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Résumé

Dans cette thèse, on s’intéresse à de nouveaux schémas de discrétisation afin de résoudre
les équations couplées de la poroélasticité et nous présentons des résultats analytiques et
numériques concernant des problèmes issus de la poromécanique. Nous proposons de ré-
soudre ces problèmes en utilisant les méthodes Hybrid High-Order (HHO), une nouvelle
classe de méthodes de discrétisation polyédriques d’ordre arbitraire. Cette thèse a été con-
jointement financée par le Bureau de Recherches Géologiques et Minières (BRGM) et le
LabEx NUMEV. Le couplage entre l’écoulement souterrain et la déformation géomécanique
est un sujet de recherche crucial pour les deux institutions de cofinancement.

Contexte et motivations
On prend en considération des matériaux constitués d’un squelette solide et d’un réseau de
pores, connectés entre eux et permettant le passage d’un fluide interstitiel. Le comportement
de ce fluide peut influer sur celui du squelette et réciproquement. De nombreux matériaux
présentent cette caractéristique : les matériaux minéraux comme les sols et les roches,
des matériaux organiques comme le bois, les os ou le cerveau et les matériaux industriels
comme certains joints d’étanchéité. Dans cette thèse, l’accent porte sur la modélisation
des sols et des roches. Le milieu poreux est vu comme la superposition de deux milieux
continus : le squelette solide déformable et la phase fluide. Le milieu poreux possède une
cinématique déterminée par le squelette et les sollicitations considérées peuvent être de type
mécanique, hydraulique et thermique. Les sollicitations mécaniques peuvent être causées par
des contraintes imposées, telles que le creusement d’ouvrages, ou bien par des contraintes
intrinsèques, telles que la consolidation du sol par gravité. Les sollicitations hydrauliques
sont liées à l’écoulement du fluide à travers le milieu, tandis que les sollicitations thermiques
peuvent être dues à la présence de sources de chaleur. Lorsque les trois phénomènes sont
traités de manière couplée, le cadre est celui dit de la thermo-hydro-mécanique. Dans cette
thèse, on s’intéresse avant tout au modèle hydro-mécanique saturé obtenu en supposant que
les variations de température soient négligeables.

L’intérêt pour les mécanismes couplés de diffusion-déformation était initialement motivé
par le problème de la consolidation [2727, 189189], à savoir, le tassement progressif du sol dû à
l’extraction des fluides. Aujourd’hui la théorie de la poroélasticité présente un intérêt pour
les scientifiques et les ingénieurs en raison de son potentiel d’applications dans la mécanique
des sols, l’industrie pétrolière, la géomécanique environnementale et la biomécanique. En
simulation de réservoir, le couplage mécanique-écoulement joue un rôle important pour
l’étude des problèmes de compaction et subsidence induits par la mise en production de
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réservoirs peu consolidés, pour la stabilité des puits, ou encore la fracturation hydraulique.
La non prise en compte de ce couplage peut aussi conduire à de mauvaises prédictions de
la production. Le couplage poroélastic est par ailleurs crucial pour l’étude des risques liés à
l’injection et au stockage du CO2 dans les aquifères salins, comme la fuite du CO2 par le puits
ou bien la réactivation mécanique des failles. La surpression entraînée par l’injection peut
aussi modifier les contraintes appliquées sur la roche couverture et provoquer une fracturation
qui remettrait en cause l’intégrité du stockage.

Dans cette thèse, nous considérons principalement trois problèmes liées à la modélisation
de la géomécanique : le problème couplé de Biot linéaire dans le Chapitre 22, le comportement
non-linéaire en mécanique et poromécanique dans les chapitres 33 et 44 et la poroélasticité avec
coefficients aléatoires dans le Chapitre 55. Comme noté dans [6868], de nombreux résultats
expérimentaux suggèrent que la réponse volumétrique de la roche poreuse au changement de
la pression totale est en réalité non-linéaire. Cette non-linéarité est généralement associée à la
fermeture/ouverture de fissures ou, dans les roches très poreuses, à l’effondrement progressif
des pores. Les études physiques du comportement mécanique non-linéaire des milieux
poreux [2222, 2828] ont été motivées par la nécessité de quantifier l’effet de la diminution de la
pression interstitielle lors de l’épuisement d’un gisement de pétrole ou de gaz sur le volume
de la matrice rocheuse.

En simulation numérique, la prise en compte des incertitudes dans les données d’entrée
(telles que les constantes physiques, les conditions limites et initiales, le forçage externe et
la géométrie) est un problème crucial, en particulier dans l’analyse des risques. L’évaluation
des risques dans les applications de poroélasticité reste un défi majeur pour un large éventail
d’applications de gestion des ressources essentielles. Les préoccupations récentes de la pop-
ulation concernant la sismicité induite et la contamination des eaux souterraines soulignent
la nécessité de quantifier la probabilité d’événements nocifs associés à l’écoulement et à la
déformation de la subsurface. La prédiction des contraintes critiques qui peuvent compro-
mettre l’intégrité des roches couvertures et la stabilité des puits dans les réservoirs de stockage
présente un intérêt particulier. La clé de la réussite de l’évaluation des risques dans les appli-
cations poroélastiques est la capacité de prédire la probabilité d’événements critiques en se
basant sur une approximation empirique des paramètres matériels et de la variabilité du terme
source. La quantification d’incertitude fournit des barres d’erreur numériques qui facilitent
la comparaison avec l’observation expérimentale et l’évaluation des modèles physiques. De
plus, elle permet d’identifier les paramètres incertains qui doivent être mesurés avec plus de
précision car ils ont un impact plus significatif sur la solution. Parmi les différentes techniques
conçues pour la propagation et la quantification de l’incertitude dans les modèles numériques,
dans cette thèse nous considérons les méthodes spectrales stochastiques. L’idée centrale de
ces méthodes est la décomposition de quantités aléatoires sur des bases d’approximation
appropriées telles que les expansions en Polynômes de Chaos [112112, 137137].

Discrétisation
Ces dernières années, un effort important a été consacré au développement et à l’analyse
de méthodes numériques capables de traiter des maillages plus généraux que les maillages
simpliciaux ou cartésiens. Dans le contexte de la poroélasticité, cette nécessité est motivée par
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la présence des couches géologiques et des fractures dans le milieu poreux. La discrétisation
du domaine peut également inclure des éléments dégénérés (comme dans la région proche
du puits dans la modélisation des réservoirs) et des interfaces non-conformes apparaissant
lors de la modélisation de l’érosion et de la formation de failles. Dans le contexte de
la mécanique des structures, les méthodes supportant les maillages polyédriques généraux
peuvent être utiles pour plusieurs raisons, notamment l’utilisation de nœuds suspendus pour
les problèmes de contact et d’interface et la robustesse par rapport aux distorsions et fractures.
De plus, les méthodes polyédriques permettent de simplifier les procédures de raffinement et
de déraffinement du maillage utilisées pour l’adaptation.

Dans cette thèse, on s’intéresse à deux familles de méthodes de discrétisation polyé-
driques d’ordre arbitraire : les méthodes HHO et Galerkin discontinues (dG). L’utilisation
de méthodes d’ordre élevé peut accélérer la convergence en présence de solutions régulières,
ou lorsqu’elles sont associées au raffinement local du maillage. De plus, la construction de
problèmes discrets à l’aide des discrétisations HHO et dG est valable en dimension d’espace
arbitraire permettant d’envisager une mise en œuvre indépendante de la dimension. Les
deux méthodes sont non-conformes dans le contexte de formulations primales de problèmes
elliptiques, car aucune condition de continuité n’est imposée entre les éléments voisins en
dG et entre les faces voisines en HHO. Nous nous concentrons sur la méthode HHO pour la
discrètisation de la mécanique et sur la méthode dG pour la discrétisation de l’écoulement.

Les méthodes HHO, introduites dans [7878] et [7474], reposent sur des formulations primales
de problèmes elliptiques et aboutissent à des systèmes symétriques et définis positifs. Les
inconnues discrètes sont des polynômes du même ordre sur les éléments et les faces. Ces
derniéres établissent des connexions inter-éléments aux interfaces et peuvent être utilisées
pour imposer des conditions limites essentielles aux faces de bord. Les inconnues de maille
sont des variables intermédiaires qui peuvent être éliminées du système global par conden-
sation statique, comme détaillé dans le Chapitre 22. La conception des méthodes HHO se
fait en deux étapes : (i) tout d’abord, on reconstruit des opérateurs différentiels discrèts
basés sur la résolution de problèmes locaux peu coûteux à l’intérieur de chaque élément
et ensuite, (ii) on introduit une stabilisation qui relie entre elles les inconnues discrètes
d’élément et de face. Les définitions des opérateurs de reconstructions différentiels sont
basées sur des contreparties discrètes des intégrations par parties. Même si les problèmes
locaux liés aux opérateurs de reconstruction doivent être résolus, les résultats numériques
de [7474] indiquent que le coût associé devient marginal par rapport au coût de la résolution
du système global. De plus, les méthodes HHO sont efficaces, car l’utilisation d’inconnues
de face donne des stencils compacts. Les méthodes HHO offrent d’autres avantages, dont la
possibilité d’établir des propriétés de conservation de quantités physiques et la robustesse par
rapport à l’hétérogénéité des coefficients. La discrétisation HHO étudiée dans le Chapitre 33
s’inspire des travaux récents sur les opérateurs Leray–Lions [6969, 7070], où les auteurs montrent
que la méthode est robuste en ce qui concerne les non-linéarités.

Lesméthodes dG peuvent être considérées comme desméthodes éléments finis permettant
des discontinuités dans les espaces discrets, ou bien comme des volumes finis dans lesquels
la solution approchée est représentée dans chaque élément du maillage par un polynôme au
lieu que par une constante. Permettre à la solution d’être continue par morceaux offre une
grande flexibilité dans la conception du maillage. En plus d’être adaptées aux maillages



iv

généraux y compris non-conformes, les méthodes dG ont l’avantage de pouvoir monter en
ordre très facilement. Leur principal inconvénient est le grand nombre d’inconnues qu’elles
engendrent, et donc le coût de résolution des systèmes. Une analyse unifiée des méthodes dG
pour les problèmes elliptiques peut être trouvée dans [4242] et [7676]. La stratégie fondamentale
pour approcher le problème de la diffusion hétérogène (tel que le flux darcéen dans les milieux
poreux) en utilisant les méthodes dG consiste à pénaliser les sauts d’interface en utilisant une
pondération dépendante de la moyenne harmonique des composantes normales du tenseur de
diffusion. Cette technique permet de pénaliser de façon optimale. De plus, comme indiqué
dans le chapitres 22 et 44 et dans [7777], la méthode proposée est robuste en ce qui concerne les
variations spatiales du coefficient de perméabilité, avec des constantes dans les estimations
d’erreur ayant une dépendance faible du rapport d’hétérogénéité.

Structure du manuscrit
Par la suite, nous allons résumer brièvement le contenu du manuscrit en mettant l’accent sur
les résultats marquants.

Dans le Chapitre 11 nous présentons les modèles de poroélasticité que nous allons con-
sidérer successivement. Une fois ceux-ci introduits, nous faisons un inventaire des difficultés
liées à leur approximation numérique, avant de présenter un état de l’art documenté nous
permettant de définir les orientations des chapitres suivants.

Dans le Chapitre 22, publié dans SIAM Journal on Scientific Computing (voir [3030]), nous
introduisons un nouvel algorithme pour le problème de Biot, basé sur une discrétisation HHO
de la mécanique et une discrétisation dG Symmetric Weighted Interior Penalty (SWIP) du
flux. La méthode a plusieurs atouts, notamment la validité en deux et trois dimensions, la
stabilité inf-sup, le support des maillages polyédriques généraux et l’utilisation de l’ordre
d’approximation arbitraire en espace. De plus, le coût de résolution peut être réduit en
condensant statiquement un grand sous-ensemble d’inconnues. Notre analyse fournit des
estimations de stabilité et d’erreur qui semaintiennentmême lorsque le coefficient de stockage
spécifique est nul et montre que les constantes dépendent faiblement de l’hétérogénéité du
coefficient de perméabilité. Nous discutons les détails de la mise en œuvre de la méthode et
fournissons des tests numériques démontrant ses performances. Enfin, nous montrons que le
schéma est localement conservateur sur le maillage primal, une propriété souhaitable pour
les praticiens et fondamentale pour les estimations a postériori basées sur des flux équilibrés.

Dans le Chapitre 33, publié dans SIAM Journal on Numerical Analysis (voir [3333]), nous
proposons et analysons une nouvelle discrétisation HHO d’une classe de modèles d’élasticité
(linéaire et) non-linéaire couramment utilisées en mécanique des solides. La méthode sat-
isfait un principe local de travail virtuel à l’intérieur de chaque élément du maillage, avec
des tractions numériques d’interface qui obéissent à la loi d’action et réaction. Une analyse
complète couvrant des lois de comportement mécanique très générales est effectuée. En par-
ticulier, nous prouvons l’existence d’une solution discrète et nous identifions une hypothèse
de monotonie stricte sur la loi contrainte-déformation qui assure l’unicité. La convergence
aux solutions de régularité minimale est démontrée en utilisant un argument de compacité.
Une estimation d’erreur optimale d’ordre hk+1 de la norme d’énergie est alors prouvée dans
les conditions supplémentaires de continuité de Lipschitz et de forte monotonie sur la loi de
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comportement. Les performances de la méthode sont largement étudiées sur un panel com-
plet de tests numériques avec des lois contrainte-déformation correspondant à des matériaux
réels.

Dans le Chapitre 44, tiré de [3535], nous construisons et analysons une méthode couplée
HHO-dG pour la poroélasticité non-linéaire. Il y a deux différences principales par rapport
à la méthode conçue dans le Chapitre 22 pour la version linéaire du problème. Première-
ment, le gradient symétrique discret se situe dans l’espace complet des polynômes à valeurs
tensorielles, par opposition aux gradients symétriques des polynômes à valeurs vectorielles.
Commemontré dans le Chapitre 33, cette modification est nécessaire pour l’analyse de conver-
gence en présence de lois de comportement non-linéaires. Deuxièmement, le terme de droite
du problème discret est obtenu en prenant la moyenne en temps de la force de chargement f et
de la source de fluide g entre deux pas de temps consécutifs. Cette modification nous permet
de prouver la stabilité et l’estimation d’erreur sans aucune hypothèse de régularité supplé-
mentaire sur les données. Un autre résultat marquant de ce chapitre est une nouvelle preuve
de l’inégalité de Korn discrète, ne nécessitant pas d’hypothèse géométrique particulière sur
le maillage.

Le Chapitre 55 contient des perspectives sur la solution numérique du problème de Biot
avec coefficients poroélastiques aléatoires dans le contexte de la quantification des incer-
titudes. Il recueille une partie des travaux en cours réalisés lors du stage au BRGM qui
s’est déroulé de janvier à septembre 2018. L’incertitude est modélisée par un ensemble fini
de paramètres avec une distribution de probabilité prescrite. Une attention particulière est
accordée pour assurer que la paramétrisation des coefficients soit physiquement admissible.
Nous présentons la formulation faible du système d’équations différentielles stochastiques
et établissons sa bonne position. Nous discutons ensuite de l’approximation du problème
par des techniques non-intrusives basées sur le développement de solutions sur des bases de
Polynômes de Chaos. La procédure de projection spectrale considérée permet de réduire
le problème stochastique à un ensemble fini de simulations déterministes paramétriques
discrétisées par le schéma HHO-dG du Chapitre 22. Nous étudions numériquement la conver-
gence de l’erreur par rapport au niveau de la grille dans l’espace de probabilité. Enfin, nous
effectuons une analyse de sensibilité pour évaluer la propagation de l’incertitude en entrée
sur les champs de déplacement et pression dans un cas test d’injection et un problème de
traction.

En Annexe AA, publié dans les actes de la conférence Finite Volumes for Complex Appli-
cations VIII (voir [3434]), nous présentons une variante du schéma HHO-dG pour le problème
de la poroélasticité non-linéaire étudié dans le Chapitre 44. En particulier cette annexe four-
nit des tests numériques démontrant la convergence de la méthode en presence de lois de
comportement non-linéaires de type Hencky-Mises.

L’Annexe BB présente des travaux réalisés en marge de la ligne directrice de ce manuscrit.
Elle est tirée de [3636] publié dans Computational Methods in Applied Mathematics. Nous
considérons les problèmes hyperélastiques et leurs solutions numériques en utilisant des algo-
rithmes de discrétisation par éléments finis conformes. Pour ces problèmes, nous présentons
des reconstructions du tenseur de contraintes conformes en H (div), équilibrées et faiblement
symétriques, obtenues à partir de problèmes locaux à l’aide des espaces d’éléments finis
Arnold–Falk–Winther. Les reconstructions sont indépendantes de la loi de comportement
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mécanique. Sur la base de ces reconstructions du tenseur des contraintes, nous obtenons une
estimation d’erreur à postériori en distinguant les estimations d’erreur de discrétisation, de
linéarisation et de quadrature, et proposons un algorithme adaptatif équilibrant ces différentes
sources d’erreur. Nous confirmons l’efficacité de l’estimation par un test numérique avec une
solution analytique. Nous appliquons ensuite l’algorithme adaptatif à un test davantage axé
sur l’application.
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In this manuscript we focus on novel discretization schemes for solving the coupled equations
of poroelasticity and we present analytical and numerical results for poromechanics problems
relevant to geoscience applications. We propose to solve these problems using Hybrid High-
Order (HHO)methods, a new class of nonconforming high-order methods supporting general
polyhedral meshes.

1.1 Poroelasticity
Porous media are solid materials comprising a great number of interconnected pores allowing
for fluid flow through the medium. The presence of a moving fluid influences the mechanical
response of the solid matrix. Two mechanisms play a central role in this interaction between
the mechanical behavior and the fluid dynamics: (i) an increase of the pore pressure induces
a dilatation of the rock in response to the added stress, and (ii) a compression of the porous
skeleton leads to a rise of pore pressure, if the change of the mechanical state is fast relative
to the fluid flow rate. These two coupled deformation-diffusion phenomena lie at the heart
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Figure 1.1: Geologic storage of carbon dioxide in saline aquifers

of the theory of poroelasticity. In accordance with these key phenomena, the fluid-filled
porous medium acts in a time-dependent manner. Indeed, if the fluid pressure caused by the
deformation is allowed to dissipate through a Darcean mass transport, further deformation
of the rock progressively appear. At the same time, the induced poroelastic stresses will, in
turn, respond back to the fluid pressure field.

1.1.1 Context
This Ph.D. thesis was conjointly founded by the Bureau de recherches géologiques et minières
(BRGM) and LabEx NUMEV. The coupling between subsurface flow and geomechanical
deformation is a crucial research topic for both cofunding institutions. The main goals of
BRGM are to implement decision-support tools designed to anticipate and prevent subsurface
risks and to establish safety criteria for human geological activities. There is, therefore, a
particular interest in poromechanical modelling, that is critical in the assessment of the envi-
ronmental impacts of groundwater use and exploitation of shale gas reserves. In particular,
seismicity induced by fluid injection and withdrawal has emerged as a central element of the
scientific discussion around subsurface technologies that tap into water and energy resources.

Interest in the coupled diffusion-deformation mechanisms was initially motivated by the
problem of consolidation, namely the progressive settlement of a soil due to fluid extraction.
The earliest theory modeling the effects of the pore fluid on the deformation of soils was
developed in the pioneering work of Terzaghi [189189], who proposed a model for consolidation
accounting for the fluid-to-solid coupling only. In this case, the problem can be decoupled
and solved in two stages. This kind of theory can successfully model some of the poroelastic
processes in the case of highly compressible fluids such as air. However, when one deals
with slightly compressible (or incompressible) fluids, the solid-to-fluid coupling cannot be
neglected since the changes in the stress can significantly influence the pore pressure. The
first detailed mathematical theory of poroelasticity incorporating both the basic phenomena
outlined above, was formulated by Biot [2727]. The model proposed by Biot was subsequently
re-derived via homogenization [99, 4545] and mixture theory [146146, 147147], what placed the Biot
theory on a rigorous basis.

Poroelasticity has since been explored in a large number of geomechanical applications,
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such as: subsidence due to fluid withdrawal, reservoir impoundment, tensile failure induced
by pressurization of a borehole, waste disposal, earthquake triggering due to pressure induced
faults slip, and injection-production cycles in geothermal fields. Recently, coupled flow and
geomechanics has also gained attention due to its role in the long-term geologic storage of
carbon dioxide in saline aquifers (cf. Figure 1.11.1), which is widely regarded as a promising
technology to help mitigate the climate change by reducing anthropogenic CO2 emissions
into the atmosphere. Injection of CO2 requires a compression of the ambient groundwater
and an overpressurization of the aquifer, which could fracture the caprock, trigger seismicity,
or activate faults. BRGM plays a key role in the research on CO2 storage in geological layers,
especially in deep aquifers, and develops tools to understand and prevent the onset of the
previously mentioned side effects. Other examples of poroelastic structures include cartilage,
skin, bone, the myocardium, the brain, and the lungs. Consequently, notable contributions
have also been made in a diverse range of biomechanics applications [66, 1515, 4444, 187187, 193193].

1.1.2 Governing equations
We use a classical continuum representation in which the fluid and the solid skeleton are
viewed as overlapping continua [1818, 6161]. The poroelasticity system, describing the fluid flow
in a deformable saturated porous medium, consists of one equation expressing the momentum
balance and one expressing the fluid mass conservation law. At the macroscopic scale, they
are derived in the work of Biot [2727] and Terzaghi [190190]. In what follows, the elastic structure
Ω ⊂ Rd , d ∈ {2, 3}, forms a porous and permeable matrix saturated by a slightly compressible
and viscous fluid which diffuses through it. We assume that the material is isotropic and
the conditions are isothermal. In many important applications, such as geothermal energy
extraction, nuclear waste disposal, and carbon storage, temperature plays a significant role
and must therefore be included in the model. Thermo-poroelastic models are derived in [4343,
6161, 107107] and consists in an additional coupling between deformation, heat diffusion, and fluid
flow. Since the pressure and temperature play a similar role in the deformation of the body,
in what follows we only focus on the hydromechanical coupling. The displacement of the
structure is denoted by u B {u1, ..., ud } and the fluid pore pressure by p.

The momentum conservation equation is similar to that found in the context of elasticity,
the exception being the addition of a fluid pressure term. Letting V be a fixed, arbitrary open
subset of Ω, the momentum of the corresponding portion of the matrix is given by

∫
V
∂u
∂t dV .

The forces acting on V consist in the traction forces applied by the complement of V across
its boundary ∂V and the volume-distributed external forces. Then, for a volumetric load f
and total stress tensor σ̃ , the momentum balance equation reads

∂

∂t

∫
V

∂u

∂t
dV =

∫
∂V
σ̃n dS +

∫
V
f dV,

where n is the outward normal of ∂V . Owing to the divergence theorem, this gives∫
V

∂2u

∂t2
dV =

∫
V
∇·σ̃ dV +

∫
V
f dV .
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In the classical poroelasticity model, since the deformation of the material is usually much
slower than the flow rate, the inertial effects are considered negligible. This quasi-static
assumption consists in ignoring the second time-derivative for displacements and, since V
was chosen arbitrarily, it follows that

−∇·σ̃ = f in Ω. (1.1)

Turning to the mass conservation equation, the variables of interest are the fluid content
η (fluid mass per unit bulk volume of porous medium), the flux w (fluid mass flow rate per
unit area and time), and the volumetric fluid source g. Taking V ⊂ Ω as before, the rate at
which fluid moves across the boundary ∂V is given by

∫
∂V w ·n dS. Then the conservation of

mass for isothermal single-phase flow of a slightly compressible fluid takes the integral form

∂

∂t

∫
V
η dV +

∫
∂V

w ·n dS =
∫

V
g dV .

The divergence theorem applied to the second term of the left-hand side of the above equation
and the fact that V was chosen arbitrarily lead to

∂η

∂t
+ ∇·w = g. (1.2)

The coupling between the mechanical behavior of the matrix and the fluid dynamics is
realized by constitutive relations relating the total stress σ̃ , the flux w , and the fluid content η
to the primary variables u and p. The total stress must account for the usual material stress,
as in solid mechanics, and for the fluid pressure. Owing to the Terzaghi decomposition of the
total stress [190190], one has

σ̃ = σ − αpI d, (1.3)

whereσ is referred to as the effective stress tensor and measures the material properties of the
medium. The Biot–Willis coefficient 0 < α ≤ 1, defined as the ratio of the volume change
of the fluid over the volume change of the medium, accounts for the pressure-deformation
interaction, and I d denotes the d-dimensional identity matrix. The effective stress tensor
depends on the deformation according to the stress-strain relation σ = σ (∇su ), where the
symmetric gradient operator measures the strain in the case of small deformations and is
defined as

∇su B
∇u + (∇u )T

2
, with (∇u )i j B

∂ui

∂x j
, for 1 ≤ i, j ≤ d.

The standard assumption of Darcy’s law for porous media holds for the flux:

w = −
K∇p
µf

, (1.4)

where K is the tensor-valued intrinsic permeability field and µf is the fluid viscosity. The
third constitutive assumption links the change in the fluid content η with the changes in the
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fluid pressure p and and the material volume, which is locally measured by ∇·u . More
specifically, following [6161, 6868], we set

η = c0p + α∇·u, (1.5)

where the Biot–Willis coefficient α quantifies the amount of fluid that can be forced into the
medium by a variation of pore volume for a constant fluid pressure, while the constrained
specific storage coefficient c0 ≥ 0 measures the amount of fluid that can be forced into the
medium by pressure increments due to the compressibility of the structure. The case of a
solid matrix with incompressible grains corresponds to the limit value c0 = 0.

1.1.3 The Biot model

The Biot model of linear poroelasticity is valid under the following assumptions: (i) small
relative variations of porosity with respect to the equilibrium value ϕ ∈ [0, 1], (ii) small
relative variations of the fluid density, and (iii) infinitesimal strain theory. Moreover, the
material is assumed to be isotropic, linearly elastic, and homogeneous and, as a consequence,
its mechanical behavior is described by Hooke’s stress-strain law

σ (∇su ) B 2µ∇su + λ(∇·u )I d, (1.6)

the Lamé’s parameters µ > 0 and λ > 0 correspond to the dilatation and shear moduli,
respectively. We recall that the shear modulus µ remains bounded and bounded away from
0, namely 0 < µ ≤ µ ≤ µ ∈ R, whereas λ can take unboundedly large values in the case of a
quasi-incompressible material (λ → ∞). We note that the condition λ > 0 is stronger than
the one required to have the coercivity of the elasticity operator in Section 2.2.22.2.2. Indeed,
λ ≥ − 2

d µ is sufficient to ensure the positivity of the bulk modulus and the well-posedness of
the weak formulation (5.185.18) (see also Lemma 5.45.4 and [178178]).

The Biot model is derived by inserting the constitutive relations (1.31.3), (1.41.4), and (1.51.5)
into (1.11.1) and (1.21.2). Additional details on the model derivation and investigations on the
poromechanical coefficient are given in Section 5.25.2. Hence, for a given bounded connected
domain Ω ⊂ Rd , d ∈ {2, 3}, with boundary ∂Ω and outward normal n, a finite time tF > 0,
a volumetric load f , and a fluid source g, the corresponding problem consists in finding a
vector-valued displacement field u : Ω× (0, tF]→ Rd and a scalar-valued pore pressure field
p : Ω × (0, tF]→ R solution of

−∇·σ (∇su ) + α∇p = f in Ω × (0, tF], (1.7a)
c0dt p + αdt (∇·u ) − ∇·(κ∇p) = g in Ω × (0, tF], (1.7b)

where dt denotes the time-derivative operator and κ B K
µf

the tensor-valued fluid mobility
field. There are twodistinct sets of boundary conditions, one corresponding to the deformation
and one corresponding to the flow, and an initial condition on the fluid content to be added
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to the above equations to close the model for the Biot problem:

u = uD on ΓD × (0, tF], (1.7c)
(σ (∇su ) + αpI d)n = tN on ΓN × (0, tF], (1.7d)

p = pd on Γd × (0, tF], (1.7e)
κ∇p · n = wn on Γn × (0, tF], (1.7f)

(c0p + α∇·u )(·, 0) = η0 in Ω, (1.7g)

where ΓD, ΓN, Γd , and Γn are subsets of the boundary ∂Ω such that ΓD ∪ ΓN = Γd ∪ Γn = ∂Ω,
ΓD ∩ ΓN , ∅ and Γd ∩ Γn , ∅. If ΓD = ∅, owing to the Neumann condition (1.7d1.7d), we need
to impose a compatibility condition on the average of the forcing term f and the boundary
traction tN , as well as to prescribe the rigid-body motions of the medium. Thus, in this case,
we have ΓN = ∂Ω and we set∫

Ω

f (·, t) =
∫
∂Ω

tN (·, t),
∫
Ω

u (·, t) = uav, and
∫
Ω

∇×u (·, t) = u rot ∀t ∈ (0, tF], (1.7h)

where ∇× denotes the curl operator. For the sake of simplicity, we exclude the case of
ΓD , ∅ with zero (d − 1)-dimensional Hausdorff measure. We only mention that, if the
domain is clamped on a single point xD ∈ ∂Ω there is no need to fix the translations (by
imposing the zero-average constraint on u), but it is still necessary to prescribe the rotations.
Similarly, in the case Γd = ΓN = ∅ and c0 = 0, we observe that, owing to (1.7b1.7b) and the
inhomogeneous boundary conditions (1.7c1.7c) and (1.7f1.7f), we need the following compatibility
condition relating the fluid source g, the normal flux wn, and the Dirichlet datum uD, and the
following constraint on the average of p:∫

Ω

g(·, t) =
∫
∂Ω

wn(·, t) + αdt (uD · n)(·, t), and
∫
Ω

p(·, t) = pav ∀t ∈ (0, tF]. (1.7i)

In the context of geomechanics, a reasonable choice for the rigid-bodymotions of the medium
and the pressure average in (1.7h1.7h) and (1.7i1.7i) can be uav = 0, u rot = 0, and pav equal to the
hydrostatic pressure measured at the barycenter ofΩ, respectively. Finally, in the case ΓN = 0
and c0 = 0, if looking for a strong (space-time continuous up to the boundary) solution of
problem (1.71.7), one should also: (i) assume that the boundary data in (1.7c1.7c) and (1.7e1.7e) admit
continuous traces at ∂Ω × {t = 0}, and (ii) require the average of the initial fluid content to
be compatible with the Dirichlet datum uD, namely∫

Ω

η0 = α

∫
Ω

∇·u (·, 0) =
∫
∂Ω

(uD · n)(·, 0). (1.7j)

The symmetric mobility tensor κ : Ω → Rd×d
sym is assumed to be uniformly bounded and

uniformly elliptic; that means there exist positive constants κ and κ such that, for all x ∈ Ω
and all vector ξ ∈ Rd ,

κ‖ξ ‖2 ≤ ξTκ (x)ξ ≤ κ‖ξ ‖2.
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Parameter Description Unit
µ ∈ [µ, µ] Shear modulus Pa
λ ∈ (0,+∞) Dilatation modulus Pa
κ ∈ Rd×d

sym Uniformly elliptic mobility tensor m2s−1Pa−1

ϕ ∈ [0, 1] Reference porosity value –
α ∈ (ϕ, 1] Biot–Willis coefficient –
c0 ≥ 0 Constrained specific storage coefficient Pa−1

Table 1.1: Summary of physical parameters

The above hypothesis allows the permeability tensor κ to be discontinuous in Ω even if, in
practice, it has often more regularity than just being uniformly bounded. Henceforth, it is
assumed that there is a partition PΩ B {Ωi}1≤i≤NΩ of Ω such that the restriction of κ to each
Ωi is constant. In geomechanics applications, the partition PΩ typically results from the
partitioning of the porous medium into various geological layers.

In some applications, such as consolidation processes, the fluid is considered to be
incompressible and the solid matrix to have very low sensitiveness with respect to pressure
increments. Hence, the constrained specific storage coefficient c0 can be very small and
sometimes vanishing. Since, in this case, the volume change of the solid grains composing
the matrix is neglected, the volume of fluid only depends on the variations of pore volume.
This model is referred to asBiot’s consolidation model. From a numerical point of view, as we
will detail further, the correct approximation of the consolidation problem is more involved
than the one of the linear poroelasticity problem with c0 bounded away from 0. The well-
posedness of the canonical two-fieldweak formulation of problem (1.71.7)with displacement and
pressure as variables was carried out in [181181, 205205]. Three-field and four-field formulations,
obtained by taking the Darcy flux and the total stress as independent variables, have also been
analyzed and can be found in several studies, e.g. [131131, 167167, 204204].

1.1.4 Nonlinear poroelasticity

As noted in [6868, Section 3.2], many experimental results suggest that the volumetric response
of porous rock to the change of total pressure is actually nonlinear. The nonlinear behavior
is generally associated with the closing/opening of crack-like pores, but in very porous and
weak rocks it is mainly caused by progressive pore collapse. Investigations of the nonlinear
deformation of porous media have been motivated by the need to quantify the effect of the
pore pressure decline during depletion of an oil or gas reservoir on the volume of the rock
matrix. For a physical investigation of the nonlinear mechanical behavior of porous solids
we refer the reader to [2222, 2828]. Another possible source of nonlinearity in the poroelasticity
system is due to the dependence of the hydraulic mobility on the stress and fluid pressure.
In fact, some porous media exhibit a significant difference in conductivity once the material
deformations start to occur. The analysis of the nonlinear problem obtained by considering κ
depending on∇·u is provided in [4848], while the case of a negative exponential dependence on
the volumetric part of total stress is examined in [145145]. Amodel for finite-strain poroelasticity
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with deformation dependent permeability field has been proposed and analyzed in [2323, 9090].
In this manuscript we focus on nonlinearities of the stress-strain relation σ : Ω×Rd×d

sym →

Rd×d
sym in the small deformation regime. In particular, in Chapter 44 we study the poroelasticity

problem obtained by replacing (1.61.6) with the hyperelastic nonlinear laws considered in
Chapter 33. Hyperelasticity is a type of constitutive model for ideally elastic materials in
which the stress is determined by the current state of deformation by deriving a stored energy
density function Ψ : Rd×d

sym → R, namely

σ (τ) B
∂Ψ(τ)
∂τ

.

We next discuss a number of meaningful examples.
Example 1.1 (Hencky–Mises model). The nonlinear Hencky–Mises model of [105105, 157157]
corresponds to the stored energy density function

Ψhm(τ) B
α

2
tr(τ)2 + Φ(dev(τ)), (1.8)

where dev : Rd×d
sym → R defined by dev(τ) = tr(τ2)− 1

d tr(τ)2 is the deviatoric operator. Here,
α ∈ (0,+∞) and Φ : [0,+∞) → R is a function of class C2 satisfying, for some positive
constants C1, C2, and C3,

C1 ≤ Φ
′(ρ) < α, |ρΦ′′(ρ) | ≤ C2 and Φ

′(ρ) + 2ρΦ′′(ρ) ≥ C3 ∀ρ ∈ [0,+∞). (1.9)

We observe that taking α = λ + 2
d µ and Φ(ρ) = µρ in (1.81.8) leads to the linear case (1.61.6).

Deriving the energy density function (1.81.8) yields

σ (τ) = λ̃(dev(τ)) tr(τ)I d + 2µ̃(dev(τ))τ, (1.10)

with nonlinear Lamé functions µ̃(ρ) B Φ′(ρ) and λ̃(ρ) B α − Φ′(ρ).
In the previous example the nonlinearity of the model only depends on the deviatoric part

of the strain. In the following model it depends on the term τ : Cτ.
Example 1.2 (An isotropic reversible damagemodel). The isotropic reversible damagemodel
of [5050] can also be interpreted in the framework of hyperelasticity by setting up the energy
density function as

Ψdam(τ) B
(1 − D(τ))

2
τ : Cτ + Φ(D(τ)), (1.11)

where D : Rd×d
sym → [0, 1] is the scalar damage function and C is a fourth-order symmetric

and uniformly elliptic tensor, namely, for some positive constants C∗ and C∗, it holds

C∗‖τ‖2d×d ≤ Cτ : τ ≤ C∗‖τ‖2d×d, ∀τ ∈ Rd×d . (1.12)

The function Φ : [0, 1] → R defines the relation between τ and D by ∂φ
∂D =

1
2τ : Cτ. The

resulting stress-strain relation reads

σ (τ) = (1 − D(τ))Cτ. (1.13)
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Another generalization of the linear stress-strain relation is obtained by adding second-
order terms to (1.61.6).
Example 1.3 (A second-order elasticitymodel). In the second-order isotropic elasticitymodel
of [6666, 124124] the stress-strain relation is

σ (τ) = λ tr(τ)I d + 2µτ + B tr((τ)2)I d + 2B tr(τ)τ + C tr(τ)2I d + A(τ)2, (1.14)

where λ and µ are the standard Lamé parameter, and A, B,C ∈ R are the second-order moduli.
We note that the hyperelastic stored energy function associated to the the stress-strain relation
(1.141.14) has third-order terms and in general is not polyconvex, i.e. convex with respect to each
of the strain invariants.

1.2 Discretization
In order to discretize the Biot and nonlinear poroelasticity problems presented in the previous
sections, we consider a coupling of theHybridHigh-Order (HHO) and discontinuousGalerkin
(dG) method. Concerning the time discretization, we consider backward differentiation
formulas (especially the implicit Euler method), which are the simplest and most widely used
methods in the literature. We show that this construction yields an inf-sup stable hydro-
mechanical coupling, which is a crucial property to ensure robustness for small time steps
combined with small permeabilities. Additionally, the analysis presented in Chapter 22 and
44 allows to derive error estimates that are robust in the limit c0 → 0 which, as noted in
Section 1.2.11.2.1 and in [164164, Section 5.2], is expected to mitigate the problem of the nonphysical
pressure oscillations which can sometimes arise in the numerical simulation of poroelastic
systems. Before discussing the main features of the discretization methods considered in the
next chapters, we give an overview of the numerical issues related to the discretization of
poroelasticity problems.

1.2.1 Numerical issues
Several difficulties have to be accounted for in the design of a discretization methods for
problem (1.71.7). These issues have three origins: the discretization of the elasticity operator,
the (possibly saddle-point) coupling between the flow and the mechanics, and the rough
variations of the permeability coefficient that the Darcy operator has to accomodate.

First, we remark that the elasticity operator has to be carefully engineered in order to ensure
stability expressed by a discrete version of Korn’s inequality. Conforming finite elements
naturally yields coercive discretizations, but this is not necessarily the case when considering
nonconforming approximations. For instance, it is well known that the Crouzeix–Raviart
space (spanned by piecewise affine functions that are continuous at the midpoint of mesh
interfaces) does not fulfill a discrete Korn’s inequality. Another numerical issue concerning
the discretization of elasticity problems is the so-called locking phenomenon. When the
dilatation modulus λ in (1.61.6) is very large, which corresponds to a quasi-incompressible
material, results of poor quality can be obtained. More specifically, it can be observed that
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the material deforms as if it were much stiffer. In other words, it appears to lock. The key
point to ensure that a numerical method is locking-free is to establish an error estimate with
a multiplicative constant not blowing up in the limit λ → ∞, i.e. being able to prove uniform
convergence with respect to λ.

The stability of the saddle-pointmechanics-flow coupling is closely related to the elasticity
locking phenomenon. Indeed, for both of them, the difficulty lies in the approximation
of the divergence operator. In the linear elasticity context, locking can be handled by
projecting the divergence operator onto a discrete (pressure) space which satisfies an inf-sup
condition when coupled with the displacement approximation space. In the context of a
poroelastic displacement-pressure coupling, stability can thus be obtained by considering a
discrete pressure belonging to that space, which is in fact equivalent to projecting the discrete
divergence operator onto the pressure space in the coupling term. From a mathematical
point of view, the inf-sup condition yields an estimate in the L∞((0, tF); L2(Ω))-norm on the
discrete pore pressure which is independent of κ−1. It is of some importance to note that
inf-sup stability is not strictly needed in the compressible case (i.e. with c0 > 0). As a matter
of fact, the presence of the term c0dt p in the left-hand side of the fluid balance Equation
(1.7b1.7b) directly yields a discrete L∞((0, tF); L2(Ω)) estimate on the pore pressure which does
not depend neither on κ−1 nor on λ. An investigation of the role of the inf-sup condition
in the context of finite element discretizations of linear poroelasticity can be found, e.g. ,
in [154154, 155155] and in [165165, 166166].

The problem of spurious spatial oscillations of the pore pressure is actually more involved
than a simple saddle-point coupling issue. The difficulty comes from the fact that, in very
early times (or when the permeability is low), the pressure is quasi-L2(Ω) as the diffusion
term gives an almost vanishing contribution. However, as soon as t > 0, boundary conditions
are imposed on the pore pressure hence giving necessarily to this latter a H1(Ω) regularity.
When c0 = 0, if no discrete inf-sup condition holds, the only control of pressure is given by
the diffusion term, which is almost inexistent in early times. Spurious spatial oscillations then
arise. If an inf-sup condition holds, then it yields a control of the pressure approximation,
hence reducing the oscillations. However, it has been recently pointed out in [176176] that, even
for discretization methods leading to an inf-sup stable discretization of the Stokes problem in
the steady case, pressure oscillations can arise owing to a lack of monotonicity of the discrete
operator.

1.2.2 Polyhedral element methods
In recent years, a large effort has been devoted to the development and analysis of numerical
methods that apply to more general meshes than simplicial or Cartesian ones. In the context
of poroelaticity, this necessity arises from the presence of various layers and fractures in
the porous medium. The discretization of the domain may also include degenerate elements
(as in the near wellbore region in reservoir modelling, e.g. Figure 1.21.2) and nonconforming
interfaces (accounting for the presence of cracks or resulting from local mesh refinement).
In the context of structural mechanics, discretization methods supporting polyhedral meshes
and nonconforming interfaces can be useful for several reasons including, e.g., the use of
hanging nodes for contact and interface elasticity problems, and the greater robustness tomesh
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Figure 1.2: Example of polyhedral mesh with degenerate elements in reservoir applications

distorsion and fracture. Moreover, polyhedral methods allow for simple mesh refinement and
coarsening procedures for adaptivity.

In this dissertation, we focus on two families of polyhedral discretization methods: the
HHO and dGmethods. Both are nonconforming in the context of primal formulations of ellip-
tic problems, since no continuity condition is imposed between neighboring mesh elements.
They are also high-order methods, because they allow to increase the space approximation or-
der. The use of high-order methods can classically accelerate the convergence in the presence
of regular exact solutions or when combined with local mesh refinement. Additionally, the
construction of discrete problems using the HHO and dG discretizations is valid for arbitrary
space dimension and this enables dimension-independent implementations. In what follows,
we consider the HHO method of [3333, 7474] for the discretization of the (possibly nonlinear)
elasticity operator in (1.7a1.7a) and the Symmetric Weighted Interior Penalty (SWIP) dG method
of [7777, 9393] for the Darcy operator in (1.7b1.7b).

Discontinuous Galerkin methods can be viewed as finite element methods allowing for
discontinuities in the discrete trial and test spaces. Localizing test functions to single mesh
elements, they can also be viewed as finite volume methods in which the approximate
solution is represented on each mesh element by a polynomial function and not only by a
constant function. Allowing the approximate solution to be only piecewise continuous offers
a substantial amount of flexibility in the mesh design. A unified analysis of dG methods
for elliptic problems can be found in [4242] and in [7676, Chapter 4]. The fundamental strategy
to approximate heterogeneous diffusion (such us Darcean flow in porous media) problem
using dG methods is to penalize interface and boundary jumps using a diffusion-dependent
parameter scaling as the harmonic mean of the normal component of the diffusion tensor.
Indeed, using the harmonic mean to penalize will turn out to tune automatically the amount
of penalty. Moreover, as pointed out in Chapter 44 and in [7777] the proposed method is robust
with respect to the spatial variations of the permeability coefficient, with constants in the
error estimates having a mild dependendance on the heterogeneity ratio.

Hybrid High-Order methods, introduced in [7878] and [7474], rely on primal formulations of
elliptic problems and lead to a symmetric, positive definite systemmatrices. Themethods can
be deployed on general polyhedral meshes. The degrees of freedom are polynomials of the
same order atmesh elements and faces: face-based discrete unknowns establish inter-elements
connections at interfaces and can be used to strongly enforce essential boundary conditions
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at boundary faces, element-based discrete unknowns are intermediate variables which can
be eliminated from the global system by static condensation, as detailed in [5757, Section
2.4] and in Section 2.52.5. The design of these methods proceeds in two step: (i) the discrete
reconstructions of differential operators hinging on the solution of inexpensive local problems
inside each element and (ii) the definition of a least-squares stabilization that weakly enforces
thematching of element- and face-based discrete unknowns. The definitions of the differential
reconstructions operators are based on discrete counterparts of integrations by parts. Even if
local problems related to the reconstruction operators have to be solved, the numerical results
of [7474] indicate that the associated cost becomes marginal with respect to the cost of solving
the global systems as the number of discrete unknowns is increased. Moreover, HHOmethods
are computationally effective, since the use of face unknowns yields to compact stencils, and
they can be efficiently implemented thanks to the possibility of statically condensing a large
subset of the unknowns. The HHO discretization studied in Chapter 33 for nonlinear elasticity
problems is inspired by recent works on Leray–Lions operators [6969, 7070], where the authors
show that the method is robust with respect to nonlinearities. The robustness of the method
with respect to locking has been proved in [7474, Section 5].

Other locking-free polyhedral schemes have been proposed for the discretization of linear
elasticity problems. A non-exhaustive list includes: (i) the Hybridizable discontinuous
Galerkin (HDG) method of [185185], (ii) the Mimetic Finite Difference (MFD) scheme of [1919],
(iii) the Virtual Element Method (VEM) of [2020], (iv) the generalized Crouzeix–Raviart
scheme introduced in [8080], and (v) the Weak Galerkin (WG) method of [197197]. Concerning
the nonlinear version of the problem, discretization methods supporting general meshes have
also been considered in [2121] and [5454], where the authors propose a low-order VEM scheme
for small and finite deformations, respectively. The HHO method has been applied for the
discretization of finite deformations elasticity problems in [11]. To the best of our knowledge,
the existing literature on the approximation of poroelasticity problem on general polyhedral
meshes is more scarce. We can cite the vectorial Multi-Point Flux Approximation methods
of [160160], the Hybrid Finite Volume discretization considered in [138138], and the very recent
HDG method of [101101] .

1.3 Uncertainty quantification
In numerical simulation, accounting for uncertainties in input data (such as physical constants,
boundary and initial conditions, external forcing, and geometry) is a crucial issue, especially
in risk analysis, safety, and design. Risk assessment in poroelasticity is a critical challenge
for a wide range of vital resource management applications. Recent public concerns over
induced seismicity [6363, 113113] and groundwater contamination [182182] underscore the need to
quantify the probability of harmful events associated with subsurface flow and deformation.
Of particular interest is the prediction of critical stresses which can compromise the caprock
integrity [162162] and wellbore stability [153153] in storage reservoirs. The key to successful risk
assessment in these contexts is the ability to predict the probability of critical events based
on some empirical approximation of the material parameters and source term variability.
For this reason there is a particular need to combine numerical methods for poromechanical
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simulation with efficient techniques for quantifying uncertainties.
Uncertainty Quantification (UQ) methods have been developed in the last decades to take

into account the effect of random input parameters on the quantity of interest. They enable to
obtain information on themodel output that is richer than in a deterministic context, since they
provide the statistical moments and the probability distribution. This information makes the
comparison with experimental observation easier and facilitate the evaluation of the validity
of the physical models. Indeed, UQ methods provide confidence intervals in computed
predictions and identify the uncertain parameters that should be measured or controlled with
more accuracy because they have the most significant impact on the solution. Additionally,
they allow to assess the limits of predictability and the level of reliability that can be attached
to numerical simulations.

Among the techniques designed for UQ in numerical models, the stochastic spectral
methods have received a considerable attention. The core idea of these methods is the
decomposition of random quantities on suitable approximation bases such as the Karhunen–
Loéve [142142, 180180] or the Polynomial Chaos [112112, 137137] expansions. The former represents the
random fields as a linear combination of an infinite number of uncorrelated random variables,
while the latter uses polynomial expansions in terms of independent random variables. Their
main interest is that they provide a complete probabilistic description of the uncertain solution.

In Chapter 55, in order to investigate the effect of uncertainty in poroelasticity problems,
we rely on a Polynomial Chaos (PC) approach. The fundamental concept on which PC
decompositions are based is to regard uncertainty as generating a new dimension and the
solution as being dependent on this dimension. A convergent expansion along the new
dimension is then sought in terms of a set of orthogonal basis functions, whose coefficients
can be used to characterize the uncertainty. The motivation behind PC approaches includes:
(i) the suitability to model expressed in terms of partial differential equations, (ii) the ability to
deal with situations exhibiting steep nonlinear dependence of the solution on random model
data, and (iii) the promise of obtaining efficient and accurate estimates of uncertainty. In
addition, the provided information is given in a format that can be readily exploited to probe
the dependence of specific observables on particular components of the input data.

1.4 Plan of the manuscript
The rest manuscript is organized as follows.

InChapter 22, published in SIAM Journal on Scientific Computing (cf. [3030]), we introduce
a novel algorithm for the Biot problem based on a HHO discretization of the mechanics and
a Symmetric Weighted Interior Penalty dG discretization of the flow. The method has
several assets, including, in particular, the validity in two and three space dimensions, inf-
sup stability, and the support of general polyhedral meshes, nonmatching interfaces, and
arbitrary space approximation order. Additionally, the resolution cost can be reduced by
statically condensing a large subset of the unknowns. Our analysis delivers stability and error
estimates that hold also when the constrained specific storage coefficient vanishes, and shows
that the constants have only a mild dependence on the heterogeneity of the permeability
coefficient. We discuss implementation details and provide numerical tests demonstrating
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the performance of the method. In particular, we numerically check the robustness of the
method with respect to pressure spurious oscillations. Finally, we show that the scheme is
locally conservative on the primal mesh, a desirable property for practitioners and key for a
posteriori estimates based on equilibrated fluxes.

InChapter 33, published in SIAMJournal onNumerical Analysis (cf. [3333]), we propose and
analyze a novel HHO discretization of a class of (linear and) nonlinear elasticity models in the
small deformation regime which are of common use in solid mechanics. The method satisfies
a local principle of virtual work inside each mesh element, with interface tractions that obey
the law of action and reaction. A complete analysis covering very general stress-strain laws is
carried out. In particular, we prove the existence of a discrete solution and we identify a strict
monotonicity assumption on the stress-strain law which ensures uniqueness. Convergence to
minimal regularity solutions u ∈ H1

0 (Ω;Rd) is proved using a compactness argument. An
optimal energy-norm error estimate in hk+1 is then proved under the additional conditions of
Lipschitz continuity and strong monotonicity on the stress-strain law. The performance of the
method is extensively investigated on a complete panel of model problems using stress-strain
laws corresponding to real materials. The numerical tests show that the method is robust
with respect to strong nonlinearities.

