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Résumé français

Chapitre 1 : Introduction

Les expressions faciales se produisent lorsque les gens ont tendance à exprimer leurs

sentiments ou réagir à une situation. Dans notre vie quotidienne, les expressions faciales

jouent un rôle important dans la communication avec les autres. En général, elles peu-

vent se diviser grossièrement en deux catégories : macro-expression et micro-expression.

Contrairement aux macro-expressions qui durent longtemps et ont une forte manifesta-

tion sur le visage, les micro-expressions se caractérisent par un changement rapide qui

dure moins d’une demi seconde et ont une faible intensité sur des parties du visage. Les

micro-expressions apparaissent généralement dans les situations où les gens cherchent á

contrôler ou gérer leurs émotions : une micro-expression, c’est ce qu’il reste lorsque la

personne essaie de dissimuler une émotion. Généralement, dans la vie quotidienne, l’ob-

jectif principal du contrôle des émotions ou des mensonges est de lisser et faciliter les

interactions sociales, de gagner l’estime et l’affection des autres. La politesse veut que

l’on ne révèle pas les mensonges lorsqu’ils surviennent afin d’assurer un fonctionnement

social normal. Cependant, il est important de détecter les mensonges commis avec une

intention hostile. Les menteurs ne peuvent pas supprimer complètement toute expression

faciale du visage et ainsi, la manifestation de micro-expressions peut servir comme un

indice d’une tromperie. Ces propriétés inspirent les applications potentielles des micro-

expressions dans les domaines de la sécurité, de la médecine, dans la détection de mau-

vaises intentions dans un aéroport, dans la perception de distorsions psychiatriques chez

des patients, et dans l’efficacité des négociations dans les affaires.

L’objectif de l’analyse des micro-expressions dans des vidéos comprend leur détection

et leur reconnaissance. Une grande variété d’approches de détection et de reconnaissance

de micro-expressions a été exploitée au cours de la dernière décennie. Pour la détection de

micro-expressions, une idée largement utilisée est de comparer les distances statistiques
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entre des caractéristiques de la texture dérivées des différentes trames vidéo. Son principal

avantage est sa faible complexité de calcul. L’utilisation de l’information de mouvement

dérivée de la déformation du visage est un autre moyen de suivre les micro-expressions,

par ex. la méthode de flux optique [SBF+14]. Cependant, les informations de mouvement

restent souvent sensibles au bruit.

Pour la reconnaissance de micro-expressions, l’extraction des caractéristiques est l’un

des points les plus importants. De nombreux efforts ont été déployés pour l’extraction

de caractéristiques efficaces et discriminantes. Le motif local binaire (LBP-TOP), défini

à partir de trois plans orthogonaux, est l’un des descripteurs choisis en premier pour la

représentation des micro-expressions [PLZP11], en raison de sa capacité à décrire à la fois

la forme et la dynamique des informations de texture des images du visage. Cependant,

les méthodes basées sur LBP-TOP ont des difficultés à capturer les changements d’ap-

parence subtils tels que les petites rides autour des yeux ou de la bouche, et par lesquels

les résultats de la reconnaissance des micro-expressions sont dominants. Comme vari-

antes, parmi les caractéristiques existantes, les caractéristiques de mouvement dérivées

du flux optique sont choisies, en raison de leur capacité à caractériser, avec succès, des

mouvements subtils sur le visage.

Dans cette thèse, deux méthodes de détection et une méthode de reconnaissance de

micro-expressions sont proposées. Le reste de la thèse est organisé comme suit : le con-

texte de la thèse est introduit dans le chapitre 2, y compris les concepts de base sur les

macro- et micro-expressions. Le chapitre 3 introduit plusieurs descripteurs de caractéris-

tiques fondamentaux et le classificateur SVM (machine à vecteurs de support) utilisé

dans la reconnaissance de micro-expressions. Deux méthodes proposées pour la détection

de micro-expressions sont présentées dans le chapitre 4. Le chapitre 5 introduit les méth-

odes de reconnaissance de micro-expressions faciales basées sur des caractéristiques de

mouvement. Enfin, la conclusion et des perspectives sont présentées dans le chapitre 6.

Chapitre 2 : Expressions faciales

Ce chapitre présente le contexte de cette thèse : les concepts de base sur les macro-

et micro-expressions. La description de l’expression faciale et les différences entre macro-

et micro-expressions ainsi que leurs relations sont présentées. L’outil classique d’analyse

d’expressions faciales par système de codage d’actions faciales FACS (facial action coding

system) faisant usage d’unités d’action (AU) analysant les expressions est présenté. Dans
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ce chapitre, neuf bases de données sur les micro-expressions, construites ces dernières

années, sont brièvement présentées.

Les macro-expressions sont des expressions faciales qui durent plus d’une demi-seconde

et peuvent être facilement observées à l’œil nu tandis que les micro-expressions sont des

expressions faciales qui se produisent dans un temps bref qui est beaucoup plus court

que les macro-expressions. Une micro-expression révèle le vrai sentiment/émotion que les

gens essaient de cacher ou d’inhiber. L’origine de la micro-expression peut remonter à

l’hypothèse d’inhibition de Darwin [DP98] écrivant que certaines expressions faciales ne

peuvent pas s’être créées spontanément mais en fait sont exprimées pour refléter l’émo-

tion ressentie. Près de cent ans plus tard, Haggard et Isaacs [HI66a] ont rapporté trouver

des micro-expressions lors d’un visionnage de films cinématographiques, image par im-

age, dans une recherche sur l’échange thérapeute-patient. Quelques années plus tard,

en s’appuyant sur les travaux antérieurs de Haggard et Isaacs, Ekman et Frisen [EF69]

ont signalé l’existence de la micro-expression quand ils ont étudié les relations entre

le mensonge et les comportements non verbaux du corps. La capacité à identifier les

micro-expressions est une compétence importante pour lire l’émotion ressentie par une

personne. Cependant, la plupart les gens ne peuvent remarquer l’apparition de micro-

expressions, ni les reconnaître en temps réel. Elles apparaissent et disparaissent si vite

que vous les manqueriez si vous cligniez des yeux. Aussi, les scientifiques tentent-ils de

former les gens à reconnaître les micro-expressions. L’entraînement avec l’outil d’appren-

tissage de micro-expressions augmente le taux de reconnaissance des mensonges pendant

lesquels des micro-expressions se produisent. Afin d’analyser les expressions faciales, le

système de codage d’action faciale (FACS) basé sur les unités d’action faciales (AU)

fut développé par Ekman et Friesen [EF76] pour décrire et distinguer les mouvements

du visage. Une unité d’action est l’unité minimale du comportement facial, qui peut être

combinée et prise en compte pour décrire toute expression faciale. Ils ont défini 44 AU qui

sont présentées et étudiées en groupes en fonction de l’emplacement ou du type d’action

en cause.

Pour l’étude des micro-expressions, neuf bases de données ont été établies dans les

années récentes. Le tableau 1 résume brièvement ces bases de données.
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Table 1: Résumé des bases de données de micro-expressions

Base #Micro-Expressions #Participants Âge moyen #Ethnies Fps Résolution Elicitation #Catégories d’émotion FACS codé

Polikovsky 42 10 \ 3 200 640×480 Posé 6 Oui

USD-HD 100 \ \ \ 29,7 1280×720 Posé 6 Non

York-DDT 18 50 \ \ \ \ Spontané \ Non

Canal9 24 195 \ \ \ 720×576 Spontané \ Non

CASME
A

195 35 22.3 1 60
1280×720

Spontané 7 Oui
B 640×480

SMIC

SMIC-HS 164 20

26,7 3

100

640×480 Spontané 3 NonSMIC-VIS 71 10
25

SMIC-NIR 71 10

CASME II 255 35 22,03 1 200 640×480 Spontané 5 Oui

CAS(ME)2 57 22 22,59 1 30 640×480 Spontané 4 Oui

SAMM 159 32 33,24 13 200 2040×1088 Spontané 7 Oui

Chapitre 3 : Extraction et classification des caractéristiques

faciales

L’extraction et la classification de caractéristiques faciales sont les principales tâches

dans un système d’analyse le micro-expressions. L’extraction des caractéristiques faciales

et les méthodes d’apprentissage automatique sont toutes les deux essentielles pour obtenir

une excellente performance de reconnaissance. L’extraction de caractéristiques est un pro-

cessus de transformation de données brutes en vecteurs de caractéristiques qui décrivent

correctement les données de sorte que la performance du modèle construit sur des données

inconnues puisse être optimale. Une caractéristique descriptive est une représentation

d’une image pour sa caractérisation. Ce processus implique l’extraction d’informations

efficaces et l’ignorance des données non essentielles. Un bon vecteur de caractéristiques

fournit des informations essentielles et discriminantes pour des tâches telles que la dé-

tection d’objets ou la reconnaissance d’images. Une fois ces vecteurs de caractéristiques

obtenus, les vecteurs sont livrés à des classificateurs comme les SVM ou les forêts d’arbres

décisionnels (ou Random Forest) pour produire la classification.

Une brève étude bibliographique est menée dans ce chapitre sur l’extraction des carac-

téristiques faciales et leur classification. Plusieurs méthodes fondamentales pour l’extrac-

tion de caractéristiques sont examinées et toutes constituent la base pour l’extraction de

caractéristiques de micro-expressions. La plupart des travaux liés à l’analyse des micro-

expressions impliquent l’amélioration ou la combinaison de ces méthodes fondamentales.

Le principe de base du SVM est présenté, avec trois noyaux largement utilisés : à savoir

le noyau linéaire, le noyau polynomial et le noyau gaussien RBF (radial basis function).
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Chapitre 4 : Détection de micro-expressions

Les approches traitant de micro-expressions dans le domaine de la vision par ordi-

nateur consistent à détecter et classifier les micro-expressions dans des vidéos. Cela in-

spire une série d’approches pour l’analyse de micro-expressions intégrant des techniques

assistées par ordinateur. Ce chapitre présente deux axes basés sur deux nouvelles carac-

téristiques pour la détection de micro-expressions, qui seront présentées dans ce qui suit :

la projection intégrale et la distance géométrique.

Détection de micro-expression à l’aide de la projection intégrale

Dans cette section, nous proposons une nouvelle méthode de détection des micro-

mouvements en invoquant la projection intégrale (IP) [LKR17] comme caractéristique

pour décrire les changements dans des blocs divisant l’image du visage. Fondamentale-

ment, la nouvelle méthode consiste en une série d’opérations : le suivi du visage et

son traitement, le recadrage et l’extraction des visages, le calcul de la distance χ2 pour

mesurer la dissimilarité entre la caractéristique de projection intégrale de chaque trame

et celle des images de référence, et le seuillage et la détection de pics. Parmi ces procé-

dures, la projection intégrale sera présentée en détail ci-après. De façon à réduire les

effets du choix de l’image de référence, une nouvelle méthode de sélection d’une image de

référence est développée. Elle convient à la tâche de détection dans de longues vidéos en

sélectionnant automatiquement différentes images de référence. Par comparaison avec la

méthode qui choisit toujours la première image comme référence, dans le cas d’une très

longue vidéo, elle permet de réduire des erreurs s’accumulant le long d’une séquence.

Projection intégrale

En raison des difficultés pour les gens à lire les micro-expressions, il est nécessaire

de trouver des méthodes appropriées pour capter les changements subtils et rapides du

visage. L’approche IP est présentée dans ce qui suit et est considérée comme une technique

utile pour l’extraction des traits du visage. Comme l’IP peut être extrêmement efficace

pour déterminer la position des caractéristiques, Brunelli et al. [BP93] l’ont appliqué pour

la reconnaissance du visage humain. Dans un travail récent [HZH+16a], une méthode

combinant l’IP et le LBP a été choisie pour la reconnaissance de micro-expressions grâce

à sa capacité à fournir la propriété de la forme des images faciales. L’IP est une méthode
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simple et rapide d’extraction de caractéristiques qui peut réduire les caractéristiques

d’une image 2D à une simple donnée 1D.

Soit Ω ⊂ R2 le domaine de l’image et I : Ω × D → R une séquence d’images de

niveaux de gris, où D ⊂ R est l’espace temps. A chaque point (x, y) ∈ Ω et à l’instant t,

la valeur d’intensité est notée I(x, y, t) et la formule typique de la fonction IP peut être

exprimée comme suit :

IPHt (x) =
1

y2 − y1

∫ y2

y1

I(x, y, t)dy, (1)

IP Vt (y) =
1

x2 − x1

∫ x2

x1

I(x, y, t)dx, (2)

La prochaine section présente une autre approche de détection des micro-expressions

utilisant les caractéristiques géométriques.

Détection de micro-expressions à l’aide de la distance géométrique

Dans cette section, une autre méthode de détection innovante est proposée en ex-

ploitant les distances géométriques (distances euclidiennes) entre des points clés définis

sur un visage. Les distances euclidiennes entre les points clés peuvent capturer des dé-

placements subtils le long des séquences et se sont avérées convenir à différentes tâches

d’analyse faciale. Comme le rognage et le recadrage des visages ne sont pas requis, une

faible complexité de calcul peut être obtenue en comparaison avec d’autres méthodes

d’extraction de caractéristiques de textures ou de mouvements. L’organigramme de la

méthode proposée est résumé à la Fig. 1. L’algorithme initialement extrait 49 points

clés du visage dans des séquences vidéo contenant une micro-expression dynamique, cela

du début jusqu’à la fin en passant par l’apogée, en utilisant la méthode de descente su-

pervisée [XT13]. Afin d’obtenir des localisations précises, il est important de recaler les

points clés après que l’alignement est effectué. La tâche essentielle dans l’organigramme

est "Distance géométrique (geometrical distance)", qui sera expliquée plus en détails dans

ce qui suit. L’analyse de la distance est effectuée pour le calcul de la différence le long de

la séquence vidéo et la caractéristique obtenue est fournie au SVM pour la classification

de la séquence en micro-expression (ME) / en non micro-expression (Non ME).
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Figure 1: Schéma fonctionnel qui résume les différentes étapes de la géométrie faciale méthode.

Figure 2: Une illustration des distances géométriques. (a) Emplacements des points de référence. (b)Distances
géométriques entre les points des sourcils et le point de nez (Gb). (c) Distances géométrique entre les points de
paupières (Ge). d) Les distances géométriques de la bouche (Gm), y compris les distances entre les points de la
bouche et le point sous le nez (Gu), les coins des lèvres largeur(Gl & Gr), largeur de la bouche (Gw) et hauteur de
la lèvre (Gh), respectivement.
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Distance géométrique

Dans la méthode proposée, la classification est effectuée en fonction des informations

de la géométrie des déplacements des points clés le long de la séquence vidéo, cela sans

prendre en compte toutes les informations de texture du visage. Parmi les 49 points clés,

les points du sourcil (10 points) et de la bouche (18 points) sont très sensibles à la plupart

des expressions : voir Fig. 2. Il est rainsonnable de penser que la différence géométrique

d’une micro-expression entre les images d’une séquence possède une dynamique le long de

la séquence : elle commence à partir d’une petite valeur, puis atteint un pic et finalement

retombe à une petite valeur.

Dans ce chapitre, deux méthodes de détection de micro-expressions sont proposées. L’-

analyse sur les différences de la projection intégrale permet de détecter automatiquement

les micro-mouvements avec une complexité de calcul faible. Les résultats expérimentaux

sont positifs sur l’ensemble des bases de données CASME-A, CASME-B et CASME II,

indiquant que cette méthode est capable de capter des micro-expressions dans des vidéos.

À notre connaissance, c’est la méthode la plus rapide pour la détection automatique de

micro-expressions et elle pourrait être mise en œuvre à l’avenir pour une détection en

temps réel. La caractéristique géométrique est extraite de la face alignée, sans prendre

en compte l’étape d’extraction du visage. La distance géométrique capture les petits

changements pertinents plutôt qu’une caractéristique d’apparence. Ainsi, cette fonction-

nalité est robuste à une variation d’éclairage. La performance sur quatre jeux de données

de micro-expressions faciales (telles que SMIC-sub, SMIC-HS, SMIC-NIR, SMIC-VIS)

démontre l’efficacité et le potentiel discriminant de la caractéristique géométrique. Au

cours de l’expérience, il a été remarqué que les mouvements de la tête peuvent provoquer

des détections erronées. Donc, á l’avenir, des algorithmes plus robustes devraient être

étudiés pour résoudre ces problèmes.

Chapitre 5 : Reconnaissance de micro-expressions basée sur

le mouvement

Ce chapitre présente les méthodes de reconnaissance des micro-expressions faciales

basées sur des caractéristiques du mouvement. A la suite de l’examen des approches ex-

istantes pour la reconnaissance de micro-expressions, un nouvel opérateur, appelé fusion

d’histogrammes des frontières de mouvement (FMBH), est proposé. Cet opérateur est
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calculé en combinant d’une manière non linéaire les composantes horizontales et verti-

cales du différentiel du flux optique. Il est établi en fusionnant les informations issues

de ces champs de vecteurs externes. Les mouvements inattendus causés par un décalage

résiduel apparaissant entre les images rognées de différentes trames sont supprimés et

seul le mouvement relatif est capturé. Pour la construction des histogrammes respectifs,

nous examinons également l’influence des différentes façons de construire une grille dense.

Les études actuelles calculent les histogrammes des caractéristiques du mouvement en

exploitant un nombre fixe de cases d’orientation spatiale. Notre travail étudie l’influence

du nombre de cases d’orientation et de sa rotation de manière à tester la performance

de reconnaissance. Afin d’extraire des caractéristiques discriminantes, la réduction de la

dimensionnalité par la méthode de l’ACP est appliquée car elle présente des propriétés

puissantes pour identifier la plupart des caractéristiques significatives et maintenir une

forte corrélation entre deux caractéristiques de mouvement. Enfin, le classificateur SVM

est utilisé pour la classification.

Fusion des histogrammes des frontières de mouvement : le descripteur
proposé

Le mouvement facial peut être bien décrit en associant des caractéristiques de mouve-

ment. Dans cette section, nous introduisons une nouvelle méthode de fusion de caractéris-

tiques d’histogrammes de frontières de mouvement qui est établie sur la caractéristique de

frontières de mouvement MBH. Les MBH sont calculés en termes, à la fois, des normes ou

amplitudes Mp, Mq et des angles θp and θq. Nous définissons et considérons une fonction

scalaire : α : Ω→ S1 qui est calculé en termes de θp and θq par

α(x) = Earctan(θq(x), θp(x)), (3)

où θp et θq sont définis dans Eqs. (5.3) and (5.4). La fonction α peut être facilement utilisée

pour établir un nouvel histogramme des orientations. Afin d’obtenir un histogramme

pondéré, les normesMp etMq sont combinées ensemble. Cela peut être fait en considérant

une fonction M : Ω→ R

M(x) =
√

p2
x(x) + p2

y(x) + q2
x(x) + q2

y(x) =
√
M2

p (x) +M2
q (x) (4)
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pour tout x ∈ Ω. En fait, la fonction M dans Eq. (4) est la norme de Frobenius du

jacobien de la matrice ∇F du flux optique F

∇F(x) =

(
∇p(x)

∇q(x)

)
=

(
px(x) py(x),

qx(x) qy(x)

)
. (5)

où px(x) (ou qx(x)) et py(x) (ou qy(x)) sont respectivement les d érivées de p(x) et de

q(x) selon x et y. Nous avons maintenant obtenu la fonction d’orientation α et la fonction

de pondérationM . L’étape suivante consiste à construire le nouvel histogramme. Puisque

les deux histogrammes utilisés dans MBH sont fusionnés ensemble, la méthode proposée

peut être appelée "fusion d’histogrammes des frontières de mouvement" pour "fusion

MBH" (FMBH).

Soit {Θi}1≤i≤P une collection de sous-ensembles connectés de l’espace d’orientation

S1 satisfaisant Θi ∩ Θj = ∅,∀i 6= j et ∪iΘi = S1. Basé sur une telle partition, la fusion

de l’histogramme des limites de mouvement H peut être construit avec un ensemble de

fonctions caractéristiques χi

χi(x) =

1, si α(x) ∈ Θi,

0, autrement.
(6)

et la fonction de pondération qui est la norme M telle que

H(i) =

∫
Ω
χi(x)M(x) dx. (7)

La forme discrète Ĥ de H peut être exprimée par

Ĥ(i) =
∑
x∈Z2

χi(x)M(x), (8)

pour tout x ∈ Z2, où Z2 est la grille de discrétisation orthogonale du domaine Ω.

La contribution principale, dans ce chapitre, réside dans la construction des carac-

téristiques faciales établies sur la base de champs de vecteurs de flux optiques différentiels.

Dans ce but, un mappage non linéaire a permis d’établir une caractéristique fusionnant

les champs de vecteurs de gradients respectifs des deux composantes du flux optique.

Les caractéristiques proposées sont ainsi extraites des normes de Frobenius de la matrice

jacobienne dérivée du flux optique. Pour évaluer et optimiser les performances des car-

actéristiques proposées, nous avons également étudié l’influence des différentes façons de

construire les cases (bins) de l’histogramme en fonction du nombre de cases et de l’an-

gle d’orientation initial de la première case. Les expériences menées sur quatre jeux de
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données bien connus de micro-expressions montrent que la méthode donne des résultats

prometteurs.

Chapitre 6 : Conclusion et perspectives

Cette thèse est consacrée à la détection et la reconnaissance de micro-expressions

dans les vidéos. Nous avons proposé des méthodes d’extraction de caractéristiques pour

l’analyse de micro-expressions. La contribution principale et les éventuels travaux futurs

sont présentés dans ce qui suit.

Contributions :

• principe de détection des micro-expressions basé sur la fonctionnalité IP,

• principe de détection des micro-expressions basé sur la géométrie des points clé,

• principe de reconnaissance des micro-expressions basé sur une caractéristique de

mouvement.

Travaux futurs :

• il serait utile d’étudier plus en profondeur la caractéristique géométrique pour la

détection et la reconnaissance des micro-expressions,

• il vaudrait la peine de développer des approches plus puissantes d’alignement des

visages,

• il serait utile d’explorer d’autres fonctions de mouvement, ou de combiner celles

existantes,

• il serait intéressant d’étudier l’influence de différents classificateurs par apprentis-

sage automatique pour la détection et la reconnaissance des micro-expressions,

• pour des travaux de recherche futurs dans ce domaine : plus de bases de données

sur les micro-expressions devraient être construites à l’avenir. De nouvelles bases de

données publiques et librement accessibles qui contiendraient plus d’échantillons,

des données dans un véritable environnement de mensonge, des conditions variables

d’occlusion, d’éclairage, etc. sont les bienvenues pour ce type de travail.
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Chapter 1

Introduction

In our daily life, the facial expressions play a significant role in communication with

others. People can convey their feelings by making facial expressions and can also know

the emotions of others by reading facial expressions. In general, the facial expressions are

roughly divided into two categories : the macro-expressions and the micro-expressions. In

contrast to the macro-expressions which last a long time and have strong manifestation

on face, micro-expressions can be characterized as a rapid change which last only less

than a half of second and have a low intensity in parts of the face. Micro-expressions

usually appear in situations where people want to control or manage their emotions.

For most people, the main purpose of telling lies in their daily life is to smooth so-

cial interactions, or to gain the esteem and affection of other people. Politeness com-

mands that we should not reveal these lies in order to ensure the normal social function-

ing. However, it can be important to detect lies with hostile intent. Liars cannot com-

pletely suppress facial expressions such that the manifestation of micro-expressions can

be served as leakage or deception clue. These properties inspire the potential applications

of micro-expressions in (1) high-stake situation, such as criminal investigations, airport

and mass transit checkpoints, counter terrorism ; (2) business, including the sales, coach-

ing, training, management, recruitment, leadership, business negotiations ; (3) medical

treatment, such as doctor-patient consultation. However, despite the efforts of exploiting

the micro-expression training tool by Ekman [Ekm02] for training people to recog-

nize micro-expressions with naked eyes, only few experts have the ability of capturing

micro-expressions by naked eyes. Given these difficulties suffered by the micro-expression

detection by human, the requirements towards automatic facial micro-expression analysis
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have insensitively increased in recent years. Even though the techniques in the field of

computer vision/video understanding has been widely developed, the micro-expression

analysis is still a challenging problem, since micro-expressions have the characters of brief

duration and low intensity.

The goal of micro-expression analysis consists of two tasks : the detection and clas-

sification of micro-expressions in videos. A broad variety of micro-expressions detection

and recognition approaches have been exploited in the past decade.

For micro-expressions detection, a widely used idea is to compare the statistical dis-

tances between texture features derived from different video frames, the main advantage

of which is the low computation complexity. The approaches based on this distance-based

idea take into account the basic features like the local binary patterns (LBP) [MZP14a]

and the histogram of oriented gradient (HOG) [PKO09, DYL15] to characterize changes

in the blocks of a face image. With these features in hand, the statistical distances such as

the chi-squared distance can be used to compare differences between the reference frame

and the successive frames. A micro-expression is made up of a set of successive frames,

each of which has a distance value to the reference frame. Using the motion informa-

tion derived from the face deformation is an alternative way to track micro-expressions,

e.g. the optical strain method [SBF+14]. However, the motion information is sensitive

to noise. A main directional maximal difference [WWQ+17] is proposed for solving this

problem. Using the machine learning classifiers, more advanced detection methods have

been devoted to this field, such as the temporal interpolation model [PLZP11], the re-

encoded LBP using a re-parametrization of the second local order Gaussian Jet [RHP13],

the random walk model [XFP+16] or the sparse sampling [LNSP17] combined with the

support vector machine (SVM), multi-kernel learning or random forest classifiers. In their

basic formulation, the supervised methods train a model to determine if a sequence does

or does not contain a micro-expression. Although these methods achieve better detection

performance than unsupervised models, the establishment of the training database will

cost high computation burden.

