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Chapter 1

Introduction

Skyrmions are two-dimensional topological solitons that appear in magnetism as chiral whirling vortex-like
configurations (Fig. 1.1(a)). They present particle-like properties that are characterized by an integer topo-
logical charge. Skyrmions have been theoretically investigated [1, 2] and experimentally observed in bulk
systems with B20 symmetry [3] and as metastable objects in ultra-thin magnetic films [4, 5, 6].

The chiral aspect of skyrmions and their stability arise from the presence of an antisymmetry exchange
interaction, the Dzyaloshinskii-Moriya interaction (DMI). This interaction favors perpendicular alignment
between neighbouring magnetic moments and can be found in systems with a lack of spatial inversion sym-
metry and spin orbit coupling. DMI manifests as a volume interaction in bulk materials with a lack of
crystal inversion symmetry and as an interfacial interaction at the interface between magnetic materials and
heavy metals.

DMI was theoretically predicted by Dzyaloshinskii [7] using symmetry arguments in bulk magnetic
systems. Then Moriya [8] demonstrated the anti-symmetric spin coupling in systems with a lack of inversion
symmetry, by including spin-orbit coupling in the super-exchange interaction. Fert and Levy [9] pointed out
that high spin-orbit scattering centers can break the indirect exchange symmetry.

Figure 1.1: Artistic images of a skyrmion (a) and an anti-skyrmion (b) magnetic configuration

In this work, I try to answer to a fundamental question: Which is the relationship between the crystal
symmetry, the DMI symmetry and the topological solitons in epitaxial magnetic thin films?

Skyrmions have an isotropic magnetic configuration and have been experimentally found in systems with
isotropic magnetic interactions. Anisotropic magnetic interactions occur in systems with a reduced degree
of symmetry, like in a crystal with C2v symmetry, and they may lead to the stabilisation of new topological
solitons, like elliptical skyrmions and anti-skyrmions.

The first are skyrmions with a non-cylindrical symmetry in anisotropic energy environments. The ef-
fect of spatially modulated exchange energy and magneto-crystalline anisotropy on the skyrmion shape has
been theoretically analyzed [10, 11] and experimentally investigated [12] in ultra-thin films, while a distorted
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skyrmion lattice [13] has been evidenced due to an anisotropic DMI in a mechanically-strained single-crystal.

Anti-skyrmions have been theoretically predicted in bulk systems where the D2d and S4 [1] symmetry
induces an anisotropic DMI with inversion of chirality between perpendicular directions. They have been
theoretically investigated as metastable states at an energy higher than the one of the skyrmion in ultrathin
films with isotropic chirality [14] and in systems without DMI [15].

Anti-skyrmions (ASK) have been experimentally observed in a crystal with D2d symmetry in a lattice
configuration [16], but not yet in thin film systems as metastable isolated solitons. The reason is that
most thin film systems showing DMI studied until now were polycrystalline, leading to the same sign and
strength of the DMI in any in-plane direction. In order to stabilize ASK in thin films with perpendicular
magnetisation, the sign of DMI has to be opposite along two in-plane directions of the film. This may occur
in epitaxial thin films with a C2v symmetry [17, 11, 18].

The work is organized into four chapters. The first two introduce the basic concepts, methods and
approaches needed to try to answer to the questions posed at the beginning of this thesis:

• Introduction to magnetism in C2v symmetry systems
First the magnetic interactions are introduced with several models. The magnetism is studied with
the continuous micromagnetic approximation. The micromagnetic formulations of the interactions are
derived from the atomic formulations. This approach allows to set a relationship between the crystal
structure and symmetry and the micromagnetic formulations of interactions in systems with a C2v

symmetry.

• Techniques and methods
In this chapter the main experimental techniques used during this work are introduced. The main
theoretical concepts needed to understand the physical phenomena on which these methods are based
are explained. The techniques can be divided into three categories: crystal growth method and
symmetry characterisation, magnetic characterisation and microscopy techniques.

The third and fourth chapters try to answer with theoretical and experimental approaches to the question
of this thesis.

• Toplogical magnetic solitons
This chapter starts with a general introduction on topological solitons and on topological properties.
Then one-dimensional and two-dimensional topological magnetic solitons are characterised and their
topological properties discussed.
A micromagnetic approach is used that allows to start from the simplest one-dimensional soliton,
the domain wall, and to add new interactions and symmetries step-by-step in order to characterise
the stability conditions and the properties of skyrmions and anti-skyrmions. This approach allows to
understand which topological soliton can be obtained as a function of the strength and of the symmetry
of the magnetic interactions in systems with C2v symmetry.

• Experimental results on magnetism in thin films with C2v symmetry
In this chapter three different magnetic epitaxial systems with a C2v symmetry are analysed:

– bcc(110) W \ hcp(0001) Co \ fcc(111) Au

– bcc(110) W \ hcp(0001) Co \ fcc(111) Au-Ptsolid solution

– bcc(110) W \ bcc(110) Fe \ hcp(0001) Co \ fcc(111) Au

The discussion for each material is divided into three parts according to the main questions of this
work. First the growth conditions and the crystal quality and symmetry will be shown. Then the
results of the magnetic characterisation will be discussed in order to understand the strength and
symmetry of the anisotropic interactions. Finally the magnetic microscopy images of the magnetic
configurations obtained on each system are reported.



Chapter 2

Introduction to the magnetism in C2v
systems

In this section the interactions that occur in magnetic systems will be introduced. A phenomenological
discussion concerning the origin of the interactions is presented in the start of each section. This allows
to understand under which conditions they occur and when they are relevant for the determination of the
magnetic configurations. Then the energies of the interactions are formulated in the continuous micromag-
netic approximation. The micromagnetic formulations, where it is possible, are calculated starting from the
atomic interaction formulations in order to evidence the relationship between the symmetry of the crystals
and of the interactions. For sake of simplicity the discussion is first developed for simple one-dimensional or
isotropic systems, and then for systems with a C2v symmetry; i.e. two-dimensional systems with two mirror
planes perpendicular to the surface normal.
In a second part the response of the magnetisation to the presence of a magnetic field will be described and
finally the Curie temperature in thin magnetic systems will be discussed.
The micromagnetic calculations developed in this section are the result of a collaboration with Stanislas
Rohart from Laboratoire de Physique des Solides in Orsay (France).

2.1 Magnetic materials and micromagnetic approximation

A material is magnetic when it displays a magnetisation field M. It arises from the competition between
exchange energy and thermal fluctuations. Exchange energy is the interaction between neighbouring atoms
that favors a collinear alignment of the atomic magnetic moments, whereas the thermal fluctuations induce
disorder in the system. When thermal disorder dominates, the atomic magnetic moments cancel each other
and no magnetisation field arises from the material. This condition occurs above a given critical temperature
called Curie Temperature (TC). Materials with a spontaneous magnetisation (Ms) are called ferromagnetic.

The atomic magnetic moments can be described as the sum of two effects:

• the orbital magnetic moment µ arises from the electron’s orbit around the nucleus. The orbital
magnetic moment of the electron is proportional to its orbital angular momentum L. In the Bohr
model :

µL =
eL

2m
=
gLµBL

~
(2.1)

where ~ is the reduced Plank constant, gL ' −1 is the orbital g-factor and µB = e ~
2m = 9.27 · 10−27J/T

is the Bohr magneton with e the electron charge and m its mass.

• the electrons own an intrinsic quantum magnetic moment. It is known as the spin S and the resulting
momentum reads:

µs =
gSµBS

~
(2.2)

where the spin g-factor gS is set to -2 according to Dirac’s theory.
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The net magnetic moment of an atom is thus the vectorial sum of the orbital and spin magnetic moments
of all the electrons:

µJ =
gJµBJ

~
(2.3)

where J = S + L and gJ ≈ 3
2 + S(S+1)−L(L+1)

2J(J+1) .

This thesis is focused on the study of local magnetic textures M(r) in a ferromagnetic background. The
physics that allows to describe these configurations occurs at the nanoscopic scale. In this range we are
at the border between the classic and quantum regimes. M(r) will be described with a continuous model
known as micromagnetism. In order to understand the limits of this approach the magnetic interactions
will be described firstly in an atomic quantum model. Then the micromagnetic formulation will be derived
starting from the quantum interactions.

The Micromagnetism approach is valid when two conditions are fulfilled :

• The magnetisation M varies between two atomic sites sufficiently slowly to neglect the discrete nature
of the magnetic moments. It is then described with a continuous function M(r) .

• The system is far from the phase transition critical point. Therefore the thermal fluctuations are
sufficiently low ( T << Tc) (Sec. 2.8) to consider the magnetisation ( |M| = Ms ) constant and
uniform. The magnetisation can be divided in its norm and its direction. Defining the magnetisation
unitary function m(r), M(r) reads :

M(r) = Mm(r) (2.4)
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2.2 Symmetric exchange interactions

In this section the symmetric exchange interactions are introduced. Considering two magnetic moments,
the energy that describes this interaction is invariant when the two moments are switched. Antisymmetric
exchange interactions will be introduced in the next section. Three different phenomena are considered and
explained as origin of this interaction:

• direct exchange

• RKKY

• super-exchange

The micromagnetic expression of the exchange interaction is derived from the atomistic formulation, in
two different cases, in order to evidence the relationship between the crystal structure and the micromagnetic
exchange symmetry. First the exchange interaction is formulated using a simple one-dimensional model.
This allows to focus on the differences between the atomistic and the micromagnetic model for understanding
the conditions needed to allow performing this transformation. Then the exchange interaction is formulated
in the particular case of a strained hcp (0001) surface. This surface has a C2v symmetry and an anisotropic
exchange interaction can be expected. These calculations allow to develop the micromagnetic model for
studying the magnetic configurations in the experimentally studied systems.

2.2.1 Direct exchange

The exchange interaction is a quantum mechanical effect between identical particles. It arises when the wave
function of indistinguishable particles overlap and they are subject to the exchange symmetry operation. In
the case of electrons, which are fermions, the Pauli exclusion principal generates a repulsion between two
identical states and tends to orient the electrons spins in the same direction. Indeed the combined state
of fermion particles under symmetric operations displays an antisymmetric form. The lower energy state
of this configuration is found when the spins of the two electrons are parallel. This phenomenon can be
described by the Heisenberg model (spins are described in a three-dimensional space):

Eex = −
∑
ij

Ji,jSi ·Sj (2.5)

where Si and Sj are the spins associated to the electrons i and j and Ji,j is the exchange constant. The
short range nature, due to the overlap of the wavefunctions, allows to consider the sum

∑
ij only between

the first neighbours.

2.2.2 Indirect exchange interaction

The exchange interaction can occur as an indirect phenomenon. It happens when the two studied wavefunc-
tions do not directly overlap. The interaction is mediated by a third particle that overlaps its wavefunction
with the two particles. In this thesis two kinds of indirect exchange interactions are presented:

• In metallic magnets a conduction electron can first interact with a magnetic particle and carry the
magnetic moment information to a second one. This interaction is called RKKY from the name of
the discoverers (Ruderman-Kittel-Kasuya-Yosida ) [19]. The Hamiltonian of this interaction can be
written as:

H(rij) =
∑
ik

µi ·µj
4

|∆kk|2m∗

(2π)3r4
ij~2

[2krij cos(2krij)− sin(2krij)]

=
∑
ik

JRKKYi,k (r)µi ·µj (2.6)

where rij is the distance between the site i and j; µi is the magnetic momentum of atom i; ∆kk shows
the splitting of the electronic levels in the hyperfine configuration; m∗ is the effective mass of the
electrons in the conduction band and k is the wave vector of the conduction electrons. The resulting
JRKKYi,k (r) is a space dependent quantity with an oscillatory behaviour (Fig. 2.1a)
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• In insulating magnets an exchange effect can occur when a non-magnetic atom can share the same
orbital with two magnetic atoms. The resulting exchange interaction is called super-exchange be-
cause of its long range character. It was first discovered in systems where two metallic transition
atoms with localized 3d orbitals interact with each other through an intermediate ion p orbital. The
interaction symmetry strongly depends on the symmetry of the overlapping orbitals. Kanamori [20]
and Goodenough [21] formulated semi-empirical rules in order to determine the interaction symmetry
using symmetry arguments. Anderson [22] discovered the fundamental role of the spin-orbit coupling
in the superexchange interaction.

(a) [23] Dots: strength of the exchange interac-
tion constant (Jn) between two Mn ions as a func-
tion of the Mn-Mn distance in Ge1−xMnx. Solid
line: theoretical trend of the RKKY interaction.

(b) Sketch of energy levels involved in the su-
perexchange interaction between two d orbitals
through a p orbital

2.2.3 Micromagnetic formulation : one-dimensional model

A simple 1D model helps to describe the exchange interaction formulation in the micromagnetic model. The
discussion is expanded to general magnetic moments µi and µj . The magnetisation direction is described
by the angle θ and the difference in direction between two neighbouring moments with δθ:

Eex = −J |µ|2 cos(δθ) (2.7)

For the micromagnetic conditions δθ is a continuous infinitesimal and the cosinus can be expanded around
θi :

Eex = −J |µ|2
[
1− (δθ)2

2

]
= cost+

J |µ|2a2

2

(
dθ

dx

)2

(2.8)

x
a

Figure 2.2: Expansion of exchange
with θ to link discrete exchange to
continuous theory.

where dx is the variation in the continuous space. The factor
a is the distance between the moments a. It is small with re-
spet to magnetic variations and the relation a/dx = 1 can be
used.

In a 3D system with spherical symmetry the exchange energy
density reads:

Eex = A
∑
i

∑
j

(
∂mi

∂xj

)2

= A(∇m)2 (2.9)

where the magnetisation direction is described by m(r), î and ĵ are
versors of the 3D space and A = (J2/2a) is the exchange stiffness.
When the spherical symmetry is broken the exchange interaction
can be anisotropic and the relation between the atomic interaction and the micromagnetic one are more
complex to derive.
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2.2.4 Micromagnetic formulation : anisotropic exchange in a system with a C2v sym-
metry

Figure 2.3: Sketch of an strained hcp
(0001) surface

The exchange interaction in transition metals strongly depends
on the distances between the atoms and thus on the crystal
structure and symmetry. Therefore it is fundamental to de-
velop a method that allows to formulate the micromagnetic
exchange taking into account the atomic structure of the stud-
ied system.

In this part the micromagnetic exchange interaction is for-
mulated starting from the atomistic one for the particular case
of a strained hexagonal crystal. The crystal is described in
Fig. 2.3 and the atomic exchange interaction reads:

Eex =
∑
ij

〈Jij〉Si ·Sj (2.10)

where the sum
∑

ij is the sum over the nearest-neighbour bonds
and the Jij are the exchange parameters between the atoms i
and j. Since the exchange constants depend strongly on the
atomic distances one can consider J01 = J01′ = J1 and J02 =
Jy. If the studied magnetic configurations have a characteristic length larger than the interatomic distances
one can pass to a continuous approach:

Eex =
1

2

∑
i

J1

[
(m(ri) ·m(r′1)) + (m(ri) ·m(r1))

]
+

1

2
Jy(m(ri) ·m(r2)) (2.11)

The previous condition allows to develop the magnetisation m(rj) as the Taylor expansion of m(ri)

m(rj) = m(ri)+a
(x)
j

∂m(ri)

∂x
+a

(y)
j

∂m(ri)

∂y
+

1

2
(a

(x)
j )2∂

2m(ri)

∂x2
+

1

2
(a

(y)
j )2∂

2m(ri)

∂y2
+

1

2
a

(x)
j a

(y)
j

∂2m(ri)

∂x∂y
(2.12)

From the micromagnetic theory |m| = 1 and m · ∂m = 0. Hence it is possible to write 0 = ∂x(m · ∂xm) =
(∂xm)2 + m · ∂2

xm and the micromagnetic exchange energy reads:

Eex =
1

2

∑
i

(
2J1(a

(x)
1 )2

)(∂m(ri)

∂x

)2

+
(

2J1(a
(y)
1 )2 + Jy(a

(y)
2 )2

)(∂m(ri)

∂y

)2

(2.13)

Then one can pass from the discrete sum
∑

i to the continuous integral 1/S
∫
dS with S the surface of the

analyzed unit cell. Developing the sums and products one can obtain the micromagnetic expression of the
exchange interaction in a strained hexagonal surface with C2v symmetry:

Eex =

∫
Ax

(
∂m(r)

∂x

)2

+Ay

(
∂m(r)

∂y

)2

dS Ax =
1

2
J1 cotβ Ay =

(
1

2
J1 + Jy

)
tanβ (2.14)

where Ax and Ay are the two-dimensional micromagnetic exchange constants and they directly depend on
the crystal structure through the angle β, that describes the deformation of the hexagonal crystal, and the
constants J1 and Jy. These two constants and their strength behaviour as a function of the distance are
material dependent. Ab-initio calculations can be used to estimate their strength [24, 25] or they can be
derived from experimental techniques [26, 27].

In order to understand the meaning of this formulation two extreme cases can be analyzed :

• Setting the angle β = π/6, the crystal becomes a perfect hexagon, J1 and Jy can be set equal and
the exchange energy becomes isotropic:

Eex =

∫
A

[(
∂m(r)

∂x

)2

+

(
∂m(r)

∂y

)2
]
dS A =

√
3

2
J (2.15)
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• Setting the angle β = π/2 the system becomes a monodimensional atomic chain, J1 and Jy can be set
equal and the exchange energy reads:

Eex =

∫
A

(
∂m(r)

∂y

)2

dS A = J (2.16)
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2.3 Dzyaloshinskii-Moriya interaction

In this section the Dzyaloshinskii-Moriya interaction (DMI) is introduced. In the first part a discussion is
given concerning the origins of this interaction, the conditions for finding it and the systems in which it can
be found. Two different models will be discussed:

• Moriya model

• Fert-Levy model

The Fert-Levy model is then used to give a phenomenological interpretation of the origin of the anisotropic
DMI in thin films.

2.3.1 Conditions and atomic formulations

The Dzyaloshinskii-Moriya interaction is an antisymmetric exchange interaction that promotes a chiral
non-collinear spin arrangement.

Eij =
∑
ij

dij ·Si × Sj (2.17)

The atomic vector dij sets the sign of the interaction and the chirality of the spin rotation. DMI occurs in
systems with two fundamental properties:

• breaking of space inversion symmetry

• presence of spin-orbit coupling

The spin-orbit coupling plays a fundamental role. It allows to couple the spin and orbital magnetic
moments. The orbital magnetic moment strongly depends on the system symmetry. The antisymmetric
exchange interaction can be found in systems with a lack of spatial inversion symmetry. It was theoretically
predicted by Dzyaloshinskii [28] using symmetry arguments in bulk magnetic systems. Then Moriya [8]
demonstrated the anti-symmetric spin coupling in systems with a lack of inversion symmetry, by including
spin-orbit coupling in the super-exchange interaction. Fert and Levy [9] pointed out that high spin-orbit
scattering centers can break the indirect exchange symmetry. DMI can be found in bulk systems with a
lack of structural inversion symmetry, in spin glasses or in thin film systems where the inversion symmetry
is broken at the interface between magnetic atoms and a heavy metal with high spin-orbit coupling.

2.3.2 Moriya model

Moriya [8], using the Anderson model [22], studied the super-exchange interaction in systems with a high
disorder. He was able to analytically derive the antisymmetric spin Hamiltonian theorized by Dzyaloshin-
sky [29] with symmetry arguments. The Anderson model considers one free 3d electron with its spin S and
moment p in interaction with the ions of the magnetic crystal structure. He considered one-electron wave
functions localized at the positions of magnetic (R) and (R’) ions and orthogonal to each other. When the
spin-orbit coupling is introduced these functions are not eigenfunctions of the spin component Sz anymore.

The one-electron Hamiltonian can then written:

H =
p2

2m
+ V (r) +

~
2m2c2

S · [∇V (r)× p] (2.18)

The gradient of potential generates an electric field ∇V (r) = E that in the frame of the electron acts as a
magnetic field B. The exchange energy is calculated in second order perturbation with a combination of
the annihilation and creation for the different spin states in the different sites. It reads:

ERR′ = JRR′(S(R) ·S(R′)) + dRR′ · (S(R)× S(R′)) + S(R) ·ΓRR′ ·S(R′) (2.19)

The first and the third terms are coefficients of the superexchange interaction. The second term is an an-
tisymmetric exchange interaction, i.e. the Dzyaloshinski-Moriya interaction. Its intensity is proportional
to the spin-orbit coupling, is strongly dependent on the crystal symmetry and it vanishes in crystals with
inversion symmetry.
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Moriya rules

Moriya developed some symmetry rules in order to set constraints on the direction of the DRR′ as a function
of the crystal symmetries. The coupling between two ions in the crystal is then considered. The two ions 1
and 2 are located at the points A and B and the point bisecting the straight line AB is denoted by C. The
following rules are obtained :

• When a center of inversion is located at C,
d = 0 (2.20)

• When a mirror plane perpendicular to AB passes through C,

d‖ mirror plane or d ⊥ AB (2.21)

• When there is a mirror plane including A and B,

d ⊥ mirror plane (2.22)

• When a two-fold rotation axis perpendicular to AB passes through C,

d ⊥ two-fold axis (2.23)

• When there is an n-fold axis (n≥2) along AB,

d‖AB (2.24)

These conditions are called Moriya roles and are fundamental in the study of the DMI symmetry.
Moreover they play a fundamental role in the derivation of the micromagnetic D constant in anisotropic
systems.

2.3.3 Fert-Levy model

Figure 2.4: Sketch of the atoms that play a role
in the DM interaction induced by non-magnetic
impurities

Fert and Levy [9] discovered that an antisymmetric
exchange interaction can occur in magnetic transition
metals in absence of inversion of crystal symmetry.
It happens in the presence of non-magnetic impuri-
ties with high spin-orbit coupling. Conduction elec-
trons with different spin directions are split in the
scattering process with the non-magnetic impurities
due to the presence of the spin-orbit coupling. In
this process the inversion symmetry with respect to
the midpoint between the two magnetic atoms is bro-
ken and the exchange has an antisymmetric compo-
nent.

Fert and Levy [9] described this phenomenon consid-
ering the RKKY interaction between two magnetic ions
and introducing the spin-orbit coupling in the scattering process with an impurity. They considered one-
electron wave functions and performed a perturbation method with the following perturbing potential :

V = −Γδ(r−RA)s ·SA −−Γδ(r−RB)s ·SB + λ(s)l · s (2.25)

where Γ describes the exchange interaction between the conduction electron spin (s) and the magnetic ion
spin SA (SB) in the position RA (RB). The term δ(s)l · s describes the spin-orbit coupling. The symmetric
component of this interaction corresponds to the RKKY interaction. The antisymmetric one takes the form:

HDM = −V1
sin(kf · (RA + RB + RAB) + (π/10)Z)RA ·RB

|RARBRAB|
(RA ×RB) · (SA × SB) (2.26)
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where V1 = (135/32)(λdΓ
2/E2

Fk
3
F ) sin[(π/10)Zd] is the perturbation potential for the conduction electron

gas with λd the spin-orbit coupling constant for d electrons. RA,RBand RAB are respectively the positions
of the two magnetic atoms and of the impurity; EF and kF are the energy and the wavelength of an electron
at the Fermi surface and the term (π/10)Z is the Fermi level phase shift induced by the interaction of the
electron with the Z electrons in the magnetic material.

Notice that the DMI strongly changes as a function of the distance between the magnetic ions and the
scattering point. The Fert-Levy model is valid for diluted impurities in a magnetic transition metal, but it is
useful to phenomenologically understand the presence of DMI at the interface between a magnetic material
and a heavy metal (ref) and the relation between the crystal symmetry and the anisotropic DMI [17, 18]

2.3.4 Interfacial DMI

The DMI can occur in thin magnetic films at the interface with a heavy metal. In these systems the breaking
of the inversion symmetry arises from the presence of an interface and the spin-orbit coupling comes from
the heavy metal. The antisymmetric exchange occurs in the first atomic layers of the magnetic material and
the strength of the interaction scales therefore with the magnetic layer thickness.
Two kinds of micromagnetic DMI constants can be defined, D and Ds, where:

D = Ds/t (2.27)

D is the micromagnetic DMI constant, Ds is the interface one and t is the film thickness. In order to
calculate the atomic DMI vectors and the micromagnetic D strength for a given interface, ab-initio numerical
calculations have been performed [30, 31].

Figure 2.5: Sketch of the atoms that play a role in the DMI induced by the interface interaction between a
heavy nonmagnetic metal and a magnetic thin film [32]

2.3.5 Phenomenological interpretation of anisotropic DMI

The DMI directly depends on the crystal symmetry of the studied interface. The relation between the crystal
symmetry and the DMI symmetry has already been discussed [33, 34]. The authors analyzed systems with
a Cnv symmetry, with n ≥ 3 the number of mirror planes perpendicular to the surface, showing the presence
of a microscopic isotropic DMI.

This section has the goal to phenomenologically explain the origin and the effects of the anisotropic DMI
in systems with a C2v symmetry. Firstly a phenomenological approach based on the Fert-Levy model will
be used in order to understand the importance of the relative positions of the magnetic and the heavy atoms
at the crystal interface (Sec. 2.3.3). Then the micromagnetic DMI formulation will be calculated for two
different crystal geometries, C4v and C2v. The micromagnetic DMI is an averaged consequence of the atomic
interactions. Hence in order to evidence the relation between the crystal symmetry and the micromagnetic
DMI it is fundamental to analyze the atomic configuration and the symmetry of the interface between the
magnetic and the heavy metal crystal. This analysis does not aim at the quantitative evaluation of DMI,
but to illustrate how atomic DMI vectors dij between atoms i and j at various atomic sites add up to yield
global micromagnetic DMI constants along the main symmetry axes of the system.

The presence of anisotropic DMI in magnetic systems with C2v symmetry can phenomenologically be
understood considering the Fert-Levy three atoms model [9] described in Sec. 2.3.3. The strength and
the sign of the interaction strongly depend on the geometry of the triangle composed by the ions and the
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scattering point. Indeed the DMI vector (d(R1,R2,R12)) has its direction always parallel to the normal
of the triangle and its sign depends on the triangle geometry. In order to understand this dependence
two different cases can be analyzed. All the considerations will be extended to a two dimensional crystal
where the d out-of-plane components are averaged to zero. Hence all the analysis will be developed in a 1D
approximation.

• We study the DMI sign and strength fixing the distance between the line connecting the magnetic
atoms and the scattering point, which is kept centered in between the magnetic atoms (Fig. 2.6). The
DMI strength in Fig. 2.6 is thus plotted as a function of the atomic distance R12.

Figure 2.6: Plot of Eq. 2.26 as a function of the distance between the magnetic atoms R12 in Å. The y axis
is normalized with respect to the constant V1. An artistic picture shows the configuration and the particles
that play a role in the three atoms model for the DMI.

• We fix the position of the magnetic atoms and change the scattering point position in a line parallel
to the line connecting the magnetic atoms. The DMI strength in Fig. 2.7 is thus plotted as a function
of the distance r.

Figure 2.7: Plot of Eq. 2.26 as a function of the position of the scattering point r. The y axis is normalized
with respect to the constant V1. The distance between the magnetic ions is set equal to 3Å.

In both the analysed cases kf is estimated from angle-resolved photoemission spectroscopy measure-
ments performed by Moras et al. [35] on a Co/W(110) interface. The plots in Fig. 2.6 and 2.7 evidence the
strong dependence of the DMI strength on the geometrical configuration. Indeed a change of the distance
between the magnetic atoms and of the scattering point position drastically changes the interaction strength
and can modify the DMI sign.

We consider the interface between a magnetic crystal and a heavy metal. In this stack the DMI arises
from the interface with the high spin-orbit coupling metal that breaks the inversion symmetry. The Fert-
Levy model can not be used to have a quantitative interpretation of DMI strength and sign because the
interaction can not be reduced to a simple scattering phenomenon. On the other hand, we can use this
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model as a phenomenological tool for determining the crystal symmetry class where it is possible to expect
an anisotropic DMI. Indeed we can consider the relationship between the two-dimensional unit cells at the
interface and take into account one by one the interactions between the magnetic ions with their closer
scattering point independently one from the other.

We focus on the magnetic crystal and we consider the scattering points in the center of the bonds. In this
approximation we can notice that a C2v crystal allows an anisotropic interaction. Indeed in a rectangular
crystal the difference in distance between the two crystallographic directions could induce a different strength
and sign of the DMI vector. The same argument is not valid for higher symmetry classes like C3v or C4v.
In these crystals an anisotropic DMI can only be obtained if the scattering points are placed in a different
way with respect to the bonds between magnetic atoms.

2.3.6 DMI micromagnetic formulation in C4v systems

In this section the derivation of an isotropic DMI energy in the micromagnetic approximation is performed.
For sake of simplicity an interface with a C4v symmetry is considered: a square magnetic crystal at the
interface with a square crystalline heavy metal (Fig. 2.8).

Figure 2.8: Sketch of magnetic moments (blue arrows) in a magnetic square lattice (red) with a C4v

symmetry. Four mirror planes (red) pass trough the heavy atoms at the interface (green).

First the magnetic moments are replaced with the continuous magnetisation m(R). The DMI energy
reads:

Eij =
∑
ij

dij · [m(Ri)×m(Rj)] (2.28)

If the magnetisation changes slowly from Ri to Rj it is possible to expand the magnetisation around R:

Eij =
∑
ij

dij · [m(R)× [m(R) + rij∇m(R)]] (2.29)

The distance between the atoms can be set as a = |rij |. The crystal presents two mirror planes passing
through the heavy metal atoms. Then for the Moriya symmetry rules (see Sec. 2.3.2) the dij are perpendic-
ular to rij and to the normal to the surface n (dij = d(n× rij)). The DM energy can be written:

EDMI = ad

[
ŷ ·
(

m× ∂m

∂x

)
− x̂ ·

(
m× ∂m

∂y

)]
(2.30)

Developing the vectorial products the DMI energy density EDMI reads:

EDMI = D

[(
mz

∂mx

∂x
−mx

∂mz

∂x

)
+

(
mz

∂my

∂y
−my

∂mz

∂y

)]
= D

(
L(x)
xz + L(y)

yz

)
(2.31)

with D = d
at the micromagnetic DMI constant in J/m2. The convention of the Lifshitz invariants is used

L
(i)
jk = mj

∂mk
∂i −mk

∂mj
∂i . This formulation is useful to describe the symmetry of a spin rotation promoted

by the DMI. (i) indicates the direction in which the magnetisation is changing whereas (jk) describes the
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plane where the magnetisation is rotating. In this simple case the DMI promotes an isotropic in-plane
magnetisation modulation with the rotation plane parallel to the magnetisation change (Néel modulation).
Defining θ as the angle between the magnetisation and n and considering the circular symmetry the DMI
energy density reads:

EDMI = D

(
dθ

dr

)
(2.32)

where r is a radial coordinate. This energy formulation can be generalized to all isotropic magnetic systems.
In case of anisotropic systems the discussion has to be performed for each crystal structure [34]

2.3.7 DMI micromagnetic formulation in a C2v symmetry system

In this part the micromagnetic DMI will be calculated for an interface with a C2v symmetry [17]. This
calculation is developed in the specific interface geometry of the W bcc(110)\Co hcp (0001) interface. It
allows to show the relationship between atomic vectors and micromagnetic parameters in the interface
experimentally studied in this thesis (Sec. 5.2).
The Co/W superstructure is described in Sec. 5.2.3. In the Co/W superlattice the position of the W atoms
with respect to the Co atoms changes from one Co unit cell to the next. Thus one can expect dij vectors
with different strengths and directions.

Figure 2.9: Sketch of the higher symmetry Co/W cell with the atomic DMI vectors (green) and the two
symmetry planes (blue lines) of the C2v symmetry.

Since the characteristic exchange length is larger than the super cell size, one can consider in this calcu-
lation only the higher symmetry cell. In Fig. 2.9 the higher symmetry Co/W cell with the 〈dij〉 of the first
neighbours are shown. The 〈dij〉 vectors are the average of all the dij for the same bonds on the superlattice.

The Moriya symmetry rules ([8]; Sec.2.3.2) allow to impose some constraints on the atomic 〈dij〉 vectors.
Indeed along the 02 bond the W atoms are aligned with the Co atoms and they belong to one of the mirror
planes of the system. Then the 〈d02〉 will lie in the crystal plane perpendicular to its bond. Concerning the
bonds 01′ and 01, it is possible to define a two-fold symmetry axis passing through the W atom positions
and perpendicular to these bonds. Hence the 〈d01′〉 and 〈d01〉 will lie in the plane perpendicular to the
two-fold axis, i.e. within the crystal plane. The direction of the these DMI vectors in the plane is defined
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by two angles δ01′ and δ01 in Fig. 2.9. It is possible to write these vectors in the two-fold crystal framework:

〈d01′〉 = [〈d01′〉 cos(δ01′ − β), 〈d01′〉 sin(δ01′ − β)+, 0)] (2.33)

〈d01〉 = [〈d01〉 cos(δ01 + β), 〈d01〉 sin(δ01 + β), 0] (2.34)

〈d02〉 = [−〈dy〉, 0, 0] (2.35)

In a general two-dimensional system the DMI energy in the micromagnetic approach reads:

EDM = −
∫ (

D
(x)
(xz)sL

(x)
xz +D

(y)
(yz)sL

(y)
yz +D

(x)
(yz)sL

(x)
yz +D

(y)
(xz)sL

(y)
xz

)
dxdy (2.36)

where D
(i)
(jk)s are the surfacic DMI micromagnetic constants (in J/m) and L

(i)
jk are Lifshitz invariants L

(i)
jk =

mj
∂mk
∂i − mk

∂mj
∂i . The existence of this term D

(i)
(jk)sL

(i)
jk is the signature that the DMI stabilizes a spin

modulation where the j and k magnetic components change along the i direction. Along each direction the

DMI stabilizes Bloch spirals (D
(y)
(xz)sL

(y)
xz and D

(x)
yz(s)L

(x)
yz ) and Néel cycloids (D

(x)
(xz)sL

(x)
xz and D

(y)
(yz)sL

(y)
yz ). In a

C2v symmetry system there are two mirror planes and the symmetry imposes that the magnetisation rotates
in these planes [8]. Hence along the main axes of the system the DMI stabilizes only Néel cycloids and their
energy can be formulated in the main axis coordinate system :

EDM = −
∫ (

D
(x)
(xz)sL

(x)
xz +D

(y)
yz(s)L

(y)
yz

)
dxdy (2.37)

Eq. 2.37 shows that the DMI micromagnetic constants stabilizing Bloch spirals have to be zero. This
evidence can be used to set new constraints on the atomic dij vectors.

In order to understand how to set these constraints a general model can be developed to elucidate how to

pass from the atomic dij vectors to the micromagnetic D
(i)
(jk)s constant for a system with different neighbours

labelled with index k. Each bond can be characterized by the position of the Co atom ak and by a DMI
vector dk. The atomic DMI energy in the first neighbours limit can be written:

EDM =
1

2

∑
i

∑
k∈NN(i)

dk(mi ×mk) (2.38)

where the summations are respectively performed on all atoms i and the nearest neighbours (NN) k of i. The
case of large length magnetic configurations allows to describe the magnetisation in a continuous medium
approach and to express mk as the Taylor expansion of m

m(rk) = m(ri) + (rk − ri) · x̂
∂m(ri)

∂x
+ (rk − ri) · ŷ

∂m(ri)

∂y

= m(ri) + a
(x)
k

∂m(ri)

∂x
+ a

(y)
k

∂m(ri)

∂y
(2.39)

then using Eq. 2.39 in Eq. 2.38, developing the vectorial and scalar products and using the formalism of the
Lifshitz invariants, the DM energy can be written as :

EDM =
1

2

∑
ik

a
(x)
k d

(x)
k L(x)

yz (ri)−
∑
ik

a
(x)
k d

(y)
k L(x)

xz (ri) +
∑
ik

a
(y)
k d

(x)
k L(y)

yz (ri)−
∑
ik

a
(y)
k d

(y)
k L(y)

xz (ri) (2.40)

Eq. 2.40 allows to calculate the micromagnetic DMI constant.

EDM =
1

2

∑
ik

[
a

(x)
k d

(x)
k L(x)

yz (ri)− a(x)
k d

(y)
k L(x)

xz (ri) + a
(y)
k d

(x)
k L(y)

yz (ri)− a(y)
k d

(y)
k L(y)

xz (ri)
]

(2.41)

where S is the unit cell surface and the micromagnetic constants become:

D
(x)
(xz)s =

1

2S

∑
k

a
(x)
k d

(y)
k D

(y)
(yz)s = − 1

2S

∑
k

a
(y)
k d

(x)
k (2.42a)

D
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1

2S

∑
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a
(y)
k d

(y)
k D

(x)
(yz)s = − 1

2S

∑
k

a
(x)
k d

(x)
k (2.42b)
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Then if the analysed system has a C2v symmetry D
(y)
(xz)s = D

(x)
(yz)s = 0 and this relation can be used to set

the relation between the dij vectors. For sake of simplicity in the following D
(x)
(xz)s and D

(y)
(xz)s constants are

renamed respectively D
(x)
s and D

(y)
s .

Now the micromagnetic Ds constants and their relation with the atomic dij for the case of Co/W(110)
can be found. Setting ak and dk in Eq. 2.42b equal to zero we obtain:

a cosβ〈d01〉 cos(−β + δ01) + a cosβ〈d01′〉 cos(β + δ01′) = 0 (2.43)

− a sinβ〈d01〉 sin(−β + δ01) + a sinβ〈d01′〉 sin(β + δ01′) = 0 (2.44)

Solving the system we find that 〈d01〉 = 〈d01′〉 = d and δ01 = π−δ01′ . Hence the micromagnetic Ds constants
become:

D(x)
s =

d

a

sin(β + δ01)

sinβ
(2.45)

D(y)
s =

2d

a

[
cos(β + δ01)

cosβ
− dy

d

1

cosβ

]
(2.46)

2.4 Zeeman energy

If a magnetic moment µ is immersed in an external magnetic field a momentum of force is applied to turn
it in the field direction. This phenomenon can be described by the Zeeman energy density:

EZ = −µ0µ ·H (2.47)

since the interaction is an external perturbation and does not depend on the relation between the magnetic
moments in different points in space the micromagnetic form can be obtained replacing the magnetic moment
with the magnetisation M(R):

EZ = −µ0M(R) ·H (2.48)
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2.5 Magneto-crystalline anisotropy energy

The presence of a magnetic order can be described (see Sec. 2.2.1) using non-relativistic quantum mechanics.
In this model the system free energy is independent on the magnetisation direction, i.e. the magnetic
moments are free to orientate in all the space directions. In real systems the magnetisation lies in some
preferred directions with respect to crystal axes or sample shape. This phenomenon can be introduced
considering a relativistic correction of the electrons Hamiltonian. It introduces two effects that can break
the isotropic characteristics of the magnetisation.

• The relativistic correction to the kinetic energy

E =
√

p2c2 +m2c4 = mc2 +
p2

2m
− 1

8

(p2)2

m3c2
+ ... (2.49)

Where p is the electron moment, m the electron mass and c the speed of light. In first approximation
the third term in eq. 2.49 can be used to study the relativistic effects. This can be done using a
perturbation theory with non-relativistic Hamiltonian. Since it depends on the crystal field V (r) the
resulting energy shift acquires an angular momentum dependence with the same symmetry as V (r).

• The spin-orbit coupling describes the effect of the magnetic field that an electron feels when it moves
in the crystal potential field V (r).

− µ ·B =
e

(mc)2

1

r
(∇V (r))L ·S = λL ·S (2.50)

The introduction of this interaction splits the energy of electrons with different spins. This effect, as
the previous, strongly depends on the crystal potential V (r) and on its symmetry.

The effect of these phenomena is to lift the degeneracy of the spin orientation of the electrons in space
and thus of the magnetisation. The probability to have the net magnetisation along some directions is bigger
than along others. This is described by the magneto-crystalline anisotropy energy (MAE). It favours the
alignment of magnetisation along specific axes or planes of the solid, called easy directions. The directions
where this energy is maximized, are called hard axes.
A general expression of this energy density reads:

Emc =
∑
i

Kifi(θ, ϕ) (2.51)

where fi(θ, ϕ) is a dimensionless function depending on the spherical coordinates and belongs to the same
symmetry group as the magnetic crystal. Ki is the magneto-crystalline energy intensity.

Figure 2.10: Historical ex-
ample of the 1/t behaviour
of the interfacial anisotropy
in pitaxial 48Ni/52Fe (111)
films [36]

The reversibility of this interaction involves the time-reversal symmetry
of the energy; i.e. fi(θ, ϕ) has only even terms. For example in cubic crystals
the MCA energy density reads:

Emc = K1s+K2p+K3p
2 + .... (2.52)

where s = α2
1α

2
2 + α2

2α
2
3 + α2

1α
2
3, p = α2

1α
2
2α

2
3 and αi are

the cosines of the magnetisation direction with respect to the cube
axes.

Interface anisotropy

The presence of the interface with other materials or a surface adds an extra
term to the magneto-crystalline anisotropy. The presence of surfaces and
interfaces breaks the system’s translational invariance. Then even the crystal
field V (r) symmetry is broken and a surface-interface MCA energy term can
be expected. The total magneto-crystalline anisotropy energy density reads:

EMC = E
(bulk)
MC +

∑
i

K
(s)
i

t
fi(θ, ϕ) (2.53)
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where K
(s)
i = Ks is the surface-interface magneto crystalline energy density.

The 1/t term is introduced in order to consider the surface-interface nature.
The magnetisation is influenced by this term only when the system thickness (t) is small making the surface
effects relevant. It occurs generally in a thickness range up to a few nanometres.

Experimental studies confirm the 1/t law for the dependence of Ks on the thickness [36]. Moreover a
tight-binding approach allowed to calculate the order of magnitude and the direction of Ks starting from the
crystal structure [37]. A relation between the spin-orbit constant λ, the magnetic orbital moment difference
between the easy and hard axis ∆µL, and the total MCA constant was found. In a uniaxial anisotropy case
the energy per magnetic atom reads :

K ∝ λ

4µB
∆µL (2.54)

Magneto-crystalline anisotropy in a system with C2v symmetry

Figure 2.11: Sketch of the symmetry planes in a
C2v system (blue planes) and the frame used to
describe the magnetisation in polar coordinates.

Eq. 2.51 shows that the magneto-crystalline anisotropy
strongly depends on the crystal symmetry. A crystal with
C2v symmetry has two mirror planes perpendicular to each
other and to the system plane (Fig. 2.11). Then one can
expect a biaxial magneto-crystalline anisotropy with one
axis in the sample plane (x̂, ŷ) and one parallel to the sys-
tem normal (ẑ). In these systems the magnetisation can
be described using polar coordinates with the two angles
θ and φ defined in Fig. 2.11.
The anisotropy energy density can be formulated:

Ea = (Kout −Kd) sin2 θ −Kin sin2 θ cos2 φ (2.55)

where Kout and Kin are the out-of-plane and the in-plane
MCA constants. When the anisotropy constant Kout is
positive and larger than Kd and Kin the system is magnetized out-of-plane with an extra easy axis in the
plane. When the constant Kin is positive (negative) the x̂ direction is the in-plane easy axis (hard axis).
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2.6 Dipolar energy

Hd

Figure 2.12: Sketch of the stray field
(Hd ) produced by a magnetic mo-
ment µ1 and three positions of the
moment µ2 that minimizes the dipo-
lar energy.

The dipolar or magnetostatic interaction arises from the mutual Zee-
man interaction between all the dipoles in the volume of the mag-
netic material.
A single magnetic moment µ1 generates a magnetic field:

H(r) =
1

4πr3

(
3

(µ1 · r)r

r2
− µ1

)
(2.56)

The mutual magnetostatic energy of the interaction with another
magnetic moment µ2 reads :

Ed =
1

4πr3

[
3

(µ1 · r)(µ2 · r)

r2
− µ1 ·µ2

]
(2.57)

This two moments interaction allows to develop an easy model for
understanding the effect of the dipolar interaction. For instance
one can fix µ1 in a given position and leave µ2 free to rotate in a
plane. In Fig. 2.12 a representation of the stray field produced by
µ1 is shown. The dipolar interaction is thus reduced when µ2 is
parallel to the stray field direction and generates a stray field that
can perfectly superpose the one of µ1. This magnetic configuration
is called flux closure.

In the micromagnetic approximation the magnetic moments are described by the continuous magnetisa-
tion function M(r) and the magnetostatic energy takes the form:

Ed = −µ0

2

∫
V

M(r) ·Hd dV (2.58)

where Hd is the stray field and the 1/2 prefactor allows to not count twice the mutual Zeeman energy for
each couple of moments. The direct solution of this equation is often impossible due to the self-consistent
character of the interaction. Hence in this section different approaches to evaluate the dipolar interaction
will be presented.

A possible approach consists in comparing the two Maxwell equations for the magnetic and electric fields:

∇E =
ρ

ε0
∇B = 0 (2.59)

where ρ is a volume charge density for the electrostatic field. Replacing Bbyµ0(M + H):

∇H = −∇M = ρV (2.60)

Hence one can consider the magnetisation divergence as a magnetic volume charge density (ρV ) for the
magnetic field H. In a general system the magnetisation has singularities of M at the surfaces. They can
be considered as a magnetic surface charge density ρs = M(r) ·n, where n is the surface normal.
Using this formalism the magnetic stray field Hd reads:

Hd(r) =

∫∫∫
dV

−∇M(r− u)

4π|r− u|3
d3u+

∮
dS

M ·n(r− u)

4π|r− u|3
d2u (2.61)

Then substituting Hd in Eq. 2.58 and solving when it is possible the integral allows to calculate the dipolar
energy.

