2011].

2.1.1 Resource Description Framework (RDF)

Resource Description Framework (RDF)1 ([Raimond and Schreiber, 2014]) is a simple

data model for describing web resources. It is based on the concept of statements that

represent facts about any subject on the web. Fig.2.1 summarizes a hierarchical view of

some of the most important concepts in RDF.

IRIIRI LiteralLiteral

RDF Term

Subject

IRIIRI LiteralLiteral

RDF Term

Property

IRIIRI LiteralLiteral

RDF Term

Object

RDF Triple

RDF Graph

Figure 2.1: Partial hierarchical anatomy of the Resource Description Framework (RDF)

1. RDF Resources (RDF Terms): Any subject or any entity is a resource on the

web. It can be a web-page, an image, a document, a number, a string, or even a

1http://www.w3.org/TR/rdf11-primer/

http://www.w3.org/TR/rdf11-primer/

10 Chapter 2. Background and State of the Art

physical entity like a person, an organization, an event, an object, etc. An RDF

Term can either be IRIs or literals2.

(a) Internationalized Resource Identifier (IRI) is an extension of the Uniform

Resource Identifier (URI) (for non ASCII characters) to identify a resource. It

allows to uniquely identify and locate a resource on the web in order to help ac-

cess and interact with it. For example, <http://dbpedia.org/resource/Victor_Hugo>

corresponds to the entity representing Victor Hugo in DBpedia3.

Namespaces are often used as prefixes to shorten IRIs of RDF resources in

RDF files, the last example for instance would look like: <dbr:Victor_Hugo>

in its short form. We shorten IRIs with prefixes in this thesis most of the time

in the examples.

(b) Literals are basic values associated with XML Datatypes like strings, num-

bers, dates, etc and often used to describe textual or numerical attributes of

IRI resources like names, titles, phone numbers, birth dates etc. For example,

the title of the famous book by <dbr:Victor_Hugo> is "Les misérables"

which is an xsd:string.

2. RDF Triples: To describe a resource, RDF uses a statement called an RDF state-

ment to depict a relation called a property, or a predicate between this resource

called a subject and another called an object.

Subject Object
Predicate

Figure 2.2: Anatomy of an RDF triple

RDF statements take the syntactic form of a triple that can be broken down into

3 elements: A subject, a relation and an object, hence the name RDF triples. It

always has the following structure:

<subject> <predicate> <object>

For example, the famous book "Les_Misérables" is declared as written by Victor

Hugo in DBPedia using the following RDF statement:

<dbr:Les_Misérables> <dbo:author> <dbr:Victor_Hugo>

2There exists a third form for resources in RDF, blank nodes, but we won’t address this in this

manuscript
3http://dbpedia.org/

http://dbpedia.org/

2.1. Semantic Web Background 11

Note that IRIs can be used as a subject, a predicate or an object in RDF triples

whilst literals can only be used as objects as depicted in Fig. 2.1

3. RDF Graphs As a matter of fact, an RDF triple can be seen as an "atomic"

graph consisting in a directed edge between two nodes linking and describing them

as shown in Fig.2.2. Therefore, a set of RDF triples forms up an RDF graph. For

example, a data-set about books and their authors is a set of RDF triples that all

together form an RDF graph.

http://dbpedia.org/resource/Les_Misérables http://dbpedia.org/resource/Victor_Hugo

http://dbpedia.org/resource/Emile_Bayard

"Les Misérables"

http://dbpedia.org/ontology/author

http://dbpedia.org/ontology/illustrator

http://dbpedia.org/property/title

IRI

Literal

Figure 2.3: Example of an RDF graph

Fig.2.3 shows an example RDF graph consisting in 4 RDF triples that describe

some basic information about <dbr:Les_Misérables>.

It is possible to group RDF triples in multiple RDF graphs, allowing to create

named graphs that group RDF statements about a given subject within an RDF

dataset as subsets of the latter. For example a books dataset can be divided into

multiple graphs grouping books of the same theme or writer. In this thesis, we don’t

particularity address multigraphs and consider RDF datasets as a whole and single

graph for clarity purposes. Therefore, the term RDF datasets refers to distinct

multiple datasets from multiple sources.

2.1.2 RDF Vocabularies

As mentioned earlier, RDF allows to describe resources with RDF statements that depict

relations between two resources. As we also mentioned earlier, RDF resources represent

abstract or real word entities. In order to define what these entities are and what relations

are, the RDF Schema4 (RDFS) provides vocabularies for defining data in RDF. Below,

we mention the main elements of the RDFS vocabulary ([Brickley and Guha, 2014])

4http://www.w3.org/TR/rdf-schema/

http://www.w3.org/TR/rdf-schema/

12 Chapter 2. Background and State of the Art

1. Class: A class is an abstraction of a group of entities sharing the same character-

istics. For example, the group of books belongs to the class of Books. In DBpedia,

<dbr:Les_Misérables> belongs to the class <dbo:Book>. Entities belonging to a

class are called instances. The group of classes is a class itself called rdfs:Class

2. Property: A property is a relation between two RDF resources, a subject and an

object. It can be used to depict an attribute of an entity, like the title of a book, or

a relation between two entities like the fact that a book is written by some author.

Properties themselves are RDF resources. The class that groups properties is called

rdfs:Property. Therefore, it can have properties of its own relations with other

entities. There are two important properties that a rdfs:Property should have:

(a) Domain: An rdfs:Property defines the relation between a subject and an

object. rdfs:domain is an rdfs:Property that defines the class of subjects

to be used with a property in RDF triples. For example, the rdfs:Property

dbo:author defines the author of a work dbo:Work in DBpedia. Therefore we

state that:

dbo:author rdfs:domain dbo:Work

(b) Range: rdfs:range is an rdfs:Property that defines the class of objects

to be used with a property in RDF triples. For example, the rdfs:Property

dbo:author from earlier considers that an author of a work dbo:Work is a

dbo:Person. Therefore we state that:

dbo:author rdfs:range dbo:Person

Note that Properties in RDF are binary relations. To describe an n-ary attribute

or relation of a resource, multiple RDF statements should be used. For example, to

state that the book <dbr:The_Frozen_Deep> is written by <dbr:Wilkie_Collins>

and <dbr:Charles_Dickens>, two RDF triples are required :

<dbr:The_Frozen_Deep> <dbo:author> <dbr:Wilkie_Collins> .

<dbr:The_Frozen_Deep> <dbo:author> <dbr:Charles_Dickens> .

3. Type: RDF allows to state that a resource is an instance of a class using the

rdfs:Property rdf:type5. It is generally abbreviated in SPARQL with the word

"a" For example, the following statement says that the resource <dbr:Les_Misérables>

5In SPARQL, rdf:type can be abbreviated with the article "a".

2.1. Semantic Web Background 13

is an instance of the class <dbo:Book>:

<dbr:Les_Misérables> <rdf:type> <dbo:Book>

4. Sub-class: It is common in abstract and real world entities that a class of entities

could have one or more sub-classes. To depict this hierarchical relation between

two classes in RDF, we use the <rdfs:subClassOf> property. It implies that all

instances of a class are also instances of its super-class. For example, the class

<dbo:Book> is a sub class of <dbo:WrittenWork>. We state:

<dbo:Book> <rdfs:subClassOf> <dbo:WrittenWork>

5. Sub-property: Similarly to classes, properties can also have sub-properties of their

own. A sub-property rdfs:subPropertyOf is a rdfs:Property that states that all

resources related by a property are also related by its super-property.

2.1.3 SPARQL

SPARQL6 Protocol And RDF Query Language7 (SPARQL) is the defacto W3C stan-

dard querying language for retrieving and manipulating RDF data. It has an SQL-like

syntax and relies on graph pattern matching with RDF graphs. Fig. 2.4 shows an anatomy

of a SPARQL query along with the most important concepts around SPARQL: ([Seaborne

and Harris, 2013])

1. Variables: A variable in SPARQL is a part of a variable binding pair (variable,

RDF term) that aims to assign the value of an RDF term to this variable after the

query execution ([Fensel et al., 2011]). Variables are prefixed with a "?" attached

to their names (Eg.: ?book).

2. Triple patterns At the core of SPARQL queries are Graph patterns and at the core

of graph patterns is the triple pattern. A triple pattern is a set of three whitespace-

separated nodes commonly read "subject property object". A property is either a

variable, an rdfs:property or an owl:property node that links a subject to an

object.

6http://www.w3.org/TR/sparql11-query/
7The S used to originally stand for Simple in the early proposals of SPARQL. However, after the

language became more complex, SPARQL was substituted for Simple

http://www.w3.org/TR/sparql11-query/

14 Chapter 2. Background and State of the Art

PREFIX exp: <http://example.com/>

SELECT ?subject

WHERE {

{

...

?subject ?pblueicate ?object .

...

FILTER ...

}

UNION {...}

OPTIONAL {...}

...

}

LIMIT ...

ORDER BY ...

...

Q
u
er
y
P
a
tt
er
n

B
a
si
c

G
ra
p
h
P
at
te
rn

Query Modifiers

Namespace prefix declaration

Triple Pattern

Filter expressions

Query result variables

Alternate Graph Pattern

Optional Graph Pattern

Figure 2.4: Anatomy of a SPARQL query

Similarly to RDF triples, subjects can only be an IRI or a variable whilst objects

can be anything. In other words, a triple is similar to RDF triple but with zero or

more bidden RDF terms, i.e, variables.

3. Graph patterns SPARQL uses graph matching for retrieving data. It defines a

set of graph patterns for this purpose. A Graph pattern is a set of triple patterns

that can take one of the following forms:

(a) Basic Graph Pattern (BGP): a set of one or more triple patterns. In a

SPARQL query, a query solution should match all the triple patterns of a

BGP. A BGP can be delimited with brackets (" ").

(b) Optional Graph Pattern: a graph pattern that can be coupled with another

graph pattern to extend its solution. A query solution should either match

both graph patterns or at least the non-optional graph pattern. In SPARQL,

it is denoted with the a OPTIONAL keyword.

(c) Group Graph Pattern: a set of graph patterns. A query solution should

match all the graph patterns of a group graph pattern.

2.1. Semantic Web Background 15

(d) Union Graph Pattern: also called an Alternate Graph Pattern is a set of

graph patterns for which a query solution matches either or all of them. In

SPARQL, alternate graph patterns are coupled using the UNION keyword.

The set of all graph patterns contained within the WHERE clause of a SPARQL

query is called a Query Pattern.

4. Query Forms: There are four query forms in SPARQL:

(a) SELECT Returns the values of all bound variables in the query result clause

(not necessarily all the query variables).

(b) ASK Returns a boolean (TRUE) if the query pattern has a match in the dataset,

or (FALSE) otherwise.

(c) CONSTRUCT Returns an RDF graph specified by a template in which

result values are substituted for the construct variables.

(d) DESCRIBE It is mainly used to return an RDF graph containing RDF state-

ments in an RDF data-set about a resource.

5. Filters: SPARQL Filters, defined by a function (or an expression) in a FILTER

clause, are used to restrict the query solution by eliminating solutions for which

the filter expression returns FALSE (just like an algorithmic return if). Possible

filters include String equality, regex matching, mathematical comparatives, etc.

6. Modifiers: Modifiers are used to modify the arbitrary sequence of the query re-

sults. Modifier operators include inter alia: ORDER BY which modifies the order of a

solution either in the ascending ASC or descending DESC order of a variable’s values.

LIMIT limits the number of query solutions up to a defined integer.

To summarize, a SPARQL SELECT query consists, as shown in Fig. 2.4, in a set of

one or more graph patterns called a query pattern contained within the WHERE clause that

ought to be matched against a dataset (data graph). It also contains a set of variables

contained within its SELECT clause that ought to appear in the query results.

Fig 2.1 shows an example of a simple SPARQL query that searches for books written

by the author <dbr:Victor_Hugo>. The results of this query from DBpedia are shown

in Table 2.1.

16 Chapter 2. Background and State of the Art

PREFIX dbo:<http :// dbpedia.org/ontology/>

PREFIX dbr:<http :// dbpedia.org/resource/>

SELECT ?book

WHERE {

?book dbo:author

dbr:Victor_Hugo.

}

LIMIT 5

Listing 2.1. Example of a simple SPARQL

Select query on DBpedia)

Table 2.1: Listing. 2.1’s query results from

DBpedia

?Book

http://dbpedia.org/resource/Les_Misérables

http://dbpedia.org/resource/Bug-Jargal

http://dbpedia.org/resource/Toilers_of_the_Sea

http://dbpedia.org/resource/Bug-Jargal

http://dbpedia.org/resource/The_Man_Who_Laughs

http://dbpedia.org/resource/Les_Rayons_et_les_Ombres

http://dbpedia.org/resource/Ninety-Three

2.1.4 Linked Data and LOD

Semantic Web Data or RDF data are not necessarily or fully machine-understandable

unless they respect a set of four rules outlined by Tim Berners Lee8 and called the Linked

Data Principles:

1. Use URIs (IRI) as names for things,

2. Use HTTP URIs so that people can look up those names,

3. When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL),

4. Include links to other URIs. so that they can discover more things.

These rules guarantee that RDF data can be accessed whenever looked upon, that

a machine can access the schema/definition of an RDF resource, understand its nature

(rdfs:Class), access other resources linked to this resource via some (rdfs:Property).

It also favors the reuse of existing ontologies, schema and instances to facilitate data

integration. Semantic web data that respect these rules are called Linked Data.

The adoption of the linked data principles by many organizations, governments, com-

panies, developers etc by publishing their data as linked data using open licenses has

allowed to create a large network of linked data called the Linked Open Data Cloud

(LOD) 9. In Chapter 1, we have portrayed the importance and the evolution of the

LOD, please refer to this chapter for some interesting facts about the LOD.

8http://www.w3.org/DesignIssues/LinkedData.html
9httphttp://lod-cloud.net/

http://www.w3.org/DesignIssues/LinkedData.html
httphttp://lod-cloud.net/

2.2. Semantic Data Querying in the LOD 17

2.2 Semantic Data Querying in the LOD

There have been a lot of efforts carried by the database community and later on by the

semantic web community to provide efficient techniques to run SPARQL queries over

semantic data sources. Obviously, the amount of work in this area is considerable and it

is not our aim to review all of it but it is rather to highlight the most referenced works

in the literature in general and in the survey papers in particular. These works can be

classified into 2 main categories as depicted bellow in Fig. 2.5 which summarizes and

shows the typology of the works we cite here.

This literature review is based on the recent dedicated surveys [Özsu, 2016] and

[Rakhmawati et al., 2013] 10.

2.2.1 Centralized (or Data Warehousing) approaches

At the early days of semantic web technologies, these approaches originated from the

relational database techniques to manage the storage and the querying of RDF data.

They are considered as "centralized" because the entire data is maintained in a single

RDF store. [Özsu, 2016] has classified them into five categories of approaches:

1. Direct Relational Mappings:

This approach consists of mapping RDF data directly into a relational database by

putting all the triples in a single three columns table (Subject, Property, Object).

For querying, SPARQL (1.0) queries are translated into SQL queries as it has

been proven possible in [Angles and Gutierrez, 2008]. This approach exploits the

mastered relational database management techniques and amongst the works that

follow this approach we cite Oracle [Chong et al., 2005] and Sesame SQL92SAIL

[Broekstra et al., 2002].

2. Single Table Extensive Indexing:

In contrast with the first category, this approach consists of performing an extensive

indexing while maintaining the single 3 column table. Works that fall into this cate-

gory are Hexastore [Weiss et al., 2008] and RDF-3X [Neumann and Weikum, 2008].

The latter creates indexes for all possible combinations of the subject, property and

object (i.e. spo, ops, sop, osp, pso, pos).

10Note that we don’t keep track of approaches published after 2015 due to a change of interest but the

typology of this state of the art still remains valid for 2017.

18 Chapter 2. Background and State of the Art

Linked Data

Querying

in the LOD

Distributed

Parallel-Processing

[Du et al., 2012]

[Rohloff and

Schantz, 2010]

[Papailiou et al., 2012]

[Husain et al., 2011]

SPARQL endpoint

federation

Hybrid approaches

[Görlitz and

Staab, 2011]

[Acosta et al., 2011]

Index-free /

Cache-based

[Schwarte et al., 2011]

[Saleem et al., 2015]

Catalogue /

Index based

[Quilitz and

Leser, 2008]

[Lynden et al., 2011]

Lookup-based

[Hartig, 2011]

[Ladwig and

Tran, 2011]

[Harth et al., 2010]

[Umbrich et al., 2011]

Centralized

Graph-based

Processing

[Zou et al., 2014]

[Bönström

et al., 2003]

Binary Tables [Abadi et al., 2009]

Property Tables

[Carroll et al., 2004]

[Wilkinson and

Wilkinson, 2006]

[Bornea et al., 2013]

Single Table

Extensive Indexing

[Weiss et al., 2008]

[Neumann and

Weikum, 2008]

Direct Rela-

tional Mappings

[Angles and

Gutierrez, 2008]

[Chong et al., 2005]

[Broekstra

et al., 2002]

Figure 2.5: Typology of approaches for querying linked data in the LOD with some notable

citations

3. Property Tables:

This approach builds a database by creating property tables grouping the most

common properties to a subject. A property table has a single column to store

the subject of the statement. The remaining columns are named upon the co-

occuring properties for that subject and store the values of the objects stated by

the properties in the triples.The most commonly known works that fall into this

2.2. Semantic Data Querying in the LOD 19

category are Apache Jena [Carroll et al., 2004] [Wilkinson and Wilkinson, 2006] and

IBM’s DB2RDF [Bornea et al., 2013]

4. Binary Tables:

In contrast with the property tables approach above, this approach (SW-Store

[Abadi et al., 2009]) builds a two column table containing Property(Subject,Object)

for each property and names it after it. Therefore, there would be as many tables

in the database as the number of existing properties in the initial RDF graph.

5. Graph based processing:

This approach maintains the graph structure of the RDF data by representing

it with adjacency lists. It converts the SPARQL query into a query graph, and

performs sub-graph matching using homomorphism to evaluate the query against

the RDF graph. Several systems follow this approach such as gStore [Zou et al.,

2014] and [Bönström et al., 2003].

Advantages and limits

While the centralized approaches are very efficient thanks to the advances in the relational

database management, they are not adequate for applications involving very large RDF

datasets or involving the Linked Data Cloud sources. Therefore, scalability in terms of

size or distribution of the sources is a major issue for these approaches [Özsu, 2016].

In the first approach, the single table quickly becomes very large and queries become

quite complicated to process. The second approach of extensive indexing suffers from

the overhead of updating the multiple indexes if the data is often updated. The fourth

approach of binary tables require a lot of joins to answer queries since there is a table

per property and insertions would involve a lot of tables at a time as well. The graph-

based approach has many advantages but has a major shortcoming when it comes to

query processing (sub-graph matching) because it is based on homomorphism which is

an NP-Complete problem [Özsu, 2016].

To conclude, although some of approaches can be adapted for a better scalability,

they are not initially designed for the LOD cloud. Therefore, the distributed category of

semantic data querying approaches bellow (2.2.2) is more adequate in such a context.

20 Chapter 2. Background and State of the Art

2.2.2 Distributed approaches

These approaches target the emerging LOD sources and address the problem of how to

run queries over these multiple independent and remote data sources. Three categories

of approaches can be distinguished [Harth et al., 2012]:

2.2.2.1 Lookup-based approaches

This category of approaches relies on the Linked Data Principles which state that in-

terlinked resources should have accessible URIs. Based on the URIs of the resources

referenced in the query, or in the intermediate results, a URI lookup determines the data

sources to be selected in the query processing at query runtime. Simply, the links in

the URIs are followed to fetch new data from the addresses in these URIs and so on.

Additional data summaries (catalogs) can be used locally to accelerate the process.

There are two major issues with this approach: the first is that the data should follow

the Linked Data principles, and the second is the execution time of the query processing

which is very slow compared to the other approaches.

One argument could be raised to highlight the advantage of these approaches: the

heterogeneity of the access methods to the data sources in the LOD. In fact, only 68.14%

of the data sources (RDF repositories) provide a SPARQL endpoint and 39.66% provide

RDF dumps according to LOD cloud statistics11.

We mention amongst them [Hartig, 2011; Ladwig and Tran, 2011; Harth et al., 2010;

Umbrich et al., 2011]

2.2.2.2 SPARQL Endpoint Federation frameworks

Many surveys have studied and compared the existing federated systems, and the reader

can refer to [Saleem et al., 2015] and [Rakhmawati et al., 2013] for a deep study and

comparison.

The frameworks based on the federation of SPARQL endpoints are very common for

processing SPARQL queries in the LOD context. Regardless of the differences between

the famous existing frameworks, they all share the same basic pipeline of query processing.

Given a SPARQL query, the framework first performs a triple pattern-wise source se-

lection to identify the set of data sources that contain relevant results against individual

triple patterns of the query. The source selection information is then used to decompose

11http://sparqles.ai.wu.ac.at/

http://sparqles.ai.wu.ac.at/

2.2. Semantic Data Querying in the LOD 21

the query into multiple sub-queries. Each sub-query is optimized to generate an execu-

tion plan. The sub-queries are forwarded to the relevant data sources according to the

optimization plan. The results of each sub-query execution are finally joined to aggregate

the results of the query [Saleem et al., 2015]. The query decomposition into sub-queries

is referred to as "query rewriting" in the literature.

However, the differences between the existing frameworks are most importantly at the

source selection level. Therefore they can be classified into three categories:

1. Catalog/Index-Based approaches: These approaches perform a pre-processing on

the data sources to create indexes called "Data-set Summaries". These indexes

maintain information about the entities/properties/prefixes (or authorities) con-

tained in each data-set to help make source selection decisions quickly. Therefore,

query processing is very efficient but requires the index to be constantly updated

to ensure the completeness of the results.

Most of the Federated systems fall into this category. We cite the most commonly

known amongst them bellow :

(a) DARQ(Distributed ARQ) [Quilitz and Leser, 2008] is an extension of ARQ

(Apache Jena’s query processing engine). It employs an index that holds the

list of predicates (properties) in a given data-set along with the SPARQL

endpoint URL and other statistics. They refer to their index as "Service

Description", referring to the SPARQL endpoint of a data source as a Service

(which is distinct from a conventional web service). The shortcoming of such

an index is that it is only capable of answering queries with bound predicates.

The query planning algorithm is based on estimated cardinality cost and aims

to reduce the cost of the query processing in terms of execution time and

bandwidth.

(b) ADERIS [Lynden et al., 2011]. At a cold start, ADERIS sends a SPARQL

query to collect all the properties that appear in RDF triples in datasets.

A cache keeps track of the locations of each property amongst the avail-

able datasets. A querying time, the user query is rewritten into several sub-

queries, each one is routed to the corresponding data-source. One limitation

of ADERIS is the lack of a full support of SPARQL.

2. Index-Free/Cache-Based approaches: These approaches do not perform any pre-

processing on the datasets nor use any existing data-set summaries. The main idea

22 Chapter 2. Background and State of the Art

is to collect statistics and create data-set summaries on the fly as the queries come.

The advantage of such approaches is that they guarantee the completeness of the

results. The major issue here is the execution time because all the information about

the data sources are collected right before executing the query. To my knowledge

there is only one system that falls into this category:

FedX [Schwarte et al., 2011] is based on the Sesame Framework. The source se-

lection is based on SPARQL ASK queries and a cache. The cache stores the ASK

results to reduce the processing cost for successive similar queries. As shown in

[Saleem et al., 2015], this reduces greatly the execution time of the next queries.

Because FedX is based on RDF4J12 (formerly known as Sesame), it requires a list of

pre-defined data sources at the initialization of the system without any statistical

information about them.

At the query rewriting step, FedX clusters related triple patterns that can be an-

swered exclusively by unique SPARQL endpoints and sends them as sub-queries to

their corresponding endpoints. This allows the system to delegate the joins to the

data sources (SPARQL endpoins), thus reducing the size of the intermediate results

and the workload on the host server.

Due to its advantageous on-the-fly feature, we have chosen FedX as the federated

query engine in our work as depicted in the next chapter.

3. Hybrid approaches: These approaches use some existing (pre-stored) data sum-

maries such as statistics and collect others on-the-fly using SPARQL ASK queries

for example.

(a) SPLENDID [Görlitz and Staab, 2011] is an extension for Sesame [Broekstra

et al., 2002] that employs VoiD13 (Vocabulary of Interlinked Datasets, an RDF

schema to describe linked datasets) Descriptions as a stored catalog along with

SPARQL ASK queries to verify the VoiD information at the source selection

step. The ASK queries verify weather an element from a triple (Subject,

Predicate, Object) can be resolved by a given data source or not.

(b) ANAPSID [Acosta et al., 2011] is a system that manages its query execution

plan with respect to the data availability and the runtime conditions of the

12http://rdf4j.org/
13http://www.w3.org/TR/void/

http://rdf4j.org/
http://www.w3.org/TR/void/

2.3. Web Services Background 23

SPARQL endpoints. Similar to the above mentioned index-based approaches,

ANAPSID employs a index for the list of predicates contained by datasets. It

sends ASK queries on-the-fly to verify the availability and updates its catalog

accordingly. In addition, it keeps a track of the response-time of the SPARQL

endpoints in the catalog. Therefore, it can use some heuristics for a data

source selection that considers both functional and QoS properties of the data

sources.

2.2.2.3 Parallel Processing

According to [Galárraga et al., 2012] there is an increasingly large number of approaches

and systems that use MapReduce techniques to efficiently process RDF data in the

cloud([Choi et al., 2009; Husain et al., 2011; Papailiou et al., 2012]).

