This thesis is concerned with the problem of computing projective resolutions of associative algebras. Our starting point is Bardzell's resolution for monomial algebras. Given an associatve algebra, we use Bergman's principle of reduction systems to associate monomial algebras to it. We prove that the differentials in Bardzell's resolution of these monomial algebras can be modified to obtain projective resolutions of the original algebra. We also give sufficient conditions for a complex coming from a modification of Bardzell's resolution of an associated monomial algebra to be exact. We apply our method to three families of algebras: Quantum complete intersections, Quantum generalized Weyl algebras and down-up algebras. In the case of down-up algebras, we use the resolution obtained to compute homological invariants of these algebras. This way we prove regularity properties and we solve the isomorphism problem for non-noetherian down-up algebras.

Cette thèse s'intéresse au problème de calculer des résolutions projectives d'algèbres associatives. Notre point de départ est la résolution de Bardzell pour les algèbres monomiales. Étant donnée une algèbre, nous utilisons le principe de systèmes de réduction de Bergman pour lui associer des algèbres monomiales. Nous montrons que les différentielles de la résolution de Bardzell de ces algèbres peuvent se modifier pour obtenir des résolutions projectives de l'algèbre de départ. Par ailleurs, nous donnons un critère pour qu'un complexe provenant d'une modification de la résolution de Bardzell d'une algèbre monomiale associée soit exacte. Nous appliquons notre méthode à trois familles d'algèbres : les intersections complètes quantiques, les algèbres de Weyl généralisées quantiques, et les algèbres down-up. Dans le cas des algèbres down-up, nous utilisons la résolution obtenue pour calculer des invariants homologiques de ces algèbres. De cette fac ¸on nous montrons des proprietés de regularité et nous donnons une solution au problème de l'isomorphisme pour les algèbres down-up non-noethériennes.
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Introduction

The study of invariants and intrinsic properties of a given object is central in every field in mathematics. Description of these kind of properties are often used to answer elementary but difficult questions, such as deciding whether two given objects are equivalent or not. In the theory of associative algebras these invariants usually come in the form of homology groups. Among others, Hochschild homology and cohomology groups are a very powerful tool and have been widely studied during the last decades. To compute these invariants for an algebra A one needs a projective bimodule resolution of A as a bimodule over itself. Every associative algebra has a standard resolution, called the bar resolution, but it is almost impossible to perform computations using it. Therefore, the first problem one faces when computing Hochschild (co)homology is to find a convenient projective resolution of the given algebra. The results of this thesis belong to this domain. The approach that we take follows work of Anick, Green and Bardzell.

Let k be a field, A a k-algebra presented by generators and relations and T a onedimensional A-module. In [START_REF] Anick | On the homology of associative algebras[END_REF] and [START_REF] Anick | On the homology of quotients of path algebras[END_REF] the authors construct explicit left A-modules from combinatorial objects called ambiguities, coming from the way the relations interact, and prove that there exist morphisms between them forming a projective Amodule resolution of T . In [START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF] and [START_REF] Bardzell | Resolutions and cohomology of finite dimensional algebras[END_REF] Bardzell provided explicit modules and differentials of a projective bimodule resolution for monomial algebras. These are algebras of the form A = kQ/I with Q a quiver, kQ the path algebra over Q and I a two-sided ideal generated by paths of lenght at least two. The modules are also constructed from ambiguities.

We deal with the case when the ideal I is not monomial. In this setting we find that Bergman's language of reduction systems, developed in [START_REF] Bergman | The diamond lemma for ring theory[END_REF], provides a natural framework to reduce the problem to the monomial case. Roughly speaking, given an associative k-algebra A = kQ/I, with I an arbitrary two-sided ideal, we construct monomial algebras A S = kQ/I S which are strongly related to A and we prove that for each of these monomial algebras it is possible to modify the formulas of the differentials in their Bardzell's resolution in a very controlled way to obtain differentials between A-bimodules, again constructed from ambiguities, which form a projective A-bimodule resolution of A. With this we recover the results in [START_REF] Anick | On the homology of associative algebras[END_REF] and in [START_REF] Anick | On the homology of quotients of path algebras[END_REF] with significant improvements on the information obtained about the differentials. Follow-ing an observation in [START_REF] Bergman | The diamond lemma for ring theory[END_REF], we construct partial orders on the set of paths that help us control this process.

The proof of this existence theorem goes by induction, and thus it is very difficult to trace back the construction of the differentials to actually compute these resolutions in examples. To deal with the problem of effective computations we obtain sufficient conditions for morphisms between these ambiguity modules to form a resolution, and the existence theorem says that there always exist resolutions verifying these conditions. This gives a very general method to compute bimodule resolutions of algebras presented by generators and relations. In Chapters 4 and 5 we apply our method in the following families of algebras.

-Quantum complete intersections. The members of this family are the algebras k x, y /J(ξ, n, m), where ξ ∈ k, n and m are integers at least equal to 2 and J(ξ, n, m) is the two-sided ideal generated by the elements x n , y m and yxξxy.

When n = m = 2, the algebras k x, y /J(ξ, n, m) are Koszul and with our method we recover their Koszul resolution. For the general case these algebras are no longer Koszul but our method applies with no further difficulties. The formulas we obtain are a natural generalization of the formulas for the case n = m = 2.

-Quantum generalized Weyl algebras. This is the family of algebras defined by k y, x, h /J(a(h), q), where a(h) is a polynomial in the variable h, q ∈ k × and J(a, q) is the two-sided ideal generated by the elements hyqyh, hxq -1 xh, yxa(h) and xya(qh).

-Down-up algebras. Given elements α, β and γ in a field k, the down-up algebra A(α, β, γ) is the algebra with generators d and u subject to the relations d 2 uαdudβud 2γd and du 2αuduβud 2γu. These algebras are 3-Koszul if and only if γ = 0. Our method applies to a general down-up algebra A(α, β, γ) and we obtain in all cases a resolution of length 3. In the cases where the algebra is 3-Koszul our resolution coincides with the Koszul resolution.

In the cases of Quantum complete intersections and Quantum generalized Weyl algebras, the resolutions we obtain were previously constructed in [START_REF] Bergh | Homology and cohomology of quantum complete intersections[END_REF] and [START_REF] Solotar | Hochschild homology and cohomology of generalized Weyl algebras: the quantum case[END_REF]. In both cases the authors use very specific methods. With these three families we aim to show the flexibility of our method and the generality in which it can be applied.

The techniques described in this thesis may also be used to compute cup products and Gerstenhaber brackets on Hochschild cohomology, for which a more refined study of the contracting homotopies is needed. For researchers interested in Gerstenhaber deformations of associative algebras, Proposition 3.22 is of particular importance since it provides strong information to compute Hochschild cohomology in degree 2.

The article [START_REF] Chouhy | Projective resolutions of associative algebras and ambiguities[END_REF] contains part of the results of this thesis.

Resumen de la tesis

A continuaci ón resumimos los puntos principales de la tesis. Parte de estos resultados dieron origen al artículo [START_REF] Chouhy | Projective resolutions of associative algebras and ambiguities[END_REF].

Capítulo 1: sistemas de reducci ón, órdenes parciales y ambig üedades

En este capítulo definimos y estudiamos las herramientas que utilizaremos en los siguientes capítulos para construir resoluciones proyectivas de álgebras asociativas. Se trata de sistemas de reducción y ambig üedades.

Sistemas de reducci ón

Comenzamos por establecer la notaci ón. Sean k un cuerpo y Q un carcaj con un conjunto finito de vértices. Denotamos k × = k \ {0}. Dado n ∈ N, Q n denota el conjunto de caminos de Q de largo n y Q ≤n el conjunto de caminos de largo a lo sumo n. Si c ∈ Q n , escribimos |c| = n. Si a, b, p, q ∈ Q ≥0 son tales que q = apb, decimos que p es un divisor de q. Si a ∈ Q 0 decimos que p es un divisor a izquierda de q, y si b ∈ Q 0 decimos que p es un divisor a derecha de q. Denotamos t, s : Q 1 -→ Q 0 las funciones destino y origen usuales. Dado s ∈ Q ≥0 y un elemento f = i λ i c i ∈ kQ tal que c i ∈ Q ≥0 y t(s) = t(c i ), s(s) = s(c i ) para todo i, decimos que f es paralelo a s. Sea E := kQ 0 la subálgebra de kQ generada por los vértices de Q.

Dado un anillo R, un R-m ódulo a izquierda M y un conjunto X ⊆ M, denotamos X R el R-subm ódulo a izquierda de M generado por X.

Utilizaremos cierta terminología de [START_REF] Bergman | The diamond lemma for ring theory[END_REF]. Sea R un subconjunto de Q ≥0 × kQ. Decimos que R es un sistema de reducción si para todo (s, f) ∈ R, el elemento f es paralelo a s y s = f. Una terna (a, ρ, c), donde ρ = (s, f) ∈ R y a, c ∈ Q ≥0 son tales que asc = 0 en kQ, se llama reducción básica y la denotamos r a,ρ,c . Observamos que r a,ρ,c determina un endomorfismo r a,ρ,c : kQ -→ kQ dado por r a,ρ,c (asc) = afc y r a,ρ,c (q) = q para todo q = asc. En caso de que no se preste a confusi ón escribiremos r a,s,c en lugar de r a,ρ,c . Una reducción es una n-upla (r n , . . . , r 1 ), donde n ∈ N y r i es una reducci ón básica para todo i. Toda reducci ón determina un endomorfismo r : kQ -→ kQ dado por la composici ón r n • • • • • r 1 de los endomorfismos correspondientes a las reducciones básicas r n , . . . , r 1 .

Un elemento x ∈ kQ se dice irreducible para R si r(x) = x para toda reducci ón básica r. Un camino p ∈ Q ≥0 se dice de reducción finita si para cada sucesi ón infinita de reducciones básicas (r i ) i∈N existe n 0 ∈ N tal que

r n • • • • • r 1 (p) = r n 0 • • • • • r 1 (p)
para todo n ≥ n 0 . Un camino p se dice de reducción única si es de reducci ón finita y además para cada par de reducciones r y r ′ tales que r(p) y r ′ (p) son elementos irreducibles, vale la igualdad r(p) = r ′ (p).

Un orden parcial

Sean k un cuerpo y Q un carcaj como antes. Sea R un sistema de reducci ón tal que todo camino es de reducci ón finita. Sea x = n i=1 λ i c i ∈ kQ con λ 1 , . . . , λ n ∈ k × y c 1 , . . . , c n caminos de largo mayor o igual que 0. El conjunto {c 1 , . . . , c n } se llama el soporte de x y lo denotamos Su(x).

Definimos una relaci ón en el conjunto k × Q ≥0 := {λp ∈ kQ : λ ∈ k × , p ∈ Q ≥0 } ∪ {0} como la menor relaci ón reflexiva y transitiva que cumple λp µq si existe una reducci ón r tal que r(µq) = λp + x con p / ∈ Su(x). Definimos 0 λp para todo λp ∈ k × Q ≥0 . Sean x ∈ kQ y λp ∈ k × Q ≥0 . Si x = n i=1 λ i c i con λ i ∈ k × para todo i y λ i p i λp para todo i, escribimos x λp. Si además x = λ i p i para todo i, escribimos x ≺ p.

Lema. La relación binaria es un orden parcial que satisface la condición de cadena descendente.

La condici ón Diamante

Sea I un ideal bilátero de kQ. Denotamos con π a la proyecci ón can ónica π : kQ -→ kQ/I. Sea R un sistema de reducci ón. Decimos que R cumple la condición Diamante para I si 1. el ideal I es igual al ideal bilátero generado por el conjunto {s -f} (s,f)∈R , 2. todo camino es de reducci ón única y 3. para cada (s, f) ∈ R, el elemento f es irreducible.

Una consecuencia del Lema del diamante de Bergman es el siguiente lema.

Lema. Si R es un sistema de reducción que satisface la condición Diamante para I, entonces el conjunto B de caminos irreducibles cumple las siguientes propiedades.

-Si b ∈ B y q ∈ Q ≥0 es un elemento que divide a b, entonces q ∈ B. Este lema es una de las principales razones por las cuales los sistemas de reducci ón que cumplen la condici ón Diamante son tan útiles para nuestros prop ósitos. La siguiente proposici ón garantiza que todo ideal bilátero de kQ posee sistemas de reducci ón de este tipo.

Proposici ón. Sea I un ideal bilátero de kQ. Existe un sistema de reducción R que cumple la condición Diamante para I.

Sea R un sistema de reducci ón. A continuaci ón daremos algunas definiciones más.

-Una ambig üedad de inclusión es una 5-upla (ρ 1 , ρ 2 , a, b, c) con ρ 1 , ρ 2 ∈ R, a, b, c ∈ Q ≥0 , tales que ρ 1 = (abc, f 1 ) y ρ 2 = (b, f 2 ) para ciertos f 1 , f 2 ∈ kQ.

-Denotamos con S R al conjunto {s ∈ Q ≥0 : existe f ∈ kQ tal que (s, f) ∈ R}.

El siguiente resultado dice que todo sistema de reducci ón que cumple la condici ón Diamante para un ideal I se puede modificar para que no tenga ambig üedades de inclusi ón.

Proposici ón. Sean I un ideal bilátero de kQ y R un sistema de reducción que cumple la condición Diamante para I. El conjunto R ′ := {(s, f) ∈ R : no existe una ambig üedad de inclusión (ρ 1 , ρ 2 , a, b, c) tal que abc = s} es un sistema de reducción que cumple la condición Diamante para I y no tiene ambig üedades de inclusión.

Mas a ún, si R es un sistema de reducci ón sin ambig üedades de inclusi ón que cumple la condici ón Diamante para un ideal I, entonces se puede modificar para obtener un sistema de reducci ón R ′ que cumpla la condici ón Diamante, no tenga ambig üedades de inclusi ón y que verifique S R ′ ⊆ Q ≥2 .

Ambig üedades

Sean I un ideal bilátero de kQ y R un sistema de reducci ón sin ambig üedades de inclusi ón, que cumple la condici ón Diamante y tal que S R ⊆ Q ≥2 . Recordamos la definici ón de n-ambig üedad, que se puede encontrar en [START_REF] Anick | On the homology of associative algebras[END_REF], [START_REF] Anick | On the homology of quotients of path algebras[END_REF], [START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF] y [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF].

Definici ón. Dados n ≥ 2 y p ∈ Q ≥0 , 1. el camino p es una n-ambig üedad a izquierda si existen u 0 ∈ Q 1 y caminos irreducibles u 1 , . . . , u n tales que (a) p = u 0 u 1 • • • u n , (b) para todo i, el camino u i u i+1 no es irreducible pero u i d es irreducible para todo divisor a izquierda d de u i+1 , distinto de u i+1 .

2. El camino p es una n-ambig üedad a derecha si existe v 0 ∈ Q 1 y caminos irreducibles v 1 , . . . , v n tales que (a) p = v n • • • v 0 , (b) para todo i, el camino v i+1 v i no es irreducible pero dv i es irreducible para todo divisor a derecha d de v i+1 , distinto de v i+1 .

Definimos A -1 := Q 0 , A 0 := Q 1 , A 1 := S R y para todo n ≥ 2, definimos A n y A ′ n los conjuntos de n-ambig üedades a izquierda y a derecha, respectivamente.

Proposici ón. Para todo n ≥ 2 vale la igualdad A n = A ′ n . Además, A n ∩ A m = ∅ si n y m son distintos.

Capítulo 2: trabajos previos de Anick, Green y Bardzell

Este capítulo contiene un resumen de los trabajos previos de Anick, Green y Bardzell sobre la construcci ón de resoluciones proyectivas. Ver [START_REF] Anick | On the homology of associative algebras[END_REF], [START_REF] Anick | On the homology of quotients of path algebras[END_REF], [START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF] y [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF].

La resoluci ón de Anick

Sea A una k-álgebra presentada de la forma A = k X /I, donde X es un conjunto de generadores de A e I es un ideal de k X . Sean ≤ un orden total en X y ω : X -→ N una funci ón. Estos datos inducen un orden total en el conjunto de monomios en X, llamado deglex, que denotamos ≤ ω . Se trata de un orden lexicográfico con pesos. Anick prob ó que existen conjuntos de monomios A n , con n ≥ 2, tales que para todo A-m ódulo simple T , existe una resoluci ón de T por A-m ódulos a derecha libres de la forma:

0 T o o A ǫ o o kX ⊗ k A d 0 o o kS ⊗ k A d 1 o o kA 2 ⊗ k A d 2 o o • • • d 3 o o
, donde S es un conjunto minimal de generadores de I y kY denota el k-espacio vectorial generado por un conjunto de caminos Y. Con nuestra notaci ón, A n corresponde a las n-ambig üedades determinadas por un sistema de reducci ón R que se construye a partir de ≤ ω . La única informaci ón sobre los diferenciales d i es la siguiente. El orden en los monomios ≤ ω se puede extender a un orden total en los conjuntos de tensores elementales de kA n ⊗ k A de manera tal que para todo n, todos los términos

de d n (u 0 • • • u n ⊗ 1) -u 0 • • • u n-1 ⊗ u n son estrictamente menores que u 0 • • • u n-1 ⊗ u n , para todo p = u 0 • • • u n ∈ A n .
La resoluci ón de Anick-Green es una generalizaci ón de este resultado al contexto de álgebras de caminos.

La resoluci ón de Bardzell

Sea Q un carcaj con una cantidad finita de vértices. Un ideal bilátero de kQ se dice monomial si está generado por caminos de largo por lo menos igual a 2. Una kálgebra se dice monomial si existe un carcaj Q y un ideal monomial I de kQ tales que A ∼ = kQ/I.

Sea A = kQ/I con I ideal monomial. Denotemos con π : kQ -→ A la proyecci ón can ónica. Sea S el conjunto de caminos s ∈ I tales que s ′ / ∈ I para todo divisor s ′ de s, con s ′ = s. El ideal I está generado por el conjunto S. Bardzell prob ó que existen conjuntos de caminos A n para todo n ≥ 2 que dan lugar a una resoluci ón de A por A-bim ódulos proyectivos, dando f órmulas explícitas para los diferenciales. Con nuestra notaci ón, los conjuntos A n corresponden a las n-ambig üedades del sistema de reducci ón R = {(s, 0) : s ∈ S}. La resoluci ón de Bardzell es la siguiente

• • • d 1 / / A ⊗ E kA 0 ⊗ E A d 0 / / A ⊗ E A d -1 / / ∼ = A / / 0 A ⊗ E kA -1 ⊗ E A donde A -1 = Q 0 , A 0 = Q 1 , A 1 = S, y 1. d n : A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A para n ≥ 0, 2. d -1 (a ⊗ b) = ab es la multiplicaci ón en A, 3. si n es par, q ∈ A n y q = u 0 • • • u n = v n • • • v 0 son
respectivamente las factorizaciones de q como n-ambig üedad a izquierda y a derecha,

d n (1 ⊗ q ⊗ 1) = π(v n ) ⊗ v n-1 • • • v 0 ⊗ 1 -1 ⊗ u 0 • • • u n-1 ⊗ π(u n ), 4. si n es impar y q ∈ A n , d n (1 ⊗ q ⊗ 1) = apc=q p∈A n-1 ,a,c∈Q ≥0 π(a) ⊗ p ⊗ π(c).
Esta resoluci ón tiene una homotopía de contracci ón s • dada por las siguientes f órmulas.

Para n = -1, s -1 : A -→ kQ ⊗ E kA -1 ⊗ E A es el morfismo de kQ -E-bim ódulos definido por s -1 (a) = a ⊗ 1, con a ∈ kQ. Para n ∈ N 0 , s n : A ⊗ E kA n-1 ⊗ E A -→ A ⊗ E kA n ⊗ E A es s n (1 ⊗ q ⊗ π(b)) = (-1) n+1 apc=qb p∈A n ,a,c∈Q ≥0 π(a) ⊗ p ⊗ π(c), con b ∈ B y q ∈ A n-1 .
Esta homotopía de contracci ón fue encontrada por Sk öldberg en [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF].

Capítulo 3: resoluciones proyectivas usando ambig üedades

Este es el capítulo central de la tesis. En él enunciamos y demostramos nuestros principales teoremas.

Sean Q un carcaj e I un ideal bilátero de kQ. Llamamos A = kQ/I y π : kQ -→ A la proyecci ón can ónica. Sea R un sistema de reducci ón sin ambig üedades de inclusi ón que cumple la condici ón Diamante para

I, tal que S R ⊆ Q ≥2 . Denotamos S = S R y B = {p ∈ Q ≥0 : p es irreducible}.
Asociamos a A la k-álgebra monomial A S := kQ/ S . Sea π ′ : kQ -→ A S la proyecci ón can ónica. El conjunto de n-ambig üedades del sistema de reducci ón R ′ = {(s, 0) : s ∈ S} coincide con las n-ambig üedades de R. El conjunto B de caminos irreducibles para R es igual al conjunto de caminos irreducibles para R ′ . Luego, hay morfismos de k-espacios vectoriales i :

A -→ kQ e i ′ : A S -→ kQ tales que i(π(b)) = b e i ′ (π ′ (b)) = b para todo b ∈ B. Definimos β = i • π y β ′ = i ′ • π ′ . Para cada n ≥ -1 consideramos los siguientes morfismos k-lineales. π n := π ⊗ id kA n ⊗π, π ′ n := π ′ ⊗ id kA n ⊗π ′ , i n := i ⊗ id kA n ⊗i, i ′ n := i ′ ⊗ id kA n ⊗i ′ , β n := i n • π n , β ′ n := i ′ n • π ′ n .
Basándonos en las f órmulas de los diferenciales de Bardzell vamos a definir morfismos de A-bim ódulos δ n :

A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A. Para esto cons- truimos primero los siguientes morfismos f n y S n . Observamos que el kQ-bim ódulo kQ ⊗ E kA n ⊗ E kQ es un k-espacio vectorial con base {a ⊗ q ⊗ c : a, c ∈ Q ≥0 , q ∈ A n , aqc = 0 ∈ kQ}. Consideramos el diagrama, • • • f 2 / / kQ ⊗ E kA 1 ⊗ E kQ S 2 g g f 1 / / kQ ⊗ E kA 0 ⊗ E A S 1 j j f 0 / / kQ ⊗ E kQ f -1 / / S 0 j j ∼ = kQ S -1 h h / / 0 kQ ⊗ E kA -1 ⊗ E kQ donde 1. f -1 (a ⊗ b) = ab,
2. si n es par, entonces definimos f n como el único morfismo k-lineal tal que para todos a, c ∈ Q ≥0 , q ∈ A n tales que aqc = 0 en kQ y q = u 0

• • • u n = v n • • • v 0
son respectivamente las factorizaciones de q como n-ambig üedad a izquierda y a derecha,

f n (a ⊗ q ⊗ c) = av n ⊗ v n-1 • • • v 0 ⊗ c -a ⊗ u 0 • • • u n-1 ⊗ u n c,
y observamos que este morfismo es de kQ-bim ódulos.

3.

Si n es impar, entonces f n es el único morfismo k-lineal tal que para todos a, c ∈ Q ≥0 , q ∈ A n como antes,

f n (a ⊗ q ⊗ c) = a ′ pc ′ =q p∈A n-1 ,a ′ ,c ′ ∈Q ≥0 aa ′ ⊗ p ⊗ c ′ c,
y resulta un morfismo de kQ-bim ódulos.

Definimos

S -1 (x) = x ⊗ 1 y si n ≥ 0, S n es el único morfismo k-lineal tal que para todos a, c ∈ Q ≥0 , q ∈ A n-1 , S n (a ⊗ q ⊗ c) = (-1) n+1 a ′ pc ′ =qc p∈A n ,a ′ ,c ′ ∈Q ≥0 aa ′ ⊗ p ⊗ c ′ .
Observamos que S n es un morfismo de kQ -E-bim ódulos para todo n ≥ -1.

Los morfismos f n inducen morfismos de A-bim ódulos δ

n : A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A y A S -E-bim ódulos δ ′ n : A S ⊗ E kA n ⊗ E A S -→ A S ⊗ E kA n-1 ⊗ E A S de la siguiente manera δ n := π n-1 • f n • i n , δ ′ n := π ′ n-1 • f n • i ′ n . Para n = -1 interpretamos estas f órmulas como δ -1 := π • f -1 • i -1 y δ ′ -1 := π ′ • f -1 • i ′ -1 .
Observamos que estas son las respectivas multiplicaciones de A y A S .

La siguiente sucesi ón es la resoluci ón de Bardzell de A S .

• • • δ ′ 2 / / A S ⊗ E kA 1 ⊗ E A S δ ′ 1 / / A S ⊗ E kA 0 ⊗ E A S δ ′ 0 / / A S ⊗ E A S δ ′ -1 / / A S / / 0 , Los morfismos S n inducen morfismos de A -E-bim ódulos s n : A ⊗ E kA n-1 ⊗ E A -→ A ⊗ E kA n ⊗ E A, y morfismos de A S -E-bim ódulos s ′ n : A S ⊗ E kA n-1 ⊗ E A S -→ A S ⊗ E kA n ⊗ E A S de la siguiente manera s n := π n • S n • i n-1 , s ′ n := π ′ n • S n • i ′ n-1 . Para n = -1 interpretamos estas definiciones como s -1 := π -1 • S -1 • i y s ′ -1 := π ′ -1 • S -1 • i ′ .
Los morfismos s ′ n son la homotopía de contracci ón de Sk öldberg para la resoluci ón de Bardzell.

Recordamos que k

× Q ≥0 := {λp ∈ kQ : λ ∈ k × , p ∈ Q ≥0 } ∪ {0}. Para cada n ≥ -1 y µq ∈ k × Q ≥0 , definimos los siguientes subconjuntos de A ⊗ E kA n ⊗ E A. -L n (µq) := {λπ(b) ⊗ p ⊗ π(b ′ ) : b, b ′ ∈ B, p ∈ A n , λbpb ′ µq}, -L ≺ n (µq) := {λπ(b) ⊗ p ⊗ π(b ′ ) : b, b ′ ∈ B, p ∈ A n , λbpb ′ ≺ µq}.
Estamos listos para enunciar los teoremas. El primer teorema dice que si tenemos morfismos

d i : A ⊗ E kA i ⊗ E A -→ A ⊗ E kA i-1 ⊗ E A
que forman un complejo y sus f órmulas están dadas por ciertas deformaciones de las f órmulas de los morfismos de la resoluci ón de Bardzell de A S , entonces necesariamente este complejo es exacto. El segundo teorema garantiza que este tipo de resoluciones siempre existe.

Teorema (3.5). Definimos d -1 := δ -1 y d 0 := δ 0 . Dado N ∈ N 0 y morfismos de A-bimódulos d i : A ⊗ E kA i ⊗ E A -→ A ⊗ E kA i-1 ⊗ E A para 1 ≤ i ≤ N, si 1. d i-1 • d i = 0 para todo i, 1 ≤ i ≤ N, 2. (d i -δ i )(1 ⊗ q ⊗ 1) ∈ L ≺ i-1 (q) k para todo i ∈ {1, . . . , N} y para todo q ∈ A i , entonces el complejo A ⊗ E kA N ⊗ E A d N / / • • • d 1 / / A ⊗ E kA 0 ⊗ E A d 0 / / A ⊗ E A d -1 / / A / / 0
es exacto.

Teorema (3.6). Existen morfismos de A-bimódulos d

i : A ⊗ E kA i ⊗ E A -→ A ⊗ E kA i-1 ⊗ E A para i ∈ N 0 y d -1 : A ⊗ E A -→ A tales que 1. d i-1 • d i = 0, para todo i ∈ N 0 , 2. (d i -δ i )(1 ⊗ q ⊗ 1) ∈ L ≺ i-1 (q) Z para todo i ≥ -1 y q ∈ A i .

Morfismos en grados bajos

Podemos dar una descripci ón explícita de los diferenciales para estas resoluciones en grados 0, 1, 2. Al igual que antes, A = kQ/I es una k-álgebra y R es un sistema de reducci ón sin ambig üedades de inclusi ón, que cumple la condici ón Diamante, tal que

S R ⊆ Q ≥2 . Sea ϕ 0 : kQ -→ A ⊗ E kA 0 ⊗ E A el único morfismo k-lineal tal que ϕ 0 (c) = n i=1 π(c n • • • c i+1 ) ⊗ c i ⊗ π(c i-1 • • • c 1 ) para c ∈ Q ≥0 , c = c n • • • c 1 con c i ∈ Q 1 para todo i ∈ {1, . . . , n}.
Dada una reducci ón básica r = r a,s,c , sea ϕ 1 (r, -) :

kQ -→ A ⊗ E kA 1 ⊗ E A el único morfismo k-lineal tal que, dado p ∈ Q ≥0 ϕ 1 (r, p) = π(a) ⊗ s ⊗ π(c), si p = asc, 0 si p = asc.
Si r = (r n , . . . , r 1 ) es una reducci ón, con r i reducci ón básica para todo i, 1 ≤ i ≤ n, denotamos r ′ = (r n , . . . , r 2 ) y definimos de manera recursiva el morfismo ϕ 1 (r, -)

como el único morfismo k-lineal de kQ en A ⊗ E kA 1 ⊗ E A tal que ϕ 1 (r, p) = ϕ 1 (r 1 , p) + ϕ 1 (r ′ , r 1 (p)). Definimos d 1 : A ⊗ E kA 1 ⊗ E A -→ A ⊗ E kA 0 ⊗ E A como d 1 (1 ⊗ s ⊗ 1) = ϕ 0 (s) -ϕ 0 (β(s)), para todo s ∈ A 1 .
Sea p ∈ A 2 . Sabemos que p se escribe como p = u 0 u 1 u 2 y como p = v 2 v 1 v 0 , igualdades que corresponden a las escrituras de p como 2-ambig üedad a izquierda y a derecha, respectivamente. Los elementos u 0 u 1 y v 1 v 0 pertenecen a A 1 = S. Si r = r a,ρ,c es una reducci ón básica con ρ = (s, f), decimos que r es una reducción a izquierda de p si u 0 u 1 = s y decimos que r es una reducción a derecha de p si s = v 1 v 0 . Toda reducci ón básica r tal que r(p) = p es una reducci ón a izquierda o a derecha de p. Más generalmente, si r = (r n , . . . , r 1 ) es una reducci ón, decimos que r es una reducci ón a izquierda de p si r 1 es una reducci ón a izquierda de p. Análogamente definimos reducción a derecha.

