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A B S T R A C T

In this thesis we study the propagation and the self-focusing of Airy beams in a
photorefractive crystal.
The Airy beam is a so-called accelerating beam which propagates in free space
along a curved trajectory and with a shape-preserving and self-healing nature.
The self-focusing of conventional beams, such as Gaussian beams, has been stud-
ied in nonlinear media in particular for all-optical routing solutions. By propa-
gating optical beams in such photosensitive media, one can induce waveguides
with the shape of the optical beams’ trajectories. The unique shape and trajectory
of the Airy beam however suggest innovative waveguide possibilities.
In this manuscript we theoretically and experimentally study the self-focusing
mechanisms of the Airy beam. In particular during the transient self-focusing
effect, we enlighten peculiar spatiotemporal dynamics suggesting an analogy
with the gravitational interactions between a mass and a wave propagating in
a curved spacetime. In a second step we add an Airy beam propagating in
the opposite direction to analyze their cross-coupling interactions. The guid-
ing structures induced by one or two counterpropagating Airy beams are then
tested and show peculiar guiding possibilities that are not achievable using two
conventional beams: optical beams can be guided along curved trajectories and
eventually split into multiple beams. Furthermore the limits of the waveguiding
strength are studied by increasing the self-focusing nonlinearity of the system.
The resulting spatiotemporal dynamics present a peculiar behavior and evolu-
tion with possible applications in static and dynamical all-optical routing as well
as optical computing such as random number generation.
Finally with this thesis we demonstrate that the Airy beam offers promising al-
ternatives in general physics and more specifically in photonics for all-optical
routing.
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R É S U M É

La thèse présente l’étude de la propagation et de l’auto-focalisation de faisceaux
d’Airy dans un milieu photoréfractif.
Le faisceau d’Airy est un faisceau dit accélérant qui, dans l’espace libre, présente
une trajectoire curviligne, ne se déforme pas et est capable de se régénérer après
un obstacle. L’auto-focalisation de faisceaux conventionnels, tels les faisceaux
gaussiens, a été étudiée dans des milieux nonlinéaires en particulier pour des
applications de routage tout-optique. En propageant des faisceaux optiques à
travers de tels milieux photosensibles, il est possible de graver optiquement des
guides d’onde retraçant la trajectoire de ces faisceaux. C’est dans ce contexte que
le faisceau d’Airy suscite beaucoup d’intérêt, grâce à sa forme et sa trajectoire
uniques.
Dans ce mémoire nous étudions expérimentalement comme théoriquement les
mécanismes d’auto-focalisation du faisceau d’Airy. Durant le régime transitoire
de l’effet d’auto-focalisation, nous montrons des dynamiques spatiotemporelles
singulières qui suggèrent une analogie avec les interactions gravitationnelles en-
tre un objet massique et une onde se propageant dans l’espace-temps courbe.
Dans un second temps, nous ajoutons un faisceau d’Airy se propageant dans
la direction opposée au premier afin d’analyser leurs interactions. Ensuite, nous
testons ces structures guidantes photoinduites par un ou deux faisceaux d’Airy,
qui révèlent des possibilités de guidage uniques, non accessibles avec deux fais-
ceaux conventionnels. Ces faisceaux optiques peuvent permettre de réaliser des
fonctions de couplage, routage et multiplexage optique. Par ailleurs, nous étu-
dions les limites de la force de guidage en augmentant la nonlinéarité d’auto-
focalisation du système. Les dynamiques spatiotemporelles qui en dérivent présen-
tent des comportements et une évolution particuliers suggérant des applications
dans le routage tout-optique stationnaire tout comme dynamique.
Pour conclure, cette thèse nous permet de démontrer les alternatives promet-
teuses que nous offre le faisceau d’Airy dans la physique générale et plus parti-
culièrement dans la photonique pour le routage tout-optique.
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P R E FA C E

Light has been a popular medium to transmit information for a long time. The
first optical communications are reported in free space, where a light source
emits optical rays spreading all around the source. A typical example are guiding
systems in maritime/air/land transport, where the light indicates the presence
of obstacles and directions to follow. A light beam can also contain a message,
such as using Morse code, where the succession of light flashes in time can be
first translated into letters and then into words. However free space communica-
tions requires large and intense light sources and the message can be intercepted
by any receiver around the source.
In the 1960’s research first presented optical communications using a guiding
material: the optical fiber. With this new technology, optical communication sig-
nals can be carried along important distances at low power and addressed to
a specific receiver. Since then the development of fibers and devices for optical
communications has known a remarkable acceleration and in particular thanks
to four milestones:

• The invention of the LASER (in the late 1950’s) to generate long range
confined light beams.

• The development of low loss optical fibre (1970’s) to carry the optical beam
with an optimum transmission ratio.

• The invention of the optical fibre amplifier (1980’s) to increase the propa-
gation range of optical fiber networks.

• The invention of the in-fibre Bragg grating (1990’s) for precise and robust
signal sensors.

The exponential increase of fiber-based optical networks has also motivated the
research for optical waveguiding at small scale. In particular the discovery of
photo-sensitive nonlinear media offers the possibility to investigate optically in-
duced waveguiding structures. Since nearly 50 years, the study and control of
the diversity and efficiency of such photo-induced waveguides in nonlinear me-
dia have become an important research field for all-optical communications.
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2 preface

Recently the discovery of so-called unconventional beams has introduced a
new kick-off in optical physics. The novelty is their shape-preserving propaga-
tion and their self-regeneration ability. As they can propagate further and remain
unaltered even in presence of obstacles, they enable to deepen the range of opti-
cal applications beyond the spatial limitations of conventional beams. One beam
type in particular has raised much interest: the Airy beam.
Discovered ten years ago, the Airy beam presents, in addition to the shape-
preserving and self-healing nature, the unique property to propagate along a
parabolic trajectory. The bend propagation of the Airy beam has introduced a
new optical wave type, the family of accelerating beams. The existence of bending
light seems to contradict the fundamental principles of general physics, however
these accelerating beams are actually formed by a large number of light rays
propagating along different straight trajectories. Therefore the accelerating Airy
trajectory owes its curved shape to the summation of all these non-parallel tra-
jectories, called the caustic of the accelerating beam.
The introduction of unconventional beams defined by their caustic has opened
new research fields and has led to a large number of new applications in optical
physics and more generally in wave physics (e.g. plasmonics, electronics).

As introduced previously, an important field of optical physics is the study of
optical beams in nonlinear media. During its propagation inside the medium, the
optical beam interacts with the matter along its trajectory, which influences its
own behavior such as shape and trajectory. Nonlinear photorefractive materials
in particular have been extensively studied these last decades, because of their
high optical sensitivity and their large applications in particular in all-optical
information processing.
So far the state-of-the-art in optical waveguiding physics suggests in particular
the use of intense shape-preserving optical beams, called solitons, to optically in-
duce guiding structures. Such optical solitons appear in nonlinear media, when
the nonlinearity of the medium exactly counterbalances the natural expansion
(diffraction) of an optical beam to induce a self-focusing effect. To explore the
waveguiding possibilities of such conventional soliton-based systems, research
has studied their propagation by tuning the nonlinearity of the system and in
interaction with multiple solitons. The conventional beam’s nature however spa-
tially limits the interconnection range, even for multiple interacting beams.

In this thesis we suggest to study the nonlinear propagation of Airy beams in
photorefractive crystals under high-focusing conditions and their waveguiding



preface 3

possibilities. So far the generation and control of Airy beams have been studied
in linear media, where the shape-preserving, self-healing and accelerating prop-
erties confirm promising applications in spatially long range systems. However,
the Airy properties are not maintained under nonlinear focusing conditions. In
particular when increasing the focusing nonlinearity, theory predicts the Airy
beam to split into a strong off-shooting soliton and a weak accelerating beam.

In a first part (chapters 2 and 3), we experimentally unveil the existence of Airy
solitons in high nonlinearity ranges and study their behavior. In particular dur-
ing the formation of the solitonic structure, we enlighten peculiar spatiotemporal
dynamics, where the initial linear Airy beam interacts with the rising solitonic
beam. The accelerating feature of the Airy beam suggests an analogy with the
gravitational interactions between a mass and a wave propagating in a curved
spacetime.

In a second step, we more generally demonstrate the formation of complex
waveguiding structures for Airy beams propagating under highly self-focusing
conditions in photorefractive media (chapter 4). By tuning the balance between
the accelerating and solitonic behavior, we present multiple types of guiding
while using a single Airy beam. To enlarge the interconnection range, a second
Airy beam is added in the photorefractive crystal with a counterpropagating
direction. The accelerating properties of the Airy beams enable to significantly
reduce the spatial limitations encountered in conventional all-optical waveguid-
ing systems.

In addition, we show that the stability of a system in nonlinear optics is guar-
anteed up to a nonlinearity threshold, above which the optical beams begin to
spatially evolve along time (chapter 5). As the threshold nonlinearity decreases
for longer propagation media where the diffraction is higher, we compare the
stability range of the shape-preserving Airy beam to the conventional beam in
the counterpropagating configuration. Besides much higher stability range (and
therefore guiding strength) of the Airy system, we present peculiar spatiotempo-
ral dynamics above the stability threshold. In particular the beam evolves along
spatially organized trajectories, which coincide with the multiple lobes structure
of the counterpropagating Airy beam. The spatial control of the Airy beam from
a stable dynamics up to a chaotic regime suggests innovative ways of perform-
ing optical computing based on spatiotemporal chaos.



4 preface

Thanks to this thesis of three years we demonstrate that the Airy beam of-
fers promising alternatives in general physics and more specifically in photon-
ics for all-optical routing. The shape-preserving, self-healing and accelerating
properties of the Airy beam enable to enlarge the range of optical propagation.
In particular thanks to the use of nonlinear media, large curved multi-channel
waveguides can be optically induced to interconnect or separate an optical signal
into multiple beams. Finally the nonlinear interaction of multiple counterprop-
agating Airy beams increases the optical interconnection types and range for
steady-state or dynamical routing. Therefore the first theoretical and experimen-
tal results presented in the following chapters confirm the promising implemen-
tation of Airy beams in all-optical computing.



1
I N T R O D U C T I O N

This chapter first presents the unconventional self-accelerating wave forms dis-
covered in physics and more recently in optics. Then in a second part we focus
on the physics of optical solitons which offers in nonlinear optics interesting all-
optical processing solutions. The introduction illustrates the cross-fertilization
between two topics : the physics of accelerating Airy beams at the solitonic scale
and the applications of nonlinear light propagation.

5
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1.1 accelerating beams

1.1.1 Observation in nature

Light is known to propagate along straight trajectories. However, nature can be
misleading, as light beams appear to form curved trajectories. The observation
of peculiar curved light shapes in nature has led to the study of a new wave
form defined by its caustic.

Figure 1.1: (a) Caustic network by reflection created by an undulating water surface.
Source: simonhood.org. (b) Caustic network by refraction created by an un-
dulating water surface. Source: sdm.scad.edu. (c) Schematic illustration of
the formation of optical caustic networks by (i) refraction or (ii) reflection. In-
spired by Ref. [1]. (d) Example of caustics observed through a glass of water.

A caustic is the envelope formed of multiple light rays which have been re-
flected or refracted by a curved surface or object [1] and their projection on a
plane surface displays a so-called caustic network [Figs. 1.1(a)-1.1(d)]. A typical
example of optical caustic are the light patterns induced by ripples at the surface
of water as depicted on Figures 1.1(a), 1.1(b). When the incident straight propa-
gating light rays reach the water surface, the undulating air-water surface breaks
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the uniform propagation direction of the light beams [Fig. 1.1(c)]. Because the
reflected/transmitted rays do not keep a parallel propagation, their crossing sec-
tions appear very bright while the left areas are dark. As a result their incident
pattern is not uniform anymore but forms a bright network showing curved
light shapes on the projection surface (bottom of the boat in Figure 1.1(a) or of
the water in Figure 1.1(b)).
In the case of a glass filled with water displayed on Figure 1.1(d), the light beams
falling on the object meet two curved matter interfaces. These non-planar sur-
faces induce lensing effects and the light rays are diverted from their parallel
trajectory to meet along a parabolic-shaped concentration area.

Figure 1.2: (a) Rainbow above the Adolphe bridge in Luxembourg city. Source: Pinterest.
(b) Light dispersion and propagation in a raindrop. Source: Wikipedia.

Another example in nature is the rainbow [Fig. 1.2(a)], where the reflection,
the refraction and the dispersion of sunlight through the rain drops lead to the
formation of a colored spectrum in the sky [Fig. 1.2(b)]. But to understand how
each color is so sharp and intense for the observer, the caustic approach needs to
be included in a theoretical study. The mathematical formulation and explana-
tion for this phenomenon has been found in the 1820s by the British astronomer
and physicist George Biddell Airy who developed the nowadays called Airy
function in his early study of optics in physics [2].
Without going into mathematical details about the nature and properties of the
Airy function, this function is a solution of the following differential equation:

∂2y

∂2x
− xy = 0, (1.1)
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known as the Airy equation or Stokes equation [3], with x and y the spatial
transverse and propagation axis. The Airy function enables to explain the caus-
tic observed in rainbows, but until recently the Airy function did not raise much
more interest in optical physics.

It was only almost four decades ago that Berry and Balazs have suggested a
larger existence field for this function: in the general wave physics. In 1979 the
two physicists theoretically predicted in quantum mechanics that the Schrödinger
equation describing a free particle can exhibit a non spreading Airy wave packet
solution [4] [Eqs. 1.2,1.3] with an Airy function distribution as depicted on Fig-
ure 1.3(a). The 1D-solution system is described by the following equations:

−
 h2

2m

∂2ψ

∂x2
= i h

∂ψ

∂t
, (1.2)

ψ(x, 0) = Ai(Bx/ h2/3), (1.3)

with  h the Planck constant, m the mass of the particle, ψ the field envelope,
Ai(x) the Airy function, B an arbitrary constant and x the transverse axis. If we
consider a one-dimensional wave packet with the probability density distributed
along an Airy function in the spatial x-direction (as depicted on Figure 1.3(a)), it
evolves along time following the equation

ψ(x, t) = Ai
(

B

 h2/3

(
x2 −

B3t2

4m2

))
eiB

3t/2m h(x−(B3t2/6m2)). (1.4)

The equation 1.4 shows a nonlinear propagation, where the probability density
distribution shifts along the transverse x-axis for increasing time with the veloc-
ity B3t2/2m2 without additional external forces. However, Berry et al. show that
quantum wave functions do not correspond to individual classical particles, but
to families of particles’ orbits. As depicted on the spacetime diagram on Figure
1.3(b), the trajectory lines taken by the Airy wave packet are not parallel but their
caustic (orange curve) follows a parabolic acceleration x → B3t2/2m2 along the
x-axis centered around t = 0 [Eqs. 1.3,1.4]. Besides the free acceleration (i.e. with-
out external forces), Berry et al. also demonstrated the diffraction-free property
of the Airy wave function.
These unique features have motivated research to explore analogies of non spread-
ing accelerating wave propagation in other physical domains such as optics (as
we will detail in the following section) and atom physics.
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Figure 1.3: Properties of an Airy wave packet in quantum mechanics. (a) Probability den-
sity function of the Airy wave packet with B/ h2/3 = 1 [Eq. 1.3]. (b) Parabolic
caustic enveloping the straight trajectories of particles in force-free spacetime.
Adapted from [4].

1.1.2 Accelerating beams in optics

In optics, a conventional beam is known to diffract when propagating over a
large distance: its size expands and the intensity at the center of the beam de-
creases over the propagation. For a Gaussian beam the characteristic diffraction-
free length is proportional to πω02/λ, where λ is the wavelength and ω0 the
beam waist at its focal point. The diffraction increases when using smaller beam
sizes, but many applications, such as in nonlinear optics, colloidal science or bio-
physics, require small optical rays with as well a long interaction range. Since the
discovery of Airy waves in quantum physics being invariant along their propa-
gation [4], research in optics has investigated the analogy in optical beam propa-
gation. Indeed it is well known that the quantum physics and optical physics are
governed by mathematically equivalent mechanisms [5]: the quantum mechani-
cal equation for the first and the paraxial propagation equation of diffraction for
the second case.

In 1987 Durnin et. al. first theoretically and experimentally demonstrated the
existence of shape-preserving optical beams [6, 7]: the Bessel beam whose ampli-
tude is defined by the zero-order Bessel function of the first order. Figure 1.4(a)
compares the intensity shape of a Bessel beam (solid curve) with a Gaussian one
along a free space propagation of z = 100 cm. The shape of the Bessel beam
appears to be invariant all along while the Gaussian beam has spread and its
intensity maximum at z = 100 cm has decreased down to less than 0.025% of the
initial value. The originality of Durnin’s experiment is the generation method
for the Bessel beam as the latter is a superposition of confocal planar waves. As
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Figure 1.4: Experimental zero-order Bessel beam. (a) Transverse intensity profiles of a
diffraction-free Bessel beam (plane curve) and a diffracting Gaussian beam
(dashed curves) with the same initial spot size (FWHM = 70 µm, λ = 632.8
nm) along their z-propagation (a: z = 0, b: z = 10cm, c: z = 100 cm). (b)
Experimental arrangement for the creation of a Bessel beam. Extracted from
[6].

a matter of fact the two-dimensional zero-order Bessel beam is composed of con-
centric rings with increasing radii (see the transverse intensity profile on Figure
1.4(a)). Such an intensity distribution can be shaped using the interference pat-
tern of two spheric waves and a lens placed at the focal distance [Fig. 1.4(b)]. To
that aim Durnin et al. used a planar wave propagating through two circular slits,
with ∆d each diameter and d the separation distance between both slits. The lens
then transforms the circular interference pattern growing over the propagation
into a shape preserving interference pattern of a conical superposition of planar
waves. The dashed zones indicates the shadow areas, i.e. where no light prop-
agates, and zmax defines the propagation distance of an effective experimental
Bessel beam. Later other generation methods have been suggested and in partic-
ular the use of an axicon enables to transform a planar wave into a Bessel beam
(with the same existence area as for the Durnin method) [8].

This result has raised much interest in optical research and led to the discov-
ery of other propagation-invariant beams [9–11] [Figs. 1.5(a), 1.5(b)]. While these
beams present very different intensity shapes, they are all formed by a coni-
cal superposition of planar waves and their caustic defines the beam type (see
the Bessel beam [Fig. 1.5(a)] and the Mathieu beam [Fig. 1.5(b)]). As these caus-
tics are formed by planar waves, they owe their peculiar features to them. The
shape invariance of planar beams induces a diffraction-free caustic wave form,
which grants the family of beams defined by their caustic the name of "shape-
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preserving beams".
In addition the shape-preserving beam is able to regenerate itself after passing
an obstacle, as the intensity distribution induced at z and z+ δz are formed by
different regions of the crossing planar beams [Fig. 1.5(c)]. The regeneration dis-
tance of the beam depends on the size of the obstacle and the angle defining the
conical superposition of the planar beams.
Finally these beams also carry infinite power, as they are formed by planar waves
(which ideally contain an infinite power). While this last property could be ques-
tioned (the initial optical beam is truncated [Fig. 1.4(b)]), the finite energy in-
duced by the aperture does not affect the ideal shape-preserving property over
a large distance.

1.1.3 Applications in optics

The discovery of beams that not only propagate diffraction-free, but also present
a self-healing ability has raised much interest since almost two decades and sug-
gested many technical as well as physical applications in particular in biomedical
physics, laser processing and metrology [12].

If we consider in particular the evolution of optical tweezers since their in-
troduction in 1986 [14], they have become one of the core research field with
applications in biology, physical chemistry, and soft condensed matter physics
[13]. As depicted on Figure 1.6(a), the idea is to use a strongly focused beam to
trap particles near the focal point. By creating a strong intensity gradient using
a converging beam, small objects, such as a colloidal particle, are drawn towards
the focused region. For lower intensity gradient, the radiation pressure of the
optical beam tends to blow down the particle. Because the optical tweezing is
effective in the optically high-focused region, its trapping effect depends on the
spatial focusing range of the optical system. In the case of a Gaussian-based sys-
tem, the particle is trapped in three dimensions near the focal point [Fig. 1.6(b1)].
By taking advantage of the shape-preserving property of Bessel beams for ex-
ample, the focused trapping zone is enlarged along the propagation direction
z [Fig. 1.6(b2)]. By its shape-preserving and self-healing properties, the Bessel
beam increases the manipulation range and enables the manipulation of ensem-
bles of particles simultaneously in multiple planes [15].
The unique propagation and shape properties of accelerating beams has opened
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Figure 1.5: Example of diffraction-free propagating beams. Intensity distribution of (a) a
Bessel beam and (b) a Mathieu beam. (c) Self-healing property of an axicon-
generated Bessel beam: an obstacle placed in the center of the Bessel region
(black rectangle) obstructs the beam for a minimum distance, zmin (grey
triangle), after which the Bessel field reforms. The insets display the expected
image of the beam at four different planes [8].

a large variety of applications in many fields, however one wave function re-
mained unresolved: the Airy function.
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Figure 1.6: Optical tweezers. (a) Schematic layout of the mechanisms [13]. (b) Com-
parison between the Gaussian- and Bessel-based focused regimes. Source:
obel.ee.uwa.edu.au.

1.1.4 Airy beams

Optical Airy properties

First discovered in quantum mechanics [4], the Airy wave packet has been sug-
gested as a non-spreading and self-healing solution of the Schrödinger equa-
tion with a parabolic propagation (see Section 1.1). In 2007 Christodoulides et
al. suggested the existence of optical Airy beams presenting the same properties
as the Airy wave packet in quantum mechanics: shape-preserving propagation
and parabolic acceleration [16]. However, the Airy distribution theoretically con-
tains an infinite energy, which can not be obtained in optics. As for other shape-
preserving optical beams, Christodoulides et al. considered a truncated form of
the Airy function with finite energy to overcome this obstacle. The mathemat-
ical solution is an association of the Airy function with an exponential decay
function:

ψ (s, ξ = 0) = Ai (s) exp (as) , (1.5)

where s = x/xA is the normalized transverse dimension, xA the arbitrary trans-
verse Airy scale, ξ = z/kxA

2 the normalized propagation direction and a > 0 the
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exponential truncation factor. As depicted on Figure 1.7, the exponential decay
function truncates the tail of the Airy distribution along the higher lobe orders.
The first lobe with the maximum peak at x/xA = −1 is defined as the main lobe.

Figure 1.7: Truncation of the Airy. Intensity profiles of an ideal Airy beam (infinite en-
ergy, blue line) and a truncated Airy beam with a = 0.1 (finite energy, orange
line).

Figures 1.8(a) and 1.8(b) display the propagation along the z-axis of an ideal
infinite-energy Airy beam (a = 0) and with a truncated Airy beam (a = 0.05) re-
spectively. The comparison shows that the finite-energy Airy beam (one-dimensional
as well as two-dimensional) can retain its intensity features over several diffrac-
tion lengths and can still accelerate in the transverse x-direction. If we focus on
the evolution of the transverse intensity distribution along z of the truncated
Airy beam, it has been shown that the beam’s deterioration starts first at the
higher lobes orders as the truncation starts at the tail of the beam [Figs. 1.8(c),
1.8(d)]. The Airy beam displayed in this example is defined by xA = 100 µm,
a = 0.1, λ = 0.5 µm and propagates in free space along 1.25 m. As a com-
parison with Figs. 1.8(a) and 1.8(b), a deflection of x = 2 mm corresponds to
s(xA = 100 µm) = 20 and ξ(z = 1.25m) = 10.

As a truncated solution of the ideal Airy waveform, the optical Airy beam has
the advantage of combining the parabolic trajectory and self-healing properties
of the Airy wave solution over a finite distance with the diffractive beam proper-
ties for larger propagation distances.
As for other shape preserving beams defined by their caustics, the Airy beam
is able to regenerate itself after passing an obstacle. If we consider the caustic
of the Airy wave form studied by Berry et al. in 1979 [Fig. 1.3], the propagation
lines of the particles are not parallel. In optics the parabolic caustic of the Airy
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Figure 1.8: Optical Airy beam. Propagation dynamics of (a) a diffraction-free Airy wave
and (b) a finite-energy Airy packet when a = 0.05. The corresponding input
intensities of these beams are shown in the insets. Extracted from [17], with
s = x/xA and ξ = z/kxA

2 the normalized transverse and longitudinal dimen-
sions. (c) Propagation dynamics of a finite energy Airy beam as a function of
distance. (d) Cross- sections of the normalized beam intensity at (i) z=0 cm,
(ii) 31.4 cm, (iii) 62.8 cm, (iv) 94.3 cm, and (v) 125.7 cm. Extracted from [16].

beam is also formed by non parallel trajectory lines, meaning that the photons
shaping the main lobe at z = 0 and at z > 0 are not strictly the same. As shown
on Figure 1.9(a), the trajectory lines of the Airy caustic are not a conical super-
position of multiple plane waves as in the case of Bessel beams. The individual
slopes of each straight trajectory (related to the transverse x-axis) decrease for
the higher Airy lobe orders. As a consequence, when an obstacle is placed at
the initial main lobe’s position as depicted on Figure 1.9, Christodoulides et al.
demonstrated that after z = 11 cm the beam starts reforming until z = 30 cm,
where the Airy beam is completely regenerated [18].
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Figure 1.9: Propagation properties of Airy beams. (a) Schematic caustic and intensity
profile of the Airy beam, displaying self-healing ability. The gbolic accel-
eration of the wave form is displayed by the orange line. (b)-(d) Intensity
distribution of an 2D-Airy beam with the main lobe initially obstructed
(xA = 77 µm) at (b) z = 0 cm, (c) z = 11 cm and (d) z = 30 cm. Adapted from
[18].

Airy generation methods

The discovery of an optical finite energy Airy beam solution has encouraged
various generation methods. As we will detail in the next paragraphs, an Airy
beam can be generated using a conventional Gaussian laser beam which is then
spatially modulated. In this section we will focus on the two most widely spread
solutions: the SLM-based method (Spatial Light Modulator) and the modulation
using asymmetric nonlinear photonic crystals.

Modulation using a spatial light modulator (SLM) .

In 2007, Christodoulides et al. have generated the first optical Airy beam in one
as well as in two dimensions [Fig. 1.10(b)] using a spatial light modulator (SLM)
[17]. The genuine idea is to generate the truncated Airy beam Ai( xxA )exp(a

x
xA

)

in the k-space, as the Fourier transform in the k-space of an infinite Airy beam is
a cubic exponential TF

(
Ai( xxA )

)
∝ exp(ik3/3). Therefore, the Fourier trans-
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form of the truncated Airy beam, ψ(k), is a Gaussian beam modulated with a
cubic phase in Fourier space:

ψ(k) ∝ exp
(
−ak2

)
exp

(
ik3/3

)
. (1.6)

As shown in equation 1.6, the Fourier transform of the truncated Airy beam is
proportional to the product of the Fourier transform of a Gaussian beam and an
exponential with cubic phase, which is the Fourier transform of the mathemati-
cal Airy function. An optical Airy beam can therefore be generated from a broad
Gaussian beam first modulated with a cubic phase then Fourier transformed.

Figure 1.10: Airy beam generation using a spatial light modulator. Intensity distribution
of a (a) 1D-Airy beam and (b) 2D-Airy beam. Phase mask on the spatial
light modulator for the generation of (c) 1D-Airy beams and (d) 2D-Airy
beams [17].

The cubic phase modulation is induced via the SLM on which a 1D- or 2-
cubic phase modulation is applied for a 1D- or 2D-Airy beam. The cubic phase
pattern is displayed on Figure 1.10(c) for the one-dimensional as well as the two-
dimensional case on Figure 1.10(d), which is the summation of a cubic phase
modulation along both orthogonal transverse x- and y-axes. Then to apply a
Fourier transformation on the modulated optical beam, a converging lens is
placed after the SLM-modulation at the focal distance f as depicted on Figure
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1.11. Finally the Airy beam, whose initial intensity distribution is defined in
equation 1.5, starts its propagation at the distance f after the Fourier-Transform-
lens.

Figure 1.11: Experimental setup to generate 1D- or 2D-Airy beams using a SLM-
modulation in Fourier space.

The experimental results are in agreement with the theoretical predictions, as
the generated Airy beam propagates along a parabolic accelerating trajectory. In
the 2D-case, the acceleration rate of the Airy beam is higher than for the one-
dimensional case, because the acceleration is along both transverse dimension, x
and y:

−−−−−−−−−−−−→
acceleration1D =

z2

4k2xA3
~x, (1.7)

−−−−−−−−−−−−→
acceleration2D =

z2

4k2xA3
~x+

z2

4k2xA3
~y, (1.8)

|
−−−−−−−−−−−−→
acceleration1D | =

z2

4k2xA3
, (1.9)

|
−−−−−−−−−−−−→
acceleration2D | =

√
2

z2

4k2xA3
. (1.10)

As illustrated by these equations and experimentally confirmed, the acceler-
ation depends on the optical wavelength (through k) and mainly on the Airy
beam’s size (characterized by xA). Thanks to the use of an SLM, this modulation
technique offers an instantly and precise external tuning tool as demonstrated
by Morris et al. [19]. They presented the mathematical link between the desired
Airy parameters (a, xA) and the system’s range (Gaussian waist ω0, Fourier lens
f) through the SLM-modulation. Thanks to these results, it facilitates the setup
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of an Airy beam experiment aiming peculiar applications, which require specific
beam’s features (e.g. size).
The ballistic behavior described above defines an Airy beam launched parallel to
the propagation z-axis, when all the opto-mechanical components are perfectly
aligned. However, the accelerating properties of the beam can be also tuned by
misaligning the Fourier lens or the SLM in the transverse x,y-plane to mimic the
ballistic dynamics of projectiles moving under the action of gravity [20, 21].

Modulation using an asymmetric nonlinear photonic crystal .

Besides the SLM-based modulation technique introduced by Christodoulides
et al., an other Airy generation method has been suggested. In 2009 Arie et al. sug-
gested the nonlinear modulation via three-wave mixing processes taking place in
an asymmetrically modulated quadratic optical media. In reference [22], they in-
duce a two-dimensional poling of a quadratic medium with the following space-
dependent quadratic nonlinear coefficient:

χ(2)(x , y) = dijsign
(
cos

(
2πfxx + fcy

3
))

, (1.11)

where dij is an element of the quadratic susceptibility χ(2) tensor, fx is the
spatial frequency of the modulation in the beam’s propagation x-direction and
fc represents the strength of the cubic modulation in the transverse y-direction.
As depicted on Figure 1.12, a Gaussian pump beam is injected in the crystal
along the x-direction. Through the asymmetric nonlinear photonic structure the
beam is converted to a second-harmonic Airy beam (in the k-space). As for the
SLM-modulation process, a converging lens is then placed at the output of the
photonic crystal to perform a Fourier transform.

To control the free space propagation of the generated Airy beam, various ex-
ternal parameters of the systems can be considered. The idea is to change the
quasi-phase matching conditions, by tuning the crystal temperature or pump
wavelength, which alters the location of the Airy beam peak intensity along the
same curved trajectory. Shortly after, the group has also shown that these tuning
parameters can be adjusted to switch the acceleration direction of the Airy beam
[23, 24].
This second method therefore offers an interesting alternative for the Airy gen-
eration with all-optical control of the Airy features. The advantage of this Airy



20 introduction

Figure 1.12: (a) Microscope photograph of the quadratic crystal, after selective etch-
ing (which reveals the inverted domain pattern). The x- and y-axes were
rescaled for viewing purposes and are not comparable. (b), Profile photo-
graph of the green second-harmonic Airy beam. Extracted from [22].

generation technique is the ability to create Airy beams at new wavelengths and
high intensities that are not supported by the SLM-method (maximum intensity
around 1 W/cm2).

Quickly after the beam’s ballistics and shape-preserving features have been
confirmed [18–20], the general study of diffraction-free and self-accelerating
beams has experienced an rising interest. Besides the two generation methods
presented previously, other techniques have also been suggested using various
electro-optical tools such as liquid crystal displays [25], a diffraction grating [26]
or a waveguide array [27]. However, the most commonly used techniques are the
SLM-based method and the use of quadratic nonlinear crystals.
For our experimental work in the next chapters we chose the SLM-based gen-
eration method, because the optical power needed is low (max 100 µW at the
entrance of the crystal) and because of the easy control and the tuning precision
offered by the SLM.

Applications

The discovery of the parabolic accelerating Airy beam has opened a new optical
wave type, the non-paraxial accelerating waves. Their existence have been theo-
retically and experimentally demonstrated [28–30] and has led to numerous ap-
plications. Among others we can cite optical micromanipulation of particles [31],
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where the large Airy shape and its parabolic propagation enables optical path
clearing of particles in suspension in turbid medium with higher performances
and efficiency [Fig. 1.13(a)]. In laser processing the non-diffracting propagation
offers a larger depth and precision for micromachining various materia and the
non-paraxial beam trajectory enables smooth curved sculpting of material edges
as depicted on Figure 1.13(b) [32–34].
In biomedical physics Airy beams have also suggested interesting applications
such as in light-sheet microscopy, which facilitates rapid, high-contrast, volu-
metric imaging with minimal sample exposure [35]. Figure 1.13(c) illustrates a
light-sheet microscopy scan of a juvenile amphioxus and compares two volu-
metric images acquired using Gaussian (upper images) and Airy (images below)
illumination beams. By this study, Vettenburg et al. show that the diffraction-free
Airy beam yields high contrast and resolution up to a tenfold larger field of view
contrary to the conventional Gaussian physics undergoing rapid divergence.