Demagnetizing coefficient and local approximation

There are special classes of systems where the formulation of the dipolar energy takes an easy form due to
the symmetry and the shape of the magnetic material. Considering a system with a uniform magnetisation
M(r) = M the average of the magnetic field generated by the magnetisation can be calculated:

< Hd(r) >= −N ·M = −NiMiui (2.62)
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N is defined as the demagnetizing coefficients matrix and can be diagonalized in the ui frame.

If the surface of a magnetic system is described by a polynomial equation of degree ≤ 2, eq. 2.62 reads:

Hd(r) = −NiMiui (2.63)

The values of the demagnetizing coefficients can be found with geometrical considerations and with the
property Tr(Ni) = 1. Thus the dipolar energy density reads:

Ed = Kdm
T ¯̄Nm (2.64)

where Kd = 1/2µ0Ms2.
The demagnetizing coefficients are the base of the local approximation. It is used in infinite 2D system

where the stray field is locally normal to the system surface. Then the components of ¯̄N are zero along the
infinite directions and 1 along the surface normal and the dipolar energy reads:

Ed = Kd sin2 θ (2.65)

In systems with a MCA axis along the surface normal this effect is considered as a correction to the anisotropy
that favours magnetisation in the system plane.
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2.7 Magnetic response to an external magnetic field

In this section an introduction of the magnetisation response to an external magnetic field is introduced.
Two different situations are described:

• The dynamic response will be studied in the macrospin approximation with the Landau-Lifshitz-Gilbert
(LLG) equation.

• The static response for describing magnetisation reversal phenomena will be analysed with two different
models as a function of the system disorder.

2.7.1 Dynamic response: Landau-Lifshitz-Gilbert (LLG) equation

Figure 2.13: Sketch of the vecto-
rial component of eq:5.8

The magnetisation dynamics under the application of an external mag-
netic field can be studied with a macrospin approximation, i.e. the mag-
netisation distribution is replaced by a single spin m parallel to the di-
rection of the magnetisation in the studied area. The magnetisation dy-
namics can thus be studied analysing the effect of the different torques
generated by the external magnetic field B. Moreover the effect of the
different magnetic interactions on the macrospin can be introduced using
the concept of effective magnetic field µ0Heff = −δEtot/δm.
The dynamics of a macrospin is described by the Landau-Lifshitz-Gilbert
equation:

dm

dt
= −γm×Heff − αm× dm

dt
(2.66)

where γ is the electron gyromagnetic ratio and α is the damping pa-
rameter. The equation can be simplified considering the damping term
as a second order effect (α << 1) and replacing the dm/dt term of the
damping part by the effect of the torques without damping:

dm

dt
= −γm×Heff − αm× (γm×Heff) (2.67)

In Sec. 5.4.1 this equation will be used to study the DW dynamics.

2.7.2 Magnetisation reversal

In this section, I discuss two easy models for a phenomenological interpretation of the magnetisation reversal
upon the application of an external magnetic field.
The magnetic response can be described by the dimensionless tensor called susceptibility χij :

Mi = χijHj (2.68)

where Mi and Hj are the magnetisation and magnetic field vectors. In ferromagnetic materials the typical
static response to an external field has a hysteresis property and the plot of M as a function of H is called
hysteresis loop.
Each model is based on strong approximations:

• The Stoner-Wohlfarth model considers that the magnetisation changes in a uniform and collinear
way during the application of the external field. This is called the macrospin approximation.

• In the Becker-Kondorski model the magnetisation change is dominated by the creation and expan-
sion of magnetic domains.
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Stoner-Wohlfarth model

Figure 2.14: Sketch of the magnetic field B and
the macrospin magnetisation M in a system with
a volume V. θ and θB are respectively the angle
between M and the easy axis and between B and
the easy axis.

The Stoner-Wohlfarth model is based on the hypoth-
esis of uniform collinear magnetisation (macrospin).
This is a really restrictive condition, but it helps
to phenomenologically understand the magnetic or-
der and to interpret the shape of the hysteresis
loops.

An easy situation is considered: an uniaxial system
with magnetisation Ms, volume V and total moment
MsV . The total energy under the application of an ex-
ternal magnetic field B = µ0H with an angle θB from the
easy axis can be written as:

E = KV sin2 θ − µ0MsHV cos(θ − θB) (2.69)

where θ is the angle between the magnetisation and the
magnetic easy axis (Fig. 2.14).

When the magnetic field is applied parallel to the easy axis but in the direction opposite to the magneti-
sation (θ = 0; θB = π), it promotes a magnetisation reversal. In dimensionless variables the system energy
reads:

e =
E
KV

Ha =
2K

µ0Ms
h =

H

Ha
(2.70)

where Ha is called the anisotropy field.
Hence the minimisation of e(θ) allows to find the energy minimum and the condition for the magnetisation
switching. θ+ = 0 and θ− = π are always equilibrium positions. For h < 1 an extra equilibrium position θb
occurs. In that case θ+ and θ− are stable equilibrium positions, whereas θb is unstable. An energy barrier
∆e prevents the magnetisation to reverse from the metastable state θ+ towards the most stable state θ−.

∆e = (1− h)2 ∆E = KV

(
1− H

Ha

)2

(2.71)

For h > 1 only θ+ and θ− remain as equilibrium positions, respectively unstable and stable.
Then h = 1 = hsw is defined as the switching field; i.e when the system reaches this value an abrupt switch-
ing of magnetisation occurs. The energy barrier ∆e and the unstable equilibrium point θb vanish and θ−
becomes the stable equilibrium point.

Fig. 2.15 shows the resulting hysteresis loop: the magnetisation remanence (M(H = 0)) is exactly one,
the loop has a square shape and the coercivity field (H(M = 0)) equals the anisotropy field.

The calculation of the switching field can be generalized to an arbitrary value of θB and yields:

hsw(θB) =

(
1

sin2/3 θB + cos2/3 θB

)3/2

(2.72)

The resulting hysteresis loops are displayed in Fig. 2.15. They evolve from a perfectly square shape
for the external field applied exactly along the easy axis direction (θB = 0), to fully reversible with no
remanence for the field applied exactly along a hard axis direction (θB = π/2).
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(a) (b)

Figure 2.15: [38] (a) Energy profiles for increasing values of applied field, of a macrospin with uniaxial
anisotropy. Profiles are drawn for the magnetic field applied along the easy axis (θB = π, top) and along an
intermediate angle (θB = 110◦, bottom). For the latter, the series of profiles are slightly shifted vertically
for clarity. The initial (resp. final) minima are marked with blue (resp. red) dots. (b) Hysteresis loops
for various angles of applied field θB. Equal values for angles symmetric with respect to 45◦ are clearly
evidenced.

Becker-Kondorski model

In order to easily understand this model, the expansion of a magnetic domain in a one-dimensional magnetic
system is considered under application of an external magnetic field parallel to its magnetisation direction.
Despite the strong approximation this model is useful for an interpretation of the magnetic response in
systems with inhomogeneous magnetic properties.

Fig. 2.16(a) shows an example of a function U(x) describing how the magnetic energy varies along the
system. Note the presence of different energy minima. During the expansion of a magnetic domain the
domain wall has the tendency to stop at these points (pinning points). The magnetisation distribution is
described in Fig. 2.16(b). Two magnetic domains are considered: in the initial state M = +Ms for x < x0−d
and M = −Ms for x > x0 + d where x0 is the center of the domain wall and 2d the domain wall width
(Fig. 2.16).

Figure 2.16: a) Energy distribution U(x) and its change (U(x)−∆Ez) when a magnetic field is applied. b)
Profile of the magnetisation before and after the application of a magnetic field

The changes of magnetic energy under the application of an external magnetic field can be calculated
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studying the change of Zeeman energy :

Ez =

∫ +∞

−∞
µM ·Hdx (2.73)

Hence it can be calculated as the subtraction between the energy of the initial and the final configurations,
where the domain wall center is in the position x.

E(x0)Z =

∫ x0−d

−∞
µM ·Hdx+

∫ x0+d

x0−d
µM ·Hdx+

∫ +∞

x0+d
µM ·Hdx (2.74)

and:

E(x0 + x)Z = +

∫ x0−d

−∞
+

∫ x0−d−x

x0−d
+

∫ x+d−x

x0−d+x
−
∫ x+d

x+d−x
+

∫ +∞

x+d
µM ·Hdx (2.75)

The subtraction of the two equations is the Zeeman energy gain during the propagation:

∆EZ = −2µM ·Hx (2.76)

Hence when a magnetic field is applied the energy profile, shown in Fig. 2.16, is calculated as the sum
of U(x) and ∆EZ :

E(x) = U(x)− 2µM ·Hx (2.77)

The force F (x) for propagating a DW is :

F (x) = −∂E(x)

∂x
= −∂U(x)

∂x
+ 2µM ·H (2.78)

The magnetic domain expands and the magnetisation reverses when dF (x)
dx = 0. This condition is equivalent

to the vanishing of the minimum of the energy profile in point x. Hence one can write an expression for the
critical magnetic field Hc needed for the domain expansion:

Hc =
1

2µM

∂U(x)

∂x

1

cos θ
(2.79)

where θ is the angle between H and M.
This model can be used to describe the coercive field Hc in the study of magnetic hysteresis loops in

systems affected by strong pinning effects. Notice that the critical field, phenomenologically connected with
the coercive field, increases when θ increases, contrary to what was shown for the Stoner-Wohlfarth model
(Fig. 2.15).
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2.8 Curie temperature

(a) [39] Curie temperature as a function of Co
thickness for different substrate deposition tem-
peratures. The dashed line is a linear fit of the
data with Ts = 335K

(b) Curie temperature as a function of the
number of atomic layers (D ) in various ultra-
thin film materials [40]

The magnetic fluctuations due to finite temperature can reduce the spin correlations until a critical point
called Curie Temperature (TC) where the magnetic order is lost. At this value the system changes phase
and transits from a ferromagnetic to a paramagnetic order.

Comparing the statistical expression for the thermal energy and the spin switching energy barrier allows
to find a semiclassical expression for the Curie temperature:

TC ∝
2ZJij
3KB

(2.80)

where Jij is the exchange energy constant and Z is the number of nearest neighbours. This model shows
a direct correlation between the Curie temperature and the number of neighbours (Z). Then one can expect
a reduction of TC in thin film systems due to the reduction of Z. For instance in a thin film with N layers
ZN can be defined as an effective number of neighbours:

ZN = Z + 2
Zs − Z
N

(2.81)

where Zs is the number of nearest neighbours in a surface layer. Generally Zs < Z and the TC decreases
with a law 1/t, where t is the sample thickness.

This easy model allows only a phenomenological interpretation. Indeed more complex models and
experimental results given in Fig. 2.17b show a slow exponential behaviour of Tc as a function of the
thickness [41, 39, 42, 43].
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Chapter 3

Techniques and methods

In this chapter the experimental set-ups, the techniques and the methods used during this thesis research
are described. First the Ultra-High-Vacuum (UHV) system that allows the sample growth with pulsed
laser deposition (PLD) and molecular beam epitaxy (MBE) is described. The different epitaxial growth
modes are discussed and two methods for a phenomenological understanding of the transition between
them are presented. In this UHV system it is possible to perform in-situ crystal structure and topography
characterisation during the growth with reflection high-energy electron diffraction (RHEED) and scanning
tunneling microscopy (STM).
Then ex-situ techniques for the crystal characterisation are discussed. Grazing incidence X-ray diffraction
(GIXD) is a synchrotron technique for the crystal characterisation whereas Atomic Force Microscopy (AFM)
allows to study the surface topography.
In the third part a review of all the techniques needed for a complete characterisation of magnetic systems is
given. In the fourth I describe X-ray magnetic circular dicroism photo-emission electron microscopy (XMCD-
PEEM) and magnetic force microscopy (MFM). They allow to display the magnetisation distribution with
a nano-scale resolution. Finally the code for performing micromagnetic simulations (OOMMF) and for the
data analysis are shown.

3.1 UHV system: deposition and crystal characterisation

The UHV system in the ”pôle epitaxie” in the Institut Néel, shown in Fig. 3.1, is composed of four different
chambers connected with a tunnel that allows the transfer between the different set-ups and the load-lock
chamber. A system of primary, turbo and ionic pumps guarantees ultra-high-vacuum in all the system. The
experimental work presented in this thesis has been done mainly in the Riber and the STM chamber. The
different environments needed different sample holders. Hence the universal system shown in Fig. 3.2 has
been designed.

3.1.1 Riber chamber and Laser

The Riber chamber allows the growth of epitaxial samples with PLD and MBE technologies. Two evap-
orators allow to deposit two materials with MBE whereas eight different materials can be deposited with
PLD. The presence of a mask controlled by a step motor allows to produce thickness steps and wedges
during the deposition. A quartz micro balance (QMB) can be placed in the deposition position to calibrate
the deposition rate before the sample growth. Before the growth, the sample, fixed on the sample holder,
is advanced into the deposition position. The sample holder presents a thermocouple for the temperature
control, a Tantalum filament for heating the sample up to 800◦C and it allows a complete azimuthal rotation
for exploring all the crystallographic directions with the RHEED.

A solid state laser with crystals of Nd-YAG (neodymium-doped yttrium aluminum garnet NdY3Al5O12)
is used for the PLD. It emits a pulsed photon beam with a wavelength of 532 nm. The time of the pulse
is below 10 ns and the frequency can be tuned between 10 and 20 Hz. The pulse power is 10 MW. The
typical beam spot area is 3 × 3 mm2 and the fluence (density of laser energy per pulse and area) on the
target surface is 100 MW/cm2.

33
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Figure 3.1: (1) Sketch of the complete Ultra High Vacuum system. (a) pre-lock chamber (b) Riber chamber
c) analysis chamber (d) STM chamber. (2) Riber chamber: (a) target holder manipulator, step-motors and
cooling system (b) mask step-motor and cooling system (c) quartz micro balance manipulator and cooling
system (d) sample holder manipulators, oven and thermocouple connections (e) laser window (f) RHEED
electron gun (g) MBE evaporators

Figure 3.2: Sketch of the two parts that compose the sample-holder. Part (a) presents a slot for the substrates
(1). The contact between the substrate and the sample holder is guaranteed by two screwed clamps (2). In
the upper part there is a handle (3) for extracting part (a) from (b). Part (b) presents a slot for plugging
in part (a). On the side there are three pins (4) and three slots (5) for handling the sample-holder during
the transfers.

An optical system allows to focus the laser beam on the target and scan on its surface.
The RHEED electron gun produces an electron beam with an energy up to 30keV. Electric and magnetic
lenses inside the RHEED electron gun allow to scan the beam over the sample and change the incidence
angle of the electron beam. The diffraction pattern is impressed on a photoluminescent screen and a CCD
camera allows to record it.

3.1.2 Pulsed laser deposition

Pulsed Laser Deposition (PLD) is a technique which uses a melted, evaporated and ionized material from
a target surface for growing a new layer on a substrate. A highly luminous plasma plume is produced
during the ablations event between a nanosecond laser pulse with a high fluence and a target. It allows the
evaporation of any kind of material, even the most refractory ones.
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Figure 3.3: Riber chamber experimental set-up. (blue line) electron beam trajectory for RHEED spec-
troscopy; (green line) laser trajectory (violet line) plasma plume. (a) RHEED fluorescent screen (b) MBE
evaporators (c) RHEED electron gun (d) targets holder (e) quartz micro balance (f) sample holder (g) mask
(h) laser optics (i) laser

Figure 3.4: Sketch of the three stages of a PLD depo-
sition: interaction laser-target, interaction plum-laser
and deposition

The phenomenon can be decomposed into three
different stages: interaction laser-target, interaction
plume-laser and deposition.

Interaction laser-target During the ablation
phenomenon on the target surface the laser electro-
magnetic energy is converted into the excitation of
plasmons and unbound electrons. For an electro-
magnetic wave with a given power density Φ it is
possible to evaluate the target electric field ampli-
tude E:

E =

√
2Φ

cnε0
(3.1)

where ε0 is the permittivity in vacuum, c is the speed of light and n is the refractive index of the evaporated
material. The plasma plume is produced when the electric field strength is large enough to reach the
material’s dielectric breakdown.
The strong electric field produces the ionisation of the material and a high concentration of electrons. Then
at the interface of the plasma with the target the pressure can strongly increase (109Pa). This causes the
plasma propagation into the vacuum [44]. During this process part of the electrostatic energy is dissipated
in heat and diffused into the target. Moreover, the heat exchange between the material and the nascent
plasma activates a target recoil process. During the laser pulse, droplets of recoil material are formed and
ejected from the surface. These droplets can reduce drastically the quality of the deposited layer [45].

The droplet formation can be attributed to different phenomena:

• Subsurface boiling. It occurs when the time for the laser energy conversion into heat is shorter than
the evaporation time.

• Recoil ejection. The electrostatic laser pressure on the melted material can eject part of it.

• Exfoliation. This is a hydrodynamic process caused by repeated melt-freeze cycles of the irradiated
material. It produces a strong increase of the target roughness and the detachment of part of the
material.
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Possible solutions to reduce the droplet production are proposed by several studies [45, 46, 47]. The exfo-
liation can be completely deleted using molten targets near the melting point and with high viscosity. The
droplet subsurface boiling and recoil ejection can be reduced decreasing the heat diffusion length lD = 2

√
Dτ

(where D is the target dielectric function and τ the duration of the pulse), or by tuning the laser fluence.
Because metals have a high dielectric function a good solution is to reduce τ . Indeed when the laser pulse
length becomes shorter than the characteristic coupling time between the electrons and the lattice, the heat
diffusion becomes insignificant. This regime can be reached for τ below some picoseconds.

(a) Number and total volume of droplets
and solid particles as a function of tar-
get viscosity (b), the applied fluence is 2.3
J/cm2 on Polyethylene glycol 1000 [45]

(b) Number of droplets as a function of
laser fluence at 708◦C on Polyethylene
glycol 1000.[45]

Figure 3.5

Interaction laser-plume The interaction between laser and plasma has two main effects:

• The atoms in the plasma plume get ionized by the laser electric field. This interaction can ionize
the totality of the plume. It can be explained considering the inverse Bremsstrahlung effect [44]
Bremsstrahlung is the effect for which a charged particle emits an electromagnetic radiation when it
is deflected by another charged particle.

• The plasma plume screens the target and reduces the heat diffusion.

Optical spectroscopy has been used by Hansen et al. [48] to analyze the plasma ionisation in order to
study the ionisation degree and the velocity distribution. Despite the plasma formation being a highly non-
linear phenomenon, they show that the plume is thermally equilibrated with a Gaussian speed distribution
due to the ion-electron recombination.

Deposition PLD allows a high instantaneous deposition rate (10µ m/s) and a slow average deposition
rate (0.5 Å/min).

• The high instantaneous deposition rate induces a large nucleii density which favors the homogeneity
of the layer-by-layer growth and allows the deposition of solid solutions, i.e. the controlled mixing
of two or more materials in the same atomic layer. This allows the formation of a layer with mixed
properties between the two materials if the characteristic length of the properties is larger than the
characteristic distance between the islands of the different materials [49].

• The slow average deposition rate is fundamental for the epitaxial growth. Indeed between two pulses
the deposited material has the time to arrange on the potential minima of the previous layer. The
mobility of the deposited material can be increased by heating the substrate.

More details about the epitaxial growth will be presented in Sec. 3.1.4.
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3.1.3 Molecular beam epitaxy (MBE)

Molecular beam epitaxy is a method for the growth of epitaxial systems. The materials to deposit are placed
into evaporator cells in the UHV system. A resistive filament around the cell heats the material up to the
evaporation point. A molecular beam in the direction of the substrate is thus produced. The deposition
rate can be controlled tuning the current through the filament. A water cooling system allows to keep the
cell temperature stable during the deposition. The kinetic energy of atoms deposited by MBE is lower than
the PLD adatoms. It allows to grow layers with less interlayer intermixing. The deposition rate can be
controlled in two different ways:

• the micro crystal balance placed in the deposition position allows to calibrate the deposition rate
before the growth.

• The RHEED can be used during the deposition. Indeed the RHEED intensity changes as a function
of the surface order. It will present, as shown in Fig. 3.6, a maximum when a layer is complete and a
minimum when half a layer is deposited.

3.1.4 Thin film epitaxial growth

Figure 3.7: Cross-section views of the three modes of thin-film growth. (a) Volmer Weber , (b) Frank van
der Merwe and (c) Stranski Krastanov

Figure 3.6: RHEED intensity oscillations as a func-
tion of the surface order during a layer-by-layer depo-
sition process.

In this section the main processes for the epi-
taxial growth of thin mono-crystals are presented.
Epitaxial growth is the deposition process that al-
lows to deposit a crystalline overlayer with one well-
defined orientation with respect to the substrate
crystal structure. The strength of the interaction
between adatoms and the substrate determines the
growth modes. Three main modes can be defined :

• in Volmer Weber (VW) growth the inter-
action between adatoms is stronger than be-
tween the adatoms and the surface. Hence the
formation of three-dimensional clusters or is-
lands is favored.

• in Frank van der Merwe (FM) growth
the interaction with the surface overcomes the
adatoms interaction. The adatoms start to
form a second layer only when the previous
one is completed. This mode is also called layer-by-layer growth and allows to grow complete 2D
films.

• the Stranski Krastanov (SK) growth is an
intermediary process in which the stronger in-
teraction changes during the deposition. In
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this mode the first layers grow in the layer-
by-layer mode whereas subsequent layers form
islands. The mode transition occurs at a crit-
ical layer thickness hc, which depends on the
chemical and physical properties of the mate-
rials.

Two different approaches to determine the critical thickness hc and hence the growth mode are presented.

Figure 3.8: Equilibrium phase diagram of a lattice-
mismatched heteroepitaxial system as a function of
the total amount of deposited material Q and the lat-
tice mismatch ε0 [50]. The small insertions at the top
and bottom illustrate the morphology of the surface
in the six growth modes described in the text. The
small empty triangles indicate the presence of stable
islands, while the large shaded ones refer to ripened
islands.

Mechanical approach The deposited material
and the substrate normally have different lattice
parameters and crystal structure. During the
epitaxial growth the adatoms arrange in the po-
tential minima of the substrate lattice. Hence
the material grows in a deformed configuration
to fulfil the epitaxial relations. The transi-
tion between a layer-by-layer growth and the
islands formation occurs when the system re-
laxes to minimize the accumulated elastic en-
ergy.

In this part a mechanical approach to calculate
the critical thickness is presented. Firstly a pseu-
domorphic epitaxial configuration for the deposited
layer is imposed. The elastic energy of the deformed
layer is calculated with an elastic approximation.
Then the comparison with the dislocation formation
energy allows to calculate hc.
Introducing a linear elastic model, the deformation
energy can be described as:

εe =
1

2

∫
V

(σ · ε)dV (3.2)

where σ · ε =
∑

ij σijεij is the tensor product be-
tween the strain tensor εij and the stress tensor σij .
The first describes the crystal deformation and the
second describes the force per unit of surface applied to the crystal. Using the Hooke constitutive elastic
law the degrees of freedom of the problem can be reduced. It allows to reformulate the tensor product as a
function of the strain only:

σ · ε =
Eν

(1 + ν)(1− 2ν)
ε2ii +

E

1 + ν
εijεij (3.3)

where εii is the track of the tensor which is zero in the incompressible approximation; E is the Young
modulus and ν is the Poisson ratio.
The strain can be calculated from the lattice parameters misfit in the given epitaxial relationship:

εii =
afi − asi
asi

(3.4)

where af and as are respectively the film lattice parameter and the surface lattice parameter.

The formation of crystal dislocations can reduce the accumulated elastic energy. This effect changes
the system topography and favors island formation. The surface energy density γ allows to describe this
phenomenon and to calculate the critical thickness hc. Hence the transition between the two growth modes
occurs when the deformed layer energy is equal to the relaxed layer energy.
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Figure 3.9: SK growth showing island formation above
the critical thickness hc. The lines represent the crys-
tal structure and deformation. Edge dislocations at
the film/island interface are highlighted in red.

For an incompressible material with a surface L2

and a thickness h one can write:

γL2 +
L2hEε2r
1− ν

=
L2hEε2d
1− ν

hc =
(1− ν)γ

E(ε2d − ε2r)
(3.5)

where εd and εr are respectively the strain in the
deformed layer and in the relaxed one.

Computational models The mechanical model
can explain phenomenologically the physics of the
transition between the growth modes but hides all the physics of the interlayer interaction in the parameter
γ. Moreover it does not take into account the surface instability and the dependence on the temperature.

Figure 3.10: Equilibrium configuration obtained upon
annealing a flat film of 1ML, 2ML, 3ML, and 4ML of
Ge on a flat Si substrate at a temperature of 600 K in
Ref. [51]. The simulation was performed on a periodic
domain of 512 atoms in the horizontal direction

A thin film grown layer-by-layer can re-
sult in a metastable configuration and a per-
turbation, like an annealing process, can drasti-
cally change it. Two computational approaches
to consider this phenomenon are here intro-
duced: Asaro-Tiller-Grinfeld [52] developed a
model to describe the surface instability and
define the apparent critical thickness. This
value is defined as the biggest thickness for
which the planar film is stable under perturba-
tions.
Baskaran and Smereka [51] used a solid-on-solid
atomistic simulation model to study the sta-
bility of deposited 2D layers. This model
studies the surface energy with a short range
bond counting and long range elastic inter-
actions. Moreover it analyzes how these
energies change as a function of tempera-
ture.

Both models can not be applied to know a-priori
the sample growth mode due to the high number of
free parameters. They are instead really useful for
a phenomenological understanding of the physics of epitaxial growth.

3.1.5 RHEED

Reflection High Energy Electron Diffraction (RHEED) is an experimental technique for studying crystal
surfaces. A diffraction pattern is generated by the reflection of a high energy electron beam on a crystalline
surface. A phosphorescent screen allows to display in real time the reflected electron pattern.
The diffracted pattern can be studied in order to reconstruct the surface crystal structure. The geometry
of the RHEED pattern can be interpreted with two different theories.

• The kinematic theory considers only the diffraction produced by the incident beam and all the inter-
actions between electrons are purely elastic.

• In the dynamical theory the multiple electron scattering effects are taken into account. Indeed scat-
tered electrons can penetrate and interact with the bulk crystal. This phenomenon yields to Kikuchi
diffraction patterns.

In this report only the first theory is analyzed. Indeed the elastic constructive interference conditions
are sufficient to explain the intensity maxima of the diffraction pattern [53]. In order to simplify the physics
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Figure 3.11: [53] Geometry of a RHEED experimental set-up

of the scattering phenomenon and directly understand the diffraction pattern all the discussion will be pre-
sented in reciprocal space.

The surface of a perfect crystalline material can be described by the repetition of a unit mesh. It can
be described in real space by the vector R.

R = M1a1 +M2a2 (3.6)

where a1 and a2 are the basis vectors whereas M1 and M2 are integer numbers. The reciprocal space is
defined by the vector r

r = m1a
∗
1 +m2a

∗
2 (3.7)

where a∗1 and a∗2 are the basis vectors, m1 and m2 are integer numbers. Using the relation 3.8 the vectors
can be converted from the real to the reciprocal space:

a∗1 =
2πa2 × n

A
a∗2 = −2πa1 × n

A
(3.8)

where n is the versor perpendicular to the surface and A = (a1 ·a2)× n.

The incident electron beam can be described by the wave vector k.

k = p/~ | k |= 2π/λ (3.9)

where p is the electron momentum, ~ is the Planck constant over 2π and λ is the wavelength. The scattered
electron beam emerging from the sample is described by the wavevector k′.

Using the elastic conservation equations, the Von Laue law sets the conditions for constructive interfer-
ence: (

k− k′
)
·R = m2π (3.10)

A geometrical figuration, the Ewald sphere, allows to clearly understand the meaning of this condition.
Indeed it is possible to draw a sphere in the reciprocal space with a radius (k − k′). The origin of the
reciprocal lattice is set on the sphere surface as shown in Fig. 3.12a(b). The Laue conditions are reproduced
by the intersection between the lattice reciprocal rods and the Ewald sphere.

The interception between a sphere and a line is a point. Hence the diffraction should be composed by a
distribution of spots. Instead the experiments show constant spaced streak patterns. This phenomenon can
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(a) The Ewald sphere construction, shown in
cross section in the plane of incidence. The
point of incidence of the beam is the origin of
k space [53].

(b) A cross section in the plane of incidence
that shows how a particular reciprocal lattice
rod gives rise to a diffraction spot on the screen
[53].

Figure 3.12

be explained taking into account the instrumental broadening, sample broadening and finite temperature
effects:

• Instrumental broadening is caused by the kinetic energy distribution of the electron beam. Then
the Laue condition is extended for all the k present in the beam and the Ewald sphere becomes a
thin spherical shell. The interceptions become therefore lengthened streaks. This effect is stronger in
the first order spots and decreases for the others. Indeed the lengths of the rods’ projection on the
spherical shell decreases for k′ closer to the sphere center.

• Sample broadening occurs in disordered samples. The surface disorder leads to an imperfect crystal.
The reciprocal space rods acquire a finite size. Hence the sphere-rod interception will have a spatial
distribution. For instance, a single crystal epitaxially grown can present a step configuration made
by atomic terraces. In that case, the reciprocal rods will have a nearly Gaussian cross section whose
width is inversely proportional to the width of the terraces.

• The thermal fluctuations of the crystal atoms due to the finite temperature broadens the RHEED pat-
tern. In fact the atoms oscillate and the refracted beam will be sensitive to the statistical distribution
of the atoms.

In the following, I will show a method to extrapolate the lattice parameters from the distance between
the pattern streaks. The Ewald sphere radius is generally large compared to the distances between the rods.
Then it is possible to use the similar triangles principle for obtaining the lattice parameter a∗:

W/L = a∗λ/2π a∗ =
2πW

λL
(3.11)

where W is the distance between the streaks, L is the distance between the screen and the sample and λ is
the wavelength of the incident beam.

In order to validate Eq. 3.11 it is fundamental to use a high energy electron beam. A high accelerating
voltage V is thus required. This makes a relativistic electron approach necessary for the λ formulation:

λ =
h√

2m0qV [1 + qV/(m0c)2]
(3.12)

where m0 is the electron rest mass, q is the electronic charge and c is the speed of light.
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Figure 3.13: A plane view showing the relation between the intra-row spacing of the reciprocal lattice rods
of the zeroth zone and the spacing of the observed RHEED streaks

3.1.6 STM chamber

Scanning Tunneling Microscopy (STM) is based on the measurement of the quantum tunneling current
between a metallic tip and a sample surface. This current is directly proportional to the surface local
density of states. The application of a bias between the tip and the surface allows to change the occupation
of the states. A feedback electronic system in combination with piezoelectric motors allows to scan the
surface and control the tip height.
STM allows two different kind of measurements:

• In the spectroscopy mode the tip is in a given position and the current as a function of the bias
voltage is studied. It allows to analyze the surface electronic properties.

• The microscopy mode can be performed in two ways. One can fix the distance between the tip and
the surface and study the current variation or fix the current and study the tip height. It allows to
display a map of the surface density of states down to the atomic resolution. In case of homogeneous
electric properties this mode can be used to study the surface topography.

Tunneling current

It is possible to write a simple formulation of the tip-sample current solving an easy quantum problem. The
wavefunction ψn(z) of an electron in a potential V(z) is described by the Schrödinger equation:

− ~2

2m

∂2ψn(z)

∂z2
+ V (z)ψn(z) = Eψn(z) (3.13)

Two cases may exist depending on the difference between the barrier height (eV ) and the electron energy
E :

ψn(z) = ψn(0)e±ikz k =

√
2m(E − U(z))

~
E > eV (z) (3.14)

ψn(z) = ψn(0)e±κz κ =

√
2m(U − E)

~
E < eV (z) (3.15)



3.1. UHV SYSTEM: DEPOSITION AND CRYSTAL
CHARACTERISATION 43

(a) Sketch of tip and sample degrees of freedom in a
STM set-up. (a) Two piezo rails moving the sample
along the z direction allow the STM tip to approach
the surface. (b) Two piezoelectric motors allow to
place the tip in different areas of the sample surface
(x, y) in the figure. (c) Finally two precision piezo-
electric motors allow the z motion and (d) the oscil-
lation in the (x, z) or (y, z) planes. (d) Tip-sample
bias voltage and current measurement.

(b) Plot of the electron wavefunctions in three areas
with different potential V(z). An artistic view links
the three areas with the STM physics.

Figure 3.14

As shown in Fig. 3.14b when E > eV (z) the wavefuction is a plane wave whereas when E < eV (z) it is an
evanescent one. In the STM set-up geometry the space can be divided into three areas (Fig. 3.14b). Here the
case of a current from the sample to the tip is shown. In the opposite case all the discussion is inverted. The
electron will propagate in the sample (E > eV (z)); it will be partially reflected and partially transmitted
into the vacuum (E < V (z)) and finally will propagate into the tip. The problem of knowing the sample-tip
current corresponds to knowing the probability that the electrons close to Fermi level tunnel through the
vacuum to the empty tip states. The density of states ρ(E) multiplied with the Fermi distribution f(E)
describes the number of states available for the transition at a finite temperature. ρ(E) can be calculated
as the number of states in a given energy interval ε:

ρ(E) =
1

ε

E∑
E−ε
|ψn|2 (3.16)

The probability of transition is described by Fermi’s golden rule

I =
2π

~
|W |2δ(Eψs − Eψt) (3.17)

where |W | is the matrix element between ψs (the sample wavefuction) and ψt (the tip wavefunction) and
δ(Eψs − Eψt) shows that only transitions between states with the same energy are allowed. Then the total
current I is obtained summing over all the states:

I =
4πe

~

∫ +∞

−∞
[f(Ef − eV + ε)− f(Ef + ε)]ρs(Ef − eV + ε)ρt(Ef + ε)|M |2dε (3.18)
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3.2 AFM

Atomic force microscopy is based on the study of the oscillatory motion of a cantilever when it interacts
with the surface of a given material. The AFM allows to display the surface topography with a resolution
that can reach a few nanometers. The fundamental components of an AFM set-up are shown in the insert
in Fig. 3.15.

Figure 3.15: Plot of a generic surface potential as a function of the distance from the surface (z). (insertion)
Sketch of the fundamental components of an AFM set-up. (a) Feedback loop electronics (b) High-precision
piezoelectric motors for scanning the surface and set the cantilever height. (c) Cantilever with atomically
sharp tip. (d) Photo-diode. (e) Laser generator.

The piezoelectric motors allow to scan the sample surface and approach the cantilever to the surface.
The cantilever can be excited to its resonance frequency by a small piezoelectric element. A laser beam
is focused on the cantilever tip and reflected on a photo-diode. The change of position of the laser beam
on the diode allows to study the oscillation frequency, amplitude and phase of the cantilever. A feedback
electronic loop can change the cantilever height as a function of the signal collected by the diode.
AFM can be performed in three different modes which are differentiated by the kind of interaction between
the tip and the surface.

• In contact mode, the tip is approached to the surface up to feel a repulsive interaction, (1) in
Fig. 3.15. The cantilever bends and its deflection is measured. The measurements are thus performed
in static conditions and the signal could be affected by noise and drift. In order to increase the static
signal low stiffness cantilevers are used.

• The tapping mode has been developed in order to avoid the friction and the sticking of the tip to
the surface. The cantilever is excited to its own resonance frequency and approached to the surface
up to have a dynamic contact. When the tip interacts with the sample its oscillation amplitude will
reduce due to the tip-surface interaction. During the scan the feedback loop allows to tune the tip
height for keeping the cantilever oscillation amplitude constant. In the tapping mode the tip height
and the oscillation phase can be recorded. The height gives information about the surface topography
and the tip phase is proportional to the energy dissipated by the cantilever in each oscillation cycle.
This gives information about sample stiffness variations or adhesion properties.

• In non-contact mode the cantilever oscillates in a regime of attraction with the sample surface.
The cantilever interacts only with long range interactions like Van der Waals forces or dipole-dipole
interactions. They change the cantilever oscillation properties, decreasing the frequency and the
amplitude of the oscillations. The feedback loop can be used in order to change the tip height and
keep the frequency (frequency modulation) or the amplitude (amplitude modulation) constant. In
frequency modulation the tip is excited to its resonance frequency. Normally two different feedback
loops are used, one to control the height and the other to tune the tip excitation. This allows to
study separately the conservative and non-conservative forces on two different experimental signals.
In amplitude modulation the cantilever is excited to a frequency slightly above the resonance one.
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When the tip interacts with the surface the tip frequency decreases and thus the oscillation amplitude.
Keeping constant the amplitude the tip height can be recorded as a function of the position on the
surface. It allows to obtain the surface topography of the sample.

3.3 X-ray diffraction

Figure 3.16: Sketch of the X-ray diffraction
geometry

Diffraction is a phenomenon that occurs when electromagnetic
waves scattering with an ordered medium interfere with each
other. This occurs when the electromagnetic wavelength is
comparable to the distance between the scattering elements in
the medium. Since X-ray radiation has wavelengths compara-
ble to the atomic distances in a crystal, X-ray diffraction allows
to study the symmetry and the lattice parameters of crystalline
materials.
The constructive interference is described in the geometry
shown in Fig. 3.16 by Bragg’s law:

2d sin θ = nλ (3.19)

where d is the distance between the atomic planes, θ the X-
ray incidence angle with respect to the surface and λ the X-
ray wavelength. In this thesis two different X-Ray diffraction

techniques have been used for the crystal characterisation.

Laue diffraction

The Laue method studies the X-ray diffraction from a single crystal in a fixed orientation. Since each X-
ray wavelength interacts with one atomic plane in the Laue diffraction, white radiation is used in order to
accede to multiple scattering and to have information about all the crystalline planes. The diffracted beam
is composed by different beams diffracted from the sample with different angles. Each one corresponds to a
given crystalline plane.

Laue diffraction can be performed in two different geometries: in the transmission geometry a photo-
sensitive film is aligned with the crystal and the X-ray source, and detects the forward scattered radiation
transmitted through the sample. In the back reflection geometry a photosensitive film is placed between
the X-ray source and the crystal in order to collect the back reflected X-ray beam. In both geometries the
photosensitive film is impressed by a pattern of spots corresponding with the constructive interference from
the different crystalline planes. The study of the angular position of these spots allows thus to analyze
the crystal orientation and quality. On the other hand a quantitative analysis of the distance between the
crystal planes is not possible since the X-ray wavelength that generates each single spot is unknown.

GIXD

Grazing incidence X-ray diffraction (GIXD) is a synchrotron technique that allows the quantitative analysis
of crystal structures. It uses small X-ray incident angles in order to be sensitive to the surface crystal
structure. This technique is then particularly suited for studying ultrathin films since the X-ray penetra-
tion length is comparable with the system thickness and the signal from the substrate is strongly reduced.
GIXD is typically performed below the critical angle of the surface material. An evanescent X-Ray wave
is exponentially damped in the material and the Bragg reflection arises only from the first atomic layers.
Moreover at the critical angle the X-ray electric field is locally amplified and the scattered signal is increased .

During the measurements the combination of the motions of the sample holder and of the X-ray analyzer
allows to scan the diffraction peaks in the reciprocal space. Therefore the technique produces spectra of the
diffraction intensity as a function of the X-ray moment in the crystal reciprocal space. Synchrotron X-Ray
radiation is thus fundamental in order to tune the X-ray moment.
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3.4 Experimental techniques to determine the magnetic parameters

In a room temperature ferromagnet, the collinearity of the spin configuration does not allow to directly study
the properties of the system and the strength of the interactions. In order to access them it is necessary to
study the system’s response to an external perturbation, generally the application of an external magnetic
field. During this thesis different magnetic techniques have been used in order to give a complete overview
of the strength and symmetry of the magnetic interactions. These techniques can be separated into two
main categories:

• spectroscopy techniques can be used to study how a single parameter changes as a function of the
external perturbation. The investigated area is generally related to the dimension of the probe and
bigger than the typical length scales of the magnetic phenomena.

• microscopy techniques study the spatial distribution of the magnetisation. Methods with different
spatial resolution, from micrometers to some tens of nanometers, have been used to study magnetic
configurations at different length scales.

Magnetic systems can be characterized by five material dependent parameters (α,K,Ms, A,D). Moreover
anisotropic magnetic interactions can occur in crystals with a C2v symmetry like the systems studied in this
work. Then the number of parameters for a complete magnetic characterisation increases to nine (|α|, αi,
Ms, |A|, Ai, |K|, Ki, |D|, Di). A list of the techniques used in this work and of the determined magnetic
parameters is shown in Tab. 3.1 and in the following text. In Tab. 3.1 the term (|...|) is used when a
technique allows only the determination of an average parameter whereas (...i) indicates that the method
allows a direction dependent measurement.

Kerr magnetometry is a magneto-optical spectroscopy technique that studies the change of the polari-
sation of light due to the interaction with a magnetic medium. It allows to study a qualitative response of M
to the application of an external magnetic field µ0Hext. The application of a magnetic field perpendicular to
the easy axis allows the determination of the effective magnetic field µ0Heff = 2Ki/µ0M

2
s needed to align

the magnetisation along the direction of the applied magnetic field.

Vibrating Sample Magnetometry (VSM) is a technique that allows to have a quantitative response
of M to the application of an external magnetic field µ0Hext. It can be used to extrapolate the system
magnetisation M = MsAt, where A is the sample area and t the sample thickness.

Kerr Microscopy is a magneto-optical microscopy technique using Kerr magnetometry with spatial
resolution. In the polar geometry (light incidence perpendicular to the sample surface), it allows to display
the map of the out-of-plane magnetisation in the µm-range. It has been used in this thesis to study the
dynamics of domain walls (DWs). The DW motion under the application of a perpendicular magnetic field
Hz allows to extract the flow speed vf = γ0∆/αHz and the Walker speed vw = π

2γ0D/Ms (see Sec.5.4.1).
Studying the dynamics applying at the same time a perpendicular and an in-plane magnetic field Hx allows
extracting the DMI field Hdmi = D/µ0∆Ms.

Brillouin light scattering (BLS) is a magneto-optical spectroscopy technique that studies the scattering
phenomenon between light and thermally-activated spin waves. The measurements are performed under the
application of a strong in-plane magnetic field µ0Hin that allows to saturate the magnetisation in a given
direction. It allows to study properties along different directions. The BLS spectra can be divided into a
symmetric and an anti-symmetric part. The symmetric part depends on the crystal symmetry. In the case
of systems with a C2v symmetry the frequency of the spin waves depends on the direction of the in-plane
anisotropy field µ0Hin, which allows to determine the strength of the anisotropy fields. The anti-symmetric
part is directly proportional to the strength and sign of the DMI acting on a spin wave perpendicular to the
applied magnetic field direction.
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|α| αi Ms |A| Ai |K| Ki |D| Di

Kerr Magnetometry Hco

VSM M X

Kerr Microscopy vw X X

vf X X X

Hdmi X X X X

BLS fsymm X X

fanti X X X

Table 3.1: Table of the experimental techniques used for the magnetic characterisation. The term (|...|) is
used when a technique allows only the determination of an average parameter whereas (...i) indicates that
the method allows a direction dependent measurement

3.5 Magneto-optical effects

In this section two different phenomena occurring during the interaction between light and magnetism are
reported. First a classical theory is described for studying the polarisation change and the attenuation of an
electromagnetic wave when it propagates in a medium with an internal magnetic field. The particular cases
of Faraday and Kerr effects are discussed. Kerr microscopy and magnetometry are based on these effects.
In the second part BLS is described. It studies the scattering phenomena between light and spin waves,
related to the thermal excitation of a ferromagnetic magnetisation.

3.5.1 Wave propagation in a magnetic medium

In this part a mathematical formulation for describing the change of polarisation and the attenuation of an
electromagnetic wave when interacting with a magnetic medium is discussed. The problem can be solved
with the resolution of the Maxwell equations. In their differential form they describe the mutual interaction
between four vectorial fields: the magnetic field B, the electric field E, the induction field H and the electric
displacement field D.

∇×E =
−∂B

∂t
∇×H− ∂D

∂t
= j ∇ ·B = 0 ∇ ·D = ρ (3.20)

with j the current density, and ρ the free charges. The magnetic field B and the displacement field D are
the responses of the medium to the presence of an induction H or an electric field E :

B = µ0(H + M) = µH D = ε0E + P = εE (3.21)

where M and P are the magnetisation and the polarisation vectorial field. They express the density of
permanent or induced dipole moments in a material. Eqs. 3.21 are the constitutive relations between B and
H, and D and E, via the magnetic permeability µ and the electric permittivity ε.

The magneto-optical problem is equivalent to the study of the electric permittivity ε0εr when the po-
larisation field P is zero. Since this is the case in metallic magnetic media, we limit the discussion to these
media. The solution of the equations system Eqs. (3.20) is complex and not always possible. Therefore a
linear response expression is exposed here in order to write a direct relationship between D and M. The
problem is reduced to write an effective permittivity tensor ε. In general the presence of a magnetic field
breaks the time reversal symmetry and the tensor has an anisotropic 3x3 form.