For micro-expression recognition, the feature extraction is one of the most important

steps. Many efforts have been done concerning the extraction of efficient and discriminant

features. The local binary pattern from three orthogonal planes (LBP-TOP) operator is

one of the firstly chosen descriptors for the representation of micro-expressions [PLZP11],

due to its ability to describe both the shape and the dynamic texture information of face

images. Furthermore, in order to improve the recognition results, a variety of the methods
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that combine the LBP-TOP with other descriptors have been developed, including the

LBP-STP [LHM+15], the combination of the Eulerian video magnification and the LBP-

TOP [WRS+12], the STLBP-IIP model [HWL+16] and the STCLQP model [HZH+16a].

However, these methods based on the LBP-TOP have difficulties to capture the subtle

appearance changes such as small wrinkles around the eyes or mouths, by which the

recognition results of the micro-expressions are dominated. Alternatively, motion features

derived from the optical flow are chosen due to their ability in successively characterizing

subtle movements on face. The corresponding approaches include the main direction

mean optical flow [LZY+16], the bi-weighted oriented optical flow [LSPW16] and the

facial dynamics map [XZW17].

Besides the methods listed above, the approaches, such as the tensor independent

color space model [WYL+14] and the combination of the local spatiotemporal directional

features and robust principal component analysis in [WYZ+14], as well as the method

based on the similar appearance of macro- and micro-expressions which aims to recognize

micro-expressions by training a model in macro-expressions dataset [WSF11, JBY+17],

also have obtained promising results.

Within this thesis, three methods for micro-expression detection and recognition are

proposed. The main structure of the document is outlined as follows :

• Chapter 2 introduces the background : the basic knowledge for the macro- and

micro-expression. We start this chapter from the description of the facial expres-

sion, and point out the differences between macro- and micro-expressions as well as

their relations. Then the classical facial expressions analysis tool using facial action

coding system (FACS) is introduced to make use of action units (AUs) for analyz-

ing expressions. In this chapter, nine micro-expressions databases built in recent

years are briefly introduced. Among them, three widely used databases including

CASME [YWL+13a], CASME II [WJYWZ+14] and SMIC [LPH+13] are listed in

detail. Specifically, the procedure of building databases is provided, including the

way of expression elicitation, the way of selecting micro-expressions from raw videos

and so on. The unsettled work in the establishment of micro-expressions databases

is finally discussed.

• Chapter 3 introduces several fundamental feature descriptors and the support

vector machine classifier used in micro-expressions recognition. Features include

the LBP-based features, the optical flow-based features, the histogram of oriented

gradient descriptor. Three kernels of the SVM are investigated.
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• Chapter 4 introduces our two new methods for micro-expression detection.

1. A micro-movement detection method exploiting the integral projection [LKR17]

as a feature descriptor to characterize changes in the blocks of the face im-

age is proposed. Basically, this new method consists of a series of operation :

face tracking and processing, cropping and masking faces, integral project-

ing extraction, chi-squared distance computation for measuring the integral

projection feature dissimilarity between each frame and the reference frame,

and the thresholding and peak detection on obtained chi-squared distance val-

ues. In order to reduce effects of the reference frame choice, a new reference

frame selection method is developed. It leads to the reduction of the errors

accumulating along the sequence, when compared to method which always

chooses the first frame. The proposed method is evaluated on two widely used

datasets of CASME and CASME II through experimental comparisons with

some popular feature extractors such as the OF, LBP and HOG operators.

One of the main advantages of our method is its computation simplicity : the

proposed method can obtain better or comparable results, but requiring much

less computation time than the existing models using the OF, LBP and HOG

operators.

2. A novel detection method is proposed by exploiting the geometrical distances (Eu-

clidean distance) on a face. The Euclidean distances between key points can

capture subtle displacements along sequences and are proved to be suitable

for different facial analysis tasks. Since the operation of cropping faces is not

required, a lower computation complexity can be achieved in contrast with

other texture or motion feature extraction methods. Experiments are con-

ducted on the SMIC database by comparing the proposed method against

state-of-the-art. The SMIC database consists of four sub-datasets which are

SMIC-sub, SMIC-HS, SMIC-VIS, and SMIC-NIR. Comparative experimen-

tal results demonstrate that the proposed feature descriptor yields the best

performance.

• Chapter 5 introduces facial micro-expressions recognition methods based on mo-

tion features. Upon the reviews of the existing approaches for micro-expression

recognition, a new operator, called fusion motion boundary histograms (FMBH),

is proposed. This operator is computed by combing both the horizontal and the

vertical components of the differential of the optical flow. It is established by fusing
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the information derived from these external vector fields in a nonlinear mapping

manner. The unexpected motions caused by residual mis-registration that occurs

between images cropped from different frames is removed such that the relative

motion can be captured. For the construction of the respective histograms, we also

examine the influence of different ways of building bins in a dense grid. Current

studies compute the histograms of motion features by exploiting a fixed number

of spatial orientation bins. This study investigates the influence of the number of

orientation bins and its rotation so as to test the corresponding recognition per-

formance. In order to extract discriminative features, the dimensionality reduction

method of the PCA is applied since the PCA has powerful properties to identify

most meaningful features and maintain a strong correlation between two motion

features. Finally, the SVM classifier is employed for classification. The proposed

feature is then validated and evaluated through the leave-one-subject-out (LOSO)

protocol for micro-expression recognition. Moreover, the proposed method is com-

pared to state-of-the-art methods on four well-known databases CASME, CASME

II, SMIC and CAS(ME)2. Comparative experimental results demonstrate that the

proposed FMBH feature descriptor yields promising performance.

Chapter 6 summarizes the main contributions of this thesis and gives the perspec-

tive future work.
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Chapter 2

Facial expressions

2.1 Introduction

Facial macro- and micro-expression analysis are topics of computer vision in recent

years. Both macro- and micro-expressions play different roles in a human’s life. They

are facial expressions which mainly differ from each another regarding their lasting time.

The studies associated to micro-expression begun half a century ago, and focused in the

field of psychology. Finding solutions to micro-expression related problems by computer

vision has attracted more and more attention thanks to the establishment of a broad

variety of available micro-expression datasets.

This chapter begins by giving general concepts involving facial expressions that con-

tain facial macro and micro-expressions in Section 2.2. The facial action coding sys-

tem (FACS) in Section 2.4 is specially presented, which breaks down facial movements

into a number of action units (AUs) and describes the facial changes in terms of AUs. This

coding system can be exploited as a useful tool for building macro- and micro-expression

database. Next, several micro-expression datasets are described in Section 2.5. The con-

clusion is presented in Section 2.6.

2.2 Facial Macro-Expressions

Macro-expressions are facial expressions which last more than half second and can be

easily observed by naked eyes. Most studies associated to facial expression analysis refer

to the macro-expression analysis. Facial expression is one of the most powerful channels

of communication for human beings to convey their feelings, intentions, personality and
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so on. As a non-verbal behavior, the facial expression plays an important role in our

daily life. People can express their feelings by making facial expressions and can also

communicate with others by reading facial expressions. During the past two decades,

facial expression analysis has been paid huge attention in many fields. Psychologists

studied the human psychology conveyed by the changing facial expression and computer

scientists relied on the digital process to analyze the expression.

As one of the most famous pioneers for scientific exploration of facial expression, Dar-

win [DP98] hypothesized, based on his theory of evolution, that certain facial expressions

of emotion appeared to be universal across various countries and culture. For a long time,

the universality of facial expressions has remained standing debates in the psychology.

Some emotion theorists carried out researches in various cultures to demonstrate that

there exists several universal (basic or fundamental) emotions using the same elemental of

facial muscle movements across the world [Tom84, EF86, EFO+87, Bro91, MF92, CH92].

For example, Tomkins et al. [Tom84] proposed 8 basic emotions, fear, anger, joy, sad-

ness, disgust, acceptance, surprise and curiosity. Ekman et al. [EF86] reported 7 ba-

sic facial expressions of anger, fear, surprise, sadness, disgust, contempt and happiness.

However, there exists arguments against this theory. The early opinion is culture specific

view, that what a facial expression implies is different from culture to culture [LaB47].

Ortony [OT90] questioned the assumption in theory of basic emotions and the view that

which emotions are basic ones. Russell [Rus94] also doubted the reliability of the basic

emotions concept which is plausible proposed by western psychologists and concluded

that the association between facial expressions and emotion labels may vary in widely

different cultures.

Despite the controversy, the universality theory of facial expression is widely accepted

by many researchers and has had a profound impact on the modern automatic facial ex-

pression analysis. However, according to Russell [Rus94], contempt and disgust have been

found to be confused with each other such that contempt has aroused the most contro-

versy and is thought to be the least well established of the basic emotions proposed by

Ekman and Friesen [EF86]. Thus, researchers have been focusing on developing automatic

recognition systems that recognize the six basic expressions except contempt. Automatic

facial expression recognition has drawn an increasing attention within the computer vi-

sion in recent years due to its wide applications in many areas such as human-robot

interaction [ZG00] and computer facial animation [PW08]. Fig. 2.1 illustrates samples

of seven basic facial expressions from Cohn-Kanade database (CK) [KCT00] and its ex-
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tended database (CK+) [LCK+10]. Each expression is labeled by the action units (AUs),

which will be introduced in Section 2.4.

Figure 2.1: Examples of seven basic facial expressions from Cohn-Kanade (CK) database. The gray images
are from the original CK database and the color images are samples from the extended database (CK+). Each
expression is labeled by the action units (AUs), which will be introduced in Section 2.4.

2.3 Facial Micro-Expressions

The concept of "micro-expression" is proposed by Ekman and Frisen [EF69] and

widely accepted by researchers. Micro-expressions are facial expressions that occur within

a brief time which is shorter than macro-expressions. A micro-expression is a facial ex-

pression, which reveals the true feeling that people try to hide and suppress.

Micro-expressions occur when people are trying to manage their facial expressions

purposefully. There are three major ways in falsifying a facial expression [EF75] : (1)

an expression is simulated so that you express an emotion with an expression while you

feel nothing, (2) neutralized so that nothing is manifested on your face while indeed

you do have a particular feeling, or (3) masked so that a felt emotion is covered by

other emotions corresponding to different expressions. A micro-expression is the result

of interruption, which occurs in deintensifying, neutralizing, or masking a felt facial

expression [EF75] (Page 163). When you sense from your facial muscles that you are

25



chapter2

beginning to show the true feeling, you try to conceal the expression appearing on your

face by deintensifying, neutralizing or masking it. The felt emotion remains on the face

within a fraction of a second, named micro-expressions, followed immediately by a falsified

facial expression.

There exists two features distinguishing micro-expressions from macro-expressions.

Short duration. The duration of the micro-expression is the main feature which

differentiates from macro-expression. Obviously, the duration of the micro-expression is

variable. However, the definition of the micro-expression’s duration still remains ambigu-

ous. The range of the micro-expression is firstly defined as ’40 − 200’ ms in the study

of Ekman and Friesen [EF75], followed by ’333 ms or less’ in [ER97] and ’less than 250

ms’ in [Ekm09]. Recent researchers provide different versions of definitions. Matsomoto

and Hwang [MH11] consider the micro-expression ranges from 67 to 500 ms. Shen et

al. [SWF12] suggest that a proper upper limit of duration of micro-expressions may be

around 200 ms based on their experiments’ observations. Yan et al. [YWL+13b] conduct

the study to provide evidence to define micro-expression by duration and present a dura-

tion of 170− 500 ms. Based on these observations, the duration of the micro-expression

should be further discussed.

Low intensity. Micro-expressions involve a subtle movement. They may be very brief

full (entire face), partial (only occurring in specific area) or slight (not much muscular

contraction) expressions [Ekm07]. Figure 2.2 illustrates seven micro-expressions with AUs

labels, where the AUs are depicted in Section 2.4. Comparing with macro-expressions in

Figure 2.1, micro-expressions involve low intensity of the facial muscles.

Regardless of whether they are macro or micro, facial expressions are dynamic tem-

poral process that match the time and duration of facial deformations and are described

with three important features : onset, apex and offset [Ekm09, Bet12]. The onset is the

point at which the expression starts to show up, the apex is the instant when the de-

formation of the expression reaches a peak and the offset represents the instant when

the expression fades away. Hence, the micro-expression detection is a temporal segmen-

tation of videos, which includes locating the micro-expression appearance instant and

providing the duration between the onset and offset. Fig. 2.3 present an image sequence

of the micro-expression which is labeled by ’disgust’ in CASME [YWL+13a]. A subtle

"nose wrinkling" with the label of AU9 can be observed in the third picture. Due to the

limit space, only five frames are presented including 1st(onset), 5th, 9th (apex), 13th and

16th (offset).

26



chapter2

Figure 2.2: An example of seven micro-expressions. Each micro-expression is labeled by the action units (AUs)
with detailed interpretation. Figure reprinted from [Dan10]

Figure 2.3: An example of a micro-expression sequence. Five frames are presented including 1st(onset), 5th,
9th (apex), 13th and 16th (offset).
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The origin of the micro-expression can be traced back to Darwin’s inhibition hypoth-

esis writing that certain facial expressions can not be spontaneously created but in fact

are expressed to reflect the felt emotion. In his book [DP98], he wrote :

A man when moderately angry, or even when enraged, may command the movements of his

body, but...those muscles of the face which are least obedient to the will, will sometimes alone

betray a slight and passing emotion. (Page 79).

Nearly one hundred years later, Haggard and Isaacs [HI66a] reported to find micro-

expressions when scanning motion films frame-by-frame in therapist-patient interchange

research. They watched occasionally that the expression on patient’s face changed dra-

matically within a few fraction of second. They named this expression as "micromomen-

tary expression (MME)" and found that the MME is meaningful to therapeutic process.

In the study of Haggard and Isaacs, the MME could be spotted with a slow motion

projection and could not be seen at normal rate.

A few years later, building on the earlier work of Haggard and Isaacs, Ekman and

Frisen [EF69] reported the existence of the micro-expression when they studied the rela-

tions between deception and nonverbal behaviors of the body. They indicated that : (1)

as one of nonverbal behaviors, the micro-expression may serve as leakage or deception

clue ; (2) micro-expressions occur on part of face, in other words, they may be fragments

of a squelched, neutralized, or masked display ; (3) the appearance of micro-expressions

may be similar with macro-expressions but may be greatly reduced in time ; (4) micro-

expressions can be read by expert clinical observers without the benefit of slow motion

projection, but most people without training have difficulty to detect micro-expressions ;

(5) proper training could help people improve the ability to recognize micro-expressions.

The study of micro-expression has inspired some researches concerning the measure-

ment of individual difference in emotion recognition ability (ERA) which varies across

gender, ethnicity, culture, and psychiatric status [MLWC+00]. In order to measure this

ability, Ekman and Friesen [EF74] developed the Brief Affect Recognition Task (BART)

which involves a brief facial presentation (under 200 ms). Another measurement study

was conducted by Matsumoto and his colleagues [MLWC+00], who explored a new test

named the Japanese and Caucasian Brief Affect Recognition Test (JACBART). In the

JACBART, seven basic facial expressions (anger, contempt, disgust, fear, happiness,

sadness and surprise) were utilized and displayed briefly (under 200 ms). Each facial

expression was embedded in the middle of a 1000 ms presentation of the same poser’s

neutral expression.
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Although the micro-expressions have been noted since Darwin, Porter and Ten Brink [PTB08]

were the first to verify the existence of micro-expression with a scientific study, in which

the genuine and falsified facial expressions of emotion were investigated. Their study

showed that : (1) partially supporting the Darwin’s inhibition hypothesis theory to prove

that the occurrence of inconsistent expressions were observed more frequently in masked

than in genuine expressions. However, genuine neutral expressions and neutralized ex-

pressions of felt emotion cannot be distinguished by inconsistent expressions ; (2) ques-

tioning the assumption that micro-expressions may occur on entire face, proposed by

Ekman [EF75]. In fact, experiments in this study pointed out that micro-expressions

were partially appeared, only in the upper or the lower face ; (3) partial supporting

micro-expressions as a cue to deception. Their experiments pointed out that the micro-

expressions occurred in the both genuine and falsified (including simulated, masked and

neutralized [EF75]) emotional contexts. These partial micro-expressions were reliable

indicator of the deception when they occurred in masked expressions. However, their oc-

currence in genuine expressions provides implications of false-positive errors, leading to

the questionable applications such as airline-security (potential human-rights violations).

The ability to identify micro-expressions is an important skill for reading a person’s

felt emotion. However, most people cannot recognize the micro-expressions, not even

notice their occurrence in real time. They appear and disappear so fast that you would

miss them if you blink. Thus, scientists attempt to train people for recognizing micro-

expressions. One is led by Ekman [Ekm02] and his group 1, named micro-expression

training tool (METT), which aims at training people to recognize by naked eyes seven

basic micro-expressions (anger, contempt, disgust, fear, happiness, sadness and surprise).

The alternative tool is the micro-expression training videos (METV) 2, developed by

Wezowski and his colleagues [WM16] for detecting micro-expressions on faces filmed on

videos. Training with these tools increases the accurate recognition rate of deceptions in

which micro-expressions occur.

The existence of micro-expression is relevant to deception in daily life. In the studies

of DePaulo et al. [DKK+96], lying was defined as "intentionally try to mislead someone".

Most people tell lies in every day life to smooth social interactions, to gain the esteem

and affection of other people [DK98]. Politeness commands that we should not try to

reveal these lies when they occur to ensure the normal social functioning. But it is

1. https ://www.eiagroup.com/us/training/online-training/
2. http ://www.microexpressionstest.com/
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important to detect lies told by individuals with hostile intent. The study led by Hurley

and Frank [HF11] says liars cannot completely suppress facial expressions such that the

manifestation of micro-expressions can be regarded as the deception clues.

The existence of micro-expression is related to lies in high-stakes contexts such as

criminal investigations, airport and mass transit checkpoints, counter terrorism, and so

on [HF11]. For example, if someone intends to pose a threat to airline passengers, and

is transiting a security checkpoint, he may have a fear of discovery. In order to hide the

true feeling, he will try to manage his emotion resulting in more subtle manifestation

of facial expressions. These micro-expressions can be detected by experts. In fact, the

Transportation Security Administration (TSA) of United States launched a program

called Screen Passengers by Observation Technique (SPOT), which is designed to identify

people who could pose a threat to airline passengers, depending on 94 signs of stress, fear,

or deception. There are about 3, 000 of TSA officers working at some 161 airports across

the United States. The foundation of this programme is based on the micro-expression’s

study developed by Ekman and his group [Wei10]. Detecting these lies has assumed

public safety and national security.

According to [WW12], the recognition of micro-expression is useful in business, in-

cluding the sales, coaching, training, management, recruitment, leadership, business ne-

gotiations. Research in companies led by Wezowski and his wife Kasia [WW12] prove

that the best sales people and negotiators are experts in reading body language and

micro-expressions. It is a huge advantage in business if people can see what somebody

feels.

Other applications of micro-expressions involve medical treatment, such as doctor-

patient consultation. For clinicians, being capable of perceiving facial expression may

aid in interpreting how much pain a patient is experiencing. However, some clues to-

wards individuals who would repeatedly attempt suicide are most likely to be missed by

doctors if they do not directly state the emotional impact on the patient. These clues

are the manifestation of micro-expressions. The clinicians’ person perception accuracy is

related to the ability to recognize micro-expressions on patients. The study in [EL09a]

proved that training with the METT improve the recognition of the static facial micro-

expression (use one image instead of a sequence) of those medical students identified as

good at communication with patients.

In the following, the facial action coding system (FACS) will be introduced, which is

one of the most important tools for facial expression analysis.
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2.4 Facial Action Coding System (FACS)

The previous researches on facial behavior studies depend on observers to infer from

the whole face leading to inaccurate inferences about emotions and different interpre-

tations. In order to solve this problem, Ekman and Friesen [EF76] developed a facial

action coding system (FACS) to describe and distinguish facial movement based on ac-

tion units (AUs). An action unit is the minimal unit of facial behavior, which can be in

combination accounting for any facial expression. They defined 44 AUs which are pre-

sented and learned in groups based upon the location or type of action involved. AUs are

divided into two main groups based on their location : AUs of the upper face and AUs

of the lower face. The upper and lower face AUs are illustrated in Fig. 2.4.

Figure 2.4: (a)The upper face AUs. (b) The lower face AUs. Figure from [CAE07].
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AUs involve facial muscles. Part of the action units are only associated with one facial

muscle, and some action units are controlled by several muscles. For instance, AU 15 is

the action of lip corner depressor which is controlled by Depressor anguli oris muscle.

AU 26 represents the action of chin raiser which involves Mentalis muscle, see Fig. 2.5

for an intuitive display of facial muscles.

Figure 2.5: Facial muscles. Reproduced from [Pre13].

AUs can occur singlely or in combination. In [Sch85], more than 7000 different com-

binations of AUs have been observed. The combinations of AUs can produce relatively

independent changes in appearance, changes in which one action masks another, or a new

and distinctive set of appearances. For example, the appearance changes for AU 1 + 2

are a sum of the appearance changes caused by AU 1 and AU 2 independently, without

AU distorting or masking the appearances of the other. Another combination of the AU

1 + 2 + 4 produces an appearance which is not simple the sum of the appearance of

the individual AUs, but creates new and distinctive appearance. Examples of the seven

expressions and their AU labels are shown in Figure 2.1.

The FACS provides an effective facial expression analysis tool so that any complex

expression can be analyzed by breaking it down into a series of motion units. Thus,

the FACS is considered to be a useful tool in micro-expression analysis, especially in

the establishment of the micro-expression databases, which will be introduced in the

following.
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2.5 Micro-Expression Databases

The well-established database is the foundation for developing micro-expression de-

tection or recognition system. Building a database that satisfies the different require-

ments and will be widely used for testing new algorithm is a difficult and challenging

task. For micro-expression recognition, it poses various challenges in terms of building a

standardized database, including the way of expression elicitation, the way of selecting

micro-expression from raw videos. One of the most important problem is that expres-

sions can be posed or spontaneous. Posed expressions are the artificial expressions that

a person yields when someone asked him or her to do so. It usually happens when the

subject is under observation in laboratory. In contrast, spontaneous expressions are the

ones that people produce spontaneously, when people are involved with natural conver-

sations, watching films etc. Posed micro-expressions are easy to capture and recognize,

while spontaneous expressions are difficult to be produced and selected. They are different

in appearance and temporal dynamic. Developing micro-expression analysis system im-

plies that the spontaneous rather than posed expressions are recognized. Thus, current

researchers have started focusing on building spontaneous micro-expression databases

and developing spontaneous expression analysis. According to [Bet12], "a standardized

training and testing database contains images and video sequences (at different resolu-

tions) of people displaying spontaneous expressions under different conditions (lighting

conditions, occlusions, head rotations, etc)". Nine micro-expressions databases were built

in recent years. Three of them are widely used in micro-expression analysis : (i) the Chi-

nese Academy Of Sciences Micro-expression (CASME) [YWL+13a] ; (ii) the Spontaneous

Micro-expression Database (SMIC) [LPH+13] and (iii) the improved CASME (CASME

II) [WJYWZ+14]. Following paragraphs will present these nine databases in detail.

Polikvsky’s Database [PKO09] contains 10 university student subjects (5 Asian, 4

Caucasian, 1 Indian) who were asked to perform 7 basic emotions with low facial muscles

intensity and to go back to the neutral face expression as fast as possible, trying to

simulate the micro-expression emotion. They used high speed camera with 480 × 640

resolution at a frame rate of 200fps. The drawback is that all the micro-expressions in

this database are mimic expressions instead of spontaneous ones.

USF-HD [SGGS11] contains 100 micro-expressions and 181 macro-expressions. Videos

of 47 sequences lasting on average approximately 1 minute in length were collected by

cameras at a resolution of 720 × 1280 and a frame rate of 29.7 fps. Instead of sponta-
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neous facial expressions, subjects were asked to mimic example videos containing micro-

expressions to present micro-expressions. Out-of-plane head motion was avoided in order

to decrease the difficulties of detecting micro-expressions.

York Deception Detection Test (York-DDT) [WSB09] includes fifty partici-

pants (31 females and 19 males) who are students of University of York except one ad-

ministrator, all are native English speakers, aged between 18 and 45. It was first recorded

as part of a psychological study for a deception detection test (DDT) at 25fps. All the

participants were instructed to deceive or tell the truth when describing an emotional clip

of a surgery or non-emotional film clip of a sunny beach. When they observed a surgical

procedure, they were asked to describe it as if watching a beach scene, whereas if they

saw the beach scene, they were asked to describe it as if watching a surgical procedure.

In total, the deception detection task (DDT) consisted of 20 videos which had an overall

length of 23 min and 15 seconds and each clip varied between 46 and 85 second with

a mean length of approximately 60 seconds. 18 micro-expressions [PLZP11] were found

on faces of 9 participants (3 male and 6 female) : 7 from the emotional and 11 from the

non-emotional scene. There existed only 7 frames in the shortest clip.