InChapter 44, building on the material of the previous chapters, we construct and analyze
a coupled HHO-dG discretization method for the nonlinear poroelasticity problem. The
chapter is submitted for publication (see [3535] for the preprint version). Compared to the
method proposed in Chapter 22 for the linear poroelasticity problem, there are two main
differences in the design. First, the discrete symmetric gradient sits in the full space of
tensor-valued polynomials, as opposed to symmetric gradients of vector-valued polynomials.
As shown in Chapter 33, this modification is required for the convergence analysis in the
presence of nonlinear stress-strain laws. Second, the right-hand side of the discrete problem
is obtained by taking the average in time of the loading force f and fluid source g between
two consecutive time steps. This modification allows us to prove stability and optimal error
estimates without any additional time regularity assumptions on data. Moreover, the results
holds for both nonzero and vanishing storage coefficients. In this chapter we also give a new
simple proof of discrete Korn’s inequality, not requiring particular geometrical assumptions
on the mesh.

In Chapter 55, we consider the numerical solution of the Biot problem with random
poroelastic coefficients in the context of uncertainty quantification. The chapter collects part
of the ongoing work carried out during the internship at the BRGM that took place from
January to September 2018. The uncertainty is modelled with a finite set of parameters with
prescribed probability distribution. We present the variational formulation of the stochastic
partial differential system and establish itswell-posedness. We then discuss the approximation
of the parameter-dependent problem by non-intrusive techniques based on on Polynomial
Chaos decompositions. We specifically focus on sparse spectral projection methods which
essentially amount to performing an ensemble of deterministic model simulations to estimate
the expansion coefficients. We numerically investigate the convergence of the probability
error of the PC approximation with respect to the level of the sparse grid. Finally, we perform
a sensitivity analysis to asses the propagation of the input uncertainty on the solutions
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considering an injection test and a traction problem.
In Appendix AA, published in the conference book Finite Volumes for Complex Appli-

cations VIII (cf. [3434]), we present a variant of the HHO-dG algorithm for the quasi-static
nonlinear poroelasticity problem studied in Chapter 44. In particular, this appendix provides
numerical tests demonstrating the convergence of the method considering the Hencky-Mises
non-linear behavior law.

Appendix BB is an excerpt of a complementary work that has been published in Computa-
tional Methods in Applied Mathematics (cf. [3636]). I decided not to include the full version to
give amore consistent structure to themanuscript. Thereinwe consider hyperelastic problems
and their numerical solution using a conforming finite element discretization and iterative
linearization algorithms. For these problems, we present equilibrated, weakly symmetric,
H (div)-conforming stress tensor reconstructions, obtained from local problems on patches
around vertices using the Arnold–Falk–Winther finite element spaces. We distinguish two
stress reconstructions, one for the discrete stress and one representing the error of the itera-
tive linearization algorithm. The reconstructions are independent of the mechanical behavior
law. Based on these stress tensor reconstructions, we derive an a posteriori error estimate
distinguishing the discretization, linearization, and quadrature error estimates, and propose
an adaptive algorithm balancing these different error sources. We prove the efficiency of
the estimate, and confirm it on a numerical test with analytical solution. We then apply the
adaptive algorithm to a more application-oriented test.
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Chapter 2

The Biot problem

This chapter has been published in the following peer-reviewed journal (see [3030]):

SIAM Journal on Scientific Computing,
Volume 38, Issue 3, 2016, Pages A1508–A1537.
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2.1 Introduction
We consider in this chapter the quasi-static Biot’s consolidation problem describing Darcian
flow in a deformable saturated porous medium. Our original motivation comes from appli-
cations in geosciences, where the support of general polyhedral meshes is crucial, e.g., to
handle nonconforming interfaces arising from local mesh adaptation or Voronoi elements in
the near wellbore region when modelling petroleum extraction. Let Ω ⊂ Rd , 1 ≤ d ≤ 3,
denote a bounded connected polyhedral domain with boundary ∂Ω and outward normal n.
For a given finite time tF > 0, volumetric load f , fluid source g, the Biot problem consists in
finding a vector-valued displacement field u and a scalar-valued pore pressure field p solution
of

−∇·σ (u ) + α∇p = f in Ω × (0, tF), (2.1a)
c0dt p + ∇·(αdtu ) − ∇·(κ∇p) = g in Ω × (0, tF), (2.1b)

where c0 ≥ 0 and α > 0 are real numbers corresponding to the constrained specific storage
and Biot–Willis coefficients, respectively, κ is a real-valued permeability field such that
κ ≤ κ ≤ κ a.e. in Ω for given real numbers 0 < κ ≤ κ , and the Cauchy stress tensor is given
by

σ (u ) B 2µ∇su + λI d∇·u,

with real numbers λ ≥ 0 and µ > 0 corresponding to Lamé’s parameters, ∇s denoting the
symmetric part of the gradient operator applied to vector-valued fields, and I d denoting the
identity matrix of Rd×d . Equations (2.1a2.1a) and (2.1b2.1b) express, respectively, the mechanical
equilibrium and the fluid mass balance. We consider, for the sake of simplicity, the following
homogeneous boundary conditions:

u = 0 on ∂Ω × (0, tF), (2.1c)
κ∇p · n = 0 on ∂Ω × (0, tF). (2.1d)

Initial conditions are set prescribing u (·, 0) = u0 and, if c0 > 0, p(·, 0) = p0. In the
incompressible case c0 = 0, we also need the following compatibility condition on g:∫

Ω

g(·, t) = 0 ∀t ∈ (0, tF), (2.1e)

as well as the following zero-average constraint on p:∫
Ω

p(·, t) = 0 ∀t ∈ (0, tF). (2.1f)

For the derivation of the Biot model we refer to the seminal work of Terzaghi [190190] and
Biot [2727, 2929]. A theoretical study of problem (2.12.1) can be found in [181181]. For the precise
regularity assumptions on the data and on the solution under which our a priori bounds and
convergence estimates are derived, we refer to Lemma 2.72.7 and Theorem 2.122.12, respectively.
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A few simplifications are made to keep the exposition as simple as possible while still
retaining all the principal difficulties. For the Biot–Willis coefficient we take

α = 1,

an assumption often made in practice. For the scalar-valued permeability κ , we assume that
it is piecewise constant on a partition PΩ of Ω into bounded open polyhedra. The treatment
of more general permeability coefficients can be done following the ideas of [7777]. Also, more
general boundary conditions than (2.1c2.1c)–(2.1d2.1d) can be considered up to minor modifications.

Our focus is here on a novel space discretization for the Biot problem (standard choices are
made for the time discretization). Several difficulties have to be accounted for in the design of
the space discretization of problem (2.12.1): in the context of nonconformingmethods, the linear
elasticity operator has to be carefully engineered to ensure stability expressed by a discrete
counterpart of the Korn’s inequality; the Darcy operator has to accomodate rough variations
of the permeability coefficient; the choice of discrete spaces for the displacement and the
pressuremust satisfy an inf-sup condition to contribute reducing spurious pressure oscillations
for small time steps combined with small permeabilities when c0 = 0. An investigation of the
role of the inf-sup condition in the context of finite element discretizations can be found, e.g.,
in Murad and Loula [154154, 155155]. A recent work of Rodrigo, Gaspar, Hu, and Zikatanov [176176]
has pointed out that, even for discretization methods leading to an inf-sup stable discretization
of the Stokes problem in the steady case, pressure oscillations can arise owing to a lack of
monotonicity. Therein, the authors suggest that stabilizing is possible by adding to the mass
balance equation an artificial diffusion term with coefficient proportional to h2/τ (with h and
τ denoting, respectively, the spatial and temporal meshsizes). However, computing the exact
amount of stabilization required is in general feasible only in 1 space dimension.

Several space discretization methods for the Biot problem have been considered in the
literature. Finite element discretizations are discussed, e.g., in the monograph of Lewis
and Schrefler [140140]; cf. also references therein. A finite volume discretization for the
three-dimensional Biot problem with discontinuous physical coefficients is considered by
Naumovich [156156]. In [165165, 166166], Phillips and Wheeler propose and analyze an algorithm
that models displacements with continuous elements and the flow with a mixed method.
In [167167], the same authors also propose a different method where displacements are instead
approximated using discontinuous Galerkin methods. In [200200], Wheeler, Xue and Yotov
study the coupling of multipoint flux discretization for the flowwith a discontinuous Galerkin
discretization of the displacements. While certainly effective on matching simplicial meshes,
discontinuous Galerkin discretizations of the displacements usually do not allow to prove
inf-sup stability on general polyhedral meshes.

In this chapter, we propose a novel space discretization of problem (2.12.1) where the linear
elasticity operator is discretized using the Hybrid High-Order (HHO) method of [7474] (c.f.
also [7171, 7373, 7878]), while the flow relies on the Symmetric Weighted Interior Penalty (SWIP)
discontinuous Galerkin method of [7777], see also [7676, Chapter 4]. The proposed method has
several assets: (i) It delivers an inf-sup stable discretization on general meshes including,
e.g., polyhedral elements and nonmatching interfaces; (ii) it allows to increase the space
approximation order to accelerate convergence in the presence of (locally) regular solutions;
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(iii) it is locally conservative on the primal mesh, a desirable property for practitioners and
key for a posteriori estimates based on equilibrated fluxes; (iv) it is robust with respect to the
spatial variations of the permeability coefficient, with constants in the error estimates that
depend on the square root of the heterogeneity ratio; (v) it is (relatively) inexpensive: at the
lowest order, after static condensation of element unknowns for the displacement, we have 4
(resp. 9) unknowns per face for the displacements + 3 (resp. 4) unknowns per element for the
pore pressure in 2d (resp. 3d). Finally, the proposed construction is valid for arbitrary space
dimension, a feature which can be exploited in practice to conceive dimension-independent
implementations.

The material is organized as follows. In Section 2.22.2, we introduce the discrete setting
and formulate the method. In Section 2.32.3, we derive a priori bounds on the exact solu-
tion for regular-in-time volumetric load and mass source. The convergence analysis of the
method is carried out in Section 2.42.4. Implementation details are discussed in Section 2.52.5,
while numerical tests proposed in Section 2.62.6. Finally, in Appendix 2.72.7, we investigate the
local conservation properties of the method by identifying computable conservative normal
tractions and mass fluxes.

2.2 Discretization
In this section we introduce the assumptions on the mesh, define the discrete counterparts of
the elasticity and Darcy operators and of the hydro-mechanical coupling terms, and formulate
the discretization method.

2.2.1 Mesh and notation
Denote by H ⊂ R+∗ a countable set of meshsizes having 0 as its unique accumulation point.
Following [7676, Chapter 1], we consider h-refined spatial mesh sequences (Th)h∈H where, for
all h ∈ H , Th is a finite collection of nonempty disjoint open polyhedral elements T such
that Ω =

⋃
T∈Th T and h = maxT∈Th hT with hT standing for the diameter of the element T .

We assume that mesh regularity holds in the following sense: For all h ∈ H , Th admits a
matching simplicial submesh Th and there exists a real number % > 0 independent of h such
that, for all h ∈ H , (i) for all simplex S ∈ Th of diameter hS and inradius rS, %hS ≤ rS and
(ii) for all T ∈ Th, and all S ∈ Th such that S ⊂ T , %hT ≤ hS. A mesh sequence with this
property is called regular. It is worth emphasizing that the simplicial submesh Th is just an
analysis tool, and it is not used in the actual construction of the discretization method. These
assumptions are essentially analogous to those made in the context of other recent methods
supporting general meshes; cf., e.g., [2020, Section 2.2] for the Virtual Element method. For a
collection of useful geometric and functional inequalities that hold on regular mesh sequences
we refer to [7676, Chapter 1] and [6969].

Remark 2.1 (Face degeneration). The above regularity assumptions on the mesh imply that
the diameter of the mesh faces is uniformly comparable to that of the cell(s) they belong
to, i.e., face degeneration is not allowed. Face degeneration has been considered, on the
other hand, in [4747] in the context of interior penalty discontinuous Galerkin methods. One
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could expect that this framework could be used herein while adapting accordingly the penalty
strategy (2.112.11) and (2.192.19). This point lies out of the scope of the present work and will be
inspected in the future.

To avoid dealing with jumps of the permeability inside elements, we additionally assume
that, for all h ∈ H , Th is compatible with the known partition PΩ on which the diffusion
coefficient κ is piecewise constant, so that jumps can only occur at interfaces.

We define a face F as a hyperplanar closed connected subset of Ω with positive (d−1)-
dimensional Hausdorff measure and such that (i) either there exist T1,T2 ∈ Th such that
F ⊂ ∂T1∩ ∂T2 (with ∂Ti denoting the boundary of Ti) and F is called an interface or (ii) there
exists T ∈ Th such that F ⊂ ∂T ∩∂Ω and F is called a boundary face. Interfaces are collected
in the set F i

h , boundary faces in F b
h , and we let Fh B F

i
h ∪ F

b
h . The diameter of a face

F ∈ Fh is denoted by hF . For all T ∈ Th, FT B {F ∈ Fh : F ⊂ ∂T } denotes the set of faces
contained in ∂T and, for all F ∈ FT , nTF is the unit normal to F pointing out of T . For a
regular mesh sequence, the maximum number of faces in FT can be bounded by an integer
N∂ uniformly in h. For each interface F ∈ F i

h , we fix once and for all the ordering for the
elements T1,T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2 and we let nF B nT1,F . For a boundary face,
we simply take nF = n, the outward unit normal to Ω.

For integers l ≥ 0 and s ≥ 1, we denote by Pl
d (Th) the space of fully discontinuous

piecewise polynomial functions of total degree ≤ l on Th and by H s (Th) the space of
functions in L2(Ω) that lie in H s (T ) for all T ∈ Th. The notation H s (PΩ) will also be used
with obvious meaning. Under the mesh regularity assumptions detailed above, using [7676,
Lemma 1.40] together with the results of [8888], one can prove that there exists a real number
Capp depending on % and l, but independent of h, such that, denoting by πl

h the L2-orthogonal
projector on Pl

d (Th), the following holds: For all s ∈ {1, . . . , l + 1} and all v ∈ H s (Th),

|v − πl
hv |Hm (Th ) ≤ Capphs−m |v |H s (Th ) ∀m ∈ {0, . . . , s − 1}. (2.2)

For an integer l ≥ 0, we consider the space

Cl (V ) B Cl ([0, tF];V ),

spanned byV -valued functions that are l times continuously differentiable in the time interval
[0, tF]. The space C0(V ) is a Banach space when equipped with the norm ‖ϕ‖C0(V ) B

maxt∈[0,tF] ‖ϕ(t)‖V , and the space Cl (V ) is a Banach space when equipped with the norm
‖ϕ‖Cl (V ) B max0≤m≤l ‖dm

t ϕ‖C0(V ). For the time discretization, we consider a uniform mesh
of the time interval (0, tF) of step τ B tF/N with N ∈ N∗, and introduce the discrete times
tn B nτ for all 0 ≤ n ≤ N . For any ϕ ∈ Cl (V ), we set ϕn B ϕ(tn) ∈ V , and we introduce
the backward differencing operator δt such that, for all 1 ≤ n ≤ N ,

δtϕ
n B

ϕn − ϕn−1

τ
∈ V . (2.3)

In what follows, for X ⊂ Ω, we respectively denote by (·, ·)X and ‖·‖X the standard
inner product and norm in L2(X ), with the convention that the subscript is omitted whenever
X = Ω. The same notation is used in the vector- and tensor-valued cases. For the sake of
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brevity, throughout the chapter, we will often use the notation a . b for the inequality a ≤ Cb
with generic constant C > 0 independent of h, τ, c0, λ, µ, and κ , but possibly depending on
% and the polynomial degree k. We will name generic constants only in statements or when
this helps to follow the proofs.

2.2.2 Linear elasticity operator
The discretization of the linear elasticity operator is based on the Hybrid High-Order method
of [7474]. Let a polynomial degree k ≥ 1 be fixed. The degrees of freedom (DOFs) for the
displacement are collected in the space

U k
h B



×
T∈Th
Pk

d (T )d


×



×

F∈Fh
Pk

d−1(F)d


.

For a generic collection of DOFs in U k
h we use the notation vh B

(
(vT )T∈Th, (vF )F∈Fh

)
. We

also denote by vh (not underlined) the function of Pk
d (Th)d such that vh |T = vT for all T ∈ Th.

The restrictions of U k
h and vh to an element T are denoted by U k

T and vT =
(
vT, (vF )F∈FT

)
,

respectively. For further use, we define the reduction map I k
h : H1(Ω)d → U k

h such that, for
all v ∈ H1(Ω)d ,

I k
hv =

(
(πk

T v )T∈Th, (π
k
Fv )F∈Fh

)
, (2.4)

where πk
T and πk

F denote the L2-orthogonal projectors on Pk
d (T ) and Pk

d−1(F), respectively.
For all T ∈ Th, the reduction map on U k

T obtained by a restriction of I k
h is denoted by I k

T .
For all T ∈ Th, we obtain a high-order polynomial reconstruction r k+1

T : U k
T → P

k+1
d (T )d

of the displacement field by solving the following local pure traction problem:c2: For a given
local collection of DOFs vT =

(
vT, (vF )F∈FT

)
∈ U k

T , find r k+1
T vT ∈ P

k+1
d (T )d such that

(∇sr
k+1
T vT,∇sw )T = (∇svT,∇sw )T +

∑
F∈FT

(vF − vT,∇swnTF )F ∀w ∈ Pk+1
d (T )d . (2.5)

In order to uniquely define the solution to (2.52.5), we prescribe the conditions
∫

T r k+1
T vT =∫

T vT and
∫

T ∇ssr
k+1
T vT =

∑
F∈FT

∫
F

1
2 (vF ⊗ nTF − nTF ⊗ vF ), where ∇ss denotes the skew-

symmetric part of the gradient operator. We also define the global reconstruction of the
displacement r k+1

h : U k
h → P

k+1
d (Th)d such that, for all vh ∈ U

k
h,

(r k+1
h vh) |T = r k+1

T vT ∀T ∈ Th.

The following approximation property is proved in [7474, Lemma 2]: For all v ∈ H1(Ω)d ∩

H k+2(PΩ)d ,
‖∇s(r k+1

h I k
hv − v )‖ . hk+1‖v ‖Hk+2(PΩ)d . (2.6)

We next introduce the discrete divergence operator Dk
T : U k

T → P
k
d (T ) such that, for all
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q ∈ Pk
d (T )

(Dk
T vT, q)T = (∇·vT, q)T +

∑
F∈FT

(vF − vT, qnTF )F (2.7a)

= −(vT,∇q)T +
∑

F∈FT

(vF, qnTF )F, (2.7b)

where we have used integration by parts to pass to the second line. The divergence operator
satisfies the following commuting property: For all T ∈ Th and all v ∈ H1(T )d ,

Dk
T I k

T v = π
k
T (∇·v ). (2.8)

The local contribution to the discrete linear elasticity operator is expressed by the bilinear
form aT on U k

T × U
k
T such that, for all wT, vT ∈ U

k
T ,

aT (wT, vT ) B 2µ
{
(∇sr

k+1
T wT,∇sr

k+1
T vT )T + sT (wT, vT )

}
+ λ(Dk

TwT, Dk
T vT )T, (2.9)

where the stabilization bilinear form sT is such that

sT (wT, vT ) B
∑

F∈FT

h−1F (∆k
TFwT,∆

k
TFvT )F, (2.10)

with face-based residual such that, for all wT ∈ U
k
T ,

∆k
TFwT B (πk

F r
k+1
T wT − wF ) − (πk

T r
k+1
T wT − wT ).

The global bilinear form ah on U k
h ×U

k
h is assembled element-wise from local contributions:

ah(wh, vh) B
∑
T∈Th

aT (wT, vT ). (2.11)

To account for the zero-displacement boundary condition (2.1c2.1c), we consider the subspace

U k
h,D B

{
vh =

(
(vT )T∈Th, (vF )F∈Fh

)
∈ U k

h : vF ≡ 0 ∀F ∈ F b
h

}
. (2.12)

Define on U k
h the discrete strain seminorm

‖vh‖
2
ε,h B

∑
T∈Th

‖vh‖
2
ε,T, ‖vh‖

2
ε,T B ‖∇svT ‖

2
T +

∑
F∈FT

h−1F ‖vF − vT ‖
2
F . (2.13)

It can be proved that ‖·‖ε,h defines a norm on U k
h,D. Moreover, using [7474, Corollary 6], one

has the following coercivity and boundedness result for ah:

η−1(2µ)‖vh‖
2
ε,h ≤ ‖vh‖

2
a,h B ah(vh, vh) ≤ η(2µ + dλ)‖vh‖

2
ε,h, (2.14)

where η > 0 is a real number independent of h, τ and the physical coefficients. Additionally,
we know from [7474, Theorem 8] that, for all w ∈ H1

0 (Ω)d ∩ H k+2(PΩ)d such that ∇·w ∈
H k+1(PΩ) and all vh ∈ U

k
h,D, the following consistency result holds:

���ah(I k
hw, vh) + (∇·σ (w ), vh)��� . hk+1

(
2µ‖w ‖Hk+2(PΩ)d + λ‖∇·w ‖Hk+1(PΩ)

)
‖vh‖ε,h. (2.15)

To close this section, we give the following discrete counterpart of Korn’s inequality (see 4.34.3
for the proof).
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Proposition 2.2 (Discrete Korn’s inequality). There is a real number CK > 0 depending on
% and on k but independent of h such that, for all vh ∈ U k

h,D, recalling that vh ∈ P
k
d (Th)d

denotes the broken polynomial function such that vh |T = vT for all T ∈ Th,

‖vh‖ ≤ CKdΩ‖vh‖ε,h, (2.16)

where dΩ denotes the diameter of Ω.

2.2.3 Darcy operator
The discretization of the Darcy operator is based on the Symmetric Weighted Interior Penalty
method of [7777], cf. also [7676, Section 4.5]. At each time step, the discrete pore pressure is
sought in the broken polynomial space

Pk
h B




Pk
d (Th) if c0 > 0,
Pk

d,0(Th) if c0 = 0,
(2.17)

wherewehave introduced the zero-average subspacePk
d,0(Th) B

{
qh ∈ P

k
d (Th) : (qh, 1) = 0

}
.

For all F ∈ F i
h , we define the jump and (weighted) average operators such that, for all

ϕ ∈ H1(Th), denoting by ϕT and κT the restrictions of ϕ and κ to T ∈ Th, respectively,

[ϕ]F B ϕT1 − ϕT2, {ϕ}F B ωT1ϕT1 + ωT2ϕT2, (2.18)

whereωT1 = 1−ωT2 B
κT2

(κT1+κT2 ) . Denoting by∇h the broken gradient on H1(Th) and letting,

for all F ∈ F i
h , λκ,F B

2κT1κT2
(κT1+κT2 ) , we define the bilinear form ch on Pk

h × Pk
h such that, for all

qh, rh ∈ Pk
h ,

ch(rh, qh) B (κ∇hrh,∇hqh) +
∑

F∈F i
h

ςλκ,F

hF
([rh]F, [qh]F )F

−
∑

F∈F i
h

(
({κ∇hrh}F · nF, [qh]F )F + ([rh]F, {κ∇hqh}F · nF )F

)
,

(2.19)

where ς > 0 is a user-defined penalty parameter. The fact that the boundary terms only
appear on internal faces in (2.192.19) reflects the Neumann boundary condition (2.1d2.1d). From
this point on, we will assume that ς > C2

trN∂ with Ctr denoting the constant from the discrete
trace inequality [7676, Eq. (1.37)], which ensures that the bilinear form ch is coercive (in the
numerical tests of Section 2.62.6, we took ς = (N∂ + 0.1)k2). Since the bilinear form ch is also
symmetric, it defines a seminorm on Pk

h , denoted hereafter by ‖·‖c,h (the map ‖·‖c,h is in fact
a norm on Pk

d,0(Th)).
Remark 2.3 (Alternative stabilization). To get rid of the dependence of the lower threshold
of ς on Ctr, one can resort to the BR2 stabilization; c.f. [1717] and also [7676, Section 5.3.2]. In
passing, this stabilization could also contribute to handle face degeneration since the penalty
parameter no longer depends on the inverse of the face diameter (cf. Remark 2.12.1). This topic
will make the object of future investigations.
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The following known results will be needed in the analysis. Let

P∗ B
{
r ∈ H1(Ω) ∩ H2(PΩ) : κ∇r · n = 0 on ∂Ω

}
, Pk

∗h B P∗ + Pk
h .

Extending the bilinear form ch to Pk
∗h × Pk

∗h, the following consistency result can be proved
adapting the arguments of [7676, Chapter 4] to account for the homogeneousNeumann boundary
condition (2.1d2.1d):

∀r ∈ P∗, −(∇·(κ∇r), q) = ch(r, q) ∀q ∈ P∗h. (2.20)

Assuming, additionally, that r ∈ H k+2(PΩ), as a consequence of [7676, Lemma 5.52] together
with the optimal approximation properties (2.22.2) of πk

h on regular mesh sequences one has,

sup
qh∈Pkd,0(Th )\{0}

ch(r − πk
hr, qh)

‖qh‖c,h
. κ

1/2hk ‖r ‖Hk+1(PΩ) .

2.2.4 Hydro-mechanical coupling

The hydro-mechanical coupling is realized by means of the bilinear form bh on U k
h × P

k
d (Th)

such that, for all vh ∈ U
k
h and all qh ∈ P

k
d (Th),

bh(vh, qh) B
∑
T∈Th

bT (vT, qh |T ), bT (vT, qh |T ) B −(Dk
T vT, qh |T )T, (2.21)

where Dk
T is the discrete divergence operator defined by (2.7a2.7a). A simple verification shows

that, for all vh ∈ U
k
h and all qh ∈ P

k
d (Th),

bh(vh, qh) . ‖vh‖ε,h‖qh‖. (2.22)

Additionally, using the definition (2.7a2.7a) of Dk
T and (2.122.12) of U k

h,D, it can be proved that, for
all vh ∈ U

k
h,D, it holds (χΩ denotes here the characteristic function of Ω),

bh(vh, χΩ) = 0. (2.23)

The following inf-sup condition expresses the stability of the hydro-mechanical coupling:
Lemma 2.4 (Inf-sup condition for bh). There is a real number β depending on Ω, % and k
but independent of h such that, for all qh ∈ P

k
d,0(Th),

‖qh‖ ≤ β sup
vh∈U

k
h,D\{0}

bh(vh, qh)
‖vh‖ε,h

. (2.24)

Proof. Let qh ∈ P
k
d,0(Th). Classically [3131], there is vqh ∈ H1

0 (Ω)d such that ∇·vqh = qh and
‖vqh ‖H1(Ω)d . ‖qh‖. Let T ∈ Th. Using the H1-stability of the L2-orthogonal projector (cf.,
e.g., [6969, Corollary 3.7]), it is inferred that

‖∇sπ
k
T vqh ‖T ≤ ‖∇vqh ‖T .
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Moreover, for all F ∈ FT , using the boundedness of πk
F and the continuous trace inequality

of [7676, Lemma 1.49] followed by a local Poincaré’s inequality for the zero-average function
(πk

T vqh − vqh ), we have

h−1/2F ‖πk
F (πk

T vqh − vqh )‖F ≤ h−1/2F ‖πk
T vqh − vqh ‖F . ‖∇vqh ‖T .

As a result, recalling the definition (2.42.4) of the local reduction map I k
T and (2.132.13) of the strain

norm ‖·‖ε,T , it follows that ‖I k
T vqh ‖ε,T . ‖vqh ‖H1(T )d . Squaring and summing over T ∈ Th

the latter inequality, we get

‖I k
hvqh ‖ε,h . ‖vqh ‖H1(Ω)d . ‖qh‖. (2.25)

Using (2.252.25), the commuting property (2.82.8), and denoting by S the supremum in (2.242.24), one
has

‖qh‖
2 = (∇·vqh, qh) =

∑
T∈Th

(Dk
T I k

T vqh, qh)T = −bh(I k
hvqh, qh) ≤ S‖I k

hvqh ‖ε,h . S‖qh‖. �

2.2.5 Formulation of the method

For all 1 ≤ n ≤ N , the discrete solution (un
h, pn

h) ∈ U k
h,D × Pk

h at time tn is such that, for all
(vh, qh) ∈ U k

h,D × P
k
d (Th),

ah(un
h, vh) + bh(vh, pn

h) = ln
h(vh), (2.26a)

(c0δt pn
h, qh) − bh(δtu

n
h, qh) + ch(pn

h, qh) = (gn, qh), (2.26b)

where the linear form ln
h on U k

h is defined as

ln
h(vh) B ( f n, vh) =

∑
T∈Th

( f n, vT )T . (2.27)

In petroleum engineering, the usual way to enforce the initial condition is to compute a
displacement from an initial (usually hydrostatic) pressure distribution. For a given scalar-
valued initial pressure field p0 ∈ L2(Ω), we let p̂0h B πk

h p0 and set u0
h = û0

h with û0
h ∈ U

k
h,D

unique solution of

ah(û0
h, vh) = l0h(vh) − bh(vh, p̂0h) ∀vh ∈ U

k
h,D. (2.28)

If c0 = 0, the value of p̂0h is only needed to enforce the initial condition on the displacement
while, if c0 > 0, we also set p0h = p̂0h to initialize the discrete pressure.
Remark 2.5 (Discrete compatibility condition for c0 = 0). Also when c0 = 0 it is possible
to take the test function qh in (2.26b2.26b) in the full space Pk

d (Th) instead of the zero-average
subspace Pk

d,0(Th), since the compatibility condition is verified at the discrete level. To check
it, it suffices to let qh = χΩ in (2.26b2.26b), observe that the right-hand side is equal to zero since
gn has zero average on Ω (cf. (2.1e2.1e)), and use the definition (2.192.19) of ch together with (2.232.23)
to prove that the left-hand side also vanishes. This remark is crucial to ensure the local
conservation properties of the method detailed in Section 2.72.7.
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2.3 Stability analysis
In this section we study the stability of problem (2.262.26) and prove its well-posedness. We recall
the following discrete Gronwall’s inequality, which is a minor variation of [121121, Lemma 5.1].
Lemma 2.6 (Discrete Gronwall’s inequality). Let an integer N and reals δ,G > 0, and K ≥ 0
be given, and let (an)0≤n≤N , (bn)0≤n≤N , and (γn)0≤n≤N denote three sequences of nonnegative
real numbers such that, for all 0 ≤ n ≤ N

an + δ

n∑
m=0

bm + K ≤ δ
n∑

m=0
γmam + G.

Then, if γmδ < 1 for all 0 ≤ m ≤ N , letting ςm B (1 − γmδ)−1, it holds, for all 0 ≤ n ≤ N ,

an + δ

n∑
m=0

bm + K ≤ exp *
,
δ

n∑
m=0

ςmγm+
-
× G. (2.29)

Lemma 2.7 (A priori bounds). Assume f ∈ C1(L2(Ω)d) and g ∈ C0(L2(Ω)), and let
(u0

h, p0h) = (û0
h, p̂0h) with (û0

h, p̂0h) defined as in Section 2.2.52.2.5. For all 1 ≤ n ≤ N , denote by
(un

h, pn
h) the solution to (2.262.26). Then, for τ small enough, it holds that

‖uN
h ‖

2
a,h + ‖c

1/2
0 pN

h ‖
2 +

1
2µ + dλ

‖pN
h − pN

h ‖
2 +

N∑
n=1

τ‖pn
h‖

2
c,h .(

1
2µ
+ c0

)
‖p0‖2 +

d2
Ω

2µ
‖ f ‖2C1(L2(Ω)d ) + (2µ + dλ)t2F‖g‖

2
C0(L2(Ω)) +

t2F
c0
‖g‖2C0(L2(Ω)), (2.30)

with the convention that c−10 ‖g‖
2
C0(L2(Ω))

= 0 if c0 = 0 and, for 0 ≤ n ≤ N , pn
h B (pn

h, 1).

Remark 2.8 (Well-posedness). Owing to linearity, the well-posedness of (2.262.26) is an imme-
diate consequence of Lemma 2.72.7.
Remark 2.9 (A priori bound for c0 = 0). When c0 = 0, the choice (2.172.17) of the discrete space
for the pressure ensures that pn

h = 0 for all 0 ≤ n ≤ N . Thus, the third term in the left-hand
side of (2.302.30) yields an estimate on ‖pN

h ‖
2, and the a priori bound reads

‖uN
h ‖

2
a,h +

1
2µ + dλ

‖pN
h ‖

2 +

N∑
n=1

τ‖pn
h‖

2
c,h .

(2µ)−1
(
d2
Ω
‖ f ‖2C1(L2(Ω)d ) + ‖p

0‖2
)
+ (2µ + dλ)t2F‖g‖

2
C0(L2(Ω)) .

The convention c−10 ‖g‖
2
C0(L2(Ω))

= 0 if c0 = 0 is justified since the term T2 in point (4) of the
following proof vanishes in this case thanks to the compatibility condition (2.1e2.1e).

Proof of Lemma 2.72.7. Throughout the proof, Ci with i ∈ N∗ will denote a generic positive
constant independent of h, τ, and of the physical parameters c0, λ, µ, and κ .
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(1) Estimate of ‖pn
h − pn

h‖. Using the inf-sup condition (2.242.24) followed by (2.232.23) to infer
that bh(vh, pn

h) = 0, the mechanical equilibrium equation (2.26a2.26a), and the second inequality
in (2.142.14), for all 1 ≤ n ≤ N we get

‖pn
h − pn

h‖ ≤ β sup
vh∈U

k
h,D\{0}

bh(vh, pn
h − pn

h)

‖vh‖ε,h
= β sup

vh∈U
k
h,D\{0}

bh(vh, pn
h)

‖vh‖ε,h

= β sup
vh∈U

k
h,D\{0}

ln
h(vh) − ah(un

h, vh)

‖vh‖ε,h
≤ C1/2

1

(
dΩ‖ f n‖ + (2µ + dλ)1/2‖un

h‖a,h
)
,

where we have set, for the sake of brevity, C1/2
1 B βmax(CK, η). This implies, in particular,

‖pn
h − pn

h‖
2 ≤ 2C1

(
d2
Ω
‖ f n‖2 + (2µ + dλ)‖un

h‖
2
a,h

)
(2.31)

(2) Energy balance. Adding (2.26a2.26a) with vh = τδtu
n
h to (2.26b2.26b) with qh = τpn

h, and summing
the resulting equation over 1 ≤ n ≤ N , it is inferred

N∑
n=1

τah(un
h, δtu

n
h)+

N∑
n=1

τ(c0δt pn
h, pn

h)+
N∑

n=1
τ‖pn

h‖
2
c,h =

N∑
n=1

τln
h(δtu

n
h)+

N∑
n=1

τ(gn, pn
h). (2.32)

We denote by L and R the left- and right-hand side of (2.322.32) and proceed to find suitable
lower and upper bounds, respectively.
(3) Lower bound for L. Using twice the formula

2x(x − y) = x2 + (x − y)2 − y2, (2.33)

and telescoping out the appropriate summands, the first two terms in the left-hand side
of (2.322.32) can be rewritten as, respectively,

N∑
n=1

τah(un
h, δtu

n
h) =

1
2
‖uN

h ‖
2
a,h +

1
2

N∑
n=1

τ2‖δtu
n
h‖

2
a,h −

1
2
‖u0

h‖
2
a,h,

N∑
n=1

τ(c0δt pn
h, pn

h) =
1
2
‖c1/2

0 pN
h ‖

2 +
1
2

N∑
n=1

τ2‖c1/2
0 δt pn

h‖
2 −

1
2
‖c1/2

0 p0h‖
2.

Using the above relation together with (2.312.31) and ‖ f N ‖ ≤ ‖ f ‖C1(L2(Ω)d ), it is inferred that

1
4
‖uN

h ‖
2
a,h −

1
2
‖u0

h‖
2
a,h +

1
2
‖c1/2

0 pN
h ‖

2 −
1
2
‖c1/2

0 p0h‖
2

+
1

8C1(2µ + dλ)
‖pN

h − pN
h ‖

2 +

N∑
n=1

τ‖pn
h‖

2
c,h ≤ L +

d2
Ω

4(2µ + dλ)
‖ f ‖2C1(L2(Ω)d ) . (2.34)
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(4) Upper bound for R. For the first term in the right-hand side of (2.322.32), discrete integration
by parts in time yields

N∑
n=1

τln
h(δtu

n
h) = ( f N, uN

h ) − ( f 0, u0
h) −

N∑
n=1

τ(δt f
n, un−1

h ),

hence, using the Cauchy–Schwarz inequality, the discrete Korn’s inequality followed by (2.142.14)
to estimate ‖un

h‖
2 ≤

C2d2
Ω

µ ‖u
n
h‖

2
a,h for all 1 ≤ n ≤ N (with C2 B C2

Kη/2), and Young’s
inequality, one has

������

N∑
n=1

τln
h(δtu

n
h)

������
≤

1
8

*
,
‖uN

h ‖
2
a,h + ‖u

0
h‖

2
a,h +

1
2tF

N∑
n=1

τ‖un−1
h ‖2a,h

+
-

+
C2d2

Ω

µ
*
,
‖ f N ‖2 + ‖ f 0‖2 + 2tF

N∑
n=1

τ‖δt f
n‖2+

-

≤
1
8

*
,
‖uN

h ‖
2
a,h + ‖u

0
h‖

2
a,h +

1
2tF

N∑
n=0

τ‖un
h‖

2
a,h

+
-
+

C2C3d2
Ω

µ
‖ f ‖2C1(L2(Ω)d ),

(2.35)
wherewehave used the classical bound ‖ f N ‖2+‖ f 0‖2+2tF

∑N
n=1 τ‖δt f

n‖2 ≤ C3‖ f ‖
2
C1(L2(Ω)d )

to conclude. We proceed to estimate the second term in the right-hand side of (2.322.32) by split-
ting it into two contributions as follows (here, gn B (gn, 1)):

N∑
n=1

τ(gn, pn
h) =

N∑
n=1

τ(gn, pn
h − pn

h) +
N∑

n=1
τ(gn, pn

h) B T1 + T2.

Using the Cauchy–Schwarz inequality, the bound
∑N

n=1 τ‖g
n‖2 ≤ tF‖g‖2C0(L2(Ω))

together
with (2.312.31) and Young’s inequality, it is inferred that

|T1 | ≤



N∑
n=1

τ‖gn‖2



1/2

×



N∑
n=1

τ‖pn
h − pn

h‖
2




1/2

≤ tF‖g‖C0(L2(Ω)) ×



2C1

tF

N∑
n=1

τ
(
d2
Ω
‖ f n‖2 + (2µ + dλ)‖un

h‖
2
a,h

)


1/2

≤ 8C1t2F(2µ + dλ)‖g‖2C0(L2(Ω)) +
d2
Ω

16(2µ + dλ)
‖ f ‖2C1(L2(Ω)d ) +

1
16tF

N∑
n=1

τ‖un
h‖

2
a,h.

(2.36)
Owing the compatibility condition (2.1e2.1e), T2 = 0 if c0 = 0. If c0 > 0, using the Cauchy–
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Schwarz and Young’s inequalities, we have

|T2 | ≤



tF
N∑

n=1
τc−10 ‖g

n
‖2




1/2

×



t−1F

N∑
n=1

τ‖c1/2
0 pn

h‖
2




1/2

≤
t2F
2c0
‖g‖2C0(L2(Ω)) +

1
2tF

N∑
n=1

τ‖c1/2
0 pn

h‖
2.

(2.37)

Using (2.352.35), (2.362.36), and (2.372.37), we infer

R ≤
1
8

*
,
‖uN

h ‖
2
a,h + t−1F

N∑
n=0

τ‖un
h‖

2
a,h + ‖u

0
h‖

2
a,h

+
-
+

1
2tF

N∑
n=1

τ‖c1/2
0 pn

h‖
2 +

t2F
2c0
‖g‖2C0(L2(Ω))

+ 8C1t2F(2µ + dλ)‖g‖2C0(L2(Ω)) +

(
1

16(2µ + dλ)
+

C2C3

µ

)
d2
Ω
‖ f ‖2C1(L2(Ω)d ) . (2.38)

(5) Conclusion. Using (2.342.34), the fact that L = R owing to (2.322.32), and (2.382.38), it is inferred
that

‖uN
h ‖

2
a,h + 4‖c

1/2
0 pN

h ‖
2 +

1
(2µ + dλ)

‖pN
h − pN

h ‖
2 + 8

N∑
n=1

τ‖pn
h‖

2
c,h ≤

C4

tF

N∑
n=0

τ‖un
h‖

2
a,h +

C4

tF

N∑
n=1

τ4‖c1/2
0 pn

h‖
2 + G,

where C4 B max(1,C1) while, observing that ‖c1/2
0 p0h‖ ≤ ‖c

1/2
0 p0‖ since πk

h is a bounded
operator, and that it follows from (2.392.39) below that ‖u0

h‖
2
a,h ≤ C5(2µ)−1

(
d2
Ω
‖ f 0‖2 + ‖p0‖2

)
,

C−14 G B
5C5

2µ
(
d2
Ω
‖ f 0‖2 + ‖p0‖2

)
+ 4‖c1/2

0 p0‖2 +
4t2F
c0
‖g‖2C0(L2(Ω))

+ 64C1t2F(2µ + dλ)‖g‖2C0(L2(Ω)) +

(
5

2(2µ + dλ)
+
8C2C3

µ

)
d2
Ω
‖ f ‖2C1(L2(Ω)d ) .

Using Gronwall’s Lemma 2.62.6 with a0 B ‖u0
h‖

2
a,h and an B ‖un

h‖
2
a,h + 4‖c

1/2
0 pn

h‖
2 for 1 ≤ n ≤

N , δ B τ, b0 B 0 and bn B ‖pn
h‖

2
c,h for 1 ≤ n ≤ N , K = 1

(2µ+dλ) ‖p
N
h − pN

h ‖
2, and γn =

C4
tF
,

the desired result follows. �

Proposition 2.10 (Stability and approximation properties for û0
h). The initial displace-

ment (2.282.28) satisfies the following stability condition:

‖ û0
h‖a,h . (2µ)−1/2

(
dΩ‖ f 0‖ + ‖p0‖

)
. (2.39)

Additionally, recalling the global reduction map I k
h defined by (2.42.4), and assuming the

additional regularity p0 ∈ H k+1(PΩ), u0 ∈ H k+2(PΩ)d , and ∇·u0 ∈ H k+1(PΩ), it holds

(2µ)1/2‖ û0
h − I k

hu
0‖a,h . hk+1

(
2µ‖u0‖Hk+2(PΩ)d + λ‖∇·u

0‖Hk+1(PΩ) + ρ
1/2
κ ‖p

0‖Hk+1(PΩ)

)
,

(2.40)
with global heterogeneity ratio ρκ B κ/κ.
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Proof. (1)Proof of (2.392.39). Using the first inequality in (2.142.14) followed by the definition (2.282.28)
of û0

h, we have

‖ û0
h‖a,h . sup

vh∈U
k
h,D\{0}

ah(û0
h, vh)

(2µ)1/2‖vh‖ε,h

= (2µ)−1/2 sup
vh∈U

k
h,D\{0}

l0h(vh) − bh(vh, π
k
h p0)

‖vh‖ε,h
. (2µ)−1/2

(
dΩ‖ f 0‖ + ‖p0‖

)
,

where to conclude we have used the Cauchy–Schwarz and discrete Korn’s (2.162.16) inequalities
for the first term in the numerator and the continuity (2.222.22) of bh together with the L2(Ω)-
stability of πk

h for the second. (2) Proof of (2.402.40). The proof is analogous to that of point (3)
in Lemma 2.112.11 except that we use the approximation properties (2.22.2) of πk

h instead of (2.452.45).
For this reason, elliptic regularity is not needed. �

2.4 Error analysis
In this section we carry out the error analysis of the method.

2.4.1 Projection
We consider the error with respect to the sequence of projections (ûn

h, p̂n
h)1≤n≤N , of the exact

solution defined as follows: For 1 ≤ n ≤ N , p̂n
h ∈ Pk

h solves

ch(p̂n
h, qh) = ch(pn, qh) ∀qh ∈ P

k
d (Th), (2.41a)

with the closure condition
∫
Ω

p̂n
h =

∫
Ω

pn. Once p̂n
h has been computed, ûn

h ∈ U
k
h,D solves

ah(ûn
h, vh) = ln

h(vh) − bh(vh, p̂n
h) ∀vh ∈ U

k
h,D. (2.41b)

The well-posedness of problems (2.41a2.41a) and (2.41b2.41b) follow, respectively, from the coercivity
of ch on Pk

d,0(Th) and of ah on U k
h,D. The projection (ûn

h, p̂n
h) is chosen so that a convergence

rate of (k+1) in space analogous to the one derived in [7474] can be proved for the ‖·‖a,h-norm of
the displacement at final time tF. To this purpose, we also need in what follows the following
elliptic regularity, which holds, e.g., when Ω is convex: There is a real number Cell > 0 only
depending on Ω such that, for all ψ ∈ L2

0(Ω), with L2
0(Ω) B

{
q ∈ L2(Ω) : (q, 1) = 0

}
, the

unique function ζ ∈ H1(Ω) ∩ L2
0(Ω) solution of the homogeneous Neumann problem

−∇·(κ∇ζ ) = ψ in Ω, κ∇ζ · n = 0 on ∂Ω, (2.42)

is such that
‖ζ ‖H2(PΩ) ≤ Cellκ

−1/2‖ψ‖. (2.43)

For further insight on the role of the choice (2.412.41) and of the elliptic regularity assumption
we refer to Remark 2.142.14.
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Lemma 2.11 (Approximation properties for (ûn
h, p̂n

h)). Let a time step 1 ≤ n ≤ N be fixed.
Assuming the regularity pn ∈ H k+1(PΩ), it holds

‖ p̂n
h − pn‖c,h . hk κ

1/2
‖pn‖Hk+1(PΩ) . (2.44)

Moreover, recalling the global reduction map I k
h defined by (2.42.4), further assuming the reg-

ularity un ∈ H k+2(PΩ)d , ∇·un ∈ H k+1(PΩ), and provided that the elliptic regularity (2.432.43)
holds, one has

‖ p̂n
h − pn‖ . hk+1ρ

1/2
κ ‖p

n‖Hk+1(PΩ), (2.45)

(2µ)1/2‖ ûn
h − I k

hu
n‖a,h . hk+1

(
2µ‖un‖Hk+2(PΩ)d + λ‖∇·u

n‖Hk+1(PΩ) + ρ
1/2
κ ‖p

n‖Hk+1(PΩ)

)
.

(2.46)

Proof. (1)Proof of (2.442.44). By definition, we have that ‖ p̂n
h−pn‖c,h = infqh∈Pkd (Th ) ‖qh−pn‖c,h.

To prove (2.442.44), it suffices to take qh = π
k
h pn in the right-hand side of the previous expression

and use the approximation properties (2.22.2) of πk
h .

(2) Proof of (2.452.45). Let ζ ∈ H1(Ω) solve (2.422.42) with ψ = pn − p̂n
h. From the consistency

property (2.202.20), it follows that

‖ p̂n
h − pn‖2 = −(∇·(κ∇ζ ), p̂n

h − pn) = ch(ζ, p̂n
h − pn) = ch(ζ − π1hζ, p̂n

h − pn).

Then, using the Cauchy–Schwarz inequality, the estimate (2.442.44) together with the approxi-
mation properties (2.22.2) of π1h, and elliptic regularity, it is inferred that

‖ p̂n
h − pn‖2 = ch(ζ − π1hζ, p̂n

h − pn) ≤ ‖ζ − π1hζ ‖c,h‖ p̂
n
h − pn‖c,h

. hk+1κ
1/2
‖ζ ‖H2(PΩ) ‖p

n‖Hk+1(PΩ) . hk+1ρ
1/2
κ ‖ p̂

n
h − pn‖‖pn‖Hk+1(PΩ),

and (2.452.45) follows.
(3) Proof of (2.462.46). We start by observing that

‖ ûn
h − I k

hu
n‖a,h = sup

vh∈U
k
h
\{0}

ah(ûn
h − I k

hu
n, vh)

‖vh‖a,h
. sup

vh∈U
k
h
\{0}

ah(ûn
h − I k

hu
n, vh)

(2µ)1/2‖vh‖ε,h
,

where we have used the first inequality in (2.142.14). Recalling the definition (2.272.27) of the linear
form ln

h, the fact that f
n = −∇·σ (u ) + ∇p, and using (2.41a2.41a), it is inferred that

ah(ûn
h − I k

hu
n, vh) = ln

h(vn
h) − ah(I k

hu
n, vh) − bh(vh, p̂hn)

=
{
− ah(I k

hu
n, vh) − (∇·σ (un), vh)

}
+

{
(∇pn, vh) − bh(vh, p̂n

h)
}
.

(2.47)

Denote by T1 and T2 the terms in braces. Using (2.152.15), it is readily inferred that

|T1 | . hk+1
(
2µ‖un‖Hk+2(PΩ)d + λ‖∇·u

n‖Hk+1(PΩ)

)
‖vh‖ε,h. (2.48)
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For the second term, performing an element-wise integration by parts on (∇p, vh) and
recalling the definition (2.212.21) of bh and (2.7a2.7a) of Dk

T with q = p̂n
h, it is inferred that

|T2 | =

�������

∑
T∈Th




(p̂n
h − pn,∇·vT )T +

∑
F∈FT

(p̂n
h − pn, (vF − vT )nTF )F




�������
. hk+1ρ

1/2
κ ‖p

n‖Hk+1(PΩ) ‖vh‖ε,h,

(2.49)

where the conclusion follows from the Cauchy–Schwarz inequality together with (2.452.45).
Plugging (2.482.48)–(2.492.49) into (2.472.47) we obtain (2.462.46). �

2.4.2 Error equations
We define the discrete error components as follows: For all 1 ≤ n ≤ N ,

en
h B un

h − ûn
h, ρn

h B pn
h − p̂n

h. (2.50)

Owing to the choice of the initial condition detailed in Section 2.2.52.2.5, the inital error (e0h, ρ
0
h) B

(u0
h − û0

h, p0h − p̂0h) is the null element in the product space U k
h,D × Pk

h . On the other hand, for
all 1 ≤ n ≤ N , (en

h, ρ
n
h) solves

ah(en
h, vh) + bh(vh, ρ

n
h) = 0 ∀vh ∈ U

k
h, (2.51a)

(c0δt ρ
n
h, qh) − bh(δt e

n
h, qh) + ch(ρn

h, qh) = En
h (qh), ∀qh ∈ Pk

h, (2.51b)

with consistency error

En
h (qh) B (gn, qh) − (c0δt p̂n

h, qh) − ch(p̂n
h, qh) + bh(δt û

n
h, qh).

2.4.3 Convergence
Theorem2.12 (Estimate for the discrete errors). Let (u, p) denote the unique solution to (2.12.1),
for which we assume the regularity

u ∈ C2(H1(PΩ)d) ∩ C1(H k+2(PΩ)d), p ∈ C1(H k+1(PΩ)).

If c0 > 0, we further assume p ∈ C2(L2(Ω)). Define, for the sake of brevity, the bounded
quantities

N1 B
(
2µ + dλ

)1/2
‖u ‖C2(H1(PΩ)d ) + ‖c

1/2
0 p‖C2(L2(Ω)d ),

N2 B
(2µ + dλ)1/2

2µ
(
2µ‖u ‖C1(Hk+2(PΩ)d ) + λ‖∇·u ‖C1(Hk+1(PΩ)) + ρ

1/2
κ ‖p‖C1(Hk+1(PΩ))

)
+ ‖c1/2

0 p‖C0(Hk+1(PΩ)) .

Then, assuming the elliptic regularity (2.432.43), it holds, letting ρn
h B (ρn

h, 1),

‖eN
h ‖

2
a,h + ‖c

1/2
0 ρN

h ‖
2 +

1
2µ + dλ

‖ρN
h − ρ

N
h ‖

2 +

N∑
n=1

τ‖ρn
h‖

2
c,h .