In optical routing several application fields have already been explored such
as in all-optical communications to induce switches using the accelerating prop-
erty of Airy beams [36] or for information encoding in linear media [37]. Finally
other research areas have also studied the unique properties of these accelerat-
ing beams such as in plasmonic, including plasmonic circuitry [38] and surface
tweezers using Airy plasmons [39, 40]. These promising results have suggested
to enlarge the optical applications also to the electronic domain for steering elec-
tronic wave packets like their photonic counterparts [41].

In the previous section, we have presented a new family of optical non conven-
tional beams with peculiar properties in free space (diffraction-free, self-healing
and non-paraxial propagation, see Section 1.1). A large number of applications
suggested in sections 1.1.3 and D.2 deal with the nonlinear propagation of op-
tical accelerating beams in various nonlinear materials. Nonlinear optics is the
study of phenomena that occur when the optical properties of a material are
modified by light. Different mechanisms can occur depending on the material
type. In this thesis we will focus on photorefractive materials and in particular
on the propagation of Airy beams under increasing self-focusing nonlinearity.



22 introduction

Figure 1.13: Examples of applications of Airy beams: (a) for micromanipulation [31], (b)
laser processing [33] and (c) light-sheet microscopy [35].



1.2 photorefractive effect 23

1.2 photorefractive effect

The photorefractive effect is a nonlinear process where light induces a charge
transport in an electro-optic material. Through several effects, as described in
Section 1.2.1, the non uniform illumination of such a material leads to a non
uniform variation of the refractive index structure inside the crystal: this effect
is called the "photorefractive" effect.

The photorefractive effect has been discovered in 1966 by Ashkin et al. in
lithium niobate (LiNbO3) and lithium tantalate (LiTaO3), where they consid-
ered this effect as "optical damage": the quality of the phase-matching second
harmonic generation they were studying was reduced by the inhomogeneous
refractive index structure photoinduced [42]. In particular they discovered that
this degradation occurs when the beam is linearly polarized in the c-axis di-
rection (extraordinary ray), while a beam perpendicularly polarized undergoes
conventional diffraction. Nevertheless this damage has quickly turned into an
interesting electro-optic feature, as two years later Chen et al. suggested photore-
fractive crystals as storage media for optical holography [43]. The holograms can
be photoinduced as a refractive index structure written in the three dimensions
of the crystal without any processing. Thanks to the high diffraction efficiency
and the easy erasability of the refractive index structure, the photorefractive crys-
tal appears as an ideal tool for dynamic data storage. As this physical process ap-
pears for very low optical powers (µW), photorefractive media have become very
attractive and their physical mechanisms have been extensively explored. A vari-
ety of materials have been explored such as inorganic insulators (e.g. Strontium-
Barium Niobate (SBN), Barium Titanate (BaTiO3) crystals), semiconductors (e.g.
Indium phosphide (InP) or Cadmium telluride (CdTe) crystals) and also organic
compounds [44].

1.2.1 Physical mechanisms

The conventional photorefractive effect is observed in dielectric or semiconduc-
tor material. Many models have been suggested to describe the physical mecha-
nisms since 1969 , but the most widely accepted nowadays is the band transport
model of Kukhtarev [45]. While the first physical model considered the pho-
torefractive effect as the result of a general redistribution of trapped charge un-
der nonuniform illumination [42, 46], the Kukhtarev model presents a detailed
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band conduction model taking into account charge transport, static electric fields,
electro-optic index modulation. The photorefractive effect can be described as a
sequence of three processes for the charge carriers:

• Photo-excitation of free charge carriers,

• Transport of the free charge carriers due to diffusion, electric forces (drift
effect), and photovoltaïc effect,

• Recombination of the excited charge carriers (electron or holes) into a
trapped state.

Figure 1.14: Schematic overview of the Kukhtarev band conduction model [45].

Figure 1.14 depicts the schematic photorefractive process of the Kukhtarev’s
model [45]. When an optical field with enough energy is injected inside the pho-
torefractive crystal, the photoionization promotes the photo-excitation of the free
carriers (for example electrons) from their initial filled donor sites (ND being the
initial density) and their migration to the conduction band. As the non-ionized
donors contain a negative charge, we add in the model acceptors (density NA)
with a positive ionized charge to maintain the electrical neutrality of the medium.
These acceptors however do not play any direct role in the photorefractive pro-
cess in our model. The ionized donors then become empty trap sites (ND+). Then
the charges, with density n and mobility µ, diffuse (under random thermal in-
fluence) or move under the drift effect (when a bias electric field E0 is applied)
or under the photovoltaïc effect through the crystal. At their new position, the
mobile charges will then fill empty sites to recombine into a relaxed state.
The charge gradient created results in a space charge field which modulates the



1.2 photorefractive effect 25

refractive index via the linear electro-optic effect. This last process is called the
Pockels effect and will be discussed further in this section.

To mathematically model the photorefractive effect, we consider the equations
describing the charge transport when an electro-optical field is applied on the
medium [47].
The evolution of the production of free carriers ND+ is the difference between
those generated by photoionization and by thermal ionization and those trapped
[Eq. 1.12]. The charge transport induces a current density J resulting from the
diffusion effect jdiff and from the drift effect, jdrift proportional to the total
electric field, along the photorefractive x-axis (in the case of the crystals we
study the photovoltaïc effect can be neglected jpv = −βI) [Eq. 1.13]. Equation
1.14 ensures by continuity the conservation of charges in the system. Finally the
interactions of carriers with each other and with an external electric field are
described through the Maxwell equation 1.15.

∂ND+

∂t
= (ND −ND+) (sI+β) − γND+n, (1.12)

J = neµE+ µkBT
∂n

∂x
+ Jpv, (1.13)

∂n

∂t
=
∂ND+

∂t
+
∂

∂x

(
µkBT

∂n

∂x
+ µnE

)
, (1.14)

εeffε0
∂E

∂x
= −e (ND+ −NA −n) , (1.15)

where
E electric field β0 probability rate of thermal excitation

I light intensity γ recombination constant

J current density µ mobility

n free electron number density s photoexcitation constant

NA density of acceptors εeff effective static dielectric constant

ND total density of donors ε0 permittivity of free air

ND+ density of ionized donors.
The four equations Eqs. 1.12-1.15 are referred to as the fundamental equations
of the Kukhtarev’s model.

We will now detail the mechanisms induced by the Pockels effect, i.e. the in-
fluence of the optical field on the refractive index structure inside the crystal.
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Figure 1.15: Photorefractive effect illustrated with two coherent laser beams injected in
a crystal: schematic overview and transverse distribution of the different
physical parameters from the optical intensity to the refractive index varia-
tion.

Let us consider a non uniform optical illumination on the photorefractive medium.
We launch a sinusoïdal optical pattern induced for example by the intersection
of two mutually coherent laser beams with their total intensity I0 = I1 + I2
[Fig. 1.15]. Their interference pattern is equal to I = I0(1+m ∗ cos(φx)), with
m =

√
I1I2/I0 the modulation depth and φ the spatial frequency of the interfer-

ence grating. The total electric field E is the sum of the externally applied electric
field Ee and the photoinduced space charge field Esc. Through the Pockels effect
the space charge field linearly induces a refractive index variation as follows:

∆n = ±n0
3

2
reff(E), (1.16)

with n0 the linear refractive index value of the photorefractive crystal, reff the
electro-optical coefficient of the material and the sign ± depends on the polar-
ization of the optical field. The electro-optical coefficient reff is unique for each
material composition and depends on the optical beam’s parameters (propaga-
tion direction, polarization, wavelength). In the typical case of a SBN-crystal
(Strontium-Baryium-Niobate), the highest electro-optical coefficient reff,max is
r33 = 235pm/V , with λ = 532nm, considering a horizontal polarization and the
propagation direction perpendicular to the c-axis.
Figure 1.15 illustrates the mechanisms leading to an optically induced refractive
index variation. The sinusoidal optical interference pattern formed by the two
incident beams induces a charge transport and the gradient of charges leads to a
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space charge field Esc out-of-phase with the optical intensity. Through the Pock-
els effect the refractive index is modulated according to the induced space charge
field. An additional external bias electric field enables to realign the refractive
index structure and the illumination pattern.
The refractive index distribution can be engineered by reshaping the optical
beam’s intensity at the entry of the crystal. As propagation of light depends
on the refractive index structure of its propagation medium, its trajectory and
shape will be altered and then modify again the propagation structure. This
beam-matter-interaction has been extensively studied since the 1970’s and sug-
gested a large number of applications as detailed below.

1.2.2 Optical applications

Photorefractive media are therefore a promising candidate for optical informa-
tion processing because of their unique properties for low optical power. Besides
the first suggested application, volume holographic data storage [49], their mas-
sive storage capacity and real-time response have led to applications in optical
amplifiers [50] and phase conjugation [51]. More recently the physics of optical
tweezers has also raised much interest using such media to trap matter [52].
In addition photorefractive crystals have been studied for all-optical processing
and computing such as data storage through pattern formations [53, 54], im-
age processing, optical interconnects [55] and neural networks [56]. As the space
charge field induced by the propagating light beam can be controlled via an ex-
ternal bias electric field, the natural diffraction of the beam can be erased leading
to the formation of so-called optical spatial solitons [79, 80]. As we will see in
the next section, the shape-preserving propagation of these beams in nonlinear
media has led to a precise and dynamic solution for efficient real-time all-optical
communications.
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1.3 propagation of solitons

In this section we will introduce the soliton, a nonlinear self-trapped wave packet.
The first soliton, or solitary wave, has been observed in 1834 by the engineer
Scott Russel on the Union Canal near Edinburgh. He observed a boat pulled by
horses forming a wave on the water. As the horses and the boat stopped, this
wave continued propagating "at great velocity, assuming the form of a large solitary
elevation, a well-defined heap of water which continued its course along the channel
apparently without change of form or diminution of speed" [57]. As we will see in
the following sections, this phenomenon has also been observed afterwards for
other wave types and in particular in optics.

1.3.1 Observation in the nature

The propagation of solitary waves have been observed in various media. After
the discovery of Russell in 1834 [Fig. 1.16(a)], other singular water waves have
been observed. Called tidal bore nowadays, these singular waves are the conse-
quence of the tidal force exerted on shallow water surfaces. The wave of water
then travels up a river or narrow bay against the direction of the river or bay’s
current over several kilometers.

Figure 1.16: Observation of solitons in nature. (a) Soliton on the Scott Russell Aqueduct
on the Union Canal near Heriot-Watt University, 12 July 1995 (reproduction
of the observation of Russell in 1834 [57]). Source: ma.hw.ac.uk. (b) Coastal
roll cloud in Uruguay. Source: Wikipedia.

As depicted on Figure 1.16(b), the atmospheric convection also offers its soli-
ton type: roll clouds. These low, horizontal, tube-shaped clouds appear very



1.3 propagation of solitons 29

rarely and propagate rolling around a horizontal axis, separated from other
clouds.
The presence of sustainable and high energetic waves has raised curiosity since
their discovery, but as they where in contradiction with the theoretical models,
one had to wait the development of computer-based modeling in the 1960s.

1.3.2 Theoretical mechanisms

After the discovery of the solitary wave by Russell in 1834, the study of solitons
did not progress for more than one century until 1965, when Zabusky et al. first
demonstrated soliton behavior in media subject to the Korteweg–de Vries equa-
tion using a finite difference approach [58]. The Korteweg-de Vries equation has
been developed in 1895 by the mathematician Diederik Korteweg and Gustav
de Vries to mathematically model waves on shallow water surfaces and includes
solitary wave among the solutions [59].

Usually a single wave undergoes dispersion along its trajectory. It is formed
by the infinite superposition of harmonic waves (a wave packet), each propagat-
ing at a different velocity. Along the propagation the wave packet tends to crush
while broadening (i.e. dispersion effect). But when propagating in a shallow
canal, the relative depth varies significantly which increases the group velocity
(v =

√
gh, with v the velocity, g the g-force and h the depth) leading to a tight-

ening of the wave packet. But in the solitonic case, both effects (dispersion and
tightening) balance out each other enabling therefore the invariant propagation
of a solitary wave in a nonlinear system.

1.3.3 Optical solitons

Temporal and spatial solitons: definition

In optics we consider two types of solitons: "temporal" solitons in pulsed op-
tics (where the nonlinearity compensates the dispersion) in comparison with the
"spatial" soliton. Spatial solitons are observed in wave optics, where the natural
diffraction (spatial beam expansion) can be counterbalanced by the nonlinearity
of the system [Fig. 1.17].
Besides the Korteweg-de Vries model, several mathematical exactly solvable
models, such as the nonlinear Schrödinger equation [60–63], present the soliton
as an exact solution. In 1973 Hasegawa et al. suggested that the pulse propa-
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gation in optical fibers is also governed by the nonlinear Schrödinger equation
[64]. As for solitonic water waves in the previous Section 1.3.2, a solitonic optical
pulse is a superposition of light waves of different frequencies, thus propagating
at different velocities. The nonlinearity of the propagation medium enables un-
der certain conditions to balance with the linear dispersion of the optical pulse,
leading to the formation of soliton pulses. In 1980 Mollenauer et al. observed the
first experimental bright solitons [65] in a single-mode optical fiber (Kerr nonlin-
earity) using pico-second pulses.

Figure 1.17: Experimental observation of an optical spatial soliton propagating through
a 5 mm long nonlinear photorefractive crystal. Top: side-view of the soliton
beam from scattered light; bottom: normal diffraction of the same beam
when the nonlinearity is ‘turned off’. Extracted from [66, 67].

Experimental spatial soliton have also been observed in Kerr [68, 69] and later
in photorefractive media [70]. Contrary to temporal solitons in pulsed optics,
where the solitonic confinement is only one-dimensional (temporal), the spatial
domain offers 2D- and even 3D-self-trapping possibilities.
It is worth mentioning that initially the term "soliton" was only used for self-
trapped optical wave packets that are solution of integrable nonlinear partial
differential equations. One-dimensional optical soliton pulses in a fiber is an ex-
ample of such a solution of the nonlinear Schrödinger equation. However, most
of the physical systems are governed by non integrable equation, while present-
ing shape-preserving beam’s solutions, first called solitary waves. Because the
physical behavior of these solitary waves is similar to the mathematical solitons,
the definition of an optical soliton has been generalized to all self-trapped beams.
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For studying the propagation of optical soliton, media with a saturable non-
linearity have raised much interest. Saturable media (i.e. where the nonlinearity
saturates above a certain intensity), such as photorefractive systems, support sta-
ble 2D-solitons [71], whereas only 1D-soliton can be stable in Kerr media (unless
there is already a waveguide structure along one dimension) [72]. Besides the
Kerr and photorefractive nonlinearities, which are the most common explored
propagation media, optical solitons have also been discovered in a large range of
systems, such as atomic vapors [73], quadratic electro-optic effects in paraelectric
nonlinear crystals [74], orientational enhanced photorefraction in organic nonlin-
ear materials [75, 76], and thermal nonlinear effects in liquid crystals [67, 77, 78].

Photorefractive solitons

Photorefractive solitons have raised much interest since the 90’s [79, 80], as the
photorefractive nonlinearity enables the formation of solitons of multiple spa-
tial dimensions, contrary to Kerr nonlinearity. Also the photoinduced nonlin-
earity required for a solitonic behavior appears for low optical power (a few
microwatts [81] contrary to Watts in the Kerr-case). In that case the nonlinearity
is increased via an external bias electric field, which offers an additional tuning
parameter. The first solitons experimentally observed in photorefractive media
however were of transient nature (so called “quasisteady state”) and existed only
within a narrow temporal window. To reach the steady-state regime, an external
background illumination enables to adjust the soliton formation and its dynam-
ics [66]. In general photorefractive solitons are very interesting for experimental
implementations, as weak continuous sources lasing at a weak power (a few
mW) are sufficient to reach and explore the solitonic physics and its applications
[82].

Applications

Particle-like interactions .

The discovery of spatial solitons and its associated discovered phenomena
have led to explore many applications. Their self-trapped nature has drawn the
attention to the domain of fundamental physics, such as the comparison be-
tween the collision of solitons and of particles. This optics-particle equivalence
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has been first suggested in 1965, where the outcome of soliton collisions has been
studied [58]. Colliding solitons appear to interact very similarly to particles, as
they may repel or attract each other depending on their distance between each
other, their phase-matching and size [83–85]. Theoretical and experimental stud-
ies have been done in various nonlinearity types and have led, in particular in
photorefractive media, to a larger number of interaction types [55, 86, 87].

Figure 1.18: Influence of the phase matching ∆Φ between two co-propagating solitons
for a small and large inter-beams distance. Typical intensity profiles along
the transverse axis displaying the interaction process. Extracted from [55].

An example is given on Figure 1.18, where two parallel coherent Gaussian
beams are launched in a photorefractive crystal (semiconductor InP:Fe) along the
same direction, with an identical waist of 25 µm. As presented in reference [55]
and depicted on Figure 1.18(b), the beams diffract and propagate along each
other under linear conditions. However, when applying an external bias electric
field (here 10kV/cm), they turn into solitons. For a transverse beams’ separation
of δin = 60 µm, the beams do not see each other and propagate without inter-
actions [Figs. 1.18(f), 1.18(g)]. On the other hand for smaller transverse shifts,
δin = 11 µm, the interference pattern leads to either mutual attraction for in-
phase beams, or repulsive forces when the beams are out-of-phase. This example
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demonstrates the diversity of particle-like interactions that can be observed for
photorefractive solitonic collisions.

All-optical routing .

As detailed in previous subsection 1.2.1, the photorefractive effect is optimal
for a precise combination of beam’s parameters, in particular the wavelength of
the optical beam. If we consider the SBN-crystal used later in our experiment,
its optimal photorefractive effect appears for λ = 532 nm. At this wavelength,
λ = 532 nm, we can observe nonlinear self-focusing solitonic effect of an optical
beam and induce waveguiding structures. On the contrary if we propagate an
optical beam at an other wavelength (e.g.in the infrared range, λ = 1 .55 µm),
the crystal will have a linear response and the refractive index structure remains
unchanged. This sensitivity to the wavelength enables a weak soliton beam at
λ = 532 nm to induce a waveguide that can be used to guide other more intense
beams at other wavelengths for which the photorefractive effect is less sensitive
[88–90].

Figure 1.19: (a) Photographs and (b) horizontal profiles of the red beam guided by the
waveguide induced by the Y-junction induced by a solitonic propagation of
an initial Gaussian beam. Extracted from [89].

Photorefractive solitons appear therefore as an ideal candidate for waveguid-
ing and steering applications. An example is given by Chen et al. in reference [89],
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where they generate a pair of anti-phased dark solitons diverging from each
other leading to a Y-junction soliton (using a dark notch on an otherwise-uniform
Gaussian beam). The optically created waveguiding structure then form a Y-
junction in the solitonic regime as illustrated in Figure 1.19. Such photorefractive
soliton-induced waveguides can be used for device applications as experimen-
tally studied by the group of Segev and Chen in references [91] and [92], where
directional couplers and high-efficiency frequency converters have been demon-
strated.



1.4 motivations 35

1.4 motivations

In this thesis we study the nonlinear propagation of Airy beams in photorefrac-
tive crystals. Considering the state-of-the-art of the control of the accelerating
features of the Airy beam, we have focused our research on the propagation
of Airy beams under high focusing conditions similar to the solitonic behavior
in classical Gaussian systems. First we consider the behavior and features of a
single strong self-focused Airy beam in chapters 2 and 3. In a second part we
explore the interaction scheme of two Airy beams propagating in opposite direc-
tions (chapters 4,5,6).

Under a nonlinear focusing strength, literature has theoretically predicted the
existence of a superimposed solution of a soliton and an accelerating beam, both
issued from the same initial linear Airy beam [93]. In Chapter 2 we experimen-
tally study an Airy beam under strong nonlinear conditions leading to a solitonic
solution. We show that the position and shape of the Airy-soliton beam at the
output of the photorefractive crystal can be tuned using various system’s param-
eters.
During the experimental study of the solitonic behavior of Airy beams, we ob-
served a peculiar spatiotemporal response of the output beam. In Chapter 3 we
show that the transient behavior of the Airy beam involves both self-bending
and acceleration of the initially launched Airy beam. This can be explained by
the onset of an off-shooting soliton and the resulting large refractive index per-
turbation, which acts as a gravitational potential in an accelerating framework.
Besides its interest for the analogy with gravitation, the build-up dynamics of the
focused beam provides a deeper insight into the subject of accelerating beams in
nonlinear focusing media.
As detailed in previous Section 1.3 (paragraph 1.3.3), photorefractive solitons
offer interesting solutions for all-optical routing. After the extensive study and
characterization of the Airy soliton behavior, we propose to analyze in Chapter 4

waveguides optically induced by a single optical Airy beam in a photorefractive
crystal. The results highlight the diversity of waveguides created by a single Airy
beam thanks to its multi-lobe structure. In a second step we inject an incoherent
counterpropagating Airy beam. By taking advantage of the large transverse Airy
distribution and the parabolic trajectory, we investigate the waveguide structures
photoinduced by their interconnections. We show that the interaction schemes
between two Airy beams offer multiple waveguide possibilities even for large
transverse shifts of the interacting beams.
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As the waveguide structures induced by two Airy beams present a complex and
large transverse spatial distribution due to the shape and properties of the Airy
beams, we question about their stability for increasing focusing nonlinearity. In
Chapter 5 we present the emergence of peculiar spatiotemporal dynamics. The
system evolves from static to time-periodic then chaotic waveguides when in-
creasing the nonlinearity strength and the crystal length. Contrary to Gaussian
systems, we show that the Airy properties enable a larger stability range (i.e.
more efficient waveguiding). Also under extreme focusing conditions, the result-
ing chaotic regime does not display randomly distributed dynamics, but appears
to be spatially organized with an Airy distribution. Such spatially localized in-
stabilities suggest innovative ways of performing optical computing based on
spatiotemporal chaos.
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S O L I T O N I C P R O P E RT I E S O F A S I N G L E S E L F - F O C U S I N G
A I RY B E A M

In this chapter we analyze the existence of Airy-solitons in a photorefractive
crystal when increasing the self-focusing nonlinearity. First experimental results
show that under a nonlinear positive bias electric field, the photorefractive ef-
fect turns the Airy beam into a combination of an off-shooting soliton and an
accelerating beam. The Airy-soliton appears for a range of parameters similar
to those leading to a Gaussian soliton. Its output position and intensity can be
engineered via several external parameters. The experimental findings are then
confirmed by numerical simulations.

The numerical context of this chapter is related to the following publication:
Noémi Wiersma, Nicolas Marsal, Marc Sciamanna, Delphine Wolfersberger, “All-
optical interconnects using Airy beams”. In: Opt. Lett., 39.20 (2014), pp 5997-6000.
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2.1 nonlinear airy propagation

In this chapter we will study the self-focusing of an Airy beam towards a so-
called solitonic structure. In comparison with Gaussian solitons, the Airy soliton
does not preserve the Airy profile and does no longer follow a curved trajectory,
but propagates along a straight line. While self-trapping and self-focusing depict
the same behavior for a Gaussian beam (i.e. solitonic propagation), we need to
set a distinction for Airy beams. We consider self-trapping, when the Airy beam
preserves its multi-lobe shape and its curved trajectory over a longer distance
than in free space (see next Section 2.1.1). By opposition, the self-focusing effect
appears when the Airy beam quits its shape and curved trajectory to form a
single soliton along a straight line (combined with a weak accelerating structure,
see Section 2.1.2).

2.1.1 Self-trapping effect

As a truncated solution of the ideal Airy waveform, the optical Airy beam has the
advantage of combining the parabolic trajectory and self-healing properties of
the Airy wave solution over a finite distance with the diffractive beam properties
for larger propagation distances. Unlike conventional beams, such as Gaussian
beams, an Airy beam propagating in a linear medium will maintain its shape
over a much larger distance. When propagating in an unbiased photorefractive
medium, an optical beam is mainly subject to the diffusion effect. Because of the
asymmetry of this phenomenon, a Gaussian beam presents various transverse
effects such as self-trapping and self-bending [48, 94]. In particular to preserve
the shape of the Gaussian spatial profile, an externally applied voltage enables
to counterbalance the diffraction effect [81]: the propagating beam then turns
into an optical spatial soliton. While conventional beams present a symmetrical
energy distribution, it is interesting to first study how the asymmetrical intensity
profile of the Airy beam is interacting with the diffusion effect only (i.e. without
external bias electric field).

This question has been answered in Ref. [95, 96], where it has been numer-
ically demonstrated that, precisely thanks to the asymmetry of its shape, the
Airy beam can undergo self-trapping (i.e. a shape-preserving accelerating prop-
agation over a longer distance). For example reference [95] numerically and ex-
perimentally shows that the diffraction of an Airy beam can be annihilated via
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Figure 2.1: Transverse energy power flow. (a) The intensity profile of a self-trapped Airy
state during propagation in a diffusive medium. (b, c) The propagation of
this same beam (b) in the absence of diffusion and (c) when the phase profile
is reversed (with s (resp. ξ) the normalized transverse (resp. propagation)
axis). Extracted from [95].

the diffusion effect in a photorefractive medium [Figs. 2.1(a), 2.1(b)]. However,
the self-trapping effect appears only when the acceleration is opposite to the
diffusive effect [Figs. 2.1(a), 2.1(c)]. An Airy beam propagating in a diffusive
medium (e.g. an unbiased photorefractive crystal) therefore preserves its shape
much better than propagating in free space. While the self-trapping of conven-
tional beams requires a nonlinear transport effect to counterbalance the diffusion,
this new class of self-localized beams owes its existence to carrier diffusion ef-
fects only (this observation is also valid for Airy pulses [97]).

Besides the linear shape-preserving propagation of an Airy beam in diffusive
media, the propagation direction of the accelerating beam can also be altered via
an externally applied nonlinearity. By studying further the impact of the nonlin-
earity of the medium on the propagation of an Airy beam, various theoretical as
well as experimental studies have demonstrated that the shape and trajectory of
the Airy beam can be engineered via a refractive index variation [21, 99–101]. The
first experimental studies done by Chen’s group [21] have shown that an Airy
beam as it propagates from an electrically biased medium to a linear medium
experiences anomalous diffraction enabling it to maintain its shape, when un-
der self-defocusing nonlinearity. On the other hand a self-focusing nonlinearity
prevents the stability of the Airy-accelerating shape and properties for a linear
propagation after the crystal [21].

More generally the trajectory of an optical beam is altered by the refractive
index variations along the propagation medium. Figure 2.2 depicts how peculiar
refractive index gradients can lead to very exotic trajectories of the Airy beam
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Figure 2.2: Exponentially apodized Airy beam propagation along predefined paths (us-
ing a transversely linear index potential): (a) power law trajectory, (b) sinu-
soidal trajectory, (c) logarithmic trajectory, (d) hyperbolic trajectory. Extracted
from [98].

[98]. By dynamically changing the refractive index structure along the propaga-
tion direction z, Efremidis et al. suggest to annihilate the transverse acceleration
over a finite distance [Figs. 2.2(a), 2.2(d)] or all along the medium [Fig. 2.2(b)].
They also predict transverse accelerations opposite to the Airy direction for the
whole multi-lobe structure [Fig. 2.2(c)].

Inside a nonlinear biased medium, the photorefractive effect enables to pho-
toinduce a local variation of the refractive index structure. By applying a bias
electric field, a tunable waveguide structure is photoinduced by the optical beam
inside the nonlinear medium (via the Pockels effect). In addition Chen et al. ex-
perimentally and theoretically demonstrated that a background illumination can
also modify the acceleration of the Airy beam [100]. To that aim they optically
modify the refractive index distribution along the transverse Airy axis x with an
index gradient δn using a white light gradient and a bias electric field. As illus-
trated on Figure 2.3, the acceleration factor of the Airy beam is increased when
the gradient increases along the Airy acceleration direction +x [Fig. 2.3(b)]. But
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if the gradient increases along the higher lobe orders, the Airy beam acceler-
ates less along the +x-direction [Fig. 2.3(c)] up to a zero-deflection propagation
[Fig. 2.3(d)]. As the acceleration rate of the Airy beam depends on the spatial pa-
rameter xA (see Section 1.1.4), the index gradient values δn has to be increased to
enhance the initial acceleration of larger Airy beams, while smaller Airy beams
need a lower negative index gradient to reach the zero-deflection propagation
[Fig. 2.3(e)].

Adding these externally tunable waveguiding and trapping possibilities to the
inherent Airy self-trapping effect, the control and tuning of the beam’s ballistic
using the medium’s nonlinearity (or photonic lattices [102, 103]) offer new pos-
sibilities in waveguiding solutions such as in all-optical routing.

Figure 2.3: 1D Airy beams propagating in an electrically biased medium with different
index gradients (δn oriented along x). (a) Normal propagation. (b) Enhanced
and (c) reduced acceleration at δn > 0 and δn < 0, respectively; (d) no
acceleration at δn = −n/2k2xA3 . (e) Plot of acceleration as a function of
δn > 0 under different xA. The white dashed lines mark the position of the
central lobe at the output in (a), and the arrows illustrate the index gradient.
Extracted from Ref. [100].

2.1.2 Solitonic regime

Previously we have considered the nonlinear propagation of an Airy beam,
where the beam preserves its multi-lobe distribution and its curved trajectory
(i.e. a self-trapped regime) [Fig. 2.3]. In the first case, the diffusion effect leads to
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a self-trapped Airy propagation: the intensity shape remains invariant along the
parabolic trajectory. When a small bias electric field is applied on the Airy beam,
the beam still undergoes self-focusing and the main lobe is narrower, while still
accelerating [96]. However, first studies predict peculiar dynamics of the Airy
beam, when propagating under high focusing conditions. Recent works have
shown the possibility to induce spatial solitons through self-focusing of ideally
non-diffractive beam profiles including optical Airy beams [96, 104]. As depicted
on Figure 2.4, Segev et al. theoretically present the propagation of an Airy beam
in a Kerr medium under a strong self-focusing (left column), a weak focusing
(middle column) and a strong defocusing nonlinearity (right column). By com-
paring the two focusing cases, while the weak focusing conditions preserve the
Airy shape and propagation (i.e. self-trapping effect), the increase of nonlinear-
ity turns the Airy beam into multiple off-shooting solitons. In particular the
finite-energy Airy beam undergoes stronger self-focusing effect, as the trunca-
tion decreases the diffraction-free property of the Airy beam.

Figure 2.4: Self-accelerating beams in Kerr media. Top row: Intensity profiles at z ¼ 0.
Middle row: Propagation of self-accelerating beams with infinite tails and 2 %
noise. Bottom row: Propagation of self-accelerating beams with finite tails.
Left column: Strong focusing nonlinearity. Middle column: Weak focusing
nonlinearity. Right column: Defocusing nonlinearity. Extracted from Ref. [97].
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Contrary to the self-trapping effect, where the beam remains Airy-like under a
weak nonlinearity [36, 95], we consider strong self-focusing as a nonlinear effect
leading to the breakdown of the Airy behavior (in particular the acceleration and
Airy-distribution). It has been theoretically demonstrated that finite-energy Airy
beams do also undergo solitonic self-focusing when a high positive bias electric
field is applied to the nonlinear medium [93, 104, 105]. As depicted on Figure 2.5,
by increasing the self-focusing nonlinearity of the medium, the initial linear Airy
beam [Fig. 2.5(a)] does not follow the initial self-trapping regime and, similar to
Gaussian beams, undergoes a soliton-like behavior [Fig. 2.5(c)].

Figure 2.5: Theoretical propagation of an Airy beam in a photorefractive crystal under
(a) linear, (b) defocusing and (c) strong focusing conditions.

Contrary to conventional beams, when applying a bias electric field in the
direction of the c-axis of the nonlinear medium, the Airy beam does not entirely
turn into a soliton, but decomposes itself into a so-called off-shooting soliton
and an accelerating wave packet [93, 96, 104–106]. This co-existence of two beam
types induced by the same Airy beam is unique in solitonic physics and has
raised several questions: what are the existence conditions ? how does the Airy-
solitonic behavior differ from the one of a Gaussian soliton ?

