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Chapter 1

Introduction

The overall aim of this thesis is to improve place recognition for mobile robots or vehicles

visual localization in changing environments. This thesis presents methods allowing to

increase the robustness of visual localization system by improving the place recognition

performance using appearance rather than metric information. Our approach allows robot

or vehicle to globally re-localize itself by recognizing places it has previously visited under

variations in appearance and illumination.

This chapter introduces the main topic of this thesis that is place recognition based vi-

sual localization, and the effect of environmental change on place recognition reliability. It

begins by outlining the background of the research topic (Section 1.1). Section 1.2 intro-

duces the advantages of place recognition based visual localization using camera. Section

1.3 illustrates the problems caused by changing environments as well as the research ob-

jectives and contributions of this thesis. Section 1.4 describes the experimental platform

used to acquire datasets for evaluating the proposed approaches. The thesis organization is

outlined in Section 1.5.

1.1 Background

During the past decades, autonomous mobile robots and intelligent vehicles (IV) have ob-

tained increasingly attention and developments from research society and industry com-

munity [12, 19]. In order to promote the development of autonomous vehicles, American
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Department of Defense has hold autonomous vehicle competition called DARPA (Defense

Advanced Research Projects Agency) Grand Challenge. This challenge attracted many top-

level research institutes (See Fig.1-1). In 2009, Google started self-driving car project, it

has self-driven for more than 1.5 million miles and is currently out on the streets of Moun-

tain View and so on. In 2014, google released its new version of self-driving car. Fig.1-2

shows the new prototype of googles driverless cars. In recent years, some companies like

Baidu, BMW and Uber also launched their self-driving cars.

(a) MIT Land Rover LR3 1 (b) The Stanford Racing Team 2

Figure 1-1: Example of participants in 2007 Grand Challenge

Figure 1-2: Google prototype driverless car. 3

1http://grandchallenge.mit.edu/images/all
2http://cs.stanford.edu/group/roadrunner/photos.html
3https://www.google.com/selfdrivingcar
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Some experimental projects in indoor environments have shown that robots can run

autonomously [71]. However, long-term autonomous navigation in changing outdoor envi-

ronments is still an ongoing challenge.

Autonomous cars or robots comprise fundamental systems, such as surrounding per-

ception, navigation, driving control and localization, which make sure vehicle to be driven

safely in complex environment. Among these tasks, localization is a prerequisite for ac-

complishing other tasks, as it determines the vehicle position in the environment [62].

Based on localization information, we can compute the position of an obstacle and per-

form path planning. Therefore, the correctness and accuracy of the localization system

impact the functionality of an autonomous vehicle.

Visual localization can be achieved in particular through place recognition, which is the

process of identifying a previously-seen location in an environment. This thesis focuses on

place recognition based visual localization task. Robust visual localization system should

benefit from improved performance of place recognition.

1.2 Place Recognition Based Visual Localization

In general, Global Positioning System (GPS) is commonly used for outdoor localization.

GPS seems offer a simple and low-cost solution, but it requires line-of-sight satellites.

GPS-denied environments, accuracy decreasing or intermittent available conditions occur

frequently in areas where there are tall buildings and trees or half-outdoor space [109].

At the same time, visual sensors recently have become the primary components of many

state-of-the-art place recognition and Simultaneous Localisation And Mapping (SLAM)

systems [32, 70, 77, 85, 92].

There are several advantages of using camera sensors for visual localization: (1) Firstly,

digital cameras are light-weight and cheap, benefit from small form factor, have mod-

est power requirements and their size expands their applicability to smaller hardware and

mass-production; (2) Furthermore, the rich image data received from cameras offers rich

appearance and texture information, as well as high potential for semantic interpretation;

(3) Finally, a camera can provide information about far away landmarks. Camera such
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as bumblebee2 can see large landmarks (such as mountains) hundreds of meters away. In

contrast, LiDAR such as the Velodyne HDL-64E 4 has maximum range of 120m and costs

higher than camera.

Vision localization using camera is often based on place (image) recognition to locate

position within the world, which typically adopts image or sequence matching (retrieval)

method [24,29,46] to recognize a previously-seen place in an environment. Here, the place

may either be considered as a precise position— “a place describes part of the environment

as a zero-dimensional point” , or as a larger area— “a place may also be defined as the

abstraction of a region” where a region represents a two-dimensional subset of the environ-

ment [55]. According to this, each place can be represented by an image or sequence, thus

visual localization can be achieved through place recognition based on image or sequence

matching (retrieval) technique [35].

In place recognition based localization system, as Fig.1-3 shows, representative images

are captured from the environment and stored in a database, with their corresponding loca-

tion (GPS information). During on-line localization, each observation (image) is compared

to the images of database. The location whose corresponding image (from the database)

best matches to the current observation is then considered to be the currently visible loca-

tion (process of place recognition). Then, visual localization is realized through the GPS

information from the matched image. Recently, visual localization has been largely fa-

cilitated thanks to the progress of image features. Effectively, feature extraction enables

efficient describing of environments. Thus, matching current visual input with a set of

images of known places can be conveniently conducted based on extracted features.

1.3 Problem Statements and Objectives

Visual localization based on place recognition is a well-defined but extremely challeng-

ing problem to solve especially in complex outdoor environments. Most of existing place

recognition based localization systems can perform successfully in static environments but

fail in highly dynamic environments. In particular, visual localization systems are sus-

4http://velodyneLIDAR.com/hdl-64e.html
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Figure 1-3: Synopsis of place recognition based visual localization system.

ceptible in large-scale changing environments where drastic appearance and illumination

changes, caused by weather conditions or seasonal changing occur. This thesis addresses

the challenge of improving place recognition techniques so that global perceptual changes

in the environment do not cause complete failure of the robot or vehicle localization system.

Given two observations (typically images), judging whether these observations are col-

lected from the same location will meet several troubles. Firstly, the biggest challenge is

how to describe a place without being affected by environment changing. Two images from

the same place may look different due to variances in appearance or illumination. In order

to perform robust localization task using vision, it is necessary to describe the acquired

images (or sequences) and to be able to compare these descriptions. Consequently, the

recognition performance and the localization results will directly rely on the method used

for visually describing the different environment locations. In addition, among local or
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global features, how to combine advantageous of these features for place describing is also

a challenge. Secondly, recognizing or matching methods still can be improved. The appro-

priate recognizing or matching strategy can improve the recognition accuracy. There are

two main place recognizing methods—based on image matching and —based on sequence

matching. In general, sequence matching is more robust. The last challenge is computation

time. The robots or intelligent vehicles need to localize themselves in high speed driving

situation, therefore the judging method for visual localization system should performed fast

enough to satisfy the real-time requirement.

Our research is part of the project CPER “Intelligence du Véhicule Terrestre” (Intelli-

gence of ground vehicle), conducted within IRTES-SET in UTBM. The goal of this the-

sis is to improve place recognition performance for visual localization in changing envi-

ronment. The proposed approaches are tested on extensive outdoor environment datasets

(some datasets are acquired by our own vehicle platform and others are public datasets)

and the final outcome of this thesis is an all-environment visual localization system that is

capable of running in real-time.

The three main objectives and contributions are explained as follows:

(1) The first objective is to explore feature combination for vehicle localization. Since

different types of feature have their own advantages, combining some powerful features

will be helpful for place recognition. A new multi-feature (D-CSLBP++HOG) is proposed

for visual localization. D-CSLBP++HOG feature combine HOG (Histogram of Oriented

Gradients) and CSLBP (Center-symmetric local binary patterns) features that are built from

both gray-scale image and disparity map. The integration of disparity information, permits

to improve the performance of place recognition, especially in complex environment situ-

ation. In addition, for real-time visual localization, local sensitive hashing method (LSH)

is used to compress the high dimension of the multi-feature into binary vector. It can thus

speed up the process of image retrieval. To show its effectiveness, the proposed method is

tested and evaluated using real datasets acquired in outdoor environments. As we will show,

our approach allows more effective visual localization compared with the state-of-the-art

FAB-MAP (Fast Appearance Based Mapping) method.

(2) When single image matching is used for visual localization, it is easy to perceive two
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different places as the same due to seasonal changing. This is known as “perceptual alias-

ing”. In order to decrease the perceptual aliasing influence, retrieval based on sequence of

images rather than on single image can be used to improve place recognition results. There-

fore, another task is to develop a visual localization system based on sequence matching

to improve the recognition performance and localization results. An approach of visual

localization across seasons is proposed using sequence matching based on the combination

of GIST and CSLBP features. Studies of the relationship between image sequence length

and sequence matching performance is conducted. To show its effectiveness, the proposed

method is tested and evaluated in four seasons outdoor environments. The results have

shown the improved precision-recall performance against the state-of-the-art SeqSLAM

(Sequence Simultaneous Localization and Mapping) algorithm.

(3) Most of the used features are hand-crafted features and they have demonstrated

good performance in place recognition and visual localization. However, for database

with specific surroundings (i.e. trees, buildings or mountains), it is difficult to decide

what kind of features should be taken to describe places. Suitable features can achieve

good place recognition results while unreliable features could lead to false recognizing.

With the rapidly development of deep learning networks, it is becoming apparent in place

recognition tasks that hand-crafted features are being outperformed by learnt features. Our

contribution is to use the automatic learned Convolutional Network (ConvNet) features

to accomplish all-environment visual localization task under appearance and illumination

changing situations. A comprehensive performance comparison of different ConvNet lay-

ers is conducted on four real world datasets. To speed up the computational efficiency,

locality sensitive hashing method is taken to achieve real-time performance with minimal

accuracy degradation.

1.4 Experimental Platform

As illustrated in Fig.1-4, our experimental GEM vehicle is equipped with many sensors

(stereo vision system, camera, RTK-GPS, etc). A Bumblebee XB3 stereo vision system

is installed on the top, and oriented to the front. It is composed of three collinear cameras
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Figure 1-4: Experimental vehicle equipped with sensors (especially camera and RTK-
GPS).

with a maximum baseline of 240 mm. Images are captured in a format of 1280×960 pixels.

In our application, only the left and right cameras are used. A RTK-GPS receiver (10 Hz)

is used to collect position (GPS) information. All the installed sensors are fixed rigidly.

1.5 Thesis Organization

The rest of the thesis is divided into five chapters:

In chapter 2, existing approaches for place recognition based visual localization are

reviewed. According to the features used in place describing, the visual localization meth-

ods are classified as: approaches based on global descriptors, approaches based on lo-

cal features, approaches based on multi-feature combination, approaches based on 3D in-

formation, approaches using deep learning features. According to the place recognizing

method, two main approaches are introduced: image matching/retrieval approach and se-

quence matching/retrieval approach.

In chapter 3, a visual localization method based on multi-feature combination and dis-

parity information using stereo camera is proposed. Disparity information is integrated

into complete center-symmetric local binary pattern (CSLBP) to obtain robust global im-
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age description (D-CSLBP). In order to describe the scene more accurately, multi-feature

combining D-CSLBP and HOG features is adopted to provide valuable information and to

decrease the effect of some typical problems in place recognition such as perceptual alias-

ing. It improves visual recognition performance by taking the advantage of depth, texture

and shape information. In addition, for real-time visual localization, local sensitive hashing

method (LSH) is used to compress the high dimensional multi-feature into low dimensional

binary vector. The proposed method is tested and evaluated using real datasets acquired in

outdoor environments.

In chapter 4, visual localization across seasons using sequence matching is presented.

Matching places by considering sequences instead of single images denotes higher robust-

ness to extreme perceptual changes. The recognition results of different sequence lengths

is compared. The results obtained from Nordland dataset shows that the proposed method

can achieve better performance than SeqSLAM method.

In chapter 5, all-environment visual localization system based on ConvNet features and

localized sequence matching is proposed. The pre-trained network provided by MatCon-

vNet is used to extract features and then a localized sequence matching technique is applied

for visual recognition. Compared with the traditional approaches based on hand-craft fea-

tures and single image matching, the proposed method shows better performances even in

presence of appearance and illumination changes. A comprehensive performance compari-

son of different ConvNet layers (each defining a level of features) is conducted considering

both appearance and illumination changes.

In chapter 6, a summary of the achieved outcomes and discussions of their relevance to

the current research in place recognition based visual localization are provided. In addition,

some research perspectives for future work are also indicated.
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Chapter 2

Related Works on Place Recognition

Based Visual Localization

This chapter presents an overview of relevant works in the field of place recognition based

visual localization. It begins by defining the core aspects of place recognition based visual

localization, namely: place describing, place remembering and place recognizing. Then,

relevant works about place describing and place remembering are summarized respectively.

2.1 Overview

With the low cost of cameras and the richness of provided sensor data , place recognition

for visual localization is attracting more and more attention [21,23,78,103]. In this context,

each place (location) can be represented by an image or sequence of images, and a robot

or vehicle localizes itself by identifying a previously-visited location through image or

sequence retrieval. Thus, place recognition based approaches have to be robust even in

situations in which the robot’s metric position estimation is largely erroneous.

Solving the all-environment visual localization problem for identifying where a robot is

over time has become one of the main challenging research areas [47]. Unfortunately, this

is not an easy task, because place appearance strongly changes at different times of day,

along months and especially along seasons [6, 100].

Fig.2-1 presents a general scheme of a place recognition based visual localization sys-
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Figure 2-1: General scheme of visual place recognition system, consisting of five core
components. Incoming visual data is processed by place describing module. Robot’s
knowledge of the world is stored in place remembering module. Place recognizing mod-
ule decides whether the current visual data matches a previously stored place. Throughout
the place recognition process, robot localizes itself thanks to matching with a previously-
visited location. Since the previously-visited location tagged with GPS information, the
vehicle or robot can achieve its localization by assimilating its position with the one of the
retrieved/matched image.

tem. This localization system has the following essential components:

(1) Visual information inputs: Images or videos are the data source for the whole sys-

tem. It also includes data preprocessing, which transforms observations into a suitable form

for description or storage, e.g. collection of feature descriptors or whole images.

(2) Place describing: Places must be described in a way that enables them to be effi-

ciently stored and recognized when they are revisited. Visual place description techniques

mainly fall into two broad categories: those that selectively extract parts of the image that

are in some way interesting or notable; and those that describe the whole scene, without a

selection phase.

(3) Place remembering: A place recognition system needs to refer to a map, where the

extracted descriptors are stored and organized for comparison and retrieval. The state-of-

the-art approaches can be divided into three main categories: those using place databases,

those using topological maps, and those using metric maps. The appropriate type of place

remembering depends on the purpose of the place recognition system.

• A place database is the simplest mean to represent a particular environment where
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only appearance information is stored. In this approach, place recognition is based

solely on appearance similarity and applies image retrieval techniques. Although

valuable information is lost due to not including of relative pose information, there

are computationally efficient indexing techniques that can be exploited.

• Topological maps contain relative information about places in an environment. It can

simply consists of an ordered collection of images: a linear database that reflects the

order in which places are consistently encountered when an environment is visited.

In these cases, localization simply identifies the most likely location.

• Metric maps depict the absolute scale of environments more accurately, maintaining

a lot of information about environment details, such as distances, driving direction

or landmark position, and they are usually referenced according to a global coor-

dinate system. This representation is most appropriate for vehicle localization and

guidance. However, metric maps are more difficult to build and maintain, and are

computationally demanding.

(4) Place recognizing: It refers to the mean of comparing current observation to the

stored ones. Ultimately, the purpose of place recognition is to determine whether a place

has been seen before. There is a general understanding that if two place descriptions ap-

pear similar there is a greater likelihood that they have been captured at the same physical

location. Thus, the central goal of any place recognition system is reconciling visual input

with the stored data to generate a belief distribution. There are two main approaches for

place recognizing: based on single image or based on sequence of images. Sequence-based

approach is more robust by removing some false positive recognition.

(5) Visual localization: Throughout the place recognition process, robot localizes itself

based on a previously-visited location, which are tagged with GPS information. The vehicle

or robot can then achieve its localization by assimilating its position to that of the retrieved

image through the recognized place. Using place recognition based visual localization,

accumulation error that often occur in odometry-like approach can be avoided. It also

should be noted that, the system simply identifies the most likely places and then get a

rough position. This is a topological level localization rather than a very accurate metric
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localization.

Among the module of a place recognition based system, place describing and remem-

bering are the two cores. In order to perform visual localization using vision, it is necessary

to describe the acquired images and to be able to compare their descriptions. Consequently,

the quality of place remembering and the posterior localization will directly rely on the

method used for visually describing the different environment locations.

Due to the above reasons, we classify the different visual localization approaches ac-

cording to the description method employed as: approaches based on local features, ap-

proaches based on global features, approaches based on multi-feature combination, ap-

proaches using three-dimensional information and approaches using deep learning features.

On the other hand, from the perspective of recognizing method, visual localization

methods can also be divided into two mainly categories: methods based on single image

matching; and methods based on sequence matching.

In this chapter, we review the main approaches with regard to place recognition based

visual localization and SLAM. The rest of this chapter is organized as follows: Section 2.2

enumerates fundamental works based on place describing features. Section 2.3 introduces

two main place recognition based visual localization approaches: approaches based on

single image matching and approaches based on sequence matching. Section 2.4 concludes

the chapter, and proposes some open research lines.

2.2 Approaches Based on Different Place Describing Fea-

tures

Each place is a unique location and it must be described in a way that enables it to be

efficiently stored and recognized when revisited. Many issues relevant to place recognition-

based approaches have been proposed. The different methods can be classified according to

the way of place description employed as: methods that describe places by local features;

methods that describe places by global features; methods that describe places by local

and global features combination; methods that describe places using three-dimensional
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information and methods that describe places using deep learning features.

2.2.1 Methods based on local features

Local feature methods make use of distinct features (or feature keypoints) within images,

which capture the essence of the image [13, 114]. During extraction step, a set of distinct

features (or feature keypoints, i.e. corners or edges) is first detected by analyzing images

and searching for distinctive pixel patterns (see Fig.2-2). Then, a description step is per-

formed, where some measurements (i.e. comparison or concatenation) are taken from the

vicinity of each local descriptor to form the final feature [35]. In general, features are

formed as a multi-dimensional floating-point vectors or bit strings.

A good local feature typically needs to be invariant to one or more affine transformations—

such as image scale and camera rotations. Thus, the same local features can be identified

in the similar images, which enables recognition of familiar places. Many works have used

local features in the field of place recognition and visual detection tasks [37], especially

since the development of Scale-Invariant Feature Transform (SIFT) algorithm [63].

Table 2.1: Summary of main local features

Name Dimensions type References
SIFT 128 Float [63]
SURF 32, 64, 128 Float [9]

PCA-SIFT 36 Float [49]
KAZE 64 Float [3]
LBP 59 Bit [80]

CLBP 514 Bit [42]
CSLBP 16 Bit [43]
CSLDP 16 Bit [112]

XCSLBP 16 Bit [95]
BRISK 512 Bit [61]
BRIEF 512 Bit [16]
ORB 256 Bit [90]

FREAK 512 Bit [1]
AKAZE 488 Bit [2]

LDB 256, 512 Bit [6]

Table 2.1 collects some of the main local features used in place recognition. For ex-
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ample, Murillo et al. [9] use SURF while FrameSLAM [52] adopts center-surround fea-

ture (CenSurE). Kawewong et al. [48] use Position-Invariant Robust Features (PIRFs):

each place is described by a dictionary of these representative PIRFs, whose appearance

variation is assumed relatively small with regard to robot motion. Andreasson and Duck-

ett [4] present a simplified version of the SIFT algorithm—M-SIFT (Modified SIFT fea-

tures) which selects interest points from omni-directional images. The results show that the

method based on local features M-SIFT obtain a significant high level of performance and

robustness to environmental variations.

Recently, a number of local binary features have been proposed in the literature, pro-

viding an interesting research line to explore for place description and recognition [98].

Their advantages are that they are invariant to monotonic changes in gray-scale and fast to

calculate. One typical binary feature LBP (Local Binary Pattern) [80] is used in paper [84],

where SVM (support vector machine) recognition models are built based on the extracted

Figure 2-2: SIFT extracts interest points in an image for description. The circles are inter-
est points selected by SIFT within the image. The number of possible features may vary
depending on the number of interest points detected in the image.
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LBP features and each place can be recognized using these SVM models.