In the interaction between the light and the magnetic material the time reversal is broken when only the
light is considered. When also the source of the magnetic field is considered the problem is time-invariant.
This allows to reformulate ε as a hermitian matrix ( ε = εT). Moreover the systems analyzed with magneto-
optical techniques are generally electrically isotropic. Then the electric response can be considered isotropic
and ε = ε.
Introducing the complex gyration vector g one can formulate:
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D = εE = εE + ıεE× g ε =

 ε ıεgz −ıεgy
−ıεgz ε ıεgx
ıεgy −ıεgx ε

 (3.22)

If also the magnetic response is isotropic the gyration vector is proportional to the magnetisation M via
the Voigt constant Q [54]. Hence in a medium with magnetisation M one can write g = (QMx, QMy, QMz)
and the permittivity tensor takes the form:

ε =

 ε ıεQMz −ıεQMy

−ıεQMz ε ıεQMx

ıεQMy −ıεQMx ε

 (3.23)

Eq. 3.23 is the fundamental step for understanding the polarisation change of an electromagnetic wave
in interaction with a magnetic medium but it does not take into account the geometry of the system. This
is done by studying a planar electromagnetic wave propagating along r in a given medium:

E(r, t) = E0e
−ı(ωt−k · r) H(r, t) = H0e

−ı(ωt−k · r) (3.24)

where k is the wavevector in the ûk = (x, y, z) direction and ω is the wave frequency.
A complex reflective index N can describe the changes of the wave vector in the medium.

k = Nk0 = (n+ ıκ)k0 (3.25)

where k0 is the wavevector in vacuum. The real part n is the refractive index and indicates the phase
velocity. The imaginary part κ is the extinction coefficient and wave attenuation in the medium. When this
parameter is inserted in a plane wave equation it gives an exponential decay term. It thus describes the
penetration length of the wave. The wave vector can be decomposed into its modulus |k| and its direction
in the medium described by the versor ûk = (Nx, Ny, Nz)ûk0. The frequency is inversely proportional to
the wavelength, according to the equation:

k =
ω

c
ûk (3.26)

where c is the speed of the light and ω is the frequency.

Now from the Eqs. 3.20 one can derive the wave equation

∇× (∇×E) =
1

c2
ε
∂2E

∂t2
(3.27)

Placing the plane wave solution (3.24) in the wave equation (3.27):

[ûk(ûk ·E)−E]N2 =
ω2

c2
εE (3.28)

and developing the products:

(ε+ N ·N−N2
x −N2

y −N2
z )E = 0 (3.29) ε−N2

y −N2
z ıεQMz +NxNy −ıεQMy +NxNz

−ıεQMz +NyNx ε−N2
x −N2

z ıεQMx +NyNz

NzNx + ıεQMy NzNy − ıεQMy ε−N2
x −N2

y

ExEy
Ez

 = 0 (3.30)

The refraction index components, i.e. the polarisation change and the wave attenuation, are solutions of this
system. Moreover they allow to study the wave reflected and attenuated at the interface between several
media.
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The Faraday effect

The change of polarisation of light transmitted by a magnetic medium is called the Faraday effect. It
is observed when an electromagnetic wave with linear polarisation is propagating in a medium along the
direction of a magnetic field B.

Figure 3.17: Faraday effect geometry. The angle β indicates the polarisation change when a electromagnetic
wave propagates in a medium with a magnetic field B. The medium has a square shape with a thickness d

This effect was discovered in 1845 by Michael Faraday when he observed that the polarisation direction
of an electromagnetic wave propagating through a magnetic medium was turned by an angle (θF). He found
that this angle is directly proportional to the path length d of the wave inside the medium and to the
intensity of the magnetic induction field (B).

θF = kVBd (3.31)

where kV is called the Verdet constant.

The Faraday angle can be calculated solving Eq. 3.30 in the geometry shown in Fig. 3.17. The magnetic
field B = (0, 0, Bz) and the wave vector ûk = (0, 0, 1) are set in the z direction. Considering the magnetic
susceptibility (M = χH = χ

µB), Eq. 3.30 takes the form: ε−N2 ıεQχ
µBz 0

−ıεQχ
µBz ε−N2 0

0 0 ε

ExEy
Ez

 = 0 (3.32)

The eigenfunctions of the matrix are left-handed and right-handed circular waves:

E+ =

 E0
2 e

ıω
c
N+(B)z

ıE0
2 e

ıω
c
N+(B)z

0

 E− =

 E0
2 e

ıω
c
N−(B)z

−ıE0
2 e

ıω
c
N−(B)z

0

 (3.33)

where N+(B) and N−(B) are the two eigenvalues :

N+(B) = n+ + ıκ+

√
ε(1 +Q

χ

µ
Bz) N−(B) = n− + ıκ−

√
ε(1−Qχ

µ
Bz) (3.34)

The total wave attenuation and polarisation change are found calculating the wave after the propagation
in the medium (z = d). Taking the sum of the left-handed and right-handed circular waves the Faraday
angle reads:

E(d) = E0(d)

cos(θF)
sin(θF)

0

 θF =
ωd

c
[N+(B)−N+(B)] (3.35)
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The Kerr effect

The Kerr effect is the phenomenon that occurs at the reflection of an electromagnetic wave from a magnetic
medium. Starting with an incoming linearly polarized wave, this effect induces an elliptical polarisation and
a change of the polarisation major axis of the reflected wave.

In order to describe this effect a relationship between the wave polarisation before and after the reflection
can be written: (

Erp
Ers

)
=

(
rpp rps
rsp rss

)(
Eip
Eis

)
(3.36)

where the polarisation is separated into the parallel (Ep) and perpendicular (Es) electric field components
and the indexes r and i indicate the reflected and incidence electric fields and are called Fresnel coefficients.
They set the relationship between the components before and after the reflection.

The Kerr effect strongly depends on the geometry of the reflection and the magnetisation direction of
the medium. Three geometries are here taken into account (Fig. 3.18):

• in polar Kerr the magnetisation is normal to the medium surface and the wave polarisation perpen-
dicular to the magnetisation.

• in longitudinal Kerr the magnetisation lies in the surface plane parallel to the wave plane of incidence
with an angle θ0 with respect to the normal to the medium surface.

• in transversal Kerr the magnetisation lies in the surface plane perpendicular to the wave plane of
incidence with an angle θ0.

Figure 3.18: Schematic representation of the different Kerr geometries

The magnetic systems studied in this work are composed by a multilayer structure. It is thus important
to study the wave reflection and the transmission through the different materials. Here only two media are
considered for the sake of simplicity: a non-magnetic medium and another one with magnetisation M.

The studied system and the wave reflection-transmission are shown in Fiq. 3.19. A linearly polarized
incident wave is considered and the incident angles in vacuum and in the two materials are θ0, θ1, θ2. In
order to express the Fresnel coefficients, the dielectric tensors ε for the media are considered:

• In the non-magnetic medium the wave does not change its polarisation and thus ε is diagonal with
respect to the electric field components.

• In the magnetic material the linear polarisation is not an eigenfunction because, as in the Faraday
effect, the magnetic field turns the wave polarisation. Hence the eigenfunctions of the system are
right-handed and left-handed waves. Then Eq. 3.30 becomes :

 ε−N2
y −N2

z ıεQMz +NxNy −ıεQMy +NxNz

−ıεQMz +NyNx ε−N2
x −N2

z ıεQMx +NyNz

NzNx + ıεQMy NzNy − ıεQMy ε−N2
x −N2

y

ExEy
Ez

 = 0 (3.37)
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Figure 3.19: Sketch of the system under investigation showing the different incoming and reflected electro-
magnetic waves

The tangential components of the electric field E and the magnetic field H are continuous. Then consid-
ering the reflection conditions for the electric field E and the magnetic field H at the interfaces the problem
can be solved for each Kerr geometry.

In this part the Kerr rotation angle θK is shown in the case of the red optical path in Fig. 3.19. Two
different incident waves are considered: p-polarized with the electric field along the plane of incidence and
s-polarized with the electric field normal to the plane of incidence. For the p-polarisation the Kerr rotation
θK is defined as the ratio between the Fresnel coefficients rps and rpp, whereas for the s-polarisation θK is
rsp
rss

:

θpK =
rps
rpp

θsK =
rsp
rss

(3.38)

The problem has been solved in Ref. [55]. Fig. 3.20 shows the dependence of θpK and θsK on the incident
angle for polar and longitudinal Kerr geometries. Analyzing the plot in Fig. 3.20 allows to optimize the
geometry of the Kerr set-up in order to optimize the Kerr effect. Note that the maximum Kerr rotation in
the polar geometry is obtained when the wave is perpendicular to the surface. In the longitudinal geometry,
instead, the Kerr rotation is zero for perpendicular incidence and has a maximum for an angle that depends
on the medium and the kind of polarisation.

Figure 3.20: Experimental and theoretical p- and s-Kerr rotation curves of (a) a Cu/Co multilayer in the
longitudinal configuration and (b) a Co/Pd multilayer in the polar configuration [55]
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3.5.2 Focused Kerr magnetometry

Focused Kerr magnetometry is an experimental technique that allows to investigate magnetic hysteresis
loops using the Kerr effect. The magnetic field B can be applied perpendicular or parallel to the sample
plane in order to perform measurements in different Kerr geometries. Fig. 3.21 gives a schematic presentation
of the experimental set-up used in this thesis.

B x

y

z

x

y

z
B

Figure 3.21: Transversal-longitudinal Kerr configuration (left). The magnetic circuit that allows the ap-
plication of an in-plane magnetic field is shown. Polar Kerr configuration (right) with the electromagnetic
coil that allows the application of perpendicular magnetic fields. In both Figures the black arrows show the
piezo motor degrees of freedom.

A piezo motor allows to move the sample along three directions (x,y,z) in Fig. 3.21. The sample is placed
on different supports for the two configurations as shown in Fig. 3.21:

• Polar Kerr. The sample is placed on a non-magnetic support directly on the motor base while a coil
for the application of perpendicular magnetic fields is placed behind the sample.

• Longitudinal and transversal Kerr. The sample is placed on an L-shaped support in order to stay in
the gap of a magnetic circuit that therefore applies a magnetic field parallel to the sample plane.

The set up for the measurements is assembled on a non-magnetic optical table. Two optical paths shown
in Fig. 3.22 are used :

• The red line shows the laser path. It is generated by a 5.0 mW Red (λ = 632.8nm) He-Ne laser. The
beam is linearly polarized and after two beam splitter crystals reaches a microscope objective that
focuses the beam on the sample. This allows to study the magnetic properties locally, with a spot
dimension that can reach a few hundreds of nanometers. Indeed in systems with wedge layers the
properties change on this scale. Moreover it allows to study the properties of nano-patterned objects.
The reflected beam passes through a half-wave plate mounted on a rotating structure. Afterwards
a Wollaston prism splits the laser beam into two orthogonal linearly polarized waves that reach a
balanced photodiode. This allows to study the Kerr rotation angle.

• The yellow line shows a white light beam. It is used to illuminate the sample for making microscopy
images of the sample surface. The white light is produced by a diode and after the reflection on the
sample reaches a camera. It allows to display the surface of the sample and to focus the laser on the
desired position

The complexity of the wave path does not allow to set a direct relationship between the Kerr intensity
and the magnetisation during a hysteresis loop.
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Figure 3.22: Sketch of the focused Kerr magnetometry setup with the main optical components.

3.5.3 Kerr microscopy

Kerr microscopy relies on the Kerr effect in order to image differences in the magnetisation direction at the
surface of a magnetic material. In a Kerr microscope, the illuminating light first passes through a polarizer
filter, then reflects from the sample surface and passes through an analyzer polarizing filter, before going
through a regular optical microscope. Because the different MOKE geometries require different polarized
light, the polarizer should have the option to change the polarisation of the incident light (circular, linear,
and elliptical). When the polarized light is reflected by the sample material, any combination of the following
phenomena may occur: Kerr rotation and Kerr ellipticity. The changes in polarisation are converted by
the analyzer into changes in light intensity, which are visible. A camera is used to create an image of the
magnetisation direction at the surface from these changes in polarisation.

polarizeranalyzer

laser diode

objective

x

y

Bplane

Bz

Figure 3.23: Sketch of the set-up assembled on the Kerr microscope stage for the domain wall manipulation

The sample is placed on a stage that allows the scanning in the directions (x, y). An electro-magnets
set-up is implemented in the stage. It allows to apply static and pulsed magnetic fields parallel (y) and
orthogonal (z) to the sample surface. As shown in Fig. 3.23, the magnetic field Bin is generated in a magnetic
circuit gap by electro-magnets, whereas the Bz field is applied directly by an electro-magnet. Different kinds
of electro-magnets are used in order to change the duration of the magnetic pulses and/or the magnetic
field intensity. Current pulses are generated by a high voltage power supply and controlled by computer
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software. This set-up does not allow to apply pulses with a duration of less than a few microseconds. To
overcome this problem a microcoil set-up has been developed.

Microcoil The application of magnetic field pulses with a microcoil allows to increase the magnetic field
intensity and to reduce the magnetic field pulse time. It is fundamental for studying the DW dynamics
because the DW speed has different regimes as a function of the magnetic field strength (Sec. 5.4.1). The
microcoils used in our experiment are constituted by a 3.5µm-thick copper layer grown by sputter deposition
on a surface of silicon. Before the deposition of a continuous film of copper a window is made in the silicon
substrate in order to allow the optical observation through the coil. The coils are obtained with a lithography
process as shown in Fig. 3.24a

(a) (b) (c)

Figure 3.24: (a) Optical imagine of the micro coil geometry. Lighter contrast : copper layer, darker contrast
: Si substrate. (b) Current in the microcoil during the pulse measured with a oscilloscope connected with
the electronics. (c) Magnetic field during the pulse measured with a 1mm-diameter coil

The coil’s shape is designed in order to increase the mechanical-thermal stability and to enlarge the
homogeneity of the magnetic field. The magnetic field is generated by the electric current from the discharge
of capacitors. This technique allows to flow high currents (up to 70 Amp) for a very short time (' 10ns).
Fig. 3.24b shows the current behavior during the pulse measured with an oscilloscope connected with the
electronics for different values of tension applied on the capacitor plates. The quality of the pulse shape
decreases increasing the voltage and a current oscillation appears during the signal fall for values above
60 V. The magnetic field pulse is measured using a 1 mm diameter coil placed on the sample holder as close
as possible to the microcoil. This set-up does not allow a direct measurement of the magnetic field intensity
during the pulse due the strong gradient of the magnetic field intensity and the reduced dimension of the
system. However, it is useful to control the shape of the magnetic field pulse and compare it with the shape
of the current pulse (Fig. 3.24c). It is possible to perform simulations of the magnetic field distribution in
space taking into account the current distribution in this particular geometry. Fig. 3.25 shows the results
of the simulations for two different coil diameters and a copper thickness of 3.5 µm.

Figure 3.25

For this thesis we decided to use the coils with 200 µm diameter in order to increase the magnetic field
homogeneity and reduce the effect of in-plane fields present close to the coil edge.
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Figure 3.26: Sketch of the set-up designed for
mounting the microcoil (b) on the sample sur-
face (d). The green dashed lines show the possi-
ble slots for the microcoil and the red lines the
relative position of the sample. On the sample-
holder base (c) the areas are shown that are cov-
ered by copper to guarantee the possible elec-
trical contact for all the microcoil slots. It is
done by screwing the element (a) on the base (c)
where windows allow the observation of the sam-
ple surface. The element (e) is also screwed on
the base (c) to guarantee the parallelism of the
sample and microcoil surfaces

Microcoil sampleholder The coil dimensions and the
sample holder used in the laboratory for previous works
do not allow to study samples with a surface area bigger
than 4× 4mm2. The samples grown and characterized in
this work present mainly a thickness gradient, where the
properties change along the sample and a set-up allowing
scanning is necessary. Moreover, in order to understand
the role of the anisotropic interactions on the DW dy-
namics a study along different in-plane sample directions
is required. In order to reach these technical requirements
two different set-ups have been designed and realized dur-
ing this thesis work.

The first, described in Fig. 3.26 and used for the mea-
surements shown in Sec. 5.4.1, is designed to use the stan-
dard coils and permits to study 6 different in-plane di-
rections, and to scan along the sample. The electrical
contact of the coil is guaranteed by mechanical pressure
imposed by a glass-fibre plate screwed only on one side of
the sample-holder. This fixing system appeared to be un-
stable and if the applied pressure for the electrical contact
is not strong enough the microcoil can be tilted. On the
other hand, a too strong pressure can cause the breaking
of the microcoil silicon support during the assembling. To
solve this technical problem and to allow scanning along
all the in-plane directions we designed and made a second
sample holder. This second sample holder has not been
tested and no data were taken. Indeed the conclusions
after the measurements performed with the first set-up
convinced us to use a different technique for the estima-
tion of the DMI strength.
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3.5.4 BLS spectroscopy

Spin waves (SW) are collective excitations of the magnetic
ground state. In a quantum mechanical model a quasi-
particle called a magnon can be associated to each SW mode. The magnons carry a spin angular momentum
(~ksw) with a given energy hνsw and its value is determined by the mutual coupling between the spins.

Figure 3.27: Feynman diagram of the
Brillouin light scattering phenomenon

The study of magnons allows probing the magnetic energies that
determine the collective excitation. BL scattering is the inelastic
interaction between a photon emitted by a laser source with a given
energy hνin and the thermally activated magnons in magnetic me-
dia. The scattering process can be described by the energy and
momentum conservation laws:

hνout = hνin ∓ hνsw (3.39)

~kout = ~kin ∓ ~ksw (3.40)

where hνout and ~kout are respectively the photon momentum and
energy probed by the technique. During the scattering the photon
transmits energy and momentum to the media exciting a magnon
(Stokes process (S)) or absorbs energy and momentum annihilating
a magnon (Anti-Stokes process (AS)).
In this thesis, SW scattering processes are investigated in the Damon-Eshbach (DE) [56] configuration.
An in-plane external magnetic field Bext is applied perpendicular to the photon beam. Bext allows to
saturate the magnetisation along an in-plane sample direction. In this configuration surface SWs propagate
parallel to the photon direction. In perpendicularly magnetized systems saturation is obtained by applying
a Bext stronger than the MCA field µ0HKi. Indeed, in micromagnetic theory the effect of the MCA can
be described as an effective magnetic field µ0HKi = 2Ki

µ0M2
s

where Ki is the MCA constant, i is an index

indicating a crystallographic direction and µ0 is the vacuum magnetic permeability.
The DE configuration involves the presence of magnetostatic surface spin waves (MSSW). They have four
fundamental properties [57]:

1. The SW propagation occurs with only a single mode.

2. Two SWs propagating in opposite directions are located on opposite material interfaces and their
intensity exponentially decays from the interfaces.

3. They switch interface when the propagation direction is inverted (field displacement non-reciprocity).

4. The phase and group velocity point in the same direction (forward wave).

These properties allow to understand a BLS spectrum. Property (1) involves the presence of a single
couple of symmetric S-AS peaks. The field displacement non-reciprocity plays an important role in the
location of the S and AS peaks. Indeed, for Eq. 3.39, the absorbed SW and emitted SW have opposite
wave-vectors and thus their properties depend differently on the magnetic interfaces. This phenomenon
may break the frequency symmetry between S and AS peaks but it occurs only if the sample thickness (d)
is large enough to allow an exponential SW decay (kSWd >> 1).

In magnetic ultrathin films with the presence of interfacial DMI the frequency of the S (fS) and AS
(fAS) peaks can be decomposed into a symmetric and an antisymmetric component.

f =
|fS |+ |fAS |

2
± |fS | − |fAS |

2
= f0(Hext, A, kSW ,Ms, d,Heff )± fanti(kSW ,Ms, d,D) , (3.41)

f0 allows to extrapolate the strength of the effective anisotropy field whereas fanti is directly proportional
to the DMI strength. The technique is particularly suited for analyzing anisotropic systems. Indeed,
performing BLS spectroscopy with Bext along different directions allows the independent extrapolation of
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Figure 3.28

Figure 3.29: BLS spectrum of Au/Co(0.65 nm)/W(110) in the DE configuration. Red, experimental data.
Blue line, data fit with Lorentzian functions. Green line, background fit. In the S spectra, the distance
between the continuous and dashed black line shows the frequency shift between S and AS peaks. (a) BLS
spectrum with Bext = 0.6 T parallel to the W[001] axis and kSW = 8.08µm−1 parallel to the W[110] axis.

(a) (b)

Figure 3.30: Sketch of the BLS phenomenon: (bottom) surface SW propagating along the y direction, red
arrow = spin located at the atom position, blue arrow = spin projection on the plane (y,z). (top-left)
direction of the wavevectors in the S (a) and AS (b) processes, yellow arrow incoming and outgoing photon
wavevectors, black arrow SW wavevector. (top-right) representation of the vectorial product between two
spins during the SW propagation (green arrow) and projection along the DM vector (green arrow).
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the DMI strength D and the effective fields Heff along different directions. In the ultra-thin film regime
the DMI is the only physical phenomenon able to break the S-AS peak symmetry [58][59][60][61] .

The sketch in Fig. 3.30 helps to phenomenologically understand this effect. The D vector of the DMI
hamiltonian (HDMI = D12 ·S1 × S2) is positive along the x̂ direction. A clockwise perpendicular spin
arrangement is thus favored by the DMI. A surface SW with magnetisation along the x̂ direction and propa-
gating along the negative ŷ direction (kSW //ŷ) has an anti-clockwise rotation. The vector product between
two spins along the SW direction has a positive component along D. On the other hand, a SW propagation
along the positive ŷ direction has a clockwise rotation and a negative component of the vector product along
D. If a photon beam with a positive wavevector along the ŷ direction scatters with the magnetic medium a
SW with a negative kSW can be generated (S process) and a SW with a positive kSW can be absorbed (AS
process). This can explain why the S peak in the BLS spectrum has a higher energy than the AS peak.

Set-up

Figure 3.31: (a) Sketch of the main components of a BLS spectroscopy set-up. b) Working principle of a
tandem 3x2 Fabry-Perot interferometer

A sketch of the main components of an experimental set-up for BLS studies is schematically shown in
Fig. 3.31. Light from a solid state laser is focused onto the sample by an objective lens. The elastically
and inelastically scattered light is collected and passed through a polarizer filter. Since in magnetic-optical
phenomena a polarisation change occurs this filter allows to eliminate the light inelastically scattered with
the phonons. Afterwards the light enters into a tandem 3x2 Fabry-Perot interferometer. The fundamental
part of the interferometer consists of two Fabry-Perot etalons. Setting a given value of the angle α [62]
allows to eliminate the harmonics of the reflection and eliminate the ambiguities in the analysis of inelastic
peaks. Moreover, in order to obtain the high contrast necessary to detect the weak inelastic signals, the
light is sent through both etalons three times with a system of mirrors and corner reflectors. Finally the
light transmitted by the interferometer is detected by a photodiode and recorded by a personal computer.
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3.6 Magnetic microscopy

In this section the main principles of XMCD-PEEM and MFM are described. These are two techniques
that allow to display the different components of magnetic configurations at the nanometer scale.

3.6.1 XMCD-PEEM

XMCD-PEEM is a synchrotron technique that combines Photoemission electron microscopy (PEEM) with
X-ray magnetic circular dicroism (XMCD).

• XMCD is based on the difference in absorption for a magnetic material between X-rays with opposite
circular polarisations.

• PEEM allows to reconstruct a map of the intensity of the secondary electrons extracted via photoe-
mission from the surface of a metal.

XMCD In this part magnetisation-dependent X-ray absorption is presented. The Fermi golden rule
allows to estimate the transition probability between the states |i〉 and 〈f | when the system is exposed to a
perturbation, described by the Hamiltonian H ′:

Γi→f =
2π

~
∣∣〈f |H ′|i〉∣∣2 ρ (3.42)

where ρ is the density of final empty states. Then magnetisation-dependent X-ray absorption can be obtained
if the following conditions are fulfilled:

• The final state 〈f | has different densities of empty states for spin-up and spin-down electrons.

• The electronic excitation between the states has two different circular momenta and spin flips are
forbidden.

• The initial state |i〉 has spin-orbit coupling in order to transform the perturbation angular momentum
to the spin momentum.

Figure 3.32: a) Sketch of the interaction between a 3d transition metal and circularly polarized light. b)
Typical XMCD spectra for a transition metal

The first condition is satisfied in magnetic transition metals like Co, Fe and Ni where the 3d states
cross the Fermi level. Indeed the spontaneous magnetisation in these elements arises from the imbalance of
spin-up and spin-down electrons in these bands, leading to different densities of empty states.
The second is fulfilled when circularly polarized light excites electrons from the core levels. Left and right
circularly polarized light have opposite angular momentum. Moreover the selection rule of electrostatic
excitations forbids spin flips. The third condition is satisfied when the initial state is a core level like the
2p-level, which in the final state is split by the spin-orbit coupling in p1/2 and p3/2 states. These two levels
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have opposite spin-orbit coupling and the majority spin of the excited electrons will be opposite for the two
transitions. These two transitions are called L3 (2p3/2 →d) and L2 (2p1/2 →d).

Fig. 3.32 shows an example of XMCD absorption for the case of left circularly polarized (CL) X-rays.
The selection rules determine the allowed transitions (CL→ ∆m = +1; ∆s = 0). The spin-orbit coupling in
the level can transfer the orbital momentum to the spin momentum and during a transition with ∆m = +1
the excited number of spin-up and spin-down electrons are not the same. In the L3 (L2) transition 37.5%
(75%) of the excited electrons have spin-down and 62.5% (25%) spin-up. Since the spin-up empty density
of states (DOS) is smaller than the spin-down empty DOS the L3 (L2) transition with CL (CR) light has a
lower intensity. The subtraction between the two spectra (red in Fig. 3.32) is called XMCD spectrum and
allows to determine the magnetisation direction of the sample.

Figure 3.33: a) X-ray absorption and
electron transition b) Auger processes

PEEM Photoemission Electron Microscopy is a technique that
measures the number of electrons emitted from a sample upon irra-
diation by X-rays. The electrons are accelerated by a strong electric
field between the sample and the electrode of the objective lens.
During the path between the sample and the detector the image
is magnified and corrected by a series of magnetic or electrostatic
electron lenses. A micro-channel plate increases the electron signal
which is then recorded on a fluorescent screen. The technique col-
lects the secondary electrons generated by an initial Auger process.
When X-rays are absorbed by the sample, electrons are excited, leav-
ing empty core states. Electrons from an intermediate state fill the
states left empty by the excited electrons, at the same time leading
to the excitation of electrons from the same intermediate state to
conserve the total energy. These excited electrons create a cascade
of low-energy electrons, some of which have enough energy to escape
from the sample and to be collected by the PEEM optics.

A wide spectrum of electrons is emitted with energies between the energy of the incoming X-rays and the
work function of the sample. This distribution of electron energies together with the imperfections of the
microscope lenses leads to chromatic aberrations and a reduction of spatial resolution. This problem is par-
tially resolved by the introduction in the electron path of energy-filters to reduce the chromatic aberrations.
Moreover back-focal plane apertures can be used to optimize the resolution and the electron transmission.

Figure 3.34: Spectra of L3 edge taken with CL x-rays for different magnetisation directions. insertion)
XMCD-PEEM image of a skyrmion stabilized in a square dot [6].
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XMCD-PEEM Measurements are performed with the incident X-Ray beam with a given angle with
respect to the sample surface. Different absorption intensities are obtained for different projections of the
magnetisation along the beam direction. Fig. 3.34 shows the different intensities of a L3 peak obtained
with CL polarized light for different magnetisation directions. In the insert the XMCD-PEEM image for a
skyrmion stabilized in a square dot is shown.

3.6.2 MFM

Figure 3.35: (d) Scheme for the two-pass MFM procedure. (e) 2x2 µm2 MFM domain pattern of a 4 nm-
thick epitaxial FePt(001) film with perpendicular magnetisation (sample and image courtesy: A. Marty and
O. Fruchart).

Magnetic force microscopy is a technique based on the Atomic Force Microscope (sec. 3.2). In an MFM
microscope a cantilever with a tip covered with a magnetic material is used. Firstly the cantilever scans
the surface in the tapping mode. In this mode the electrostatic interactions dominate over the magnetic
ones which allows to display the surface topography. Since the electrostatic interactions have short range
the cantilever is then raised from the surface up to a height where it feels only the magnetic interactions. A
second scan of the surface is performed following the topography map in order to keep a constant distance
from the surface (Fig. 3.35(e)). In this regime the cantilever is excited close to its resonance frequency. The
phase shift is then detected. It is proportional to the vertical gradient of the force felt by the tip. The
second scan allows thus to display a map of the variation of surface magnetic stray field.

In Fig. 3.35(e) an MFM image of a domain pattern in a 4 nm-thick epitaxial FePt(001) film with
perpendicular magnetisation is shown. Four different contrasts can be discerned.

• The brighter and darker contrasts indicate the presence of a domain wall. The tip directly interacts
with the stray field generated by the strong change of magnetisation between the two domains.

• The intermediate grey contrasts are the sign of magnetic domains. The contrast arises from magneti-
sation variation due to the interaction with the tip magnetic field. It is thus directly proportional to
the sample magnetic susceptibility.

MFM can reach nanometer resolution. In this thesis it is used to image the magnetisation in ultrathin
magnetic systems. This kind of systems generates a small stray field due to the small amount of magnetic
material. On the other hand the magnetic susceptibility is high and it is possible to observe magnetic
domains. At the same time, a high susceptibility implies a strong interaction between the tip and the
magnetic configurations meaning that the tip can perturb the magnetic configuration.
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Chapter 4

Topological magnetic solitons

In the previous chapter we answered to the question of how the symmetry of the crystal structures influences
the symmetry of the magnetic interactions. Here we try to answer to the question of how the magnetic
interaction symmetry influences the configuration of magnetic topological solitons. In order to do that we
first introduce then main concepts of the topology theory in magnetism and then we describe the model that
we construct to describe 1D, domain walls (DWs) and 2D topological magnetic solitons, skyrmions (SKs),
in anisotropic systems.
The chapter is divided into five sections:

• In the first section an introduction to the topology in magnetism can is given.

• In the second a continuous micromagnetic model is described in order to study 1D topological magnetic
solitons, DWs. The main models used in literature for describing these magnetic configurations are
presented under the presence of different magnetic interactions.

• In the third part the results obtained during this thesis work on the effect of anisotropic interactions
on DWs in systems with C2v symmetry are presented. In this part we answer to the question of how
the symmetry of the magnetic interactions influences the DW configuration.

• Finally we show the micromagnetics models that we developed to describe the stabilily and the prop-
erties of skyrmions in thin films. Then the relationships between the symmetry of the DMI interaction
and the skyrmion configurations is described. This allows us to find the conditions for the stabilisation
of anti-skyrmions and study their properties and configurations.

4.1 Topology

The last decades part of the research community has focused on the study of topological properties in
condensed matter. This research field is interesting due to the fact that simple and basic properties owned
by completely different systems involve common complex and fascinating phenomena. In this section I
will give a simple introduction to explain the meaning of topology and how to characterize the homotopy
classes.
The topology for a magnetic vectorial field will be analysed for one and two-dimensional systems. The
presence of a non-trivial topology in magnetism corresponds to the presence of magnetic solitons with
topological properties. Then the general concept of Berry phase will be explained in order to elucidate the
origin of the emergent fields. Indeed they are the fundamental causes of the topological properties. The
topological Hall effect, topological protection and gyrotropic motion are the topological properties that will
be analysed in the case of two-dimensional topological magnetic solitons called skyrmions.

4.1.1 Topological number

The discussion described in this section follows the work covered in reference [63].
The term topology has a greek origin and is a composition of two words: topos-space and logos-study.
Topology is the branch of mathematics focusing on the study of the properties of space that are conserved
under continuum space transformations. One can define a homotopy class as the set of functions f that can

63
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be continuously deformed into each other.
In this manuscript the discussion is reduced to smooth vector fields f : Rn defined in the extended space
Rn, with n the number of space dimensions.

Figure 4.1: Sketch of a stereographic pro-
jection from a plane to the surface of a
sphere: f : R2 → S2

One can understand if two vectorial fields f : Rn and g : Rn
belong to the same homotopy class by performing a projec-
tion into a different space. For instance, when the fields are
projected on a unit sphere Sn they will wrap the space in the
same way if and only if they belong to the same homotopy
class. Therefore the projection, called more generally map,
f : Rn → Sn can be used to define a quantity owned by all the
elements of the same homotopy class, a topological invariant.
The mapping degree deg(f) fulfils this property and is defined
as the number of times that the vectorial field f wraps around
the unit sphere. It is called the topological number N and is
defined as:

deg(f) = N(f) =
oriented area of f(S2)

area of S2
(4.1)

The theory of the differential forms can be used in order
to calculate the mapping degree over curved spaces, manifolds,
independently of the space coordinates. With this formalism
the mapping degree reads:

N(f) =
1

area(Sn)

∫
Rn
ω(f)dx (4.2)

where ω(f) is the topological charge density. It describes the normal to the n-dimensional surface, i.e. how
the vectorial field changes locally on the unit sphere Sn. It can be formulated as:

ω(f) = det(f |Df) = det

(
f

∣∣∣∣ ∂f

∂x1

∣∣∣∣ . . . ∣∣∣∣ ∂f

∂xn

)
(4.3)

4.1.2 Magnetic topological solitons

In this work the studied vectorial fields are the magnetic fields of m-components in an n-dimensional space :

m(x) =

m1(x1 . . . xn)
. . .

mm(x1 . . . xn)

 (4.4)

In particular the study is focused on the physics of magnetic solitons with topological properties. A
magnetic soliton is a localized magnetic field configuration that in first approximation does not change upon
application of an external perturbation. Indeed, magnetic solitons can slightly deform during a perturbation
but they come back from different positions to the initial configuration when the perturbation stops. In this
thesis two different magnetic topological solitons will be studied:

Domain walls (DW) are the magnetic configuration localized at the transition between two ferromagnetic
domains. They can easily be described with a two-dimensional magnetic field (m=2) in a mono-dimensional
space (n=1). In this approximation it has generally a half-integer topological number that depends on the
rotation direction, i.e. the DW chirality. The topological number reads:

N1D =

∫ ∑2
ij εijmi(x)∂mj(x)

2π
dx (4.5)
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Figure 4.2: Sketch of a stereographic pro-
jection from a line to a circle: m : R1 → S1.
The red arrows indicate the direction of
the magnetisation field. The shown mag-
netic configurations, known as a 360◦ do-
main wall, have an integer topological num-
ber.

where εij is the Levi-Civita symbol and 2π is the length of a
unitary circle. Considering the angle θ, that describes the di-
rection of the magnetisation with respect to the space direction
ẑ (Fig. 4.2), the magnetic field can be described by the function
θ(x) and the topological number takes an easy formulation:

N1D =
[θ(x)]xixf

2π
= W (4.6)

where W is the winding number. If the magnetic field comes
back to the same initial direction, as shown in Fig. 4.2 for the
case of a 360◦ DW, it assumes only integer values with the sign
depending on the DW chirality. Note that magnetisation ro-
tation with N1D = 1(−1) rotates clockwise (anti-clockwise) in
the direction of the axis x̂.
Considering a point inside the unit sphere the winding number
describes the total number of times that the curve, describing
the vectorial field, travels clockwise around this point. In fer-
romagnetic systems 360◦ DWs can be found only in particular
conditions [64, 65, 66]. In a more general case the magneti-
sation changes between two magnetic domains with opposite
magnetisation directions (θ(xi) = nπ, θ(xf ) = θ(xi)± π). This
kind of DWs has a half-integer topological number N1d = ±1/2.

Skyrmions are localized vortex-like magnetisation configurations with integer topological number. They
can be described with a three-dimensional magnetic field (m=3) in two-dimensional space (n=2). In these
dimensions the topological number, known as the skyrmion number NSK , reads:

NSK =

∫∫
m ·

(
∂m

∂x
× ∂m

∂y

)
dxdy (4.7)

Passing to spherical coordinates for the space (r = (r cosα, r sinα)) and for the magnetisation (m =
(m cosφ sin θ,m sinφ sin θ,m cos θ)), one can understand the meaning of the skyrmion number. In skyrmion
configurations the spatial dependence of the magnetisation can be simplified by setting the perpendicular
magnetic variable independent on the in-plane ones (θ(r)) and the in-plane magnetic variable independent
on the radius (φ(α)). Then the topological skyrmion number reads:

NSK =
1

4π

∫∫
dθ

dr

dφ

dα
sin θdαdr =

1

4π
[cos θ]

θ(r=0)
θ(r=∞) [φ]φiφf = p ·W (4.8)

where p describes the magnetisation direction in the origin (p=1 (-1) for θ(r = 0) = π(0)) and W is the
winding number. Considering the same uniform magnetisation, i.e. the same p value, the winding number
allows to define the skyrmion (SK) (φ(α) ∝ α) with a positive winding number and the anti-skyrmion (ASK)
(φ(α) ∝ −α) with a negative winding number and thus a topological charge opposite to the one of the SK.
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Figure 4.3: Comparison of skyrmion and anti-skyrmion. (a), (b) Néel-like skyrmion and anti-skyrmion
schematically shown in (c) and (d) mapped onto a sphere. The color code represents the out-of-plane com-
ponent of the spins via the brightness, with bright (dark) spins pointing up (down), and their rotational sense
in radial direction going from inside out changing from red (clockwise) via gray (vanishing rotational sense)
to green (counter-clockwise). (e), (f) Cross sections of the spin textures along the four highlighted directions
shown in (c) and (d). Taken from Ref. [18]

4.1.3 Berry phase and breaking of the time reversal symmetry
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Figure 4.4: Sketch of the evolution of the
state |α(t)〉 (green line) in the space of pa-
rameters λ (blue plane) on a closed curve C.
The red plane is the set of static solutions
to the Hamiltonian H(λ)

In this section a quantum-mechanical approach is used in order
to define the Berry phase and understand the origin of intrin-
sic breaking of the time reversal symmetry in systems with a
non-trivial topology.
The discussion described in this section follows the work cov-
ered in reference [67].

Considering the Hamiltonian H(λ(t)), defined in the space
parameters λ(t), one can study the adiabatic evolution of an
eigenfunction |α(t)〉 in a closed curve C. The static Schrödinger
equation allows to find the eigenvalues εn(λ) and the eigen-
states |n(λ)〉 at a given time:

H(λ)|n(λ)〉 = εn(λ)|n(λ)〉 (4.9)

Two different sets |n(λ)〉 and |n(λ)〉′ give the same εn(λ) if they
differ only by a phase:

|nλ〉′ = eiζn(λ)|n(λ)〉 (4.10)

The transformation between the two eigenfunctions is called a Gauge transformation.

The time evolution of a given state |α(t)〉 can be obtained solving the time-dependent Schrödinger
equation:

i~∂t|α(t)〉 = H(λ(t))|α(t)〉 (4.11)
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where at t=0 the state |α(0)〉 = |n(λ(0))〉 is considered the eigenstate of the static solution. Since the
evolution is adiabatic and it occurs on a closed curve C after a given time T, the system period, the system
comes back to the initial state:

λ(T ) = λ(0) H(T ) = H(0) εn(T ) = εn(0) (4.12)

The time evolved state α(t) can generally be written as a linear combination of the static eigenstates of the
evolved Hamiltonian:

|α(t)〉 =
∑
n

cn(t)|n(λ(t))〉 (4.13)

The problem is then reduced to the study of the coefficients cn(t). They can be obtained placing the
last equation in the time-dependent Schrödinger equation:

~∂tcn(t) = −iεn(t)cn(t)−
∑
m

cm(t)〈n(λ(t))|∂t|m(λ(t))〉 (4.14)

For the adiabatic approximation cm(t) = cn(t), |m(λ(t))〉 = |n(λ(t))〉 and the equation can be directly
solved:

cn(t) = ei
∫ t
0 〈n(λ(t))|∂t|m(λ(t))〉e−i

∫ t
0 εn(λ(t′))dt′ (4.15)

and the evolved state reads:

|α(t)〉 = ei
∫ t
0 〈n(λ(t′))|∂t′ |n(λ(t′))〉dt′e−i

∫ t
0 εn(λ(t′))dt′ |n(λ(t′))〉 (4.16)

When t = T , i.e. the system is back to the initial state (εn(T ) = εn(0)), the second phase becomes equal
to unity. The first one is generally called the geometrical phase, or in the case of a closed path the Berry
phase γn(C).
The Berry phase can be reformulated in a purely geometrical representation :

γn(C) = i

∫ t

0
〈n(λ(t))|∂t|n(λ(t))〉dt = i

∫ λ(t)

λ(0)
〈n(λ(t))|∂λ|n(λ(t))〉dλ =

∫ λ(t)

λ(0)
Andλ (4.17)

where An is the Berry connection that is a pure real quantity. Moreover the Berry phase is a gauge invariant
and the connection can be defined up to addition by a differential term :

An′ = An −∇ζn (4.18)

Note that the Berry connection behaves as a potential vector. Indeed if after a closed path it is non-zero
the system presents an intrinsic breaking of time reversal symmetry even if the initial Hamiltonian respected
this symmetry. This concept becomes clearer when, using Stoke’s theorem, the Berry phase is reformulated
as a surface integral :

γn(C) =

∫
S

Ωn(λ)dλ Ωn(λ) = ∇λ ×An (4.19)

It can thus be confused with a magnetic field in electrodynamics.

Because of its geometrical nature, the Berry phase is strongly dependent on the chosen path C. However,
if two different paths can be transformed one into the other with a smooth continuous transformation the
Berry phase does not change. It is indeed a topological invariant. Moreover it is possible to demonstrate
that the Berry phase is zero in systems with a trivial topological number (N = 0). This means that in
systems with non-trivial topology (N 6= 0) the Berry phase is non-zero and an intrinsic breaking of the time
reversal symmetry occurs. This phenomenon can be described introducing the concept of emergent fields.
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4.1.4 Emergent fields and topological Hall effect

The concept of emergent fields allows to understand the effect of the Berry phase on magnetic systems. The
discussion described in this section follows the work covered in reference [68].
The dynamics of a free electron in a two-dimensional metallic magnetic material will be studied with this
aim. The system’s magnetisation is considered to change in space and in time and is described by the
vectorial field M(r, t).
Then the Hamiltonian of a single electron reads:

i~∂t|α〉 =

[
p̂2

2m
− Jµ̂ · M̂(r, t)

]
|α〉 (4.20)

where |α〉 is the electron eigenstate, p the momentum operator, m the electron mass, J > 0 is the strength
of the exchange coupling and µ is the electron magnetic moment.
A framework transformation can be performed in order to reduce the complexity of the exchange interaction
between the electron and the magnetisation M(r, t).

Figure 4.5: (a) Illustration of the effect of the local transformation on the magnetisation felt by a free
electron (b) Sketch of the effect of the emergent field from a skyrmionic spin configuration on the motion of
a free electron (From ref. [69])

A local transformation α = U(r, t)ζ allows thus to define an axis ẑ that locally rotates in the magneti-
sation direction,

− Jµ ·M(r, t)− U(r, t)→ Jg~µB|M|
2

σz = Jσz (4.21)

where σz is the z Pauli matrix and q the electron charge. In this framework the exchange interaction
becomes a trivial interaction favoring an electron moment parallel to the new ẑ axis. When the unitary
local transformation is performed to the complete Hamiltonian, the momentum operator is transformed (
p→ p + eA ) and the Hamiltonian reads:

i~∂tζ =

[
qeV +

(pI− qeA)2

2m
− Jσz

]
ζ (4.22)

with :

V = − i~
q
U+∂tU A = − i~

q
U+∇U (4.23)

where V and A are 2x2 matrices that describe the effect of the space and time variation of the magnetisation
on the electron. With an analogy with the Hamiltonian of a free electron under the influence of electric and
magnetic fields, V can be defined as an emergent electric field and A as an emergent vectorial potential.
In the case of a M(r, t) changing smoothly in time and space these potentials can be considered as a

perturbation acting on the solutions of the unperturbed Hamiltonian H0 = p2

2m + Jσz. Then it is possible
to define an emergent magnetic field and an emergent electric field:

(Be
σ)i = ∓ ~

2qe
εijk
2

M · (∂jM× ∂kM) (Ee
σ)i = ∓ ~

2qe
M · (∂iM× ∂tM) (4.24)

From these equations one can understand under which conditions the emergent field can be obtained. The
emergent electric field (Ee

σ)i occurs only in systems where the magnetisation changes in time while the emer-
gent magnetic field (Be

σ)i can be found when the magnetisation assumes a particular spatial configuration.
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Notice that the expression that describes the emergent magnetic field is equivalent to the expression of the
topological number in a two-dimensional system (Eq. 4.7). Then if in the system there is a non-trivial topo-
logical magnetic configuration, like a skyrmion NSK = ±1, an electron will feel a Lorentz force arising from
the emergent magnetic field and its trajectory will be deviated. This phenomenon is called the topological
Hall effect, which was one of the first effects used to detect the presence of skyrmions [[70, 71]].
The other way around, if the skyrmion is free to move it will feel a force in the direction opposite to the
electron deviation.

Figure 4.6: ”Schematic picture of skyrmion motion and associated physical phenomena under the flow of
electrons. Electron current drives the flow of a skyrmion by means of the spin-transfer torque mechanism.
Electrons are deflected by the Lorentz force due to the emergent magnetic field b of the skyrmion. The
motion of the skyrmion is accompanied by the time-dependent emergent magnetic field b (pink), and hence
the emergent electric field e, that is, emergent electromagnetic induction.” Taken from [72]

Gyroscopic motion The skyrmion gyroscopic effect has been clearly demonstrated by Thiele [73] who
formulated a motion law for a soliton field solution:

M
dv

dt
= F + G× v + αD ·v (4.25)

where M is a matrix called soliton mass, which depends on the soliton internal degrees of freedom and

describes the deformation of the soliton solution. v is the soliton speed, F and D are matrices that describe
respectively the forces acting on the soliton and the damping effect. G is the gyroscopic vector, which causes
a lateral deviation of the soliton and in a two-dimensional system reads:

Gij =
µ0Ms

γ

∫∫∫ [
m ·

(
∂m

∂xi
× ∂m

∂xj

)]
dx3 =

µ0Ms

γ
NSK (4.26)

The gyrotensor Gij depends on the skyrmion number and shows directly the effect of the emergent fields
in the form of a Magnus force. The direction of this force is then proportional to the topological number
[74, 32].
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4.1.5 Topological protection

In order to explain the concept of topological protection, let’s consider a particular field solution with a
non-trivial topology. This solution is not the energy minimum of the analysed system and has the tendency
to decay to the system’s ground state with a different topology.
Since two objects with different topology can not transform one into the other with a continuous transfor-
mation one can expect the non-trivial topological solution to be protected against the decay into the ground
state. This does not mean that this non-trivial topological solution can not decay into the ground state,
but that this process can occur only through some system singularity.