Canal9 [VDFS09, SGGS11] comprises 70 political debates recorded by the Canal9

local TV station, which is used for analysis of social interactions and micro-expression

research. Canal 9 database is recorded in HD format with a resolution of 720×576 and for

a total of 43 hours and 10 minutes, where 19.7% of data time are recorded in the camera

view of the full group (all people involved), 66.1% of data time is in personal shots, and

11.0% of data time is in multiple participants. Fig. 2.6 shows those three frequent camera

views. Each debate was around a main question with a yes/no answer like " Are you

favorable to the new laws on scientific research ? " In terms of gender, twenty−five women

and one hundred and sixty-five men are involved in these debates. These videos were

annotated according to socially relevant features (turn-taking, agreement−disagreement,

and role) and low level descriptors (speaker segmentation, shot segmentation and so

on). There were twenty−four sequences containing a micro-expression (each around 6

seconds) [SGGS11]. The advantage of this database is that all the micro-expressions are

spontaneous and reflect real emotions that politicians try to hide. It is a challenging task

to spot micro-expressions in this dataset due to other irrelevant facial movements and

non−frontal camera view.

The Chinese Academy Of Sciences Micro-expression (CASME) [YWL+13a]

consists of two classes : the CASME-A and CASME-B, which were recorded by BenQ
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Figure 2.6: Most frequent camera views in Canal9 dataset. Figure is reprinted from [VDFS09]

M31 camera with the resolution set to 1280×720 and Point Grey camera with resolution

of 640×480, both filmed at 60fps. Moreover, the CASME-A and B were built in different

lighting conditions, where participants from CASME-A were recorded in natural light

while the samples in class B were filmed in a room with two LED lights that brought

about uneven illumination on face. Participants (13 females, 22 males, the mean age of

22.03 years) were asked to seat in front of the 19−inch monitor with a camera on a tripod

and watch the video episodes with high emotional valence for recording their emotions.

Neutral faces are retained before and after the occurrence of each micro-expression. For

coding process, two well-trained coders comprehensively went through the recordings and

selected all micro-expressions that were no more than 500 ms or onset duration less than

250 ms because fast-onset facial expressions were considered as micro-expressions.

Some participants showed no micro-expressions. 195 short videos of 19 participants of

35 were selected, lasting 0.2 -11.7 s with an average time of 3.2 s. Most of videos contain

one micro-expression sequence with the labeled onset, apex and offset. These micro-

expressions are labeled by AUs based on FACS coding system [EF77]. The CASME-A

includes 95 micro-expressions of 7 subjects, and the CASME-B consists of 100 expres-

sions of 12 subjects. For all subjects, the number of micro-expressions range from 2 to 38.

The criteria for classifying an emotion depends on the video content, self-report of par-

ticipants. Eight classes of micro-expressions were captured including disgust 46, surprise

21, happiness 9, fear 2, contempt 2, sadness 6, repression 40 and tense 71. Unlike seven

basic facial expressions, the tense and repression emotions that frequently appear in daily

life are defined and introduced as micro-expressions in this dataset. The dataset provides

micro-expressions sequences as well as videos for detection and recognition. Fig. 2.7 illus-

trates some samples from the CASME. In fact, an image sequence consists of more than

five frames. Three key frames (onset, apex and offset) are labeled in this figure. Each
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Figure 2.7: Samples from the CASME dataset. (a) Raw images from videos. Images of first and second column
are samples from the CASME-A and CASME-B, respectively. (b) Cropped images. From left to right : disgust ,
happiness, surprise, contempt , fear , sadness, repression and tense. We provide five frames of each expression
from the onset to offset labeled with AUs. 1 − 4 columns are cropped samples of the CASME-A and the rest
belongs to the CASME-B.
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sequence is labeled as action units.

Spontaneous Micro-expression Database (SMIC) [LPH+13] was established

by the Oulu institution and has three versions according to the released time. The first

version of SMIC (referred as SMIC-sub) 3 only includes 77 video sequences of 6 subjects

data [PLZP11] recorded by a high speed camera of 100 fps. Lately, they released the

second version of SMIC which contains three subsets, including the SMIC-HS, SMIC-VIS,

and SMIC-NIR, which were recorded separately by a high speed (HS) camera of 100 fps,

a normal visual camera (VIS) and a near-infrared (NIR) camera at 25 fps, all of three

with the resolution of 640×480. However, the first version and second version only consist

of short video clips rather than long video clips. In recent times, an extended version of

SMIC (refered as SMIC-E) was released and was also divided into three datasets of the

SMIC-E-HS, the SMIC-E-VIS and the SMIC-E-NIR, in which the SMIC-E-HS includes

13 subjects data of 157 long video clips, the SMIC-E-VIS and SMIC-E-VIR both contain

8 subjects data of 71 long video clips of average duration of 5.9 seconds.

For the second version, 20 participants with a mean age of 26.7 attended the recording

experiment, among those 6 were females and 14 males, 10 Asians, 9 Caucasians and 1

African. The SMIC dataset was recorded in an indoor environment designed to resemble

an interrogation. Like the procedure of the CASME, participants were demanded to

watch highly emotional videos to induce corresponding spontaneous micro-expressions.

Each participant was recorded about 50 minutes.

Not all participants showed micro-expressions. The SMIC-HS dataset contains 164

micro-expression video clips elicited from 16 subjects (mean age is 28.1 years, 6 females

and 10 males, 8 Caucasians and 8 Asians), while both the SMIC-VIS and SMIC-NIR

consist of 71 micro-expression video clips elicited from 8 subjects. For each subject,

the number of micro-expression clips ranges between 2 and 29. These expressions are

classified into three categories : positive (happiness), negative (sadness, fear and disgust)

and surprise. The HS contains 51 positive, 70 negative and 43 surprise. Both the VIS and

NIR consist of 28 positive, 23 negative and 20 surprise. Video clips provided in the HS

are no more than 50 frames and are within 13 frames both in the VIS and NIR dataset.

Clips without micro-expressions randomly selected from the original videos were supplied

as the counterpart data for the micro-expression detection. Fig. 2.8 shows samples from

the SMIC-HS, in which (a) and (b) show samples with micro-expressions, in contrast

with samples in (c) and (d). Faces without micro-expressions can be either neutral or

3. http ://www.oulu.fi/cmvs/node/41319
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Figure 2.8: Samples from the SMIC-HS dataset. Images in (a) and (b) are samples containing micro-expressions,
while (c) and (d) provide samples without micro-expressions as a comparison. (a) and (c) Raw images. (b) and
(d) Cropped images, for (b), from top to bottom : positive, negative, surprise. We provide five frames of each
expression from the onset to offset. Assume the expression sequence has N frames, the index of these five frames
are 1, N

4
, N

2
, 3N

4
and N , respectively. Indexes in (d) are same to that in (b).
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with macro-expressions, see Fig. 2.8 (c) and (d).

Figure 2.9: Samples from the CASME II dataset. (a) Raw images from videos. (b) Cropped images. From left
to right : disgust , happiness, surprise, repression and others. We provide five frames of each expression from the
onset to offset labeled with AUs.

CASME II [WJYWZ+14] is an extended version of CASME that offers higher tem-

poral resolution (200fps), larger face size (about 280×340 pixels on facial area), more sam-

ples (255 micro-expressions 4) than the SMIC and CASME datasets. As micro-expression

is rapid facial activity with low intensity, the higher spatial and temporal resolution can

provide more detailed information on the facial muscle movement. The dataset was built

in a well-controlled laboratory environment with a proper illumination that removed light

flickering. 35 participants with a mean age of 22.03 years participated to this recording,

in which 255 short videos of 26 subjects containing micro-expressions were selected. Each

short video involves one micro-expression with the onset, apex and offset frames labeled

and action units (AUs) encoded. Five main categories are provided that cover disgust

63, happiness 32, surprise 25, repression 27 and others 99. In fact, there are also two

4. In [WJYWZ+14], the authors reported 247 samples. However, in the excel they provided, we found
there 255 samples. In the remaining of the work, we use 255.
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small classes of sadness 7 and fear 2 included in the dataset. The ’others’ emotion is

an ambiguous concept that represents other emotion-related facial movements involving

attention or tense. Fig. 2.9 describes some samples from the CASME II dataset.

Chinese Academy of Science Macro- and Micro- expression (CAS(ME)2)

dataset [QWYF16] was established by Xiaolan FU’s group from Institute of Psychology,

Chinese Academy of Science. In this dataset, researchers used Logitech Pro C920 camera

to record 22 participants’ (13 females and 9 males) response to nine chosen elicitation

videos under two light-emitting diode (LED) lights. The elicitation videos contain two

disgust-evoking emotion videos, two anger-evoking emotion videos, and five happiness-

evoking emotion video, which range from 1 minute to approximately 2 minutes and

30 seconds. The recorder’s resolution was set to 640 × 480 pixels with 30 frames per

second. As the results, 300 macro-expressions with 1303 ms mean duration and 57 micro-

expressions with 419 ms mean duration were collected.

Two well-trained FACS coders coded micro-expressions into 28 different AUs with

0.82 coding reliability between each other. These AUs were labeled by four different

emotions : positive, negative, surprise and others. The coder manager also provided the

onset, apex and offset time of each expression, while arbitrating any disagreement that

occurred between the coders.

Spontaneous Micro-Facial Movement (SAMM) [DLC+16] dataset is published

by Adrian K. Davison and his colleagues, see a sample set on Fig. 2.11. The SAMM

dataset is recorded by a Basler Ace acA2000-340km, with a grey-scale sensor, at 200 fps

and 2040 × 1088 pixels resolution. Two LEDs arrays were applied as the light source

to avoid flickering during high speed recording. The majority of the elicitation were

video clips chosen by researcher online based on the participant’s questionnaire before

experiments. Two different duration groups are used to calculate the frequency occurrence

for all AUs. In the up to 100 frames group, 222 AUs are detected, while in the up to 166

frames group, only 116 AUs are detected. After the test, three certified coders completed

the FACS coding for these videos.

Table 2.1 briefly summarizes these micro-expression databases. For the SMIC, only

the second version is listed.

Let us give a review of the procedure of building micro-expressions database. Con-

struction and labeling a good database requests expertise, time and patience. Sponta-

neous micro-expression data have been collected by recording people’s reaction when

they watch the film clips with high emotional valence. Researchers provide various clips
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Figure 2.10: Examples of micro-expression (a) and macro-expression (b) from the (CAS(ME)2) dataset. The
apex frame appears at about frame 5 for the micro-expression and frame 11 for the macro-expression, which are
all negative emotion of anger. The AUs related to these two expressions are all AU 4 (inner brow). Figure is
reprinted from [QWYF16].

Figure 2.11: Examples of micro-expression from the SAMM dataset. The apex frame appears at about frame 11

which represents the positive emotion of smile. The AUs related to the expression is AU 9 + 12 (Nose wrinkle and
lip corner puller). Figure is reprinted from [QWYF16].
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Table 2.1: Summary of micro-expressions databases

Database #Micro-Expressions #Participants Mean Age #Ethnicities Fps Resolution Elicitation #Emotion classes FACS coded

Polikovsky 42 10 \ 3 200 640×480 Posed 6 Yes

USD-HD 100 \ \ \ 29,7 1280×720 Posed 6 No

York-DDT 18 50 \ \ \ \ Spontaneous \ No

Canal9 24 195 \ \ \ 720×576 Spontaneous \ No

CASME
A

195 35 22.3 1 60
1280×720

Spontaneous 7 Yes
B 640×480

SMIC

SMIC-HS 164 20

26,7 3

100

640×480 Spontaneous 3 NoSMIC-VIS 71 10
25

SMIC-NIR 71 10

CASME II 255 35 22,03 1 200 640×480 Spontaneous 5 Yes

CAS(ME)2 57 22 22,59 1 30 640×480 Spontaneous 4 Yes

SAMM 159 32 33,24 13 200 2040×1088 Spontaneous 7 Yes

for producing corresponding micro-expressions. All recordings are produced in labora-

tory situation with well-controlled lighting condition. Fig. 2.12 shows a straight view for

elicitation and recording of micro-expressions. Once the recording is done, it requires

to be labeled. Two experienced coders label micro-expressions with the help of subjects

themselves (by asking them what emotion they felt). From the databases listed above,

Figure 2.12: Acquisition setup for elicitation and recording of micro-expressions. Figure reprinted
from [WJYWZ+14].

it is noted that inducing a wide range of expressions among the subjects is a difficult

task. In particular, fear, sadness, and contempt are found to be difficult to elicit in

laboratory situation, thus the samples in different categories are distributed unequally.

Moreover, the number of categories in each database are different. Fig. 2.13 illustrates
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the number of expressions in each category (only listed those categories with many sam-

ples that can be used for recognition). Another point to note is the differences among

individual subjects. The study of Ekman [Ekm09] indicated that some people might not

show micro-expressions, or show few when they are telling lies. Thus, the number of

micro-expressions varies across participants. For example, in SMIC dataset, the number

of micro-expressions of each participant ranges from 2 to 39.

Figure 2.13: The number of expressions in each category of the three widely used micro-expressions databases.

A brief note is presented with respect to the available micro-expression databases.

The Polikovsky’s database contains only posed expressions that may be used for com-

parison and benchmarking against previous study, it will not be suitable to use it for

spontaneous micro-expression recognition. Facial expression data in Canal9 have been

collected by recording political debates which contains authentic micro-expressions that

can be used for micro-expression detection. The disadvantage of the Canal9 is that this

database only provides 24 micro-expressions such that it is insufficient for recognition

task. Approaches against illumination changes can be tested in the CASME database.

Three datasets including CASME, CASME II and SMIC are popular in micro-expression

analysis because they contain sufficient frontal facial expressions labeled by the AUs.

With respect to CAS(ME)2 dataset, it consists of macro- and micro-expressions which

can be used for distinguishing micro-expression from macro ones. Diverse ethnicity is
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satisfied in SMIC and SAMM, where experiments corresponding to different nations can

be conducted.

However, there exists one more unsettled issues. Most databases use young students

or teachers who have never criminal experience, restricting the databases to analyze

deception in real life, high-stake situation, or medical treatment. It is not possible to find

a database for illumination related studies which require various illuminations. Moreover,

researches associated to occlusion are important because in real world, partial occlusion

appears frequently. The system must be capable of recognizing micro-expressions despite

occlusions by sunglasses, facial hairs, hands, scarves, etc. In general, it is difficult to create

a database that will satisfy everyone’s need. We still look forward new publicly and freely

available databases that contain more samples, data under real deception environment,

varying conditions of occlusion, lighting, etc. This is important to the future research in

this area.

2.6 Conclusion

In this chapter, some basic concepts for the macro- and micro-expression as well

as their relations are introduced. The main difference between these two expressions

lies at the duration time. The FACS is a powerful tool for the expression analysis. It

combines a series of action units to represent various expressions, where the action units

are the minimal components for expressions. Most of the existing expression and micro-

expression datasets make use of the FACS for coding. In this chapter, we exhaustively

introduce nine types of micro-expression datasets, among which the CASME, CASMEII

and SMIC datasets which are widely used in micro-expressions analysis and will be used in

our experiments. Next chapter will survey the major algorithms that have significantly

impacted the development of micro-expression analysis, as well as the powerful image

classifier of the Support Vector Machine (SVM).
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Facial feature extraction and
classification

3.1 Introduction

Facial feature extraction and classification are the main parts in micro-expression

analysis system. Both facial features and machine learning methods are vital for obtaining

an excellent performance. Feature extraction is a process of transforming raw data into

feature vectors which describes the data properly such that the performance of the model

built on the unknown data can be optimal. A feature descriptor is a representation of an

image for its characterization. This process involves extracting effective information and

ignoring nonessential data. A good feature vector provides essential and discriminative

information for tasks like object detection or image recognition. The obtained feature

vectors are delivered into image classifiers like Support Vector Machine (SVM) or Random

Forest (RF) to produce classification results.

This chapter concentrates both on the feature descriptions and the machine learning

classifier. It firstly reviews fundamental descriptors used in micro-expression recogni-

tion in Section 3.2, including the local binary patterns based features, the optical flow

based features and the histogram of oriented gradient. In Section 3.3 the Support Vector

Machine (SVM) classifier for both facial micro-expression detection and recognition is

described. The conclusion is presented in Section 3.4.
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3.2 Facial Expressions features

This section surveys several basic feature extraction methods which are widely used

in micro-expression analysis.

3.2.1 Local Binary Battern (LBP) and its variant

Basic Local Binary Patterns

The local binary pattern was firstly presented by Ojala and Harwood [OPH96], and

was proved to be a powerful means of texture description. The operator labels the pixels

of an image by thresholding a 3 × 3 neighborhood of each pixel with the center value

and considering the results as a binary number, see an illustration in Fig. 3.1, where the

top shows the 8 neighbors around the center pixel gc, and the bottom presents a detail

description of the LBP calculation. Define function

s(x) =

 1 if x ≥ 0,

0 if x < 0,
(3.1)

where x represents signed differences (gp − gc) between neighborhoods gp and the center

pixel gc.

Figure 3.1: An example of the LBP calculation.
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Figure 3.2: Different LBP operators. The top describes three circular neighbor opponents for different (P,R).
The bottom presents corresponding images of the extracted LBP by applying different (P,R).

Lately, in order to adapt to the texture feature at different scales, the definition of

the LBP was extended by Ojala et al. [OPM02], who expanded 3 × 3 neighborhood to

an arbitrary number of neighbors on a circle with a variable radius which is based on

double linear differential algorithm. Assuming the central pixel is gc, a texture model

with radius R and sampling number P is constructed, where the number of P and R are

variables. In Fig. 3.2, the value of P and R of the LBP operator are (P = 4, R = 1),

(P = 8, R = 1) and (P = 16, R = 2), respectively. From the top of this figure, one

can notice that there exists the gray values of neighbors which do not fall exactly in the

center of pixels at P = 16, R = 2, these neighbors are estimated by interpolation.

The local binary number is considered as a micro-texton [HPA04], which describes

local texture primitives including spot, flat area, edge, etc (see Fig. 3.3 as an example

given P = 8).

The theory of circular LBP operator is as follows :

Assuming the coordinates of center pixel is (xc, yc), on a circle of radius R, positions
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Figure 3.3: Examples of texture primitives which can be detected by the LBP (white circles represent ones, black
circles zeros, red circles are center points.) [HPA04]

of the P neighborhood points are (Xp, Yp), p = 0, 1, · · ·P − 1, then


xp = xc −R cos(

2πp

P
),

yp = yc −R sin(
2πp

P
).

(3.2)

So the local texture feature T of central pixel is defined as a joint distribution

T = t(gc, g0 − gc, ..., gP−1 − gc). (3.3)

Supposing gc and gp are independent of one another, then texture T turns into

T ≈ t(gc)t(g0 − gc, ..., gP−1 − gc). (3.4)

In addition, the distribution t(gc) in Eq. (3.4) represents the luminance of the entire

image, which is unrelated to the local texture description [OPM02]. Thus, the first com-

ponent can be neglected with respect to luminance of image. This operation makes the

LBP operator have strong anti-interference ability against illumination. Hence, texture

feature T is represented by the joint difference distribution [OVOP01],

T ≈ t(g0 − gc, ..., gP−1 − gc). (3.5)

If only considering the signs of the differences instead of their exact values :

T ≈ t(s(g0 − gc), ..., s(gP−1 − gc)), (3.6)

where the s(x) is defined in Eq. (3.1).

Distributing a binomial coefficient 2P for each sign s(gp− g0), then the LBP value of

pixel point (xp, yp) can be computed by the following formula
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LBPP,R =
P−1∑
p=0

s(gp − gc)× 2P (3.7)

Finally, the feature of an image for texture analysis is represented by a histogram Ĥ,
which can be constructed by

Ĥ(i) =
∑
x,y∈Z2

I {f(x, y) = i} , i ∈ [0, 2P − 1] (3.8)

in which f(x, y) represents the LBP code of center pixel (x, y) and

I(x) =

 1 if x is true,

0 if x is false.
(3.9)

Uniform Local Binary Pattern

The LBP operator LBPP,R produces 2P different output values, corresponding to the

2P different binary patterns that can be formed by the P pixels in the neighbor set. If

all the 2P patterns are adopted, computation will be very complex. Studies found that

some patterns appear in a low frequency ; and some patterns contain more information

than others. Therefore, it is possible to use only a subset of the 2P local binary patterns

to describe the texture of images. This types of patterns are called uniform local binary

pattern (ULBP) [TTMM00], the formula definition is following :

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1∑
p=0

|s(gp − gc)− s(gp−1 − gc)| ≤ 2 (3.10)

From Eq. (3.10), it is noted that the ULBP has a same characteristic if there are at

most two changes from 0 to 1 or 1 to 0 in the circular binary code, for example, 00000000

and 11111111 have no binary changes, and 00111100 has two code changes. In fact,

only nine set patterns (00000000, 00000001, 00000011, 00000111, 00001111, 00011111,

00111111, 01111111, 11111111) and their circularly rotated versions are uniform patterns.

LBP8,1 has 256 possible patterns, however, uniform LBP8,1 only has 58 possible patterns,

which compute 58 bins in computing histogram. Remaining patterns are accumulated into

a single bin, which is added to previous 58 bins, resulting into a histogram of 59 bins.
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A study conducted in [OPM00] demonstrated that these uniform patterns provide over

90% of texture information.

The number of uniform patterns varies with the number of neighbors P around the

center pixel. The ULBP includes in total (P − 1)×P + 2 binary patterns, thus resulting

into a histogram of (P − 1)× P + 3 bins.

Because of its computation speed, the LBP descriptor is widely used in many ap-

plications such as texture classification [OPM02], [AHP06, CKM07], facial expression

recognition [SGM09] and so on.

So far, the improvement work related to the LBP operator progresses endlessly.

Heikkilä et al. [HPS06] proposed the central symmetry local binary pattern (CS-LBP)

operator which computes more easily and reduces the data dimension. Tan and his col-

leagues [TT10] introduced the local ternary patterns (LTP) which is more discriminative

and less sensitive to noise than the LBP by changing the two levels qualifications into

three levels. Guo et al. [GZZ10] putted forward a complete LBP operator (CLBP) which

enhances the LBP operator’s description ability of characteristics. Zhao [ZP07] presented

a three orthogonal planes (LBP-TOP) operator which allows the LBP to extract texture

features from three planes (XY, XT, YT plane).

Local Binary Patterns from Three Orthogonal Planes (LBP-TOP)

The LTP-TOP [ZP07] was proposed to describe dynamic textures. It breaked the limit

with which the LBP can only characterize static images and made it possible to apply

in space-time analysis, such as dynamic texture classification, dynamic facial expression

recognition, etc. The local binary patterns from three orthogonal planes, represent the

LBP features extracted from three planes : XY, XT and YT. Fig. 3.4 illustrates example

image from three planes. In addition to the XY plane, the XT plane visualizes the changes

given a fixed row, while the YT plane shows the changes given a fixed column. The LBP

features extracted from three planes are named as XY - LBP, XT - LBP and YT - LBP.

The feature of the dynamic sequence is constructed by concatenating features from the

three planes into a single histogram.

Recall that the radius R is equal in the process of the LBP feature extraction, which is

also appropriate in the LBP computation of the XY plane. However, it is not reasonable

for the XT and YT plane, since the number of dynamic sequence frames is usually much

less than the resolution of image. Thus, a different radius parameter in space and time is

designed, in which the elliptical sampling replaces the traditional circular sampling in XT
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Figure 3.4: Example of LBP-TOP three planes [ZP07]. From left to right : A facial expression sequence ; Image
in the XY plane (311× 257) ; Image in the XT plane (311× 100) in y = 80 ; Image in the YT plane (257× 100)
in x = 80.

and YT planes. Suppose the number of neighbors in XY, XT and YT planes is PXY , PXT
and PY T , the radii in axes X, Y, and T are RX , RY and RT , separately, as illustrated

in Fig. 3.5. The corresponding feature is denoted as LBP − TOPPXY ,PXT ,PY T ,RX ,RY ,RT .
Given the center pixel gtc,c and corresponding coordinates (xc, yc, tc), thus, the coordi-

nates of gXY,p, gXT,p and gY T,p are given by (xc − RXsin( 2πp
PXY

), yc + RXcos(
2πp
PXY

), tc),

(xc − RXsin( 2πp
PXY

), yc, tc − RT cos( 2πp
PXT

)) and (xc, yc − RY cos( 2πp
PXY

), tc − RT sin( 2πp
PY T

)),

separately.

Figure 3.5: Different radius parameter sets. From left to right : RX = RY = 2 and PXY = 16 for XY plane ;
RX = 2, RT = 1 and PXT = 8 for XT plane ; RY = 2, RT = 1 PY T = 8 for YT plane. [ZP07].

A histogram of the LBP-TOP of a dynamic sequence can be denoted by

Ĥ(i) =
∑

x,y,t∈Z2

I {f(x, y, t) = i} , i ∈ [0, nj − 1], j = 0, 1, 2 (3.11)

where (f(x, y, t)) represents the LBP-TOP code of central pixel (x, y, t), nj is the number

of different labels produced by the LBP operator in the jth plane (j = 0 corresponds to

the XY plane, j = 1 to the XT, j = 2 to the YT) and the function I(x) is the same in
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Eq. (3.9). The normalized histogram is described as

Ni,j =
Ĥi,j∑nj−1

k=0 Ĥk,j
(3.12)

Figure 3.6: The process of extracting the LBP-TOP feature. From left to right : three planes of sequence ; the
LBP histogram from each plane ; the concatenated LBP-TOP histogram [ZP07].

These three histograms are concatenated to construct a global description of dynamic

sequence in order to take into account all spatial and temporal information. This process

is illustrated in Fig. 3.6.