Other local features based on keypoints detection like BRIEF (Binary Robust Inde-

pendent Elementary Features) [16], ORB(oriented BRIEF) [90], BRISK (Binary Robust

Invariant Scalable Keypoints) [61], Local Difference Binary (LDB) [6], FREAK (Fast

Retina Keypoints) [1], BRIEF (Binary Robust Independent Elementary Features) [16] and

KAZE [3] are also used in place recognition.

Local features present high discrimination capacity, resulting into higher recognition

rates and less detection errors. However, the total local features dimension of each image

could be very high, and directly matching image features can be inefficient. The bag-

of-words model [96] increases efficiency by quantizing local features into a vocabulary,

where every feature is assigned to a particular word and each image can be described by

low dimensional vector or binary string. As the bag-of-words model ignores the geometric

structure of the place that is described, the resulting place description is pose invariant; that

is, the place can be recognized regardless of the position of the robot with respect to the

place.

The biggest disadvantage of local image features is that they perform poorly—or fail

entirely—in the presence of extreme condition variance [39]. In such cases, either feature

detection and matching process fail because the object of interest being described by local

descriptors is less distinctive in different conditions.

2.2.2 Methods based on global features

In the previous section, solutions based on local features were reviewed, where the descrip-

tion pays more attention to parts of image (sub-regions). Such descriptions work well for

partial occlusions or camera rotations, but are not able to deal with general structure or

framework of the whole scene.

Global features describe the image in a holistic manner, using the whole-image (or

global descriptors) rather than (sub-regions) for place recognition. Global features are

normally very fast to extract and are more robust to the environment changing conditions

where particular features are unrecognizable [35]. Some of the main global features used
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in place recognition and scene classification approaches are shown in Table 2.2. Exam-

Table 2.2: Summary of main global features

Name References
WI-SIFT [8]
WI-SURF [8]

Gradient Orientation Histograms [53]
Principal Components [36]

Colour Histograms [103]
GIST [81]

BRIEF-GIST [99]
DIRD [59]

ples of some global features used in early visual localization systems include: color his-

tograms [103], features based on principal component analysis [36] and Gradient Orienta-

tion Histograms [53]. In paper [103], the authors describe place using six one-dimensional

color histograms from HLS and RGB color spaces. The reference images are retrieved

using a nearest neighbor learning scheme in their topological map and they obtains at least

87% of correctly classified images in their whole appearance-based place recognition sys-

tem.

Kosecka et al. [53] propose a vision-based navigation strategy using gradient orientation

histograms as image feature. The similar places are determined through comparison of

these gradient orientation histograms.

Winters et al. [110] utilize an omni-directional camera to create a topological map.

The large image set is compressed using PCA to form a low dimensional eigenspace, then

robot could determine its global topological position using an appearance based matching

method.

Besides that, one of the popular global features—GIST [81], which was initially de-

veloped for scene recognition, has already been used for place recognition on a number of

research works [99]. GIST uses Gabor filters at different orientations and different frequen-

cies to extract information from the image. The results are averaged to generate a compact

vector that represents the “GIST” descriptor of the scene.

Global features can be also constructed by detecting and concatenating local features.
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For example, Lamon et al. [57] propose fingerprints, composed of a variety of image fea-

tures –such as color patches, edges and corners. By ordering these features in a sequence

between 0◦ and 360◦, place recognition could be reduced to string-matching. These sys-

tems used omni-directional cameras which allow rotation-invariant matching at each place.

Alternatively, Badino et al. [8] apply SURF descriptor to entire images, constructing

a single feature Whole-Image SURF (WI-SURF) for each place. The successful results

for long-term localization experiments are reported, concluding its validity for solving the

global localization problem. Similarly, motivated by the success of GIST and BRIEF bi-

nary descriptors, BRIEF-GIST [99] is proposed. BRIEF feature is computed in a similar

whole-image fashion [16]. BRIEF-GIST demonstrated high computational efficiency and

no requirement for vocabulary training is needed.

Other possible implementation consists in partitioning the image into a grid, comput-

ing descriptor for each patch and concatenating the obtained descriptors to form the final

feature. In paper [59], an illumination robust feature (DIRD) is proposed based on normal-

ized filter responses of small images regions. The experiments showed that DIRD achieved

good performance for loop closure detection. Arroyo et al. [7] divide each panorama into

sub-panoramas and extract LDB (Local Difference Binary) binary descriptor for each sub-

panorama. The final image feature is created by concatenating the different LDB descrip-

tors. The proposed LDB feature also achieved good performance in life-long visual local-

ization.

In general, global image features are easier to compute and save storage space, they are

better suited to varying conditions and can be modified into more robust patch-normalized

or shadow-invariant forms, they are more sensitive to camera viewpoint. Some practi-

cal viewpoint problems—such as those due to vehicle rotation—can be ameliorated with

panoramic imagery and the modified GIST descriptor.

2.2.3 Methods based on local and global features combination

Global and local features demonstrate useful interest for place recognition based visual lo-

calization. However, each has its own advantages and disadvantages. In order to maximize
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the benefits of each feature type, several authors have proposed solutions based on combi-

nation of different image features for place recognition based visual localization [47].

Murillo et al. [75] propose a three-step hierarchical localization method using omni-

directional images. A global color descriptor is applied to obtain a set of susceptible loop

candidates, and then line features described by their line support regions are matched us-

ing pyramidal matching in order to find the most similar image given a predefined visual

memory.

Another approach is to use a global descriptor to perform a fast selection of similar

images during image searching and then use a more accurate process to confirm the asso-

ciation, such as matching local features. Goedemé, et al. [40] present a localization system

using omni-directional cameras where, for each acquired image, vertical column segments

are extracted and described with ten different descriptors. After a clustering process, these

local descriptors are inserted into a kd-tree structure that is used by the localization process.

When a query image arrives, the same local descriptors applied to the vertical structures

are computed over the entire image and used to rapidly retrieve possible loop candidates.

Next, a matching distance based on the column segments is applied between the image and

each of the candidates in order to ensure a correct image matching.

In work [65], a robust and real-time visual place recognition algorithm is proposed

by combining the local visual features FAST (Features from Accelerated Segment Test)

and CSLBP (Complete Center-symmetric Local Binary Patterns). Based on the proposed

features, bag-of-features and support vector machines are used to realize place recognition

based on omni-directional vision for mobile robots. The experimental results show that the

robot can achieve robust place recognition with high classification rate in real-time.

Wang and Lin present a combined local and global descriptor for omni-directional im-

ages called Hull Census Transform (HCT) [107], which consists of repeatedly generating

the convex hull from the extracted SURF features and computing the relative magnitude

between these features that compose the convex hull, resulting into a set of binary vectors.

This representation is then used for detecting scene changes.

A location recognition system which combined edges, local features and color his-

tograms was proposed by Wang and Yagi [106]. In this system, image description process

26



is computed in an integrated way: the Harris detector is used to obtain both edges and

interests points, while SIFT is used for describing interest points.

2.2.4 Methods using three-dimensional information

In addition to description of the places with 2D model directly in the visual domain (instead

of making a geometric-model), they can also be extended with metric information [76].

Thus, 2D image with metric information can be regarded as three-dimensional (3D) in-

formation. Metric range information can be inferred using stereo cameras [27]. Monoc-

ular cameras can also infer metric information using structure-from-motion algorithms as

in the following methods: MonoSLAM [28], PTAM [50], LSD-SLAM [17], and ORB-

SLAM [74].

Several works in the literature use 3D (three-Dimensional) information to improve per-

formance of place recognition based localization methods. In [24], FAB-MAP (Fast Ap-

pearance Based Mapping) is extended to incorporate the spatial distribution of visual words

in 3D. Similarly, a combination of visual words with 3D information from stereo sequences

is used in [15] to perform robust place recognition.

Morioka et al. [73] propose a SLAM navigation method that is effective even in crowded

environments by extracting robust 3D PIRF (Position Invariant Robust Feature) points from

sequential images and odometry.

In paper [34], the authors present a variant of SURE, an interest point detector and

descriptor for 3D point clouds and depth images, and use them for recognizing semantically

distinct places in indoor environments. They also demonstrated that SURE features are well

suited for place recognition using a bag-of-words approach.

Paper [68] describes a new system CAT-SLAM (Continuous Appearance based Tra-

jectory SLAM), which augments sequential appearance-based place recognition with local

metric pose filtering to improve the frequency and reliability of appearance based loop

closure. An extension of CAT-SLAM called CAT-Graph is introduced in [67], combining

visual appearance and local odometry data as in CAT-SLAM, but fuses multiple visits to

the same place into a topological graph-based representation of indoor environments. It
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demonstrates that loop closure detection in a large urban environment with capped compu-

tation time and memory requirements and performance exceeding FAB-MAP by a factor

of 3 at 100% precision

Cadena et al. [14] introduce a place recognition framework based on stereo vision which

combined a bag-of-word model for obtaining loop closure candidates and an algorithm

based on CRF-Matching (Conditional Random Fields-Matching) in order to verify these

candidates. This matching method is more robust than using only epipolar geometry, since

it used 3D information provided by the stereo images.

Paper [15] proposes a place recognition algorithm for SLAM system using cameras.

It considers both appearance and geometric information of interest points in the images.

Hypotheses about loop closings are generated using a fast appearance-only technique based

on the bag-of-words method. According to the indoor and outdoor data experiments, it

shows that the proposed system can attain at least full precision (no false positives) for

high recall (fewer false negatives).

Figure 2-3: An example of detecting SURE features in depth images at locations with
locally prominent surface curvature (from [34]). SURE feature captures local shape and
colored texture at interest points. Based on SURE features, places are recognized using a
bag-of-words approach.

Many other systems use data from additional sensors such as RGB-D cameras [31].

These sensors provide dense depth information as well as image data and then can exploit

3D object information to improve place recognition and localization accuracy [33]. As
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illustrated in Fig.2-3, Torsten Fiolka et al. [34] present a variant of SURE—an interest point

detector and descriptor for 3D point clouds and depth images. The SURE operator selects

distinctive points on surfaces by measuring the variation in surface orientation based on

surface normals in the local vicinity of a point. Furthermore SURE includes a view-pose-

invariant descriptor that captures local surface properties and incorporates colored texture

information. The experiment results demonstrate that SURE features are well suited for

place recognition in some simple environments.

2.2.5 Methods using deep learning features

Place recognition methods based on the hand-crafted features are prone to be affected by the

changing of illumination or appearance. Their performance in challenging environments

strongly depends on the invariance of those descriptors to perceptual changes. Nowadays,

it is rapidly becoming apparent that in recognition tasks hand-crafted features are being

outperformed by deep learning features [41]. Deep learning features obtained from deep

neural networks show strong power for place describing [87]. Thanks to the deep neural

networks, place recognition based visual localization using automatic learned features is

interesting and promising.

Convolutional Neural Network (ConvNet) as one of the popular deep neural networks,

was firstly proposed by LeCun et al. [60] in 1989. ConvNet features are learned automati-

cally from datasets through multi-layer supervised networks. ConvNets permit to achieve

significant performance improvement on object classification or recognition, and outper-

form traditional hand-crafted features based approaches [5].

In paper [22], a place recognition technique based on ConvNets model is presented by

combining the powerful features learned by ConvNets with a spatial and sequential filter.

Applying the system to a 70 km benchmark place recognition dataset (Eynsham dataset),

85.7% recall is achieved at 100% precision.

Sünderhauf et al. [102] present a novel place recognition system that is built on state-of-

the-art object detection methods and convolutional visual features. As illustrated in Fig.2-4,

the astonishing power of convolutional neural network features is used to identify matching
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Figure 2-4: Place recognition system utilizing convolutional network features as robust
landmark descriptors to recognize places despite severe viewpoint and condition changes,
without requiring any environment-specific training. The colored boxes in the images
above show ConvNet landmarks that have been correctly matched between two signifi-
cantly different viewpoints of a scene. This enabling place recognition under challenging
conditions (from [102]).

landmark proposals between images to perform place recognition over extreme appearance

and viewpoint variations. The experiment results have also revealed further insights: mid-

level ConvNet features appear to be highly suitable as descriptors for landmarks of various

sizes in a place recognition context.

Paper [101] presents a thorough investigation on the utility of ConvNet features for the

important task of visual place recognition in robotics. Then, a novel method is proposed by

combining the individual strengths of the high-level and mid-level feature layers to parti-

tion the search space and to recognize places under severe appearance changes. In addition,

locality-sensitive hashing and novel (semantic search space partitioning) optimization tech-

niques are used for real-time place recognition. Comprehensive study on four real world

datasets highlighted that the proposed method performed better for place recognition when

faced with appearance and viewpoint changes.

In paper [5], the authors develop a convolutional neural network architecture that is

trainable in an end-to-end manner. The main component of this architecture is a new gen-

eralized VLAD layer (NetVLAD). The layer is readily pluggable into any convolutional

neural network architecture and amenable to training via back-propagation. The proposed

architecture significantly outperforms non-learnt image representations on Tokyo dataset,

as well as on the Oxford and Paris image retrieval benchmarks.

In paper [41], a convolutional neural network is trained for the first time with the pur-

pose of recognizing revisited locations under severe appearance changes. It maps images to
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a low dimensional space where euclidean distance represent place dissimilarity. In order to

help the network to deal with weather or illumination variations, the authors train the net-

work with triplets of images selected from datasets which present a challenging variability

in visual appearance.

In paper [20], the authors conduct a comprehensive performance comparison of the

utility of features from all the ConvNet 21 layers for place recognition. In work [91],

AlexNet ConvNet model was trained on the ImageNet Large Scale Visual Recognition

Challenge 2012 (ILSVRC2012) for object recognition.

In addition, the availability of pre-trained network models makes ConvNets easy to

experiment for place recognition. The software packages Overfeat [93], Caffe [45] and

MatConvNet [105] provide network architectures pre-trained for a variety of recognition

tasks. Especially, MatConvNet, an important ConvNet MATLAB toolbox designed with

an emphasis on simplicity and flexibility, allows fast prototyping of new ConvNet architec-

tures and supports efficient computation on CPU and GPU [58].

2.3 Approaches Based on Place Recognizing Methods

Place recognizing methods for visual localization can be divided into two categories: 1)

methods based on single image matching; 2) methods based on sequence matching.

2.3.1 Methods based on single image matching

Traditionally, visual localization has been performed by considering place as single image.

The basic technique consists of building a database of images collected off-line by a robot

or a vehicle. Then the most similar to the currently acquired one can be retrieved. If two

places are similar enough, they can be regarded as taken from the same location. As Fig.2-5

shows, each testing image has to retrieve its similar one from the training database. Once

place is recognized based on retrieved images, the robot or vehicle can localize itself, by

assimilating its position to the one of the retrieved image from the training database.

Many place recognition based visual localization approaches are realized through match-

ing appearance of the current scene image to the training images from database [64]. FAB-
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Figure 2-5: Example of place recognition based on single image. Each testing image has
to retrieve its similar one from the training database.

MAP [24] can be considered as the milestone of image matching method for visual lo-

calization. It proposes to match appearance of the current scene image to a reference one

by employing bag-of-words image retrieval technique. It uses a bag-of-words model with

SIFT or SURF features for image description and calculates the distinctiveness of each

word during a training phase. The probabilities of visual words are approximated by a

Chow Liu tree, computed from a set of training data as the maximum-weight spanning tree

of a directed graph of co-occurrences between visual words. FAB-MAP handles the per-

ceptual aliasing problem by considering not only whether two locations were similar in the

sense that they have many visual words in common, but also whether the words in common

32



were sufficiently rare so that the locations could be considered distinctive.

Knopp et al. [51] perform large-scale appearance-based localization using bag-of-feature

representation, but consider only matches to individual images in the database without con-

sidering linear combination of bag-of-feature vectors.

Using single image matching for place recognition is an easy and simple way. How-

ever, when robotic systems operate in larger uncontrolled environments and for longer time

periods, place recognition using single image is prone to be affected by the changing of il-

lumination and moving objects (e.g. cars or pedestrians).

2.3.2 Methods based on sequence matching

Early place recognition systems often implicitly used the simplifying assumption that the

visual appearance of each place would not change over the course of the experiment. How-

ever, as robotic systems operate in ever-larger uncontrolled environments and for longer

time periods, it has rapidly become apparent that this assumption is no longer valid.

Figure 2-6: An example of place recognition based on image sequence. Sequences A and
A’ are taken in a time interval of two weeks.

When the appearance of an environment is changing, appearance-based place matching

becomes less reliable and the relative topological structure of an environment becomes

more important. Instead of calculating the single location similarity between a current

image, sequences of images can be used to match places despite changes in lighting and
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weather conditions, or poor visibility [72, 82]. As Fig.2-6 illustrates, sequences A and A’

are taken in a time interval of two weeks, although illumination and objects (cars and trees)

are changed, matching using sequence can still recognize the place successfully.

More recently, SeqSLAM (Sequence Simultaneous Localization and Mapping) [72] in-

troduces the idea of matching places by considering sequences instead of single images

like previous proposals such as FAB-MAP. In SeqSLAM method, the matrix of image sim-

ilarities between local query (testing) image sequence and training image sequence is con-

structed firstly. Image similarity is evaluated using the sum of absolute differences between

contrast enhanced, low-resolution images without the need of image keypoint extraction.

The place recognition score is the maximum sum of normalized similarity scores over pre-

defined constant velocity paths (i.e. alignments between the query sequence and database

sequence images) through the matrix. Using this sequence matching approach significantly

improves place recognition reliability.

The sequence-based approach can operate reliably in these conditions because it does

not require the image comparison step to achieve 100% correctness — so long as the correct

location is more similar than an incorrect location sufficiently frequently the sequence filter

can identify the path [70].

2.4 Conclusions

This chapter presented a survey of relevant works in the field of place recognition based

visual localization. Approaches of this issue have been studied extensively, however, place

recognition based visual localization in changing environments can still be improved. The

contributions of this thesis are motivated by the reviewed research, in particular, the pre-

sented works are inspired by multi-feature combination and sequence-based methods:

(1) As presented in section 2.2.5, feature combination and three-dimensional informa-

tion can improve the performance of place recognition. Inspired by this, a new multi-

feature (D-CSLBP++HOG) based visual localization will be proposed in Chapter 3. D-

CSLBP++HOG combines HOG and CSLBP features that are built from both gray-scale

image and disparity map. By taking advantage of texture, shape and depth information, the
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proposed multi-feature is more robust for place describing, thus it can improve performance

of place recognition.

(2) Considering single image matching for place recognition is fragile in drastic chang-

ing environment (i.e. different seasons), the second task is to develop sequence matching

based visual localization system without being affected by seasons changing. In Chapter

4, visual localization across seasons is then proposed based on sequence matching and fea-

ture combination. Here, global feature GIST and local binary feature CSLBP are combined

together for place describing. The proposed method is tested and evaluated in four seasons

outdoor environments.

(3) Motivated by the success of deep learning features in visual recognition, a visual

localization technique based on ConvNet networks and localized sequence matching is

proposed in Chapter 5. Compared with the traditional approaches based on hand-craft

features and single image matching, the proposed method can achieve good performances

even in presence of appearance and illumination changes.
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Chapter 3

Visual Localization by Place Recognition

Based on Multi-feature

(D-λLBP++HOG)

In this chapter, a multi-feature based method for vehicle visual localization in urban en-

vironments is proposed. The considered multi-feature combines HOG descriptor and D-

λLBP descriptor (λLBP which is extracted from both gray-scale image and disparity map).

This multi-feature takes the advantage of image texture, depth and shape information at the

same time, it hence permits to achieve better place recognition performance than image

single feature. To evaluate the proposed method, experiments are conducted on several real

outdoor datasets. Furthermore, to speed up the process of place recognition, Locality Sen-

sitive Hashing (LSH) is used to compress the high dimensional feature data and accelerate

the process of similar images search.

3.1 Introduction

One of the prerequisites of navigation issue is to make the vehicle or robot able to reliably

determine its position within its environment. With the wide use of cameras, varieties

of approaches were proposed to address the challenges of place recognition based visual

localization [115] [35].
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As already mentioned in the literature review (Chapter 2), FAB-MAP method can be

considered as the milestone in the field of visual localization. FAB-MAP approach consists

in matching the appearance of current scene to a same (similar) past visited place by con-

verting the images into bag-of-words representations built on local features such as SIFT

or SURF.

In local feature based place recognition approaches, image representation is defined as

collection of local features which contribute with their robustness when faced with local

image variations as well as from discriminative power of their descriptors. Nevertheless,

most of these works exhibit a high computation cost or complex feature extraction for

image matching. Also, few works pay attention to the depth information for visual place

recognition.