Figure 4.7: Artistic sketch of the magnetisation configuration of a Bloch skyrmion (upper object) and of a
Bloch point (lower object). (from the 2017 IFF Spring School poster .Copyright: Forschungszentrum Julich)

An isolated skyrmion is a non-trivial topological solution and has a higher energy than the ferromagnetic
ground state. It means that the skyrmion is topologically protected and can not decay into the ferromagnetic
background with a continuous transformation. This theoretical assumption made the skyrmion particularly
interesting and several studies have been performed in order to evidence the skyrmion topological protection
[75, 76, 77, 78]. These works have been useful to the scientific community in the understanding of the
skyrmion stability but they did not find any evidence of topological protection. The reason can be simply
explained analysing the magnetic configurations in Fig. 4.7 where a skyrmionic magnetic configuration
and a Bloch point are shown. The Bloch point is a magnetic three dimensional configuration where the
magnetisation locally vanishes in its center. It is a magnetic singularity. The topological protection does
not occur for skyrmions because when they are small, a few nanometers, they can not be described with
a continuous theory and they can be annihilated by the injection of a Bloch point that crosses the sample
thickness.
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4.2 Magnetic domain walls in isotropic matter

In ferromagnetic materials of large dimensions one can find areas with different magnetisation directions
called magnetic domains. The portion of the space where the magnetisation changes from one direction to
the other is a stable localized magnetisation configuration called Domain Wall (DW). The DW is a one-
dimensional topological soliton with a half-integer topological number. Indeed the DW propagates with a
localized configuration under external perturbations, like magnetic fields or spin currents, and in a contin-
uous magnetisation theory it is topologically protected.

Figure 4.8: Artistic sketch of a domain wall

In this section the DW energy and configuration are studied in two-dimensional ferromagnetic systems
that present an out-of-plane magnetisation. The discussion described in this section follows the work covered
in reference [38]. The two-dimensional approximation can be used for all the systems where the magnetic
layer thickness t is smaller than the magnetic coherence length; i.e. the characteristic length of the mag-

netisation variation called dipolar exchange length (lex =
√

2A
µ0M2

s
). These systems are called ultrathin films

and they are out-of-plane magnetized when the MCA overcomes the surface dipolar interaction. Indeed,
when the magnetisation is parallel to the surface normal the system is subject to a demagnetizing field that
promotes an in-plane magnetisation. Considering the dipolar interaction in the local approximation, the
perpendicular magnetisation occurs when KMCA > Kd = 1

2µ0M
2
s .

A one-dimensional micromagnetic derivation of the DW profile and energy will be computed in different
energy environments. First only the exchange interaction and an uniaxial anisotropy will be considered and
the main method to study the DW profile and energy will be introduced. Then the model will be refined
with the addition of the dipolar interaction, of the DMI and finally of an in-plane magnetic field.

DW profile and energy: Linear variation method

A simple one-dimensional micromagnetic model allows studying the DW width and energy. It sets the DW
profile with a linear magnetisation behavior. It does not give the exact profile and energy of the DW but
allows to understand the role of the different energies and the origin of the localized DW characteristics.

In a 1D model the problem can be approached considering the angle θ(x) that describes the direction of
the magnetisation m(x) with respect to the ẑ direction in the position x, as shown in Fig. 4.9. This method
is based on the study of the competition between the uniaxial anisotropy and the exchange interaction:

E(x) = Ksin2(θ) +A

(
dθ

dx

)2

(4.27)

Setting a linear function for θ(x) varying from −π to π the DW energy equation reads:

E(L) =
KL

2
+
Aπ2

L
(4.28)

where L is the width of the DW and its value can be found minimizing the expression 4.28:

dE(L)

dL
= 0 =⇒ L = π

√
2

√
A

K
= π
√

2∆ (4.29)
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Figure 4.9: (a) Plot of a linear DW profile θ(x). (b) Vectorial plot of the magnetisation profile m(x) in a
linear DW

where ∆ is defined as the anisotropy exchange length or Bloch parameter. Replacing L in Eq. 4.28 the DW
energy reads:

E = π
√

2
√
KA (4.30)

Notice that the localized aspect of the DW arises from the competition between the exchange interaction
and the magneto-crystalline anisotropy. Indeed the first favors a smooth magnetisation variation while the
anisotropy energy is minimized for abrupt rotations.

DW profile and energy: Euler and Brown equations

An exact solution of the DW profile can be obtained using a functional minimisation method. The min-
imisation of this functional allows to describe the profile of a DW that reduces the energy of the system.
In a 1D model the problem can be approached considering two variables; the angle θ(x) and its gradient
dθ/dx (Fig. 4.9). Indeed the exchange (Eex) and the DMI (EDMI) energies depend on dθ/dx and the other
interactions, like the magnetic anisotropies, have an energy formulation directly dependent on θ.

E

(
θ,
dθ

dx

)
= E

(
dθ

dx

)
+ E(θ) (4.31)

The method describes a finite system a < x < b where the initial conditions are set and the total energy
reads:

E =

∫ b

a
E

(
θ,
dθ

dx

)
dx+ E|a + E|b (4.32)

where E|a and E|b are the interface energies. The minimisation of the energy functional allows to formulate
the Euler relations :

∂E

∂θ
=

d

dx

[
∂E

∂ dθdx

]
(4.33)

∂E
dθ
dx

|a =
∂Ea
∂x

(4.34)

∂E
dθ
dx

|b =
∂Eb
∂x

(4.35)

In this section only the exchange energy dependence on dθ
dx is considered and the DMI will be introduced

later. Then the first Euler equation reads:
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dEa
dθ

= 2A
d2θ

dx2
−→ dEa

dx
=

d

dx
A

(
dθ

dx

)2

(4.36)

The last relation is called the Brown equation and when it is integrated from a to a generic point x reads:

Ea(x)− Ea(a) = 2A

(
dθ

dx

)2

− 2A

(
dθ

dx

)2

|a (4.37)

Setting the zero of the energy in the initial point (Ea(a) = 0) and for zero divergence ( dθdx = 0), one can
write the local condition:

Ea(x) = 2A
d2θ

dx2
(4.38)

This equation shows how the local density of anisotropy and exchange energy are balanced at any location
of the system. Moreover the local condition allows to reduce the complexity of the DW energy calculation;
i.e. the calculation can be performed in the angle space, and energy does not depend on the DW profile
(θ(x)) and the expression of the anisotropy energy:

E = 2

∫ b

a
E

(
θ,
dθ

dx

)
dx = 2

∫ b

a
A

√
Ea
A

dθ

dx
dx = 2

∫ π

0

√
AEa(θ) dθ (4.39)

The resolution of the DW profile requires the specification of the form of the anisotropy energy. In
the next sections the DW profile and energy will be solved in different cases with different energies and
symmetries.

4.2.1 Competition between uniaxial anisotropy and exchange interaction

In this section the DW energy and profile will be solved in a 1D system with uniaxial anisotropy and
exchange interaction. The anisotropy energy reads:

E(θ) = Keff sin2 θ (4.40)

In Keff all the uniaxial anisotropies can be included, like the surface dipolar interaction in the local approx-
imation (Keff = K −Kd). Using this expression in Eq. 4.39, where θ varies between 0 and π, gives the DW
energy:

E = 4
√
AKeff (4.41)

The DW profile can be obtained solving the Brown differential Eq. 4.36

Keff sin2(θ) = A
(
dθ
dx

)2
∫

1
sin(θ)dθ =

∫ √
A
Keff

dx

θ(x) = 2 arctan(e
x
∆ )

(4.42)

where ∆ =
√
A/Keff . This function takes the name of Bloch profile.

Comparing the two models one can notice that the energy for a test function can only be larger than
the energy found by functional minimisation. The exact Bloch profile is extended to all the space but at
the tails of the function the magnetisation changes slowly and the DW can be considered as a localized
configuration and a DW width (L) can be defined. This can be done by calculating the distance between
the interceptions of the functions θ(x) = π and θ(x) = 0 with a linear function with the same slope as the
Bloch profile in the DW center (Fig. 4.10).

dx

dθ
(θ =

π

2
) =

√
A

Keff
= ∆ → L = π∆ (4.43)
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Figure 4.10: Exact solution for the profile of the Bloch domain wall (red dots), linear variational solution
(black line), linear profile with the same energy as the exact solution (red line)

4.2.2 Role of the volume dipolar interaction

In the previous sections the magnetisation has been described as a two-dimensional vector field m =
(mx,mz). When other interactions with a more complex space dependence are introduced it is funda-
mental to study the full magnetisation profile m = (mx,my,mz). It can be fully described by the two polar
angles (θ;φ) as shown in Fig. 4.11.

Figure 4.11: Sketch of a generic spin modulation in a thin film system.

The angle φ describes the plane in which the magnetisation is rotating and is called the polarisation
angle. Two particular DWs with different polarisations are the most general solutions of the micromagnetic
problems:

• The Néel wall is a DW where the magnetisation rotates along the direction where the magnetisation
varies (φ = π

2 + nπ )

• The Bloch wall is a DW where the magnetisation rotates perpendicular to the direction where the
magnetisation varies (φ = nπ )

The presence of volume dipolar interactions breaks the energy degeneration between DWs with different
polarisations. Indeed in the case of a Néel DW the magnetisation gradient is non-zero and volume mag-
netic charges are produced increasing the total dipolar interaction energy. Therefore if there are no other
interactions that stabilize a Néel DW the system reduces its energy with a Bloch wall configuration (φ = nπ).

This effect can be easily studied with the demagnetizing theory. The DW can be approximated by an
ellipsoid with the system thickness (t) and the domain wall width (π∆) as main axes (Fig. 4.12). Then the
demagnetisation coefficient along the rotation direction reads [79]:

Nd =
t

∆π
ln2 (4.44)

and the dipolar interaction energy density as a function of the polarisation angle φ reads:



4.2. MAGNETIC DOMAIN WALLS IN ISOTROPIC MATTER 75

+

+

-

-

y

x

(a) (b)

x

x

y

- +
+- x

z

t
L

Néel DW Bloch DW

Figure 4.12: (a) Néel DW and (b) Bloch DW in a three dimensional system. (red) magnetisation vectors.
(green) demagnetisation ellipsoid and volume magnetic charges.

Ed =
1

2
Nµ0M

2
s sin2 φ = KdNd sin2 φ (4.45)

the polarisation angle is constant during the magnetisation rotation and the volume dipolar interaction in
this approximation does not modify the DW profile. In the limit NdKd << Keff the DW energy reads:

E = 4
√
AKeff +Nd∆Kd sin2 φ (4.46)

A simple minimisation with respect to the angle φ shows that the dipolar interaction promotes Bloch DWs
(φ = πn).

4.2.3 Role of the DMI

In this part the effect of the DM interaction on the DW energy, profile and polarisation is discussed [79].
The DMI in an isotropic system promotes a chiral Néel magnetisation rotation (EDMI < 0↔ dm

dx 6= 0). In
a one-dimensional model the DMI energy density acquires the form:

EDMI = D

(
dθ

dx

)
sinφ (4.47)

The term sinφ describes the interaction chirality, i.e. the energy has a maximum for a give polarisation and
a minimum for the opposite one. Moreover one can notice that a Bloch DW (φ = πn) does not gain DMI
energy.
Since the DMI energy density depends on dθ

dx the relations used in Sec. 4.2 read:

dθ

dx
=

1

sin θ
a < x < b (4.48)

dθ

dx
=

D

2A
x = a; x = b (4.49)

• The first relation is identical to the previous case and the DW profile will be the Bloch profile even in
presence of DMI. This effect can be understood calculating the DMI energy of a DW:

EDMI =

∫ b

a
D

(
dθ

dx

)
sinφ dx =

∫ π

0
D sinφ dθ = πD sinφ (4.50)

where the DMI DW energy in polar coordinates does not depend on the angle θ.

• The second relation shows the presence of a magnetisation tilt at the system edges [80]. It depends
on the competition between exchange and DMI and relaxes to the collinear domain configuration with
the same angular dependence as for the Bloch profile.

The DW energy density as a function of the DW polarisation angle reads:

E = 4
√
AKeff + ∆Kd sin2 φ+ πD sinφ (4.51)

The minimisation with respect to φ allows to calculate the polarisation angle that minimizes the energy.
Two cases can be distinguished :
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• if |D| < Dc, with Dc = 4∆Kd
π , the minimum energy is obtained for an intermediate DW polarisation:

sinφ =
πD

4∆Kd
E = 2

√
AKeff −

πD2

2Dc
(4.52)

• if |D| > Dc the minimum energy is obtained for a Néel DW configuration:

sinφ = 1 E = 2
√
AKeff − πD (4.53)

In a real system a Néel and a Bloch DW do not have exactly the same profile (Fig. 4.13). The approx-
imation used for the dipolar field in the model developed in this chapter can not show this difference. In
real systems a larger DW can be expected in the case of a Néel DW. It arises from the magnetic volume
charges that have the tendency to repulse each other and enlarge the DW; i.e. a larger DW generates weaker
dipolar volume charges. A numerical calculation has been performed to confirm this theory by A.Thiaville
et al. [79] (Fig. 4.13).

Figure 4.13: (blue) Bloch profile. (black) Numerical resolution of a Néel DW profile with the exact calcula-
tion of the dipolar interaction for a given set of magnetic parameters (D = 2 mJ/m2, Ms = 1100kA/m, A
= 16 pJ/m, K = 1.27 MJ/m3) [79]

4.2.4 Effect of an in-plane magnetic field

In this part the effect of an external magnetic field Bin applied in the direction of the polarisation of a Néel
DW stabilized by DMI is studied. The study is thus limited to the case of strong DMI, i.e. |D| > 4∆Kd

π ,
for which in absence of an in-plane magnetic field the DW polarisation is completely defined by the DMI
chirality. Then introducing the Zeeman energy the energy density of the system reads:

E(x) = Keffsin
2(θ) +A

(
dθ

dx

)2

±MsBin sinφ sin θ −D
(
dθ

dx

)
sinφ (4.54)

The in-plane magnetic field term is added to (subtracted from) the energy density when Bin is anti-parallel
(parallel) to the DW polarisation. Using eq. 4.54 in eq. 4.39, the DW energy reads:

EDW = 2

∫ π

0

√
A(Keff sin2 θ ±MsBin sinφ sin θ) dθ − πD sinφ (4.55)

The analytical resolution of the integral has a complex formulation, but some physical considerations
can be made to simplify the problem. The application of a strong in-plane magnetic film can align the
magnetisation of all the system along the direction of the magnetic field and destroy the DW. This happens
when MsBin = Keff . Therefore if MsBin << Keff one can assume that the in-plane magnetic field acts on
the DW configuration but that the magnetisation direction in the domains is unperturbed. In that case,
eq. 4.55 can be expressed as:

EDW = 2

∫ π

0

√
AKeff sin2 θ

(
1± MsBin sinφ

Keff sin θ

)
dθ − πD sinφ (4.56)

setting MsBin sinφ
Keff sin θ −→ 0 one can write:
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EDW = 2

∫ π

0

√
AKeff sin2 θ dθ ± 2

∫ π

0

√
A

Keff

MsBin sinφ

2
dθ − πD sinφ (4.57)

Calculating the integrals one obtains:

EDW = 4
√
AKeff ± π∆MsBin sinφ− πD sinφ (4.58)

The DW polarisation can be easily calculated by the minimisation of the energy with respect to the
angle φ. When the in-plane magnetic field is parallel to the DW polarisation the DW does not change
configuration. When it is anti-parallel different solutions can been found:

• if ∆/MsBin < D the DW has the Néel polarisation promoted by the DMI (φ = 0)

• if ∆/MsBin > D the DW has the Néel polarisation promoted by the magnetic field (φ = π)

The presence of an in-plane magnetic field can change the width and profile of the DW. They can be
calculated writing the Brown eq. 4.36 with the energy terms from eq. 4.54:

Keffsin
2(θ)±MsBin sin θ = A

(
dθ

dx

)2

(4.59)

The resolution of this differential equation allows to find the DW profile but the calculations are not trivial.
Moreover, in micromagnetism the fundamental parameter for studying the DW properties is the DW width
(L). This can be easily calculated by the extrapolation of the magnetisation slope in the center of the DW
profile (θ = π/2), as shown in sec. 4.2.1.

dx

dθ
(θ =

π

2
) =

√
A

Keff ±MsBin
−→ L = ∆(Bin)π (4.60)

The presence of a magnetic field parallel (anti-parallel) to the DW polarisation stabilizes (destabilizes) the
DW configuration and increases (decreases) its width.

4.3 Magnetic domain walls in C2v symmetry systems

In order to give a theoretical understanding of the DW configurations and energy in the experimental system
investigated in this work, I will discuss DWs in systems with a reduced in-plane symmetry in this section.
I studied systems with two perpendicular symmetry planes, perpendicular to the system surface. I will use
a 1D micromagnetic model in a C2v energy environment in order to study the DW polarisation and width
as a function of the crystallographic directions.

Figure 4.14: Sketch of a system with C2v symmetry, the green planes are mirror symmetry planes.

4.3.1 Role of anisotropic DMI with a C2v symmetry

The model described in this section is developed to study the effect of the anisotropic DMI with a C2v

symmetry on the polarisation of a general magnetic rotation. The discussion can then be generalized to
DWs. This model was developed together with S. Rohart from LPS (Orsay) [81] [17]. The micromagnetic
DMI energy density with a C2v symmetry reads:
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EDM = −
(

(D(x)
xz )sL

(x)
xz + (D(y)

yz )sL
(y)
yz

)
(4.61)

This relation is formulated in a frame where the main axes are the high symmetry axes of the sys-
tem. The importance of the Lifshitz invariant in the determination of the kind of magnetisation rotation
has already be discussed in Sec. 4.3.5. Eq. 4.61 shows that the DMI favors, along the main axes, a Néel

magnetisation rotation with a chirality that depends on the sign of (D
(x)
xz )s and (D

(y)
yz )s. It gives no direct

information about the magnetisation rotations promoted along the intermediate directions.

x

u/r
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y

α

p
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θ

Figure 4.15: Frame used to study the DW profile and polarisation in a system with C2v symmetry

This can be studied considering a new basis (û, v̂, ẑ) (see Fig. 4.15), turned by an angle α with respect
to the initial basis (x̂, ŷ). With a change of basis one can obtain the DMI energy of a one-dimensional
magnetisation rotation along û:

EDM (α) = −
∫ [

cos2(α)D(x)
s + sin2(α)D(y)

s

]
L(u)
uz d

2r

−
∫ (

D(x)
s −D(y)

s

)
cos(α) sin(α)L(v)

vz d
2r. (4.62)

This expression presents now both types of Lifshitz invariants. Along a general direction α the DMI

promotes an intermediate rotation between the Bloch L
(v)
uz and Néel L

(u)
uz configurations. The Bloch rotation

is maximized along the α = π/4 direction when the DMI constants have opposite signs.
In summary, it can be expected that in a general two-fold system the DMI promotes Néel cycloids along
the main axes and a mixed configuration between a Néel cycloid and a Bloch spiral along the intermediate
directions.

In order to quantifying this effect the DMI energy for a general magnetic modulation is studied. It can
be described by m(u) = [sin(kuu)û+cos(kuu)ẑ], lying in the (û, ẑ) plane. The magnetisation plane is free to
rotate changing the polarisation φ in order to minimize the energy. Then replacement of the modulation in
Eq. 4.62 and the energy minimisation with respect to φ allows to write the polarisation angle as a function
of the in-plane direction α:

tanφ =

(
D

(y)
s

D
(x)
s

)
tanα (4.63)

This result allows to study the modulation polarisation as a function of the angle α and reformulate an
expression for the DMI energy density for a 1D modulation along û:

EDMI(α) = Deff
s (α)

(
∂θ

∂u

)
(4.64)
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Figure 4.16: Polar plot of the magnetisation direction (φ) promoted by DMI as a function of the in-plane

direction of variation α (Eq. 4.63) for different (D
(x)
s ;D

(y)
s ) values: (a) D

(x)
s = D

(y)
s (b) D

(x)
s = −D(y)

s

with Deff
s being an effective DMI constant:

Deff
s = D(x)

s cosα cos

[
arctan

(
D

(y)
s

D
(x)
s

tanα

)]

+D(y)
s sinα sin

[
arctan

(
D

(y)
s

D
(x)
s

tanα

)]
(4.65)

In order to understand the meaning of this result one can analyze the two different situations illustrated in
Fig. 4.16 :

• if D
(x)
s = D

(y)
s the DMI promotes equi-energetic Néel rotations with the same chirality. The result is

the same as the one obtained for isotropic DMI.

• if D
(x)
s = −D(y)

s the DMI promotes two Néel rotations with opposite chirality along the main axes and
a Bloch rotation with opposite chirality each α = π/4 + nπ/2. Even if the magnetisation rotation has
a different polarisation along the in-plane directions the DMI gain is isotropic.

Since the DMI gain in a DW does not depend on the DW width the discussion can easily be generalized
and the energy of a DW with isotropic exchange, uniaxial anisotropy and anisotropic DMI reads:

EDW (α) = 4
√
AKeff − πDeff

s (α) (4.66)

Deff
s depends only on the ratio D

(y)
s

D
(x)
s

and in the two analyzed cases, D
(x)
s = D

(y)
s and D

(x)
s = −D(y)

s , the DW

energy is exactly the same.

4.3.2 Role of the exchange interaction in a system with C2v symmetry

The addition of an anisotropic exchange interaction does not change the polarisation angle φ. Even in this
case it is possible to write an effective exchange constant that takes into account the change of exchange
energy as a function of in-plane angle φ. In the main axes frame, the exchange interaction energy density
reads:

Eexc = Ax

(
∂m(ri)

∂x

)2

+Ay

(
∂m(ri)

∂y

)2

(4.67)

changing from the (x̂, ŷ) to the (û, v̂) frame and considering the magnetisation rotating along û, the previous
equation can be written as a function of the angle α:

Eexc(α) = Aeff(α)

(
dθ

du

)2

Aeff(α) = Ax cos2 α+Ay sin2 α (4.68)
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Figure 4.17: Polar plot of the
polarisation angles promoted by
a biaxial anisotropy

and the energy of a DW in a system with anisotropic exchange and a
perpendicular uniaxial anisotropy reads:

EDW (α) = 4
√
Aeff(α)Keff (4.69)

4.3.3 Role of the biaxial anisotropy

Since the MCA is directly connected to the crystal symmetry, in a C2v

symmetry system the magnetic anisotropy is biaxial (Sec. 2.5). This phe-
nomenon can strongly change the DW polarisation as a function of the
in-plane direction α. Taking into account the exchange interaction and a
biaxial magneto-crystalline anisotropy with a local approximation for the
surface magnetic charges, the energy density reads:

E(θ(u), φ(α)) = Aeff(α)

(
dθ

du

)2

+ (Kout −Kd) sin2 θ −Kin sin2 θ cos2 φ

(4.70)

The solution of the 1D modulation can be obtained placing the biaxial
anisotropy in the Euler equation (eq. 4.39). Since the in-plane component
of the biaxial anisotropy has the same dependence on θ than the out-of-
plane one, the complexity of the calculation can be reduced by integrating the dependence on φ in a new

effective constant K
(in)
eff (φ) = (Kout −Kd)−Kin cos2 φ.

The new energy density reads:

E(θ(u), φ(α)) = Aeff(α)

(
dθ

du

)2

−K(in)
eff (φ) sin2 θ (4.71)

One can notice that the last equation has exactly the same dependence on θ than the problem solved in
Sec. 4.2.1. Then the DW energy can be written as :

EDW (α) = 4

√
Aeff(α)K

(in)
eff (φ) (4.72)

Since the exchange interaction does not depend on the polarisation angle, the angle φ as a function of the
in-plane direction α can be studied by minimizing the in-plane term of the biaxial anisotropy:

∂Eani
∂φ

= 0 =⇒ φ = 0 + nπ (4.73)

The biaxial anisotropy promotes a Néel DW along the in-plane easy axis with degenerate chirality, a
Bloch DW along the hard axis and a mixed configuration along the intermediate directions (Fig. 4.17).

4.3.4 Competition between in-plane anisotropy and volume dipolar interactions

In this part the study of the DW energy and polarisation will be performed in a system with anisotropic
exchange, biaxial anisotropy and volume dipolar interactions. This model was developed together with S.
Rohart from LPS (Orsay). The DW energy can be written as (Sec. 4.2.2):

EDW (α, φ) = 4
√
Aeff(α)K in

eff(φ) + 2∆NdKd sin2 φ (4.74)

The biaxial anisotropy and the volume dipolar interaction favor different polarisation angles. The first
promotes a magnetisation along the in-plane easy axis (Sec. 4.3.2) whereas the second favors Bloch mag-
netisation rotations (Sec. 4.2.2).
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Figure 4.18: Frameworks used for the calculation of the polarisation angle ϕ. The new framework (x’,y’)
corresponds to the coordinate system where the anisotropy matrix (eq. 4.76) takes a diagonal form

For solving this problem, one can write the modulation energy density in the (u,v) frame fixed on the
DW. In order to facilitate the calculation in this section a new frame is considered (Fig. 4.18). The angle ϕ
describes the magnetisation direction with respect to the direction û (ϕ = φ−α) and the anisotropic energy
density reads:

E = −Kin cos2(α+ ϕ)−NKd sin2(ϕ) (4.75)

Eq. 4.75 can be written in matrix form. It takes the name of anisotropy matrix and it reads:

E =
(
cosϕ sinϕ

)( cos2 α − sinα cosα
− sinα cosα sin2 α+ k

)(
cosϕ
sinϕ

)
=

(
mx my

)( cos2 α − sinα cosα
− sinα cosα sin2 α+ k

)(
mx

my

)
(4.76)

where (cosϕ, sinϕ) are the magnetisation components in the plane with respect to the direction û and
k = NKd

Kin
is the dipolar anisotropy constant normalized with the in-plane magneto-crystalline constant.

Finding the polarisation angle ϕ corresponds to finding a new coordinate system (x’,y’) where the matrix
can be written in a diagonal form. The matrix is symmetric and can be diagonalized calculating the
eigenvalues:

λ1,2 =
(k + 1)

2
±
√

(k + 1)2

4
− k cos2(α)

=
1

2

[
(k + 1)±

√
(1− k)2 + 4k sin2(α)

]
(4.77)

The new frame has the normalized eigenvectors as bases:

(x′, y′) = (
v1

‖ v1 ‖
,

v2

‖ v2 ‖
) (4.78)

v1 =

{
1

2

[
k − 1

sinα cosα
+

√
k2 + 1− 2k cos(2α)

sinα cosα
+ 2

sinα

cosα

]
; 1

}
(4.79)

v2 =

{
1

2

[
k − 1

sinα cosα
−
√
k2 + 1− 2k cos(2α)

sinα cosα
+ 2

sinα

cosα

]
; 1

}
(4.80)

In the base (x′; y′) (Fig. 4.18) the anisotropy energy takes an easy expression :

E = −K0(m ·x′)2 = −K0 sin2(ϕ− δ) (4.81)

where K0 = Kin

√
(1− k)2 + 4k sin2 α and δ is the angle between û and x̂′ :
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tan δ =
vy
′

1

vx
′

1

=
1

1
2

[
k−1

sinα cosα +

√
k2+1−2k cos(2α)

sinα cosα + 2 sinα
cosα

] (4.82)

The expression takes an easy form if the nominator and the denominator are multiplied by sin(2α). Using
the trigonometric relation sin(2α) = 2 sinα cosα, the angle δ as a function of the in-plane angle α reads:

δ = arctan

[
sin 2α

2 sin2 α− 1 + k −K0/Kin

]
(4.83)

The DW polarisation minimizes the DW energy when the magnetisation is aligned along the direction
x̂′ and the calculation of the angle δ allows to understand the DW configuration. In order to compare this
result with the one obtained in the other sections, where the polarisation angle φ was defined with respect
to the x̂ direction, it is sufficient to replace the angle δ with φ− α.

Some physical considerations allow to simplify eq. 4.83. Considering general values of the magnetic
parameters for thin films (Kin = 0.3 · 106J/m3,Ms = 1.2 · 106A/m, t = 1 nm,∆ = 30nm), the value of k
= 0.022. The effect of volume dipolar interactions can be considered as a second order perturbation with
respect to the in-plane anisotropy. The model can thus be simplified considering the limit k → 0. Hence
the total effective anisotropy K0 takes the form:

K0 = Kin

√
(1− k)2 + 4k sin2 α = Kin

√
1− 2k + k2 + 4k sin2 α [k → 0] K0 = Kin −Kd(1− 2 sin2 α) (4.84)

where the quadratic term k2 is neglected and the square root is expanded in a Taylor series until the first
order. Placing eq. 4.84 in eq. 4.83, the expression of the angle δ can be simplified :

δ = arctan

[
sin 2α

2 sin2 α− 1 + k −K0/Kin

]
= arctan

[
sin 2α

2 cos2 α(k − 1)

]
= arctan

(
− tanα

1− k

)
(4.85)

where the trigonometric relation sin 2α = 2 sinα cosα has been used. Moreover, one can use the Taylor
expansion of the fist order of 1/(1− k) ' 1 + k in the limit k → 0:

arctan (− tanα− k tanα) = arctan(− tanα)− tanα

1 + tan2 α
k = −α− 1

2
k sin(2α) (4.86)

where the relation [arctan (− tanα− k tanα)] is expanded around [− tanα] and the trigonometry identities[
tanα

1+tan2α
= 2 sinα cosα = 2 sin(2α)

]
are used. In the limit k → 0, eq 4.86 takes the form δ = −α and φ = 0,

i.e. the magnetisation is parallel to the easy axis for all values of α.

4.3.5 Competition between anisotropic DMI and biaxial anisotropy

In this part the effect of the competition between anisotropic DMI and in-plane anisotropy on the DW
energy and polarisation is studied. The DMI promotes a DW magnetisation strongly depended on the ratio
between the DMI parameters (Dx/Dy) (Sec. 4.3.1) whereas the in-plane anisotropy favors a magnetisation
along the easy axis. The energy density for a DW along the direction α reads:

E(α, φ) = Aeff(α)

(
dθ

du

)2

+K in
eff(φ) sin2 θ −Deff(φ, α)

dθ

du
(4.87)

with Deff(α, φ) = (Dx cos2 α + Dy sin2 α) cos(φ − α) + (Dx −Dy) cosα sinα sin(φ − α) and K in
eff = (Kout −

Kd) − Kin cos2 φ. Minimizing the energy through the Euler-Lagrange equations, the DW energy can be
written as :

E(α, φ) = E0 + EDMI = 4
√
Aeff(α)K in

eff(φ, α)− πDeff(φ, α) (4.88)

The lowest-energety magnetic configuration can be found minimizing this energy with respect to φ:
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∂E(α, φ)

∂φ
=

4Aeff(α)Kin(φ)√
AeffK

in
eff

cosφ sinφ− π
[
− (Dx cos2 α+Dy sin2 α) sin (φ− α)

+ (Dx −Dy) cosα sinα cos (φ− α)

]
= 0 =⇒ φ(α); EDW (α) (4.89)

The solution of this equation allows to study the polarisation angle φ(α) and the DW energy EDW (α)
as a function of the in-plane direction. However, this equation does not have a general analytical solution
and there is no physical hypothesis that allows to simplify the calculation.

Fig. 4.19 shows the numerical solution of eq. 4.89 for four different combinations of magnetic parameters.
The anisotropy is kept constant and the anisotropic DMI is changed. The values of the anisotropy constants
(Kin = 0.3 · 106J/m3, Kout − Kd = 0.5 · 106J/m3) are chosen in order to respect the physics of biaxial
anisotropy in ultrathin films and four different combinations of DMI constants are considered:

• (a) Dy = 1 mJ/m2 and Dx = 2 mJ/m2

• (b) Dy = 2 mJ/m2 and Dx = 1 mJ/m2

• (c) Dy = 2 mJ/m2 and Dx = −1 mJ/m2

• (d) Dy = 1 mJ/m2 and Dx = −2 mJ/m2
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Figure 4.19: (1) Polarisation angle φ as a function of the angle α; (2) Polar plot of graph (1) and (3) DW
energy (black) and the components E0 (red) and EDMI (blue) as a function of the in-plane angle α. The
points are the numerical solutions of eq. 4.89. Arrows of different colors are used for positive (light red)
and negative (dark red) slopes of the φ(α) function. The solutions are shown for four different physical
combinations of Dy and Dx : Kin = 0.3 · 106J/m3, Kout − Kd = 0.5 · 106J/m3, (a) Dy = 1 mJ/m2 and
Dx = 2 mJ/m2; (b) Dy = 2 mJ/m2 and Dx = 1 mJ/m2; (c) Dy = 2 mJ/m2 and Dx = −1 mJ/m2; (d)
Dy = 1 mJ/m2 and Dx = −2 mJ/m2.

In Fig. 4.19 three different kinds of plots are shown. The first one on the left shows the behavior of the
polarisation angle as a function of the in-plane direction. In the cases (c) and (d), points of two different
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colors are shown. The lighter indicates a positive slope of the function φ(α) and the darker a negative one.
In the center the same function is shown in a polar plot. The last one shows the behavior of the total DW
energy, the DMI component EDMI and E0 as a function of α. The study is performed for different values
and symmetries of the DMI energy in order to extract general informations of the polarisation behavior in
systems with a C2v symmetry.

Along the easy axis (α = 0), the DMI and the anisotropy stabilize a Néel DW with a chirality depending
on the sign of Dx. In the cases (a) and (d), |Dx| > |Dy|, and the DW along this direction has the lower
energy. Along the hard axis (α = π/2) the DMI and the in-plane anisotropy are minimized for different
magnetic polarisations. The resulting DW is between a Néel and a Bloch DW and has two equi-energetic
configurations with complementary polarisation angles (φ = φ0; φ = π − φ0). This angle is φ0 = 57◦ for
Dy = 2 mJ/m2 and φ0 = 18◦ for Dy = 1 mJ/m2.

Along the intermediate directions the polarisation and thus the energy behave in different ways. This
behavior can be described considering two different parameters: the angle between the easy axis and the
polarisation stabilized by the DMI, ∆φ, and the energy ratio ED/EK = Deff(α)/∆Kin, with ∆ the DW
width. For high values of ED/EK the polarisation is closer to the DMI stabilized configuration whereas for
lower values it is closer to the easy axis direction.
The DW energy behavior depends on ∆φ and Deff(α), for high values of ∆φ the energy competition is
stronger, since the polarisation solution is far from the configurations stabilized by the single energies, and
the DW energy will increase.

In case (a) the parameter ED/EK decreases when α increases, whereas ∆φ increases. Then the polari-
sation as a function of α is a continuous function and, scanning along the α angles, it firstly deviates from
the easy axis driven by the increase of ∆φ, up to the point where the decrease of ED/EK dominates and the
polarisation behavior changes slope. All the energies increase from the easy to the hard axis since along the
easy axis the system has the smallest ∆φ and Deff(α) is the highest.
In case (b) the parameters ∆φ and ED/EK increase when α increases. The polarisation behavior is mono-
tone, continuous and reaches a higher deviation from the easy axis with respect to case (a). The resulting
energy is less anisotropic than in case (a) due to the fact that ∆φ is smaller along the easy axis and when
it increases it is balanced by the increase of Deff(α) .
The two parameters change in case (c) like in case (b), and in case (d) like in case (a), but in these cases
the polarisation presents a discontinuous behavior with an inversion of the φ(α) slope. In these particular
cases eq. 4.89 presents different solutions that can become the energy minimum when α is varying. Then
different values of α can be found where two solutions have the same energy and the polarisation switches
between the two minima.
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Figure 4.20: Solutions of eq. 4.89 with Kin = 0.3 · 106J/m3, Kout−Kd = 0.5 · 106J/m3, Dy = 1 mJ/m2 and
Dx = −2 mJ/m2 (a) Plot of the DMI energy (black) and the two components promoting a Bloch (blue) and
a Néel (red) DW. (b) The angle φ as a function of α in the area where the slope inversion occurs. (c) Polar
plot of the function in (b). The magnetisation vectors are colored green if φ rotates clockwise with alpha
and red if it rotates anti-clockwise.

In order to understand this phenomenon one should refer to Fig. 4.20 where the DMI energy and the
two components ENeel (red) and EBloch (blue) are plotted as a function of α, using the magnetic parameters
of case (d).

ENeel = −π(Dx cos2 α+Dy sin2 α) cos(φ− α) EBloch = −π(Dx −Dy) cosα sinα sin(φ− α). (4.90)

One can find the plot of the polarisation as a function of α in the region where the polarisation switches
occur. Rotating with increasing α one can find three different polarisation domains with different φ(α)
slopes:

• (1) The polarisation is stabilized mainly by the Bloch component of the DMI and the polarisation
rotates in a clockwise direction. The first switch of minimum occurs when the DMI Néel component
becomes positive; i.e. when the DW acquires a chirality different from the one imposed by the DMI, as
shown in Fig. 4.20. Then at α = 149◦ the magnetisation jumps into a new equi-energetic polarisation
∆φ = 100◦ in order to reduce the DMI Néel component.
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• (2) The polarisation in the new configuration has a lower Néel but a higher Bloch energy component
and rotates clockwise when α increases again. During this rotation the DMI energy is first reduced
and than it increases. The second switch occurs at α = 163◦ where the Néel component becomes
positive again.

• (3) The new configuration is strongly stabilized by the DMI Néel component, the Bloch one is close
to zero and the polarisation slope becomes positive (anti-clockwise).

Given the complex behavior of the energies as a function of α it is not possible to give a more accu-
rate phenomenological interpretation of the polarisation behavior in systems with inversion of DMI sign,
Dx/Dy < 0.

4.3.6 Role of an in-plane magnetic field along the easy axis of a system with C2v

symmetry

In this part the effects of the application of an in-plane magnetic field along the easy axis of a system with
C2v symmetry is studied. As shown in the previous section, along this direction the in-plane anisotropy and
the DMI stabilize a Néel DW. The magnetic field is applied in the direction opposite to the direction of the
DW polarisation. Therefore the Zeeman energy, formulated like in eq. 4.55, and the in-plane anisotropy,
formulated like in eq. 4.70, are taken into account. The in-plane magnetic field promotes a Néel DW with
a polarisation opposite to the one promoted by the DMI. The DW energy in the limit of weak in-plane
magnetic field (MsBin << Keff) reads:

EDW = 4
√
A(Keff

out −Kin cos2 φ) + π

(√
A

Keff
out −Kin cos2 φ

BinMs −D

)
cosφ (4.91)

The energy minimisation with respect to the angle φ allows to study the DW polarisation as a function of
the strength of the magnetic field. The problem presents two trivial solutions (φ = (0, π)), already obtained
in the case without in-plane anisotropy in Sec. 4.2.4. The presence of an in-plane anisotropy introduces
other solutions without an analytical expression. The discussion will thus be developed with the support of
the numerical plot of eq. 4.91 as a function of Bin (Fig. 4.21). The values of the magnetic parameters, used
for the numerical calculations, are chosen in order to respect the physics of the experimental ultrathin film
with DMI and in-plane anisotropy [17].
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Figure 4.21: (I) frame used to describe the DW energy . (a-b-c-d) Plot of DW energies in eq. 4.91 as a
function of the polarisation angle φ for three different values of an in-plane magnetic field applied along the
direction φ = π. (orange) Sum of the DMI and Zeeman DW energy terms, (blue) DW energy without the
DMI and Zeeman DW energy terms and (green) total DW energy.

In Fig. 4.21 three energies are plotted as a function of φ : (orange) sum of the DMI and Zeeman energy
terms (Ein−DMI) , (blue) DW energy without Zeeman and DMI terms (E0) and (green) the total DW
energy (EDW). The dots indicate the positions of energy minima: (blue) local minimum and (red) absolute
minimum.
Six different situations can be found:

• (a) When Bin = 0, the term Ein−DMI is negative for φ < π/2, the solution φ = 0 is the absolute energy
minimum and the DW polarisation is determined by the DMI chirality.

• (a)-(b) When Bin increases, the solution φ = 0 is the absolute energy minimum up to the values of

Bin = D
Ms

√
Keff

out−Kin

A for which the minima φ = 0 and φ = π have the same energy.

• (b)-(c) Increasing Bin, the solution φ = π becomes the absolute minimum, but the magnetisation
can not switch due to the presence of an energy barrier generated by the presence of the in-plane
anisotropy. The magnetisation, in order for the DW polarisation to switch, has to pass through the
hard in-plane axis.

• (c) When |Ein−DMI(φ = π)| = |E0(φ = π)|, the energy well of the φ = 0 solution becomes flat as a
function of φ and the system presents degenerate local minima solutions.
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• (c)-(d) When Bin increases, φ = 0 becomes a local energy maximum. A new local minimum appears
between φ = 0 and φ = π/2 and it approaches φ = π/2 when Bin (φ = 0) increases.

• (d) When Ein−DMI(φ = 0) = E0(φ = 0), the energy barrier disappears and the DW polarisation can
rotate in the configuration stabilized by the in-plane magnetic field φ = π. In this condition the energy
of the absolute minimum becomes zero.

4.3.7 Review of magnetic domain walls in a C2v symmetry system

The study of the DW energy and polarisation in systems with C2v symmetry is complex and required the
analysis of each magnetic interaction.

The effect of the DMI can be studied by two parameters which describe the strength of the interaction

along the main axes, D
(x)
s and D

(y)
s :

• If D
(x)
s /D

(y)
s > 0 the DMI promotes Néel DWs with the same chirality along the main axes and mixed

Bloch and Néel DWs along the intermediate directions.

• If D
(x)
s /D

(y)
s < 0 the DMI promotes Néel DWs with opposite chirality along the main axes and mixed

Bloch and Néel DWs along the intermediate directions. There is always a direction along which the
DMI promotes a pure Bloch DW.

In systems with C2v symmetry the magnetic anisotropy has an in-plane easy axis which promotes a DW
polarisation along this direction. The exchange interaction is anisotropic and changes the DW energy and
width without changing the DW polarisation. Under the studied conditions the volume dipolar interaction
is negligible with respect to the in-plane anisotropy.

The competition between these interactions stabilizes DWs with highly anisotropic energy and polarisa-
tion. Along the in-plane easy axis the anisotropy and the DMI stabilize a Néel DW with the polarisation
set by the DMI chirality. Along the hard axis the interactions are in competition and two degenerate DW

polarisations can been found. Along the intermediate directions, if D
(x)
s /D

(y)
s > 0 the DW polarisation

changes smoothly, and if D
(x)
s /D

(y)
s < 0 it changes with abrupt polarisation jumps.

The discussion in this chapter analysed only static configurations. The DWs configurations and energies
can become even more complex when the DWs propagate. This will be analysed in the experimental section
5.5.
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4.4 2D topological solitons : skyrmions and anti-skyrmions

In this section two micromagnetic models are developed in order to study the stability and the configuration
of 2D topological solitons. Given the complexity of the magnetic interactions in systems with C2v symmetry,
the discussion is limited to two particular cases:

• A system with isotropic interactions

• A system with isotropic exchange interaction, magnetocrystalline anisotropy and DMI strength with
inversion of chirality between perpendicular directions (Dx = −Dy).

Skyrmions (SK), are topological solitons which present particle-like properties: they have integer topo-
logical charges, interact via attractive and repulsive forces, and can condense into ordered phases. In
ferromagnets, skyrmions were originally called two-dimensional (2D) topological solitons and their existence
has been predicted in isotropic ferromagnets [82], uniaxial ferromagnets [83, 2, 84] and non-centrosymetric
magnets [33, 2]. Some early indirect experimental evidences of their existence have been obtained in quasi-
2D antiferromagnets [85, 86, 87]. More recently indirect [3] and direct observations of skyrmions have been
reported in chiral magnets [88] and in ultrathin layers of conventional transition-metal-based ferromagnets
in contact with heavy metals [89, 4].

Figure 4.22: Sketch of the skyrmion and anti-skyrmion configurations. The illustration of α, the space angle
in the plane, and φ, the in-plane magnetisation angle, show the difference between a skyrmion (φ(α) = α)
and an anti-skyrmion (φ(α) = −α).

Anti-skyrmions (ASK) are the skyrmion antiquasi-particles. In the same ferromagentic background they
have opposite topological number (Sec. 4.1.2). The ASK have been theorized in bulk magnetic material
with a D2d and S4 symmetry [33]. More recently an ASK lattice has been observed in a crystal with D2d

symmetry [16], but not yet in thin film systems. The reason is that most thin film systems showing DMI
studied until now were polycrystalline, leading to the same sign and strength of the DMI in any in-plane
direction. In order to stabilize ASK in thin films with perpendicular magnetisation, the sign of DMI has
to be opposite along two in-plane directions of the film. This may occur in epitaxial thin films with a C2v

symmetry [17, 11, 18].

In the next section two different micromagnetic methods that have been developed during this Ph.D
work will be presented. The first one has been used to study a SK phase diagram as a function of DMI
strength and applied magnetic field in an infinite two-dimensional system. The second one studies the energy
difference between a SK and an ASK.

