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Introduction

Représenter une forme à l’aide d’un ordinateur est une tâche avec de nombreuses applications
pratiques. Comparé à l’usage historique de schémas et plans, l’utilisation d’ordinateurs per-
met en effet de grandement simplifier la façon de concevoir, visualiser, tester et échanger des
modèles d’objets physiques [FHK02]. Bien que l’émergence des technologies de CAD/CAM
ait principalement été motivée par l’industrie automobile, en particulier pour la conception et
production de pièces de carrosserie, les techniques de modélisation géométrique ainsi dévelop-
pées se sont depuis répandues dans d’autres domaines, tels que l’animation par ordinateur et
les effets spéciaux dans l’industrie cinématographique [Hah01].

Il existe deux façons principales de créer un modéle numérique pour une nouvelle forme.
La première consiste à saisir le modèle à la main. Bien que plusieurs méthodes de saisie et
outils dédiés aient été conçus à cet effet, créer un modèle avec une précision suffisante reste une
tâche difficile et du ressort des experts. La seconde méthode consiste à scanner un objet réel,
ce qui permet en géneral d’obtenir un nuage de points comme données brutes. Les nuages de
points sont un échantillonage de la surface de la forme qu’ils représentent, et par nature ce sont
des représentations de formes lacunaires. En effet, les nuages de points ne fournissent aucune
information sur l’objet entre les points échantillonnés. La surface exacte de l’objet est par
conséquent indisponible, et il est impossible de distinguer avec certitude les points intérieur et
extérieur. Avec si peu d’information sur la géométrie de la forme, il est difficile de manipuler
ces représentations de façon contrôlée et significative. Il est donc nécessaire d’appliquer un
traitement supplémentaire sur ces nuages de points afin d’obtenir des représentations de forme

1



2 Chapitre 0. Résumé en français

plus adéquates. Ce processus est appelé la reconstruction de surface : étant donné un nuage
de points, en déduire un modèle numérique qui représente au mieux la forme d’origine. De
façon plus générale, étant donné de l’information incomplète sur une forme, comment obtenir
la meilleure représentation pour cette forme ? Voir Figure 1.

forme réelle données incomplètes

modèle numérique

échantillonnage

méthode de
reconstruction

approximation

Figure 1 – Construction d’un modèle numérique à partir d’une forme réelle.

Il existe de nombreuses méthodes de reconstruction différentes. Cette diversité est directe-
ment liée au choix de l’application cible. En effet, des applications différentes vont nécessiter
des traitements de formes différents. Il est ainsi courant d’adapter les modèles géométriques
utilisés afin d’améliorer les performances d’une application. Nous ne mentionnerons que les
schémas de représentation les plus connus, avec quelques exemples de reprèsentations. En rai-
son de ses origines, la représentation des formes dites “solides” est très étudiée dans la discipline
[Req77] ; [RR92]. En particulier, toute forme “solide” peut être déterminée de façon unique par
son bord, ce qui donne lieu aux représentations de bord (B-rep). Les très populaires B-splines
rationelles non uniformes (NURBS) en sont un exemple. Comme son nom l’indique, le schéma
B-rep conserve seulement de l’information sur le bord de la forme. Les applications qui ne se
soucient pas des points intérieurs, telles que le rendu d’images par ordinateur, optent souvent
pour ce type de représentation. Comme le bord définit la forme de façon unique, il est toujours
possible de tester si un point est contenu à l’intérieur de la forme à l’aide de méthodes telles
que le lancer de rayons (ray tracing). Il est cependant plus efficace d’adopter un schéma dif-
férent s’il est nécessaire de traiter en majorité des points intérieurs. On peut alors considérer
l’utilisation d’une représentation par maillage. Si les maillages triangulaires ne reflètent que le
bord d’une forme 3D, les maillages tétraédriques en reflètent également le volume. Un autre
schéma de représentation populaire est la géométrie de construction de solides (CSG), dans
laquelle on utilise des formes primitives que l’on combine par des opérations booléennes. En
particulier, les unions finies de boules appartiennent à ce schéma.

Dans cette thèse, nous étudions les unions finies de boules. Les boules font partie des
formes géométriques les plus simples, et leurs unions héritent partiellement de cette simplicité,
contribuant ainsi à la popularité de ce mode de représentation. Un autre facteur de popularité
est l’aisance théorique avec laquelle on peut obtenir une approximation par unions finies de
boules, et ce de n’importe quelle forme. Une boule b est appelée (inclusion-)maximale pour
une forme, si toute boule qui contient b et qui est contenue dans la forme, est égale à b.
Si l’on suppose les boules fermées et la forme compacte, alors l’union des boules maximales
décrit exactement la forme. La collection des boules maximales est en général de taille infinie,
néanmoins un échantillonnage fini de cette collection produit naturellement une approximation
de la forme (Figure 2). Au delà de la simplicité théorique, il existe plusieurs algorithmes
de conversion prouvés pour obtenir des unions finies de boules à partir d’autres types de
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représentation, comme par exemple les nuages de points (reconstruction de surface) [AK00],
les maillages [CKM99] ; [Hub96] ou les formes numériques [CM07]. Étant donnée l’existence
de certains prédicats sur la forme, il est aussi possible d’utiliser une méthode de conversion
générique [MGP10].

union des boules maximalesforme

union finie de boules

=

sous-ensemble de boulesapproximation

Figure 2 – Construction d’une approximation par boules.

Les unions de boules sont également utiles dans plusieurs applications. Elles sont par
exemple utilisées en biochimie pour représenter des molécules [EK05] ; [Caz+14], ou en info-
graphie pour la détection de collisions [BO04] ; [WZ09]. Pour les tâches gourmandes en calcul,
telles que la simulation de processus physiques [Fei+15], l’interpolation ou l’appariement de
formes [RF96] ; [Cab+09], il est souhaitable d’avoir les représentations de forme les plus com-
pactes qui soient, tout en restant aussi fidèle que possible à la forme d’origine. Avec les unions
finies de boules, la taille de la représentation est directement proportionnelle au nombre de
boules utilisées. Quant à la qualité de l’approximation, elle est souvent mesurée par diverses
quantités, comme la distance de Hausdorff, ou encore la différence de volume entre la forme
et sa représentation. Dans certaines applications comme la détection de collision, il peut être
important d’imposer des contraintes géométriques que l’union de boules doit respecter. Par
exemple, on peut contraindre les boules à recouvrir toute la forme, ou au minimum un ensemble
de points prédéterminés.

Dans cette thèse, nous allons étudier une nouvelle méthode d’approximation de forme par
union finie de boules. Afin de contrôler la précision de l’approximation, nous contraignons
l’union de boules à contenir un sous-ensemble interne de la forme, tout en étant contenu dans
un sur-ensemble externe. Dans notre approche, nous paramétrons ces ensembles de contraintes
par deux nombres réels positifs δ et ε, et appelons par conséquent ces unions des approxi-
mations par boules à (δ, ε)-près. Nous définissons formellement ces approximations dans le
Chapitre 3, et montrons que calculer des approximations par boules à (δ, ε)-près de cardinal
minimum est un problème NP-complet. Nous présentons au Chapitre 4 un algorithme glouton
qui est optimal pour des formes simples dans R2, avant de l’étendre à une plus large variété
de contraintes internes et externes dans le Chapitre 5. Ces algorithmes sont en grande partie
fondés sur les propriétés des boules et de leurs unions. Le Chapitre 2 fournit les fondements
théoriques nécessaires à la démonstration de ces propriétés. Nous y décrivons ainsi la struc-
ture des unions finies de boules, sans hypothèse de position générale. Nous rappelons dans le
Chapitre 1 plusieurs définitions et structures qui sont utilisées dans cette thèse. Ce premier
chapitre présente également un résultat générique sur les inclusions d’ensembles, et dont la
spécialisation aux unions de boules justifie la faisabilité de notre algorithme.
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0.1 Section 1.5 : Un résultat sur l’inclusion d’ensembles

Nous démontrons à présent un résultat général qui caractérise l’inclusion d’un ensemble dans
un autre. Nous n’utilisons que peu d’hypothèses sur ces deux ensembles. Plus précisément,
ils doivent être des sous-ensembles d’un espace topologique connexe. Dans ce cas, il suffit de
vérifier des conditions d’inclusion “locale” au voisinage du bord des ensembles pour obtenir
l’inclusion “globale”.

Lemme 0.1. Soient A et X 6= ∅ deux sous-ensembles d’un espace topologique connexe. Si

(i) ∂A ⊆ X

(ii) ∀x ∈ ∂X, ∃Nx un voisinage de x tel que Nx ∩A ⊆ X

alors A ⊆ X.

Démonstration. Soit H = A ∩Xc, la preuve se déroule en deux étapes :

(a) Dans un premier temps, on montre que ∂H ⊆ ∂X. Comme ∂(A∩B) ⊆ (∂A∩B)∪(A∩∂B)

(voir Lemme A.1), on peut injecter B = Xc pour obtenir ∂H ⊆
(
∂A ∩Xc

)
∪
(
A ∩ ∂Xc

)
.

Puisque ∂A ⊆ X et ∂Xc = ∂X, on en déduit alors ∂H ⊆ ∂X.

(b) Nous montrons à présent que H = ∅. Supposons par contradiction que H 6= ∅. Comme
X est non vide, Xc ne peut pas être l’espace topologique entier, ce qui implique que H, à son
tour, ne peut pas être l’espace entier. Par conséquent, ∂H 6= ∅ et il existe x ∈ ∂H. Comme
∂H ⊆ ∂X, nous pouvons utiliser l’hypothèse (ii) sur le point x, et il existe un voisinage
Nx de x tel que Nx ∩ A ⊆ X. Puisque x ∈ ∂H, nécessairement Nx ∩ H 6= ∅. Cependant,
Nx ∩H = Nx ∩A ∩Xc ⊆ X ∩Xc = ∅, et l’on aboutit à une contradiction.

Il est à noter que l’inclusion A ⊆ X implique à la fois (i) et (ii), on obtient donc une
équivalence. Si l’on travaille avec une classe de formes spécifique, il peut être avantageux
de spécialiser ce lemme à cette classe. En particulier, nous verrons dans la Section 4.3 une
spécialisation du Lemme 0.1 dans laquelle l’ensemble extérieur X est une union finie de boules.

0.2 Chapitre 2 : Union finies de boules

§ Introduction Les unions finies de boules sont au centre des considérations et discussions
qui seront menées tout au long de cette thèse. Nous dédions par conséquent ce chapitre à
l’étude de leur structure, ainsi que quelques unes de leurs propriétés. À cet effet, nous allons
baser notre approche sur les faisceaux de boules. Les faisceaux sont des familles affines de
boules avec de nombreuses propriétés, et nous montrons que toute union finie de boules peut
être décomposée en un nombre fini de sous-ensembles de faisceaux. En étudiant soigneusement
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les propriétés des faisceaux, nous aboutissons à une description du bord des unions finies de
boules qui reste valide sans hypothèse de position générale. Cette description du bord donne
ensuite lieu à une description de l’axe médian en termes de faisceaux, elle aussi valide sans
hypothèse de position générale. Au final, l’usage des faisceaux nous permet d’utiliser une
terminologie et des outils capables de traiter tous les cas dégénérés qui peuvent survenir au
sein d’une union finie de boules.

§ Conclusion Au cour de ce chapitre, nous nous sommes intéréssés aux faisceaux de boules
et à leurs nombreuses propriétés. En tirant parti de l’existence de représentations locales dans
une union finie de boules S, nous sommes en mesure de décrire le voisinage de tout point du
bord de S à l’aide de faisceaux. Par ce procédé, les configurations dégénérées de boules de Rd
produisent des faisceaux paraboliques. Gérer les dégénérescences des unions finies de boules
peut donc se ramener à l’étude des propriétés et des configurations de faisceaux paraboliques.
Grâce aux nombreuses propriétés des faisceaux de boules, et leur simple définition comme sous-
espaces affines de Rd+1, cette façon de décrire les unions finies de boules permet de simplifier
l’étude des cas dégénérés. En particulier, nous avons obtenu des descriptions robustes du bord
et de l’axe médian des unions finies de boules. Ces descriptions montrent qu’il existe une
relation duale entre le bord et l’axe médian.

Dans la continuité de ce chapitre, il serait intéressant d’explorer plus en détail cette relation
duale. Nous présumons qu’une telle étude puisse aboutir à un algorithme efficace pour le calcul
de l’axe médian d’une union finie de boules. Suite aux résultats présentés dans ce chapitre,
il est en effet possible de calculer l’axe médian, y compris dans les configurations dégénérées.
Cependant, nous ne nous sommes pas encore intéressés aux meilleures façons de réaliser ce
calcul.

0.3 Chapitre 3 : Approximation par boules à (δ, ε)-près

§ Introduction Maintenant que nous avons introduit nos principaux outils sur les unions de
boules, nous abordons le problème que nous allons étudier dans le reste de cette thèse, c’est-
à-dire les approximations par boules à (δ, ε)-près. Étant donné un ensemble S dans Rd, nous
appelons approximation par boules à (δ, ε)-près de S, une collection de boules qui contient
l’érosion morphologique de S (par une boule de rayon ε), et qui est contenu dans le dilaté
morphologique de S (par une boule de rayon δ). Nous étudions le problème de calculer de telles
approximations pour certaines classes de formes (en particulier des formes qui sont elles-mêmes
des unions finies de boules). Ce problème est proche des problèmes de couverture par ensembles
géométriques (geometric set cover), même s’il reste de nature différente. Nous verrons que ce
problème offre un nouveau cadre pour simplifier une collection de boules, tout en contrôlant à
la fois la distance interne et externe à la collection d’origine. Dans ce chapitre, nous évoquons
quelques propriétés générales de ces approximations, et montrons en particulier que calculer
une approximation par boules à (δ, ε)-près de cardinal minimum est déjà NP-complet pour
d = 2. Dans les chapitres suivants, nous étudierons un algorithme polynomial qui calcule de
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telles approximations dans certains cas particuliers.

§ Approximations par boules Dans ces travaux, nous introduisons une nouvelle façon de
contraindre une collection de boules de sorte que son union soit proche de la forme. L’approche
consiste à forcer les boules à couvrir un sous-ensemble de la forme, tout en restant à l’intérieur
d’un sur-ensemble de la forme, permettant ainsi aux boules de ne couvrir que partiellement
la forme, mais aussi à en dépasser les bords. Étant donné S ⊆ Rd et un nombre réel r ≥ 0, la
dilatation de S par une boule de rayon r est S⊕r = ∪x∈Sb(x, r) et l’érosion de S par une boule
de rayon r est S	r = {x | b(x, r) ⊆ S}. Lorsque S est fermé, alors S	r et S⊕r sont également
fermés. Dorénavant, nous désignerons également S	r et S⊕r par les appellations de r-érodé et
r-dilaté.

Définition 14. Soit S ⊆ Rd, ε ≥ 0 et δ ≥ 0. Une collection de boules B est une approximation
par boules à (δ, ε)-près de S si S	ε ⊆

⋃
B ⊆ S⊕δ.

δ
ε

Figure 3 – Une forme (bleue), son ε-érodé (orange), son δ-dilaté (délimité par la courbe en
tirets bleus) et une approximation par boules à (δ, ε)-près (les trois boules vertes).

Faisons quelques remarques. Considérons B une approximation par boules à (δ, ε)-près de
S, voir Figure 3 pour un exemple. Soit B =

⋃
B, nous avons alors B ⊆ S⊕δ et (S	ε)⊕ε ⊆ B⊕ε.

On en déduit que si S = (S	ε)⊕ε, on a alors B ⊆ S⊕δ et S ⊆ B⊕ε, ou de façon équivalente
la distance de Hausdorff entre B et S est inférieure ou égale au maximum entre δ et ε, i.e.
dH(S,B) ≤ max{δ, ε}. La condition S = (S	ε)⊕ε peut être vue comme une hypothèse de
régularité1 sur S. En effet, l’égalité S = (S	ε)⊕ε est satisfaite si tout point de S peut être
couvert par une boule de rayon ε contenue dans S. En particulier, cette condition est vérifée

1Un ensemble S est dit r-régulier si S = (S	r)⊕r = (S⊕r)	r [Ser82]. Autrement dit, une forme S est
r-régulière si elle reste inchangée après une ouverture ou une fermeture morphologique par une boule de rayon
r.
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si toutes les boules médiales ont un rayon supérieur ou égal à ε, condition elle-même vérifiée
dès que le reach de S est supérieur ou égal à ε. Pour rappel, le reach d’un ensemble S a été
introduit par Federer [Fed59] et est l’infimum des distances entre les points de l’axe médian
de S et les points du complémentaire de S. On le dénote par reach(S). Nous résumons nos
observations ci-dessus dans la remarque suivante :

Remarque 44. Soit B une approximation par boules à (δ, ε)-près de S. Si reach(S) ≥ max{δ, ε}
alors dH(

⋃
B, S) ≤ max{δ, ε}.

Remarque 45. Si S est compact et si δ + ε > 0, alors S admet des approximations par boules
à (δ, ε)-près de cardinal fini.

Supposons que S soit compact et δ+ ε > 0. Pour construire une approximation par boules
à (δ, ε)-près de S, considérons la collection des boules ouvertes de rayon δ + ε et dont le
centre appartient à S	ε. Par construction, cette collection recouvre S	ε qui est compact,
par compacité de S, ce qui implique que la collection de boules admet un sous-recouvrement
fini. En prenant l’adhérence des boules d’un tel sous-recouvrement, on obtient une collection
de boules fermées, toutes contenues dans S⊕δ, et qui constitue donc une approximation à
(δ, ε)-près de S de cardinal fini.

§ Résultat principal Dans cette section, nous nous intéressons à une variante discrète du
problème suivant :

Problème 1 (Approximation par boules à (δ, ε)-près). Étant donné un sous-ensemble
S ⊆ Rd, deux nombres réels positifs δ et ε, calculer une approximation par boules à (δ, ε)-près
de S de cardinal minimum.

Notre résultat principal est qu’une version discrète du problème de décision associé à ce
problème est NP-complet. Afin d’énoncer ce problème, nous qualifions de rationnelle toute
collection de boules dont les centres ont des coordonnées rationnelles et un rayon rationnel.

Problème 2 (Problème de décision des boules rationnelles à (δ, ε)-près). Étant donné
un sous-ensemble S ⊆ Rd qui est l’union d’une collection de boules finie et rationnelle, deux
nombres réels positifs ε et δ, et un entier k > 0, répondre à la question suivante : est-ce
que S admet une approximation par boules à (δ, ε)-près qui soit rationnelle et de cardinalité
inférieure ou égale à k ?

Nous montrons que ce problème est déjà difficile en dimension 2 :

Théorème 5. Le probléme de décision des boules rationnelles à (δ, ε)-près dans R2 est NP-
complet.

§ Conclusion Dans notre preuve de dureté, nous avons soigneusement choisi l’ensemble des
disques qui constituent la forme, de telle sorte que son érosion ne contienne qu’un ensemble
fini de points (les rotules). Il s’ensuit que la réduction depuis le problème de couverture par
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sommets induit un problème de couverture par ensembles, pour un ensemble fini de points
(les rotules), avec une famille infinie de boules (l’axe médian du dilaté).

On observe cependant qu’il est possible de réaliser une construction similaire, dans laquelle
l’érodé de la forme est également un ensemble infini de points. De plus, une construction où
la forme, son érosion et sa dilatation ont tous le même type d’homotopie est aussi possible.
Pour obtenir ces variantes, il suffit d’ajuster les rayons des disques qui composent les gadgets,
et les distances entre disques consécutifs, de telle sorte que les huit propriétés (i)-(viii) soient
vérifées. Ces changements n’ont pas d’impact sur le résultat final.

Étant donné que l’approximation par boules rationnelles à (δ, ε)-près est NP-complet, il
y a peu de chance de trouver un algorithme polynomial pour résoudre ce problème de façon
générale. Néanmoins, pour des formes suffisamment simples, il est possible de le résoudre avec
des complexités en temps et en espace polynomiales. Dans le Chapitre 4, nous présentons
un algorithme qui opère sur les unions finies de boules sans cycle, et capable de calculer
des approximations par boules à (0, ε)-près. En nous reposant sur les notions introduites par
ce premier algorithme, nous l’étendons ensuite à une classe de formes plus diverse dans le
Chapitre 5.

0.4 Chapitre 4 : Algorithme glouton optimal

§ Introduction Dans ce chapitre, nous présentons un algorithme qui permet de calculer
une solution de cardinal minimum pour certaines instances du problème d’approximation par
boules à (δ, ε)-près dans R2. Comme le problème est NP-complet, nous opérons avec certaines
hypothèses simplificatrices. Ainsi, nous supposons δ = 0 et ε > 0. Nous restreignons également
la classe de formes pour S. Plus précisément, nous nous intéressons seulement aux unions
finies de disques qui ne contiennent pas de cycle dans leur axe médian. Il est déjà bien connu
que les sous-ensembles ouverts et bornés de Rd ont le même type d’homotopie que leur axe
médian [Lie04], et par conséquent l’intérieur de ces formes ne contient pas de cycle non plus.
Cependant, nous considérons ici des unions de disques fermés, pour lesquelles la configuration
illustrée dans la Figure 4.6 peut survenir. Il s’ensuit que la forme peut contenir des cycles,
malgré le fait que son axe médian n’en contienne pas.

Notre résultat principal est le suivant.

Théorème 7. Sous le modèle Real-RAM, il existe un algorithme en temps polynomial pour
calculer des approximations par boules à (δ, ε)-près de cardinal minimum pour les unions finies
de disques dont l’axe médian est sans cycle.

Remarque 46. La plupart des algorithmes et structures de données qui sont utilisés en géomé-
trie algorithmique sont décrits sous le modéle Real-RAM [T0́4] ; [BY95]. Ce modèle suppose
que tout nombre réel peut être représenté par une seule cellule mémoire, et que les opérations
arithmétiques usuelles peuvent être réalisées en temps constant.

Tout au long de ce chapitre, S désignera une union finie de disques dont l’axe médian est
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sans cycle. Dans la Section 4.1, nous présentons l’intuition sous-jacente à notre algorithme. Les
définitions qui découlent de cette intuition ne sont toutefois pas adaptées à une implémentation
algorithmique. Nous introduisons ainsi plusieurs outils et propriétés dans les Sections 4.2 et
4.3, que nous utilisons ensuite pour définir et étudier les propriétés des boules critiques dans
les Sections 4.4 à 4.6. Enfin, nous décrivons notre algorithme dans la Section 4.7.

§ Conclusion Pour arriver à l’Algorithme 1, nous sommes partis de la notion intuitive de
boules candidates et sommes passés par la notion plus générale de boules critiques. À partir
des diverses propriétés de ces boules, nous sommes parvenus à montrer que notre algorithme
glouton calcule des solutions de cardinal minimum pour une certaine classe de formes. Nous
commentons à présent quelques hypothèses qui sont faites dans notre approche, en rapport
avec cette classe de formes.

Pour commencer, abordons le sujet de l’ordre partiel T défini sur l’axe médian. D’après
la description fournie dans la Section 4.1, tout point de l’axe médian peut être choisi comme
racine de T , et donc définir une orientation et un ordre partiel. Cette variabilité est sans
conséquence sur notre méthode, et le choix de la racine est entièrement libre. Indépendamment
de ce choix, l’orientation et l’ordre partiel qui en résultent auront toutes les propriétés requises
pour le bon fonctionnement de notre algorithme. En pratique, changer la position de la racine
peut avoir une influence sur la position des boules qui seront sélectionnées, mais le cardinal
de la collection finale reste invariant.

Si l’on veut s’affranchir de l’hypothèse d’acyclicité de MA(S), on peut facilement étendre
l’Algorithme 1 afin de gérer les cycles. Toutefois, il est à noter que cette extension ne préserve
pas la garantie d’optimalité de la solution obtenue. Pour cela, nous rappelons que MA(S)

peut s’interpréter comme le dessin d’un graphe. En théorie des graphes, un coupe-cycles de
sommets d’un graphe G = (V,E) est un sous-ensemble F des sommets qui contient au moins
un sommet dans chaque cycle de G. Il est connu que calculer un coupe-cycles de sommets de
cardinalité minimum est un problème NP-complet [Kar72]. Étant donné un tel coupe-cycles
de sommets F , nous avons alors la possibilité d’initialiser notre algorithme à partir de la
collection BF qui contient toutes les boules médiales dont les centres sont un sommet dans
F . Ceci a pour conséquence de supprimer tous les cycles de l’axe médian, et l’on peut alors
définir une orientation sur MA(S) en choisissant une racine dans MA(S) \ F . À partir de là,
on est en mesure d’appliquer le reste de notre algorithme après avoir calculé l’ensemble de
contrainte initiale A(S, ε,BF ). Soit Balgo la collection de boules obtenues par notre algorithme.
Les sections précédentes garantissent que Balgo \ BF est de cardinal minimum parmi les
collections de boules dans S qui couvrent S	ε \

⋃
BF . Il s’ensuit que Balgo dépasse le cardinal

des approximations optimales à (0, ε)-près de S d’au plus |BF | = |F | boules.

Bien que nous ayons supposé δ = 0, on remarque que cette hypothèse n’a que peu d’im-
portance dans notre approche, hormis la simplification des notations. En effet, tant que l’axe
médian de S⊕δ est sans cycle, on peut alors substituer S par S⊕δ dans la chapitre ci-dessus.
Comme l’hypothèse d’acyclicité doit être satisfaite par MA

(
S⊕δ

)
au lieu de MA(S), utiliser

une valeur δ > 0 restreint seulement les formes S pour lesquelles on obtient une solution
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optimale.

Compte tenu des observations précédentes, l’Algorithme 1 n’a en réalité besoin de boucler
que sur deux listes : une liste de faisceaux de la forme contenante en ordre topologique, et une
liste d’éléments du bord de la forme contenue. Tant que les prédicats sont disponibles, notre
méthode peut ainsi s’adapter à d’autres classes de formes. Ceci est précisément le sujet du
prochain Chapitre 5.

0.5 Chapitre 5 : Généralisations à d’autres formes

§ Introduction Dans ce chapitre, nous montrons enfin comment implémenter les prédicats
nécessaires au calcul de boules critiques. En fait, nous verrons que ces prédicats peuvent
être implémentés pour plusieurs classes de familles de boules, et ne sont pas restreints aux
1-faisceaux elliptiques qui sont requis pour les unions finies de boules. Par conséquent, nous
étendons de fait l’algorithme présenté précédemment à une plus large variété de formes, et qui
englobe en particulier les formes polygonales.

Nous commençons par quelques définitions dans la Section 5.1, afin d’étendre notre schéma
d’approximation et les notions en rapport aux boules critiques à ces nouvelles formes. Dans la
Section 5.2 nous exposons la stratégie générale pour établir les prédicats nécessaires à notre
algorithme, que nous appliquons ensuite aux diverses familles de boules médiales dans les
Sections 5.3 à 5.5.

§ Conclusion Étant donné que le calcul de boules critiques ne repose que sur quelques pré-
dicats, il est possible de généraliser l’Algorithme 1, que nous avons utilisé pour calculer des
approximations par boules à (δ, ε)-près pour des unions finies de boules, à d’autres classes
de formes. Il suffit en effet de montrer que ces prédicats peuvent être implémentés pour ces
nouvelles classes de formes. Afin de faciliter cette généralisation, il est avantageux de décou-
pler au maximum les ensembles de contrainte interne et externe, menant ainsi au concept
d’approximation par boules à (O, I)-près.

On peut montrer que l’axe médian d’un polygone peut être décomposé en portions de
faisceaux point-point, ligne-ligne, et point-ligne. Notre étude des prédicats pour ces familles
de boules permet donc d’étendre notre approche aux polygones. Il est à noter que nous n’avons
pas mené d’étude détaillée sur ces nouveaux faisceaux, et qu’il reste donc une incertitude sur
l’optimalité et la convergence de l’algorithme étendu. Nous laissons ainsi ces deux propriétés
en tant que conjectures.

Une extension naturelle de notre algorithme dans R2 serait d’étudier l’existence de prédi-
cats pour les faisceaux “arc-point”, “arc-ligne”, et “arc-arc”, permettant ainsi aux ensembles de
contrainte interne et externe de couvrir la même classe de formes.



Introduction

The task of representing a shape with the help of a computer has several important appli-
cations. Indeed, compared to the historical use of drawn blueprints, the use of computers
has greatly improved and simplified the way to create, visualize, test and exchange models of
physical objects [FHK02]. Although the advent of CAD/CAM technology was greatly driven
by the car industry, to help with the design and manufacturing process of car bodies, the tech-
niques developed in geometric modeling since extended to other domains, such as computer
animation and special effects for the film industry [Hah01].

There are two main ways to create a digital model for a new shape. One is direct, manual
input. Though special tools and input methods have been devised, obtaining a model with the
desired accuracy can be a daunting task, or require a high degree of skill from the operator.
Another method consists in scanning a real object, which usually yields a point cloud as raw
data. Because point clouds are samples of the surface of the shape they represent, they are
by nature incomplete. Indeed, this representation contains no information about the object
in between the sample points. The exact surface is thus unavailable, and it is impossible to
distinguish interior and exterior points with certainty. Because there is little actual information
on the geometry of the shape, manipulating this representation in a controlled and meaningful
way can be difficult. Point clouds thus require additional processing in order to derive an
appropriate shape representation. This is precisely the problem of surface reconstruction:
given a point cloud, infer a digital model that best describes the original shape. More generally,
given some incomplete information about the shape, derive the best representation for that
shape (Figure 1).

real shape incomplete data

geometric model

sampling

reconstruction
method

approximation

Figure 1 – Generation of a geometric model from a real shape.

A number of different reconstruction methods exists. One impetus for this variety is the
target application of the geometric model. Different applications will indeed require differ-
ent types of shape processing, and it is common to tailor the model to the application to
improve performance. We shall only mention the most well-known schemes, along with a
few examples of shape representations. Due to its origins, developments in this field have a
keen interest in representing “solid” shapes [Req77]; [RR92]. In particular, any such shape
is uniquely determined by its boundary, thus leading to boundary representations (B-rep).
The widely popular non-uniform rational basis splines (NURBS) fall into this category. As
the name implies, B-rep schemes only store information regarding the boundary of the shape.
Applications that do not care about interior points, such as rendering for an animation, often

11
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favour such representations. Of course, because the boundary uniquely defines the shape, one
can still test for interior points with methods such as ray casting. It is however more efficient
to adopt a different scheme if a lot of processing on interior points is required. One possibility
is to use polygonal meshes. Although triangle meshes only capture the surface of a 3D shape,
tetrahedral meshes also capture the volume. Another popular representation scheme is con-
structive solid geometry (CSG). It uses primitive shapes and combines them together through
boolean operations. In particular, finite unions of balls belong to this scheme.

In this thesis, we focus on finite unions of balls. Balls are among the simplest geometric
shapes, and their unions partly retain that simplicity. This greatly contributed to the popu-
larity of finite unions of balls. Another factor to that popularity is the theoretical ease with
which one can derive an approximation by finite union of balls from any shape. A ball b is said
to be (inclusion-wise) maximal for a given shape if every ball that contains b and is contained
in the shape is equal to b. Assuming that balls are closed and the shape is compact, the union
of maximal balls provides an exact description of the shape, whose size is in general infinite.
Nevertheless, finite samplings of the collection of maximal balls are naturally an approxima-
tion of the shape (Figure 2). Beyond simple theoretical simplicity, there exists many provably
good conversion algorithms that output finite unions of balls from other representations, in-
cluding point clouds (surface reconstruction) [AK00], polygonal meshes [CKM99]; [Hub96] or
digital shapes [CM07]. Given the existence of some predicates on the shape, one can also use
a general conversion method [MGP10].

union of maximal ballsshape

finite union of balls

=

subset of ballsapproximation

Figure 2 – Generation of a ball approximation.

Finite unions of balls are also useful for a number of applications. For instance they are
used in biochemistry to model molecules [EK05]; [Caz+14] or in computer graphics to detect
collisions between objects [BO04]; [WZ09]. For computationally demanding tasks, such as
the simulation of physical processes [Fei+15], shape interpolation or shape matching [RF96];
[Cab+09], it is desirable that shape representations have a small size, while still providing an
accurate approximation of the shape. With finite unions of balls, size of the representation
directly translates to the cardinal of the collection of balls. The quality of the approximation
is usually measured by various quantities such as the Hausdorff distance or the difference
in volume between the shape and its representation. In other situations such as collision
detection, it may be important that the union of balls satisfies some geometric constraints.
For instance, we may want the balls to cover the shape or at least a prescribed set of points.

In this thesis, we will investigate a novel approach to perform approximation by finite
union of balls. To control the fidelity of the approximation to the original shape, we force the
union of balls to contain an inner subset of the shape, while still being contained within an
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outer superset. As we parameterize these constraint sets by two non-negative real numbers δ
and ε, we call these unions of balls (δ, ε)-ball approximations. We formally introduce them in
Chapter 3, and show that finding such an approximation with minimum cardinality is an NP-
complete problem. We provide in Chapter 4 a greedy optimal algorithm that outputs these
cardinal minimum approximations for simple shapes in R2, and then extend this algorithm to a
wider class of inner and outer constraint sets in Chapter 5. These algorithms will rely heavily
on the properties of balls and their unions. Chapter 2 provides the theoretical foundation
required to demonstrate these properties; we describe there the structure of finite unions
of balls without relying on the general position assumption. We recall in Chapter 1 some
definitions and structures that we use throughout this thesis. This first chapter in particular
provides a generic result regarding set inclusion, and whose specialization to unions of balls is
the underlying reason for the feasibility of our algorithm.
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1.1 Preliminary notions and notations

We recall here several basic notions and definitions on which we will build upon.

§ Euclidean structure Rd is endowed with the Euclidean structure. We denote the inner
product of vectors u and v by 〈u, v〉, and the norm of u by ‖u‖. For any two points x, y ∈ Rd,
their Euclidean distance is ‖x− y‖. More generally for two sets X,Y ⊆ Rd, we also denote
the distance from X to Y by d(X,Y ), and simplify the notation to d(x, Y ) if X is reduced to
the singleton {x}.

§ Set notations For any subset X ⊆ Rd, we respectively denote its closure, interior, com-
plement, and boundary by X, X̊, Xc and ∂X.

§ Lines, half-lines and segments Let x, y ∈ Rd be two distinct points. We denote by (xy)

the line that goes through x and y, and [xy) the half-line originating from x and that goes
through y. The closed line segment joining x and y is [xy], the open line segment is ]xy[, and
[xy[ denotes the line segment closed at x, open at y.

§ Affine subspaces Let X ⊆ Rd be an affine subspace of Rd. When X has dimension k,
0 ≤ k ≤ d, we call X a k-flat for short. Additionally, we denote by

#»

X the vector subspace

15
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associated to X.
#»

X is also sometimes called the direction of X.

Given any subset Y of Rd, we denote its affine hull by aff(Y ), and the associated vector
subspace of that affine hull by

# »

aff(Y ).

1.2 Balls and spheres

§ Definition A d-ball in Rd with center c ∈ Rd and radius r ≥ 0 is the collection of points{
x ∈ Rd | ‖x− c‖ ≤ r

}
. We denote it by b(c, r). Given an integer k, 0 ≤ k ≤ d − 1, a point

c ∈ Rd, a k-flat V passing through c, and a real number r ≥ 0, the k-ball centered at c with
radius r and support space V is the intersection between the d-ball b(c, r) and V . We denote
it by b(c, r, V ) = b(c, r) ∩ V . For k, −1 ≤ k ≤ d − 1, a k-sphere is the relative boundary
of a (k + 1)-ball. The radius, center and support space of a sphere is inherited from the
corresponding ball. For instance, a 0-ball is a singleton, a 1-ball is a line segment, a 2-ball is
a disk and a 3-ball is a regular ball in three dimensions. It follows that a 0-sphere is a pair
of points, a 1-sphere is a circle and a 2-sphere is the usual sphere in R3. Note that in our
definition, we consider (−1)-spheres to be well defined: they are equal to the singleton defined
by their corresponding 0-ball. Also, any ball (sphere) of any dimension with null radius only
contains its center. In these particular cases, we say that the ball (sphere) is degenerate.

§ Power of a ball Consider a d-ball b = b(c, r) and a point x ∈ Rd. Then the power of x
with respect to b is

pow(x, b) = ‖x− c‖2 − r2

It is straightforward to see that the power of a point is negative when it belongs to the interior
of the ball, null when it is on its boundary, and positive when in its complement.

In particular it is possible to fully characterize a ball b by its center c and the power of
the origin to b, pow(O, b) = ‖c‖2 − r2. We can thus define a space of balls using the identity

b(c, r) ⇐⇒
(
c, ‖c‖2 − r2

)
(1.1)

We will thus use the same notation b to designate both the d-ball of Rd with center c and
radius r, and the point of Rd+1 (c, ‖c‖2 − r2). Given a ball b ∈ Rd+1, we denote by c(b) its
center.

Consider (x1, . . . , xd, xd+1) ∈ Rd+1, and let P be the paraboloid of equation xd+1 =∑d
i=1 x

2
i . Any point lying below P corresponds to a d-ball with positive radius, the points

of P are balls with null radius, whereas points above P are imaginary balls. Using the
identity (1.1), we indeed obtain r2 < 0, implying that r is a pure imaginary number. The
interpretation of imaginary balls is beyond the scope of this work, and we will mostly ignore
them thereafter. As such, we consider imaginary balls to be empty.
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A natural operation to perform on subsets of Rd+1 is to retrieve the collection of the centers
of the balls. To do so it suffices to project the subset onto the hyperplane of equation xd+1 = 0.
Later on, we let c(B) denote the collection of centers of balls in B, c(B) = {c(b) | b ∈ B}.

§ Bisector of two balls Consider two distinct balls b1 = b(c1, r1) and b2 = b(c2, r2), with
respective centers c1, c2, and radii r1 and r2. It is known that the locus of points with
equal power from b1 and b2 is a hyperplane called the bisector of b1 and b2, and denoted
H(b1, b2) =

{
x ∈ Rd | pow(x, b1) = pow(x, b2)

}
. Indeed we have

pow(x, b1) = pow(x, b2)

⇐⇒ ‖x‖2 − 2〈x, c1〉+ ‖c1‖2 − r21 = ‖x‖2 − 2〈x, c2〉+ ‖c2‖2 − r22
⇐⇒ 2〈x, c2 − c1〉+ ‖c1‖2 − ‖c2‖2 − r21 + r22 = 0

It follows that H(b1, b2) is indeed a hyperplane and admits c2−c1 as a normal vector. For rea-
sons that will become clear hereafter, we shall also call this hyperplane the radical hyperplane
of b1 and b2.

Remark 1. When the two balls b1 and b2 have a non-empty intersection, the hyperplane
H(b1, b2) contains ∂b1 ∩ ∂b2 = H(b1, b2) ∩ ∂b1. To see this, notice that the sphere bounding
a ball corresponds to points which have null power to that ball. Hence, for all x ∈ ∂b1 ∩ ∂b2,
pow(x, b1) = 0 = pow(x, b2) and x ∈ H(b1, b2). Conversely, if x ∈ H(b1, b2)∩∂b1, pow(x, b1) =

pow(x, b2) = 0 and x ∈ ∂b1 ∩ ∂b2.

1.3 Medial axis and skeleton

Let S be a subset of Rd. The notion of medial axis and/or skeleton of S has been widely
studied ([CL05]; [ABE09]; [CCT11]; [DZ04]. . . ) but unfortunately their precise definitions
often vary from an author to another. We thus dedicate this section to specifying the naming
convention that we will adopt.

Consider a ball b ⊆ S. We say that b is medial in S if |∂b ∩ ∂S| ≥ 2. In other words, b is a
medial ball for S if its boundary intersects the boundary of S at least twice. The medial axis
of S is then the collection of centers of the medial balls of S,

MA(S) = {c(b) | b medial in S}

On the other hand, we say that b is (inclusion-wise) maximal in S if any ball that contains
b and is contained in S, is equal to b. We call skeleton of S the collection of centers of maximal
balls of S,

Sk(S) = {c(b) | b inclusion-wise maximal in S}

These two notions of medial and maximal balls for a shape are similar, but strictly distinct.
Indeed, any medial ball is also inclusion-wise maximal, however the converse does not hold.
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A ball can effectively be inclusion-wise maximal, but only intersect the boundary of S at one
unique point. In general we have the inclusions [Mat88]:

MA(S) ⊆ Sk(S) ⊆ MA(S)

As was mentioned previously, any compact shape S can exactly be described as the union
of its inclusion-maximal balls, S =

⋃
c(b)∈Sk(S) b. Due to the existence of inclusion-maximal

balls that are not medial, the union of medial balls may not perfectly reconstruct S. The
relationship between maximal and medial balls however ensures that the closure of the family
of medial balls will reconstruct S (when it is compact). Because the medial axis is generally
simpler to compute directly than the skeleton, some authors opt to study the object MA(S).

The popularity of medial representations can be attributed to two properties. Those
collection of balls (nearly) reconstruct the shape, and any of their ball is intuitively a “largest”
ball of the shape. Any application that requires a small number of balls will thus naturally
benefit from using medial balls.

1.4 Distance diagrams

§ Voronoi diagram Consider a collection of points V . The Voronoi diagram of V is a
partition of the space based on the distance to points in V . Indeed, it encodes for each u ∈ V

which points in space are closest to u than other points in V \ {u}.

Definition 1 (Voronoi cell). Let V ⊆ Rd be a collection of points and u ∈ V . We call
Voronoi cell of u to V and denote vor(u,V ) the subset of points that admit u as a closest
point in V ,

vor(u,V ) =
{
x ∈ Rd | ‖x− u‖ ≤ ‖x− v‖, ∀v ∈ V

}
The Voronoi diagram of V is the subdivision of Rd induced by the Voronoi cells of points in
V .

Voronoi diagrams have a wealth of properties that are beyond the scope of this thesis.
They are in particular closely related to Delaunay triangulations, that we will not address
here. Note that Voronoi cells can be interpreted as the intersection of closed half-spaces,
and it follows that they are closed and convex. Finally, note that Voronoi diagrams can be
computed in polynomial time for any finite collection V . For a more in-depth discussion on
Voronoi diagrams, see for instance [BY95].

§ Power diagram Similarly to Voronoi diagrams, other diagrams can be built using different
notions of distance. In particular, we can consider collections of balls instead of points. An
interesting replacement for the notion of distance between two points is then the power of a
point to a ball.
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Definition 2 (Power cell). Let B be a collection of balls. Consider a ball b ∈ B. We call
power cell of b to B and denote pcell(b,B) the collection of points

pcell(b,B) =
{
x ∈ Rd | ∀b′ ∈ B, pow(x, b) ≤ pow

(
x, b′

)}
The power diagram of B is the subdivision of Rd induced by the power cells of balls in B.

Remark 2. Similarly to Voronoi cells, power cells are closed and convex.

1.5 A result about set inclusion

We prove here a very general result to characterize the inclusion of one set into another one.
We assume very little on the two sets, only that they are subsets of a connected topological
space. We show that it suffices to test “local” inclusions at the boundary points of the two
sets.

Lemma 1.1. Let A and X 6= ∅ be two subsets of a connected topological space. If

(i) ∂A ⊆ X

(ii) ∀x ∈ ∂X, ∃Nx an open neighbourhood of x such that Nx ∩A ⊆ X

then A ⊆ X.

Proof. Letting H = A ∩Xc, we prove the lemma in two stages:

(a) First, we prove that ∂H ⊆ ∂X. Using ∂(A∩B) ⊆ (∂A∩B)∪ (A∩ ∂B) (see Lemma A.1)
and plugging B = Xc, we get ∂H ⊆

(
∂A ∩Xc

)
∪
(
A ∩ ∂Xc

)
. Since ∂A ⊆ X and ∂Xc = ∂X,

we deduce ∂H ⊆ ∂X.

(b) Second, we prove that H = ∅. Suppose for a contradiction that H 6= ∅. Since X is not
empty, Xc is not the entire topological space, so that H cannot be the entire topological space
either. Thus, ∂H 6= ∅ and we can pick a point x ∈ ∂H. Because ∂H ⊆ ∂X, we can apply
(ii) on point x, showing that there is Nx a neighbourhood of x such that Nx ∩A ⊆ X. Since
x ∈ ∂H, necessarily Nx ∩H 6= ∅. However, Nx ∩H = Nx ∩ A ∩Xc ⊆ X ∩Xc = ∅, yielding
a contradiction.

Note that the inclusion A ⊆ X implies both (i) and (ii), thus this is an equivalence. When
working with a specific class of shapes, it can be interesting to look at a specialization of this
lemma. In particular, we will see in the later Section 4.3 a specialization of Lemma 1.1 where
the containing set X is a finite union of balls.
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Finite unions of balls are central to the discussion that we conduct throughout this thesis.
We thus dedicate this chapter to the study of their structure, and some of their properties. To
that effect, we rely on pencils of balls. Pencils are affine families of balls with many properties,
and we show that any finite union of balls can be decomposed into finitely many subsets of
pencils. By carefully investigating the properties of pencils, we eventually obtain a description
of the boundary of finite unions of balls that holds without the general position assumption.
This in turn leads to a description of the medial axis in terms of pencils, which also does not
require the balls to be in general position. All in all, the use of pencils allows us to rely on a
terminology and a toolset that can handle any degeneracy within finite unions of balls.
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2.1 Pencil of balls

§ Introduction

Definition 3 (Pencil of balls). Let P be a k-flat in Rd+1, 0 ≤ k ≤ d. P corresponds to
balls in Rd. Consider c(P) the collection of centers of balls in P. If c(P) also has dimension
k, that is if the direction

#»P of P does not contain the vertical (d+ 1)-th direction, we say that
P is a pencil of balls of dimension k, or k-pencil, in Rd. We call c(P) the centers’ space of P.
A pencil P ′ is a subpencil of P if we have P ′ ⊆ P.

Remark 3. If we allowed the affine subspace P to contain the vertical (d + 1)-th direction,
we would allow collections of concentric balls. Indeed consider any vertical line L of Rd+1,
intersecting Rd in c. L is in fact the collection of every balls of Rd centered at c.

Remark 4. The definition ensures that for all c ∈ c(P), there exists a unique b ∈ P such that
c(b) = c. Due to this one-to-one mapping between a ball b ∈ P of the pencil, and its center
c ∈ c(P) in the centers’ space, it is equivalent to consider a ball or its center, as long as the
pencil is properly identified.

Remark 5. The centers’ space c(P) is a k-flat in Rd. We sometimes consider its associated
vector subspace, #»c (P).

There are many different ways to define pencils of balls. Although the final objects resulting
from these various definitions express the same basic concept, there are many variations on
which families of balls may be called a pencil or not. The above definition is similar to
Devillers’ [DMT92] and Boissonnat and Yvinec’s [BY95], with the differences that we do not
restrict ourselves to lines in Rd+1, and forbid “concentric pencils” that span the orthogonal
direction to the Rd hyperplane. Accordingly, depending on how pencils are defined, the various
terms used to describe and classify them may or may not make sense. We chose to partially
adopt the terminology from [Sch79]. As such we refer to pencils that contain imaginary balls
as hyperbolic, pencils that contain a unique singleton ball as parabolic, and elliptic otherwise.
Recall that the paraboloid separates imaginary balls from balls with positive radius. Hence
hyperbolic pencils intersect the convex region delimited by the paraboloid, parabolic pencils
are tangent to the paraboloid, and elliptic pencils are strictly below the paraboloid. See
Figures 2.1, 2.2 and 2.3 for examples of pencils. In Boissonnat and Yvinec’s terms, hyperbolic,
parabolic and elliptic pencils are respectively pencils with two limit points, tangent pencils,
and pencils with a “supporting sphere”. This latter naming convention reflects more closely
the geometric configuration of the pencil and the paraboloid in Rd+1. Indeed in the context
of [BY95], a pencil is a line of Rd+1, and it intersects the paraboloid P in 0, 1, or 2 points.
When the (line) pencil intersects P in 2 points, it is then called in [BY95] a “two limit points”
pencil. As for the “supporting sphere” label, it originates from the property that an elliptic
pencil (of dimension at most d − 1) defines a sphere with positive radius. We shall see how
to precisely define this sphere in a broader context. This particular sphere will be called the
radical sphere of the pencil. Finally, we will later define and focus on pencils that satisfy the
property of having a “real radical sphere”. In particular we prove that these pencils are either
elliptic with dimension k ≤ d − 1, or parabolic (of any dimension). We now address various
properties of pencils.
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P

hyperbolica

P

parabolicb

P

ellipticc

Figure 2.1 – The three types of k-pencils in Rd. Illustrated for k = 1 and d = 1.

Figure 2.2 – Example of elliptic 1-pencil in R2.

§ Affine combinations of balls Consider n balls b1, . . . , bn ∈ Rd+1, and n coefficients
λ1, . . . , λn ∈ R such that

∑n
i=1 λi = 1. We denote by

∑n
i=1 λibi the affine combination of the

bi’s with coefficients λi’s, that is the ball which corresponds to the (d+ 1)-dimensional point(
n∑
i=1

λici,
n∑
i=1

λi pow(O, bi)

)
which is the affine combination of points bi = (ci, pow(O, bi)). We say that a collection of
balls B spans a pencil P if aff(B) = P.

Property 2.1. ∀x ∈ Rd, pow(x,
∑n

i=1 λibi) =
∑n

i=1 λi pow(x, bi)

Proof. Consider x ∈ Rd and let b = b(c, r) be any d-ball. Then we have

pow(x, b) = ‖x− c‖2 − r2 = ‖x‖2 − 2〈x, c〉+ ‖c‖2 − r2

= ‖x‖2 − 2〈x, c〉+ pow(O, b) (2.1)

In particular, pow(x, b) is linear in c(b) and pow(O, b). If b =
∑n

i=1 λibi, then c(b) =
∑n

i=1 λici
and pow(O, b) =

∑n
i=1 λi pow(O, bi). Thus,

pow

(
x,

n∑
i=1

λibi

)
=

n∑
i=1

λi

(
‖x‖2 − 2〈x, ci〉+ pow(O, bi)

)
=

n∑
i=1

λi pow(x, bi)
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Figure 2.3 – Example of elliptic 2-pencil in R3.

Given a (possibly infinite) collection of balls B, its affine hull in Rd+1, aff(B), may not
necessarily define a pencil, since it may span the (d + 1)-th direction. Note however that if
aff(B) is indeed a pencil, then it is the smallest pencil that contains B. In fact, B is the
subset of a pencil if its affine hull is a pencil. To see this, assume there exists a pencil that
contains B, then it must contain aff(B). Thus the affine hull aff(B) is also a pencil. For easy
reference, we summarize these observations in the remark below.

Remark 6. There is a pencil that contains B if and only if aff(B) is a pencil. Then, aff(B)

is the smallest pencil that contains B.

We now give a sufficient condition on B which ensures that aff(B) is a pencil.

Property 2.2. Consider a (possibly infinite) collection of balls B which satisfies
⋂
b∈B ∂b 6=

∅. Then aff(B) is a pencil of balls.

Proof. Without loss of generality, we can assume that B = {b1, . . . , bn} is a finite collection of
balls. Indeed, it suffices to select a maximum family of affinely independent balls in B. Such
a family still has non-empty intersection of the bounding (d − 1)-spheres, and its affine hull
coincide with that of the complete collection B. Denote by P = aff(B). By definition P is an
affine space in Rd+1, thus it is a pencil if and only if P does not span the vertical, (d+ 1)-th
direction. Suppose for a contradiction that P spans the vertical direction. Then for all b ∈ P,
there is b′ ∈ P \ {b} such that c(b) = c(b′). Because b 6= b′, we have pow(O, b) 6= pow(O, b′).
In particular, let b ∈ P such that c(b) = c(b1) and pow(O, b) 6= pow(O, b1). Because b ∈ P,
there are λ1, . . . , λn ∈ R such that b =

∑n
i=1 λibi and

∑n
i=1 λi = 1. Let x ∈

⋂n
i=1 ∂bi. By

Property 2.1, we deduce pow(x, b) =
∑n

i=1 λi pow(x, bi) = 0. However by Equation (2.1), we
also have pow(x, b) = ‖x‖2− 2〈x, c(b)〉+ pow(O, b). Because pow(x, b) = 0 = pow(x, b1), and
c(b) = c(b1), we thus deduce that pow(O, b) = pow(O, b1). This contradicts the assumption
pow(O, b) 6= pow(O, b1) and is impossible. Hence P cannot span the vertical direction, and is
thus a pencil.

In other words, as long as the bounding (d − 1)-spheres of balls of B have non-empty
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intersection, B defines a pencil through aff(B).

§ Defining radical objects We introduce here a few objects which will turn useful to
characterize pencils.

Definition 4 (Radical space). Given a (possibly infinite) collection of balls B, we call
radical space of B and denote V (B) the collection of points

V (B) =
{
x ∈ Rd | ∀b, b′ ∈ B, pow(x, b) = pow

(
x, b′

)}
We establish hereafter that the radical space of a pencil P is an affine space that relates

to its centers’ space c(P).

Theorem 1. If B is a finite collection of balls with V (B) 6= ∅, then V (B) is an affine
subspace of Rd, and

Rd =
# »

aff
(

c(B)
)
⊕ #»

V (B)

Remark 7. We observed in Remark 5 that c(P) is a k-flat. Note however that because we
assume B to be finite, c(B) is not a k-flat, and thus “ #»c (B)” is ill-defined.

Proof. Let B = {b0, b1, . . . , bn}, with bi = b(ci, ri). Notice that by definition of V (B), we
have V (B) =

⋂
0≤i,j≤nH(bi, bj). That is, V (B) is the intersection of the bisector of every

pair of balls in B. Thus V (B) is a finite intersection of hyperplanes, it is either empty or an
affine subspace.

We now prove by double inclusion that if
#»

V (B) 6= ∅, then
#»

V (B) =
(

# »

aff
(

c(B)
))⊥

.

Consider e ∈ #»

V (B) and c ∈ aff
(

c(B)
)
. By definition of aff(c(B)), there exist λ1, . . . , λn ∈ R

such that c − c0 =
∑n

i=1 λi(ci − c0). Recall that V (B) =
⋂
i,j H(bi, bj). In particular, for

all i, 1 ≤ i ≤ n, we have 〈e, ci − c0〉 = 0. By linearity 〈e, c− c0〉 = 0 and we deduce

e ∈
(

# »

aff
(

c(B)
))⊥

, thus
#»

V (B) ⊆
(

# »

aff
(

c(B)
))⊥

.

Conversely consider e ∈
(

# »

aff
(

c(B)
))⊥

and v ∈ V (B). For all i 6= j we have 〈e, ci − cj〉 =

0, thus v+e ∈ H(bi, bj). We have v+e ∈ V (B), hence e ∈ #»

V (B), and
(

# »

aff
(

c(B)
))⊥
⊆ #»

V (B).

It follows that we indeed have
# »

aff
(

c(B)
)
⊕ #»

V (B) = Rd.

Property 2.3. If P is a pencil with dimension k, then V (P) is a (d− k)-flat.