2.1.3 Photorefractive vs. Kerr nonlinearity

The solitonic propagation of Airy beams has been studied in various types of
nonlinearities such as in Kerr and photorefractive media. Recently, Segev’s group
theoretically studied self-accelerating self-focused beams in nonlinear optical me-
dia, exhibiting self-focusing and self-defocusing Kerr and saturable nonlineari-
ties, as well as a quadratic response [104]. In particular in the self-focusing case,
they have predicted that Airy beams are stable for weak self-focusing in Kerr
and saturable nonlinear media. However, under strong self-focusing conditions
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the Airy beam off-shoots a localized soliton while its main lobe continues to ac-
celerate (see Figure 2.4). Figure 2.6 illustrates the propagation of an Airy beam
in a photorefractive medium. Compared to the linear and defocusing propaga-
tion, the Airy behavior breaks down under strong photorefractive self-focusing
conditions as theoretically predicted by Chen et al. [93].

Figure 2.6: Theoretical propagation of an Airy beam in a photorefractive crystal under
(a1) linear, (b1) strong focusing and (c1) defocusing conditions. Extracted
from Ref. [93].

In Kerr high focusing media an intense solitonic Airy beam can present var-
ious spatiotemporal dynamics such as filamentation [105] or oscillations [104,
107] (so-called moving solitons), which is similar to the Gaussian beam case. Fig-
ure 2.7 shows the theoretical study of Airy beams in Kerr media [107]. For a
weak self-focusing nonlinearity, the Airy beam maintains its Airy-like behavior
[Fig. 2.7(a)]. Then under Kerr strong self-focusing nonlinearity the Airy beam
splits into an accelerating and a solitonic structure [Fig. 2.7(b)]. However, the
soliton is not steady-state, but shoots off towards various transverse output posi-
tions. On Figure 2.7(b) we observe one strong static soliton and two weak mov-
ing solitons, but the self-accelerating linear packet exists in all cases [Figs. 2.7(a),
2.7(b)]. If we increase the nonlinearity (here the optical intensity u0), the Airy
beam undergoes peculiar bifurcation routes. Figure 2.7(c) illustrates the intensity
and dynamics of the off-shooting soliton structure for increasing optical inten-
sity u0. It shows that first the Airy beam turns into a steady-state off-shooting
soliton with increasing intensity (thick solid line). Then at u0 = 2.8 a soliton pair
appears at lower intensity (thin solid line) and moving at a velocity | ν |= 1.88.
When further increasing the optical intensity u0, additional steady-state solitons
and moving soliton pairs appear and eventually die out.
To summarize the dynamics observed for a single strong self-focusing Airy beam
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in a Kerr medium, the off-shooting soliton structure presents large and complex
dynamics. As depicted on Figure 2.7(d), when decreasing the size of the Airy
lobes (xA, here called ω0), the dynamics observed are similar however shifted
along the u0-axis and with less moving soliton pairs.

Figure 2.7: (a)-(b) Intensity distribution of an Airy beam propagating in a Kerr medium
under (a) weak (u0 = 1) and (b) strong (u0 = 4) nonlinear self-focusing
conditions. The thick dashed line is a trajectory x = z2/4 of the truncated
Airy beam in a linear medium [17]. (c)-(d) Dependence of the amplitude
(solid lines) and velocity (dashed lines) of solitons, emerging from an initial
truncated Airy beam, on the amplitude u0 for (a) w0 = 10 and (b) w0 = 5.4.
Thick (thin) solid lines correspond to amplitudes of static (moving) solitons.
Extracted from Ref. [107].

For both photorefractive and Kerr nonlinearity, the outcome of the dynam-
ics depends on the equilibrium between linear and nonlinear effects, as well as
on the power distribution between the different lobes of the Airy beam. As for
Gaussian solitons, the solitonic dynamics of Airy beams can be scaled using two
beam parameters: the beam’s waist and the optical power.
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So far the study of Gaussian solitons in photorefractive crystals has shown
that, contrary to Kerr media, 2D stable spatial solitons do exist and have been
experimentally observed [67]. In the Airy beam case, when it undergoes a pho-
torefractive nonlinearity, its off-shooting soliton propagates along a single direc-
tion, tangential to the initial input Airy beam (here along the z-axis) [93]. In the
following section we will present and study the first experimental Airy-solitons,
in particular in a photorefractive medium.

While we were not able to observe a steady-state solitonic regime (to be de-
tailed in Chapter 3), we study in this chapter the behavior of the self-focusing
Airy beam at the solitonic peak (highest intensity peak with strongest shift to-
ward the theoretical soliton’s position).
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2.2 experimental study

2.2.1 Experimental setup

To observe the outcome of an optical Airy beam after propagating in a focus-
ing nonlinear medium, we use an experimental setup, where we inject a one-
dimensional Airy beam in a photorefractive crystal. As depicted on Figure 2.8,
the Airy beam is generated using a phase only spatial light modulator (PLUTO
Holoeye) in the visible wavelength range (λ = 532 nm) and the Fourier trans-
formation is induced by the lens LTF. The input face of the SBN-photorefractive
crystal (dimensions 5mm*5mm*1cm and nSBN = 2.3) is placed at the focal dis-
tance of the lens therefore the Airy propagation starts at the entrance of the
crystal at z = 0. The Airy generation method as well as the experimental setup
are detailed in Appendix A.

Figure 2.8: Experimental observation of the self-focusing 1D-Airy beam propagating in
a biased photorefractive crystal: zoom on the Airy beam’s propagation inside
the photorefractive crystal.

Along the c-axis of the crystal, we apply an external bias electric field to ex-
cite the focusing photorefractive nonlinearity (Ee ∈ [0, 4] kV/cm). To study the
focusing effect on the Airy properties, we orientate the Airy distribution in the
c-direction, parallel to the x-axis. The beam propagates along the z-axis, from
z = 0 to z = L (where L is the crystal length) and its optical field ψ(x) is defined
the following initial conditions:
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ψ(x)z=0,t=0 = Ai

(
x+ xd
xA

)
exp

(
a
x+ xd
xA

)
, (2.1)

where xA is the main lobe’s waist, a the truncation parameter and xd the lin-
ear transverse deflection of the Airy beam. As for the solitonic Gaussian regime,
we set the characteristic transverse beam dimension around xA = 10 µm. The
ideal Airy profile is truncated with the aperture parameter a ≈ 0.05 and we set
the transverse origin x = 0 at the linear output position of the Airy beam. The
linear output Airy beam, in particular the main lobe, therefore sets the reference
for the transverse shift along x and for the intensity peak as the output profiles
are normalized with the linear main lobe.

Figure 2.9: Observation of the SLM-generated Airy beam at the input side of the crystal
with a CCD camera (20-times magnitude). Intensity distribution and profile
of (a) the largest generated Airy beam (xA = 14 µm) and of (b) the smallest
generated Airy beam (xA = 9.5 µm) using the experimental setup of Fig. 2.8.

To study the impact of the Airy properties on the solitonic regime, we optimize
our Airy shape quality by maximizing the size of the modulated Gaussian beam
on the SLM (active area: 15.36 mm ∗ 8.64 mm). To that aim the initial laser beam
is expanded to a waist of wSLM = 3.2 mm. Then the Fourier Transform lens is
set at fTF = 7.4 cm to reach the "xA = 10 µm"-range. As depicted on Figure 2.9,
the Airy beam presents over ten lobes, guaranteeing a good approximation of
the ideal Airy propagation.
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Under linear conditions, the beam propagates along the z-axis of the crystal
with a transverse parabolic acceleration along the c-axis (parallel to the x-axis)
[Fig. 2.8]. In our experiment we set x = 0 as the transverse output position of
the linear Airy beam. The parabolic acceleration of the beam along the x-axis,
described by the linear main lobe, mathematically follows the equation:

xpeak(z < L) = −
(L− z)2

4k2x3A
, (2.2)

where k = 2πn/λ is the wave vector. All along the study, the main lobe of the
linear output Airy beam exits the crystal at x = 0. As the deflection xd varies
with the beam’s size xA, the input position of the Airy beam at z = 0 changes. For
example in a 1cm-crystal length and with xA = 14 µm, the Airy main lobe has ini-
tially been launched at −xpeak(z = 0) = 12.4 µm. As indicated in Eq. 2.2, decreas-
ing the beam’s size via the lobe’s waist xA leads to a larger deflection, e.g. for
xA = 10 µm the beam’s deflection equals to xd(z = L) = −xpeak(z = 0) = 34 µm.

Figure 2.10 depicts for two different optical powers the output Airy beam af-
ter propagating in a 1 cm-long crystal first under linear conditions [Figs. 2.10(a),
2.10(d)], then with a positive focusing nonlinearity (Ee = 4 kV/cm) 10 s after
the bias voltage has been switched on [Figs. 2.10(b), 2.10(e)]. As presented in
Ref. [99], the nonlinear output beam presents an Airy-like intensity profile, simi-
lar to the linear output Airy beam, but with narrower and higher peaks showing
the weak self-focusing effect [Figs. 2.10(c), 2.10(f)]. The self-focusing behavior
appears for a large range of optical power (here PA ∈ [1; 4.3] µW). While the op-
tical power increases the nonlinearity of the medium, the lobe tightening effect
is however stronger for a lower input power [Figs. 2.10(c), 2.10(f)]. On the first
sight, this result may surprise, but it can be explained by the transient spatiotem-
poral dynamics of our system. This question will be answered later in Chapter 3.

2.2.2 Observation of Airy-solitons

Theoretically an Airy beam undergoes a solitonic behavior when under strong
self-focusing conditions [93, 96, 104]. So far the experimental research has demon-
strated shape-preserving weak self-focusing behavior (i.e. tightening of the Airy
lobes), when a weak external bias electric field is applied. This effect is observed
in the steady-state regime for a weak focusing nonlinearity or for a larger Airy
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Figure 2.10: Experimental observation of a steady-state Airy beam after self-focusing
for two different powers [Fig. 2.8] after 10 s: (a)-(c) PA = 1 µW, (d)-(f) PA =

43 µW. Output intensity distribution of the Airy beam at z = L (xA = 14 µm)
(a),(d) after a linear propagation, (b),(e) after biased nonlinear propagation
(Ee = 4 kV/cm). (c),(f) Intensity profiles of the linear and focused output
beams.

beam. But what happens above this limit ? While the previous Figure 2.10 shows
an Airy beam with a high voltage (Ee = 4 kV/cm), it is worth noting that
the measure has been taken far after the biased voltage has been switched on
(t = 10 s). As we will present in the next Chapter 3, the Airy beam first turns into
an off-shooting soliton under high-focusing conditions (Ee > 2 kV/cm) before
relaxing into a steady-state Airy-like beam with tightened lobes or even, when
further increasing the self-focusing strength, with defocused lobes. In Chapter 3

we will also discuss the decrease of stability of the self-focused solitonic regime
when increasing the nonlinear focusing strength. As the aim of this Chapter 2

is to enhance the solitonic self-focusing effect, the study of the Airy-soliton here
will be concentrated on a transient state of the self-focusing Airy beam.
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Therefore, the experimental Airy-solitons observed in this chapter are extracted
during the transient self-focusing of the beam. The complete dynamics of the
solitonic self-focusing of the Airy beam will be detailed in Chapter 3. In this
chapter we will now study the peak solution of the transient off-shooting soli-
ton.

Propagation over a short distance

In this paragraph, we study the case of an Airy beam propagating in a 1cm-
crystal (L = 1 cm) under an external focusing bias field and Figure 2.11 depicts
the soliton off-shooting from the initial Airy beam. On Figures 2.11(b), 2.11(c)
we see that a high peak appears between the first and second lobe of the linear
output Airy profile, which differs from the self-focusing multi-lobe structure of
Figure 2.10.

Because the propagation of the Airy-soliton is theoretically predicted tangen-
tial to the initial propagation direction, its output position is expected to be
shifted of exactly the transverse deflection between the input and linear out-
put Airy beam. On Figure 2.11 we study two Airy beam sizes: xA = 14 µm
[Figs. 2.11(a)-2.11(c)] and xA = 9.5 µm [Figs. 2.11(d)-2.11(f)].
While the optical powers PA and the bias electric fields Ee are also different
in both cases, we concentrate our analysis on the beam’s size variation xA. In-
deed in the small Airy beam case, xA = 9.5 µm [Figs. 2.11(d)-2.11(f)], the volt-
age has been decreased to observe an off-shooting soliton (green arrow on Fig-
ures 2.11(d)-2.11(f)). Otherwise the transient dynamics are too fast to capture the
Airy-soliton on the CCD-camera. As a consequence the optical power has been
adjusted to optimize the solitonic self-focusing and the maximum solitonic peak
is already reached for Ee = 3 kV/cm.

As the acceleration rate of the Airy trajectory depends on the xA-parameter
[Eq. 2.2], both Airy beams have different transverse deflection distances [Figs. 2.11(a),
2.11(d)] and their off-shooting solitons are respectively expected at xsol,14µm =

−12.4 µm = −0.8xA and xsol,9.5 µm = −39.7 µm = −4.2xA. If we compare the
theoretical expected and experimental peak positions of the Airy beam in both
cases [Figs. 2.11(b), 2.11(e)], they match exactly and the peaks can therefore be
identified as their respective off-shooting solitons.
The intensity peaks of the off-shooting solitons are almost three times higher
than the linear main lobe’s intensity at z = L as they concentrate the energy of
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Figure 2.11: Experimental soliton off-shooting from a self-focusing Airy beam for de-
creasing beam’s waist [Fig. 2.8]: (a)-(c) xA = 14 µm, PA = 7 µW (d)-(f)
xA = 9.5 µm, PA = 43 µW. Intensity distribution of the Airy beam at
z = L (a),(d) after a linear propagation, (b),(e) during high-focused propaga-
tion and (c),(f) transverse intensity profile of the linear and solitonic output
beams.

several lobe orders. However, the small Airy beam case, xA = 9.5 µm, presents
a secondary beam in the solitonic regime [Figs. 2.11(e), 2.11(f)]. This secondary
lobe is observed at x/xA = −1.5, between the linear main lobe x/xA = 0 of the
accelerating beam and the not accelerating off-shooting soliton x/xA = −4.2. As
a consequence this secondary beam also presents a transverse acceleration along
the crystal and can be identified as the theoretically predicted accelerating beam
co-existing with the off-shooting soliton [93].

As for Gaussian solitons, we study now the impact of the nonlinearity through
different parameters on the self-focusing of the Airy-soliton for a fixed beam’s
size (via xA). Figure 2.12 depicts the transverse intensity profiles of the self-
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Figure 2.12: Influence of the electro-optical nonlinearity on the Airy-soliton at the out-
put of the crystal [Fig. 2.8]. Transverse intensity profile of the off-shooting
soliton (a) for increasing optical input power (with xA = 14 µm and Ee =

4 kV/cm) and (b) for increasing bias electric field Ee (with xA = 9.5 µm and
PA = 7 µW). The linear output profile is represented in black.

focused beam, first for increasing optical power [Fig. 2.12(a)], then for increasing
bias electric field [Fig. 2.12(b)]. The solitonic self-focusing of the beam is induced
by the photorefractive effect, which can be mainly tuned via these two param-
eters (see Section 1.2). Similar to Gaussian physics, the influence of the optical
power and of the bias electric field qualitatively play symmetrical roles: they
both enhance the formation of a high peak soliton at the zero-deflection-position
of the Airy beam.
When increasing the optical power PA [Fig. 2.12(a)] (Ee = 4 kV/cm fixed), the
Airy beam splits into a strong solitonic beam around the zero-deflection position
x = −0.8xA and an accelerating beam at x = 0.7xA. The solitonic structure in-
creases from 1.5-times (PA = 0.9 µW) to 3.2-times (PA = 4.3 µW) the intensity of
the linear main lobe (gray curve on Fig. 2.12(a)) with a strong tightening up to
a waist equal to 0.5xA. The accelerating beam then nearly disappears during the
solitonic peak when PA > 4.3 µW (hidden on this Figure), but only for a short
transient time (≈ 100 ms) as shown in the next chapter.
On Figure we consider an Airy beam of xA = 9.5 µm, with a fixed optical power
PA = 7 µW and increasing bias electric field Ee. For a qualitatively low electric
field Ee = 1 kV/cm, the self-focusing peak of the Airy does not present any
solitonic beam, but we observe a large energy concentration around the zero-
deflection position x = −4.2xA. By increasing Ee, the wide beam shape around
x = −4.2xA starts increasing in intensity and tightens towards a solitonic beam
with up to 2.5-times the initial main lobe and a waist similar to xA. Besides the
solitonic beam, the remaining accelerating structure is observed near x = −xA
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even for increasing electric field. This result can be explained by the larger dis-
tance between the off-shooting soliton and the accelerating structure.
It is worth noting that we have used two different sizes of Airy beams to analyze
the influence of the optical power and the bias electric field on the self-focusing
effect. While a small Airy beam, such as xA = 9.5 µm in Fig. 2.12(b), has the
advantage to off-shoot a soliton far shifted from the linear main lobe which fa-
cilitates its identification, the higher truncation leads to stronger diffraction and
prevents us from well detecting the off-shooting soliton for low power PA. As a
consequence we used a larger Airy beam to study the role of the optical power
PA [Fig. 2.12(a)].

However, in both cases we observe a saturation of the self-focusing effect when
further increasing the optical power (same solitonic peak for PA = 4.3 µW and
PA = 40 µW, Fig. 2.12(a)) or the external electric field Ee (Ee = 3 kV/cm and
Ee = 4 kV/cm, Fig. 2.12(b)).

This result shows us that the solitonic propagation of Airy beams can be tuned
via external system’s parameters. But as Figure 2.11(e)-(f) has already indicated,
the beam’s size and therefore the propagation distance can lead to the formation
of a high peak far away from the linear output position. In our 1cm-crystal
this scenario requires the use of very small Airy beams (xA < 10 µm). But if
we want to keep the same deflection shift between the input and the output of
our nonlinear medium, the Airy beam’s properties can offer an other equivalent
option [Eq. 2.2]:

• propagating a small Airy beam in a short crystal,

• propagating a larger Airy beam in a long crystal.

As an example a propagation in a (1 cm)-long crystal for an Airy beam with
xA = 7.5 µm equals to 3.5-times the diffraction length (Ld = 2kxA

2), whereas
the equivalent L/Ld-ratio in a (2 cm)-long crystal is obtained for an Airy beam
beam with xA = 11 µm. It is interesting to question now whether both options
lead to the same solitonic behavior.

Propagation over a long distance

To compare the effects of increasing the propagation length regarding the Airy
beam’s size, we now inject an Airy beam with xA = 11 µm inside a SBN-crystal
with a doubled length: L = 2 cm. Following the equation of the parabolic trajec-
tory [Eq.2.2], the doubling of the propagation distance of the Airy beam leads
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to the increase of four times of the transverse acceleration reached in a crystal of
1 cm: xsol,11 µm,2 cm = −103 µm = −9.3xA.

Similar to the previous section, we observe the output beam under biased
focusing conditions and the results are presented on Figure 2.13. As depicted
on Figures 2.13(a), 2.13(b) the Airy beam also undergoes self-focusing and off-
shoots a soliton at xsol,11 µm,2 cm ≈ −9.5xA, matching with the theoretical out-
put position. If we compare the soliton beam in a short and long crystal, the
solitonic intensity peak increases with the crystal length (300 % for L = 1 cm
[Fig. 2.12] to 1000 % for L = 2cm [Fig. 2.13(c)]). This observation leads us to the
conclusion that the propagation length increases the self-focusing effect on the
Airy beam.
But the most striking result is the low bias voltage enabling the formation of an
Airy-soliton: in the 2cm-crystal we already observe the solitonic peak at a voltage
value ten times lower than in the 1cm-crystal. This phenomenon is due to the
higher sensitivity to the self-focusing effect induced by the bias external voltage
as the propagating beam undergoes stronger diffraction due to the longer crys-
tal length L. The propagation length offers an interesting parameter to optimize
the solitonic behavior as it enables to create an off-shooting soliton over a much
larger transverse distance from the linear output position.

Figure 2.13: Influence of the nonlinear propagation length on the Airy-soliton at the out-
put of the 2cm-crystal (with xA = 11 µm and PA = 50 µW). Optical intensity
distribution of the superimposed off-shooting soliton and accelerating beam
(a) for Ee = 200 V/cm and (b) for Ee = 4 kV/cm. (c) Transverse intensity
profile of the output Airy-soliton for increasing bias electric field Ee.

Finally we here report on the first experimental Airy-soliton observed during
the self-focusing process of an Airy beam under biased nonlinear conditions.
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The solitonic structure confirms the theoretical prediction, where an Airy beam
turns into an off-shooting soliton and an accelerating structure. By tuning the
nonlinearity parameters (optical power and electric bias voltage) or the diffrac-
tion parameters (beam’s size and propagation length), the self-focusing into the
Airy-soliton can be enhanced and reach high intense beams shifted over several
lobe’s sizes along the transverse axis. This solution differs from a self-trapping
Airy beam structure, as the solitonic structure does not preserve the Airy shape
and is, so far, only observed during the transient self-focusing regime.
While the existence of the Airy-soliton has been predicted in literature, the influ-
ence of the system’s parameters has not been explored. In the next section we
introduce a numerical model to analyze the self-focusing of an Airy beam in a
biased photorefractive crystal.
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2.3 comparison with the theory

In this section, we analyze numerically optical waveguide structures created in
photorefractive media by one Airy beam under nonlinear self-focusing condi-
tions. When a positive external electric field is applied to the photorefractive
crystal, we show that multiple waveguiding structures are photoinduced by a
single Airy beam. In that way, an optical Gaussian beam can be linearly guided
along a deflecting trajectory or split into several output beams.

2.3.1 Simulation model

Our typical interaction scheme is depicted on Figure 2.8. It illustrates the linear
propagation of an Airy beam in an unbiased photorefractive crystal. To simulate
the propagation of the Airy beam along the crystal we consider the normalized
numerical model suggested by Belić et al. [138], where an optical beam F(x, t)
propagates following the nonlinear paraxial wave equation in a photorefractive
crystal can be modelled using the following equations:

i∂zF+ ∂
2
xF = ΓE0F, (2.3)

F(x, z = 0) = F0Ai
(
x

xA

)
exp

(
a
x

xA

)
, (2.4)

Γ = (knxA)
2 reffEe, (2.5)

(2.6)

where Γ is the nonlinear photorefractive coupling strength, reff is the effective
component of the electro-optic tensor, Ee the external electric field and E0 =

Esc/Ee is the homogeneous part of the x-component of the photorefractive space
charge field. As the optical intensity modulates the space charge field, the steady-
state E0 is equal to E0 = −I0/(1+ I0). The time-dependency of the space charge
field E0 is calculated from :

τ∂tE0 + E0 = − | F |2 /
(
1+ | F |2

)
, (2.7)

where τ = τ0/(1+ I0) is the relaxation time of the crystal, with τ0 the charac-
teristic response time of the crystal (≈ 100 ms in the SBN). The numerical system
is completely dimension-free, in particular the propagation z-axis is normalized
to the diffraction length Ld = 2kxA

2 and the transverse x-axis is normalized to
the beam’s waist being the lobe’s waist xA in the case of the Airy beam.
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This kind of nonlinear propagation of non conventional beam enables us to
optically induce complex waveguiding structures in the photorefractive mate-
rial through the Pockels effect. The induced refractive index distribution is then
related to the combination of the accelerating Airy beam and its off-shooting
soliton superimposed in F [Eqs. 2.3,2.5,2.7].

The induced refractive index profile is numerically simulated via a Fast Fourier
Transform Beam Propagation Method. We fix the crystal length L = 1 cm, Γ = 9,
a = 0.09, xA = 7.5 µm, the normalized input electric field of a beam F0 =

√
2.5.

The simulation algorithm is detailed in Appendix C.

In this paragraph we consider optical waveguides created by a single Airy
beam F propagating from z = 0 to z = L (z = 0→ L) with a focusing nonlinearity.
Figure 2.14 displays the intensity of the self-focused Airy beam. This results con-
cern the stationary state that is reached after a transient duration equal to 6τ. At
z = 0, we indicate only 2 positions of high index variations corresponding to the
two first lobe orders of the input Airy function (1,2 in Figure 2.14). Interestingly
and similar to the references [93, 96], the initial Airy beam with its curved trajec-
tory turns into an "off-shooting" soliton as it propagates along the z-axis (1 ′ at
z = L in Figure 2.14). To better understand the roles of the system’s parameters,
we will analyze in the next section the soliton structure of an Airy beam at the
output of a biased medium.

Figure 2.14: (a) Normalized intensity distribution of a self-focused Airy beam propagat-
ing in a focusing photorefractive crystal with xA = 10 µm and L = 1 cm, (b)
corresponding transverse intensity profiles.
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2.3.2 Theoretical solitonic self-focusing

The experimental study in Section 2.2 has shown that the solitonic self-focusing
strength of the Airy beam can be mainly tuned via two parameters: the external
bias electric field Ee and the optical power of the propagating beam PA. In our
theoretical model these parameters are related to Γ and F0 and Figure 2.15 illus-
trates the outcome of the study.

Under linear conditions Γ = 0, the Airy beam propagates along the crystal
without self-focusing [Fig. 2.15(a)]. At the output of the crystal, z = L, the accel-
erating beam (black solid line in Figures 2.15(e) and 2.15(f)) has shifted of 34 µm
and the peak intensity is at 60 % of the initial maximum value. When adding
an external bias electric field, the nonlinearity strength Γ increases and leads to
a self-focusing of the Airy beam along the transverse x-axis of the crystal. As
depicted on Figures 2.15(b) to 2.15(d), the optical field shifts towards the higher
lobe orders to focus into a strong solitonic beam at the zero-deflection position
x/xA = −3.4 for Γ > 10.
The positive influence of Γ on the solitonic self-focusing effect is highlighted
on Figure 2.15(e), where the transverse intensity profile of the output beam at
tf = 6τ is plotted for increasing Γ -values. In comparison with the experimen-
tal observations presented previously on Figure 2.12(b), the theory presents the
same results. The solitonic peak is enhanced by the external electric field (pro-
portional to the Γ -parameter) up to 160 % of the input peak and 260 % of the
linear output peak. Interestingly this maximum ratio at Γ = 15 exactly matches
the experimental value for Ee = 3 kV/cm.
Secondly Figure 2.15(f) depicts the evolution of the off-shooting soliton for an in-
creasing electric field F0 for Γ = 10. As for the experimental results [Fig. 2.12(a)],
the optical power increases the nonlinearity of the photorefractive system hence
the self-focusing strength. Similar to the peak range reached for high Γ -values,
we can confirm that the optical power plays a similar role in the nonlinear pho-
torefractive self-focusing effect as the bias electric field.
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Figure 2.15: Propagation of a self-focused Airy beam propagating in a photorefractive
crystal, with xA = 10 µm, L = 1 cm and tf = 6τ. Intensity distribution along
the crystal with FA =

√
5 under (a) linear and (b)-(d) nonlinear condition

with an increasing bias electric field (Γ = (knxA)
2reffEe). Transverse inten-

sity profiles of the off-shooting soliton at the output of the crystal, z = L

and tf = 6τ, for (e) increasing electric field and (f) increasing optical power.
The input Airy profile at z = 0 is plotted by a dashed line.



2.4 conclusion and comparison with gaussian systems 63

2.4 conclusion and comparison with gaussian systems

To conclude, we have experimentally demonstrated the existence of solitonic
beam structures induced by an Airy beam under strong nonlinear self-focusing
conditions. These results match the theoretical predictions in the literature: the
Airy beam splits into a weak accelerating structure and an off-shooting soliton
propagating along the crystal without transverse acceleration.
While the experimental Airy-soliton is only transient contrary to our theoretical
results, this chapter enables to further deepen the analysis of the self-focusing
nonlinearity on an accelerating Airy beam. In particular the outcomes enlighten
the complementary roles of the optical field of the propagating Airy beam and
the external bias electric field. Both parameters enhance the self-focusing of the
Airy beam into mainly a strong and narrow soliton. If we consider the applica-
tion in all-optical waveguiding, these results suggest the study of the waveguid-
ing properties of the photoinduced in the photorefractive crystal. This question
will be answered later in Chapter 4.

Figure 2.16: (a) Normalized intensity distribution of a self-trapped Airy beam propa-
gating in a focusing photorefractive crystal at t = 30 s, with xA = 14 µm,
Ee = 4 kV/cm and L = 1 cm, (b) detailed evolution of the normalized
maximum peak value of the self-focused Airy beam for increasing optical
power.

Nevertheless the stability of the solitonic self-focusing appears to be power-
dependent. In particular if we focus on the output beam 30 s after the elec-
tric field has been switched on, the beam does not remain in a self-focused
regime for higher power. While Figure 2.12(a) indicates a continuous increase
of the solitonic peak for PA ∈ [0.9W; 4.3] µW, when further increasing the op-
tical power, the steady-state intensity distribution of the nonlinear Airy beam
evolves towards an Airy-like defocused energy profile as depicted on Figure
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2.16(a). The increase of the defocusing effect with optical power depicted on
Figure 2.16(b) seems to be in contradiction with the aforementioned results, as
the optical power increases the self-focusing nonlinearity. But as we will detail in
the next chapter, the study of the transient self-focusing of the Airy beam reveals
several mechanisms as in Gaussian soliton physics.

Figure 2.17: (a) Time evolution of the normalized soliton profile issued from a Gaussian
beam. (b) Time evolution of the normalized soliton waist for the same con-
ditions as in (a). (c) Evolution of the output beam’s waist in the transient
(solid line) and in the final steady-state (dashed line) regime for increasing
optical power. (a) and (b) extracted from [108] and (c) extracted from [109].

When a Gaussian beam propagates under a strong self-focusing nonlinear
effect above a threshold value, the output beam first presents a solitonic self-
focused behavior but then relaxes towards a defocused regime as depicted on
Figures 2.17(a) and 2.17(b) [108]. More generally the study of the self-focusing of
a Gaussian beam has been extensively studied. In particular it has been shown
that the solitonic beam can reach the steady-state regime when a background
illumination is applied along the crystal [110–114]. Figure 2.17 depicts the evolu-
tion of the maximum self-focusing of the Gaussian beam (i.e. the minimal waist)
in the transient regime (dashed line) and the final steady-state regime (solid
line) for increasing intensity ratio IG/Id. First the self-focusing effect is enhanced
by IG/Id until reaching a minimum beam size. Because the transient and final
regimes are superimposed, the solitonic structure is stabilized in the medium.
But for IG/Id > 3, the final beam waist starts increasing even further than the
initial size, while the transient self-focusing value remains at the minimum. The
nonlinear system then has reached the saturation limit for the self-focusing ef-
fect, which is not steady-state anymore. In absence of background illumination,
the system therefore can not present steady-state Gaussian solitons.
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While the aim of this chapter was to observe and analyze solitonic structures
from initial Airy beams, the results do not represent the steady-state regime, but
transient instants of the self-focusing Airy beam. These observations lead us to
consider the temporal evolution of the Airy beam under self-focusing conditions
in the next chapter. We will show that a too high nonlinearity can lead to first
over-focusing of the Airy-soliton then relaxing into a defocused regime.





3
T R A N S I E N T P R O P E RT I E S O F A S E L F - F O C U S I N G A I RY
B E A M A N D I T S A N A L O G Y W I T H O P T I C A L
G R AV I TAT I O N A L L E N S I N G

We unveil experimentally the transient self-focusing properties of a 1D-Airy
beam in a photorefractive crystal under focusing conditions. The transient evo-
lution involves both self-bending and acceleration of the initially launched Airy
beam. This is due to the onset of an off-shooting soliton and the resulting non-
local refractive index perturbation, which acts as a gravitational potential in an
accelerating framework. The gravitational lensing and tidal forces resulting from
a single light beam can be controlled all-optically through the photorefractive
nonlinearity by varying the Airy beam’s intensity.

The context of this chapter is related to the following publication:
Noémi Wiersma, Nicolas Marsal, Marc Sciamanna, Delphine Wolfersberger, "Op-
tical gravitational lensing in the transient self-focusing of an Airy beam", submit-
ted for publication, 2016).
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3.1 gravitational effects and its analogies in physics

3.1.1 Phenomenon

How wave propagation is modified in the presence of a gravitational field re-
mains one of the central questions of modern physics. Most probably the most
satisfactory answer was given by Einstein’s general relativity theory [115], the
foundation of which being the principle that acceleration and gravitational field
are equivalent. The significance of the general relativity theory was confirmed
shortly afterwards by the observation of light gravitational lensing [116], i.e. light
bending induced by the long-range interaction with matter, and most recently
drew cheers with the observation of gravitational waves [117].

Figure 3.1: Gravitational lensing in space. (a) Negative of the solar eclipse of May 29,
1919 on the Island of Principe. The star shifts are magnified to better visu-
alize the lensing effect. Source: light2015blog.org. (b) Schematic bending of
light induced by the gravitational lensing effect when approaching a massive
object. The orange arrow illustrates the magnified shift between the real and
observed position of the star (similar to Fig 3.1(a)).