4.4.1 Micromagnetics of skyrmions

In this section a micromagnetic model to study isotropic 2D solitons in thin films is presented. This allows to
characterize the size, the configuration and the stability of skyrmions and understand the role of the different
magnetic energies in the stabilisation of their local magnetic texture. The presented model is the results
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of a collaboration with Anne Bernand-Mantel, Alexis Wartelle, Nicolas Rougemaille, Michael Darques and
Laurent Ranno [90].

Since the minimisation of the skyrmion total energy is numerically expensive and without analytical
solution, in the present work we set several approximations in order to derive an analytical expression of the
skyrmion profile and energy that well respect the physics of the problem. The validity of this method has
been confirmed by numerical calculations. This approach allows us to obtain different skyrmionic solutions,
study their stability and the conditions of the transformation of one into the other.

The model is developed in order to describe 2D topological spin textures in an infinite ferromagnetic
thin film. We consider a ferromagnetic thin film with an easy axis perpendicular to the plane. The system
is fully described by the system thickness t, the spontaneous magnetisation Ms, the exchange constant Aex.,
the volume magnetocrystalline anisotropy Ku and the DMI constant D. In an isotropic system the soliton
has a cylindrical symmetry and the cylindrical coordinates can be used to reduce the complexity of the
calculations (Fig. 4.23.a).

Figure 4.23: (a) Schematic view of the ferromagnetic thin film with axis orientations. The magnetisation
and magnetic field positive directions (opposite) are indicated. (b) Topological soliton θ(ρ) profile obtained
by minimisation of eq. (4.93), as a function of ρ using the parameters Ms = 1 MA/m, Ku = 1.6 MJ/m,
Aex. = 10 pJ/m, t = 0.5 nm and D(1) = 2.8 mJ/m2. (c) Topological soliton spin rotation energy density σs,
defined in section 4.4.1, as function of radius, calculated from eq. (4.93) (black squares) and eq. (4.99) (black
line). The DW energy density σw is indicated by a dashed line. (d) Energies versus soliton radius calculated
from eq. (4.93) (symbols) and eq. (4.99) (lines) with the parameters given in (b) and normalized by the RT
thermal energy ERT = kBT293K . The normalized zero radius energy is indicated as ε0 = E0/ERT ∼ 31.

Moreover, we restrict the study to systems where the D values are sufficiently high to stabilize a Néel
magnetisation rotation (Sec. 4.2.3). In these conditions, the problem is reduced to the study of the mag-
netisation angle θ as a function of r.
A magnetic field µ0H may be applied with its positive direction antiparallel to the magnetisation in the
soliton center (Fig. 4.23.a).

The soliton energy Es[θ(ρ)] is the sum of 5 terms: exchange energy Eexch., anisotropy energy Eanis., DMI
energy EDMI, demagnetising energy Edem. and Zeeman energy Ezee.:
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Es[θ(ρ)] = 2πt

∫ ∞
0

{
Aex.

[(
dθ

dρ

)2

+
sin2θ

ρ2

]
−Kucos2θ

−D
[
dθ

dρ
+

cosθsinθ

ρ

]
− µ0MsHcosθ + Edem.

}
ρdρ

(4.92)

The demagnetising energy can be decomposed into two terms Edem. = Evol.
dem. + Esurf.

dem. corresponding to
the contributions from volume and surface magnetic charges. The volume charges appear only when the
magnetisation rotates and the surface charges are present inside the soliton but also in the infinite region
with uniform magnetisation. Given the long range nature of the demagnetising effects it is difficult to find
the function θ(ρ) which minimizes the Es functional. It has been done, in absence of DMI, in the case of
magnetic bubbles stabilised by the surface demagnetising energy [91, 92] and by Kiselev and co-workers in
the presence of DMI [93].
Considering now the energy difference between the topological soliton and the uniform state we obtain the
following Euler equation [94]:

Aex.

[(
dθ

dρ

)2

+
1

ρ

dθ

dρ
− sin2θ

2ρ2

]
+D

sin2θ

ρ
−Keff

sin2θ

2
− µ0MsHsinθ = 0 (4.93)

Soliton Euler-LaGrange equation: numerical solution

We solved the eq. 4.93 using a shooting method starting from an inverse tangent try function and the two
boundaries values : θ(0) = π and θ(∞) = 0. The following magnetic parameters have been used: Ms = 1
MA/m, Ku = 1.6 mJ/m2, Aex. = 10 pJ/m, t = 0.5 nm and D(1) = 2.8 mJ/m2. The soliton profile θ(ρ)
is shown in Fig. 4.23.b. The soliton radius is defined as the position ρ where θ(ρ) = π/2 (Mz = 0). In
Fig. 4.23.b the exchange (blue triangles), anisotropy (red triangles) and DMI energies (black circles) are
plotted versus the soliton radius r.
The DMI and anisotropy energies present a linear variation versus r down to r << π∆ (Sec. 4.2.1). On
the contrary, in the same radius range, the exchange energy deviates from linearity and tends to a constant
value. This is due to the 1/ρ exchange term in eq. (4.92) which expresses the rotation of the magnetisation
in the (x,y)-plane: when the soliton radius is decreased, the angle between two adjacent spins in this plane
increases. This leads to a non-zero exchange energy limit when r → 0.

Analytical model:

We now build an analytical expression for the 5 different energy terms in order to respect the behaviour of
the energies as a function of the soliton radius obtained in the numerical method:

Anisotropy and exchange energies For r >> π∆ the sum of exchange and anisotropy energies is
proportional to 4

√
Aex.Keff and both energies contribute equally :

Eexch. = Eanis. = 2
√
Aex.Keff · 2πrt (4.94)

For r < π∆, the exchange energy deviates from linearity and we consider this effect adding a low radius
correction:

Eexch. = 2
√
Aex.Keff · 2πrt+

E0

π∆r
2 + 1

(4.95)

This gives the E0 = 8πAex.t zero-radius limit for the exchange energy, obtained by Belavin and Polyakov
[82], and a zero (r = 0) dEexch./dr derivative. The analytical expressions of Eanis. and Eexch. are plotted
by lines in Fig. 4.23.d. This analytical behaviour of the anisotropy and exchange energy is equal to the
numerical solution with a maximum error of 3% without fitting parameter.



4.4. 2D TOPOLOGICAL SOLITONS : SKYRMIONS AND
ANTI-SKYRMIONS 93

DMI energy: The DMI energy depends on the total rotation of the magnetisation, it varies linearly with
r as observed in Fig. 4.23.d. and its expression reads:

EDMI = −πD · 2πrt (4.96)

The rotation chirality has been chosen in order to reduce the DMI energy. EDMI is negative and decreases
the energy cost of the magnetisation rotation, thus it favours the expansion of topological solitons.

Zeeman energy: We use an approximate expression for the Zeeman energy of the topological soliton
which represents the Zeeman energy difference between a magnetic cylinder of radius r and uniform −Ms

magnetisation and the Zeeman energy of the ferromagnetic state.

EZee = 2µ0MsH ·πr2t (4.97)

The error associated with this approximation will be discussed in section 4.4.2.

Dipolar energy : The dipolar energy cannot be expressed analytically and approximations have to be
used [92]. The local effect of the demagnetising energy in the region where the magnetisation rotates is taken
into account using a local approximation and replacing Ku by Keff in eq. (4.92). This local approximation
neglects the long range demagnetising effects which become non-negligible as the skyrmion radius grows, as
they are proportional to the skyrmion surface. This long range demagnetising energy contribution is at the
origin of the formation of classical magnetic bubbles [95] and its role in the stabilisation of skyrmions in
thin films has been shown recently [6, 96]. We will use a classical expression for the surface demagnetising
energy which represents the demagnetising energy difference between a magnetic cylinder with uniform
magnetisation pointing in one direction and the uniform ferromagnetic state with magnetisation pointing in
the other direction:

Elong range
dem. = −µ0M

2
s I(d)2πrt2 (4.98)

where I(d) = − 2
3π

[
d2 + (1− d2)E(u2)/u−K(u2)/u

]
, d = 2r/t, u2 = d2/(1 +d2) and where K(u) and E(u)

are the complete elliptic integrals of first and second kind. This formula is a very good approximation to
obtain the surface demagnetising energy when the topological soliton radius is much larger than the DW
width r >> π∆. For r ∼ π∆ it leads to an overestimation of this energy as it assumes an abrupt variation
of the surface charges. However, the impact of this overestimation is limited by the fact that this energy
term is at least one order of magnitude smaller in amplitude than Eexch., EDMI and Eanis. for r ≤ π∆ (see
Fig. 4.23.d) as it was also shown by Büttner et al. [96].

Summing all the energy components the analytical expression of the soliton energy reads:

Es = Eexch. + Eanis. + EDMI + EZee + Elong range
dem.

=
E0

π∆r
2 + 1

+ 4
√
Aex.Keff · 2πrt− πD · 2πrt+ 2µ0MsH ·πr2t+ Elong range

dem.

= σs · 2πrt+ 2µ0MsH ·πr2t+ Elong range
dem.

(4.99)

where σs is the topological soliton magnetisation rotation energy density which is the sum of the exchange,
anisotropy and DMI energy densities. For r >> π∆, it is close to the DW energy density σw = 4

√
Aex.Keff.−

πD. When the radius is decreasing, σs is deviating from σw, as shown in Fig. 4.23.c .

Topological soliton solutions

Topological soliton solutions are the minima of the soliton energy Es as a function of the soliton radius r.
We call the equilibrium soliton radius rs. In order to understand the origin of these minima and the role of
the different energies in their stabilisation we first fix the parameters Aex., Ms, Ku and t and plot the total
energy for different D values. The fixed parameters do not modify qualitatively the results presented but
rather shift the main features to different D values. The different energy terms, except the Zeeman energy,
are plotted as function of r in Fig. 4.24.a for three different DMI values (D(1) = 2.8 mJ/m2, D(2) = 3.46
mJ/m2 and D(3) = 3.6 mJ/m2). The resulting topological soliton energies Es are shown in Fig. 4.24.b. As
the different energy terms are cancelling each other, a small variation of D is enough to modify the slope of

E
(1)
s , E

(2)
s and E

(3)
s .
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Figure 4.24: (a) Energies versus soliton radius calculated from eq. (4.99) with the same parameters Ms = 1
MA/m, Ku = 1.6 MJ/m, Aex. = 10 pJ/m, t = 0.5 nm, for zero applied magnetic field and D(1) = 2.8 mJ/m2,

D(2) = 3.46 mJ/m2 and D(3) = 3.6 mJ/m2. (b) Total soliton energies E
(1)
s , E

(2)
s and E

(3)
s calculated with

the same parameters as in (a). (c), (d) and (e) Soliton energies E
(1)
s , E

(2)
s and E

(3)
s for applied magnetic

fields of respectively µ0H = 0 (c), µ0H = 0.28 mT (d), µ0H = 2 mT and µ0H = 7 mT (e). The α, β, γ,
and δ letters are indicating the different parts of the Es(r) curve showing a monotonous dEs/dr variation.

Skyrmion solutions In Fig. 4.23.d dEexch./dr is decreasing for r < π∆. This non-linearity may lead to
the formation of an energy minimum at rs in the low radius range as observed in Figure 4.24.c. Indeed, for
r < rs (indicated with an α), the soliton energy variation is dominated by the dEDMI/dr variation while
for r > rs (indicated with a β), the d(Eexch. + Eanis.)/dr variation is taking over. This soliton solution
corresponds to what is usually referred to as a skyrmion: its radius is of the order of a few ∆ or less and it
exists down to H = 0. The skyrmion radius increases with D and depends weakly on the applied magnetic
field as we will see in Section 4.4.2.

Other solutions can be found when a magnetic field is applied in the direction opposite to the magneti-
sation in the soliton center.



4.4. 2D TOPOLOGICAL SOLITONS : SKYRMIONS AND
ANTI-SKYRMIONS 95

Bubble solutions and coexistence of skyrmions and bubbles The second situation occurs when
the DMI is increased and the positive and negative energy terms become close to compensation over a

wide radius range (see E
(2)
s in Fig. 4.24.b). In that case, as we can see in Fig. 4.24.c, the positive slope

of the exchange and anisotropy is dominating at intermediate radius (β part), but E
(2)
s starts to decrease

again with r at larger radius (γ part), due to the non-linear decrease in Elong range
dem. , before Ezee. with a r2

variation takes over for larger r (δ part). Consequently, in presence of a magnetic field, two soliton solutions
are observed separated by a local maximum of energy. The lower radius solution is the skyrmion solution
described in section 4.4.1 and shown in fig. 4.24.c. The second solution presents the characteristics of what
is usually described as a magnetic bubble: it will collapse at increasing magnetic field (Fig. 4.24.g) and its
size is diverging at H = 0. This coexistence of a skyrmion and a bubble solution was evoked in a pioneering
work on skyrmions [2] and described in theoretical works from Kiselev at al. [93] and Büttner et al. [96].
The local maximum of energy creates an energy barrier which is at the origin of hysteretic behaviours in
the M(H) loops of magnetic bubble materials [95].

Solutions above a critical Dcs value The third situation occurs when the DMI reaches the critical
Dcs value, which we define as the point where the local maximum of energy, as observed in Fig. 4.24.d, is

suppressed (see Fig. 4.24.e). Above Dcs the total energy E
(3)
s presents a negative slope at all r in absence

of applied magnetic field (Fig. 4.24.b). In presence of a magnetic field, a minimum of energy is restored in

E
(3)
s as the positive Zeeman energy variation dominates at sufficiently large radius due to its r2 variation (δ

part in Fig. 4.24.e). For increasing magnetic field this solution is compressing to very small radius without
encountering a collapsing field, as it is the case for skyrmions. When the magnetic field is decreased, the
topological soliton radius will increase and diverge at H = 0 as it is the case for bubbles.

4.4.2 Skyrmion phase diagram

In this section we build a phase diagram of the soliton solutions obtained in the previous section. We have
seen that the two fundamental parameters for the existence of the different minima are the DMI constant
D and the strength of the applied magnetic field µ0H.

In Fig. 4.25 we present the evolution of the topological soliton radius rs, calculated with the same Aex.,
Ms, t, and Ku parameters as in Fig. 4.24, as a function of µ0H and D. The result is shown for a large
range of D and µ0H values in Fig. 4.24 and for D close to Dcs and low fields in Fig. 4.25.d and e. The main
features appearing in Fig. 4.25.a, d and e are represented schematically in Fig. 4.25.b and f. Vertical cross
sections of the diagrams in Fig. 4.25.a and d are shown in Fig. 4.25.c and g. Our analytical model allows
us to obtain a skyrmion phase diagram similar to the one described by Bogdanov et al. [97] and Kiselev et
al. [93] (Fig. 4.25.b) and to complete it with the other soliton solutions at low magnetic fields (Fig. 4.25.f).
The asymmetry of the topological soliton phase diagram with respect to the magnetic field comes from the
fact that we are describing metastable states of the uniform −Mz reference state.

We have divided the topological soliton phase diagram in different zones:

Single topological solitons zones: zones 1, 2

The skyrmion solutions appear in zone 1. These solutions persist down to H = 0 and for negative applied
magnetic fields (Fig. 4.25.a). They are suppressed along a blue line visible in Fig. 4.25.b which was defined
as the skyrmion busting line in previous works [97, 93]. The skyrmion bursting line ends at the critical
point (Dcs,Hcs) indicated by a blue dot in Fig. 4.25.b above which no local maximum is observed in Es(r).
This critical point is observed at H = 0 and Dcw = 4

√
Aex.Keff./π (4 mJ/m2 in our case) in the case where

the long range demagnetising effects are neglected [97], where Dcw is the critical D value at which the DW
energy becomes negative in a thin film [79]. In our case, the critical topological soliton D value Dcs is
lowered compared to Dcw (3.51 pJ/m2 compared to 4 pJ/m2), because we take into account the long range
contribution in the demagnetising energy, which stabilizes the topological soliton similarly to the DMI en-
ergy term. The radii of skyrmions are always smaller than the radius at the critical point rcs = rs(Dcs, Hcs)
(close to 75 nm in our case). In addition the skyrmion radius shows a small susceptibility drs/dH, except
close to the skyrmion bursting line (see Fig. 4.25c). This is due to the fact that the Zeeman energy term is
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Figure 4.25: (a), (d) and (e) Soliton equilibrium radius as a function of applied magnetic field and parameter
D, calculated with the same parameters as in Fig. 4.24. (d) and (e) shows respectively the radius corre-
sponding to the larger/smaller solution, when two solutions coexist. (b) and (f) Schematic representations
of characteristic lines appearing in Fig. 4.25a and Fig. 4.25d and defined in Sec. 4.4.2: dashed black line:
limit for isolated solitons, green line: bubble collapse line, blue line: skyrmion busting line. (c) and (g)
Soliton equilibrium radius as a function of magnetic field for fixed D values. The D values are ranging close
to the critical point from D = 3.476 mJ/m2 to D = 3.524 mJ/m2 for (c) and from D = 2.4 mJ/m2 to
D = 4.2 mJ/m2 for (f).

a second order contribution at low radii due to its r2 variation.

Zone 2 is starting at the critical point (Dcs,Hcs) and contains the bubble solutions. As observed in
Fig. 4.25.c the topological solitons in this zone present a skyrmionic behaviour at high positive magnetic field:
low drs/dH susceptibility and no collapse field (see Fig. 4.25c). At low magnetic field their susceptibility
is large and increases with decreasing field, as it is the case for bubbles. The dashed line in Fig. 4.25.b
and f is the line at which the isolated topological soliton energy s(rs) becomes negative indicating that the
ferromagnetic state becomes higher in energy than the non-uniform state. Above this line the low energy
cost of topological solitons and domain walls favours the formation of a topological soliton lattice or a
stripe/helical phase as described in the works of Bogdanov et al. [97] and Kiselev et al. [93].
We point out that zone 2 is also extending above the critical Dcw = 4 mJ/m2 value. For high magnetic
fields, isolated topological solitons with positive energy are restored: when the magnetic field is compressing
the topological soliton radius down to r ∼ π∆, the non-linearity in the exchange term causes the soliton
energy to increase and become positive again: the isolated soliton solution is restored despite the negative
domain wall energy at zero magnetic field in this zone. Experimental observations of metastable isolated
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topological solitons at high magnetic field can be found in the work from Romming et al. [4] who reported
skyrmions in systems with D > Dcw under high magnetic fields of a few Tesla.

No isolated soliton: zone 0 and 3

Zone 1 starts along the blue line close to D = Dmin. = 2
√
Aex.Keff./π. Below this line, in zone 0, the DMI

energy is too low to compensate the anisotropy, the α slope in Fig. 4.24.c becomes positive, and there is no
energy minimum in Es(r). This defines a lower DMI value for the formation of a static topological soliton,
however, dynamical solitons [98, 99], not discussed in the present work, can still be created for example using
spin polarized currents [100, 101]. In addition, higher order exchange energy terms, not taken into account
in the present model, can also lead to the stabilisation of skyrmions in absence of DMI [2, 84, 102, 103]. Zone
3 is delimited by the blue skyrmion bursting line, at which the skyrmion solution disappears, and the H = 0
red line. In this zone the negative magnetic field suppresses isolated metastable states. At low magnetic
field, for sufficiently large D values, a topological soliton lattice or a stripe/helical phase, not accessible with
our isolated soliton model, should be observed in this zone due to a low DW/topological soliton energy cost
(see [97, 93, 94]).

Skyrmion and bubble coexistence: zone 4

The region where skyrmion and bubble solutions coexist appears at low magnetic field (zone 4 in Fig. 4.25.f).
In Fig. 4.25.d and e we show the radius corresponding to respectively the larger/smaller solution, when two
solutions coexist. This zone overlaps with zone 1: a second energy minima corresponding to the bubble
solution appears in ∆E(r) in zone 4 without modifying the skyrmion radius. The coexistence of skyrmion
and bubbles is also visible in the diagram vertical cross section in Fig. 4.25.g. Zone 4 is delimited by
the bubble collapse red line, the skyrmion bursting blue line and the H = 0 line. When D is decreased,
the collapse field is decreasing and zone 4 is vanishing because the DW energy becomes too large to be
compensated by the surface demagnetising energy.

Critical point (Dcs,Hcs) In Fig. 4.25.g we show the rs evolution with magnetic field for a value of D
very close to Dcs ∼ 3.51 pJ/m2. Below Dcs the energy barrier which separates the two solutions, visible in
Fig. 4.24.d, is causing hysteretic behaviours in the bubble-skyrmion transformations. Bubbles collapse into
skyrmions for increasing magnetic field and skyrmions abruptly expand when the magnetic field is decreased
to the bursting field (Fig. 4.24.f and g and Fig. 4.25.g). At D = Dcs, the hysteretic behaviour is suppressed
(blue line in Fig. 4.25.g). This is due to the suppression of the energy barrier separating the two solutions
which leads to a remarkably flat Es(r) energy profile close to rcs as visible in Fig. 4.24.h. This particularity,
which is only observed close to the critical point, is due to an almost perfect compensation, when the radius
is varying, of the energy cost of the spin rotation by the energy gain of the long range surface demagnetising
energy.
The skyrmion-bubble transitions observed here are reminiscent of the critical phenomena observed in the
liquid-gaz second order phase transition. Firstly, the transitions occurs along lines that terminate at a
critical point (Dcs,Hcs). Secondly, for D < Dcs an interval where both solitons coexist is observed similarly
to the gas and liquid mixture observed in the temperature versus density plane of the liquid/gas phase
diagram. Thirdly, we observe numerically a divergence in the topological soliton compressibility drs/dH at
the critical point (Figure 4.25.g).

Effect of the approximations on the phase diagram: The presence of the stabilising surface demag-
netising energy Elong range

dem. is shifting the critical D value at which the compensation between positive and
negative energy terms occurs. This limit corresponds to the frontier at which domain walls will proliferate
and isolated solitons or domain walls will not be observed any more at low magnetic fields. However, the
expression used to estimate Elong range

dem. leads to an overestimation of this energy. Consequently, while the
Dcs calculated with the parameters we used is equal to 0.88Dcw, the critical Dcs in a real system may be
closer to Dcw. Concerning the radius of topological solitons, as the expression we use to calculate Elong range

dem.

is valid when rs >> π∆, we expect that the estimation of rs is good for solutions in zone 2 as well as bubble
solutions in zone 3. Concerning low radius topological solitons, as the non-local demagnetising contributions
are weak for rs < π∆, the approximation used to calculate them has a low impact on the skyrmion radius.
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We take as example the experimental results from Romming et al. [4] who have observed skyrmions with
rs(3T ) = 1 nm and rs(1T ) = 2 nm. This radius is reproduced theoretically with an error smaller than 10%
using our analytical model and varies by less than 10% if the long range demagnetising term is suppressed.
The error associated with the analytical expression of the Zeeman energy that we use comes from a non-
compensation of the up and down Mz component in the region where the spins are rotating. When r >> π∆
this error is negligible (< 1%). For r = 2π∆ = 20 nm the error in EZee is of the order of 5%. For r = 5
nm it reaches 30% of EZee, however, the impact of this underestimation on the topological soliton radius is
limited by the fact that EZee decreases quadratically with r and that the Zeeman energy is always one to
several orders of magnitude smaller than the total energy in the r < ∆ range.

4.4.3 The topological soliton quality factor and stability

Figure 4.26: (a) Topological soliton S factor corresponding to the solutions in the phase diagram in
Fig. 4.25.a. (b) Topological soliton equilibrium radius as a function of the S factor extracted from Fig. 4.25.a
and Fig. 4.27.a. (c) Topological soliton equilibrium radius from Fig. 4.25.a as a function of their collapse
energy barrier Ec defined in section 4.4.3 and normalized by the RT thermal energy ERT = kBT293K . (d)
Topological soliton equilibrium radius as a function of Ec/ERT extracted from Fig. 4.25.a and Fig. 4.27.c.

In order to estimate the role of the long range surface demagnetising energy in the stabilisation of a
given topological soliton with radius rs, we introduce the skyrmionic quality factor S which represents the
ratio between the energy cost of the spin rotation and the gain from the long range surface demagnetising
energy for a given topological soliton at rs:

S(rs) = −Eexch. + Eanis. + EDMI

Elong range
dem.

(4.100)

The S values corresponding to solutions from Fig. 4.27.a are shown in Fig. 4.27.b. For rs << π∆ the
skyrmionic quality factor is large: S >> 1 as Eanis., E

long range
dem. and EDMI tend to zero while Eexch. tends

to E0 (Fig. 4.23.d). On the contrary, large skyrmions with rs >> π∆ are only formed when the energy
cost of the spin rotation is lower than the energy gain due to the long range demagnetising effect which
implies S < 1. To check this correlation between the size and the S factor of a given topological soliton, we
plot the soliton radius as a function of S in Fig. 4.27.c. Bubbles and skyrmion solutions from zone 4 and 1
are shown respectively in red and black while topological solitons above the critical point (zone 2) appear
in yellow. Coexisting skyrmion and bubble solutions from zone 4 show two distinct characteristic radius
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ranges, above rcs = 75 nm for bubbles with S close to 1 and below rcs for skyrmions with S > 1. However,
above the critical point, the radius of topological solitons as well as their S factor can be tuned continuously
across rcs. The correlation between the size and the S factor is very different depending on the value of S.
Topological solitons with S close to 1 show a large radius distribution while the radius of skyrmions and
compact topological solitons at high magnetic field are strongly correlated with S (Fig. 4.27.b).

Topological soliton stability

The analytical soliton model allows us to calculate the energy barrier protecting the solitons from collapse.
This collapse energy represents the energy necessary for the soliton to annihilate via compression. This
gives an estimation of the stability of a topological soliton, keeping in mind that our continuous model may
become irrelevant at the atomic scale and that other annihilation mechanism with lower energy paths may
exist, in particular in the presence of defects or edges [78]. We define the topological soliton collapse energy
barrier as Ec = E0−Emin

s , where Emin
s is the local minimum in Es(r). The bubble collapse energy is defined

as Ec = Emax
s − Emin

s where Emax
s is the local maximum.

In Fig. 4.27.c we plot the collapse energies corresponding to solutions from Fig. 4.25.a divided by ERT =
kBT293K . In Fig. 4.27.d we show the topological soliton radius as a function of the collapse barrier Ec/ERT,
where the topological solitons from zone 2 are represented in red while skyrmion and bubble solutions from
zone 1 and 3 appear respectively in black and yellow. In zone 3 the segregation of skyrmion and bubbles
in two different radius ranges, due to the presence of the energy barrier separating them in ∆E(r), appears
again clearly. The most compact (smaller) topological solitons show a low Ec and an exponential dependence
of Ec versus rs. On the contrary magnetic bubbles from zone 3 (in yellow in Fig. 4.27.d) show a strong
dispersion in their collapse energies due the sensibility of rs to the applied magnetic field, as visible in
Fig. 4.27.c. Above the critical point, the topological soliton in zone 2 (red dots in Fig. 4.27.d) shows a
tunable collapse energy for a given rs. For topological solitons of intermediate size (100 nm) and above, RT
stability is easily obtained, due to the large value of E0/kBT293K = 31. The size of the RT stable topological
solitons can be decreased by increasing the exchange constant and the thickness. For example, changing
the magnetic parameters from Aex = 10 pJ/m and t = 0.5 nm to Aex = 15 pJ/m and t = 0.7 nm, E0 is
increased by a factor of 2 and we obtain metastable (Ec/ERT > 20) topological solitons at RT with rs ∼ 10
nm.
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4.4.4 Micromagnetics of anti-skyrmions

In this section I report the micromagnetic model developed together with S. Rohart from LPS (Orsay) [81]
to describe the stability and the configuration of anti-skyrmions in systems with inversion of DMI chiral-
ity. We extend the discussion developed for one-dimensional magnetisation modulations to systems with
anisotropic DMI in a two-dimensional system.

We consider a uniaxial anisotropy with the surface magnetic charges included with the local approxima-
tion (Keff = K −Ks).
In these systems anti-skyrmions are stabilized in the presence of an anisotropic DMI and a chirality inver-
sion along perpendicular directions (Dx = −Dy). This situation has been studied for a one-dimensional
modulation in Sec. 4.3.1, where, setting the chirality inversion, the modulation polarisation relationship
φ = −α has been found. The presence of in-plane anisotropy and dipolar volume charges can modify the
modulation polarisation. The in-plane anisotropy is neglected in the following discussion whereas the effect
of the volume magnetic charges will be considered only in the second part.

Figure 4.27: (a) Sketch of the magnetisation of an anti-skyrmion in the system plane. (b) Frame for
describing the space in circular coordinates (α, r) and for the magnetisation in polar coordinates (φ, θ)

Since the polarisation angle does not depend on the other magnetic energies the relation φ = −α can
be considered valid even for two-dimensional configurations. Such a relation sets the topology of the mag-
netic configurations with negative winding numbers (ASK). Indeed, putting φ = −α in Eq. 4.8 one obtains
NSK = p ·W = −p.

It has been shown that a 1D magnetisation modulation with (Dx = −Dy) and (Dx = Dy) have exactly
the same energy and its energy density reads:

E =

∫ [
A

(
dθ

du

)2

−Ddθ

du
+Keff sin2 θ

]
du (4.101)

We extend the discussion to a 2D texture. The texture is described by the two angles θ(r, α) and φ(α),
defined in Fig. 4.96), where r and α are the circular coordinates in the (x, y) plane. Considering the result
of the 1D investigation, the relation φ = −α is kept. Therefore, the micromagnetic energy is isotropic, θ
doesn’t depend on α and the problem can be evaluated using a circular symmetry, with the energy:

E = 2πt

∫ {
A

[(
dθ

du

)2

+
sin2 θ

r2

]
−D

[
dθ

du
+

cos θ sin θ

r

]
+Keff sin2 θ

}
rdr (4.102)

This equation is exactly the same as the one describing a Sk in a medium with isotropic DMI [1]. It is
analogous to the calculation of Belavin and Polyakov [82], who demonstrated that the exchange energy of
a bubble does not depend on the sign of dφ/dα. This means that, for a given set of A, D and Keff , the
ASk texture has a profile and an energy identical to a Sk in an isotropic medium [1]. All the conclusions



4.4. 2D TOPOLOGICAL SOLITONS : SKYRMIONS AND
ANTI-SKYRMIONS 101

that have been drawn in preceding papers neglecting long range dipolar coupling remain valid (boundary
conditions, out-of-plane profiles and energies) [58, 80]. The only difference between the two configurations
is the φ(α) relationship; φ = α for a Sk (W = 1) and φ = −α for an ASk (W = −1).

In order to verify the validity of our analytical results we have performed micromagnetic simulations
without dipolar interactions. We used an adaptation of the object-oriented micromagnetic framework code
(OOMMF) [104, 80] including anisotropic DMI (see Fig. 4.28). The calculation is performed in a 400-nm
diameter, 0.6-nm thick circular dot with typical magnetic parameters for systems where isolated skyrmions
have been experimentally observed (A = 16 pJ/m, Keff = 0.2 MJ/m3 and D = 2 mJ/m2) [6]. Comparing
Sk and ASk obtained respectively with Dx/Dy = 1 and −1, identical energies and out-of-plane profiles are
found. The φ(α) relation is confirmed validating the different assumptions in our model (in particular the
hypothesis that φ is independent on r).

a) b)

c) d)

α

π/2

π

-π/2

-π π/2

π

-π/2
-π

0

0

Figure 4.28: Micromagnetic simulations of the magnetisation maps for a skyrmion (a) and an anti-skyrmion
(b) (scalebar : 10 nm). The arrows represent the in-plane magnetisation and the color code the out-of-plane
magnetisation (red = up, white = in-plane and blue = down). (c) and (d) Comparison between analytic
modelling and simulations of the mz profile and the φ(α) relationship, for Sk and ASk. In (c) the Sk and
ASk profiles are indiscernable.

Role of dipolar couplings

Determining the role of dipolar interactions in the stabilisation of Sk with micromagnetic analytical calcu-
lations is particularly difficult. This interaction has often been neglected [58, 105, 94, 80] or analytically
expressed under approximations [92, 106, 107]. The two-fold symmetry of the ASk magnetic configuration
does not allow using a circular symmetry, increasing the difficulty of this approach. Therefore, we performed
a study of the dipolar interaction effects on the Sk and ASk configurations with the support of micromag-
netic simulations using OOMMF [104] with an anisotropic DMI. For stabilizing Sk and ASk in the absence
of an external magnetic field, we confine them into 0.6 nm thick circular dots with a diameter of 400 nm,
using a mesh size of 1 nm.

Phenomenology of dipolar interactions: The effect of the dipolar interaction on the size and stability
of Sk and ASk in a dot can be phenomenologically understood considering the contributions from the surface
and volume charges.
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Figure 4.29: Plane view of a magnetic skyrmion (a) and an anti-skyrmion (b) in a dot with a lateral size
of 115 nm. The colors represent the magnetic volume charges (∇m) with the color code shown at the right.
The arrows represent the magnetic configurations with their colors representing the out-of-plane component
(red = up, blue = down). The radius of the magnetic configurations does not depend on the dot size for
dots larger than about 100nm and are stable without the application of an external magnetic field, with
Ms = 5 · 105 A/m , Aex = 16 pJ/m, Keff = 200 kJ/m3, D = 2.0 mJ/m2. Isotropic DMI (Dx = Dy) allows the
stabilisation of a skyrmion whereas anisotropic DMI (Dx = −Dy) stabilizes an anti-skyrmion.

Magnetic surface charges σ arise when the magnetisation vector has a component along the surface
normal n, i.e. σ = MSm ·n. In a perpendicular thin film, they arise from the two surfaces of the film.
Therefore, the texture core and the surroundings display opposite charge signs and the energy due to the
dipolar interaction is reduced when the magnetic flux closes between the core and the surroudings [6, 106].
Therefore a Sk or an ASk configuration confined in a dot tends to increase its radius in order to demagnetize
the system [6, 106]. The surface charges do not depend on the in-plane magnetisation and the associated
dipolar interaction is identical for a Sk and an ASk with the same shape and area.

Magnetic volume charges are generated from the volume magnetisation divergence and are therefore
present in the vicinity of magnetic textures, and strongly depend on their details. The maps of the volume
charges for a Sk and an ASk configuration are shown in Fig. 4.29. The Sk maps present a circular symmetry
and the volume charges arise from the Néel-like magnetisation rotation. The ASk maps shows a 2-fold
symmetry and the presence of Bloch-like rotations along intermediate directions (φ = π/4 + nπ/2). For the
ASk, the charges are maximum along the main axes x and y, due to the Néel type rotations. However, the
signs along x and y are opposite due to the opposite chirality.

The impact of the volume charges can be decomposed in two effects. First, the charges locally increase
the energy of the transition region, in the same manner as for a flat domain wall. The dipolar energy cost
of a domain wall oriented at an angle α with respect to the x axis is δN cos2(φ− α), where δN corresponds
to the dipolar cost of a Néel wall [79]. For a large Sk or ASk, such arguments based on the energy of a flat
domain wall remain qualitatively valid [80] and lead to a significant difference between the two textures.
For a skyrmion, where φ = α, the dipolar energy is isotropic, equal to δN , while for an anti-skyrmion, where
φ = −α, the energy strongly varies as a function of α and becomes zero in the regions where the spin
rotations are Bloch-like. Considering a circular texture of radius R, the additional cost to the dipolar-free
micromagnetic energy described earlier is 2πtRδN and πtRδN for skyrmions and antiskyrmions, respectively.
This means that anti-skyrmions are expected to display a lower energy and a larger equilibrium diameter
than skyrmions. A second effect couples the flux arising from the volume charges over the entire texture.
Inside a skyrmion, the charges have the same sign everywhere, opposite to the sign outside the texture. On
the contrary, both inside and outside an anti-skyrmion the charges have signs that are opposite along the
main axes. The total volume charges both inside and outside the texture thus cancel leading to a further
decrease of the dipolar energy with respect to the skyrmion.

The total energy of the ASk is thus reduced with respect to the Sk due to the difference in the distribution
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of volume magnetic charges. Moreover, the presence of anisotropic volume charges may deform the ASk
shape, as we will discuss later.

Stability and shape of anti-skyrmions

To investigate in more detail the effect of the dipolar interaction on the stability and shape of Sk and
ASk, we studied their energy and radius as a function of the spontaneous magnetisation Ms (Fig. 4.30). In
order to consider only the effects of the volume charges and the flux closure of the surface charges we keep
Keff constant during the variation of Ms and use the same parameters as in the simulations with simplied
dipolar interactions in Fig. 4.28. Ms was varied between 0.1 · 106 A/m and 1.8 · 106 A/m. In Fig. 4.30(a)
the Sk and ASk energies are considered as the energy difference between a dot with a Sk or an ASk and
its relative single domain state. Taking this difference allows eliminating the effect of the DMI on the edge
magnetisation [80, 108]. Since the ASk can present a shape which is not circular, we consider an effective
radius (r =

√
A/π) calculated from the area A. We consider A as the space region of the Sk and ASk

where mz > 0. For small values of Ms the Sk and the ASk are mainly stabilized by the competition between
the exchange, anisotropy and DMI [90] energies that were shown to be equal for Sk and ASk. The dipolar
interaction is negligible and the Sk and the ASk have comparable energy and radius. When Ms increases
the dipolar interaction plays a larger role. The Sk and ASk radii increase (Fig. 4.30(b)) to allow a more
efficient flux closure between the surface magnetic charges. Both configurations lower the energy but the
difference in volume charges favors the ASk. When for larger Ms the dipolar energy becomes larger than
the DMI energy, the total energy of the Sk and the ASk decreases and their radius increases until they feel
the repulsive effect from the dot edge [80]. In this regime, the Sk and ASk shape and dimensions strongly
depend on the symmetry and size of the microstructures in which they are confined and the volume charges
become the driving force for defining the magnetic configuration.

Figure 4.30: Energy (a) and radius (b) of a skyrmion (black) and an anti-skyrmion (red) as a function
of the spontaneous magnetisation Ms. The simulations are performed in circular dots of 400 nm diameter
and 1 nm thickness with a fixed out-of-plane effective anisotropy Keff . Aex = 16 pJ/m Keff = 2 · 105 J/m3

D = 2.0 mJ/m2)

Upon increasing Ms, the ASk changes its shape in order to promote Bloch-like rotations, which do not
generate volume charges and thus cost less dipolar energy. Because DMI promotes Bloch-like rotations along
intermediate crystallographic directions (φ = π/4 + nπ/2), the ASk has the tendency to acquire a square
shape (Fig. 4.31). This configuration allows to increase the ratio between Bloch and Néel rotations. Even
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if the total domain wall length increases going from a circular to a square shape, this can still lead to a
minimisation of the total DMI and dipolar energy.

Figure 4.31: (a) Normalized circularity factor Cn as a function of Ms for an anti-skyrmion stabilized in
dots with a diameter of 500 nm (blue), 400 nm (black) and 200 (red). (b) Magnetic configuration of an
anti-skyrmion (Ms = 1.4 · 106 A/m, Aex = 16 pJ/m, Keff = 2 · 105 J/m3, D = 2.0 mJ/m2) with a sketch that
shows the square-circular shape. (c) Radius of an anti-skyrmion as a function of the in-plane angle α

In order to quantify this tendency, we calculate the normalized circularity factor Cn = 4πA/P2−π/4
1−π/4 ,

where A and P are, respectively, the area and the perimeter of the texture (set of points where mz = 0).
This normalized circularity factor may vary from C = 1 (circle) to C = 0 (square). The Sk has a circular
symmetry and this factor is thus equal to 1. Fig. 4.31 shows the plot of the normalized circularity for an ASk
as a function of Ms, stabilized in dots of different diameters (200, 400 and 500 nm). We can distinguish two
different regimes. For small values of Ms, the volume charges do not influence the ASk shape, the circularity
is equal to C = 1 and does not depend on the dot size. For larger Ms values, the moment rotation with
an angle (φ = π/4 + nπ/2) is favored and the ASk circularity decreases upon increasing Ms. In small dots,
the confinement does not allow the ASk to expand, and constrains the texture shape to the dot shape. In
larger dots, the ASk shape adapts to the internal energies, which results in a shape closer to the square
configuration. Increasing the dot size even further, the ASk configuration becomes unstable for these large
values of Ms and a labyrinth-like domain structure is formed.

Finally, in order to have a numerical confirmation of the Sk and ASk stabilisation mechanisms, we studied
the energies as a function of the Sk and ASk radius for a given value of Ms. We choose Ms = 1.25 · 106 A/m
in order to study the regime where the dipolar interactions are important. These simulations were performed
starting from two different initial states, respectively with a radius larger and smaller than the equilibrium
one. The conjugate gradient minimisation algorithm has been used for minimizing the energy, starting
from these initial states. During the relaxation towards equilibrium, all the components of the Sk and ASk
energies have been tracked as a function of the radius, i.e. for each minimisation step we recorded the
energies and calculated the radius of the Sk or the ASk [Fig. 4.32(a,b)]. Implicitly we suppose here that the
configurations follow a physical minimum energy path, which is not necessarily always the case as shown
using more complex methods [109, 76, 110, 111]. In order to confirm our results, we compared the obtained
energy with the analytical results, as a function of the texture diameter. In both approaches the anisotropy
and the DMI energies are proportional to the radius as expected.

Upon diameter increase, anisotropy and exchange energies increase and DMI and dipolar energies de-
crease, all almost linearly. The balance between these terms is rather subtle as all these energies almost
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Figure 4.32: Magnetic energies of a skyrmion (a) and an anti-skyrmion (b) as a function of the radius
for a given set of magnetic parameters (Ms = 1.25 · 106 A/m, Aex = 16 pJ/m, Keff = 2 · 105 J/m3, D =
2.0 mJ/m2). (c) Total energy for a skyrmion (red) and an anti-skyrmion (blue) as a function of the radius.
(d) Comparison between the DMI (green) and the dipolar interaction (violet) for a skyrmion (dots) and an
anti-skyrmion (squares) as a function of the radius. The vertical dotted lines in all panels correspond to the
equilibrium radius of Sk and/or ASk

compensate (the absolute value of the total energy is more than one order of magnitude smaller than the
absolute value of any of the separate energies). In Fig. 4.32(c) we show that for a given set of magnetic
parameters the ASk is more stable than the Sk and it has a bigger radius. It can be understood consider-
ing Fig. 4.32(d) where the behavior of the DMI and of the dipolar interaction energies are compared as a
function of the radius. One can notice that the DMI has the same behavior for the Sk and ASk, unlike the
dipolar energy, which upon increasing radius decreases faster for the ASk than for the Sk. This difference
is the fundamental reason for the energy difference between the Sk and the ASk. Even if this difference
at equilibrium is not visible in the energy range shown in Fig. 4.32(d) it becomes fundamental in the anti-
skyrmion/skyrmion energy range Fig. 4.32(c). Indeed, the Sk and ASk configurations are determined by
the competition between all the magnetic energies and any small variation of one of the energies can imply
a strong change of the Sk and ASk energy and radius.
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4.4.5 Review on 2D topological solitons

Micromagnetic models have been developed in order to study 2D topological solitons.

In the first part we have developed an analytical topological soliton model containing expressions of
the long range demagnetising and exchange curvature energies, two key ingredients to stabilise bubbles and
skyrmions in ferromagnetic thin films. This allowed us to study systematically topological soliton solutions
over a wide range of parameters and explore quantitatively the possible transitions between small and large
topological solitons. In the skyrmion-bubble transition a critical point is present above which the transfor-
mation between both spin textures becomes continuous. While the distinct characteristics of skyrmion and
bubbles remain, their common nature as topological solitons is emphasized. Above the critical (Dcs,Hcs)
point, the topological soliton can not be strictly named a skyrmion or a bubbble, as it possesses some char-
acteristics of both objects, and it may be addressed as supercritical skyrmion.

In the second part we have shown that when the dipolar interactions are neglected one can write the
ASk energy in a circular symmetric form. The Sk and the ASk in systems with different symmetry but the
same strength of magnetic interactions have the same size and stability energy. The presence of dipolar
interactions breaks the circular symmetry of the ASk energy. With the support of micromagnetic simulations
we have studied the energy and the shape of Sk and ASk as a function of Ms and explained the role of the
dipolar interaction. We can distinguish three different effects. The interaction due to the surface charges
does not break the circular symmetry and stabilizes in the same way Sk and ASk. The volume charges
depend on the in-plane moment configuration. While the Sk configuration shows homochiral Néel moment
rotation, anti-skyrmions show partly Néel and partly Bloch rotations. The latter do not produce magnetic
charges. The ASk configuration is therefore more stable and the tendency to favor Bloch rotations induces a
square shape. Moreover the presence of Néel rotations with different chirality induces a partial flux closure
effect and further increases the ASk stability. Since both Sk and ASk are stable when all the magnetic
energies cancel each other, a small variation of a single parameter like the dipolar energy can have a large
influence on the shape and energy of the textures.



Chapter 5

Experimental results: magnetism in C2v
epitaxial systems

In the previous chapters we used micromagnetic approaches in order to describe the relationship between
the crystal symmetry, the magnetic interaction symmetry and the topological solitons in epitaxial magnetic
thin films. The theoretical results are used here to analyse the experimental data described in this chapter.

The experimental work shown in this thesis started at the end of 2014. At the time isolated skyrmions
had been evidenced experimentally only under the application of a strong magnetic field (a few Tesla) and
at low temperature (T=4K) [4]. Moreover, the origin of DMI in ultrathin materials with broken inversion
symmetry was not completely understood.

The work of this thesis started with the aim of studying the origin of DMI in order to design a strategy
for nucleating isolated skyrmions at room temperature in ultrathin films. With a similar aim the scientific
community focused on the study of ultrathin multilayer materials grown with sputtering techniques. The
experimental samples obtained in this way may present rough interfaces with material interdiffusion. Since
the DMI is an interface effect it should be strongly affected and its interaction reduced by the interdiffusion.
We therefore decided to study DMI in good quality epitaxial films with sharp interfaces, which could be
used as model systems to compare with theoretical calculations of interface DMI.