The common basic idea behind using MapReduce is to split RDF datasets into small

chunks and store them in a distributed fashion. At querying time, the graph pat-

tern matching is performed in parallel across several machines in the cloud. The main

difference on the other hand is the storage techniques of RDF triples. For example,

HadoopRDF [Du et al., 2012] partitions RDF triples based on properties by storing in

separate files the triples containing the same properties. On the other hand, SHARD

[Rohloff and Schantz, 2010] partitions RDF triples based on the subject and stores every

partition as a single line of one big file containing all partitions (triples) ([Özsu, 2016]).

According to [Galárraga et al., 2012], a common disadvantage shared by all of them is

the poor response time of Hadoop MapReduce processes. A number of proposals combine

distributed storage (Hbase14 for instance) and MapReduce to improve performances. The

recent work in [Naacke et al., 2017] uses Apache Spark15 which is an alternative to Hadoop

but performs much better in many cases. There is a considerable number of papers in

this topic. The surveys in [Kaoudi et al., 2013] and [Özsu, 2016] are a good starting point

for a literature review of these approaches.

2.3 Web Services Background

In this section we briefly recall the most important notions and concepts about web

services that we make use of in the work presented in this thesis and redefine them

14http://hbase.apache.org/
15http://spark.apache.org

http://hbase.apache.org/
http://spark.apache.org

24 Chapter 2. Background and State of the Art

according to the context of our work.

2.3.1 Web Services

Before getting to define a web service, one should first define a service. The two terms

are often interchangeable but do not stand for the same thing among all scientific com-

munities.

Service: As defined in [Preist, 2004], a service is a provision of value in some domain.

For example, a travel agency books travels for its clients to the destination and in the

dates their clients want. In fact they offer a travel booking service. However, this booking

service can be provided either by phone, directly at their office or through their internet

website. Based on this definition, a service is the value provision no matter the way.

Throughout this thesis, we do not consider this vague definition. We use the term

service to refer to web services or to semantic web services.

Web service: As defined by W3C [McCabe et al., 2004], a web service is "a software

system designed to support interoperable machine-to-machine interaction over a network.

It has an interface described in a machine-processable format (specifically WSDL16).

Other systems interact with the Web service in a manner prescribed by its description

using SOAP17 messages, typically conveyed using HTTP with an XML18 serialization in

conjunction with other Web-related standards".

In the light of this definition, we can say that a web service is a software that interacts

with other software or machines over the internet to provides some services. It interacts

with other systems based on a communication protocol defined by its description that

facilitates communication and data exchange.

This thesis is motivated by the integration of data from data sources with data pro-

vided by services. Therefore, we mainly focus on data-providing services (DPS) that

provide data rather than on transactional and process oriented services.

Service description: A service description is a document that describes what a

service does, i.e, what service it provides, as well as how to communicate and exchange

data with it. Services are mainly described in WSDL, the W3C standard for service

descriptions.

16http://www.w3.org/TR/wsdl
17http://www.w3.org/TR/soap12/
18http://www.w3.org/XML/

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12/
http://www.w3.org/XML/

2.3. Web Services Background 25

From a narrow formalism-independent perspective, a service description depicts two

categories of properties of a web service ([Klusch, 2008]):

1. Functional properties Also called "service capability", these properties describe

what a service can do or what service it provides. They are generally expressed

with four elements:

(a) Inputs: Necessary parameters consumed by a service to provide its "service".

For example, a car rental booking service requires a car pickup date and a

return date.

(b) Outputs: Results provided by a service at the end of its invocation. For

example, a list of offers by different car renal companies for the provided

dates.

(c) Preconditions: conditions that are supposed to hold before the service is

invoked in order to provide its service (outcome) as expected. For example,

the car pickup date should be inferior to the car return date.

(d) Effects: conditions that hold after the service provides its outcome. For

example, in our previous car-rental booking service, after a client books a

rental, the booking is confirmed and his credit card is charged.

2. Non-functional properties They include properties such as its name, provider,

textual description, financial aspects such as a pricing policy, quality of service

(QoS) aspects such as availability, performance, integrity, security, etc.

In the context of this thesis, we make an abstraction of the notion of service de-

scriptions and redefine it from a restricted perspective that takes into consideration the

contributions and approaches presented in this thesis. We define a service description

as a set of three functional properties: Inputs, Outputs and Textual descriptions. We

regard the latter as a functional property based on the assumption that it describes the

inputs and outputs and their relationship in a natural language. For example, Fig. 2.6

illustrates our service description for a service that searches for books written by a given

author.

We we would like to mention here that we do not take into account non-functional

properties, especially quality of service (QoS) aspects which are widely considered in

service discovery and composition (The reader may refer to [Kritikos et al., 2013] for a

thorough literature review of these aspects).

26 Chapter 2. Background and State of the Art

Figure 2.6: Example service description

2.3.2 Semantic Web Services (SWS)

Web services allow machines to interact and exchange data but do not give them the

possibility to understand the semantics of their interactions or of the exchanged data.

Semantic Web Services (often abbreviated with SWS) are a convergence of web ser-

vices with semantic web. As per for the web and semantic web, semantic web services

help machines acquire the semantics of their interactions. Such semantic layer on top of

web services allows for an automatic discovery, composition, invocation and monitoring

of web services. The main characteristic of SWS is the use of semantic-web-based de-

scriptions, often based on a top-level ontology like OWL-S19 or WSML20 which are the

two main efforts to bring a semantic layer on top of web services.

OWL-S (formerly DAML-S) is an ontology to describe web services using OWL

vocabulary. It is based on three description levels: a Service Profile that advertises

the capacity of a service, a Service Model that describes how a service works and how

to interact with it and a Service Grounding that describes its communication protocol.

OWL-S is a submission member to W3C since 2004.

Other efforts include SAWSDL21 which is a W3C recommendation that adds seman-

tic annotations to WSDL descriptions but is not a language and not RDF-based. The

Minimal Service Model22 MSM, a lightweight ontology for modeling services, Linked

USDL [Pedrinaci et al., 2014], etc.

In this thesis, we are interested in service search and service description enrichment.

To match up with our interest in linked data, we only consider semantic web services

19http://www.w3.org/Submission/OWL-S/
20http://www.w3.org/Submission/WSML/
21http://www.w3.org/TR/sawsdl/
22http://kmi.github.io/iserve/latest/data-model.html

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSML/
http://www.w3.org/TR/sawsdl/
http://kmi.github.io/iserve/latest/data-model.html

2.4. Serice Discovery 27

for their integration and automation virtues and we set our objectives and build our

approaches based on that. Therefore, the term web service often refers to semantic web

services.

2.4 Serice Discovery

Web service discovery, or service search, is a very important aspect for both service

providers and users. A good web service is of no use if it cannot be discovered by poten-

tial users. Therefore, service search is as important for web services as web search is for

websites. The web service discovery problem has been addressed since the early days of

web services and has evolved accordingly. New advances in web service technology and

standards, in semantic web as well as in other fields like artificial intelligence and infor-

mation extraction have allowed for constant innovations and progress in service discovery.

In this section, we cast some light on some recent or notable works on the discovery of

Semantic Web Services 23.

The service search process can be seen as a two-fold process consisting in service

description search and service selection. The service description search aims to find

service repositories (or directories) that host service descriptions. This might seem like a

trivial task but it has been seriously addressed in some works like in [Louati et al., 2016].

On the other hand, service selection, also called service matching aims to a) match the

accessible service descriptions with a user query (also called service request) to measure

their relevance for the latter then b) to rank the matched services based on their relevance.

Reviewing the existing service search approaches can be covered from two different

aspects: the system architecture and the service selection technique. Fig. 2.7 shows the

typology of service search approaches from this perspective with some examples of notable

works. For further reading, [Ngan and Kanagasabai, 2013a] and [Klusch et al., 2016]

provide very informative surveys of the SWS discovery approaches and give comparative

summaries.

2.4.1 Search environment architectures

The architecture of the environment in which the service search is conducted plays an

important role in the service search itself. Two major types of approaches can be distin-

23We only cite works that have been published before 2015, year in which we were actively working

on service discovery. Otherwise it would have been very difficult to keep track of new works

28 Chapter 2. Background and State of the Art

Service Discovery

Selection technique

Hybrid

iSem

OWLS-MX3

SeMa2

Non-logical

OWLS-iMatcher

SAWSDL-iMatcher

DSD

AASDU

Logic-based
SPARQLent

iServe

Architecture

Decentralized
AGORA-P2P

Chord4S

Centralized

iSem

OWLS-MX3

OWLS-iMatcher

SAWSDL-iMatcher

SeMa2

Figure 2.7: Typology of service discovery approaches

guished based on the architecture of the service search environment :

2.4.1.1 Centralized

The centralized approaches use central service repositories that can either be local or

distant, single or distributed over a federation of known servers. Therefore, the discover-

able web services are known to the discovery systems and the latter apply their matching

techniques on the available services to match the user query. The advantage of this cat-

egory of approaches is the reduced cost of updating the service repository(ies) and the

guaranteed recall of service search.

Amongst works that operate in a centralized environment of service repositories we

cite: iSem [Klusch and Kapahnke, 2012], OWLS-MX3 [Klusch and Kapahnke, 2009],

OWLS-iMatcher [Kiefer and Bernstein, 2008], SAWSDL-iMatcher [Wei et al., 2011] and

SeMa2 [Masuch et al., 2012].

2.4.1.2 Decentralized

The decentralized approaches are based on the fact that the knowledge about web services

is distributed over a structured or an unstructured P2P network. In structured P2P

networks, there is a query routing protocol and the knowledge about web services can be

duplicated and spread over multiple peers. In unstructured P2P networks, each peer has

2.4. Serice Discovery 29

a knowledge of his web services and those known by his peers. To search for unknown

web services, random walks should be performed across the network.

As in [Klusch et al., 2016], unstructured P2P networks do not guarantee to find all

services within the network and the operation can be onerous whereas the structured

P2P networks guarantee a 100% recall. We cite among the works based on P2P networks

AGORA-P2P [Küngas and Matskin, 2005], Chord4S [He et al., 2013] and [Di Modica

et al., 2011].

2.4.2 Service selection techniques

The service selection technique is the technique used by a service search system to compare

and match the user query (commonly called a service request) with a service description

to measure its relevance for the query. Depending on the matching technique, service

search systems can be classified into three categories:

2.4.2.1 Logic-based approaches

The logic based approaches use semantic web matching techniques to match a service

request with service descriptions. They use RDF and OWL entailment rules as a logical

inference technique. More precisely, they compare the concepts (ontology classes) used

in service descriptions, mainly the concepts of inputs, outputs, preconditions and effects

(IOPE) with those of the service request.

There are two types of possible matches: a) an exact match in which the same classes

are used in both the service description and the service query and b) an approximate

match in which the service IOPE concepts are sub-classes of the query’s. The latter is

often called a subsume match because some concepts are subsumed by others. Another

case of approximate match that is not addressed by all logic-based approaches is when

the service description uses equivalent classes (i.e, via owl:equivalentClassOf) from

the same or from different ontologies.

Among the exclusively logic-based approaches we mention: SPARQLent [Sbodio,

2012] that matches the IOPE of OWL-S services and iServe [Pedrinaci et al., 2010]

that supports different description formalisms and languages including OWL-S, WSML,

SAWSDL, etc thanks to the use of the MSM vocabulary that regroups many formalisms

in one.

30 Chapter 2. Background and State of the Art

2.4.2.2 Non-logic-based approaches

This type of approaches is based on the textual and structural similarity between the

service descriptions and the user request. Document-level techniques (such as TF-IDF24)

and word-level techniques are applied in this approach to calculate textual similarities.

Taxonomy and non-logical ontology matching techniques are also applied in this approach.

They consist in comparing at a syntax and graph level the ontologies used to describe

the service IOPE with those used for the service request.

Amongst the popular works that belong to this category of service matching we men-

tion: OWLS-iMatcher [Kiefer and Bernstein, 2008] and SAWSDL-iMatcher [Wei et al.,

2011], DSD [Palathingal and Chandra, 2004], AASDU [Klein and König-Ries, 2004].

2.4.2.3 Hybrid approaches

Hybrid approaches combine both the logic-based and non-logic-based matching tech-

niques. They are the top performers in the benchmarks and test-beds because they take

into account multiple criteria for matching. The most popular ones are:

• OWLS-MX3 [Klusch and Kapahnke, 2009] is one of the most notable hybrid service

matchmakers. It applies logical and non logical techniques at three levels: a) logical

matching: it compares the IO for exact and approximate matching (RDF entail-

ment for sub-classes). b) textual matching: it applies a token-based text similarity

matching with the query tokens. c) structural matching: it compares the ontolo-

gies of services and queries on a graph-structure lavel based on a syntax matching

(similarly to some ontology matching works) but without any reasoning.

• iSem [Klusch and Kapahnke, 2012] is the successor of OWLS-MX3. It applies the

same matching techniques (mostly) as its predecessor but takes into consideration

the Preconditions and Effects (PE) in addition to (IO).

• SeMa2 [Masuch et al., 2012] is another hybrid service matcher that combines mul-

tiple logical, textual, taxonomic and reasoning techniques to compare service de-

scriptions with service requests.

24Term Frequency-Inverse Document Frequency

2.5. Automatic composition of web services 31

2.5 Automatic composition of web services

Service composition is one of the most addressed topics in the domain of Web Services.

Many survey articles have studied the recent and most prominent works in this domain

like [Rao and Su, 2004], [Zeshan and Mohamad, 2011] and [Sheng et al., 2014]. The survey

in [Lemos et al., 2016] portrays an interesting classification of the existing approaches from

different perspectives.

In this section, we mention only a few notable works on automatic composition of

web services and SWS that set some baselines upon which we build our automatic SWS

algorithm later.

1. [Sycara et al., 2003] This paper is one of the reference papers in SWS research

field. It introduces a baseline platform for SWS publishing, discovery and compo-

sition. Back in the time SWS used to be described in DAML-S [Ankolekar et al.,

2002], the predecessor25 of OWL-S.It highlights the facility given by semantics to

service composition and shows a scenario of how different services can be composed

and invoked. However, the paper doesn’t describe any technique to perform such

composition.

2. [Rao et al., 2006] This paper introduces a semi-automatic approach to compose

SWS. The authors argue that SWS are not always fully and precisely described.

In fact, automating the SWS compositions on the basis of the hypothesis of fully

described services seems to unrealistic. For this purpose, this paper shows that

human interaction at some discovery or composition steps would allow for efficient

and accurate service compositions.

The proposed approach uses an adapted version of GraphPlan [Blum and Furst,

1997]. GraphPlan is an an algorithm for automated planning given an initial state

of the composition graph, a goal and a set of actions with their preconditions and

effects. It takes into account mutually exclusive (mutex) states and actions to omit

inconsistent composition plans. The aim of the algorithm is to find a plan that

transforms the initial state of the graph into a state matching the composition goal

by applying actions at different levels (times).

The main contribution of this approach is the use of mutex information that indicate

composition inconsistencies, conflicts, or the rules that require user intervention. A

25http://www.daml.org/services/owl-s/

http://www.daml.org/services/owl-s/

32 Chapter 2. Background and State of the Art

desired automation level can be defined by users based on such mutex information.

3. [Lécué and Léger, 2006; Lécué et al., 2008] These works introduce a model for

service composition called Casual Link Matrix (CLM). A casual link is a relevance

link between an input of a service and an output of another represented by (Input,

Similarity(Input, Output), Output). The CLM provides a solid background for

planning algorithms to find accurate composition plans based on the similarity

scores. For instance, a CLM reveals the types of match between two services as

I mentioned in section 1.1. This model can be used to make composition plans

by helping the algorithms to choose what service can be linked to the ones in the

current steps. However, this model has to be calculated for all services before

planning so that plans can be made on basis of such model.

The authors introduced later a QoS-aware CLM+ model [Lécué et al., 2008] that

takes into account QoS aspects of services.

4. [Rodriguez-Mier et al., 2012] This paper introduces a service composition algorithm

based on A*. First, it generates a service dependency graph for all services in a

repository. A service dependency graph (SDG) is a graph connecting services that

depend on each other, i.e, some consume the outputs of others. This operation is

based on a pre-calculated index of all services in the repository and their I/O. After

that, it performs some optimizations to reduce the size of the service dependency

graph and improve the execution time of the algorithm. This work has been eval-

uated using all the WS-Challenge test-sets (2001 to 2008) and shows some good

results compared to the winners of these challenges.

However, this work doesn’t take into account the semantic layer on top of SWS In

addition, the cost function in A* takes into account only the number of services per

layer (step) and doesn’t rely on any service-related features.

5. [Yan et al., 2008] This work introduces an approach that represents service de-

pendency graphs as AND/OR graphs and uses an AO* search algorithm26 to find

execution plans through dependency graphs. It shows great performance on large

repositories of services and was ranked at the top for three times in the late WS-

Challenges (2007,2008,2009).

26AO* is an adaptation of A* to AND/OR graphs

2.5. Automatic composition of web services 33

Inspired by this work and the good results it shows, we introduce in this thesis an

automatic semantic service composition algorithm based on AND/OR graphs that

takes advantage of the semantics of SWS.

6. [Lee, 2013] This work introduces another AI-based algorithm for automatic com-

position of SWS. It is one of the few that distinguish RESTful APIs from SOAP

services. At a pre-processing step, it leverages web APIs with semantic annotations

using user-provided ontologies. After that, it generates a Directed Similarity Graph

(a service dependency graph) that links all services in a repository based on the

ontological similarities between their I/O parameters.

When users submit a service composition request, the algorithm automatically finds

(thanks to semantic annotations) composition plans using a BFS (Breadth-first

search) algorithm. Unfortunately, the authors do not provide any metric measure-

ments of their experiments that help us compare it to other works.

7. PNBA*[Rios and Chaimowicz, 2011] This work presents an optimized version of

A* adapted for parallel execution on multiple machines. They also present a bi-

directional plan search algorithm to find the optimal composition plans faster. Ex-

periments show that the execution time and the number of nodes browsed before

finding the optimal plan is reduced to the half for the bidirectional version and

by three quarters for the parallel bidirectional version. The authors give a good

overview of the main efforts on adapting A* to work in parallel or in a bidirectional

fashion.

In this chapter, we gave a brief introduction to the background of our thesis. We also

presented the related works in data and service search as well as in service composition.

There are still some works very close in terms of approach or objectives to our work

that we portray further in their corresponding chapters.

Chapter 3

Data and Service Search

The goal of this chapter is to present LIDSEARCH, a framework for searching linked

data and semantic web services based on SPARQL. This chapter is structured as follows:

In the first section, we relate in depth a few related works that we consider particularily

similar or complementary to our work. Next, we present the context and the goals of

searching both data and services. We also define some important notions and elements

in such a context. In section 3.3, we present the search process applied by the framework

and give details about each step and the algorithms used in it. After that, we present

the implementation details of our framework and all the modules internal and external

involved in. Finally, we evaluate the framework from different perspectives: as a whole

system and at elementary levels separately. Some of the results presented in this chapter

are published in Mouhoub et al. [2014] and [Mouhoub et al., 2015].

3.1 Related works on Data and Service Search

In this section, we talk about some worth-mentioning works that do not fall directly or

exclusively into the categories of related works depicted in chapter 2. These works are

particularly similar or related to our work in this thesis in many of its aspects.

1. [Palmonari et al., 2011] This work has inspired our thesis at its very beginning

in establishing our first steps and objectives. The main objective of this work

is to help users (developers) find useful web services for their data queries. It

allows them to ask SQL-like queries to search for data in some static data sources,

then finds relevant web services for their query. A relevant service to the query

could be for example a service that provides some or all of the data requested in

the query. During the process, semantic annotations and ontology generations are

automatically generated to be used as a basis for data and service matching. The

whole process of data and service search and aggregation in this paper is summarized

in figure 3.1

36 Chapter 3. Data and Service Search

Figure 3.1: [Palmonari et al., 2011] approach overview

First, the system builds global ontologies for data (Data Ontology DO) and for

services (Service Ontology SO). For data, it generates a domain ontology from the

data schemas of the indexed data sources using WordNet1. The DO generation

basically annotates the data schemas with WordNet to obtain the semantics. For

services, it generates a global service ontology combining the ontologies used in

OWL-S descriptions of all services in a repository. The global SO summarizes the

functionality (I/O) offered by all web services known to the system.

At runtime, the system generates a Domain Ontology for the user query then maps

it with the DO and SO to find relevant data and services. This mapping is based

on syntactic and lexical (WordNet) similarity between the nodes of the graphs of

ontologies. To find data, the system rewrites the user query into a set of equivalent

queries corresponding to the schema of each data source. Relevant services are found

by matching the query keywords to the SO graph nodes. Furthermore, the query

keywords list is extended with similar keywords from the DO (WordNet similarity)

to extend the service search space.

2. [Speiser and Harth, 2011a]

This work aims to integrate web APIs as a part of the LOD cloud by adhering

them to the Linked Data principles [Bizer et al., 2009]. The resulting APIs are

called Linked Services (LIDS). LIDS have the following requirements and features:

1http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

3.1. Related works on Data and Service Search 37

(a) The invocation URL of a linked service might contain RDF resource IRIs

as bindings for the input parameters (i.e. API calls take literals for input

parameters as well as IRIs).

(b) The LIDS description (in RDF) describes the relations between the inputs and

outputs and therefore discloses a part of the underlying schema of web APIs.

(c) The output format of linked services is RDF

(d) The output of an API call is considered as linked data because it can be

accessed with its corresponding API call URI.

However, creating LIDS require manual efforts from API developers. First, de-

velopers should manually annotate web APIs with semantics and create a LIDS

description using a provided template. In this template, I/O are described as a

basic graph pattern (BGP). After that, they should implement wrappers in JAVA

on top of APIs to create semantic versions of APIs called LIDS.

The authors also propose an algorithm to interlink the wrapped APIs (LIDS) with

selected linked data in order to enrich the LOD.

Figure 3.2: LIDS [Speiser and Harth, 2011a] approach overview and process summary

Although this work doesn’t address the search problem, it defines a baseline for

integrating Data and Services that helps not only search for services and data but

also helps retrieve and integrate linked data with APIs data. Another advantage

of this approach is the explicit definition of the relation between the inputs and

outputs of a service within its description and results. This feature increases the

precision of service discovery because it takes into account the relevance of the

38 Chapter 3. Data and Service Search

outputs regarding the inputs. However, it requires a lot of intervention from the

user for the semantic annotation. Hopefully, there are other works that tackle the

automatic wrapping of semantic web APIs such as Karma [Taheriyan et al., 2012a]

(see bellow).

3. Another similar work in [Preda et al., 2009] called ANGIE consists in enriching the

LOD from with data from RESTful APIs and SOAP services by discovering, com-

posing and invoking services to answer a user query. However, this work assumes

the existence of a global schema for both data and services which is not the case

in the LOD. This assumption makes ANGIE domain specific and not suitable for

general purpose queries.

4. Some recent works could complement our work such as [Harth et al., 2013] which

proposes an approach that uses Karma [Taheriyan et al., 2012a] to integrate linked

data on-the-fly from static and dynamic sources and to manage the data updates.

3.2 Data and Service querying

In the light of the motivations expressed in the introduction chapter, we propose a Frame-

work that makes it possible to search for both data and relevant services in the LOD.

Let’s consider the following example scenario illustrated in figure 3.3: a user wants to

know all writers born in Paris as well as the list of all their books. This query is written

in SPARQL in listing 3.1 Answers for this query in the LOD might supposedly contain all

such writers in DBpedia. However, their published books are not all listed in DBpedia.

In this case, data is not complete and might need to be completed with full book listings

from services like Amazon API, Google Books API, etc Some of the latter APIs can also

provide complementary information on the books such as their prices, friends who read

them, etc. In addition, there are some other relevant services that allow the user to buy

a given book online. However, if the user wants to buy a given book from a local store

and there is a service that takes only an ISBN number as input to return the available

local stores that sell this book, then, in that case, a service composition can be made to

return such information.

The goal of our framework is to extend a search of linked data with a service dis-

covery/composition to find relevant services that provide complementary data. Such a

search often requires distinct queries: a) data queries to lookup in the LOD to find data

3.2. Data and Service querying 39

Figure 3.3: Process of discovering services with a data query

b) service requests to discover relevant services in some SWS repositories and c) service

composition requests to create relevant service compositions in case no single relevant

service is found. Our framework searches for both (data and services) starting from a

single query from the user called the data query, i.e. a query intended to search only for

data. From this query, it automatically issues service requests and finds relevant services

or generates service compositions.

Figure 3.4: Process of discovering services with a data query

Figure 3.4 shows an overview of our approach to search for services in parallel to

data. When a SPARQL data query is submitted by a user or an agent, two parallel

search processes are launched:

1. Data search process: A process to manage the query answering in the LOD data

sources. These sources are distributed and accessible via SPARQL end-points.

Thus, a SPARQL-federation approach along with the appropriate optimization and

query rewriting techniques is used for this purpose.

40 Chapter 3. Data and Service Search

2. Service search process: A process to discover and possibly compose services that

are relevant to the data query. An analysis of the data query is required in order

to transform it into one or multiple service requests.

SELECT ?person ?book

WHERE {

?person rdf:type dbpedia -owl:Writer ;

dbpedia -owl:birthPlace dbpedia:Paris .

?book dbpedia -owl:author ?person ;

dbpedia -owl:isbn ?isbn .}

Listing 3.1: Example Data Query QD

Definitions

To better explain the details of our search framework, we first define some important

concepts that we address and use in the context of our framework.

