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Unité de Recherche :
ICB, UMR 6303, CNRS, Univ. Bourgogne Franche-Comté, UTBM
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INTRODUCTION

The goal of this thesis is to propose advanced finite element tools applied to the model-
ing of anisotropic hyperelastic materials. This kind of material, which are typically fiber-
reinforced rubbers, composites and soft biological tissues such as ligament, tendons or
arterial wall, has very extensive applications in engineering science and health. For ex-
ample, fiber-reinforced rubbers are used in manufacturing [2] and textile applications.
Material deformation, instability, destruction and limited service life, and structure stability
problem of finite deformation have become very important attributes of hyperelastic mate-
rial. The behavior of anisotropic hyperelastic materials is also the keystone of scientists’
research because the modeling of soft biological tissues has a wide range of applica-
tions in pharmaceuticals, therapeutic, medical prosthesis, ergonomics and so on. For
instance, the basic problem in virtual surgery simulation is to obtain a realistic rendering
of biological soft tissue behavior under real-time constraints including collision detection,
interactive operation, visual rendering and tactile feedback [3, 4, 5]. An example of ap-
plication of anisotropic hyperelastic materials in medicine is artificial heart. To design an
artificial heart, scientists need to have precise simulations about a person’s blood circle
system, especially hydrodynamics of blood and solid mechanics of vessels and cardiac
muscles in heart. Because anisotropic hyperelastic materials don’t have universal prop-
erties and regular structures in all directions, we need to use finite element method to
simulate their behaviors. To describe behaviors of those materials, we need to use con-
stitutive equations. One of the most important constitutive equations is the stress-strain
relationship which describes the mechanical properties of materials. The conventional
anisotropic linear elasticity may be used to describe anisotropic hyperelastic materials
under small deformations. However, the behavior of anisotropic hyperelastic materials
exhibits nonlinear elasticity when they undergo large deformations [6, 7]. In this situation
their stress responses can be derived from a given strain energy function (SEF) leading
to highly nonlinear problems in structural mechanics.

The properties of anisotropic hyperelastic materials are directionally dependent. Unlike
isotropic materials that have material properties identical in all directions, anisotropic
material’s properties change with directions. In the literature, it is widely accepted that
anisotropy is due to the collagen fibers and the ground substance, or matrix performance
behaves isotropically [8]. The main idea to study the properties of this type of material is
to build specific strain energy functions which are invariant under a group of transforma-
tions in accordance with the symmetric properties of matter. Usually a structural tensor is
introduced to account for the effect of the fiber directions of the anisotropic materials and
to establish a link between anisotropy and isotropy [9]. In this way, anisotropic constitu-
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tive functions can be transformed into an isotropic one. Additionally, the structural tensors
lead to invariant basis by using representation theorems for anisotropic tensor functions
[10, 11]. The invariants of the deformation tensor and the additional structural tensors are
necessary for constructing the strain energy function of anisotropic hyperelastic materials.

The theory of invariant has been used as early as 1950 to build the constitutive equations
for isotropic and anisotropic materials [10, 12, 13, 14, 15]. By using invariant theory, we
can deduce the form of the response function which is invariant under the considered
material symmetry group. In other words, the material symmetry group is used to char-
acterize the symmetries of isotropic and anisotropic materials. At the beginning, the re-
searchers thought that material symmetry would impose certain restrictions on the forms
of the response functions which appear in constitutive equations. Most form-invariance
problems arising from specific constitutive equations and material symmetry groups have
been solved by making use of the assumption that the response functions are polyno-
mials [12, 16, 17, 18, 19, 20, 21, 22]. Pipkins et al. [23] expounded the restrictions of
material symmetry on non-polynomial constitutive equations and proved that the poly-
nomial assumption is not essential. They demonstrated that the form of the response
function cannot be subjected to any a priori restrictions with a finite group of symmetries.
Then, Wineman et al. [13] extended this theorem that there is no a priori restriction of any
kind on the response function. That leads to a large variety of proposals in the literature
to construct strain energy function, such as logarithmic, exponential, polynomial or power
forms [24, 25, 26, 27].

Up to now, several strain energy functions have been presented for anisotropic hypere-
lastic materials with one or several fiber families. One of the first model for representing
collagenous soft tissues behavior is based on a structural tensor and on a multiplicative
decomposition of the deformation gradient tensor and was proposed by Weiss et al. [28].
Zulliger et al. [29] proposed a SEF for arteries that account for the wall composition and
structure. A transversely isotropic viscohyperelastic constitutive law was suggested in [30]
to describe the mechanical characteristics of the human anterior ligament. This method
depends on the right Cauchy-Green deformation tensor. Pioletti et al. [31] introduced a
constitutive law for the human cruciate ligament and patellar tendons. It can precisely fit
the non-linear stress-strain curves at different strain rate. For fiber-reinforced materials,
Qiu et al. [32] proposed a standard reinforcing model and Merodio et al. [33] also have
presented a simple reinforcing model which takes into account the influence of reinforced
fiber on the shear response. Although Qiu and Merodio’s models are simple, they exhibit
monotonic behavior during extension in the fiber direction and non-monotonic behavior
during compression in the fiber direction. Finally, Guo et al. [34] proposed another re-
inforcing model based on the multiplicative decomposition of the deformation gradient
tensor introduced earlier in [27]. They found that using neo-Hookean material to model
the fiber can express the monotonicity in the stress-strain response during compression
in the fiber direction.

On the other hand, research on experimental aspects of mechanical behaviors of
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anisotropic hyperelastic materials combined with theories have also been conducted by
several scientists. For experiments carried out to study the mechanical behavior of arte-
rial walls, living cells, and organs, see the review of Aré et al. [35]. Ohashi et al. [36]
proposed a pipette aspiration technique for characterizing nonlinear and anisotropic me-
chanical properties of blood vessel wall. This technique can eliminate the difficulty in the
specimen mounting on the experimental apparatus and measure the homogeneity and
heterogeneity of the specimen. Davarani et al. [37] have offered an interesting insight to
discuss the optimal number of fiber families for describing the collagen behavior. Groves
et al. [38] used tensile tests on circular skin (human skin and murine skin) and choose
the transversely isotropic hyperelastic constitutive model of Weiss et al. [28] previously
described. Tests of mechanical behaviors of two different fiber-reinforced rubbers with
a one fiber family have been done by Ciarletta et al. [39]. They used a non classical
measure of the strain to build two different types of strain energy functions for both tensile
and shear deformation. In the same vein, Fereidoonnezhad et al. have built later a model
using this kind of strain for two types of rubbers [40]. They also investigated the torsion
of a circular fiber-reinforced rubber.

At this stage, we must mention that the notion of polyconvexity, originally introduced by
Ball [41], constitutes a key issue for discussing the existence of solutions of hyperelastic
problems. Holzapfel et al. [26] used a polyconvex exponential function for the description
of the strain energy stored in the collagen fibers. The biomechanical behavior of the ar-
terial wall and its numerical characterization have been analyzed and discussed by using
this model. Later, by using again an exponential form function, Holzapfel, Ogden and
Gasser introduced the so-called HGO model [42]. This model includes a Neo-Hookean
density for determining the isotropic response. This Neo-Hookean density is actually one
of the most commonly used to describe the mechanical behavior of the isotropic ground
substance and also constitutes a simple polyconvex function. Based on the HGO model,
the mechanical behaviors of different anisotropic materials have been studied in the liter-
ature [8, 43, 44, 45]. Additionally, a very large range of polyconvex functions was studied
by Schröder et al. [46].

However, the development of accurate computational models of anisotropic hyperelastic
materials is challenging because of the difficulty for choosing an appropriate SEF among
the numerous proposed in the literature and of the fact that a few of them are imple-
mented in finite element codes. It is yet noticed that a finite element model was presented
in [47] for three-dimensional (3-D) nonlinear analysis of soft hydrated tissues such as ar-
ticular cartilage in diarthrodial joints under physiologically relevant loading conditions. A
sample problem of unconfined compression is used to further validate the finite element
implementation. Weiss et al have described a three-dimensional constitutive model for
biological soft tissues and its finite element implementation for fully incompressible mate-
rial behaviors [28]. The well known HGO model is available through the commercial code
ABAQUS and was also implemented in the university code FER by Peyraut et al. [48].
Some techniques were described in [49] which can facilitate the construction, analysis
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and validation of FE models of ligaments. Finally, we can mention some problems often
met with the modeling of hyperelastic material:

• If the existence and uniqueness of solutions are ensured by assuming the convexity
of the SEFs, the most popular densities are not convex. This fact requires to account
for polyconvexity which is not easy to do everytime.

• Some invariants associated with the SEFs are uneasy to be physically interpreted.

• If the SEFs are not elliptic or convex, some numerical problems can arise [50].

• In order to account for the shear interaction between the matrix and the fibers and
for the normal interaction between fibers, sophisticated models [2, 51, 52] combine
up to 4 SEFs, 9 material parameters and 11 invariants. That situation leads to
handle complex and difficult- to-use models in order to be able of predicting the full
behavior of soft biological tissues or reinforced-fibers rubbers.

Considering all the factors above, we choose a new set of invariants which was introduced
by Ta et al. [53, 54]. This is an original approach mixing the isotropic and the anisotropic
parts in a single SEF (most of the papers published in the literature propose to separate
the energy density into an isotropic and an anisotropic parts) which was inspired by the
pioneer work of Thionnet et al. [55]. This approach is mathematically justified by the
theory of invariant polynomials, particularly by the Noether’s theorem and the Reynolds
operator [56]. This constructive approach allows to build an integrity basis generating all
the polynomial invariants related to a specific anisotropic material. In this way, it would
be possible to reduce drastically the number of invariants, material parameters and SEFs
required to simulate the behavior of the material. The approach based on the polyno-
mial invariant theory therefore constitutes a significant improvement for decreasing the
complexity of models. However, up to now, and to the best of our knowledge, the math-
ematical foundations introduced in [53, 54] have not met a practical extension. So the
first target of our work is to propose some new strain energy functions for anisotropic
hyperelastic materials with different fiber structures by using the integrity basis made of
the new invariants exhibited in [53, 54]. The guideline of our proposal is to combine ap-
propriately these new invariants in order to provide a polyconvex property and a physical
meaning. Following this strategy lead us to build two different SEFs, one representing the
behavior of a one-fiber family material while the other is dedicated to a four-fibers family
material. To confirm the accuracy and practicability of our models, the predicted results
are compared with experimental ones extracted from the papers published by Ciarletta et
al. [39] and Kamenskiy et al. [1] for a one-fiber family and a four-fibers family materials,
respectively.

To use our proposed theoretical models into practical situations, the second target of
this thesis is to implement our proposed SEFs in a finite element code. This work was
conducted in close partnership with the Laboratory of Mechanics of the University of



CONTENTS 5

Evry (France) by using the FER university software [57]. Some sample problems are
used to further validate the finite element implementation. The proposed SEFs and the
finite element codes can therefore be applied for understanding the nature of behavior
laws for materials with different fiber family structures and various loading cases with
homogeneous or inhomogeneous deformations. This ensures that our model is effective
and efficient when we need to use it for pragmatic applications.

This Phd dissertation is divided into three chapters:

The first one mainly introduces the foundations of continuum mechanics, the strain energy
functions used for modeling the behavior of isotropic or anisotropic hyperelastic materi-
als, the notion of polyconvex strain energy functions and the total Lagrangian formulation
used for the finite element implementation in the context of nonlinear structural studies.
As polyconvexity is often considered as a prerequisite for ensuring the existence of so-
lutions compatible with physical requirements [41], we provide a summary of common
polyconvex functions. We finally remind some standard results as the Rivlin-Ericksen
representation theorem used for isotropic hyperelastic materials [58] and we also recall
the fact that an anisotropic strain energy function can be replaced by an isotropic one by
including in the model an additional structural tensor [9]. Many authors used this method
to build anisotropic energy functions [10, 11, 59, 60] and we briefly recall some of the
most popular ones [2, 25, 44, 42, 61, 62, 6, 63, 64, 51].

The second chapter mainly consists in building a new polyconvex family of transverse
anisotropic invariants and in designing a strain energy function (SEF) for incompressible
fiber-reinforced materials. Only materials made with a one-fiber family are considered in
this chapter. Unlike most papers published in the literature, that proposed to separate the
energy density into an isotropic part and an anisotropic part, we introduced a new en-
ergy density mixing these two parts in a single function. As the invariants defined in [53]
are well appropriate for this purpose, we use them and their polyconvexity and physical
meaning are discussed extensively in this chapter. Several polynomial expressions were
tested for the SEF but none is satisfying for properly describing the material behavior, par-
ticularly in the case of a shear testing. This is the reason why we have finally expressed
the SEF by a combination of a polynomial with a power form function. In order to validate
the usability and creativeness of the proposed model, two different fiber-reinforced rubber
materials studied in [39] under uniaxial and shear testing are considered. In these two
testing cases, the predicted results of our model show a fair agreement with experimental
and predicted results extracted from [39] and from [40] which is a sequel of [39]. Finally,
we provide all the details of the tensor calculation for the determination of the explicit
expression of the tangent stiffness matrix. This matrix is needed for the finite element im-
plementation of the model in the context of a total Lagrangian formulation. The practical
implementation of our one-fiber family model was performed with C++ language in the
university code FER [57]. In order to assess and check the validity of the FE implemen-
tation, several numerical simulations were successfully compared to experimental data
extracted from the paper published by Ciarletta et al. [39]. We also use this model in 3D
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configuration to simulate more complex situations, namely an inhomogeneous extension
loading. Finally, we have to mention that the research work presented in this second
chapter has been published in an international journal for the SEF construction [65].

We introduce in the third chapter a new model for predicting the nonlinear mechanical
properties of anisotropic hyperelastic materials with four-fibers families. The proposed
strain energy function (SEF) can be applied for understanding the behavior of materials
which have potential applications in biomechanics, surgical and interventional therapies
for peripheral artery disease (PAD). For example ischemia, angina pectoris, myocardial in-
farction, stroke, or heart failure and other fatal diseases are consequences of atheroscle-
rosis [66]. Like in our first model, this SEF is built with a recent and new invariant system
based on the mathematical theory of invariant polynomials [53]. By recombining these in-
variants in an appropriate manner, we demonstrate that it is possible to build a polyconvex
integrity basis. The next step is to associate properly this polyconvex invariants in order to
build a SEF consistent with experimental data extracted from the literature. To reach this
goal, a very simple expression, namely a linear polynomial form, appears to be efficient.
Actually, based on this simple polynomial form, the corresponding model was validated
by a comparison with experimental and numerical results extracted from [1]. These re-
sults concerned diseased superficial femoral (SFA), popliteal (PA) and tibial arteries (TA)
from one patient under planar biaxial extension. For each kind of arteries tested with
five combinations of different biaxial stretch, the predicted results of the proposed model
and the experimental data are consistent. Our model includes seven material parame-
ters and one additional advantage of the model is related to the parameters identification.
Actually, the identification procedure provides a single solution because of the linear poly-
nomial form of the SEF. Based on this energy function, a finite element program has been
implemented inside the FER software in the same conditions as the ones described in
the second chapter for the implementation of the one-fiber family model. The aspects
related to the building of our SEF is included in a paper accepted for publication in an
international journal [67] .



NOMENCLATURE AND ABBREVIATION

• ACRONYMS

CSC: China Scholarship Council

FEM: Finite Element Method

FER: Finite Element Research

HGO: Holzapfel-Gasser-Ogden model

ICB: Laboratoire Interdisciplinaire Carnot de Bourgogne

PA: Popliteal Artery

SEF: Strain Energy Function

SFA: Superficial Femoral Artery

TA: Tibial Artery

UBFC: Université de Bourgogne Franche-Comté

UTBM: Université de Technologie de Belfort-Montbéliard

• CONTINUUM MECHANICS MOTIONS AND CONFIGURATIONS

Ω0: continuum body in the reference configuration

Ω: continuum body in the current configuration

X: Lagragian reference coordinate (m)

x: Eulerian current coordinate (m)

U: displacement vector field (m)

V0: reference volume (m3)

V: current volume (m3)

J: volume change between the reference and the current configurations (-)

• STRESS TENSORS

σ: Cauchy stress (Pa)

P: first Piola-Kirchhoff stress or engineering stress (Pa)

PT : nominal stress (Pa)

S: second Piola-Kirchhoff stress (Pa)
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• STRAIN AND DEFORMATION TENSORS

F: deformation gradient (-)

F̂: volume preserving part of F (-)

Fvol: dilational part of F (-)

C: right Cauchy-Green strain (-)

B: left Cauchy-Green strain (-)

E: Green-Lagrange strain (-)

• MATERIAL SYMMETRY

Q: rotation transformation

R: reflections transformation

M: structural tensor

g: symmetry group of the material

O(3): group of all orthogonal transformations

S O(3): group of all positive orthogonal transformations

• INVARIANTS

Ii (i = 1, 2, 3): classical isotropic invariants related to F

Îi (i = 1, 2, 3): classical isotropic reduced invariants related to F̂

I4 and I5: classical anisotropic mixed invariants

Ki (i = 1, ..., 6): integrity basis of invariants for a one-fiber family material

Hi (i = 1, ..., 7): integrity basis of invariants for a two-fibers family material

Li (i = 1, ..., 7): integrity basis of polyconvex invariants for a two-fibers family material

• ALL THE NOTATIONS AND OPERATORS RELATED TO LINEAR ALGEBRA ARE
DESCRIBED IN THE NEXT SECTION
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NOTATIONS AND STANDARD RESULTS

ON LINEAR ALGEBRA

We introduce in tgohis section some standard notations for tensor, matrix and vector
calculus as well as some classical results on linear algebra. These notations and results
will be extensively used further in the manuscript. A bold-face Latin lowercase letter,
say a, and a bold-face Latin capital letter, say A, will denote a vector and second-order
tensor, respectively, while we use lowercase letters for scalars. The standard Euclidean
inner product is symbolized by a double bracket:

〈Aa, a〉 =

3∑
i=1

3∑
j=1

Ai ja jai (1)

and the related Euclidean norm is noted ‖.‖:

‖u‖ = 〈u,u〉
1
2 (2)

The tensor product between two vectors a and b is defined by:

(a ⊗ b)i j = aib j (3)

If (a, b, c) forms an orthonormal vector basis:

a ⊗ a + b ⊗ b + c ⊗ c = I (4)

where I stands for the unity tensor.

The tensor product between two matrix A and B keeps the same notation as the one
used between two vectors but is defined by:

(A ⊗ B)i jkl = Ai jBkl (5)

The tensor notation � stands for:

(A � B)i jkl =
1
2

(
AikB jl + AilB jk

)
. (6)

The superscripts T and −1 respectively stand for the transpose and the inverse of a matrix:

(AT )i j = A ji (7)

11
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AA−1 = A−1 A = I (8)

The cofactor matrix of an invertible matrix A is defined by:

Co f (A) = det(A)A−T (9)

where det symbolizes the determinant of a matrix.

We recall below a very standard result which is often used to describe the square of the
stretch of the fibers for fiber-reinforced materials:

Tr(AT Aa ⊗ a) = 〈Aa, Aa〉 = ‖Aa‖2 (10)

where Tr represents the trace of a matrix.

In equation (10), A is frequently set to the gradient deformation matrix F and a often
represents the direction of fibers.

The following equation is also a common property related to the trace operator:

Tr(AB) = Tr(BA) (11)

It is finally reminded the standard inner product operating on matrix:

〈A, B〉Fr = Tr(ABT ) (12)

which induces the so-called Frobenius norm operating on matrix:

‖A‖Fr = (Tr(AAT ))1/2 (13)

The link between the Euclidian and Frobenius norms is classical and given by:

‖Aa‖ ≤ ‖A‖Fr ‖a‖ ∀A , ∀a (14)
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1
STATE OF THE ART

1.1/ INTRODUCTION

The first chapter of this Phd dissertation concerns the state of the art in the field of the
modeling of anisotropic hyperelastic materials. This chapter is divided into six separate
sections.

Section 1.1 introduces the fundamentals of continuum mechanics with emphasis on the
field of deformations, strain and stress tensors.

Section 1.2 focuses on the principle of material frame-indifference and deduces from
this principle the fundamental result that the second Piola-Kirchoff stress tensor can be
expressed with respect to the right Cauchy-Green strain tensor instead of only the defor-
mation gradient matrix.

Section 1.3 presents some classical and general results on the notions of isotropy and
anisotropy while section 1.4 is related to more practical aspects with the description of
some standard strain energy functions (SEFs). We also focus on the fact that some of
these SEFs [2, 51, 52] include numerous material parameters and invariants in order
to simulate coupled effects as the shear interaction between the matrix and the fibers
or normal interaction between fibers. We finally present recent invariants proposed in
[53, 54] because they form an integrity basis generating all the other invariants. Using
them could therefore allow to drastically reduce the complexity of the above mentioned
SEFs. We aim to use these recent invariants in the forthcoming chapters 2 and 3.

Section 1.5 gives an overview of the polyconvexity conditions ensuring the existence of
solutions in compatibility with physical requirements [41]. The definitions of the convexity
and polyconvexity are introduced in details and the relations between them are also dis-
cussed. The polyconvexity of the strain energy function is emphasized in the hyperelastic
case. In addition, this section enumerates some commonly used polyconvex terms.

Section 1.6 presents the standard total Lagrangian formulation [68, 69] because we plan
to use it for the finite element implementation of the two SEFs introduced in chapters 2
and 3.

17
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1.2/ CONTINUUM MECHANICS

Continuum mechanics is the branch of mechanics dealing with the analysis of the kine-
matics and the mechanical behaviors of materials in terms of strain and stress. The
purpose of continuum mechanics is to provide a macroscopic model for fluids, solids and
organized structures. A fundamental assumption is the ”continuous medium hypothesis”:
namely, that the real space occupied by a fluid or a solid can be approximately regarded
as continuous without voids between the particles of matter.

1.2.1/ DEFORMATION AND STRAIN

The reference frame we introduce is made of rectangular coordinate axes at a fixed ori-
gin O with orthonormal basis vectors ea, a = 1, 2, 3 as shown in figure 1.1. Consider a
continuum body Ω that moves in space from one instant of time to another. It occupies a
continuum space denoted by Ω, . . . , Ωt. The region occupied by the continuum body B
at the reference time is known as reference (or undeformed or Lagrangian) configuration.
An initial region Ω at time t = 0 is referred as the initial configuration. A region Ωt at time t
(t > 0) is referred as the current (or deformed or Eulerian) configuration. We set a typical
point X (X ∈ Ω) occupied by a particle P ∈ B at the time t = 0. The particle P moves
to the corresponding point x (x ∈ Ωt) at the time t > 0. The map X = κ(P, t) is a one to
one correspondence between a particle P ∈ B (see Figure 1.1) and its coordinates in the
reference configuration. The map x = κ(P, t) acts on B to produce the region Ωt at time t.
The relation between the coordinates x in the current configuration and X in the reference
configuration is described by:

x = κ
[
κ−1(X, t), t

]
= φ(X, t) (1.1)

The motion φ is suitably regular and carries points X located in Ω to x in the current
configuration Ωt. In terms of components, the vectors X and x can be described as:

X =

3∑
i=1

Xiei x =

3∑
i=1

xiei (1.2)

The deformation (or displacement) vector field in the Lagrangian description is denoted
by U:

U(X, t) = x(X, t) − X (1.3)

Replacing equation (1.1) into equation (1.3), the deformation can be represented as:

U(X, t) = φ(X, t) − X (1.4)



1.2. CONTINUUM MECHANICS 19

Figure 1.1: Configurations and motion of a continuum body

The deformation vector field is called u in the current configuration:

u(x, t) = x − X(x, t) = x − φ−1(x, t) (1.5)

The two descriptions can be related by φ, namely:

U(X, t) = U(φ−1(x, t), t) = u(x, t) (1.6)

From the map φ, we introduce the classical deformation gradient tensor F:

F =
∂φ(X, t)
∂X

= Gradx(X, t) (1.7)

where Gradx(X, t) represents the gradient operator applied to the map φ(X, t).

It is well known that the determinant of F, commonly noted J, represents the volume
change between the reference and the current configurations:

J = det(F) =
dV
dV0

> 0 (1.8)

This determinant can also be interpreted as the determinant of the Jacobian matrix be-
tween the two configurations:

dx = F(X, t)dX (1.9)
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Replacing equation (1.4) into the equation (1.7) leads to

F =
∂(U + X)

∂X
= I +

∂U
∂X

(1.10)

The classical right Cauchy-Green deformation tensor C is an important measure of strain
in continuum mechanics. It can be defined from F by:

C = FT F (1.11)

Sometimes, the left Cauchy-Green strain tensor B, which plays a similar role as C, is also
used:

B = FFT (1.12)

Finally, the Green-Lagrange strain tensor E is defined by:

E =
1
2

(C − I) (1.13)

The use of E is popular because it corresponds to a zero strain for a material at rest
(U = 0 ⇒ F = I ⇒ C = I ⇒ C − I = 0). Additionally, by a linearization of E in the
framework of a small displacement assumption, it is found that E is equivalent to the
symmetric part of the gradient of the displacement:

E ≈
1
2

(gradU + gradT U) (1.14)

Remark 1.1. C, B and E are symmetric matrices.

We finally recall the relationship between two outward unit vectors N and n related to
two infinitesimally small areas dS and ds in the undeformed and deformed configurations
respectively (figure 1.2):

nds = JF−T NdS (1.15)

Equation (1.15), also known as the Nanson’s formula, can be reformulated by:

n =
F−T N∥∥∥F−T N

∥∥∥ (1.16)

1.2.2/ STRESS TENSORS

There are three different kind of stress measures that are widely used in the framework
of nonlinear continuum mechanics, namely the Cauchy, the first Piola-Kirchhoff and the
second Piola-Kirchhoff stress tensors. If the assumptions of small displacement and small
strain are considered (which is not the case in our framework), all of these three tensors
are equal. The use of these three tensors is very common [70] and the two first allow to
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calculate the infinitesimal resultant force d f acting on a surface element as described on
figure 1.2:

d f = σnds = PNdS (1.17)

Figure 1.2: Traction vectors acting on infinitesimal surface element with outward unit
normals

The Cauchy stress tensor σ is often simply called the true stress while the first Piola-
Kirchhoff stress tensor P is known as the engineering stress. Note that the transpose of
P is frequently called the nominal stress tensor.