Proof. Pencil P has dimension k, thus there exists k + 1 balls B = {b0, b1, . . . , bk} such that
P = aff(B). Because B ⊆ P we immediately deduce V (P) ⊆ V (B). We argue that the
reverse inclusion also holds, which implies V (P) = V (B). Because aff

(
c(B)

)
= aff(P) is a

k-flat, Theorem 1 then yields the result.
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Let x ∈ V (B) and b ∈ P. There are λ0, . . . , λk such that b =
∑k

i=0 λibi and
∑k

i=0 λi = 1.
By definition of V (B), for all i we have pow(x, bi) = pow(x, b0). Using Property 2.1 we obtain

pow(x, b) =

k∑
i=0

λi pow(x, bi) =

(
k∑
i=0

λi

)
pow(x, b0) = pow(x, b0)

Because this holds for every b ∈ P, we deduce that x ∈ V (P). Therefore, V (P) = V (B)

which concludes the proof.

In the proof above, we in fact show that Theorem 1 extends to pencils of balls. Recall
that as per Remark 5, the centers’ space c(P) of pencil P is an affine space, thus #»c (P) is
well defined. In addition, Property 2.3 implies that V (P) is always non-empty. Theorem 1
restricted to pencils thus simplifies to the following:

Corollary 2.4. If P is a pencil, then Rd = #»c (P)⊕ #»

V (P).

We also have the corollary below, that will be useful later on.

Corollary 2.5. Let P be a pencil and B a finite collection of balls. If P = aff(B), then
V (P) = V (B).

Definition 5 (Radical ball). Let P be a pencil. We call radical center of P, and denote
by c0(P), the unique intersection point between its radical space V (P) and its centers’ space
c(P). We call radical ball of P, and denote by b0(P), the unique ball of P centered at
c0(P). Additionally, we let −r20(P) = pow(c0(P), b0(P)). The value r0(P) is the (potentially
imaginary) radius of b0(P).

Remark 8. Because c0(P) ∈ V (P), we have −r20(P) = pow(c0(P), b), for all b ∈ P.
Remark 9. We always have r20(P) ∈ R. However r0(P) is either non-negative, or purely
imaginary.

A key property of the radical ball is as follows.

Property 2.6. Let b ∈ P be centered at c with radius r. Then

r2 = r20(P) + ‖c− c0(P)‖2

Proof. This is a direct consequence of Remark 8.

Remark 10. Notice that r2 ≥ r20(P), with equality if and only if c = c0(P). Because r2 is
the signed vertical distance between the (d+ 1)-dimensional point b and the (interior of the)
paraboloid, the radical ball b0(P) is the ball with smallest signed vertical distance.

Remark 11. For non-hyperbolic pencils, b0(P) is the ball with smallest radius.

Corollary 2.7. Let P be a pencil. We have the three equivalences:
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• P is hyperbolic if and only if r20(P) < 0

• P is parabolic if and only if r20(P) = 0

• P is elliptic if and only if r20(P) > 0

Proof. Direct consequence of Remark 10.

Thanks to Property 2.6, the power of a point to a ball of the pencil can be expressed in
terms of the radical ball.

Lemma 2.8. Let P be a pencil. Denote by b0 = b0(P) and c0 = c0(P). Consider b ∈ P
centered at c. For all x ∈ Rd, we have

pow(x, b) = pow(x, b0)− 2〈x− c0, c− c0〉

Proof. By Property 2.6 r2 = r20 + ‖c− c0‖2. Thus

pow(x, b) = ‖x− c‖2 − r2

= ‖x− c0‖2 − 2〈x− c0, c− c0〉+ ‖c− c0‖2 − r20 − ‖c− c0‖
2

= pow(x, b0)− 2〈x− c0, c− c0〉

Definition 6 (Radical sphere). Let P be a pencil. We call radical sphere of P and denote
by s0(P) the subset s0(P) = V (P) ∩ ∂b0(P).

The radical sphere will frequently turn up in future discussions, especially when it is non-
empty. As such, we explicit now the various forms the radical sphere can take.

Property 2.9. Let P be a pencil of Rd.

• If P is elliptic with dimension d, or hyperbolic, then s0(P) = ∅.

• If P is parabolic, then s0(P) = {c0(P)} is a singleton.

• Otherwise P is elliptic with dimension at most d− 1, and s0(P) is a proper (d− 1− k)-
sphere, where k = dimP. By definition, the center, radius, and support space of the
radical sphere are c0(P), r0(P), and V (P).

Proof. We proceed in order.

Recall that by convention, we consider imaginary balls to be empty. Thus if b0(P) is
imaginary, or equivalently if P is hyperbolic, then s0(P) is empty. Additionally, when dimP =

d, we know by Corollary 2.4 that dimV (P) = 0, thus V (P) = {c0(P)}. As per Corollary 2.7,
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pencil P is elliptic when r0(P) > 0, which entails c0(P) /∈ ∂b0(P). It follows that for elliptic
d-pencils, s0(P) is also empty.

Assume now that P is parabolic. According to Corollary 2.7 we have r0(P) = 0 and thus
b0(P) = {c0(P)}. By definition we always have c0(P) ∈ V (P), thus s0(P) indeed reduces to
the singleton radical center.

In the remaining cases, P is an elliptic k-pencil, k ≤ d− 1. As observed previously, b0(P)

has positive radius. In addition, Corollary 2.4 yields dimV (P) = d− k. Therefore s0(P) is a
(d− 1− k)-sphere with the specified parameters.

From the properties of the radical objects, we also easily obtain the property below.

Property 2.10. Let P be a pencil, then⋂
b∈P

∂b = s0(P)

Proof.

x ∈ s0(P) ⇐⇒ x ∈ V (P) ∩ ∂b0(P)

⇐⇒ ∀b ∈ P, pow(x, b) = pow(x, b0(P)) = 0

⇐⇒ ∀b ∈ P, x ∈ ∂b

⇐⇒ x ∈
⋂
b∈P

∂b

Although we put emphasis on the radical ball b0(P) while defining the radical sphere
s0(P), the properties of the radical space V (P) guarantee that the radical sphere would
remain unchanged by choosing any other sphere of the pencil P. In fact, a minor adaptation
of the proof above immediately yields the corollary below.

Corollary 2.11. ∀b ∈ P, s0(P) = V (P) ∩ ∂b.

As a side effect, we can now state a pencil-focused version of a well-known result: the
intersection of finitely many (d− 1)-spheres is also a sphere.

Theorem 2 (Finite intersection of (d− 1)-spheres). Let B be a finite collection of balls
with

⋂
b∈B ∂b 6= ∅. Then ⋂

b∈B

∂b = s0(P)

where P is the smallest pencil that contains B.

Remark 12. Note that by Property 2.2 and Remark 6, we have P = aff(B).
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Proof. By Remark 12, we have P = aff(B). We can thus apply Corollary 2.5 to obtain
V (B) = V (P). By definition, points of V (B) have equal power from all balls of B. We can
thus easily generalize Remark 1 to finitely many balls, and deduce that for all b ∈ B, we can
express the intersection of bounding spheres of B as

⋂
b′∈B ∂b′ = V (B) ∩ ∂b = V (P) ∩ ∂b.

Because b ∈ P, we can apply Corollary 2.11 and thus finally obtain
⋂
b∈B ∂b = s0(P).

Remark 13. Because the radical sphere is either empty, or a (possibly degenerate) sphere, this
theorem indeed implies that the intersection of (d− 1)-spheres is also a sphere.
Remark 14. With Property 2.9, we can easily obtain the well-known general position version
of Theorem 2: given k balls in general position, k ≤ d, the intersection of their bounding
(d − 1)-spheres is either empty, or a (d − k)-sphere. Indeed, assuming general position, P is
then a non-parabolic pencil of dimension k − 1 ≤ d − 1. If P is hyperbolic, s0(P) is empty.
Otherwise, P is elliptic and s0(P) is a (d− k)-sphere.

§ Intersection and union over a pencil We present here some results on pencils that give
some insight on the way pencils cover the space.

Lemma 2.12. Consider a pencil P. Denote its radical space by V and its radical ball by b0.
Then

∀b ∈ P, b ∩ V = b0 ∩ V (2.2)⋂
b∈P

b \ V = ∅ (2.3)⋃
b∈P

b̊ \ V = Rd \ V (2.4)⋃
b∈P

∂b \ V = Rd \ V (2.5)

Proof. (2.2) stems from the definition of the radical space V . Indeed, the radical space is
the subset of points of Rd whose power is equal from all balls of the pencil P, V = V (P) ={
x ∈ Rd | ∀b, b′ ∈ P, pow(x, b) = pow(x, b′)

}
. Because the sign of the power of x to a ball

fully characterizes the membership of x to that ball, it follows that within the radical space
V , all the balls of the pencil share the same points.

For (2.3), (2.4), and (2.5), consider x ∈ Rd \ V . We prove that there is always some ball
in P that contains x in its interior, some in its boundary, and some that does not contain x.
Recall by Corollary 2.4 that #»c (P) ⊕ #»

V = Rd. Let ec ∈ #»c (P) and eV ∈
#»

V such that
x− c0 = ec + eV , where c0 denotes the radical center of P. For λ ∈ R let cλ = c0 + λec and
denote by bλ ∈ P the ball centered at cλ. By Lemma 2.8 we have

pow(x, bλ) = pow(x, b0)− 2〈x− c0, cλ − c0〉
= pow(x, b0)− 2〈ec, λec〉
= pow(x, b0)− 2λ‖ec‖2

= Aλ+B
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where A,B ∈ R are constant with respect to λ. Because x /∈ V we have ‖ec‖ 6= 0 and therefore
A 6= 0. It follows that the power of point x with respect to balls of the pencil spans R, which
suffices to conclude.

From the proof, it is quite clear that for any point x ∈ Rd \ V , there is an infinity of
balls in P that contain x, and also an infinity that do not contain x. Also if the pencil
has dimension k ≥ 2, consider e ∈ #»c (P) such that 〈ec, e〉 = 0. Let cλ,µ = c0 + λec + µe

and bλ,µ be the corresponding ball of the pencil. For all x ∈ Rd \ V and µ ∈ R we have
pow(x, bλ,µ) = pow(x, bλ=0,µ). Hence there is also an infinity of balls that contain x in their
boundary. In fact, the collection of balls {bλ=0,µ | µ ∈ R} forms a subpencil of dimension 1 of
P.

§ Characterizing a pencil through its radical elements We have seen that we can
associate to a pencil P an affine subspace V (P) and a radical ball b0(P). We show here that
the converse is true. Given a d-ball b0 ⊆ Rd and a k-flat V passing through the center of b0,
there exists a unique pencil P, such that V (P) = V and b0(P) = b0.

For reasons that will be explained later on, we prefer to state our result using triplets
(V, c0, r

2
0), rather than directly using (V, b0), where b0 = b(c0, r0). Recall from (1.1) that a

ball b = b(c, r) in Rd can be represented by a point of coordinates (c, ‖c‖2 − r2) in Rd+1.

Property 2.13. Let V ⊆ Rd be a k-flat, c0 ∈ V a point, and r20 ∈ R a real number. There
exists a unique pencil P such that V (P) = V and b0(P) = (c0, ‖c0‖2 − r20) ∈ Rd+1.

Because radical balls can in general be imaginary, we choose here to express balls as points
in Rd+1 rather than subsets of Rd. Indeed in the latter case, all imaginary balls would equate
to the empty set, and they would thus be undistinguishable from one another. As points of
Rd+1 however, two balls are identical if and only if they have the same center and the same
power to the origin. Equivalently, two balls are equal if they have the same center and the
same (possibly imaginary) radius. To highlight this framework, we thus characterize pencils
with the triplet (V, c0, r

2
0) rather than (V, b0), where b0 = b(c0, r0).

We provide a constructive proof of Property 2.13. For any triplet (V, c0, r
2
0) satisfying the

assumptions of this property, we let P(V, c0, r
2
0) be the collection of balls

P(V, c0, r
2
0) =

{
(c, ‖c‖2 − r2) ∈ Rd+1 | c ∈

(
c0 +

#»

V
⊥)
, r2 = r20 + ‖c− c0‖2

}
We show that P(V, c0, r

2
0) is the unique pencil with radical space V and radical ball b0 =

b(c0, r0).

For convenience, denote by C = c0 +
#»

V
⊥
. The collection of centers of P(V, c0, r

2
0) is

precisely C = c
(
P(V, c0, r

2
0)
)
. By definition of C, #»C =

#»

V
⊥

and we have
#»C ⊕ #»

V = Rd. Thus,
if P(V, c0, r

2
0) is a pencil, its radical space is indeed V . Likewise, its radical center would be

c0 ∈ C ∩ V , and its radical ball would be b0 = (c0, ‖c0‖2− r20) ∈ Rd+1. Therefore, it suffices to
prove that P(V, c0, r

2
0) is a pencil to justify existence in Property 2.13.



2.1. Pencil of balls 31

Lemma 2.14. P(V, c0, r
2
0) is a pencil.

Proof. First, V is a k-flat, thus C is a (d − k)-flat. Let c1, . . . , cd−k+1 ∈ C be d − k + 1

affinely independent points, and denote by bi the (unique) ball of P(V, c0, r
2
0) centered at ci,

1 ≤ i ≤ d − k + 1. We argue that P(V, c0, r
2
0) = aff(bi | 1 ≤ i ≤ d− k + 1), and hence that

P(V, c0, r
2
0) is an affine subspace of Rd+1. Next, by definition, P(V, c0, r

2
0) admits one unique

ball per point in C. Therefore, it cannot span the vertical (d + 1)-th direction of Rd+1 and
is thus a pencil. Remains to prove that the bi’s indeed generate P(V, c0, r

2
0). We proceed by

double inclusion.

Because bi ∈ P(V, c0, r
2
0) for all i, we trivially have aff(bi | 1 ≤ i ≤ d− k + 1) ⊆

P(V, c0, r
2
0). Conversely, consider b ∈ P(V, c0, r

2
0) and denote its center by c = c(b). Be-

cause c ∈ C = aff(ci | 1 ≤ i ≤ d− k + 1), let λ1, . . . , λd−k+1 ∈ R such that c =
∑d−k+1

i=1 λici
and

∑d−k+1
i=1 λi = 1. We show that b =

∑d−k+1
i=1 λibi. Because c is the affine combination of

the ci’s by definition, it suffices to show that pow(O, b) =
∑d−k+1

i=1 λi pow(O, bi). By definition
of P(V, c0, r

2
0), we have

pow(O, b) = ‖c‖2 − r20 − ‖c− c0‖
2 = −r20 − ‖c0‖

2 + 2〈c, c0〉

=
d−k+1∑
i=1

λi

(
−r20 − ‖c0‖

2 + 2〈ci, c0〉
)

=

d−k+1∑
i=1

λi pow(0, bi)

Thus, b =
∑d−k+1

i=1 λibi and P(V, c0, r
2
0) ⊆ aff(bi | 1 ≤ i ≤ d− k + 1), which concludes the

proof.

P(V, c0, r
2
0) is a pencil with the adequate radical space and radical sphere. Remains to

show that it is the unique such pencil.

Lemma 2.15. P(V, c0, r
2
0) is the unique pencil with radical space V and radical ball(

c0, ‖c0‖2 − r20
)
.

Proof. Let P be a pencil such that V (P) = V and b0(P) = (c0, ‖c0‖2− r20) ∈ Rd+1. We argue
that P must be a subpencil of P(V, c0, r

2
0). Assuming this is true, we can conclude. Indeed,

by Corollary 2.4 we know that dimP = d − dimV = dimP(V, c0, r
2
0). Thus we deduce that

P = P(V, c0, r
2
0).

Remains to show that P ⊆ P(V, c0, r
2
0). Let b = b(c, r) ∈ P. By Corollary 2.4, we

have c(P) = c0 +
#»

V
⊥
. Therefore c ∈ c0 +

#»

V
⊥
. In addition, we know by Property 2.6 that

r2 = r20 + ‖c− c0‖2. It follows that b ∈ P(V, c0, r
2
0), and P is a subpencil of P(V, c0, r

2
0).

Property 2.13 thus follows as an immediate corollary to Lemma 2.15.
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§ Influence of (V, c0, r
2
0) over P(V, c0, r

2
0) Although we have introduced pencils as specific

affine subsets of Rd+1, Property 2.13 guarantees that any triplet (V, c0, r
2
0), with V a k-flat,

c0 ∈ V and r20 ∈ R, fully determines a pencil. We discuss here how each member of the
triplet influences the corresponding pencil. Specifically, we have a look at characteristics of
P = P(V, c0, r

2
0) as an affine subspace in Rd+1.

Because we require that c0 ∈ V , note that those two parameters cannot be independent.
In order to decouple their influence over P, it is handy to consider

#»

V instead of V . Indeed, we
have V = c0 +

#»

V . Hence, given c0 and
#»

V , we can fully characterize V , and additionally c0 and
#»

V can be chosen independently. We discuss the influence of r20, c0 and
#»

V in that sequence.

Recall from the definition of P(V, c0, r
2
0) that for all b ∈ P(V, c0, r

2
0), we have

b =
(
c, ‖c‖2 − ‖c− c0‖2 − r20

)
It follows that changes in the value of r20 will only induce a translation of P(V, c0, r

2
0) along

the vertical (d+ 1)-th axis.

By Corollary 2.7, we know that when r20 is null, then P(V, c0, r
2
0) is parabolic, and that b0

is the unique singleton ball of the pencil. In that case, P(V, c0, r
2
0) is tangent to the paraboloid

at b0 = (c0, ‖c0‖2). Obviously, c0 fully determines the position of the tangency point. Because
the paraboloid admits one unique tangent hyperplane H(c0) at that tangency point, and
P(V, c0, r

2
0) is an affine subspace, we deduce P(V, c0, r

2
0) ⊆ H(c0). Therefore c0 determines

the admissible direction of the pencil in Rd+1. See Figure 2.4

Figure 2.4 – Schematic representation of the hyperplanes H(c0) and H(c0, r
2
0).

So far the discussion was independent from the dimension of P(V, c0, r
2
0). Obviously, the

information on the dimension is contained within
#»

V . When P(V, c0, r
2
0) is a d-pencil, that

is when V has null dimension, then P(V, c0, r
2
0) is a hyperplane in Rd+1 that coincide with
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the tangent hyperplane H(c0) to the paraboloid at point (c0, ‖c0‖2), vertically translated by
the value −r20. Denote that translated hyperplane by H(c0, r

2
0). The previous remark states

that P({c0}, c0, r20) = H(c0, r
2
0). Thus, c0 and r20 conjointly characterize the largest pencil

(of dimension d) that admits b0 = b(c0, r0) as its radical ball. As for other, lower dimension
pencils, they all are proper subpencils of H(c0, r

2
0). In fact,

#»

V specifies which horizontal
directions pencil P(V, c0, r

2
0) does not span. See Figure 2.5.

Figure 2.5 – The flat in Rd that goes through c0 and whose direction is orthogonal to
#»

V

(represented in green) is equal to the vertical projection of P(V, c0, r
2
0) in Rd. Conversely we

can obtain P(V, c0, r
2
0) (red) by projecting that flat onto H(c0, r

2
0) (blue).

In summary, c0 fixes the normal direction of a “maximal” hyperplane that contains
P(V, c0, r

2
0), r20 specify the position of that hyperplane, while

#»

V yields the actual direction
spanned by the pencil within that hyperplane.

§ Families of balls containing a sphere Given a sphere s in Rd, one can define the family
of every balls that contain that sphere in their boundary:

B(s) = {b a d-ball | s ⊆ ∂b}
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We here discuss the link between these families of balls and pencils. Recall that from Prop-
erty 2.10, every ball in a pencil must contain the radical sphere in its boundary. The discussion
will thus revolve around whether any sphere can be the radical sphere of a pencil, and also
whether a pencil P represents the entire family of balls that contains a particular radical
sphere, B(s0(P)), or if it is strictly smaller. Eventually, we will reach the conclusion below.

Property 2.16. Let s0 ⊆ Rd be a (non-imaginary) sphere.

• If s0 has positive radius and dimension k, then B(s0) is an elliptic pencil of dimension
d− k − 1. It is the unique pencil that admits s0 as its radical sphere.

• If s0 is a singleton sphere, then B(s0) is a parabolic d-pencil. A pencil admits s0 as its
radical sphere if and only if it is a parabolic subpencil of B(s0).

Remark 15. Consider a family of balls B whose bounding spheres share a common point
u. Then, aff(B) is a subpencil of a parabolic d-pencil with radical sphere {u}. Indeed by
Property 2.2, aff(B) is a pencil, it may be either parabolic or elliptic. However, due to
Property 2.16 above, we know that aff(B) is a subset of B(s = {u}) which is a parabolic
d-pencil.

Because every sphere of Rd can be defined from a triplet (V, c0, r
2
0) that satisfies the

conditions of Property 2.13, it follows that we can associate a pencil P to any sphere s0.
Note however that we defined spheres as subsets of Rd, hence this association is ambiguous
whenever the sphere, as a subset, is not uniquely determined by the triplet (V, c0, r

2
0). This

ambiguity in particular arises for every singleton spheres. Given a singleton sphere {c0}, there
are indeed multiple affine subspaces V that satisfy V ∩ b(c0, r0 = 0) = {c0}. Regardless, any
sphere is always the radical sphere of some pencil.

Proof. Let P be a pencil and denote its radical sphere by s0. Assume that s0 is non-empty.
As observed previously, we have P ⊆ B(s0). To determine whether the reverse inclusion
holds or not, we discuss the properties of the collection of centers of balls in B(s0), that
is c(B(s0)). First, notice that B(s0) does not contain any concentric balls. Indeed the
boundaries of any two such balls are disjoint, which would imply that s0 must be empty,
leading to a contradiction. There is thus a one to one mapping between c(B(s0)) and B(s0).
Consequently, P coincides with B(s0) if and only if c(P) coincides with c(B(s0)).

We know that c(P) ⊆ c(B(s0)). For the reverse inclusion, consider b = b(c, r) ∈ B(s0).
Necessarily, c is in the locus of points that are equidistant from every point in s0. It is fairly
easy to see that this locus is the intersection of every bisector hyperplane of diameters of s0.
That intersection of hyperplanes coincides with the affine subspace through the center of s0,
and whose direction is the orthogonal complement of aff(s0). Said otherwise, let c0 be the
center of s0. We have #»c (B(s0)) ⊕

# »

aff(s0) = Rd, and c(B(s0)) = c0 + #»c (B(s0)). We easily
deduce that the pencil P coincides with the family B(s0), if and only if the affine hull of s0
coincides with the radical space of P, that is aff(s0) = V (P).
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The identity aff(s0) = V (P) is always verified for elliptic pencils. This encompasses every
non-singleton spheres. Note that if s0 is a k-sphere with positive radius, then aff(s0) is a
(k + 1)-flat. By Corollary 2.4 we have dimP = d− dimV (P) = d− k − 1.

For parabolic pencils, we observed previously an ambiguity in specifying a radical space
that contains a given radical (singleton) sphere. Nevertheless, parabolic d-pencils coincide
with families of balls that contain a singleton sphere, while lower dimension parabolic pencils
are strict subsets of these families. It follows that families of balls that go through a sphere
are always pencils.

§ Pencils from finite intersection of (d − 1)-spheres Recall that we previously gave
through Property 2.2 a sufficient condition for the affine hull aff(B) of a finite collection of
balls B to define a pencil. That condition was for their bounding (d − 1)-spheres to have
non-empty intersection,

⋂
b∈B ∂b 6= ∅. We dedicate this paragraph to explicitly specify what

types of pencils can be obtained through such collections B. Indeed, every pencils we will
come across later on can always be defined through such a collection. We thus give some more
details about those pencils.

Property 2.17. Consider a pencil P and let B be a finite collection of balls such that P =

aff(B). Then,
⋂
b∈B ∂b is non-empty if and only if the radical sphere s0(P) is non-empty.

Remark 16. Recall that by Property 2.9, or also Property 2.16, pencils with non-empty radical
sphere are either elliptic of dimension at most d− 1, or parabolic.

Proof. If B satisfies
⋂
b∈B ∂b 6= ∅, then Theorem 2 on intersection of (d− 1)-spheres implies

that s0(P) must also be non-empty.

Conversely, suppose that the radical sphere is non-empty. Then any finite collection B ⊆ P
will satisfy

⋂
b∈B ∂b 6= ∅. It suffices to choose a finite B so that aff(B) = P, which can always

be done.

In other words, a collection of balls B with
⋂
b∈B ∂b 6= ∅ defines a pencil with non-

empty radical sphere, and every pencil with non-empty radical sphere can be defined through
such a collection B. Observe that contrary to associating a pencil to a sphere, there is no
ambiguity when defining a pencil from a finite collection of balls, even when the intersection
of their bounding spheres reduces to a singleton. Indeed, when starting from the singleton
sphere, there are many possible choices of radical space for the associated pencil. With a finite
collection B, the pencil must coincide with the affine hull of B in Rd+1, which fully specifies
the pencil. From the point of view of Rd, the radical space is constrained to be orthogonal to
the affine hull of the centers, which resolves the ambiguity presented by singleton spheres.

When dealing with finite unions of balls, collections of balls whose bounding spheres have
non-empty intersection naturally arise. Indeed, many subsets of the collection that defines the
union will satisfy that property. In Section 2.4 we will rely on the properties of the pencils
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defined by those subsets to study the properties of finite unions of balls. We will investigate
those pencils throughout Sections 2.2 and 2.3.

2.2 Convex subsets of pencils

§ Convex combinations of balls Similar to affine combinations of balls, we define convex
combinations of balls. Consider n balls b1, . . . , bn ∈ Rd+1, and n coefficients λ1, . . . , λn ∈ R
such that

∑n
i=1 λi = 1. Recall that we denote by

∑n
i=1 λibi the affine combination of the bi’s

with coefficient λi’s, that is the ball which corresponds to the affine combination of the bi’s
when seen as (d+ 1)-dimensional points. If additionally, the coefficients satisfy the constraint
0 ≤ λi ≤ 1, for all i, then we say that

∑n
i=1 λibi is the convex combination of the bi’s with

coefficient λi’s.

§ Convex hull of a collection of balls Let B be a finite collection of d-balls in Rd. We
denote by CH(B) the set of all convex combinations of balls in B. If balls are considered as
points in Rd+1, CH(B) is the convex hull of B.

Remark 17. When working with the convex hull of a finite collection of balls B, we may
assume without loss of generality that B only contains the vertices of CH(B).

Clearly, CH(B) is a subset of aff(B), the set of affine combinations of balls in B. A
classical result states the following [Ber87]:

Property 2.18. If b ∈ CH(B), then b ⊆
⋃

B.

Proof. Let b1, . . . , bn ∈ B and λ1, . . . , λn ∈ [0, 1] such that b =
∑n

i=1 λibi and
∑n

i=1 λi = 1.
By Property 2.1 we have for all x ∈ Rd

pow(x, b) =

n∑
i=1

λi pow(x, bi) ≥
n∑
i=1

λi min
1≤j≤n

pow(x, bj) = min
1≤j≤n

pow(x, bj)

≥ min
b′∈B

pow
(
x, b′

)
(2.6)

When additionally, x ∈ b, we have 0 ≥ pow(x, b). Therefore, there always exists some ball
b′ ∈ B such that the power of x to b′ is non-positive, hence that x ∈ b′. It follows that
b ⊆

⋃
B.

Remark 18. Equivalently, we have
⋃

CH(B) =
⋃

B. Indeed, if b ∈ CH(B), then by Prop-
erty 2.18 b ⊆

⋃
B. By taking the union over CH(B) we obtain

⋃
b′∈CH(B) b

′ =
⋃

CH(B) ⊆⋃
B. The reverse inclusion is obvious and we obtain equality. Conversely, if

⋃
CH(B) =

⋃
B,

then consider b ∈ CH(B). We have b ⊆
⋃

CH(B) =
⋃

B, from which we obtain Property 2.18.
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§ Local and global inclusion Consider two subsets X,Y ⊆ Rd, and a point u ∈ Rd. We
say that X is locally contained in Y around point u if there exists a neighbourhood U of u
such that X ∩U ⊆ Y . We say that X ∩U ⊆ Y is a local inclusion of X in Y (around u), and
X ⊆ Y is a global inclusion.

§ Result statement In this section, we shall establish the converse of Property 2.18 in two
situations:

(1) when aff(B) is an elliptic k-pencil with k ≤ d− 1, and

(2) when aff(B) is a parabolic pencil.

Remark 19. By Remark 16, these are precisely every pencils with non-empty radical spheres.

Furthermore, we shall see that in the first situation, the local inclusion of b in
⋃

B is
equivalent to a global inclusion, for all b ∈ aff(B). Specifically, when aff(B) is an elliptic
pencil of dimension at most d − 1, if a ball b ∈ aff(B) satisfies local inclusion in

⋃
B in

the neighbourhood of any point of the radical sphere, we actually have global inclusion. As
illustrated in Figure 2.6, this does not always hold when aff(B) is parabolic.

c0

CH(c(B))

Figure 2.6 – Let B be the collection of the three black balls. Then aff(B) is a parabolic pencil
with radical sphere {c0}. The red ball satisfies local inclusion in the neighbourhood of c0, but
it is not globally included in CH(B).

For elliptic pencils we have:

Lemma 2.19. Let P be an elliptic k-pencil, k ≤ d− 1, and B a finite collection of balls such
that P = aff(B). Let s0 = s0(P). For b ∈ P, we have equivalence between:

(i) b ∈ CH(B)



38 Chapter 2. Finite union of balls

(ii) b ⊆
⋃

B

(iii) there exists u ∈ s0 and U a neighbourhood of u such that b ∩ U ⊆
⋃

B

Whereas for parabolic pencils, we have:

Lemma 2.20. Let P be a parabolic pencil defined by the finite collection of balls B. Denote
by b0 = b0(P) and let B0 = B ∪ {b0}. For b ∈ P, we have equivalence between:

(i) b ∈ CH(B0)

(ii) b ⊆
⋃

B

Remark 20. Denote by c0 = c0(P) the radical center of P. When P = aff(B) is parabolic,
notice that b0 = {c0} is contained in every ball of pencil P. Thus we have

⋃
B0 = b0∪(

⋃
B) =⋃

B. By Property 2.18 we deduce that for all b ∈ CH(B0) we have b ⊆
⋃

B. Because CH(B)

and CH(B0) may be strictly distinct, it is necessary to include b0 to obtain equivalence. See
Figure 2.7.

c0

CH(c(B))

CH({c0} ∪ c(B))

Figure 2.7 – Let B be the collection of the three black balls, aff(B) is a parabolic pencil with
radical sphere {c0}. The green ball does not belong to the convex hull of B, but belongs to
the complete pencil aff(B). It satisfies global inclusion in CH(B). To obtain equivalence for
parabolic pencils, it is thus necessary to include the radical ball and consider the collection
B0 instead of B.

Note that from Remark 20, the two elliptic and parabolic cases are strictly distinct.

In order to prove these lemmas, we investigate the boundary of a convex subset of pencil
in Rd, ∂(

⋃
B), and expose its dual relationship to the boundary polytope ∂ CH(c(B)).
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2.2.1 Normal cones and power diagram

In order to state and prove the upcoming result on the boundary of convex subsets of pencils,
we must first address the topic of normal cones, and how they relate to the power diagram of
these pencil subsets. We first recall the definition of a power cell in this case, along with a
few properties of the normal cones to a bounded convex polytope, before stating our result.

§ Power diagrams Let B be a (potentially infinite) collection of balls, and b ∈ B. Recall
that the power cell of b with respect to B is the collection of points whose power from all
balls of B is at least the power from b.

Remark 21. By definition, the radical space V (B) of B is the collection of points of Rd with
equal power from all balls of B. Thus V (B) ⊆ pcell(b,B) for all b ∈ B.

In this section, we will mostly consider the power diagram of CH(B), with B a finite
collection of balls that defines a pencil. From inequality (2.6), observe that:

• if b is in the relative interior of CH(B), then pcell(b,CH(B)) = V (B)

• if b belongs to an (open) face of CH(B) with vertices b1, . . . , bk, then pcell(b,CH(B)) =⋂k
i=1 pcell(bi,CH(B))

Hence the power diagram of CH(B) can be completely described by the power diagram of its
vertices, B.

§ Power cells and contribution to the global boundary For a ball b ∈ CH(B), we
call the contribution of b to the (global) boundary of

⋃
B the points of ∂(

⋃
B) that also

belong to b, ∂(
⋃

B)∩∂b. From the definition of a power cell, one easily deduces the inclusion
∂(
⋃

B) ∩ ∂b ⊆ pcell(b,CH(B)) ∩ ∂b. Indeed, consider a point x in ∂(
⋃

B) ∩ ∂b. Then for
all b′ ∈ CH(B), we have pow(x, b′) ≥ 0 = pow(x, b) which implies by definition of power cells
that x ∈ pcell(b,CH(B)). In general, the reverse inclusion is false, see Figure 2.8. In order
to partially bypass this issue, we require some insight on the structure of these power cells, to
determine whether a given point in pcell(b) ∩ ∂b actually belongs to the boundary of

⋃
B or

not. This structure will be given by the normal cones to the polytope CH(B).

§ Normal cones to a convex set We now recall some properties of normal cones, in the
context of convex sets. Note that the normal cone can be defined in a more general context,
but we shall however focus on convex sets, and more particularly on convex polytopes as in
[Ber87].

Definition 7 (Normal cone to a convex set). Let X ⊆ Rd be a convex set, and consider
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c

c0

b

CH(c(B))

∂(
⋃

B) ∩ ∂b

pcell(b,CH(B))

Figure 2.8 – Let B be the collection of the three balls. For ball b (green), its contribution
to the boundary of

⋃
B is the red arc. However, the intersection of ∂b with pcell(b,CH(B))

yields the extra point c0 (blue). Thus, pcell(b,CH(B)) ∩ ∂b * ∂(
⋃

B) ∩ ∂b.

x ∈ X. We call normal cone to X at point x and denote N(x,X) the collection of vectors

N(x,X) =
{
e ∈ Rd | ∀x′ ∈ X,

〈
e, x′ − x

〉
≤ 0
}

Definition 8 (Unit normal cone to a convex set). Let X ⊆ Rd be a convex set, and
consider x ∈ X. We call unit normal cone to X at point x and denote N1(x,X) the restriction
of the normal cone to the unit (vector) sphere

N1(x,X) = {e ∈ N(x,X) | ‖e‖ = 1}

From the definition, it immediately follows that N(x,X) is a convex cone that contains
the null vector 0. Intuitively, the normal cone to a convex X ⊆ Rd at a point x ∈ X can be
seen as the set of outward normal directions to X at point x. Let e ∈ N(x,X) be non-null.
Let H be the hyperplane with normal e that goes through x, then X is contained in the closed
half-space below H. Conversely, a non zero-vector e belongs to the normal cone of X at point
x only if the corresponding hyperplane through x is above X. See Figure 2.9.

Let y ∈ X be a point distinct from x. The normal cones of x and y are equal if and only
if x and y belong to the same open face of X. It thus makes sense to define the normal cone
of a face as the normal cone of any of its interior point. For a face f , we denote its normal
cone as N(f,X).

If X has non-empty interior, its full dimensional (open) face coincides with its interior X̊.
For this specific face, we have N(X̊,X) = {0}. Let f1 be a face of X and f2 a coface of f1.
Then N(f2, X) ⊆ N(f1, X). More generally for two faces f1 and f2, N(f1, X) ∩N(f2, X) is
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non-empty and coincides with the normal cone of the common coface of f1 and f2 of lowest
dimensionality. From the above, it follows that for x ∈ ∂X, e ∈ N(x,X) \ {0}, and any
y ∈ X, we have 〈e, y − x〉 ≤ 0, with equality if and only if there is some boundary face f such
that x, y ∈ f ⊆ H, where H is the hyperplane through x with normal e. Hence, a point x is
a vertex of the polytope if and only if it possesses some exclusive outward normal direction,
that is, there exists e such that for all y ∈ X \ {x}, then 〈e, y − x〉 < 0.

Remark 22. When X is bounded, any non-zero direction is always the outward normal of some
boundary face in X. Conversely, any boundary face always has a non-zero outward normal.

Because convex hulls are convex polytopes, we can consider the normal cones to either
CH(B) or CH(c(B)) = c(CH(B)). Suppose aff(B) is a pencil. The definition of a pencil
guarantees that the normal cones to these two polytopes share a close relationship. In partic-
ular, fB is a face of CH(B) if and only if there is a face fc of CH(c(B)) such that fc = c(fB),
with dim fB = dim fc. If e is an outward normal to fc, then it is also an outward normal to fB

and we thus have N(fc,CH(c(B))) ⊆ N(fB,CH(B)). Strictly speaking, CH(B) is a convex
hull in Rd+1 whereas CH(c(B)) is in Rd. Hence the normal cone to CH(B) at fB should also
span the (d+ 1)-th dimension. Because we will not use these vectors, we will mostly consider
the normal cones to points in Rd.

x

X

Nx

Figure 2.9 – The normal cone to polytope X at point x is the blue cone Nx. The red and
green vectors along the boundary of Nx are shared by the points of the two adjacent edges to
x.

§ Normal cones and power cells We now state the relationship between normal cones and
power cells.

Lemma 2.21. Consider B a finite collection of balls, b ∈ CH(B) centered at c. Suppose B

spans a pencil and let c0 = c0(aff(B)) the radical center. Then, the power cell of b to CH(B)
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is

pcell(b,CH(B)) = c0 +N(c,CH(c(B)))

= {c0 + e | e ∈ N(c,CH(c(B)))}

c0

b2

b1

b3

b4

CH(c(B))

pcell(b2,CH(B))

pcell(b1,CH(B))pcell(b3,CH(B))

pcell(b4,CH(B))

Figure 2.10 – Consider the collection B of the three balls b1, b2, b3. Its affine hull aff(B) is
a parabolic pencil with radical center c0. The normal cone to CH(c(B)) at b4 (black ball)
has one unique element represented by the black arrow. The power cell of b4 to CH(B) is
the half-line originating from c0 in the direction of that black arrow, it satisfies Lemma 2.21.
Likewise, the normal cone to CH(c(B)) at b1 (red ball) is represented by the red circular
sector. The power cell of b1 to CH(B) is the red area, and Lemma 2.21 is again verified.

Refer to Figure 2.10 for an illustration. From this lemma, we obtain again the two introduc-
tory remarks we made on power cells, but through the properties of normal cones. Indeed when
b is in the relative interior of CH(B), then its normal cone Nb to CH(B) coincides with the
direction

#»

V (B) of the radical space V (B); hence pcell(b,CH(B)) = V (B). When b belongs
to an open face of CH(B) with vertices b1, . . . , bk, its normal cone is Nb =

⋂k
i=1N(bi,CH(B))

and thus pcell(b,CH(B)) =
⋂k
i=1 pcell(bi,CH(B)).

In order to prove this result, we rely on the technical lemma below.

Lemma 2.22. Consider a pencil P and let c0 = c0(P). Let b, b′ ∈ P and x ∈ Rd. Then

pow(x, b) ≤ pow
(
x, b′

)
⇐⇒

〈
x− c0, c

(
b′
)
− c(b)

〉
≤ 0
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Proof. Denote by b0 = b0(P) the radical ball of P. Following Lemma 2.8 we know that

pow(x, b) = pow(x, b0)− 2〈x− c0, c(b)− c0〉
pow

(
x, b′

)
= pow(x, b0)− 2

〈
x− c0, c

(
b′
)
− c0

〉
Thus

pow(x, b)− pow
(
x, b′

)
= 2
〈
x− c0, c

(
b′
)
− c(b)

〉
These two expressions pow(x, b)−pow(x, b′) and 〈x− c0, c(b′)− c(b)〉 therefore have the same
sign.

This lemma in fact implies that for every half-line originating from c0, all of its points
belong to the same power cell(s).

Corollary 2.23. Consider B a collection of balls. Suppose B spans a pencil and let c0 =

c0(aff(B)). Consider c ∈ CH(c(B)) and the corresponding ball b ∈ CH(B). Then

e is a unit normal vector to CH(c(B)) at c ⇐⇒ c0 + R+e ⊆ pcell(b,CH(B))

Proof.

e ∈ N1(c,CH(c(B)))

⇐⇒ ∀c′ ∈ CH(c(B)),
〈
e, c′ − c

〉
≤ 0

⇐⇒ ∀b′ ∈ CH(B),
〈
e, c
(
b′
)
− c
〉
≤ 0

⇐⇒ ∀b′ ∈ CH(B), ∀x = c0 + λe, λ ≥ 0,
〈
x− c0, c

(
b′
)
− c
〉
≤ 0

⇐⇒ ∀b′ ∈ CH(B), ∀x = c0 + λe, λ ≥ 0, pow(x, b) ≤ pow
(
x, b′

)
⇐⇒ ∀x = c0 + λe, λ ≥ 0, x ∈ pcell(b,CH(B))

⇐⇒ c0 + R+e ⊆ pcell(b,CH(B))

We can now prove Lemma 2.21.

Proof of Lemma 2.21. We want to prove that pcell(b,CH(B)) = c0 + N(c,CH(c(B))). We
proceed by double inclusion. Following Corollary 2.23, we immediately deduce the inclusion

c0 +N(c,CH(c(B))) ⊆ pcell(b,CH(B))

Conversely, consider a point x ∈ pcell(b,CH(B)). Because c0 belongs to every power cells of
the power diagram of CH(B), we can assume x 6= c0. Let e be the unit direction from c0 to
x, we show that e is a normal to CH(c(B)) at c, which then concludes the proof.

Suppose for a contradiction that e is not a normal to CH(c(B)) at c. Because B is finite,
CH(B) is bounded. By Remark 22 there necessarily exists some point c′ ∈ CH(c(B)) such
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that e is a normal to CH(c(B)) at c′. By definition of a normal, we have 〈e, c− c′〉 ≤ 0. We
claim that we in fact have the strict inequality 〈e, c− c′〉 < 0. Indeed if we had 〈e, c− c′〉 = 0,
we would deduce that for all c∗ ∈ CH(c(B)), then 〈e, c∗ − c〉 = 〈e, c∗ − c′〉 − 〈e, c− c′〉 ≤ 0.
Vector e would thus be a normal at c, which contradicts the assumption that it isn’t.

Let b′ the ball of CH(B) centered at c′. Because 〈e, c− c′〉 < 0, we deduce by Lemma 2.22
that pow(x, b′) < pow(x, b) which implies x /∈ pcell(b,CH(B)). This contradicts our initial
assumption, therefore e must be a normal to CH(c(B)) at c.

We are now ready to describe the boundary of
⋃

B.

2.2.2 Structure of the boundary

We claimed in the previous section that having more insight on the structure of power cells
of CH(B) would help us investigate the boundary of the domain

⋃
B. As per Lemma 2.21,

normal cones are one way to structure these power cells. We now have a closer look at the
boundary ∂(

⋃
B).

To study this boundary, we shall define a function mb, where b is a ball in a specific convex
hull that we will specify soon after. Ultimately, we show that the image of the functions mb

are in fact related to the contribution of ball b to the boundary of
⋃

B. On our way there,
we will show several properties of these functions, making them desirable tools to manipulate
the boundary.

§ The collection of balls B0 Throughout this section, B denotes a finite collection of balls
that spans a pencil with non-empty radical sphere. We let b0 = b0(aff(B)), c0 = c0(aff(B))

and r20 = r20(aff(B)). If aff(B) is elliptic, we let B0 = B. If aff(B) is parabolic, we let
B0 = B ∪ {b0}. In both cases, B0 remains a finite union of balls, and we have the two
identities aff(B0) = aff(B) and

⋃
B0 =

⋃
B. However, the convex hulls of B0 and B may

be strictly distinct. That distinction will be important in our statements.

§ Definition of mb,B0 and first properties Let b ∈ CH(B0) and consider a unit vec-
tor e normal to CH(c(B0)) at c(b). Because c0 ∈ b, the intersection between the half-line
c0 + R+e and ball b is a line segment that admits c0 as an endpoint. We let mb,B0(e)

be the other endpoint of that segment. When this segment reduces to the singleton {c0},
we adopt the convention mb,B0(e) = c0. To summarize, we thus define the function
mb,B0 : N1(c(b),CH(c(B0)))→ b such that

mb,B0(e) =

{
c0 if (c0 + R+e) ∩ b = {c0}
(c0 + R+e) ∩ ∂b \ {c0} otherwise

Remark 23. Throughout this section, the collection B0 can be considered constant, hence
we let mb = mb,B0 . Later on, we will have to consider distinct collections B1 and B2 with
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b ∈ B1 ∩B2. At that point the notation mb will be ambiguous, and we will revert to the
explicit notations mb,B1 and mb,B2 .

For most of the discussion regarding function mb and its properties, refer to Figures 2.10
and 2.11.

c

mb(e)

c0

e

CH(c(B0))

Nc
1

mb(N
c
1 )

Figure 2.11 – The three balls constitute the collection B, and B0 additionally contains the
singleton ball {c0}. Consider the ball b centered at c (red). The unit normal cone N c

1 to
CH(c(B0)) at point c is represented by the red arrows and circular region. The unit vector e
(green) belongs to that unit normal cone. Note that c0 (blue) does not belong to the image
of N c

1 by mb (red arc), but still belongs to the contribution of b to the global boundary.

Remark 24. Note that the unit normal cone of a point in CH(c(B0)) may very well be empty,
in which case the function mb for the ball b corresponding to that point is the trivial empty
function. From the properties of unit normal cones, it follows that the function mb is non-
trivial if and only if c(b) ∈ ∂ CH(c(B0)). Note that ∂ CH(c(B0)) is the boundary of polytope
CH(c(B0)) and not its relative boundary. Hence when aff(B0) is a k-flat, k ≤ d − 1, every
ball b ∈ CH(B0) has its center c(b) in the boundary of CH(c(B0)).

Remark 25. Suppose that aff(B0) is a parabolic pencil, and that b0 ∈ ∂ CH(B0). Then mb0 is
the constant function that maps every admissible vector to point c0. To see this, notice that
mb0(e) ∈ b0 = {c0}.

Remark 26. We always have mb(e) ∈ ∂b for all admissible pairs b, e. Indeed, the definition
ensures that the line segment (possibly a singleton) [c0 mb(e)] coincides with (c0 + R+e) ∩ b.
Thus any neighbourhood of mb(e) always contains points in the complement of b.

Remark 27. Suppose aff(B0) is elliptic, we know that c0 /∈ ∂b for all b ∈ CH(B0). By
Remark 26 we deduce that we actually have mb(e) = (c0 + R+e)∩ ∂b, for all admissible pairs
b, e.
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One key property of the function mb, b ∈ CH(B0), is that its image is contained within the
global boundary of

⋃
B0, and not just the boundary of ball b. Indeed, from the relationship

between power cells and normal cones, we easily deduce the lemma below.

Lemma 2.24. Let B be a finite collection of balls. Suppose B spans a pencil and let c0 =

c0(aff(B)). Let b ∈ CH(B), and e a unit normal vector to CH(c(B)) at point c(b). Then the
half-line c0 + R+e satisfies

(
c0 + R+e

)
∩ b =

(
c0 + R+e

)
∩
(⋃

B
)

Proof. By Corollary 2.23 we know that c0+R+e ⊆ pcell(b,CH(B)). The identity then follows
from the definition of a power cell.

Property 2.25. mb(e) ∈ ∂(
⋃

B)

Proof. Immediate from Lemma 2.24 and Remark 26.

Although the various functions mb for distinct balls b ∈ CH(B0) do not in general share
the same definition domain, part of these domains may overlap. For those shared unit vectors,
the functions coincide.

Property 2.26. Consider two balls b1, b2 ∈ CH(B0), and e a unit vector. Suppose e is normal
to CH(c(B0)) both at point c(b1) and point c(b2). Then mb1(e) = mb2(e).

Proof. Also immediate from Lemma 2.24.

§ Continuity and injectivity We now show that mb is continuous for all b ∈ CH(B0). We
first seek a more explicit expression of mb(e). We let ρb(e) = ‖c0 −mb(e)‖. By definition
mb(e) lies on the half-line c0 +R+e, thus it follows that mb(e) = c0 +ρb(e)e. We now proceed
to compute the length ρb(e).

Lemma 2.27. Let b = b(c, r) and b0 = b(c0, r0) be two balls such that c0 ∈ b and
r20 = r2 − ‖c− c0‖2. Then b = {c0 + ρe | 0 ≤ ρ ≤ ρe, ‖e‖ = 1}, where ρe = 〈e, c− c0〉 +√
r20 + 〈e, c− c0〉2.

Proof. Because c0 ∈ b, we have r20 ≥ 0 and therefore ρe is always a non-negative real number.
Consider a unit vector e. We seek the limit value ρlim ≥ 0 such that c0 + ρlime ∈ ∂b and show
that it is indeed equal to ρe. Consider x = c0 + ρe with ρ ≥ 0. Note that the constraints
on b and b0 guarantee the existence of a pencil P such that b, b0 ∈ P, and b0(P) = b0. By



2.2. Convex subsets of pencils 47

Lemma 2.8 we obtain

x ∈ b ⇐⇒ pow(x, b) ≤ 0

⇐⇒ pow(x, b0)− 2〈x− c0, c− c0〉 ≤ 0

⇐⇒ ρ2 − r20 − 2ρ〈e, c− c0〉 ≤ 0

⇐⇒
(
ρ− 〈e, c− c0〉

)2 ≤ r20 + 〈e, c− c0〉2

⇐⇒ 〈e, c− c0〉 −
√
r20 + 〈e, c− c0〉2 ≤ ρ ≤ 〈e, c− c0〉+

√
r20 + 〈e, c− c0〉2

⇐⇒ 0 ≤ ρ ≤ ρe

Corollary 2.28. ρb(e) = ‖c0 −mb(e)‖ = 〈e, c− c0〉+
√
r20 + 〈e, c− c0〉2

Property 2.29. The function mb is continuous for all b ∈ ∂ CH(B0).

Proof. Given a ball b, we deduce from Corollary 2.28 that the mapping e 7→ ρe = ‖c0 −mb(e)‖
is continuous with respect to the unit vector e. It follows that mb is the composition of
continuous functions and is thus continuous itself.

We now argue that the function mb can mostly be considered injective.

Property 2.30. If aff(B0) is an elliptic pencil, then mb is injective. If aff(B0) is a parabolic
pencil, then the restriction of mb to N1(c(b),CH(c(B0))) \N1(c0,CH(c(B0))) is injective.

Proof. The principle of the proof relies on the fact that for any two distinct unit vectors e1
and e2, the two half-lines c0 +R+e1 and c0 +R+e2 only intersect at their origin c0. It follows
that if mb(e1) = mb(e2), then necessarily the point of collision is c0, and ρe1 = 0 = ρe2 . In
order to prove that mb is an injection on the considered domain, it thus suffices to prove that
for all admissible unit vector e, we have ‖c0 −mb(e)‖ = ρe > 0.

We start with the elliptic case. Recall as per Corollary 2.7 that for elliptic pencils, we have
r20 > 0. It follows that for every ball b ∈ ∂ CH(B0) and unit vector e ∈ N1(c(b),CH(c(B0))),
we have ρe = ‖c0 −mb(e)‖ > 0. Thus, mb is an injection.

We now address the parabolic case. Consider b ∈ ∂ CH(B0) and let e be a unit vector
that is normal to CH(c(B0)) at point c(b), but not at point c0. Because e is normal to
the convex hull at c(b), we deduce that for all c′ ∈ CH(c(B0)) we have 〈e, c′ − c(b)〉 ≤ 0.
Because e is not normal to the convex hull at c0, we must have 〈e, c0 − c(b)〉 < 0. Indeed,
if we instead had 〈e, c0 − c(b)〉 = 0, we would then deduce that 〈e, c′ − c0〉 ≤ 0 for all
c′ ∈ CH(c(B0)), thus contradicting the assumption that e is not normal at c0. Recall by
Corollary 2.7 that for parabolic pencils, we have r20 = 0. We can thus simplify the expression
ρe = 2〈e, c(b)− c0〉. This immediately implies that ρe > 0. Because this holds for every
e ∈ N1(c(b),CH(c(B0)))\N1(c0,CH(c(B0))), thus the function mb restricted to that domain
is injective.
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Remark 28. Note that when aff(B0) is a parabolic pencil and b = b0, we then restrict mb0 to
an empty domain.

Remark 29. When aff(B0) is a parabolic pencil of dimension at most d− 1, its radical space
V has dimension at least 1. Because

#»

V is contained in every normal cone to CH(c(B0)), it
follows that N1(c(b),CH(c(B0))) ∩ N1(c0,CH(c(B0))) always contain at least two distinct
elements for which mb(e) = c0. Thus mb is in general not injective on its complete domain.

Remark 30. When aff(B0) is a parabolic d-pencil, then N1(c0,CH(c(B0))) can possibly be
empty or reduced to a single element. In those particular cases, mb is an injection for all
b ∈ ∂ CH(B0).

Remark 31. Let b ∈ CH(B0), and suppose aff(B0) is parabolic. The proof above also shows
that if mb(e) = c0, then e ∈ N1(c0,CH(c(B0))).

Notice from Property 2.26, Remarks 25 and 31 that we obtain the property below.

Property 2.31. Suppose aff(B0) is parabolic. Let b ∈ CH(B0) be centered at c. Let N c
1

(resp. N c0
1 ) be the unit normal cone to CH(c(B0)) at point c (resp. c0). Consider e ∈ N c

1.
Then

mb(e) = c0 ⇐⇒ e ∈ N c0
1

We state now two corollaries to the properties above that will be useful later on, when we
discuss the relationship between the image of mb and the contribution of b to the boundary
of
⋃

B0.

Corollary 2.32. Consider b ∈ CH(B0) centered at c, and let N c
1 be the unit normal vector

to CH(c(B0)) at c.

• If aff(B0) is an elliptic (d− 1)-pencil and b lies in the relative interior of CH(B0), then
mb(N

c
1) is the 0-sphere s0(aff(B0)) and consists of two singletons.

• Otherwise, mb(N
c
1) is path-connected.

Proof. We investigate the situations when N c
1 is not path-connected. Indeed, if N c

1 is path-
connected, the continuity of mb ensures that mb(N

c
1) will also be path-connected. First note

that the normal cone N(c,CH(c(B0))) is convex, therefore it is always path-connected. The
unit normal cone can only contain several path-connected components when N(c,CH(c(B0)))

is a one-dimensional vector space. In that case, the unit normal coneN c
1 contains two opposite,

collinear vectors. Every path in N(c,CH(c(B0))) connecting these vectors go through the null
vector, and thus there are no corresponding path in the unit normal cone.

This situation only occurs when dim aff(B0) = d − 1, and b is in the relative interior of
CH(B0). In particular, we deduce that the normal cone at c must coincide with the direction
of the radical space of aff(B0), that is N(c,CH(c(B0))) =

#»

V (aff(B0)). We now distinguish
two cases.
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(a) When aff(B0) is parabolic, recall that by definition mb(e) ∈ (c0 + R+e) ∩ ∂b. Thus,
mb(N

c
1) ⊆ V (aff(B0))∩∂b = s0(aff(B0)) = {c0}. Therefore the image of mb is still necessarily

path-connected.

(b) When aff(B0) is elliptic, recall that by Remark 27 we have mb(e) = (c0 + R+e)∩∂b. Thus
mb(N

c
1) = V (aff(B0))∩ ∂b = s0(aff(B0)). In other words, the image of mb coincides with the

radical sphere of aff(B0). That radical sphere is a 0-sphere that consists of two singletons.

In conclusion, the image of mb is path-connected, except when b is in the relative interior of
CH(B0) and aff(B0) is elliptic with dimension d− 1.