1. Nodes: In the context of SPARQL, we denote an RDF term or a variable as a

node n. Nodes can either be literals like "Les misérables", URI2 references like

"http://dbpedia.org/page/Les_Miserables"3 or query variables that are hard

to miss with their "?" prefix like "?book".

2. Triple patterns A triple pattern is a set of three whitespace-separated nodes

commonly read "subject predicate object" or "subject property object". A property

or a predicate is a variable, an rdfs:property or an owl:property node that links

a subject to an object. Triple patterns are the elementary unit of

3. Graph patterns

A Graph pattern is a set of triple patterns that can take one of the following forms:

(a) Basic Graph Pattern (BGP): a set of one or more triple patterns. In a SPARQL

query, a query solution should match all the triple patterns of a BGP.

(b) Optional Graph Pattern: a graph pattern that can be coupled with another

graph pattern to extend its solution. A query solution should either match

both graph patterns or at least the non-optional graph pattern. In SPARQL,

it is denoted with the OPTIONAL keyword.

2Since RDF 1.1, the standard refers to IRIs instead of URIs which are a subset of URIs that omit

spaces
3There is a fourth type which is blank nodes that we won’t address here

3.2. Data and Service querying 41

(c) Group Graph Pattern: a set of graph patterns. A query solution should match

all the graph patterns of a group graph pattern.

(d) Union Graph Pattern: also called an Alternate Graph Pattern is a set of graph

patterns for which a query solution matches either or all of them. In SPARQL,

alternate graph patterns are coupled using the UNION keyword.

4. SPARQL query: A SELECT SPARQL query consists in a set of one or more

graph patterns called a query pattern contained within the WHERE clause that ought

to be matched against a dataset (data graph). It also contains a set of variables

contained within its SELECT clause that ought to appear in the query results. It

consists at its finest level of granularity in nodes as we defined them above.

5. Nodes and Concepts (n, cn): We define a node n 2 N in the context of a

SPARQL query as a part of tuple (n, cn) where cn is its corresponding concept

formally defined by: (n, cn) : (n 2 N, cn = Concept(n)).

A Concept is the reference rdfs:class or owl:class used to describe the rdf:type

of a node in its reference ontology Θ. It is obtained with the function Concept(n).

6. Data Query (QD): A data query QD is a SPARQL query that was basically

written to search for data in the LOD that match its graph pattern. Listing 3.1

shows an example of a data query for the provided example above.

7. Service Request (Rs): Given a data query QD, a service request Rs = (InD, OutD)

is a couple of two sets InD, OutD created by analyzing QD in order to extract in-

puts and outputs that could be considered as parameters of a service request to

find relevant services for QD. InD = {(n, cn)} is a set of service inputs provided

implicitly by the user in QD in form of Literals or URIs in the triple patterns of

the WHERE clause. OutD = {(n, cn)} is a set of service outputs that are explicitly

requested by the user in the query in form of variables in the SELECT clause. More

details are provided in section 3.3.1

8. Service descriptions (Ds): In a service collection S, every service s is described

by Ds = (InS, OutS) where InS is the set of inputs needed for a service s and OutS

is the set of outputs provided by the service. A service description can be in any

known SWS formalism that is RDF/OWL based and that describes the functional

and the non-functional features of a service. Currently in our work, we are only

42 Chapter 3. Data and Service Search

interested in the inputs and outputs of a service which are parts of the functional

features.

9. Similar concepts (en) For a given concept of a node cn, there exists a set of

one or more equivalent (similar) concepts en = Similar(cn) where Similar(cn)

is a function that returns the similar concepts of a given concept defined in its

ontology by one of the following rdfs:property predicates: a) owl:sameAs b)

owl:equivalentClass and c) rdfs:subClassOf in either directions.

10. Service query (Qs) Similarly in the QD definition above, the service query is a

SPARQL query written to select relevant services from their SWS repositories via

their SPARQL endpoints . It consists of sets of triple patterns that match the

inputs and outputs of Rs with inputs and outputs of a service in S. The triples of

Qs follow the SWS description model used by the repositories to describe services.

3.3 Service discovery with SPARQL

To deal with the heterogeneity of the SWS descriptions and the distributed deployments

of repositories containing them, we choose to issue service requests in SPARQL queries

and adapt them to each description model based on the following assumptions: a) the

data in question adheres to the principles of linked data as defined in [Bizer et al., 2009]

b) SWS are described by RDF based languages such as OWL-S or MSM[Kopecky et al.,

2008], c) SWS repositories offer access via SPARQL endpoints to their content.

In addition, existing SWS repositories such as iServe are accessible via SPARQL

endpoints. This allows to select SWS and perform explicit RDF entailment on their

descriptions to extend the search capabilities. The RDF entailment is done explicitly

by rewriting SPARQL queries since the existing implementations SPARQL engines don’t

offer this feature. Furthermore, using SPARQL allows to deal with the heterogeneous

SWS descriptions more effectively without intermediate mapping tools.

We distinguish two kinds of service queries that can be relevant depending on the goal

of the discovery. For a given service request Rs extracted from a data query QD, the user

may want to find one of following kinds of services:

1. Services that provide all the information requested by the user, i.e provide all the

requested outputs regardless of the given inputs. However, the more inputs of

the request a service consumes, the more relevant it is. For example, taking into

3.3. Service discovery with SPARQL 43

account the location as an input might help the service returns data that concerns

this location. Such services would be useful as an alternative or an additional data

source to the LOD data. They are obtained by applying a full matching between all

the desired outputs in the service request and the provided outputs in the service

description. We refer to this matching strategy as All(Out,Out) and we define it as:

All(Out,Out)#1(Rs, Ds) : {8o 2 OutD : o 2 OutS}[=) (OutD ✓ OutS)]

In some cases, if the user wants to find a service that not only provides all the

desired outputs but also consumes all and only all the given inputs in the user

query, then we apply the special strategy All(In,In)^(Out,Out):

All(In,In)^(Out,Out)(Rs, Ds) : {8id 2 InD, 8is 2 InS, 8od 2 OutD : id 2 InS ^ is 2

InD ^ od 2 OutS}[=) (InD = InS) ^ (OutD ✓ OutS)]

2. Services that consume some of the inputs or the outputs of the request, or that

provide some of the inputs or the outputs of the request. Such services would be

useful to: a) provide additional information or services to the data, b) discover

candidate services for a mashup or composition of services that fit as providers or

consumers in any intermediate step of the composition. The service request for

such kind of services is obtained by applying one of the strategies bellow:

(a) Services that consume the some of the inputs of the service request:

Some(In,In)(Rs, Ds) : (InD \ InS 6= φ)

(b) Services that consume some of the desired outputs of the service request:

Some(Out,In)(Rs, Ds) : (OutD \ InS 6= φ)

(c) Services that provide some the outputs of the service request:

Some(Out,Out)(Rs, Ds) : (OutD \OutS 6= φ) ^ (OutD * OutS)

(d) Services that provide some of the inputs of the service request:

Some(In,Out)(Rs, Ds) : (InD \OutS 6= φ)

3.3.1 Service Request Extraction

The data query is analyzed to extract elements that can be used as I/O for a service

request. Outputs are simply the selected variables of the query. Inputs are the bound

values that appear in the triples of the query.

44 Chapter 3. Data and Service Search

The analysis of the data query QD allows to extract the inputs and outputs of QD

using one of the following rules:

1. Variables in the SELECT *, (selection variables) are considered as outputs od =

(n, null) 2 OutD simply because they are explicitly declared as desired outputs of

the data query.

2. Bindings of subjects or objects in the WHERE clause of QD, i.e literals and RDF re-

sources URIs, are considered as inputs id = (n, null) 2 InD. This can be explained

by the fact that a user providing a specific value for a subject or an object simply

wants the final results to depend on that specific value. The same way, a service

requiring some inputs returns results that depend on these inputs.

The service request extraction consists of populating InD and OutD with the nodes

of the elements mentioned above. Algorithm 1 gives an overview of the Service Request

Extraction.

The SPARQL operators like OPTIONAL, UNION, FILTER, etc can reveal the pref-

erences of the user for service discovery and composition. For instance, the I/O ex-

tracted from an Optional block mean that the user doesn’t require services that neces-

sarily provide/consume the optional parts. Therefore, the service request for such a data

query is obtained using some of the loose strategies defined in section 3.3.

Algorithm 1 Service Request Extraction

Input: QD

Output: InD, OutD

1: OutD.nodes GetSelectVariables(QD) . Get the output variables

2: triples GetAllQueryTriples(QD) . Get all the query triples

3: for each t in triples do

4: if isConcrete(subject(t)) then . check if URI or literal

5: InD InD [{(subject(t), null)}

6: else if isConcrete(object(t)) then

7: if predicate(t) 6= ”rdf : type” then

8: InD InD [{(object(t), null)}

9: end if

10: end if

11: end for

3.3. Service discovery with SPARQL 45

Table 3.1 shows an example a service request elements extracted from QD in listing

3.1.

Table 3.1: Example results of a service query extraction from a data query

InD OutD

(dbpedia:Paris, null) (?person, null)

(?book, null)

3.3.2 Semantics Lookup

Once the service request elements are extracted from the query, we try to find the se-

mantics of the previously extracted nodes with no concept: (n, null). This is organized

in two successive steps : a) concept lookup and b) similarity lookup which are detailed

bellow :

Algorithm 2 Concept Lookup in Query

Input: n 2 (InD [OutD), QD

Output: cn . Output a concept for a given node

1: cn Null

2: T GetAllQueryTriples(QD) . Get all the triples of QD

3: for each t in T do

4: if (n =subject(t)) ^ (predicate(t) = "rdf:type") then

5: cn object(t)

6: end if

7: end for

8: return cn

3.3.2.1 Concept Lookup

In general, concepts can either be declared by the user in the data query (the user likely

specifies what he is looking for) or in a graph (set of triples) in an rdf store in the LOD.

The later can be the ontology triples (schema) or the instances (data). Concept lookup

is applied on the three above sequentially and stops when the concept is found at any.

We do not distinguish between the input nodes in InD and the output nodes in OutD

during the process of semantics lookup. Even tough the inputs are particularly concrete

46 Chapter 3. Data and Service Search

values and not variables which seems to give more information on them, our semantics

lookup process works for both.

1. Concept Lookup in Query:

The concept lookup process starts looking for the concept of a node n in the QD

triples. The concept is the concrete value given by a URI and linked to n via the

property rdf : type: i.e. "n rdf : type conceptURI". Algorithm 2 summarizes the

lookup in QD.

In the example query in listing 3.1, the concept of ?person is given in QD as

dbpedia− owl : Writer, but the concept of book is not given in QD.

2. Concept Lookup in Ontology:

If cn is not found in QD, a concept lookup query qc in SPARQL is created to look

for the concept of n in the ontologies in which it is suspected to be in.

Basically, n appears as a subject linked to an object by a predicate p (or vice

versa). The later is a property that has a definition in an ontology. Therefore, in

the definition of the later, the concept of n, or a super/sub class of it, is used to

describe the rdfs : domain (resp. rdfs : range) of p. The concept cn is obtained

from the ontology graph of p with a SPARQL query qc.

As a matter of fact, if n appears in multiple triples in QD and is used with differ-

ent predicates then the looking-up in ontologies might probably return a different

concept for each predicate (eg. in table 3.2). These different concepts are likely a

different abstraction level for the same concept; Some are sub-concepts of others.

However, in some cases, very generic concepts such as owl : thing or very specific

ones can condemn service search either by returning non relevant services or by

eliminating the chances of finding one. In this case, the choice of the proper con-

cept depends on the description of the properties used in the data query. This is a

design question that intervenes during the design of ontologies.

Choosing the right concept will probably affect the service discovery process. How-

ever, if there are multiple predicates related to n, multiple queries can be issued,

and the different results can be considered as similar concepts. Therefore, this will

turn the concept lookup process into an All In One process that finds both concepts

and similar concepts with the same queries.

3.3. Service discovery with SPARQL 47

In the example QD in listing 3.1, the concept of ?book is potentially declared in

DBpedia ontology as the rdfs : domain of the properties dbpedia − owl : isbn (a)

and dbpedia − owl : author (b). Algorithm 3 constructs the SPARQL queries in

listings 3.2 and 3.3 (resp.) to find the concept of book. However, each query returns

a different concept as shown in table 3.2.

SELECT ?bookConcept

FROM <http :// dbpedia.org/ontology/>

WHERE {

dbpedia -owl:isbn rdfs:domain

?bookConcept .

}

Listing 3.2: Concept Lookup in Ontology

example (a)

SELECT ?bookConcept

FROM <http :// dbpedia.org/ontology/>

WHERE {

dbpedia -owl:author rdfs:domain

?bookConcept .

}

Listing 3.3: Concept Lookup in Ontology

example (b)

Table 3.2: Example results of a service query extraction from the data query in Listing

3.1

?bookConcept (a)

dbpedia:Work

?bookConcept (b)

dbpedia:Book

3. Concept Lookup in Data instances:

If for any reason, the ontology schema are not accessible or don’t provide an answer,

then the concept of n might also be found in within the data instances. This

depends on the content of the data sources, eg. DBpedia provides concepts within

the instances. The concept is obtained by searching in the data source to which

QD is destined using a SPARQL query.

To generate this concept lookup query qc, we take all the triples from QD in which

n appears as a subject or as an object and then insert them in the WHERE clause

of qc. We add a triple pattern "n rdf : type ?type" and set the ?type variable as

the SELECT variable of qc.

In the instances data, for a given triple entity, multiple concepts can be attributed

to the same entity using multiple rdf : type triples. To increase the accuracy

of this particular Concept Lookup, the most popular concept is selected among

the rest. To get the most used concept, we count the number of instances that

use each concept and select the most used one. This can be done by adding a

48 Chapter 3. Data and Service Search

Algorithm 3 ConceptLookupInOntology(n)

Input: n 2 (InD [OutD), QD . A node without a concept

Output: cn . Outputs a concept for a given variable

1: T GetQueryTriples(QD, n) . Get all triples of QD where n appears

2: addTriples(qc, T) . Create qc query and add the T triples in it

3: for each t in T do

4: if isConcrete(predicate(t)) then

5: ns GetNameSpace(predicate(t))

6: else continue . skip the current iteration if predicate p is a variable

7: end if

8: AddFromGraph(qc, ns) . Set FROM < ns > in qc

9: if n = subject(t) then

10: l ”predicate(t) rdfs : domain ?concept”

11: else

12: l ”predicate(t) rdfs : range ?concept”

13: end if

14: AddTriple(qc, l) . add the triple l to qc

15: cn GetQueryResults(qc)

16: if cn 6= null then

17: return cn . return cn once found using the current predicate

18: end if

19: end for

20: return null . return null if no concept is found

COUNT (?type as ?counter) and sort the results in a descending order (ORDERBY

DESC ?counter)

Listing 3.4 shows an example concept lookup query to find the concept of ?book

within the instances of DBpedia. This query is generated using Algorithm 4. Table

3.3 shows the returned results of the later query. The returned concept is therefore

the most used one with books that are written by people and have an isbn number.

SELECT ?bookConcept (COUNT (? bookConcept) as ?cCount)

WHERE {

?book dbpedia -owl:author ?person .

?book dbpedia -owl:isbn ?isbn .

?book rdf:type ?bookConcept .

}

3.3. Service discovery with SPARQL 49

ORDER BY DESC (? cCount)

LIMIT 1

Listing 3.4: An example query of Concept Lookup in Data instances

Table 3.3: Example results of a concept lookup query in data instances

bookConcept cCount

dbpedia-owl:Work 23851

Algorithm 4 ConceptLookupInData

Input: n 2 (InD [OutD), QD

Output: cn . Outputs a concept for a given variable

1: T GetQueryTriples(QD, n) . Get all triples of QD where n appears

2: addTriples(qc, T)

3: addSelectVar(qc, ?type) . Set ?type as a result variable

4: t1 "n rdf:type ?type"

5: addTriple(qc, t1)

6: setCountAs(qc, ?type, ?counter)

7: setOrderBy(qc, ?counter,DESC)

8: setLimit(qc, 1)

9: cn GetQueryResults(qc)

3.3.2.2 Similarity Lookup

To extend the service search space, we use the similar concepts en of every concept cn

in the service search queries along with the original concepts. To find these similar con-

cepts, we use the rules given by the definition in section 3.2. We distinguish two types

of similarities that rely strongly on the Linked Data principles : a) Equivalence simi-

larity defined by owl : sameAs and owl : equivalentClass relations and b) Hierarchical

similarity defined by rdfs:subClassOf relations.

1. Equivalence similarity:

The similar concepts of cn are defined in ontologies as objects or subjects for the

predicates owl : sameAs and owl : equivalentClass. Eg: "?cnowl : sameAs?e" or

"?eowl : sameAs?cn". To find them, we run a SPARQL query on the ontologies

50 Chapter 3. Data and Service Search

(schema). However, due to the fact that Linked Data is based on referencing other

sources, the owl : sameAs mentions can be anywhere in the LOD and not just in

the main ontology. This is observed on DBpedia which declares sameAs links to a

few sources while DBpedia entities are declared as sameAs in many other sources.

Listing 3.5 shows an example similarity lookup query that searches for owl:sameAs

concepts in DBpedia ontology.

For the mentioned above reasons, we need to run a SPARQL query on all known

schemas to find equivalent concepts. An alternative solution is to use the sameAs.org4

API which provides sameAs URIs from the LOD for any given one.

SELECT ?similarConcept

FROM <http :// dbpedia.org/ontology/>

WHERE { { dbpedia -owl:Book owl:sameAs ?similarConcept .}

UNION

{ dbpedia -owl:Book owl:equivalentClass ?similarConcept .}

UNION

{ ?similarConcept rdfs:subClassOf dbpedia -owl:Book .}

}

Listing 3.5: An example query of Similarity Lookup in Ontology

2. Hierarchical similarity:

The hierarchical similarity given by the rdfs : subClassOf can be obtained from

ontologies in the same way as the Equivalence similarity. In the example in list-

ing3.5, we can add the following triple in a union block to fetch the subClasses of

cn : "?similarConceptrdfs : subClassOfdbpedia− owl : Book.".

However, in some cases, the rdf : type declarations of data instances are enriched

with an entailment of all concepts and super-concepts. This is observed in DBpedia,

which even provides a seperate rdf store for rdf : type declarations. In such a case,

the accuracy of the similarity lookup can be increased by getting the most popular

sub-concepts for a given concept. However, sub-classes en can are more specific

than cn which makes some of them irrelevant for the context of the query. For

example, the concept dbpedia − owl : Work has many sub-concepts which are not

relevant to the context of querying for books and authors such as Firm, Website,

Musical, etc. In order to get only the relevant sub-concepts, i.e. WrittenWork and

4http://sameas.org/

3.3. Service discovery with SPARQL 51

Book, we use the query triples in which n is involved and look for the most popular

sub-concepts among those used in the matching instances.

In order to get these sub-classes in data instances, we use algorithm 5 (similar

to algorithm 4 but slightly different) in which we declare another variable as an

rdf : type of n and tell that "?similarTyperdfs : subClassOf+?type". We count

the number of instances that use ?similarType among those matching the query

triples and choose a limited number of the most popular ones. Listing 3.6 shows an

example similarity lookup query that returns the top 10 most popular subclass of

bookConcept.

SELECT ?similarConcept (COUNT(? similarConcept) as ?cCount)

WHERE {

?book dbpedia -owl:author ?person .

?book rdf:type ?bookConcept .

?book rdf:type ?similarConcept .

?similarConcept rdfs:subClassOf+ ?bookConcept .

}

ORDER BY DESC (? cCount)

LIMIT 10

Listing 3.6: An example query of Hierarchical Similarity Lookup

Algorithm 5 SimilarityLookupInData

Input: n 2 (InD [OutD), QD

Output: en . returns a list of similar concept for a given variable

1: T GetQueryTriples(QD, n) . Get all triples of QD where n appears

2: addTriples(qc, T)

3: addSelectVar(qc, ?similarType) . Set ?type as a result variable

4: t1 "n rdf:type ?type ."

5: t2 "n rdf:type ?similarType ."

6: t3 "?similarType rdfs:subClassOf+ ?type ."

7: addTriple(qc, t1) ; addTriple(qc, t2) ; addTriple(qc, t3)

8: setCountAs(qc, ?similarType, ?counter)

9: setOrderBy(qc, ?counter,DESC)

10: setLimit(qc, 1)

11: cn GetQueryResults(qc)

To optimize the search in other sources of the LOD, we use a caching technique to

52 Chapter 3. Data and Service Search

build an index structure on the go of the LOD sources content. The details of this caching

is described in section 3.6.2.

3.3.3 Service Query Generation

Once all elements of the service request are gathered, service discovery queries are issued

in SPARQL using rewriting templates. Such templates define the structure and the

header of the SPARQL service query. There is a single template per SWS description

formalism, i.e. OWL-S, MSM, etc. For instance, the OWL-S template defines a header

containing triples that match the OWL-S model by specifying that the desired variable

is an OWL-S service which has profiles with specific inputs/outputs. Listing 3.7 shows

an example of a service query for the example scenario in section 3.2. It uses an OWL-

S template to specify the required input and output concepts according to the OWL-S

service model.

To generate the queries, all concepts cn and their similar concepts en for every node

n 2 InD[OutD are put together in a basic graph pattern of in a union fashion depending

on the chosen selection strategy. More specifically, for every input id 2 InD we write triple

patterns to match service inputs with variables that have cn as a concept and accordingly

for every output od 2 OutD.

The service search strategies (c.f. section 3.3) in the way we define them, describe

the how tight(All(...)) or loose (Some(...)) the service selection must be. Therefore, strict

strategies require that one or more inputs or outputs are matched at the same time, thus,

the query triples will be put in a single basic graph pattern. On the other hand, loose

strategies require only partial matching, hence, the query triples are be put in a UNION

of multiple graph patterns.

SELECT DISTINCT ?service WHERE {

?service a service:Service ; service:presents ?profile .

?profile profile:hasOutput ?output1 ;

profile:hasOutput ?output2 .

?output1 process:parameterType dbpedia -owl:Writer .

?output2 process:parameterType dbpedia -owl:Book .

OPTIONAL { ?profile profile:hasInput ?intput1 .

?input1 process:parameterType dbpedia:Place .}

}

Listing 3.7: Example Service Query QS by applying the strategy All(Out,Out)

3.4. Service Ranking 53

3.4 Service Ranking

Once the service queries are generated and dispatched to service repositories, the later

return back a list of web services without any further information regarding the their

relevance to the user query. An additional step is required to determine the relevance

of each service returned by each repository and then rank all the services based on this

measurement. The relevance is measured in two ways which can be combined for a better

accuracy :

3.4.1 Functional based ranking

This method of measuring the relevance is based on the number of matching I/O elements

of the user query amongst the I/O of the service description. For each returned service,

this relevance value for ranking is calculated and the list of all results is sorted in a

descendant order of this value. This measure depends on the service discovery strategy

and each strategy has its own formula for calculating it :

• All(Out,Out) : The relevance measure in this strategy takes into account only the

number of matched inputs because all the outputs should match in this strategy :

rank(S) = Card(InD\InS)
Card(InD)

• All(In,In)^(Out,Out) : in this strategy, all the Inputs and Outputs should match which

means that the relevance is equal to 100% all the time of all the returned services.

Therefore, the second ranking method should be applied here (see next subsection)

• Some(In,In) : this strategy matches Inputs with Inputs only :

rank(S) = Card(InD\InS)
Card(InD)

• Some(Out,In) :

rank(S) = Card(OutD\InS)
Card(OutD[InS)

• Some(Out,Out) : This strategy matches Outputs with Outputs only.

rank(S) = Card(OutD\OutS)
Card(OutD)

• Some(In,Out) : rank(S) = Card(InD\OutS)
Card(InD[OutS)

54 Chapter 3. Data and Service Search

3.4.2 Word2Vec based ranking

This ranking method relies on Natural Language Processing techniques to perform a

query-service matching based on the service descriptions in natural language. This tech-

nique can be used alone for service discovery, but we cope it with out semantic web

approach in the ranking phase for a better accuracy.

This accuracy is beyond the I/O matching levels because some identical web services

in terms of I/O can have different goals and behaviors. Therefore, the description of

a service in natural language can serve as basis for an implicit level of matching unde-

clared functional features. (This will be revisited in chapter (4 to enrich formal service

descriptions using this informal description). To calculate this similarity measure be-

tween the user query and the service description in Natural Language, we use word2vec

(in next chapter) similarity and apply it on a sentence-to-sentence level rather than on

a word-to-word level. The sentence description matching is calculated on the basis of a

Sentence-similarity calculation method. We propose three different methods for sentence-

similarity calculation :

1. Average of Maximums method: First an individual word-word similarity cal-

culation matrix n ⇤m is established for all the possible pairs of words from the two

sentences s1 and s2. (user query and service description in NL) Word2vec cosine

similarity is used here and is defined by the function sim(wi, wj)

After that, the maximums for all the rows are calculated then the average of max-

imums is delivered as the final value for sentence matching.

AvgMaxSim(s1, s2) =

Pn

i=1 Maxm
j=1(sim(wi, wj))

n
(3.1)

2. Vector sum method:

The sum of the word vectors for each sentence s is calculated first

sentV ec(s) =
n

X

i=0

wdV ecwi (3.2)

then the sentence similarity is given by the cosine similarity between the two ag-

gregated vectors.

Obviously the stop words are not included in the vectors sum and product (below).

Other approaches like (paper reviewed by Daniela) propose idf weights for words to

3.5. Automatic service composition 55

assign low scores for stop words and non relevant words and high scores for unique

words.