Proposici ón (3.22). Sean {r p } p∈A 2 y {t p } p∈A 2 conjuntos de reducciones tales que r p (p) y t p (p) pertenecen a kB, r p es una reducción a izquierda de p y t p es una reducción a derecha de p, para todo p ∈ A 2 . Sea

d 1 : A ⊗ E kA 1 ⊗ E A -→ A ⊗ E kA 0 ⊗ E A el morfismo de A-bimódulos definido por d 1 (1 ⊗ s ⊗ 1) = ϕ 0 (s) -ϕ 0 (β(s)), para todo s ∈ A 1 , y d 2 : A ⊗ E kA 2 ⊗ E A -→ A ⊗ E kA 1 ⊗ E A el morfismo de A-bimódulos dado por d 2 (1 ⊗ p ⊗ 1) = ϕ 1 (t p , p) -ϕ 1 (r p , p).

La sucesión

A ⊗ E kA 2 ⊗ E A d 2 -→ A ⊗ E kA 1 ⊗ E A d 1 -→ A ⊗ E kA 0 ⊗ E A δ 0 -→ A ⊗ E A δ -1 -→ A -→ 0 es exacta.

Capítulo 4: ejemplos

En este capítulo utilizamos los resultados obtenidos en nuestros teoremas para calcular resoluciones proyectivas explícitas de algunas familias de algebras.

Capítulo 5: álgebras down-up

En este capítulo estudiamos varios problemas relacionados con la familia de álgebras down-up, definida en [START_REF] Benkart | Down-up algebras[END_REF]. Dicha familia se define de la siguiente manera. Sean k un cuerpo y α, β, γ ∈ k, el álgebra down-up de parámetros α, β, γ se denota A(α, β, γ) y es el cociente de k d, u por el ideal bilátero generado por las relaciones

d 2 u -αdud -βud 2 -γd = 0, du 2 -αudu -βu 2 d -γu = 0.
Estas álgebras son 3-Koszul si y s ólo si γ = 0 [START_REF] Berger | Higher symplectic reflection algebras and non-homogeneous N-Koszul property[END_REF].

En [START_REF] Benkart | Down-up algebras[END_REF] los autores plantean el problema de decidir qué álgebras pertenecen a la misma clase de isomorfismo, llamado problema de isomorfismo, y definen cuatro subfamilias de manera tal que álgebras en distintas familias no son isomorfas. Dichas familias están caracterizadas por las siguientes condiciones:

(a) γ = 0, α + β = 1, (b) γ = 0, α + β = 1, (c) γ = 0, α + β = 1, (d) γ = 0, α + β = 1.
Como consecuencia de esta clasificaci ón, el problema de isomorfismo se divide en cuatro problemas de isomorfismo, uno para cada subfamilia.

En [START_REF] Kirkman | Noetherian down-up algebras[END_REF] los autores prueban que el álgebra A(α, β, γ) es noetheriana si y s ólo si β = 0, lo que implica que las álgebras A(α, β, γ) con β = 0 no son isomorfas a ninguna de las álgebras A(α ′ , 0, γ ′ ). Por otro lado, en [START_REF] Carvalho | Down-up algebras and their representation theory[END_REF] los autores resuelven el problema de isomorfismo para las álgebras down-up noetherianas de tipo (a), (b) y (c) para todo cuerpo k y también para las álgebras down-up noetherianas de tipo (d) para cuerpos de característica cero.

Los resultados de nuestra investigaci ón sobre las álgebras down-up son los siguientes.

1. Utilizando los métodos desarrollados en los capítulos anteriores, encontramos una resoluci ón explícita de largo 3 para toda álgebra down-up A(α, β, γ). Dicha resoluci ón coincide con la resoluci ón ya conocida en los casos en que A(α, β, γ) es 3-Koszul.

2. Probamos que el álgebra A(α, β, γ) es monomial si y s ólo si (α, β, γ) = (0, 0, 0). Recordamos que un álgebra es monomial si es isomorfa a un cociente de álgebras de caminos kQ/I con I un ideal bilátero generado por caminos. Como consecuencia, la resoluci ón de Bardzell no se puede aplicar a las álgebras A(α, β, γ) con (α, β, γ) = (0, 0, 0). La prueba de este resultado utiliza cálculos de invariantes homol ógicos que son posibles gracias a la descripci ón de la resoluci ón proyectiva obtenida anteriormente.

3. Resolvimos el problema de isomorfismo para álgebras down-up no noetherianas de todos los tipos, para cuerpos de cualquier característica: el álgebra A(α, 0, γ) es isomorfa al álgebra A(α ′ , 0, γ ′ ) si y s ólo si α = α ′ y existe λ ∈ k tal que γ = λγ ′ .

Résumé de la thèse

Dans le texte qui suit, nous résumons les principaux résultats contenus dans cette thèse. L'article [START_REF] Chouhy | Projective resolutions of associative algebras and ambiguities[END_REF] contient une partie de ce travail.

Chapitre 1 : Systèmes de réduction, ordres partiels et ambiguïtés

Dans ce chapitre nous définissons et étudions les outils que nous utilisons dans les chapitres suivants, afin de construire des résolutions projectives d'algèbres associatives. Il s'agit de systèmes de réduction et d'ambiguïtés.

Systèmes de réduction

Nous commenc ¸ons par introduire quelques notations. Soient k un corps et Q un carquois avec un nombre fini de sommets. Notons k × = k \ {0}, N l'ensemble de nombres entiers positifs et N 0 l'ensemble de nombres entiers non negatifs. Étant donné n ∈ N, Q n est l'ensemble des chemins de longueur n et Q ≥n l'ensemble des chemins de longueur au moins n. Si c ∈ Q n , nous écrivons |c| = n. Si a, b, p, q ∈ Q ≥n sont tels que q = apb, on dit que p est un diviseur de q. Si a ∈ Q 0 on dit que p est un diviseur à gauche de q, et si b ∈ Q 0 on dit que p est un diviseur à droite de q. Soient t, s : Q 1 -→ Q 0 les applications qui associent à chaque flèche son but et sa source.

Étant donnés s ∈ Q ≥0 et un élément f = i λ i c i ∈ kQ tel que c i ∈ Q ≥0 et t(s) = t(c i ), s(s) = s(c i )
pour chaque i, nous disons que f est parallèle à s. Soit E := kQ 0 la sousalgèbre de kQ engendrée par les sommets de Q.

Étant donné un anneau R, un R-module à gauche M est un ensemble X ⊆ M, siot X R le R-sous-module à gauche de M engendré par X.

Nous utilisons la même terminologie que dans [START_REF] Bergman | The diamond lemma for ring theory[END_REF]. Soit R un sous-ensemble de Q ≥0 × kQ. On dit que R est un système de réduction si pour tout (s, f) ∈ R, l'élément f est parallèle à s et s = f. Un triplet (a, ρ, c) o ù ρ = (s, f) ∈ R et a, c ∈ Q ≥0 sont tels que asc = 0 dans kQ s'apelle réduction basique et on la dénote r a,ρ,c . Nous observons qu'une réduction basique r a,ρ,c définit un endomorphisme r a,ρ,c : kQ -→ kQ par r a,ρ,c (asc) = afc et r a,ρ,c (q) = q pour tout chemin q différent de asc. Lorsqu'il n'y a pas de confusion possible, nous écrivons simplement r a,s,c au lieu de r a,ρ,c . Une réduction est un n-uplet r = (r n , . . . , r 1 ) o ù n ∈ N et r i est une réduction basique pour toute i. Toute réduction r définit un endomorphisme r : kQ -→ kQ donné par la composition r n • • • • • r 1 des endomorphismes correspondants aux réductions basiques r n , . . . , r 1 .

Nous disons qu'un élément x ∈ kQ est irréductible pour R si r(x) = x pour toute réduction basique r. Un chemin p ∈ Q ≥0 est dit de réduction finie si pour toute suite infinie de réductions basiques

(r i ) i∈N il existe n 0 ∈ N tel que r n • • • • • r 1 (p) = r n 0 • • • • • r 1 (p)
pour tout n ≥ n 0 . On dit qu'un chemin p est de réduction unique s'il est de réduction finie et en plus pour chaque couple de réductions r et r ′ tels que r(p) et r ′ (p) sont des éléments irréductibles, on a r(p) = r ′ (p).

Un ordre partiel

Soient k un corps et Q un carquois comme plus haut. Soit R un système de réduction tel que tout chemin est de réduction finie. 

Soit x = n i=1 λ i c i ∈ kQ o ù λ 1 , . . . , λ n ∈ k × et c 1 , . . . ,
Q ≥0 := {λp ∈ kQ : λ ∈ k × , p ∈ Q ≥0 } ∪ {0} comme
∈ k × Q ≥0 . Soient x ∈ kQ et λp ∈ k × Q ≥0 . Si x = n i=1 λ i c i o ù λ i ∈ k × et λ i p i
λp pour tout i, nous écrivons x λp. Par ailleurs, si x = λ i p i pour tout i, nous écrivons x ≺ p.

Lemme. La rélation binaire est une relation d'ordre partiel vérifiant la condition de chaîne descendante.

La condition diamant

Soit I un idéal bilatère de kQ. Soit π la projection canonique π : kQ -→ kQ/I. Soit R un système de réduction. Nous disons que R vérifie la condition diamant pour I si -l'idéal I est l'idéal bilatère engendré par l'ensemble {s -f} (s,f)∈R , -tout chemin est de réduction unique et -pour chaque (s, f) ∈ R, l'élément f est irréductible.

Une conséquence du Lemme du diamant de Bergman [START_REF] Bergman | The diamond lemma for ring theory[END_REF] est la suivante.

Lemme. Soit R un système de réduction vérifiant la condition diamant pour I. L'ensemble B de chemins irréductibles satisfait les propriétés suivantes.

-Si b ∈ B et q ∈ Q ≥0 est un diviseur de b, alors q ∈ B.

-π(b) = π(b ′ ) pour tout b, b ′ ∈ B tels que b = b ′ .
-{π(b) : b ∈ B} est une base de kQ/I comme k-espace vectoriel.

Ce lemme est une des principales raisons pour lesquelles les systèmes de réduction qui vérifient la condition diamant sont utiles pour nos objectifs. La proposition suivante dit que tout idéal bilatère de kQ possède des systèmes de réduction de ce type.

Proposition. Soit I un idéal bilatère de kQ. Il existe un système de réduction R vérifiant la condition diamant pour I.

Soit R un système de réduction. Nous donnons par la suite quelques définitions supplémentaires.

-On définit une ambiguïté d'inclusion comme un 5-uplet

(ρ 1 , ρ 2 , a, b, c) o ù ρ 1 , ρ 2 ∈ R, a, b, c ∈ Q ≥0 sont tels que ρ 1 = (abc, f 1 ) et ρ 2 = (b, f 2 ) pour certains éléments f 1 , f 2 ∈ kQ.
-On dénote par S R l'ensemble {s ∈ Q ≥0 : il existe f ∈ kQ tel que (s, f) ∈ R}.

Le résultat suivant dit que tout système de réduction qui vérifie la condition diamant pour un certain idéal I peut se modifier pour qu'il n'ait pas des ambiguïtés d'inclusion.

Proposition. Soient I un idéal bilatère de kQ et R un système de réduction vérifiant la condition diamant pour I. L'ensemble R = {(s, f) ∈ R : il n'existe pas une ambiguïté d'inclusion (ρ 1 , ρ 2 , a, b, c) tel que abc = s} est un système de réduction qui satisfait la condition diamant pour I et il n'a pas des ambiguïtés d'inclusion.

De plus, si R est un système de réduction, sans ambiguïtés d'inclusion et qui vérifie la condition diamant pour un idéal I, alors il peut se modifier pour qu'il vérifie

S R ⊆ Q 2 .

Ambiguïtés

Soient I un idéal bilatère de kQ et R un système de réduction vérifiant la condition diamant, sans ambiguïtés d'inclusion, et tel que S R ⊆ Q 2 . Nous rapellons la défintion d'une n-ambiguïté. Cette définition peut se trouver dans les articles [START_REF] Anick | On the homology of associative algebras[END_REF], [START_REF] Anick | On the homology of quotients of path algebras[END_REF], [START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF] et [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF].

Définition. Étant donnés n ≥ 2 et p ∈ Q ≥0 ,
1. le chemin p s'apelle une n-ambiguïté à gauche s'il existe u 0 ∈ Q 1 et des chemins irréductibles u 1 , . . . , u n tels que (a) p = u 0 u 1 

Chapitre 2 : Des travaux précédents d'Anick, Green et Bardzell

Ce chapitre contient un résumé des travaux précédents d'Anick, Green et Bardzell sur la construction de résolutions projectives. Voir [START_REF] Anick | On the homology of associative algebras[END_REF], [START_REF] Anick | On the homology of quotients of path algebras[END_REF], [START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF] y [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF].

La résolution d'Anick

Soit A une k-algèbre presentée comme A = k X /I, o ù X est un ensemble de générateurs de A et I est un idéal de k X . Soient ≤ un ordre partiel sur X et ω : X -→ N une fonction. Ceci définit un ordre total sur l'ensemble des mon ômes sur X, apellé l'ordre deglex, et on le dénote par ≤ ω . Il s'agit d'un ordre lexicographique avec poids. Anick a prouvé qu'il existe des sous-ensembles A n de X , o ù n ≥ 2, tels que pour tout A-module simple T , il existe une résolution libre de T de la forme 

0 T o o A ǫ o o kX ⊗ k A d 0 o o kS ⊗ k A d 1 o o kA 2 ⊗ k A d 2 o o • • • d 3 o o , o ù S
(u 0 • • • u n ⊗ 1) -u 0 • • • u n-1 ⊗ u n sont plus petits que u 0 • • • u n-1 ⊗ u n , pour tout p = u 0 • • • u n ∈ A n .
La résolution d'Anick-Green est une généralisation de ce résultat au cadre des algebres de chemins.

La résolution de Bardzell

Soit Q un carquois avec un nombre fini de sommets. Lorsqu'un idéal bilatère de kQ est engendré par des chemins de longueur au moins 2, l'idéal est dit monomial. On dit qu'une k-algèbre A est monomiale s'il existe un carquois Q et un idéal monomial I de kQ tels que A ∼ = kQ/I.

Soit A = kQ/I o ù I est un idéal monomial. Soit π : kQ -→ A la projection canonique. Soit S l'ensemble de chemins s ∈ I tels que s ′ / ∈ I pour tout diviseur s ′ de s, différent de s. Nous observons que l'idéal I est engendré par l'ensemble S. Bardzell a prouvé qu'il existe des sous-ensembles A n de Q ≥0 , o ù n ≥ 2, donnant lieu à une résolution projective de A en tant que bimodule. Avec notre notation, les ensembles A n correspondant aux ensembles de n-ambiguïtés du système de réduction R = {(s, 0) : s ∈ S}. La résolution de Bardzell est la suivante.

• • • d 1 / / A ⊗ E kA 0 ⊗ E A d 0 / / A ⊗ E A d -1 / / ∼ = A / / 0 A ⊗ E kA -1 ⊗ E A o ù A -1 = Q 0 , A 0 = Q 1 , A 1 = S, et 1. d n : A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A pour n ≥ 0, 2. d -1 (a ⊗ b) = ab est la multiplication de A, 3. si n est pair, q ∈ A n et q = u 0 • • • u n = v n • • • v 0 sont,
respectivement, les factorisations de q en tant que n-ambiguïté à gauche et à droite,

d n (1 ⊗ q ⊗ 1) = π(v n ) ⊗ v n-1 • • • v 0 ⊗ 1 -1 ⊗ u 0 • • • u n-1 ⊗ π(u n ), 4. si n es impair et q ∈ A n , d n (1 ⊗ q ⊗ 1) = apc=q p∈A n-1 ,a,c∈Q ≥0 π(a) ⊗ p ⊗ π(c).
Cette résolution a une contraction d'homotopie s • donnée par les formules suivantes.

Pour n = -1, s -1 : A -→ kQ ⊗ E kA -1 ⊗ E A est le morphisme de kQ -E-bimodules défini par s -1 (a) = a ⊗ 1, o ù a ∈ kQ. Pour n ∈ N 0 , s n : A ⊗ E kA n-1 ⊗ E A -→ A ⊗ E kA n ⊗ E A est s n (1 ⊗ q ⊗ π(b)) = (-1) n+1 apc=qb p∈A n ,a,c∈Q ≥0 π(a) ⊗ p ⊗ π(c), o ù b ∈ B et q ∈ A n-1 .
Cette contraction d'homotopie a été obtenue par Sk öldberg dans l'article [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF].

Chapitre 3 : Construction de résolutions projectives utilisant des ambiguïtés

Il s'agit du chapitre central de la thèse, o ù nous énonc ¸ons et prouvons nos principaux résultats.

Soient Q un carquois e I un idéal bilatère de kQ. Nous apellons A = kQ/I et π : kQ -→ A la projection canonique. Soit R un système de réduction vérifiant la condition diamant, sans ambiguïtés d'inclusion, tel que

S R ⊆ Q ≥2 . Nous dénotons S = S R et B = {p ∈ Q ≥0 : p est irréductible}.
Nous associons à A la k-algèbre monomiale A S := kQ/ S . Soit π ′ : kQ -→ A S la projection canonique. Nous observons que l'ensemble de n-ambiguïtés du système de réduction R ′ = {(s, 0) : s ∈ S} est égale à l'ensemble de n-ambiguïtés de R. Donc, l'ensemble des chemins irréductibles pour R est égale à l'ensemble des chemins irréductibles de R ′ . Il y a des morphismses de k-espaces vectoriels i :

A -→ kQ et i ′ : A S -→ kQ tels que i(π(b)) = b et i ′ (π ′ (b)) = b pour tout b ∈ B. Nous définissons β = i • π et β ′ = i ′ • π ′ . Pour chaque n ≥ -1, nous considérons les applications k-linéaires suivantes. π n := π ⊗ id kA n ⊗π, π ′ n := π ′ ⊗ id kA n ⊗π ′ , i n := i ⊗ id kA n ⊗i, i ′ n := i ′ ⊗ id kA n ⊗i ′ , β n := i n • π n , β ′ n := i ′ n • π ′ n .
Nous nous basons ensuite sur les formules des différentielles de la résolution de Bardzell de A S pour construir des morphismes de A-bimodules δ n :

A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A.
Pour faire cela, nous commenc ¸ons par construir les morphismes f n et S n suivantes. Nous observons que l'ensemble {a ⊗ q ⊗ c : a, c ∈ Q ≥0 , q ∈ A n , aqc = 0 ∈ kQ} est une base de kQ ⊗ E kA n ⊗ E kQ en tant que k-espace vectoriel. Nous considérons le diagramme suivant.

• • • f 2 / / kQ ⊗ E kA 1 ⊗ E kQ S 2 g g f 1 / / kQ ⊗ E kA 0 ⊗ E A S 1 j j f 0 / / kQ ⊗ E kQ f -1 / / S 0 j j ∼ = kQ S -1 h h / / 0 kQ ⊗ E kA -1 ⊗ E kQ o ù1. f -1 (a ⊗ b) = ab, 2.
si n est pair, alors nous définissons f n comme la seule application k-linéaire tel que pour tous a, c ∈ Q ≥0 , q ∈ A n tels que aqc = 0

dans kQ et q = u 0 • • • u n = v n • • • v 0 sont respectivement les factorisations de q en tant que n-ambiguïté à gauche et à droite, f n (a ⊗ q ⊗ c) = av n ⊗ v n-1 • • • v 0 ⊗ c -a ⊗ u 0 • • • u n-1 ⊗ u n c,
et nous observons que cette application est en fait un morphisme de kQ-bimodules.

3.

Si n es impair, f n es la seule application k-linéaire tel que pour tous a, c ∈ Q ≥0 , q ∈ A n comme plus haut,

f n (a ⊗ q ⊗ c) = a ′ pc ′ =q p∈A n-1 ,a ′ ,c ′ ∈Q ≥0 aa ′ ⊗ p ⊗ c ′ c,
et il résulte un morphisme de kQ-bimodules.

Nous définissons

S -1 (x) = x ⊗ 1 et si n ≥ 0, S n est la seule application k-linéaire tel que pour tous a, c ∈ Q ≥0 , q ∈ A n-1 , S n (a ⊗ q ⊗ c) = (-1) n+1 a ′ pc ′ =qc p∈A n ,a ′ ,c ′ ∈Q ≥0 aa ′ ⊗ p ⊗ c ′ .
Nous observons que S n est un morphisme de kQ -E-bimodules pour tout n ≥ -1.

Les morphismes f n définissent des morphismes de A-bimodules δ

n : A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A et des morphismes de A S -E-bimodules δ ′ n : A S ⊗ E kA n ⊗ E A S -→ A S ⊗ E kA n-1 ⊗ E A S comme suit δ n := π n-1 • f n • i n , δ ′ n := π ′ n-1 • f n • i ′ n . Pour n = -1 nous interprétons ces formules comme δ -1 := π • f -1 • i -1 et δ ′ -1 := π ′ • f -1 • i ′ -1 .
Nous observons que ce sont les multiplications de A et A S , respectivement.

La résolution de Bardzell de A S est la suivante

• • • δ ′ 2 / / A S ⊗ E kA 1 ⊗ E A S δ ′ 1 / / A S ⊗ E kA 0 ⊗ E A S δ ′ 0 / / A S ⊗ E A S δ ′ -1 / / A S / / 0 , Les morphismes S n définissent des morphismes de A -E bimodules s n : A ⊗ E kA n-1 ⊗ E A -→ A ⊗ E kA n ⊗ E A, et des morphismes de A S -E-bimodules s ′ n : A S ⊗ E kA n-1 ⊗ E A S -→ A S ⊗ E kA n ⊗ E A S de la manière suivante. s n := π n • S n • i n-1 , s ′ n := π ′ n • S n • i ′ n-1 . Pour n = -1 nous interprétons ces définitions comme s -1 := π -1 • S -1 • i et s ′ -1 := π ′ -1 • S -1 • i ′ .
Les morphismes s ′ n sont la contraction d'homotopie de Sk öldberg pour la résolution de Bardzell.

Nous rappelons que k

× Q ≥0 := {λp ∈ kQ : λ ∈ k × , p ∈ Q ≥0 } ∪ {0}. Pour chaque n ≥ -1 et µq ∈ k × Q ≥0 , nous définissons les sous-ensembles de A ⊗ E kA n ⊗ E A suivants. -L n (µq) := {λπ(b) ⊗ p ⊗ π(b ′ ) : b, b ′ ∈ B, p ∈ A n , λbpb ′ µq}, -L ≺ n (µq) := {λπ(b) ⊗ p ⊗ π(b ′ ) : b, b ′ ∈ B, p ∈ A n , λbpb ′ ≺ µq}.
Nous sommes prêts pour présenter nos théorèmes. Le premièr théorème dit que si d i : A ⊗ E kA i ⊗ E A -→ A ⊗ E kA i-1 ⊗ E A sont des morphismes de A-bimodules for- mant un complexe tel que ses formules sont données par certaines modifications des formules des différentielles de la résolution de Bardzell de A S , alors ce complexe est nécessairement exacte. Le deuxième théorème dit que ce type de résolutions existent dans tous les cas.

Théorème (3.5). Posons d -1 := δ -1 et d 0 := δ 0 . Étant donné N ∈ N 0 et des morphismes de A-bimodules d i : A ⊗ E kA i ⊗ E A -→ A ⊗ E kA i-1 ⊗ E A, o ù 1 ≤ i ≤ N, vérifiant les conditions suivantes 1. d i-1 • d i = 0 pour tout i, 1 ≤ i ≤ N, 2. (d i -δ i )(1 ⊗ q ⊗ 1) ∈ L ≺ i-1 (q) k pour tout i ∈ {1, . . . , N} et pour tout q ∈ A i , alors le complexe A ⊗ E kA N ⊗ E A d N / / • • • d 1 / / A ⊗ E kA 0 ⊗ E A d 0 / / A ⊗ E A d -1 / / A / / 0 est exacte.

Théorème (3.6). Il existent des morphismes de A-bimodules d

i : A ⊗ E kA i ⊗ E A -→ A ⊗ E kA i-1 ⊗ E A, o ù i ∈ N 0 et d -1 : A ⊗ E A -→ A tels que 1. d i-1 • d i = 0, pour tout i ∈ N 0 , 2. (d i -δ i )(1 ⊗ q ⊗ 1) ∈ L ≺ i-1 (q) Z pour tout i ≥ -1 et q ∈ A i .
Morphismes en degrés 0, 1 et 2

Nous pouvons donner une description des différentielles pour ces résolutions en degrés 0, 1 et 2. Comme auparavant, soient A = kQ/I une algèbre et R un système de réduction vérifiant la condition diamant, sans ambiguïtés d'inclusion, tel que

S R ⊆ Q ≥2 . Soit ϕ 0 : kQ -→ A ⊗ E kA 0 ⊗ E A la seule application k-linéaire tel que ϕ 0 (c) = n i=1 π(c n • • • c i+1 ) ⊗ c i ⊗ π(c i-1 • • • c 1 ) o ù c ∈ Q ≥0 , c = c n • • • c 1 avec c i ∈ Q 1 pour tout i ∈ {1, . . . , n}. Étant donnée une réduction basique r = r a,s,c , soit ϕ 1 (r, -) : kQ -→ A ⊗ E kA 1 ⊗ E A la seule application k-linéaire tel que pour p ∈ Q ≥0 ϕ 1 (r, p) = π(a) ⊗ s ⊗ π(c), si p = asc, 0 si p = asc.
Si r = (r n , . . . , r 1 ) est une réduction, o ù r i est une réduction basique pour tout i, 1 ≤ i ≤ n, nous posons r ′ = (r n , . . . , r 2 ) et nous définissons le morphisme ϕ 1 (r, -), de manière récursive, comme la seule application k-linéaire ϕ 1 (r, -) :

kQ -→ A ⊗ E kA 1 ⊗ E A telle que ϕ 1 (r, p) = ϕ 1 (r 1 , p) + ϕ 1 (r ′ , r 1 (p)).

Nous définissons d

1 : A ⊗ E kA 1 ⊗ E A -→ A ⊗ E kA 0 ⊗ E A comme suit d 1 (1 ⊗ s ⊗ 1) = ϕ 0 (s) -ϕ 0 (β(s)), pour tout s ∈ A 1 . Soit p ∈ A 2 . Nous savons que p s'écrit comme p = u 0 u 1 u 2 et comme p = v 2 v 1 v 0 .
Ces égalités correspondent respectivement aux écritures de p en tant que 2-ambiguïté à gauche et à droite. Les éléments u 0 u 1 et v 1 v 0 appartiennent à A 1 = S. Si r = r a,ρ,c est une réduction basique avec ρ = (s, f), nous disons que r est une réduction à gauche de p si u 0 u 1 = s et nous disons que r est une réduction à droite de p si s = v 1 v 0 . Toute réduction basique r tel que r(p) = p est une réduction à gauche ou à droite de p. Plus généralement, si r = (r n , . . . , r 1 ) est une réduction, nous disons que r est une réduction à gauche de p si r 1 est une réduction à gauche de p. Similairement, nous définissons une réduction à droite de p. Proposition (3.22). Soient {r p } p∈A 2 et {t p } p∈A 2 des ensembles de réductions tels que r p (p) et t p (p) appartiennent à kB et pour toutp ∈ A 2 , la réduction r p est une réduction à gauche de p et t p est une réduction à droite de p. Soit

d 1 : A ⊗ E kA 1 ⊗ E A -→ A ⊗ E kA 0 ⊗ E A le morphisme de A-bimodules défini par d 1 (1 ⊗ s ⊗ 1) = ϕ 0 (s) -ϕ 0 (β(s)), pour tout s ∈ A 1 , et d 2 : A ⊗ E kA 2 ⊗ E A -→ A ⊗ E kA 1 ⊗ E A le morphisme de A-bimodules donné par d 2 (1 ⊗ p ⊗ 1) = ϕ 1 (t p , p) -ϕ 1 (r p , p).

La suite

A ⊗ E kA 2 ⊗ E A d 2 -→ A ⊗ E kA 1 ⊗ E A d 1 -→ A ⊗ E kA 0 ⊗ E A δ 0 -→ A ⊗ E A δ -1 -→ A -→ 0 est exacte.

Chapitre 4 : Examples

Dans ce chapitre nous utilisons les résultats obtenus dans nos théorèmes pour calculer des résolutions projectives de quelques familles d'algèbres.