(
τN1 + hk+1N2

)2
. (2.52)
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Remark 2.13 (Pressure estimate for c0 = 0). In the incompressible case c0 = 0, the third
term in the left-hand side of (2.522.52) delivers an estimate on the L2-norm of the pressure since
ρN

h = 0 (cf. (2.1f2.1f)).

Proof of Theorem 2.122.12. Throughout the proof, Ci with i ∈ N∗ will denote a generic positive
constant independent of h, τ, and of the physical parameters c0, λ, µ, and κ .
(1) Basic error estimate. Using the inf-sup condition (2.242.24), equation (2.232.23) followed
by (2.51a2.51a), and the second inequality in (2.142.14), it is readily seen that

‖ρn
h − ρ

n
h‖ ≤ β sup

vh∈U
k
h,D\{0}

bh(vh, ρ
n
h − ρ

n
h)

‖vh‖ε,h

= β sup
vh∈U

k
h,D\{0}

−ah(en
h, vh)

‖vh‖ε,h
≤ C1/2

1 (2µ + dλ)1/2‖en
h‖a,h,

with C1/2
1 = βη1/2. Adding (2.51a2.51a) with vh = τδt eh to (2.51b2.51b) with qh = τρ

n
h and summing

the resulting equation over 1 ≤ n ≤ N , it is inferred that

N∑
n=1

τah(en
h, δt e

n
h) +

N∑
n=1

τ(c0δt ρ
n
h, ρ

n
h) +

N∑
n=1

τ‖ρn
h‖

2
c,h =

N∑
n=1

τEn
h (ρn

h). (2.53)

Proceeding as in point (3) of the proof of Lemma 2.72.7, and recalling that (e0h, ρ
0
h) = (0, 0), we

arrive at the following error estimate:

1
4
‖eN

h ‖
2
a,h +

1
4C1(2µ + dλ)

‖ρN
h − ρ

N
h ‖

2+
1
2
‖c1/2

0 ρN
h ‖

2+

N∑
n=1

τ‖ρn
h‖

2
c,h ≤

N∑
n=1

τEn
h (ρn

h). (2.54)

(2) Bound of the consistency error. Using gn = c0dt pn + ∇·(dtu
n − κ∇pn), the consistency

property (2.202.20), and observing that, using the definition (2.192.19) of ch, integration by parts
together with the homogeneous displacement boundary condition (2.1c2.1c), and (2.232.23),

ch(pn − p̂n
h, ρ

n
h) + (∇·(dtu

n), ρn
h) + bh(δt û

n
h, ρ

n
h) = 0,

we can decompose the right-hand side of (2.542.54) as follows:

N∑
n=1

τEn
h (ρn

h) =
N∑

n=1
τ(c0(dt pn − δt p̂n

h), ρn
h) +

N∑
n=1

τch(pn − p̂n
h, ρ

n
h − ρ

n
h)

+

N∑
n=1

τ
{
(∇·(dtu

n), ρn
h − ρ

n
h) + bh(δt û

n
h, ρ

n
h − ρ

n
h)

}
B T1 + T2 + T3.

(2.55)
For the first term, inserting±δt pn into the first factor and using the Cauchy-Schwarz inequality
followed by the approximation properties of p̂0h (a consequence of (2.22.2)) and (2.452.45) of p̂n

h, it
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is inferred that

|T1 | .



c0
N∑

n=1
τ

[
‖dt pn − δt pn‖2 + ‖δt (pn − p̂n

h)‖2
] 



1/2

×



N∑
n=1

τ‖c1/2
0 ρn

h‖
2




1/2

≤ C2
(
τN1 + hk+1N2

)
+
1
2

N∑
n=1

τ‖c1/2
0 ρn

h‖
2.

(2.56)

For the second term, the choice (2.41a2.41a) of the pressure projection readily yields

T2 = 0.

For the last term, inserting ±I k
hu

n into the first argument of bh, and using the commuting
property (2.82.8) of Dk

T , it is inferred that

T3 =

N∑
n=1

τ



∑
T∈Th

[
(∇·(dtu

n − δtu
n), ρn

h − ρ
n
h)T + (Dk

Tδt (I k
Tu

n − ûn
T ), ρn

h − ρ
n
h)T

] 

.

Using the Cauchy–Schwarz inequality, the bound ‖Dk
Tδt (I k

Tu
n− ûn

T )‖T . ‖δt (I k
Tu

n− ûn
T )‖ε,T

valid for all T ∈ Th, and the approximation properties (2.402.40) and (2.462.46) of û0
h and ûn

h,
respectively, we obtain

|T3 | .



N∑
n=1

τ
[
‖dtu

n − δtu
n‖2H1(Ω)d + ‖δt (I k

hu
n − ûn

h)‖2ε,h
] 



1
2

×



N∑
n=1

τ‖ρn
h − ρ

n
h‖

2



1
2

≤ C3C1
(
τN1 + hk+1N2

)2
+

1
4C1(2µ + dλ)

N∑
n=1

τ‖ρn
h − ρ

n
h‖

2.

(2.57)
Using (2.562.56)–(2.572.57) to bound the right-hand side of (2.552.55), it is inferred

‖eN
h ‖

2
a,h +

1
C1(2µ + dλ)

‖ρN
h − ρ

N
h ‖

2 + 2‖c1/2
0 ρN

h ‖
2 + 4

N∑
n=1

τ‖ρn
h‖

2
c,h

≤
1

C1(2µ + dλ)

N∑
n=1

τ‖ρn
h − ρ

n
h‖

2 + 2
N∑

n=1
τ‖c1/2

0 ρn
h‖

2 + G,

with G B 4(C1C3 + C2)
(
τN1 + hk+1N2

)2
. The conclusion follows using the discrete Gron-

wall’s inequality (2.292.29) with δ = τ, K = ‖eN
h ‖

2
a,h, a0 = 0 and an = 1

C1(2µ+dλ) ‖ρ
n
h − ρ

n
h‖

2 +

2‖c1/2
0 ρn

h‖
2 for 1 ≤ n ≤ N , bn = 4‖ρn

h‖
2
c,h, and γ

n = 1. �

Remark 2.14 (Role of the choice (2.412.41) and of elliptic regularity). The choice (2.412.41) for the
projection ensures that the term T2 in step (2) of the proof of Theorem 2.122.12 vanishes. This is
a key point to obtain an order of convergence of (k + 1) in space. For a different choice, say
p̂n

h = π
k
h pn, this term would be of order k, and therefore yield a suboptimal estimate for the

terms in the left-hand side of (2.582.58) below (the estimate (2.592.59) would not change and remain
optimal). This would also be the case if we removed the elliptic regularity assumption (2.432.43).
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Remark 2.15 (BDF2 time discretization). In some of the numerical test cases of Section 2.62.6,
we have used a BDF2 time discretization, which corresponds to the backward differencing
operator

δ(2)
t ϕn+2 B

3ϕn+2 − 4ϕn+1 + ϕn

2τ
,

used in place of (2.32.3). As BDF2 requires two starting values, we perform a first march in
time using the backward Euler scheme (another possibility would have been to resort to the
second-order Crank–Nicolson scheme). For the BDF2 time discretization, stability estimates
similar to those of Lemma 2.72.7 can be proved with this initialization, while the error can be
shown to scale as τ2 + hk+1 (compare with (2.522.52)). The main difference with respect to the
present analysis focused on the backward Euler scheme is that formula (2.332.33) is replaced in
the proofs by

2x(3x − 4y + z) = x2 − y2 + (2x − y)2 − (2y − z)2 + (x − 2y + z)2.

The modifications of the proofs are quite classical and are not detailed here for the sake of
conciseness (for a pedagogic exposition, one can consult, e.g., [9292, Chapter 6]).

Corollary 2.16 (Convergence). Under the assumptions of Theorem 2.122.12, it holds that

(2µ)1/2‖∇s,h(r k+1
h uN

h − uN )‖ + ‖c1/2
0 (pN

h − pN )‖ +
1

2µ + dλ
‖(pN

h − pN ) − (pN
h − pN )‖

. τN1 + hk+1N2 + c1/2
0 hk+1‖pN ‖Hk+1(PΩ), (2.58)




N∑
n=1

τ‖pn
h − pn‖2c,h




1/2

. τN1 + hk+1N2 + hk κ
1/2t1/2F ‖p‖C0(Hk+1(PΩ)) . (2.59)

Proof. Using the triangle inequality, recalling the definition (2.502.50) of eN
h and p̂N

h and (2.142.14)
of ‖·‖a,h-norm, it is inferred that

(2µ)1/2‖∇s,h(r k+1
h uN

h − uN )‖ . ‖eN
h ‖a,h + (2µ)1/2‖∇s,h(r k+1

h ûh − r k+1
h I k

hu
N )‖

+ (2µ)1/2‖∇s(r k+1
h I k

hu
N − uN )‖,

‖pN
h − pN − (pN

h − pN )‖ ≤ ‖ρN
h − ρ

N
h ‖ + ‖ p̂

N
h − pN ‖,

‖c1/2
0 (pN

h − pN )‖ ≤ ‖c1/2
0 ρN

h ‖ + ‖c
1/2
0 (p̂N

h − pN )‖.

To conclude, use (2.522.52) to estimate the left-most terms in the right-hand sides of the above
equations. Use (2.462.46) and (2.452.45), the approximation properties (2.62.6) of r k+1

h I k
h, respec-

tively, for the right-most terms. This proves (2.582.58). A similar decomposition of the error
yields (2.592.59). �
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2.5 Implementation
In this section we discuss practical aspects including, in particular, static condensation. The
implementation is based on the hho platform11, which relies on the linear algebra facilities
provided by the Eigen3 library [116116].

The starting point consists in selecting a basis for each of the polynomial spaces appearing
in the construction. Let s = (s1, ..., sd) be a d-dimensionalmulti-indexwith the usual notation
|s |1 =

∑d
i=1 si, and let x = (x1, ..., xd) ∈ Rd . Given k ≥ 0 and T ∈ Th, we denote by Bk

T a
basis for the polynomial space Pk

d (T ). In the numerical experiments of Section 2.62.6, we have
used the set of locally scaled monomials:

Bk
T B

{(
x − xT

hT

) s
, |s |1 ≤ k

}
, (2.60)

with xT denoting the barycenter of T . Similarly, for all F ∈ Fh, we denote by Bk
F a basis

for the polynomial space Pk
d−1(F) which, in the proposed implementation, is again a set of

locally scaled monomials similar to (2.602.60).

Remark 2.17 (Choice of the polynomial bases). The choice of the polynomial bases can have
a sizeable impact on the conditioning of both the local problems defining the displacement
reconstruction r k+1

T (cf. (2.52.5)) and the global problem. This is particularly the casewhen using
high polynomial orders (typically, k ≥ 7). The scaled monomial basis (2.602.60) is appropriate
when dealing with isotropic elements. In the presence of anisotropic elements, a better choice
is to use for each element a local frame aligned with its principal axes of rotation together
with normalization factors tailored for each direction. A further improvement, originally
investigated in [1616] in the context of dG methods, consists in performing a Gram–Schmidt
orthonormalization with respect to a suitably selected inner product. In the numerical test
cases of Section 2.62.6, which focus on isotropic meshes and moderate polynomial degrees
(k ≤ 3), the basis (2.602.60) proved fully satisfactory.

Introducing the vector bases Bk
T B (Bk

T )d , T ∈ Th, and Bk
F B (Bk

F )d , F ∈ F i
h , a basis

U k
h,0 for the space U

k
h,D (cf. (2.122.12)) is given by

U
k
h,0 BU

k
T
×U k

F
, U

k
T
B ×

T∈Th
B

k
T, U

k
F
B ×

F∈F i
h

B
k
F,

while a basis Pk
h for the space Pk

h (cf. (2.172.17)) is obtained setting

Pk
h B ×

T∈Th
Bk

T .

When c0 = 0, the zero average constraint in Pk
h can be accounted for using as a Lagrange

multiplier the characteristic function of Ω. Notice also that boundary faces have been
excluded from the Cartesian product in the definition ofU k

F
to strongly account for boundary

1DL15105 Université de Montpellier
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conditions. Letting, for the sake of brevity, N k
n B

(
k+n

k

)
, n ∈ N, a simple computation shows

that

dim(U k
T

) = d card(Th)N k
d , dim(U k

F
) = d card(F i

h )N k
d−1, dim(Pk

h ) = card(Th)N k
d .

The total DOF count thus yields

d card(Th)N k
d + d card(F i

h )N k
d−1 + card(Th)N k

d . (2.61)

In what follows, for a given time step 0 ≤ n ≤ N , we denote by Un
T

and Un
F

the vectors
collecting element-based and face-based displacement DOFs, respectively, and by Pn the
vector collecting pressure DOFs.

Denote now by A and B, respectively, the matrices that represent the bilinear forms
ah (cf. (2.112.11)) and bh (cf. (2.212.21)) in the selected basis. Distinguishing element-based and
face-based displacement DOFs, the matrices A and B display the following block structure:

A =


AT T AT F
AT
T F

AF F


, B =



BT
BF


.

For every mesh elementT ∈ Th, the element-based displacement DOFs are only coupled with
those face-based displacement DOFs that lie on the boundary of T and with the (element-
based) pressure DOFs in T . This translates into the fact that the submatrix AT T is block-
diagonal, i.e.,

AT T = diag(ATT )T∈Th,

with each elementary block ATT of size dim(Bk
T )2. Additionally, it can be proved that the

blocks ATT , T ∈ Th, are invertible, so that the inverse of AT T can be efficiently computed
setting

A−1
T T
= diag(A−1TT )T∈Th . (2.62)

The above remark can be exploited in practice to efficiently eliminate the element-based
displacement DOFs from the global system. This process, usually referred to as “static
condensation”, is detailed in what follows.

For a given time step 1 ≤ n ≤ N , the linear system corresponding to the discrete
problem (2.262.26) is of the form



AT T AT F BT
AT
T F

AF F BF
−BT
T
−BT
F

τ
θC + c0M





Un
T

Un
F

Pn



=



Fn
T

0F
G̃n



, (2.63)

where C denotes the matrix that represents the bilinear form ch in the selected basis, M is the
(block diagonal) pressure mass matrix, Fn

T
is the vector corresponding to the discretization

of the volumetric load f n, while 0F is the zero vector of length dim(U k
F

). Denoting by
Gn the vector corresponding to the discretization of the fluid source gn, when the backward
Euler method is used to march in time, we let θ = 1 and set

G̃n B τGn − BTUn−1 + c0MPn−1.
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For the BDF2 method (and n ≥ 2) , we let θ = 3/2 and set

G̃n B
2
3
τGn −

4
3

BTUn−1 +
1
3

BTUn−2 +
4
3

c0MPn−1 −
1
3

c0MPn−2.

Recalling (2.622.62), instead of assemblying the full system, we can effectively compute
the Schur complement of AT T and code, instead, the following reduced version, where the
element-based displacement DOFs collected in the subvector Un

T
no longer appear:



AF F − AT
T F

A−1
T T

AT F BF − AT
T F

A−1
T T

BT
−BT
F
+ BT

T
A−1
T T

AT F τ
θC + c0M + BT

T
A−1
T T

BT





Un
F

Pn


=



−AT
T F

A−1
T T

Fn
T

G̃n + BT
T

A−1
T T

Fn
T


. (2.64)

All matrix products appearing in (2.642.64) are directly assembled from their local counterparts
(i.e., the factors need not be constructed separately). Specifically, introducing, for all T ∈ Th,
the following local matrices A(T ) and B(T ) representing the local bilinear forms aT (cf. (2.92.9))
and bT (cf. (2.212.21)), respectively:

A(T ) =


ATT ATFT

AT
TFT

AFTFT


, B(T ) =



BT

BFT


,

one has for the left-hand side matrix, denoting by←−−−−
T∈Th

the usual assembly procedure based

on a global DOF map,

AT
T F

A−1
T T

AT F ←−−−−
T∈Th

AT
TFT

A−1TT ATFT , AT
T F

A−1
T T

BT ←−−−−
T∈Th

AT
TFT

A−1TT BT,

BT
T

A−1
T T

AT F ←−−−−
T∈Th

BT
T A−1TT ATFT , BT

T
A−1
T T

BT ←−−−−
T∈Th

BT
T A−1TT BT,

and, similarly, for the right-hand side vector

AT
T F

A−1
T T

Fn
T
←−−−−
T∈Th

AT
TFT

A−1TT Fn
T, BT

T
A−1
T T

Fn
T
←−−−−
T∈Th

BT
T A−1TT Fn

T .

The advantage of implementing (2.642.64) over (2.632.63) is that the number of DOFs appearing
in the linear system reduces to (compare with (2.612.61))

d card(F i
h )N k

d−1 + card(Th)N k
d .

Additionally, since the reduced left-hand side matrix in (2.642.64) does not depend on the time
step n, it can be assembled (and, possibly, factored) once and for all in a preliminary stage,
thus leading to a further reduction in the computational cost. Finally, for all T ∈ Th, the local
vector Un

T of element-based displacement DOFs can be recovered from the local right-hand
side vector Fn

T and the local vector of face-based displacement DOFs and (element-based)
pressure DOFs (Un

FT
,Pn

T ) by the following element-by-element post-processing:

Un
T = A−1TT

(
Fn

T − ATFT Un
FT
− BT Pn

T

)
.
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Figure 2.1: Triangular, hexagonal-dominant, Voronoi, and nonmatching quadrangular meshes for the numer-
ical tests. The triangular and nonmatching quadrangular meshes were originally proposed for the FVCA5
benchmark [120120], whereas the hexagonal-dominant mesh is the same used in [8080, Section 4.2.3].

2.6 Numerical tests
In this section we present a comprehensive set of numerical tests to assess the properties of
our method.

2.6.1 Convergence
We first consider a manufactured regular exact solution to confirm the convergence rates
predicted in (2.522.52). Specifically, we solve the two-dimensional incompressible Biot problem
(c0 = 0) in the unit square domain Ω = (0, 1)2 with tF = 1 and physical parameters µ = 1,
λ = 1, and κ = 1. The exact displacement u and exact pressure p are given by, respectively

u (x, t) =
(
− sin(πt) cos(πx1) cos(πx2), sin(πt) sin(πx1) sin(πx2)

)
,

p(x, t) = − cos(πt) sin(πx1) cos(πx2).

The volumetric load is given by

f (x, t) = 6π2(sin(πt) + π cos(πt)) ×
(
− cos(πx1) cos(πx2), sin(πx1) sin(πx2)

)
,

while g(x, t) ≡ 0. Dirichlet boundary conditions for the displacement andNeumann boundary
conditions for the pressure are inferred from exact solutions to ∂Ω.

We consider the triangular, (predominantly) hexagonal, Voronoi, and nonmatching quad-
rangular mesh families depicted in Figure 2.12.1. The Voronoi mesh family was obtained using
the PolyMesher algorithm of [188188]. The nonmatching mesh is simply meant to show that the
method supports nonconforming interfaces: refining in the corner has no particular meaning
for the selected solution. The time discretization is based on the second order Backward
Differentiation Formula (BDF2); cf. Remark 2.152.15. The time step τ on the coarsest mesh is
taken to be 0.1/2

(k+1)
2 for every choice of the spatial degree k, and it decreases with the mesh

size h according to the theoretical convergence rates, thus, if h2 = h1/2, then τ2 = τ1/2
(k+1)
2 .

Figure 2.22.2 displays convergence results for the various mesh families and polynomial degrees
up to 3. The error measures are ‖pN

h − π
k
h pN ‖ for the pressure and ‖uN

h − I k
hu

N ‖a,h for the
displacement. Using the triangle inequality together with (2.522.52) and the approximation prop-
erties (2.22.2) of πk

h and (2.62.6) of (r k+1
h ◦ I k

h), it is a simple matter to prove that these quantities
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Figure 2.3: Time convergence rate with BDF2, hexagonal mesh

have the same convergence behaviour as the terms in the left-hand side of (2.522.52). In all the
cases, the numerical results show asymptotic convergence rates that are in agreement with
theoretical predictions. This test was also used to numerically check that the mechanical
equilibrium and mass conservation relations of Lemma 2.182.18 hold up to machine precision.

The convergence in time was also separately checked considering the method with spatial
degree k = 3 on the hexagonal mesh with mesh size h = 0.0172 and time step decreasing
from τ = 0.1 to τ = 0.0125. With this choice, the time-component of the error is dominant,
and Figure 2.32.3 confirms the second order convergence of the BDF2 scheme.

2.6.2 Barry and Mercer’s test case
A test case more representative of actual physical configurations is that of Barry and Mer-
cer [1414], for which an exact solution is available (we refer to the cited paper and also to [164164,
Section 4.2.1] for the its expression). We let Ω = (0, 1)2 and consider the following time-
independent boundary conditions on ∂Ω

u · τ = 0, nT
∇un = 0, p = 0,

where τ denotes the tangent vector on ∂Ω. The evolution of the displacement and pressure
fields is driven by a periodic pointwise source (mimicking awell) located at x0 = (0.25, 0.25):

g = δ(x − x0) sin(t̂),

with normalized time t̂ B βt for β B (λ + 2µ)κ . As in [166166, 176176], we use the following
values for the physical parameters:

c0 = 0, E = 1 · 105, ν = 0.1, κ = 1 · 10−2,

where E and ν denote Young’s modulus and Poisson ratio, respectively, and

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

.
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(a) t̂ = π/2 (b) t̂ = 3π/2

Figure 2.4: Pressure field on the deformed domain at different times for the finest Cartesian mesh containing
4,192 elements

(a) t̂ = π/2, κ = 1 · 10−2 (b) t̂ = 3π/2, κ = 1 · 10−2

Figure 2.5: Pressure profiles along the diagonal (0, 0)–(1, 1) of the domain for different normalized times t̂ and
meshes (k = 1). The time step is here τ = (2π/β) · 10−2.

In the injection phase t̂ ∈ (0, π), we observe an inflation of the domain, which reaches its
maximum at t̂ = π/2; cf. Figure 2.4a2.4a. In the extraction phase t̂ ∈ (π, 2π), on the other hand,
we have a contraction of the domain which reaches its maximum at t̂ = 3π/2; cf. Figure 2.4b2.4b.

The following results have been obtained with the lowest-order version of the method cor-
responding to k = 1 (taking advantage of higher orders would require local mesh refinement,
which is out of the scope of the present work). In Figure 2.52.5 we plot the pressure profile
at normalized times t̂ = π/2 and t̂ = 3π/2 along the diagonal (0, 0)–(1, 1) of the domain. We
consider two Cartesian meshes containing 1,024 and 4,096 elements, respectively, as well as
two (predominantly) hexagonal meshes containing 1,072 and 4,192 elements, respectively.
In all the cases, a time step τ = (2π/β) · 10−2 is used. We note that the behaviour of the
pressure is well-captured even on the coarsest meshes. For the finest hexagonal mesh, the
relative error on the pressure in the L2-norm at times t̂ = π/2 and t̂ = 3π/2 is 2.85%.

To check the robustness of the method with respect to pressure oscillations for small
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(a) Cartesian mesh (card(Th ) = 4,028), first step (b) Hexagonal mesh (card(Th ) = 4,192), first step

(c) Cartesian mesh (card(Th ) = 4,028), second step (d) Hexagonal mesh (card(Th )=4,192), second step

Figure 2.6: Pressure profiles along the diagonal (0, 0)–(1, 1) of the domain for κ = 1 · 10−6 and time step
τ = 1 · 10−4. Small oscillations are present on the Cartesian mesh (left), whereas no sign of oscillations is
present on the hexagonal mesh (right).

permeabilities combined with small time steps, we also show in Figure 2.62.6 the pressure
profile after one and two step with κ = 1 · 10−6 and τ = 1 · 10−4 on the Cartesian and
hexagonal meshes with 4,096 and 4,192 elements, respectively. We remark that the first time
step is performed using the backward Euler scheme, while the second with the second order
BDF2 scheme. This situation corresponds to the one considered in [176176, Figure 5.10] to
highlight the onset of spurious oscillations. In our case, small oscillations can be observed
for the Cartesian mesh (cf. Figure 2.6a2.6a and Figure 2.6c2.6c), whereas no sign of oscillations in
present for the hexagonal mesh (cf. Figure 2.6b2.6b and Figure 2.6d2.6d). One possible conjecture is
that increasing the number of element faces contributes to the monotonicity of the scheme.

2.7 Appendix: Flux formulation
In this section, we reformulate the discrete problem (2.262.26) to unveil the local conservation
properties of the method. Before doing so, we need to introduce a few operators and some
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notation to treat the boundary terms.
We start from the mechanical equilibrium. Let an element T ∈ Th be fixed and denote by

U∂T B P
k
d−1(FT )d the broken polynomial space of degree ≤ k on the boundary ∂T of T . We

define the boundary operator Lk
T : U∂T → U∂T such that, for all ϕ ∈ U∂T ,

Lk
Tϕ |F B πk

F

(
ϕ |F − r k+1

T (0, (ϕ |F )F∈FT ) + πk
T r

k+1
T (0, (ϕ |F )F∈FT )

)
∀F ∈ FT .

We also need the adjoint Lk,∗
T of Lk

T such that

∀ϕ ∈ U∂T, (Lk
Tϕ,ψ)∂T = (ϕ, Lk,∗

T ψ)∂T ∀ψ ∈ U∂T .

For a collection of DOFs vT ∈ U
k
T , we denote in what follows by v∂T ∈ U∂T the function in

U∂T such that v∂T |F = vF for all F ∈ FT . Finally, it is convenient to define the discrete stress
operator Sk

T : U k
T → P

k
d (T )d×d such that, for all vT ∈ U

k
T ,

Sk
T vT B 2µ∇sr

k+1
T vT + λI d Dk

T vT . (2.65)

To reformulate the mass conservation equation, we need to introduce the classical lifting
operator Rk

κ,h : Pk
h → P

k−1
d (Th)d such that, for all qh ∈ Pk

h , it holds

(Rk
κ,hqh, ξ h) =

∑
F∈F i

h

([qh]F, {κξ h}F · nF )F ∀ξ h ∈ P
k−1
d (Th)d .

Lemma 2.18 (Flux formulation of problem (2.262.26)). Problem (2.262.26) can be reformulated as
follows: Find (un

h, pn
h) ∈ U k

h,D × Pk
h such that it holds, for all (vh, qh) ∈ U k

h,D × P
k
d (Th) and

all T ∈ Th,

(Sk
Tu

n
T − pn

hI d,∇svT )T +
∑

F∈FT

(Φk
TF (un

T, pn
h |T ), vF − vT )F = ( f n, vT )T,

(2.66a)

(c0δt pn
h, qh)T − (δtu

n
T − κ (∇hpn

h − Rk
κ,hpn

h),∇hqh)T −
∑

F∈FT

(φk
TF (δtu

n
F, pn

h), qh |T )F = (gn, qh),

(2.66b)

where, for all T ∈ Th and all F ∈ FT , the numerical tractionΦk
TF : U k

T × P
k
d (T ) → Pk

d−1(F)d

and mass flux φk
TF : Pk

d−1(F)d × Pk
d (Th) → Pk

d−1(F) are such that

Φk
TF (vT, q) B

(
Sk

T vT − qI d
)
nTF + (2µ)Lk,∗

T (h−1∂TL
k
T (v∂T − vT )),

φk
TF (vF, qh) B




(
− vn

F + {κ∇hqh}F
)
· nTF −

ςλκ ,F
hF

[qh]F (nTF · nF ) if F ∈ F i
h ,

0 otherwise,
(2.67)

with h∂T ∈ P
0
d (FT ) such that h∂T |F = hF for all F ∈ FT , and it holds, for all F ∈ F i

h such that
F ∈ FT1 ∩ FT2 ,

Φk
T1F (un

T1, pn
h |T1 ) +Φ

k
T2F (un

T2, pn
h |T2 ) = 0 (2.68a)

φk
T1F (δtu

n
F, pn

h) + φk
T2F (δtu

n
F, pn

h) = 0. (2.68b)
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Proof. (1) Proof of (2.66a2.66a). Proceeding as in [5757, Section 3.1], the stabilization bilinear
form sT defined by (2.102.10) can be rewritten as

sT (wT, vT ) =
∑

F∈FT

(Lk,∗
T (h−1∂TL

k
T (w∂T − wT )), vF − vT )F .

Therefore, using the definitions (2.52.5) of r k+1
T vT with w = r k+1

T un
T and (2.7a2.7a) of Dk

T vT with
q = pn

h |T , and recalling the definition (2.652.65) of Sk
T , one has

aT (un
T, vT ) = (Sk

Tu
n
T,∇svT )T +

∑
F∈FT

(Sk
Tu

n
TnTF + (2µ)Lk,∗

T (h−1∂TL
k
T (un

∂T − un
T )), vF − vT )F .

(2.69)
On the other hand, using again the definition (2.7a2.7a) of Dk

T vT with q = pn
h |T , one has

bT (vT, pn
h |T ) = −(pn

hI d,∇svT )T −
∑

F∈FT

(pn
h |TnTF, vF − vT )F . (2.70)

Equation (2.66a2.66a) follows summing (2.692.69) and (2.702.70).
(2) Proof of (2.66b2.66b). Using the definition (2.7b2.7b) of Dk

T with vT = δtu
n
T and q = qh |T , it is

inferred that

bT (δtu
n
T, qh) = −(δtu

n
T,∇hqh)T +

∑
F∈FT

(δtu
n
F · nTF, qh |T )F . (2.71)

On the other hand, adapting the results [7676, Section 4.5.5] to the homogeneous Neumann
boundary condition (2.1d2.1d), it is inferred

ch(pn
h, qh) =

∑
T∈Th

{
(κ (∇hpn

h − Rk
κ,hpn

h) · ∇hqh)T

−
∑

F∈FT∩F i
h

({κ∇hpn
h}F · nTF −

ςλκ,F

hF
[pn

h]F (nTF · nF ), qh |T )F

}
. (2.72)

Equation (2.66b2.66b) follows summing (2.712.71) and (2.722.72).
(3) Proof of (2.682.68). To prove (2.68a2.68a), let an internal face F ∈ F i

h be fixed, and make vh
in (2.68a2.68a) such that vT ≡ 0 for all T ∈ Th, vF ′ ≡ 0 for all F′ ∈ Fh \ {F}, let vF span Pk

d−1(F)
and rearrange the sums. The mass flux conservation (2.68b2.68b) follows immediately from the
expression of φk

TF observing that, for all (vh, qh) ∈ U k
h × Pk

h and all F ∈ F i
h , the quantity(

− vF + {κ∇hqh}F
)
· nF −

ςλκ,F

hF
[qh]F

is single-valued on F. �

Let now an element T ∈ Th be fixed. Choosing as test functions in (2.66a2.66a) vh ∈ U k
h,D

such that vF ≡ 0 for all F ∈ Fh, vT ′ ≡ 0 for all T ′ ∈ Th \ {T }, and vT spans Pk
d (T )d , we infer

the following local mechanical equilibrium relation: For all vT ∈ P
k
d (T )d ,

(Sk
Tu

n
T − pn

hI d,∇svT )T −
∑

F∈FT

(Φk
TF (un

T, pn
h |T ), vT )F = ( f n, vT )T .
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Similarly, selecting qh in (2.66b2.66b) such that qh |T ′ ≡ 0 for all T ′ ∈ Th \ {T } and qT B qh |T spans
Pk

d (T ), we infer the following local mass conservation relation: For all qT ∈ P
k
d (T ),

(c0δt pn
h, qT )T − (δtu

n
T − κ (∇hpn

h − Rk
κ,hpn

h),∇qT )T −
∑

F∈FT

(φk
TF (δtu

n
F, pn

h), qT )F = (gn, qT ).

To actually compute the numerical fluxes defined by (2.672.67), besides the operator Sk
T defined

by (2.652.65) (which is readily available once r k+1
T and Dk

T have been computed; cf. (2.52.5)
and (2.7a2.7a), respectively), one also needs to compute the operators Lk

T and Lk,∗
T . The latter

operation can be performed at marginal cost, since it only requires to invert the face mass
matrices of Pk

d−1(F) for all F ∈ FT .
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3.1 Introduction
In this chapter we develop and analyze a novel Hybrid High-Order (HHO) method for a class
of (linear and) nonlinear elasticity problems in the small deformation regime.

Let Ω ⊂ Rd , d ∈ {2, 3}, denote a bounded connected open polyhedral domain with
Lipschitz boundary Γ B ∂Ω and outward normal n. We consider a body that occupies the
regionΩ and is subjected to a volumetric force field f ∈ L2(Ω;Rd). For the sake of simplicity,
we assume the bodyfixed on Γ (extensions to other standard boundary conditions are possible).
The nonlinear elasticity problem consists in finding a vector-valued displacement field u :
Ω→ Rd solution of

−∇·σ (·,∇su ) = f in Ω, (3.1a)
u = 0 on Γ, (3.1b)

where ∇s denotes the symmetric gradient. The stress-strain law σ : Ω × Rd×d
sym → R

d×d
sym is

assumed to satisfy regularity requirements closely inspired by [8787], including conditions on
its growth, coercivity, and monotonicity; cf. Assumption 3.13.1 below for a precise statement.
Problem (3.13.1) is relevant, e.g., in modeling the mechanical behavior of soft materials [191191]
and metal alloys [169169]. Examples of stress-strain laws of common use in the engineering
practice are collected in Section 3.23.2.

The HHO discretization studied in this chapter is inspired by recent works on linear
elasticity [7474] (where HHO methods where originally introduced) and Leray–Lions opera-
tors [6969, 7070]. It hinges on degrees of freedom (DOFs) that are discontinuous polynomials
of degree k ≥ 1 on the mesh and on the mesh skeleton. Based on these DOFs, we recon-
struct discrete counterparts of the symmetric gradient and of the displacement by solving
local linear problems inside each mesh element. These reconstruction operators are used
to formulate a local contribution composed of two terms: a consistency term inspired by
the weak formulation of problem (3.13.1) with ∇s replaced by its discrete counterpart, and a
stabilization term penalizing cleverly designed face-based residuals. The resulting method
has several advantageous features: (i) it is valid in arbitrary space dimension; (ii) it supports
arbitrary polynomial orders ≥ 1 on fairly general meshes including, e.g., polyhedral elements
and nonmatching interfaces; (iii) it satisfies inside each mesh element a local principle of
virtual work with numerical tractions that obey the law of action and reaction; (iv) it can
be efficiently implemented thanks to the possibility of statically condensing a large subset
of the unknowns for linearized versions of the problem encountered, e.g., when solving the
corresponding system of nonlinear algebraic equations by the Newton method (a numerical
comparison between HHO methods and standard conforming finite element methods in the
context of scalar diffusion problems can be found in [7979]). Additionally, as shown by the
numerical tests of Section 3.73.7, the method is robust with respect to strong nonlinearities.

In the context of structural mechanics, discretization methods supporting polyhedral
meshes and nonconforming interfaces can be useful for several reasons including, e.g., the use
of hanging nodes for contact [2626, 202202] and interface [106106] elasticity problems, the simplicity
in mesh refinement [186186] and coarsening [1616] for adaptivity, and the greater robustness to
mesh distorsion [5555] and fracture [139139]. The use of high-order methods, on the other hand,
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can classically accelerate the convergence in the presence of regular exact solutions or when
combined with local mesh refinement. Over the last few years, several discretization schemes
supporting polyhedral meshes and/or high-order have been proposed for the linear version
of problem (3.13.1); a non-exhaustive list includes [2020, 7474, 8080, 8181, 185185, 197197, 199199]. For the
nonlinear version, the literature is more scarce. Conforming approximations on standard
meshes have been considered in [104104, 105105], where the convergence analysis is carried out
assuming regularity for the exact displacement field u and the constraint tensor σ (·,∇su)
beyond the minimal regularity required by the weak formulation. Discontinuous Galerkin
methods on standard meshes have been considered in [163163], where convergence is proved for
d = 2 assuming u ∈ Hm+1(Ω;R2) for somem > 2, and in [2525], where convergence tominimal
regularity solutions is proved for stress-strain functions similar to [2121]. General meshes are
considered, on the other hand, in [2121] and [5454], where the authors propose a low-order Virtual
Element method, whose convergence analysis is carried out for nonlinear elasticity problems
in the small deformation regime (more general problems are considered numerically). In [2121],
an energy-norm convergence estimate in h (with h denoting, as usual, the meshsize) is proved
when u ∈ H2(Ω;Rd) under the assumption that the function τ 7→ σ (·, τ) is piecewise C1

with positive definite and bounded differential inside each element. A closer look at the proof
reveals that properties essentially analogous to the ones considered in Assumption 3.143.14 below
are in fact sufficient for the analysis, while C1-regularity is used for the evaluation of the
stability constant. Convergence to solutions that exhibit only the minimal regularity required
by the weak formulation and for stress-strain functions as in Assumption 3.13.1 is proved in [8787]
for Gradient Schemes [8585]. In this case, convergence rates are only proved for the linear
case. We note, in passing, that the HHO method studied here fails to enter the Gradient
Scheme framework essentially because the stabilization term is not embedded in the discrete
symmetric gradient operator; see [7272].

We carry out a complete analysis for the proposed HHO discretization of problem (3.13.1).
Existence of a discrete solution is proved in Theorem 3.73.7, where we also identify a strict
monotonicity assumption on the stress-strain law which ensures uniqueness. Convergence to
minimal regularity solutions u ∈ H1

0 (Ω;Rd) is proved in Theorem 3.93.9 using a compactness
argument inspired by [6969, 8787]. More precisely, we prove for monotone stress-strain laws
that (i) the discrete displacement field strongly converges (up to a subsequence) to u in
Lq(Ω;Rd) with 1 ≤ q < +∞ if d = 2 and 1 ≤ q < 6 if d = 3; (ii) the discrete strain tensor
weakly converges (up to a subsequence) to ∇su in L2(Ω,Rd×d). Notice that our results are
slightly stronger than [8787, Theorem 3.5] (cf. also Remark 3.6 therein) because the HHO
discretization is compact as proved in Lemma 3.123.12. If, additionally, strict monotonicity holds
for σ , the strain tensor strongly converges and convergence extends to the whole sequence.
An optimal energy-norm error estimate in hk+1 is then proved in Theorem 3.163.16 under the
additional conditions of Lipschitz continuity and strong monotonicity on the stress-strain
law; cf. Assumption 3.143.14. The performance of the method is investigated in Section 3.73.7 on a
complete panel of model problems using stress-strain laws corresponding to real materials.

The rest of the chapter is organized as follows. In Section 3.23.2we formulate the assumptions
on the stress-strain functionσ , provide several examples ofmodels relevant in the engineering
practice, and write the weak formulation of problem (3.13.1). In Section 3.33.3 we introduce the
notation for the mesh and recall a few known results. In Section 3.43.4 we discuss the choice of
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DOFs, formulate the local reconstructions and the discrete problem. The main results, stated
and proved in Section 3.53.5, are collected in Theorems 3.73.7, 3.93.9, and 3.163.16 below. In Section 3.63.6
we show that the HHO method satisfies on each mesh element a discrete counterpart of the
principle of virtual work, and that interface tractions obey the law of action and reaction.
Section 3.73.7 contains numerical tests. Finally, Appendix 3.83.8 contains the proofs of intermediate
technical results.

3.2 Setting and examples
For the stress-strain function, we make the following
Assumption 3.1 (Stress-strain function I). The stress-strain function σ : Ω × Rd×d

sym → R
d×d
sym

is a Caratheodory function, namely

σ (x, ·) is continuous on Rd×d
sym for a.e. x ∈ Ω, (3.2a)

σ (·, τ) is measurable on Ω for all τ ∈ Rd×d
sym, (3.2b)

and it holds σ (·, 0) ∈ L2(Ω;Rd×d). Moreover, there exist real numbers σ, σ ∈ (0,+∞) such
that, for a.e. x ∈ Ω, and all τ, η ∈ Rd×d

sym , the following conditions hold:

‖σ (x, τ) − σ (x, 0)‖d×d ≤ σ ‖τ‖d×d, (growth) (3.2c)
σ (x, τ) : τ ≥ σ ‖τ‖2d×d, (coercivity) (3.2d)(
σ (x, τ) − σ (x, η)

)
:
(
τ − η

)
≥ 0, (monotonicity) (3.2e)

where τ : η B
∑d

i, j=1 τi, jηi, j and ‖τ‖2d×d B τ : τ.
We next discuss a number of meaningful models that satisfy the above assumptions.

Example 3.2 (Linear elasticity). The linear elasticity model corresponds to

σ (·,∇su ) = C (·)∇su,

where C is a fourth order tensor. Being linear, the previous stress-strain relation clearly
satisfies Assumption 3.13.1 provided that C is uniformly elliptic. A particular case of the
previous stress-strain relation is the usual linear elasticity Cauchy stress tensor

σ (∇su ) = λ tr(∇su )I d + 2µ∇su, (3.3)

where tr(τ) B τ : I d and λ ≥ 0, µ > 0 are the Lamé’s parameters.
Example 3.3 (Hencky–Mises model). The nonlinear Hencky–Mises model of [105105, 157157]
corresponds to the stress-strain relation

σ (∇su ) = λ̃(dev(∇su )) tr(∇su )I d + 2µ̃(dev(∇su ))∇su, (3.4)

where λ̃ and µ̃ are the nonlinear Lamé’s scalar functions and dev : Rd×d
sym → R defined by

dev(τ) = tr(τ2) − 1
d tr(τ)2 is the deviatoric operator. Conditions on λ̃ and µ̃ such that σ

satisfies Assumption 3.13.1 can be found in [1313, 2121].
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Example 3.4 (An isotropic damage model). The isotropic damage model of [5050] corresponds
to the stress-strain relation

σ (·,∇su ) = (1 − D(∇su ))C (·)∇su, (3.5)

where D : Rd×d
sym → R is the scalar damage function and C is a fourth-order symmetric and

uniformly elliptic tensor. If there exists a continuous and bounded function f : [0,+∞) →
[a, b] for some 0 < a ≤ b, such that s ∈ [0,+∞) → s f (s) is non-decreasing and, for all
τ ∈ Rd×d

sym , D(τ) = 1− f ( |τ |), the damagemodel constitutive relation satisfiesAssumption 3.13.1.
In the numerical experiments of Section 3.73.7 we will also consider the following model,

relevant in engineering applications, which however does not satisfy Assumption 3.13.1 in
general.
Example 3.5 (The second-order elasticity model). The nonlinear second-order isotropic
elasticity model of [6666, 124124, 135135] corresponds to the stress-strain relation

σ (∇su ) = λ tr(∇su )I d + 2µ∇su

+ B tr((∇su )2)I d + 2B tr(∇su )∇su + C tr(∇su )2I d + A(∇su )2, (3.6)

where λ and µ are the standard Lamé’s parameter, and A, B,C ∈ R are the second-order
moduli.

Remark 3.6 (Energy density functions). Examples 3.23.2, 3.33.3, and 3.53.5, used in numerical tests of
Section 3.73.7, can be interpreted in the framework of hyperelasticity. Hyperelasticity is a type
of constitutive model for ideally elastic materials in which the stress-strain relation derives
from a stored energy density function Ψ : Rd×d

sym → R, namely

σ (τ) B
∂Ψ(τ)
∂τ

.

The stored energy density function leading to the linear Cauchy stress tensor (3.33.3) is

Ψlin(τ) B
λ

2
tr(τ)2 + µ tr(τ2), (3.7)

while, in the Hencky–Mises model (3.43.4), it is defined such that

Ψhm(τ) B
α

2
tr(τ)2 + Φ(dev(τ)). (3.8)

Here α ∈ (0,+∞), while Φ : [0,+∞) → R is a function of class C2 satisfying, for some
positive constants C1, C2, and C3,

C1 ≤ Φ
′(ρ) < α, |ρΦ′′(ρ) | ≤ C2, and Φ

′(ρ) + 2ρΦ′′(ρ) ≥ C3 ∀ρ ∈ [0,+∞). (3.9)

Deriving the energy density function (3.83.8) yields the stress-strain relation (3.43.4) with nonlinear
Lamé’s functions µ̃(ρ) B Φ′(ρ) and λ̃(ρ) B α − Φ′(ρ). Taking α = λ + µ and Φ(ρ) = µρ
in (3.83.8) leads to the linear case. Finally, the second-order elasticity model (3.63.6) is obtained
by adding third-order terms to the linear stored energy density function defined in (3.73.7):

Ψsnd(τ) B
λ

2
tr(τ)2 + µ tr

(
τ2

)
+

C
3
tr(τ)3 + B tr(τ) tr(τ2) +

A
3
tr(τ3). (3.10)
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The weak formulation of problem (3.13.1) that will serve as a starting point for the develop-
ment and analysis of the HHO method reads

Find u ∈ H1
0 (Ω;Rd) such that, for all v ∈ H1

0 (Ω;Rd), a(u, v ) =
∫
Ω

f · v, (3.11)

where H1
0 (Ω;Rd) is the zero-trace subspace of H1(Ω;Rd) and the function a : H1

0 (Ω;Rd) ×
H1
0 (Ω;Rd) → R is such that

a(v, w ) B
∫
Ω

σ (x,∇sv (x)) : ∇sw (x)dx.

Throughout the rest of the chapter, to alleviate the notation, we omit the dependence on the
space variable x and the differential dx from integrals.

3.3 Notation and basic results
We consider refined sequences of general polytopalmeshes as in [8585, Definition 7.2]matching
the regularity requirements detailed in [8282, Definition 3]. The main points are summarized
hereafter. Denote byH ⊂ R+∗ a countable set ofmeshsizes having 0 as its unique accumulation
point, and let (Th)h∈H be a refined mesh sequence where each Th is a finite collection of
nonempty disjoint open polyhedral elements T with boundary ∂T such thatΩ =

⋃
T∈Th T and

h = maxT∈Th hT with hT diameter of T .
For each h ∈ H , let Fh be a set of faces with disjoint interiors which partitions the

mesh skeleton, i.e.,
⋃

F∈Fh F =
⋃

T∈Th ∂T . A face F is defined here as a hyperplanar
closed connected subset of Ω with positive (d−1)-dimensional Hausdorff measure such that
(i) either there exist distinct T1,T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2 and F is called an interface
or (ii) there exists T ∈ Th such that F ⊂ ∂T ∩ Γ and F is called a boundary face. Interfaces
are collected in the set F i

h and boundary faces in F b
h , so that Fh B F

i
h ∪ F

b
h . For all T ∈ Th,

FT B {F ∈ Fh : F ⊂ ∂T } denotes the set of faces contained in ∂T and, for all F ∈ FT , nTF
is the unit normal to F pointing out of T .

Mesh regularity holds in the sense that, for all h ∈ H , Th admits a matching simplicial
submesh Th and there exists a real number % > 0 such that, for all h ∈ H , (i) for any simplex
S ∈ Th of diameter hS and inradius rS, %hS ≤ rS and (ii) for any T ∈ Th and all S ∈ Th such
that S ⊂ T , %hT ≤ hS.

Let X be a mesh element or face. For an integer l ≥ 0, we denote by Pl
d (X ;R) the space

spanned by the restriction to X of scalar-valued, d-variate polynomials of total degree l. The
L2-projector πl

X : L1(X ;R) → Pl
d (X ;R) is defined such that, for all v ∈ L1(X ;R),∫

X
(πl

Xv − v)w = 0 ∀w ∈ Pl
d (X ;R). (3.12)

When dealing with the vector-valued polynomial space Pl
d (X ;Rd) or with the tensor-valued

polynomial space Pl
d (X ;Rd×d), we use the boldface notation π l

X for the corresponding L2-
orthogonal projectors acting component-wise.
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On regular mesh sequences, we have the following optimal approximation properties
for πl

T (for a proof, cf. [7676, Lemmas 1.58 and 1.59] and, in a more general framework, [7070,
Lemmas 3.4 and 3.6]): There exists a real numberCapp > 0 such that, for all s ∈ {0, . . . , l+1},
all h ∈ H , all T ∈ Th, and all v ∈ H s (T ;R),

|v − πl
Tv |Hm (T ;R) ≤ Capphs−m

T |v |H s (T ;R) ∀m ∈ {0, . . . , s}, (3.13a)

and, if s ≥ 1,

|v − πl
Tv |Hm (FT ;R) ≤ Capph

s−m− 1
2

T |v |H s (T ;R) ∀m ∈ {0, . . . , s − 1}, (3.13b)

with Hm(FT ;R) denoting the broken hilbert space on the faces of T . Other useful geometric
and functional analytic results on regular mesh sequences can be found in [7676, Chapter 1]
and [6969, 7070].

At the global level, we define broken versions of polynomial and Sobolev spaces. In
particular, for an integer l ≥ 0, we denote by Pl

d (Th;R), Pl
d (Th;Rd), and Pl

d (Th;Rd×d),
respectively, the space of scalar-valued, vector-valued, and tensor-valued broken polynomial
functions on Th of total degree l. The space of broken vector-valued polynomial functions of
total degree l on the trace of the mesh on the domain boundary Γ is denoted by Pl

d (F b
h ;Rd).

Similarly, for an integer s ≥ 1, H s (Th;R), H s (Th;Rd), and H s (Th;Rd×d) are the scalar-
valued, vector-valued, and tensor-valued broken Sobolev spaces of index s.

Throughout the rest of the chapter, for X ⊂ Ω, we denote by ‖·‖X the standard norm
in L2(X ;R), with the convention that the subscript is omitted whenever X = Ω. The same
notation is used for the vector- and tensor-valued spaces L2(X ;Rd) and L2(X ;Rd×d).

3.4 The Hybrid High-Order method
In this section we define the space of DOFs and the local reconstructions, and we state the
discrete problem.

3.4.1 Degrees of freedom
Let a polynomial degree k ≥ 1 be fixed. The DOFs for the displacement are collected in the
space

U k
h B

*
,
×
T∈Th
Pk

d (T ;Rd)+
-
× *

,
×

F∈Fh
Pk

d (F;Rd)+
-
,

see Figure 3.13.1. Observe that naming U k
h the space of DOFs involves a shortcut: the actual

DOFs can be chosen in several equivalent ways (polynomial moments, point values, etc.),
and the specific choice does not affect the following discussion. Details concerning the actual
choice made in the implementation are given in Section 3.73.7 below.

For a generic collection of DOFs in U k
h, we use the classical HHO underlined notation

vh B
(
(vT )T∈Th, (vF )F∈Fh

)
. We also denote by vh ∈ P

k
d (Th;Rd) and vΓ,h ∈ P

k
d (F b

h ;Rd) (not
underlined) the broken polynomial functions such that

(vh) |T = vT ∀T ∈ Th and (vΓ,h) |F = vF ∀F ∈ F b
h .
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DOFs and reduction map I
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Figure: Uk
T for k P t1, 2u

For k • 1 and all T P Th, we define the local space of DOFs

Uk
T :“ Pk

dpT qd ˆ
# °

F PFT

Pk
d´1pF qd

+

The global space has single-valued interface DOFs

Uk
h :“

# °

T PTh

Pk
dpT qd

+
ˆ

# °

F PFh

Pk
d´1pF qd

+

76 / 94

Figure 3.1: Local DOFs for k = 1 (left) and k = 2 (right). Shaded DOFs can be locally eliminated by static
condensation when solving linearized versions of problem (3.213.21).