This chapter is divided into three main parts, presenting the different magnetic systems that were grown
and analysed. For each system I first describe the growth parameters and crystal symmetry, followed by the
results of the magnetic characterisation and finally the results from the magnetic microscopy measurements.
This explanation path allows to understand how the symmetry and quality of the crystals determine the
symmetry of the magnetic properties and how the magnetic configurations depend on them.

The reported experimental work has been done with fundamental support of Philippe David and Valerie
Guisset of the ”Pôle Epitaxie”.

5.1 Materials for stabilizing isolated skyrmion

In order to find the right combination of materials for stabilizing isolated skyrmions in ultrathin films several
properties have to be fulfilled:

• Strong DMI: The strength of the DMI in ultrathin films strongly depends on the quality of the
interface between a heavy metal (HM) and a ferromagnetic material (FM). Theoretical studies show
that the DMI strength increases in systems with sharp interfaces [31]. A way to avoid interlayer
mixing is to use materials that do not form alloys.
In addition to the material choice, we decided to grow trilayer systems with two different magnetic
HM\FM metal interfaces (HM1 \ FM \ HM2). This allows obtaining samples that can be studied with
different experimental techniques since the upper heavy metal layer protects the magnetic layer from
oxidation. Moreover, using materials with opposite DMI sign (dHM1/FM ·dHM2/FM < 0) at the two
interfaces allows to increase the DMI on the magnetic layer (dHM1\FM\HM2 = dHM2/FM + dHM1\FM)
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(Fig. 5.1). Indeed, a mirroring symmetry operation does not conserve the chirality; i.e. a clockwise
spin rotation becomes anti-clockwise if the system is upside-down.

Figure 5.1: Sketch of a trilayer system. (blue and red) Heavy metals and (brown) ferromagnetic material.
The dHM1/FM ·dHM2/FM < 0 have an opposite sign with respect to the interface but the geometrical positions
sums their effects on the ferromagnetic layer.

• Out-of-plane magnetisation: According to the Moriya rules (Sec. 2.3.2) the DMI vector lies in the
plane perpendicular to the direction of the breaking of the inversion symmetry. In an ultrathin system
with interfacial DMI the d vectors therefore lie in the system plane. Then the DMI effects manifest
themselves only in out-of-plane magnetized systems. An out-of-plane magnetisation can be obtained
in ultrathin films tailoring the interface magnetic anisotropy (Sec. 2.5).

5.2 W\Co\Au and W\Co\Pt

Tungsten (W) is a refractory metal with high surface energy and high spin-orbit coupling. At the start of
this PhD work there was no information on the DMI strength and sign that it could induce in a magnetic
material. High quality W single crystal films can be obtained by the growth on a Al2O3 surface. These
properties convinced us to start our trilayer system with a W layer.

Cobalt (Co) was chosen as the magnetic layer because it is a room-temperature ferromagnetic transition
metal and because there is a rich literature on its magnetic properties when deposited on a heavy metal.
Moreover it can grow epitaxially on W layers. The drawback of the W\Co interface comes from the fact
that the W interface anisotropy promotes a strong in-plane magnetic anisotropy [112].
The upper layer was chosen in order to overcome this problem. Two different materials, gold (Au) and
platinum (Pt), have been deposited in order to obtain an out-of-plane magnetisation. Both materials induce
a strong out-of-plane interface anisotropy when they are at the interface with a Co layer [112, 113]. Moreover,
a high value of the DMI at the Co\Pt interface had already been demonstrated [114] [115][116].

5.2.1 Crystal relationships in epitaxial systems

In this part a short review of the literature on the epitaxial relationships and the obtained crystal structures
between the materials composing the W\Co\Pt and W\Co\Au trilayers is shown.

Al2O3 \ W

The bulk W (tungsten) crystal is body-centred cubic (bcc) with lattice parameter a = 3.1652 Å.
Al2O3 takes the name of aluminium oxide or sapphire and it has a hexagonal close-packed (hcp) lattice

with the main parameters a = 4.785Å, c = 12.991Å. The absence of porosity and of grain boundaries makes
this crystal an excellent substrate for deposition techniques. There are three different Al2O3 orientations,
(0001), (1100) and (1120), that allow the epitaxial growth of a W crystal:

W(111) ‖ Al2O3(0001) W(112) ‖ Al2O3(1100) W(110) ‖ Al2O3(1120) (5.1)

RHEED [117] analysis showed that the W grows with a better crystal quality in the relationship W(110) ‖Al2O3(1120).
This is because the W(110) planes are the most dense in the bcc structure maximizing the W interatomic
interactions and thus the surface energy.
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(a) (b)

Figure 5.2: Crystal structures: (a) hexagonal close-packed (b) body-centred cubic

The W atoms, during the deposition, minimize their energy by sitting into the vacant octahedral sites
of the Al terminal plane. During the W(110) surface growth on Al2O3 (1120) the W [111] is the most dense
row of atoms and has the tendency to align along the Al2O3 [0001] direction. Then two symmetric epitaxial
relationships are near degeneracy as shown in Fig. 5.3:

• In the relation called A the [111] direction of the W surface is parallel to the [0001] direction of the
sapphire surface.

• In the relation called B the [111] direction of the W surface is parallel to the [0001] direction of the
sapphire surface.

Figure 5.3: Schematic representation of the two faces of an Al termination (1120) plane showing the epitaxial
arrangement of W thereon. The Al atoms are shown as filled circles. The underlying two rows of oxygen
atoms are shown as large open circles and large shaded circles, respectively. The vacant octahedral sites are
shown as small open circles. (a) Corresponds to the epitaxial relation described as case A in the text and
(b) corresponds to the epitaxial relation described as case B in the text.

X-ray diffraction measurements [117] show a good layer-by-layer epitaxial deposition with a small tilt
between the W and Al2O3 planes (0.04◦). Moreover in both cases twin crystals with different popula-
tions can be found. For case A the epitaxial relation for the higher density population was found to be
W [112] ‖ Al2O3(1100) and the lower density population was found to be W [112] ‖ Al2O3(1100).
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Since in this work we are interested in the study of the simplest possible crystal, we need to avoid the
presence of different epitaxial configurations that could deteriorate the quality of the next layers. In the
case of W(110) on Al2O3 the problem has been solved by the introduction of a thin layer of Molybdenum
(Mo) between the two materials [118]. Mo has a lattice parameter slightly smaller than the one of W and
grows on Al2O3 with the same epitaxial relationships as W. When the W grows on top of the Al2O3\ Mo
stack it assumes the same configurations than without the Mo interlayer, but when an annealing process
is performed only one relationship (W [112] ‖ Al2O3(1100) ) is energetically favorable [118]. The obtained
monocrystal has a rectangular primitive cell with C2v symmetry.

W\Co

Cobalt (Co) is a room-temperature ferromagnetic transition metal. Its crystal in bulk structure is hexagonal
close-packed (hcp) with lattice parameters a : 2.5071Å and c : 4.0695Å at room temperature. The hexagonal
(0001) surface has C3v geometry and can grow epitaxially on the bcc W(110) surface.

One possible epitaxial relationship between a hcp (0001) surface and a bcc (110) surface takes the name
of Nishiyama-Wassermann (NW) orientation [119]. In this orientation the bcc [001] direction is parallel to
the hcp [1120] direction, like it is shown in Fig. 5.4a.

(a) The sketch of the Nishiyama-Wassermann orien-
tation between the rectangular bcc(110) (solid circles
•) and hcp (0001) (open circles ◦)

(b) Diffraction pattern of Co (0001) (open circles ◦)
on W (110) (solid circles •) in the regime between 1
and 4 monolayers Co

Figure 5.4

Since the Co hcp (0001) and the bcc (110) surfaces have different symmetry and atomic distances,
the Co layer will grow strained and elastic energies will be accumulated. Then the Co grows in different
configurations as a function of the layer thickness because the increase of the elastic energies. In Sec. 3.1.4
the role of the crystal strain in this phenomenum has been shown. One can define a monolayer (ML) of Co
as the number of absorbed atoms needed to fill an atomic layer ML = 2Å.
Three different regimes have been found from the analysis of [120] :

• Up to 1ML the interaction between the Co atoms is weak, the Co atoms feel mostly the substrate
potential and the crystal grows pseudomorphically.

• When the thickness increases the interaction between the Co atoms becomes stronger, strain increases
and the Co crystal starts to relax. The lattice misfits along the main in-plane crystallographic directions
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are:

∆abcc[110] =

√
2aW −

√
3aCo√

2aW

= 2.98% ∆abcc[001] =
aW − aCo

aW
= 20.79% (5.2)

where aW and aCo are respectively the bulk bcc and hcp lattice parameters. Along the bcc[110]
direction the Co is expected to grow pseudomorphically (ax =

√
2/2aW), up to 10 Co monolayers

(1ML '0.2 nm) [120]. Along the bcc[001] direction, the misfit instead is large implying that the Co
structure relaxes for a thickness between 2 and 4 ML (ay = 3.56/4.56aW

2 [120]), with ax and ay defined
in Fig. 5.16. Along the bcc[001] direction, the Co-W crystal forms a superstructure with a period of
9ay (1.1 nm).

• During the growth, for thickness beyond 4 ML, the Cobalt layer relaxes and the strain decreases as
shown in the analysis of the LEED pattern (Fig. 5.4b).

In Fig. 5.5b the experimental values of ε are plotted as a function of the Co layer thickness up to 4 ML .

(a) Strain in an epitaxial Co(0001) film on W(110)
versus thickness t. Experimental data taken by LEED
spectroscopy in [120] are fitted by the full lines using
the strain model explained in the chapter.

(b) Strain in an epitaxial Co(0001) film on W (110)
versus thickness t. Experimental data taken by LEED
spectroscopy in [112]

Figure 5.5

The experimental data have been interpreted by the elastic energy minimisation theory in a linear
continuum elasticity theory. Two regimes are considered for the dependence of the strain on the thickness.

• In the first regime the pseudomorphic constraint along y imposes a x and z Poisson-type contraction.

• In the second regime beyond the critical thickness tc = 2.0 nm the strain relaxation is described by
the equation:

εii = ε0ii[α+ (1− α)(tc/t)] (5.3)

where ε0ii is the strain in the first regime. The constant residual strain ε0iiα is the strain for an infinite
thickness layer.

The magnetic anisotropy depends directly on the crystal surface symmetry (Sec. 2.5). In a second order
approximation the total anisotropy energy density for a biaxial system reads:

Emc = Kout sin2(θ) +Kin sin2(ϕ) cos2(θ) (5.4)

The volume and surface anisotropy constants are the sum of the magneto-crystalline and the magneto-
elastic constants (Ki = Kme

i + Kmc
i ). The magneto-elastic constants can be calculated from the crystal

strain. Considering the magneto-elastic constants Bi calculated in [121], one can write the relation between
magneto-elastic anisotropy constants and the strain:

Kme
out = −B1ε22 −B2ε33 −B3(ε22 + ε11) Kme

in = B1(ε11 − ε22) (5.5)
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Experimentally the magneto-elastic and the magneto-crystalline anisotropy constants can not be sepa-
rated but a dependence on the growth regimes has been found [120]:

regime t < tc regime t > tc

Kv
out −3.3× 105J/m3 −0.7× 105J/m3

Ks
out 0.0× 10−3J/m2 −0.5× 10−3J/m2

Kv
in −7.6× 105J/m3 −4.7× 105J/m3

Ks
in 0.1× 10−3J/m2 −0.7× 10−3J/m2

Au (111) and Pt(111) on Co(0001)

Platinum (Pt) and Gold (Au) are noble metals and they have a fcc crystal lattice with the lattice parameter
respectively aPt = 3.9242Å and aAu = 4.078Å .
In Fig. 5.6(a) a sketch of the fcc structure is given. The hcp (0001) and the fcc (111) surfaces have the same
crystal symmetry C3v. For a single or double monolayer it is impossible to define a difference between the
two crystal stacks. The difference occurs when three layers are deposited. The fcc has a ABC structure
whereas the hcp has ABA.
Pt and the Au grow on top of the Co with the fcc [111] direction parallel to the hcp [1100] direction. In
order to understand if a pseudomorphic growth of Pt or Au on the Co is energetically favorable one can
analyze the bulk lattice mismatch along one of the main symmetry directions:

∆ahcp[1120] =

√
2/2aPt − aCo

aCo
= 10.6% ∆ahcp[1120] =

√
2/2aAu − aCo

aCo
= 15.3% (5.6)

The lattice mismatch does not allow a pseudomorphic growth of the two materials on the Co surface [112].

Figure 5.6: (a) Crystal structure of a fcc lattice. The plane (111) is lighted in blue. (b) Epitaxial relationship
between the Co hcp (0001) and the Pt fcc (111) surface.

5.2.2 Substrate preparation and characterisation

The quality of the substrate strongly influences the quality of the sample and the quality of the sample can
change the magnetic properties. In order to study the crystal magnetic properties, to perform BLS spec-
troscopy or to study the DW motion it is fundamental to have a homogeneous system. Indeed impurities in
the samples can strongly influence the results. In the DW motion a high density of defects involves a high
density of pinning centers that increases the magnetic field needed to exit from the creep regime. In BLS
spectroscopy the defects can act as scattering points for the Spin Waves and enlarge the resonance peaks.
On the other hand, there are situations where a high density of defects can help to achieve the researched
physics. For instance, we have seen that skyrmions are stable without applied field in a small range of
magnetic parameters (Sec. 4.4.2) or in nano-patterned structures. In a continuous film the presence of small
defects may lead to confinement and allow the stabilisation of skyrmionic bubbles.
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The substrates used during this work are 50.8mm (2 inch) commercial C plane (0001) sapphire wafers.
The wafer presents two sides, one polished to the atomic step roughness and one unpolished. In order to
use these substrates for the deposition several steps have to be carried out:

• Back deposition: During the epitaxial deposition it is fundamental to heat the sample to perform
annealing processes. Since the oven in the deposition chamber works via the emission of photons and
the sapphire is transparent to visible radiation, it is necessary to cover the unpolished wafer side with
a layer of some heavy metal that helps the photon absorption. This deposition is performed in a
sputtering deposition chamber on the full wafer. Initially a W 15 nm layer was deposited, but is was
subsequently replaced with Tantalum (Ta). Ta has a stronger adhesion with the sapphire, i.e. the
bond between the two surfaces is stronger.

• Orienting: Before cutting, the substrate is oriented with Laue diffraction in order to find the
direction where the grown Co will have the main axes.

• Cutting: The substrate slot in the deposition chamber has a 86× 68 mm2 dimension and the wafer
has to be cut. The substrates are cut along specific directions in order to obtain the Co main axes
along the long and short sample directions.

• Cleaning: before entering in the UHV chamber the substrates have to be cleaned in order to avoid
the degradation of the vacuum and to allow a homogeneous crystal growth.

The wafer surface quality can strongly change from one piece to the other, and the cutting, orientation
and back deposition can degrade the substrate quality. Therefore during this work several protocols have
been developed in order to obtain the highest substrate surface quality.

Crystal orientation and cutting

In Sec. 5.2.1 we have seen that epitaxial W(110) on Al2O3 grows with the main axes oriented with a given
angle with respect to the Al2O3 main axes. In particular, as shown in Fig. 5.7, the W [110] direction after
the annealing will be parallel to the sapphire [1104] direction. Laue diffraction on (1120) Al2O3 has been
performed in order to find this crystallographic direction with respect to the Al2O3 [0001] direction that is
perpendicular to the flat border of the wafer.

-1104

0001(a) (b) (a)

Polished face

Figure 5.7: (a) Laue diffraction pattern from the sapphire wafer (b) Expected diffraction pattern for a
(1120) Al2O3 surface and fit of the experimental data (c) Sketch of the crystallographic directions necessary
for the wafer cutting.

The measurements and the analysis have been performed by Jérome Debray from the pôle ’Cristaux
Massifs’ of the Institut Néel. This study allows to cut the substrates with the longer side parallel to the
W[110] direction. The cutting has been performed with a diamond saw. A sketch of the lines along which
the sample is cut are shown in Fig. 5.7(c).

Surface quality

In this part several methods for cleaning the substrate surface will be discussed. The substrate surface
can have different kinds of contaminant materials and defects of different dimensions. In order to avoid a
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high density of defects and obtain the most homogeneously grown crystal it is necessary to characterize and
remove the impurities and the defects. Since the impurities and the defects are different on each wafer, all
the wafers used for the crystal growth have been analysed.

Optical microscopy and AFM have been performed to study the presence of contaminant materials and
defects on the surface at the nanoscopic scales. Fig. 5.8(a) shows a crystal with a high density of scratches
whereas Fig. 5.8(b) shows a substrate surface with holes. They are a few nanometres deep, they may be
caused by errors in the polishing and make the substrates unusable for a layer-by-layer epitaxial growth.
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Figure 5.8: AFM microscopy in tapping mode of the surface of commercial Al2O3 wafers (a) atomically
flat surface with the presence of 2-5 nm deep scratches (b) atomically flat surface with the presence of holes
deeper than 3 nm.

Only the substrates with an atomically flat surface and without defects have been chosen for continuing
the substrate preparation. Fig. 5.3 shows a substrate surface with the presence of large atomic terraces.
They are 2Å high and 1 µm wide.
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Figure 5.9: AFM microscopy in tapping mode of the surface of a commercial Al2O3 wafer shows the presence
of atomic terraces. The plot shows the surface height along the black line (profile 1)

The substrate surface was often found with larger dimensions contaminants, that have been studied with
optical microscopy. Fig. 5.10 shows a substrate surface with a presence of contaminants on the microscopic
scale. The origin of these contaminants is not understood, a chemical study with Energy-dispersive X-ray
spectroscopy (EDS-X) shows a high concentration of carbon indicating an organic nature.

In order to avoid extra defects and contaminants on the surface during the process of back deposition,
orientation and cutting, the cleaning of the surface has been performed on cut substrates and after a
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Figure 5.10: Optical images of contaminants on a surface of a commercial Al2O3 wafer : (a) 10x magnifi-
cation image; (b) 50x magnification image.

W deposition on the unpolished face. A critical point during the cleaning process was to eliminate the
contaminants without removing the W or Ta layer. A continuous W or Ta layer is fundamental in order
not to generate gradients of temperature on the sample during the annealing processes. Three different
approaches have been tested for cleaning the surfaces:

• Chemical approach: the substrates have been exposed to the modified RCA protocol [122]. The
protocol has been repeated several times changing the time of exposure to H2SO4 + H2O2 3:1 (18 min,
18 min + 2 min, 18 min + 4 min ). Optical images have been taken of the surface after each step.
Up to 18+2 min. the surface still presents contaminants. At 18+4 min. the contaminants start to
reduce their volume but the W or Ta layer is locally removed. Moreover AFM microscopy (Fig. 5.11)
has been performed on the substrates exposed for 18+4 min to H2SO4 + H2O2. The surface quality
is strongly reduced and a high density of small holes is found.

Figure 5.11: (a) AFM microscopy in tapping mode of the surface of a commercial Al2O3 wafer after the
modified RCA protocol with H2SO4 + H2O2 18+4 min exposure time. The surface presents a high density
of small holes. (b) The size and the depth of the holes is shown in the height plot along the black line
(profile 1)

The obtained results with the modified RCA protocol do not satisfy the quality pre-requisites necessary
for the layer-by-layer epitaxial deposition.

• Thermal approach: the substrates have been exposed to a heating process under controlled atmo-
sphere. This process has been implemented in an oven under O2 atmosphere. After a treatment at
relative low temperature (1000◦C) for 1 hour the contaminants do not disappear and the W layer
starts to show signs of degradation. For higher temperature (1200◦C) for 1 hour the substrate surface
starts to change morphology. The AFM image in Fig. 5.12 shows the topography of a cluster formed
on the surface after the thermal process.

The surface quality obtained with the chemical and heating processes again did not satisfy the pre-
requisites for the epitaxial growth. It is important to affirm that a deeper study and a more precise analysis
could be performed in order to obtain better results. On the other hand I preferred to change strategy and
find a process that allows to clean only the polished face without modifying the W back layer. A possibility
was to use Plasma cleaning, which allows to act only on one surface.

• Plasma cleaning: the polished face of the substrate is exposed to a plasma of O2. Several combi-
nations of power and time have been used. The exposure for 15 min. with 10W power gives the best
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Figure 5.12: (a) AFM microscopy in tapping mode on the surface of a commercial Al2O3 wafer after a
thermal process (1200◦C for 1 hour) in an oven under controlled O2 atmosphere. The surface shows the
presence of clusters. (b) The height and lateral dimension of the cluster are shown in the height plot along
the black line (profile 1)

results and allows to strongly reduce the surface covered by the contaminants without deteriorating
the W layer that in this process is hidden from the plasma. The substrate surface after the process
shows an atomic roughness. In Fig. 5.13 the plot of the height shows a surface modulation of ±0.2 nm
that corresponds to the thickness of one atomic layer. The absence of atomic steps makes this surface
a perfect base for growing layer-by-layer epitaxial systems.

Figure 5.13: AFM microscopy in tapping mode on the surface of a commercial Al2O3 wafer after the
exposure to 15 min. with 10W of O2 plasma. (a) The surface is atomically flat and without atomic terraces
for a wide area 5x3.5 µm2. (b) The height plot along the black line (profile 1) shows surface modulations of
±0.2 nm

Even in this case longer exposition time or stronger power change the surface topography. In Fig. 5.14
the AFM image for 15 min. with 20W power are shown. The surface presents a high density of small
holes of 1-2 nanometers deep and 10 nm wide.

Before entering the substrate into the UHV system it is important to perform an extra cleaning. This
process is performed with the application of:

• 5 min in RBS detergent under ultrasound application.

• 5 min in acetone under ultrasound application.

• 5 min in ethanol .

• drying with N2.

The drying process is extremely delicate and can strongly influence the substrate surface quality.
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Figure 5.14: AFM microscopy in tapping mode on the surface of a commercial Al2O3 wafer after the
exposure to 15 min. with 20W of O2 plasma. (a) The depth and dimensions of the holes are shown in the
height plot along the black line (profile 1) (b) It shows the presence of a high density of holes of small size.

5.2.3 Growth parameters and crystal orientation

In this part the processes and technical parameters that have been used during this thesis work for the
deposition of W\Co\Pt and W\Co\ Au trilayers in the UHV chamber are described.
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a) d)
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Figure 5.15: a) RHEED pattern of the W(110) surface with the electron beam parallel to the [001] direction.
b) RHEED pattern of the Co surface with the electron beam parallel to the [1120] direction (parallel to the
bcc [001] direction). c) d) Plots of the RHEED intensity from the Gold (blue), Cobalt (red) and Tungsten
(black) surfaces with the electron beam along the bcc[001] in c) and along the bcc[110] in d)

The substrates are exposed to two thermal treatments. The first one is performed in the oven in the
”Analysis” chamber (Sec. 3.1). The current is increased in a filament up to 5.5 Amp and kept constant
until the pressure goes back in the 10−10 mPa range. The substrate is then moved into the Riber chamber
where the oven current is increased up to 12 Amp (800 ◦C) and kept constant for 1 hour. This double stage
thermal treatment allows to degas the substrate without deteriorating the vacuum of the Riber chamber.
During the deposition or between two stages RHEED measurements are performed in order to control the
epitaxial relationships and the quality of the crystals.

The (1120) surface of the Al2O3 single crystal is first used as the substrate for growing a thin film of
Mo (0.8 nm) followed by the deposition of a 8 nm thick W film. A high laser power (p ' 1.2W) and a
focused spot are necessary for the target evaporation and to obtain a deposition rate of 0.1 nm/min. The
obtained stack is annealed at 1200 K for 1 hour. During this annealing the Mo underlayer promotes the
selection of a unique epitaxial relationship, avoiding twins and yielding a single-crystalline film [118]. Re-
flection High-Energy Electron Diffraction (RHEED) (Fig. 5.15) confirms the disappearance of the W twins
and the correct epitaxial relationship (Fig. 5.16). Since the W and the Mo lattice parameters are really
close (aW − aMo = 2pm) it is impossible to discriminate the two materials in the RHEED pattern.

A Co film is deposited with different profile shapes as a function of the experiment to be carried out.
Co wedge layers are grown in order to study the magnetic properties as a function of the sample thickness
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whereas samples with constant thickness steps are realized for the study of DW motion or for performing
BLS spectroscopy (Fig. 5.17). The thickness modulation can be realized by covering part of the sample
during the deposition with the mask.
The best condition for layer-by-layer growth was obtained by progressively warming the sample from room
temperature to 448 K while the Co thickness increases from 0 to 1.5 nm. In order to reduce the droplet
formation, for the Co deposition the laser power was decreased to P ' 0.8W and the spot size increased
obtaining a slow deposition rate (0.5Å/min) from a larger target surface.

bcc[110]
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2 aw = 0.446 nm

2
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Figure 5.16: Sketch of the complete Co/W superstructure.

The immiscibility between Co and W guarantees a flat and sharp interface. RHEED patterns [123]
demonstrate the retained single crystal feature through the Nishiyama-Wassermann epitaxial relationship.

The lattice misfits along the main in-plane crystallographic directions are ∆abcc[110] =
√

2aW−
√

3aCo√
2aW

= 2.98%

and ∆abcc[001] = aW−aCo
aW

= 20.79% where aW and aCo are respectively the bulk bcc and hcp lattice param-

eters. Along the bcc[110] direction the Co is expected to grow pseudomorphically (ax =
√

2/2aW), up to
10 Co monolayers (1ML '0.2 nm) [120]. Along the bcc[001] direction, the misfit instead is large implying
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that the Co structure relaxes for a thickness between 2 and 4 ML (ay = 3.56/4.56aW
2 [120]), with ax and ay

defined in Fig. 5.16. Along the bcc[001] direction, the Co-W crystal forms a superstructure with a period of
9ay (1.1 nm), reasonably smaller than the characteristic magnetic length scales even in ultrathin Co films.

Figure 5.17: Sketch of two different kinds of samples that can be realized using the mask during the
deposition.

Finally, a 1.5 nm-thick fcc Au(111) or/and Pt(111) cap layer are deposited at room temperature in order
to promote out-of-plane anisotropy and protect the stack from oxidation. The mask allows to deposit the
two materials separately in the same sample (Fig. 5.17). A part of the sample can be left without capping
layer in order to perform in-situ STM directly on the Co layer and study along the wedge the layer-by-layer
growth. Au and Pt present a high heat conductivity, meaning that the deposition conditions have to be
optimized in order to reduce the presence of recoil droplets. Fig. 5.18 shows the presence of recoil droplets
of Au on a continuous film of Au. In order to reduce this phenomenon the laser spot is strongly defocused
in order to reduce the laser fluence for decreasing the local heat.

Figure 5.18: EDSX image of a continuous Au film with the presence of Au droplets.

The RHEED patterns in Fig. 5.15 confirm the relaxed growth of the Au layer. The Au and Pt fcc
(111) surfaces have a C3v symmetry that summed to the rest of the stack does not change the total system
symmetry (C2v).
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5.2.4 Crystal symmetry characterisation by GIXRD

Grazing incidence X-ray diffraction measurements were performed in collaboration with Maurizo de Santis
(Institut Néel) at the BM32 beamline of the European Synchrotron Radiation Facility, on the capped
Au/Co/W(110) multilayer with a homogeneous Co layer of 3 ML thickness. These measurements have been
performed to confirm the RHEED measurements and to study the complete 3D stack symmetry. GIXRD
allows to scan the reciprocal lattice of the stack.

Figure 5.19: a) Bragg peaks for fcc Au(111)/Co(0001)/bcc W(110) crystals in their epitaxial relationship.
b)Sketch of the reciprocal frameworks fixed on the Al2O3 crystal used to describe the Bragg peaks and
values of the lattice parameter for a Al2O3 crystal.

The Bragg peaks can be described in a reciprocal framework fixed on the Al2O3 crystal. The Al2O3

crystal has a C3v symmetry whereas Au/Co/W(110) has a C2v symmetry. Then, in order to better describe
the W, Co and Au peaks we define a new framework with perpendicular axes as shown in Fig. 5.19. Hence
we can formulate an expression for the lattice configuration in the reciprocal space:

Q = (Ha′∗,Kb′∗, Lc′∗) |Q| =
√

(H
√

3|a|)2 + (K|c|)2 + (L|a|)2 (5.7)

with the reciprocal lattice parameter defined in Fig. 5.19. The momentum transfer modulus was scanned in
the surface plane (Qz = 0.08Å−1) along both the bcc(001) and bcc(110) directions. In the first case, shown
in Fig. 5.20, three Bragg peaks are observed corresponding to W(002), Au(120) and Co(120) reflections,
respectively. The registry position of the cobalt layer along the bcc(110) direction is confirmed by the scan of
Fig. 5.21. In this case only one additional peak is observed, attributed to the relaxed Au layer. The Co(100)
peak merges with the W(110) one. Angular scans show that the main cristallograpic axes of the Co film are
aligned with the tungsten ones. Defining β as the angle between the Co bonds 01 and 01’ (Fig. 5.16), the
distortion of the Co crystal can be determined. This angle can be calculated from the position of the Co
peaks (100) and (010) (β = 0.51). This value is comparable with the one obtained by RHEED measurements
and one can conclude that the Co/W interface is hardly modified by the capping layer growth.

The scan along Qz with fixed values of (Qx, Qy) on the Co(120) peak allows to determine the complete
crystal symmetry of the Co layer. The presence of two peaks in Fig. 5.22 demonstrates the hcp nature of
the Co crystal. Indeed the spacing between the two peaks corresponds to the distance between the two Co
layers (d=0.419 nm)
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Figure 5.20: GIXRD measurements performed scanning the momentum transfer parallel to the surface
plane, along the bcc(001) direction
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Figure 5.21: Scan parallel to the bcc(110) direction
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Figure 5.22: Scan along the Qz direction with fixed values of (Qx, Qy) on the Co(120) peak

5.2.5 Crystal surface characterisation by STM

STM has been performed on the uncapped part of a Au-Pt/Co/W(110) sample deposited with a Co thickness
gradient. These measurements had the aim to verify the layer-by-layer growth of the Co layer and calibrate
the Co thickness. Fig. 5.23 shows the STM pictures taken along a Co wedge. The Co islands, as shown in
Fig. 5.23(f), have the height of the Co interplane distance (2Å), and their lateral size increases for increasing
values of the Co thickness. The growth is not perfectly layer-by-layer, since in Fig. 5.23(b) three atomic
levels can be detected. However, the sample can be considered to have a homogeneous thickness from the
magnetic point of view because the characteristic exchange length (lex) is comparable with the average
distance between the islands [124]. These images allow us to have an extra confirmation of the sample
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Figure 5.23: STM pictures of Co islands during a quasi-layer-by-layer deposition in different positions along
a Co wedge. a) 1.15 ML b) 1.45 ML c) 1.62 ML d) 1.93 ML are the thickness of the Co layer that can be
be calculated studying the coverage ratio of Co islands. e) Plot of the heights of the islands as a function of
the STM picture (b). f) plot of the island heights along profile 1 in the STM picture (b)

thickness. Indeed it is possible to calculate the ratio of surface covered by islands as a function of the
position in the wedge. The data are fitted with a Gaussian function for each atomic step, as in Fig. 5.23(e).

The thickness in ML ( t = n + CR) is calculated via the islands coverage ratio CR = I(n+1)
I(n+1)+I(n) , where

I(n) is the Gaussian integral for a given layer n. The higher step linewidth function is constrained using
the value of the lower step function. This allows to avoid the broadening of island sizes due to the STM tip
shadow effect.



5.3. MAGNETIC CHARACTERISATION 123

5.3 Magnetic characterisation

In this section the magnetic characterisation of the W\Co\Pt and W\Co\Au systems is presented. These
epitaxial systems have a C2v symmetry. It arises from the bcc W(110) surface that at the interface with the
hcp Co(0001) can induce anisotropy in the interface interactions like the DMI and the magneto-crystalline
anisotropy. The fcc Pt (111) and the fcc Au (111) layers do not change the system symmetry.
Kerr magnetometry allows the acquisition of hysteresis loops along the sample wedges and thus to study the
changes of magnetic properties as a function of the thickness. Since the spin-orbit interaction connects the
space and the magnetic degrees of freedom one can expect magnetic interactions with the same symmetry
as the crystal structure.
DW dynamics is theoretically described with a micromagnetics model. This allows to understand the
studies performed on the DW expansions and how calculate the DMI strength and sign along different in-
plane directions. Finally, BLS measurements allowed us to determine the quantitative values of the magnetic
interactions along the different crystallographic directions.

5.3.1 Kerr magnetometry

Focused Kerr magnetometry has been used to study the magnetic hysteresis loops as a function of the Co
thickness. These measurements were performed on samples with wedged Co layers. The Co wedges are
designed in order to study two transitions in the magnetic order.

• The paramagnetic-ferromagnetic transition occurs at low thickness, generally between 1 and 2 ML
for Co, and it depends on the thickness dependence of the Curie temperature (2.8).

• The out-of-plane to in-plane transition occurs when the surface dipolar interaction starts dominat-
ing the interface anisotropy.

Following the works in literature on similar systems [120], the Co wedge is designed and deposited with a
thickness varying from 0 to 8 ML. The transitions can thus be studied analysing different positions of the
same sample.

W\Co\Pt

Figure 5.24: Hysteresis loop obtained by focused polar Kerr on a Pt/Co/W(110) system with 3 Co ML.

Fig. 5.24 shows the polar magneto-optic response of the W\Co\Pt system when an external magnetic
field is applied perpendicular to the surface. The magnetic field and the beam are aligned and the method is
sensitive to the perpendicular component of the magnetisation. The hysteresis loop shows no coercivity and
zero magnetic remanence. This indicates that the normal to the sample is a hard magnetic axis of the sys-
tem and that the easy axis is in the sample plane. This means that the in-plane Co/W interface anisotropy
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dominates over the Co/Pt out-of-plane anisotropy for all the thicknesses studied. Indeed hysteresis loops
with a shape similar to the one shown in Fig. 5.24 were found for all the points studied along the Co wedge.

The measurements have been performed on a sample as shown in Fig. 5.17(b). In this sample one can
find a small region between the Pt capped part and the uncapped part where the Pt layer decreases with a
steep wedge generated by a shadow effect of the mask during the Pt deposition (Fig. 5.25(a)). Interesting
results have been found in this region. Indeed the shapes of the hysteresis loops in Fig. 5.25(b) show the
presence of an out-of-plane magnetisation. For small Co thickness a hysteresis loop with zero coercivity is
found, typical of the paramagnetic order. For larger thickness the system becomes ferromagnetic with an
out-of-plane magnetisation up to 8 ML and a large coercive field of 20 mT.

Figure 5.25: (a) Sketch of the sample section where the Kerr measurements are performed. (b) Hysteresis
loops obtained by focused polar Kerr on different points of the Co wedge in a Pt/Cox O1−x/Co/W(110)
system.

This result can be explained considering a partial oxidation of the Co layer. It reduces the real thickness
of the Co layer and induces a new interface Cox O1−x/Co that may induce an out-of-plane anisotropy. In
literature, systems with a Cox O1−x/Co interface [106] can be found that show an out-of-plane magnetisation,
but usually with the other interface also favoring an out-of plane magnetisation. In our case, the other
interface (Co/W) favors in-plane magnetisation, suggesting a strong perpendicular anisotropy at the Cox
O1−x/Co interface.

W\Co\Au

The hysteresis loops obtained for different Co thicknesses in the W\Co\Au wedge are plotted in Fig. 5.26.
The polar Kerr cycles are measured as a function of the out-of plane magnetic field strength. For small
thickness the Curie temperature is below room temperature, i.e. the magnetic correlation between the Co
moments is weaker than the thermal fluctuations. In this regime the Co is paramagnetic and there is no Kerr
signal [39]. The black loop in Fig. 5.26 (1.7 ML) shows the presence of a finite magnetisation, a saturation
field of µ0Hsat = 10 mT and the absence of coercivity. This indicates a superparamagnetic state where
the Co islands are ferromagnetic with a weak mutual interaction. The out-of-plane interfacial MCA is the
prevalent effect for the thickness range between 1.7 ML and 4.5 ML. Indeed the square hysteresis loop (red
line in Fig. 5.26) for out-of-plane magnetic field shows the presence of an out-of-plane easy axis. The change
of shape and the increase of the saturation field for the largest thickness (blue line in Fig. 5.26) show that
for that thickness the easy axis is not parallel to the applied field anymore. When the thickness increases
[4.5− 5.1 ML], the volume MCA is comparable to the interface one and the easy axis progressively tilts in
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Figure 5.26: Hysteresis loops obtained by focused polar Kerr on different positions along a Co wedge in
Au/Co/W(110).

the sample plane. The spin reorientation range depends on the strength of the in-plane MCA imposed by
the epitaxial growth on W(110) and hence on the surface quality. The spin reorientation transition range
in our sample is comparable with the thickness values found by [112] for the same system.

5.4 DW motion

Figure 5.27: sketch of the vecto-
rial componet of eq:5.8

In this section the main models used in this work for the description of
the DW dynamics in the presence of magnetic fields are described. The
DW dynamics strongly depends on the DW profile and energy and thus
on the magnetic interactions that determine them. Since real systems are
inhomogeneous the DW dynamics can be strongly influenced by the dis-
tribution in space of the magnetic energies. The magnetic configurations
can pin in points (pinning centers) where the magnetic properties change
abruptly.
The DW dynamics will first be studied in homogeneous systems with the
Landau-Lifshitz-Gilbert equation in the macro-spin approximation. This
approach will be used for describing the speed of a DW in an out-of-plane
magnetised system under the presence of DMI. After that, the presence of
pinning centers will be considered and the creep theory will be introduced.

5.4.1 DW motion in systems with DMI

In this section the DW motion is described in a macrospin approximation
where the DW magnetisation distribution is replaced by a single spin m
parallel to the direction of the magnetisation in the center of the DW.
The dynamics of the DW is then reduced to the study of the effect of the different torques generated by the
external magnetic field H parallel to the magnetisation of one of the domains. Moreover the effect of the
different magnetic interactions on the macrospin can be introduced using the concept of effective magnetic
field µ0Heff = −δEtot/δm.
The dynamics of a macrospin is described by the Landau-Lifshitz-Gilbert equation:

dm

dt
= −γm×Heff − αm× dm

dt
(5.8)

where γ is the electron gyromagnetic ratio and α is the damping parameter. The equation can be simplified
considering the damping term as a second order effect (α << 1) and replacing the dm/dt term of the
damping part by the effect of the torques without damping:
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dm

dt
= −γm×Heff − αm× (γm×Heff) (5.9)
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Figure 5.28: Sketch of a Néel DW and of the torques that act on the DW macrospin when an external
magnetic field is applied.

The discussion is limited to the dynamics of a Néel DW stabilized by DMI in a system magnetised along
ẑ as shown in Fig. 5.28. The external magnetic field is applied in the positive ẑ direction and produces a
torque TH on the DW macrospin in the positive φ direction. When the magnetisation deviates from the
equilibrium direction favored by the DMI, the DW energy is increased. This can be described using the
effective magnetic field HDMI = D

∆µ0Ms
sinφ parallel to the x̂ direction that produces a torque TDMI = γHDMI

in the −θ direction. The damping resulting from this torque generates another torque Tα−DMI = αγHDMI

that acts in the −φ direction against TH . The total torque in the φ direction reads:

Tφ = γH − γα D

∆µ0Ms
sinφ (5.10)

two different situations can occur as a function of the strength of the external magnetic field.

Steady motion: if H < α D
∆µ0Ms

the external field does not overcome the pull-back DMI torque. Since
TDMI increases with the increase of φ a stable configuration φ0 can be found.

φ0 = arcsin

(
1

α

∆µ0MsH

D

)
(5.11)

In these conditions the system is in the steady regime and the DW motion is characterized by a fixed tilt
angle φ0. The DW propagates when a torque rotates the macrospin in the direction of one of the magnetic
domains. The DW speed can be thus calculated studying the torque along θ. Since α << 1 one can neglect
the effect of the external field damping torque Tα−DMI ' TH −→ Tα−H ' α2TDMI. The variation of θ under
the action of the torque reads:

∂θ

∂t
= TDMI = γ

D

∆µ0Ms
sinφ0 =

γH

α
(5.12)

In a framework fixed on the DW the total time derivative is zero and one can write:

Dθ

Dt
=
∂θ

∂t
+
∂θ

∂x

∂x

∂t
=
∂θ

∂t
+ v

∂θ

∂x
= 0 (5.13)

where v is the DW speed. Then considering a linear variation of θ as a function of x (Sec. 4.2) the DW
speed reads:

v =
∂x

∂θ

∂θ

∂t
=
π∆

π
TDMI =

γ∆H

α
(5.14)

notice that the DW speed is phenomenologically induced by the presence of DMI but it does not depend on
this interaction. It is directly proportional to the applied field and the DW width and inversely proportional
to the damping parameter. One can demonstrate that this relationship holds whatever the torque keeping
the DW structure is (démag, DMI, in-plane field, ...).
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Precessional regime: if H > α D
∆µ0Ms

the external field overcomes the pull-back DMI torque and the
macrospin starts to precess around the external magnetic field. For high values of H one can consider
TDMI << Tα−H and the DW motion is only caused by the external field damping torque. The DW speed
reads:

v =
π∆

π
Tα−H = γα∆H (5.15)

One can notice that contrary to the previous case now the DW speed is directly proportional to the damping
term.

One can define the transition between the steady and the precessional motion considering the maximum
external field that the DMI can compensate. This field takes the name of the Walker breakdown field
Hwalker = αHDMI = α D

∆µ0Ms
and corresponds to the value of the field for which the DW has the maximum

speed (Fig. 5.33).

Domain wall motion in systems with DMI and in-plane anisotropy

In system with C2v symmetry the in-plane anisotropy and the DMI stabilise a Néel DW along the crystal
easy axis. The DW dynamics can be calculated along this direction considering the DMI torque and the
torque generated by the anisotropy effective field HK = 2Kin

µ0Ms
sinφ cosφ .

Then the total torque for a DW with a φ polarization reads:

Tφ = γH − γα sinφ

(
D

∆µ0Ms
+

2Kin

µ0Ms
cosφ

)
(5.16)

As for the previous case 5.4.1 the dynamics can be separated into two regimes. The transition between
the steady and the processional motion can be obtained calculating the angle φ0 for which the torque is
maximum. It can be calculated solving the equation.

∂T

∂φ
= 0 (5.17)

replacing φ0 in the previous equation one can obtain the walker break down field. This problem does not
present an analytical solution and must be solved numerical case by case. On the other hand one can notice
that the DW motion in the steady regime arises from the DMI and in-plane anisotropy pull-back torques
but the speed does not depend on their strength (v = γ∆H

α ).

Domain wall motion in the presence of an in-plane magnetic field

In this section, the dynamics is studied of a DW stabilised by DMI, when an in-plane magnetic field
Bin = µ0Hin is applied in the direction of the polarisation of the DW (Sec. 4.2.4). Fig. 5.29 shows the
direction of the torques acting on the DW magnetisation in a macrospin approximation.

Figure 5.29: Sketch of a Néel DW and of the torques that act on the DW macrospin when two external
magnetic fields are applied along the ẑ and the −̂x directions.

One can notice that the torques generated by Bin are parallel (anti-parallel) to the DMI ones when
the field is applied parallel (anti-parallel) to the DW polarisation. Then all the calculations developed in
Sec. 5.4.1 can be generalized replacing TDMI with TDMI ± THin. The DW speed in the two regimes reads :

vsteady =
γ∆(Bin)H

α
vprecessional = γα∆(Bin)H (5.18)
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with ∆(Bin) =
√

A
Keff±BinMs

that changes as a function of Bin as shown in Sec. 4.2.4. Notice that the

in-plane magnetic field changes the DW width and therefore the DW speed.
The Walker field changes as a function of Bin and reads:

HWalker = α(HDMI ∓Hin) = α

(
D

∆µ0Ms
∓Hin

)
(5.19)

The in-plane magnetic field applied parallel (anti-parallel) to the DW polarisation destabilises (stabilises)
the DW configuration and promotes (delays) the precession of the DW magnetisation.

The problem can be generalize in the case of systems where the DW polarization is stabilize by DMI
and in-plane anisotropy. In this particular situation the torques have to be compared with DW polarization
angle φ0 for which the torques are maxima. This problem has not a numerical solutions and have to be
solved numerical for each particular situation. One can notices that the angle φ0 depends on the strength
of the in-plane magnetic field and the Walker field decreases increasing Hin).

Soliton motion regime

When the DW speed reaches the Walker break-down the DW enters in the precessional motion. In presence
of DMI the DW speed does not decrease but stays constant and a plateau in the v(Hz) behaviour is found. A
physical explanation of this phenomenon is given in the work of Yoshimura et al. [125] and Pham et al. [113].
The precessional regime is described by the formation of a couple of Bloch lines (BL) that propagate along
the DW until they are expelled at the DW edge or annihilated with other BLs nucleated in other DW
sections (Fig. 5.31(d)). In presence of DMI the subsequently formed BLs have different energies since their
rotation sense are opposite, either parallel or anti-parallel to the rotation sense favored by the DMI.

