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Augusto PONCE Université Catholique de Louvain Rapporteur
Massimiliano MORINI Università di Parma Rapporteur
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Abstract

This thesis is mainly devoted to the mathematical analysis of some nonlocal models
arising in population dynamics. In general, the study of these models meets with
numerous difficulties owing to the lack of compactness and of regularizing effects. In
this respect, their analysis requires new tools, both theoretical and qualitative. We
present several results in this direction.

In the first part, we develop a functional analytic toolbox which allows one to han-
dle some quantities arising in the study of these models. In the first place, we extend
the characterization of Sobolev spaces due to Bourgain, Brezis and Mironescu to low
regularity function spaces of Besov type. This results in a new theoretical framework
that is more adapted to the study of some nonlocal equations of Fisher-KPP type.
In the second place, we study the regularity of the restrictions of these functions to
hyperplanes. We prove that, for a large class of Besov spaces, a surprising loss of
regularity occurs. Moreover, we obtain an optimal characterization of the regularity
of these restrictions in terms of spaces of so-called “generalized smoothness”.

In the second part, we study qualitative properties of solutions to some nonlocal
reaction-diffusion equations set in (possibly) heterogeneous domains. In collabora-
tion with J. Coville, F. Hamel and E. Valdinoci, we consider the case of a perforated
domain which consists of the Euclidean space to which a compact set, called an “ob-
stacle”, is removed. When the latter is convex (or close to being convex), we prove
that the solutions are necessarily constant. In a joint work with J. Coville, we study
in greater detail the influence of the geometry of the obstacle on the classification of
the solutions. Using tools of the type of those developed in the first part of this the-
sis, we construct a family of counterexamples when the obstacle is no longer convex.
Lastly, in a work in collaboration with S. Dipierro, we study qualitative properties
of solutions to nonlinear elliptic systems in variational form. We establish various
monotonicity results in a fairly general setting that covers both local and fractional
operators.

Keywords: nonlocal reaction-diffusion equations, rigidity results, Besov spaces, cal-
culus of variations, perforated domains, function space theory.





Résumé

Cette thèse est consacrée principalement à l’analyse mathématique de modèles non-
locaux issus de la dynamique des populations. En général, l’étude de ces modèles se
heurte à de nombreuses difficultés dues à l’absence de compacité et d’effets régula-
risants. A ce titre, leur analyse requiert de nouveaux outils tant théoriques que
qualitatifs. Nous présentons des résultats recouvrant ces deux aspects.

Dans une première partie, nous développons une “bôıte à outils” destinée à
traiter certaines quantités récurrentes dans l’étude de ces modèles. En premier lieu,
nous étendons la caractérisation des espaces de Sobolev due à Bourgain, Brezis et
Mironescu à des espaces de fonctions moins réguliers de type Besov, offrant ainsi un
cadre théorique plus adapté à l’étude de certaines équations du type Fisher-KPP. En
second lieu, nous étudions la régularité de ces fonctions par restriction sur des hyper-
plans. Nous montrons que, pour une large classe d’espaces de Besov, une surprenante
perte de régularité a lieu. En outre, nous obtenons une caractérisation optimale de
la régularité de ces restrictions via des espaces dits à “régularité généralisée”.

Dans une seconde partie, nous nous intéressons aux propriétés qualitatives des
solutions d’équations de réaction-diffusion non-locales posées dans des domaines pos-
siblement hétérogènes. En collaboration avec J. Coville, F. Hamel et E. Valdinoci,
nous considérons le cas d’un domaine perforé consistant en l’espace euclidien privé
d’un ensemble compact appelé “obstacle”. Lorsque ce dernier est convexe (ou presque
convexe), nous montrons que les solutions sont nécessairement constantes. Dans un
travail conjoint avec J. Coville, nous étudions plus en détail l’influence de la géométrie
de l’obstacle sur la classification des solutions. En utilisant des outils du type de ceux
développés dans la première partie de cette thèse, nous construisons une famille de
contre-exemples lorsque l’obstacle n’est plus convexe. Enfin, dans un travail en col-
laboration avec S. Dipierro, nous étudions les propriétés qualitatives des solutions
de systèmes d’équations elliptiques non-linéaires sous forme variationnelle. Nous y
démontrons plusieurs résultats de monotonicité dans un cadre très général qui couvre
à la fois le cas des opérateurs locaux et fractionnaires.