Recently, binary image descriptors that encode patch appearance using compact binary

string with low memory requirements, are widely used in image description and visual

recognition [98]. Their advantages are that they are invariant to monotonic changes in

gray-scale and fast to calculate. One typical binary descriptor is LBP (Local Binary Pat-

tern). Since it was firstly proposed in 1996, several new variants of binary descriptors have

been proposed [10]. In this chapter, the most relevant binary descriptors for visual place

recognition that will be tested and compared in our approach are: LBP, CLBP (Complete

Local Binary Pattern) [42], CSLBP (Center-symmetric local binary patterns) [43], CSLDP

(center-symmetric local derivative pattern) [112] and XCSLBP (extended CSLBP) [95].

These different local binary descriptors are noted as λLBP.

Despite local binary features efficiency, histograms of oriented gradients (HOG) fea-

tures have also been successfully used in various vision tasks such as object classification,

image search and scene classification [113]. Xiaoyu Wang et al. [108] combine histograms

of oriented gradients (HOG) and local binary pattern (LBP), and propose a novel human

detection approach capable of handling partial occlusion. For such applications, HOG is

one of the best features to capture edge or local shape information which provides a rough

description (shape information) of the scene.

Considering the robust and strong image representation ability of binary descriptors and

HOG feature, we expect that their combination would provide more useful information and

38



Figure 3-1: Multi-feature built from gray-scale image and disparity map. Features are
firstly extracted from each image block and then concatenated together. The symbol “++"
means concatenation.

then should improve place recognition performance. In this chapter, stereo images are used

for visual place recognition. A novel localization approach is then proposed which uses

multi-feature fusion by combining HOG and binary features (λLBP), as shown in Fig.3-

1. HOG features are obtained from gray-scale image while λLBP features are built from

both gray-scale image and disparity map. Noted that the features are first extracted from

the blocks composing the gray-scle image and the disparity map, and then concatenated.

We extend the application of λLBP descriptor to disparity map in order to incorporate

disparity information in image representation by simply concatenating the two descrip-

tors (λLBP from gray-scale image and λLBP from disparity map). This produces a new

descriptor is named D-λLBP. The integration of disparity information in image representa-

tion provides depth information which should be helpful for place recognition, especially in

complex environment situation. Indeed, image description using features λLBP and HOG

and the depth information will permit to reduce perceptual aliasing problems related to
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visual place recognition. As it will be shown in our experiments, features combination per-

mits to achieve better recognition performance than single feature. Also the performance of

place recognition is compared with the state-of-the-art FAB-MAP algorithm: the achieved

F1 scores on four tested datasets using our approach are better than those resulted from

FAB-MAP method. Furthermore, considering high dimensional multi-features comparison

is time-consuming, locality sensitive hashing is applied on multi-features to speed up the

process of features comparison and image matching.

The most important contributions introduced in this chapter are the following:

• An innovative method for place recognition based visual localization using multi-

feature descriptor (D-λLBP++HOG) extracted from gray-scale image and disparity

map. The proposed multi-feature descriptor takes advantage of texture, depth and

shape information and hence performs better than single feature (see Section 3.5.2).

• The impact image block size for the binary descriptors is studied. Binary descriptor

extracted from small block has better discriminative ability in local details of differ-

ent locations, while considering large block size for image representation may cause

loss of some discriminative information (see Section 3.5.1).

• A speeding-up of the place recognition method is achieved by approximating the

euclidean distance between features with hamming distance over bit-vectors obtained

by Locality Sensitive Hashing (see Section 3.5.3).

The rest of this chapter is organized as follows. Firstly, the LBP descriptor and several of

its variants as well as HOG feature are introduced in Section 3.2. Then, in Section 3.3,

the proposed approach is described in detail. Section 3.4 deals with the presentation of the

tested database and the used performance evaluation parameters. The obtained results are

presented and discussed in Section 3.5. Finally, conclusions and future works close this

chapter (Section 3.6).
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3.2 Overview of used Image Descriptors

In this part, some of the state-of-the-art image descriptors used and compared in the pro-

posed approach are described.

3.2.1 LBP (Local Binary Pattern)

LBP is a texture descriptor that codifies local primitives (such as curved edges, spots, flat

areas) into a feature histogram. The original LBP operator labels the pixels of an image

with decimal numbers, called Local Binary Patterns or LBP codes, which encode the local

structure around each pixel [56].

As illustrated in Fig.3-2, each pixel gray-level value is compared with its eight neigh-

bors in a 3×3 region by subtracting the center pixel value. The resulting strictly negative

values are encoded with 0 and the others with 1. A binary number is obtained by con-

catenating all these binary codes, and its corresponding decimal value is used for labeling

the central pixel. In Fig.3-3, examples of neighborhood used for LBP operator are illus-

Figure 3-2: Illustration of the basic LBP operator

trated. The generalized LBP definition uses P sample points evenly distributed on a radius

R around a center pixel located at (xc,yc). The position (xp, yp), of the neighboring points,

where p ∈ {0, ...,P−1} is given by:

(xp,yp) = (xc +Rcos(2π p/P),yc −Rsin(2π p/P)) (3.1)

The local binary code for the position (xc, yc) can be computed by comparing the gray-scale

41



Figure 3-3: Examples of (P,R) neighborhood used to compute LBP: (8,1), (16,2) and (8,2)
.

value gc of this center pixel located at (xc, yc) and the gray-scale values gp of its neighbor

pixels located at (xp, yp) where p ∈ {0, ...,P−1}. The value of the LBP code of the center

pixel at position (xc, yc) is given by:

LBPP,R(xc,yc) =
P−1

∑
p=0

s(gp−gc)2p (3.2)

where s is the Heaviside function:

s(x) =

1, x≥ 0

0, otherwize
(3.3)

The operator LBPP,R produces 2P different output values, corresponding to 2P different

binary patterns formed by the P pixels in the neighborhood. Although this method can

capture the relations of nearby and adjacent pixels, it leads to a large data dimension.

Ojala et al. [79] further propose an “uniform patterns” to reduce the dimension of LBP

feature while keeping its discrimination power. For this, an uniformity measure of a pattern

is used: U (“pattern”) is the number of bitwise transitions from 0 to 1 or vice versa when

the bit pattern is considered circular. The U value of an LBP pattern can be computed by:

U(LBPP,R) = |s(gP−1−gc)− s(g0−gc)|+
P−1

∑
p=1
|s(gp−gc)− s(gp−1−gc)| (3.4)
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Uniform LBP patterns refer to the patterns which have limited transitions or discontinuities

(U ≤ 2) in the circular binary representation. For instance, 11111111 (0 transitions) and

01110000 (2 transitions) are both uniform whereas 11001001 (4 transitions) and 01010010

(6 transitions) are not. Thus, for P neighborhood pixels, a uniform LBPP,R operator pro-

duces P(P−1)+3 possible distinct uniform LBP patterns. After the uniform LBP patterns

are identified, for an image with size N×M, a histogram is built which can be used as the

image feature to represent the image texture :

h(l) =
N

∑
i=1

M

∑
j=1

f (LBPP,R(i, j), l) , l ∈ [0,L], (3.5)

f (x,y) =

1, x = y

0, otherwize
(3.6)

where L is the maximal LBP pattern value. The length of the histogram is a P(P−1)+3.

3.2.2 CLBP (Complete Local Binary Pattern)

LBP feature considers only signs of local differences (i.e. difference of each pixel with its

neighbors) whereas CLBP feature [42] considers both magnitude (M) and sign (S) of local

differences as well as original center gray level value (C) . Consequently, three operators,

namely CLBP_M, CLBP_S and CLBP_C, are used to code the magnitude, sign and center

gray level.

Given the gray-scale value gc of the center pixel (xc, yc) and its P circularly and evenly

spaced neighbors with gray-scale value gp, p∈{0, ...,P−1}, the difference between gc and

gp can be simply calculated using dp = gp− gc. The local difference vector [d0, d1, · · · ,

dP−1] characterizes the image local structure at (xc,yc). Because the central gray level gc is

removed in local difference vector, [d0, d1, · · · , dP−1] is robust to illumination changes and

is more efficient in pattern matching. dp can be further decomposed into two components:

dp = sp ∗mp (3.7)
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mp = |dp|, sp =

 1, dp ≥ 0

−1, dp < 0
(3.8)

where sp is the sign component of dp and mp is the magnitude component of dp.

CLBP_M is used to code the magnitude information of local differences:

CLBP_MP,R(xc,yc) =
P−1

∑
p=0

t(mp,c)2p, t(x,T ) =

1, x≥ T

0, x < T
(3.9)

where T is a threshold which is set to the mean value of the mp values from the whole

image.

CLBP_S is the same as the original LBP and is used to code the sign information of

local differences:

CLBP_SP,R(xc,yc) =
P−1

∑
p=0

t(sp,0)2p, t(x,T ) =

1, x≥ T

0, x < T
(3.10)

CLBP_C is used to code the information of original center gray level value:

CLBP_CP,R(xc,yc) = t(gc,cI), t(x,T ) =

1, x≥ T

0, x < T
(3.11)

where the threshold cI is set to the average gray level of the input image.

The dimension of the histograms corresponding to CLBP_S and CLBP_M is 2P, while

the dimension of CLBP_C is 2. The CLBP_C only uses the center gray level value which

can be easily affected by the changing of viewpoints or illumination. Therefore, in our

work, only the histograms of CLBP_S and CLBP_M codes are computed and then con-

catenated together to construct CLBP feature. Thus, the final dimension of CLBP feature

is 2P+1.
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3.2.3 CSLBP (Center-symmetric local binary patterns)

CSLBP [43] is another modified version of LBP. CSLBP produces shorter feature set than

LBP, but it is also a first order local pattern in center symmetric direction and it ignores

the central pixel information. CSLBP is closely related to the gradient operator, because

it compares the gray levels of pairs of pixels in centered symmetric directions instead of

comparing the central pixel to its neighbors. In this way, CSLBP feature takes advantage

of the properties of both LBP and gradient based features.

For an even number P of neighboring pixels distributed on radius R, CSLBP operator

produces 2P/2 possible distinct patterns. The operator is given by:

CSLBPP,R(xc,yc) =
(P/2)−1

∑
i=0

s(|gi−gi+(P/2)|)2i (3.12)

s(x)

1, x≥ T

0, otherwise
(3.13)

where gi and gi+(P/2) are the gray values of center-symmetric pairs of pixels. T is used to

threshold the gray-level difference so as to increase the robustness of CSLBP feature on

flat image regions. Since the gray levels are normalized in [0,1], the authors of paper [43]

recommend to use small value for T .

It should be noticed that CSLBP is closely related to gradient operator, because like

some gradient operators it considers gray level difference between opposite pixels in a

neighborhood.

Given an image of size N×M, after the computation of CSLBP patterns, a histogram

is built to represent the texture image:

h(l) =
N

∑
i=1

M

∑
j=1

f (CSLBPP,R(i, j), l) , l = 0,1,2,3, · · · ,2P/2−1 (3.14)

f (x,y) =

1, x = y

0, otherwize
(3.15)
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By construction, the length of the histogram resulting from CSLBP feature is 2P/2.

3.2.4 CSLDP (Center-Symmetric Local Derivative Pattern)

CSLDP operator [112] is a second order derivative pattern in center symmetric direction.

CSLDP captures more information by encoding the relationship between central pixel and

center symmetric neighbors. Moreover, CSLDP has shorter length than LBP.

For an even number P of neighboring pixels distributed on radius R, CSLDP operator

produces 2P/2 possible distinct patterns and is defined as:

CSLDPP,R(xc,yc) =
P/2−1

∑
i=0

t[(gi−gc),(gc−g(i+(P/2))]2
i (3.16)

where gi, g(i+(P/2) are gray-scale values of neighborhood pixels in center symmetric direc-

tion. gc corresponds to the gray value of central pixel located at (xc, yc). The threshold

function t(·, ·) is used to determine the type of local pattern transition and is defined as:

t(x1,x2) =

1, x1 · x2 ≤ 0

0, x1 · x2 > 0
(3.17)

A CSLDP pattern encodes the second order center symmetric derivatives at pixel (xc, yc)

along 0◦, 45◦, 90◦ and 135◦ directions. They can be represented as:



CSLDP0◦(xc,yc) = t[(g0−gc),(gc−g4)]

CSLDP45◦(xc,yc) = t[(g1−gc),(gc−g5)]

CSLDP90◦(xc,yc) = t[(g2−gc),(gc−g6)]

CSLDP135◦(xc,yc) = t[(g3−gc),(gc−g7)]

(3.18)

The CSLDP histogram construction method is the same as for CSLBP, and its histogram

length is also 2P/2.
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3.2.5 XCSLBP (extended CSLBP)

The work in [95] proposes a new LBP variant called XCSLBP (eXtended CSLBP), which

compares the gray values of pairs of center symmetric pixels considering the central pixel,

without increasing histogram length. This combination makes the resulting descriptor ro-

bust to illumination changes and noise. For an even number P of neighboring pixels dis-

tributed on radius R, XCSLBP is expressed as:

XCSLBPP,R(xc,yc) =
(P/2)−1

∑
i=0

s(g2
c +gi+(P/2)(gi−2gc))2i, (3.19)

where the threshold function s, which is used to determine the types of local pattern transi-

tion, is defined as:

s(x) =

1, (x≥ 0)

0, otherwise
(3.20)

where gi and gi+(P/2) are the gray values of center symmetric pixels. XCSLBP operator

produces histograms with a length of 2P/2.

3.2.6 HOG (Histograms of Oriented Gradients)

Besides LBP and its variants, another histogram feature named HOG has also been widely

accepted as one of the best features to capture the edge or local shape information. HOG

feature is proposed by Dalal et al. [25] and widely used to detect objects in computer vision.

The essential idea of HOG feature is that the shape or appearance of local object can be

described by the distribution of intensity gradients and edge directions [88]. HOG descrip-

tor is a one-dimensional histogram of gradient orientations of intensity in local regions that

can represent object shape.

As shown in Fig.3-4, HOG divides the image into small connected blocks, and for

each block, a histogram of gradient directions for the pixels within the block is computed.

The combination of these cell histograms represents the feature vector. At each pixel, the

gradient is a 2D vector with a real-valued magnitude and a discretized direction (9 possible

directions uniformly distributed in [0, π]). During the construction of the integral image
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of HOG, the feature value at each pixel is treated as a 9D vector, and the value at each

dimension is the interpolated magnitude value at the corresponding direction. Since HOG

takes adjacent pixel gradients information as basis to extract features, it is robust to changes

in geometry and is not easily affected by local lighting conditions.

Figure 3-4: Example of HOG feature.

3.3 Overview of Proposed Approach

In this section, a robust visual localization based on multi-feature combination is developed.

The general principle is to find the image that best matches the current acquired one, among

a set of previously acquired and GPS-tagged training images.

The whole system includes an off-line phase and an on-line phase. In the off-line phase,

a set of GPS tagged training image pairs (left and right images) Itrain = {Itrain
j }Ntrain

j=1 are

firstly acquired, where Ntrain is the number of training image pairs. After image prepro-

cessing (see Section 3.3.1), multi-feature set V train = {vtrain
j }Ntrain

j=1 is extracted from the

training database (see Sections 3.3.2 and 3.3.3) , where vtrain
j is the multi-feature extracted

from the training image pair Itrain
j . In on-line phase, multi-feature vtest

i is extracted from

current image pair Itest
i , and then compared with each multi-feature of V train based on eu-

clidean distance. The computed distances are then used to select the best candidate (see

Section 3.3.4), smaller the distance is, higher similarity between the images will be. A

distance ratio SS between the two best candidates (i.e. corresponding to the two minimum

computed distances) is considered for matching validation (see Section 3.3.5). If the ratio

SS is lower than or equal to a threshold T h, the first best image candidate (with the lower

48



Figure 3-5: The process of the proposed place recognition based visual localization.

matching distance) is confirmed as positive, otherwise it is regarded as negative (in this

case, no matching result is conserved). When a matching is confirmed as positive, the cur-

rent position can be obtained from the matched GPS-tagged training image (see Section

3.3.6).

As illustrated in Fig.3-5, the overall approach comprises six stages:

1. Image preprocessing: This step consist of down-sampling and contrast-limited adap-

tive histogram equalization (detailed in Section 3.3.1).

2. Block based feature extraction: λLBP feature is extracted from grayscale image

and disparity map; HOG feature is extracted from grayscale image (detailed in Sec-

tion 3.3.2).

3. Multi-feature concatenation: The final multi-feature D-λLBP++HOG is obtained

by concatenating λLBP and HOG feature. (detailed in Section 3.3.3)

4. Feature comparison and image matching: Based on the extracted multi-feature
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descriptors, image matching is conducted through multi-feature comparison using

euclidean distance (detailed in Section 3.3.4).

5. Final Matching validation: According to the distance ratio of the top two best can-

didates, image matching result is validated (detailed in Section 3.3.5).

6. Visual localization: The vehicle current position can be obtained through the matched

GPS-tagged training image (detailed in Section 3.3.6).

3.3.1 Image preprocessing

Image preprocessing is composed of two parts: down-sampling and contrast-limited adap-

tive histogram equalization (CLAHE).

Down-sampling permits to reduce the original image size, which makes feature ex-

traction faster. In fact, it has been already proved in [89] that high resolution images are

not more helpful than lower resolution ones. Therefore, down-sampling is the first step

before feature extraction. As it is well known, illumination has significant influence on

Figure 3-6: Image preprocessing using contrast-limited adaptive histogram equaliza-
tion(CLAHE). The left image is processed using CLAHE and the prepossessing result is
the right image.

outdoor image appearance. Therefore, another applied image preprocessing is contrast-

limited adaptive histogram equalization (CLAHE), which permits to enhance the contrast

of the gray-scale image by transforming the values using contrast-limited adaptive his-

togram equalization [83]. Through this adjustment, the intensities can be better distributed

on the histogram. This allows for areas of lower local contrast to gain higher contrast.

This contrast, especially in homogeneous areas, can be limited to avoid amplifying any

noise that might be present in the image. On the same time, it also decreases the shadow
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influence. An image example after applying contrast-limited adaptive histogram equaliza-

tion can be seen in Fig.3-6. It is obvious that CLAHE prepossessing improves the image

contrast and makes the image more brighten (especially in some dark parts).

3.3.2 Block based feature extraction

Concept of block based approach

Traditionally, local descriptors are calculated on full images, which can keep the size of the

feature database reasonably low. However, local image areas of interest would be ignored

as the full image feature extraction does not contain enough local discriminative informa-

tion.

With respect to local properties and enhanced image representation ability, image fea-

tures are extracted from small image blocks (sub-image areas) without any segmentation

and then these independent feature descriptors are concatenated to obtain final image fea-

ture. To illustrate the block based feature extraction process, it is applied on an example in

Fig.3-7. Block based approach (that relies on image blocks) can address spatial properties

of images. It can be used for any histogram descriptors.

Figure 3-7: An example of block based local binary descriptor extraction. Features are
extracted from each image block firstly and then concatenated together. Here, image blocks
are non-overlapped and do not need any image segmentation.
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Figure 3-8: Block based feature extraction procedure (applied to each images pair of the
training database for the off-line phase and to current images pair for the testing phase)

Block based feature extraction

After image preprocessing, features are extracted, as illustrated in Fig.3-8. λLBP feature

is extracted from gray-scale image and disparity map independently. While HOG feature

vHOG is extracted from gray-scale image. For both λLBP or HOG, the features are ex-

tracted based on image blocks. In order to facilitate the process of block based feature

extraction, image blocks in the full image have the same size. The influence of different

block sizes will be studied in the Section 3.5.1. Image parts that cannot satisfy a whole
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block will be ignored.

• λLBP feature extraction

λLBP feature from gray-scale image and disparity map are obtained using the fol-

lowing equations:

vgray = hgray
1 ++hgray

2 ++...++hgray
m

vdis = hdis
1 ++hdis

2 ++...++hdis
n

(3.21)

where vgray is a vector which stores the λLBP feature obtained from gray-scale im-

age. vdis stores the λLBP obtained from disparity map. m and n are the image block

numbers of gray-scale image and disparity map respectively. hgray
i (i∈ [1,2, · · · ,m]) is

the λLBP histogram of the ith block of the grayscale image and hdis
i (i ∈ [1,2, · · · ,n])

is the λLBP histogram of the ith block of the disparity map. In our work, the disparity

map is calculated using the SGBM (Semi-Global Block Matching) algorithm [44].