Figure 3.1(a) presents the total solar eclipse of May 29th 1919 observed by
the English scientific Sir Arthur Eddington on the Island of Principe near the
African west coast. During the eclipse, he took pictures of the stars near the sun,
which are marked by horizontal lines on Figure 3.1(a). Afterwards he compared
the positions of these stars during the eclipse and the night (in absence of sun).
As depicted on Figure 3.1(a) the stars appeared shifted away from the sun with
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an angle up to 1.75 arc seconds during the eclipse. This optical shift effect of
light around massive object is due to the gravitational lensing effect theoretically
predicted by Albert Einstein in 1916.
To picture the phenomenon binding acceleration of light to gravitation in space-
time, the universe should be imagined empty as a flat sheet in spacetime, where
light propagates along straight lines. The presence of massive objects, such as
stars or planets as on Figure 3.1(b), induces a distortion in the spacetime ”sheet”.
As depicted on the schematic illustration of Figure 3.1(b), when light approaches
a massive object its trajectory will be deviated. The consequence of star light
bending is that stars normally seen at one position in the ”empty” sky, will ap-
pear shifted at an other position, when the sun is in front of them.

The questions surrounding the necessity for a quantum description of gravita-
tion have recently motivated the study of an alternative, non relativistic approach
with the so-called Schrödinger-Newton equation [118]. The suggested model is
a nonlinear modification of the Schrödinger equation with a Newtonian gravita-
tional potential where the gravitational potential Φ emerges from the treatment
of the wave function ψ as a mass density:

i h
∂ψ

∂t
= −

 h2

2m
∆ψ+mΦψ, (3.1)

where ∆Φ = 4πGm|ψ2|. G is the gravitational constant and m is the particle’s
mass. Inserting a potential that depends on the expectation value of the wave-
function makes the Schrödinger equation non-linear and changes its properties.
The gravitational interaction is always attractive and thus tends to contract mat-
ter distributions eventually counter-balancing the wave function spreading from
the linear Schrödinger equation.

Although Equation 3.1 has been developed in the context of quantum grav-
itation, Equation 3.1 is a specific form of the nonlinear Schrödinger equation,
which is familiar to us in many fields of science. It is used in hydrodynamics to
model the dynamics of envelope of modulated water waves and is thought to
explain the emergence of rogue waves [119]. In optics, the nonlinear Schrödinger
equation has been first introduced for the nonlinear propagation model in opti-
cal fiber (see Section 1.3.3, [64]), where a particular solution are one-dimensional
optical soliton pulses. The mathematical analogy between quantum gravitation
and nonlinear optics has raised much interest in physics and in particular encour-



70 transient self-focusing airy beam - optical gravitational lensing ?

aged the development of optical experimental systems to study the gravitational
physics.

3.1.2 Observations in optics

In optics, the Schrödinger-Newton equation suggests that a nonlocal refractive
index perturbation acts as a gravitational potential that perturbs wave propaga-
tion in an accelerating or gravitational framework, hence allowing for laboratory
investigations of analogous gravitational effects.

In that context, it is remarkable to develop laboratory-scale experiments in
which analogous gravitational effects can be observed and related physics be
tested more systematically. Thanks to the most recent developments in material
engineering, nonlinear optics and light shaping, optics has offered numerous
analogies with gravitational effects [120–123]. The fundamental principle is that
waves in moving media behave like waves in gravitational fields (i.e. in curved
spacetime geometry). For example in reference [120] Leonhardt et al. demon-
strate an event horizon analogous to the one experienced when approaching a
black hole using intense light pulses propagating in optical fiber. Another optical
system has been suggested in reference [121] based on ultrashort intensity fila-
ments propagating in bulk medium. The propagating light pulse then interacts
linearly with a refractive index grating induced by Kerr optical nonlinearity that
operates like a moving medium travelling faster than light, hence preventing
light pulses to propagate backwards.

Other optical experiments showing gravitational effects include light bending
and trapping in specifically designed metamaterials that mimic curved space-
time geometries [124, 125] and gravitational pull of accelerating solitons in opti-
cal fiber supercontinuum generation [126]. As an example, reference [125] sug-
gests a direct investigation of light trapping around a microsphere to mimic the
gravitational lensing effect in a curved spacetime as depicted on Figure 3.2. As
the microsphere is embedded into the planar grated polymer waveguide, sur-
face tension effects induce a distortion of the waveguide around it. Hence, light
propagation will undergo lensing and be eventually captured in unstable circu-
lar orbits.
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Figure 3.2: Analogue of light deflection in a gravitational field and microstructured op-
tical waveguide. (a) Scheme of light bending due to the gravitational field
induced by a massive stellar object. (b) Schematic view of the microstruc-
tured optical waveguide formed around a microsphere. In the experimental
set-up, a grating is drilled across a silver layer, which is then used to couple
the incident laser light (red arrows) into the waveguide. Extracted from [125].

Very recently, the long-range interactions inherent to gravitational lensing
were analyzed in the nonlinear interaction between an accelerating (Airy) beam
and a spatial soliton created by self-focusing of a Gaussian beam through ther-
mal nonlinearity [Fig. 3.3(a)] [123]. As introduced in Section D.2, an optical Airy
beam consists of a main lobe and a tail of smaller lobes that provide accelera-
tion to the main lobe, hence the parabolic trajectory in the spatial domain. As
depicted on Figure 3.3(b), the nonlocal refractive index change related to the
self-focused intense soliton acts like a mass whose gravitational field deviates
the incoming accelerating light beam. As a result the physics mimics the predic-
tions of the so-called Schrödinger-Newton equation.
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Figure 3.3: Optical analogy with gravitational lensing between a powerful soliton beam
(’star’) and a 2D accelerating Airy beam in a nonlinear Kerr medium. (a)
Numerical intensity distribution at the input plane of the medium (blue) and
experimental intensity distribution at the output plane (red). (b) Schematic
top-view sketch of the accelerating Airy beam interacting with the soliton-
”star” in the linear (blue curve) and the nonlinear (green curve) regimes.
Extracted from Ref. [123].
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3.2 experimental transient self-focusing of an airy beam

In this chapter we study the transient self-focusing properties of an Airy beam
in a photorefractive medium. We report on the first theoretical and experimental
analysis of the Airy beam after a nonlinear propagation through a biased crys-
tal. In particular we focus on the transient evolution from the linear accelerating
beam towards the self-focused solitonic regime and analyze the influence of the
nonlinear strength (optical power) on the spatiotemporal dynamics and the self-
focusing strength.
Recent work has shown that propagation in a nonlinear medium (thermal non-
local nonlinearity) results in a non local refractive index change that acts as a
gravitational potential hence altering the Airy beam propagation in a similar
way as what can be concluded from general relativity theory. In particular the
refractive index changes plays the role of a massive object that, following general
relativity theory, induces gravitational lensing and tidal forces on light rays as
a result of the space-time curvature. In that context it is interesting to analyze
to which extent the above mentioned findings share indeed a similar analogy in
optics with gravitational effects.

3.2.1 Experimental setup

As already detailed in the previous Chapter 2, we consider the propagation a
one-dimensional Airy beam into a biased photorefractive SBN-crystal with di-
mensions 5 mm*5 mm*1 cm (nSBN = 2.3) as depicted on Fig. 3.4. The field
distribution of a one-dimensional Airy beam ψ is defined by the initial condi-
tion:

ψ(x)z=0,t=0 = Ai

(
x+ xA
xA

)
exp

(
a
x+ xA
xA

)
, (3.2)

where xA = 10 µm is the main lobe’s waist and a = 0.04 the truncation pa-
rameter of the Airy beam. Under linear conditions, the beam propagates along
the z-axis of the crystal with a transverse parabolic acceleration along the c-axis
(parallel to the x-axis) of the photorefractive crystal. In our experiment we set
x = 0 as the transverse output position of the linear Airy beam. The transverse
parabolic acceleration is mathematically described by the equation 2.2. As shown
above, the Airy main lobe has initially been launched at −xpeak(z = 0) = 34 µm
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[Fig. 3.4]. At the end of previous Chapter 2 we have observed a defocusing be-
havior of the Airy beam under focusing bias electric field [Fig. 2.16]. To study
and enhance the stability of the self-focusing effect of the Airy beam, we will
therefore also consider an additional background illumination Id (as for ”dark
intensity”) along the (x,z)-plane as illustrated on Figure 3.4.

Figure 3.4: Observation of the self-focusing 1D-Airy beam propagating in a biased pho-
torefractive crystal: experimental setup.

3.2.2 Transient dynamics of the Airy-soliton

When an external bias electric field Ee is applied along the x-axis at t = 0 s,
the optical Airy beam photoinduces a refractive index variation in the crystal
through the Pockels effect. The photorefractive effect in the SBN-crystal induces
both a focusing and a shift of the optical energy along the transverse c-axis
thanks to mainly two contributions: the drift effect induced by the bias elec-
tric field and the diffusion effect [108]. To optimize the nonlinear photorefrac-
tive and solitonic effects of our system, the external bias electric field is set to
Ee = 4 kV/cm.

Figures 3.5(a)-3.5(e) show the evolution of the intensity profile of the output
beam versus time. Starting at t = 0 s, the intensity shifts towards the position of
the linear second Airy lobe, further towards the higher lobe’s orders [Fig. 3.5(a)-
3.5(b)] and finally reaches a maximum transverse shift x = −34 µm at t = 640ms
[Fig. 3.5(c)]. We will further refer to this position as the off-shooting soliton’s po-
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Figure 3.5: Transient dynamics of the Airy-soliton (xA = 10 µm). (a)-(e) Transverse
intensity profile of the output beam under nonlinear focusing conditions
(Ee = 4 kV/cm, PA = 400 µW) for increasing times. (f) 1D intensity profile
along time. (g) Top-view sketch of the accelerating beam interacting with the
off-shooting soliton, superimposed with their intensity profiles along time.

sition (red dashed line). Then, on a longer time-scale a relaxation-type dynamics
is observed towards a redistributed Airy-like profile similar to the input beam
at t = 0 s [Fig. 3.5(d)-3.5(e)].

The spatiotemporal dynamics of the nonlinearly propagating Airy beam can
therefore be summarized in three stages. (i) First the output beam focuses to-
wards the red dashed line of Fig. 3.5(b). (ii) Then we observe two co-existing
beam’s structures [Figs. 3.5(c), 3.5(d)]: the so-called off-shooting soliton at x/xA =

−3.7 and an accelerating structure at x/xA = 0.5 with similar intensities. (iii) Fi-
nally the two previous solutions merge and form a new Airy-like structure on a
longer time scale. Similar to the relaxation dynamics of a spatial soliton formed
by self-focused Gaussian beam [48, 108, 113, 128, 129], the accelerating beam
therefore relaxes for longer times into a less focused multi-lobe beam with a
peak intensity that shifts back towards the +x-axis [Fig. 3.5(f)].
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3.2.3 Influence of the optical nonlinearity

As we will now detail, the nonlinear interactions that emerge from the transient
behavior of a single self focused Airy beam [(i) to (ii)] can be compared to the
gravitational interactions such as gravitational lensing induced by a massive ob-
ject (the off-shooting soliton) that attracts and deflects light from its own curved
trajectory (the Airy beam).

Figure 3.6: Intensity profile of the self-focused output Airy beam along time, PA =

400 µW. (a) Linear intensity profile, (b)-(d) build-up of the off-shooting soli-
ton, (e)-(f) relaxation into a multi-lobe stationary solution. The dashed lines
correspond to the linear profile.

In order to characterize the attraction and deflection, we plot in Fig. 3.6 the
nonlinear transverse intensity profile of the output beam for increasing times
compared to the linear case at t = 0 s [Fig. 3.6(a)]. xd corresponds to the shift of
the accelerating wave packet induced by the attraction of the off-shooting soliton
(the massive object) with respect to the initial launched Airy beam. The position
of the initial Airy main lobe defines the zero attraction position. Thus, xd < 0

illustrates the attraction of the Airy beam towards the off-shooting soliton’s po-
sition (x/xA = −3.7, see Figs. 3.6(c), 3.6(d)).
It is worth mentioning that on Figs. 3.6(c)-3.6(e) the output profile of the acceler-
ating structure does not match with an Airy distribution anymore, but the out-
put beam still presents secondary lobes. This is due to the multi-channel waveg-
uiding structure photoinduced by the multi-lobe structure of the Airy beam at
t = 0 s. After t = 1.9 s, the solitonic structure vanishes and the intensity redis-
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tributes into an Airy-like profile [Fig. 3.6(f)].

Figure 3.7: Experimental lensing effect self-induced by a self-focused Airy beam. (a) Nor-
malized transverse position xd of the output intensity peak versus time for
different input powers. (b) Normalized acceleration effect: normalized ac-
celeration and main lobe’s waist x0 of the Airy beam nonlinearly attracted
towards its off-shooting soliton for increasing input power PA.

Figure 3.7(a) details the temporal evolution of the transverse intensity peak’s
position at the output of the crystal during the transient build-up regime of
the off-shooting soliton (t < 800 ms, stages (i)-(ii)). Initially the Airy-distributed
energy is mainly concentrated in the first lobe at x = 0. After the focusing nonlin-
earity of the system is electrically switched on at t = 0 s, the position correspond-
ing to the peak intensity shifts towards the position of the higher lobes’ orders
along the −x-axis (bending effect). Then, around t = 500 ms, the position of the
peak intensity reaches a quasi-steady position corresponding to the location of
the off-shooting soliton until, as depicted on Fig. 3.5(f), for longer times beyond
t=1 s, the position of the peak intensity shifts back into the position of the main
lobe of the accelerating beam.

As observed in recent experiments using Kerr thermal nonlinearity [123], our
experiment suggests that the nonlocal photorefractive nonlinearity acts as a grav-
itational potential in an accelerating framework. To further support this state-
ment, we now analyze whether the gravitational effects can be tuned by varying
the nonlinearity. In what follows we vary the intensity of the input Airy beam
to tune the refractive index modulation depth and analyze the corresponding
self gravitational effects. Figure 3.7(a) shows the gravitational lensing induced
through the deflection of the accelerating beam for increasing Airy beam powers.
Similarly to the self-focusing properties of Gaussian beams [48, 67], the transient
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time towards self-focusing is smaller when the input light intensity increases:
a higher intensity reduces the response time of the process. In addition the in-
crease of input power modifies the transient self-focusing properties. As depicted
on Figure 3.7(a), when the power increases from PA = 250 µW to PA = 300 µW
(green and yellow curves), the maximum shift does not increase linearly, but
jumps from the former second lobe’s position (x/xA = −2.25) to the theoretical
output position of the off-shooting soliton. When further increasing the power
(PA > 700 µW), the maximal bending of the beam still deviates but saturates
at the third lobe’s position (x/xA = −3.7). By varying the optical power it is
therefore possible to balance between diffraction and nonlinearity and tune our
nonlinear system from a weak interaction (P 6 250 µW) to a strong attraction
(P > 250 µW) between the accelerating wave packet and the solitonic structure.

The off-shooting soliton not only attracts the accelerating beam but also in-
fluences its acceleration similarly to tidal forces in gravitational lensing. Figure
3.7(b) depicts the normalized peak acceleration for increasing input powers PA,
calculated as follows:

(
∂2xpeak

∂z2

)
NL
/
(
∂2xpeak

∂z2

)
lin

= (xA/x0,NL)
3 , (3.3)

where x0 is computed by fitting the intensity profile with an Airy beam profile
[Fig. 3.6(a)-3.6(b)]. The acceleration rate increases from three (PA = 200 µW ) to
seven times (PA = 900 µW) the initial value. On the same graph we also plot the
evolution of the interlobes’ distance versus power. The data shows on Fig. 3.7(b)
a tightening of the interlobes’ distance revealing the presence of tidal forces dur-
ing the solitonic build-up regime (t < 500 ms). The gravitational force exerted
on the different lobes varies from one lobe to the next, owing to their different
lobe-soliton distances and the self-induced gravitational potential of the acceler-
ating beam. This effect gives rise to tidal forces that deform the structure of the
wave packet as it propagates and tend to pull the lobes towards one another.

As already mentioned, the photorefractive nonlinearity of our system can be
tuned by different physical parameters such as the external bias electric field
(Ee), the intensity of the launched beam (with I = PA/(2πxA2) in the main lobe)
but also the so-called dark intensity of the photorefractive crystal via an exter-
nal background illumination [Fig. 3.4]. Such an illumination tends to artificially
increase the dark conductivity of the photorefractive crystal which is initially
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Figure 3.8: Influence of background illumination on the transient and final self-focusing
beam: (a) for the transverse beam’s shift xd (attraction parameter) (b) and the
interlobes’ distance x0 (cubic proportional to the acceleration).

very weak (I/Id ≈ ∞). In photorefractive systems using conventional beams it
has been shown that Id plays a significant role during the self-focusing and soli-
tonic regime [67, 109] (see Fig. 2.17(c)). In our Airy beam system, we question
how such a background illumination may influence the previous results. Fig-
ure 3.8(a)-3.8(b) depict the influence of I/Id on the transient and corresponding
steady state (t > 8 s) peak values of xd and x0.
On Fig. 3.8(a), for I/Id = 15 the self-bending of the Airy beam observed previ-
ously is reduced in the transient regime from xd,noId = −3.7xA to xd,I/Id=15 =

−1.5xA. Contrary to the case without background illumination, where the Airy-
like structure of stage (iii) is superimposed with the initial Airy beam [Fig. 3.6(f)],
adding Id enables the accelerating beam to remain shifted even in the steady-
state regime (maximum shift of −xA for I/Id = 30). As depicted on Fig. 3.8(b),
the background illumination also influences the self-focusing effect both in the
transient and the steady-state regime. In particular we still observe self-focusing
of the accelerating beam after t > 8 s.
In terms of optical gravitational lensing, the background illumination enables us
to control the nonlinearity of the system and therefore the attraction and tidal
force applied on the Airy beam [Fig. 3.8(a)-3.8(b)].
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3.3 theoretical confirmation

Our experimental results can be reproduced qualitatively well by numerical sim-
ulations (see Figure 3.9). In the paraxial approximation, the nonlinear propaga-
tion of the Airy beam in the photorefractive crystal can be simulated by the
nonlinear Schrödinger equation using the simulation model described earlier in
Chapter 2 with the equations Eq. 2.3-2.7. In this model τ defines the photorefrac-
tive relaxation time and F0 the normalized amplitude of the Airy beam, which
is defined by the truncation a and the lobe’s waist xA.

Figure 3.9: Numerical study: Airy-induced optical lensing. (a) Intensity profile of the
output beam along time; transverse intensity profiles in the (b) transient and
(c) steady-state regime. The dashed lines correspond to the linear profile. (d)
Transverse position of the output intensity peak versus time for different in-
put powers. (e) Acceleration effect: normalized acceleration and main lobe’s
waist x0 of the Airy beam for increasing input intensity.

In this simulation we fix xA = 10 µm, a = 0.09, L = 1 cm and Γ = 9. As
for the experimental study in previous Section 3.2, we keep the optical power
free (here the optical field F0). At t = 0 s the bias electric field is applied on
the photorefractive crystal via Γ and the initial linear 1D-Airy beam self-focuses
along the crystal. Figure 3.9(a) depicts the evolution of the spatial distribution of
the output beam at z = L along time. Similarly to the experiment, the Airy beam
undergoes self-focusing and, as detailed on Figures 3.9(b) and 3.9(c), it turns into
an off-shooting soliton (at x/xA = −5.5) and an accelerating beam (at x/xA = 0).

The transient dynamics of the self-focusing output beam can be analyzed via
two parameters: the shift of the intensity peak xd and the inter-lobe distance of
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the remaining accelerating multi-lobe structure xA. By comparing the transverse
shift of the numerical simulations on Figure 3.9(d) with the experimental results
[Fig. 3.7(a)], the initial intensity peak at t = 0 s (i.e. the linear main lobe) also
starts to shift from the linear output position x/xA = 0 along the −x-axis towards
the zero-deflection position being here x/xA = −5.5. By increasing the optical
power via F0, the transient shift is faster as the maximum shift x/xA = −5.5 is
reached after t/τ = 0.18 for F0 =

√
(10), which is over five times faster than

the dynamics for F0 =
√
(1). As a consequence we can confirm that the optical

power enhances the self-focusing strength and increases the velocity of the tran-
sient dynamics.
The analysis of the tightening of the lobes is depicted on Figure 3.9(e), where
the minimal xA values are plotted for increasing optical field F0. As the inter-
lobe distance is proportional to xA and the acceleration rate of an Airy beam
proportional to x−3A , Figure 3.9(e) shows that the beam’s acceleration during the
transient self-focusing regime increases with the optical power hence confirming
the experimental results [Fig. 3.7].

If we consider the analogy with gravitational effects the gravitational lensing
effect (self-bending and acceleration) induced by the off-shooting soliton is also
observed and can be enhanced by increasing the optical power and therefore
the refractive index change and the resulting gravitational potential [Figs. 3.9(d),
3.9(e)]. The numerical results are in good qualitative agreement with the ex-
perimental observations of the nonlinear interactions between the off-shooting
soliton and the accelerating beam (stages (i) and (ii)). However, the numerical
simulations do not reproduce the relaxation-type dynamics of the beam (stage
(iii)), hence motivating additional theoretical modeling that would take into ac-
count carriers diffusion mechanism and also the background intensity Id.
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3.4 conclusions

In summary, this work is the first analysis of the transient self-focusing proper-
ties of an Airy beam in a nonlocal nonlinear medium. The transient evolution
involves both attraction and acceleration of the initially launched Airy beam due
to the onset of an off-shooting soliton. These observations are analogous to grav-
itational lensing effect being however here self-induced by a single light beam.
The accelerating Airy beam creates a transient spacetime curvature that bends
light propagation for a short time, before disappearing and restoring an Airy
beam profile similar to the launched Airy beam. The properties of the gravita-
tional lensing, i.e. deflection and acceleration, can be both controlled all-optically
through the engineering of the optical photorefractive nonlinearity.

When comparing with reference [123], the soliton in our system is not pre-
pared from the self-focusing of a second beam but is created by the accelerat-
ing beam itself. Our conclusion is therefore that the analogy with gravitational
lensing effects is not limited to the Newton-Schrödinger framework but applies
also to nonlinear Schrödinger equation that accounts for a nonlocal nonlinearity
(here photorefractive). Although not identical in the details with the Newton-
Schrödinger equation, that equation contains all the required ingredients for
the observation of the gravitational lensing effects: a focusing nonlinearity that
varies with the light intensity and that is nonlocal, i.e. allowing for long-range
interactions between the self-focused part of the Airy beam and the remaining
accelerating beam. However, the analogy only holds in that time interval during
which both the soliton and the accelerating beam interplay nonlinearly.

Besides its interest for the analogy with gravitation, the two-stages build-up
dynamics of the focused beam provides a deeper insight into the subject of ac-
celerating beams in nonlinear focusing media, and can be used to photoinduce
multiple waveguide structure, as suggested in following Chapter 4.
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I N T E R A C T I O N S O F T W O A I RY B E A M S





4
C O U N T E R P R O PA G AT I N G A I RY B E A M S ’ I N T E R A C T I O N S

In this chapter we numerically analyze optical waveguide structures created in
photorefractive media by one or two incoherent counterpropagating Airy beams
under nonlinear self-focusing conditions. First we show that, under the soli-
tonic conditions studied in Chapter 2, a single Airy beam photoinduces multiple
waveguiding structures. Gaussian systems would in comparison require at least
two beams to create similar waveguides.
In a second part we enlarge the possible interconnection schemes and study
the interactions of two self-focused counterpropagating Airy beams both theo-
retically and experimentally. We demonstrate that for two counterpropagating
beams even strongly misaligned, multiple waveguiding structures are photoin-
duced. In that way, an optical Gaussian beam can be linearly guided along a
deflecting trajectory or split into several output beams. These results enable new
configurations for all-optical interconnections.

The context of this chapter is related to the following publication:
Noémi Wiersma, Nicolas Marsal, Marc Sciamanna, Delphine Wolfersberger, "All-
optical interconnects using Airy beams". In Optics Letters, 39.20 (2014).
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4.1 waveguiding by a single airy beam

Before analyzing the interaction of multiple Airy beams, we first focus on the
waveguide possibilities that a single Airy beam can offer under solitonic con-
ditions. After studying in detail the nature and the tuning of the Airy-solitons,
we will now numerically examine the photoinduced refractive index structures
inside the nonlinear crystal. So far Airy beams have drawn the attention in partic-
ular for their parabolic accelerating property. In reference [36], Denz et al. use the
parabolic trajectory of the Airy beam to create curved waveguides. As illustrated
on Figure 4.1, weak nonlinearity enables to create the waveguide structure and,
by switching the Airy orientation using the SLM, they address different output
positions at the end of their photorefractive crystal. In this section we increase
the nonlinearity to activate the solitonic self-focusing and therefore to obtain a
superimposed solitonic and an accelerating profile. Does this configuration also
lead to multiple waveguiding structures ? While the curved Airy-induced waveg-
uides in reference [36] have been induced using the linear Airy propagation, we
suggest in this chapter the study of waveguides induced by solitonic Airy beams.

First we consider the configuration using a single Airy beam of Chapter 2,
where its solitonic behavior has been studied under strong self-focusing condi-
tions (see Section 2.3). The resulting intensity distribution is displayed on Figure
4.2, where the initial linear Airy beam turns into an intense off-shooting soliton
and a weak accelerating beam. Through the Pockels effect, the optical electric
field induces a refractive index variation [Eqs. 2.3,2.5,2.7]. The induced refractive
index profile is numerically simulated via a Fast Fourier Transform Beam Prop-
agation Method. We fix the system’s parameters at L = 1 cm, Γ = 9, a = 0.09,
xA = 7.5 µm and the normalized input electric field of a beam F0 =

√
2.5. The

crystal length L = 1 cm corresponds to 3.3Ld, with Ld = 2kx2A the characteristic
diffraction length of the Gaussian beam (n0 = 2.3, λ = 532 nm).
To test the guiding efficiency of the photoinduced waveguide structure, we inject
a probe beam at one face of the crystal (z = 0 or z = L). An efficient waveguide is
characterized by guiding an output beam with an intensity peak of similar size
and with at least 10 % of the input probe beam. We consider the linear beam
propagation by simulating equation 2.3 and keeping the space-charge field E0
equal to the stationary E0(x, z) resulting from the nonlinear propagation of the
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Figure 4.1: Airy-induced all-optical routing. (a) Two dimensional Airy beam propagat-
ing along a photorefractive crystal. (b) Gaussian input beam before propa-
gation, (c) diffracted Gaussian output beam at the back face of the crystal
without induced refractive index structure. (d)-(g) Propagation of a Gaus-
sian probe beam through Airy-induced waveguide structures (the bending
of the Airy beam has been tuned): output intensity distribution. Extracted
from [36].

Airy beam (see Appendix C). Three input positions are considered [Fig. 4.2]:

1 main lobe’s input (z = 0)

2 second lobe’s input (z = 0)

1 ′ off-shooting soliton’s output (z = L)

Figure 4.2: (a) Normalized intensity distribution of a self-focused Airy beam propagat-
ing in a focusing photorefractive crystal with xA = 7.5 µm and L = 1 cm, (b)
corresponding transverse intensity profiles.
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Figure 4.3 presents the waveguiding results for the three input positions listed
above. First we inject the Gaussian probe beam at the guide entry 1 photoinduced
by the main lobe of the previous Airy beam (see Figures 4.3(a1) and 4.3(a2)).
While the intensity distribution along the crystal shows that the guided beam
splits into an accelerating structure and a Gaussian-shaped beam [Fig. 4.3(a1)],
the major optical intensity is observed at 1 ′. As shown on the intensity profile of
the output beam on Figure 4.3(b1), almost 50 % of the beam exits at the soliton’s
output. This non homogeneous transmission efficiency between the accelerating
and the solitonic guide is coherent with the photorefractive physics: the domi-
nant waveguide 1 → 1 ′ has been induced by the most intense beam leading to
a waveguide along a straight trajectory. This guiding differs from the situation
analyzed in [36] in that, under high-focusing conditions, the output position of
the waveguide 1 → 1 ′ does not relate to the deflection of the Airy beam but is
rather determined by the position of the off-shooting soliton.

Secondly we consider the input position at 1 ′, where the off-shooting soliton
has induced a high refractive index variation. The observed scenario appears
completely different, as a two-beam structure is observed at the output of the
crystal z = 0 [Figs. 4.3(a2), 4.3(b2)]. As depicted on Figure 4.3(b2), there is not
only an output beam at the guide exit 1 induced by the former main Airy lobe,
but nearly 25 % of the initial probe beam appears shifted along the transverse
axis. As we can see on Figure 4.3(a2), the output position matches with the initial
second Airy lobe order 2. This waveguide presents two advantages comparing
to the waveguide 1 → 1 ′ previously studied: a better transmission through the
strong guide induced by the off-shooting soliton and furthermore a demultiplex
structure allowing for a large spacing between the two outputs (≈ 3xA between
both outputs) [Fig. 4.3(b2)].

Finally we test the guiding efficiency, when the propagation starts at the po-
sition 2 induced by the second lobe. The waveguide with the input at 1 ′ guides
a probe beam to the output positions (1,2) (see Figures 4.3(a2), 4.3(b2)). Because
the opposite waveguide 1→ 1 ′ has been demonstrated in Figures 4.3(a1), 4.3(b1),
we ask whether the waveguide 2→ 1 ′ is also efficient. Figure 4.3(a3) shows that
the energy injected at the entry 2 is no longer confined in a waveguiding struc-
ture all along the crystal. As depicted on Figure 4.3(b3), only 8 % of the input
intensity peak is observed at the output of the crystal. This low guiding effi-
ciency can be explained by the lower refractive index structure photoinduced by
the second lobe order of the Airy beam at z = 0 and by the asymmetrical waveg-
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Figure 4.3: Linear probe beam propagation in the waveguide structure of Figure 2.14:
(a1) Intensity distribution and (b1) transverse profiles of Gaussian beam
guided along 1 → 1 ′, (a2)-(b2) guided along 1 ′ → (1, 2), (a3)-(b3) guided
along 2→ 1 ′.

uide structure between z = 0 and z = L. I In addition this result shows that the
intensity required to photoinduce an input guide is more important than for the
output guide. As a consequence the guide induced by the soliton offers the best
waveguiding efficiency.

To conclude a single Airy beam photoinduces two waveguide types: with one
output or with two outputs depending on the input position and side. We have
shown that the guiding efficiency is higher when starting through the solitonic
guide. In addition the multi-lobe structure of the Airy beam offers a multiple
output guiding, which can not be achieved with a single Gaussian beam and
therefore utilizes the unique properties of the Airy beam. In comparison with
waveguide structures created by Gaussian beams with the same dimensions and
focusing conditions, the unique Airy shape and properties offer larger waveg-
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uide possibilities. Those results also demonstrate that, although the waveguid-
ing is bidirectional (i.e. a Gaussian probe beam on both crystal sides is guided
through the structure), the asymmetry of the waveguide leads to different output
positions and guiding efficiencies depending on the input position of the probe
beam.

4.2 nonlinear multiple beams’ interactions

As mentioned earlier in the introduction, colliding solitons interact very simi-
larly to particles, as they may repel or attract each other depending on various
parameters (see Section 1.3.3). More generally the interactions between multiple
solitons have shown fascinating behaviors, which can be tuned via the beams’
and system’s parameters as well as via the number of interacting beams. In this
chapter we will limit our study to the interactions between two optical beams
under solitonic focusing conditions.
There are two types of solitonic interactions, coherent and incoherent [87]. In
the case of coherent beams, when both beams overlap, their total intensity in-
duces an interference pattern. The photoinduced interference refractive index
variation then leads to attractive or repulsive forces between the beams. These
coherent interactions can be observed in media with fast response time, such
as in Kerr-nonlinearity. However, in materials with a long response time, such
as photorefractive and thermal media, these interferences only occur for (quasi-)
stationary phase shifts. On the other hand in the case of incoherent interactions,
the relative phase shift between the soliton beams varies much faster than the
response time of the material. The total intensity corresponds to the sum of both
beams’ intensities leading to an always attractive force between both bright soli-
tons [130]. In waveguide theory, the collisions of solitons can then be considered
as a coupling between the waveguides induced by both beams [131].
In the chapters 4 and 5 we consider the interaction of two counterpropagating in-
coherent Airy beams. This configuration enables all the lobe orders of each Airy
beam to interconnect with all the lobes of the counterpropagating Airy beam.
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4.2.1 Conventional beams’ systems

Let us first analyze the interaction scheme of two Gaussian solitons. As detailed
below, two configurations can be considered : two solitonic beams propagating
in the same and in opposite directions.

Co-propagating beams

The collisions of incoherent co-propagating solitons can be induced either through
the crossing of two non parallel solitons or by the interactions between slightly
shifted parallel solitons. In the case of non parallel solitons, their collision cre-
ates an angular momentum and their attraction/repulsion scheme evolves in the
3D-space as they start rotating around each other [128, 132] [Fig. 4.4].