The restrictions ofU k
h and vh to amesh elementT are denoted byU k

T and vT =
(
vT, (vF )F∈FT

)
,

respectively. The space U k
h is equipped with the following discrete strain semi-norm:

‖vh‖ε,h B
*.
,

∑
T∈Th

‖vh‖
2
ε,T

+/
-

1/2

, ‖vh‖
2
ε,T B ‖∇svT ‖

2
T +

∑
F∈FT

h−1F ‖vF − vT ‖
2
F . (3.14)

The DOFs corresponding to a given function v ∈ H1(Ω;Rd) are obtained by means of
the reduction map I k

h : H1(Ω;Rd) → U k
h such that

I k
hv B

(
(πk

T v )T∈Th, (π
k
Fv )F∈Fh

)
, (3.15)

where we remind the reader that πk
T and πk

F denote the L2-orthogonal projectors on Pk
d (T ;Rd)

and Pk
d (F;Rd), respectively. For all mesh elements T ∈ Th, the local reduction map I k

T :
H1(T ;Rd) → U k

T is obtained by a restriction of I k
h, and is therefore such that for all v ∈

H1(T ;Rd)
I k

T v =
(
πk

T v, (π
k
Fv )F∈FT

)
. (3.16)

3.4.2 Local reconstructions
We introduce symmetric gradient and displacement reconstruction operators devised at the
element level that are instrumental to the formulation of the method.

Let a mesh elementT ∈ Th be fixed. The local symmetric gradient reconstruction operator

Gk
s,T : U k

T → P
k
d (T ;Rd×d

sym )

is obtained by solving the following pure traction problem:c3: For a given local collection
of DOFs vT =

(
vT, (vF )F∈FT

)
∈ U k

T , find Gk
s,T vT ∈ P

k
d (T ;Rd×d

sym ) such that, for all τ ∈
Pk

d (T ;Rd×d
sym ), ∫

T
Gk

s,T vT : τ = −
∫

T
vT · (∇·τ) +

∑
F∈FT

∫
F
vF · (τnTF ) (3.17a)

=

∫
T
∇svT : τ +

∑
F∈FT

∫
F

(vF − vT ) · (τnTF ). (3.17b)
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The right-hand side of (3.17a3.17a) is designed to resemble an integration by parts formula where
the role of the function represented by the DOFs in vT is played by vT inside the volumetric
integral and by (vF )F∈FT inside boundary integrals. The reformulation (3.17b3.17b), obtained
integrating by parts the first term in the right-hand side of (3.17a3.17a), highlights the fact that our
method is nonconforming, as the second addend accounts for the difference between vF and
vT .

The definition of the symmetric gradient reconstruction is justified observing that, using
the definitions (3.163.16) of the local reduction map I k

T and (3.123.12) of the L2-orthogonal projectors
πk

T and πk
F in (3.17a3.17a), one can prove the following commuting property: For all T ∈ Th and

all v ∈ H1(T ;Rd),
Gk

s,T I k
T v = π

k
T (∇sv ). (3.18)

As a result of (3.183.18) and (3.133.13), Gk
s,T I k

T has optimal approximation properties in Pk
d (T ;Rd×d

sym ).
From Gk

s,T , one can define the local displacement reconstruction operator

r k+1
T : U k

T → P
k+1
d (T ;Rd)

such that, for all vT ∈ U
k
T ,∇sr

k+1
T vT is the orthogonal projection ofG

k
s,T vT on∇sP

k+1
d (T ;Rd) ⊂

Pk
d (T ;Rd×d

sym ) and rigid-body motions are prescribed according to [7474, Eq. (15)]. More pre-
cisely, we let r k+1

T vT be such that for all w ∈ Pk+1
d (T ;Rd) it holds∫

T
(∇sr

k+1
T vT − Gk

s,T vT ) : ∇sw = 0

and, denoting by ∇ss the skew-symmetric part of the gradient operator, we have∫
T
r k+1

T vT =

∫
T
vT,

∫
T
∇ssr

k+1
T vT =

∑
F∈FT

∫
F

1
2

(vF ⊗ nTF − nTF ⊗ vF ) .

Notice that, for a given vT ∈ U k
T , the displacement reconstruction r k+1

T vT is a vector-valued
polynomial function one degree higher than the element-based DOFs vT . It was proved
in [7474, Lemma 2] that r k+1

T I k
T has optimal approximation properties in Pk+1

d (T ;Rd).
In what follows, we will also need the global counterparts of the discrete gradient and

displacement operators Gk
s,h : U k

h → P
k
d (Th;Rd×d

sym ) and r k+1
h : U k

h → P
k+1
d (Th;Rd) defined

setting, for all vh ∈ U
k
h and all T ∈ Th,

(Gk
s,hvh)|T = Gk

s,T vT, (r k+1
h vh) |T = r k+1

T vT . (3.19)

3.4.3 Discrete problem

We define the following subspace of U k
h strongly accounting for the homogeneous Dirichlet

boundary condition (3.1b3.1b):

U k
h,D B

{
vh ∈ U

k
h : vF = 0 ∀F ∈ F b

h

}
, (3.20)
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andwe notice that themap ‖·‖ε,h defined by (3.143.14) is a normonU k
h,D. TheHHOapproximation

of problem (3.113.11) reads:

Find uh ∈ U
k
h,D such that, for all vh ∈ U

k
h,D,

ah(uh, vh) B Ah(uh, vh) + sh(uh, vh) =
∫
Ω

f · vh, (3.21)

where the consistency contribution Ah : U k
h × U k

h → R and the stability contribution sh :
U k

h × U
k
h → R are respectively defined setting

Ah(uh, vh) B
∫
Ω

σ (·, Gk
s,huh) : Gk

s,hvh,

sh(uh, vh) B
∑
T∈Th

sT (uT, vT ), sT (uT, vT ) B
∑

F∈FT

γ

hF

∫
F
∆k

TFuT · ∆
k
TFvT . (3.22)

The scaling parameter γ > 0 in (3.223.22) can depend on σ and σ but is independent of the
meshsize h. In the numerical tests of Section 3.73.7 we take γ = 2µ for the linear (3.33.3) and
second-order (3.63.6) models and γ = 2µ̃(0) for the Hencky–Mises model (3.43.4). In sT , we
penalize in a least-square sense the face-based residual ∆k

TF : U k
T → P

k
d (F;Rd) such that, for

all T ∈ Th, all vT ∈ U
k
T , and all F ∈ FT ,

∆k
TFvT B πk

F (r k+1
T vT − vF ) − πk

T (r k+1
T vT − vT ). (3.23)

This particular choice ensures that ∆k
TF vanishes whenever its argument is of the form I k

Tw
with w ∈ Pk+1

d (T ;Rd), a crucial property to obtain an energy-norm error estimate in hk+1; cf.
Theorem 3.163.16 below. Additionally, sh is stabilizing in the sense that the following uniform
norm equivalence holds (the proof is a straightforward modification of [7474, Lemma 4]; cf.
also Corollary 6 therein): There exists a real number η > 0 independent of h such that, for
all vh ∈ U

k
h,D,

η−1‖vh‖
2
ε,h ≤ ‖G

k
s,hvh‖

2 + sh(vh, vh) ≤ η‖vh‖
2
ε,h. (3.24)

By (3.2d3.2d), this implies the coercivity of ah.

3.5 Analysis
In this section we carry out a complete analysis of the method. To alleviate the notation,
inside the proofs we abridge into a . b the inequality a ≤ Cb with real number C > 0
independent of h.

3.5.1 Existence and uniqueness
We start by discussing existence and uniqueness of the discrete solution.
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Theorem 3.7 (Existence and uniqueness of a discrete solution). Let Assumption 3.13.1 hold
and let (Th)h∈H be a regular mesh sequence. Then, for all h ∈ H , there exists at least one
solution uh ∈ U

k
h,D to problem (3.213.21). Additionally, if the stress-strain function σ is strictly

monotone (i.e., if the inequality in (3.2e3.2e) is strict for τ , η), the solution is unique.

Proof. 1) Existence. We follow the argument of [6464, Theorem 3.3]. If (E, (·, ·)E, ‖·‖E )
is a Euclidean space and Φ : E → E is a continuous map such that (Φ(x),x)E

‖x‖E
→ +∞, as

‖x‖E → +∞, then Φ is surjective. We take E = U k
h,D, endowed with the inner product

(vh, wh)ε,h B
∑
T∈Th

*.
,

∫
T
∇svT : ∇swT +

∑
F∈FT

1
hF

∫
F

(vF − vT ) · (wF − wT )+/
-
,

and we define Φ : U k
h,D → U k

h,D such that, for all vh ∈ U k
h,D, (Φ(vh), wh)ε,h = ah(vh, wh)

for all wh ∈ U k
h,D. The coercivity (3.2d3.2d) of σ together with the norm equivalence (3.243.24)

yields (Φ(vh), vh)ε,h ≥ min{1, σ }η−1‖vh‖
2
ε,h for all vh ∈ U k

h,D, so that Φ is surjective. Let
now y

h
∈ U k

h,D be such that (y
h
, wh)ε,h =

∫
Ω
f · wh for all wh ∈ U

k
h,D. By the surjectivity of

Φ, there exists uh ∈ U
k
h,D such that Φ(uh) = y

h
. By definition of Φ and y

h
, uh is a solution

to the problem (3.213.21).
2) Uniqueness. Let uh,1, uh,2 ∈ U

k
h,D solve (3.213.21). We assume uh,1 , uh,2 and proceed by

contradiction. Subtracting (3.213.21) for uh,2 from (3.213.21) for uh,1, it is inferred that ah(uh,1, vh)−
a(uh,2, vh) = 0 for all vh ∈ U

k
h,D. Hence in particular, taking vh = uh,1 − uh,2 we obtain that

ah(uh,1, uh,1 − uh,2) − ah(uh,2, uh,1 − uh,2) = 0.

On the other hand, owing to the strict monotonicity of σ and to the fact that the bilinear form
sh is positive semidefinite, we have that

ah(uh,1, uh,1 − uh,2) − ah(uh,2, uh,1 − uh,2)

=

∫
Ω

(
σ (·, Gk

s,huh,1) − σ (·, Gk
s,huh,2)

)
: Gk

s,h(uh,1 − uh,2)

+ sh(uh,1 − uh,2, uh,1 − uh,2) > 0.

Hence, uh,1 = uh,2 and the conclusion follows.
�

Remark 3.8 (Strict monotonicity of the stress-strain function). The strict monotonicity as-
sumption is fulfilled, e.g., by the Hencky–Mises model (3.43.4) and by the damage model (3.53.5)
when D(τ) = 1 − f (|τ |), with f continuous, bounded, and such that [0,+∞) 3 s 7→ s f (s)
is strictly increasing. We observe, in passing, that the strict monotonicity is weaker than the
strong monotonicity (3.40b3.40b) used in Theorem 3.163.16 below to prove error estimates.
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3.5.2 Convergence
Wenowconsider the convergence to solutions that only exhibit theminimal regularity required
by the variational formulation (3.113.11). More specifically, in this section we prove the following
Theorem 3.9 (Convergence). Let Assumption 3.13.1 hold, let k ≥ 1, and let (Th)h∈H be a
regular mesh sequence. Further assume the existence of a real number CK > 0 independent
of h but possibly depending on Ω, %, and on k such that, for all vh ∈ U

k
h,D,

‖vh‖ + ‖∇hvh‖ ≤ CK‖vh‖ε,h, (3.25)

where ∇h denotes the broken gradient on H1(Th;Rd). For all h ∈ H , let uh ∈ U k
h,D be a

solution to the discrete problem (3.213.21) on Th. Then, for all q such that 1 ≤ q < +∞ if d = 2
or 1 ≤ q < 6 if d = 3, as h → 0 it holds, up to a subsequence,

• uh → u strongly in Lq(Ω;Rd),

• Gk
s,huh → ∇su weakly in L2(Ω;Rd×d),

where u ∈ H1
0 (Ω;Rd) solves the weak formulation (3.113.11). Moreover, if we assume strict

monotonicity for σ (i.e., the inequality in (3.2e3.2e) is strict for τ , η), it holds that

• Gk
s,huh → ∇su strongly in L2(Ω;Rd×d).

Finally, if the solution to (3.113.11) is unique, convergence extends to the whole sequence.
Some remarks are of order before proceeding with the proof of Theorem 3.93.9.

Remark 3.10 (Existence of a solution to the continuous problem). A side result of the
existence of discrete solutions proved in Theorem 3.73.7 together with the convergence results
of Theorem 3.93.9 is the existence of a solution to the weak formulation (3.113.11).
Remark 3.11 (Discrete Korn inequality). In Proposition 3.203.20 below we give a proof of the
discrete Korn inequality (3.253.25) based on the results of [3939], which require further assumptions
on the mesh. While we have the feeling that these assumptions could probably be relaxed,
we postpone this topic to a future work. Notice that inequality (3.253.25) is not required to prove
the error estimate of Theorem 3.163.16 below.

The proof of Theorem 3.93.9 hinges on two technical results stated hereafter: a discrete
Rellich–Kondrachov Lemma (cf. [4040, Theorem 9.16]) and a proposition showing the approx-
imation properties of the discrete symmetric gradient Gk

s,h defined by (3.193.19). Their proofs
are given in Appendix 3.83.8.
Lemma 3.12 (Discrete compactness). Let the assumptions of Theorem 3.93.9 hold. Let
(vh)h∈H ∈ (U k

h,D)h∈H , and assume that there is a real number C ≥ 0 such that

‖vh‖ε,h ≤ C ∀h ∈ H . (3.26)

Then, for all q such that 1 ≤ q < +∞ if d = 2 or 1 ≤ q < 6 if d = 3, the sequence
(vh)h∈H ∈ (Pk

d (Th;Rd))h∈H is relatively compact in Lq(Ω;Rd). As a consequence, there is
a function v ∈ Lq(Ω;Rd) such that as h → 0, up to a subsequence, vh → v strongly in
Lq(Ω;Rd).



3.5. Analysis 61

Proof. See Appendix 3.8.23.8.2. �

Proposition 3.13 (Consistency of the discrete symmetric gradient operator). Let (Th)h∈H
be a regular mesh sequence, and let Gk

s,h be as in (3.193.19) with Gk
s,T defined by (3.173.17) for all

T ∈ Th.

1) Strong consistency. For all v ∈ H1(Ω;Rd) with I k
h defined by (3.153.15), it holds as h → 0

Gk
s,hI k

hv → ∇sv strongly in L2(Ω;Rd×d). (3.27)

2) Sequential consistency. For all h ∈ H and all τ ∈ H1(Ω;Rd×d
sym ), denoting by γn (τ) the

normal trace of τ on Γ, it holds

lim
h→0

*
,

max
vh∈U

k
h
, ‖vh ‖ε,h=1

�����

∫
Ω

Gk
s,hvh : τ + vh · (∇·τ) −

∫
Γ

vΓ,h · γn (τ)
�����
+
-
= 0, (3.28)

Proof. See Appendix 3.8.33.8.3. �

We are now ready to prove convergence.

Proof of Theorem 3.93.9. The proof is subdivided into four steps: in Step 1 we prove a uniform
a priori bound on the solutions of the discrete problem (3.213.21); in Step 2we infer the existence
of a limit for the sequence of discrete solutions and investigate its regularity; in Step 3 we
show that this limit solves the continuous problem (3.113.11); finally, in Step 4 we prove strong
convergence.

Step 1: A priori bound. We start by showing the following uniform a priori bound on
the sequence of discrete solutions:

‖uh‖ε,h ≤ C‖ f ‖, (3.29)

where the real number C > 0 only depends on Ω, σ, γ, %, and k. Making vh = uh in (3.213.21)
and using the coercivity property (3.2d3.2d) of σ in the left-hand side together with the Cauchy–
Schwarz inequality in the right-hand side yields

∑
T∈Th

*.
,
σ ‖Gk

s,TuT ‖
2
T +

∑
F∈Fh

γ

hF
‖∆k

TFuT ‖
2
F

+/
-
≤ ‖ f ‖‖uh‖.

Owing to the norm equivalence (3.243.24), and using the discrete Korn inequality (3.253.25) to
estimate the right-hand side of the previous inequality, it is inferred that

η−1min(1, σ)‖uh‖
2
ε,h ≤ ‖ f ‖‖uh‖ ≤ CK‖ f ‖‖uh‖ε,h.

Dividing by ‖uh‖ε,h yields (3.293.29) with C = ηmin(1, σ)−1CK.
Step 2: Existence of a limit and regularity. Let 1 ≤ q < +∞ if d = 2 or 1 ≤

q < 6 if d = 3. Owing to the a priori bound (3.293.29) and the norm equivalence (3.243.24), the
sequences (‖uh‖ε,h)h∈H and (‖Gk

s,huh‖)h∈H are uniformly bounded. Therefore, Lemma 3.123.12
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and the Kakutani theorem [4040, Theorem 3.17] yield the existence of u ∈ Lq(Ω;Rd) and
G ∈ L2(Ω;Rd×d) such that as h → 0, up to a subsequence,

uh → u strongly in Lq(Ω;Rd) and Gk
s,huh → G weakly in L2(Ω;Rd×d).

This together with the fact that uh,Γ = 0 on Γ, shows that, for any τ ∈ H1(Ω;Rd×d
sym ),

�����

∫
Ω

G : τ + u · (∇·τ)
�����

= lim
h→0

�����

∫
Ω

Gk
s,huh : τ + uh · (∇·τ) −

∫
Γ

uh,Γ · γn (τ)
�����

≤ lim
h→0

*
,
‖uh‖ε,h max

vh∈U
k
h
, ‖vh ‖ε,h=1

�����

∫
Ω

Gk
s,hvh : τ + vh · (∇·τ) −

∫
Γ

vh,Γ · γn (τ)
�����
+
-

= 0.

(3.30)

To infer the previous limitwe have used the uniformbound (3.293.29) on ‖uh‖ε,h and the sequential
consistency (3.283.28) of Gk

s,h. Applying (3.303.30) with τ ∈ C∞c (Ω;Rd×d
sym ) leads to∫

Ω

G : τ + u · (∇·τ) = 0,

thus G = ∇su in the sense of distributions on Ω. As a result, owing to the isomorphism
of Hilbert spaces between H1(Ω;Rd) and {v ∈ L2(Ω;Rd) | ∇sv ∈ L2(Ω;Rd×d

sym )} proved
in [8989, Theorem 3.1], we have u ∈ H1(Ω;Rd). Using again (3.303.30) with τ ∈ H1(Ω;Rd×d

sym )
and integrating by parts, we obtain ∫

Γ

γ(u ) · γn (τ) = 0

with γ(u ) denoting the trace of u . As the set {γn (τ) : τ ∈ H1(Ω;Rd×d
sym )} is dense in

L2(Γ;Rd), we deduce that γ(u ) = 0 on Γ. In conclusion, with convergences up to a
subsequence,

u ∈ H1
0 (Ω;Rd), uh → u strongly in Lq(Ω;Rd)

Gk
s,huh → ∇su weakly in L2(Ω;Rd×d).

Step 3: Identification of the limit. Let us now prove that u is a solution to (3.113.11).
The growth property (3.2c3.2c) on σ and the bound on (‖Gk

s,huh‖)h∈H ensure that the sequence
(σ (·, Gk

s,huh))h∈H is bounded in L2(Ω;Rd×d
sym ). Hence, there exists η ∈ L2(Ω;Rd×d

sym ) such
that, up to a subsequence as h → 0,

σ (·, Gk
s,huh) → η weakly in L2(Ω;Rd×d). (3.31)

Plugging into (3.213.21) vh = I k
hφ, with φ ∈ C∞c (Ω;Rd), gives∫

Ω

σ (·, Gk
s,huh) : Gk

s,hI k
hφ =

∫
Ω

f · πk
hφ − sh(uh, I k

hφ), (3.32)
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with πk
h denoting the L2-projector on the broken polynomial spaces Pk

d (Th;Rd) and sh defined
by (3.223.22). Using the Cauchy–Schwarz inequality followed by the norm equivalence (3.243.24) to
bound the first factor, we infer

|sh(uh, I k
hφ) | ≤ sh(uh, uh)1/2sh(I k

hφ, I k
hφ)1/2 ≤ ‖uh‖ε,hsh(I k

hφ, I k
hφ)1/2. (3.33)

It was proved in [7474, Eq. (35)] using the optimal approximation properties of r k+1
T I k

T that it
holds for all h ∈ H , all T ∈ Th, all v ∈ H k+2(T ;Rd), and all F ∈ FT that

h−1/2F ‖∆k
TF I k

T v ‖F . hk+1
T ‖v ‖Hk+2(T ;Rd ), (3.34)

with ∆k
TF defined by (3.233.23). As a consequence, recalling the definition (3.223.22) of sh, we have

the following convergence result:

∀v ∈ H1(Ω;Rd) ∩ H2(Th;Rd), lim
h→0

sh(I k
hv, I k

hv ) = 0. (3.35)

Recalling the a priori bound (3.293.29) on the discrete solution and the convergence prop-
erty (3.353.35), it follows from (3.333.33) that |sh(uh, I k

hφ) | → 0 as h → 0. Additionally, by the
approximation property (3.13a3.13a) of the L2-projector, one has πk

hφ → φ strongly in L2(Ω;Rd)
and, by virtue of Proposition 3.133.13, that Gk

s,hI k
hφ → ∇sφ strongly in L2(Ω;Rd×d). Thus, we

can pass to the limit h → 0 in (3.323.32) and obtain∫
Ω

η : ∇sφ =

∫
Ω

f · φ. (3.36)

By density of C∞c (Ω;Rd) in H1
0 (Ω;Rd), this relation still holds if φ ∈ H1

0 (Ω;Rd). On the
other hand, plugging vh = uh into (3.213.21) and using the fact that sh(uh, uh) ≥ 0, we obtain

Th B

∫
Ω

σ (·, Gk
s,huh) : Gk

s,huh ≤

∫
Ω

f · uh.

Thus, using the previous bound, the strong convergence uh → u , and (3.363.36), it is inferred
that

lim
h→0

Th ≤

∫
Ω

f · u =

∫
Ω

η : ∇su . (3.37)

We now use the monotonicity assumption on σ and the Minty trick [152152] to prove that
η = σ (·,∇su ). Let Λ ∈ L2(Ω;Rd×d) and write, using the monotonicity (3.2e3.2e) of σ , the
convergence (3.313.31) of σ (·, Gk

s,huh), and the bound (3.373.37),

0 ≤ lim
h→0

(∫
Ω

(σ (·, Gk
s,huh) − σ (·,Λ)) : (Gk

s,huh − Λ)
)
≤

∫
Ω

(η − σ (·,Λ)) : (∇su − Λ).

(3.38)
Applying the previous relation with Λ = ∇su ± t∇sv , for t > 0 and v ∈ H1

0 (Ω;Rd), and
dividing by t, leads to

0 ≤ ±
∫
Ω

(η − σ (·,∇su ∓ t∇sv )) : ∇sv .
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Owing to the growth property (3.2c3.2c) and the Caratheodory property (3.2a3.2a) of σ , we can let
t → 0 and pass the limit inside the integral and then inside the argument of σ . In conclusion,
for all v ∈ H1

0 (Ω;Rd), we infer∫
Ω

σ (·,∇su ) : ∇sv =

∫
Ω

η : ∇sv =

∫
Ω

f · v,

where we have used (3.363.36) with φ = v in order to obtain the second equality. The above
equation shows that η = σ (·,∇su ) and that u solves (3.113.11).

Step 4: Strong convergence. We prove that if σ is strictly monotone then Gk
s,huh → ∇su

strongly in L2(Ω;Rd×d). We define the function Dh : Ω→ R such that

Dh B (σ (·, Gk
s,huh) − σ (·,∇su )) : (Gk

s,huh − ∇su ).

For all h ∈ H , the functionDh is non-negative as a result of the monotonicity property (3.2e3.2e)
and, by (3.383.38) with Λ = ∇su , it is inferred that limh→0

∫
Ω
Dh = 0. Hence, (Dh)h∈H

converges to 0 in L1(Ω) and, therefore, also almost everywhere on Ω up to a subsequence.
Let us take x ∈ Ω such that the above mentioned convergence hold at x. Developing the
products in Dh and using the coercivity and growth properties (3.2d3.2d) and (3.2c3.2c) of σ , one
has

Dh(x) ≥ σ ‖Gk
s,huh(x)‖2d×d − 2σ ‖G

k
s,huh(x)‖d×d ‖∇su (x)‖d×d + σ ‖∇su (x)‖2d×d .

Since the right hand side is quadratic in ‖Gk
s,huh(x)‖d×d and (Dh(x))h∈H is bounded, we

deduce that also (Gk
s,huh(x))h∈H is bounded. Passing to the limit in the definition of Dh(x)

yields (
σ (x, Lx) − σ (x,∇su (x))

)
:
(
Lx − ∇su (x)

)
= 0,

where Lx is an adherence value of (Gk
s,huh(x))h∈H . The strict monotonicity assumption

forces Lx = ∇su (x) to be the unique adherence value of (Gk
s,huh(x))h∈H , and therefore the

sequence converges to this value. As a result,

Gk
s,huh → ∇su a.e. on Ω. (3.39)

Using (3.373.37) together with Fatou’s Lemma, we see that

lim
h→0

∫
Ω

σ (·, Gk
s,huh) : Gk

s,huh =

∫
Ω

σ (·,∇su ) : ∇su .

Moreover, owing to (3.393.39), (σ (·, Gk
s,huh) : Gk

s,huh)h∈H is a non-negative sequence converging
almost everywhere on Ω. Using [8484, Lemma 8.4] we see that this sequence also converges in
L1(Ω) and, therefore, it is equi-integrable in L1(Ω). Thus, the coercivity (3.2d3.2d) of σ ensures
that (Gk

s,huh)h∈H is equi-integrable in L2(Ω;Rd×d) and Vitali’s theorem shows that

Gk
s,huh → ∇su strongly in L2(Ω;Rd×d).

This concludes the proof. �
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3.5.3 Error estimate
We next estimate the order of convergence of the method for solutions that display further
regularity beyond that required by the variational formulation. We stipulate the following
additional assumptions on the stress-strain function σ .
Assumption 3.14 (Stress-strain relation II). There exist real numbers σ∗, σ∗ ∈ (0,+∞) such
that, for a.e. x ∈ Ω, and all τ, η ∈ Rd×d

sym ,

‖σ (x, τ) − σ (x, η)‖d×d ≤ σ
∗‖τ − η‖d×d, (Lipschitz continuity) (3.40a)(

σ (x, τ) − σ (x, η)
)
:
(
τ − η

)
≥ σ∗‖τ − η‖

2
d×d . (strong monotonicity) (3.40b)

Remark 3.15 (Lipschitz continuity and strong monotonocity). It has been proved in [1313,
Lemma4.1] that, under the assumptions (3.93.9), the stress-strain tensor function for theHencky–
Mises model is strongly monotone and Lipschitz-continuous, namely Assumption 3.143.14 holds.
Also the isotropic damage model satisfies Assumption 3.143.14 if the damage function in (3.53.5)
is, for instance, such that D(|τ |) = 1 − (1 + |τ |)−

1
2 .

Theorem 3.16 (Error estimate). Let Assumptions 3.13.1 and 3.143.14 hold, and let (Th)h∈H be a
regular mesh sequence. Let u be the unique solution to (3.13.1). Let a polynomial degree k ≥ 1
be fixed, and, for all h ∈ H , let uh be the unique solution to (3.213.21) on the mesh Th. Then,
under the additional regularity u ∈ H k+2(Th;Rd) and σ (·,∇su ) ∈ H k+1(Th;Rd×d), it holds

‖∇su−G
k
s,huh‖+sh(uh, uh)

1
2 ≤ Chk+1

(
‖u ‖Hk+2(Th ;Rd ) + ‖σ (·,∇su )‖Hk+1(Th ;Rd×d )

)
, (3.41)

where C is a positive constant depending only on Ω, k, the mesh regularity parameter %, the
real numbers σ , σ , σ∗, σ∗ appearing in (3.23.2) and in (3.403.40), and an upper bound of ‖ f ‖.
Remark 3.17 (Locking-free error estimate). The proposed scheme, although different from
the one of [7474], is robust in the quasi-incompressible limit. The reason is that, as a result of
the commuting property (3.183.18), we have πk

T (∇·v ) = tr(Gk
s,T I k

T v ). Thus, considering, e.g., the
linear elasticity stress-strain relation (3.33.3), we can proceed as in [7474, Theorem 8] in order to
prove that, when u ∈ H k+2(Th;Rd) and ∇·u ∈ H k+1(Th;R), and choosing γ = 2µ, it holds

(2µ)1/2‖∇su − Gk
s,huh‖ ≤ Chk+1

(
2µ‖u ‖Hk+2(Th ;Rd ) + λ‖∇·u ‖Hk+1(Th ;R)

)
,

with real number C > 0 independent of h, µ and λ. The previous bound leads to a locking-
free estimate; see [7474, Remark 9]. Note that the locking-free nature of polyhedral element
methods has also been observed in [197197] for the Weak Galerkin method and in [2020] for the
Virtual Element method.

Proof of Theorem 3.163.16. For the sake of conciseness, throughout the proof we let ûh B I k
hu

and use the following abridged notations for the constraint field and its approximations:

ς B σ (·,∇su ) and, for all T ∈ Th, ςT B σ (·, Gk
s,TuT ) and ς̂T B σ (·, Gk

s,T ûT ).

First we want to show that (3.413.41) holds assuming that

‖uh − ûh‖ε,h . hk+1
(
‖u ‖Hk+2(Th ;Rd ) + ‖ς ‖Hk+1(Th ;Rd×d )

)
. (3.42)
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Using the triangle inequality, we obtain

‖Gk
s,huh − ∇su ‖ + sh(uh, uh)1/2 ≤ ‖Gk

s,h(uh − ûh)‖ + sh(uh − ûh, uh − ûh)1/2

+ ‖Gk
s,h ûh − ∇su ‖ + sh(ûh, ûh)1/2.

(3.43)

Using the norm equivalence (3.243.24) followed by (3.423.42) we obtain for the terms in the first line
of (3.433.43)

‖Gk
s,h(uh − ûh)‖ + sh(uh − ûh, uh − ûh)1/2 . hk+1

(
‖u ‖Hk+2(Th ;Rd ) + ‖ς ‖Hk+1(Th ;Rd×d )

)
.

For the terms in the second line, using the approximation properties of Gk
s,h resulting

from (3.183.18) together with (3.13a3.13a) for the first addend and (3.343.34) for the second, we get

‖Gk
s,h ûh − ∇su ‖ + sh(ûh, ûh)1/2 . hk+1‖u ‖Hk+2(Th ;Rd ) .

It only remains to prove (3.423.42), which we do in two steps: in Step 1we prove a basic estimate
in terms of a conformity error, which is then bounded in Step 2.

Step 1: Basic error estimate. Using for all T ∈ Th the strong monotonicity (3.40b3.40b) with
τ = Gk

s,T ûT and η = Gk
s,TuT , we infer

‖Gk
s,h(ûh − uh)‖2 .

∑
T∈Th

∫
T

(ς̂T − ςT ) : Gk
s,T (ûT − uT ).

Owing to the norm equivalence (3.243.24) and the previous bound, we get

‖ ûh − uh‖
2
ε,h .

∑
T∈Th

∫
T

(ς̂T − ςT ) : Gk
s,T (ûT − uT ) + sh(ûh − uh, ûh − uh)

= ah(ûh, ûh − uh) −
∫
Ω

f · (ûh − uh).

where we have used the discrete problem (3.213.21) to conclude. Hence, dividing by ‖ ûh − uh‖ε,h
and passing to the supremum in the right-hand side, we arrive at the following error estimate:

‖ ûh − uh‖ε,h . sup
vh∈U

k
h,D, ‖vh ‖ε,h=1

Eh(vh), (3.44)

with conformity error such that, for all vh ∈ U
k
h,D,

Eh(vh) B
∑
T∈Th

∫
T
ς̂T : Gk

s,T vT −

∫
Ω

f · vh + sh(ûh, vh). (3.45)

Step 2: Bound of the conformity error. We bound the quantity Eh(vh) defined above
for a generic vh ∈ U k

h,D. Denote by T1, T2, and T3 the three addends in the right-hand side
of (3.453.45).
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Using for all T ∈ Th the definition (3.173.17) of Gk
s,T with τ = πk

T ς̂T , we have that

T1 =
∑
T∈Th

*.
,

∫
T
ς̂T : ∇svT +

∑
F∈FT

∫
F
πk

T ς̂TnTF · (vF − vT )+/
-
, (3.46)

where we have used the fact that ∇svT ∈ P
k−1
d (T ;Rd×d) together with the definition (3.123.12) of

the orthogonal projector to cancel πk
T in the first term.

On the other hand, using the fact that f = −∇·ς a.e. inΩ and integrating by parts element
by element, we get that

T2 = −
∑
T∈Th

*.
,

∫
T
ς : ∇svT +

∑
F∈FT

∫
F
ςnTF · (vF − vT )+/

-
, (3.47)

where we have additionally used that ς |T1nT1F +ς |T2nT2F = 0 for all interfaces F ⊂ ∂T1∩∂T2
and that vF vanishes on Γ (cf. (3.203.20)) to insert vF into the second term.

Summing (3.463.46) and (3.473.47), taking absolute values, and using the Cauchy–Schwarz
inequality to bound the right-hand side, we infer that

|T1 + T2 | ≤
*.
,

∑
T∈Th

(
‖ς − ς̂T ‖

2
T + hT ‖ς − π

k
T ς̂T ‖

2
∂T

)+/
-

1/2

‖vh‖ε,h. (3.48)

It only remains to bound the first factor. Let a mesh element T ∈ Th be fixed. Using the
Lipschitz continuity (3.40a3.40a) with τ = Gk

s,T ûT and η = ∇su and the optimal approximation
properties of Gk

s,T I k
T resulting from (3.183.18) together with (3.13a3.13a) with m = 1 and s = k + 2,

leads to
‖ς − ς̂T ‖T . ‖∇su − Gk

s,T ûT ‖T . hk+1‖u ‖Hk+2(T ;Rd ), (3.49)

which provides an estimate for the first term inside the summation in the right-hand side
of (3.483.48). To estimate the second term, we use the triangle inequality, the discrete trace
inequality of [7676, Lemma 1.46], and the boundedness of πk

T to write

h1/2
T ‖ς − π

k
T ς̂T ‖∂T . ‖π

k
T (ς − ς̂T )‖T + h1/2

T ‖ς − π
k
Tς ‖∂T ≤ ‖ς − ς̂T ‖T + h1/2

T ‖ς − π
k
Tς ‖∂T .

Thefirst term in the right-hand side is bounded by (3.493.49). For the second, using the approxima-
tion properties (3.13b3.13b) of πk

T withm = 0 and s = k+1, we get h1/2
T ‖ς − π

k
Tς ‖∂T . hk+1‖ς ‖Hk+1(T ;Rd×d )

so that, in conclusion,

h1/2
T ‖ς − π

k
T ς̂T ‖∂T . hk+1

(
‖u ‖Hk+2(T ;Rd ) + ‖ς ‖Hk+1(T ;Rd×d )

)
. (3.50)

Plugging the estimates (3.493.49) and (3.503.50) into (3.483.48) finally yields

|T1 + T2 | . hk+1
(
‖u ‖Hk+2(Th ;Rd ) + ‖ς ‖Hk+1(Th ;Rd×d )

)
‖vh‖ε,h. (3.51)
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It only remains to bound T3 = sh(ûh, vh). Using the Cauchy–Schwarz inequality, the defini-
tion (3.223.22) of sh, the approximation property (3.343.34) of ∆k

TF , and the norm equivalence (3.243.24),
we infer

|T3 | .
*.
,

∑
T∈Th

∑
F∈FT

γ

hF
‖∆k

TF ûT ‖
2
F

+/
-

1/2

sh(vh, vh)1/2 . hk+1‖u ‖Hk+2(Th ;Rd ) ‖vh‖ε,h. (3.52)

Using (3.513.51) and (3.523.52), we finally get that, for all vh ∈ U
k
h,D,

Eh(vh) . hk+1
(
‖u ‖Hk+2(Th ;Rd ) + ‖ς ‖Hk+1(Th ;Rd×d )

)
‖vh‖ε,h. (3.53)

Thus, using (3.533.53) to bound the right-hand side of (3.443.44), (3.423.42) follows. �

3.6 Local principle of virtual work and law of action and
reaction

We show in this section that the solution of the discrete problem (3.213.21) satisfies inside each
element a local principle of virtual work with numerical tractions that obey the law of action
and reaction. This property is important from both the mathematical and engineering points
of view, and it can simplify the derivation of a posteriori error estimators based on equilibrated
tractions; see, e.g., [33, 158158]. It is worth emphasizing that local equilibrium properties on the
primal mesh are a distinguishing feature of hybrid (face-based) methods: the derivation of
similar properties for vertex-based methods usually requires to perform reconstructions on a
dual mesh.

Define, for all T ∈ Th, the space

Dk
∂T B ×

F∈FT
Pk

d (F;Rd),

as well as the boundary difference operator δk
∂T : U k

T → Dk
∂T such that, for all vT ∈ U

k
T ,

δk
∂T vT = (δk

FvT )F∈FT B (vF − vT )F∈FT .

The following proposition shows that the stabilization can be reformulated in terms of bound-
ary differences.
Proposition 3.18 (Reformulation of the local stabilization bilinear form). For all mesh
elements T ∈ Th, the local stabilization bilinear form sT defined by (3.223.22) satisfies, for all
uT, vT ∈ U

k
T ,

sT (uT, vT ) = sT ((0, δk
∂TuT ), (0, δk

∂T vT )). (3.54)

Proof. Let a mesh element T ∈ Th be fixed. Using the fact that r k+1
T I k

T vT = vT for all
vT ∈ P

k
d (T )d (this because r k+1

T I k
T is a projector on Pk+1

d (T ;Rd), cf. [7474, Eq. (20)]) together
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with the linearity of r k+1
T , it is inferred that, for all F ∈ FT , the face-based residual defined

by (3.233.23) satisfies

∆k
TFvT = π

k
F (r k+1

T (0, δk
∂T vT ) − δk

FvT ) − πk
T r

k+1
T (0, δk

∂T vT ) = ∆k
TF (0, δk

∂T vT )

for all vT ∈ U
k
T . Plugging this expression into (3.223.22) yields the assertion. �

Define now the boundary residual operator Rk
∂T : U k

T → Dk
∂T such that, for all vT ∈ U

k
T ,

Rk
∂T vT B (Rk

TFvT )F∈FT satisfies

−
∑

F∈FT

∫
F
Rk

TFvT · αF = sT ((0, δk
∂T vT ), (0, α∂T )) ∀α∂T ∈ D

k
∂T . (3.55)

Problem (3.553.55) is well-posed, and computing Rk
TFvT requires to invert the boundary mass

matrix.
Lemma 3.19 (Local principle of virtual work and law of action and reaction). Denote by
uh ∈ U k

h,D a solution of problem (3.213.21) and, for all T ∈ Th and all F ∈ FT , define the
numerical traction

TTF (uT ) B −πk
Tσ (·, Gk

s,TuT )nTF + Rk
TFuT .

Then, for all T ∈ Th we have the following discrete principle of virtual work: For all
vT ∈ P

k
d (T ;Rd),∫

T
σ (·, Gk

s,TuT ) : ∇svT +
∑

F∈FT

∫
F
TTF (uT ) · vT =

∫
T
f · vT, (3.56)

and, for any interface F ∈ FT1 ∩ FT2 , the numerical tractions satisfy the law of action and
reaction:

TT1F (uT1 ) +TT2F (uT2 ) = 0. (3.57)

Proof. For all T ∈ Th, use the definition (3.173.17) of Gk
s,T vT with τ = πk

Tσ (·Gk
s,TuT ) in Ah and

the rewriting (3.543.54) of sT together with the definition (3.553.55) of Rk
TF to infer that it holds, for

all vh ∈ U
k
h,∫
Ω

f · vh = Ah(uh, vh) + sh(uh, vh)

=
∑
T∈Th

∫
T
σ (·, Gk

s,TuT ) : ∇svT

+
∑
T∈Th

∑
F∈FT

∫
F

(πk
Tσ (·, Gk

s,TuT )nTF − Rk
TFuT ) · (vF − vT ),

where to cancel πk
T inside the first integral in the second line we have used the fact that

∇svT ∈ P
k−1
d (T ;Rd×d) for all T ∈ Th. Selecting vh such that vT spans Pk

d (T ;Rd) for a selected
mesh element T ∈ Th while vT ′ ≡ 0 for all T ′ ∈ Th \ {T } and vF ≡ 0 for all F ∈ Fh,
we obtain (3.563.56). On the other hand, selecting vh such that vT ≡ 0 for all T ∈ Th, vF
spans Pk

d (F;Rd) for a selected interface F ∈ FT1 ∩ FT2 , and vF ′ ≡ 0 for all F′ ∈ Fh \ {F}
yields (3.573.57). �
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Figure 3.2: Triangular, hexagonal-dominant, Voronoi, and nonmatching quadrangular meshes for the numerical
tests. The triangular and nonmatching quadrangular meshes were originally proposed for the FVCA5 bench-
mark [120120]. The (predominantly) hexagonal was used in [8080]. The Voronoi mesh family was obtained using
the PolyMesher algorithm of [188188].

3.7 Numerical results
In this section we present a comprehensive set of numerical tests to assess the properties of
our method using the models of Examples 3.23.2, 3.33.3, and 3.53.5 (cf. also Remark 3.63.6). Note
that an important step in the implementation of HHO methods consists in selecting a basis
for each of the polynomial spaces that appear in the construction. In the numerical tests of
the present section, for all T ∈ Th, we take as a basis for Pk

d (T ;Rd) the Cartesian product of
the monomials in the translated and scaled coordinates

(
h−1T (xi − xT,i)

)
1≤i≤d

, where xT is
the barycenter of T . Similarly, for all F ∈ Fh we define a basis for Pk

d (F;Rd) by taking the
monomials with respect to a local frame scaled using the face diameter hF and the middle
point of F. Further details on implementation aspects are given in [7474, Section 6.1].

3.7.1 Convergence for the Hencky–Mises model
In order to check the error estimates stated in Theorem 3.163.16, we first solve amanufactured two-
dimensional hyperelasticity problem. We consider the Hencky–Mises model with Φ(ρ) =
µ(e−ρ + 2ρ) and α = λ + µ in (3.83.8), so that the conditions (3.93.9) are satisfied. This choice
leads to the following stress-strain relation:

σ (∇su ) = ((λ − µ) + µe− dev(∇su )) tr(∇su )I d + µ(2 − e− dev(∇su ))∇su .

We consider the unit square domain Ω = (0, 1)2 and take µ = 2, λ = 1, and an exact
displacement u given by

u (x) =
(
sin(πx1) sin(πx2), sin(πx1) sin(πx2)

)
.

The volumetric load f = −∇·σ (∇su ) is inferred from the exact solution u . In this case,
since the selected exact displacement vanishes on Γ, we simply consider homogeneous
Dirichlet conditions. We consider the triangular, hexagonal, Voronoi, and nonmatching
quadrangular mesh families depicted in Figure 3.23.2 and polynomial degrees k ranging from 1
to 4. The nonmatchingmesh is simplymeant to show that themethod supports nonconforming
interfaces: refining in the corner has no particular meaning for the selected solution. The
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Figure 3.3: Tensile test description and resulting stress components for the linear case. Values in 105Pa
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Figure 3.4: Shear test description and resulting stress components for the linear case. Values in 105Pa

initialization of our iterative linearization procedure (Newton scheme) is obtained solving the
linear elasticity model. This initial guess leads to a 40% reduction of the number of iterations
with respect to a null initial guess. The energy-norm orders of convergence (OCV) displayed
in the third column of Tables 3.13.1–3.43.4 at the end of the chapter are in agreement with the
theoretical predictions. In particular, it is observed that the optimal convergence in hk+1 is
reached for the triangular, nonmatching Cartesian, and hexagonal meshes for 1 ≤ k ≤ 3,
whereas for k = 4 the asymptotic convergence order does not appear to have been reached
in the last mesh refinement. It can also be observed in Table 3.23.2 that the convergence rate
exceeds the estimated one on the locally refined Cartesian mesh for k = 1 and k = 2. For the
sake of completeness, we also display in the fourth column of Tables 3.13.1–3.43.4 the L2-norm
of the error defined as the difference between the L2-projection πk

hu of the exact solution
on Pk

d (Th;Rd) and the broken polynomial function uh obtained from element-based DOFs,
while in the fifth column we display the corresponding observed convergence rates. In this
case, orders of convergence up to hk+2 are observed.

3.7.2 Tensile and shear test cases
We next consider the two test cases schematically depicted in Figures 3.33.3 and 3.43.4. On
the unit square domain Ω, we solve problem (3.1a3.1a) considering three different models of
hyperelasticity (see Remark 3.63.6):
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(i) Linear. The linear model corresponding to the stored energy density function (3.73.7) with
Lamé’s parameters

λ = 11 × 105Pa, µ = 82 × 104Pa. (3.58)

(ii) Hencky–Mises. TheHencky–Misesmodel (3.43.4) obtained by takingΦ(ρ) = µ( ρ2 + (1 + ρ)1/2)
and α = λ + µ in (3.83.8), with λ, µ as in (3.583.58) (also in this case the conditions (3.93.9)
hold). This choice leads to

σ (∇su ) = ((λ +
µ

2
) −

µ

2
(1 + dev(∇su ))−1/2)) tr(∇su )I d

+ µ(1 + (1 + dev(∇su ))−1/2)∇su .
(3.59)

The Lamé’s functions of the previous relation are inspired from those proposed in [2121,
Section 5.1]. In particular, the function µ̃(ρ) = µ(1 + (1 + dev(∇su ))−1/2) corresponds
to the Carreau law for viscoplastic materials.

(iii) Second-order. The second-order model (3.63.6) with Lamé’s parameter as in (3.583.58) and
second-order moduli

A = 11 × 106Pa, B = −48 × 105Pa, C = 13.2 × 105Pa.

These values correspond to the estimates provided in [124124] for the Armco Iron. We
recall that the second-order elasticity stress-strain relation does not satisfy in general
the assumptions under which we are able to prove the convergence and error estimates.
In particular, we observe that the stored energy density function defined in (3.103.10) is not
convex.

The bottom part of the boundary of the domain is assumed to be fixed, the normal stress is
equal to zero on the two lateral parts, and a traction is imposed at the top of the boundary.
So, mixed boundary conditions are imposed as follows

u = 0 on {x ∈ Γ, x2 = 0},
σn = T on {x ∈ Γ, x2 = 1},
σn = 0 on {x ∈ Γ, x1 = 0},
σn = 0 on {x ∈ Γ, x1 = 1}.

For the tensile case, we impose a vertical traction at the top of the boundary equal to
T = (0, 3.2 × 105Pa). This type of boundary conditions produces large normal stresses (i.e.,
the diagonal components of σ) and minor shear stresses (i.e., the off-diagonal components of
σ). It can be observed in Figure 3.33.3, where the components of the stress tensor are depicted
for the linear case. In Figure 3.53.5 we plot the stress norm on the deformed domain obtained
for the three hyperelasticity models. The results of Fig. 3.33.3, 3.43.4, 3.53.5, and 3.63.6 are obtained on
a mesh with 3584 triangles (corresponding to a typical mesh-size of 3.84 × 10−3) and with
polynomial degree k = 2. Obviously, the symmetry of the results is visible, and we observe
that the three displacement fields are very close. This is motivated by the fact that, with our
choice of the parameters in (3.583.58) and in (3.593.59), the linear model exactly corresponds to the
linear approximation at the origin of the nonlinear ones. The maximum value of the stress



3.7. Numerical results 73

(a) Linear (b) Hencky–Mises (c) Second order

Figure 3.5: Tensile test case: Stress norm on the deformed domain. Values in 105Pa

(a) Linear (b) Hencky–Mises (c) Second order

Figure 3.6: Shear test case: Stress norm on the deformed domain. Values in 104Pa

concentrates on the two bottom corners due to the homogeneous Dirichlet condition that
totally locks the displacement when x1 = 0. The repartition of the stress on the domain with
the second-order model is visibly different from those obtained with the linear and Hencky–
Mises models. At the energy level, we also have a higher difference between the second-order
model and the linear one since |Elin − Ehm |/Elin = 0.44% while |Elin − Esnd |/Elin = 4.45%,
where E• is the total elastic energy obtained by integrating over the domain the strain energy
density functions defined by (3.73.7), (3.83.8), and (3.103.10):

E• B

∫
Ω

Ψ•, with • ∈ {lin, hm, snd}.

The reference values for the total energy, used in Figure 3.73.7 in order to assess convergence,
are obtained on a fine Cartesian mesh having a mesh-size of 1.95 × 10−3 and k = 3. For the
shear case, we consider an horizontal traction equal toT = (4.5×104Pa, 0) which induces the
stress pattern illustrated in Figure 3.43.4. The computed stress norm on the deformed domain is
depicted in Figure 3.63.6, and we can see that the displacement fields associated with the three
models are very close as for the tensile test case. Here, the maximum values of the stress are
localized in the lower part of the domain near the lateral parts. Unlike the tensile test, the
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difference between the three models is tiny as confirmed by the elastic energy equal to 3180 J,
3184 J, and 3190 J respectively. The decreasing of the energy difference in comparison with
the previous test can be explained by the fact that the value of the Neumann boundary data
on the top is divided by a factor 7 in order to obtain maximum displacements roughly equal
to 15%.

3.8 Appendix: Technical results
This appendix contains the proof of technical results.

3.8.1 Discrete Korn inequality
Proposition 3.20 (Discrete Korn inequality). Assume that the mesh further verifies the as-
sumption of [3939, Theorem 4.2] if d = 2 and [3939, Theorem 5.2] if d = 3. Then, the discrete
Korn inequality (3.253.25) holds.

Proof. Using the broken Korn inequality [3939, Eq. (1.22)] on H1(Th;Rd) followed by the
Cauchy–Schwarz inequality, one has

‖vh‖
2 + ‖∇hvh‖

2 . ‖∇s,hvh‖
2 +

∑
F∈F i

h

h−1F ‖[vh]F ‖
2
F

+ sup
m∈P1

d
(Th ;Rd ), ‖γn (m)‖Γ=1

(∫
Γ

γ(vh) · γn (m)
)2

. ‖∇s,hvh‖
2 +

∑
F∈F i

h

h−1F ‖[vh]F ‖
2
F +

∑
F∈F b

h

‖vh |F ‖
2
F .

(3.60)

For an interface F ∈ FT1∩FT2 , we have introduced the jump [vh]F B vT1−vT2 . Thus, using the
triangle inequality, we get ‖[vh]F ‖F ≤ ‖vF−vT1 ‖F+‖vF−vT2 ‖F . For a boundary face F ∈ F b

h
such that F ∈ FT ∩ F

b
h for some T ∈ Th we have, on the other hand, ‖vh |F ‖F = ‖vF − vT ‖F

since vF ≡ 0 (cf. (3.203.20)). Using these relations in the right-hand side of (3.603.60) and rearranging
the sums leads to

‖vh‖
2 + ‖∇hvh‖

2

.
∑
T∈Th

*.
,
‖∇svT ‖

2
T +

∑
F∈FT∩F i

h

h−1F ‖vF − vT ‖
2
F

+/
-
+ h

∑
F∈F b

h

h−1F ‖vF − vh |F ‖
2
F

. max{1, dΩ}
∑
T∈Th

*.
,
‖∇svT ‖

2
T +

∑
F∈FT

h−1F ‖vF − vT ‖
2
F

+/
-
,

where dΩ denotes the diameter of Ω. Owing to the definition (3.143.14) of the discrete strain
seminorm, the latter yields the assertion. �
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(b) Linear, shear test
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(c) Hencky–Mises, tensile test
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Figure 3.7: Energy vs h, tensile and shear test cases
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3.8.2 Discrete compactness

Proof of Lemma 3.123.12. In the proof we use the same notation for functions in L2(Ω;Rd) ⊂
L1(Ω;Rd) and for their extension by zero outside Ω. Let (vh)h∈H ∈ (U k

h,D)h∈H be
such that (3.263.26) holds. Define the space of integrable functions with bounded variation
BV(Rd) B {v ∈ L1(Rd;Rd) | ‖v ‖BV < +∞}, where

‖v ‖BV B
d∑

i=1
sup

{∫
Rd

v · ∂iφ | φ ∈ C∞c (Rd;Rd), ‖φ‖L∞(Rd ;Rd ) ≤ 1
}
.