Reporting the Nanson’s formula of equation (1.15) in the equation (1.17) yields to:

P = JσF−T (1.18)

Or equivalently:
σ = J−1 PFT (1.19)

Note from equation (1.18) that, even if the Cauchy stress tensor is symmetric (σT =σ), the
first Piola-Kirchhoff stress tensor P is not. A symmetrization of P from equation (1.18) leads
to the definition of the second Piola-Kirchhoff stress tensor S:

S = JF−1σF−T (1.20)

In the framework of continuous thermo-elasticity, S is assumed to be derived from a po-
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tential W frequently called the strain energy density (SEF):

S = 2
∂W
∂C

(1.21)

It is noticed that this derivative can be calculated indifferently with respect to C and E by
using the equation (1.13):

S = 2
∂W
∂C

= 2
∂W
∂E

∂E
∂C

(1.22)

It should also be noticed that W contains all the informations related to the organization
of the matter (number of fibers families, direction of the fibers etc.). These informations
are expressed through the dependence of W with respect to physical invariants and their
related material parameters. The choice of these invariants and the best way to combine
them for building W, and then computing S, σ and P, constitutes a key point for the
modeling of fibers-reinforced materials. Some standard choices for W will be presented
in the forthcoming section 1.5. However, before introducing these standard models, we
have to recall the classical properties that W must satisfy, for example the material frame
indifference principle.

1.3/ MATERIAL FRAME INDIFFERENCE

Material frame indifference requires the invariance of the constitutive equation under dif-
ferent configurations. That means that, whatever is the selected basis for the evaluation
of physical quantities, these quantities must remain invariant. In terms of stress, this
concept of material frame indifference leads to [70]:

σ̂(QF) = Qσ(F)QT ∀Q ∈ S O(3) (1.23)

where σ̂ represents the Cauchy stress tensor in a given basis, says B̂, while σ is the
Cauchy stress tensor in the original basis B. B̂ is deduced from B by applying a positive
orthogonal transformation Q, that is to say a rotation. It should be noticed that we have
adopted here the classical and intuitive assumption stating that the Cauchy stress σ de-
pends on the deformation gradient matrix F. SO(3) represents the positive orthogonal
group, that is say the set of any matrix satisfying:

QQT = QT Q = I ; det(Q) = 1 (1.24)

We deduce easily from equations (1.20) and (1.23) that the second Piola-Kirchhoff stress
tensor S satisfies:

S(F) = Ŝ(QF) ∀Q ∈ S O(3) (1.25)

By using next a standard mathematic theorem regarding the polar decomposition of any
matrix in a single product made of an orthogonal matrix with a positive definite symmetric
one, it is possible to demonstrate [70] that the second Piola-Kirchhoff stress tensor S
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(which depends on F according to equation (1.25)) can also be expressed only with C:

S(F) = S̃(C) (1.26)

1.4/ ISOTROPIC AND ANISOTROPIC MATERIALS

1.4.1/ ISOTROPIC MATERIAL

Although we are interested in this PhD work by the behavior of anisotropic materials made
of a single or several fibers-family, we focus in this section on isotropic materials for two
reasons:

• Liu et al. [9] have established a deep link between isotropic and anisotropic prop-
erties through the introduction of a structural tensor representing the material sym-
metry group.

• Most of the hyperelastic anisotropic models proposed in the literature associate
through a summation an isotropic density with an anisotropic one.

A material is said to be isotropic if its behavior is the same in all directions. In terms of
stress, this property leads to the following invariant equalities for the Cauchy stress and
for the second Piola-Kirchhoff stress, respectively [70]:

σ(FQ) = σ(F) ∀Q ∈ S O(3) (1.27)

S(FQ) = QT S(F)Q ∀Q ∈ S O(3) (1.28)

Combining the equation (1.28), corresponding to the isotropic property, with the material-
frame indifference principle, represented by equation (1.26), leads to the following lemma:

Lemma 1.1. Consider an isotropic material and the material frame-indifference principle,
the Piola-Kirchhoff stress tensor S̃(C) satisfies.

S̃(QCQT ) = QS̃(C)QT ∀Q ∈ S O(3) (1.29)

The proof can be found in [70].

We now introduce a very classical and famous theorem, known as the Rivlin-Ericksen
representation theorem. It gives an explicit quadratic relation between S and C:

Theorem 1.1. Let us consider an isotropic material satisfying the material frame-
indifference principle. Then the second Piola-Kirchhoff stress tensor S adopts a quadratic
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representation with respect to C:

S(F) = S̃(C) = B0(I1, I2, I3)I + B1(I1, I2, I3)C + B2(I1, I2, I3)C2 (1.30)

where B0, B1 and B2 are scalar-valued functions of the three principal invariants of the
tensor C:

I1 = tr(C) I2 =
1
2

[tr(C)2 − tr(C2)] I3 = det(C) (1.31)

The proof of the theorem can be found in [70]. The main steps are a spectral analysis of
C in terms of eigenvalues and eigenvectors, an appropriate choice of a change of basis
matrix P for diagonalizing the symmetric matrix C, a spectral decomposition of S, similar
to the one used for C and, finally, the resolution of a Vandermonde system in order to
determine the matrix terms of the spectral decomposition. Note that the occurrence of a
double or a triple coalescence of the eigenvalues of C leads to two particular results:

Double coalescence (for example:λ1 = λ2 , λ3):

S̃(C) = B0I + B1C (1.32)

Triple coalescence (λ1 = λ2 = λ3):
S̃(C) = B0I (1.33)

1.4.2/ ANISOTROPIC MATERIALS

Anisotropic materials are materials whose properties are directionally dependent. In the
most complicated situation, the matter is randomly distributed and there are no specific
directions to characterize the organization of matter. This case is for example encoun-
tered with abradable materials used for aeronautics application [71]. However, many
anisotropic materials can be characterized by specific directions or planes through unit
vectors m1, ...,ma or tensors M1, ..., Mb. This leads to introduce the subgroup g of O(3)
(the full group of orthogonal transformations), which is called the symmetry group of the
material, and which is defined by:

g = {Q ∈ O(3), Qm = m, QMQT = M} (1.34)

The main property of this subgroup is to preserve the geometric characteristics of the ma-
terial. In general, transversely isotropic materials, orthotropic materials and some classes
of crystalline solids can be specified by a symmetry group of the type described by equa-
tion (1.34) [9]. That corresponds to our topic because we will study transversely isotropic
materials in the chapter 2 and orthotropic materials in the chapter 3 of this manuscript.
These two types of materials are considered as anisotropic due to the collagen fiber em-
bedded in the matrix and are endowed with a natural symmetry structure:

• a material with one fiber-family of direction a is said to be a transversely isotropic
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material, see figure 1.3. The corresponding material symmetry group g is the set of
all rotations around the fiber direction a:

g = {Qθ,∀θ ∈ [0, 2π]} ; Qθ =


1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (1.35)

where Qθ is the rotation of angle θ around the axis a.

Figure 1.3: material with one fiber family

• a material with two fibers-family of directions a and b is said to be an orthotropic
material. As illustrated on Figure 1.4, it is first observed that the planes P1 and
P2, respectively perpendicular to the directions e1 and e2, which are the bisector
of a and b and the co-bisector of a and b, form two planes of symmetry for the
material. Moreover, since the fibers lie in the plane P3 generated by e1 and e2, it is
obvious that P3 is also a plane of symmetry for the material. The material properties
remain therefore invariant under the action of the three reflections related to the
three planes P1, P2 and P3 and the three rotations by an angle π around e1, e2 and
e3. The six orthogonal tensors related to these reflections and rotations are:

R(e1) = −Qπ(e1) = I − 2e1 ⊗ e1

R(e2) = −Qπ(e2) = I − 2e2 ⊗ e2

R(e3) = −Qπ(e3) = I − 2e3 ⊗ e3

(1.36)

The material also remains invariant under the action of I and -I. The material
symmetry group denoted by S 8 therefore contains the 8 invariant matrix operators:

S 8 = {Tm,m = 1, ..., 8} (1.37)

with
T1 = I; T2 = R(e1); T3 = R(e2); T4 = R(e3)

T5 = −I; T6 = −R(e1); T7 = −R(e2); T8 = −R(e3)
(1.38)
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Figure 1.4: The material plane of symmetry

The two material symmetry groups defined by equations (1.35) and (1.37) are included in
the widest framework described by the following theorem:

Theorem 1.2. : Let g be a subgroup of O(3) and S a matrix function depending on the sym-
metric matrix C. The anisotropic property given by equation (1.39) is therefore equivalent
to the isotropic property given by equation (1.40):

S(QCQT ) = QS(C)QT ∀Q ∈ g ⊂ O(3) (1.39)

⇐⇒

S(QCQT ,QPQT ) = QS(C, P)QT ∀Q ∈ O(3) ∀P ∈ N (1.40)

where the link between the anisotropic matrix S and the isotropic matrix S is:

S(C) = S(C, M) (1.41)

N is the set of matrix defined by:

N = {QMQT ,∀Q ∈ O(3)} (1.42)

and M is the structural tensor satisfying:

M = QMQT ∀Q ∈ g. (1.43)

The proof of this theorem is given in [9]. It means that the anisotropic property described
by equation (1.39) can be reformulated in an isotropic form corresponding to equation (1.40)

provided that a structural tensor M defined by equation (1.43) is introduced in the formu-
lation. The link between the anisotropic one-argument function S and the corresponding
isotropic two-arguments function S is given by equation (1.41). The choice of M depends



1.5. COMMON STRAIN ENERGY FUNCTIONS 27

on which kind of anisotropy we are interested in. For the two kinds understudy here, the
common choices are:

• For transversely isotropic materials with a one fiber-family of direction a (figure 1.3):

M = a ⊗ a (1.44)

• For orthotropic materials with a two fibers-family:

M1 = e1 ⊗ e1, M2 = e2 ⊗ e2, M3 = e3 ⊗ e3 (1.45)

where e1, e2 and e3 are the three unit perpendicular vectors shown on the figure 1.4.

At this stage, it should be underlined that the choice corresponding to equations (1.44)

and (1.45) is not unique. It depends in fact on the scalar valued function used to build the
strain energy function W. If the standard mixed invariants J4 = Tr(Ca ⊗ a) is for example
selected to build W, that naturally leads to equation (1.44) by deriving W with respect to
C. It is therefore mandatory to discuss first the choices of the scalar invariants and the
subsequent strain energy function (SEF).

1.5/ COMMON STRAIN ENERGY FUNCTIONS

Usually, an hyperelastic material behavior law is a type of constitutive model for ideally
elastic material for which the stress-strain relationship derives from a strain energy density
function W [70]. This strain energy density function depends on F, or equivalently on C,
but, practically, this dependence is expressed through invariants scalar valued functions
related to C. Some of these invariants are considered as classical and we provide in the
following a brief introduction to the most classical strain energy functions using them.

1.5.1/ SEFS FOR ISOTROPIC HYPERELASTIC MATERIAL

In this section, we present one of the most renowned isotropic SEFs because a standard
way to model anisotropic hyperelastic materials is to combine an isotropic SEF with a fully
anisotropic one. To do that, we first need to introduce the classical isotropic invariants
through the following theorem:

Theorem 1.3. : If the material frame-indifference is assumed, the strain energy density W
related to an hyperelastic isotropic material only depends on the three principal invariants
I1, I2 and I3 of the matrix C introduced by equation (1.31):

W(C) = W(I1, I2, I3) (1.46)
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Additionally, the second Piola-Kirchhoff stress tensor is given by:

S = 2
{

(
∂W
∂I1

+ I1
∂W
∂I2

+ I2
∂W
∂I3

)I − (
∂W
∂I2

+ I1
∂W
∂I3

)C +
∂W
∂I3

C2
}

(1.47)

The proof of this theorem is very easy to establish by using first an appropriate choice
of a change of basis diagonalizing C, by employing next the derivative chain rule with
equation (1.21) and by applying finally the well known Cayley-Hamilton theorem.

Because the Mooney-Rivlin model is one of the most popular isotropic density (used in
conjunction with an anisotropic one) to describe the behavior of the ground substance
surrounding the fibers, we now focus on this model. It consists in a linear combination
of the two first main invariants of the right Cauchy-Green deformation tensor C. It was
proposed by Mooney in 1940 [72] and expressed in terms of invariants by Rivlin in 1948
[62]. The authors gave to the strain energy function the following polynomial form:

W(I1, I2, I3) =

∞∑
p,q=0

cpq(Î1 − 3)p(Î2 − 3)q +
1
d

(J − 1)2 (1.48)

where the cpq are material constants related to the distortional response and d is a mate-
rial constant related to the volumetric response. The reduced invariants Î1, Î2 and Î3 are
introduced instead of the principal ones defined by equation (1.31) by using the volume
preserving part F̂ of the deformation gradient matrix:

F = FvolF̂ Fvol = J1/3I F̂ = J−1/3F (1.49)

Î1 = I1J−2/3 Î2 = I2J−4/3 Î3 = 1 (1.50)

This separation of the dilational and volume-preserving parts of the deformation gradi-
ent matrix can overcome numerical difficulties, such like numerical ill-conditioning of the
stiffness matrix [28]. It is noticed that:

det(Fvol) = det(J1/3I) = J det(F̂) = I (1.51)

So only Fvol contributes to the volume change of the material and is called the dilational
part of the deformation.

Remark 1.2.

1. The three constant coefficients -3, -3 and -1 contained in each bracket of equation
(1.48) come from the fact that a material at rest must give a strain energy function
equal to zero. Let us assume indeed that the material is at rest, that is to say a
displacement field equal to zero:

U = O (1.52)
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We therefore deduce from equations (1.10) and (1.11) that:

F = I + ∇U = I ⇒ C = FT F = I (1.53)

The three main invariants and the three reduced invariants are then evaluated from
equations (1.31) and (1.50)

I1 = 3 I2 = 3 I3 = 1 ; Î1 = 3 Î2 = 3 Î3 = 1 (1.54)

It is finally obvious from the definition (1.48) of W that the SEF is equal to zero:

W(3, 3, 1) = 0 (1.55)

2. To enforce the incompressibility condition J = det(F) = 1, a penalty function is
introduced at the end of equation (1.48) by:

Wvol =
1
d

(J − 1)2 (1.56)

where d = 2
k and k, the initial bulk modulus, is related to the Poisson ratio v by:

k =
2(C10 + C01)

(1 − 2v)
(1.57)

3. The first order Mooney-Rivlin model is reduced to the two first terms of the summa-
tion included in equation (1.48):

W(Î1, Î2, Î3) = c10(Î1 − 3) + c01(Î2 − 3) (1.58)

If c01 = 0, we recover the commonly used neo-Hookean [6] strain energy function:

W(Î1) = c10(Î1 − 3) (1.59)

It should be noticed that we have not examined in this section more isotropic densities
than the Mooney-Rivlin one because we have chosen in our thesis work to mix in a single
SEF the isotropic and anisotropic effects. This choice will be explained later with more
details.

1.5.2/ SEFS FOR ANISOTROPIC HYPERELASTIC MATERIAL

As mentioned previously, there exists an extraordinary variety of anisotropic SEFs in the
literature with a large scope of applications using biological soft tissues, textile tissues
or reinforced rubbers. We aim first in this section to present some of these SEFs and
to introduce next the very recent invariants proposed in [53, 54]. We actually wish to
combine these invariants in order to produce two new original SEFs (see the forthcoming
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chapters 2 and 3).

Some well-organized soft tissues, such as a single layer of the annulus fibrosus of the
human intervertebral disc [27], are reinforced with collagen fiber embedded in the matrix
ground substance. Their mechanical behaviors are considered as transversely isotropic
[73]. To take into account this kind of anisotropy due to the fiber direction a, the structural
tensor M defined by equation (1.44) is introduced. This leads to build the so-called mixed
invariants I4 and I5:

I4 = Tr(CM) = Tr(Ca ⊗ a) I5 = Tr(C2 M) = Tr(C2a ⊗ a) (1.60)

It is well known that I4 represents the square of the stretch in the fiber direction [8] and
that I5 is related to the shear fiber-matrix interaction through the coefficient I5−I4

2 [27, 74].
The energy function W for transversely isotropic materials can be therefore represented
as a function of five invariants [75]:

W(C, M) = W(I1, I2, I3, I4, I5) (1.61)

Based on the invariants dependence described by equation (1.61), it is quite easy to
demonstrate the following representation theorem [76]:

Theorem 1.4. Under the frame indifference principle, the second Piola-Kirchhoff stress
tensor S related to an hyperelastic anisotropic material with a single fiber direction a
adopts a quadratic representation with respect to C and to the structural tensor M

S = 2[
∂W
∂I1

I +
∂W
∂I2

(I1I − C) +
∂W
∂I3

Co f (C) +
∂W
∂I4

M +
∂W
∂I5

(CM + MC)] (1.62)

If we consider the case of orthotropic materials made of two-fibers family of directions a
and b respectively, additional mixed invariants can be introduced:

I4
a =Tr(Ca ⊗ a); I4

b = Tr(Cb ⊗ b); I6 = Tr(Ca ⊗ b);

I5
a =Tr(C2a ⊗ a); I5

b = Tr(C2b ⊗ b); I7 = Tr(C2a ⊗ b)
(1.63)

The following does not aim to give an exhaustive review of the existing anisotropic SEFs
but we will try to present some of the most popular ones. The Fung-type model has
for example inspired a lot of work in the literature [77, 78, 79, 80] because Fung and
his co-authors have done a lot of pioneer research works to understand and model the
mechanical behavior of soft tissues [63, 81, 82, 83, 84]. One of their more attractive result
[25] is to have demonstrated that an exponential form was preferable than a polynomial
mathematical expression:

W = c(eQ − 1) (1.64)

where c is a material parameter and the argument Q is defined by:

Q = c1E2
11 + c2E2

22 + 2c3E11E22 + c4E2
12 (1.65)
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where the Ei j are the components of the Green-Lagrange strain tensor and c1, c2, c3 and
c4 are additional material parameters.

To model the multiaxial mechanical behavior of human saccular aneurysms, Seshaiyer
et al. [78] ignored the in-plane shear effect and proposed a similar model but without
the last part c4E2

12. Bass et al. [85] performed uniaxial and biaxial tests on specimens of
annulus and expanded Fung-type model to describe the healthy human annulus fibrosus.
The convexity of the Fung model was finally discussed in [86, 87] and we will examine
the convexity issue from a more general point of view in the next section.

The exponential form appearing in equation (1.64) is very popular for modeling hyperelastic
materials. For example, in the case of an isotropic behavior, Hart-Smith [88] has proposed
the following SEF:

W = C1

∫
exp{C2(I1 − 3)2}dI1 + C3ln(

I2

3
) (1.66)

where C1, C2 and C3 are the material parameters of the model.

One other very popular model is the HGO model proposed by Holzapfel et al. in [42]. As
the Fung-type model, the HGO model uses an exponential type function to describe the
behavior of a one-fiber family soft biological tissue but by introducing the physically mo-
tivated invariant I4 (see equation (1.60)) and by adding the neo-Hookean isotropic density
(for modeling the non-collagenous matrix of the media) to the anisotropic density:

W = Wani + Wiso (1.67)

Wani =


k1

2k2
{exp[k2(I4 − 1)2] − 1} f or I4 ≥ 1

0 f or I4 < 1
(1.68)

Wiso = c1(I1 − 3) (1.69)

where c1, k1 and k2 are material parameters.

It must be underlined that the anisotropic part Wani of the strain energy function is case
sensitive with the value of I4. If I4 is lower than 1, meaning that the fibers are shortened
in a compressible state, Wani is actually assumed to be null. It is indeed considered that
a compressed fiber generates no stress [89].

The proof of the convexity of the HGO model with respect to the deformation gradient
matrix F is given in Schröder et al. [76] and its implementation in a university finite
element code is detailed in [90]. Peyraut et al. also exhibited in [8] a closed form solution
in the special case where uniaxial unconstrained tension loading is applied to a biological
soft tissue modeled by the HGO density.

Many researchers use the HGO model to study the mechanical behavior of different soft
tissues and composite materials. Cabrera et al. [91] have for example performed equib-
iaxial tensile tests on four adult ovine pulmonary artery walls and compared the experi-
ment data to the predicted results obtained by the HGO model. Merodio and Goicolea [92]
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used the HGO model to study potential viscoelastic effect on soft biological material. Ma-
her et al. [93] accounted for inelastic phenomena, such as softening and unrecoverable
inelastic strains, into the construction of constitutive models to describe stress softening
and permanent deformation in arteries tissue. They used the HGO model to represent
the anisotropic components of the strain energy function. Bass et al. [85] indicated that
there are few hyperelatic models that can accurately predict the mechanical behavior of
biological soft tissue with uniaxial and biaxial tests at the same time. But all the above-
mentioned models consider that the mechanical contribution comes from the fiber and
the matrix, but ignore the interaction between them. In the following, we will introduce
some strain energy functions which account for this interaction effect.

Wu et al. [94] have for example proposed an hyperelastic model including the fiber-
matrix interaction for modeling annulus fibrosus in the case of a tension test along the
circumferential direction. However, this model cannot be applied to the case of a uniaxial
test along the axial direction. Gasser et al. [44] have proposed an extension of the HGO
model by accounting for the distribution of the collagen fiber orientation in the arterial
layer. This distribution and the fiber-matrix interaction were obtained by replacing in the
HGO model formulation the standard fourth invariant I4 by:

Î4 = kI1 + (1 − 3k)I4 (1.70)

So the strain energy function W is written as:

W =
1
2
µ(I1 − 3) +

k1

2k2

[
exp

{
k2[kI1 + (1 − 3k)I4 − 1]2

}
− 1

]
(1.71)

where µ is the shear modulus of the ground substance or matrix, k1 and k2 are the ma-
terial parameters representing the mechanical behavior of the collagen fibers and k is
the material parameter which expresses the collagen fibers distribution. It is noted that if
k = 0, the collagen fibers are ideally aligned and the HGO model is recovered.

Guo et al. [27] presented a composite-based hyperelastic constitutive density including
shear effect to model the human annulus fibrosus. The deformation gradient is decom-
posed into a uniaxial contribution along the fiber direction and another one including shear
effect. Guo et al. [73] verified the significance of the interaction between the fiber and
the matrix for the human annulus fibrosus by analysing the experimental data obtained
by Bass et al. [85] in the case of uniaxial and biaxial tests. Peng et al. [64] also proposed
a strain energy function to describe the behavior of the annulus fibrosus by decomposing
this function into three parts representing the contributions coming from the matrix W M,
the fiber WF and the fiber-matrix shear interaction WFM, respectively:

W = W M + WF + WFM (1.72)

The energy WM related to the matrix combines the neo-Hookean model with a penalty
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contribution for accounting the incompressibility condition:

W M = C10(Î1 − 3) +
1

D1
(J − 1)2 (1.73)

where C10 and D1 are the material parameters.

The strain energy function WF related to the fibers is a case-sensitive polynomial depend-
ing on the fiber stretch:

WF =

C2(I4 − 1)2 + C3(I4 − 1)4 I4 > 1

0 I4 ≤ 1
(1.74)

where C2 and C3 are material parameters.

Finally, the fiber-matrix shear interaction energy WFM can be expressed as:

WFM = f (I4, ϕ) =
γ

1 + exp[−β(λF − λF
∗)]

[
I4

I3
(I5 − I1I4 + I2) − 1]2 (1.75)

where β, γ, λF and λF
∗ are material parameters. The quantity λF

∗ may be related to
the transition point between the toe region and the linear region in the uniaxial tensile
stress-strain curves and the angle ϕ represents the shearing between the matrix and the
fiber.

Hollingsworth et al. [52] considered that the combination of different effects coming from
the proteoglycan matrix, the collagen fiber and the interaction between the constituents
allows to model properly the annulus fibrosus. Contrary to Peng et al. [64], they assumed
that the intra-lamellar fiber-fiber crosslinking dominates the interaction terms due to the
relatively weak fiber-matrix interaction. The strain energy function is therefore assumed
to be made of an isotropic proteoglycan matrix density (Wm), a primary collagen fiber
families density (W f ), a shear interaction density W
 and a fiber-fiber interaction density
W⊥:

W = Wm + W f + W
 + W⊥ (1.76)

With:
Wm = a1(I3 −

1
I3

)2 + a2(I1I−1/3
3 − 3)2 (1.77)

W f =
a3

b3
(exp[b3(I4

a + I4
b − 2)] − b3(I4

a + I4
b) + 2b3 − 1) (1.78)

W
 = a4(γa
2 + γb

2) (1.79)

W⊥ =
a5

b5
(exp[b3(I4

c + I4
d − 2)] − b3(I4

c + I4
d) + 2b5 − 1) (1.80)

where ai (i = 1, .., 5), b3 and b5 are material parameters. Ia
4 , Ib

4 , Ic
4 and Id

4 represent the
square of the stretch in the directions a, b, c and d respectively:

I4
a = Tr(Ca ⊗ a); I4

b = Tr(Cb ⊗ b); I4
c = Tr(Cc ⊗ c); I4

d = Tr(Cd ⊗ d) (1.81)
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where a and b represent the fiber directions and c and d the directions perpendicular to a
and b respectively in the plane contained by a and b. The introduction of c and d allows to
account for the normal interaction, that is to say the ability to resist to the forces normal to
the fiber directions. Finally γa and γb represent the shear strain along the fiber directions
a and b, respectively:

γa
2 = I5

a − (I4
a)2; γb

2 = I5
b − (I4

b)2 (1.82)

In a similar spirit as Hollingsworth et al. [52], but with the objective of modeling a ground
rubber reinforced by steel cords for manufacturing tire belt layers, Peng et al. [2] have
proposed a strain energy function made of four contributions:

W = WM + WF + Wshear + Wnormal (1.83)

The strain energy contribution WM of the isotropic rubber is defined by the Yeoh model
[95]:

WM =

3∑
i=1

Ci0(Î1 − 3)i +

3∑
i=1

1
Di

(J − 1)2i (1.84)

where Î1 is the first reduced invariant (see equation (1.50)) and Di reflects the material
compressibility.