Figure 4.4: Two incoherent co-propagating Gaussian solitons launched along non paral-
lel trajectories in photorefractive media. (a) Typical interaction scheme. Ex-
tracted from [66]. (b) Time-resolved complex rotation of a soliton pair. The
sequence starts when a second beam is launched onto a steady-state soliton.
The time interval between consecutive frames is 0.36 s. Extracted from [128].

If we decrease the angle between the two trajectories (towards a parallel beams’
configuration), the solitons stop their orbiting behavior and leave their bound
state. Also by narrowing both beams, their individually photoinduced waveg-
uide structures start to overlap leading to a bound-state where they may fuse
[133].The tuning of the interaction type and strength enables the creation of all-
optical switching and logical gates as suggested in reference [134]. As depicted
on Figure 4.5, Assento et al. use the interactions between the signal carrying
soliton S and other co-propagating solitons, here A and B, to create for exam-
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ple a NOR-gate. Figure 4.5(a) (resp. 4.5(b)) depicts the propagation scheme (resp.
experimental propagation) inside the nematic liquid crystal and the different out-
put types of the signal soliton S. In absence of any other beam ("00" on Fig. 4.5),
S propagates along a straight line. When a co-propagating beam, A or B, is
switched on ("01" or "10" on Fig. 4.5), S is attracted towards the other solitons
and follows a curved trajectory. The bending and therefore the output position
of S can be tuned by varying the distance between S and the control beam (A or
B). The maximum shift is reached when the two control beams are switched on
("11" on Fig. 4.5). The shift of the S-signal reaches then up to 50 µm as presented
on Figure 4.5(c), where the four output profiles are displayed.

Figure 4.5: Two incoherent parallel co-propagating Gaussian solitons in a nematic liq-
uid crystal. (a) A NOR-gate with three soliton-forming beams: A and B are
control inputs, S guides the signal. The truth table refers to the Out port. (b)
Soliton images along the crystal. The arrow indicates the signal output. (c)
Signal profiles at the output (1 mm), corresponding to the input combina-
tions in (b). Extracted from [134].

Finally the tune of the coherence enables the co-propagating Gaussian solitons
to attract or repel from each other as demonstrated by Wolfersberger et al. (see
Fig. 1.18 in Section 1.3.3).
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Counterpropagating beams

The scheme of counterpropagating beams allows strong interactions due to cross-
coupling of the beams via the combined refractive index structure that is not
present in the co-propagating case [135]. Similar to co-propagating solitons, the
counterpropagating configuration has been studied for coherent and incoherent
solitons with non-parallel crossing and with parallel trajectories [135].

As presented in reference [136] the force between the incoherent counterprop-
agating beams is always attractive and, as depicted on Figure 4.6(f), the forward
beam gradually tunnels into the backward soliton region thus representing a di-
rectional coupling behavior. In the case of coherent beams, this Figure illustrates
how the coherence of the beams influences the radiation effects in different ways
depending on the propagation directions of both beams. As the attraction of both
incoherent beams towards each other leads to solutions for optical interconnects,
this configuration has been extensively studied for conventional beams (Gaus-
sian beams) [129, 135, 137, 138]. The small transverse spatial range of the solitons
used in these systems however limits the interaction range. Belić et al. [138] have
demonstrated that for a transverse beams’ shift exceeding four diameters, each
soliton acts as a single soliton. To induce a joint waveguide structure, the beams’
separation has to be less than one beam diameter. Later the research group has
numerically analyzed the influence of peculiar beams’ properties, such as the an-
gular momentum of vortices, on the interaction scheme [139]. They have shown
a large diversity of beams’ interconnects, with the formation of e.g. dipoles and
tripoles, hence demonstrating a new complexity of interactions when using non-
Gaussian beams. The spatial limitation of conventional beam solitons and the
rich interaction schemes of vortices have led us to the study of counterpropagat-
ing Airy beam under solitonic conditions.

4.2.2 Co-propagating Airy beams’ interactions

So far literature has considered the interaction of two Airy beams only in the
co-propagating configuration (coherent and incoherent). Before introducing our
system with two incoherent counterpropagating Airy beams, let us first study
the general behavior of co-propagating Airy beams under solitonic focusing
conditions. The advantage of using Airy beams for beams’ interaction refers to
their complex intensity multi-lobe profile and their parabolic trajectory offering
a much larger transverse interconnection range than conventional beams.
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Figure 4.6: (a)–(c) Coherent interactions between the counterpropagating (a),(c) forward
and (b) backward solitons. (d) –(f ) Incoherent interactions between the coun-
terpropagating (d),(f ) forward and (e) backward solitons. The plots show
absolute values of the field amplitudes. The arrow indicates the propagation
direction of each beam. Extracted from [136].

First theoretical research has been done by the group of Belić in 2013, where

Figure 4.7: Soliton formation through the interaction of two in-phase co-propagating
Airy beams in a Kerr medium. D represents the beams’ shift. (a) Intensity
distribution along the medium. Extracted from [140]. (b) Transverse intensity
profiles of both beams at z = 0.

two coherent Airy beams are launched at the same side of a nonlinear medium
under strong self-focusing conditions [140]. They show that bound and unbound
soliton pairs, as well as single solitons, can form in such interactions. Figure 4.7
depicts the interaction of two coherent co-propagating Airy beams. In particular
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the beams’ separation D plays an important role in the solitonic interactions. For
D > −4, both off-shooting solitons are attracted towards each other and form
bound solitons. But when the beams’ shift decreases, both intensities start to
overlap and the linear parabolic trajectories of the Airy beams do not cross any
more but diverge from each other. As a result the solitonic interaction structure
presents a repulsive behavior when D 6 −4. In addition the interactions can
also be tuned via the phase shift Φ between both Airy beams. As depicted on
Figure 4.8(a), the attractive interactions of in-phase beams turn into repulsive
solitons for out-of-phase beams (Φ = π). To understand this behavior, Figure
4.8(b) shows the field distribution of both Airy beams. The main lobes of the
Airy beams have opposite field signs hence they induce opposite refractive in-
dex distributions, leading to repulsive interactions. Finally by varying the beams’
spacing, their phase shift and the nonlinearity type (Kerr or saturable), they ob-
serve, similar to conventional solitonic systems, attraction/repulsion behaviors
between both off-shooting solitons [Fig. 4.8].

Figure 4.8: Influence of the phase shift of two co-propagating interacting Airy beams in
a Kerr medium. In phase: Φ = 0. Out-of-phase: Φ = π. (a) Intensity distribu-
tion along the medium. Extracted from [140]. (b) Transverse energy profiles
of both beams at z = 0.
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The accelerating feature of Airy beams does not appear in the interacting soli-
tons, however their interaction trajectories are very complex if the separation
between initial beams is comparable to the width of the first Airy lobes. This
diversity is due to the Airy multi-lobe shape and the beams’ coherence which in-
duce complex interactions such as e.g. individual solitons, breathing or merged
solitons [141, 142].

The study and control of the interaction between coherent Airy-originated
solitons has also been done in highly nonlocal media, where the nonlocality
range strongly affects the dynamics of the off-shooting soliton and the interac-
tions between two co-propagating Airy-solitons [143]. Finally the combination
of the periodic Airy intensity distribution with an additional coherent Gaussian
beam enables to tune the solitonic interactions types (attraction/repulsion) [144].

The co-propagating configuration of Airy beams offers interesting interaction
schemes. By contrast a counterpropagating configuration enables optical inter-
actions of a larger distance and, combined with the large transverse dimension
of the Airy shape and trajectory, it allows several interaction schemes in all spa-
tial dimensions. While the solitonic interactions in the co-propagating case are
mainly controlled by the main lobes, the secondary lobes play an important role
in the photoinduction of waveguide structure in the nonlinear medium, when
one or several lobes of the counterpropagating beams for example face each
other. The interaction of counterpropagating Airy beams opens therefore new
interesting fields for optical interconnections.
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4.3 numerical study of counterpropagating airy beams

To study the propagation of two self-focusing counterpropagating Airy beams
in a photorefractive crystal and the resulting beams-matter interactions, we con-
sider the numerical model already used in Chapter 2 by adding a second beam.
Figure 4.9 depicts the typical interaction scheme, where a forward Airy beam is
launched at z = 0 in the +z-direction (forward beam) and the second Airy beam
propagates in the opposite −z-direction from the other crystal face at z = L

(backward beam). The transverse linear accelerations of both Airy beams are in
the same +x-direction as depicted on Figure 4.9.

Figure 4.9: Typical interaction scheme of two counterpropagating Airy beams in an un-
biased photorefractive crystal.

4.3.1 Coupling equations for the counterpropagating case

Our numerical simulations are done using the same algorithm as in Chapter
2. The initial Airy profiles of the forward beam F(x, z) and the backward beam
B(x, z), are given by the following equations:

F(x, z = 0) = F0Ai
(
x

xA
+D

)
exp

(
a

(
x

xA
+D

))
, (4.1)

B(x, z = L) = B0Ai
(
x

xA

)
exp

(
a
x

xA

)
, (4.2)

where F0 and B0 correspond to the wave amplitudes of respectively the for-
ward beam F and the backward beam B, Ai represents the Airy function, xA an
arbitrary transverse scale, a the truncation factor and D = dxA the additional
normalized shifting distance between the initial input beams F and B along the
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transverse x-axis. For D = 0, the beams are aligned and each lobe order of the
forward Airy beam collides with the same lobe order of the backward beam at
z = L/2. By shifting the beam F the forward lobes will interconnect with different
backward lobe orders and hence induce an asymmetry along the axis z = L/2.
Similarly to the case of a single Airy beam, the nonlinear propagation of these
two incoherent counterpropagating beams can be modelled as follows [138]:

i∂zF+ ∂
2
xF = ΓE0F, (4.3)

−i∂zB+ ∂2xB = ΓE0B, (4.4)

where Γ = (knxA)
2reffEe is the nonlinear photorefractive coupling strength,

E0 is the homogeneous part of the x-component of the photorefractive space-
charge field (see Section 2.3 ). As the backward beam B propagates along the
opposite direction of F, the propagation equation of B is equal to the forward
equation 4.3 with a sign change concerning the z-propagation.
The photorefractive effect is now induced by the sum of the two incoherent
beams and the temporal evolution of E0 is calculated using a relaxation-type
dynamics given by:

τ∂tE0 + E0 = −I0/ (1+ I0) , (4.5)

I0 =| F |2 + | B |2, (4.6)

where τ is the relaxation time of the crystal. As illustrated in the equations 4.5
and 4.6, the optical intensity will increase the nonlinearity of our system. By ap-
plying a positive external electric field Ee along the c-axis of the crystal (parallel
to the x-axis [Fig. 4.9]) we will show here that complex waveguiding structures
can be optically induced in the photorefractive nonlinear material through the
Pockels effect: more complex interconnections can be done over a larger distance
thanks to the additional counterpropagating Airy beam. The induced refractive
index distribution is then related to the combination of the multiplexed Airy
beams F and B and their solitonic interactions.

The induced refractive index profile is numerically simulated via a Fast Fourier
Transform Beam Propagation Method detailed in Appendix C. As for the sin-
gle Airy beam case, we fix the crystal length at L = 1 cm, Γ = 9, a = 0.09,
x0 = 7.5 µm, the normalized input energy of the beams F0 = B0 =

√
2.5 and

keep D as a free parameter.
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4.3.2 Study of the Airy interconnection range

We restrict our investigation to two configurations: the first one where the two
counterpropagating Airy beams are strictly aligned (transverse shift D = 0,
[Fig. 4.10]) and secondly with a small misalignment D = 2 [Fig. 4.11]. Similarly
to the single beam case, we first consider the intensity patterns of the interact-
ing counterpropagating solitonic Airy beams. In a second step we will test these
photoinduced waveguide structures at the input positions with the largest guid-
ing efficiency.

F and B initially aligned (D = 0): .

As detailed in Chapter 2, each Airy beam turns into a combination of an off-
shooting soliton and an accelerating beam under strong self-focusing conditions.
In our configuration here both beams have their transverse acceleration along
the photorefractive c-axis of the crystal, so both undergo a solitonic behavior.
Figure 4.10 depicts the interactions of two aligned Airy beams (D = 0). When
a focusing nonlinearity is applied on the crystal, the two beams turn into a
solitonic beam. As illustrated on Figures 4.10(c)-4.10(d), their intensity pattern
does not match with a superposition of two symmetrical single solitonic Airy
beam structures presented on Fig. 2.14. Indeed, at z = L, the position of the
off-shooting soliton (respectively at z = 0) is not the same compared to the situ-
ation with only one Airy beam, but we notice an additional shift of +2xA . This
shift is induced by the presence of the counterpropagating beam and the result-
ing intensity increases inside the medium. The photoinduced refractive index
structures enables us therefore to consider multiple input positions: at the main
lobe’s input, the soliton’s output and we will also test again the second lobe’s in-
put, because the intensity pattern of two Airy beams induce larger and stronger
refractive index variation.
As for the single Airy waveguide studied earlier in Section 4.1, we number the
possible input/output positions [Fig. 4.10(c)]:
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1 forward beam: main lobe’s input (z = 0)

2 forward beam: second lobe’s input (z = 0)

1 ′ forward beam: off-shooting soliton’ output (z = L)

3 backward beam: main lobe’s input (z = L)

4 backward beam: second lobe’s input (z = L)

3 ′ backward beam: off-shooting soliton’s output (z = 0).

Figure 4.10: Interactions between two aligned counterpropagating Airy beams in a pho-
torefractive crystal (D = 0). (a) (resp. (c)) Intensity distribution inside the
medium and (b) (resp. (d)) transverse intensity profiles at both ends of the
crystal under linear (resp. nonlinear focusing) conditions.

F and B initially misaligned (D = 2): .

The large transverse intensity distribution of the Airy beam suggests us to
test the interconnections between two misaligned counterpropagating incoher-
ent Airy beams. Figure 4.11 presents the interaction scheme of Airy beams mis-
aligned by D = 2, which corresponds to a shift of 2xA between both beams.
Because of the parabolic trajectories along the +x-axis, the intensity pattern is
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not symmetric any more: the longitudinal intersection area of the main lobes is
now shifted towards the +z-direction and additional interactions between the
self-focused counterpropagating Airy beams appear.

Figure 4.11: Interactions between two misaligned counterpropagating Airy beams in a
photorefractive crystal (D = 2). (a) (resp. (c)) Intensity distribution inside
the medium and (b) (resp. (d)) transverse intensity profiles at the ends of
the crystal under linear (resp. nonlinear focusing) conditions.

Under strong self-focusing conditions, both off-shooting solitons appear at dif-
ferent transverse output positions. On one hand the forward solitonic beam has
shifted of 2xA similar to the (D = 0)-case (1 ′ at z = L [Figs. 4.11(c)-4.11(d)]). On
the other hand the backward propagating soliton exits the crystal almost at the
same output position as for the single Airy beam case, i.e. the zero-deflection
position x = 0 at z = 0. The shift of the forward Airy beam induces an asym-
metric interaction between each soliton and counterpropagating Airy beam. One
solitonic output beam almost behaves as a single Airy beam (here B), while the
propagation of the other soliton is strongly affected by the multi-lobe structure
of the counterpropagating beam [Fig. 4.11(d)]. This more complex intensity dis-
tribution results from higher energy exchange within the counterpropagating
main and secondary lobes.
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4.3.3 Waveguiding induced by counterpropagating Airy beams

The previous section has presented larger interconnection schemes, where the
multi-lobe structure of the Airy beams and their off-shooting solitons induce
complex intensity patterns inside the photorefractive medium. The resulting re-
fractive index structure suggests possible waveguiding with multiple input and
output positions associated with large transverse shifts. We will now study the
waveguiding strength of these structures by propagating a Gaussian probe along
the suggested input positions: 1, 2 and 3 ′.

F and B initially aligned (D = 0): .

First we consider the symmetrical waveguide structure induced by two aligned
counterpropagating Airy beams [Figs. 4.10(c)-4.10(d)]. As depicted on Figure
4.12, the Gaussian beam propagates along similar trajectories than in the sin-
gle beam case. Again the guiding structure induced by the second lobe order
2 does not offer efficient waveguiding for the probe beam (despite the larger
transverse waveguide structure induced by the second counterpropagating Airy
beams) [Figs. 4.12(c)-4.12(d)].

The input positions are associated with output structures induced by the same
beams as for the single beam case, 1 → 1 ′ and 3 ′ → (3 , 4), but with smaller
guiding efficiencies. The possible energy loss can be explained by the strong
interaction due to cross-coupling of the beams and by the energy flows between
the multiple lobe orders [Fig. 4.10(a)] [21]. However, the counterpropagating
beams configuration presents several additional advantages:

• Symmetry: we have a single and a demultiplexing waveguiding structure
for both z-directions,

• Transverse shift: the shifts of the off-shooting solitons enable larger trans-
verse distances for optical guiding and waveguide (over 4xA [Figs. 4.12(e)-
4.12(f)]).

As a conclusion we can stress that the use of two counterpropagating Airy beams
allows for achieving complex waveguiding structures that would otherwise re-
quire the counterpropagating interactions of more than two Gaussian beams.
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Figure 4.12: Linear probe beam propagation in the waveguide structure induced by
aligned Airy beams [Figs. 4.10(c)-(d)]. (a) Intensity distribution and (b) trans-
verse profiles of a Gaussian beam guided along 1→ 1 ′, (c)-(d) non efficiently
guided from 2 to the whole output plane of z = L, (e)-(f) guided along
3 ′ → (3, 4).

F and B initially misaligned (D = 2): .

If now we use the waveguiding structures induced by misaligned beams
[Figs. 4.11(c)-4.11(d)], the asymmetry of the system offers new output cases.

In Figure 4.13 we display these additional waveguiding results. Similarly to the
structure generated when D = 0, if the Gaussian beam is first guided by a main
Airy lobe (1 or 3), it also exits at the soliton’s output (1 ′ or 3 ′). But here the sin-
gle output beam has shifted of 4xA, contrary to 2xA in the symmetrical case and
0xA in the single Airy case [Figs. 4.13(a)-4.13(b)]. If the probe beam is injected
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into inputs formed by off-shooting solitons (1 ′ or 3 ′), it will split into two beams
at the Airy lobes positions on the other side of the crystal with input-output
shifts up to 6xA (3 ′ → (3, 4) [Fig. 4.13(c)-(d)]). While in the symmetrical case,
the input and output positions of the demultiplexing waveguides were defined
by the Airy and the soliton profile of the same beam (3 ′ → (3 ′, 4) [Figs. 4.12(c),
4.12(d)]), the outputs of the demultiplexing waveguide for D = 2 are induced
by the off-shooting soliton of the forward beam 1 ′ and by the main lobe of the
counterpropagating beam 3 (3 ′ → (1 ′, 3) [Figs. 4.13(c), 4.13(d)]).

Figure 4.13: Linear probe beam propagation in the waveguide structure induced by mis-
aligned Airy beams [Figs. 4.11(c)-(d)]: (a) Intensity distribution and (b) trans-
verse profiles of a Gaussian beam guided along 1 → (1 ′, 3), (c)-(d) guided
along 3 ′ → (1 ′, 3).

Limits of the misalignment D : .

Such a configuration, leading to inter-lobe interaction areas inside the crystal,
enables to create 1-to-2-demultiplexers guiding up to half the energy of the input
beam with an important transverse shift x. The resulting waveguide structures
show interesting features. First the waveguide occurs although the positions of
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the two input beams are largely shifted (2xA). The same simulation but using
shifted Gaussian beams at the entrances 1 and 3 does not create any waveguide.
Secondly the interaction scheme allows for controlling the spatial positions of
the waveguide outputs by varying the transverse shift D between the counter-
propagating input beams.

However, the larger the shift D is, the smaller is the area leading to intercon-
nection between the counterpropagating beams. To illustrate this effect, Figure
4.14 depicts the interaction scheme for a transverse shift of D = 3. While the lin-
ear intensity distribution still shows both Airy beams interconnect [Figs. 4.14(a),
4.14(b)], in the nonlinear regime both off-shooting solitons present a zero-deflection
propagation which characterises a single Airy-soliton [Figs. 4.14(c), 4.14(d)]. To
test whether the large transverse optical structure still offers efficient waveguid-
ing, we inject a probe beam at the different input positions marked on Figure
4.14(c). As now the cross-coupling of the largely shifted Airy beams is smaller,
the waveguides are mainly induced by one beam (F or B). However, on Figures
4.14(e) and 4.14(f) we show a waveguide with entries/exits induced by both
beams: 1→ (1 ′, 3). In this case the probe beam is equally split into both outputs
with a mutual shift of 6xA.

To conclude as the guiding efficiency depends on the self-focusing strength of
the medium, which also damages the accelerating profile, such a solitonic Airy-
waveguiding requires a compromise between the Airy-induced shape diversity
(multi-lobe, curved trajectory) and solitonic efficiency.
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Figure 4.14: Photo-induced waveguides using two misaligned counterpropagating Airy
beams in a photorefractive crystal (D = 3). (a) (resp. (c)) Intensity distribu-
tion inside the medium and (b) (resp. (d)) transverse intensity profiles at the
ends of the crystal under linear (resp. nonlinear focusing) conditions. (e)-(f)
Linear probe beam propagation in the waveguide structure (b): (e) intensity
distribution and (f) transverse profiles of a Gaussian beam guided along
1→ (1 ′, 3).
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4.4 experimental evidence

4.4.1 Experimental setup

In previous section we have theoretically demonstrated that counterpropagating
Airy beams induce waveguides with a combination of a solitonic and a multi-
lobe structure when applying nonlinear focusing conditions. The presence of a
second Airy beam optically induces a more complex refractive index structure
which modifies the trajectory of the first Airy beam (section 4.3.2).

Figure 4.15: Study of two incoherent counterpropagating Airy beams in a biased focus-
ing photorefractive (PR) crystal: experimental setup.

Here we present the first experimental study of two incoherent counterprop-
agating Airy beams in a biased focusing photorefractive crystal (SBN-crystal
already used in chapters 2 and 3) as depicted on Figure 4.15. Both Airy beams
propagate in opposite longitudinal z-directions and accelerate towards the +x-
direction with the same parameters:

Parameter Variable Values

wavelength λ 532 nm

lobe size xA ∈ [9.5; 14] µm

Airy truncation a ≈ 0.04
optical power PA ∈ [7.5; 150] µW

external electric voltage USBN ∈ [0; 2] kV

.
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The second Airy beam can be shifted along x to tune the alignment of the
beams. To ensure the incoherence of both counterpropagating beams, the sec-
ond Airy beam is generated by an additional laser.
With two imaging systems and a CCD camera we measure the spatial evolution
of the output beams at both sides of the crystal of 1 cm. The large space charge
field induced by the bias electric field and the Airy beams prevents us from
observing the intensity distribution inside the crystal all along the longitudinal
z-direction. The description of the experimental setup is detailed in Appendix B.

4.4.2 Results and discussions

For the following results we study the intensity at the output side z = L of
the crystal. As illustrated on Figure 4.15, there are two intensities superimposed
on the camera: the forward Airy beam (Airy 1) after propagating through the
medium and the reflection of the backward Airy beam (Airy 2) before its crys-
tal propagation. The reflection of the second beam enables us to compare the
output position of the forward beam with the counterpropagating Airy lobes.
Hence, we can identify the guiding efficiency of the multi-lobe structure of the
counterpropagating beam (because of the symmetry of our system, the results
at z = 0 are identical).

Comparison of the self-focusing of a single and of two counterpropagating Airy
beams

We start our experiment using counterpropagating Airy beams with xA = 14 µm,
PA = 60 µW and USBN(t > 0s) = 2 kV. Figure 4.16 shows a comparison
of the spatial output position of the self-focused forward Airy beam propagat-
ing along the +z-direction with and without a counterpropagating Airy beam
[Fig. 4.15]. As detailed in previous Chapter 3, a single propagating Airy beam
turns into a solitonic beam at the transverse zero-deflection position. The self-
focused beam is a superposition of an off-shooting soliton co-existing with an
accelerating beam structure. This dynamics is well reproduced in Figures 4.16(b)-
4.16(e), where the intensity is first attracted towards the zero-deflection position
[Figs. 4.16(b)-4.16(c)]. At t = 300 ms we observe a high and narrow intensity
peak at xsol = −20 µm and the accelerating beam starts forming its multi-lobe
structure at x = 20 µm [Fig. 4.16(e)]. The transverse shift of the solitonic peak
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here is smaller than in our previous analysis in Chapter 3, as the Airy beam in
this section is larger (xA = 14 µm contrary to xA = 10 µm leading to a decrease
of the transverse acceleration Eq. 2.2). The influence of the xA-parameter will be
discussed later in this section.

In the presence of a counterpropagating Airy beam, the evolution of the inten-
sity distribution of the output beam changes significantly [Figs. 4.16(f)-4.16(i)].
In comparison with the single beam case, the optical intensity of the forward
beam shifts faster and further towards the higher lobe orders in the −x-direction.
In particular the maximum peak value has increased from 0.8Iini,max in the sin-
gle beam case to Iini,max and the transverse shift has more than doubled to a
maximum value of −55 µm. As illustrated on Figures 4.16(f)-4.16(g), the counter-
propagating Airy beam is injected at x = −45 µm. Through the photorefractive
effect and the large transverse dimension of the Airy beam, the photoinduced
variation of refractive index also appears beyond the zero-deflection position
of the single Airy beam (x < xsol = −20 µm). Thanks to the larger propaga-
tion schemes of two Airy beams, the forward optical beam is guided into the
combined photoinduced waveguide structure along larger transverse distances.
If we analyze the intensity shift towards the zero-deflection position xsol, the
Airy-soliton in the single beam case appears at 300 ms [Fig. 4.16(d)], whereas
the intensity has already shifted beyond x = 50 µm after 200 ms in the counter-
propagating case [Fig. 4.16(i)]. The faster response time can be explained by the
quasi-instantaneous waveguide photoinduced by the counterpropagating main
lobe at x = −45 µm.

Although the experimental setup does not allow us to directly observe and
measure the optical waveguides inside the photorefractive crystal, the analysis of
the output beam demonstrates the waveguiding effect of a counterpropagating
Airy beam. The forward beam is better guided and shifted towards the higher
lobes’ orders thanks to the backward beam whose main lobe nearly coincides
with the output position of the off-shooting soliton in the single Airy beam case.
In the next paragraphs we will focus our study on the tuning possibility of our
waveguide induced by the counterpropagating beam using three parameters: the
mutual transverse shift between both beams D, the beams’ size xA and the ex-
ternal electric bias voltage USBN.



110 counterpropagating airy beams’ interactions

Figure 4.16: Influence of a counterpropagating Airy beam on the propagation of an Airy
beam in a focusing biased photorefractive crystal, observation at z = L

[Fig. 4.15]. (a) Linear profiles of the forward and backward propagating
Airy beams. Spatial evolution of the forward Airy beam along time (b)-(e)
stand alone and (f)-(i) interacting with a counterpropagating Airy beam.
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Influence of the system’s parameters on the beams’ interactions

Influence of the beams’ misalignment : D .

In previous paragraph we have shown that adding a counterpropagating Airy
beam near the output position of the soliton off-shooting from the forward Airy
beam enhances the shift and the intensity concentration of the single Airy soliton
towards the higher lobe orders. Now we wonder whether the waveguide induced
by the backward Airy beam is still efficient, when the main lobe is shifted in the
opposite direction of the solitonic drift.

Figure 4.17: Waveguiding effect of two counterpropagating Airy beams in a biased
photorefractive crystal for different misalignments, with xA = 14 µm,
PA = 60 µW and USBN = 2 kV. (a) (resp. (c)) Numerical intensity distribu-
tion inside the crystal and (b) (resp. (d)) experimental transverse intensity
profile of the forward output beam at z = L for D = −xA (resp. D = 2xA)
[Eq. 4.1].

Figure 4.17 presents the numerical interaction scheme and the experimental
guiding results of counterpropagating Airy beams with a shift along the pho-
torefractive drift direction −x [Figs. 4.17(a)-4.17(b)] and with shifts in opposite
direction (x and −x) [Figs. 4.17(c)-4.17(d)]. The first case, where the counterprop-
agating main lobe is beyond the forward zero-deflection position xsol = −20 µm,
has been discussed in the previous paragraph. In this case the counterpropagat-
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ing main lobe is before xsol. Therefore, we will focus on the second case, where
the backward Airy beam is almost superimposed with the linear output Airy
beam (see orange plain and blue dashed lines on Fig. 4.17(d). As depicted on
the numerical insight of the optical intensity distribution on Fig. 4.17(c), both
main lobes and solitonic structures nearly do not interact with each other dur-
ing their propagation all along the crystal except near the output face z = L. At
the end of the crystal, the energy of the self-focusing forward beam does not
propagate along a straight line, but splits into the counterpropagating main lobe
and the second lobe order. This energy split suggests experimental beam’s at-
traction towards both transverse +x- (at the main counterpropagating lobe) and
−x-directions (towards the higher counterpropagating lobe orders). The bidirec-
tional attraction of the forward Airy beam by the backward Airy beam is ex-
perimentally confirmed on Figure 4.17(d). The transverse intensity profile of the
forward Airy beam at z = L appears to have three output beams, distinctively
separated of up to 70 µm. Interestingly these three output do not match the three
first lobes of the counterpropagating beam, but the first, third and fourth lobes.
The preferred solitonic zero-deflection output position, which coincides with the
second backward lobe order, does not present any intensity peak.

This result is striking by the fact that the waveguides at x = −70 µm and
x = −45 µm have been induced by the linear less intense third and fourth lobe
orders. This guiding strength may be due to their position along the drift direc-
tion. As the forward beam is naturally attracted towards the −x-direction, a part
of the beam shifts towards its solitonic zero-deflection position and continues its
shift towards the linear higher lobe orders of the backward beam. At the same
time a large part of the intensity is attracted towards the backward main lobe
at x = 0 µm, as this lobe contains half of the optical energy of the total Airy beam.

In this paragraph we have demonstrated transient attraction of a self-focused
Airy beam towards the multi-lobe counterpropagating Airy beam structure. This
attraction is separately induced by multiple lobes of the counterpropagating Airy
beam which split the forward output intensity into up to three outputs along
the transverse x-axis. By tuning the transverse separation distance D between
the counterpropagating beams, the attraction can be either towards the main
counterpropagating lobe enhancing the solitonic structure or towards multiple
lobes leading to a demultiplexing of the soliton into multiple split beams. This
diversity of attraction is unique and enabled by the multi-lobe structure of the
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Airy beam.

Influence of the Airy beams’ size : xA .

Finally we suggest the study of the balance between the linear accelerating
properties and the self-focusing solitonic behavior of the counterpropagating
Airy beams’ system. To increase the solitonic effect we reduce the Airy beams’
size via xA from 14 µm to 9 .5 µm with D = −xA . As depicted on Figure 4.18,
the smaller Airy beam [Figs. 4.18(a), 4.18(b)] has more deflected than the Airy
beam with xA = 14 µm [Figs. 4.18(c), 4.18(d)]. In the single Airy beam config-
uration the off-shooting soliton for xA = 14 µm appears at −28 µm, while for
xA = 9 .5 µm the solitonic peak has shifted of −35 µm compared to the linear
main lobe (see green arrow on Figs. 4.17(b) and 4.17(c)).

Figure 4.18: Waveguiding effect of two counterpropagating Airy beams in a biased pho-
torefractive crystal for beam sizes, with D = −xA, PA = 60 µW and
USBN = 2 kV. (a) (resp. (c)) Numerical intensity distribution inside the
crystal and (b) (resp. (d)) experimental transverse intensity profile of the
forward output beam at z = L for xA = 9.5 µm (resp. xA = 14 µm).
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In both cases the counterpropagating Airy beam is beyond the zero-deflection
position of the forward beam, hence we expect an attraction of the forward beam
towards the −x-direction. When the electric bias voltage USBN is switched on a
t = 0 s, we observe in both cases after 200 ms an intensity peak. This peak
has shifted in both cases beyond the single soliton’s position towards the coun-
terpropagating main lobe [Figs. 4.18(b), 4.18(d)], which confirms the predicted
attractive force. In particular for xA = 9.5 µm the intensity peak has shifted of
−55 µm and increased from 2.5-times to 3.5-times the linear peak intensity.

The nonlocal beam-matter interaction of the single Airy beam case is therefore
increased by an additional beam-beam interaction. But if we analyze the inten-
sity distribution of the self-focused Airy beam with xA = 14 µm [Fig. 4.18(d)],
only approximately 75 % of the energy is attracted towards the counterpropagat-
ing main lobe at x = −45 µm while a small beam remains at the linear position
of the forward main lobe x = 5 µm. By identification this second beam corre-
sponds to the accelerating beam, which co-exists with the Airy-soliton.

In terms of waveguides that can be photoinduced for both Airy beam’s sizes,
a small Airy beam (xA = 9.5 µm) enhances the guide of the counterpropagating
main lobe. A larger Airy beam (xA = 14 µm) however strengthens the same
guide induced by the counterpropagating main lobe, but it will also photoinduce
a guide at x = 5 µm and therefore suggests a demultiplex waveguide structure
with a separation distance of 5 µm-(−45 µm) = 50 µm.
As a consequence, the simple decrease of the beams’ size (by simply changing the
phase mask on the spatial light modulator) enables to switch from a demultiplex
solution [Fig. 4.18(d)] to a strong single output waveguide structure [Fig. 4.18(b)].