Using this SGBM method, there are some useless parts (“ black areas”), for which no

depth information is computed, especially on the left and right sides of the disparity

map. In these “ black areas”, λLBP operator is not applied, therefore these useless

parts are simply removed. Thus, due to the removing of the “ black areas” in the

disparity map, m and n are not identical.

By using the block based approach, the features vgray and vdis are extracted from gray-

scale image and disparity map respectively. Then, D-λLBP feature can be computed

by concatenating vgray and vdis:

vD−λLBP = vgray ++vdis (3.22)

• HOG feature extraction

HOG feature is also computed for each image block of the gray-scale image. The

obtained HOG features from all the image blocks are then concatenated:

vHOG = hhog
1 ++hhog

2 ++...++hhog
m (3.23)
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Here, hhog
i (i ∈ [1,2, · · · ,m]) is the HOG feature extracted from the ith image block.

It should be noted that HOG feature adopts the same image block size as the λLBP

feature extraction from gray-scale image, therefore the number of image blocks is

same.

3.3.3 Multi-feature concatenation

In order to take advantage of the different features, D-λLBP and HOG are combined to-

gether to represent the image. Since the D-λLBP and HOG are two independent features,

we simply consider that they have the same weight in the role of place recognition. The

final multi-feature can be obtained easily through concatenation using the following equa-

tion:

v = vD−λLBP ++vHOG (3.24)

Using this method, a multi-feature set V train = {vtrain
j }Ntrain

j=1 of all training image pairs

{Itrain
j }Ntrain

j=1 is obtained. For a current testing image pair Itest
i , a multi-feature vtest

i is also

obtained. Then the image matching is conducted based on the euclidean distance com-

parison between the multi-feature vtest
i of the current testing image and all training image

multi-features vtrain
j ( j = [1,2, · · · ,Ntrain]) from the training images dataset.

3.3.4 Feature comparison and image matching

Feature comparison is performed based on the euclidean distance between features. Each

testing image multi-feature vtest
i is compared with all the training images multi-features

vtrain
j ( j = [1,2, · · · ,Ntrain]) of the training database.

The distance Di, j between the multi-feature vtest
i (i = [1,2, · · · ,Ntest ]) of the testing im-

age and multi-feature vector vtrain
j ( j = [1,2, · · · ,Ntrain]) of a training image is computed as

follows:

Di, j = ∥vtest
i − vtrain

j ∥2 (3.25)

where ∥·∥ denotes the euclidean norm.

In fact, small distance means high similarity. Based on euclidean distance, image
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matching candidates are searched. After distance computation, for the testing image, the

two minimum distances (Di,m1 and Di,m2) and their corresponding training images (the two

best candidates) are conserved.

3.3.5 Final matching validation

For a given current image pair Itest
i , the validation of matching candidate from the training

database is based on the ratio SSi, calculated as follows:

SSi =
Di,m1

Di,m2
(3.26)

where Di,m1 and Di,m2 are respectively the first and second minimum distances between

the current image multi-feature vtest
i and the multi-features {vtrain

j }Ntrain

j=1 of all the training

images: 
Di,m1 = min

j
{Di, j}

Di,m2 = min
j( j ̸=m1)

{Di, j}
(3.27)

As said before, lower the distance is, more similar the images are. The potential matching

candidate is the image mi (the one giving the lower distance with the testing image). How-

ever, if the second best matching candidate provides a distance very close to the first one,

this means that the matching algorithm provides two confused solutions. In this case, we

propose to ignore the matching result and consider that the testing image has no matching

image. For that, a threshold T h is applied to the ratio SSi, which takes its values in the

range [0 1].

The last decision is as follows: if SSi is lower than or equal to the threshold T h, then

the pair (i,m1) is considered as positive, and the pair is matched. Otherwise, the pair is

considered as negative and the pair is ignored.

3.3.6 Visual localization

After image matching result is successfully validated, the vehicle can localize itself through

the matched training image position. Since the training images are tagged with the GPS or
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pose information, the vehicle can get its position information by assimilating its position

to the GPS position of the training image matched with the current testing image. This is a

topological level localization, that is, the system simply identifies the most likely location.

Therefore, this is not a very accurate metric localization, because the training and testing

trajectories are not exactly same.

It should be noted that, some places can not be localized at the situation of validation

failure (negative matching case).

3.3.7 Algorithm of multi-feature based visual localization

The approach for place recognition based visual localization proposed in this chapter is

summed up in Algorithm 3.1. The multi-features are constructed firstly from training

database, this is off-line processing. Then multi-feature built from the current image pair

is compared with the whole multi-features from training database to obtain the euclidean

distance vector. Based on the this, image matching result is validated for the final visual

localization.

3.4 Experimental Setup

3.4.1 Datasets and ground-truth

The proposed method is tested on four different datasets (UTBM-1, UTBM-2, KITTI 05

and KITTI 06).

The taken route for UTBM-1 dataset is shown in Fig.3-9 (a): the experimental vehicle

traversed about 4 km in a typical outdoor environment. Three typical areas were traversed:

urban city road (area A), lots of factories building (area B) and a nature scene surrounding a

lake (area C). The training and testing data were collected at different times respectively in

2014/9/11 and 2014/9/5. The training database is composed of 849 images while the testing

database is composed of 819 images. The average distance between two successive frames

was around 3.5 m. To tag the training images, GPS position of each image is obtained by a

RTK-GPS receiver.
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Algorithm 3.1 Place recognition based visual localization using multi-feature.
Inputs:
{Itrain

j }Ntrain

j=1 {training image pairs database (left and right images)};
{Itest

i }Ntest

i=1 {testing images pairs (left and right images)};
Ntrain,Ntest {training and testing images number};

Outputs:
SS{distance ratio}; Vehicle position

Proposed Algorithm:
/∗ OFF-LINE PHASE ∗/
/∗ Training images multi-feature extraction and concatenation; {Section 3.3.2 and 3.3.3}
∗/
for j← 1 to Ntrain do

vtrain
gray, j,v

train
HOG, j ← Block based λLBP and HOG features extraction from gray-scale

images;
vtrain

dis, j ← Block based λLBP feature extraction from disparity map;
vtrain

j ← vtrain
gray, j ++vtrain

dis, j ++vtrain
HOG, j; //Multi-feature concatenation.

end for

/∗ ON-LINE PHASE ∗/
/∗ Feature comparison ∗ /
for i← 1 to Ntest do

vtest
i ← vtest

gray,i++vtest
dis,i++vtest

HOG,i; //Multi-feature computation for the current testing
image pair.
for j← 1 to Ntrain do

Di, j = ∥vtest
i − vtrain

j ∥2 ; Euclidean distance computation between the multi-feature
vtest

i of the testing image and the multi-feature vtrain
j in the training database.

end for

/∗Matching validation and localization ∗ /

SSi =
min

j
{Di, j}

min
j( j ̸=m1)

Di, j
; m1 is the index of the first best candidate.

if SSi <= T h
Matching validation is positive;
Vehicle position← the matched training image position

if SSi > T h
Matching validation is negative;
Vehicle position← NaN (no position result)

end for

The UTBM-2 dataset (Fig.3-9 (b)) consists of a 2.3 km route in Belfort city downtown

acquired in 2014/9/5. The first traversal to acquire training dataset was performed in the
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morning and the second one was conducted in the afternoon to acquire testing dataset.

Each travel time across this dataset was approximately 20 minutes. The training database

is composed of 540 images while the testing database is composed of 520 images. The GPS

information of each image is also collected. The popular KITTI benchmark dataset is also

(a) Trajectory of UTBM-1 dataset (b) Trajectory of UTBM-2 dataset

Figure 3-9: Vehicle paths for the UTBM-1 and UTBM-2 datasets. Source: Google Maps

used to test our proposal. The KITTI Odometry dataset has 22 sequences containing a total

of 44182 stereo images (39.2 km). These sequences include environments with different

characteristics and challenging situations such as perceptual aliasing, changes on scene,

etc. Among them, the datasets KITTI 05 and KITTI 06 that contain loop closures were

selected to evaluate our method. There are 2761 and 1101 images in KITTI 05 and KITTI

06 datasets respectively.

For UTBM-1 and UTBM-2 datasets, ground-truth was constructed by manually find-

ing pairs of frame correspondences according to the GPS data. While the KITTI dataset

ground-truth was built according to the pose information [6].

3.4.2 Image preprocessing and feature extraction

In our work, for faster feature extraction, the original color images were down-sampled

into half scale size grayscale image. That means images in dataset UTBM-1 and UTBM-2

were resized to 640 × 480 and the images in dataset KITTI 05 and KITTI 06 were resized

to 613×235.
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In order to reduce the illumination influence on the outdoor image appearance, contrast-

limited adaptive histogram equalization (CLAHE) method was used (see Section 3.3.1).

Moreover, as a pair of images is acquired at each instant, a disparity map can be com-

puted easily using the SGBM (Semi-Global Block Matching) algorithm [44].

After image preprocessing, binary descriptors (LBP, CLBP, CSLBP, CSLDP and XC-

SLBP) are extracted with the following parameters: 8 sampling points and 3 pixels radius.

HOG descriptor is extracted from the grayscale images. To capture large-scale spatial in-

formation, the cell size of HOG is 32×32. The number of cells in each block is specified

as a 2-element vector.

Figure 3-10: Example of gray-scale image and its corresponding local binary images (LBP,
CLBP, CSLBP, CSLDP and XCSLBP) and HOG feature.

An example of extracted image features can be seen in Fig.3-10. It can be seen that
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the local binary features pay more attention to texture information. It can also be noted

that CSLBP and XCSLBP perform better than LBP. HOG feature depicts object shape

information in the image. Therefore, combining LBP and HOG features could bring more

information and make place(scene) better described.

3.4.3 Performance evaluation

Precision-recall characteristics and F1 score are widely used to show the effectiveness of

image retrieval method. Therefore, our evaluation methodology is based on precision-recall

curves and F1 score. In our experiments, the training image number is larger than or equal to

the testing image number, thus each testing image has a ground-truth matching. Therefore,

among the positives, there are true positives (correct results among successfully validated

images matching candidates) and false positives (wrong results among successfully vali-

dated images matching candidates). The sum of the true positives and false positives is the

total retrieved images number.

More specifically, precision is the ratio of true positives over the retrieved images num-

ber (number of all the successfully validated image matching candidates), and recall is the

ratio of true positives over the total testing images:

Precision =
Number of true positives

Number of retrieved images
×100%

Recall =
Number of true positives

Number of total testing images
×100%

The final curve is computed by varying the threshold T h (applied to the ratio SS) in

a linear distribution between 0 and 1, with the calculation of the corresponding values of

precision and recall. 100 values of threshold T h are considered to obtain well-defined

curves. When the threshold is set to 1, the candidates whose ratio is below or equal 1 are

positives. In this case, the number of retrieved images is identical to the number of testing

images. While when the threshold is 0, it means that the candidates whose ratio is below

or equal 0 are regarded as positives. In this case, there is no retrieved image.

Precision relates the number of correct matches to the number of false matches, whereas
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recall relates the number of correct matches to the number of missed matches. A perfect

system would return a result where both precision and recall have a value of one. The

F1 score value is a single value that indicates the overall effectiveness of image retrieval

method. Based on the precision and recall, F1 score is defined as:

F1 = 2× Precision×Recall
Precision+Recall

(3.28)

3.5 Experiments and Results

Different aspects of our proposal are evaluated in the following sections. In Section 3.5.1,

the performance of binary features (LBP and its variants) with and without disparity in-

formation is studied. In addition, the image block size influence for the binary feature

D-CSLBP is investigated in Section 3.5.1. In Section 3.5.2, the effect of the multi-feature

fusion proposed in our approach is analyzed. It is to note that the experiment results ob-

tained in Sections 3.5.1 and 3.5.2, are based on euclidean distance. In Section 3.5.3, the

efficiency of our LSH based visual recognition is checked: the execution time and recog-

nition performance of our complete system are evaluated. Finally, visual localization at

100% recognition level is discussed in Section 3.5.4.

3.5.1 Comparison of the different binary features and image block

sizes

Performance of different binary features

In this section, we compare binary features performance in two situations: with or without

disparity map. Here the features are compared based on the euclidean distance.

Table 3.1 gives the F1 scores of the binary descriptors in two cases (without and with

disparity information). It can be seen that, LBP, CLBP, CSLBP and CSLDP with disparity

information improve the image retrieval ability as F1 scores are higher with disparity in-

formation than without disparity information. Among them, D-CSLBP is the best one, it

achieves the highest F1 score.
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Table 3.1: F1 score comparison for different tested binary features on four datasets. Here
the block size is set to 32×32.

Feature UTBM-1 UTBM-2 KITTI 05 KITTI 06
LBP 0.5171 0.9058 0.7361 0.8261

D-LBP 0.7665 0.9441 0.7663 0.8639
CLBP 0.5111 0.9194 0.7437 0.8279

D-CLBP 0.6672 0.9221 0.7735 0.8813
CSLBP 0.6292 0.9337 0.7569 0.8461

D-CSLBP 0.8043 0.9457 0.7763 0.8850
CSLDP 0.6093 0.9474 0.7536 0.8335

D-CSLDP 0.8062 0.9490 0.7709 0.8709
XCSLBP 0.4796 0.8986 0.7107 0.7814

D-XCSLBP 0.7190 0.8350 0.7401 0.7775

Fig.3-11 depicts the precision-recall curves obtained by the different binary features in

two typical datasets UTBM-1 and KITTI 06. It can be seen that, the performance of D-

CSLBP is better than the performance with the features D-LBP, D-CLBP, D-CSLDP and

D-XCSLBP. Also, it can be seen that the maximum recall at 100% precision for D-CSLBP

is higher than the one of the other features.
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Figure 3-11: Image retrieval performance (precision-recall curve) comparison considering
different block based binary features on UTBM-1 and KITTI 06 datasets. Here the image
block size is 32.
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Comparison of different image block sizes

In this section, the influence of block size of block-based D-CSLBP feature is studied.

Small block size permits to discriminate local details, while large block size makes the

representation more robust. Each image block is a square block in our experiment (block

size 32×32 is short for 32). The performance of D-CSLBP feature with different block

sizes (32, 64, 128, and 32+64+128 (multi-block sizes, there different block sizes used

together)) in place recognition is evaluated.
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Figure 3-12: Image retrieval performance (precision-recall curve) comparison considering
D-CSLBP feature extracted with different image block sizes, on four datasets.

According to Fig.3-12, it can be noted that by increasing the block size from 32 to 64

and 128, the place recognition ability decreases. The computation of D-CSLBP feature

with combination of the block sizes 32, 64 and 128 only permits to achieve a slightly better

performance than the D-CSLBP feature with block size 32.
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It is obvious that, the binary descriptor D-CSLBP extracted from small block size may

benefit from discriminative local details. While feature extraction using larger block size

makes image representation easy to drop some discriminative information.

However, when the block size is too small, the abundant information can not bring

more improvement to the image matching process. At the same time, smaller image block

size may lead to computation time increase during feature extraction. So, on our following

experiments, the image block size for D-CSLBP is set to 32.

3.5.2 Performance of multi-feature combination

In this section, we compare the performance of multi-feature descriptor (D-CSLBP ++

HOG) with single independent feature descriptor.
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Figure 3-13: Image retrieval performance (precision-recall curve) comparison of HOG,
D-CSLBP, D-CSLBP++HOG based approaches, on four datasets.

Fig.3-13 shows the precision-recall curves obtained with the different tested features:

D-CSLBP, HOG and D-CSLBP ++ HOG. It can be found that the binary feature D-CSLBP
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combined with HOG permits to improve image retrieval performance. Combining D-

CSLBP and HOG can achieve better result than each single feature, which means that

the combination is useful for place recognition.

Table 3.2: Comparison of F1 scores for different features and the state-of-the-art FAB-MAP
method, on four datasets.

Dataset
F1 score

D-CSLBP HOG D-CSLBP++HOG FAB-MAP
UTBM-1 0.8043 0.8752 0.8869 0.2356
UTBM-2 0.9299 0.9440 0.9532 0.4813
KITTI 05 0.7763 0.7782 0.7873 0.7417
KITTI 06 0.8850 0.8648 0.8973 0.3519

Table 3.2 compares the F1 scores of different features with the state-of-the-art FAB-

MAP method. It confirms that the multi-feature D-CSLBP++HOG achieves better results

than single feature. The F1 score of D-CSLBP++HOG provides the highest value for all

the four datasets. Furthermore, the proposed method outperforms the FAB-MAP method.

For a better comprehension of the proposed multi-feature, an example of distance ma-

trices for UTBM-1 dataset is presented in Fig.3-14. Here, for clearly demonstrates the

feature performance, the distance matrix D is normalized into 0-1 range. The distances of

same or similar images are close to 0 (red color), while for the larger distances, the cor-

responding color is close to yellow. As plotted in Fig.3-14 (b), the ground-truth line is a

red. When perceptual aliasing occurs, there will be some red points (noisy) appeared which

is outside the ground-truth line. In the distance matrix provided by our method using the

D-CSLBP++HOG feature (see Fig.3-14 (c)), it can be seen that the noisy which appear

around the diagonal (ground-truth line) due to perceptual aliasing are clearly reduced with

respect to other feature approaches (CSLBP, D-CSLBP and HOG). All the previous affir-

mations are supported by the precision-recall curves depicted in in Fig.3-13 (a) and results

in Table 3.2.

We can thus conclude that integrating HOG and disparity information permits to im-

prove the image matching results. The reason why the D-CSLBP++HOG achieves better

performance than the other features is mainly because the feature combination takes the ad-
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Figure 3-14: Example of distance matrices for UTBM-1 dataset. Here, the distance matrix
D is normalized into 0-1 range. The distances of same or similar images are close to 0
(red color), while for the larger distances, the corresponding color is close to yellow. In
(a), two images from a same place are taken at different times (difference of two weeks).
From figure (b) to figure (f), the distance matrix D is plotted. The distance matrices show
that multi-feature combination (c) reduces the noise appeared around the diagonal (ground-
truth line). Besides, compared with (d), after adding disparity information in (e), perceptual
aliasing decreases, as confirmed by the precision-recall curves in Fig.3-13 (a).

vantage of texture, shape and depth information, which makes image representation more

robust than considering each single feature independently.

3.5.3 LSH based visual recognition

Since the block based feature dimension is huge in our approach, computing the euclidean

distance between high dimensional feature vectors is an expensive operation. Therefore, in

order to speed up image matching significantly, Locality Sensitive Hashing (LSH) method

that preserves the euclidean similarity [18], is used for visual recognition. LSH is arguably

the most popular unsupervised hashing method and has been applied to many problems,
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including information retrieval and computer vision [86]. The paper [86] demonstrates that

euclidean distance between two high-dimensional vectors can be closely approximated by

the hamming distance between the respective hashed bit vectors. More hash bits that hash

method contains, the better approximation is.

The LSH method simply uses a random projection matrix to project the high dimen-

sional data into a low-dimensional binary (Hamming) space; that is, each data point is

mapped to a K-bit vector, called the hash key. Thus approximate nearest neighbors in sub-

linear time can be found. A key ingredient of locality sensitive hashing is mapping similar

features to the same bucket with high probability.

More precisely, for multi-features V test obtained from testing image and V train obtained

from training image, the hashing functions H(·) from LSH family satisfy the following

elegant locality preserving property:

P{H(V test) = H(V train)}= sim(V test ,V train) (3.29)

where the similarity measure sim is directly linked to the euclidean distance function. Hash

keys are constructed by applying K binary-valued hash functions to each image feature.

The K binary-valued LSH functions consists of random projections and thresholds as:

Htest(K) = sign(w⊤V test +b)

Htrain(K) = sign(w⊤V train +b)
(3.30)

where w is a K dimensional data-independent random hyperplane, which is usually con-

structed from a standard Gaussian distribution [26]. b is a random intercept. For a nor-

malized data set with zero mean, the approximately balanced partition is obtained with b =

0.

By applying K binary-valued hash functions to each image feature, high dimension

multi-features V test and V train are converted into a low K dimension bits Htest and Htrain.

Since Htest and Htrain are binary bits, they can be more efficiently compared in low dimen-

sion space than original feature.