Corollary 2.33. Suppose b belongs to an open boundary k-face of CH(B0). When aff(B0) is
parabolic, suppose additionally that this open k-face does not contain b0 in its closure. Let c be
the center of b and N c

1 the unit normal cone to CH(c(B0)) at c. Then, mb(N
c
1) has intrinsic

dimension d− 1− k.

Proof. We start with the elliptic case. As per Property 2.30, we know that mb is injective. It
is thus bijective from N c

1 to mb(N
c
1). Because N c

1 is a subset of the unit vector sphere with
intrinsic dimension d− 1− k, the result follows.

Assume that aff(B0) is parabolic. Let N c0
1 be the unit normal cone to CH(c(B0)) at c0.

As per Property 2.30, mb is injective when restricted to N c
1 \N

c0
1 . By assumption, b is in an

open k-face of CH(B0) that does not contain b0 in its closure. Thus, N c
1 \N

c0
1 is non-empty

with intrinsic dimension d − 1 − k. The restriction of mb to N c
1 \ N

c0
1 is thus a subset of ∂b

with intrinsic dimension d − 1 − k. In addition, notice as per Remark 25 and Property 2.26
that mb(N

c
1 ∩ N

c0
1 ) = {c0}. Thus, the image of mb over its whole domain is still a spherical

patch of dimension d− 1− k.

Remark 32. When aff(B0) is parabolic and the open k-face contains b0 in its closure, then
mb(N

c
1) is the singleton sphere {c0}.

§ Exclusivity In the paragraph above, we saw that for any b ∈ CH(B0), the function mb can
for the most part be considered injective if we set aside the image point c0. We here establish
a stronger result.

Let b be a ball in CH(B0) and suppose the normal cone at c(b) contains an exclusive normal
vector. That is, there exists e such that for all c′ ∈ CH(c(B0)), we have 〈e, c′ − c(b)〉 < 0.
Then we argue that the corresponding boundary point mb(e) is only covered by ball b.

Obviously, for all b′ 6= b in the convex hull CH(B0), the function mb′ is undefined for e.
This however does not prevent b′ from covering other boundary points, that may not belong
to the image of mb′ . This property thus extends beyond simple injectivity of the functions mb,
and in a sense indicates a one-to-one mapping for the overall shape

⋃
B0.

First we address a technical lemma.
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Lemma 2.34. Let b ∈ CH(B0) and x ∈ ∂(
⋃

B0). Then

x ∈ b ⇐⇒ x− c0 ∈ N(c(b),CH(c(B0)))

Proof. We start by showing that with the assumption x ∈ ∂(
⋃

B0), we have equivalence
between x ∈ b and x ∈ pcell(b,CH(B0)). Indeed, suppose x ∈ b. Because x ∈ ∂(

⋃
B0), we

deduce that for all b′ ∈ CH(B0) we have pow(x, b′) ≥ 0. If there was some ball b′ ∈ CH(B0) for
which pow(x, b′) < 0, we would deduce by Property 2.18 that x ∈ b̊′ ⊆ (

⋃
B0)

◦. Thus if x ∈ b,
we have for all b′ ∈ CH(B0) that pow(x, b) ≤ 0 ≤ pow(x, b′) and thus x ∈ pcell(b,CH(B0)).
Conversely suppose that x ∈ pcell(b,CH(B0)). Because x ∈

⋃
B0, there is some ball b′ ∈ B0

such that pow(x, b′) ≤ 0. Since B0 ⊆ CH(B0), we deduce that pow(x, b) ≤ pow(x, b′) ≤ 0

and x ∈ b. Therefore, we have equivalence between x ∈ b and x ∈ pcell(b,CH(B0)).

Using Lemma 2.21 we obtain

x ∈ b ⇐⇒ x ∈ pcell(b,CH(B0))

⇐⇒ x ∈ c0 +N(c(b),CH(c(B0)))

⇐⇒ x− c0 ∈ N(c(b),CH(c(B0)))

Property 2.35. Consider b ∈ CH(B0). Let e be a unit normal vector to CH(c(B0)) at point
c(b). If e is an exclusive normal for point c(b), then b is the only ball that contains mb(e).

Proof. Immediate by application of Lemma 2.34 to point x = mb(e).

§ Image of mb and contribution to the global boundary We now describe the image
of function mb. We are in particular interested in its link with the contribution of a ball b to
the global boundary of

⋃
B0.

Lemma 2.36. Let b ∈ CH(B0) centered at c. Let N c
1 be the unit normal cone to CH(c(B0))

at c.
mb(N

c
1) ⊆ ∂b ∩ ∂

(⋃
B0

)
⊆ {c0} ∪mb(N

c
1)

Proof. The first inclusion is immediate from Property 2.25. For the second inclusion, we show
that ∂b ∩ ∂(

⋃
B0) \ {c0} ⊆ mb(N

c
1). Consider x ∈ ∂b ∩ ∂(

⋃
B0), x 6= c0. By Lemma 2.34 we

have x − c0 ∈ N(c,CH(c(B0))). Let e be the unit vector from c0 to x. Because x − c0 is in
the normal cone to CH(c(B0)) at c, thus e is in the unit normal cone and we can consider
mb(e). Observe that we necessarily have mb(e) = x. Indeed, x ∈ (c0 + R+e)∩ ∂b and x 6= c0.
Therefore, x ∈ mb(N

c
1), which concludes the proof.

Property 2.37. Let b ∈ CH(B0) centered at c. Let N c
1 be the unit normal cone to CH(c(B0))

at c.
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• If c0 /∈ ∂(
⋃

B0), or c0 ∈ mb(N
c
1), then the contribution of b to the global boundary is

∂b ∩ ∂
(⋃

B0

)
= mb(N

c
1)

• Otherwise if c0 ∈ ∂(
⋃

B0) and c0 /∈ mb(N
c
1), then the contribution of b to the global

boundary is
∂b ∩ ∂

(⋃
B0

)
= {c0} ∪mb(N

c
1)

Proof. The first case is a direct consequence of Lemma 2.36. In the second case, notice that
c0 may contribute to the global boundary ∂(

⋃
B0) only if aff(B0) is parabolic. Recall that

in parabolic pencils, every ball contains c0 in its boundary. From there, Lemma 2.36 again
yields the equality.

Remark 33. Assume that aff(B0) is a parabolic pencil. There are cases where c0 does not
belong to the image of mb, see for instance Figure 2.11. It follows that the property above
highlights one key difference between ∂b∩pcell(b,CH(B0)) and the image mb(N

c
1). The former

will always contain the radical center c0 of the pencil, contrary to the latter.

Remark 34. In the second case, {c0} and the image of mb are separated. Indeed, unit normal
cones are closed and mb is continuous, thus the image of mb is also closed. Two closed disjoint
subsets are separated, thus {c0} and the image of mb are separated.

We summarize below several properties regarding the image of mb.

Property 2.38. Let b ∈ CH(B0) centered at c. Let N c
1 be the unit normal cone to CH(c(B0))

at c.

• If c0 ∈ ∂(
⋃

B0) and c0 /∈ mb(N
c
1), then the contribution of b to the global boundary

consists of two path-connected components. One is the spherical patch mb(N
c
1), the other

is the singleton {c0}.

• If b lies in the relative interior of CH(B0) and aff(B0) is an elliptic (d− 1)-pencil, then
the contribution of b to the global boundary has two (path-)connected components. It is
the 0-sphere s0(aff(B0)).

• Otherwise the contribution of b to the global boundary is path-connected. It is the spher-
ical patch mb(N

c
1).

Proof. We proceed in order. As a general remark, recall that the image of mb is always a
“spherical patch”: it is the subset of a sphere, whose dimension is given by Corollary 2.33.

Assume that c0 ∈ ∂(
⋃

B0) and c0 /∈ mb(N
c
1). By Property 2.37 above, the contribution

of b to the boundary of
⋃

B0 is {c0} ∪ mb(N
c
1). As per Remark 34, the singleton {c0} and

mb(N
c
1) are separated. Thus {c0} constitutes its own path-connected component. As for the

spherical patch mb(N
c
1), recall that c0 may contribute to the boundary only if pencil aff(B0)

is parabolic. Corollary 2.32 thus guarantees that it is one single path-connected component.
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Suppose now that either c0 /∈ ∂(
⋃

B0) or c0 ∈ mb(N
c
1). Property 2.37 implies that

necessarily, the contribution of b to the global boundary of
⋃

B0 is mb(N
c
1). By Corollary 2.32,

we have two more subcases. If aff(B0) is an elliptic (d − 1)-pencil, and b is in the relative
interior of CH(B0), then the image of mb is the radical sphere of aff(B0), which is indeed a
0-sphere with two path-connected components.

Otherwise, in every remaining case the image of mb is path-connected.

§ On the distinction between B0 and B We started this section by introducing the
collection B0, and stated our results in terms of B0 instead of B. Although the difference
between B and B0 may seem trivial, it is in fact important in the parabolic case.

Indeed, when aff(B) = aff(B0) is a parabolic pencil, the point c0 plays a central role
in the results above. When c0 is part of the global boundary ∂(

⋃
B0), one must indeed be

careful of whether c0 is part of the image of mb or not. By nature of the pencil, c0 will be
part of the boundary of every ball in the pencil, but Property 2.37 explicitly shows that there
are two distinct behaviours depending on the membership of c0 to the image of mb.

In order to more efficiently characterize which ball b of the collection may or may not
cover c0 in its image of mb, it is helpful to rely on Property 2.31. This property directly states
that any unit vector whose image by mb is c0 must belong to N c0

1 , the unit normal cone to
CH(c(B0)) at point c0. This not only gives a characterization of N c0

1 , but also yields a test of
the membership of c0 that only relies on normal cones. Note that this unit normal cone N c0

1

is only guaranteed to be properly defined if c0 belongs to the convex hull of centers, hence the
use of the collection B0.

For completeness, we now show that the point c0 is part of the global boundary if and
only if the unit normal cone N c0

1 is non-empty. Indeed, so far c0 was always treated as an
exception. We only know through Lemma 2.34 that every point x ∈ ∂(

⋃
B0) \ {c0} always

admit some pair b, e for which x = mb(e). However, we do not yet have such a result for c0
itself.

Property 2.39. Suppose aff(B0) is parabolic and let N c0
1 be the unit normal vector to

CH(c(B0)) at point c0. Then,

c0 ∈ ∂
(⋃

B0

)
⇐⇒ N c0

1 6= ∅

Proof. By Properties 2.31 and 2.25 we immediately have the implication N c0
1 6= ∅ =⇒

c0 ∈ ∂(
⋃

B0). Conversely, suppose that N c0
1 = ∅. This implies that c0 lies in the interior of

CH(c(B0)). By definition, CH(c(B0)) is the collection of centers of balls in CH(B0), it is thus
entirely covered by the union of ball itself. Therefore, c0 ∈ (CH(c(B0)))

◦ ⊆ (
⋃

CH(B0))
◦ =

(
⋃

B0)
◦. It follows that c0 cannot be part of the boundary of

⋃
B0.
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Following this last property we now obviously have

∂
(⋃

B0

)
=

⋃
b∈CH(B0)

mb(N1(c(b),CH(c(B0))))

Remark 35. For any ball b ∈ CH(B0), there always exists a vertex ball b′ of in CH(B0) such
that N(c(b),CH(c(B0))) ⊆ N(c(b′),CH(c(B0))). Therefore we actually have

∂
(⋃

B0

)
=
⋃
b∈B0

mb(N1(c(b),CH(c(B0))))

It follows that the boundary of
⋃

B0 can be described exactly with the images of mb.
Because the function mb is built from the normal cones to CH(c(B0)), these images inherit
many structural properties of normal cones as shown above. We shall thus rely on these
properties in the upcoming results that involve the boundary of

⋃
B0.

2.2.3 Proofs of results

We are now ready to prove the two Lemmas 2.19 and 2.20. We start with the parabolic case.

Proof of Lemma 2.20. By Property 2.18, if b ∈ CH(B0) we indeed have b ⊆
⋃

B. Conversely,
let b ∈ P be a ball such that b ⊆

⋃
B. We show that b ∈ CH(B0).

By contradiction, suppose that b /∈ CH(B0). Consider B′ = B0 ∪ {b}. Then b is a vertex
of CH(B′) and its center c is a vertex of CH(c(B′)). Hence c has an exclusive unit normal
vector e to the convex polytope CH(c(B′)). Because c0 ∈ CH(c(B′)), we are guaranteed
that ρb(e) > 0. Indeed, because e is exclusive to c we have 〈e, c0 − c〉 < 0, which implies
2〈e, c− c0〉 = ρb(e) > 0. Consider mb(e) = c0 + ρb(e)e, we have mb(e) 6= c0. Because e only
belongs to the normal cone of b, Property 2.35 implies that b is the only ball in CH(B′) that
contains the point mb(e). This contradicts the assumption b ⊆

⋃
B and is thus impossible.

Proof of Lemma 2.19. The equivalence (i) ⇐⇒ (ii) is mostly identical to the parabolic case,
the only change is that we obtain ρb(e) > 0 because r0 > 0. The implication (ii) =⇒ (iii)
being obvious, we here prove that (iii) =⇒ (i).

Assume that (iii) holds and by contradiction suppose that b /∈ CH(B). As previously
consider the collection of balls B′ = B∪{b}. Ball b is again a vertex in CH(B′), and its center
c a vertex in CH(c(B′)). It has an exclusive outward normal vector e. Let u ∈ s0(aff(B′)) a
point of the radical sphere, and n the unit direction from c0 to u. Note that because u belongs
to the radical sphere of pencil aff(B′), necessarily n ∈ #»

V , with V = V (aff(B′)) the radical
space of the pencil. In particular, Rn ⊆ #»

V . We deduce that e and n cannot be collinear. For
0 ≤ λ ≤ 1, let eλ = λe + (1− λ)n. For all c′ ∈ CH(c(B′)) we have〈

eλ, c
′ − c

〉
= λ

〈
e, c′ − c

〉
+ (1− λ)

〈
n, c′ − c

〉
= λ

〈
e, c′ − c

〉
≤ 0
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with equality if and only if λ = 0, which occurs when eλ coincides with n. Therefore, when
λ > 0, eλ is an exclusive outward normal vector for vertex c. Since e and n are not collinear,
the eλ’s are non-zero vectors. We can consider their normalization, and subsequently their
image by function mb. Because the eλ’s form a path in the unit vector sphere, and mb is
continuous, the images of their normalization is also a path γ. Because the eλ, λ > 0, are
exclusive normals at c, the set of points γ \ {mb(n)} is exclusively covered by ball b in

⋃
B.

However, mb(n) = u, and γ is a path containing u. It follows that in any neighbourhood of
u, ball b exclusively covers several points of

⋃
B. This contradicts (iii) and is absurd.

2.3 Local inclusion in parabolic pencils

In the previous section, we have seen that the local inclusion of a ball b in
⋃

B is equivalent to
its global inclusion whenever B is a finite collection of balls in Rd, and both B and b belong
to some pencil whose radical sphere has positive radius. In other words, aff(B ∪ {b}) must
span an elliptic pencil of dimension at most d− 1.

In this section, we have a look at local inclusion properties, but relax the constraints on
B and b. We assume B to be a finite collection of balls whose boundaries share a common
point u. Recall as per Remark 15 that B thus spans a pencil of balls, which can always be
seen as a (parabolic or elliptic) subpencil of a parabolic pencil with radical (singleton) sphere
{u}.

We show that a ball b going through u satisfies local inclusion in
⋃

B around u, if and
only if the center of b is constrained to belong to a cone defined by u and the centers of balls
in B. In other words, we provide a characterization of the belonging of ball b in

⋃
B locally

around u. To define the cone, we need some definitions.

Let C = {c1, . . . , ck} be a finite collection of points in Rd. Recall that the affine conical
hull of C with apex u ∈ Rd is

coni(u,C) =

{
u+

k∑
i=1

λi(ci − u) | ∀i, λi ∈ R, λi ≥ 0

}

For technical reasons, we need to exclude some points on the boundary of these affine
conical hulls. This motivates the following definition:

?
coni(u,C) = ˚coni(u,C) ∪ CH({u} ∪ C)

Proposition 2.40. Let u, c1, . . . , ck, ck+1 ∈ Rd and C = {c1, . . . , ck}. Let bi be the d-ball
centered at ci whose bounding (d− 1)-sphere goes through u. We have equivalence between:

(i) ck+1 ∈
?

coni(u,C)

(ii) ∃U a neighbourhood of u such that bk+1 ∩ U ⊆
⋃k
i=1 bi
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u

c1

c2

b1

b2

U

Figure 2.12 – Illustration of Proposition 2.40 for k = 2. The inclusion normal cone
?

coni(u,C)

is represented in orange. Note that the two green balls have their center in the inclusion
normal cone, and indeed satisfy local inclusion in the blue shape around u. The black ball
covers the red area and does not satisfy local inclusion, thus showing why we have to remove
some points on the boundary of the conical hull.

Due to the equivalence above, we refer to the set of points
?

coni(u,C) as the inclusion
normal cone of u in

⋃k
i=1 bi. Refer to Figure 2.12 for an illustration. This inclusion normal

cone nearly coincides with the normal cone of the complement of
⋃k
i=1 bi at u. Recall that

intuitively, the normal cone of a subset X at a point x ∈ ∂X is the set of directions along which
distance to X increases the fastest if x were moved. In other word for an arbitrarily small
distance ρ and a direction e in the normal cone, the point x+ ρe admits x as unique closest
point in X. This implies that the ball centered at x+ρe and radius ρ is locally included in Xc

around x. The main distinction with our inclusion normal cone is that the normal cone of the
complement gives a superset of the directions of centers of balls that satisfy local inclusion,
whereas our inclusion normal cone yields the actual centers of these balls.

The remainder of this section is dedicated to the proof of the proposition above.

2.3.1 Technical lemmas

In this section we present two technical lemmas. Let u ∈ Rd and consider a family of balls
whose bounding (d− 1)-sphere goes through u. The balls in the family defines a subpencil to
a parabolic d-pencil, as per Remark 15. Given a finite collection of balls in that family, the
first lemma states that when one center ck+1 lies in the interior of the conical hull formed by
the other centers, then the ball centered at ck+1 is contained locally contained around u in
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the union of the other balls. The second lemma is a weaker version of the converse.

Lemma 2.41. Let u ∈ Rd and k points c1, c2, . . . , ck ∈ Rd not all lying on the same affine
hyperplane through u. Let ck+1 ∈ ˚coni(u, {ci, 1 ≤ i ≤ k}). For 1 ≤ i ≤ k + 1, let bi be the ball
centered at ci whose bounding (d − 1)-sphere goes through u. Then, there exists r > 0 such
that bk+1 ∩ b(u, r) ⊆

⋃k
i=1 bi.

c4

c1

c2

c3

u

H

r

Re

e

b1 b2

b4

b3

Figure 2.13 – Notation for the proof of Lemma 2.41 with k = 3. The bold curve represents
the set of points at distance Re from u in directions e such that 〈e, c− u〉 ≥ 0.

Proof. Consider the closed half-space H through u containing bk+1. We prove the result by
establishing that H ∩ b(u, r) ⊆

⋃k
i=1 bi.

By Lemma 2.27, notice that for all unit vectors e and real numbers ρ, the point u + ρe

belongs to bi if and only if 0 ≤ ρ ≤ 2〈e, ci − u〉. It follows that u + ρe belongs to the union⋃k
i=1 bi if and only if 0 ≤ ρ ≤ Re where Re = 2 max1≤i≤k〈e, ci − u〉; see Figure 2.13.

Let r = inf{Re | 〈e, ck+1 − u〉 ≥ 0, ‖e‖ = 1}. Note that r is an infimum over the unit
directions e, with u+ e ∈ H. We next prove that r > 0. Because the closed half unit sphere
is compact, r is actually a minimum. Consider the unit vector e for which r = Re. It satisfies
〈e, ck+1 − u〉 ≥ 0. Because ck+1 lies in the interior of coni(u, {ci, 1 ≤ i ≤ k}), there exist k
real positive numbers λ1, λ2, . . . , λk such that ck+1 = u+

∑k
i=1 λi(ci − u); see Appendix A.2.

By linearity,

0 ≤
k∑
i=1

λi〈e, ci − u〉 ≤

(
k∑
i=1

λi

)
max
1≤i≤k

〈e, ci − u〉.
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Assume for a contradiction that max1≤i≤k〈e, ci − u〉 ≤ 0. Since λi > 0 for all 1 ≤ i ≤ k, this
would imply that 〈e, ci − u〉 = 0 for all 1 ≤ i ≤ k, showing that all vectors ci − u lie in the
same hyperplane and contradicting our hypothesis.

To conclude, consider a point x ∈ H ∩ b(u, r). Let ρ = ‖x− u‖ and e the unit vector such
that x = u + ρe. Because x ∈ H, 〈e, ck+1 − u〉 ≥ 0. Because x ∈ b(u, r), 0 ≤ ρ ≤ r ≤ Re.
Hence, x ∈

⋃k
i=1 bi and H ∩ b(u, r) ⊆

⋃k
i=1 bi.

Lemma 2.42. Let u ∈ Rd and k+ 1 points c1, . . . , ck, ck+1 ∈ Rd \ {u}. For 1 ≤ i ≤ k+ 1, let
bi be the ball centered at ci whose bounding (d− 1)-sphere goes through u. If there exists r > 0

such that bk+1 ∩ b(u, r) ⊆
⋃k
i=1 bi, then ck+1 ∈ coni(u, {ci, 1 ≤ i ≤ k}).

Proof. Denote by b0 the singleton ball {u} and C = {ci | 1 ≤ i ≤ k}. Let B0 = {bi | 0 ≤ i ≤ k}
and notice that

⋃k
i=1 bi =

⋃
B0. The interiors of bk+1 and b(u, r) intersect, thus there is a

ball b̂ ⊆ bk+1∩b(u, r) with center ĉ on the half-line from u through ck+1 and such that u ∈ ∂b̂.
We show that b̂ ∈ CH(B0), this implies that ĉ ∈ CH({u} ∪ C) ⊆ coni(u,C). Hence we obtain
ck+1 ∈ coni(u, {ĉ}) ⊆ coni(u,C).

Because b0 = {u} ∈ B0, aff(B0) is parabolic with radical ball b0. To prove that b̂ ∈
CH(B0), it suffices to prove that b̂ ∈ aff(B0). Indeed by definition b̂ ⊆ bk+1 ∩ b(u, r) ⊆

⋃
B0.

We can thus apply Lemma 2.20. By contradiction, assume that b̂ /∈ aff(B0). Because the
radical sphere {u} of aff(B0) is in the boundary of b̂, we know that b̂ belongs to the pencil
aff(B0) if and only if its center ĉ belongs to the centers’ space c(aff(B0)). Our assumption thus
implies that ĉ /∈ c(aff(B0)). Therefore, there are c ∈ c(aff(B0)), h > 0 and e ∈ #»

V (aff(B0)),
‖e‖ = 1, such that ĉ = c + he. Because e ∈ #»

V (aff(B0)), for all 1 ≤ i ≤ k, 〈e, ci − u〉 = 0.
By Lemma 2.27, this implies that for all ρ > 0, we have u + ρe /∈

⋃k
i=1 bi =

⋃
B0. However

〈e, ĉ− u〉 = h‖e‖2 > 0. This implies 2〈e, ĉ− u〉 = ρb̂(e) > 0. Therefore Lemma 2.27 implies
that for any ρ > 0 small enough, we have u+ρe ∈ b̂\ (

⋃
B) = ∅, which is impossible. Hence,

b̂ ∈ P and ck+1 ∈ coni(u,C).

2.3.2 Proving the property of local inclusion cones

We can finally prove Proposition 2.40.

Proof of Proposition 2.40. Let b0 = {u} and B0 = {bi | 0 ≤ i ≤ k}. The affine hull aff(B0) is
a parabolic pencil. Its centers’ space c(aff(B0)) coincides with aff({u} ∪ C).

Assume that ck+1 ∈
?

coni(u,C). If ck+1 ∈ CH({u} ∪ C) we deduce by Property 2.18 that
bk+1 ⊆

⋃
B0. If ck+1 ∈ ˚coni(u,C) we instead rely on Lemma 2.41 and thus bk+1 is locally

contained in
⋃

B0 locally around u.

Conversely assume that bk+1 is locally included in
⋃

B0 around u. By Lemma 2.42 we

know that ck+1 ∈ coni(u,C). If ck+1 ∈ ˚coni(u,C), then we already have ck+1 ∈
?

coni(u,C).
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Otherwise, ck+1 ∈ ∂ coni(u,C). We show that then, ck+1 must belong to the convex hull of
{u} ∪ C.

The boundary of coni(u,C) consists of portions of affine subspaces that are supported by
u and points of C. It follows that for any face fconi of coni(u,C), there is some face fch of
CH({u} ∪ C) such that coni(u, fch) = fconi. Without loss of generality we can assume that
fch contains u. Indeed, CH({u} ∪ fch) must be a face of CH({u} ∪ C), otherwise coni(u, fch)

cannot be a face of coni(u,C). Below, fconi denotes a face of coni(u,C) that contains ck+1

and fch its associated face of CH({u} ∪ C).

Assume by contradiction that ck+1 does not belong to CH({u} ∪ C). It follows that ck+1

is a vertex in CH({u, ck+1} ∪ C). Therefore bk+1 is also a vertex in CH(B0 ∪ {bk+1}). Let
e be an exclusive outward normal vector of ck+1, and n an outward normal vector of face
fch. Since fch contains both u and ck+1, n is a common outward normal to u and ck+1. In
particular, e and n cannot be collinear. For 0 ≤ λ ≤ 1, let eλ = λe + (1− λ)n. Proceeding
as in the proof of Lemma 2.19, we can show that when λ > 0, eλ is an exclusive, non-
zero, outward normal vector to ck+1. We can consider the normalization of the eλ’s, they
constitute a continuous path of unit vectors in the unit normal cone to CH({u, ck+1} ∪ C)

at point ck+1. By continuity of mbk+1
, their image by mbk+1

forms a continuous path in
∂bk+1 ∩ ∂(bk+1 ∪ (

⋃
B0)). In addition, recall that n is a normal vector to CH({u, ck+1} ∪ C)

at both ck+1 and u. Therefore, mbk+1
(n) = mb0(n) = u. Because the eλ’s, for λ > 0, are

normal vectors exclusive to ck+1, the points mbk+1
(eλ), λ > 0, are exclusively covered by bk+1

among all balls of the union bk+1 ∪ (
⋃

B0). This contradicts the local inclusion assumption
and is thus impossible.

2.4 Boundary of a finite union of balls

Given a finite set of balls S in Rd, we decompose the boundary of the union
⋃

S into a
finite set of k-dimensional elements that we call k-faces. Intuitively, k-faces are maximal
open connected spherical patches of dimension k that partition the boundary. To define them
formally, we associate to each point u ∈ Rd the subsets of balls that have the property to
represent

⋃
S locally around u (see Definition 9 below). From these local representations,

we then define the degree of a boundary point and rely on this to distinguish the different
faces of ∂(

⋃
S ). When assuming balls in S to be in general position, defining the degree of

a boundary point is easy: this is the number of balls in S containing the boundary point.
We however require a definition that still holds when degenerate situations occur. Indeed, in
the later Chapter 4, we will require collections of balls that do not satisfy the general position
assumption. It is thus desirable to have a terminology that remains relevant within our own
framework.

Definition 9 (Local representation). Given a subset X ⊆ Rd and a point u ∈ Rd, we say
that a set of balls B in Rd represents X locally around u if:

(i) for all b ∈ B, u ∈ b;
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(ii) there exists r > 0 such that X ∩ b(u, r) =
⋃

B ∩ b(u, r).

For an arbitrary X and u, such a set B may be infinite or even not exist. For instance,
take for X the region enclosed by an ellipse and for u any of its boundary points: a collection
of balls that satisfies condition (ii) requires infinitely many balls that do not contain the point
being locally described, and thus infringes (i); see Figure 2.14. We first establish that such
a local representation always exists and is finite when X is the union of a finite collection of
balls.

u
c

Figure 2.14 – Consider the point u on the boundary of the ellipse, it has no local representation.
Because the boundary is smooth, balls of a local representation have to be tangent to the ellipse
at point u, they must thus have their center along the blue arrow. These tangent balls are a
nested family of balls, any ball whose center is beyond c meets the complement of the ellipse
around u, and balls whose center is between u and c are contained in the red ball. However
the red ball does not capture the ellipse in the neighbourhood of u. A “local representation”
thus requires balls that do not contain u.

Recall that S is a finite collection of d-balls in Rd. We have the property below.

Property 2.43. The set Su = {b ∈ S | u ∈ b} represents
⋃

S locally around u, for all
u ∈ Rd.

Proof. For any ball b ∈ S , either u ∈ b or the distance between u and b is positive. Because
S is finite, S \Su is also finite and we let r be the smallest distance between u and a ball in
S \Su. We have r > 0, and by construction b(u, r) ∩

⋃
S ⊆

⋃
S \

⋃
(S \Su) ⊆

⋃
Su ⊆⋃

S . Thus
⋃

S ∩ b(u, r) =
⋃

Su ∩ b(u, r).

Let S =
⋃

S be the union of a finite collection of balls S in Rd. For any point u ∈ ∂S, we
are now ready to define the degree of u in S. Consider B a set of balls that represents S locally
around u. Notice that for all b ∈ B, u is on the boundary of b. Hence the intersection of the
bounding (d−1)-spheres of B is non-empty and B defines a pencil of balls P by Property 2.2.
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Definition 10 (Degree of boundary points). Let S be a finite union of balls, u ∈ ∂S,
and B that represents S locally around u. Assume that B achieves minimum cardinality
among the sets that represents S locally around u. We define the degree of u in S to be
deg u = d− 1− dim aff(B) when aff(B) is elliptic, and deg u = 0 when aff(B) is parabolic.

Remark 36. If we consider all singleton spheres to have dimension 0, the degree of a point is
in fact the dimension of the radical sphere of aff(B).

It is not obvious that such a definition is consistent, because there may be several minimal
sets B, that may define distinct pencils with different dimensions. We show through Prop-
erty 2.44 that this cannot occur. First, notice that regardless of which set locally represents S,
they must all define the same inclusion normal cone for u in S. The local inclusion property
is indeed a shape property. Consider two collections of balls B and B′ that locally represent
S around u. Recall that their respective collections of centers are c(B) and c(B′). Then one

easily proves the equality
?

coni(u, c(B)) =
?

coni(u, c(B′)). The inclusion normal cone is thus

an invariant across the various local representations, and we will use the notation
?

coni(u, S).

Property 2.44. Consider X ⊆ Rd and u ∈ ∂X. Let P(u,X) be the collection of pencils
aff(B) where B is a finite set of balls that locally represents X around u. If it is non-empty,
then P(u,X) admits a unique inclusion-wise minimum pencil, defined by a cardinal-wise
minimal collection B.

Proof. For any finite local representation B of X around u,
?

coni(u, c(B)) =
?

coni(u,X). We
distinguish three cases:

(a) There is some collection B such that dim
(

aff({u} ∪ c(B))
)
≤ d−1. Thus ˚coni(u, c(B)) =

∅ and it follows that
?

coni(u,X) = CH({u} ∪ c(B)). Let Cmin be the vertices of CH(c(B)) and
Bmin the set of balls centered at points of Cmin whose bounding (d− 1)-spheres go through u.

We have
?

coni(u,Cmin) =
?

coni(u,X), hence Bmin defines a pencil aff(Bmin) = Pmin ∈P(u,X).
Any set B that locally describes X around u must contain Bmin, otherwise they cannot satisfy
?

coni(u, c(B)) =
?

coni(u,X). Thus, Bmin achieves minimum cardinality. Therefore, for all
P ∈P(u,X) we have Pmin ⊆ P.

(b) Otherwise, for all local representation B, dim(aff({u} ∪ c(B))) = d, which implies that
for all B, dim(aff(c(B))) ≥ d− 1, and ˚coni(u, c(B)) 6= ∅. We have two subcases.

(i) Suppose there is some collection B such that dim
(

aff(c(B))
)

= d − 1. Necessarily, u
does not belong to the affine space supported by c(B), hence aff(B) is an elliptic pencil
of dimension d − 1. As in case (a), consider Cmin and Bmin. Any collection of balls
defining a pencil in P(u,X) must contain every ball in Bmin, otherwise we would have

the strict inclusion
?

coni(u, c(B)) (
?

coni(u,X). Let Pmin = aff(Bmin).
If Pmin belongs to P(u,X) then it is inclusion-wise minimum in P(u,X). However,

contrary to the previous situation (a), it is not straightforward to see that
?

coni(u,Cmin) =
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?
coni(u,X), because the component ˚coni(u,Cmin) is now non-empty. But we can still show
that indeed, Pmin belongs to P(u,X). To do so, we show that Pmin = aff(B). Because
Bmin ⊆ B, we have Pmin ⊆ aff(B). Additionally, we have aff(Cmin) = aff(c(B)),
therefore the two pencils Pmin and aff(B) must have the same dimension d − 1. It
follows that Pmin = aff(B) and therefore Pmin is the unique inclusion minimum pencil
of P(u,X).

(ii) For all collection B, dim
(

aff(c(B))
)

= d. Any such collection defines a parabolic d-
pencil that admits {u} as its radical ball. Hence P(u,X) contains only one pencil.

In the above proof, the two cases (a) and (b)-(i) have an explicit construction of the (only)
cardinal minimum collection Bmin that locally describes a shape around any boundary point
u. In the remaining case (b)-(ii), although we could still build a similar collection from the
vertices of CH({u} ∪ c(B)), we would have no guarantee that it actually achieves minimum
cardinality. Indeed, assume that u is not a vertex of CH({u} ∪ c(B)) but belongs to a (d−1)-
face of the polytope. The affine conical hull supported by the vertices of that face is an affine
hyperplane through u. Because dim

(
aff(c(B))

)
= d there exists another center lying in one

of the open half-spaces delimited by that hyperplane. Because u belongs to the boundary,
the conical hull cannot cover the whole space Rd, hence coni(u, c(B)) is a half-space. In

particular, any single center in that open half-space suffices to fully determine
?

coni(u,X),
regardless of whether the center is a vertex or not, or how many vertices lie in the half-space.
See Figure 2.15 for an illustration.

Property 2.44 guarantees that every point of the boundary has a well-defined degree. We
then call a k-face of ∂S any maximal connected component of ∂kS = {u ∈ ∂S | deg u = k}.
In particular we refer to 0-faces as vertices of the boundary, and denote the vertex set by V .
Vertices come in many varieties.

The two cases (b)-(i) and (b)-(ii) of the proof above only occur when u is a vertex of the
boundary. A common point between these two situations is that the inclusion normal cone
of S at u has non-empty interior, we call these vertices simple. In the remaining case (a),
the inclusion normal cone is always flat with empty interior. Either the pencil is elliptic, and
the boundary point u belongs to some open k-face, k ≥ 1, or the pencil is parabolic, and the
boundary point u is a vertex. In the vertex case, we say that u is a non-simple vertex.

Note that the general position assumption usually means that non-simple vertices from case
(a) and simple vertices from case (b)-(ii) are both forbidden. Thus the only vertices allowed
in general position are the simple vertices from case (b)-(i). The classification of simple and
non-simple vertices thus deviates from the usual “regular” and “degenerate” classification of
vertices from the general position assumption. Refer to Figure 2.16 for an illustration. For
easy reference, we re-state the definitions of simple and non-simple vertices.

Definition 11 (Simple and non-simple vertices of the boundary). Let S =
⋃

S

be a finite union of balls in Rd and u ∈ ∂S a vertex. Let B be a cardinal-minimum local
representation of S around u. We say that u is a simple vertex if ˚coni(u, c(B)) 6= ∅, otherwise
we say u is a non-simple vertex.
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x

y

z

u

coni(u, c(B))

CH({u} ∪ c(B))

Figure 2.15 – The inclusion normal cone of u is the left half-space. Any single point in the
interior of that half-space, in addition to x and y (black points), are sufficient to determine

the interior normal cone. For instance we can take point z (green). We have
?

coni(u, c(B)) =
?

coni(u, {x, y, z}). Notice that the transparent green and black balls indeed suffice to locally
describe the overall union of balls around u.

We now show that the other k-faces, k ≥ 1, are open connected patches of k-spheres.

Property 2.45. Consider u ∈ ∂kS, k ≥ 1, and let B be the unique cardinal-wise minimum
collection of balls that represents S locally around u. Then, there exists r > 0 such that B is
the unique cardinal-wise minimum collection of balls that represents S locally around v for all
v ∈ b̊(u, r) ∩ ∂kS.

Proof. Let r > 0 such that S∩b(u, r) = (
⋃

B)∩b(u, r). Let ρv = r−‖u−v‖ and observe that
b(v, ρv) ⊆ b(u, r). For all v ∈ b̊(u, r) ∩ S, we thus have that S ∩ b(v, ρv) = (

⋃
B) ∩ b(v, ρv).

By restricting B to the set of balls that contain v, Bv = {b ∈ B | v ∈ b}, it follows that for
all points v ∈ b̊(u, r) ∩ S, Bv represents S locally around v. Let Pv be the pencil defined by
Bv. In particular, since v ∈ b̊(u, r) ∩ ∂kS, we have dimPv = d− 1− k = dimP by definition
of the degree. Since Bv ⊆ B, Pv ⊆ P and we actually have Pv = P, therefore Bv = B.
Thus B is indeed a local representation of S around v. In addition, case (a) in the proof of
Property 2.44 ensures minimality and uniqueness of B when k ≥ 1.

We deduce immediately that any k-face is supported by a unique k-sphere in S . Formally:

Property 2.46. Let f be a k-face of ∂S, k ≥ 1. Then there is a unique set B ⊆ S such



2.4. Boundary of a finite union of balls 63

u

CH({u} ∪ C)

(a)

u

CH({u} ∪ C)

coni(u,C)

(b)-(i)

u

CH({u} ∪ C)

coni(u,C)

(b)-(ii)

Figure 2.16 – The three possible configurations of a vertex u in R2, corresponding to the three
cases in the proof of Property 2.44. The general position assumption forbids the two cases (a)
and (b)-(ii).
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that (1) s =
⋂
b∈B ∂b is a non-degenerate k-sphere; (2) f ⊆ s; (3) B is the cardinal minimum

representation of S locally around each point of f .

Proof. Consider g : ∂kS → {B | B ⊆ S } that associates to each point x ∈ ∂kS the unique
inclusion-minimum set that represents S locally around x. By Property 2.45, f is locally
constant and therefore constant over each connected component of ∂kS.

As a concluding remark, note that there are finitely many faces of any dimension. We
outline a possible proof by induction below.

Consider a vertex u of ∂S, there exists some subset B ⊆ S such that aff(B) is either an
elliptic (d−1)-pencil, or a parabolic pencil, and u belongs to the radical sphere of that pencil.
In both cases, the radical sphere contains finitely many points, because it is either a singleton,
or a 0-sphere with 2 points. Because S is finite, there are finitely many possible pencils that
can yield a vertex of ∂S, therefore there are finitely many vertices.

Let k ≥ 1 and suppose that there are finitely many faces of ∂S with dimension at most
k − 1. We claim there are finitely many k-faces of ∂S. By the above properties, for any open
k-face f of ∂S, there is some subset B ⊆ S such that aff(B) is an elliptic (d− k − 1)-pencil
and f ⊆ s0(aff(B)). Recall that we defined ∂kS = {u ∈ ∂S | deg u = k}, and that f is a
maximal connected component of ∂kS. Because the relative boundary of f is a collection
of faces of ∂S of dimension at most k − 1, we actually have that f is a maximal connected
component of s0(aff(B)) \

(⋃
`≤k−1 ∂`S

)
. Because there are finitely many possible radical

k-spheres s0(aff(B)), and finitely many faces of dimension ` ≤ k − 1, there are only finitely
many k-faces.

By induction, we thus deduce that S has finitely many faces of any dimension.

2.5 Medial axis, skeleton, boundary and pencils

An important result regarding unions of balls concerns the structure of their medial axis.
Unions of balls are in fact one of the few classes of shapes for which we can exactly compute
the medial axis. A characterization suited for an algorithmic implementation was given by
Amenta and Kolluri [AK01]. It was inspired from a previous characterization from Attali
and Montanvert [AM97] and the so called dual shape of a union of balls from Edelsbrunner
[Ede92]. One caveat of these characterizations is that they assume general position.

Although relaxing this assumption makes the previous characterizations invalid, some
properties remain true. Indeed from Amenta and Kolluri’s result (that we recall in the fol-
lowing Section 2.5.1), we easily deduce that in general position, the medial axis of a union of
balls is a (flat) polytope in which every vertex is either the center of a ball in S , or a vertex
in the Voronoi diagram of the set V of vertices of the boundary ∂S. In particular, it shows
that the medial axis is closed and thus the two notions of medial and maximal balls coincide.
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We argue that this particular property still holds without the general position assumption,
specifically:

Theorem 3. The medial axis of a finite union of balls in Rd can be decomposed into a
finite collection of faces. Each face is the centers of balls which, when interpreted as (d+ 1)-
dimensional points, are closed convex subsets of elliptic pencils with a finite number of extremal
points.

Note that this property directly implies that the medial axis is closed. Because we have in
general the series of inclusions MA(X) ⊆ Sk(X) ⊆ MA(X) for any subset X ⊆ Rd ([Mat88]),
we deduce that the medial axis and the skeleton of a finite union of balls coincide. It follows
that the two notions of medial ball and (inclusion-wise) maximal ball are one and the same.
We can thus use the two appellations interchangeably in finite unions of balls.

The remainder of this section is dedicated to proving this result. In order to do so, we
provide a characterization of the medial axis without the general position assumption, and
adopt an approach similar to the one of Edelsbrunner.

2.5.1 State of the art when assuming general position

We start by recalling a few definitions from [Ede93] and [AK01]. Given any finite collection
of balls S , we can always consider its power diagram. It naturally decomposes the space into
various power cells, and therefore induces a decomposition of the union of balls S =

⋃
S itself.

This diagram is dual to a Delaunay triangulation. It consists of the simplices connecting the
centers of every subset of balls B whose power cells have a non-empty common intersection.
The dual complex is a subcomplex of this triangulation in which we keep a simplex only if the
intersection of power cells also intersects the shape S. The dual shape is then the underlying
space of the dual complex.

When in general position, the space spanned by a k-simplex of the dual complex has
dimensionality k. Furthermore, it is of interest to distinguish between regular and singular
simplices of the dual complex. A simplex is called singular if it has dimension at most d− 1

and is not the face of a d-dimensional simplex of the dual complex. In contrast, the remaining
simplices are called regular and intuitively correspond to the full-dimensional components of
the dual shape.

Without the general position assumption, a k-simplex may degenerate into an affine subset
of dimension strictly less than k, and its faces may partially overlap. For instance, for k = 2,
three collinear points yield a “flat”, degenerate triangle. The notion of regular and singular
simplices also becomes somewhat ambiguous, as there may be k-simplices, k > d, that span
a d-dimensional subset of Rd. We adopt here the convention that a regular simplex must be
d-dimensional in Rd, or be the face of such a d-dimensional simplex.

From this notion of dual shape, Edelsbrunner then goes on to show that the boundary of
a union of balls is dual to the boundary of its dual complex, and then defines the join of a
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simplex of the dual complex with its dual face in ∂S. Given two subsets X and Y , the join of
X and Y is defined as X ? Y =

⋃y∈Y
x∈X [xy]. The join of two sets is well-defined whenever any

pair of segments from one set to the other are either disjoint, or meet at a common endpoint.
For convenience, when one set is empty we have X ?∅ = X.

These particular joins of a finite union of balls have several properties, of which we cite
only a few: the collection of joins forms a partition of the shape S; and a point in a join admits
as a closest point in the boundary ∂S some point u that lies on the face defining the join.

Amenta and Kolluri restate the properties of these joins and make use of the structure of
the dual shape to then prove the following:

Theorem 4 ([AK01]). Assuming general position, let S =
⋃

S be a finite union of balls
and V its vertex set. Then its medial axis is composed of:

(i) singular simplices of the dual complex,

(ii) portions of the Voronoi diagram of V that intersect regular simplices of the dual complex.

b1b2

u c1c2

pcell(b2,S ) pcell(b1,S )

Figure 2.17 – Consider the collection of balls S = {b1, b2} and S =
⋃

S . Because the power
cells of b1 and b2 intersect at u ∈ S, the dual complex of S contains the singular simplex
{c1, c2}. However, the medial axis of S only contains the two points c1 and c2, and not the
open segment ]c1c2[. Theorem 4 does not apply without the general position assumption.

Observe in Figure 2.17 that without the general position assumption, the theorem above
does not apply. To provide our own characterization without this general position assumption,
we start by defining our own collection of “joins”, based on a division of the medial axis. We
then argue that these joins coincide with the cells of the Voronoi diagram of ∂S restricted to
S, and then that they are actually polytopes we can easily compute from S . From there, we
argue that we can retrieve the medial axis by inspecting specific links of the joins.
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2.5.2 Link of a polytope

Before introducing the joins we will be working with, we first address the notion of link. This
notion is already well-defined in the context of simplicial complexes, we here use a slight
adaptation better suited for polytopes. Indeed, in the context of simplicial complexes, the
link of a face is usually defined based on the combinatorial structure of the simplices incident
to that face, and it is a collection of faces. Formally, given a simplicial complex K, the star
of a simplex σ in K is the collection of simplices σ′ which have σ as a face. Then the link of
σ in K is the closure of its star, minus its star. So far, we intuitively used the notion of a
face of a polytope. We now specify formally the meaning we give to this notion of face when
applied to a convex polytope, as opposed to a simplicial complex. Indeed, a k-simplex is a
collection of k+1 vertices, its faces are any subset of these k+1 vertices. In contrast, the face
f of a convex polytope can be seen as the convex hull of a finite number of vertices. Contrary
to a simplex however, any subset of these vertices does not necessarily define a face of f in
the intuitive sense. We say that the convex hull of such a subset defines a proper face of f if
and only if its affine hull has dimension strictly less than the dimension of the affine hull of f .
With this specific notion of face, we can then define the geometric star and link in a similar
way to their simplicial counterparts. Refer to Figure 2.18 for an illustration of Definitions 12
and 13.

X
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e
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x

(a)

X
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e
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x

(b)

X

a

b

c

d

e

fx

(c)

Figure 2.18 – Star (green) and link (blue) for various points (and faces) of a convex polytope
X. (a) Interior point x (and interior face of X); (b) point x on an edge (and edge a); (c)
vertex x.

Definition 12 (Star and link for polytope faces). Consider a polytope X ⊆ Rd and
a face f of X. The star of f in X is the collection of (open) faces of X that have f as a
face. Then the geometric star of f in X is the underlying space of its star. We denote it as
star(f,X) =

{
y ∈ Rd | ∃f ′ face of X, y ∈ f ′, f ⊆ f ′

}
. The geometric link of f in X is then

lnk(f,X) = star(f,X) \ star(f,X).

We however need to extend this definition slightly so that the geometric link of any point
of the polytope is well-defined. Indeed we will later have to consider the geometric link of any
ball b, possibly not a vertex of CH(B). This motivates the definition below.

Definition 13 (Star and link for polytope points). Consider a polytope X ⊆ Rd and a
point x ∈ X. The star of x in X is the collection of (open) faces of X whose closure contains
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x. Then the geometric star of x in X is the underlying space of its star. We denote it as
star(x,X) =

{
y ∈ Rd | ∃f ′ face of X, y ∈ f ′, x ∈ f ′

}
. The geometric link of x in X is then

lnk(x,X) = star(x,X) \ star(x,X).

Because this extension coincides with the previous definition when x is a 0-face of the
polytope, we thus use the same appellation and notation for both definitions. From here on,
we will refer to the geometric link of a point x in a polytope simply as the link of x.

Remark 37. Let x ∈ X, there is some open face fx that contains x. We in fact have
star(x,X) = star(fx, X) and thus lnk(x,X) = lnk(fx, X).

Remark 38. So long as the notion of faces is properly defined, the definitions above extend to
non-convex polytopes. In particular if X is a convex polytope, its boundary ∂X is in general
a non-convex polytope. However ∂X inherits its faces from X and we can apply our notions
of star and link to ∂X

By definition, the link of a boundary point x is the collection of points that share a face
with x, and also belong to another face whose closure does not contain x. If we consider its
link in the boundary polytope ∂X instead of X, it is then the collection of points that share
a boundary face with x, and still lie on another boundary face. Then, the link of x in ∂X is
also the collection of points y such that Nx

1 ∩N
y
1 6= ∅ and Ny

1 \Nx
1 6= ∅, where Nx

1 (resp. Ny
1)

denotes the unit normal cone to polytope X at x (resp. y). Alternatively, given a direction e

supported by a face that contains x, consider the half-line originating from x in the direction
of e. The link lnk(x, ∂X) is also the collection of points in the polytope that are the furthest
away from x along one of these half-lines. See Figure 2.19.

Property 2.47. Consider a closed bounded convex polytope X ⊆ Rd and x ∈ ∂X. We have
equivalence between:

(i) y ∈ lnk(x, ∂X)

(ii) N1(x,X) ∩N1(y,X) 6= ∅ and N1(y,X) \N1(x,X) 6= ∅.

(iii) ∃e, (x+ R+e) ∩ ∂X = [xy] and x 6= y

Proof. We prove the series of implication (i) =⇒ (ii) =⇒ (iii) =⇒ (i).

Let y ∈ lnk(x, ∂X). Because the link is a subset of ∂X, necessarily there exists some open
boundary face f1 ofX that contains y. Because y does not belong to star(x, ∂X) however, that
open face cannot contain x in its closure. It follows that f1 admits some unit normal vector
e /∈ N1(x,X). However y ∈ f1 and thus e ∈ N1(y,X). Therefore N1(y,X) \N1(x,X) 6= ∅.
Because y ∈ star(x, ∂X), there exists an open boundary face f2 ⊆ star(x, ∂X) such that
y ∈ f2. Hence, x and y lie on a common (closed) face. The outward unit normal vectors of f2
all belong to N1(x,X) ∩N1(y,X), thus N1(x,X) ∩N1(y,X) 6= ∅. It follows that (ii) holds.

By contradiction suppose that (ii) holds but (iii) does not. The condition N1(y,X) \
N1(x,X) 6= ∅ implies that x and y must be distinct, let e be the unit direction from x
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to y. The constraint N1(x,X) ∩ N1(y,X) 6= ∅ implies that there exists an open boundary
face f2 such that x, y ∈ f2. Indeed, because X is bounded, every non null vector is the
outward normal to some face. Because f2 must be convex, [xy] ⊆ f2 ⊆ ∂X. Let z such that
(x+ R+e)∩ ∂X = [xz]. We have y ∈ ]xz[. Let n ∈ N1(y,X) \N1(x,X) and f1 the face of X
with greatest dimensionality that admits n as an outward normal. By definition of an outward
normal vector, for all c ∈ f1 and c′ ∈ X \ f1 we have 〈n, c′ − c〉 < 0. Because x /∈ f1 and
y ∈ f1, 〈n, x− y〉 = −‖x− y‖〈n, e〉 < 0. In other words, 〈n, e〉 > 0. If z belongs to f1, then
〈n, z − y〉 = ‖z − y‖〈n, e〉 = 0, which contradicts 〈n, e〉 > 0. However if z does not belong
to f1, then 〈n, z − y〉 = ‖z − y‖〈n, e〉 < 0, which is also impossible. Therefore condition (iii)
must hold.

Assume that (iii) holds. Since [xy] ⊆ ∂X, we have y ∈ star(x, ∂X). We show that
y /∈ star(x, ∂X), therefore y ∈ lnk(x, ∂X) and (i) also holds. By contradiction, assume there
exists an open boundary face f such that y ∈ f and x ∈ f . Because f is convex, ]xy[ ⊆ f

and e is parallel to f . In addition, f is an open face, hence there exists r > 0 such that
b(y, r) ∩ aff(f) ⊆ f . In particular this implies that the line segment between y and y + re

belongs to f and thus to ∂X. This contradicts (iii) and is thus impossible. Therefore, no such
face f exists and y /∈ star(x, ∂X), (i) also holds.

y

y′

x

X

∂X

Nx

Ny

e

x + Re

Figure 2.19 – The star of x in ∂X is composed of point x and the two open green segments.
Its link is {y, y′}.

Remark 39. Suppose y ∈ lnk(x, ∂X). Then any pair of unit vectors n ∈ N1(x,X)∩N1(y,X)

and e ∈ N1(y,X) \ N1(x,X), is non-collinear. To see this, suppose by contradiction that
e = −n. We deduce that for all z ∈ X, we have 〈e, z − y〉 = 0. This implies 〈e, z − x〉 =

〈e, z − y〉+ 〈e, y − x〉 = 0, and thus e is also a normal at point x, which is absurd.

2.5.3 From joins to Voronoi cells. . .

Recall that S =
⋃

S is a finite union of balls. Consider a point u ∈ ∂S, and let Ju ⊆ MA(S)

the points of the medial axis that admit u as a closest point in ∂S. The union
⋃
u Ju covers

the medial axis, but these sets overlap one another. In the next few sections, we show that
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it is possible to compute these Ju, and that a finite number of them suffices to retrieve the
entire medial axis. In order to do so, we investigate the properties of the join of u with Ju,

join(u, S) = {u} ? Ju

Figure 2.20 – Joins for various boundary points. The medial axis of the shape is the collection
of black line segments and vertices.

See Figure 2.20 for an illustration. First we argue that this join is well-defined.

Property 2.48. The join join(u, S) is well-defined.

Proof. Let x, y ∈ Ju, then either u, x, y are not collinear, or u ∈ [xy]. Indeed, assume by
contradiction that x lies in the open segment ]uy[. Denote by bx the ball centered at x and
whose bounding (d− 1)-sphere goes through u, and likewise by centered at y. Then bx ⊆ by,
and the two balls are tangent at u. Therefore x admits u as unique closest point in ∂S and
cannot belong to the medial axis, which contradicts the definition of Ju.

Consider the Voronoi diagram of ∂S restricted to S. For u ∈ ∂S, we denote its cell in this
diagram by vorS(u, ∂S) = {x ∈ S | ∀v ∈ ∂S, ‖x− u‖ ≤ ‖x− v‖}. The purpose of this section
is to prove the equality:

join(u, S) = vorS(u, ∂S) (2.7)

Remark 40. Because Voronoi cells are closed and convex, Equality 2.7 implies that join(u, S)

is closed and convex.
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We proceed by double inclusion. Note that the argument used in the proof of Property 2.48
also shows that we must have the inclusion join(u, S) ⊆ vorS(u, ∂S). Indeed, consider a point
x ∈ join(u, S). By definition of the join, there exists y ∈ Ju such that x ∈ [uy]. The previous
logic with bx and by still applies, hence we deduce that u is the unique closest point to x in
∂S. Thus, x ∈ vorS(u, ∂S).

The remainder of this section is dedicated to the proof of the reverse inclusion. Let
x ∈ vorS(u, ∂S) and consider bx the ball centered at x and whose bounding (d − 1)-sphere
goes through u. Point x belongs to join(u, S) if and only if there exists y ∈ Ju such that
x ∈ [uy]. Necessarily, bx ⊆ S and in particular, bx satisfies local inclusion in S locally

around u. Therefore we have x ∈
?

coni(u, S) =
?

coni(u,C), where C is the collection of
centers of a local representation of S around u (see Definition 9 and Section 2.4). Recall that
?

coni(u,C) = ˚coni(u,C) ∪ CH({u} ∪ C). We distinguish two cases:

(1) x ∈ ˚coni(u,C), and

(2) x ∈
?

coni(u,C) \ ˚coni(u,C).