Influence of the applied voltage : USBN .

The previous analysis of the influence of the shift D and the Airy beam’s size
xA has been concentrated on the highest self-focusing of the Airy beam in pres-
ence of a counterpropagating Airy beam in the transient regime. As presented
in Figure 4.16, the solitonic regime of the counterpropagating Airy beams is not
stationary but relaxes after a while (a few seconds) which lowers the waveguid-
ing quality. By applying an external bias electric field along the photorefractive
c-axis of the medium, the nonlinearity is enhanced leading to a stronger self-
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focusing effect.

Figure 4.19: Influence of the external bias electric field on the waveguiding strength and
stability, with D = −xA, PA = 60 µW and xA = 9.5 µm. (a) (resp. (c))
Experimental transverse intensity distribution of the output beam at z = L

along time and (b) (resp. (d)) temporal evolution of the energy concentrated
around the linear forward main lobe’s position and around the solitonic
output position (enhanced by the backward main lobe) for USBN = 1000 V
(resp. USBN = 1750 V).

Figure 4.19 illustrates the evolution of the output beam along time, with D =

−xA, PA = 60 µW and xA = 9.5 µm for two different external electric bias volt-
ages USBN = 1000 V and USBN = 1750 V . As the counterpropagating Airy beam
is injected at x = −xA (soliton enhanced waveguide structure), the forward out-
put intensity is mainly concentrated around two transverse positions: its linear
main lobe’s position around x = 0 and the position of the backward main lobe.
To measure and compare both distributions, we integrate the intensity around
both transverse locations as depicted on Figures 4.19(a) and 4.19(c) (green and
black frames). The temporal evolution of both outputs appear on Figures 4.19(b)
and 4.19(d) for two bias voltage values: USBN = 1000 V and USBN = 1750 V.
The external electric field enhances two parameters: the solitonic peak energy
value (almost doubling) and foremost the solitonic guide has a better waveguid-
ing efficiency than the linear forward main lobe over a longer time. While the
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1 kV-system offers a solitonic output over 1.8 s, the increase to 1750 V maintains
the solitonic guide over 2.7 s. The bias voltage presents therefore an interesting
tuning parameter to stabilize the waveguide structures over a longer time.

To summarize the influence of the system’s parameters, we present a graph
here below.
.

Parameter Symbol Values Influence

Backward beam B Higher guiding efficiency

Larger transverse shift

Beams’ shift D [0;≈ 10xA] Tune of the demultiplex

waveguiding (1-3 outputs)

Larger transverse shift

Beam’s size xA [9.5; 14] µm Decrease of the solitonic

self-focusing

Smaller transverse shift

(less deflection)

Tune of the demultiplex

waveguiding (1-2 outputs)

Bias electric USBN [0; 2] kV Increase of the solitonic

voltage self-focusing

Higher temporal stability of

the soliton
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4.5 conclusions

To conclude, we have demonstrated waveguiding achieved by a single Airy beam
and by the nonlinear interactions of counterpropagating Airy beams. In com-
parison with waveguide structures created by Gaussian beams with the same
dimensions and focusing conditions, the interaction schemes between two Airy
beams offer larger waveguide possibilities thanks to their unique Airy shape and
properties. (i) A single Airy beam photoinduces a waveguide with two outputs
(see Chapter 2). (ii) Two counterpropagating Airy beams induce multiple output
waveguiding structures that cannot be achieved with only two counterpropagat-
ing Gaussian beams. (iii) The resulting waveguiding remains possible even for
transverse shifts of the interacting beams that by far exceed the beam waist. The
numerical simulations presented in this paper motivate an experimental imple-
mentation of counterpropagating Airy beams induced optical routing.

In a second step we have demonstrated large multi-scale incoherent interac-
tions between two counterpropagating Airy beams. By tuning the transverse
shift, the beams’ size and the nonlinearity strength, the self-focusing Airy beam
is attracted towards the multiple lobes of the counterpropagating Airy beam.
The experimental results confirm the complex and various waveguide structures
achievable by only the interaction of two counterpropagating Airy beams. We
present a number of easy-to-tune parameters that enable to photoinduce effi-
cient waveguides with large transverse shifts, with multiple outputs and stable
over a few seconds. Unfortunately these solitonic structures are not steady-state
and therefore do not enable the waveguide study using a Gaussian probe beam.

It is worth stressing that all previous cases of the numerical simulations of
this chapter correspond to stationary situations in that the waveguide remains
fixed when time increases above a transient duration of several order of the
relaxation time of the crystal [Fig. 4.20(a)]. As we will discuss in detail in the
next Chapter 5, we do find parameters where the waveguiding is not stationary
anymore. In Figures 4.20(b) and 4.20(c) when increasing the nonlinear param-
eter Γ , we observe a situation where the intensity profile at the crystal output
varies periodically [Fig. 4.20(b)] or irregularly [Fig. 4.20(c)] over time. These first
spatiotemporal dynamics observed in a counterpropagating Airy beam system
encourage further investigation into the relations between the Airy properties
and the solitonic interactions.
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Figure 4.20: Spatiotemporal dynamics for counterpropagating aligned Airy beams. Nor-
malized transverse intensity at z = L (output of F and input of B) versus
time: (a) stationary (Γ = 9), (b) time periodic (Γ = 15.2), (c) irregular (Γ = 21).



5
T H E O R E T I C A L S PAT I O T E M P O R A L D Y N A M I C S O F
C O U N T E R P R O PA G AT I N G A I RY B E A M S

We analyze theoretically the spatiotemporal dynamics of two incoherent coun-
terpropagating Airy beams interacting in a photorefractive crystal under focus-
ing conditions. For a large enough nonlinearity strength the interaction between
the two Airy beams leads to light-induced waveguiding. The stability of the
waveguide can be tuned via the crystal length, the nonlinearity strength and the
beam’s intensities and is improved when comparing to the situation using Gaus-
sian beams. We further identify the threshold above which the waveguide is no
longer static but evolves dynamically either time-periodically or even chaotically.
Above the stability threshold, each Airy-soliton moves erratically between privi-
leged output positions that correspond to the spatial positions of the lobes of the
counterpropagating Airy beam. These results suggest new ways of creating dy-
namically varying waveguides, optical logic gates and chaos-based computing.

The context of this chapter is related to the following publication:
Noémi Wiersma, Nicolas Marsal, Marc Sciamanna, Delphine Wolfersberger, "Spa-
tiotemporal dynamics of counterpropagating Airy beams”. In Scientific Reports,
5.2011 (2015).
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5.1 dynamics of nonlinear systems

Instabilities, self-oscillations and chaos are fundamental processes in nonlinear
optics. Multiple beams’ interactions in nonlinear media, even without external
feedback, can give rise to beam self-trapping and spatial solitons that may fur-
ther destabilise to spatiotemporal dynamics and then, eventually, chaos [145–
147]. Multiple parameters, such as the optical intensity or the misalignment of
the interacting beams [148, 149], enable to control the sequence of bifurcations
from stationary dynamics to deterministic chaos [150].

5.1.1 Route to chaos

As seen in Chapter 1 (see Section 1.3.3), interacting solitons enable various op-
tically induced waveguiding structures in the nonlinear media. The control of
the mutual exchange of energy between interacting solitons enables to create all-
optical guiding, dividing and switching devices [129, 134] and even over large
distances in different media [151].
Interestingly the onset of spatiotemporal instabilities observed for various beams’
configurations in different nonlinear media presents the same evolution scenario:
initial diffraction, collapse to the soliton shape, then time-periodic dynamics to
chaotic instabilities, where the interacting solitons rotate and twist around each
other in an erratic way [67, 128, 135, 138, 152].

As an example Figure 5.1 depicts the numerical evolution of dynamics of
two aligned counterpropagating Gaussian solitons in a biased photorefractive
medium for increasing crystal length [153]. While Figure 5.1(a) summarizes all
the encountered dynamics of the output beam on a so-called bifurcation diagram,
Figures 5.1(b) to 5.1(e) depict the intensities at one output face of the crystal
along time. The displayed intensity is the sum of the output beam (red plot) and
the counterpropagating input beam (green plot). When both intensity distribu-
tions overlap, the resulting plot is yellow. This case is first seen on Figure 5.1(b),
where the both intensities are constant along time and remain at the transverse
position ∆x/w = 0. The first change is observed at L/Ld = 0.5, where the out-
put beam (red) shifts towards ∆x/w = −1. In particular Figure 5.1(c) depicts the
spatiotemporal evolution of the optical intensity along time for L/Ld = 1, where
the beam’s shift reaches ∆x/w = −2. It is worth noting that this shift does not
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Figure 5.1: Bifurcation diagram, displaying transition to chaos in a 1D model of counter-
propagating self-trapped beams. Insets depict characteristic time dependence
of the beams along the diagram, at one of the crystal faces. The steady beam
(green) is the entering beam, the unsteady beam (red) is the exiting beam.
Adopted from [153], source: www.lpr-journal.org.

appear immediately in time. However, the shifted position remains steady-state
afterwards, hence only the final shifted position is marked on the bifurcation
diagram. When further increasing the crystal length, the system starts to evolve
towards oscillating dynamics 5.1(e) and finally bifurcates to chaotic dynamics as
the output beam moves erratically along the transverse x-axis [Fig. 5.1(f)].
The gradual bifurcation from a stable steady-state then oscillating regime to un-
stable dynamics represents a typical route to chaos of an optical system. Apart
from Gaussian beams, other diffractive beam profiles such as optical vortices
present solitonic behavior under self-focusing conditions and exhibit similar dy-
namical routes to instabilities [139].

5.1.2 Dynamics of interacting Airy beams

As already mentioned, under high-focusing conditions the Airy beam undergoes
soliton-like behavior. The collision of two Airy beams also suggests a large va-
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riety of interaction schemes. The solitonic interactions have been demonstrated
in the spatial domain using co-propagating Airy beams [140–143] and in the
temporal domain using Airy pulses [154, 155]. In Chapter 4 we have studied the
counterpropagating configuration in photorefractive media and we have shown
more complex stationary waveguide structures than those induced by interact-
ing Gaussian beams. A single Airy beam leads to waveguiding structures with
multiple outputs [127]. The additional interactions induced by a counterpropa-
gating beam allows for achieving complex waveguiding structures that would
otherwise require the counterpropagating interactions of more than two Gaus-
sian beams. But these stationary structures only exist for a limited range of the
nonlinearity strength.
As the interactions of two counterpropagating conventional beams lead to spa-
tiotemporal dynamics, we question whether self-accelerating Airy beams un-
dergo a similar spatiotemporal behavior and how the Airy properties influence
the dynamics. To describe these dynamics, we analyze the spatiotemporal evo-
lution of the output position of the forward off-shooting soliton at the crystal’s
output plane z = L.
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5.2 theoretical results

5.2.1 General overview

As in previous Chapter 4, we study the nonlinear interactions of two counter-
propagating Airy beams in a photorefractive medium. We consider the propaga-
tion of two identical one-dimensional Airy beams along the longitudinal z-axis.
The two Airy beams are initially injected at each side of the crystal and are both
defined by the lobe size xA and aperture parameter a.

The interaction scheme and evolution are illustrated on Figure 5.2. As pre-
sented on Figure 5.2(a), both Airy beams are aligned with their deflection along
the direction of the photorefractive c-axis. When a positive external electric
field is applied on the crystal, both Airy beams turn into off-shooting solitons
[Fig. 5.2(b)]. Through the Pockels effect multiple waveguiding structures are pho-
toinduced, which have been extensively studied in the previous Chapter 4. If we
increase the nonlinearity of the system via the parameter Γ (Γ > 10), we demon-
strate the existence of a threshold curve above which non steady-state dynamics
appear. To describe the dynamics observed, we study the spatiotemporal evo-
lution of the off-shooting soliton at z = L. As illustrated on Figure 5.2(c), the
soliton’s output position starts evolving along time presenting, amongst others,
an oscillating behavior.

We have identified that the interaction schemes of two counterpropagating
beams depend on two main control parameters, that are the nonlinear coupling
constant Γ and the crystal length L (as in reference [153]). Figure 5.3 shows a sta-
bility diagram in the plane of the following parameters: (Γ ,L). It depicts the vari-
ous spatiotemporal dynamics of the forward-propagating "off-shooting" soliton’s
intensity at the output I(x, z = L) for two different intensities F0 = B0 =

√
1.5

[Fig. 5.3(a)] and F0 = B0 =
√
6 [Fig. 5.3(b)]. For an Airy lobe’s waist xA = 10 µm

(a = 0.1), the parameter range corresponds to 1 cm 6 L 6 10 cm and to an
external bias electric field of a few kV/cm (Γ ∈ [3, 30]).
For low Γ -values (Γ = 3), the nonlinearity Γ applied on the system is not high
enough to create locally a large refractive index variation inside the crystal by
the photorefractive effect and therefore to induce an off-shooting soliton. Still,
the propagation of each Airy beam optically induces a curved waveguide along
the deflecting Airy trajectory [36]. We call this region ’static waveguide without
off-shooting soliton’.
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Figure 5.2: Two counterpropagating Airy beams’ configuration in a photorefractive crys-
tal. (a) Linear propagation in an unbiased photorefractive crystal (Γ = 0).
(b)-(c) Nonlinear interaction scheme of two counterpropagating Airy beams
in an externally biased photorefractive crystal: (b) intensity field inside the
crystal induced by weak nonlinear interactions, (c) spatiotemporal evolution
of the forward "off-shooting soliton" for stronger nonlinear interactions at
z = L.

For a larger nonlinearity strength, each counterpropagating Airy beam under-
goes self-focusing and a part of the beam’s energy turns into an "off-shooting"
soliton [Fig. 5.2(b)]. We define the existence of an off-shooting soliton, when a
peak of at least 10% of the input intensity exits at the crystal’s side z = L and can
be clearly distinguished from the linear output beam. Since almost half of the
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Figure 5.3: Typical dynamical behavior of counterpropagating Airy beams in the param-
eter plane (Γ , L): (a) with low input intensities (F0 = B0 =

√
1.5), (b) with

high input intensities (F0 = B0 =
√
6).

energy is stored in the first Airy lobe [107], the nonlinearity of the system mostly
influences the main lobes and the off-shooting solitons. The interaction of the
two counterpropagating Airy beams then leads to various new static waveguide
structures and we call this region ’static waveguide with off-shooting soliton’.
As presented in Chapter 4, the photoinduced waveguide structure enables a
Gaussian beam to exit the crystal at a single or at two output positions simulta-
neously. The parabolic trajectory of the counterpropagating Airy beams enables
waveguiding structures even for transverse shifts of the interacting beams that
by far exceed the beam waist.

When we further increase the nonlinearity Γ , the waveguide is no longer con-
stant with time but rather shows stable time-periodic dynamics: the off-shooting
soliton evolves from a constant transverse output position to an output position
that oscillates harmonically in time along the x-axis [Figs. 5.2(c), 5.4(c)]. We call
this region ’harmonic oscillations’.
Similar to the case of counterpropagating Gaussian beams [138], the critical
nonlinearity strength that delimits the onset of time-periodic oscillations of the
waveguide decreases with the increase of the crystal length L, see the line labeled
’threshold static-dynamic’ in Fig. 5.3.

For an even larger Γ and/or crystal length L, the time-periodic waveguide dy-
namics is replaced by chaotic-like spatiotemporal dynamics. The position of the
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off-shooting soliton does not vary periodically in time but rather in an erratic
way. As will be shown later, while the trajectory is erratic in time, the motion
of the off-shooting soliton is attracted towards the input positions of the lobes
of the counterpropagating Airy beam. We call this parameter region ’chaotic
waveguide’.
The critical nonlinearity leading to unstable waveguiding decreases with the in-
crease of the crystal length L, as is also true for counterpropagating Gaussian
[138] and vortex beams (see the line labeled ’threshold dynamic-unstable’ in
Fig. 5.3).

Interestingly, we identify two additional regions. In both cases 5.3(a) and 5.3(b)
the time-periodic dynamically varying waveguide may re-stabilize to a static
waveguide when increasing the nonlinearity. The off-shooting soliton stabilizes
again at a constant output position. The possibility to stabilize again the pho-
toinduced waveguiding by increasing the nonlinearity strength has not been ob-
served earlier with counterpropagating Gaussian beams and is related to the
multilobe shape of the Airy beams. Therefore, this suggests an advantage in us-
ing counterpropagating Airy beams. We also identify another parameter region
where the position of the off-shooting soliton varies periodically in time but not
in an harmonic way. We have simply called this region ’time-periodic waveg-
uide’. This specific dynamics bifurcates from the harmonic waveguide case but
is also observed as a bifurcation of the chaotic waveguide case. We shall detail
these dynamics and their bifurcations in the next section.

Similarly to other counterpropagating beams’ systems, the intensity of the
input beams is an important parameter. When increasing the total optical inten-
sity injected in the crystal through the counterpropagating beams the refractive
index variations increases, hence resulting in more nonlinear interactions; see
[Fig. 5.3(b)]. When we compare the Figures 5.3 (a) and (b), the critical nonlinear-
ity that leads to either a time-periodic waveguide or even chaotic waveguide for
a normalized intensity |F0|

2 = 1.5 [Fig. 5.3 (a)] is larger than for |F0|
2 = 6 [Fig. 5.3

(b)]. The stability of the waveguide is therefore reduced by the increase of the
optical intensity.
Finally it is worth comparing the critical nonlinearity that leads to dynamically
varying waveguide (our dashed line) in the case of counterpropagating Airy
beams with the one computed for counterpropagating Gaussian beams (dotted
line). Besides the fact that Airy-induced waveguides have more complex fea-
tures than Gaussian-induced waveguides, it appears also that, the Airy-induced
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waveguides are stable in a large range of parameters and in particular for a large
range of nonlinearity strength Γ and/or crystal length L. This unique property
of Airy-induced waveguides is related to the diffraction-free propagation and
multilobe shape of Airy beams.

5.2.2 Signature of different regimes

In this section, we analyze the nature and the evolution of the spatiotemporal
dynamics of two counterpropagating Airy beams for a fixed crystal length L

when the nonlinear coupling strength Γ is increased. Physically the nonlinear-
ity is increased through the positive bias electric field applied on the crystal
or the intensity of the laser beam. Although as mentioned earlier the stability
of the photoinduced waveguide depends on the crystal length L, the nonlin-
earity Γ and the beam intensities, we shall restrict ourselves to one case where
F0 = B0 =

√
1.5 and L = 5.5Ld. For Airy beams with the parameters xA = 10µm,

a = 0.1, it corresponds to a crystal length of L = 28mm (see arrow [Fig. 5.3(a)]).
This case illustrates the complexity underlying the sequence of bifurcations to
spatiotemporal instabilities of the waveguide [Fig. 5.4(a)]. A similar sequence of
bifurcations occurs when varying the system parameters. For each Γ -value, we
simulate the propagation of two counterpropagating Airy beams over tf = 100τ0,
where at each crystal’s side the main lobe of the counterpropagating Airy beams
is centered around x = −xA for its input position. We then display the spatiotem-
poral dynamics of the forward off-shooting soliton at the crystal’s output side
z = L along the transverse x-axis by plotting the off-shooting transverse position
versus time [Figs. 5.4(b)-(g)]. To avoid the transient dynamics, we detect the ex-
treme x-positions taken by the off-shooting soliton within the times t1 = 20τ0
and tf = 100τ0. The bifurcation diagram on Figure 5.4(a) resumes the position
of the spatial output of the off-shooting soliton during time: for each Γ -value,
the x-extrema taken by the off-shooting soliton along time are represented with
black dots.

The diagram on Figure 5.4(a) displays the route to instabilities from a sys-
tem with a weak nonlinearity (Γ = 9) to a highly nonlinear system (Γ > 16). For
Γ ∈ [9, 10.2], the bifurcation diagram displays a steady-state transverse output po-
sition of the off-shooting soliton during time [Fig. 5.4(b)]. The steady-state case
depicted in Figure 5.4(b) corresponds to the waveguide structures demonstrated
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Figure 5.4: Spatiotemporal dynamics of two counterpropagating Airy beams in a long
crystal L = 5.5Ld, with the normalized intensities F0 = B0 =

√
1.5. (a) Bifur-

cation diagram of the transverse output position of the forward off-shooting
soliton at z = L, with the transverse normalized intensity profile of backward
Airy beam at z = L. (b)-(g) Temporal evolution of the transverse output posi-
tion of the forward off-shooting soliton at z = L: (b) steady-state (Γ = 9.3), (c)
sinusoidal oscillations (Γ = 10.4), (d) second steady-state (Γ = 12.7), (e) first
instabilities (Γ = 14), (f) periodical non-sinusoidal oscillations (Γ = 14.9) and
(g) instabilities (Γ = 18). E.g. experimentally for counterpropagating Airy
beams in a SBN:75 crystal (L ∗ 5 mm ∗ 5 mm) with xA = 10 µm: L = 28mm,
Uext ∈ [500V , 900V].

in [127], where the counterpropagating Airy beams and their off-shooting soli-
tons co-exist in the crystal. When Γ ∈ [10.3, 11.8], two extrema of the x position
of the off-shooting soliton appear for a given Γ value. The time-trace of the x
position of the off-shooting soliton displays a sinusoidal evolution [Fig. 5.4(c)].
We observe a stable oscillating dynamics, where the off-shooting soliton oscil-
lates periodically around its characteristic position x = 2.5xA. The period of the
sinusoidal oscillation is about 3.5τ0, i.e. is of the same order of magnitude than
the material nonlinear optics time-scale. The amplitude of the oscillation is de-
termined by the Airy properties and in particular their deflection characteristics.
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Indeed the amplitude of the oscillation is larger for a longer crystal since by
increasing the crystal length, the counterpropagating Airy beams deflect more
before colliding. The Figure 5.4(d) shows that this oscillating soliton dynamics
re-stabilizes when increasing the nonlinearity leading to a new static waveguide
structure. This singular case will be explained in details and illustrated in Figure
5.5 (b) of the next section.

When increasing the nonlinearity strength above Γ = 13, the position of the off-
shooting soliton presents an erratic motion along the output axis x [Fig. 5.4 (a)].
Figure 5.4(e) indicates that the soliton tends to follow alternatively a complex
time-periodic, then a chaotic-like behavior. As depicted on Figure 5.4(f), when
we increase the nonlinearity (Γ = 14.8), the chaotic-like evolution of the position
of the off-shooting solution stabilizes to a time-periodic dynamics where oscil-
lations at a slower time-scale modulate the dynamics with a higher amplitude
than for the harmonic oscillation depicted in Figure 5.4 (c).

Finally when Γ > 15.3, the time-periodic dynamically varying waveguide be-
comes unstable and the position of the off-shooting soliton rotates in an erratic
way around the single Airy case position x = 0 and the counterpropagating
main lobe’s position x = −xA [Fig. 5.4(g)]. It is worth noting that for a very high
coupling strength (Γ > 16.3) the erratic motion of the off-shooting soliton encom-
passes additional attractive x-values at x ∈ {−3.2xA,−4.8xA,−6.2xA}. Interest-
ingly these x-values correspond to the respective input positions of the second,
third and fourth lobe orders of the counterpropagating Airy beam [Fig. 5.4(a)].
The characteristics of this chaotic soliton motion will be further discussed in the
next sections.
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5.3 comparison with gaussian systems

In the previous Section 5.2 we have demonstrated the existence of a threshold
curve above which non steady-state dynamics appear. For similar operating con-
ditions, this threshold is larger for interacting Airy beams when compared to
interacting Gaussian beams [Fig.5.3], hence demonstrating the larger stability
range of the photoinduced Airy waveguides.

5.3.1 Re-stabilization of the waveguide for large nonlinearity

Figure 5.5: Static waveguides: intensity fields of two counterpropagating Airy beams
inside a PR crystal under focusing conditions (L = 5.5Ld). With initial in-
tensity F0 = B0 =

√
1.5 [Fig. 5.3(a)]: (a) below the static-dynamic threshold

curve (Γ = 10), (b) re-stabilization above the static-dynamic threshold curve
(Γ = 12.5). (c) With initial intensity F0 = B0 =

√
6, on the static-dynamic

threshold curve (Γ = 7) [Fig. 5.3(b)].

As previously emphasized in Figure 5.3, dynamically varying waveguides pho-
toinduced by two counterpropagating Airy beams can re-stabilise when the non-
linearity Γ increases. So far, the dynamical behavior of two counterpropagating
Gaussian beams has only shown an evolution from a steady-state, then time-
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periodic to chaotic like regimes [153]. The Figure 5.5 compares the typical static
waveguides with off-shooting soliton that can be observed in the two stability
(Γ ,L)-diagrams [Figs. 5.3 (a)-(b)]. Figure 5.5(a) corresponds to the waveguide
structures presented in [127] where a Gaussian probe beam can be guided along
the crystal to one or two outputs.
Fig. 5.5(b) illustrates the new waveguide structure in the re-stabilization zone
(’static waveguide with off shooting soliton’ above the line labeled ’threshold
static-dynamic’ [Fig. 5.3]). This waveguide structure offers the same type of pho-
toinduced waveguides as in Fig. 5.5(a) but with a better coupling efficiency (up
to 55% instead of 40%) in the off-shooting solitons due to the stronger focusing
nonlinearity.

Figure 5.6: Linear propagation of a Gaussian probe beam through the waveguide struc-
tures induced (a),(b) in Figure 5.5(a) (below the static-dynamic threshold)
and (c),(d) in Figure 5.5(b) (above the static-dynamic threshold). Intensity
field of the guided Gaussian beam through the waveguide structure for an
input position on the (z = 0)-face of the crystal (a),(c) at 1 (induced by the
main lobe of F) and (b),(d) at 3 ′ (induced by the off-shooting soliton of B).

The waveguide strengths of the structures induced below and above the static-
dynamic threshold curves [Figs. 5.5(a), 5.5(b)] are illustrated on Figure 5.6. The
first structures in Figures 5.6(a) and 5.6(b) have already been studied in previous
Chapter 4 (see Section 4.3.3, Figure 4.12). If we compare the results with an out-
put beam guided through a waveguide structure induced in the re-stabilization
regime in Figures 5.6(c) and 5.6(d), the first observation is that the intensity
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transmitted is significantly higher. In addition we note a change in the spatial
intensity distribution of the output beam injected at 1. While one output beam is
observed at 1 ′ in the steady-state structure of 5.5(a) [Fig. 5.6(a)], the re-stabilized
waveguide of Figure 5.5(b) splits the Gaussian probe beam in two output beams
at 1 ′ and 3 hence demonstrating a stronger cross-coupling of the Airy beams for
higher self-focusing nonlinearity [Fig. 5.6(c)].

Figure 5.5(c) also presents a particular steady-state structure in the strong
intensity case F0 = B0 =

√
6 at two parameter points: (L = 5, Γ = 7.5) and

(L = 5.5, Γ = 7). Contrary to the usual steady-state case, where the counterprop-
agating Airy beam induces a transverse shift of the off-shooting soliton [127],
the off-shooting soliton changes its output position and merges exactly into the
main lobe of the counterpropagating Airy beam. In the configurations (b) and (c)
where the nonlinearity of the system is increased through Γ or the initial inten-
sity, the space-charge field photoinduced by the multiple lobe orders of the two
counterpropagating Airy beams has a significant role in the interaction schemes
in the photorefractive crystal. Although the main power is transferred into the
off-shooting soliton during the nonlinear propagation of the Airy beams [107],
the secondary lobes of the Airy beams are essential for the re-stabilization of our
system above the conventional steady-state threshold curve.

5.3.2 Chaotic motion of Airy-induced soliton

As already emphasized in Section 5.2.1, the dynamical behavior of the photoin-
duced waveguide significantly depends on the crystal length. In the ’chaotic
waveguide’ region [Fig. 5.3], we propose therefore to compare the situation of
a short crystal (e.g. L = 2.5Ld = 13mm) and the one of a long crystal (e.g.
L = 5.5Ld = 28mm). It is worth mentioning that due to their parabolic trajec-
tory, the two counterpropagating Airy beams intersect at xL=2.5Ld = 0.7xA for
the short crystal and at xL=5.5Ld = 7xA for the long crystal. As a result, the
photoinduced waveguides originate mostly from the interaction of the first and
second lobe orders of the counterpropagating Airy beams in the case of a short
crystal, and from the interaction of the four first lobe orders of the counterprop-
agating Airy beam in the case of a longer crystal. The resulting waveguiding
structure in the case of a longer crystal will be larger along the transverse x-axis
(∆xL=5.5Ld ≈ 7xA instead of ∆xL=2.5Ld ≈ xA in the case of a short crystal). Sim-
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Figure 5.7: Probability of occurrence of the position of the off-shooting soliton at the
output face of (a) a short crystal (L = 2.5Ld; Γ > 26.6) and (b) a long crystal
(L = 5.5Ld; Γ > 15.3), with F0 = B0 =

√
1.5 in both cases. The red curve

indicates as a guide for the eyes the position of the counterpropagating Airy
beam at the crystal output face. Insets represent the photoinduced waveguide
in a situation before the onset of spatiotemporal dynamics.

ilarly, in the case of a long crystal, the transverse trajectory of the off-shooting
solitons will shift from its typical transverse position xsoliton = 0 towards the
+x-direction.

In particular, as illustrated in Figures 5.4 (a) and (g) for a long crystal, under
high nonlinear conditions, the system of two counterpropagating Airy beams
shows a peculiar instability pattern: the output positions of the off-shooting soli-
ton in the unstable regime appear to be attracted toward very specific output
positions, which correspond to the respective input positions of the different
lobe orders of the counterpropagating Airy beam. Figure 5.7 depicts the statis-
tical distribution of the output position of the off-shooting soliton in (a) a short
crystal (L = 2.5Ld) and (b) in a long crystal (L = 5.5Ld) with F0 = B0 =

√
1.5. The

output positions of the off-shooting soliton are not distributed in a continuous
way but rather in a discrete way. The privileged output positions match with
the input positions of the Airy lobes of the counterpropagating backward beam
(blue zone). Also the attraction strength, measured by the highest probability in
the plotted histograms, decreases for the higher lobe orders, as the space-charge
field related to the energy distribution of the Airy beam decreases along the −x-
axis. In the short crystal case (a), the off-shooting soliton is also attracted towards
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the +x-axis, at the output positions of the Airy lobes of the forward beam (green
zone).

Such spatially localized instabilities have never been observed in an optical
system using counterpropagating beams [135, 138]. Our system based of coun-
terpropagating Airy beams therefore creates a chaotic motion of the off-shooting
soliton whose topology can be engineered by both the Airy beam properties and
the photorefractive crystal nonlinearity strength and length. Recent years have
seen a tremendous interest in applications of optical chaos for all-optical signal
processing including optical generation of random numbers. The most conclu-
sive proposals so far have used the temporal chaotic output of semiconductor
lasers [156]. The digital sampling of optical chaos allows to extract random bits
at high bit rate [157]. The extension to massive parallel computing is however
limited in that it requires either a large number of such chaotic lasers or the use
of uncorrelated emission from individual laser longitudinal or transverse modes.
In the present scheme, one has access to a chaotic output (the erratic motion of
the off-shooting soliton) that is by essence spatially multiplexed at discrete posi-
tions that match the locations of Airy beam lobes. Our findings therefore suggest
innovative ways of performing multiplexed chaos-based optical computing.
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5.4 conclusions

To conclude, the interaction of two counterpropagating Airy beams in a photore-
fractive crystal leads to peculiar spatiotemporal dynamics. The system evolves
from static to time-periodic then chaotic waveguides when increasing the non-
linearity strength and the crystal length. We demonstrated the existence of a
threshold curve above which non steady-state dynamics appear. By comparison
to similar studies using counterpropagating Gaussian beams, photoinduced Airy
waveguides are stable for a larger range of parameters. Also on the route to in-
stabilities, we identify a singular additional region where dynamical waveguides
re-stabilize to static waveguides with a better coupling efficiency. When the sys-
tem bifurcates to the chaotic-like dynamics, the off-shooting soliton moves in
an erratic way with privileged positions that match the input positions of the
multiple lobes of the counterpropagating Airy beams. Such spatially localized
instabilities suggest innovative ways of performing optical computing based on
spatiotemporal chaos. The unique properties of static and dynamic Airy waveg-
uide structures motivate experimental demonstration and implementation in dif-
ferent nonlinear optical media.
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C O N C L U S I O N S A N D P E R S P E C T I V E S

6.1 conclusions

This thesis resumes three years of research studies in essentially three fields:

• the self-focusing of an accelerating 1D-Airy beam into a solitonic structure
in photorefractive media,

• the spatiotemporal interactions of two counterpropagating solitonic 1D-
Airy beams in the nonlinear crystal,

• and the waveguiding structures induced in the medium by the propagat-
ing Airy beams.