Chapitre 5 : Algèbres down-up

Dans ce chapitre nous étudions des différents problèmes lies à la famille d'algèbres down-up, définie en [START_REF] Benkart | Down-up algebras[END_REF]. On définit cette famille comme suit. Soit k un corps et α, β, γ ∈ k, l'algèbre down-up à paramètres α, β, γ se dénote A(α, β, γ) et se définit comme le quotient de k d, u par l'idéal bilatère engendré par les rélations suivantes

d 2 u -αdud -βud 2 -γd = 0, du 2 -αudu -βu 2 d -γu = 0.
Ces algèbres sont 3-Koszul si et seulement si γ = 0 [START_REF] Berger | Higher symplectic reflection algebras and non-homogeneous N-Koszul property[END_REF]. Dans l'article [START_REF] Benkart | Down-up algebras[END_REF], les auteurs posent le problème de classer, à isomorphisme près, les algèbres down-up. On parle du problème de l'isomorphisme. Ils définissent quatre sous-familles d'algèbres de manière que des algèbres dans des différentes familles ne sont pas isomorphes. Ces familles sont définis par les conditions suivantes:

(a) γ = 0, α + β = 1, (b) γ = 0, α + β = 1, (c) γ = 0, α + β = 1, (d) γ = 0, α + β = 1.
Comme consequence de cette classification, le problème de l'isomorphisme se divise entre quatre sous-problèmes. Un problème pour chaque sous-famille.

Dans [START_REF] Kirkman | Noetherian down-up algebras[END_REF] les auteurs démontrent que l'algèbre A(α, β, γ) est noethérienne si et seulement si β = 0, ce que implique que les algèbres A(α, β, γ) avec β = 0 ne sont isomorphes à aucune des algèbres A(α ′ , 0, γ ′ ). Par ailleurs, dans l'article [START_REF] Carvalho | Down-up algebras and their representation theory[END_REF] les auteurs résolvent le problème de l'isomorphisme pour les algèbres down-up noethériennes de type (a), (b) y (c) pour tout corps k, ainsi que pour les algèbres down-up noethériennes de type (d) sur des corps de caractéristique zero.

Nous obtenons les résultats suivants sur la famille d'algèbres down-up.

1. En utilisant les méthodes développées dans les chapitres antérieurs, nous trouvons une résolution de longueur 3 pour toute algèbre down-up A(α, β, γ). Cette résolution coïncide avec la résolution déjà connue lorsque A(α, β, γ) est 3-Koszul.

2. Nous montrons que l'algèbre A(α, β, γ) est monomiale si et seulement si (α, β, γ) = (0, 0, 0). Comme conséquence, la résolution de Bardzell ne peut pas s'apliquer aux algèbres A(α, β, γ) avec (α, β, γ) = (0, 0, 0). La preuve de ce résultat s'appuie sur des calculs des invariantes homologiques qui sont rendus possibles grâce à la description de la résolution projective obtenue antérieurement.

Nous donnons une solution au problème de l'isomorphisme pour les algèbres

down-up non-noethériennes de tous les types sur des corps de caractéristique quelconque: l'algèbre A(α, 0, γ) est isomorphe à l'algèbre

A(α ′ , 0, γ ′ ) si et seule- ment si α = α ′ et il existe λ ∈ k tel que γ = λγ ′ .
Chapter 1

Reduction systems, partial orders and ambiguities

In this chapter we define and study the main tools that we will need in rest of the thesis. These are reduction systems and ambiguities. In Section 1.1 we set some basic notation and recall the terminology of Reduction systems from [START_REF] Bergman | The diamond lemma for ring theory[END_REF]. We prove that there are partial orders attached to reduction systems and these will be very important in the following chapters, since they permit to make inductive arguments. Also, the reduction systems that we will use to construct resolutions of algebras verify a special condition, namely the Diamond condition. Sections 1.2 and 1.3 are devoted to study these kind of reduction systems. In Section 1.4 we define and study the sets of ambiguities.

Reduction systems and partial orders

Let k be a field and Q a quiver with a finite set of vertices. Given n ∈ N, Q n denotes the set of paths of length n in Q and Q ≥n the set of paths of length at least n, that is,

Q ≥n = i≥n Q i . Whenever c ∈ Q n , we will write |c| = n.
If a, b, p, q ∈ Q ≥0 are such that q = apb, we say that p is a divisor of q; if, moreover, a ∈ Q 0 , we say that p is a left divisor of q and analogously for b ∈ Q 0 and right divisor. We denote t, s : Q 1 -→ Q 0 the usual source and target functions. Given s ∈ Q ≥0 and a finite sum

f = i λ i c i ∈ kQ such that c i ∈ Q ≥0 and t(s) = t(c i ), s(s) = s(c i )
for all i, we say that f is parallel to s.

Let E := kQ 0 be the subalgebra of the path algebra generated by the vertices of Q.

Observe that for a set X, the free algebra k X is isomorphic to the path algebra kQ where Q is the quiver with one vertex and an arrow for each element of X. Under this identification, monomials in X correspond to paths in kQ.

Given a ring R, a left R-module M and a set X ⊆ M, we denote X R the left R-submodule of M spanned by X.

We recall some terminology from [START_REF] Bergman | The diamond lemma for ring theory[END_REF] that we will use. A set R ⊆ Q ≥0 × kQ is called a reduction system if for all (s, f) ∈ R, the element f is parallel to s and s = f. Given ρ = (s, f) ∈ R and a, c ∈ Q ≥0 such that asc = 0 in kQ, we will call the triple (a, ρ, c) a basic reduction and write it r a,ρ,c . Note that r a,ρ,c determines an E-bimodule endomorphism r a,ρ,c : kQ -→ kQ such that r a,ρ,c (asc) = afc and r a,ρ,c (q) = q for all q = asc. If it is not ambiguous, we will write r a,s,c instead of r a,ρ,c .

A reduction is an n-tuple (r n , . . . , r 1 ) where n ∈ N and r i is a basic reduction for 1 ≤ i ≤ n. As before, a reduction r = (r n , . . . , r 1 ) determines an E-bimodule endomorphism of kQ, the composition r n • • • • • r 1 of the endomorphisms corresponding to the basic reductions r n , . . . , r 1 .

An element x ∈ kQ is said to be irreducible for R if r(x) = x for all basic reductions r. We will omit mentioning the reduction system whenever it is clear from the context. A path p ∈ Q ≥0 will be called reduction-finite if for any infinite sequence of basic reductions (r i ) i∈N , there exists n 0 ∈ N such that for all n ≥ n 0 ,

r n • • • • • r 1 (p) = r n 0 • • • • • r 1 (p).
Moreover, the path p will be called reduction-unique if it is reductionfinite and for any two reductions r and r ′ such that r(p) and r ′ (p) are both irreducible, the equality r(p) = r ′ (p) holds.

Let R be a reduction system.

-An inclusion ambiguity is a 5-tuple

(ρ 1 , ρ 2 , a, b, c) with ρ 1 , ρ 2 ∈ R, a, b, c ∈ Q ≥0 , such that ρ 1 = (abc, f 1 ) and ρ 2 = (b, f 2 ) for f 1 , f 2 ∈ kQ. An inclusion ambiguity (ρ 1 , ρ 2 , a, b, c
) is said to be resolvable if there exist reductions r = (r n , . . . , r 1 ) and t = (t m , . . . , t 1 ) such that r 1 = r 1,ρ 1 ,1 , t 1 = r a,ρ 2 ,c and r(abc) = t(abc).

-An overlap ambiguity is a 5-tuple

(ρ 1 , ρ 2 , a, b, c) with ρ 1 , ρ 2 ∈ R, a, c ∈ Q ≥0 , b ∈ Q ≥1 such that ρ 1 = (ab, f 1 )
and ρ 2 = (bc, f 2 ), for f 1 , f 2 ∈ kQ. An overlap ambiguity (ρ 1 , ρ 2 , a, b, c) is said to be resolvable if there exist reductions r = (r n , . . . , r 1 ) and t = (t m , . . . , t 1 ) such that r 1 = r 1,ρ 1 ,c , t 1 = r a,ρ 2 ,1 and r(abc) = t(abc).

-An overlap ambiguity (ρ 1 , ρ 2 , a, b, c) is said to be a minimal overlap ambiguity if there is no other overlap ambiguity (ρ ′ 1 , ρ ′ 2 , x, y, z) with xyz a proper divisor of abc.

-An ambiguity is a 5-tuple (ρ 1 , ρ 2 , a, b, c) that is either an inclusion ambiguity or a minimal overlap ambiguity.

Definition 1.1. For any element x = n i=1 λ i c i ∈ kQ with λ 1 , . . . , λ n ∈ k × and c 1 , . . . , c n ∈ Q ≥0 , the support of x is {c 1 , . . . , c n } and we will denote it Su(x).

In the following chapters we will face the need to control how elements multiply in algebras of the form kQ/I, where I is a two-sided ideal of kQ. One way to do this is to find a k-basis B of kQ/I and write in terms of this basis the product of every pair of elements of B. In [START_REF] Bergman | The diamond lemma for ring theory[END_REF], Bergman studies how to construct k-bases of algebras given by generators and relations using reduction systems, and proves the following theorem, which can also be applied to the setting of path algebras over a quiver Q. Theorem 1.2 ([3]). Let X be a set, R a reduction system for k X and ≤ a partial order on the set of paths X such that it satisfies the descending chain condition and for all (s, f) ∈ R and c ∈ Su(f), the inequality s > c holds. Furthermore, suppose b < b ′ implies abc < ab ′ c for all b, b ′ , a, c ∈ X . The following conditions are equivalent.

1. All ambiguities of R are resolvable.

2. All elements of k X are reduction-unique.

3. The set of classes of the irreducible paths is a k-basis of kQ/I, where I is the two sided ideal generated by the set {sf : (s, f) ∈ R}.

In [START_REF] Bergman | The diamond lemma for ring theory[END_REF], Section 5.4, Bergman states without a proof that if the reduction system R satisfies that every path is reduction-finite, then R induces a partial order on the set Q ≥0 that satisfies the hypothesis of Theorem 1.2. A slight modification of this partial order is key to our inductive process in Chapter 3. We now construct the binary relation and prove that it is a partial order.

Given p, q ∈ Q ≥0 we write q p if there exist n ∈ N, basic reductions r 1 , . . . , r n and paths p 1 , . . . p n , such that p 1 = q, p n = p, and for all i = 1, . . . , n -1, p i+1 ∈ Su(r i (p i )). Lemma 1.3. Suppose that R is a reduction system for which every path is reduction-finite.

1. If p is a path and r a basic reduction such that p ∈ Su(r(p)), then r(p) = p.

The binary relation

is an order on the set Q ≥0 which is compatible with concatenation, that is, satisfies that q p implies aqc apc for all a, c ∈ Q ≥0 such that apc = 0 and aqc = 0 in kQ.

The binary relation satisfies the descending chain condition.

Proof. [START_REF] Anick | On the homology of associative algebras[END_REF] The hypothesis means that r(p) = λp + x with λ ∈ k × and p / ∈ Su(x). If x = 0 or λ = 1, then r acts nontrivially on p and so it acts trivially on x. Since the sequence of reductions (r, r, • • • ) stabilizes when acting on p, there exists k ∈ N such that

λ k p + ( k-1 i=0 λ i )x = r k (p) = r k+1 (p) = λ k+1 p + ( k i=0 λ i )x.
As a consequence, λ = 1 and x = 0.

(2) By definition, the relation is transitive and reflexive. Let us suppose that it is not antisymmetric, so that there exist n ∈ N, paths p 1 , . . . , p n+1 and basic reductions r 1 , . . . , r n such that p i+1 ∈ r i (p i ) for 1 ≤ i ≤ n and p n+1 = p 1 . Suppose that n is minimal. There exist x 1 , . . . , x n ∈ kQ and λ 1 , . . . , λ n ∈ k × such that r i (p i ) = λ i p i+1 + x i with p i+1 / ∈ x i . Notice that since n is minimal, r i (p i ) = p i and then r i acts trivially on every path different from p i , for all i.

Let us see that

p i / ∈ Su(x j ) for all i = j.
Since the sequence p 1 , . . . , p n+1 = p 1 is cyclic, it is enough to prove that p 1 / ∈ Su(x j ) for all j. Suppose that p 1 ∈ Su(x j ) for some j ∈ {1, . . . , n}. Since p i+1 / ∈ Su(x i ) for all i and p n+1 = p 1 , it follows that j = n, and by part (i) j = 1. Let u k = p k and t k = r k for 1 ≤ k ≤ j and u j+1 = p 1 . Notice that u k+1 ∈ t k (u k ) for 1 ≤ k ≤ j and u j+1 = u 1 . Since j < n this contradicts the choice of n. It follows that p i / ∈ Su(x j ) for all i, j.

This implies r n • • • • • r 1 (p 1 ) = λp 1 +
x for some λ ∈ k × and x ∈ kQ with p i / ∈ Su(x) for all i. Now, define inductively for i > n, r i := r i-n . The sequence (r i ) i∈N acting on p 1 never stabilizes, which contradicts the reduction-finiteness of the reduction system R.

Let us see that is compatible with concatenation. By transitivity, it is enough to see that if p, q, a, c are paths and r a ′ ,ρ,c ′ is a basic reduction such that apc = 0 and p ∈ Su(r a ′ ,ρ,c ′ (q)), then aqc apc. Write ρ = (s, f). If p = q there is nothing to prove. Suppose p = q. Since p ∈ Su(r a ′ ,ρ,c ′ (q)), we obtain that r a ′ ,ρ,c ′ (q) = q. The only path on which the basic reduction r a ′ ,ρ,c ′ acts nontrivially is a ′ sc ′ , and so q = a ′ sc ′ . Recall that r a ′ ,ρ,c ′ (q) = a ′ fc ′ . The fact that p ∈ Su(a ′ fc ′ ) implies that apc ∈ Su(aa ′ fc ′ c). Consider the basic reduction r = r aa ′ ,ρ,c ′ c . Then r(q) = aa ′ fc ′ c and we obtain that apc ∈ Su(r(aqc)). Therefore aqc apc.

(3) Suppose not, so that there is a sequence (p i ) i∈N of paths and a sequence of basic reductions (t i ) i∈N such that p i+1 ∈ Su(t i (p i )). Since is an antisymmetric relation,

p i = p j if i = j. Let i 1 = 1. Suppose that that we have constructed i 1 , . . . , i k such that i 1 < • • • < i k , p i k ∈ Su(t i k-1 • • • • • t 1 (p 1 )) and p j / ∈ Su(t i k-1 • • • • • t 1 (p 1 )) for all j > i k . Set X k = {i > i k : p i ∈ Su(t i k • • • • • t i 1 (p 1 ))}. By the inductive hypothesis, there is x ∈ kQ and λ ∈ k × such that t i k-1 • • • • • t i 1 (p 1 ) = λp i k + x with p i k / ∈ Su(x). Since we also know that p i k +1 ∈ Su(t i k (p i k )), and p i k +1 / ∈ Su(t i k-1 • • • • • t i 1 (p 1 )) it follows that p i k +1 ∈ Su(t i k (p i k ) + x). Also, t i k • • • • • t i 1 (p 1 ) = λt i k (p i k ) + t i k (x) = λt i k (p i k ) + x, so p i k +1 ∈ Su(t i k • • • • • t i 1 (p 1 )). Therefore X k is not empty. We may define i k+1 = max X k , because X k is a finite set.
This procedure constructs inductively a strictly increasing sequence of indices

(i k ) k∈N with p i k ∈ Su(t i k-1 • • • • • t i 1 (p 1 )) for all k ∈ N. The set {t i k-1 • • • • • t i 1 (p 1 ) : k ∈ N} is therefore infinite. This contradicts the reduction-finiteness of R.
The following characterization of the relation is very useful in practice.

Lemma 1.4. If p, q are paths, then q p if and only if p = q or there exists a reduction t such that p ∈ Su(t(q)).

Proof. First we prove the necessity of the condition. Let n ∈ N, r 1 , . . . , r n and p 1 , . . . , p n be as in the definition of , and suppose that n is minimal. Let p1 = p 1 and for each i = 1, . . . , n -1 put pi+1 = r i ( pi ). Notice that the minimality implies that r i (p i ) = p i . Let us first show that if i > j then p i / ∈ Su( pj ).

(1.1) Suppose otherwise and let (i, j) be a counterexample with j minimal. We will prove that in this situation, p l ∈ Su( pl ) for all l < j. We proceed by induction on l. By definition, p 1 ∈ Su( p1 ). Suppose 1 ≤ l < j -1 and p l ∈ Su( pl ). Then we have p l+1 ∈ Su(r l (p l )) and, since l < j, p l+1 / ∈ Su( pl ). Write pl = λp l + x with x ∈ kQ and p l / ∈ Su(x). Since r l acts nontrivially on p l , it acts trivially on x; it follows that r l ( pl ) = λr l (p l ) + x and so p l+1 ∈ Su(r l ( pl )) = Su( pl+1 ). In particular p j-1 ∈ Su( pj-1 ). Since p i / ∈ Su( pj-1 ) and p i ∈ Su( pj ), we must have p i ∈ Su(r j-1 (p j-1 )).

Now, let m = n + j -i, t k = r k and u k = p k if k ≤ j -1, and t k = r i+k-j and u k = p i+k-j if j ≤ k ≤ m. Then, u 1 = q, u n+j-i = p and u k+1 ∈ Su(t k (u k )) for all k = 1, . . . , m -1.
Since m < n this contradicts the choice of n. We thus conclude that (1.1) holds.

We can use the same inductive argument as before to prove that p i ∈ Su( pi ) for all 1 ≤ i ≤ n. Denoting t = (r n , . . . , r 1 ), observe that p ∈ Su(t(q)).

Let us now prove the converse. Suppose p and q are distinct paths such that there exists a reduction t with p ∈ Su(t(q)). Let t = (t m , . . . , t 1 ) with t i basic reductions for all i, and let us proceed by induction on m. Notice that if m = 1 there is nothing to prove. Suppose m > 1. Let t 1 (q) = n i=1 λ i c i , with c i paths and λ i ∈ k × for all i = 1, . . . , n. In particular, q c i for all i. Denote t ′ = (t m , . . . , t 2 ). Since p ∈ Su(t ′ (t 1 (q))) = Su( n i=1 λ i t ′ (c i )), we deduce that there exists 1 ≤ i 0 ≤ n such that p ∈ Su(t ′ (c i 0 )). By inductive hypothesis we deduce c i 0 p. We have already seen that q c i 0 . Therefore q p.

Finally, we define a relation on the set

k × Q ≥0 := {λp : λ ∈ k × , p ∈ Q ≥0 } ∪ {0}
as the least reflexive and transitive relation such that λp µq whenever there exists a reduction r such that r(µq) = λp + x with p / ∈ Su(x). We state 0 λp for all

λp ∈ k × Q ≥0 . If x = n i=1 λ i p i ∈ kQ with λ i ∈ k × and λp belongs to k × Q ≥0 ,
we write x λp if λ i p i λp for all i. If in addition x = λp we also write x ≺ p.

Lemma 1.5. The binary relation is an order satisfying the descending chain condition and it is compatible with concatenation.

Proof. In order to prove the first claim, let us first prove that if p ∈ Q ≥0 is such that there exists a reduction r with r(p) = λp + x and p / ∈ Su(x), then λ = 1 and x = 0. Suppose not. For r a basic reduction, this has already been done in Lemma 1.3. If r is not basic, then r = (r n , . . . , r 1 ) with r i basic and n ≥ 2. Let r ′ = (r n , . . . , r 2 ). Since p ∈ Su(r(p)) = Su(r ′ (r 1 (p))), there exists p 1 ∈ Su(r 1 (p)) such that p ∈ Su(r ′ (p 1 )). By the previous case, we obtain that p / ∈ Su(r 1 (p)), so p = p 1 . As a consequence of Lemma 1.4, we know that p p 1 since p 1 ∈ Su(r 1 (p)) and that p 1 p since p ∈ Su(r ′ (p 1 )). This contradicts the antisymmetry of .

It is an immediate consequence of the previous fact that given a path p and a reduction t,

if t(λ 1 p) = λ 2 p + x with p / ∈ Su(x), then λ 1 = λ 2 . (1.2) Let λ 1 , . . . , λ n+1 ∈ k × , p 1 , . . . , p n+1 ∈ Q ≥0 , x 1 , . . . ,
x n ∈ kQ and reductions t 1 , . . . , t n be such that t i (λ i p i ) = λ i+1 p i+1 + x i , p i+1 / ∈ Su(x i ) and λ n+1 p n+1 = λ 1 p 1 . This implies that p i p i+1 for each 1 ≤ i ≤ n and p n+1 = p 1 . Since is antisymmetric, it follows that p i = p 1 for all i and (1.2) implies that λ i = λ 1 for all i. We thus see that is antisymmetric.

Let now (λ i p i ) i∈N be a sequence in k × Q ≥0 and (t i ) i∈N a sequence of reductions such that t i (λ i p i ) = λ i+1 p i+1 + x i with p i+1 / ∈ Su(x i ). Then p i p i+1 for all i and since satisfies the descending chain condition there exists i 0 such that p i = p i 0 for all i ≥ i 0 . Observation (1.2) implies then that λ i = λ i 0 for all i ≥ i 0 , so that the sequence (λ i p i ) i∈N stabilizes.

The second claim follows from the following observation. If r a ′ ,ρ,c ′ is a basic reduction with ρ = (s, f) and a, c are paths such that aa ′ sc ′ c = 0, then a(r a ′ ,ρ,c ′ (q))c = r aa ′ ,ρ,c ′ c (aqc) for all q ∈ Q ≥0 . This proves that if r = (r m , . . . , r 1 ) with r i = r a ′ i ,ρ i ,c ′ i a basic reduction for all i, then a(r(q))c = r(aqc) where r = (r n , . . . , r1 ) and ri = r aa

′ i ,ρ i ,c ′ i c
for all i.

The Diamond Condition

Let I be a two-sided ideal in kQ.

Definition 1.6. We say that a reduction system R satisfies the Diamond condition for I if 1. the ideal I is equal to the two sided ideal generated by the set {s -f} (s,f)∈R , 2. every path is reduction-unique and

3. for each (s, f) ∈ R, f is irreducible.
One of the main reasons why these reduction systems are useful is the following lemma, which is part of Bergman's Diamond Lemma.

Lemma 1.7. If the reduction system R satisfies the Diamond condition for I, then the set B of irreducible paths satisfies the following properties, (i) 

B is closed under divisors, (ii) π(b) = π(b ′ ) for all b, b ′ ∈ B with b = b ′ , (iii) {π(b) : b ∈ B} is a basis of A.
Definition 1.8. If R is a reduction system satisfying the Diamond condition for I, we define S R := {s ∈ Q ≥0 : (s, f) ∈ R, for some f ∈ kQ}. If it is not ambiguous, we will write S instead of S R .

Remark 1.9. Given q ∈ Q ≥0 , q is irreducible if and only if there exists no p ∈ S such that p divides q.

Remark 1.10. In view of Lemma 1.7, we can define a k-linear map i : A -→ kQ such that be i(π(b))) = b for all b ∈ B. We denote by β : kQ -→ kQ the composition i • π. Notice that if p is a path and r is a reduction such that r(p) is irreducible, then r(p) = β(p). In the bibliography, β(p) is sometimes called the normal form of p. Proof. There is a reduction r such that β(p) = r(p) = n i=1 λ i p i . We have λ i p i p for all i and so β(p) p. The last claim follows from the fact that β(p) = p if and only if p ∈ B.

Next we will prove that these kind of reduction system exists for any two-sided ideal I. Proposition 1.12. If I ⊆ kQ is a two-sided ideal, then there exists a reduction system R which satisfies the Diamond condition for I.

We will prove this result by putting together a series of lemmas.

Let ≤ be a well-order on the set

Q 0 ∪ Q 1 . Let ω : Q 1 -→ N be a function and extend it to Q ≥0 defining ω(e) = 0 for all e ∈ Q 0 and ω(c n • • • c 1 ) = n i=1 ω(c i ) if c i ∈ Q 1 and c n • • • c 1 is a path. Given c, d ∈ Q ≥0 we write that c ≤ ω d if -ω(c) < ω(d), or -c, d ∈ Q 0 and c ≤ d, or -ω(c) = ω(d), c = c n • • • c 1 , d = d m • • • d 1 ∈ Q ≥1 and there exists j ≤ min(|c|, |d|)
such that c i = d i for all ∈ {1, . . . , j -1} and c j < d j .

Notice that the order ≤ ω is in fact the deglex order with weight ω, and it has the following two properties:

1. If p, q ∈ Q ≥0 and p ≤ ω q, then cpd ≤ ω cqd for all c, d ∈ Q ≥0 such that cpd = 0 and cqd = 0 in kQ.

2. For all q ∈ Q ≥0 the set {p ∈ Q ≥0 : p ≤ ω q} is finite.

It is straightforward to prove the first claim. For the second one, let {c i } i∈N be a sequence in Q ≥0 such that c i+1 ≤ ω c i for all i. If c i ∈ Q 0 for some i, then it is evident that the sequence stabilizes, so let us suppose that {c i } i∈N is contained in Q ≥1 and c i+1 < ω c i for all i ∈ N. Since (ω(c i )) i∈N is a decreasing sequence of natural numbers, it must stabilize, so we may also suppose that ω(c i ) = ω(c j ) for all i, j and that the lengths of the paths are bounded above by some M ∈ N. By definition of ≤ ω , we know that the sequence of first arrows of elements of {c i } i∈N forms a decreasing sequence in (Q 1 , ≤), which must stabilize because (Q 1 , ≤) is well-ordered. Let N ∈ N be such that the first arrow of c i equals the first arrow of c j for all i, j ≥ N.

If c i = c i n i • • • c i 1 , and we denote c ′i = c i n i • • • c i 2 , then {c ′i } i≥N is a decreasing sequence in (Q ≥0 , ≤ ω ) with |c ′i | = M -1 for all i.
Iterating this process we arrive to a contradiction. Definition 1.13. Consider as before a well-order ≤ on Q 0 ∪ Q 1 and ω : Q 1 -→ N, and ≤ ω be constructed from them. If p ∈ kQ and p Notice that if s and s ′ both belong to S and s = s ′ , then s does not divide s ′ . For each s ∈ S, choose f s ∈ kQ such that sf s ∈ I, f s < ω s and f s is parallel to s.

= n i=1 λ i c i with λ i ∈ k × , c i ∈ Q ≥0 and c i < ω c 1 for all i = 1, we write tip(p) for c 1 . If X ⊆ kQ, we let tip(X) := {tip(x) : x ∈ X \ {0}}.
Describing the set tip(I) is not easy in general. We comment on this problem in the next section. Lemma 1.14. Let ≤ ω and S be as before. The ideal I equals the two sided ideal generated by the set {sf s } s∈S , which we will denote by sf s s∈S .

Proof. It is clear that s -f s s∈S is contained in I. Choose x = n i=1 λ i c i ∈ I with λ i ∈ k × and c i ∈ Q ≥0 .
We may suppose that c 1 = tip(x), so that c 1 ∈ tip(I). There is a divisor s of c 1 such that s ∈ tip(I) and s ′ / ∈ tip(I) for all proper divisor s ′ of s and s ∈ S by definition of S. Let a, c ∈ Q ≥0 with asc = c 1 . Define x ′ := af s c + n i=2 λ i c i . We have x = λ 1 c 1 + n i=2 λ i c i = λ 1 a(sf s )c + x ′ , so that x ′ ∈ I and, by property (1) of the order ≤ ω , we see that c 1 > tip(x ′ ). We can apply this procedure again to x ′ and iterate: the process will stop by property (2) and we conclude that x ∈ sf s s∈S .

Lemma 1.15. Let ≤ ω and S be as before. The set R := {(s, f s )} s∈S is a reduction system such that every path is reduction-unique. Proof. Since s > ω tip(f s ) for all s ∈ S, properties (1) and (2) guarantee that every path is reduction-finite. We need to prove that every path is reduction-unique. Recall that π is the canonical projection kQ -→ kQ/I. Let p be a path. Since I = sf s s∈S , we see that π(r(p)) = π(p) for any reduction r. Let r and t be reductions such that r(p) and t(p) are both irreducible. Then, π(r(p)t(p)) = π(p)π(p) = 0, so that r(p)t(p) ∈ I. If this difference is not zero, then the path d = tip(r(p)t(p)) can be written as d = asc with a, c paths and s ∈ S. It follows that the reduction r a,s,c acts nontrivially either on r(p) or on t(p), and this is a contradiction. This lemma implies that for each s ∈ S, there exists a reduction r and an irreducible element f ′ s such that r(f s ) = f ′ s . Consider the reduction system R ′ := {(s, f ′ s ) : s ∈ S}. The set of irreducible paths for R coincides with the set of irreducible paths for R ′ and, since π(s -

f ′ s ) = π(s -f s ) = 0, we have that s -f ′ s s∈S ⊆ I. From Bergman's Diamond Lemma it follows that I = s -f ′ s s∈S .
The fact that each f ′ s is obtained from f s by applying reductions implies that every reduction relative to R ′ is a composition of reductions relative to R, and this implies that every path is reduction unique relative to R. Also, the paths f ′ s are irreducible relative to R, and since S R = S R ′ , we deduce that the elements f ′ s are irreducible relative to R ′ . We can conclude that the reduction system R ′ satisfies the Diamond condition, thereby proving Proposition 1.12.