3. Vector product method:

The product of the word vectors for each sentence s is calculated first

sentV ec(s) =
n
Y

i=0

wdV ecwi (3.3)

then the sentence similarity is given by the cosine similarity between the two ag-

gregated vectors

3.5 Automatic service composition

In the previous section we showed how to make service requests to find relevant individual

services for the data query. However, if no such services exist, service composition can

create relevant composite services for the matter. In this section we describe our approach

to make such compositions automatically.

In the context of our framework, service repositories are part of the LOD as SPARQL

endpoints. Therefore, we think that the least expensive way to perform a service discovery

and composition is on the fly without any pre-processing. This online composition consists

of discovering candidate services at each step of the composition without a need to have

a local index or copy of the service repositories. We argue that the approaches based

on pre-processing the service repositories often require an expensive maintainability to

stay up-to-date. Furthermore, according to [Bülthoff and Maleshkova, 2014], the web

services are considerably growing and evolving either by getting updated, deprecated or

abandoned.

However, some optimization based on caching are described further in section 3.6.2

to speed-up this online process for the queries that have already been processed in the

past executions.

In this section, we describe our approach for an automatic composition of SWS based

on a service dependency graph and an A*-like algorithm. The first subsection is dedicated

to the Service Dependency Graph while the second describes the composition algorithm.

56 Chapter 3. Data and Service Search

3.5.1 Service Dependency Graph

The Service Dependency Graph (SDG from now on) represents the dependencies between

services based on their inputs and outputs. A service depends on another if the later

provides some inputs for the former. In our work, we consider that a SDG is specific for

each data query because it includes only services related to that query. In other works,

the SDG might represent the dependencies for all the services in a repository, but this

requires a general pre-processing for the LOD as we stated before.

We use an oriented AND/OR graph structure as in [Yan et al., 2008] to represent

the SDG. Such a graph is composed of AND nodes - that represent services - and Or

nodes - that represent data concepts - linked by directed edges. We slightly adapt this

representation to include the similarities between concepts of data by : a) Each OR node

contains the set of concepts that are similar to each other b) Each edge that links an AND

node to an OR node is labeled with the concept that matches the service input/output

concept among those in the OR node’s concept set. A dummy service N0 is linked to the

output nodes of OutD to guarantee that a service composition provides all the requested

outputs.

The AND/OR graph representation of the SDG is more adequate for the composition

problem than ordinary graphs because the constraints on the inputs of services are ex-

plicitly represented by the AND nodes; A service cannot be executed if some of its inputs

are not provided; thus, an AND node cannot be accessible unless all of its entering edges

are satisfied. Furthermore, this graph has been utilized in a many previous approaches

and has proven its efficiency as shown in [Yan et al., 2008]. However, a classical graph

representation can be used to solve the composition problem.

To construct the SDG, we use our service discovery approach to find dependencies for

each service in a bottom-up approach starting from the services that provide the final

outputs of QD. In fact, the SGD construction searches for all services that provide all

the unprovided-yet data at one time starting from OutD nodes. Such a one-time search

per iteration allows to reduce the number of service requests that are sent to the SWS

repositories, therefore, boosting the SDG construction.

The algorithm stops after exploring all the possible dependencies between services

or a limited number of them. At this point, if the user inputs InD are met then the

algorithm succeeds and the graph contains at least one possible solution. Otherwise the

algorithm fails.

For example, to find services that provide O1 and/or O2, a service request Rs(null, {O1, O2})

3.5. Automatic service composition 57

Figure 3.5: An example Service Dependency Graph

is used by applying Some(Out,In).

3.5.2 Service composition algorithm

Upon the construction of the SDG, one or many compositions can be found. The aim of

the service composition algorithm is to find the optimal composition from the SDG for a

given composition request.

For this purpose, we use an A*-like algorithm and adapt it for AND/OR graphs.

Starting from the user input InD nodes, the algorithm finds the optimal path to the target

node N0 (which is linked to the final outputs OutD). Therefore, an optimal solution is a

path that has the least total cost and that respects the AND/OR graph structure.

The total cost of a given path is the aggregation of the costs of each step from a node

to another. Generally, the cost at a given step (at an AND node n) in an A* algorithm

is given by the aggregation function: f(n) = g(n) + h(n) where g(n) is the total cost of

the sub-path from the starting point to n and h(n) is a heuristic that estimates the total

cost from the n to the target node N0.

Since the semantic web services have rich descriptions, the semantics of the Input-

s/Outputs can be used for cost calculation to help finding an optimal solution. Therefore,

we rely on the sets of similar concepts inside OR nodes and on the labels of the edges in

SDG. Therefore, the cost of a move from an AND node ni to ni + 1 is determined based

on the similarity between the labels of the input and the output edges of the two AND

nodes respectively. If the two labels (concepts) are the same, then the cost value is null.

58 Chapter 3. Data and Service Search

Algorithm 6 Service Dependency Graph Construction(n)

Input: Rs = {InD, OutD}, QD, t

Output: SDG

1: L φ . List of OR nodes that haven’t been linked yet to a providing AND node.

2: P φ . List of OR nodes that are equal or similar to data in InD

3: t t . Maximum searching attempt threshold to limit the number of iterations of

the algorithm.

4: L Create OR nodes for all OutD

5: N0 Create fictitious AND node N0

6: LinkIncoming(N0, L) . Link N0 to L

7: Create OR nodes for all InD

8: i 0

9: while (L 6= φ) ^ (t > i) do

10: S Some(Out,In)(Rs(null, L)) . List of discovered services

11: Create AND nodes for all discovered services S

12: LinkIncoming(S, L) . Link nodes s 2 S that are not yet linked to L

13: Create OR nodes for OutS − L . Create OR nodes for new outputs of all s 2 S

14: L φ

15: L Create OR nodes for Ins of all s 2 S

16: if 9l 2 L : l 2 InD then

17: P P [{l}

18: end if

19: if InD ◆ P then

20: SUCCESS

21: end if

22: i i+ 1

23: end while

24: if P * InD then

25: FAIL

26: end if

Otherwise if the two labels are different but similar concepts (sameAs, sub concepts)

then the cost value is set to 1. This cost calculation can be resumed by the function:

cost(ni+1) = sim(cni
, cni+1

) where cni
is a concept used by the current service, cni+1

is

3.6. Implementation and experiments 59

used by the next one and:

sim(cni
, cni+1

) =

(

0 if cni
= cni+1

1 if cni
= Similar(cni+1)

(3.4)

is a function that determines the similarity between two concepts.

From the functions above, the cost of the best known path to the current node subset

is given by the following function:

g(n) =
n

X

i=0

cost(ni) (3.5)

where ni are all the accessible services for the next step

The heuristic function h(n) calculates the distance between the current node and the

target AND node n0 in the SDG graph. This is justified by the fact that, a better solution

is the one that uses less services.

h(n) = Distance(n, n0) (3.6)

3.6 Implementation and experiments

In this section, we show briefly the architecture of our framework and some experiments

as a proof of concept.

3.6.1 Framework architecture

Figure 3.6: Framework Architecture

60 Chapter 3. Data and Service Search

Figure 3.6 shows an overview of the architecture of our framework. Through an

interface, SPARQL queries are submitted to the system to be processed for data search

and service search.

The data querying is managed by an open source SPARQL federator, FedX [Schwarte

et al., 2011], that we integrated within our framework. FedX uses its own query rewriting

to optimize the data querying for each source. Therefore, the LOD can be seen as a

federation of SPARQL endpoints of different data sources such as DBpedia.

FedX relies on RDF4J5 (formerly known as Sesame by the OpenRDF team). One par-

ticularity of this framework is that it requires a declaration of all the SPARQL endpoints

to be used before initializing the system. Therefore, our framework takes into account

this requirement and allows the user to edit the list of SPARQL endpoints to be used

within the session before launching the first query.

On the service side, queries are processed by the service requester to make service

requests or service compositions. The SWS repositories which are SPARQL endpoints as

well are considered as a particular part of the LOD.

We manage the federation of SPARQL endpoints of the SWS repositories separately

from the Data federation. Therefore the user can edit the list of service repositories

separately. Besides, the query management in the SWS SPARQL federation is separated

from the Data federation and is handled using another FedX instance.

We have implemented our framework in Java using Apache Jena6 framework to man-

age SPARQL queries and RDF. The implementation materials (demonstration video and

executables) can be found at the link bellow7.

The framework GUI allows the user to write his query, edit the SPARQL endpoints

of both data sources and service repositories, choose different strategies for service search

(from tight to loose service search , see section 3.3) and activate/deactivate similarity

lookup.

In Figure 3.7, the user submits the data query in Listing 3.1 (green) through the

"Query Tab". The framework guides the user through the processes described in section

3.2. The query can be executed against the SPARQL-endpoints that the user has selected

and results will be displayed in the "Data Tab". On the other hand, he can visualize

the generated service queries in the "Service Queries Tab" and manually edit them to fit

his needs if necessary then launch service discovery. Once done, the discovered services

5http://rdf4j.org/
6https://jena.apache.org/
7http://sites.google.com/site/lidsearch/

3.6. Implementation and experiments 61

Figure 3.7: A screenshot showing the results of a service discovery process

are returned to the user and sorted according to their relevance according to our ranking

method.

In Figure 3.7, in the left panel, the user has selected the strategy All(Out,Out). There-

fore the generated service query (in yellow) searches for services that should return the

data that the user is looking for as required by the strategyAll(Out,Out). The list in the

background shows the discovered services hosted in two local repositories.

3.6.2 Optimizing service discovery with cache

In order to optimize the service discovery in terms of response time, we use a caching for

services and concepts. Such a cache indexes all the concepts and services that has been

used in past requests.

We use three different types of cache : a) A cache for similar concepts to decrease the

number the similarity lookup requests. b) A cache to index the concepts that have been

used in the past and the URIs of services and repositories that use them. c) a local RDF

repository to keep in cache the descriptions of services on the go once they are discovered.

This later one can be queried directly via a local SPARQL endpoint.

Maintaining the cache costs much less than maintaining a whole index structure of all

known SWS repositories and does not require any pre-processing prior to use the frame-

62 Chapter 3. Data and Service Search

work. Cache maintenance can be scheduled for automatic launch or triggered manually.

The cache is not yet implemented for the time being. In the future, We will enrich

this section with the details of the applied caching method and the evaluation section

will include experiments with and without cache.

3.6.3 Evaluation

Our main challenge in evaluating our framework is to find suitable benchmarks that

provide SPARQL queries over real world data and to find SWS repositories of that offer

real world services. Furthermore, to properly measure the performance of service query

writing from data queries, benchmark queries should have missing concept declarations.

Unfortunately, to our best knowledge, there is no such benchmark that allows a full

evaluation for the whole process of our framework. Therefore, some benchmarks and

measures can be used to evaluate each phase in our process. To prove the feasibility of

our approach to search services on the LOD, we have made an implementation as a proof-

of-concept that integrates the whole process described in section 3.2. This section covers

an evaluation of the execution time of service query generation as well as an evaluation of

the service discovery. These evaluations are performed independently one from the other

because the test data and the test services are not the same.

3.6.3.1 Service query generation

We evaluate the execution time of service query generation from the extraction of the

service request, through semantics lookup and finally to the query wrapping in SPARQL.

For such purpose, we use a set of SPARQL queries written written manually to meet the

constraint of missing concept definitions within the query.

Figure 3.6.3.2 shows a summary of our experiments on a set of 10 queries with an

increasing number of undefined concepts. We measured separately the total execution

time of writing service queries including the execution time of the concept lookup process

for each query. The results show that the concept lookup time increases linearly as the

number of undefined variables increase.

3.6. Implementation and experiments 63

3.6.3.2 Service discovery

To measure the effectiveness of our service discovery, we put our framework to the test

using OWL-S-TC8 benchmark. OWL-S-TC provides a set of OWL-S descriptions of

virtual services as well as a set of service selection queries accompanied with a set of

reference results defined by human experts based on the functional descriptions as well

as the textual description of services. The queries in OWL-S-TC are basically expressed

as imaginary OWL-S services so that Service Discovery tools would perform discovery as

a matching between concrete services and the query service.

The reference results provide scores of matching services for a given query sorted by

their relevance degree : 0) non relevant, 1) services that might be helpful, 2) services that

might answer the query partially and 3) services that are exactly what the user asked for.

Figure 3.6.3.2 shows the recall and precision values of the service discovery on a set

of set of OWL-TC queries by applying strategy All(Out,Out). We have chosen a set of

12 queries in the domains of travel, food, economy and education as it was chosen in

[Palmonari et al., 2011]. To make them usable within our framework, we have rewritten

these queries manually in SPARQL. We have also slightly adapted the service request

extraction algorithm to extract the definitions of inputs directly from the query because

the OWLS-TC queries provide all concepts of I/O elements. The results show an overall

good recall, however, the precision value is bellow average. This can be explained by the

fact that some of the I/O parameters in the queries are very generic (Price or example)

which causes the discovery algorithm to have high number of false positives. The reference

results in such a case rely on the textual description of the service which restricts the

domains of candidate services.

To improve the output of our service discovery, we can use our current algorithm as a

pre-filtering system to select primary candidates then apply a more sophisticated hybrid

approach like OWLS-MX[Klusch and Kapahnke, 2009] as introduced in [GarcíA et al.,

2012].

8http://projects.semwebcentral.org/projects/owls-tc/

64 Chapter 3. Data and Service Search

Figure 3.8: Average execution Time in

MS per number of undefined variables in

a random query

2 4 6 8 10

1,200

1,400

1,600

1,800

Figure 3.9: Recall and precision of service

discovery in OWLS-TC using All(Out,Out)

Q4 Q6
Q12Q16Q17Q18Q20Q22Q23Q24Q25Q26

0

0.2

0.4

0.6

0.8

1

Recall Precision

3.7 Conclusion

In this chapter we presented LIDSEARCH, a framework for finding data and relevant

services in the LOD using a unique SPARQL query. Our framework helps the user to

find services that he could exploit to construct mashups or to complement the data found

in materialized knowledge bases. We implemented the proposed algorithms and we are

evaluating them in terms of efficiency and quality. We plan to enrich the framework

by storing and exploiting user actions (selected services and compositions for a given

data query) in order to improve the efficiency of the algorithm and the relevance of the

retrieved services.

Regarding the previously mentioned issue of lacking real-world SWS, Karma Taheriyan

et al. [2012a] or SmartLink Dietze et al. [2011] can be used to provide our experiments

with SWS from real-world APIs. We plan to use such tools in the future to extend our

experiments and have a clear measure of its effectiveness.

Chapter 4

Enriching Service Descriptions with

I/O relations

4.1 Introduction

In the previous chapter, we presented LIDSEARCH, our framework that searches for

linked data with a data query and automatically finds relevant semantic web services

for the data. This automated service discovery can sometimes be a tricky task in some

scenarios because the standard service description formalisms do not provide sufficient

information about the functionality of a service or its underlying data model. Such in-

completeness precludes a full understanding of what a service really does and how its

inputs are related to its outputs. One of the use cases that raise the issue is one where

two services have identical described functionality in terms of I/O but have totally dif-

ferent behaviours regarding the relations between the inputs and the outputs. Hopefully,

such ambiguous functionality can be enlightened in the textual descriptions and docu-

mentations of web services in an informal natural language but an additional effort is

required to be formalize the I/O relations found within.

To better illustrate this problem, let’s consider two semantic web services Service#1

and Service#2 described in OWL-S1 that provide information about books (see Fig. 4.1).

Service#1 (Fig. 4.1a) returns books written by a given author while Service#2 (Fig. 4.1b)

returns books for which a given author has written a preface. Both services consume the

same input Writer and provide the same output Book and therefore have identical I/O

blocks in their semantic descriptions in OWL-S as shown in Listing 4.1 and 4.2. A typical

service discovery algorithm would consider them as similar if requested to provide services

with Writer as an input and Book as an output. However, after looking at their textual

descriptions, we quickly figure out that the output Book is related differently to the input

Writer in the two services. Therefore, it would be useful to point out the ontological

1http://www.w3.org/Submission/OWL-S/

http://www.w3.org/Submission/OWL-S/

66 Chapter 4. Enriching Service Descriptions with I/O relations

relations between Writer and Book that correspond to the ones mentioned in the textual

descriptions of each service.

R
un

ni
ng

E
xa

m
pl

e

1/12

(a) Service description #1 (b) Service description #2

Figure 4.1: An example of two web services with identical I/O types but with totally

different functionality

4.1. Introduction 67
R

un
ni

ng
E

xa
m

pl
e

2/12

...

<profile:Profile rdf:ID="BOOK_AUTHOR_PROFILE">

<service:isPresentedBy rdf:resource="#

BOOK_AUTHOR_SERVICE"/>

<profile:serviceName xml:lang="en">

BookAuthorService </profile:serviceName >

<!-- TEXTUAL DESCRIPTION -->

<profile:textDescription xml:lang="en">

This service returns the books written by the

given author

</profile:textDescription >

...

</profile:Profile >

...

<!-- INPUTS -->

<process:Input rdf:ID="_AUTHOR">

<process:parameterType rdf:datatype=xs:anyURI >

http://127.0.0.1/ontology/books.owl#Writer

</process:parameterType >

<rdfs:label >Writer </rdfs:label >

</process:Input >

<!-- OUTPUTS -->

<process:Output rdf:ID="_BOOK">

<process:parameterType rdf:datatype=xs:anyURI >

http://127.0.0.1/ontology/books.owl#Book

</process:parameterType >

<rdfs:label >Book</rdfs:label >

</process:Output >

Listing 4.1. Example OWL-S

description for Service #1 in Fig. 4.1a

...

<profile:Profile rdf:ID="

BOOK_PREFACE_AUTHOR_PROFILE">

<service:isPresentedBy rdf:resource="#

BOOK_PREFACE_AUTHOR_SERVICE"/>

<profile:serviceName xml:lang="en">

BookPrefaceAuthorService </profile:

serviceName >

<!-- TEXTUAL DESCRIPTION -->

<profile:textDescription xml:lang="en">

This service returns the books whose the preface

is written by the given author

</profile:textDescription >

...

</profile:Profile >

...

<!-- INPUTS -->

<process:Input rdf:ID="_AUTHOR">

<process:parameterType rdf:datatype=xs:anyURI >

http://127.0.0.1/ontology/books.owl#Writer

</process:parameterType >

<rdfs:label >Writer </rdfs:label >

</process:Input >

<!-- OUTPUTS -->

<process:Output rdf:ID="_BOOK">

<process:parameterType rdf:datatype=xs:anyURI >

http://127.0.0.1/ontology/books.owl#Book

</process:parameterType >

<rdfs:label >Book</rdfs:label >

</process:Output >

Listing 4.2. Example OWL-S

description for Service #2 in Fig. 4.1b

In this chapter, we present an approach that aims to facilitate the automatic ser-

vice discovery by enriching the service descriptions with detailed information about the

functionality of services using the ontological relations between the inputs and outputs.

The latter are endorsed by the relations found in the textual descriptions using natural

language processing techniques. This approach is a step towards the automation of ser-

vice discovery that would have many benefits in different domains like: a) improving the

accuracy of automatic service discovery, b) facilitating the automatic service composition

and automatic service replacement in faulty compositions, c) facilitating data integration

when using data from data-providing web services (DPS), d) facilitating the creation of

API mashups, e) improving service recommendation, etc.

Throughout this chapter, we will explain our approach step-by-step using the afore-

mentioned example scenario as a running example. This running example is meant to

be as simple as possible in every aspect to better explain each step of our approach.

Whenever needed, other examples are used to illustrate how our approach deals with

some more complex cases.

68 Chapter 4. Enriching Service Descriptions with I/O relations

The rest of this chapter is structured as follows: We give a brief overview of the general

process of our approach in section 4.3. In sections 4.4 and 4.5 we describe in detail

the I/O relation extraction from both ontologies and textual descriptions respectively.

The extracted relations are matched and then ranked as described in section 4.6. In

section 4.7 we describe our implementation of a proof of concept that we evaluate later

in section 4.8 on different aspects using OWLS-TC2. Lastly, we discuss the limitations,

future improvements and some future perspectives for this work.

4.2 Related works

The service description enrichment framework is a cross-domain approach to enrich exist-

ing semantic web service descriptions with I/O relations. Works related to this framework

can be classified into two categories: semantic annotation works and relationship extrac-

tion works. In this section we mention a few works of both categories.

4.2.1 Semantic annotation of web services

A lot of research works have been conducted on semantic annotation of web services. They

can be classified from different perspectives into: a) dedicated annotation approaches and

service discovery approaches with an intermediate annotation step, b) manual and semi-

automatic approaches, or c) WSDL oriented and web API oriented approaches.

1. Dedicated semantic annotation systems:

This category of approaches includes works that are solely dedicated to annotating

web services and APIs using semantic web ontologies. Most of these works offer

a graphical user interface to facilitate the selection and validation of annotations

by users. They use machine learning, graph matching, text matching, information

extraction, natural language processing, entity extraction, etc to automatically ex-

tract or generate ontological concepts for service description elements. The majority

of these works focus on annotating functional properties of services, but some works

also annotate non-functional properties such as QoS using dedicated vocabularies.

Amongst the approaches of this category, we cite: [Zhang et al., 2013] that uses

DBpedia Spotlight3 to perform entity extraction and annotates service I/Os with

2http://projects.semwebcentral.org/projects/owls-tc/
3http://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki

http://projects.semwebcentral.org/projects/owls-tc/
http://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki

4.2. Related works 69

concepts from the DBpedia ontology. [Cheniki et al., 2016] also uses DBpedia

to annotate functional properties and some extended ontology to annotate non-

functional properties. The work in [Chen et al., 2017] uses WordNet to generate

annotations for functional properties. [Patil et al., 2004] and [Heß et al., 2004] are

amongst the first works that address the automatic annotation of web services.

WebKarma4 [Taheriyan et al., 2012a] is a tool for annotating web APIs that do

not have any formal descriptions. It asks the user for a few example API calls,

then analyzes the call URL and the results to extract I/O. It also helps users in

annotating the I/O with concepts from ontologies of their choice and facilitates this

process by automatically recognizing ontological concepts. DORIS [Koutraki et al.,

2015] and [Lucky et al., 2016] also create annotations for functional properties of

Web APIs using LOD ontologies.

2. Semantic annotation within service discovery systems:

These approaches are not dedicated to annotation but use annotation methods

to improve service discovery. Instead of creating formal annotations that can be

used to enrich service descriptions, they use non-logic based matching techniques to

compare service requests and descriptions that do not use the same I/O concepts.

This can be regarded as if they implicitly generate informal semantics to enrich the

descriptions at service matchmaking time. We have already cited a few of these

approaches in chapter 3 such as OWLS-MX [Klusch and Kapahnke, 2009] and iSem

[Klusch and Kapahnke, 2012], etc.

Other approaches like [Palmonari et al., 2011] generate WordNet-based annotations

for services on a cold start and store them in order to use them later for service

discovery.

The work in [Speiser and Harth, 2011b] implicitly addresses the ontological I/O

relations by proposing manual semantic annotation templates that describe the

I/O of a service with Basic Graph Patterns linking them to web ontologies and

eventually to each other. To the best of our knowledge, this is the only work

that likely addresses annotating services with relations between their I/O but in a

manual fashion.

In this section, we only cited a few works on semantic annotation of web services.

4http://www.isi.edu/integration/karma/

http://www.isi.edu/integration/karma/

70 Chapter 4. Enriching Service Descriptions with I/O relations

The reader may refer to the survey in [Tosi and Morasca, 2015] for a more complete

literature review of semi-automatic approaches. It surveys dozens of works and yet it

doesn’t include the manual annotation tools.

In contrast to our work, the aforementioned approaches do no extract relations be-

tween I/O and do not apply any matching of these relations with the service description.

Our work is complementary to these approaches, aiming to enrich the existing semantic

annotations by automatically extracting and adding I/O relations from the ontologies

they use.

4.2.2 Relationship extraction

On the other hand, there have been many efforts to enrich ontologies by extracting

new semantic relations from text using Natural Language Processing (NLP) techniques

[Nakashole et al., 2012; Arnold and Rahm, 2014; Angeli et al., 2015]. Authors of [Nakas-

hole et al., 2012] propose an approach based on dependency grammar to extract new RDF

properties for DBpedia from the English Wikipedia5 using a scalable MapReduce-based

algorithm. We apply a similar approach based on dependency grammar to extract I/O

relations from textual descriptions but instead of adding them as new semantic relations

to the service descriptions, we match them with I/O relations from ontologies and add

the latter to service descriptions as basic graph patterns.

4.3 Approach Overview

To achieve the aforementioned desired service description enrichment, our system extracts

parallelly two types of I/O relations. The first are the existing formal relations between

the I/O of services from their underlying ontologies using SPARQL6 . The other type

is the informal I/O relations depicted in natural language in the text descriptions and

documentation of services which requires Natural Language Processing techniques to be

extracted. The two extraction processes are computationally independent and therefore

are executed in parallel. At the end, the two types of extracted relations are matched

against each other in the objective of endorsing the most relevant ontological relations

(as multiple relations may exist between I/O concepts in ontologies). The ontological

relations that have the best matches in the textual relations are considered convenient
5http://www.wikipedia.org
6http://www.w3.org/TR/sparql11-query/

http://www.wikipedia.org
http://www.w3.org/TR/sparql11-query/

4.4. Extracting I/O relations from ontologies 71

for enriching the service description. They can later be added to the semantic service

description after validation from the user. The overall process is illustrated in Fig. 4.2.