The strain energy of the cords structure WF adopts the same form as the case sensitive
polynomial introduced by equation (1.74) which was used for modeling the behavior of the
annulus fibrosus.

The shear interaction strain energy Wshear, caused by the angle variation between cord
orientation and rubber normal, is defined as:

Wshear = exp[c(I4 − 1)](aχ2 + bχ) (1.85)

where a, b and c are material parameters and χ = tan2ϕ, ϕ being the angle variation
between cord orientation and rubber normal.

Finally, in order to include the normal interaction in the model, a last strain energy Wnormal

is introduced:
Wnormal = g(χ)

k1

k2
[e−k2(I6−1) + k2(I6 − 1) − 1] (1.86)

g(χ) = exp(−lχ) + mχ + nχ2 (1.87)

where k1, k2, l, m and n are material parameters and I6 stands for the squared stretch in
the direction perpendicular to the original cord orientation b:

I6 = Tr(Cb ⊗ b) (1.88)

The SEFs mentioned above use classical invariants directly related to the structural ten-
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sor through the trace. In the following of this section, we will introduce an example of
strain energy function using non-classical invariants [51]. In this reference, the annulus
fibrosus is actually considered as an isotropic ground substance reinforced by two fam-
ilies of collagen fibers and modeled by the following strain energy function with a single
exponential function but a rather complicated argument:

W =
1

I3
n βexp[β1(I1 − 3) + β2(I2 − 3) + β3(I1 − 3)2

+ β4(I9 − 2) + β5(I9 − 3)2 + β6(I1 − 3)(I9 − 2) + β7(I11 − 2)

+ β8(I10 − 1) + β9(I8 − cos22φ)

+ β10(I3 − 3)(I8 − cos22φ) + β11(I8 − cos22φ)(I9 − 2)]

(1.89)

where n and βi (i = 0, ..., 11) represent the 13 material parameters of the model, φ is
the half angle between the two families of fibers, I1, I2 and I3 are the three classical
invariants described by equation (1.31), I4 (resp. I6) and I5 (resp. I7) are the classical
mixed invariants related to the first fiber direction a (resp. the second fiber direction b)
introduced by equation (1.60) and I8 to I11 are new mixed invariants combining the previous
ones:

I8 = (cos22φ)Tr(Ca ⊗ b), I9 = I4 + I6, I10 = I4I6, I11 = I5 + I7 (1.90)

By asking that there exists a stress free configuration corresponding to the material at
rest, the authors reduce the number of independent material parameters from 13 to 11,
which still remains a high number. Moreover, the authors having experienced some dif-
ficulties to identify these parameters, they placed the dependence of the invariants in
separate exponentials instead of a single one as in the equation (1.89):

W =α0{exp[α1(I1 − 3)] + exp[α2(I2 − 3)] + exp[α3(I1 − 3)] + exp[α4(I9 − 2)]

+ exp[α5(I8 − cos22φ)] + exp[α6(I10 − 1)]

+ exp[α7(I11 − 2)] + exp[α8(I3 − 3)(I8 − cos22φ)]

+ exp[α9(I1 − 3)(I9 − 2)] + exp[α10(I8 − cos22φ)(I9 − 2)]}

(1.91)

where αi (i = 0, ..., 10) are the material parameters of this new energy density. By using
again the fact that the configuration must be free of stress if the material is at rest, the
authors reduced the number of material parameters from 11 to 9. In this way, they were
able to fairly predict the mean response of the annulus fibrosus when measured in four
different experimental deformations. However, it should be underlined that this model
is rather complicated because it involves 9 material parameters and 11 invariants. That
suggests that a rigorous mathematics approach, based on the polynomial invariant theory
[56] rather than empirical considerations, could be an alternative in order to produce
models containing all the relevant informations but no more. This is the main strategy
followed by Ta and his co-authors in [53, 54]. In this way, they succeeded to prove that
all the polynomial invariants are generated by only 6 of them (resp. 7) for a one (resp.
two) fiber family material. Such sets of invariants having the property of generating all
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the others are called integrity basis. The objective of this thesis work is to build SEFs
by using these basis. That will be done in the two forthcoming chapters by accounting
for polyconvexity which is a prerequisite property for finding solutions in compatibility with
physical requirements [41]. This property is reminded in the next section.

1.6/ POLYCONVEXITY

The mathematical treatment of structural boundary value problem in the framework of
computer simulation is based on the calculus of variation, like finding a minimal deforma-
tion of the elastic free energy. This requires that the constitutive behavior law not only
reflects the material properties, but also meets some convexity conditions as illustrated
by figure 1.5 and corresponding to definitions 1 and 2:

Definition 1: convex set (Figure 1.6)

A set K is said to be convex if and only if the following relation holds:

λx1 + (1 − λ)x2 ∈ K ∀x1, x2 ∈ K ∀λ ∈ [0, 1] (1.92)

Definition 2: convex function (Figure 1.5)

Let K be a convex set and f a scalar-valued function.
Then f : K → R is said to be convex if and only if:

f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2) ∀x1, x2 ∈ K, ∀λ ∈ [0, 1] (1.93)

Figure 1.5: One-dimensional convex and non-convex functions
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Figure 1.6: convex and non-convex sets

Unfortunately, as highlighted by Ciarlet in [70], the convexity of SEFs must be ruled out
because this property is incompatible with the physical insight that the energy must tend
towards infinity if the volume of the material is reduced to zero. Additionally, the gradient
deformation matrix F belongs to the set U of all the 3 × 3 real matrix defined by:

U = {M, det(M) > 0} (1.94)

because the determinant of F represents the positive volume change of the material.

Unfortunately, it is easy to demonstrate, by choosing an appropriate counter example [96],
that U is not a convex set in the sense of definition 1 and figure 1.6. As a consequence, it
does not make sense to include the invariant det(F) in the SEF expression if convexity is a
mandatory requirement despite the fact that this invariant is widely used in the literature to
describe the volume change. Observing these evidences, Ball [41] suggested to replace
the convexity property by a weaker requirement called polyconvexity:

Definition 3: Polyconvexity

Let W: F → W(F) be a scalar-valued energy function. Then W is polyconvex if
and only if there exists a function T : M3×3 ×M3×3 × R→ R so that:

W(F) = T (F,Co f (F), det(F)) (1.95)

and the function T : R19 → R defined by:

(F,Co f (F), det(F))→ T (F,Co f (F), det(F))

is convex with respect to the set of arguments (F, Co f (F), det(F)).

By introducing this interesting property, it immediately results that a function of the form
(det(F))2 is a convex real-valued function of det(F), that is to say a polyconvex function,
even if it can not be a convex function of F as previously explained. It must be also noticed
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that, in the definition of polyconvexity, some authors like in [46] uses the adjugate of F,
that is to say the transpose of the cofactor matrix of F, instead of Co f (F) but it does not
constitute an essential difference. Note finally that, if convexity implies polyconvexity, the
reverse is not true.

In the context of hyperelastic problems, the polyconvexity of the strain energy density is
often considered as a prerequisite for ensuring the existence of solutions in compatibility
with physical requirements as explained by Ball in [41]. Subsequently to the pioneer work
of Ball, Marsden et al. [97] and Ciarlet [70] have provided more results related to this con-
cept. For isotropic materials, some well-known strain energy functions, such as Ogden
model [6], Mooney Rivilin model [62, 72] and Neo-Hookean model [6] are polyconvex.
Schröder et al. extended the concept of polyconvexity for anisotropic materials [98] and
a wide survey with many proofs on polyconvexity of isotropic and transversely isotropic
functions is given in [46].

In fact, the polyconvex and convex properties are deeply linked together and it is simply
a matter of arguments to distinguish them (F on the one hand and (F, Co f (F), det(F))
on the other hand). From this point of view, it is therefore useful to recall a very practical
condition to determine if a twice-differentiable function ψ of x is convex or not:

ψ′′(x)(dx)(dx) ≥ 0 ∀ dx (1.96)

To end this section, we will discuss the polyconvexity of the standard invariants I1, I2, I3,
I4 and I5 introduced by equations (1.31) and (1.60). It follows from equations (1.11) and (1.31)

that:
I1 = Tr(FT F) (1.97)

We then use the property ((11)) on the trace operator and the definition (13) of the Frobenius
norm to conclude that the invariant I1 can be considered as a quadratic function on F:

I1 = 〈F, F〉Fr (1.98)

The second derivative of I1 with respect to F is directly deduced from (1.98):

I′′1 (F)(H)(H) = 2 〈H,H〉Fr = 2 ‖H‖2Fr (1.99)

That proves that I1 is convex with respect to F and thus polyconvex.

To establish the polyconvexity of I2, we start from the Cayley-Hamilton theorem applied
to the matrix C:

C3 − I1C2 + I2C − I3I = 0 (1.100)

Multiplying equation (1.100) by C−1 yields to :

C2 − I1C + I2I = I3C−1 (1.101)
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The trace operator applied to equation (1.101) thus gives:

I2 = I3Tr(C−1) (1.102)

We next remark that:

I3Tr(C−1) = (det(F))2Tr(F−1F−T ) = Tr((Co f (F))TCo f (F)) = Tr(Co f (F)(Co f (F))T )
(1.103)

By using both equations (1.102) and (1.103), as well as like the Frobenius scalar product (12),
it is obtained that I2 is a quadratic function of Co f (F):

I2(Co f (F)) = 〈Co f (F),Co f (F)〉Fr (1.104)

The second derivative of I2 with respect to Co f (F) is directly deduced from (1.104):

I′′2 (Co f (F))(H)(H) = 2 〈H,H〉Fr = 2 ‖H‖Fr (1.105)

That proves that I2 is convex with respect to Co f (F) and thus polyconvex.

The third invariant is obviously polyconvex because it is clear that I3 is a quadratic function
with respect to det(F):

I3(det(F)) = det(C) = (det(F))2 (1.106)

=⇒ I′′3 (det(F)) = 2 (1.107)

I3 is consequently convex with respect to de f (F) and thus polyconvex.

Let us turn now our attention to the first mixed invariants I4 defined by equation (1.60).
Thanks to equation (10), I4 can be written as a quadratic function of F:

I4(F) = 〈Fa, Fa〉 (1.108)

The second derivative of I4 with respect to F is thus:

I′′4 (F)(H)(H) = 2 〈Ha,Ha〉 = 2 ‖Ha‖2 (1.109)

That proves that I4 is convex with respect to F and thus polyconvex.

Finally, it has been demonstrated in [46] that I5 is not polyconvex. Anyway, there are at
least two standard ways to build polyconvex invariants containing I5. The first consists in
using again the Cayley-Hamilton theorem described by equation (1.101) and by multiplying
it by the structural tensor M defined by equation (1.44):

C2 M − I1CM + I2 M = I3C−1 M (1.110)
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Taking the trace of each member of equation (1.110) yields to:

I5 − I1I4 + I2 = Tr(I3C−1 M) (1.111)

Developping the right hand-side of equation (1.111) leads to:

Tr(I3C−1 M) = Tr((det(F))2F−1F−T a ⊗ a) = Tr((Co f (F))TCo f (F)a ⊗ a) (1.112)

Equation (1.112) can be simplified to a quadratic form with respect to Co f (F) by appliying
the property (10):

Tr(I3C−1 M) = 〈Co f (F)a,Co f (F)a〉 (1.113)

The second derivative of Tr(I3C−1 M) with respect to Co f (F) is thus:

Tr(I3C−1 M)′′(Co f (F))(H)(H) = 2 〈Ha,Ha〉 = 2 ‖Ha‖2 (1.114)

That proves that I5 − I1I4 + I2 is convex with respect to Co f (F) and thus polyconvex.

The second way to obtain a polyconvex invariant depending on I5 is to first multiply the
Cayley-Hamilton theorem represented by equation (1.110) by I − M:

C2(I − M) − I1C(I − M) + I2(I − M) = I3C−1(I − M) (1.115)

Taking the trace of equation (1.115) yields to:

I1I4 − I5 = Tr(I3C−1(I − M)) (1.116)

The right hand-side of equation (1.116) can be developed into:

Tr(I3C−1(I − M)) = Tr(Co f (F)TCo f (F)) − Tr(Co f (F)TCo f (F)a ⊗ a) (1.117)

By using (10), (11) and (12), equation (1.117) can be reformulated in terms of two scalar
products:

Tr(I3C−1(I − M)) =
〈
Co f (F)T ,Co f (F)

〉
Fr
− 〈Co f (F)a,Co f (F)a〉 (1.118)

That proves that I1I4 − I5 depends on Co f (F). To demonstrate that this dependence is
convex, we derive twice I1I4 − I5 with respect to Co f (F):

(I1I4 − I5)′′(Co f (F))(H)(H) = 2{〈H,H〉Fr − 〈Ha,Ha〉} (1.119)

To prove that the right hand-side of equation (1.119) is positive, we use the inequality (14)

and the fact that a is a unit vector:

〈Ha,Ha〉 = ‖Ha‖2 ≤ ‖H‖2Fr ‖a‖
2 = 〈H,H〉Fr (1.120)
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The proof of the convexity of I1I4 − I5 with respect to Co f (F) is then complete and the
polyconvexity of this invariant is demonstrated.

It is of course possible to combine the standard polyconvex invariants studied above in
many different ways and an excellent overview on this issue is provided in [46].

1.7/ FINITE ELEMENT METHOD FOR STRUCTURAL NONLINEAR

ANALYSIS

In the past few years, the role of computational modeling is becoming increasingly im-
portant in all fields of physics and particularly for biomechanics research. Computational
analysis of the biomechanics of soft biological tissues provides a framework for quanti-
tative description of biomedical material, which has a large potential of applications in
medical science, biology simulation and robotics for real-time surgery simulation. As the
focus of this thesis is not only to propose new strain energy functions for anisotropic ma-
terials, but also to implement them in a finite element code, we will describe below the
standard total Lagrangian formulation used for this implementation. The geometrically
nonlinear analysis may actually be described by using the total or the updated Lagrangian
formulations [68, 69]. The total Lagrangian formulation is derived with respect to the initial
configuration while the updated Lagrangian formulation is derived with respect to the cur-
rent configuration. In other words, the total Lagrangian formulation constructs the tangent
stiffness matrix with respect to the initial configuration. This simplifies the computation.
Therefore, the total Lagrangian formulation was selected in this work for the finite ele-
ment discretization. Using the symmetry of the strain tensor E and the stress tensor S
(equations (1.11) and (1.21)), we start by denoting hereafter E and S in vector form as

E = 〈E11 E22 E33 2E12 2E13 2E23〉
T

S = 〈S 11 S 22 S 33 S 12 S 13 S 23〉
T (1.121)

In the context of the finite element method and with equations (1.10), (1.11) and (1.13), the
Green-Lagrange strain can be formally written with linear and nonlinear contributions in
terms of nodal displacements u:

E =
(
BL +

1
2

BNL(u)
)
u (1.122)

where BL is the matrix which relates the linear part of the strain terms to the nodal dis-
placements, and BNL(u), the matrix which relates the nonlinear strain terms to the nodal
displacements. From equation (1.122), the incremental form of the strain-displacement
relationship is

δE =
(
BL + BNL(u)

)
δu . (1.123)
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In static analysis of solids, the virtual work δU is

δU =

$
V0

δET S dV0 − δuT Fext = 0 (1.124)

where V0 is the domain of the initial configuration and Fext the vector of external loads. In
view of equations (1.21) and (1.123), it comes

δS = DδE = D
(
BL + BNL(u)

)
δu (1.125)

where D denotes the matrix deduced from the fourth-order stress-strain tangent operator
D:

D =
∂S
∂E

= 2
∂S
∂C

= 2
∂2W
∂C2 (1.126)

D =



D1111 D1122 D1133 D1112 D1113 D1123

D1122 D2222 D2233 D2212 D2213 D2223

D1133 D2233 D3333 D3312 D3313 D3323

D1112 D2212 D3312 D1212 D1213 D1223

D1113 D2213 D3313 D1312 D1313 D1323

D1123 D2223 D3323 D2312 D2313 D2323


. (1.127)

Substituting δE from equation (1.123) into equation (1.124) results in:

δU = δuT
$

V0

(
BL + BNL(u)

)TS dV0 − δuT Fext = 0. (1.128)

The vector of internal forces, appearing in the first term of equation (1.128), is defined by:

Fint =

$
V0

(
BL + BNL(u)

)TS dV0. (1.129)

Since δu is arbitrary, the following set of nonlinear equations is obtained:

Fint − Fext = 0. (1.130)

The nonlinear equation (1.130) is solved numerically by using a classical Newton-Raphson
scheme:

Ki∆u = Fext − Fi
int

ui+1 = ui + ∆u
(1.131)

where i and i + 1 refer to the current and to the next iterations. The displacement ui+1

is updated by the incremental nodal displacement ∆u and the tangent stiffness matrix
Ki is evaluated at each iteration by taking into account the internal forces vector Fint.
Deriving Fint with respect to the nodal displacements u and using equation (1.125) yield to
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the tangent stiffness matrix:

K =
∂Fint

∂u
= Ke + Kσ + Ku (1.132)

where Ke, Kσ and Ku stand respectively for the elastic stiffness matrix, the geometric
stiffness (or initial stress stiffness) matrix and the initial displacement stiffness matrix:

Ke =

$
V0

BT
LDBL dV0 (1.133)

Kσ =

$
V0

∂BT
NL

∂u
S dV0 (1.134)

Ku =

$
V0

(
BT

LDBNL + BT
NLDBL + BT

NLDBNL
)
dV0. (1.135)

The practical implementation of the two SEFs proposed in the two next chapters was per-
formed in the university code FER [57] following the total Lagrangian approach described
above.

1.8/ CONCLUSIONS

This first chapter was mainly devoted to introduce essential results needed for the two
forthcoming chapters and also to put in perspective our work with the literature in order
to better understand the following.

We have particularly explained why the selection of appropriate invariants is not an easy
task in view of building a strain energy function. Actually, this selection often conducts to
elaborate models involving many invariants, many material parameters and many densi-
ties to account for complex phenomena such as the fibers-fibers interaction or the shear
interaction between the fibers and the matrix [2, 51, 52].

In order to construct in the next chapters the simplest models as possible, but capable of
embedding all of the complex mechanical effects, we have explained in the end of section
1.5.2 why the invariants introduced by Ta et al. [53, 54] could be an interesting alternative
to more standard invariants.

In order to select the best way for combining these invariants, we have finally explained
in section 1.6 why the concept of polyconvexity, originally introduced by Ball [41] and
developed later by Ciarlet [70], can serve as a guideline.

The forthcoming chapter 2 deals with the construction of a SEF for modeling a one-fiber
family material. This second chapter will include a discussion on polyconvexity as well as
the description of the finite implementation of the model by using the approach presented
in section 1.7 of this chapter. The last chapter 3 of this manuscript follows the same logic
of presentation as chapter 2 but this time for a four-fibers family material.
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2
A NEW SEF FOR ONE-FIBER FAMILY

MATERIALS

2.1/ INTRODUCTION

The main goal of this chapter is to design a strain energy function (SEF) for incompress-
ible fiber-reinforced materials by using the family of transverse anisotropic invariants pro-
posed by Ta et al. [54]. These invariants derived from the application of Noether’s theorem
and we will organize them in order to form a polyconvex integrity basis. Based on this
new constitutive model, we developed a finite element program in the FER software [57].

These past twenty years, many strain energy functions have been proposed for trans-
versely isotropic materials to investigate the mechanical behavior of biological soft tis-
sues. As mentioned in the first chapter, these materials are considered as anisotropic
due to the collagen fiber behavior [44]. The number of fiber families is set to 1 to model
tissues such as ligament, tendons or fiber-reinforced rubber materials, while it is set to
2 to represent the arterial wall [8, 65]. Several constitutive finite element models were
built for biological soft tissues, such as ligament, tendons and the fiber-reinforced rubber
materials [28, 47]. Shearer [99] built a new strain energy function for the hyperelastic
modelling of ligaments and tendons based on the geometrical arrangement of their fib-
rils. Limbert et al. [100] proposed a phenomenological constitutive law to describe the
anisotropic viscohyperelastic behaviour of the human posterior cruciate ligament (PCL)
at high strain rates.

In general, it is assumed that the mechanical behavior of the material is not affected
if the fibers are in a compressive state [101, 102]. Taking advantage of this situation,
most of the papers published in the literature propose to separate the energy density
into an isotropic part and an anisotropic part. The first part accounts for the low strain
behavior of the ground matrix and the second part captures the behavior of the fibers at
higher strain [28, 103]. More recently, an original approach mixing the isotropic and the
anisotropic parts in a single SEF was introduced by Ta et al. [53, 54]. This approach
was inspired by the pioneer work of Thionnet et al. [55] and is mathematically justified

47
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by the theory of invariant polynomials. It provides an alternative to the classical method
found in the literature for building invariants and allows to exhibit an integrity basis made
of six invariants (K1,. . .,K6), some of them being original, in the case of a one-fiber family
material.

We have adopted the same approach as the one developed in [54] but with the following
complementary results:

• one of the six invariants exhibited in [54] can be excluded from the integrity basis by
adding the appropriate transformation in the material symmetry group;

• three of the six invariants are well known polyconvex functions;

• the last two invariants are original, physically motivated and directly connected to
shear effects. Additionally, those two invariants shed a new light on the classical
mixed invariant I5 = Tr(C2a ⊗ a) (where a represents the fiber direction) and allows
to link it with shear strain while it is often reported in the literature the difficulty to
provide a physically-based motivation for I5.

However, up to now and to the best of our knowledge, the mathematical foundations
introduced in [54] have not met a practical extension. The new strain energy function
proposed in this chapter by using the integrity basis made of five of the six invariants
exhibited in [54] constitutes a first attempt in this direction. This choice is motivated by
the fact that these invariants do not require a separation of the SEF into an isotropic and
an anisotropic part. Another motivation is the rigorous mathematical foundations used by
Ta et al. to define those invariants. In the same spirit as the Mooney-Rivlin models in the
framework of isotropic hyperelasticity [72, 62], we have introduced some original SEFs
as polynomial functions of these new invariants. The conclusions about those original
behaviors laws are as follows:

• A linear or a quadratic expansion of the invariants is not sufficient to well describe
the material behavior with the four experimental set-up considered, particularly with
the shear test. In fact we prove that any polynomial SEF in the invariants will not be
suitable to fit the experimental data.

• A quadratic expansion of the invariants combined with an appropriate power-law
form provides accurate predictions of all the experimental results.

In most situations, the finite element method is used as a foundation for modeling the
mechanical response of anisotropic materials. As an illustrative example, we can cite
the work of Weiss et al. [28] who have implemented a finite element formulation for
incompressible hyperelastic materials in the general purpose finite element code NIKE3D
developed by Maker [104]. Noted that the famous HGO model [44] was also implemented
inside the ABAQUS commercial code. Thus, the second primary focus of this chapter is to
perform the finite element implementation of our model by following the total Lagrangian
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formulation describe in section 1.7 of chapter 1. To assess the appropriateness of this
new density, numerical simulations are compared with experimental results extracted from
the paper published by Ciarletta et al. [39]. For our purpose, the interest of the work of
Ciarletta et al. is threefold:

• It provides a large variety of experimental results by testing two different materials,
each in four different situations (tensile and pure shear loadings parallel and trans-
verse to the rubber-reinforcement direction), covering a large scope of the material
behavior. It therefore constitutes a good trial for the assessment of models because
a single set of material parameters should have to match all the four experimental
tests.

• If tensile tests prevail in the literature, shear tests are uncommon although they can
be considered as a severe benchmark case for rubber material models. As outlined
by Horgan et al. in [105]: ”The classical problem of simple shear in nonlinear elastic-
ity has played an important role as a basic pilot problem involving a homogeneous
deformation that is rich enough to illustrate several key features of the nonlinear
theory, most notably the presence of normal stress effects. (· · · ) Since shearing is
one of the dominant modes of behavior of rubbers in applications, this raises major
concerns. Put another way, simple shear is not so simple after all”.

• A new hyperelastic model using a non classical measure of strain is also proposed
in [39]. In the same vein, Fereidoonnezhad et al. [40] have built later a model using
this kind of strain, reporting the non-linearity aspect from the form of the SEF to
the strain invariant, and have used the experimental data provided by Ciarletta et
al. to assess their model. Our new model can therefore be compared not only with
experimental results but also with numerical simulations.

Finally, it must be noted that the part of this research work related to the construction
of the new SEF has been published in the International Journal of Solids and Structures
[65].

The chapter is organized as follows:

• In section 2.2, some preliminaries on the material model and on the material sym-
metry group are introduced.

• The polyconvexity and physical interpretation of the new invariants proposed in [54]
are investigated in section 2.3.

• Four different tests are briefly introduced in section 2.4. Those tests have been
performed by Ciarletta et al. [39]. They include uniaxial tension and simple shear
loadings.
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• A new hyperelastic model based on the new invariants is presented in section 2.5.
The predicted results of our proposed model is compared to the experimental data
extracted from [39].

• The finite element implementation of our new model is given in section 2.6. Firstly,
a penalty function procedure is introduced to extent the constitutive model from the
compressible to the incompressible range. Secondly, the calculations of the first and
second derivatives of the strain energy density is performed. These calculations
have been implemented in the finite element software FER [57].

• Finally, numerical results obtained thanks to the finite element software FER are
presented in section 2.7. These results concern homogeneous deformations (with
simple tension and shear tests) as well as inhomogeneous deformations (with a 3D
tension test). In the case of homogeneous deformations, several numerical simula-
tions were successfully compared to experimental and theoretical results extracted
from [39]. This allows us to validate the finite element implementation.

