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de nos premiers articles pour m'en inspirer quand je rédige). Impossible de ne pas mentionner ta culture musicale digne d'une base de données. Je pense que tu vas plus vite qu'une requête SQL pour trouver le nom de l'artiste, la date, et le titre d'un morceau. C'est grâce à toi si je suis là aujourd'hui, si je me suis épanoui pendant ces trois années et si je continue à le faire encore aujourd'hui dans ma profession. Merci infiniment Frédéric.

Mes tous premiers petits pas en recherche, je les ai fait avec Francis Lazarus. Même si, à cette époque, j'étais bien loin de comprendre où je mettais les pieds, tu as pris le temps de me faire découvrir une partie de ce monde, et même de m'expliquer la Conjecture de Poincaré. Merci Francis de m'avoir ouvert cette porte et je ne te cache pas que j'ai l'espoir de pouvoir contribuer un jour à ton domaine! Dear Ararat, I am switching especially to English for you, even though everybody knows that you are perfectly fluent in French now. Ararat, it is hard to express how sincere is my gratitude to you. You have taught me so many things and always have been so nice to me. We first met when I was just a PhD child and yet you decided to make me learn and take me on a scientific adventure. You have a kindness aura AND a fun aura that makes me feel good whenever I am around you. Thank you for everything Ararat.

C'est en L2 et L3 à Montpellier que je me suis dit pour la première fois: "mais, la théorie des graphes, c'est vraiment intéressant!". C'était pendant un de tes cours, Stéphan, que j'ai accroché avec les graphes, la combinatoire, les maths discrètes. En commençant ma thèse, j'étais loin de m'imaginer que j'allais travailler avec toi. Tes cours et exposés m'ont toujours passionné et faire des maths à tes côtés a été sincèrement inspirant. Je tiens à soulever ta gentillesse, notamment lorsque tu expliques calmement, humblement et pédagogiquement que cette idée-là, tu y as aussi déjà pensé depuis deux heures, que tu as déjà fait le raisonnement complet et que tu es déjà en train de voir ce qu'il se passe au-delà de ce qu'on peut imaginer. Tu as pour moi un certain côté magique et je te remercie d'avoir pris le temps de partager, en toute humilité, une partie de tes connaissances avec moi ET de m'avoir fait découvrir les phrases du genre: "mais kiki là, il a forcément beaucoup de voisins dans B".

Marthe, je me souviens de nos premiers échanges comme si c'était hier. Je te racontais que je travaillais sur de la coloration par liste, et j'ai pris le temps de t'expliquer maladroitement tout un tas de choses que tu connaissais déjà depuis longtemps. Et toi, tu étais là, à m'écouter patiemment, à attendre la fin de mon speech pour enfin prendre la parole et ajouter quelques théorèmes et problèmes ouverts à ce qui avait déjà été dit. Je ne savais pas à qui je parlais à l'époque, et justement tu es comme ça, humble. Impossible de ne pas remercier Nicolas Bonichon dans ce paragraphe, qui nous a calmement montré que savoir compter jusqu'à quatre peut se révéler intéressant. Ta puissance mathématique n'a d'égale que ta vitesse d'élocution, mais c'est vrai aussi pour ta gentillesse. Merci à toi Marthe pour tous ces moments à rire à ne plus pouvoir s'arrêter, ces moments de maths, et de m'avoir soutenu depuis notre première rencontre.

C'est en cours de théorie des graphes en M2, sagement assis, que je me suis dit que ce serait intéressant de faire mon stage de fin d'études dans ce domaine. Sylvain, merci de m'avoir fait faire mes premiers pas en théorie des graphes, de m'avoir fait découvrir le monde de la coloration, de la coloration par liste et des graphes (parfaits) sans griffe. Grâce à toi, je me suis lancé dans ces recherches et encore aujourd'hui je m'y plaît énormément! J'ai également découvert Maths à Modeler grâce à toi. Je me suis familiarisé avec un autre aspect de la science extrêmement important à mon sens, à savoir faire découvrir, aux petits comme aux grands, la recherche scientifique. Enfin, je te remercie tout particulièrement d'avoir accepté de co-encadrer mon doctorat, sans toi je n'aurais pas pu faire cette thèse dans laquelle je me suis épanoui pendant ces trois années.

Frédéric, je ne sais même pas par où commencer pour te remercier tant tu as été important pour moi pendant mon doctorat. Dès notre première rencontre, et malgré mon inexpérience à l'époque, tu t'es montré bienveillant et pédagogue. Je me suis très vite rendu compte que tu connaissais un nombre incalculable de choses et, à chaque fois, tu as pris le temps de m'expliquer chacune d'entre elles. Je peux affirmer que pendant ces trois années de thèse, j'ai appris chaque jour quelque chose de nouveau, et tu as été, de loin, le plus grand contributeur à mon apprentissage. Ta porte était toujours ouverte (même quand je venais poser une question toutes les cinq minutes au commencement de ma thèse) et tu as été d'un soutien formidable et infaillible. J'ai également compris, grâce à toi, ce que voulait dire la célèbre expression "bien rédiger" (secrètement, je ressors encore de en temps en temps des passages de certains mond, Simon Schmidt, Petru Valicov et Éric Colin de Verdière avec qui j'ai travaillé et/ou appris et/ou échangé sur une multitude de domaines tous aussi intéressants les uns que les autres.

Je ne serais peut-être pas tombé dans les maths sans toi, Mina. Nos sessions de travail de l'époque résonnent encore aujourd'hui. Merci à toi d'avoir eu la patience de m'apprendre à m'amuser en faisant des mathématiques, et de m'avoir toujours poussé à continuer.

Gaël, peut-être ne te souviens-tu pas des quelques discussions algébriques que nous avons eues il y a bien longtemps, ou encore du premier cours où tu m'as montré qu'on pouvait définir de nouvelles opérations différentes des usuelles. Sache que moi, en tout cas, je me souviens encore précisément que ces opérations avaient la forme de triangle, de carré et de rond. Merci à toi de m'avoir montré l'étendu inimaginable de ce monde.

Merci monsieur Toffoli pour avoir fait des cours de maths des moments où l'on s'amuse à chercher. Une citation inscrite sur un coin du tableau m'est restée: "Ils ne savaient pas que c'était impossible, alors ils l'ont fait".

Je ne peux oublier le commencement de cette aventure qui remonte à l'année de mon Master 2 ROCO. Année pendant laquelle certes on ne comprenait pas toujours tout, mais pendant laquelle on a bien rigolé! Florence, Hugo, ce M2 était génial grâce à vous et vous avez été présents tout au long de ma thèse. Hugo, merci à toi pour tous ces bons moments et d'avoir été mon binôme dans cette dernière année d'études. Florence, ta porte était toujours ouverte quand j'errais dans les couloirs du 3H (c'est à dire tous les jours pendant trois ans) et il y avait toujours une place sur ton tableau pour que je puisse y dessiner un nouveau chef d'oeuvre chaque jour. Merci à toi d'avoir toujours été là, pour les nombreuses discussions sur la vie en général, et pour ton soutien infaillible.

Chaque jour de ma thèse, j'étais content de me lever et impatient d'arriver au laboratoire. Bien évidemment, ce genre de motivation n'est possible qu'avec une ambiance particulièrement bonne, sans aucun doute, présente à G-SCOP. Merci à l'équipe administrative, notamment Marie-Jo, toujours là pour aider! Ainsi qu'au service informatique, notamment Kevin et Olivier, qui m'ont aiguillé plus d'une fois. Merci à Alantha, Andrey, András, Andrea, Benjamin, Gautier, Hadrien, Matej, Myriam, Nadia, Olivier, Pierre Lemaire, et Zoltan auprès de qui j'ai eu l'occasion d'apprendre et/ou de recevoir du soutien et des encouragements tout au long de ma thèse. Louis, merci à toi pour les nombreuses discussions sur l'avenir que nous avons eues et sur les innombrables coups de main en tout genre que tu m'as rendus. Désolé encore pour le livre . . . Je tiens à soulever que j'ai été marqué par tes débuts de phrase "bon, j'y connais pas grand chose, mais", suivi de pleins de connaissances précises qui prendraient trois surveys du domaine, et ça pour un nombre conséquent de notions! Depuis ce jour où j'ai été ton élève en M2, tu m'as beaucoup appris. Je te remercie pour tout ce que tu m'as apporté, parfois même sans le savoir.

Rémi, je dois dire que tu es bien le doctorant d'un de tes multiples papas de thèse (celui dont le livre nous sert de parapluie). Tu as redéfini ce que voulait dire pour moi "être bon en maths". Tes connaissances générales en mathématiques m'ont toujours impressionné (pas moyen que tu oublies un théorème, une preuve, ou une notion de mathématiques que tu as vue une fois dans ta vie). Mais surtout, tu as toujours partagé ces connaissances avec moi et tu m'as même poussé à me les approprier moimême, à apprendre ou réapprendre des choses chaque jour avec un regard plus fin et plus précis. C'était un vrai plaisir d'être ton co-bureau durant ces trois années. Encore aujourd'hui il m'arrive de me dire: "Mince, si j'avais Rémi sous la main, cette preuve serait déjà terminée depuis longtemps . . . "

Yohann, comment ne pas te citer dans mes remerciements de thèse. Merci à toi pour ces nombreuses discussions pleines de sagesse et de bienveillance. J'ai appris plus que des mathématiques à tes côtés et j'espère que nos chemins se recroiseront.

Quentin, merci à toi pour ces nombreuses discussions mathématiques passionnantes, pour les petits problèmes (non triviaux!) que tu proposais parfois et pour l'effort de vulgarisation des règles de Magic dont tu faisais preuve à mon égard.

Nicolas Bousquet (je suis contraint de mettre ton nom de famille car il y a beaucoup de Nicolas dans notre monde). Merci à toi pour tout le soutien que tu m'as apporté, les relectures, et j'en passe. Sans oublier les encouragements. J'ai envie de dire, on peut avoir grandi à Mauguio et être quand même quelqu'un de très fort et très bien! Aurélie, merci pour le nombre infini de coups de main par-ci, de coups de pouce par là, de discussions en tout genre, et surtout de grandes séances de rigolades qui font relativiser tout le reste. Ton talent, ta bonne humeur et la classe avec laquelle tu bois un Spritz sont une réelle inspiration.

Ces années à G-SCOP auraient été bien différentes sans la redoutable équipe de joyeux lurons qui suit, toujours prêts à faire une partie de coinche à midi et à se détendre le soir venu. Alex, Aurélie, Clément, Élodie, Franck, Gricha, Laura, Lisa, Lucie, Matthieu, Nicolas Béraud, Nicolas Bousquet, Tom. Merci à vous tous pour ces moments passés ensemble, ces discussions tristes ou joyeuses, les (nombreuses) rigolades et les soirées qui, à elles seules, regroupaient tout ça. Un grand merci aussi à vous pour m'avoir soutenu à chaque instant, notamment en contribuant de manière conséquente à améliorer mes slides de soutenance. Vous êtes géniaux et je vous remercie pour tous ces moments inoubliables.

Sans le soutien inconditionnel de ma famille, je ne serais pas là où je suis aujourd'hui. Merci à mon père et à ma mère qui ont toujours cru en moi. Merci à Marina pour sa bienveillance permanente qu'elle a depuis toujours. Merci à ma grand-mère qui en plus d'être la plus douée en informatique de la famille (et de loin. Mame, il y a encore de la place pour des nouvelles doctorantes en informatique si un jour tu en as l'envie) était celle à qui incombait la lourde tâche de me faire faire mes devoirs. Merci à mon grand-père, mon oncle, Véronique, Raphaël, Samantha d'avoir toujours été enjoués par mes aventures scientifiques même lorsque j'ai des difficultés à expliquer simplement ce que je fais.

Ma vie à Grenoble, mes années de thèse, ma vie tout court ainsi que ma personne ne seraient pas ce qu'elles sont sans le cercle étendu du 123. Je ne peux que commencer par le commencement. Difficile de faire des remerciements sans tomber dans le mielleux. Je préfère prévenir les âmes sensibles du niveau "non méta" des propos qui suivent. Bastien, avant même que l'on sache parler correctement on se connaissait déjà. Tu ne le sais peut-être pas mais j'ai appris énormément en te côtoyant, à réfléchir surtout. Et j'apprends encore aujourd'hui à chaque fois que je te croise. Avant de m'installer au 123, l'idée de faire une thèse n'était pas vraiment concrète. Puis j'ai pu découvrir, dans un premier temps en tant que spectateur, la richesse de cette expérience avant de commencer la mienne un peu plus tard. Et tout ça au cours de ces années passées dans la Maison du bonheur (ou jamais bien loin). Des moments indescriptibles, les soirées, les repas, les apéros, les délires, les discussions passionnantes, les mariages, les anniversaires . . . Mais surtout les personnes! Bastien, Lucile Ve., Lucile Vi., Marine P., Matthieu, Thibaud. Mais dans cette maison il y en a eu du monde, et pas qu'un peu. Jean-Philippe Maitre, Marine M., Thomas, Eve, Dam's, Max, Julie, Raph, Seb, Mariana, Ju, Véro, Amélie, Nath, Mookie. J'ai passé des années mémorables à Grenoble à vos côtés, et j'ai surtout passé mon temps à rire et à m'enrichir auprès de vous. J'ai simplement envie de dire, du fond du coeur, merci à vous tous pour tout.

Lucile, tu a partagé cette chambre à la tapisserie de jeans avec moi. Mais surtout tu as toujours été là à chaque instant de ma thèse. Tu m'as toujours écouté patiemment quand je disais des trucs du genre: "non mais il/elle est trop fort•e, c'est complètement fou de travailler avec lui/elle. On travaille sur ça, ah et puis y'a ça aussi, et . . . ", et ça encore aujourd'hui, à m'entendre m'extasier chaque semaine. Tu connais même maintenant une liste conséquente de noms de chercheurs! Merci de m'avoir toujours soutenu et de m'avoir poussé à faire de mon mieux. Sans toi je ne serais pas là aujourd'hui. Pour toi, un millier de fois.

Chapter 1 Introduction (French)

La volonté de compter les objets apparait naturellement dans l'histoire de l'humanité. Les historiens prouvent que déjà en 3400 av. J.-C., les Sumériens et Mésopotamiens avaient développé un système numérique ainsi que le concept de poids et de mesure. Depuis ce jour, et peut-être même bien avant, les humains continuèrent à enrichir l'idée de compter des choses. Ce qui amena à l'émergence de notions plus abstraites que nous appelons maintenant les Mathématiques. Au fur et à mesure que les Mathématiques ont évolués, des notions plus sophistiqués et complexes ont vu le jour. Une partie fondamentale est l'Arithmétique, que chacun utilise intensément au quotidien. Pour un cerveau humain, calculer une opération simple d'arithmétique peutêtre fait en quelques secondes, par exemple la somme de deux petits nombres. Mais dès que des données de grandes tailles sont en jeu, même la plus simple des opérations peut prendre un certain temps. Calculer la somme d'une centaine de nombres, même si chaque étape est facile, peut prendre plusieurs dizaines de secondes. Avec l'agrandissement de la société humaine, le besoin de calculer des choses plus larges émergea. Plusieurs outils ont été développé pour aider à cette tâche. Par exemple, la création du boulier est estimée entre 2700 et 2300 av. J.-C. La question que nos ancêtres se sont posé un jour est la suivante : est-ce que cela peut-il être automatisé? L'idée de faire des machines pour calculer de manière automatique peut avoir un impact gigantesque sur la vie humaine pour les raisons suivantes. Si une machine peut calculer de manière à ce qu'aucune erreur ne soit faite, cela veut dire qu'une machine donnerait toujours la bonne réponse. De plus, si une machine peut calculer avec une très grande vitesse, elle peut alors donner la bonne réponse à chaque fois et beaucoup plus vite qu'un être humain. Pour avoir un aperçu de la puissance de calcul des ordinateurs de notre ère, intéressons nous à ce simple fait. Une opération en virgule flottante est un calcul qui fait intervenir au moins deux nombres réels (un nombre qui peut être décrit avec une virgule, par exemple 1,567). Par exemple, multiplier 1,545 par 143,75482 est considéré comme étant une opération en virgule flottante. Même l'esprit le plus vif aurait besoin d'au moins une seconde pour calculer la précédente opération. Le super-ordinateur plus performant enregistré à ce jour est 14| INTRODUCTION (FRENCH) capable de faire 93.000.000.000.000.000 opérations en virgule flottante par seconde! Cependant, même si cette performance est incroyable, multiplier des nombres entre eux, même à une très grande vitesse, n'est pas suffisant pour envoyer des fusées dans l'espace, calculer le plus court chemin sur un GPS ou encore contrôler le chaîne de production d'une usine. Ce dont un ordinateur a besoin pour maximiser l'utilité de sa grande puissance de calcul est une série d'opérations qu'il doit suivre pas à pas. C'est ce qu'on appel un algorithme. Avec des données en entrée, un ordinateur suivant un algorithme va appliquer les règles contenues dans l'algorithme aux données et retourner le résultat en sortie. Par exemple, "étant donné deux nombres x et y, multiplier x par y et retourner le résultat", est un exemple simple de ce qu'est un algorithme.

Bien évidemment, de nos jours il existe des algorithmes bien plus sophistiqués. Prenons un exemple plus avancé que la multiplication de deux nombres. Étant donné une carte et la longueur de chaque section de route, on souhaite calculer le plus court chemin entre deux points. Comme le problème est cette fois plus compliqué, et comme nous sommes de bons scientifiques, une bonne idée serait d'abstraire ce problème avec un modèle qui encode toutes les informations dont nous avons besoin, et de résoudre le problème sur ce modèle abstrait. Un modèle abstrait nous débarrasse de la réalité et devient un pure objet mathématique qui ouvre alors les portes vers toutes les mathématiques pour nous aider à le résoudre. Dans ce contexte, un choix naturel pour un modèle serait de dessiner sur un papier blanc un point pour chaque intersection de route, de dessiner une ligne entre toute paire de points reliés par une section de route et d'écrire le long de cette ligne le nombre correspondant à la longueur de la section qu'elle représente. Maintenant en gardant uniquement notre papier blanc contenant des points, des lignes et des valeurs, nous avons toutes les informations nécessaires pour calculer le plus court chemin entre n'importe quelle paire de points. Notez que même si nous n'avons pas donné d'algorithme qui répond à la question posée, nous avons un modèle des données qui encode uniquement ce qui est réellement essentiel. Voir Figure 1.1 pour un exemple d'un tel modèle. Étant donné un modèle qui contient toutes les données utiles pour notre problème, que pouvons nous dire dessus et comment utiliser ses propriétés intéressantes pour nous aider à fournir une solution à notre question? C'est ce genre de questions qui définit en grande partie l'Informatique Théorique. D'un côté, extraire les propriétés mathématiques des modèles, et de l'autre essayer d'utiliser ces propriétés pour développer des algorithmes sophistiqués. Bien sûr, n'importe laquelle de ces branches est un domaine à part entière des Mathématiques et de l'Informatique. Dans cette thèse, je vais exposer un état de l'art et des résultats nouveaux concernant des problèmes liés à ces deux branches.

Maintenant que nous savons tous ce vers quoi nous souhaitons aller, soyons plus formel vis à vis de ces concepts. Le modèle présenté plus haut est appelé un graphe. Chaque point est appelé un sommet et chaque ligne entre deux sommets, droite ou non cela n'a pas d'importance, est appelée une arête. Deux sommets liés par une arête sont dit adjacents. Un voisin d'un sommet v est n'importe quel sommet u qui est adjacent à v. Le degré d'un sommet est le nombre de voisins qu'il a. Notez qu'un | 15 graphe n'est pas un modèle géométrique, dans le sense où nous n'avons pas de coordonnées sur les sommets, et les arêtes détiennent uniquement l'information si oui ou non deux sommets sont adjacents. Les graphes sont des outils très puissants permettant de modéliser de nombreux problèmes, du plus théorique au plus appliqué. Nous allons donner un aperçu de deux problèmes canoniques de théorie des graphes en lien direct avec plusieurs résultats présentés dans ce manuscrit. Supposons que l'on nous fournisse un ensemble de produits chimique que nous devons stocker dans des entrepôts. Certains d'entre eux ne peuvent pas être stockés ensemble sans prendre le risque de générer une dangereuse réaction chimique. Ouvrir un entrepôt chimique est très onéreux. Nous souhaitons donc minimiser le nombre d'entrepôt à ouvrir. Nous pouvons modéliser ce problème de la manière suivante. Construisons un graphe où chaque sommet correspond à un produit chimique et pour chaque paire de sommets, mettons une arête si et seulement si les produits sont incompatibles. La traduction de notre but, qui est de minimiser le nombre d'entrepôts, peut être formulée de la manière suivante. Nous voulons attribuer à chaque sommet une couleur tel que pour toute paire de sommets adjacents les couleurs soient différentes, et nous souhaitons minimiser le nombre de couleurs utilisées. À la fin de notre procédé, le nombre de couleurs est le nombre d'entrepôts à ouvrir et une couleur est équivalente à un type d'entrepôt où tous les sommets de cette couleur seront stockés. Voir Figure 1.2 pour un exemple.

Le problème de coloration peut être énoncé de la manière suivante. Pour tout entier k ≥ 1, une k-coloration d'un graphe G est une affection d'au plus k couleurs aux sommets de G. Plus formellement, c'est une fonction c : V(G) → {1, . . . , k}. Une kcoloration propre est une k-coloration satisfaisant c(u) = c(v) pour toute paire de sommets adjacents u et v. Un graphe est dit k-colorable si il admet une k-coloration propre. Il est alors naturel de définir le nombre minimum de couleurs nécessaires pour colorer proprement le graphe. Le nombre chromatique d'un graphe G, noté χ(G), est le plus petit entier k tel que G soit k-colorable. Donc, pour résoudre notre problème de produits chimique de manière optimale, nous devons trouver le nombre chromatique Le deuxième problème classique qui est étudié dans ce manuscrit peut être énoncé d'un point de vue pratique de la manière suivante. Supposons que nous ayons un ensemble possible d'emplacements où nous pouvons ouvrir un restaurant de notre chaîne. Bien sûr, on ne peut pas ouvrir deux restaurants trop proches l'un de l'autre, ce qui aurait pour effet de diviser la clientèle. Chaque emplacement a un bénéfice estimé. Nous souhaitons ouvrir des restaurants tel que le profit soit maximiser tout en respectant la contrainte que deux restaurants ne peuvent pas être trop proches. On peut modéliser cela par un graphe. Pour chaque emplacement sur notre carte, mettons un sommet et associons à chaque sommet le nombre représentant son bénéfice estimé. Mettons une arête entre deux emplacements (qui sont maintenant des sommets) dès qu'ils sont trop proches. Ce que l'on souhaite trouver maintenant est un ensemble de sommets S dans notre graphe tel que tous les sommets de S soient deux à deux non-adjacents et qui maximise la somme des profits estimés sur tous les sommets de S. Voir Figure 1.3 pour un exemple. Nous allons expliquer maintenant ce problème en des termes de théorie des graphes.

Un ensemble indépendant est un sous-ensemble de sommets S ⊆ V(G) deux à deux non-adjacents. Le cardinal maximum d'un ensemble indépendant d'un graphe G est noté α(G). Le problème d'Ensemble Indépendant Maximum est le problème consistant à trouver l'ensemble indépendant de cardinal maximum pour un graphe donné. Soit G un graphe, la version pondérée de ce problème est définie par une fonction de poids sur les sommets de G, w : V(G) → Q qui attribue à chaque sommet v un poids w(v).

Le problème d'Ensemble Indépendant de Poids Maximum est maintenant de trouver un ensemble indépendant de poids maximum, que l'on note par α w (G). Notons que si w(v) = 1 for tout sommet v ∈ V(G), ce problème est équivalent à la version non pondérée.

Le problème de coloration de graphe et d'ensemble indépendant de poids maximum sont tous deux des problèmes difficiles. Mais que veut dire exactement difficile dans notre contexte? Si vous essayez de trouver une solution optimale à l'un des problèmes précédents sur un graphe avec plus de trente sommets, vous allez probablement passer au moins quelques heures pour trouver la bonne solution. En Informatique Théorique, il y a une classification des problèmes en fonction de leur difficulté. C'est une notion très importante en Informatique car cela peut donner une idée si oui ou non un problème spécifique peut être résolu efficacement sur un ordinateur. Un problème est dit décidable en temps polynomial si étant donné une entrée de taille n, le nombre d'opérations élémentaires nécessaires1 pour trouver une solution est borné par un polynôme en n. La classe de tous les problèmes décidables en temps polynomial est noté P. Par exemple, calculer le plus court chemin entre deux sommets u et v est un problème qui est dans la classe P.

D'un autre côté, il y a des problèmes pour lesquels une solution peut être vérifiée en temps polynomial mais pour lesquels il n'y a pas, à l'heure actuelle, d'algorithme polynomial capable d'en trouver une solution. Par exemple, étant donné un graphe, est-il possible de colorer proprement ses sommets en utilisant au plus k couleurs? Vérifier si une solution donnée est valide est facile, cependant dans le cas général, nous n'avons pas d'algorithme polynomial permettant de résoudre ce problème. Le problème de satisfaisabilité est un problème canonique pour lequel on ne sait pas si il existe un algorithme polynomial mais une solution peut être vérifiée rapidement. Ce problème, noté SAT, est un problème de décision qui demande si il existe une interprétation d'un ensemble de variables booléennes qui satisfait une expression booléenne donnée. Nous n'irons pas plus loin dans les détails de ce problème, mais il est important de retenir que ce problème est standard et nous ne savons pas si un jour nous pourrons le résoudre de manière efficace ou non. La classe de problèmes qui sont au moins aussi difficile 2 Les algorithmes avancés sur des problèmes difficiles sont possibles grâce à la connaissance de la structure des données que nous avons en entrée. Par exemple, trouver l'ensemble indépendant de poids maximum peut être fait en temps polynomial dans des classes de graphes particulière en utilisant les connaissances que nous avons sur leurs structures. D'un autre côté, en ne sachant rien de spécial sur la structure des graphes en entrée, il est peu probable pour que l'on soit capable de fournir un algorithme efficace pour ce problème. Donc, en théorie des graphes, décrire la structure des objets que l'on manipule est d'une importance capitale et est un domaine de la théorie des graphes à part entière. La théorie structurelle des graphes a pour but de prouver des théorèmes décrivant les propriétés des graphes. Par exemple, le théorème de Kuratowski [START_REF] Kuratowski | Sur le probleme des courbes gauches en topologie[END_REF] décrit complètement lorsqu'il est possible de dessiner un graphe sur le plan sans croisement d'arête. Même si ceci est considéré comme un travail purement théorique, l'impacte que ce genre de résultats a sur des problèmes plus appliqués de théorie des graphes est très important. Dans le Chapitre 4 et Chapitre 6 nous traitons, respectivement, d'une généralisation du problème de coloration et d'une conjecture lié à des graphes particuliers. Les résultats présentés dans ces deux chapitres ne sont pas d'une nature algorithmique. Ils sont théoriques et améliore la connaissance autour de certaines classes de graphes.

Contenu du manuscrit

Nous allons donner un aperçu de ce qui est présenté dans ce manuscrit. Les sujets principaux sont la coloration, la coloration par liste, les ensemble indépendant de poids maximum et les graphes normaux.

Le Chapitre 3 est dédié au problème de k-coloration dans les graphes. Nous commençons par une brève histoire de la coloration de graphe dans la Section 3.1 et présentons quelques résultats connus concernant une classe de graphes très importante, les graphes parfaits, qui ont un lien très étroit avec le problème de coloration. Puis nous expliquons pourquoi les classes de graphes interdisant des chemins comme sous-graphes induits (les graphes P -free) sont importants pour le problème de kcoloration et présentons un résumé des résultats marquant concernant la k-coloration des graphes P -free. Ensuite, nous présentons dans la Section 3.2 la structure des graphes (P 6 , bull)-free. Enfin, nous exposons dans la Section 3.3 un algorithme polynomial pour la 4-coloration des graphes (P 6 , bull)-free et pour la k-coloration des graphes (P 6 , bull, gem)-free.

Dans le Chapitre 4 nous nous intéressons au problème de coloration par liste, qui est une généralisation du problème de coloration. Dans la Section 4.1 nous expliquons comment le problème de coloration peut être généralisé au problème de coloration par liste et pourquoi la classe des graphes sans griffe est importante pour ce problème. En Section 4.2 nous décrivons la structure des graphes parfaits sans griffe. Nous utilisons cette description pour prouver, en Section 4.3, que n'importe quel graphe par-
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fait sans griffe ayant des cliques de taille au plus 4, a un nombre chromatique égal au nombre chromatique par liste.

Le Chapitre 5 est dédié au problème d'indépendant de poids maximum. La Section 5.1 décrit le contexte et explique pourquoi la classe des graphe P -free est intéressante vis à vis de ce problème. Puis en Section 5.2 nous fournissons une description structurelle des graphes sans taureau que nous utiliserons pour nos algorithmes. Finalement, les sections 5.3 et 5.4 sont dédiées à la présentation d'un algorithme polynomial pour le problème d'indépendant de poids maximum dans les graphes (P 6 , bull)-free et (P 7 , bull)-free. Les techniques utilisées en Section 5.3 et Section 5.4 sont différentes.

Le Chapitre 6 traite de la réfutation de la conjecture des graphes normaux. La Section 6.1 commence par décrire l'origine des graphes normaux, expose le contexte et donne un aperçu de ce qui est connu vis à vis de cette classe de graphes. Dans la Section 6.2 nous décrivons la philosophie de notre outils principal, la Méthode Probabiliste, et fournissons également un exemple d'utilisation de cette méthode en explicitant la preuve d'un célèbre théorème d'Erdős. Enfin, en Section 6.3 nous décrivons la structure de notre graphe aléatoire et donnons la preuve de notre théorème faisant appel à un lemma clef dont la preuve est décrite en Section 6.4.

Chapter 2 Introduction

Context

The notion of counting elements appeared in the story of humanity naturally. As early as 3400 BC, historians have proof that the Sumerians in Mesopotamia developed a numeral system and the concept of weights and measures. From this day, and maybe even earlier, humans continued to develop the concept of counting things, which eventually led to more abstract notions that now fall under what we call Mathematics. As Mathematics evolved, more sophisticated and complex notions arose. One fundamental one is Arithmetic, that everybody still uses intensively for the day to day life. For a human mind, calculating simple arithmetic operations can be done in a few seconds, for instance, the sum of two small numbers. But as soon as more data is involved, even the simplest operations can take more time. Calculating the sum of a hundred numbers, even though each step is easy, can take several dozen of seconds. As human society grew, the need to calculate larger things emerged. Several tools were manufactured to help deal with such a task. For example, the creation of the abacus is estimated between 2700 and 2300 BC. Of course what our ancestor eventually had in mind is the great following question: can it be automated? The idea to make machines calculate automatically can have tremendous impact on human life for the following reasons. If the machine calculating process can be done such that no mistake can ever happens, it means that a machine would never be wrong. In addition, if a machine can calculate with great speed, it can give the right answer every time way faster than what a human could do. To get a grasp at how the most advanced computers are good at calculating nowadays, here is a simple fact. A floating point operation is a calculation that involves at least two real numbers (a number that can be written with a comma, such as 1.567). For instance, multiplying 1.545 with 143.75482 is considered as a floating point operation. Even the swiftest mind needs at least a second to compute the previous operation. The best super computer registered as of today is capable of doing 93, 000, 000, 000, 000, 000 floating point operations per second! However, even though this is an incredible performance, multiplying num-22| INTRODUCTION bers alone, even at great speed, is not sufficient to send rockets into space, to compute a shortest path on a GPS, or to control an industry process line. What a computer needs to use its calculating speed at maximum power is a series of operations that it needs to follow step by step. This is what is called an algorithm. Given data as an input, a computer following an algorithm will apply the rules contained in the algorithm to the data and give the result as an output. For instance, "given two numbers x and y, multiply x and y and give the result", is a simple example of what is an algorithm.

Of course nowadays there exist very deep and sophisticated algorithms. Let us pick a more advanced example than multiplying two numbers. Given a map and the length of every road section, we would like to compute the shortest path between two points. Since the problem here is more complicated, and as we are good scientists, a good idea would be to abstract this problem with a model that encodes all the information we need, and then solve the problem on the abstract model. An abstract model rids us of the reality and becomes a pure mathematical object, which then opens the door to all of mathematics to help us solve the problem. In this context, a natural choice for a model would be to draw a point for every intersection of roads on a blank sheet of paper, draw a line between every pair of points connected with a road, and finally on every line, write the number corresponding to the length of the road section it represents. Now we can only keep our blank sheet of paper and we have all the information we need to compute a shortest path between any pair of points. Note that even though we didn't give any algorithm to answer the question, we provided a model of the data that encodes only what is really needed. See Figure 2.1 for an example of such a model. Given a model that holds all the interesting data of our problem, what can we say about it and how can we use any interesting fact to help us solve it? This is for the most part, what Theoretical Computer Science is about. On the one hand, extract properties from mathematical models, and on the other hand, try to use those properties to develop clever algorithms. Of course, any of those two branches is a whole field of Mathematics/Computer Science of its own. In this thesis, I am going to give an overview and results related to those two branches.

Now that we all know what we are aiming for, let us get more formal on those concepts. The model presented above is called a graph. Each point is called a vertex and any line between two vertices, straight or not, it does not matter, is called an edge. Two vertices linked by an edge are called adjacent. The neighbor of a vertex v is any vertex u that is adjacent to v. The degree of a vertex is the number of neighbors it has. Note that a graph is not a geometric model, in the sense that we do not have coordinates on vertices, and edges are only there to keep the information whether or not two vertices are adjacent. Graphs are very powerful tools able to model many different problem, from the most theoretic to the most applied ones. We will give an overview of two canonical graph theoretic problems on which several results presented in this manuscript are based.

Assume that we are given a set of chemical products that we need to store in warehouses. Some of them cannot be stored in the same warehouse without taking the risk of seeing a dangerous chemical reaction happening. Opening a chemical warehouse is very expensive, so we want to minimize the number of warehouses that needs to be opened. We can model this problem with the following. Construct a graph where each vertex correspond to a chemical product, and for any pair of vertices, put an edge if and only if the products are incompatible. Now the translation of our goal, which is to minimize the number of warehouses, can be put as follows. On each vertex we assign a color such that any pair of adjacent vertices have a different color, and we want to minimize the number of used colors. In the end, the number of colors is the number of warehouses we need to open, and a color is equivalent to a type of warehouse where all vertices of this specific color will be stored. See Figure 2.2 for an example.

The coloring problem can be stated as follows. For any integer k ≥ 1, a k-coloring of a graph G is an assignment of at most k colors to the vertices of G. More formally it is a mapping c : V(G) → {1, . . . , k}. A proper k-coloring is a k-coloring satisfying c(u) = c(v) for any two adjacent vertices u and v. A graph is said to be k-colorable if it admits a proper k-coloring. It is then natural to define the minimum number of colors needed to properly color the graph. The chromatic number of a graph G, denoted by χ(G), is the smallest integer k such that G is k-colorable. Hence, to solve our chemical products problem optimally, we need to find the chromatic number of our model.

The second classical problem that is studied in this manuscript can be stated in a practical way as follows. Assume that we are given a set of possible locations where we can open one restaurant of our restaurant chain. Of course we cannot open two restaurants too close to each other, this would only split the customer mass. Each of the locations has an estimated benefit. We want to open restaurants such that it maximizes our profit while satisfying the constraint that no two restaurants can be too close. We can model this by a graph. For every location on our map, put a vertex and associate with each vertex a number representing its estimated profit. Put an edge between two locations (which are now vertices) whenever they are too close to each other. What we want to do now is to find a set of vertices S in our graph such that all vertices in S are pairwise non-adjacent and that maximizes the sum of the estimated profit on all vertices of S. See A stable set is a subset of vertices S ⊆ V(G) such that any two vertices in S are non-adjacent. The stability number of a graph G, denoted by α(G), is the maximum cardinality of a stable set contained in G. The Maximum Stable Set Problem, shortened MSS, is the problem of finding the stable set of maximum cardinality in a given graph. Let G be a graph, the weighted version of this problem is defined by a weight function on the vertices of G, w : V(G) → Q that assigns to each vertex v a weight w(v). The Maximum Weight Stable Set Problem, shortened MWSS, is now to find the stable set of maximum weight, that we denote by α w (G). Note that if w(v) = 1 for every v ∈ V(G), this is equivalent to the non weighted version.

The graph coloring problem, and the Maximum Stable Set Problem are both hard problems. But what does hard mean exactly in our context? If you try to find an optimal solution to one of the problems stated above on a graph with more than thirty vertices, you might end up spending a few hours to find the correct solution. In Theoretical Computer Science, there is a classification of problems according to their difficulty. This is a very important concept in Computer Science since it can give an idea on whether or not a specific problem might be solved efficiently on a computer. A problem is said to be polynomial-time solvable if given an input of size n, the number of basic operations 1 needed to find a solution is bounded by a polynomial in n. The class of all polynomial-time solvable problems is denoted by P. For example, computing the shortest path between two vertices u and v is a problem that is in this class P.

On the other hand, there are problems for which a given solution can be verified in polynomial time but there is presently no polynomial-time algorithm known that can find a solution. For example, given a graph, is it possible to properly color its vertices by using no more than k colors? Verifying a given solution is easy, however in the general case, we do not have a polynomial-time algorithm that can solve this problem. The satisfiability problem is a canonical problem for which we do not know if there exists a polynomial-time algorithm that can solve it but a given solution can be checked quickly. This problem, shortened as SAT, is a decision problem which asks if there exists an interpretation of a set of boolean variables that satisfies a given boolean formula. We will not go deeper into the details on this problem, but what is important to remember is that this problem is the standard problem for which we do not know yet if one day we will be able to solve it efficiently. The class of problems that are at least as hard 2 as the SAT problem is called the NP-Hard class. Moreover, the class of problems that are NP-Hard and for which it is possible to check in polynomial time if a given solution is valid is called the NP-Complete class. Cook in 1971 [START_REF] Cook | The Complexity of Theorem-proving Procedures[END_REF], proved that the SAT problem is NP-Complete and that for any other problem in NP, there exists a polynomial reduction to the SAT problem. The k-coloring problem is NP-Complete and the problem of finding a stable set of weight at least k is also NP-Complete. In other words, these problems are difficult. In this manuscript we will present some advances concerning coloring problems, the MWSS problem and a disproof of a graph theory conjecture related to clique and stable sets. Advanced algorithms on difficult problems are only possible thanks to the knowledge of the data structure we have in input. For example, computing the maximumweight stable set can be done efficiently in specific classes of graphs thanks to the precise structure of these classes. On the other hand, when we do not know anything on the structure of the graph we have in input, it is unlikely that we will be able to produce an efficient algorithm for this problem. Hence, in graph theory, describing the structure of the object we handle is very important and is a subfield of its own. Structural graph theory aims at proving theorems describing properties of graphs. For example, the theorem of Kuratowski [START_REF] Kuratowski | Sur le probleme des courbes gauches en topologie[END_REF] fully describes when it is possible to draw a graph on the plane without any edge crossing. Even though this can be considered a purely theoretical work, it has a great impact on more applied graph theory problems. In Chapter 4 and Chapter 6 we deal with respectively, a generalization of the coloring problem and a conjecture linked to a specific graph class. The results presented in these two chapters are not of an algorithmic aspect. They are theoretical and improve the knowledge around two specific classes of graphs.

Outline of the manuscript

We will give a general outline of what is present in this manuscript. The main topics discussed are coloring, list coloring, maximum-weighted stable set and normal graphs.

Chapter 3 is dedicated to the k-coloring problem in graphs. We start with a short history of graph coloring in Section 3.1 and then present some known results regarding a very important graph class, perfect graphs, which is closely linked to the coloring problem. Then we explain why graph classes forbidding induced paths, P -free graphs, are important for the k-coloring problem and present a summary of important results regarding the k-coloring problem in P -free graphs. Afterwards, we present in Section 3.2 the structure of (P 6 ,bull)-free graphs. Finally we expose in Section 3.3 a polynomial-time algorithm for the 4-coloring problem in (P 6 ,bull)-free graphs and a polynomial-time algorithm for the k-coloring problem in (P 6 , bull, gem)-free graphs.

In Chapter 4 we deal with the list coloring problem, which is a generalization of the coloring problem. In Section 4.1 we explain how the coloring problem can be generalized to the list coloring problem and why the class of claw-free graphs is important for this problem. Then in Section 4.2 we describe the structure of claw-free perfect graphs. We use these descriptions to prove in Section 4.3 that any claw-free perfect graph with clique number bounded by 4 has its chromatic number equal to its choice number.

Chapter 5 is dedicated to the Maximum Weight Stable Set problem. Section 5.1 describes the context and why P -free graphs are interesting regarding this problem. Then in Section 5.2 we give structure properties of bull-free graphs that will be used in our algorithms. Finally, Section 5.3 and 5.4 are dedicated to the description of a polynomial-time algorithm for the MWSS problem in respectively (P 6 , bull)-free graphs and (P 7 , bull)-free graphs. The techniques used in Section 5.3 and Section 5.4 are different.

Chapter 6 deals with a disproof of the Normal Graph Conjecture. First, in Section 6.1 we start by describing the origins of normal graphs and expose the context and what is known around this specific graph class. In Section 6.2 we describe the philosophy of our main tool used in our disproof, the Probabilistic Method, and also provide a pedagogical example of how it was used in a famous proof of Erdős. Finally in Section 6.3 we describe the structure of our random graph and in Section 6.4 provide the proof of our key lemma.