Mots-clés : équations de réaction-diffusion non-locales, résultats de rigidité, espaces
de Besov, calcul des variations, domaines perforés, théorie des fonctions.
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Hâtez-vous lentement, et, sans perdre courage,
Vingt fois sur le métier remettez votre ouvrage :
Polissez-le sans cesse et le repolissez ;
Ajoutez quelquefois, et souvent effacez.
N. Boileau, L’art poétique.

Hâtez-vous lentement, et sans perdre courage,
Vingt fois sur le métier remettez votre ouvrage,

Polissez-le sans cesse, et le repolissez,
Ajoutez quelquefois, et souvent effacez.

N. Boileau, L’art poétique, Chant I.
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Introduction

1 Foreword

Over past decades, it has become clear that some phenomena in population dynamics
cannot be described by local equations. Inter alia, the experimental data have shown
that the dispersal of biological populations often presents “nonlocal features”. This
has led mathematicians and biologists to consider nonlocal models. But if they
share some resemblances with the classical models, their treatment is often a delicate
matter. In general, these models enjoy neither good compactness properties nor good
regularizing effects. To make matters worse, there may not even be such thing as
(fractional) Sobolev spaces to cope with situations where they would be the natural
tool to use. The usual techniques of proof are therefore more complex to implement.
One thus expects new approaches to be helpful to handle these issues.

This thesis is intended as a contribution in this direction and, more generally,
to the field of nonlocal equations. Of course, this is a very wide topic and we will
broach only a small part of it. We will be primarily interested in equations involving
a “nonlocal diffusion term” and a “nonlinear reaction term”.

This manuscript consists of two parts which have different styles. In Part I, we
address functional analytic issues and we provide new results regarding smoothness
and function spaces in connection with nonlocal equations; whereas, in Part II, we
study qualitative properties of solutions to some nonlocal reaction-diffusion problems,
with special emphasis on rigidity results.

The motivation of this thesis and the outline of our main contributions are ex-
plained in greater details in the next two sections.

2 State of art

2.1 A brief history of population dynamics

Before going to the heart of this thesis, it is worth taking a small walk through history.
As a matter of fact, population dynamics is a much older topic than usually thought.
The very first to show preoccupations of this kind was Plato (ca. 427-347 BC) in his
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Laws (Nóµoι in Greek). In the fifth book of this monumental essay, he wondered what
should be the optimal organization of a city-state in order for it to remain stable
over the course of time. Although this might seem quite remote from population
dynamics, he raised there important questions on the relationship of the population
to the environment. Based on both ecological and governance grounds, he argued
that the total number of citizens should be kept constant equal to 5,040 because it
can be divided into many lesser parts which should, in his view, be very convenient to
optimize both the organization of the polis and the demographic needs.1 To maintain
this number constant he also pointed out the need for a demographic legislation,
foreshadowing Malthusian ideas on demography.2

It is striking to see that Plato, 2,400 years ago, already foresaw the importance
of population dynamics and the possibility of a mathematical approach (although
rather fancy3) to address the problem!

More than 1,500 years later, Fibonacci (1175-1250) in his 1202 book Liber Abaci
introduced the famous sequence named after him. What is however less known, is
that it was introduced to solve a problem which one would nowadays call a typical
problem in population dynamics. Here is an English translation of the original
statement (in Latin) of the problem:

A certain man had one pair of rabbits together in a certain enclosed place.
One wishes to know how many are created from the pair in one year when
it is the nature of them in a single month to bear another pair and in the
second month those born to bear also.

Interestingly enough, the solution to this problem, the Fibonacci sequence (Fn)n>0,
grows like ϕn/

√
5 as n → ∞, where ϕ = (1 +

√
5)/2 is the golden ratio (see e.g.

[149, Theorem 12, p.27]). In other words, it involves an exponential growth of the
population. In a certain sense — that will be made clear in the next page — this

1“We must fix at the right total the number of citizens; next, we must agree about the distribution
of them, into how many sections, and each of what size they are to be divided; and among these
sections we must distribute, as equally as we can, both the land and the houses. [...] Of land we
need as much as is capable of supporting so many inhabitants of temperate habits. [...] The number
5,040 is here chosen because, for a number of moderate size, it has the greatest possible number of
divisors (59), including all the digits from 1 to 10. [...] And in order that these things may remain
in this state forever, these further rules must be observed: the number of hearths, as now appointed
by us, must remain unchanged, and must never become either more or less.” Plato, Laws, Book V.

2“The magistrates [...] shall consider how to deal with the excess or deficiency in families, and
contrive means as best they can to secure that the 5,040 households shall remain unaltered. There
are many contrivances possible: where the fertility is great, there are methods of inhibition, and
contrariwise there are methods of encouraging and stimulating the birth-rate, by means of honours
and dishonours.” Plato, op. cit.