2.2/ PRELIMINARIES

In this chapter, we focus on a fiber-reinforced material with a one-fiber family of direction
a as depicted on Figure 2.1. We assume that a lies in the plane (E1, E2) and forms an
angle θ with E1:

a =


c
s
0

 , b =


−s
c
0

 with c = cos(θ), s = sin(θ) (2.1)

Practically, we will only consider the following two cases where the fibers are parallel
(θ = 0) or transverse (θ = π

2 ) to E1:

Parallel: a =


1
0
0

 , b =


0
1
0

 , c =


0
0
1

 (2.2)

Transverse: a =


0
1
0

 , b =


−1
0
0

 , c =


0
0
1

 (2.3)

To model this material, Ta et al. considered in [54] the group S O(3) of all the proper or-
thogonal transformation (that is to say the set of the 3 × 3 real matrix satisfying equation
(1.24)) and the material symmetry group G containing all the orthogonal transformations
of S O(3) leaving invariant the material structure. This group G can be described as the
group of all rotations around the fiber direction a because it is consistent with the geo-
metric symmetries described in figure 1.3. Using a mathematical argument based on an
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Figure 2.1: A fiber-reinforced material with one fiber family

extension of the Reynolds operator, in order to account for the infinite cardinality of G, Ta
et al. [54] have demonstrated that the following six invariant polynomials form an integrity
basis of the ring of invariant polynomials under the action of G:

K1 = ρ1 ; K2 = ρ2 + ρ3 ; K3 = ρ2
5 + ρ2

4 ; K4 = ρ2
6 − ρ2ρ3

K5 = (ρ2
5 − ρ

2
4)ρ6 + ρ4ρ5(ρ2 − ρ3) ; K6 = (ρ2

4 − ρ
2
5)(ρ2 − ρ3) + 4ρ4ρ5ρ6

(2.4)

where the coefficients ρi stand for:

ρ1 = 〈Ca, a〉 ; ρ2 = 〈Cb, b〉 ; ρ3 = 〈Cc, c〉

ρ4 = 〈Ca, b〉 ; ρ5 = 〈Ca, c〉 ; ρ6 = 〈Cb, c〉
(2.5)

However, at this stage, it is important to notice that the invariant K5 can be excluded from
the integrity basis provided that three orthogonal symmetries through three orthogonal
planes (one perpendicular to a and the two others containing a) are added to the material
symmetry group. Indeed, if we consider for example the orthogonal symmetry S 2 related
to the plane P2 (see figure 2.2), we obtain:

S 2(a) = a ; S 2(b) = b ; S 2(c) = −c (2.6)

Figure 2.2: Three orthogonal planes of symmetry
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It follow the next from equation (2.5) that:

〈S T
2 CS 2a, a〉 = 〈CS 2a, S 2a〉 = 〈Ca, a〉 = ρ1

〈S T
2 CS 2b, b〉 = 〈CS 2b, S 2b〉 = 〈Cb, b〉 = ρ2

〈S T
2 CS 2c, c〉 = 〈CS 2c, S 2c〉 = 〈C(−c),−c〉 = ρ3

〈S T
2 CS 2a, b〉 = 〈CS 2a, S 2b〉 = 〈Ca, b〉 = ρ4

〈S T
2 CS 2a, c〉 = 〈CS 2a, S 2c〉 = 〈Ca,−c〉 = −ρ5

〈S T
2 CS 2a, a〉 = 〈CS 2b, S 2c〉 = 〈Cb,−c〉 = −ρ6

(2.7)

Equation (2.7) proves that, under the action of S 2, the coefficients ρ1, ρ2, ρ3 and ρ4 are
unchanged while ρ5 and ρ6 are transformed to their opposite. Using this result in equation
(2.4) gives:

((−ρ5)2 − ρ2
4)(−ρ6) + ρ4(−ρ5)(ρ2 − ρ3) = −K5 (2.8)

Therefore K5 is not invariant under the new material symmetry group extended with the
three orthogonal symmetries. A general discussion on the different ways to define the
material symmetry group can be consulted in [9]. We therefore define a strain energy
density W only depending on five of the six invariant polynomials given by equation (2.4):

W = W(K1,K2,K3,K4,K6) (2.9)

Additionally, for accounting for the incompressibility condition J =det(F)= 1, we introduce
the extra pressure p (which plays the role of a Lagrange multiplier) into the formulation of
the second Piola-Kirchhoff stress tensor S in equation (1.21):

S = 2
∂W
∂C
− pC−1 (2.10)

The corresponding Cauchy stress tensor σ is obtained by combining equation (1.20) with
equation (2.10):

σ = 2F
∂W
∂C

FT − pI (2.11)

By reminding that the nominal stress is the transpose of the engineering stress P intro-
duced by equation (1.18), we deduce from equation (2.11) that:

PT = JF−1σ = 2
∂W
∂C

FT − pF−1 (2.12)

or equivalently by using equation (2.9) and the chain derivative rule:

PT = 2
6∑

i=1,i,5

ωi
∂Ki

∂C
FT − pF−1 (2.13)
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where ωi represents the derivative of the SEF with respect to the invariants:

ωi =
∂W
∂Ki

(2.14)

The derivatives
∂Ki

∂C
of the invariants with respect to C are calculated straightforwardly

from equations (2.4) and (2.5):

∂K1

∂C
= a ⊗ a ;

∂K2

∂C
= b ⊗ b + c ⊗ c

∂K3

∂C
= ρ4[a ⊗ b + b ⊗ a] + ρ5[a ⊗ c + c ⊗ a]

∂K4

∂C
= ρ6[b ⊗ c + c ⊗ b] − ρ2c ⊗ c − ρ3b ⊗ b

∂K6

∂C
= (ρ4[a ⊗ b + b ⊗ a] − ρ5[a ⊗ c + c ⊗ a])(ρ2 − ρ3)

+ (ρ2
4 − ρ

2
5)[b ⊗ b − c ⊗ c] + 2(ρ4ρ5[b ⊗ c + c ⊗ b]

+ ρ4ρ6[a ⊗ c + c ⊗ a] + ρ5ρ6[a ⊗ b + b ⊗ a])

(2.15)

Note that the Lagrange multiplier p involved in equation (2.13) will only be used later for
analytical calculations (section 2.4). For the finite element computation (section 2.6),
we will prefer to introduce a penalty function because it allows to reduce the number of
unknowns.

To conclude this section, we summarize in the following table the main mechanical prop-
erties of the invariants obtained by Ta et al. in [54]. This table will be helpful to understand
the role played by those invariants when we will write explicit SEF models. In this table,
”purely non-linear” means the corresponding invariants tend to zero when the strains are
small.

Purely non-linear Tensile behavior Shear behavior
K1 X

K2,K4 X X
K3,K6 X X

Table 2.1: Mechanical properties of the new invariants [54]

2.3/ POLYCONVEXITY AND PHYSICAL INTERPRETATION OF THE IN-
VARIANTS

As explained in Chapter 1, the polyconvexity of the strain energy density is a prerequisite
for finding solutions in compatibility with physical requirements [41]. We thus investigate
in this section the polyconvexity of the new five invariants Ki (i = 1, 2, 3, 4, 6) introduced
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by equation (2.4). To this end, let us recall (see definition 3, section 1.6, chapter 1) that a
function is said to be polyconvex, if it can be expressed as a convex function of the three
arguments F, Co f (F) and det(F). Because some combinations of classical invariants are
known to be polyconvex [46], we first remind that the new invariants given by equation
(2.4) are related to the classical ones by [54]:

K1 = I4 ; K2 = I1 − I4 ; K3 = I5 − I4
2 ; K4 = I1I4 − I5 − I2 (2.16)

K6 = (I1 − I4)(I5 − I4
2) + 2[I3 + I4(I1I4 − I5 − I2)] (2.17)

where the classical invariants Ii (i = 1, ..., 5) have been introduced in chapter 1 by equa-
tions (1.31) and (1.60).

Conversely, the classical invariants can be expressed with respect to the new ones by:

I1 = K1 + K2 ; I2 = K1K2 − K3 − K4 ; I3 = −K1K4 +
1
2

(K6 − K2K3) (2.18)

I4 = K1 ; I5 = K2
1 + K3 (2.19)

We first note that K1, K2 and −K4 are well known polyconvex functions (see [46] for de-
tails). These three invariants respectively represent (see [54], [98] and [103]):

• the elongation squared in the fiber direction,

• the elongation squared in the isotropic plane perpendicular to the fiber direction,

• the deformation of an area element with a unit normal parallel to the fiber direction.

It is also noted that the expression (2.16) of K3 is close to I1I4 − I5 which is known to be
polyconvex [46]. That implies that K1K2 − K3 is a polyconvex combination of K3 with the
other Ki. This is straightforward to prove from equations (2.18) and (2.19):

I1I4 − I5 = (K1 + K2)K1 − (K2
1 + K3) = K1K2 − K3 (2.20)

Another way to build a polyconvex combination including K3 is to start with I2
1 − K3 and

use equation (2.16):

I2
1 − K3 = I2

1 + I2
4 − I5 =

1
2

[I2
4 + I2

1 + (I1 − I4)2] + I1I4 − I5 (2.21)

The two terms I1− I4 and I1I4− I5 are known to be polyconvex [46] and the square and the
sum of polyconvex functions is still polyconvex. We then conclude from equations (2.21)

that I2
1 − K3 is polyconvex. It can be expressed only with the new invariants Ki by using

equations (2.18):
I2
1 − K3 = (K1 + K2)2 − K3 (2.22)

We have thus obtained two polyconvex functions including K3 (namely K1K2−K3 = I1I4−I5

and (K1 + K2)2 − K3 = I2
1 + I2

4 − I5). If the first function is often cited in the literature, it
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is observed that the second one is less conventional and has been guessed from the
particular expression (2.16) of the new invariant K3. Additionally, this new invariant K3 can
be physically interpreted by noting first its positivity. The proof directly derives from the
application of the Cauchy-Schwarz inequality:

I4 = 〈Ca, a〉 ≤ ‖Ca‖ ‖a‖ = ‖Ca‖ ⇒ I2
4 ≤ ‖Ca‖2 =

〈
C2a, a

〉
= I5 ⇒ K3 ≥ 0 (2.23)

It is then noted that the inequality (2.23) is strict except if the vectors Ca and a are parallel,
that is to say if a is an eigenvector of C:

K3 = 0⇔ ∃λ ∈ R/Ca = λa (2.24)

From a physical point of view, Eq. (2.24) indicates that K3 is equal to zero if, and only if, the
material is submitted to a pure axial loading in the fiber direction. K3 can therefore serve
as an indicator of the amount of shear in the fiber direction which is null if K3 is equal to
zero. It is possible to specify more precisely this shear indicator by using a convenient
orthonormal basis, says B (see Figure 2.3), for the strain calculation in the fiber direction
a. In this view, we select a as a first vector basis. The second vector basis in the isotropic
plane is defined as the part of Ca orthogonal to a (remind that Ca represents the strain in
the fiber direction):

b =
Ca − 〈Ca, a〉 a
‖Ca − 〈Ca, a〉 a‖

=
Ca − I4a
‖Ca − I4a‖

(2.25)

That ensures naturally the orthogonality between a and b. It is also noticed that the norm
of Ca − I4a adopts a remarkable form directly related to the invariant K3:

‖Ca − I4a‖ =
√
〈Ca − I4a,Ca − I4a〉 =

√
I5 − I2

4 =
√

K3 (2.26)

The cross product between a and b is used to calculate the third vector c completing the
orthonormal basis B (Figure 2.3):

c = a ∧ b = a ∧
Ca − I4a√

I5 − I2
4

=
a ∧ Ca√

I5 − I2
4

(2.27)

The strain tensor in the fiber direction is represented by Ca and its components in the
basis B take a very simple form by applying Eqs. (2.25) and (2.27):

Ca =


〈Ca, a〉
〈Ca, b〉
〈Ca, c〉

 =
1√

I5 − I2
4


I4

√
I5 − I2

4

〈Ca,Ca − I4a〉
〈Ca, a ∧ Ca〉

 =


I4√

I5 − I2
4

0

 =


I4
√

K3

0

 (2.28)

As expected, the first component of Ca expressed in the basis B represents the elongation
in the fiber direction and is equal to I4. The two other components, which are related to
the shear effect between the fiber direction and the isotropic plane, prove that the total
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amount of shear can be estimated by
√

I5 − I2
4 =
√

K3. One other important result is the
fact that this total amount of shear strain, which is of course invariant by any rotation in
the isotropic plane, is concentrated in the direction b and equal to zero in the direction c
(2.25) and (2.27). In other words, the maximum shear effect between the fiber direction a
and the isotropic plane arises with the orthogonal projection of Ca in the isotropic plane
(equation (2.25)).

These results demonstrate that the classical invariant I5 plays a key role to estimate the
shear effect between the fiber direction and the isotropic plane, provided that I5 is com-
bined with I4 through the definition (2.16) of the new invariant K3. This new invariant sheds
a new light on I5 while it is often reported in the literature that a physical interpretation of
I5 is difficult to obtain, contrarily to I4.

Figure 2.3: An appropriate orthonormal basis B=(a, b, c) for the strain calculation

A complementary interpretation of K3 can be given with the coefficient β4 defined below
and introduced in [106] as the magnitude of the along-fiber shear strain (corresponding
to a fiber sheared along an adjacent fiber):

β4 =

√
I5

I2
4

− 1 =

√
K3

K1
(2.29)

In the light of equations (2.28), the coefficient β4 introduced by equation (2.29) can also
be interpreted as a function of the ratio between the shear strain and the axial strain in
the fiber direction. That means that the total amount of shear strain between the fiber
direction and the isotropic plane can be estimated by K3 (equation (2.16)), as the absolute
difference between I5 and I2

4 , or by β4 (equation (2.29)), as the relative ratio between I5 and
I2
4 .

It is less evident to consider the invariant K6 because equation (2.17) does not reveal any
polyconvex known functions, except of course I3 = det(F)2 which is convex with respect to
det(F). Even if it is an obvious result, we can state that the following combination including
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K6 is polyconvex:
K6 − 2K1K4 − K2K3 = I3 (2.30)

Besides, it is possible to link K6 with along-fiber shear effect by reporting equation (2.29) in
the first term of equation (2.17):

(I1 − I4)(I5 − I2
4) = K2(K1β4)2 (2.31)

For its part, it is remarked that the second term of equation (2.17) is related to the shear
angle ϕ between the matrix and the fiber:

2[I3 + I4(I1I4 − I5 − I2)] = −2I3 tan2ϕ (2.32)

Where the shear angle ϕ is introduced in [64] by:

tan2ϕ =
(I5 − I1I4 + I2)I4

I3
− 1 (2.33)

Combining equations (2.17), (2.32) and (2.33) allows to connect the invariant K6 to two differ-
ent types of shear effects:

K6 = K2(K1β4)2 − 2I3 tan2ϕ (2.34)

The first term in equation (2.34) takes into account the along-fiber shear effect between two
adjacent fibers while the second term controls the shear interaction between the matrix
and the fiber.

To conclude this section, we can say that three invariants used in this chapter (among
the five included in the integrity basis introduced by equations (2.16)-(2.17)), are well known
mixed polyconvex invariants of the literature. This is a notable result because the method-
ology used to calculate these invariants [54]:

• is based on a generalized Reynolds operator built in the framework of the theory of
polynomial invariants;

• deeply differs from classical approaches used in the literature;

• does not account, a priori, for any aspects related to polyconvexity.

We have also established that the two other invariants of the integrity basis can be com-
bined with the others to build polyconvex functions. However, two of them (equations (2.20)

and (2.30)) are classical ones and further investigations will be needed to examine deeply
whether additional original combinations are possible or not.

In the following sections, the five invariants Ki defined by equations (2.16)-(2.17) will be kept
for three reasons:

• they arise naturally by applying a rigorous mathematics approach based on the
theory of invariant polynomials [54];
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• they are all physically motivated as it has been explained above, particularly the a
priori non polyconvex invariants K3 and K6 which are related to two different types
of shear effects;

• the invariants K3 and K6 play a key role for nonlinear analysis as reported in [54]
because they tend to zero in the case of small infinitesimal strain, meaning in that
that they are purely nonlinear.

2.4/ UNIAXIAL TENSION AND SIMPLE SHEAR TESTS

The experimental data obtained by Ciarletta et al. [39], concern:

i) a simple tension test parallel to the fiber direction,

ii) a simple tension test transverse to the fiber direction,

iii) a simple shear test parallel to the fiber direction,

iv) a simple shear test transverse to the fiber direction.

Since these four experiments are used in this work as a reference to assess our model,
we perform in the two following sections (2.4.1 and 2.4.2) the analytical calculation of the
nominal stress in those four cases. In this way, we will be able to make further com-
parisons between three kind of results coming respectively from an experimental set-up,
from a finite element computation and from a theoretical calculation.

2.4.1/ UNIAXIAL TENSION CASE

Consider a block of material subjected to a simple tension loading as illustrated on Figure
2.4. The back side (opposite to the applied tension t) and the two lateral faces (down and
back) are simply supported. These boundary conditions lead to the following homoge-
nous deformation:

F =


λ1 0 0
0 λ2 0
0 0 λ−1

1 λ−1
2

⇒ C =


λ2

1 0 0
0 λ2

2 0
0 0 λ−2

1 λ−2
2

 (2.35)

where λ1 and λ2 represent the principal stretches and account for incompressibility con-
dition J =det(F)= λ1λ2λ3 = 1.
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Figure 2.4: simple tension test - loading parallel (left) and transverse (right) to the fibers

If the tension loading is applied parallel to the fiber direction, as shown in the left part of
Figure 2.4, the three vectors a, b, and c must be selected according to equation (2.2). The
six coefficients ρi defined by equation (2.5) and the five invariants Ki (except K5) defined
by equation (2.4) can therefore be simplified:

ρ1 = λ2
1 ; ρ2 = λ2

2 ; ρ3 = λ−2
1 λ−2

2 ; ρ4 = ρ5 = ρ6 = 0 (2.36)

K1 = λ2
1 ; K2 = λ2

2 + λ−2
1 λ−2

2 ; K3 = K6 = 0 ; K4 = −λ−2
1 (2.37)

Besides, the combination of equations (2.2), (2.15) and (2.36) yields to:

∂K1

∂C
=


1 0 0
0 0 0
0 0 0

 ;
∂K2

∂C
=


0 0 0
0 1 0
0 0 1

 ;
∂K4

∂C
= −


0 0 0
0 λ−2

1 λ−2
2 0

0 0 λ2
2

 ;
∂K3

∂C
=
∂K6

∂C
= 0 (2.38)

The nominal stress Pp in the case where the tension loading is applied parallel to the fiber
direction is therefore obtained by using equations (2.13), (2.35) and (2.38):

Pp =


Pp

11 0 0
0 Pp

22 0
0 0 Pp

33

 ;


Pp

11 = 2ω1λ1 − pλ−1
1

Pp
22 = 2(ω2λ2 − ω4λ

−2
1 λ−1

2 ) − pλ−1
2

Pp
33 = 2(ω2 − ω4λ

2
2)λ−1

1 λ−1
2 − pλ1λ2

(2.39)

The plane stress state Pp
33 = 0 can be exploited to extract the hydrostatic pressure p and

to express the tensile stress by:

Pp
11 = 2(ω1λ1 − ω2λ

−3
1 λ−2

2 + ω4λ
−3
1 ) (2.40)

Using the free boundary condition Pp
22 = 0 gives:

λ2 = λ−1/2
1 (2.41)
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Reporting equation (2.41) in equation (2.40) yields to:

Pp
11 = 2[ω1λ1 − ω2λ

−2
1 + ω4λ

−3
1 ] (2.42)

Equation (2.41) makes sense because we deduce from it and from the incompressibility
condition that:

λ3 = λ−1/2
1 (2.43)

That means that the free faces perpendicular to E2 and E3 (see figure 2.4) are subjected
to the same stretch. This is consistent with the physical experience related to a family of
fibers aligned with the tension loading. At this stage, it is noticed that, if the material is at
rest, the configuration must be free of stress (see equation (1.53), section 1.5.1 of chapter
1):

λ1 = λ2 = λ3 = 1⇒ Pp
11 = 0 (2.44)

And by reporting equation (2.44) in the equation (2.42):

λ1 = λ2 = λ3 = 1⇒ ω1 = ω2 − ω4 (2.45)

In the case where the tension loading is applied transverse to the fiber direction (right
part of Figure 2.4), the three vectors a, b and c must be selected according to equation
(2.3). The six coefficients ρi defined by equation (2.5) and the five invariants Ki (except K5)
defined by equation (2.4) can therefore be simplified:

ρ1 = λ2
2 ; ρ2 = λ2

1 ; ρ3 = λ−2
1 λ−2

2 ; ρ4 = ρ5 = ρ6 = 0 (2.46)

K1 = λ2
2 ; K2 = λ2

1 + λ−2
1 λ−2

2 ; K3 = K6 = 0 ; K4 = −λ−2
2 (2.47)

Besides, the combination of equations (2.3), (2.15) and (2.46) yields to:

∂K1

∂C
=


0 0 0
0 1 0
0 0 0

 ;
∂K2

∂C
=


1 0 0
0 0 0
0 0 1

 ;
∂K4

∂C
= −


λ−2

1 λ−2
2 0 0

0 0 0
0 0 λ2

1

 ;
∂K3

∂C
=
∂K6

∂C
= 0 (2.48)

By using equations (2.13), (2.35) and (2.48), the nominal stress Pt transverse to the fiber
direction adopts a diagonal form:

Pt =


Pt

11 0 0
0 Pt

22 0
0 0 Pt

33

 ;


Pt

11 = 2(ω2λ1 − ω4λ
−1
1 λ−2

2 ) − pλ−1
1

Pt
22 = 2ω1λ2 − pλ−1

2

Pt
33 = 2(ω2 − ω4λ

2
1)λ−1

1 λ−1
2 − pλ1λ2

(2.49)

Reporting the hydrostatic pressure p in Pt
11 from the plane stress condition Pt

33 = 0 yields
to:

Pt
11 = 2ω2(λ1 − λ

−3
1 λ−2

2 ) (2.50)

Note that, this time, the free stress state is automatically satisfied if the material is at rest
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(λ1 = λ2 = λ3 = 1). Also note that, contrarily to the previous parallel loading case, the free
boundary condition Pt

22 = 0 leads this time to the following equation where λ2 is unknown
and λ1 is the prescribed stretch applied to the sample:

ω1λ
4
2 − ω2λ

−2
1 + ω4 = 0 (2.51)

The coefficients ω1 and ω4, defined by equation (2.14), depends on W, λ1 and λ2. At this
stage, it is thus not possible to solve equation (2.51) if W, and consequently ω1 and ω4, are
not defined. In fact, depending on the choice of W, we obtain different kind of equations.
For example, in the case of a density W quadratic with respect to the invariants (this case
will be studied in details later), the equation to solve is a 7 degree polynomial equation.
We have solved it thanks to the fzero function of the MATLAB software and, by reporting
the numerical solution λ2 in the equation (2.50), we will be able to express Pt

11 with respect
to λ1.

2.4.2/ SIMPLE SHEAR CASE

The field displacement related to a block of material subjected to a simple shear defor-
mation (Figure 2.5) is expressed in a linear form of the amount of shear deformation k:

u = kX2E1 (2.52)

It follows that the corresponding strain tensors is:

F =


1 k 0
0 1 0
0 0 1

⇒ C =


1 k 0
k k2 + 1 0
0 0 1

 (2.53)

Figure 2.5: Simple shear test

If the shear loading is applied parallel to the fiber direction, the three vectors a, b, and
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c must be selected according to equation (2.2). The six coefficients ρi defined by equa-
tion (2.5) and the five invariants Ki (except K5) defined by equation (2.4) can therefore be
simplified:

ρ1 = ρ3 = 1 ; ρ2 = k2 + 1 ; ρ4 = k ; ρ5 = ρ6 = 0 (2.54)

K1 = 1 ; K2 = k2 + 2 ; K3 = k2 ; K4 = −(k2 + 1) ; K6 = k4 (2.55)

The combination of equations (2.2), (2.15) and (2.54) yields to:

∂K1

∂C
=


1 0 0
0 0 0
0 0 0

 ;
∂K2

∂C
=


0 0 0
0 1 0
0 0 1

 ;
∂K3

∂C
=


0 k 0
k 0 0
0 0 0


∂K4

∂C
=


0 0 0
0 −1 0
0 0 −(k2 + 1)

 ;
∂K6

∂C
=


0 k3 0
k3 k2 0
0 0 −k2


(2.56)

The nominal stress Psp in the case where the shear loading is applied parallel to the fiber
direction is therefore obtained by using equations (2.13), (2.53) and (2.56):

Psp =


Psp

11 Psp
12 0

Psp
21 Psp

22 0
0 0 Psp

33

 ;



Psp
11 = 2(ω1 + k2ω3 + k4ω6) − p

Psp
22 = 2(ω2 − ω4 + k2ω6) − p

Psp
33 = 2[ω2 − (k2 + 1)ω4 − k2ω6] − p

Psp
12 = 2(kω3 + k3ω6) + kp

Psp
21 = 2k(ω2 + ω3 − ω4 + 2k2ω6)

(2.57)

By using the plane stress condition Psp
33 = 0 as in Fereidoonnezhad et al. [40] to obtain the

hydrostatic pressure p, the shear stress corresponding to a loading parallel to the fiber
direction can be expressed by:

Psp
12 = 2[(ω2 + ω3 − ω4)k − ω4k3] (2.58)

If the shear loading is applied now transverse to the fiber direction, the three vectors a,
b, and c must be selected according to equation (2.3). The six coefficients ρi defined by
equation (2.5) and the five invariants Ki (except K5) defined by equation (2.4) can therefore
be simplified:

ρ1 = k2 + 1 ; ρ2 = ρ3 = 1 ; ρ4 = −k ; ρ5 = ρ6 = 0 (2.59)

K1 = k2 + 1 ; K2 = 2 ; K3 = k2 ; K4 = −1 ; K6 = 0 (2.60)
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The combination of equations (2.3), (2.15) and (2.59) yields to:

∂K1

∂C
=


0 0 0
0 1 0
0 0 0

 ;
∂K2

∂C
=


1 0 0
0 0 0
0 0 1

 ;
∂K3

∂C
=


0 k 0
k 0 0
0 0 0


∂K4

∂C
=


−1 0 0
0 0 0
0 0 −1

 ;
∂K6

∂C
=


k2 0 0
0 0 0
0 0 −k2


(2.61)

The nominal stress Pst in the case where the shear loading is applied transverse to the
fiber direction is therefore obtained from equations (2.13), (2.53) and (2.61):

Pst =


Pst

11 Pst
12 0

Pst
21 Pst

22 0
0 0 Pst

33

 ;



Pst
11 = 2(ω2 + k2ω3 − ω4 + k2ω6) − p

Pst
22 = 2ω1 − p

Pst
33 = 2[ω2 − ω4 − k2ω6] − p

Pst
12 = 2kω3 + kp

Pst
21 = 2k(ω1 + ω3)

(2.62)

By using the plane stress condition Pst
33 = 0 as in Fereidoonnezhad et al. [40] to obtain the

hydrostatic pressure p, the shear stress with the loading transverse to the fiber direction
can be expressed by:

Pst
12 = 2[(ω2 + ω3 − ω4)k − ω6k3] (2.63)

It is noticed that, in the two shear cases (equations (2.58) and (2.63)), the free stress state
is automatically reached for a material at rest corresponding to the situation where k is
equal to zero (see equation (2.52)).