Definitions

We will define in this subsection classical elementary graph theoretic concepts.

A finite simple graph, denoted by G = (V, E), is an ordered pair consisting of a finite set V, called the vertices, and E, the set of edges which are 2-element subsets of V. An edge {u, v} is also denoted by uv. To refer specifically to the set of vertices and edges of a graph G, we respectively denote this by V(G) and E(G). Given a vertex v, the neighborhood of v, denoted by N(v), is the set of all vertices adjacent to v. The closed neighborhood, denoted by N[v], is defined by N[v] = N(v) ∪ {v}. Similarly, for any subset of vertices S ⊆ V(G), we define N(S) = ( v∈S N(v)) \ S and N[S] = N(S) ∪ S.

The maximum degree of a graph G, denoted by ∆(G), is the maximum degree among all vertices of G. The complement of a graph G, denoted by G, refers to the graph on the same vertex set and with edge set ( V(G)

2 ) \ E(G). The clique number of a graph G, denoted by ω(G), is the maximum cardinality of a clique, contained in G, which is a subset K ⊆ V(G) of vertices such that any two vertices in K are adjacent. A clique is also called a complete graph and is denoted by K n where n ≥ 1 is the number of vertices. The complete graph on three vertices, K 3 , is also called a triangle. A stable set is a subset of vertices S ⊆ V(G) such that any two vertices in S are non-adjacent. The stability number of a graph G, denoted by α(G), is the maximum cardinality of a stable set contained in G. Given a graph G, the induced subgraph H on the vertex set S ⊆ V(G), denoted by G[S] is the graph on vertex set S and whose edges set is

E(H) = {uv ∈ E(G) | u, v ∈ S}.
Given two graphs G and G , we say that G is isomorphic to G if there exists a bijection f from V(G) to V(G ) such that any two vertices u and v of G are adjacent in G if and only if f (u) and f (v) are adjacent in G . Given a family H of graphs, a graph G is said to be H-free if no induced subgraph of G is isomorphic to a member of H. When H has only one element H, we say that G is H-free.

Preliminaries

Modular decomposition

We say that a vertex v is complete to S if v is adjacent to every vertex in S, and that v is anticomplete to S if v has no neighbor in S. For two sets S, T ⊆ V(G) we say that S is complete to T if every vertex of S is adjacent to every vertex of T, and we say that S is anticomplete to T if no vertex of S is adjacent to any vertex of T. A homogeneous set is a set S ⊆ V(G) such that for every vertex v in V(G) \ S, either v is complete to S or anticomplete to S, see Figure 2.4. A homogeneous set is said to be proper if it contains at least two vertices and is different from V(G). A prime graph is a graph that has no proper homogeneous set. A module3 is a homogeneous set S such that every homogeneous set S satisfies either S ⊆ S or S ⊆ S or S ∩ S = ∅. In particular V(G) is a module and every singleton {v} (v ∈ V(G)) is a module. Given a graph G and a partition P of its vertex set where each partition class is a module of G, the quotient graph, denoted by G/P is defined as the subgraph of G induced by picking one vertex from each partition class. The theory of modular decomposition (the study of the modules of a graph) is a rich one, starting from the seminal work of Gallai [START_REF] Gallai | Transitiv orientierbare graphen[END_REF]. We mention here only the results we will use. A subset of vertices S ⊆ V(G) is a maximal module if S = V(G) and there is no module S such that S S V(G).

• Any graph G has at most 2|V(G)| modules, and they can be produced by an algorithm of time complexity O(|V(G)| + |E(G)|) [START_REF] Tedder | Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations[END_REF].

• If both G and G are connected, then G has at least four maximal modules and they form a partition of V(G) (called a modular partition), and every homogeneous set of G different from V(G) is included in a maximal module; moreover, the induced subgraph G of G obtained by picking one vertex from each maximal module of G is a prime graph.

A homogeneous set is a generalization of a connected component in the sense that, in the connected component, every vertex has the same set of non-neighbors outside of the component. In a homogeneous set, every vertex has the same set of non-neighbors and neighbors outside of the homogeneous set.

Gallai defined a recursive algorithm to compute the modular decomposition of any graph G. This algorithm takes any graph G in input and outputs the modular decomposition tree, denoted by T(G), which totally encodes the modular decomposition. A modular decomposition tree contains three types of nodes. Prime nodes, series nodes and parallel nodes. A prime node represents the fact that the graph G is connected and so is its complement. It means that we can find a modular partition of its vertex set P such that the quotient graph G/P is a prime graph. A serial node implies that the quotient graph induced by the label of its children is a complete graph. Finally, a parallel node implies that the quotient graph induced by the label of its children is a stable set. More formally, the recursive algorithm A defined by Gallai is described in Algorithm 1.

Algorithm 1 A(G)

Input : A graph G Output : The modular decomposition tree of G 1: procedure A(G)

2: if |V(G)| = 1 then 3: return V(G) 4:
else if G is disconnected then

5: partition G into components M 1 , . . . , M k 6:
create a parallel node R with label V(G) end for return R 17: end procedure This algorithm produces the modular decomposition tree of the graph G. In other words, it is a tree which totally encodes the relation (full adjacency or full nonadjacency) between any pair of modules of G and recursively on any subgraph of G induced by a module. See Figure 2.5 for an example of a modular decomposition.

Clique-width

Informally, the clique-width is an integer which measures the complexity of constructing G through a sequence of certain operations. More precisely, the clique-width of a graph G, denoted by cw(G), first introduced in [START_REF] Courcelle | Handle-rewriting hypergraph grammars[END_REF], is defined as the minimum number of labels needed to construct G by using the following four operations (see Figure 2.6 for an example):

• Create a vertex v labeled by integer i.

• Make the disjoint union of two labeled graphs.

• Join by an edge all vertices with label i to all vertices with label j for two labels i = j.

• Relabel all vertices of label i by label j.

A c-expression for a graph G of clique-width c is a sequence of the above four operations that generates G and uses at most c different labels. The clique-width is a graph parameter that has been widely studied. A famous result involves the class of P 4 -free graphs, also known as co-graphs. In fact, co-graphs can be defined as the graphs having a clique-width of at most 2, as proved in [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF]. It is shown in [START_REF] Fellows | Clique-width is NP-Complete[END_REF] that it is NP-hard to compute the clique-width of a graph G. On the other hand Oum and Seymour [START_REF] Oum | Approximating clique-width and branch-width[END_REF], provide an algorithm that, given a graph G and a fixed integer c, outputs a c -expression in O(n 9 log n), where c = 2 3c+2 -1 or a witness that G has clique-width at least c + 1. This was later improved by Oum [START_REF] Oum | Approximating rank-width and clique-width quickly[END_REF] with a complexity of O(n 3 ) where c = 8 c -1. Courcelle, Makowsky and Rotics proved a meta-theorem which has been used in several occasions to prove the existence of polynomial-time algorithm deciding the k-coloring problem or solving the maximum-weight stable set in certain classes of graphs. They proved that if a class of graph has bounded cliquewidth c, and for any graph in this class it is possible to find a c-expression in at most f (G) computational steps, then it is possible to find the maximum-weight stable set or decide the k-colorability of G for fixed k, in at most f (G) computational steps. This result is incredibly useful as, in certain cases, it basically narrows down the problem to only showing that a certain class of graphs has bounded clique-width. More formally, their theorem is as follows.
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THEOREM 2.1 [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF] If a class of graphs C has bounded clique-width c, and there is a polynomial f such that for every graph G in C with n vertices and m edges a c-expression can be found in time O( f (n, m)), then for fixed k the k-coloring problem or the MWSS problem can be solved in time O( f (n, m)) for every graph G in C.

Moreover, in order to upper bound the clique-width of a graph G, it suffices to consider only the prime induced subgraphs of G. THEOREM 2.2 [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF][START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF] The clique-width of a graph is the maximum of the clique-width of its prime induced subgraphs. Chapter 3

Graph Coloring

Context and motivations

In 1852, Francis Guthrie, a South African mathematician and botanist, while coloring a map of the counties of England in a way such that no two counties sharing a border would receive the same color (see Figure 3.1), noticed in his example that four colors were required. He conjectured from this in 1852 that four colors would be sufficient to color any map as described above. This map coloring problem is the origin of graph coloring. In fact, this exact problem can be seen as a graph coloring problem as follows. For every region of the map put exactly one point in its center. Add an edge between two points whenever the corresponding regions share a border. Finally, ask to assign a color to every vertex such that any two adjacent vertices get different colors. What is the minimum number of color needed to color such a graph? A planar graph is a graph that can be drawn on the plane in such a way that no edges cross each other. The Four Color Conjecture asked the following, any planar graph can be colored with four colors. This problem, solved since 1977 by Appel and Haken [4], started a very important field in graph theory. Formally, the coloring problem can be stated as follows. For any integer k ≥ 1, a k-coloring of a graph G is an assignment of at most k colors to the vertices of G. More formally it is a mapping c : V(G) → {1, . . . , k}. A proper k-coloring is a k-coloring satisfying c(u) = c(v) for any two adjacent vertices u and v. A graph is said to be k-colorable if it admits a proper k-coloring. It is then natural to define the minimum number of colors needed to properly color the graph. The chromatic number of a graph G, denoted by χ(G), is the smallest integer k such that G is k-colorable.

More generally, graph coloring is a way to formalize a conflict problem in discrete mathematics. Whenever two elements are in conflict, put an edge between them and ask for them to not have the same color. From this setting, natural questions arise. Can we provide the upper and lower bounds on the number of colors needed to respect all the constraints? Is it possible to find a color for every element with a fast algorithm? Rough upper and lower bounds can be obtained easily. Remark that in a clique of size n, the number of colors needed is n. Hence we obtain the following lower bound on the chromatic number, ω(G) ≤ χ(G). It can be proved by induction on the number of vertices of G that χ(G) ≤ ∆(G) + 1. Pick a vertex v, color G \ {v} by induction and assign to v a color not present in its neighborhood. Hence we obtain the trivial inequality:

ω(G) ≤ χ(G) ≤ ∆(G) + 1.
Coloring properly a graph is a way of grouping together vertices that can have the same color. An ideal way of achieving this is to group them in stable sets of maximum size as follows. Pick a stable set of maximum cardinality S and assign to every vertex of S the same color. Delete S from the graph and repeat this until there is no more vertex in the graph. This procedure gives the following other lower bound:

|V(G)| α(G) ≤ χ(G).
It is quite natural to ask how the chromatic number behaves whenever we forbid big sets of pairwise adjacent vertices? It is easy to see that χ(K n ) = n. One could wonder if we can upper bound the chromatic number in terms of the clique number. Even though it might appear to be counter intuitive, this is false. In fact, the chromatic number can be arbitrarily larger than the clique number. Mycielski [START_REF] Mycielski | Sur le coloriage des graphes[END_REF] provided a famous iterative construction of a family of graphs for which (see Figure 3.2 for an example), given any integer k ≥ 1 there exists a graph G in this family such that ω(G) ≤ 2 and χ(G) = k.

Mycielski graphs are defined inductively as follows. The first Mycielski graph M 1 is the single vertex graph. The second Mycielski graph M 2 is isomorphic to K 2 . For k ≥ 2, let V(M k ) = {v 1 , v 2 , . . . , v n } where n is the total number of vertices. The k + 1 th Mycielski graph, M k+1 , is obtained from M k by doing the following operations: 1. Create a copy w i of every vertex v i and add an additional vertex z;

M 2 M 3 M 2 M 2 M 3 M 2 M 3 M 3 M 4
2. For each copied vertex w i , put an edge between w i and every neighbor of v i ;

3. Add an edge between z and every copied vertex w i .

In other words, M k+1 is defined by

V(M k+1 ) = V(M k ) ∪ {w 1 , . . . , w n , z} and E(M k+1 ) = E(M k ) ∪ {w i v j | v i v j ∈ E(M k )} ∪ {w i z | 1 ≤ i ≤ n}.
THEOREM 3.1 [START_REF] Mycielski | Sur le coloriage des graphes[END_REF] The Mycielski graph M k , k ≥ 1, is triangle-free and has chromatic number k.

Proof. First, let us show that any Mycielski graph is triangle-free. The first Mycielski graph is the single vertex graph. We proceed by induction on k ≥ 2. The base case, M 2 , is obviously triangle-free since it is isomorphic to K 2 . Let us show that M k+1 is triangle-free. The set W of copied vertices is a stable set of M k+1 . The vertex z is only adjacent to vertices of W. So z is not contained in any triangle. If there is a triangle T in M k+1 , two vertices of T must be in V(M k ) and the third vertex is in W. Let V(T) = {w i , v j , v k }. Since w i is adjacent to v j and v k , it follows from the definition of M k+1 that v i , v j and v k are pairwise adjacent. Hence, {v i , v j , v k } induces a triangle in M k , a contradiction. It remains to show that χ(M k ) = k for every k ≥ 1. The first Mycielski graph is the single vertex graph and has chromatic number 1. We proceed by induction on k ≥ 2. The base case M 2 has chromatic number 2 since it is isomorphic to K 2 . Let us prove that χ(M k+1 ) = k + 1. By the induction hypothesis we can color the vertices of V(M k ) with k colors. Now assign to every vertex w i the same color as v i and assign an additional color to z. We obtain that χ(M k+1 ) ≤ k + 1. It suffices to show now that χ(M k+1 ) ≥ k + 1. By the induction hypothesis, k different colors appear in M k . Furthermore, for every color c, there exists a vertex v i of M k , for some i ∈ {1, . . . , n} depending on c, whose neighborhood in M k contains all other k -1 colors, otherwise we could recolor all vertices colored c in M k and reach a contradiction on the chromatic number of M k . Since w i and v i have the same neighborhood in M k , it follows that k different colors appear in W. Finally, z being adjacent to every vertices of W, needs an additional color. Which gives that χ(M k+1 ) ≥ k + 1, and the conclusion follows.

One could wonder what specific graphs G are such that ω(G) = χ(G)? And which graphs G are such that ω(G) < χ(G)? We will discuss this matter in the next subsection.

Edge coloring of a graph is the analogous version of the vertex coloring, applied to the edge set. A k-edge-coloring of a graph G is an assignment of k colors to the edges of G, i.e. a mapping C : E(G) → {1, . . . , k}. Similarly, a proper k-edge-coloring is a k-coloring of the edges verifying c(e 1 ) = c(e 2 ) for any two edges e 1 and e 2 sharing at least one common vertex (see Figure 3.3). The chromatic index of a graph G, denoted by χ (G), is the smallest integer k such that G is k-edge-colorable. A trivial lower bound on the chromatic index is given by the maximum degree. Given a graph G, ∆(G) ≤ χ (G). In fact, the chromatic index of simple graphs cannot be far from the maximum degree. In 1964, Vizing [START_REF] Vizing | On an estimate of the chromatic class of a p-graph[END_REF] proved the following theorem. THEOREM 3.2 [START_REF] Vizing | On an estimate of the chromatic class of a p-graph[END_REF] Let G be a simple graph, then χ (G) ∈ {∆(G), ∆(G) + 1}.

A multigraph is a graph that can have multiple edges between pair of vertices. The multiplicity of a graph G, denoted by µ(G) is the maximum number of edges in any bundle of parallel edges. In a multigraph,the chromatic index is linked to both the maximum degree and the multiplicity. Vizing proved the following more general theorem. Edge coloring can be restated in terms of line-graphs. Given a graph G, coloring the edges of G is equivalent to color the vertices of its line-graph L(G).

Perfect graphs

The birth of perfect graphs takes root in the work of Shannon in [START_REF] Shannon | The zero error capacity of a noisy channel[END_REF] concerning zero error capacity of a noisy channel. A perfect graph is a graph G such that every induced subgraph H of G satisfies χ(H) = ω(H). It is Claude Berge, motivated by the Shannon capacity, who initiated the study of perfect graphs. One remarkable moment in the history of perfect graphs is in 1961 when Claude Berge [START_REF] Berge | Färbung von graphen, deren sämtliche bzw. deren ungerade kreise starr sind[END_REF] formulated two very famous conjectures (both of them proved by now) about perfect graphs. The first one is the following.

• A graph G is perfect if and only if its complement is perfect. This was proved by Lovász [START_REF] Lovász | Normal hypergraphs and the perfect graph conjecture[END_REF] using the so called Replication Lemma which we restate here for its self interest. Let G be a graph and v a vertex of G. We say that G is obtained from G by replicating v if G is obtained by adding a new vertex v adjacent to v and to all the neighbors of v in G (v is also called a twin of v).

LEMMA 3.4 [65] Replication Lemma

If G is a perfect graph and G is obtained from G by replicating a vertex v of G, then G is perfect.

Let ≥ 3 be an integer, the cycle on vertices is the graph

C with V(C ) = {v 1 , . . . , v } and E(C ) = {v 1 v 2 , v 2 v 3 , . . . , v -1 v , v v 1 }. A hole of a graph G is an in- duced subgraph of G
which is isomorphic to a cycle on at least four vertices. An antihole of a graph G is an induced subgraph of G whose complement is a hole in G. An odd hole is a hole on an odd number of vertices and an odd antihole is an antihole on an odd number of vertices. See Figure 3.5 for some small examples of odd holes and odd antiholes. A Berge graph is a graph that does not contain any odd hole nor odd antihole. The second conjecture, which is the most famous of the two, can be stated as follows.

• A graph is perfect if and only if it is Berge.

This was proved in 2002 by Chudnovsky, Robertson, Seymour and Thomas [START_REF] Chudnovsky | The strong perfect graph theorem[END_REF].

THEOREM 3.5 [18]

A graph is perfect if and only if it is Berge.

A polynomial-time algorithm computing the maximum-weight stable set in any perfect graph was designed by Grötchel, Lovász and Schrijver [START_REF] Grötschel | The ellipsoid method and its consequences in combinatorial optimization[END_REF] in 1981. THEOREM 3.6 [START_REF] Grötschel | The ellipsoid method and its consequences in combinatorial optimization[END_REF] The maximum-weight stable set problem can be solved in polynomial time in the class of perfect graphs.

Their algorithm relies on semi-definite programming and more precisely on the ellipsoid method. Let C be a subclass of perfect graphs for which there exists an algorithm that computes a maximum-weight stable set and a maximum-weight clique in O(n k ) for any graph of C. Gröstchel, Lovász and Schrijver manufactured an algorithm that given a graph of C, computes an optimal coloring for it by using the maximum weighted stable set and clique algorithm as a black box: THEOREM 3.7 [START_REF] Grötschel | Geometric algorithms and combinatorial optimization[END_REF] There exists an algorithm of complexity O(n k+2 ) whose input is a graph from C and whose output is an optimal colouring of G.

We refer the reader to the survey of Nicolas Trotignon [START_REF] Trotignon | Perfect graphs: a survey[END_REF] for a more in-depth overview regarding perfect graphs. However, this is not a practical algorithm as it relies on the ellipsoid method. This algorithm is not considered combinatorial in the sense that a part of it relies on semidefinite programming and not on structural aspects of graphs. There is no formal definition of what a combinatorial algorithm is, but one could say that it is an algorithm using purely graph theoretic approaches such as graph decomposition and graph searches (note that linear programming is also considered combinatorial). Hence, one of the famous and still open problem concerning perfect graphs is the following. Does there exist a purely combinatorial algorithm coloring optimally any perfect graph? Several authors managed to answer in the affirmative for a few subclasses of perfect graphs. A class of graphs G is hereditary if for every G ∈ G and every induced subgraph H of G, H is also in G. It is common to consider graph classes defined by forbidden induced subgraphs, we then talk about the class of F -free graphs for a given family F of forbidden graphs. The bull is the graph Figure 3.8). For instance, de Figueiredo and Maffray provided algorithms solving different optimization problems in bullfree perfect graphs, including the MWSS problem and the coloring problem. Later, Penev [START_REF] Penev | Coloring bull-free perfect graphs[END_REF] improved the complexity of these algorithms and proved the following theorem.

G with V(G) = {v 1 , v 2 , v 3 , v 4 , v 5 } and E(G) = {v 1 v 2 , v 2 v 3 , v 1 v 3 , v 1 v 4 , v 2 v 5 } (see

THEOREM 3.8 [82]

The k-coloring problem can be solved in time O(n 8 ) in the class of bull-free perfect graphs.

Although it is known that the k-coloring problem, and even computing the chromatic number, of a perfect graph can be done in polynomial time, what about combinatorial coloring algorithms in various subclasses of perfect graphs? The claw is the graph composed of three pairwise non-adjacent vertices S and an additional one complete to S (see Figure 3.6). Given two integer p and q, the complete bipartite, denoted by K p,q , is the bipartite graph with vertex set V(K p,q ) = {X ∪ Y} where |X| = p, |Y| = q and there is all possible edges between X and Y.

The claw is isomorphic to the graph K 1,3 . Hsu produced a polynomial-time algorithm to compute an optimal coloring for any claw-free perfect graph. THEOREM 3.9 [START_REF] Hsu | How to color claw-free perfect graphs[END_REF] An optimal proper coloring of any claw-free perfect graph can be computed in time O(n 4 ). 

THEOREM 3.10 [91]

Any perfect diamond-free graphs G can be optimally colored in time O(ω(G)n 2 ).

A chordal graph is a graph without any hole or antihole. A weakly chordal graph is a graph without any C k or C k for k ≥ 5. Hayward et al. provided a coloring algorithm for the class of weakly chordal graphs. [START_REF] Hayward | Optimizing weakly triangulated graphs[END_REF] There exists an algorithm which, given any weakly chordal graph G on n vertices and m edges, returns a coloring of G with ω(G) colors in time O(n 4 + n 3 m).

THEOREM 3.11

The square is the graph isomorphic to C 4 . Chudnovsky et al. proved the following theorem, tightening even more what is left to do. [START_REF] Chudnovsky | Coloring square-free berge graphs[END_REF] There exists an algorithm which, given any square-free perfect graph G on n vertices, returns a coloring of G with ω(G) colors in time O(n 9 ).

THEOREM 3.12

The following section surveys some of the well known results concerning coloring in the class of P -free graphs and explains why this is an interesting class for the kcoloring problem.

P -free graphs

One starting point concerning this problem is the following theorem of Holyer. THEOREM 3.13 [START_REF] Holyer | The NP-Completeness of edge-coloring[END_REF] For any fixed k ≥ 3, the k-coloring problem is NP-Complete for the class of linegraphs.

In fact, Holyer proved that deciding if a graph whose all vertices are exactly of degree 3, is 3 or 4-edge colorable is NP-Complete. Its proof involves a reduction from the 3-SAT problem. It is easy to see that that line-graphs are included in the class of claw-free graphs. Hence, we can easily deduce the following observation. 

OBSERVATION 3.14

For any fixed k ≥ 3, the k-coloring problem is NP-Complete for the class of H-free graphs where H contains the claw.

Another important theorem is due to Kaminski and Lozin.

THEOREM 3.15 [START_REF] Kaminski | Coloring edges and vertices of graphs without short or long cycles[END_REF] For every k, g ≥ 3, the problem of k-coloring graphs with girth at least g is NP-Complete.

Let ≥ 1 be an integer, the path on vertices is the graph P with Figure 3.9). When considering a cycle C or a path P, a chord, is an edge not included in the edge set of C or P whose endpoints are in the vertex set of C or P. From the previous results stated above, we can deduce the following observation.

V(P ) = {v 1 , . . . , v } and E(P ) = {v 1 v 2 , v 2 v 3 , . . . , v -1 v } (see

COROLLARY 3.16

For any fixed k ≥ 3 and graph H which is not a disjoint union of paths, deciding whether an H-free graph is k-colorable is NP-Complete.

Hence, among H-free graphs where H is any given graph, the only graph classes worth taking a look at concerning the k-colorability problem are the one forbidding induced paths. Many results came to light during the last few decades. Here are some of the most important ones. Kral' et al. proved the following: THEOREM 3.17 [START_REF] Král | Complexity of Coloring Graphs without Forbidden Induced Subgraphs[END_REF] Given a graph H and an integer k. Determining if the chromatic number of a H-free graph is at most k is polynomial-time solvable if H is an induced subgraph of P 4 or of P 3 ∪ K 1 , and NP-Complete for any other H.

Corneil et al. settled the coloring problem for any P 4 -free graph.

THEOREM 3.18 [START_REF] Corneil | Complement reducible graphs[END_REF] Computing the chromatic number of any P 4 -free graph can be done in polynomial time.

A generalization of vertex coloring, called here k-restricted-coloring is defined as follows. Assign to each vertex a list of colors which is a subset of {1, . . . , k}. Is it possible to find a proper coloring of the vertices such that each vertex picks a color from its authorized colors list. The case of P 5 -free graphs has been settled by Hoàng et al.

THEOREM 3.19 [46]

The k-restricted-coloring problem can be solved in polynomial time in any P 5 -free graph.

Randerath and Schiermeyer [START_REF] Randerath | 3-colorability ∈ P for P 6 -free graphs[END_REF] proved that the 3-coloring problem can be decided in polynomial time in the class of P 6 -free graphs. This was later improved by Broersma et al. [START_REF] Broersma | Three complexity results on coloring P k -free graphs[END_REF]. This has been generalized to the class of P 7 -free graphs by Bonomo et al.

THEOREM 3.20 [9]

For any P 7 -free graph, the 3-coloring problem can be decided in polynomial time.

On the other hand, Huang settled complexity results when either k ≥ 4 and ≥ 7 or k ≥ 5 and ≥ 6.

THEOREM 3.21 [51]

The k-coloring problem is NP-Complete for P -free graphs when either k ≥ 4 and ≥ 7 or k ≥ 5 and ≥ 6.

Which leads us to the fact that the open cases are when k = 3 and ≥ 8 and when k = 4 and = 6 since their complexity status is still unknown. The following table sums up the state of the art concerning the k-coloring of P -free graphs. A few results are known in subclasses of P 6 -free graphs. Hell et al. [START_REF] Hell | Complexity of coloring graphs without paths and cycles[END_REF] proved that deciding whether a (P 6 , C 4 )-free graph is 4-colorable can be done in polynomial time and gave the full list of forbidden induced subgraphs characterizing the 4-colorable (P 6 , C 4 )-free graphs. Chudnovsky et al. [START_REF] Chudnovsky | 4-coloring P 6 -free graphs with no induced 5-cycles[END_REF] gave a polynomial-time algorithm that decides if a (P 6 , C 5 )-free graph is 4-colorable. Another interesting result is that of Brause et al. [START_REF] Brause | 4-colorability of P 6 -free graphs[END_REF] who gave a polynomial-time algorithm that decides if a (P 6 , bull, Z 2 )-free graph or a (P 6 , bull, kite)-free graph is 4-colorable, where Z 2 and the kite are the graphs depicted in Figure 3.10. A natural generalization of the two previous graph classes is the class of (P 6 , bull)-free graphs. A (P 6 , bull)-free graph, can have a Z 2 or a kite graph as an induced subgraph. Section 3.2 and 3.3 will be dedicated to the study of this class of graphs. Simplifications of one of our coloring procedure rely on the following theorem. 

THEOREM 3.22

Every P 4 -free graph G satisfies the following two properties:

• If G has at least two vertices, then it has a pair of twins [START_REF] Corneil | Complement reducible graphs[END_REF].

• G has clique-width at most 2 [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF].

Finally, we need the following result of Brandstädt et al. [START_REF] Brandstädt | P 6 -and triangle-free graphs revisited: structure and bounded clique-width[END_REF]. They established that (P 6 , K 3 )-free graphs have bounded clique-width and that a c-expression can be computed efficiently. THEOREM 3.23 [START_REF] Brandstädt | P 6 -and triangle-free graphs revisited: structure and bounded clique-width[END_REF] The class of (P 6 , K 3 )-free graphs has bounded clique-width c, and a c-expression can be found in time O(|V(G)| 2 ) for every graph G in this class.

This chapter aims at providing a polynomial-time algorithm for the 4-coloring problem of (P 6 , bull)-free graphs and a polynomial-time algorithm for the k-coloring problem of (P 6 , bull, gem)-free graphs (see Figure 3.14 for the gem). In order to do this, we describe the structure of these graphs in the following section.

Structure of (P 6 , bull)-free graphs

The goal of this section is to give a structural description of (P 6 , bull)-free graphs that suits well with the coloring problem. A quasi-prime graph G is a graph for which every proper homogeneous set of G is a clique. In a quasi-prime graph, every proper homogeneous set consists of pairwise twins. 

General structure

The double-wheel graph is the graph 

G with V(G) = {v 1 , v 2 , . . . , v 5 , a, b} such that {v 1 , v 2 , . . . , v 5 } induces a C 5

LEMMA 3.24

In order to decide in polynomial time the 4-colorability of a (P 6 , bull)-free graph it suffices to prove it for the (P 6 , bull)-free graphs G that satisfy the following properties:

(a) G is connected and G is connected. (b) G is quasi-prime.
(c) G is K 5 -free and double-wheel-free.

Proof. Assume that we want to determine whether a (P 6 , bull)-free graph G is 4colorable.

(a) If G is not connected we can examine each component of G separately. Now suppose that G is not connected. So V(G) can be partitioned into two non-empty sets V 1 and V 2 that are complete to each other. It follows that χ

(G) = χ(G[V 1 ]) + χ(G[V 2 ]). A necessary condition for G to be 4-colorable is that G[V i ] is 3-colorable for each i = 1, 2.
Using the algorithms from [START_REF] Broersma | Three complexity results on coloring P k -free graphs[END_REF] or [START_REF] Randerath | 3-colorability ∈ P for P 6 -free graphs[END_REF] we can test whether

G[V 1 ] and G[V 2 ] are 3-colorable. If any of them is not 3-colorable we declare that G is not 4-colorable and stop. If each G[V i ] is 3-colorable, we can determine the value of χ(G[V i ]
) by further testing whether G[V i ] is either edgeless or bipartite. Hence we can determine if G is 4-colorable (and if it is, give a 4-coloring) in polynomial time.

(b) Suppose that G is not quasi-prime. So G has a homogeneous set X that is not a clique and X = V(G). Since G and G are connected X is included in a maximal module. Hence let us consider any maximal module M of G that is not a clique. We know that M = V(G), so the set N(M) is not empty, and N(M) is complete to M. So a necessary condition for G to be 4-colorable is that G[M] is 3-colorable. Using the algorithms from [START_REF] Broersma | Three complexity results on coloring P k -free graphs[END_REF] or [START_REF] Randerath | 3-colorability ∈ P for P 6 -free graphs[END_REF] we can determine whether G[M] is 3-colorable or not. If it is not we declare that G is not 4-colorable and stop. If G[M] is 3-colorable, we can determine the value of χ(G[M]) by further testing whether G[M] is either edgeless or bipartite. Then we build a new graph G from G by removing M and adding a clique K M of size χ(G[M]) with edges from every vertex of K M to every vertex in N(M) and no other edge. Thus K M is a homogeneous set in G , with the same neighborhood as M in G. We observe that:

G is P 6 -free and bull-free.

(3.1)

Proof: If G has an induced subgraph H that is either a P 6 or a bull, then

H must contain a vertex v from K M (because G \ K M = G \ M)
, and H does not contain two vertices from K M since H has no twins. Then, replacing v with any vertex from M yields an induced P 6 or bull in G, a contradiction. So (3.1) holds.

We repeat this operation for every maximal module of G that is not a clique. Hence we obtain a graph G where every such module M has been replaced with a clique K M , and, by the same argument as in (3.1), G is P 6 -free and bull-free. For convenience we set K L = L whenever L is a maximal module of G that is a clique. We observe that:

G is quasi-prime. ( 3.2) 
Proof: Suppose that G has a homogeneous set Y that is not a clique, and

Y = V(G ). Let A = N G (Y ) and B = V(G ) \ (Y ∪ A ). For each vertex x ∈ V(G ) let M x be the maximal module of G such that x ∈ K M x . Let Y = x∈Y M x , A = x∈A M x and B = x∈B M x .
In G the set Y is complete to A and anticomplete to B, and The operations performed to construct G can be done in polynomial time using modular decomposition [START_REF] Tedder | Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations[END_REF] and the algorithms from [START_REF] Broersma | Three complexity results on coloring P k -free graphs[END_REF][START_REF] Randerath | 3-colorability ∈ P for P 6 -free graphs[END_REF]. Since the maximal (c) One can decide in polynomial time whether G contains K 5 or the double wheel, and if it does we stop since these two graphs are not 4-colorable.

V(G) = Y ∪ A ∪ B. So Y is a homogeneous set of G, and Y = V(G), so there is a maximal module L of G such that Y ⊆ L. But this implies Y ⊆ K L , a contradiction. So (3.2) holds. G is 4-colorable if and only if G is 4-colorable. ( 3 
v 1 v 2 v 3 v 4
The complexity of testing if a P 6 -free graph on n vertices is 3-colorable is O(n α+2 ) in [START_REF] Randerath | 3-colorability ∈ P for P 6 -free graphs[END_REF] (where α is the exponent given by the fast matrix multiplication, α < 2.36) and seems to be O(n 6 ) in [START_REF] Broersma | Three complexity results on coloring P k -free graphs[END_REF] using the special dominating set argument from [START_REF] Van 't Hof | A new characterization of P 6 -free graphs[END_REF]. Hence, by using the algorithm from [START_REF] Randerath | 3-colorability ∈ P for P 6 -free graphs[END_REF], the total complexity of the reduction steps described in the preceding lemma is O(n 6 ).

Brooms and magnets

In this subsection we prove that if a quasi-prime (P 6 , bull)-free graph G contains certain special graphs (called "magnets"), then the 4-colorability of G can be solved in polynomial time using a reduction to the 2-list coloring problem.

We first show that if a (P 6 , bull)-free graph G contains a certain graph which we call a broom, then either G is not quasi-prime, or the broom can be extended to subgraphs that will be convenient to us.

A broom is a graph with six vertices v 1 , . . . , v 6 and edges

v 1 v 2 , v 2 v 3 , v 3 v 4 and v 5 v i for each i ∈ {1, 2, 3, 4, 6}. See Figure 3.12.
Let F 0 be the graph with seven vertices v 1 , . . . , v 7 and edges

v 1 v 2 , v 2 v 3 , v 3 v 4 , v 4 v 5 , v 5 v 1 , v 6 v i for all i ∈ {1, . . . , 5}, and v 7 v 1 , v 7 v 2 , v 7 v 3 , v 7 v 4 . See Figure 3.13.
The following lemma is an extension of Lemma 2 from [START_REF] De Figueiredo | On the structure of bull-free perfect graphs[END_REF].

LEMMA 3.25

In a bull-free graph G, let {v 1 , . . . , v 6 } be a 6-tuple that induces a broom, with edges v 1 v 2 , v 2 v 3 , v 3 v 4 and v 5 v i for each i ∈ {1, 2, 3, 4, 6}. Then one of the following holds:

• G has a proper homogeneous set that contains {v 1 , v 2 , v 3 , v 4 }.

• There is a vertex z in V(G) \ {v 1 , . . . , v 6 } that is complete to {v 1 , v 4 , v 6 } and anticomplete to {v 2 , v 3 , v 5 }.

• There are two non-adjacent vertices z, t in V(G) \ {v 1 , . . . , v 6 } such that z is complete to {v 1 , v 4 , v 5 , v 6 } and anticomplete to {v 2 , v 3 } and t is complete to {v 1 , v 2 , v 3 , v 4 } and anticomplete to {v 5 , v 6 } (and so {v 1 , . . . , v 5 , z, t} induces an F 0 ).

Proof. Let us assume that the second and third outcome of the lemma do not occur.

Let P = {v 1 , v 2 , v 3 , v 4 } and R = V(G) \ P.
We classify the vertices of R as follows; let:

• A = {x ∈ R | x is complete to P ∪ {v 6 }}. • B = {x ∈ R | x is complete to P and not adjacent to v 6 }. • F = {x ∈ R | x is anticomplete to P}. • X = {x ∈ R \ F | N(x) ∩ P is included in either {v 1 , v 3 } or {v 2 , v 4 }}. • Y = {x ∈ R \ (A ∪ B) | x is complete to {v 1 , v 2 } or to {v 3 , v 4 }}. • Z = {x ∈ R | N(x) ∩ P = {v 1 , v 4 }}.
Note that v 5 ∈ A and v 6 ∈ F. We claim that:

The sets A, B, F, X, Y, Z form a partition of R.

(3.4)

Proof: Clearly these sets are pairwise disjoint. Suppose that there is a vertex

z in R \ (A ∪ B ∪ F ∪ X ∪ Y ∪ Z).
Since z is not in F, it has a neighbor in P, and up to symmetry we may assume that z has a neighbor in {v 1 , v 2 }, and since z is not in Y ∪ A ∪ B it has exactly one neighbor in {v 1 , v 2 }. Now since z is not in X, it must also have a neighbor in {v 3 , v 4 }, and similarly it has exactly one neighbor in {v 3 , v 4 }. Since z is not in X ∪ Z, it must be that N(z) ∩ P = {v 2 , v 3 }; but then P ∪ {z} induces a bull. So (3.4) holds.

F is anticomplete to Y.

Proof: Suppose that there are adjacent vertices f ∈ F and y ∈ Y. Up to symmetry y is complete to {v 1 , v 2 }. Then y must be adjacent to

v 3 , for otherwise { f , y, v 1 , v 2 , v 3 } induces a bull, and then to v 4 , for otherwise { f , y, v 2 , v 3 , v 4 } induces a bull. But then y should be in A ∪ B, not in Y. So (3.5) holds. A ∪ B is complete to X. (3.6) 
Proof: Suppose that there are non-adjacent vertices a ∈ A ∪ B and x ∈ X. Up to symmetry x has exactly one neighbor in {v 1 , v 2 }. Then x must be adjacent to v 4 , for otherwise {x, v 1 , v 2 , a, v 4 } induces a bull. So x is not adjacent to v 3 and, by a symmetric argument, x must be adjacent to v 1 . But then x should be in Z, not in X. So (3.6) holds.

A is complete to Y ∪ Z. (3.7) 
Proof: Suppose that there are non-adjacent vertices a and y ∈ Y ∪ Z. Suppose that y ∈ Y, say y is complete to {v 1 , v 2 }. By (3.5), y is not adjacent to v 6 . Then y must be adjacent to v 3 , for otherwise {y, v 2 , v 3 , a, v 6 } induces a bull, and then to v 4 , for otherwise {y, v 3 , v 4 , a, v 6 } induces a bull. But then y should be in A ∪ B, not in Y. Now suppose that y ∈ Z. Then y is adjacent to v 6 , for otherwise {y, v 1 , v 2 , a, v 6 } induces a bull. But then we obtain the second outcome of the lemma, a contradiction. So (3.7) holds.

Let B be the set of vertices b in B for which there exists in Let F be the set of vertices in the components of F that have a neighbor in X ∪ Z.

G a chordless path b 0 - b 1 -• • • -b k (k ≥ 1) such that b 0 ∈ Y ∪ Z, b 1 , . . . , b k ∈ B and b k = b. Such a path will be called a B -path for b. B \ B is complete to Y ∪ Z ∪ B . ( 3 
A ∪ (B \ B ) is complete to F . (3.10) Proof: Consider any a ∈ A ∪ (B \ B ) and f ∈ F . By the definition of F there is a chordless path f 0 -• • • -f k with f 0 ∈ X ∪ Z, f 1 , . . . , f k ∈ F and f k = f . By (3.6), (3.7) and (3.8), a is adjacent to f 0 . Since f 0 ∈ X ∪ Z, there are non-adjacent vertices v, v ∈ P such that f 0 is adjacent to v and not to v . Then a is adjacent to f 1 , for otherwise { f 1 , f 0 , v, a, v } induces a bull.
Then for each i ≥ 2 and by induction, a is adjacent to 

f i , for otherwise { f i , f i-1 , f i-2 , a, v } induces a bull. Hence a is adjacent to f . So (3.10) holds. B is anticomplete to F \ F . ( 3 
b 0 ∈ Z).
There exist two adjacent vertices v j , v j+1 of P such that b 0 is adjacent to exactly one of them. Vertex f is not adjacent to b 1 , for otherwise {b 0 , v j , v j+1 , b 1 , f } induces a bull. Then for each i ≥ 2 and by induction, 

f is not adjacent to b i , for otherwise { f , b i , b i-2 , v, b i-1 } induces a bull, where v is any vertex in P ∩ N(b 0 ). Hence f is not adjacent to b. So (3.11) is proved. Now let H = P ∪ X ∪ Y ∪ Z ∪ F ∪ B . By (3.4), V(G) is partitioned into the three sets H, A ∪ (B \ B ) and F \ F . It
∪ (B \ B ) = ∅ since v 5 ∈ A. So H is a homogeneous set that contains {v 1 , v 2 , v 3 , v 4 }, and it is proper since it does not contain v 5 .
We recall the variant of the coloring problem known as list coloring, which is defined as follows. Every vertex v of a graph G has a list L(v) of allowed colors; then we want to know whether the graph admits a coloring c such that c(v) ∈ L(v) for all v. When all lists have size at most 2 we call it a 2-list coloring problem; it is known that such a problem can be solved in linear time in the size of the input (the number of lists), as it is reducible to the 2-satisfiability of Boolean formulas, see [5].

Let us say that a subgraph

F of G is a magnet if every vertex x in G \ F has two neighbors u, v ∈ V(F) such that uv ∈ E(F).