Lemma 1.16. Let ≤ ω and S as before. For each s ∈ S, let f s and g s be elements in kQ such that sf s , sg s ∈ I. If f ′ s and g ′ s are the elements constructed as in the last paragraph, then

f ′ s = g ′ s .
Proof. Both f ′ s and g ′ s are irreducible and so their difference

f ′ s -g ′ s is irreducible. On the other hand, s -f ′ s , s -g ′ s ∈ I implies that f ′ s -g ′ s ∈ I. We deduce that f ′ s -g ′ s = 0.
This lemma implies that the reduction system R ′ associated to the order ≤ on Q 0 ∪ Q 1 and weight ω does not depend on any choice. Definition 1.17. The reduction system R ′ associated to the order ≤ and weight ω will be denoted by R ≤,ω .

Notice that if instead of starting from a well-order we consider a total order on Q 0 ∪ Q 1 and a weight function ω such that ≤ ω is a well-order on Q ≥0 , the construction of a reduction system for I can be carried out in the same way as before.

It is important to emphasize that different choices of orders on Q 0 ∪ Q 1 and of weights ω will give very different reduction systems, some of which will better suit our purposes than others. Moreover, there are reduction systems which cannot be obtained by this procedure.

Finding reduction systems that satisfy the Diamond condition

Given an algebra A = kQ/I, we proved in Lemmas 1.14 and 1.15 that it is always possible to construct a reduction system R which satisfies the Diamond condition. However, it is not always easy to follow the prescriptions given by these lemmas for a concrete algebra.

Remark 1.18. The two sided ideal I is usually presented giving a set X ⊆ kQ of generating relations, with X at most countable. From these relations it is easy to obtain a reduction system R verifying the following conditions:

1. the ideal I is equal to the two sided ideal generated by the set {s -f} (s,f)∈R , 2'. every path is reduction-finite,

To do this fix a well-order on Q 0 ∪ Q 1 , a function ω : Q 1 -→ N and consider the total order ≤ ω on Q ≥0 . For all x ∈ X we can write in a unique way x = s xf x , and we can eventually rescale x so that s x is monic, with

s x > ω f x . Define R X := {(s x , f x )} x∈X .
The set R X is a reduction system that satisfies conditions 1 and 2 ′ . Remark 1.19. Suppose we have a reduction system R satisfying conditions 1 and 2 ′ for some ideal I. From R we can construct another reduction system R ′ satisfying conditions 1, 2 ′ and also 3. for each (s, f) ∈ R, f is irreducible. Indeed, since every path is reduction finite, for each (s, f) ∈ R we can find a reduction r (s,f) such that r (s,f) (f) is irreducible. The reduction system R ′ := {(s, r (s,f) (f)) : (s, f) ∈ R} verifies conditions 2 ′ and 3. Let us see that it also verifies condition 1 for I. Notice that π(r (s,f) (f)) = π(f) = π(s), and then π(sr (s,f) (f)) = 0. This implies sr (s,f) (f) (s,f)∈R ⊆ s -f (s,f)∈R = I. In order to see the other inclusion, write R = {(s i , f i )} i∈N such that s i ≤ s i+1 for all i ∈ N. We shall proceed by induction on i and prove that s if i ∈ sr (s,f) (f) (s,f)∈R for all i ∈ N. The element f 1 is irreducible, since every term appearing in it is strictly smaller than s 1 and so it is strictly smaller than all s i with i ∈ N. Thus, r (s 1 ,f 1 ) (f 1 ) = f 1 . Let i > 1 and suppose r jf j ∈ sr (s,f) (f) (s,f)∈R for all j ≤ i. Notice that the element f i+1 can only have terms divisible by s j with j ≤ i.

In particular, we have that

r (s i+1 ,f i+1 ) = (r n , • • • , r 1 ) with r k = r a k ,(s j k ,f j k ),c k for j k ≤ i and some paths a k , c k . The next lemma shows that r (s i+1 ,f i+1 ) (f i+1 ) -f i+1 ∈ s j -f j i j=1 . By inductive hypothesis, this implies r (s i+1 ,f i+1 ) (f i+1 ) -f i+1 ∈ s -r (s,f) (f) (s,f)∈R , and so, s i+1 -f i+1 ∈ s -r (s,f) (f) (s,f)∈R . Lemma 1.20. Let r = (r n , • • • , r 1 ) be a reduction with r k = r a k ,(s k ,f k ),c k basic reductions for k = 1, . . . , n. If x ∈ kQ, then x -r(x) belongs to the two-sided ideal generated by the set {s k -f k } n k=1 .
Proof. We will proceed by induction on n. If n = 1, then r = r 1 = r a,(s,f),c is a basic reduction. Suppose r(x) = x, otherwise there is nothing to prove. We have x = λasc + x ′ , with λ ∈ k × and asc / ∈ Su(x ′ ). Therefore r(x) = λafc + x ′ , and we obtain x = λa(sf)c + r(x). If n > 1, then xr(x) = xr 1 (x) + r 1 (x)r ′ (r 1 (x)), where r ′ = (r n , . . . , r 2 ), and the result follows.

Observe that different choices of reductions r (s,f) may lead to different reduction systems R ′ . Also, notice that S R ′ = S R .

We have proved the following lemma.

Lemma 1.21. Let ≤ be an order on Q 0 ∪ Q 1 and ω a weight function. If X is a, at most countable, generating set of relations for I, then R X satisfies conditions 1 and 2 ′ . If R X does not satisfy condition 3, using the method given in Remark 1. [START_REF] Green | Projective resolutions of straightening closed algebras generated by minors[END_REF] we can find another generating set of relations X ′ such that R X ′ is a reduction system that satisfies conditions 1, 2 ′ and 3.

Proof. The proof was carried in remarks 1.18 and 1.19. Using that notation, we have Let X = {cdab, ab -d} and let I be the two-sided ideal generated by X. The reduction system R X is {(cd, ab), (ab, d)} and it does not satisfy condition 3 since the path ab is reducible. The reduction r 1,ab,1 satisfies that r 1,ab,1 (ab) = d is irreducible. We replace the element (cd, ab) in R X ′ by the element (cd, d). Observe that cdd = cdab + abd ∈ I, and so the ideal generated by X is the same as the ideal generated by X ′ = {cd -d, ab -d}. The reduction system R ′ = {(cd, d), (ab, d)} satisfies conditions 1, 2 ′ and 3.

X ′ := {s -f : (s, f) ∈ R ′ }.
The next example shows that there are reduction systems satisfying conditions 1, 2 ′ and 3 that cannot be obtained by the above method.

Example 1.23. Consider the algebra

A = k x, y, z /(x 3 + y 3 + z 3 -xyz)
and let R = {(xyz, x 3 + y 3 + z 3 )}. It is clear that R satisfies conditions 1 and 3. Also, but not entirely evident, this reduction system satisfies condition 2 ′ .

On the other hand, if ≤ is an order on the set of arrows {x, y, z} and ω is a weight function, the maximum of the set {xyz, x 3 , y 3 , z 3 } with respect to the total order ≤ ω is u 3 , where u is the maximum of the set {x, y, z} with respect to ≤. This implies that there is no choice of order ≤ and weight ω such that xyz = s, f = x 3 + y 3 + z 3 and f < ω s. Therefore, the reduction system R cannot be obtained by the method given in remarks 1.18 and 1.19.

Using Bergman's Diamond Lemma with the partial order

of Lemma 1.3 we obtain an easy way to check whether a reduction system R which verifies 1, 2 ′ and 3, satisfies the Diamond condition or not. Proposition 1.24. Let R be a reduction system such that conditions 1, 2 ′ and 3 are satisfied. The reduction system R satisfies the Diamond condition if and only if all ambiguities are resolvable. In fact, it is enough to check that all minimal overlap ambiguities are resolvable.

Example 1.25.

1. Consider the algebra A = k x, y /I, where I = x 2 , y 2 , yxξxy . Let y < x and ω(x) = 1 = ω(y). Define X = {x 2 , y 2 , yx -ξxy}. Since yx > ω xy we see that the reduction system constructed as in Remark 1.18 is R X = {(x 2 , 0), (y 2 , 0), (yx, ξxy)} which satisfies conditions 1, 2 ′ and 3. Denote ρ 1 = (x 2 , 0), ρ 2 = (yx, ξxy) and ρ 3 = (y 2 , 0).

It is clear that there are no inclusion ambiguities relative to R X and that the set of minimal overlap ambiguities is {(ρ 1 , ρ 1 , x, x, x), (ρ 2 , ρ 1 , y, x, x), (ρ 3 , ρ 2 , y, y, x), (ρ 3 , ρ 3 , y, y, y)}.

The ambiguity (ρ 1 , ρ 1 , x, x, x) is resolvable since we can choose r = r 1,ρ 1 ,x and t = r x,ρ 1 ,1 , and we obtain r(x 3 ) = 0 = t(x 3 ). Similarly, the ambiguity (ρ 3 , ρ 3 , y, y, y) is resolvable. Let us see that the ambiguity (ρ 3 , ρ 2 , y, y, x) is resolvable. Consider r = r 1,ρ 3 ,x and t = (r x,ρ 3 ,1 , r 1,ρ 2 ,y , r y,ρ 2 ,1 ). Then r(p) = 0 = t(p). The process of reducing p from both sides can pictured as follows: where t = (t 3 , t 2 , t 1 ). Similarly, to see that yx 2 is resolvable, consider r = (r 1,ρ 1 ,y , r x,ρ 2 ,1 , r 1,ρ 2 ,x ) and t = r y,ρ 1 ,1 . Therefore, the reduction system R X satisfies the Diamond condition for I.

2. The reduction system R of Example 1.23 does not have any ambiguities and therefore it satisfies the Diamond condition.

On the other hand, consider the order x < y < z and weight function ω

with ω(x) = ω(y) = ω(z) = 1. Define X = {x 3 + y 3 + z 3 -xyz}. The re- duction system R X is {(z 3 , xyz -x 3 -y 3
)} and it satisfies conditions 1, 2 ′ and 3. Denote ρ = (z 3 , xyzx 3y 3 ). There are no inclusion ambiguities and the only minimal overlap ambiguity is (ρ, ρ, z, z 2 , z), but it is not resolvable. Indeed, r z,ρ,1 (z 4 ) = zxyzzx 3zy 3 which is irreducible. On the other hand, r 1,ρ,z (z 4 ) = xyz 2x 3 zy 3 z which is also irreducible and different from the first one. Therefore (ρ, ρ, z, z 2 , z) is not resolvable and we obtain that R X does not satisfy the Diamond condition.

Remark 1.26. We now deal with the case in which a reduction system constructed from a generating set X for I, an order ≤ and a weight function ω, as in remarks 1.18 and 1.19, satisfies conditions 1, 2 ′ and 3 but not the Diamond condition. An example of such a reduction system is R X of the last example. This procedure is also described in [START_REF] Bergman | The diamond lemma for ring theory[END_REF], Section 5.

Suppose R X satisfies conditions 1, 2 ′ and 3 but there exists a non resolvable ambiguity p = (ρ 1 , ρ 2 , a, b, c). Choose two reductions r = (r n , . . . , r 1 ) and t = (t m , . . . , t 1 ) such that r(p) and t(p) are irreducible but different, with r 1 and t 1 the basic reductions corresponding to the type ambiguity. Notice that r(p)t(p) ∈ I \ {0}.

Write r(p)t(p) = sf with f < ω s and define X ′ := X ∪ {s -f}. The reduction system R X ′ satisfies conditions 1, 2 ′ and we may have to modify it as in Remark 1.19 so that it satisfies condition 3. Notice that p is now resolvable with respect to R X ′ . New ambiguities may now appear, so it is necessary to iterate this process, which may have infinitely many steps, but we will arrive to a reduction system R that satisfies conditions 1, 2 ′ , 3, and having no non resolvable ambiguities, that is, R will satisfy the Diamond condition. Next we give an example to illustrate this procedure.

Example 1.27. Consider the algebra A, the set X and the reduction system R X = {(z 3 , xyzx 3y 3 )} of the second example of Example 1.25. We saw that (ρ, ρ, z, z 2 , z) is a non resolvable ambiguity and that the elements r(z 4 ) = zxyzzx 3zy 3 , t(z 4 ) = xyz 2x 3 zy 3 z are irreducible, where r = r z,ρ,1 and t = r 1,ρ,z . The difference between r(p) and t(p) is xyz 2x 3 zy 3 zzxyz + zx 3 + zy 3 . Define X 1 = X ∪ {xyz 2x 3 z + y 3 z + zxyzzx 3zy 3 }.

We have R X 1 = {ρ, ρ 1 } where ρ 1 = (xyz 2 , x 3 z + y 3 z + zxyzzx 3zy 3 ), and notice that the ambiguity (ρ, ρ, z, z 3 , z) is now resolvable. The set of ambiguities for R X 1 is {(ρ, ρ, z, z 2 , z), (ρ 1 , ρ, xy, z 2 , z)}. Applying reductions to the element xyz 3 we obtain again two different irreducible elements whose difference is

y 3 z 2 + x 3 z 2 + z 2 xyz -z 2 x 3 -z 2 y 3 -xyxyz + xyx 3 + xy 4 . Define X 2 = X 1 ∪ {y 3 z 2 + x 3 z 2 + z 2 xyz -z 2 x 3 -z 2 y 3 -xyxyz + xyx 3 + xy 4 }.
The reduction system R X 3 is the set {ρ, ρ 1 , ρ 2 }, where

ρ 3 = (y 3 z 2 , -x 3 z 2 -z 2 xyz + z 2 x 3 + z 2 y 3 + xyxyz -xyx 3 -xy 4 ).
We obtain the new ambiguity (ρ 3 , ρ, y 3 , z 2 , z) which is not difficult to see that it is resolvable. Thus, the reduction system R X 3 = {(z 3 , xyz -x 3 -y 3 ), (xyz 2 , x 3 z + y 3 z + zxyz -zx 3 -zy 3 ), (y 3 z 2 , -x 3 z 2z 2 xyz + z 2 x 3 + z 2 y 3 + xyxyzxyx 3xy 4 )}.

satisfies the Diamond condition for I = X . There is another reduction system which verifies the Diamond condition for I, namely

R = {(xyz, x 3 + y 3 + z 3 )}.
This example shows that a reduction system obtained from a deglex order ≤ ω may be sometimes less convenient than other ones.

We end this section with a series of results that are important for the next section.

If R is a reduction system, denote b,c) is an inclusion ambiguity for some ρ 1 , ρ 2 ∈ R}.

Inc(R) := {abc ∈ Q ≥0 : (ρ 1 , ρ 2 , a,
Proposition 1.28. Let R be a reduction system which satisfies the Diamond condition for an ideal I. The set R ′ = {(s, f) ∈ R : s / ∈ Inc(R)} is a reduction system satisfying the Diamond condition for I and it has no inclusion ambiguities.

Proof. Observe that R ′ is obtained from R by deleting the elements (s, f) ∈ R for which there exists (s ′ , f ′ ) ∈ R with s ′ a proper divisor of s. In particular, R ′ ⊆ R. Let J ⊆ I be the ideal generated by the set {s -f} (s,f)∈R ′ .

A path p is irreducible relative to R ′ if and only if it is irreducible relative to R. Since R satisfies the Diamond condition for I, we obtain that R ′ satisfies the Diamond condition for J. The inclusion J ⊆ I induces a k-algebra epimorphism ϕ : kQ/J -→ kQ/I and since the set of irreducible paths is the same for both reduction systems, the homomorphism sends a basis of kQ/J to a basis of kQ/I, and so ϕ is an isomorphism. This implies that I = J and we deduce that R ′ satisfies the Diamond condition for I. The fact that R ′ does not have any inclusion ambiguity is evident.

Example 1.29. Consider the quiver Q with only one vertex and four arrows, namely Q 1 = {a, b, c, d}. Define a < b < c < d and ω(α) = 1 for all α ∈ Q 1 . Let X be the set {abca, abcb, ab -d} and define I as the two-sided ideal generated by it. We have R X = {(abc, a), (abc, b), (ab, d)}.

Following the methods described in remarks 1.18, 1.19 and 1.26, we obtain the reduction system R = {(abc, a), (abc, b), (ab, d), (dc, a), (b, a), (aa, d)} that satisfies the Diamond condition. The set Inc(R) is {abc, ab}. Then, R ′ = {(dc, a), (b, a), (aa, d)} is a reduction system satisfying the Diamond condition and it has no inclusion ambiguities.

The following corollary says that this method is in fact a very efficient way to compute the reduction systems R ≤,ω constructed in Lemmas 1.14 and 1.15, as well as the set tip(I).

Corollary 1.30. Let ≤ be an order on Q 0 ∪ Q 1 , ω a weight function and I a two-sided ideal. If X is a generating set of relations for I such that R X satisfies conditions 1, 2 ′ , 3 and every ambiguity is resolvable for it, then

R ≤,ω = {(s, f) ∈ R X : s / ∈ Inc(R X )},
and p ∈ tip(I) if and only if there exists q ∈ tip(X) such that q divides p.

Proof. Denote R ′ = {(s, f) ∈ R X : s / ∈ Inc(R X )}.
By the previous proposition, we know that R ′ satisfies the Diamond condition for I. Recall that S R ≤,ω := Mintip(I) = {p ∈ tip(I) : p ′ / ∈ tip(I) for all proper divisors p ′ of p}.

Let B R ≤,ω and B R ′ be respectively the sets of irreducible paths of R ≤,ω and R ′ . Notice that a path p belongs to B R ≤,ω if and only if it is not divisible by any element of tip(I).

By the definition of R X we have that f < ω s for all (s, f) ∈ R ′ and sf ∈ I, thus s ∈ tip(I) and we can find an element (s ′ , f ′ ) ∈ R ≤,ω with s ′ a divisor of s. We deduce that B R ≤,ω ⊆ B R ′ . By Lemma 1.7, the sets π(B R ≤,ω ) and π(B R ′ ) are bases of kQ/I and

π(B R ≤,ω ) ⊆ π(B R ′ ), therefore π(B R ≤,ω ) = π(B R ′ ). Again by Lemma 1.7 we obtain that B R ≤,ω = B R ′ .
Let (s, f) ∈ R ′ . We know that R ′ does not have any inclusion ambiguities. This implies that every proper divisor of s belongs to B R ′ . Since B R ≤,ω = B R ′ , we deduce that every proper divisor of s does not belong to tip(I) and therefore s ∈ S R ≤,ω . Since f is irreducible relative to R ′ , and therefore it is irreducible relative to R ≤,ω , we obtain that (s, f) ∈ R ≤,ω . This implies that R ′ ⊆ R ≤,ω .

Let us see the other inclusion. Let (s, f) ∈ R ≤,ω . The fact that s is reducible relative to R ≤,ω implies that it is reducible relative to R ′ and so there exists (s ′ , f ′ ) ∈ R ′ with s ′ a divisor of s. Since every proper divisor of s is irreducible relative to R ≤,ω , we obtain that every proper divisor of s is irreducible relative to R ′ and therefore s ′ = s. From this we deduce that ff ′ belongs to I. The element ff ′ is irreducible and so f -

f ′ = 0, that is, (s, f) = (s ′ , f ′ ) ∈ R ′ .
Let us see the second claim. Notice that a path p is divisible by an element of S R ′ if and only if it is divisible by an element in tip(X). On the other hand, a path p belongs to tip(I) if and only if it is divisible by some element in S R ≤,ω = S R ′ . Putting these two facts together we obtain the second claim.

A reduction system R satisfying the Diamond condition for an ideal I may have elements (s, f) ∈ R with s ∈ Q 0 ∪ Q 1 . The following lemma says how to delete this type of elements.

Lemma 1.31. If R is a reduction system satisfying the Diamond condition for I with no inclusion ambiguities, then the algebra A = kQ/I can be written as

A = k Q/ Î where Q is a subquiver of Q, R = R \ {(s, f) ∈ R : s ∈ Q 0 ∪ Q 1 }
is a reduction system in k Q that satisfies the Diamond condition for Î, it has no inclusion ambiguities and the set Ŝ of first coordinates of elements of R satisfies Ŝ ⊆ Q≥2 .

Proof. Define R i := {(s, f) ∈ R : s ∈ Q i } and S i := S ∩ Q i for i = 0, 1. We know that for all (s, f) ∈ R, f is a linear combination of paths that are not divisible by any element of S 0 ∪ S 1 . Also, if (s, f) ∈ R \ (R 0 ∪ R 1 ), then s is not divisible by any element of S 0 ∪ S 1 . Since every path parallel to a vertex e is divisible by e, we obtain that f = 0 for all (s, f) ∈ R 0 . Let X be the set of arrows in Q 1 that have as target or source an element of S 0 . Consider the quiver Q obtained from Q by removing all the vertices in S 0 as well as all the arrows in X ∪ S 1 . Let R := R \ {R 0 ∪ R 1 }. Observe that R is a reduction system defined on Q. Define Î as the two-sided ideal in k Q generated by the set {s -f} (s,f)∈ R. Notice that Î is a subset of I.

A path p in Q is irreducible with respect to R if and only if it is a path in Q that is irreducible with respect to R. Also, if p is a path in Q and r is a basic reduction of R such that r(p) = p, then r is a basic reduction of R. These two facts imply that every path in Q is reduction-unique with respect to R. Thus, R is a reduction system satisfying the Diamond condition for Î. The inclusions Q ⊆ Q and Î ⊆ I induce a k-algebra morphism ϕ : k Q/ Î -→ kQ/I. The set of paths in Q that are irreducible with respect to R coincides with the set of paths in Q that are irreducible with respect to R. Since these sets form bases of kQ/I and k Q/ Î respectively, we see that ϕ is an isomorphism. 

d ∼ = k Q/ dc -a, aa -d},
where R is a reducion system satisfying the Diamond condition for Î with no inclusion ambiguities and Ŝ ⊆ Q2 .

Ambiguities

Let I be a two-sided ideal of kQ and R a reduction system satisfying the Diamond condition for I. By Proposition 1.28 and Lemma 1.31 we can assume without loss of generality that R does not have any inclusion ambiguities and that S ⊆ Q ≥2 .

We will next recall the definition of n-ambiguity or n-chain according to the terminology used in [START_REF] Anick | On the homology of associative algebras[END_REF], [START_REF] Anick | On the homology of quotients of path algebras[END_REF], [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF] and to Bardzell's [START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF] associated sequences of paths. Definition 1.33. Given n ≥ 2 and p ∈ Q ≥0 , 1. the path p is a left n-ambiguity if there exist u 0 ∈ Q 1 , u 1 , . . . , u n irreducible paths such that

(a) p = u 0 u 1 • • • u n , (b 
) for all i, the path u i u i+1 is reducible but u i d is irreducible for any proper left divisor d of u i+1 .

2.

The path p is a right n-ambiguity if there exist v 0 ∈ Q 1 and v 1 , . . . , v n irreducible paths such that

(a) p = v n • • • v 0 , (b 
) for all i, the path v i+1 v i is reducible but dv i is irreducible for any proper right divisor of v i+1 .

Define A -1 := Q 0 , A 0 := Q 1 , A 1 := S and for n ≥ 2 define A n and A ′ n to be respectively the set of left n-ambiguities and right n-ambiguities. Proposition 1.34. For all n ≥ 2 the equality A n = A ′ n holds.

Proof. This fact is proved in [START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF] and also in [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF].

Proposition 1.35. Let n, m ∈ N, p ∈ Q ≥1 . If u 0 , û0 ∈ Q 1 and u 1 , . . . u n , û1 , .
. . , ûn are paths in Q such that both u 0 , . . . , u n and û0 , . . . , ûn satisfy conditions (1a) and (1b) of the previous definition for p, then n = m and u i = ûi for all i, 0 ≤ i ≤ n.

Proof. Suppose n ≤ m. It is obvious that u 0 = û0 , since both of them are arrows.

Notice that kQ = T kQ 0 kQ 1 , that is the free algebra generated by kQ 1 over kQ 0 , which implies that either u 0 u 1 divides û0 û1 or û0 û1 divides u 0 u 1 , and moreover u 0 u 1 , û0 û1 ∈ A 1 = S. Remark 1.9 says that u 0 u 1 = û0 û1 . Since u 0 = û0 , we must have u 1 = û1 . By induction on i, let us suppose that u j = ûj for j ≤ i. As a consequence, Proposition 1.37. If n ≥ 0 is even and p ∈ A n , then there are exactly two elements p 1 , p 2 ∈ A n-1 dividing p. Moreover, if p = u 0 • • • u n = v n . . . v 0 are the factorizations of p as left and right n-ambiguity, then p 1 = u 0 . . . u n-1 and p 2 = v n-1 . . . v 0 .

u i+1 • • • u n = ûi+1 • • • ûm . If i + 1 = n,
Proof. This fact is also proved in [START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF] and in [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF] Proposition 1.38. Let Amb be the set of ambiguities of R. The map f : Amb -→ A 2 given by f((ρ 1 , ρ 2 , a, b, c)) = abc is well defined and it is a bijection.

Proof. The fact that R has no inclusion ambiguities implies that all the ambiguities are minimal overlap ambiguities. Let (ρ 1 , ρ 2 , a, b, c) be an ambiguity and write a = a 0 a 1 with a 0 ∈ Q 1 . Define u 0 := a 0 , u 1 := a 1 b and u 2 = c. Since (ρ 1 , ρ 2 , a, b, c) is a minimal overlap ambiguity and there are no inclusion ambiguities, if abc = d 1 sd 2 with s ∈ S, then either d 1 ∈ Q 0 and s = ab, or d 2 ∈ Q 0 and s = bc. For any proper left divisor u ′ of u 1 , the path u 0 u ′ is a proper left divisor of ab and therefore it is irreducible. Similarly, for any proper left divisor u ′ of u 2 , the path u 1 u ′ is a proper left divisor of u 1 u 2 = a 1 bc and we deduce that it is irreducible. This implies that u 0 u 1 u 2 = abc is a 2-ambiguity, and so the map f is well defined.

Let u 0 u 1 u 2 ∈ A 2 . We know that u 0 u 1 is reducible. Since u 0 ∈ Q 1 and u 1 is irreducible we obtain that u 0 u 1 ∈ S. On the other hand, u 1 u 2 is reducible and since u 2 and u 1 u ′ are irreducible for all proper left divisor u ′ of u 2 , we can write

u 1 = u ′ 1 u ′′ 1 such that u ′′ 1 u 2 ∈ S. The element (ρ 1 , ρ 2 , u 0 u ′ 1 , u ′′ 1 , u 2
) is a minimal overlap ambiguity, where ρ 1 , ρ 2 are respectively the unique elements in R with first coordinate u 0 u 1 and

u ′′ 1 u 2 . Notice that f((ρ 1 , ρ 2 , u 0 u ′ 1 , u ′′ 1 , u 2 )) = u 0 u 1 u 2 and so f is suryective. Let us see that f is injective. Let (ρ 1 , ρ 2 , a, b, c) and (ρ ′ 1 , ρ ′ 2 , a ′ , b ′ , c ′ ) be minimal overlap ambiguities such that abc = a ′ b ′ c ′ . If abc = a ′ b ′ c ′ , then either ab divides a ′ b ′ or a ′ b ′ divides ab.
Since ab, a ′ b ′ ∈ S and there are no inclusion ambiguities, we obtain that ab = a ′ b ′ and so c = c ′ . Similarly, bc = b ′ c ′ and we deduce that b = b ′ and a = a ′ . This implies that (ρ

1 , ρ 2 , a, b, c) = (ρ ′ 1 , ρ ′ 2 , a ′ , b ′ , c ′ ).
Example 1.39. In practice, computing the sets A n is not difficult. Proposition 1.38 is the best way to start since the computation of the set Amb is not hard. To obtain the set A 3 we have to consider the minimal overlaps of elements p = u 0 u 1 u 2 ∈ A 2 with elements s ∈ S on the right in such a way that s does not overlap with u 0 u 1 . In general to obtain A n+1 from A n we form every minimal overlap of elements p = u 0 . . . u n with elements s ∈ S on the right such that s does not overlap with u n-1 u n . Next we give an example. Let Q be the quiver with one vertex and two arrows a, b. Let I be the two-sided ideal generated by the set X = {aba, bab} and consider the order a < b and weight ω(a) = ω(b) = 1. By Proposition 1.24, the reduction system R X = {(aba, 0), (bab, 0)} satisfies the Diamond condition for I. Moreover, it has no inclusion ambiguities and S = {aba, bab} ⊆ Q ≥2 .

Chapter 2

Previous work by Anick, Green and Bardzell

In this chapter we will recall the main results in [START_REF] Anick | On the homology of associative algebras[END_REF], [START_REF] Anick | On the homology of quotients of path algebras[END_REF], [START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF] and [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF]. Bardzell's resolution and Sk öldberg's contracting homotopy for it are fundamental for our results.

Anick's resolution

Let A be an augmented k-algebra, that is a k-algebra with a one dimensional module T . Let {v} be a k-basis of T and ǫ : A -→ T the A-module morphism given by ǫ(a) = a • v, for a ∈ A, and let η : T -→ A be the k-module morphism given by η(λv) = λ • 1, for λ ∈ k.

The algebra A can be presented as A = k X /I for some set X and some ideal I.

Choose for example a generating set X of A. Consider the quiver Q with one vertex and Q 1 = X. Let ≤ be a total order on X and ω : X -→ N a function such that ≤ ω , the induced order ≤ ω on the set of paths, is a well-order. For example, if ≤ is a well-order on X, then ≤ ω is a well-order. Consider the reduction system R ≤,ω coming from this order. Let A n be the set of n-ambiguities for n ≥ -1 and let B be the set of irreducible paths.