Next, another feature of histogram of oriented gradient (HOG) will be introduced,

which is also widely used in computer vision area for object detection and recognition.

3.2.2 Histogram of Oriented Gradient (HOG)

The histogram of oriented gradient (HOG) is a feature descriptor to characterize

local object appearance and shape by the distribution of local intensity gradients or edge

directions. It is proposed by Dalal and Triggs [DT05] and is widely employed in object

detection and image recognition. The process is following (see Fig. 3.7) :

(1) Preprocessing. Given an arbitrary image G, it is indispensable to resize the im-

age into a fixed ratio of 1 : 2 or 1 : 1, such as 64×128 or 256×256. Gamma/Color

normalization are performed with power law equalization.

(2) Computing gradients. Calculating the horizontal and vertical gradients with

the kernels of (−1, 0, 1) or (−1, 0, 1)T . The magnitude g and direction θ of gra-

dient is attained by the formula ofg = sqrt(G2
x +G2

y)

θ = arctan
Gy
Gx
,

(3.13)

where Gx, Gy are the horizontal and vertical gradient, respectively.
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Figure 3.7: The process of extracting the HOG feature with the P = 9.

(3) Calculating histogram of oriented gradients. Dividing the gradient image

into small spatial regions ("cells"). Assume the "unsigned gradients" [DT05] are

used, where angles are between 0 and 180 degrees with respect to P bins. Four

cells form a block, see Fig. 3.7, and for each cell, a local histogram of gradient

directions with respect to P bins is accumulated and weighted by its magnitude.

(4) Normalization. Performing the normalization on histogram in each block by

the L1 or L2 norm.

(5) Collecting the HOG features over the image. By concatenating histograms

extracted block by block, the HOG descriptor is obtained over the image.

Note that the orientation bins can be evenly spaced over either 0−180 degrees ("unsigned"

gradient) or 0− 360 degrees ("signed" gradient). P can be an arbitrary integer number,

as shown in Fig. 3.8, P equals 3, 6 and 9, respectively.

The following subsection presents basic knowledge of the optical flow.
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Figure 3.8: The HOG feature visualizations with P equals 3, 6 and 9, respectively.

3.2.3 Optical Flow based features

Optical flow

The concept of the optical flow was firstly introduced by Gibson [OGL51] to describe

the relation between relative motion of objects and the viewer. For example, you sit on the

train and look out the window, an observation is visible that the trees and the buildings

are backwards. This movement can be marked as the optical flow. Although the optical

flow has been noted since 1950s, Horn and Schunck [HS81] were the first to provide the

basic formulations, which have inspired many progresses in the following studies of the

optical flow estimation [SRB14]. The optical flow is used to represent the pixel motion’s

instantaneous of a moving object in the image plane, making use of the changes of images

in a sequence over the time domain and the relevance between adjacent frames.

The basic idea of the optical flow is that the intensity value for each point in an object

will keep invariant [HS81], which is marked as Brightness Constancy. Let Ω ⊂ R2 be the

image domain and I : Ω → R+ be a gray level image. Assume I(x, y, t) is the intensity

of a pixel (x, y) at time t, the brightness of a point is constant, so that

I(x, y, t) = I(x+ δx, y + δy, t+ δt), (3.14)

where (δx, δy) is the displacement of the local image region at (x, y, t) after time δt.

Applying a first-order Taylor expansion to the right-hand side on Eq. (3.14) yields the

approximation :

I(x, y, t) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt (3.15)
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The following notations are introduced

Ix =
∂I

∂x
, Iy =

∂I

∂y
, It =

∂I

∂t
, p =

dx

dt
, q =

dy

dt
,

where Ix, Iy and It as the partial derivations of image intensity with respect to directions

x, y and time t respectively. (p, q) is the velocity of a pixel (x, y) at time t.

Based on above Eq. 3.15, the typical formula of the optical flow is expressed as :

Ixp+ Iyq + It = 0, (3.16)

Assume ∇I = (Ix, Iy) is the image gradient field and F = (p, q) is the optical flow vector

field such that the formula can also be written as

〈∇I,F〉+ It = 0, (3.17)

which is known as the optical flow constraint equation.

However, it is insufficient to compute two unknown components of u and v by using

the optical flow constraint equation. Hence, Horn and Schunck [HS81] provided the ad-

ditional constraint by minimizing the sum of the squares of the Laplacians of the p and

q components of the flow, which are defined as
∇2p =

∂2p

∂x2
+
∂2p

∂y2
,

∇2q =
∂2q

∂x2
+
∂2q

∂y2
.

(3.18)

In practice, the problem of solving p and q becomes to minimize the total error over

the image, by combining the Eq. (3.16) and Eq. (3.18) into an objective function,

E2 = w2(Ixp + Iyq + It)
2 + (∇2p +∇2q)

≈ (Ixp + Iyq + It)
2 + w2[(p− p)2 + (q− q)2] (3.19)

= E2
b + w2E2

c ,

in which p and q are the mean values of p and q, respectively, w is a parameter, and

E2
b = (Ixp + Iyq + It)

2,

E2
c = (p− p)2 + (q− q)2,

(3.20)

where the computation of the E2
b (data penalty function) is the use of the L2 norm

which assumes that the errors in the optical flow constraint equation are Gaussian and
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IID [BSL+11]. The E2
c is the spatial penalty function which provides one possible solution

for computing the image velocity.

The magnitude of the optical flow is defined as

MF =
√
p2 + q2 (3.21)

A wide variety of other data and spatial penalty functions have been studied. For

data penalty functions, the Charbonnier penalty is a common choice by recent algo-

rithms [BBPW04, WPZ+09], which is a differentiable variant of the L1 norm. Black and

Anandan [BA96] introduce the Lorentzian penalty, which is a non-convex robust data

penalty. For spatial penalty functions, adding weights to the penalty function is one pop-

ular way. The weighting is either isotropic or anisotropic, treating all directions equally or

not. Seitz and Back [SB09] present an isotropic penalty function which is down-weighted

between different segments. Nagel and Enkelmann [NE86] provide an anisotropic penalty

function by adding weight depending on the gradient of the image. Sun et al. [SRB10]

design the improved models that weight the neighbors adaptively in an extended image

region.

The optical flow involves the movement between two images. Fig. 3.9 illustrates an

example of the optical flow computation, where the obvious movements around the mouth

can be observed from the second or bottom row.

Histogram of Oriented Optical Flow

Inspired by the success of histograms of features in object recognition, Chaudhry et

al. [CRHV09] proposed the histogram of oriented optical flow (HOOF) for the recognition

of human actions.

Recall that F = (p, q) is the optical flow vector field and the corresponding magnitude

is MF =
√

p2 + q2 defined in Equation (3.21).

The orientation space can be either S1 = [0, π) or S2 = [0, 2π). Thus, the angle

associated with p and q which indicates their orientation can be described by a scalar-

valued function θF : ω → S1 = [0, π)

θF = arctan
q

p
, (3.22)

If the orientation space is S2, a basic notation is introduced for clarity.
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Figure 3.9: The optical flow of an image sequence in the facial expression labeled by "Smile" from the extended
database (CK+) [LCK+10] by using the algorithm in [SRB10]. Due to the limited space, we only show five frames.
The top row represents an image sequence, the second row depicts optical flow field computed from the top row
and the bottom row shows the visualization of the optical flow using the color coding scheme in [BSL+11].
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Notation We redefine an extended arctan function Earctan, which can be mapped to

[0, 2π) by adding π.

Earctan(β2, β1) =



arctan
(
β2
β1

)
, if β1 > 0,

arctan
(
β2
β1

)
+ π, if β2 ≥ 0, β1 < 0

arctan
(
β2
β1

)
− π, if β2 < 0, β1 < 0

0, if β2 = 0, β1 = 0

π/2, if β2 > 0, β1 = 0

−π/2, if β2 < 0, β1 = 0

(3.23)

Thus, the angle associated with p and q which indicates their orientation can be

described by a scalar-valued function θF : ω → S2 = [0, 2π)

θF = Earctan (p, q) . (3.24)

Now we have obtained the orientation function θF and the weighting function MF .

The next step is to build the histogram.

Let {Θi}1≤i≤P be a collection of connected subsets of the orientation space S2 satis-

fying Θi ∩ Θj = ∅,∀i 6= j and ∪iΘi = S2, see Fig. 3.10. Based on such a partition, the

Figure 3.10: Example of the {Θi}1≤i≤P over the orientation space S2. The number of P equals 2, 3, 4, 5, 6 and
7 from the left to right.

histogram of optical flow HF can be constructed with a set of characteristic functions Bi

Bi(x) =

1, if θF ∈ Θi.

0, otherwise.
(3.25)

The weighting function is the norm M such that

HF (i) =

∫
Ω
Bi(x)M(x) dx. (3.26)

The discrete form Ĥ of H can be expressed by

ĤF (i) =
∑
x∈Z2

Bi(x)M(x), (3.27)
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for all x ∈ Z2, where Z2 is the orthogonal discretization grid of the domain Ω.

3.2.4 Video Magnification based features

As the micro-expression is always too small to be caught clearly even through under

perfect hardware condition, many researchers use software ’signal amplifier’ before recog-

nition. The most popular magnification method in the ME area is Eulerian Video Mag-

nification proposed in [WRS+12], a different direction towards the magnification based

on the limited spatio-temporal sensitivity of human naked eyes. The authors exaggerated

the subtle color changes of the input video by spatio-temporally process. Meanwhile this

process has also demonstrated the ability of magnificating imperceptible motions with-

out any feature tracking or optical flow computation. As their spatio-temporally process

was inspired by the Eulerian perspective, this method was named as Eulerian Video

Magnification (EVM). The overview of this method was shown as Fig.3.11. Firstly, the

input video is decomposed into different spatial frequency bands. Then, a temporal filter

is exploited for selecting frequency bands we need. After that, a magnification factor is

applied on these filtered bands, which are added back to the original signal and collapsed

to generate the output video. It is a technique to reveal subtle changing in videos that

are hardly to be observed by naked eyes. Suppose a video sequence is given, the output

is an amplified signal to reveal hidden information in video in an indicative manner.

This technique can visualize small motion such as flow of bloods and pulse transit more

clearly.

Figure 3.11: Overview of the Eulerian video magnification framework. Figure is reprinted from [WRS+12].

Zarezadeh et.al. [ZR16] studied the potential of this method in the micro-expression

area. They use the EVM to retrieve the subtle motions of the face. Their experiments

with Spontaneous Micro expression (SMIC) database show that the EVM based method

obtained a promising result. Li et al. [LHM+17] applied this method on the motion
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magnification of Micro-Expression. The magnification is only applied on recognition task,

instead of spotting task, causing that the EVM magnifies unwanted motions such as head

movements at the same time. It achieved comparable results by using the EVM based

method.

However, the EVM benefits only small magnification factors at high spatial frequen-

cies. Big factors lead to larger scale of motion magnification as well as bigger scale of noise

when increasing the magnification factor. So far, only few literatures [ZR16, LHM+17]

studied the EVM in micro-expressions analysis because of the influence of noise derived

from video magnification.

Next section introduce the support vector machine for micro-expressions classifica-

tion.

3.3 Facial micro-expression classification using Support Vec-

tor Machine (SVM)

Support vector machines (SVMs) are a set of supervised learning methods used for

classification, regression and outliers detection, which is widely applied in different fields,

such as : facial recognition, text and hypertext categorization, image segmentation etc.

Till now, the SVM is one of most powerful classifiers for both classification and regres-

sion challenges. In our work, the SVM is exploited for conducting both detection and

recognition task.

The original SVMs was invented by Vladimir et Vapnik [Vap63], but did not become

popular until kernel trick was introduced to it [BGV92], for the kernel trick provides

extra nonlinear classification ability to SVMs. And then, Corinna Cortes and Vapnik

proposed soft margin to SVMs and expanded its application widely [CV95].

The aim of SVMs is to deal with the data classification problem, so it gives classi-

fication between several classes. This is performed by successive binary classifications,

which determine the class of a new point based on the data learned from two classes. In

specific case of SVMs, a point is treated as a p-dimensional vector, and we want to solve

a (p − 1)−dimensional hyperplane, which is usually called linear classifier, to separate

the points.

The main advantages of support vector machines are :

(1) Efficiency in space : it only uses a subset of training points in the decision

function.
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(2) Efficiency in time for high dimensions problems.

(3) Versatility : it could provide custom kernel for specific problem.

The disadvantages of support vector machines include :

(1) Over-fitting problems when features number is much greater than sample’s.

(2) SVMs do not provide direct probability estimates.

Please refer Appendix A for detailed description of the SVM.

3.4 Conclusion

A brief literature survey is conducted in this chapter on facial feature extraction and

classification. It is well known that feature extraction plays a crucial role in a broad va-

riety of micro-expression analysis applications. Several fundamental methods for feature

extraction are reviewed and all of them construct the base of micro-expression feature

extraction. Most of the existing works related to the micro-expression analysis involve the

improvement or combination of these fundamental methods. A brief description of the

SVM is presented. Next Chapter will introduce the micro-expression detection system.
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Micro-Expression Detection

4.1 Introduction

Micro-expression approaches in computer vision area consist of detecting and classi-

fying them in videos. This inspires a series of approaches for micro-expression analysis

integrating computer-aided techniques. Most works of the micro-expression analysis con-

centrate on the classification step [HWZP15, LZY+16], and few works have been devoted

to the detection, which is the foundation of this analysis. With the progress of technology,

automatic macro-expression detection and recognition can be achieved in real-time and

has been successfully applied into business [DCX+15]. Compared to macro-expression,

a micro-expression lasts only 40 − 200 ms, and moreover, its subtle appearance in part

of the face makes naked eyes-based detection and recognition difficult to achieve. Given

these difficulties suffered by the micro-expression, the facial micro-expression analysis

with computer-aider offers a potential solution. The first need is to establish a detec-

tion system, in which a robust feature is essential that allows micro-expressions to be

discriminated, even in cluttered backgrounds under difficult illumination.

An overview of micro-expressions detection system is summarized in Fig. 4.1.

Figure 4.1: An overview of micro-expression (ME) detection chain.

The previous researches [PKO09, MZP14a, SBF+14] exploited the HOG, LBP, or OF

for spotting micro-expressions in videos. The framework of methods using the HOG and

63



chapter4

LBP may not clearly reveal changes in faces, while the framework using the OF can well

describe subtle motions in faces but with a high computation cost. Thus, it is possible

to develop new feature for micro-expression detection.

This chapter firstly reviews recent related works on micro-expression detection in

Section 4.2 . Then, frameworks based on two new features for micro-expression detection

are presented in Section 4.3 and 4.4, respectively.

4.2 Related work

So far, several methods have been developed for micro-expressions detection, such

as method based on 2D/3D histogram of oriented gradients, local binary patterns and

optical flow which will be presented and then used for comparison with the proposed

method.

Polikovsky et al. [PKO09] divided the face into different facial regions and used the

3D histogram of oriented gradients descriptor (3D HOG) for feature extraction. The

recognition applied the k-means method to cluster the extracted features of each region.

The results showed good performance rates (all over 80%) in the regions of the forehead,

between the eyes and lower nose. However, the experiments were conducted on a small

dataset that only contains 13 posed micro-expressions instead of the spontaneous micro-

expressions. Davison et al. [DYL15] used 2D histogram of oriented gradients (HOG) to

extract the features of each frame. The chi-squared distance measure was applied to

compute dissimilarity between the sequence frames. However, in [DYL15], all detected

micro-movements up to 100 frames (200 fps) were classified as true positive including

blinks and the eye gaze, without comparing the ground truth of the micro-expression.

Moilanen et al. [MZP14a] adopted local binary patterns (LBP) to extract the features

from the blocks of the face. The method relied on calculating the dissimilarity of features

for each block by using the chi-squared distance. The detection experiments were con-

ducted on the spontaneous facial micro-expression datasets in order to solve the problem

in practice.

Shreve et al. [SBF+14] developed a method for the segmentation of macro- and micro-

expression frames by calculating the deformation of facial skin using optical flow (OF).

The optical flow is a well-known motion estimation technique and can well spot the subtle

movement, but its calculation costs expensive computation time.

Besides, some papers [RHP13, XZW17] addressing the problem of the detection by

64



chapter4

training a model to determine if a sequence does or does not contain a micro-expression.

Pfister et al. [PLZP11] extracted spatio-temporal local texture features from video se-

quences and used machine learning algorithms (SVM, MKL, RF) for classification. Ruiz-

Hernandez and Pietikäinen [RHP13] encoded the LBP using a re-parametrization of

the second local order Gaussian Jet and the SVM for micro-expressions detection and

recognition task. Xia et al. [XFP+16] utilized an adaboost model to compute the initial

probability for each frame and the correlation between frames in order to generate a ran-

dom walk (RW) model. The random walk model was used to calculate the deformation

correlation between frames and to provide the probability of having micro-expressions in

a sequence.

In recent works, Le Ngo et al. [LNSP17] employed the sparse sampling to analyze

temporal and spectral structures of spontaneous micro-expressions, and removed neutral

faces by the sparse promoting dynamic mode decomposition method (DMDSP).

Instead of developing a training model, we propose a new micro-movement detection

method by invoking the integral projection (IP) as a feature descriptor to character-

ize changes in the blocks of the face. The IP feature is extracted from each individual

block which are concatenated. The chi-squared distance is used to measure the IP fea-

ture dissimilarity between frames so as to observe for possible micro-expression in the

frame sequence. The proposed method is evaluated on two widely used datasets through

experimental comparison with some popular feature extractors such as the OF, LBP

and HOG. The proposed method is an unsupervised model. One of the main advantages

of our model is its low computation complexity : it can obtain comparable or better

results than the existing models using OF, LBP and HOG, while requiring much less

computation time.

4.3 Micro-expression Detection Using the Integral Projec-

tion

4.3.1 Integral Projection

Due to the difficulty for people to read micro-expressions, it is necessary to find appro-

priate methods for catching subtle and rapid changes of the face. The Integral Projection

is presented in the following and it holds as a useful technique for the extraction of facial

features. As IP can be extremely effective in determining the position of features, Brunelli
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et al. [BP93] applied it for the human face recognition. In a recent work [HZH+16b], a

combinational method of the IP and LBP was chosen for micro-expression recognition

thanks to its ability for providing the shape property of facial images.

The IP is a simple and rapid feature extraction method which can reduce the 2D

image features to a simple 1D data. Let Ω ⊂ R2 be the image domain and I : Ω×D → R
be a sequence of gray level images, where D ⊂ R is the time space. At each point

(x, y) ∈ Ω, the intensity value is denoted by I(x, y), and the typical formula of the IP

function can be expressed as :

IPH(x) =
1

y2 − y1

∫ y2

y1

I(x, y)dy, (4.1)

IP V (y) =
1

x2 − x1

∫ x2

x1

I(x, y)dx, (4.2)

where IPHt and IP Vt are the horizontal and vertical integral projection vectors in

the rectangle [x1, x2]× [y1, y2] at time t, respectively. Fig. 4.2 shows examples of the IP

curves (horizontal and vertical). These projections are then concatenated to give the IP

feature respectively.

Figure 4.2: An example of the IP features. Plots in the first (resp. second) row correspond to the horizontal
(resp. vertical) IP function from each block.

4.3.2 Proposed method

The flowchart of the proposed method is summarized in Fig. 4.3 and will be detailed

in the following steps. Two main parts are presented in this flowchart : one part is the

global pre-processing and featuring, and the other one is the extraction of the micro-

expression. The flowchart I includes tracking, registering, cropping, masking, blocking
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Figure 4.3: Flow diagram of the proposed algorithm.
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the face, the IP features extraction, chi-squared distance analysis, thresholding, peak

detection. The flowchart II consists of the micro-expression extraction.

Face tracking and Processing

Determining the existence and locations of faces in each frame of the sequence is

the first step for micro-expression detection. The crucial point of this step is the key

points detection for cropping the face. In this section, we choose the Supervised Descent

method [XT13] for facial expression points tracking, from which we can obtain 49 facial

key points to register and crop the face.

Face alignment operation is necessary for the purpose of keeping eyes in the same line.

Since the algorithm depends on careful positioning of the face, alignment step is necessary

for the purpose of keeping eyes in horizontal line. By using the facial key points located

on the inner eye corners to calculate the angle θ ∈ [0, π) between the line of the two

eyes and a horizontal line, face alignment operation can be performed such that θ = 0.

The result of face alignment can be seen in Fig. 4.4b, where the aligned image contains

inhomogeneous background, clothes, and hairs, which may influence the detection results.

Thus, one can focus on the regions which only contain face information. Let O represent

the nose point and d be the distance between Er and El , the central points of the left

and right eyes respectively. As illustrated in Fig. 4.4c, we crop a rectangle region K with

size 2.2d × 2d. The distances from top and bottom boundaries of the rectangle region

K to the nose point are 1.3d and 0.9d respectively. The distances from left and right

boundaries of K to the nose point are equal, i.e. both distances are d. The reason of

taking nose point as fixed one to cut out the regions of interest is that this point is not

easily influenced by subtle facial expressions.

Crop, Mask and Divide face into blocks

The nasal spine point is considered as the fixed point for cropping the face. Face

are masked for removing inhomogeneous background and hairs information which may

influence the detection results, see Fig. 4.4 (d). During the process of calculating the IP

over the whole face, some important spatial information may be missed due to global

merging of observations and hence giving difficulties to identify subtle changes of face.

Therefore, in order to obtain more accurate spatial information for the detection of micro-

expression, two blocked regions of interest (ROIs) are defined for the IP computing :
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(a) (b)

(c) (d)

Figure 4.4: An example of face detection procedure. (a) A detection using Supervised Descent method [XT13].
(b) Face alignment. (c) Face model for cropping. (d) The cropped and masked face.
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Region I and Region II respectively involving N and 2N blocks, as shown in Fig. 4.2.

The number N will be discussed in section 4.3.3. The IP can be calculated in each block

to locate small movement for micro-expression analysis.

Feature Extraction Using IP

Once obtained the cropped and blocked face regions, the IP features for each block is

computed and then fused together. For the blocks in region I, horizontal IP will describe

better the change of the facial skin such as the quick movement of the eyebrow. For the

blocks in region II, the micro-movement of the mouth will be well featured by the vertical

IP. Thus, the horizontal IP features the region I, while the vertical IP features the region

II, as shown in Fig. 4.2.

Feature difference analysis

For feature difference analysis, scanning the sequence, subtraction will be performed

between a reference frame (RF) and each successive frame denoted as current frame (CF).

This reference frame must be a neutral face or onset frame of a temporal facial expression

for highlighting differences along the sequence. Differences will be observed from integral

projections. IPHt and IP Vt features are extracted from each frame at each block of the

two regions, followed by chi-squared distance computation [MZP14a] to measure the

dissimilarity between the CF and the RF frames. The chi-squared distance is an efficient

method to compute the distance between the features. Given two IP features of P = {pi}
and Q = {qi}, the chi-squared distance (CS) [LKR17] is defined by

DCS(P,Q) =
1

2

N∑
i=1

(p(i)− q(i))2

p(i) + q(i)
, (4.3)

where N is the length of feature.

The regions I and II generate two chi-squared distance sequences which are denoted

by S1 and S2, respectively. The computation of Sj(j = 1, 2) for the k-th frame can be

expressed as

Sj(k) = DCS(P j0 , P
j
k ) ∀k ∈ [1, L], (4.4)

where P j0 and P jk are the IP features of the very first frame in a video and the k-th

frame at the regions I (j = 1) and II (j = 2). The chi-squared distance S used for

micro-movement detection is computed by

S(k) =
1

2
(S1(k) + S2(k)), (4.5)
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which involves the mean values of the normalization of the sequences S1 and S2 at

the respective location. Normalize the sequences S1 and S2 respectively by the values of√∑
k S

2
1(k) and

√∑
k S

2
2(k).

Reference frames selection

For very long videos segmentation, it is necessary to select different RFs since taking

the first frame as the RF will lead to accumulating errors along the sequence. To solve this

problem, a new reference frame selection method is proposed. Before the RF selection,

one needs to apply low-pass spatial filtering in order to eliminate high frequency details

that may influence the result. We give an example in Fig. 4.5a, where we plot the curve

(red solid curve ) for the chi-squared distance S in Eq. (4.5) when the first frame is

selected as the RF. We can see that local maximums of the values of S get larger along

the sequence, which may introduce bias in the estimation of the threshold value used for

the micro-expression detection.

To cope with this possible bias, we define Φ as a collection of the reference frame

indexes which can be expressed as

Φ = {Rfi}1≤i≤m, m ∈ [1, L− 1],

where m is the total number of the reference frames and Rfi is the index of the i-th RF

in the sequence. L is the total number of frames in the sequence. Let Rf1 = 1 be the first

frame of the sequence then the remaining elements of the collection Φ can be detected

in the following two steps.

Firstly, apply the peak detection procedure to the chi-squared distance S in Eq. (4.5)

to search for a collection Ψ

Ψ = {ζj}1≤j≤τ , τ ∈ [1, L],

Each element ζj ∈ Ψ is a local maximizer of the chi-squared distance S. In other words,

ζj indicates an admissible peak of S such that S(ζj) is a local maximum value which is

larger than the mean of S. We further assume that the elements ζj of the collection Ψ

admits that ζi < ζj , if i < j. Secondly, search for the nearest local minimum value from

the maximum ζj along the positive direction. Each pair of adjacent elements ζi, ζi+1 ∈ Ψ

determines a subsequence of frames, among which a local minimizer Rfi of the computed

chi-squared distance S can be obtained. This minimizer is taken as the index of the i-th

RF for its notation and it is called Rfi and Rfi ∈ Φ. If there are more than one local
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minimizer in the subsequence between ζi and ζi+1, we choose the closest one to the frame

ζi+1 (in the sense of Euclidean distance of indexes) as the RF.