In our experiment, we compare the place recognition performance achieved with hashed
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Figure 3-15: Image retrieval performance (precision-recall curve) comparison of different
hash bit lengths.

multi-feature of different binary lengths (28 . . . 212 bits) on four datasets in Fig.3-15. Since

the image size is different, multi-feature dimension in datasets UTBM-1 and UTBM-2 is

18696 while the multi-feature dimension in KITTI 05 and KITTI 06 is 6432. It can be seen

that, using 4096 and 2048 bits retain above 86% total place recognition performance.

Table 3.3 shows the F1 score obtained form different hash bit lengths applied on the

multi-feature (D-CSLBP++HOG) of our place recognition method. The average matching

time is also presented. Here average matching time does not include the feature extraction

time. The experiments were conducted on a laptop machine with intel i7-4700MQ CPU

and 32G RAM.

As Table 3.3 shows, the average matching time using 4096 bits is almost half of the

one using the euclidean distance over the original full features. Compared with the full

multi-feature matching, hashing the original multi-feature into 4096 bits makes the dis-
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tance computation and comparison easier and faster. There is no doubt that, for large scale

datasets, the speed up advantages can be more significant.

Table 3.3: F1 score and matching times comparison of different hash bit lengths for our
approach and the state-of-the-art FAB-MAP method.

Method
F1 score Average time per

matching (All datasets)UTBM-1 UTBM-2 KITTI 05 KITTI 06
256 hash bits 0.6571 0.8989 0.7425 0.8411 0.11×10−2 s
512 hash bits 0.8097 0.9409 0.7862 0.8786 0.38×10−2 s

1024 hash bits 0.8488 0.9562 0.7794 0.8936 0.88×10−2 s
2048 hash bits 0.8771 0.9532 0.7865 0.8973 1.78×10−2 s
4096 hash bits 0.8869 0.9537 0.7873 0.9006 3.61×10−2 s
Multi-feature 0.9258 0.9110 0.9166 0.9203 8.82× 10−2 s
FAB-MAP 0.2356 0.4813 0.7417 0.3519 2.83× 10−2s

3.5.4 Visual localization results

In the previous section, 4096 bits obtained by hashing the original feature shows its good

performance in place recognition. Therefore, in this section, we describe visual localization

results achieved by 4096 hash bits. Fig.3-16 shows the final place recognition results for

the different datasets at a precision level of 100%. For the datasets UTBM-1 and UTBM-

2, we obtained 23.81% and 11.35% recall at the 100% precision respectively. While in

the KITTI 05 and KITTI 06 datasets, a recall rate of 17.38% and 32.39% is achieved re-

spectively at the total correctly level. It should be noted that, at 100% precision level, the

obtained place recognition result is totally correct. A correct place recognition means a

successful visual localization, therefore, high recognition rate (recall) at 100% precision is,

more robust visual localization system is.

Fig.3-17 shows the place recognition based visual localization errors at different pre-

cision levels. When adjusting the threshold value T h, the recognition precision is also

changing. At 100% precision level, each recognized place is true positive and its local-

ization error is small (depending on the ground-truth criteria, in our case it is 5m). For

achieving the 100% recognition precision level, threshold value is set to 0.88 and 0.58 for
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(d) KITTI 06

Figure 3-16: Visual localization results obtained by our system on four datasets. The tra-
jectory of the vehicle is depicted with black lines, the loop closure zone is plotted by blue
lines. Red points are correctly recognized locations at 100% precision by using our pro-
posed approach. There are no false positives in any case. It is noted that the loop closure
zone of datasets UTBM-1 and UTBM-2 is the whole trajectory, while the loop closure zone
of KITTI 05 and KITTI 06 is only parts of the trajectory in blue.

UTBM-1 and UTBM-2 datasets respectively. It can be seen that, the visual localization

error is below 5m at 100% precision level. While with threshold T h increased to 0.9, the

precision level is decreasing and localization error of some locations exceeds 5m . When

the threshold is set to 1, which means every image matching result is positive, in this case,

the precision level is lowest and there are many false matching for place recognition, which

lead to huge localization error. In general, if small threshold is used, there are few false

recognition cases.

In addition, for visual recognition precision level below 100% , meaning that recog-
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(a) UTBM-1 dataset
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(b) UTBM-2 dataset

Figure 3-17: Place recognition based localization errors at different precision levels. The
dark line is the localization error for all recognition results (including the true positives
and false positives). Red "o" is localization error at 100% precision level. Green "+" is
localization error at 99% precision level. Blue "." is localization error at 90% precision
level.
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nized places are not totally correct, some false recognition places appear. For these false

recognized places, the localization error can be very large, because the testing image can

be wrongly matched to anyone in the training image database. That is also the reason why

some locations have huge localization error.

Table 3.4: Recall results and average localization error at three precision levels (4096 hash
bits).

Dateset
100% precision 99% precision 90% precision

Recall (%) Error (/m) Recall (%) Error (/m) Recall(%) Error (/m)
UTBM-1 23.81 2.08 89.62 2.34 95.00 3.53
UTBM-2 11.35 2.11 51.89 2.41 89.50 2.49
KITTI 05 17.38 3.50 61.59 13.08 65.92 13.08
KITTI 06 32.39 2.56 59.12 3.18 77.26 4.20

(a) Example of two images and their corre-
sponding LiDAR data.

(b) LiDAR based localization results. It can be seen that
using LiDAR only for long-term localization, will lead to
accumulated errror.

Figure 3-18: An example of LiDAR localization results.

Table 3.4 gives the average localization error and recall ratio at different precision lev-

els. For all these datasets, at 100% precision, the minimum localization error is 0 while

the maximum error is not larger than 5 m. It should be noted that, at 100% precision level,

some places can not be recognized and no localization results are obtained at these places.

This problem can be easily solved by visual odometry technique or extra sensors (as Li-

DAR or Inertial Measurement Unit (IMU)). Fig.3-18 shows the example of LiDAR based

localization in case of unrecognized positions with our place recognition based method.
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Here, a 2D LiDAR is used, and the transformation between two successive LiDAR point

sets can be computed using ICP (Iterative Closest Point) method. Thus, based on the previ-

ous position and the transformation information, the positions of unrecognized places can

be computed.

3.6 Conclusion and Future Works

In this chapter, we presented a visual vehicle localization approach that uses multi-feature

built from gray-scale image and disparity map. The multi-feature concatenates the D-

CSLBP and HOG features together to take the advantage of texture, depth and shape infor-

mation. Also, block based feature extraction was used to consider the spatial information.

Image matching using the proposed multi-feature D-CSLBP++HOG based on local sen-

sitive hashing makes the visual recognition more efficient. The results of our experiment

demonstrated that this approach provides an available place recognition based visual local-

ization in outdoor environment compared with the state of art FAB-MAP method.

However, in the long-term visual localization, place recognition is prone to be influ-

enced by appearance or seasonal changing. The future objective of our research is to

achieve a robust long-life localization at different times and seasons. Sequence matching

will be considered for place recognition in the following research.
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Chapter 4

Visual Localization Across Seasons

Using Sequence Matching Based on

Feature Combination

In Chapter 3, visual localization is achieved by single image matching based on multi-

feature D-CSLBP++HOG. The multi-feature obtained from gray-scale image and disparity

map showed its advantages in place describing. However, using stereo camera to get dis-

parity map, increases the hardware costs and processing time. In addition, HOG feature

is easy to be influenced by huge appearance variation, different illumination and seasonal

changing in long-term localization.

In this chapter, the problem of visual localization across seasons is addressed using

feature combination and sequence matching. Feature combination of CSLBP and GIST is

used to make place describing more robust, and sequence matching rather than single image

matching is used to improve the place recognition ability. Based on the above considera-

tion, a more robust visual localization system based on feature combination and sequence

matching is proposed. Experimental evaluation will show that our method is an effective

tool to perform visual localization across seasons. The results will also show an improved

precision-recall performance against state-of-the-art SeqSLAM algorithm.
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4.1 Introduction

Visual localization is an ongoing challenge in robotics, especially in seasonal changing sit-

uation. A single can look extremely different depending on the current season and weather

conditions. Visual localization system across different seasons must be robust without

being influenced by seasonal and weather variations that lead to vast variations in image

appearance.

As already cited in the previous chapter, FAB-MAP is a single image based matching

algorithm, which employs Bag-of-Words (BOW) image retrieval technique and a Bayesian

frame-work [24] to achieve robust place recognition. Recently, sequence SLAM (SeqS-

LAM) [72] adopting sequence matching rather than single image matching for place recog-

nition achieves significant performance improvements with respect to FAB-MAP. The us-

age of sequences allows higher robustness to lighting or extreme perceptual changes. In

SeqSLAM, image similarity is evaluated using the sum of absolute differences between

contrast enhanced and low-resolution images without the need of image keypoint extrac-

tion. However, in [100] some weaknesses of SeqSLAM were reported, such as the field of

view dependence and the complexity of parameters configuration. For these reasons, the

community continues searching for new methods which can satisfy the high requirements

needed to achieve robust life-long visual localization.

Besides that, CSLBP is one of the widely used binary descriptors, which is invariant

to monotonic changes in gray-scale and fast to calculate. As proved in Chapter 3, CSLBP

has strong place describing ability. Considering object shape information is changing (e.g.

leaves falling down, snow covering) at different seasons, GIST feature rather than HOG

is used in this work. GIST focuses more on the whole scene itself and on the relationship

between the outlines of the surfaces and their properties [30]. GIST and CSLBP can be seen

complementary for image representation in the sense that GIST focuses more on global

information and CSLBP emphasizes local texture information. Inspired by the advantages

of feature combination, CSLBP and GIST are combined together for place describing in

this chapter.

In this chapter, we present a visual localization method using sequence matching based
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on feature combination that is robust to extreme perceptual changes. Fig.4-1 illustrates

the general diagram of our approach. Based on features extracted from images, sequences

are efficiently matched using Chi-square distance and the best candidate to place matching

is recognized according to coherent sequence matching. Thus, visual localization is real-

ized through the recognized places. Image feature used in this chapter is a combination

of CSLBP and GIST, which should improve image distinguishing ability by capturing lo-

cal and global image information. We will demonstrate the algorithm performance using

multi-season videos of 30000 km long train ride in the northern Norway. For this, an ex-

tensive experimental study is conducted according to sequence matching length, as well as

a comparison of the proposed approach with the state of the art SeqSLAM [72] method.

Figure 4-1: General diagram of visual localization system using sequence matching.

This chapter is organized as follows: Section 4.2 describes the proposed visual local-

ization approach. Section 4.3 details experiment setup: the used dataset and evaluation

method. Experiments are presented with results in Section 4.4. Finally, Section 4.5 dis-

cusses the outcomes of this chapter and presents future work.
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4.2 Proposed Visual Localization Approach

The proposed visual localization method using CSLBP and GIST features to represent

image sequence, is realized based on sequence matching. As illustrated in Fig.4-1 and

Fig.4-2, there are five main components in our approach: image preprocessing, feature

extraction, sequence matching, matching validation and the last is visual localization based

on the matching result.

To detail, a set of GPS tagged training images is firstly acquired. After image pre-

processing (Section 4.2.1), CSLBP and GIST features are extracted independently from

the images of the training database and then concatenated together to form multi-feature

CSLBP++GIST (Section 4.2.2). Then, multi-feature CSLBP++GIST obtained from images

of a sequence are concatenated (++) to form the final sequence feature (F) representing

the sequence. Here, sequence consists of consecutive images and each sequence is inde-

pendent. A current place (represented by a testing sequence) is then recognized through

Figure 4-2: Flow chart of proposed visual localization using sequence matching.
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sequence matching step based on Chi-square distance (Section 4.2.3).

In the step of sequence matching, for each testing sequence, the sequence candidate

from the training database that provides the minimum distance can be considered as the

most similar one to the testing sequence. In fact, the two best sequence matching candidates

are conserved for further verifying the final matching result.

Effectively, the best matching candidate will be validated through a distance ratio SS

(Section 4.2.4), computed from the two minimum scores (the first minimum distance di-

vided by the second minimum distance). If the ratio SS is lower than or equal to a threshold

T h, the first best sequence candidate (with the lower distance) is confirmed and regarded

as positive matching, otherwise it is considered as negative one (in this case, no match-

ing result is conserved). When a sequence candidate is confirmed as positive, the position

can be obtained from the GPS information that correspond to the matched training images

(Section 4.2.5).

4.2.1 Image preprocessing

As mentioned in paper [89] and already considered in the previous chapter, high resolution

images are not needed to perform an effective visual recognition along time. Indeed, high

resolution images increase computational cost without bringing significant visual recog-

nition improvement. For image storage and efficient matching, in this work, the original

images are down-sampled into 32×32 pixels before feature extraction.

4.2.2 Feature extraction

Feature extraction consists of three steps: (1) CSLBP and GIST are firstly extracted from

image independently; (2) Then they are concatenated (++) together to form multi-feature;

(3) Finally, the CSLBP++GIST multi-features obtained from images of a sequence are

concatenated (++) to form the final sequence feature (F) representing the sequence.

1) CSLBP feature: As already described, CSLBP is a modified version of LBP. We

recall that, for an even number P of neighboring pixels distributed on radius R, the feature

of uniform LBP pattern (the property of the “uniform patterns” is that the number of 0-1
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transitions is no more than 2) is a P(P−1)+3 dimension histogram (details can be found

in Section 3.2 of Chapter 3). While CSLBP operator produces 2P/2 patterns as follows:

CSLBPP,R(xc,yc) =
(P/2)−1

∑
i=0

s(|gi−gi+(P/2)|)2i (4.1)

s(x)

1, x > T

0, otherwise
(4.2)

where gi and gi+(P/2) correspond to the gray values of center-symmetric pairs of pixels (P

in total) equally spaced around central pixel (xc, yc). T is used to threshold the gray-level

difference so as to increase robustness of CSLBP feature on flat image regions. Since the

gray levels are normalized in [0,1], the authors of paper [43] recommend to use small value

for T .

CSLBP is closely related to the gradient operator, because it compares the gray levels

of pairs of pixels in centered symmetric directions instead of comparing the central pixel

to its neighbors. In this way, CSLBP feature takes advantage of the properties of both LBP

and gradient based features. For an image of size 32× 32, after CSLBP pattern of each

pixel is computed, a histogram is built to represent the image texture:

fCSLBP =
32

∑
i=1

32

∑
j=1

f (CSLBPP,R(i, j), l) , l = 0,1,2,3, · · · ,2P/2−1, (4.3)

f (x,y) =

1, x = y

0, othersize
(4.4)

By construction, the length of the histogram resulting from the CSLBP feature is 2P/2. It

is obvious that CSLBP produces shorter feature set than LBP. Also, it is a first order local

pattern in center symmetric direction and it ignores the central pixel information.

In this work, 8 sampling points and 3 pixels radius around the center pixel are set, thus

16-dimensional CSLBP features are obtained.

2) GIST feature: It is a global image feature, which characterizes several important

statistic information about a scene [94]. A variety of experimental studies have demon-
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strated that humans perform rapid categorization of a scene by integrating only coarse

global information that can be extracted using “ GIST ” [97]. Using the model proposed by

Oliva [81], GIST feature is computed by convolving an oriented filter with down-sampled

images (32×32) at several different orientations and scales. The scores for the filter convo-

lution at each orientation and scale are stored in an array and resulting in a 512-dimensional

feature.

3) Feature combination: After getting CSLBP feature fLBP and GIST feature fGIST

from an image, they are combined into a new CSLBP++GIST feature f . The combination

consists simply in concatenating (++) the two features:

f = fCSLBP ++ fGIST (4.5)

Combining CSLBP and GIST features allows taking simultaneously advantage of local

and global image information and thus allows representing the scene of each location more

comprehensively.

Fig.4-3 illustrates an example of extracted features. It can be seen that CSLBP and LBP

features pay more attention to the image detail (local information), and CSLBP represents

better the image than LBP. While GIST feature pays more attention to the whole scene.

Therefore, combination of the local feature CSLBP and global feature GIST will describe

the place better and should improve place recognition performance.

4) Sequence feature: Finally, the CSLBP++GIST features extracted from images of

a sequence are concatenated (++) to form the final sequence feature (F) representing the

sequence of images:

F = fi ++ fi+1 ++ fi+2 ++...++ fm−2 ++ fm−1 ++ fm (4.6)

where, i, i+ 1, · · · m are the indexes of the consecutive images composing the sequence,

and Llength = m− i+1 is the length of the sequence. The total feature dimension is 528×

Llength. 528 is the sum of 16 (dimension of CSLBP feature) and 512 (dimension of GIST

feature).

Here, each sequence is composed of consecutive images. For that, original image
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(a) Summer image

(b) LBP image

(c) CSLBP image

(d) GIST image

(e) Winter image

(f) LBP image

(g) CSLBP image

(h) GIST image

Figure 4-3: Example of extracted features. The first row shows the original images. The
second and third rows show the images of LBP and CSLBP features respectively. The
fourth row gives the images of GIST features.
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database is simply divided into sequences with the same length. Since training and testing

route is traveled with a similar speed, the same sequence length is also used for testing se-

quence. Thus, each sequence can be represented using sequence feature (F) with the same

dimension.

4.2.3 Image sequence matching

To perform sequence matching, similarity between sequence features is evaluated through

Chi-squared distance. The Chi-squared distance is a nonlinear metric which can be cal-

culated easily. Suppose the numbers of training and testing images are Ntrain and Ntest

respectively, and sequence length is Llength. Therefore, the training sequence number is

M = Ntrain/Llength and the testing sequence number is N = Ntest/Llength.

Given a testing sequence Qtest
i (composed of the Llength last consecutive testing images),

it will be compared with each training sequence Qtrain
j ( j = 1,2, · · · ,M) from the training

database. Since the sequence lengths are same, therefore the sequence matching can be

conveniently conducted using the Chi-squared distance.

The similarity value between the two sequences Qtest
i and Qtrain

j is measured using the

Chi-squared distance Di j, computed as follows:

Di, j = χ2(F test
i ,F train

j ) = ∑
k

((F test
i )k− (F train

j )k)
2

|(F test
i )k +(F train

j )k|
(4.7)

Where F test
i is the feature vector of the current testing sequence Qtest

i , F train
j is the feature

vector of a training sequence Qtrain
j (from the training dataset). k is index of the components

of feature vector: k = 1,2, · · · ,528×Llength. Then, all the computed Di, j form a distance

matrix D.

For sequence matching, feature vector of the current sequence Qtest
i is compared with

feature vector of each training sequence Qtrain
j ( j = 1,2, · · · ,M). Based on the distances

Di, j( j = 1,2, · · · ,M), the two best training sequence candidates (which have the first mini-

mum distance and second minimum distance) that best match the current testing sequence

are conserved.
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4.2.4 Matching validation

In order to reduce false matching cases, the ratio SSi computed from the first minimum

distance and second minimum distance is used to validate the matching result (as for single

image matching):

SSi =
Di,m1

Di,m2
(4.8)

where Di,m1 and Di,m2 are respectively the first and second minimum distances between the

feature vector of current testing sequence Qtest
i and the feature vectors of all the training

sequences Qtrain
j ( j = 1,2, · · · ,M), as follows:


Di,m1 = min

j
{Di, j}

Di,m2 = min
j( j ̸=m1)

{Di, j}
(4.9)

The values of SSi are between 0 and 1. A threshold is then applied to the score SSi to

determine if the sequence pair (i,m1) is matched or not. The matching is considered as

positive when the distance ratio SSi is lower than or equal to the threshold T h, otherwise it

is considered as negative and the sequence pair is ignored.

4.2.5 Visual localization

After one sequence matching candidate is successfully validated, the vehicle can localize

itself through the GPS information attached to the matched training sequence. Effectively,

since the training images are tagged with GPS or pose information, the vehicle can get

its position through the training images that matched with the current testing sequence.

This is a topological level localization, that is, the system simply identifies the most likely

location. Therefore, this is not a very accurate localization, because the training and testing

trajectories are not exactly same.