LEMMA 3.26

If a graph G contains a magnet of bounded size, the 4-coloring problem can be solved on G in linear time.

Proof. Let F be a magnet in G. We try every 4-coloring of F. Since F has bounded size there is a bounded number of possibilities. We try to extend the coloring to the rest of the graph as a list coloring problem. Every vertex v in G \ F has a list L(v) of available colors, namely the set {1, 2, 3, 4} minus the colors assigned to the neighbors of v in F. Since F is a magnet every list has size at most 2. So coloring G \ F is a 2-list coloring problem, which can be solved in linear time by reducing it to the 2satisfiability problem.

In a graph G, let ∼ be the relation defined on the set E(G) by putting e ∼ f if and only if e and f have a common vertex and e ∪ f induces a P 3 in G. We say that G is P 3 -connected if it is connected and for any two edges e, f ∈ E(G) there is a sequence e 0 , e 1 , . . . , e k of edges of G such that e 0 = e, e k = f , and for all i ∈ {0, . . . , k -1} e i ∼ e i+1 . (In other words, G is P 3 -connected if it is connected and E(G) is the unique class of the equivalence closure of ∼.)

LEMMA 3.27

Let G be a bull-free graph and let F be a P 3 -connected induced subgraph of G. Suppose that there are adjacent vertices x, y in G \ F such that x is anticomplete to F, and y has two adjacent neighbors a, b in F. Then y is complete to F. Proof. Let a, b be two adjacent neighbors of y in F. Suppose that y has a non-neighbor c in F. Since F is P 3 -connected, there is a sequence e 0 , e 1 , . . . , e k of edges of F such that e 0 = {a, b}, e k contains c, and for all i ∈ {0, . . . , k -1} the edges e i and e i+1 have a common vertex and e i ∪ e i+1 induces a P 3 . Then there is an integer i such that y is complete to the two ends of e i and not complete to the two ends of e i+1 , say e i = uv and e i+1 = vw; but then {x, y, u, v, w} induces a bull, a contradiction.

F 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 F 1 v 1 v 2 v 3 v 4 v 5 v 6 F 2 v 1 v 2 v 3 v 4 v 5 v 6 F 3 v 1 v 2 v 3 v 4 v 5 v 6 F 4 v 1 v 2 v 3 v 4 v 5 v 6 F 5 v 1 v 2 v 3 v 4 v 5 v 6 F 6 v 1 v 2 v 3 v 4 v 5 v 6 v 7
We define six more graphs as follows (see Figure 3.13):

• Let F 1 be the graph with vertices v 1 , . . . , v 6 and edges v 1 v 2 , v 2 v 3 , v 3 v 4 , v 4 v 5 and v 6 v i for all i ∈ {1, . . . , 5}.

• Let F 2 be the graph obtained from F 1 by adding the edge v 1 v 5 .

• Let F 3 be the graph with vertices v 1 , . . . , v 6 and edges

v 1 v 2 , v 1 v 3 , v 2 v 3 , v 2 v 4 , v 3 v 4 , v 3 v 5 , v 4 v 5 , v 4 v 6 and v 5 v 6 .
• Let F 4 be the graph obtained from F 3 by adding the edge v 1 v 6 .

• Let F 5 = C 6 .

• Let F 6 be the graph with vertices v 1 , . . . , v 7 and edges

v 1 v 2 , v 2 v 3 , v 3 v 4 , v 4 v 5 , v 5 v 1 , v 6 v 1 , v 6 v 2 , v 6 v 3 , v 6 v 5 , v 7 v 2 , v 7 v 3 , v 7 v 4 , v 7 v 5 and v 7 v 6 .
The gem is the graph with vertices v 1 , . . . , v 5 and edges v 1 v 2 , v 2 v 3 , v 3 v 4 and v 5 v i for all i ∈ {1, 2, 3, 4} (see Figure 3.14). Recall the graph F 0 is defined at the beginning of this subsection. It is easy to check that each of F 3 , F 4 , F 5 , F 6 and F 0 is P 3 -connected. 

LEMMA 3.28

Let G be a quasi-prime bull-free graph that contains no K 5 and no double wheel. Let F be an induced subgraph of G. Then:

• If F is (isomorphic to) F 0 , then F is a magnet in G.
• If G is F 0 -free, and F induces a gem, with vertices v 1 , . . . , v 5 and edges v 1 v 2 , v 2 v 3 , v 3 v 4 and v 5 v i for each i ∈ {1, . . . , 4}, then either F is a magnet or some vertex in G \ F is complete to {v 1 , v 4 } and anticomplete to {v 2 , v 3 , v 5 }.

• If G is F 0 -free, and F is (isomorphic to) any of F 1 , . . . , F 6 , then F is a magnet in G.

Proof. We use the same notation as in the definition of F 0 , F 1 , . . . , F 6 .

First suppose that F is isomorphic to F 0 . Suppose that F is not a magnet, so there is a vertex z in G \ F such that N F (z) is a stable set. We claim that every such vertex satisfies N F (z) = ∅. For suppose not. If z is adjacent to v 1 , then it is also adjacent to v 3 , for otherwise {z, v 1 , v 5 , v 6 , v 3 } induces a bull, and to v 4 , for otherwise {z, v 1 , v 2 , v 6 , v 4 } induces a bull; but then N F (z) is not a stable set. So z is not adjacent to v 1 , and, by a similar argument (not using v 7 ), z is not adjacent to any of v 2 , v 3 , v 4 or v 5 . Then z is not adjacent to v 7 , for otherwise {z, v 7 , v 3 , v 4 , v 5 } induces a bull, and also not adjacent to v 6 , for otherwise {z, v 6 , v 5 , v 4 , v 7 } induces a bull. So the claim holds. Since G is connected, there are adjacent vertices x, y in G \ F such that N F (x) = ∅ and N F (y) = ∅. By the same proof as for the claim, N F (y) is not a stable set. Since F 0 is P 3connected, Lemma 3.27 implies that y is complete to V(F). But then (V(F) \ {v 7 }) ∪ {y} induces a double wheel, a contradiction. This proves the first item of the lemma. Now we prove the second item of the lemma. Let F have vertices v 1 , . . . , v 5 and edges v 1 v 2 , v 2 v 3 , v 3 v 4 and v 5 v i for each i ∈ {1, . . . , 4}. Suppose that F is not a magnet; so there is a vertex y such that N F (y) is a stable set. First suppose that N F (y) = ∅. If y is adjacent to v 5 , then F ∪ {y} induces broom. By Lemma 3.25 and since G is quasi-prime (so G cannot have a homogeneous set that contains the four vertices of a P 4 ) and G contains no F 0 , there is a vertex z complete to {v 1 , v 4 } and anticomplete to {v 2 , v 3 , v 5 }, and so the desired result holds. Now suppose that y is not adjacent to v 5 ; so, up to symmetry, y has exactly one neighbor in {v 1 , v 2 }. Then y is adjacent to v 4 , for otherwise {y, v 1 , v 2 , v 5 , v 4 } induces a bull, so y has exactly one neighbor in {v 3 , v 4 }, and by symmetry y is adjacent to v 1 . So the desired result holds. Now suppose that N F (y) = ∅. Since G is connected there is an edge uv such that N F (u) = ∅ and N F (v) = ∅. By the preceding argument we may assume that N F (v) is not a stable set. Suppose that v is adjacent to v 5 . Up to symmetry, v is also adjacent to a vertex w ∈ {v 1 , v 2 }. Then v is adjacent to v 4 , for otherwise {u, v, w, v 5 , v 4 } induces a bull, and, by symmetry, to v 1 , and also to v 2 , for otherwise {u, v, v 4 , v 5 , v 2 } induces a bull, and, by symmetry, to v 3 . Hence {u, v, v 1 , v 2 , v 3 , v 4 } induces a broom, so by Lemma 3.25 there is a vertex y complete to {v 1 , v 4 } and anticomplete to {v 2 , v 3 , v}, and so the desired result holds. Now suppose that v is not adjacent to v 5 . Then v is adjacent to two adjacent vertices in {v 1 , v 2 , v 3 , v 4 }, and since

G[{v 1 , v 2 , v 3 , v 4 }] is P 3 -connected Lemma 3.27 implies that v is complete to {v 1 , v 2 , v 3 , v 4 }, so {u, v, v 1 , v 2 , v 3 , v 4 }
induces a broom again and we can conclude as above. Now we prove the third item of the lemma. First let F = F 1 , with the same notation as in the definition. Suppose that F is not a magnet. In particular the gem induced by F \ {v 5 } is not a magnet, so, by the second item of this lemma, there is a vertex z complete to {v 1 , v 4 } and anticomplete to {v

2 , v 3 , v 6 }. If z is not adjacent to v 5 , then {z, v 4 , v 5 , v 6 , v 2 } induces a bull. If z is adjacent to v 5 , then {v 1 , z, v 5 , v 4 , v 3 } induces a bull, a contradiction. Now let F = F 2 ,
with the same notation as in the definition. Suppose that F is not a magnet. For each i ∈ {1, . . . , 5} the gem induced by F \ {v i } is not a magnet, so, by the second item of this lemma, there is a vertex z i complete to {v i-1 , v i+1 } and anticomplete to {v i-2 , v i+2 , v 6 }. Then z i is adjacent to v i , for otherwise {z i , v i-1 , v i , v 6 , v i+2 } induces a bull. The vertices z 1 , . . . , z 5 are pairwise distinct because the sets N F (z i ) are pairwise different. Since G contains no K 5 , the set {z 1 , . . . , z 5 } is not a clique, so, up to symmetry, z 1 is non-adjacent to either z 2 or z 3 . If z 1 is not adjacent to z 2 , then {z 1 , v 2 , z 2 , v 3 , v 4 } induces a bull. If z 1 is not adjacent to z 3 , then {z 1 , v 5 , v 6 , v 4 , z 3 } induces a bull, a contradiction. Now let F = F 3 . (When F is F 4 , F 5 or F 6 the proof is similar and we omit the details.) Suppose that there is a vertex z in G \ F such that N F (z) is a stable set. We claim that every such vertex satisfies N F (z) = ∅. For suppose not. If z is adjacent to v 1 , then z is adjacent to v 5 , for otherwise {z, v 1 , v 2 , v 3 , v 5 } induces a bull; but then {z, v 5 , v 6 , v 4 , v 2 } induces a bull. So, and by symmetry, z has no neighbor in {v 1 , v 6 }. If z has a neighbor in {v 2 , v 3 }, then {z, v 2 , v 3 , v 4 , v 6 } induces a bull. So, and by symmetry, z has no neighbor in {v 2 , v 3 , v 4 , v 5 }. Thus the claim holds. (The same claim holds when F is F 4 , F 5 or F 6 and we omit the details.) Since G is connected, there are adjacent vertices x, y in G \ F such that N F (x) = ∅ and N F (y) = ∅. By the same argument as for the claim, N F (y) is not a stable set. Since F is P 3 -connected, Lemma 3.27 implies that y is complete to

F. Note that v 1 -v 3 -v 4 -v 6 is an induced P 4 in F. (When F = F 4 , use the P 4 v 2 -v 1 -v 6 -v 5 ; when F = F 5 use any P 4 of F; when F = F 6 use the P 4 v 1 -v 2 -v 3 -v 4 .) Then {v 1 , v 3 , v 4 , v 6 ,
y, x} induces a broom, so, since G is quasi-prime and contains no F 0 , Lemma 3.25 implies the existence of a vertex z that is complete to {v 1 , v 6 , x} and anticomplete to {v 3 , v 4 , y}. Clearly, z / ∈ V(F) ∪ {x, y}. Then z is not adjacent to v 2 , for otherwise {x, z, v 1 , v 2 , v 4 } induces a bull; and similarly z is not adjacent to v 5 ; but then {z, v 1 , v 2 , y, v 5 } induces a bull. (A similar contradiction occurs when F is F 4 , F 5 or F 6 and we omit the details.)

One can test in polynomial time whether a graph contains any of F 0 , F 1 , . . . , F 6 . It follows from Lemmas 3.26 and 3.28 that if G is a quasi-prime (P 6 , bull)-free graph that contains no K 5 and no double wheel and contains any of F 0 , F 1 , . . . , F 6 , then the 4-colorability of G can be decided in polynomial time. Therefore we will assume that G contains none of F 0 , F 1 , . . . , F 6 .

When there is no gem

This section is dedicated to give a detailed structure of G when we add the additional constraint of forbidding the gem graph. We prove the following theorem that will allow us to use known results concerning the k-coloring problem and graphs of bounded clique-width.

THEOREM 3.29

Let G be a prime (P 6 , bull, gem)-free graph that contains a C 5 . Then G is trianglefree.

Proof. Since G contains a C 5 , there are five disjoint subsets U 1 , . . . , U 5 of V(G) such that the following properties hold for each i ∈ {1, . . . , 5}, with subscripts modulo 5:

• U i is anticomplete to U i-2 ∪ U i+2 ; • U i contains a vertex that is complete to U i-1 ∪ U i+1 . Let U = U 1 ∪ • • • ∪ U 5 and R = V(G) \ U.
We choose these sets so that the set U is maximal with the above properties. For each i ∈ {1, . . . , 5} let u i be a vertex in U i that is complete to U i-1 ∪ U i+1 . We claim that:

Each of U 1 , . . . , U 5 is a stable set.

(3.12)

Proof: Suppose on the contrary and up to symmetry that U 1 is not a stable set. So G[U 1 ] has a component X of size at least 2. Since G is prime, X is not a homogeneous set, so there is a vertex z ∈ V(G) \ X and two vertices x, y ∈ X such that z is adjacent to y and not to x, and since X is connected we may choose x and y adjacent. Remark that z is not in U 1 for otherwise it would be in X and z is not in

U 3 ∪ U 4 because U 3 ∪ U 4 is anticomplete to U 1 . Suppose that z is adjacent to u 2 .
Then z is adjacent to u 5 , for otherwise {u 5 , x, u 2 , z, y} induces a gem. Then z has no neighbor v in U 3 , for otherwise {v, z, y, x, u 2 } induces a gem, and by symmetry z has no neighbor in U 4 . Because z is anticomplete to

U 3 ∪ U 4 it is not in U 2 ∪ U 5 . But then the 5-tuple (U 1 ∪ {z}, U 2 , U 3 , U 4 , U 5
) contradicts the maximality of U (since u 2 and u 5 are complete to U 1 ∪ {z}). So z is not adjacent to u 2 , and, by symmetry, z is not adjacent to u 5 . Then z is adjacent to u 3 , for otherwise {z, y, x, u 2 , u 3 } induces a bull. By symmetry z is adjacent to u 4 . But now {u 2 , u 3 , z, u 4 , u 5 } induces a bull. So (3.12) holds.

It follows easily from the definition of the sets U 1 , . . . , U 5 and (3.12) that G[U] contains no triangle. Moreover:

There is no triangle {x, y, z} with x, y ∈ U and z ∈ R.

(3.13)

Proof: Suppose the contrary. By (3.12) and up to symmetry, let x ∈ U 1 and y ∈ U 2 .

Then z is adjacent to exactly one of u 3 , u 5 , for otherwise {u 5 , x, y, z, u 3 } induces a bull or a gem. Up to symmetry we may assume that z is adjacent to u 3 and not to u 5 . Then z has no neighbor v ∈ U 4 , for otherwise {x, y, u Proof: Suppose the contrary. Up to symmetry, let x ∈ U 1 . Let X be the component of N(x) that contains y, z. Since G is prime, X is not a homogeneous set, so there is a vertex t with a neighbor and a non-neighbor in X, and since X is connected and up to relabelling we may assume that t is adjacent to y and not to z. Vertex t is not adjacent to x, by the definition of X. By (3.13), y and z have no neighbor in {u 2 , u 5 }.

Then t is adjacent to u 2 , for otherwise {t, y, z, x, u 2 } induces a bull, and by symmetry t is adjacent to u 5 . If t is adjacent to u 3 , then it is also adjacent to u 4 , for otherwise {x, u 2 , t, u 3 , u 4 } induces a bull; but then {u 2 , u 3 , u 4 , u 5 , t} induces a gem. So t is not adjacent to u 3 , and, by symmetry, t is not adjacent to u 4 . If y is adjacent to u 3 , then z is adjacent to u 3 , for otherwise {u 3 , y, z, x, u 5 } induces a bull; but then {u 3 , y, z, u 4 , t} induces a bull. So y is not adjacent to u 3 , and also not to u 4 by symmetry, and similarly z has no neighbor in {u 3 , u 4 }. But then u 3 -u 4 -u 5 -t-y-z is an induced P 6 , a contradiction.

So (3.14) holds.

There is no triangle {x, y, z} with x, y, z ∈ R.

(3.15)

Proof: Suppose there is a such a triangle. Since G is prime it is connected, so there is a shortest path P from U to a triangle T = {x, y, z} ⊆ R.

Let P = p 0 -• • • -p k , with p 0 ∈ U, p 1 , .
. . , p k ∈ R, and p k = x, and k ≥ 1. We may assume that p 0 ∈ U 1 . We observe that y is not adjacent to p k-1 , for otherwise {x, y, p k-1 } is a triangle and P \ p k is a shorter path than P; and y has no neighbor

p i in P \ {p k , p k-1 }, for otherwise p 0 - • • • -p i is a shorter path than P from U to T. Likewise, z has no neighbor in P \ p k .
Moreover there is no edge between P \ {p 0 , p 1 } and U for otherwise there is a path strictly shorter than P between U and T. By (3.13) p 1 has no neighbor in {u 2 , u 5 } and has at most one neighbor in {u 3 , u 4 }; by symmetry we may assume that p 1 is not adjacent to u 4 . If k ≥ 3, then u 4 -u 5 -p 0 -p 1 -p 2 -p 3 is an induced P 6 . If k = 2, then u 4 -u 5 -p 0 -p 1 -p 2 -y is an induced P 6 . So k = 1. Then p 1 is adjacent to u 3 , for otherwise u 3 -u 4 -u 5 -p 0 -p 1 -y is an induced P 6 . Let X be the component of N(p 1 ) that contains y, z. Since G is prime, X is not a homogeneous set, so there is a vertex t with a neighbor and a non-neighbor in X, and since X is connected and up to relabelling we may assume that t is adjacent to y and not to z. Vertex t is not adjacent to x, by the definition of X.

Then t is adjacent to p 0 , for otherwise {t, y, z, p 1 , p 0 } induces a bull, and t is adjacent to u 3 , for otherwise {t, y, z, p 1 , u 3 } induces a bull. By (3.13), t has no neighbor in {u 4 , u 5 }.

Then u 5 -u 4 -u 3 -t-y-z is an induced P 6 . So (3.15) holds.

Claims (3.12)-(3.15) imply the theorem.

When there is a gem

Since the previous section treated the case when G is gem-free, we still need to describe what happens when G contains a gem. Suppose that v 1 , . . . , v 5 are five vertices that induce a gem with edges v 1 v 2 , v 2 v 3 , v 3 v 4 and v 5 v i for each i ∈ {1, 2, 3, 4}. We can define the following sets. Let S = {v 1 , . . . , v 5 } and let:

• V i = {x ∈ V(G) | N S (x) \ {v i } = N S (v i )} for each i ∈ {1, . . . , 5}. • X = {x ∈ V(G) | x is complete to {v 1 , v 4 } and anticomplete to {v 2 , v 3 }}. • W = {x ∈ V(G) | x is anticomplete to {v 1 , v 2 , v 3 , v 4 } and has a neighbor in V 5 }. • Z = {x ∈ V(G) | x is anticomplete to {v 1 , v 2 , v 3 , v 4 } ∪ V 5 }. • Z 1 = {x ∈ V(G) | x is in any component of Z that has a neighbor in W}. • Z 0 = Z \ Z 1 .
We note that constructing these sets can be done in time O(n 2 ) by scanning adjacency lists. We are now ready to prove the following structural result knowing that G contains a gem. See Figure 3.15 for a summary of the structural description in this case.

THEOREM 3.30

Let G be a (P 6 , bull)-free graph. Assume that G is quasi-prime, contains no K 5 , no double wheel and no F 0 , F 1 , . . . , F 6 , and that G contains a gem induced by {v 1 , . . . , v 5 }. Let S, V i (i = 1, . . . , 5), X, W, Z, Z 0 and Z 1 be the sets defined as above. Then the following holds:

(a) X is not empty.

(b) X is anticomplete to V 2 ∪ V 3 ∪ V 5 and complete to V 1 ∪ V 4 . (c) V(G) = 5 i=1 V i ∪ W ∪ X ∪ Z. (d) V 5 is complete to V 1 ∪ • • • ∪ V 4 .
(e) W is complete to X and anticomplete to (g) Z 1 is complete to X.

V 1 ∪ • • • ∪ V 4 . (f) Z is anticomplete to V 1 ∪ • • • ∪ V 4 .

STRUCTURE OF (P
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(h) Every component of X is homogeneous and is a clique.

(i) Every component of Z 0 is homogeneous and is a clique.

(j) X is a homogeneous set in G \ Z 0 . (k) If Z 1 = ∅, then there is a vertex w * in W such that Z 1 ∩ N(w * ) is complete to Z 1 \ N(w * ).
Proof. Note that v i ∈ V i for each i ∈ {1, . . . , 5}. It is easy to check from their definition that the sets V 1 , . . . , V 5 , X, W, Z are pairwise disjoint.

(a) By Lemma 3.26 we may assume that G[S] itself is not a magnet (and this can easily be checked in polynomial time). Then the second item of Lemma 3.28 implies the existence of a vertex that is complete to {v 1 , v 4 } and anticomplete to {v 2 , v 3 , v 5 }, so that vertex is in X. Thus item (a) holds.

(b) Consider any x ∈ X. Suppose that x has a neighbor v in V 2 ∪ V 3 ∪ V 5 . If v ∈ V 5 , then {v 1 , v 2 , v 3 , v 4 , v, x} induces an F 2 , a contradiction. So x is anticomplete to V 5 ; in particular x is not adjacent to v 5 . If v in V 2 , then {v 1 , v, v 3 , v 4 , v 5 , x} induces an F 4 . The same holds if v ∈ V 3 . If x has a non-neighbor u in V 1 , then {x, v 4 , v 3 , v 5 , u} induces a bull. The same holds if u ∈ V 4 . Thus (b) holds.
By (a) we pick a vertex x 0 ∈ X. By (b) x 0 is not adjacent to v 5 .

(c) Let u be any vertex in V(G). First suppose that u is adjacent to both v 1 , v 4 . Then u has exactly one neighbor in {v 2 , v 3 }, for otherwise u is in V 5 or X. So assume that u is adjacent to v 2 and not to v 3 . Then u is adjacent to v 5 , for otherwise {u, v 1 , . . . , v 5 } induces an F 4 , and to x 0 , for otherwise {x 0 , v 1 , u, v 5 , v 3 } induces a bull; but then {u, v 1 , . . . , v 5 , x 0 } induces an F 6 . Now suppose that u is non-adjacent to both v 1 , v 4 . Then u has exactly one neighbor in {v 2 , v 3 }, for otherwise either u is in W ∪ Z or {v 1 , v 2 , u, v 3 , v 4 } induces a bull. So assume that u is adjacent to v 2 and not to v 3 ; then u is adjacent to v 5 , for otherwise {u, v 2 , v 1 , v 5 , v 4 } induces a bull; and so u ∈ V 1 . Finally suppose, up to symmetry, that u is adjacent to v 1 and not to v 4 . If u is not adjacent to v 2 , then it is adjacent to v 5 , for otherwise {u, v 1 , v 2 , v 5 , v 4 } induces a bull, and to v 3 , for otherwise {u, v 1 , . . . , v 5 } induces an F 1 ; and so u is in V 2 . So suppose that u is adjacent to v 2 . If u is not adjacent to v 3 , then it is adjacent to v 5 , for otherwise {u, v 1 , . . . , v 5 } induces an F 3 ; and so u is in V 1 . So suppose that u is adjacent to v 3 . If u is not adjacent to v 5 , then it is adjacent to x 0 , for otherwise {u, v 3 , v 5 , v 4 , x 0 } induces a bull; but then {u, v 1 , v 3 , v 4 , v 5 , x 0 } induces an F 5 . So u is adjacent to v 5 , and so u is in

V 2 . Thus (c) holds. (d) Consider any v ∈ V 5 . Suppose that v has a non-neighbor u ∈ V 1 ∪ V 2 . Note that v = v 5 and u / ∈ {v 1 , v 2 }. By (b), v is not adjacent to x 0 . If u ∈ V 1 , then u is adjacent to v 1 , for otherwise {u, v 2 , v 1 , v, v 4 } induces a bull; but then {u, v, v 1 , v 2 , v 3 , v 4 } induces an F 3 . If u ∈ V 2 ,
then, by (b), u is not adjacent to x 0 ; but then {u, v 3 , v, v 4 , x 0 } induces a bull. Thus (d) holds.

(e) Consider any w ∈ W. By the definition of W, w has a neighbor v in V 5 . Consider any x ∈ X. By (b), v is not adjacent to x. Then w is adjacent to x, for otherwise {w, v, v 3 , v 4 , x} induces a bull. So w is complete to X. Now suppose for a contradiction and up to symmetry, that w has a neighbor u ∈ V 1 ∪ V 2 . We know that w is adjacent to x 0 as proved just above. By (b),

x 0 is not adjacent to v. By (d) v is adjacent to u. If u ∈ V 1 , then {u, v, w, v 2 , v 3 , v 4 } induces an F 1 . If u ∈ V 2 , then u is adjacent to v 2 ,
for otherwise {v 2 , v, u, w, x 0 } induces a bull; but then {w, u, v 2 , v 3 , v 4 } induces a bull, a contradiction. Thus (e) holds.

(f) Suppose, up to symmetry, that some vertex z ∈ Z has a neighbor u ∈

V 1 ∪ V 2 . If u ∈ V 1 , then {z, u, v 2 , v 5 , v 4 } induces a bull. If u ∈ V 2 , then {z, u, v 1 , v 5 , v 4 } induces a bull. So (f) holds.
(g) Consider any z ∈ Z 1 and x ∈ X. By the definition of Z 1 , there is a path z 0 -• • • -z such that z 0 ∈ W, z 1 , . . . , z ∈ Z 1 and z = z . We take a shortest such path, so if ≥ 2 then z 2 , . . . , z are not adjacent to z 0 . By (e) x is adjacent to z 0 . Then by induction on i = 1, . . . , , and by (b) and (f), we see that x is adjacent to z i , for otherwise z i -z i-1 -xv 1 -v 2 -v 3 is an induced P 6 . Thus (g) holds.

(h) Suppose that some component Y of X is not homogeneous; so there are adjacent vertices x, y ∈ Y and a vertex z ∈ V(G) \ Y such that z is adjacent to y and not to x. By (b), (e) and (g) we have z ∈ Z 0 . Then, by (b), {z, y, x, v 1 , v 2 } induces a bull. So Y is homogeneous, and consequently Y is a clique since G is quasi-prime. Thus (h) holds.

(i) Suppose that some component Y of Z 0 is not homogeneous; so there are adjacent vertices y, z ∈ Y and a vertex x ∈ V(G) \ Y such that x is adjacent to y and not to z. By (f) and the definition of Z 0 and Y, we have x ∈ X. Then, by (b), z-y-x-v 1 -v 2 -v 3 is an induced P 6 . So Y is homogeneous, and consequently Y is a clique since G is quasi-prime. Thus (i) holds.

(j) By (b), (e) and (g),

X is complete to V 1 ∪ V 4 ∪ W ∪ Z 1 and anticomplete to V 2 ∪ V 3 ∪ V 5 . So (j) holds.
(k) By the definition of Z 1 , some vertex w * in W has a neighbor in Z 1 . Suppose that Z 1 ∩ N(w * ) is not complete to Z 1 \ N(w * ). So there are non-adjacent vertices y ∈ Z 1 ∩ N(w * ) and z ∈ Z 1 \ N(w * ). By (e) and (g), x 0 is complete to {w * , y, z}. By the definition of W, w * has a neighbor v in V 5 . By (b) and the definition of Z, v is anticomplete to {x 0 , y, z}. Then {v, w * , y, x 0 , z} induces a bull. So (k) holds. This completes the proof of the lemma.

Coloring (P 6 , bull)-free graphs

The goal of the structure detailed in the previous sections is to give useful tools to determine if a (P 6 , bull)-free graph is 4-colorable and if it is, give the coloring. The main theorem of this section is the following.

THEOREM 3.31

There is a polynomial-time algorithm that determines whether a (P 6 , bull)-free graph G is 4-colorable, and if it is, produces a 4-coloring of G.

We split the proof of Theorem 3.31 into two parts. Firstly, we describe what happens when G is also gem-free and secondly when G has a gem. The reason behind this is that when G has the additional property of containing no gem, its clique-width is bounded by some constant and when it does contain a gem, the structure of G is well centered around this gem. Let us first prove the following theorem.

THEOREM 3.32

For any fixed k, there is a polynomial-time algorithm that determines whether a (P 6 , bull, gem)-free graph is k-colorable, and if it is, produces a k-coloring of G.

Armed with Theorem 3.29 and with the useful results concerning the clique-width of graphs as depicted in the preliminaries at the beginning of the manuscript (more precisely when the clique-width of a graph is bounded), we are ready to prove that when there is no gem, the clique-width is bounded. In [START_REF] Brandstädt | P 6 -and triangle-free graphs revisited: structure and bounded clique-width[END_REF] it is proved that the cliquewidth c of (P 6 , K 3 )-free graphs is at most 40 and claimed that one can obtain c ≤ 36. The following theorem refers to the same constant c.

THEOREM 3.33

Let G be a (P 6 , bull, gem)-free graph that contains a C 5 . Then G has bounded clique-width c, and a c-expression can be found in time O(|V(G)| 2 ) for every graph G in this class.

Proof. We may assume that G is connected since the clique-width of a graph is the maximum of the clique-width of its components. Suppose that G is not connected. So V(G) can be partitioned into two non-empty sets V 1 and V 2 that are complete to each other. Since G is gem-free, each of Proof of Theorem 3.32. Let G be a (P 6 , bull, gem)-free graph. Since G is P 6 -free it contains no C with ≥ 7, and since it is gem-free it contains no C with ≥ 7. So if G also contains no C 5 , then it is a bull-free perfect graph. In that case we can use the algorithms from either [START_REF] De Figueiredo | Optimizing bull-free perfect graphs[END_REF] or [START_REF] Penev | Coloring bull-free perfect graphs[END_REF] to find a χ(G)-coloring of G in polynomial time, and we need only check whether χ(G) ≤ k. (When k = 4, we can do a little better: by Lemmas 3.26 and 3.28 we may assume that G is also F 5 -free, so G contains no C for any ≥ 6. Then we can use the algorithm from [START_REF] De Figueiredo | On the structure of bull-free perfect graphs[END_REF], which is simpler than those in [START_REF] De Figueiredo | Optimizing bull-free perfect graphs[END_REF][START_REF] Penev | Coloring bull-free perfect graphs[END_REF].)

G[V 1 ] and G[V 2 ] is P 4 -free,
Now assume that G contains a C 5 . Then Theorems 3.33 and 2.1 imply that the k-coloring problem can be solved in polynomial time.

The last case to treat is when G contains a gem. Moreover, we know that G cannot contain any magnet, otherwise the 4-coloring problem is easily solved, and it cannot contains any K 5 nor double wheel otherwise it is not 4-colorable. Hence, we will prove the following theorem.

THEOREM 3.34

Let G be a (P 6 , bull)-free graph. Assume that G is quasi-prime, contains no K 5 , no double wheel and no F 0 , F 1 , . . . , F 6 , and that G contains a gem. Then we can determine in polynomial time whether G is 4-colorable.

Proof. Let v 1 , . . . , v 5 be five vertices that induce a gem, with edges v 1 v 2 , v 2 v 3 , v 3 v 4 and v 5 v i for each i ∈ {1, 2, 3, 4}, and let V i (i = 1, . . . , 5), X, W, Z, Z 0 and Z 1 be the sets defined as in Subsection 3.2.4. In this proof all items (a)-(k) that we invoke refer to Theorem 3.30. First, we observe that: By (3.1) we may assume that Z 0 = ∅. By item (j) we may assume that X is a clique, with |X| ≤ 3. Now we can describe the coloring procedure. We "precolor" a set P of vertices (of size at most 8), that is, we try every 4-coloring f of P and check whether the precoloring f extends to a 4-coloring of G. Each vertex v in V(G) \ P has a list L(v) of available colors, which consists of the set {1, 2, 3, 4} minus the colors given by f to the neighbors of v in P. Hence we want to solve the L-coloring problem on G \ P or determine that it has no solution.

G is 4-colorable if
First suppose that |X| ≥ 2. Let P = {v 1 , v 2 , v 3 , v 4 , v 5 } ∪ X. So |P| ≤ 8. It follows from items (d), (e), and (g) that every vertex in V(G) \ P has two adjacent neighbors in P. So every vertex v in V(G) \ P satisfies |L(v)| ≤ 2. Hence checking whether f extends to G is a 2-list-coloring problem on the vertices of G \ P, which can be solved in polynomial time. Therefore we may assume that |X| = 1, and so X = {x 0 }.

Let P = {v 1 , v 2 , v 3 , v 4 , x 0 }. Clearly | f ({v 1 , v 2 , v 3 , v 4 })| ≥ 2; moreover we may assume that | f ({v 1 , v 2 , v 3 , v 4 })| ≤ 3 for
otherwise the precoloring cannot be extended to V 5 and we stop examining it. We distinguish two cases.

Case 1: | f ({v 1 , v 2 , v 3 , v 4 })| = 3.
We may assume up to relabeling that f ({v 1 , v 2 , v 3 , v 4 }) = {1, 2, 3}. Then L(v) = {4} for all v ∈ V 5 , so V 5 must be a stable set, for otherwise the precoloring cannot be extended to V 5 and we stop examining it. So let us assume that V 5 is a stable set, and let f (v) = 4 for all v ∈ V 5 . Suppose that f (x 0 ) = 4. In that case we have L(v) = {1, 2, 3} for all v ∈ W ∪ Z. We can check whether G[W ∪ Z] is 3-colorable with the known algorithms [START_REF] Randerath | 3-colorability ∈ P for P 6 -free graphs[END_REF][START_REF] Broersma | Three complexity results on coloring P k -free graphs[END_REF]. On the other hand we have

|L(u)| ≤ 2 for all u ∈ V 1 ∪ V 2 ∪ V 3 ∪ V 4 , so checking whether f extends to V 1 ∪ V 2 ∪ V 3 ∪ V 4 is a 2-list coloring problem. By items (e) and (f) the two sets V 1 ∪ V 2 ∪ V 3 ∪ V 4
and W ∪ Z are anticomplete to each other, so extending the coloring to them can be done independently. Now suppose that f (x 0 ) = 4. Then every vertex in W has a list of size 2 (the set {1, 2, 3, 4} \ {4, f (x 0 )}). If Z 1 = ∅, we pick a vertex w * from W as in item (k) and add w * to P; moreover, if w * is not complete to Z 1 , we pick one vertex z * from N Z 1 (w * ) and add z * to P. It follows from items (d), (e), (g) and (k) that every vertex in G \ P has a list of size 2 (in particular every vertex in Z 1 is complete to either {x 0 , w * } or {x 0 , z * }), so we can finish with a 2-list coloring problem.

Case 2: | f ({v 1 , v 2 , v 3 , v 4 })| = 2.
We may assume up to relabeling that f (v

1 ) = f (v 3 ) = 1 and f (v 2 ) = f (v 4 ) = 2. Suppose that V 1 contains two adjacent vertices a, b. Then {a, b, v 2 } is a clique of size 3.
We add a, b to the set P. By item (d), in any possible 4-coloring of G the vertices of V 5 must all have the same color, say color 4. In that case we can argue as in Case 1 and conclude. The same argument can be applied if V 2 is not a stable set, and by symmetry if V 3 or V 4 is not a stable set. Therefore we may assume that each of V 1 , V 2 , V 3 , V 4 is a stable set. We have L(v) = {3, 4} for all v ∈ V 5 , and we may assume, up to symmetry, that f (x 0 ) = 4. So we have L(v) = {1, 2, 3} for all v ∈ W ∪ Z 1 by items (e), (f), and (g). We may assume that all vertices in V 1 ∪ V 3 receive color 1 and all vertices in V 2 ∪ V 4 receive color 2, because the only other vertices that may receive color 1 or 2 are in W ∪ Z 1 and are anticomplete to

V 1 ∪ V 2 ∪ V 3 ∪ V 4 . Therefore we must only extend the coloring to V 5 ∪ W ∪ Z 1 .
Since L(v) = {3, 4} for all v ∈ V 5 , the set V 5 must be bipartite, for otherwise the precoloring cannot be extended to V 5 and we stop examining it. So assume that V 5 is bipartite. Let D 1 , . . . , D t be the components of V 5 of size at least 2 (which we call the big components of V 5 ), if any. For each D i , let A i , B i be the two stable sets that form a partition of D i ; let W A i = {x ∈ W | x has a neighbor in A i and no neighbor in B i }, W B i = {x ∈ W | x has a neighbor in B i and no neighbor in A i }, and W i = {x ∈ W | x has a neighbor in each of A i and B i }. We claim that: For every big component D i of V 5 , each of A i and B i contains a vertex that is complete to W i .

(3.2)

Proof: Let d be a vertex in B i (the proof is similar for A i ) that has the most neighbors in W i , and suppose that there is still a vertex u ∈ W i that is not adjacent to d. By the definition of W i vertex u has a neighbor a in A i and a neighbor b in B i . In D i there is a shortest path Q from a to b, of odd length. It is easy to see that D i is P By (3.3) we may assume that W B i = ∅ for every big component D i of V 5 . For each big component D i of V 5 , take a vertex d i that is complete to W i , with d i ∈ B i , which is possible by (3.2); so d i is anticomplete to

W A i . Let T = {d 1 , . . . , d t }. Note that T is a stable set. Let H = G[Z 1 ∪ W ∪ T ∪ {v 1 , v 2 }]. We claim that: f extends to a 4-coloring of G if and only if H is 3-colorable. ( 3.4) 
Proof: Suppose that f extends to a 4-coloring c of G. Clearly every big component D i of V 5 satisfies either c(A i ) = 4 and c(B i ) = 3 or vice-versa. If every big component D i of V 5 satisfies c(A i ) = 4 and c(B i ) = 3, then the restriction of c to H is a 3-coloring, using colors 1, 2, 3. So suppose that some component D i satisfies c(A i ) = 3 and c(B i ) = 4. Then we swap colors 3 and 4 on that component, and we claim that the result is still a proper coloring. Indeed, vertices in

V 1 ∪ V 2 ∪ V 3 ∪ V 4
have color 1 or 2; vertices in W i have a neighbor in each of A i and B i , so their color is 1 or 2; vertices in W A i do not have color 4 since they are adjacent to x 0 ; and all other vertices of G are anticomplete to D i , by the definition of Z, D i , W A i , W i and because W B i = ∅. So the swap does not cause any two adjacent vertices to have the same color. We can repeat this operation for every such component D i ; thus we obtain a 4-coloring of G whose restriction to H is a 3-coloring. Conversely, suppose that H admits a 3-coloring g, with colors 1, 2, 3. Up to relabeling we may assume that g(v 1 ) = 1 and g(v 2 ) = 2. It follows that all vertices in T have color 3. Then we extend this coloring to G as follows. Assign color 1 to all vertices in V 1 ∪ V 3 and color 2 to all vertices in V 2 ∪ V 4 . For every big component D i of V 5 , assign color 3 to all vertices in B i and color 4 to all vertices in A i . Also assign color 4 to all vertices in V 5 \ (D 1 ∪ • • • ∪ D t ) and to x 0 . Thus we obtain a proper 4-coloring c of G, and clearly c is also an extension of f . So (3.4) holds.

By (3.4) we need only check whether the induced subgraph H is 3-colorable, which we can do with the known algorithms [START_REF] Randerath | 3-colorability ∈ P for P 6 -free graphs[END_REF][START_REF] Broersma | Three complexity results on coloring P k -free graphs[END_REF]. This completes the proof of the theorem.

The time complexity of the coloring algorithm given in Theorem 3.34 can be evaluated as follows. We test only a fixed number of precolorings, and for each of them we need to solve either a list-2-coloring problem, which takes time O(n 2 ), or the problem of 3-coloring a certain P 6 -free subgraph of G, which takes time O(n 3 ) in [START_REF] Broersma | Three complexity results on coloring P k -free graphs[END_REF]. So the complexity is O(n 3 ). The complexity of our general algorithm can be evaluated as follows. Assume that we are given a (P 6 , bull)-free graph G on n vertices. We first apply the reduction Chapter 4

List Coloring

Context and motivations

Suppose that in a graph G, a proper subset S of vertices is already precolored with k colors and let H = G \ S. Is it possible to extend this coloring to H? A natural way of formalizing this is to assign to every vertex v of H a list of colors equals to the set {1, . . . , k} minus the colors already appearing in the neighborhood of v. The question is then, is it possible to color H by assigning to each vertex a color from its list such that no adjacent vertices receive the same color?