Starting from the reference frames collection Φ, a new distance sequence is generated

by updating the RF. This is done by computing the chi-squared distance between Rfi
and Rfi+1 using Rfi as RF. Fig. 4.5b is an example of the new chi-squared distance

sequence. One can claim that after updating the RF, it is easier to obtain the location

of the micro-expression, where the ground truth of the micro-expression given in this

example is 39-59 frames. Fig. 4.5c is an illustration of the detected reference frames

which are neutral faces or nearly ones.

(a) (b)

(c)

Figure 4.5: An example of the detection of Φ. (a) The red curve describes the chi-squared distance S. The mean
value of S are denoted by a green line. The collection Ψ and Φ are described by black dots and blue star points,
respectively. (b) illustrates the curve for the chi-squared distance S after updating the RF from the collection Φ.
(c) shows the three RF of Φ at 1, 62, 117.

In this section, we perform the reference frames selection and the Gaussian smoothing

operation on the sequences S to obtain a new adaptive chi-squared distance sequence S′

based on the RF collection Φ. The smoothing step aims to remove the noises from the
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sequences.

Thresholding and Peak Detection

Once computed the chi-squared distance, it is necessary to use a thresholding method

to obtain the location of the micro-expression.

The following steps are applied to the distance sequence S′ :

(1.) polynomial Fitting. Apply a second order polynomial fitting operation to the

sequence S′ by the least square method [Shr11] and generate a fitting function

ρ. In Fig. 4.6a, we demonstrate the plot curve of the function ρ.

(2.) Micro-expression Appearance Computation. Compute a sequence β with the

same length of S by subtracting the fitting sequence ρ from the sequence S′ . All

of the negative values of β are set to 0. The expression of β can be found in

Eq. (4.6) and it is illustrated on Fig. 4.6b by using adaptive threshold.

(3.) Peaks Detection. Apply a peak detection procedure to search for a collection of

peaks of the sequence β as the indicators of the appearance of micro-expressions.

This peaks detection procedure relies on two threshold values as described in the

following.

The polynomial fitting step is able to suppress the cropping errors accumulated over the

whole sequence. In step 2, the thresholded sequence β is computed as follows :

β(k) = max
{
S
′
(k)− ρ(k), 0

}
, ∀k ∈ [1, L], (4.6)

where ρ is the fitting function and L is the total number of frames in a sequence. The

sequence of β involves the information of the existence and the location of the potential

micro-expressions.

The peaks detection procedure is carried out dependently of a threshold value T that

can be computed by

T = βmean + p (βmax − βmean), (4.7)

where βmean and βmax are the corresponding mean and maximum values of the thresh-

olded sequence β. The scalar value p ∈ [0, 1] is a tuning parameter [MZP14b]. This

procedure plays the crucial role in the entire course of the micro-expression detection.

Thus we give a detailed introduction in the following.

We first detect a collection K∗ of M admissible peaks points k∗i from the sequence

β in Eq. (4.6). Each peak point survives in a subsequence Γi ⊂ [1, L], where L is the
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length of the processed frames including the reference frame. These subsequences Γi can

be considered as the neighborhoods of the corresponding peak point. We supposed that

each subsequence Γi has only one peak point and is disjoint to another, i.e.,

Γi ∩ Γj = ∅, ∀i 6= j.

The detection of the collection K∗ and the subsequences Γi can be done in two sub-steps.

(1.) First of all, a candidate peak point is a local maximizer of the sequence β within

the subsequence Γi

β(k∗i ) ≥ β(k), ∀k ∈ Γi.

and has a value of β larger than the threshold T .

(2.) Secondly, we detect the neighborhood Γi of this candidate peak point. A subse-

quence Γi can be characterized by the position k∗i of the candidate peak point

and two boundary points k+
i and k−i such that Γi = [k−i , k

+
i ]. We search for the

position k+ from the candidate peak point β∗i along the positive direction till we

pass by a point k∗ such that β(k∗) > β(k∗i ), or β(k∗) is a local maximum of β,

i.e., β(k∗) > max(β(k∗ − 1), β(k∗ + 1)). Similarly, the position k−i is determined

along the negative direction.

In practice, the value of β(k∗) is thought as a local minimum if |β(k∗)− β(k∗+ 1)| is
small enough. Based on the two sub-steps described above, a candidate peak point k∗i is

admissible if

|k+
i − k

−
i | > kT ,

where kT is a given threshold value dependent of datasets. Note that the subsequence

Γi is actually the i-th duration of micro-movements. The value of β(k∗i ) is the i-th value

of the peak of the thresholded sequence β. In this step, the values of β at the boundary

points k+
i and k−i are approximately equal to a fraction β(k∗i )

β(k+
i ) ≈ β(k−i ) ≈ αβ(k∗i ). (4.8)

In this paper, the constant α determines the length of detected micro-expression. Fig. 4.6a

illustrates, for a video of 700 frames, the fitting curve ρ (dashed line) for S′ (red color).

The threshold T in Eq. (4.7) and the sequence β in Eq. (4.6) used for spotting the

micro-expression are shown in Fig. 4.6b by a horizontal dash line and a green solid curve,

respectively. In Fig. 4.6b, it can be seen from the green curve that a micro-expression is
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(a) (b)

Figure 4.6: An example of the process of the micro-expression detection. (a) illustrates the curve of S is fitted
by the polynomial fitting and (b) provides the step of locating the micro-expression for thresholding the curve of
β by T.

spotted around the frame 143. A duration of 128− 150 frames is detected with α = 0.8

which will be kept inside the algorithm. Compared with the referenced ground truth of

frames 131 − 160 with the peak frame 142, one can see that the detected starting and

ending frames are not exactly the same as those of the ground truth but are very close

with long overlapping between both. Based on this observation, it is reasonable to claim

that obtained results agree with the ground truth.

4.3.3 Experiments

For the evaluation, experiments are conducted on two well-known datasets in micro-

expression analysis namely CASME [YWL+13a] and CASME II [WJYWZ+14]. Micro-

expressions in these two datasets are elicited spontaneously and labeled with reliable

ground truth corresponding to the onset, apex and offset frames which can be used for

comparisons in the experiments. Please refer to Section 2.5 in Chapter 2 for detailed

description of CASME and CASME II.

Experiment sets

In our experiments, a comparison with methods of the optical flow (OF), local binary

patterns (LBP) and histogram of oriented gradients (HOG) is provided. Parameters are

set up in the following.

For the OF, optical flow is computed using the MATLAB implementation of Black
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(a) (b) (c)

Figure 4.7: a-c : ROC curves for the datasets of CASME-A, CASME-B and Casme II, respectively.

[Sun10], [Bla96].

For the LBP, two uniform patterns [Oja96] of ((P, r) = (8, 1),(P, r) = (8, 3)) are

considered. P corresponds to the number of pixels on the local neighborhood of a circle

defined by its radius r.

For the HOG [DYL15], the histogram angle varies from 0 to π or from 0 to 2π,

which corresponds to the ’unsigned’ or ’signed’ gradient. The number of orientation

bins is a segmentation value of histogram angles. Here, 8 orientation bins on 2π angle

corresponding to signed gradient are chosen as in [DYL15].

The variable parameter N that defines the number of blocks is set to 5 and α in

Eq. (4.8) is set to 0.8. kT is set to 2 in CASME dataset and set to 7 in CASME II dataset

which corresponds to the minimum duration of the micro-expression.

We give a time window tolerance l to detect positively the appearance of the micro-

expression peak. The locations of spotted peaks k∗i are compared with the provided

ground truth, and considered to be true positive if they fall within the frame span of

(onset+ l, offset− l).
We set parameter l = 5 for CASME as discussed in [MZP14a], and to l = 16 for

CASME II same as in [LHM+15]. As eyes are masked in our experiment, spotted eye

blinks are counted as false positives not true positives.

Results

Three indicators are adopted for assessing the performance of the algorithm : the

receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC)

and the processing time. The implementation was tested on an Intel Core i7 computer

with 16GB of RAM which was equipped with Matlab 2015a.
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The ROC curve is used for spotting performance comparison which is illustrated by

plotting the true positive rate (TPR) in y-axis against the false positive rate (FPR) in

x-axis. The TPR is defined as the number of frames of correctly spotted micro-expression

divided by the total number of the ground truth micro-expression frames in the dataset.

The FPR is computed as the number of incorrectly spotted frames divided by the total

number of non-micro-expression frames in the database. The TPR is in the vertical axis,

and the FPR is in the horizontal axis, and p in Eq. (4.7) is used as the varying threshold

parameter with step size of 0.1.

Figs. 4.7a to 4.7c show the ROC curves obtained from CASME-A, CASME-B and

CASME II for the 4 methods, respectively. Overall, we can observe that the proposed

method achieves better performance than other methods (OF, LBP, HOG) in CASME-

A and CASME II datasets. Some points with low FPR in ROC curves are meaningful.

For example, our proposed method is able to detect 80% of the micro-expression with

4% FPR in CASME II dataset. LBP(8,3) outperforms LBP(8,1) on three database and

provides the best results in CASME-B.

The area under the ROC curve (AUC) summarizes the spotting performance as shown

in Table 4.1. The high values of the AUC means good performance of the method. The

AUC results are positive overall and demonstrate that all 4 methods are efficient for

spotting micro-expressions. Among the two datasets, a better overall performance can

be observed in CASME II. Two reasons can explain this : one is that subjects in CASME

dataset often move their head, and another one is that videos are recorded in a different

lighting environment in CASME-B leading to the uneven distribution of the lighting in

face. In contrast, CASME II contains short video clips at a frame rate of 200fps and no

face moving rapidly leading to better detection results.

Among these methods, the proposed method can perform best except in CASME-B

dataset because the IP is sensitive to illumination variance while the LBP is robust to

illumination. However, the better performance of our method in CASME-A and CASME

II shows that the IP is an efficient feature which can describe the temporal dynamic

of the micro-expression. The processing time for different methods is presented in the

Table 4.2. Here a ratio for computational time comparison is defined as :

γ =
Tmethod
TIP

, (4.9)

where Tmethod represents the respective processing time for the OF, HOG and LBP. TIP
indicates the processing time of the IP features.
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Dataset CASME-A CASME-B CASME II

OF 0.8092 0.8888 0.9243

HOG 0.8268 0.8378 0.8939

LBP(8,1) 0.7716 0.8244 0.8751

LBP(8,3) 0.8177 0.8987 0.9014

Proposed IP 0.8480 0.8617 0.9289

Table 4.1: AUC performance for all datasets

Method Time per frame(ms) γ

OF 480 631.58

HOG 121.11 159.35

LBP 35.13 46.22

Proposed IP 0.76 1

Table 4.2: Computation time comparison (image size 320× 260)

As we can observe in Table 4.2, the algorithm of the optical flow is extremely slow

taking 480ms for one image of 320× 260 feature extracting. While the proposed method

takes only 0.76ms and thus is promising for implementation in real-time process. It

is also clear from Table 4.2 that the integral projections provide a huge reduction in

computational time. Compared to LBP and HOG, our method still globally outperforms

them with a serious advantage in the lower computational complexity.

4.4 Micro-Expression Detection using Facial Geometrical

Feature

In this section, a novel method for facial micro-expressions detection is presented. Pre-

vious micro-expressions detection features can be categorized into two classes : texture

feature (the LBP, HOG, IP) and motion feature (the optical flow), which are extracted

on cropped faces that are easily influenced by the alignment operation and cropping
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step. Moreover, most of these features have proven highly sensitive to image noise, illu-

mination and pose direction. Inspired by [DCX+15], we propose a new method based on

facial geometrical feature for micro-expression detection. It involves an observation of the

statistical distance between the geometrical features derived from different video frames.

The geometrical feature captures subtle geometric displacements along sequences and is

proved to be suitable for different facial analysis tasks that require high computational

speed.

The flowchart of the proposed method is summarized in Fig. 4.8. The algorithm

initially tracks 49 facial key points in video sequences containing a dynamic micro-

expression from the onset till the offset through the apex, using the Supervised Descent

method [XT13]. In order to obtain accurate locations, the alignment is performed, please

refer to the face tracking and processing part in Section 4.3.2. The main block in the

flowchart is "Geometrical distance", which will be explained in details in the following.

The displacement analysis is performed for computing difference along the video sequence

and the obtained feature is delivered to the SVM for the ME/Non ME classification.

Figure 4.8: Block diagram that summarizes the different steps of the facial geometrical method.

4.4.1 Geometrical Distance

In the proposed method, the classification is performed depending on geometrical

displacement information between key points along the video sequence, without taking

into account any facial texture information. Among 49 key points, the eyebrow and mouth

points are very sensitive to most of the expressions, including 10 points on eyebrows, and

18 points on mouth, see Fig. 4.9. One can think that the geometrical difference of a

micro-expression between frames is dynamic along the sequence, it begins from a small

79



chapter4

value, then reaches a peak and finally decreases to a small value again. The following will

first introduce some basic concepts used in our geometrical feature extraction procedure.

The set of key points of the eyebrow points for the k-th frame are defined as :

Akb := {xki ; xki ∈ Ω, i = 1, 2, · · · , n1}.

where Ω is the image domain. Similarly, for the k-th frame we define the set of key points

of the mouth, the upper and lower lip :

Akm : = {xki ; xki ∈ Ω, i = 1, 2, · · · , n2},

Akul : = {xki ; xki ∈ Ω, i = 1, 2, · · · , n3},

Akll : = {xki ; xki ∈ Ω, i = 1, 2, · · · , n4},

where n1 = #Akb , n2 = #Akm, n3 = #Akul, n4 = #Akll are the cardinal numbers of points

involved in collections Akb , Akm, Akul and Akll, satisfying Akul,Akll ⊆ Akm. Note that for each
frame, we have the same number of key points (resp. 10 eyebrow points, 18 mouth points,

5 upper lip points and 5 lower lip points).

Let xko ,x
k
u,x

k
ml,x

k
mr,x

k
lue,x

k
lle,x

k
rue,x

k
rle ∈ Ω be the reference points which represent

the location of nose point, the middle point under the nose, the left and right mouth

corner points, the left and right of upper and lower eyelids points in the k-th frame. The

set of reference points is summarized as (Fig. 4.9 (a))

Bk = {xko ,xku,xkml,xkmr,xklue,xklle,xkrue,xkrle}, (4.10)

We define six distance values :

(1) the distance values between nose point xo and the collection Akb

Gb(k) := {‖x− xko‖;x ∈ Akb}. (4.11)

(2) the distance values between the upper and lower eyelids

Ge(k) := {‖xklue − xklle‖, ‖xkrue − xkrle‖}, (4.12)

where the Ge is used for spotting blinks.

(3) the distance values between the middle point under the nose xu and Akm

Gu(k) := {‖x− xku‖;x ∈ Akm}. (4.13)
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Figure 4.9: An illustration of geometrical distances. (a) Locations of reference points. (b) Geometrical distances
between eyebrow points and the nose point (Gb). (c) Geometrical distances between eyelids points (Ge). (d)
Geometrical distances of the mouth (Gm), including distances between mouth points and the point under nose (Gu),
lip corners width(Gl & Gr), mouth width (Gw) and lip height (Gh), respectively.

(4) the distance values between the Akll and xkml, the distance values between the Akll
and xkmr

Gl(k) := {‖x− xkml‖;x ∈ Akul}, Gr(k) := {‖x− xkmr‖;x ∈ Akll} (4.14)

(5) the distance value between the xkml and xkmr

Gw(k) := ‖xkml − xkmr‖. (4.15)

(6) the distance values between the Akul and Akll

Gh(k) := {‖x− y‖;x ∈ Akul,y ∈ Akll}, (4.16)

where ‖ · ‖ means the standard `2 norm. Based on Eq. (4.12), Eq. (4.13), Eq. (4.14) and

Eq. 4.15, we define the set of mouth distances in the k-th frame :

Gm(k) = {Gu(k),Gl(k),Gr(k),Gw(k),Gh(k)}. (4.17)

Fig 4.10 shows an example of geometrical distance along the sequence. Within top

figure, each red point is derived from the average of all components in Eq. (4.11) and the

black point is obtained by calculating the average of all components in Eq. (4.17). One

can observe from the figure that the red curve reaches a peak in the 8-th frame which
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Figure 4.10: An illustration of geometrical distance displacement along the sequence. In the top figure, each red
point is derived from the average of all components in Eq. (4.11) and the black point is obtained by calculating the
average of all components in Eq. (4.17). The bottom represents the original sequence with geometrical distance
lines. The sequence is labeled as "surprise"(file s3_sur_02 of the HS database).
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represents the apex of the micro-expression. Then it falls to a lower value at the offset

of the micro-expression. But the magnitude difference within the curve is not clearly

observed and the curve is not smooth. In order to solve this problem, in the following

section, the chi-squared distance as well as the Gaussian smoothing are introduced and

performed on geometrical features.

4.4.2 Dissimilarity analysis and Gaussian Smoothing

Recall that the chi-squared distance is performed in Eq. (4.3) for computing dissim-

ilarity of two features of P and Q. Besides, there exists many other measures for the

dissimilarity between two features. Except the chi-squared distance, other three distance

measures are also investigated, see Appendix B for detailed description and results on

four datasets. Experiments show that the chi-squared distance outperforms other four

distance measures.

In a sequence, the very first frame is selected as the reference frame (RF) and each

successive frame denoted as the CF. Differences will be observed from geometrical dis-

tance.

The geometrical distance of the eyebrow and mouth generates two distance sequences

which are denoted by Gb and Gm, respectively. The computation of Dj(j = b,m) for the

k-th frame can be expressed as

Dj(k) = DCS(Gj(k1),Gj(k)) ∀k ∈ [1, L], (4.18)

where Dj(k) involves the chi-squared distance values between the RF and the k-th frame

at the eyebrow region (j = b) and mouth part (j = m). The Gj(k1) and Gj(k) are

geometrical distance of the RF and the k-th frame at the eyebrow region (j = b) and

mouth part (j = m). Since the very first frame is selected as the reference frame, the k1

is set to 1.

The feature distance D used for micro-movement detection is computed by

D(k) = max{Db(k),Dm(k)}, (4.19)

where D(k) involves the maximum values of the normalization of the sequences Db(k)

and Dm(k). The Nb and Nm is the normalization of Db and Dm respectively, by applying

Nb = 1
nb
Db(k) andNm = 1

nm
Dm(k), in which nb = n1 = #Akb and nm = n2+n3+n4+1 =

#Akm + #Akul + #Akl l + 1.
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Figure 4.11: An illustration of results by applying the chi-squared distance and the Gaussian smoothing operation.
In the left figures, the blue curve shows the statistical distances between geometrical features of the eyebrow (Db)
and the green one shows the statistical distances between geometrical features of the mouth (Dm) along the
sequence by exploiting the CS. The right figures represent the smoothed curve by applying the Gaussian smoothing
on the D. The σ of the Gaussian filter equals to 2.
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Generally, the obtained feature distance D contains some noise needed to be removed.

A step can be applied on the D by convolution with a Gaussian function which is defined

as

G(x) =
1√
2πσ

exp−
x2

2σ2 , (4.20)

where x ∈ R and σ is the standard deviation of the distribution.

Fig. 4.11 shows results by applying the chi-squared distance and the Gaussian smooth-

ing operation on the geometrical features of a sequence. The left figures (a) and (c) show

results by exploiting only the chi-squared distance and the right (b) and (d) show results

by applying the Gaussian smoothing. The top figures (a) and (b) are derived from the

sequence labeled as "surprise"(file s3_sur_02 of the SMIC-HS database). The bottom

figures (c) and (d) are derived from the sequence labeled as "positive"(file s3_po_10 of

the SMIC-HS database). By performing the Gaussian filter on the left curves, the right

curves are smoothed which removes noise. The chi-squared distance value between the

RF and the CF starts from a small value, then reaches the peak at the 8-th frame, finally

falls to a small values again.

4.4.3 Experiments

Experiments using the SVM for micro-expressions detection are conducted upon the

SMIC database, which is described in detail in Section 2.5 of the Chapter 2. In fact, there

is a previous version of SMIC (referred as SMIC-sub) 1, which only includes 77 video

sequences of 6 subjects [PLZP11]. The SMIC [LPH+13] is a full version of the previous

data, and contains three subsets, including the SMIC-HS, SMIC-VIS, and SMIC-NIR,

which were recorded separately by a high speed (HS) camera of 100 fps, a normal visual

camera (VIS) and a near-infrared (NIR) camera at 25 fps, all of three with the resolution

of 640× 480. The HS dataset contains 164 micro-expression video clips elicited from 16

subjects, while both the SMIC-VIS and SMIC-NIR consists of 71 micro-expression video

clips elicited from 8 subjects. Clips without micro-expressions randomly selected from the

original videos were supplied as the counterpart data for the micro-expression detection.

In our experiments, we use four datasets, including all samples in the SMIC-sub,

all micro-expression video clips in the SMIC-HS and SMIC-VIS dataset, 62 video clips

of 7 subjects in the SMIC-NIR (all faces of one subject in the video clips are partially

1. http ://www.oulu.fi/cmvs/node/41319
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Figure 4.12: An example that facial key-points cannot be detected. All faces of this subject in SMIC-NIR dataset
are partially appeared.

occulted, as a result, facial key-points cannot be detected, see Fig. 4.12.). The recognition

experiments are conducted by applying the leave-one-subject-out (LOSO) where one

subject is used as the test set and the others are used as the training set at each loop.

For the SVM, LIBSVM [CL11] is used in our experiments with the radial basis func-

tion kernel (RBF)

KRBF (xi, xj) = exp(−γ‖xi − xj‖2)

and the polynomial kernel (Poly)

KPoly(xi, xj) = (γxTi xj + coef)d

, where x = {xi} is a feature vector, γ, coef and d are parameters in Kernels. To avoid too

many combinations of parameters, the fixed values coef = 2 and d = 5 are adopted based

on experiments. In order to find the best parameters, multiples (e.g. 2k for k ∈ [−8, 8])

of the default value are used as search range in a grid-search using cross-validation to

determine C (the penalty parameter) and γ. The highest recognition rate is selected

which corresponds to the optimal set of parameters.

We take four selections into account : the RBF kernel, the polynomial kernel, the

combination of the RBF and the Gaussian smoothing, the combination of the polynomial

and the Gaussian smoothing. For the clarity, only σ = 3 is exploited. Experiments with

respect to σ = 2 and σ = 4 will be presented in Appendix B.

The number of frames varies depending on the video clips. In order to obtain features

with same length, the nearest-neighbor interpolation method is applied to the extracted

feature vector. Experiments are conducted on how the recognition rates varies with the
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number of features. The number of features varying from 3 to 60 is investigated in our

experiment.

Fig. 4.13 to Fig. 4.16 show recognition rates for the SMIC-sub, HS, NIR and VIS

dataset, respectively.

Evaluation on SMIC-sub
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Figure 4.13: The results in the SMIC-sub dataset regarding the influence of feature length on the recognition
performance.

As observed in Fig. 4.13, the performance of RBF kernel is better than the polynomial

kernel in most cases. The combination of the RBF kernel with the Gaussian smoothing

operation improves recognition rates at a small number of features, as well as the com-

bination of the polynomial kernel with the Gaussian smoothing. Both the method using

the RBF kernel with a number of features 19 (or 46 − 50) and the method using the

polynomial kernel with a number of features 39 as well as 46 − 48 reach the best result

85.53%.

Evaluation on SMIC-HS

Fig. 4.14 shows that the performance of the RBF kernel is still better than the

polynomial kernel. A significant improvement by applying the Gaussian smoothing is
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observed in this figure. The highest recognition rate 84.15% is achieved by applying the

Gaussian filter with the RBF kernel at a number of features 57.
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Figure 4.14: The results in the SMIC-HS dataset regarding the influence of feature length on the recognition
performance.

Evaluation on SMIC-NIR

Fig. 4.15 shows that the RBF outperforms the polynomial kernel in most cases.

Almost no improvement by applying the Gaussian smoothing is gained in this figure.

The best result by applying only the polynomial kernel is 72.58% at a number of features

10 or 12. The RBF kernel with a number of features 5 as well as 10 yields the highest

result 73.39%.

Evaluation on SMIC-VIS

Fig. 4.16 shows the results on the SMIC-VIS dataset regarding the influence of feature

length on the recognition performance. The polynomial kernel with a number of feature

23 − 25 as well as 40 − 42 achieves the best result 73.24%. The performance of the

polynomial kernel is slightly better than that RBF kernel in most cases. Applying the

Gaussian filter does not gain any improvements.
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Figure 4.15: The results in the SMIC-NIR dataset regarding the influence of feature length on the recognition
performance.
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Figure 4.16: The results in the SMIC-VIS dataset regarding the influence of feature length on the recognition
performance.
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Comparison with state-of-the-art

In this section, we compare our results to the state-of-the-art methods (i.e.,TIM [PLZP11],

Gaussian jet + LBP [RHP13], SCLQP [HZH+16b] and FDM [XZW17]) in recent liter-

ature. Among all compared methods, our method achieves the best recognition rate on

all the four datasets. For the NIR dataset, in [XZW17] 8 subjects are used, while our

method uses 7 subjects, please see the explanation in Fig. 4.12. From Table 4.3, one can

observe that our method is efficient in classifying the ME and the Non ME.