In each case, we rely on a technical lemmas to prove the existence of an appropriate y ∈ Ju
such that x ∈ [uy]. We start with the case (2).

Lemma 2.49. Let u ∈ ∂S, B a cardinal minimum representation of S locally around u and
C = c(B) the collection of centers of B. Then the link of u in ∂ CH({u} ∪ C) belongs to Ju.

Proof. Let x in the link of u in polytope ∂ CH({u} ∪ C). Recall that bx is the ball centered at
x whose bounding (d − 1)-sphere goes through x. We show that x ∈ Ju by proving that the
ball bx is medial in S. Let Nx

1 (resp. Nu
1 ) be the unit normal cone to polytope CH({u} ∪ C)

at point x (resp. u). By Property 2.47, we have Nu
1 ∩ Nx

1 6= ∅ and Nx
1 \ Nu

1 6= ∅. Let
n ∈ Nu

1 ∩ Nx
1 and e ∈ Nx

1 \ Nu
1 be two unit vectors. Recall by Remark 39 that e and n are

non-collinear. For 0 ≤ λ ≤ 1, let eλ = λe + (1− λ)n. Since e and n are non collinear, eλ
is non null for all λ. By convexity of normal cones, the eλ all are normal to CH({u} ∪ C) at
x. We can thus consider the image of their normalization by mbx . By continuity of mbx , it
follows that in every neighbourhood of u, ∂bx contributes several points to the boundary of⋃

B. Because B locally represents S around u, we thus deduce that bx is a medial ball in S
and hence x ∈ Ju. See Figure 2.21 for an illustration.

When x ∈
?

coni(u,C) \ ˚coni(u,C), we necessarily have x ∈ ∂ CH({u} ∪ C). Thus the
segment [xu] is included in ∂ CH({u} ∪ C). Then, let e be such that x ∈ u + R+e,
and y be the point such that (u + R+e) ∩ ∂ CH({u} ∪ C) = [uy]. By Property 2.47,
y ∈ lnk(u, ∂ CH({u} ∪ C)), which implies y ∈ Ju by Lemma 2.49, and thus x ∈ join(u, S).
This concludes the proof in case (2).

For case (1), we have x ∈ ˚coni(u,C) and we rely on this other lemma instead.
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x

y
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CH({u} ∪ C)

bx

n

e

Nu

Nx

Nx

Figure 2.21 – The link of u in the boundary polytope ∂ CH({u} ∪ C) is the two points x and
y. The vectors between e and n corresponds to the red circular arc, supported by ∂bx. Every
open neighbourhood of u contains infinitely many points of that arc.

Lemma 2.50. Let u ∈ ∂S, B a cardinal minimum representation of S locally around u and
C = c(B) its collection of centers. Let e be a unit vector such that the half-line u + R+e is
contained in ˚coni(u,C). Then this half-line intersects Ju at some point y, and (u + R+e) ∩
vorS(u, ∂S) = [uy].

Proof. We first prove the existence of an intersection point y between the half-line and Ju. For
t ≥ 0, let xt = u+ te. Consider bt the ball centered at xt whose bounding (d− 1)-sphere goes
through u, bt = b(xt, t). The bt’s form a nested collection of balls that are pairwise tangent at
u. See Figure 2.22. For small values of t > 0, we have bt ⊆

⋃
B ⊆ S. Since S is bounded and

b∞ is not, there exists a limit value T > 0 such that bT ⊆ S, and for all t > T , bt ∩ Sc 6= ∅.
For such t > T , let zt ∈ bt ∩ Sc. As t goes down to T , the sequence (zt) admits a limit point

z ∈ ∂bT . We claim that z 6= u. Indeed for all t > 0, xt ∈ (u+ R+e) ⊆
?

coni(u, S) and bt
satisfies local inclusion in S in the neighbourhood of u. Let r > 0 such that bT ∩b(u, r) ⊆

⋃
B.

Necessarily, z /∈ b(u, r) and thus z 6= u. It follows that bT is medial and its center xT admits
two distinct closest points u, z ∈ ∂S. In particular, xT ∈ Ju is the intersection point y that
we seek.

For t ≤ T , we have xt ∈ [uy]. Hence bt ⊆ bT and xt admits u as a closest point in ∂S.
Therefore [uy] ⊆ vorS(u, ∂S). For t > T however, bT ( bt. In particular, we then have z ∈ b̊t
and thus ‖xt − z‖ < ‖xt − u‖. It follows that xt /∈ vorS(u, ∂S), which concludes the proof.

Given x ∈ ˚coni(u,C)∩vorS(u, ∂S), distinct from u, we can always consider the unit vector
e from u to x. This vector satisfies the assumption of the above lemma, from which we deduce
that x ∈ join(u, S). This concludes the proof in case (1), and thus Equality (2.7) is true.
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Figure 2.22 – Illustration for the proof of Lemma 2.50. (a) Construction of xt and bt; (b)
second boundary point z.

2.5.4 . . . to polytopes. . .

In this section we show that our joins are in fact convex polytopes. To do so, we let V be the
set of simple vertices of ∂S and prove prove the identity below

join(u, S) =


?

coni(u, S) ∩ vor(u,V ) if u is a simple vertex,
?

coni(u, S) otherwise
(2.8)

where vor(u,V ) denotes the cell of u in the usual Voronoi diagram of V . First, let us show
that this suffices to conclude that join(u, S) is a convex polytope.

Lemma 2.51. join(u, S) is a convex polytope.

Proof. We assume identity (2.8) to be true.

If u is a non-simple vertex,
?

coni(u, S) is a convex polytope and the result is straight-
forward. Otherwise, let u be a simple vertex. Let B a cardinal minimum local repre-
sentation of S around u, and C = c(B) its collection of centers. We have join(u, S) =

(CH({u} ∪ C) ∩ vor(u,V )) ∪
(

˚coni(u,C) ∩ vor(u,V )
)
. Denote by A = CH({u} ∪ C) ∩

vor(u,V ) and B = ˚coni(u,C) ∩ vor(u,V ). Note that by Equation (2.7) we already know
that join(u, S) is closed and convex. Therefore join(u, S) = A ∪B = A ∪ B. Since A and B
are both closed polytopes, join(u, S) is also a polytope. We already know from Equation (2.7)
that join(u, S) is convex, therefore this concludes the proof.

Remark 41. The proof above also shows that when u is a simple vertex, we have
?

coni(u, S) ∩
vor(u,V ) = coni(u,C)∩vor(u,V ), where C is the collection of centers of a local representation
of S around u.
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The remainder of this section is dedicated to the proof of identity (2.8). We proceed by
double inclusion, depending on whether u is a simple vertex or not.

In the previous section, we already used the inclusion join(u, S) ⊆
?

coni(u, S) implicitly.
Indeed, let x ∈ join(u, S) and y ∈ Ju such that x ∈ [uy]. Consider the ball bx (resp. by)
centered at x (resp. y) and whose bounding (d − 1)-sphere goes through u. Because by is
medial in S, we have bx ⊆ by ⊆ S. In particular, bx satisfies local inclusion in S around u,

thus x ∈
?

coni(u, S). Hence the inclusion

join(u, S) ⊆
?

coni(u, S) (2.9)

Again, let B be a cardinal minimum local representation of S around point u, and let

C = c(B) be its collection of centers. We have
?

coni(u, S) =
?

coni(u,C). Consider x ∈
CH({u} ∪ C) and bx the ball centered at x whose bounding (d − 1)-sphere goes through u.
We have u ∈ bx ⊆

⋃
B ⊆ S, thus x admits u as a closest point in ∂S. Therefore

CH({u} ∪ C) ⊆ vorS(u, ∂S) = join(u, S) (2.10)

When u is not a simple vertex, then ˚coni(u, S) = ∅. The two inclusions (2.9) and (2.10) thus

yield the desired equality join(u, S) = CH({u} ∪ C) =
?

coni(u, S).

Otherwise, u is a simple vertex and ˚coni(u, S) 6= ∅. Note that vorS(u, ∂S) ⊆ vor(u,V )

and hence
join(u, S) ⊆

?
coni(u, S) ∩ vor(u,V )

In addition, inclusion (2.10) still holds. Remains to prove the inclusion ˚coni(u,C)∩vor(u,V ) ⊆
join(u, S). We rely on the technical lemma below.

Lemma 2.52. Let u ∈ ∂S a simple vertex, B a cardinal minimum local representation of S
around u and C = c(B) its collection of centers. Let e be a unit vector such that the half-line
u + R+e is contained in ˚coni(u,C). This half-line intersects Ju at a point y that admits a
simple vertex v 6= u as closest point in ∂S.

Proof. The existence of an intersection point y has already been established in Lemma 2.50.
Note that it also implies the unicity of y. We already know that u is a closest point of y in ∂S.
Denote by by the ball centered at y whose bounding (d− 1)-sphere goes through u. We show
that there exists a simple vertex v 6= u such that v ∈ ∂by. To do so, we explicitly construct a
candidate point v ∈ ∂by ∩ ∂S, and then show that this point v must be a simple vertex of ∂S.

Construction of v First we argue that in a small neighbourhood of u, point u is in fact
the only contribution of ∂by to the boundary ∂S. To prove this, our strategy is to rely on
Property 2.38. Thus we must show that for a certain collection of balls By

0 , the image of
mby ,B

y
0
does not contain u. For the following paragraphs, refer to Figure 2.23.



2.5. Medial axis, skeleton, boundary and pencils 75

Let b0 = {u} and B0 = B ∪ {b0}. Let By
0 = B0 ∪ {by} and Cy0 = c(By

0). Consider the
polytope CH(Cy0 ). Let Ny

1 (resp. Nu
1 ) be the unit normal cone to polytope CH(Cy0 ) at point

y (resp. u). Because u ∈ ∂S, we have u ∈ ∂
⋃

By
0 . By Property 2.39, we have Nu

1 6= ∅. We
want to show that Ny

1 ∩Nu
1 = ∅. Thus by Property 2.31 we deduce that the image of mby ,B

y
0

does not contain u, which concludes the proof that u is an isolated point in ∂by ∩ ∂S.

By contradiction, suppose that Ny
1∩Nu

1 is non-empty, and let e′ be a common outward normal
to y and u. Because CH(Cy0 ) is bounded, Remark 22 guarantees that e′ is the outward normal
to some open boundary face f of the polytope. Since CH(Cy0 ) is convex, f is also convex, and
the open segment ]uy[ thus lies in the open face f . However, because of our assumption on
e, the direction from u to y, the open segment ]uy[ must lie in the interior of the polytope
CH(Cy0 ). This is impossible, therefore e′ cannot exist, and Ny

1 ∩Nu
1 = ∅.

Let v be a closest point to u in ∂by ∩ ∂S \ {u}. By the above, we know that v is well defined
and distinct from u. We must now show that v is a simple vertex.

The candidate point v is a simple vertex Let Bv be a cardinal minimum local rep-
resentation of S around v, and Cv = c(Bv) its collection of centers. The collection Bv defines
a pencil Pv with radical space Vv, radical ball bv0, and radical sphere sv0. Denote the center
and radius of bv0 by cv0 and by rv0 .

By contradiction, assume that v is not a simple vertex, then it is either a non-simple vertex
or part of an open k-face, k ≥ 1. We first show that y belongs to a certain polytope Xv, and
that its unit normal cone N1(y,Xv) to that polytope contains two unit vectors: a unit vector
n ∈ # »

Vv which satisfies v = cv0 + rv0n, and the unit vector e′ from cv0 to u. We then derive a
contradiction from those two vectors. Since the polytope differs depending on the properties
of v and Pv, we address the two cases separately: (a) v is a non-simple vertex, or (b) v belongs
to an open k-face, k ≥ 1.

(a) Suppose v is a non-simple vertex. Let Bv
0 = Bv ∪ {bv0} and Cv0 = c(Bv

0) the collection

of centers. By definition, Pv is parabolic and
?

coni(v, Cv) is flat with empty interior. That is,
Pv has dimension at most d − 1, or equivalently its radical space Vv has dimension at least

1. Also, rv0 = 0 and
?

coni(v, Cv) = CH({v} ∪ Cv) = CH(Cv0 ). Refer to Figure 2.24 for an
illustration in R2.

Notice that y ∈ CH(Cv0 ). Indeed, although by may not belong to Bv, ball by must still

satisfy local inclusion in
⋃

Bv =
⋃

Bv
0 around v. Hence y ∈

?
coni(v, Cv) = CH(Cv0 ). We can

thus consider Xv = CH(Cv0 ) and N1(y,Xv) the unit normal cone to that polytope at y.
Since Vv has dimension at least 1, let n be any unit vector of

# »

Vv. We have v = cv0 =

cv0 + rv0n. Recall that
# »

Vv ⊆ N(y,Xv). Indeed, because Pv is parabolic, its centers’ space
satisfies CH(Cv0 ) ⊆ c(Pv), and by Corollary 2.4, #»c (Pv) ⊕

# »

Vv. It follows that
# »

Vv belongs
to the normal cone of every point of polytope CH(Cv0 ). Hence n ∈ N1(y,Xv). As for e′,
recall that u 6= v = cv0, this unit vector is thus well defined. In addition, u belongs to the
contribution of by to the global boundary, and is distinct from the radical center of Pv. Thus
Property 2.37 ensures that the pre-image of u by mby ,Bv

0
is non-empty. Necessarily, e′ belongs

to that pre-image. Thus e′ ∈ N1(y,Xv).
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(b) Suppose that v belongs to an open k-face, k ≥ 1. By definition, Pv must then be

elliptic and
?

coni(v, Cv) must be flat with empty interior. That is, Pv has dimension at most

d−2 and its radical space dimension at least 2. Also, rv0 > 0 and
?

coni(v, Cv) = CH({v} ∪ Cv).
Refer to Figure 2.25 for an illustration in R3.

As above, by must satisfy local inclusion in
⋃

Bv around v and we deduce y ∈
CH({v} ∪ Cv). We argue that in fact, y ∈ CH(Cv). Because Pv is elliptic, and v belongs
to its radical sphere, then v cannot lie in the centers’ space aff(Cv) of Pv. It follows that v is a
vertex of CH({v} ∪ Cv). By contradiction, if y /∈ CH(Cv) then there exists z ∈ CH(Cv) such
that y ∈ ]zv[. Let bz be the ball centered at z whose boundary (d − 1)-sphere goes through
v, then by \ {v} ⊆ b̊z. Because v 6= u ∈ ∂by ∩ ∂S, this is impossible and thus we must have
y ∈ CH(Cv). It follows that we can consider Xv = CH(Cv) and N1(y,Xv), the unit normal
cone to that polytope at y.

Let n be the unit vector from cv0 to v, we have v = cv0 + rv0n and n ∈ # »

Vv. Again,
# »

Vv ⊆ N(y,Xv) hence n ∈ N1(y,Xv). Because Pv is elliptic, cv0 ∈ (
⋃

Bv)◦ ⊆ S̊. Since u ∈ ∂S,
we have u 6= cv0 and e′ is again well defined. A similar argument relying on Property 2.37
yields e′ ∈ N1(y,Xv).

Whether v is a non-simple vertex or part of an open k-face, we just proved that there exists
a polytope Xv in which the unit normal cone N1(y,Xv) contains the two unit vectors n

and e′ with the claimed properties. We now argue that n and e′ cannot be collinear. By
contradiction, suppose that they are, for instance as in Figure 2.26. The intersection between
by and the line of direction n that goes through cv0 is the line segment between v = cv0 + rv0n

and cv0− rv0n. Indeed, the line cv0 +Rn must be in the radical space Vv, and by always belongs
to the complete pencil Pv. Because u lies on the boundary of by, u necessarily coincides with
one endpoint of that line segment. We know that u 6= v, hence e′ = −n and u = cv0 − rv0n. In
addition, rv0 must be positive. Hence if e′ and n are collinear, Pv must be an elliptic pencil,
and v belongs to an open face of S of dimension at least 1. By definition of v, it is the closest
point to u in ∂by ∩∂S. Yet, u and v are diametrical opposite in sv0. Thus sv0 ∩∂S = {u, v}. In
particular in the neighbourhood of v, v is the only point of sv0 in the boundary of S. Because
sv0 supports the open face of ∂S that contains v, this is absurd. Therefore, e′ and n are not
collinear.

For 0 ≤ λ ≤ 1, let eλ = λe′ + (1− λ)n. By non-collinearity of e′ and n, the eλ’s are all
non-null, and by convexity they all belong to N(y,Xv). Also, they form a path connecting
e′ to n in N(y,Xv). Using mby ,Bv

0
in case (a), and mby ,Bv in case (b), we map each eλ to

a point xλ ∈ ∂by ∩ ∂(
⋃

Bv), and these xλ’s form a path connecting v to u. This path is in
fact a circular arc and for λ < µ, we have ‖u− xλ‖ > ‖u− xµ‖. See Figure 2.27. However,
because Bv is a local representation of S in the neighbourhood of v, for λ > 0 small enough,
we have xλ ∈ ∂S ∩ ∂by. Hence there exists some xλ, ‖u− xλ‖ < ‖u− v‖, which contradicts
the definition of v, and is thus impossible. Therefore, v must be a simple vertex of ∂S.

From the lemma above, we deduce that if a point x belongs to ˚coni(u,C)∩vor(u,V ), then
there exists y ∈ Ju such that x ∈ [uy]. It follows that x ∈ join(u, S) and hence we have the
inclusion ˚coni(u,C) ∩ vor(u,V ) ⊆ join(u, S). Therefore, the identity (2.8) is true for every
boundary point u ∈ ∂S.
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For easy reference, we summarize the various expressions of join(u, S) below.

Property 2.53. Let S a finite union of balls and V the collection of its simple vertices.
Consider u ∈ ∂S, then

join(u, S) = {u} ? Ju
= vorS(u, ∂S)

=


?

coni(u, S) ∩ vor(u,V ) if u is a simple vertex,
?

coni(u, S) otherwise

˚coni(u,C)

u + R+e

u

CH(Cy
0 )

v

Nu
1

y

e

Ny
1

by

Figure 2.23 – Illustration for the construction of v in the proof of Lemma 2.52. In this figure,
CH(c(B0)) = CH(Cy0 ). Because Ny

1 ∩Nu
1 = ∅, point u is isolated in the contribution of by to

the boundary, and we can define v as a closest point to u in ∂by ∩ ∂S \ {u}.

2.5.5 . . . to the medial axis

Now that we established that joins are convex polytopes, we can consider their links. Specifi-
cally, we consider the link of u in join(u, S).

Lemma 2.54. Let u ∈ ∂S, then lnk(u, join(u, S)) = Ju.

Proof. We proceed by double inclusion. Consider x ∈ lnk(u, join(u, S)), we show that x ∈ Ju.
Note that x ∈ join(u, S) and x 6= u. By definition of the join, there is y ∈ Ju such that x ∈ [uy].
In addition let e be the unit vector from u to x, and consider the half-line originating from
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u

cv0 = v y

c(Pv)

Vv

by

CH(Cv
0 )

n

e′

Figure 2.24 – Illustration for case (a) in the proof of Lemma 2.52. Both n and e′ belong to
the normal cone to CH(Cv0 ) at point y.

u supported by e. Then, (u+ R+e) ∩ join(u, S) = [uy]. In other words, x belongs to Ju if
and only if x = y. Recall that join(u, S) is a convex polytope, hence there exists an open face
f that contains the open line segment ]uy[. Assume by contradiction that x ∈ ]uy[, then we
have x ∈ f and u ∈ f . Thus, x ∈ star(u, join(u, S)) which contradicts the assumption that x
belongs to the link. This is thus impossible and we conclude that x = y. Therefore, x ∈ Ju
and lnk(u, join(u, S)) ⊆ Ju.

Conversely, let x ∈ Ju, we now prove that x ∈ lnk(u, join(u, S)). By convexity of join(u, S),
x necessarily belongs to the closure of star(u, join(u, S)). Indeed, the relative interior face of
join(u, S) is in the star, hence the whole polytope is in the closure of the star. Now assume
by contradiction that x is in the star, there exists f an open face of join(u, S) such that x ∈ f
and u ∈ f . Let e be the unit vector from u to x. Because x ∈ Ju, necessarily x 6= u and e

is well-defined. Because f is open, for h > 0 sufficiently small, we deduce x + he ∈ f . This
implies that there is y ∈ Ju such that x ∈ ]uy[, and hence that the join between {u} and Ju is
ill-defined, which is absurd. Therefore, x ∈ lnk(u, join(u, S)) and Ju ⊆ lnk(u, join(u, S)).

Given u ∈ ∂S, we can easily compute join(u, S) by identity (2.8). Indeed, it is sufficient

to have any local representation of S around u to obtain
?

coni(u, S), and we can also compute
the Voronoi diagram of the set of simple vertices. See for example Figure 2.28 when u is a
(simple) vertex. From join(u, S), we can then compute Ju as the link of u in that polytope.
Because

⋃
u Ju = MA(S), computing the Ju’s allows us to investigate the medial axis. In fact,

we claim there are only finitely many distinct Ju’s, for u ∈ ∂S. Specifically, if u and v belong
to the same open face, we have Ju = Jv.

Property 2.55. Let f be an open k-face of S, with k ≥ 1. Then for all u, v ∈ f , Ju = Jv.
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Figure 2.25 – Illustration for case (b) in the proof of Lemma 2.52. Both n and e′ belong to
the normal cone to CH(Cv) (line segment between the blue and red centers) at point y.

Proof. By Property 2.46, let B a finite collection of balls such that it is the unique cardinal
minimum local representation of S at every point of f . Denote by C = c(B) the collection
of centers of B, and P = aff(B) the pencil it defines. Because f is a k-face, k ≥ 1, P is
elliptic of dimension at most d− 2. In particular for all u ∈ f , we deduce from identity (2.8)

that join(u, S) =
?

coni(u, S) = CH({u} ∪ C). Because u does not belong to aff(C), we have
Ju = lnk(u, join(u, S)) = CH(C). Hence, ∀u, v ∈ f , we have Ju = Jv = CH(C).

Owing to the above, we can thus define Jf ⊆ MA(S) as the collection of points of the
medial axis that have a closest point in the open face f .

Remark 42. The proof of Property 2.55 also yields an explicit expression of Jf as the convex
hull of c(B), where B denotes the unique cardinal minimum local representation of S in the
neighbourhood of f .

Remark 43. Following the previous remark, we know that f ⊆ s0(aff(B)) and Jf ⊆ c(aff(B)).
It follows from Corollary 2.4 that aff(f) and aff(Jf ) are orthogonal, and that f?Jf =

⋃
u∈f{u}?

Jf =
⋃
u∈f join(u, S) is in fact a join. We call it the face join of f in S, and denote by join(f, S).

Because there are finitely many faces and vertices, there are only finitely many distinct
Ju/Jf . Also, note that distinct faces may be supported by the same sphere and hence share
a common contribution Jf to the medial axis.
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Figure 2.26 – Illustration for the proof of Lemma 2.52, n and e′ cannot be collinear. If they
were collinear, the definition of v would imply sv0 ∩ ∂S = {u, v}. Because sv0 supports an open
face of ∂S in the neighbourhood of v, this is impossible.

2.5.6 Proof of Theorem 3

In order to conclude the proof of Theorem 3, we now argue that each Jf corresponds to a finite
union of faces with the desired properties. To each point in Jf , consider the corresponding ball
and interpret it as a (d+1)-dimensional point. For the purpose of notations, we still denote by
Jf the resulting subset of points. To prove Theorem 3, we show that the (d+ 1)-dimensional
Jf can be split into finitely many flat faces, and that each face is a closed convex subset of an
elliptic pencil. We distinguish three cases depending on the nature of the face f . Let B be
a cardinal minimum local representation of S in the neighbourhood of f , and C = c(B) its
collection of centers. Note that such a B is finite and always exist as per Properties 2.43 and
2.46.



2.6. Conclusion 81

(a) f is an open k-face, k ≥ 1. As per Remark 42, we know that f ⊆ s0(aff(B)) and
Jf = CH(C). Because f is non-empty of dimension at least 1, aff(B) is an elliptic pencil (of
dimension at most d− 2). Thus Jf itself is a face with the claimed properties.

(b) f is a non-simple vertex u, by definition ˚coni(u,C) = ∅,
?

coni(u,C) = CH({u} ∪ C) and
aff(B) is parabolic with dimension at most d − 1. Because u is the radical center of aff(B),
u ∈ aff(C) and CH({u} ∪ C) is a flat polytope of dimension at most dim aff(C) ≤ d− 1. Let
b0 = {u} and B0 = B∪{b0}. Because the radical space of aff(B) has dimension at least 1, we
know that the radical center u is in the image of mb,B0 for all b ∈ CH(B0). In particular, this
is true for all b such that c(b) ∈ Ju ⊆ CH(c(B0)). By Property 2.38, every ball b with c(b) ∈ Ju
contributes a single path-connected spherical patch to the boundary of

⋃
B0, that connects

to the radical sphere {u}. Because B0 is a local representation of S is the neighbourhood of
u, this implies that each of these balls actually contribute an open k-face, k ≥ 1, to the global
boundary ∂S. Hence there exists faces f1, . . . , fn such that Ju ⊆

⋃n
i=1 Jfi . When it comes to

computing the medial axis, we can hence ignore the contribution of non-simple vertices, since
it will be covered by some open faces.

(c) f is a simple vertex u, by definition ˚coni(u,C) 6= ∅. Let V be the set of simple vertices of
∂S, by Remark 41 we have join(u, S) = coni(u,C)∩ vor(u,V ). Because join(u, S) is a convex
polytope, the star of u in join(u, S) is coni(u,C) ∩ v̊or(u,V ). It follows that the link of u in
join(u, S) must be contained in coni(u,C) ∩ ∂ vor(u,V ). In particular ∂ vor(u,V ) is a finite
collection of convex subsets of hyperplanes. For each of these hyperplanes H, there always
exists v ∈ V such that H is the mediator hyperplane of u and v. It follows that H is in fact
the centers’ space of the elliptic pencil that admits the 0-sphere {u, v} as its radical sphere.
Thus Ju is a finite union of faces with the desired properties. This concludes the proof of
Theorem 3.

Note that in case (a) when f is an open k-face, k ≥ 1, it can be proved that Jf is in fact a
singular simplex of the dual complex. However, recall from Figure 2.17 that not every singular
simplex is part of the medial axis. In case (c) when f is a simple vertex u, it is presently
unknown whether Ju can be easily expressed in terms of regular simplices of the dual complex
and Voronoi cells of V . It can be shown that the union of these Ju’s is a subset of the portion
of the Voronoi diagram of V that meets the regular simplices, but we do not know whether
the reverse inclusion holds or not.

2.6 Conclusion

As we have seen in this chapter, pencils are families of balls with many properties. By
taking advantage of the existence of local representations in a finite union of balls S, we can
describe the neighbourhood of every boundary point of S with pencils. In doing so, degenerate
configurations of balls in Rd correspond to parabolic pencils. Handling degeneracies in finite
unions of balls can thus be reduced to studying the properties and configurations of parabolic
pencils. Due to the many properties of pencils, and their simple definition as flats of Rd+1, this
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way of describing finite unions of balls can simplify the study of degenerate configurations. In
particular, we have obtained a robust description of both the boundary and the medial axis
of finite unions of balls. These descriptions in fact show that there exists a dual relationship
between the boundary and the medial axis.

In continuity with the current chapter, this dual relationship could be explored in more
depth. We surmise that it could lead to an efficient algorithm to compute the medial axis of a
finite union of balls. Based on the results of this chapter, it is indeed possible to compute the
medial axis, even in degenerate configurations, though we have yet to explore the best ways
to perform this computation.
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Figure 2.27 – The plane H (blue-cyan) is parallel to n and e′, and goes through cv. Its
intersection with by is a circular arc. The red portion of that arc corresponds to the xλ’s.
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Figure 2.28 – Consider the red simple vertex. The Voronoi diagram of the simple vertices
is displayed in blue. Note that the black vertex is non-simple. The two green balls are a
local representation of the shape in the neighbourhood of the red vertex. This red vertex
thus admits the green area as its inclusion normal cone. The intersection with its Voronoi cell
yields the red area, which coincides with the join displayed in the previous Figure 2.20.
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Now that we introduced our main tools related to union of balls, we address the problem
that we will study for the remainder of this thesis, namely (δ, ε)-ball approximations. Given a
set S in Rd, a (δ, ε)-ball approximation of S is defined as a collection of balls that covers the
morphological erosion of S (by a ball of radius ε) and remains inside the morphological dilation
of S (by a ball of radius δ). We study the problem of computing such an approximation for
certain classes of shapes (precisely shapes that are themselves finite unions of balls). This
problem relates to geometric set cover problems but is however different in nature. We shall
see that it offers a new framework for simplifying a collection of balls while controlling both the
inner and outer distance to the collection. In this chapter, we go over some general properties
of these approximations, and in particular prove that computing a (δ, ε)-ball approximation of
minimum cardinality is NP-complete already for d = 2. In later chapters, we will investigate
polynomial algorithms to compute such approximations in some restricted cases.

3.1 Problem statement

§ Context In many applications, shapes are often represented as the union of a finite set of
balls. Such a representation is used in biochemistry to model molecules [EK05]; [Caz+14] or
in computer graphics to detect collisions between objects [BO04]. Unions of balls have become

85
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ubiquitous representations of shapes, largely due to the existence of provably good conversion
algorithms that allow to build them from other representations such as point clouds [AK00],
polygonal meshes [CKM99]; [Hub96] or digital shapes [CM07]. Unfortunately, conversion
algorithms generally output very large (and sometimes infinite) collections of balls. This may
be the case when conversion algorithms aim at representing the shape as the union of its
medial balls. As we have seen in Chapter 1, a ball b is said to be medial for a given shape if
every ball that contains b and is contained in the shape is equal to b. Assuming that balls are
closed and the shape is compact, the union of medial balls provides an exact description of the
shape, whose size however may be infinite. Recall that the centers of medial balls form the
medial axis, whose stability and computation (either exact or approximated) have been widely
studied; see [ABE09] for a state-of-the-art report. For computationally demanding tasks such
as the simulation of physical processes [Fei+15], shape interpolation or shape matching [RF96];
[Cab+09], it is desirable that the collection of balls that describes a shape has a small size
while its union still provides an accurate approximation of the shape. The quality of the
approximation is usually measured by various quantities such as the Hausdorff distance or
the difference in volume between the shape and its representation. In other situations such
as collision detection, it may be important that the union of balls satisfies some geometric
constraints. For instance, we may want the balls to cover the shape or at least a prescribed
set of points.

§ Ball approximations In this work, we introduce a novel way of constraining a collection
of balls so that its union remains close to the shape. The idea is to force balls to cover a subset
of the shape while remaining contained in a superset of the shape, hence allowing balls neither
to cover exactly nor to be contained perfectly in the shape. Given a subset S ⊆ Rd and a real
number r ≥ 0, we recall that the dilation of S by a ball of radius r is S⊕r = ∪x∈Sb(x, r) and
the erosion of S by a ball of radius r is S	r = {x | b(x, r) ⊆ S}. Note that if S is closed, then
both S	r and S⊕r are closed. We shall refer to S	r and S⊕r as the r-erosion and r-dilation.

Definition 14. Let S ⊆ Rd, ε ≥ 0 and δ ≥ 0. A collection of balls B is a (δ, ε)-ball
approximation of S if S	ε ⊆

⋃
B ⊆ S⊕δ.

Let us make a few remarks. Consider a (δ, ε)-ball approximation B of S; see Figure 3.1
for an example. Setting B =

⋃
B, we thus have B ⊆ S⊕δ and (S	ε)⊕ε ⊆ B⊕ε. It follows

that whenever S = (S	ε)⊕ε, we have B ⊆ S⊕δ and S ⊆ B⊕ε, or equivalently the Hausdorff
distance between B and S is smaller than or equal to the maximum of δ and ε, i.e. dH(S,B) ≤
max{δ, ε}. The condition S = (S	ε)⊕ε can be seen as some regularity1 assumption on S.
Indeed, the equality S = (S	ε)⊕ε is satisfied if every point of S can be covered by a ball of
radius ε. In particular, the condition holds whenever medial balls have a radius larger than or
equal to ε, which in turn holds whenever the reach of S is larger than or equal to ε. We recall
that the reach of S was first introduced by Federer [Fed59] and is the infimum of distances
between points in the medial axis of S and points in the complement of S. Denoting the reach
of S by reach(S), we summarize our findings in the following remark:

1A set S is called r-regular if S = (S	r)⊕r = (S⊕r)	r [Ser82]. In other words, the shape S is r-regular if
it does not change neither under a morphological opening nor a morphological closing by a ball of radius r.



3.1. Problem statement 87

δ
ε

Figure 3.1 – A shape (in blue), its ε-erosion (in orange), its δ-dilation (bounded by the dashed
blue curve) and a (δ, ε)-ball approximation (the three green balls).

Remark 44. Let B be a (δ, ε)-ball approximation of S. If reach(S) ≥ max{δ, ε} then
dH(

⋃
B, S) ≤ max{δ, ε}.

Remark 45. S possesses (δ, ε)-ball approximations of finite cardinality whenever S is compact
and δ + ε > 0.

Suppose S is compact and δ+ ε > 0. To build a finite (δ, ε)-ball approximation of S, con-
sider the collection of open balls with radius δ+ ε centered at points in S	ε. By construction,
the collection covers S	ε which is compact because S is compact, implying that the collection
has a finite subcover. By taking the closure of balls in that subcover, we get a collection of
closed balls that are contained in S⊕δ and thus form a finite (δ, ε)-ball approximation of S.

§ Main result In this section, we are interested in a discrete variant of the following problem:

Problem 1 ((δ, ε)-ball approximation). Given a subset S ⊆ Rd, two non-negative real
numbers δ and ε, find a (δ, ε)-ball approximation of S of minimum cardinality.

Our main result is that a discrete decision version of this problem is NP-complete. To
state the problem, we call any collection of balls whose centers have rational coordinates and
whose radii are rational rational.

Problem 2 (Rational (δ, ε)-ball decision problem). Given a subset S ⊆ Rd which is
the union of a rational finite collection of balls, two non-negative rational real numbers ε
and δ and an integer k > 0, answer the following question: does S have a rational (δ, ε)-ball
approximation with cardinality lower than or equal to k?
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We show that this problem is already difficult in dimension 2:

Theorem 5. The rational (δ, ε)-ball approximation problem is NP-complete in R2.

§ Related works As mentioned above, any shape S can be exactly described by the union
of its medial balls S . A (δ, ε)-ball approximation of S of minimum cardinality is a collection
of balls B such that |B| ≤ |S |. Indeed, note that, by Definition 14, S itself is a (δ, ε)-ball
approximation of S. Therefore, solving Problem 1 offers a new framework for simplifying
unions of balls with a control of the distance to the shape. Various algorithms have been
proposed to compute simpler collections of balls. A family of algorithms was designed to deal
with the sensitivity of the medial axis to small perturbations on the shape S : the general idea
is to compute a geometric quantity for each medial ball and prune the balls whose quantity
is below a given threshold (see for instance [CL05]; [ABE09]; [CCT11]; [DZ04] to cite only a
few). A slightly different approach has been presented in [MGP10] with the notion of scale
axis, where balls of the medial axis are first inflated, the medial axis updated (resulting in
a simplification) and its balls deflated. Last, hierarchical structures have also been proposed
to obtain simpler collections of balls. In the context of collision detection, sphere-trees are
built by iteratively merging and/or displacing balls while ensuring that the simpler set of balls
includes the boundary of the input one [Hub95]; [BO04]; [BCS09].

The (δ, ε)-ball approximation problem is also closely related to geometric set cover prob-
lems. Following [AP14] or [HP11], let Σ = (K,R) be a finite geometric range space where K
is a finite set of points in Rd and R, the range, is a finite family of simple shaped regions, like
for instance rectangles, or disks. A subset C ⊆ R is a cover of K if any point of K belongs to
at least one element of C. Computing a set cover of minimum cardinality is known as the set
cover problem. The corresponding decision problem is well-known to be NP-complete, and
various approximation algorithms have been proposed, from the simple greedy one [Chv79];
[Joh74], to more convoluted algorithms using ε-nets or multiplicative weights methods [BG95];
[HP11]; [AP14]. Several variations of the geometric set cover problem have also been intro-
duced and investigated, notably when the range R is a family of balls. Instead of minimizing
the number of balls used to cover the whole set K, a related problem is to cover the set K
at best using a prescribed number of balls (see for instance a greedy algorithm in [Caz+14]).
For more applicative purposes, especially in sensor networks, the balls of the range R can be
of prescribed centers, but undefined radii, and the goal is to find a cover that minimizes a
function of the radii of the balls [RMS13].

The key difference between (δ, ε)-ball approximation and set cover problems lies in the
assumption of a finite range space for the latter one. If the shape K to cover and the range R
are infinite, another family of results exists for which the range is the (infinite) set of congruent
balls of a given radius. Results on that matter go back as far as [Ker39], that establishes a
relation between the (Lebesgue) measure of a bounded set of points K in R2 and the number
of congruent disks of radius r necessary to cover K. When K is a simple geometric shape
(disk, square, equilateral triangle), results on the maximum size (radius, side length) of a
shape K that can be covered by n unit disks are documented in [T0́4].
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§ Chapter overview We establish NP-completeness of the rational (δ, ε)-ball approximation
problem (Theorem 5) by successively proving that:

• The rational (δ, ε)-ball approximation problem in R2 is in NP, meaning that one can
verify in polynomial time that a given rational collection of disks is indeed a solution of
the problem. For this, we first provide in Section 3.2 a computational description of the
boundary of S	ε when S is a union of disks. This result is then used in Section 3.3 to
design a polynomial time algorithm to check that a given collection of disks covers the
ε-erosion S	ε and is included in the δ-dilation S⊕δ using arrangements of circles.

• The rational (δ, ε)-ball approximation problem in R2 is NP-hard. We prove this through
a reduction from the well-known NP-complete vertex cover problem in Section 3.4.

3.2 Boundary of the erosion

Let S be a finite collection of disks in R2 and ε a non-negative real number. The purpose of
this section is to provide a computational description of the boundary of the erosion (

⋃
S )	ε.

For this, we introduce in Section 3.2.1 a superset of the boundary called the wavefront and
characterize which part of the wavefront belongs to the boundary. In Section 3.2.2, we de-
compose the wavefront into elements that are easy to compute, based on the decomposition
of ∂(

⋃
S ) into vertices and edges that we derive from Section 2.4.

Note that Section 3.2.1 is valid in any dimension, whereas Section 3.2.2 is specific to R2.

3.2.1 Boundary of the erosion and wavefront

Recall that S is a finite collection of balls in Rd and let S =
⋃

S be the union of those balls.
In this section, we relate the boundary of the erosion ∂S	ε to a (possibly self-intersecting)
surface of dimension d− 1 that we call the wavefront of ∂S at time ε. Roughly speaking, the
wavefront at time ε is obtained by moving with speed 1 some of the points on the boundary
of S a given distance ε down the inward-pointing normals. Formally, the contribution of a
point u ∈ ∂S to the wavefront at time ε is:

wε(u) = {x ∈ ∂b(u, ε) | ∃r > 0, b(x, ε) ∩ b(u, r) ⊆ S}.

The wavefront of ∂S is obtained by taking the union of all contributions wε(∂S) =
⋃
u∈∂S wε(u)

(see Figure 3.2.b). It is not difficult to see that the wavefront contains the boundary of the
erosion (see Figure 3.2.a). Indeed, if a point x belongs to the boundary of the erosion ∂S	ε,
then it is the center of a ball b(x, ε) ⊆ S whose boundary meets the boundary of S at some
point u. It follows that x ∈ ∂b(u, ε) and thus belongs to the contribution wε(u) of point u.
The goal of this section is to establish that the boundary of the erosion ∂S	ε is the set of
points on the wavefront wε(∂S) at distance ε or more to vertices of ∂S (see Figure 3.2.c):
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(a) (b) (c)

Figure 3.2 – (a) A shape defined as the union of three (blue) disks and its erosion (in orange);
(b) wavefront of the boundary (red curve); (c) arrangement of circles used to decompose the
erosion into cells (see Section 3.3.1). Three of the circles are centered on the (red) vertices of
the boundary. The vertices of the arrangement are the black dots.

Proposition 3.1. Let V be the vertex set of ∂S. For ε ≥ 0, we have

∂S	ε = wε(∂S) \ (V ⊕ε)◦

Proof. To prove this result, we relate the join of a point to its contribution to the wavefront.
Note that by definition of the wavefront, wε(u) is the collection of centers of balls of radius ε
whose boundary goes through u, and that satisfy local inclusion in S around u. Hence using
Proposition 2.40 we have the identity below. Refer to Figure 3.3.

wε(u) =
?

coni(u, S) ∩ ∂b(u, ε) (3.1)

First, we show that wε(u) \ (V ⊕ε)◦ = vorS(u, ∂S) ∩ ∂b(u, ε). When u is not a simple

vertex, we know from Property 2.53 that
?

coni(u, S) = join(u, S) = vorS(u, ∂S) and thus
wε(u) = vorS(u, ∂S) ∩ ∂b(u, ε). It follows that every point of the wavefront contribution of u
admits u as a closest point in ∂S, and in particular that they are at distance at least ε from
any other vertices of ∂S. Hence wε(u) \ (V ⊕ε)

◦
= wε(u) = vorS(u, ∂S)∩ ∂b(u, ε), and this set

of points is at distance precisely ε from ∂S.

If u is a simple vertex, we have vorS(u, ∂S)∩∂b(u, ε) = join(u, S)∩∂b(u, ε) =
?

coni(u, S)∩
vor(u,V ) ∩ ∂b(u, ε) = wε(u) ∩ vor(u,V ) using Property 2.53, and equality (3.1). Now, for
x ∈ wε(u),

x ∈ vor(u,V ) ⇐⇒ ∀v ∈ V , ‖x− u‖ ≤ ‖x− v‖
⇐⇒ ∀v ∈ V , ‖x− v‖ ≥ ε
⇐⇒ x /∈ (V ⊕ε)◦
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Thus the equality wε(u) \ (V ⊕ε)◦ = vorS(u, ∂S) ∩ ∂b(u, ε) holds. Again, this set of points is
at distance ε from ∂S.

Finally, because
⋃
u∈∂S vorS(u, ∂S) = S, we deduce

wε(∂S) \
(
V ⊕ε

)◦
= {x ∈ S | d(x, ∂S) = ε} = ∂S	ε

which concludes the proof.

u

x2
x1

c1

c2

b(x1, ε)

b(x2, ε)

b1

b2

U

ε

Figure 3.3 – A shape represented locally around u by two (blue) disks b1 and b2. The con-
tribution of u to the wavefront is the (black) circular arc, closed at x1 and open at x2. By
Equality (3.1), it is the intersection of the (orange) affine conical hull and ∂b(u, ε). The end-
point x1 belongs to the wavefront (unlike the endpoint x2) because the disk b(x1, ε) is locally
included in the shape around u (unlike the disk b(x2, ε)).

3.2.2 Computational description of the wavefront in R2

The goal of this section is to give a computational description of the wavefront in dimension
2. In particular, we shall see that the wavefront is composed of circular arcs; convex circular
arcs are contributed by edges (1-faces) of ∂S while concave circular arcs are contributed by
vertices of ∂S. To describe those arcs, recall from identity (3.1) that the contribution of a
point u ∈ ∂S to the wavefront at time ε can be expressed as the intersection of ∂b(u, ε) and
the inclusion normal cone of S at point u. We thus inspect for each element on the boundary
of S its contribution to the wavefront.

§ Boundary points of S Based on Section 2.4, we list the various types of boundary points
that exist in dimension 2. Consider u ∈ ∂S, it is either part of an open 1-face, usually
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referred to as an edge, or a non-simple vertex, or a simple vertex. Refer to Figure 2.16 for an
illustration.

• In R2, edges stem from elliptic 0-pencils, that is pencils that only contain one disk of
positive radius. It follows by Property 2.46 that the whole edge is supported by the
boundary of that unique disk.

• Non-simple vertices correspond to parabolic pencils of dimension 0 or 1. In the former
case, it is an isolated singleton in the shape, and in the latter it is the point of tangency
between two (non-singleton) disks.

• Finally, any other configuration yields a simple vertex. Note that for simple vertices,
any collection of disks that locally describes its neighbourhood in the shape necessarily
contains at least two distinct (non-singleton) disks.

§ Contribution of edges Let e be an edge of ∂S. As observed above, there is a disk
b ∈ S whose boundary supports e and which represents S locally around each point u ∈ e.
Letting c be the center of b and plugging in identity (3.1) the equality

?
coni(u, S) = [uc]

yields wε(u) = [uc] ∩ ∂b(u, ε) = [uc] ∩ ∂b	ε for all u ∈ e. It follows that the contribution
wε(e) =

⋃
u∈ewε(u) of an edge e is either empty if b has a radius smaller than ε or is the

convex circular arc obtained by projecting e orthogonally onto b	ε otherwise.

§ Contribution of vertices Assume that v is a vertex of ∂S. If v is a simple vertex, then
?

coni(v, S) has non empty interior, and wε(v) is a concave circular arc. If v is an isolated

singleton, then
?

coni(v, S) = {v}, and its contribution to the wavefront is empty for ε > 0.
Finally in the special case when S has two disks b1 and b2 meeting tangentially at v and
whose pair B = {b1, b2} represents locally S around v, then wε(v) = [c1c2] ∩ ∂b(v, ε), where
ci is the center of bi for i ∈ {1, 2}. It follows that wε(v) is composed of zero, one or two
degenerate circular arcs (each reduced to a point), depending on whether zero, one or two
disks among b1 and b2 have radii larger than or equal to ε.

§ Boundary of the erosion The boundary of the erosion ∂S	ε being a subset of the
wavefront, it is also composed of circular arcs supported by the set of circles (see Figure 3.2.c):

Cε(S ) = {∂b(v, ε) | v ∈ V } ∪
{
∂b	ε | b ∈ S and radius(b) ≥ ε

}
.

3.3 The rational (δ, ε)-ball approximation is in NP

To check whether a finite collection of disks B is a (δ, ε)-ball approximation of a finite union
of disks

⋃
S , we have to test the two inclusions (

⋃
S )	ε ⊆

⋃
B ⊆ (

⋃
S )⊕δ in polynomial



3.3. The rational (δ, ε)-ball approximation is in NP 93

time. To do so, we build on results of Section 3.2 and describe a method that given the triplet
(S , ε,B) returns true if and only if the first inclusion (

⋃
S )	ε ⊆

⋃
B holds. To test the

second inclusion, it suffices to apply the same method to the triplet (B, 0, {s⊕δ | s ∈ S }).

Before describing our method in Section 3.3.2, we explain in Section 3.3.1 how to encode
the erosion (or union) of a finite union of disks, using cells of an arrangement of circles.

3.3.1 Capturing the erosion through an arrangement

Recall that an arrangement of circles is the decomposition of R2 into open cells induced by the
circles. Cells in the arrangement are either vertices, edges or faces. Such arrangements have
a size quadratic in the number of circles and can be computed in polynomial time [Pac12].
In this section, we let Aε(S ) be the arrangement formed by circles in Cε(S ) and show that
the erosion (

⋃
S )	ε can be captured by cells in Aε(S ). This means that we can label cells

in Aε(S ) as in or out in such a way that cells with label in partition the erosion (
⋃

S )	ε.
We shall see that labeling the arrangement can be done in polynomial time. Furthermore, the
arrangement can be computed in an exact manner [WZ06] because all circles involved in the
construction are rational (center coordinates and radii are rational numbers).

We adopt the convention that each time a circle in Cε(S ) has radius zero, it counts as
a vertex in the arrangement Aε(S ). We already know from the previous section that the
boundary of the erosion (

⋃
S )	ε is supported by circles in the collection Cε(S ). Hence, the

edges and vertices of Aε(S ) capture the boundary of the erosion. It follows that every cell of
Aε(S ) is either inside or outside of the erosion. We establish the following result:

Lemma 3.2. We can label in polynomial time Aε(S ) in such a way that cells with label in
partition the erosion (

⋃
S )	ε.

To label cells in the arrangement, we need the following technical lemma:

Lemma 3.3. Let e be an edge of Aε(S ) that supports the boundary of the erosion. Then e is
adjacent to a face in the erosion and a face in its complement.

Proof. Let S =
⋃

S and x ∈ e. By Proposition 3.1, there is u ∈ ∂S such that x ∈ wε(u) \
(V ⊕ε)

◦. Let zt be the point on half-line [ux) such that ‖zt − u‖ = t (see Figure 3.4). To
establish the lemma, we proceed in three steps:

(1) First, we prove that zt /∈
(
V ⊕t

)◦ for all t close enough to ε. Recall that x /∈ (V ⊕ε)
◦ or

equivalently d(x,V ) ≥ ε. We claim that if we exclude u from the vertex set V , then the
distance from x to the remaining vertices of V can only be larger, that is, d(x,V \ {u}) > ε.
Indeed, if this is not the case, then x would be equidistant to u and a vertex v ∈ V \{u}. This
would imply that x lies on at least two circles of the arrangement (the one supporting e and
another bounding b(v, ε)). Hence, x would be a vertex of the arrangement, contradicting our
assumption that x lies on edge e. It follows that we can find T > ε such that for all 0 ≤ t ≤ T ,
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we have d(zt,V \ {u}) ≥ d(zT ,V \ {u}) − ‖zt − zT ‖ > T − (T − t) = t. Hence, d(zt,V ) ≥ t

for all 0 ≤ t ≤ T or equivalently zt /∈
(
V ⊕t

)◦ for all 0 ≤ t ≤ T .

(2) Second, we prove that zt ∈ wt(u) for all t close enough to ε. Let B a collection of disks
that represents S locally around u and C = c(B) the collection of their centers. Recall that

by Equation (3.1), wt(u) =
?

coni(u,C)∩ ∂b(u, t), hence x ∈
?

coni(u,C). We want to prove that

we also have zt ∈
?

coni(u,C), for t in an open neighbourhood of ε. If x ∈ ˚coni(u,C), then for
all t > 0, zt ∈ ˚coni(u,C). If x /∈ ˚coni(u,C), then there is c ∈ C such that x ∈ [uc]. Without

loss of generality we can assume that
?

coni(u,C)∩ [ux) = [uc], where [ux) denotes the half-line
originating from u that goes through x. We claim that x 6= c. Indeed let b = b(c, r) be the
disk in S centered at c. Assume for a contradiction that x = c. Then, r = ε and b	ε = {c},
showing that c = x is a vertex of the arrangement and contradicting our assumption x ∈ e.
Thus, x 6= c and r > ε. Also for all 0 ≤ t ≤ r, we have zt ∈ [uc] ⊆

?
coni(u,C), hence zt ∈ wt(u).

(3) Steps (1) and (2) imply that for t close enough to ε, we have zt ∈ wt(u) \
(
V ⊕t

)◦. By
Proposition 3.1, this implies that zt ∈ ∂

(
S	t

)
and thus that d(zt, ∂S) = t. In particular, for

t < ε, d(zt, ∂S) < ε and zt ∈ (S	ε)
c while for t > ε, d(zt, ∂S) > ε and zt ∈ S	ε, which suffices

to conclude.

x = zε

u

zt

bε

bt

t

S

Figure 3.4 – Notations for the proof of Lemma 3.3.

We now prove Lemma 3.2.

Proof of Lemma 3.2. We label cells in Aε(S ) as follows:

(a) We label as boundary all cells on the boundary of the erosion (
⋃

S )	ε, using results
in Section 3.2. More precisely, we compute first vertices and edges on the boundary of

⋃
S

(building for instance the arrangement A0(S )). Then, for each element on the boundary of⋃
S , we compute its contribution to the wavefront. Each contribution is composed of cells

and we label the cells belonging to the boundary of the erosion (
⋃

S )	ε as boundary.
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(b) We label as in each face covered by a disk b	ε for b ∈ S and label as out each face
covered by a disk b(v, ε) for v ∈ V . If no faces have received a label so far, this means that
S	ε is either empty or a finite collection of singletons. In this case, each singleton is labeled
in, all other cells are labeled out and we are done. Otherwise, we continue.

(c) Starting from a face either with label in or label out, we do a traversal of the arrangement
Aε(S ), stepping from one face to an adjacent face. If we cross an edge labeled boundary,
the face currently visited receives a label different from the face on the other side of the crossed
edge. Otherwise, the face currently visited receives the same label as the face on the other
side. Lemma 3.3 guarantees that after this step, every face is properly labeled.

(d) To label remaining vertices and edges, we use the fact that the erosion is a closed set. We
thus give label in to every vertex or edge bounding a face labeled in. Other vertices and edges
receive the label out.

Clearly, all steps can be done in time polynomial in the size of the arrangement.

3.3.2 Checking set inclusion

We explain in this section how to check the inclusion (
⋃

S )	ε ⊆
⋃

B in polynomial time.
We compute the arrangement Aε(S ) and label its cells as in or out depending on whether
they belong to the erosion (

⋃
S )	ε or not as explained in the previous section. Likewise, we

compute a second arrangement A0(B) and label its cells as in or out depending on whether
they belong to the union

⋃
B or not. We then overlay the two arrangements. This operation

consists in computing the arrangement of the joint collection of circles, and it is possible to do
so while inheriting the labels from both input arrangements [Ber+02]; [Wei+]. By inspecting
the labels of the overlay, we can thus determine if every cell in the erosion is also in the
union and conclude on the inclusion test. All operations can be done in polynomial time. In
Appendix A.3, we provide an alternative method that does not use any overlay.

3.4 Rational (δ, ε)-ball approximation is NP-hard

In this section, we establish that the rational (δ, ε)-ball approximation problem in Rd is already
NP-hard for d = 2. We prove NP-hardness through a reduction from a variant of the vertex
cover problem. Recall that for a graph G = (V,E), a subset C ⊆ V is a vertex cover of G
if every edge of E is incident to a vertex of C. Finding a minimum vertex cover is NP-hard,
even when restricted to cubic planar graphs, that is, planar graphs of degree at most 3 [GJ77].
We shall perform the reduction from this particular variant. Given a cubic planar graph
G = (V,E) and real non-negative numbers δ and ε with δ + ε > 0, we show how to build a
finite collection S (G, δ, ε) of disks in the plane such that G has a vertex cover of cardinality
k if and only if

⋃
S (G, δ, ε) admits a (δ, ε)-ball approximation of cardinality k + L, where L

is an integer depending only on S (G, δ, ε).
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3.4.1 Reduction from vertex cover

§ Gadgets We build the set of disks S (G, δ, ε) from the triple (G, δ, ε) by converting each
vertex of G into a vertex gadget and each edge of G into an edge gadget. Given a vertex v ∈ V ,
the vertex gadget associated to v is a singleton containing only one disk of radius λε : any
value of lambda in [0, 1[ works for our construction, meaning in particular that these disks
are not mandatory, but including them make the explanations below clearer. In Figures 3.5,
3.6, 3.8 and 3.9 we choose λ = 0.8. The center of that disk is called a ghost and is denoted
gv. The reason for this is that ghosts won’t belong to the ε-erosion of

⋃
S (G, δ, ε). Given

an edge {x, y} ∈ E, the edge gadget associated to {x, y} is a finite sequence of disks of odd
length at least three; see Figure 3.5.b. The disks in the sequence all share the same radius ε.
The centers of those disks are called rotulae. We distinguish two types of rotulae: Extreme
rotulae are the centers of the two extreme disks in the sequence and are denoted as cxy and
cyx. Regular rotulae are the centers of other disks. The rotulae of two consecutive disks in the
sequence are said to be neighbours of one another. Note that extreme rotulae have only one
neighbour and regular rotulae have two neighbours. We say that an extreme rotula cxy and a
ghost gv are linked to one another whenever x = v. Hence, each extreme rotula is linked to a
unique ghost, whereas a ghost may be linked to up to three extreme rotulae depending on the
degree of the vertex that generated the ghost. Finally, we define S (G, δ, ε) as the collection of
disks resulting from the conversion of vertices and edges into vertex gadgets and edge gadgets
respectively.