Figure 5.30: Simulated v(Hz) curves in asymmetric Co/Ni wires for different values of the DMI. (a) In the
presence of defects. (b) In perfect wires. Taken from Ref. [125]

The DMI causes a different width for BLs with opposite rotation sense. Like for a DW, the speed of the
BLs depends on the magnetisation rotation width. One can thus expect that the BLs with different rotation
sense have different speeds.
The generation of BLs can be described considering the topological number of the BL. Indeed, considering
the DW direction as the axis of a 1D system one can apply the topological theory described in Sec. 4.1.1
and associate to each BL a topological charge. The BL with an anti-clockwise (clockwise) rotation carry a
negative (positive) topological charge N1D = −1/2 ( N1D = +1/2). Moreover one can associate a magnetic
volume charge Q = 1 (Q = −1) when the magnetisation around the BL is head to head (tail to tail).
Four different BLs are distinguished in Fig. 5.31 as a function of the topological number and magnetic
charge. During the nucleation of a couple of BLs the magnetic and topological charges are conserved and
BLs with opposite charges are nucleated together. Since each couple presents different energy, width and
speed, two consecutive couples will collide and annihilate with the emission of spin waves. This phenomenon
acts as a channel for the dissipation of the DW energy and when the external field increases it avoids the
entrance of the DW in the precessional motion. The DW speed stays thus constant at the same speed as at
the Walker field (Fig. 5.30)
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Figure 5.31: [125] (a) Energy spliting of the four BLs when a DMI that promotes clockwise DWs is
introduced. The BLs are characterized by a magnetic charge Q = ±1 and a topological charge N1D = ±1/2.
(b) Propagation of BLs in absence of DMI. (c) propagation of BLs in the presence of DMI.

5.4.2 Creep regime

In an inhomogeneous system the DW energy depends on its position and if its energy is not high enough the
DW motion will be strongly influenced by the spatial variation of the energy due to the inhomogeneities.
Indeed, when the DW energy is lower than the energy variations in the system the DW stops in positions
called pinning centers. An external force can deform the segment of the DW between two pinning sites and
increase the DW length. This phenomenon can be described with an elastic-like energy term. When this
energy is higher than the depinning energy, i.e. the energy necessary to extract the DW from the pinning
potential well, the DW propagates. This phenomenon can be described with a statistical model that takes
into account the competition between deformation-elastic, pinning and applied f forces in order to describe
the speed of DWs [126]. When the temperature is taken into account, the speed can be described with an
Arrhenius law:

v ∝ e−βUc
(
fc
f

)µ
(5.20)

where Uc is a scaling energy constant, µ is a dynamics exponent, fc and f are respectively the critical force
to move a DW at zero temperature and the applied external force.

Figure 5.32: Sketch of the geometrical parameters used to describe the deformation of a DW (u) between
two pinning points with a distance (L)

In an ultrathin magnetic film the DW can be described as a 1D object decomposed into segments
between the different pinning ce,ters. The parameters in eq. 5.20 can thus be determined studying a single
DW segment between two pinning centers placed at a characteristics distance L. The DW deformation is
described by the distance u as sketched in Fig. 5.32.
The total free energy of the DW segment reads:
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F (u, L) = EDW t
u2

L
−
(
∆ξ2L

) 1
2 −MsHtLu (5.21)

where t is the layer thickness, EDW the 1D DW energy, H the applied magnetic field, ξ the characteristic
length of the disorder potential and ∆ = f2

pinniξ, with fpin the local pinning force and ni the density of
surface pinning centers.
Eq. 5.21 contains three terms:

• The first term is an elastic energy that favors the reduction of the DW lengths.

• The second term is the pinning energy strength.

• The last term is the Zeeman energy from the application of the external field.

One can define the constant Lc in order to understand the role of the DW length on the DW dynamics.
Lc is called characteristic collective pinning length and its value is found setting the energy balance between
the elastic and the pinning components.

Eel(Lc, u = ξ) = Epinn(Lc) Lc =
3

√
E2
DW t

2ξ

∆
(5.22)

When L < Lc, the elastic energy dominates and the DW adjust its configuration to reach the optimal
configuration. As an example, for a Pt/Co/Pt [126] system a value of Lc = 25nm was found analysing the
defects induced by the Co terraces.
Another interesting constant is the Hc critical magnetic field. This is the value of the external field needed
to overcome the pinning effect under the condition L = Lc

EZeeman(Lc) = Epinn(Lc) Hc =
EDW tξ
Mst

1

L2
c

(5.23)

In a system at T = 0 K, Hc is the field value for which the DW starts to move. At finite temperature the
thermal activation allows the DW to move for H values smaller than Hc.

From the elastic strings [127] theory one can write the correlation function < (u(x+L)− u(x))2 > that
allows writing a scaling law for the displacement u and for the energy E:

u(L) ∝ uc
(
L

Lc

)ζ
E(L) ∝ Uc

(
L

Lc

)2ζ−1

(5.24)

where, from the scaling theory [128], ζ is a constant that depends on the system dimension. For a one-
dimensional system ζ = 2/3. Uc and uc are scaling constants respectively for the energy and the length of
the DW:

Uc =

[
µuc(µ+ 1)ξ

2

]µ EDW tu
2
c

(1 + µ)
Lc (5.25)

where µ = (2ζ − 1)/(2− ζ) and the free energy reads:

F (u, L) = Uc

(
L

Lc

)2ζ−1

− 2MsHtLcuc

(
L

Lc

)ζ+1

(5.26)

The free energy depends only on two terms, the first one favours the reduction of the DW length whereas
the second promotes the lengthening of the DW.
Studying the minimum of eq. 5.26 one can find the value of L that reduces the pinning energy barrier. This
energy barrier can be used in an Arrhenius law to characterize the DW speed:

v ∝ exp
[
−βUc

(
Hc

H

)µ]
(5.27)

where µ = (2ζ − 1)/(2− ζ) and in a 1D system becomes µ = 1/4.

The DW speed in the creep regime depends strongly on the DW energy and in anisotropic systems one
can expect an anisotropic DW expansion. When the external field increases the DW acquires energy and
becomes less sensitive to inhomogeneities of the system. Then for high magnetic fields the DW changes
behaviour and can enter in the flow regime.
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Figure 5.33: Review of the DW regimes described in this section

5.5 Kerr microscopy and DW motion

In this section the results obtained from the study of the DW dynamics in a W\Co\Au sample are shown. In
the first part the DW motion is studied in the creep regime under the application of in-plane and out-of-plane
magnetic fields. In the second part the same measurements are performed in the flow regime.

Figure 5.34: . (a)-(b): differential Kerr images showing the expansion of a domain during the application
of an out-of-plane field Bz, without and with the simultaneous application of an in-plane field, in Pt/Co/Pt
(a) and Pt/Co/AlOx (b); (c)-(d): DW velocity vs. in-plane field Bx for Pt/Co/Pt (Bz = 88 mT) (c) and
Pt/Co/AlOx (Bz = 132 mT) (d). (e)-(f): DW velocity vs Bz for Pt/Co/Pt (e) and Pt/Co/AlOx (f). The
thin lines in (e,f) emphasize the slope of the linear regime. Taken form Ref. [113]

The experiments are performed studying the expansion of a magnetic domain in order to analyse the
DW speed along all the directions in the plane. Two different measurements have been performed:

DW speed as a function of an out-of-plane magnetic field Bout First the system is saturated with
the application of a strong magnetic field along the out-of-plane easy axis. Then a magnetic field pulse is
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applied in the opposite direction in order to nucleate a magnetic domain. Another magnetic field pulse Bout
allows to expand the domain by domain wall propagation. The study of the DW speed as a function of
Bout allows to determine the depinning field, the transition between the creep and the flow regimes, and
the Walker field (Sec. 5.4.1). From the depinning field and the transition between the creep and the flow
regimes the homogeneity of the system can be evaluated whereas from the value of the Walker speed the
strength of the DMI can be determined [113].

vwalker =
γ0∆Hwalker

α
=
γ0D

Ms
(5.28)

DW speed under pulses of Bout as a function of a continuous in-plane magnetic field Bin An
out-of-plane field is applied in order to nucleate a domain after the sample saturation as for the previous
method. In isotropic systems the application of a magnetic field pulse Bout expands the domain with a
circular symmetry (Fig. 5.34(b)). A continuous in-plane magnetic field Bin can be applied for breaking the
symmetry of the DW propagation. If the DWs have a Néel chiral configuration, generally stabilized by DMI,
the DWs on opposite sides of the same magnetic domain have opposite polarisations, one parallel and one
antiparallel to the magnetic field direction. Therefore the in-plane magnetic field stabilises one DW and
destabilises the other. In the creep regime the DW speed depends mainly on the DW energy and in the flow
regime on the DW width. Both the DW energy and width are modified by the application of the in-plane
magnetic field and the DW speed is thus different for the two DWs. When the strength of the in-plane field
Bin increases there is a value of Bin = Bmin for which the DW configuration of the destabilised DW switches
polarisation. This corresponds to a minimum in the DW speed as a function of Bin, both in the flow and
and in the creep regimes. This problem has been studied with a 1D micromagnetic model in the case of a
Néel DW stabilised by DMI in Sec. 4.2.4. Therefore the value of Bin allows to probe the strength of the
micromagnetic DMI constant:

D =
∆Ms

Bmin
(5.29)

This method has been used in systems with isotropic DMI [116, 113, 129, 115, 130, 131]. In this section we
use this method on the systems studied in this thesis, which have a C2v symmetry and for which anisotropic
DW configurations are expected. The effects of the anisotropic interactions on the DW propagation are
discussed.
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5.5.1 Creep regime

The measurements are performed on a W\Co\Au sample with a 0.65 nm thick and flat Co layer. The sample
is first saturated with a strong magnetic field pulse of Bz = 50 mT for 100 ms and then a shorter pulse of
Bz = 4.6 mT is applied for 4 ms in the opposite direction in order to nucleate a single magnetic domain. After
that, two 4 ms pulses of Bz = 4.6 mT are applied to expand the domain. The Kerr images in Fig. 5.35b show
a differential image between the final state with the expanded domain and the state after domain nucleation.

The shape of the magnetic domain obtained with only an out-of-plane field evidences the anisotropic
nature of the system. Indeed, as shown in Fig. 5.35b, the domain is elongated along the in-plane easy axis,
the W[110] direction. Since in the creep regime the DW speed is proportional to the DW energy we can
thus deduce that the energy of the DW is lower along the easy axis.
During the domain expansion the DW speed is studied as a function of the strength of a constant Bin field
between −35 mT and +35 mT, along the direction of its application. In these measurements it is important
to minimise the sample tilt with respect to the in-plane field axis. When the sample is tilted, the in-plane
field has an out-of-plane component that switches direction when the in-plane field is switched. This will
lead to different Bz fields for opposite in-plane fields and thus influence the DW propagation speed needed
to calculate the DMI strength. To minimize the out-of-plane component, a study of the propagation of the
two opposite DWs is performed under a strong Bin field and the sample tilt is adjusted until the same DW
speed is obtained for opposite DWs when Bin is switched.
In order to investigate the effect of the anisotropic interactions, the measurements are performed with a Bin

magnetic field along three different crystallographic directions.

Bin parallel to the in-plane easy axis direction (W[110]).

(a) Differential Kerr image of the
DW expansion of a single magnetic
domain with two pulses of Bz = 4.6
mT with Bin = −16.9 mT along the
in-plane easy axis direction

(b) Differential Kerr image of the
DW expansion of a single magnetic
domain with two pulses of Bz = 4.6
mT with Bin = 0 mT

(c) Differential Kerr image of the
DW expansion of a single magnetic
domain with two pulses of Bz = 4.6
mT with Bin = +27.7 mT along the
in-plane easy axis direction

Figure 5.35

The DW speed as a function of Bin (Fig. 5.35) shows the speed behavior expected by the theory
(Sec. 4.3.6; [116, 113, 129, 115, 130, 131] ). The determination of the Bmin field is not possible in this
case since the speed behavior does not show a minimum as a function of Bin. On the other hand, the
symmetry of the DW speed as a function of Bmin curves indicates the presence of a DMI giving clockwise
domain wall helicity. A minimum may exist for larger Bin fields, but we could not apply a Bin field stronger
than +35 mT, since at this value the energy barrier between the two out-of-plane magnetisation ground
states is strongly reduced facilitating the domain nucleation. The nucleation density for a small Bz pulse
therefore increases and different domains merge, making it impossible to measure a single domain expansion.
This problem could in principle be solved by reducing the Bz pulse duration. However, this is not possible
using the standard Kerr microscopy set-up since 4 ms is the time needed for our electromagnets for reaching
Bz = 4.6 mT.
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Figure 5.36: Plot of the DW speed versus Bin. The red spots are for the right DW whereas the black spots
are for the left DW in Fig. 5.35. The experimental error is estimated from the standard deviation calculated
from the DW speeds extrapolated from 5 differential Kerr images with the same Bin.

The DW speed is calculated from the ratio between the distance covered by the DW during the Bz pulse
and the pulse duration. From the DW speed behavior as a function of Bin one can thus deduce that Bmin > 35

mT. The D
(x)
s parameter has been studied using static approaches in systems without in-plane anisotropy

[116, 113, 129, 115, 130, 131] . In systems with in-plane anisotropy the Bin necessary for switching the DW
has been discussed in Sec. 4.3.6. The DW along the in-plane easy axis has a Néel polarisation stabilized by
DMI and the in-plane anisotropy. The value of Bin for switching the DW polarisation Bmin depends thus

also on the Kin parameter. Eq. 4.91 allows to extrapolate D
(x)
s that reads:

D(x)
s = t

(√
A

Keff
out −Kin

BminMs −
4

π

√
A(Keff

out −Kin)

)
(5.30)

An estimation of D
(x)
s is possible considering the other magnetic parameters obtained from other experi-

mental methods. Keff
out = 199 kJ/m3 and Kin = 136 kJ/m3 are obtained by BLS measurements (Sec. 5.6) and

Ms = 1.15106 A/m by vibrating sample magnetometry (VSM). The exchange constant is set to the typical
value for Co thin films (A=16 pJ/m) [80, 79]. When Bmin = 35mT is used in Eq. 5.30, it gives a negative

value for D
(x)
s . This occurs because the term 4

π

√
A(Keff

osut −Kin) is larger than
√

A
Keff

out−Kin
BminMs. This

means that the effect of DMI on the DW is weaker than the stabilisation effect by the in-plane anisotropy.
We can conclude that Bmin needed to switch the DW polarisation has to be strongly outside the range of
in-plane fields we can attain.

Bin parallel to the hard axis W[001] direction.

Fig. 5.37 and Fig. 5.38 show respectively differential Kerr images and the extrapolated DW speed when Bin

is applied along the hard axis (W[001]). The DW speed has a particular and complex behavior. The simple
one-dimensional model developed in Sec. 4.3.6 does not allow to explain these results. The micromagnetic
calculations developed in Sec. 4.3.5 show that along the hard axis the DW has a mixed polarisation between
a Néel and a Bloch DW with two degenerate solutions with complementary angles. The polarisation angle
of these solutions can be obtained by knowing the DMI and the in-plane anisotropy parameters.
This model does not take into account a 2D exchange interaction that guarantees a smooth magnetisation
variation between the DW polarisations obtained in Sec. 4.3.5. Indeed, in a real 2D system one can expect
that along the hard axis the DW magnetisation presents a fast and continuous variation between the degen-
erate DW polarisations, a so-called Bloch Line (BL). The energy and the configuration of the BL under an
in-plane magnetic field is not easy to calculate with analytical methods. This makes it impossible to give a
quantitative determination of the magnetic parameters along the system hard axis.
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(a) (b) (c) (d) (e)

Figure 5.37: Differential Kerr images of DW expansion of a single magnetic domain with Bin along the
hard axis direction with two pulses of Bz = 4.6 mT. The pictures are taken with different values of Bin [a)
= −22.5 mT ; b) = −11.4 mT ; c) = 0 mT ; d) = +11.5 mT ; e) = +22.5mT]

Figure 5.38: Plot of the speed DW versus Bin. The red spots are for the right DW whereas the black spots
are for the left DW.

Bin along an intermediate angle.

In Fig. 5.39 the differential Kerr images show the DW expansion under the application of a magnetic in-plane
field Bin along a direction that makes an angle of 37◦ with respect to the in-plane easy axis.

(a) (b) (c) (d)

Figure 5.39: Differential Kerr images of the DW expansion of a single magnetic domain with Bin along a
direction that makes an angle of 37◦ with respect to the easy axis under two pulses of Bz = 4.6mT . The
pictures are taken with different values of Bin [a) = 0; b) = 13.9 mT ; c) = 19.2 mT ; d) = 30.1 mT)

The Kerr images and the plot in Fig. 5.40 show that the direction of the maximum DW speed, defined
with the angle θ with respect to the easy axis, changes as a function of the intensity of the applied in-plane
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magnetic field. This effect can be explained considering that the DW polarisation changes as a function of
Bin. This phenomenon can be interpreted considering the complex DW configuration in a system with C2v

symmetry. In the creep regime the faster DW is the one with the lower energy and in absence of Bin the
lowest energy DW is along the easy axis. The Zeeman interaction reduces the energy of the DW parallel
to the direction of the magnetic field. At the same time, it changes the DW polarisation. Then the faster
motion will be for DWs between the easy axis and the direction where the DW polarisation is parallel to
Bin.

Figure 5.40: Plot of the angle of maximum DW speed θ as a function of Bin applied along 37◦. The zero
of θ is set along the easy axis

5.5.2 Regimes of the DW dynamics

During this work the Kerr microscopy set-up has been upgraded in order to apply higher out-of-plane
magnetic fields and to reduce the pulse time. This was done using the microcoils described in Sec. 3.5.3.
The different DW dynamics regimes could thus be reached and studied in the same system as the one
analysed in the creep regime (Sec. 5.5.1). Fig. 5.41 shows the DW speed along the easy axis as a function
of an out-of-plane magnetic field up to Bz = 163 mT.

The lack of experimental data in Fig.5.41 does not allow a unique interpretation of the DWs dynamics. In
the following part of this section we consider the presence of three different regimes. We justify this decision
because the analysis in this condition could lead to the evaluation of different magnetic parameters. On
the other hand it is fundamental to compare these values with the ones obtained with others experimental
techniques in order to validate the taken hypostesis.

• Creep regime. In the range of magnetic fields from 0 < Bz < 55 mT the shape of the domain is rough
and the speed behavior is exponential as a function of Bz (Sec. 5.4.2)

• Flow regime. In the range of magnetic fields from 55mT < Bz < 70 mT the shape of the magnetic
domains becomes smooth, the speed behavior is linear and the fit of this slope intercepts the zero in
agreement with the theory:

v =
γ0∆

α
Bz (5.31)

where γ0 is the gyromagnetic ratio, ∆ the Bloch parameter and α is the damping constant. Considering
the anisotropic parameters extrapolated by the BLS measurements (Keff

out = 199 kJ/m3 and Kin = 136
kJ/m3) and the exchange constant set to the typical value for Co thin films (A=16 pJ/m), the Bloch
parameter can be calculated as ∆ = 15.9 nm. Replacing ∆ in eq. 5.31, the experimental data can be
used to extract the damping parameter α = 0.65. The Co layer grows strained on the W(110) surface,
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Figure 5.41: Plot of the DW speed as a function of the out-of-plane magnetic field Bz. Three dynamics
regimes can be found: (yellow) creep regime, (red) steady flow regime and (blue) soliton motion regime

which induces the presence of crystal dislocations. These crystal defects could be the reason of the
obtained high damping parameter [132, 133].

• Soliton motion regime. In the range of magnetic fields from 70 mT< Bz < 163 mT the speed behavior
should be flat through the Bloch lines annihilation process as discussed in sec. 5.4.1. In our case, the
speed slightly increases as a function of Bz. A similar effect was found in Ref. [125] in simulations of
systems with weak DMI in the presence of defects.

We have seen that the in-plane anisotropy does not play a role in the determination of the Walker field
(Sec. 5.4.1). Indeed, the effective in-plane magnetic field goes to zero when the equilibrium DW polarisation
angle during the steady motion tends to π/2. Then the extrapolation of the Walker speed vWalker = 53 m/s
allows to directly estimate the DMI coefficient along the easy axis.

Dx
s =

vWalkerMst

γ0
= 1.1 pJ/m (5.32)

5.5.3 Steady flow regime

The plot in Fig. 5.41 allows to chose the magnetic field value for the study of the DW expansion in the
steady flow regime. In Fig. 5.42 the DW speed under a pulse of Bz = 60 mT for 20 ns is plotted as a
function of the in-plane magnetic field Bin along the easy and along the hard axis. Along both directions
the speed behavior has a minimum for negative values of the magnetic field, which can be explained with
the theory exposed in Sec. 5.5 and shows the presence of a clockwise DW chirality. The DW speed behavior
differs between the two directions. Along the easy axis (blue and violet dots) the slope of the speed as a
function of Bin is steeper then along the hard axis (orange and red dots). Moreover along the hard axis the
minima are smoother and flatter than along the easy axis. These differences can be explained considering
the different DW configurations along the two directions; i.e. a Néel DW stabilised by in-plane anisotropy
and DMI along the easy axis and a Bloch line due to the competition between in-plane anisotropy and DMI
along the hard axis.
The change of the Bloch line configuration as a function of Bin is complex and the simple 1D model in
Sec. 5.5 can not describe this behavior, while it can be applied with some modifications along the easy axis.
Considering Bmin = 55 mT, one can calculate the DMI constant along the easy axis (Eq. 5.33):
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D(x)
s = t

(√
A

Keff
out −Kin

BminMs −
4

π

√
A(Keff

out −Kin)

)
(5.33)

Using the same magnetic parameters used for Eq. 5.30, one can notice that the Bmin value is not large

enough and the term
√

A
Keff

out−Kin
BminMs is smaller than 4

π

√
A(Keff

out −Kin). This result shows a strong

disagreement between the experimental value of Bmin and the static model for describing the DW switching
in presence of in-plane anisotropy (Sec. 5.5).

easy axis

hard axis

µ

Figure 5.42: Plot of the DW speed as a function of the in-plane field Bin along the easy (blue, violet) and
hard (orange, red) axes under the application of a Bz of 60 mT for 20 ns. The differential Kerr images show
the DW expansion and the direction of the applied field (white arrows)

The origin of this disagreement is probably that we used a static model for describing the DW dynamics.
The static model is working well for studying the DW speed in absence of in-plane anisotropy because
the DW energy as a function of the polarisation angle shows a simple behavior: one minimum and one
maximum that switch as a function of the in-plane magnetic field strength (Sec. 4.2.4). For small Bin the
DW polarisation is imposed by the DMI and for larger values by the in-plane magnetic field.
The DWs propagate under the effect of a Bz pulse. Two different DW dynamics regimes have been shown in
Sec. 5.4.1. For small Bz the DWs propagate with a fixed polarisation angle (steady motion) and for larger
Bz the DW polarisation continuously changes during the propagation (precessional motion). In absence of
in-plane anisotropy the dynamics of the DWs does not influence the final DWs polarisation and when the
out-of-plane magnetic field is switched off the DWs go back to the initial configuration.
The same discussion can not be used for the study of the DW dynamics in systems with in-plane anisotropy.
In this case the DW energy as a function of the polarisation angle shows two minima separated by an energy
barrier. The minima correspond to two Néel DW configurations, one promoted by DMI and the other by
the in-plane magnetic field. The energy barrier arises from the in-plane magnetic anisotropy. If the DWs
propagate in the steady motion regime the DWs switch polarisation only for high values of Bin and the
Eq. 5.33 is valid. If the DWs propagate in the precessional motion regime the DW polarisation changes
during the motion. It allows to the DW to overcome the energy barrier and relax to it’s absolute minimum
polarisation configuration after the out-of-plane magnetic pulse.
The DW speed measurements in Fig. 5.42 are performed in the steady motion regime since Bz < BWalker in
absence of in-plane magnetic field. When the in-plane magnetic field is applied BWalker decreases. Therefore
the DW polarisation switching occurs when the Walker field becomes smaller than the applied field Bz

and the DWs enter in the precessional regime (Sec. 5.4.1). The DMI parameter can be calculated setting
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Bin = Bmin and BWalker = Bz for the calculation of the angle φ0. The numerical solution of this problem

allows to evaluate the DMI parameter along the easy axis (D
(x)
s = 0.32 pJ/m).

where α = 0.65 from the study of the Walker speed and ∆(Bmin) =
√

A
Keff±BminMs

with the anisotropy

parameters calculated from the BLS measurements (Keff
out = 199 kJ/m3 and Kin = 136 kJ/m3) and the

exchange constant set to the typical value for Co thin films (A = 16 pJ/m).

In Fig. 5.43 the DW speeds along all the in-plane directions are plotted as a function of the intensity of
a continuous in-plane magnetic field applied along a direction that makes an angle of 40◦ with respect to
the easy axis. The study is performed in the flow regime and a pulse of Bz=60 mT for 20 ns is applied for
expanding the domains. The data analysis was performed with the help of Benjamin Canals (Institut Néel).
As in the creep regime case, the direction of the maximum speed changes as a function of Bin. Without Bin

the speed has a twofold in-plane symmetry with two maxima along the easy axis. The application of the
in-plane magnetic field breaks this symmetry. The maximum speed direction rotates in a direction opposite
to the magnetic field direction. The minimum speed saturates at 30 mT and it shows a characteristic double
minima energy well. The maximum slope shape is not monotonous and shows a shoulder for φ angles
opposite to the Bin direction with respect the maximum speed direction.
These particular shapes of the DW speed behavior as a function of the in-plane angle could be characteristic
of the presence of Bloch lines that move inside the DW under the effect of the in-plane magnetic field. This
assumption needs high-resolution microscopic analysis and theoretical studies in order to be confirmed.
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Figure 5.43: (a) Plot of the DW speed along all the in plane directions under a pulse of Bz 60 mT for 20
ns and as a function of a magnetic field applied along a direction that makes an angle of 40◦ with respect
to the easy axis. (b) Differential Kerr image of the DW expansion under a Bz pulse of 60 mT for 20 ns and
a constant Bin = 45mT applied along the direction of the red arrow. The direction of the maximum speed
is indicated by the blue arrow.
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5.5.4 DW dynamics review

The main aim of the study just presented was to use the dynamics of DWs to determine the DMI parameters
in W\Co\Au sample with a 0.65 nm thick Co layer and a C2v symmetry. The DW propagation along the
hard axis did not allow the determination of the DMI, due to the complexity of the DW configuration and
its dynamics.
Along the easy axis, the in-plane anisotropy and the DMI stabilise a Néel DW and the standard methods
have been modified to determine the DMI (Dx

s ). The study of the Walker breakdown speed suggests a
Dx

s = 1.1 pJ/m, whereas the study of the DW motion under the application of an in-plane magnetic field
gives a Dx

s = 0.32 pJ/m. The two values are in disagreement. It can be explained by a possible error in
the evaluation of the Walker breakdown field. Indeed in sec.?? the hypothesis of the presence of three DW
dynamics regime could be fault.
The study of the DW speed as a function of an in-plane field along an intermediate angle between the easy
and the hard axis shows a particular behaviour due to the complexity of the DW dynamics in systems with
C2v symmetry. This complexity makes it impossible to describe the DW dynamics in C2v symmetry systems
with one-dimensional models along a general in-plane direction.
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5.6 Brillouin light scattering spectroscopy

We have performed Brillouin Light Scattering spectroscopy measurements in the Damon-Eshbach (DE)
configuration [56] on a W\Co\Au sample with a Co thickness of 3 ML [17]. These measurements were
performed together with Mohamed Belmeguenai, Yves Roussigné and Andrëı Stashkevich from LSPM-
CNRS in Villetaneuse (France).

Figure 5.44: BLS spectra on Au/Co(0.65 nm)/W(110) with kSW along three in-plane directions. Red:
experimental data. Blue line: data fit with Lorentzian functions. Green line: background fit. In the AS
spectra, the distance between the continuous and dashed black lines shows the frequency shift between S and
AS peaks. (a) BLS spectrum with µ0Hext = 0.6 T parallel to the bcc[001] axis and kSW = 8.08 /µm parallel
to the bcc[110] axis (b) BLS spectrum with µ0Hext = 0.5 T along an in-plane direction that makes and
angle of π/4 with respect to the bcc[110] axis and kSW = 18.09 /µm. (c) BLS spectrum with µ0Hext = 0.5 T
parallel to the bcc[110] axis and kSW = 18.09 /µm parallel to the bcc[001] axis.

This technique is particularly suited for the study of anisotropic systems because it allows to extract
the magnetic properties independently along any direction. The application of an external magnetic field
Hext is used to saturate the magnetisation along an in-plane direction and the thermally activated SW
will depend on the magnetic interactions in the direction perpendicular to the applied field. The direction
in the sample plane along which the properties are studied can be described by the angle α. This is the
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angle between kSW (the direction along which the magnetisation varies) and the bcc [110] crystallographic
direction (Fig. 5.16). In this set of measurements three different directions have been studied, the two main
crystal axes (α = 0;α = π/2) and the intermediate one α = π/4.
The BLS spectrum in systems with DMI can be separated in a symmetric f0 = (|fS| + |fAS|)/2 and an
antisymmetric component fanti = (|fS|−|fAS)|/2. The study of f0 with Hext along the main crystallographic
directions allows to estimate the magneto-crystalline anisotropy (MCA) constants Ki, in the direction of
the applied field, while fanti allows to extract the sign and strength of the DMI acting on a Néel spin cycloid
along the SW wavevector.

The symmetric frequencies f
[110]
0 and f

[001]
0 , when Hext is respectively applied along [110] and [001], can be

calculated [134] as,

f
[001]
0 =

γµ0

2π

√
[H

[001]
ext −Hin + Jk2

SW + P (kSWt)Ms][H
[001]
ext −Hout + Jk2

SW − P (kSWt)Ms] (5.34)

f
[110]
0 =

γµ0

2π

√
[H

[110]
ext +Hin + Jk2

SW + P (kSWt)Ms][H
[110]
ext −Hout +Hin + Jk2

SW − P (kSWt)Ms] (5.35)

where γ is the gyromagnetic ratio, J = 2A
µ0Ms

is the SW stiffness with A the exchange stiffness and Ms

the spontaneous magnetisation, P (kSWt) = 1 − 1−exp(−|kSW|t)
|kSW|t is a geometric factor associated to the SW

dynamics with t the sample thickness. Hout and Hin can be defined as the anisotropy fields, i.e. the magnetic
field needed to saturate the magnetisation respectively from the out-of-plane easy axis (θ = 0;φ = 0) and
from the in-plane easy axis (θ = π/2;φ = 0) to the in-plane hard axis (θ = π/2;φ = π/2). Analysing the
spectra in Fig. 5.44 can give a numerical estimation of the MCA constants. In this work, the S-AS peaks
occur for small values of kSW, i.e. Jk2

SW << Hext, so that the exchange contributions to the resonance BLS
peaks can be neglected.

The spontaneous magnetisation (Ms = 1.15 · 106 A/m) is inferred from the out-of-plane hysteresis loop

obtained with a vibrating sample magnetometer (VSM). Evaluating f
[001]
0 = 8.53 GHz and f

[110]
0 = 15.24 GHz

with respectively µ0H
[110]
ext = 0.5 T and µ0H

[001]
ext = 0.6 T, we obtain Kin = 1

2µ0MsHin = 136kJ/m3 and
Kout − Kd = 1

2µ0MsHout = 199kJ/m3. Note that published results on the same system [112] showed a
comparable out-of-plane anisotropy, but a larger in-plane anisotropy.

The difference in frequency between the Stokes and anti-Stokes peaks, 2fanti, arises from the different
effect of DMI on SW modes with opposite kSW [60, 135]. In ultra-thin films, DMI is the only physical
phenomenon liable to break the S-AS peak symmetry [135]. BLS is thus particularly suited for the investi-
gation of anisotropic DMI, especially because the extracted data are independent from any other anisotropy
present in the system such as MCA, and from the strength of Hext. The SW frequency shift in a system
with interfacial DMI [D(t) = Ds/t)] in the DE geometry can be formulated as [60, 136]:

2fanti =
2γ

π

D(t)

Ms
kSW =

2γ

π

Ds

M
kSW . (5.36)

M, the magnetic moment per unit surface (M = Ms t), is obtained directly from VSM measurements,
allowing a thickness-independent determination of the DMI strength, Ds. In Fig. 5.45 2fanti is plotted as
a function of kSW along the main axes (bcc[001] ; bcc[110]) and along an intermediate direction (α = π/4).
The points in the plot are extracted from the center of the Lorentzian distribution used to fit the S and
AS peaks (Fig. 5.44). The error bars (δf) are obtained by a Levenberg-Marquardt error algorithm. The
difference in the magnitude of errors (Fig. 5.45) between the in-plane directions is related to an instrumental
issue that leads to a decrease of the signal-to-noise ratio in the BLS spectra when the magnon frequency
increases (Fig. 5.44).
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Figure 5.45: (a) S-AS frequency shift (2fanti) as a function of SW wave-vector (kSW) for different in-
plane directions α. The dots are the experimental data and the lines are linear fits yielding the DMI

strength (Ds). (b) Blue and orange lines : micromagnetic calculated D
(eff)
s (Eq.5.38) and D

(app)
s (Eq.5.37)

as a function of the in-plane directions (α); red dots: D strength evaluated from the experimental data;
green line: micromagnetic calculated magnetisation direction promoted by DMI (Eq.4.63) as a function of
the crystallography directions; dashed line: Néel-like cycloid

The plot in Fig. 5.45 demonstrates that along all directions 2fanti has a positive value, showing that the
DMI promotes a clockwise spin spirality. Such a clockwise chirality (positive value of D) is in agreement with
results found for sputtered MgO/CoFeB/W samples [137] and is opposite to the chirality in AlOx/Co/Pt
films [61, 108]. Moreover, the DMI is strongly anisotropic. In the table in Fig. 5.45(a) the values of Ds

parallel to the Hext direction are shown. The DMI strength is a factor 2 to 3 higher along bcc[110] than along
bcc[001], even taking into account the large error bar especially along the [001] direction. This difference
is also confirmed by the intermediate value found for the DMI strength for SWs propagating along the
intermediate angle α = π/4.

5.6.1 Derivation of the effective DMI (D
(eff)
s (α))

Experimentally we have found a 2-3 times larger DMI along the [110] than along the [001] in-plane direc-
tions. In order to understand the relation between the crystal symmetry, the micromagnetic DMI anisotropy
and the symmetry of the spin modulation φ(α) we can use the micromagnetic model developed for a one-
dimensional magnetisation modulation in a system with C2v symmetry (Sec. 4.3.1).

The apparent DMI constant D
(app)
s can be defined as the DMI component acting on the DE spin wave

as a function of the in-plane direction (α). In Sec. 4.3.1 the optimum configuration φ(α) has been obtained
minimising the energy with respect to φ. Here the φ(α) relationship is set by the BLS geometry. Indeed in
the DE geometry the SWs can be described as m(u) = M + δm(u), with M ∝ v̂ is imposed by Hext. The

component δm(u) is a Néel cycloid lying in the (û, ẑ) plane. Then D
(app)
s calculated from the DMI energy

density of the SW reads:

D(app)
s = D(x)

s cos2 α+D(y)
s sin2 α (5.37)

This correspond to the Néel component of the total DMI. Eq. 5.37, plotted in Fig. 5.45(b), perfectly matches
the experimental data. The DE geometry does not necessarily measure the SWs having the lowest energy,
in particular it does not allow evaluating the component of DMI that favors Bloch spirals, which can be
evaluated changing the BLS geometry. In order to estimate this component, one can replace in Eq. in Sec.

the values of Dx = D
(x)
s /t = 0.43 mJ/m2 and Dy = D

(y)
s /t = 0.2 mJ/m2 obtained experimentally. The

resulting modulation function is plotted with green lines in Fig. 5.45 and the relative effective DMI (orange
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in Fig. 5.45) reads:

Deff
s = D(x)

s cosα cos

[
arctan

(
D

(y)
s

D
(x)
s

tanα

)]

+D(y)
s sinα sin

[
arctan

(
D

(y)
s

D
(x)
s

tanα

)]
(5.38)

As predicted from Eq. 4.62, along the main axes D
(eff)
s = D

(app)
s and the biggest mismatch occurs along

α = π/4. In principle, the Bloch component (the difference between D
(eff)
s and D

(app)
s ) can be obtained

by measuring the SW spectra along the magnetic field direction when this field is applied along α = π/4.
However, in our sample this component should be small and difficult to measure.

5.6.2 Review on BLS spectroscopy measurements

We have used BLS spectroscopy in the Damon-Eshbach configuration to investigate the DMI in an out-of-
plane magnetized epitaxial Au/Co(0.65 nm)/W(110) trilayer. The asymmetry of the BLS spectra allows to
estimate the presence of a DMI that promotes a clockwise chirality with a DMI strength 2 to 3 times larger
along bcc[110] than along bcc[001]. BLS in the Damon-Eshbach configuration allows only the calculation of
the DMI parameter for Néel magnetic rotations. In systems with a C2v symmetry the DMI promotes Néel
magnetic rotations only along the main crystal axes. A micromagnetic model has been used to estimate the
strength of the DMI along all the in-plane directions and calculate the DW polarisation promoted by DMI
in Au/Co(0.65 nm)/W(110) systems.

The DMI values obtained by the study of the DW motion and by BLS are in agreement:

Dx
s (DWmotion) = 0.31 pJ/m Dx

s (BLS) = 0.29 pJ/m (5.39)

It allows to confirm both the experimental method for evaluating the DMI values in system with a C2v

symmetry.
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5.7 Internal DW configuration and elliptical skyrmions

The magnetic characterisation of the W\Co\Au system allows to predict the DW configurations with the
support of micromagnetic calculations. The anisotropic DMI and the presence of in-plane anisotropy make
the DW energy and polarisation strongly anisotropic. The model developed in Sec. 4.3.5 analyses the DW
polarisation angle as a function of the in-plane directions in a system with C2v symmetry. The introduction
of the magnetic parameters obtained with the magnetic characterisation can thus give information about
the DW configurations. The characterisation of the W\Co\Au crystal shows that the anisotropic DMI
and the in-plane anisotropy arise from the symmetry of the W\Co interface. The Co crystal is a slightly
deformed hcp crystal with the (0001) face in the system plane. Since this crystal is only weakly deformed
(β = 0.515 rad) in the growth on the W bcc (110) face, the exchange interaction can be considered in first
approximation isotropic. The typical value for Co of the exchange stiffness (A = 16 pJ/m) will be taken for
the following discussion. The other parameters are taken form the BLS measurements on W\Co\Au :

Kout −Kd = 199kJ/m3 Kin = 136kJ/m3 Dx
s = 0.29pJ/m Dy

s = 0.12pJ/m (5.40)

Placing these values in Eq. 4.89 in Sec. 4.3.5, the polarisation variation as function of the in plane angle (α)
can be ontained, as shown in Fig. 5.46.

Figure 5.46: (a) Plot and polar plot of the numerical solution of Eq. 4.89 in Sec. 4.3.5 with the magnetic
parameters obtained from the BLS measurements (b) Plot of the total energy (black), of the DMI component
(blue) and of the subtraction of the two terms (red) for a 1D modulation propagating in the α in-plane
direction

The DMI is 2.5 times stronger along the in-plane easy axis and stabilizes, together with the in-plane
anisotropy, a Néel DW with a clockwise chirality. Along the hard axis the two interactions are in competition
and two degenerate solutions can be found (φhard = 3.8◦ and φhard = 180◦ − 3.8◦). The one-dimensional
model does not take into account the exchange along the α direction, that promotes smooth polarisation
variations and allows to predict the presence of a Bloch Lines.

The W\Co\Au sample characterized by BLS does not allow the nucleation of skyrmions because the
out-of-plane anisotropy dominates the DMI and the surface dipolar interaction (Sec. 4.4.2). In order to
decrease the out-of-plane anisotropy and the DMI and to increase the dipolar interaction, the Co thickness
can be increased. It should thus be possible to design a W\Co\Au stack with the right Co thickness for
nucleating skyrmionic bubbles. These topological solitons can only be stabilized in the presence of a con-
finement (Sec. 4.4.2). This can be obtained by the application of an external field in the direction opposite
to the skyrmion core magnetisation [5, 106, 74] or by using the dipolar field in patterned structures [6] or on
defects in a continuous film. In an anisotropic system with C2v symmetry like W\Co\Au it is theoretically
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possible to stabilize skyrmion bubbles with an elliptical shape [18]. It relies on the presence of an anisotropic
DW energy. In W\Co\Au the Néel DW stabilized by DMI and in-plane anisotropy along the easy axis has
an energy lower than the DW along the hard axis (Fig. 5.46). Then one can expect that a skyrmion bubble
in this system breaks its circular symmetry and elongates along the hard axis in order to increase the DW
surface perpendicular to the easy axis.

In this section the methods and the approaches for the stabilisation of elliptical skyrmion bubbles in
W\Co\Au are shown. After the optimisation of the conditions for the skyrmion stabilisation the sample
magnetisation is imaged by MFM and XMCD-PEEM.

5.7.1 Conditions for skyrmion nucleation

The W\Co\Au systems have been grown with a thickness wedge in order to find the right thickness for the
skyrmion stabilisation.

Figure 5.47: (a) Differential Kerr image after the sample saturation with an out-of-plane field. The green
and the red rectangles indicate the areas where the polar Kerr hysteresis loops are acquired: (b) (red) in the
Au PLD capped area (c) (green) in the Au MBE capped area. The blue trapezium shows the Co thickness
along the wedge.

Fig. 5.47 shows the polar Kerr hysteresis loops with a magnetic field applied perpendicular to the surface
of the W\Co\Au system. Improvements of the UHV system allow to deposit Au capping layers with two
different techniques on different zones; i.e. PLD and MBE. Kerr microscopy measurements show that the
out-of-plane anisotropy in the MBE capped part is higher than in the PLD capped part. Indeed, the tran-
sition between out-of-plane and in-plane magnetisation occurs between 4.4 and 5 ML for the PLD capped
part and between 4.8 and 5.5 ML for the MBE capped part. This phenomenon can be explained considering
the dynamics of the crystal growth with the two techniques. The adatoms deposited by PLD have a higher
kinetic energy than the adatoms deposited by MBE. Since the Co surface has a low surface energy Au-Co
intermixing occurs during the growth and in the PLD deposition the effect is stronger. This intermixing
can strongly reduce the strength of the interface anisotropy. The DMI from the Co\Au interface should
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decreases as well by the interface mixing. Here we consider that the full stack interface DMI (Dx
s , D

y
s )

remains unchanged since the Co\Au DMI is found to be weak [138] and in our BLS measurements it is
impossible to know how much DMI arises from this interface.

The presence of two capping layers allows to study skyrmionic bubbles in two different energy environ-
ments. For a given perpendicular anisotropy value Keff , in the MBE-capped part the DMI is lower and the
surface dipolar interaction is larger than in the PLD-capped part due to the larger thickness.
In Fig. 5.47 a differential Kerr image shows the presence of demagnetized areas. The images are taken after
saturating the sample and the dark gray contrast indicates the sample areas naturally demagnetized. It
occurs when the DW energy is small and the surface dipolar interaction promotes a demagnetized state. In
this area the right energy conditions for the stabilisation of skyrmion bubbles are fulfilled.

Dots of different diameters have been lithographied on a continuous film. These structures have been
designed in order to confine skyrmions. The lithography process is described in Fig. 5.48

Al2O3 substrate

W
Co
Au

Ti

e- beam

(a) (b) (c)

(d) (f) (g)O2 plasma

Figure 5.48: (a) Sample section as deposited. (b) An electron sensitive resin is put on the sample. (c) The
resin is exposed to an electron beam in the areas where the material will stay after the procedure. (d) A
layer of Ti is deposited on the exposed sample. (e) Chemical products are used to lift-off the resin and an
oxygen plasma is used for edging the Ti and the sample unprotected by the Ti. (f) Final structure.

The lithography process allows to pattern dots with diameters from 150 nm up to 500 nm with a step of
25 nm (Fig. c5.49). Moreover big 130×130 µm2 squares of continuous film are patterned in order to study
the eventual changes in the magnetisation properties with Kerr microscopy between the lithography steps.
Letters and numbers were also lithographied to help navigating on the sample surface when microscopy
techniques with a reduced field of view are used.

Figure 5.49: Design of the nanostructures patterned on the W\Co\Au continuous film
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The patterning is performed in the transition area between out-of-plane and in-plane magnetisation. In
order to help the nucleation of skyrmionic bubbles the system is demagnetized with an oscillatory out-of-
plane field with an amplitude decreasing from a value larger than the anisotropy field down to zero.

5.7.2 MFM on nanopatterned W\Co\Au

MFM measurements have been performed on a nanopatterned W\Co\Au system. The measurements were
performed with the help of Simon Le-Denmat from the pôle ”Optique et Microscopie” of the Institut Néel.
The sample presents a Co wedge with a thickness between 3 and 6 ML, covered by a Au layer deposited
with MBE. Since the MFM measurements are difficult to perform on ultra-thin films due to the low stray
field emitted by the sample, a high magnetic moment tip with 20 nm of Cr-Co has been used to increase
the magnetic sensibility. On the other hand a tip with a high magnetic moment can have some drawbacks;
i.e. the skyrmions are stable when all the magnetic energies compensate each other and the tip stray field
may deform the skyrmion configuration.

Fig. 5.50 shows a topographic image of the nanopatterned dots and a magnetic microscopy image per-
formed with MFM. The observed dot magnetisation depends mainly on three factors: The relation between
the diameter of the dot and the characteristic demagnetisation length, the presence of local defects and the
deformation of the magnetisation configuration by the MFM tip. The skyrmion bubbles are well confined
when the dot diameter is comparable with two times the characteristic dipolar length of the demagnetized
labyrinth-like domain structure [139]. In the analyzed sample this physics is strongly hidden by the pres-
ence of defects and by the deformation during the interaction with the MFM tip. Despite the disorder the
magnetic configurations may be divided into three categories as a function of the dot diameter:

• 150-300 nm The dots present mostly a uniform magnetisation. Theoretically the number of dark
(magnetisation up)and bright (magnetisation down) dots should be equal after the demagnetisation
procedure. In the image we observe a larger number of dark dots. This could arise from the inter-
action with the tip stray field or from an error in the calibration of the magnetic field during the
demagnetisation process.