Table 4.3: Performance comparison with the state-of-the-art on four datasets. The bold means the highest
recognition rate and * means that we directly extract the results from reference papers.

Method SMIC-sub SMIC-HS SMIC-NIR SMIC-VIS

TIM* [PLZP11] 78,9% / / /

Gaussian jet + LBP* [RHP13] 77,59% / / /

SCLQP* [HZH+16b] / 75,31% / /

FDM* [XZW17] 75,66% 75,3% 72,54% 64,79%

Our method 85,53% 84,15% 73.39% 73,24%

4.5 Conclusion

In this chapter, two methods for micro-expression detection are proposed. The anal-

ysis on differences of the integral projection allows detecting micro-movements auto-

matically with a low computation complexity. Experimental results are positive on the

datasets CASME-A, CASME-B and CASME II, indicating that this method is capa-

ble of catching micro-expressions from videos. To our best knowledge, this is the fastest

method for automatic micro-expression detection and it could be implemented for future

real-time detection. The geometrical feature is extracted from the aligned face. The ge-

ometrical distance captures the small relevant motion changes rather than appearance

feature. Thus, this feature is robust to illumination variance. The performance on four

facial micro-expression datasets (including the SMIC-sub, SMIC-HS, SMIC-NIR, SMIC-

VIS) demonstrates the efficiency and discrimination of the geometrical feature. During

the experiment, it was noticed that large head motions and the illumination variation

can cause mis-detections.

Next chapter will introduce the framework of micro-expressions recognition.
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Motion-based micro-expression
recognition

5.1 Introduction

This chapter deals with the problem of automatically recognizing micro-expressions,

which has attracted considerable efforts. Effective facial features play a crucial role for

micro-expression recognition. These features can be roughly divided into two categories :

appearance-based and motion-based methods. Specifically, the appearance-based meth-

ods, such as Gabor wavelets [Lee96] and local binary patterns (LBP) [OPH96], are ap-

plied to either the whole face or specific face regions to extract the appearance changes

of the face. Currently, the main approaches towards the appearance-based methods fo-

cus on the use of texture representation [WSF11, DYC+14], due to their computational

simplicity. However, it is difficult for the texture features to capture rapid appearance

changes reflecting the micro-expression occurring with low intensity. In contrast, the mo-

tion features usually derived from the optical flow are considered for micro-expressions

recognition [LSPW16]. These methods try to recognize the facial activity by analyz-

ing the motion itself, avoiding referring to the information of static image. Since the

micro-expression can be well characterized by the motion features, a better performance

compared to appearance-based approaches is observed in [LZY+16]. Another interesting

facial features descriptor considering both the appearance- and motion-based information

is the LBP-TOP [ZP07].

In this chapter, a new facial feature for micro-expression representation is proposed
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for micro-expression recognition. It is known that the optical flow-based features (e.g.

histograms of optical flow) require an accurate registration for the recognition applica-

tions. However, such requirement is difficult to satisfy in many practical situations. To

reduce the influence of inaccurate registration, a new feature descriptor based on the

tool of motion boundary is introduced, which is initially proposed for human detection.

Motion boundary is calculated by a differential operation on the optical flow vector field

which produces two new external vector fields. The proposed feature descriptor is estab-

lished by fusing the information derived from these external vector fields in a nonlinear

mapping manner. For the construction of the respective histograms, we also examine

the influence of different ways of building bins in a dense grid. Current studies compute

the histograms of motion features by exploiting a fixed number of spatial orientation

bins [DT05, WKSL13, LSPW16]. This study investigates the influence of the number of

orientation bins and its rotation so as to test the corresponding recognition performance.

In order to extract discriminative features, the dimensionality reduction method of the

principal component analysis (PCA) is applied since the PCA has powerful properties

to identify most meaningful features and maintain a strong correlation between features.

Finally, the Support Vector Machine (SVM) is employed for classification.

The rest of the chapter is organized as follows : Section 5.2 briefly reviews the re-

lated approaches for micro-expression analysis. In Section 5.3, the proposed optical flow-

based features as well as the formal histogram construction method are introduced. The

experimental contexts including the computation of the compared descriptors and the

parameters setting are presented in Section 5.4. In Section 5.5, the experimental results

are discussed. Section 5.6 presents the conclusion.

5.2 Related Works

Micro-expression analysis has attracted much attention from psychologists since the

work of Haggard et al. [HI66b] and Ekman et al. [EF69]. It is known that only some

experts are capable of observing micro-expressions while most people cannot notice the

appearance of these emotions. In order to train people to recognize micro expressions by

naked eyes, a micro-expression training tool (METT) was developed by Ekman [Ekm03].

Unfortunately, the study in [EL09b] indicates that good communicators benefited from

the METT whereas poor communicators had no gain. These difficulties motivate the

approaches of automatic micro-expression analysis [WWQ+17, WYL+15, WYS+16]. For
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micro-expression analysis, one of the most important ingredients are the features ex-

tracted from the sequence. There are two main categories of approaches for micro-

expression recognition.

Local binary patterns inspired approaches. Local binary patterns [OPH96] based features

can describe the shape attribute and texture information of face images. The local binary

patterns from three orthogonal planes (LBP-TOP) operator was proposed by Zhao et

al. [ZP07], where the features are derived from three orthogonal planes. This opera-

tor has a strong ability of capturing the dynamic features, leading to a broad variety

of LBP-TOP inspired approaches for micro-expression recognition [PLZP11, WYL+14,

WYZ+14, DYC+14, LHM+17, JBY+17]. In addition, the improvements of the LBP-

TOP operator have been studied in order to deal with different situations. For instances,

Wang et al. [WSPO14] proposed a LBP-SIP operator to reduce the redundancy in LBP-

TOP patterns. Liet al. [LHM+15] developed an automatic micro-expression analysis sys-

tem which applied the Eulerian video magnification (EVM) [WRS+12] method to mag-

nify the subtle motions in videos and exploited the dynamic texture features. Huang et

al. [HZH+16b] proposed the spatio-temporal completed local spatio-temporal quantized

patterns (STCLQP) where the features from three channels containing sign, magnitude

and orientation components are extracted and fused depending on discriminative code-

books. Huang et al. [HWZP15] proposed the discriminative spatio-temporal local binary

patterns based on an improved integral projection (STLBP-IIP) for micro-expression

recognition. This work considered both the shape attribute of face images and the dy-

namic information of sequences in order to extract more discriminative features. However,

it is difficult to capture the subtle appearance changes such as small wrinkles around the

eyes or mouths.

Optical flow-based approaches. Using the motion under deformation of faces or facial fea-

tures is an alternative way to extract facial motion information. Among them, the optical

flow-based methods are widely applied because the optical flow provides sufficient dy-

namic information of a temporal facial expression sequence. Liu et al. [LZY+16] proposed

a main direction mean optical flow (MDMO) features for micro-expression recognition.

Each face of the sequence is divided into 36 regions of interest (ROIs) partially based on

action units and the extracted MDMO features in each region are concatenated into a

single feature vector. The MDMO can provide better facial representation and achieve

higher recognition accuracy than other existing methods. Liong et al. [LSPW16] exploited

the Bi-Weighted Oriented Optical Flow (Bi-WOOF) which emphasize facial motion at
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both bin and block levels. In [XZW17], the Facial Dynamics Map (FDM) is proposed

to characterize movements of a micro-expression based on the optical flow estimation.

Each sequence is divided into spatio-temporal cuboids, and an iterative optimal strategy

was developed to calculate the principal optical flow direction in each cuboid for facial

expression description.

The above mentioned approaches are non-exhaustive and some recent and relevant

works for micro-expression are necessary to be pointed out. In [WSF11, JBY+17], a

system was trained based on existing facial expression databases to recognize micro-

expressions from micro-expression datasets, providing that a micro and macro-expression

have a resemblance appearance. More specifically, Wu et al. [WSF11] developed an auto-

matic micro-expression system by employing facial expression databases as the training

set and micro-expression videos from METT [Ekm03] as the test set, respectively. The

system utilized Gabor filters to extract facial features and obtained a high accuracy.

Wang et al. proposed several methods for micro-expression recognition, including the

tensor independent color space (TICS) model in [WYL+14], the combination of the lo-

cal spatiotemporal directional features (LSTD) and robust PCA (RPCA) in [WYZ+14]

and the sparse tensor canonical correlation analysis (STCCA) in [WYS+16]. Jia et

al. [JBY+17] proposed a macro-to-micro transformation model which is able to transfer

macro-expression learning to micro-expression.

It is still a difficult problem for optical flow to determine the accurate locations

of each facial feature mappings between different images even though the face images

have been aligned. Such an issue may give rise to wrong orientation and magnitude

estimation associated to the optical flow field. In order to address this problem, the

motion boundary histograms (MBH) [DTS06] are considered, which is used in action

recognition [WKSL13]. Motion boundary is computed by a derivative operation on the

optical flow field. It can remove unexpected motions caused by residual mis-registration

that appears between images cropped from different frames. Nevertheless, the relative

motion can be captured. Based on the the motion boundary, a new descriptor the Fusion

Motion Boundary Histograms (FMBH) is introduced.
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5.3 Fusion of Motion Boundary Histograms : the proposed

descriptor

The facial movement can be well described by associating motion features. In this

section, we introduce a new fusion of motion boundary histograms descriptor that is

established upon the motion boundary descriptor. Some basic notations are introduced

for clarity.
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Figure 5.1: A 3D graph visualization for the function Earctan defined in Eq. (3.23).

Notation Let S2 = [0, 2π) be the orientation space.

Let Ω ⊂ R2 be an open bounded image domain. Let F = (p, q) : Ω → R2 be

the optical flow vector field [BA96] with two components p, q along the x- and y-axis,

respectively.

The gradient vector fields of p and q are respectively denoted by ∇p = (px, py) and

by ∇q = (qx, qy), where px = ∂xp, py = ∂yp, qx = ∂xq, and qy = ∂yq.

Our histograms are established over the orientation space [0, 2π). The extended arctan

function Earctan has been introduced in Eq. (3.23). In Fig. 5.1, we show the 3D graph

visualization for the function Earctan defined in Eq. (3.23).

In the following three subsections, we firstly detail the motion boundary features

computation and the proposed fusion motion boundary histograms, and then provide

the procedure of orientation bins construction.

95



Chapter5

5.3.1 Motion boundary (MB) features computation

The MB is computed from a differential optical flow which is separated into horizontal

and vertical components, as shown in Figure 5.2. The top row shows three key frames of

a micro-expression sequence, including onset, apex and offset. The onset is the point at

which the expression starts to show up, the apex is the instant when the deformation of

the expression reaches the peak and the offset represents the instant when the expression

fades away.

Figure 5.2: Illustration of the information captured by optical flow (OF) and motion boundary (MB) descriptor.
The top row shows onset, apex and offset frames. The optical flow is computed from the onset and apex frames.
The bottom row displays the optical flow vector fields of (p, q), the gradient vector of p and q, respectively. The
MB consists of the gradient vector of p and q.

The MBH descriptor [DTS06] is established based on the Euclidean norms and the

angle of the vector fields ∇p and ∇q. Specifically, the Euclidean norms, respectively

denoted by Mp and Mq, of ∇p and ∇q, which can be expressed for all x ∈ Ω by

Mp(x) = ‖∇p(x)‖ =
√

p2
x(x) + p2

y(x), (5.1)

Mq(x) = ‖∇q(x)‖ =
√
q2
x(x) + q2

y(x). (5.2)

The angles associated with∇p and∇q which indicate their orientation can be respectively

characterized by two scalar-valued functions θp, θq : Ω→ S2

θp(x) = Earctan (py(x), px(x)) , (5.3)

θq(x) = Ed arctan (qy(x), qx(x)) . (5.4)
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The estimation of the histograms of the motion boundary features are discussed in Sec-

tion 5.4.2.

5.3.2 Fusion motion boundary histograms

The MBHs are calculated in terms of both the norms or magnitudes Mp, Mq and the

angles θp and θq. We define and consider a scalar-valued function α : Ω → S2 which is

calculated in terms of θp and θq by

α(x) = Earctan(θq(x), θp(x)), (5.5)

where θp and θq are defined in Eqs. (5.3) and (5.4). The function α can be easily used to

establish a new histogram of orientations.

In order to obtain a weighted histogram, the normsMp andMq are combined together.

This can be done by considering a function M : Ω→ R

M(x) =
√
p2
x(x) + p2

y(x) + q2
x(x) + q2

y(x) =
√
M2

p (x) +M2
q (x) (5.6)

for any x ∈ Ω. Actually, the functionM in Eq. (5.6) is the Frobenius norm of the Jacobian

matrix ∇F

∇F(x) =

(
∇p(x)

∇q(x)

)
=

(
px(x) py(x)

qx(x) qy(x)

)
. (5.7)

Now we have obtained the orientation function α and the weighting function M . The

next step is to build the new histogram. Since the two histograms used in MBH have

been fused together, the proposed method can be named as fusion of motion boundary

histograms.

Let {Θi}1≤i≤P be a collection of connected subsets of the orientation space S2 satis-

fying that Θi ∩ Θj = ∅,∀i 6= j and ∪iΘi = S2. Based on such a partition, the fusion of

motion boundary histogram H can be constructed with a set of characteristic functions

χi

χi(x) =

1, if α(x) ∈ Θi,

0, otherwise.
(5.8)

and the weighting function which is the norm M such that

H(i) =

∫
Ω
χi(x)M(x) dx. (5.9)
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The discrete form Ĥ of H can be expressed by

Ĥ(i) =
∑
x∈Z2

χi(x)M(x), (5.10)

for all x ∈ Z2, where Z2 is the orthogonal discretization grid of the domain Ω.

Figure 5.3: Illustration of the similarity between facial images by applying the chi-squared distance. The YHappy1,
YHappy2 and YRepression are from (file path :s9/EP06_02f) (s14/EP09_04) and (s9/EP06_01f) of CASME II,
separately.

The dissimilarity measure 1 between two histograms of the features indicating the

distance of same expression from two sequences should be small, and the distance is

consider to be large for different expression. Here, the chi-squared distance is considered

as the dissimilarity measure which can be referred in Eq. (4.3).

An example is presented for illustrating the chi-squared distances comparisons be-

tween the MBH and the proposed FMBH in Fig. 5.3. One can point out that the chi-

squared distance of the FMBH on Happy expression from two sequences YHappy1 and

YHappy2 is lower than that of MBH. While the chi-squared distances of the FMBH be-

tween different expressions i.e., YRepression and YHappy1, YRepression and YHappy2 are larger

than that of the MBH.

1. Since the feature length of the MBH is twice longer than those resulting from the FMBH, the half
values of the chi-squared distances from the MBH are used for fair comparison.
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Figure 5.4: The bins constructions are from P = 2 to P = 9 relative to the decomposition of S2 into {Θi}
continuous sectors. The P = 3 contains four Modes and the P = 4 consists of 2 Modes.

5.3.3 Bins construction

It is known that the performance of feature descriptors relies on the number of bins,

as illustrated by Dalal et al. [DT05]. They demonstrated that using 9 bins could generate

the best results with respect to the HOG descriptor for human detection. Inspired by

this consideration, this section further investigates the influence of both the number of

bins and the initial partition angle on the final results. For this purpose, the formal

formulation for bins construction are presented in the following.

The disc S2 is decomposed into a collection of subsets {Θi} as described in Fig. 5.4. In

practice, it is supposed that these subsets have the same size |Θi|, i.e., if given P subsets,

|Θ1| = |Θ2| = ... = |ΘP | = 2π/P . In this case, each subset Θi can be constructed by

Θi = [Aini + (i− 1)Ares, Aini + iAres), 1 ≤ i ≤ P, (5.11)

where Aini is the initial partition angle and Ares = 2π/P is the size of each subset. Note

that Aini is also the lower bound of the first subset Θ1 = [Aini,Ares). From Eq. 5.11,

we can see that the subsets {Θi} can be determined by a pair (Aini, P ) indicating the

partition mode of a disk. In Fig. 5.4, partition modes for different values of (Aini, P )

are displayed. In this section, for P = 3, four modes are considered, each of which is

constructed respectively by assigning the values of 0, π/6, π/3 and π/2 to the initial

angle Aini. While for P = 4, we consider two Modes, where Aini = 0 or π/4.
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5.4 Implementation Details

This section first briefly describes micro-expressions datasets that are used in experi-

ments and the experimental protocols conducted upon these datasets. Then, the baseline

methods for motion features extraction are introduced.

5.4.1 Datasets

This section brief surveys four micro-expression datasets that are widely used in

micro-expression analysis : (i) the Chinese Academy Of Sciences Micro-expression (CASME)

[YWL+13a] (ii) the improved CASME (CASME II) [WJYWZ+14] (iii) the Spontaneous

Micro-expression Database (SMIC) [LPH+13] and (iv) the Chinese Academy of Sci-

ences Macro-Expressions and Micro-Expressions (CAS(ME)2). Please refer Section 2.5

in Chapter 2 for detailed description of these four databases.

In our experiments, for the CASME, 150 samples from 19 subjects were selected,

categorized into four classes : including repression (29 samples), disgust (40 samples),

surprise (18 samples) and tense (63 samples). For the CASME II, 246 micro-expressions

from 26 subjects in CASME II dataset were used, categorized into five classes : dis-

gust (63 samples), happy (32 samples), repression (27 samples), surprise (25 samples)

and others (99 samples). For the SMIC, we conduct experiments on the HS subset which

includes 51 positive, 70 negative and 43 surprise samples. For the CAS(ME)2, all 357

video clips are used.

Figure 5.5 illustrates some micro-expressions from the four datasets. It is noted that

the changes among onset, apex and offset are hardly noticeable for human eyes.

Our motion features are extracted between two frames, the onset and the apex frame.

Note that the original paper [LPH+13] did not provide the ground truth index of apex

frame in SMIC database, the procedure for determining the index of apex frame is pre-

sented in the algorithm 1. The Fig. 5.6 is the illustration of the step 7 and step 8 in the

algorithm 1.

A Micro-Expression Apex Detection Procedure

Since the original paper did not provide the ground-truth index of apex frame in

SMIC database, the procedure used for determining the index of apex frame is presented

in the following.
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Figure 5.5: Example samples from CASME-A,CASME-B, CASME II, SMIC and (CAS(ME)2) database. Three
frames of micro-expressions are presented, including onset, apex and offset.

Algorithm 1: A Micro-Expression Apex Detection Procedure
Input : A sequence containing M frames.

Output : Apex of the micro-expression.

Procedure

1: Track 49 facial key-points for each frame.

2: Register faces for keeping eyes in horizontal line. Since locations of facial key-points

have already changed after registration, a re-tracking operation is needed for

cropping faces.

3: Crop and mask faces.

4: Divide the face into two parts : the forehead and the mouth part.

5: Compute the optical flow for each part.

6: Compute the sum of the magnitude of optical flow for each part in each frame and

obtain two sequences. Sum these two sequences.

7: Apply the Gaussian smoothing operation (σ = 2) on the sequence in step 6.

8: Detect the micro-expression apex corresponding to the maximum of the filtered

sequence.

9: If no apex is found, set the middle frame of the sequence as the apex.
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Figure 5.6: Illustration of the algorithm 1.

5.4.2 Baseline features

The proposed FMBH feature is compared with four baseline features in micro-expression

recognition, i.e., the OF, MB, HOF and MBH :

• OF : The optical flow developed by Black et al. [BA96] is used. The apex and onset

image of each sequence are used to compute the optical flow. The computed optical

flows are resized to N × N . The default parameter N for our experiments is 32.

Thus, the feature dimension of the OF is 2×N ×N .

• MB : The MB descriptor separates optical flow F = (p, q) into its horizontal com-

ponent ∇p = (px, py) and vertical component ∇q = (qx, qy), such that the feature

dimension is twice of the dimension of OF up to 4×N ×N .

• HOF : In order to compute the HOF descriptor [DTS06], the image domain is

decomposed intom×n non-overlapping blocks, wherem and n are fixed parameters.

Each block can be indexed by (ı, ), 1 ≤ ı ≤ m, 1 ≤  ≤ n. For each block (ı, ),

we can generate a histogram of the optical flow features with respect to P bins,

which is similar to the construction of the FMBH descriptor in Eqs. 5.9 and 5.10.

By concatenating histograms extracted block by block, we thus obtain the HOF

descriptor with length P ×m× n.

• MBH : As depicted in Section 5.3.1, the MBH descriptor [DTS06] is established by

the gradient vector fields of p and q. We first decompose the image domain into

m×n blocks. For each gradient vector field, a combinational histogram is obtained

by concatenating the histograms respectively from each gradient vector fields of p

and q. Then the final MBH descriptor can be computed by concatenating these

combinational histograms using the same procedure as the HOF descriptor, where
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the length of the final historgram is 2× P ×m× n.

In order to prevent over-fitting, the principal component analysis is performed on all

the features and the SVM is applied for training and testing. For the HOF, MBH and

FMBH, the number of principal components of feature dimensions are kept by the PCA

from 85% to 99% with a step length of 2% for comparing their influence. As the feature

length of the OF and MB are much higher than the HOF, MBH and FMBH, their feature

dimensions are kept from 50% to 95% with a step length of 5% for classification. We finally

determine the remaining length of the feature dimensions in terms of the recognition rate

after PCA operation. In other words, the length of the feature dimensions will be chosen if

the corresponding recognition rate is the highest one among all the candidates of feature

dimension lengths.

Before the optical flow computation, face images are masked for removing inhomoge-

neous background and hairs region which may influence the recognition results. Different

masks are applied depending on the image resolution in the three datasets. Procedure

of building faces masks are provided in Algorithm 2 and Fig. 5.7, where the left image

shows the average face in CAS(ME)2 dataset, the middle image illustrates ellipse curve

on average face and the right image shows obtained binary mask from the inner region

of the ellipse.

Algorithm 2: Face Mask Generation
Input : All cropped faces in a dataset.

Output : A face mask.

Procedure

1: Compute an average face by calculating the average of all cropped faces in database.

2: Exploit the function "imellipse" (the function "imellipse" is used for creating

draggable ellipse in MATLAB) on the average face and drag ellipse to a proper size

manually. Thus, a binary mask is obtained.

3: Apply the binary mask on faces.

Some examples are shown in Fig. 5.8 to visualize this image pre-processing procedure.

For classification, a non-linear SVM [CL11] with an RBF kernel (see Eq. 20) is em-

ployed. Two important parameters are set in the SVM, which are γ and the penalty

parameter C. For the RBF kernel, multiples (e.g. 2k for k ∈ [−8, 8]) of the default value

are used as search range in a grid-search using cross-validation to determine C and γ. The
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Figure 5.7: The process of creating a binary mask in CAS(ME)2 database.

highest recognition rate is selected which corresponds to the optimal set of parameters.

The recognition experiments are conducted by applying the leave-one-subject-out (LOSO)

where one subject is used as the test set and the others are used as the training set in

each loop. The same parameters are used on the three datasets. We set N = 32, the

values of m and n range from 1 to 10.

Figure 5.8: Illustration of masked samples from CASME, CASME II and SMIC database, respectively. The first
line represents three masks and the second line provides samples masked by the corresponding mask.

5.5 Experimental results

In this section, the FMBH is evaluated comparatively with other motion descriptors

on the three datasets. We first discuss the performance of different descriptors for different

number of bins in Section 5.5.1. Section 5.5.2 presents the results of the FMBH using

different blocking. In Section 5.5.3, the FMBH is first compared with four baselines, i.e.,

the OF, MB, HOF, MBH, and then compared to state-of-the-art results.
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5.5.1 Comparison of performance of descriptors under different num-
ber of bins

The recognition rates obtained from motion descriptors (i.e., HOF, MBH and FMBH)

under different number of bins are compared in Tables 5.1, 5.2, 5.3 and 5.4, respectively.

We report the performance of each individual descriptor with respect to different number

of bins. Through all the bin modes, the average recognition rates for the FMBH descriptor

achieves 58.33% on CASME, 64.29% on CASME II, 68.34% on SMIC and 72.05% on

CAS(ME)2, which outperforms the performance of the HOF and MBH descriptors. It

should not be surprised that the results in CASME II and SMIC datasets are better than

those in CASME, because CASME II, SMIC and CAS(ME)2datasets were filmed without

illumination variance. Specifically, we take the results derived from 2 bins, i.e., P = 2, as

an example. We observe that the FMBH descriptor achieves 6.66%, 1.63%, 1.83% and

0.54% higher rates than the MBH descriptor on the datasets of CASME, CASME II,

SMIC and CAS(ME)2, respectively. We also observe that both the FMBH and MBH

descriptors are more discriminative and stable for micro-expression recognition than the

optical flow.

From Tables 5.1, 5.2, 5.3 and 5.4, it can be observed that the number of bins and the

respective rotations give rise to a slight influence in performance. Different descriptors

achieve their best performance at different values of P . The proposed FMBH descriptor

achieves the best performance using P = 3 under Mode 4 at CASME, P = 4 at SMIC,

P = 8 at CASME II and P = 7 at CAS(ME)2. However, for the dataset CASME II, our

descriptor achieves the third highest recognition rate using P = 4. Such an observation

can give a useful suggestion when choosing the number of bins for practical applications.