Figure 4.2: I/O relation extraction process

4.4 Extracting I/O relations from ontologies

The inputs and outputs of a semantic web service describe what a service needs in order

to be invoked (the type of data that it consumes) and what it produces after its invocation

while referring to concepts or nodes in one or more ontologies. Let Ii 2 I be an input

of a semantic service referring to a node Ni in some ontology and Oj 2 O be an output

referring to another node Nj. We denote this reference by Ii = Ni and Oj = Nj. Given

the connected-graph nature of an ontology, there can be at least one path (relation) that

links Ni and Nj. Obviously, exceptions may apply if the two nodes are from different but

not interlinked ontologies.

The first step of our approach aims to extract all existing relations between the input

and output elements of the service within a predefined maximum distance. The extraction

operates in a pairwise fashion (for each combination pair of an input and an output) but

the extracted relations can all be combined and expressed in the form of a basic graph

pattern.

Fig. 4.3 illustrates the relations between two example I/O nodes: I1 = Writer and

O1 = Book. As seen in this figure, there is no edge (i.e Property) directly linking the two

nodes at a distance d = 0, i.e. without intermediate nodes. However, there are multiple

paths at different distances (d = 2, d = 3) including different nodes and properties that

link I1 and O1.

72 Chapter 4. Enriching Service Descriptions with I/O relations
R

un
ni

ng
E

xa
m

pl
e

3/12

Work Person

WrittenWork Writer

Book

author

starring,...

prefa
ceB

y

illustra
tor,.

..

rdfs:subClassOf

Figure 4.3: BGP depicting the links between the input Book and the output Writer

The relations graph can be extracted from the ontologies referenced in the service

description to describe the I/O. For such an extraction, we can either apply graph search

algorithms like Breadth First Search or Greedy Best First to ontology dumps or use a

SPARQL based approach. In our process we use SPARQL because it works on-the-fly and

allows to search in multiple ontologies in the Linked Data Cloud (LOD) in a federated

fashion.

4.4.1 SPARQL-based extraction

We use SPARQL to query the endpoints hosting ontologies for the existing relations

between all the input and output nodes in a pairwise fashion. Each combination of an

input and an output requires its own SPARQL query consisting of a more or less complex

template depending on the nature of the searched paths.

As depicted earlier, two nodes can have one or more relations that go through different

paths. Each relation corresponds to a path of some length based on the distance between

the two nodes. Depending on its length/distance d = n, a path involves one or more

properties pk 2 {p0, ..., pn} or reverse properties qk 2 {q0, ..., qn} as well as zero or more

intermediate nodes Mk 2 {M1, ...,Mn}.

The properties and reverse properties are owl:ObjectProperty or rdf:Property

that link two source and target owl:Class or rdfs:Class nodes representing either the

I/O nodes or the intermediate nodes. The difference between the two is that reverse

properties are properties in which rdfs:domain and rdfs:range are reversed (i.e. the

4.4. Extracting I/O relations from ontologies 73

subject and the object are reversed). This link is established in the ontology following a

specific pattern. Listings 4.3 and 4.4 depict two example property extraction patterns in

DBpedia7 and OWLS-TCv4 respectively between two nodes ?source and ?target. The

latter is not straightforward as the first because it is meant to be inferred by an inference

engine.
?source -->?target

{?p rdfs:domain ?source;

rdfs:range ?target .}

?source <--?target

{?q rdfs:domain ?target;

rdfs:range ?source .}

Listing 4.3: Property and reverse prop-

erty extraction pattern in DBpedia

?source -->?target

{? source rdfs:subClassOf ?x .

?x owl:onProperty ?p ;

?y ?target .

?target rdf:type owl:Class .

}

Listing 4.4: Property extraction pattern

in OWLS-TCv4 ontology

To obtain all the existing relations in the ontology between an input node Ii and

an output node Oj, we need a SPARQL query for each possible path. For a maximum

user-defined length/distance d = n, there are 2n+1 combinations of paths, i.e. possible

paths or relations (see Fig. 4.4). We use an algorithm that generates all the queries in

an incremental fashion. To reduce querying costs of the ontology servers, we merge all

the queries of all path combinations per Input/Output pair as sub-queries into a single

SPARQL query using the UNION operator.

d = 0

d = 1

...

d = n

Ii Oj

p0

q0

Ii M1 Oj

p0

q0

p1

q1
...

Ii M1 · · · Mn Oj

p0

q0

p1

q1

pn−1

qn−1

pn

qn

Figure 4.4: Combinations of paths between input and output nodes

An example of a relation extraction query is given in Listing 4.5. It searches for

all possible combinations in a union fashion to find the relations between otc:Author

and otc:Book from the OWLS-TC Book ontology8 (see Fig 4.5) within a maximum dis-

tance of n = 0. The properties are extracted using the OWLS-TC pattern given in Listing
7http://wiki.dbpedia.org/
8The reader may notice that in this example, the I/O nodes refer to otc:Author and otc:Book in the

http://wiki.dbpedia.org/

74 Chapter 4. Enriching Service Descriptions with I/O relations

4.3. Table 4.2 shows the results of this query from the OWLS-TC ontology. It shows

that there exists for this example a direct relation between otc:Author and otc:Book

through the otc:writtenBy OWL property. This relation is represented as an array of

strings like [otc:Book, otc:writtenBy, otc:Author]

otc:Book otc:Author
otc:writtenBy

Figure 4.5: A sub-graph from the OWLS-TC ontology showing the relation between

otc:Author and otc:Book.

PREFIX otc:<http ://127.0.0.1/ ontology/books.owl#>

SELECT DISTINCT otc:Book ?p0 ?r0 otc:Author

WHERE {

{otc:Book rdfs:subClassOf ?x0 .

?x0 owl:onProperty ?p0 ;

?y0 otc:Author}

UNION {

otc:Author rdfs:subClassOf ?x0 .

?x0 owl:onProperty ?q0 ;

?y0 otc:Book}}

Listing 4.5. Example I/O relation extraction query

from OWLS-TC using the pattern in Listing 4.4)

Table 4.1: I/O relation extraction

query results

otc:Book ?p ?q otc:Author

otc:Book otc:writtenBy otc:Author

4.4.2 Extraction Enhancements

When observing the most recurrent patterns found in the relation paths between

concept nodes from many domains in ontology schemas (not instances), one comes im-

mediately under the light spot: ?x rdfs:subClassOf ?y. This hierarchical pattern is

very common in DBpedia. Fig. 4.3 gives a perfect example of these hierarchical patterns.

In fact, the author property is not exclusive to Books and Writers but is a general relation

between any Work and Person.

Such a phenomenon would make the relation paths longer and the queries more com-

plex. Therefore, it is important to bind some parts of the paths between nodes with

this pattern in order to narrow the search space and reduce the complexity. Instead of

searching for all the properties and intermediate nodes, the extraction algorithm applies

hierarchy patterns for up to a user-defined maximum hierarchical depth h = m before

OWLC-TC Book ontology. This example query is slightly different from our running example that comes

next in Listing 4.6

4.4. Extracting I/O relations from ontologies 75

Ii · · · Sm(Ii) . . . Sm(Oj) . . . Oj
subclassOf subclassOf

p0

q0

pn

qn

subclassOf subclassOf

h = m d = n h = m

Figure 4.6: Combinations of hierarchical patterns on top of path combinations

looking for general properties and intermediate nodes at a distance d = n. Therefore,

the number of unknown intermediate nodes in the path is decreased by the introduction

of super-class nodes. In addition, the maximum distance value d = n can be decreased

as well by the user because most of the path is covered by super-classes (see Fig. 4.6).

This improves the overall performance of the system by reducing the number of property

variables as well as the number of required joins during the execution of SPARQL relation

extraction queries.

For our running example, we search for relations between Writer and Book within a

maximum distance d = 0 and a maximum depth h = 2 using the query in Listing 4.6.

Table 4.2 shows the results of this query from DBpedia. Note that the results table

doesn’t show the rdfs:subClassOf property name for brevity reasons. In fact, there

are 15 possible relations with the parameters we used for this extraction. The relation

that matches the textual description of Service#1 of our running example is highlighted

in yellow in the table and its representation array is: [dbo:Book, rdfs:subClassOf,

dbo:WrittenWork, rdfs:subClassOf, dbo:Work, dbo:author, dbo:Person, rdfs:subClassOf,

dbo:Writer].

76 Chapter 4. Enriching Service Descriptions with I/O relations
R

un
ni

ng
E

xa
m

pl
e

4/12

SELECT DISTINCT dbo:Book ?sIn1 ?sIn2 ?p0

?r0 ?sOut2 ?sOut1 dbo:Writer

WHERE{

{ ?p0 rdfs:domain dbo:Book ;

rdfs:range dbo:Writer }

UNION {

?r0 rdfs:domain dbo:Writer ;

rdfs:range dbo:Book }

UNION {

dbo:Writer rdfs:subClassOf ?sOut1 .

?p0 rdfs:domain dbo:Book ;

rdfs:range ?sOut1 }

UNION {

dbo:Writer rdfs:subClassOf ?sOut1 .

?r0 rdfs:domain ?sOut1 ;

rdfs:range dbo:Book }

UNION {

dbo:Writer rdfs:subClassOf ?sOut1 .

?sOut1 rdfs:subClassOf ?sOut2 .

?p0 rdfs:domain dbo:Book ;

rdfs:range ?sOut2 }

UNION {

dbo:Writer rdfs:subClassOf ?sOut1 .

?sOut1 rdfs:subClassOf ?sOut2 .

?r0 rdfs:domain ?sOut2 ;

rdfs:range dbo:Book }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

?p0 rdfs:domain ?sIn1 ;

rdfs:range dbo:Writer }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

?r0 rdfs:domain dbo:Writer ;

rdfs:range ?sIn1 }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

dbo:Writer rdfs:subClassOf ?sOut1 .

?p0 rdfs:domain ?sIn1 ;

rdfs:range ?sOut1 }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

dbo:Writer rdfs:subClassOf ?sOut1 .

?r0 rdfs:domain ?sOut1 ;

rdfs:range ?sIn1 }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

dbo:Writer rdfs:subClassOf ?sOut1 .

?sOut1 rdfs:subClassOf ?sOut2 .

?p0 rdfs:domain ?sIn1 ;

rdfs:range ?sOut2 }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

dbo:Writer rdfs:subClassOf ?sOut1 .

?sOut1 rdfs:subClassOf ?sOut2 .

?r0 rdfs:domain ?sOut2 ;

rdfs:range ?sIn1 }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

?sIn1 rdfs:subClassOf ?sIn2 .

?p0 rdfs:domain ?sIn2 ;

rdfs:range dbo:Writer }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

?sIn1 rdfs:subClassOf ?sIn2 .

?r0 rdfs:domain dbo:Writer ;

rdfs:range ?sIn2 }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

?sIn1 rdfs:subClassOf ?sIn2 .

dbo:Writer rdfs:subClassOf ?sOut1 .

?p0 rdfs:domain ?sIn2 ;

rdfs:range ?sOut1 }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

?sIn1 rdfs:subClassOf ?sIn2 .

dbo:Writer rdfs:subClassOf ?sOut1 .

?r0 rdfs:domain ?sOut1 ;

rdfs:range ?sIn2}

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

?sIn1 rdfs:subClassOf ?sIn2 .

dbo:Writer rdfs:subClassOf ?sOut1 .

?sOut1 rdfs:subClassOf ?sOut2 .

?p0 rdfs:domain ?sIn2 ;

rdfs:range ?sOut2 }

UNION {

dbo:Book rdfs:subClassOf ?sIn1 .

?sIn1 rdfs:subClassOf ?sIn2 .

dbo:Writer rdfs:subClassOf ?sOut1 .

?sOut1 rdfs:subClassOf ?sOut2 .

?r0 rdfs:domain ?sOut2 ;

rdfs:range ?sIn2 }

}

Listing 4.6. Example I/O relation extraction query from DBpedia-like ontologies using

the rdfs:domain|rdfs:range pattern (see Listing 4.3)

4.5. I/O relation extraction from textual descriptions 77
R

un
ni

ng
E

xa
m

pl
e

5/12

Table 4.2: Relation Extraction query results from DBpedia for the query in Listing4.6

dbo:Book sIn1 sIn2 p0 q0 sOut2 sOut1 dbo:Writer

dbo:Book dbo:WrittenWork dbo:illustrator dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:prefaceBy dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:firstPublisher dbo:Agent dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:composer dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:writer dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:author dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:narrator dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:coverArtist dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:translator dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:mainCharacter dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:chiefEditor dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:created dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:debutWork dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:publisher dbo:Agent dbo:Person dbo:Writer

dbo:Book dbo:WrittenWork dbo:Work dbo:producer dbo:Agent dbo:Person dbo:Writer

4.5 I/O relation extraction from textual descriptions

The textual description of a web service as well as its documentation tend to tell more

about the service functionality by revealing some of its underlying data model and the

conceptual relations between its inputs and outputs. Based on this assumption, the

relation extraction process from text descriptions aims to discover these implicit relations

in the text in order to match them later with the existing explicit relations found in the

ontologies.

This process is executed in parallel to the first one and consists in three sequential

tasks as illustrated in Fig. 4.7: text pre-processing, I/O words recognition and relation

extraction. The pre-processing task consists in annotating the textual description of a

service using Natural Language Processing (NLP) techniques in order to facilitate the

next two tasks. I/O recognition consists in recognizing the words used for I/O elements

in the text using word2vec[Mikolov et al., 2013] word-word similarities. The final task

is the extraction of I/O relations from the text using the previous annotations. The

following subsections provide more details about the three tasks of this process.

4.5.1 Service description’s text pre-processing

The textual part of a service description is written in an "informal" natural language.

It might consist of a few sentences (a single sentence in OWLS-TC) up to many para-

78 Chapter 4. Enriching Service Descriptions with I/O relations

Text Pre-processing I/O Recognition in Text Relations Extraction

Textual

description
Annotations

Figure 4.7: Process overview of I/O relation extraction from text.

graphs. The pre-processing task is a pipeline that aims to annotate the text in order to

highlight some useful features that help understanding the text and extracting the I/O

relations. It consists in four sequential tasks as illustrated in Fig. 4.8 and results in a set

of annotations for the service description. The four sub-tasks are detailed in the following

sub-sections.

Sentence Splitting Tokenization POS Tagging Dependency Parsing

P
ip

e
li
n
e

Tokens

Index

Dependency

Graphs

A
n
n
o
ta

ti
o
n
s

Figure 4.8: Text pre-processing pipeline

4.5.1.1 Sentence Splitting

Sentence splitting or segmentation consists in dividing the text into sentences. Punc-

tuation characters (., !, or ?) that mark a sentence ending are used as a delimiter for

splitting. However, this is not a trivial task because of two main reasons: 1) the lack of

punctuation due to poor writing quality or 2) the use of the full stop character (.) in

abbreviations can be misleading as in "Mr." for example. Faulty sentence splitting affects

the dependency parsing that comes later and systematically impedes the extraction of

I/O relations in the text.

4.5. I/O relation extraction from textual descriptions 79

4.5.1.2 Tokenization

Tokenization consists in splitting a string into sequences of characters that form a useful

semantic unit called a token, often loosely called a word or a term. [Manning et al.,

2008]. In addition to language words, tokens include inter alia punctuation, numerals and

symbols. While tokenization appears to be a fairly easy problem, it is not a trivial task,

especially in non-Latin-script languages such as Arabic-script and Asian-script languages.

In many Latin-script based languages including English, words are mostly atomic and

therefore can be delimited with a space. However, there are many compound words and

unusual terms that require some attention. We distinguish 3 types of compound words

in English [Straus et al., 2014]:

1. Closed forms that have been established in the language and used since long ago

such as football, sometimes, airport, etc.

2. Hyphenated (dashed) forms as in camera-ready, computer-aided, to ice-skate, 20-

year-old, four-wheeled car etc.

3. Open (spaced) forms like in deep learning, New York, Los Angeles, etc. Some of

these compound words are entity names that require Named Entity Recognition

(NER) techniques to be grouped together as a single unit for preserving their in-

tended meaning. However, at this point we need them split for the next steps.

R
un

ni
ng

E
xa

m
pl

e

6/12

Table 4.3: Tokens index for the example service #1 in Fig. 4.1a

token# in sentence

1 2 3 4 5 6 7 8 9 10

se
n
t# 1 This service returns the books written by the given author

Upon sentence splitting and tokenization we store the tokens in a dynamic matrix to

keep track of their position in the text regarding their order of appearance in the sentence

and the order of their sentence in the text. Table 4.3 and Table. 4.4 represent two example

tokens indexes for a single sentence (from our running example) and a two-sentence length

service descriptions respectively.

80 Chapter 4. Enriching Service Descriptions with I/O relations

Table 4.4: Tokens index for an example service description with 2 sentences

token# in sentence

1 2 3 4 5 6 7 8 9

se
n
t# 1 This service returns novels written by the given author

2 Their recommended price is also informed

4.5.1.3 Part-Of-Speech Tagging

Part-Of-Speech (POS) Tagging is the task of marking each word of the text with its

proper part of speech. Parts of speech can be defined as categories of words sharing the

same grammatical properties. Linguists mostly agree that there are three primary parts

of speech: verb, noun and adjective, exceptions may apply to some languages as always.

Obviously, the list of parts of speech is an ongoing subject of debate. In natural language

processing, there are many POS tag sets derived mostly from the three major parts of

speech. The most popular one for English is the Penn Treebank POS tags set [Santorini,

1990] which consists of 36 main tags in addition to punctuation tags (45 in total) as listed

in Table 4.5.

Table 4.5: Alphabetical list of POS tags used in the Penn Treebank Project

Tag Description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

Tag Description

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

POS Tagging is not a task that we rely upon directly in I/O relation extraction but

it is required for the next and final task of text pre-processing, thus, we give it a brief

4.5. I/O relation extraction from textual descriptions 81

mention here. It is an important prerequisite because POS tags provide information

about words and their neighbors as well. A verb for instance is often preceded by a noun

and a noun by a determiner or an adjective.

Fig. 4.9 shows the POS tags of the sentence from Service#1 of the running exam-

ple. Each POS tag is mentioned below its corresponding word. For instance, the word

"returns" is a verb (VBZ), the word "service" is a singular noun (NN) and the word

"books" is a plural noun (NNS). The reader may refer to Table 4.5 for a complete list of

descriptions for the used tags.

4.5.1.4 Dependency parsing

Dependency parsing is at the core of the I/O relation extraction process from the text. It

is the task of extracting dependencies between the words of a sentence and representing

them in a graph formalism called a dependency graph based on dependency grammars.

Dependency grammars are a set of theories that rely on the notion of dependency, a binary

grammatical relation (dependency) between two syntactic units (words) that defines the

role that one word plays with respect to the other within the context and structure of

the sentence. For example, a noun can be related to a verb as its subject or as its

object. First introduced by [Tesnière, 1959], dependency grammars have evolved ever

since and linguists have developed different taxonomies (tagsets) and representations

(directed graphs) of dependencies that are used today by NLP toolkits and dependency

parsers [De Marneffe and Manning, 2008].

The dependency parsing relies on different algorithms and techniques used by depen-

dency parsers. The most famous techniques rely on statistical models such as in the

Stanford CoreNLP9 parser [Manning et al., 2014]. Recently, advances in neural networks

and deep learning allowed to create new dependency parsers that perform very well like

the one in [Chen and Manning, 2014] which is used in the recent versions of CoreNLP.

The dependency parsing is applied to all the sentences of the textual descriptions

to obtain dependency graphs. Fig. 4.9 illustrates the extracted dependency graph from

the single sentence of the running example. Words are linked to each other via directed

edges which are labeled with (abbreviated) dependency relations that correspond to the

dependency type between them. Table 4.6 lists the full form of dependency relations

that apprear as abbreviations in Fig. 4.9. For instance, the word "service" is a nominal

subject (nsubj) for the word "returns" and the word "books" is a direct object (dobj) of

9http://stanfordnlp.github.io/CoreNLP/

http://stanfordnlp.github.io/CoreNLP/

82 Chapter 4. Enriching Service Descriptions with I/O relations

the word "returns". For the complete and detailed list of dependency relations, please

refer to [De Marneffe and Manning, 2008].

R
un

ni
ng

E
xa

m
pl

e

7/12

This service returns the books written by the given author
DT NN VBZ DT NNS VBN IN DT VBN NN

det nsubj det

dobj

acl

nmod:by

case

det

amod

Figure 4.9: Dependency graph and POS tagging example

Table 4.6: Example dependency relations from Fig. 4.9

Abbreviation Dependency relation

acl clausal modifier of noun

amod adjectival modifier

case case marking

det determiner

dobj direct object

nmod:by nominal modifier

nsubj nominal subject

4.5.2 I/O recognition in text descriptions

Before starting to search for relations between I/O in the dependency graphs, we first

need to recognize the corresponding tokens of I/O words in the text. The I/O recognition

is a twofold task that consists in :

1. Extracting the I/O words from the Inputs/Outputs declaration in the service de-

scription. Given the nature of the semantic service descriptions in which the I/O

elements are declared as URIs referring to some nodes in some ontologies, I/O words

can be extracted from two possible locations:

4.5. I/O relation extraction from textual descriptions 83

(a) RDFS Labels: By fetching their labels from their reference ontologies through

the rdfs:label property. For example, an I/O element that refers to the

dbo:Book10 class in DBpedia has the label "book" retrievable from the property

rdfs:label book which fits perfectly as a word for this I/O.

(b) Local names: In the absence of labels, the local names in the URIs of I/O

elements are often meaningful words that generally require a special treatment.

For instance, local names can contain compound words, dash-separated words

or concatenated words in CamelCase11 as is the case in OWLS-TC, etc. A

custom regex (regular expression12) pattern can be added manually to the

enrichment system to deal with each case individually. Obviously, exceptions

may apply here as well.

2. Recognizing the I/O tokens. After knowing what to search for in the previous step,

we apply a "semantic" string similarity algorithm based on word2vec [Mikolov et al.,

2013] to find the best matches for each I/O word in the text. Each input or output

can be mentioned multiple times in different sentences and contexts, or can be

composed of different words.

word2vec allows to represent words in a vector space model and provides interest-

ing features such as cosine similarity between two words. The advantage of using

word2vec is its syntax-independent and dictionary-free representation as well as its

ability to find semantic similarities based on the context. This fits perfectly in our

use-case because the text can refer to I/O words with their synonyms, subclasses,

super-classes, etc.

For our recognition purposes, we calculate the cosine similarity between each I/O

and each token in the text and keep all matches above some threshold value. For

compound I/O elements composed of multiple words, each word is matched indi-

vidually in the text. The outcome of this task is a mapping of all I/O words with

the indexes of their matches (their positions in the text) and the similarity value.

Fig. 4.10 illustrates the recognized I/O elements for our running example from Ser-

vice#1 in Fig. 4.1a. The input and output words are highlighted in the sentence after

10http://dbpedia.org/ontology/Book
11Practice of writing compound words in a concatenated fashion without any separators where the

first letter of each word is capitalized. see http://en.wikipedia.org/wiki/Camel_case
12http://en.wikipedia.org/wiki/Regular_expression

http://dbpedia.org/ontology/Book
http://en.wikipedia.org/wiki/Camel_case
http://en.wikipedia.org/wiki/Regular_expression

84 Chapter 4. Enriching Service Descriptions with I/O relations

being matched with the I/O of the service. The colored tables within the figure show

the mappings of I/O tokens to the indexes of their matches in the text. For instance,

the input Writer has a match in the text at the 10th position in the sentence, the word

"author" which is a synonym of "writer".

R
un

ni
ng

E
xa

m
pl

e

8/12

This service returns the books written by the given author
1 2 3 4 5 6 7 8 9 10

Outputs= Book 5 Inputs= Writer 10

Figure 4.10: I/O words recognition example from Service#1 in Fig. 4.1a

Fig. 4.11 shows the I/O recognition results for another service where the output ele-

ment Four_Wheeled_car is an underscore-separated compound word extracted from the

local name of its URL. It has three matches in the text that form a sequence {14, 15, 16}

highlighted in blue.

This service provides the price and model year of production of a given four wheeled car model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Inputs= YearPrice 5 8 Outputs= Four_Wheeled_Car 161514

Figure 4.11: Compound I/O words recognition example

4.5.3 Relation extraction

After the two previous tasks, extracting I/O relations is now straightforward. Starting

from the generated dependency tree, a BFS (Breadth First Search) graph search algorithm

finds all the dependency paths between the inputs and the outputs in a pairwise fashion.

The extracted paths are represented as lists of strings containing only the involved

words in the path without the dependency relations. The I/O tokens are replaced by

their ontology labels extracted previously to help the matching process that comes next

in focusing only on the intermediate words in the path.

4.6. Evaluating I/O relations 85
R

un
ni

ng
E

xa
m

pl
e

9/12

This service returns the books written by the given author
1 2 3 4 5 6 7 8 9 10

det nsubj det

dobj

acl

nmod:by

case

det

amod

written

Figure 4.12: Text I/O relation extraction example

Fig. 4.12 illustrates the extracted relation in the form of a triple from the example

Service#1 in Fig. 4.1a. The only dependency path between the I/O [(author written

 books] is converted into a relation array as in Table 4.7b where the ontology tokens

for I/O are substituted for the ones from text.

4.6 Evaluating I/O relations

The final step of the service enrichment process consists in evaluating and ranking the

extracted ontological I/O relations before passing them to the user to validate and add

them to the service description. More precisely, this step aims to evaluate the ontology

relations based on their matching with the text relations.