Here, ∂iφ denotes the i-th column of ∇φ. Let φ ∈ C∞c (Rd;Rd) with ‖φ‖L∞(Rd ;Rd ) ≤ 1.
Integrating by parts and using the fact that

∑
T∈Th

∑
F∈FT

∫
F (vF · φ)nTF = 0, we have that∫

Rd
vh · ∂iφ =

∑
T∈Th

∫
T

((∇φ)
T
vT )i

= −
∑
T∈Th

*.
,

∫
T

((∇vT )
T
φ)i +

∑
F∈FT

∫
F

(vF · φ − vT · φ)(nTF )i
+/
-

≤
∑
T∈Th

*.
,

∫
T

d∑
j=1
|(∇vT ) ji | +

∑
F∈FT

∫
F

d∑
j=1
|(vF − vT ) j (nTF )i |

+/
-
,

where, in order to pass to the third line, we have used ‖φ‖L∞(Rd ;Rd ) ≤ 1. Therefore, summing
over i ∈ {1, ..., d}, observing that, for all T ∈ Th and all F ∈ FT , we have

∑d
i=1 |(nTF )i | ≤ d1/2,

and using the Lebesgue embeddings arising from the Hölder inequality on bounded domain,
leads to

‖vh‖BV .
∑
T∈Th

*.
,
|T |1/2d ‖∇vT ‖T +

∑
F∈FT

|F |1/2d−1‖vF − vT ‖F
+/
-
,

where |·|d denotes the d-dimensional Hausdorff measure. Moreover, using the Cauchy–
Schwarz inequality together with the geometric bound |F |d−1hF . |T |d , we obtain that

‖vh‖BV . |Ω|
1/2
d

*.
,

∑
T∈Th


‖∇vT ‖

2
T +

∑
F∈FT

h−1F ‖vF − vT ‖
2
F



+/
-

1/2

.

Thus, using the discrete Korn inequality (3.253.25), it is readily inferred that

‖vh‖BV . ‖vh‖ε,h . 1.

Owing to the Helly selection principle [9999, Section 5.2.3], the sequence (vh)h∈H is relatively
compact in L1(Rd;Rd) and thus in L1(Ω;Rd). It only remains to prove that the sequence is
also relatively compact in Lq(Ω;Rd), with 1 < q < +∞ if d = 2 or 1 < q < 6 if d = 3.
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Owing to the discrete Sobolev embeddings [7171, Proposition 5.4] together with the discrete
Korn inequality (3.253.25), it holds, with r = q + 1 if d = 2 and r = 6 if d = 3, that

‖vh‖Lr (Ω;Rd ) .
*.
,

∑
T∈Th


‖∇vT ‖

2
T +

∑
F∈FT

h−1F ‖vF − vT ‖
2
F



+/
-

1/2

. 1,

Thus, we can complete the proof by means of the interpolation inequality [4040, Remark 2
p. 93]. For all h, h′ ∈ H we have with θ B r−q

q(r−1) ∈ (0, 1),

‖vh − vh′‖Lq (Ω;Rd ) ≤ ‖vh − vh′‖
θ
L1(Ω;Rd ) ‖vh − vh′‖

1−θ
Lr (Ω;Rd ) . ‖vh − vh′‖

θ
L1(Ω;Rd ) .

Therefore, up to a subsequence, (vh)h∈H is a Cauchy sequence in Lq(Ω;Rd), so it converges.
�

3.8.3 Consistency of the discrete symmetric gradient operator

Proof of Proposition 3.133.13. 1) Strong consistency. We first assume that v ∈ H2(Ω;Rd).
Owing to the commuting property (3.183.18) and the approximation property (3.13a3.13a) with m = 1
and s = 2, it is inferred that ‖Gk

s,T I k
T v − ∇sv ‖T . h‖v ‖H2(T ;Rd ). Squaring, summing over

T ∈ Th, and taking the square root of the resulting inequality gives

‖Gk
s,hI k

hv − ∇sv ‖ . h‖v ‖H2(Ω;Rd ) . (3.61)

If v ∈ H1(Ω;Rd) we reason by density, namely we take a sequence (v ε )ε>0 ⊂ H2(Ω;Rd)
that converges to v in H1(Ω;Rd) as ε → 0 and, using twice the triangular inequality, we
write

‖Gk
s,hI k

hv − ∇sv ‖ ≤ ‖G
k
s,hI k

h(v − v ε )‖ + ‖Gk
s,hI k

hv ε − ∇sv ε ‖ + ‖∇s(v − v ε )‖.

By (3.613.61), the second term in the right-hand side tends to 0 as h → 0. Moreover, owing to
the commuting property (3.183.18) and the H1-boundedness of πk

T , one has

‖Gk
s,hI k

h(v − v ε )‖ =
*.
,

∑
T∈Th

‖πk
T∇s(v − v ε )‖2T

+/
-

1/2

≤
*.
,

∑
T∈Th

‖∇s(v − v ε )‖2T
+/
-

1/2

≤ ‖∇s(v − v ε )‖.

Therefore, taking the supremum limit as h → 0 and then the supremum limit as ε → 0,
concludes the proof of (3.273.27) (notice that the order in which the limits are taken is important).

2) Sequential consistency. In order to prove (3.283.28) we observe that, by the defini-
tions (3.193.19) of Gk

s,h and (3.17b3.17b) of Gk
s,T one has, for all τ ∈ H1(Ω;Rd×d

sym ) and all vh ∈ U k
h,
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∫
Ω

Gk
s,hvh : τ =

∑
T∈Th

∫
T
Gk

s,T vT : τ

=
∑
T∈Th

∫
T

(Gk
s,T vT − ∇svT ) : (τ − π0Tτ) +

∑
T∈Th

∫
T

(Gk
s,T vT − ∇svT ) : π0Tτ

+
∑
T∈Th

∫
T
∇svT : τ

= T1 +
∑
T∈Th

∑
F∈FT

∫
F

(vF − vT ) · (π0Tτ)nTF +
∑
T∈Th

∫
T
∇svT : τ

= T1 +
∑
T∈Th

∑
F∈FT

∫
F

(vF − vT ) · (π0Tτ − τ)nTF −
∑
T∈Th

∫
T
vT · (∇·τ)

+
∑

F∈F b
h

∫
F
vF · (τnTF )

= T1 + T2 −

∫
Ω

vh · (∇·τ) +
∫
Γ

vΓ,h · γn (τ).

(3.62)

To obtain the third equality, we used an element-wise integration by parts together with the
relation ∑

T∈Th

∑
F∈FT∩F i

h

∫
F
vF · (τnTF ) =

∑
F∈F i

h

∫
F
vF · (τnT1F + τnT2F ) = 0,

where for all F ∈ F i
h ,T1,T2 ∈ Th are such that F ⊂ ∂T1∩∂T2. Owing to (3.623.62), the conclusion

follows once we prove that |T1 + T2 | . h‖vh‖ε,h‖τ‖H1(Ω;Rd×d ). By (3.13a3.13a) (with m = 0 and
s = 1) we have ‖τ − π0Tτ‖T . hT ‖τ‖H1(T ;Rd×d ) and thus, using the Cauchy–Schwarz and
triangle inequalities followed by the norm equivalence (3.243.24),

|T1 | ≤
*.
,

∑
T∈Th

‖Gk
s,T vT − ∇svT ‖

2
T

+/
-

1/2

*.
,

∑
T∈Th

‖τ − π0Tτ‖
2
T

+/
-

1/2

. h
(
‖Gk

s,hvh‖
2 + ‖vh‖

2
ε,h

)1/2
‖τ‖H1(Ω;Rd×d ) . h‖vh‖ε,h‖τ‖H1(Ω;Rd×d ) .

(3.63)

In a similar way, we obtain an upper bound for T2. By (3.13b3.13b) (with m = 0 and s = 1), for
all F ∈ FT , we have ‖τ − π0Tτ‖F . h1/2

T ‖τ‖H1(T ;Rd×d ) . h1/2
F ‖τ‖H1(T ;Rd×d ) and thus, using the

Cauchy–Schwarz inequality,

|T2 | .
∑
T∈Th

∑
F∈FT

h1/2
F ‖vF − vT ‖F ‖τ‖H1(T ;Rd×d ) . h‖vh‖ε,h‖τ‖H1(Ω;Rd×d ) . (3.64)

Owing to (3.633.63) and (3.643.64), the triangle inequality |T1 + T2 | ≤ |T1 | + |T2 | yields the
conclusion.

�
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Table 3.1: Convergence results on the triangular mesh family. OCV stands for order of convergence.

h ‖∇su − Gk
s,huh ‖ OCV ‖πk

h
u − uh ‖ OCV

k = 1

3.07 · 10−2 5.59 · 10−2 — 7.32 · 10−3 —
1.54 · 10−2 1.51 · 10−2 1.9 1.05 · 10−3 2.81
7.68 · 10−3 3.86 · 10−3 1.96 1.34 · 10−4 2.96
3.84 · 10−3 1.01 · 10−3 1.93 1.7 · 10−5 2.98
1.92 · 10−3 2.59 · 10−4 1.96 2.15 · 10−6 2.98

k = 2

3.07 · 10−2 1.3 · 10−2 — 1.47 · 10−3 —
1.54 · 10−2 1.29 · 10−3 3.35 6.05 · 10−5 4.62
7.68 · 10−3 2.11 · 10−4 2.6 5.36 · 10−6 3.48
3.84 · 10−3 2.73 · 10−5 2.95 3.6 · 10−7 3.9
1.92 · 10−3 3.42 · 10−6 3 2.28 · 10−8 3.98

k = 3

3.07 · 10−2 2.81 · 10−3 — 2.39 · 10−4 —
1.54 · 10−2 3.72 · 10−4 2.93 1.95 · 10−5 3.63
7.68 · 10−3 2.16 · 10−5 4.09 5.47 · 10−7 5.14
3.84 · 10−3 1.43 · 10−6 3.92 1.66 · 10−8 5.04
1.92 · 10−3 9.51 · 10−8 3.91 5.34 · 10−10 4.96

k = 4

3.07 · 10−2 1.37 · 10−3 — 1.13 · 10−4 —
1.54 · 10−2 5.97 · 10−5 4.54 3.04 · 10−6 5.24
7.68 · 10−3 1.76 · 10−6 5.07 4.09 · 10−8 6.19
3.84 · 10−3 6.46 · 10−8 4.77 7.64 · 10−10 5.74
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Table 3.2: Convergence results on the locally refined mesh family. OCV stands for order of convergence.

h ‖∇su − Gk
s,huh ‖ OCV ‖πk

h
u − uh ‖ OCV

k = 1

0.25 0.13 — 1.9 · 10−2 —
0.13 2.64 · 10−2 2.28 2.54 · 10−3 2.9

6.25 · 10−2 4.97 · 10−3 2.41 3.22 · 10−4 2.98
3.12 · 10−2 9.14 · 10−4 2.44 4.12 · 10−5 2.96
1.56 · 10−2 1.67 · 10−4 2.45 5.21 · 10−6 2.98

k = 2

0.25 1.88 · 10−2 — 3.79 · 10−3 —
0.13 5.05 · 10−3 1.9 3.55 · 10−4 3.42

6.25 · 10−2 6.51 · 10−4 2.96 2.92 · 10−5 3.6
3.12 · 10−2 6.83 · 10−5 3.25 1.89 · 10−6 3.94
1.56 · 10−2 6.23 · 10−6 3.45 1.19 · 10−7 3.99

k = 3

0.25 7.84 · 10−3 — 1.41 · 10−3 —
0.13 1.09 · 10−3 2.85 7.5 · 10−5 4.23

6.25 · 10−2 8.22 · 10−5 3.73 3.93 · 10−6 4.25
3.12 · 10−2 5.64 · 10−6 3.86 1.45 · 10−7 4.75
1.56 · 10−2 3.44 · 10−7 4.04 5.23 · 10−9 4.79

k = 4

0.25 4.35 · 10−3 — 4.68 · 10−4 —
0.13 3.65 · 10−4 3.58 3.19 · 10−5 3.87

6.25 · 10−2 1.5 · 10−5 4.6 6.02 · 10−7 5.73
3.12 · 10−2 5.78 · 10−7 4.69 1.03 · 10−8 5.86
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Table 3.3: Convergence results on the hexagonal mesh family. OCV stands for order of convergence.

h ‖∇su − Gk
s,huh ‖ OCV ‖πk

h
u − uh ‖ OCV

k = 1

6.3 · 10−2 0.22 — 2.75 · 10−2 —
3.42 · 10−2 3.72 · 10−2 2.89 3.73 · 10−3 3.27
1.72 · 10−2 7.17 · 10−3 2.4 4.83 · 10−4 2.97
8.59 · 10−3 1.44 · 10−3 2.31 6.14 · 10−5 2.97
4.3 · 10−3 2.4 · 10−4 2.59 7.7 · 10−6 3

k = 2

6.3 · 10−2 2.68 · 10−2 — 3.04 · 10−3 —
3.42 · 10−2 7.01 · 10−3 2.2 3.56 · 10−4 3.51
1.72 · 10−2 1.09 · 10−3 2.71 3.31 · 10−5 3.46
8.59 · 10−3 1.41 · 10−4 2.95 2.53 · 10−6 3.7
4.3 · 10−3 1.96 · 10−5 2.85 1.72 · 10−7 3.89

k = 3

6.3 · 10−2 1.11 · 10−2 — 1.08 · 10−3 —
3.42 · 10−2 1.92 · 10−3 2.87 9.29 · 10−5 4.02
1.72 · 10−2 2.79 · 10−4 2.81 6.13 · 10−6 3.95
8.59 · 10−3 2.54 · 10−5 3.45 2.88 · 10−7 4.4
4.3 · 10−3 1.61 · 10−6 3.99 1.24 · 10−8 4.55

k = 4

6.3 · 10−2 5.53 · 10−3 — 4.49 · 10−4 —
3.42 · 10−2 5.76 · 10−4 3.7 3.07 · 10−5 4.39
1.72 · 10−2 6.29 · 10−5 3.22 1.21 · 10−6 4.7
8.59 · 10−3 2.21 · 10−6 4.82 2.69 · 10−8 5.48
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Table 3.4: Convergence results on the Voronoi mesh family. OCV stands for order of convergence.

h ‖∇su − Gk
s,huh ‖ OCV ‖πk

h
u − uh ‖ OCV

k = 1

6.5 · 10−2 8.82 · 10−2 — 1.55 · 10−2 —
3.15 · 10−2 1.49 · 10−2 2.45 2.29 · 10−3 2.64
1.61 · 10−2 3.63 · 10−3 2.1 3.01 · 10−4 3.02
9.09 · 10−3 8.68 · 10−4 2.5 3.95 · 10−5 3.55
4.26 · 10−3 2.04 · 10−4 1.91 4.97 · 10−6 2.74

k = 2

6.5 · 10−2 1.43 · 10−2 — 2.63 · 10−3 —
3.15 · 10−2 4.03 · 10−3 1.75 2.53 · 10−4 3.23
1.61 · 10−2 4.78 · 10−4 3.18 2.22 · 10−5 3.63
9.09 · 10−3 6.7 · 10−5 3.44 1.45 · 10−6 4.77
4.26 · 10−3 9.08 · 10−6 2.64 9.07 · 10−8 3.66

k = 3

6.5 · 10−2 7.12 · 10−3 — 9.08 · 10−4 —
3.15 · 10−2 8.34 · 10−4 2.96 6.78 · 10−5 3.58
1.61 · 10−2 7.03 · 10−5 3.69 3.18 · 10−6 4.56
9.09 · 10−3 4.17 · 10−6 4.94 9.67 · 10−8 6.11
4.26 · 10−3 2.42 · 10−7 3.76 3.15 · 10−9 4.52

k = 4

6.5 · 10−2 3.25 · 10−3 — 3.68 · 10−4 —
3.15 · 10−2 2.94 · 10−4 3.32 2.14 · 10−5 3.93
1.61 · 10−2 9.86 · 10−6 5.06 4.34 · 10−7 5.81
9.09 · 10−3 3.47 · 10−7 5.85 6.74 · 10−9 7.29
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4.1 Introduction
In this chapter, we formulate and analyze a coupled Hybrid High-Order–discontinuous
Galerkin (HHO–dG) discretization method for nonlinear poroelastic problems. We over-
step the work of Chapter 22 devoted to the Biot’s model [2727, 190190] by considering more general
nonlinear stress-strain constitutive laws as in Chapter 33. The model is valid under the assump-
tions of small deformations of the rock matrix, small variations of the porosity, and small
relative variations of the fluid density. The interest of the poroelastic models considered
here is particularly manifest in geosciences applications [123123, 127127, 151151], where fluid flows in
geological subsurface, modeled as a porous media, induce a deformation of the rock matrix.
The challenge is then to design a discretization method able to (i) treat a complex geometry
with polyhedral meshes and nonconforming interfaces, (ii) handle possible heterogeneities of
the poromechanical parameters and nonlinearities of the stress-strain relation, and (iii) deal
with the numerical instabilities encountered in this type of coupled problem. We focus here
on the theoretical aspects while numerical tests assessing the convergence of the method have
been presented in Section A.5A.5; further numerical investigation will be carried out in a future
work.

Let Ω ⊂ Rd , d ∈ {2, 3}, denote a bounded connected polyhedral domain with boundary
∂Ω and outward normal n. Without loss of generality, we assume that the domain is scaled
so that its diameter diam(Ω) is equal to 1. For a given finite time tF > 0, volumetric load
f , fluid source g, the nonlinear poroelasticity problem considered here consists in finding a
vector-valued displacement field u and a scalar-valued pore pressure field p solution of

−∇·σ (·,∇su ) + α∇p = f in Ω × (0, tF), (4.1a)
C0dt p + αdt∇·u − ∇·(κ (·)∇p) = g in Ω × (0, tF), (4.1b)

where∇s denotes the symmetric gradient, dt denotes the time derivative, α is the Biot–Willis
coefficient, C0 ≥ 0 is the constrained specific storage coefficient, and κ : Ω → Rd×d

s is the
uniformly elliptic permeability tensor field which, for real numbers 0 < κ ≤ κ , satisfies for
almost every (a.e.) x ∈ Ω and all ξ ∈ Rd ,

κ |ξ |2 ≤ κ (x)ξ · ξ ≤ κ |ξ |2.

For the sake of simplicity, we assume in the following discussion that κ is piecewise constant
on a polyhedral partition PΩ ofΩ, an assumption typically verified in geoscience applications.
In the poroelasticity theory [6161], the medium is modeled as a continuous superposition of
solid and fluid phases. The momentum equilibrium equation (4.1a4.1a) is based on the Terzaghi
decomposition [190190] of the total stress tensor into a mechanical contribution and a pore
pressure contribution. Examples and assumptions for the constitutive stress-strain relation
σ : Ω × Rd×d

s → Rd×d
s are detailed in Section 4.2.24.2.2; we refer the reader to [2222, 2828] for

a physical and experimental investigation of the nonlinear behavior of porous solids. On
the other hand, the mass conservation equation (4.1b4.1b) is derived for fully saturated porous
media assuming Darcean flow. The first two terms of this equation quantify the variation
of fluid content in the pores. The dimensionless coupling coefficient α express the amount
of fluid that can be forced into the medium by a variation of pore volume for a constant
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fluid pressure, while C0 measures the amount of fluid that can be forced into the medium
by pressure increments due to compressibility of the structure. The case of a solid matrix
with incompressible grains corresponds to the limit value C0 = 0. Following [181181, 205205],
for the sake of simplicity we take α = 1 in what follows. To close the problem, we enforce
homogeneous boundary conditions corresponding to a clamped, impermeable boundary, i.e.,

u = 0 on ∂Ω × (0, tF), (4.1c)
(κ (·)∇p) · n = 0 on ∂Ω × (0, tF), (4.1d)

as well as the following initial condition which prescribes the initial fluid content:

C0p(·, 0) + ∇·u (·, 0) = φ0(·). (4.1e)

In the case C0 = 0, we also need the following compatibility conditions on g and φ0 and
zero-average constraint on p:∫

Ω

φ0 = 0,
∫
Ω

g(·, t) = 0, and
∫
Ω

p(·, t) = 0 ∀t ∈ (0, tF). (4.1f)

When discretizing the poroelasticity system (4.14.1), the main challenges are to ensure
stability and convergence under mild assumptions on the nonlinear stress-strain relation and
on the permeability field, and to prevent localized pressure oscillations arising in the case of
low-permeable and low-compressible porous media. Since the latter issue is in part related
to the saddle point structure in the coupled equations for C0 = 0 and small κ , the discrete
spaces for the displacement and the pressure should satisfy an inf-sup condition. Indeed,
as observed in [117117, 155155, 168168] in the context of finite element discretizations of the linear
poroelasticity problem, the inf-sup condition yields an L2-estimate of the discrete pressure
independent of κ−1, and allows one to prove the convergence of the approximate pressure
towards the continuous pressure also in the incompressible case C0 = 0. We notice, however,
that the problem of spurious pressure oscillations is actually more involved than a simple
saddle-point coupling issue. For instance, it has been recently pointed out in [176176] that, even
for discretization methods leading to an inf-sup stable discretization of the Stokes problem in
the steady case, pressure oscillations can arise owing to a lack of monotonicity of the discrete
operator. The robustness with respect to spurious oscillations has been numerically observed
in Section 2.6.22.6.2 for a HHO–dG discretization of the linear poroelasticity model.

In this chapter, we present and analyze a nonconforming space discretization of prob-
lem (4.14.1) where the nonlinear elasticity operator is discretized using the HHO method of
Chapter 33 (c.f. also [7171, 7474]), while the Darcy operator relies on the Symmetric Weighted
Interior Penalty (SWIP) method of [7777]. The proposed method has several assets: (i) it
is valid in two and three space dimensions; (ii) it delivers an inf-sup stable discretization
on general spatial meshes including, e.g., polyhedral elements and nonmatching interfaces;
(iii) it allows one to increase the space approximation order to accelerate convergence in the
presence of (locally) regular solutions. Compared to the method proposed in Chapter 22 for
the linear poroelasticity problem, there are two main differences in the design. First, for a
given polynomial degree k ≥ 1, the symmetric gradient reconstruction sits in the full space
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of tensor-valued polynomials of total degree ≤ k, as opposed to symmetric gradients of
vector-valued polynomials of total degree ≤ (k + 1). Following [3333, 7272], this modification is
required in the convergence analysis in the presence of nonlinear stress-strain laws. Second,
the right-hand side of the discrete problem of Section 4.4.44.4.4 is obtained by taking the average
in time of the loading force f and fluid source g between two consecutive time steps instead
of their value at the end of the time step. This modification allows us to prove stability
and optimal error estimates without any additional time regularity assumptions on data (cf.
Remark 4.124.12 and 4.184.18). Finally, in Section 4.3.44.3.4 we give a new simple proof of discrete
Korn’s inequality, not requiring particular geometrical assumption on the mesh. The interest
of these results goes beyond the specific application considered here.

The material is organized as follows. In Section 4.24.2 we present the assumptions on the
stress-strain law and the variational formulation of the nonlinear poroelasticity problem. In
Section 4.34.3 we define the space and time meshes and the discrete spaces for the displacement
and the pressure fields. In Section 4.44.4 we define the discrete counterparts of the elasticity,
Darcy, and hydromechanical coupling operators and formulate the discrete problem. In
Section 4.54.5 we prove the well-posedness of the scheme by deriving an a priori estimate
on the discrete solution that holds also when the specific storage coefficient vanishes. The
convergence analysis of the method is carried out in Section 4.64.6.

4.2 Continuous setting
In this section we introduce the notation for function spaces, formulate the assumptions on
the stress-strain law, and derive a weak formulation of problem (4.14.1).

4.2.1 Notation for function spaces

Let X ⊂ Ω. Spaces of functions, vector fields, and tensor fields defined over X are respectively
denoted by italic capital, boldface Roman capital, and special Roman capital letters. The
subscript “s” appended to a special Roman capital letter denotes a space of symmetric tensor
fields. Thus, for example, L2(X ),L2(X ), and L2s (X ) denote the spaces of square integrable
functions, vector fields, and symmetric tensor fields over X , respectively. For any measured
set X and anym ∈ Z, we denote by Hm(X ) the usual Sobolev space of functions that haveweak
partial derivatives of order up to m in L2(X ), with the convention that H0(X ) B L2(X ),
while Cm(X ) and C∞c (X ) denote, respectively, the usual spaces of m-times continuously
differentiable functions and infinitely continuously differentiable functions with compact
support on X . We denote by (·, ·)X and (·, ·)m,X the usual scalar products in L2(X ) and
Hm(X ) respectively, and by ‖·‖X and ‖·‖m,X the induced norms.

For a vector space V with scalar product (·, ·)V , the space Cm(V ) B Cm([0, tF];V )
is spanned by V -valued functions that are m-times continuously differentiable in the time
interval [0, tF]. The space Cm(V ) is a Banach space when equipped with the norm

‖ϕ‖Cm (V ) B max
0≤i≤m

max
t∈[0,tF]

‖di
tϕ(t)‖V .
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Similarly, the Hilbert space Hm(V ) B Hm((0, tF);V ) is spanned by V -valued functions of
the time interval, and the norm ‖·‖Hm (V ) is induced by the scalar product

(ϕ, ψ)Hm (V ) =

m∑
j=0

∫ tF

0
(d j

t ϕ(t), d j
t ψ(t))Vdt ∀ϕ, ψ ∈ Hm(V ).

4.2.2 Stress-strain law
The following assumptions on the stress-strain relation are required to obtain a well-posed
weak formulation of the nonlinear poroelasticity problem.
Assumption 4.1 (Stress-strain relation). We assume that the stress function σ : Ω×Rd×d

s →

Rd×d
s is a Carathéodory function, i.e., σ (x, ·) is continuous on Rd×d

s for almost every x ∈ Ω
and σ (·, τ) is measurable on Ω for all τ ∈ Rd×d

s . Moreover, there exist real numbers
Cgr,Ccv ∈ (0,+∞) such that, for a.e. x ∈ Ω and all τ, η ∈ Rd×d

s , the following conditions
hold:

|σ (x, τ) |d×d ≤ Cgr |τ |d×d, (growth) (4.2a)
σ (x, τ) : τ ≥ C2

cv |τ |
2
d×d, (coercivity) (4.2b)(

σ (x, τ) − σ (x, η)
)
:
(
τ − η

)
> 0 if η , τ. (monotonicity) (4.2c)

Above, we have introduced the Frobenius product such that, for all τ, η ∈ Rd×d , τ : η B∑
1≤i, j≤d τi jηi j with correspondingmatrix norm such that, for all τ ∈ Rd×d , |τ |d×d B (τ : τ)

1
2 .

Three meaningful examples for the stress-strain relation σ : Ω × Rd×d
s → Rd×d

s in (4.1a4.1a)
are:

• The (possibly heterogeneous) linear elasticity model given by the usual Hooke’s law

σ (·, τ) = λ(·) tr(τ)I d + 2µ(·)τ, (4.3)

where µ : Ω → [µ∗, µ∗], with 0 < µ∗ ≤ µ∗ < +∞, and λ : Ω → R+ are the Lamé
parameters.

• The nonlinear Hencky–Mises model of [105105, 157157] corresponding to the mechanical
behavior law

σ (·, τ) = λ̃(·, dev(τ)) tr(τ)I d + 2µ̃(·, dev(τ))τ, (4.4)
with nonlinear Lamé scalar functions µ̃ : Ω × R+ → [µ∗, µ∗] and λ̃ : Ω × R+ → R+
depending on the deviatoric part of the strain dev(τ) B tr(τ2) − 1

d tr(τ)2.

• The isotropic reversible hyperelastic damage model [5050], for which the stress-strain
relation reads

σ (·, τ) = (1 − D(·, τ))C(·)τ. (4.5)
where D : Ω × Rd×d

s → [0, 1] is the scalar damage function and C : Ω → Rd4 is a
fourth-order symmetric and uniformly elliptic tensor field, namely, for some strictly
positive constants C and C, it holds

C |τ |2d×d ≤ C(x)τ : τ ≤ C |τ |2d×d ∀τ ∈ Rd×d, ∀x ∈ Ω.
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Being linear, the Cauchy stress tensor in (4.34.3) clearly satisfies the previous assumptions.
Moreover, under some mild requirements (cf. Appendix BB and [8787]) on the nonlinear
Lamé scalar functions µ̃ and λ̃ in (4.44.4) and on the damage function D in (4.54.5), it can be
proven that also the Hencky–Mises model and the isotropic reversible damage model satisfy
Assumption 4.14.1.

4.2.3 Weak formulation
At each time t ∈ [0, tF], the natural functional spaces for the displacement u (t) and pore
pressure p(t) taking into account the boundary condition (4.1c4.1c) and the zero average constraint
(4.1f4.1f) are, respectively,

U B H1
0(Ω) and P B




H1(Ω) if C0 > 0,
H1(Ω) ∩ L2

0(Ω) if C0 = 0,

with H1
0(Ω) B

{
v ∈ H1(Ω) : v |∂Ω = 0

}
and L2

0(Ω) B
{
q ∈ L2(Ω) :

∫
Ω

q = 0
}
. We con-

sider the following weak formulation of problem (4.14.1): For a loading term f ∈ L2(L2(Ω)),
a fluid source g ∈ L2(L2(Ω)), and an initial datum φ0 ∈ L2(Ω) that verify (4.1f4.1f), find
u ∈ L2(U ) and p ∈ L2(P) such that, for all v ∈ U , all q ∈ P, and all ϕ ∈ C∞c ((0, tF))∫ tF

0
a(u (t), v ) ϕ(t)dt +

∫ tF

0
b(v, p(t)) ϕ(t)dt =

∫ tF

0
( f (t), v )Ω ϕ(t)dt,

(4.6a)∫ tF

0

[
b(u (t), q) − C0(p(t), q)Ω

]
dtϕ(t)dt +

∫ tF

0
c(p(t), q) ϕ(t)dt =

∫ tF

0
(g(t), q)Ω ϕ(t)dt,

(4.6b)
(C0p(0) + ∇·u (0), q)Ω = (φ0, q)Ω, (4.6c)

where we have defined the nonlinear function a : U × U → R and the bilinear forms
b : U × P → R and c : P × P → R such that, for all v, w ∈ U and all q, r ∈ P,

a(v, w ) B (σ (·,∇sv ),∇sw )Ω, b(v, q) B −(∇·v, q)Ω, c(q, r) B (κ (·)∇r,∇q)Ω.

The first term in (4.6a4.6a) is well defined thanks to the growth assumption (4.2a4.2a). Moreover,
owing to (4.2b4.2b) together with Korn’s first inequality and Poincaré’s inequality, a(·, ·) and
c(·, ·) are coercive on U and P, respectively. The strict monotonicity assumption (4.2c4.2c)
guarantees the uniqueness of the weak solution.
Remark 4.2 (Regularity of the fluid content and of the pore pressure). Using an integration
by parts in time in (4.6b4.6b), it is inferred that

dt
[
C0(p, q)Ω − b(u, q)

]
+ c(p, q) = (g, q)Ω ∀q ∈ P in L2((0, tF)). (4.7)

Therefore, defining the fluid content φ B C0p + ∇·u , we have that t 7→ (φ(t), q)Ω ∈
H1((0, tF)) ⊂ C0([0, tF]) for all q ∈ P, and, as a result, (4.6c4.6c) makes sense. Moreover, in the
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case C0 > 0, taking q = 1 in (4.74.7) and owing to the definition of the bilinear form c and the
homogeneous Dirichlet condition (4.1c4.1c), we infer that

dt

(
C0

∫
Ω

p(·, t)
)
=

∫
Ω

g(·, t) in L2((0, tF)).

Thus, t 7→
∫
Ω

p(·, t) ∈ H1((0, tF)), namely the average of the pore pressure on the medium Ω

is a continuous function in [0, tF].

4.3 Discrete setting
In this section we define the space and time meshes, recall the definition and properties of
L2-orthogonal projectors on local and broken polynomial spaces, and introduce the discrete
spaces for the displacement and the pressure.

4.3.1 Space mesh
We consider here polygonal or polyhedral meshes corresponding to couplesMh B (Th, Fh),
where Th is a finite collection of polygonal elements T such that h B maxT∈Th hT > 0 with
hT denoting the diameter of T , while Fh is a finite collection of hyperplanar faces F. It is
assumed henceforth that the meshMh matches the geometrical requirements detailed in [8686,
Definition 7.2]; see also [8282, Section 2]. To avoid dealing with jumps of the permeability
coefficient inside elements, we additionally assume thatMh is compliant with the partition
PΩ on which κ is piecewise constant meaning that, for every T ∈ Th, there exists a unique
subdomain ω ∈ PΩ such that T ⊂ ω. For every mesh element T ∈ Th, we denote by FT the
subset of Fh containing the faces that lie on the boundary ∂T of T . For each face F ∈ FT ,
nTF is the (constant) unit normal vector to F pointing out of T . Boundary faces lying on ∂Ω
and internal faces contained in Ω are collected in the sets F b

h and F i
h , respectively.

Our focus is on the so-called h-convergence analysis, so we consider a sequence of refined
meshes that is regular in the sense of [8282, Definition 3]. The corresponding strictly positive
regularity parameter, uniformly bounded away from zero, is denoted by %. We additionally
assume that, for each mesh in the sequence, all the elements are star-shaped with respect to
every point of a ball of radius uniformly comparable to the diameter of the element. The
mesh regularity assumption implies, in particular, that the diameter hT of a mesh element
T ∈ Th is uniformly comparable to the diameter hF of each face F ∈ FT , and that the number
of faces in FT is bounded above by an integer N∂ independent of h.

4.3.2 Time mesh
We subdivide (0, tF) into N ∈ N∗ uniform subinterval, and introduce the timestep τ B tF/N
and the discrete times tn B nτ for all 0 ≤ n ≤ N . For any vector space V and any ϕ ∈ C0(V ),
we set ϕn B ϕ(tn) ∈ V and, if n ≥ 1, we define, for all ψ ∈ L1(V ), the time average of ψ in
(tn−1, tn) as ψn

B τ−1
∫ tn

tn−1 ψ(t)dt ∈ V , with the convention that ψ0
= 0 ∈ V . We also let, for
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all (ϕi)0≤i≤N ∈ V N+1 and all 1 ≤ n ≤ N ,

δtϕ
n B

ϕn − ϕn−1

τ
∈ V

denote the backward approximation of the first derivative of ϕ at time tn.
We note a preliminary result that will be used in the convergence analysis of Section 4.64.6.

Since each ψ ∈ H1((0, tF)) has an absolutely continuous representative in [0, tF], we can use
the fundamental theorem of calculus to infer that, for all 1 ≤ n ≤ N ,

ψn − ψ
n
= ψ(tn) −

1
τ

∫ tn

tn−1

(
ψ(tn) −

∫ tn

t
dtψ(s)ds

)
dt

=
1
τ

∫ tn

tn−1

∫ tn

t
dtψ(s)dsdt ≤

∫ tn

tn−1
|dtψ(t) |dt.

Thus, applying the previous result together with the Jensen inequality yields, for all ϕ ∈
H1(L2(Ω)),

‖ϕn − ϕn
‖2
Ω
≤

∫
Ω

(∫ tn

tn−1
|dtϕ(x, t) |dt

)2
dx ≤ τ

∫ tn

tn−1
‖dtϕ(t)‖2

Ω
dt = τ‖ϕ‖2H1((tn−1,tn );L2(Ω)),

(4.8)
where ϕ(x, t) is a shorthand notation for (ϕ(t))(x).

4.3.3 L2-orthogonal projectors on local and broken polynomial spaces

For X ⊂ Ω and k ∈ N, we denote by Pk (X ) the space spanned by the restriction to X of scalar-
valued, d-variate polynomials of total degree k. The L2-projector πk

X : L1(X ) → Pk (X ) is
defined such that, for all v ∈ L1(X ),∫

X
(πk

Xv − v)w = 0 ∀w ∈ Pk (X ). (4.9)

As a projector, πk
X is linear and idempotent so that, for all v ∈ Pk (X ), πk

Xv = v. When dealing
with the vector-valued polynomial space Pk (X ) or with the tensor-valued polynomial space
Pk (X ), we use the boldface notation πk

X for the corresponding L2-orthogonal projectors acting
component-wise. At the global level, we denote by Pk (Th), Pk (Th), and Pk (Th), respectively,
the spaces of fully discontinuous scalar-valued, vector-valued, and tensor-valued broken
polynomial functions on Th of total degree k, and by πk

h and πk
h the L2-projectors on Pk (Th)

and Pk (Th). The following optimal approximation properties for the L2-projector πk
X follow

from [6969, Lemmas 3.4 and 3.6]: There exists a strictly positive real number Cap independent
of h such that, for all T ∈ Th, all l ∈ {1, . . . , k + 1}, and all v ∈ H l (T ),

|v − πk
Tv |Hm (T ) + h

1
2
T |v − π

k
Tv |Hm (FT ) ≤ Caphl−m

T |v |H l (T ) ∀m ∈ {0, . . . , l}, (4.10)

where |·|Hm (FT ) is the broken Sobolev seminorm on FT .
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4.3.4 Discrete spaces
In this section we define the discrete spaces upon which the HHO method corresponding to
a polynomial degree k ≥ 1 is built.

4.3.4.1 Displacement

The discrete unknowns for the displacement are collected in the space

U k
h B

{
vh =

(
(vT )T∈Th, (vF )F∈Fh

)
: vT ∈ Pk (T ) ∀T ∈ Th and vF ∈ Pk (F) ∀F ∈ Fh

}
.

For any vh ∈ U k
h, we denote by vh ∈ Pk (Th) the broken polynomial vector field obtained

patching element-based unknowns, so that

(vh)|T = vT ∀T ∈ Th.

The discrete unknowns corresponding to a function v ∈ H1(Ω) are obtained by means of the
interpolator I k

h : H1(Ω) → U k
h such that

I k
hv B

(
(πk

T v |T )T∈Th, (π
k
Fv |F )F∈Fh

)
. (4.11)

For all T ∈ Th, we denote by U k
T and I k

T the restrictions to T of U k
h and I k

h, respectively and,
for any vh ∈ U

k
h, we let vT B

(
vT, (vF )F∈FT

)
collect the local discrete unknowns attached to

T . At each time step, the displacement is sought in the following subspace ofU k
h that strongly

accounts for the homogeneous Dirichlet condition (4.1c4.1c):

U k
h,D B

{
vh =

(
(vT )T∈Th, (vF )F∈Fh

)
∈ U k

h : vF = 0 ∀F ∈ F b
h

}
.

We next prove a discrete version of Korn’s first inequality on U k
h,D that will play a key role

in the analysis. To this purpose, we endow the space U k
h with the discrete strain seminorm

‖·‖ε,h defined, for all vh ∈ U
k
h, such that

‖vh‖ε,h B



∑
T∈Th

*.
,
‖∇svT ‖

2
T +

∑
F∈FT

‖vF − vT ‖
2
F

hF

+/
-



1
2

. (4.12)

We will also need the following continuous trace inequality, whose proof follows the argu-
ments of [7676, Lemma 1.49] (where a slightly different notion of mesh faces is considered):
There exists a strictly positive real number Ctr, independent of h but possibly depending on
%, such that, for all T ∈ Th, all vT ∈ H1(T ), and all F ∈ FT ,

‖vT ‖
2
F ≤ C2

tr
(
‖∇vT ‖T + h−1T ‖vT ‖T

)
‖vT ‖T . (4.13)

Proposition 4.3 (Discrete Korn’s first inequality). There is a real number CK > 0, only
depending on Ω, d, and % such that, for all vh ∈ U

k
h,D,

‖vh‖Ω ≤ CK‖vh‖ε,h. (4.14)
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Remark 4.4 (Strain norm). An immediate consequence of (4.144.14) is that the map ‖·‖ε,h is a
norm in U k

h,D.

Proof. Let vh ∈ U
k
h,D. Since the divergence operator ∇· : H

1
s (Ω) → L2(Ω) is onto (c.f. [3131,

5656]), there exists τvh ∈ H1
s (Ω) such that ∇·τvh = vh and ‖τvh ‖1,Ω ≤ Csj‖vh‖Ω, with Csj > 0

independent of h. It follows that

‖vh‖
2
Ω
= (vh,∇·τvh )Ω =

∑
T∈Th

*.
,
−

∫
T
∇svT : τvh +

∑
F∈FT

∫
F

(vT − vF ) · τvhnTF
+/
-
,

wherewe have integrated by parts element by element and used the fact that τvh has continuous
normal components across interfaces and that boundary unknowns are set to zero in order
to insert vF into the boundary term. Applying Cauchy–Schwarz inequalities first on the
integrals then on the sums, we infer that

‖vh‖
2
Ω
≤

∑
T∈Th

*.
,
‖∇svT ‖T ‖τvh ‖T +

∑
F∈FT

‖vF − vT ‖F

h
1
2
F

h
1
2
F ‖τvh ‖F

+/
-

≤
*.
,

∑
T∈Th

‖∇svT ‖
2
T

+/
-

1
2

‖τvh ‖Ω +
*.
,

∑
T∈Th

∑
F∈FT

‖vF − vT ‖
2
F

hF

+/
-

1
2

*.
,

∑
T∈Th

∑
F∈FT

hF ‖τvh ‖
2
F

+/
-

1
2

≤
√
2N∂Ctr

*.
,

∑
T∈Th

‖∇sv ‖
2
T +

∑
F∈Fh

‖vF − vT ‖
2
F

hF

+/
-

1
2

‖τvh ‖1,Ω,

where, to conclude, we have estimated ‖τvh ‖F using the continuous trace inequality (4.134.13)
together with the fact that hF ≤ hT ≤ diam(Ω) = 1 for any T ∈ Th and F ∈ FT . Thus,
invoking the boundedness of the divergence operator, we get

‖vh‖
2
Ω
≤

√
2N∂CsjCtr‖vh‖ε,h‖vh‖Ω,

which yields the conclusion with CK =
√
2N∂CsjCtr. �

4.3.4.2 Pore pressure

At each time step, the discrete pore pressure is sought in the space

Pk
h B




Pk (Th) if C0 > 0,
Pk
0 (Th) B

{
qh ∈ Pk (Th) :

∫
Ω

qh = 0
}

if C0 = 0.

For any internal face F ∈ F i
h , we denote by TF,1,TF,2 ∈ Th the two mesh elements that share

F as a face, that is to say F ⊂ TF,1 ∩ TF,2 and TF,1 , TF,2 (the ordering of the elements is
arbitrary but fixed), and we set

κF,i B
(
κ |TF, i

nTF, iF
)
· nTF, iF for i ∈ {1, 2}, κF B

2κF,1κF,2

κF,1 + κF,2
. (4.15)
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For all qh ∈ Pk
h , we denote by qT the restriction of qh to an element T ∈ Th and we define the

discrete seminorm

‖qh‖κ,h B
*.
,

∑
T∈Th

‖κ
1
2∇qT ‖

2
T +

∑
F∈F i

h

κF

hF
‖qTF,1 − qTF,2 ‖

2
F

+/
-

1
2

. (4.16)

The fact that in (4.164.16) boundary terms only appear on internal faces reflects the homogeneous
Neumann boundary condition (4.1d4.1d).

Using the surjectivity of the divergence operator ∇· : H1
0(Ω) → L2

0(Ω) and proceeding
as in the proof of the discrete Korn inequality (4.144.14), a discrete Poincaré inequality in Pk (Th)
is readily inferred, namely one has the existence of CP > 0, only depending on Ω, d, and %
such that, for all qh ∈ Pk (Th),

‖qh − π
0
Ω

qh‖Ω ≤ CPκ
− 1

2 ‖qh‖κ,h.

This result ensures, in particular, that the seminorm ‖·‖κ,h defined in (4.164.16) is a norm on
Pk
0 (Th). For a proof of more general Sobolev inequalities on broken polynomial spaces, we

refer the reader to [7575] and [7676, Section 5.1.2].

4.4 Discretization
In this sectionwe define the discrete counterparts of the elasticity, hydro-mechanical coupling,
and Darcy operators, and formulate the HHO–dG scheme for problem (4.64.6).

4.4.1 Nonlinear elasticity operator
The discretization of the nonlinear elasticity operator closely follows the one presented in
Section 3.43.4. We define the local symmetric gradient reconstruction Gk

s,T : U k
T → P

k
s (T ) such

that, for a given vT =
(
vT, (vF )F∈FT

)
∈ U k

T , G
k
s,T vT ∈ P

k
s (T ) solves∫

T
Gk

s,T vT : τ = −
∫

T
vT · (∇·τ) +

∑
F∈FT

∫
F
vF · (τnTF ) ∀τ ∈ Pk

s (T ). (4.17)

Existence and uniqueness of Gk
s,T vT follow from the Riesz representation theorem in Pk

s (T )
for the L2(T )d×d-inner product. This definition is motivated by the following property.
Proposition 4.5 (Commuting property for the local symmetric gradient reconstruction). For
all v ∈ H1(T ), it holds that

Gk
s,T I

k
T v = π

k
T (∇sv ). (4.18)

Remark 4.6 (Approximation properties of the local symmetric gradient reconstruction). The
commuting property (4.184.18) combined with (4.104.10) shows that Gk

s,T I
k
T v optimally approximates

∇sv in Pk
s (T ).
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Proof. We start by noticing that it holds, for all α ∈ Rd×d
s and all β ∈ Rd×d , denoting by

βs B
1
2 (β + βT) the symmetric part of β,

α : β = α : βs. (4.19)

For all τ ∈ Pk (T ) we can then write∫
T
Gk

s,T I
k
T v : τ =

∫
T
Gk

s,T I
k
T v : τs

= −

∫
T
πk

T v · (∇·τs) +
∑

F∈FT

∫
F
πk

Fv · (τsnTF )

= −

∫
T
v · (∇·τs) +

∑
F∈FT

∫
F
v · (τsnTF )

=

∫
T
∇v : τs =

∫
T
∇sv : τs =

∫
T
∇sv : τ =

∫
T
πk

T (∇sv ) : τ,

where we have used (4.194.19) with α = Gk
s,T I

k
T v and β = τ in the first line, the definition (4.174.17)

of the local symmetric gradient with vh = I k
T v in the second line, and definition (4.94.9) after

observing that ∇·τs ∈ Pk−1
s (T ) ⊂ Pk

s (T ) and τsnTF ∈ Pk (F) for all F ∈ FT to remove the
L2-orthogonal projectors in the third line. In the fourth line, we have used an integration by
parts, then invoked (4.194.19) first with α = τs and β = ∇v , then with α = ∇sv and β = τ, and
we have used the definition (4.94.9) of πk

T to conclude. �

From Gk
s,T , we define the local displacement reconstruction operator r k+1

T : U k
T →

Pk+1(T ) such that, for all vT ∈ U
k
T ,∫

T
(∇sr

k+1
T vT − Gk

s,T vT ) : ∇sw = 0 ∀w ∈ Pk+1(T ),∫
T
r k+1

T vT =

∫
T
vT,

∫
T
∇×(r k+1

T vT ) =
∑

F∈FT

∫
F
nTF × vF,

where ∇× denotes the curl operator and v × w the vector product of two vectors v, w ∈ Rd .
Optimal approximation properties for r k+1

T I k
T have been recently proved in [3232, Appendix A]

generalizing the ones of [7474, Lemma 2].
The discretization of the nonlinear elasticity operator is realized by the function ah :

U k
h × U

k
h → R such that, for all wh, vh ∈ U

k
h,

ah(wh, vh) B
∑
T∈Th

*.
,

∫
T
σ (·, Gk

s,TuT ) : Gk
s,T vT +

∑
F∈FT

γ

hF

∫
F
∆k

TFuT · ∆
k
TFvT

+/
-
, (4.20)

where γ > 0 denotes a user-dependent parameter and we penalize in a least-square sense the
face-based residual ∆k

TF : U k
T → Pk (F) such that, for all T ∈ Th, all vT ∈ U

k
T , and all F ∈ FT ,

∆k
TFvT B πk

F (r k+1
T vT − vF ) − πk

T (r k+1
T vT − vT ).



4.4. Discretization 95

This definition ensures that ∆k
TF vanishes whenever its argument is of the form I k

Tw with
w ∈ Pk+1(T ), a crucial property to obtain high-order error estimates (cf. Theorems 2.122.12,
3.163.16). For further use, we note the following seminorm equivalence, which can be proved
using the arguments of [7474, Lemma 4]: For all vh ∈ U

k
h,

C−2eq ‖vh‖
2
ε,h ≤

∑
T∈Th

*.
,
‖Gk

s,T vT ‖
2
T +

∑
F∈FT

γ

hF
‖∆k

TFvT ‖
2
F

+/
-
≤ C2

eq‖vh‖
2
ε,h, (4.21)

where Ceq > 0 is independent of h, and the strain seminorm ‖·‖ε,h is defined by (4.124.12).
By (4.2b4.2b), this implies the coercivity of ah.

Remark 4.7 (Choice of the penalty parameter). The constants Cgr,Ccv appearing in (4.24.2)
satisfy C2

cv ≤ Cgr. Indeed, owing to (4.2b4.2b), the Cauchy–Schwarz inequality, and (4.2a4.2a), it
holds for all τ ∈ Rd×d

s ,

C2
cv |τ |

2
d×d ≤ σ (x, τ) : τ ≤ |σ (x, τ) |d×d |τ |d×d ≤ Cgr |τ |

2
d×d . (4.22)

Thus, we choose the penalty parameter γ in (4.204.20) such that

γ ∈ [C2
cv,Cgr]. (4.23)

For the linear elasticity model (4.34.3), we have Cgr = 2µ+ dλ and Ccv =
√
2µ, so that a natural

choice for the stabilization parameter is γ = 2µ.

4.4.2 Hydro-mechanical coupling

The hydro-mechanical coupling is realized by means of the bilinear form bh on U k
h × Pk (Th)

such that, for all vh ∈ U
k
h and all qh ∈ Pk (Th),

bh(vh, qh) B
∑
T∈Th

*.
,

∫
T
vT · ∇qT −

∑
F∈FT

∫
F
vF · qTnTF

+/
-
, (4.24)

where we remind the reader that qT B qh|T . It can be checked using Cauchy–Schwarz
inequalities together with the definition (4.124.12) of the strain seminorm and discrete trace
inequalities that there exists Cbd > 0 independent of h such that

bh(vh, qh) ≤ Cbd‖vh‖ε,h‖qh‖Ω.