More generally, the list coloring problem, introduced by Erdős, Rubin and Taylor [START_REF] Erdős | Choosability in graphs[END_REF] and by Vizing [START_REF] Jensen | Graph coloring problems[END_REF] is stated as follows. Let L : V(G) → P (N) be a list assignment of colors on the vertices of a graph G. The question asked is, can we find a proper coloring c such that c(v) ∈ L(v) for all v of V(G). If such a coloring exists we say that G is L-colorable and that c is an L-coloring. If an integer k is given, a graph G is said to be k-choosable if it is L-colorable for any list assignement L such that |L(v)| = k for every vertex v of G. In an analogous way as for the classical coloring problem, the list-chromatic number (also called the choice number), denoted by ch(G), is the smallest

k such that G is k-choosable. It is a straightforward observation that χ(G) ≤ ch(G).
To see this, put the list {1, . . . , χ(G) -1} on every vertex and remark that this list assignment L is not L-colorable. Is it possible that χ(G) < ch(G) for some graph G?

The answer is yes and in fact the gap can be as large as desired.

LEMMA 4.1

For any integer p ≥ 1, the list-chromatic number of the complete bipartite graph K p,p p is at least p + 1.

Proof. Let (X, Y) be the bipartition of the complete bipartite graph K p,p p with X = {x 1 , . . . , x p } and Y = {y 1 , . . . , y p p }. Assign the lists on the vertices as follows. On the X side, for each x i assign the list L(x i ) = {(i - 

) ≥ p + 1.
Since it is a bipartite graph we have χ(K p,p p ) = 2, and as shown above, ch(K p,p p ) ≥ p + 1.

A famous theorem in the history of list coloring takes root from a conjecture proposed by Jeffrey Dinitz (see [START_REF] Erdős | Choosability in graphs[END_REF] page 157). A latin square is n × n matrix with integral coefficients in {1, . . . , n} having the property that each coefficient appears exactly once on each row and each column. In a partial latin square, a cell takes its coefficients from a list of size n of possible coefficients (not necessarily the usual set {1, . . . , n}). Dinitz asked if in a n × n matrix and given any assignment of n coefficients to the cells, is it always possible to construct a partial latin square? This problem is equivalent to a problem of list coloring the edges of a complete bipartite graph. The construction is as follows. Pick the complete bipartite graph K n,n and to each row of the matrix, associate a vertex on the left side, and to each column associate a vertex on the right side. Each edge in the graph is then a cell of the matrix. To every edge assign the list of colors of the corresponding cell. The question now is, is it possible to color properly the edges of this graph by choosing the color for each edge from its list? This has been answered positively by Galvin. By analogy of the list coloring problem of the vertices to the edges of the graph, it is possible to define in an analogous way the list-chromatic index, denoted by ch (G), of a graph G as the minimum k such that G is L-colorable for any assignment L of colors to the edges of G with |L(e)| = k for every e ∈ E(G). Dinitz's problem can now be restated succinctly as follows. Is it true that ch (K n,n ) = n? This was proved by Galvin who in fact proved the following more general theorem. THEOREM 4.2 [START_REF] Galvin | The list chromatic index of a bipartite multigraph[END_REF] Every bipartite multigraph G satisfies ch (G) = χ (G).

Galvin's theorem is used in the proof of the result presented in this chapter, furthermore it is of self interest. Hence, we exhibit a simple proof of it. A kernel in a directed graph G is a subset of vertices K ⊆ V(G) such that K is a stable set and for every vertex u ∈ V(G) \ K, there exists a vertex v ∈ K such that # » uv ∈ E(G). The following lemma is due to Bondy, Boppana and Siegel. However this lemma is not published but first appeared in the famous article of Alon and Tarsi [3] linking coloring and Eulerian subgraphs.

LEMMA 4.3 Bondy, Boppana and Siegel

Let G be a directed graph such that every induced subgraph has a kernel. Then, for any list assignment L satisfying

|L(v)| ≥ d + (v) + 1 for every vertex v ∈ V(G), G is L-colorable.
Proof. Let c be a color present in one of the color lists of the graph and let H be the subgraph induced by all the vertices v such that c ∈ L(v). The induced subgraph H has a kernel K. Color all the vertices in K with color c, delete those vertices from the graph G and delete the color c from all the vertices list in H \ K. Note that the vertices list in G \ H remains unchanged, and every vertex in H \ K loses a color in their list but also their out-degree is decreased by one. The lemma follows by induction on |V(G)|.

The goal is to use this lemma, hence it suffices to find an orientation of our graph satisfying the conditions in the statement. An orientation of a multigraph orientation is clique-acyclic if no clique contains a directed cycle. A graph is solvable if every clique-acyclic orientation has a kernel. In 1992, Maffray [START_REF] Maffray | Kernels in perfect line-graphs[END_REF] gave a characterization of solvable line-graphs with the following theorem.

THEOREM 4.4

A line-graph (of a multigraph) is solvable if and only if it is perfect.

It is known that line-graphs of bipartite multigraphs are perfect, see Kőnig's Line Coloring Theorem [START_REF] Maffray | A description of claw-free perfect graphs[END_REF][START_REF] Kőnig | Gráfok és alkalmazásuk a determinánsok és a halmazok elméletére[END_REF]. Thus, the previous theorem gives the following corollary.

COROLLARY 4.5

The line-graph of a bipartite multigraph is solvable.

Given a bipartite multigraph B, the only thing left to do to finish the proof of Galvin's theorem is to find a clique acyclic orientation of G = L(B) such that d + (v) ≤ |L(v)| -1 for every v ∈ G. This is given by the neat idea of Galvin to use proper coloring of edges in bipartite multigraphs.

LEMMA 4.6

Let G be the line-graph of a bipartite multigraph B with bipartition (X, Y). Let f be a coloring of the vertices of G using ω(G) colors (it exists because G is perfect). Let D be the directed graph obtained from G by directing every edge uv as follows.

Suppose that f (u) < f (v). When the common end of edges u and v in B is in X, give the orientation u → v, and when it is in Y give the orientation u ← v. Then every induced subgraph of D has a kernel and d

+ (v) ≤ ω(G) -1.
Proof. For any v ∈ V(D), the out-degree of v is at most ω(G) - 

= {v ∈ S | f (v) > f (u) for all v ∈ (X(v) ∩ S) different from u}. If T is a stable set, then T is a kernel of S, thus we can assume that T has two elements, v 1 , v 2 , sharing a common end in B[Y] with f (v 1 ) > f (v 2 ) and let Y(v 1 ) = Y(v 2 ) = Z. Pick v 0 ∈ Z ∩ S such that f (v 0 ) > f (u) for all u ∈ C ∩ S different of v 0 .
By the definition of T and the choice of v 0 , we have

N[v 2 ] ∩ S ⊆ C ∩ S ⊆ N[v 0 ]. By the induction hypothesis, S \ {v 0 } has a kernel K. Since K is a kernel, N[v 2 ] ∩ K = ∅ and furthermore, N[v 2 ] ∩ K ⊆ N[v 0 ] ∩ K, it follows that either v 0 ∈ K or v 0 has a neighbor in K, so K is a kernel of S.
Moreover, Galvin, with his theorem, proved a subcase of what is probably the most famous conjecture in list coloring, stated independently by several authors including Vizing, Gupta, Albertson and Collins, and Bollobás and Harris (see [START_REF] Häggkvist | Some upper bounds on the total and list chromatic numbers of multigraphs[END_REF]). The List Coloring Conjecture is stated as follows.

CONJECTURE 4.7

Every multigraph G satisfies ch (G) = χ (G).

The List Coloring Conjecture can then be restated in terms of line-graph.

CONJECTURE 4.8 Every multigraph G satisfies ch(L(G)) = χ(L(G)).

Line-graphs are characterized by a list of nine forbidden induced subgraphs [START_REF] Beineke | Characterizations of derived graphs[END_REF]. The smallest of these forbidden graphs is the claw graph and it is not hard to see that one cannot produce a claw in a line-graph. The only known examples where the chromatic number and list-chromatic number differ contain claws. This fact pushed Gravier and Maffray to generalize the List Coloring Conjecture to all claw-free graphs, more precisely, the following was conjectured in [START_REF] Gravier | Choice number of 3-colorable elementary graphs[END_REF][START_REF] Gravier | Graphs whose choice number is equal to their chromatic number[END_REF].

CONJECTURE 4.9 Every claw-free graph G satisfies ch(G) = χ(G).

Even though this conjecture appears to be somehow too large, it is still widely open. An interesting subclass of claw-free graphs concerning this problem is the clawfree perfect graphs class.

Structure of claw-free perfect graphs

Claw-free perfect graphs are described by a decomposition theorem of Chvátal and Sbihi [START_REF] Chvátal | Recognizing claw-free perfect graphs[END_REF]

. A clique cutset in a graph G is a clique C of G such that G \ C is discon- nected.
A minimal clique cutset is a clique cutset that does not contain another clique cutset. Graph decomposition is a remarkable tool in many aspects of graph theory and allows to solve some of the most difficult problems by reducing the difficulties to easy (with the regard to the problem one wants to solve) classes of graphs and combining the solutions of multiple easy graphs to obtain a general solution for the initial graph. Given a graph G, a decomposition of G is a pair (G 1 , G 2 ) where G 1 and G 2 are proper induced subgraphs of G. Many different types of decomposition Before going into the details of the structure of claw-free perfect graphs, we need to define what are the basic graphs of the decomposition. A graph is elementary if its edges can be colored with two colors (one color on each edge) in such a way that every induced two-edge path has its two edges colored differently. A graph G is peculiar if V(G) can be partitioned into nine sets A i , B i , Q i (i = 1, 2, 3) that satisfy the following properties for each i, where subscripts are understood modulo 3:

• Each of the nine sets is non-empty and induces a clique. In 1988, Chvátal and Sbihi proved the following theorem, which will be useful for our problem. THEOREM 4. [START_REF] Brandstädt | P 6 -and triangle-free graphs revisited: structure and bounded clique-width[END_REF] Chvátal and Sbihi [START_REF] Chvátal | Recognizing claw-free perfect graphs[END_REF] Every claw-free perfect graph either has a clique cutset or is a peculiar graph or an elementary graph.

• A i is complete to B i ∪ A i+1 ∪ A i+2 ∪ B i+2 and not complete to B i+1 . • B i is complete to A i ∪ B i+1 ∪ B i+2 ∪ A i+1 and not complete to A i+2 . • Q i is complete to A i+1 ∪ B i+1 ∪ A i+2 ∪ B i+2 and anticomplete to A i ∪ B i ∪ Q i+1 ∪ Q i+2 . We say that (A 1 , B 1 , A 2 , B 2 , A 3 , B 3 , Q 1 , Q 2 , Q 3 ) is a peculiar partition of G. See Fig- ure 4.5.
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The class of elementary graphs, to be fully described, requires the following definitions. A flat edge is an edge that is not contained in a triangle. A flat edge augmentation is the following process applied to a flat edge of G. Let xy be a flat edge in a graph G, and let A be a cobipartite graph such that V(A) is disjoint from V(G) and V(A) can be partitioned into two cliques X, Y. We obtain a new graph G by removing x and y from G and adding all edges between X and N G (x) \ {y} and all edges between Y and N G (y) \ {x}. This operation is called augmenting the flat edge xy with the cobipartite graph A. In G the pair (X, Y) is called the augment. When x 1 y 1 , . . . , x k y k are pairwise non-adjacent flat edges in a graph G, and A 1 , . . . , A k are pairwise vertex-disjoint cobipartite graphs, also vertex-disjoint from G, one can augment each edge x i y i with the graph A i . Clearly the result is the same whatever the order in which the k operations are performed. We say that the resulting graph is an augmentation of G, see Figure 4.6 for an example.

The structure of peculiar graphs follows from their definition, but elementary remained not fully described until Maffray and Reed proved the following in 1999.

THEOREM 4.11 Maffray and Reed [69]

A graph G is elementary if and only if it is an augmentation of the line-graph H of a bipartite multigraph B. Moreover we may assume that each augment A i satisfies the following:

• There is at least one pair of non-adjacent vertices in A i ,

• The bipartite graph whose vertex-set is X i ∪ Y i and whose edges are the edges of A i with one end in X i and one in Y i is connected (and consequently both

|X i |, |Y i | ≥ 2).
The List Coloring Conjecture was proved in [START_REF] Gravier | On the choice number of claw-free perfect graphs[END_REF] for every claw-free perfect graph G with ω(G) ≤ 3. In the following section, we prove it for the case ω(G) ≤ 4 and whilst using similar techniques, we also provide new ones that can be of self interest.

For the sake of completeness we recall a classical theorem of Hall. Let X 1 , . . . , X k be a family of sets. A system of distinct representatives for the family is a subset {x 1 , . . . ,

x k } of k distinct elements of X 1 ∪ • • • ∪ X k such that x i ∈ X i for all i = 1, . . . , k. Note that if G is
a graph and L is a list assignment on V(G), and the family {L(v) | v ∈ V(G)} admits a system of distinct representatives, then this is an L-coloring of G. THEOREM 4.12 Hall's theorem [START_REF] Hall | On representatives of subsets[END_REF] A family F of k sets has a system of distinct representatives if and only if, for all ∈ {1, . . . , k}, the union of any members of F has size at least .

List coloring claw-free perfect graphs

This section is dedicated to prove the following theorem.

THEOREM 4.13

Let G be a claw-free perfect graph with ω(G) ≤ 4. Then ch(G) = χ(G).

One tool that we will use is due to Galvin. The proof was given at the beginning of the chapter but we restate it here in a different form. An example in given in Figure 4.3. THEOREM 4.14 Galvin [35] Let G be the line-graph of a bipartite graph B, where V(B) is partitioned into two stable sets X, Y. Let f be an ω(G)-coloring of the vertices of G, with colors 1, 2, . . . , ω(G). Let D be the directed graph obtained from G by directing every edge uv as follows, assuming that f (u) < f (v): when the common end of edges u, v in B is in X, then give the orientation u → v, and when it is in Y give the orientation u ← v. Assume that L is a list assignment on V(G) such that every

vertex v of G satisfies |L(v)| ≥ d + D (v) + 1. Then G is L-colorable.
As described by the theorem of Chvátal and Sbihi, first of all, we need to focus on the two types of basic graphs given by their decomposition. First, let us concentrate on peculiar graphs. Then on cobipartite graphs, followed by elementary graphs. Finally we will combine all those results to deal with claw-free perfect graphs.

Peculiar Graphs

The following useful lemma allows to treat peculiar graphs separately and to not bother with clique cutset decomposition since if a graph claw-free perfect graph contains a peculiar graph, the whole graph is peculiar.

LEMMA 4.15

Let G be a connected claw-free graph that contains a peculiar subgraph, and assume that G is also C 5 -free. Then G is peculiar.

Proof. Let H be a peculiar subgraph of G that is maximal. If H = G we are done. So let us assume that

H = G. Since G is connected there is a vertex x of V(G) \ V(H) that has a neighbor in H. Let A 1 , B 1 , A 2 , B 2 , A 3 , B 3 , Q 1 , Q 2 , Q 3 be
nine cliques that form a partition of V(H) as in the definition of a peculiar graph. For i = 1, 2, 3 we pick a pair of non-adjacent vertices a i ∈ A i and b i+1 ∈ B i+1 , and we pick any q i ∈ Q i . (All subscripts are modulo 3.)

If x has no neighbor in Q 1 ∪ Q 2 ∪ Q 3 ,
then it has a neighbor a in A i ∪ B i for some i; but then {a, x, q i+1 , q i+2 } induces a claw. Therefore x has a neighbor in

Q 1 ∪ Q 2 ∪ Q 3 .
Suppose that x has a neighbor k in Q 1 and none in Q 2 ∪ Q 3 . Then x has no neighbor z in A 1 ∪ B 1 , for otherwise {z, x, q 2 , q 3 } induces a claw. Also x is adjacent to one of a 2 , b 3 , for otherwise {x, k, a 2 , b 3 } induces a claw; up to symmetry we assume that x is adjacent to a 2 . Then x is adjacent to every vertex a ∈ A 3 , for otherwise {a 2 , q 3 , a, x} induces a claw; and to every vertex y ∈ A 2 ∪ B 2 ∪ Q 1 , for otherwise {a 3 , y, x, q 2 } induces a claw; and to every vertex b ∈ B 3 , for otherwise {b 2 , b, q 3 , x} induces a claw. Hence x is complete to

A 2 ∪ B 2 ∪ A 3 ∪ B 3 ∪ Q 1 and anticomplete to A 1 ∪ B 1 ∪ Q 2 ∪ Q 3 .
So V(H) ∪ {x} induces a peculiar subgraph of G, because x can be added to Q 1 , a contradiction to the choice of H.

Therefore we may assume up to symmetry that x has a neighbor k ∈ Q 1 and a neighbor k ∈ Q 2 . Note that x has no neighbor k ∈ Q 3 , for otherwise {x, k, k , k } induces a claw.

Suppose that x has a non-neighbor a ∈ A 1 . Then x is adjacent to every vertex u ∈ A 2 , for otherwise {x, k, u, a, k } induces a C 5 ; and then to every vertex v ∈ B 2 , for otherwise either {a 2 , a, x, v} induces a claw (if av / ∈ E(G)) or {x, k, v, a, k } induces a C 5 (if av ∈ E(G)); and then to every vertex w ∈ A 3 ∪ B 3 ∪ Q 1 , for otherwise {b 2 , x, w, q 3 } induces a claw. Then a is adjacent to every vertex b ∈ B 2 , for otherwise {x, k , a, q 3 , b} induces a C 5 ; and by the same argument the set A 1 \ N(x) is complete to B 2 . It follows that a 1 ∈ N(x) since a 1 is not complete to B 2 . Then x is adjacent to every vertex q ∈ Q 2 , for otherwise {a 1 , x, q 3 , q} induces a claw. But now we observe that V(H) ∪ {x} induces a larger peculiar subgraph of G, because x can be added to A 3 and the vertices of A 1 \ N(x) can be moved to B 1 .

Therefore we may assume that x is complete to A 1 , and, similarly, to B 2 . Then x is adjacent to every vertex u in Q 2 ∪ B 3 , for otherwise {a 1 , x, u, q 3 } induces a claw, and similarly x is complete to Q 1 ∪ A 3 . It cannot be that x has both a non-neighbor a ∈ A 2 and a non-neighbor b ∈ B 1 , for otherwise {x, k, a , b , k } induces a C 5 . So, up to symmetry, x is complete to A 2 . But now V(H) ∪ {x} induces a larger peculiar subgraph of G, because x can be added to A 3 . This completes the proof of the lemma.

We observe that (up to isomorphism) there is a unique peculiar graph G with ω(G) = 4. Indeed if G is such a graph, with the same notation as in the definition of a peculiar graph, then for each i the set Q i ∪ A i+1 ∪ B i+1 ∪ A i+2 is a clique, so, since G has no clique of size 5, the four sets Q i , A i+1 , B i+1 , A i+2 have size 1; and so the nine sets A i , B i , Q i (i = 1, 2, 3) all have size 1. Hence G is the unique peculiar graph on nine vertices.

LEMMA 4.16

Let G be a peculiar graph with ω(G) = 4. Then G is 4-choosable.

Proof. Let (A 1 , B 1 , A 2 , B 2 , A 3 , B 3 , Q 1 , Q 2 , Q 3 ) be a peculiar partition of G. As observed above, we have |A i | = |B i | = |Q i | = 1 for all i = 1, 2, 3. Hence let A i = {a i }, B i = {b i } and Q i = {q i }, for all i = 1, 2, 3.
Recall that a i is not adjacent to b i+1 , for each i. Let Q = {q 1 , q 2 , q 3 }.

Let L be a list assignment that satisfies |L(v)| = 4 for all v ∈ V(G). Let us prove that G is L-colorable.

First suppose that for some i ∈ {1, 2, 3} we have L(a i ) ∩ L(b i+1 ) = ∅, say for i = 1. Pick any c ∈ L(a 1 ) ∩ L(b 2 ). Let G = G \ {a 1 , b 2 } and let L (x) = L(x) \ {c} for all x ∈ V(G ). Clearly, G is a claw-free perfect graph and ω(G ) = 3. Moreover, G is elementary. To see this, define an edge coloring of G by coloring blue the edges in {q 3 b 1 , q 3 a 2 , b 1 a 2 , b 3 a 3 , q 2 a 3 , b 3 q 1 } and red the edges in {q 2 b 1 , q 2 b 3 , b 3 b 1 , q 1 a 2 , q 1 a 3 , a 2 a 3 }; it is a routine matter to check that this edge coloring is an elementary coloring. By [START_REF] Gravier | On the choice number of claw-free perfect graphs[END_REF], G is 3-choosable, so it admits an L -coloring. We can extend this coloring to a 1 and b 2 by assigning color c to them. Therefore we may assume that:

L(a i ) ∩ L(b i+1 ) = ∅ for all i = 1, 2, 3. (4.1)
Now suppose that there are vertices Thus the family {L (x) | x ∈ V(G )} admits a system of distinct representatives, which is an L -coloring of G . We can extend this coloring to u and v by assigning color c to them. Therefore we may assume that

u, v ∈ Q such that L(u) ∩ L(v) = ∅. Let w be the unique vertex in Q \ {u, v}. Pick any c ∈ L(u) ∩ L(v). Let G = G \ {u, v}. Let L (x) = L(x) \ {c} for all x ∈ V(G ) \ {w}
L(u) ∩ L(v) = ∅ for all u, v ∈ Q. (4.2)
We claim that the family {L(x) | x ∈ V(G)} admits a system of distinct representatives. Suppose the contrary. By Hall's theorem, there is a set

T ⊆ V(G) such that |L(T)| < |T|. Since |L(x)| = 4 for all x ∈ V(G), we have |L(T)| ≥ 4, so |T| ≥ 5;
this implies that either (a) T ⊇ {a i , b i+1 } for some i ∈ {1, 2, 3} or (b) T contains two vertices from Q. In either case, (4.1) or (4.2) implies that |L(T)| ≥ 8, so |T| ≥ 9, that is, T = V(G). But then T ⊃ Q, so (4.2) implies that |L(T)| ≥ 12 and |T| ≥ 13, which is impossible. Thus the family {L(x) | x ∈ V(G)} admits a system of distinct representatives, which is an L-coloring of G.

Cobipartite graphs

In this subsection we analyze the list colorability of certain cobipartite graphs with certain list assignments. The following lemmas will be useful for the final step of the proof.

LEMMA 4.17

Let H be a cobipartite graph, where V(H) is partitioned into two cliques X and Y. We proceed by induction on |X|.

If |X| = 0, then H is a clique with |L(v)| = |V(H)| for all v ∈ V(H); so H is L-colorable by Hall's theorem. Now suppose that |X| > 0. If the family {L(v) | v ∈ V(H)
} admits a system of distinct representatives, then this is an L-coloring. So suppose the contrary. By Hall's theorem there is a set T ⊆ V(H) such that |L(T)| < |T|. Then |T| > |X|, so T contains a vertex y from Y, and so |T| > |L(y)| ≥ |Y|. Since ω(H) = |Y|, it follows that T is not a clique. So T contains non-adjacent vertices x, y with x ∈ X and y ∈ Y. We have induction hypothesis, H admits an L -coloring. We can extend it to an L-coloring of H by assigning the color c to x and y.

|L(x) ∪ L(y)| ≤ |L(T)| < |T| ≤ |X| + |Y|, which implies L(x) ∩ L(y) = ∅. Pick a color c ∈ L(x) ∩ L(y). Set L (w) = L(w) \ {c} for all w ∈ V(H) \ {x, y}. Let X = X \ {x}, Y = Y \ {y}

LEMMA 4.18

Let H be the cobipartite graph isomorphic to H 4 as depicted in Figure 4 Proof. This is a corollary of Claim 1 in [START_REF] Gravier | Choice number of 3-colorable elementary graphs[END_REF]. For completeness, we restate the claim here: The graph H is not L-colorable if and only if for some v ∈ {x 2 , y 2 } we have L(x 1 ) = L(y 1 ) = L(v) and these three lists are of size two. First suppose that L(y 2 ) ⊆ L(x 3 ). Since H \ {x 3 } is a clique, every subset T of V(H) \ {x 3 } satisfies |L(T)| ≥ |T|, and so, by Hall's theorem there is an L-coloring of H \ {x 3 }. Then we can extend any such coloring by assigning to x 3 the color assigned to y 2 . Now assume that L(y 2 ) ⊆ L(x 3 ). This implies |L(x 3 ) ∪ L(y 2 )| ≥ 4. Suppose that the family {L(x) | x ∈ V(H)} does not have a system of distinct representatives. By Hall's theorem there is a set T ⊆ V(H) such that |L(T)| < |T|. By the assumption, T is not a clique, so it contains x 3 and y 2 . It follows that |L(T)| ≥ 4. Hence |T| = 5, so T = V(H), and |L(T)| = 4, and we may assume that L(x 3 ) = {1, 2, 3} and L(y 2 ) = {3, 4} and L(T) = {1, 2, 3, 4}. Assign color 3 to x 3 and y 2 . Now assign a color c from L(y 1 ) \ {3} to y 1 (there may be two choices for c). We may assume that this coloring fails to be extended to {x 1 , x 2 }; so it must be that L(x 1 ) \ {3, c} and L(x 2 ) \ {3, c} are equal and of size 1; so L(x 1 ) = L(x 2 ) = {b, c, 3} for some b = c, with b ∈ {1, 2, 4}. Suppose that 3 / ∈ L(y 1 ). Then there is a second choice for c, and we may assume that this attempt fails similarly. Hence L(y 1 ) = {b, c}, with b, c ∈ {1, 2, 4}. If {b, c} = {1, 2}, then the clique

Clearly, if H is L-colorable, then every clique Q of H satisfies |L(Q)| ≥ |Q|. Con- versely, if every clique Q of H satisfies |L(Q)| ≥ |Q|,
Q 1 = {x 1 , x 2 , x 3 , y 1 } violates the assumption because L(Q 1 ) = {1, 2, 3}. If {b, c} = {1, 4} or {2, 4}, then the clique Q 2 = {x 1 , x 2 , y 1 , y 2 } violates the assumption because L(Q 2 ) = {b, c, 3}. So we may assume that 3 ∈ L(y 1 ), i.e., L(y 1 ) = {c, 3}. If c = 4, then Q 2 violates the assumption because L(Q 2 ) = {b, 3, 4}. So, up to symmetry, c = 1. If b = 2, then Q 1 violates the assumption because L(Q 1 ) = {1, 2, 3}. If b = 4, then Q 2 violates the assumption because L(Q 2 ) = {1, 3, 4}. Hence the family {L(x) | x ∈ V(H)} admits a system of distinct representatives, which is an L-coloring of G.

LEMMA 4.20

Let H be the cobipartite graph isomorphic to H 6 as depicted in Figure 4 x ∈ V(H)} admits a system of distinct representatives, then this is an L-coloring. So suppose the contrary. By Hall's theorem there is a set T ⊆ V(H) such that |L(T)| < |T|. By the assumption, T is not a clique, so it contains x i and y i for some i ∈ {2, 3}. By (4.3) we have |L(T)| ≥ 5, so |T| ≥ 6, hence T = V(H), and |L(T)| = 5, and consequently |L(

Q in H satisfies |L (Q)| < |Q|. We have |L (Q)| ≥ 2, so |Q| ≥ 3, so 3 ≤ |L (Q)| < |Q| ≤ 4,
x i )| = |L(y i )| = 3 and |L(x i ) ∩ L(y i )| = 1 for each i = 2, 3. Let L(x i ) ∩ L(y i ) = {c i } for i = 2, 3.
Suppose that c 2 = c 3 . We assign color c i to x i and y i for each i = 2, 3. If this coloring can be extended to {x 1 , y 1 } we are done. So suppose the contrary. Then it must be that L(x 1 ) = L(y 1 ) = {b, c 2 , c 3 } for some color b ∈ L(H) \ {c 2 , c 3 }. Then we can color H as follows. Assign colors c 2 and c 3 to x 1 and y 1 . There are four ways to color x 2 and y 2 with one color from L(x 2 ) \ {c 2 } for x 2 and one color from L(y 2 ) \ {c 2 } for y 2 ; at most two of them use a pair of colors equal to L(x 3 ) \ {c 3 } or L(y 3 ) \ {c 3 }, so we can choose another way, and there will remain a color for x 3 and a color for y 3 . Now suppose that c 2 = c 3 ; call this color c. Let L (v) = L(v) \ {c} for all v ∈ V(H) \ {x 3 , y 3 }. We may assume that the graph H \ {x 3 , y 3 } does not admit an Lcoloring, for otherwise such a coloring can be extended to H by assigning color c to x 3 and y 3 . Hence, by Lemma 4.18 there is a clique Q of size 3 in H \ {x 3 , y 3 } such that |L (Q)| = 2, say L (Q) = {a, b}. So L(u) = {a, b, c} for all u ∈ Q. Moreover Q consists of x 1 , y 1 and one of x 2 , y 2 . We assign color a to x 1 , color b to y 1 , and color c to x 2 and y 2 . Since |L(Q ∪ {x 3 })| ≥ 4, there is a color d ∈ L(x 3 ) \ {a, b, c}, and similarly there is a color e ∈ L(y 3 ) \ {a, b, c}. We assign d to x 3 and e to y 3 , and we obtain an L-coloring of H.

Finally we prove the last sentence of the lemma. Since x 1 and y 1 are in all cliques of size 4, the assumption that |L(x 1 )

∪ L(y 1 )| ≥ 4 implies that every clique Q of H satisfies |L(Q)| ≥ |Q|. So H is L-colorable.

LEMMA 4.21

Let H be a cobipartite graph with ω(H) ≤ 4. Let x, y be two adjacent vertices in H such that N(x) \ {y} and N(y) \ {x} are cliques and

V(H) = N(x) ∪ N(y). Let L be a list assignment such that |L(x)| ≥ 2, |L(y)| ≥ 2, and |L(v)| ≥ 4 for all v ∈ V(H) \ {x, y}. Then H is L-colorable. Proof. Let X = N(x) \ {y} and Y = N(y) \ {x}. Let I = X ∩ Y. Since {x, y} ∪ I is a clique, we have |I| ≤ 2.
First suppose that |I| = 2. Let I = {w, w }. Since {x} ∪ X is a clique that contains I, we have |X \ I| ≤ 1. Likewise |Y \ I| ≤ 1. We may assume that we are in the situation where X \ I and Y \ I are non-empty and complete to each other, because any other situation can be reduced to that one by adding vertices or edges (which makes the coloring problem only harder). Let X \ I = {u} and Y \ I = {v}. Suppose that L(x) ∩ L(v) = ∅. Pick a color a ∈ L(x) ∩ L(v), assign it to x and v, and remove it from the lists of all other vertices. Pick a color b from L(y) \ {a}, assign it to y and remove it from the list of the vertices in I. Let L be the reduced list assignment. Then |L (w)| ≥ 2, |L (w )| ≥ 2, and |L (u)| ≥ 3, so we can L -color greedily w, w , u in this order. Hence assume that L(x) ∩ L(v) = ∅, and similarly that L(y

) ∩ L(u) = ∅. Then |L(x) ∪ L(v)| ≥ 6 and |L(y) ∪ L(u)| ≥ 6. It follows that the family {L(z) | z ∈ V(H)} satisfies Hall's condition, so H is L-colorable. Now suppose that |I| = 1. Let I = {w}. Then |X \ {w}| ≤ 2 and |Y \ {w}| ≤ 2.
We may assume that we are in the situation where X \ I and Y \ I have size 2 and there are three edges between them, because any other situation can be reduced to that one by adding vertices or edges. Let X \ I = {u, v} and Y \ I = {s, t}, and let us, ut, vs ∈ E(H) and vt / ∈ E(H). Suppose that L(x) ∩ L(s) = ∅. We pick a color a ∈ L(x) ∩ L(s), assign it to x and s, and remove it from the lists of all other vertices. Then it is easy to see that we can color y, t, w, u, v in this order, using colors from the reduced lists. Hence assume that L(x) ∩ L(s) = ∅, and similarly that L(y

) ∩ L(u) = ∅. So |L(x) ∪ L(s)| ≥ 6 and |L(y) ∪ L(u)| ≥ 6. Suppose that L(x) ∩ L(t) = ∅.
We pick a color a ∈ L(x) ∩ L(t), assign it to x and t, and remove it from the lists of all other vertices. Since L(x) ∩ L(s) = ∅, the list L(s) loses no color (a / ∈ L(s)). If L(y) \ {a} and L(v) \ {a} have a common element b, we assign it to y and v, and it is easy to see that w, u, s can be colored in this order with the reduced lists. On the other hand if L(y) \ {a} and L(v) \ {a} are disjoint, then it is easy to see that the family {L(z) \ {a} | z ∈ V(H) \ {x, t}} satisfies Hall's condition, so H is L-colorable. Hence assume that L(x) ∩ L(t) = ∅, and similarly that L(y) ∩ L(v) = ∅. So |L(x) ∪ L(t)| ≥ 6 and |L(y) ∪ L(v)| ≥ 6. Suppose that L(t) ∩ L(v) = ∅. Pick a color a ∈ L(t) ∩ L(v) and assign it to t and v. Since L(y) ∩ L(v) = ∅ and L(x) ∩ L(t) = ∅ we have L(y) = L(y) \ {a} and similarly

L(x) = L(x) \ {a}. It follows that the family {L(z) \ {a} | z ∈ V(H) \ {t, v}} satisfies Hall's condition. Finally assume that L(t) ∩ L(v) = ∅. So |L(t) ∪ L(v)| ≥ 8. Then the family {L(z) | z ∈ V(H)} satisfies Hall's condition, so H is L-colorable.
Finally suppose that I = ∅. We may assume that X and Y have size 3 and that the non-edges between them form a matching of size 2, because any other situation can be reduced to that one by adding vertices or edges. Let

X = {u 1 , u 2 , u 3 }, Y = {v 1 , v 2 , v 3 }, and E(H) = {u 2 v 2 , u 3 v 3 }. We can choose a color a from L(x) and a color b from L(y) such that L(u 1 ) \ {a} = L(v 1 ) \ {b}. Let L (u) = L(u) \ {a} for all u ∈ X and L (v) = L(v) \ {b} for all v ∈ Y.
By the last sentence of Lemma 4.20, H \ {x, y} admits an L -coloring, and we can extend it to an L-coloring of H by assigning color a to x and color b to y.

LEMMA 4.22

Let H be a cobipartite graph, where V(H) is partitioned into two cliques X = {x 1 , x 2 , x 3 } and Y = {y 1 , y 2 , y 3 }, and E(H) = {x 1 y 1 , x 2 y 2 , x 3 y 3 , x 3 y 1 , x 1 y 2 }.

Let L be a list assignment on V(H) such that |L(x 3 )| = 2, |L(y 2 )| = 2, and |L(w)| = 3 for every w ∈ V(H) \ {x 3 , y 2 }. Then H is L-colorable.

Proof. Suppose that L(x 2 ) ∩ L(y 2 ) = ∅. Assign a color a from L(x 2 ) ∩ L(y 2 ) to x 2 and y 2 . Let L (u) = L(u) \ {a} for all u ∈ {x 1 , x 3 , y 1 , y 3 }. Then we can L -color x 3 , x 1 , y 3 , y 1 greedily in this order, because x 3 -x 1 -y 3 -y 1 is an induced path and the reduced lists' size pattern is (≥ 1, ≥ 2, ≥ 2, ≥ 2). The proof is similar when L(x 3 ) ∩ L(y 3 ) = ∅. So we may assume that:

L(x 2 ) ∩ L(y 2 ) = ∅ and L(x 3 ) ∪ L(y 3 ) = ∅. (4.4)
Suppose that L(x 1 ) ∩ L(y 2 ) = ∅. Assign a color a from L(x 1 ) ∩ L(y 2 ) to x 1 and y 2 . Let L (u) = L(u) \ {a} for all u ∈ {x 2 , x 3 , y 1 , y 3 }. By (4.4), we have a / ∈ L(x 2 ), so L (x 2 ) = L(x 2 ), and a is in at most one of L(x 3 ) and L(y 3 ). If a ∈ L(x 3 ), then we can L -color greedily x 3 , x 2 , y 1 , y 3 in this order. If a ∈ L(y 3 ), then we can L -color greedily y 3 , y 1 , x 2 , x 3 in this order. The proof is similar when L(x 3 ) ∩ L(y 1 ) = ∅. So we may assume that:

L(x 1 ) ∩ L(y 2 ) = ∅ and L(x 3 ) ∩ L(y 1 ) = ∅. (4.5) 
Suppose that L(x 1 ) ∩ L(y 1 ) = ∅. Assign a color a from L(x 1 ) ∩ L(y 1 ) to x 1 and y 1 . Let L (u) = L(u) \ {a} for all u ∈ {x 2 , x 3 , y 2 , y 3 }. By (4.5), we have a / ∈ L(x 3 ) and a / ∈ L(y 2 ). The graph H \ {x 1 , y 1 } is an even cycle, and |L (u)| ≥ 2 for every vertex u in that graph, so it is L -colorable. So we may assume that: 

L(x 1 ) ∩ L(y 1 ) = ∅.

LEMMA 4.23

Let H be a cobipartite graph with ω(G) ≤ 4. Let V(H) be partitioned into two cliques X, Y with X = {x 1 , x 2 , x 3 }, such that x 1 is complete to Y. Let L be a list assignment such that |L(x 

1 )| ≥ 3, |L(x 2 )| ≥ 2, |L(x 3 )| ≥ 2,
∈ T. If L(x 2 ) ∩ L(y 2 ) = ∅, then |L(T)| ≥ |L(x 2 ) ∪ L(y 2 )| = 6, so |T| ≥ 7, which is impossible. Hence L(x 2 ) ∩ L(y 2 ) = ∅. Assign a color c 2 from L(x 2 ) ∩ L(y 2 ) to x 2 and y 2 . Define L (u) = L(u) \ {c 2 } for all u ∈ V(H) \ {x 2 , y 2 }. If L (x 3 ) ∩ L (y 3 ) = ∅ assign a color c 3 from L (x 3 ) ∩ L (y 3 )
to x 3 and y 3 . Then we have |(L (x 1 ) ∪ L (y 1 )) \ {c 2 }| ≥ 2, so we can extend the coloring to {x 1 , y 1 }. On the other hand, if L (x 3 ) ∩ L (y 3 ) = ∅, the family {L (w) | w ∈ V(H) \ {x 2 , y 2 }} admits a system of distinct representatives. So H admits an L-coloring.

LEMMA 4.24

Let H be a cobipartite graph, where V(H) is partitioned into two cliques X = {x 1 , x 2 , x 3 , x 4 } and Y = {y 1 , y 2 , y 3 , y 4 }, and E(H) = {x 1 y 1 , x 1 y 3 , x 1 y 4 , x 2 y 2 , x 2 y 3 , x 2 y 4 , x 3 y 3 , x 4 y 4 }. Let L be a list assignment on V(H) such that

|L(x 1 )| = 2, |L(x 2 )| = 2 and |L(w)| = 4 for all w ∈ V(H) \ {x 1 , x 2 }. Then H is L-colorable. Proof. We choose colors c 1 , c 2 with c 1 ∈ L(x 1 ), c 2 ∈ L(x 2 ) and c 1 = c 2 , such that if |L(y 1 ) ∩ L(y 2 )| = 3, then either {c 1 } = L(y 2 ) \ L(y 1 ) or {c 2 } = L(y 1 ) \ L(y 2 )
. This is possible as follows: if |L(y 1 ) ∩ L(y 2 )| = 3, let α be the color in L(y 1 ) \ L(y 2 ), then choose c 2 ∈ L(x 2 ) \ {α} and c 1 ∈ L(x 1 ) \ {c 2 }. We assign color c 1 to x 1 and 

c 2 to x 2 . Let L (y 1 ) = L(y 1 ) \ {c 2 }, L (y 2 ) = L(y 2 ) \ {c 1 }, L (x 3 ) = L(x 3 ) \ {c 1 , c 2 }, L (x 4 ) = L(x 4 ) \ {c 1 , c 2 }, L (y 3 ) = L(y 3 ) and L (y 4 ) = L(y 4 ). So |L (u)| ≥ 2 for u ∈ {x 3 , x 4 }, |L (v)| ≥ 3 for v ∈
H \ {x 1 , x 2 } is L -colorable.
Suppose that L (x 3 ) ∩ L (y 3 ) = ∅. Assign a color c 3 from L (x 3 ) ∩ L (y 3 ) to x 3 and y 3 . Define L (u) = L (u) \ {c 3 } for all u ∈ {x 4 , y 1 , y 2 , y 4 }. Note that |L (x 4 )| ≥ 1, |L (u)| ≥ 2 for u ∈ {y 1 , y 2 }, and |L (y 4 )| ≥ 3. Assign a color c 4 from L (x 4 ) to x 4 . Since |L (y 1 ) ∪ L (y 2 )| ≥ 4, it follows that |(L (y 1 ) ∪ L (y 2 )) \ {c 4 }| ≥ 2. So we can L -color greedily {y 1 , y 2 } and then y 4 . The proof is similar if L (x 4 ) ∩ L (y 4 ) = ∅. Therefore we may assume that L (x 3 ) ∩ L (y 3 ) = ∅ and L (x 4 ) ∩ L (y 4 ) = ∅, and so |L (x 3 ) ∪ L (y 3 )| = 6 and |L (x 4 ) ∪ L (y 4 )| = 6. This and the choice of c 1 , c 2 implies that the family {L (w) | w ∈ V(H) \ {x 1 , x 2 }} admits a system of distinct representatives.