We have now finished the analytical study allowing to compute the nominal stress in four
different loading cases. However, to obtain a full achievement of these computations, it is
necessary to know the values of the quantities ωi (i = 1, 2, 3, 4, 6) involved in the analytical
formulas. To reach this goal, because ωi depends on the SEF W (see equation (2.14)),
we are going now to build the SEF W introduced by equation (2.9) as a function of the
invariants Ki.

2.5/ A NEW HYPERELASTIC SEF

Following the strategy used by Mooney and Rivlin to build isotropic energy densities [72,
62], we adopt in this work a polynomial form for W. To identify the coefficients of each
monomial, we have performed comparison between the model and experiments data
extracted from the work of Ciarletta et al. [39]. These experimental data concern two
different fiber-reinforced rubbers: soft silicone rubber reinforced by polyamide (referenced
as material A) and soft silicone rubber reinforced by hard silicone rubber (referenced as
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material B). The comparison focuses on the calculated and measured nominal stresses in
the cases of a tensile loading and of a shear loading. Each loading is applied first parallel
and secondly transverse to the fiber direction. The equations (2.42), (2.50), (2.58) and (2.63),
corresponding to these four loading cases, have been presented in the previous section
and are summarized below:

a) Tensile stress parallel to the fiber direction:
Pp

11 = 2[(ω2 − ω4)λ1 − ω2λ
−2
1 + ω4λ

−3
1 ]

b) Tensile stress transverse to the fiber direction:
Pt

11 = 2ω2(λ1 − λ
−3
1 λ−2

2 )

c) Shear stress parallel to the fiber direction:
Psp

12 = 2[(ω2 + ω3 − ω4)k − ω4k3]

d) Shear stress transverse to the fiber direction:
Pst

12 = 2[(ω2 + ω3 − ω4)k − ω6k3]

(2.64)

We notice that those four equations depend on the derivatives ωi with respect to the
second, third, fourth and sixth variable of W. We also remark that the only difference
between the two shear stresses comes from the cubic term k3, the two linear terms in k
being equal. A particular attention must therefore be paid to the model in order to account
for this constraint because experimental results reveal that the slope of the stress between
the two shear cases is not constant (Figures 2.7 and 2.9). To evaluate if a polynomial form
of the strain energy density could be appropriate, a linear and a quadratic expressions
are tested in the two next sections. In the mean time, we compare in all cases our model
with the one proposed by Fereidoonnezhad et al. [40].

2.5.1/ LINEAR STRAIN ENERGY DENSITY

We introduce the following linear polynomial strain energy function:

W1 = a1K1 + a2K2 + a3K3 + a4K4 + a6K6 (2.65)

The five polynomial coefficients a1, a2, a3, a4 and a6 represent the material parameters.
We have identified them by using the classical coefficient of determination R2 ∈ [0, 1]
defined by:

R2 = 1 −
S S res

S S tot
(2.66)

Where S S res and S S tot are the residual sum and the total sum of squares respectively:

S S res =

n∑
i=1

(yi − fi)2 S S tot =

n∑
i=1

(yi − y)2 (2.67)
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where yi stands for the experimental data (extracted from the curves plotted on Figures
2.6 to 2.9 ), fi for the theoretical data (calculated with the SEF defined by equation (2.65)

with the nominal stresses introduced by equation (2.64)) and y for the mean of the experi-
mental data:

y =
1
n

n∑
i=1

yi (2.68)

n represents the number of experimental data considered in one test. The closest to 1 R2

is, the best the fit of the experimental data by the theoretical data will be. The derivatives

ωi =
∂W
∂Ki

of this linear polynomial strain energy function with respect to Ki are calculated

easily from equation (2.65):
ωi = ai i = 1, 2, 3, 4, 6 (2.69)

Additionally, it is deduced from equations (2.45) and (2.69) that the linear model is only
defined by four material parameters because a1, a2 and a4 are linked by:

a1 = a2 − a4 (2.70)

The data fitting was achieved through the solver fminsearch (unconstrained nonlinear
minimization) of the Optimization Toolbox provided by the MATLAB commercial software
by accounting for the constraint induced by equation (2.70). The identified parameters are
presented on Table 2.2.

Material parameters (MPa) a2 a3 a4 a6

Material A 0.06 −0.035 −0.023 −6.553
Material B 0.567 −1.549 −1.033 −3309

Table 2.2: Identified material parameters of the strain energy density W1 (Eq.(2.65))
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Figure 2.6: Comparison between numerical and experimental tensile stresses - linear
strain energy density (equation (2.65))
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Figure 2.7: Comparison between numerical and experimental shear stresses - linear
strain energy density (equation (2.65))
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Figure 2.8: Comparison between numerical and experimental tensile stresses - linear
strain energy density (equation (2.65))
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Figure 2.9: Comparison between numerical and experimental shear stresses - linear
strain energy density (equation (2.65))
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The comparisons between the experimental and the numerical results are presented on
Figures 2.6 and 2.7 for material A and on Figures 2.8 and 2.9 for material B. We can
notice that the linear model fits fairly all the experimental results except for the shear test
with a loading transverse to the fiber direction (Figure 2.7 right for material A and Figure
2.9 right for material B). This observation is not surprising because the experimental
results show that the shear stress follows a linear law with respect to k but with a slope
depending on the loading (parallel or transverse to the fiber direction). This behavior
cannot be predicted by equation (2.64) because the two types of shear loading provide
the same linear term. This is confirmed by the coefficient of determination R2 presented
in Tables 2.9 and 2.10. In the shear cases, for material B and with a linear SEF, R2 is
actually equal to 0.70 and 0.43. These two values are far from 1, indicating a poor match
with the experimental results. To overcome this problem, note that a case sensitive shear
parameter (i.e. a shear parameter taking different values depending on the loading case)
has been introduced in [39] and [40]. But the results are not so satisfactory with R2 equal
to 0.69 for material B in the shear parallel case (see last line of Table 2.10). Additionally,
we consider that it is preferable to not change the material parameters values depending
on the considered loading case, otherwise the model will be uneasy to extend to the
general situation where a complex non homogeneous loading is applied. We will therefore
examine in the next section the improvement brought by a quadratic polynomial form of
the strain energy density.

2.5.2/ QUADRATIC STRAIN ENERGY DENSITY

In order to improve the quality of the numerical prediction, particularly in the cases of the
two shear loadings, we introduce a quadratic polynomial form of the strain energy density:

W2 =a1K1 + a2K2 + a3K3 + a4K4 + a6K6 + a11K2
1 + a12K1K2 + a13K1K3

+ a14K1K4 + a16K1K6 + a22K2
2 + a23K2K3 + a24K2K4 + a26K2K6

+ a33K2
3 + a34K3K4 + a36K3K6 + a44K2

4 + a46K4K6

(2.71)

Note that the term a66K6
2 has no influence on the four loading cases studied in this work

and has been therefore removed from the quadratic expression of the SEF. This term is
actually only concerned by the shear case with a loading transverse to the fiber direction
(see the last equation of (2.64)), through the coefficient ω6 = ∂W

∂K6
. This coefficient is equal

to 2a66K6 in the present situation with K6 equal to 0 according to equation (2.60).

The nineteen polynomial coefficients of the SEF described by equation (2.71) are identified
in the same way as in the previous section by fitting the classical coefficient of determi-
nation R2. The identified coefficients corresponding to the two materials A and B are
presented on Tables 2.3 and 2.4.
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Linear terms a1 a2 a3 a4 a6

Values (MPa) −0.5783 −0.5682 −1.985 −0.1897 48.56
Coupled terms a12 a13 a14 a16 a23

Values (MPa) 0.4229 3.58 0.842 194.3 −0.5158
Coupled terms a24 a26 a34 a36 a46

Values (MPa) −0.2068 −68.77 0.0687 202.1 114.8
Squared terms a11 a22 a33 a44

Values (MPa) 0.0654 0.0058 0.4881 −0.1448

Table 2.3: Identified quadratic material parameters of the strain energy density W2 (Eq.
(2.71)) - Material A

Linear terms a1 a2 a3 a4 a6

Values (MPa) −0.5765 3.007 −11.74 −1.823 −159884
Coupled terms a12 a13 a14 a16 a23

Values (MPa) −0.413 9.842 −7.241 163251 −1.638
Coupled terms a24 a26 a34 a36 a46

Values (MPa) −0.8456 −3586 3.019 3402 −223.1
Squared terms a11 a22 a33 a44

Values (MPa) 1.23 −0.6894 0.9358 −1.568

Table 2.4: Identified quadratic material parameters of the strain energy density W2 (Eq.
(2.71)) - Material B

Note that it could have been possible to deduce from equation (2.45) a link between the
material parameters of the quadratic energy density (2.71). Actually, by combining equation
(2.45), which holds for a tension loading parallel to the fiber direction, with equation (2.37)

and with the fact that the material is assumed to be at rest (λ1 = λ2 = λ3 = 1), we obtain:

a1 + 2a11 + a12 − a2 − 4a22 + 3a24 + a4 − 2a44 = 0 (2.72)

However, we have decided to not include this equation in the identification process. We
have actually considered that saving only one material parameter from this process was
not of a great interest because it still leaves 18 material parameters to identify (see equa-
tion (2.71)).
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Figure 2.10: Comparison between numerical and experimental tensile stresses -
quadratic strain energy density (equation (2.71))
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Figure 2.11: Comparison between numerical and experimental shear stresses -
quadratic strain energy density (equation (2.71))
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Figure 2.12: Comparison between numerical and experimental tensile stresses -
quadratic strain energy density (equation (2.71))
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Figure 2.13: Comparison between numerical and experimental shear stresses -
quadratic strain energy density (equation (2.71))

The comparisons between the experimental and the numerical results are presented on
Figures 2.10 and 2.11 for material A and on Figures 2.12 and 2.13 for material B. It is
noted that the quadratic model improves the accuracy of the numerical results, particu-
larly for the shear loading in the fiber direction for material B (Figure 2.13 left). This is
confirmed by the improvement of the R2 coefficient of determination from the W1 density
to the W2 density (Table 2.10) which changes from 0.70 to 0.98 in the case of a shear load-
ing parallel to the fiber direction. However, the problem detected with the linear model in
the case of a shear loading transverse to the fiber direction still remains (Figures 2.11
and 2.13 right). The quadratic model obviously fails to find two different slopes for the two
shear tests with a loading parallel and then transverse to the fibers direction. The goal of
the next section is to fix this problem.

2.5.3/ LINEAR AND QUADRATIC STRAIN ENERGY DENSITIES COMBINED WITH A

POWER-LAW FUNCTION

As shown on Figures 2.6 to 2.13, the predictive results of the linear and quadratic models
agree with the experimental data for both materials A and B in the case of a tensile defor-
mation. However, in the simple shear deformation case, there still exists some differences
between the prediction results and the experimental data. As mentioned before, this is
not surprising because equations (2.58) and (2.63) are not able to provide a different linear
term in k while the experiments show two different slopes for the two shear loadings (par-
allel or transverse to the fiber direction). Even if we increase the degree of the polynomial
SEF with quadratic terms, this will not change the fact that both equations (2.58) and (2.63)

will keep the same linear terms in k. We actually obtain the following derivatives from
equation (2.71)

ω2 =
∂W2

∂K2
= a2 + a12K1 + 2a22K2 + a23K3 + a24K4 + a26K6 (2.73)
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ω3 =
∂W2

∂K3
= a3 + a13K1 + a23K2 + 2a33K3 + a34K4 + a36K6 (2.74)

ω4 =
∂W2

∂K4
= a4 + a14K1 + a24K2 + a34K3 + 2a44K4 + a46K6 (2.75)

In the shear case parallel to the fibers direction, we use equation (2.55) to simplify the three
preceding formulas

ω2 = a2 + a12 + 2a22(2 + k2) + a23k2 − a24(1 + k2) + a26k4 (2.76)

ω3 = a3 + a13 + a23(2 + k2) + 2a33k2 − a34(1 + k2) + a36k4 (2.77)

ω4 = a4 + a14 + a24(2 + k2) + a34k2 − 2a44(1 + k2) + a46k4 (2.78)

The linear term with k corresponding to ω2 +ω3 −ω4 in equation (2.58) is therefore given by

a2 + a3 − a4 + a12 + a13 − a14 + 2(2a22 + a23 − a24) − (a24 + a34 − 2a44) (2.79)

We perform the same calculation in the shear case transverse to the fibers direction by
using equation (2.60)

ω2 = a2 + a12(1 + k2) + 4a22 + a23k2 − a24 (2.80)

ω3 = a3 + a13(1 + k2) + 2a23 + 2a33k2 − a34 (2.81)

ω4 = a4 + a14(1 + k2) + 2a24 + a34k2 − 2a44 (2.82)

By combining ω2, ω3 and ω4 from equation (2.80), (2.81) and (2.82) to calculate the linear
term with respect to k included in ω2 +ω3 −ω4, we unfortunately find the same linear term
as the one given by equation (2.79). Compared to the linear density, the quadratic one
improves the accuracy of the numerical results in the shear case but not enough as it was
expected because the linear term which is the only one really concerned is not affected.

In fact we can prove a more general statement: any polynomial SEF will provide the
same linear expansion in k when we consider the shear tests in the parallel and
transverse situations. Let us prove this fact. We denote by Wm a general polynomial of
degree m in the variables K1, K2, K3, K4 and K6:

Wm =
∑

γ=(γ1,γ2,γ3,γ4,γ6)
γ1+γ2+γ3+γ4+γ6≤m

aγKγ1
1 Kγ2

2 Kγ3
3 Kγ4

4 Kγ6
6 (2.83)

where aγ are constant material parameters.

The linear terms with k embedded in the shear stress expressions come from the following
derivatives (equations (2.58) and (2.63)):

ω2 + ω3 − ω4 =
∂Wm

∂K2
+
∂Wm

∂K3
−
∂Wm

∂K4
(2.84)
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Using the equation (2.83) and deriving Wm with respect to K2, K3 and K4 yields to:

ω2 + ω3 − ω4 =
∑

γ=(γ1,γ2,γ3,γ4,γ6)
γ1+γ2+γ3+γ4+γ6≤m

aγAγ (2.85)

where Aγ is defined by:

Aγ = Kγ1
1 Kγ6

6 (γ2Kγ2−1
2 Kγ3

3 Kγ4
4 + γ3Kγ2

2 Kγ3−1
3 Kγ4

4 − γ4Kγ2
2 Kγ3

3 Kγ4−1
4 ) (2.86)

As we are only interested in the linear terms with respect to k, we have to remove the non
constant terms from equation (2.85). To reach this goal, it is first reminded that K1 is equal
to 1 if a shear loading is applied parallel to the fiber direction (equation (2.55)) while it is
equal to k2 + 1 in the transverse case (equation (2.60)). That means that the constant term
coming from Kγ1

1 is always 1, whatever the value of γ1 is. Besides, because K6 is equal to
k4 if the shear loading is parallel to the fiber direction (equation (2.55)) while it is equal to 0
in the transverse case (equation (2.60)), γ6 must be equal to 0 in the equation (2.85) in order
to produce non zero constant terms. To discuss the role of the exponents γ2, γ3 and γ4 in
the same manner as γ1 and γ6, we need to focus on the generic term Aγ included in the
sum of equation (2.85) by taking γ6 = 0:

Aγ = Kγ1
1 (γ2Kγ2−1

2 Kγ3
3 Kγ4

4 + γ3Kγ2
2 Kγ3−1

3 Kγ4
4 − γ4Kγ2

2 Kγ3
3 Kγ4−1

4 ) (2.87)

In order to go further, we going to distinguish to case of the parallel shear loading to the
case of the transverse shear loading:

• Case 1: parallel shear loading

By reporting the values of the invariants Ki from the equation (2.55) in equation (2.87)

yields to:

Aγ = γ2(k2 + 2)γ2−1(k2)γ3(−1)γ4(k2 + 1)γ4

+ γ3(k2 + 2)γ2(k2)γ3−1(−1)γ4(k2 + 1)γ4

− γ4(k2 + 2)γ2(k2)γ3(−1)γ4−1(k2 + 1)γ4−1

(2.88)

Let us examine now one by one the constant contributions with respect to k coming
from each term of equation (2.88). The term γ2(k2 + 2)γ2−1(k2)γ3(−1)γ4(k2 + 1)γ4 gives: 0 i f γ3 , 0

γ22γ2−1(−1)γ4 i f γ3 = 0
(2.89)

The term γ3(k2 + 2)γ2(k2)γ3−1(−1)γ4(k2 + 1)γ4 gives: 0 i f γ3 = 0 or γ3 > 1

2γ2(−1)γ4 i f γ3 = 1
(2.90)
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The term −γ4(k2 + 2)γ2(k2)γ3(−1)γ4−1(k2 + 1)γ4−1 gives: 0 i f γ3 , 0

− γ42γ2(−1)γ4−1 i f γ3 = 0
(2.91)

By considering the restrictions (2.89), (2.90) and (2.91) in equation (2.88), it follows that
the constant term with respect to k in equation (2.85) is:∑

γ=(γ1,γ2,0,γ4,0)
γ1+γ2+γ4≤m

aγ(−1)γ42γ2−1(γ2 + 2γ4) +
∑

γ=(γ1,γ2,1,γ4,0)
γ1+γ2+γ4+1≤m

aγ2γ2(−1)γ4 (2.92)

• Case 2: transverse shear loading

By reporting the values of the invariants Ki from equation (2.60) in the equation (2.87)

yields to:

Aγ = (k2 + 1)γ1γ22γ2−1(k2)γ3(−1)γ4

+ (k2 + 1)γ1γ32γ2(k2)γ3−1(−1)γ4

− (k2 + 1)γ1γ42γ2(k2)γ3(−1)γ4−1

(2.93)

Let us examine now one by one the constant contributions with respect to k coming
from each term of equation (2.93). The term (k2 + 1)γ1γ22γ2−1(k2)γ3(−1)γ4 gives: 0 i f γ3 , 0

γ22γ2−1(−1)γ4 i f γ3 = 0
(2.94)

The term (k2 + 1)γ1γ32γ2(k2)γ3−1(−1)γ4 gives: 0 i f γ3 = 0 or γ3 > 1

2γ2(−1)γ4 i f γ3 = 1
(2.95)

The term −(k2 + 1)γ1γ42γ2(k2)γ3(−1)γ4−1 gives: 0 i f γ3 , 0

− γ42γ2(−1)γ4−1 i f γ3 = 0
(2.96)

By considering the restrictions (2.94), (2.95) and (2.96) in equation (2.93), we retrieve
exactly the same result as the one described by equation (2.92).

Equation (2.92) holds therefore for both cases of parallel and transverse shear loading.
Thus for any polynomial SEF Wm, the linear terms of equations (2.58) and (2.63) will be
the same. Increasing the degree of the polynomials W cannot improve significantly the
accuracy of prediction in the shear case. In order to overcome this problem, which leads
to a rather poor fitting with the shear tests, we will add an additional term to the linear
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and quadratic densities defined by equations (2.65) and (2.71). It will make sense to adopt a
power-law form for this additive term since it looks like an extension of a monomial with a
real number exponent. But there are numerous possibilities for combining the invariants
defined by equations (2.16) and (2.17) in a power form. In order to perform the appropriate
combination, we remark from equation (2.64), which gives a view of all the four load cases
at a glance, that:

i) the additive term should modify the linear terms corresponding to each shear test
(equations (2.58) and (2.63)). That means that the additive density could possibly
depends on K2, K3 and K4.

ii) as the tensile tests are perfectly fitted by the linear and quadratic densities, any
additional term should not affect the tensile results. That means that the additive
density should not depends on K2 and K4.

iii) the term ω1 is not concerned by the four loading cases. That means that the additive
density could possibly depends on K1.

iv) the term ω6 is not concerned by the two tensile loading cases. That means that the
additive density could possibly depends on K6.

Based on these considerations, it is relevant to propose a new term Wadd adopting the
following form:

Wadd = αK3Kc1
1 + βK6Kc2

1 (2.97)

where α, β, c1 and c2 are new material parameters.

To evaluate the influence of Wadd on the two shear cases, we first derived equation (2.97)

with respect to K3 (resp. K6) and we secondly use equation (2.55) (resp. equation (2.60)):

∂Wadd

∂K3
=

 α shear stress parallel to the fiber direction
α(1 + k2)c1 shear stress transverse to the fiber direction

(2.98)

∂Wadd

∂K6
= β(1 + k2)c2 shear stress transverse to the fiber direction (2.99)

Note that the calculation of
∂Wadd

∂K6
was only performed in the case of a shear loading

transverse to the fiber direction because, in the parallel case, the coefficients ω6 is not
concerned (see equation (2.58)). It is also remarked that equation (2.97) meets the require-
ment of remark i) because the contribution of the constant part with respect to k of Wadd

in the expression ω2 + ω3 − ω4 is: α shear stress parallel to the fiber direction
0 shear stress transverse to the fiber direction

(2.100)

One could argue that the quantities α(1 + k2)c1 of equation (2.98) could provide α as a con-
stant term with respect to k if the exponent c1 is a positive whole number. But, fortunately,
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as shown by Tables 2.5, 2.6, 2.7 and 2.8, the identification of the material parameters
always gives a negative value for c1. That explains why the quantity α(1 + k2)c1 does no
contain any constant term with respect to k, providing the zero term for the shear stress
transverse to the fiber direction in equation (2.100). So we can retain equation (2.97) and
combine it with the linear strain energy (2.65):

W3 = (a2 − a4)K1 + a2K2 + a3K3 + a4K4 + a6K6 + αK3Kc1
1 + βK6Kc2

1 (2.101)

It is noted that we have again replaced the coefficient a1 by a2 − a4, exactly as in the case
of the purely linear density (see equation (2.65) and (2.70)). To justify this replacement, we
use equations (2.45) and (2.101):

a1 + αc1Kc1−1
1 K3 + βc2Kc2−1

1 K6 = a2 − a4 (2.102)

As the equation (2.45) only holds for a tension loading parallel to the fiber direction with
K3 = K6 = 0 (equation (2.37)), equation (2.102) can be simplified as expected to:

a1 = a2 − a4 (2.103)

The curve representing the prediction of the model against the experimental data and
other numerical calculations extracted from [40] are presented on Figures 2.14, 2.15,
2.16 and 2.17. The values of the identified material parameters related to W3 and used
for the calculations are shown on Tables 2.5 and 2.6. They were identified by following
the same procedure as one described in section 2.5.1

Linear terms a2 a3 a4 a6

Values (MPa) 0.0592 0.0478 −0.024 −0.0156
Power form terms α (MPa) c1 (−) β (MPa) c2 (−)

Values −0.0846 −984392 −1.859 −31.555

Table 2.5: Identified material parameters of the strain energy density W1 + Wadd (Eq.
(2.101)) - Material A

Linear terms a2 a3 a4 a6

Values (MPa) 0.5663 4.132 −1.0353 9962
Power form terms α (MPa) c1 (−) β (MPa) c2 (−)

Values −5.683 −359782 −10233 −8.291

Table 2.6: Identified material parameters of the strain energy density W1 + Wadd (Eq.
(2.101)) - Material B
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Figure 2.14: Comparison between numerical and experimental tensile stresses - linear +
power form strain enerygy density (2.101)
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Figure 2.15: Comparison between numerical and experimental shear stresses - linear +
power form strain enerygy density (2.101)
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Figure 2.16: Comparison between numerical and experimental tensile stresses - linear +
power form strain enerygy density (2.101)
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Figure 2.17: Comparison between numerical and experimental shear stresses - linear +
power form strain enerygy density (2.101)

From Figures 2.14 to 2.17, it can be seen that the predicted results are greatly improved,
particular for the shear tests (Figures 2.15 and 2.17) in comparison with the previous
linear (Figures 2.7 and 2.9) or quadratic models (Figures 2.11 and 2.13). But we also
remark from Figure 2.17 left that, if the predicted curve provides a correct averaged trend
of the experimental points, a quadratic form of the energy density would be probably more
suitable. From now, the superposition of the quadratic energy density equation (2.71) with
the additive density equation (2.97) is considered:

W4 =a1K1 + a2K2 + a3K3 + a4K4 + a6K6 + a11K2
1 + a12K1K2 + a13K1K3

+ a14K1K4 + a61K1K6 + a22K2
2 + a23K2K3 + a24K2K4 + a26K2K6

+ a33K2
3 + a34K3K4 + a36K3K6 + a44K2

4 + a46K4K6 + αK3Kc1
1 + βK6Kc2

1

(2.104)

We observe on Figures 2.18 to 2.21 a good agreement between the numerical results and
the experimental data. This agreement is confirmed by the coefficient of determination
R2 which is equal to 1 and 0.99 for material A and B respectively (last column of Tables
2.9 and 2.10). It is actually considered that a value greater than 0.9 typically represents a
satisfactory fit to the experimental data. As awaited, in the case of a shear loading parallel
to the fiber direction, the inclusion of quadratic terms in the SEF allows to fix the problem
encountered with the previous linear model (Figure 2.21 left versus Figure 2.17 left).
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Figure 2.18: Comparison between numerical and experimental tensile stresses -
quadratic + power form strain energy density (equation (2.104))
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Figure 2.19: Comparison between numerical and experimental shear stresses -
quadratic + power form strain energy density (equation (2.104))
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Figure 2.20: Comparison between numerical and experimental tensile stresses -
quadratic + power form strain energy density (equation (2.104))
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Figure 2.21: Comparison between numerical and experimental shear stresses -
quadratic + power form strain energy density (equation (2.104))

The identified values of the 23 material parameters associated with the strain energy
density equation (2.104) are presented on Tables 2.7 and 2.8. These material parameters
where used to plot the curve of Figures 2.18 to 2.21. The only drawback of the strain
energy density described by equation (2.104) is the large number of material parameters
which are needed to be identified. If a very significant accuracy is not mandatory, the
model introduced by equation (2.101) is sufficient to obtain a satisfactory correlation with
measurements (see Figures 2.14 to 2.17 and Tables 2.9 and 2.10, with a R2 coefficient
equal to 0.99 and 0.97, for material A and B respectively). It requires less material param-
eters: 9 instead of 23.