At this point, we have two relations matrices, L = (Orelij) for ontology relations

and T = (Trelij) for text relations where each cell contains a list of ontology and text

relations respectively (see the example in Table 4.7). The rows and columns of these

matrices represent inputs and outputs respectively. The evaluation algorithm iterates

over all the pairs of ontology and text relations and calculates the similarities between

each pair.

Calculating similarities between I/O relations of different type is not a trivial task.

First, we need to homogenize the format of text and ontology relations before comparing

them. For our chosen similarity calculation approach, we require each relation to be rep-

resented as a list/array of all the words in their order of appearance in the relation path.

The text relations are already represented as an array (for each relation) as in the example

86 Chapter 4. Enriching Service Descriptions with I/O relations
R

un
ni

ng
E

xa
m

pl
e

10/12

Table 4.7: Extracted I/O relations for Service#1 in Fig.4.1a

(a) Extracted ontology relations matrix L = (Orelij)

Outputs

Book

Inputs Writer

[dbo:Book, dbo:WrittenWork, dbo:illustrator, dbo:Person, dbo:Writer]

[dbo:Book, dbo:WrittenWork, dbo:prefaceBy, dbo:Person, dbo:Writer]

[dbo:Book, dbo:WrittenWork, dbo:Work, dbo:author, dbo:Person, dbo:Writer]

(b) Extracted text relations matrix

T = (Trelij). Note that I/O words are

substituted for text tokens

Outputs

Book

Inputs Writer [Book,written,Writer]

in Table 4.7b. However, the ontology relations have a different format upon extraction.

We create an array form for each relation by substituting the local names or labels for

the URIs of nodes and properties except rdfs:subClassOf and we preserve the order

of the relation’s path. For example, the relation array [dbo:Book, rdfs:subClassOf,

dbo:WrittenWork, rdfs:subClassOf, dbo:Work, dbo:author, dbo:Person, rdfs:subClassOf,

dbo:Writer] of the example from Table 4.2 is transformed into [dbo:Book, dbo:WrittenWork,

dbo:Work, dbo:author, dbo:Person, dbo:Writer]. The relation [otc:Book, otc:writtenBy,

otc:Author] from the example in Table 4.1 is preserved as is because it doesn’t include

any super-classes (i.e no rdfs:subClassOf properties).

4.6.1 Relation embedding using aggregated word2vec vectors

Because relations can have different lengths, the similarity calculation should be size-

independent. To achieve such size-independence, we take advantage of word2vec’s cosine

similarity and vector space model. In fact, aggregating the word2vec vectors of words of

two relations containing similar words results in two aggregated word2vec vectors with

a pertinent cosine similarity measure. In Fig. 4.13, we create two aggregated vectors

4.6. Evaluating I/O relations 87

Vr1 and Vr2 for an ontology and a text relation from Table 4.7 consisting of six and

three words respectively. The cosine similarity of the two is calculated later to measure

their similarity. The aggregation of word2vec vectors’ values is guaranteed to be size-

independent because it is only impacted by the semantics of words and not by their

number.

R
un

ni
ng

E
xa

m
pl

e

11/12

V(Book) V(WrittenWork) V(Work) V(author) V(Person) V(Writer)

V(Book) V(written) V(Writer)

Vr1

Vr2

Aggregation

Aggregation

M
atching

Figure 4.13: Example I/O Relations embedding using aggregated word2vec vectors

Let r be an I/O relation (it doesn’t matter of what type because they are homoge-

nized at this point) consisting of k words. Let Vwi
where i 6 k be the word2vec vector

embedding of each word wi of r. It is obtained using the wordV ec(wi) function as in the

following formulae:

Vwi
= wordV ec(wi) (4.1)

To create an embedding for r using aggregated word2vec vectors we use the two

following word2vec-based formulae:

1. Element-wise Vector sum method:

To obtain the aggregated vector Vr of a relation r with k words, we calculate the

element-wise vector sum of all Vwi
vectors of wi words of r as follows:

relV ec⊕(r) =
k

X

i=0

wordV ec(wi) (4.2)

2. Hadamard product method:

We calculate the element-wise vector product (aka Hadamard product) of all Vwi

vectors of wi words of r as follows:

relV ec&(r) =
k
Y

i=0

wordV ec(wi) (4.3)

88 Chapter 4. Enriching Service Descriptions with I/O relations

4.6.2 Relation matching

After calculating word2vec vectors for relations and their words, we can calculate the

similarity between relations using of the following formulae:

1. Cosine similarity: Given two word2vec vectors V1 and V2, The cosine similarity is

based on the cosine distance given by:

similarity(V1, V2) = cos(V1, V2) =
V1 · V2

||V1||2||V2||2
(4.4)

The cosine distance between two word2vec vectors gives a relevant similarity value

as proven in [Mikolov et al., 2013]. At this step we use it for calculating similarities

between relations or between words both as in the next formulae. We have used it

previously in the I/O recognition task to match words as previously mentioned in

4.5.2.

2. Average of Maximums:

This method is a baseline approach for calculating similarities between relations

without vector aggregation. Let r1 and r2 be an ontology and a text relation

respectively represented as arrays as mentioned previously. Let k = |r1| and l = |r2|

be their respective cardinality, i.e. number of words.

To calculate their similarity, first we calculate the word-word similarity matrix of

size k ⇤ l of all the possible pairs of words (wi, wj) from r1 and r2.We use the cosine

similarity function from the equation above (4.1) similarity(wi, wj) for word-word

similarity.

After that, we calculate the maximum similarity values for each row (i.e we find the

best matching word in the text relation for each ontology relation word) for a total of

k rows. Finally we calculate the average of maximums on k as the similarity value

between r1 and r2. The following equation formalizes this similarity calculation

method:

AvgMaxSim(r1, r2) =

Pk

i=1 Maxl
j=1(similarity(wi, wj))

k
(4.5)

After calculating similarity between relations using the cosine similarity of their ag-

gregated vectors (Equations (4.1) and (4.2)) or the average of maximums formulae (Equa-

tion (4.3)), the final similarity value is given by the maximum value of all the three. The

4.7. Implementation 89

reader can refer to Fig. 4.16 located further in section 4.7 for some examples of similarity

calculation between words and relations.

Upon the pairwise matching, we select the ontology relations that have the best

matches in the text relations and suggest them to the user for validation before using

them to enrich the semantic service description. Fig. 4.14 illustrates the enriched service

descriptions of the example services in Fig. 4.1. Obviously, the extracted I/O relations

are represented here in a simple way for illustration purposes only.

R
un

ni
ng

E
xa

m
pl

e

12/12

(a) Enriched Service description #1 (b) Enriched Service description #2

Figure 4.14: An example of two web services (see Fig. 4.1a and Fig. 4.1b) after the

description enrichment with I/O relations

4.7 Implementation

In this section we give some implementation details about our service description enrich-

ment approach. Our approach is implemented in Java as a desktop application and is

composed of different modules, a restful API and some external dependencies as shown

in the software architecture in Fig. 4.15:

1. User Interface It is the entry point to trigger the service description enrichment

either manually by the user who selects a specific service, or automatically by run-

ning the process on a whole service repository. It also includes an experimentation

90 Chapter 4. Enriching Service Descriptions with I/O relations

Relation Formatter

Dependency-based
Relation Extractor

I/O Recognizer

Text Annotation

I/O & Text Extractor

Text Relation Extractor

Relation Embedder

Similarity Tools

Semantic Similarity API

I/O Relation
Extractor & Matcher

Query
Generator

I/O
Relation
Parser

Relation Formatter

Ontology Relation Extractor

Service
Browser

OWLS-TC
Experimenter

User Interface

Service Description Enrichment Framework

Stanford

CoreNLP

SPARQL
Query Manager

x

Web Services
Repositories

LOD Ontologies

Figure 4.15: Approach implementation: Software architecture

module for OWLS-TC that helped us evaluate our system (Section 4.8). It offers

the user the possibility to fine tune the service description enrichment by adjusting

the similarity calculation method and thresholds, the ontology distance and depth

thresholds as well as selecting specific ontology endpoints.

2. Ontology relation Extractor This module is responsible for I/O relation extrac-

tion from ontologies. It consists of three sub-modules: a) a query generator that

generates SPARQL queries for each I/O pair to find relations based on the query

parameters set by the user (maximum relation distance, maximum hierarchy depth

and filters), b) a query result parser (I/O relation parser) that parses query results

into sets of raw I/O relations then hands them over to c) the relation formatter

which formats them in a String array containing I/O names (labels or local names)

ordered in their path sequence order and substitutes super classes of I/O nodes

with I/O names as mentioned before.

3. Text relation Extractor This module is responsible for I/O relation extraction

from textual descriptions based on the process described in Fig 4.7. It consists

of five sub-modules operating sequentially starting from: a) An extraction module

that extracts I/O elements and text descriptions form semantic web service de-

scriptions using SPARQL queries. b) A text pre-processing module responsible for

4.7. Implementation 91

pre-processing and annotating the text (using Stanford CoreNLP). c) An I/O rec-

ognizer that uses some of the previous annotations and the semantic similarity API

to recognize I/O words in the text. d) The dependency-based relation extractor ex-

tracts relations between pairs of recognized I/O words in the text using dependency

graphs then hands them over to e) the relation formatter which formats them to

String arrays and substitutes the I/O tokens from the text for the I/O words to

reduce improve the relation matching.

4. Relation Matcher This module is responsible for managing the I/O relations

extraction then for matching them by using the Semantic Similarity API. It returns

the matched I/O relations to the user for validation.

5. Semantic Similarity REST API This module offers tools for word and sentence

embedding as well as for measuring the similarities between words or sentences

and relations. It receives word similarity requests from the I/O tokens recognition

module and relation similarity requests from the relation matcher. Relation match-

ing requests first go through the relation embedder to create custom embeddings

(aggregated word2vec vectors) for relations before matching them.

The semantic similarity API is implemented as a RESTful API deployed on a

distant server for performance purposes. The used similarity method is based on

word2vec which requires an important memory size. We use a Java implementation

of the word2vec algorithm called Deeplearning4J13 which is the only industrial-grade

implementation of word2vec in Java for the moment.

Fig. 4.16 gives an overview of the Semantic Similarity REST API usage with ex-

amples. The first example requests the API to return the similarity between the

words "author" and "writer". The second example requests the similarity between

the sentences "book hasAuthor writer" and "book writtenBy author". The API re-

sponds for both queries in JSON. The sentence similarity response contains three

similarity values calculated according to the equations 4.5, 4.2 and 4.3 respectively.

6. External dependencies We use two external tools in our framework: a) Apache

Jena ARQ as a SPARQL query Manager to send sparql queries to the LOD ontolo-

gies for ontology relations retrieval as wall as to Semantic Web Service repositories

for service description retrieval. b) Stanford CoreNLP is a framework toolkit by

13http://deeplearning4j.org/

http://deeplearning4j.org/

92 Chapter 4. Enriching Service Descriptions with I/O relations

Calaulate similairty between 2 words

GET similarity/word?w1={word_1}&w2={word_2} words can be singular, hyphenated or in CamelCase

Example similarity/word?w1=author&w2=writer

{"result": 0.5861095190048218}

Calaulate similairty between 2 sentences

GET similarity/sentence?s1={sentence_1}&s2={sentence_2} words in sentences can be space or comma separated

Example similarity/sentence?s1=book%20hasAuthor%20writer&s2=book%20writtenBy%20author

{

"result": {

"averageMax": 0.8620365063349406,

"vectorSum": 0.8792976140975952,

"vectorProd": 0.9999998807907104

}

}

Figure 4.16: Similarity API documentation with examples

Stanford University that provides tools and models for natural language processing.

We use it for annotating textual descriptions with POS tags and for dependency

parsing.

Fig. 4.17 shows our Service Description Enrichment desktop application in action.

The main window offers the possibility to load a service repository, select a service and

extract I/O relations. The user can preview the extracted I/O words highlighted in

the description text and see the matched I/O relations highlighted in green. A right

palette allows the user to adjust the I/O relation extraction parameters starting from the

ontology SPARQL endpoints URLs and the maximum ontology relation length to the

word/sentence similarity method and threshold.

4.8 Evaluation and experimental results

In this section, we evaluate the feasibility and effectiveness of our proposed approach.

We mainly seek to prove feasibility with the implemented Proof Of Concept but we also

evaluate three aspects individually. These aspects correspond to the three underlying

tasks of approach’s process: extracting I/O relations from ontologies, extracting I/O

relations from text and evaluating I/O relations.

4.8. Evaluation and experimental results 93

Figure 4.17: A screenshot of the implemented approach in action commented with some

instructions

4.8.1 Evaluation setup

We use OWLS-TCv4 as a data-set for evaluating our approach because it provides a

fair number of services (1008) and a number of ontologies (48) used by these services

with more than 55900 triples. Its services have 1540 inputs and 1615 outputs in total

as depicted in Table 4.8a. We host the ontologies and the services in a remote RDF

repository accessible via a SPARQL endpoint provided by Apache Jena-Fuseki.14

For our word2vec string similarity approach, we use the GoogleNews pre-trained

model15 provided with the original word2vec paper [Mikolov et al., 2013]. We chose

this model for its general purpose corpus and vocabulary. Probably, another trained

word2vec model would have a better impact on our results, but again our purpose is to

prove the feasibility rather than to obtain the best possible score. The semantic string

similarity module is deployed as a RESTful API on a distant powerful server for a better

performance given the size of the used model as we mentioned previously.

14http://jena.apache.org/documentation/fuseki2/index.html
15available at http://github.com/mmihaltz/word2vec-GoogleNews-vectors

http://jena.apache.org/documentation/fuseki2/index.html
http://github.com/mmihaltz/word2vec-GoogleNews-vectors

94 Chapter 4. Enriching Service Descriptions with I/O relations

4.8.2 Experimental results

4.8.2.1 Ontology I/O relation extraction

This first task aims to maximize its recall value by extracting all the existing relations

in order to evaluate them later. Therefore, and given the nature of this graph search

problem, the outcome has a boolean nature where relations either exist or not. However,

the number of extracted relations depends on the user-defined maximum relation length

and hierarchy depth.

The outcome of our proposed approach depends in terms of recall on the outcome of

this first task which itself depends on the quality of OWLS-TC ontologies and services.

For I/O ontology relations to be extracted, a service must have at least one input and one

output and all its I/O must refer to the same ontology (since OWLS-TC ontologies are

not interlinked). Table 4.8b shows some statistics about the I/O and ontology usage in

OWLS-TC where: a) Sall is the set of all OWLS-TC services. Smin is the set of services

that have the minimum requirements of at least one input and one output. Sintra are

services whose all inputs and outputs refer to the same ontology (intra-ontology I/O).

Therefore, a usable service that satisfies all the previously mentioned requirements must

belong to Susable = Smin
T

Sintra, the set of usable services. As in Table 4.8b, merely 19%

of OWLS-TC services are usable for evaluating our I/O relation extraction approach.

Running our system on the set of usable services shows that the hierarchy depths

have more impact on the extraction than the maximum lengths (number of intermediate

nodes) as shown in the results in Table 4.9. In fact, the number of extracted ontology

I/O relations increases more remarkably by increasing the maximum hierarchy depth

values than by increasing the maximum path distance. Therefore, the ontology I/O

extraction enhancement by hierarchical patterns has proven to be very efficient. The last

two cells of the table are missing due to unreasonable execution time required to calculate

them because of the increased algorithmic complexity at this point (depth and distance).

Some optimizations are necessary to improve the algorithmic complexity of I/O relation

extraction from ontologies. We will discuss this later in the conclusion.

Amongst the list of usable services Susable, only 64/205 services (31%) made it through

the ontology relations extraction experiments. This number is relatively low compared to

the 1083 services of OWLS-TC. This is due to the fact that OWLS-TC ontologies were

not designed for such a use-case and often lack relations even between close nodes.

4.8. Evaluation and experimental results 95

Table 4.8: I/O of services in OWLS-TC and their ontology usage

(a) Total I/O in OWLS-TC

Services Inputs Outputs

1083 1540 1615

(b) I/O and ontology usage

Sall Smin Sintra Susable

1083 996 274 205

% 100 91,96 25,30 18,92

Table 4.9: I/O ontology relations extraction results in OWLS-TC

max length

max d = 0 d = 1 d = 2 d = 3

depth #r #s #r #s #r #s #r #s

h = 0 12 11 12 11 258 40 307 40

h = 1 39 34 57 38 2385 59 17611 59

h = 2 64 43 117 48 3852 64

h = 3 72 47 195 52 4945 64

#r: extracted I/O relations

#s: services with ≥ 1 extracted relation

4.8.2.2 I/O recognition evaluation

Recognizing the I/O tokens in the text descriptions is the basis for every textual I/O

relation extraction. It depends on two major factors: a) the quality of the textual de-

scription and b) the quality of the used word2vec model and its sparseness. Table 4.10a

shows the results of I/O recognition in OWLS-TC using a similarity threshold = 0.5.

More than 80% of all OWLS-TC inputs and more than 87, 3 of all outputs are properly

recognized in the text descriptions. These results are fairly good and can be improved

by adapting the I/O recognition algorithm to take into account some particular cases in

OWLS-TC. We have manually checked all the services to make sure the threshold value

is adequate for most if not all services.

Table 4.10b shows the absolute frequency of the most frequent cases of non-recognized

I/O tokens as well as their percentage amongst the total cases of non-recognition. (509

non-recognized I/O in total) The most frequent case (24, 16% of them) is the usage of

compound words in the text that correspond to variable names without camelCasing (eg.

maxprice, taxedprice, etc.) while the variable names themselves in the I/O URIs are

written in camelCase. This requires using a more sophisticated token splitting algorithm

or using an edit-distance string similarity algorithm as an alternative to word2vec simi-

96 Chapter 4. Enriching Service Descriptions with I/O relations

Table 4.10: Evaluation of I/O recognition in textual descriptions

(a) I/O recognition results using a similarity

threshold ts = 0.5

Inputs Outputs

1236 1410

% 80,25 87,30

(b) Top cases of non-recognized I/O

Case # %

compound words 123 24,16

unmentioned I/O words 98 19,25

special separators 42 8,25

larity. Another frequent case of non-recognition (19, 25%) is the absence of any mention

of the I/O or their synonyms or similar words in the text which unfortunately cannot

be dealt with automatically unless the text description is manually enriched beforehand.

The third frequent particular case (8, 25%) is the use of unusual token separators such as

(/, -, +, hidden characters, etc).

4.8.2.3 Extracted I/O relations evaluation

To evaluate this last step, we run the whole process on the list of usable services mentioned

above. For the evaluation of I/O relations, we manually evaluate the matching results

given by our three proposed similarity calculation methods (the aggregation-based cosine

similarity and the average of maximums). For this experimentation, we let the system

pick the maximum similarity value amongst the three similarities.

First of all, amongst the usable services set, only 32 of them had both text and

ontology relations, 5 of which didn’t have any valid I/O relations in the ontologies. Valid

I/O relations are ontology relations that have correct matches among text relations. The

last 5 services don’t have any I/O relations that are related to the text in any way. Table

4.11a shows the obtained results for the subset of usable services with both text and

ontology relations. It shows that the system has extracted 19 I/O relations in total out

of 32 relations, 18 of which were valid whereas 1 was invalid. Therefore, there was only

1 false positive and no false negatives.

With an F-score of 0,76 and a precision value of 94,73, our I/O relation evaluation

system shows promising results (see Table 4.11b). However, the recall is still to be

optimized. For the most part, the low recall value is due to the quality of text descriptions

sentences that do not produce "good" dependency graphs upon dependency parsing. It is

mainly caused by some recurrent patterns in text descriptions like "This service returns

4.9. Conclusion 97

Table 4.11: Evaluation of extracted I/O relations

(a) Validity of the extracted relations

Extracted Valid Invalid Reference

19 18 1 28

% 67,85 64,2 3,5 100

(b) Recall and precision

Precision Recall F-score

94,73 64,28 0,76

... " and by the usage of pronouns to refer to I/O words and as well as some confusing

conjunctions.

4.9 Conclusion

In this chapter, we presented an approach for enriching service descriptions to remedy

to the problem of ambiguous service functionality. Our enrichment approach extracts

existing relations between the inputs and outputs of the services from the underlying

ontologies, using SPARQL, and from the text descriptions of services, using NLP tech-

niques. We aimed to prove the feasibility of solving this problem in a way that has not

been addressed before to ht best of our knowledge. We were motivated by the recent

advances in deep-learning and NLP techniques that seemed to be very promising, which

was proven true in our case.

Limits and future improvements

Ontology I/O relations extraction with SPARQL quickly shows its limits beyond some

relation lengths because of the important number of joins required for all the possible

combinations of paths. Even tough the most relevant relations are found at shorter

distances, some ontologies like life-science ontologies have a fine granularity level with

longer paths for I/O relations. Applying heuristics to overcome this problem is very

important to solve this issue. One possible solution is to consider Ontology profiling.

Profiling data can be used to automatically generate tailored relation extraction queries

specific to each ontology.

We believe that the obtained results in terms of I/O tokens recognition or in relations

evaluation can be significantly improved, either by optimizing the word/sentence simi-

larity parameters, by training other word2vec models, or by adopting other alternatives,

98 Chapter 4. Enriching Service Descriptions with I/O relations

like GloVe16, WordNet17, etc.

Since OWLS-TC ontologies and services were mainly designed for evaluating service

matchmaking, they lack the interlinking of ontologies and many "real-world" relations

between concepts are missing. These issues reduced the amount of usable web services

for our experiments. Manually interlinking OWLS-TC ontologies to real world ontologies

such as DBpedia would have permitted to extract more I/O relations. We have tried

this on some OWLS-TC ontologies partially on several concepts and were able to extract

more relations but we haven’t included this in the experiments section.

16http://nlp.stanford.edu/projects/glove/
17http://wordnet.princeton.edu/

http://nlp.stanford.edu/projects/glove/
http://wordnet.princeton.edu/

Chapter 5

Conclusion

5.1. Contributions 101

5.1 Contributions

In this thesis, we portrayed two separate but complementary works:

5.1.1 LIDSEARCH: Linked Data and Service Search

We presented LIDSEARCH [Mouhoub et al., 2014, 2015], a framework for searching

linked data and semantic web services at the same time with a single query. LIDSEARCH

introduces the following features and contributions:

1. A method to derive service queries from a data query. It involves extracting I/Os

for service queries from data queries and searching for their concepts (classes) in

the LOD as well as their similar concepts to expand the search area.

2. Automated service discovery of services relevant to a data query, i.e, services that

provide some or all searched data to complete it, or that consume some or all

searched data to propose additional data or services.

3. Service search based on ontological similarity (logic) that takes into account hier-

archical similarity (sub classes) as well as equivalence (rdfs:equivalentClassOf).

4. service ranking based on textual similarity of query’s I/O with textual descriptions

of services using a word2vec similarity measure.

5. Expressing service search queries without prior knowledge (from users) of service

description languages, repositories or ontologies used to describe I/O of services.

6. Rewriting of service queries for multiple RDF-based service descriptions including

OWLS and MSM.

We validated our proposition with a proof of concept and tested it with data queries

that run against DBpedia and returns relevant services from OWLS-TC. We also sep-

arately evaluated our SPARQL-driven service search algorithm using a set of service

queries from the OWLS-TCv4 benchmark.

5.1.2 Service Description Enrichment

We presented a framework and a baseline towards automatically enriching service descrip-

tions with I/O relations. I/O relations are a descriptive element that allows for a precise

understanding of service functionalities. It has the following features and contributions:

102 Chapter 5. Conclusion

1. An approach to extract I/O relations from both textual descriptions and ontologies

using:

(a) A method to extract I/O relations from ontologies using SPARQL queries

(b) A method to extract I/O relations from text using grammatical dependency

graphs and word2vec textual similarity.

2. An approach for enriching service descriptions with I/O relations from ontologies.

Ontology I/O relations are selected and ranked based on their match with textual

relations.

3. A method for calculating textual similarity between I/O relations using word2vec

cosine similarity. It is based on aggregated embeddings for relations created from

wor2vec vectors of relations’ words.

5.2 Perspectives

The presented work in this thesis is mainly validated using proofs of concepts that can

be improved at different levels. In the conclusions of chapters 3 and 4 we discussed the

main limits of our respective frameworks and suggested some possible solutions in the

future. In this section, we will present some mid-term and long-term perspectives that

could bring new features and contributions.

1. Automatic Service Composition: One of the objectives of LIDSEARCH is to

automatically create service compositions in case the service search fails to find

atomic relevant services. The introduced automatic service composition algorithm

has been implemented but not fully integrated within the framework. Integrating

the algorithm will allow us evaluate its efficiency and performance.

2. Coupling with SWS annotation tools LIDSEARCH is solely dedicated to se-

mantic web services. However, in real world and to the best of our knowledge, there

are almost no (if none at all) real world web services described and published as

semantic web services. There are some web APIs listed on ProgrammableWeb.com

that provide results in RDF format but do not have SWS descriptions. To make

LIDSEARCH operable on real world services, a middleware layer can be used to

leverage existing web services and APIs with SWS descriptions using a standard

5.2. Perspectives 103

language like OWLS. For instance, works like WebKarma1 [Taheriyan et al., 2012a]

or DORIS [Koutraki et al., 2015] can be integrated with our framework in an a pri-

ori fashion to create SWS descriptions for APIs that can be published in local or

remote RDF repositories. This will extend the service search to real world web

APIs.

3. Data and service search in natural language: One of the leads that has been

explored but not accomplished is to add a natural language search layer on top of

LIDSEARCH. We have investigated the existing approaches and sketched a baseline

approach but we have put it aside in favor of the service description enrichment

framework. Adding natural language queries support makes the search easier for

the user but involves many challenges and domains such as natural language to

SPARQL conversion, entity recognition, text to ontology matching, etc.