At this point, we haven’t yet specified the centers of disks, nor the number of rotulae per
edge that we need (only that it should be an odd number). We postpone to Section 3.4.2 the
description of how disks composing gadgets are chosen. This will be done from an orthogonal
grid drawing of G; see Figure 3.5 for an example. At this stage it suffices to know that we can
always choose disks composing gadgets so that they fulfill the properties (i)-(viii) listed below.
To simplify notations, we shall refer to S (G, δ, ε) and S(G, δ, ε) =

⋃
S (G, δ, ε) simply as S

and S.

(i) The ε-erosion S	ε is exactly the collection of rotulae.

(ii) Any disk b ⊆ S⊕δ contains at most 2 regular rotulae.

(iii) If a disk b ⊆ S⊕δ contains 2 regular rotulae, then they are neighbours of each other and
b does not contain any other rotula, neither regular nor extreme.

(iv) Let c be a regular rotula, c1 and c2 its two neighbours. There exist two disks b1, b2 ⊆ S⊕δ
such that {c1, c} ⊆ b1 and {c2, c} ⊆ b2.

(v) Any disk b ⊆ S⊕δ contains at most 3 extreme rotulae.

(vi) If a disk b ⊆ S⊕δ contains 2 or 3 extreme rotulae, then these extreme rotulae are linked
to the same ghost and b only contains extreme rotulae linked to that ghost.

(vii) Let g be a ghost. There exists a disk b ⊆ S⊕δ that contains all extreme rotulae linked
to g.
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(viii) If a disk b ⊆ S⊕δ contains both a regular rotula and an extreme rotula, then these are
neighbours and b does not contain any other rotula, neither regular nor extreme.

v1 v2 v3

v4 v5

(a)

(b)

Figure 3.5 – Conversion from (a) an orthogonal grid drawing of a graph G with 5 vertices
and 5 edges to (b) the collection of disks S (G, δ, ε) with 5 (yellow) ghosts disks, 10 (purple)
extreme rotulae and 31 (blue) regular rotulae. Ghost disks have radii λε with λ = 0.8. The
δ-dilation of the union of disks is bounded by the dashed blue lines.

§ Canonical coverings Recall that each edge of G is associated to an odd number of rotulae
(which are the centers of disks in the associated edge gadget). Given an edge e ∈ E, we ask
for the smallest number of disks contained in S⊕δ that suffices to cover the rotulae of e.
Let 2`(e) + 1 be the number of rotulae in e, where `(e) ≥ 1 is an integer. Since e has two
extreme rotulae, the number of regular rotulae is 2`(e) − 1. From property (ii) we need at
least d(2`(e)− 1)/2e = `(e) disks in S⊕δ in order to cover these regular rotulae. By (iv) there
always exists a collection of `(e) disks in S⊕δ which covers these rotulae plus one of the two
extreme rotulae of e, and that extreme rotula can be chosen arbitrarily. Indeed, it suffices to
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cover pairs of neighbouring rotulae of e with disks in S⊕δ, while making sure that the extreme
rotula to cover and its neighbour are one of these pairs (see Figure 3.6). This gives two possible
coverings of the regular rotulae of e (one for each extreme rotulae) which we shall refer to as
canonical for e. Furthermore, properties (iii) and (viii) guarantee that any disk containing a
regular rotula will only contain rotulae belonging to the same edge gadget. Therefore it is
necessary and sufficient to use `(e) disks in S⊕δ to cover the regular rotulae of an edge gadget
e, and these `(e) disks exclusively cover rotulae of e. However, one of the two extreme rotula
of e will not be covered by these `(e) disks and one extra disk is required to cover all rotulae
of e for a total of `(e) + 1 disks. Unlike the previous `(e) disks, by (v) this extra disk may be
used to cover extreme rotulae of several edges assuming these extreme rotulae are all linked
to the same ghost. We define L =

∑
e∈E `(e) which is the smallest number of disks needed

to cover all regular rotulae and which can be achieved by taking for each edge, one of its two
possible canonical coverings.

Figure 3.6 – A canonical covering of an edge gadget with two green disks. Same color conven-
tion as in Figure 3.5.b.

Property 3.4. If G has a vertex cover C ⊆ V , then S has a (δ, ε)-ball approximation B with
|B| = L+ |C|.

Proof. By (i), we know that any (δ, ε)-ball approximation of S is a collection of disks con-
tained in S⊕δ whose union covers the rotulae of all edges of G. To build such a (δ, ε)-ball
approximation, we use property (vii) and start by selecting for each vertex v ∈ C a disk that
covers all extreme rotulae linked to the ghost gv. This gives a set C of |C| disks that cover
at least one extreme rotula per edge. Using the appropriate canonical covering of each edge,
that is, the one excluding the extreme rotula already covered by C , we complete the set C

into a (δ, ε)-ball approximation adding L more disks.

Property 3.5. If S has a (δ, ε)-ball approximation B, then G has a vertex cover C with
|C| ≤ |B| − L.

Proof. Without loss of generality, we may assume that all disks in B cover at least one rotula.
Indeed, if a disk b does not cover any rotula, it can be removed from B while keeping the
property that B is a (δ, ε)-ball approximation. Starting from B, we first deduce a (δ, ε)-ball
approximation R of S having the property that it contains one of the two canonical coverings
of each edge e ∈ E. For e ∈ E, let Be = {b ∈ B | b contains a regular rotula of e}. Note that
for different edges the Be are disjoint and that |Be| ≥ `(e). Given an extreme rotula cxy,
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we denote by Cxy the canonical covering that contains cxy and all the regular rotulae of edge
{x, y}. Initializing R to B, we modify R as follows, applying the following transformation to
each edge e of G:

• If disks in Be cover no extreme rotula, we replace Be by one of the two canonical
coverings of e.

• If disks in Be cover 1 extreme rotula, we replace Be by the canonical covering of e that
covers this extreme rotula.

• If disks in Be contains both extreme rotulae of e, then |Be| ≥ `(e) + 1. We choose
arbitrarily one of the two extreme rotulae, say cxy, and let b be a disk in S⊕ε containing
the other extreme rotula cyx but no regular rotula. We replace Be by Cxy ∪ {b}.

Each of these substitutions preserves the ε-covering property and does not increase the
cardinality of the resulting collection of disks. Consider the disks of R that do not contain
any regular rotula, C = R \ (∪e∈ERe). By construction, |C | = |R| − L ≤ |B| − L and C

covers at least one extreme rotula of each edge. Let C be the set of vertices v ∈ V whose
ghost gv is linked to an extreme rotula covered by a disk in C . We claim that C is a vertex
cover of G and that its cardinality satisfies |C| ≤ |C |. All b ∈ C must contain at least one
extreme rotula, thus C is empty if and only if C is empty. In this particular case, G has no
edges because otherwise R would only cover half of the extreme rotulae. It follows that in this
case the empty set is a vertex cover of G. Assume now that C is not empty. By construction,
any b ∈ C covers only extreme rotulae, which by (vi) are all linked to the same ghost gv. It
is thus possible to map each b ∈ C to one vertex v ∈ C, showing that |C| ≤ |C |. To see that
C is a vertex cover, recall that C covers at least one of the two extreme rotulae of each edge.
The definition of C thus ensures it contains at least one endpoint of each edge.

3.4.2 Practical construction

Given as input a graph G and real non-negative numbers δ and ε such that δ + ε > 0, we
build a collection S fulfilling properties (i) to (viii). To do so, we rely on the following result.

Theorem 6 ([CP95]). There is a linear time and space algorithm to draw a connected at
most cubic graph on an orthogonal grid.

Given a drawing of G on an orthogonal grid, we now describe a way to convert it into an
appropriate collection of disks; see Figure 3.5.a for an example of such a drawing. To perform
the conversion, we fix the size of the grid to 8(δ + ε) so that we can fit square blocks of size
4(δ + ε)× 4(δ + ε) as in Figure 3.7. Note that in Figures 3.5 to 3.9, we have δ = ε.2

2See http://www.gipsa-lab.grenoble-inp.fr/~isabelle.sivignon/recherches_en.html#
ballapproximation for Geogebra files with parameterized generic constructions for any values of δ and
ε.

http://www.gipsa-lab.grenoble-inp.fr/~isabelle.sivignon/recherches_en.html#ballapproximation
http://www.gipsa-lab.grenoble-inp.fr/~isabelle.sivignon/recherches_en.html#ballapproximation
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8(δ + ε) 4(δ + ε)

Figure 3.7 – Drawing (in blue) of a cubic graph on an orthogonal grid and grid division into
blocks. Gray lines represent the grid and dashed red lines are the blocks.

There are two different ways in which the blocks meet the graph drawing: the block either
contains one vertex or only a portion of one edge. Blocks containing a vertex only vary
depending on the number and layout of incident edges. Similarly, blocks containing a portion
of an edge vary depending on whether the edge bends within the block or not. In each case,
we convert the graph drawing covered by the block into a set of disks that satisfies properties
(i) to (viii). For blocks containing a vertex, see Figure 3.8 for the four subcases. Similarly for
edges, we have two subcases. However, recall that edge gadgets must have an odd number of
rotulae. To achieve this, we use the fact that every edge necessarily crosses at least one block
in a straight line and provide an odd and an even conversion for this type of block. The three
block conversions are presented in Figure 3.9.

(a) (b) (c) (d)

Figure 3.8 – Block conversions for a vertex of degree (a) 3, (b) 1, (c) 2 in a bend and (d)
2 in a straight line. The red dashed square delimits the block. Same color convention as in
Figure 3.5.b.

3.5 Conclusion

In our proof of NP-hardness, we have chosen carefully the set of disks composing the shape, so
that its erosion is composed of a finite set of points (the rotulae). It follows that the reduction



3.5. Conclusion 101

(a) (b) (c)

Figure 3.9 – Block conversions for (a) a bent edge, (b) an even and (c) odd straight edge.
Same color convention as in Figure 3.8.

from vertex cover induces a set cover problem of a finite set of points (the rotulae), using an
infinite range of balls (the medial axis of the dilation).

We notice however that it is possible to define a similar construction where the erosion
of the shape is an infinite set of points too. Furthermore, a construction where the shape,
its erosion and its dilation all have the same homotopy type is also possible. To build such
variants, it suffices to tune the radii of disks composing the gadgets, and distances between
consecutive disks so that the eight properties (i)-(viii) are fulfilled. This does not change the
overall result.

Because the rational (δ, ε)-ball approximation is NP-complete, there is little hope of find-
ing a general polynomial algorithm. However for shapes simple enough, we argue that it is
still possible to achieve polynomial time and space complexity. We present in Chapter 4 an
algorithm that works with cycle-free finite union of disks, and that can compute (0, ε)-ball
approximations. Building upon the notions introduced in that first algorithm, we then extend
it to a wider class of shapes in Chapter 5.
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In this chapter, we describe an algorithm for computing a cardinal minimum solution to
certain instances of the (δ, ε)-ball approximation in R2. As the problem is NP-complete, we
make some simplifying assumptions. We suppose that δ = 0 and ε > 0. We also restrain
the class of shapes we consider. Specifically, we investigate finite unions of disks that do not
contain any cycle in their medial axis. As per [Lie04], it is well-known that open bounded
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subsets of Rd have the same homotopy type as their medial axis, and it follows that the interior
of these shapes are also cycle-free. However we here consider unions of closed disks, hence
situation as in Figure 4.6 can arise, and the shape itself may in fact contain a cycle despite
its medial axis being cycle-free.

Our main result is as follow.

Theorem 7. Under the Real-RAM model, there is a polynomial-time algorithm to compute
(0, ε)-ball approximations of minimum cardinality for finite unions of disks whose medial axes
are cycle-free.

Remark 46. Most algorithms and data structures in computational geometry are described in
the Real-RAM model [T0́4]; [BY95]. This model assumes that any real number can be rep-
resented by a single memory cell, and that the usual arithmetic operations also take constant
time.

Throughout this chapter, S will denote a finite union of disks whose medial axis is cycle-
free. In Section 4.1, we present the intuition behind our proposed algorithm. This intuition
however fails to provide a suitable algorithmic solution. We thus introduce several tools and
properties in Sections 4.2 and 4.3 that we use to define and study the properties of critical
balls in Sections 4.4 through 4.6. We finally describe our algorithm in Section 4.7.

4.1 Preliminary notions

Because S is compact, any ball b ⊆ S is always contained within some (inclusion-wise) maximal
ball of S. It follows that S always admits a cardinal-minimum (0, ε)-ball approximation that
only contains medial balls. Our strategy thus consists in exploring the family of medial balls
of S in order to find good medial balls to include in the approximation. In order to efficiently
search the family of medial balls, we introduce a partial order over the medial axis and balls
of S. From this partial order, we introduce several definitions that will be central to our
algorithm.

§ Partial ordering on medial balls We already know from Chapter 2 that the medial
axis of a finite union of balls can be seen as a finite collection of convex subsets of elliptic
pencils. In R2, it is thus a collection of line segments. MA(S) being a collection of segments,
it can be viewed as the embedding of a graph in R2. By assumption on the class of shapes
considered, MA(S) is cycle-free, hence it is a forest. Since we can process each tree of the
forest independently, we assume without loss of generality that MA(S) is a tree. By picking
any point of MA(S) as a root, we obtain an orientation of MA(S) which induces a partial
order on MA(S). Indeed, we simply have to orient all the edges of MA(S) from the leaves to
the root. We denote by T the resulting oriented tree. The structure represented by T is at
times called anti-arborescence or in-tree, and can also be viewed as a directed acyclic graph
with a unique sink. For any x, y ∈ MA(S), we say that x is T -smaller than or equal to y,
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and note x ≤T y, if y belongs to the unique path from x to the root of T . We also use the
usual order symbols and notions such as being T -larger or equal to, ≥T , or also being strictly
T -smaller, <T .

Note that this T -order is valid for all points of MA(S), and not simply vertices of T .
Because points of MA(S) are centers of medial balls of S, this T -order extends to medial
balls. Specifically, we can T -compare two medial balls of S, but also a medial ball of S with
a point of MA(S).

Since T only induces a partial order, we say that two balls that cannot be ordered by T
are T -incomparable. An additional useful notion is that of T -maximal ball for a collection:
given a collection of balls B, b ∈ B is T -maximal in B if for all b′ ∈ B, either b′ ≤T b or b
and b′ are T -incomparable. Likewise, b is T -minimal in B if for all b′ ∈ B, either b′ ≥T b or
b and b′ are T -incomparable.

Finally, we introduce the notion of degree for any point c ∈ MA(S). If c ∈ MA(S) is a
node of T , we denote by deg c the usual degree of c from graph theory, that is the number of
neighbours of c in T . If c ∈ MA(S) is not a node of T but an inner edge point, we adopt the
convention that c has degree deg c = 2.

Remark 47. Let c ∈ MA(S), then MA(S) \ {c} has deg c (path-)connected components.

As a closing remark, note that the existence of a T -order as introduced above only requires
the medial axis to be acyclic. The notion can thus be adapted to shapes other than finite
unions of balls. Note also that whenever we consider a shape to have a T -order on its medial
balls, we implicitly assume its medial axis to be acyclic.

§ Principle of the algorithm For our proposed algorithm, the partial ordering we intro-
duced allows the definition of clear start and end points, as well as a measure of progress.
Indeed, let b = b(c, r) be a medial ball of S. Its center c splits MA(S) into deg c con-
nected components. We denote these components by branch(S, c, i), 1 ≤ i ≤ deg c. For our
purpose, we want to express the domain covered by balls centered at points of these compo-
nents of MA(S), but not covered by b. First we define the related collection of medial balls,
C (S, b, i) = {b′ medial in S | c(b′) ∈ branch(S, c, i)}. Then the domain of each C (S, b, i) is
C(S, b, i) =

⋃
C (S, b, i) \ b. With these notations, b also splits S into the different C(S, b, i)’s,

and S \ b =
⋃deg c
i=1 C(S, b, i). Unless c is the root of T , one of these domains corresponds

to balls T -larger than or T -incomparable to b. The other (deg c− 1) domains correspond
to balls T -smaller than b. To promote clarity, we refer to the former domain simply as the
T -large component for b in S, and denote it by C(S, b,+). As for the later domains, we
refer to their union as the T -small component for b in S and note C(S, b,−). Hence, we
have S \ b = C(S, b,+) ∪ C(S, b,−). See Figure 4.1. From the definition, we also deduce the
following:

Property 4.1. If b1 ≤T b2, then C(S, b1,−) ∪ b1 ⊆ C(S, b2,−) ∪ b2 and b1 ∪ C(S, b1,+) ⊇
b2 ∪ C(S, b2,+).



106 Chapter 4. Greedy optimal algorithm for (0, ε)-ball approximation

(a)

root
S

C(S, b,+)

C(S, b,−)

c

b

(b)

C(S, b,−)

c

b

Figure 4.1 – T -large and T -small components of a medial ball. Green segments are points
T -smaller than c, blue ones are points T -larger, black ones are T -incomparable. In (a), the
T -small component is the domain of S that was swept from the leaf to b. In (b), that
interpretation requires sweeping two branches simultaneously.

Now assume we want to traverse and sweep S with a medial ball, starting from a leaf of
T , toward its root. When we reach a medial ball b, and assuming there was no branching
from the starting leaf until b (inclusive), then at that moment, C(S, b,−) ∪ b corresponds to
the domain of S that was swept by our medial ball, and C(S, b,+) to the domain of S that
was not swept by it. Our approach is based on this particular decomposition of S. We want
to use a greedy approach to iteratively compute a (0, ε)-ball approximation of the T -small
component C(S, b,−). Because T may have several leaves and thus several branches, it is
necessary to extend the above definitions of T -small and T -large components to collections
B of medial balls, while preserving the interpretation that C(S,B,−)∪ (

⋃
B) is the domain

of S already processed, and C(S,B,+) is the domain of S that has yet to be processed.
Refer to Figure 4.1.b for an illustration of a potential issue when sweeping with a single
ball. The domain already processed for a collection of balls should thus be the union of
the domains already processed by some b ∈ B. Hence the T -small component for B in S

is C(S,B,−) =
⋃
b∈B C(S, b,−). Likewise, the domain that still needs to be processed for

B should be the intersection, over all b ∈ B, of the domains to be processed for b. Hence
the T -large component for B in S is C(S,B,+) =

⋂
b∈B C(S, b,+). Owing to Property 4.1,

these definitions emphasize the importance of the T -maximal balls of B. Let BT -max be
the collection of these T -maximal balls. Then C(S,B,+) = C(S,BT -max,+) and likewise
C(S,B,−) = C(S,BT -max,−).

To formalize the procedure presented above, we require two more definitions.

Definition 15. Let B be a collection of medial balls in S. We say that B is a T -small
(0, ε)-ball approximation of S if it covers S	ε in its T -small component C(S,B,−), that is if
C(S,B,−) ∩ S	ε ⊆

⋃
B.

Note that every (0, ε)-ball approximation is also a T -small (0, ε)-ball approximation of S.
As such, we employ the term partial T -small (0, ε)-ball approximation if we need to distinguish
from complete (0, ε)-ball approximations.
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Definition 16. Let B be a partial T -small (0, ε)-ball approximation of S, and b be medial
in S. We say that b is a candidate ball with respect to B, if B′ = B ∪ {b} is also a T -small
ε-covering of S, and S	ε \

⋃
B′ ( S	ε \

⋃
B.

The strict inclusion S	ε \
⋃

B′ ( S	ε \
⋃

B ensures that B′ is closer to being a complete
(0, ε)-ball approximation than B. Hence, for any partial T -small (0, ε)-ball approximation,
iteratively adding a candidate to the collection ensure that at some point we will obtain a
complete (0, ε)-ball approximation. Because any partial T -small (0, ε)-ball approximation
always has an infinity of candidates, we choose to add only T -maximal candidates, that is
T -maximal among the collection of candidates.

§ Chapter overview The approach presented above relies on the fairly intuitive idea of
T -maximal candidates to progressively build up an approximation. The main difficulty here
lies in the ability to compute such T -maximal candidates. From Definition 16, it is indeed
difficult to reach a computational description of these T -maximal candidates.

To circumvent this problem, we introduce and study the notion of critical ball in Sec-
tion 4.4. We show that they coincide with T -maximal candidates in Section 4.5, and that
their definition is suited to an algorithmic computation in Section 4.6, which enables us to
state our algorithm in Section 4.7. In order to properly define the notion of critical balls and
prove their properties, we need several technical tools and intermediary results. One major
difficulty in directly adapting Definition 16 into an algorithm is to ensure that the collection
of balls satisfies the desired inclusion properties. We provide in Section 4.3 conditions that
guarantee inclusion in finite unions of balls. Because we focus on medial balls, we introduce
in Section 4.2 a natural way to map balls contained in S to medial balls of S. This mapping
will prove useful to explore the family of medial balls.

4.2 Projection on the medial axis

One easy manipulation when dealing with collection of balls that are contained in a compact
shape, is to substitute every ball in the collection by an (inclusion-wise) maximal ball of that
shape, so that the maximal ball contains the original ball. This is a form of projection onto
the family of maximal balls.

For a finite union of balls S, we present here a continuous projection for any ball b ⊆ S

such that c(b) ∈ S̊. This mapping is based on the face join decomposition of S (Figure 4.2),
and inspired by [Ede93]. Indeed, after defining his joins in [Ede93], Edelsbrunner goes on
to define an explicit, (continuous,) deformation retraction from the interior of a finite union
of balls to its dual shape. By directly adapting his approach, we also obtain a deformation
retraction from S̊ to MA(S), and thus a continuous mapping π̂ : S̊ → MA(S). We then extend
this mapping into a continuous function π that maps balls of S onto medial balls of S.

Formally, consider x ∈ S̊. If x ∈ MA(S), we let π̂(x) = x and we are done. Otherwise x
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Figure 4.2 – Example of decomposition into face joins. The medial axis is represented by the
bold black line segments and points. The face joins only overlap at points of the medial axis.
The non-medial boundary edges in the interior only belong to the join of the corresponding
colour.

admits one unique closest point on the boundary ∂S. Let ux be that point. Because x ∈ S̊,
consider ex the unit vector from ux to x. Recall that Jux is the collection of points of MA(S)

that admits ux as a closest point in ∂S. The properties of joins guarantee that the half-line
ux +R+ex will intersect the medial axis of S at some point in Jux . We let π̂(x) be that point
of intersection. See Figure 4.3 for an illustration. The function π̂ is well-defined for every
interior points of S. It is easy to see that it is continuous, because it is continuous on every
face join.

We can now define the mapping π from π̂ as follows. Consider b ⊆ S with c(b) ∈ S̊. We
then let π(b) be the medial ball centered at π̂(c(b)).

π :
{
b ⊆ S | c(b) ∈ S̊

}
→ {b medial in S}

b 7→ π(b) medial in S such that c(π(b)) = π̂(c(b))

If we consider balls of Rd to be (d+ 1)-dimensional points, then the mapping π is continuous
because π̂ is. Note that the only balls in S for which π is undefined, are the singleton balls
that lie on the boundary of S. Because singleton balls are in essence points, we will often
consider the image of interior points of S by π to be well-defined. From now on, we will thus
only use π and will not mention π̂ anymore.

One key property of π is that for any ball b, its image by π will contain b.

Property 4.2. For all b ⊆ S with c(b) ∈ S̊, we have b ⊆ π(b).
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π̂(z)
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π̂(x)

π̂(y)

uz + R+ez ux + R+ex

uy + R+ey

Figure 4.3 – Illustration of the definition of π for various interior points. Note that u = ux =

uy.

Proof. For this proof, refer to Figure 4.4 for an illustration. If b is a medial ball of S, the
result is trivial. Suppose that this is not the case. Let c = c(b) be the center of b, and bc
the ball centered at c whose bounding sphere goes through uc ∈ ∂S. By definition, c belongs
to the Voronoi cell of uc, in the Voronoi diagram of ∂S. Thus we have b ⊆ bc. From the
property of joins, we also know that the medial ball centered at π(c) contains bc. Finally,
b ⊆ bc ⊆ π(b).

4.3 Testing for set inclusion in finite unions of balls

We give here a specialized version of Lemma 1.1 in which one of the sets is a finite union of
balls. This result holds in Rd.

Lemma 4.3. Let A be a bounded subset of Rd and consider X =
⋃

X a finite union of balls.
Let V be the collection of vertices of ∂X. If

(i) ∂A ⊆ X

(ii) ∀v ∈ V , ∃Nv an open neighborhood of v such that Nv ∩A ⊆ X

then A ⊆ X.
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uc

c

π̂(c)

uy + R+ey

Figure 4.4 – Illustration for Property 4.2. The blue ball b is contained in the green ball bc
which is contained in the red ball π(b).

In order to prove this, we rely on several technical results that we present in Section 4.3.1,
while the proof of Lemma 4.3 is deferred to Section 4.3.2.

4.3.1 Technical results

There are two technical results that we will need for the proof of Lemma 4.3. The first one
relates the subset A \ X to the holes of X given the assumption ∂A ⊆ X, and the second
investigate the structure of these holes in finite unions of balls.

§ Holes of a subset X We start by specifying the definition of a hole.

Definition 17. Let X ⊆ Rd. We call hole of X a bounded connected component of Xc.

In general, a subset X may very well have no hole. When X is bounded, then Xc has
exactly one unbounded connected component. If that unbounded connected component is not
Xc itself, each remaining connected component of Xc is a hole of X.

Lemma 4.4. Let X be a subset and A a bounded subset of Rd. Assume that ∂A ⊆ X, and
consider H = A \X. Then H is either empty, or a union of holes of X.

Proof. Assume that H is non-empty and let x ∈ H. Let Xc
x be the connected component of

Xc that contains x, and Hx = A ∩Xc
x. By definition we have Hx ⊆ Xc

x. We claim here and
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prove in the next paragraph that we also have the reverse inclusion and thus that Hx = Xc
x.

Hence Hx is a connected component of Xc. Because in addition, Hx ⊆ A is bounded, Hx is
a bounded connected component of Xc and is thus a hole of X. It follows that H is either
empty, or an union of holes of X.

Let us now prove our claim, that Xc
x ⊆ Hx. Let G = Xc

x \ Hx = Xc
x ∩ Ac and assume

by contradiction that G 6= ∅. We have Xc
x = G ∪ Hx (because Hx ⊆ Xc

x). Because Xc
x is

connected, G and Hx cannot be separated. Thus either G ∩Hx 6= ∅ or G ∩Hx 6= ∅. In both
cases, there exists a point y ∈ G∩Hx ∩Xc. Because Hx ⊆ A, we know that y ∈ A. However,
∂A ⊆ X and y ∈ Xc, thus y ∈ A \ ∂A = Å. It follows that y ∈ G ∩ Å ⊆ Ac ∩ Å = ∅. This is
impossible, hence G = ∅ and Xc

x ⊆ Hx. Thus Hx is indeed a hole of X.

§ Holes in finite unions of balls We now provide some insight on the holes of a finite union
of balls. In this paragraph, we thus consider X = S =

⋃
S a finite union of balls. Eventually,

we want to show that any hole of S always contains some vertex of ∂S in its boundary. To
do so, we prove a series of two lemmas, from which we deduce two corollaries.

Lemma 4.5. Let S =
⋃

S ⊆ Rd be a finite union of balls and u ∈ ∂S. If every open
neighbourhood of u meets two locally distinct connected components of Sc, then u is a non-
simple vertex of ∂S.

Proof. Let B ⊆ S be a (cardinal-minimum) collection of balls that locally represents S at u
and C = c(B) be the collection of their centers. We prove that coni(u,C) is a hyperplane.
This, in turn, entails that u ∈ aff(C) and dim aff(C) = d − 1. B thus defines a parabolic
(d− 1)-pencil, with ˚coni(u,C) = ∅. It follows that u is a non-simple vertex. We first specify
this hyperplane then show that we have double inclusion.

Let X be a connected component of Sc such that u ∈ X. Consider (xn) ⊆ X a sequence
that converges to u and let en be the unit vector such that xn = u + ‖xn − u‖en. The
sequence (en) admits some limit point eX . We claim that there is some ρ > 0, such that
for all 0 < h < ρ, u + heX ∈ X. Indeed let b ∈ B, we denote its center by c. By applying
Lemma 2.27 to b and b0 = b(u, 0) = {u}, we know that b = {u+ ρe | 0 ≤ ρ ≤ ρe, ‖e‖ = 1},
with ρe = 〈e, c− u〉 + |〈e, c− u〉|. Because xn = u + ‖xn − u‖en /∈ b, we deduce that
‖xn − u‖ > ρen ≥ 2〈en, c− u〉. Thus 0 ≥ 〈eX , c− u〉, and it follows that u + heX /∈ b. This
holds for every b ∈ B, therefore u + heX /∈

⋃
B. Because B locally describes S around u,

there exists ρ > 0 such that S ∩ b(u, ρ) ⊆
⋃

B. If h ≤ ρ we thus have u + heX ∈ Sc. In
addition, notice that if ‖xn − u‖ ≤ h, then the line segment {u+ hen | ‖xn − u‖ ≤ h ≤ ρ} is
path-connected to xn ∈ X and thus lies in X. We deduce that u + heX is in the closure of
X, since it is the limit point to the sequence (u+ hen)n. Because S is closed, Sc is open.
Necessarily, u+ heX ∈ Sc ∩X implies that u+ heX ∈ X.

By assumption, there exists Y 6= X, another connected component of Sc with u ∈ Y .
Likewise we can build eY such that for some ρ > 0, we have for all 0 < h ≤ ρ, u+heY ∈ Y . We
claim that eX = −eY . Because X 6= Y , we have eX 6= eY . Assume by contradiction that eX
and eY are linearly independent. For λ ∈ [0, 1], let eλ = λeX+(1− λ)eY . We have 0 < ‖eλ‖ ≤
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1. Let b ∈ B and c = c(b) its center, we have 〈eλ, c− u〉 = λ〈eX , c− u〉+(1− λ)〈eY , c− u〉 ≤
0. Therefore u + ρeλ ∈ Sc. This is however absurd because {u+ ρeλ | λ ∈ [0, 1]} is then a
path in Sc connecting X and Y . Hence we must have eX = −eY .

Let H be the affine hyperplane through u with normal eX . Clearly we have C ⊆ H. Indeed
for all c ∈ C, 〈eX , c− u〉 ≤ 0 and 〈eY , c− u〉 ≤ 0, which implies 〈eX , c− u〉 = 0. Hence
coni(u,C) ⊆ H. We now prove the reverse inclusion. Consider b ∈ B with its corresponding
center c. Because c ∈ H, the projection of b onto H is the (d− 1)-ball b ∩ H, it has the
same center and radius as b. Let B′ = {b ∩H | b ∈ B}. The projection of S on H is thus
locally equal to (

⋃
B)∩H =

⋃
B′. We show that in a small enough neighbourhood of u, the

projection of S onto H is H itself. This implies that every (d− 1)-ball supported by H, and
whose boundary goes through u, is locally contained in S around u. By Lemma 2.42 we thus
have that H ⊆ coni(u,C) which concludes the proof.
Consider x = u+ ρeX and y = u− ρeX , x, y ∈ Sc. Because Sc is open, there is h0 > 0 such
that b(x, h0) ∪ b(y, h0) ⊆ Sc. Let e be any unit vector orthogonal to eX and h, 0 ≤ h ≤ h0.
Consider γ = [xy] + he the translation of segment [xy] by he. The endpoints of γ belong to
X and Y , hence γ is a path connecting two distinct connected components of Sc and must
intersect S. By definition of e, the projection of γ onto H is the singleton {u+ he}. Because
γ ∩ S 6= ∅ we deduce that u + he ∈ S ∩ H. This holds for every e orthogonal to eX and
0 ≤ h ≤ h0, therefore H ∩ b(u, h0) ⊆ H ∩ S.

For any z ∈ H, denote by bz the ball centered at z whose bounding (d − 1)-sphere goes
through u. We have bz ∩H ∩ b(u, h0) ⊆ H ∩ S. Because this holds for all z ∈ H, Lemma 2.42
implies H ⊆ coni(u,C) and thus H = coni(u,C). Point u necessarily belongs to CH(C) and
it follows that aff(C) = coni(u,C) = H. The pencil defined by B thus has dimension d − 1.
In addition, u belongs to its radical sphere and also lies in the centers’ space aff(C), therefore
the pencil is parabolic. Hence, ˚coni(u,C) = ∅ and u is a non-simple vertex of ∂S.

Consider H, a hole of S. Note that by Lemma A.2 and A.3 (see Appendix) we know that
∂H ⊆ ∂S. We can thus use the structure on ∂S to describe that of ∂H.

Lemma 4.6. Let x ∈ Rd and the function f : y ∈ Rd 7→ ‖x− y‖. Let S be a finite union
of balls with a hole H, and consider f

∣∣
H

the restriction of f to H. Given these assumptions,
then f

∣∣
H

only achieves its maximum at vertices of ∂S.

Proof. We proceed by contradiction. Let u ∈ H such that f
∣∣
H

(u) is a maximum of f
∣∣
H
,

and assume (by contradiction) that u is not a vertex of ∂S. First, note that we necessarily
have u ∈ ∂H. Let S be a finite collection of balls such that S =

⋃
S and consider B =

{b ∈ S | u ∈ b}. B locally describes S around u. We can derive a pencil P = aff(B) from
B, its radical sphere s0 = s0(P) contains u. By assumption u cannot be a vertex, hence s0
must have positive radius and have dimensionality at least 1. In other words, s0 is at least
a circle. If we restrict f to s0 ∩ ∂H, u still achieves a maximum. It follows that either u is
the global maximum of f

∣∣
s0
, or belongs to the boundary of s0 ∩ ∂H. We claim that the latter

case is impossible. Indeed if u is on the boundary of s0 ∩ ∂H, then there must exist a ball
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b ∈ S such that s0 * ∂b and u ∈ s0 ∩ ∂b. By definition of B, we must however have b ∈ B

and hence s0 ⊆ b, which contradicts the above.

f(u) is a maximum of f over the restricted domain s0. Let c0 be the center of s0 and
r0 > 0 its radius. Consider e the unit vector from c0 towards u, we have u = c0 + r0e. For
h > 0 let yh = c0 + (r0 + h)e. Refer to Figure 4.5 for an illustration in R2. We claim that
‖x− yh‖ > ‖x− u‖, and that if h is small enough then yh ∈ Sc. By Lemma 4.5, such points
yh must belong to H. Indeed, if yh belonged to another connected component of Sc for any
arbitrary small h, this lemma would imply that u is a vertex, which contradicts our initial
assumption. There is thus a neighbourhood of u in which yh ∈ H, but this is impossible
because it contradicts the definition of u as a maximum, which concludes the proof.

Remains to prove our two claims, that is ‖x− yh‖ > ‖x− u‖ and yh ∈ Sc for h

small enough. Let N = {n | c0 + r0n ∈ s0} be the collection of unit directions from the
center c0 to points of the sphere s0, and note that e ∈ N . For n ∈ N we have
‖c0 + r0n− x‖2 = ‖c0 − x‖2 + r20 + 2r0〈c0 − x, n〉. Because u achieves the maximum of f

∣∣
s0
,

necessarily maxn∈N 〈c0 − x, n〉 = 〈c0 − x, e〉. In particular, if n ∈ N then −n ∈ N and it
follows that 〈c0 − x, e〉 ≥ 0. Because yh = u+ he, we have

‖yh − x‖2 = ‖u− x‖2 + h2 + 2h〈u− x, e〉
= ‖u− x‖2 + h2 + 2hr0 + 2h〈c0 − x, e〉
≥ ‖u− x‖2 + h(h+ 2r0)

> ‖u− x‖2

Hence ‖x− yh‖ > ‖x− u‖. By definition, e is a direction in the radical space of the pencil
P = aff(B), therefore yh /∈

⋃
B. Since B locally represents S in the neighbourhood of u, for

h small enough we obtain yh ∈ Sc and our two claims are thus true.

We can finally state the property we needed for the proof of Lemma 4.3 as a corollary.

Corollary 4.7. Let H be a hole of S. Then ∂H contains a vertex of ∂S.

We also state another corollary of Lemma 4.6 that will be useful later on in Section 4.5.

Corollary 4.8. Let H be a hole of S =
⋃

S . Let b ∈ S a ball such that it contributes to the
boundary of H, ∂b ∩ ∂H 6= ∅. Then, there exists a vertex v of ∂S on the boundary of H that
does not lie on ∂b, v ∈ ∂H \ ∂b.

Proof. Denote by V the vertex set of ∂S. By contradiction, suppose that every vertices in
∂H lie on ∂b, V ∩ ∂H ⊆ ∂b. Let c be the center of b and r its radius. Consider the function
f : y ∈ Rd 7→ ‖c− y‖. As per Lemma 4.6, f

∣∣
H

reaches its maximum in V . Let u ∈ H be
such a maximum point, and recall that necessarily u ∈ ∂H. It follows that u ∈ V ∩ ∂H ⊆ ∂b,
and hence ‖c− u‖ = r. Because u is a maximum of f

∣∣
H
, thus for all y ∈ H, ‖c− y‖ ≤ r and

y ∈ b. This implies H ⊆ b ⊆ S, which is absurd.
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c0

x1 x2

u yh

h u + R+e

s0

e

a

c0

x3

x1
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uv yh

h u + R+e
e

b

Figure 4.5 – Illustration for the proof of Lemma 4.6 in R2 when s0 is (a) a 1-sphere or (b) a
0-sphere. For the various (red) points xi, their furthest point in s0 is u. For h > 0, the (blue)
point yh is always further away from xi than u.

4.3.2 Proof of Lemma 4.3

We can finally prove Lemma 4.3.

Proof of Lemma 4.3. Let H = A ∩ Xc. The scheme of the proof is similar to the proof of
Lemma 1.1, with only one extra stage in the middle:

(a) First, we prove that ∂H ⊆ ∂X. For this, we proceed as in the first stage of the proof of
Lemma 1.1.

(b) Second, we prove that H is either empty or an union of holes of X. This is Lemma 4.4.

(c) Last, we prove that H = ∅. For this, we proceed as in the last stage of the proof of
Lemma 1.1, with the only difference being that we pick a point x on ∂H among vertices of
∂X. This is always possible thanks to Corollary 4.7.

In essence, the proof above exploits the structural properties of holes in finite unions of
balls, to reduce the set of boundary points in ∂X that have to be examined to check whether
the inclusion holds. Indeed, steps (a) and (b) only assume that A is bounded, and X is non-
empty. Extending this result (and proof) to other classes of containing shapes X can thus be
done by investigating the nature of the holes for those classes of shapes.
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4.4 Critical balls

For our algorithm, we intuitively want to compute the T -maximal candidates of a partial
T -small (0, ε)-ball approximation B. In order to reach a computational characterization of
these T -maximal candidates, we introduce here the notion of critical ball (Definitions 18 and
19). A critical ball in S is defined by a constraint subset that lies in S̊. The location of critical
balls thus vary depending on the specific constraint used to define them. We show in the next
Section 4.5 that it is possible to define a constraint subset from the partial T -small (0, ε)-ball
approximation B, so that critical balls and T -maximal candidates coincide.

Before giving the formal definition of critical balls, we first have a look at T -small and
T -large components of a medial ball. The properties of these components will indeed be useful
to prove the properties of critical balls.

4.4.1 Fundamental properties of T -small/large components

In order to prove several properties of critical balls, we will rely heavily on the decomposition
of S into C(S, b, i) components. Indeed, we will define these critical balls as T -extremal balls
within a specific family of medial balls. As such, the collection of balls T -smaller than the
critical ball, and likewise that of balls T -larger or T -incomparable, will naturally arise in
the discussion. Knowing some properties of the domain of points they cover, which can be
expressed with the C(S, b, i)’s, will thus be helpful.

Specifically, we want to establish Proposition 4.10 which states that the C(S, b, i)’s are
disjoint within S̊. In general, the C(S, b, i) may not be disjoint themselves because some
degeneracies as in Figure 4.6 may occur. The restriction to S̊ enables us to disregard these
degeneracies, and simplifies the manipulation of sets involving the C(S, b, i)’s.

In order to prove our Proposition 4.10, we first establish a technical lemma. We conclude
this section with two corollaries.

Lemma 4.9. Let S be a finite union of balls whose medial axis is cycle-free. Consider b− and
b+ two medial balls of S. If b̊− ∩ b̊+ is non-empty, then it is included in b̊, for any medial ball
b such that c(b) lies on the path (in MA(S)) from c(b−) to c(b+).

Proof. For this proof, refer to Figure 4.7 for an illustration.

Consider the pencil segment [b−b+], it constitutes a path between b− and b+ in Rd+1.
Because b− and b+ are not interior disjoint, the path c([b−b+]) = [c(b−) c(b+)] lies in the
interior of S. As per Section 4.2, that path can be projected onto a path in the medial axis
of S, π([b−b+]). Because MA(S) is cycle-free, any path in MA(S) connecting c(b−) to c(b+)

must contain the unique shortest path in MA(S) from c(b−) to c(b+). Therefore for any ball
b on that shortest path, there exists a ball b′ ∈ [b−b+] such that π(b′) = b.

Let x ∈ b̊− ∩ b̊+. By Property 2.1, we know that for all b′ ∈ [b−b+], we have pow(x, b′) ≤



116 Chapter 4. Greedy optimal algorithm for (0, ε)-ball approximation

C(S, b,−)

C(S, b,+)

root

x

b−

b+

b

Figure 4.6 – Point x lies on the boundary of S, and belongs to both b− (green) and b+ (blue).
It follows that C(S, b,−) ∩ C(S, b,+) is non-empty.

max{pow(x, b−); pow(x, b+)} < 0. Hence x ∈ b̊′. Additionally, by the properties of the
projection π we know b′ ⊆ π(b′) = b. We thus deduce that x ∈ b̊. Because this holds for every
ball b between b− and b+ in MA(S), and every x ∈ b̊− ∩ b̊+, this concludes the proof.

In essence, Lemma 4.9 affirms that when we split the shape S by removing a medial ball b,
the intersections between balls T-smaller and balls T-greater than b is removed too, meaning
that the remaining C(S, b, i) components are nearly disjoint. When restricted to the interior
of S, these components are indeed disjoint. However some degeneracies can still occur, as in
Figure 4.6, and the C(S, b, i) components may not be disjoint themselves. Formally, we have
the proposition below.

Proposition 4.10 (Disjoint interior components). Let S be a finite union of balls, and
b a medial ball in S. If x ∈ S̊, then x belongs to exactly one of the three subsets C(S, b,−), b,
and C(S, b,+).

Proof. We already know from the definition of C(S, b,−) and C(S, b,+) that they are both
disjoint from b, C(S, b,−)∩ b = ∅ = b∩C(S, b,+). Remains to show that x cannot belong to
C(S, b,−) ∩ C(S, b,+). Assume by contradiction that x ∈ C(S, b,−) ∩ C(S, b,+). First, we
argue that for any medial ball of S that contains x, x must lie on the boundary of that medial
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c2

c1b1

b2

c3

b3

π(b3)

Figure 4.7 – The two balls b1 and b2 (green) have a non-empty intersection. This intersection
is covered by any ball b3 (blue) on the pencil [b1b2], and also by its projection π(b3) (red) on
MA(S).

ball. Then we argue that there exists a medial ball that must contain x in its interior, thus
leading to a contradiction.

Denote by B− the medial balls of S that contain x which are strictly T -smaller than b,
and similarly B+ the medial balls of S containing x that are strictly T -larger than or T -
incomparable to b. Because b and C(S, b,−) ∪C(S, b,+) are disjoint, necessarily x /∈ b. Thus
B+ and B− are disjoint and their union is exactly the medial balls of S that contain x. In
addition because x ∈ C(S, b,−), there exists a medial ball b− ≤T b such that x ∈ b− \ b. We
have b− ∈ B− and thus B− is non-empty. Similarly, B+ is also non-empty.

Let b− ∈ B− and b+ ∈ B+. By Lemma 4.9, we have b̊− ∩ b̊+ ⊆ b̊. If b̊− ∩ b̊+ is non-empty,
this implies b− ∩ b+ ⊆ b. Because x ∈ b− ∩ b+ and x /∈ b, this is impossible. Therefore, b−
and b+ are interior disjoint, they are tangent at point x. In particular, we deduce that for all
medial balls bm of S, we must have x ∈ ∂bm.

Because x ∈ S̊, let r > 0 such that b(x, r) ⊆ S. Let bm be a medial ball of S such that
b(x, r) ⊆ bm. Such a ball always exists because medial balls and inclusion-wise maximal balls
coincide for S. We have x ∈ b̊m, which contradicts the property above. Therefore, x cannot
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belong to both C(S, b,−) and C(, S, b,+), this concludes the proof.

Remark 48. Although we stated the lemma above in terms of C(S, b,−) and C(S, b,+), note
that it actually remains valid when considering the (potentially) more numerous C(S, b, i)’s.

Proposition 4.10 has several interesting consequences. The most straightforward one is
that when restricted to S̊, (or any subset of S̊, like S	ε for instance), the complement of
C(S, b,−), b, and C(S, b,+) is the union of the other two subsets. Because situations as
in Figure 4.6 may arise in general, we shall make extensive use of this result and refer to
Proposition 4.10 when we perform such a complement manipulation.

Proposition 4.10 also enables us to state a refinement of Lemma 4.9 that is not restricted
to the interior of balls:

Corollary 4.11. Let b−, b, and b+ be medial balls in S such that c(b) lies on the path from
c(b−) to c(b+) in MA(S). If b− ∩ b+ 6= ∅, then either b− ∩ b+ ⊆ b, or b− and b+ are tangent
at a vertex of ∂S. In both cases we have b− ∩ b+ ⊆ b ∪ V , where V denotes the vertex set of
∂S.

Remark 49. When b− and b+ are tangent at a vertex of ∂S, the tangency point may or may
not belong to b.

Proof. If b̊− ∩ b̊+ is non-empty, we easily deduce b− ∩ b+ ⊆ b by relying on Lemma 4.9.
Otherwise b− and b+ are interior disjoint. If these two balls intersect, they must thus be
tangent. Denote by u the tangency point of b− and b+. If u ∈ b we are done, otherwise
assume that u /∈ b. Because u ∈ b− \ b, we have u ∈ C(S, b,−). Likewise u ∈ b+ \ b implies
u ∈ C(S, b,+). Hence u ∈ C(S, b,−) ∩ C(S, b,+), by Proposition 4.10 we thus deduce that
u ∈ ∂S. Any local representation of S around u must define a pencil that contains both b−
and b+. These two balls are however tangent at u, the pencil must therefore be parabolic and
u is necessarily a vertex of ∂S.

Conjecture 1. Using notations of the last proof, we conjecture that when b− and b+ are
tangent at a point u, with u /∈ b, then u is a non-simple vertex.

We proved above that u was necessarily a vertex, and that any local representation of S
around u would define a parabolic pencil. In order to obtain the stronger statement that u is
a non-simple vertex of S, we would have to prove that these pencils have dimension exactly 1.
Intuitively, we would deduce that {b−, b+} is a local representation of S around their tangency
point.

4.4.2 Critical ball for a point

Definition 18 (Critical ball for a point). Consider a point x ∈ S̊. Let b be a medial ball
in S such that x ∈ b. We say b is (T -)critical for point x in shape S if equivalently:

(i) b is the T -maximum in the set of balls {b′ medial in S | x ∈ b′}
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(ii) if x ∈ b′, b′ medial in S, then b′ ≤T b

(iii) if b′ >T b, or b′ and b are T -incomparable, then x /∈ b′

(iv) if b′ >T b, then x /∈ b′ ∪ C(S, b′,+)

(v) if x ∈ b′ ∪ C(S, b′,+), then b′ ≤T b or b′ and b are T -incomparable

root

c

b

x

Figure 4.8 – The red ball b is critical for x in S. The green ball contains x but is strictly
T -smaller than b, and is not x-critical. The black and blue balls are strictly T -larger than or
T -incomparable to b, and do not contain x.

Said otherwise, a ball b is critical for x ∈ S if it is the furthest maximal ball along
the orientation of T that still covers x. See Figure 4.8. The following property is pretty
straightforward from the definition of T -larger and T -smaller components.

Property 4.12. Definition 18 is consistent, and for any x ∈ S̊, x always admits one unique
critical ball.

Proof. For the proof, we rely on the properties of the set Fx =
{

c(b) | b medial in S, x ∈ b̊
}
.

Using the projection π from Section 4.2, we argue that Fx is path connected. Indeed consider
b1, b2 such that c(b1), c(b2) ∈ Fx. Because x ∈ b̊1 ∩ b̊2, we know that b1 and b2 are not interior
disjoint. Similarly as in the proof of Lemma 4.9, we can project the pencil segment [b1b2]

onto medial balls of S and obtain a path π([b1b2]). From the properties of π, we easily deduce
that the centers of this path of medial balls are contained in Fx. Thus Fx is path-connected.
Therefore, Fx admits one unique T -maximal element, because Fx ⊆ MA(S) and MA(S) is a
tree. This property suffices to prove the consistency of Definition 18.

Indeed, the series of implication (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) are fairly ob-
vious. In addition, if (v) holds, we easily deduce that b must be T -maximal in Fx =

{b′ medial in S | x ∈ b′}. Due to the remark above, b is actually the T -maximum of Fx and
therefore we reach the last implication (v) =⇒ (i).
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By statement (i) of Definition 18, we know that x ∈ S̊ admits at most one critical ball.
Because x ∈ S̊, there always exists some medial ball bm of S that covers x. Thus Fx is non-
empty, and x always admits a critical ball. This concludes on the existence and unicity of
critical balls.

Following Property 4.12, we can define the function pcrit that maps a point of the interior
to the medial ball critical for that point.

pcrit : S̊ → {b medial in S}
x 7→ b critical for x

Because the notion of critical ball for a point is the basis of the later notion of critical ball
for a set (Definition 19), we dedicate the next few paragraphs to the study of the properties
of balls critical for a point. Eventually, we want some insight on the location of x within the
ball pcrit(x). In other words, we will study pcrit−1 and more precisely, the preimage of a ball
b. This location property will let us establish some equivalence between the various notions
of criticality: criticality for a point, the later criticality for a set, and even criticality across
distinct shapes. This in turn will allow us to simplify the computation of critical balls.

We now investigate the inverse function pcrit−1: given a medial ball b, to what points
x ∈ b will it be critical for, if any? Said otherwise, what is pcrit−1(b)? Notice by statement
(iii) of Definition 18 that we have

pcrit−1(b) =
(
S̊ ∩ b

)
\

⋃
b′>T b or

b′,b T -incomparable

b′ (4.1)

When b is centered at the root of T , we easily deduce pcrit−1(b) = S̊ ∩ b. Assume that
b isn’t at the root of T . We argue that then, pcrit−1(b) is a (possibly empty) union of open
connected circular arcs supported by ∂b. Specifically, because b is not at the root of T , there
exists a medial ball b+ of S such that b+ >T b, and [bb+] is a pencil segment of MA(S). We
claim that pcrit−1(b) =

(
S̊ ∩ ∂b

)
\ b+.

Property 4.13. Let S be a finite union of balls whose medial axis is cycle-free. Let b and
b+ be two medial balls of S such that b <T b+ and [bb+] ⊆ MA(S) is a pencil segment of the
medial axis with no branching. Then

pcrit−1(b) =
(
S̊ ∩ ∂b

)
\ b+

Proof. Let B+ be the collection B+ = {b′ medial in S | b′ >T b, or b′ and b T -incomparable}.
Note that then, Equation (4.1) can be rewritten as pcrit−1(b) =

(
S̊ ∩ b

)
\
⋃

B+. We start by
showing the following equality:

pcrit−1(b) =
(
S̊ ∩ b

)
\

⋃
b<T b′≤T b+

b′
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To prove this, consider b′ ∈ B+. Assume that b′ is not T -smaller than b+, hence it is either
T -larger than or T -incomparable to b+. We can thus apply Corollary 4.11 and deduce that
b∩ b′ ⊆ b+ ∪V , where V denotes the vertex set of ∂S. This yields b \ (b+ ∪ V ) ⊆ b \ b′. Since
V ∩ S̊ = ∅, we can intersect with S̊ which then yields

(
S̊ ∩ b

)
\ b+ ⊆

(
S̊ ∩ b

)
\ b′. Because

b+ ∈ B+, we can thus ignore any b′ ∈ B+ that is T -larger than or T -incomparable to b+,
since they do not restrict

(
S̊ ∩ b

)
\
⋃

B+ anymore than b+ already does. This directly implies
the equality above.

To complete the proof, we now show that b \
⋃
b<T b′≤T b+

b′ = ∂b \ b+. Recall that as per
Property 2.1, the power of an affine combination of balls, is the affine combination of the
powers. Thus for any x ∈ b̊, there exists a ball b′ ∈ ]bb+[ such that pow(x, b′) < 0, and thus
x ∈ b̊′. It follows that b \

⋃
b<T b′≤T b+

b′ ⊆ ∂b. Obviously ∂b ∩ b+ cannot contribute to the left
hand side of the inclusion, thus b \

⋃
b<T b′≤T b+

b′ ⊆ ∂b \ b+. Conversely, every point in ∂b \ b+
are exclusively covered by b in b ∪ (

⋃
B+), as per Section 2.2.2. Indeed we can consider the

power cell pcell(b) of b, it is an affine half-space whose interior covers ∂b \ b+. It follows that
for x ∈ ∂b \ b+ and b′ ∈ ]bb+[, pow(x, b′) > pow(x, b) = 0, and x /∈ b′. Therefore ∂b \ b+ ⊆
b \
⋃
b<T b′≤T b+

b′ and we actually have equality. Finally, pcrit−1(b) =
(
S̊ ∩ ∂b

)
\ b+.

See Figure 4.9 for examples of preimages.

Corollary 4.14. If b is critical for x, then x ∈ (C(S, b,−) ∪ b)◦.

Proof. Consider x ∈ pcrit(b). By definition of critical balls, we must have x ∈ S̊, and there is
r > 0 such that b(x, r) ⊆ S. Because inclusion-wise maximal balls and medial balls coincide
in finite unions of balls, there is some medial ball bm of S such that b(x, r) ⊆ bm, and we
have x ∈ b̊m. Because x cannot belong to any ball T -larger than or T -incomparable to b, it
follows that bm ≤T b and thus bm ⊆ C(S, b,−) ∪ b. Therefore, x must be in the interior of
C(S, b,−) ∪ b, which concludes the proof.