For n ≥ 0 define a partial order on the set {p ⊗ b :

p ∈ A n , b ∈ B} ⊆ kA n ⊗ k A by p ⊗ b < p ′ ⊗ b ′ if pb < ω p ′ b ′ . This is in fact a total order. Observe that the set {p ⊗ b : p ∈ A n , b ∈ B} is a basis of kA n ⊗ k A. For x ∈ kA n ⊗ k A denote tip(x)
to be the highest term when writing x as a linear combination of elements of this basis.

Theorem 2.1 (Anick [1]). There is a resolution of T by free right

A-modules, 0 T o o A ǫ o o kX ⊗ k A d 0 o o kS ⊗ k A d 1 o o kA 2 ⊗ k A d 2 o o • • • d 3 o o , (2.1)
where d 0 (x) = xη(ǫ(x)) for x ∈ X, and for each n ≥ 1 the differential d n is such that

tip(d n (u 0 • • • u n ⊗ 1) -u 0 • • • u n-1 ⊗ u n ) < u 0 • • • u n-1 ⊗ u n . (2.
2)

The first problem with this result is that the information about the differentials is very limited. For an ambiguity u 0 • • • u n , there might be many terms p ⊗ b verifying p ⊗ b < u 0 ⊗ u n-1 ⊗ u n . The second problem is that it is an existence theorem, even if we are able to control these terms and we manage to obtain morphisms {d n } n∈N forming a complex and verifying condition 2.2, we cannot conclude from Anick's theorem that it will be a resolution.

We give an example to illustrate these problems.

Example 2.2. Let ξ ∈ k and A = k x, y / x 2 , y 2 , yxξxy . Consider the order x < y and weights ω(x) = 1 = ω(y). By Example 1.25 R = {(x 2 , 0), (y 2 , 0), (yx, ξxy)} satisfies the Diamond condition for I. Also, Example 1.41 shows that the set of n-ambiguities is A n = {y s x t : s + t = n + 1}. For n ∈ N, the set {y s x t ⊗ u :

s + t = n + 1, u ∈ {1, x, y, xy}} is a basis of kA n ⊗ k A.
Let T be the one-dimensional module with basis {v} and action v • x = 0 = v • y. By Anick's theorem we know that there exists a resolution as in 2.1 such that d 0 (x) = x, d 0 (y) = y and for s

+ t = n + 1, tip(d n (y s x t ⊗ 1) -y s x t-1 ⊗ x) < y s x t-1 ⊗ x, (2.3) 
in case t > 0, and tip(d n (y n+1 ⊗ 1)y n ⊗ y) < y n ⊗ y.

(2.4) Suppose t > 0. Equation (2.3) says that d n (y s x t ⊗ 1) = y s x t-1 ⊗ x + w, where w is a linear combination of terms of the form y s ′ x t ′ ⊗ u with s ′ + t ′ = n and y s ′ x t ′ u < y s x t . Since s ′ + t ′ = n we obtain that u cannot be equal to xy, otherwise the weight of y s ′ x t ′ u is n + 2 which is higher than the weight of y s x t . Since x < y we deduce that u = x or u = 1. Moreover, any term of the form y s ′ x t ′ ⊗ u where s ′ + t ′ = n, veryfing either u = x and t ′ < t or u = 1, satisfies y s ′ x t ′ ⊗ u ≤ y s x t-1 ⊗ x. There are n + 1 + t of these terms.

In case t = 0 similar arguments show that d n (y n+1 ⊗ 1) = y n ⊗ y + w, where w is a linear combination of terms of the form y s ′ x t ′ ⊗ u with s ′ + t ′ = n and u ∈ {1, x, y}. There are 3n + 3 of these terms.

In any case, condition 2.2 of Anick's theorem provides very poor information about the differentials.

Let us consider the special case ξ = 0. The family of A-module morphisms {f n } n∈N such that f n (y s x t ⊗ u) = y s x t-1 ⊗ xu, for t > 0, and f n (y n+1 ⊗ u) = y n ⊗ yu, form a complex and verifies

tip(f n (u 0 . . . u n ⊗ 1) -u 0 . . . u n-1 ⊗ u n ) < u 0 . . . u n-1 ⊗ u n ,
but so far there is no guarantee that (kA • ⊗ k A, f • ) is a resolution of T . We will be able to prove that it is a resolution using Bardzell's resolution for monomial algebras.

Anick-Green resolution

In [START_REF] Anick | On the homology of quotients of path algebras[END_REF], the authors generalize the results in [START_REF] Anick | On the homology of associative algebras[END_REF] to the setting of quotients of path algebras by ideals contained in J 2 , where J is the ideal generated by the arrows. Let π : kQ -→ A be the canonical projection, where A = kQ/I. Consider a reduction system R ≤,ω coming from a well order ≤ on the set of Q 0 ∪ Q 1 and a weight function ω. For n ≥ -1, let A n be the sets of n-ambiguities and B be let the set of irreducible paths. Given

1 ≤ i ≤ m, denote A i n = {p ∈ A n : e i p = p}. For each b ∈ B and n ≥ -1, consider W b n = p ⊗ π(b ′ ) ∈ kA i n ⊗ E A : p ∈ A i n , b ′ ∈ B, pb ′ < ω b k ⊆ kA i n ⊗ E A.
Theorem 2.3 (Anick-Green, [START_REF] Anick | On the homology of quotients of path algebras[END_REF]). With the above notation, let T be the one dimensional module over the vertex e i . There is a resolution of T by projective right A-modules,

0 T o o A ǫ o o kA i 0 ⊗ E A d 0 o o kA i 1 ⊗ E A d 1 o o kA i 2 ⊗ E A d 2 o o • • • d 3 o o
, and for each n ≥ 1 the differential d n is such that

d n (u 0 . . . u n ⊗ 1) -u 0 . . . u n-1 ⊗ π(u n ) ∈ W u 0 ...u n n-1
.

Each one of the problems to construct resolutions using Anick's theorem appears also in this generalization.

Bardzell's resolution

Let A be a monomial algebra, that is, a quotient of a path algebra A = kQ/I with I a two-sided ideal generated by paths of length at least 2. Let X be the set

X = {x ∈ Q ≥0 : x ∈ I and x ′ / ∈ I for all proper divisor x ′ of x}.
Notice that I is the two-sided ideal generated by X.

Lemma 2.4. The reduction system R = {(x, 0) : x ∈ X} satisfies the Diamond condition for I, it has no inclusion ambiguities and S R = X ⊆ Q ≥2 .

Denote E = kQ 0 . The fact that the sets of n-ambiguities are subsets of Q ≥2 implies that the k-vector space kA n is in fact an E-bimodule and therefore we can form the

A-bimodules A ⊗ E kA n ⊗ E A. The set {π(b) ⊗ p ⊗ π(b ′ ) : p ∈ A n , b, b ′ ∈ B} is a basis of A ⊗ E kA n ⊗ E A.
Let B be the set of irreducible paths and π : kQ -→ A the canonical projection.

Consider the following sequence of A-bimodules,

• • • d 1 / / A ⊗ E kA 0 ⊗ E A d 0 / / A ⊗ E A d -1 / / ∼ = A / / 0 A ⊗ E kA -1 ⊗ E A where 
1. d n : A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A for n ≥ 0, 2. d -1 (a ⊗ b) = ab is multiplication in A, 3. if n is even, q ∈ A n and q = u 0 • • • u n = v n • • • v 0
are respectively the factorizations of q as left and right n-ambiguity,

d n (1 ⊗ q ⊗ 1) = π(v n ) ⊗ v n-1 • • • v 0 ⊗ 1 -1 ⊗ u 0 • • • u n-1 ⊗ π(u n ), 4. if n is odd and q ∈ A n , d n (1 ⊗ q ⊗ 1) = apc=q p∈A n-1 ,a,c∈Q ≥0 π(a) ⊗ p ⊗ π(c).
In [START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF], Bardzell proves the following theorem. Theorem 2.5 (Bardzell,[START_REF] Bardzell | The alternating syzygy behavior of monomial algebras[END_REF]). The sequence

(A ⊗ E kA • ⊗ E A, d • ) is the minimal projective A-bimodule resolution of A.
A contracting homotopy for this resolution is given in [START_REF] Sk | A contracting homotopy for Bardzell's resolution[END_REF] by Sk öldberg. For n = -1,

s n : A -→ kQ ⊗ E kA -1 ⊗ E A is the kQ -E-bimodule map given by s -1 (a) = a ⊗ 1, for a ∈ kQ. For n ∈ N 0 , s n : A ⊗ E kA n-1 ⊗ E A -→ A ⊗ E kA n ⊗ E A is given by s n (1 ⊗ q ⊗ π(b)) = (-1) n+1 apc=qb p∈A n ,a,c∈Q ≥0 π(a) ⊗ p ⊗ π(c), with b ∈ B and q ∈ A n-1 .
Example 2.6. Consider the algebra A of Example 2.2 for ξ = 0, that is, A = k x, y /I with I the two sided ideal generated by the paths x 2 , y 2 , yx. In this case E = k. We have already proved that A n = {y s x t : s + t = n + 1} and B = {1, x, y, xy}.

Given q ∈ A n , there are s, t ∈ N such that s + t = n + 1 and q = y s x t . Suppose q = apc with p = y s ′ x t ′ ∈ A n-1 and a, c ∈ Q ≥0 . Since s + t = n + 1 and s ′ + t ′ = n, either a belongs to Q 0 and c belongs to Q 1 or a ∈ Q 1 and c ∈ Q 0 . Using this fact we obtain that the Bardzell resolution for A is

• • • d 2 / / A ⊗ k kA 1 ⊗ k A d 1 / / A ⊗ k kA 0 ⊗ k A d 0 / / A ⊗ k A d -1 / / A / / 0,
where the differentials are given as follows. Let n ≥ 0 and s, t ∈ N 0 such that s + t = n + 1, so that y s x t ∈ A n .

1. If n is even,

d n (1 ⊗ y s x t ⊗ 1) = y ⊗ y s-1 x t ⊗ 1 -1 ⊗ y s x t-1 ⊗ x, if t > 0 and s > 0. d n (1 ⊗ x n+1 ⊗ 1) = x ⊗ y n ⊗ 1 -1 ⊗ x n ⊗ x, d n (1 ⊗ y n+1 ⊗ 1) = y ⊗ y n ⊗ 1 -1 ⊗ y n ⊗ y.
2. If n is odd,

d n (1 ⊗ y s x t ⊗ 1) = y ⊗ y s-1 x t ⊗ 1 + 1 ⊗ y s x t-1 ⊗ x, if t > 0 and s > 0. d n (1 ⊗ x n+1 ⊗ 1) = x ⊗ y n ⊗ 1 + 1 ⊗ x n ⊗ x, d n (1 ⊗ y n+1 ⊗ 1) = y ⊗ y n ⊗ 1 + 1 ⊗ y n ⊗ y.
Let T be the one dimensional module of Example 2.2, that is, the one dimensional module with basis {v} such that v • x = 0 = v • y. Applying the functor T ⊗ A ( -) to Bardzell resolution of A we obtain that the sequence (kA • ⊗ k A, f • ) described at the end of Example 2.2 is a resolution of T by free right A-modules.

For the study of the general case A = k x, y / x 2 , y 2 , yx -ξxy with ξ ∈ k see Chapter 4

Chapter 3

Projective resolutions using ambiguities

In this chapter we state and prove our main results, namely Theorem 3.5 and Theorem 3.6. Fix an algebra A = kQ/I and a reduction system R satisfying the Diamond condition for I with no inclusion ambiguities and such that S ⊆ Q ≥2 .

Definition 3.1.

There is a monomial algebra associated to A and R, defined as

A S := kQ/ S .
Let π ′ : kQ -→ A S be the canonical projection. Notice that S is the minimal set of paths generating the monomial ideal S , and since the set B of irreducible paths coincides with the set of paths not divisible by any element of S, we obtain that the set π ′ (B) is a k-basis of A S . The algebra A S is a generalization of the algebra A mon defined in [START_REF] Green | d-Koszul algebras, 2d-determined algebras and 2d-Koszul algebras[END_REF].

From the formulas of the differentials of Bardzell resolution of A S we are going to define morphisms of A-bimodules δ n :

A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A.
Notice that the kQ-bimodule kQ ⊗ E kA n ⊗ E kQ is a k-vector space with basis {a ⊗ q ⊗ c : a, c ∈ Q ≥0 , q ∈ A n , aqc = 0 in kQ}. Consider the following sequence,

• • • f 2 / / kQ ⊗ E kA 1 ⊗ E kQ S 2 g g f 1 / / kQ ⊗ E kA 0 ⊗ E A S 1 j j f 0 / / kQ ⊗ E kQ f -1 / / S 0 j j ∼ = kQ S -1 h h / / 0 kQ ⊗ E kA -1 ⊗ E kQ where 
1. f -1 (a ⊗ b) = ab, 2.
if n is even, then define f n as the unique k-linear map such that for all a, c ∈ Q ≥0 , q ∈ A n such that aqc = 0 in kQ and q = u 0

• • • u n = v n • • • v 0 are respectively
the factorizations of q as left and right n-ambiguity,

f n (a ⊗ q ⊗ c) = av n ⊗ v n-1 • • • v 0 ⊗ c -a ⊗ u 0 • • • u n-1 ⊗ u n c,
and notice that it is a kQ-bimodule morphism.

3.

If n is odd then f n is the unique k-linear map such that for a, c ∈ Q ≥0 , q ∈ A n as before,

f n (a ⊗ q ⊗ c) = a ′ pc ′ =q p∈A n-1 ,a ′ ,c ′ ∈Q ≥0 aa ′ ⊗ p ⊗ c ′ c,
and it is kQ-bimodule morphism.

4. S -1 (x) = x ⊗ 1 and if n ≥ 0, S n is the unique k-linear map such that for all a, c ∈ Q ≥0 , q ∈ A n-1 , S n (a ⊗ q ⊗ c) = (-1) n+1 a ′ pc ′ =qc p∈A n ,a ′ ,c ′ ∈Q ≥0 aa ′ ⊗ p ⊗ c ′ .
Notice that S n is a kQ -E-bimodule map for all n ≥ -1.

As we have already done for A in Remark 1.10, we define a k-linear map i ′ : A S -→ kQ such that i ′ (π ′ (b))) = b for all b ∈ B, and we denote by β ′ : kQ -→ kQ the composition i ′ • π ′ . Given n ≥ -1, let us fix notation for the following k-linear maps:

π n := π ⊗ id kA n ⊗π, π ′ n := π ′ ⊗ id kA n ⊗π ′ , i n := i ⊗ id kA n ⊗i, i ′ n := i ′ ⊗ id kA n ⊗i ′ , β n := i n • π n , β ′ n := i ′ n • π ′ n .
The maps f n induce, respectively, A-bimodule maps

δ n : A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A
where

δ n := π n-1 • f n • i n ,
and A S -bimodule maps

δ ′ n : A S ⊗ E kA n ⊗ E A S -→ A S ⊗ E kA n-1 ⊗ E A S defined by δ ′ n := π ′ n-1 • f n • i ′ n .
Remark 3.2. Notice that δ -1 and δ ′ -1 are respectively multiplication in A and in A S . Also, observe that the sequence

• • • δ ′ 2 / / A S ⊗ E kA 1 ⊗ E A S δ ′ 1 / / A S ⊗ E kA 0 ⊗ E A S δ ′ 0 / / A S ⊗ E A S δ ′ -1 / / A S / / 0 ,
is, by definition, the Bardzell resolution of A S . So the morphisms δ n with n ≥ -1 are morphisms defined by copying the formulas of Bardzell's differentials of A S . The morphisms δ n are not going to satisfy δ n-1 • δ n = 0, but they are going to be a starting point from where we are going to obtain differentials

d n : A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A that form a resolution of A.
The maps S n induce A -E-bimodule maps s n :

A ⊗ E kA n-1 ⊗ E A -→ A ⊗ E kA n ⊗ E A and A S -E-bimodule maps s ′ n : A S ⊗ E kA n-1 ⊗ E A S -→ A S ⊗ E kA n ⊗ E A S by the formulas s n := π n • S n • i n-1 , s ′ n := π ′ n • S n • i ′ n-1 .
Observe that (s ′ n ) ≥-1 is the Sk öldberg's contracting homotopy for the Bardzell's resolution of A S .

Recall that in Chapter 1 we constructed, from the reduction system R, a partial order on the set k × Q ≥0 . We define some sets that will be useful in the sequel. For any n ≥ -1 and µq ∈ k × Q ≥0 , consider the following subsets of kQ ⊗ E kA n ⊗ E kQ:

-L n (µq) := {λa ⊗ p ⊗ c : a, c ∈ Q ≥0 , p ∈ A n , λapc µq}, -L ≺ n (µq) := {λa ⊗ p ⊗ c : a, c ∈ Q ≥0 , p ∈ A n , λapc ≺ µq},
and the following subsets of A ⊗ E kA n ⊗ E A:

-L n (µq) := {λπ(b) ⊗ p ⊗ π(b ′ ) : b, b ′ ∈ B, p ∈ A n , λbpb ′ µq}, -L ≺ n (µq) := {λπ(b) ⊗ p ⊗ π(b ′ ) : b, b ′ ∈ B, p ∈ A n , λbpb ′ ≺ µq}.
Remark 3.3. We observe that f n+1 (x) ∈ L n (µq) Z , for all x ∈ L n+1 (µq), and

S n (x) ∈ L n (µq) Z , for all x ∈ L n-1 (µq).
Remark 3.4. Notice that even if we start from a reduction system of the form R ≤,ω , the partial order compares very few thing when compared with the order ≤ ω used by Anick and Green, and so the sets L ≺ n are considerably smaller than the sets W b n used in Anick-Green theorem. The fact that we can use the partial order is already a big improvement, this will become apparent in the examples of Chapter 4. Lemma 3.8. For all n ∈ N 0 and µq ∈ k × Q ≥0 , the images by π n of L n (µq) and of L ≺ n (µq) are respectively contained in L n (µq) Z and in L

≺ n (µq) Z . Proof. Given n ∈ N 0 , µq ∈ k × Q ≥0 and x = λa ⊗ p ⊗ c ∈ L n (µq), where a, c ∈ Q ≥0 and p ∈ A n , suppose β(a) = i λ i b i and β(c) = j λ ′ j b ′ j . Since β(a)
a and β(c) c, then λ i b i a and λ ′ j b ′ j c for all i, j. This implies

λλ i λ j b i pb ′ j λapc µq and so λλ i λ ′ j π(b i ) ⊗ p ⊗ π(b ′ j )
belong to L n (µq) for all i, j. The result follows from the equalities

π n (x) = λπ(a) ⊗ p ⊗ π(c) = λπ(β(a)) ⊗ p ⊗ π(β(c)) = i,j λλ i λ ′ j π(b i ) ⊗ p ⊗ π(b ′ j ).
The proof of the second part is analogous.

Corollary 3.9. Let n ≥ -1 and µq ∈ k × Q ≥0 . Keeping the same notations of the proof of the previous lemma, we conclude that

1. if x ∈ L n (µq), then λπ(a)xπ(c) ∈ L n (λµaqc) Z , 2. if x ∈ L ≺ n (µq), then λπ(a)xπ(c) ∈ L ≺ n (λµaqc) Z .
Lemma 3.10. Given n ∈ N 0 and µq ∈ k × Q ≥0 , there are inclusions

1. δ n (L n (µq)) ⊆ L n-1 (µq) Z , 2. δ n (L ≺ n (µq)) ⊆ L ≺ n-1 (µq) Z , 3. s n (L n-1 (µq)) ⊆ L n (µq) Z , 4. s n (L ≺ n-1 (µq)) ⊆ L ≺ n (µq) Z . Proof. From x = λπ(b) ⊗ p ⊗ π(b ′ ) ∈ L n (µq), with b, b ′ ∈ B and p ∈ A n , we get i n (x) = λb ⊗ p ⊗ b ′ . This element belongs to L n (µq) and this implies that f n (λb ⊗ p ⊗ b ′ ) belongs to L n-1 (µq) Z , by Remark 3.3. As a consequence of Lemma 3.8 we obtain that δ n (x) = π n-1 (f n (λb ⊗ p ⊗ b ′ )) belongs to L n-1 (µq) Z .
The proofs of the other statements are similar.

Lemma 3.11. Given n ≥ -1 and µq ∈ k × Q ≥0 , if x = λa ⊗ p ⊗ c ∈ L n (µq) is such that π ′ n (x) = 0, then π n (x) ∈ L ≺ n (µq) Z .
Proof. By hypothesis we get that 0 = π ′ n (x) = π ′ (a) ⊗ p ⊗ π ′ (c). The only possibilities are π ′ (a) = 0 or π ′ (c) = 0, this is, a / ∈ B or c / ∈ B, namely β(a) ≺ a or β(c) ≺ c.

Writing β(a) = i λ i b i and β(c) = j λ ′ j b ′ j , we deduce that λλ i λ ′ j b i pb j ≺ µq for all i, j. As a consequence, i,j λλ i λ

′ j π(b i ) ⊗ p ⊗ π(b ′ j ) ∈ L ≺ n (µq) Z .
The proof ends by computing

π n (x) = π n (β(x)) = π n ( i,j λλ i λ ′ j b i ⊗ p ⊗ b ′ j ) = i,j λλ i λ ′ j π(b i ) ⊗ p ⊗ π(b ′ j ).
The importance of the preceding lemmas is that they guarantee how differentials and morphisms used for the homotopy behave with respect to the order. This is stated explicitly in the following corollary. Corollary 3.12. Given n ≥ 1, µq ∈ k × Q ≥0 and x ∈ L n (µq), the following facts hold: (µq). Next, by Lemma 3.11, in order to prove that

1. δ n-1 • δ n (x) ∈ L ≺ n-2 (µq) Z , 2. x -δ n+1 • s n+1 (x) -s n • δ n (x) ∈ L ≺ n (µq) Z . Proof. Let us first write x = λπ(b) ⊗ p ⊗ π(b ′ ) with b, b ′ ∈ B and x ′ := i n (x) = λb ⊗ p ⊗ b ′ . Lemma 3.7 implies that δ n-1 • δ n (x) = δ n-1 • δ n • π n (x ′ ) = δ n-1 • π n-1 • f n (x ′ ) = π n-2 • f n-1 • f n (x ′ ). By Remark 3.3, f n-1 • f n (x ′ ) ∈ L n-2
δ n-1 • δ n (x) ∈ L ≺ n-2 (µq) Z , it suffices to verify that π ′ n-2 • f n-1 • f n (x ′ ) = 0,
which is in fact true using Lemma 3.7, and the fact that (A S ⊗ E kA • ⊗ E A S , δ ′ • ) is exact. In order to prove (2), we first remark that if k ∈ N 0 and y ∈ L k (µq) Z , then

i ′ k • π ′ k (y) -i k • π k (y) ∈ L ≺ k (µq) Z .
Indeed, let us write y = λa ⊗ p ⊗ c ∈ L k (µq). In case a ∈ B and c ∈ B, there are equalities i 

′ k • π ′ k (y) = y = i k • π k (y),
(y) ∈ L ≺ k (µq) Z . So, i k • π k (y) ∈ L ≺ k (µq) Z and the difference we are considering belongs to L ≺ k (µq) Z . Fix now x = λπ(b) ⊗ p ⊗ π(b ′ ) and x ′ = i n (x) = λb ⊗ p ⊗ b ′ , with b, b ′ ∈ B. Since x ′ = i ′ n • π ′ n (x ′ ), x -δ n+1 • s n+1 (x) -s n • δ n (x) = π n (x ′ ) -π n (f n+1 • i n+1 • π n+1 • S n+1 (x ′ )) -π n (S n • i n-1 • π n-1 • f n (x ′ )).
The previous comments and Remark 3.3 allow us to write that

π n • f n+1 • (i ′ n+1 • π ′ n+1 -i n+1 • π n+1 ) • S n+1 (x ′ ) ∈ L ≺ n (µq) Z , π n • S n • (i ′ n-1 • π ′ n-1 -i n-1 • π n-1 ) • f n (x ′ ) ∈ L ≺ n (µq) Z .
It is then enough to prove that

π n (x ′ -f n+1 • i ′ n+1 • π ′ n+1 • S n+1 (x ′ ) -S n • i ′ n-1 • π ′ n-1 • f n (x ′ )) ∈ L ≺ n (µq) Z , but π ′ n (x ′ -f n+1 • i ′ n+1 • π ′ n+1 • S n+1 (x ′ ) -S n • i ′ n-1 • π ′ n-1 • f n (x ′ )) = π ′ n (x ′ ) -δ ′ n+1 • s ′ n+1 (π ′ n (x ′ )) -s ′ n • δ ′ n (π ′ n (x ′ )) = 0.
Finally, we deduce from Lemma 3.11 that

π n (x ′ -f n+1 • i ′ n+1 • π ′ n+1 • S n+1 (x ′ ) -S n • i ′ n-1 • π ′ n-1 • f n (x ′ )) ∈ L ≺ n (µq) Z .
Next we prove another technical lemma that shows how to control the differentials.

Lemma 3.13. Fix n ∈ N 0 , let R be either k or Z.

1. If d : A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n-1 ⊗ E A is a morphism of A-bimodules such that (d -δ n )(1 ⊗ p ⊗ 1) ∈ L ≺ n-1 (p) R for all p ∈ A n , then given x ∈ L n (µq) R , (d -δ n )(x) ∈ L ≺ n-1 (µq) R for all µq ∈ k × Q ≥0 . 2. If ρ : A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n+1 ⊗ E A is a morphism of A -E-bimodules such that (ρ -s n )(1 ⊗ p ⊗ π(b)) ∈ L ≺ n+1 (pb) R , for all p ∈ A n and b ∈ B, then for all x ∈ L n (µq) R , (ρ -s n )(x) belongs to L ≺ n+1 (µq) R for all µq ∈ k × Q ≥0 . Proof. Given µq ∈ k × Q ≥0 and x ∈ L n (µq) R , let us see that (d -δ n )(x) ∈ L ≺ n-1 (µq) R . It suffices to prove the statement for x = λπ(b) ⊗ p ⊗ π(b ′ ) ∈ L n (µq). By hypothesis, (d -δ n )(1 ⊗ p ⊗ 1) belongs to L ≺ n-1 (p) R , so (d -δ n )(x) equals λπ(b)(d -δ n )(1 ⊗ p ⊗ 1)π(b ′ ) and it belongs to L ≺ n-1 (λbpb ′ ) R ⊆ L ≺ n-1 (µq) R , using Corollary 3.9.
The second part is analogous.

Next proposition will provide the remaining necessary tools for the proofs of Theorem 3.5 and Theorem 3.6. Proposition 3.14. Fix n ∈ N 0 . Suppose that for each i ∈ {0, . . . , n} there are morphisms of A-bimodules d

i : A ⊗ E kA i ⊗ E A -→ A ⊗ E kA i-1 ⊗ E A, and morphisms of A -E-bimodules ρ i : A ⊗ E kA i-1 ⊗ E A -→ A ⊗ E kA i ⊗ E A. Denote d -1 = µ and define ρ -1 : A -→ A ⊗ E A as ρ(a) = a ⊗ 1.
If the following conditions hold,

(i) d i-1 • d i = 0 for all i ∈ {0, . . . , n}, (ii) (d i -δ i )(1 ⊗ q ⊗ 1) ∈ L ≺ i-1 (q) R
for all i ∈ {0, . . . , n} and for all q ∈ A i , (iii) for all i ∈ {-1, . . . , n -1} and for all

x ∈ A ⊗ E kA i ⊗ E A, x = d i+1 • ρ i+1 (x) + ρ i • d i (x), (iv) (ρ i -s i )(1 ⊗ q ⊗ π(b)) ∈ L ≺ i (qb)
R for all i ∈ {0, . . . , n}, for all q ∈ A i and for all b ∈ B, then:

1. If d n+1 : A ⊗ E kA n+1 ⊗ E A -→ A ⊗ E kA n ⊗ E A is a map satisfying the following conditions: (i) d n • d n+1 = 0, (ii) (d n+1 -δ n+1 )(1 ⊗ q ⊗ 1) ∈ L ≺ n (q) R ,
then there exists a morphism ρ n+1 :

A ⊗ E kA n ⊗ E A -→ A ⊗ E kA n+1 ⊗ E A of A -E bimodules such that (a) for all x ∈ A ⊗ E kA n ⊗ E A, x = d n+1 • s n+1 (x) + s n • d n (x)
(b) for all q ∈ A n and for all b ∈ B, (ρ n+1s n+1 )(1 ⊗ q ⊗ π(b)) ∈ L ≺ n+1 (qb) R .

there exists a morphism of A-bimodules d

n+1 : A ⊗ E kA n+1 ⊗ E A -→ A ⊗ E kA n ⊗ E A such that (i) d n • d n+1 = 0, (ii) (d n+1 -δ n+1 )(1 ⊗ q ⊗ 1) ∈ L ≺ n (q) R .
Proof. In order to prove (2), fix q ∈ A n+1 . By Lemma 3.10, δ n+1 (1 ⊗ q ⊗ 1) belongs to L n (q) Z and using Lemma 3.13,

(d n -δ n )(δ n+1 (1 ⊗ q ⊗ 1)) belongs to L ≺ n-1 (q) R . Corollary 3.12 tells us that δ n • δ n+1 (1 ⊗ q ⊗ 1) is in L ≺ n-1 (q) Z .
We deduce from the equality

d n (δ n+1 (1 ⊗ q ⊗ 1)) = δ n • δ n+1 (1 ⊗ q ⊗ 1) + (d n -δ n )(δ n+1 (1 ⊗ q ⊗ 1)) that d n (δ n+1 (1 ⊗ q ⊗ 1)) belongs to L ≺ n-1 (q) R .