LEMMA 4.25

Let H be a cobipartite graph with ω(G) ≤ 4. Let C be a clique of size 3 in H such that for every w ∈ C, the set N(w) \ C is a clique. Let L be a list assignment such that |L(w

)| = 3 for all w ∈ C and |L(v)| = 4 for all v ∈ V(H) \ C. Then H is L-colorable.
Proof. Therefore we may assume that (b) holds. We may assume that

If
v 1 v 4 , v 2 v 4 , v 3 v 8 ∈ E(H) and v 1 v 8 , v 2 v 8 , v 3 v 4 / ∈ E(H). Since H is cobipartite, {v 1 , v 2 , v 4 , v 7
} and {v 3 , v 5 , v 6 , v 8 } are cliques, and by the maximality of E(H) we may assume that

E(H) = {v 1 v 5 , v 2 v 6 , v 3 v 7 , v 4 v 8 , v 1 v 8 , v 2 v 8 , v 3 v 4 }. Suppose that L(v 3 ) ∩ L(v 7 ) = ∅. Assign a color c from L(v 3 ) ∩ L(v 7 ) to v 3 and v 7 .
Define L (w) = L(w) \ {c} for every w ∈ V(H) \ {v 3 , v 7 }. By Lemma 4.19, H \ {v 3 , v 7 , v 8 } admits an L -coloring. This can be extended to v 8 since v 8 has only two neighbors in H \ {v 3 , v 7 }. So we may assume that:

L(v 3 ) ∩ L(v 7 ) = ∅. (4.7) Suppose that L(v 1 ) ∩ L(v 5 ) = ∅. Assign a color c from L(v 1 ) ∩ L(v 5 ) to v 1 and v 5 . Define L (w) = L(w) \ {c} for every w ∈ V(H) \ {v 1 , v 5 }. By Lemma 4.22 the graph H \ {v 1 , v 5 } is L -colorable. The proof is similar if L(v 2 ) ∩ L(v 6 ) = ∅. So we may assume that: L(v 1 ) ∩ L(v 5 ) = ∅ and L(v 2 ) ∪ L(v 6 ) = ∅. (4.8) Suppose that L(v 3 ) ∩ L(v 4 ) = ∅. Assign a color c from L(v 3 ) ∩ L(v 4
) to v 3 and v 4 . Define L (w) = L(w) \ {c} for every w ∈ V(H) \ {v 3 , v 4 }. By (4.7), we have c / ∈ L(v 7 ), so L (v 7 ) = L(v 7 ). Hence and by (4.7) and (4.8), the family {L (w) | w ∈ V(H) \ {v 3 , v 4 }} admits a system of distinct representatives. So we may assume that:

L(v 3 ) ∪ L(v 4 ) = ∅. (4.9) Suppose that L(v 4 ) ∩ L(v 8 ) = ∅. Assign a color c from L(v 4 ) ∩ L(v 8
) to v 4 and v 8 . Define L (w) = L(w) \ {c} for every w ∈ V(H) \ {v 4 , v 8 }. By (4.9), we have c / ∈ L(v 3 ), so L (v 3 ) = L(v 3 ). By (4.7), (4.8) and (4.9), the family {L (w) | w ∈ V(H) \ {v 4 , v 8 }} admits a system of distinct representatives. So we may assume that: 

L(v 4 ) ∪ L(v 8 ) = ∅. ( 4 

Elementary graphs

Now we can consider the case of any elementary graph G with ω(G) ≤ 4.

THEOREM 4.26

Let G be an elementary graph with ω(G) ≤ 4. Then ch(G) = χ(G).

Proof. This theorem holds for every graph G with ω(G) ≤ 3 as proved in [START_REF] Gravier | On the choice number of claw-free perfect graphs[END_REF]. Hence we will assume that ω(G) = 4. By Theorem 4.11, G is the augmentation of the linegraph L(H) of a bipartite multigraph H. Let e 1 , . . . , e h be the flat edges of L(H) that are augmented to obtain G. We prove the theorem by induction on h. If h = 0, then G = L(H); in that case the equality ch(G) = χ(G) follows from Galvin's theorem [START_REF] Galvin | The list chromatic index of a bipartite multigraph[END_REF]. Now assume that h > 0 and that the theorem holds for elementary graphs obtained by at most h -1 augmentations. Let (X, Y) be the augment in G that corresponds to the edge e h of L(H). In L(H), let e h = xy. So x, y are incident edges of H. In H, let x = q x q xy and y = q y q xy ; so their common vertex q xy has degree 2 in H. Let G h-1 be the graph obtained from L(H) by augmenting only the h -1 other edges e 1 , . . . , e h-1 . So G h-1 is an elementary graph.

Let L be a list assignment on V(G) such that |L(v)| = ω(G) for all v ∈ V(G). We will prove that G admits an L-coloring.

We may assume that |X ∪ Y| > ω(G). The graph G h-1 \ {x, y} is elementary, and it has h -1 augments, so, by the induction hypothesis, it admits an L-coloring f . We will try to extend f to G; if this fails, we will analyse why and then show that we can find another L-coloring of G h-1 \ {x, y} that does extend to G. Let L be the list assignment defined on X ∪ Y as follows: for all u ∈ X, let (4.11) and up to symmetry, we may assume that either |Y| = 4 (and |X| ≤ 4) or (|X|, |Y|) is equal to (3,3) or (2,3). We deal with each case separately. 

L (u) = L(u) \ f (N X ), and for all v ∈ Y, let L (v) = L(v) \ f (N Y ). Clearly, f extends to an L-coloring of G if and only if G[X ∪ Y] admits an L -coloring. By
Y | ≤ 1, so |L (u)| ≥ 3 for all u ∈ X ∪ Y. If G[X ∪ Y]
is L -colorable we are done, so assume the contrary. By Lemma 4.20, there is a clique

Q ⊂ X ∪ Y such that |L (Q)| < |Q|. Thus 3 ≤ |L (Q)| < |Q| ≤ 4.
This implies that |Q| = 4, and in particular Q contains x 1 and y 1 . Moreover |L (Q)| = 3, so L (x 1 ) and L (y 1 ) are equal and have size 3, so

|N X | = 1 and |N Y | = 1. Let N X = {u} and N Y = {v}. Thus there are colors a, b, c, d, d such that L(x 1 ) = {a, b, c, d}, L(y 1 ) = {a, b, c, d }, f (u) = d and f (v) = d (possibly d = d ).
In other words, f satisfies the following "bad" property:

Either L(x 1 ) = L(y 1 ) and f (u) = f (v), or |L(x 1 ) ∩ L(y 1 )| = 3 and { f (u)} = L(x 1 ) \ L(y 1 ) and { f (v)} = L(y 1 ) \ L(x 1 ). (4.12) 
Let G * be the graph obtained from G by removing all edges between X and Y and adding two new vertices u * and v * with edges u * v * , u * x i (i = 1, 2, 3) and v * y i (i = 1, 2, 3). Let H * be the graph obtained from H by removing the vertex q xy and adding three vertices q 1 , q 2 , q 3 , with edges q 1 q 2 and q 2 q 3 , plus three parallel edges between q x and q 1 and three parallel edges between q 3 and q y . So H * is bipartite, and it is easy to see that G * is obtained from L(H * ) by augmenting e 1 , . . . , e h-1 as in G. So G * is elementary.

We define a list assignment

L * on G * as follows. For all v ∈ V(G \ (X ∪ Y)), let L * (v) = L(v). For all v ∈ X ∪ {u * , v * } let L * (v) = {a, b, c, d}, and for all v ∈ Y let L * (v) = {a, b, c, d }. By the induction hypothesis on h, the graph G * admits an L * - coloring f * . In particular f * is an L-coloring of G \ (X ∪ Y). We claim that if d = d then f * (u) = f * (v), and if d = d then either f * (u) = d or f * (v) = d . Indeed we have f * (X) = {a, b, c, d} \ { f * (u)} and f * (Y) = {a, b, c, d } \ { f * (v)}, so if the claim fails then f * (X) = f * (Y) and consequently f * (u * ) = f * (v *
), a contradiction. So the claim holds. By the claim, we can use f * instead of f above (as an L-coloring of G \ (X ∪ Y)), because f * does not satisfy (4.12); so we can extend it to an L-coloring of G.

Case 3: |X| = 3 and |Y| = 2. Here we have µ = 1, and we may assume that the only non-edge between X and Y is x 3 y 2 . We have

|N X | ≤ 1 and |N Y | ≤ 2, so |L (u)| ≥ 3 for all u ∈ X and |L (v)| ≥ 2 for all v ∈ Y. If G[X ∪ Y] is L -colorable we are done, so assume the contrary. By Lemma 4.19, there is a clique Q ⊂ X ∪ Y such that |L (Q)| < |Q|. This inequality implies that Q ⊆ Y, so Q ∩ X = ∅. Thus 3 ≤ |L (Q)| < |Q| ≤ 4.
This implies that |Q| = 4, and in particular Q contains x 1 , x 2 and y 1 . Moreover |L (Q)| = 3, so L (x 1 ) and L (x 2 ) are equal and have size 3, so |N X | = 1, and L (y 1 ) has size at most 3, so |N Y | ≥ 1, and L (y 1 ) ⊆ L (x 1 ). Let N X = {u}. Thus L(x 1 ) = L(x 2 ), and f satisfies the following "bad" property:

f (u) ∈ L(x 1 ) and L(y 1 ) \ f (N Y ) ⊆ L(x 1 ) \ { f (u)}. (4.13) 
Let G * = G \ {x 3 }. Clearly G * is elementary. Let H * be the graph obtained from H by duplicating the edge q x q xy (so that there are two parallel edges between q x and q xy ) and similarly duplicating q y q xy . It is easy to see that G * is obtained from L(H * ) by augmenting e 1 , . . . , e h-1 as in G. We define a list assignment L * on G * as follows.

For all v ∈ V(G * ) \ {y 2 }, let L * (v) = L(v), and let L * (y 2 ) = L(y 1 ). By the induction hypothesis on h the graph G * admits an L * -coloring f * . We claim that f * does not satisfy the bad property (4.13). Indeed if it does, then f * (u) ∈ L * (x 1 ) and L * (y

1 ) \ f * (N Y ) ⊆ L * (x 1 ) \ { f * (u)}. Since L * (y 2 ) = L * (y 1 ), we also have L * (y 2 ) \ f * (N Y ) ⊆ L * (x 1 ) \ { f * (u)}
, and this means that the four vertices x 1 , x 2 , y 1 , y 2 (which induce a clique) are colored by f * using colors from L * (x 1 ) \ { f * (u)}, which has size 3; but this is impossible. So the claim holds. By the claim, we can use f * instead of f above (as an L-coloring of G \ (X ∪ Y)) and we can extend it to an L-coloring of G. This completes the proof of the theorem.

Claw-free perfect graphs

Now we can prove Theorem 4.13.

Proof. We may assume that G is connected. Let L be a list assignment on G such that |L(v)| ≥ 4 for all v ∈ V(G). Let us prove that G is L-colorable by induction on the number of vertices of G. If G is peculiar, then by Lemma 4.16 we know that the theorem holds. So assume that G is not peculiar. By Theorem 4.10 and Lemma 4.15, we know that G can be decomposed by clique cutsets into elementary graphs. We may assume that:

G has no simplicial vertex. (

Suppose that x is a simplicial vertex in G. By the induction hypothesis, G \ {x} admits an L-coloring f . Since x is simplicial, it has at most three neighbors. So f can be extended to x by choosing in L(x) a color not assigned by f to its neighbors. Thus (4.14) holds.

By the discussion after the definition of a clique cutset (Section 1), G admits an extremal cutset C, i.e., a minimal clique cutset such that for some component A of G \ C the induced subgraph G[A ∪ C] is an atom (i.e., has no clique cutset). Since C is minimal, every vertex x of C has a neighbor in every component of G \ C (for otherwise C \ {x} would be a clique cutset), and it follows that G \ C has only two components A 1 , A 2 (for otherwise x would be the center of a claw). For i = 1, 2 let

G i = G[C ∪ A i ].
Hence we may assume that G 2 is elementary.

By the induction hypothesis, the graph G[C ∪ A 1 ] is 4-choosable, so it admits an L-coloring f . We will show that we can extend this coloring to G.

By Theorem 4.11, G 2 is obtained by augmenting the line-graph L(H) of a bipartite graph H. For each augment (X, Y) of G 2 , select a pair of adjacent vertices such that one is in X and the other is in Y. Also select all vertices of G 2 that are not in any augment. It is easy to see that L(H) is isomorphic to the subgraph of G 2 induced by the selected vertices. Without loss of generality it will be convenient to view L(H) as equal to that induced subgraph. We claim that:

If there is an augment (X, Y) in G 2 such that both C ∩ X and C ∩ Y are non-empty, then V(G 2 ) = X ∪ Y. (4.15) 
90| LIST COLORING Suppose on the contrary, under the hypothesis of (4.15), that

V(G 2 ) = X ∪ Y. Let Z = V(G 2 ) \ (X ∪ Y). Let Z X = {z ∈ Z | z has a neighbor in X} and Z Y = {z ∈ Z | z has a neighbor in Y}.
By the definition of an augment, Z X is complete to X and anticomplete to Y, and Z Y is complete to Y and anticomplete to X, and

Z X ∩ Z Y = ∅.
Since G 2 is connected, we may assume up to symmetry that Z X = ∅. Pick any z ∈ Z X . Since G 2 is an atom, X is not a cutset of G 2 (separating z from Y), so Z Y = ∅, which restores the symmetry between X and Y. Since C is a clique and has a vertex in Y, C contains no vertex from Z X ; similarly, C contains no vertex from

Z Y ; hence C ⊂ X ∪ Y. Pick any x ∈ C ∩ X. Since C is a minimal cutset, x has a neighbor a 1 in A 1 .
Then a 1 must be adjacent to every neighbor y of x in Y, for otherwise {x, a 1 , z, y} induces a claw; and it follows that y ∈ C. We can repeat this argument for every vertex in C; by the last item in Theorem 4.11 it follows that every vertex in X ∪ Y is adjacent to a 1 and, consequently, is in C. But this is a contradiction because C is a clique and X ∪ Y is not a clique. Thus (4.15) holds. Now we distinguish two cases.

(I) First suppose that G 2 is not a cobipartite graph.

For every edge uv in the bipartite multigraph H, let C uv be the subset of V(G 2 ) defined as follows. If v has degree 2 in H, say N H (v) = {u, u }, and {vu, vu } is a flat edge in L(H) on which an augment (X, X ) of G 2 is based (where X corresponds to vu and X corresponds to vu ), then let C uv = X. If uv is not such an edge, then let C uv be the set of parallel edges in H whose ends are u and v. Now for every vertex u in H, let C u = uv∈E(H) C uv . Note that C u is a clique in G 2 . We claim that:

There is a vertex u in H such that C = C u . ( 4.16) 
For every augment (X, 4.17), but we will not use this fact.) Recall that f is an L-coloring of G 1 ; so for i = 1, . . . , p let c i = f (d i ).

Y) in G 2 we have V(G 2 ) = X ∪ Y, because G 2 is
The maximum degree in

H * is ∆(H * ) = ω(L(H * )) ≤ ω(G 2 ) ≤ ω(G) ≤ 4.
So we can color the edges of H * with 4 colors in such a way that vertices d 1 , . . . , d p receive colors c 1 , . . . , c p respectively. Let L * be a list assignment on L(H * ) defined as follows. 

If v ∈ V(L(H)), let L * (v) = L(v). For i = 1, . . . , p, let L * (d i ) = {c 1 , . . . , c i }. By
* (d i ) = c i = f (d i ) for all i = 1, . . . , p. Let f be defined as follows. For all v ∈ V(G 1 ) \ C, let f (v) = f (v), and for all v ∈ V(G 2 ), let f (v) = f * (v). Then f is an L-coloring of G.
This completes the proof in case (I).

(II) We may now assume that G 2 is a cobipartite graph. Let D be the set of vertices of

A 1 that have a neighbor in C. For all x ∈ C, let N 1 (x) = N(x) ∩ A 1 , N 2 (x) = N(x) ∩ A 2 and M 2 (x) = A 2 \ N(x).
We observe that: N 1 (x) and N 2 (x) are non-empty cliques, and M 2 (x) is a clique. (

We know that N 1 (x) and N 2 (x) are non-empty because C is a minimal cutset. For i = 1, 2 pick any n i ∈ N i (x); then N i (x) is a clique, for otherwise x is the center of a claw with n 3-i and two non-adjacent vertices from N i (x). Also M 2 (x) is a clique, for otherwise G 2 contains a stable set of size 3. Thus (4.19) holds.

Suppose that |C| = 1. Let C = {x}. Then M 2 (x) is empty, for otherwise N 2 (x) is a clique cutset in G 2 (separating x from M 2 (x)). So G 2 is a clique. Then every vertex in A 2 is simplicial, a contradiction to (4.14). So |C| ≥ 2.
Suppose that two vertices x and y of C have inclusion-wise incomparable neighborhoods in A 1 . So there is a vertex a in A 1 adjacent to x and not to y, and there is a vertex b in A 1 adjacent to y and not to x. If a vertex u in A 2 is adjacent to x, then it is adjacent to y, for otherwise {x, a, y, u} induces a claw, and vice-versa. So

N 2 (x) = N 2 (y), and |N 2 (x)| ≤ 2 (because N 2 (x) ∪ {x, y} is a clique), and M 2 (x) = M 2 (y). Suppose that M 2 (x) = ∅. Let C = {u ∈ C \ {x, y} | u is complete to N 2 (x)}. Since C ∪ N 2 (x) is a clique, it cannot be a cutset of G 2 , so some vertex z in C \ (C ∪ {x, y}) has a neigh- bor v in M 2 (x). Since z / ∈ C , z has a non-neighbor u in N 2 (x).
Then za is an edge, for otherwise {x, a, z, u} induces a claw. But then {z, a, y, v} induces a claw, a contradiction. So M 2 (x) = ∅. Thus A 2 = N 2 (x) = N 2 (y). If the vertices in A 2 have pairwise comparable neighborhoods in C, then it follows easily that the vertex in A 2 with the smallest degree is simplicial in G, a contradiction to (4.14). So there are two vertices u, v in A 2 and two vertices z, t in C such that tu, zv are edges and tv, zu are not edges. Clearly z, t / ∈ {x, y}, so |C| = 4. Then za is an edge, for otherwise {x, a, z, u} induces a claw; and similarly, zb, ta, tb are edges. Then ab is an edge, for otherwise {z, a, b, v} induces a claw. Recall that since G is perfect and claw-free, the neighborhood of every vertex can be partitioned into two cliques, and consequently (since ω(G) ≤ 4) every vertex has degree at most 6. Hence N(x) = {y, z, t, a, u, v} (because we already know that x is adjacent to these six vertices), and similarly N(y) = {x, z, t, b, u, v}, N(z) = {x, y, t, a, b, v}, and N(t) = {x, y, z, a, b, u}. It follows that A 2 = {u, v} and D = {a, b}. Here we view f as an L-coloring of G 1 \ (C ∪ {a, b}) rather than of G 1 , and we try to extend it to {a, b} ∪ C ∪ A 2 . Let S = {s ∈ V(G 1 ) \ (C ∪ {a, b}) | s has a neighbor in {a, b}}. If a vertex s ∈ S is adjacent to a and not to b, then {a, s, b, x} induces a claw, a contradiction. By symmetry this implies that S is complete to {a, b}. Then S is a clique, for otherwise {a, s, s , x} induces a claw from some non-adjacent s, s ∈ S. So S ∪ {a, b} is a clique, and so |S| ≤ 2. We remove the colors of f (S) from the lists of a and b. By Lemma 4.24 we can color the vertices of D ∪ C ∪ {u, v} with colors from the lists thus reduced. So G is L-colorable.

Therefore we may assume that any two vertices of C have inclusion-wise comparable neighborhoods in A 1 . This implies that some vertex a 1 in A 1 is complete to C, and that some vertex x in C is complete to D. Since {a 1 } ∪ C is a clique, we have |C| ≤ 3. We have D = N 1 (x) and, by (4.19), D is a clique, so |D| ≤ 3. Here we view f as an L-coloring of G 1 \ C rather than of G 1 , and we try to extend it to C ∪ A 2 . If |D| = 1 (i.e., D = {a 1 }), we remove the color f (a 1 ) from the list of the vertices in C. Then G 2 is a cobipartite graph which, with the reduced lists, satisfies the hypothesis of Lemma 4.21 or 4.25, so f can be extended to G 2 . Hence assume that |D| ≥ 2.

Suppose that D is complete to C. Then D ∪ C is a clique, so |D| = 2 and |C| = 2. Let C = {x, y}. Let X = N 2 (x), Y = N 2 (y), and Z = A 2 \ (X ∪ Y). Suppose that Z = ∅. By (4.19) Z ∪ (X \ Y) is a clique, since it is a subset of M 2 (y). Likewise, Z ∪ (Y \ X) is a clique. Moreover X \ Y is complete to Y \ X, for otherwise {x, y, v, z, u} induces a C 5 for some non-adjacent u ∈ X \ Y and v ∈ Y \ X and for any z ∈ Z. It follows that X ∪ Y is a clique cutset in G 2 (separating {x, y} from Z), a contradiction. So Z = ∅, and A 2 = X ∪ Y.
Here we view f as an L-coloring of G 1 \ C rather than of G 1 , and we try to extend it to C ∪ A 2 . We remove the colors of f (D) from the list of x and y. Since |D| = 2, each of these lists loses at most two colors. By Lemma 4.21 we can color the vertices of C ∪ A 2 with colors from the lists thus reduced. So G is L-colorable. Now assume that D is not complete to C. So some vertex d in D has a non-neighbor y in C. Then N 2 (x) ∪ {y} is a clique, for otherwise {x, d, u, v} induces a clique for any two non-adjacent vertices u, v ∈ X ∪ {y}. Suppose that M 2 (x) is empty. So A 2 = N 2 (x). Then the vertices in A 2 have comparable neighborhoods in C (because they are complete to {x, y} and |C| ≤ 3), so the vertex in A 2 with the smallest degree is simplicial, a contradiction to (4.14). Therefore M 2 (x) is not empty. Since the clique {y} ∪ N 2 (x) is not a cutset in G 2 , some vertex z in C \ {x, y} has a neighbor v in M 2 (x).
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Hence |C| = 3. Then z has a non-neighbor u in N 2 (x), for otherwise {y, z} ∪ N 2 (x) is a clique cutset in G 2 (separating x from v). Then zd is an edge, for otherwise {x, d, z, u} induces a claw; and yv is an edge, for otherwise {z, d, y, v} induces a claw; and uv is an edge since N 2 (y) is a clique. Moreover, if N 2 (x) contains a vertex u adjacent to z, then vu is an edge since N 2 (z) is a clique. Since this holds for every vertex in

M 2 (x) ∩ N(z), we deduce that (M 2 (x) ∩ N(z)) ∪ {y} ∪ N 2 (x) is a clique Q. If v is any non-neighbor of z in M 2 (x), then Q is a clique cutset in G 2 (separating {x, z} from v ), a contradiction. So M 2 (x) ⊂ N(z). Suppose that |D| = 3. Pick a 3 ∈ D \ {a 1 , d}.
Then a 3 z is not an edge, for otherwise D ∪ {x, z} is a clique of size 5. So, by the same argument as for d, we deduce that a 3 y is an edge. But this means that y and z have inclusion-wise incomparable neighborhoods in A 1 (because of d, a 3 ), a contradiction. So |D| = 2. We remove the color f (a 1 ) from the lists of x, y, z and remove the color f (d) from the list of x and z. By Lemma 4.23 we can color the vertices of C ∪ A 2 with colors from the lists thus reduced. So G is L-colorable. This completes the proof of the theorem.

S 1,2,3 for P 5 -free graphs (S 0,2,2 -free graphs) [START_REF] Lokshtanov | Independent set in P 5 -free graphs in polynomial time[END_REF].

The union of the results cited above close the complexity of the MWSS problem in F-free graphs whenever F is any S i,j,k on at most five vertices. Hence, the graph classes worth taking a look at are the F-free graphs where F has at least six vertices. Several results on the existence of a polynomial-time algorithm for the MWSS problem in subclasses of P 6 -free graphs have been published [START_REF] Karthick | Weighted independent sets in a subclass of P 6 -free graphs[END_REF][START_REF] Karthick | Weighted independent sets in classes of P 6 -free graphs[END_REF][START_REF] Maffray | The Maximum Weight Stable Set Problem in (P 6 , bull)-Free Graphs[END_REF][START_REF] Mosca | Stable sets in certain P 6 -free graphs[END_REF][START_REF] Mosca | Independent sets in (P 6 , diamond)-free graphs[END_REF][START_REF] Mosca | Maximum weight independent sets in (P 6 , co-banner)-free graphs[END_REF]. Lokshtanov et al. [START_REF] Lokshtanov | Independence and efficient domination on P 6 -free graphs[END_REF] proved that the MWSS problem can be solved in quasi-polynomial time in the class of P 6 -free graphs. Brandstädt and Mosca proved that there exists a polynomialtime algorithm for the MWSS problem in the class of (P 7 , K 3 )-free graphs [START_REF] Brandstädt | Maximum Weight Independent Sets for (P 7 , Triangle)-Free Graphs in Polynomial Time[END_REF].

One very useful theorem for tackling the MWSS problem is due to Lozin and Milanič. They proved that in a hereditary class of graphs G, in order to prove that there exists a polynomial-time algorithm for the MWSS problem, it suffices to prove it for every prime graph of G. This results gives strong structural properties. More formally, they proved the following. THEOREM 5.1 [START_REF] Lozin | A polynomial algorithm to find an independent set of maximum weight in a fork-free graph[END_REF] Let G be a hereditary class of graphs. Suppose that there is a constant c ≥ 1 such that the MWSS problem can be solved in time O(|V(G)| c ) for every prime graph G in G. Then the MWSS problem can be solved in time

O(|V(G)| c + |E(G)|) for every graph G in G.
Because this theorem is central in our approach and of great importance for the MWSS problem, we include its proof. Lozin and Milanič produced an algorithm that, given a graph G, either reduce the problem to computing a maximum-weight stable set in a complete graph, an edgeless graph or a prime graph. Their algorithm is recursive but thanks to modular decomposition theory, they manage to show that the number of recursive calls is bounded by a linear function of m, the number of edges in G. Their algorithm is given in Algorithm 2.

Note that the graph G * obtained at the end of the for-loop at step 15 is either a complete graph, an edgeless graph or a prime graph. Computing a maximum-weight independent set in a complete graph or an edgeless graph can be done in linear time,

Algorithm 2 ALPHA(G)

Input : A weighted graph G with weight function w Output : An independent set of maximum weight in G for all i ∈ {1, . . . , k} do 12:

1: procedure ALPHA(G) 2: if |V(G)| = 1 then 3: return V(G) 4: else if G is disconnected then 5: partition G into components M 1 , . . . , M k 6: else if G is disconnected then 7: partition G into co-components M 1 , . . . , M k 8:
I i ← ALPHA(G[M i ]) 13:
end for 14:

G * ← G 15:
for all i ∈ {1, . . . , k} do 16: in G * , contract M i to a single vertex v i 17:

assign to v i the weight w(I i )

18:

end for 19:

I * ← maximum-weight stable set of G * 20: I ← v i ∈I * I i 21:
return I 22: end procedure so the problem is reduced to prime induced subgraphs. Hence, to prove Theorem 5.1, it suffices to bound the number of recursive calls in Algorithm 2.

Proof of Theorem 5.1. Let G be a graph of G with n vertices and m edges. The recursive modular decomposition of G produced by Algorithm 2 can be implemented in O(n + m) [START_REF] Tedder | Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations[END_REF]. The modular decomposition of G produces a decomposition tree T(G) whose leaves correspond to vertices of G, internal nodes to modules of G and the root to V(G). By doing a bottom-up approach on the tree T(G), we can bound the time complexity of Algorithm 2 in the following way. We denote by I the set of all internal nodes of T(G). Let U be any internal of I and let G U be the subgraph of G induced by the vertices of U. The children of U in T(G) correspond to the modular partition of G U into modules {M 1 , M 2 , . . . , M k } for some integer k. Recall that G * U is the graph obtained from the induced subgraph G U where each module M is contracted into a single vertex v, and the weight of v is the maximum-weight stable set of G

[M]. If G U or G U is disconnected, then G *
U is either an edgeless graph or a complete graph and the problem can be solved in linear time. If both G U and G U are connected, then G * U is a prime graph and by our hypothesis the problem can be solved in O(|V(G * U )| c ). With this approach, we can compute the maximum-weight stable set of G by starting at the leaves and going to the root. Hence, the total time complexity is bounded by the number of computational steps required to compute the maximum-weight stable set on every prime graph obtained with the contracting approach on the modular decomposition tree T(G). This is bounded by O(∑ U∈I |V(G * U )| c ). Given any internal node U, remark that the number of vertices of G * U is the number of children of U in T(G). Hence, we have that ∑ U∈I |V(G * U )| is exactly the number of edges of T(G), which is |V(T(G))| -1. The number of leaves of T(G) is n and the number of internal nodes is at most n -1, so the number of edges in T(G) is at most 2n -2. We obtain the following:

∑ U∈I |V(G * U )| c ≤ ∑ U∈I |V(G * U )| c ≤ (2n -2) c = O(n c )
Adding the modular decomposition computed at the beginning of the algorithm, we obtain the complexity of O(n c + m).

Clearly, the class of (P 6 , bull)-free graphs and (P 7 , bull)-free graphs are hereditary. By Theorem 5.1, in order to prove the existence of a polynomial algorithm computing the MWSS in those classes of graphs, it suffices to prove it for prime graphs. This is the object of the two following sections.

Let G be a graph and v any vertex of V(G). Given v, one strategy to compute a maximum-weight stable set containing v is to look at the non-neighborhood of v, defined by K = V(G) \ N[v], and to compute α w (K). The maximum-weight stable set containing v has a total weight of w(v) + α w (K). We repeat this for every vertex v ∈ V(G) and keep the stable set of maximum weight among all weighted stable sets computed, which is the optimal solution. 

Structure of bull-free graphs

The goal of this section is to give a general structure of bull-free graphs, and more precisely of prime bull-free graphs. The main reason behind the fact that we are mainly focused on prime graphs is Theorem 5.1 and the fact that prime graphs are more structured and is of course a smaller class, hence easier to look at, than all bull-free graphs.

A k-wheel is a graph that consists of a cycle on k vertices plus a vertex (called the center) adjacent to all vertices of the cycle (see Figure 5.3). The following lemma was proved for k ≥ 7 in [START_REF] Reed | Recognizing bull-free perfect graphs[END_REF]; actually the same proof holds for all k ≥ 6 as observed in [START_REF] De Figueiredo | On the structure of bull-free perfect graphs[END_REF]. show that b is adjacent to u 1 and finally by induction on j = 2, . . . p, we show that b is adjacent to u j . Now suppose that p ≥ 1. The vertex u 1 is a k-neighbor of C for some k ≥ 1. If k ∈ {1, 2}, then b is adjacent to u 1 by Lemma 5.6 (iii). Suppose that k ∈ {3, 4}. Then there is an integer i such that u 1 is adjacent to c i and not to c i+1 . By Lemma 5.6 (v), z is not adjacent to u 1 . If b ∈ A , then b is adjacent to u 1 , for otherwise {z, b, c i+1 , c i , u 1 } induces a bull. If b ∈ A , then, by the preceding sentence we know that a is adjacent to u 1 ; and then b is adjacent to u 1 , for otherwise {z, a , u 1 , u 0 , b} induces a bull. Suppose that k = 5. So u 1 ∈ A. Then u 1 is not adjacent to z, for otherwise we would have u 1 ∈ A . If b ∈ A , then b is adjacent to u 1 for otherwise we would have u 1 ∈ A . If b ∈ A , then, by the preceding sentence we know that a is adjacent to u 1 ; and then b is adjacent to u 1 , for otherwise {z, a , u 1 , u 0 , b} induces a bull.

Finally suppose that p ≥ 2. So u 2 , . . . , u p are non-neighbors of C. Since u 2 ∈ Z, we have k = 5, for otherwise we would have u 1 ∈ A . So there is an integer h such that u 1 is adjacent to c h and not to c h+2 . We may assume up to relabeling that u 0 = c h . It follows that c h+2 has no neighbor in {u 0 , . . . , u p }. Then, by induction on j = 2, . . . , p, the vertex b is adjacent to u j , for otherwise {c h+2 , b, u j-2 , u j-1 , u j } induces a bull. So b is adjacent to u. Thus (5.1) holds.

Let R = V(G) \ (A ∪ A ∪ V(H))
. By the definition of H, there is no edge between V(H) and R. By (5.1), V(H) is complete to A ∪ A . Hence V(H) is a homogeneous set that contains V(C), and it is proper since A = ∅.

102| MAXIMUM WEIGHTED STABLE SET LEMMA 5. 4 A prime bull-free graph contains no parasol.

Proof. Let G be a prime bull-free graph, and suppose that it contains a parasol, with vertices p 1 , . . . , p 5 , x, y and edges p i p i+1 for i = 1, 2, 3, 4, and xp j for j = 1, . . . , 5 and xy. Let P = {p 1 , . . . , p 5 }. Let A be the set of vertices that are complete to P, and let Z be the set of vertices that are anticomplete to P. Let:

A = {a ∈ A | a has a neighbor in Z}. A = {a ∈ A \ A | a has a non-neighbor in A }.
Note that y ∈ Z and x ∈ A , so A = ∅, and that A is anticomplete to Z, by the definition of A . Let H be the component of G \ (A ∪ A ) that contains P. We claim that:

A ∪ A is complete to V(H). (5.2) 
Proof: Suppose on the contrary that there exist non-adjacent vertices a, u with a ∈ A ∪ A and u ∈ V(H). We use the following notation. If a ∈ A , let z be a neighbor of a in Z. If a ∈ A , let b be a non-neighbor of a in A , and let z be a neighbor of b in Z; in that case we know that a is not adjacent to z, since a / ∈ A . By the definition of H, there is a path u 0 -• • • -u in H with u 0 ∈ P and u = u, and ≥ 0. We know that a is adjacent to u 0 by the definition of A, so ≥ 1. We choose u that minimizes , so the path u 0 -• • • -u is chordless, and a is complete to {u 0 , . . . , u -1 }, and if ≥ 2 then u 2 , . . . , u ∈ Z. Suppose that = 1. Suppose that u 1 ∈ A. By the definition of H we have u 1 ∈ A \ (A ∪ A ), so u 1 is not adjacent to z and is complete to A , and so a / ∈ A , hence a ∈ A , and u 1 is adjacent to b. Then {z, b, u 1 , u 0 , a} induces a bull, a contradiction. Hence u 1 / ∈ A. So there is an integer i ∈ {1, 2, 3, 4} such that u 1 has a neighbor and a non-neighbor in {p i , p i+1 }. Suppose that u 1 is not adjacent to z. If a ∈ A , then {z, a, p i , p i+1 , u 1 } induces a bull. If a ∈ A , then u 1 is adjacent to b, for otherwise {z, b, p i , p i+1 , u 1 } induces a bull; but then {z, b, u 1 , p, a} induces a bull (for p ∈ {p i , p i+1 } ∩ N(u 1 )). Hence u 1 is adjacent to z. It follows that there is no integer j such that {u 1 , p j , p j+1 } induces a triangle, for otherwise there is an integer k such that {z, u 1 , p k , p k+1 , p k+2 } induces a bull. If we can take i = 1, then u 1 is adjacent to p 4 , for otherwise {u 1 , p 1 , p 2 , a, p 4 } induces a bull; and similarly u 1 is adjacent to p 5 ; but then {u 1 , p 4 , p 5 } induces a triangle, a contradiction. Hence u 1 is either complete or anticomplete to {p 1 , p 2 }, and actually it is anticomplete to that set since {u 1 , p 1 , p 2 } does not induce a triangle. Likewise u 1 is anticomplete to {p 4 , p 5 }. Hence u 1 is adjacent to p 3 . But then {u 1 , p 3 , p 2 , a, p 5 } induces a bull, a contradiction. Therefore ≥ 2. We have u 1 / ∈ A, for otherwise we would have u 1 ∈ A because u 2 ∈ Z. Since u 1 / ∈ A and the graph P 5 is connected, there are non-adjacent vertices p, q ∈ P such that u 1 is adjacent to p and not to q. We may assume up to relabeling that u 0 = p. Then {u , u -1 , u -2 , a, q} induces a bull, a contradiction. Thus (5.2) holds. set, and it is proper because P ⊆ V(H) and A = ∅.

Let G 1 be the graph with vertices p 1 , . . . , p 5 , d, a such that p 1 -p 2 -p 3 -p 4 -p 5 -p 1 is a C 5 , d is adjacent to p 5 , a is adjacent to p 5 , p 1 , p 2 , and there is no other edge. Let G 2 be the graph with vertices p 1 , . . . , p 5 , d, a such that p 1 -p 2 -p 3 -p 4 -p 5 -p 1 is a C 5 , d is adjacent to p 5 , a is adjacent to p 1 , p 2 , p 3 , and there is no other edge. See Figure 5.4.

LEMMA 5.5

A prime bull-free graph G contains no G 1 and no G 2 .

Proof. First suppose that G contains a G 1 , with the same notation as above. Let ∈ E(G). Then bp 3 / ∈ E(G), for otherwise {y, p 3 , b, p 4 , p 5 } induces a bull, and bp 1 ∈ E(G), for otherwise {b, x, y, p 1 , p 5 } induces a bull; but then {p 5 , p 1 , b, x, p 3 } induces a bull, a contradiction.

X = {x ∈ V(G) | xp 5 , xp 2 ∈ E(G)
In a graph G, let H be a subgraph of G. For each k > 0, a k-neighbor of H is any vertex in V(G) \ V(H) that has exactly k neighbors in H. 

MWSS in (P 6 , bull)-free graphs

The main goal of this section is to prove that there exist a polynomial algorithm that solves the MWSS problem in the class of (P 6 , bull)-free graphs. We were able to provide the following theorem.

THEOREM 5.8

MWSS can be solved in time O(n 7 ) for every graph on n vertices in the class of (P 6 , bull)-free graphs.

In order to prove Theorem 5.8, we refine the structure of prime (P 6 , bull)-free graphs. The structure we use relies on the fact that in a prime (P 6 , bull)-free graph, the non-neighborhood of a vertex either contains a C 5 or is perfect. In the latter case we can solve the problem by using already known algorithms. Hence, we can assume that the non-neighborhood contains a C 5 . The following is the key theorem that helps us solve the MWSS problem in (P 6 , bull)-free graphs, see Figure 5.5 for an illustration of what is proved.

THEOREM 5.9

Let G be a prime (P 6 , bull)-free graph, and let x be any vertex in G. Suppose that there is a 5-cycle induced by non-neighbors of x. Then there is a (possibly empty) clique F in G such that the induced subgraph G \ F is triangle-free, and such a set F can be found in time O(n 2 ).

The proof of Theorem 5.9 is given in the next section. We close this section by showing how to obtain a proof of Theorem 5.8 on the basis of Theorem 5.9.

Our algorithm relies on results concerning graphs of bounded clique-width (we refer the reader to the preliminaries of this manuscript to learn more about the notion of clique-width). We restate the following theorem of Brandstädt et al. proving that the class of (P 6 , triangle)-free graphs has bounded clique-width. THEOREM 3.23 [START_REF] Brandstädt | P 6 -and triangle-free graphs revisited: structure and bounded clique-width[END_REF] The class of (P 6 , triangle)-free graphs has bounded clique-width c, and a cexpression can be found in time O(|V(G)| 2 ) for every graph G in this class.

Hence, as observed in [START_REF] Brandstädt | P 6 -and triangle-free graphs revisited: structure and bounded clique-width[END_REF], Theorems 2.1 and 3.23 imply the following.

COROLLARY 5.10 [10]

For any (P 6 , triangle)-free graph G on n vertices one can find a maximum-weight stable set of G in time O(n 2 ).

Our proof relies heavily on Corollary 5.10 since our strategy is to fall back on a (P 6 , triangle)-free graph and call the algorithm of Corollary 5.10. By doing so, we were able to prove the following theorem.

THEOREM 5.11

Let G be a prime (P 6 , bull)-free graph on n vertices. Then a maximum-weight stable set of G can be found in time O(n 7 ).

Proof. Let G be a prime (P 6 , bull)-free graph. Let w : V(G) → N be a weight function on the vertex set of G. To find the maximum weight stable set in G it is sufficient to compute, for every vertex x of G, a maximum-weight stable set containing x. So let x be any vertex in G. We want to compute the weight of a maximum stable set containing x. Clearly it suffices to compute the maximum-weight stable set in each component of the induced subgraph G \ ({x} ∪ N(x)) and make the sum over all components. Let K be any component of G \ ({x} ∪ N(x)). We claim that:

Either K is perfect or it contains a 5-cycle.

(5.3)

Proof of (5.3): Suppose that K is not perfect. Note that K contains no odd hole of length at least 7 since G is P 6 -free. By the Strong Perfect Graph Theorem K contains an odd antihole C. If C has length at least 7 then V(C) ∪ {x} induces a wheel in G, so G has a proper homogeneous set by Lemma 5.2, a contradiction because G is prime. So C has length 5, i.e., C is a 5-cycle. So (5.3) holds.

We can test in time O(n 5 ) if K contains a 5-cycle. This leads to the following two cases.