Linear terms a1 a2 a3 a4 a6

Values (MPa) −0.1574 −0.0886 −0.3005 −0.0409 −697.7
Coupled terms a12 a13 a14 a16 a23

Values (MPa) −0.1195 0.3649 −0.1899 90.12 −0.063
Coupled terms a24 a26 a34 a36 a46

Values (MPa) −0.1298 −29.68 0.1416 −14.85 −33.57
Squared terms a11 a22 a33 a44

Values (MPa) 0.03 0.04512 0.3139 −0.139
Power form terms α (MPa) c1 (−) β (MPa) c2 (−)

Values −0.0876 −1E11 632.1 −0.0248

Table 2.7: Identified material parameters of the strain energy density W2 + Wadd (Eq.
(2.104)) - Material A
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Linear terms a1 a2 a3 a4 a6

Values (MPa) −0.6247 −0.3492 1.237 −4.752 64841
Coupled terms a12 a13 a14 a16 a23

Values (MPa) 0.5956 0.6123 −1.57 −72171 −0.9507
Coupled terms a24 a26 a34 a36 a46

Values (MPa) 1.553 4811 −2.184 −2481 2156
Squared terms a11 a22 a33 a44

Values (MPa) 0.8456 0.4969 −4.107 −0.0368
Power form terms α (MPa) c1 (−) β (MPa) c2 (−)

Values −5.838 −6.7E8 1E − 18 19081

Table 2.8: Identified material parameters of the strain energy density W2 + Wadd (Eq.
(2.104)) - Material B

tension shear
R2 parallel transverse parallel transverse total

Linear SEF Eq. ((2.65)) 0.99 0.99 0.99 0.83 0.99
Quadratic SEF Eq. ((2.71)) 1 1 0.99 0.95 1

Linear+power SEF Eq. ((2.101)) 0.99 0.99 1 1 0.99
Quadratic+power SEF Eq. ((2.104)) 1 1 1 1 1
Fereidoonnezhad et al. model [40] 0.99 0.99 0.96 0.86 0.99

Table 2.9: Coefficient of determination R2 for material A

tension shear
R2 parallel transverse parallel transverse total

Linear SEF Eq. ((2.65)) 0.96 0.98 0.70 0.43 0.84
Quadratic SEF Eq. ((2.71)) 0.99 0.99 0.98 0.49 0.87

Linear+power SEF Eq. ((2.101)) 0.96 0.98 0.70 1 0.97
Quadratic+power SEF Eq. ((2.104)) 0.99 0.99 0.99 1 0.99
Fereidoonnezhad et al. model [40] 0.86 0.98 0.69 0.98 0.92

Table 2.10: Coefficient of determination R2 for material B

2.6/ FINITE ELEMENT IMPLEMENTATION

The aim of the present section is to propose a finite element implementation dealing
with the strain energy density introduced by equation (2.101). This density combines a



2.6. FINITE ELEMENT IMPLEMENTATION 81

linear and power form expression with respect to the invariants. We have selected it
for the FE implementation because it provides a good balance between the accuracy of
the predictions and the number of material parameters to identify. To perform the FE
implementation, the total Lagrangian formulation is adopted according to the description
of this formulation given in section 1.7 of chapter 1. In order to extend the constitutive
model from the compressible to the incompressible range, we introduce a penalty func-
tion W̃, instead of the Lagrange multiplier used to for the analytical calculations in the
case of homogeneous deformation (equation (2.10)). This function, which enforces the
incompressibility condition J = det(F) = 1, permits to reduce the number of unknowns by
removing the Lagrange multiplier:

Ŵ = W + W̃(J) (2.105)

W̃(J) =
1
d

{
1
2

(J2 − 1) − ln(J)
}

+ c ln(J) (2.106)

The first term of equation (2.106) is similar to the one proposed in [107, 108] while the sec-
ond term is introduced for guaranteeing the reference configuration to be stress free as
suggested in [109]. The numerical parameter d is set to a value of 10−8 which is a good
balance between the satisfaction of the incompressibility condition and the convergence
of the Newton-Raphson scheme (equation (1.131)). The second parameter c will be calcu-
lated in order to ensure that the material is stress free if the displacement field is zero.
To do that, we first need to calculate the nominal stress by replacing W by Ŵ in equation
(2.12) and by removing from this equation the Lagrange multiplier p because we consider
a penalty method for the FE implementation:

PT = 2
∂Ŵ
∂C

FT = 2
6∑

i=1,i,5

ωi
∂Ki

∂C
+
∂W̃
∂C

 FT (2.107)

The derivatives ωi =
∂W
∂Ki

, which is part of the first term included in the bracket of equation
(2.107), are calculated straightforwardly from equation (2.101):

ω1 = a2 − a4 + αc1K3Kc1−1
1 + βc2K6Kc2−1

1 ; ω2 = a2

ω3 = a3 + αKc1
1 ; ω4 = a4; ω6 = a6 + βKc2

1

(2.108)

By using the equation (4), the derivatives
∂Ki

∂C
, which is also part of the first term included

in the bracket of equation(2.107), can be rewritten from equation (2.15) by:

∂K1

∂C
= Ma ;

∂K2

∂C
= Mb + Mc = I − Ma

∂K3

∂C
= 2(ρ4 Mab + ρ5 Mac) ;

∂K4

∂C
= 2ρ6 Mbc − ρ2 Mc − ρ3 Mb

∂K6

∂C
= 2(ρ4 Mab − ρ5 Mac)(ρ2 − ρ3) + (ρ2

4 − ρ
2
5)[Mb − Mc] + 4(ρ4ρ5 Mbc + ρ4ρ6 Mac + ρ5ρ6 Mab)

(2.109)
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by introducing the symmetric matrices Ma, Mb, Mc, Mab, Mac and Mbc:

Ma = a ⊗ a ; Mb = b ⊗ b ; Mc = c ⊗ c
Mab = 1

2 (a ⊗ b + b ⊗ a) ; Mac = 1
2 (a ⊗ c + c ⊗ a) ; Mbc = 1

2 (b ⊗ c + c ⊗ b)
(2.110)

The second term included in the bracket of equation (2.107) is obtained straightforwardly
from equation (2.106):

∂W̃
∂C

=
∂W̃
∂J

∂J
∂C

=
1
2

[
1
d

(
J2 − 1

)
+ c

]
C−1 (2.111)

where we have used a standard derivative result [70]:

∂J
∂C

=
J
2

C−1 (2.112)

Because the material must be free of stress if the displacement field is null, we consider
this particular case in equations (1.10), (1.11), (2.4), (2.5), (2.108), (2.109) and (2.111):

F = C = I
ρ1 = ρ2 = ρ3 = 1 ; ρ4 = ρ5 = ρ6 = 0

K1 = 1 ; K2 = 2 ; K3 = 0 ; K4 = −1 ; K6 = 0
ω1 = a2 − a4 ; ω2 = a2 ; ω3 = a3 + α ; ω4 = a4 ; ω6 = a6 + β

∂K1

∂C
= a ⊗ a ;

∂K2

∂C
= −

∂K4

∂C
= b ⊗ b + c ⊗ c ;

∂K3

∂C
=
∂K6

∂C
= 0 ;

∂W̃
∂C

= c
2 I

(2.113)

Replacing equation (2.113) in (2.107) gives:

U = 0 =⇒ PT = 2
{
(a2 − a4)(a ⊗ a + b ⊗ b + c ⊗ c) +

c
2

I
}

= 0 (2.114)

Or, equivalently, by using equation (4):

U = 0 =⇒ PT = 2
{
a2 − a4 +

c
2

}
I = 0 (2.115)

We then deduce from equation (2.115) that:

c = 2(a4 − a2) (2.116)

Equation (2.116) links some of the material parameters of the model in order to guarantee
that the reference configuration specified by U = 0 is stress free.

To construct the tangent stiffness matrix for the analysis of nonlinear structures by the
finite element method, one has now to determine the stress-strain tangent operator D,
which is a fourth order tensor resulting from the derivation of S with respect to E (see
equations (1.126) and (1.127)). In order to calculate D, we first compute the anisotropic part
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of the second Piola-Kirchhoff stress tensor S related to W from equations (1.21) and (2.101):

S = 2
∂W
∂C

= 2

 6∑
i=1,i,5

∂W
∂Ki

∂Ki

∂C

 = 2

 6∑
i=1,i,5

ωi
∂Ki

∂C

 (2.117)

In order to obtain the fourth-order tensor D (equation (1.126)), we derive again W with
respect to C from equation (2.117):

D = 4


6∑

i=1,i,5

6∑
j>i, j,5

ωi j

[
∂Ki

∂C
⊗
∂K j

∂C
+
∂K j

∂C
⊗
∂Ki

∂C

]
+

∑
i=1,i,5

[
ωi
∂2Ki

∂C2 + ωii
∂Ki

∂C
⊗
∂Ki

∂C

] (2.118)

where the coefficients ωi j stand for the second derivative of W with respect to the invari-
ants Ki and K j. They are obtained straightforwardly from equation (2.108):

ω11 = αc1(c1 − 1)K3Kc1−2
1 + βc2(c2 − 1)K6Kc2−2

1 ; ω13 = αc1Kc1−1
1 ; ω16 = βc2Kc2−1

1

ω12 = ω14 = ω22 = ω23 = ω24 = ω26 = ω33 = ω34 = ω36 = ω44 = ω46 = ω66 = 0
(2.119)

To obtain the second derivative
∂2Ki

∂C2 , we derive the first derivatives contained in equation
(2.109) with respect to C:

∂2K1

∂C2 =
∂2K2

∂C2 = 0 ;
∂2K3

∂C2 = 2 {Nabab + Nacac} ;
∂2K4

∂C2 = 2Nbcbc − Dbbcc

∂2K6

∂C2 = 2 {ρ4(Dabbc + 2Nacbc) + (ρ2 − ρ3)(Nabab − Nacac) + ρ5(Nabbc − Dacbc) + 2ρ6Nabac}

(2.120)
where we have introduced the following fourth-order tensors:

Nabab = Mab ⊗ Mab ; Nacac = Mac ⊗ Mac ; Nbcbc = Mbc ⊗ Mbc

Nabbc = Mab ⊗ Mbc + Mbc ⊗ Mab ; Nacbc = Mac ⊗ Mbc + Mbc ⊗ Mac

Nabac = Mab ⊗ Mac + Mac ⊗ Mab ; Dabbc = Mab ⊗ (Mb − Mc) + (Mb − Mc) ⊗ Mab

Dacbc = Mac ⊗ (Mb − Mc) + (Mb − Mc) ⊗ Mac ; Dbbcc = Mbb ⊗ Mcc + Mcc ⊗ Mbb
(2.121)

We have now finished to calculate all the quantities involved in the anisotropic fourth-order
tensor D given by equation (2.118). But, to achieve the finite element implementation, we
need to compute the fourth-order tensor Dvol related to the volumetric part of the strain
energy density. This tensor is obtained by derivating W̃ twice with respect to C from
equation (2.106) and by using the first derivative given by equation (2.111):

Dvol = 4
∂2W̃
∂C2 = 2

{
∂

∂C

[
J2 − 1

d
+ c

]
⊗ C−1 +

[
J2 − 1

d
+ c

]
∂C−1

∂C

}
(2.122)

The first term in (2.122) is easily calculated by using equation (2.112):

∂

∂C

[
J2 − 1

d
+ c

]
=

2J
d
∂J
∂C

=
2J
d

J
2

C−1 =
J2

d
C−1 (2.123)
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The second term can be expressed by using a standard result related to the derivative of
the inverse of C [42, 110, 111]:

∂C−1

∂C
= −C−1 � C−1 (2.124)

where the tensor notation � is defined by equation (6).

By reporting equations (2.123) and (2.124) in equation (2.122), we finally obtain:

(Dvol)i jkl =
2J2

d
C−1

i j C−1
kl −

[
J2 − 1

d
+ c

] [
C−1

ik C−1
jl + C−1

il C−1
jk

]
(2.125)

According to equations (2.118) and (2.125), the finite element implementation of the second
derivative of the strain energy densities described by equations (2.101), (2.105) and (2.106)

was realized inside the FER code. This university code is developed by the Laboratory of
Mechanics of the University of Evry (France) and many standard hyperelastic densities
have already been implemented during the past 15 years [48, 111, 112]. The implemen-
tation was achieved by using C++ language and following the procedure described in
Figure 2.22.

Figure 2.22: Flow chart of the finite element implementation of the anisotropic part of the
model
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2.7/ FE SIMULATION RESULTS

In this section, in order to validate the finite element implementation, we consider the two
different fiber-reinforced rubbers (material A and material B) that have been introduced in
section 2.5. We recall that these two materials were originally studied in [39]. For both
of them, four different loading cases are considered leading to two different values of the
angle θ introduced in Figure 2.1:

1. a simple tension test parallel to the fiber direction (θ = 0),

2. a simple tension test transverse to the fiber direction (θ = π
2 ),

3. a simple shear test parallel to the fiber direction (θ = 0),

4. a simple shear test transverse to the fiber direction(θ = π
2 ).

These four loading cases provide homogeneous deformation giving closed-form solutions
which can be compared with FE simulations. The next section 2.7.1 is dedicated to
this comparison. In the following section 2.7.2, a 3D example including inhomogeneous
deformation is presented, demonstrating the capability of FER and of our model to deal
with more complex 3D problems.

2.7.1/ 2D HOMOGENEOUS DEFORMATION

In this section, we compare the finite element computations with closed form solution
and also with experimental data. The closed form solutions are summarized by equation
(2.64) while the experimental data are extracted from [39]. The finite element computations
were performed with FER by using the values of material parameters listed in Tables 2.5
and 2.6. The comparisons are presented on Figures 2.23 and 2.24 for material A and on
Figures 2.25 and 2.26 for material B. From these figures, we can observe that the finite
element results match very well the closed form predictions as well as the experimental
data. That proves that the finite element model has been properly implemented inside
the FER code.
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Figure 2.23: Comparison between finite element, analytical and experimental results
(tension tests with material A)
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Figure 2.24: Comparison between finite element, analytical and experimental results
(shear tests with material A)
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Figure 2.25: Comparison between finite element, analytical and experimental results
(tension tests with material B)
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Figure 2.26: Comparison between finite element, analytical and experimental results
(shear tests with material B)

2.7.2/ 3D INHOMOGENEOUS DEFORMATION

In order to illustrate the capability of the FE implementation of our model, a 3D example
is considered in this section. The material parameters are those of material B and are
given in Table 2.6. For this study, the collagen is embedded as one family of fibers that
are disposed parallel to the tensile (axial) direction. The strip model has a length of L = 60
mm, a width of W = 20 mm and a thickness of T = 10 mm. Figure 2.27 represents the
initial mesh which includes 96 hexahedral elements. One side of the specimen is fixed
and a displacement of 5 mm is applied on the other side leading to a uniaxial tensile test.

Figure 2.27: 3D tension test: mesh

Figure 2.28 shows the total applied force versus the prescribed displacement and the
deformed configuration and computed Von-Mises stress of the specimen are displayed in
Figure 2.29.
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Figure 2.28: Tensile force versus displacement

Figure 2.29: 3D tension test: deformed shape with Von Mises stress

Figure 2.30 plots the displacement Uy and Uz of three specific points A, B and C located
on Figure 2.27. It is noted that the embedded fibers could increase the thickness at
some locations of the specimen. Due to the incompressibility character, the width of the
specimen decreases in order to balance the increase of thickness. This phenomenon
could be clearly observed from the isovalues of Uz displacement, as shown in Figure
2.31. It is also noted from Figure 2.30 that the displacements Uy and Uz remain almost
linear with respect to the prescribed displacement Ux until a value of Ux = 1.5 mm is
reached. After this value, the behavior becomes clearly non-linear because of the effect
of the embedded fibers. This typical behavior induced by the fibers has been already
mentioned in [48]. In fact, most of the classical laws are separated into an isotropic and
an anisotropic parts and are case sensitive with respect to the fiber stretch [42]. This
separation is based on the fact that the shortening of the fibers is assumed to generate
no stress and the stiffness is only due to the ground substance in this case. The fibers are
only acting if they are extended. It is remarkable that our model is able to predict this kind
of behavior while our SEF combines in a single energy the isotropic and the anisotropic
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effects. Moreover, we have not considered any sensitive case to separate the ground
substance and the fiber influences.

It is also noticed that the amount of non-linear effects depends on the location of the con-
sidered points. For example, this amount is less pronounced for C, located in the middle
of the specimen, than A located near the place where the prescribed displacements is
loaded.

Figure 2.30: Displacements of points A, B and C

Figure 2.31: 3D tension test: deformed shape with Uz displacement contours

2.8/ CONCLUSIONS

In this second chapter, a novel strain energy function (SEF) was developed for modeling
hyperelastic incompressible fiber-reinforced materials with a single fiber direction. The
construction of this energy is based on a family made of five new invariants combined in
a polynomial form. It has been shown that three of these invariants are polyconvex while
the two others are physically motivated by shear effects. We have studied several polyno-
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mial forms and proved in the most general case that none is able to predict properly the
behavior of fibered materials. It is actually impossible to match correctly the experimental
data coming from a shear loading applied first parallel and next transverse to the fiber
direction if a polynomial strain energy density is considered. In order to overcome this
problem, a power form function has been added to a linear and then a quadratic poly-
nomial. These two kinds of combination provide a fair agreement with experiments and
we have selected the linear option (equations (2.101), (2.105) and (2.106)) because it requires
less material parameters than the quadratic option (8 against 23).

The finite element implementation was performed inside the FER university code [57] by
using a total Lagrangian approach. All the details of the implementation, that is to say the
calculations of the strain and stress incremental forms, as well as the tangent stiffness
matrix, are provided in the section 2.6 of this chapter.

In order to validate the proposed finite element model, the FER results were successfully
compared with four different closed-form solutions corresponding to four different loading
conditions: uniaxial tensile and shear tests, each one with a loading first parallel and next
transverse to the fiber direction. These closed-form solutions have been determined in
section 2.4 and are summarized by equation (2.64). A fair agreement was also found with
experimental data corresponding to these four loading cases and extracted from [39].

Finally, A 3D simulation of a strip specimen under tension loading was performed suc-
cessfully to show the applicability of the constitutive model in the context of a more com-
plex finite element analysis than the one corresponding to the closed-form solutions pre-
viously mentioned.
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3
A NEW SEF FOR FOUR-FIBER FAMILY

MATERIALS

3.1/ INTRODUCTION

We introduce in this chapter a new hyperelastic model for predicting the nonlinear me-
chanical properties of anisotropic hyperelastic materials under biaxial stretching. The
proposed strain energy function (SEF) can be applied for understanding the nature of
behavior laws for material with four-fiber family structure, which has a large potential of
applications, particularly in biomechanics, surgical and interventional therapies for pe-
ripheral artery disease (PAD).

Atherosclerosis is for example nowadays one of the most important subjects of medi-
cal and biochemical research. Actually, ischemia, angina pectoris, myocardial infarction,
stroke, or heart failure and other fatal diseases are consequences of atherosclerosis [66].
Thus some treatment must be taken in order to reduce the occurrence of diseases caused
by atherosclerosis [113]. Unfortunately high treatment charges of peripheral vascular op-
erations are often unable to guarantee a good therapeutic effect and repetitive interven-
tion are needed ([114][115][116][117]). However, it has been proven in [118] and [119]
that the mechanical stress and strain of arterial tissue are deeply connected to atheroscle-
rosis. These aspects are the reason why the study about mechanical properties of the
arterial tissue got more and more attention in the last decades ([120][121][122][123]).
Holzapfel et al. [42] have for example introduced structural SEFs for describing the soft
biological tissues such as the arterial wall. Kamenskiy et al. [1] used a planar biax-
ial extension set-up to test diseased superficial femoral, popliteal and tibial arteries from
170 patients to determine their passive biaxial mechanical properties. This very complete
study includes a large variety of measurements with different loading conditions (9 combi-
nations of a biaxial test), 3 different human parts tested (superficial femoral, popliteal and
tibial arteries). Using the same experiment facility, Kamenskiy et al. tested more recently
[124] the fresh femoropopliteal arteries from 70 human subjects (13-79 year old) to study
the effect of the age on the physiological and mechanical characteristics. The references
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[1] and [124] will therefore be used as a basis of our work to assess the capability and
the appropriateness of our model.

It should also be noticed that, based on the work of Baek et al. ([125][126][127]), Ka-
menskiy et al. also proposed in their papers a constitutive model to describe the be-
havior of the diseased arteries with four-fiber families of collagen. This model adopts
an exponential form which extends the well-known two-fiber family model introduced by
Holzapfel, Gasser and Ogden in [42]. As most of the constitutive models met in the liter-
ature ([125][127][42]), the strain energy function (SEF) introduced by A. V. Kamenskiy et
al. is divided into an isotropic and an anisotropic parts.

More recently, an original approach mixing the isotropic and the anisotropic parts in a
single SEF was introduced by Ta et al. [53]. This method takes advantage of the theory
of polynomial invariants (namely the Noether’s theorem and the Reynolds operator) to
compute an integrity basis made of 7 new invariants consistent with the considered type
of anisotropy. These new invariants are considered in our work instead of the classical
isotropic ones and instead of the anisotropic mixed invariants found in the literature. This
original approach is motivated by the fact that the new invariants do not require a sep-
aration of the SEF into an isotropic and an anisotropic part. Another motivation is the
rigorous mathematical foundations used to define those invariants. Finally, we demon-
strate in this chapter that the integrity basis found in [53] can be recombined in a smart
way in order to form a new integrity basis made of polyconvex invariants. This is a major
issue because, in the context of hyperelastic problems, the polyconvexity of the strain en-
ergy density is often considered as a prerequisite for ensuring the existence of solutions
[41].

Practically, we have introduced an original SEF as a quadratic polynomial depending on
these 7 new invariants. Among the 7 new invariants, 3 are linear with respect to the right
Cauchy-Green deformation tensor C, 3 are quadratic with C and 1 is cubic. The cubic
invariant is linked to incompressibility and will be taken into account through a Lagrange
multiplier. It will therefore not be directly included in the SEF. Moreover, to enrich the
quadratic part of the energy density, the squares of the 3 linear invariants are considered,
leading to a total of 9 monomials: 3 are linear and 6 quadratic with respect to C. We
have therefore 9 material parameters related to each of these monomials. But, as we
demonstrate that 2 among the 9 material parameters are dependent, due to the fact that
a zero stress corresponds to a zero strain, we have finally just 7 material parameters to
identify.

To assess the appropriateness of this new density, numerical simulations were success-
fully compared to experimental and theoretical results extracted from [1] in the case of a
biaxial testing. The main results and conclusions are:

• An excellent fit of the experimental data,

• The mean trends of the experimental curves, evaluated through the standard coef-
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ficient of determination (R2), are better described with our model than with the ones
used in [1],

• For large stretches, the model introduced in [1] provides better results than our,
likely because we used polynomial functions instead of exponential functions,

• A perfect identification of the material parameters with no possible doubt on the
optimal solution is offered by our model. This nice result comes from the polynomial
form of the SEF which presents a linear dependence of the density with respect
to the material parameters. It allows performing a linear least square identification
leading to a single optimal solution.

• Compared to the model proposed in [1], which includes 8 material parameters, our
model only needs 7 material parameters.

The material parameters and the strain-energy function developed in this chapter are
intended to serve as a basis for a finite element implementation and to investigate the
problem of atherosclerosis for possible improvements of the treatment. Therefore, the
second aim of this chapter is to implement our constitutive model in a finite element
code. This implementation was realized in C++ language with the FER university code
[57] by adopting the total Lagrangian formulation. Several numerical examples, including
homogeneous deformation (biaxial tension loading) and non-homogeneous deformation
(3D uniaxial tensile loading), are presented to show the validity of the model.

Note that the research work presented in this chapter has been accepted for publication
in the International Journal of Solids and Structures [67].

The chapter is organized as follows:

• Section 3.2 introduces the material understudy.

• In section 3.3, the polyconvexity and physical interpretation of the invariants are
investigated.

• The material model is presented in section 3.4 with the definition of the SEF with
respect to the invariants. The identification of the material parameters is performed.
The closed-form solution corresponding to the biaxial stretching employed in [1,
124] is also determined and the proposed model is validated by comparison with
other model and experimental data extracted from the literature [1].

• The implementation of the proposed model in the finite element code FER is pre-
sented in section 3.5.

• Numerical results obtained from the finite element software FER are presented
in section 3.6. These results concern homogeneous deformation (three different
arteries tested with 5 combinations of different biaxial stretch) as well as non-
homogeneous deformation (with a 3D tension test).
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3.2/ MATERIAL UNDERSTUDY

In this chapter, we focus on a fiber-reinforced material with four fiber families, such as
the arterial wall studied in [1] and [124]. The general opinion is that the arterial wall is
incompressible, hyperelastic and anisotropic. It actually consists in a mixture of an elastin-
dominated amorphous matrix and families of locally parallel collagen fibers. Based on
the work of Kamenskiy et al. ([1][124]), the research object (diseased superficial femoral
(SFA), popliteal (PA) and tibial arteries (TA)) includes four fiber families of collagen fiber:
two oriented axially and circumferential, and two symmetrically along the diagonal as
depicted on Figure 3.1. We assume that the two fiber directions a and b lie in the plane
(e1, e2) and form respectively an angle θ and −θ with e1. The longitudinal fiber direction c
and circumferential fiber direction d are parallel to e1 and e2 respectively.