As a closing remark, note that Property 4.13 implies that any medial ball that is not a
leaf of MA(S) will be critical for some points of S. Indeed, when b is not a leaf, then there
exists a ball b− <T b, such that [b−b] is a pencil segment of MA(S). Then, b̊− ∩ (∂b \ b+) is
a non-empty open circular that is included in pcrit−1(b). Conversely, if b is a leaf of MA(S),
it cannot be critical for any point x ∈ S̊. Indeed, we then have ∂b \ b+ ⊆ ∂S and thus
pcrit−1(b) = ∅.

Remark 50. pcrit−1(b) 6= ∅ ⇐⇒ b is not a leaf of MA(S)

4.4.3 Critical ball for a set

With the basics of point criticality now established, we can now move on to the notion of set
criticality. For a subset X ⊆ Rd that admits a T -order, and a non-empty subset Y ⊆ X̊,
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root

b

b+

c

Figure 4.9 – For medial ball b centered at c, we can apply Property 4.13 with ball b+ (blue).
The purple arc is the portion of ∂b covered by b+. The orange arcs are portions of ∂b that
contribute to the boundary of S. Hence pcrit−1(b) is the red arc (excluding its endpoints).
The green-blue arcs are other examples of preimages for the medial balls centered at the center
of the corresponding colour.

consider the following two collections of balls:

Fcover(X,Y ) =
{
b′ medial in X | Y ⊆ b′ ∪ C(X, b′,+)

}
and

Fpcrit(X,Y ) =
{
b′ medial in X | ∃y ∈ Y, b′ critical for y (in shape X)

}
Definition 19 (Critical ball for a set). Let A be a non-empty subset of S̊ and consider a
ball b medial in S. We say b is (T -)critical for A in shape S if equivalently:

(i) b is T -maximal in Fcover(S,A)

(ii) b is T -minimal in Fpcrit(S,A)

Remark 51. A can be closed, open, or neither.

Intuitively, we want to preserve the idea that a ball critical for a set A is the furthest ball
along orientation T that still allows for a covering of A. As such, assume we are sweeping S



4.4. Critical balls 123

with a medial ball b. Ball b becomes critical when we cannot advance further along T without
having some part of A in C(S, b,−). See Figure 4.10 for an illustration of balls in Fcover(S,A),
and Figure 4.11 for balls in Fpcrit(S,A). Figure 4.12 showcases the corresponding critical balls.

root
A

b

(a)

root
A

b

(b)

Figure 4.10 – The two green dashed balls belong to Fcover(S,A), because the set A (orange)
entirely lies within b ∪ C(S, b,+) (green). The centers of balls in Fcover(S,A) are the green
line segments, including their endpoint, except for the root.

root

Figure 4.11 – The two blue dashed balls belong to Fpcrit(S,A), because they are critical for
some points of A (the red circular arcs). The centers of balls in Fpcrit(S,A) are represented
by the blue line segments.

Following Definitions 18 and 19, a ball may be critical for a point or a set. We refer to that
point or set as the constraint of the critical ball. Note that when a set reduces to a singleton,
the two definitions are equivalent.

Remark 52. Consider a constraint A ⊆ S̊ and b critical for A. In many cases, if b is not
centered at the root of MA(S), then b and A are not in “general position” with respect to one
another. That is, an “extremity” of A lies on the boundary of b, or b and A are “tangent”
to one another. When A is a singleton, this is obvious from Property 4.13. In fact, we can
show through the later Property 4.16 that a degeneracy always occurs when the set constraint
satisfies A ⊆ S̊.

§ Outline In the remainder of this section, we first address the consistency of Definition 19,
and prove the equivalence between the two statements (i) and (ii). Following that, we give
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root

c1

c2

c3

b1 ∪ C(S, b1,+)b1

b2

b3

x1

x2

x3

Figure 4.12 – Balls b1, b2, b3 are critical for set A. Note that their centers c1, c2, c3 lie on the
boundary between the centers of Fcover(S,A) (green) and Fpcrit(S,A) (blue). The ball centered
at the root of MA(S) belongs to Fpcrit(S,A) but is clearly not T -minimal, and it does not
belong to Fcover(S,A), it thus is not critical. Note also that xi ∈ pcrit−1(bi) ∩ A and thus bi
satisfies Property 4.16.

again some remarks about the existence and unicity of critical balls for a set. We then conclude
with a third characterization of balls critical for a set, which only holds given some additional
assumption over the subset A. In practice, this characterization is easier to manipulate than
T -extremal balls of Fcover(S,A) or Fpcrit(S,A), and will thus simplify the discussion later on.

§ Consistency of set criticality Before going any further, we first address why statements
(i) and (ii) in Definition 19 are indeed equivalent.

Property 4.15. Definition 19 is consistent.

Proof. Consider bcover ∈ Fcover(S,A) and bpcrit ∈ Fpcrit(S,A), we first argue that (a) either
bcover ≤T bpcrit, or bcover and bpcrit are T -incomparable. Because this holds for every balls
in Fcover(S,A) and Fpcrit(S,A), this also extends to T -maximal balls of Fcover(S,A) and T -
minimal balls of Fpcrit(S,A). We conclude the equivalence by showing that (b) T -minimal
balls of Fpcrit(S,A) belong to Fcover(S,A), while (c) T -maximal balls of Fcover(S,A) also belong
to Fpcrit(S,A).

(a) By definition of Fpcrit(S,A), let x ∈ A such that bpcrit is critical for x. By statement (v)
of Definition 18, a medial ball b′ may only satisfy x ∈ b′ ∪ C(S, b′,+) if it is T -smaller than
or T -incomparable to bpcrit. By definition of Fcover(S,A), we know that x ∈ A ⊆ bcover ∪
C(S, bcover,+). It follows that either bcover ≤T bpcrit, or bcover and bpcrit are T -incomparable.

(b) Assume now that bpcrit is a T -minimal ball for Fpcrit(S,A). We argue that A ⊆ bpcrit ∪
C(S, bpcrit,+). Indeed let x ∈ A, and consider b′ a ball critical for x. We have b′ ∈ Fpcrit(S,A).



4.4. Critical balls 125

Because bpcrit is T -minimal in Fpcrit(S,A), then either bpcrit ≤T b′, or b′ and bpcrit are T -
incomparable. Either way, we have x ∈ b′ ⊆ bpcrit ∪ C(S, bpcrit,+). Because this holds for
every x ∈ A, we deduce A ⊆ bpcrit ∪ C(S, bpcrit,+), and bpcrit ∈ Fcover(S,A).

(c) Now, assume that bcover is a T -maximal ball for Fcover(S,A). If bcover is at the root of T ,
we then have A ⊆ bcover and bcover is critical for every x ∈ A. Hence, bcover ∈ Fpcrit(S,A).
Otherwise, there exists b+ >T bcover such that [bcoverb+] ⊆ MA(S). Consider a medial ball b′

such that bcover <T b′ ≤T b+. Because b′ >T bcover, the T -maximality of bcover in Fcover(S,A)

implies that A * b′ ∪ C(S, b′,+). Let x ∈ A \
(
b′ ∪ C(S, b′,+)

)
and bx a medial ball critical

for x, we have bx ∈ Fpcrit(S,A). Because x ∈ bx and x /∈ b′ ∪ C(S, b′,+), we necessarily have
bx ≤T b′. Because x ∈ bcover∪C(S, bcover,+), and bx is critical for x, either bcover ≤T bx or bcover

and bx are T -incomparable (by statement (v) of Definition 18). We claim that necessarily,
bcover ≤T bx. Indeed, bx cannot be T -smaller than bcover, yet it is T -smaller than b′. The only
medial balls T -smaller than b′ but not bcover must lie on the pencil segment [bcoverb+], all of
which can be T -ordered with respect to bcover. It follows that bcover ≤T bx ≤T b′. Thus for every
b′ between bcover and b+, there exists a ball bx between bcover and b′ in Fpcrit(S,A). We can
thus build a sequence of balls in Fpcrit(S,A) that converges to bcover, thus bcover ∈ Fpcrit(S,A).

Finally the equivalence (i)⇐⇒ (ii) holds.

§ General remarks (existence, unicity/multiplicity, closure) Because a point always
admits a critical ball, and A is non-empty, the two collections of balls Fcover(S,A) and
Fpcrit(S,A) are non-empty, they thus admit T -extremal balls. It follows that any non-empty
set A ⊆ S̊ always has a critical ball. However contrary to a single point x, a set A can very
easily have several distinct critical balls, see Figure 4.12. Indeed recall that as per Prop-
erty 4.12, any point x admits one unique critical ball. But for a set constraint A, it suffices for
Fcover(S,A) or Fpcrit(S,A) to span several T -incomparable branches of the medial axis, and
we immediately obtain several distinct critical balls.

Remark 53. If a set A admits several critical balls, they are all pairwise T -incomparable.

As a remark, note that a non-empty subset A has the same critical balls as its closure A,
assuming that A ⊆ S̊. Indeed we consider medial balls to be closed and thus for any medial
ball b, the subset b∪C(S, b,+) is closed. It follows that the two inclusions A ⊆ b∪C(S, b,+)

and A ⊆ b ∪ C(S, b,+) are equivalent. Hence the two subsets A and A define the same
collection of balls Fcover(S,A) = Fcover(S,A), they thus have the same critical balls.

§ Weak(er) characterization of set criticality Given some mild assumption on the set
A, we argue that a ball b will be critical for the set constraint A if there exists a specific point
x ∈ A such that b is critical for the point constraint x. The existence of that specific point
x implies that in a sense, it is equivalent to be critical for either A or x. This equivalence is
stronger than taking any random point within y ∈ pcrit−1(b). Indeed, as y may not belong to
A, there may be some interferences when A admits several critical balls. With the additional
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property x ∈ A, we can effectively substitute A by a finite collection of points, one per critical
ball. This relationship enables us to reduce set constraints to point constraints, which greatly
simplifies several discussions and considerations later on. Specifically we have the property
below.

Property 4.16. Consider A a non-empty subset of S, with A ⊆ S̊. Then, b is critical for A
if and only if b satisfies both

(1) A ⊆ b ∪ C(S, b,+), and

(2) there exists x ∈ A such that b is critical for x.

Proof. We first show that if a medial ball b satisfies both (1) and (2), then it is critical
for A. Specifically we show that then, b must be T -maximal in Fcover(S,A). Because A ⊆
b ∪ C(S, b,+) by assumption (1), we have b ∈ Fcover(S,A) and b is thus critical for A. Recall
that we have

Fcover(S,A) = Fcover(S,A) =
{
b′ medial in S | A ⊆ b′ ∪ C(S, b′,+)

}
As per (2), let x ∈ A such that b is critical for x, and consider bcover ∈ Fcover(S,A). We have
x ∈ bcover ∪ C(S, bcover,+). Since b is critical for A, we deduce that either bcover ≤T b, or b
and bcover are T -incomparable. Because this holds for every ball of Fcover(S,A), hence b is
T -maximal in Fcover(S,A).

Consider now a ball b critical for A. Then, b necessarily belongs to Fcover(S,A) and it thus
satisfies (1), A ⊆ b ∪ C(S, b,+). We show that b also fulfills (2), there is x ∈ A such that b
is critical for x. If b is centered at the root of T , it is then critical for every point of A and
we are done. Otherwise, there exists a medial ball b+ >T b of S such that [bb+] ⊆ MA(S).
We know that b is T -minimal in Fpcrit(S,A). If b ∈ Fpcrit(S,A), we immediately deduce
that b satisfies (2). Otherwise, there is a sequence of balls (bn) in Fpcrit(S,A) that converges
to b, such that ∀n, bn+1 <T bn. Without loss of generality, we can additionally assume
that ∀n, bn ≤T b+. Let xn ∈ A such that bn is critical for xn, we have xn ∈ pcrit−1(bn).
Let x be a limit point of (xn), we argue that necessarily, x ∈ pcrit−1(b), and thus that b
is critical for x ∈ A. Indeed, note that every bn belongs to the pencil segment [bb+], and
we have pcrit−1(bn) =

(
S̊ ∩ ∂bn

)
\ b+ as per Property 4.13. In addition, we have A ⊆ S̊,

hence there is a positive real r > 0 such that d
(
A, ∂S

)
≥ r. In particular, consider {u, v}

the radical sphere of pencil [bb+], then for all n we have ‖u− xn‖ ≥ r and ‖v − xn‖ ≥ r.
It follows that xn ∈ pcrit−1(bn) \

(
b(u, r) ∪ b(v, r)

)◦ ⊆ ∂bn \
(
b(u, r) ∪ b(v, r) ∪ b+

)◦. As
n goes to infinity, these converge to the closed set ∂b \ (b(u, r) ∪ b(v, r) ∪ b+)◦. Thus x ∈
S̊ ∩ ∂b \ (b(u, r) ∪ b(v, r) ∪ b+)◦ ⊆

(
S̊ ∩ ∂b

)
\ b+ = pcrit−1(b). Hence, x ∈ pcrit−1(b), and b is

critical for x. Therefore b satisfies (2), which concludes the proof.

See Figure 4.13 for a counter-example when the assumption A ⊆ S̊ is not verified. Note
that in the proof above, the assumption A ⊆ S̊ was only used to prove one of the two
implications, we thus also obtain this corollary.
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Corollary 4.17. Let A be a non-empty subset of S and let b be a medial ball of S. If

(1) A ⊆ b ∪ C(S, b,+), and

(2) there exists x ∈ A such that b is critical for x,

then b is critical for A.

u

root

b−

c−

Figure 4.13 – Consider the set constraint A to be the red circle punctured at point u. Every
medial ball except b− (green) is critical for some point of A. In fact b− is the unique T -minimal
ball in Fpcrit(S,A), thus it is critical for A. However, b− isn’t critical for any point in A. Note
that as we approach the center of b−, the point for which the corresponding medial ball is
critical converges to u.

Hence when the constraint set A satisfies A ⊆ S̊, Property 4.16 yields a third equivalent
definition of criticality for A. See Figure 4.12. Every constraint set we consider henceforth
will fulfill the assumption of Property 4.16. As such the underlying strategy we adopt in
Section 4.6 and in Chapter 5 when computing these critical balls revolves around finding this
particular point x ∈ A.

4.5 Critical balls and T -maximal candidates

Using various results of the previous sections, we now explicit the relationship between critical
balls and T -maximal candidates. Recall that in order to compute a (0, ε)-ball approximation
of S, we want to build T -small approximations by computing T -maximal candidates. We
claim and prove in this section that for well chosen constraints, critical balls coincide with
T -maximal candidates.
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§ Intuition and computation Let B be a finite collection of medial balls, and assume
it is a T -small (0, ε)-ball approximation of S. Then, let A be the set A = S	ε \

⋃
B, and

consider a medial ball b of S. We can fairly easily deduce the equivalence between b being
critical for A, and b being a T -maximal candidate for B. Indeed, it suffices to exploit the
properties of balls T -maximal in Fcover(S,A). Consider b ∈ Fcover(S,A). Intuitively, the
condition A ⊆ b∪C(S, b,+) in conjunction with Proposition 4.10 will yield S	ε∩C(S, b,−) ⊆⋃

B. In other words, the collection B ∪ {b} properly covers the erosion of S in its T -small
component. Adding in the T -maximality of critical balls in Fcover(S,A), one could then prove
the equivalence between criticality for A, and T -maximal candidacy for B.

One major caveat of using the set constraint S	ε \
⋃

B directly, is that computation of a
critical ball for such a set is difficult. Instead, we build on Lemma 4.3 to define a smaller set,
for which computation is more easily tractable, and that still fulfills the equivalence between
critical balls and T -maximal candidates. Let A(S, ε,B) be

A(S, ε,B) =
((
∂S	ε

)
\
⋃

B
)
∪
{
v vertex of

⋃
B | ∀Nv neighbourhood of v, S	ε ∩Nv *

⋃
B
}

In other words, A(S, ε,B) is the part of ∂S	ε not yet covered by
⋃

B, plus vertices of
⋃

B

that do not satisfy proper coverage of S	ε in their neighbourhood. Refer to Figure 4.14 for an
illustration of various features in A(S, ε,B). Observe also in Figure 4.14.c that it is mandatory
to include some vertices of

⋃
B in the set A(S, ε,B).

Notice that Lemma 4.3 ensures that:

A(S, ε,B) = ∅ ⇐⇒ B is a (0, ε)-ball approximation

When A(S, ε,B) is non-empty, observe that the closure of A(S, ε,B) lies in S	ε. Thus this
set can be used as a constraint. It also fulfills the conditions of Property 4.16.

The main result of this section is as follows.

Theorem 8. Let B be a partial T -small (0, ε)-ball approximation of S. The T -maximal
candidates to B are precisely the balls critical for A(S, ε,B).

Remark 54. Because B is a partial T -small (0, ε)-ball approximation, we know that
A(S, ε,B) 6= ∅, thus the notion of ball critical for A(S, ε,B) is always well-defined.

§ Outline The remainder of this section is dedicated to the proof of this result. We start
by proving that a ball critical for A(S, ε,B) is a T -maximal candidate, then argue that any
candidate is always T -smaller than some of these critical balls. It follows that the collections
of critical balls and T -maximal candidates thus coincide.

We defer to the later Section 4.6 the explanation as to why computing balls critical for
the set constraint A(S, ε,B) is computationally feasible.
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(a)

root

ε

v

(b)

root

b∗

v

(c)

root

b∗

root

b∗
v

Figure 4.14 – Illustration of A(S, ε,B) (red arcs and point). The set B is composed of the
two green balls. The dark grey area is the part of S	ε covered by

⋃
B, the light grey is

the non-covered part. In (b), ball b∗ (blue) contains all of A(S, ε,B) within b∗ ∪ C(S, b∗,+),
and it is a candidate. The blue area is the additional parts of S	ε that would be covered by
including b∗ in B. Observe in (c) that if vertex v is not properly contained in ball b∗, then b∗
cannot be a candidate to B.

4.5.1 Critical balls are candidates

Let B be a partial T -small (0, ε)-ball approximation, and consider b∗ a medial ball of S such
that for all b′ ∈ B, either b′ <T b∗, or b′ and b∗ are T -incomparable. We have a closer look at
what it means for b∗ to be a candidate ball to B. By definition, b∗ is a candidate with respect
to B if and only if the addition of b∗ to the collection B preserves the covering property of S	ε

in the T -small component, and also strictly increases coverage of S	ε. Let B∗ = B ∪ {b∗}.

Because we know that B is a T -small (0, ε)-ball approximation, any change to the part of
S	ε covered in C(S,B∗,−) must occur within C(S, b∗,−). Indeed, we recall that by definition
we have C(S,B∗,−) = C(S,B,−) ∪ C(S, b∗,−). We can thus disregard everything that
happens in branches T -incomparable to b∗, and can assume without loss of generality that b∗
is the unique T -maximum ball in B∗. In particular, we obtain C(S,B∗,−) = C(S, b∗,−).
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For now we focus on the first property to be verified, S	ε ∩ C(S,B∗,−) ⊆
⋃

B∗.

Proposition 4.18. Consider b∗ critical for A(S, ε,B). Then, S	ε ∩ C(S,B∗,−) ⊆
⋃

B∗.

In order to prove this proposition, we shall rely on results from Section 4.3. Specifically,
we use a variation of Lemma 4.3. First, we argue that the boundary of S	ε ∩ C(S,B∗,−)

belongs to
⋃

B∗. From there, we consider H = (S	ε ∩ C(S,B∗,−)) \
⋃

B∗, that is the part
of S	ε ∩ C(S,B∗,−) not covered by

⋃
B∗. Because S	ε ∩ C(S,B∗,−) is bounded, we can

apply Lemma 4.4 and deduce that H is either empty, or a union of holes of
⋃

B∗. Finally,
we will show that H cannot contain any hole of

⋃
B∗, thus implying H = ∅ and thus that

S	ε ∩ C(S,B∗,−) ⊆
⋃

B∗.

Lemma 4.19. Consider b∗ critical for A(S, ε,B). Then, ∂(S	ε ∩ C(S,B∗,−)) ⊆
⋃

B∗.

Proof. Without loss of generality, it suffices to prove that ∂(S	ε ∩ C(S, b∗,−)) ⊆
⋃

B∗. By
Lemma A.1, we have

∂
(
S	ε ∩ C(S, b∗,−)

)
⊆
(
∂S	ε ∩ C(S, b∗,−)

)
∪
(
S	ε ∩ ∂C(S, b∗,−)

)
Recall that both C(S, b∗,−)∪b∗ and S	ε are closed. In particular, C(S, b∗,−) ⊆ C(S, b∗,−)∪b∗
and S	ε = S	ε. Let γ = ∂S	ε ∩

(
C(S, b∗,−) ∪ b∗

)
and δ = S	ε ∩ ∂C(S, b∗,−), obviously

γ ∪ δ is a superset of the boundary of interest. See Figure 4.15. We successively show that (a)
γ ⊆

⋃
B∗ and (b) δ ⊆

⋃
B∗, thus proving the result.

(a) Recall that ∂S	ε ⊆ S = C(S,B,−)∪ (
⋃

B)∪C(S,B,+), It follows that ∂S	ε, and thus
γ as well, can be split without loss between C(S,B,−) ∪ (

⋃
B) and C(S,B,+). Because B

is a T -small (0, ε)-ball approximation, hence ∂S	ε∩C(S,B,−) ⊆
⋃

B. We thus easily obtain
that

γ ∩
(
C(S,B,−) ∪

(⋃
B
))
⊆
⋃

B

Consider the remaining parts of γ, that is γ \ (C(S,B,−) ∪ (
⋃

B)). By Proposition 4.10, this
coincides with γ ∩ C(S,B,+). Note that this is a subset of A(S, ε,B), since it is included in
∂S	ε\

⋃
B. Thus γ∩C(S,B,+) ⊆ A(S, ε,B)∩

(
C(S, b∗,−)∪b∗

)
. Because A(S, ε,B) ⊆ S̊, it

follows by Proposition 4.10 that A(S, ε,B)∩
(
C(S, b∗,−)∪b∗

)
= A(S, ε,B)\C(S, b∗,+). Since

b∗ is critical for A(S, ε,B), we have A(S, ε,B) ⊆ b∗ ∪ C(S, b∗,+), which implies A(S, ε,B) \
C(S, b∗,+) ⊆ b∗. Therefore,

γ ∩ C(S,B,+) ⊆ A(S, ε,B) ∩
(
C(S, b∗,−) ∪ b∗

)
⊆ b∗

In conclusion,

γ =
(
γ ∩

(
C(S,B,−) ∪

(⋃
B
)))

∪ (γ ∩ C(S,B,+)) ⊆
(⋃

B
)
∪ b∗ =

⋃
B∗

and thus γ satisfies the desired inclusion.
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x

root

b∗

C(S, b∗,−)

γ

δ

Figure 4.15 – Illustration for the proof of Lemma 4.19. The erosion of S is the (light and
dark) grey areas. Consider B to be the two green balls. Then b∗ (red) is critical for A(S, ε,B)

because it is critical for x. Observe that the domain S	ε ∩ C(S, b∗,−) is the dark grey area,
and that its boundary is indeed covered by the two curves γ (blue) and δ (yellow).

(b) Since S	ε ⊆ S̊ we have δ ⊆ S̊ ∩ ∂C(S, b∗,−). We argue that S̊ ∩ ∂C(S, b∗,−) ⊆ b∗.
Indeed let x ∈ S̊ ∩ ∂C(S, b∗,−). If x ∈ b∗, we are done. Assume that x /∈ b∗, and let r > 0

such that b(x, r) ⊆ S \ b∗. There exists some ball bm medial in S such that b(x, r) ⊆ bm.
We claim that bm is either strictly T -larger than, or T -incomparable to b∗. Indeed, if we had
bm <T b∗, then x ∈ b̊m \ b∗ ⊆ C̊(S, b∗,−), which contradicts the definition of x. Because
x ∈ ∂C(S, b∗,−) ⊆ C(S, b∗,−) ∪ b∗, necessarily there exists some ball b− ≤T b∗ such that
x ∈ b−. Since we know that x is in the interior of bm, thus bm and b− cannot be interior
disjoint. We deduce from Corollary 4.11 that b− ∩ bm ⊆ b∗. Specifically this implies x ∈ b∗.
Therefore, δ ⊆ S̊ ∩ ∂C(S, b∗,−) ⊆ b∗ ⊆

⋃
B∗, which concludes the proof.

From the above, S	ε ∩ C(S,B∗,−) has its boundary in
⋃

B∗. Because it is also
bounded, it thus satisfies the conditions of lemma 4.4, from which we deduce that H =(
S	ε ∩ C(S,B∗,−)

)
\
⋃

B∗ is either empty or a union of holes of
⋃

B∗. We now argue that
H must be empty.

Proof of Proposition 4.18. Recall that without loss of generality, we can assume C(S,B∗,−) =

C(S, b∗,−). Suppose for a contradiction that H is non-empty, it is then a union of holes of⋃
B∗. As per Corollary 4.8, the boundary of H must contain a vertex v that does not lie on

∂b∗. This vertex v is also a vertex in ∂
⋃

B. Because v ∈ ∂H, and by definition of v, the
subset S	ε ∩C(S,B∗,−) is not properly included in

⋃
B∗ in the neighbourhood of v. Hence,

v ∈ A(S, ε,B). Since b∗ is critical for A(S, ε,B), it follows that v ∈ b∗ ∪ C(S, b∗,+). Since
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v ∈ S	ε ⊆ S̊, we deduce by Proposition 4.10 that v /∈ C(S, b∗,−). By definition of v, we also
know that v /∈ b∗. Thus, v /∈ C(S, b∗,−) ∪ b∗ ⊇ ∂H, which is absurd. Therefore, H must be
empty.

We now know as per Proposition 4.18 that a ball b∗ critical for A(S, ε,B) will properly
preserve the covering property of S	ε within the T -small component of the collection of balls.
We now address the second property of candidate balls, namely that we must have the strict
inclusion S	ε \

⋃
B∗ ( S	ε \

⋃
B. To do so, consider b∗ critical for A(S, ε,B). We show

that, around a point x that lies in both pcrit−1(b∗) and A(S, ε,B), there exists a part of S	ε

not covered by
⋃

B but covered by
⋃

B∗.

Lemma 4.20. Consider b∗ critical for A(S, ε,B). Then for all x in A(S, ε,B) such that b∗
is critical for x, and for all Nx open neighbourhood of x, we have S	ε ∩Nx *

⋃
B.

Proof. Let x ∈ A(S, ε,B) ∩ pcrit−1(b∗). We distinguish three main cases depending on the
nature of x, see Figure 4.17.

(a) x ∈ A(S, ε,B) is a vertex of
⋃

B. By definition of A(S, ε,B), we immediately deduce
that for every neighbourhood Nx of x, S	ε does not satisfy local inclusion in

⋃
B around x.

(b) x ∈ A(S, ε,B) and x ∈ ∂S	ε \
⋃

B. Because S	ε is closed, it contains its own boundary,
and the existence of x itself suffices to conclude.

(c) x /∈ A(S, ε,B), there exists an infinite sequence of points (xn) ⊆ A(S, ε,B) that converges
to x. Without loss of generality, we can assume that (xn) does not meet the vertices of

⋃
B,

hence (xn) ⊆ ∂S	ε \
⋃

B. For any open neighbourhood Nx of x, we have by definition of (xn)

that (xn) ∩Nx 6= ∅. Therefore, (xn) ∩Nx ⊆ S	ε ∩Nx 6= ∅.

root

y

x

v

Figure 4.17 – In the proof of Lemma 4.20, point v is in case (a), x in case (b) and y in case
(c).
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Corollary 4.21. Consider b∗ critical for A(S, ε,B). Then S	ε \
⋃

B∗ ( S	ε \
⋃

B.

Proof. Recall that S	ε is closed and included within S̊. Therefore by Property 4.16, there
exists some x ∈ A(S, ε,B) such that b∗ is critical for x. Because x ∈ S̊, we deduce by
Corollary 4.14 that x ∈

(
C(S, b∗,−)∪b∗

)◦, and thus there exists an open neighbourhood Nx of
x such that Nx ⊆ C(S, b∗,−)∪b∗. In addition, we know by Lemma 4.20 that S	ε∩Nx *

⋃
B.

By Proposition 4.18 however, we have S	ε ∩ C(S,B∗,−) ⊆
⋃

B∗. In particular,

S	ε ∩Nx ⊆ S	ε ∩
(
C(S, b∗,−) ∪ b∗

)
⊆ S	ε ∩

(
C(S,B∗,−) ∪ b∗

)
⊆
⋃

B∗

To conclude,
⋃

B∗ covers strictly more points of S	ε than
⋃

B does, therefore we have the
desired strict inclusion.

4.5.2 Critical balls are T -maximal candidates

Following Proposition 4.18 and Corollary 4.21, it follows that if b∗ is critical for A(S, ε,B),
then b∗ is a candidate with respect to B. To conclude on the first implication of Theorem 8,
it remains to show that b∗ is T -maximal among candidates to B. This can easily be achieved
as a corollary to previous lemmas.

Corollary 4.22. Consider b∗ critical for A(S, ε,B). Then, b∗ is a T -maximal candidate for
B.

Proof. Recall that Property 4.16 holds and let x ∈ A(S, ε,B) such that b∗ is critical for x.
Assume for a contradiction that there exists a candidate ball b+ to B that satisfies b+ >T b∗.
By criticality of b∗ to point constraint x, we have x /∈ b+. Hence there is a neighbourhood Nx

of x, such that Nx ∩ b+ = ∅. Using Corollary 4.14 we know that x ∈
(
C(S, b∗,−)∪ b∗

)◦, thus
we can adjust Nx so that Nx ⊆ C(S, b∗,−) ∪ b∗ ⊆ C(S, b+,−) ∪ b+, which here simplifies to
Nx ⊆ C(S, b+,−). Indeed, we already have by definition of Nx that Nx ∩ b+ = ∅.

By Lemma 4.20, we know that S	ε ∩ Nx *
⋃

B. As such, let y ∈ S	ε ∩ Nx \
⋃

B.
Because y ∈ Nx ⊆ C(S, b+,−), we have y ∈ S	ε ∩ C(S, b+,−). Since b+ is a candidate to
B, this implies y ∈

(⋃
B
)
∪ b+. However, y /∈

⋃
B, therefore y must belong to b+. Thus

y ∈ Nx ∩ b+ = ∅, which is impossible. It follows that b+ cannot exist, and thus that b∗ is a
T -maximal candidate.

4.5.3 T -maximal candidates are critical for A(S, ε,B)

We now know that balls critical to A(S, ε,B) are necessarily T -maximal candidates to B. To
conclude the proof of Theorem 8, we must still show the reverse property, that is T -maximal
candidates must be critical to A(S, ε,B).

Lemma 4.23. Consider b∗ a T -maximal candidate to B. Then b∗ is critical for A(S, ε,B).
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Proof. We proceed in two steps. We start by showing that b∗ belongs to Fcover(S,A(S, ε,B)),
then that it also belongs to Fpcrit

(
S,A(S, ε,B)

)
. Since a set and its closure have the same

critical balls, this suffices to conclude.

Note that A(S, ε,B) ⊆ S	ε \
⋃

B. Let B∗ = B ∪ {b∗}. Because b∗ is a candi-
date to B, we have S	ε ∩ C(S, b∗,−) ⊆ S	ε ∩ C(S,B∗,−) ⊆

⋃
B∗, that is the por-

tion of S	ε within C(S, b∗,−) is entirely covered by
⋃

B∗. This implies S	ε \
⋃

B∗ ⊆
S \ C(S, b∗,−) ⊆ b∗ ∪ C(S, b∗,+). From the definition of B∗, we can rewrite this last
inclusion as S	ε \

⋃
B ⊆ b∗ ∪ C(S, b∗,+). Because b∗ ∪ C(S, b∗,+) is closed, we fi-

nally obtain A(S, ε,B) ⊆ b∗ ∪ C(S, b∗,+). Therefore b∗ ∈ Fcover
(
S,A(S, ε,B)

)
, where

Fcover
(
S,A(S, ε,B)

)
= {b′ medial in S | A(S, ε,B) ⊆ b′ ∪ C(S, b′,+)}.

Because b∗ is candidate to B, b∗ must contains points of S	ε that are not covered by
⋃

B.
Consider a ball b′ such that b′ >T b∗. By T -maximality of b∗ among candidates, b′ cannot be
a candidate, and b∗ \ b′ must still contain some points of S	ε \

⋃
B. Because this holds for

every b′ >T b∗, we deduce the existence of a point x ∈ S	ε \
⋃

B ∩ pcrit−1(b∗). We claim
that x ∈ A(S, ε,B). By Corollary 4.14 we know that x lies in (C(S, b∗,−) ∪ b∗)◦. Let Nx be
a neighbourhood of x such that Nx ⊆ C(S, b∗,−) ∪ b∗. We distinguish three cases depending
on the nature of x.

(a) x ∈ (S	ε)
◦. First, we will show that x must be a vertex of

⋃
B. From here, by definition

of x,
⋃

B does not locally cover S	ε in the neighbourhood of x, which enables to conclude
that x ∈ A(S, ε,B).
Because x is in the interior of S	ε, we can choose the neighbourhood Nx such that Nx ⊆ S	ε.
Since Nx ⊆ C(S, b∗,−) ∪ b∗ and b∗ is a candidate to B, we must have Nx ⊆

⋃
B∗. Let Bx

the collection of balls in B∗ that contain x. By definition of x, we know that x ∈ ∂b∗ and
x ∈ (

⋃
B)c. Hence for all b ∈ Bx we have x ∈ ∂b, and Bx defines a pencil. In addition, Bx

locally represents
⋃

B∗ in the neighbourhood of x, and we can enforce Nx ⊆
⋃

Bx. Any ball
through x must thus be locally contained in

⋃
Bx, and we deduce from Property 2.40 that

?
coni(x, c(Bx)) = R2. This implies that Bx \ {b∗} is non-empty, and defines either an elliptic
pencil of dimension 1, or a parabolic pencil. In both cases, the degree of x in ∂

⋃
B is null,

and x is a vertex of
⋃

B.

(b) x ∈ ∂S	ε and there is a neighbourhood Nx of x such that Nx ∩ ∂S	ε ⊆
⋃

B. We show
again that x must be a vertex of

⋃
B that belongs to A(S, ε,B). We have x ∈ Nx ∩ ∂S	ε,

thus x belongs to
⋃

B. From the definition of x, we also know that x ∈ (
⋃

B)c, therefore
x ∈ ∂

⋃
B. Let Bx be a (cardinal minimum) collection of balls in B that locally represents⋃

B around x. We must show that Bx defines either an elliptic pencil of dimension 1, or
a parabolic pencil. Recall that as per Lemma 4.5, if every neighbourhood of x meets two
locally distinct connected components of (

⋃
B)c, then we know that x is a vertex of

⋃
B. See

Figure 4.18.a. We address the case where (
⋃

B)c only has one unique connected component
in Nx. Refer to Figure 4.18.b for an illustration. Because

⋃
B covers all of ∂S	ε in Nx, that

connected component is either entirely in the interior of S	ε, or entirely in the interior of
(S	ε)

c. In the latter case, it would imply that
⋃

B entirely covers S	ε in Nx, which would
contradict the definition of x. Thus necessarily, that connected component is in the interior
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of S	ε. This in turn implies that (S	ε)
c ∩Nx ⊆

⋃
Bx. Now since b∗ is a candidate, and by

definition of Nx, we know that S	ε ∩Nx ⊆ b∗ ∪ (
⋃

Bx). It follows that Nx ⊆ b∗ ∪ (
⋃

Bx) and

that
?

coni(x, {c(b∗)} ∪ c(Bx)) = R2. As in the previous case, we deduce that the degree of x
in ∂

⋃
B is null, and that x is a vertex.

(c) x ∈ ∂S	ε and in every neighbourhood Nx of x, we have Nx ∩ ∂S	ε *
⋃

B. Thus x
belongs to the closure of (∂S	ε) \

⋃
B, which is a subset of A(S, ε,B).

In all three cases, we have x ∈ A(S, ε,B). Since b∗ is critical for x, we finally obtain b∗ ∈
Fpcrit

(
S,A(S, ε,B)

)
, which concludes the proof

x

∂S	ε

⋃
B

(a)

x

∂S	ε

⋃
B

(b)

Figure 4.18 – Schematic illustration for the proof of Lemma 4.23. In the neighbourhood of x,⋃
B is locally represented by the blue balls, and its complement admits (a) several connected

components, or (b) one unique connected component.

In conclusion, we have just proved Theorem 8. As a consequence, we now have a charac-
terization of T -maximal candidates that is much more suited for an algorithmic computation.

Remark 55. Note that if b1 and b2 both are critical for A(S, ε,B), then b2 remains critical for
A(S, ε,B ∪ {b1}). Indeed, recall first that when two balls are critical for the same set, they
are T -incomparable, as per Remark 53. Thus b2 can potentially remain critical. Then, notice
that there must exist x2 ∈ pcrit−1(b2) ∩ A(S, ε,B). Because b1 and b2 are T -incomparable,
we have by definition of pcrit−1 that x2 /∈ b1. In addition, we have b1 ⊆ b2 ∪ C(S, b2,+). It
follows that x2 ∈ A(S, ε,B) \ b1 ⊆ A(S, ε,B ∪ {b1}) ⊆ A(S, ε,B) ∪ ∂b1 ⊆ b2 ∪ C(S, b2,+).
Thus b2 remains critical for A(S, ε,B ∪ {b1}).

4.6 Computing critical balls

Our proposed algorithm (that we detail in Section 4.7) requires the ability to compute critical
balls for various constraints. In this section we explain how this computation can always
be done with a few simple predicates. We show in the later Chapter 5, and in a broader
context, that those predicates can be implemented, and focus here on the reduction to those
predicates. First we show that we can reduce to elliptic 1-pencils in section 4.6.1. We then
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detail in sections 4.6.2 and 4.6.3 how we can break down the set constraint of interest, that is
A(S, ε,B), into simpler primitive constraints, and how to process these primitives.

4.6.1 Reduction to elliptic pencils

We prove in this section that given a non-empty subset A in S̊, finding a medial ball b of
S that is critical for A can be accomplished by looking for critical balls in specific pencil
segments. This is due to the fact that the medial axis is a collection of pencil segments, and
that looking for a critical ball can be performed locally. Indeed, assume we are looking for
a critical ball to some constraint set A within [b−b+], a specific pencil segment of the medial
axis. One first necessary condition to verify, would be that there are no critical balls to A
within the balls T -smaller than the pencil segment. Assume that this is the case, and denote
by P the (elliptic) pencil generated by b− and b+. Then, we claim that it is equivalent to
search the range [b−b+[ (b− inclusive, b+ exclusive) for a ball critical to A in the whole shape
S, or to search that range for a ball critical to a certain restriction of A, in the shape

⋃
P.

Note that the balls in [b−b+] are part of the medial axis of both shapes, and we make two
assumptions in our previous claim: (1) segment [b−b+] does not contain any branching, and
(2) the orientation of the medial axes agree on segment [b−b+].

More formally, by no branching we mean that for all balls b in the open range ]b−b+[, the
center of b must have degree 2. Said otherwise, segment [b−b+] must not contain any vertex of
T in its interior. This immediately implies that b− and b+ can be ordered with respect to T .
Assume for now that we have b− ≤T b+. The segment [b−b+] uniquely defines a 1-pencil P on
which we can define a total order TP derived from T , simply imposing that b− ≤TP b+. Thus,
any two balls of P can be ordered according to TP , and if the two balls are on the segment
[b−b+] their order according to T is the same as their order according to TP . See Figure 4.19
for an illustration.

c(P)

b1

b2

b−
b+

Figure 4.19 – The order TP on P is inherited from the order T defined on the medial axis of
the three balls (in blue). We have b1 ≤TP b− ≤TP b2. Additionally, we have both b− ≤T b+
and b− ≤TP b+.

Then, we have the following.
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Lemma 4.24. Let A be a non-empty subset of S̊. Let [b−b+] be a pencil segment of MA(S)

with no branching and denote by P the 1-pencil spanned by b− and b+. Assume that there are
no critical balls for A among the balls strictly T -smaller than b−. Then a ball b on [b−b+[ (b−
inclusive, b+ exclusive) is critical for A in S if and only if it is critical for A ∩ (b− ∪ b+) in⋃
P.

Proof. Recall that for a shape X that admits a partial T -order, and a subset Y ⊆ X, we
denote by Fpcrit(X,Y ) the collection of balls

Fpcrit(X,Y ) =
{
b′ medial in X | ∃y ∈ Y, b′ critical for y

}
Let A′ = A ∩ (b− ∪ b+). We prove the series of equalities

Fpcrit(S,A) ∩
{
b′ medial in S | b′ <T b+

}
= Fpcrit(S,A) ∩ [b−b+[ (4.2)

= Fpcrit

(⋃
P, A′

)
∩ [b−b+[ (4.3)

= Fpcrit

(⋃
P, A′

)
∩
{
b′ medial in

⋃
P | b′ <TP b+

}
(4.4)

Hence, if one of the collection of balls Fpcrit(S,A) or Fpcrit(
⋃
P, A′) admits a T -minimal ball

in the range [b−b+[, then that ball is also T -minimal for the other collection, which concludes
the proof.

For the first equality (4.2), recall that we assumed there were no ball critical for A that
are T -smaller than b−, and no branching of MA(S) along the pencil segment [b−b+]. Hence
any potential critical ball for A strictly T -smaller than b+ must lie in [b−b+[.

For the second equality (4.3), consider b ∈ [b−b+[. Note that b is medial in both S and⋃
P. We proceed by double inclusion. For the first inclusion, suppose that additionally b ∈

Fpcrit(S,A). Then let x ∈ A such that b is critical for x. We have x ∈ b ⊆ b−∪b+, thus x ∈ A′.
We show that b must be critical for x in

⋃
P, which thus implies that b ∈ Fpcrit(

⋃
P, A′).

Let bP medial in
⋃
P such that bP >TP b. Let b′ ∈ [b−b+] such that b <TP b′ ≤TP bP .

Note that we still have b <T b′ ≤T b+ using the T -order over S. By criticality of b for
x in S, we know by statement (iv) of Definition 18, that x /∈ b′ ∪ C(S, b′,+). Because
x ∈ b we thus obtain x ∈ b \ b′. By definition of b′, we have b <TP b′. By definition of
T -small components in

⋃
P and Property 4.1, we have b\ b′ ⊆ C(

⋃
P, b′,−) ⊆ C(

⋃
P, bP ,−).

Therefore x ∈ C(
⋃
P, bP ,−). Although Proposition 4.10 does not include shapes defined by

a complete pencils such as
⋃
P, we actually have the stronger property that C(

⋃
P, bP ,−),

bP , and C(
⋃
P, bP ,+) are pairwise disjoint for any bP ∈ P. This can easily be proved with

Property 2.1. Thus x /∈ bP ∪ C(
⋃
P, bP ,+). Because this holds for every ball bP >TP b,

we deduce by statement (iv) of Definition 18 that b is critical for x in
⋃
P. In conclusion,

b ∈ Fpcrit(
⋃
P, A′).

Conversely, suppose now that b ∈ Fpcrit(
⋃
P, A′). Let x ∈ A′ such that b is critical for x

in
⋃
P. Since A′ ⊆ A, x ∈ A. We show that b is critical for x in S, which implies that

b ∈ Fpcrit(S,A). Let bS a medial ball of S such that bS >T b. As above, consider b′ ∈ [b−b+]
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such that b <T b′ ≤T bS . A similar reasoning yields x ∈ b \ b′ ⊆ C(S, b′,−) ⊆ C(S, bS ,−).
Because we assumed A ⊆ S̊, thus x ∈ S̊ and Proposition 4.10 implies that x /∈ bS∪C(S, bS ,+).
Because this is true for every bS >T b, we deduce that b is critical for x in S and therefore
that b ∈ Fpcrit(S,A). Equality (4.3) immediately follows.

For the third and last equality (4.4), recall that the medial axis of
⋃
P is the centers’ space

of pencil P. Denote by c+ (resp. c−) the center of b+ (resp. b−). Equivalently, the medial axis is
the line through c− and c+. Taking into account the orientation and partial order TP , said line
is oriented from c− towards c+. Hence the collection of balls TP -smaller than b+ corresponds to
balls centered on the half-line originating from c+ and going through c−. Excluding the point
c+ yields the collection of balls strictly TP -smaller than b+. Consider now a ball b ∈ P strictly
TP -smaller than b−. By contradiction, suppose that b ∈ Fpcrit(

⋃
P, A′). Then, let x ∈ A′ such

that b is critical for x in
⋃
P. We have x ∈ pcrit−1(b) = b \

⋃
b′>T b

b′ ⊆ b \ (b− ∪ b+) ⊆ b \A′.
Hence x /∈ A′ which is absurd. Therefore, Fpcrit(

⋃
P, A′) ⊆ {b′ | b′ ≥T b−}, which easily yields

equality (4.4).

Owing to the lemma above, looking for a ball critical for A within [b−b+[ can be reduced
to looking for a ball critical for A ∩ (b− ∪ b+) in the complete pencil P, and then verifying
that the critical ball lies within the range [b−b+[. The two assumptions required to apply the
lemma and perform this reduction, are that the medial axis must locally be a path without
branching, and that there must be no critical ball in the T -smaller parts of the medial axis.
In practice, both of these assumptions can easily be fulfilled. Because the medial axis of a
finite union of balls is a finite collection of pencil segments, it is sufficient to process each of
these pencil segments to avoid any branching within the interior of the segment. Because the
pencil segments incident to the leaves of the medial axis necessarily satisfy the “no T -smaller
critical ball” assumption, there always exist some pencil segment we can apply the reduction
to. Because the lemma states an equivalence, we then know whether those pencil segments
contain a critical ball or not. If they contain one such critical ball, then any other pencil
segment that is T -larger cannot contain a critical ball. If they do not contain a critical ball,
then we know, up to medial axis branching, that the incident pencil segment of T -larger balls
thus satisfies the conditions of Lemma 4.24. Hence, by processing the pencil segments of the
medial axis in an appropriate order and carefully applying the reduction, it is possible to
compute every critical ball of a given constraint.

§ Topological ordering. Because branching of the medial axis must still be taken into
account, this motivates sweeping the medial axis in a topological order. With our partial
ordering on MA(S), a topological order of its vertices (v1, . . . , vn+1) is such that for i ≤ j,
then either vi ≤T vj , or vi and vj are T -incomparable. Besides the root, each vertex is
incident to exactly one pencil segment composed of T -larger points of MA(S), hence any
topological ordering of vertices induces an ordering of pencil segments ([v1v̂1], . . . , [vnv̂n]),
where v̂i ∈ {v1, . . . , vn+1}. This ordering of pencil segments thus satisfies that for i < j, then
either vi <T v̂i ≤T vj <T v̂j , or v̂i and vj are T -incomparable.

This property of topological orders is in particular suited to the computation of critical
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balls. Indeed, when looping over pencil segments in a topological order, we are guaranteed
to have processed every pencil segments T -smaller than the current one. Using a topological
order thus naturally helps in satisfying and verifying the conditions of Lemma 4.24.

Remark 56. Note that this lemma states an equivalence when looking for a critical ball in a
range that exclude the T -large endpoint. After searching every pencil in that manner, we will
have inspected every medial ball, except for the root of T itself.

4.6.2 Simplifying the constraint set A(S, ε,B)

Given a T -small (0, ε)-ball approximation B, we essentially want to investigate each pencil
segment of the medial axis of S in a topological order, and determine whether or not they
contain a T -maximal candidate to B, that is a ball critical for A(S, ε,B). We show in this
section that when processing a given pencil segment, we can ignore a large part of A(S, ε,B)∩
∂S	ε and only focus on points that are, in a certain sense, close to the pencil segment.

Note that it is very natural to be able to ignore most of A(S, ε,B). Because the as-
sumption A(S, ε,B) ⊆ S̊ holds, we already know by Property 4.16 that there exists a point
x ∈ A(S, ε,B) such that criticality for A(S, ε,B) and criticality for x will be equivalent within
the local branch. To take into account the branching of the medial axis, it is sufficient to take
one point for each ball that is critical for the complete set constraint, which yields a finite
number of singletons. Thus we can theoretically reduce a set with infinitely many points to
a discrete, finite set. In practice, one major difficulty is to identify, a priori, to what points
can a given set be reduced to. Precisely pinpointing these points prior to computation seems
difficult, it is however easy to narrow down their location. Indeed, assume b is critical for
A(S, ε,B). Because Property 4.16 holds, we know there exists x ∈ A(S, ε,B)∩pcrit−1(b). In
particular, if b+ >T b, then x ∈ C(S, b+,−) ∪ b+. By criticality of b for x, we have x /∈ b+
and we actually have x ∈ C(S, b+,−). It follows that when looking for a critical ball within
the range [b−b+[, we can consider only A(S, ε,B) ∩ C(S, b+,−), or equivalently by Proposi-
tion 4.10 A(S, ε,B) \

(
b+ ∪C(S, b+,+)

)
. See Figure 4.20. In this section, we describe how we

can simply obtain a superset of A(S, ε,B) ∩ C(S, b+,−).

§ Overview We previously investigated the boundary of S	ε in Section 3.2 and showed that it
can be described as a finite collection of circular arcs. Our strategy to simplify the constraint
set A(S, ε,B) is to ignore specific arcs of ∂S	ε. Indeed the constraint set is composed of
portions of arcs of ∂S	ε, as well as vertices of

⋃
B. To determine which arcs can be ignored

and which arcs should be taken into account, we map these arcs to pencil segments and vertices
of MA(S). We argue that the mapping we introduce enables us to extend the partial T -order
to these arcs, and that we can still obtain balls critical for A(S, ε,B) after simply filtering out
arcs that are T -larger or T -incomparable than a specific threshold.
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c(b−)

c(b)

A(S, ε,B)

A(S, ε,B) ∩ C(S, b+,−)

Figure 4.20 – If b is critical for A(S, ε,B), the set of constraints can be reduced to A(S, ε,B)∩
C(S, b+,−) (blue arcs and point).

§ Projection mapping and arc ordering Relying on the mapping π introduced in Sec-
tion 4.2, we can project any arc e of ∂S	ε onto medial balls of S. Indeed we have e ⊆ S̊

so its projection π(e) is well defined, and is a continuous path. We immediately obtain that
e ⊆

⋃
π(e). Because the centers of π(e) satisfy c(π(e)) ⊆ MA(S), we can subdivide π(e) ac-

cording to what pencil segments and vertices of MA(S) it meets, which induces a subdivision
of e. Those subdivisions can be T -ordered.

One possibility is to compute the subdivision of every arc e of the boundary ∂S	ε. We
can then directly work with those subdivided arcs, and directly use the extended T -order of
these subdivided arcs. Due to the properties of the projection π, this computation is nearly
equivalent to verifying the non-empty intersections between arc e and the face joins. Indeed, a
face join may encompass several pencil segments and vertices of MA(S), it is thus necessary to
subdivide face joins to retrieve the subdivided arcs. See for instance the face join represented
in Figure 4.4, it covers three vertices and two pencil segments of the medial axis. In fact, our
description of the boundary of S	ε implies that one arc of the boundary is always contained
within a single face join, because each arc originates from a single face of ∂S.

Alternatively, it is sufficient to simply remember which (subdivided) face joins are crossed
over by arc e. This lets us work with the original arcs of ∂S	ε, without the need to explicitly
compute each subdivision of those arcs. Specifically, it is sufficient to remember for each pencil
segment and vertex of MA(S), which circular arcs of ∂S	ε are projected onto those pencil
segments and vertices.

Then, consider b a medial ball of S centered at a vertex of the medial axis MA(S). Let e
be a circular arc of ∂S	ε. We say that e is T -smaller than b, and denote e ≤T b, if there is
some ball bm ∈ π(e) such that c(bm) ≤T c(b).

Remark 57. The definition above can extend to any ball b medial in S, instead of being
restricted to simply balls centered at vertices of MA(S). That level of detail will not be
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necessary for what follows.

§ Filtering (arc) constraints Consider a pencil segment [b−b+] of MA(S). Suppose there
exists bcrit, critical for A(S, ε,B), with b− ≤T bcrit <T b+. Then bcrit must be critical for
A(S, ε,B) ∩ C(S, b+,−). In order to simplify the computation of critical balls, we now show
that there is a simple way to find a superset of A(S, ε,B) ∩ C(S, b+,−).

Let V (S, ε,B, b+) be the collection of vertices of
⋃

B that belong to both A(S, ε,B)

and C(S, b+,−), and let E (S, ε,B, b+) the collection of circular arcs of ∂S	ε \
⋃

B that are
T -smaller than b+,

E (S, ε,B, b+) =
{
e ⊆

(
∂S	ε

)
\
⋃

B | e circular arc, e ≤T b+
}

Assuming that ∂S	ε has been pre-processed in advance, it is easy to determine E (S, ε,B, b+)

as we loop over the list of pencils in topological order. We let A(S, ε,B, b+) be the union of
every arcs and vertices in E (S, ε,B, b+) and V (S, ε,B, b+),

A(S, ε,B, b+) =
(⋃

E (S, ε,B, b+)
)
∪
(⋃

V (S, ε,B, b+)
)

Lemma 4.25. Let B be a T -small (0, ε)-ball approximation of S. Consider a pencil segment
[b−b+], and a medial ball b with b− ≤T b <T b+. Then b is critical for A(S, ε,B) if and only
if:

• A(S, ε,B, b+) 6= ∅, and

• b is critical for A(S, ε,B, b+).

Remark 58. If the union happens to be empty, then the subset A(S, ε,B) does not admit any
critical ball in the range [b−b+[.

Proof. We argue that A(S, ε,B, b+) is a superset of A(S, ε,B)∩C(S, b+,−), which concludes
the proof. Indeed, recall that A(S, ε,B) is composed of some vertices of

⋃
B, and (∂S	ε) \⋃

B. By definition, V (S, ε,B, b+) contains every vertices of
⋃

B in A(S, ε,B)∩C(S, b+,−).
Remains to prove that E (S, ε,B, b+) covers (∂S	ε) ∩ (

⋃
B)c ∩ C(S, b+,−).

Consider a circular arc e of ∂S	ε. We show that if e /∈ E (S, ε,B, b+), then e ⊆ b+ ∪
C(S, b+,+). Thus we have (∂S	ε) \ (

⋃
E (S, ε,B, b+)) ⊆ b+ ∪ C(S, b+,+), which implies by

Proposition 4.10 that (∂S	ε) ∩ C(S, b+,−) ⊆
⋃

E (S, ε,B, b+). Let x ∈ e and its projection
π(x) ∈ MA(S). Denote by bx the medial ball of S centered at π(x). Since e /∈ E (S, ε,B, b+),
we have either b+ <T bx, or b+ and bx are T -incomparable. Therefore, x ∈ b+ ∪ C(S, b+,+).
This applies for every x ∈ e, thus e ⊆ b+ ∪ C(S, b+,+).

The lemma above suggests that when computing a critical ball, we can maintain a local set
of constraints that is specific to the branch of the medial axis currently being processed. This
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local constraint set is, potentially, much smaller than the complete set A(S, ε,B). Because
we can decompose ∂S	ε into circular arcs, A(S, ε,B) is a union of arcs and singletons. As
we shall see in the following section, it is convenient to process these arcs and singletons
separately. Having fewer arcs to process per pencil will thus be beneficial.

4.6.3 Reducing to primitive constraints

As per the previous sections, the constraint sets whose critical balls we have to compute
can always be described as a finite union of circular arcs (with or without their endpoints)
and singletons. We now argue that it is possible to process each of these primitive arcs and
singletons separately. The balls critical for the overall union can indeed all be deduced from
the balls critical for the individual primitive constraints. Formally, we rely on the following.