3It is also amusing to notice that 7! = 1×2×3×4×5×6×7 = 5,040 which suggests an influence
of Pythagoreanism.
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feature somehow instates the Fibonacci sequence as a forerunner of some discoveries
which would play an important role in the establishment of population dynamics.

But modern population dynamics really start to expand from the seminal work of
Malthus (1766-1834). In his celebrated Essay on the Principle of Population (1798),
he developed what is now regarded as the “first principle” of population dynamics.
In substance, it says that

1. all life forms have a propensity to exponential population growth when the
resources are abundant;4

2. the population growth is limited by the availability of the resources.5

This amounts to say that, for a population with unlimited resources, the size u(t) of
the population at time t is given by u(t) = u0 e

λt, where u0 is the initial population
size and λ > 0 is the growth rate of the population. In other words, u obeys{

u′(t) = λu(t) for t > 0,

u(0) = u0.
(2.1)

This is known as the Malthusian growth model.
However, this model is generally unrealistic: it does not take into account the

competition between individuals for the resource, which thereby yields exponential
growth of the population. A couple of decades later, Verhulst [146] (1804-1849),
inspired by the work of Malthus, proposed a new model that adjusted (2.1) to take
into account the resource limitation phenomenon. This model, known as the logistic
growth model, takes the form

u′(t) = λu(t)

(
1− u(t)

κ

)
, (2.2)

where λ > 0 is the growth rate of the population and κ > 0 is a constant correspond-
ing to the maximum population size of the species that the environment can sustain
indefinitely given the availability of the resource, called the carrying capacity. Of
course, if κ→∞, then this boils down to the Malthusian growth model.

Equation (2.2) gives rise to an unstable equilibrium at 0 and a stable equilibrium
at κ. Indeed, this is because u′(t) = 0 when u(t) ∈ {0, κ} while u′(t) > 0 in
{0 < u < κ} and u′(t) < 0 in {u > κ}. Therefore, κ attracts any function starting
from u(0) ∈ (0, κ). That is, u(t) → κ as t → ∞. For this reason, the nonlinear
function of u on the right-hand side of (2.2) is sometimes referred to as monostable.

4“Population, when unchecked, increases in a geometrical ratio. [...] Taking the population of
the world at any number, a thousand millions, for instance, the human species would increase in
the ratio of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, etc.” Malthus, Essay on the Principle of Population.

5“The increase of population is necessarily limited by the means of subsistence”, Malthus, op.
cit.
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But the mathematical theory of population dynamics really took flight in the
1930’s. Until then, investigations were based on the Malthusian principle (expo-
nential growth) and on the Verhulst model (logistic growth). Two fundamental
discoveries would change this old paradigm.

The first one is due to Allee (1885-1955). According to the Verhulst model,
the per capita growth rate of the population is all the greater when the population
is small. That is, the less individuals there are, the less mortality there is, as the
available resource per individual is higher. In his 1931 book Animal Aggregations: A
Study in General Sociology, Allee discovered that this might not always be the case.
Another phenomenon must be taken into account: cooperation between individuals.
He pointed out that

there is a positive correlation between population size and the individual
fitness (or per capita growth rate) of the population.

This is called the “Allee effect”, but some authors refer to it as the “second prin-
ciple” of population dynamics. It manifests through different mechanisms such as
mate limitation or cooperative feeding. Loosely speaking, the higher the population
size is, the more likely the individuals are to cooperate, which then results in a de-
mographic increase. Contrariwise, the lower the population size is, the less likely the
individuals are to cooperate, which then results in a demographic decrease. From the
mathematical point of view, this can be modelled by introducing a critical threshold
above which the population tends to increase and below which it tends to decrease.
It is usually translated into models of the type

u′(t) = λu(t)

(
1− u(t)

κ

)
(u(t)− θ) , (2.3)

where λ and κ have the same meaning as in (2.2) and θ > 0 is the critical size of the
population.

By contrast with the Verhulst model, there are now two stable equilibria at 0
and κ, respectively, and an unstable equilibrium at θ. For this reason, the nonlinear
function of u on the right-hand side of (2.3) is called bistable. This is indeed consis-
tent with Allee’s observations: if it holds that u(0) ∈ (0, θ), then, after some large
time, the population will decline to extinction, namely u(t) → 0 as t → ∞. Con-
versely, if u(0) ∈ (θ, κ), then the population will tend to reach the maximal amount
of individuals that the environment is able to sustain, namely u(t)→ κ as t→∞.