4. QoS-aware service discovery and composition In this thesis, we didn’t take

into account QoS aspects which are widely considered in service discovery and

composition. In the future, it would be important to take into account these aspects.

5. Integrating I/O relations extraction in LIDSEARCH: In LIDSEARCH, a

data query can be regarded as a BGP describing a desired set of outputs that satisfy

a relation with each other or with other input concepts. Currently, LIDSEARCH

only considers the I/O of data queries that could be used for service requests but

doesn’t make a use for their relationship in service search. Therefore, integrating

I/O relations extraction in LIDSEARCH could unlock the possibility to search for

a service with an underlying data model that satisfies that of the data query. This

copes with the added value of I/O relations.

1http://www.isi.edu/integration/karma/

http://www.isi.edu/integration/karma/

Bibliography

Abadi, D. J., Marcus, A., Madden, S. R., and Hollenbach, K. (2009). Sw-store: a verti-

cally partitioned dbms for semantic web data management. The VLDB Journal?The

International Journal on Very Large Data Bases, 18(2):385–406.

Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., and Ruckhaus, E. (2011). Anapsid: An

adaptive query processing engine for sparql endpoints. In The Semantic Web–ISWC

2011, pages 18–34. Springer.

Akar, Z., Halaç, T. G., Ekinci, E. E., and Dikenelli, O. (2012). Querying the web of

interlinked datasets using void descriptions. In LDOW.

Angeli, G., Premkumar, M. J. J., and Manning, C. D. (2015). Leveraging linguistic

structure for open domain information extraction. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics, ACL 2015, July 26-31, 2015,

Beijing, China, Volume 1: Long Papers, pages 344–354.

Angles, R. and Gutierrez, C. (2008). The expressive power of SPARQL. Springer.

Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila, O., Martin, D., McDermott, D.,

McIlraith, S. A., Narayanan, S., Paolucci, M., Payne, T., et al. (2002). Daml-s: Web

service description for the semantic web. In The Semantic Web—ISWC 2002, pages

348–363. Springer.

Arnold, P. and Rahm, E. (2014). Extracting semantic concept relations from wikipedia.

In Proceedings of the 4th International Conference on Web Intelligence, Mining and

Semantics, WIMS ’14, pages 26:1–26:11, New York, NY, USA. ACM.

Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked data-the story so far. Intl.

journal on semantic web and information systems, 5(3):1–22.

Blum, A. L. and Furst, M. L. (1997). Fast planning through planning graph analysis.

Artificial intelligence, 90(1):281–300.

Bönström, V., Hinze, A., and Schweppe, H. (2003). Storing rdf as a graph. In Web

Congress, 2003. Proceedings. First Latin American, pages 27–36. IEEE.

106 Bibliography

Booth, D. and Liu, C. K. (2007). Web Services Description Lan-

guage (WSDL) Version 2.0 Part 0: Primer. Technical report, W3C.

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626 - Ext. on Nov. 2015.

Bornea, M. A., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O.,

and Bhattacharjee, B. (2013). Building an efficient rdf store over a relational database.

In Proceedings of the 2013 ACM SIGMOD International Conference on Management

of Data, pages 121–132. ACM.

Brickley, D. and Guha, R. (2014). RDF schema 1.1. W3C recommendation, W3C.

http://www.w3.org/TR/rdf-schema/.

Broekstra, J., Kampman, A., and Van Harmelen, F. (2002). Sesame: A generic architec-

ture for storing and querying rdf and rdf schema. In The Semantic Web—ISWC 2002,

pages 54–68. Springer.

Bülthoff, F. and Maleshkova, M. (2014). Restful or restless - current state of today’s top

web apis. In 11th ESWC 2014 (ESWC2014).

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., and Wilkinson, K.

(2004). Jena: implementing the semantic web recommendations. In Proceedings of the

13th international World Wide Web conference on Alternate track papers & posters,

pages 74–83. ACM.

Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser using neural

networks. In Empirical Methods in Natural Language Processing (EMNLP).

Chen, F., Lu, C., Wu, H., and Li, M. (2017). A semantic similarity measure integrat-

ing multiple conceptual relationships for web service discovery. Expert Systems with

Applications, 67:19–31.

Chen, J., Feng, Z., Chen, S., Huang, K., Tan, W., and Zhang, J. (2015). A novel lifecycle

framework for semantic web service annotation assessment and optimization. In IEEE

Int. Conf. on Web Services (ICWS), pages 361–368. IEEE.

Cheniki, N., Belkhir, A., and Atif, Y. (2015). Supporting multilingual semantic web

services discovery by consuming data from dbpedia knowledge base. In Proceedings

of the International Conference on Intelligent Information Processing, Security and

Advanced Communication, page 66. ACM.

Bibliography 107

Cheniki, N., Belkhir, A., and Atif, Y. (2016). Mobile services discovery framework using

DBpedia and non-monotonic rules. Computers & Electrical Engineering, 52:49–64.

Choi, H., Son, J., Cho, Y., Sung, M. K., and Chung, Y. D. (2009). Spider: a system for

scalable, parallel/distributed evaluation of large-scale rdf data. In Proceedings of the

18th ACM conference on Information and knowledge management, pages 2087–2088.

ACM.

Chong, E. I., Das, S., Eadon, G., and Srinivasan, J. (2005). An efficient sql-based rdf

querying scheme. In Proceedings of the 31st international conference on Very large data

bases, pages 1216–1227. VLDB Endowment.

Damljanovic, D., Agatonovic, M., and Cunningham, H. (2012). Freya: An interactive

way of querying linked data using natural language. In The Semantic Web: ESWC

2011 Workshops, pages 125–138. Springer.

De Marneffe, M.-C. and Manning, C. D. (2008). Stanford typed dependencies manual.

Technical report, Stanford University.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113.

Di Modica, G., Tomarchio, O., and Vita, L. (2011). Resource and service discovery in

soas: A p2p oriented semantic approach. International Journal of Applied Mathematics

and Computer Science, 21(2):285–294.

Dietze, S., Yu, H. Q., Pedrinaci, C., Liu, D., and Domingue, J. (2011). Smartlink: a

web-based editor and search environment for linked services. In The Semanic Web:

Research and Applications, pages 436–440. Springer.

Domingue, J., Fensel, D., and Hendler, J. A. (2011). Introduction to the Semantic Web

Technologies, pages 1–41. Springer Berlin Heidelberg, Berlin, Heidelberg.

Du, J.-H., Wang, H.-F., Ni, Y., and Yu, Y. (2012). Hadooprdf: A scalable semantic data

analytical engine. Intelligent Computing Theories and Applications, pages 633–641.

Elbassuoni, S., Ramanath, M., Schenkel, R., and Weikum, G. (2010). Searching rdf

graphs with sparql and keywords. IEEE Data Eng. Bull., 33(1):16–24.

108 Bibliography

Fensel, D., Facca, F. M., Simperl, E., and Toma, I. (2011). Semantic web services.

Springer Science & Business Media.

Ferré, S. (2013). squall2sparql: a translator from controlled english to full sparql 1.1. In

Work. Multilingual Question Answering over Linked Data (QALD-3).

Freitas, A., Curry, E., Oliveira, J. G., and O’Riain, S. (2012). Querying heterogeneous

datasets on the linked data web: Challenges, approaches, and trends. Internet Com-

puting, IEEE, 16(1):24–33.

Galárraga, L., Hose, K., and Schenkel, R. (2012). Partout: A distributed engine for

efficient rdf processing. arXiv preprint arXiv:1212.5636.

GarcíA, J. M., Ruiz, D., and Ruiz-CortéS, A. (2012). Improving semantic web services

discovery using sparql-based repository filtering. Web Semant., 17:12–24.

Goasdoué, F., Kaoudi, Z., Manolescu, I., Quiané-Ruiz, J., and Zampetakis, S. (2013).

Cliquesquare: efficient hadoop-based rdf query processing. In BDA’13-Journées de

Bases de Données Avancées.

Görlitz, O. and Staab, S. (2011). Splendid: Sparql endpoint federation exploiting void

descriptions. COLD, 782.

Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.-U., and Umbrich, J. (2010).

Data summaries for on-demand queries over linked data. In Proceedings of the 19th

international conference on World wide web, pages 411–420. ACM.

Harth, A., Hose, K., and Schenkel, R. (2012). Database techniques for linked data

management. In Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data, pages 597–600. ACM.

Harth, A., Knoblock, C., Stadtmüller, S., Studer, R., and Szekely, P. (2013). On-the-fly

integration of static and dynamic sources. In Proceedings of the ISWC 2013 workshop

on Consuming Linked Data. CEUR-WS.

Hartig, O. (2011). Zero-knowledge query planning for an iterator implementation of link

traversal based query execution. In The Semantic Web: Research and Applications,

pages 154–169. Springer.

Bibliography 109

Hatzi, O., Vrakas, D., Nikolaidou, M., Bassiliades, N., Anagnostopoulos, D., and Vla-

havas, L. (2012). An integrated approach to automated semantic web service compo-

sition through planning. Services Computing, IEEE Transactions on, 5(3):319–332.

He, Q., Yan, J., Yang, Y., Kowalczyk, R., and Jin, H. (2013). A decentralized service

discovery approach on peer-to-peer networks. Services Computing, IEEE Transactions

on, 6(1):64–75.

Heß, A., Johnston, E., and Kushmerick, N. (2004). Assam: A tool for semi-automatically

annotating semantic web services. In International Semantic Web Conference, volume

3298, pages 320–334. Springer.

Hitzler, P., Krötzsch, M., Rudolph, S., Parsia, B., and Patel-Schneider, P. (2012).

OWL 2 web ontology language primer (second edition). Technical report, W3C.

http://www.w3.org/TR/owl2-primer/.

Husain, M., McGlothlin, J., Masud, M. M., Khan, L., and Thuraisingham, B. M. (2011).

Heuristics-based query processing for large rdf graphs using cloud computing. Knowl-

edge and Data Engineering, IEEE Transactions on, 23(9):1312–1327.

Jaeger, M. C., Rojec-Goldmann, G., Liebetruth, C., Mühl, G., and Geihs, K. (2005).

Ranked matching for service descriptions using owl-s. In Kommunikation in Verteilten

Systemen (KiVS), pages 91–102. Springer.

Kaoudi, Z., Manolescu, I., et al. (2013). Triples in the clouds. In ICDE-29th International

Conference on Data Engineering.

Kiefer, C. and Bernstein, A. (2008). The creation and evaluation of isparql strategies for

matchmaking. Springer.

Klein, M. and König-Ries, B. (2004). Coupled signature and specification matching for

automatic service binding. In Web Services, pages 183–197. Springer.

Klusch, M. (2008). Semantic web service description. In CASCOM: Intelligent Service

Coordination in the Semantic Web, Whitestein Series in Software Agent Technologies

and Autonomic Computing, pages 31–57. Birkhäuser Basel.

Klusch, M. (2014). Service discovery. In Encyclopedia of Social Network Analysis and

Mining, pages 1707–1717. Springer.

110 Bibliography

Klusch, M. and Kapahnke, P. (2009). Owls-mx3: an adaptive hybrid semantic service

matchmaker for owl-s. In Proceedings of 3rd International Workshop on Semantic

Matchmaking and Resource Retrieval (SMR2), USA.

Klusch, M. and Kapahnke, P. (2012). The isem matchmaker: A flexible approach for

adaptive hybrid semantic service selection. Web Semantics: Science, Services and

Agents on the World Wide Web, 15:1–14.

Klusch, M., Kapahnke, P., Schulte, S., Lecue, F., and Bernstein, A. (2016). Semantic

web service search: a brief survey. KI-Künstliche Intelligenz, 30(2):139–147.

Kong, W. and Allan, J. (2013). Extracting query facets from search results. In Proceedings

of the 36th international ACM SIGIR conference on Research and development in

information retrieval, pages 93–102. ACM.

Kopecky, J., Gomadam, K., and Vitvar, T. (2008). hrests: An html microformat for

describing restful web services. In Web Intelligence and Intelligent Agent Technology,

2008. WI-IAT’08. IEEE/WIC/ACM Intl. Conf. on, volume 1, pages 619–625. IEEE.

Koutraki, M., Vodislav, D., and Preda, N. (2015). Doris: discovering ontological relations

in services. In The 14th International Semantic Web Conference.

Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benrernou, S., Brandic,

I., Kertész, A., Parkin, M., and Carro, M. (2013). A survey on service quality descrip-

tion. ACM Computing Surveys (CSUR), 46(1):1.

Küngas, P. and Matskin, M. (2005). Semantic web service composition through a p2p-

based multi-agent environment. In Agents and Peer-to-Peer Computing, pages 106–119.

Springer.

Ladwig, G. and Tran, T. (2011). Sihjoin: querying remote and local linked data. In The

Semantic Web: Research and Applications, pages 139–153. Springer.

Langegger, A., Wöß, W., and Blöchl, M. (2008). A semantic web middleware for virtual

data integration on the web. In The Semantic Web: Research and Applications, pages

493–507. Springer.

Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., and Morbidoni, C. (2009).

Rapid prototyping of semantic mash-ups through semantic web pipes. In Proceedings

of the 18th international conference on World wide web, pages 581–590. ACM.

Bibliography 111

Lécué, F. and Léger, A. (2006). A formal model for semantic web service composition.

In The Semantic Web-ISWC 2006, pages 385–398. Springer.

Lécué, F., Silva, E., and Pires, L. F. (2008). A framework for dynamic web services

composition. In Emerging Web Services Technology, Volume II, pages 59–75. Springer.

Lee, Y.-J. (2013). Algorithm for automatic web api composition. In WEB 2013, The

First International Conference on Building and Exploring Web Based Environments,

pages 57–62.

Lemos, A. L., Daniel, F., and Benatallah, B. (2016). Web service composition: a survey

of techniques and tools. ACM Computing Surveys (CSUR), 48(3):33.

Levandoski, J. J. and Mokbel, M. F. (2009). Rdf data-centric storage. In Web Services,

2009. ICWS 2009. IEEE International Conference on, pages 911–918. IEEE.

Liu, D., Li, N., Pedrinaci, C., Kopeckỳ, J., Maleshkova, M., and Domingue, J. (2011).

An approach to construct dynamic service mashups using lightweight semantics. In

Current Trends in Web Engineering, pages 13–24. Springer.

Lopez, V., Fernández, M., Motta, E., and Stieler, N. (2012). Poweraqua: Supporting

users in querying and exploring the semantic web. Semantic Web, 3(3):249–265.

Louati, A., El Haddad, J., and Pinson, S. (2016). A multi-agent approach for trust-based

service discovery and selection in social networks. Scalable Computing: Practice and

Experience, 16(4):381–402.

Lucky, M. N., Cremaschi, M., Lodigiani, B., Menolascina, A., and De Paoli, F. (2016).

Enriching API Descriptions by Adding API Profiles Through Semantic Annotation. In

Int. Conf. on Service-Oriented Computing (ICSOC), pages 780–794. Springer.

Lynden, S., Kojima, I., Matono, A., and Tanimura, Y. (2011). Aderis: An adaptive

query processor for joining federated sparql endpoints. In On the Move to Meaningful

Internet Systems: OTM 2011, pages 808–817. Springer.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information

Retrieval. Cambridge University Press, New York, NY, USA.

112 Bibliography

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., and McClosky, D.

(2014). The stanford corenlp natural language processing toolkit. In ACL (System

Demonstrations), pages 55–60.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,

Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al. (2004). OWL-S: Seman-

tic markup for web services. W3C member submission, 22:2007–04.

Masuch, N., Hirsch, B., Burkhardt, M., Heßler, A., and Albayrak, S. (2012). Sema2: a

hybrid semantic service matching approach. In Semantic web services, pages 35–47.

Springer.

McCabe, F., Ferris, C., Champion, M., Newcomer, E., Haas, H., Booth, D., and Orchard,

D. (2004). Web services architecture. W3C note, W3C. https://www.w3.org/TR/ws-

arch/.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119.

Miller, G. A. (1995). Wordnet: A lexical database for english. Communications of the

ACM, 38(11):39–41.

Motik, B., Patel-Schneider, P., and Parsia, B. (2012). OWL 2 web ontology language

structural specification and functional-style syntax (second edition). W3C recommen-

dation, W3C. http://www.w3.org/TR/owl2-syntax/.

Mouhoub, M., Grigori, D., and Manouvrier, M. (2014). A framework for searching se-

mantic data and services with sparql. In Service-Oriented Computing, volume 8831 of

Lecture Notes in Computer Science, pages 123–138. Springer Berlin Heidelberg.

Mouhoub, M. L., Grigori, D., and Manouvrier, M. (2015). Lidsearch: A sparql-driven

framework for searching linked data and semantic web services. In The Semantic Web:

ESWC 2015 Satellite Events, pages 112–117. Springer.

Mouhoub, M. L., Grigori, D., and Manouvrier, M. (2017). Towards an Automatic En-

richment of Semantic Web Services Descriptions. Springer International Publishing.

Bibliography 113

Mukhopadhyay, D. and Chougule, A. (2012). A survey on web service discovery ap-

proaches. In Advances in Computer Science, Engineering & Applications, pages 1001–

1012. Springer.

Naacke, H., Amann, B., and Curé, O. (2017). Sparql graph pattern processing with apache

spark. In GRADES (Graph Data-management Experiences & Systems), Workshop,

SIGMOD 2017.

Nachouki, G. and Quafafou, M. (2011). Mashup web data sources and services based on

semantic queries. Information Systems, 36(2):151–173.

Nakashole, N., Weikum, G., and Suchanek, F. (2012). Patty: A taxonomy of relational

patterns with semantic types. In Proceedings of the 2012 Joint Conference on Em-

pirical Methods in Natural Language Processing and Computational Natural Language

Learning, EMNLP-CoNLL ’12, pages 1135–1145, Stroudsburg, PA, USA. Association

for Computational Linguistics.

Neumann, T. and Weikum, G. (2008). Rdf-3x: a risc-style engine for rdf. Proceedings of

the VLDB Endowment, 1(1):647–659.

Ngan, L. D. and Kanagasabai, R. (2013a). Semantic web service discovery: state-of-the-

art and research challenges. Personal and ubiquitous computing, 17(8):1741–1752.

Ngan, L. D. and Kanagasabai, R. (2013b). Semantic Web service discovery: state-of-the-

art and research challenges. Personal and ubiquitous computing, 17(8):1741–1752.

Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., and Tummarello, G.

(2008). Sindice. com: a document-oriented lookup index for open linked data. Inter-

national Journal of Metadata, Semantics and Ontologies, 3(1):37–52.

Özsu, M. T. (2016). A survey of rdf data management systems. Frontiers of Computer

Science, 10(3):418–432.

Palathingal, P. and Chandra, S. (2004). Agent approach for service discovery and utiliza-

tion. In System Sciences, 2004. Proceedings of the 37th Annual Hawaii International

Conference on, pages 9–pp. IEEE.

Palmonari, M., Sala, A., Maurino, A., Guerra, F., Pasi, G., and Frisoni, G. (2011).

Aggregated search of data and services. Information Systems, 36(2):134 – 150. Special

Issue: Semantic Integration of Data, Multimedia, and Services.

114 Bibliography

Papailiou, N., Konstantinou, I., Tsoumakos, D., and Koziris, N. (2012). H2rdf: adaptive

query processing on rdf data in the cloud. In Proceedings of the 21st international

conference companion on World Wide Web, pages 397–400. ACM.

Patil, A. A., Oundhakar, S. A., Sheth, A. P., and Verma, K. (2004). Meteor-s web service

annotation framework. In Proceedings of the 13th international conference on World

Wide Web, pages 553–562. ACM.

Pedrinaci, C., Cardoso, J., and Leidig, T. (2014). Linked usdl: a vocabulary for web-scale

service trading. In The Semantic Web: Trends and Challenges, pages 68–82. Springer.

Pedrinaci, C. and Domingue, J. (2010). Toward the next wave of services: Linked services

for the web of data. J. ucs, 16(13):1694–1719.

Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., and Domingue, J.

(2010). iserve: a linked services publishing platform. In Ontology Repositories and

Editors for the Semantic Web Workshop at The 7th Extended Semantic Web, volume

596.

Preda, N., Suchanek, F. M., Kasneci, G., Neumann, T., Ramanath, M., and Weikum,

G. (2009). Angie: Active knowledge for interactive exploration. Proc. of the VLDB

Endowment, 2(2):1570–1573.

Preist, C. (2004). A conceptual architecture for semantic web services. The Semantic

Web–ISWC 2004, pages 395–409.

Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL Query Language for RDF. Tech-

nical report, W3C. https://www.w3.org/TR/rdf-sparql-query/ - Ext. on June 2017.

Quilitz, B. and Leser, U. (2008). Querying distributed rdf data sources with sparql. In

The Semantic Web: Research and Applications, pages 524–538. Springer.

Raimond, Y. and Schreiber, G. (2014). RDF 1.1 primer. W3C note, W3C.

http://www.w3.org/TR/rdf11-primer/.

Rakhmawati, N. A., Umbrich, J., Karnstedt, M., Hasnain, A., and Hausenblas, M. (2013).

A comparison of federation over sparql endpoints frameworks. In Knowledge Engineer-

ing and the Semantic Web, pages 132–146. Springer.

Bibliography 115

Rao, J., Dimitrov, D., Hofmann, P., and Sadeh, N. (2006). A mixed initiative semantic

web framework for process composition. In The Semantic Web-ISWC 2006, pages

873–886. Springer.

Rao, J. and Su, X. (2004). A survey of automated web service composition methods. In

Semantic Web Services and Web Process Composition, pages 43–54. Springer.

Rios, L. H. O. and Chaimowicz, L. (2011). Pnba*: A parallel bidirectional heuristic

search algorithm.

Rodriguez-Mier, P., Mucientes, M., Vidal, J. C., and Lama, M. (2012). An optimal

and complete algorithm for automatic web service composition. Intl. Journal of Web

Services Research (IJWSR), 9(2):1–20.

Rodriguez Mier, P., Pedrinaci, C., Lama, M., and Mucientes, M. (2015). An integrated

semantic web service discovery and composition framework. CoRR, abs/1502.02840.

Rohloff, K. and Schantz, R. E. (2010). High-performance, massively scalable distributed

systems using the mapreduce software framework: the shard triple-store. In Program-

ming support innovations for emerging distributed applications, page 4. ACM.

Sakr, S. and Al-Naymat, G. (2010). Relational processing of rdf queries: a survey. ACM

SIGMOD Record, 38(4):23–28.

Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., and Ngonga Ngomo, A.-C. (2015). A fine-

grained evaluation of sparql endpoint federation systems. Semantic Web, (Preprint):1–

26.

Saleem, M. and Ngonga Ngomo, A.-C. (2014). Hibiscus: Hypergraph-based source se-

lection for sparql endpoint federation. In The Semantic Web: Trends and Challenges,

volume 8465 of Lecture Notes in Computer Science, pages 176–191. Springer Interna-

tional Publishing.

Santorini, B. (1990). Part-Of-Speech tagging guidelines for the Penn Treebank project

(3rd revision, 2nd printing). Technical report, Department of Linguistics, University of

Pennsylvania, Philadelphia, PA, USA. Available at: http://repository.upenn.edu/

cgi/viewcontent.cgi?article=1603&context=cis_reports.

http://repository.upenn.edu/cgi/viewcontent.cgi?article=1603&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1603&context=cis_reports

116 Bibliography

Sbodio, M. L. (2012). Sparqlent: a sparql based intelligent agent performing service

matchmaking. In Semantic Web Services, pages 83–105. Springer.

Sbodio, M. L., Martin, D., and Moulin, C. (2010). Discovering Semantic Web services

using SPARQL and intelligent agents. Web Semantics: Science, Services and Agents

on the World Wide Web, 8(4):310–328.

Schwarte, A., Haase, P., Hose, K., Schenkel, R., and Schmidt, M. (2011). Fedx: Opti-

mization techniques for federated query processing on linked data. In Intl. Semantic

Web Conf. (1), pages 601–616.

Seaborne, A. and Harris, S. (2013). SPARQL 1.1 query language. W3C recommendation,

W3C. http://www.w3.org/TR/sparql11-query/.

Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S., and Xu, X. (2014). Web

services composition: A decade’s overview. Information Sciences, 280:218–238.

Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., and Manegold, S. (2008). Column-

store support for rdf data management: not all swans are white. Proceedings of the

VLDB Endowment, 1(2):1553–1563.

Speiser, S. and Harth, A. (2011a). Integrating linked data and services with linked

data services. In Proc. of the 8th Extended Semantic Web Conf. on The Semantic

Web: Research and Applications - Volume Part I, ESWC’11, pages 170–184, Berlin,

Heidelberg. Springer-Verlag.

Speiser, S. and Harth, A. (2011b). Integrating linked data and services with linked data

services. In Proceedings of the 8th Extended Semantic Web Conference on The Semantic

Web: Research and Applications - Volume Part I, ESWC’11, pages 170–184, Berlin,

Heidelberg. Springer-Verlag.

Stollberg, M., Hepp, M., and Hoffmann, J. (2007). A caching mechanism for semantic web

service discovery. In Proceedings of the 6th International The Semantic Web and 2Nd

Asian Conference on Asian Semantic Web Conference, pages 480–493. Springer-Verlag.

Straus, J., Kaufman, L., and Stern, T. (2014). The Blue Book of Grammar and Punctua-

tion: An Easy-to-Use Guide with Clear Rules, Real-World Examples, and Reproducible

Quizzes. Wiley, 11 edition.