Suppose that K contains no 5-cycle. Then (5.3) implies that K is perfect. In that case we can use the algorithms from either [START_REF] De Figueiredo | Optimizing bull-free perfect graphs[END_REF] or [START_REF] Penev | Coloring bull-free perfect graphs[END_REF], which compute a maximum-weight stable set in a bull-free perfect graph in polynomial time. The algorithm from [START_REF] Penev | Coloring bull-free perfect graphs[END_REF] has time complexity O(n 6 ). Now suppose that K contains a 5-cycle. Then by Theorem 5.9 we can find in time O(n 2 ) a clique F such that G \ F is triangle-free. Consider any stable set S in K. If S contains no vertex from F, then S is in the subgraph G \ F, which is triangle-free. By Corollary 5.10 we can find a maximum-weight stable set

S F in G \ F in time O(n 2 ). If S contains a vertex f from F, then S \ f is in the subgraph G \ ({ f } ∪ N( f )), which, since F is a clique, is a subgraph of G \ F
and consequently is also triangle-free. By Corollary 5.10 we can find a maximum-weight stable set

S f in G \ ({ f } ∪ N( f )) in time O(n 2 ). Then we set S f = S f ∪ { f }.
We do this for every vertex f ∈ F. Now we need only compare the set S F and the sets S f (for all f ∈ F) and select the one with the largest weight. This takes time O(n 3 ) for each component K that contains a 5-cycle.

Repeating the above for each component takes time O(n 6 ) as the components are disjoint. Repeating this for every vertex x, the total complexity is O(n 7 ). Now Theorem 5.8 follows directly from Theorems 5.11 and 5.1.

Structure of the non-neighborhood

This section is dedicated to describe the non-neighborhood of a fixed vertex in the graph G. We start by proving the following lemma.

LEMMA 5.12

Let G be a prime (P 6 , bull)-free graph. Let C be an induced 5-cycle in G. If a non-neighbor of C is adjacent to a k-neighbor of C, then k = 2. 

LEMMA 5.13

Let G be a prime (P 6 , bull)-free graph. Assume that G contains a 5-cycle C, with vertices c 1 , . . . , c 5 and edges c i c i+1 for all i mod 5. Moreover assume that C has a non-neighbor x in G. Then:

(i) There is a neighbor d of x that is a 2-neighbor of C. And consequently, V(C) ∪ {d, x} induces a G 7 .

(ii) C has no 3-neighbor and no 5-neighbor.

(iii) If the vertex d from (i) is (up to symmetry) adjacent to c 1 and c 4 , then every 4-neighbor of C is non-adjacent to c 5 .

Proof. Since G is prime it is connected, so there is a shortest path from C to x in G. Let x 0 -• • • -x p be such a path, where x 0 ∈ V(C) and x p = x, and p ≥ 2. By Lemma 5.12, x 1 is a 2-neighbor of C, so up to relabeling we may assume that x 1 is adjacent to c 1 and c 4 . Then p = 2 for otherwise x 3 -x 2 -x 1 -c 1 -c 2 -c 3 is an induced P 6 . So (i) holds with d = x 1 . Clearly, {c 1 , . . . , c 5 , x 1 , x} induces a G 7 . Therefore we may assume, up to symmetry, that the vertex d from (i) is adjacent to c 1 and c 4 .

Suppose that there is a vertex u that is either a 5-neighbor of C or a 4-neighbor adjacent to c 5 . In either case we may assume, up to symmetry, that u is adjacent to c 1 , c 3 and c 5 . Then u is adjacent to d, for otherwise {d, c 1 , c 5 , u, c 3 } induces a bull, and u is adjacent to x, for otherwise {x, d, c 1 , u, c 3 } induces a bull. But then u and x contradict Lemma 5.12. This proves item (iii) and that C has no 5-neighbor.

Finally suppose that C has a 3-neighbor u, adjacent to c i-1 , c i , c i+1 ; we may assume up to symmetry that i ∈ {5, 1, 2}. Let X be the set of vertices that are complete to {c i-1 , c i+1 } and anticomplete to {c i-2 , c i+2 }, and let Y be the vertex-set of the component of G[X] that contains c i and u. Since G is prime, Y is not a homogeneous set, so there is a vertex t in V(G) \ Y and vertices y, z in Y such that t is adjacent to y and not to z, and since Y is connected we may choose y and z adjacent. We claim that: t is adjacent to c i-2 and c i+2 and to at least one of c i-1 and c i+1 .

(5.4)

Proof: If t has no neighbor in {c i-1 , c i+1 }, then t is adjacent to c i-2 , for otherwise {t, y, z, c i-1 , c i-2 } induces a bull, and similarly t is adjacent to c i+2 ; but then {c i-1 , c i-2 , t, c i+2 , c i+1 } induces a bull. Hence t has a neighbor in {c i-1 , c i+1 }. Suppose that t is adjacent to both c i-1 and c i+1 . Since t is not in Y it must have a neighbor in {c i-2 , c i+2 }, and actually t is complete to {c i-2 , c i+2 }, for otherwise t is a 3-neighbor of the 5-cycle induced by {z, c i-1 , c i-2 , c i+2 , c i+1 } that violates Lemma 5.6 (ii). Now suppose that t is adjacent to exactly one of c i-1 , c i+1 , say up to symmetry to c i-1 . Then t is adjacent to c i-2 , for otherwise {c i-2 , c i-1 , t, y, c i+1 } induces a bull, and t is adjacent to c i+2 , for otherwise {c i+2 , c i-2 , t, c i-1 , z} induces a bull. Thus (5.4) holds.

Now we claim that:

x has no neighbor in Y ∪ {t}.

(5.5) weight of a stable set that contains c is equal to w(c) + ∑ K α w (K), where the sum is over all components K of G \ ({c} ∪ N(c)) (the non-neighborhood of c) and α w (K) is the maximum weight of any stable set in K. So let K be an arbitrary component of G \ ({c} ∪ N(c)). If K is perfect, we can use the algorithm from [START_REF] Penev | Coloring bull-free perfect graphs[END_REF] to find a maximum-weight stable set in K. Therefore let us assume that K is not perfect. We note that K contains no antihole of length at least 6, for otherwise the union of such a subgraph with c forms an antiwheel. Hence, by the Strong Perfect Graph Theorem [START_REF] Chudnovsky | The strong perfect graph theorem[END_REF], and since G is P 7 -free, K contains a C 5 or a C 7 .

Since G is prime it is connected, so there is a neighbor d of c that has a neighbor in K. Let H = N K (d) and Z = V(K) \ H. We claim that every C 5 in K contains at most two vertices from H, and if it contains two they are non-adjacent. Indeed, in the opposite case, there is a C 5 in K with vertices v 1 , . . . , v 5 and edges v i v i+1 (mod 5) such that v 1 , v 2 ∈ H. Then v 3 ∈ H, for otherwise {c, d, v 1 , v 2 , v 3 } induces a bull; and similarly v 4 , v 5 ∈ H; but then {v 1 , . . . , v 5 , d, c} induces an umbrella, which contradicts Lemma 5.3. So the claim is established. Henceforth, for q ∈ {0, 1, 2} we say that a C 5 in K is of type q if it contains exactly q vertices from H. So every C 5 in K is of type 0, 1 or 2, and if it is of type 2 its two vertices from H are non-adjacent. Our proof follows the pattern from [START_REF] Brandstädt | Maximum Weight Independent Sets for (P 7 , Triangle)-Free Graphs in Polynomial Time[END_REF], but in some parts we will use different arguments. Since K is connected and contains no 7-wheel, Lemma 5.16 implies that V(K) can be partitioned into seven non-empty sets A 1 , . . . , A 7 such that for each i ∈ {1, . . . , 7} ( mod 7) the set A i is complete to A i-1 ∪ A i+1 and anticomplete to A i-3

∪ A i-2 ∪ A i+2 ∪ A i+3 . Clearly we have α w (K) = max i∈{1,...,7} {α w (G[A i ]) + α w (G[A i+2 ])+ α w (G[A i+4 ]
)}, so we need only compute α w (G[A i ]) for each i ∈ {1, . . . , 7}. For each i pick a vertex a i ∈ A i . The graph G[A i ] contains no C 5 , no P 5 and no P 5 , for otherwise adding a i+1 and either a i+2 or a i+3 to such a subgraph we obtain an umbrella or a parasol in G or G, which contradicts Lemmas 5.3 and 5.4. By results from [START_REF] Chvátal | Four classes of perfectly orderable graphs[END_REF] and [START_REF] Hoàng | Efficient algorithms for minimum weighted colouring of some classes of perfect graphs[END_REF], MWSS can be solved in time O(n 3 ) in graphs with no C 5 , P 5 and P 5 . Hence, since the A i 's are pairwise disjoint, MWSS can be solved in time O(|V(K)| 3 ) in K.

Case 2: K contains a C 5 of type 2 and no C 5 of type 1 or 0.

For adjacent vertices u, v in Z we say that the edge uv is red if there exists a P 4 h -u-v-h for some h , h ∈ H. For every vertex h in H we define its score, sc(h), as the number of red edges that contain a neighbor of h. Let h be a vertex of maximum score in H.

Suppose that

K \ N(h) contains a C 5 of type 2 t-h 1 -a-b-h 2 -t, with h 1 , h 2 ∈ H and a, b, t ∈ Z. Then hh 1 , hh 2 /
∈ E(G), and Z contains vertices y 1 , z 1 , y 2 , z 2 such that y

1 z 1 , y 2 z 2 , hy 1 , hy 2 ∈ E(G), hz 1 ,hz 2 ,h 1 y 1 ,h 1 z 1 , h 2 y 2 ,h 2 z 2 /
∈ E(G), and, up to symmetry, {y 1 , y 2 } is complete to a and anticomplete to b, and {z 1 , z 2 } is anticomplete to a, and bz 2 ∈ E(G).

(5.8) Proof: Clearly h / ∈ {h 1 , h 2 }. Note that ab is a red edge. There must be a red edge y 1 z 1 (with y 1 , z 1 ∈ Z) that is counted in sc(h) and not in sc(h 1 ), for otherwise we have sc(h 1 ) ≥ sc(h) + 1 (because of ab), which contradicts the choice of h. So h 1 has no neighbor in {y 1 , z 1 }. We may assume that hy 

1 ∈ E(G). Let h -y 1 -z 1 -h be a P 4 with h , h ∈ H. If hz 1 ∈ E(G), then hh / ∈ E(G),
(i) ay 1 ∈ E(G) and az 1 / ∈ E(G). Then also y 1 b / ∈ E(G), for otherwise {h, y 1 , b, a, h 1 } induces a bull. -(ii) az 1 ∈ E(G) and ay 1 / ∈ E(G). Then also z 1 b / ∈ E(G), for otherwise either {h 1 , a, z 1 , b, h 2 } induces a bull (if z 1 h 2 / ∈ E(G)), or {c, d, h 1 , a, z 1 , b, h 2 } induces a G 2 (if z 1 h 2 ∈ E(G)), which contradicts Lemma 5.5. Moreover, y 1 b ∈ E(G), for otherwise c-d-h-y 1 -z 1 -a-b is an induced P 7 .
Similarly, there is a red edge y 2 z 2 (with y 2 , z 2 ∈ Z) that is counted in sc(h) and not in sc(h 2 ), so h 2 has no neighbor in {y 2 , z 2 }. We may assume that hy 2 ∈ E(G), and by the same argument as above we have hz 2 / ∈ E(G) and either: -

(iii) by 2 ∈ E(G), bz 2 / ∈ E(G), and y 2 a / ∈ E(G), or -(iv) bz 2 ∈ E(G), by 2 / ∈ E(G), z 2 a / ∈ E(G)
, and y 2 a ∈ E(G). Now if either (i) and (iii) occur, or (ii) and (iv) occur, then either {d, h, y 1 , y 2 , a} induces a bull (if y 1 y 2 ∈ E(G)) or {h, y 1 , y 2 , a, b} induces a C 5 of type 1 (if y 1 y 2 / ∈ E(G)), a contradiction. Therefore we may assume, up to symmetry, that (i) and (iv) occur. Thus (5.8) holds.

Now we claim that:

If K \ N(h) contains a C 5 of type 2, with the same notation as in (5.8), then K \ (N(h) ∪ N(a)) contains no C 5 of type 2.

(5.9)

Proof: Let y 1 , z 1 , y 2 , z 2 be vertices of Z as in (5.8). Suppose that K \ (N(h) ∪ N(a)) contains a C 5 of type 2 t -h ∈ E(G). Then bb / ∈ E(G), for otherwise cd-h-y 1 -a-b-b is an induced P 7 . Then a y 1 ∈ E(G), for otherwise b-a-y 1 -h-y 4 -a -b is an induced P 7 . Then h 3 y 1 / ∈ E(G), for otherwise {d, h 3 , a , y 1 , a} induces a bull, and h 3 b / ∈ E(G), for otherwise {h 3 , a , y 1 , a, b} induces a C 5 of type 1. But then c-d-h 3 -a -y 1a-b is an induced P 7 , a contradiction. Thus (5.9) holds. neighbor in {u, v}, for otherwise c-d-h -t -w-v-u is an induced P 7 ; say h u ∈ E(G). Then h v / ∈ E(G), for otherwise {t, u, h , v, w} induces a bull. Then v has neighbor in {u, v}, for otherwise c-d-h -u-v-w-v is an induced P 7 ; and by (5.11) we have N C (v ) = Y. But then {h, t, v , u, h } induces a bull, a contradiction. So we may assume that t has no neighbor in Y . Then th ∈ E(G), for otherwise t-h-d-h -t -u -v is an induced P 7 ; and uh / ∈ E(G), for otherwise by (5.11), N C (h ) = Y, which would imply N C (w) = {v , t }; and vh ∈ E(G), for otherwise c-d-h -t-u-v-w is an induced P 7 . By (5.11) Let T be any component of G[Z] that contains a C 5 , let C be any C 5 in T, and let h be any vertex in H that has a neighbor in T. Then h is a 2-neighbor of C.

we have |N Y (v)| ≤ 1 and N Y (v) ⊂ {u , v }. We have vv / ∈ E(G), for otherwise {h, w, v, v , u } induces a bull, so we have vu ∈ E(G), for otherwise c-d-h - v-w-v -u is an induced P 7 . Then uu / ∈ E(G) by (5.11) (since wu / ∈ E(G)). But then c-d-h-t-u-v-u

(5.13)

Proof: There is a shortest path p 0 -p 1 -p 2 -• • • -p r such that p 0 = c, p 1 = d, p 2 = h and p r has a neighbor in C, and r ≥ 2. By Lemma 5.6, p r is either a 1-neighbor, a 2neighbor or a 5-neighbor of C. If p r is a 5-neighbor, then V(C) ∪ {p r , p r-1 } induces an umbrella, which contradicts Lemma 5.3. If p r is a 1-neighbor of C, then p r-2 , p r-1 , p r and four vertices of C induce a P 7 . So p r is a 2-neighbor of C. Now if r ≥ 3, then p r-3 , p r-2 , p r-1 , p r and three vertices of C induce a P 7 . So r = 2, and (5.13) holds.

At most one component of G[Z] contains a C 5 .

(5.14)

Proof: Suppose that two components T and T of G[Z] contain a C 5 . Let C a C 5 in T, with vertices c 1 , . . . , c 5 and edges c i c i+1 (mod 5), and let C a C 5 in T , with vertices c 1 , . . . , c 5 and edges c i c i+1 (mod 5). Pick any h ∈ H that has a neighbor in T, and pick any h in H that has a neighbor in T . By (5.13) and Lemma 5.6 we may assume that N C (h) = {c 1 , c 4 } and N C (h ) = {c 1 , c 4 }. If h has a neighbor in T , then, by (5.13) and Lemma 5.6, we have N C (h) = {c j , c j+2 } for some j. But then c 3 -c 2 -c 1 -h-c j -c j-1 -c j-2 is an induced P 7 . So h has no neighbor in T , and similarly h has no neighbor in T. Then either Suppose that there is no C 5 of type 0. Pick any h ∈ H 1 , and suppose that there is a

c 3 -c 2 -c 1 -h-d-h -c 1 or c 3 -c 2 -c 1 -h-h -c 1 -c 2 is
(h) = {c 1 , c 4 }. Let C h = h-c 1 -c 2 -c 3 -c 4 -h; so C h is a C 5 of
C 5 of type 1 C = h -b 2 -u-v-a 2 -h in which h has no neighbor.
Then K \ N(u) has no C 5 of type 1.

(5.16)

Proof: Let h-a 1 -v -u -b 1 -h be any C 5 of type 1 that contains h. By (5.12), we may assume that N C (a 1 ) = {b 2 , v} and

N C (b 1 ) = {a 2 , u}. Let C = h-a 1 -v-u-b 1 -h; then C is a C 5 of
type 1 in which h has no neighbor, so h and h play symmetric roles. Let

C a 1 = h-a 1 -b 2 -u-b 1 -h and C a 2 = h -a 2 -b 1 -u-b 2 -h . Suppose that there is a C 5 of type 1 C = h -t -u -v -w -h in which u has no neighbor. Let X = {a 1 , b 1 , a 2 , b 2 , u, v} and Y = {t , u , v , w }.
We observe that G[X ∪ Y ] is bipartite: indeed in the opposite case, and since K contains no C 5 of type 0 and no C 7 , there is a triangle in G[X ∪ Y ], and so there is either (i) a vertex y ∈ Y with two adjacent neighbors in X, or (ii) a vertex x ∈ X with two adjacent neighbors in Y . In case (i), by (5.11) applied to y and the cycles C, C , C a 1 , C a 2 , we see that y is complete to X, which is not possible since uy / ∈ E(G). So suppose we have case (ii). By (5.11) 

∈ E(G), for otherwise c-d-h -b 1 -u-b 2 -a 1 is an induced P 7 , and h v ∈ E(G), for otherwise c-d-h -b 1 -a 2 -v-a 1 is an induced P 7 . So N X (h ) = {b
u ∈ E(G). Then a 1 v / ∈ E(G), for otherwise c-d-h -b 1 -u -v -
c-d-h-b 1 -u -v -w is an induced P 7 or {d, h, w , v , u } induces a bull. However, if hw ∈ E(G), then b 2 u ∈ E(G), for otherwise u -v -w -h-a 1 -b 2 -u is an induced P 7 , and then c-d-h-w -v -u -b 2 is an induced P 7 ; while if hv ∈ E(G), then u v / ∈ E(G), for otherwise c-d-h-v -u -v-u
. If vu ∈ E(G), then hu ∈ E(G), for otherwise c-d-h-b 1 -u-v-u is an induced P 7 , but then c-d-h-u -v-u-b 2 is an induced P 7 . So vu / ∈ E(G), and so v has no neighbor in Y . Then a 1 v / ∈ E(G), for otherwise c-d-h -v-a 1 -v -u is an induced P 7 ; and a 1 t / ∈ E(G), for otherwise b 1 -u-v-a 1 -t -u -v is an induced P 7 .
Hence, by symmetry, a 1 and a 2 have no neighbor in Y . Now h has a neighbor in {t , u , v , w }, for otherwise a 1h-d-h -t -u -v is an induced P 7 . If h has two adjacent neighbors in Y , then h is complete to Y , for otherwise d, h plus three consecutive vertices of Y induce a bull; but then {h , t , u , h, a 1 } induces a bull. So we may assume that N C (h) = {t , v }, for otherwise u, v, a 1 , h and three consecutive vertices in Y induce a P 7 . But then u -v -h-d-h -v-u is an induced P 7 , a contradiction. Thus (5.16) holds. Now, (5.10) follows from (5.15) and (5.16). This completes the proof in Case 3.

To conclude, we give the general outline of the algorithm to solve MWSS in K. For each type q ∈ {0, 1, 2}, we find a vertex x such that K \ N(x) contains no C 5 of type q. We then solve the MWSS in K \ N(x) and in K \ {x}. Since every maximum-weight stable set of K either contains x or not, the best of these two solutions is a solution for the MWSS in K. We repeat this until there are no more C 5 's of this type. More formally:

(I) Suppose that K contains no C 5 . If K also contains no C 7 , then K is perfect, so we can solve the MWSS in K by using the algorithm from [START_REF] Penev | Coloring bull-free perfect graphs[END_REF]. If K contains a C 7 , then MWSS can be solved in time O(|K| 3 ) as explained in Case 1 of the proof.

(II) Suppose that K contains a C 5 of type 2 and no C 5 of type 0 or 1. Let h be a vertex of maximum score as in Case 2 of the proof. Then MWSS in K can be solved by successively solving the MWSS in (a) G[K \ N(h)] and in (b) G[K \ {h}].

Step (a) can be done as follows: If G[K \ N(h)] contains no C 5 , then we are in (I). If G[K \ N(h)] contains a C 5 (of type 2), then by (5.9) there is a vertex a in this

C 5 such that G[K \ (N(h) ∪ N(a))] contains no C 5 . Hence we solve MWSS in (a1) G[K \ (N(h) ∪ N(a))] and in (a2) G[K \ (N(h) ∪ {a})].
Step (a1) can be done in polynomial time by referring to (I). Step (a2) can be computed by recursively calling Step (a). The number of recursive calls is bounded by |Z|.

Step (b) can be computed by recursively calling (II). After a number of calls there is no longer any C 5 of type 2, so we are in (I). The number of recursive calls is bounded by |H|. Step (b) can be computed by recursively calling (IV). The number of recursive calls is equal to |H 0 |. At the end of this step, the component T becomes isolated because we have removed all vertices of H 0 , but we still need to solve MWSS in T. This can be done as follows. Consider any vertex h ∈ H 0 . By Claim (5.13) every C 5 in T contains exactly two vertices from N(h 0 ) ∩ V(T), and these two vertices are not adjacent. Hence MWSS can be solved in T using the same technique as in (II) and the analogue of Claim (5.9). The total number of recursive calls is in O(n) since there are three different cycle types. For each computation of MWSS in K, we end up calling the algorithm in [START_REF] Penev | Coloring bull-free perfect graphs[END_REF] which runs in O(n 6 ). Furthermore, at each step we need to compute the list of all the cycles of length 5, which takes O(n 5 ), but this is additive. We need to run all the previous steps on every connected component K of the non-neighborhood of a fixed vertex of V(G), there are at most n such components. Finally, we repeat this for every vertex in V(G), so the overall complexity of our algorithm is O(n 9 ). This completes the proof of Theorem 5.15.

One may wonder whether Claims (5.9) and (5.10) could be subsumed by the following single claim: There is a vertex x in K such that K \ N(x) contains no C 5 of any type. Here is an example showing that such a claim does not hold. Let Z have six vertices c 1 , . . . , c 5 and z, such that c 1 , . . . , c 5 induce a C 5 with edges c i c i+1 (i mod 5), and z has no neighbor in this C 5 . Let H have five vertices h 1 , . . . , h 5 such that for each i we have N Z (h i ) = {c i-1 , c i+1 , z}. Let V(G) = {c, d, h 1 , . . . , h 5 , c 1 , . . . , c 5 , z}. It is a routine matter to check that G is (P 7 , K 3 )-free and that K \ N(x) contains a C 5 for every vertex x ∈ K.

Chapter 6

Normal Graphs

Context and motivations

The study of normal graphs takes root from perfect graphs. Recall that a graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G. The co-normal product (also called the strong product) of two graphs 

G 1 , G 2 , denoted by G 1 * G 2 , is the graph with vertex set V(G 1 ) × V(G 2 ), where vertices (u 1 , u 2 ) and (v 1 , v 2 ) are adjacent if u 1 is adjacent to v 1 or u 2 is adjacent to v 2 . See
G k = G * • • • * G k .
Claude Berge's motivation to study perfect graphs came in part from determining the zero-error capacity of a discrete memoryless channel. This can be measured by the following quantity, called Shannon capacity and is defined by:

C(G) = lim n→∞ 1 n log(ω(G n ))
For a longer introduction to Shannon capacity, we refer the reader to the survey of Gábor Simonyi [START_REF] Simonyi | Perfect graphs and graph entropy[END_REF] on graph entropy.

Shannon noticed that ω(G n ) = (ω(G)) n whenever ω(G) = χ(G).
From this observation, one might have expected that perfect graphs are closed under co-normal products. However, Körner et al. [START_REF] Körner | Two-step encoding for finite sources[END_REF] proved this to be false. This motivated Körner in [START_REF] Körner | An extension of the class of perfect graphs[END_REF] to study the class of graphs closed under co-normal products.

A normal graph is a graph for which there exist two coverings, C and S of its vertex set such that every member of C induces a clique in G, every member of S induces a stable set in G and C ∩ S = ∅ for every C ∈ C and S ∈ S. Such a covering is called a normal covering. Since C and S are respectively a clique and a stable set, their intersection contains at most one vertex. Figure 6.2 illustrates a normal covering in the complete graph on three vertices. Körner [START_REF] Körner | An extension of the class of perfect graphs[END_REF] showed that all co-normal products of normal graphs are normal. He also showed that all perfect graphs are normal.

u 1 v 1 u 2 v 2 G 1 G 2 w 2 (u 1 , u 2 ) (u 1 , v 2 ) (u 1 , w 2 ) (v 1 , u 2 ) (v 1 , v 2 ) (v 1 , w 2 )
Given a graph G the graph entropy of G with respect to a probability distribution P on its vertex set V(G) is defined as:

H(G,P) = lim t→∞ min U⊆V(G t ),P t (U)>1- 1 t log χ(G t [U])
where P t (U) = ∑ x∈U ∏ t i=1 P(x i ) and ∈ (0, 1). Note that the limit is independent of as shown by Körner [START_REF] Körner | Coding of an information source having ambiguous alphabet and the entropy of graphs[END_REF]. Normal graphs and perfect graphs have a close relationship with graph entropy. The graph entropy is sub-additive with respect to complementary graphs [START_REF] Körner | Two-step encoding for finite sources[END_REF]:

H(P) ≤ H(G, P) + H(G, P)
for all graph G and all probability distribution P on V(G), where the entropy of P is given by H(P) = ∑ n i=1 p i log( 1 p i ). Csiszár et al. showed that equality holds if and only if G is perfect. They proved the following theorem: THEOREM 6.1 [START_REF] Csiszár | Entropy splitting for antiblocking corners and perfect graphs[END_REF] H(P) = H(G, P) + H(G, P) for all P if and only if G is perfect.

Körner et al. proved a relaxed version for normal graphs, which is another way of seeing that every perfect graph is also normal: THEOREM 6.2 [START_REF] Körner | Graphs that split entropies[END_REF] H(P) = H(G, P) + H(G, P) for at least one (nowhere vanishing) P if and only if G is normal.

The only minimally known graphs which are not normal are C 5 , C 7 and C 7 . The previous observation and the fact that normal graphs and perfect graphs have many properties in common, as seen above, motivated De Simone and Körner to conjecture the following:

CONJECTURE 6.3 Normal Graph Conjecture [87]

A graph with no C 5 , C 7 and C 7 as an induced subgraph is normal.

Note that this conjecture is not stated in a "if and only if" way as it is for the Strong Perfect Graph Theorem. In fact, there exist graphs containing a C 5 , C 7 or C 7 that are normal. See Figure 6.3 for an example. Moreover, Wagler [START_REF] Wagler | Constructions for normal graphs and some consequences[END_REF] proved that given any graph G, there exists a normal graph G * containing G as an induced subgraph. THEOREM 6.4 [START_REF] Wagler | Constructions for normal graphs and some consequences[END_REF] For any graph G, there is a normal graph G * containing G as an induced subgraph. This result strikes out the hope to have a characterization of normal graphs by forbidden induced subgraph.

A cubic graph is a graph in which all vertices have degree exactly three. For example, K 4 is a cubic graph. Patakfalvi proved that every line-graph of cubic graphs are normal. THEOREM 6.5 [START_REF] Patakfalvi | Line-graphs of cubic graphs are normal[END_REF] The line-graph of every cubic graph is normal.

A circulant graph, denoted by C k n , is a graph on n vertices v 1 , v 2 , . . . , v n in which the vertex v i is adjacent to the 2k vertices v i±1 , v i±2 , . . . , v i±k . Another definition that is more intuitive is as follows. The graph C k n is the graph obtain from the cycle graph C n with the addition of edges between those pairs of vertices at distance at most k. Wagler verified the Normal Graph Conjecture for circulant graphs. THEOREM 6.6 [START_REF] Wagler | The Normal Graph Conjecture is True for Circulants[END_REF] The Normal Graph Conjecture is true for circulants and their complements.

Berry et al. also verified the Normal Graph Conjecture for a few well-known graph classes [START_REF] Berry | The Normal Graph Conjecture for Classes of Sparse Graphs[END_REF]. Normal graphs have also been studied within the context of random graphs by Hosseini et al. [START_REF] Hosseini | Almost all regular graphs are normal[END_REF].

A graph that has a girth of at least 8 does not contain any triangle, C 5 , C 7 and C 7 since a C 7 contains triangle. With a probabilistic proof, we managed to show that their exists a graph of girth at least 8 that does not admit a normal covering. Since our graph cannot contain any of the forbidden induced subgraphs and is not normal, it disproves Conjecture 6.3. We proved the following theorem: THEOREM 6.7

There exists a graph G of girth at least 8 that is not normal.

The next section is dedicated to make a small overview of the tools used in the proof of Theorem 6.7.

The Probabilistic Method

To prove that an object exists you can exhibit it by construction or give a precise example. Another way is also to show its existence without providing a constructive proof neither an example. This is the way of a probabilistic proof. The idea behind the probabilistic method is to pick at random an object from a bag of objects of the same type and show that there is a positive probability of choosing the special object you are looking for, which shows its existence. First we will give basic definitions and give a complete proof of a famous theorem using probabilistic arguments. The most elementary notions are given informally and we refer the reader to [START_REF] Mitzenmacher | Probability and computing: Randomized algorithms and probabilistic analysis[END_REF] for a more formal introduction to discrete probability theory.

Given an event A, we denote by P[A], the probability that A is realized. Let X be a discrete random variable X that can take value x 1 with probability p 1 , value x 2 with probability p 2 and so on up to x k for some integer k, the expectation of X, denoted by E[X], is defined as follows:

E[X] = k ∑ i=1 x i p i .
Intuitively, this is the average value of a random variable on a long series of repetitions of the experiment it represents. A Bernoulli random variable is a random variable that can take value 0 or 1. Given a random variable X, it is often very useful to be able to tell how X can deviate from some value. One very famous bound regarding this is Markov's inequality.

THEOREM 6.8 Markov's Inequality

If X is any non-negative discrete random variable and a > 0, then:

P[X ≥ a] ≤ E[X] a
More importantly, how far a random variable can deviate from its expected value? The Chernoff's inequality gives a narrow enclosing of how this deviation behaves for a Bernoulli random variable. THEOREM 6.9 Chernoff's Inequality Let X 1 , . . . , X n be independent Bernoulli random variables where P[X i = 1] = p i . Let X = ∑ n i=1 X i and let µ = ∑ n i=1 p i be the expectation of X. Then, for all 0 < δ < 1, we have:

P[X ≤ (1 -δ)µ] ≤ e -µδ 2 /2 P[X ≥ (1 + δ)µ] ≤ e -µδ 2 /3
Given any finite or countable sets of events, Boole's inequality, also called the Union Bound, gives an upper bound on the probability that at least one of the events happens.

THEOREM 6.10 Union Bound

For any finite or countably infinite sequence of events E 1 , E 2 , . . . we have:

P ∪ i≥1 E i ≤ ∑ i≥1 P(E i )
Now that we have stated some of the basic tools used in probability theory, we can continue on an example of how to use some of these results to prove a non trivial result. One classical example of the power of the probabilistic method is the so called High Girth and High Chromatic Number theorem due to Erdős in 1959. THEOREM 6.11 [START_REF] Erdős | Graph theory and probability[END_REF] For all k, there exists a graph G with girth(G) > and χ(G) > k.

The proof can be found in the famous book called The Probabilistic Method of Alon and Spencer [2]. This proof is a canonical example of how the probabilistic method works. Also, this is a perfect introduction to the techniques used in the proof of Theorem 6.7 for the reader not familiar with random graphs. For those reasons, we include a pedagogical proof of it.

Proof of Theorem 6.11. The main idea is to generate and modify a random graph, denoted by G n,p , on n vertices where each edge appears independently with probability p. An intuitive way to see this is to start with a stable set of n vertices, and for each pair of vertices, draw a magic coin that gives 1 as an outcome with probability p and 0 with probability 1p. If the outcome is 1 there is an edge, otherwise there is no edge. Our goal now is to show that by generating a graph at random with this method, there is a strictly positive probability that we obtain a graph with some special properties.

First, we want to aim for a random graph G n,p with girth greater than for some fixed ≥ 3. Let λ ∈ (0, 1 ) and p = n λ-1 . Let us generate the random graph G n,p with the edge probability p given above and see what we can say about it.

We want to see how the girth behaves in G n,p . Let us compute the number of cycles of length at most . Let X be this number and X j the number of cycles of length at most j. One upper bound on X j is obtained by seeing a cycle of length j as a word of length j on an alphabet of size n, hence we have this rough upper bound:

X j ≤ n j .
Each of those cycles appears with probability p j (there are j edges in a cycle of length j and each appears with probability p). Hence we have:

E[X] ≤ ∑ j=3 n j p j = ∑ j=3 n λj .
This is a sum of a geometric series starting at 3 and ending at . It gives the following:

E[X] ≤ ∑ j=3 n λj = n 3λ -n λ +λ 1 -n λ = n λ +λ -n 3λ n λ -1 = n λ +λ -n 3λ n λ (1 -n -λ ) = n λ -n 2λ 1 -n -λ ≤ n λ 1 -n -λ .
Since λ < 1, we have that n λ 1-n -λ is smaller than n c for any c > 1 and n sufficiently large. By choosing c = 4 and for n sufficiently large, we have the following upper bound on the expectation of X:

E[X] < n 4 .
Hence, by Markov's inequality, we have:

P[X ≥ n 2 ] < n 4 × 2 n = 1 2 .
To sum up, we know that the probability that G n,p contains at least n 2 short cycles is strictly less than 1 2 . We will keep this fact for later and will now deal with the stability number of our graph.

As explained in the first Chapter of this manuscript, for any graph G the chromatic number is lower bounded by the following:

χ(G) ≥ |V(G)| α(G)
128| NORMAL GRAPHS Rather than directly looking at the chromatic number, we will deal with the stability number. Let a = 3 p ln n and consider the event there is a stable set of size a. The probability of this event is given by:

P[α(G) ≥ a] ≤ n a (1 -p) ( a 2 )
≤ n a e -p(a(a-1)) 2

where n a ≤ n a and (1 + r) x ≤ e rx for any real x and r > 0

= n a e -3 ln n(a-1)

2

= n a e -3(a-1) 2

It follows that n a n -3(a-1) 2 tends to 0 as n grows large. Hence we have that for n sufficiently large:

P[α(G) ≥ a] < 1 2
Now, the union bound gives the following probability:

P[X ≥ n 2 or α(G) ≥ a] < 1
By looking at the probability of the complementary of this event, we have that: This means that with strictly positive probability, there exists a graph G such that the number of short cycles is less than n 2 and the stability number is less than a. There is one final step that needs to be done. We know that there are not too many short cycles, but we still need to produce a graph of girth at least . Let S be the vertex set obtained from picking exactly one vertex from each of these short cycles and let G = G[V \ S]. Note that G has girth at least , has at least n 2 vertices (since |S| < n 2 ) and that α(G ) < a since taking an induced subgraph cannot increase the stability number. Now we can get the following lower bound on the chromatic number of G :

χ(G ) ≥ |V(G )| α(G ) ≥ n 2 × p 3 ln n = n 2 × n λ-1 3 ln n = n λ 6 ln n
Since λ > 0, as n grows large so does the chromatic number. Hence, for any girth , we can show that there exists a graph of girth at least and arbitrarily large chromatic number.

(a) every member of C induces a clique K 2 or K 1 in G, where no K 1 is included in some K 2 .

(b) the graph on V(G) consisting of the edges of C, denoted by E[C], is a vertexdisjoint union of stars (the isolated K 1 being stars just consisting of an isolated center).

(c) every member of S induces a stable set in G. Let G = (V, E) be a graph. A star system (Q, S) of G is a spanning set of vertex disjoint stars where S is the set of stars, and Q is the set of centers of the stars of S. Therefore every x i ∈ Q is the center of some star S i of S. Moreover, the union of vertices of the S i 's is equal to V. Note that some stars can be trivial, i.e. simply consisting of their center. To every star system (Q, S), we associate a directed graph Q * on vertex set Q by letting x i → x j whenever a leaf of S i is adjacent to x j . Of particular interest here is the following notion of out-section: A subset X of Q is an out-section if there exists v in Q such that for each x ∈ X, there exists a directed path in Q * from v to x.

Observe that to every star-covering we can associate the star-system E[C].

LEMMA 6.15

Let G be a normal triangle-free graph with a star covering (C, S). We denote by (Q, S) its associated star-system. Assume that X is an out-section of Q * . Then the set of leaves of the stars with centers in X form a stable set of G.

Proof. To see this, consider a vertex v in Q which can reach every vertex x of X in Q * by a directed path v = x 0 → x 1 → • • • → x k = x. For all i, we denote by S i the star with center x i (observe that they all have leaves, except possibly S k ). Consider an stable set I of S which contains any leaf of S 0 . Since I is a stable set, it does not contain x 0 , and hence by definition of normal cover I must contain all the leaves of S 0 . Now since x 0 → x 1 , there is a leaf of S 0 adjacent to x 1 . In particular, x 1 is not in I, implying that every leaf of S 1 belongs to I. Applying the same argument, all leaves of S i belong to I, for each i. Since this argument can be done for every directed path starting at v, any star S j whose center is reachable from v in Q * by a directed path has all its leaves contained in I. In particular, all the leaves with centers in X form a stable set.

This lemma provides a roadmap to a disproof of the normal graph conjecture. Namely, a normal, high girth, dense enough random graph will have a star covering with large out-sections, in particular, large stable sets. By tuning the density we can contradict the typical stability of such graphs. To achieve this, we need to introduce the following definitions: Given a graph G and a subset Q of its vertices partitioned into Q 1 , . . . , Q 10 , we say that w ∈ V \ Q is a private neighbor of a vertex v i ∈ Q i if w is adjacent to v i but not to any other vertex in Q 1 , . . . , Q i . Hence, every vertex v i ∈ Q i is the center of some (possibly trivial) star S i whose leaves are the private neighbors of v i . We define as previously our directed graph Q * based on the induced star system consisting of Q and the set of stars S i . Observe that by definition of private neighbors, any arc u → v of Q * with u ∈ Q i and v ∈ Q j satisfies i < j. Given Q 1 , . . . , Q 10 in some graph G, we refer to this star system as the private star system over Q 1 , . . . , Q 10 . The directed graph Q * is called private directed graph over Q 1 , . . . , Q 10 .

Let us now turn to our fundamental property:

Property JQ:

We say that G satisfies property JQ if for every choice of pairwise disjoint subsets of vertices J, Q 1 , ..., Q 10 , with |J| ≤ n 0.91 and n 0.9 1000 ≤ |Q i | ≤ n 0.9 500 for all i = 1, . . . , 10, the private directed graph Q * defined on the induced subgraph G \ J has an out-section whose set of private neighbors has total size at least n 0.95 .

The crucial point is that a random graph G := G n,p with p = n -9/10 will almost surely have property JQ, as claimed by the lemma below. We postpone the proof of this lemma to Section 6.4. Now, we show that Lemmas 6.12, 6.16 and Claim 6.14 are sufficient to prove our main theorem.

Proof of Theorem 6.7. We consider a random graph G := G n,p with p = n -9/10 . Using Lemma 6.12 and Lemma 6.16 and the Union Bound, for n sufficiently large, there number of out-sections will be at least i n/d i for some i > 0. By truncating, we may assume that the number of out-sections in Q i is exactly i n/d i and each out-section has size exactly d i-1 /C i . Now, contract each out-section of Q i into a single vertex and denote the resulting set of vertices by Q i .

Consider the bipartite graph H i = (Q i , Q i+1 ) with bipartition Q i and Q i+1 where there is an edge between v i ∈ Q i and v i+1 ∈ Q i+1 if at least one of the d 2 private neighbors of at least one of the vertices in the out-section of Q i corresponding to v i is adjacent to v i+1 . Thus, H i is a random bipartite graph where the probability of any edge is p i = 1 -(1p 1 ) d i-1 /C i . It is easily seen that d i+1 4C i n < p i < 2d i+1 C i n . We again apply Lemma 6.13. Indeed, 10 100 p -1 i < 10 100 4C i n d i+1 < i n/d i = |Q i |, if n is sufficiently large. Thus, H i has a partial cover and e(Q i , Q i+1 ) ∈ [0.99p i |Q i ||Q i+1 |, 1.01p i |Q i ||Q i+1 |] with probability at least 1e -cp i |Q i ||Q i+1 | > 1e -c 1 n , for some constant c 1 > 0. Let (x 1 , Y 1 ), ..., (x k , Y k ) be the set of pairs in the partial cover. It follows that the size of each Y j is e(Q i , Q i+1 )/3|Q i | > d i /C i+1 for some C i+1 > 0 and at least |Q i+1 |/3 of the vertices of Q i+1 are covered by the Y i 's. Since e(Q i , Q i+1 ) < 1.01p i |Q i ||Q i+1 |, it follows that k > i+1 n d i+1 for some i+1 > 0. Thus, the size of each out-section and the number of out-sections is as required.