To model this kind of materials, we adopt in this chapter the invariants introduced by Ta et
al. in [53]. In the case of a fiber reinforced material with a two-fibers family of directions a
and b as depicted on figure 1.4, Ta et al. have presented a systematic method to find a list
of invariants associated with the material symmetry group S 8 defined by equation (1.37).
By using a mathematical argument based on the Reynolds operator and on the Noether’s
theorem, they have demonstrated that all the polynomial invariants can be generated by
209 invariants. Additionally, they have demonstrated that some of these 209 invariants
are linked together and that the following 7 polynomial invariants form an integrity basis
of the ring of invariant polynomials under the material symmetry group:

H1 = ρ1 H2 = ρ2 H3 = ρ3 H4 = ρ2
4 H5 = ρ2

5 H6 = ρ2
6 H7 = ρ4ρ5ρ6 (3.1)

Where the coefficients ρi stand for:

ρ1 = 〈Ce1, e1〉 ρ2 = 〈Ce2, e2〉 ρ3 = 〈Ce3, e3〉 ρ4 = 〈Ce1, e2〉 ρ5 = 〈Ce1, e3〉 ρ6 = 〈Ce2, e3〉 (3.2)

However, at this stage, it is remarkable to notice that these invariants originally introduced
by Ta et al. for a two-fibers family can also be employed for a four-fibers family provided
that the geometric plane symmetries shown on Figure 1.4 are satisfied with the four fiber
directions. Because the four fiber directions considered in this work (Figure 3.1) satisfy
this requirement, we will adopt the same invariants as the ones introduced in [53]. One
can argue that it is surprising that two different materials, respectively made of a two
and a four fibers family, can be modeled with the same invariants. However, these two
materials will not be necessarily modeled by the same SEF, even if the invariants are
identical. Additionally, as the two materials behave differently, the identification process
will provided different values of the material parameters.
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Figure 3.1: A fiber-reinforced material with four-fiber family

3.3/ POLYCONVEXITY AND PHYSICAL INTERPRETATION OF THE IN-
VARIANTS

We investigate in this section the polyconvexity of the new invariants introduced by equa-
tion (3.1). First of all, it is reminded [46] that convexity implies polyconvexity and that any
function φ of the form φ(F) = 〈Fv, Fv〉 (where v represents any non-zero vectors) is a
convex function. It is therefore immediate to conclude that H1, H2 and H3 are polyconvex
functions because it is straightforward from equations (3.1) and (3.2) that:

H1 = 〈Fe1, Fe1〉; H2 = 〈Fe2, Fe2〉; H3 = 〈Fe3, Fe3〉 (3.3)

Unfortunately, there are no clear evidences proving that the four other invariants, namely
H4, H5, H6 and H7, are polyconvex. It is thus mandatory to recombine them in order
to make them polyconvex. To do that, we follow the same strategy as the one used to
establish the polyconvexity of H1, H2 and H3 by introducing the polyconvex quantity:

〈C(e1 + e2), e1 + e2〉 = 〈F(e1 + e2), F(e1 + e2〉) (3.4)

Additionally, we observe from equations (3.1) and (3.2) that:

〈C(e1 + e2), e1 + e2〉 = 〈Ce1, e1〉 + 〈Ce2, e2〉 + 2〈Ce1, e2〉 = H1 + H2 + 2ρ4 (3.5)

In this way, we have linked three polyconvex functions (namely 〈C(e1 + e2), e1 + e2〉 from
the left-hand side of equation (3.5) and H1 and H2 from the right-hand side) with ρ4 which
represents the square root of H4. To make H4 appear, which is of interest for us, we
square equation (3.5):

〈C(e1 + e2), e1 + e2〉
2 = (H1 + H2)2 + 4H4 + 4ρ4(H1 + H2) (3.6)
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In order to eliminate the double product 4ρ4(H1 + H2) from equation (3.6), we proceed in
the same manner but by replacing e1 + e2 by e1 − e2 in equation (3.5):

〈C(e1 − e2), e1 − e2〉
2 = (H1 + H2)2 + 4H4 − 4ρ4(H1 + H2) (3.7)

And we finally add equations (3.6) and (3.7) to obtain:

L4 = (H1 + H2)2 + 4H4 =
1
2

{
〈C(e1 + e2), e1 + e2〉

2 + 〈C(e1 − e2), e1 − e2〉
2
}

(3.8)

It is noted that the quantity L4 introduced by equation (3.8) is invariant as a combination of
H1, H2 and H4 and is also polyconvex as a summation over squared polyconvex functions.
Following the same strategies, we introduce two additional polyconvex invariants L5 and
L6:

L5 = (H1 + H3)2 + 4H5 ; L6 = (H2 + H3)2 + 4H6 (3.9)

It remains to deal with the last invariant H7 which adopts the following form according to
equations (3.1) and (3.2):

H7 = 〈Ce1, e2〉 〈Ce1, e3〉 〈Ce2, e3〉 = 〈Fe1, Fe2〉 〈Fe1, Fe3〉 〈Fe2, Fe3〉 (3.10)

There are again no clear evidences proving that H7 could be a polyconvex function, so we
can try to exhibit a polyconvex combination of H7 with other invariants. First we noticed
that H7 is expressed in a cubic form with respect to C (equation (3.10)), exactly as the
classical third isotropic invariant I3 (equation (1.31)). As we have proved in section 1.6
that I3 is a polyconvex function, linking H7 with I3 could be a good strategy to obtain a
polyconvex combination of invariants involving H7. To find this link, we first observe that
the strain tensor C is expressed in the {e1, e2, e3} basis by:

C =


ρ1 ρ4 ρ5

ρ4 ρ2 ρ6

ρ5 ρ6 ρ3

 (3.11)

A simple algebraic calculation gives:

I3 = det(C) = 2ρ4ρ5ρ6 + ρ1ρ2ρ3 − ρ1ρ6
2 − ρ3ρ4

2 − ρ2ρ5
2 (3.12)

Finally we use equations (3.1) and (3.12) to introduce L7 as follows:

L7 =
I3

2
= H7 +

1
2
{H1H2H3 − H1H6 − H3H4 − H2H5} (3.13)

The new invariant L7 introduced by equation (3.13) is thus a polyconvex function involv-
ing H7. We have therefore built a family {L1, L2, L3, L4, L5, L6, L7} of polyconvex invariants
where we have set:

L1 = H1 L2 = H2 L3 = H3 (3.14)
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This family forms an integrity basis as a polynomial combination of H1, H2, H3, H4, H5, H6

and H7 (refer to equations (3.8), (3.9), (3.13) and (3.14)). Additionally, each polynomials of this
integrity basis meet a physical interpretation. For example, L1 represents the elongation
squared in the direction e1 because equations (3.1), (3.2) and (3.14) yield to:

L1 = ‖Fe1‖
2 (3.15)

Similarly, L2 and L3 represent the elongation squared in directions e2 and e3, respectively.
L7 is directly connected to the deformed volume through equation (3.13). Finally, to give
a physical meaning to the invariants L4, L5 and L6, it is first necessary to recall that the
shear angle ϕ between two directions u and v (Figure 3.2) is defined by:

cosϕ =
〈Fu, Fv〉
‖Fu‖ ‖Fv‖

=
〈Cu, v〉

〈Cu,u〉1/2〈Cv, v〉1/2
(3.16)

The change of the shear angle between the deformed and the reference configurations
can therefore be measured by:

cosϕ − cosϕ0 =
〈Cu, v〉

〈Cu,u〉1/2〈Cv, v〉1/2
−

〈u, v〉
〈u,u〉1/2〈v, v〉1/2

(3.17)

Equation (3.17) is introduced in [128] as an invariant related to the amount of shear. How-
ever, there is no argument for proving that cosϕ − cosϕ0 is polyconvex. Fortunately, the
polyconvex invariant L4 introduced by equation (3.8) can be linked to cosϕ − cosϕ0 by re-
placing u by e1 and v by e2 in (3.17):

cosϕ − cosϕ0 =
〈Ce1, e2〉

〈Ce1, e1〉
1/2〈Ce2, e2〉

1/2 (3.18)

Using equations (3.1), (3.2), (3.8), (3.14) and (3.18) yields to:

cosϕ − cosϕ0 =
1
2

√
L4 − (L1 + L2)2

L1L2
(3.19)

Therefore L4 can be seen as a polyconvex invariant involved in the amount of shear
between directions e1 and e2. Similarly, L5 and L6 are linked to the amount of shear
related to directions (e2, e3) and (e1, e3) respectively.

It is finally remarked that, as demonstrated in [67], the set of invariants L1 to L7, described
by equations (3.8), (3.9), (3.13) and (3.14), is equivalent to the classical set of invariants pro-
posed in [129] for orthotropic symmetry:

Tr(C) ; Tr(C2) ; Tr(C3) ; 〈Ce1, e1〉 ; 〈C2e1, e1〉 ; 〈Ce2, e2〉 ; 〈C2e2, e2〉 (3.20)
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Figure 3.2: shear angle - reference (a) and current (b) configurations

3.4/ MATERIAL MODEL

3.4.1/ STRESS TENSORS

The Cauchy stress tensor related to a SEF W, which depends on the invariants Li, is
calculated from equations (1.20) and (1.21):

σ = 2F

 7∑
i=1

∂W
∂Li

∂Li

∂C

 FT − pI (3.21)

where we have introduced the extra pressure p to account for incompressibility.

The derivatives of the invariants Li with respect to C are calculated straightforwardly from
equations(2.112), (3.1), (3.2), (3.8), (3.9), (3.13) and (3.14):

∂L1

∂C
= e1 ⊗ e1 ;

∂L2

∂C
= e2 ⊗ e2 ;

∂L3

∂C
= e3 ⊗ e3

∂L4

∂C
= 2(ρ1 + ρ2)(e1 ⊗ e1 + e2 ⊗ e2) + 4ρ4[e1 ⊗ e2 + e2 ⊗ e1]

∂L5

∂C
= 2(ρ1 + ρ3)(e1 ⊗ e1 + e3 ⊗ e3) + 4ρ5[e1 ⊗ e3 + e3 ⊗ e1]

∂L6

∂C
= 2(ρ2 + ρ3)(e2 ⊗ e2 + e3 ⊗ e3) + 4ρ6[e2 ⊗ e3 + e3 ⊗ e2]

∂L7

∂C
=
∂det(C)

2∂C
=

1
2

det(C)C−1

(3.22)

As seen in equation (2.10), the second Piola-Kirchhoff stress tensor S already includes an
extra pressure term pC−1 to account for incompressibility. This extra pressure term is very
similar to the last line of equation (3.22). To avoid any redundancy, it is therefore logic to
exclude L7 from the strain energy density W:

W = W(L1, L2, L3, L4, L5, L6) (3.23)
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3.4.2/ CONSTITUTIVE MODEL

Following the strategy used by Mooney and Rivlin to build isotropic energy densities ([72],
[62]), we adopt in this work a polynomial form for W. One major advantage of this choice is
the extreme ease of identifying the material parameters of the model as it will be explained
in the next section. The variables of the polynomial correspond to the 6 new invariants
introduced by equations (3.8), (3.9) and (3.14). This choice is motivated by the facts that
these invariants are polyconvex, linked to a physical meaning and related to the invariants
exhibited with a rigorous mathematics approach by Ta et al. [53]. To obtain the best
flexibility in the model, but with a moderate number of material parameters, we introduce
a second order polynomial with respect to L1, L2, L3, L4, L5 and L6:

W = a1L1 + a2L2 + a3L3 + a4L4 + a5L5 + a6L6 + a7L1
2 + a8L2

2 + a9L3
2 (3.24)

It is noticed that the six first terms of W are linear with the invariants Li and only L1, L2

and L3 are squared (the three last terms). We have made this choice because L4, L5 and
L6 are already squared functions of the invariants Hi (equations (3.8) and (3.9)) while L1, L2

and L3 are only linear functions of them (equation (3.14)).

The nine polynomial coefficients a1 to a9 represent the material parameters. It is possible
to reduce their number from 9 to 7 by using the fact that the stress level must be zero in
the case where there is no loading. To exploit this property, we first calculate ωi(i = 1, ..., 6)
the derivatives of W with respect to L1, L2, L3, L4, L5 and L6 from equation (3.24):

ω1 =
∂W
∂L1

= a1 + 2a7L1 ; ω2 =
∂W
∂L2

= a2 + 2a8L2 ; ω3 =
∂W
∂L3

= a3 + 2a9L3 (3.25)

ω4 =
∂W
∂L4

= a4 ; ω5 =
∂W
∂L5

= a5 ; ω6 =
∂W
∂L6

= a6 (3.26)

In the case where the displacement is equal to zero, giving F = C = I, equations (3.1),
(3.2), (3.8), (3.9) and (3.14) are simplified to:

ρ1 = ρ2 = ρ3 = 1 ; ρ4 = ρ5 = ρ6 = 0 (3.27)

H1 = H2 = H3 = 1 ; H4 = H5 = H6 = 0 (3.28)

L1 = L2 = L3 = 1 ; L4 = L5 = L6 = 4 (3.29)

Reporting equation (3.29) in equation (3.25) yields to:

∂W
∂L1

= a1 + 2a7 ;
∂W
∂L2

= a2 + 2a8 ;
∂W
∂L3

= a3 + 2a9 (3.30)
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We finally report equations (3.22), (3.26), (3.27) and (3.30) in equation (3.21):

σ = 2


a1 + 2a7 + 4a4 + 4a5 −

p
2 0 0

0 a2 + 2a8 + 4a4 + 4a6 −
p
2 0

0 0 a3 + 2a9 + 4a5 + 4a6 −
p
2


(3.31)

Making σ equal to zero from equation (3.31), calculating the extra pressure p from one of
the three equations obtained and reporting the result in the two others lead to express a1

and a2 with respect to the other material parameters:

a1 = a3 − 4a4 + 4a6 − 2a7 + 2a9 ; a2 = a3 − 4a4 + 4a5 − 2a8 + 2a9 (3.32)

3.4.3/ CLOSED-FORM SOLUTION FOR A BIAXIAL STRETCHING

The experimental data obtained by Kamenskiy et al. [1] are related to a large variety
of samples tested quasi-statically by using a custom-made soft-tissue biaxial testing de-
vice. The arteries samples were tested under a biaxial stretching with a different ratio of
loading applied to the longitudinal and circumferential directions with the following pro-
portions: 1:1, 1:2, 1:4, 2:1 and 4:1. Since these five experiments are used in this work
as a reference to assess our model, we perform below the calculation of the Cauchy
stress in the case of a biaxial stretching. To reach this goal, we consider a cubic block of
material subjected to a biaxial tension loading as illustrated on Figure 3.3. The different
ratio of loads were applied to the right and top faces of the cube (represented by the
applied loading T1 and T2 in the longitudinal and circumferential directions). To model the
symmetric boundary conditions induced by the biaxial stretching, we consider that the
bottom, left and back faces of the cube are simply supported while the front face is free.
These boundary conditions, represented by arrows on figure 3.3, lead classically to the
homogenous deformations described by equation (2.35).

Because e1, e2 and e3 constitutes an orthonormal basis where C adopts the diagonal
matrix expression (2.35), the 6 coefficients defined by equation (3.2) and the invariants
defined by equations (3.8), (3.9) and (3.14) can be simplified:

ρ1 = λ1
2 ρ2 = λ2

2 ρ3 = λ1
−2λ2

−2 ρ4 = ρ5 = ρ6 = 0 (3.33)

L1 = λ1
2 L2 = λ2

2 L3 = λ1
−2λ2

−2 (3.34)

L4 = (λ1
2 + λ2

2) L5 = (λ1
2 + λ1

−2λ2
−2)2 L6 = (λ2

2 + λ1
−2λ2

−2)2 (3.35)

Where λ1 and λ2 represent the principal stretches and where the incompressibility condi-
tion λ3=λ−1

1 λ−1
2 was used.
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Figure 3.3: Boundary conditions of the biaxial tension test

In the case of a biaxial tension loading, the Cauchy stress tensor σ is finally expressed in
a diagonal form by reporting equations (2.35), (3.33), (3.34) and (3.22) in equation (3.21):

σ =


σ11 0 0
0 σ22 0
0 0 σ33

 (3.36)

with:

σ11 = 2[
∂W
∂L1

+ 2
∂W
∂L4

(λ1
2 + λ2

2) + 2
∂W
∂L5

(λ1
2 + λ1

−2λ2
−2)]λ1

2 − p

σ22 = 2[
∂W
∂L2

+ 2
∂W
∂L4

(λ1
2 + λ2

2) + 2
∂W
∂L6

(λ2
2 + λ1

−2λ2
−2)]λ2

2 − p

σ33 = 2[
∂W
∂L3

+ 2
∂W
∂L5

(λ1
2 + λ1

−2λ2
−2) + 2

∂W
∂L6

(λ2
2 + λ1

−2λ2
−2)]λ1

−2λ2
−2 − p

(3.37)

where the derivatives of W with respect to the invariants Li are obtained from equations
(3.25), (3.26), (3.32) and (3.34):

∂W
∂L1

= a3 − 4a4 + 4a6 − 2a7 + 2a9 + 2a7λ1
2 ;

∂W
∂L2

= a3 − 4a4 + 4a5 − 2a8 + 2a9 + 2a8λ2
2

(3.38)
∂W
∂L3

= a3 + 2a9λ1
−2λ2

−2 ;
∂W
∂L4

= a4 ;
∂W
∂L5

= a5 ;
∂W
∂L6

= a6 (3.39)

The free boundary condition σ33 = 0 can be exploited from the third equation of (3.37) to
extract the hydrostatic pressure p and to finally express the tensile stress, respectively in
the longitudinal and circumferential directions, by:

σ11 =2a3(λ1
2 − λ1

−2λ2
−2) + 4a4(λ1

4 + λ1
2λ2

2 − 2λ1
2) + 4a5(λ1

4 − λ1
−4λ2

−4)

+ 4a6(2λ1
2 − λ1

−2 − λ1
−4λ2

−4) + 4a7(λ1
4 − λ1

2) + 4a9(λ1
2 − λ1

−4λ2
−4)

(3.40)
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σ22 =2a3(λ2
2 − λ1

−2λ2
−2) + 4a4(λ2

4 + λ1
2λ2

2 − 2λ2
2) + 4a5(2λ2

2 − λ2
−2 − λ1

−4λ2
−4)

+ 4a6(λ2
4 − λ1

−4λ2
−4) + 4a8(λ2

4 − λ2
2) + 4a9(λ2

2 − λ1
−4λ2

−4)
(3.41)

The two above equations will be used in the next section to identify the seven material
parameters a3, a4, a5, a6, a7, a8 and a9 by making a comparison between the theoretical
and the measured stresses.

3.4.4/ MATERIAL PARAMETERS IDENTIFICATION

To identify the 7 constitutive material parameters that determine the tissue behavior, we
have performed a comparison between the stress predicted by our model (equations (3.40)

and (3.41)) and experimental data extracted from the work of Kamenskiy et al. [1]. To as-
sess the quality of the prediction, we have used the classical coefficient of determination
R2 introduced by equation (2.66) in the section 2.5.1. The closest to 1 R2 is, the best the
fit of the experimental data by the theoretical data will be. So we want the ratio S S res

S S tot
of

equation (2.66) to be the closest possible to 0. According to the definitions of S S res and
S S tot (equations (2.67)-(2.68)), we therefore introduce the following objective function F:

F(η) =

10∑
k=1

n∑
i=1

(
σk

exp,i − σ
k
th,i

)2

n∑
i=1

(
σk

exp,i − σ
k
exp

)2 (3.42)

Where η = (a3, a4, a5, a6, a7, a8, a9)T represents the set of the 7 material parameters to be
identified. The first summation over k (from 1 to 10) corresponds to the ten biaxial tests
considered in [1] and described by Table 3.1.

Ratio of loads applied in the
longitudinal and circumferential 1 − 1 1 − 2 2 − 1 1 − 4 4 − 1

directions
σ11 measurement case 1 case 3 case 5 case 7 case 9
σ22 measurement case 2 case 4 case 6 case 8 case 10

Table 3.1: Ten different biaxial loading cases [1]

The variable σk
exp,i and σk

th,i included in equation (3.42) respectively represent the ith com-
ponent of the experimental and theoretical Cauchy stress for case k.

The global minima of F satisfied the first order condition on the gradient of F with respect
to η:

∇F(η) = 0 (3.43)

To calculate the gradient of F in a convenient way, we first remark from equations (3.40)

and (3.41) that the theoretical Cauchy stress can be expressed in a linear form with respect
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to η:
σ11 = B1η σ22 = B2η (3.44)

where B1 and B2 are the 1 × 7 matrix defined by:

B1 = 2



λ1
2 − λ1

−2λ2
−2

2(λ1
4 + λ1

2λ2
2 − 2λ1

2)
2(λ1

4 − λ1
−4λ2

−4)
2(2λ1

2 − λ1
−2 − λ1

−4λ2
−4)

2(λ1
4 − λ1

2)
0

2(λ1
2 − λ1

−4λ2
−4)



T

; B2 = 2



λ2
2 − λ1

−2λ2
−2

2(λ2
4 + λ1

2λ2
2 − 2λ2

2)
2(2λ2

2 − λ2
−2 − λ1

−4λ2
−4)

2(λ2
4 − λ1

−4λ2
−4)

0
2(λ2

4 − λ2
2)

2(λ2
2 − λ1

−4λ2
−4)



T

(3.45)

In fact, B1 and B2 must be indexed by two integer numbers i and k (see equation (3.42))
but we have omitted to mention them in equation (3.45) for the sake of simplicity. The index
i varies from 1 to n and refers to the number of tested values λ1 and λ2 while k varies from
1 to 10 and represents the load case number (see table 3.1). It therefore follows from
equation (3.44) that the n stress components of σk

11 and σk
22, corresponding to the kth load

case, can be stored as follows:

σk
11 =


(B1)k

1
...

(B1)k
n

η ; σk
22 =


(B2)k

1
...

(B2)k
n

η (3.46)

σk
11 and σk

22 are vector of dimension n while


(B1)k

1
...

(B1)k
n

 and


(B2)k

1
...

(B2)k
n

 are matrix of dimension

n × 7. In an equivalent but more compact form, we introduce the theoretical stress σk
th:

σk
th = Akη (3.47)

where the n×7 matrix Ak stands indifferently for


(B1)k

1
...

(B1)k
n

 or


(B2)k

1
...

(B2)k
n

 depending on the consid-

ered stress components σk
11 or σk

22. Accounting for this matrix formulation, the objective
function F introduced by equation (3.42) can be reformulated by:

F(η) =

10∑
k=1

∥∥∥σk
exp − Akη

∥∥∥2∥∥∥σk
exp − σ

k
mean

∥∥∥2 (3.48)

where ‖.‖ stands for the standard Euclidean norm and σk
exp and σk

mean respectively repre-
sent the vector containing all the stress measurements corresponding to the kth load case
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and the averaged constant vector defined by:

σk
mean = σk

exp


1
...

1

 (3.49)

The calculation of the gradient of F is straightforward from equation (3.48):

∇F(η) = 2
10∑

k=1

(
Ak

)T
Akη −

(
Ak

)T
σk

exp∥∥∥σk
exp − σ

k
mean

∥∥∥2 (3.50)

We are thus faced to a classical linear least squares minimization with a unique solution
given by:

η =

 10∑
k=1

(
Ak

)T
Ak∥∥∥σk

exp − σ
k
mean

∥∥∥2


−1  10∑

k=1

(
Ak

)T
σk

exp∥∥∥σk
exp − σ

k
mean

∥∥∥2

 (3.51)

We thus do not need to discuss the uniqueness of the identified set of material param-
eters because the single solution is given by equation (3.51). This remarkable property
results from the polynomial form with respect to the invariants that we have selected for
the strain energy density (equation (3.24)), giving a linear dependence of this density with
the material parameters. At this stage, it should be noticed that for the same arterial ma-
terial, Kamenskiy et al. [1] also proposed a constitutive model that includes eight material
parameters, but it is mentioned in [1] that there is no guarantee about the uniqueness of
these parameters.

The numerical values of η deduced from equation (3.51), by using the experimental data
of Kamenskiy et al. [1] as a reference, are listed on Table 3.2. The assessment of these
values is presented in the next section by comparing our model to the one proposed in
[1] and by evaluating the quality of the prediction with experimental data.

Material parameters (kPa) a3 a4 a5 a6 a7 a8 a9

S FA −876.97 105.4 −196.6 106.8 273.8 551.9 269.8
PA −2027.9 295.2 172.3 311.3 −136.5 24.4 −109.7
T A −3978.9 523.4 239.4 583 −149 137.2 −63.9

Table 3.2: Identified material parameters for the Superficial Femoral Artery (SFA), the
Popliteal Artery (PA) and the Tibial Artery (TA)

3.4.5/ VALIDATION OF THE MODEL

In the case of the biaxial tension loading applied to the 3 different arteries, the compar-
isons between the experimental data extracted from the literature [1] and the numerical
results from the constitutive model are presented on Figures 3.4 to 3.8 for Superficial
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Femoral Artery (SFA), on Figures 3.9 to 3.13 for Popliteal Artery (PA) and on Figures
3.14 to 3.18 for Tibial Artery (TA).