Bibliography 117

Studer, R., Grimm, S., and Abecker, A. (2007). Semantic Web Services: Concepts,

Technologies, and Applications. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: a core of semantic knowl-

edge. In Proc. of the 16th Intl. conf. on World Wide Web, pages 697–706. ACM.

Sycara, K., Paolucci, M., Ankolekar, A., and Srinivasan, N. (2003). Automated discov-

ery, interaction and composition of semantic web services. Web Semantics: Science,

Services and Agents on the World Wide Web, 1(1):27–46.

Syu, Y., Ma, S.-P., Kuo, J.-Y., and FanJiang, Y.-Y. (2012). A survey on automated

service composition methods and related techniques. In Services Computing (SCC),

2012 IEEE Ninth Intl. Conf. on, pages 290–297.

Taheriyan, M., Knoblock, C., Szekely, P., and Ambite, J. (2012a). Rapidly integrat-

ing services into the linked data cloud. In Cudré-Mauroux, P., Heflin, J., Sirin, E.,

Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J., Hendler, J., Schreiber, G.,

Bernstein, A., and Blomqvist, E., editors, The Semantic Web – ISWC 2012, volume

7649 of Lecture Notes in Computer Science, pages 559–574. Springer Berlin Heidelberg.

Taheriyan, M., Knoblock, C. A., Szekely, P., and Ambite, J. L. (2012b). Rapidly Inte-

grating Services into the Linked Data Cloud. In Proceedings of the 11th International

Semantic Web Conference (ISWC 2012).

Tesnière, L. (1959). Elements de syntaxe structurale. Editions Klincksieck.

Thiagarajan, R., Mayer, W., and Stumptner, M. (2009). Semantic service discovery by

consistency-based matchmaking. Springer.

Tosi, D. and Morasca, S. (2015). Supporting the semi-automatic semantic annotation of

web services: A systematic literature review. Information and Software Technology,

61:16–32.

Umbrich, J., Hose, K., Karnstedt, M., Harth, A., and Polleres, A. (2011). Comparing

data summaries for processing live queries over linked data. World Wide Web, 14(5-

6):495–544.

Wei, D., Wang, T., Wang, J., and Bernstein, A. (2011). Sawsdl-imatcher: A customizable

and effective semantic web service matchmaker. Web Semantics: Science, Services and

Agents on the World Wide Web, 9(4):402–417.

118 Bibliography

Weiss, C., Karras, P., and Bernstein, A. (2008). Hexastore: sextuple indexing for semantic

web data management. Proceedings of the VLDB Endowment, 1(1):1008–1019.

Wilkinson, K. and Wilkinson, K. (2006). Jena property table implementation.

Yan, Y., Xu, B., and Gu, Z. (2008). Automatic service composition using and/or graph.

In E-Commerce Technology and the Fifth IEEE Conf. on Enterprise Computing, E-

Commerce and E-Services, 2008 10th IEEE Conf. on, pages 335–338. IEEE.

Zeshan, F. and Mohamad, R. (2011). Semantic web service composition approaches:

overview and limitations. International Journal of New Computer Architectures and

their Applications (IJNCAA), 1(3):640–651.

Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., and Yu, Y. (2007). Semplore: an IR

approach to scalable hybrid query of semantic web data. Springer.

Zhang, Z., Chen, S., and Feng, Z. (2013). Semantic annotation for web services based on

DBpedia. In IEEE 7th Int. Symp. on Service Oriented System Engineering (SOSE),

pages 280–285.

Zou, L., Mo, J., Chen, L., Özsu, M. T., and Zhao, D. (2011). gstore: answering sparql

queries via subgraph matching. Proceedings of the VLDB Endowment, 4(8):482–493.

Zou, L., Özsu, M. T., Chen, L., Shen, X., Huang, R., and Zhao, D. (2014). gstore: a

graph-based sparql query engine. The VLDB journal, 23(4):565–590.

Zunino, A. and Campo, M. (2012). A Survey of Approaches to Web Service Discovery in

Service—Oriented Architectures. Innovations in Database Design, Web Applications,

and Information Systems Management, 107(1).

List of Figures

1.1 Growth in linked open datasets in the LOD since 2007 2

1.2 The linking Open Data Cloud Diagram as of August 2017 3

1.3 Web API statistics in ProgrammableWeb 4

2.1 Partial hierarchical anatomy of the Resource Description Framework (RDF) 9

2.2 Anatomy of an RDF triple . 10

2.3 Example of an RDF graph . 11

2.4 Anatomy of a SPARQL query . 14

2.5 Typology of approaches for querying linked data in the LOD with some

notable citations . 18

2.6 Example service description . 26

2.7 Typology of service discovery approaches 28

3.1 [Palmonari et al., 2011] approach overview 36

3.2 LIDS [Speiser and Harth, 2011a] approach overview and process summary 37

3.3 Process of discovering services with a data query 39

3.4 Process of discovering services with a data query 39

3.5 An example Service Dependency Graph 57

3.6 Framework Architecture . 59

3.7 A screenshot showing the results of a service discovery process 61

3.8 Average execution Time in MS per number of undefined variables in a

random query . 64

3.9 Recall and precision of service discovery in OWLS-TC using All(Out,Out) . 64

4.1 An example of two web services with identical I/O types but with totally

different functionality . 66

4.2 I/O relation extraction process . 71

4.3 BGP depicting the links between the input Book and the output Writer 72

4.4 Combinations of paths between input and output nodes 73

4.5 A sub-graph from the OWLS-TC ontology showing the relation between

otc:Author and otc:Book. 74

4.6 Combinations of hierarchical patterns on top of path combinations 75

120 List of Figures

4.7 Process overview of I/O relation extraction from text. 78

4.8 Text pre-processing pipeline . 78

4.9 Dependency graph and POS tagging example 82

4.10 I/O words recognition example from Service#1 in Fig. 4.1a 84

4.11 Compound I/O words recognition example 84

4.12 Text I/O relation extraction example . 85

4.13 Example I/O Relations embedding using aggregated word2vec vectors . . 87

4.14 An example of two web services (see Fig. 4.1a and Fig. 4.1b) after the

description enrichment with I/O relations 89

4.15 Approach implementation: Software architecture 90

4.16 Similarity API documentation with examples 92

4.17 A screenshot of the implemented approach in action commented with some

instructions . 93

List of Tables

1.1 API count growth in ProgrammableWeb as of 2017 5

2.1 Listing. 2.1’s query results from DBpedia 16

3.1 Example results of a service query extraction from a data query 45

3.2 Example results of a service query extraction from the data query in Listing

3.1 . 47

3.3 Example results of a concept lookup query in data instances 49

4.1 I/O relation extraction query results . 74

4.2 Relation Extraction query results from DBpedia for the query in Listing4.6 77

4.3 Tokens index for the example service #1 in Fig. 4.1a 79

4.4 Tokens index for an example service description with 2 sentences 80

4.5 Alphabetical list of POS tags used in the Penn Treebank Project 80

4.6 Example dependency relations from Fig. 4.9 82

4.7 Extracted I/O relations for Service#1 in Fig.4.1a 86

4.8 I/O of services in OWLS-TC and their ontology usage 95

4.9 I/O ontology relations extraction results in OWLS-TC 95

4.10 Evaluation of I/O recognition in textual descriptions 96

4.11 Evaluation of extracted I/O relations . 97

Résumé Étendu

Introduction

À l’ère de l’internet, les données sont devenues l’unes des ressources les plus importantes

du 21ème siècle de même que ce qu’était le pétrole au siècle dernier. Les données sont

présentes partout mais surtout sur internet sous différentes formes : structurées, semi-

structurées, non structurées, ouvertes, propriétaires, statiques, à la demande, etc.

Les données que l’on trouve sur internet sont souvent destinées à être lues et in-

terprétées par l’homme. Grâce à l’avènement du web sémantique et du paradigme des

données liées, les machines sont devenues maintenant capables d’explorer et d’interpréter

de manière précise les données.

L’adoption à grande échelle des principes des données liées a donné lieu au Linked

Open Data Cloud (LOD), un vaste réseau de jeux de données liées publiés sous licences

ouvertes. Il comprend entre autres des données du secteur public publiées par plusieurs

initiatives gouvernementales, des données scientifiques facilitant la collaboration, des don-

nées linguistiques, des données géographiques, des publications académiques telles que

DBLP, données pluridisciplinaires comme DBpedia, Freebase, YAGO, etc. Le LOD con-

tient environ 150 milliards de triplets RDF (LODstats2). Au cours des trois dernières

années (2014-2017), le nombre de jeux de données liées a quasiment doublé.

Cependant, il y a encore beaucoup de données qui ne sont et qui ne seront probable-

ment pas publiées en tant que dépôts de données sur le LOD telles que :

• Les données dynamiques issues des capteurs et d’objets connectés.

• Les données calculées à la demande en fonction d’un certain nombre de paramètres

d’entrée. Par exemple, l’itinéraire en transports publics le plus rapide entre deux

points étant donnés en entrée ces deux points.

• Les données avec des modes d’accès restreints. Par exemple les prix des hôtels

qui peuvent varier en fonction des différentes politiques de tarification (nouveaux

clients, clients fidèles, agences, brokers, etc.).

Ces données sont généralement disponibles via des API Web ou des Services Web qui

sont de plus en plus abondants aujourd’hui. Néanmoins, les machines sensées manipuler

124 Résumé Étendu

des données sémantiques doivent par elles-mêmes chercher et utiliser les services web

qui leur sont utiles. Afin de permettre la découverte et la composition automatique des

services web, les travaux de recherche dans le domaine du web sémantique proposent de

décrire ces derniers par le web sémantique lui-même, i.e avec des annotations sémantiques.

Les services de ce type s’appellent les Services Web Sémantiques (SWS).

Motivations

L’intégration des données du Linked Data Cloud et des Services Web Sémantiques (SWS)

offre de grandes facilités pour créer de mashups et de composer automatiquement des ser-

vices web. De plus, une telle intégration permet de résoudre certains problèmes existants

sur le Linked Data Cloud qui affectent la qualité de ses données tels que :

• Données manquantes : Certaines entités n’existent pas encore sur le LOD. Par

exemple, les listes de tous les films d’un réalisateur ou les livres d’un auteur donné

ne sont pas complètes sur le LOD car beaucoup d’entre eux n’ont pas encore de

pages dédiées wikipedia / dbpedia. Cependant, pour cet exemple, de telles données

peuvent être facilement trouvées en utilisant les APIs d’Amazon, IMDB, etc.

• Données incomplètes : Certaines informations sur une entité (certains de ses

attributs) peuvent être manquantes sur le LOD. Par exemple, les informations sur

les prix des livres, les magasins qui les vendent, les cinémas dans lesquels les films

sont projetés, etc. sont des informations qui n’existent pas sur le LOD.

• Données inexistantes : Certains types ou catégories de données n’existe tout

simplement pas sur le LOD en tant que données sémantiques. Par exemple, les

annuaires d’entreprises, les données des réseaux sociaux, les tweets, les données

dynamiques, les données à la demande, etc.

• Données obsolètes : Les données du LOD peuvent rapidement devenir obsolètes

en fonction de leur type, comme les statistiques, les prix, etc. Par exemple, les

statistiques sur la population et les prix des actions des entreprises ne sont pas

mises à jour pour de nombreuses entrées dans DBpedia.

Cependant, les services qui seraient appropriés pour résoudre les problèmes de qualité

des données mentionnés ci-dessus doivent être d’abord découverts, et dans le cas où ils

Résumé Étendu 125

n’existeraient pas, ils doivent être composés à partir de services atomiques. Pour atteindre

un tel objectif, un développeur souhaitant intégrer des données et des services devrait :

• Connaitre les annuaires de SWS existants sur le web,

• Connaitre les langages et formalismes de description SWS hétérogènes,

• Exprimer ses besoins en termes de vocabulaire utilisé par différents annuaires,

• Trouver des services pertinents à partir de différents annuaires et utiliser les outils

de composition de services au cas où aucun service atomique satisfaisant n’existe.

Ce processus manuel nécessite beaucoup de connaissances préalables et d’efforts de la

part de l’utilisateur. Dans cette thèse, nous visons à fournir un framework permettant

à fois de chercher des données ainsi que des services web pouvant apporter une valeur

ajoutée aux données.

Cette thèse est inspirée par le travail de recherche de [Palmonari et al., 2011] qui décrit

une approche de recherche de données et de services en utilisant un langage d’interrogation

de type SQL et en utilisant des services web non sémantiques avec des annotations sé-

mantiques.

Contributions

Partie 1/2 : LIDSEARCH, recherche agrégée de données et de

services

LIDSEARCH (LInked Data and Service Search) ([Mouhoub et al., 2014], [Mouhoub et al.,

2015]) est un Framework piloté par SPARQL pour rechercher à la fois des données liées

ainsi que des services web sémantiques complémentaires pour les données sur le LOD, le

tout avec une seule et même requête pour les deux types recherche.

Pour mieux exprimer ses objectifs et son fonctionnement, considérons le scénario

suivant : Un utilisateur veut connaître tous les écrivains nés à Paris ainsi que tous

leurs livres. Cette requête destinée à chercher ces données sémantiques est écrite en

SPARQL. Les réponses à cette requête depuis le LOD pourrait éventuellement contenir

tous les écrivains parisiens dans DBpedia. Cependant, leurs livres publiés ne sont pas

tous répertoriés dans DBpedia. Dans ce cas, les résultats sont incomplets et peuvent

126 Résumé Étendu

être complétés avec une liste de services tels que l’API Amazon ou l’API Google Books

qui puissent enrichir ces résultats. Certaines de ces API peuvent également fournir des

informations complémentaires sur les livres, par exemple leurs prix, les amis qui les ont

lus, les librairies proches qui les vendent, etc. Cependant, si l’utilisateur veut comparer

les prix d’un livre dans plusieurs magasins et qu’il existe un comparateur de prix qui

prend uniquement un numéro ISBN en entrée, alors dans ce cas, une composition de

services peut être faite pour permettre l’interrogation de ce service et de répondre à la

requête de l’utilisateur.

L’objectif du framework LIDSEARCH est d’étendre la recherche de données séman-

tiques par une découverte / composition de services utiles afin de permettre de trouver

des services pertinents fournissant des données complémentaires. Une telle recherche né-

cessite souvent des requêtes distinctes: a) une ou plusieurs requêtes de données pour

une recherche dans le LOD b) plusieurs requêtes de services pour découvrir des services

pertinents dans des annuaires de services web sémantiques (SWS) et c) des requêtes de

composition de services pour créer des compositions de service pertinentes dans le cas où

aucun service répondant aux critères n’est trouvé. Notre framework recherche à la fois

les données et les services à partir d’une seule requête de l’utilisateur appelée requête de

données, c’est-à-dire une requête destinée à rechercher uniquement des données. À partir

de cette requête, il émet automatiquement des requêtes de service et trouve des services

pertinents ou génère des compositions de services.

LIDSEARCH présente les fonctionalités et les nouveautés suivantes:

1. Une méthode pour dériver des requêtes de services à partir d’une requête de données.

Il s’agit d’extraire les entrées et sorties (E/S) pour les requêtes de service à partir

de requêtes de données et de rechercher leurs concepts (classes ontologiques) dans

le LOD ainsi que leurs concepts similaires pour étendre la recherche.

2. La découverte automatisée de services pertinents pour une requête de recherche de

données, c’est-à-dire des services qui fournissent une partie ou la totalité des don-

nées recherchées pour la compléter, ou qui consomment tout ou partie des données

recherchées pour proposer des données ou services supplémentaires.

3. Une recherche de services basée sur la similarité ontologique (logique) qui prend en

compte la similarité hiérarchique (sous-classes) ainsi que l’équivalence (rdfs: equiv-

alentClassOf).

Résumé Étendu 127

4. Un classement des services trouvés basé sur les similarités textuelles entre les E/S

de la requête et les descriptions textuelles des services en utilisant une mesure de

similarité basée sur word2vec.

5. L’expression des requêtes de services, sans connaissance préalable de la part des

utilisateurs, des langages, annuaires ou ontologies de description de services utilisés

pour décrire les E/S des services recherchés.

6. La réécriture de requêtes de services pour plusieurs descriptions de services RDF,

y compris OWLS et MSM.

Nous validons notre proposition avec une preuve de concept que nous testons avec des

requêtes de données qui s’exécutent sur DBpedia et qui retournent des services pertinents

parmi ceux du benchmark OWLS-TC. Nous évaluons également séparément notre algo-

rithme de recherche de services piloté par SPARQL à l’aide d’un ensemble de requêtes de

services issues du benchmark OWLS-TCv4.

Partie 2/2 : Enrichissement sémantique des descriptions de ser-

vices

Dans cette partie, nous présentons une approche qui vise à faciliter la découverte au-

tomatique de services en enrichissant leurs descriptions sémantiques avec des informations

détaillées sur leur fonctionnalité en utilisant les relations ontologiques entre leurs E/S.

Ces dernières sont confirmées par les relations trouvées dans les descriptions textuelles

en utilisant des techniques de traitement automatique du langage naturel.

Cette approche est une étape vers l’automatisation de la découverte des services qui

présenterait de nombreux avantages dans différents domaines: a) améliorer la précision

de la découverte automatique de services; b) faciliter la composition automatique de

services et le remplacement automatique des services en panne ou non-opérationnels dans

les compositions de services; c) faciliter l’intégration des données sémantiques provenant

de services web, d) faciliter la création de mashups API, e) améliorer la recommandation

de service, etc.

Afin d’enrichir la description d’un service donné, notre système extrait parallèlement

deux types de relations entre les E/S. Les premières sont les relations formelles existantes

entre les E/S dans leurs ontologies sous-jacentes et qui puissent être trouvées en utilisant

SPARQL. L’autre type sont les relations informelles entre les E/S décrites en langage

128 Résumé Étendu

naturel dans les descriptions textuelles et la documentation des services. Ces dernières

nécessitent l’utilisation de techniques d’extraction basées sur le traitement automatique

de la langue. Les deux processus d’extraction sont indépendants et sont exécutés en par-

allèle. Enfin, les deux types de relations extraites sont appariés dans l’objectif d’endosser

les relations ontologiques les plus pertinentes (car des centaines de relations peuvent ex-

ister entre les concepts d’E/S dans les ontologies). Les relations ontologiques qui ont les

meilleures corrélations dans le texte sont considérées commodes pour enrichir la descrip-

tion du service. Elles peuvent ensuite être ajoutées à la description sémantique du service

après la validation de l’utilisateur.

Cette seconde partie de la thèse apporte les fonctionnalités et contributions suivantes

:

1. Une approche pour extraire des relations entre E/S à partir de descriptions textuelles

et ontologiques en utilisant :

(a) Une méthode pour extraire les relations entre E/S à partir des ontologies à

l’aide de requêtes SPARQL.

(b) Une méthode pour extraire des relations entre E/S à partir du texte en utilisant

des graphes de dépendance grammaticaux ainsi qu’une mesure de similarité

textuelle basée sur word2vec.

2. Une approche pour enrichir les descriptions de services avec les relations d’E/S

ontologiques. Ces dernières sont sélectionnées et classées en fonction de leur corre-

spondance avec les relations textuelles.

3. Une méthode pour calculer la similarité textuelle entre les relations d’E/S en util-

isant la similarité cosine de word2vec. Elle est basée sur des représentations agrégées

pour les relations créées à partir des vecteurs wor2vec des mots de ces relations.

Plan de la thèse

Dans le 2ème chapitre, nous rappelons brièvement quelques concepts, définitions et stan-

dards liés à notre travail, y compris le web sémantique, les services Web sémantiques et

le traitement automatique du langage naturel. Après cela, nous présentons l’état de l’art

dans les domaines mentionnés ci-dessus, en particulier les travaux récents liés à notre

travail ou les travaux qui ont le plus inspiré le nôtre.

Résumé Étendu 129

Dans le 3ème chapitre, nous présentons la première partie de notre framework pour la

recherche de données et de services (LIDSEARCH). Nous présentons ses fonctionnalités,

nous décrivons pas à pas ses processus sous-jacents de fonctionnement et nous expliquons

chaque étape par l’exemple. Nous dédions une section à notre approche esquissée pour

une composition de service automatique qui n’est pas entièrement implémentée dans

LIDSEARCH mais qui mérite d’être présentée. Nous présentons également nos résultats

d’expérimentation sur les services du benchmark OWLS-TC et discutons les limites et

des améliorations possibles de LIDSEARCH.

Le chapitre 4 est consacré à notre travail le plus récent qui vise à faciliter la décou-

verte automatique de services en enrichissant sa description formelle. Nous expliquons

également le processus sous-jacent étape par étape par l’exemple.

Dans le dernier chapitre, nous rappelons nos principales contributions et les défis

auxquels nous étions confrontés. Nous discutons également quelques idées en perspectives

comprenant une combinaison potentielle de nos deux travaux principaux.

Résumé

Ces dernières années ont témoigné du
succès du projet Linked Open Data
(LOD) et de la croissance du nombre
de sources de données sémantiques
disponibles sur le web. Cependant, il
y a encore beaucoup de données qui
ne sont pas encore mises à disposition
dans le LOD telles que les données sur
demande, les données de capteurs etc.
Elles sont néanmoins fournies par des
API des services Web. L’intégration de
ces données au LOD ou dans des appli-
cations de mashups apporterait une forte
valeur ajoutée. Cependant, chercher de
tels services avec les outils de décou-
verte de services existants nécessite une
connaissance préalable des répertoires
de services ainsi que des ontologies util-
isées pour les décrire.
Dans cette thèse, nous proposons de
nouvelles approches et des cadres logi-
ciels pour la recherche de services
web sémantiques avec une perspective
d’intégration de données. Première-
ment, nous introduisons LIDSEARCH,
un cadre applicatif piloté par SPARQL
pour chercher des données et des ser-
vices web sémantiques.
De plus, nous proposons une approche
pour enrichir les descriptions séman-
tiques de services web en décrivant les
relations ontologiques entre leurs en-
trées et leurs sorties afin de faciliter
l’automatisation de la découverte et de la
composition de services. Afin d’atteindre
ce but, nous utilisons des techniques
de traitement automatique de la langue
et d’appariement de textes basées sur
le deep-learning pour mieux comprendre
les descriptions des services.
Nous validons notre travail avec des
preuves de concept et utilisons les ser-
vices et les ontologies d’OWLS-TC pour
évaluer nos approches proposées de
sélection et d’enrichissement.

Mots Clés

Services Web, Découverte de ser-
vices, Web Sémantique, Données
Liées, Traitement Automatique de la
Langue

Abstract

The last years witnessed the success of
the Linked Open Data (LOD) project as
well as a significantly growing amount of
semantic data sources available on the
web. However, there are still a lot of data
not being published as fully materialized
knowledge bases like as sensor data, dy-
namic data, data with limited access pat-
terns, etc. Such data is in general avail-
able through web APIs or web services.
Integrating such data to the LOD or in
mashups would have a significant added
value. However, discovering such ser-
vices requires a lot of efforts from de-
velopers and a good knowledge of the
existing service repositories that the cur-
rent service discovery systems do not ef-
ficiently overcome.
In this thesis, we propose novel ap-
proaches and frameworks to search for
semantic web services from a data in-
tegration perspective. Firstly, we in-
troduce LIDSEARCH, a SPARQL-driven
framework to search for linked data
and semantic web services. Moreover,
we propose an approach to enrich se-
mantic service descriptions with Input-
Output relations from ontologies to facil-
itate the automation of service discov-
ery and composition. To achieve such a
purpose, we apply natural language pro-
cessing techniques and deep-learning-
based text similarity techniques to lever-
age I/O relations from text to ontologies.
We validate our work with proof-of-
concept frameworks and use OWLS-TC
as a dataset for conducting our exper-
iments on service search and enrich-
ment.

Keywords

Web Services, Service Discovery,
Service Description Enrichment, Se-
mantic Web, Linked Data, Natural
Language Processing

	Abstract
	Résumé
	Introduction
	Introduction
	Context
	Linked Data and Linked Open Data cloud
	Semantic Web services and APIs

	Motivations and contributions
	Manuscript Outline

	Background and State of the Art
	Semantic Web Background
	Resource Description Framework (RDF)
	RDF Vocabularies
	SPARQL
	Linked Data and LOD

	Semantic Data Querying in the LOD
	Centralized (or Data Warehousing) approaches
	Distributed approaches

	Web Services Background
	Web Services
	Semantic Web Services (SWS)

	Serice Discovery
	Search environment architectures
	Service selection techniques

	Automatic composition of web services

	Data and Service Search
	Related works on Data and Service Search
	Data and Service querying
	Service discovery with SPARQL
	Service Request Extraction
	Semantics Lookup
	Service Query Generation

	Service Ranking
	Functional based ranking
	Word2Vec based ranking

	Automatic service composition
	Service Dependency Graph
	Service composition algorithm

	Implementation and experiments
	Framework architecture
	Optimizing service discovery with cache
	Evaluation

	Conclusion

	Enriching Service Descriptions with I/O relations
	Introduction
	Related works
	Semantic annotation of web services
	Relationship extraction

	Approach Overview
	Extracting I/O relations from ontologies
	SPARQL-based extraction
	Extraction Enhancements

	I/O relation extraction from textual descriptions
	Service description's text pre-processing
	I/O recognition in text descriptions
	Relation extraction

	Evaluating I/O relations
	Relation embedding using aggregated word2vec vectors
	Relation matching

	Implementation
	Evaluation and experimental results
	Evaluation setup
	Experimental results

	Conclusion

	Conclusion
	Contributions
	LIDSEARCH: Linked Data and Service Search
	Service Description Enrichment

	Perspectives

	List of figures
	List of tables
	Résumé étendu en français