4.2.6 Algorithm of proposed visual localization

Algorithm 4.1 illustrates the proposed method for sequence matching based visual localiza-

tion. It includes feature extraction and combination, image sequence matching, matching

validation and visual localization steps.
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Algorithm 4.1 Sequence matching based visual localization using feature combination.
Inputs:
{Itrain

j }Ntrain

j=1 {training images}; {Itest
i }Ntest

i=1 {testing images };
Ntrain,Ntest {training and testing images numbers};

Outputs:
SS{distance ratio}; Vehicle position

Algorithm:
/∗ Feature extraction and combination; {Section 4.2.2} ∗/
for j j← 1 to Ntrain do

fCSLBP, fGIST ← CSLBP and GIST features extraction for training images;
f train

j j ← fCSLBP ++ fGIST ; //Feature combination.
end for
for j← 1 to Ntrain/Llength do

j j← ( j−1)×Llength;
F train

j ← f train
j j+1 ++ f train

j j+2 ++ · · · f train
j j+Llength

; //Feature of training sequence.
end for

for ii← 1 to Ntest do
fCSLBP, fGIST ← CSLBP and GIST features extraction for testing images;
f test
ii ← fCSLBP ++ fGIST ; //Feature combination.

end for
for i← 1 to Ntest/Llength do

ii← (i−1)×Llength;
F test

i ← f test
ii+1 ++ f test

ii+2 ++ · · · f test
ii+Llength

; //Feature of testing sequence.
end for

/∗ Sequence matching based on feature sequences; {Section 4.2.3} ∗ /
for i← 1 to Ntest/Llength do

for j← 1 to Ntrain/Llength do

Di, j ← ∑k
((Ftest

i )k−(Ftrain
j )k)

2

|(Ftest
i )k+(Ftrain

j )k|
; //Chi-square distance computation, k is the index of

the compents of feature vector.
end for

/∗Matching validation and visual localization; {Section 4.2.4 and 4.2.5} ∗ /

SSi =
min

j
{Di, j}

min
j( j ̸=m1)

{Di, j} ; m1 is the index of the first minimum distance.

if SSi <= T h
Matching validation is positive;
Vehicle position← the matched training image position

if SSi > T h
Matching validation is negative;
Vehicle position← NaN (no position result)

end for
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4.3 Experimental Setup

In this section, the used dataset is described as well as ground-truth and image pre-processing.

4.3.1 Dataset and ground-truth

The dataset used in our work is an open dataset called Nordland1. It is composed of footage

videos of a 728 km long train ride between two cities in north Norway [100] (see Fig.4-4).

The complete 10 hours journey has been recorded in four seasons. Thus, the dataset can be

considered as a single 728 km long loop that is traversed four times. As illustrated in Fig.4-

5, there is an immense variation in the appearance of the landscape, reaching from green

vegetation in spring and summer to colored foliage in autumn and complete snow-cover in

winter over fresh. In addition to the seasonal changes, different local weather conditions

Figure 4-4: Nordland route. Source: Google map. The trajectory is recorded four times,
once in every season. Video sequences are synchronized and the camera position and field
of view are always the same. GPS readings are available.

1https://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-by-season/
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like sunshine, overcast skies, rain and snowfall are experienced on the long trip. Most of

the journey leads through natural scenery, but the train also passes through urban areas

along the way and occasionally stops at train stations or signals. The original videos have

been recorded at 25 fps with a resolution of 1920×1080 using a SonyXDcam with a Canon

image stabilizing lens. GPS readings were recorded in conjunction with the video at 1 Hz.

The full-HD recordings have been time-synchronized such that the position of the train in

an arbitrary frame from one video corresponds to the same frame in any of the other three

videos. This was achieved by using the recorded GPS positions through interpolation of

the GPS measurements to 25 Hz to match the video frame rate.

Figure 4-5: A typical four seasons images representing the same scene in spring, summer,
fall and winter. It can be seen that huge differences appear in the images with season
changing.

For the experiments described in the following, image frames are extracted from the

original videos at 1 fps, there are then 35768 image frames for each season. Each image is

then down-sampled these images to 32×32 pixels and converted into gray-level images.
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4.3.2 Evaluation method

Precision-recall characteristics are widely used to evaluate the effectiveness of image re-

trieval. Therefore, as used in the previous chapter, our evaluation methodology is based on

precision-recall curves. These curves are determined by varying the threshold T h between

0 and 1, applied to the ratio SS and calculating precision and recall (see section 4.3.2).

Precision relates to the number of correct matches to the number of false matches, whereas

recall relates to the number of correct matches to the number of missed matches. Positives

are considered when ratio is lower than or equal to the threshold T h. Here 100 threshold

values are considered to obtain well-defined precision-recall curves.

In this experiment, the training image number is equal to the testing image number, and

each testing image has a ground truth matching. Therefore, there are only true positives

(correct results among successfully validated image matching candidates) and false posi-

tives (wrong results among successfully validated image matching candidates). The sum

of the true positives and false positives is the total retrieved image numbers.

4.4 Experiments and Results

4.4.1 Feature combination analysis

In a first set of experiments, we evaluate how well do feature combinations perform for

place recognition and also compare the results with those obtained by the state-of-art Se-

qSLAM method. The experiments were conducted using the videos presenting extreme

situation in terms of appearance changes (Spring vs Winter). The length of each sequence

is 200 images. As shown in Fig.4-6, the CSLBP and GIST features perform very well

when they are used independently. Indeed, our method with CSLBP performs relatively

well at high precision level, while GIST outperforms SeqSLAM method. When using the

multi-feature (CSLBP++GIST), the retrieval ability is increased significantly. The reason

is that CSLBP++GIST takes advantage of local and global information can distinguish the

similar images more accurately.

It can be seen that our method with CSLBP++GIST can reach around 65% of recall at
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Figure 4-6: Performance of the proposed method according to different used features and
comparison with SeqSLAM method (summer vs winter, sequence length Llength=200).

100% precision, which outperforms a little LBP++GIST and significantly the SeqSLAM

method. It should be noted that the image size used in SeqSLAM is also 32×32 and the

other parameters of SeqSLAM method correspond to default situation as used in [100].

4.4.2 Sequence length selection

Traditionally visual localization has been performed by considering places represented by

single images. Recently, several approaches such as SeqSLAM, have proved that recogniz-

ing places through sequences of images is more robust and effective [72]. In this chapter,

we also follow the idea of using sequences of images instead of single image for identify-

ing places. This approach allows to achieve better results for visual localization in different

seasons, as it can be seen in Fig.4-7.

Fig.4-7 shows the performance achieved when varying sequence length between 1 and

300 frames for two different feature combination: LBP++GIST and CSLBP++GIST. Sig-

89



Recall (%)
0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 (%

)

0

10

20

30

40

50

60

70

80

90

100

L
length

=1

L
length

=10

L
length

=50

L
length

=100

L
length

=150

L
length

=200

L
length

=250

L
length

=300

(a) LBP++GIST

Recall (%)
0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 (%

)

0

10

20

30

40

50

60

70

80

90

100

L
length

=1

L
length

=10

L
length

=50

L
length

=100

L
length

=150

L
length

=200

L
length

=250

L
length

=300

(b) CSLBP++GIST

Figure 4-7: Performance comparison of our proposed method with different feature com-
bination, according to image sequence length Llength (spring vs winter).
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nificant performance improvement was achieved by increasing the sequence length up to

200 frames, after which the improvement became modest. According to the precision-

recall curves demonstrated in Fig.4-7, the influence of sequence length (Llength) is decisive

for improving the performance of visual localization in different seasons. Moreover, there

is a limit near to a length of 200 frames, from which the results are not greatly enhanced.

For this reason, sequence length Llength is set to 200 frames in the rest of the experiments.
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Figure 4-8: Ground-truth. Since frame from one season corresponds to the same frame in
any of the other three seasons, the ground-truth is diagonal.
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Figure 4-9: Matching results under different season couples at 100% recall situation. The
expected result is along the diagonal.
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4.4.3 Visual localization under different season couples

After feature performance evaluation and sequence length selection, visual localization

using sequence matching based on multi-feature combination (CSLBP++GIST) was com-

pared under different season couples.

Fig.4-8 illustrates the ground-truth of image matching (for every possible couple of

seasons). It should be noted that the position of the train in an arbitrary frame in one

season corresponds to the same frame in any of the other three seasons thanks to time-

synchronization.

The matching results under different season couples are depicted in Fig.4-9. As our

objective is to correctly identify the place as much as possible (along the diagonal), it can

be seen that the result of “summer vs fall” is the best among the others. It can be also

noticed that when the winter sequence is evaluated (Fig.4-9 (c), (e) and (f)), the number of

unrecognized places increase, that is because the snow in winter leads to featureless scenes.

Fig.4-10 shows precision-recall curves of matching results under different season cou-

ples. It can be easily found that visual recognition performance of our method is better

under (spring vs summer), (spring vs fall) and (summer vs fall), where we can reach above

85% of recall at 100% precision level. It can be seen also that our proposed multi-feature

combination method can achieve recall rate above 60% at 100% precision under all the sea-

son couples. The overall performance of CSLBP++GIST is better than that of LBP++GIST.

As expected, when winter sequence is evaluated, the effectiveness of our method decreases

due to the extreme changes that this season causes in place appearance because of environ-

mental conditions such as presence of snow, illumination and vegetation changes, etc.

Fig.4-11 shows an example of frame matches using the proposed method. Despite the

large variations in appearance (many vegetations in fall while snow covering the ground in

winter), place recognition using the multi-feature attained good matching performance.

For the visual localization based on place recognition, we are primarily interested in the

recognition rate high precision level. The recall scores for high selected precision values of

SeqSLAM method and our proposed approach are given in Table 4.1. For all the cases, our
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Figure 4-10: Precision-recall curves comparing the performance of different feature com-
bination under different season couples.
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(a) Fall (b) Winter

Figure 4-11: Corresponding frames from sequence matching between two seasons (fall and
winter). The left column shows fall image frames queried from winter traversal, and the
right column shows the winter image frames recalled by our approach.
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proposed place recognition based visual localization algorithm achieves the better recall

rate. Moreover, in “ spring vs summer ” and “ spring vs fall ” situations, the recall rates of

our approach is higher than 85% for all the high precision values recorded in Table 4.1.

Table 4.1: Recall scores at selected high precision levels (100%, 99%, 90%)

Different season
couples

Method 100%
precision

99%
precision

90%
precision

Spring vs Summer
SeqSLAM 20.45 27.73 66.11

LBP++GIST 87.64 87.64 92.70
CSLBP++GIST 87.64 87.64 93.26

Spring vs Fall
SeqSLAM 15.41 27.45 63.87

LBP++GIST 88.20 89.89 93.82
CSLBP++GIST 89.33 91.01 93.28

Spring vs Winter
SeqSLAM 14.29 17.37 62.18

LBP++GIST 63.48 66.58 82.58
CSLBP++GIST 60.67 62.92 82.58

Summer vs Fall
SeqSLAM 9.80 23.81 65.27

LBP++GIST 71.35 76.97 87.64
CSLBP++GIST 93.26 95.51 97.19

Summer vs Winter
SeqSLAM 14.01 27.45 53.50

LBP++GIST 62.92 67.42 79.21
CSLBP++GIST 64.04 67.98 80.90

Fall vs Winter
SeqSLAM 2.24 2.35 44.82

LBP++GIST 64.40 66.29 77.53
CSLBP++GIST 66.85 67.42 76.97

For both SeqSLAM method and our approach, recall rate increases when precision is

decreasing. The recall rate of the two methods increases drastically at 90% precision. Be-

sides that, the recall rate of SeqSLAM method is lower than the recall rate of the proposed

method, and worst for all the high precision values. This is probably due to the fact that

the SeqSLAM method has a certain dependence of the field of view and the image size, as

demonstrated in [100].

Fig.4-12 shows visual localization results of different season couples at 100% precision

level. It can be seen that most places can be successfully localized, and at least 60% of the

places (red points) can be localized in the worse matching case (spring vs winter).

In addition, the computational time of sequence matching using the combined feature

(CSLBP++GIST), is illustrated in Table 4.2. The computational time is increasing when
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Figure 4-12: Visual localization results under different season couples at 100% precision
level. Successful matched images that come from the same location (on the basis of ap-
pearance alone) are marked in red points.
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the size of training database is large. Since CSLBP++GIST feature dimension is lower

that of LBP++GIST, so the processing time of CSLBP++GIST based matching is shorter.

Compared with SeqSLAM, the proposed method using CSLBP++GIST feature is faster.

The experiment were conducted on a Intel Core i7, 2.40 GHz laptop.

Table 4.2: Comparison of average processing times for image matching(/s)

No. images in
database

SeqSLAM LBP++GIST CSLBP++GIST

200 3.5335 3.1280 2.9463
2000 54.6982 20.4664 18.3309
20000 87.6982 33.4664 37.3309

4.5 Conclusion and Future Works

In this chapter, we proposed a feature combination based sequence matching method to per-

form robust localization even under substantial seasonal changes. After feature extraction,

Chi-square distance is used to measure similarity between a testing sequence and the train-

ing sequences of a training database. A distance ratio is then calculated before applying a

thresholding procedure to validate the good matching candidates.

Thanks to precision-recall based evaluation, experimental results showed that the pro-

posed sequence matching method is more robust and effective for long-term visual local-

ization in challenging environments. The proposed method takes advantages of local and

global image information, which can reduce aliasing problem. Sequence length analysis

demonstrated that sequences as long as 200 frames could provide viable recognition re-

sults. Shorter sequences cannot achieve acceptable results, while longer ones cannot bring

significant improvement. Compared to the state of the art SeqSLAM method, the proposed

approach provides better recognition performances. In addition, according to the localiza-

tion results, at least 60% of the places can be localized using the appearance through the

proposed method.

However, using feature combination increases feature vector dimension and thus in-

creases time computation. To overcome this limitation, we envision to deal with dimension
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reduction using space projection techniques or searching methods like local sensitive hash-

ing (as done in the approach presented in Chapter 3). Another drawback is that, in the

performed experiments, testing and training sequence lengths are same as that twice driv-

ing speeds of train are very close. In the future, more flexible sequence length selection

and matching strategy should be considered.
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Chapter 5

All-environment Visual Localization

Based on ConvNet Features and

Localized Sequence Matching

In Chapter 4, the used hand-craft feature CSLBP++GIST and sequence matching technique

bring some benefits for visual localization in some simple driving traffic environment. In

this chapter, for further study, deep learning features (ConvNet features) instead of hand-

craft features are used to strengthen place describing ability, and localized sequence match-

ing is developed to improve sequence matching performance. Therefore, the advantages

of ConvNet features obtained from convolutional neural networks and localized sequence

matching technique are investigated in this chapter.

5.1 Introduction

As illustrated in the previous chapters, place recognition based visual localization can be

achieved by sophisticated hand-crafted features. However, as robots or vehicles operate

for longer periods of time in real-world environments, the huge variations on the visual

perception of a place caused by factors such as different days, varying weather conditions

and seasonal changes, remain a significant challenge for place recognition based visual

localization. Though many advances have been made in the recent past [72, 104], improv-
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ing place recognition accuracy and reliability for visual localization, still remains an open

problem.

There are particular issues in the domain of environments and appearance changes (such

as illumination changes, across seasons, structural changes in the environment, etc.) that af-

fect place recognition accuracy, which need to be addressed to achieve all-environment vi-

sual localization. Therefore, there is a need to have robust place recognition systems which

have strong place describing and recognizing abilities that can deal with these changes (ap-

pearance and illumination invariants). The biggest advantage of a such system would be for

all-environment localization across months or years, as there will not be a need to update

the map with multiple copies of the same location under different conditions.

Currently, deep learning applied in computer vision areas can help to robustly solve the

previously mentioned dilemmas associated with all-environment visual localization. Deep

learning methods aim at learning feature hierarchies with features from higher levels of

the hierarchy formed by the composition of lower level features. Automatically learning

features at multiple levels of abstraction allow a system to learn complex functions mapping

the input to the output directly from image data, without depending completely on human-

crafted features [11]. Convolutional neural network (ConvNet) as one of promising deep

learning which removes complicated and problematic hand-crafted feature engineering,

are sensitive to small sub-regions of visual field which are well-suited to exploit the strong

spatially local correlation present in natural images [66]. ConvNet features extracted from

convolutional neural network have been demonstrated to be versatile and transferable that

is, even though they have be trained to solve a particular task, they can be used to solve

different problems [101].

The supervised deep convolutional neural networks permit to deliver high level perfor-

mance on most of challenging classification tasks [41]. Through training on large amounts

of labeled data, millions of network parameters can be optimized which makes the deep

networks robust and powerful. Once trained, ConvNets obtain discriminative and human-

interpretable feature representations [69]. Therefore, it is practicable to develop powerful

and robust visual localization systems by taking advantage of ConvNet features.

In this chapter, the problem of all-environment visual localization is addressed by de-

100



Figure 5-1: Schematic illustration of visual localization using ConvNet features and lo-
calized sequence matching. ConvNet features are extracted from testing images and then
compared to those extracted from all images of the training database. After feature com-
parison, localized sequence matching is conducted to find the best image matching.

veloping a localized sequences matching based place recognition framework using Con-

vNet features. The visual localization framework centered around ConvNet features and

localized sequence matching is illustrated in Fig.5-1. ConvNet features are firstly extracted

using a pre-trained network, then the features are compared using cosine distance. Finally,

localized sequence matching is conducted to recognize the current place.

In our work, we exploit the hierarchical nature of ConvNet features and compare dif-

ferent ConvNet layers for place recognition under severe appearance and illumination vari-

ations. Furthermore, a comparison with state-of-the-art place recognition methods is per-

formed on four datasets. The F1 scores attained with the conv4 layer of ConvNet for the

four different datasets are higher than 0.85, which is significant better than those of FAB-

MAP and SeqSLAM. At last, for real-time visual localization consideration, a speed-up

method is achieved by approximating the cosine distance between features with hamming

distance over bit vectors obtained by Locality Sensitive Hashing (LSH). Using 4096 hash

bits instead of the original feature permits to accelerate by 12 times the computation time,

retaining 95% of original place recognition performance.

The chapter structure is as follows. In Section 5.2, the components of the proposed
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place recognition based visual localization system are described. Experimental setup is

described in Section 5.3, and results are presented in Section 5.4. Finally, the chapter is

concluded and future works are discussed in Section 5.5.

5.2 Proposed Approach

The proposed visual localization approach can be divided into off-line and on-line parts. In

the off-line part, a set of GPS tagged training images Itrain = {Itrain
i }Ntrain

i=1 is firstly acquired,

where Ntrain is the number of training images. Then, the pre-trained caffe-alex network

(trained using ILSVRC2012 dataset) is used to extract features from training images [54].

The extracted ConvNet features from training database are noted F train ={ f train
i }Ntrain

i=1 ,

where f train
i is the feature extracted from the training image Itrain

i . For the on-line phase,

the current testing image Itest
T is input into caffe-alex network and the ConvNet feature f test

T

of the current testing image is computed. Then, f test
T is compared with the training image

feature set { f train
i }Ntrain

i=1 using cosine distance (Section 5.2.2).

Figure 5-2: Detailed block diagram of the proposed visual localization method. Feature
extraction uses pre-trained network, feature comparison uses cosine distance and localized
sequence searching is based on potential paths.

In terms of localized sequence matching, given a testing sequence of length ds (the

sequence is composed of images indexed from T − ds + 1 to T , where T is the index of
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the current image), some possible training sequence candidates are firstly determined from

the training database through the ratio between the testing and training trajectory speeds.

For each possible training sequence candidate, a score S is calculated by summing all the

cosine distances along the sequence (Section 5.2.3). The sequence candidate that provides

the minimum score can be considered as the most similar one to the testing sequence.

In fact, the two best sequences (according to matching score) are conserved for further

validating the final matching result.

Following, the best matching candidate will be validated through a distance ratio SS

(see Section 5.2.4). This distance ratio SS of the two minimum computed distances (cor-

responding to the two best candidates) is considered to validate the training sequence that

finally best matches to the current testing sequence. If the ratio SS is below or equal to

a threshold T h, the first best sequence candidate (with the lower matching score) is con-

firmed and regarded as positive, otherwise it is considered as negative one (in this case,

no matching result is conserved). When a sequence candidate is confirmed as positive, the

position can be obtained from the matched GPS-tagged training images (see Section 5.2.5).

As illustrated in Fig.5-2, there are four important components in our visual localization

approach:

• ConvNet features extraction (detailed in Section 5.2.1): ConvNet features F train

are extracted from all training database images by off-line processing and f test
T is

extracted from current testing image by on-line processing, using the pre-trained

caffe-alex network. These learned features are robust to both appearance and illumi-

nation changes and allow representing each location (place) very well. The extracted

ConvNet features will be compared in the next step.