Lemma 4.26. Let A1, . . . , Ak be k subsets of S̊ and consider A =
⋃k
i=1Ak. Then a medial

ball b is critical for A if and only if it is T -minimal among the collection of balls critical for
any Ai, 1 ≤ i ≤ k.

Proof. Recall that for any subset X ⊆ S̊, we have

Fpcrit(S,X) = {b medial in S | ∃x ∈ X, b critical for x}

By definition, a ball b is critical for X if and only if it is T -minimal in Fpcrit(S,X). Notice that
Fpcrit(S,A) =

⋃k
i=1 Fpcrit(S,Ai) =

⋃k
i=1 Fpcrit(S,Ai). The property immediately follows.

When looking for a ball critical for A =
⋃k
i=1Ai within a pencil segment [b−b+], we can

thus look for the balls critical for the subsets Ai in that range. There are at most k such
critical balls, and their T -minimum will be critical for A. If none of the k subsets yield a
critical ball, then A does not admit a critical ball within the pencil segment. Because the
constraints subsets we have to handle are finite unions of circular arcs and singletons, we will
see in Chapter 5 how to compute critical balls for these two types of constraints.

4.7 Algorithm

We are now ready to specify our greedy algorithm. Recall that we want to build a sequence of
T -small (0, ε)-ball approximations by computing T -maximal candidates. From the previous
sections, this can be done by computing critical balls for the appropriate local constraints,
and these local constraints can always be decomposed into a finite union of singletons and
circular arcs.
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4.7.1 Specification

Our proposed algorithm is based on a loop over the collection of all pencil segments of MA(S)

in a topological order (as specified in Section 4.6.1). As we loop over the pencil segments,
we maintain a collection of medial balls B which is a T -small (0, ε)-ball approximation, while
looking for T -maximal candidates to add to said collection.

When we process a pencil segment, we compute a collection of primitive constraints to pass
on to the next incident pencil segment. These primitives are as specified by Lemma 4.25. A
ball in the pencil will be a T -maximal candidate to B if and only if it is critical for (the union
of) these primitive constraints (Lemma 4.26). If no critical ball is found within the currently
processed pencil segment, the set of constraints it will pass on to its incident T -larger pencil
segment, is the collection of all constraints it itself inherited from incident T -smaller pencil
segments, plus new constraints specific to the current pencil segment. When, a critical ball
b is found, we require an additional updating step. We clip constraint primitives against the
complement of b. We also investigate the new vertices of (

⋃
B)∪ b, and test if S	ε is properly

covered by the collection of balls in their neighbourhoods. If not, the infringing vertices are
added as primitive constraints. The overall approach is summarized in Algorithm 1. See
Figure 4.21.

Algorithm 1 Greedy (0, ε)-ball approximation
Input: A finite union of balls S
Output: A (0, ε)-ball approximation B of S
1: Compute a topological ordering of MA(S)

2: Compute ∂S	ε and find the T -order of its circular arcs
3: B ← ∅
4: Loop over pencil segments of MA(S) in topological order
5: Retrieve incident constraints
6: Include pencil specific constraints
7: Search for a critical ball in the pencil
8: If a critical ball b is found then
9: B ← B ∪ {b}

10: Update constraints
11: end If
12: end Loop
13: If the set of constraints is non-empty then
14: B ← B ∪ {broot}
15: end If
16: Return B

4.7.2 Complexity

As per the previous sections, we know that Algorithm 1 will find T -maximal candidates, and
will eventually converge to a (0, ε)-ball approximation of S. If the algorithm terminates, we
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Figure 4.21 – Illustration of the different steps of the algorithm.

have the guarantee that it has found a (0, ε)-ball approximation of S, but we do not yet know
whether it will terminate (in finite time). We show that termination will occur in polynomial
time.

Theorem 9. Under the Real-RAM model, Algorithm 1 terminates in time polynomial with
respect to |MA(S)|.

Proof. Let n = |MA(S)|. First, we show that Algorithm 1 outputs a collection Balgo with size
at most 2n, and then that the complexity is polynomial in n.

For any partial T -small (0, ε)-ball approximation B, let b be T -maximal in B. There is
a unique pencil segment incident to b that contains balls T -larger than b. Let b+ >T b be
the T -large endpoint of that pencil segment. We show that b+ always preserves the coverage
property of S	ε in the T -small component. Although b+ may not strictly increase the coverage
of S	ε, and thus may not be a proper candidate to B, this still implies that there can be at
most two medial balls from the same pencil segment in Balgo. Thus |Balgo| ≤ 2n.
Let B+ = B∪{b+}. Because b and b+ belong to the same pencil, C(S,B+,−) and C(S,B,−)

only differ in the domain of S covered by the pencil segment [bb+]. This implies the equalities(
C(S,B+,−)∪(

⋃
B+)

)
\C(S,B,−) =

(
C(S, b+,−)∪b+

)
\C(S, b,−) =

⋃
b≤T b′≤T b+

b′ = b∪b+.
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In particular, C(S,B+,−) ⊆ C(S,B,−) ∪ b ∪ b+. Hence, we obtain

S	ε ∩ C(S,B+,−) ⊆ S	ε ∩
(
C(S,B,−) ∪ b ∪ b+

)
⊆
(⋃

B
)
∪ b ∪ b+ =

⋃
B+

thus b+ preserves the coverage of S	ε in the T -small component of collection B. Therefore,
we indeed have |Balgo| ≤ 2n.

We now analyse the complexity. Computing a topological ordering [Cor+01] is linear in
n. The boundaries of S and S	ε have a (worst case) combinatorial complexity quadratic in
n. It follows that there can be at most |∂S| × |MA(S)| = O(n3) distinct subdivided face
joins. Figuring out the T -order over ∂S	ε thus takes polynomial time. Enforcing a single
constraint takes constant time (see Chapter 5), hence the time spent to search for a critical
ball depends on the number of constraints. This number of constraints cannot exceed the
combinatorial complexity of the arrangement of the boundaries of S	ε and

⋃
Balgo. The

latter is (worst case) quadratic in the size of Balgo, which is itself linear in n. Hence the
number of constraints is at worst quadratic in n. Regarding the update procedure, clipping
the constraints is clearly linear in the number of constraints. Recall that in Section 3.3.1
we explained how to capture S	ε through an arrangement. Using a similar approach with
arrangements, we can investigate which vertices of ∂

⋃
Balgo need to be taken as constraint

or not. Note that the number of curves (and circles) to include in that arrangement is again
linear with respect to n, hence using that particular structure implies polynomial costs. Thus,
Algorithm 1 is overall polynomial in n.

4.7.3 Optimality

In order to prove that our algorithm reaches an optimal, we rely on the lemma below.

Lemma 4.27. Consider a (0, ε)-ball approximation B. Let B− ( B be a partial T -small
(0, ε)-ball approximation, and let b be any T -maximal candidate to B−. Then B\B− contains
a candidate to B− that is T -smaller than or equal to b.

Proof. Let B+ = B \B−. First we prove that B+ always contains candidates to B−, and
then that one of these candidates is T -smaller than or equal to b.

By contradiction, assume that B+ is void of candidate to B−. Consider b+ ∈ B+, T -
minimal in B+. Note that because B− is only a partial (0, ε)-ball approximation,

⋃
B−

alone does not entirely covers S	ε. It follows that B+ is necessarily non-empty, and always
admits such a T -minimal ball b+. By T -minimality of b+, for all b′ ∈ B+, we have b′ ⊆
b+ ∪ C(S, b+,+). Thus

⋃
B+ ⊆ b+ ∪ C(S, b+,+). By Proposition 4.10 we deduce that

S	ε ∩ C(S, b+,−) ⊆ S	ε ∩
(⋃

B+

)c
= S	ε \

⋃
B+

which we can rewrite as

S	ε ∩ C(S, b+,−) = S	ε ∩ C(S, b+,−) \
⋃

B+ (4.5)
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By assumption, b+ cannot be a candidate to B−, hence by Definitions 15 and 16
(S	ε ∩ C(S, b+,−)) \ (b+ ∪ (

⋃
B−)) is non empty. With the previous equality (4.5), we get

the following development:(
S	ε ∩ C(S, b+,−)

)
\
(
b+ ∪

(⋃
B−
))

=
(
S	ε ∩ C(S, b+,−)

)
\
(
b+ ∪

(⋃
B−
)
∪
(⋃

B+

))
=
(
S	ε ∩ C(S, b+,−)

)
\
⋃

B

⊆ S	ε \
⋃

B

Hence, S	ε \
⋃

B 6= ∅ which is impossible since B is a (0, ε)-ball approximation. Thus, B+

must contain a candidate to B−.

Because B− may have several distinct T -maximal candidates, B+ may only contain can-
didates T -incomparable to b. By contradiction assume B+ is void of candidate to B− T -
smaller than or equal to b. Since B+ contains at least one candidate to B−, b cannot be
centered at the root of T . By Proposition 4.1, any ball T -smaller than or equal to b will
preserve the covering property of S	ε in the T -small component. That is, if b− ≤T b then
S	ε∩C(S,B−∪{b−},−) ⊆ (

⋃
B−)∪b−. Hence B+ only contains balls that are either strictly

T -larger than or T -incomparable to b. Therefore, there exists a medial ball b+ >T b, with b+
also strictly T -smaller or T -incomparable to balls in B+. By T -maximality of b, b+ cannot be
a candidate to B−. Once again, we have a ball b+, T -minimal in B′+ = B+∪{b+} which is not
a candidate. The same development as above using Proposition 4.10 yields S	ε \

⋃
B 6= ∅,

which is still impossible. Therefore, B+ must contain a candidate to B− that is T -smaller
than or equal to b.

Theorem 10. Algorithm 1 outputs a cardinal minimum (0, ε)-ball approximation.

Proof. We denote by Balgo the (0, ε)-ball approximation found by Algorithm 1. We number
the balls of Balgo by b1, . . . , bk, such that for i ≤ j, bi was found before bj . Consider any
cardinal minimum (0, ε)-ball approximation Bopt. We assume without loss of generality that
Bopt only contains medial balls. Indeed, S is a finite union of balls, hence any ball b ∈ Bopt is
wholly contained in a medial ball. Using consecutive substitutions, we want to build a finite
sequence of collections of balls B0, . . . ,Bk that satisfies the properties:

(a) B0 = Bopt,

(b) Bi is a (0, ε)-ball approximation ∀i ∈ J0, kK

(c) |Bi+1| = |Bi|, ∀i ∈ J0, k − 1K,

(d) {b1, . . . , bi} ⊆ Bi, ∀i ∈ J1, kK,

The idea is to replace one by one the balls of Bopt by balls of Balgo. If such a sequence exists,
we immediately deduce that |Balgo| = |Bopt|, and Balgo is also cardinal minimum.

We proceed by induction. Assume that for 0 ≤ i < k, we have built B0, . . . ,Bi with
the above properties. Consider bi+1 ∈ Balgo. Let B− = {b1, . . . , bi}. By construction,
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B− ( Bi. Let B+ = Bi \ B−. B+ contains the balls that have not been replaced yet.
Algorithm 1 guarantees that B− is a partial T -small (0, ε)-ball approximation and that bi+1

is a T -maximal candidate for B−. Hence we can apply Lemma 4.27, B+ contains a ball b
that is a candidate to B− and such that b ≤T bi+1. Then, let Bi+1 = (Bi ∪ {bi+1}) \ {b}.
Bi+1 satisfies both properties (c) and (d), we must prove that it also satisfies (b). To do so, it
suffices to prove that both C(S, bi+1,−)∩S	ε and C(S, bi+1,+)∩S	ε are contained in

⋃
Bi+1.

Because bi+1 is a candidate to B−, we have C(S, bi+1,−) ∩ S	ε ⊆ bi+1 ∪ (
⋃

B−) ⊆
⋃

Bi+1.
Also, b ≤T bi+1, hence by Property 4.1 we have C(S, bi+1,+) ⊆ C(S, b,+). This implies
C(S, bi+1,+) ∩ S	ε ⊆ C(S, b,+) ∩ S	ε ⊆ (

⋃
Bi) \ b ⊆

⋃
Bi+1. Thus, Bi+1 is a (0, ε)-ball

approximation, and Balgo is a cardinal minimum (0, ε)-ball approximation.

Theorem 7 immediately follows from Theorems 9 and 10.

4.8 Conclusion

In order to reach Algorithm 1, we started from the intuition of candidate balls and visited the
more general concept of critical balls. From the several properties of these balls, we were able
to show that our greedy algorithm achieves a cardinal-minimum solution for a certain class of
shapes. We now discuss some of the assumptions in relation to these shapes.

First we address the topic of the partial order T over the medial axis. From the description
we provided back in Section 4.1, any point of the medial axis can be chosen as the root of
T , and thus define an orientation and partial order. This has little bearing on our method,
and the choice of this root is completely free. The resulting orientation and partial order will
indeed have all the desired properties for our algorithm to run properly. In practice, changing
the root may change the position of the chosen balls, but not the cardinal of the collection.

If we relax the assumption that MA(S) is cycle-free, we can easily extend Algorithm 1 so
as to handle cycles. Note that this extension does not preserve the guarantee of optimality.
To see this, recall that MA(S) can be seen as the embedding of a graph. In graph theory, a
feedback vertex set of a graph G = (V,E) is a subset F of the vertices that contains at least
one vertex of any cycle in G. Computing a feedback vertex set of minimum cardinality is
known to be NP-complete [Kar72]. Given such a feedback vertex set F , we can then start our
algorithm from the collection BF of medial balls whose center is a vertex in F . This effectively
punctures every cycle of the medial axis, and we can then define an orientation on MA(S)

by choosing a root from MA(S) \ F . From there, we can proceed with our method as usual
after computing the initial constraint A(S, ε,BF ). Denote by Balgo the resulting collection
of balls. The previous sections ensure that Balgo \ BF has minimum cardinal among the
collections of balls in S whose union contains S	ε \

⋃
BF . It follows that Balgo overshoots

optimal (0, ε)-ball approximations of S by at most |BF | = |F | balls.

Although we made the simplifying assumption δ = 0, note that it has close to no con-
sequences for our method beside simplifying the notations. Indeed, so long as the medial
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axis of S⊕δ is cycle-free, we can then substitute S by S⊕δ in the chapter above. Because the
cycle-free assumption must be satisfied by MA

(
S⊕δ

)
rather than MA(S), working with δ > 0

only restricts the input shapes S for which we reach an optimal.

In light of the previous observations, Algorithm 1 really only requires to loop over two
lists: a list of pencils of a containing shape with a topological order, and a list of boundary
elements of a shape to be covered. As long as the predicates are available, our method can
thus be adapted to a wider class of shapes. We address this topic in the following Chapter 5.
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In this chapter, we finally show how to implement predicates for computing critical balls.
In fact, we shall see that these predicates can be implemented for a wider class of family of
balls than just the elliptic 1-pencils that are needed for shapes defined as finite unions of disks.
Therefore, we in fact extend the algorithm presented previously to a wider class of shapes,
that will in particular cover polygonal shapes.

We start with some definitions in Section 5.1 in order to extend our approximation scheme
and the notions related to critical balls to these new shapes. In Section 5.2 we explain the
general strategy to establish the predicates needed for the algorithm, that we then apply to
various families of medial balls in Sections 5.3 through 5.5.
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5.1 Generalized problem and algorithm

§ Generalized approximation problem

Definition 20. Consider two subsets I ⊆ O ⊆ Rd. A collection of balls B is an (O, I)-ball
approximation of O and I if I ⊆

⋃
B ⊆ O. We say that I is the inner subset, and O the

outer subset of the (O, I)-ball approximation.

Note that I and O can be anything so long as the condition I ⊆ O is satisfied. In
particular, the subsets I,O can be a deformation of some original shape S, in which case

⋃
B

is an approximation of S by union of balls. The specific properties of
⋃

B with respect to
S will of course depend on the transformation used to derive I and O from S. The (δ, ε)-
ball approximations we presented in the previous chapters are obviously a special case of
(O, I)-ball approximation, where I = S	ε and O = S⊕δ. But the framework of (O, I)-ball
approximations allows for a much wider range of transformations.

Remark 59. Similarly to Remark 45 for (δ, ε)-ball approximations, O and I admits (O, I)-ball
approximations of finite cardinality whenever I is bounded and d(I,Oc) > 0.

Suppose I is bounded and d(I,Oc) > 0. Let r = d(I,Oc)/2 and notice that I ⊆ O is
compact. To build a finite (O, I)-ball approximation, consider the collection of open balls
with radius r centered at points in I, these balls cover I by construction. Since I is compact,
the collection of balls has a finite subcover. The closure of balls in that subcover is still
contained within the outer subset O, they thus form a finite (O, I)-ball approximation.

§ Generalized algorithm Thereafter, we will show how our previous algorithm can be
extended to the computation of (O, I)-ball approximations, given some assumptions on I and
O. To properly state these assumptions, we require some additional notions. The medial axis
of finite unions of balls in R2 can be fully described with a finite number of line segments,
that corresponds to path-connected subsets of elliptic 1-pencils. In this context, because the
centers’ space of these elliptic 1-pencils is the bisector of the radical 0-sphere of the pencil,
we refer to them as point-point pencils, or pp-pencils. We claim now, and justify later in
Sections 5.4 and 5.5, that we can also define line-line pencils (ll-pencils) and point-line pencils
(pl-pencils).

Remark 60. Outside of this chapter, a “pencil” will always refer to a pencil of balls, as defined
in Chapter 2.

These two new pencils are families of inclusion-wise maximal balls, and their path-
connected subsets can be used to describe portions of a medial axis. Intuitively, the centers’
space of a ll-pencil is the bisector of two lines, whereas the centers’ space of a pl-pencil is the
bisector of a point and a line.

Conjecture 2 (Termination and optimality of the generalized algorithm). Let I ⊆
O ⊆ R2 such that ∂I ∩ ∂O = ∅. Suppose that ∂I can be described as a finite collection
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of points, segments and circular arcs. Suppose also that MA(O) is cycle-free, and can be
split into finitely many closed path-connected subsets of point-point, line-line, and point-line
pencils. Given finite descriptions of ∂I and MA(O), there is an algorithm that computes
cardinal minimum (O, I)-ball approximations. Its time and space complexity is polynomial
with respect to |∂I|, |MA(O)|, and opt, where opt is the minimum cardinal of a (O, I)-ball
approximation.

Remark 61. The algorithm is output-size sensitive.

Remark 62. In fact Algorithm 1 is also output-size sensitive, but we have shown in the proof
of Theorem 9 that when O is a finite union of balls, we have opt = O(n).

Remark 63. With the assumptions of Conjecture 2, O and I always admit a finite (O, I)-
ball approximation. Indeed, MA(O) is closed, the two notions of medial and inclusion-wise
maximal balls coincide for O. It follows that O is compact, and I is bounded. Finally the
assumptions ∂I ∩ ∂O = ∅ and I ⊆ O imply that d(I,Oc) > 0, therefore Remark 59 applies.

Note that the class of shapes we allow for the outer subset O covers both finite unions of
balls and polygons. In fact, it also covers some shapes whose boundaries are composed of both
line segments and circular arcs (see Figure 5.1), but not all such shapes are admissible. Indeed,
in order to apply our method to all these shapes, the algorithm would require to process a
wider variety of pencils, such as “arc-point”, “arc-line”, and “arc-arc” pencils. On the contrary,
the class of eligible inner shapes I is precisely those shapes whose boundary is composed of
finitely many line segments and circular arcs.

Remark 64. Although the boundary of finite unions of balls is a collection of open circular
arcs and vertices, describing their medial axis does not require “arc-arc” or “arc-point” pencils,
as per Theorem 3.

Figure 5.1 – The medial axis of this shape can be split into three pencils: one pp-pencil (red),
one ll-pencil (green) and one pl-pencil (blue). Its boundary is composed of both line segments
and circular arcs.
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§ Mapping balls in O to medial balls of O Recall from Section 4.2 that we have defined
a projection function π that maps balls of a finite union of balls, and whose center lies in
the interior, onto (inclusion-wise) maximal balls of the union. In general, this mapping is
well-defined for any compact subset. Indeed, interior points that do not belong to the medial
axis of the shape admit one unique closest point on the boundary, that we can use to define
the projection. Consider an outer subset O that satisfies the conditions of Conjecture 2, and
πO its associated mapping to medial balls. The definition of πO ensures that for any b ⊆ O,
c(b) ∈ O̊, we have b ⊆ πO(b). We claim the following.

Conjecture 3. If O is an outer subset that satisfies the conditions of Conjecture 2, then the
mapping πO is continuous.

Recall that for finite union of balls, we have shown in Chapter 2 that they can be split
into face joins, whose properties allowed us to conclude on the continuity of mapping π. For
the current, broader class of shapes, we can still define the join of a boundary point. Indeed,
let u ∈ ∂O and Ju ⊆ MA(O) the points of the medial axis that admit u as a closest point in
∂O. The join {u} ? Ju is still well-defined, but the notion of join of a face is more ambiguous:

• two distinct points u 6= v of what we would intuitively call a “face” of the boundary may
have distinct collections Ju 6= Jv, and

• for a boundary face f ⊆ ∂O, if we let Jf ⊆ MA(O) be the points of the medial axis that
admit a point of f as a closest point in ∂O, then f ? Jf is in general not a proper join.

Nevertheless, we claim that, up to a proper definition of a face of ∂O, the identity {u} ? Ju =

vorO(u, ∂O) still holds, and that a decomposition of O similar to the face joins decomposition
can be achieved through the Voronoi diagram of the faces of ∂O. Conjecture 3 would then
follow from the properties of that decomposition.

§ Specification and complexity The cycle-free assumption in Conjecture 2 guarantees that
we can define a partial T -order on the medial axis of the eligible outer subsets O. It follows that
the notions of candidate and critical balls can be adapted. Assuming that Conjecture 3 is true,
most of the results obtained in Chapter 4 would then transfer to (O, I)-ball approximations.
In its current formulation, Property 4.13 would be incorrect when applied to critical balls of
O, but we claim that an adapted reformulation is possible.

If there exist predicates for computing critical balls in every type of pencil of MA(O), for
every type of boundary element of ∂I, then Conjecture 2 could be proved from the various
properties of Chapter 4. See Algorithm 2 for a high-level description of the resulting algorithm.

Recall that in the complexity proof of Theorem 9, S =
⋃

S was a finite union of balls, and
we bounded the values of |MA(S)|, |∂S	ε|, and opt with polynomial expressions of n = |S |.
In the context of (O, I)-ball approximations, O plays the role of S, I plays the role of S	ε. It
follows that an adaptation of the previous complexity proof yields the polynomial complexity
claim of Conjecture 2.
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Algorithm 2 (O, I)-ball approximation
Input: Eligible outer shape O and inner shape I
Output: A cardinal minimum (O, I)-ball approximation B

1: B ← ∅
2: constraints ← ∂I

3: while I 6= ∅ do
4: Compute a critical ball b to I
5: B ← B ∪ {b}
6: I ← I \ b
7: Update the set of constraints
8: end while
9: Return B

5.2 Generalities on computing critical balls

Given an inner shape I and an outer shape O, the core step of the algorithm is to compute
the ball b critical for a set p, with c(b) ∈ q, where p ⊆ ∂I and q ⊆ MA(O). As a subset of
MA(O), q can be viewed as a family of medial balls. In the following we show how to perform
this computation for a variety of simple geometric constraints p and families of medial balls
q. More precisely, given a family of medial balls {bλ} and a set of points p, we show how to
compute the values of λ for which p ⊆ bλ. Knowing these values, the partial order on MA(O)

enables to conclude. Note that the parameterization of each family can always be chosen so
that for any λ, µ with bλ, bµ ∈ q, we have the equivalence bλ ≤T bµ ⇐⇒ λ ≤ µ.

We consider the cases where the set of points p ⊆ ∂I is either a single point, a line segment,
a ball or a circular arc. Hence, any inner shape I whose boundary can be decomposed into
line segments and circular arcs is handled.

Point For any point x ∈ R2, we use the equivalence x ∈ bλ ⇐⇒ pow(x, bλ) ≤ 0 to derive a
first or second order polynomial in the variable λ, and then study its roots, bringing to
light different configurations.

Line segment By convexity of balls and line segments, the balls bλ containing a line segment
[xy] are the balls containing the points x and y.

Ball For any ball b = b(c, r), we use the equivalence b ⊆ bλ ⇐⇒ rλ ≥ ‖cλ − c‖+ r to derive
a second order polynomial in λ. The study of its roots enables to conclude for all the
possible configurations.

Circular arc Let e be a circular arc supported by a ball b, e ⊆ ∂b. Let Λb be the ranges of
values λ such that λ ∈ Λb ⇐⇒ b ⊆ bλ. There may be values λ /∈ Λb such that e ⊆ bλ.
Thus, we consider the values in R\Λb, and more precisely each connected component of
R\Λb, that we call a sub-family of balls. The idea is to find a point x ∈ ∂b such that no
ball of the sub-family covers x. We will show in the following sections how to find such a
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point. Given this point, any ball bµ of the sub-family splits ∂b into two path-connected
components, one contained in bµ and the other outside of bµ. Two cases arise, either
x ∈ e or x /∈ e. If x ∈ e, then bµ cannot contain e. Otherwise consider the endpoints of
e. Any point of e that is not in bµ has to be path-connected to x. In particular, that
path necessarily goes through one endpoint of e. It follows that if both endpoints of e
are actually covered by bµ, then bµ contains e entirely. See for instance Figure 5.2.

In certain configurations, there may not exist such a point x ∈ ∂b that is never covered
by the sub-family. In those cases, we establish that the subsets bµ ∩ ∂b are nested, and
then inspect the T -extremal ball bµ∗ of the sub-family that contains both endpoints of
e. We distinguish two cases. If that T -extremal ball bµ∗ does not contain e, then no ball
of the sub-family does. Otherwise, bµ∗ contains e, and balls of the sub-family contain e
if and only if they contain bµ∗ ∩ ∂b.

c0

c1 c2

x1

x2

e

Figure 5.2 – Arc constraint in a line-line pencil : the red segment is the collection of centers
corresponding to balls of the family that contain the red ball. Point x1 is not covered by any
ball of the pencil whose center is to the left of c1 : since x1 /∈ e, any ball that includes the
two endpoints of e includes e itself. Similarly, point x2 is not covered by any ball of the pencil
whose center is to the right of 2 : since x2 ∈ e, no ball of this sub-family contains e.

In the next sections, we consider each type of pencil one by one. First, we precise the
parameterization used, and second we detail the computation for the point and ball constraints.
Finally, for the circular arc constraints, we constructively prove the existence of the specific
points mentioned previously, and deal with the exceptional cases.



5.3. Classic point-point pencil 155

u

v

c0cλ

rλ

bλ

L

L⊥

e

H− H+

Figure 5.3 – Point-point pencil.

5.3 Classic point-point pencil

5.3.1 Parameterization

Consider two distinct points u and v. We are interested in the family of balls whose bounding
circle goes through both u and v. The collection of their centers is exactly the bisector L
of segment [uv]. Let b0 = b(c0, r0) be the ball of the pencil with minimal radius. We have
c0 = u+v

2 . Let e be a unit direction vector for line L. For λ ∈ R, we denote by cλ the point
of L such that cλ = c0 + λe. See Figure 5.3.

Notice by Property 2.6 that r2λ = r20 + ‖cλ − c0‖2 = r20 + λ2.

The remainder of this section is dedicated to the proof of the below result.

Property 5.1. Under the Real-RAM model, there are predicates to compute critical balls in
pp-pencils for point, segment, ball, and arc constraints in constant time.
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5.3.2 Point constraint

Recall by Lemma 2.8 that we have pow(x, bλ) = pow(x, b0)− 2〈x− c0, cλ − c0〉, which yields

pow(x, bλ) = pow(x, b0)− 2λ〈x− c0, e〉 (5.1)

For any point x ∈ R2, we thus have

x ∈ bλ ⇐⇒ pow(x, bλ) ≤ 0 ⇐⇒ pow(x, b0)− 2λ〈x− c0, e〉 ≤ 0

We obtain a linear equation in λ. We distinguish three cases.

(a) 〈x− c0, e〉 = 0 and pow(x, b0) > 0. In other words, x belongs to the radical space of the
pencil, and does not belong to the radical ball b0. Then pow(x, bλ) = pow(x, b0) > 0 and no
ball of the pencil cover x. See point x in Figure 5.4.

(b) 〈x− c0, e〉 = 0 and pow(x, b0) ≤ 0. Again pow(x, bλ) = pow(x, b0). However this time
every ball of the pencil covers x. See point y in Figure 5.4.

(c) 〈x− c0, e〉 6= 0. Point x does not lie on the radical space, and there is one unique value
λ∗ for which pow(x, bλ∗) is null. Depending on the sign of 〈x− c0, e〉, the λ values such that
bλ contains x are either the half-line λ ≤ λ∗ or the half-line λ ≥ λ∗. See point z and the blue
balls in Figure 5.4.

5.3.3 Ball constraint

Let b = b(c, r) be a ball.

b ⊆ bλ ⇐⇒ rλ ≥ ‖c− cλ‖+ r

⇐⇒ r2λ ≥ ‖c− cλ‖
2 + r2 + 2r‖c− cλ‖

⇐⇒ −pow(c, bλ)− r2 ≥ 2r‖c− cλ‖

⇐⇒
(
−pow(c, bλ)− r2

)2 ≥ 4r2‖c− cλ‖2 & − pow(c, bλ)− r2 ≥ 0

⇐⇒
(
2λ〈c− c0, e〉 − pow(c, b0)− r2

)2 ≥ 4r2‖c− c0 − λe‖2

& pow(c, bλ) + r2 ≤ 0

⇐⇒ 0 ≥ Aλ2 +Bλ+ C & pow(c, bλ)− pow(c, b) ≤ 0

where

A = 4
(
r2 − 〈c− c0, e〉2

)
B = 4〈c− c0, e〉

(
pow(c, b0)− r2

)
C = 4r2‖c− c0‖2 −

(
pow(c, b0) + r2

)2
= (r0 − ‖c− c0‖+ r)(r0 + ‖c− c0‖ − r)(‖c− c0‖+ r − r0)(‖c− c0‖+ r + r0)
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u

v

c0

x

z

y

cλ∗

L

Figure 5.4 – Point constraint in pp-pencils.

It follows that we can obtain the subset Λ ⊆ R of λ values for which the inclusion b ⊆ bλ is
verified by comparing the roots of the second order polynomial Aλ2 + Bλ+ C with the root
the first order polynomial pow(c, bλ)− pow(c, b).

The above two inequalities are sufficient to design a predicate and to find Λ. However,
designing an appropriate predicate for circular arc constraints is dependent on the geometric
configurations of the support ball of the arc, with respect to the pencil. Thus we now endeavor
to provide a geometric intuition of the possible configurations. Ultimately, our analysis will
yield the following (see Figure 5.5):

Property 5.2. Let b a ball and consider an elliptic 1-pencil parameterized by λ, {bλ}λ. Let
L⊥ the line through the radical sphere of this 1-pencil. The collection Λ ⊆ R such that b ⊆ bλ
is:

• the empty set when b ∩ L⊥ * [uv] or b is tangent to L⊥ at u or v,

• a closed half-line when b ∩ L⊥ = ∅ or b is tangent to L⊥ at some point in the open
segment ]uv[,

• an interval with non-zero length when b ∩ L⊥ ⊆ ]uv[ and b̊ ∩ L⊥ 6= ∅,

• a singleton otherwise. Note that in this case, either u or v is on the boundary of b, and
b ∩ L⊥ ⊆ [uv], with b̊ ∩ L⊥ 6= ∅.
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When both u and v belong to ∂b, the ball b belong to the pencil. In every other case, when
Λ 6= ∅, the inclusion is strict, with tangency at the endpoint(s) of Λ.

L

L⊥

a

L

L⊥

b

c1 c2

x1x2
L

L⊥

c

u

cλ∗

L

L⊥

d

Figure 5.5 – Ball constraint in pp-pencils: (a) Λb is empty for the red balls; (b) Λb is a half-line;
(c) Λb is a line segment; (d) Λb is a singleton.

To see this, we need an understanding of the geometric configurations that satisfy the
inequality Aλ2 +Bλ+ C ≤ 0 alone.

Lemma 5.3. When λ satisfies the inequality Aλ2 + bλ+ C ≤ 0, we have one of three cases:

• rλ ≥ ‖c− cλ‖+ r ⇐⇒ b ⊆ bλ,

• r ≥ ‖c− cλ‖+ rλ ⇐⇒ bλ ⊆ b,

• ‖c− cλ‖ ≥ rλ + r ⇐⇒ b̊ ∩ b̊λ = ∅,

with equality if and only if b and bλ are tangent.

Proof.

Aλ2 +Bλ+ C ≤ 0 ⇐⇒
(
−pow(c, bλ)− r2

)2 ≥ 4r2‖c− cλ‖2

⇐⇒
∣∣pow(c, bλ) + r2

∣∣ ≥ 2r‖c− cλ‖
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If pow(c, bλ) + r2 ≤ 0 then we obtain

Aλ2 +Bλ+ C ≤ 0 =⇒ rλ ≥ ‖c− cλ‖+ r

as above. Otherwise we have pow(c, bλ) + r2 ≥ 0 and

Aλ2 +Bλ+ C ≤ 0 =⇒ pow(c, bλ) + r2 ≥ 2r‖c− cλ‖
⇐⇒ (‖c− cλ‖ − r)2 ≥ r2λ
⇐⇒ ‖c− cλ‖ ≥ rλ + r or r ≥ ‖c− cλ‖+ rλ

When we additionally have the inequality pow(c, bλ) + r2 ≤ 0, we are in the first case
b ⊆ bλ as shown previously. If however pow(c, bλ) + r2 > 0, we are in one of the two latter
cases, which can further be decided depending on the sign of ‖c− cλ‖ − r.

We now examine the geometric configurations in relation to the roots of the polynomial
Aλ2 + Bλ + C, and start by analyzing the degenerate cases. As a general remark, note that
the geometric analysis below can also be done entirely algebraically by relying on a systematic
sign analysis of pow(c, bλ)− pow(c, b).

§ A = B = 0 Recall that L is the mediator of segment [uv]. We denote by L⊥ the
line (uv). L and L⊥ are orthogonal and intersect at c0. In particular we have L⊥ ={
x ∈ R2 | 〈x− c0, e〉 = 0

}
. Since ‖e‖ = 1, we obtain |〈c− c0, e〉| = d(c, L⊥). Hence A is

null if and only if d(c, L⊥) = r, that is if and only if b is tangent to L⊥. For B to be simul-
taneously zero, we must then have pow(c, b0) − r2 = 0. This simplifies to d(c, L) = r0, that
is the tangency point between b and L⊥ is either u or v. Intuitively, there are then no balls
in the pencil that may contain b. Indeed, assume that u ∈ ∂b. Every ball bλ goes through u,
thus to contain b, the two balls b and bλ must be tangent at u. Therefore bλ is also tangent
to L⊥ at u, but this is impossible because [uv] ⊆ bλ, hence bλ can never be tangent to L⊥.
Algebraically, A = 0 = B implies

C = 4r2
(
r2 + r20

)
−
(
r2 + r2

)2
= 4r2r20 > 0

which indicates that there is indeed no value of λ for which we have inclusion.

§ A = 0, B 6= 0 If A = 0 but B 6= 0, we obtain a linear equation that always has one root.
Hence there are always some λ’s such that Bλ + C ≤ 0. We must determine whether the
inclusion b ⊆ bλ is true for those values or not. We denote by y the tangency point between b
and L⊥. We distinguish two cases depending on the position of y on L⊥. If y /∈ [uv], then the
constraint ball b contains a point that is never covered by any bλ, and we never have inclusion.
If y ∈ ]uv[, we argue that we always have the inclusion of interest. Indeed, for every λ we
have y ∈ bλ. Hence we cannot have bλ ⊆ b or b̊ ∩ b̊λ = ∅. We deduce by Lemma 5.3 that
we necessarily have b ⊆ bλ in every case. In practice, to distinguish between the two cases, it
suffices to examine the second condition, that is the sign of pow(c, bλ) − pow(c, b), which is
linear in λ as per Equation (5.1).
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§ A 6= 0 We now address the case when A 6= 0. We start by computing the discriminant then
inspect the geometric configurations of interest.

Lemma 5.4. The discriminant is equal to ∆ = 16r2 pow(u, b) pow(v, b).

Proof.

∆

4
=
(
2〈c− c0, e〉

(
pow(c, b0)− r2

))2 − 4
(
r2 − 〈c− c0, e〉2

)
C

∆

16
= 〈c− c0, e〉2

(
C +

(
pow(c, b0)− r2

)2)− r2C
= 〈c− c0, e〉2

(
4r2‖c− c0‖2 −

(
pow(c, b0) + r2

)2
+
(
pow(c, b0)− r2

)2)− r2C
= 〈c− c0, e〉2

(
4r2‖c− c0‖2 − 4r2 pow(c, b0)

)
− r2C

= 〈c− c0, e〉2
(
4r2r20

)
− r2C

∆

16r2
= 4r20〈c− c0, e〉

2 − 4r2‖c− c0‖2 +
(
pow(c, b0) + r2

)2
We let u be the unit vector from c0 to u, it is a direction vector of line L⊥ = (uv). Thus we
have ‖c− c0‖2 = 〈c− c0, e〉2 + 〈c− c0, u〉2. In addition, recall that ‖u− c0‖ = r0 = ‖v − c0‖,
therefore we have r0u = u− c0.

∆

16r2
= 4r20

(
‖c− c0‖2 − 〈c− c0, u〉2

)
− 4r2‖c− c0‖2 +

(
‖c− c0‖2 − r20 + r2

)2
= −4〈c− c0, r0u〉2 + 4r20‖c− c0‖

2 − 4r2‖c− c0‖2 + ‖c− c0‖4 + r40 + r4

− 2r20‖c− c0‖
2 + 2r2‖c− c0‖2 − 2r2r20

= ‖c− c0‖4 + 2r20‖c− c0‖
2 + r40 − 4〈c− c0, u− c0〉2

+ r4 − 2r2‖c− c0‖2 − 2r2r20

=
(
‖c− c0‖2 + r20

)2
− 4〈c− c0, u− c0〉2 + r4 − r2

(
2‖c− c0‖2 + 2r20

)
=
(
‖c− c0‖2 + r20 − 2〈c− c0, u− c0〉

)(
‖c− c0‖2 + r20 + 2〈c− c0, u− c0〉

)
+ r4 − r2

(
2‖c− c0‖2 + 2r20

)
Note that ‖c− c0‖2 + r20 − 2〈c− c0, u− c0〉 = ‖c− u‖2. Also, because c0 = u+v

2 , we have
u − c0 = −(v − c0). Hence we likewise have ‖c− c0‖2 + r20 + 2〈c− c0, u− c0〉 = ‖c− v‖2.
Finally notice that ‖c− u‖2+‖c− v‖2 = 2‖c− c0‖2+2r20−〈c− c0, u− c0〉−〈c− c0, v − c0〉 =

2‖c− c0‖2 + 2r20. We have

∆

16r2
= ‖c− u‖2‖c− v‖2 + r4 − r2

(
‖c− u‖2 + ‖c− v‖2

)
=
(
‖c− u‖2 − r2

)(
‖c− v‖2 − r2

)
= pow(u, b) pow(v, b)

The sign of ∆ can thus be deduced from the sign of pow(u, b) and pow(v, b). We distinguish
four main cases.
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(a) When pow(u, b) < 0 or pow(v, b) < 0, that is when u or v lies in the interior of b, we cannot
have the inclusion b ⊆ bλ. Indeed, for all λ, bλ ∩ L⊥ = [uv], hence b necessarily meets the
complement of bλ. For the remaining cases, we can assume that both pow(u, v) and pow(v, b)

are non-negative.

(b) If both pow(u, b) and pow(v, b) are null, then ∂b goes through both u and v and b actually
belongs to the family. The only ball for which we have inclusion is b itself.

(c) If pow(u, b) = 0 but pow(v, b) > 0, then ∆ = 0 and the polynomial Aλ2 + Bλ + C has
exactly one root. Notice that |〈c− c0, e〉| = d(c, L⊥), as such because b ∩ L⊥ 6= ∅ we have
r ≥ |〈c− c0, e〉| and A ≥ 0. It follows that this unique root is the only λ value for which the
polynomial Aλ2 + Bλ + C is non-positive. Also, because v ∈ bλ \ b, we cannot have bλ ⊆ b.
Following Lemma 5.3, we must distinguish between the two cases b ⊆ bλ and b̊ ∩ b̊λ = ∅. We
claim that geometrically, they corresponds to whether b intersects the open segment ]uv[ or
not. In practice, this can be determined based on the sign of pow(c, bλ)− pow(c, b).

We know that b and bλ must be tangent at u. Since bλ cannot be tangent to L⊥ (the line
through u and v), hence L⊥ cannot be the common tangent line to b and bλ. Thus in the
neighbourhood of u, the half-lines originating from u and supported by L⊥ are either inside
or outside of b and bλ. By definition of bλ, the half-line from u through v is locally inside bλ.
It follows that if b does not meet ]uv[, it must locally contain the opposite half-line and thus
cannot be contained in bλ. If however it intersects ]uv[, then the interior of b and bλ meet and
they cannot be interior disjoint.

(d) If both pow(u, b) and pow(v, b) are positive, then ∆ > 0 and the polynomial Aλ2+Bλ+C

has two distinct roots λ1 < λ2. We have three more sub-cases.

• A < 0 and b does not meet the line L⊥. The λ values for which the polynomial Aλ2 +

Bλ + C is non-positive belong to (−∞, λ1] ∪ [λ2,+∞). Note that b does not contain u
or v, therefore we cannot have bλ ⊆ b. By Lemma 5.3 we must still distinguish between
the two cases b ⊆ bλ and b̊∩ b̊λ = ∅. Because we can assume r > 0 (otherwise we reduce
to the point constraint), these two cases respectively correspond to having the inequality
rλ−‖c− cλ‖ > 0 or the inequality rλ−‖c− cλ‖ < 0. Since the function λ 7→ rλ−‖c− cλ‖
is continuous with respect to λ, its zero(s) must belong to the open interval (λ1, λ2). It
follows that this function has constant sign over (−∞, λ1] and [λ2,+∞).

As b is entirely contained in one of the two open half-spaces delimited by L⊥, we know
that exactly one of bλ=−∞ or bλ=+∞ contains b, while the other ball is disjoint from b.
Thus, the collection Λ of values such that b ⊆ bλ is precisely one of the two intervals
(−∞, λ1] or [λ2,+∞). The correct interval can be determined with the use of the second
inequality pow(c, bλ)− pow(c, b).

For the remaining sub-cases we can assume A > 0, which implies that b ∩ L⊥ 6= ∅.
Because neither u nor v belong to b, and b is convex, either b∩L⊥ ⊆ ]uv[ or b∩L⊥∩[uv] =

b ∩ [uv] = ∅. Note also that the only λ values that may satisfy b ⊆ bλ lie in the interval
[λ1, λ2].



162 Chapter 5. Generalization to other shapes

• b∩L⊥ ⊆ ]uv[. Because b∩L⊥ 6= ∅ and ]uv[ ⊆ b̊λ for all λ, we know that b and bλ cannot
be interior disjoint. In addition, we cannot have bλ ⊆ b because b does not contain u or
v. By Lemma 5.3 we have b ⊆ bλ for all λ ∈ [λ1, λ2].

• b ∩ [uv] = ∅. Because b ∩ L⊥ is non-empty, b contains point(s) of L⊥ that no bλ covers,
and there are no value λ such that b ⊆ bλ.

5.3.4 Arc constraint

We now address arc constraints. Consider a circular arc e and let b be its supporting ball,
e ⊆ ∂b. Because balls are convex, the case e = ∂b reduces to a ball constraint. We thus
assume without loss of generality that e ( ∂b has two distinct endpoints. Let Λb ⊆ R the
collection of λ values such that b ⊆ bλ. We distinguish two main cases depending on whether
Λb is empty.

1. Suppose that Λb 6= ∅, and consider λ∗ ∈ ∂Λb an endpoint of Λb. Such an endpoint always
exist by Property 5.2 since Λ cannot be the entire real line. This property also implies that
Λb is convex. By symmetry, suppose without loss of generality that for all µ < λ∗, b * bµ.
We investigate the values of µ such that e ⊆ bµ. By Property 5.2, we know that b and bλ∗ are
tangent with b ⊆ bλ∗ . From the previous section, we distinguish three sub-cases.

(a) b = bλ∗ , and b belongs to the pencil. Using properties of elliptic pencils, it is easy to find
a point of ∂b that does not belong to any bµ, µ < λ∗. For instance we can take the point
x = c + re, it is one of the point of intersection between ∂b and line L. We can then
apply the method outlined in Section 5.2 using this point x, see Figure 5.6.a.

For the remaining cases, we can assume that for all λ ∈ Λb, we have b ( bλ. In particular,
b and bλ∗ have one unique tangency point that we call x. The two remaining sub-cases
depend on the nature of x.

(b) x /∈ {u, v}, then for µ < λ∗ we necessarily have x /∈ bµ. We can thus apply the method
outlined in Section 5.2 using this tangency point x. See Figures 5.5.b and 5.5.c.

(c) x ∈ {u, v}, and λ∗ is in fact the unique value in Λb. Without loss of generality, suppose
x = u. Because the power of any point y to a ball bλ is linear with respect to λ, we
can show that for any µ < λ < λ∗, we have b ∩ bµ ⊆ b ∩ bλ. Indeed, if we inspect
the power diagram of two balls bµ and bλ, µ < λ, then the power cell of bµ is the half-
space H− =

{
y ∈ R2 | 〈x− c0, e〉 ≤ 0

}
, whereas the power cell of bλ is the half-space

H+ =
{
y ∈ R2 | 〈x− c0, e〉 ≥ 0

}
. In particular, the portion of e covered by bµ increases

as µ goes to λ∗. We have three more cases depending on the position of u with respect
to the endpoints of e, see Figure 5.6.b.

• u ∈ e̊, then no ball bµ, µ < λ∗, covers e.
• u /∈ e, then bµ contains e if and only if bµ contains both endpoint of e.
• u ∈ ∂e is an endpoint of e. Let µ∗ be the smallest parameter value such that bµ∗

contains both endpoints of arc e. For this particular µ∗ value, ∂bµ∗ splits ∂b into
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two circular arcs, and one of these two arcs is e itself. If e is the arc inside bµ∗ , then
e ⊆ bµ for all µ∗ ≤ µ < λ∗. Otherwise if e is the arc outside bµ∗ , then no ball bµ,
µ < λ∗, contains e.

2. Suppose now that Λb = ∅. By Property 5.2, we have two sub-cases.

(a) b intersects L⊥ \ [uv]. Note that necessarily,
(
∂b ∩ L⊥

)
\ [uv] is non-empty. We can take

any point x in that intersection.

(b) b is tangent to L⊥ at either u or v. Without loss of generality, assume the point of
tangency is u. Because every ball bλ contains the segment [uv], b and bλ are never
tangent. It follows that bλ∩∂b is an arc of non-zero length that admits u as an endpoint.
We can conclude as in the previous case 1.(c). Properties of the family guarantee that
we still have b ∩ bµ ⊆ b ∩ bλ for µ ≤ λ < λ∗. Let µ∗ the smallest parameter value such
that bµ∗ contains both endpoint of e. Either bµ∗ contains e, or it doesn’t. In the former
case, every ball bµ with µ∗ ≤ µ < λ∗ will contain e. In the latter, no ball bµ with µ < λ∗
contains e.

cλ∗

x1x2 L

L⊥

a

u

v

cλ∗

L

L⊥

b

u

v

cλ∗

L

L⊥

c

Figure 5.6 – Arc constraint in pp-pencils: (a) the blue dashed arc is never covered by balls
centered on the blue half-line; (b) and (c) the red arcs cannot be covered by any ball bµ, µ < λ∗,
but the green arcs are covered by any ball of the family centered on the green segment.



164 Chapter 5. Generalization to other shapes

In every possible case, we can find every λ value such that e ⊆ bλ by using previous
predicates a constant number of time.

5.4 Line-line pencil

c0 cλ

e⊥

eα

bλ rλ

L+

L−

L

n+

n−
H−

H+

Figure 5.7 – Line-line pencil.

5.4.1 Parameterization

The locus of points equidistant from two segments contains a line segment portion that coin-
cides with the angle bisector of the lines supporting the segments. As such, it is of interest to
study the family of balls centered on such a bisector.

Consider two non-parallel lines L+ and L− that intersects at point c0, and L one of their
bisector. By definition, any point of L is equidistant to both L+ and L−. We are interested
in the balls centered at points of bisector L, and whose radius is equal to the distance from
their center to any of the two lines. Such balls are tangent to both lines, there exists a linear
relationship between their center’s positions and radii as per Equation (5.2). The union over
all balls of this family yields the double cone delimited by L+ and L− that contains the bisector
L. In fact, this is the family of maximal balls for this cone, and L is its skeleton.

In practice we will always deal with segment subsets of the bisector whose interior does
not contain c0, we can thus reduce from the complete bisector L to a half-line originating from
c0. Let e be a unit direction vector of L. For λ ∈ R, we denote by cλ = c0 + λe the point of
L at distance λ from c0, bλ the ball of the family centered at cλ and rλ its radius. Let α be
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the measure of the angle between L+ and L− bisected by L. We have

rλ = |λ| sin α
2

(5.2)

Refer to Figure 5.7 for an illustration of various features of ll-pencils. The remainder of
this section is dedicated to the proof of the below result.

Property 5.5. Under the Real-RAM model, there are predicates to compute critical balls in
ll-pencils for point, segment, ball, and arc constraints in constant time.

5.4.2 Point constraint

Let x ∈ R2. Then we have

x ∈ bλ ⇐⇒ pow(x, bλ) ≤ 0

⇐⇒ ‖x− cλ‖2 − r2λ ≤ 0

⇐⇒ ‖x− c0‖2 − 2〈x− c0, cλ − c0〉+ ‖cλ − c0‖2 − r2λ ≤ 0

⇐⇒ Aλ2 +Bλ+ C ≤ 0 (5.3)

where

A = cos2
α

2

B = −2〈x− c0, e〉
C = ‖x− c0‖2

Computing the λ values such that x ∈ b can thus be reduced to computing the roots of a
quadratic function.

Notice that A > 0, hence the polynomial never degenerates to a lower degree, and the
only λ values that satisfy the inequality lie between the roots of the polynomial. Recall that
we can always reduce to the half-line of non-negative values of λ, thus we should discard the
negative solutions to the inequality.

Remark 65. Because A×C ≥ 0, note that when the polynomial has two distinct roots λ1 and
λ2, they have the same sign. Restricting to non-negative values thus imply discarding every
solutions, or keeping every solutions.

We claim the following, see Figure 5.8.

Property 5.6. Consider the polynomial Aλ2 +Bλ+C for a point constraint x in a ll-pencil.
Its number of roots is tied to the position of x with respect to the double cone as follows:

• 0 root: x lies outside of the double cone and no ball of the family contains x.

• 1 root: x lies on the boundary of the double cone, exactly one ball of the family contains
x.
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• 2 roots: x lies in the interior of the double cone, every ball with λ parameter in between
these roots contain x.

x

y

z

c0

L+

L−

L

Figure 5.8 – Point constraint in ll-pencils.

To see this, it suffices to compute the discriminant. Let e⊥ be a unit vector orthogonal to
e. In particular, we have ‖x− c0‖2 = 〈x− c0, e〉2 + 〈x− c0, e⊥〉2.

∆

4
= 〈x− c0, e〉2 − cos2

α

2
‖x− c0‖2

= 〈x− c0, e〉2 − cos2
α

2

(
〈x− c0, e〉2 + 〈x− c0, e⊥〉2

)
= sin2 α

2
〈x− c0, e〉2 − cos2

α

2
〈x− c0, e⊥〉2

=
(

sin
α

2
〈x− c0, e〉 − cos

α

2
〈x− c0, e⊥〉

)(
sin

α

2
〈x− c0, e〉+ cos

α

2
〈x− c0, e⊥〉

)
Let

n+ = cos

(
α− π

2

)
e + sin

(
α− π

2

)
e⊥ = sin

α

2
e− cos

α

2
e⊥

and likewise
n− = cos

(
π − α

2

)
e + sin

(
π − α

2

)
e⊥ = sin

α

2
e + cos

α

2
e⊥

Note that n+ and n− are unit normal vectors to lines L+ and L−, and we have

∆ = 4〈x− c0, n+〉〈x− c0, n−〉

In addition, let H+ be the closed half-space
{
x ∈ R2 | 〈x− c0, n+〉 ≥ 0

}
and likewise H− ={

x ∈ R2 | 〈x− c0, n−〉 ≥ 0
}
. Then the cone containing the half-line c0 + R+e is precisely

the intersection between H+ and H−, whereas the cone containing the symmetric half-line
c0 + R−e is Hc

+ ∩Hc
−. The double cone delimited by L+ and L− that contains the line L is

the union of H+ ∩ H− and Hc
+ ∩ Hc

−. We can thus discuss the sign of ∆ depending on the
position of x with respect to these two cones:
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• ∆ is null when x lies on either L+ or L−,

• ∆ is positive when x lies in the interior of one of these two cones,

• ∆ is negative when x is outside both cones.

5.4.3 Ball constraint

Let b = b(c, r) be a ball. Then we have

b ⊆ bλ ⇐⇒ rλ ≥ ‖cλ − c‖+ r

⇐⇒ rλ − r ≥ ‖cλ − c‖
⇐⇒ (rλ − r)2 ≥ ‖cλ − c‖2 & rλ − r ≥ 0

⇐⇒ 0 ≥ Aλ2 +Bλ+ C & rλ − r ≥ 0

where

A = cos2
α

2

B = −2〈c− c0, e〉+ 2r sin
α

2

C = ‖c0 − c‖2 − r2 = pow(c0, b)

The two inequalities above suffice to design a predicate. Note that if we consider singletons
to be balls of radius zero, the above coefficients coincide with the previous section, as opposed
to the classic pencil of balls. Once again A > 0, thus we only have to investigate the λ values
in between the roots to determine the balls bλ that contain b.

We will again need some understanding of the possible geometric configurations for a ball
constraint in order to derive the predicate for arc constraints. We thus study these geometric
configurations. We eventually obtain the below property, see Figure 5.9.

Property 5.7. Let b a ball and consider a half ll-pencil parameterized by λ ∈ R+, {bλ}λ. Let
H+ and H− the two half-spaces such that H+∩H− =

⋃
λ≥0 bλ, and L+ and L− their bounding

lines. The collection Λ ⊆ R+ such that b ⊆ bλ is:

• the empty set when b is not entirely in the cone H+ ∩H−,

• a singleton when b ⊆ H+ ∩H− and b is tangent to L+ and/or L−,

• a closed interval when b is in the interior of H+ ∩H−.

When the constraint ball b is tangent to both L+ and L−, it belongs to the ll-pencil. In every
other case, when Λ 6= ∅, the inclusion is strict, with tangency at the endpoint(s) of Λ.