• 300-450 nm Most dots present skyrmionic bubbles. The surface dipolar interaction should favor the
presence of a circular domain in the center of the dot. In fact, all the skyrmionic bubbles are on the
edge of the dots. One can suppose that they are pinned on some local defect.

• 450-500 nm The dot diameter is too large, the skyrmionic bubbles are not confined and they deform
in order to better demagnetize the dot.

(a) (b) (c)

Figure 5.50: (a) AFM Topography image of nanopatterned dots of W\Co\Au. (b) Second pass phase shift
MFM image with a 20 nm Cr-Co tip lifted 10 nm (10 µm × 10 µm) (c) Second pass phase shift MFM image
with a 20 nm Cr-Co tip lifted 8 nm (3 µm × 1.2 µm) on the red zone in (b)
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Fig. 5.50(c) shows a high resolution scan on the red delimited zone in Fig. 5.50(b). The second pass
height of the MFM is modified in order to optimize the sensibility and the resolution of the MFM image.
Indeed, when the second pass is reduced the spatial resolution increases, but the sensibility decreases due to
the reduction of the cantilever oscillation. These images were taken with the aim of studying the effect of
the anisotropic energies on the skyrmionic configuration but no clear physics could be obtained. We assume
that the stray field of the tip is strong enough to deform the skyrmionic configurations making it impossible
to evidence any anisotropy in these magnetic configurations.

5.7.3 XMCD-PEEM on W\Co\Au

XMCD-PEEM measurements on W\Co\Au samples have been performed on the HERMES beamline in the
SOLEIL synchrotron with the aim of displaying the internal structure of the DWs and of skyrmionic bubbles.
XMCD-PEEM is a delicate and complex technique that can allow to display the projection of magnetisation
from three dimensions onto a plane with nanoscopic resolution (tens of nanometres). Several beam time
shifts have been necessary to optimize the samples and the set-up looking for the required resolution for
displaying the internal configuration of DWs. The capping layer thickness is a critical parameter for obtain-
ing a good magnetic signal. Indeed when the layer is too thick the PEEM does not collect electrons from
the Co layer whereas when the thickness is too thin the Co layer is exposed to oxidation that changes the
sample properties. In the PEEM set-up the sample can be sputtered with an Ar plasma, but the calibration
of this process is critical and a small error can destroy all the sample layers. A 1.5 nm Au-capping layer has
been found as optimum thickness for performing PEEM measurements.

In addition, a flat and clean surface is necessary to avoid electric discharges between the sample and
the microscope objective. Since 20 kV are applied, discharges can be destructive for the system. We have
observed that such discharges strongly change the magnetic order of the affected area (Fig. 5.51). The areas
struck by the beam display a lower out-of-plane anisotropy.
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Figure 5.51: (d) Optical image of the consequence of discharges in the PEEM set-up (c) Differential Kerr
image of a continuous out-of-plane magnetized system after the application of an out-of-plane field pulse
of 10 mT for 10 µs. The lighter part is the region modified by the discharges. (b) and (a) Polar Kerr
hysteresis loops from the region struck by a discharge and as deposited under the application of an out-
of-plane magnetic field. The square loop indicates the presence of an out-of-plane magnetisation wherease
the loop in (b) shows that the normal of the sample is no longer the system easy axis. It means that the
anisotropy is decreased in the area struck by the discharge.
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During our three XMCD-PEEM beamtimes, several technical problems were encountered concerning the
instrument, which did not allow to obtain a resolution better than 100 nm. Since the DWs in the reori-
entation zone have an expected width around 50 nm it was not possible to display the internal DW structure.

XMCD-PEEM measurements were performed on a nanopatterned sample and on a sample with a con-
tinuous film to observe the magnetic domain structure.

Nanopatterned sample Before imaging the sample magnetisation, X-ray absorption spectroscopy (XAS)
and XMCD spectra were taken in order to verify the presence of X-ray magnetic circular discroism at the
Co L2,3-edges.
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Figure 5.52: XAS spectra with two photon polarisations, (red) circular left (blue) circular right. The XMCD
spectrum is obtained by the subtraction of the two XAS sprectra.

The spectra in Fig. 5.52 show that the signal-to-noise ratio at the Co edges is very low. The observed
dichroism is therefore very small. This weak signal may arise from a layer of Ti or Ti-oxide left on the
structures after the lithography process. In principle, the Ti thickness and the edging process were calibrated
in order to remove all the Ti on top of the dots and leave a continuous film of W for guaranteeing the
electrical conduction between the nanopatterned structures. A mistake in the calibration process may thus
be responsible for a remaining Ti layer on the structures which is too thick to obtain a good contrast at the
Co edges. This interpretation is confirmed by the spectra on the part of the sample protected during the
lithography processes, where the Co edges are more intense and a clear dichroism is present. Unfortunately,
it was therefore impossible to perform the XMCD-PEEM measurements on the nanopatterned sample.

Continuous film The XAS from the continuous film of a W\Co\Au sample is shown in Fig. 5.53.
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Figure 5.53: XAS spectra at the Co L2 and L3 edges with two photon polarisation, (red) circular left (blue)
circular right.

The Co L2,3 spectra were again acquired with left and right circularly polarized light and the difference in
the peak intensities shows the presence of magnetic dicroism.

The X-Ray beam in the PEEM makes an angle of 16◦ with the sample plane, while the magnetisation
is out-of-plane. The projection of the magnetisation direction on the incoming beam direction measured by
XMCD is thus small, but strong enough to guarantee good conditions for the XMCD-PEEM measurements.

The sample was demagnetized by the application of an out-of-plane oscillatory field before the entrance
in the XMCD-PEEM set-up. Inside the set-up a small magnetic field can be present due to the magneto-
electric lenses of the PEEM, which can slightly change the magnetisation configuration. This can explain
the presence of a larger region with white contrast in Fig. 5.54. Notice the presence of skyrmionic bubbles
randomly distributed on the surface. One possibility is that they are stabilized on the crystal defects, where
the out-of-plane anisotropy may be higher. Fig. 5.54(a) and Fig. 5.54(b) have been taken on two different
positions in the area naturally demagnetized by the surface dipolar interaction. The skyrmionic bubbles
have an irregular shape and a size around 300-600 nm. The PEEM resolution did not allow to analyze the
internal magnetisation and there is no clear evidence of an anisotropy in the shape.

X-ray

easy axis

2 µm
1 µm

(a) (b)

Figure 5.54: XMCD images with the X-Rays perpendicular to the in-plane easy axis with 20 µm (a) and 10
µm (b) fields of view.
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5.7.4 Comments on the research of elliptical skyrmions in the W\Co\Au system

The W\Co\Au system presents the anisotropic energy environment necessary for the stabilisation of elliptical
skyrmions. Skyrmionic bubbles have been stabilized in nanopatterned structures. MFM images show the
presence of skyrmionic bubbles on the nanopatterned structures. The interaction with the tip and local
defects deform the skyrmion bubbles shape, which hides the anisotropic properties. Technical problems
during the lithography did not allow to study this system with XMCD-PEEM. However, this technique
allowed to show the presence of skyrmionic bubbles in a continuous film. They are probably stabilized on
the structural defects. Unfortunately, problems with the XMCD-PEEM set-up did not allow to study the
internal configuration of these skyrmionic bubbles.
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5.8 W\Co\Au-Pt solid solution

The W\Co\Au system presents interesting anisotropic properties, but it was impossible to reveal elliptical
skyrmions due to the deformations induced by the defects and by perturbations induced by the experimental
techniques. One possible strategy in order to increase the chance of stabilizing such skyrmions is to increase
the DMI interaction and the anisotropic properties. In this way the energy fluctuations induced by the
defects should have less impact on the magnetic configuration.

From the study of the magnetic properties of the W\Co\Au and W\Co\Pt systems and from literature
we know that Co\Au has a strong out-of-plane anisotropy and a low DMI whereas the Co\Pt interface
induces a strong DMI but its out-of-plane anisotropy is weaker than the in-plane anisotropy of W\Co.
Therefore a system with mixed properties between Co\Au and Co\Pt interfaces might have the right energy
environment to display elliptical skyrmions.

In the deposition chamber it is possible to deposit a Au-Pt solid solution. A layer with a solid solution
is composed by small islands of two or more materials, which are only partially mixed and where the dis-
tance between the island is smaller than the magnetic exchange lengths. Then the layer can be considered
homogeneous from the magnetic point of view with properties averaged between the materials.

Al2O3

Mo (0.7 nm )
W (8 nm )
Co (2-4.5ML)

Au-Pt solid solution (1.5 nm)

Figure 5.55: Sketch of the W\Co\Au-Ptsolid solution structure

The Co\Au-Ptsolid solution interface could show really interesting magnetic properties. The system should
have a strong DMI because of the presence of Pt at the top Co interface and at the same time it should be
magnetized out-of-plane, with a transition to in-plane magnetisation taking place for a lower Co thickness
than in the W\Co\Au system because of the smaller perpendicular anisotropy. Since the transition happens
at a lower Co thickness, the anisotropic properties induced by the W\Co interface should be larger in the
transition region. A sketch of the complete deposited stack is shown in Fig. 5.55.

5.8.1 Growth of the Au-Ptsolid solution

The Mo, W, and Co layers are grown in the deposition chamber in the UHV system as shown in Sec. 5.2.
The Co wedge layer is grown with a thickness from 1 to 4.5 ML in order to study for small thickness the
paramagnetic-ferromagnetic transition and for thicker Co the reorientation of the magnetic easy axis from
out-of-plane to in-plane.
In order to deposit a solid solution it is essential to increase the density of grown nuclei as much as possible.
This was possible using the PLD technique and alternating Au and Pt depositions. In each deposition step,
0.2 ML of material is deposited. Fortunately Au and Pt have similar evaporation conditions, which allows
to fix the laser intensity to 0.65 W. The laser beam is defocused for the Au deposition in order to reduce
the production of recoil droplets.
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5.8.2 Magnetic characterisation

The magnetic properties of the W\Co\Au-Ptsolid solution system as a function of the Co thickness have been
studied with Kerr magnetometry. The Au-Ptsolid solution layer is composed of 33 % of Pt and 66% of Au.
In this section the hysteresis loops obtained by the analysis of the polar Kerr effect as a function of an
out-of-plane magnetic field for different Co thickness are shown.
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Figure 5.56: (a) Differential polar Kerr image taken after saturation of the system by the application of a
strong out-of-plane field (b) Polar Kerr hysteresis loops as a function of an out-of-plane field, the plot colors
indicate the areas in (a) where the Kerr signal is collected.

The paramagnetic-ferromagnetic transition due to the increase of the Curie temperature occurs at 1.6
ML. The differential Kerr microscopy image in Fig. 5.56(a) shows the presence of unstable demagnetized
magnetic domains. The image is taken after the sample saturation with a strong out-of-plane field. The gray
contrast in the bottom of the image shows the presence of a paramagnetic state whereas the light-grey one
indicates ferromagnetic order. The presence of different dark contrasts in the transition shows the presence
of thermally unstable magnetic domains. The hysteresis loop in Fig. 5.56(b) confirms the presence of a
transition from a paramagnetic state to weak ferromagnetic order with a small coercivity. The multidomain
configuration is caused by the thermal fluctuations that allow to switch the magnetisation between the two
out-of-plane directions.

In the ferromagnetic part between 1.6 and 3.5 ML, the presence of an interesting magnetisation reversal
dynamics has been investigated with polar Kerr microscopy. Fig. 5.57 shows the plot of the Kerr intensity
as a function of an out-of-plane field and the corresponding differential Kerr images.
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Figure 5.57: (a) Polar Kerr intensity as a function of an out-of-plane magnetic field. (b) Differential Polar
Kerr images. The pictures are obtained as the difference between the image of a saturated state and the
magnetic configuration after the application of the field shown with the arrows on plot (a)

The magnetisation reversal can be divided into three regimes:

• Nucleation After a flat part the Kerr signal starts to increase: small domains appear and their density
increases as a function of the applied field.

• Anisotropic expansion Around 1.25 mT the domains expand mainly along the in-plane easy axis
direction. This is the confirmation of the presence of strong anisotropic interactions in the W\Co\Au-
Ptsolid solution system. Since the DW speed directly depends on the DW energy one can expect a high
DW energy anisotropy in this sytem.

• 360◦ DW annihilation At 1.76 mT the white domains cover all the surface. Even if the microscopy
resolution does not allow to distinguish black domains the Kerr signal shows a moderate slope up
to the complete saturation that occurs around 4 mT. This slope can be explained considering the
magnetic domain dynamics. When the white domains expand they meet each other but they do not
merge reducing the black domains to a 360◦ DW configuration. These magnetic configurations are
particularly stable and are annihilated for magnetic fields higher than the DW propagation field.

The periodicity of these stripe domains decreases when the sample thickness increases. This can be
explained by the competition between the DW energy and the surface dipolar interaction between the do-
mains. When the Co thickness increases the DW energy decreases due to the reduction of the out-of-plane
anisotropy and the dipolar interaction increases due to the larger magnetic volume.
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Figure 5.58: Polar Kerr hysteresis loops as a function of an out-of-plane magnetic field for different positions
along the Co wedge.(green 3 ML, blue 3.8 ML and red 4 ML)

Fig. 5.58 shows the hysteresis loops in the transition area where the magnetic easy axis transits towards
the sample plane. This phenomenon occurs for a Co thickness between 3.5 and 4.1 ML. Notice that the
saturation field in this region strongly increases, the remanent magnetisation is small and before the sat-
uration the Kerr signal has a change of slope. This is an indication of the role of the dipolar interaction.
Indeed the slope changes, because when the size of the domains increases in one direction due to the applied
magnetic field, the dipolar field in the direction opposite to the applied field increases as well. So the smaller
the domains opposite to the applied field become, the more the magnetic field has to increase in order to
compensate the dipolar field.

The high saturation field and the small remanent magnetisation indicate the presence of a strong surface
dipolar interaction. It promotes the demagnetisation of the system and protects the domains from switching.
This region shows the perfect magnetic conditions for the stabilisation of skyrmionic bubbles.

5.8.3 MFM on W\Co\Au-Pt solid solution

Magnetic Force Microscopy has been performed on the W\Co\Au-Ptsolid solution sample in order to study
the stripe domain size and shape in the area where the easy axis transits into the sample plane (' 4 Co
ML). The measurements were performed together with Olivier Fruchart. In the MFM set-up it is possible
to apply out-of-plane magnetic fields. Starting from a demagnetized magnetic configuration an out-of-plane
magnetic field can be applied to change the stripe shape and size and try to confine elliptical skyrmionic
bubbles. The demagnetisation in this area occurs naturally due to the presence of a strong surface dipolar
interaction and a small DW energy. Fig. 5.59 shows the phase shift of the MFM cantilever during the second
pass in a 2.5× 2.5 µm2 zone as a function of an out-of-plane magnetic field. The magnetic contrast in the
images is small due to the low magnetic sensitivity, i.e. hundreds of 10−3 degrees. Even though a high
magnetic moment tip (20 nm CoCr) has been used, the low stray field from the thin Co layer does not allow
to obtain a higher sensitivity.
In the image there are four different contrasts. The intermediate contrasts arise from the interaction of the
tip with the out-of-plane magnetized domains. The brighter and darker contrasts may be a measurement
artefact that could arise from the tilt of the tip and its oscillation direction. Indeed when the tip is tilted and
oscillates with an angle with respect to the sample normal, it induces a difference in the face shift between
when the tip passes from a positive to a negative stray field and from a negative to a positive one.
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Figure 5.59: The phase shift of the MFM cantilever during the second pass in a 2.5× 2.5 µm2 zone as a
function of an out-of-plane magnetic field. The red profile in the bottom left image indicates the area where
the bottom right image is taken.

The images show the presence of a stripe domains configuration. The stripes are parallel to the easy
axis with a zigzag shape. Even if the displayed magnetisation is a static configuration, magnetic domains
are elongated along the easy axis because of the domain wall dynamics (Sec. 5.8.2). This configuration is
not energetically favorable because the magnetisation modulation occurs mainly along the hard axis. Along
this direction the DW energy density is larger than along the easy axis because of the competition between
the DMI and the in-plane anisotropy. The DWs have indeed the tendency to orientate along the easy axis to
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reduce their energy density. On the other hand, when the DWs rotate it increases its length. The compro-
mise between the decrease of the DW energy density and the increase of the DW length stabilizes a tilted
DW configuration that may explain the DW zigzag shape.

A magnetic field is applied along the magnetisation of the domains with the dark contrast in order
to confine skyrmionic bubbles. The Zeeman energy promotes the increase of the area of these domains.
Different effects occur as a function of the magnetic field strength :

• (0 < Bz < 10 mT) The domains do not change much their area. Some domains in the Bz = 0 image
have an extended area with collinear magnetisation and when the magnetic field is applied they reduce
their area.

The domain periodicity is around 100 nm and does not change under the field application (Fig. 5.60).
The lack of a complete magnetic characterisation does not allow to calculate the DW width. However,
the invariance of the dark domain width indicates that the magnetic domains do not have a collinear
magnetisation and the imaged magnetic configuration corresponds to a continuous magnetisation vari-
ation. Therefore the periodicity (λ) corresponds to a 360◦ DW width. It allows to give an approximate
value of the effective anisotropy constant:

λ = 2π

√
A

Keff
in

→ Keff
out +Kin = 4π2 A

λ2
= 47.3 10−3J/m3 (5.41)

The main clear effect of the magnetic field is the reduction of the zigzag shape. Indeed, the area of
the black contrast domains becomes larger, the domain are straight without increasing too much the
dipolar energy.

(a)

Bz= 0 mT Bz= 10 mT

(b)

Figure 5.60: MFM images under the application of (a) Bz = 0 and (b) Bz = 10 mT. The plot shows the
phase shift variation along the red line in the MFM images.

• (15 < Bz < 20 mT) The Zeeman effect starts dominating over the surface dipolar interaction and the
dark domains extend their area.

• (Bz = 25 mT) The magnetic field is strong enough to reduce and annihilate the bright domains. Only
one bright domain is still visible, on the left of the Bz=25 mT image (Fig. 5.60). A new scan was thus
performed in a reduced area in order to increase the resolution and the information about the domain
shape. In the new image the domain had disappeared. This could be an effect of the tip magnetic
field. Indeed the tip was saturated in the direction of the application of the magnetic field in order to
avoid flipping of the tip magnetisation during the measurements.

The analysis of the MFM images of the W\Co\Au-Ptsolid solution is difficult due to the low magnetic
sensitivity. We did not manage to observe any elliptical skyrmionic bubble. Theoretically when a magnetic
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domain becomes a skyrmionic bubble its shape should be determined by the DW energy and assume an
elongated shape along the hard axis. All the nanometric domains observed in the MFM image are elongated
along the easy axis. Moreover, one can expect that when the magnetic domains become small enough to
reveal the skyrmionic properties, the MFM magnetic signal becomes smaller than the noise level.

5.8.4 XMCD-PEEM on W\Co\Au-Pt solid solution

XMCD-PEEM measurements on W\Co\Au-Ptsolid solution have been performed at the Nanospectroscopy
beamline in the ELETTRA synchrotron. The measurements have been performed at several points along
the Co wedge. The sample has been demagnetized with an oscillatory out-of-plane field and Kerr microscopy
measurements show the presence of the stripe domains along all the Co wedge. The XMCD-PEEM measure-
ments were performed with the aim of studying the stripe; configuration as a function of the Co thickness
and analyse the DW internal magnetisation. The sample was first mounted with the easy axis parallel to
the beam direction. Since the XMCD-PEEM contrast depends on the magnetisation projection along the
beam direction this geometry allows to study the presence of Bloch DWs along the hard axis and Néel DWs
along the easy axis.
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Figure 5.61: XMCD-PEEM images with the x-rays parallel to the easy axis for (a), (b) and (c) and parallel
to the hard axis for (d), with a 5 µm field of view. (e) Contrast profile along the green line in Fig. (d).

The images in Fig. 5.61 show the presence of only two magnetic contrast levels from domains magnetized
parallel to the sample surface normal. For small Co thickness the DW width may be smaller than the XMCD-
PEEM resolution (' 50 nm) (Fig. 5.61(a)(b)(c)). The stripe configuration is inhomogeneous but it is possible
to evidence the change of the periodicity from ' 2µm to 180 nm when the Co thickness increases form 3 ML
to 3.9 ML. The MFM measurements showed that the DW width should be larger than the resolution of the
PEEM (30-40nm for the PEEM at Nanospectroscopy) for 3.8 ML of Co. For this thickness the resolution
should thus be high enough to display the internal DW magnetisation, but the image with the beam parallel
to the easy axis shows only the two magnetic contrast levels corresponding to the perpendicular domains.
In a second measurement, the sample was turned to align the x-ray beam along the hard axis. Fig. 5.61(d)
shows a stripe domain configuration with a minimum periodicity of 180 nm and four different contrasts.
When the periodicity is ' 180 nm the contrast profile shows a clear peak only for the magnetisation inside
the DW whereas when the domains are larger, four contrast levels can be observed, as shown in the profile
in Fig. 5.61(e). Fig. 5.62 shows a zoom of the image in Fig. 5.61(d). The intensity profile shows the presence
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of four contrast levels. The relation between the intensity of the X-ray absorption and the magnetisation
direction is explained in the insert.

X-Rays(a) (b)

Figure 5.62: (a) XMCD images with the X-Rays parallel to the hard axis (zoom of the image in Fig. 5.61(d)).
(b) Profile of the contrast along the yellow line in (a).

The darker and brighter contrasts indicate the presence of DWs with a polarisation partially along the
hard axis. It means that the DWs have an important Néel component. A more accurate study and more
images with different orientations with respect to the X-ray beam are necessary in order determine the
complete two-dimensional magnetisation map. Unfortunately only four hours of beamtime could be used for
these measurements. On the other hand, this result clearly shows that in the W\Co\Au-Ptsolid solution sample
for this Co thickness the DMI interaction is comparable to, if not stronger than the in-plane anisotropy.

5.8.5 Comments on the search of elliptical skyrmions in a W\Co\Au-Pt solid solution
system

The W\Co\Au-Ptsolid solution sample shows the presence of strong anisotropic properties. The magnetic
properties have been studied as function of the Co thickness. For large thickness the system is demag-
netized by the surface dipolar interaction. In this conditions a configuration with stripe domains parallel
to the in-plane easy axis is found. The same configuration with a larger periodicity has been found even
for thinner Co layer after demagnetisation with an out-of-plane magnetic field. Kerr microscopy studies of
the DW dynamics allowed to evidence the origin of this magnetic configuration, which arises from a strong
anisotropy in the DW motion.
MFM measurements with the application of a static magnetic field have been performed in order to confine
elliptical skyrmionic bubbles but the reduced sensitivity of this technique to thin magnetic films did not
allow to display and characterize them.
XMCD-PEEM measurements allowed to reveal the internal structure of the DWs along the in-plane hard
axis of the system. They show the presence of a Néel DW component.

More XMCD-PEEM measurements and BLS studies will be performed in order to complete the magnetic
characterisation and maps of this system.

5.9 W\Fe\Co\Au

A sample W\Fe\Co\Au has been grown with the aim of stabilizing anti-skyrmionic bubbles at room tem-
perature. The fundamental condition for the stabilisation of these topological solitons is the inversion of
DMI sign between two perpendicular in-plane directions Dx

Dy
< 0. Ab-initio calculations have shown that this

condition can be fulfilled at the W(110)\Fe interface [18, 140]. In the calculations a perfect pseudomorphic
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bcc (110) Fe on bcc (110) W surface is considered. Experimentally this occurs up to 2 ML of Fe. For thicker
layers the Fe structure relaxes and disorder is induced in the crystal. Then the system is not comparable
anymore with the calculated one and the conditions for an inversion of DMI may be lost. The problem
of studying a system with 2ML of Fe is that the Curie temperature could be close to room temperature
and the magnetic moment too small to be measured with microscopy techniques. Moreover the W(110)\Fe
interface presents a strong in-plane anisotropy. These problems can be resolved by growing a Co wedge layer
on top of the Fe and capping the system with a layer of Au. The Co layer allows to increase the magnetic
moment and the Co\Au interface induces a strong out-of-plane anisotropy. Moreover, the DMI induced at
this interface is weak. This is fundamental because the presence of a strong DMI at the interface opposite
to the W(110)\Fe could shift the total DMI value and avoid the sign inversion.

5.9.1 Growth and crystal characterisation

Al2O3

Mo 0.7 nm bcc(110)
W 7nm bcc(110)

Fe bcc(110) 1.5 ML 2 ML 2.5 ML 
Co
Au 

0.5 ML

3 ML

Figure 5.63: Sketch of the W\Fe\Co\Au sample

The W\Fe\Co\Au stack is designed and prepared in order to investigate how the magnetic properties change
as a function of the Co and Fe thickness.
The Mo and the W layers are deposited as explained in Sec. 5.2. The mask in the deposition system allows
to grow a Fe layer composed by three steps of different thickness (1.5, 2, 2.5 ML) (Fig. 5.63). The Fe layer
has been deposited at room temperature and with a moderate laser power (0.8 W). The bulk Fe has a bcc
crystal structure with a lattice parameter of 0.286 nm.

RHEED measurements performed on the three steps confirm the expected Fe growth behavior (Fig. 5.64).
For 1.5 and 2 ML, along the bcc[001] direction the W and Fe crystals have exactly the same lattice param-
eters whereas along the bcc[110] the Fe is partially relaxed with a small mismatch with respect to the W
crystal. For 2.5 ML the Fe crystal relaxes even along the bcc[001], as shown in Fig. 5.64 where the diffraction
peak can be fitted with two Lorentzian functions. The first one corresponds to the Fe lattice parameter for
1.5 and 2 ML whereas the second one corresponds to the relaxed lattice parameter (d = 0.288 nm).
Along the bcc[110] direction the Fe RHEED peaks are broader than along bcc[001]. This means that the Fe
crystal along this direction is not uniquely defined. The crystal could be stressed and relaxed in different
ways as a function of the Fe crystal position with respect to the substrate potential. A high density of
crystal defects like dislocations could exist along this direction.

A Co wedge layer is grown with a thickness from 0.5 ML to 3 ML as shown in Fig. 5.63. The Co grows
strongly stressed on top of the Fe and assumes the same crystal symmetry. Indeed, along both the main
directions the Co peaks are broad. Along bcc[110] the Fe and the Co have the same lattice parameter
whereas along bcc[001] the Co is partially relaxed.
Finally 1.5 nm of Au is deposited with MBE in order to increase as much as possible the quality of the
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Co\Au interface and thus the strength of the out-of-plane anisotropy. The Au crystal grows on the Co bcc
(110) surface with a relaxed fcc(111) structure.
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Figure 5.64: (a) RHEED pattern intensity plots for the different materials as a function of the moment q[110]

when the electron beam is parallel to the bcc[001] direction. (b) Sketch of the relationship between the
W (green), Fe (blue) and Co (red) crystal structures. (c) RHEED pattern intensity plots for the different
materials when the electron beam is parallel to the bcc[110] direction

5.9.2 Magnetic characterisation and prospectives

Polar Kerr microscopy has been performed along the Co wedge for each Fe step. The hysteresis loops
performed with polar Kerr magnetometry show that the system has an in-plane magnetisation. It means
that the W\Fe in-plane anisotropy dominates the Co\Au out-of-plane anisotropy. The Co\Au interface
has one of the strongest interface out-of-plane anisotropies between a heavy metal and room temperature
magnetic materials [141]. On the other hand, we showed in Sec. 5.3.1 that the interface between the Co and
CoxOx−1 presents an unexpected strong out-of-plane anisotropy. The hopes for out-of-plane magnetisation
in a system with the W\Fe interface are not vanished and a system W\Fe\Co\CoxO1−xAu will be grown
with this aim.



Chapter 6

Conclusions and perspectives

6.1 Conclusions

In this thesis I studied the relationship between the crystal symmetry, the DMI symmetry and the
topological solitons in epitaxial magnetic thin films. The particular case of thin films with C2v symmetry
has been considered. These systems are particularly interesting for their anisotropic properties that allow
to stabilize magnetic solitons with different symmetries and topological numbers. We used theoretical and
experimental approaches to investigate this phenomenon:

Micromagnetic approach

An introduction to the magnetic interactions in thin film system is given in the chapter ”Introduction to the
magnetism in C2v systems”. The relationship between the atomistic and the micromagnetic formulations of
magnetic interactions is studied. This allowed to underline the role of crystal symmetry in the determination
of the symmetry of the magnetic interactions and explain the presence of anisotropic interactions in systems
with C2v symmetry.
In the chapter ”Magnetic topological solitons” I studied the effect of the anisotropic magnetic interactions
on the configurations of 1D and 2D magnetic solitons. This is done in the continuous magnetisation ap-
proximation used in micromagnetism. The discussion starts from the simplest one-dimensional soliton, the
domain wall, and step by step new interactions and symmetries are added in order to characterize the sta-
bility conditions and the properties of skyrmions and anti-skyrmions.
The study of the DW energy and polarisation in systems with a C2v symmetry is complex and required the
analysis of each magnetic interaction.

The effect of the DMI can be studied by two parameters which describe the strength of the interaction

along the main axes, D
(x)
s and D

(y)
s :

• If D
(x)
s /D

(y)
s > 0 the DMI promotes Néel DWs with the same chirality along the main axes and mixed

Bloch and Néel DWs along the intermediate directions.

• If D
(x)
s /D

(y)
s < 0 the DMI promotes Néel DWs with opposite chirality along the main axes and mixed

Bloch and Néel DWs along the intermediate directions. There is always a direction along which the
DMI promotes a pure Bloch DW.

In systems with C2v symmetry the magnetic anisotropy has an in-plane easy axis which promotes a DW
polarisation along this direction. The exchange interaction is anisotropic and changes the DW energy and
width without changing the DW polarisation. Under the studied conditions the volume dipolar interaction
is negligible with respect to the in-plane anisotropy.

The competition between these interactions stabilizes DWs with highly anisotropic energy and polarisa-
tion. Along the in-plane easy axis the anisotropy and the DMI stabilize a Néel DW with the polarisation
set by the DMI chirality. Along the hard axis the interactions are in competition and two degenerate DW

polarisations can been found. Along the intermediate directions, if D
(x)
s /D

(y)
s > 0 the DW polarisation
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changes smoothly, and if D
(x)
s /D

(y)
s < 0 it changes with abrupt polarisation jumps.

The study of the DW energy and configuration is essential to study 2D topological solitons.

In the section ”2D topological solitons” we have developed an analytical topological soliton model. It
contains expressions of the long range demagnetizing and exchange curvature energies. These are two key
ingredients to stabilize bubbles and skyrmions in ferromagnetic thin films. This allowed us to study system-
atically topological soliton solutions over a wide range of parameters and explore quantitatively the possible
transitions between small and large topological solitons. In the skyrmion-bubble transition a critical point is
present above which the transformation between both spin textures becomes continuous. While the distinct
characteristics of skyrmion and bubbles remain, their common nature as topological solitons is emphasised.
Above the critical (Dcs,Hcs) point, the topological soliton can not be strictly named a skyrmion or a bubble,
as it possesses some characteristics of both objects, and it may be addressed as supercritical skyrmion.

In the second part of the section ”2D topological solitons” we have shown that when the dipolar inter-
actions are neglected the ASk energy can be written in a circular symmetric form. The Sk and the ASk
in systems with different symmetry but the same strength of magnetic interactions have the same size and
stability energy. The presence of dipolar interactions breaks the circular symmetry of the ASk energy. With
the support of micromagnetic simulations we have studied the energy and the shape of Sk and ASk as a
function of Ms and we explained the role of the dipolar interaction. We can distinguish three different
effects. The interaction due to the surface charges does not break the circular symmetry and stabilizes in
the same way Sk and ASk. The volume charges depend on the in-plane moment configuration. While the Sk
configuration shows homochiral Néel moment rotation, anti-skyrmions show partly Néel and partly Bloch
rotations. The latter do not produce magnetic charges. The ASk configuration is therefore more stable
and the tendency to favor Bloch rotations induces a square shape. Moreover the presence of Néel rotations
with different chiralities induces a partial flux closure effect and further increases the ASk stability. Since
both Sk and ASk are stable when all the magnetic energies cancel each other, a small variation of a single
parameter like the dipolar energy can have a large influence on the shape and energy of the textures.

Experimental approach

The experimental work is described in the chapter ”Experimental results: magnetism in C2v epitaxial sys-
tems”. It is divided into three main parts, presenting the different magnetic systems that were grown and
analysed. For each system I described the growth parameters and crystal symmetry, followed by the results
of the magnetic characterisation and finally the results from the magnetic microscopy measurements. This
explanation path allowed to understand how the symmetry and quality of the crystals determine the sym-
metry of the magnetic properties and how the magnetic configurations depend on them. Three different
magnetic epitaxial systems with a C2v symmetry are analysed:

• bcc(110) W \ hcp(0001) Co \ fcc(111) Au and bcc(110) W \ hcp(0001) Co \ fcc(111) Pt

• bcc(110) W \ hcp(0001) Co \ fcc(111) Au-Ptsolid solution

• bcc(110) W \ bcc(110) Fe \ hcp(0001) Co \ fcc(111) Au

The discussion for each material is divided into three parts according to the main question of this work.
First the growth condition and the crystal quality and symmetry are shown. Then the results of the mag-
netic characterisation are discussed in order to understand the strength and symmetry of the anisotropic
interactions. Finally the magnetic microscopy images of the magnetic configurations found on these system
are reported.
All the system present C2v crystal symmetry that has been investigated with RHEED and GIXRD. It arises
from the bcc W(110) surface that at the interface with the hcp Co(0001) can induce anisotropy in the
interface interactions like the DMI and the magneto-crystalline anisotropy. The fcc Pt (111) and the fcc Au
(111) do not change the system symmetry. In-situ STM allowed to confirm the layer-by-layer growth and
interface quality of the stacks.

The magnetic properties of the systems W\Co\Pt and W\Co\Au are described in section ”Magnetic
characterisation”. Three techniques have been used:
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• Polar Kerr magnetometry allowed the acquisition of hysteresis loops along the sample wedges and
thus allowed to study the changes of magnetic order as a function of the thickness. I showed that
the in-plane Co/W interface anisotropy dominates over the Co/Pt out-of-plane anisotropy for all the
thicknesses studied.
The Co/Au out-of-plane anisotropy is larger than the in-plane Co/W interface anisotropy and the
system W\Co\Au is magnetized out-of-plane for the thickness range between 1.7 ML and 4.5 ML.
A particular strong out-of-plane has been found at the Cox O1−x/Co interface. The origin of this
effect is not understood and further studies are needed.

• Polar Kerr microscopy has been used to study the magnetic domain expansion. The main aim of this
study was to use the dynamics of DWs to determine the DMI parameters in the W\Co\Au sample
with a 0.65 nm thick Co layer and an C2v symmetry. The DW propagation along the hard axis did not
allow the determination of the DMI, due to the complexity of the DW configuration and its dynamics.
Along the easy axis, the in-plane anisotropy and the DMI stabilize a Néel DW and the standard
methods have been modified to determine the DMI (Dx

s ). The study of the Walker breakdown speed
suggests a Dx

s = 1.1 pJ/m, whereas the study of the DW motion under the application of an in-plane
magnetic field gives Dx

s = 1.2 pJ/m. The two values are in agreement showing the validity of the
methods used.
The study of the DW speed as a function of an in-plane field along an intermediate angle between
the easy and the hard axis shows a particular behavior due to the complexity of the DW dynamics
in systems with C2v symmetry. This complexity makes it impossible to describe the DW dynamics in
C2v symmetry systems with one-dimensional models along a general in-plane direction.

• We have used BLS spectroscopy in the Damon-Eshbach configuration to investigate the DMI in an out-
of-plane magnetized epitaxial Au/Co(0.65 nm)/W(110) trilayer. The asymmetry of the BLS spectra
allowed to estimate the presence of a DMI that promotes a clockwise chirality with a DMI strength 2
to 3 times larger along bcc[110] than along bcc[001]. BLS in the Damon-Eshbach configuration allows
only the calculation of the DMI parameter for Néel magnetic rotations. In systems with a C2v sym-
metry the DMI promotes Néel magnetic rotations only along the main crystal axes. A micromagnetic
model has been developed to estimate the strength of the DMI along all the in-plane directions and
calculate the DW polarisation promoted by DMI in Au/Co(0.65 nm)/W(110) systems.

The DMI values obtained by the study of the DW motion and by BLS are in disagreement:

Dx
s (DWmotion) = 1.1 pJ/m Dx

s (BLS) = 0.29 pJ/m (6.1)

In the rest of this thesis only the DMI values obtained by BLS have been considered. Indeed the DMI
evaluation from the DW dynamics is very complex and the methods used depend on magnetic parameters
that have been estimated or calculated by other techniques. Moreover, the DW dynamics has been stud-
ied in 2D systems with 1D micromagnetic methods that could neglect relevant effects. Instead the DMI
evaluation by BLS needs only the calculation of the magnetic moment per unit surface. Moreover BLS is
particularly suited for the study of anisotropic systems because it allows to extract the magnetic properties
independently along any direction.

In section ”Internal DW configuration and elliptical skyrmions” the results of two microscopy techniques,
MFM and XMCD-PEEM, were shown. The W\Co\Au system presents the anisotropic energy environment
necessary for the stabilisation of elliptical skyrmions. Skyrmionic bubbles have been stabilized using two
different confinements: nanopatterned structures and nanodefects in a continuous film.
The MFM images show the presence of skyrmionic bubbles on the nanopatterned structures. The interaction
with the tip and local defects deform the skyrmion bubbles shape, which hides the anisotropic properties.
Technical problems during the lithography did not allow to study this system with XMCD-PEEM. However,
this technique allowed to show the presence of skyrmionic bubbles stabilized in continuous films without
magnetic field, but problems with the XMCD-PEEM set-up did not allow to study the internal configuration
of these skyrmionic bubbles.
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One possible strategy in order to increase the chance of stabilizing elliptical skyrmions is to increase
the DMI interaction and the anisotropic properties. In this way the energy fluctuations induced by the
defects should have less impact on the magnetic configuration. From the study of the magnetic properties
of the W\Co\Au and W\Co\Pt systems and from literature we knew that Co\Au has a strong out-of-plane
anisotropy and a low DMI whereas the Co\Pt induces a strong DMI but its out-of-plane anisotropy is
weaker than the in-plane anisotropy of W\Co. Therefore a system with mixed properties between Co\Au
and Co\Pt interfaces has been grown with the right energy environment to display elliptical skyrmions.
In section ”W\Co\Au-Pt solid solution” the growth conditions, the magnetic characterisation and the re-
sults of microscopy techniques have been shown. The W\Co\Au-Ptsolid solution sample shows the presence of
strong anisotropic properties. The magnetic properties have been studied as function of the Co thickness.
For large thickness the system is demagnetized by the surface dipolar interaction. In this conditions a
configuration with stripe domains parallel to the in-plane easy axis has been found. The same configuration
with a larger periodicity has been found even for thinner Co layer after demagnetisation with an out-of-plane
magnetic field. Kerr microscopy studies of the DW dynamics allowed to evidence the origin of this magnetic
configuration, which arises from a strong anisotropy in the DW motion.
MFM measurements with the application of a static magnetic field have been performed in order to confine
elliptical skyrmionic bubbles but the small sensitivity of this technique to thin magnetic systems did not
allow to display and characterize them.
XMCD-PEEM measurements allowed to display the internal structure of the DWs along the in-plane hard
axis of the system. They show the presence of a Néel DW component.

In section ”W\Fe\Co\Au” the growth conditions and crystal symmetry of a W\Fe\Co\Au system have
been shown. This system had been grown with the aim of stabilizing anti-skyrmionic bubbles at room
temperature. The fundamental condition for the stabilisation of these topological solitons is the inversion
of DMI sign between two perpendicular in-plane directions Dx

Dy
< 0.

Ab-initio calculations have shown that this condition can be fulfilled at the W(110)\Fe interface [18, 140]. In
the calculations a perfect pseudomorphic bcc(110) Fe on bcc(110) W surface is considered. Experimentally
it occurs up to 2 ML of Fe. For thicker layers the Fe structure relaxes and disorder is induced in the crystal.
Then the system is not comparable anymore with the calculated one and the conditions for an inversion of
the DMI may be lost. The problem of studying a system with 2ML of Fe is that the Curie temperature
could be close to room temperature and the magnetic moment too small to be measured with microscopy
techniques. Moreover the W(110)\Fe presents a strong in-plane anisotropy. These problems can be resolved
by growing a Co wedge layer on top of the Fe and capping the system with a layer of Au. The Co layer
allows to increase the magnetic moment and the Co\Au interface induces a strong out-of-plane anisotropy.
Moreover the DMI induced at this interface is weak. This is fundamental because the presence of a strong
DMI at the interface opposite to the W(110)\Fe could shift the total DMI value and avoid the sign inversion.
RHEED measurements confirmed the speudomorphic growth of Fe on W(110) and showed that the Co grows
strained with a C2v symmetry on the Fe(110). Polar Kerr microscopy has been performed along the Co
wedge for each Fe step. The hysteresis loops performed with polar Kerr magnetometry showed that the
system has an in-plane magnetisation. It means that the W\Fe in-plane anisotropy dominates the Co\Au
out-of-plane anisotropies.
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6.2 Perspectives

This thesis is a pioneering work on the effects of anisotropic energies on the symmetry and topological
number of magnetic solitons. The number of questions raised during the work is larger than the number of
answers finally obtained.

We were able to develop a micromagnetic approach to study the effect of the breaking of rotational
symmetry in the plane of thin films. A complete study of the effect of anisotropic interactions has been de-
veloped only for 1D topological solitons. In the case of 2D topological solitons the model has been limited to
two particular cases : isotropic magnetic interactions with isotropic DMI and with anisotropic DMI strength
with chirality inversion. Both cases are interesting for the study of the skyrmion and anti-skyrmion proper-
ties but they are really specific and impossible to obtain in systems with C2v symmetry since more complex
anisotropic interactions can be expected. The study of the energy and the configuration of skyrmions and
anti-skyrmions in a larger range of anisotropic interactions is of large interest. Indeed, a range of parameters
for which both the solitons coexist can be found. Two works in literature [18, 142] show that skyrmions and
anti-skyrmions have degenerate energy when the DMI along one direction is zero. The first [18] does not
consider the role of the dipolar interactions whereas the second [142] does not study its effect in detail and
does not show in which range of magnetic parameters the two solitons are stable. With the intent of under-
standing that, we started performing micromagnetic simulations that include biaxial magnetic anisotropy,
anisotropic exchange, dipolar interactions and anisotropic DMI.

Experimentally we are in parallel completing the study on the systems analysed in this thesis and de-
signing new stacks. These will be grown to obtain the conditions for the stabilisation of anti-skyrmions and
the coexistence of skyrmions and anti-skyrmions.
We have patterned nanostrips in W\Co\Au to reduce the complexity of the domain expansion phenomenon
and understand better the dynamics of the domain walls. Nitrogen vacancy microscopy and XMCD-PEEM
measurements will be used to study the internal configuration of the domain walls.
The magnetic characterisation of W\Co\Au-Ptsolid solution is not complete. We are performing BLS spec-
troscopy on this system in collaboration with Hans Niembach from NIST in Boulder (USA). XMCD-PEEM
measurements will be performed to complete the study on the domain wall configuration and to search for
elliptical skyrmions.
Changing the quality of the interface and using new interfaces will allow to change the strength of the
magnetic interactions in samples with W\Co or W\Fe. The good conditions for the stabilisation of anti-
skyrmions and the coexistence of skyrmions and anti-skyrmions could be found. The realisation of these
systems is a crucial step in the understanding of topological magnetic solitons.
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[8] Tôru Moriya. Anisotropic superexchange interaction and weak ferromagnetism. Physical Review,
120(1):91, 1960.

[9] A. Fert and Peter M. Levy. Role of anisotropic exchange interactions in determining the properties of
spin-glasses. Phys. Rev. Lett., 44:1538–1541, Jun 1980.

[10] Julian Hagemeister, Elena Y. Vedmedenko, and Roland Wiesendanger. Pattern formation in
skyrmionic materials with anisotropic environments. Phys. Rev. B, 94:104434, Sep 2016.
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Ulrich K. Rößler, Claudia Felser, and Stuart Parkin. Discovery of magnetic antiskyrmions beyond
room temperature in tetragonal heusler materials. 548, 03 2017.

[17] Lorenzo Camosi, Stanislas Rohart, Olivier Fruchart, Stefania Pizzini, Mohamed Belmeguenai, Yves
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[30] M Heide, G Bihlmayer, and Stefan Blügel. Dzyaloshinskii-moriya interaction accounting for the ori-
entation of magnetic domains in ultrathin films: Fe/w (110). Physical Review B, 78(14):140403, 2008.
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Laurent Ranno. arxiv:1712.03154, (), 2017.

[91] A A Thiele. The Theory of Cylindrical Magnetic Domains. Bell System Technical Journal, 48(10):3287–
3335, 1969.

[92] Yih-O Tu. Determination of magnetization of micromagnetic wall in bubble domains by direct mini-
mization. J. Appl. Phys., 42(13):5704–5709, 1971.



BIBLIOGRAPHY 174
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