Let us define dn+1

: A × kA n+1 × A -→ A ⊗ E kA n ⊗ E A by dn+1 (a, q, c) = aδ n+1 (1 ⊗ q ⊗ 1)c -aρ n (d n (δ n+1 (1 ⊗ q ⊗ 1)))c,
for a, c ∈ A, q ∈ A n+1 . The map dn+1 is E-multilinear and balanced, and it induces a unique map

d n+1 : A ⊗ E kA n+1 ⊗ E A -→ A ⊗ E kA n ⊗ E A.
The morphism d n+1 is in fact a morphism of A-bimodules.

Putting together the equality ρ n = s n + (ρ ns n ) and Lemmas 3.10 and 3.13, we obtain that

(d n+1 -δ n+1 )(1 ⊗ q ⊗ 1) = -ρ n • d n • δ n+1 (1 ⊗ q ⊗ 1) belongs to L ≺ n (q) R . Moreover, given x ∈ A ⊗ E kA n-1 ⊗ E A, x = d n • ρ n (x) + ρ n-1 • d n-1 (x), choosing x = d n (δ n+1 (1 ⊗ q ⊗ 1)) yields the equality d n • δ n+1 (1 ⊗ q ⊗ 1) = d n • ρ n • d n • δ n+1 (1 ⊗ q ⊗ 1) which proves that d n • d n+1 = 0.
For the proof of (1), fix q ∈ A n and b ∈ B. Using Lemmas 3.10 and 3.13, we deduce that the element

1 ⊗ q ⊗ π(b) -ρ n • d n (1 ⊗ q ⊗ π(b)) = 1 ⊗ q ⊗ π(b) -ρ n • δ n (1 ⊗ q ⊗ π(b)) -ρ n • (d n -δ n )(1 ⊗ q ⊗ π(b)) differs from 1 ⊗ q ⊗ π(b) -ρ n • δ n (1 ⊗ q ⊗ π(b)) by elements in L ≺ n (qb) R . We will write that (id -ρ n • δ n + ρ n • (d n -δ n ))(1 ⊗ q ⊗ π(b)) ≡ id -ρ n • δ n (1 ⊗ q ⊗ π(b)) mod L ≺ n (qb) R . Also, (id -ρ n • δ n )(1 ⊗ q ⊗ π(b)) ≡ (id -s n • δ n )(1 ⊗ q ⊗ π(b)) mod L ≺ n (qb) R ≡ δ n+1 • s n+1 (1 ⊗ q ⊗ π(b)) mod L ≺ n (qb) R ≡ d n+1 • s n+1 (1 ⊗ q ⊗ π(b)) mod L ≺ n (qb) R .
We deduce from this that there exists a unique ξ ∈ L ≺ n (qb) R such that

(id -ρ n • d n )(1 ⊗ q ⊗ π(b)) = d n+1 • s n+1 (1 ⊗ q ⊗ π(b)) + ξ.
It is evident that ξ belongs to the kernel of d n .

The order satisfies the descending chain condition, so we can use induction on (k × Q ≥0 , ). If there is no λp ∈ k × Q ≥0 is such that λp ≺ qb, then ξ = 0 and we define ρ n+1 (1 

⊗ q ⊗ π(b)) = s n+1 (1 ⊗ q ⊗ π(b)). Inductively, suppose that ρ n+1 (ξ) is defined. The equality d n (ξ) = 0 implies that ξ = d n+1 • ρ n+1 (ξ) and (id -ρ n • d n )(1 ⊗ q ⊗ π(b)) = d n+1 (s n+1 (1 ⊗ q ⊗ π(b)) + ρ n+1 (ξ)).
We define ρ n+1 (1 ⊗ q ⊗ π(b)) := s n+1 (1 ⊗ q ⊗ π(b)) + ρ n+1 (ξ).

Lemmas 3.10 and 3.13 assure that ρ n+1 (ξ) belongs to L ≺ n+1 (qb) R , and as a consequence

ρ n+1 (1 ⊗ q ⊗ π(b)) -s n+1 (1 ⊗ q ⊗ π(b)) ∈ L ≺ n+1 (qb) R .
We are now ready to prove the theorems.

Proof of Theorem 3.5. We will prove the existence of an A -E-bimodule map ρ 0 :

A ⊗ E kA -1 ⊗ E A -→ A ⊗ E kA 0 ⊗ E A satisfying d 0 • ρ 0 + ρ -1 • d -1 =
id, where d -1 = µ and ρ -1 (a) = s -1 (a) = a ⊗ 1 for all a ∈ A. Once this achieved, we apply Proposition 3.14 inductively with R = k, for all n such that 0 ≤ n ≤ N -1, obtaining this way an homotopy retraction of the complex

A ⊗ E kA N ⊗ E A d N / / • • • d 0 / / A ⊗ E A d -1 / / A / / 0
proving thus that it is exact.

Given b = b k • • • b 1 ∈ B, with b i ∈ Q 1 , 1 ≤ i ≤ k, s 0 (1 ⊗ π(b)) = - i π(b k • • • b k-i+1 ) ⊗ b k-i ⊗ π(b k-i-1 • • • b 1 ).
On one hand 

1 ⊗ π(b) -π(b) ⊗ 1 = 1 ⊗ π(b) -s -1 (d -
∈ L ≺ -1 (b) k such that 1 ⊗ π(b) -s -1 (d -1 (1 ⊗ π(b))) = d 0 (s 0 (1 ⊗ π(b))) + ξ.
It follows that d -1 (ξ) = 0. Suppose first that there exists no λp ∈ k × Q ≥0 such that λp ≺ b.

In this case ξ = 0 and we define ρ 0 (1 ⊗ π(b)) = s 0 (1 ⊗ π(b)). Inductively, suppose that ρ 0 (ξ) is defined for any ξ such that d -1 (ξ) = 0. Since in this case ξ = d 0 (ρ 0 (ξ)),

we set ρ 0 (1 ⊗ π(b)) := s 0 (1 ⊗ π(b)) + ρ 0 (ξ).
Proof of Theorem 3.6. It follows from the proof of Theorem 3.5 that

1 ⊗ π(b) = (s -1 • d -1 + δ 0 • s 0 )(1 ⊗ π(b))
and so s -1 • d -1 + δ 0 • s 0 = id A⊗ E A . Setting d 0 := δ 0 , the theorem follows applying Proposition 3.14 for R = Z.

We end this section by showing that this construction is a generalization of Bardzell's resolution for monomial algebras. Proposition 3.15. Given an algebra A, let (A ⊗ E kA • ⊗ E A, d • ) be a resolution of A as Abimodule such that d • satisfies the hypotheses of Theorem 3.5. If p ∈ A n is such that r(p) = 0 or r(p) = p for every reduction r, then for all a, c ∈ kQ,

d n (π(a) ⊗ p ⊗ π(c)) = δ n (π(a) ⊗ p ⊗ π(c)).
Proof. By hypothesis, we know that there exists no

λ ′ p ′ ∈ k × Q ≥0 such that λ ′ p ′ ≺ p, so L ≺ n-1 (p) = {0} and d n (1 ⊗ p ⊗ 1) = δ n (1 ⊗ p ⊗ 1)
. Given a, c ∈ kQ we deduce from the previous equality that

d n (π(a) ⊗ p ⊗ π(c)) -δ n (π(a) ⊗ p ⊗ π(c)) = π(a)(d n (1 ⊗ p ⊗ 1) -δ n (1 ⊗ p ⊗ 1))π(c) = 0.
Corollary 3.16. Suppose the algebra A = kQ/I has a monomial presentation. Choose a reduction system R whose pairs have the monomial relations generating the ideal I as first coordinate and 0 as second coordinate. In this case, the only maps d verifying the hypotheses of Theorem 4.2 are those of Bardzell's resolution.

Morphisms in low degrees

In this section we describe the morphisms appearing in lower degrees of the resolution.

Let us consider the following data: an algebra A = kQ/I and a reduction system R satisfying the Diamond condition.

We start by recalling the definition of δ 0 and δ -1 . For a, c ∈ kQ, α ∈ Q 1 ,

δ -1 : A ⊗ E A -→ A, δ 0 : A ⊗ E kA 0 ⊗ E A -→ A ⊗ E A, δ -1 (π(a) ⊗ π(c)) = π(ac), δ 0 (π(a) ⊗ α ⊗ π(c)) = π(aα) ⊗ π(c) -π(a) ⊗ π(αc).
Definition 3.17. We state some definitions.

-Let ϕ 0 : kQ -→ A ⊗ E kA 0 ⊗ E A be the unique k-linear map such that

ϕ 0 (c) = n i=1 π(c n • • • c i+1 ) ⊗ c i ⊗ π(c i-1 • • • c 1 ) for c ∈ Q ≥0 , c = c n • • • c 1 with c i ∈ Q 1 for all i, 1 ≤ i ≤ n.
For n = 1, there are two cases. The first one is when p = a 1 s 1 c 1 . In this situation, r(p) = r 1 (p) = p, ϕ 1 (r 1 , p) = 0 and so the equality is trivially true. In the second case, p = a 1 s 1 c 1 , ϕ 1 (r 1 , p) = π(a 1 ) ⊗ s 1 ⊗ π(c 1 ) and r(p) = r 1 (p) = a 1 β(s 1 )c 1 . Moreover,

d 1 (ϕ 1 (r 1 , p)) + ϕ 0 (r 1 (p)) = d 1 (π(a 1 ) ⊗ s 1 ⊗ π(c 1 )) + ϕ 0 (a 1 β(s 1 )c 1 )
= π(a 1 )ϕ 0 (s 1 )π(c 1 )π(a 1 )ϕ 0 (β(s 1 ))π(c 1 ) + ϕ 0 (a 1 β(s 1 )c 1 ).

Using Lemma 3.20, the last term equals ϕ 0 (a 1 )π(β(s 1 )c 1 ) + π(a 1 )ϕ 0 (β(s 1 ))π(c 1 ) + π(a 1 β(s 1 ))ϕ 0 (c 1 ), so the whole expression is π(a 1 )ϕ 0 (s 1 )π(c 1 ) + ϕ 0 (a 1 )π(β(s 1 )c 1 ) + π(a 1 β(s 1 ))ϕ 0 (c 1 ) = π(a 1 )ϕ 0 (s 1 )π(c 1 ) + ϕ 0 (a 1 )π(s 1 c 1 ) + π(a 1 s 1 )ϕ 0 (c 1 ), and using again Lemma 3.20, this equals ϕ 0 (p).

Suppose the result holds for n -1. As usual, we denote r ′ = (r n , . . . , r 2 ).

Since r(p) = r ′ (r 1 (p)),

d 1 (ϕ 1 (r, p)) + ϕ 0 (r(p)) = d 1 (ϕ 1 (r 1 , p)) + d 1 (ϕ 1 (r ′ , r 1 (p))) + ϕ 0 (r ′ (r 1 (p))) = d 1 (ϕ 1 (r 1 , p)) + ϕ 0 (r 1 (p)) = ϕ 0 (p).
Consider now an element p ∈ A 2 . By definition we write p = u 0 u 1 u 2 = v 2 v 1 v 0 where u 0 u 1 and v 1 v 0 are paths in A 1 dividing p. Suppose r = r a,s,c is a basic reduction such that r(p) = p. We deduce that either s = u 0 u 1 or s = v 1 v 0 . For an arbitrary reduction r = (r n , . . . , r 1 ), we will say that r starts on the left of p if r 1 = r a,s,c , s = u 0 u 1 and asc = p, and we will say that r starts on the right of p if r 1 = r a,s,c , s = v 1 v 0 and asc = p. Proposition 3.22. Let {r p } p∈A 2 and {t p } p∈A 2 be two sets of reductions such that r p (p) and t p (p) belong to kB, r p starts on the left of p and t p starts on the right of p. Consider d 2 :

A ⊗ E kA 2 ⊗ E A -→ A ⊗ E kA 1 ⊗ E A the map of A-bimodules defined by d 2 (1 ⊗ p ⊗ 1) = ϕ 1 (t p , p) -ϕ 1 (r p , p).

The sequence

A ⊗ E kA 2 ⊗ E A d 2 -→ A ⊗ E kA 1 ⊗ E A d 1 -→ A ⊗ E kA 0 ⊗ E A δ 0 -→ A ⊗ E A δ -1 -→ A -→ 0 is exact. In this situation {λq ∈ k × Q ≥0 : λq ≺ s} = {λ 1 b 1 , . . . , λ m b m }, and writing b i = b n i i • • • b 1 i with b j i ∈ Q 1 , L ≺ 0 (s) = N i=1 {λ i π(b n i i • • • b 2 i ) ⊗ b 1 i ⊗ 1, . . . , λ i ⊗ b n i i ⊗ π(b n i -1 i • • • b 1 i )}. If d : A ⊗ E kA 1 ⊗ E A -→ A ⊗ E kA 0 ⊗ E A verifies (d -δ 1 )(1 ⊗ s ⊗ 1) ∈ L ≺ 0 (s) and δ 0 • d(s) = 0 for all s ∈ A 1 , then there exists γ j i ∈ k such that d(1 ⊗ s ⊗ 1) = ϕ 0 (s) - m i=1 n i j=1 γ j i λ i π(b n i i • • • b j+1 i ) ⊗ b j i ⊗ π(b j-1 i • • • b 1 i ).
From this, applying δ 0 and reordering terms we can deduce that γ j i = 1 for all i, j. We conclude that the unique morphism with the desired properties is d 1 .

Applications

Theorem 3.24. Given an algebra A = kQ/I such that 1. there is a reduction system R = {(s i , f i )} i for I satisfying the Diamond condition with s i and f i homogeneous of length N ≥ 2 for all i,

2. for all n ∈ N, the length of the elements of A n is strictly smaller that the length of the elements of A n+1 .

The resolutions of A as A-bimodule obtained using Theorem 3.5 and Theorem 3.6 are minimal.

Proof. Let (A ⊗ E kA • ⊗ E A, d • ) be a resolution of A as A-bimodule obtained using Theorem 3.5 or Theorem 3.6. Denote by |c| the length of a path c ∈ Q ≥0 . Condition [START_REF] Anick | On the homology of associative algebras[END_REF] guarantees that for all paths p, q such that λp q for some λ ∈ k × , we have

|p| = |q|. Let n ≥ 0, q ∈ A n and λπ(b) ⊗ p ⊗ π(b ′ ) ∈ L ≺ n-1 (q). Since p ∈ A n-1 , condition (2 
) says that |p| < |q|. On the other hand, λbpb ′ ≺ q and then |bpb

′ | = |q|. We deduce that b ∈ Q ≥1 or b ′ ∈ Q ≥1 . As a consequence, Im(d n ) is contained in J ⊗ E kA n-1 ⊗ E A ∪ A ⊗ E kA n-1 ⊗ E J
, where J is the ideal generated by the arrows and therefore the resolution of A is minimal.

Remark 3.25. The conclusion holds in a more general situation, which includes Example 4.2. It is sufficient to have a reduction system satisfying (1) and such that the ambiguities p that appear when reducing a given n + 1-ambiguity q are of length strictly smaller than the length of q. Remark 3.26. In Example 1.27, the reduction system R 2 satisfies the conditions of Theorem 3.24, while R 1 does not satisfy [START_REF] Anick | On the homology of quotients of path algebras[END_REF].

Notice that if R is a reduction system for an algebra for which there is a nonresolvable ambiguity, then, even if we complete it like we did in Example 1.27, the resolutions obtained using Theorem 3.5 and Theorem 3.6 will not be minimal.

We end this section proving a generalization of Prop. 8 of [START_REF] Green | d-Koszul algebras, 2d-determined algebras and 2d-Koszul algebras[END_REF] and a corollary. Proposition 3.27. Let A = kQ/I, where Q is a finite quiver, kQ is the path algebra graded by the length of paths and I a homogeneous ideal with respect to this grading, contained in Q ≥2 . Let R be a reduction system satisfying conditions ( 1) and ( 2) of Theorem 3.24 and let A S be the associated monomial algebra. The algebra A S is N-Koszul if and only if A is an N-Koszul algebra.

Proof. The projective bimodules appearing in the minimal resolution of A S are in oneto-one correspondence with those appearing in the resolution of A, so either both of them are generated in the correct degrees or none is. This proposition, together with Thm. 3 of [START_REF] Green | Projective resolutions of straightening closed algebras generated by minors[END_REF] give the following result.

Corollary 3.28. If A has a reduction system R satisfying condition (1) of Theorem 3.24 and such that S ⊆ Q 2 , then A is Koszul.

Chapter 4

Examples

In this chapter we apply the methods developed previously to the following two families of algebras.

-Quantum complete intersections. This is the family of algebras A(ξ, n, m) with generators x and y subject to the relations x n = 0, y m = 0 and yx = ξxy, where ξ is an element of the field k and n, m are integers at least equal to 2. These relations are homogeneous if and only if n = m = 2, and the algebras A(ξ, 2, 2) are Koszul for all ξ ∈ k. In [START_REF] Buchweitz | Finite Hochschild cohomology without finite global dimension[END_REF] the authors use these algebras to give a negative answer to Happel's question: if ξ ∈ k × is not a root of unity, then the algebra A(ξ, 2, 2) has finite Hochschild cohomology and infinite global dimension. We begin by studying this subfamily. With our method we recover their Koszul resolution. Then we turn to the general case where our method applies with no further difficulties. This is a nice feature of our method, it treats in a uniform manner algebras of different types. We will see this phenomena again in Chapter 5 with the family of down-up algebras.

-Quantum generalized Weyl algebras. The members of this family are the algebras A(a, q) with generators y, x, h subject to the relations hy = qyh, hx = q -1 xh, yx = a(h) and xy = a(qh), where q is a nonzero element of the field k and a(h) is a polynomial in the variable h. This is an example where we use the procedure explained in Section 1.3 with a non constant weight function ω to find a convenient reduction system.

In both cases we use Proposition 3.22 to find the first degrees of the resolutions and from those formulas we derive the formulas for all degrees. Before addressing the above examples, we explain how the resolutions obtained using theorems 3.5 and 3.6 depend on the reduction system chosen. A 3 = {y 2m , y m+1 x, y m x n , yx n+1 , x 2n }. To obtain a general formula for A N , denote by ϕ : N 2 0 -→ N 0 the map

ϕ(s, n) =          s 2 n if s is even, s -1 2 n + 1 if s is odd. (4.2)
Hence, the set of N-ambiguities is A N = {y ϕ(s,m) x ϕ(t,n) : s + t = N + 1}. We will sometimes write (s, t) instead of y ϕ(s,m) x ϕ(t,n) .

We first compute the beginning of the resolution.

Lemma 4.3. The following complex provides the beginning of a projective resolution of A as A-bimodule:

A ⊗ E kA 2 ⊗ E A d 2 -→ A ⊗ E kA 1 ⊗ E A d 1 -→ A ⊗ E kA 0 ⊗ E A δ 0 -→ A ⊗ E A δ -1 -→ A -→ 0
where d 1 and d 2 are morphisms of A-bimodules given by the formulas

d 1 (1 ⊗ x n ⊗ 1) = n-1 i=0 x i ⊗ x ⊗ x n-1-i , d 1 (1 ⊗ y m ⊗ 1) = m-1 i=0 y i ⊗ y ⊗ y m-1-i , d 1 (1 ⊗ yx ⊗ 1) = 1 ⊗ y ⊗ x + y ⊗ x ⊗ 1 -ξ ⊗ x ⊗ y -ξx ⊗ y ⊗ 1 d 2 (1 ⊗ y m+1 ⊗ 1) = y ⊗ y m ⊗ 1 -1 ⊗ y m ⊗ y, d 2 (1 ⊗ y m x ⊗ 1) = m-1 i=0 ξ i y m-1-i ⊗ yx ⊗ y i + ξ m x ⊗ y m ⊗ 1 -1 ⊗ y m ⊗ x d 2 (1 ⊗ yx n ⊗ 1) = y ⊗ x n ⊗ 1 - n-1 i=0 ξ i x i ⊗ yx ⊗ x n-1-i -ξ n ⊗ x n ⊗ y, d 2 (1 ⊗ x n+1 ⊗ 1) = x ⊗ x n ⊗ 1 -1 ⊗ x n ⊗ x.
Proof. It is straightforward, using Proposition 3.22 applied to the set {r p } p∈A 2 of left reductions, where

r y m+1 = r 1,y m ,y , r y m x = r 1,y m ,x , r yx n = (r 1,x n ,y , . . . , r x,yx,x n-2 , r 1,yx,x n-1 ) r x n+1 = r 1,x n ,x ,
and the set {t p } p∈A 2 of right reductions, where t y m+1 = r y,y m ,1 , t y m x = (r x,y m ,1 , . . . , r y m-2 ,yx,y , r y m-1 ,yx,1 ),

y yx n = r y,x n ,1 , t x n+1 = r x,x n ,1 .

Quantum generalized Weyl algebras

Let k be a field, q ∈ k × and a ∈ k[h]. Denote A the k-algebra with generators y, x, h, subject to the relations

hy = qyh, hx = q -1 xh, yx = a(h), xy = a(qh),
where a(h) ∈ k[h]. Write a(h) = N i=0 a i h i with a N = 0. Let X be the set {hyqyh, hxq -1 xh, xya(h), yxa(qh)} contained in the free algebra k x, y, h . By definition A = k x, y, h / X . Consider the order h < y < x and weights ω(h) = 1, ω(x) = 1 and ω(y) = N. Observe that hy > yh, hx > xh, xy > a(h), yx > a(qh).

All the ambiguities of the reduction system R X = {(hy, qyh), (hx, q -1 xh), (xy, a(h)), (yx, a(qh))} are resolvable. Proposition 1.24 implies that R X satisfies the Diamond condition. No- tice that S = {hy, hx, xy, yx} and therefore the set of paths of length two not in S is {yy, yh, xx, xh, hh}. By Proposition 1.40, the sets of n-ambiguities, for n ≥ 1, are

• for n even, A n = {h(yx) n 2 , h(xy) n 2 , x(yx) n 2 , y(xy) n 2 }, • for n odd, A n = {h(yx) n-1 2 y, h(xy) n-1 2 x, (xy) n+1 2 , (yx) n+1 2 }. 
Lemma 4.

The following complex provides the beginning of an A-bimodule projective resolution of the algebra

A A ⊗ E kA 2 ⊗ E A d 2 -→ A ⊗ E kA 1 ⊗ E A d 1 -→ A ⊗ E kA 0 ⊗ E A δ 0 -→ A ⊗ E A δ -1 -→ A -→ 0
where d 1 is the A-bimodule map such that

d 1 (1 ⊗ hy ⊗ 1) = 1 ⊗ h ⊗ y + h ⊗ y ⊗ 1 -q ⊗ y ⊗ h -qy ⊗ h ⊗ 1, d 1 (1 ⊗ hx ⊗ 1) = 1 ⊗ h ⊗ x + h ⊗ x ⊗ 1 -q -1 ⊗ x ⊗ h -q -1 x ⊗ h ⊗ 1, d 1 (1 ⊗ xy ⊗ 1) = 1 ⊗ x ⊗ y + x ⊗ y ⊗ 1 - N i=1 i-1 k=0 a i q i h i-k-1 ⊗ h ⊗ h k , d 1 (1 ⊗ yx ⊗ 1) = 1 ⊗ y ⊗ x + y ⊗ x ⊗ 1 - N i=1 i-1 k=0 a i h i-k-1 ⊗ h ⊗ h k ,
and d 2 is the A-bimodule morphism such that

d 2 (1 ⊗ hyx ⊗ 1) = h ⊗ yx ⊗ 1 -1 ⊗ hy ⊗ x -qy ⊗ hx ⊗ 1 -1 ⊗ yx ⊗ h, d 2 (1 ⊗ hxy ⊗ 1) = h ⊗ xy ⊗ 1 -1 ⊗ hx ⊗ y -q -1 x ⊗ hy ⊗ 1 -1 ⊗ xy ⊗ h, d 2 (1 ⊗ xyx ⊗ 1) = x ⊗ yx ⊗ 1 -1 ⊗ xy ⊗ x - N i=1 i-1 k=0 a i q i-k h i-k-1 ⊗ hx ⊗ h k , d 2 (1 ⊗ yxy ⊗ 1) = y ⊗ xy ⊗ 1 -1 ⊗ yx ⊗ y - N i=1 i-1 k=0 a i q k h i-k-1 ⊗ hy ⊗ h k .
Proof. It is a consequence of Proposition 3.22 applied to the only possible set of reductions starting on the left and on the right of p for every p ∈ A 2 . Now we proceed to find a complete resolution of A. Let n ≥ 3 and q ∈ A n . We want to describe the morphisms δ n and the sets L ≺ n-1 (q). Observe that every n -1-ambiguity has either no letter h or it has only one letter h at the left, and every n -1-ambiguity has length n. Also, notice that every reduction moves a letter h from left to right or replaces, respectively, yx or xy by a(h) or a(qh). As a consequence, the morphism δ

n : A ⊗ k kA n ⊗ k A -→ A ⊗ k kA n-1 ⊗ k A is -If n is even, set l := n 2 . Then δ n (1 ⊗ h(yx) l ⊗ 1) = h ⊗ (yx) l ⊗ 1 -1 ⊗ h(yx) l-1 y ⊗ x, δ n (1 ⊗ h(xy) l ⊗ 1) = h ⊗ (xy) l ⊗ 1 -1 ⊗ h(xy) l-1 x ⊗ y, δ n (1 ⊗ x(yx) l ⊗ 1) = x ⊗ (yx) l ⊗ 1 -1 ⊗ (xy) l ⊗ x, δ n (1 ⊗ y(xy) l ⊗ 1) = y ⊗ (xy) l ⊗ 1 -1 ⊗ (yx) l ⊗ y. -If n odd, set l := n-1 2 . Then δ n (1 ⊗ h(yx) l y ⊗ 1) = h ⊗ (yx) l y ⊗ 1 + 1 ⊗ h(yx) l ⊗ y, δ n (1 ⊗ h(xy) l x ⊗ 1) = h ⊗ (xy) l x ⊗ 1 + 1 ⊗ h(xy) l ⊗ x, δ n (1 ⊗ (xy) l+1 ⊗ 1) = x ⊗ y(xy) l ⊗ 1 + 1 ⊗ x(yx) l ⊗ y, δ n (1 ⊗ (yx) l+1 ⊗ 1) = y ⊗ x(yx) l ⊗ 1 + 1 ⊗ y(xy) l ⊗ x.
Moreover, the sets L ≺ n-1 (q) are as follows.

-If n is even, set l := n 2 . Then

L ≺ n-1 (h(yx) l ) = {qy ⊗ h(xy) l-1 x ⊗ 1, 1 ⊗ (yx) l ⊗ h}, L ≺ n-1 (h(xy) l ) = {q -1 x ⊗ h(yx) l-1 y ⊗ 1, 1 ⊗ (xy) l ⊗ h}, L ≺ n-1 (x(yx) l ) = {a i q i-k h i-k-1 ⊗ h(xy) l-1 x ⊗ h k : 1 ≤ i ≤ N, 0 ≤ k ≤ i -1}, L ≺ n-1 (y(xy) l ) = {a i q k h i-k-1 ⊗ h(yx) l-1 y ⊗ h k : 1 ≤ i ≤ N, 0 ≤ k ≤ i -1}. -If n is odd, set l = n-1 2 . Then L ≺ n-1 (h(yx) l y) = {qy ⊗ h(xy) l ⊗ 1, q ⊗ y(xy) l ⊗ h}, L ≺ n-1 (h(xy) l x) = {q -1 x ⊗ h(yx) l ⊗ 1, q -1 ⊗ x(yx) l ⊗ h}, L ≺ n-1 ((xy) l+1 ) = {a i q i h i-k-1 ⊗ h(xy) l ⊗ h k : 1 ≤ i ≤ N, 0 ≤ k ≤ i -1}, L ≺ n-1 ((yx) l+1 ) = {a i h i-k-1 ⊗ h(yx) l ⊗ h k : 1 ≤ i ≤ N, 0 ≤ k ≤ i -1}. By Theorem 3.6 there exist A-bimodule morphisms d n : A ⊗ k kA n ⊗ k A -→ A ⊗ k kA n-1 ⊗ k A such that d n-1 • d n = 0 for n ≥ 0 and d n (q) -δ n (q) ∈ L ≺ n-1 (q)
for all n ≥ -1 and q ∈ A n . We have formulas for the differentials in low degrees and, as we have already done in the previous examples, we can use these formulas to get an idea of how can the following differentials be. Fix for example some n odd, n ≥ 3 and consider q = h(yx) l y, where l = n-1 2 . By Theorem 3.6 there exist integers a, b such that d n (1 ⊗ h(yx) l y ⊗ 1) = δ n (1 ⊗ h(yx) l y ⊗ 1) + aqy ⊗ h(xy) l ⊗ 1 + bq ⊗ (yx) l y ⊗ h.