Table 5.1: Comparison of recognition rates of descriptors under different number of bins in CASME dataset

Methods

Number of bins P Mean

P = 2 P = 3 P = 4 P = 5 P = 6 P = 7 P = 8 P = 9

Mode 1 Mode 2 Mode 3 Mode 4 Mode 1 Mode 2

HOF 60% 56.67% 58% 60% 55.33% 58% 58% 58.67% 58.67% 55.33% 54% 54% 57.23%

MBH 54.67% 56% 58.67% 59.33% 60.67% 58.67% 56.67% 58.67% 56.67% 56% 56% 57.33% 57.44%

FMBH 61.33% 59.33% 59.33% 59.33% 61.33% 56.67% 58.67% 58.67% 56% 56.67% 56.67% 56% 58.33%
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Table 5.2: Comparison of recognition rates of descriptors under different number of bins in CASME II dataset

Methods

Number of bins P Mean

P = 2 P = 3 P = 4 P = 5 P = 6 P = 7 P = 8 P = 9

Mode 1 Mode 2 Mode 3 Mode 4 Mode 1 Mode 2

HOF 64.63% 60.98% 61.79% 65.45% 61.38% 63.01% 64.23% 59.35% 61.38% 61.79% 63.01% 63.01% 62.50%

MBH 67.07% 66.67% 63.82% 66.26% 62.60% 64.23% 65.04% 64.63% 64.23% 64.23% 62.60% 62.60% 63.58%

FMBH 68.7% 63.82% 64.23% 62.20% 64.63% 66.67% 62.60% 63.01% 62.20% 63.41% 69.11% 60.98% 64.29%

Table 5.3: Comparison of recognition rates of descriptors under different number of bins in SMIC dataset

Methods

Number of bins P Mean

P = 2 P = 3 P = 4 P = 5 P = 6 P = 7 P = 8 P = 9

Mode 1 Mode 2 Mode 3 Mode 4 Mode 1 Mode 2

HOF 61.59% 67.07% 67.68% 71.95% 64.63% 64.63% 70.12% 67.68% 66.64% 62.2% 63.41% 61.59% 65.76%

MBH 67.68% 65.24% 67.68% 69.51% 69.51% 68.29% 69.51% 65.85% 71.34% 66.46% 68.29% 67.68% 68.08%

FMBH 69.51% 65.85% 71.34% 67.07% 68.29% 71.95% 70.12% 66.46% 65.24% 68.90% 70.12% 65.24% 68.34%

Table 5.4: Comparison of recognition rates of descriptors under different number of bins in CAS(ME)2dataset

Methods

Number of bins P Mean

P = 2 P = 3 P = 4 P = 5 P = 6 P = 7 P = 8 P = 9

Mode 1 Mode 2 Mode 3 Mode 4 Mode 1 Mode 2

HOF 62.46% 64.71% 64.99% 60.78% 58.26% 63.03% 65.55% 61.34% 61.34% 64.99% 64.43% 62.46% 62.86%

MBH 71.43% 71.15% 71.99% 70.87% 72.55% 70.31% 73.11% 71.99% 72.83% 70.03% 70.59% 71.99% 71.52%

FMBH 72.55% 72.55% 72.27% 71.43% 72.27% 72.27% 71.71% 73.39% 71.15% 73.67% 70.31% 71.15% 72.06%
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5.5.2 Comparison of different blocking

We investigate the impact of face blocking on the recognition rate. Table 5.5 illustrates

the performance of the FMBH on SMIC with a bin number of 4 under Mode 1. The grid

levels range from 1 to 10. The best performance is observed as 71.95% with 9× 4 blocks.

The performance of the FMBH on the whole face (1×1 block size) is 38.41%, much lower

than 71.95%, which demonstrates that observing information spatially has an influence

on recognition rate.

Table 5.5: Recognition rates with respect to different block sizes. The m and n represent the horizontal and
vertical grid level.

m
Grid level

1 2 3 4 5 6 7 8 9 10

1 38,41% 37,20% 51,22% 46,95% 47,56% 53,66% 49,39% 46,95% 54,27% 51,83%

2 49,39% 45,73% 46,95% 50,00% 52,44% 53,66% 53,05% 57,32% 51,22% 51,83%

3 53,66% 52,44% 53,66% 55,49% 53,66% 56,10% 54,88% 57,93% 53,66% 57,32%

4 56,10% 59,15% 62,80% 64,02% 60,98% 62,80% 62,80% 60,37% 60,37% 61,59%

5 65,85% 62,20% 63,41% 67,07% 62,80% 60,98% 62,20% 62,20% 60,98% 61,59%

6 62,80% 62,20% 63,41% 64,63% 62,20% 62,80% 62,80% 61,59% 62,20% 63,41%

7 62,80% 61,59% 63,41% 67,07% 60,98% 62,20% 62,20% 62,80% 60,98% 61,59%

8 60,37% 62,80% 67,07% 64,02% 62,20% 63,41% 62,80% 64,02% 62,80% 63,41%

9 67,07% 66,46% 65,24% 71,95% 65,24% 62,80% 62,80% 63,41% 59,76% 62,20%

n

10 62,80% 62,80% 63,41% 69,51% 64,63% 61,59% 64,02% 62,20% 60,37% 60,37%

5.5.3 Comparison of baseline descriptors with state-of-the-arts

In this section, we first present the comparison results of the FMBH to the exist-

ing motion descriptors, i.e., the OF, MB, HOF and MBH, and then compare our re-

sults to the state-of-the-art methods (i.e., LBP-TOP [ZP07], STLBP-IIP [HWL+16],

DiSTLBP-IIP [HWL+16], HIGO/HOG+XOT/TOP [LHM+15], STCLQP [HZH+16a],

MDMO [LZY+16], Bi-WOOF [LSPW16] and FDM [XZW17]) in recent literature. Fea-

tures in these state-of-the-art methods are classified into two categories : texture and

motion features, where texture features include LBP-TOP, STLBP-IIP, DiSTLBP-IIP,

HIGO/HOG+XOT/TOP and STCLQP, while motion features contain the MDMO, Bi-

WOOF and FDM. The results are displayed in Table 5.6. For the purpose of fair com-

parisons, the recognition rates associated to the HOF, MBH and FMBH descriptors are

obtained by choosing the respective highest rate through all the four datasets, which can

also be seen from Tables 5.1 to 5.3.
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Table 5.6: Recognition rates comparison with the state-of-art methods on three datasets by using leave-one-
subject-out protocol. The bold means the highest recognition rate and * means that we directly extract the
results from the reference paper.

Methods CASME CASME II SMIC CAS(ME)2

OF 55.33% 64.63% 66.46% 68.91%

MB 60% 63.41% 69.51% 73.11%

HOF 60% 65.45% 71.95% 65.55%

MBH 60.67% 67.07% 71.34% 73.11%

LBP-TOP* [QWY+17] / / / 40.83%

STLBP-IIP* [HWL+16] 59.06% 62.75% 60.37% /

DiSTLBP-IIP* [HWL+16] 64.33% 64.78% 63.41% /

HIGO/HOG+XOT/TOP* [LHM+15] / 57.49% 65.24% /

STCLQP* [HZH+16a] 57.31% 58.39% 64.02% /

MDMO* [LZY+16] 68.86% 67.37% / /

Bi-WOOF* [LSPW16] / 58.85% 62.20% /

FDM* [XZW17] 56.14% 45.93% 54.88% /

Proposed FMBH 61.33% 69.11% 71.95% 73.67%

Among all the baseline motion descriptors (OF, MB, HOF, MBH, FMBH), the FMBH

feature achieves the best recognition rate (61.33% on CASME, 69.11% on CASME II,

71.95% on SMIC and 73.67% on CAS(ME)2), which shows that building the relations

between θp and θq as well as the relations between Mp and Mq are useful for improving

micro-expression recognition rates. FMBH is then followed by the MBH and HOF.

One can observe from Table 5.6 that the FMBH outperforms the state-of-the-art

methods evaluated upon these datasets except CASME in which the MDMO yields the

highest recognition rate. On CASME II, the FMBH outperforms the DiSTLBP-IIP by

over 4%. On SMIC, it is over 6% higher than the method in [LHM+15]. Over CAS(ME)2,

the recognition rate of our method outperforms the LBP-TOP operator. Specifically,

the rate of our method achieves 32.84% higher than LBP-TOP. Meanwhile, the MB,

HOF, MBH achieve better performance than that of methods in [LHM+15, HZH+16a] on

CASME II, CAEME2 and SMIC. This is because the motion descriptors have a stronger

ability of capturing small micro-movements than those texture descriptors. The facial

dynamics map (FDM) [XZW17] based on optical flow estimation works poorly in micro-

expression recognition. This demonstrates that our method using two frames (onset &

apex) to extract motion information rather than the whole sequence can improve the

accuracy of micro-expression recognition.
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We further compare the confusion matrices of OF, MB, HOF, MBH and FMBH

when they obtain the best recognition rates on CASME II in Table 5.7. The results

show that the FMBH achieves higher accuracy on Disgust. Unfortunately, all motion

features make much false classification of Repression to Others and also of Disgust to

Others. This can be explained that Others class contains some confused micro-expressions

similar to Disgust or Repression. The confusion matrices of FMBH on CASME, SMIC

and CAS(ME)2are displayed in Table 5.8. From these comparisons, we see that FMBH

has a promising ability to recognize micro-expressions on the three databases.

Table 5.7: The confusion matrices of the (a) OF, (b) MB, (c) HOF, (d) MBH, (e) FMBH on the CASME II
database at the best recognition rate, by the LOSO cross-validation

(a) OF

Ground truth

Disgust Happy Repression Surprise Others

P
re
d
ic
ti
on

Disgust 61.9% 9.38% 3.7% 0% 20.2%

Happy 1.59% 43.75% 14.81% 12% 5.05%

Repression 1.59% 12.5% 51.85% 0% 0%

Surprise 0% 3.13% 0% 76% 1.01%

Others 34.92% 31.25% 29.63% 12% 73.74%

(b) MB

Ground truth

Disgust Happy Repression Surprise Others

P
re
d
ic
ti
on

Digust 65.08% 9.38% 18.52% 12% 18.18%

Happy 3.17% 56.25% 18.52% 0% 8.08%

Repression 1.59% 3.13% 25.93% 0% 2.02%

Surprise 0% 3.13% 0% 80% 1.01%

Others 30.16% 28.13% 37.04% 8% 70.71%

(c) HOF

Ground truth

Disgust Happy Repression Surprise Others

P
re
d
ic
ti
on

Digust 52.38% 12.5% 7.41% 0% 18.18%

Happy 7.94% 62.5% 11.11% 4% 7.07%

Repression 0% 6.25% 62.96% 8% 2.02%

Surprise 0% 6.25% 3.7% 76% 0%

Others 39.68% 12.5% 14.81% 12% 73.73%

(d) MBH

Ground truth

Disgust Happy Repression Surprise Others

P
re
d
ic
ti
on

Disgust 66.67% 6.25% 0% 4% 11.11%

Happy 0% 65.63% 22.22% 8% 8.08%

Repression 0% 0% 25.93% 0% 6.06%

Surprise 0% 3.13% 0% 88% 1.01%

Others 33.33% 25% 51.85% 0% 73.74%

(e) FMBH

Ground truth

Disgust Happy Repression Surprise Others

P
re
d
ic
ti
on

Disgust 73.02% 15.63% 3.7% 4% 17.17%

Happy 4.76% 62.50% 7.41% 8% 7.07%

Repression 0% 6.25% 51.85% 4% 4.04%

Surprise 0% 3.13% 3.7% 80% 1.01%

Others 22.22% 12.5% 33.33% 4% 70.71%

The computation time for the optical flow estimation on two frames with size 250×200

is 12.02×103 ms. Based on the computed optical flow, the computation time for the MB

operator, the HOF operator, the MBH operator and the FMBH operator are 3.04 ms,

3.47 ms, 5.32 ms and 4.3 ms, respectively.
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Table 5.8: The confusion matrices of the FMBH on the (a) CASME, (b) SMIC, (c) CAMSE2 database at the
best recognition rate, by the LOSO cross-validation

(a) CASME

Ground truth

Disgust Repression Surprise Tense

P
re
d
ic
ti
on

Disgust 35% 0% 0% 7.94%

Repression 7.5% 44.83% 5.56% 7.94%

Surprise 2.5% 3.45% 83.33% 4.76%

Tense 55% 51.72% 11.11% 79.37%

(b) SMIC

Ground truth

Positive Negative Surprise

P
re
d
ic
ti
on Positive 80.39% 21.43% 6.98%

Negative 11.76% 64.29% 18.6%

Surprise 7.84% 14.29% 74.42%

(c) CAS(ME)2

Ground truth

Positive Negative Surprise Others

P
re
d
ic
ti
on

Positive 77.42% 9.52% 12% 28.05%

Negative 4.03% 77.78% 4% 7.32%

Surprise 8.1% 23.8% 64% 1.22%

Others 17.74% 10.32% 20% 63.41%

5.6 Conclusion

This chapter introduces and comparatively evaluates a new feature extraction method

for the application of micro-expression recognition. The main contribution lies at the con-

struction of facial features established based on differential optical flow vector fields. For

this purpose, a nonlinear mapping is defined to establish a fusion rule that combines

the respective gradient vector fields of the two optical flow components. The histograms

of the proposed features are extracted from the Frobenius norms of a Jacobian matrix

derived from the optical flow. To evaluate and optimize the performance of the proposed

features, we have also investigated the influence of different ways of bin construction

depending on the number of bins and the initial orientation angle of the first bin. The

experiments conducted on four well-known micro-expression datasets show that the pro-

posed method achieves promising results. Next chapter will summarize this thesis and

present the future work with respect to micro-expressions analysis.
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Conclusion and Perspectives

This thesis is devoted to the micro-expression detection and recognition in videos.

After extensive analysis of the state-of-the-art methods of the target topic, we have pro-

posed some feature extraction methods for micro-expressions description. Each proposal

is evaluated and tested upon well-known databases.

The main contributions are summarized hereafter and then we discuss the possible

future work for their extension.

• Framework of micro-expressions detection based on the IP feature

The detection method based on the IP feature is proposed to reduce the computa-

tion complexity for feature extraction. In addition, an automatic reference frame

selection algorithm is developed for the purpose of reducing the accumulating er-

rors along the sequence. For traditional texture features such as the LBP and the

HOG features, and the motion feature like the optical flow, the computation time

required is very expensive, limiting the possible applications in real-time detection.

Experiments show that our proposed method can obtain better or comparable re-

sults but requiring much less computation time than those traditional texture and

motion features.

• Framework of micro-expressions detection based on the geometrical
feature

The second method proposed for micro-expressions detection is based on the geo-

metrical feature of key-points detected in the face. This method aims at compar-

ing differences between frames along a sequence by extracting euclidean distance

among facial key points. Traditional texture or motion features are extracted from
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the faces cropping, while the proposed feature extraction method involves only fa-

cial key points such that the cropping faces operation is no longer required. Thus,

errors given arise by the faces cropping step and the time consumed on the cropping

faces can be avoided. By comparing with state-of-the-art methods, the experiments

conducted on the SMIC dataset show that the proposed method achieves best re-

sults.

• Framework of micro-expressions recognition based on the motion
feature

For micro-expressions recognition, a fusion motion boundary histograms (FMBH)

is proposed by combing both the horizontal and the vertical components of the dif-

ferential of the optical flow. A relation is established between two gradients of the

differential of the optical flow through a nonlinear mapping. Like the motion bound-

ary histograms (MBH), the FMBH can reduce the unexpected motions caused by

residual mis-registration. Nevertheless, the relative motion can be captured. More-

over, different number of orientation bins and its rotation modes are investigated in

our experiments. The experiments conducted on four well-known micro-expression

datasets show that the proposed method achieves promising results.

Future Work

Some future works can be derived from this thesis. First, it is valuable to further in-

vestigate the geometrical feature for micro-expressions detection and recognition. To be

honest, the geometrical feature proposed in this thesis is not complete and must be im-

proved. For example, the width between eyebrows are not included in our method, as well

as the angle of the eyebrows, eyes and mouth corner. The geometrical distances between

facial key points are Euclidean distances without any direction information. Thus, adding

the direction information may improve the detection and recognition performance. Since

blinking of eyes may cause rapid movements in the skin around eyes and eye brows, tradi-

tional detection methods based on features such as the LBP, HOG, OF and IP have been

proved to fail distinguishing the movements of the eyes with emotions from the natural

eyes blinks [MZP14b, DYC+14, LKR17, WWQ+17]. While the geometrical distance is

not influenced by movements in the skin such that the detection method based on the

geometrical feature is capable of removing the influence of natural eye blinks in videos.

While the traditional detection methods based on features such as the LBP, HOG, OF
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and IP have been proved to fail distinguishing the movements of the eyes with emotions

from the natural eyes blinks.

Second, it is worthwhile to develop more powerful faces alignment approaches. Since

the movement of micro-expressions is subtle, any small non-mapping images caused by

faces alignment or cropping operation may lead to wrong orientation and magnitude in

the computation of motion features.

Third, it is meaningful to further study other motion features, or their combination.

There exists other motion features such as the divergence and the curl, besides those

motion features mentioned in Chapter 5.

Fourth, it is interesting to investigate the influence of different machine learning clas-

sifiers for micro-expressions detection and recognition. Traditional recognition methods

focus on the extraction of features and gives little importance to the selection of machine

learning classifiers. Recently, the deep learning is popularly used in computer vision.

The recognition method using deep learning can be an alternative way for improving its

performance.

Finally, more micro-expressions database should be built in the future. Most databases

use young students or teachers who have never criminal experience, restricting the databases

to analyze deception in real life, high-stake situation, or medical treatment. It is not

possible to find a database for illumination related studies which require various illu-

minations. Moreover, approaches associated to occlusion are important because in real

world, partial occlusion appears frequently. The system must be capable of recognizing

micro-expressions despite occlusions by sunglasses, facial hairs, hands, scarves, etc. In

general, it is difficult to create a database that will satisfy everyone’s need. Publicly and

freely available databases containing more samples, data under real deception environ-

ment, varying conditions of occlusion, varying lighting conditions, etc. are welcome for

this work.
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Appendix A : Support Vector
Machine (SVM)

This appendix introduce a detailed description of the SVM, which is a discriminative

classifier by a separating hyperplane. Suppose given a set of labeled training data, the

SVM will output an optimal hyperplane which classifies testing data. This appendix

firstly reviews both linear and non linear separable case, including how to find an optimal

separating. Then, three widely used kernels of linear, polynomial and RBF are introduced

in Section 6. Section 6 introduce problems of SVM in overfitting and error tolerance. SVM

algorithm is detailed described in Section 6. The conclusion is presented at last.

The Linear Separable Case

A simple model of 2D linear classifier is shown as Figure 1.

Figure 1: Linear Classifier Schematic diagram

A training dataset with n points is plotted on the image, which has a form of :

( ~x1, y1), ( ~x2, y2), ..., ( ~xn, yn) (1)
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where ~xi is the p-dimensional vector and yi is 1 or−1 indicating the class for each point. In

the image, we can see orange and blue lines can both identify two groups of data, but how

can we know which linear classifier is better ? To solve this problem, maximum margin

classifier was proposed. The margin is defined as the geometrical distance from each point

to hyperplanes, which is γi = wT xi+b
‖w‖ . For linear separable problem, all the parallel linear

classifier with no data point between each other, could be classified into same group. And

the borders of such a group are defined as wTxi + b = k and wTxi + b = −k. Through
choosing the value of ‖w‖, k is also ranging from 0 to ∞, then we set k = 1 by scaling

the ‖w‖. The maximum margin classifier for each group just lies on the middle of the

two borders, and the distance between the two hyperplane is 2
‖w‖ . As no data point falls

in the margin, the limitation to two borders is :

wTxi + b ≥ 1 ∀yi = 1

and

wTxi + b ≤ −1 ∀yi = −1

Then the final optimization problem becomes

max
2

‖w‖
, s.t. yi(w

Txi + b) ≥ 1, for i = 1, . . . , n

Additionally, the points most close to the maximum margin classifier must lie on the

both borders. These points are called support vectors.

As

max
2

‖w‖
⇐⇒ min

1

2
‖w‖2

the maximum margin problem could be converted to Convex optimization and solved by

Quadratic Programming.

Another popular solution to this problem is Lagrange duality. The Lagrangian func-

tion is constructed as below :

L(w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi[yi(w
Txi + b)− 1] (2)

Then set θ(w) = maxL(w, b, α) s.t. αi ≥ 0. If all limitations are satisfied, then

θ(w) = 1
2‖w‖

2, otherwise θ(w) → ∞. Now, our optimization problem has been trans-

formed to :

min
w,b

θ(w) = min
w,b

max
αi≥0
L(w, b, α) (3)
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As this problem satisfies Karush-Kuhn-Tucker conditions (KKT) [DFKS11], we have :

min
w,b

max
αi≥0
L(w, b, α) = max

αi≥0
min
w,b
L(w, b, a) (4)

To get minw,b L(w, b, a), it should have :

∂L
∂w

= 0 (5)

∂L
∂b

= 0 (6)

which is equivalent to :

w =
n∑
i=1

αiyixi (7)

n∑
i=1

αiyi = 0 (8)

Back to the original equation 2 :

L(w, b, α) =

n∑
i=1

αi −
1

2

n∑
i=1,j=1

αiαjyiyjx
T
j xi (9)

The final form of the optimization problem is :

max
α

(
n∑
i=1

αi −
1

2

n∑
i=1,j=1

αiαjyiyjx
T
j xi) (10)

under the limitation of

αi ≥ 0, i = 1, . . . , n
n∑
i=1

αiyi = 0

This is a dual variable problem and could be solved by Sequential Minimal Optimization,

which is proposed by John C. Platt [Pla98].

The Non Linear Separable Case

In most of real situations, the data is not linearly separable in raw space. To solve this

non-linear separable problem, a possible solution is to project these data onto a higher

dimension.
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Let φ be a map from low dimension to high dimension. According to Eq.(7), we have

the hyperplane equation as below :

f(x) = (
n∑
i=1

αiyixi)
Tx+ b

=
n∑
i=1

αiyi 〈xi, x〉+ b

where αi = 0 for all the non support vector.

Then in new high dimension space, the hyperplane should be :

f(x) =
n∑
i=1

αiyi 〈φ(xi), φ(x)〉+ b (11)

The new optimization problem is converted to :

max
α

(
n∑
i=1

αi −
1

2

n∑
i=1,j=1

αiαjyiyj 〈φ(xi), φ(xj)〉) (12)

under the limitation of

αi ≥ 0, i = 1, . . . , n
n∑
i=1

αiyi = 0

Although φ transformation could help solve the non linear separable case, the comput-

ing load grows geometrically with the original data dimension, which makes it inefficient

in real application. Thus the kernel trick was introduced to solve this problem.

The idea of "Kernel" comes from another mathematical tool in functional analy-

sis, Reproducing kernel Hilbert space (RKHS), which is widely utilized even before the

creation of SVM [RT01].

At first, an inner product should be defined as below :

Definition 1. Let H be a vector space over R, if there is a map :

〈·, ·〉H : H×H → R (13)

satisfying the following three axioms for all vector x, y, z ∈ R :

1. Conjugate symmetry : 〈x, y〉H = 〈y, x〉H
2. Linearity in the first argument : 〈a1x1 + a2x2, g〉H = a1〈x1, g〉H + a2〈x2, g〉H
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3. Positive-definiteness : 〈x, x〉H ≥ 0 and 〈x, x〉H = 0 ⇐⇒ x = 0

Then it is said to be a inner product. A norm of any vector could be defined as its inner

product with itself : ‖x‖H =
√
〈x, x〉H. A Hilbert space is a complete and separable space

on which an inner product is defined.

According to Riesz representation theorem [Sch71], the definitions of Reproducing

kernel Hilbert space and its kernel can be achieved [W+99].

Definition 2. Let H be a Hilbert space of function f : X → R, and X is a non-empty

set. For a fixed x ∈ X, bijective map δx : H → R, then δx : f → f(x) is called the

evaluation function at x. The Hilbert space H is called a RKHS when δx is continuous

∀x ∈ X
Definition 3. A function K : X ×X → R is called a reproducing kernel if it satisfies :

(1) ∀x ∈ X,K(·, x) ∈ H

(2) ∀x ∈ X,∀f ∈ H, 〈f,K(·, x))〉H = f(x)

The second property is called the reproducing property.

And in particular :

K(x, y) = 〈K(·, x),K(·, y)〉H ∀x, y ∈ X (14)

The kernel has several important properties :

(1) If it exists, reproducing kernel is unique.

(2) Reproducing kernels are positive definite.

(3) For every positive definite function K(x,y), there is a unique RKHS whose repro-

ducing kernel is K Hilbert space, if and only if H has a reproducing kernel.

Here, we only show the demonstration of the kernel for any RKHS. Assume that δx ∈ H′

is a bounded linear functional. According to Riesz representation theorem (In a Hilbert

space H, all continuous linear functionals are of the form 〈·, g〉H, for some g ∈ H), there
exists an element fδx ∈ H such that :

δxf = 〈f, fδx〉H , ∀f ∈ H (15)

Define K(x′, x) = fδx(x′), ∀x, x′ ∈ X. Then, K(·, x) = fδx ∈ H, and 〈f,K(·, x)〉H =

δxf = f(x). Thus, K is the reproducing kernel.