• Feature comparison (detailed in Section 5.2.2): The cosine distances are computed

between the feature f test
T of the current testing image and the features { f train

i }Ntrain

i=1

of all the images of the training database. All these distances formed a vector DT .

Based on this, localized sequence matching will be conducted in the next step.

• Localized sequence matching (detailed in Section 5.2.3): To achieve efficient place

recognition, localized sequence matching is used instead of single image match-
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ing. Considering the testing sequence composed of the last ds testing images (in-

dexed from T − ds + 1 to T ), sequence matching is conducted in the matrix MT =

[DT−ds+1,DT−ds+2, · · · ,DT ]. According to the ratio between the testing and training

trajectory speeds, some possible training sequence candidates in the training database

can be firstly determined. A score S is calculated by summing all the testing image

to training image cosine distances along each possible sequence candidate. The se-

quence that provides the minimum score can be considered as the most similar one

to the testing sequence. The two best sequence matching scores are conserved for

further matching validation.

• Final Matching Validation (detailed in Section 5.2.4): For each testing sequence,

the best training sequence candidate will be validate in this step to reduce some false

recognition. The ratio SS between the two best sequence matching scores is used to

verify the best sequence candidate. If the ratio SS is below or equal to a threshold

T h, the first candidate (with the lower matching score) is confirmed and regarded

as positive matching, otherwise it is considered as negative one (in this case, no

matching is conserved).

Several advantages of our approach can be highlighted:

1) The system uses an off-the-shelf pre-trained convolutional network to extract features

which makes feature extraction more conveniently.

2) ConvNet features as auto-learned features are more stable and powerful. By using

these robust features as descriptors for place representation, we inherit their robustness

against appearance and weather changing.

3) Using a localized sequence matching allows us to search in a small range rather than

in the whole training database. This makes place recognition more robust and efficient.

5.2.1 ConvNet features extraction

In this work, caffe-alex [45] ConvNet pre-trained model (provided by MatConvNet) and

MatConvNet toolbox [105] are deployed to extract features. The caffe-alex ConvNet model

is a 21 layers network (see Fig.5-3) which is mainly constructed by five different layer
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Figure 5-3: Architecture of the caffe-alex network. ConvNet transforms the original image,
layer by layer, from the original pixel values to the final class scores.

types: convolutional layer (conv), pooling layer (pool), rectified linear units layer (relu),

normalization layer (norm) and fully-connected layer (fc).

Among these layers, conv layers compute the output of neurons which are the core

building blocks of a convolutional Network. The output of conv layers can be interpreted

as holding neurons arranged in a 3D volume. Relu layers apply an element-wise activation

function. Pool layers perform a down-sampling operation along the spatial dimensions.

Norm layers can be used to get some kind of inhibition scheme. The fc layers, as fully-

connected layers, compute the class scores.

Let consider an image x and ConvNet learned parameter w. From the input layer (taking

the image x) of the network, a sequence of layered outputs is produced. Each layer output

is the input of the next layer. Thus, the original input image is transformed layer by layer

to the final class scores:

f (x) = f21(. . . f2( f1(x;w1);w2) . . .),w21) (5.1)

where f1, · · · , f21 are the corresponding layer functions as illustrated in Fig.5-3. Each layer

output is a deep learnt representation of the image (ConvNet feature). The low layers retain

high spatial resolution with low-level visual information. While high layers capture more

semantic information and less fine-grained spatial details. The network is able to process

images of any size equal to or greater than 227×227 pixels (the original caffe-alex net-
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work was trained on 227×227 images). Place recognition is then performed by comparing

the ConvNet features extracted from current testing image Itest
T with the ConvNet features

extracted from all the images {Itrain
T }Ntrain

i=1 of the training database.

Considering that middle layers take the advantage of both low-level and semantic in-

formation, our approach exploits feature information of these middle layers to handle large

appearance changes and then alleviate false recognition. The used layers and their di-

mensionality are listed in Table 5.1. The corresponding ConvNet features generated by

convolutional Networks from an example of input image are illustrated in Fig.5-4. It can

be seen that conv4, conv5 and relu5 layers provide more image spatial information while

pool5, fc6 and fc7 layers bring more semantic information.

Figure 5-4: An example of a scene and extracted features from different layers of the caffe-
alex network. Features obtained from different ConvNet layers can serve as holistic image
descriptors for place describing.
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Table 5.1: The layers from the caffe-alex ConvNet model used in our evaluation and their
output dimensionality (height×width×feature map number).

Layer Dimensions Layer Dimensions
conv4 13 × 13 × 384 pool5 6 × 6 × 256
conv5 13 × 13 × 256 fc6 1 × 1 × 4096
relu5 13 × 13 × 256 fc7 1 × 1 × 4096

5.2.2 Feature comparison

Feature comparison is performed based on the cosine distance between ConvNet features.

Each test image feature is compared with the image features of all the training images. For

that, the cosine distances between the feature f test
T of the current testing image Itest

T and the

features { f train
i }Ntrain

i=1 of all the images of the training database are computed as follows :

dT,i = cos⟨ f test
T , f train

i ⟩=
f test
T · f train

i

∥ f test
T ∥∥ f train

i ∥
; i = 1,2, · · · ,Ntrain (5.2)

Then, these Ntrain distances are concatenated to form a vector DT ∈ RNtrain×1:

DT = [cos⟨ f test
T , f train

1 ⟩,cos⟨ f test
T , f train

2 ⟩, · · · ,cos⟨ f test
T , f train

Ntrain⟩] (5.3)

where Ntrain is the total number of images in training database. DT is the vector that

contains the cosine distance between the testing image Itest
T and all the training images. It

is represented as a column in a matrix as shown in Fig.5-5.

5.2.3 Localized sequence matching

Assume that the vehicle travels in repeated route with negligible relative acceleration. For

a given testing sequence, composed of ds images, indexed from T − ds + 1 to T , where

T is the index of the current testing image, we search the corresponding sequence (from

the training database) in a local matrix rather than in the whole training database. This

searching procedure is performed by considering possible training sequence candidates,

that are determined by the speed ratio between the training and testing trajectories. This
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Figure 5-5: Procedure for ConvNet features comparison. Features are extracted from each
testing image and then compared with features extracted from all training images.

procedure is qualified as localized sequence searching.

As Fig.5-5 shows, for each new testing image Itest
T , localized sequence searching is

performed through a matrix MT constructed by cosine distance vectors Dt(T − ds + 1 ≤

t ≤ T ) over the test sequence, composed of the ds previous images (including the current

testing image):

MT = [DT−ds+1,DT−ds+2, · · · ,DT ] (5.4)

where ds is the testing sequence length (in terms of images number) that determines how

far back the search goes. As defined previously, Dt(T − ds + 1 ≤ t ≤ T ) is the cosine

distance column vector for the testing image Itest
t . It contains the distances between the

testing image feature f test
t and all training image features { f train

i }Ntrain

i=1 .

Due to the linear relationship between the speed of training and testing trajectories, the

possible paths representing different speed ratio can be projected into each element in the

matrix MT . Thus, the lowest-cost path, which has the minimum distance score S, is deemed

to be best match as the red line shown in Fig.5-6.

As shown in Fig.5-6, each element of the matrix MT is the cosine distance between a

testing image and a training image. The blue color in the matrix MT indicates small distance

value while the red color means large distance value. Searching range are constrained into

the space between minimum speed Vmin and maximum speed Vmax. Each possible path
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(dark line) in the space indicates a possible match between testing (query) sequence and

training sequence. The lowest-cost path (red line) is regarded as the best matching.

Figure 5-6: The search algorithm finds the lowest-cost straight line within the searching
matrix MT . These lines are the set of potential paths through the matrix. The red line is the
lowest-cost path which aligns the testing sequence and training sequence. Each element
indicates the cosine distance between two images (test and train).

A difference score S is calculated for each path based on the distance values the line

passes from frame number T −ds +1 to the current frame T :

S =
T

∑
t=T−ds+1

Dt
k(t) (5.5)

where k(t) is the index of the column vector Dt by which the path (line) passes through:

k(t) = s+V (t− (T −ds +1)) (5.6)

where s is the training image index from which the path is originated. The initial value of s

is 0, then increased by 1 at each step. V is the vehicle speed varying between Vmin and Vmax

with a step value Vstep. The score S (sum of distance values along path (line)) is used to

identify the best matching candidate (who has the lowest score) for each testing sequence.
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5.2.4 Final matching validation

Given the current testing image number T , the corresponding testing sequence T (images

indexed from T −ds +1 to T ) can be constructed. Using the localized sequence matching

method, the best two sequence candidates who have smaller scores are conserved for further

validation. Suppose Sm1 and Sm2 are respectively the first and second minimum score of

the top two training sequence candidates to the testing sequence, where
ST,m1 = min

j
{ST, j}

ST,m2 = min
j( j ̸=m1)

{ST, j}
(5.7)

In order to verify the best sequence matching, a ratio SST is calculated as follows:

SST =
ST,m1

ST,m2
(5.8)

The value of ratio SS is between 0 and 1. A threshold T h is then applied to the ratio SST to

determine if the sequence pair (T,m1) is matched or not. If the ratio SST is not larger than

the threshold T h, which means the training sequence corresponding to m1 is matched to

the current testing sequence, this is also called positive matching. Otherwise no matching

is considered (negative matching).

5.2.5 Visual localization

After a matching result is successfully validated, the vehicle can localize itself through the

matched training image position. Since the training images are tagged with the GPS in-

formation, the vehicle can get its position information through the training image matched

with the current testing image. As for the approaches presented in the two previous chap-

ters, this is also a topological level localization—simply identifies the most likely location.

5.2.6 Algorithm of proposed visual localization

Algorithm 5.1 illustrates the ConvNet features and localized sequence matching based vi-

sual localization.
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Algorithm 5.1 Localized sequence matching based visual localization.
Inputs:
{Itrain

i }Ntrain

i=1 {training images database}; {Itest
i }Ntest

i=1 {testing images database};
Ntrain,Ntest {training and testing images numbers};
Vmax,Vmin {maximum and minimum vehicle speeds}; Vstep {Vehicle speed step-size}
ds {Sequence length} ;

Outputs:
S {Path-line (sequence candidate) score };
Vehicle position;

Algorithm:
/∗ ConvNet features extraction; {section 5.2.1} ∗/
for i← 1 to Ntrain do

F train = { f train
i } ← Feature extraction for training images;

end for
for i← 1 to Ntest do

F test = { f test
i } ← Feature extraction for testing images;

end for

/∗ Feature comparison ∗ /
for i← 1 to Ntest do

for j← 1 to Ntrain do
di, j ← cos⟨ f test

i , f train
j ⟩; // Computation of the cosine distance between the test

image Itest
i and the training image Itrain

i {Section 5.2.2}.
end for
Di←[di,1,di,2, · · · ,di,Ntrain]; Column vector Di ∈RNtrain×1 that contains the cosine dis-
tance between the testing image Itest

i and all the training images.
end for

/∗ Localized sequence matching and validation ∗/
for T ← ds to Ntest do

MT ← [DT−ds+1,DT−ds+2, · · · ,DT ]; // Construction of the local searching matrix.
j← 1; // Initialization;
for s← 0 to (Ntrain−Vmax×ds) do

for V ← Vmin:Vstep: Vmax do
ST, j ← 0;
for t ← (T −ds +1) to T do

k(t)← s+V (t−(T −ds+1)); // k is a line index in the column vector Dt ; s is
the training image number from which the path originated in (Section 5.2.3).
ST, j ←ST, j +Dt

k(t);// Score S is calculated for each possible path.
end for
j← j+1; Path-line number (sequence candidates) update;

end for
end for

SST =
min

j
{ST, j}

min
j( j ̸=m1)

{ST, j} ; m1 is the index of minimum score.

if SST <= T h
Vehicle position← The matched training images position

if SST > T h
Vehicle position← NaN (no position results)

end for
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5.3 Experimental Setup

5.3.1 Datasets and ground-truth

Four datasets with different characteristics (as described in Table 5.2) will be used to eval-

uate our method.

Table 5.2: Description of the main characteristics of the datasets employed in the experi-
ments.

Dataset Length No.images Description

UTBM-1 2×4.0 KM
training:848
testing:819 minor variations in appearance and illumination

UTBM-2 2×2.3 KM
training:540
testing:520 medium variations in appearance and illumination

Nordland 4×728 KM 4×3577 severe variations in appearance

City Center 2×2.0 KM
training:1352
testing:1122 medium variations in appearance and illumination

1) UTBM-1 dataset

In this dataset (already used in Chapter3), the experimental vehicle (See Fig.1-4 in

Chapter 1) traversed about 4 km in a typical outdoor environment (the trajectory can be

seen in Fig.3-9 (a)). Some representative examples of UTBM-1 dataset is shown in Fig.5-7.

From this figure, the changing of shadow, vegetation and field of view between the testing

and training images can be also seen. As previously presented (Section 3.4.1 in Chapter

3), the training and testing data were collected respectively in 2014/9/11 and 2014/9/5.

Among all the acquired images (at about 16 Hz), only a subset of images is selected to

perform matching between the training and testing datasets (848 images for training and

819 images for testing). The average interval distance between two selected frames is

around 3.5 m. Each image is associated with its GPS position obtained by a RTK-GPS

receiver.

2) UTBM-2 dataset

The dataset UTBM-2 (also used in Chapter 3) consists of a 2.3 km long route in the

urban city of Belfort, captured in 2014/9/5 (the trajectory can be seen in Fig.3-9 (b)). The
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Figure 5-7: UTBM-1 dataset: Example of training and testing images (interval time of one
week). Left column is training images and right column is testing images.

Figure 5-8: UTBM-2 dataset: morning vs afternoon. Left column is training images and
right column is testing images.
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first traversal of this dataset was performed in the morning and the second was conducted

in the afternoon. The travel time of this dataset was approximately 20 minutes for the two

traversals (training and testing). As shown in Fig.5-8, the illumination situation is different

between the training and testing images. A total of 1060 images (540 and 520 images for

the two traversals respectively) is used for the performance evaluation.

3) Nordland dataset

The Nordland dataset (already used in Chapter 4) consists of the video footage of a

728 km long train ride taken in northern Norway in four seasons [100]. As illustrated in

Fig.4-5 of Chapter 4, there is a huge appearance variation between the four seasons. Due

to seasonal changing, the different landscape (vegetation, mountains) and local weather

conditions like sunshine, cloudy, rain and snowfall are experienced on the long trip. The

original videos were recorded at 25 fps with a resolution of 1920×1080. The full-HD

recordings have been time-synchronized such that the position of the train in an arbitrary

frame from one video corresponds to the same frame in any of the other three videos. In

our experiment, frames extracted from the original videos at 0.1 fps. GPS readings were

recorded in conjunction with the video at 1 Hz.

4) City Center dataset

Figure 5-9: City Center dataset: twice traveling. Left column is training images and right
column is testing images.

114



The City Center dataset was collected by Mobile Robotics Group of the University of

Oxford [24]. The robot traveled twice around a loop with total path length of 2 km, and

2,474 images were collected by two (left and right) cameras mounted on the robot while

traveling. This dataset was collected on a windy day with bright sunshine, which makes

the abundant foliage and shadow features unstable, as can be observed in Fig.5-9.

For all the four datasets, ground-truth was constructed by manually finding pairs of

frame correspondences based on GPS position.

5.3.2 Performance evaluation

As already described and used in the previous chapter, precision-recall curves and F1 scores

are still used in this chapter to evaluate the proposed approach. The final curve is computed

by varying the threshold T h in a linear distribution between 0 and 1 and calculating the

corresponding values of precision and recall. 100 threshold value are processed to obtain

well-defined precision-recall curves.

In our experiments, the training images number is larger than or equal to the testing

images number, thus each testing image has a ground-truth match. Therefore, among the

positives, there are only true positives (correct results among successfully validated im-

age matching candidates) and false positives (wrong results among successfully validated

image matching candidates). The sum of the true positives and false positives is the total

retrieved images number.

More specifically, precision is the ratio of true-positives over the retrieved images num-

ber (number of all the successfully validated images matching candidates), and recall is the

ratio of true-positives over the total testing images. A perfect system would return a result

where both precision and recall have a value of one. Based on the precision and recall, F1

score can be defined as:

F1 = 2× precision× recall
precision+ recall

(5.9)
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5.4 Experiments and Results

5.4.1 Performance comparison between single image and sequence based

approach

Traditionally, visual localization has been performed by considering places as single im-

ages. However, other more recent proposals, such as SeqSLAM, changed this concept and

introduced the idea of recognizing places as sequences of images.

In this section, the place recognition performances based on sequences of images and

single images are compared. In Fig.5-10, results obtained for UTBM-1 and Nordland

datasets are presented. Attending to the precision-recall curves depicted in Fig.5-10, the

influence of the sequence length (ds) is decisive to improve the performance of visual lo-

calization in life-long conditions. It can be clearly found that the approach using sequence

allows to achieve better results than that of single image (almost no recall at 100% preci-

sion) in long-term visual localization.
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(b) Nordland (spring vs summer)

Figure 5-10: Two examples of performance comparison of our proposal depending on
the image sequence length (ds) in the challenging UTBM-1 and Nordland (fall vs winter)
datasets. The feature used here is conv4 layer.

Furthermore, there is a limit near to a length of 8 for UTBM-1 dataset and a length

of 6 for Nordland dataset form which the results are not greatly enhanced. Based on this

sequence length comparison and the driving speed, a sequence length of ds=8 was chosen

for datasets UTBM-1 and UTBM-2 in the rest of the experiments and results. For City

Center dataset, sequence length was set to 3 and for Nordland dataset is 6. For all datasets,
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Figure 5-11: Examples of frame matches from the Nordland dataset (fall vs winter). The
top row shows testing frames, and the middle and third rows show the training frames
recalled by ds = 1 (single image) and ds = 6, respectively. Visual recognition based on
sequence matching achieves better performance than those obtained using single image.

velocity limits are Vmax = 1.1 and Vmin= 0.9, and a step size of Vstep = 0.04 was set according

to the experiment tests.

Fig.5-11 shows examples of frame matches on Nordland dataset (fall vs winter). De-

spite the large appearance variations between different seasons, the proposed ConvNet

based visual localization using sequence matching (ds=6) attained better recognition re-

sults than those obtained using single image (ds=1).

5.4.2 ConvNet features layer-by-layer study

This section provides a thorough investigation of the utility of different layers in the Con-

vNet hierarchy for place recognition and evaluates their individual robustness against the

two main challenges in visual place recognition: appearance and illumination changes.

Appearance change robustness

(1) UTBM-1 dataset: Fig.5-12 (top) illustrates images acquired in the training and testing

datasets (interval time between the two acquisition is one week). The appearance has minor

changes and the viewpoint has medium variations. The precision-recall curves are shown in

Fig.5-12 (bottom). The recall obtained for the conv4 layer at totally correct level is around
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40%. The performance of the layers fc6 and fc7 is poor.

UTBM-1 dataset: Example of training and testing images (interval time of one week)
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Figure 5-12: Precision-recall curves for UTBM-1 dataset (the trajectory acrosses forest,
city and parking areas)(ds = 8).

(2) City Center dataset: This dataset was collected along public roads near the oxford

city center with many dynamic objects such as traffic and pedestrians. In addition, it was

collected on a windy day with bright sunshine, which makes the abundant foliage and

shadow features unstable. The precision-recall curves are shown in Fig.5-13. Except that
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the recall at 100% precision of the layer fc7 is less than 70%, the performance of the other

layers (conv4, conv5, relu5, pool5 and fc6) reaches above than 75% recall at totally correct

level. The conv4 layer is the best one achieving the highest recall level (above 80%).

City Center dataset: twice traveling
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Figure 5-13: Precision-recall curves for City Center dataset (the trajectory acrosses city
and parking areas)(ds = 3).

(3) Nordland dataset: It is probably the longest trajectory (3000 km) that can be cur-

rently used for life-long visual topological localization evaluation. It contains four videos
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with very strong seasonal appearance changes. The precision-recall curves for different

cases (one season for training vs another season for testing) are reported in Fig.5-14. It can
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Figure 5-14: Place recognition across seasons on the Nordland dataset. It can be seen that
conv4 and conv5 perform better than the others, while fc6 and fc7 are the worst (ds = 6).

be seen that in summer vs fall case, the performances obtained from the six layers (conv4,

conv5, relu5, pool5, fc6 and fc7) are excellent (around 80% recall at 100% precision level).
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For the other cases, conv4, conv5, relu5 and pool5 are more robust considering appearance

changes than the higher layers fc6 and fc7.