Thus, we have

P[J i+1 ] ≥ P[J i+1 | J i ](1 -e -i n ) > (1 -e -c 1 n )(1 -e -i n ) > 1 -e -i+1 n
for some constant i+1 , as required. This proves the claim (*). Now, considering J 10 we have that there exist at least 10 n/d 10 = 10 > 0 outsections of size at least d 9 /C 10 . Therefore, there is at least one out-section of size at least n C 10 d with probability at least 1e -10 n . Now, if M 2 ∩ 10 i=1 N Q i holds then every vertex in each Q i has d/2 private neighbors, yielding a set of at least n/2C 10 > n 0.95 total private neighbors corresponding to the out-section. Thus, This completes the proof of the lemma.

P[JQ

Note that by setting p = n -1+1/10g and reproducing the same arguments, one can show that for every g, there exists a graph of girth g which is not normal.

Conclusion

Several results of different types were presented in this manuscript. We present below a summary of all the results and directions for further research.

In Chapter 3 we provided two different polynomial-time algorithms for the coloring problem. The first one solves the 4-coloring problem in the class of (P 6 , bull)-free graphs and the second one solves the k-coloring problem in the class of (P 6 , bull, gem)free graphs for any positive integer k. Both use structural properties of (P 6 , bull)-free graphs and the latter uses the fact that the clique-width is bounded by a constant on this class of graphs. The big question is to determine the complexity of the 4-coloring problem of P 6 -free graphs. In fact, Huang [START_REF] Huang | Improved complexity results on k-coloring P t -free graphs[END_REF] conjectures that it is polynomial to decide the 4-colorability of any P 6 -free graph. Using the same techniques we used is unlikely to work as P 6 -free graphs have obviously less structure than (P 6 , bull)-free graphs. One first step would be to try for another type of class. For example, as stated by the authors in [START_REF] Chudnovsky | 4-coloring P 6 -free graphs with no induced 5-cycles[END_REF], it might be a good bet to try to solve the 4-coloring problem of (P 6 , W 5 )-free graphs where W 5 is the wheel graph on five vertices. Also, it would be interesting to know if there is a finite number of 5-critical (P 6 , bull)-free graphs and if the answer is yes, would it be possible to produce the list of all 5-critical (P 6 , bull)-free graphs? Goedgebeur and Schaudt [START_REF] Goedgebeur | Exhaustive Generation of k-Critical H-Free Graphs[END_REF] provided an algorithm generating all k-critical H-free graphs. It would be very interesting to try to implement their algorithm and see what it can outputs for the class of (P 6 , bull)-free graphs.

Chapter 4 was dedicated to proving that for any claw-free perfect graph G where ω(G) ≤ 4, we have the following chromatic equality, χ(G) = ch(G). If one would try to prove a better result while using the same techniques, the first thing to try would be the elementary graphs. In fact, even though we were able to provide working gadgets for every example we tried for graphs with a higher clique number, we did not manage to make it work in the general case. However, it is worth trying since some specific cases are working. On the other hand, there are other techniques that we did not use and that might be worth a try. For instance, the structural description of claw-free perfect graphs provided by Chudnovsky and Plumettaz [START_REF] Chudnovsky | The structure of claw-free perfect graphs[END_REF] would be a good start. We also feel that trying to prove the general case of all peculiar graphs (in case one would want to stick with decomposition used in our proof) is worth a try. The complete structure is given and we were able to prove small cases of higher clique number, however we did not manage to prove it for the general case. There is certainly still room for improvement.

We elaborated three different algorithms in Chapter 5. And there is still a lot to do. Recall the result of Alekseev [1] proving that the MWSS problem remains NP-Hard in the class of F -free graphs whenever F does not contain any subdivision of S i,j,k . Lokshtanov et al. [START_REF] Lokshtanov | Independent set in P 5 -free graphs in polynomial time[END_REF] proved that the MWSS can be solved in polynomial time in the class of P 5 -free graphs and Lokshtanov et al. [START_REF] Lokshtanov | Independence and efficient domination on P 6 -free graphs[END_REF] proved that it can be solved in quasi-polynomial time in the class of P 6 -free graphs. Natural questions arise from these results. Does there exist an integer k ≥ 6 for which the MWSS problem in the class of P k -free graphs is NP-Hard? Or the other way around, how far can we push k to find a polynomial-time algorithm for the MWSS problem in the class of P k -free graphs. One could ask the same question for quasi-polynomiality for k ≥ 7. It is known that the MWSS is polynomial-time solvable in the class of claw-free graphs. There are a few results of polynomiality in S i,j,k -free graphs for specific integers i, j, k. One could aim at trying for other values of S i,j,k or in a more general way as stated above (but also harder), does there exist an i, j, k for which the MWSS is NP-hard in the class of S i,j,k -free graphs? A powerful theorem comes to mind while dealing with P k -free graphs: Camby and Schaudt [START_REF] Camby | A new characterization of P k -free graphs[END_REF] proved that any connected P k -free graph G with k ≥ 4 admits a connected dominating set that induces either a P k-2 -free graph or a graph isomorphic to P k-2 . This theorem might a good tool to try for new results in P k -free graphs.

In Chapter 6 we disproved a conjecture of De Simone and Körner. Even though our result disproves a 17 year-old conjecture, there is still a lot of work to do. First, our counter-example uses the probabilistic method and is not constructive. The first task that comes to mind is the following. Try to provide a constructive counter-example to the Normal Graph Conjecture? On the other hand, several authors proved the conjecture to be true in specific graph classes. For which other classes does the conjecture hold? 
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 13 Figure 1.3: Example of an optimal set S. Picked vertices are circled in purple.

  que le problème SAT est appelée la classe des problèmes NP-Difficiles. De plus, la classe des problèmes NP-Difficiles et pour lesquels il est possible de vérifier une solution en temps polynomial est appelée la classe des problèmes NP-Complets. Cook en 1971[21] prouva que le problème SAT est NP-Complet et que tout autre problème dans NP peut être réduit au problème SAT en temps polynomial. Le problème de k-coloration est NP-Complet et le problème qui consiste à trouver un ensemble indépendant de poids au moins k est également NP-Complet. En d'autres termes, ces problèmes sont difficiles. Dans ce manuscrit nous présentons des avancées liées au problème de coloration, au problème d'indépendant de poids maximum et la réfutation d'une conjecture de théorie des graphes en lien 18| INTRODUCTION (FRENCH) avec les cliques et les ensembles indépendants.
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 2 3 for an example. Let us explain in a graph theoretical way what this optimization problem is.
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 24 Figure 2.4: Homogeneous set S, with A complete to S and B anticomplete to S.
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 25 Figure 2.5: A graph G and its modular decomposition tree T(G).

Figure 2 . 6 :

 26 Figure 2.6: Creating a triangle in 8 operations.
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 31 Figure 3.1: A four coloring of the world map
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 32 Figure 3.2: The first three Mycielski graphs.
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 33 Figure 3.3: Edge coloring example.
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 34 Figure 3.4: A graph G and its line-graph, L(G).
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 735 Figure 3.5: From left to right: C 5 , C 7 , C 7 .
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 36 Figure 3.6: The claw graph.
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 37 Figure 3.7: The diamond.
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 38 Figure 3.8: The bull.

P 6 Figure 3 . 9 :

 639 Figure 3.9: The P 6 graph.
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 310 Figure 3.10: The graph Z 2 and the kite.
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 311 Figure 3.11: The double-wheel graph.

  and a, b two adjacent vertices complete to the C 5 . See Figure 3.11.

. 3 )

 3 Proof: Let c be a 4-coloring of G. For each maximal module M of G we have |c(M)| ≥ χ(G[M]). So we can assign to the vertices of K M distinct colors from the set c(M). Doing this for every M yields a 4-coloring of G . Conversely, let c be a 4-coloring of G . For every maximal module M of G, consider a χ(G[M])-coloring of M and assign to each class of this coloring one color from the set c (K M ) (a different color for each class). Doing this for every M yields a 4-coloring of G. So (3.3) holds.
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 6312 Figure 3.12: The broom.

. 8 )

 8 This follows directly from the definition of B . A is complete to B . (3.9) Proof: Consider any a ∈ A and b ∈ B . Let b 0 -b 1 -• • • -b k be a B -path for b, as above. By (3.7), a is adjacent to b 0 . Pick any v h in P ∩ N(b 0 ). First suppose that b 0 is not adjacent to v 6 . Then for each i ≥ 1 and by induction, a is adjacent to b i , for otherwise {b i , v h , b i-1 , a, v 6 } induces a bull. Hence a is adjacent to b. Now suppose that b 0 is adjacent to v 6 ; by (3.5), this means that b 0 ∈ Z. Then a must be adjacent to b 1 , for otherwise we obtain the third outcome of the lemma (where b 0 , b 1 play the role of z, t). Then for each i ≥ 2 and by induction, a is adjacent to b i , for otherwise {b i , b i-2 , v 6 , a, b i-1 } induces a bull. Hence a is adjacent to b. So (3.9) holds.

. 11 )

 11 Proof: Consider any b ∈ B and f ∈ F \ F , and take a B -path b 0 -• • • -b k for b as above. Vertex b 0 is not adjacent to f by (3.5) (if b 0 ∈ Y) or by the definition of F (if
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 3 Figure 3.13: Magnets
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 5314 Figure 3.14: The gem graph.
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 315 Figure 3.15: The partition of V(G) as in Theorem 3.30. A line between two sets represents partial or complete adjacency. No line means that the two sets are anticomplete to each other.

  3 -connected. If a, b are adjacent, then Lemma 3.27 is contradicted by D i , u and x 0 , because u is not adjacent to d. So a, b are not adjacent, and since G is P 6 -free we have Q = a-b -a -b for some a ∈ A i and b ∈ B i , and u has no neighbor in {a , b }. Then d is adjacent to a, for otherwise {u, a, b , v 1 , d} induces a bull, and d is adjacent to a , for otherwise {u, a, d, v 1 , a } induces a bull. By the choice of d some vertex v in W i is adjacent to d and not to b. Then v is adjacent to a, for otherwise {v, d, a, v 1 , b} induces a bull, and to a , for otherwise {x 0 , v, a, d, a } induces a bull; but then {x 0 , v, d, a , b} induces a bull, a contradiction. Thus (3.2) holds.For every big component D i of V 5 , one of W A i and W B i is empty.(3.3)Proof: Suppose on the contrary that some vertex u in W has a neighbor a in A i and no neighbor in B i and some vertex v in W has a neighbor b in B i and no neighbor in A i . If a, b are adjacent, then u, v are adjacent, for otherwise {u, a, v 1 , b, v} induces a bull; but then {v 1 , a, b, u, v, x 0 } induces an F 5 . Hence a, b are not adjacent. Since G is P 6 -free, D i contains a chordless path a-b -a -b of length 3. Then {u, a, b , v 1 , b} induces a bull, a contradiction. Thus (3.3) holds.

Finally, Theorem 3 .

 3 31 follows from Lemmas 3.24, 3.26 and 3.28 and Theorems 3.32 and 3.34.
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 43 Figure 4.3: An example of Galvin's theorem with a bipartite multigraph B and its line-graph L(B).
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 244 Figure 4.4: A graph G decomposed in graphs G 1 and G 2 by the clique cutset {u, v}.
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 4546 Figure 4.5: General structure of peculiar graphs.

  , and let L (w) = L(w). We claim that the family {L (x) | x ∈ V(G )} admits a system of distinct representatives. Suppose the contrary. By Hall's theorem, there is a setS ⊆ V(G ) such that |L (S)| < |S|. Since |L (x)| ≥ 3 for all x ∈ V(G ),we have |L (S)| ≥ 3, so |S| ≥ 4; this implies that either (a) S ⊇ {a i , b i+1 } for some i ∈ {1, 2, 3} or (b) S contains w. In case (a), (4.1) implies that c belongs to at most one of L(a i ) and L(b i+1 ), and so |L (S)| ≥ |L (a i ) ∪ L (b i+1 )| ≥ 7, so |S| ≥ 8, which is impossible because |V(G )| = 7. In case (b), since |L (w)| = 4, we have |L (S)| ≥ 4, so |S| ≥ 5, which implies that S satisfies (a) again, a contradiction.

  , and H = H \ {x, y}. Clearly every vertex x ∈ X satisfies |L (x )| ≥ |X | and every vertex y ∈ Y satisfies |L (y )| ≥ |Y |, and |X | ≤ |Y |, and there are |X | non-edges between X and Y , and they form a matching in H . By the

3 H 6 Figure 4 . 7 :

 3647 Figure 4.7: The graphs H 4 , H 5 and H 6 .

  and so |L (Q)| = 3 and |Q| = 4. Since x 3 and y 3 play symmetric roles here, we may assume up to symmetry that Q = {x 1 , y 1 , y 2 , y 3 }, and L (Q) = {a, b, c}, where a, b, c are three distinct colors. Hence L(x 1 ) = L(y 1 ) = L(y 3 ) = {a, b, c}. Since |L(Q)| ≥ 4, there is a color d ∈ L(y 2 ) \ {a, b, c}. Since |L({x 1 , y 1 , x 2 , y 3 })| ≥ 4,there is a color e ∈ L(y 2 ) \ {a, b, c}. If a ∈ L(x 3 ), then we can assign color a to x 3 and y 3 , colors b and c to x 1 and y 1 , color e to x 2 and color d to y 2 . So assume that a / ∈ L(x 3 ), and similarly that b, c / ∈ L(x 3 ). Then we can assign colors a, b, c to x 1 , y 1 , y 3 , color e to x 2 , color d to y 2 , and a color from L(x 3 ) \ {d, e} to x 3 . Thus (4.3) holds. It follows from (4.3) that |L(x i ) ∪ L(y i )| ≥ 5 for i = 2, 3. If the family {L(x) |

(4. 6 )

 6 By (4.4), (4.5) and (4.6), we have |L(u) ∪ L(v)| = 5 whenever {u, v} is any of {x 2 , y 2 }, {x 3 , y 3 }, {x 1 , y 2 }, {x 3 , y 1 }, and |L(x 1 ) ∩ L(y 1 )| = 6. It follows that the family {L(w) | w ∈ V(H)} admits a system of distinct representatives, which is an Lcoloring for H.

. 10 )

 10 By (4.7), (4.8), (4.9) and (4.10), we have |L(v i ) ∪ L(v j )| = 7 if the pair {i, j} is any of {1, 5}, {2, 6}, {3, 7} and {3, 4}, and |L(v 4 ) ∪ L(v 8 )| = 8. It follows easily that the family {L(w) | w ∈ V(H)} admits a system of distinct representatives.

(4. 11 )

 11 Suppose that |X ∪ Y| ≤ ω(G). Let H be the graph obtained from H by duplicating |X| -1 times the edge x (so that there are exactly |X| parallel edges between the two ends of x in H) and duplicating |Y| -1 times the edge y. Let G h-1 be the graph obtained from L(H ) by augmenting the h -1 edges e 1 , . . . , e h-1 as in G. Then G h-1 can also be obtained from G by adding all edges between non-adjacent vertices of X ∪ Y. By the assumption, we have ω(G h-1 ) = ω(G). By the induction hypothesis, G h-1 admits an L-coloring. Then this is an L-coloring of G. Hence (4.11) holds. Let X = {x 1 , . . . , x |X| } and Y = {y 1 , . . . , y |Y| }. Let N X = {v ∈ V(G) \ (X ∪ Y) | v has a neighbor in X} and N Y = {v ∈ V(G) \ (X ∪ Y) | v has a neighbor in Y}. By the definition of a line-graph and of an augment, the set N X is a clique and is complete to X; hence |N X | ≤ ω(G) -|X|. Likewise N Y is a clique and is complete to Y, and |N Y | ≤ ω(G) -|Y|. Let µ be the size of a maximum matching in the bipartite graph G[X ∪ Y]. By Kőnig's theorem we have µ + ω(G) = |X| + |Y|, so µ = |X| + |Y| -4.Moreover, we may assume that the edges of G[X ∪ Y] form a matching of size µ (for otherwise we can add some edges to G, in X ∪ Y, which makes the coloring problem only harder).

Case 1 :

 1 |Y| = 4 and |X| ≤ 4. We have |N X | ≤ 4 -|X| and |N Y | = 0, so |L (u)| ≥ |X| for all u ∈ X and |L (v)| = 4 for all v ∈ Y. Since ω(G) = 4, there are |X| nonedges between X and Y that form a matching in G. By Lemma 4.17, G[X ∪ Y] admits an L -coloring.

Case 2 :

 2 |X| = |Y| = 3. Here we have µ = 2, and we may assume that the nonedges between X and Y are x 2 y 2 and x 3 y 3 . We have |N X | ≤ 1 and |N

  Theorem 4.14, L(H * ) admits an L * -coloring f * . Now we can use the same technique as in the proof of Theorem 4.26 to extend f * to an L-coloring of G 2 . Moreover, we have f * (d 1 ) = c 1 and consequently f
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 51 Figure 5.1: The graph S 1,2,3 .
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 252 Figure 5.2: The non-neighborhood K of the vertex v.
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 53 Figure 5.3: The 5-wheel graph.
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 55 Figure 5.5: The structure of a component in the non-neighborhood of v.
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 56 Figure 5.6: The graph G 7 .

Proof. Let C have vertices c 1 ,

 1 . . . , c 5 and edges c i c i+1 for each i modulo 5. Suppose that a non-neighbor z of C is adjacent to a k-neighbor x of C. By Lemma 5.6 (v), we havek ∈ {1, 2, 5}. If k = 1, say x is adjacent to c i , then z-x-c i -c i+1 -c i+2 -c i+3 is an induced P 6 in G. If k = 5, then V(H) ∪ {x,y} induces an umbrella, so, by Lemma 5.3, G has a proper homogeneous set, a contradiction. So k = 2. Let G 7 be the graph with vertex-set {c 1 , . . . , c 5 , d, x} and edge-set {c i c i+1 | for all i mod 5} ∪ {dc 1 , dc 4 , dx}. See Figure 5.6.

Case 1 :

 1 K contains a C 7 and no C 5 .

  4 a , z 4 b ∈ E(G) and y 4 b , z 4 a / ∈ E(G). We have y 4 a / ∈ E(G), for otherwise c-d-h 4 -b -a -y 4 -a is an induced P 7 ; and y 4 y 1 / ∈ E(G), for otherwise {d, h, y 4 , y 1 , a} induces a bull; and y 4 b / ∈ E(G), for otherwise {h, y 1 , a, b, y 4 } induces a C 5 of type 1. Then ba / ∈ E(G), for otherwise c-d-h-y 4 -a -b-a is an induced P 7 . If y 1 b ∈ E(G), then y 1 z 4 ∈ E(G), for otherwise {h, y 1 , b , z 4 , y 4 } induces a C 5 of type 1, and y 1 h 4 ∈ E(G), for otherwise {h, y 1 , z 4 , b , h 4 } induces a bull; but then {d, h 4 , b , y 1 , a} induces a bull. So y 1 b /

  is an induced P 7 . Thus (5.12) holds. Now we deal with C 5 's of type 0. Clearly any such C 5 lies in a component of G[Z], and any such component has a neighbor in H since G is connected.

  type 1. By(5.12) and up to symmetry, we have N C (c 1 ) = {t , v } and N C (c 4 ) = {u , w }, and t , u , v , w ∈ T. Then c 5 has a neighbor in {u , v }, for otherwise {c 1 , v , u , c 4 , c 5 } induces a C 5 of type 0 in which h has at most one neighbor, contradicting (5.13). If c 5 u ∈ E(G), then c 5 v ∈ E(G), for otherwise {h, c 4 , c 5 , u , v } induces a bull. If c 5 v ∈ E(G), then c 5 u ∈ E(G), for otherwise {h, c 1 , c 5 , v , u } induces a bull. In both cases, by(5.11), c 5 is complete to {t , u , v , w }. But then {h, c 1 , t , c 5 , w } induces a bull. Thus (5.15) holds.

1 , b 2 ,

 12 v}. By(5.11), b 1 , b 2 and v have no neighbor in {t , w }; and since B is a stable set they are not adjacent to v . Suppose that b 1

  is an induced P 7 , and then u -v -h-d-h -v-u is an induced P 7 , a contradiction. Hence b 1 u / ∈ E(G) and, by symmetry, b 1 and b 2 have no neighbor in Y

(

  III) Suppose that K contains a C 5 of type 1 and no C 5 of type 0. Let u be a vertex such that K \ N(u) has no C 5 of type 1, as in Claim(5.16). Then MWSS in K can be solved by successively solving the MWSS in (a)G[K \ N(u)] and in (b) G[K \ {u}].Step (a) can be done in polynomial time by referring to (II) or (I). Step (b) can be computed by recursively calling (III). After a number of calls there is no longer any C 5 of type 1, so we are in (II) or (I). The number of recursive calls is bounded by |K|.

(

  IV) Suppose that K contains a C 5 of type 0. Let T be the component of G[Z] (unique by Claim (5.14)) that contains a C 5 . Let H 0 = {h ∈ H | h has a neighbor in T}. Let h be any vertex in H 0 . By (5.15) we know that G[K \ N(h)] contains no C 5 of type 0 or 1. Then the MWSS in K can be solved by successively solving the MWSS in (a) G[K \ N(h)] and in (b) G[K \ {h}]. Step (a) can be computed in polynomial time by calling (II) or (I).

Figure 6 .

 6 1 for an example. The co-normal power denoted by G k for some positive integer k of a graph G is defined by:

Figure 6 . 1 :Figure 6 . 2 :

 6162 Figure 6.1: The co-normal product of a graph G 1 with another graph G 2 .

Figure 6 . 3 :

 63 Figure 6.3: A normal graph containing an induced C 5 .

P[X < n 2

 2 and α(G) < a] = 1 -P[X ≥ n 2 or α(G) ≥ a] > 0

  (d) C ∩ S = ∅ for every C ∈ C and S ∈ S.Every graph G admitting a star covering is normal, and the converse holds for triangle-free graphs: CLAIM 6.[START_REF] Camby | A new characterization of P k -free graphs[END_REF] If G is a normal triangle-free graph, then G admits a star covering (C, S) where E[C] contains at most α(G) stars.Proof. Let (C , S ) be a normal covering of G. Since G is triangle-free, all cliques in C are K 2 's or K 1 's. The cliques K 1 included in some K 2 can be deleted from C . All that remains to show is that we can reduce to cliques inducing vertex-disjoint stars. Indeed, suppose thatE[C ] contains two adjacent vertices u, v with d E[C ] (u) ≥ 2 and d E[C ] (v) ≥ 2.Deleting the edge uv from C gives another covering (since u and v are also covered by other edges) that is still intersecting with S . Repeating this, we obtain a star covering (C, S) of G. Now, we show that the number of stars in E[C] is at most α(G). Indeed, let x 1 , . . . , x k be the centers of the stars (some centers x i may be trivial stars) in E[C], and let S ∈ S be any stable set. Then for each x i , S must contain either x i or a neighbor of x i in C. Since the stars are disjoint, it follows that k ≤ |S| ≤ α(G).

LEMMA 6. 16 P

 16 [G ∈ JQ] = 1o(1).

  c ] ≤ 2 11 n 2n 0.91 P[M 2 ∩ 10 i=1 N Q i ] = 2 11 n 2n 0.91 P[M 2 ∩ 10 i=1 N Q i ∩ J c 10 ] ≤ 2 11 n 2n 0.91 e -10 n = o(1).

  follows from the definition of the sets and Claims (3.6)-(3.11) that H is complete to A ∪ (B \ B ) and anticomplete to F \ F , and we know that A

  3 , v, z} induces a gem; and z is adjacent to u 1 , for otherwise {u 1 , y, z, u 3 , u 4 } induces a bull; and z has no neighbor v ∈ U 5 , for otherwise {v, u 1 , y, u 3 , z} induces a gem. It follows that the 5-tuple (U 1 , U 2 ∪ {z}, U 3 , U 4 , U 5 ) contradicts the maximality of U (since u 1 and u 3 are complete to U 2 ∪ {z}).

So (3.13) holds.

There is no triangle {x, y, z} with x ∈ U and y, z ∈ R.

(3.14)

  and consequently G itself is P 4 -free; so G has clique-with at most 2 by Theorem 3.22. Therefore we may assume that G and G are connected. Let M 1 , . . . , M p be the maximal modules of G. Pick one vertex m i from each M i , and let G = G[{m 1 , . . . , m p }]. Since G and G are connected we know from the theory of modular decomposition (see Section 2.4) that M 1 , . . . , M p form a partition of V(G), with p ≥ 4, and that G is a prime graph. Clearly G is (P 6 , bull, gem)-free since it is an induced subgraph of G. We observe that: Since p ≥ 2 and G is connected there is a module M j such that j = i and M j is complete to M i . If G[M i ] contains a P 4 , then m j and the four vertices of this P 4 induce a gem, a contradiction. So (3.16) holds.Consider any prime induced subgraph H of G. We claim that:H contains at most one vertex from each maximal module M i .(3.17)Proof: Suppose that H contains two vertices from some M i . By(3.16) the subgraph of G induced by V(H) ∩ M i has a pair of twins; but this contradicts the fact that H is prime. So (3.17) holds. By (3.17), H is isomorphic to an induced subgraph of G . By Theorems 3.29 and 3.23, H has bounded clique-width. Hence and by Theorem 2.2, G has bounded cliquewidth.

G[M i ] is P 4 -free, for each i ∈ {1, . . . , p}.

(3.16)

Proof:

  and only if G \ Z 0 is 4-colorable. Moreover, given any 4-coloring of G \ Z 0 we can make a 4-coloring of G in polynomial time. By item (h) we may assume, up to relabeling, that the colors used on such a component are 1, . . . , t. By items (b), (e) and (g), these colors are not used onV 1 ∪ V 4 ∪ W ∪ Z 1 .So for every component Y of X we can recolor the vertices of Y with colors 1, . . . , |Y|. Thus we obtain a 4-coloring c of G \ Z 0 . Now we can extend c to Z 0 as follows. Let U be any component of Z 0 . By the definition of Z and Z 0 and by item (f), we have N(U) ⊆ X. Let Y be the largest component of X that is adjacent to U. By items (h) and (i), U and Y are complete to each other and U ∪ Y is a clique. Since G contains no K 5 , we have |U| ≤ 4 -|Y|. Moreover, by the choice of Y, any component Y of X that is adjacent to U is not larger than Y, so the colors used on Y are also used on Y. So U can be colored with the colors from {1, 2, 3, 4} that are not used on Y. We can proceed similarly for all U. This yields a 4-coloring of G. Thus (3.1) holds.

	(3.1)

Proof: Clearly if G is 4-colorable then G \ Z 0 is 4-colorable. So let us prove the converse and the second sentence of the claim. Let c be a 4-coloring of G \ Z 0 . Let t be the maximum size of a component of X.

  ∈ {1, . . . , p} (there are p p of them). See Figure4.1 for a small example of the lists assignement. Assume now that K p,p p is L-colorable. It means that each vertex on the X side has been assigned a color from its list. But since on the Y side all p-tuples (c 1 , c 2 , . . . , c p ) with c i ∈ L(x i ) for i ∈ {1, . . . , p} are present, it means that there exist a j ∈ {1, . . . , p p } for which L(y j ) = Hence the vertex y j can not be colored, a contradiction. All color lists have size p, it follows that ch(K p,p p

		{1, 3}
	{1, 2}	{1, 4}
	{3, 4}	{2, 3}
		{2, 4}
	Figure 4.1: K 2,4 is not 2-choosable.

1)p + 1, . . . , ip} for i ∈ {1, . . . , p}. On the Y side, assign all the possible p-tuples (c 1 , c 2 , . . . , c p ) with c i ∈ L(x i ) for i p i=1 c(x i ).

  then by the above claim, applied to the cliques {x 1 , y 1 , x 2 } and {x 1 , y 1 , y 2 }, we obtain that H is L-colorable. Let H be the cobipartite graph isomorphic to H 5 as depicted in Figure4.7, where V(H) is partitioned into two cliques X = {x 1 , x 2 , x 3 } and Y = {y 1 , y 2 }, and E(H) = {x 3 y 2 }. Let L be a list assignment on V(H) such that |L(x)| ≥ 3 for all x ∈ X and |L(y)| ≥ 2 for all y ∈ Y. Then H is L-colorable if and only if every clique Q of H satisfies |L(Q)| ≥ |Q|.

	LEMMA 4.19

Proof. If H is L-colorable then clearly every clique Q of H satisfies |L(Q)| ≥ |Q|. Now let us prove the converse.

  Suppose on the contrary, and up to symmetry, that |L(x 2 ) ∩ L(y 2 )| ≥ 2. Let H = H \ {x 2 }, and set L (y 2 ) = L(x 2 ) ∩ L(y 2 ) and L (u) = L(u) for all u ∈ {x 1 , x 3 ,y 1 , y 3 }. Thus H and L satisfy the hypothesis of Lemma 4.19. If every clique Q in H satisfies |L (Q)| ≥ |Q|, then Lemma 4.19 implies that H admits an L -coloring, and we can extend it to an L-coloring of H by giving to x 2 the color assigned to y 2 . Hence assume that some clique

.

[START_REF] Berge | Färbung von graphen, deren sämtliche bzw. deren ungerade kreise starr sind[END_REF]

, where V(H) is partitioned into two cliques X = {x 1 , x 2 , x 3 } and Y = {y 1 , y 2 , y 3 }, and E(H) = {x 2 y 2 , x 3 y 3 }. Let L be a list assignment on V(H) such that |L(x)| ≥ 3 for all x ∈ V(H). Then H is L-colorable if and only if every clique Q of H satisfies

|L(Q)| ≥ |Q|. In particular, if |L(x 1 ) ∪ L(y 1 )| ≥ 4, then H is L-colorable.

Proof. If H is L-colorable then clearly every clique Q of H satisfies |L(Q)| ≥ |Q|. Now let us prove the converse. We first claim that:

We may assume that |L(x i ) ∩ L(y i )| ≤ 1 for each i ∈ {2, 3}.

(4.3) 

  and |L(y)| ≥ 4 for all y ∈ Y. Then H is L-colorable. Proof. Since Y ∪ {x 1 } is a clique, we have |Y| ≤ 3. If |Y| ≤ 2, then Lemma 4.19 implies that H is L-colorable. So we may assume that |Y| = 3, say Y = {y 1 , y 2 , y 3 }, and we may assume that E(H) = {x 2 y 2 , x 3 y 3 }. If the family {L(w) | w ∈ V(H)} admits a system of distinct representatives, then this is an L-coloring of H, so assume the contrary. So there is a set T ⊆ V(H) such that |L(T)| < |T|. We have |L(T)| ≥ 2, so |T| ≥ 3, so |L(T)| ≥ 3, so |T| ≥ 4, so T ∩ Y = ∅, so |L(T)| ≥ 4, and so |T| ≥ 5. It follows that T is not a clique. Hence assume that x 2 , y 2

  H is not connected, it has two components H 1 , H 2 and both are cliques of size at most 4. The hypothesis implies easily that for each i ∈ {1, 2} the family {L(u) | u ∈ V(H i )} satisfies Hall's theorem, and consequently H is L-colorable. Hence we assume that H is connected. Let n = |V(H)| and V(H) = {v 1 , . . . , v n }. The hypothesis implies that n ≤ 8. Let µ = we may assume thatE(H) = {v 1 v 5 , v 2 v 6 , v 3 v 7 , v 4 v 8 , v 1 v 8 , v 2 v 8 , v 3 v 8 }. By Lemma 4.17 (with X = {v 1 , v 2 , v 3 } and Y = {v 4 , v 5 , v 6 , v 7 }), H \ {v 8 } admits an L -coloring. This can be extended to v 8 since v 8 has only three neighbors in H. So H is L-colorable.

n -4. Since ω(H) = 4, Kőnig's theorem implies that H has a matching of size µ. We may assume that the pairs {v i , v i+µ } (i = 1, . . . , µ) form the maximality of E(H)

  not cobipartite, and so, by(4.15), either C ∩ X or C ∩ Y is empty. It follows that there is a vertex u in H such that C ⊆ C u . Suppose that C = C u . Then we can pick vertices x ∈ C andx ∈ C u \ C such that H has vertices v, v with x ∈ C uv and x ∈ C uv . Since C is a minimal cutset, x has a neighbor a 1 in A 1 . Since G 2 is an atom, the set C u \ C uv is not a cutset, so x has a neighbor z in V(G 2 ) \ C u . Then {x, a 1 , x ,z} induces a claw, a contradiction. So C = C u and (4.16) holds. By (4.16), let u be a vertex in H such that C = C u . Let D = {d ∈ A 1 | d has a neighbor in C}. We claim that: Pick any d in D. First suppose that d is not complete to C. Then we can find vertices x ∈ C ∩ N(d) and x ∈ C \ N(d) such that H has vertices v, v with x ∈ C uv and x ∈ C uv . Since G 2 is an atom, the set C u \ C uv is not a cutset, so x has a neighbor z in V(G 2 ) \ C u . Then {x, d, x , z} induces a claw, a contradiction. It follows that D is complete to C. Now suppose that D contains non-adjacent vertices d, d . Pick any LIST COLORING CLAW-FREE PERFECT GRAPHS | 91G[D ∪ C ∪ A 2 ] isan elementary graph. (4.18) Let H * be the bipartite graph obtained from H by adding |D| vertices of degree 1 adjacent to vertex u. Then it is easy to see (by (4.16) and (4.17)) that G[D ∪ C ∪ A 2 ] can be obtained from L(H * ) by augmenting the same flat edges as for G 2 and with the same augments. Thus (4.18) holds. Let D = {d 1 , . . . , d p }. (Actually we have |C| ≥ 2 by (4.16) and consequently |D| ≤ 2 by (

	D ∪ C is a clique.	(4.17)

x ∈ C. Then x has a neighbor z in V(G 2 ) \ C u . Then {x, d, d , z} induces a claw, a contradiction. So D is a clique. Thus (4.17) holds.

4.3

  and xd, xp 3 , xp 4 / ∈ E(G)} (so a, p 1 ∈ X), and let Y be the vertex-set of the component of G[X] that contains a and p 1 . Since G is prime, Y is not a homogeneous set, so there are adjacent vertices y, z ∈ Y and a vertex b ∈ V(G) \ Y such that by ∈ E(G) and bz / ∈ E(G). Suppose that bp 5 / ∈ E(G). Then bd ∈ E(G), for otherwise {b, y, z, p 5 , d} induces a bull; and similarly bp 4 ∈ E(G). If bp 2 / ∈ E(G), then bp 3 ∈ E(G), for otherwise {b, y, z, p 2 , p 3 } induces a bull; but then {p 2 , p 3 , b, p 4 , p 5 } induces a bull; so bp 2 ∈ E(G). Then bp 3 ∈ E(G), for otherwise {d, b, y, p 2 , p 3 } induces a bull; but then {d, b, p 3 , p 2 , z} induces a bull. Hence bp 5 ∈ E(G). Suppose that bp 2 / ∈ E(G). Then bd ∈ E(G), for otherwise {p 2 , y, b, p 5 , d} induces a bull; and bp 4 ∈ E(G), for otherwise {p 2 , y, b, p 5 , p 4 } induces a bull; and bp 3 ∈ E(G), for otherwise {z, p 5 , b, p 4 , p 3 } induces a bull; but then {d, b, p 4 , p 3 , p 2 } induces a bull. Hence bp 2 ∈ E(G). If bp 3 ∈ E(G), then bp 4 ∈ E(G), for otherwise {z, p 2 , b, p 3 , p 4 } induces a bull, and bd ∈ E(G), for otherwise {d, p 5 , p 4 , b, p 2 } induces a bull; but then {z, p 5 , d, b, p 3 } induces a bull. Hence bp 3 / ∈ E(G). Then bp 4 / ∈ E(G), for otherwise {p 3 , p 4 , b, p 5 , z} induces a bull, and bd / ∈ E(G), for otherwise {d, b, y, p 2 , p 3 } induces a bull. But now we see that b ∈ Y, a contradiction. Now suppose that G contains a G 2 , with the same notation as above. Let X = {x ∈ V(G) | xp 1 , xp 3 ∈ E(G) and xd, xp 5 , xp 4 /∈ E(G)} (so a, p 2 ∈ X), and let Y be the vertex-set of the component of G[X] that contains a and p 2 . Since Y is not a homogeneous set, there is a vertex b ∈ V(G) \ Y and two adjacent vertices x, y ∈ Y such that b is adjacent to x and not adjacent to y. If bp 4 / ∈ E(G), then bp 3 ∈ E(G), for otherwise {b, x, y, p 3 , p 4 } induces a bull, and bp 1 ∈ E(G), for otherwise {p 1 , x, b, p 3 , p 4 } induces a bull, and bp 5 / ∈ E(G), for otherwise {y, p 1 , b, p 5 , p 4 } induces a bull, and bd / ∈ E(G), for otherwise {d, b, x, p 3 , p 4 } induces a bull; but then we see that b ∈ Y, a contradiction. Hence bp 4 ∈ E(G). If bp 5 ∈ E(G), then bd ∈ E(G), for otherwise {x, b, p 4 , p 5 , d} induces a bull, and bp 3 / ∈ E(G), for otherwise {y, p 3 , p 4 , b, d} induces a bull, and bp 1 ∈ E(G), for otherwise {p 3 , p 4 , b, p 5 , p 1 } induces a bull; but then {d, b, p 1 , x, p 3 } induces a bull. Hence bp 5 /

  for otherwise {c, d, h , h, z 1 } induces a bull; and similarly hh / ∈ E(G); but then {h , y 1 , h, z 1 , h } induces a bull. Hence hz 1 / ∈ E(G). Clearly a / ∈ {y 1 , z 1 }. If a has no neighbor in {y 1 , z 1 }, then b has a neighbor in {y 1 , z 1 }, for otherwise b-a-h 1 -d-h-y 1 -z 1 is an induced P 7 ; and b is adjacent to both y 1 , z 1 , for otherwise {c, d, h 1 , a, b, y 1 , z 1 } induces a P 7 ; but then {h, y 1 , z 1 , b, a} induces a bull, a contradiction. So a has a neighbor in {y 1 , z 1 }. If a is adjacent to both y 1 , z 1 , then {h, y 1 , z 1 , a, h 1 } induces a bull. So a has exactly one neighbor in {y 1 , z 1 }, which leads to the following two cases: -

  3 -a -b -h 4 -t , with h 3 , h 4 ∈ H and t , a , b ∈ Z. By the analogue of (5.8) there exist vertices y 4 , z 4 in Z such that y 4 z 4 , hy 4 ∈ E(G), hz 4 , h 4 y 4 , h 4 z 4 / ∈ E(G), and, up to symmetry, y

  an induced P 7 . So(5.14) holds.If a component T of G[Z] contains a C 5 , and h is any vertex in H that has a neighbor in T, then K \ N(h) has no C 5 of type 0 or 1. K \ N(h) has no C 5 of type 0. So suppose that there is a C 5 of type 1 C = h -t -u -v -w -h (with h ∈ H) in which h has no neighbor. Let C be a C 5 in T, with vertices c 1 , . . . , c 5 and edges c i c i+1 (mod 5). By (5.13) and Lemma 5.6, we may assume that N C

	(5.15)
	Proof: By (5.13) and (5.14),

  we have N C (x) = Y . Clearly x = u. Moreover, x / ∈ {b 1 , b 2 , v}, for otherwise {u, x, v , w , h } induces a bull. So, up to symmetry, x = a 1 . By case (i) we have v b 2 , w b 2 /∈ E(G); but then {h , w , v , a 1 , b 2 } induces a bull. So G[X ∪ Y ] is bipartite. Let A, B be a bipartition of X ∪ Y in two stable sets. Up to symmetry we may assume that A = {a 1 , a 2 , u, u , w } and B = {b 1 , b 2 , v, t , v }.Note that h has a neighbor in C, for otherwise (5.12) is contradicted (since u has no neighbor in {t , w }), and similarly h has a neighbor in C , in C a 1 and in C a 2 . Suppose that h a 1 ∈ E(G). Then h b 2 / ∈ E(G), for otherwise {d, h , a 1 , b 2 , u} induces a bull, andh b 1 ∈ E(G), for otherwise c-d-h -a 1 -b 2 -u-b 1 is an induced P 7 , and h a 2 / ∈ E(G), for otherwise {d, h , a 2 , b 1 , u} induces a bull, and h h / ∈ E(G), for otherwise {c, d, h , h , a 2 } induces a bull. By (5.11), h is not adjacent to v. But then h has no neighbor in C , a contradiction. So h a 1 / ∈ E(G), and similarly h a 2 / ∈ E(G). So h / ∈ {h, h }; moreover h h / ∈ E(G), for otherwise {c, d, h , h, a 1 } induces a bull, and similarly h h / ∈ E(G). Then h has a neighbor in {b 1 , b 2 }, say h b 1 ∈ E(G), for otherwise h has no neighbor in C a 1 ; and then h b 2

  a 1 is an induced P 7 , and hu / ∈ E(G), for otherwise {d, h, u , b 1 , u} induces a bull. Then h has exactly one neighbor in {v , w }, for otherwise either

Une opération élémentaire peut être une opération arithmétique, ou vérifier si deux sommets sont adjacents, etc . . .

Plus formellement, un problème est NP-Difficile si l'on peut transformer en temps polynomial une instance de SAT en une instance de notre problème.

A basic operation can either be an arithmetic operation or checking if two vertices are adjacent, etc . . .