To prove this property, we will rely on this next lemma.
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c − rn+

c

c0

L+

L−

L

a

c0 cλ∗

x

L+

L−

L

b

c0

c1 c2

x1

x2

L

c

Figure 5.9 – Ball constraint in ll-pencils: (a) Λb is empty for the red ball; (b) Λb is a singleton;
(c) Λb is a line segment.

Lemma 5.8. Let bλ = b(cλ, rλ) and b = b(c, r) be two balls. The inequality (rλ − r)2 ≥
‖cλ − c‖2 holds if and only if we have either bλ ⊆ b or b ⊆ bλ, with equality when the balls are
tangent.

The additional inequality rλ−r ≥ 0 enables us to distinguish between the two possibilities
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of the lemma above. We inspect now the discriminant:

∆

4
=
(
−〈c− c0, e〉+ r sin

α

2

)2
− cos2

α

2

(
‖c− c0‖2 − r2

)
= 〈c− c0, e〉2 − 2r sin

α

2
〈c− c0, e〉+ r2 − cos2

α

2

(
〈c− c0, e〉2 + 〈c− c0, e⊥〉2

)
= sin2 α

2
〈c− c0, e〉2 − cos2

α

2
〈c− c0, e⊥〉2 − 2r sin

α

2
〈c− c0, e〉+ r2

=
(
r − sin

α

2
〈c− c0, e〉

)2
− cos2

α

2
〈c− c0, e⊥〉2

=
(
r − sin

α

2
〈c− c0, e〉 − cos

α

2
〈c− c0, e⊥〉

)
×
(
r − sin

α

2
〈c− c0, e〉+ cos

α

2
〈c− c0, e⊥〉

)
=
(
r − 〈c− c0, n−〉

)
×
(
r − 〈c− c0, n+〉

)
Note that |〈c− c0, n+〉| = d(c, L+), therefore the factor r− 〈c− c0, n+〉 is negative when b is
in the interior of H+, zero when b is in H+ and tangent to L+, positive otherwise. The sign of
the other factor has a similar interpretation with respect to L− and H−. We have four cases:

(a) Whenever one factor is positive, b intersects the complement of the family’s domain and
we never have the desired inclusion.

For the remaining cases, we can assume that both factors are non-positive, thus b is entirely
within the cone covered by the half-family. From Lemma 5.8 we deduce that whenever λ
satisfies the inequality, we necessarily have b ⊆ bλ. Indeed, the bλ’s are medial for the cone,
thus they are inclusion-wise maximal.

(b) If both factor are null, ∆ = 0, and b is tangent to both L+ and L−. Thus c belongs to
the bisector of these two lines and b is actually a ball of the family. The only solution to the
quadratic inequality therefore corresponds to b itself.

(c) If one factor is null and the other negative, we have ∆ = 0. The unique λ∗ solution
corresponds to the unique bλ∗ that covers the tangency point between b and one of L+ or L−.

(d) If both factors are negative, then for every λ value between the roots we have b ⊆ bλ.

5.4.4 Arc constraint

We now address arc constraints. Let e be a circular arc supported by ball b, and Λb the
collection of λ values for which we have the inclusion b ⊆ bλ. Recall that we can in general
derive the inclusion λ values for e from those of the endpoints of e, and Λb. To do so it suffices
to find a point in ∂b that is never covered by any ball of the sub-families that do not contain
b.

By relying on Property 5.7, we distinguish three cases:

(a) Λb = ∅ and b is not contained in the cone. Thus there exists x ∈ b not covered by any bλ.
In particular, either x+ = c− rn+ or x− = c− ru− is never covered by any bλ but is still in
∂b. See Figure 5.9.a.
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(b) Λb = {λ∗} is a singleton and b is tangent to either L+ or L−. Suppose b is tangent to L+.
The tangency point between b and L+ is uniquely covered by b in the family. It can thus be
used to derive the inclusion λ values for arc e. See Figure 5.9.b.

(c) Λb = [λ1, λ2] with λ1 < λ2. We know by Property 5.7 that b and bλ2 are tangent with
b ( bλ2 . Let x2 be the unique point of tangency between b and bλ2 . We investigate the
sub-family of balls {bµ | µ > λ2}. We argue that for µ > λ2, we have x2 /∈ bµ. Indeed by
Equation (5.3) we know that pow(x2, bλ) is quadratic with respect to λ. Because x2 ∈ ∂bλ2 ,
and x2 ∈ bλ for λ ∈ [λ1, λ2], it follows that pow(x2, bµ) > 0 for all µ > λ2. We obtain a similar
result for the other endpoint λ1 and the tangency point between b and bλ1 . See Figure 5.9.c.

Again, the predicate for arc constraints can be derived from the predicates for point and
ball constraints.

5.5 Point-line pencil

F

cλ

rλ

bλ

P

D

H+
L

L

Figure 5.10 – Point-line pencil.

5.5.1 Parameterization

The locus of points equidistant from a point and a line segment contains a portion that
coincides with the bisector of that point and the support line of the segment. Because this
locus occurs in the medial axis of polygons, we study the corresponding family of medial balls.



5.5. Point-line pencil 171

Let D be a line and F a point not on D . The bisector of F and D is the parabola with
focus F and directrix D . We study the family of balls whose center lies on that parabola and
whose bounding circle goes through F . Because the center of these balls are equidistant from
F and D , they are tangent to D . The union over all balls of that family exactly covers the
closed half-space delimited by D and that contains F .

Remark 66. In order for a path-connected subset of the family to form a valid collection of
medial balls, and thus to be used to describe the medial axis of a shape, the focus F must
remain in the boundary of the union.

To simplify the discussion, we choose to work in the Cartesian coordinate system such
that the directrix coincides with the horizontal axis, and the focus lies above it on the vertical
axis. The focus then has coordinates F (0, 2f) and the parabola is the collection of points

P =

{
(x, y) | y =

(
x

2
√
f

)2

+ f

}

where f denotes the focal length of the parabola and is a strictly positive parameter.

We parameterize the centers by their abscissa in the above coordinate system. For λ ∈ R,
we denote by cλ the point of the parabola with abscissa λ. As usual, we then denote the ball
of the family centered at cλ by bλ, and its radius by rλ. A basic property of the family is that
rλ = ‖cλ − F‖ is equal to the ordinate of cλ. Hence it has coordinates (λ, rλ) with

rλ =
λ2

4f
+ f (5.4)

Refer to Figure 5.10 for an illustration of various features of pl-pencils. The remainder of
this section is dedicated to the proof of the below result.

Property 5.9. Under the Real-RAM model, there are predicates to compute critical balls in
pl-pencils for point, segment, ball, and arc constraints in constant time.

5.5.2 Point constraint

We can express the power of a point M(xM , yM ) ∈ R2 to bλ with the following:

pow(M, bλ) = ‖M − cλ‖2 − r2λ = ‖M − cλ‖2 − ‖F − cλ‖2 = 2〈cλ, F −M〉+ ‖M‖2 − ‖F‖2

Since the ordinate of cλ is quadratic in λ as per Equation (5.4), the power of a point to a ball
of the family is also quadratic in λ. Hence

M ∈ bλ ⇐⇒ pow(M, bλ) ≤ 0

⇐⇒ 2
(
− λxM + rλ(2f − yM )

)
+ ‖M‖2 − 4f2 ≤ 0

⇐⇒ Aλ2 +Bλ+ C ≤ 0 (5.5)
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where

A = 1− yM
2f

B = −2xM

C = ‖M‖2 − 2fyM

Computing the λ values for which x ∈ bλ thus reduces to finding the sign of a quadratic
function. We have the following, see Figure 5.11.

Property 5.10. Consider the inequality Aλ2 + Bλ + C ≤ 0 for a point constraint M in a
pl-pencil. Let L be the horizontal line through the focus F . The collection Λ ⊆ R such that
M ∈ bλ is:

• the entire real line R when M = F ,

• the union of two disjoint, closed half-lines when M is (strictly) above L,

• a closed half-line when M is in L \ {F},

• a closed, bounded interval when M is (strictly) below L but (strictly) above the horizontal
axis,

• a singleton when M is on the horizontal axis,

• the empty set when M is (strictly) below the horizontal axis.

To see this, we examine the geometric configurations in relation with the roots of the
polynomial, starting with the degenerate cases. Coefficient A is null if and only if M lies on
the horizontal line through F , while coefficient B is null if and only if M lies on the ordinate
axis.

§ A = B = 0 We have M = F . It follows that every ball of the family actually contains M .

§ A = 0, B 6= 0 M lies on the horizontal line through F , but is distinct from F . We have
yM = 2f and xM 6= 0, thus C = x2M > 0. When xM > 0, we then have the inequality

−2xMλ+ x2M ≤ 0 ⇐⇒ λ ≥
x2M
2xM

=
xM
2

In the symmetric case xM < 0, we obtain

−2xMλ+ x2M ≤ 0 ⇐⇒ λ ≤
x2M
2xM

=
xM
2

We can group both case in the following way

2λ sign(xM ) ≥ |xM |
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Figure 5.11 – Point constraint in pl-pencils (a) Λ is the union of two half-lines; (b) Λ is a
half-line; (c) Λ is a singleton for points on D , a segment for points between D and L.

§ A 6= 0 M is not on the horizontal line through F and yM 6= 2f . The polynomial may have
0 to 2 roots. We inspect its discriminant:

∆

4
= x2M −

(
1− yM

2f

)(
‖M‖2 − 2fyM

)
= −2y2M + 2fyM +

yM
2f
‖M‖2

=
yM
2f

(
−4fyM + 4f2 + x2M + y2M

)
=
yM
2f

(
x2M + (yM − 2f)2

)
=
yM
2f
‖M − F‖2

By the assumption A 6= 0, we cannot have M = F , thus sign(∆) = sign(yM ). We
distinguish four cases.
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(a) yM < 0, which implies ∆ < 0 and A > 0. M lies outside the half-space spanned by the
pencil family and there are no ball that covers the point.

(b) yM = 0, which implies ∆ = 0 and A > 0. M lies on the directrix and there is exactly one
ball of the family that covers it.

(c) 0 < yM < 2f , which implies ∆ > 0 and A > 0. The quadratic function has two roots, and
the λ values between those roots correspond to the balls of the family that cover M .

(d) yM > 2f , which implies ∆ > 0 and A < 0. The quadratic function has two roots, and the
λ values between those roots correspond to the balls of the family that do not cover M .

5.5.3 Ball constraint

Let b = b(c, r) be a ball where c has coordinates c(xc, yc). Using the expression of the power
of a point to bλ in Equation (5.5) we obtain the below development:

b ⊆ bλ ⇐⇒ rλ ≥ ‖c− cλ‖+ r

⇐⇒ (rλ − r)2 ≥ ‖c− cλ‖2 & rλ − r ≥ 0

⇐⇒ r2λ − 2rrλ + r2 ≥ ‖c− cλ‖2 & rλ − r ≥ 0

⇐⇒ 0 ≥ pow(c, bλ) + 2rrλ − r2 & rλ − r ≥ 0

⇐⇒ 0 ≥ λ2
(

1− yc
2f

)
− 2λxc + ‖c‖2 − 2fyc + 2rrλ − r2 & rλ − r ≥ 0

⇐⇒ 0 ≥ Aλ2 +Bλ+ C & rλ − r ≥ 0

where

A = 1− yc − r
2f

B = −2xc

C = ‖c‖2 − 2f(yc − r)− r2

The two inequalities above are sufficient to design an appropriate predicate. Note that when
r = 0, the coefficients of the quadratic function coincide with the point constraint case. We
again examine the possible geometric configurations and roots.

Property 5.11. Let b be a ball and consider a pl-pencil parameterized by λ ∈ R, {bλ}λ. Let
F be the focus of the pl-pencil, L the horizontal line through F , and H+

L the closed half-space
above L. Denote by Λ the collection of λ values such that b ⊆ bλ. We distinguish eight distinct
geometric configurations.

(a) b ⊆ H+
L , and we have three sub-cases, see Figure 5.12.

• b is strictly above L, then Λ is the union of two disjoint, closed half-lines.

• b is tangent to L at F (and lies above L), then Λ is empty.
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• b is tangent to L at a point distinct from L (and lies above L), then Λ is a closed half-line.

(b) b̊ *
⋃

R b̊λ, then Λ is the empty set. Geometrically we have two (non-exclusive) sub-cases
(see Figure 5.13):

• b intersects the open half-space below the horizontal axis, or
• b contains F in its interior.

Cases (a) and (b) are mutually exclusive. For the remaining cases, suppose that neither (a)
nor (b) apply, thus we have b * H+

L and b̊ ⊆
⋃

R b̊λ.

(c) ∂b intersects the boundary of
⋃

R b̊λ, then Λ is a singleton. Geometrically we have two
(non-exclusive) sub-cases (see Figure 5.14):

• b is tangent to the horizontal axis, or
• F ∈ ∂b.

Note that when both sub-cases above apply, then b belongs to the pl-pencil.

(d) When none of the above applies, then Λ is a (non-singleton) closed interval.

When b is tangent to the horizontal axis with F ∈ ∂b, it belongs to the pl-pencil. In every
other case, when Λ 6= ∅, the inclusion is strict, with tangency at the endpoint(s) of Λ.

To prove this, we rely on the below lemma.

Lemma 5.12. Let bλ be a ball of a pl-pencil and b a ball of constraint. The ball constraint
inequality for pl-pencils Aλ2 +Bλ+C ≤ 0 holds if and only if we have either b ⊆ bλ or bλ ⊆ b,
with equality when the balls are tangent.

Proof. See the derivation of the inequality.

The second inequality rλ − r ≥ 0 allows to differentiate between the two possibilities of
this lemma.

We now investigate the roots of the polynomial and the corresponding geometric configu-
rations, starting from the degenerate cases. Let L be the horizontal line through F . Observe
that A = 0 if and only if the center c is above L and b is tangent to L. Indeed that is the
only configuration where we have yc − r = 2f . As previously, B = 0 if and only if c lies on
the ordinate axis.

§ A = B = 0 The ball b is tangent to L at point F , and is above L. Because yc− r = 2f and
xc = 0 we get C = 4fr > 0. It follows that no ball of the family can cover b. Geometrically,
recall that every ball bλ goes through F , hence if we had b ⊆ bλ, then necessarily b and bλ
would be tangent at F . That would imply that bλ admits L as a tangent. However, the only
ball that admits L as a tangent is bλ=0, which lies underneath L. Because b is above L, there
are no ball bλ that satisfy the desired inclusion.
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§ A = 0, B 6= 0 Ball b is tangent to L at some point distinct from F , and is above L. We
have C = x2c + 4fr > 0 with xc 6= 0, and the inequality becomes:

−2xcλ+ C ≤ 0 ⇐⇒ −2xcλ ≤ −C
⇐⇒ −2 sign(xc)|xc|λ ≤ −C

⇐⇒ 2 sign(xc)λ ≥
C

|xc|
= |xc|+

4fr

|xc|

We show that the half-line of λ values that satisfy the inequality corresponds to balls bλ that
satisfy the desired inclusion. To do so, we show that the continuous function λ 7→ rλ − r
must have constant sign over that half-line, and that some λ values of that half-line satisfy
rλ − r ≥ 0.

By continuity, the sign of rλ − r may only change when rλ reaches the value r. Suppose
for a contradiction that there is some value λ∗ such that rλ∗ = r and Aλ2∗ + Bλ∗ + C =

−2xcλ+C ≤ 0. By Lemma 5.12 the inequality Aλ2∗+Bλ∗+C ≤ 0 implies that either b ⊆ bλ∗
or bλ∗ ⊆ b. In both cases this implies that b = bλ∗ . However since b does not belong to the
family, this λ∗ value cannot exist. It follows that rλ − r must have a constant sign over the
half-line of solutions −2xcλ + C ≤ 0. By Equation (5.4) we have rλ = λ2

4f + f , thus rλ is
unbounded over the half-line. It follows that for every λ of the half-line, rλ − r ≥ 0, and
b ⊆ bλ.

§ A 6= 0 Ball b is not tangent to L, above L. Note that it may still be tangent to L, below L.
We inspect the discriminant:

∆

4
= x2c −

(
1− yc − r

2f

)(
‖c‖2 − 2f(yc − r)− r2

)
= −y2c + 2f(yc − r) + r2 +

yc − r
2f

(
‖c‖2 − 2f(yc − r)− r2

)
=
yc − r

2f

(
−2f(yc + r) + 4f2 + ‖c‖2 − 2f(yc − r)− r2

)
=
yc − r

2f

(
−4fyc + 4f2 + x2c + y2c − r2

)
=
yc − r

2f

(
x2c + (yc − 2f)2 − r2

)
=
yc − r

2f

(
‖c− F‖2 − r2

)
=
yc − r

2f
pow(F, b)

The sign of the discriminant can thus be deduced from the sign of the two factors yc − r and
pow(F, b). The former is positive when b is contained in the half-space of positive ordinate
points; zero when b is tangent to the abscissae axis and contained in the closed half-space of
non-negative ordinate points; negative when b intersects the half-space of negative ordinate
points. The latter is positive when b does not contain F ; zero when b goes through F ; negative
when b contains F in its interior.
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From the previous section, if yc − r < 0, then no ball in the family may cover b, because
the lowest point of ball b then lies outside the half-space covered by the family. Likewise, if
pow(F, b) < 0, no ball bλ may contain b because for any λ value, we have F ∈ ∂bλ. In light
of these remarks, we can restrict our analysis to yc − r ≥ 0 and pow(F, b) ≥ 0, which implies
that ∆ ≥ 0.

(a) yc − r = 0 and pow(F, b) = 0, which implies ∆ = 0, and the polynomial admits one
unique root λ∗. Since yc − r = 0 we have A = 1 > 0, thus λ∗ is the unique value at which the
polynomial is non-positive. In fact, the ball b is tangent to the directrix D and goes through
F , it thus belong to the pl-pencil, it is the unique ball of the family that covers itself.

(b) yc − r = 0 and pow(F, b) > 0, which implies ∆ = 0 and A > 0. The polynomial again
admits one unique root λ∗, which corresponds to its unique non-positive value. Because
pow(F, b) > 0, F /∈ b and we are guaranteed by Lemma 5.12 that b ⊆ bλ∗ .

(c) pow(F, b) = 0 and yc − r > 0, which implies ∆ = 0. The polynomial has one unique root
λ∗. Because the distance between c and F is at least the difference in their ordinates, we have
r = ‖c− F‖ ≥ |yc − 2f |. This yields 2f ≥ yc − r and thus A ≥ 0. Therefore λ∗ is the unique
value at which the polynomial is non-positive. Because yc − r > 0, b does not contain any
point of the directrix D , and we obtain b ⊆ bλ∗ by Lemma 5.12.

(d) yc − r > 0 and pow(F, b) > 0, which implies ∆ > 0. The polynomial admits two distinct
roots λ1 < λ2. Because b does not contain F or any point of the directrix D , Lemma 5.12
implies that b ⊆ bλ for every λ that satisfy the inequality. Note however that A may be
positive or negative, contrary to the previous cases. Observe that if b is contained in the open
half-space above L, the horizontal line through point F , then A < 0, otherwise A > 0. Thus
if b intersects the half-space below L, we have inclusion for every λ ∈ [λ1, λ2]. If b is above L,
we have inclusion for every λ ∈ (−∞, λ1] ∪ [λ2,+∞).

5.5.4 Arc constraint

We address in this section the problem of arc constraints. We need some additional definitions.
We let b0 = bλ=0, by Equation (5.4) it is the ball with smallest radius in the family. It is
tangent to the horizontal line L at F , and lies beneath L. The ball with parameter value
λ = 0 has several useful properties.

Lemma 5.13. Consider λ ∈ R and let F ′λ(2λ, 2f). We denote by L the horizontal line through
the focus. Then we have bλ ∩ L = [FF ′λ].

Proof. Recall that F ∈ ∂bλ, hence pow(F, bλ) = λ2 + (2f − rλ)2 − r2λ = 0. Consider
M(xM , 2f) ∈ L.

pow(M, bλ) ≤ 0 ⇐⇒ (xM − λ)2 + (2f − rλ)2 − r2λ ≤ 0

⇐⇒ x2M − 2λxM + λ2 − λ2 ≤ 0

⇐⇒ |xM | ≤ 2λ sign(xM )
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Thus depending on the sign of λ, we deduce that M belongs to bλ if and only if 0 ≤ xM ≤ 2λ

or 2λ ≤ xM ≤ 0. Therefore we indeed have bλ ∩ L = [FF ′λ].

Lemma 5.14. Let H+
L be the closed half-space above L. Then for all 0 ≤ λ ≤ µ we have

bλ ∩H+
L ⊆ bµ ∩H

+
L . Likewise for µ ≤ λ ≤ 0 we have bλ ∩H+

L ⊆ bµ ∩H
+
L .

Proof. We only address the case 0 ≤ λ ≤ µ. Consider a point M(xM , yM ) that lies strictly
above L. Notice that M /∈ b0. We know from Property 5.10 that the collection ΛM of λ
values such that M ∈ bλ is the union of two disjoint, closed half-lines. In particular, R \ ΛM
is an interval, thus it is convex. Consider now λ ≥ 0 such that M ∈ bλ. Then for all µ ≥ λ,
we necessarily have M ∈ bµ. Indeed, we know that 0 /∈ ΛM whereas λ ∈ ΛM . By convexity,
µ /∈ ΛM . It follows from the remark above and Lemma 5.13 that for any 0 ≤ λ ≤ µ, we have
bλ ∩H+

L ⊆ bµ ∩H
+
L .

In the following discussion, it will be useful to consider the two sub-families delimited by
b0. We let P+ the collection of balls with non-negative λ parameter, P+ = {bλ | λ ≥ 0}, and
P− those with non-positive λ parameter, P− = {bλ | λ ≤ 0}.

The next lemma can be seen as the equivalent of Lemma 5.14 for points below L, but
above the horizontal axis.

Lemma 5.15. Let D be the stripe of points strictly below L and strictly above the horizontal
axis. Let λ∗ ∈ R. Then for all λ∗ ≤ λ ≤ µ we have bλ ∩ (D ∩ bλ∗) ⊇ bµ ∩ (D ∩ bλ∗). Likewise
for µ ≤ λ ≤ λ∗ we have bλ ∩ (D ∩ bλ∗) ⊇ bµ ∩ (D ∩ bλ∗).

Proof. We only address the case λ∗ ≤ λ ≤ µ. Consider a point M(xM , yM ) ∈ D ∩ bλ∗ . We
know from Property 5.10 that the collection ΛM of λ values such that M ∈ bλ is a closed
interval, it is thus convex. Consider now λ ≥ λ∗ such that M /∈ bλ. Then for all µ ≥ λ,
we deduce by convexity of ΛM that M /∈ bµ. It follows that for any λ∗ ≤ λ ≤ µ, we have
bλ ∩ (D ∩ bλ∗) ⊇ bµ ∩ (D ∩ bλ∗).

We are now ready to look for the inclusion λ values. Consider a circular arc e supported
by a ball b, and Λb the collection of λ values for which b ⊆ bλ. Based on the previous section,
there are eight distinct cases to consider: (a) b lies strictly above line L; (b) b lies above L,
and is tangent to L at F ; (c) b lies above L, and is tangent to L at points distinct from F ;
(d) b intersects the open half-space of negative ordinates; (e) F lies in the interior of b; (f)
b is above the horizontal axis, tangent to it; (g) b contains F in its boundary; and (h) the
remaining case.

(a) When b is strictly above line L, we know that there are λ1 < λ2 such that Λb = R\(λ1, λ2).
We look at the sub-family of balls {bµ | λ1 < µ < λ2}. Let xi be the (unique) tangent point
between b and bλi . Because xi necessarily lies above L, we know by Property 5.10 that the λ
values such that xi ∈ bλ is the union of two closed half-lines. In particular the collection of
λ values for which xi /∈ bλ is convex. A similar reasoning as in Section 5.4.4, case (c), shows
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that for µ < λ2 close enough to λ2, x2 /∈ bµ. Because b0 lies entirely below L, we also have
x2 /∈ b0. It follows that for 0 ≤ µ < λ2, we can use x2 to apply our usual method. Likewise,
for λ1 < µ ≤ 0 we can use x1 instead. See Figure 5.12.a.

(b) When b lies above L, and is tangent to L at F , we know that Λb = ∅. Ball b and every
ball bλ contain F in their boundary. Consider b0, it is tangent to L and below L. Hence
b ∩ b0 = {F}, and b0 cannot cover e ⊆ ∂b. We can thus exclude b0 from our considerations.
For the remaining λ values, b and bλ are not tangent, and it follows that ∂b∩ ∂bλ is a circular
arc of non-zero length that admits F as an endpoint. We first look at the sub-family P+.
Let H+

L be the closed half-space above L, we have e ⊆ ∂b ⊆ H+
L . By Lemma 5.14 we deduce

bλ ∩ ∂b ⊆ bµ ∩ ∂b for all 0 ≤ λ ≤ µ.
We can conclude as in case 2(b) of Section 5.3.4. Let λ∗ > 0 the smallest positive parameter

value such that bλ∗ contains both endpoints of e. If bλ∗ does not contain e, then no ball bµ
with µ > 0 does. Otherwise bµ, µ > 0, contains e if and only if µ ≥ λ∗. See Figure 5.16. By
symmetry this reasoning can also be applied to negative λ values and we can also find the
balls of P− that contain e.

(c) When b lies above L, and is tangent to L at a point distinct from F , we know that Λb is a
closed half-line. By symmetry, suppose Λb = (−∞, λ∗]. We have to look at the sub-family of
balls B = {bµ | µ > λ∗}. We further split this family into B− = B ∩P− and B+ = B ∩P+.
By Property 5.11, let x be the unique tangent point between b and bλ∗ . A reasoning similar as
in case (a) (of this section) shows that no ball of B− contains x. For the family B+, consider
instead the tangency point between b and L. Thus in both case, we can reduce to our usual
method. See points x and y in Figure 5.12.c.

For the remaining cases, we can assume that b is not above L.

(d) When b meets the open half-space of points with negative ordinate, then the lowest point
of b is never covered by any ball of the pl-pencil. This lowest point can be used to derive the
λ inclusion values for e. See point x in Figure 5.13.a.

For the remaining cases, we can assume that b is above the horizontal axis.

(e) When b contains the focus F in its interior, then ∂b intersects line L in two distinct points
F− and F+ such that F ∈ ]F−F+[. Suppose that F− is on the left side of F+. See Figure 5.13.b.
We inspect the two sub-families P− and P+. By Lemma 5.13, balls in P+ never cover any
point of L that are to the left of F , thus it never covers F−. Likewise, P− never covers F+.
We can thus use our usual method on the two sub-families and retrieve every inclusion values
for e.

For the remaining cases, we can assume that F is not in the interior of b.

(f) If b is tangent to the horizontal axis, consider the point x of tangency. See Figure 5.14.a.
Indeed, for any point of the horizontal axis, there is one unique ball of the family that contains
it. We can thus use this tangency point x to perform our usual method.

For the remaining cases, we can assume that b is strictly above the horizontal axis.
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(g) If b contains F in its boundary, and excluding all the previous cases, we know from
Property 5.11 that Λb = {λ∗} is a singleton. We have the strict inclusion b ( bλ∗ , and b and
bλ∗ are tangent at F . We distinguish two more subcases.

• b lies underneath L, then we necessarily have λ∗ = 0. The whole arc e thus lies below
L. By Lemma 5.15 we deduce that for 0 ≤ λ ≤ µ we have e ∩ bλ ⊇ e ∩ µ. Let µ∗ the
maximum value such that bλ∗ still contains both endpoints of e. If bµ∗ contains e, then
the balls bµ ∈ P+ that contain e are precisely the balls with 0 ≤ µ ≤ µ∗. If bµ∗ does not
contain e, then no ball of P+ contain e. By symmetry, this also covers the family P−.
• b does not lie below L, and ∂b meets L at two distinct points. We split the family into

three sub-families.
Let F ′ be the second intersection point and suppose that F ′ lies on the right side of F .
Then for the collection of balls P− we can use point F ′ to derive the inclusion values for
e, as per the standard method. See Figure 5.18.
For the balls bµ, µ > λ∗, we know by Lemma 5.14 that the portion of b above L will
be covered by every bµ. Lemma 5.15 also indicates that as µ decreases, the portion of b
between L and the horizontal axis that is covered by bµ will increase. It follows that for
µ ≥ λ ≥ λ∗, we have e ∩ bµ ⊆ e ∩ bλ. Let µ∗ > λ∗ the largest parameter value such that
bµ∗ contains both endpoints of e. If bµ∗ does not contain e, then no ball bµ with µ > λ∗
does. Otherwise bµ, µ > λ∗, covers e if and only if µ ≤ µ∗. See Figure 5.19.a.
For the remaining balls bµ, we have 0 ≤ µ < λ∗. Through Lemmas 5.14 and 5.15 we
deduce that e ∩ bλ ⊆ e ∩ bµ for all 0 ≤ λ ≤ µ < λ∗. Let µ∗ be the minimum parameter
value such that bµ∗ contains both endpoints of e. Then bµ contains e if and only if e ⊆ bµ∗
and µ ≥ µ∗. See Figure 5.19.b.

For the last case, we can assume that F does not belong to b.

(h) When excluding all of the previous cases, we know from Property 5.11 that there are
λ1 < λ2 such that Λb = [λ1, λ2]. Consider xi the unique tangent point between b and bλi . If
x2 lies below L, then no ball bµ with µ > λ2 contains x2. Likewise if x1 lies below L, no ball
bµ with µ < λ1 contains x1. We can then apply our usual method with x1 and x2.

Otherwise, either x1 or x2 lies strictly above L, but not both. Without loss of generality,
suppose x1 is above L. Then for all 0 ≤ µ < λ1 we have x1 /∈ bµ and we can apply our usual
method on that range. For µ ≤ 0, consider instead any intersection point between ∂b and L.
See point y in Figure 5.15.

Once again, the arc constraint predicate can be deduced from the point and ball predicates.

5.6 Conclusion

Because the computation of critical balls only relies on a few predicates, it is possible to gener-
alize Algorithm 1, that we used to compute (δ, ε)-ball approximations for finite unions of balls,
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to other classes of shapes. Indeed it suffices to show that predicates can be implemented for
those new classes of shapes. In order to accommodate for this generalization, it is interesting
to decouple the inner constraint set from the outer one as much as possible, thus leading to
(O, I)-ball approximations.

It can be shown that the medial axis of a polygon can be decomposed into portions of
point-point, line-line, and point-line pencils. Our study of predicates for these families of
balls thus extends our approach to polygons. It should be noted that because we have yet
to perform an in-depth study of the new pencils, there still remains some uncertainty on the
optimality and termination claim, which were both left as conjectures.

A natural extension of our algorithm in R2 would be to investigate the existence of predi-
cates for “arc-point”, “arc-line”, and “arc-arc” pencils, thus permitting both the inner and outer
subset to span the same class of shapes.
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Figure 5.12 – Ball constraint in pl-pencils lying above L: (a) Λ is the union of two half-lines;
(b) Λ is empty; (c) Λ is a half-line.



5.6. Conclusion 183

F

x
D

L

a

F

F− F+

D

L

b

Figure 5.13 – Ball constraint in pl-pencils lying out of bounds: (a) the ball intersects the
half-space of negative ordinates; (b) the ball contains the focus in its interior.
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Figure 5.14 – Ball constraint in pl-pencils that are tangent to the bounds: (a) the ball is
tangent to the directrix; (b) the boundary of the ball goes through F .
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Figure 5.15 – Ball constraint in pl-pencils: last case.
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Figure 5.16 – Arc constraint in pl-pencils: support ball above and tangent to L at F .
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Figure 5.17 – Arc constraint in pl-pencils: support ball below and tangent to L at F .
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Figure 5.18 – Arc constraint in pl-pencil whose support ball goes through F : sub-family with
µ ≤ 0.
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Figure 5.19 – Arc constraint in pl-pencil whose support ball goes through F : (a) sub-family
with µ > λ∗; (b) sub-family with 0 ≤ µ < λ∗. Only balls of the sub-families centered between
cλ∗ and cµ∗ contain the green arcs. No ball may contain the red arcs.



Conclusion and outlooks

Conclusion

In this thesis, we investigated the problem of shape approximation by finite unions of balls.
We based our approach on the use of pencils of balls and their many properties. We first used
pencils to robustly describe finite unions of balls, their boundary, and their medial axis. Indeed,
the framework of pencils can formally describe and handle every degenerate configuration of
balls. We then built on these results to prove a characterization of set inclusion within finite
unions of balls. The main appeal of this result is that it provides more easily tractable
conditions to test for set inclusion. This characterization was used to prove several properties
related to our new approximation scheme, the (δ, ε)-ball approximations problem. Specifically,
it showed that it is possible to compute critical balls, which provide an algorithmic solution
to the candidate ball heuristic.

Although we proved that the (δ, ε)-ball approximation problem is NP-complete, we have
presented a greedy optimal algorithm for shapes of R2 whose medial axis is cycle-free. This
algorithm is based on the intuitive idea of candidate balls to a T -small approximation. To
derive a practical implementation from this heuristic, we studied the properties of critical
balls, and proved that they can be computed, given simple predicates. We then extended the
scope of this algorithm by showing that predicates can be implemented for other classes of
shapes.

There are many questions related to this work that we couldn’t address. Regarding the
structure of finite unions of balls, the most obvious topic is probably the implementation of
an algorithm to compute the medial axis. Recall that every face f of a finite union of balls
has a well-defined join, and that it is possible to obtain the contribution Jf of that join to the
medial axis. Naively, it is possible to loop over every faces of the union and compute every
contribution Jf . However those contributions can overlap significantly. We ask whether it is
possible to minimize the number of faces to process to retrieve the complete medial axis.

In our definition of (δ, ε)-ball approximation, we can control the geometric error of the
approximation through the two parameters δ and ε. This paradigm however does not provide
much guarantee in terms of topology of the resulting approximation. Indeed, if the collec-
tion B is a (δ, ε)-ball approximation of S with

⋃
B ( S⊕δ, then we can then easily derive

other approximations of S with arbitrarily many connected components. It indeed suffices
to find disjoint balls in S⊕δ \

⋃
B and include them in the approximation. The resulting

collection will still be a valid (δ, ε)-ball approximation of S. If we however constrain B to be
a cardinal minimum approximation, then we cannot have these superfluous connected compo-
nents. We wonder if it is possible to derive any topological guarantees for cardinal minimum
approximations.

Although we spent great efforts to describe Algorithm 1, and show that it reaches an
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optimal solution, in finite time, for a certain class of shapes, it has not been implemented yet.
It would thus be interesting to implement it and compare its output to other approximation
methods. Regarding the generalized algorithm, we are also close to proving that it also reaches
an optimal solution in finite time.

Finally, the issue of generalizing our method to higher dimensions remains an open prob-
lem. We share some of our investigation in the next section.

(O, I)-ball approximations in higher dimensions

In the last few chapters, many of the results we presented were only true for R2. We now
provide some insights on the Rd case when the outer subset O is a finite union of balls. In
particular, we investigate how our approach with critical and candidate balls can be adapted.
We outline some of the issues with candidate balls and present an alternative heuristic that
relies on tools similar to critical balls.

§ Partial order and plane sweep The first difficulty resides in the choice of a partial T -
order over the medial axis. We suggest using a plane sweep. Given a sweep direction e, we let
Ht be the hyperplanes with normal e that intersects the line Re at elevation t. If we inspect
the intersection between MA(O) and Ht for various values of t ∈ R, then there are finitely
many singular values t1 < t2 < . . . < tk at which the topology of the intersection will change.
If we slice the medial axis MA(O) at these singular values, we can derive a subdivision of
MA(O) into path-connected components. Assuming that MA(O) does not contain any cycle
(of any dimension), these subdivided components then admit a topological ordering. We can
thus obtain a consistent orientation of MA(O) by choosing between the two sweep directions
+e or −e for each components, in accordance with their topological order. This yields a
partial T -order on MA(O).

§ Critical ball predicates and convex optimization Given any partial T -order on
MA(O), the notion of critical ball for a point or a set directly carries over from the 2D
case. When using the partial T -order that we introduced above, we argue that computing
a critical ball for any type of constraint can be reduced to a convex optimization problem.
First, observe that we can reduce to finding critical balls for a constraint within finitely many
convex subsets of elliptic pencils. Combining these “locally-critical” balls to find a “globally-
critical” one reduces to comparing the elevation t of the hyperplanes Ht that contain the
locally-critical balls. Within a single (subdivided) face f of MA(O), the sweep direction is
constant. Consider the elliptic pencil P such that f ⊆ c(P), and let Bf = {b ∈ P | c(b) ∈ f}
the corresponding balls centered at points of f . Recall that we say a ball b∗ is critical for
point x if it is T -maximal for the collection Fx = {b medial in O | x ∈ b}. We instead look at
FPx = {b ∈ P | x ∈ b}. Notice that Fx ∩ P = FPx ∩Bf . With the plane sweep T -order, being
critical implies that c

(
FPx
)
∩ f must be beneath the sweeping plane Ht∗ that contains c(b∗).
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Because FPx ⊆ P, we can inspect the convex hull CH
(
FPx
)
⊆ P. By convexity of the various

subsets involved, we deduce that b∗ is also T -maximal for CH
(
FPx
)
∩Bf . We obtain a similar

result for a set of constraint.

From the above, computing a critical ball for any constraint is equivalent to finding a
tangent hyperplane to a convex subset. Whether that convex subset can easily be computed
or not is of course dependant on the specific subset. We claim that the predicates for point
constraints can always be implemented in constant time for pencils of balls in the sweep line
partial order. Additionally, for an elliptic k-pencil and a point of constraint x /∈ V (P), it can
be shown that Fx (and c(Fx)) is a half k-flat, and ∂Fx is an elliptic (k − 1)-subpencil of P.

§ Termination of the algorithm ? From the above, it is possible to apply the heuristic of
computing critical balls to any dimension, however it is yet unclear whether such an algorithm
will always terminate. Indeed in 2D, we relied on the fact that for any given pencil segment
[b−b+] we have

⋃
[b−b+] = b− ∪ b+. This prevented the greedy algorithm from ever choosing

more than two balls within the same pencil segment. For higher dimensions, we have convex
pencil polytopes rather than just 1-dimensional segments. Although we know that these pencil
polytopes can be expressed as the convex hull of finitely many balls, the algorithm computes
each critical ball sequentially, and does not make use of that structural property. When
running the algorithm, we may thus end up with more balls in a pencil polytope than the
number of vertices of that polytope.

§ On the choice of a partial order Even though predicates to compute critical balls can be
made available, we cannot guarantee a finite-time algorithm. This approach is thus unlikely to
reach an optimal solution. The problem of using this heuristic in higher dimensions is tied to
the choice of the partial T -order, but also to the notion of candidate ball. Indeed, the notion of
T -criticality will be well-defined whenever the partial T -order is. However, any arbitrary choice
of T -order will generally not yield any meaningful property for the corresponding critical balls.
In 2D, one key property we relied on to prove the many properties of critical balls, was that the
removal of any point of MA(O) would split MA(O) in a specific number of (path-)connected
components. In general, the medial axis of a shape in Rd is a (d − 1)-dimensional surface,
and that splitting property will rarely hold. Splitting the medial axis indeed implied splitting
the interior of the outer shape O̊, and we could then exploit local properties to derive global
properties.

Remark 67. When the medial axis of O is 1-dimensional, this “splitting” property holds and
our approach still works.

The R2 assumption that MA(O) should be cycle-free was to guarantee this splitting prop-
erty. Although the condition that MA(O) should be free of cycle of any dimension seems
attractive, we are unaware of any set of properties that MA(O) should satisfy in the Rd case
in order to define a good partial T -order, with good properties on the resulting critical balls,
and that would then allow us to apply this heuristic properly. In particular, our current pro-
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posal is unable to obtain the “substitution” property that we used in the proof of Theorem 10.
This property enabled us to transform any (O, I)-ball approximation into an approximation
that only contained candidates to its T -small subsets.

§ T -tight collections and substitution heuristic We suggest a change in heuristic. Recall
that we introduced critical balls as a computationally-friendly (and equivalent) alternative to
candidate balls. We thus tailored the set of constraints for our critical balls so that they would
coincide with candidate balls. If we alter the way we define the constraints and compute critical
balls, we will then obtain a new heuristic.

Consider a finite collection of balls B with I ⊆
⋃

B ⊆ O. Let b ∈ B and B′ = B \ {b}
the balls in B minus b. We denote the points of I that are exclusively covered by b in

⋃
B as

A(I, b,B) = I \
⋃

(B′). We then inspect the collection of medial balls that contain A(I, b,B),
F (I, b,B) = {b medial in O | A(I, b,B) ⊆ b}, and look for its T -maximal element b∗. We call
b∗ a (T -)tight ball for the set A(I, b,B).

Remark 68. Let Fx = {b medial in O | x ∈ b}, and notice that

F (I, b,B) =
⋂

x∈A(I,b,B)

Fx

Recall that Fx is convex, thus F (I, b,B) is convex. In a plane sweep T -order, computing a
tight ball reduces to a convex optimization problem.

Remark 69. Because b ∈ F (I, b,B), this collection of balls is non-empty and always admits a
T -maximal element.

A tight ball b∗ will satisfy the inclusion A(I, b,B) ⊆ b∗ and it follows that we can replace
b by b∗ in B. The resulting collection B∗ still satisfy the two inclusions I ⊆

⋃
B∗ ⊆ O. We

call a collection of ball B (T -)tight for I if each of its ball b ∈ B is tight for A(I, b,B), with
A(I, b,B) 6= ∅.

This suggests the following substitution heuristic. Starting from an initial (O, I)-ball
approximation B0, inspect the set of points exclusively covered by a ball b. If it is empty,
remove the corresponding ball. If it is non-tight for A(I, b,B), then replace it by the tight
ball for A(I, b,B). See Algorithm 3.

Remark 70. In R2, the substitution heuristic and the candidate ball heuristic coincide.

It should be noted that this substitution heuristic may not terminate, and Algorithm 3
may loop indefinitely. Since the collection of medial balls is compact, we can however show
that the procedure admits a limit collection of balls Blim. We conjecture the following:

Conjecture 4. Algorithm 3 outputs (potentially at infinity) a tight collection for I.

Throughout this thesis, we often had the problem to look for a collection B with property
(i) that is difficult to compute directly, but knowing about another property (ii) with some
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Algorithm 3 Substitution heuristic
Input: B0 a finite collection of balls, I ⊆

⋃
B0 ⊆ O

1: B ← B0

2: While ∃b ∈ B with A(I, b,B) = ∅, or ∃b ∈ B non-tight for A(I, b,B) do
3: If A(I, b,B) = ∅ then
4: Remove b from B

5: else
6: Compute b∗ tight for A(I, b,B)

7: Replace b by b∗
8: end If
9: end While

10: Return B

representatives that are easy to compute. The recurring strategy we used to deal with this
problem was to show that every collection B with property (i) could be transformed into
another collection B′ with property (ii) while preserving property (i). From there, we showed
that there was one unique equivalence class of collections that can satisfy property (ii), and
that any representative of that equivalence class would also fulfill property (i). Computing a
representative for property (i) could thus be accomplished by computing a representative for
property (ii).

Assuming that Conjecture 4 holds, we know that there exists cardinal-minimum (O, I)-ball
approximations that are tight for I. Even if we disregard the issue of termination, it seems
unlikely that any initial collection B0 in Algorithm 3 will always yield a cardinal minimum
collection. The influence of the choice of B0 on the output of the procedure is indeed an open
question.

Remark 71. When O is a finite union of balls, the collection of balls that defines O can always
be used as the initial collection B0. Algorithm 3 is in fact a method that tries to simplify
(O, I)-ball approximations.

Although Algorithm 3 also has no guarantee on termination or optimality, it still presents
an interesting property, compared to the candidate ball heuristic. Indeed our initial approach
by candidate balls terminates if and only if it reaches a (O, I)-ball approximation. If we
interrupt the procedure before termination, we do not have an approximation available. On
the other hand, Algorithm 3 terminates if and only if it managed to remove every non-local
optimality from its stored collection B, and B is always has a valid (O, I)-ball approximation.
It is thus always possible to interrupt the procedure early.

Remark 72. After interrupting Algorithm 3, it is also easy to resume the procedure, since the
state of the algorithm is entirely encoded within the collection B itself.
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Additional technical results

A.1 Boundary of union and intersection

A.1.1 Intersection

Lemma A.1. Let A, B ⊆ Rd. Then ∂(A ∩B) ⊆
(
∂A ∩B

)
∪
(
∂B ∩A

)
. Additionally, if A

and B are closed, then we have equality.

Proof.

∂(A ∩B) = A ∩B ∩ (A ∩B)c

⊆ A ∩B ∩Ac ∪Bc

= A ∩B ∩
(
Ac ∪Bc

)
=
(
A ∩B ∩Ac

)
∪
(
A ∩B ∩Bc

)
=
(
∂A ∩B

)
∪
(
∂B ∩A

)
If A and B are closed, then A ∩B = A ∩B = A ∩B and we thus have equality.

A.1.2 Union

Lemma A.2. Let A,B ⊆ Rd. Then ∂(A ∪B) ⊆
(
∂A \ B̊

)
∪
(
∂B \ Å

)
. Additionally, if A

and B are open, then we have equality.

Proof.

∂(A ∪B) = A ∪B ∩ (A ∪B)c

= A ∪B ∩Ac ∩Bc

⊆
(
A ∪B

)
∩
(
Ac ∩Bc

)
=
(
A ∩Ac ∩Bc

)
∪
(
B ∩Bc ∩Ac

)
=
(
∂A \ B̊

)
∪
(
∂B \ Å

)
If A and B are open, then Ac and Bc are closed. Thus Ac ∩Bc = Ac ∩Bc = Ac ∩Bc, which
makes the above development an equivalence.
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Lemma A.3. Let A,B ⊆ Rd, such that A and B are disjoint. Then ∂A \ B̊ = ∂A.

Proof. A and B are disjoint, thus A ∩ B = ∅ and in particular, A ⊆ Bc. This implies that
A ∩Bc = A. We have

∂A \ B̊ = A ∩Ac ∩Bc

= A ∩Ac

= ∂A.

Corollary A.4. Let A,B ⊆ Rd be open and disjoint. Then ∂(A ∪B) = ∂A ∪ ∂B.

Proof. Stems from lemmas A.2 and A.3.

In general, the inclusion A ∩B ⊆ A ∩ B, used in the proofs of lemmas A.1 and A.2 is
strict. Indeed, consider for example X ⊆ Rd with X 6= ∅ 6= Xc. Then X ∩ Xc = ∅ hence
X ∩Xc = ∅. However ∅ 6= ∂X = ∂(Xc) = X ∩Xc.

A.2 Interior of a cone

Lemma A.5. Let u, c1, . . . , ck ∈ Rd be k + 1 points. Let C = {c1, . . . , ck}. We have the
inclusion

˚coni(u,C) ⊆

{
u+

k∑
i=1

λi(ci − u) | λi ∈ R, λi > 0

}

In order to prove Lemma A.5 we rely on the following technical result:

Lemma A.6. Let c ∈ ˚coni(u,C) and l ∈ {1, . . . , k}. There exist λ1, . . . , λk ≥ 0, λl > 0, such
that c− u =

∑k
i=1 λi(ci − u).

Proof. Let el = (cl − u)/‖cl − u‖. Let r > 0 such that b(c, r) ⊆ ˚coni(u,C). Then c − rel ∈
coni(u,C) and there are µ1, . . . , µk ≥ 0 such that

c− rel − u =

k∑
i=1

µi(ci − u) ⇐⇒ c− u =
r

‖cl − u‖
(cl − u) +

k∑
i=1

µi(ci − u)

We let λi = µi for i 6= l, and λl = µl + r/‖cl − u‖. It follows that c − u =
∑k

i=1 λi(ci − u)

with λi ≥ 0, and λl > 0.

We can now prove Lemma A.5.



A.3. An alternative way to test the inclusion (
⋃

S )	ε ⊆
⋃

B 195

Proof of Lemma A.5. By Lemma A.6, for each l ∈ {1, . . . , k} there are λl1, . . . , λlk ≥ 0, λll >
0, such that c− u =

∑k
i=1 λli(ci − u). By summing over 1 ≤ l ≤ k we have

k(c− u) =
k∑
i=1

(
k∑
l=1

λli

)
(ci − u)

with
∑k

l=1 λli/k > 0 for all i.

Remark 73. One can prove the stronger statement

relint(coni(u,C)) =

{
u+

k∑
i=1

λi(ci − u) | λi ∈ R, λi > 0

}

A.3 An alternative way to test the inclusion (
⋃

S )	ε ⊆
⋃

B

In this appendix, we provide an alternative polynomial-time algorithm to check whether the
erosion of a finite collection of disks is contained into the union of another finite collection of
disks. The algorithm relies on a characterization of the inclusion of one set into a finite union
of balls given by Lemma 4.3. Recall that this lemma provides conditions that guarantee the
inclusion of a bounded set A into a finite union of balls X. Specifically, let V be the vertex
set of ∂X. Then we have inclusion A ⊆ X if:

(i) ∂A ⊆ X, and

(ii) ∀v ∈ V , ∃Nv an open neighbourhood of v such that Nv ∩A ⊆ X.

We are now ready to describe an algorithm that tests in polynomial time whether A ⊆ X,
where A is the erosion of a finite collection of disks and X is the union of a finite collection
of disks. The pseudocode of the algorithm is given in Algorithm 4. To describe it, let S and
B be two finite collections of disks, C a finite collection of circular arcs, x a point, ε ≥ 0 a
non-negative real number. We introduce four functions:

Boundary takes as input the pair (S , ε) and returns the set of circular arcs that compose
the boundary of the erosion (

⋃
S )	ε.

PointLocation takes as input the triplet (x,S , ε) and returns inner if x ∈ Å, boundary if
x ∈ ∂A and outer if x 6∈ A, where A = (

⋃
S )	ε.

Inclusion takes as input (C ,B) and returns true iff (
⋃

C ) ⊆ (
⋃

B).

LocalInclusion takes as input (v,S , ε,B) where v lies on the boundary of both the erosion
(
⋃

S )	ε and the union
⋃

B. It returns true iff there exists an open neighborhood Nv

of v such that Nv ∩ (
⋃

S )	ε ⊆ (
⋃

B).
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Each of those four functions can be implemented in polynomial time and we leave to the reader
the choice of an implementation.

Algorithm 4 An alternative way to test the inclusion (
⋃

S )	ε ⊆
⋃

B.
Input: (S , ε,B)

Output: true if (
⋃

S )	ε ⊆
⋃

B, false otherwise
1: if not Inclusion(Boundary(S , ε),B) then return false ;
2: for all vertices v of the boundary of

⋃
B do

3: switch PointLocation(v,S , ε) do
4: case outer do return false ;
5: case boundary do
6: if not LocalInclusion(v,S , ε,B) then return false ;
7: end case
8: end switch
9: end For

10: return true
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Résumé — Représenter un objet géométrique complexe par un ensemble de primitives simples est
une tâche souvent fondamentale, que ce soit pour la reconstruction et la réparation de données, ou
encore pour faciliter la visualisation ou la manipulation des données. Le choix de la ou les primitives,
ainsi que celui de la méthode d’approximation, impactent fortement les propriétés de la représentation
de forme qui sera obtenue.

Dans cette thèse, nous utilisons les boules comme seule primitive. Nous prenons ainsi un grand
soin à décrire les unions finies de boules et leur structure. Pour cela, nous nous reposons sur les
faisceaux de boules. En particulier, nous aboutissons à une description valide en toute dimension, sans
hypothèse de position générale. En chemin, nous obtenons également plusieurs résultats portant sur
les tests d’inclusion locale et globale dans une union de boules.

Nous proposons également une nouvelle méthode d’approximation par union finie de boules,
l’approximation par boules à (delta,epsilon)-près. Cette approche contraint l’union de boules à
couvrir un sous-ensemble de la forme d’origine (précisément, un epsilon-érodé), tout en étant contenu
dans un sur-ensemble de la forme (un delta-dilaté). En nous appuyant sur nos précédents résultats
portant sur les unions de boules, nous démontrons plusieurs propriétés de ces approximations. Nous
verrons ainsi que calculer une approximation par boules à (delta,epsilon)-près qui soit de cardinal
minimum est un problème NP-complet. Pour des formes simples dans le plan, nous présentons un
algorithme polynomial en temps et en espace qui permet de calculer ces approximations de cardinal
minimum. Nous concluons par une généralisation de notre méthode d’approximation pour une plus
large variété de sous-ensembles et sur-ensembles.

Mots clés : géométrie algorithmique, géométrie discrète, approximation de forme, axe mé-
dian, union finie de boules, faisceau de sphères/boules

Abstract — Describing a complex geometric shape with a set of simple primitives is often a
fundamental task for shape reconstruction, visualization, analysis and manipulation. The type of
primitives, as well as the choice of approximation scheme, both greatly impact the properties of the
resulting shape representation.

In this PhD, we focus on balls as primitives. Using pencils of balls, we carefully describe finite
unions of balls and their structure. In particular, our description holds in all dimension without
assuming general position. On our way, we also establish various results and tools to test local and
global inclusions within these unions.

We also propose a new approximation scheme by union of balls, the (delta,epsilon)-ball approx-
imation. This scheme constrains the approximation to cover a core subset of the original shape
(specifically, an epsilon-erosion), while being contained within a superset of the shape (a delta-
dilation). Using our earlier results regarding finite unions of balls, we prove several properties of these
approximations. We show that computing a cardinal minimum (delta,epsilon)-ball approximation is
an NP-complete problem. For simple planar shapes however, we present a polynomial time and space
algorithm that outputs a cardinal minimum approximation. We then conclude by generalizing the
approximation scheme to a wider range of core subsets and bounding supersets.

Keywords: computational geometry, digital geometry, shape approximation, medial axis, fi-
nite union of balls, pencil of spheres/balls

GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402
SAINT MARTIN D’HERES


	Acknowledgements
	Contents
	List of Figures
	Résumé en français
	Introduction
	Section 1.5 : Un résultat sur l'inclusion d'ensembles
	Chapitre 2: Union finies de boules
	Chapitre 3: Approximation par boules à (,)-près
	Chapitre 4: Algorithme glouton optimal
	Chapitre 5: Généralisations à d'autres formes

	Introduction
	Technical tools
	Preliminary notions and notations
	Balls and spheres
	Medial axis and skeleton
	Distance diagrams
	A result about set inclusion

	Finite union of balls
	Pencil of balls
	Convex subsets of pencils
	Local inclusion in parabolic pencils
	Boundary of a finite union of balls
	Medial axis, skeleton, boundary and pencils
	Conclusion

	(,)-ball approximation
	Problem statement
	Boundary of the erosion
	The rational (,)-ball approximation is in NP
	Rational (,)-ball approximation is NP-hard
	Conclusion

	Greedy optimal algorithm for (0,)-ball approximation
	Preliminary notions
	Projection on the medial axis
	Testing for set inclusion in finite unions of balls
	Critical balls
	Critical balls and T-maximal candidates
	Computing critical balls
	Algorithm
	Conclusion

	Generalization to other shapes
	Generalized problem and algorithm
	Generalities on computing critical balls
	Classic point-point pencil
	Line-line pencil
	Point-line pencil
	Conclusion

	Conclusion
	Conclusion
	(O,I)-ball approximations in higher dimensions

	Additional technical results
	Boundary of union and intersection
	Interior of a cone
	An alternative way to test the inclusion (S)B

	Bibliography
	Abstract