Using the formula we have for δ n and reordering the terms, this equality becomes d n (1 ⊗ h(yx) l y ⊗ 1 = = 1 ⊗ h(yx) l ⊗ y + h ⊗ (yx) l y ⊗ 1 + bq ⊗ (yx) l y ⊗ h + aqy ⊗ h(xy) l ⊗ 1. (4.3) Looking at the left and right factors in each term of the right side, we find that this equality is very similar to a formula we already have:

d 1 (1 ⊗ hy ⊗ 1) = 1 ⊗ h ⊗ y + h ⊗ y ⊗ 1 -q ⊗ y ⊗ h -qy ⊗ h ⊗ 1,
which corresponds to n = 1 and l = 0 in (4.3). This suggests to set a = b = -1. For every q ∈ A n there is a similar argument which leads to the following Lemma. d n (1 ⊗ h(yx) l ⊗ 1) = h ⊗ (yx) l ⊗ 1 -1 ⊗ h(yx) l-1 y ⊗ xqy ⊗ h(xy) l-1 x ⊗ 1 -1 ⊗ (yx) l ⊗ h, d n (1 ⊗ h(xy) l ⊗ 1) = h ⊗ (xy) l ⊗ 1 -1 ⊗ h(xy) l-1 x ⊗ yq -1 x ⊗ h(yx) l-1 y ⊗ 1 -1 ⊗ (xy) l ⊗ h,

d n (1 ⊗ x(yx) l ⊗ 1) = x ⊗ (yx) l ⊗ 1 -1 ⊗ (xy) l ⊗ x - N i=1 i-1 k=0 a i q i-k h i-k-1 ⊗ h(xy) l-1 x ⊗ h k , d n (1 ⊗ y(xy) l ⊗ 1) = y ⊗ (xy) l ⊗ 1 -1 ⊗ (yx) l ⊗ y - N i=1 i-1 k=0 a i q k h i-k-1 ⊗ h(yx) l-1 y ⊗ h k .
-If n is odd and l = n-1 2 ,

d n (1 ⊗ h(yx) l y ⊗ 1) = h ⊗ y(xy) l ⊗ 1 + 1 ⊗ h(yx) l ⊗ y -qy ⊗ h(xy) l ⊗ 1 -q ⊗ y(xy) l ⊗ h, d n (1 ⊗ h(xy) l x ⊗ 1) = h ⊗ x(yx) l ⊗ 1 + 1 ⊗ h(xy) l ⊗ x -q -1 x ⊗ h(yx) l ⊗ 1 -q -1 ⊗ x(yx) l ⊗ h, d n (1 ⊗ (xy) l+1 ⊗ 1) = x ⊗ y(xy) l ⊗ 1 + 1 ⊗ x(yx) l ⊗ y - N i=1 i-1 k=0 a i q i h i-k-1 ⊗ h(xy) l ⊗ h k , d n (1 ⊗ (yx) l+1 ⊗ 1) = y ⊗ x(yx) l ⊗ 1 + 1 ⊗ y(xy) l ⊗ x - N i=1 i-1 k=0 a i h i-k-1 ⊗ h(yx) l ⊗ h k .

The resolution

Let k be a field and α, β, γ ∈ k. Denote A = A(α, β, γ).

Let Q be the quiver with one vertex and two arrows d, u. Fix a lexicographical order such that d < u, with weights ω(d) = 1 = ω(u). The reduction system R = {(d 2 u, αdud + βud 2 + γd), (du 2 , αudu + βu 2 d + γu)} has B = {u i (du) k d j : i, k, j ∈ N 0 } as set of irreducible paths and A 2 = {d 2 u 2 }; using Bergman's Diamond Lemma we see that R satisfies condition (♦). Also, A 0 = {d, u} and A n = ∅ for all n ≥ 3. The set B is the k-basis already considered in [START_REF] Benkart | Down-up algebras[END_REF].

Proposition 5.1. The following sequence is a free resolution of A as A-bimodule:

0 -→ A ⊗ kd 2 u 2 ⊗ A d 2 -→ A ⊗ (kd 2 u ⊕ kdu 2 ) ⊗ A d 1 -→ A ⊗ (kd ⊕ ku) ⊗ A δ 0 -→ A ⊗ A δ -1 -→ A -→ 0
where ⊗ denotes ⊗ k and

d 1 (1 ⊗ d 2 u ⊗ 1) = 1 ⊗ d ⊗ du + d ⊗ d ⊗ u + d 2 ⊗ u ⊗ 1 -α(1 ⊗ d ⊗ ud + d ⊗ u ⊗ d + du ⊗ d ⊗ 1) -β(1 ⊗ u ⊗ d 2 + u ⊗ d ⊗ d + ud ⊗ d ⊗ 1) -γ ⊗ d ⊗ 1, d 1 (1 ⊗ du 2 ⊗ 1) = 1 ⊗ d ⊗ u 2 + d ⊗ u ⊗ u + du ⊗ u ⊗ 1 -α(1 ⊗ u ⊗ du + u ⊗ d ⊗ u + ud ⊗ u ⊗ 1) -β(1 ⊗ u ⊗ ud + u ⊗ u ⊗ d + u 2 ⊗ d ⊗ 1) -γ ⊗ u ⊗ 1, and 
d 2 (1 ⊗ d 2 u 2 ⊗ 1) = d ⊗ du 2 ⊗ 1 + β ⊗ du 2 ⊗ d -1 ⊗ d 2 u ⊗ u -βu ⊗ d 2 u ⊗ 1.
We denote this resolution by C.

Proof. The reductions r d 2 u 2 = (r u,d 2 u,1 , r 1,d 2 u,u ) and t d 2 u 2 = (t 1,du 2 ,d , t d,du 2 ,1 ) are respectively left and right reductions of d 2 u 2 . Recall that A n = ∅ for all n ≥ 3. The result follows from Proposition 3.22 and Theorem 3.5 As we have proved in general, the map d 2 takes into account the reductions applied to the ambiguity.

Regularity properties

We begin this section by recalling the definitions of d-Calabi-Yau and twisted d-Calabi-Yau algebras.

Let d ∈ N. An associative algebra A is said to be d-Calabi-Yau algebra if it has finite global dimension, it has a resolution by finitely generated projective A-bimodules and The inverse of Φ is, fixing a k-basis {v 1 , . . . , v n } of V and its dual basis {ϕ 1 , . . . , ϕ n } of V * , Φ -1 :

Hom A e (A ⊗ k V ⊗ k A, A e ) -→ A ⊗ k V * ⊗ k A f → i,j b i j ⊗ ϕ i ⊗ a i j ,
where f(v i ) = j a i j ⊗ b i j . After applying these identifications to Hom A e (C, A e ), we obtain the following complex of k-vector spaces

0 -→ A ⊗ A δ * 0 -→ A ⊗ (kD ⊕ kU) ⊗ A d * 1 -→ A ⊗ (kD 2 U ⊕ kDU 2 ) ⊗ A d * 2 -→ A ⊗ kD 2 U 2 ⊗ A -→ 0,
where ⊗ denotes ⊗ k , {D, U} denotes the dual basis of {d, u} and, accordingly, we denote with capital letters the dual bases of the other spaces.

The maps in the complex are, explicitely:

δ * 0 (1 ⊗ 1) = 1 ⊗ D ⊗ d -d ⊗ D ⊗ 1 + 1 ⊗ U ⊗ u -u ⊗ U ⊗ 1 d * 1 (1 ⊗ U ⊗ 1) = 1 ⊗ D 2 U ⊗ d 2 -αd ⊗ D 2 U ⊗ d -βd 2 ⊗ D 2 U ⊗ 1 + u ⊗ DU 2 ⊗ d + 1 ⊗ DU 2 ⊗ du -αdu ⊗ DU 2 ⊗ 1 -α ⊗ DU 2 ⊗ ud -βud ⊗ DU 2 ⊗ 1 -βd ⊗ DU 2 ⊗ u -γ ⊗ DU 2 ⊗ 1. d * 1 (1 ⊗ D ⊗ 1) = du ⊗ D 2 U ⊗ 1 + u ⊗ D 2 U ⊗ d -αud ⊗ D 2 U ⊗ 1 -α ⊗ D 2 U ⊗ du -βd ⊗ D 2 U ⊗ u -β ⊗ D 2 U ⊗ ud -γ ⊗ D 2 U ⊗ 1 + u 2 ⊗ DU 2 ⊗ 1 -αu ⊗ DU 2 ⊗ u -β ⊗ DU 2 ⊗ u 2 . d * 2 (1 ⊗ DU 2 ⊗ 1) = 1 ⊗ D 2 U 2 ⊗ d + βd ⊗ D 2 U 2 ⊗ 1, d * 2 (1 ⊗ D 2 U ⊗ 1) = -u ⊗ D 2 U 2 ⊗ 1 -β ⊗ D 2 U 2 ⊗ u.
Notice that the homology of this complex is isomorphic to Ext • A e (A, A e ). The fact that the space kd ⊕ ku is two-dimensional implies dim k (Tor A 1 (T 1 , T 2 )) ≤ 2 for all α, γ ∈ k.

-If γ = 0 and T 1 = T 2 = k, then f 0 = 0,f 1 = 0 and therefore dim k (Tor A 1 (k, k)) = 2. If α = 1 and T 1 = T 2 = k, we see from equations 5.3 that δ 1 = 0 or µ 1 = 0, but not both. Then f 0 = 0 and f 1 is of rank 1, and we obtain dim k (Tor A 1 (T 1 , T 1 )) = 1.

-If γ = 0 and α = 1, then from equations 5.3 we deduce δ 1 = δ 2 = µ 1 = µ 2 = 0. Then, f 0 = 0, f 1 (d 2 u) = -γd, f 1 (du 2 ) = -γu and so Tor A 1 (T 1 , T 2 ) = 0.

-If γ = 0 and α = 1 there are several cases:

-Case (δ 1 , µ 1 ) = (δ 2 , µ 2 ) = (0, 0). In this case f 0 = 0, f 1 (d) = -γd, f 1 (u) = -γu. Then Tor A 1 (T 1 , T 2 ) = 0. -Case (δ 1 , µ 1 ) = (0, 0), (δ 2 , µ 2 ) = (0, 0). From equations 5.3 we see that δ 2 = 0 if and only if µ 2 = 0. Then δ 2 = 0 and µ 2 = 0. From this we see that f 0 = 0 and dim k (Tor A 1 (T 1 , T 2 )) ≤ 1. -Case (δ 1 , µ 1 ) = (0, 0), (δ 2 , µ 2 ) = (0, 0) and (δ 1 , µ 1 ) = (δ 2 , µ 2 ). In this case f 0 = 0 and so dim k (Tor A 1 (T 1 , T 2 )) ≤ 1. -Case (δ 1 , µ 1 ) = (δ 2 , µ 2 ) = (0, 0). Once again, from equations 5.3 we deduce that δ 2 = 0 if and only if µ 2 = 0, and therefore δ 1 and µ 1 are not zero. Also, we obtain (1α)δ 1 µ 1γ = 0. Then f 0 = 0 and The fact that α = 1 implies f 1 (d 2 u) = 0 and f 1 (du 2 ) = 0. Moreover, µ 1 f 1 (d 2 u) = δ 1 f 1 (du 2 ). We deduce dim k (Tor A 1 (T 1 , T 2 )) = 1.

We now proceed to prove Proposition 5.6. Let A = A(α, β, γ), where α, β, γ ∈ k with (α, β, γ) = (0, 0, 0). Let B = kQ/I be a monomial algebra and suppose there exists an isomorphism of k-algebras ϕ : A -→ B. Since every down-up algebra is of global dimension 3, we deduce I =. This implies that B is not a domain and that β = 0, since any down-up algebra A(α ′ , β ′ , γ ′ ) with β ′ = 0 is a domain. z z z z t t t t t t t t t k α [d, u] where k α [d, u] := A/ duαud . This algebra is called the quantum plane and it is a domain for all α = 0. Let p(x, y) be a path in I. The diagram shows that p(π • ϕ -1 (x), π • ϕ -1 (y)) = 0. Since γ = 0, we have α = 0 and therefore k α [d, u] is a domain. We deduce π • ϕ -1 (x) = 0 or π • ϕ -1 (y) = 0 and this implies that k α [d, u] is generated by one element, which is a contradiction. Now suppose γ = 0. If α = 1, then Lemma 5.11 says that Tor A 1 (T 1 , T 2 ) = 0 for every pair of one-dimensional A-modules. Since A ∼ = B, this is also true for B and one-dimensional B-modules. By Lemma 5.10 Q has no arrows. This is impossible, and so α = 1.

We have

 = k[d, u] d((1 -α)du -γ), u((1 -α)du -γ) ∼ = k ⊕ k[d, u] (1 -α)du -γ .
The last isomorphism comes from the fact that the ideals d, u and (1α)duγ) in k[d, u] are coprime. We will identify  with k ⊕ k[d, u]/ (1α)duγ . Lemma 5.11 shows that dim k (Tor A 1 (T 1 , T 2 )) ≤ 1 for all one-dimensional A-modules T 1 , T 2 . Therefore this is also verified by B and one-dimensional B-modules. By 5.10 there is at most one arrow between each pair of vertices in Q. In particular, there is at most one element in eQ 1 e for every vertex e. Define V = {e ∈ Q 0 : #eQ 1 e = 1} and for every e ∈ V, denote x e the unique element in eQ 1 e. The fact that A is of global dimension 3 implies that B is also of global dimension 3. In particular, Bardzell's resolution of B is of finite length. From this we obtain that x n e / ∈ I for all n ∈ N, otherwise Bardzell's resolution of B would be of infinite length. Therefore, using the notation of Lemma 5.9, this implies B e = k[X] and I e = 0 for all e ∈ V, and B e = k for all e / ∈ V. By Lemma 5.9, we have

B ∼ = e/ ∈V k ⊕ e∈V k[X].
We identify B with the algebra on the right. Denote φ : Â -→ B the isomorphism induced by ϕ : A -→ B. Consider the element (1, u) ∈ Â. We have

(1, (1 -α)γ -1 d) • (1, u) = (1, 1) in Â.
This implies that φ((1, u)) is a unit in B. The units in B are contained in k n ⊆ B, where n = #Q 0 . The dimension of the vector space generated by the set {(1, u i )} i∈N in  is infinite dimensional, and the their images via φ generate a finite dimensional space since it is contained in k n . This is a contradiction and we conclude the proof of Proposition 5.6.

Let r, s ≥ 0. Write d r u s = i,j,l≥0 λ i,j,l u i ω j d l . Recall that A is graded considering d in degree -1 and u in degree 1. Under this grading, the element ω is homogeneous of degree 0. We have d r u sl-i=r-s j≥0 λ i,j,l u i ω j d l = l-i =r-s,j≥0 λ i,j,l u i ω j d l .

The term on the left is homogeneous of degree rs and the term on the right is a sum of homogeneous elements neither of which is of degree rs. Therefore both terms are equal to zero and we obtain ωd r u s ω = l-i=r-s j≥0 λ i,j,l ωu i ω j d l ω.

Recall that the relations of the algebra A are dω = 0 and ωu = 0. If rs = 0, then (i, l) = (0, 0) for all i, l with li = rs. As a consequence, from the above equality we see that ωd r u s ω = 0. On the other hand, if r = s, then ωd r u r ω = j,l≥0 λ l,j,l ωu l ω j d l ω = j≥0 λ 0,j,0 ω j+2 .

Corollary 5.17. The set {[u i ωd l ] : i, l ≥ 0}, where [p] denotes the class of an element p in ω / ω 2 , is a k-linear basis of the A-bimodule ω / ω 2 . On the other hand, if α = 1, we have the following formulas,

[u i ωd l u] = α l -1 α -1 [u i ωd l-1 ],
[du i ωd l ] = α i -1 α -1 [u i-1 ωd l ].

When l = 0 or i = 0, the terms on the right are considered to be zero.

Proof. The first claim follows directly from 5.16. To prove the first formula, we will fix i ≥ 0 and proceed by induction on l. We have the equalities ωu = 0 = dω, which proves the case l = 0. On the other hand, we have ω 2 = ω(duαud -1) = ωduω, that is ωdu = ω 2 + ω. Similarly duω = ω 2 + ω. Therefore,

[u i ωdu] = [u i ω]. Now, if l ≥ 2, then [u i ωd l u] = [u i ωd l-2 (αdud + d)] = α[u i ωd l-1 ud] + [u i ωd l-1 ] = α α l-1 -1 α -1 [u i ωd l-2 d] + [u i ωd l-1 ] = α l -1 α -1 [u i ωd l-1 ].
The second formula can be proved analogously.

By Corollary 5.17, the set {[u i ωd l ] : i, l ≥ 0} is a k-linear basis of ω / ω 2 . For m ≥ 0, define Λ m := λ m+1,1,mαµ m,1,m+1 . Regarding, for each m ≥ 0, the coefficient corresponding to the term [u m+1 ωd m ] in the last equation, we deduce α = Λ 0 , αΛ m-1 = α m+1 -1 α -1 Λ m , for m ≥ 1.

Since α = 0, we obtain Λ 0 = 0. Inductively, if Λ m-1 = 0, then the above equality implies Λ m = 0. Therefore Λ m = 0 for all l ≥ 0. As a consequence, either the λ m+1,1,m = 0 for infinitely many m ∈ N, or µ m,1,m+1 = 0 for infinitely many m ∈ N. This is a contradiction that comes from the assumption α = α ′ .

1

  Reduction systems, partial orders and ambiguities

-

  π(b) = π(b ′ ) para todos b, b ′ ∈ B tal que b = b ′ . -{π(b) : b ∈ B} es una k-base de kQ/I.

Corollary 1 . 11 .

 111 Given a path p, its normal form β(p) is such that β(p) p. Moreover, β(p) ≺ p if and only if p / ∈ B.

  Consider the setS := Mintip(I) = {p ∈ tip(I) : p ′ /∈ tip(I) for all proper divisors p ′ of p}.

Example 1 . 22 .

 122 Consider the quiver Q with only one vertex and four arrows a, b, c and d. Define the order a < b < c < d and ω(α) = 1 for all α ∈ Q 1 .

1 - 2 - 3 -

 123 → y(ξxy) = ξyxy = ξ(yx)y t → ξ(ξxy)y -→ ξ 2 xyy = ξ 2 x(yy) t

Example 1 . 32 .

 132 Consider the reduction system R ′ = {(dc, a), (b, a), (aa, d)} of Example 1.29. Using the notation of the above proof we have R 0 = ∅, S 0 = ∅, R 1 = {(b, a)} and S 1 = {b}. Therefore Q0 = Q 0 , Q1 = {a, c, d}, R = {(dc, a), (aa, d)}, Î = dca, aa -d} and we have an isomorphism of k-algebras kQ/ abca, abcb, ab -

Corollary 1 . 36 .

 136 this reads u n = ûn • • • ûm , and the fact that u n is irreducible and ûj ûj+1 is reducible for all j < m implies that m = n and u n = ûn . Instead, suppose that i + 1 < n. From the equalityu i+1 • • • u n = ûi+1 • • • ûm we deduce that there exists a path d such that u i+1 = ûi+1 d or ûi+1 = u i+1 d. If u i+1 = ûi+1 d and d ∈ Q ≥1 , we can write d = d 2 d 1 with d 1 ∈ Q 1 .The path ûi+1 d 2 is a proper left divisor of u i+1 and by condition (1b) we obtain that u i ûi+1 d 2 is irreducible. This is absurd since u i ûi+1 d 2 = ûi ûi+1 d 2 by inductive hypothesis, and the right hand term is reducible by condition (1b). It follows that d ∈ Q 0 and then u i+1 = ûi+1 . The case where ûi+1 = u i+1 d is analogous. Given n, m ≥ -1, A n ∩ A m = ∅ if n and m are different.

1 ( 1

 11 ⊗ π(b))) and on the other hand the left hand term equals δ 0 (s 0 (1 ⊗ π(b))), yielding 1 ⊗ π(b)s -1 (1 ⊗ π(b)) = δ 0 (s 0 (1 ⊗ π(b)). By hypothesis, (d 0δ 0 )(1 ⊗ π(b)) belongs to L ≺ -1 (b) k , and so there exists ξ

Example 4 . 1 .

 41 Consider the algebra A = k x, y, z / xyz -x 3 -y 3 -z 3 . Let R 1 and R 2

Lemma 4 . 8 .

 48 Consider the A-bimodule morphisms d n : A ⊗ k kA n ⊗ k A -→ A ⊗ k kA n-1 ⊗ k A of Lemma 4.7 for n ≤ 2 and the following formulas for n ≥ 3, -If n is even and l = n 2 ,

Definition 5 . 3 .Lemma 5 . 4 .

 5354 For every λ ∈ k × , define σ λ to be the algebra automorphism σ λ : A -→ A given by σ λ (d) = λd and σ λ (u) = λ -1 u. Suppose β = 0 and let C be the projective resolution of A as A-bimodule. There is an isomorphism of A-bimodule-complexes Hom A e (C, A e ) ∼ = A σ ⊗ A C.

f 1 (

 1 d 2 u) = δ 1 (1α)(µ 1 d + δ 1 u), f 1 (du 2 ) = µ 1 (1α)(µ 1 d + δ 1 u).

Suppose γ = 0 . 2 .

 02 By Lemma 5.11,sup dim k (Tor A 1 (T 1 , T 2 ) : T 1 , T 2 are one-dimensional A-modules} = Notice that  = k[d, u]/ (1α)d 2 u, (1α)du 2 is connected. Since  ∼ = Bwe obtain that B is connected. Recall B = kQ/I is a monomial algebra. By lemmas 5.9 and 5.10, Q has exactly one vertex and two arrows. Denote Q 1 = {x, y}. We have the diagram

  c n sont des chemins de longueur positive. Nous appelons {c 1 , . . . , c n } le support de x et nous le dénotons Su(x).

	Nous définissons une rélation binaire	sur l'ensemble k ×

  , A 0 := Q 1 , A 1 := S R et pour tout n ≥ 2, nous définissons A n et A ′ Pour tout n ≥ 2 on a A n = A ′ n . De plus, A n ∩ A m = ∅ si n et m sont différents.

	• • • u n ,
	(b) pour tout i, le chemin u i u i+1 n'est pas irréductible mais u i d est irréductible
	pour tout diviseur à gauche d de u i+1 , différent de u i+1 .
	2. le chemin p s'apelle une n-ambiguïté à droite s'il existe v 0 ∈ Q 1 et des chemins
	irréductibles v 1 , . . . , v n tels que
	(a) p = v n • • • v 0 ,
	(b) pour tout i, le chemin v i+1 v i n'est pas irréductible mais dv i est irréductible
	pour tout diviseur à droite d de v i+1 , différent de v i+1 .
	Soient A -1 := Q 0 n
	les ensembles de n-ambiguïtés à gauche et à droite, respectivement.
	Proposici ón.

  est un ensemble minimal de générateurs de I et kY dénote le k-espace vectoriel engendré par un ensemble de chemins Y. Avec notre notation, les ensembles A n

	correspondent aux n-ambiguïtés d'un système de réduction qu'on construit à partir
	de ≤ ω . La seule information qu'on a sur les différentielles d i est la suivante. L'ordre
	sur les mon ômes ≤ ω peut se prolonger à un ordre total sur l'ensemble de tenseurs
	élémentaires de manière que pour tout n, les terms de d n

  and so the difference is zero. If either a / ∈ B or c / ∈ B, then π ′ k (y) = 0 and in this case Lemma 3.11 implies that π k

Using Proposition 1.38 we deduce that A 2 = {abab, baba}. Let u 0 = a, u 1 = ba, u 2 = b, and u ′ 0 = b, u ′ 1 = ab, u ′ 2 = a. We obtain abab = u 0 u 1 u 2 and baba = u ′ 0 u ′ 1 u ′ 2 . Notice that abab overlaps on the right with both aba and bab, but aba overlaps also with u 0 u 1 . The element baba also overlaps with aba and bab, but bab overlaps with u ′ 0 u ′ 1 . Therefore A 3 = {ababab, bababa}. If we define u 3 = ab and u ′ 3 = ba we can write ababab = u 0 u 1 u 2 u 3 and bababa = u ′ 0 u ′ 1 u ′ 2 u ′ 3 . Continuing in this way we obtain A 4 = {abababa, bababab}. We deduce that A n = {(ab) We end this section with a proposition that indicates how to compute ambiguities for a particular family of algebras.

Proposition 1.40. Suppose S ⊆ Q 2 . For all n ≥ 1,

A n = {α 0 . . . α n ∈ Q n+1 : α i ∈ Q 1 for all i and α i-1 α i ∈ S} Moreover, given p = α 0 . . . α n ∈ A n , we can write p as a left ambiguity choosing u i = α i , for all i, and as a right ambiguity choosing v i = α n-i .

Proof. We proceed by induction on n. If n = 1 we know that A 1 = S in which case there is nothing to prove. Let u 0 • • • u n u n+1 ∈ A n+1 and suppose that the result holds for all p ∈ A n . Since u 0 • • • u n belongs to A n we only have to prove that u n+1 ∈ Q 1 and that u n u n+1 ∈ S. We know that u n ∈ Q 1 , that u n+1 is irreducible and that u n u n+1 is reducible. As a consequence, there exist s ∈ S and v ∈ Q ≥0 such that u n u n+1 = sv. Moreover, u n d is irreducible for any proper left divisor d of u n+1 , so the only possibility is v ∈ Q 0 . We conclude that u n u n+1 belongs to S. Since S ⊆ Q 2 and u n ∈ Q 1 , we deduce that u n+1 ∈ Q 1 . This proves that A n+1 ⊆ {α 0 • • • α n ∈ Q n+1 : α i ∈ Q 1 for all i and α i-1 α i ∈ S}. The other inclusion is clear.

Example 1.41. Let ξ ∈ k and Q be the quiver with one vertex and two arrows. Denote Q 1 = {x, y}. Consider A = k x, y /I with I = x 2 , y 2 , yxξxy . In Examples 1.25 we proved that the set R = {(x 2 , 0), (y 2 , 0), (yx, ξxy)} is a reduction system satisfing the Diamond condition. Also, there are no inclusion ambiguities and S = {x 2 , y 2 , yx} ⊆ Q 2 . The only path of length two not in S is xy. By Proposition 1.40, the set A n coincides with the set of paths not divisible by xy, that is A n = {y s x t : s + t = n + 1}.

We will now state the main theorems. Recall that our aim is to construct, for non necessarily monomial algebras, a bimodule resolution starting from the Bardzell's resolution of the monomial algebra A S . The first theorem says that if the difference between its differentials and the monomial differentials can be "controlled", then we will actually obtain an exact complex. The second theorem says that it is possible to construct the differentials. Theorem 3.5. Set d -1 := δ -1 and d 0 := δ 0 . Given N ∈ N 0 and morphisms of A-bimodules

for all i ∈ {1, . . . , N} and for all q ∈ A i , then the complex

Theorem 3.6. There exist A-bimodule morphisms d i :

Z for all i ≥ -1 and q ∈ A i .

We will carry out the proofs of these theorems in the following section.

Proofs of the theorems

We keep the same notations and conditions of the previous section. We start by proving some technical lemmas.

Lemma 3.7. Given n ≥ 0, the following equalities hold

The proof is straightforward after the definitions.

Next we prove three lemmas where we study how the maps defined in the previous section behave with respect to the partial order .

-Given a basic reduction r = r a,s,c , let ϕ 1 (r, -) :

In case r = (r n , . . . , r 1 ) is a reduction, where r i is a basic reduction for all i, 1 ≤ i ≤ n, we denote r ′ = (r n , . . . , r 2 ) and we define in a recursive way the map ϕ 1 (r, -) as the unique k-linear map from kQ to A ⊗ E kA 1 ⊗ E A such that

-Finally, we define an A-bimodule morphism d 1 :

Next we prove four lemmas necessary to the description of the complex in low degrees.

Lemma 3.18. Let us consider p ∈ Q ≥0 and x ∈ kQ such that x ≺ p. For any reduction r the element ϕ 1 (r, x) belongs to L ≺

Proof. We will first prove the result for x = µq ∈ k × Q ≥0 . The general case will then follow by linearity. Fix x = µq ∈ k × Q ≥0 . We will use an inductive argument on (k × Q ≥0 , ).

To start the induction, suppose first that there exists no µ ′ q ′ ∈ k × Q ≥0 and that µ ′ q ′ ≺ µq = x. In this case, every basic reduction r a,s,c satisfies either r a,s,c (x) = x or r a,s,c = 0. In the first case, asc = q and so ϕ 1 (r a,s,c , x) = 0. In the second case, asc = q, so ϕ 1 (r a,s,c , x) = µπ(a) ⊗ s ⊗ π(c).

Given an arbitrary reduction r = (r n , . . . , r 1 ) with r i basic for all i, there are three possible cases.

Denote r ′ = (r n , . . . , r 2 ) as before and r 1 = r a,s,c . In case 1),

Using Lemma 3.8, we obtain that in all three cases ϕ 1 (r,

Next, suppose that x = µq and that the result holds for µ ′ q ′ ∈ k × Q ≥0 such that µ ′ q ′ ≺ µq = x. Let us consider r, r 1 and r ′ as before. Again, there are three possible cases:

1. asc = q, 2. asc = q and n > 1, 3. asc = q and n = 1.

Case 3) is immediate, since in this situation ϕ 1 (r, x) = 0. The second case reduces to the other ones, since ϕ 1 (r, x) = ϕ 1 (r ′ , x). In the first case,

We know that r 1 (x) ≺ x, and we may write it as a finite sum r 1 (x) = i µ i q i . Using the inductive hypothesis, we deduce that ϕ 1 (r,

Proof. Let x be an element of A ⊗ E kA 1 ⊗ E A. Since these maps are morphisms of A-bimodules, we may suppose

Lemma 3.20. Given a, c ∈ Q ≥0 and p = n i=1 λ i p i ∈ kQ, with p i ∈ Q ≥0 for all i, we obtain the equality ϕ 0 (apc) = ϕ 0 (a)π(pc) + π(a)ϕ 0 (p)π(c) + π(ap)ϕ 0 (c).