First we have both experimentally and theoretically analyzed the solitonic
beam when off-shooting from an Airy beam propagating in a nonlinear biased
photorefractive crystal. While we were not able to observe a steady-state solitonic
regime experimentally, we have demonstrated in Chapter 2 the influence of the
parameters enhancing the nonlinearity of the system or thus the diffraction of
the beam. Because solitons are defined by the exact balance between the nonlin-
earity of the medium and the diffraction of the beam, we scanned the strength
of both effects by tuning the system’s parameters. On one hand the nonlinearity,
hence the photorefractive effect, can be increased using the external bias electric
field and the optical power. On the other hand a smaller beam’s size and a longer
propagation medium induce a larger diffraction effect, leading to stronger self-
focusing for similar or lower nonlinearity. Experimentally the high self-focusing
regime has only been observed in the transient regime. By comparison with the
Gaussian beam, the Airy beam requires a higher nonlinearity because of its al-
most diffraction-free propagation. In addition we have shown a large transverse
mobility of the output beam during the transient self-focusing regime thanks to
the parabolic trajectory and the multi-lobe structure of the Airy beam.

Afterwards in Chapter 3 we have focused our study on the transient self-
focusing regime towards the solitonic structure. As an Airy beam splits into

139
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an off-shooting soliton and a linear accelerating multi-lobe beam, we have ana-
lyzed the behavior of the accelerating structure in the presence of the solitonic
beam at the output of the biased crystal. First the multi-lobe structure is attracted
towards the off-shooting soliton. Because the transverse beam size is simultane-
ously tightening, its acceleration also increases. In relation to previous chapter,
we have also studied the influence of a background illumination on the transient
dynamics as steady-state photorefractive Gaussian solitons require a background
illumination on the medium to remain stable. While we have not been able to
stabilize the solitonic structure, the dark intensity enables the steady-state out-
put beam to remain in a focused multi-lobe regime instead of the defocusing
structure observed in Chapter 2.
The combined attraction and acceleration of the linear multi-lobe beam near the
intense off-shooting soliton can find analogies in the gravitational lensing effect
in spacetime. This phenomenon was first predicted in the general relativity the-
ory of Albert Einstein and describes the attraction and acceleration of a wave
when approaching a massive object such as a star in spacetime. By tuning the
nonlinearity of our optical system via the optical power, the self-focusing effect,
hence the gravitational lensing in our analogy, can be enhanced.

In a second step the better understanding of the physics of the self-focusing
(and in particular the solitonic) regime has encouraged us to study the guid-
ing structures photo-induced by the Airy beam in Chapter 4. Numerically we
have propagated a Gaussian probe beam in the waveguide created by a steady-
state off-shooting Airy-soliton. Thanks to the multi-lobe Airy-structure on one
side and the single solitonic guide on the other side of the crystal, we have ob-
served multiple types of waveguiding inside the same structure. Depending on
the input position, a probe beam is single-guided or demultiplexed (two output
beams).
In addition the configuration using two incoherent counterpropagating Airy
beams offers larger optical interconnects. In comparison with the beam-matter
interactions studied previously, the presence of a second beam influences the
propagation of each Airy beam and therefore of the off-shooting solitons. Ex-
perimentally we can tune the output distribution of the Airy beam by shifting
both counterpropagating beams from each other along the transverse axis. The
output beam can be shifted along the transverse axis, split into multiple beams
or concentrate into a more intense beam. The diversity of the output beam in a
counterpropagating configuration can be explained by the multi-lobe waveguid-
ing structures induced by the second beam at the output face for the off-shooting
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soliton. By tuning the transverse shift between the two counterpropagating Airy
beams and the beams’ size, we can reach larger output positions. In addition the
waveguiding effect is increased via the optical power and the electric bias field.
While we did not reach the stability of our counterpropagating solitonic beams
in the experiment, we numerically tested the photoinduced waveguide struc-
tures in the case of aligned and misaligned Airy beams. Similar to the single
Airy beam’s case, a probe beam may exit the crystal as one or two output beams.
The additional counterpropagating Airy beam however offers these two types
of waveguide for both propagation directions. Such waveguiding structures are
unique for Airy beams and could not be achieved using only two Gaussian
beams. Also experience and theory have shown that the large intensity field in-
duced by both Airy beams enables them to interconnect even when strongly
misaligned. Airy beams are therefore excellent candidates for large and complex waveg-
uiding solutions.

Finally we have analyzed the interactions of the counterpropagating Airy
beams’ configuration for increasing nonlinearity. While conventional counter-
propagating beams present an evolution from a steady-state regime to unstable
chaotic dynamics, we have questioned whether the nearly diffraction-free prop-
erty of an optical Airy beam offers a larger stability range. This matter has been
addressed in Chapter 5, where we have numerically studied the spatiotemporal
behavior of the off-shooting solitons for increasing electro-optical nonlinearity Γ
(optical power and bias electric field) and diffraction (via the length of the crys-
tal L). As for conventional beams, the off-shooting soliton is more unstable for
higher electro-optical nonlinearity and propagation distance. We have demon-
strated the existence of a threshold curve in the (Γ − L)-diagram, above which
the steady-state off-shooting soliton, studied for waveguiding in previous chap-
ters, first bifurcates towards oscillating dynamics. When further increasing the
nonlinearity of the system, the output beam evolves towards an unstable then
chaotic-like behavior. By comparison with the bifurcation route in the Gaussian
case, counterpropagating Airy beams are much more stable, hence they induce
stronger steady-state waveguiding structures. In addition the Airy properties of-
fer a few interesting singularities. Indeed we have demonstrated the existence of
peculiar steady-state regimes above the steady-state threshold. Finally the multi-
lobe structure of the counterpropagating Airy beams enable to spatially organize
the output position of the off-shooting soliton even in the chaotic-like regime. As
a consequence, the question about the stability has opened a much larger field
of spatiotemporal interactions. Interestingly the Airy distribution and properties
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increase the complexity of the system, however the second Airy spatially orga-
nizes the spatiotemporal dynamics on the system.

All along the thesis, we have considered the solitonic regime of an Airy beam,
which theoretically annihilates the fascinating properties of the Airy beam. In-
stead the intrinsic Airy features have remained throughout our experimental and
numerical work:

• multi-lobe Airy distribution: creation of demultiplexing waveguides, larger
transverse waveguiding, spatial localization of instabilities

• diffraction-free propagation: interconnection of multiple lobes of the coun-
terpropagating Airy beams over a longer distance, larger stability range

• accelerating propagation: larger transverse beams’ interconnections, sup-
port for the analogy with the gravitational framework

The results confirm the Airy beam as an ideal candidate for all-optical waveg-
uiding and suggest to deepen its study in larger optical configurations.
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6.2 perspectives

6.2.1 Stability control of the Airy-soliton

Experimental stabilization of the Airy-soliton

As emphasized all along the manuscript, the off-shooting soliton regime sug-
gests a large range of optical interconnects. Nevertheless we have not been able
to experimentally obtain a steady-state soliton. This issue should be further stud-
ied in following work as we now have a better knowledge of the origins and the
mechanisms of the self-focusing effect leading to the off-shooting Airy-soliton.
Furthermore it would be interesting to compare the stability of the solitonic struc-
ture in the single Airy beam case and with a counterpropagating Airy beam.

Theory of the self-focusing dynamics

The theoretical model used for our numerical simulations does not show a re-
laxed regime of the Airy-soliton into an accelerating Airy-like structure. As the
photorefractive effect is considered to be dominated by the drift effect (induced
by the electric bias field), we suggest to add the neglected diffusion effect in the
propagation algorithm. As shown for Gaussian solitons, both types of charge
transports have to be considered for a complete understanding of the nonlinear
photorefractive mechanisms [48]. In the Airy case the decomposition of the self-
focusing Airy beam into two beams may activate different physical mechanisms,
such as the drift effect for the off-shooting soliton and the diffusion effect for the
remaining accelerating beam.

6.2.2 Experimental waveguiding of probe beams

Theory predicts efficient single and demultiplex waveguiding structures pho-
toinduced by one or two counterpropagating Airy beams. However the unstable
transient regime of the off-shooting soliton in both configurations prevents us to
test the waveguiding effect with a Gaussian probe beam. While a counterprop-
agating Airy beam already strongly affects the output position of the forward
Airy beam (i.e. large shifts, split of the soliton’s outputs), the guiding effects of
the photoinduced structure need to be studied and confirmed with conventional
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linearly propagating probe beams.

6.2.3 Experimental study of spatiotemporal dynamics of counterpropagating Airy beams

While we have not been able to stabilize the solitonic structure of counterpropa-
gating Airy beams in the photorefractive medium, we have explored the evolu-
tion of the system when increasing the nonlinearity of the system. By tuning the
optical power, the external bias electric field and the beams’ size, we have stud-
ied the evolution of the intensity at the output of the crystal. So far the results
have not been conclusive. Indeed the output intensity seems to evolve along the
output plane and in particular along the positions of the entering counterpropa-
gating Airy beam.
But the exact observation has been prevented by mainly two obstacles. First the
imaging system used to observe the output beam also displays the reflected in-
put of the counterpropagating Airy beam, which is ten times more intense as
the output beam. As a consequence the CCD-display saturates because of the
input beam’s reflection before reaching a sufficient intensity level to analyze the
output beam.

Furthermore the SLM-modulated Airy beams are not exactly steady-state. The
intensity distribution presents fluctuations along the lobe orders which prevents
us from studying the relative evolution of the intensity distribution of the output
beam along time. While time fluctuation of an SLM-modulated optical beam can
be reduced via an appropriate calibration of the SLM, we also observed a vari-
ation of the fluctuation frequency for increasing nonlinearity. This completely
decorrelated result encourages further study of the spatiotemporal dynamics of
counterpropagating Airy beam.

6.2.4 Experimental study of the Airy-soliton in a longer propagation medium

First results presented in Chapter 2 have shown stronger self-focusing of the Airy
beam when propagating in a longer medium (here L = 2 cm instead of L = 1 cm).
In addition the experimental study of the temporal evolution of the output beam
unveils the first stable off-shooting soliton from an initial Airy beam, i.e. when
the off-shooting soliton exists over several seconds.
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Figures 6.1(a)-(e) depict the output intensity of an Airy beam self-focusing through
a 2 cm-long SBN-crystal after the external bias electric field is applied at t = 0 s.
While in the 1 cm-case the off-shooting soliton only remains up to 1 s, we observe
a steady-state soliton over 15 s [Fig. 6.1(f)]. As the bias electric field is very low
(USBN = 100 V), the new observed steady-state regime suggests that the crystal
length could enhance the nonlinear self-focusing of the Airy without crossing
the saturation threshold of the photorefractive effect. A complete study of the
influence of the system’s parameters (beam’s size and power, bias electric field)
on the self-focusing effect would enhance the comprehension of the balance of
the nonlinearity strength and the beam’s diffraction to obtain a stable and strong
soliton off-shooting from an Airy beam.

Figure 6.1: Propagation of an Airy beam through a 2 cm-long biased photorefractive
crystal, with xA = 11 µm, PA = 50 µW and USBN = 100 V. (a)-(e) Intensity
distribution of the output beam at different times. (f) Spatial evolution of the
self-focusing Airy beam at the output along time.

Furthermore the longer crystal enables the study of the possibilities of inter-
connects in the configuration using two counterpropagating Airy beams. The
longer propagation induces a larger transverse acceleration of both beams hence
suggesting larger interaction schemes combined with stronger solitonic effect
(see Fig. 6.1). Finally the theoretical study of counterpropagating Airy beams
predicts a higher instability in long media (see Chapter 5). As the behavior of
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a single self-focusing Airy beam already shows significant differences from the
1 cm-case, the experimental setup could display instabilities while avoiding the
saturation of the photorefractive effect.

6.2.5 Influence of the coherence of the interacting beams

The study of incoherent counterpropagating Airy beams has given us an exten-
sive insight in the balance between the conventional beams’ interactions and the
Airy properties. As co-propagating Airy beams present various solitonic inter-
actions when varying their transverse shift and their phase-shift, it would be
interesting to consider the impact of coherently interacting Airy beams in our
configuration.
Furthermore our study of spatiotemporal dynamics in the unstable regime has
shown a spatial distribution of the output position of the beam along all the lobe
orders of the counterpropagating Airy beam. In the case of coherent beams, the
phase is not constant along the lobe orders and suggest an alternative spatial
distribution in the high nonlinear range.

6.2.6 Interactions of Airy beams with opposite bending directions

Finally the asymmetry of the Airy beam offers a large variety of interconnections.
While we have studied Airy beams accelerating along the same transverse direc-
tion, we question whether Airy beams with opposite acceleration directions such
as on Figure 6.2(a) can interconnect and form waveguiding structures through
cross-coupling.
The first results presented in the following have been done during two student
projects I supervised:

• Thomas Bouchet, Final study projet, 2014-2015

• Quentin Groshens and Edouard Zerdoun, first year master, 2015

Study of the linear Airy beams’ interconnection range

To establish an interconnection between both counterpropagating beams, the
transverse shift D between them is tuned according to the Airy beams’ deflec-
tion. As depicted on Figures 6.2(b)-6.2(d), the normalized shift depends on the
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Figure 6.2: Interaction of counterpropagating Airy beams with opposite acceleration di-
rections in a biased photorefractive medium. (a) Interaction scheme before
propagation. (b)-(d) Intensity distribution under linear conditions when the
two Airy beams (b) do not meet (D = 2), (c) interconnect with their main
lobes (D = 2xd) and (c) interconnect with their main and second lobes
(D = 2xd − 2.25) with xd being the normalized transverse deflection of each
Airy beam.

deflection of the Airy beams hence its size xA and propagation distance (here
L/2 as they meet in the middle of the crystal). Considering L = αLd, the deflec-
tion of an Airy beam at the middle of the crystal is equal to xd(z = αL/2) = α2/4.
As a consequence the connection of both main lobes requires a shift of D = α2/2

as depicted on Figure 6.2(c). In the case of two interconnections, the transverse
shift is reduced by the distance between the first and second lobe orders being
2.25xA (here normalized at 2.25) [Fig. 6.2(d)].

Nonlinear interactions and waveguiding

The configuration of opposite accelerating Airy beams induces smaller cross-
coupling areas than in the configuration studied in our work previously. Here
the interconnection appears between the linear component of both beams. As a
consequence this study enlarges the results presented in reference [36], where the
parabolic trajectory of a single main lobe is used to create curved waveguides.

On Figure 6.3 we depict a few propagations of a probe beam through the
multi-lobe and curved guiding structure induced by two opposite Airy beams as
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Figure 6.3: Nonlinear interactions of counterpropagating Airy beams with opposite
bending directions and their waveguiding effect. Gray frame: intensity dis-
tribution of the interacting Airy beams in the biased photorefractive medium
(L = 3,Γ = 10). The other intensity distributions depict the waveguiding of a
probe beam through structures photoinduced by cross-coupling of both Airy
beams for various (Γ ,L)-parameters. In the red zone, no waveguides induced
by both interconnecting beams have been observed.

illustrated in the gray frame. By varying the crystal length L and the photorefrac-
tive nonlinearity Γ (through the external bias electric field), the interconnecting
the main lobes of the opposite beams photoinduce waveguiding structures (see
gray frame, where the significant entries are indicated with numbers). Figure 6.3
does not represent all guiding types, but already shows how a probe beam can
be guided with different output schemes depending on the (Γ ,L)-values:

• single output (Γ = 5,L/Ld = 2.75): 1→ 3 or (Γ = 12,L/Ld = 2): 3 ′ → 1 ′

• two outputs (Γ = 10,L/Ld = 3): 1→ (3, 1 ′)

• three outputs (Γ = 15,L/Ld = 2): 1→ (4, 3, 1 ′)

These first results suggest a smaller guiding range along the propagation direc-
tion but with possible larger transverse shifts. The experimental implementation
as well as the study of spatiotemporal dynamics suggest interesting outcomes.



6.2 perspectives 149

6.2.7 Enlarge the study to 2D-Airy beams in nonlinear media

More generally in this thesis we have focused our study on one-dimensional
Airy beams and their interactions in the counterpropagating configuration. The
introduction of a second dimension, i.e. using two-dimensional Airy beams, of-
fers larger interconnections between the beams because of the two-dimensional
structure and also the higher deflection of the Airy beam. In particular multiple
Airy beams can merge into a single or multiple solitons in the co-propagating
case [158]. It would be therefore interesting to study multiple two-dimensional
Airy beams in the counterpropagating case.

In addition the self-focusing effect has been studied for an Airy distribution
along the photorefractive c-axis of the crystal. Using a two-dimensional Airy
beam, one could better analyze the balance between the Airy properties and the
photorefractive nonlinear effects. In particular as depicted on Figure 6.4, the self-
focusing of the 2D-Airy beam defined along the x,y-axes only occurs along the
x-axis, which coincides with the c-axis of the photorefractive crystal. The setup
is identical to the one studied in chapters 2 and 3 [Fig. 6.4(f)].Similar to the 1D-
case, the Airy beam first undergoes transient self-focusing, where the intensity
of the first row (i.e. most intense row on the right [Fig. 6.4(a)]) shifts along the
−x-direction towards the higher lobes’ orders [Figs. 6.4(b)-6.4(d)]. In a second
step the output beam relaxes into a defocused 2D-accelerating structure [Figs.
6.4(e)-6.4(f)].
The second dimension of the Airy beam could offer a better understanding of
the physics of the self-focusing as we could spatially decorrelate the accelerating
Airy properties (here y-axis) from the solitonic behavior (along the photorefrac-
tive c-axis of the crystal, here x-axis).
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Figure 6.4: Self-focusing of an 2D-Airy beam in a biased photorefractive crystal, with
xA = 11 µm, PA = 50 µW, L = 1 cm and USBN = 4 kV. (a)-(f) Intensity
profile of the output beam for different times. (g) Schematic propagation
setup of an 2D-Airy beam in the SBN-crystal.
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A
A I RY G E N E R AT I O N U S I N G A S PAT I A L L I G H T M O D U L AT O R
( S L M )

Since the discovery of the existence of optical truncated Airy beams, many gener-
ation methods have been explored. The general principle is to modulate a Gaus-
sian beam with a cubic phase and to Fourier transform the modulated beam to
obtain an Airy beam. As mentioned in section 1.1.4, the techniques most com-
monly studied are:

• a modulation of a free-space propagating Gaussian beam with a spatial
light modulator,

• a nonlinear propagation of a Gaussian beam through a asymmetric pho-
tonic crystal.

For our experimental work, we chose the SLM-based method for the precision
and speed of the modulation.
The spatial light modulator PLUTO of Holoeye is a phase only spatial light mod-
ulator, where the Gaussian beam is modulated through reflection, defined by
following parameters:

PLUTO Spatial Light Modulator – Microdisplay Features

Display type Reflective Liquid Crystal on Silicon (LCOS) (Phase only)

Resolution 1920 ∗ 1080
Pixel Pitch 8.0 µm

Fill factor 87 %

Active area 15.36 ∗ 8.64 mm

Addressing 8 bits (256 gray levels)

Frame rate 60 kHz

.

Figure A.1 presents the tool and the setup used in our experiment. Thanks to
a beam splitter placed in front of the SLM, the incident Gaussian beam and its
modulated reflection are perpendicular to the SLM-plane to optimize the phase
modulation. The best resolution is guaranteed by the maximization of the inci-
dent Gaussian beam size without reaching the edges of the active area. After an
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expansion of the initial laser beam, the radius of the incident Gaussian waist is
equal to ωSLM = 3.2 mm. Because the phase modulation is optimized for an
optical polarization along the larger side (horizontal in our experiment), a polar-
izer is also placed after the beam expansion (not illustrated on figure A.1).

Figure A.1: SLM-based Airy beam generation. (a) Spatial Light Modulator PLUTO Holo-
eye. (b) Schematic view of the experimental setup. (c) Illustration of the SLM-
setup in our experiment.

In reference [17], Christodoulides et al. introduces the modulation phase for a
one- or two-dimensional Airy beam. The modulation device is addressed with
phase functions via standard graphics cards as extended monitor device. Then
we use a Matlab-generated grey-level image to induce a spatial phase modula-
tion with following script:

%% Generation of the SLM mask

% number of points on the x- and y-direction mask

pix_SLM = 1080;

% phase modulation of Christodoulides [-20pi:+20pi]

% to be modified for other Airy sizes

phase_max=4*pi;

% Creation of the 1D axis

x=linspace(-phase_max/2,phase_max/2,pix_SLM);

% Creation of the mask matrix

phi_1D= repmat((x.^3)/3,pix_SLM,1);
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phi_2D=phi_1D+phi_1D ’ ;
phi_1D = mod(phi_1D, 2*pi ) ;
phi_2D = mod(phi_2D, 2*pi ) ;

% Save image in the folder
g1=figure ;
imagesc(phi_1D) , colormap(gray) ;
axis off
fnum=’airy_1D_mask.png ’ ;
print (g1 , ’-dpng ’ ,fnum) ;

g2=figure ;
imagesc(phi_2D) , colormap(gray) ;
axis off
fnum=’airy_2D_mask.png ’ ;
print (g2 , ’-dpng ’ ,fnum) ;

Figure A.2: Experimental optical beam after a 2D cubic phase modulation through the
SLM. Airy-like intensity distribution after the Fourier transformation. Right
corner: phase modulation applied on the SLM.

The SLM-modulation masks obtained correspond to those presented in refer-
ence [17] by Christodoulides. However, a post-modulation has to be added. As
illustrated on figure A.2, the outcome beam does not have the predicted Airy
profile, but seems to have an additional modulation along both transverse axes.
In reality the SLM reflects not only the Airy beam, but many diffraction orders.
Therefore the output beam observed in figure A.2 contains multiple superim-
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posed diffraction orders of the modulated beam. To only keep one Airy beam,
we need to select the first diffraction order of the output beam.

Figure A.3: Airy beam generation and isolation through a cubic phase and a phase grat-
ing using an SLM.

A classical method is the use of a prism, but its separation effect can also be in-
duced by the SLM as illustrated on figure A.3. Indeed by adding a phase grating
in the beam modulation, which is summed to the initial cubic phase mask [Fig.
A.3(b)], the superimposed diffraction orders can be separated as depicted on
figures A.3(a) and A.3(c). Afterwards we select the first order diffraction beam,
presenting an Airy distribution, using a slit (for the 1D-case) or a hole (for the
2D-case).
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As introduced in Chapter 2, the analysis of the solitonic behavior of an Airy
beam requires a lobe’s waist around 10 µm. Intuitively the Airy beam’s param-
eters, the truncation a and the lobe’s waist xA, depend on the focusing power
of the Fourier transform lens and the SLM-modulation. A theoretical approach
is also suggested by Mazilu et al. in reference [19], where the initial and output
parameters are linked through following equations:

xA =
cmfTF

k
, (A.1)

a =
1+ (M2)

2

2cm2ωSLM
(A.2)

where k = 2π/λ is the wave vector of the optical beam, fTF the focal length of
the Fourier transform lens, M the beam quality factor (ideally assumed equal to
1) and cm the modulation parameter of the SLM. This last parameter is equal to
cm = 3

√
6ΦSLM/l, where l is the hologram side length and Φ the maximal phase

shift across the hologram (”phase max” in our Matlab script).
To better understand the intrinsic link between the different parameters, we first
consider the SLM-modulation cm fixed. The Gaussian beam size is also max-
imized to enhance the spatial modulation resolution, therefore ωSLM also re-
mains unchanged.
As shown in equation A.1, the focal length fTF needs to be minimized to reach
the solitonic dimensions for the Airy beam: xA ≈ 10 µm. Due to space restric-
tions induced by the opto-mechanical devices, we select fTF = 7.5 cm. In a
second step we tune the SLM-modulation by reducing the maximal phase shift
along the LCOS-display. However this leads to an increase of the truncation fac-
tor a, as described in equation A.2. As the truncation of the Airy beam has to
be limited to approach the ideal Airy profile, we have to make a compromise
between the size and the quality of the generated Airy beam. Experimentally
our system generates Airy profiles in the range of xA ∈ [9.5; 14] µm.





B
C O U N T E R P R O PA G AT I N G A I RY B E A M S I N A N O N L I N E A R
M E D I U M : E X P E R I M E N TA L S E T U P

In this section we detail the experimental setup to study two incoherent counter-
propagating Airy beams under solitonic conditions as depicted on the schematic
illustration of figure 4.15 in Chapter 4. Appendix A has shown that the genera-
tion of Airy beams with xA ≈ 10 µm requires a small focal length of the Fourier
Transform lenses, here fTF = 7.5 cm. As a consequence the distance between
each Fourier lens and the respective crystal input is equal to 7.5 cm. In addition
we place a slit after the Fourier lens and the closest to the crystal for an opti-
mized filtering of the first order diffraction of the SLM-modulated beam (being
the Airy beam here).

In the counterpropagating Airy beam case however the Airy beam generation
setup is placed on both sides of the crystal: at z = 0 and z = L. As a consequence
the two filtering slits should be placed at both ends of the crystal hence prevent-
ing any imaging setup of the output beams at z = 0 and z = L.
To overcome this problem we have added a confocal (4f)-lensing system between
the slit and the crystal on both sides. The Airy beam is therefore deferred from
the slit’s position to the input face of the crystal placed 4 ∗ f4f further along
z. As depicted on the experimental scheme of figure B.1, this 4f-based configu-
ration enables us to place beam splitters at each crystal’s end for the imaging
system. Thanks to a careful choice of imaging lenses (fCCD1 = 14.9 cm and
fCCD2 = 15.7 cm), both crystal ends are observed on the same CCD-camera
with a 20-times magnification.

On figure B.2(a) we see photographs of the complete experimental setup. The
Nd:Yag-laser ”Genesis MX SLM” in the front is the light source for generating
the counterpropagating beam (λ2 on figure B.1). The photorefractive crystal is
placed further away on the photograph and figure B.2(b) presents a zoomed pic-
ture of the crystal. As illustrated on figure B.1 both Airy beams are injected in
counterpropagating directions and their linear deflection is towards the positive
voltage side. To better link the experimental setup to the scheme of figure B.1, the
Airy beam generated with the laser λ1 and propagating along the +z-direction
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Figure B.1: Scheme of the experimental setup to study counterpropagating Airy beams
in a biased photorefractive medium.

(resp. −z-direction for the Airy beam generated using the λ2-laser) is marked in
bright (resp. dark) green.
As illustrated on figure B.2(c), the small focal length of the Fourier transform
lens induces a small spacing for the SLM-modulation (SLM-screen, beam split-
ter and Fourier transform lens). After the lens, we see the slit placed at the focal
distance of the lens.

Finally we focus on the setup of the counterpropagating Airy beam. As de-
picted on figure B.3, the complete SLM-modulation and the 4f-system are placed
on a single rail to optimize the tuning of the beam along z. As the Airy beam’s
deflection depends on the z-distance from its generation position, the crystal has
to be exactly at the distance fTF + 4f4f from the Fourier lens. The z-position of
the crystal being already fixed during the setup of the first Airy beam, the rail
enables the adjustment of the z-position of the counterpropagating Airy beam.
In addition the rail-based setup offers an easy-to-use solution to tune the trans-
verse shift D between the counterpropagating Airy beams.
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Figure B.2: Pictures of the experimental setup. (a) Overview of the complete experiment
(the laser λ1 does not appear on the picture). (b) Zoom on the photorefractive
SBN-crystal. (c) SLM-based modulation of the first Airy beam using the λ1-
laser.

Figure B.3: Zoom on the setup of the counterpropagating Airy beam on a single rail.
The Airy beam is generated after the slit (see dark green Airy shape), then
deferred 4 ∗ f2 = 40cm further at the (z = L)-face of the photorefractive
crystal.





C
N U M E R I C A L S I M U L AT I O N M O D E L

The theoretical study in this thesis of the propagation of one-dimensional Airy
beams in a photorefractive medium is based on a (2D+1)-dimensional simula-
tion model called the Fast Fourier Transform (FFT) Beam Propagation Method
(BPM). In this appendix we consider for illustration the configuration of two
counterpropagating beams as in chapters 4 and 5 as depicted on figure C.1(a).
For the numerical simulations of the single Airy case (chapters 2 and 3), the
same algorithm is used but with the backward beam switched off.

Figure C.1: Interaction scheme of counterpropagating beams in a biased photorefractive
medium (a) in 3D and (b) in 2D (used for the numerical calculation in this
thesis).

The beam propagation method is generally used to simulate the propagation
of optical beams in optical slowly varying medium such as a photorefractive
crystal. This numerical technique is based on a two-step principle:

• the spatial propagation of the beam through the medium along z (see fig-
ure C.1(b))

• calculating the nonlinear response of the crystal (i.e. the internal space
charge field)

As depicted on figure C.2 we calculate the two phases in a loop along time
to complete the nonlinear process induced by the beam-matter interactions. As
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presented in the following paragraphs, both steps can be calculated separately
during each time loop using the FFT BPM method and the equations 4.3-4.6 gov-
erning our photorefractive system (see Chapter 4).

Figure C.2: Evolution diagram of the algorithm to simulate the beam propagation in a
photorefractive medium. Left: temporal evolution of the space charge field.
Right: Fast Fourier Transform Beam Propagation Method at each time step
∆t.

c.1 calculation of the beam propagation

The general mathematical form of an optical beam F propagating in a nonlinear
medium is expressed as following:

∂F

∂z
= (D̂+ Ŝ)F, (C.1)

where D̂ is the linear diffraction operator and Ŝ the nonlinearity operator taking
into account the photoinduced refractive index change. As we consider two one-
dimensional incoherent beams, there is no interference pattern and we can write
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their propagation equations as following:

i
∂F

∂z
+
∂2F

∂x2
= ΓE0F, (C.2)

−i
∂B

∂z
+
∂2B

∂x2
= ΓE0B, (C.3)

By identification, the canonical form of the operators are:

D̂F = i
∂

∂z
, (C.4)

ŜF = −ΓE0, (C.5)

D̂B = −i
∂

∂z
, (C.6)

ŜB = ΓE0. (C.7)

Finally the beam propagation calculation along the z-direction of equation C.1
can be described as a step-wise propagation from z to z+ ∆z [Fig. C.1(b)] as a
combination of the diffraction and nonlinear effects:

F(x, z+∆z) = exp
((
D̂+ Ŝ

)
∆z
)
F (x, z) , (C.8)

≈ exp
(
D̂∆z

)
exp

(
Ŝ∆z

)
F (x, z) , (C.9)

where equation C.9 includes the first order simplification of exp
(
(D̂+ Ŝ)∆z

)
.

The numerical implementation of the beam propagation is calculated in the
Fourier plane for the diffraction effect. Then we add in the spatial domain the
guiding effect induced by the refractive index structure. Finally after the propa-
gation from z = 0 to z = L (or backward for B) is completed, the optical field
distribution I0 is updated using equation 4.6 [Fig. C.2]. Hence the photorefrac-
tive space charge field of the medium will be modified as detailed in the next
paragraphs.

c.2 calculation of the nonlinear photorefractive response of

the medium

As presented in Chapter 4, the evolution of the space charge field inside the pho-
torefractive medium evolves with the optical field distribution I0 and following
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a relaxation-type dynamics. To approximate the solution E0(t) of the temporal
differential equation 4.5 we consider the numerical Runge-Kutta method RK4.
Considering known the value of E0 and the updated intensity distribution I0 at
the time t, the new value of the space charge field at the time t+∆t is equal to:

E0(t+∆t) = E0(t) +
1

6
(K1 + 2K2 + 2K3 +K4), (C.10)

(C.11)

where K1, K2, K3 and K4 are the increments gradually based on E0 and the pre-
vious increments:

K1 = −
1

τk

(
E0(t) +

I0(t)

1+ I0(t)

)
, (C.12)
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2
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)
, (C.13)
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1
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, (C.14)

K4 = −
1

τk

(
E0(t) +∆tK3 +

I0(t)

1+ I0(t)

)
, (C.15)

τk =
τ

1+ I0
. (C.16)

c.3 initial conditions of the physical system and tuning param-
eters

Finally to simulate the spatiotemporal nonlinear beam-matter interactions we
compute the presented time-loop algorithm in Matlab. All the physical param-
eters are normalized and without dimensions in our numerical simulations. In
particular we can cite the transverse axis x/xA (xA being the waist of a Gaussian
beam or of the main lobe of the Airy beam) or the propagation distance z/Ld
(Ld the diffraction length).
The steps in the spatial domain (∆x, ∆z) and in time ∆t have been chosen to opti-
mize the spatiotemporal resolution and the calculation time. It is worth noticing
that the large transverse intensity distribution and its multi-lobe structure im-
pose a very large spatial resolution comparing to the Gaussian beam. As a conse-
quence the calculation time is much larger for Airy beams as a large transverse
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dimension with high resolution has to be considered. In particular we chose
∆x/xA ∈ [0.1, 0.2], ∆z/xA < 1 and ∆t = τ/20.