Through the introducing of kernel trick, a map could be transformed to inner product

in the original space. In our case, if the map from low dimension space to high dimension
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space is φ(x0) = K(·, x), then

〈φ(x), φ(y)〉 = 〈K(·, x),K(·, y)〉H = K(x, y) (16)

Thus the optimization problem return to the low dimension space under the form of :

max
α

(
n∑
i=1

αi −
1

2

n∑
i=1,j=1

αiαjyiyjK(x, y)) (17)

under the limitation of

αi ≥ 0, i = 1, . . . , n
n∑
i=1

αiyi = 0

But, for specific dimension transformation operator φ, K is always not easy to cal-

culate and express. But as we do not need any information from high dimension space,

usually we can confirm the kernel function firstly, then calculate the high dimension

space. Additionally, there have been many useful kernels, which are already well studied

and have good properties for the application. We will introduce these kernel function in

next chapter.

SVM Kernels

There are several kernels being widely used in the kernel trick, such as : linear kernel,

polynomial kernel, Gaussian kernel, RBF kernel etc.. Some of their mapping space has

finite dimension, such as linear and polynomial kernels, while some are infinite, such as

RBF kernels. Even more, researchers can build up their own kernel to fit their work bet-

ter, on the basis of these simple kernels. In general, more target dimension will improve

the classification accuracy for it provides more features, but will also led to over-fitting

problems, whose introduction is in next section. As the result, how to choose the right ker-

nel function and its corresponding parameters becomes a crucial part for the application

of SVMs. There are two useful measurements to determine the kernel function [SS02].

The first is to test the classification accuracy with training dataset, and compare the

results from different kernels. The other one is using the experiences from similar field.

For example, second order Polynomial Kernels are demonstrated to be efficient for face

recognition [OFG97, GLC00, Bur98].
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Linear Kernels

Linear Kernels is the simplest kernel, which is given as below :

K(x, y) = xT y + c (18)

where x and y are vectors of features defined as above, and c is a parameter to trade off

the influence of the order of the original space.

Linear kernel keeps the dimension of original space. In another way, it means the

SVMs will collapse into Bayesian linear regression, and decrease its own time complexity

from O(N3) to O(N).

Polynomial Kernels

Polynomial kernel is a high-dimensional promotion of linear kernel. Although it has

finite dimension, polynomial kernel has important position in that situation where overfit

tend is obvious. For d-degree polynomials, the polynomial kernel is defined as below :

K(x, y) = (xT y + c)d (19)

subject to

c ≥ 0

where x, y, c have the same definitions as in linear kernel. Especially, this kernel is called

homogeneous when c = 0.

RBF Kernels

(Gaussian) Radial basis function (RBF) kernel is defined as below :

K(x, y) = exp(−‖x− y‖
2

2σ2
) (20)

where x and y are vectors of features as above, ‖x− y‖ is the Euclidean distance, and σ

is a free parameter. The RBF kernel is the most used infinite kernel, for the distribution

of real samples are usually Gaussian distribution in practice.
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Figure 2: Linear Classifier with sample error

Overfitting and Error tolerance

In theory, any samples can be classified in high enough dimension space, but the

classifier obtained may be inconsistent with the actual situation. What’s worse is, if

there are some errors or mistakes in training set, they will distort the classifier as in

Fig. 2. In Fig. 2 left sub-figure, the blue line, who responses to the classifier, is shifted to

the orange line. The new classifier has far less margin than the origin one. In Fig. 2 right

sub-figure, the blue line is completely distorted into orange line, which means the classifier

can only be solved from high dimension space, which increases the time complexity of the

whole program. To avoid such shift and distortion which are usually called overfitting,

the SVMs must have some kind of error tolerance, and its own accuracy as well. Then

the soft margin SVM is developed to solve this problem.

From Eq. (6), the restriction is yi(wTxi + b) ≥ 1, for i = 1, . . . , n. To tolerate the

errors, relaxation variable ξi ≥ 0 is introduced into the restrictions :

yi(w
Txi + b) ≥ 1− ξi, for i = 1, . . . , n (21)

which will permit some point to drop within the margin to achieve larger margin distance.

In the other hand, the error should be carefully controlled in a small amount to

decrease accuracy loss. So a threshold function is added onto original objective function :

min
1

2
‖ω‖2 + C

N∑
i=1

ξi (22)

where parameter C is the level of user’s tolerance to errors.

Subject to
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yi(w
Txi + b) ≥ 1− ξi, for i = 1, . . . , n
m∑
i=1

αiyi = 0

The Lagrangian function for this problem is :

L(w, b, α, β, ξ) =
1

2
‖w‖2 + C

N∑
i=1

ξi −
n∑
i=1

αi[yi(w
Txi + b)− 1 + ξi]−

N∑
i=1

βiξi (23)

When KKT condition is satisfied, the Lagrangian dual of above function is :

max
αi≥0,βi≥0

min
w,b,ξ
L(ω, b, α, β, ξ) (24)

This problem is equivalent to :

∂L
∂w

= 0 (25)

∂L
∂b

= 0 (26)

∂L
∂ξ

= 0 (27)

From Eq. (27), it is obvious that :

C = αi + βi (28)

Then all βi could be replaced with C −αi in Eq. (23) and Eq. (??). What’s more, as

αi ≥ 0, βi ≥ 0, we have 0 ≤ αi ≤ C.

max
0≤αi≤C

min
w,b

1

2
‖w‖2 −

n∑
i=1

αi[yi(w
Txi + b)− 1] (29)

The method to solve this optimization problem is same as Eq.(4)-(24), the final form

is :

max
α

(

n∑
i=1

αi −
1

2

n∑
i=1,j=1

αiαjyiyjx
T
j xi) (30)

subject to
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0 ≤ αi ≤ C, i = 1, . . . , n
n∑
i=1

αiyi = 0

the only difference is that the αi has upper bound C.

And the kernel form of soft margin SVM is :

max
α

(
n∑
i=1

αi −
1

2

n∑
i=1,j=1

αiαjyiyjK(x, y)) (31)

subject to

0 ≤ αi ≤ C, i = 1, . . . , n
n∑
i=1

αiyi = 0

The soft margin SVM is more suitable and practical for real classification problems.

Through the C chosen, user could balance the error rate and margin distance. The only

problem is that extra training samples and time are demanded for the parameter C.

Algorithm on solving SVMs

A normal SVM classifier induces a quadratic program (QP) as Eq. (31). As its

quadratic form, the matrix has a number of elements quadratic to the sample num-

ber, which is hard to handle directly. Several attempts have been made since the propose

of SVM, whose main idea is to break down the large problem into small parts.

The first algorithm, which was widely accepted by researchers, was proposed by

Platt from Microsoft [Pla98]. This algorithm is named Sequential Minimal Optimization

(SMO). After a short time, Shevade et al. improved the algorithm, and this version is

directly named as Improved SMO (ISMO) [SKBM00, KSBM01].

SMO is an iterative algorithm to solve the upper problem, which sacrifices the time

complexity for the space complexity. Its most different part from common QP iterative

algorithm is that the SMO updates two variables for each step under the limitation of∑n
i=1 αiyi = 0.
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For reducing the computational complexity, least squares support vector machine (LS-

SVM) was invented by converting constraints from linear inequalities to linear equations,

while this kind of conversion breaks the sparse characteristic of support vector. So it only

simplified some specific issues [SV99].

Another progress improves the core mechanics and avoids to solve standard quadratic

program. Lagrangian support vector machine (LSVM) is typical among this progress.

LSVM requires a simpler iterative scheme and provides global resolution, while its main

issue is coupling, which requests recalculation for each new introduced sample [MM01].

We introduce the algorithm and its implementation of SMO for soft margin SVM

here.

Assume one step of the algorithm loop. The variable got updated is αp and αq, then

other αi(i 6= p, i 6= q) could be treated as constant, as the restriction
∑n

i=1 αiyi = 0, we

have :

αpyp + αqyq = −
n∑

i 6=p,i 6=q
αiyi = Constant η (32)

αp =
η − αqyq

yp
(33)

From Eq. (31), set W as :

W =
n∑
i=1

αi −
1

2

n∑
i=1,j=1

αiαjyiyjK(x, y)

= αp + α1 −
1

2
K(xp, yp)αp

2 − 1

2
K(xq, yq)αq

2 − ypyqK(xp, xq)αpαq −

ypαp

n∑
i 6=p,i 6=q

αiyiK(xi, xp)− yqαq
n∑

i 6=p,i 6=q
αiyiK(xi, xq)

by taking Eq. (33) into above equation, we will get a univariate function W (αq).

As our discussion above, the classifier with kernel can be expressed as :

f(x) =

n∑
i=1

αiyiK(xi, x) + b (34)

then
n∑

i 6=p,i 6=q
αiyiK(xi, xp) = f(xp)− αpypK(xp, xp)− αqyqK(xq, xp)− b (35)
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n∑
i 6=p,i 6=q

αiyiK(xi, xq) = f(xq)− αpypK(xp, xq)− αqyqK(xq, xq)− b (36)

Set the error between calculation and real value as Ei = f(xi) − yi, and γ =

K(xp, xp) +K(xq, xq)− 2K(xp, xq),

Let :

∂W

∂αq
= 0 (37)

then

α′q = αq +
yq(Ep − Eq)

γ
(38)

For each step, as 0 ≤ αi ≤ C, new variate α′q must satisfy the restriction below :

L ≤ α′q ≤ H (39)

where :

L =

max (0, αq − αp) yq 6= yp

max (0, αq + αp − C) yq = yp
(40)

H =

min (C,C + αq − αp) yq 6= yp

min (C,αq + αp) yq = yp
(41)

Then the final update function is :

α′q = αp + ypyq(αq − α′q) (42)

With the conclusion above, we can implement the SMO algorithm as below.
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Algorithm 3: SMO for soft margin SVM
Input : C, kernel, kernel parameters, ξ

Result:

1 Initialize b and all α to 0;

2 while KKT not satisfied do

3 repeat

4 Find a sample e1 that violates KKT;

5 Choose a second sample that violates KKT;

6 α′q = αq +
yq(Ep−Eq)

γ ;

7 if α′q > H then

8 α′q = H;

9 else if α′q < L then

10 α′q = L

11 else

12 α′q = αp + ypyq(αq − α′q);
13 Calculate Ei and b according to α′p and α′q;

14 end

15 until The variation of Ei is less than the accuracy ;

16 end

Conclusion

This appendix introduce a supervised learning technique in the field of machine learn-

ing applicable to classification. The basic knowledge of the SVM is presented, along with

three widely used kernels of linear, polynomial and RBF.
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Appendix B : Comparison results of
four dissimilarity metrics and
Gaussian smoothing

In this section, the work associated to four dissimilarity metrics including the chi-

squared distance, the kolmogorov-smirnow distance, the cosine distance and the Eu-

clidean distance, and combined to the Gaussian smoothing is presented.

Dissimilarity analysis

There exists many other measures for the dissimilarity between two features. In our

experiments, except the chi-squared distance, other four distance measures are also in-

vestigated in Section 16. Assuming P = {pi} and Q = {qi} are the two features at same

length N :

• Chi-squared distance (CS), see Eq. (4.3).

• Kolmogorov-Smirnow distance (KS) [RTG00] :

DKS = max
i

(‖p̂i − q̂i), i ∈ [1, N ], (43)

where p̂i =
∑

j≤i pi is the cumulative histogram of pi, and similarly for qi.

• Cosine distance (COS) [ZL03] :

DCOS = 1−
∑N

i=1 piqi√∑N−1
i=0 p2

i

√∑N
i=1 q

2
i

(44)

• Euclidean distance (EUC) [SB91] :

DEUC =

N∑
i=1

√
(pi − qi)2. (45)
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Figure 3: Comparison of different dissimilarity metrics. The left column represents the distance of the sequence
which is labeled as "surprise"(file s3_sur_02 of the SMIC-HS database, by exploiting the CS, the KS, the COS
and the EUC, respectively. The right column represents the curve with Gaussian Smoothing on D (refer to
Section 4.4.2, Chapter 4), respectively. The σ of the Gaussian filter equals to 2.
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Fig. 3 shows an example for the comparison of those four dissimilarity measure meth-

ods. The top row represents the distance of the sequence which is labeled as "surprise"(file

s3_sur_02 of the SMIC-HS database), by exploiting the CS, the KS, the COS and the

EUC, respectively. The second row represents the smoothed curves by applying the Gaus-

sian Smoothing on the top row, respectively.

Experiments

For Gaussian smoothing, σ = 2, σ = 3 and σ = 4 are used for comparisons.

Fig. 4 to Fig. 7 show recognition rates under different combinations of methods applied

to the SMIC-sub, HS, NIR and VIS dataset, respectively. (a) and (b) illustrate recognition

rates using the RBF and polynomial kernels with four different dissimilarity metrics,

respectively. (c) and (d) illustrate recognition rates using the RBF and polynomial kernels

with the three standard deviations of the Gaussian filter. For (c) and (d), only the chi-

squared distance is exploited because we find that in most cases, the recognition rates

are higher by using the chi-squared distance than other four dissimilarity metrics as can

be observed on (a) and (a).

Evaluation on SMIC-sub

As observed in Fig. 4 (a) and (b), the performance of chi-squared distance is bet-

ter than other four dissimilarity metrics regardless using the RBF or polynomial kernel.

Meanwhile, the performance of the cosine distance is worst among four dissimilarity

metrics. For a more intuitive recognition rates comparisons between the RBF and poly-

nomial kernels, as well as comparisons between the four dissimilarity metrics, we compute

the mean recognition rate and the maximum recognition rate for each combination, see

Table 1. The highest mean accuracy is achieved by combining the RBF kernel and chi-

squared distance, yielding 82.32%. Both the combination of the chi-squared distance and

the RBF kernel with a number of feature 19 (or 46 − 50) and the combination of the

chi-squared distance and the polynomial kernel with a number of feature 39 as well as

46− 48 reach the best result 85.53%.

From Fig. 4 (c) and (d), a slight improvement is observed by combining the RBF and

the Gaussian filter with σ = 3 with a number of feature less than 16. Interpolating to a

higher number of feature did not yield any improvement.
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Figure 4: The results in the SMIC-sub dataset. (a) Comparison of four difference metrics regarding the influence
of feature length on the recognition performance using the RBF kernel. (b) Comparison of four difference metrics
regarding the influence of feature length on the recognition performance using the polynomial kernel. (c) Com-
parison of standard deviation of the Gaussian filter regarding the influence of feature length on the recognition
performance using the RBF kernel. (d) Comparison of standard deviation of the Gaussian filter regarding the
influence of feature length on the recognition performance using the polynomial kernel.

Table 1: Recognition rate comparisons between the RBF and polynomial Kernel as well as comparisons between
four dissimilarity metrics in SMIC-sub.

RBF Poly
Method

CS KS COS EUC CS KS COS EUC

Mean 83.32% 72.32% 55.64% 73.55% 82.71% 67.70% 57.54% 73.28%

Max 85.53% 75.00% 61.18% 76.97% 85.53% 74.34% 66.45% 76.32%
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Figure 5: The results in the SMIC-HS dataset. (a) Comparison of four dissimilarity metrics regarding the influence
of feature length on the recognition performance using the RBF kernel. (b) Comparison of four dissimilarity
metrics regarding the influence of feature length on the recognition performance using the polynomial kernel. (c)
Comparison of standard deviation of the Gaussian filter regarding the influence of feature length on the recognition
performance using the RBF kernel. (d) Comparison of standard deviation of the Gaussian filter regarding the
influence of feature length on the recognition performance using the polynomial kernel.
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Evaluation on SMIC-HS

Fig. 5 (a) and (b) shows that the performance of chi-squared distance is still the best

among four dissimilarity metrics regardless of using the RBF or polynomial kernel. Again,

the performance of the cosine distance is worst among four dissimilarity metrics. Table. 2

shows a summary of the mean and the maximum recognition rate for each combination

of method. Again, combining the RBF kernel and chi-squared distance yields the highest

mean accuracy 80.09%. The combination of the chi-squared distance and the RBF kernel

with a number of feature 6 (or 8) achieves the best result 82.32%.

Table 2: Recognition rate comparisons between the RBF and polynomial Kernel as well as comparisons between
four dissimilarity metrics in HS dataset

RBF Poly
Method

CS KS COS EUC CS KS COS EUC

Mean 80.89% 69.59% 50.90% 75.05% 77.21% 68.13% 50.97% 71.81%

Max 82.32% 70.43% 52.44% 76.83% 80.49% 70.12% 51.52% 75.00%

From Fig. 5 (c) and (d), a significant improvement is observed by combining the RBF

and the Gaussian filter with a number of feature larger than 24. For the HS dataset,

Interpolating to a higher number of feature with the Gaussian filter did improve the

performance. The highest recognition rate 84.15% is achieved by applying the Gaussian

filter with σ = 3 and the RBF kernel with a number of feature 57.

Evaluation on SMIC-NIR

Fig. 6 (a) and (b) shows that the chi-squared distance slightly outperforms the eu-

clidean distance combining the RBF and as well as the polynomial kernel. Table. 3 shows

a summary of the mean and the maximum recognition rate for each combination of

method. Again, combining the RBF kernel and chi-squared distance yields the highest

mean accuracy 71.01%. The combination of the euclidean distance and the polynomial

kernel with a number of feature 4 achieves the best result 75%.

From Fig. 6 (c) and (d), applying the Gaussian filter does not gain any improvements.

Evaluation on SMIC-VIS

Again, Fig. 7 (a) and (b) shows that the chi-squared distance outperforms other

dissimilarity metrics combining the RBF and as well as the polynomial kernel. Table. 4
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Figure 6: The results in the SMIC-NIR dataset. (a) Comparison of four difference metrics regarding the influence
of feature length on the recognition performance using the RBF kernel. (b) Comparison of four difference metrics
regarding the influence of feature length on the recognition performance using the polynomial kernel. (c) Com-
parison of standard deviation of the Gaussian filter regarding the influence of feature length on the recognition
performance using the RBF kernel. (d) Comparison of standard deviation of the Gaussian filter regarding the
influence of feature length on the recognition performance using the polynomial kernel.

Table 3: Recognition rate comparisons between the RBF and polynomial Kernel as well as comparisons between
four dissimilarity metrics in NIR dataset

RBF Poly
Method

CS KS COS EUC CS KS COS EUC

Mean 71.01% 69.58% 52.85% 70.45% 69.51% 65.41% 54.21% 67.26%

Max 73.39% 71.77% 54.84% 73.39% 72.58% 70.97% 69.35% 75.00%
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Figure 7: The results in the SMIC-VIS dataset. (a) Comparison of four difference metrics regarding the influence
of feature length on the recognition performance using the RBF kernel. (b) Comparison of four difference metrics
regarding the influence of feature length on the recognition performance using the polynomial kernel. (c) Com-
parison of standard deviation of the Gaussian filter regarding the influence of feature length on the recognition
performance using the RBF kernel. (d) Comparison of standard deviation of the Gaussian filter regarding the
influence of feature length on the recognition performance using the polynomial kernel.
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shows a summary of the mean and the maximum recognition rate for each combination

of method. Combining the polynomial kernel and chi-squared distance yields the highest

mean accuracy 70.80%. The combination of the chi-squared distance and the polynomial

kernel with a number of feature 23− 25, 40− 42 achieves the best result 73.24%.

Table 4: Recognition rate comparisons between the RBF and polynomial kernel as well as comparisons between
four dissimilarity metrics in VIS dataset

RBF Poly
Method

CS KS COS EUC CS KS COS EUC

Mean 69.94% 62.47% 53.46% 67.51% 70.80% 59.52% 53.06% 67.78%

Max 72.54% 70.42% 54.23% 69.01% 73.24% 64.79% 54.23% 70.42%

From Fig. 7 (c) and (d), applying the Gaussian filter does not gain any improvements.

Conclusion

This appendix investigate four dissimilarity metrics and the Gaussian smoothing

for micro-expressions detection. Since the chi-squared distance outperforms other three

dissimilarity metrics in most cases, it is selected as the dissimilarity metric in Chapter 4

and 5. For the database with more samples, exploiting the Gaussian smoothing with

σ = 2 is a good choice. For these small databases, it is not necessary to apply the

Gaussian smoothing.
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1. Hua Lu, Kidiyo Kpalma and Joseph Ronsin, Micro-expression motion detection

using integral projections, Journal of WSCG. Vol.25, 2017. No.2
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Résumé

Les principales contributions de cette thèse, en analyse d’image, portent 
sur l’étude des caractéristiques de repérage et de reconnaissance des 
micro-expressions. Les approches d’analyse d’expressions faciales 
dans le domaine de la vision par ordinateur consistent à les détecter 
et à les classer dans des vidéos. Par rapport à la macro-expression, 
une microexpression induit dans une partie du visage un changement
rapide durant moins d’une demi-seconde. De plus, cette subtile 
apparition dans une partie du visage rend difficile sa détection et sa 
reconnaissance. Ces dernières années ont connu un intérêt croissant 
pour des algorithmes d’extraction automatique de micro-expressions 
faciales. Cela a été motivé par des applications dans des contextes 
à enjeux élevés tels les enquêtes criminelles, les points de contrôle 
des aéroports et des transports en commun, le contre-terrorisme, Le 
choix de caractéristiques faciales efficaces joue un rôle crucial dans 
l’analyse des micro-expressions. 
Ce travail se concentre sur la partie d’extraction de caractéristiques, 
en proposant diverses méthodes pour les tâches de détection et 
de reconnaissance de micro-expression. La détection constitue la 
première étape dans l’analyse des micro-expressions. Les méthodes 
de détection existantes basées sur des caractéristiques, tels les motifs 
binaires locaux, l’histogramme de gradients orientés, le flux optique, 
souffrent de complexité de mise en oeuvre entraînant un problème 
d’implémentation en temps réel. Ainsi, dans cette thèse, une méthode 
de détection basée sur la projection intégrale est proposée pour 
résoudre ce problème. Cependant, toutes les caractéristiques ci-
dessus sont extraites des visages recadrés et rognées ; ce qui cause, 
généralement, un décalage résiduel entre les images. Pour résoudre 
ce problème, est proposée une autre méthode de détection basée 
sur des caractéristiques géométriques. Cette dernière exploite les 
distances géométriques entre des points clés du visage sans nécessité 
de recadrer l’image. Ceci permet de capturer des déplacements 
géométriques subtils le long des séquences et s’avère approprié pour 
différentes tâches d’analyse faciale qui requièrent une grande vitesse 
de calcul.
Parmi les caractéristiques de reconnaissance de micro expressions 
existantes, celles de mouvement basées sur le flux optique présentent 
des avantages dans la caractérisation de mouvements subtils sur le 
visage. Toutefois, il reste difficile de déterminer les emplacements 
précis de chaque mappage de traits du visage entre les différentes 
trames par flux optique, même si les images ont été alignées. Un tel 
problème peut donner lieu à une mauvaise estimation, à la fois, de 
l’orientation et de l’amplitude associées au flux optique. Pour y pallier, 
nous proposons une nouvelle approche basée sur les histogrammes 
de frontière de mouvement. Elle permet de supprimer les mouvements 
inattendus causés par un mauvais recalage résiduel apparaissant 
entre les images recadrées tout en capturant le mouvement relatif 
caractérisant la microexpression. Cette caractéristique est générée en 
combinant les composantes horizontales et verticales du différentiel de 
flux optique. Les différents développements de ce travail ont conduit 
à des études comparatives avec des approches de l’état de l’art sur 
des bases de données bien connues et exploitées par la communauté 
du domaine. Les résultats expérimentaux, ainsi obtenues, montrent 
l’efficacité de nos contributions.

Abstract

Recent years, there has been an increasing interest in the computer 
vision in automatic facial micro-expression algorithms. This has 
been driven by applications in high-stakes contexts such as criminal 
investigations, airport and mass transit checkpoints, counter terrorism, 
and so on. Micro-expression approaches in computer vision area 
consist of detecting and classifying them from videos. Compared to 
macro-expression, a micro-expression involves a rapid change which 
lasts less than a half of second, and moreover, its subtle appearance 
in part of the face makes detection and recognition difficult to achieve. 
Effective facial features play a crucial role for micro-expression 
analysis. This thesis focuses on the feature extraction parts, by 
developing various feature extraction methods for types of micro-
expression detection and recognition tasks. 
The detection of micro-expressions is the first step for its analysis. This 
thesis aims to spot micro-expressions from videos. Existing detection 
methods based on features, such as the local binary patterns, the 
histogram of gradient and the optical flow suffer difficulties in computation 
consuming leading to real-time implementation problem. Thus, in this 
thesis, the spotting method based on integral projection is exploited to 
address this problem. However, all the above features are extracted 
from cropped faces which usually cause residual misregistration that 
appears between images. In order to deal with this issue, another 
detection method based on geometrical feature is proposed. It involves 
the geometrical distances between facial key-points without the need 
of cropping face. This captures subtle geometric displacements along 
sequences and is proved to be suitable for different facial analysis 
tasks that require high computational speed. 
For micro-expression recognition, motion features based on the optical 
flow have advantages in characterizing subtle movements on face 
among the existing recognition features. It is still a difficult problem for 
optical flow to determine the accurate locations of each facial feature 
mappings between different images even though the face images 
have been aligned. Such an issue may give rise to wrong orientation 
and magnitude estimation associated to the optical flow field. In 
order to address this problem, the motion boundary histograms are 
considered. It can remove unexpected motions caused by residual 
mis-registration that appears between images cropped from different 
frames. Nevertheless, the relative motion can be captured. Based on 
the motion boundary, a new descriptor the Fusion Motion Boundary 
Histograms is introduced. This feature is generated by combing both 
the horizontal and the vertical components of the differential of optical 
flow as inspired from the motion boundary histograms. 
The main contributions of this thesis lie at the study of features for 
micro-expressions spotting and recognition. Experiments on the 
micro-expression databases show the effectiveness of the presented 
contributions.