The second milestone in the history of population dynamics arose with the dis-
covery, in 1937, by Fisher [73] and, independently, by Kolmogorov, Petrovskii and
Piskunov [93] of the so-called Fisher-KPP equation:

∂u

∂t
= ρ∆u+ λu

(
1− u

κ

)
, (2.4)
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where ρ > 0 is a diffusion coefficient analogous to that used in physics. The principal
novelty of this model is that it takes into account the spatial interactions between
individuals. All the models considered hitherto were not spatialized, meaning that,
in each of the populations considered, each individual was assumed to interact with
all the other individuals. However, in most situations, the heterogeneity of the spa-
tial distribution cannot be neglected. The population size u(t) is thus not sufficiently
informative and one must look for its density u(t, x) instead. This difficulty is over-
come by considering that the movement of individuals is approximated by a random
motion which then results in a reaction-diffusion equation (see the next section for
more explanations).

Since these seminal works, much attention has been paid to models taking both
into account the diffusion of the species and general demographic variations, such as

∂u

∂t
= ∆u+ f(u), (2.5)

where f is some nonlinear reaction term, see e.g. [6, 70, 102, 153, 154].
It is worth mentioning that, over the past century, equations of the type of (2.5)

have emerged from a number of seemingly remote areas, most notably in the study
of combustion phenomena and phase transitions in liquid crystals, superconductivity
and material sciences in general. In the latter case, one typically has

f(X) = X(1−X2),

and (2.5) is then called the Allen-Cahn or Ginzburg-Landau equation (see e.g. [21,
22]). As a matter of fact, mechanistic models in ecology often intertwine with other
branches of natural sciences. Although the mathematical theories of the above-
mentioned fields are rather disjoint, the tools and methods developed for either one of
them often turn out to find applications in the other. These equations are customary
gathered together under the umbrella term “reaction-diffusion problems”.

We refer the interested reader to [10, 123, 148] (and references therein) for further
historical remarks and a comprehensive study of the above models.

2.2 From local to nonlocal models: towards a new paradigm

Since the seminal work of Fisher [73], Kolmogorov, Petrovskii and Piskunov [93], the
study of spatial distribution of individuals has become a fundamental cornerstone
of population dynamics. In fact, the patterns formed by the individuals at the
microscopic level can be shown to determine the diffusion at the macroscopic level.
Therefore a better knowledge of the former is expected to improve our understanding
of the latter. From our perspective, this means that one can recover the Fisher-
KPP equation starting from microscopic considerations only. Indeed, interpreting
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the trajectories of the individuals as realizations of a Lévy process (Xt)t>0, we can
then consider its associated Feller semi-group (Pt)t>0. In turn, this semi-group is
generated by an operator L given by

Lu(x) = lim
t→0+

Ptu(x)− u(x)

t
.

This operator, called the infinitesimal generator of (Pt)t>0, describes the diffusion of
the species at the macroscopic level. Since diffusion is accompanied by demographic
variations, we then obtain — at least formally — an equation of the type

∂u

∂t
= Lu+ f(u), (2.6)

where f is some nonlinear reaction term. If (Xt)t>0 is a Brownian motion, then the
operator L boils down to the Laplacian, namely

Lu =
1

2
∆u,

(see e.g. [5, Example 3.3.4, p.141]) and we recover essentially (2.4).
The recent development of GPS technologies has allowed the detailed tracking of

individuals within a given species. This has been the source of a new revolution in
the development of population dynamics and has shed new lights on how to describe
diffusion phenomena. If the collected sets of data highly support the assumption
that the trajectories follow Lévy processes (see e.g. [11, 12, 104, 121, 128]), it has
been observed that the Brownian motion does not always account for the patterns
formed by individuals. In particular, they may exhibit long-range jumps which are
not accounted by Brownian motions. In this case, dispersion can occur over large
distances and may exhibit “nonlocal features”.

From the PDE standpoint, this means that, depending on the specific behavior
one wishes to describe, different operators from the Laplacian may arise.

In the case of marine predators, the Brownian motion is relevant where prey
is abundant, but a Lévy type behavior occurs when prey is sparsely distributed
[80, 82, 122, 130]. In this situation, random patterns of individuals are best described
by processes with long-range jumps. Typical examples of such processes are α-stable
Lévy processes with 0 < α < 2. Although they are somehow related to the Brownian
motion (which may be seen as a 2-stable Lévy process) their infinitesimal generator
happen to be of a completely different nature. It is given by the singular integral

Lu(x) = −(−∆)α/2u(x) := C(N,α) p.v.