Additionally, using the strongly enforced boundary condition in U k
h,D, it can be proved that

bh(vh, 1) = 0, ∀vh ∈ U
k
h,D. (4.25)

Finally, we note the following lemma stating that the hybrid interpolator I k
h : H1(Ω) → U k

h
is a Fortin operator.
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Lemma 4.8 (Fortin operator). For all v ∈ H1(Ω) and all qh ∈ Pk (Th), the interpolator I k
h

satisfies

‖I k
hv ‖ε,h ≤ Cst‖v ‖1,Ω, (4.26a)

bh(I k
hv, qh) = −(∇·v, qh)Ω, (4.26b)

where the strictly positive real number Cst is independent of h.

Proof. (i) Proof of (4.26a4.26a). Recalling the definitions (4.124.12) of the discrete strain seminorm
and (4.114.11) of the global interpolator, we can write

‖I k
hv ‖

2
ε,h =

∑
T∈Th

*.
,
‖∇sπ

k
T v ‖

2
T +

∑
F∈FT

h−1F ‖π
k
Fv − π

k
T v ‖

2
F

+/
-

.
∑
T∈Th

*.
,
‖∇s(πk

T v − v )‖2T + ‖∇sv ‖
2
T +

∑
F∈FT

h−1F ‖v − π
k
T v ‖

2
F

+/
-
. ‖v ‖21,Ω.

To pass to the second line, we have used a triangle inequality after inserting ±∇sv into the
first term, and we have used the linearity, idempotency, and boundedness of πk

F to write
‖πk

Fv − π
k
T v ‖F = ‖π

k
F (v − πk

T v )‖F ≤ ‖v − πk
T v ‖F . To conclude, we have used (4.104.10)

respectively with l = m = 1 and with l = 1 and m = 0 to bound the first and third terms
inside the summation.

(ii) Proof of (4.26b4.26b). Recalling the definitions (4.244.24) of bh(·, ·) and (4.114.11) of the global
interpolator, we can write for all qh ∈ Pk (Th),

bh(I k
hv, qh) = −

∑
T∈Th

(∫
T
πk

T v · ∇qT −

∫
F
πk

Fv |F · qTnTF

)
= −

∑
T∈Th

(∫
T
v · ∇qT −

∫
F
v · qTnTF

)
= (∇·v, qh)Ω,

where we have used definition (4.94.9) after observing that ∇qT ∈ Pk−1(T ) ⊂ Pk (T ) and
qT |FnTF ∈ Pk (F) to remove the L2-orthogonal projectors in the second line, and integration
by parts over T ∈ Th to conclude. �

As a result of the previous Lemma, one has the following inf-sup condition, cf. Proposition
A.1A.1 for the proof.
Proposition 4.9. There is a strictly positive real number β independent of h and of the
problem data such that, for all qh ∈ Pk

0 (Th),

‖qh‖Ω ≤ β sup
vh∈U

k
h,D\{0}

bh(vh, qh)
‖vh‖ε,h

. (4.27)
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4.4.3 Darcy operator
The discretization of the Darcy operator is based on the Symmetric Weighted Interior Penalty
method of [7777], cf. also [7676, Section 4.5]. For all F ∈ F i

h and all qh ∈ Pk (Th), we define the
jump and average operators such that

[qh]F B qTF,1 − qTF,2, {qh}F B

√
κF,2

√
κF,1 +

√
κF,2

qTF,1 +

√
κF,1

√
κF,1 +

√
κF,2

qTF,2,

with TF,1,TF,2 ∈ Th, TF,1 , TF,2, such that F ⊂ ∂TF,1 ∩ ∂TF,2 and κF,1, κF,2 defined in (4.154.15).
The bilinear form ch on Pk (Th) × Pk (Th) is defined such that, for all qh, rh ∈ Pk (Th),

ch(rh, qh) B
∫
Ω

κ∇hrh · ∇hqh +
∑

F∈F i
h

ςκF

hF

∫
F
[rh]F[qh]F

−
∑

F∈F i
h

∫
F

(
[rh]F {κ∇hqh}F + [qh]F {κ∇hrh}F

)
· nT1F,

where we have introduced the broken gradient operator ∇h on Th and we have denoted by
ς > ς > 0 a user-defined penalty parameter chosen large enough to ensure the coercivity of
ch (the proof is similar to [7676, Lemma 4.51]):

ch(qh, qh) ≥ (ς − ς)(1 + ς)−1‖qh‖
2
κ,h, ∀qh ∈ Pk

h .

Since, under this condition, ch is a symmetric positive definite bilinear form on the broken
polynomial space Pk

h , we can define an associated norm by setting ‖ · ‖c,h B ch(·, ·)
1
2 .

The following consistency result can be proved adapting the arguments of [7676, Chapter 4]
to homogeneous Neumann boundary conditions and will be instrumental for the analysis.
We define the functional spaces P∗ B

{
r ∈ H1(Ω) ∩ H2(PΩ) : κ∇r · n = 0 on ∂Ω

}
and set

Pk
∗h B P∗ + Pk

h . Extending the bilinear form ch to Pk
∗h × Pk

∗h, it is inferred that, for all r ∈ P∗,

−(∇·(κ∇r), q)Ω = ch(r, q) ∀q ∈ P∗h. (4.28)

4.4.4 Discrete problem

For all 1 ≤ n ≤ N , the discrete solution (un
h, pn

h) ∈ U k
h,D × Pk

h at time tn is such that, for all
(vh, qh) ∈ U k

h,D × Pk (Th),

ah(un
h, vh) + bh(vh, pn

h) = ( f
n
, vh)Ω, (4.29a)

C0(δt pn
h, qh)Ω − bh(δtu

n
h, qh) + ch(pn

h, qh) = (gn, qh)Ω, (4.29b)

with f
n
∈ L2(Ω) and gn

∈ L2(Ω) defined in Section 4.3.24.3.2. In order to start the time-stepping
scheme we need to initialize the discrete fluid content. This is done by setting φ0h equal to
the L2-orthogonal projection of φ0 on Pk (Th) according to (4.6c4.6c). This implies in particular
that

C0(p0h, qh)Ω − bh(u0
h, qh) B (φ0, qh)Ω ∀qh ∈ Pk (Th). (4.29c)
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Remark 4.10 (Advance in time scheme). The modified backward Euler scheme obtained by
taking time averages instead of pointwise evaluation of the right-hand sides in (4.294.29) can be
interpreted as a low-order discontinuous Galerkin time-stepping method, cf. [179179, 183183].

Notice that other time discretizations could be used, but we have decided to focus on the
backward Euler scheme to keep the proofs as simple as possible. From the practical point of
view, at each time step n, the discrete nonlinear system (4.294.29) can be solved by the Newton
method using as initial guess the solution at step (n − 1). The size of the linear system to be
solved at each Newton iteration can be reduced by statically condensing a large part of the
unknowns as described in Section 2.52.5.

4.5 Stability and well-posedness

In this section we study the stability of problem (4.294.29) and prove its well-posedness. We start
with an a priori estimate on the discrete solutions not requiring conditions on the time step τ
and robust with respect to vanishing storage coefficients and small permeability fields.
Proposition 4.11 (A priori estimate). Denote by (un

h, pn
h)1≤n≤N the solution to (4.294.29). Under

Assumption 4.14.1 on the stress-strain relation and the regularity on the data f , g, and φ0

assumed in Section 4.2.34.2.3, it holds

N∑
n=1

τ‖un
h‖

2
ε,h +

N∑
n=1

τ
(
‖pn

h − π
0
Ω

pn
h‖

2
Ω
+ C0‖pn

h‖
2
Ω

)
+ ‖sN

h ‖
2
c,h ≤

C *
,
‖ f ‖2

L2(L2(Ω))
+ t2F‖g‖

2
L2(L2(Ω)) + tF‖φ0‖2Ω +

t2F
C0
‖π0

Ω
g‖2L2(L2(Ω)) +

tF
C0
‖π0

Ω
φ0‖2

Ω
.+
-
.

(4.30)

where C > 0 denotes a real number independent of h, τ, the physical parameters C0 and κ ,
and the final time tF. In (4.304.30), we have defined sN

h B
∑N

n=1 τpn
h and we have adopted the

convention that C−10 ‖π
0
Ω
g‖2

L2(L2(Ω))
= 0 and C−10 ‖π

0
Ω
φ0‖2

Ω
= 0 if C0 = 0.

Remark 4.12. In order to prove the a priori bound (4.304.30), no additional time regularity
assumption on the loading term f and the mass source g are needed, whereas the stability
estimate of Lemma 2.72.7, valid for linear stress-strain relation, requires f ∈ C1(L2(Ω)) and
g ∈ C0(L2(Ω)). On the other hand, Proposition 4.114.11 gives an estimate of the discrete
displacement and pressure in the L2-norm in time, while Lemma 2.72.7 ensures a control in
the L∞-norm in time. However, under additional requirements on the stress-strain law (for
instance Assumption 4.154.15) and H1-regularity in time of f , a stronger version of (4.304.30) can
be inferred, establishing in particular an estimate in the L∞-norm in time.

Proof. (i) Estimate of ‖pn
h − π

0
Ω

pn
h‖Ω. The growth property of the stress-strain function (4.2a4.2a)

together with the Cauchy–Schwarz inequality, assumption (4.234.23), and the second inequality
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in (4.214.21) yield, for all 1 ≤ n ≤ N ,

ah(un
h, vh) =

∑
T∈Th

*.
,

∫
T
σ (·, Gk

s,Tu
n
T ) : Gk

s,T vT +
∑

F∈FT

γ

hF

∫
F
∆k

TFu
n
T · ∆

k
TFvT

+/
-

≤ Cgr
∑
T∈Th

*.
,
‖Gk

s,Tu
n
T ‖T ‖G

k
s,T vT ‖T +

∑
F∈FT

1
hF
‖∆k

TFu
n
T ‖F ‖∆

k
TFvT ‖F

+/
-

≤ CgrC2
eq‖u

n
h‖ε,h‖vh‖ε,h.

(4.31)

Using the inf-sup condition (4.274.27), (4.254.25), and the mechanical equilibrium equation (4.29a4.29a),
we get

‖pn
h − π

0
Ω

pn
h‖Ω ≤ β sup

vh∈U
k
h,D\{0}

bh(vh, pn
h − π

0
Ω

pn
h)

‖vh‖ε,h
= β sup

vh∈U
k
h,D\{0}

( f
n
, vh)Ω − ah(un

h, vh)

‖vh‖ε,h
.

Therefore, owing to the discrete Korn inequality (4.144.14) and to (4.314.31), we infer from the
previous bound that

‖pn
h − π

0
Ω

pn
h‖Ω ≤ β

(
CK‖ f

n
‖Ω + CgrC2

eq‖u
n
h‖ε,h

)
. (4.32)

(ii) Energy balance. For all 1 ≤ n ≤ N , summing (4.29b4.29b) at times 1 ≤ i ≤ n and taking
qh = τ

2pn
h, yields

τC0(pn
h, pn

h)Ω − τbh(un
h, pn

h) +
n∑

i=1
τ2ch(pi

h, pn
h) =

n∑
i=1

τ2(gi, pn
h)Ω + τ(φ0, pn

h)Ω. (4.33)

Moreover, using the linearity of ch and the formula 2x(x − y) = x2 + (x − y)2 − y2, the third
term in the left-hand side of (4.334.33) can be rewritten as

n∑
i=1

τ2ch(pi
h, pn

h) = τch *
,

n∑
i=1

τpi
h, pn

h
+
-
= τch(sn

h, δt sn
h) =

1
2

(
‖sn

h‖
2
c,h + ‖δt sn

h‖
2
c,h − ‖s

n−1
h ‖2c,h

)
,

where we have defined sn
h B

∑n
i=1 τpi

h, with the convention that s0h B 0, and observed that
pn

h = δt sn
h. Therefore, summing (4.334.33) and (4.29a4.29a) at discrete time n with vh = τu

n
h, leads to

τah(un
h, u

n
h)+τC0‖pn

h‖
2
Ω
+
1
2

(
‖sn

h‖
2
c,h − ‖s

n−1
h ‖2c,h

)
≤ τ( f

n
, un

h)Ω+
n∑

i=1
τ2(gi, pn

h)Ω+τ(φ0, pn
h)Ω.

Summing the previous relation for 1 ≤ n ≤ N , telescoping out the appropriate summands,
and using the coercivity property (4.2b4.2b), assumption (4.234.23), and the first inequality in (4.214.21),
we get

C2
cv

C2
eq

N∑
n=1

τ‖un
h‖

2
ε,h+C0

N∑
n=1

τ‖pn
h‖

2
Ω
+
1
2
‖sN

h ‖
2
c,h ≤

N∑
n=1

τ( f
n
, un

h)Ω+
N∑

n=1
τ(Gn+φ0, pn

h)Ω, (4.34)
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with the notation Gn B
∑n

i=1 τg
i =

∫ tn

0 g(t)dt. We denote by R the right-hand side of (4.344.34)
and proceed to find a suitable upper bound.

(iii) Upper bound for R. For the first term in the right-hand side of (4.344.34), using the
Cauchy–Schwarz, discrete Korn (4.144.14), and Young inequalities, we obtain

N∑
n=1

τ( f
n
, un

h)Ω ≤ CK *
,

N∑
n=1

τ‖ f
n
‖2
Ω

+
-

1
2

*
,

N∑
n=1

τ‖un
h‖

2
ε,h

+
-

1
2

≤
C2
KC2

eq

C2
cv
‖ f ‖2L2(L2(Ω)) +

C2
cv

4C2
eq

N∑
n=1

τ‖un
h‖

2
ε,h,

(4.35)

where we have used the Jensen inequality to infer that

N∑
n=1

τ‖ f
n
‖2
Ω
=

N∑
n=1

1
τ

∫
Ω

(∫ tn

tn−1
f (x, t)dt

)2
dx ≤

N∑
n=1

∫ tn

tn−1
‖ f (t)‖2

Ω
dt = ‖ f ‖2L2(L2(Ω)) .

We estimate the second term in the right-hand side of (4.344.34) by splitting it into two contribu-
tions as follows:

N∑
n=1

τ(Gn + φ0, pn
h)Ω =

N∑
n=1

τ(Gn + φ0, pn
h − π

0
Ω

pn
h)Ω +

N∑
n=1

τ(π0
Ω

(Gn + φ0), pn
h)Ω B T1 + T2.

Owing to the Cauchy–Schwarz, triangle, Jensen, and Young inequalities, and using (4.324.32),
we have

|T1 | ≤ *
,

N∑
n=1

τ‖Gn + φ0‖2
Ω

+
-

1
2

*
,

N∑
n=1

τ‖pn
h − π

0
Ω

pn
h‖

2
Ω

+
-

1
2

≤
√
2β *

,

N∑
n=1

τ

∫
Ω

(∫ tn

0
g(x, t)dt

)2
dx + tF‖φ0‖2Ω+

-

1
2

*
,

N∑
n=1

τ
(
CK‖ f

n
‖Ω + CgrC2

eq‖u
n
h‖ε,h

)2+
-

1
2

≤ 2β
(
tF‖g‖L2(L2(Ω)) + t

1
2
F ‖φ

0‖Ω

) 
CK‖ f ‖L2(L2(Ω)) + CgrC2

eq
*
,

N∑
n=1

τ‖un
h‖

2
ε,h

+
-

1
2



≤ tF β2 *
,
1 +

C2
grC

6
eq

C2
cv

+
-

(
t
1
2
F ‖g‖L2(L2(Ω)) + ‖φ

0‖Ω

)2
+ C2

K‖ f ‖
2
L2(L2(Ω)) +

C2
cv

4C2
eq

N∑
n=1

τ‖un
h‖

2
ε,h.

(4.36)
Owing to the compatibility condition (4.1f4.1f) and the linearity of the L2-projector, T2 =

0 if C0 = 0. Otherwise, using again the Cauchy–Schwarz, triangle, Jensen, and Young
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inequalities, leads to

|T2 | ≤ *
,

N∑
n=1

τ‖π0
Ω

Gn + π0
Ω
φ0‖2

Ω
+
-

1
2

*
,

N∑
n=1

τ‖pn
h‖

2
Ω

+
-

1
2

≤
√
2
(
t2F‖π

0
Ω
g‖2L2(L2(Ω)) + tF‖π0Ωφ

0‖2
Ω

) 1
2 *

,

N∑
n=1

τ‖pn
h‖

2
Ω

+
-

1
2

≤
2t2F
3C0
‖π0

Ω
g‖2L2(L2(Ω)) +

2tF
3C0
‖π0

Ω
φ0‖2

Ω
+
3C0

4

N∑
n=1

τ‖pn
h‖

2
Ω
.

(4.37)

Finally, from (4.354.35), (4.364.36), (4.374.37), it follows that

R ≤
C2
cv

2C2
eq

N∑
n=1

τ‖un
h‖

2
ε,h +

3C0

4

N∑
n=1

τ‖pn
h‖

2
Ω
+

2t2F
3C0
‖π0

Ω
g‖2L2(L2(Ω)) +

2tF
3C0
‖π0

Ω
φ0‖2

Ω

+
C2
K

C2
cv

(
C2
eq + C2

cv
)
‖ f ‖2L2(L2(Ω)) +

tF β2

C2
cv

(
4C2

grC
6
eq + C2

cv
) (

t
1
2
F ‖g‖L2(L2(Ω)) + ‖φ

0‖Ω

)2
.

(4.38)

(iv) Conclusion. Passing the first two terms in the right-hand side of (4.384.38) to the left-hand
side of (4.344.34) and multiplying both sides by a factor 4, we obtain

2C2
cv

C2
eq

N∑
n=1

τ‖un
h‖

2
ε,h + C0

N∑
n=1

τ‖pn
h‖

2
Ω
+ 2‖sN

h ‖
2
c,h ≤ 4C, (4.39)

where we have denoted by C the last four summands in the right-hand side of (4.384.38). In
order to conclude we apply again (4.324.32) to obtain a bound of the L2-norm of the discrete
pressure independent of the storage coefficient C0. Indeed, owing to (4.324.32) and C2

cv ≤ Cgr, it
is inferred that

C2
cv

2C2
grC6

eq

N∑
n=1

τ‖pn
h − π

0
Ω

pn
h‖

2
Ω
≤

C2
cv

C2
eq

N∑
n=1

τ‖un
h‖

2
ε,h +

β2C2
K

C2
cvC6

eq
‖ f ‖2L2(L2(Ω)) .

Summing the previous relation to (4.394.39) yields

C2
cv

C2
eq

N∑
n=1

τ‖un
h‖

2
ε,h +

C2
cv

2C2
grC6

eq

N∑
n=1

τ‖pn
h − π

0
Ω

pn
h‖

2
Ω
+ C0

N∑
n=1

τ‖pn
h‖

2
Ω
+ 2‖sN

h ‖
2
c,h ≤

8t2F
3C0
‖π0

Ω
g‖2L2(L2(Ω)) +

8tF
3C0
‖π0

Ω
φ0‖2

Ω
+ C2

K
*
,

4C2
eq

C2
cv
+

β2

C6
eqC2

cv
+ 4+

-
‖ f ‖2L2(L2(Ω))

+ 4tF β2 *
,

4C2
grC

6
eq

C2
cv
+ 1+

-
(t

1
2
F ‖g‖L2(L2(Ω)) + ‖φ

0‖Ω)2.

Thus, multiplying both sides of the previous relation by max{C2
eqC

−2
cv , 2C2

grC
6
eqC

−2
cv , 1} gives

(4.304.30). �
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Remark 4.13 (A priori bound for C0 = 0). When C0 = 0, the a priori bound (4.304.30) reads

N∑
n=1

τ‖un
h‖

2
ε,h +

N∑
n=1

τ‖pn
h‖

2
Ω
+ ‖sN

h ‖
2
c,h ≤ C

(
‖ f ‖2L2(L2(Ω)) + t2F‖g‖

2
L2(L2(Ω)) + tF‖φ0‖2Ω

)
.

The conventions C−10 ‖π
0
Ω
g‖2

L2(L2(Ω))
= 0 and C−10 ‖π

0
Ω
φ0‖2

Ω
= 0 if C0 = 0 are justified since

the term T2 in point (3) of the previous proof vanishes in this case thanks to the compatibility
condition (4.1f4.1f).

We next proceed to discuss the existence and uniqueness of the discrete solutions. The
proof of the following theorem hinges on the arguments of [6464, Theorem 3.3].
Theorem 4.14 (Existence and uniqueness). Let Assumption 4.14.1 hold and let (Mh)h∈H be a
regular mesh sequence. Then, for all h ∈ H and all N ∈ N∗, there exists a unique solution
(un

h, pn
h)1≤n≤N ∈ (U k

h,D × Pk
h )N to (4.294.29).

Proof. We define the linear stress-strain function σ lin : Rd×d
s → Rd×d

s such that, for all
τ ∈ Rd×d

s ,

σ lin(τ) =
C2
cv
2
τ +

C2
cv
2d

tr(τ)I d,

where Ccv is the coercivity constant of σ (see (4.2b4.2b)), and we denote by alin
h the bilinear

form obtained by replacing σ with σ lin in (4.204.20). We consider the following auxiliary linear
problem:c4: For all 1 ≤ n ≤ N , find (yn

h
, pn

h) ∈ U k
h,D × Pk

h such that

alin
h (yn

h
, vh) + bh(vh, pn

h) = ( f
n
, vh)Ω ∀vh ∈ U

k
h,D,

C0(δt pn
h, qh)Ω − bh(δt y

n
h
, qh) + ch(pn

h, qh) = (gn, qh)Ω ∀qh ∈ Pk
h,

(4.40)

with initial condition as in (4.29c4.29c). Since the previous system is linear and square and its
solution satisfies the a priori estimate of Proposition 4.114.11, it is readily inferred that problem
(4.404.40) admits a unique solution.

Now we observe that, thanks to the norm equivalence (4.214.21), alin
h (·, ·) is a scalar product

on U k
h,D, and we define the mapping Φ : U k

h,D → U k
h,D such that, for all vh ∈ U

k
h,D,

alin
h (Φ(vh), wh) = ah(vh, wh), ∀wh ∈ U

k
h,D.

We want to show that Φ is an isomorphism. Let vh, zh ∈ U
k
h,D be such that Φ(vh) = Φ(zh).

If vh , zh, owing to the norm equivalence (4.214.21) and the fact that ‖ · ‖ε,h is a norm on U k
h,D,

there is at least one T ∈ Th and one F ∈ FT such that Gk
s,T vT , Gk

s,T zT or ∆k
TFvT , ∆

k
TF zT .

In both cases, owing to the definition of ah and the strict monotonicity assumption (4.2c4.2c), it
holds

0 < ah(vh, vh − zh) − ah(zh, vh − zh) = alin
h (Φ(vh) − Φ(zh), vh − zh) = 0.

Thus, we infer by contradiction that vh = zh and, as a result, Φ is injective. In order to
prove that Φ is also onto, we recall the following result: If (E, (·, ·)E ) is a Euclidean space
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and Ψ : E → E is a continuous map such that (Ψ(x),x)E
‖x‖E

→ +∞ as ‖x‖E → +∞, then Ψ is
surjective. Since (U k

h,D, alin
h (·, ·)) is a Euclidean space and the coercivity (4.2b4.2b) of σ together

with the definition of σlin yields alin
h (Φ(vh), vh) ≥ alin

h (vh, vh) for all vh ∈ U
k
h,D, we deduce

thatΦ is an isomorphism. Let, for all 1 ≤ n ≤ N , (yn
h
, pn

h) ∈ U k
h,D×Pk

h be the unique solution
to problem (4.404.40). By the surjectivity and injectivity of Φ, for all 1 ≤ n ≤ N , there exists a
unique un

h ∈ U k
h,D such that Φ(un

h) = yn
h
. By definition of Φ and (yn

h
)1≤n≤N , (un

h, pn
h)1≤n≤N

is therefore the unique solution of the discrete problem (4.294.29). �

4.6 Convergence analysis
In this section we study the convergence of problem (4.294.29) and prove optimal error estimates
under the following additional assumptions on the stress-strain function σ .
Assumption 4.15 (Stress-strain relation II). There exist real numbers Clp,Cmn ∈ (0,+∞)
such that, for a.e. x ∈ Ω, and all τ, η ∈ Rd×d

s ,

|σ (x, τ) − σ (x, η) |d×d ≤ Clp |τ − η |d×d, (Lipschitz continuity) (4.41a)(
σ (x, τ) − σ (x, η)

)
:
(
τ − η

)
≥ C2

mn |τ − η |
2
d×d . (strong monotonicity) (4.41b)

Remark 4.16 (Lipschitz continuity and strong monotonocity). It is readily seen, by taking
η = 0 in (4.414.41), that Lipschitz continuity and strong monotonicity imply respectively the
growth and coercivity properties of Assumption 4.14.1. Therefore, recalling (4.224.22), it is inferred
that the constants appearing in (4.2a4.2a), (4.2b4.2b), (4.41a4.41a), and (4.41b4.41b) satisfy

C2
mn ≤ C2

cv ≤ Cgr ≤ Clp. (4.42)

It was proved in [1313, Lemma 4.1] that the stress-strain tensor function for the Hencky–Mises
model is strongly monotone and Lipschitz-continuous. Also the isotropic damage model
satisfies Assumption 4.154.15 if the damage function in (4.54.5) is, for instance, such that

D(x, |τ |) = 1 − (1 + |C(x)τ |d×d)−
1
2 ∀x ∈ Ω.

In order to prove a convergence rate of (k + 1) in space for both the displacement and
pressure errors, in what follows we also assume that the permeability tensor field κ is constant
on Ω and the following elliptic regularity which holds, e.g., when Ω is convex [115115, 149149]:
There is a real number Cel > 0 only depending on Ω such that, for all ψ ∈ L2

0(Ω), the unique
function ζ ∈ P solution of the homogeneous Neumann problem

−∇·(κ∇ζ ) = ψ in Ω, κ∇ζ · n = 0 on ∂Ω,

is such that
‖ζ ‖H2(Ω) ≤ Celκ

− 1
2 ‖ψ‖Ω. (4.43)

Let (un
h, pn

h)1≤n≤N be the solution to (4.294.29). We consider, for all 1 ≤ n ≤ N , the discrete
error components defined as

en
h B un

h − I k
hu

n, εn
h B pn

h − p̂n
h, (4.44)
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where the global elliptic projection p̂n
h ∈ Pk

h is defined as the solution to

ch(p̂n
h, qh) = ch(pn, qh) ∀qh ∈ Pk

h and
∫
Ω

p̂n
h =

∫
Ω

pn.

Before proving the convergence of the scheme, we recall two preliminary approximation
results for the projectors I k

hu
n and p̂n

h that have been proved in Theorem 3.163.16 and Lemma 2.112.11,
respectively. There is a strictly positive constant Cpj depending only on Ω, k, and %, such
that, for all 1 ≤ n ≤ N ,

• Assuming (4.414.41) and un
∈ U ∩Hk+2(Th) with σ (·, un) ∈ Hk+1

s (Th), for all vh ∈ U
k
h,D,

it holds

���ah(I k
hu

n, vh) + (∇·σ (·, un), vh)��� ≤ Cpjhk+1
(
|un
|Hk+2(Th ) + |σ (·, un) |Hk+1

s (Th )

)
‖vh‖ε,h.
(4.45)

• Assuming the elliptic regularity (4.434.43) and pn
∈ P ∩ H k+1(Th), it holds

h‖ p̂n
h − pn

‖c,h + κ
1
2 ‖ p̂n

h − pn
‖Ω ≤ Cpjhk+1κ

1
2 |pn
|Hk+1(Th ) . (4.46)

Now we have all the ingredients to estimate the discrete errors defined in (4.444.44).
Theorem 4.17 (Error estimate). Let (u, p) denote the unique solution to (4.64.6), for which we
assume

u ∈ L2(U∩Hk+2(Th)), σ (·,∇su ) ∈ L2(Hk+1
s (Th)), p ∈ L2(P∩H k+1(Th)), φ ∈ H1(L2(Ω)),

with φ = C0p + ∇·u . If C0 > 0, we further assume π0
Ω

p ∈ H1(P0(Ω)) = H1((0, tF)). Then,
under Assumption 4.154.15 and the elliptic regularity (4.434.43), it holds

N∑
n=1

τ‖en
h‖

2
ε,h +

N∑
n=1

τ
(
‖εn

h − π
0
Ω
εn

h‖
2
Ω
+ C0‖ε

n
h‖

2
Ω

)
+ ‖zN

h ‖
2
c,h ≤ C

(
h2k+2C1 + τ

2C2
)
, (4.47)

where, C is a strictly positive constant independent of h, τ, C0, κ , and tF, and, for the sake of
brevity, we have defined zN

h B
∑N

n=1 τε
n
h and introduced the bounded quantities

C1 B ‖u ‖
2
L2(Hk+2(Th ))

+ ‖σ (·, u )‖2
L2(Hk+1

s (Th ))
+ (1 + C0)

κ

κ
|p|2L2(Hk+1(Th )),

C2 B C0‖π
0
Ω

p‖2H1((0,tF)) + ‖φ‖
2
H1(L2(Ω)) .

Remark 4.18 (Time regularity). In order to prove the previous error estimate, no additional
time regularity is required on the displacement u and pressure p solving problem (4.64.6),
whereas Theorem 2.122.12 is established under the much stronger regularity u ∈ C2(H1(Th))
and, if C0 > 0, p ∈ C2(L2(Ω)). Moreover, the assumptions φ ∈ H1(L2(Ω)) and, if C0 > 0,
π0
Ω

p ∈ H1(P0(Ω)) are consistent with the time regularity results observed in Remark 4.24.2.
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Proof. (i) Estimate of ‖en
h‖

2
ε,h. First we observe that, owing to (4.1a4.1a) and the definition of bh

given in (4.244.24), for all vh ∈ U
k
h,D and all 1 ≤ n ≤ N , we have

( f
n
, vh)Ω = −(∇·σ (un), vh)Ω + (∇pn, vh)Ω = ah(I k

hu
n, vh) + bh(vh, p̂n

h) − Rn
1 (vh), (4.48)

where the residual function Rn
1 : U k

h,D → R can be bounded integrating by parts and using
the approximation results stated in (4.454.45) and (4.464.46), namely

|Rn
1 (vh) | = ���ah(I k

hu
n, vh) + (∇·σ (·, un), vh) + bh(vh, p̂n

h) − (∇pn, vh)Ω
���

≤
���ah(I k

hu
n, vh) + (∇·σ (·, un), vh)���

+

�������

∑
T∈Th

∫
T

(pn
− p̂n

h)∇·vT +
∑

F∈FT

∫
F

(vF − vT ) · (pn
− p̂n

h)nTF

�������

≤ Cpjhk+1 *.
,
|un
|Hk+2(Th ) + |σ (·, un) |Hk+1

s (Th ) +

(
κ

κ

) 1
2

|pn
|Hk+1(Th )

+/
-
‖vh‖ε,h.

(4.49)

We note that, in order to bound the second term in the second line of the previous esti-
mate, we have used the Cauchy–Schwarz inequality and the trace inequality (4.134.13) before
applying (4.464.46). Using the norm equivalence (4.214.21), the strong monotonicity assumption
(4.41b4.41b) along with assumption (4.234.23) on the stabilization parameter, the discrete mechanical
equilibrium (4.29a4.29a), and (4.484.48), yields

C2
mn

C2
eq
‖en

h‖
2
ε,h = C2

mn

∑
T∈Th

*.
,
‖Gk

s,T e
n
T ‖

2
T +

∑
F∈FT

1
hF
‖∆k

TF e
n
T ‖

2
F

+/
-

≤ ah(un
h, e

n
h) − ah(I k

hu
n, en

h)

= ( f
n
, en

h)Ω − bh(en
h, pn

h) − ah(I k
hu

n, en
h) = −bh(en

h, ε
n
h) − Rn

1 (en
h).

Thus, using the previous relation, estimate (4.494.49) with vh = en
h, and the Young inequality, it

follows that

C2
mn

2C2
eq
‖en

h‖
2
ε,h+bh(en

h, ε
n
h) ≤

3C2
pjC

2
eq

2C2
mn

h2(k+1)
(
|un
|2Hk+2(Th )

+ |σ (·, un) |2
Hk+1
s (Th )

+
κ

κ
|pn
|2Hk+1(Th )

)
.

(4.50)

(ii) Estimate of C0‖ε
n
h‖

2
Ω
. Owing to (4.1b4.1b), an integration by parts together with the homoge-

neous displacement boundary condition (4.1c4.1c), and the consistency property (4.284.28), we infer
that, for all qh ∈ Pk

h and all 1 ≤ i ≤ N ,

(gi, qh)Ω = (C0dt p
i, qh)Ω + (∇·(dtu

i), qh − π
0
Ω

qh)Ω − (∇·(κ∇pi), qh)Ω

= τ−1
∫ t i

t i−1
dt

[
C0(p(t), qh)Ω + (∇·u (t), qh − π

0
Ω

qh)Ω
]
dt + ch(pi, qh)

= δt
[
C0(pi, qh)Ω + (∇·ui, qh − π

0
Ω

qh)Ω
]
+ ch(pi, qh).

(4.51)
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Therefore, using (4.29b4.29b), (4.254.25), the Fortin operator property (4.26b4.26b) of I k
h, the definition of

the elliptic projector p̂n
h, and (4.514.51), we obtain

C0(δtε
i
h, qh)Ω − bh(δt e

i
h, qh) + ch(ε i

h, qh)

= (gi, qh)Ω − C0(δt p̂i
h, qh)Ω + bh(δt (I k

hu
i), qh − π

0
Ω

qh) − ch(p̂i
h, qh)

= (gi, qh)Ω − δt
[
C0(p̂i

h, qh)Ω − (∇·ui, qh − π
0
Ω

qh)Ω
]
− ch(pi, qh)

= δt
[
C0(pi − p̂i

h, qh)Ω + (∇·ui − ∇·ui, qh − π
0
Ω

qh)Ω
]

= δt

[
C0(pi

− p̂i
h, qh)Ω + C0(π0

Ω
(pi − pi), qh)Ω + (φi − φ

i
, qh − π

0
Ω

qh)Ω
]
,

(4.52)
where, in order to pass to the last line, we have inserted ±δt pi into the first argument of the
first term in brackets in the third line, we have defined, according to (4.1e4.1e), φi B C0pi +∇·ui

for all 0 ≤ i ≤ N , and we have used the definition of the L2-projector π0
Ω
. Moreover, setting

p̂0h B 0, it follows from the initial condition (4.29c4.29c) and the boundary condition (4.1c4.1c) that

C0(ε0h, qh)Ω − bh(e0h, qh) = (φ0, qh)Ω = (φ0, qh − π
0
Ω

qh)Ω + C0(π0
Ω

p0, qh)Ω. (4.53)

For all 1 ≤ n ≤ N , summing (4.524.52) for 1 ≤ i ≤ n with the choice qh = τε
n
h, using (4.534.53), and

proceeding as in the second step of the proof of Proposition 4.114.11, leads to

C0‖ε
n
h‖

2
Ω
− bh(en

h, ε
n
h) +

1
2τ

(
‖zn

h‖
2
c,h − ‖z

n−1
h ‖2c,h

)
≤ C0(pn

− p̂n
h, ε

n
h)Ω + C0(π0

Ω
(pn − pn), εn

h)Ω + (φn − φ
n
, εn

h − π
0
Ω
εn

h)Ω, (4.54)

where zn
h B

∑n
i=1 τε

i
h if n ≥ 1 and z0h B 0. We bound the first term in the right-hand side of

(4.544.54) applying the Cauchy–Schwarz and Young inequalities followed by the approximation
result (4.464.46), yielding

C0(pn − p̂n
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n
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κ
C0 |pn |2Hk+1(Th ) +
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4
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2
Ω
. (4.55)

We estimate the second and third terms using the Cauchy–Schwarz and the Young inequalities
together with the time approximation result (4.84.8). Thus, we get

C0(π0
Ω
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Ω
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Ω
,

(4.56)

with η denoting a positive real number that will be fixed later on in the proof. The relation
obtained by plugging (4.554.55) and (4.564.56) into (4.544.54) reads
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0
Ω

p‖2H1((tn−1,tn )) + ητ‖φ‖
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H1((tn−1,tn );L2(Ω)) . (4.57)
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(iii) Estimate of ‖εn
h − π

0
Ω
εn

h‖
2
Ω
. We proceed as in the first step of the proof of Proposition

4.114.11. Using the inf-sup condition (4.274.27), (4.254.25) for all vh ∈ U k
h,D, the linearity of bh, the

mechanical equilibrium equation (4.29a4.29a), and (4.484.48), we get, for all 1 ≤ n ≤ N ,
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(4.58)

Moreover, the Lipschitz continuity of the stress-strain function (4.41a4.41a), the Cauchy–Schwarz
inequality, assumption (4.234.23) on the stabilization parameter γ together with (4.424.42), and the
second inequality in (4.214.21), lead to
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Therefore, plugging the previous bound and (4.494.49) into the last line of (4.584.58), yields
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Squaring and rearranging the previous relation and owing to C2
mn ≤ Clp as a consequence of

(4.424.42), it is inferred that
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(iv) Conclusion. Adding (4.504.50) to (4.574.57) with η = 4β2C−2mnC
2
lpC

6
eq, using (4.594.59), summing the

resulting equation over 1 ≤ n ≤ N , and multiplying both sides by 2τ, we obtain
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Finally, multiplying both sides of (4.604.60) by 2(C−2pj + 1)C̃ yields (4.474.47) with C = 2(C−2pj +
1)C̃2. �



Chapter 5

Poroelasticity with uncertain coefficients

This chapter contains some preliminary results on the numerical solution of the
Biot problem with random poroelastic coefficients in the context of uncertainty
quantification. It collects part of the ongoing work carried out during the nine
month internship at the BRGM that took place from January to September 2018.
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5.1 Introduction

The aim of this chapter is to study poroelasticity problems when the model coefficients
are uncertain. The interest of this type of hydro-mechanical coupled models is particularly
manifest in geosciences applications [123123, 126126, 150150, 151151], where subsurface fluid flows
induce a deformation of the rock matrix. We rely here on the linear Biot model [2727, 190190]
that describes the Darcean fluid flow in saturated porous media under the assumptions of
small deformations and small variations of the porosity and the fluid density. This model
depends on physical parameters that are poorly known justifying a stochastic description,
due to space heterogeneities, measurement inaccuracies, and sometimes the ill-posedness of
inverse problems inherent in parameter estimation techniques. Although there is an extensive
literature on the poroelasticity model (we mention in particular the comprehensive textbooks
[6161, 6868, 198198]) and its numerical approximation, to our knowledge few works have addressed
the role of uncertainty in a Biot’s formulation of hydromechanical coupling. In [5252, 122122]
the authors included uncertainty in one-dimensional consolidation analysis by incorporating
heterogeneity in the consolidation coefficient. The stochastic consolidation model has been
extended in [159159] to nonlinear uncertain soil parameters. Variability in the initial pore
pressure and in the heterogeneous hydraulic mobility has been considered in [6262] and [100100],
respectively. We also mention [6565], where a stochastic Galerkin approach is proposed to
solve the poroelasticity equations with randomness in all material parameters and tested on a
one-dimensional problem.

Uncertainty Quantification (UQ) methods have been developed in the last decades to take
into account the effect of random input quantities of a model on the quantity of interest. They
enable to obtain information on the model output that is richer than in a deterministic context,
since they provide the statistical moments (mean and variance), the probability distribution,
and the sensitivity analysis. Among the techniques designed for UQ in numerical models,
the stochastic spectral methods have received a considerable attention. The principle of these
methods is to decompose a random variable on suitable approximation bases. In particular,
Polynomial Chaos (PC) expansion represents the solution as a finite sum of orthogonal
polynomials. PC were initially introduced by Wiener [201201] and applied by Ghanem and
Spanos [112112] in mechanics and by Le Maître and Knio [137137] in fluid dynamics. They were
subsequently used to treat a large variety of problems, including elliptic models (e.g. [1010,
148148]), flow and transport in porous media (e.g. [110110, 111111]), thermal problems (e.g. [119119,
141141]), and hyperbolic systems (e.g. [192192]). In this chapter we focus on the non-intrusive
spectral projection method that only requires to use a deterministic solver as a black box
to construct the spectral expansion of the solution. Specifically, (i) a sparse grid allows to
efficiently sample the parametric space, (ii) the numerical code is run for each sample (offline
stage), and (iii) the model outputs at each sample are collected and assembled in order to
construct the spectral expansion of the solution.

The numerical solution of the poroelasticity coupled system requires a discretization
method able to (i) treat a complex geometry with polyhedral meshes and nonconform-
ing interfaces, (ii) handle possible heterogeneities of the poromechanical parameters, and
(iii) prevent localized pressure oscillations arising in the case of low-permeable and low-
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compressible porous media. We choose to discretize the poroelasticity problem using the
Hybrid High-Order–discontinuous Galerkin coupled method developed in Chapter 22, which
satisfies these requirements. The main contributions of this chapter are threefold. First, a
probabilistic framework is introduced to study the Biot model with uncertain coefficients.
Special attention is paid to providing a physically admissible set of poroelastic parameters.
Second, the well-posedness of the stochastic Biot model is proven at the continuous level.
Third, a non-intrusive polynomial chaos approach is implemented in order to investigate the
effect of the random poroelastic coefficients onto the displacement and the pressure fields for
two test cases.

The material is organized as follows. In Section 5.25.2 we present the poroelasticity model
and identify the relations between the poromechanical coefficients allowing to express the
constrained specific storage coefficient as a function of the other parameters and deterministic
primary variables. In Section 5.35.3 we introduce the probabilistic framework and investigate
how the uncertainty of the model parameters propagates on the storage coefficient. In
Section 5.45.4 we present the linear poroelasticity problem with random coefficients in strong
and weak form. We then give the assumptions on the random model parameter yielding
the well-posedness of the variational problem. In Section 5.55.5 we outline the features of the
polynomial chaos expansion and of the pseudo-spectral projection method. This procedure
allows to reduce the stochastic problem to a finite ensemble of parametric deterministic
problems discretized by the HHO–dG scheme. Finally, we present numerical results in
Section 5.65.6 to illustrate the performance of the method and to perform the sensitivity analysis.

5.2 The Biot model
In this section we introduce the model problem and present some preliminary relations
between the coefficients characterizing the porous medium. The linear poroelasticity model,
usually referred as Biot model, consists of two coupled governing equations; one describing
the mass balance of the fluid and the other expressing the momentum equilibrium of the
porous medium.

5.2.1 Fluid mass balance
The fluid mass conservation law in a fully saturated porous medium reads

dt (ρfϕ) + ∇·(ρfϕv ) = ρfg, (5.1)

where dt denotes the time derivative, ρf [kg/m3] is the fluid density, ϕ [−] the soil porosity,
v [ms−1] the velocity field, and g [s−1] the fluid source. The state equation for slightly
compressible fluids (cf. [6161, Section 3.1] and [206206]) yields

dt ρf =
ρf
Kf

dt p, (5.2)

with p [Pa] the pore pressure and Kf > 0 [Pa] the fluid bulk modulus. Moreover, under
the assumptions of an isotropic and isothermal conditions, infinitesimal strains, and small
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relative variations of porosity, it is inferred, following [6161, Section 4.1], that the change of
the porosity is caused by a fluid and a mechanical effect as follows:

dtϕ =
1
M

dt p + αdt (∇·u ), (5.3)

where u [m] denotes the displacement field. We rely on the definitions of the Biot-Willis
coefficient α ∈ (0, 1] [−] and the Biot tangent modulus M > 0 [Pa−1] given in [6161, 6868]:

α B 1 −
Kd

Km
, M B

Km

α − ϕ
, (5.4)

with Kd, Km > 0 [Pa] denoting the bulk moduli of the drained medium and the solid matrix,
respectively. The coefficient α quantifies the amount of fluid that can be forced into the
medium by a variation of the pore volume for a constant fluid pressure, while M measures
the amount of fluid that can be forced into the medium by pressure increments due to the
compressibility of the structure. The case of a solid matrix with incompressible grains
(Km → +∞) corresponds to the limit value 1/M = 0. From (5.25.2) and (5.35.3) it follows that the
variation of fluid content in the medium is given by

dt (ρfϕ) = ϕdt ρf + ρfdtϕ = ρf
(
c0dt p + αdt (∇·u )

)
.

where, according to (5.25.2), (5.35.3), and (5.45.4) the constrained specific storage coefficient is
defined by

c0 B
α − ϕ

Km
+
ϕ

Kf
. (5.5)

Therefore, plugging the previous relation into (5.15.1) and assuming that the fluid density is
uniform in the medium, we obtain

c0dt p + αdt (∇·u ) + ∇·(ϕv ) = g, (5.6)

The fluid velocity is related to the pore pressure through the well-known Darcy’s law (see
for instance [6868, Section 4.1.2]). Consistent with the small perturbations hypothesis adopted
here, Darcy’s law can be considered in its simplest form

ϕv = −
K

µf
∇p,

where K [m2] is the tensor-valued intrinsic permeability and µf [Pa · s] is the fluid viscosity.
Thus, defining the hydraulic mobility as κ B K/µf, the mass conservation equation (5.65.6)
becomes

c0dt p + αdt (∇·u ) − ∇·(κ∇p) = g. (5.7)

For the sake of simplicity, we also assume in what follows that the mobility field is isotropic
and strictly positive, namely κ = κI d , with κ > 0.
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5.2.2 Momentum balance
The momentum conservation equation under the quasi-static assumption, namely when the
inertia effects in the elastic structure are negligible, reads

−∇·σ̃ = f , (5.8)

where σ̃ [Pa] denotes the total stress tensor and f [Pa/m] is the loading force (e.g. gravity).
Owing to the Terzaghi’s decomposition [190190], the stress tensor is modeled as the sum of an
effective term (mechanical effect) and a pressure term (fluid effect), yielding

σ̃ = σ (∇su ) − αpI d, (5.9)

where I d is the identity matrix. The symmetric part of the gradient of the displacement field
∇su measures the strain accordingly to the small deformation hypothesis. In the context of
linear isotropic poroelasticity, the soil mechanical behavior is described through the Cauchy
strain-stress relation defined, for all ε ∈ Rd×d

sym , by

σ (ε ) = 2µε + λ tr(ε )I d = 2µ dev(ε ) + K tr(ε )I d, (5.10)

where µ > 0 [Pa] and λ > 0 [Pa] are the Lamé’s coefficients, K = 2µ/d + λ [Pa] is the bulk
modulus, and

tr(ε ) B
d∑

i=1
ε ii, dev(ε ) B ε −

tr(ε )I d

d

are the trace and deviator operator, respectively. As noted in [2222, 2828], physical and experi-
mental investigations suggest that the mechanical behavior of porous solids may be nonlinear.
More general stress-strain relations could substitute the linear law (5.105.10), as we have done in
Chapter 33 and 44. Plugging (5.105.10) and (5.95.9) into (5.85.8), leads to

−∇·
(
2µ∇su + (λ∇·u − αp)I d

)
= f . (5.11)

Finally, we mention the Gassmann equation (cf. [103103, 150150]), that relates the bulk moduli K
and Kd to the Biot–Willis and storage coefficients α, c0:

α2 = c0(K − Kd). (5.12)

5.2.3 Constrained specific storage coefficient
Investigating the relations between the poroelastic coefficients, we propose to express the
specific storage coefficient c0 as a function of other physical parameters. Using (5.45.4) to
express the drained bulk modulus Kd as a function of α and Km, then plugging into (5.125.12),
leads to

Km =
Kc0 − α2

c0(1 − α)
. (5.13)
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Plugging the previous equation into (5.55.5) and rearranging, yields the following second-order
equation in c0:

Kc20 −
(
α + αϕ +

ϕK
Kf
− ϕ

)
c0 +

α2ϕ

Kf
= 0. (5.14)

The parameters ϕ, Kf, K , and α are then used to evaluate c0 by solving the previous equation.
Some conditions need to be prescribed in order to avoid non-physical solutions. Owing to the
definition of the Biot–Willis coefficient as a volume change ratio, it holds that 0 ≤ ϕ ≤ α ≤ 1.
As observed in [206206, Section 3], a stricter lower bound can be imposed, namely

3ϕ
2 + ϕ

≤ α. (5.15)

Lemma 5.1 (Existence). Let Kf, K > 0, and ϕ, α satisfy condition (5.155.15). Then, there exists
a unique c0 ∈ R+ solution of (5.145.14).

Proof. We prove existence by assessing the positivity of the discriminant D associated to
(5.145.14). Computing D and rearranging, leads to

D =

(
α + αϕ +

ϕK
Kf
− ϕ

)2
−
4α2ϕK

Kf

= ϕ2 (K/Kf − 1)2 + 2αϕ
(
1 + ϕ − 2α

)
(K/Kf − 1) + α2(1 − ϕ)2

=
[
ϕ (K/Kf − 1) + α(1 + ϕ − 2α)

]2
+ α2(1 − ϕ)2 − α2(1 + ϕ − 2α)2

=
[
ϕ (K/Kf − 1) + α(1 + ϕ − 2α)

]2
+ 4α2(1 − α)(α − ϕ).

Since 0 ≤ ϕ < α ≤ 1 owing to (5.155.15), the second term in the previous sum is positive and,
as a result, D ≥ 0. �

Remark 5.2. The previous lemma yields the existence of two real solutions c−0 ≤ c+0 . We
consider c+0 as the unique solution to (5.145.14) because, for admissible values of (K, Kf, ϕ, α),
we might have c−0 < ϕ/Kf violating (5.55.5). For instance, this is the case if α = 2ϕ/(1+ϕ) for any
φ ≤ 3/4 and K, Kf > 0.

5.3 Probabilistic framework
In many applications, only limited information about the poroelastic coefficients in (5.75.7) and
(5.115.11) is available. In the context of geomechanics, even when it is possible to carry out a
large number of measurements, the actual knowledge of the soil properties tipically suffers
from inaccuracy. Indeed, due to the presence of different layers, the physical properties
can have strong variations that are difficult to estimate. Accounting for uncertainties is
therefore a fundamental issue that we propose to treat in a probabilistic framework. In this
section we present the probabilistic setting and we perform some preliminary investigations
on the possible choices to parametrize the model coefficients. In this chapter we adopt the
notations of [1010, 1212, 2424, 5353]. Thus, Ω denotes the probability space for the parametrization
of uncertainty, while the physical domain is denoted by D.
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5.3.1 Notations and basic results
Let n ∈ N and X ⊂ Rn a be measured set. Spaces of functions, vector fields, and tensor fields
defined over X are respectively denoted by italic capital, boldface Roman capital, and special
Roman capital letters. Thus, for example, L2(X ), L2(X ), L2(X ) denote the spaces of square
integrable functions, vector fields, and tensor fields over X respectively. We introduce an
abstract probability space (Θ,B,P), where Θ is the set of possible outcomes, B a σ-algebra
of events, and P : B → [0, 1] a probability measure. For any random variable h : Θ → R
defined on the abstract probability space, the expectation of h is

E(h) B
∫
Θ

h(θ)dP (θ).

We assume hereafter that all random quantities are second-order ones, namely they belong to

L2
P

(Θ) B
{
h : Θ→ R : E(h2) < +∞

}
.