UTBM-2 dataset: morning vs afternoon
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Figure 5-15: Precision-recall curves for UTBM-2 dataset considering different layers (ds =
8).

Illumination change robustness

Illumination is another important factor for visual recognition. We investigate the ConvNet

features performance on UTBM-2 dataset that considers morning versus afternoon situa-
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tions. The precision-recall curves are presented in Fig.5-15. According to this figure, the

features from mild-layers (conv4, conv5, relu5, pool5) can slightly deal with the illumi-

nation changing problem, while the other layer features (fc6 and fc7) can not deal with

the severe illumination changes. This is maybe because the pre-trained network build the

model under good quality images (normal illumination situation), and then it does not show

strong robust ability in illumination variance situation.

According to the precision-recall curves for appearance and illumination changing sit-

uation on these four different tested datasets. It can be found that, the mid-level features

from layers conv4 and relu5 are more robust against appearance and illumination changes

than the other layer features. While higher layers (fc6 and fc7) in the feature hierarchy lack

robustness and exhibit inferior place recognition performance.

Table 5.3 shows F1 scores obtained for the proposed method using different layers, the

previous proposed methods (D-CSLBP++HOG and CSLBP++GIST) and state-of-the-art

methods like FAB-MAP and SeqSALM. For SeqSLAM comparison, the OpenSeqSLAM

code [72] was used and the same sequence lengths were taken as settled above. While the

other parameters are set to default values as reported in [72]. For FAB-MAP comparison,

the OpenFABMAP code [38] was used. It can be found that localized sequence matching

using features extracted by layer conv4 matches or exceeds the performance of the other

methods.

Table 5.3: F1 scores considering different AlexNet layers,the previous proposed methods
(D-CSLBP++HOG (approach in Chapter 3) and CSLBP++GIST (approach in Chapter 4))
and other state-of-the-art methods (SeqSLAM, FAB-MAP). The † means the F1 score is
smaller than 0.1.

Dateset
Alex Layers

SeqSLAM FAB-MAP D-CSLBP++HOG CSLBP++GIST
conv4 conv5 relu5 pool5 fc6 fc7

Nordland

spring vs summer 0.8967 0.8427 0.8734 0.8354 0.6722 0.5455 0.8010 † — 0.8757
spring vs fall 0.8984 0.8572 0.8821 0.8579 0.7098 0.5859 0.8569 † — 0.8910

spring vs winter 0.9255 0.8987 0.8983 0.8750 0.4795 0.2387 0.8362 † — 0.8683
summer vs fall 0.9396 0.9381 0.9388 0.9375 0.9286 0.9047 0.8435 † — 0.9046

summer vs winter 0.9245 0.8935 0.8581 0.8497 0.4142 0.1817 0.8263 † — 0.8571
fall vs winter 0.9288 0.8922 0.8598 0.8599 0.5119 0.2337 0.7360 † — 0.8402

UTBM-1 0.9607 0.9576 0.9576 0.9583 0.9607 0.7762 0.8693 0.2356 0.8869 —
UTBM-2 0.9622 0.9564 0.9544 0.9574 0.9593 0.9516 0.8769 0.4813 0.9532 —

City Center 0.9288 0.9246 0.9264 0.9317 0.9299 0.9166 † 0.5326 — —
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5.4.3 LSH based visual recognition

In contrast to typical computer vision benchmarks where the recognition accuracy is the

most important performance metric [69], visual localization for vehicles or robots always

needs agile algorithms for real-time application. As introduced in Chapter 3, Locality

Sensitive Hashing (LSH) is arguably the most popular feature compression method and has

been applied to many problems, including information retrieval and computer vision [111].

Therefore, in order to speed up image matching significantly, LSH method that preserves

the euclidean similarity [18] is considered again for faster visual recognition.

According to the study results of Section 5.4.2, conv4 has shown its strong ability in

place recognition. However, computing the cosine distance between many 64,896 dimen-

sional conv4 feature is an expensive operation. For real-time place recognition, Locality-

Sensitive Hashing (LSH) method is used, mapping the conv4 feature fconv4 to a low-

dimensional binary vector:

H(K) = sign(w⊤ fconv4 +b) (5.10)

where w is a K dimension data-independent random matrix, which is satisfy a standard

Gaussian distribution [26]. And b is a random intercept. In our experiment, conv4 feature

fconv4 is normalized with zero mean, then approximately balanced partition is obtained with

b = 0. Thus, high dimensional feature is converted into a low K dimension binary bits. The

binary bit vectors can then be compared using hamming distance more efficiently.

We implement this method and compare the place recognition performance achieved

with the hashed conv4 feature vectors of different lengths (27. . .212 bits) on the four datasets

(Shown in Fig.5-16). Hashing the original 64,896 dimensional vectors into 4096 bits cor-

responds to a data compression of 63.1%. In addition, the 4096 hash bits representation

retains approximately 95% of the original place recognition performance. It can be seen

from Fig.5-16 that, when the length of hash bits is decreasing, the place recognition perfor-

mance is also descending.

Table 5.4 shows the F1 scores of different hash bit lengths achieved in four datasets.

The average times per matching are also presented. The experiments are conducted on a

123



Recall
0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

0.9

0.92

0.94

0.96

0.98

1

full feature (cosine)
4096 bits
2048 bits
1024 bits
512 bits
256 bits
128 bits

(a) UTBM-1

Recall
0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

0.95

0.96

0.97

0.98

0.99

1

full feature (cosine)
4096 bits
2048 bits
1024 bits
512 bits
256 bits
128 bits

(b) UTBM-2

Recall
0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

0.88

0.9

0.92

0.94

0.96

0.98

1

full feature (cosine)
4096 bits
2048 bits
1024 bits
512 bits
256 bits
128 bits

(c) City Center

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

full feature (cosine)
4096 bits
2048 bits
1024 bits
512 bits
256 bits
128 bits

(d) Nordland (spring vs winter)

Figure 5-16: Precision-recall curves of different hash bit length. The cosine distance over
the full feature vector of 64896 dimensions (red) can be closely approximated by the ham-
ming distance over bit vectors of length 4096 (dark) without losing much performance.
This corresponds to a compression of 63.1%.

Table 5.4: F1 scores and matching time comparison of different lengths of hash bits.

Method
F1 score Average time per

matching(All datasets)
UTBM-1 UTBM-2 City Center

Nordland
(spring vs Winter)

256 hash bits 0.9276 0.9574 0.9094 0.8817 0.0135 s
512 hash bits 0.9219 0.9554 0.9084 0.8944 0.0147s

1024 hash bits 0.9460 0.9612 0.9162 0.9046 0.0170s
2048 hash bits 0.9497 0.9632 0.9246 0.9064 0.0209s
4096 hash bits 0.9478 0.9641 0.9166 0.9099 0.0291s

Full feature 0.9607 0.9622 0.9228 0.9255 0.3259 s
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laptop machine with intel i7-4700MQ CPU and 32G RAM. Compared with the full feature

matching, hashing the original full feature into 4096 bits makes the matching easier and

faster.

As shown in Table 5.4, the average time per matching using 4096 hash bits is 0.0291s

which corresponds almost to a speed-up factor of 12 compared to using the cosine distance

over the original conv4 feature requiring 0.3259s per matching. There is no doubt that for

larger scale datasets, the speed up advantages can be more significant.

5.4.4 Visual localization results

X(m)
-400 -300 -200 -100 0 100 200 300 400

Y
(m

)

-100

0

100

200

300

400

500

600

700

800
Trajectory
Recognized locations

(a) UTBM-1

X(m)
-200 -100 0 100 200 300 400 500

Y
(m

)

-600

-500

-400

-300

-200

-100

0

100

200

Trajectory
Recognized locations

(b) UTBM-1

X(m)
150 200 250 300 350 400 450 500

Y
(m

)

-350

-300

-250

-200

-150

-100

-50
Trajectory
Recognized locations

(c) City Center

X(m) ×105
8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

Y
(m

)

×106

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5

7.55

Trajectory
Recognized locations

(d) Nordland (spring vs winter)

Figure 5-17: Visual localization results obtained by our system in the four datasets. The
feature used here is 4096 hash bits of conv4 layer. Two images coming from the same
location (on the basis of appearance alone) are marked with red point and joined with a
blue line.

For the visual localization based on place recognition, the recognition rate at high pre-
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cision level is a key indicator to reflect whether the system is enough robust to determine

position under changing environment. A correct place recognition means a successful vi-

sual localization while an incorrect place recognition could cause huge localization error.

Therefore, the higher the recognition rate at 100% precision is, the more robust visual lo-

calization system is. Fig.5-17 shows the final place recognition based visual localization

results for the different datasets at a precision level of 100%. Regardless of the appear-

ance and illumination changes, the proposed method can still localize the vehicle in most

places. The visual localization errors at different precision levels are illustrated in Fig.5-18.
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Figure 5-18: Localization error at different recognition precision levels. Dark line is the
localization error for all recognition results (including the true positives and false positives).
Red "o" is localization error for the 100% precision level. Green "+" is the localization error
for 99% precision level.

Through changing the threshold value (T h), different recognition precision levels can be

recorded. At 100% precision level, all the recognized places are true positives, the localiza-
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tion error is small. For achieving 100% recognition precision level, the threshold value is

set to 0.75 and 0.51 for UTBM-1 and UTBM-2 datasets respectively. While for City Center

and Nordland (spring vs winter) datasets, the threshold is set to 0.95 and 0.92 respectively.

By increasing the threshold value, the precision is decreasing. When the threshold is set

to 1, the precision level is lowest and there are many false matching for place recogni-

tion. Some false matching will lead to huge localization error, because the places can be

wrongly matched to any place in the whole trajectory. In general, smaller the threshold is,

fewer false recognition cases occur.

In Table 5.5, the average localization errors and recall ratio at different precision levels

are given. Using 4096 hash bits, at 100% precision, the proposed approach achieves above

75% recall on the City Center dataset, and above 72.88% on the more challenging Nordland

dataset (Spring vs winter). While on the UTBM-1 and UTBM-2 datasets, the recall are

32.88% and 11.54% respectively. For all these datasets, the average visual localization

errors at 100% recognition precision are below than 4m. It also can be noted that, the

average visual localization error is increasing with the recognition precision decreasing.

Table 5.5: Recall results and average localization error at two precision levels (4096 hash
bits).

Dateset
100% precision 99% precision

Recall (%) Error (/m) Recall (%) Error (/m)
UTBM-1 32.88 2.32 89.62 2.67
UTBM-2 11.54 2.39 51.89 2.62

City Center 76.29 3.36 82.89 3.88
Nordland

(spring vs winter) 72.88 2.56 82.95 3.18

5.5 Conclusion and Future Works

Along this chapter a visual vehicle localization approach based on ConvNet features and

localized sequence matching is presented. The approach takes the strengths of deep con-

ventional network and localized sequence matching, which make place recognition fast and
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accurate. The proposed visual localization approach allows the vehicle to localize itself in

the most places in changing environments.

We conduct experiments on four typical datasets that consider big challenges in visual

place recognition: appearance, viewpoint and illumination changes. The experimental re-

sults show that the use of ConvNet conv4 feature can obtain F1 score above 0.85 in these

four datasets, which outperforms the methods of D-CSLBP++HOG (approach in Chapter

3) and CSLBP++GIST (approach in Chapter 4), FAB-MAP and SeqSLAM. In addition,

for satisfying real-time constraints, speed-up approach based on LSH method was used to

compress the high dimension ConvNet feature. By using the 4096 hashing bits representa-

tion instead of the original conv4 feature, the average time per matching is almost 12 times

faster.

Although ConvNet features can improve visual localization, using pre-trained network

still can be improved for visual localization because the original network is trained for

object classification rather than place recognition. In future work, how to train visual lo-

calization based networks and features optimizing method specifically for life-long visual

localization under changing conditions will be investigated.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

This thesis focuses on improving place recognition for visual localization in changing out-

door environment. For many applications, it is crucial that a robot localizes itself within

the world for autonomous navigation and driving. After a review of some state-of-art place

recognition and visual localization technologies in Chapter 2, new methods to perform vi-

sual localization in changing environments were proposed in this thesis.

Firstly, multi-feature combination for vehicle localization is explored in Chapter 3.

Since different types of features have their own advantages, combining some powerful

features will be helpful in place recognition. We firstly integrate disparity information into

complete center-symmetric local binary patterns (CSLBP) to obtain a robust global image

description (D-CSLBP). Furthermore, D-CSLBP and HOG features are combined together

to strengthen the place describing ability by taking the advantage of depth, texture and

shape information.

The multi-feature (D-CSLBP++HOG) improves visual recognition performance, it thus

allows decreasing the effect of some typical problems in place recognition such as percep-

tual aliasing. In addition, for real-time visual localization, local sensitive hashing method

(LSH) is used to speed up the process of image matching. Our approach allows more ef-

fective visual localization compared with the state-of-the-art FAB-MAP (Fast Appearance

Based Mapping) method.
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Secondly, visual localization across seasons based on sequence matching and feature

combination of GIST and CSLBP is developed in Chapter 4. Matching places by consid-

ering sequences instead of single images denotes high robustness to extreme perceptual

changes. The proposed method is tested and evaluated in four seasons outdoor environ-

ments. Studies of the relationship between image sequence length and sequences matching

based place recognition performance is conducted. The achieved results have shown im-

proved precision-recall performance and the proposed approach outperformed the state-of-

the-art SeqSLAM (Sequence Simultaneous Localization and Mapping) algorithm.

Thirdly, all-environment visual localization system based on ConvNet features and lo-

calized sequence matching is proposed in Chapter 5. We use the automatic learned Con-

volutional Network (ConvNet) features and localized matching technique to accomplish

all-environment visual localization task under appearance and illumination changing sit-

uations. The pre-trained networks provided by MatConvNet are used to extract ConvNet

features and then a localized sequence search technique is applied for visual localization.

Furthermore, a comprehensive performance comparison of different ConvNet layers (each

defining a level of features) is conducted on four real world datasets. The F1 scores at-

tained with the conv4 of ConvNet feature on the different datasets are higher than 0.85,

which are significant better than those of FAB-MAP and SeqSLAM in presence of appear-

ance and illumination changes. To speed up the computational efficiency, locality sensitive

hashing method is applied to achieve real-time visual localization with minimal accuracy

degradation.

6.2 Future Works

In the author’s point of view, there are many ways in which the research presented in this

thesis could be developed in the future.

• More metric information can be used for visual localization in further research. In

this thesis, metric information was not used just because we concentrate on feature

comparison and image matching under changing environment. In fact, visual lo-

calization performance could be improved considerably by integrating real vehicle
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motion model. Operating on relative geometric relations between poses along the

trajectory during data acquisition, metric map representations (feature maps or occu-

pancy grid maps) of the environment can be geometric and clearly link with the real

world. The localization can be done continuously and highly accurate locally.

• In terms of visual place recognition, how to describe a place appropriately is the key

point. Therefore, some powerful and robust image descriptors can be developed for

place recognition. Most of visual place description techniques can be classified into

two broad categories: local feature descriptors and global or whole-image descrip-

tors. Global descriptors are normally pose dependent and very fast to compute but

less robustness to occlusion and perceptual aliasing effect. While local features hold

a strong discriminative power but with high cost of computation time and complex

match processing. How to describe a place with “locally " and “globally" information

and take the advantage of the these information can be further studied.

• Three-Dimensional (3D) Information can be considered in visual localization. Un-

like the 2D geometry of interest points in an image, 3D geometry information in

space is an invariant property of a location. It should be possible to integrate this rel-

ative 3D distance information to reduce false place recognition between some similar

locations.

• Research in place recognition can also benefit from the ongoing research in object

detection and scene classification. Based on object detection, moving objects such

as pedestrians or cars can be ignored while other landmark objects such as buildings

can be used for long-term place recognition. Semantic scene context can furthermore

limit the search space for place recognition to ensure scalability towards long-term

autonomy. Semantic context can support learning and predicting the changes in a

scene and help to increase robustness against environmental condition changes. Ex-

ploiting knowledge about which objects are dynamic or static and object semantic

information can increase the robustness to appearance changing. Therefore, using

object detection and scene classification for the task of place recognition is a worth-

while direction for future research.
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• In the last, convolutional neural networks have emerged as powerful image represen-

tations tool for various category-level recognition tasks such as scene recognition,

object detection and classification. However, direct use of ConvNet representation

trained for object classification as “black-box” feature extractor can not achieve sig-

nificant improvements in performance on instance-level recognition tasks. Another

problem is that, ConvNet parameters learning is complex and hard, which restrict

the real-time place recognizing for visual localization. Therefore, some flexible

and easy-training deep learning networks should be developed for place recognition

based visual localization.
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Résumé :

Dans de nombreuses applications, il est crucial qu’un robot ou un véhicule se localise, notamment pour
la navigation ou la conduite autonome. Cette thèse traite de la localisation visuelle par des méthodes
de reconnaissance de lieux. Le principe est le suivant : lors d’une phase hors-ligne, des images géo-
référencées de l’environnement d’évolution du véhicule sont acquises, des caractéristiques en sont extraites
et sauvegardées. Puis lors de la phase en ligne, il s’agit de retrouver l’image (ou la séquence d’images) de la
base d’apprentissage qui correspond le mieux à l’image (ou la séquence d’images) courante. La localisation
visuelle reste un challenge car l’apparence et l’illumination changent drastiquement en particulier avec le
temps, les conditions météorologiques et les saisons. Dans cette thèse, on cherche alors à améliorer la
reconnaissance de lieux grâce à une meilleure capacité de description et de reconnaissance de la scène.
Plusieurs approches sont proposées dans cette thèse : 1) La reconnaissance visuelle de lieux est améliorée
en considérant les informations de profondeur, de texture et de forme par la combinaison de plusieurs
de caractéristiques visuelles, à savoir les descripteurs CSLBP (extraits sur l’image couleur et l’image de
profondeur) et HOG. De plus l’algorithme LSH (Locality Sensitive Hashing) est utilisée pour améliorer le
temps de calcul ; 2) Une méthode de la localisation visuelle basée sur une reconnaissance de lieux par mise
en correspondance de séquence d’images (au lieu d’images considérées indépendamment) et combinaison
des descripteurs GIST et CSLBP est également proposée. Cette approche est en particulier testée lorsque
les bases d’apprentissage et de test sont acquises à des saisons différentes. Les résultats obtenus montrent
que la méthode est robuste aux changements perceptuels importants ; 3) Enfin, la dernière approche de
localisation visuelle proposée est basée sur des caractéristiques apprises automatiquement (à l’aide d’un
réseau de neurones à convolution) et une mise en correspondance de séquences localisées d’images. Pour
améliorer l’efficacité computationnelle, l’algorithme LSH est utilisé afin de viser une localisation temps-réell
avec une dégradation de précision limitée.
Mots-clés : localisation visuelle, reconnaissance de lieux, recherche d’images par le contenu, combinaison de ca-

ractéristiques visuelles, apprentissage profond

Abstract :

In many applications, it is crucial that a robot or vehicle localizes itself within the world especially for
autonomous navigation and driving. The goal of this thesis is to improve place recognition performance for
visual localization in changing environment. The approach is as follows : in off-line phase, geo-referenced
images of each location are acquired, features are extracted and saved. Then, in the on-line phase, the
vehicle localizes itself by identifying a previously-visited location through image or sequence retrieving.
However, visual localization is challenging due to drastic appearance and illumination changes caused by
weather conditions or seasonal changing. This thesis addresses the challenge of improving place recognition
techniques through strengthen the ability of place describing and recognizing. Several approaches are
proposed in this thesis : 1) Multi-feature combination of CSLBP (extracted from gray-scale image and
disparity map) and HOG features is used for visual localization. By taking the advantages of depth,
texture and shape information, visual recognition performance can be improved. In addition, local sensitive
hashing method (LSH) is used to speed up the process of place recognition ; 2) Visual localization across
seasons is proposed based on sequence matching and feature combination of GIST and CSLBP. Matching
places by considering sequences and feature combination denotes high robustness to extreme perceptual
changes ; 3) All-environment visual localization is proposed based on automatic learned Convolutional
Network (ConvNet) features and localized sequence matching. To speed up the computational efficiency,
LSH is taken to achieve real-time visual localization with minimal accuracy degradation.
Keywords : visual localization, place recognition, image retrieval, feature combination, deep learning