• Superficial Femoral Artery (SFA)
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Figure 3.4: SFA - case 1 (left) and case 2 (right)
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Figure 3.5: SFA - case 3 (left) and case 4 (right)
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Figure 3.6: SFA - case 5 (left) and case 6 (right)
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Proposed model (Eq. (3.21))
Model of Kamenskiy et al. [1]

Figure 3.7: SFA - case 7 (left) and case 8 (right)
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Figure 3.8: SFA - case 9 (left) and case 10 (right)
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• Popliteal Artery (PA)
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Proposed model (Eq. (3.21))
Model of Kamenskiy et al. [1]

Figure 3.9: PA - case 1 (left) and case 2 (right)
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Model of Kamenskiy et al. [1]

Figure 3.10: PA - case 3 (left) and case 4 (right)
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Model of Kamenskiy et al. [1]

Figure 3.11: PA - case 5 (left) and case 6 (right)
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Figure 3.12: PA - case 7 (left) and case 8 (right)

1 1.05 1.1 1.15
0

50

100

150

λ
1
(−)

σ 11
(K

pa
)

 

 

Experimental data
Proposed model (Eq. (3.21))
Model of Kamenskiy et al. [1]

0.98 0.985 0.99 0.995 1 1.005
−5

0

5

10

15

20

25

30

35

λ
2
(−)

σ 22
(K

pa
)

 

 

Experimental data
Proposed model (Eq. (3.21))
Model of Kamenskiy et al. [1]

Figure 3.13: PA - case 9 (left) and case 10 (right)
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• Tibial Artery (TA)
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Model of Kamenskiy et al. [1]

Figure 3.14: TA - case 1 (left) and case 2 (right)
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Proposed model (Eq. (3.21))
Model of Kamenskiy et al. [1]

Figure 3.15: TA - case 3 (left) and case 4 (right)
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Model of Kamenskiy et al. [1]

Figure 3.16: TA - case 5 (left) and case 6 (right)
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Model of Kamenskiy et al. [1]

Figure 3.17: TA - case 7 (left) and case 8 (right)
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Figure 3.18: TA - case 9 (left) and case 10 (right)

For all these figures, it is observed an excellent agreement between our model and the
experimental data. This agreement is confirmed by the calculation of the coefficient of
determination R2 (Table 3.3). It is actually observed that R2 is very close to 1 with our
model, indicating an excellent fit with the experimental data points.

We also note that our model is very close to the numerical results obtained with the model
provided by Kamenskiy et al. [1], even if it gives sometimes worse results (SFA: cases
1, 2, 4, 5, 6, 8 and 9; PA: cases 1, 2, 4, 5, 8 and 9; TA: cases 1, 2, 4, 5, 8 and 9).
For all the other cases, our model offers a great improvement. That can be explained by
the constitutive parts of the two models. The Kamenskiy model is actually based on the
combination of four exponential functions, each one corresponding to a four-fiber family,
following in that the original concept introduced by Baek et al. [125]. Logically, due to the
exponential form of the SEF, the Kamenskiy model is very efficient to predict the behavior
of the arterial materials in the large strain range while our model is less efficient in this
kind of situation (see for example the right part of the curves plotted on Figure 3.4). But, if
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we consider the noisy experimental cases (Figures 3.7 left, 3.8 right, 3.11 right, 3.12 left,
3.13 right, 3.15 left, 3.16 right, 3.17 left and 3.18 right), our model appears to be more
efficient with a coefficient of determination close to 0.99 while this coefficient takes in the
worse situation a value of 0.932 with the Kamenskiy model. This last observation likely
results from the fact that the family of invariants used in this paper, which has been proved
to be an integrity basis in Ta et al. [53], was built with the material symmetry group S 8

containing all the information relative to the geometrical orientation of the collagen fibers.
We have therefore taken into account all the possible mechanical effects contained in all
the possible invariants.

SFA PA TA
Load case R2 [1] R2 (eq. (3.24)) R2 [1] R2 (eq. (3.24)) R2 [1] R2 (eq. (3.24))

case 1 0.998 0.991 0.998 0.989 0.999 0.988
case 2 0.998 0.990 0.992 0.991 0.997 0.987
case 3 0.983 0.997 0.998 0.999 0.987 0.996
case 4 0.999 0.996 0.992 0.991 0.998 0.994
case 5 0.997 0.991 0.999 0.995 0.998 0.980
case 6 0.998 0.994 0.993 0.997 0.989 0.990
case 7 0.948 0.985 0.983 0.987 0.955 0.972
case 8 0.998 0.987 0.998 0.994 0.997 0.989
case 9 0.995 0.983 0.999 0.990 0.999 0.970
case 10 0.962 0.995 0.932 0.996 0.971 0.991

Table 3.3: Coefficient of determination R2 for 10 different load cases and three different
arteries (SFA, PA and TA)

3.5/ FINITE ELEMENT IMPLEMENTATION

The aim of this section is to present the finite element implementation of the strain energy
density introduced by (3.24). As in chapter 2, the total Lagrangian formulation is adopted.
To extend the constitutive model from the compressible to the incompressible range, we
use the same penalty function W̃ as one introduced by equation (2.106) in section 2.6. By
using the additive decomposition introduced by equation (2.105) to separate the anisotropic
part to the volumetric part of the SEF, we deduce the Cauchy stress tensor σ from equa-
tion (3.21):

σ = 2F

 6∑
i=1

∂W
∂Li

∂Li

∂C
+
∂W̃
∂C

 FT (3.52)

Note that we have replaced the extra pressure p (which plays the role of a Lagrange
multiplier) in equation (3.21) by a penalty function in order to enforce the incompressibility
condition. This replacement allows to reduce the number of unknowns to be determined.
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For the sake of simplicity, the derivatives
∂Li

∂C
of equation (3.22) are rewritten:

∂L1

∂C
= M11 ;

∂L2

∂C
= M22 ;

∂L3

∂C
= M33 ;

∂L4

∂C
= 2(ρ1 + ρ2)(M11 + M22) + 8ρ4 M12

∂L5

∂C
= 2(ρ1 + ρ3)(M11 + M33) + 8ρ5 M13 ;

∂L6

∂C
= 2(ρ2 + ρ3)(M22 + M33) + 8ρ6 M23

(3.53)
where the symmetric matrix M11, M22, M33, M12, M13 and M23 are defined by:

M11 = e1 ⊗ e1 ; M22 = e2 ⊗ e2 ; M33 = e3 ⊗ e3

M12 = 1
2 (e1 ⊗ e2 + e2 ⊗ e1) ; M13 = 1

2 (e1 ⊗ e3 + e3 ⊗ e1) ; M23 = 1
2 (e2 ⊗ e3 + e3 ⊗ e2)

(3.54)
The second term included in the bracket of equation (3.52) has been already calculated
(equation (2.111)).

Because the material must be free of stress if the displacement field is null (F = C = I),
we use equation (3.27) in equation (3.53) and we consider this particular case in equation
(2.111):

∂L1

∂C
= M11 ;

∂L2

∂C
= M22 ;

∂L3

∂C
= M33

∂L4

∂C
= 4(M11 + M22) ;

∂L5

∂C
= 4(M11 + M33) ;

∂L6

∂C
= 4(M22 + M33)

∂W̃
∂C

= c
2 I

(3.55)

Replacing equations (3.26), (3.29),(3.30), (3.32) and (3.55) in (3.52) gives:

σ = 2
{
(a3 + 4a5 + 4a6 + 2a9)(M11 + M22 + M33) +

c
2

I
}

(3.56)

Or, equivalently, by using equation (4) (see the chapter related to notations and standard
results at the beginning of the manuscript):

σ = 2
{
a3 + 4a5 + 4a6 + 2a9 +

c
2

}
I (3.57)

From the particular case where the displacement is equal to zero, we then deduce from
equation (3.57) that the material parameter c is linked to the other ones by:

c = −2(a3 + 4a5 + 4a6 + 2a9) (3.58)

To construct the tangent stiffness matrix for the analysis of nonlinear structures by the
finite element method, one has to determine the stress-strain tangent operator D, which
is a fourth order tensor resulting from the derivation of S with respect to C (see equation
(1.126)). In order to calculate D, we first compute the part of the second Piola-Kirchhoff
stress tensor S related to W from equation (3.23):

S = 2
∂W
∂C

= 2

 6∑
i=1

∂W
∂Li

∂Li

∂C

 = 2

 6∑
i=1

ωi
∂Li

∂C

 (3.59)
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Next, we derive again W with respect to C from equation (3.59):

D = 4


6∑

i=1

6∑
j>i

ωi j

[
∂Li

∂C
⊗
∂L j

∂C
+
∂L j

∂C
⊗
∂Li

∂C

]
+

6∑
i=1

[
ωi
∂2Li

∂C2 + ωii
∂Li

∂C
⊗
∂Li

∂C

] (3.60)

The coefficients ωi j stand for the second derivative of W with respect to the invariants Li.
They are obtained straightforwardly from equations (3.25) and (3.26):

ω11 =
∂2W
∂L1∂L1

= 2a7 ; ω22 =
∂2W
∂L1∂L2

= 2a8 ; ω33 =
∂2W
∂L3∂L3

= 2a9 ; ωi j = 0 otherwise

(3.61)

To obtain the second derivative
∂2Li

∂C2 , we derive the first derivatives contained in equation
(3.53) with respect to C:

∂2L1

∂C2 =
∂2L2

∂C2 =
∂2L3

∂C2 = 0
∂2L4

∂C2 = 2(M11 + M22) ⊗ (M11 + M22) + 8N1212

∂2L5

∂C2 = 2(M11 + M33) ⊗ (M11 + M33) + 8N1313

∂2L6

∂C2 = 2(M22 + M33) ⊗ (M22 + M33) + 8N2323

(3.62)

where we have introduced the following fourth-order tensors:

N1212 = M12 ⊗ M12 ; N1313 = M13 ⊗ M13 ; N2323 = M23 ⊗ M23 (3.63)

Finally, to achieve the finite element implementation, we need to compute the fourth-order
tensor Dvol related to the volumetric part of the strain energy density. This computation
has been already done in section 2.6 of chapter 2. The result is given by equation (2.125).

The finite element implementation of the second derivative (equations (2.125) and (3.60))
of the strain energy densities described by equations (2.105), (2.106) and (3.24) was realized
inside the FER code [57] with C++ language, by following the procedure described on
Figure 3.19.
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Figure 3.19: Flow chart of the finite element implementation of the anisotropic part of the
strain energy density

3.6/ FE SIMULATION RESULTS

In section 3.6.1, in order to validate the finite element implementation, we consider dis-
eased superficial femoral (SFA), popliteal (PA) and tibial arteries (TA) from one patient
under planar biaxial extension. These three materials were originally studied in [1]. For
all of them, a biaxial stretching with a different ratio of loading was applied to the longitu-
dinal and circumferential directions with the following proportions: 1 : 1, 1 : 2, 1 : 4, 2 : 1
and 4 : 1.

After the validation of the FE implementation, we present in section 3.6.2 a 3D example
performed with FER. This 3D example concerns a uniaxial tensile loading involving non-
homogeneous deformation
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3.6.1/ COMPARISON BETWEEN FINITE ELEMENT RESULTS, ANALYTICAL CALCU-
LATION AND EXPERIMENTAL DATA

In order to demonstrate the proper implementation of the model inside FER, we make a
comparison between the finite element computations and the closed form solution cor-
responding to equations (3.40) and (3.41). Comparisons with experimental data extracted
from [1] are also performed to prove the capability of the finite element model for predict-
ing the actual behavior of the material. The finite element computations were performed
by using the values of material parameters listed in table 3.2. The penalty factor d in-
cluded in equation (2.106) has been set to a small value of 10−9 in order to enforce the
incompressibility condition.

The comparisons are presented on Figures 3.20 to 3.24 for SFA, on Figures 3.25 to 3.29
for PA and on Figures 3.30 to 3.34 for TA. On each figure, the left and right parts corre-
spond to the σ11 and σ22 components of the Cauchy stress, respectively. We can observe
that the finite element results provide a fair agreement with the closed form predictions
as well as with the experimental data. That proves that the finite element model has been
properly implemented inside the FER code and is able to well predict the behavior of real
materials.
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Figure 3.20: SFA, ratio of loading 1 : 1
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finite element model
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experimental data [1]
finite element model
closed form solution (Eq (3.38))

Figure 3.21: SFA, ratio of loading 1 : 2
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closed form solution (Eq (3.38))

Figure 3.22: SFA, ratio of loading 2 : 1
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Figure 3.23: SFA, ratio of loading 1 : 4
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Figure 3.24: SFA, ratio of loading 4 : 1

• Popliteal Artery (PA)
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closed form solution (Eq (3.38))

Figure 3.25: PA, ratio of loading 1 : 1
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Figure 3.26: PA, ratio of loading 1 : 2
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Figure 3.27: PA, ratio of loading 2 : 1
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Figure 3.28: PA, ratio of loading 1 : 4
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Figure 3.29: PA, ratio of loading 4 : 1
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• Tibial Artery (TA)
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Figure 3.30: TA, ratio of loading 1 : 1
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closed form solution (Eq (3.38))

Figure 3.31: TA, ratio of loading 1 : 2
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Figure 3.32: TA, ratio of loading 2 : 1
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Figure 3.33: TA, ratio of loading 1 : 4

1 1.05 1.1 1.15

0

50

100

150

200

250

λ
1
(−)

σ 11
(K

pa
)

 

 

experimental data [1]
finite element model
closed form solution (Eq (3.37))

0.998 1 1.002 1.004 1.006 1.008 1.01 1.012

0

10

20

30

40

50

60

λ
2
(−)

σ 22
(K

pa
)

 

 

experimental data [1]
finite element model
closed form solution (Eq (3.38))

Figure 3.34: TA, ratio of loading 4 : 1

3.6.2/ NON-HOMOGENEOUS TENSILE TEST

In this section, a tensile test of tibial artery (TA) materials involving non-homogeneous
deformations has been processed by considering a rectangular specimen of dimension
10 × 3 × 0.5 mm. The lower part of the specimen is clamped and the upper part is sub-
mitted to a fixed displacement varying from 0 to 4 mm. The simulation was conducted in
50 loading steps with a mesh composed of 3200 cubic brick elements and 4305 nodes.
Figure 3.35 shows the initial mesh and the distribution of the Von Mises stresses on the
deformed mesh. One can observe a symmetrical radial stress distribution at the center
of the specimen. One can also observe a decrease of the surface of the section that
balances the elongation of the specimen, thus preserving the volume, which is in accor-
dance with the incompressible nature of biological materials described by the proposed
model.
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Figure 3.35: FER simulation - Initial mesh and Von Mises stresses on the deformed
mesh

3.7/ CONCLUSIONS

In this chapter, a new strain energy function (SEF) has been developed for modeling
incompressible fiber-reinforced materials with a four-fibers family. The construction of this
energy is based on an integrity basis made of seven invariants recently proposed by Ta
et al. [53]. A combination of them was used to exhibit a new set of polyconvex invariants.
The proposed SEF adopts a polynomial form (equation (3.24)) which allows to perform a
least square minimization for identifying a single set of material parameters.

Based on our proposed hyperelastic model, the finite element implementation was per-
formed inside the FER university code by using a total Lagrangian approach. All the
details of the implementation, that is to say the calculations of the strain and stress incre-
mental forms and the tangent stiffness matrix, are provided in section 3.5.

In order to validate the proposed approach, comparisons were performed between analyt-
ical results calculated with our own model and numerical and experimental data obtained
by Kamenskiy et al. [1]. Each time, the numerical prediction resulting from the application
of the new SEF fits nicely with the data extracted by [1].

It should be additionally underlined that:

• this nice fit was obtained with a large variety of materials (3 different kinds of arter-
ies) and many tests (5 different tests applied to each artery),

• the same set of material parameters was considered for the same artery and applied
for the 5 different tests (Table 3.2),
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• only 7 material parameters are required in our model against 8 in the Kamenskiy et
al. model [1],

• our model provides better results than the Kamenskiy et al. model [1] in the case
of noisy experimental data. One possible explanation is the fact that our strain
energy density was built by considering material symmetry group including all the
properties of invariance of the fiber directions.

• the Kamenskiy et al. model [1] provides better results than ours in the large strain
range. One possible explanation is the specific form of the Kamenskiy et al. model
which is made of exponential functions allowing to well capture the behavior of the
material at large strains.
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This PhD thesis constitutes a first attempt to build some practical strain energy functions
(SEF) for modeling different hyperelastic anisotropic materials, including one or four-fibers
family by using the theoretical results obtained by Ta et al. [53, 54].

In the first chapter, the foundations of continuum mechanics and of the theory of hypere-
lasticity were introduced for isotropic and anisotropic materials. The most common strain
energy functions based on the classical invariants have been presented, as well as the
new invariant proposed by Ta et al. [53, 54]. The concept of polyconvexity, which is
essential for ensuring the existence of solutions [41, 70], was next discussed and com-
mon polyconvex functions presented. The basics of the finite element method applied to
nonlinear structural analysis, such as the total Lagrangian formulation, was finally intro-
duced. It offers the essential realization means for the implementation of the new models
developed in the chapters 2 and 3.

In the second chapter, an original strain energy function, based on the transverse
anisotropic invariants proposed by Ta et al. [54], was built for modeling anisotropic hyper-
elastic materials including a one-fiber family. The model is made of new invariants forming
an integrity basis derived from the application of the Noether’s theorem. Three of these
new invariants are well known polyconvex functions while the two others are connected
to shear effects.

Two polynomial forms were used (linear first and quadratic next) to represent our strain
energy function. To evaluate the relevance of these two polynomial forms, numerical ex-
amples were carried out in eight cases: uniaxial tension and shear deformations with a
loading direction parallel or transverse to the fiber direction. The predicted results were
compared to the experimental data extracted from the work of Ciarletta et al. [39] for
two different fiber-reinforced rubbers (soft silicone rubber reinforced by polyamide and
soft silicone rubber reinforced by hard silicone rubber). We found that the linear and the
quadratic polynomials were not able to well describe the material behavior, particularly
with the shear loading transverse to the fiber direction. We have also proved the more
general result that any polynomial SEF of any degree does not allow to provide a sat-
isfactory prediction in the case of a shear loading. To overcome this problem, we have
added a power-law function to the previous polynomials. When the strain energy function
consists in a linear polynomial combined with a power-law function, the predicted results
are greatly improved. The quadratic polynomial combined with a power-law function also
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gives an excellent agreement between the numerical results and the experimental data.
But, if the accuracy of the model is not a requirement, the linear option is preferable to the
quadratic one because it demands less material parameters to identify (9 against 23).

In the third chapter, an original strain energy function was developed with new polycon-
vex invariants for modeling four-fibers biometerials. These new invariants are obtained
by recombining the 7 invariants originally introduced by Ta et al. [53]. We adopt a poly-
nomial form to express the SEF because it allows to identify a single optimal solution
of material parameters through a least square minimization. Accuracy and reliability of
the corresponding numerical model were validated by a comparison with experimental
and numerical results extracted from [1]. These results concerned diseased superficial
femoral (SFA), popliteal (PA) and tibial arteries (TA) from one patient under planar biaxial
extension. For each kind of arteries tested with 5 combinations of different biaxial stretch,
the predicted results of the proposed model and the experimental data are consistent.
Compared with the model proposed by Kamenskiy et al. [1], which includes 8 material
parameters, our model just needs 7 material parameters. The non-linear behavior of
these arterial materials can be better described by our model in most cases. But in the
range of large stretches, the Kamenskiy model is more efficient than our due to the fact
that they have adopted an exponential form, instead of the polynomial form we used, to
express the strain energy function.

Based on the combination of the linear polynomial with a power-law function introduced
in the second chapter, we have developed a finite element model. This model was im-
plemented in C++ language in the university software FER ([57]). Following the same
strategy, the SEF representing the four-fibers family material built in the second chap-
ter was implemented in FER as well. For both models, several numerical computations
performed with FER have demonstrated their efficiency and accuracy. These computa-
tions have concerned simple loading cases leading to homogeneous deformation and
providing closed-form solutions that are convenient for comparison. But more complex
3D examples involving non-homogeneous deformation were also investigated.

All the achievements completed during this thesis have been published or accepted for
publication in the International Journal of Solids and Structures. [65, 67]. Moreover, we
have not only built practical SEFs from the theoretical results obtained by Ta et al. [53,
54] for different hyperelastic anisotropic materials, but also proposed their finite element
implementations. However, if the practical extension of the mathematical foundations
introduced in [54, 53] have been achieved, some additional work could be undertaken
and some open-ended questions still remind and will need further investigations:

1. Two of the five invariants used in the second chapter play a key role to predict shear
effects but they are not a priori polyconvex functions. The possibility to combine
them in order to obtain a polyconvex property is still questionable.

2. The quality of the prediction of the model introduced in the second chapter, with a
large number of monomials and the improvement brought by a power-law function,
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suggests that it could be possible to replace the proposed SEF by a transcendental
function as an exponential for example, allowing in that a drastic decrease of the
number of material parameters to identify. But this transcendental function, as well
as the corresponding argument to use, is not so simple to guess.

3. In chapter 3, we have proposed a strain energy function for modeling the behavior
of anisotropic hyperelastic material with a four-fibers family by using the invariants
introduced by Ta et al. [53]. These invariants were originally intended for modeling
the behavior of materials with a two-fibers family but we have explained why it was
relevant to use them in the framework of a four-fibers family material. In order to
prove the versatility and feasibility of our approach, it could be interesting to apply
this approach to the case of a two-fibers family material.

4. It is remarked that some material parameters identified in chapter 3 (see Table 3.2)
are negative. It could therefore be interesting to investigate the convex property
of the corresponding SEF as well as the positive definite property of the related
tangent stiffness matrix. Accounting for these properties in the identification process
could improve the capability of the model to fit experimental data.

5. In chapter 3, for the arterial materials with a four-fibers family, we just studied the
case of a biaxial testing. It could be therefore interesting to test the efficiency of our
model for other loading cases, for example in the context of a shear loading.

6. In terms of non-homogeneous deformations, we have presented in chapters 2 and
3 two 3D FE computations but they are restricted to the case of a uniaxial tensile
loading. Now that our models are validated and implemented in a FE code, we could
test more complex situations involving for example contact and impact between
several hyperelastic bodies.
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Abstract:

This thesis has focused on the construction of strain energy densities for describing the non-linear behavior of anisotropic
materials such as biological soft tissues (ligaments, tendons, arterial walls, etc.) or fiber-reinforced rubbers. The densities
we have proposed have been developed with the mathematical theory of invariant polynomials, particularly the Noether
theorem and the Reynolds operator. Our work involved two types of anisotropic materials, the first with a single fiber family
and the second with a four-fiber family. The concept of polyconvexity has also been studied because it is well known that it
plays an important role for ensuring the existence of solutions. In the case of a single fiber family, we have demonstrated that
it is impossible for a polynomial density of any degree to predict shear tests with a loading parallel and then perpendicular to
the direction of the fibers. A linear polynomial density combined with a power-law function allowed to overcome this problem.
In the case of a material made of a four-fiber family, a polynomial density allowed to correctly predict bi-axial tensile test data
extracted from the literature. The two proposed densities were implemented in C++ language in the university finite element
software FER by adopting a total Lagrangian formulation. This implementation has been validated by comparisons with
reference analytical solutions exhibited in the case of simple loads leading to homogeneous deformations. More complex
three-dimensional examples, involving non-homogeneous deformations, have also been studied.

Keywords: Biomechanics, Theory of invariant polynomials, Anisotropic hyperelasticity, Finite element method, Nonlin-

ear mechanics

Résumé :

Cette thèse a porté sur la construction de densités d’énergie de déformation permettant de décrire le comportement non
linéaire de matériaux anisotropes tels que les tissus biologiques souples (ligaments, tendons, parois artérielles etc.) ou
les caoutchoucs renforcés par des fibres. Les densités que nous avons proposées ont été élaborées en se basant sur
la théorie mathématique des polynômes invariants et notamment sur le théorème de Noether et l’opérateur de Reynolds.
Notre travail a concerné deux types de matériaux anisotropes, le premier avec une seule famille de fibre et le second
avec quatre familles. Le concept de polyconvexité a également été étudié car il est notoire qu’il joue un rôle important
pour s’assurer de l’existence de solutions. Dans le cas d’un matériau comportant une seule famille de fibre, nous avons
démontré qu’il était impossible qu’une densité polynomiale de degré quelconque puisse prédire des essais de cisaillement
avec un chargement parallèle puis perpendiculaire à la direction des fibres. Une densité polynomiale linéaire combinée
avec une fonction puissance a permis de contourner cet obstacle. Dans le cas d’un matériau comportant quatre familles
de fibre, une densité polynomiale a permis de prédire correctement des résultats d’essai en traction bi-axiale extraits de la
littérature. Les deux densités proposées ont été implémentées avec la méthode des éléments finis et en langage C++ dans
le code de calcul universitaire FER. Pour se faire, une formulation lagrangienne totale a été adoptée. L’implémentation a
été validée par des comparaisons avec des solutions analytiques de référence que nous avons exhibée dans le cas
de chargements simples conduisant à des déformations homogènes. Des exemples tridimensionnels plus complexes,
impliquant des déformations non-homogènes, ont également été étudiés.

Mots-clés : Biomécanique, Théorie des polynômes invariants, Hyperélasticité anisotrope, Méthode des éléments finis,

Mécanique non linéaire


	Contents
	1 State of the art
	1.1 Introduction
	1.2 Continuum mechanics
	1.2.1 Deformation and strain
	1.2.2 Stress tensors

	1.3 Material frame indifference
	1.4 Isotropic and anisotropic materials
	1.4.1 Isotropic material
	1.4.2 Anisotropic materials

	1.5 Common strain energy functions
	1.5.1 SEFs for isotropic hyperelastic material
	1.5.2 SEFs for anisotropic hyperelastic material

	1.6 Polyconvexity
	1.7 Finite element method for structural nonlinear analysis
	1.8 Conclusions

	2 A new SEF for one-fiber family materials
	2.1 Introduction
	2.2 Preliminaries
	2.3 Polyconvexity and physical interpretation of the invariants
	2.4 Uniaxial tension and simple shear tests
	2.4.1 Uniaxial tension case
	2.4.2 Simple shear case

	2.5 A new hyperelastic SEF
	2.5.1 Linear strain energy density
	2.5.2 Quadratic strain energy density
	2.5.3 Linear and quadratic strain energy densities combined with a power-law function

	2.6 finite element implementation
	2.7 FE simulation results
	2.7.1 2D homogeneous deformation
	2.7.2 3D inhomogeneous deformation

	2.8 Conclusions

	3 A new SEF for four-fiber family materials
	3.1 Introduction
	3.2 Material understudy
	3.3 Polyconvexity and physical interpretation of the invariants
	3.4 Material model
	3.4.1 Stress tensors
	3.4.2 Constitutive model
	3.4.3 closed-form solution for a biaxial stretching
	3.4.4 Material parameters identification
	3.4.5 Validation of the model

	3.5 Finite element implementation
	3.6 FE simulation results
	3.6.1 Comparison between finite element results, analytical calculation and experimental data
	3.6.2 Non-homogeneous tensile test

	3.7 Conclusions

	Bibliography
	List of Figures
	List of Tables