We further introduce a parametrization of the random input data using a random vector
ξ = (ξ1, · · · , ξN ) : Θ → Ω B [−1, 1]N such that, for all i ∈ {1, · · · , N }, ξi ∈ L2

P
(Θ). For

convenience, the random variables ξi are assumed mean zero and independent, so that the
probability law Pξ of ξ factorizes. We denote by Bξ the Borel σ-algebra on Ω and by
(Ω,Bξ,Pξ ) the image probability space. If, furthermore, each random variable ξi possesses
the density function ρi : [−1, 1]→ [0,+∞), we may define the space of second-order random
variables on (Ω,Bξ,Pξ ) as the weighted Lebesgue space L2

ρ(Ω), where the weight function

ρ(ξ ) B
n∏

i=1
ρi (ξi)

is the joint density function of ξ . The expectation operator on the image space is denoted
using brackets and is related to the expectation on (Θ,B,P) through the identity

〈h〉 B
∫
Ω

h(ω)ρ(ω)dω =
∫
Θ

h(ξ (ω))dP (ω) = E(h ◦ ξ ).

The variance operator of h ∈ (Ω,Bξ,Pξ ) is then defined by

Var(h) B
〈
(h − 〈h〉)2

〉
.

Let D ⊂ Rd , d ∈ {2, 3}, denote the spatial domain occupied by the porous medium. For a
given vector space V (D) of real-valued functions on D, equipped with the norm ‖ · ‖V (D), we
also define the Bochner space of second-order random fields by

L2
ρ(Ω,V (D)) B

{
v : D ×Ω→ R : ‖v‖L2

ρ (Ω,V (D)) B
〈
‖v‖2V (D)

〉 1
2 < ∞

}
.
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Figure 5.1: Left: Scatter plot of 5000 realizations (µ, λ) for K ∼ U ([1, 20]) GPa and ν ∼ U ([0.1, 0.4]). Right:
Scatter plot of 5000 realizations (K, ν) for µ ∼ U ([1, 10]) GPa and λ ∼ U ([2, 20]) GPa.

5.3.2 Uncertain poroelastic coefficients
In order to account for the uncertainty of the poroelastic material we model the Lamé’s
constants, the Biot–Willis coefficient, and the hydraulic mobility as spatially varying ran-
dom fields depending on the finite-dimensional noise ξ . We represent the random fields
(µ, λ, α, κ) : (x, ξ ) ∈ D×Ω→ R4, as affine combinations of the parameters (ξ1, · · · , ξN ) ∈ Ω:

µ(x, ξ ) B µ0(x) +
N∑

i=1
µi (x)ξi, λ(x, ξ ) B λ0(x) +

N∑
i=1

λi (x)ξi,

α(x, ξ ) B α0(x) +
N∑

i=1
αi (x)ξi, κ(x, ξ ) B κ0(x) +

N∑
i=1

κi (x)ξi .

(5.16a)

Onewell-established approach yielding such functional dependence on the randomparametriza-
tion is the truncated Karhunen–Loéve expansion [142142, 180180]. According to the results pre-
sented in Section 5.2.35.2.3, the constrained specific storage coefficient c0 is dependent of the
elastic moduli λ, µ and the coupling Biot coefficient α (see also [6060, 114114] for theoretical and
empirical investigations on the storage coefficient). Therefore, we let

c0(x, ξ ) B c0(µ(x, ξ ), λ(x, ξ ), α(x, ξ )). (5.16b)

In practice, the choice of the elastic parameters describing the mechanical properties of
the medium is mostly one of convenience. For instance, one might be interested in the Young
modulus E (e.g. in [128128]), or the bulk modulus K , and the Poisson ration ν (e.g. in [6060, 173173])
instead of µ and λ. For the sake of simplicity, here we choose the Lamé’s coefficients as
primary variables to avoid dealing with nonlinear parametrization of the model coefficient
inducing a warping of the (µ, λ) admissible set as depicted in Figure 5.15.1. However, using
the truncated Karhunen–Loéve or Polynomial Chaos expansions, it is possible to obtain a
parametrization of the model parameter in the affine combination form (5.16a5.16a) even if the
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Figure 5.2: Distribution of the bulk modulus K (left) and the Poisson ration ν (right) corresponding to 106
realizations for µ ∼ U ([1, 10])GPa and λ ∼ U ([2, 20])GPa.

distributions of other elastic moduli are given as entry data. In order to assess the effect of
the perturbation of the Lamé’s coefficients (µ, λ) as in (5.16a5.16a) on the couple (K, ν), one can
use the relations

K =
2
d
µ + λ and ν =

λ

2(µ + λ)
.

We notice that taking (µ, λ) as uniformly distributed primary mechanical variables, neces-
sarily yields non-uniform distribution of (K, ν) as illustrated in Figure 5.25.2.

In what follows we investigate the effect of the parametrization (5.16b5.16b) of c0 on its
probability distribution. We consider the poromechanical coefficients illustrated in Table 5.15.1.
They are inspired from [173173, Table 1], [206206, Section 3], and [6161, Table 4.1], and corresponds
to two different layers of an ideal sandstone soil. Since in geophysical applications the fluid
bulk modulus and the porosity are usually measurable with sufficient precision, we assume
that Kf and ϕ are deterministic quantities, whereas λ, µ, and α are random variables with
uniform distribution, whose ranges are reported in Table 5.15.1 As a particular case of (5.16a5.16a),

Water filled sandstone Water filled deep sand
Kf 2.2GPa 2.2GPa
ϕ 10% 30%
µ U ([1, 10]) GPa U ([5, 80]) KPa
λ U ([2, 20]) GPa U ([12, 150]) KPa

Table 5.1: Poromechanical properties

we consider homogeneous random Lamé’s, and Biot–Willis coefficients are defined such that

µ(ξ ) =
µmax + µmin

2
+ ξ1

µmax − µmin

2
,

λ(ξ ) =
λmax + λmin

2
+ ξ2

λmax − λmin

2
,

α(ξ ) =
3ϕ

2 + ϕ
+ ξ3

2(1 − ϕ)
2 + ϕ

,
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Figure 5.3: Distribution of 105 realizations of c0 obtained by solving (5.145.14) with uniformly distributed random
input coefficients λ, µ, and α.

where ξ ∈ Ω = [0, 1]3 is a vector of three i.i.d. uniform variables. For each realization
of ξ , we solve (5.145.14) in order to compute c0. We are interested in assessing how the
uncertainty on this input parameters propagates on c0. In Figure 5.35.3 we plot the histograms
and probability density functions of c0 corresponding to 105 realizations of ξ considering
the poromechanical coefficients of Table 5.15.1. In particular we observe that the computed
probability density function (obtained with kernel density estimation) of c0 is far from being
uniform.

5.4 The Biot problem with random coefficients

In this section we present the linear poroelasticity problem, give the assumptions on the
random parameters, derive a weak formulation, and prove its well-posedness.

5.4.1 Strong and weak formulation

The Biot problem consists in finding a vector-valued displacement field u and a scalar-valued
pressure field p solutions of (5.75.7) and (5.115.11). We now consider the stochastic version obtained
by taking random poroelastic coefficients as in (5.165.16). We assume that D ⊂ Rd is a bounded
connected polyhedral domain with boundary ∂D and outward normal n. In order to close
the problem, we enforce boundary conditions corresponding to a medium that is clamped on
ΓD ⊂ ∂D, traction-free on ΓN B ∂D \ ΓD, permeable with free drainage on Γd ⊂ ∂D, and
impermeable on Γn B ∂D \ Γd , as well as an initial condition prescribing the initial fluid
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content φ0. For a given finite time tF > 0, the resulting problem is given by

−∇·σ (x, ξ, t) + ∇(α(x, ξ )p(x, ξ, t)) = f (x, t), (x, ξ, t) ∈ D ×Ω × (0, tF], (5.17a)
dtφ(x, ξ, t) − ∇·(κ (x, ξ )∇p(x, ξ, t)) = g(x, t), (x, ξ, t) ∈ D ×Ω × (0, tF], (5.17b)

u (x, ξ, t) = 0, (x, ξ, t) ∈ ΓD ×Ω × (0, tF], (5.17c)
σ (x, ξ, t)n + α(x, ξ )p(x, ξ, t))n, = 0 (x, ξ, t) ∈ ΓN ×Ω × (0, tF], (5.17d)

p(x, ξ, t) = 0, (x, ξ, t) ∈ Γd ×Ω × (0, tF], (5.17e)
κ (x, ξ )∇p(x, ξ, t) · n = 0, (x, ξ, t) ∈ Γn ×Ω × (0, tF], (5.17f)

φ(x, ξ, 0) = φ0(x), (x, ξ ) ∈ D ×Ω, (5.17g)

where the stress tensor in (5.17a5.17a) and (5.17d5.17d), and the fluid content in (5.17b5.17b) and (5.17g5.17g),
are defined, for all (x, ξ, t) ∈ D ×Ω × (0, tF], such that

σ (x, ξ, t) = 2µ(x, ξ )∇su (x, ξ, t) + λ(x, ξ )(∇·u (x, ξ, t))I d, (5.17h)
φ(x, ξ, t) = c0(x, ξ )p(x, ξ, t) + α(x, ξ )∇·u (x, ξ, t). (5.17i)

If ΓN = Γd = ∅ and c0 = 0, owing to (5.17b5.17b) and the homogeneous Neumann condi-
tion (5.17f5.17f), we need the following compatibility conditions on g and φ0 and zero-average
constraint on p:∫

D
φ0(·) = 0,

∫
D
g(·, t) = 0, and

∫
D

p(·, ·, t) = 0 ∀t ∈ (0, tF ). (5.17j)

Without loss of generality, we exclude the case of ΓD with zero (d−1)-dimensional Hausdorff
measure. Indeed, this situation would simply require a compatibility condition on f and the
prescription of the rigid-bodymotions of themedium. We remark that other types of boundary
conditions, such as inhomogeneous ones, can also be considered up to minor modifications.

Before giving the variational formulation of problem (5.175.17), we introduce some notations.
Let n ∈ N and X ⊂ Rn a be measured set. For any m ∈ N, we denote by Hm(X ) the usual
Sobolev space of functions that have weak partial derivatives of order up to m in L2(X ),
with the convention that H0(X ) B L2(X ), while Cm(X ) and C∞c (X ) denote, respectively,
the usual spaces of m-times continuously differentiable functions and infinitely continuously
differentiable functions with compact support on X . Since the Biot problem is non-stationary,
we also need to introduce, for a vector space V with scalar product (·, ·)V , the Bochner space
L2((0, tF);V ) spanned by square integrable V -valued functions of the time interval (0, tF).
Similarly, the Hilbert space H1(V ) B H1((0, tF);V ) is spanned by V -valued functions of
the time interval having first-order weak derivative, and the norm ‖·‖H1(V ) is induced by the
scalar product

(φ, ψ)H1(V ) =

∫ tF

0
(φ(t), ψ(t))V + (dtφ(t), dtψ(t))Vdt ∀φ, ψ ∈ H1(V ).

At each time t ∈ (0, tF], the natural functional spaces for the random displacement field
u (t) : D × Ω → Rd and pressure field p(t) : D × Ω → R taking into account the boundary
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conditions (5.17c5.17c)–(5.17f5.17f) are, respectively,

U B L2
ρ(Ω,H1

0,ΓD (D)),

P B



L2
ρ(Ω, H1(D) ∩ R(D)⊥) if Γd = ΓN = ∅ and c0 = 0,

L2
ρ(Ω, H1

0,Γd (D)) otherwise,

with H1
0,ΓD (D) B

{
v ∈ H1(D) : v |ΓD = 0

}
, H1

0,Γd (D) B
{
q ∈ H1(D) : q|Γd = 0

}
, and

R(D)⊥ B
{

q ∈ L2(D) :
∫

D
q = 0

}
.

We consider the following weak formulation of problem (5.175.17): For a loading term f ∈
L2((0, tF),L2(D)), a fluid source g ∈ L2((0, tF), L2(D)), and an initial datum φ0 ∈ L2(D)
that verify (5.17j5.17j), find u ∈ L2((0, tF),U ) and p ∈ L2((0, tF), P) such that, for all v ∈ U , all
q ∈ P, and all ψ ∈ C∞c ((0, tF))∫ tF

0
a(u (t), v ) ψ(t)dt +

∫ tF

0
b(v, p(t)) ψ(t)dt =

∫ tF

0

〈
( f (t), v )D

〉
ψ(t)dt,

(5.18a)∫ tF

0

[
b(u (t), q) − c(p(t), q)

]
dtψ(t)dt +

∫ tF

0
d(p(t), q) ψ(t)dt =

∫ tF

0
〈(g(t), q)D〉ψ(t)dt,

(5.18b)
c(p(0), q) − b(u (0), q) = 〈(φ0, q)D〉 , (5.18c)

where (·, ·)D denotes the usual inner product in L2(D) and the bilinear forms a : U ×U → R,
b : U × P → R, and c : P × P → R are defined such that, for all v, w ∈ U and all q, r ∈ P,

a(v, w ) B
∫
Ω

∫
D

(
2µ(x, ξ )∇sv (x, ξ ) : ∇sw (x, ξ ) + λ(x, ξ )∇·v (x, ξ )∇·w (x, ξ )

)
ρ(ξ ) dxdξ,

b(v, q) B −
∫
Ω

∫
D
α(x, ξ )∇·v (x, ξ )q(x, ξ )ρ(ξ ) dxdξ,

c(q, r) B
∫
Ω

∫
D

c0(x, ξ )q(x, ξ )r (x, ξ )ρ(ξ ) dxdξ,

d(q, r) B
∫
Ω

∫
D
κ(x, ξ )∇r (x, ξ ) · ∇q(x, ξ )ρ(ξ ) dxdξ .

Above, we have introduced the Frobenius product such that, for all τ, η ∈ Rd×d , τ : η B∑
1≤i, j≤d τi jηi j with corresponding norm such that, for all τ ∈ Rd×d , |τ |d×d B (τ : τ)1/2.

5.4.2 Well-posedness
The aim of this section is to infer a stability estimate on the displacement and pressure (u, p) ∈
L2((0, tF),U )×L2((0, tF), P) solving (5.185.18), yielding, in particular, the well-posedness of the
weak problem. The existence and uniqueness of a solution to the deterministic Biot problem
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has been studied in [181181, 205205]. The results therein establish the existence for a.e. ξ ∈ Ω
of a solution (u (ξ ), p(ξ )) to (5.175.17). Thus, proving that the mapping ξ → (u (ξ ), p(ξ )) is
measurable and bounded in L2

ρ(Ω) gives the existence of a solution to (5.185.18).
We give some additional conditions on the input random fields defined in (5.165.16) that will

be needed in the proofs. First, we recall that, for all x ∈ D and all ξ ∈ Ω the coupling
coefficient α(x, ξ ) ∈ (0, 1] satisfy the lower bound (5.155.15). We assume that the reference
porosity of the medium is strictly positive (otherwise the Biot problem would reduce to a
decoupled one), so that we have 0 < α B

3ϕ
2+ϕ < α(x, ξ ). We also assume that the Lamé’s

coefficients satisfies the following:
Assumption 5.3 (Elastic moduli). The shear modulus µ ∈ L∞(D ×Ω) is uniformly bounded
away from zero, i.e. there exist positive constants µ and µ such that

0 < µ ≤ µ(x, ξ ) ≤ µ < ∞, a.e. in D ×Ω. (5.19)

The dilatation modulus λ ∈ L∞(D×Ω) is uniformly bounded, i.e. there exist λ > 0 such that

0 < λ(x, ξ ) ≤ λ < ∞, a.e. in D ×Ω. (5.20)

The next result establishes the coercivity and the inf-sup condition respectively of the
bilinear form a and b appearing in (5.18a5.18a).
Lemma 5.4 (Coercivity and inf-sup). If Assumption 5.35.3 is valid, the following bounds hold

a(v, v ) ≥ 2µ C−1K ‖v ‖
2
U, ∀v ∈ U, (5.21)

sup
0,v∈U

b(v, q)
‖v ‖U

≥ α Cis‖q‖L2
ρ (Ω,L2(D)), ∀q ∈ L2

ρ(Ω, L2(D)), (5.22)

whereCK > 0 denotes the constant in Korn’s first inequality, andCis > 0 the inf-sup constant.
In the case ΓD = ∂D, (5.225.22) holds for all q ∈ L2

ρ(Ω, L2(D) ∩ R(D)⊥).

Proof. The first bound directly follows from Assumption 5.35.3. Indeed, since |ΓD |d−1 > 0, we
can apply Korn’s first inequality, yielding

2µ‖∇v ‖2
L2
ρ (Ω,L2(D)) ≤ 2µCK

〈
‖∇sv ‖

2
L2(D)

〉
≤ CKa(v, v ), ∀v ∈ U .

Toobtain (5.225.22), we use [2424, Lemma7.2] establishing the existence, for any q ∈ L2
ρ(Ω, L2(D))

(or q ∈ L2
ρ(Ω, L2(D) ∩ R(D)⊥) in the case Γd = ∂D), of vq ∈ U such that ∇·vq = q and

Cis‖vq‖U ≤ ‖q‖L2
ρ (Ω,L2(D)), with Cis > 0 depending on D. Thus, we conclude

sup
0,v∈U

b(v, q)
‖v ‖U

≥
−b(vq, q)
‖vq‖U

≥

α‖q‖2
L2
ρ (Ω,L2(D))

‖vq‖U
≥ α Cis‖q‖L2

ρ (Ω,L2(D)) .

�
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In order to prove the stability estimate of Proposition 5.55.5, we infer from (5.195.19) and (5.205.20)
a lower bound of the specific storage coefficient c0. We rewrite (5.135.13), derived from the
definition of α in (5.45.4) and the Gassmann equation (5.125.12), in the form

(1 − α)(Km − K )
α

= K −
α

c0
.

Since the left-hand side of the previous relation is always positive (according to [6161, Chapter
4] we have Kd ≤ K ≤ Km), we infer that α/c0 ≤ K and, as a result,

c−10 (x, ξ ) ≤
K (x, ξ )
α(x, ξ )

=
2µ(x, ξ ) + dλ(x, ξ )

dα(x, ξ )
≤

2µ + dλ
dα

a.e. in D ×Ω. (5.23)

Proposition 5.5 (A priori estimate). Let (u, p) ∈ L2((0, tF),U × P) solve (5.185.18). Under
Assumption 5.35.3, there holds∫ tF

0
a(u (t), u (t)) + c(p(t), p(t))dt ≤

∫ tF

0
*
,

CK

2µ
‖ f ‖2L2(D)

+
2µ + dλ

dα
‖G‖2L2(D)

+
-
dt, (5.24)

with G : (0, tF) → L2(D) defined by G(t) B
∫ t
0 g(s)ds + φ0.

Proof. From (5.18a5.18a) we infer that a(u (t), v ) + b(v, p(t)) =
(
f (t), 〈v〉

)
D, for a.e. t ∈ (0, tF)

and all v ∈ U . Setting v (x, ξ ) = u (x, ξ, t) and integrating the previous relation on (0, tF),
yields ∫ tF

0
a(u (t), u (t))dt +

∫ tF

0
b(u (t), p(t))dt =

∫ tF

0

(
f (t), 〈u (t)〉

)
D dt. (5.25)

Adapting the argument of Remark 4.24.2 we ensure that b(u (t), q)− c(p(t), q) ∈ H1((0, tF)) for
all q ∈ P. Thus, we can integrate by parts (5.18b5.18b) and obtain

dt
[
c(p(s), q) − b(u (s), q)

]
+ d(p(s), q) =

(
g(s), 〈q〉

)
D , for a.e. s ∈ (0, tF).

Letting t ∈ (0, tF), integrating the previous identity on (0, t), and then taking q(x, ξ ) =
p(x, ξ, t), leads to

c(p(t), p(t)) − b(u (t), p(t)) +
∫ t

0
d(p(s), p(t))ds =

∫ t

0

(
g(s), 〈p(t)〉

)
D ds +

(
φ0, 〈p(t)〉

)
D .

We define z(t) =
∫ t
0 p(s)ds and observe that dt z(t) = p(t) and z(0) = 0. Owing to the

linearity of d and to the formula dt z2(t) = 2z(t)dt z(t), we can rewrite the third term in the
left hand side of the previous relation and get

c(p(t), p(t)) − b(u (t), p(t)) +
1
2
dt [d(z(t), z(t))] =

(
G(t), 〈p(t)〉

)
D ds,
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with G(t) =
∫ t
0 g(s)ds + φ0. Then, integrating on (0,T ) and summing the resulting identity

to (5.255.25), gives∫ tF

0
a(u (t), u (t))dt +

∫ tF

0
c(p(t), p(t))dt +

1
2

d(z(tF), z(tF)) =∫ tF

0

(
f (t), 〈u (t)〉

)
D dt +

∫ tF

0

(
G(t), 〈p(t)〉

)
D dt. (5.26)

To establish the result, we now bound the right-hand side of the previous relation. Since
‖〈v〉‖L2(D) ≤ ‖v ‖U for all v ∈ U , using the Cauchy–Schwarz and Young inequalities followed
by (5.215.21), it is inferred that∫ tF

0

(
f (t), 〈u (t)〉

)
D dt ≤

∫ tF

0
(2µC−1K )−1/2‖ f ‖L2(D) (2µC−1K )1/2‖u ‖Udt

≤
CK

4µ

∫ tF

0
‖ f ‖2L2(D)dt +

1
2

∫ tF

0
a(u (t), u (t))dt.

Proceeding similarly for the second term in the right-hand side of (5.265.26) and recalling the
lower bound (5.235.23), one has∫ tF

0

(
G(t), 〈p(t)〉

)
D dt ≤

2µ + dλ
2dα

∫ tF

0
‖G‖2L2(D)dt +

1
2

∫ tF

0
c(p(t), p(t))dt.

Plugging the previous two estimate in (5.265.26), multiplying by a factor 2, and owing to
d(z(tF), z(tF)) ≥ 0, yields the conclusion. �

We observe that it is possible to derive the previous a priori estimate without (5.235.23).
Indeed the inf-sup condition (5.225.22) together with (5.18a5.18a) allows to bound the second term in
the right-hand side of (5.265.26) using the following: for a.e. t ∈ (0, tF),

‖p(t)‖L2
ρ (Ω,L2(D)) ≤ (αCis)−1 sup

0,v∈U

b(v, p(t))
‖v ‖U

= (αCis)−1 sup
0,v∈U

( f (t), 〈v〉)D − a(u (t), v )
‖v ‖U

≤
1

αCis
‖ f (t)‖L2(D) +

(2µ + dλ)1/2

d1/2αCis
a(u (t), u (t))1/2.

The resulting stability estimate would have, compared to (5.245.24), an additional dependence on
αCis. We conclude the section with two important remarks.
Remark 5.6 (Quasi-incompressible media). In order to prove the stability estimate (5.245.24) no
additional assumption on the mobility κ : D × Ω → R+ is required. Thus, Proposition 5.55.5
can handle the case of locally poorly permeable media (i.e. κ → 0). However, assuming
(5.205.20) does not allow to consider quasi-incompressible materials for which λ → +∞. To
obtain a robust estimate in the case of λ unbounded, we can proceed as in [130130, Theorem 1].
Assuming f ∈ H1((0, tF),L2(D)) and κ uniformly bounded away from zero, the Darcy term
gives a L2((0, tF), P) estimate of the pressure and, as a consequence, (5.205.20) is not needed.
We remark that, in a medium featuring very low permeability, an incompressible fluid cannot
flow unless the material is compressible. Therefore, the two limit cases κ → 0 and λ → +∞
cannot occur simultaneously.
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Remark 5.7 (Weaker assumptions). Thewell-posedness of problem (5.185.18) holds underweaker
assumption on µ and λ. More precisely, one can assume instead of (5.195.19) and (5.205.20), that
ρ-a.e. in Ω there holds

0 < µ(ξ ) ≤ µ(x, ξ ) ≤ µ(ξ ) < ∞, 0 ≤ λ(x, ξ ) ≤ λ(ξ ) < ∞ a.e. in D ×Ω,

where µ(ξ ), µ(ξ ), and λ(ξ ) are second-order random variables. An assumption of this
type is convenient when λ is an unbounded (e.g. Gaussian or lognormal) random variable at
x ∈ D. See [1111, Lemma 1.2] and [5353] for a discussion in the context of elliptic PDEs with
random data.

5.5 Discrete setting
In this section we introduce polynomial chaos expansions and outline the construction of the
Pseudo-Spectral Projection (PSP) algorithm. The PSP method is one of the so-called non-
intrusive techniques, which essentially amount to performing an ensemble of deterministic
model simulation to estimate the expansion coefficients. In the numerical tests of Section 5.65.6
each simulation is performed by solving the discrete problem of Section 2.2.52.2.5.

5.5.1 Polynomial chaos expansion

Let us denote {φk (ξ ), k ∈ NN } an Hilbertian basis of L2
ρ(Ω), where φk is a multivariate

polynomial in ξ and k = (k1, · · · , kN ) is a multi-index indicating the polynomial degree in
the ξi’s. The total degree of φk is denoted |k | B

∑N
i=1 ki. Let X (ξ ) ∈ L2

ρ(Ω) be a second-
order random variable, then it admits the so-called Polynomial Chaos expansion (PCE) [112112,
136136],

X (ξ ) =
∑
k∈NN

Xkφk (ξ ), Xk B 〈X, φk〉 =
∫
Ω

X (ξ )φk (ξ )ρ(ξ )dξ, (5.27)

where the deterministic coefficients of the series {Xk }, named the spectral modes, are defined
as the projection of X (ξ ) onto the basis functions. The PC approximation XK (ξ ) of X (ξ ) is
obtained by truncating the expansion above to a finite series,

XK (ξ ) B
∑
k∈K

Xkφk (ξ ), (5.28)

where K ⊂ NN is the set of multi-indices related to the expansion. The basis functions are
commonly chosen to be orthogonal with respect to the inner product in L2

ρ(Ω) characterized
by the probability density function ρ : Ω→ R+,∫

Ω

φk (ξ )φl (ξ )ρ(ξ )dξ = δk,l〈φ2k〉. (5.29)

For instance, Legendre and Hermite polynomials are used for uniform and Gaussian densities,
respectively (cf.[203203]). As a result, the expectation and variance operators applied to PC
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approximations simplify as follows:

〈XK 〉 = X0, (5.30)

Var(XK ) =
∑

k∈K \0
X2
k〈φ

2
k〉. (5.31)

The truncation strategy, i.e. the selection of the setK , depends on themethod used to compute
the spectral modes and the error eK (ξ ) := X (ξ ) − XK (ξ ) decreases when the PC degree
increases. The convergence rate of the PCE of X with respect to the PC degree depends on the
regularity of X . In particular, an exponential convergence is expected for analytical variables,
more details about the convergence conditions can be found in [4646, 9898]. Several methods
can be implemented to compute the spectral modes of the PC expansion [125125, 136136, 137137]
such as pseudo-spectral projection, least squares regression, and compressed sensing. These
procedures mainly differ in the specific discrete norm used for minimizing the truncation error
eK (ξ ). They are non-intrusively implemented by evaluating X (ξ ) at a finite number of values
of ξ (the design of experiments) and therefore require only the availability of a deterministic
solver. We focus here on the non-intrusive spectral projection [5858, 5959, 171171] approach designed
to avoid internal aliasing (the violation of the orthogonality condition (5.295.29) at the discrete
level). The spectral projection method uses a quadrature rule in order to compute the spectral
modes Xk by approximating (5.275.27),

Xk = 〈X, φk〉 '
Np∑
q=1

wq X (ξ (q))φk (ξ (q)), (5.32)

where {ξ (q)} and {wq} are the Np integration points and associated weights. The previous
equation shows that the main computational burden of the non-intrusive spectral projection
technique is to compute Np model evaluation for X (ξ ( j)). In traditional tensor-product
quadrature rules, Np scales exponentially with the number of parameter N (the so-called
"Curse of Dimensionality") and is intractable for all but very low dimensional problem. This
issue has motivated the use of sparse quadrature formulas, which significantly reduce the
computational cost.

5.5.2 Sparse Pseudo-Spectral Projection
In the numerical tests of Section 5.65.6, we rely on the sparse PSP method that is based
on the partial tensorization of nested one-dimensional quadrature rules via the Smolyak’s
formula [184184]. Consider Q1,Q2, · · · a nested sequence of 1-D quadrature formulas having
increasing polynomial exactness p1, p2, · · · , that is∫ 1

−1
F (ξ)ρ(ξ)dξ = Ql F =

Np (l)∑
q=1

F
(
ξ (q,l)

)
w

(q,l)
1D , ∀F ∈ Ppl ([−1, 1]),

where Np(l) is the number of points in the formula Ql and Ppl ([−1, 1]) denotes the space
spanned by polynomials of total degree pl . We call l the level of the formula Ql . Prescribing
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the multi-index l = (l1, · · · , lN ) ∈ NN , the full-tensor-product quadrature of an integrable
function F, can be written as follows:

QFT
l F B

(
Ql1 ⊗ · · · ⊗ QlN

)
F =

Np (l1)∑
q1=1

· · ·

Np (lN )∑
qd=1

F
(
ξ

(q1,l1)
1 , · · · , ξ

(qN ,lN )
N

)
w

(q1,l1)
1D · · ·w

(qN ,lN )
1D .

(5.33)
The previous quadrature rule can be used in (5.325.32) to compute the spectral modes Xk ,
using F = Xφk , for all k ∈ K . The complexity of QFT

l for such nested sequences is
Np(l) =

∏N
i=1 Np(li), and so it increases exponentially with N . Sparse grids mitigate this

complexity by first introducing the 1-D difference formulas between two successive level,
∆

Q
l = Ql −Ql−1, ∆Q

1 = Q1, such that (5.335.33) can be recast as

QFT
l F = *.

,

*.
,

l1∑
i1=1

∆
Q
i1

+/
-
⊗ · · · ⊗

*.
,

lN∑
iN=1

∆
Q
iN

+/
-

+/
-

F =
l1∑

i1=1
· · ·

lN∑
iN=1

(
∆

Q
i1
⊗ · · · ⊗ ∆

Q
iN

)
F =

∑
i∈LFT

l

∆Q
i F,

where LFT
l
= {i ∈ NN, i j ≤ l j for j = 1, · · · , d} is the multi-index set of full tensorizations.

The sparse quadrature rule QL is finally constructed by considering the summation over a
subset L of tensorized quadrature differences:

QLF =
∑
i∈L

∆Q
i F, L ⊂ LFT

l .

The set of tensorizations L must be admissible in the sense that the following condition
holds [108108, 109109]

∀ i = (i1, · · · , iN ) ∈ L : i1≤ j≤N > 1⇒ i − e j ∈ L,

where {e j, j = 1, · · · , N } is the canonical unit vectors of NN . This admissibility condition
is necessary to preserve the telescopic property of the sum of quadrature differences. In the
following, we denote by G(L) the set of nodes in the sparse grid,

G(L) B
⋃
i∈L

{(
ξ (q1,i1), · · · , ξ (qN ,iN )

)
, 1 ≤ qj ≤ Np(i j ), 1 ≤ j ≤ N

}
, Np(L) = |G(L) |,

where | · | is the cardinality of a set. A quadrature rule QL is said to be sufficiently exact with
respect to a polynomial multi-index set K when for any couple (k, k′) ∈ K × K , the basis
orthonormality conditions (5.295.29) are recovered using the discrete inner product defined, for
all X,Y ∈ L2

ρ(Ω), by
〈X,Y 〉QL B QL (XY ).

In the case of full-tensor quadratures, the largest set, K ∗(l), for which internal aliasing
errors vanish can be easily determined from the degrees of polynomial exactness of the 1-D
sequence, namely

K ∗(l) =
{
k ∈ NN : ki ≤ pli/2, i = 1, · · · , N

}
.
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An immediate consequence of using the sparse quadrature formula with L ⊂ LFT
l
, is that

QL is not sufficiently exact with respect toK ∗(l), as the sparse formula is not able to exactly
integrate the product of high-order monomials. We observe that the use of sparse quadrature,
while reducing the complexity (Np(L) �

∏N
j=1 Np(l j )), yields also a significant reduction

of the (not uniquely-defined) largest setK ∗(L) for which the quadrature is sufficiently exact.
The PSP method allows to consider polynomial spaces larger than K ∗(L), for the same

sparse grid G(L) and without introducing internal aliasing. Let {Πl }l≥1 denote the sequence
of 1-D projection operators associated to the sequence {Ql }l ≥ 1 of 1-D nested quadrature,
where

Πl : X (ξ) 7→ Πl X (ξ) B
pl/2∑
k=0

Xkφk (ξ) ∈ P
pl
2 ([−1, 1]), Xk =

Np (l)∑
q=1

X (ξ (q,l))φk (ξ (q,l))w(q,l)
1D .

Note that Πl≥1 is free of internal aliasing, owing to the dependence with l of the projection
spaces, which ensures that the quadrature is sufficiently exact. Consider for l ≥ 1 the
difference of successive 1-D projection operators ∆Πl>1 = Πl − Πl−1, ∆Π1 = Π1. It is
possible to write the full-tensor-product projection corresponding to the quadrature rule
given by (5.335.33) in terms of a sum of tensorized difference operators by observing that

ΠFT
l X B

∑
k∈K ∗(l)

QFT
l (Xφk )(ξ ) =

(
Πl1 ⊗ · · · ⊗ ΠlN

)
X

=

l1∑
i1=1
· · ·

lN∑
iN=1

(
∆
Π
i1 ⊗ · · · ⊗ ∆

Π
iN

)
X =

∑
i∈LFT

l

(
∆
Π
i1 ⊗ · · · ⊗ ∆

Π
iN

)
X .

The sparse PSPoperatorΠL is finally obtained by considering a summation over an admissible
subset L ⊂ LFT

l
of tensorized difference projection operators. This results in

ΠLX =
∑
i∈L

(
∆
Π
i1 ⊗ · · · ⊗ ∆

Π
iN

)
X . (5.34)

The key point is that the sparse PSP operator in (5.345.34) involves a telescopic sum of differences
in the projection onto subspaces of increasing dimensions, where each individual tensorized
quadrature projection is evaluated without internal aliasing. Moreover, ΠL belongs to the
span of {φk, k ∈ K (L)}, with K (L) =

⋃
i∈L K

∗(i). We have K (L) ⊇ K ∗(L) and the
projection space of the sparse PSP is usually significantly larger than that of the direct sparse
projection. Nevertheless, the twomethods have the same complexity relying both on the same
sparse grid G(L). Note, however, that the global sparse quadrature rule QL is generally not
sufficiently accurate with respect to K (L). The inclusion of the sets K (L) and K ∗(L) is
illustrated in Figure 5.45.4.

5.6 Test cases
We assess the performance of the PSP method detailed in the previous section on two model
problems. The first is an injection test designed to investigate the effect of a fluid source
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Figure 5.4: Comparison of polynomials multi-index sets K (L) (below the red line) and K ∗(L) (below
the blue line) using a quadrature rule QL in d = 2 dimensions. Points are multi-indices (k1, k2) such
F ∈ Pk1 ([−1, 1]) × Pk1 ([−1, 1]) is exactly integrated by QL .

on the deformation, while the second is particularly meant to evaluate the mechanical effect
of a traction term on the flux. Our numerical experiments feature a simplified model with
homogeneous random coefficients, namely the dependence of the spacial variable x in (5.165.16)
is dropped. More realistic models, requiring (possibly strongly correlated) spatially varying
input coefficients with non-standard distributions will be the object of future works. After
presenting the description of the test cases, we numerically investigate the convergence of the
probability error with respect to the level of the sparse grid. Finally, we perform a sensitivity
analysis in order to rank the contribution of the input parameters on the variance of the
solutions.

Our input uncertainty is parametrized by a vector ξ of dimension N = 4. In particular,
we assume that µ, λ, and κ have a log-uniform distribution, while α is uniformly distributed.
As proposed in Section 5.3.25.3.2, the specific storage coefficient c0 is evaluated from the other
uncertain input parameters. The advantage of this approach is twofold: (i) it ensures that
the set of poroelastic coefficients belong to the physical admissible set, and (ii) it allows to
reduce the uncertainty dimension and then the size of the sampling (i.e. number of sparse
grid points). Even if the experiments presented here are mainly academic model problem,
we try to consider realistic set of parameters and have a particular regard for the underlying
physical phenomena. The ranges of variation of the uncertain input data are inspired from an
ideal water filled sand soil with a ϕ = 20% reference porosity. In both tests we set

µ(ξ ) = 10(ξ1+1) KPa,
λ(ξ ) = 2 · 10(ξ2+1) KPa,

α(ξ ) =
3ϕ

2 + ϕ
+ ξ3

2(1 − ϕ)
2 + ϕ

,

κ(ξ ) = 10(ξ4−1) m2KPa−1s−1,

(5.35)
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with uniformly distributed (ξ1, . . . , ξ4) ∈ [−1, 1]4. This choice yields

〈µ〉 ∼ 21.5 KPa, 〈λ〉 ∼ 43 KPa, 〈α〉 ∼ 0.64, and 〈κ〉 ∼ 0.22
m2

KPa s
,

cv(µ) ∼ 1.16, cv(λ) ∼ 1.16, cv(α) ∼ 0.33, and cv(κ) ∼ 1.16,
(5.36)

where cv(·) B Var(·)1/2
〈·〉

denotes the coefficient of variation operator. In particular we observe
that the previous average values have the same magnitude than the coefficients considered
in [102102, Table 2]. Our choice leads to a specific storage coefficient c0 ranging in (10−3, 10−1).

5.6.1 Point injection
The first experiment is inspired by the Barry and Mercer test considered in Section 2.6.22.6.2
(see also [1414, 166166]). On the boundary of the unit square domain D = [0, 1]2 we impose the
following time-independent homogeneous boundary conditions

u · τ = 0, nT
∇un = 0, p = 0,

where τ denotes the tangent vector on ∂D. The loading force f and the initial condition φ0
respectively in (5.17a5.17a) and (5.17g5.17g) are chosen to be zero. The evolution of the displacement
and pressure fields solving (5.175.17) is only driven by a stationary fluid source located at
x0 = (0.25, 0.25):

g = 10 δ(x − x0),

with δ denoting the delta Dirac function. The following results have been obtained using the
HHO–dG coupled method with polynomial degree k = 3 on a Cartesian mesh containing
1,024 elements. Using the static condensation procedure detailed in Section 2.52.5, the spacial
discretization consists of 27,648 unknowns. We are interest in the stationary solution, namely
the pressure and displacement fields manifesting after the initial transient phase. Therefore,
we only focus on the configuration at the final time tF = 1s obtained after 10 time steps of
the implicit Euler scheme.

Figure 5.55.5 represents the two first PC statistical moments given by (5.305.30) and (5.315.31) of
the displacement and pressure solutions approximated using a level l = 5 sparse grid. We
plot the pressure field on the deformed configuration obtained by applying the displacement
to the reference unit square domain. As expected, we observe a dilatation of the domain
caused by the injection. The computed solutions are symmetric with respect to the diagonal
according to the source location and the homogeneous boundary conditions. The pressure
mean field exhibits maximum values around the source, while no perturbation is observed
near the boundary. The pressure variance field has the same behavior as the mean, with
higher values close to the injection point. Moreover, we notice that the magnitude of the
standard deviation (i.e. the square root of the variance) is comparable to the mean field range.

5.6.2 Poroelastic footing
As second example, we consider the 2D footing problem of [102102, 155155]. The simulation
domain is a unit square porous soil that is assumed to be free to drain and fixed at the base
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Figure 5.5: Pressure plotted on the deformed domain at t = tF = 1 (data are in KPa). Mean (Left) and Variance
(Right) of the PSP method with level l = 5 and Np (l) = 2561.

and at the vertical edges. A uniform load is applied at some part of the upper boundary
ΓN = {x = (x1, x2) ∈ ∂D : x2 = 1} simulating a footing step compressing the medium.
Thus, the boundary conditions data are given as follows:

σn = (0,−5) KPa on ΓN,1 B {x = (x1, x2) ∈ ∂D : 0.3 ≤ x1 ≤ 0.7, x2 = 1},
σn = 0, on ΓN \ ΓN,1,

u = 0, on ∂D \ ΓN,

p = 0, on ∂D.

Also in this case we take f = 0 and φ0 = 0, so that the displacement and pressure solutions
are determined only by the prescription of the stress boundary condition. Thus, the situation
is complementary to the one of the previous test, where the deformation of the medium was
caused by a fluid term. We solve the Biot problem (5.175.17) with uncertain coefficients defined
in (5.355.35). For the space discretization of the footing problem we consider a triangular mesh
with 3,584 elements and we use the HHO–dGmethod with k = 2. For each point of the sparse
grid and each time iteration, the linear system to be solved has dimension 54,720. In this
test case we are particularly interested in the pressure profile at early times. In fact, owing to
the free drainage boundary condition, after a few time steps the fluid is completely squeezed
out of the soil, yielding an equilibrium configuration with no pressure and the displacement
balancing the Neumann condition. We consider the approximated solution at time t = 0.2s
obtained after two time steps of the implicit Euler method. We mention, in passing, that
the unphysical pressure oscillations observed in [155155] do not occur with our choice of the
discretization (this is in agreement with the results of Section 2.6.22.6.2). We plot in Figure
5.65.6 the mean and variance fields corresponding to the PC approximation of the solution.
Concerning the mean, we observe a significant deformation where the load is applied and a
maximum pressure value near the center of the domain. The variance fields exhibit a similar
configuration.
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Figure 5.6: Pressure plotted on the deformed domain at t = 0.2. Mean (left) and Variance (right) computed
using the PSP method with level l = 5 and Np (l) = 2561.
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Figure 5.7: Errors ‖MSE(u − uK )‖L2 (D) and ‖MSE(p − pK )‖L2 (D) vs. level l of the Sparse Grid. Point
injection test (left) and footing test (right) with model coefficients µ, λ, α, κ distributed according to (5.355.35).

5.6.3 Convergence

Let V (D) be a normed vector space of functions over D and X ∈ L2
ρ(Ω,V (D)) a random

field. We evaluate the predictive capacity of the PC expansion XK defined in (5.275.27) using
the mean-squared error (MSE) computed from a validation set of N∗ = 500 Latin Hypercube
Samples (LHS) and defined as

MSE(X − XK )(x) B
1

N∗

N∗∑
i=1

(
X (x, ξ i) − XK (x, ξ i)

)2
.

We plot in figures 5.85.8 and 5.95.9 the MSE fields of the PC solutions of the injection and footing
test, respectively. Owing to the symmetry of the point injection test with respect to the
diagonal, in 5.85.8 we only plot the first component of MSE(u − uK )(x). Similarly, for the
footing problem we consider the second component. The results are obtained using sparse



132 Chapter 5. Poroelasticity with uncertain coefficients

grid of level l = 1, 3, 5. We observe a rapid decrease of the MSE field for both experiments
and both the displacement and pressure. We especially note the strong decay of the maximal
value with respect to the increasing sparse grid level. In Figure 5.75.7 we plot the L2(D)-norm
of the mean-squared error fields ‖MSE(u − uK )‖L2(D) and ‖MSE(p− pK )‖L2(D). The linear
trends observed in the semi-log scale of the sequential PC approximations suggest that the
method achieves roughly exponential convergence with respect to the level of the sparse grid,
as predicted by theory.

5.6.4 Sensitivity analysis
We conclude the numerical investigation by assessing the different contributions of the input
parameters onto the variance of the solutions. For each experiments presented above, we
compute the first order conditional variances

Var(uK (x, ξ ) |ξi)1≤i≤4, and Var(pK (x, ξ ) |ξi)1≤i≤4,

of the PC expansions obtained with the finer sparse grid (l = 5). Since each ξi in (5.355.35)
parametrizes only one of the poromechanical model coefficient, the previous quantities allows
to evaluate and differentiate the effect of the perturbations of µ, λ, α, κ on the solutions.

Concerning the injection test, we are mainly interested in assessing the effect of the
fluid source on the deformation. Therefore, we perform the sensitivity analysis considering
the displacement as the quantity of interest. On the other hand, in the footing experiment
we focus on the pressure. In Figure 5.105.10 we compare the total variance Var(uK ,1) defined
in (5.315.31) with the sum of the first-order conditional variances

∑4
i=1Var(u1(x, ξ ) |ξi) of the

PC approximated displacement solving the injection test. In Figure 5.125.12 we perform the
same comparison for the footing problem considering the pressure variance Var(pK ,1) and
its first-order conditional contributions. The difference between the two fields indicates that
the contribution due to second-order conditional variances is not negligible. This is probably
due to the fact that computing c0 using (5.145.14) yields a dependence c0 = c0(ξ1, ξ2, ξ3).

We observe in figures 5.115.11 and 5.135.13 that, in both experiments, the parameter with the
main influence on the solutions is the hydraulic mobility κ (parametrized by ξ4), while the
effect of the Biot–Willis coefficient α (parametrized by ξ3) on the variance is very weak. In
particular, we notice in Figure 5.135.13 that α has no influence on the uncertainty of the pressure
solving the footing problem. Thus, in this case α could be fixed at a deterministic value. On
possible reason may be that the coefficient of variation cv(α) computed in (5.365.36) is smaller
than the ones relative to the other model coefficients. Finally, we remark that the conditional
variances corresponding to the Lamé’s coefficients µ, λ are almost the same in the case of
the injection problem (cf. Figure 5.115.11), but are considerably different in the footing test (cf.
Figure 5.135.13).
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Figure 5.8: Displacement MSE(u1 − uK ,1) field (left) and pressure MSE(p − pK ) field (right) of the injection
test case. Results are computed using the PSP method with l = 1 (top), l = 3 (middle), and l = 5 (bottom).
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Figure 5.9: Displacement MSE(u2 − uK ,2) field (left) and pressure MSE(p − pK ) field (right) corresponding
to the footing test case. Results computed using the PSP method with l = 1 (top), l = 3 (middle), and l = 5
(bottom).
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Figure 5.10: Point injection test: Comparison between the total variance Var(u1(x, ξ )) and the sum of the
first-order conditional variances

∑4
i=1Var(u1(x, ξ ) |ξi ) estimated using the PSP method with l = 5.

Figure 5.11: Point injection test: Conditional variances Var(u1(x, ξ ) |ξ1) (top left) Var(u1(x, ξ ) |ξ2) (top right)
Var(u1(x, ξ ) |ξ3) (bottom left) Var(u1(x, ξ ) |ξ4) (bottom right) estimated using the PSP method with l = 5.
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Figure 5.12: Poroelastic footing test: Comparison between the total variance Var(p(x, ξ )) and the sum of the
first-order conditional variances

∑4
i=1 Var(p(x, ξ ) |ξi ) estimated using the PSP method with l = 5.

Figure 5.13: Poroelastic footing test: Conditional variancesVar(p(x, ξ ) |ξ1) (top left)Var(p(x, ξ ) |ξ2) (top right)
Var(p(x, ξ ) |ξ3) (bottom left) Var(p(x, ξ ) |ξ4) (bottom right) estimated using the PSP method with l = 5.
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A nonconforming high-order method for
nonlinear poroelasticity

This appendix has been published in the following conference book (see [3434])

Finite Volumes for Complex Applications VIII,
Hyperbolic, Elliptic and Parabolic Problems, 2017, Pages 537–545.
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A.1 Introduction
We consider the nonlinear poroelasticity model obtained by generalizing the linear Biot’s
consolidation model of [2727, 190190] to nonlinear stress-strain constitutive laws. Our original
motivation comes from applications in geosciences, where the support of polyhedral meshes
and nonconforming interfaces is crucial.

Let Ω ⊂ Rd , d ∈ {2, 3}, denote a bounded connected polyhedral domain with Lipschitz
boundary ∂Ω and outward normal n. For a given finite time tF > 0, volumetric load f , fluid
source g, the considered nonlinear poroelasticity problem consists in finding a vector-valued
displacement field u and a scalar-valued pore pressure field p solution of

−∇·σ (·,∇su ) + ∇p = f in Ω × (0, tF), (A.1a)
c0dt p + dt∇·u − ∇·(κ (·)∇p) = g in Ω × (0, tF), (A.1b)
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where ∇s denotes the symmetric gradient, c0 ≥ 0 is the constrained specific storage coeffi-
cient, and κ : Ω→ (0, κ] is the scalar-valued permeability field. Equations (A.1aA.1a) and (A.1bA.1b)
express, respectively, the momentum equilibrium and the fluid mass balance. For the sake
of simplicity, we assume that κ is piecewise constant on a partition PΩ of Ω into bounded
disjoint polyhedra and we consider the following homogeneous boundary conditions:

u = 0 on ∂Ω × (0, tF), (A.1c)
(κ (·)∇p) · n = 0 on ∂Ω × (0, tF). (A.1d)

The treatment of more general permeability fields and boundary conditions is possible up
to minor modifications. Initial conditions are set prescribing u (·, 0) = u0 and, if c0 > 0,
p(·, 0) = p0. In the incompressible case c0 = 0, we also need the following compatibility
condition on g and zero-average constraint on p:∫

Ω

g(·, t) = 0 and
∫
Ω

p(·, t) = 0 ∀t ∈ (0, tF).

We assume that the symmetric stress tensor σ : Ω × Rd×d
sym → R

d×d
sym is a Caratheodory

function such that there exist real numbers σ, σ ∈ (0,+∞) and, for a.e. x ∈ Ω, and all
τ, η ∈ Rd×d

sym , the following conditions hold:

‖σ (x, τ) − σ (x, 0)‖d×d ≤ σ ‖τ‖d×d, (growth) (A.2a)
σ (x, τ) : τ ≥ σ ‖τ‖2d×d, (coercivity) (A.2b)(
σ (x, τ) − σ (x, η)

)
:
(
τ − η

)
≥ 0, (monotonicity) (A.2c)

where τ : η B
∑d

i, j=1 τi, jηi, j and ‖τ‖2d×d = τ : τ.

A.2 Mesh and notation
Denote by H ⊂ R+∗ a countable set having 0 as unique accumulation point. We consider
refinedmesh sequences (Th)h∈H where eachTh is a finite collection of disjoint open polyhedral
elements T with boundary ∂T such that Ω =

⋃
T∈Th T and h = maxT∈Th hT with hT diameter

of T . We assume that mesh regularity holds in the sense of [7676, Definition 1.38] and that,
for all h ∈ H , Th is compatible with the partition PΩ, so that jumps of the permeability
coefficient do not occur inside mesh elements. Mesh faces are hyperplanar subsets of Ω
with positive (d−1)-dimensional Hausdorff measure and disjoint interiors. Interfaces are
collected in the set F i

h , boundary faces in F
b

h , and we assume that Fh B F
i

h ∪F
b

h is such that⋃
T∈Th ∂T =

⋃
F∈Fh F. For all T ∈ Th, FT B {F ∈ Fh : F ⊂ ∂T } denotes the set of faces

contained in ∂T and, for all F ∈ FT , nTF is the unit normal to F pointing out of T .
For X ⊂ Ω, we denote by ‖·‖X the norm in L2(X ;R), L2(X ;Rd), and L2(X ;Rd×d). For

l ≥ 0, the space Pl
d (X ;R) is spanned by the restriction to X of polynomials of total degree

l. On regular mesh sequences, we have the following optimal approximation property for the
L2-projector πl

X : L1(X ;R) → Pl
d (X ;R): There exists Cap > 0 such that, for all h ∈ H , all

T ∈ Th, all s ∈ {1, . . . , l + 1}, and all v ∈ H s (T ;R),

|v − πl
Tv |Hm (T ;R) ≤ Caphs−m

T |v |H s (T ;R) ∀m ∈ {0, . . . , s}. (A.3)
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In what follows, for an integer l ≥ 0, we denote by Pl
d (Th;R), Pl

d (Th;Rd), and Pl
d (Th;Rd×d),

respectively, the space of scalar-, vector-, and tensor-valued broken polynomials of total
degree l on Th. The space of broken vector-valued polynomials of total degree l on the mesh
skeleton is denoted by Pl

d (Fh;Rd).