The proof is immediate using the definition of ϕ 0 and k-linearity of ϕ 0 and π.

Next we prove the last of the preparatory lemmas. Lemma 3.21. Given p ∈ Q ≥0 and a reduction r = (r n , . . . , r 1 ), with r i a basic reduction for all i such that 1 ≤ i ≤ n, there is an equality

Proof. We will prove the result by induction on n. We will denote r i = r a i ,s i ,c i .

Proof. To check that d 2 is well defined, consider the map d2 : A × kA 2 × A -→ A ⊗ E kA 1 ⊗ E A defined by d2 (x, p, y) = xϕ 1 (t p , p)yxϕ 1 (r p , p)y, for all x, y ∈ A, which is clearly multilinear; taking into account the definition of ϕ 1 , it is such that d2 (xe, p, y) = d2 (x, ep, y) and d2 (x, pe, y) = d2 (x, p, ey) for all e ∈ E, so it induces d 2 on A ⊗ E kA 2 ⊗ E A.

The sequence is a complex:

δ -1 • δ 0 = 0 and δ 0 • d 1 = 0 follow from Lemma 3.19.

this last expression equals ϕ 0 (p)ϕ 0 (t p (p))ϕ 0 (p) + ϕ 0 (r p (p)), which is, by Remark 1.10, equal to -ϕ 0 (β(p)) + ϕ 0 (β(p)), so

It is exact:

-We already know that this is true at A and at A ⊗ E A.

-Given p ∈ A 2 , we will now prove that (d 2δ 2 )(1 ⊗ p ⊗ 1) belongs to L ≺ 1 (p) k . We may write p = u 0 u 1 u 2 = v 2 v 1 v 0 , as we did just before this proposition and thus δ 2

. Besides, if r p = (r n , . . . , r 1 ) and t p = (t m , . . . , t 1 ) with t i and r j basic reductions, the fact that r p starts on the left and t p starts on the right of p gives

where t ′p = (t m , . . . , t 2 ) and r ′p = (r n , . . . , r 2 ). Since t 1 (p) ≺ p and r 1 (p) ≺ p, Lemma 3.18 allows us to deduce the result.

Finally, Theorem 3.5 implies that the sequence considered is exact.

On the other hand, given s ∈ A 1 , write β(s) = m i=1 λ i b i . Let r = r a,s ′ ,c be a basic reduction such that r(s) = s. We must have s ′ = s and a, c ∈ Q 0 must coincide with the source and target of s, respectively. In other words, the only basic reduction such that r(s) = s is r a,s,c with a and c as we just said, and in this case r(s) = β(s) ∈ kB.

be the reduction systems R 1 = {(z 3 , xyzx 3y 3 ), (xyz 2 , x 3 z + y 3 z + zxyzzx 3zy 3 ), (y 3 z 2 , -x 3 z 2z 2 xyz + z 2 x 3 + z 2 y 3 + xyxyzxyx 3xy 4 )}, and

In examples 1.23 and 1.25 we proved that both R 1 and R 2 satisfy the Diamond condi- tion. Denote A 1 n and A 2 n the respective set of n-ambiguities. Notice that z for n odd and z 3 2 n+1 ∈ A 1 n for n even, so A 1 n is not empty for all n ∈ N. On the other hand, A 2 n is empty for all n ≥ 2. We conclude that using R 2 we will obtain a resolution of length 2, with differentials given explicitely by Proposition 3.22, and using R 1 the resolution obtained will have infinite length. This shows how different the resolutions from different reduction systems can be.

The algebra A is in fact a 3-Koszul algebra. Indeed, denoting by V the k-vector space spanned by x, y, z and by R the one dimensional k-vector space spanned by the relation xyzx 3y 3z 3 , we have

and so the intersection is a subset of V ⊗ R ⊗ V. Theorem 2.5 of [START_REF] Berger | Gerasimov's theorem and N-Koszul algebras[END_REF] guarantees that A is 3-Koszul. By Theorem 3.24, the resolution we obtain from the reduction system R 2 is minimal and therefore it is the Koszul resolution.

The algebra counterexample to Happel's question

Let ξ be an element of the field k and let A be the k-algebra with generators x and y, subject to the relations x 2 = 0 = y 2 , yx = ξxy. This algebra can be presented as k x, y / X , where X = {x 2 , y 2 , yx -ξxy} and k x, y is the algebra freely generated in the variables x and y. Choose the order y < x with weights ω(x) = ω(y) = 1 and define the reduction system R X = {(x 2 , 0), (y 2 , 0), (yx, ξxy)} as explained in Remark 1. [START_REF] Chouhy | Projective resolutions of associative algebras and ambiguities[END_REF]. By Proposition 1.24 the reduction system R X satisfies the Diamond condition. The details are given in Example 1.25.

Hence, the set of irreducible paths is B = {1, x, y, xy}. The only path of length 2 not in S R X is xy and Proposition 1.40 implies that for each n, A n is the set of paths of lenght n + 1 not divisible by xy,

Lemma 4.2. The following complex provides the beginning of an A-bimodule projective resolution of the algebra

Proof. We apply Proposition 3.22 to the following sets {r p } p∈A 2 of left reductions and {t p } p∈A 2 of right reductions, where

One can find an A-bimodule resolution of A in [START_REF] Buchweitz | Finite Hochschild cohomology without finite global dimension[END_REF] and in [START_REF] Bergh | Homology and cohomology of quantum complete intersections[END_REF]; the authors also compute the Hochschild cohomology of A therein. We recover this resolution with our method.

Given q ∈ A n , there are s, t ∈ N such that s + t = n + 1 and q = y s x t . Suppose q = apc with p = y s ′ x t ′ ∈ A n-1 and a, c ∈ Q ≥0 . Since s + t = n + 1 and s ′ + t ′ = n, either a belongs to Q 0 and c = x or a = y and c ∈ Q 0 . As a consequence of this fact, the maps

Moreover, given a basic reduction r = r a,s,c , the fact that s belongs to S = {x 2 , y 2 , yx} implies that r(y s x t ) is either 0 or ξy s-1 xyx t-1 . Considering the reduction system R, if s = 0 and t = 0, then

In case s = 0 or t = 0, the set L ≺ n-1 (y s x t ) is empty.

The computation of d 2δ 2 suggests the definition of the maps

where ǫ denotes a sign depending on s, t, n. The equality d n-1 • d n = 0 shows that making the choice ǫ = (-1) s does the job.

Finally, Theorem 3.5 shows that the complex

for s > 0 and t > 0, and

is a projective bimodule resolution of A.

Again, the algebra A is Koszul, see for example [START_REF] Berger | Weakly confluent quadratic algebras[END_REF] and the resolution obtained using our procedure is the Koszul resolution, which is the minimal one, see Theorem 3.24.

Quantum complete intersections

These algebras generalize the previous case. Instead of the relations x 2 = 0 = y 2 , yx = ξxy, we have x n = 0 = y m , yx = ξxy, where n and m are fixed positive integers, n, m > 1. We still denote the algebra by A and similarly to the previous case, let X = {x n , y m , yx -ξxy}. Consider the order y < x with weights ω(x) = ω(y) = 1. The reduction system R X = {(x n , 0), (y m , 0), (yx, ξxy)} satisfies conditions 1, 2 ′ and 3 of remarks 1.18 and 1.19. Similar calculations to the previous case show that every ambiguity of R X is resolvable. By Proposition 1.24, this implies that R X satisfies the Diamond condition.

The set of irreducible paths is B = {x i y j ∈ k x, y :

By direct computations we obtain A 1 = {y m , yx, x n }, A 2 = {y m+1 , y m x, yx n , x n+1 } and Next we proceed to construct the rest of the resolution. Denote (s, t) = y ϕ(s,m) x ϕ(t,n) ∈ A N . We will first describe the set L ≺ N-1 (s, t). There are four cases, depending on the parity of s, t and N. With this in view, it is useful to make some previous computations that we list below.

1.

For s even, for all j, 0 ≤ j ≤ m -1, y ϕ(s,m) = y m-1-j y ϕ(s-1,m) y j .

2.

For s odd, y ϕ(s,m) = yy ϕ(s-1,m) = y ϕ(s-1,m) y.

For t even, for all

First case N even, s even, t odd,

Second case N even, s odd, t even,

Third case N odd, s even, t even,

Fourth case N, s and t odd,

Remark 4.4. We observe that, analogously to the case n = m = 2,

u.

Proposition 3.14 for R = Z guarantees that there exist A-bimodule maps d

We are not yet able at this point to give the explicit formulas of the differentials.

In order to illustrate the situation, let us describe what happens for N = 3. We know after the mentioned proposition that there exist t 1 , t 2 ∈ Z such that

Of course, d 2 • d 3 = 0. It follows from this equality that t 1 = t 2 = -1. This example motivates the following lemma, stated in terms of the preceding notations.

Lemma 4.5. The A-bimodule morphisms d

u satisfy the hypotheses of Thm. 3.5.

Proof. It is straightforward.

We gather all the information we have obtained about the projective bimodule resolution of A in the following proposition.

Proposition 4.6. The complex of A-bimodules

and differentials defined as follows is exact.

1. For N even, s even and t odd,

2.

For N even, s odd and t even,

For N odd, s and t even,

For N, s and t odd,

Again, we obtain the minimal resolution of A, even for n = 2 or m = 2, when the algebra is not homogeneous.

For all n ≥ 0, these morphisms verify

Proof. Lemma 4.7 gives the result for 0 ≤ n ≤ 2. Check by hand that d n-1 • d n = 0 for all n ≥ 3. The second part of the Lemma follows from the previous discussion. 

Down-up algebras

In this chapter we state and prove some results we obtained about down-up algebras. We recall their definition. Let k be a field and α, β, γ ∈ k. The down-up algebra A(α, β, γ) is the quotient of k d, u by the two sided ideal I generated by relations

Down-up algebras have been deeply studied since they were defined in [START_REF] Benkart | Down-up algebras[END_REF]. We can mention the articles [START_REF] Carvalho | Down-up algebras and their representation theory[END_REF], [START_REF] Benkart | A Hopf structure for down-up algebras[END_REF], [START_REF] Berger | Higher symplectic reflection algebras and non-homogeneous N-Koszul property[END_REF], [START_REF] Cassidy | Basic properties of generalized down-up algebras[END_REF], [START_REF] Carvalho | Automorphisms of generalized down-up algebras[END_REF], [START_REF] Kirkman | Non-Noetherian down-up algebras[END_REF], [START_REF] Kirkman | Noetherian down-up algebras[END_REF], [START_REF] Kulkarni | Down-up algebras and their representations[END_REF], [START_REF] Kulkarni | Down-up algebras at roots of unity[END_REF], [START_REF] Praton | Primitive ideals of Noetherian generalized down-up algebras[END_REF], [START_REF] Praton | Simple modules and primitive ideals of non-Noetherian generalized down-up algebras[END_REF], [START_REF] Praton | Primitive ideals of Noetherian down-up algebras[END_REF], in which the authors prove diverse properties of down-up algebras. We recall some of them.

-The algebra A(α, β, γ) is noetherian if and only if β = 0 [START_REF] Kirkman | Noetherian down-up algebras[END_REF] -Down-up algebras are graded with dg(d) = 1, dg(u) = -1, and they are filtered if we consider d and u of weight 1. If γ = 0 they are also graded by this weight.

-A(α, β, γ) is 3-Koszul if and only if γ = 0, and if γ = 0, it is a PBW deformation of a 3-Koszul algebra [START_REF] Berger | Higher symplectic reflection algebras and non-homogeneous N-Koszul property[END_REF].

We organize our results in four sections. In Section 5.1 we use the methods developed in this thesis to obtain a lenght three resolution of the algebra A(α, β, γ) for all α, β, γ ∈ k, which we will use in the other three sections. In Section 5.2 we find which down-up algebras are twisted 3-Calabi-Yau and which of them are 3-Calabi-Yau. In Section 5.3 we show that the algebra A(α, β, γ) is monomial if and only if α = β = γ = 0. This result shows that the resolution obtained in Section 5.1 can't be obtained using Bardzell's methods. In Section 5.4 we solve the isomorphism problem for the non noetherian down-up algebras. The isomorphism problem for noetherian down-up algebras was solved in [START_REF] Carvalho | Down-up algebras and their representation theory[END_REF].

there is an isomorphism f of A-bimodules

(5.1)

The A-bimodule outer structure of A e is used when computing Ext i A e (A, A e ), while the isomorphism f takes account of the inner bimodule structure of A e . Bocklandt proved in [START_REF] Bocklandt | Graded Calabi Yau algebras of dimension 3[END_REF] that graded Calabi-Yau algebras come from a potential and Van den Bergh [START_REF] Van Den Bergh | Calabi-Yau algebras and superpotentials[END_REF] generalized this result to complete algebras with respect to the I-adic topology.

The definition of twisted d-Calabi-Yau algebras is very similar. Recall that if σ is an algebra automorphism of A, it is common to denote by A σ the A-bimodule with A as underlying vector space and action of A ⊗ k A op given by: (a ⊗ b) • x = axσ(b). That is, the action is twisted on the right by the automorphism σ.

An algebra A is said to be twisted d-Calabi-Yau if it has finite global dimension, it has a resolution by finitely generated projective A-bimodules and there is an isomorphism

for some algebra automorphism σ of A.

Now we return to down-up algebras. So let k be a field and α, β, γ ∈ k and denote A = A(α, β, γ). Also, denote C the free A-bimodule resolution of A given in Section 5.1.

Remark 5.2. Before turning to the main result of this section, we describe an A-bimodule isomorphisms that we use. Let V be a k-vector space of finite dimension. Consider the k-linear morphism

Let us check that Φ is a morphism of A e -right-modules when we consider the outer A-bimodule structure on A ⊗ k V * ⊗ k A and the A-bimodule structure on Hom A e (A ⊗ k V ⊗ k A, A e ) induced by the inner action on A e , both of them seen as A e -right-modules structures. It is enough to check it for elementary tensors, so let v ∈ V and a

Proof. Consider the following isomorphisms of A-bimodules

The following diagram commutes

where ⊗ denotes ⊗ k and d 0 is given by

On the other hand, if V is a k-vector space, then

is an isomorphism of A-bimodules. Under this identification, the above complex becomes A σ ⊗ A C.

Next we state and prove the main result of this section. Proof. Suppose β = 0. By Remark 5.2 we deduce that

and so the endomorphism u • ( -) :

given by the action on the left by u is not injective. On the other hand, since the set {u i (du) j d k : i, j, k ∈ N 0 } is a basis of A as k-vector space, we obtain that u • ( -) : A σ -→ A σ is injective for every automorphism σ. Therefore there is no automorphism σ of A such that Ext 3 A 3 (A, A e ) is isomorphic to A σ as A-bimodules, and in particular A is not twisted 3-Calabi-Yau.

Let β = 0. From Lemma 5.4 and the fact that A σ is A-projective, we obtain that

where σ = σ -β , and therefore 1) is inversible on the left and on the right, and therefore it is a unit. By Lemma 1.3 in [START_REF] Carvalho | Down-up algebras and their representation theory[END_REF], any unit belongs to k × . Then,

Recall that A is a domain since β = 0. From the above equation we deduce β = -1.

Monomial down-up algebras

Recall that an algebra is said to be monomial if it is isomorphic to kQ/I, where Q is a quiver with a finite set of vertices and I is a two-sided ideal generated by paths of length at least 2. The goal of this section is to prove the following proposition.

Proposition 5.6. The down-up algebra A(α, β, γ) is monomial if and only if

Notice that the algebra A(0, 0, 0) is monomial by definition, so we only have to prove the only if part of the proposition. Before giving the proof, we state and prove a series of lemmas. Definition 5.7. Let A be a k-algebra. Denote J A the two sided ideal in A generated by the set X A := {xyyx : x, y ∈ A}. Define  := A/J A . Proof. The isomorphism ϕ : A -→ B verifies ϕ(X A ) = X B and so ϕ(J A ) = J B .

In order to state the next lemma we need some definitions. Let Q be a quiver with a finite set of vertices. For e, e ′ ∈ Q 0 , define eQ 1 e ′ := {α ∈ Q 1 : t(α) = e, s(α) = e ′ }, where t and s are the usual target and source maps. Also, consider the k-algebra B e := k[X α : α ∈ eQ 1 e]. In other words, B e is the polynomial algebra having #eQ 1 e variables indexed by the elements of this set. In case eQ 1 e = ∅, we set B e := k. If I is a two-sided ideal in kQ generated by paths of length at least 2, define I e to be the ideal in B e generated by the set

Lemma 5.9. Let Q be a quiver with a finite set of vertices and I a two-sided ideal in kQ generated by paths of length at least 2. Denote Q 0 = {e 0 , . . . , e m } and B := kQ/I. There is an isomorphism of k-algebras

Proof. For x ∈ B and f ∈ B e , denote x the class of x in B and f the class of f in B e /I e . The map ϕ :

On the other hand, the algebra kQ is the free k-algebra on the set Q 0 ∪ Q 1 modulo the two-sided ideal generated by the set

The set map ψ : R -→ B e 1 /I e 1 ⊕ • • • ⊕ B e n /I e n defined by

ψ(e i ) = 1 i , where 1 i is the unit in the i-th component, for Proof. Let e, e ′ ∈ Q 0 . Bardzell's resolution of B starts as

Apply the functor T e ⊗ B ( -) ⊗ B T e ′ and obtain the following complex

whose homology is isomorphic to Tor A • (T e , T e ′ ). Since Bardzell's resolution is minimal and every arrow acts as zero on T e and T e ′ , we obtain that the differentials of this complex are null. Therefore, Tor A 1 (T e , T e ′ ) ∼ = T e ⊗ k keQ 1 e ′ ⊗ k T e ′ ∼ = kQ 1 , from where we deduce dim k (Tor A 1 (T e , T e ′ )) = #eQ 1 e ′ . As for the second assertion, the same argument shows that if T 1 , T 2 are one-dimensional B-modules, then the homology of the complex

, where e is the vertex of Q. Lemma 5.11. Let A = A(α, 0, γ) and T 1 , T 2 be one-dimensional A-modules.

Proof. Let T 1 , T 2 be one-dimensional A-modules with bases {v 1 } and {v 2 }, respectively.

Let

In A we have the relations d 2 uαdudγd = 0 = du 2αuduγu, and so, for i = 1, 2,

Applying the functor T 1 ⊗ k ( -) ⊗ k T 2 to the resolution of A given in Section 5.1 we obtain the following complex k-vector spaces whose homology is isomorphic to

where

The isomorphism problem

The isomorphism problem for down-up algebras was posed in [START_REF] Benkart | Down-up algebras[END_REF] where the authors divide down-up algebras A(α, β, γ) into four types and show, by studying onedimensional modules, that algebras of different types are not isomorphic. The division into types is the following, (a) γ = 0, α + β = 1,

As a consequence, the question of whether two down-up algebras are isomorphic can be restricted to each of the four types. In [START_REF] Carvalho | Down-up algebras and their representation theory[END_REF] the authors solve the isomorphism problem for noetherian down-up algebras of type (a), (b) and (c) for every field k, and also for noetherian algebras of type (d) when char(k) = 0. Their solution focuses mainly on the commutative quotients of down-up algebras.

The purpose of this section is to provide the solution to the isomorphism problem for nonnoetherian down-up algebras for every field k. Namely, we obtain the following proposition.

Proposition 5.12. Let α, γ ∈ k and A = A(α, 0, γ) and A ′ = A(α ′ , 0, γ ′ ) be down-up algebras. The algebra A is isomorphic to A ′ if and only if α = α ′ and γ = λγ ′ for some λ ∈ k × .

We start by organizing the problem. Notice that the condition γ = λγ ′ for λ ∈ k × is equivalent to the condition of γ and γ ′ being both zero or both nonzero. On the other hand, if γ = 0, then A(α, 0, γ) is isomorphic to A(α, 0, 1). This is done by reescaling d by γd. Also, observe that A(α, 0, 0) is not isomorphic to A(α ′ , 0, 1) for all α, α ′ ∈ k, since they belong to different types. Putting this all together, we obtain that Proposition 5.12 is equivalent to the following two assertions:

Is this form of the proposition that we will prove. The first assertion is Proposition 5.15 and the second assertion is Proposition 5.18

Our approach is to recover information from very well studied noncommutative algebras that appear as quotients of down-up algebras only in the nonnoetherian cases A(α, 0, γ) for α = 0. These noncommutative quotients are respectively, depending whether γ is equal to 0 or not, the quantum plane k α [x, y] and the quantum Weyl algebra A 1 α . We recall their definition, Proof. The algebra A(α, 0, γ) is the algebra freely generated by letters d, u subject to the relations d 2 uαdudγd = 0 and du 2αuduγu = 0. Let Ω be the element duαudγ in the free algebra. The projection of Ω in A(α, 0, γ) is ω. The relations defining A can be written as dΩ = 0 and Ωu = 0. Therefore, the algebra A/ ω is isomorphic to the algebra freely generated by letters d, u subject to the relation Ω = 0. If γ = 0 this is exactly the definition of k α [x, y]. If γ = 0, then ω = γ -1 ((γd)uαu(γd) -1), and so A/ ω is the quantum Weyl algebra with y = γd and x = u.

In [START_REF] Richard | Isomorphisms between quantum generalized Weyl algebras[END_REF] the authors find all isomorphisms and automorphisms for quantum Weyl algebras A 1 α in the case where α ∈ k × is not a root of unity. In [START_REF] Suárez-Alvarez | Automorphisms and isomorphisms of quantum generalized Weyl algebras[END_REF], this result is generalized to the family of quantum generalized Weyl algebras, which is a family that contains the quantum plane and the quantum Weyl algebra for all values of α ∈ k × . We recall some of their results in the cases relevant to us. Theorem 5.14 ([31], [START_REF] Suárez-Alvarez | Automorphisms and isomorphisms of quantum generalized Weyl algebras[END_REF]). Let α, α ′ ∈ k \ {0, 1}.

The two algebras

y] is an isomorphism and α = α -1 , then there exist λ, µ ∈ k × such that ϕ(x) = λy and ϕ(y) = µx.

The two algebras A 1

α and A 1 α ′ are isomorphic if and only if α ′ ∈ {α, α -1 }. Also, if α = α -1 , every isomorphism η :

for some λ ∈ k × .

We are now in position to prove the first assertion.

Proof. Let α, α ′ ∈ k and suppose ϕ : A(α, 0, 0) -→ A(α ′ , 0, 0) is an isomorphism. Denote A := A(α, 0, 0), A ′ := A(α ′ , 0, 0) and write d ′ and u ′ the generators of A ′ .

If α = 1, then A belongs to type (a), and so A ′ belongs to type (a) as well. This implies α ′ = 1. If α = 0, then A is monomial and therefore A ′ is monomial. By Proposition 5.6, we obtain α ′ = 0. Suppose α, α ′ ∈ k \ {0, 1} and α = α ′ . Let ω := duαud and ω ′ := d ′ u ′α ′ u ′ d ′ . By Lemma 5.13, we can identify A/ ω with k α [x, y], where the canonical projection π : A -→ k α [x, y] sends d to y and u to x. We make the same identification with A ′ / ω ′ and k α ′ [x, y] and write π ′ the canonical projection. Define ψ

In A, we have the equalities dω = 0 and ωu = 0. Therefore ψ 1 (d)ψ 1 (ω) = 0 = ψ 1 (ω)ψ 1 (u). Observe k α ′ [x, y] is a domain generated by ψ(d) and ψ 1 (u). Thus, ψ(d) and ψ(u) are not zero and we obtain ψ 1 (ω) = 0. This implies that ψ

In the other direction we obtain that ψ

By Theorem 5.14, we obtain α ′ = α or α ′ = α -1 . Since we are assuming α = α ′ , we deduce α ′ = α -1 . Theorem 5.14 implies that there exist λ, µ ∈ k × and z 1 , z 2 ∈ ω ′ such that ϕ(u) = λd ′ + z 1 and ϕ(d) = µu ′ + z 2 . Notice that A ′ is graded considering the generators d ′ and u ′ in weight 1. Under this grading, the elements z 1 , z 2 are sums of homogeneous elements of degree at least 2. This follows from the fact that z 1 , z 2 ∈ ω ′ and ω ′ = duαud. On the other hand, 0 = d 2 uαdud ∈ A, and therefore 0

, we arrive at a contradiction. This concludes with the proof of the proposition.

We now turn our attention to the second assertion. Let A = A(α, 0, 1) for α ∈ k. Recall that ω := duαud -1. The set {u i ω j d l : i, j, l ≥ 0} is a k-basis of A. This is Lemma 2.2 in [START_REF] Zhao | Centers of down-up algebras[END_REF].

Lemma 5.16. The set {u i ω j d l : i, l ≥ 0 and j ≥ 1} is a k-linear basis of the two sided ideal ω , and, for each n ∈ N, the set {u i ω j d l : i, l ≥ 0 and j ≥ n} is a k-linear basis of ω n .

Proof. Let us first prove the first claim. Every element of the form u i ω j d l with j ≥ 1 belongs to ω , and so we only have to show that ω is contained in the k-vector space with basis {u i ω j d l : i, l ≥ 0 and j ≥ 1}. Let z ∈ ω and write z = i,j,l λ i,j,l u i ω j d l with i, j, l ≥ 0 and λ i,j,l ∈ k. By Lemma 5.13 we can identify A/ ω with A 1 α , and the canonical projection π : A -→ A 1 α sends u to x and d to y. The set {x i y l : i, l ≥ 0} is a basis of A 1 α . Therefore, 0 = π(z) = i,l λ i,0,l x i y l . From this we deduce λ i,0,l = 0 for all i, l ≥ 0.

Taking into account the description we now have for the elements of ω , we see that the elements of ω 2 are linear combinations of elements of the form u i ω j d l u i ′ ω j ′ d l ′ , with j, j ′ ≥ 1. Similarly, the elements of ω n are linear combinations of n-fold products of the same type. Therefore, to prove the second claim, it is sufficient to show that for every r, s ≥ 0, we have ωd r u s ω = i≥2 λ i ω i for some λ i ∈ k. Proposition 5.18. Let α, α ′ ∈ k. Then A(α, 0, 1) is isomorphic to A(α ′ , 0, 1) if and only if α = α ′ . Proof. Let α, α ′ ∈ k. Denote A := A(α, 0, 1), A ′ := A(α ′ , 0, 1) and denote d ′ and u ′ the generators of A ′ . Let ϕ : A -→ A ′ be an isomorphism. Also, recall that ω = duαud -1 and ω ′ = d ′ u ′α ′ u ′ d ′ -1.

If α = 1, then A belongs to type (a), and so does A ′ . Therefore α ′ = 1. Now suppose α = 0 and α ′ = 0. By Lemma 5.13 we have that A ′ / ω ′ can be identified with A 1 α ′ and if π ′ is the canonical projection, then π ′ (u ′ ) = x and π ′ (d ′ ) = y. Let ψ = π ′ • ϕ. Since dω = ωu = 0, we have ψ(d)ψ(ω) = ψ(ω)ψ(u) = 0. Notice that ψ(d) and ψ(u) generate A 1 α ′ , and therefore they cannot be zero. We deduce ψ(ω) = 0. Since ω = du -1, we obtain ψ(d)ψ(u) = 1. Also, ψ(d)(ψ(u)ψ(d) -1) = 0 and we deduce ψ(d) and ψ(u) are units in A 1 α ′ . If ε is a unit in A 1 α ′ , then there is an automorphism η : A 1 α ′ -→ A 1 α ′ defined by η(x) = ǫx and η(y) = ε -1 y. Theorem 5.14 implies ε ∈ k. In our case this says that ψ(d) and ψ(u) belong to k, but this is a contradiction, since they generate A 1 α ′ . The contradiction comes from the assumption α = 0. Suppose α, α ′ ∈ k \ {0, 1} and α = α ′ . By the same arguments as before, we have that ψ := π ′ • ϕ : A -→ A 1 α ′ induces an isomorphism ψ : A 1 α -→ A 1 α ′ . Theorem 5.14 implies α ′ = α or α ′ = α -1 . Since we are asssuming α = α ′ , we deduce α ′ = α -1 . Again, by Theorem 5.14 we obtain that there exist λ ∈ k × and z 1 , z 2 ∈ ω such that

By reescaling the variables d, u, we can assume λ = 1. The equality (d ′ ) 2 u ′α -1 d ′ u ′ d ′d ′ = 0 implies ϕ(d ′ ) 2 ϕ(u ′ )α -1 ϕ(d ′ )ϕ(u ′ )ϕ(d ′ )ϕ(d ′ ) = 0. Expand it and denote z the sum of all the terms in which at least two factors of z 1 or z 2 are involved. We find 0 = α 2 u 2 dαudu + αu + α 2 u 2 z 2αuz 1 dαz 1 ud + udz 1αuz 2 u + z 1 duz 1 + z = -αuω + α(αu 2 z 2uz 1 d) + (udz 1αuz 2 u) + z 1 ω + z ∈ ω .

Notice that z 1 ω, z ∈ ω 2 . Taking class modulo ω 2 we obtain

Write z 1 = i,l≥0,j≥1 λ i,j,l u i ω j d l and z 2 = i,l≥0,j≥1 µ i,j,l u i ω j d l . Using the formulas of Corollary 5.17