A U T O F O C A L I S AT I O N P H O T O R É F R A C T I V E D E FA I S C E A U X
D ’ A I RY

Depuis toujours, la lumière est un moyen courant pour transmettre de l’information.
Les premières communications optiques connues à ce jour ont eu lieu dans
l’espace libre, où une source lumineuse émet des rayons optiques se propageant
tout autour de la source. Un fameux exemple sont les systèmes de guidage pour
les transports maritimes, aériens et terrestres, dans lesquels une lumière indique
la présence d’obstacles et des directions à suivre. Un faisceau lumineux peut
également contenir un message, tel en codage Morse, où la succession de flash
de lumière dans le temps peut tout d’abord être traduit en lettres, puis en mots.
Communiquer dans l’espace libre exige cependant des sources larges et intenses.
Par ailleurs le message peut être intercepter par tout récepteur autour de la
source.
Dans les années 60 des chercheurs présentent pour la première fois des systèmes
de communication optique avec un matériau de guidage: il s’agit de la fibre op-
tique. Grâce à cette nouvelle technologie, il est possible de transporter des sig-
naux optiques de communication sur d’importantes distances à faible puissance
et de l’adresser à un récepteur précis. Depuis, le développement de la fibre ainsi
que d’appareils pour la communication optique a connu un réel essor et ce no-
tamment au travers de quatre inventions clés:

• L’invention du LASER (fin des années 50) pour la générations de faisceaux
confinés sur une longue distance.

• Le développement de la fibre optique à faibles pertes (années 70) pour
transporter le signal avec un ratio de transmission optimal.

• L’invention de l’amplificateur à fibre optique (années 80) pour augmenter
la portée de transmission dans des réseaux de fibre optique.

• L’invention du réseau de fibre de Bragg (années 90) pour des récepteurs de
signaux précis et robustes.

Par ailleurs, la progression exponentielle des réseaux de fibre optique a égale-
ment encouragé la recherche pour des solutions de guidage optique à petite
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échelle. En particulier la découverte de matériaux non linéaires photosensibles a
conduit à l’étude de structure guidantes photo-induites. Depuis bientôt 50 ans,
l’étude et le contrôle de la diversité et de l’efficacité de tels guides photo-induits
dans des milieux non linéaires est devenu un domaine de recherche important
pour les communications tout-optiques.

Récemment la découverte de faisceaux dits non-conventionnels a entraîné un
nouvel essor dans la physique optique. L’innovation réside dans leur propaga-
tion invariante et dans leur capacité à se régénérer. Grâce à leur capacité à se
propager plus loin et à rester inchangés à l’encontre d’obstacles, ces faisceaux
permettent d’approfondir la portée des applications optiques au-delà des limita-
tions spatiales des faisceaux conventionnels. Un type de faisceau en particulier
a suscité beaucoup d’intérêt: le faisceau d’Airy.
Découvert il y a dix an, le faisceau d’Airy présente, outre son caractère invari-
ant et auto-régénérant, la propriété unique de se propager selon une trajectoire
parabolique. La propagation curviligne du faisceau d’Airy a introduit une nou-
velle famille d’onde optique, celle des faisceaux accélérant. L’existence de lumière
courbe semble contredire les principes fondamentaux de la physique générale,
ces faisceaux accélérant sont cependant formés par un grand nombre de rayons
lumineux se propageant selon différentes trajectoires rectilignes. Ainsi la trajec-
toire accélérante Airy doit sa forme courbe à la sommation de toutes ces trajec-
toires non parallèles, ceci définit la caustique du faisceau accélérant.
L’introduction de faisceaux non conventionnels définis par leur caustique a ou-
vert de nouveaux domaines de recherche et a mené à de nombreuses nouvelles
applications dans la physique optique et, plus généralement, dans la physique
ondulatoire (ex. plasmonique, électronique).

Comme évoqué précédemment, l’étude de faisceaux dans des milieux non
linéaires est un domaine important de la physique optique. Lors de sa propa-
gation au sein du matériau, le faisceau optique interagit avec la matière tout
au long de sa trajectoire, ce qui, par la suite, influence son propre comporte-
ment telles la forme et la trajectoire. Ces dernières décennies, les matériaux non
linéaire photoréfractifs ont été l’objet de vastes études, de par leur grande sen-
sibilité optique ainsi que grâce aux nombreuses applications qu’ils offrent, en
particulier dans le domaine du traitement tout-optique de l’information.
A ce jour, l’état de l’art dans la physique du routage optique suggère notamment
l’emploi de faisceaux intenses invariants, ditssolitons, pour induire optiquement
des structures guidantes. De tels solitons optiques sont présents dans des milieux
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non linéaires, dans lesquels la nonlinéarité du matériau compense exactement
l’élargissement naturel (la diffraction) d’un faisceau optique afin d’induire un ef-
fet d’auto-focalisation. Dans le but d’explorer les possibilités de routage dans
un tel système solitonique, les chercheurs se sont penchés sur leur propagation
en variant la nonlinéarité du système ainsi qu’en faisant interagir plusieurs soli-
tons. Cependant la nature des faisceaux conventionnels limite spatialement la
distance d’inter-connections, même pour l’interaction de multiples faisceaux.

Dans ce manuscrit de thèse, j’étudie la propagation non linéaire de faisceaux
d’Airy dans des conditions fortement focalisantes ainsi que les possibilités de
guidage d’onde qui en résultent. A ce jour, la génération et le contrôle de fais-
ceaux d’Airy ont été étudiés dans des milieux linéaires, dans lesquels les pro-
priétés d’invariance, d’auto-régénération et d’accélération confirment des appli-
cations prometteuses dans des systèmes à longue portée. Dans des conditions
non linéaires focalisantes cependant, le faisceau d’Airy ne conserve pas ces pro-
priétés. Selon des études théoriques, lorsque l’on augmente la nonlinéarité focal-
isante, il se divise en un soliton intense émis et un faible faisceau accélérant.

c.4 auto-focalisation d’un faisceau d’airy

En théorie, un faisceau d’Airy suit un comportement solitonique dans des con-
ditions auto-focalisantes [93, 96, 104]. A ce jour, la recherche expérimentale a dé-
montré une faible auto-focalisation accompagnée de la préservation de la forme
(i.e. resserrement des lobes Airy) lorsque l’on applique un champ électrique ex-
térieur faible. Cet effet s’observe dans le régime stationnaire pour une faible
nonlinéarité focalisante ou pour un faisceau d’Airy de plus grande taille. Mais
que se passe-t-il au-delà de cette limite ? Alors que Figure D.1 présente un fais-
ceau d’Airy dans le cas d’un voltage élevé (Ee = 4 kV/cm), il est important de
souligner que la mesure a été prise bien après l’allumage du champ électrique
(t = 10 s). Comme nous le montrerons dans la section suivante, sous l’effet d’une
forte nonlinéarité focalisante (Ee > 2 kV/cm), le faisceau d’Airy se transforme
dans un premier temps en une structure solitonique avant de se relâcher vers
une structure stationnaire similaire à celle d’Airy avec des lobes resserrés, voire
défocalisés pour une force auto-focalisante supérieure. Dans cette section nous
nous intéressons à l’état transitoire solitonique maximal du faisceau d’Airy au
cours de son auto-focalisation.
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Les résultats ci-dessous sont la première démonstration expérimentale du soli-
ton Airy et nous nous pencherons également sur la forme et le comportement
du Airy-soliton en fonction des paramètres du système. Comme la forme soli-
tonique suit théoriquement une propagation rectiligne, contrairement au fais-
ceau Airy qui possède une accélération transverse, un pic d’intensité à la même
position transverse que le faisceau d’Airy initial sera étudié comme solution soli-
tonique Airy.

Figure C.3: Observation expériementale d’un faisceau d’Airy stationnaire après auto-
focalisation à deux puissances optiques différentes [Fig. 2.8] après 10 s: (a)-(c)
PA = 1 µW, (d)-(f) PA = 43 µW. Distribution d’intensité de sortie du fais-
ceau d’Airy à z = L (xA = 14 µm) (a),(d) après propagation linéaire, (b),(e)
après propagation non linéaire focalisante (Ee = 4 kV/cm). (c),(f) Profils
d’intensité des faisceaux de sortie linéaire et focalisé.
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c.4.1 Montage expérimental

Pour étudier l’existence d’une structure solitonique durant l’auto-focalisation,
nous propageons un faisceau d’Airy unidimensionnel dans un cristal SBN pho-
toréfractif. Comme l’indique la Figure D.2, le faisceau d’Airy est généré grâce à
une modulation d’un faisceau gaussien dans l’espace de Fourier. La propagation
du faisceau d’Airy ainsi que son accélération transverse démarrent à l’entrée du
cristal z = 0.

Figure C.4: Observation expérimentale de l’auto-focalisation d’un faisceau d’Airy 1D
dans un cristal photoréfractif non linéaire: zoom sur la propagation du fais-
ceau d’Airy à l’intérieur du cristal.

Un champ électrique extérieur est appliqué le long de l’axe c du cristal pour
exciter la nonlinéarité photoréfractive focalisante (Ee ∈ [0, 4] kV/cm) et la distri-
bution Airy du faisceau est selon ce même axe. Le faisceau d’Airy se propage
donc le long de l’axe z, partant de z = 0 à z = L (L étant la longueur du cristal)
et son champ optique ψ(x) est défini selon les conditions initiales suivantes:

ψ(x)z=0,t=0 = Ai

(
x+ xd
xA

)
exp

(
a
x+ xd
xA

)
, (C.17)

avec xA le rayon du lobe principal, a le paramètre de troncature et xd la déflec-
tion linéaire transverse du faisceau d’Airy. Comme pour le régime solitonique
pour les faisceaux Gaussien conventionnels nous prenons comme longueur car-
actéristique autour de xA = 10 µm avec a ≈ 0.05 etx = 0 correspond en z = L à
la position linéaire de sortie du faisceau d’Airy.



174 numerical simulation model

c.4.2 Propriétés solitoniques d’un faisceau d’Airy auto-focalisant

La Figure D.3 illustre le soliton émis du faisceau d’Airy initial. Sur les Figures
D.3(b), D.3(c) on voit apparaître un pic intense entre le premier et le second lobe
du profil Airy linéaire de sortie, ce qui diffère de la structure multi-lobe auto-
focalisée de Figure D.1.

Figure C.5: Soliton expérimental émis d’un faisceau d’Airy auto-focalisant pour un
rayon de lobe décroissant [Fig. D.2]: (a)-(c) xA = 14 µm, PA = 7 µW (d)-
(f) xA = 9.5 µm, PA = 43 µW. Distribution d’intensité du faisceau d’Airy à
z = L (a),(d) après propagation linéaire, (b),(e) durant la propagation forte-
ment non linéaire et (c),(f) profils d’intensité transverse des faisceaux de
sortie linéaire et solitonique.

Comme l’accélération du faisceau d’Airy dépend du paramètre xA (selon
x
(
A − 3)), les deux faisceaux d’Airy ont des distances de déflections différentes

[Figs. D.3(a), D.3(d)] et leurs solitons émis sont prévus respectivement à xsol,14µm =

−12.4 µm = −0.8xA et xsol,9.5 µm = −39.7 µm = −4.2xA. Si l’on compare les
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positions des pics prédits théoriquement et ceux obtenus expérimentalement, ils
coïncident exactement. Ces résultats sont donc la première démonstration ex-
périmentale du soliton Airy.
Tout comme les études théoriques [93, 104, 107], nos résultats expérimentaux
présentent également une faible structure accélérante. Cette structure apparaît
proche de la sortie linéaire x = 0 et est notamment visible dans le cas d’un petit
xA, car la déflection plus importante permet de distinguer la sortie linéaire et la
position du soliton (flèche verte).

Figure C.6: Influence de la non linéarité électro-optique sur le soliton Airy à la sortie
du cristal [Fig. D.2]. Profil d’intensité transverse du soliton émis (a) pour
puissance optique croissant (xA = 14 µm, Ee = 4 kV/cm) et (b) pour un
champ électrique croissant Ee (xA = 9.5 µm et PA = 7 µW). Le profil de
sortie linéaire est représenté en noir.

Par ailleurs la Figure D.4 illustre l’influence des paramètres optique (la puis-
sance [Fig. D.4(a)]) et électronique (le champ électrique extérieur [Fig. D.4(b)])
sur le faisceau solitonique transitoire lors de l’auto-focalisation du faisceau d’Airy.
Dans les deux cas, nous observons une augmentation de l’effet solitonique, à
savoir un pic plus intense et plus resserré à la position théoriquement prédite
pour le soliton. Ces résultats sont en accord avec la physique de l’effet pho-
toréfractif, comme la modulation locale de l’indice de réfraction est égale à
∆n = ±n0

3

2 reff(Eoptique + Eélectrique).

Finalement nous présentons le premier soliton Airy expérimental observé
durant le processus d’auto-focalisation d’un faisceau d’Airy dans des condi-
tions non linéaires biaisées. La structure solitonique confirme les prédictions
théoriques, qu’un faisceau d’Airy se transforme en un soliton émis et une struc-
ture accélérante. En jouant sur les paramètres de nonlinéarité (puissance op-
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tique et champ électrique) ainsi que sur les paramètres de diffraction (taille
du faisceau et la longueur de propagation), il est possible d’améliorer l’auto-
focalisation du faisceau d’Airy et d’induire des faisceaux très intenses et forte-
ment décalés (plusieurs multiples de la taille du premier lobe) le long de l’axe
transverse du cristal. Cependant cette structure solitonique n’est pas stable et
dans la prochaine section nous nous intéressons à l’évolution temporelle de tout
le processus d’auto-focalisation du faisceau d’Airy.

c.4.3 Propriétés transitoires d’un faisceau d’Airy auto-focalisant et ses analogies avec
le lentillage gravitationnel

Récemment des chercheurs ont démontré que la propagation d’ondes optiques
dans un milieu non linéaire (nonlinéarité non locale thermique) mène à une mod-
ification non locale de l’indice de réfraction qui agit comme un potentiel grav-
itationnel et qui, par conséquent, modifie la propagation d’un faisceau d’Airy
d’une manière similaire à l’effet résultat de la théorie de la relativité générale.
En particulier l’indice de réfraction jour le rôle d’un objet massif qui, d’après la
théorie de la relativité générale, induit un effet de lentillage gravitationnel et des
forces de marée sur les rayons optiques à cause de l’espace-temps courbe [123].
Dans ce contexte il est intéressant d’analyser en quelle mesure l’auto-focalisation
du faisceau d’Airy partage une analogie optique similaire avec les effets de grav-
itation.

Les Figures D.5(a)-D.5(e) présentent l’évolution du profil d’intensité du fais-
ceau de sortie au cours du temps. A partir de t = 0 s, l’intensité se déplace vers
la position du seconde lobe Airy linéaire, jusqu’au-delà vers les lobes d’ordre
supérieur [Fig. D.5(a)-D.5(b)] et atteint un déplacement transverse maximal à
x = −34 µm au temps t = 640 ms [Fig. D.5(c)]. Par la suite nous nous référons à
cette position par ’la position du soliton émis’ (ligne pointillée rouge). Puis, sur
une durée plus longue, on observe une dynamique de relaxation vers un profil
redistribué de type Airy similaire à celui du faisceau linéaire initial à t = 0 s
[Fig. D.5(d)-D.5(e)].

Les dynamiques spatiotemporelles du faisceau d’Airy non linéaire peuvent se
résumer par trois étapes. (i) Tout d’abord le faisceau de sortie se focalise vers la
ligne pointillée rouge sur Fig. D.5(b). (ii) Puis on observe deux structures de fais-
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Figure C.7: Dynamique transitoires du soliton Airy (xA = 10 µm). (a)-(e) Profil
d’intensité transverse du faisceau de sortie dans des conditions non linéaires
focalisantes (Ee = 4 kV/cm, PA = 400 µW) au cours du temps. (f) Pro-
fil d’intensité 1D au cours du temps. (g) Illustration schématique du fais-
ceau accélérant interagissant avec le soliton d’émission, ainsi que leur profils
d’intensité au cours du temps.

ceaux co-existant [Figs. D.5(c), D.5(d)]: le-dit soliton émis à x/xA = −3.7 et une
structure accélérante à x/xA = 0.5 avec des intensités similaires. (iii) Finalement
les deux solutions précédentes fusionnent et forment une nouvelles structure
similaire au Airy sur une durée plus longue. Telles les dynamiques de relax-
ations d’un soliton spatial issu d’un faisceau Gaussien auto-focalisé [48, 108, 113,
128, 129], le faisceau accélérant se redistribue avec des lobes moins focalisés et
un pic d’intensité redéplacé vers l’axe +x [Fig. D.5(f)].

La Figure D.6(a) présente le lentillage gravitationnel induit par la déflection
du faisceau accélérant pour une puissance optique croissante. Tel pour les pro-
priétés d’auto-focalisation du faisceau Gaussien [48, 67], le temps du transi-
toire vers l’auto-focalisation est réduit, lorsque l’intensité optique d’entrée aug-
mente: une plus grande intensité réduit le temps de réponse du processus. Par
ailleurs l’augmentation de la puissance optique modifie les propriétés transi-



178 numerical simulation model

Figure C.8: Effet de lentillage expérimental auto-induit par le faisceau d’Airy auto-
focalisé. (a) Position transverse normalisée xd du pic de sortie en fonction
du temps pour une puissance optique croissante. (b) Effet d’accélération nor-
malisée: accélération normalisée et rayon du lobe principal x0 du faisceau
d’Airy attiré non linéairement vers le soliton émis pour une puissance op-
tique croissant PA.

Figure C.9: Influence de l’illumination de fond sur le faisceau auto-focalisé transitoire et
final: (a) décalage du faisceau xd (paramètre d’attraction) (b) et la distance
inter-lobes x0 (proportionnelle au cube à l’accélération).

toire d’auto-focalisation. Tel sur la Figure D.6(a), lorsque la puissance augmente
de PA = 250 µW à PA = 300 µW (courbes vertes à jaunes), le déplacement
maximum n’augmente pas linéairement, mais saute de la position du second
lobe précédent (x/xA = −2.25) à la position théorique du soliton émis de sortie.
Lorsque la puissance est encore plus grande (PA > 700 µW), le décalage maximal
du faisceau continue à croître mais sature au troisième lobe (x/xA = −3.7). En
modifiant la puissance optique, il est donc possible d’équilibrer entre la diffrac-
tion et la nonlinéarité et ainsi de régler notre système non linéaire d’un faible
interaction (P 6 250 µW) à une forte interaction(P > 250 µW) entre le paquet
d’onde et la structure solitonique.



C.4 auto-focalisation d’un faisceau d’airy 179

Le soliton émis non seulement attire le faisceau accélérant, mais influence
également son accélération telles les forces des marée dans le lentillage gravi-
tationnel. La Figure D.6(b) illustre l’accélération maximale normalisée pour une
puissance optique croissante PA. L’accélération augmente par trois (PA = 200 µW
) voire par sept (PA = 900 µW) par rapport à la valeur initiale. Par ailleurs nous
observons un resserrement des lobes ce qui traduit une présence de forces de
marée durant le régime de formation du soliton (t < 500 ms). La force gravita-
tionnelle exercée sur les différents lobes varie d’un lobe à une autre, ce qui est dû
à la distance variable entre le lobe et le soliton ainsi qu’à cause de la variation du
potentiel gravitationnel photoinduit du faisceau accélérant. Cet effet induit des
forces gravitationnelles qui déforment la structure du paquet d’onde lorsqu’il se
propage et tendent à resserrer les lobes.
Sur Fig. D.7(a), pour I/Id = 15 l’auto-décalage du faisceau d’Airy observé
précédemment est réduit durant le transitoire de xd,noId = −3.7xA à xd,I/Id=15 =

−1.5xA. Contrairement à la situation sans illumination de fond, ou la structure
de type Airy de la phase (iii) est superposée à celle du faisceau d’Airy initial
[Fig. ??(f)], rajouter Id permet au faisceau accélérant de rester décalé même dans
le régime stationnaire (décalage maximum de −xA for I/Id = 30). Tel illustré
sur Fig. D.7(b), l’éclairage de fond influence également l’effet d’auto-focalisation
à la fois durant le régime transitoire comme stationnaire. En particulier nous
continuons à observer de l’auto-focalisation du faisceau accélérant après t > 8 s.
En termes de lentillage gravitationnel, l’éclairage de fond nous permet de con-
trôler la nonlinéarité du système et ainsi l’attraction et la force des marée ap-
pliquée sur la faisceau d’Airy [Fig. D.7(a)-D.7(b)].

En résumé ce travail est la première analyse des propriétés d’auto-focalisation
transitoire d’un faisceau d’Airy dans un milieu non local non linéaire. L’évolution
transitoire implique à la fois de l’attraction comme l’accélération du faisceau
d’Airy initial, effets dus au soliton d’émission. Ces observations sont analogues
à l’effet de lentillage gravitationnel quoiqu’auto-induite ici par un seul faisceau
optique. Le faisceau d’Airy accélérant crée un espace-temps transitoire courbe
qui défléchit la propagation de la lumière durant un court instant, avant de dis-
paraître et de restaurer un profil Airy similaire à celui du début. Les propriétés
du lentillage gravitationnel, i.e. déflection et accélération, peuvent être toutes
deux contrôlées tout-optiquement en modifiant la nonlinéarité photoréfractive.
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c.5 résumé

c.5.1 Interactions de deux faisceaux d’Airy contrapropageants

guides d’onde créés par un seul faisceau d’airy Avant d’analyser
l’interaction de multiples faisceaux d’Airy, nous nous concentrons tout d’abord
sur les possibilités de guidage que peut offrir un seul faisceau d’Airy dans
des conditions solitoniques. Après avoir étudié précédemment la nature et le
contrôle du soliton Airy, nous nous examinons numériquement les structures
d’indice de réfraction photo-induites à l’intérieur du cristal non linéaire. A ce
jour les faisceaux d’Airy ont suscité beaucoup d’intérêt notamment pour leur
propriété d’accélération parabolique. Dans la Référence [36], Denz et al. utilise la
trajectoire parabolique du faisceau d’Airy pour créer des guides d’onde courbes.
Dans ce paragraphe nous augmentons la nonlinéarité pour activer l’auto-focalisation

Figure C.10: (a) Distribution d’intensité normalisé d’un faisceau d ’Airy auto-focalisé
se propageant dans un cristal photoréfractif non linéaire, xA = 7.5 µm et
L = 1 cm, (b) profils d’intensité transverses correspondant.

solitonique et pour obtenir ainsi un profile solitonique et accélérant superposés.
La distribution d’intensité résultant est présentée sur Figure D.8, où le fais-
ceau d’Airy linéaire initial se transforme en un soliton émis intense et un faible
faisceau accélérant. Par l’effet photoréfractif, en particulier l’effet Pockels, cette
distribution d’intensité photo-induit localement une augmentation d’indice de
réfraction. Pour guider un signal optique test dans cette structure, nous consid-

érons trois positions d’entrées [Fig. D.8]:
1 Entrée du lobe principal (z = 0)

2 Entrée du second lobe (z = 0)

1 ′ Sortie du soliton émis (z = L)

Tel présenté sur la Figure D.9, le type et l’efficacité du guide dépend de la po-
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Figure C.11: Propagation linéaire du faisceau test dans la structure guidante de Figure
D.8: (a1) distribution d’intensité et (b1) profils d’intensité transverses du
faisceau gaussien guidé le long de 1 → 1 ′, (a2)-(b2) guidé le long de 1 ′ →
(1, 2), (a3)-(b3) guidé le long de 2→ 1 ′.

sition d’entrée choisie par le faisceau gaussien test. Un faisceau d’Airy photo-
induit deux types de guides d’onde: un avec une sortie [Figs. D.9(a1)-(b1)] ou
avec deux sorties [Figs. D.9(a2)-(b2)]. Nous démontrons que l’efficacité de guidage
est supérieure lorsque la propagation débute dans le guide solitonique. Par
ailleurs la structure multi-lobe du faisceau d’Airy offre un guidage à sorties
multiples, ce qui ne peut pas être obtenu avec un seul faisceau gaussien, et
s’appuie donc sur les propriétés uniques du faisceau d’Airy. En comparaison
avec les structures guidantes créées par les faisceaux gaussiens avec les mêmes
dimensions et conditions de focalisation, la forme et les propriétés uniques Airy
offrent des possibilités de guides d’onde bien plus larges. Ces résultats démon-
trent également que, bien que le guidage est bi-directionnel (i.e. un faisceau test
gaussien est guidé le long de la structure dans les deux directions), l’asymétrie
du guide d’onde mène à des positions de sortie ainsi qu’à des efficacités de
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guidage différentes selon la position d’entrée du faisceau test.

étude numérique de l’interactions de deux faisceaux d’airy con-
trapropageants Dans un second temps nous étudions la propagation de
deux faisceaux d’Airy auto-focalisés contrapropageants dans un cristal photoréfrac-
tif ainsi que les interactions faisceaux-matière. Figure D.10 illustre le schéma-
type d’interactions, dans lequel un faisceau d’Airy aller ("F" comme forward en
anglais) est lancé à z = 0 dans la direction +zet un second faisceau d’Airy se
propage dans le sens opposé −z depuis l’autre face du cristal en z = L ("B"
comme backward en anglais) . Les accélérations des deux faisceaux d’Airy sont
dans le même sens +x tel présenté sur la Figure D.10.

Figure C.12: Schéma d’interaction type de deux faisceaux d’Airy contrapropageants
dans un cristal photoréfractif linéaire.

Figure D.11 présente la structure guidante photo-induite par deux faisceau
d’Airy contrapropageants désalignés. L’utilisation d’une configuration avec des
faisceaux contrapropageants présente plusieurs avantages par rapport au cas "un
seul faisceau d’Airy":

• Symétrie: dans le cas où les deux faisceaux d’Airy sont alignés selon l’axe
transverse x, nous avons des structures guidant à une sortie ainsi qu’à
plusieurs sorties dans les deux sens de propagation +z et −z,

• Décalage transverse: les décalages transverses des solitons émis (dans les
cas F et B alignés comme désalignés) permettent des distance transverses
bien plus importantes lors du guidage optique (plus de 4xA dans le cas
alignés, plus de 6xA dans le cas désalignés de la Figure D.11).
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Deux faisceaux d’Airy contrapropageants permettent de créer des structures de
guidage complexes qui, dans le cas de faisceaux gaussiens nécessiterait sinon
des interactions de plus de deux faisceaux gaussiens.

Comme l’efficacité de guidage dépend de la force d’auto-focalisation du mi-
lieu, qui cependant détériore le profil accélérant, les guides photo-induits par
des faisceau d’Airy solitoniques nécessitent de trouver un équilibre entre la di-
versité de forme proposée par les propriétés Airy (multi-lobes, trajectoire courbe)
et l’efficacité solitonique.

Dans un second nous démontrons également expérimentalement des interac-
tions à de larges échelles multiples entre deux faisceaux d’Airy contrapropageants
incohérents. Cette configuration et les résultats obtenus sont la première étude
expérimentale d’interactions entre des faisceaux d’Airy et la Figure D.12 illustre
le schéma du montage. Nous démontrons que la présence du second faisceau
d’Airy induit une structure d’indice de réfraction plus complexe, ce qui modifie
la trajectoire du premier faisceau d’Airy. En réglant les différents paramètres du
système, le faisceau d’Airy auto-focalisant est attiré vers les lobes multiples du
faisceau d’Airy contrapropageant.
Les résultats expérimentaux confirment les structures de guidantes complexes
et variées qui peuvent être obtenues avec les seules interactions de deux fais-
ceaux d’Airy contrapropageants. Comme l’indique le tableau ci-dessous, nous
présentons une série de paramètres facilement réglables permettant de photo-
induire des guides d’onde avec de larges décalages, plusieurs sorties et stables
sur plusieurs secondes.
.
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Paramètre Valeurs Influence

Faisceau contrapropageant Plus d’efficacité de guidage

Plus de décalage transverse

Décalage du faisceau [0;≈ 10xA] Réglage du nombre de sorties

du guide (1-3 sorties)

Plus de décalage transverse

Taille du faisceau [9.5; 14] µm Moins d’auto-focalisation

solitonique

Moins de décalage transverse

(moins de déflection)

Réglage du nombre de sorties

du guide (1-3 sorties)

Champ électrique USBN [0; 2] kV Plus d’auto-focalisation solitonique

Meilleure stabilité temporelle du soliton

c.5.2 Dynamiques spatiotemporelles théoriques de deux faisceaux d’Airy contrapropageants

Pour approfondir l’étude de l’interaction de deux faisceaux d’Airy, nous intensi-
fions les conditions focalisantes. La stabilité peut être réglée grâce aux paramètres
cités ci-dessus. Les guides photoinduits par deux faisceaux d’Airy apparais-
sent alors plus stables que ceux photoinduits par deux faisceaux gaussiens un-
der focusing conditions. Au cours de notre études exhaustive (évolution de
la dynamique spatiotemporelle en fonction de la longueur du cristal et de la
nonlinéarité du milieu), nous observons un seuil au-dessus duquel le guide
d’onde n’est plus stationnaire, mais évolue selon des dynamiques temporelles
périodiques voire même chaotiques tel il est possible d’observer sur la Figure
D.13 . Au dessus du seuil de stabilité, chaque soliton Airy se meut de manière
erratique autour de positions de sorties privilégiées, qui correspondent aux po-
sitions spatiales des lobes du faisceau d’Airy contrapropageant. Ces résultats
suggèrent de nouveaux moyens de créer des guides d’onde dynamiques, des
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portes logiques optiques ainsi que du calcul chaotique.

c.6 conclusion

Cette thèse résume trois années de recherche essentiellement dans trois domaines:

• l’autofocalisation d’un faisceau d’Airy accélérant unidimensionnel vers une
structure solitonique dans des milieux photoréfractifs,

• les interactions spatiotemporelles de deux faisceaux d’Airy 1D contrapopa-
geants dans un cristal non linéaire,

• et les structures de guide d’onde induites dans le milieu par les faisceaux
d’Airy.

Tout au long de la thèse nous avons considéré le régime solitonique d’un fais-
ceau d’Airy, ce qui en théorie anihile les propriétés fascinantes d’un faisceau
d’Airy. Au contraire les propriétés Airy intrinsèques ont persisté à travers notre
travail numérique et expérimental:

• distribution Airy multi-lobe : création de guides démultiplexant, guidage
d’onde de plus grande amplitude transverse, localisation spatiale d’instabilités

• propagation sans diffraction : interconnection de multiples lobes des fais-
ceaux d’Airy contrapropageants sur de plus longues distances, plus grande
marge de stabilité

• propagation accélérante : meilleure capacité d’interconnection transverse,
cadre pour l’analogie avec l’espace gravitationnel

Ces résultats confirment que le faisceau d’Airy est un candidat idéal pour du
routage tout-optique et suggèrent son étude approfondie dans des configura-
tions optiques plus larges.
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Figure C.13: Guides d’onde photo-induits à l’aide de deux faisceaux d’Airy con-
trapropageants désalignés dans un cristal photoréfractif (D = 3 normalisé
selon xA). (a) (resp. (c)) Distribution d’intensité à l’intérieur du milieu et
(b) (resp. (d)) profils d’intensité transverses aux extrémités du cristal dans
des conditions linéaires (resp. non linéaires focalisantes). (e)-(f) Propaga-
tion linéaire d’un faisceau test dans la structure de guide d’onde (b): (e)
distribution d’intensité et (f) profils transverses du faisceau gaussien guidé
le long de 1→ (1 ′, 3).



C.6 conclusion 187

Figure C.14: Etude de deux faisceaux d’Airy incohérents contrapropageant dans un
cristal photoréfractif: montage expérimental.
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Figure C.15: Dynamiques spatiotemporelles de deux faisceaux d’Airy contrapropageant
dans un long cristal L = 5.5Ld, d’intensités normalisées F0 = B0 =

√
1.5.

(a) Diagramme de bifurcation des positions de sortie transverses du soliton
Airy à z = L, avec le profil d’intensité normalisé du faisceau d’Airy con-
trapropageant à z = L. (b)-(g) Evolution temporelle de la position de sortie
transverse du soliton Airy aller à z = L: (b) régime stationnaire (Γ = 9.3),
(c) oscillations sinusoidales (Γ = 10.4), (d) deuxième régime stationnaire
(Γ = 12.7), (e) premières instabilités (Γ = 14), (f) oscillations non sinu-
soidales périodiques (Γ = 14.9) et (g) instabilités (Γ = 18). P.ex. expérimen-
tation pour des faisceaux d’Airy contrapropageant dans un cristal SBN:75

(L ∗ 5 mm ∗ 5 mm) avec xA = 10 µm: L = 28mm, Uext ∈ [500V , 900V].
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La lumière qui ne file pas bien droit - Comic story about the analogy between self-
focusing of an optical Airy beam and the gravitational lensing effects in space-
time. Edited in the context of a francophone science popularization contest, ”Ma
thèse en 180s” 2016.
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