A.3 Discretization
In this section we define the discrete counterparts of the elasticity and Darcy operators and
of the hydro-mechanical coupling terms.

A.3.1 Nonlinear elasticity operator
The discretization of the nonlinear elasticity operator is based on the Hybrid High-Order
method of [7474]. Let a polynomial degree k ≥ 1 be fixed. The degrees of freedom (DOFs)
for the displacement are collected in the space U k

h B P
k
d (Th;Rd) × Pk

d (Fh;Rd). To account
for the Dirichlet condition (A.1cA.1c) we define the subspace

U k
h,D B

{
vh B

(
(vT )T∈Th, (vF )F∈Fh

)
∈ U k

h : vF = 0 ∀F ∈ F b
h

}
,

equipped with the discrete strain norm ‖ · ‖ε,h defined in (2.132.13). The DOFs corresponding to a
function v ∈ H1

0 (Ω;Rd) are obtained by means of the reduction map I k
h : H1

0 (Ω;Rd) → U k
h,D

such that I k
hv B

(
(πk

T v )T∈Th, (π
k
Fv )F∈Fh

)
. Using the H1-stability of the L2-projector and the

trace inequality [7676, Lemma 1.49], we infer the existence of Cst > 0 independent of h such
that, for all v ∈ H1

0 (Ω;Rd),

‖I k
hv ‖ε,h ≤ Cst‖v ‖H1(Ω;Rd ) . (A.4)

For allT ∈ Th, we denote byU k
T and I k

T the restrictions toT ofU k
h and I k

h, andwe define the
local symmetric gradient reconstruction Gk

s,T : U k
T → P

k
d (T ;Rd×d

sym ) as the unique solution of
the pure traction problem: For a given vT =

(
vT, (vF )F∈FT

)
∈ U k

T , find G
k
s,T vT ∈ P

k
d (T ;Rd×d

sym )
such that, for all τ ∈ Pk

d (T ;Rd×d
sym ),∫

T
Gk

s,T vT : τ = −
∫

T
vT · (∇·τ) +

∑
F∈FT

∫
F
vF · (τnTF ). (A.5)

The definition of Gk
s,T is justified by the commuting property (4.184.18) that, combinedwith (A.3A.3),

shows that Gk
s,T I k

T has optimal approximation properties in Pk
d (T ;Rd×d

sym ). From Gk
s,T we define

the local displacement reconstruction operator r k+1
T : U k

T → P
k+1
d (T ;Rd) as in (2.52.5).

The discretization of the nonlinear elasticity operator is realized by the function ah :
U k

h × U
k
h → R defined such that, for all wh, vh ∈ U

k
h,

ah(wh, vh) B
∑
T∈Th

*.
,

∫
T
σ (·, Gk

s,TuT ) : Gk
s,T vT +

∑
F∈FT

γ

hF

∫
F
∆k

TFuT · ∆
k
TFvT

+/
-
, (A.6)
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where we penalize in a least-square sense the face-based residual ∆k
TF : U k

T → P
k
d (F;Rd)

such that, for all T ∈ Th, all vT ∈ U
k
T , and all F ∈ FT ,

∆k
TFvT B πk

F (r k+1
T vT − vF ) − πk

T (r k+1
T vT − vT ).

This definition ensures that ∆k
TF vanishes whenever its argument is of the form I k

Tw with
w ∈ Pk+1

d (T ;Rd), a crucial property to obtain high-order error estimates (cf. Theorems 2.122.12,
3.163.16, and 4.174.17). A possible choice for the scaling parameter γ > 0 in (A.6A.6) is γ = σ . For all
vh ∈ U

k
h,D, it holds (the proof follows from [7474, Lemma 4]):

C−1eq ‖vh‖
2
ε,h ≤

∑
T∈Th

*.
,
‖Gk

s,T vT ‖
2
T +

∑
F∈FT

γ

hF
‖∆k

TFvT ‖
2
F

+/
-
≤ Ceq‖vh‖

2
ε,h,

where Ceq > 0 is independent of h. By (A.2bA.2b), this implies the coercivity of ah.

A.3.2 Darcy operator
The discretization of the Darcy operator is based on the Symmetric Weighted Interior Penalty
method of [7777], cf. also [7676, Sec. 4.5]. At each time step, the discrete pore pressure is sought
in the broken polynomial space Pk

h defined in (2.172.17). For all F ∈ F i
h and all qh ∈ P

k
d (Th;R),

we define the jump and average operators such that, denoting by qT and κT the restrictions of
qh and κ to an element T ∈ Th,

[qh]F B qTF,1 − qTF,2, {qh}F B
κTF,2

κTF,1+κTF,2
qTF,1 +

κTF,1
κTF,1+κTF,2

qTF,2,

where TF,1,TF,2 ∈ Th are such that F ⊂ TF,1∩TF,2. The bilinear form ch on Pk
h ×Pk

h is defined
such that, for all qh, rh ∈ Pk

h ,

ch(rh, qh) B
∫
Ω

κ∇hrh · ∇hqh +
∑

F∈F i
h

2ςκTF,1κTF,2
hF (κTF,1+κTF,2 )

∫
F
[rh]F[qh]F

−
∑

F∈F i
h

∫
F

(
[rh]F {κ∇hqh}F + [qh]F {κ∇hrh}F

)
· nTF,1F,

(A.7)

where ∇h denotes the broken gradient and ς > 0 is a user-defined penalty parameter chosen
large enough to ensure the coercivity of ch (cf. [7676, Lemma 4.51]). In the numerical tests of
Sec. A.5A.5, we took ς = (N∂ +0.1)k2, with N∂ equal to the maximum number of faces between
the elements in Th. The fact that the boundary terms only appear on internal faces in (A.7A.7)
reflects the Neumann boundary condition (A.1dA.1d).

A.3.3 Hydro-mechanical coupling

The hydro-mechanical coupling is realized by means of the bilinear form bh on U k
h,D ×

Pk
d (Th;R) such that, for all vh ∈ U

k
h,D and all qh ∈ P

k
d (Th;R),

bh(vh, qh) B −
∑
T∈Th

∫
T
Gk

s,T vT : qh |T I d,
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where I d ∈ R
d×d
sym is the identity matrix. A simple verification shows that there exists

Cbd > 0 independent of h such that bh(vh, qh) ≤ Cbd‖vh‖ε,h‖qh‖Ω. Additionally, using
definition (A.5A.5) of Gk

s,T , it can be proved that, for all vh ∈ U
k
h,D, bh(vh, 1) = 0. The following

inf-sup condition expresses the stability of the coupling:
Proposition A.1. There is a real β independent of h such that, for all qh ∈ P

k
d0(Th;R),

‖qh‖Ω ≤ β sup
vh∈U

k
h,D\{0}

bh(vh, qh)
‖vh‖ε,h

. (A.8)

Proof. Let qh ∈ P
k
d0(Th;R). There is vqh ∈ H1

0 (Ω;Rd) such that∇·vqh = qh and ‖vqh ‖H1(Ω;Rd ) ≤

Csj‖qh‖Ω, with Csj > 0 independent of h. Owing to (A.4A.4) we get

‖I k
hvqh ‖ε,h ≤ Cst‖vqh ‖H1(Ω;Rd ) ≤ CstCsj‖qh‖Ω.

Therefore, using the commuting property (4.184.18), denoting by S the supremum in (A.8A.8), and
using the previous inequality, it is inferred that

‖qh‖
2
Ω
=

∑
T∈Th

∫
T

(∇svqh : qhI d) |T = −bh(I k
hvqh, qh) ≤ S‖I k

hvqh ‖ε,h ≤ CstCsjS‖qh‖Ω. �

If a HHO discretization were used also for the Darcy operator, only cell DOFs would be
controlled by the inf-sup condition.

A.4 Formulation of the method
For the time discretization, we consider a uniform mesh of the time interval (0, tF) of step
τ B tF/N with N ∈ N∗, and introduce the discrete times tn B nτ for all 0 ≤ n ≤ N . For any
ϕ ∈ Cl ([0, tF];V ), we set ϕn B ϕ(tn) ∈ V and let, for all 1 ≤ n ≤ N , δtϕ

n B (ϕn−ϕn−1)/τ ∈ V .
For all 1 ≤ n ≤ N , the discrete solution (un

h, pn
h) ∈ U k

h,D × Pk
h at time tn is such that, for all

(vh, qh) ∈ U k
h,D × P

k
d (Th;R),

ah(un
h, vh) + bh(vh, pn

h) =
∑
T∈Th

∫
T
f n · vT,

c0

∫
Ω

(δt pn
h)qh − bh(δtu

n
h, qh) + ch(pn

h, qh) =
∫
Ω

gnqh.

(A.9)

If c0 = 0, we set the initial discrete displacement as u0
h = I k

hu
0. If c0 > 0, the usual way to

enforce the initial condition is to compute a displacement from the given initial pressure p0.
We let p0h B πk

h p0 and set u0
h ∈ U

k
h,D as the solution of

ah(u0
h, vh) =

∑
T∈Th

∫
T
f 0 · vT − bh(vh, p0h) ∀vh ∈ U

k
h,D.

At each time step n the discrete nonlinear equations (A.9A.9) are solved by the Newton’s
method using as initial guess the solution at step n − 1. At each Newton’s iteration the
Jacobian matrix is computed analytically and in the linearized system the displacement
element unknowns can be statically condensed (cf. Section 2.52.5).
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Figure A.1: Convergence tests on a Cartesian mesh family (left) and on a Voronoi mesh family (right).

A.5 Numerical results
We consider a regular exact solution in order to assess the convergence of the method
for polynomial degree k = 1. Specifically, we solve problem (A.1A.1) in the square domain
Ω = (0, 1)2 with tF = 1 and physical parameters c0 = 0 and κ = 1. As nonlinear constitutive
law we take the Hencky–Mises relation given by

σ (∇su ) = (2 exp− dev(∇su ) −1) tr(∇su )I d + (4 − 2 exp− dev(∇su ))∇su,

where tr(τ) B τ : I d and dev(τ) = tr(τ2)− 1
d tr(τ)2 are the trace and deviatoric operators. It

can be checked that the previous stress-strain relation satisfies (A.2A.2). The exact displacement
u and exact pressure p are given by

u (x, t) = t2
(
sin(πx1) sin(πx2), sin(πx1) sin(πx2)

)
,

p(x, t) = −π−1t(sin(πx1) cos(πx2) + cos(πx1) sin(πx2)).

The volumetric load f , the source term g, and the boundary conditions are inferred from the
exact solutions. The time step τ on the coarsest mesh is 0.2 and it decreases with the mesh
size h according to τ1/τ2 = 2h1/h2. In Fig. A.1A.1 we display the convergence results obtained
on two mesh families. The method exhibits second order convergence with respect to the
mesh size h for both the energy norm of the displacement and the L2-norm of the pressure at
final time tF.
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B.1 Introduction
In this appendix we develop equilibrated H (div)-conforming stress tensor reconstructions for
a class of (linear and) nonlinear elasticity problems in the small deformation regime. Based
on these reconstructions, we can derive an a posteriori error estimate distinguishing the
discretization and linearization errors, as proposed in [9595] for nonlinear diffusion problems.
Thanks to this distinction we can, at each iteration, compare these two error contributions

143
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and stop the linearization algorithm once its contribution is negligible compared to the
discretization error.

Let Ω ∈ Rd , d ∈ {2, 3}, be a bounded, simply connected polyhedron, which is occupied
by a body subjected to a volumetric force field f ∈ [L2(Ω)]d . For the sake of simplicity, we
assume that the body is fixed on its boundary ∂Ω. The nonlinear elasticity problem consists
in finding a vector-valued displacement field u : Ω→ Rd solving

−∇·σ(∇su ) = f in Ω, (B.1a)
u = 0 on ∂Ω, (B.1b)

where∇su =
1
2 ((∇u )T +∇u ) denotes the symmetric gradient and expresses the strain tensor

associated to u . The stress-strain law σ : Ω × Rd×d
sym → R

d×d
sym is assumed to satisfy regularity

requirements inspired by [3333, 6969]. Problem (B.1B.1) describes the mechanical behavior of
soft materials [191191] and metal alloys [169169]. In these applications, the solution is often
approximated using H1-conforming finite elements. For nonlinear mechanical behavior laws,
the resulting discrete nonlinear equation can then be solved using an iterative linearization
algorithm yielding at each iteration a linear algebraic system to be solved, until the residual
of the nonlinear equation lies under a predefined threshold.

The a posteriori error estimate is based on equilibrated stress reconstructions. It is well
known that, in contrast to the analytical solution, the discrete stress tensor resulting from
the conforming finite element method does not have continuous normal components across
mesh interfaces, and that its divergence is not locally in equilibrium with the source term
f on mesh elements. We consider here the stress reconstruction proposed in [175175] for
linear elasticity to restore these two properties. This reconstruction uses the Arnold–Falk–
Winther mixed finite element spaces [77], leading to weakly symmetric tensors. In Section
B.3B.3 we apply this reconstruction to the nonlinear case by constructing two stress tensors:
one playing the role of the discrete stress and one expressing the linearization error. They
are obtained by summing up the solutions of minimization problems on cell patches around
each mesh vertex, so that they are H (div)-conforming and the sum of the two reconstructions
verifies locally the mechanical equilibrium (B.1aB.1a). The patch-wise equilibration technique
was introduced in [3838, 6767] for the Poisson problem using the Raviart–Thomas finite element
spaces. In [8383] it is extended to linear elasticity without any symmetry constraint by using
linewise Raviart–Thomas reconstructions. Elementwise reconstructions from local Neumann
problems requiring some pre-computations to determine the fluxes to obtain an equilibrated
stress tensor can be found in [44, 5151, 134134, 161161], whereas in [158158] the direct prescription of the
degrees of freedom in the Arnold–Winther finite element space is considered.

Based on the equilibrated stress reconstructions, we develop the a posteriori error estimate
in Section B.4B.4 and prove that it is efficient, meaning that, up to a generic constant, it is also
a local lower bound for the error. The idea goes back to [170170] and was advanced amongst
others by [22, 132132, 133133, 172172] for the upper bound.Local lower error bounds are derived in [3838,
6767, 9494, 9797, 144144]. Using equilibrated fluxes for a posteriori error estimation offers several
advantages. The first one is, as mentioned above, the possible distinction of error components
by expressing them in terms of fluxes. Secondly, the error upper bound is obtained with
computable constants. In our case these constants depend only on the parameters of the
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stress-strain relation. Thirdly, since the estimate is based on the discrete stress (and not the
displacement), it does not depend on the mechanical behavior law (except for the constant
in the upper bound). In addition, equilibrated error estimates were proven to be polynomial-
degree robust for several linear problems in 2D, as the Poisson problem in [3737, 9797], linear
elasticity in [8383] and the related Stokes problem in [4949] and recently in 3D in [9696].

The material is organized as follows. In Section B.2B.2 we introduce the weak and the
discrete formulations of problem (B.1B.1), along with some useful notation. In Section B.3B.3
we present the equilibrated stress tensor reconstructions, first assuming that we solve the
nonlinear discrete problem exactly, and then distinguish its discrete and its linearization error
part at each iteration of a linearization solver. In Section B.4B.4 we derive the a posteriori
error estimate distinguishing the different error components. We then propose an algorithm
equilibrating the error sources using adaptive stopping criteria for the linearization and
adaptive remeshing. We finally show the efficiency of the error estimate. In Section B.5B.5 we
evaluate the performance of the estimates. We perform a linear test with analytical solution in
order to compare the error estimator and the analytical error and to show that effectivity indices
are close to one. We then apply the proposed adaptive algorithm to application-oriented tests
with nonlinear stress-strain relations.

B.2 Setting
In this section we write the weak and the considered discrete formulation of problem (B.1B.1).
In the following, we will adopt the notation that bold greek letters are tensor-valued functions
and bold latin letters are vector-valued functions. For X ⊂ Ω, we respectively denote
by (·, ·)X and ‖·‖X the standard inner product and norm in L2(X ), with the convention
that the subscript is omitted whenever X = Ω. The same notation is used in the vector-
and tensor-valued cases. [H1(Ω)]d and H(div,Ω) stand for the Sobolev spaces composed
of vector-valued [L2(Ω)]d functions with weak gradient in [L2(Ω)]d×d , and tensor-valued
[L2(Ω)]d×d functions with weak divergence in [L2(Ω)]d , respectively. In what follows, we
consider stress-strain functions σ satisfying the following assumption.
Assumption B.1 (Stress-strain relation). The symmetric stress tensor σ : Rd×d

sym → R
d×d
sym is

continuous on Rd×d
sym , satisfies the growth and strong monotonicity assumptions (3.2c3.2c) and

(3.40b3.40b), and σ (0) = 0.
Multiplying (B.1aB.1a) by a test function v ∈ [H1

0 (Ω)]d and integrating by parts yields

(σ(∇su ),∇sv ) = ( f , v ). (B.2)

Owing to (3.2c3.2c), for all v, w ∈ [H1(Ω)]d , the form a(v, w ) B (σ(∇sv ),∇sw ) is well defined
and, from equation (B.2B.2), we can derive the following weak formulation of (B.1B.1):

Given f ∈ [L2(Ω)]d, find u ∈ [H1
0 (Ω)]d s.t., ∀v ∈ [H1

0 (Ω)]d, a(u, v ) = ( f , v ). (B.3)

From (B.3B.3) it is clear that the analytical stress tensor σ(∇su ) lies in the space Hs(div,Ω) B
{τ ∈ [L2(Ω)]d×d | ∇·τ ∈ [L2(Ω)]d and τ is symmetric}.

The discretization of (B.3B.3) is based on a conforming triangulation Th of Ω, i.e. a set of
closed triangles or tetrahedra with union Ω and such that, for any distinct T1,T2 ∈ Th, the set



146 Chapter B. A posteriori error estimation for nonlinear elasticity

T1 ∩ T2 is either a common edge, a vertex, the empty set or, if d = 3, a common face. The
set of vertices of the mesh is denoted byVh; it is decomposed into interior verticesV int

h and
boundary verticesVext

h . For all a ∈ Vh, Ta is the patch of elements sharing the vertex a, ωa
the corresponding open subdomain in Ω andVa the set of vertices in ωa. For all T ∈ Th,VT
denotes the set of vertices of T , hT its diameter and nT its unit outward normal vector.

For all p ∈ N and all T ∈ Th, we denote by Pp(T ) the space of d-variate polynomials
in T of total degree at most p and by Pp(Th) = {ϕ ∈ L2(Ω) | ϕ|T ∈ Pp(T ) ∀T ∈ Th}

the corresponding broken space over Th. In what follows we will focus on conforming
discretizations of problem (B.2B.2) of polynomial degree p ≥ 2 to avoid numerical locking, cf
[196196]. The discrete formulation reads: find uh ∈ [H1

0 (Ω)]d ∩ [Pp(Th)]d such that

∀vh ∈ [H1
0 (Ω)]d ∩ [Pp(Th)]d, a(uh, vh) = ( f , vh). (B.4)

This problem is usually solved using some iterative linearization algorithm defining at each
iteration k ≥ 1 a linear approximation σ k−1

lin of σ . Then the linearized formulation reads:
find uk

h ∈ [H
1
0 (Ω)]d ∩ [Pp(Th)]d such that

∀vh ∈ [H1
0 (Ω)]d ∩ [Pp(Th)]d, (σ k−1

lin (∇su
k
h),∇svh) = ( f , vh). (B.5)

For the Newton algorithm the linearized stress σ k−1
lin is defined, for all η ∈ Rd×d

sym , such that

σ k−1
lin (η) B

∂σ (τ)
∂τ

|τ=∇su
k−1
h

(η − ∇su
k−1
h ) + σ(∇su

k−1
h ).

B.3 Equilibrated stress reconstruction
In general, the discrete stress tensor σ(∇suh) resulting from (B.4B.4) does not lie in H(div,Ω)
and thus cannot verify the equilibrium equation (B.1aB.1a). In this section we will reconstruct
from σ(∇suh) a discrete stress tensor σh satisfying these properties. Based on this recon-
struction, we then devise two equilibrated stress tensors representing the discrete stress and the
linearization error respectively, which will be useful for the distinction of error components
in the a posteriori error estimate of Section B.4B.4.

B.3.1 Patchwise construction in the Arnold–Falk–Winther spaces
Let us for now suppose that uh solves (B.4B.4) exactly, before considering iterative linearization
methods such as (B.5B.5) in Section B.3.2B.3.2. For the stress reconstruction we will use mixed finite
element formulations on patches around mesh vertices in the spirit of [174174, 175175]. The goal
is to obtain a stress tensor σh in a suitable (i.e. H (div)-conforming) finite element space by
summing up these local solutions. The local problems are posed such that this global stress
tensor is close to the discrete stress tensor σ(∇suh) obtained from (B.4B.4), and that it satisfies
the mechanical equilibrium on each element. In [174174] the stress tensor is reconstructed in the
Arnold–Winther finite element space [88], directly providing symmetric tensors, but requiring
high computational effort. As done in [175175], we weaken the symmetry constraint and impose
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Figure B.1: Element diagrams for (ΣT ,VT ,ΛT ) in the case d = q = 2

it weakly, as proposed in [77]: for each element T ∈ Th, the local Arnold–Falk–Winther mixed
finite element spaces of degree q ≥ 1 hinge on the Brezzi–Douglas–Marini mixed finite
element spaces [4141] for each line of the stress tensor and are defined by

ΣT B [Pq(T )]d×d, VT B [Pq−1(T )]d, ΛT B {µ ∈ [Pq−1(T )]d×d | µ = −µT }. (B.6)

For q = 2, the degrees of freedom are displayed in Figure B.1B.1. On a patchωa the global space
Σh(ωa) is the subspace ofH(div, ωa) composed of functions belonging piecewise to ΣT . The
spaces Vh(ωa) and Λh(ωa) consist of functions lying piecewise in VT and ΛT respectively,
with no continuity conditions between two elements.

Let now q B p. On each patch we consider subspaces where a zero normal component is
enforced on the stress tensor on the boundary of the patch, so that the sum of the local solutions
will have continuous normal component across any mesh interface. Since the boundary
condition (B.1bB.1b) prescribes the displacement and not the normal stress, we distinguish the
case whether a is an interior vertex or a boundary vertex. If a ∈ V int

h we set

Σa
h B {τh ∈ Σh(ωa) | τhnωa = 0 on ∂ωa},

V a
h B {vh ∈ Vh(ωa) | (vh, z )ωa = 0 ∀z ∈ RMd },

Λa
h B Λh(ωa),

where RM2 B {b + c(x2,−x1)T | b ∈ R2, c ∈ R} and RM3 B {b + a × x | b ∈ R3, a ∈ R3}
are the spaces of rigid-body motions respectively for d = 2 and d = 3. If a ∈ Vext

h we set

Σa
h B {τh ∈ Σh(ωa) | τhnωa = 0 on ∂ωa\∂Ω},

V a
h B Vh(ωa),
Λa

h B Λh(ωa).

For each vertex a ∈ Vh we define its hat function ψa ∈ P
1(Th) as the piecewise linear function

taking value one at the vertex a and zero on all other mesh vertices.
Construction B.2 (Stress tensor reconstruction). Let uh solve (B.4B.4). For each a ∈ Vh find
(σa

h, r
a
h, λ

a
h) ∈ Σa

h × V
a
h × Λ

a
h such that for all (τh, vh, µh) ∈ Σa

h × V
a
h × Λ

a
h,

(σa
h, τh)ωa + (ra

h,∇·τh)ωa + (λa
h, τh)ωa = (ψaσ(∇suh), τh)ωa, (B.7a)

(∇·σa
h, vh)ωa = (−ψa f + σ(∇suh)∇ψa, vh)ωa, (B.7b)

(σa
h, µh)ωa = 0. (B.7c)

Then, extending σa
h by zero outside ωa, set σh B

∑
a∈Vh

σa
h .
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For interior vertices, the source term in (B.7bB.7b) has to verify the Neumann compatibility
condition

(−ψa f + σ(∇suh)∇ψa, z )ωa = 0 ∀z ∈ RMd . (B.8)

Taking ψa z as a test function in (B.4B.4), we see that (B.8B.8) holds and we obtain the following
result.
Lemma B.3 (Properties of σh). Let σh be prescribed by Construction B.2B.2. Then σh ∈

H(div,Ω), and for all T ∈ Th, the following holds:

( f + ∇·σh, v )T = 0 ∀v ∈ VT ∀T ∈ Th. (B.9)

Proof. All the fields σa
h are in H(div, ωa) and satisfy appropriate zero normal conditions so

that their zero-extension to Ω is in H(div,Ω). Hence, σh ∈ H(div,Ω). Let us prove (B.9B.9).
Since (B.8B.8) holds for all a ∈ V int

h , we infer that (B.7bB.7b) is actually true for all vh ∈ Vh(ωa).
The same holds if a ∈ Vext

h by definition of V a
h . Since Vh(ωa) is composed of piecewise

polynomials that can be chosen independently in each cell T ∈ Ta, and using σh |T =∑
a∈VT

σa
h |T and the partition of unity

∑
a∈VT

ψa = 1, we infer that ( f +∇·σh, v )T = 0 for all
v ∈ VT and all T ∈ Th. �

Remark B.4 (Choice of q). In contrast to flux reconstructions in the Raviart–Thomas space
(cf. [3838] or [8383]), the choice q = p−1 in (B.6B.6) does not lead to optimal convergence rates of the
resulting error estimate in Section B.4B.4. This is due to the fact that the Brezzi–Douglas–Marini
space is smaller than the Raviart–Thomas space of the same degree.

B.3.2 Discretization and linearization error stress reconstructions

Let now, for k ≥ 1, uk
h solve (B.5B.5). We will construct two different equilibrated H (div)-

conforming stress tensors. The first one, σk
h,disc, represents as above the discrete stress

tensor σ(∇su
k
h), for which we will have to modify Construction B.2B.2, because the Neumann

compatibility condition (B.8B.8) is not satisfied anymore. The second stress tensor σk
h,lin will be

a measure for the linearization error and approximate σ k−1
lin (∇su

k
h) − σ(∇su

k
h). The matrix

resulting from the left side of (B.7B.7) will stay unchanged and we will only modify the source
terms.

We denote by σ(∇su
k
h) the L2-orthogonal projection of σ(∇su

k
h) onto [Pp−1(Th)]d×d

such that (σ(∇su
k
h) − σ(∇su

k
h), τh) = 0 for any τh ∈ [Pp−1(Th)]d×d .

Construction B.5 (Discrete stress reconstruction). For each a ∈ Vh solve (B.7B.7) with uk
h

instead of uh, σ(∇su
k
h) instead of σ(∇su

k
h) and the source term in (B.7bB.7b) replaced by

−ψa f + σ(∇su
k
h)∇ψa − yk

disc,

where yk
disc ∈ RMd is the unique solution of

(yk
disc, z )ωa = −( f , ψa z )ωa + (σ(∇su

k
h),∇s(ψa z ))ωa ∀z ∈ RMd . (B.10)
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The so obtained problem reads: find (σa
h, r

a
h, λ

a
h) ∈ Σa

h×V
a
h×Λ

a
h such that for all (τh, vh, µh) ∈

Σa
h × V

a
h × Λ

a
h,

(σa
h, τh)ωa + (ra

h,∇·τh)ωa + (λa
h, τh)ωa = (ψaσ(∇su

k
h), τh)ωa,

(∇·σa
h, vh)ωa = (−ψa f + σ(∇su

k
h)∇ψa − yk

disc, vh)ωa,

(σa
h, µh)ωa = 0.

Then set σk
h,disc B

∑
a∈Vh

σa
h .

Construction B.6 (Linearization error stress reconstruction). For each a ∈ Vh solve (B.7B.7)
with uk

h instead of uh, the source term in (B.7aB.7a) replaced by

ψa (σ k−1
lin (∇su

k
h) − σ(∇su

k
h)),

and the source term in (B.7bB.7b) replaced by

(σ k−1
lin (∇su

k
h) − σ(∇su

k
h))∇ψa + yk

disc,

where yk
disc ∈ RMd is defined by (B.10B.10). The corresponding local problem is to find

(σa
h, r

a
h, λ

a
h) ∈ Σa

h × V
a
h × Λ

a
h such that for all (τh, vh, µh) ∈ Σa

h × V
a
h × Λ

a
h,

(σa
h, τh)ωa + (ra

h,∇·τh)ωa + (λa
h, τh)ωa = (ψa (σ k−1

lin (∇su
k
h) − σ(∇su

k
h)), τh)ωa,

(∇·σa
h, vh)ωa = ((σ k−1

lin (∇su
k
h) − σ(∇su

k
h))∇ψa + yk

disc, vh)ωa,

(σa
h, µh)ωa = 0.

Then set σk
h,lin B

∑
a∈Vh

σa
h .

Notice that the role of yk
disc is to guarantee that, for interior vertices, the source terms in

Constructions B.5B.5 and B.6B.6 satisfy the Neumann compatibility conditions

(−ψa f + σ(∇su
k
h)∇ψa − yk

disc, z )ωa = 0 ∀z ∈ RMd,

((σ k−1
lin (∇su

k
h) − σ(∇su

k
h))∇ψa + yk

disc, z )ωa = 0 ∀z ∈ RMd .

Lemma B.7 (Properties of the discretization and linearization error stress reconstructions).
Let σk

h,disc and σ
k
h,lin be prescribed by Constructions B.5B.5 and B.6B.6. Then it holds

1. σk
h,disc,σ

k
h,lin ∈ H(div,Ω),

2. ( f + ∇·(σk
h,disc + σ

k
h,lin), v )T = 0 ∀v ∈ VT ∀T ∈ Th,

3. As the Newton solver converges, σk
h,lin → 0.

Proof. The proof is similar to the proof of Lemma B.3B.3. The first property is again satisfied
due to the definition of Σa

h. In order to show that the second property holds, we add the two
equations (B.7bB.7b) obtained for each of the constructions. The right hand side of this sum then
reads (−ψa f + σ

k−1
lin (∇su

k
h)∇ψa, vh)ωa . Once again we can, for any z ∈ RMd , take ψa z as

a test function in (B.5B.5) to show that this term is zero if vh ∈ RMd , and so the equation holds
for all vh ∈ Vh(ωa). Then we proceed as in the proof of Lemma B.3B.3. �
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B.4 A posteriori error estimate and adaptive algorithm
In this section we first derive an upper bound on the error between the analytical solution
of (B.3B.3) and the solution uh of (B.4B.4), in which we then identify and distinguish the discretiza-
tion and linearization error components at each Newton iteration for the solution uk

h of (B.5B.5).
Based on this distinction, we present an adaptive algorithm stopping the Newton iterations
once the linearization error estimate is dominated by the estimate of the discretization error.
Finally, we show the efficiency of the error estimate.

B.4.1 Guaranteed upper bound

We measure the error in the energy norm ‖v ‖2en B a(v, v ) = (σ(∇sv ),∇sv ), for which we
obtain the properties

σ2
∗C
−2
K ‖∇v ‖

2 ≤ ‖v ‖2en ≤ σ ‖∇sv ‖
2, (B.13)

by applying (3.40b3.40b) and the Korn inequality for the left inequality, and the Cauchy–Schwarz
inequality and (3.2c3.2c) for the right one. In our case it holds CK =

√
2, owing to (B.1bB.1b).

Theorem B.8 (Basic a posteriori error estimate). Let u be the solution of (B.3B.3) and uh the
solution of (B.4B.4). Let σh be the stress tensor defined in Construction B.2B.2. Then,

‖u − uh‖en ≤
√
2σσ−3∗

*.
,

∑
T∈Th

( hT

π
‖ f + ∇·σh‖T + ‖σh − σ(∇suh)‖T

)2+/
-

1/2

. (B.14)

Remark B.9 (Constants σ and σ∗). For the estimate to be computable, the constants σ and σ∗
have to be specified. For the linear elasticity model (3.33.3) we set σ B 2µ+dλ and σ∗ B

√
2µ,

whereas for the Hencky–Mises model (3.43.4) we set σ B 2µ̃(0) + d λ̃(0) and σ∗ B
√
2µ̃(0).

Following [175175], we obtain a sharper bound in the case of linear elasticity, with µ−1/2 instead
of
√
2σσ−3∗ in (B.14B.14).

Proof of Theorem B.8B.8. We start by bounding the energy norm of the error by the dual norm
of the residual of the weak formulation (B.3B.3). Using (B.13B.13), (3.40b3.40b), the linearity of a in its
second argument, and (B.3B.3) we obtain

‖u − uh‖
2
en ≤ σ ‖∇s(u − uh)‖2 ≤ σσ−2∗ |a(u, u − uh) − a(uh, u − uh) |

= σσ−2∗ ‖∇(u − uh)‖
�����
a

(
u,

u − uh

‖∇(u − uh)‖

)
− a

(
uh,

u − uh

‖∇(u − uh)‖

) �����
≤ σσ−3∗ CK ‖u − uh‖en sup

v∈[H1
0 (Ω)]d,‖∇v ‖=1

{a(u, v ) − a(uh, v )}

= σσ−3∗ CK ‖u − uh‖en sup
v∈[H1

0 (Ω)]d,‖∇v ‖=1
{( f , v ) − (σ(∇suh),∇sv )}.

and thus

‖u − uh‖en ≤ σσ
−3
∗ CK sup

v∈[H1
0 (Ω)]d,‖∇v ‖=1

{( f , v ) − (σ(∇suh),∇sv )}. (B.15)
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Note that, due to the symmetry of σ we can replace ∇sv by ∇v in the second term inside
the supremum. Now fix v ∈ [H1

0 (Ω)]d , such that ‖∇v ‖ = 1. Since σh ∈ H(div,Ω), we can
insert (∇·σh, v ) + (σh,∇v ) = 0 into the term inside the supremum and obtain

( f , v ) − (σ(∇suh),∇v ) = ( f + ∇·σh, v ) + (σh − σ(∇suh),∇v ). (B.16)

For the first term of the right hand side of (B.16B.16) we obtain, using (B.9B.9) on each T ∈ Th
to insert Π0

T v , which denotes the L2-projection of v onto [P0(T )]d , the Cauchy–Schwarz
inequality and the Poincaré inequality on simplices,

��( f + ∇·σh, v )�� ≤
���
∑
T∈Th

( f + ∇·σh, v −Π
0
T v )T

��� ≤
∑
T∈Th

hT

π
‖ f + ∇·σh‖T ‖∇v ‖T, (B.17)

whereas the Cauchy–Schwarz inequality applied to the second term directly yields

��(σh − σ(∇suh),∇v )�� ≤
∑
T∈Th

‖σh − σ(∇suh)‖T ‖∇v ‖T .

Inserting in (B.15B.15) and applying again the Cauchy–Schwarz inequality yields the result. �

The goal of the following result is to elaborate the error estimate (B.14B.14) so as to distinguish
different error components using the equilibrated stress tensors of Constructions B.5B.5 and B.6B.6.
This distinction is essential for the development of Algorithm B.12B.12, where the mesh and the
stopping criteria for the iterative solver are chosen adaptively. Notice that in Theorem B.8B.8 we
don’t necessarily need σh to be the stress tensor obtained in Construction B.2B.2. We only need
it to satisfy two properties: First, equation (B.16B.16) requires σh to lie in H(div,Ω). Second,
in order to be able to apply the Poincaré inequality in (B.17B.17), σh has to satisfy the local
equilibrium relation

( f − ∇·σh, v )T = 0 ∀v ∈ [P0(T )]d ∀T ∈ Th.

Thus, the theorem also holds for σh B σk
h,disc +σ

k
h,lin, where σ

k
h,disc and σ

k
h,lin are defined in

Constructions B.5B.5.
Theorem B.10 (A posteriori error estimate distinguishing different error sources). Let u be
the solution of (B.3B.3), uk

h the solution of (B.5B.5), and σh B σk
h,disc + σ

k
h,lin. Then,

‖u − uk
h‖en ≤

√
2σσ−3∗

(
ηk
disc + η

k
lin + η

k
quad + η

k
osc

)
,

where the local discretization, linearization, quadrature and oscillation error estimators on
each T ∈ Th are defined as

ηk
disc,T B ‖σ

k
h,disc − σ(∇su

k
h)‖T,

ηk
lin,T B ‖σ

k
h,lin‖T,

ηk
quad,T B ‖σ(∇su

k
h) − σ(∇su

k
h)‖T,

ηk
osc,T B hTπ

−1‖ f −Π
p−1
T f ‖T,

with Πp−1
T denoting the L2-projection onto [Pp−1(T )]d , and for each error source the global

estimator is given by ηk
· B 2

( ∑
T∈Th (ηk

·,T )2
)1/2

.
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Remark B.11 (Quadrature error). In practice, the projection σ(∇su
k
h) of σ(∇su

k
h) onto

[Pp−1(Th)]d×d for a general nonlinear stress-strain relation cannot be computed exactly. The
quadrature error estimator ηk

quad,T measures the quality of this projection and is computed by
using a considerably higher number of Gauss points.

B.4.2 Adaptive algorithm
Based on the error estimate of Theorem B.10B.10, we propose an adaptive algorithm where the
mesh size is locally adapted, and a dynamic stopping criterion is used for the linearization
iterations. The idea is to compare the estimators for the different error sources with each
other in order to concentrate the computational effort on reducing the dominant one. For
this purpose, let γlin, γquad ∈ (0, 1) be user-given weights representing the relative size of the
quadrature and linearization errors with respect to the total error.

Algorithm B.12 (Mesh adaptation algorithm).

1. Choose an initial function u0
h ∈ [H

1
0 (Ω)]d ∩ [Pp(Th)]d and set k B 1

2. Set the initial quadrature precision ν B 2p (exactness for polynomials up to degree ν)

3. Linearization iterations

(a) Calculate σ k−1
lin (∇su

k
h), uk

h, and σ(∇su
k
h)

(b) Calculate σ(∇su
k
h), the stress reconstructions σk

h,disc and σk
h,lin, and the error

estimators ηk
disc, ηk

lin, η
k
osc and ηk

quad

(c) Improve the quadrature rule (setting ν B ν + 1) and go back to step 3(b) until

ηk
quad ≤ γquad(ηk

disc + η
k
lin + η

k
osc) (B.18a)

(d) Set k B k + 1 and go back to step 3(a) until

ηk
lin ≤ γlin(ηk

disc + η
k
osc) (B.18b)

4. Refine or coarsen the mesh Th such that the local discretization error estimators ηk
disc,T

are distributed evenly

Instead of using the global stopping criteria (B.18aB.18a) and (B.18bB.18b), which are evaluated
over all mesh elements, we can also define the local criteria

ηk
quad,T ≤ γquad(ηk

disc,T + η
k
lin,T + η

k
osc,T ) ∀T ∈ Th,

ηk
lin,T ≤ γlin(ηk

disc,T + η
k
osc,T ) ∀T ∈ Th,

(B.19)

where it is also possible to define local weights γlin,T and γquad,T for each element. These local
stopping criteria are necessary to establish the local efficiency of the error estimators in the
following section, whereas the global criteria are only sufficient to prove global efficiency.
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B.4.3 Local efficiency
Let us start by introducing some additional notation used in this section. For a given element
T ∈ Th, the set TT collects the elements sharing at least a vertex with T . The set Fh contains
all faces (if d = 2 we will, for simplicity, refer to the edges as faces) of the mesh and is
decomposed into boundary faces F ext

h and interfaces F int
h . For any T ∈ Th the set FT contains

the faces of T , whereas FTT collects all faces sharing at least a vertex with T and we denote
F int
TT
= FTT ∩ F

int
h . We also assume that Th verifies the minimum angle condition, i.e., there

exists αmin > 0 uniform with respect to all considered meshes such that the minimum angle
αT of each T ∈ Th satisfies αT ≥ αmin. In what follows we let a . b stand for a ≤ Cb with a
generic constant C, which is independent of the mesh size, the domainΩ and the stress-strain
relation, but that can depend on αmin and on the polynomial degree p.

To prove efficiency, we will use a posteriori error estimators of residual type. Following
[194194, 195195] we define for X ⊆ Ω the functional RX : [H1(X )]d → [H−1(X )]d such that, for
all v ∈ [H1(X )]d, w ∈ [H1

0 (X )]d ,

〈RX (v ), w〉X B (σ(∇sv ),∇sw )X − ( f , w )X .

Define, for each T ∈ Th,

(ηk
],T )2 B

∑
T ′∈TT

h2T ′‖∇·σ(∇su
k
h) +Πp

T f ‖2T ′ +
∑

F∈F int
TT

hF ‖[σ(∇su
k
h)nF]F ‖

2
F,

(ηk
[,T )2 B

∑
T ′∈TT

h2T ′‖∇·(σ(∇su
k
h) − σ(∇su

k
h))‖2T ′ +

∑
F∈F int

TT

hF ‖[(σ(∇su
k
h) − σ(∇su

k
h))nF]F ‖

2
F,

with [·]F denoting the jump operators defined in (2.182.18). The quantity ηk
[,T measures the

quality of the approximation of σ(∇su
k
h) by σ(∇su

k
h) and can be estimated explicitly. The

following result is shown in [194194, Section 3.3]. Denoting by ηk
osc,TT

B
{
2
∑

T ′∈TT (ηk
osc,T ′)

2}1/2,
it holds

ηk
],T . ‖RTT (uk

h)‖[H−1(TT )]d + η
k
[,T + η

k
osc,TT . (B.20)

In order to bound the dual norm of the residual, we need to additionally assume that
the stress-strain relation σ is Lipschitz continuous, cf. Assumption 3.143.14. We recall that
the three stress-strain relations presented in Examples 3.23.2, 3.33.3, and 3.43.4 satisfy the previous
Lipschitz continuity assumptions. Owing to the definition of the functional RTT and to the
fact that−∇·σ(∇su ) = f ∈ L2(TT )d , using the Cauchy–Schwarz inequality and the Lipschitz
continuity (3.40a3.40a) of σ , it is inferred that

‖RTT (uk
h)‖[H−1(TT )]d B sup

w∈[H1
0 (TT )]d, ‖w ‖[H1

0 (TT )]d≤1
(σ(∇su

k
h),∇sw )TT − ( f , w )TT

= sup
w∈[H1

0 (TT )]d, ‖w ‖[H1
0 (TT )]d≤1

(σ(∇su
k
h) − σ(∇su ),∇sw )TT

≤ σ∗‖∇s(u − uk
h)‖TT .
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Thus, by (B.20B.20), the previous bound, and the strong monotonicity (3.40b3.40b) it holds

ηk
],T . σ

∗σ−1∗ ‖u − uk
h‖en,TT + η

k
[,T + η

k
osc,TT . (B.21)

It is well known that there exist nonconforming finite element methods which are equiva-
lent to mixed finite element methods using the Brezzi–Douglas–Marini spaces (see e.g. [55]).
Following the ideas of [9191, 9595, 118118] and references therein, we use these spaces to prove
that ηk

disc,T . η
k
],T . As a result of this bound together with (B.21B.21), we obtain the following

Theorem (see [3636, Section 4.4] for the detailed proof).
Theorem B.13 (Local efficiency). Let u ∈ [H1

0 (Ω)]d be the solution of (B.3B.3), uk
h ∈

[H1
0 (Ω)]d ∩ [Pp(Th)]d be arbitrary and σk

h,disc and σ
k
h,lin defined by Constructions B.5B.5 and

B.6B.6. Let the local stopping criteria (B.19B.19) be verified. Then it holds for all T ∈ Th,

ηk
disc,T + η

k
lin,T + η

k
quad,T + η

k
osc,T . σ

∗σ−1∗ ‖u − uk
h‖en,TT + η

k
[,T + η

k
osc,TT .

B.5 Numerical results
In this section we illustrate numerically our results on two test cases, both performed with
the Code_Aster11 software, which uses conforming finite elements of degree p = 2. Our
intention is, first, to show the relevance of the discretization error estimators used as mesh
refinement indicators, and second, to propose a stopping criterion for the Newton iterations
based on the linearization error estimator. All the triangulations are conforming, since in the
remeshing progress hanging nodes are removed by bisecting the neighboring element.

B.5.1 L-shaped domain

Following [44, 129129, 158158], we consider the L-shaped domain Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]),
where for the linear elasticity case an analytical solution is given by

u (r, θ) =
1
2µ

rα
(
cos(αθ) − cos((α − 2)θ)
A sin(αθ) + sin((α − 2)θ)

)
,

with the parameters

µ = 1.0, λ = 5.0, α = 0.6, A = 31/9.

This solution is imposed as Dirichlet boundary condition on ∂Ω, together with f = 0 in Ω.
We perform this test for two different stress-strain relations. First on the linear elasticitymodel
(3.33.3), where we can compare the error estimate (B.14B.14) to the analytical error ‖u − uh‖en.
The second relation is the nonlinear Hencky–Mises model (3.43.4), for which we distinguish
the discretization and linearization error components and use the adaptive algorithm from
Section B.4.2B.4.2.

We compute the analytical error and its estimate on two series of unstructured meshes.
Starting with the same initial mesh, we use uniform mesh refinement for the first one and

1http://web-code-aster.orghttp://web-code-aster.org

http://web-code-aster.org
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Figure B.2: L-shaped domain with linear elasticity model. Distribution of the error estimators (top) and
the analytical error (bottom) for the initial mesh (left) and after three (middle) and six (right) adaptive mesh
refinements.
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801 1.01
1099 1.02
1142 1.02

Figure B.3: L-shaped domain with linear elasticity model. Left: Comparison of the error estimate (B.14B.14) and
‖u − uh ‖en on two series of meshes, obtained by uniform and adaptive remeshing. Right: Effectivity indices
of the estimate for each mesh, with the meshes stemming from uniform refinement in italic.
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Figure B.4: L-shaped domain with Hencky–Mises model. Left: Comparison of the discretization and lin-
earization error estimators on a series of meshes, without and with adaptive stopping criterion for the Newton
algorithm. Middle: Number of Newton iterations without and with adaptive stopping criterion for each mesh.
Right: Discretization error estimate for uniform and adaptive remeshing.

adaptive refinement based on the error estimate for the second series. Figure B.2B.2 compares the
distribution of the error and the estimators on the initial and two adaptively refined meshes.
The error estimators reflect the distribution of the analytical error, which makes them a good
indicator for adaptive remeshing. Figure B.3B.3 shows the global estimates and errors for each
mesh, as well as their effectivity index corresponding to the ratio of the estimate to the error.
We obtain effectivity indices close to one, showing that the estimated error value lies close
to the actual one, what we can also observe in the graphics on the left. As expected, the
adaptively refined mesh series has a higher convergence rate, with corresponding error an
order of magnitude lower for 103 elements.

For the Hencky–Mises model we choose the Lamé functions

µ̃(ρ) B a + b(1 + ρ2)−1/2, λ̃(ρ) B κ −
3
2
µ̃(ρ),

corresponding to the Carreau law for elastoplastic materials (see, e.g. [104104, 143143, 177177]), and
we set a = 1/20, b = 1/2, and κ = 17/3 so that the shear modulus reduces progressively to
approximately 10% of its initial value. This model allows us to soften the singularity observed
in the linear case and to validate our results on more homogeneous error distributions. We
apply Algorithm B.12B.12 with γlin = 0.1 and compare the obtained results to those without the
adaptive stopping criterion for the Newton solver. In both cases, we use adaptive remeshing
based on the spatial error estimators.

The results are shown in Figure B.4B.4. In the left graphic we observe that the linearization
error estimate in the adaptive case is much higher than in the one without adaptive stopping
criterion. We see that this does not affect the discretization error estimator. The table shows
the number of performed Newton iterations for both cases. The algorithm using the adaptive
stopping criterion is more efficient. In the right graphic we compare the discretization error
estimate on two series of meshes, one refined uniformly and the other one adaptively, based
on the local discretization error estimators. Again the convergence rate is higher for the
adaptively refined mesh series.
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Figure B.5: Left: Notched specimen plate. Right: Uniaxial traction curve

B.5.2 Notched specimen plate
In our second test we use the two nonlinear models of Examples 3.33.3 and 3.43.4 on a more
application-oriented test. The idea is to set a special sample geometry yielding to a model
discrimination test, namely different physical results for different models. We simulate the
uniform traction of a notched specimen under plain strain assumption (cf. Figure B.5B.5).
The notch is meant to favor strain localization phenomenon. We consider a domain Ω =
(0, 10m) × (−10m, 10m) \ {x ∈ R2 | ‖xm − (0, 11m)T ‖ ≤ 2m}, we take f = 0, and we
prescribe a displacement on the boundary leading to the following Dirichlet conditions:

ux = 0m if x = 0m, uy = −1.1 · 10−3m if y = −10m, uy = 1.1 · 10−3m if y = 10m.

In many applications, the information about the material properties are obtained in uniaxial
experiments, yielding a relation between σii and ε ii for a space direction xi. Since we only
consider isotropic materials, we can choose i = 1. From this curve one can compute the
nonlinear Lamé functions of (3.43.4) and the damage function in (3.53.5). Although the uniaxial
relation is the same, the resulting stress-strain relations will be different. In our test, we use
the σ11 – ε11 – relation indicated in the right of Figure B.5B.5 with

σc = 3 · 104Pa, E =
µ(3λ + 2µ)
λ + µ

= 3 · 108Pa, Eres = 3 · 107Pa,

corresponding to the Lamé parameters µ = 3
26 · 10

9Pa and λ = 9
52 · 10

9Pa. For both
stress-strain relations we apply Algorithm B.12B.12 with γlin = 0.1. We first compare the results
to a computation on a very fine mesh to evaluate the remeshing based on the discretization
error estimators. Secondly, we perform adaptive remeshing based on these estimators but
without applying the adaptive stopping of the Newton iterations and compare the two series
of meshes. As in Section B.5.1B.5.1, we verify if the reduced number of iterations impacts the
discretization error.
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Figure B.6: Notched specimen plate, comparison between Hencky–Mises (left in each picture) and damage
model (right). Top left: tr(∇suh ). Top right: ηdisc on a fine mesh (no adaptive refinement). Bottom left: meshes
after six adaptive refinements. Bottom middle: initial mesh. Bottom right: ηdisc on the adaptively refined
meshes.

Figure B.6B.6 shows the result of the first part of the test. In each of the four images the left
specimen corresponds to the Hencky–Mises and the right to the isotropic damage model. To
illustrate the difference of the two models, the top left picture shows the trace of the strain
tensor. This scalar value is a good indicator for both models, representing locally the relative
volume increase which could correspond to either a damage or shear band localization zone.
In the top right picture we see the distribution of the discretization error estimators in the
reference computation (209,375 elements), whereas the distribution of the estimators on
the sixth adaptively refined mesh is shown in the bottom right picture (60,618 elements for
Hencky–Mises, 55,718 elements for the damage model). The corresponding meshes and the
initial mesh for the adaptive algorithm are displayed in the bottom left of the figure. To ensure
a good discretization of the notch after repeated mesh refinement, the initial mesh cannot
be too corse in this curved area. We observe that the adaptively refined meshes match the
distribution of the discretization error estimators on the uniformmesh, and that the estimators
are more evenly distributed on these meshes.

The results of the second part of the test are illustrated in Figure B.7B.7. As for the L-shape
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Figure B.7: Notched specimen plate. Comparison of the global discretization and linearization error estimators
without and with adaptive stopping criterion for the Hencky–Mises model (left) and the damage model (middle),
and comparison of the number of performed Newton iterations (right).

test, we observe that the reduced number ofNewton iterations does not affect the discretization
error estimate, nor the overall error estimate which is dominated by the discretization error
estimate if the Newton algorithm is stopped.
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