More formally, a problem is NP-Hard if one can transform in polynomial time an instance of SAT to an instance of our problem.

Note that in the literature one might find a different, but still close, definition of what is a module and a homogeneous set.

Remerciements

steps described in Lemma 3.24; the complexity is O(n 6 ) as discussed after the proof of this lemma. Then we test in time O(n 5 ) whether G contains a gem. Suppose that G is gem-free. Then we test whether G is perfect, which in this case is equivalent to testing whether G is C 5 -free and takes time O(n 5 ). If G is perfect, we use the algorithm from [START_REF] Penev | Coloring bull-free perfect graphs[END_REF] to compute the chromatic number of G in time O(n 6 ). If G is not perfect, we use the algorithm from [START_REF] Brandstädt | P 6 -and triangle-free graphs revisited: structure and bounded clique-width[END_REF], based on the fact that the clique-width is bounded, which runs in O(n 2 ). Finally, if the graph contains a gem, then we construct in time O(n 2 ) the partition as in Theorem 3.30 and apply the method described in Theorem 3.34, which takes time O(n 3 ). Hence the overall complexity is O(n 6 ).

such a matching. We may also assume that E(H) is maximal under the hypothesis of the lemma, since adding edges can only make the problem harder.

First suppose that n = 4. The hypothesis implies that the family {L(u) | u ∈ V(H)} satisfies Hall's theorem, and consequently H is L-colorable. Now suppose that n = 5. So µ = 1 and v 1 v 2 ∈ E(H). Up to symmetry, we have either C = {v 3 , v 4 , v 5 } or C = {v 1 , v 3 , v 4 }. If C = {v 3 , v 4 , v 5 }, then we can L-color greedily the vertices v 3 , v 4 , v 5 , v 1 , v 2 in this order. If C = {v 1 , v 3 , v 4 }, then we can L-color greedily the vertices v 1 , v 3 , v 4 , v 5 , v 2 in this order. Now suppose that n = 6. So µ = 2 and {v 1 v 3 , v 2 v 4 } ⊆ E(H). Up to symmetry, we have either C = {v 1 , v 5 , v 6 } or C = {v 1 , v 2 , v 5 }. Suppose that C = {v 1 , v 5 , v 6 }. Since {v 1 , v 2 , v 4 } is not a stable set of size 3 and N(v 1 ) \ C is a clique, v 1 is adjacent to exactly one of v 2 , v 4 , say to v 4 and not to v 2 . Then we can L-color greedily the vertices v 1 , v 5 , v 6 , v 4 , v 3 , v 2 in this order. Suppose that C = {v 1 , v 2 , v 5 }. By the maximality of E(H) we may assume that E(H) = {v 1 v 2 , v 3 v 4 }. Then Lemma 4.20 (with X = C, Y = V(H) \ C, x 1 = v 5 and y 1 = v 6 ) implies that H is L-colorable. Now suppose that n = 7. So µ = 3, and {v 1 v 4 , v 2 v 5 , v 3 v 6 } ⊆ E(H). Up to symmetry, we have either

by the maximality of E(H) we may assume that E(H) = {v 1 v 4 , v 2 v 5 , v 3 v 6 }, and by Lemma 4.17 (with X = C and Y = V(H) \ C), H is L-colorable. So suppose that C = {v 1 , v 2 , v 7 }. For each i ∈ {1, 2}, v i has exactly one neighbor in {v 3 , v 6 }, for otherwise either {v i , v 3 , v 6 } is a stable set of size 3 or N(v i ) \ C is not a clique. This leads to the following two cases (a) and (b):

(a) v 1 and v 2 have the same neighbor in {v 3 , v 6 }. We may assume that v 1 v 3 , v 2 v 3 ∈ E(H) and v 1 v 6 , v 2 v 6 / ∈ E(H). Since H is cobipartite, {v 1 , v 2 , v 3 } and {v 4 , v 5 , v 6 } are cliques, and by the maximality of E(H) we may assume that {v 1 v 5 , v 2 v 4 , v 3 v 4 , v 3 v 5 } ⊆ E(H) and that v 7 is complete to {v 1 , . . . , v 6 }. Pick a color c from L(v 7 ), assign it to v 7 , and set L (u) = L(u) \ {c} for all u ∈ V(H) \ {v 7 }. By Lemma 4.17 (with X = {v 1 , v 2 } and Y = {v 3 , v 4 , v 5 }), H \ {v 6 , v 7 } admits an L -coloring. This can be extended to v 6 since v 6 has only two neighbors in H \ {v 7 }. So H is L-colorable.

(b) v 1 and v 2 do not have the same neighbor in {v 3 , v 6 }. We may assume that v 1 v 3 , v 2 v 6 ∈ E(H) and v 1 v 6 , v 2 v 3 / ∈ E(H). Since H is cobipartite, {v 1 , v 3 , v 5 } and {v 2 , v 4 , v 6 } are cliques, and by the maximality of E(H) we may assume that v 4 v 5 , v 5 v 6 ∈ E(H) and that v 7 is complete to {v 1 , . . . , v 6 }. Pick a color c from L(v 7 ), assign it to v 7 , and set

Suppose that (a) holds. We may assume that v 1 , v 2 , v 3 are all adjacent to v 4 and not adjacent to v 8 . Since H is cobipartite, {v 1 , . . . , v 4 } and {v 5 , . . . , v 8 } are cliques, and by

Chapter 5

Maximum Weighted Stable Set

Context and motivations

The problem discussed in this chapter is an optimization problem that is often used in many different aspects of operational research and combinatorics. The Maximum Stable Set Problem, shortened MSS, is the problem of finding the stable set of maximum cardinality in a given graph. Let G be a graph, the weighted version of this problem is defined by the mean of a weight function on the vertices of G, w : V(G) → Q that assign to each vertex v a weight w(v). The Maximum Weight Stable Set Problem, shortened MWSS, is now to find the stable set of maximum weight, that we denote by α w (G). It is well known that the MSS problem is NP-Hard in general, and so is the MWSS problem. Let S i,j,k be the graph obtained from the claw by subdividing its edges into i, j and k edges (see Figure 5.1 for an example). In 1983, Alekseev [1] proved that the MSS problem remains NP-Hard in the class of F -free graphs whenever F is a finite set of graphs such that no member of F is a S i,j,k graph. In other words, to hope for a polynomial-time algorithm for those problems in a specific graphs class, a graph S i,j,k needs to be forbidden. Many results are known in specific classes of S i,j,k -free graphs. For instance, a claw-free graph is nothing more than a S 1,1,1 -free graph.

Several authors proved that the MWSS problem in claw-free graphs can be solved in polynomial time. The two first results were published in 1980 independently by Minty [START_REF] Minty | On maximal independent sets of vertices in claw-free graphs[END_REF] and Sbihi [START_REF] Sbihi | Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans étoile[END_REF] (non-weighted version). Later, in 2001, Nakamura et al. [START_REF] Nakamura | A revision of Minty's algorithm for finding a maximum weight stable set of a claw-free graph[END_REF] improved Minty's algorithm as it failed in the weighted version for a few special cases. An implementation of this algorithm could be made to run in O(n 4 log(n)) where n is the number of vertices of the graph [START_REF] Nobili | A reduction algorithm for the weighted stable set problem in claw-free graphs[END_REF]. In 2011, Faenza et al. [START_REF] Faenza | An algorithmic decomposition of clawfree graphs leading to an O(n 3 )-algorithm for the weighted stable set problem[END_REF] improved the complexity to O(n 3 ). In 2015, Nobili et al. [START_REF] Nobili | An O(n 2 log(n)) algorithm for the weighted stable set problem in claw-free graphs[END_REF] lowered the complexity to O(n 2 log(n)).

Lozin and Milanič proved that the MWSS problem is polynomial solvable in forkfree graphs (S 1,1,2 ) [START_REF] Lozin | A polynomial algorithm to find an independent set of maximum weight in a fork-free graph[END_REF].

Another important result concerning this problem is due to Lokshtanov, Vatshelle and Villanger who proved that the MWSS problem can be solved in polynomial time

LEMMA 5.2 [START_REF] Reed | Recognizing bull-free perfect graphs[END_REF][START_REF] De Figueiredo | On the structure of bull-free perfect graphs[END_REF] Let G be a bull-free graph. If G contains a k-wheel for any k ≥ 6, then G has a proper homogeneous set.

Note that the bull is a self-complementary graph, so the preceding lemma also says that if G is prime then it does not contain the complementary graph of a k-wheel with k ≥ 6.

An umbrella is a graph that consists of a 5-wheel plus a vertex adjacent to the center of the 5-wheel only.

LEMMA 5.3

A prime bull-free graph contains no umbrella.

Proof. Let C be the 5-cycle of the umbrella, with vertices c 1 , . . . , c 5 and edges c i c i+1 for all i modulo 5. Let A be the set of vertices that are complete to C, and let Z be the set of vertices that are anticomplete to C. Let:

By the hypothesis that C is part of an umbrella, we have A = ∅. Let H be the component of G \ (A ∪ A ) that contains V(C). We claim that: By the definition of H, there is a shortest path u 0 -• • • -u p in H with u 0 ∈ V(C) and u p = u, and p ≥ 0. We know that b is adjacent to u 0 by the definition of A. First, we

LEMMA 5.6

Let G be a bull-free graph. Let C be an induced 5-cycle in G, with vertices c 1 , . . . , c 5 and edges c i c i+1 for each i modulo 5. Then: (i) Every 2-neighbor of C is adjacent to c i and c i+2 for some i.

(ii) Every 3-neighbor of C is adjacent to c i , c i+1 and c i+2 for some i.

(iii) Every 5-neighbor of C is adjacent to every k-neighbor with k ∈ {1, 2}.

(iv) If C has a 4-neighbor non-adjacent to c i for some i, then every 1-neighbor of C is adjacent to c i .

(v) If a non-neighbor of C is adjacent to a k-neighbor of C, then k ∈ {1, 2, 5}.

Proof. If either (i) or (ii) fails, there is a vertex x that is either a 2-neighbor adjacent to c i and c i+1 or a 3-neighbor adjacent to c i , c i+1 and c i+3 for some i, and then {c i-1 , c i , x, c i+1 , c i+2 } induces a bull.

(iii) Let u be a 5-neighbor of C and x be a k-neighbor of C with k ∈ {1, 2}. So for some i the vertex x is adjacent to c i and maybe to c i+2 . Then u is adjacent to x, for otherwise {x, c i , c i+1 , u, c i+3 } induces a bull.

(iv) Let f be a 4-neighbor of C non-adjacent to c i . Suppose that there is a 1neighbor x not adjacent to c i . So, up to symmetry, x is adjacent to c i+1 or c i+2 . Then x is adjacent to f , for otherwise {x, c i+1 , c i+2 , f , c i-1 } induces a bull; but then {x, f , c i-2 , c i-1 , c i } induces a bull.

(v) Let z be a non-neighbor of C that is adjacent to a k-neighbor x with k ∈ {3, 4}. So there is an integer i such that x is adjacent to c i and c i+1 and not adjacent to c i+2 . Then {z, x, c i , c i+1 , c i+2 } induces a bull.

The following lemma is straightforward and we omit its proof. However, to ease the reader understanding we would like to emphasize that any configuration not matching with what is described below induces a bull in G.

LEMMA 5.7

Let G be a bull-free graph. Let C be an induced C 7 in G, with vertices c 1 , . . . , c 7 and edges c i c i+1 for each i modulo 7. Then:

• Any 2-neighbor of C is adjacent to c i and either c i+2 or c i+3 for some i.

• Any 3-neighbor of C is adjacent to either to c i , c i+1 and c i+2 or to c i , c i+2 and c i+4 for some i.

• C has no k-neighbor for any k ∈ {4, 5, 6}.

Proof: Suppose that x has a neighbor in Y. Since x also has a non-neighbor c i in Y, and Y is connected, there are adjacent vertices v, v in Y such that x is adjacent to v and not to v , and then {x, v, v , c i-1 , c i-2 } induces a bull, a contradiction. So x has no neighbor in Y. In particular x is not adjacent to y, so x has no neighbor in the 5-cycle C y induced by {y, c i-1 , c i-2 , c i+2 , c i+1 }. By (5.4), t is a 3-or 4-neighbor of C y . By Lemma 5.12, x is not adjacent to t. Thus (5.5) holds.

Suppose that i = 5. By (5.4), t is adjacent to c 2 and c 3 and, up to symmetry, to c 1 . Then d is not adjacent to y, for otherwise {x, d, y, c 1 , c 2 } induces a bull, and d is not adjacent to t, for otherwise {x, d, c 1 , t, c 3 } induces a bull; but then {d, c 1 , y, t, c 3 } induces a bull, a contradiction.

Suppose that i = 1. By (5.4), t is adjacent to c 3 and c 4 . Then d is adjacent to y, for otherwise x-d-c 4 -c 3 -c 2 -y is an induced P 6 , and similarly d is adjacent to z. Then t is adjacent to d, for otherwise {x, d, z, y, t} induces a bull, and t is adjacent to c 2 , for otherwise {x, d, t, y, c 2 } induces a bull; but then {x, d, c 4 , t, c 2 } induces a bull.

Finally suppose that i = 2. By (5.4), t is adjacent to c 4 and c 5 . Then d is not adjacent to y, for otherwise {x, d, c 1 , y, c 3 } induces a bull, and d is adjacent to t, for otherwise {d, c 4 , c 5 , t, y} induces a bull; but then {x, d, c 4 , t, y} induces a bull, a contradiction.

THEOREM 5.14

Let G be a prime (P 6 , bull)-free graph. Suppose that G contains a G 7 , with vertexset {c 1 , . . . , c 5 , d, x} and edge-set {c i c i+1 | for all i mod 5} ∪ {dc 1 , dc 4 , dx}. Let:

• C be the 5-cycle induced by {c 1 , . . . , c 5 };

• F be the set of 4-neighbors of C;

• T be the set of 2-neighbors of C;

• W be the set of 1-neighbors and non-neighbors of C.

Then the following properties hold:

(ii) F is complete to {c 1 , . . . , c 4 } and anticomplete to {c 5 , x, d}.

(iii) F is a clique.

(iv) G \ F is triangle-free.

Proof. Note that d ∈ T and x ∈ W. Clearly the sets {c 1 , . . . , c 5 }, F, T, and W are pairwise disjoint subsets of V(G). We observe that item (i) follows directly from the definition of the sets F, T, W and Lemma 5.13 (ii).

Now we prove item (ii). Consider any f ∈ F. By Lemma 5.13 (iii), f is nonadjacent to c 5 , and consequently f is complete to {c 1 , . . . , c 4 }. Then f is not adjacent to x, for otherwise {x, f , c 3 , c 4 , c 5 } induces a bull; and f is not adjacent to d, for otherwise {x, d, c 1 , f , c 3 } induces a bull. Thus (ii) holds. Now we prove item (iii). Suppose on the contrary that F is not a clique. So G[F] has an anticomponent whose vertex-set F satisfies |F | ≥ 2. Since G is prime, F is not a homogeneous set, so there are vertices y, z ∈ F and a vertex t ∈ V(G) \ F that is adjacent to y and not to z, and since F is anticonnected we may choose y and z nonadjacent. By the definition of F , we have t / ∈ F. By (ii), we have t / ∈ V(C). Therefore, By (i), we have t ∈ T ∪ W. Suppose that t ∈ T, so t is adjacent to c i-1 and c i+1 for some i in (up to symmetry) {1, 2, 5}. If i = 1, then {z, c 2 , y, t, c 5 } induces a bull. If i = 2, then {t, c 3 , z, c 4 , c 5 } induces a bull. So i = 5. Then t is not adjacent to x, for otherwise {x, t, c 1 , y, c 3 } induces a bull. Then x is a non-neighbor of the 5-cycle induced by {c 1 , c 2 , c 3 , c 4 , t}, and y is a 5-neighbor of that cycle, which contradicts Lemma 5.13. Hence t ∈ W. By Lemma 5.6 (iv), t is anticomplete to {c 1 , c 2 , c 3 , c 4 }. Then t is adjacent to each u ∈ {c 5 , d}, for otherwise {t, y, c 3 , c 4 , u} induces a bull. So t is a 1-neighbor of C, and by Lemma 5.12, t is not adjacent to x. But then x-d-t-y-c 3 -z is an induced P 6 .

Thus (iii) holds.

There remains to prove item (iv). Suppose on the contrary that G \ F contains a triangle, with vertex-set R = {u, v, w}. Clearly C and R have at most two common vertices. Moreover: C and R have at most one common vertex.

(5.6)

Proof: Suppose on the contrary that u, v ∈ V(C), and consequently w / ∈ V(C). By Lemma 5.6 (i), w is a k-neighbor of C for some k ≥ 3. Since w / ∈ F, we have k = 4, so k ∈ {3, 5}; but this contradicts Lemma 5.13 (ii). So (5.6) holds.

Suppose that G \ F is not connected. Consider the component K of G \ F that contains C; then K also contains T. Pick any vertex z in another component. By Lemma 5.13 (i), the vertex z must have a neighbor in T, a contradiction. Hence G \ F is connected. It follows that there is a path from C to R in G \ F. Let P = p 0 -• • • -p be a shortest such path, with p 0 ∈ V(C), p = u, and ≥ 0. Note that if ≥ 1, the vertices p 1 , . . . , p are not in C. We choose R so as to minimize . Let H be the component of G[N(u)] that contains v and w. Since G is prime, V(H) is not a homogeneous set, so there are two vertices y, z ∈ V(H) and a vertex a ∈ V(G) \ V(H) such that a is adjacent to y and not to z, and since H is connected we may choose y and z adjacent. By the definition of H, the vertex a is not adjacent to u.

Suppose that = 0. So u = p 0 = c i for some i ∈ {1, . . . , 5}. By (5.6) the vertices y, z are not in C and are anticomplete to {c i-1 , c i+1 }. So, by Lemma 5.6 (ii), each of y and z is a 1-or 2-neighbor of C. The vertex a is adjacent to c i-1 , for otherwise {a, y, z, c i , c i-1 } induces a bull; and similarly a is adjacent to c i+1 . Note that this implies a / ∈ V(C). Suppose that a has no neighbor in {c i-2 , c i+2 }. Then one of y, z has a neighbor in {c i-2 , c i+2 }, for otherwise z-y-a-c i+1 -c i+2 -c i-2 is an induced P 6 . So assume up to symmetry that one of y, z is adjacent to c i+2 . Then both y, z are adjacent to c i+2 , for otherwise {c i+2 , y, z, c i , c i-1 } induces a bull. So y and z are 2-neighbors of C, and they are not adjacent to c i-2 . But then {a, y, z, c i+2 , c i-2 } induces a bull, a contradiction. Hence a has a neighbor in {c i-2 , c i+2 }. By Lemma 5.6 (ii) and Lemma 5.13 (ii), a must be adjacent to both c i-2 , c i+2 , so a is a 4-neighbor of C. Hence a ∈ F, and i = 5, and by (iii) a has no neighbor in {d, x}. The vertex z is not adjacent to c 2 , for otherwise {z, c 2 , c 1 , a, c 4 } induces a bull; and similarly z is not adjacent to c 3 . Then y is not adjacent to c 2 , for otherwise {c 4 , c 5 , z, y, c 2 } induces a bull; and similarly y is not adjacent to c 3 . So y and z are 1-neighbors of C, and by Lemma 5.12 they are not adjacent to x. Then d is adjacent to y, for otherwise {d, c 1 , c 2 , a, y} induces a bull, and d is not adjacent to z, for otherwise {x, d, z, y, a} induces a bull; but then z-y-d-c 1 -c 2 -c 3 is an induced P 6 , a contradiction. Therefore ≥ 1.

We deduce that:

Every vertex c i in C has at most one neighbor in {u, y, z}.

(5.7)

For otherwise, c i and two of its neighbors in {u, y, z} form a triangle that contradicts the choice of R (the minimality of ). Thus (5.7) holds.

Suppose that ≥ 2. By Lemma 5.12 (applied to p 1 and p 2 ), p 1 is a 2-neighbor of C, adjacent to c i-1 and c i+1 for some i. The vertex y has no neighbor c j in C, for otherwise the path c j -y contradicts the choice of P. The vertex p 2 has no neighbor c j in C, for otherwise the path c j -p 2 -• • • -p contradicts the choice of P. Put p = p 3 if ≥ 3 and p = y if = 2. Then p -p 2 -p 1 -c i+1 -c i+2 -c i-2 is an induced P 6 , a contradiction. Therefore = 1, so u = p 1 . By (i), and since u / ∈ F, u is either a 1-neighbor or a 2-neighbor of C.

Suppose that u is a 1-neighbor of C, adjacent to c i for some i. By (5.7), y and z are not adjacent to c i . Then a is adjacent to c i , for otherwise {a, y, z, u, c i } induces a bull. If a has a neighbor in {c i-1 , c i+1 }, then, by Lemma 5.6 (ii) and Lemma 5.13 (ii), a is a 4-neighbor of C; but then a and u violate Lemma 5.6 (iv). So a has no neighbor in {c i-1 , c i+1 }. Then z is not adjacent to c i+1 , for otherwise, by (5.7), {a, y, u, z, c i+1 } induces a bull; and z has no neighbor c in {c i-2 , c i+2 }, for otherwise, by (5.7), {c i , u, y, z, c} induces a bull. But then z-u-c i -c i+1 -c i+2 -c i-2 is an induced P 6 , a contradiction.

Therefore u is a 2-neighbor of C, adjacent to c i-1 and c i+1 for some i. By (5.7), y and z are anticomplete to {c i-1 , c i+1 }. The vertex c i+2 has no neighbor in {y, z}, for otherwise, by (5.7), {c i+2 , y, z, u, c i-1 } induces a bull. Likewise, c i-2 has no neighbor in {y, z}. The vertex a is adjacent to c i-1 , for otherwise {a, y, z, u, c i-1 } induces a bull, and similarly a is adjacent to c i+1 . Then a has a neighbor in {c i-2 , c i+2 }, for otherwise z-y-a-c i+1 -c i+2 -c i-2 is an induced P 6 . By Lemma 5.6 (ii) and Lemma 5.13 (ii), a is a 4-neighbor of C, so i = 5, and a has no neighbor in {c 5 , d, x}. Then y is adjacent to c 5 , for otherwise {y, a, c 3 , c 4 , c 5 } induces a bull; and by (5.7), z is not adjacent to c 5 . But then z-y-c 5 -c 4 -c 3 -c 2 is an induced P 6 , a contradiction. This completes the proof of the theorem.

Finally, Theorem 5.9 follows as a direct consequence of Lemma 5.13 and Theorem 5.14.

MWSS in (P 7 , bull)-free graphs

We prove the following theorem. In the same flavour as for the previous section, we first describe structural properties of (P 7 , bull)-free graphs and use these to compute the MWSS.

THEOREM 5.15

The Maximum Weight Stable Set problem can be solved in time O(n 9 ) in the class of (P 7 , bull)-free graphs.

Before giving the proof of Theorem 5.15 we need another lemma.

LEMMA 5.16

Let G be a connected (P 7 , bull)-free graph. Assume that G contains a C 7 but no C 5 and no 7-wheel. Then V(G) can be partitioned into seven non-empty sets A 1 , . . . , A 7 such that for each i ∈ {1, . . . , 7} (mod 7) the set A i is complete to A i-1 ∪ A i+1 and anticomplete to A i-3

Proof. Since G contains a C 7 , there exist seven pairwise disjoint and non-empty sets A 1 , . . . , A 7 ⊂ V(G) such that for each i ∈ {1, . . . , 7} (mod 7) the set

We choose these sets so as to maximize their union

Hence we need only prove that V(G) = U, so suppose the contrary. Since G is connected, there is a vertex x in V(G) \ U that has a neighbor in U. For each i ∈ {1, . . . , 7} pick a vertex c i ∈ A i so that x has a neighbor in the cycle C induced by {c 1 , . . . , c 7 }. So x is a k-neighbor of C for some k > 0. Since G contains no 7-wheel, and by Lemma 5.7, we have k ∈ {1, 2, 3}. If k = 1, say x is adjacent to c 1 , then x-c 1 -c 2 -c 3 -c 4 -c 5 -c 6 is an induced P 7 . If k = 2 and x is adjacent to c i and c i+3 for some i, then {x, c i , c i+1 , c i+2 , c i+3 } induces a C 5 . If k = 3 and x is adjacent to c i , c i+2 and c i+4 for some i, then {x, c i , c i-1 , c i-2 , c i-3 } induces a C 5 . Therefore, by Lemma 5.7, it must be that N C (x) is equal to either {c i-1 , c i+1 } or {c i-1 , c i , c i+1 } for some i, say i = 7. Pick any c ∈ A 1 \ {c 1 } and let C be the cycle induced by (V(C) \ {c 1 }) ∪ {c }. Then by the same arguments applied to C and x, we deduce that x is adjacent to c . So x is complete to A 1 , and similarly x is complete to A 6 . Likewise, Lemma 5.7 and the fact that G is C 5 -free implies that x has no neighbor in A 2 ∪ A 3 ∪ A 4 ∪ A 5 . But now the sets A 1 , . . . , A 6 , A 7 ∪ {x} contradict the maximality of U. So V(G) = U and the lemma holds.

Now we can prove the main result of this section.

Proof of Theorem 5.15. Let G be a (P 7 , bull)-free graph, and let w be a weight function on the vertex set of G. By Theorem 5.1, we may assume that G is prime. By Lemmas 5.2-5.5, G contains no k-wheel and no k-antiwheel for any k ≥ 6, no umbrella, no parasol, no G 1 and no G 2 . To find the maximum-weight stable set in G it is sufficient to compute, for every vertex c of G, a maximum-weight stable set containing c, and to choose the best set over all c. So let c be any vertex in G. The maximum Case 3: K contains a C 5 of type 0 or 1. We will prove that:

There is a vertex x ∈ V(K) such that K \ N(x) contains no C 5 of type 0 or 1.

(5.10)

We first make some remarks about the C 5 's of type 1 and make a few more claims. Let H 1 = {h ∈ H | h lies in a C 5 of type 1}.

Let h ∈ H 1 , and let C = h-p 1 -p 2 -p 3 -p 4 -h be any C 5 of type 1 that contains h. Let a be any vertex in Z. Then either N C (a) is a stable set, or N C (a) = {p 1 , p 2 , p 3 , p 4 }.

( ∈ E(G). If a is adjacent to p 2 and p 3 , then a also has a neighbor in {p 1 , p 4 }, for otherwise {p 1 , p 2 , a, p 3 , p 4 } induces a bull. So in any case, up to symmetry, we may assume that a is adjacent to p 1 and p 2 . Then ap 3 ∈ E(G), for otherwise {h, p 1 , a, p 2 , p 3 } induces a bull, and ap 4 ∈ E(G), for otherwise {p 1 , p 2 , p 3 , p 4 , h, d, a} induces a G 2 , which contradicts Lemma 5.5. Thus (5.11) holds.

Let h ∈ H 1 , and let C = h-t-u-v-w-h be any C 5 of type 1 that contains h. Suppose that C = h -t -u -v -w -h is a C 5 of type 1 in which h has no neighbor, with h ∈ H. Then either N C (t) = {u , w } and N C (w) = {t , v }, or vice-versa.

(5.12) Proof: Clearly h = h . Let Y = {t, u, v, w} and Y = {t , u , v , w }. Suppose that {t, w} is anticomplete to Y . Then h w ∈ E(G), for otherwise w-h-d-h -w -v -u is an induced P 7 , and similarly h t ∈ E(G). If h u ∈ E(G), then ut / ∈ E(G) (by (5.11) applied to C and u), but then {h, t, u, h , t } induces a bull. So h u / ∈ E(G), and similarly h v / ∈ E(G). Then one of u, v, say u, has a neighbor in Y , for otherwise u-v-w-h -w -v -u is an induced P 7 ; moreover u is complete to Y , for otherwise c, d, h, t, u plus two vertices from Y induce a P 7 . Then v has no neighbor y ∈ Y , for otherwise {t, u, y , v, w} induces a bull; but then {h , t , u , u, v} induces a bull. So {t, w} is not anticomplete to Y , and we may assume up to symmetry that w has a neighbor in Y . We have |N Y (w)| ≥ 2 and N Y (w) = {t , w }, for otherwise c, d, h, w plus three vertices from Y induce a P 7 ; and w is not complete to Y , for otherwise, by (5.11), {h, w, v , w , h } induces a bull. Hence, by (5.11) and up to symmetry, we have N C (w) = {t , v }. Since t h / ∈ E(G), we have t v / ∈ E(G), for otherwise, by (5.11), {h,w,v,t ,h } induces a bull. If also t has a neighbor in Y , then by the same argument as with w we have either (i) N C (t) = {u , w } or (ii) N C (t) = {t , v }. In case (i) we obtain the desired result, so assume that (ii) holds. By (5.11), t u / ∈ E(G). Then h has a

The random graph

Let G n,p denote the random graph on n vertices where each edge is drawn randomly and independently with probability p. We now consider the random graph G = G n,p with p = n -9/10 and denote by d = np = n 1/10 . First we will show that some properties hold in G and then prove our main theorem.

Properties

In this section we prove several properties satisfied by G. Let X 7 be the number of cycles of G of length at most 7. We always assume that n is sufficiently large whenever we refer to a property of G that holds asymptotically on the number of vertices of G.

LEMMA 6.12

The following properties hold for the graph G. The result now follows by Markov's inequality.

(b) is well-known and can be deduced from, for example, Frieze [START_REF] Frieze | On the independence number of random graphs[END_REF]. We include the proof for completeness. By the Union Bound, we have

≤ n x (e -p(x-1)/2 ) x ≤ (ne -n -0.9 (x-1)/2 ) x Now, setting x := cn 0.9 log n yields the result. Let G be a bipartite graph with m edges on vertex bipartition (A, B). We denote by d its average degree in A, that is d = m/|A| and by e(X, Y) the number of edges between the set X and Y for any X ⊆ A, Y ⊆ B. A partial cover of G is a set of pairs 130| NORMAL GRAPHS (x i , Y i ) where the x i 's are distinct vertices of A, the Y i 's are disjoint sets of B, x i is a neighbor of all vertices of Y i , the size of each Y i is d/3 and finally the union of Y i 's has size at least |B|/3.

LEMMA 6.13

Let G be a random bipartite graph on vertex bipartition (A, B), where each possible edge appears with some probability p, independently. If |B| ≥ |A| > 10 100 p -1 then G has e(A, B) ∈ [0.99p|A||B|, 1.01p|A||B|] and a partial cover with probability at least 1e -cp|A||B| , where c > 0 is an absolute constant.

Proof. Let A be the set of vertices of A with degree in [0.99p|B|, 

for some constant c 1 > 0 (here we used the fact that 10 100 p -1 < |A| ≤ |B|). Similarly the probability of (ii) is at most 2 |B| e -(0.01) 4 p|A||B| < e -c 2 p|A||B| for some constant c 2 > 0 (here again we used the fact that |B| ≥ |A| > 10 100 p -1 ). The probability of (iii) is clear. Now, we claim that if G satisfies |A | ≥ 0.99|A|, |B | ≥ 0.99|B| and m is in the interval [0.99p|A||B|, 1.01p|A||B|], then it has a partial cover. Observe first that at least 3m/4 edges of G must be between A and B (call these good edges). Now greedily pick pairs (x i , Y i ) where x i ∈ A and Y i ⊆ B ∩ N(x i ) has size exactly m/3|A| in order to construct a partial cover. If the process stops with Y := Y 1 ∪ • • • ∪ Y k of size at least |B|/3, we have our partial cover. If not, denote by X the set {x 1 , . . . , x k }, and note that this implies that every vertex in A \ X has degree less than m/(3|A|) in B \ Y. Note that the size of X is negligible compared to the size of A . Indeed, |X| < |B|/ m/(3|A|) < 4p -1 < |A |/10 10 . Hence the number of good edges incident to X is negligible compared to the number of good edges. In particular, at least 2.99m/4 good edges are incident to A \ X. However, since every vertex in A \ X has degree

99m/4m/3. Now, since |Y| < |B|/3, and every vertex in Y has degree at most 1.01p|A|, it follows that e(A \ X, Y) < 1.01p|A||B|/3 < 1.01m/(3 • 0.99). This implies that 2.99m/4m/3 < 1.01m/(3 • 0.99), a contradiction.

The proof

In this section we prove our main result. We say that a graph G admits a star covering if there exist two coverings, C and S, of V(G) such that: exists an n-vertex graph G satisfying: (a) G has less than 4n 0.7 cycles of length at most seven, (b) α(G) < 10n 0.9 log n, (c) G has maximum degree at most 2n 0.1 , (d) G has property JQ.

Consider a set S of at most 4n 0.7 vertices in G intersecting all cycles of length at most 7. Note that G[V \ S] has girth at least 8. Remark that this type of alteration is inspired from the original proof of Erdős of Theorem 6.11. Assume now for contradiction that G[V \ S] is a normal graph. By Claim 6.14, there is a star covering (C, S) of G[V \ S] with the number of stars at most 10n 0.9 log n. Let S be the set of those stars which have size at most 10 10 log n. Let J = S ∪ S . Observe that |J| ≤ 10 10 log n • 10n 0.9 log n + 4n 0.7 < n 0.91 . Now, consider G[V \ J] and call Q the set of centers of the remaining stars. Observe that the set of stars centered at Q still form a star covering of G[V \ J]. Indeed, C and S restricted to G[V \ J] is a star covering.

Note that since |Q| < 10n 0.9 log n, it follows that |V \ (J ∪ Q)| > nn 0.91 -10n 0.9 log n. Now, since Q is a dominating set in G[V \ J], and the degree of every vertex in G[V \ J] is at most 2n 0.1 , it follows that |Q| > n 0.9 3 . We now define the directed graph Q * on Q based on the star covering of G[V \ J].

CLAIM 6.17

Every strongly connected component C of Q * has size at most n 0.9 /1000. Proof. Observe that C is an out-section of any of its vertices, hence by Lemma 6.15 the set of leaves of stars with centers in C is a stable set. Since each star in the star covering of G[V \ J] has size at least 10 10 log n, it follows that G[V \ J] has a stable set of size 10 10 log n • |C|. The result follows now from the fact that α(G) < 10n 0.9 log n.

Let C 1 , . . . , C k be the strongly connected components of Q * , enumerated in such a way that all arcs xx of Q * with x ∈ C i and x ∈ C j satisfy i ≤ j.

We concatenate subsets of the components C 1 , . . . ,

...C i 10 for some i 1 , ..., i 10 such that for each Q i , 1 ≤ i ≤ 10, n 0.9 /1000 ≤ |Q i | ≤ n 0.9 /500. This is clearly possible since for each i ≤ k, |C i | < n 0.9 /1000 and |Q| > n 0.9 /3.

The crucial remark now is that if a vertex v of G \ (J ∪ Q) is a private neighbor of a vertex x i in Q i , then the edge x i v must be an edge of the star covering. Indeed, v has a unique neighbor in Q 1 ∪ • • • ∪ Q i by definition, and any edge vx j where x j is in

to C since this would imply x j → x i . Now, by property JQ, we know that the private directed graph Q * defined on the stars formed by the private neighbors of the Q i 's has an out-section O of size at least n 0.95 . Since Q * is a subdigraph of Q * , the set O is also an out-section of Q * . Hence the set of leaves with centers in O forms an stable set of size n 0.95 by Lemma 6.15, contradicting the fact that α(G) < 10n 0.9 log n.

Proof of Lemma 6.16

In this section, we prove Lemma 6.16 to conclude the proof of Theorem 6.7.

Proof of Lemma 6.16. We prove that P[JQ c ] = o(1). We first fix the sets J, Q 1 , ..., Q 10 . There are at most ∑ n 0.91 i=1 ( n i ) ≤ 2n n 0.91 possible sets for J and at most (∑ n/500d i=n/1000d ( n i )) 10 ≤ 2 10 n n 0.9 /50 sets for the Q 1 , ..., Q 10 . Thus, there are at most 2 11 n 2n 0.91 ways to fix the sets J, Q 1 , ..., Q 10 . Let M 1 be the event that for some fixed sets J, Q 1 , ..., Q 10 the property JQ c holds. Clearly, P[JQ c ] ≤ 2 11 n 2n 0.91 P[M 1 ]. Now, we bound P[M 1 ].

Denote by

Note that,

≤ (n/500d) n/50000d (e -d/10 ) n/10 5 d < e -n/10 7 .

where we used the fact that D v is a binomial random variable with mean p|B| ∈ (0.999d, d) and thus Chernoff's inequality applies.

For a vertex v ∈ B, let X v be the random variable counting the number of vertices in Q 1 adjacent to v, and X be the number of vertices in B that have degree equal to 1 in Q 1 . Then X is a binomial random variable. Now, Let N Q 1 be the event that at least 0.8|Q 1 | vertices in Q 1 have at least d/2 private neighbors. We claim that if M 2 holds then so does N Q 1 .

Assume that M 2 holds. Let us call an edge e a good edge if its endpoint in Q 1 has degree in the interval (0.99d, 1.01d) in B and its endpoint in B has degree exactly 1 in Q 1 . We compute the number of non-good edges. First, let us count the number of edges whose endpoint in B has degree greater than 1.

Note that the number of vertices in B that have degree 1 in Q 1 is at least 0.98|Q 1 |d. These vertices contribute at least 0.98|Q 1 |d edges. Thus, the number of edges between Q 1 and B whose endpoint in B is not of degree 1 is at most 1.01|Q 1 |d -0.98|Q 1 |d ≤ 0.03|Q 1 |d.

Next, we count the number of edges between Q 1 and B whose endpoint in Q 1 is not of degree in the interval (.99d, 1.01d). Since at least 0.99|Q 1 | vertices in Q 1 have degree in the interval (.99d, 1.01d), they contribute at least .99 2 |Q 1 |d edges. The remaining number of edges is at most 1.01|Q 1 |d -0.99 2 |Q 1 |d ≤ 0.05|Q 1 |d.

Thus, the number of edges which are not good is at most 0.08|Q 1 |d which implies that the number of good edges is at least 0.98|Q 1 |d -0.08|Q 1 |d ≥ 0.9|Q 1 |d. Now, we prove our claim that if M 2 holds then N Q 1 holds as well. We know that at least 0.99|Q 1 | vertices in Q 1 have degree at least 0.99d in B. Let us compute the number of vertices (called bad vertices) which do not have at least d/2 private neighbors. Such a vertex is adjacent to at least 0.49d non-good edges since its degree is at least 0.99d. Since the total number of non-good edges is at most 0.08|Q 1 |d it follows that the number of bad vertices is easily at most 0.2|Q 1 |. Therefore, at least 0.8|Q 1 | vertices in Q 1 have at least d/2 private neighbors, proving the claim. Summarizing,

10 ) since Z E is at most of size n/400 with this probability and |B| ≥ n -11n 0.9 log n. Thus, it is sufficient to bound In what follows we will assume that M 2 ∩ 10 i=1 N Q i holds and by applying Lemma 6.13 we will conclude that in fact there is an out-section in Q 10 whose corresponding private neighbors have size at least n 0.95 .

We inductively prove the following claim (*):

(*) there exist positive constants i , i and C i such that with probability at least 1e -i n , in each Q i , 2 ≤ i ≤ 10, there exist at least i n d i disjoint out-sections (with respect to only the private neighbors of the vertices in Q i 's) each of size at least d i-1 C i .

Let J i be the i th event in the above statement. We first show that P[J 2 ] ≥ 1e -2 n for some values of 2 , C 2 and 2 . We use Lemma 6.13.

Consider the bipartite graph H 1 = (Q 1 , Q 2 ) with bipartition Q 1 and Q 2 where there is an edge between v 1 ∈ Q 1 and v 2 ∈ Q 2 if at least one of the d 2 private neighbors of v 1 is adjacent to v 2 . Thus, H 1 is a random bipartite graph where the probability of any edge is p 1 = 1 -(1p) d/2 . It is easily seen that d 2 4n ≤ p 1 ≤ d 2 n . We apply Lemma 6.13. Indeed, 10 100 p -1 d 2 for some 2 > 0. This establishes the claim for J 2 . Now, suppose that we know that P[J i ] ≥ 1e -i n with the corresponding constants C i and i .

Then P[J i+1 ] ≥ P[J i+1 | J i ](1e -i n ). Therefore, it suffices to lower bound P[J i+1 | J i ].

We argue similarly as for the case i = 1. In the set Q i we will have disjoint outsections each of which has size at least d i-1 /C i for some constant C i > 0 such that the
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Summary

This thesis deals with graph coloring, list coloring, maximum weight stable set (shortened as MWSS) and structural graph theory. First, we provide polynomial-time algorithms for the 4-coloring problem in subclasses of P 6 -free graphs. These algorithms rely on a precise understanding of the structure of these classes of graphs for which we give a full description.

Secondly, we study the list coloring conjecture and prove that for any claw-free perfect graph with clique number bounded by 4, the chromatic number and the choice number are equal. This result is obtained by using a decomposition theorem for clawfree perfect graphs, a structural description of the basic graphs of this decomposition and by using Galvin's famous theorem.

Next by using the structural description given in the first chapter and strengthening other aspects of this structure, we provide polynomial-time algorithms for the MWSS problem in subclasses of P 6 -free and P 7 -free graphs.

In the last chapter of the manuscript, we disprove a conjecture of De Simone and Körner made in 1999 related to normal graphs. Our proof is probabilistic and is obtained by the use of random graphs.