ˆ
RN

u(y)− u(x)

|x− y|N+α
dy, (2.7)

where C(N,α) > 0 is a normalization constant and “p.v.” stands for the Cauchy prin-
cipal value (see e.g. [74, 113, 145]). This operator is called the fractional Laplacian.
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Another example of processes which arise in this situation are compound Poisson
processes. Their infinitesimal generator is, again, of a completely different nature.
Precisely, one has

Lu(x) =

ˆ
RN
J(x− y)(u(y)− u(x))dy, (2.8)

where J ∈ L1(RN) is a nonnegative kernel with J(x− y) encoding the probability to
jump from a location x to a location y (see e.g. [5, Example 3.3.7, p.141]).

What is here striking is that both (2.7) and (2.8) are nonlocal integral operators.6

This has strong consequences and induces strange and surprising phenomena.
To name only a few, Dipierro, Savin and Valdinoci [58] have shown that every

reasonably smooth function can be locally approximated by α
2

-harmonic functions,
i.e. such that (−∆)α/2u = 0. This highly contrasts with the rigidity of classical
harmonic functions and is a purely nonlocal feature. In the same vein, Cafferelli,
Dipierro and Valdinoci [44] proved that a similar “density result” holds with nonlocal
Fisher-KPP type equations of the form

∂u

∂t
= −(−∆)α/2u+ u(σ − u),

where σ is a function to be thought of as a resource producing a birth rate propor-
tional to it (see also [59]). This means that equations of the type of (2.6) may enjoy
very different properties depending on the type of diffusion considered.

The fractional Laplacian shares common features with the classical Laplacian. In
particular, compactness properties are preserved and the function spaces naturally
associated to it, although of a nonlocal nature, have similar properties. A result due
to Caffarelli and Silvestre [43] shows that it may even be localized by adding a new
variable.

By contrast with the fractional Laplacian, convolution operators of the type of
(2.8) lack of strong compactness properties which makes their analytical treatment
much more involved. In particular, there are no a priori regularity results in gen-
eral and no powerful functional analytic framework similar to that provided by the
(fractional) Sobolev spaces.

But the nonlocal setting presents a further difficulty. As a matter of fact, bound-
ary value problems, for both (2.7) and (2.8), cannot be handled in the same way as
in the local case because of the contribution of the diffusion coming from outside
the domain. Moreover, if various results are known for general equations of the type

6It is worth pointing out that the equation that was actually derived by Kolmogorov, Petrovskii
and Piskunov in [93] was a nonlocal equation of the type of (2.6) with L of the form (2.8) (see [93,
Formula (7.32), p.174]). In fact, the local equation (2.4) was obtained as a sort of approximation
using a formal Taylor expansion, which suggests that nonlocal equations are natural in this context.
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of (2.6) in the whole space RN (see e.g. [13, 45, 50, 69, 155]), numerous questions
remain open when it comes to heterogeneous domains. Such problems are a major
issue in population dynamics. In this regard, let us quote Turchin [144] who, in his
1998 monograph Quantitative Analysis of Movement, wrote that

“the spatial dimension and, in particular, the interplay between environ-
mental heterogeneity and individual movement, is an extremely impor-
tant aspect of ecological dynamics.”

The purpose of this thesis is to study some of these nonlocal features, especially
those arising when considering operators of convolution type as in (2.8).

3 Contributions

The topics addressed in this thesis are quite different from a chapter to another, with
the notable exception of Chapter 4 which can be seen as a follow-up to Chapter 3.
A significant part of this thesis is dedicated to the study of models of the type

∂u

∂t
(t, x) =

ˆ
Ω

J(x− y)(u(t, y)− u(t, x))dy + f(u(t, x)),

set in some domain Ω ⊂ RN , albeit we sometimes emphasize more on the functional
analytic aspects behind it than on the equation itself. Some of our contributions are
thus of interest per se even outside the realm of population dynamics.

Our results sometimes overlap with other areas such as phase transitions in
physics and material sciences (in particular Chapter 5 and, to some extent, Chap-
ter 2). But, as pointed out at the end of Section 2.1 above, these topics are closely
related to population dynamics.

This thesis is divided into five (mutually independent) chapters, split into two
parts. The first part deals with regularity issues arising in nonlocal reaction-diffusion
problems. The second part is mainly concerned with qualitative properties of solu-
tions to some nonlocal problems with special emphasis on rigidity results. Possible
extensions of our results are briefly discussed at the end of the thesis.

We present below the content of each chapter and our main contributions.

3.1 A functional analytic toolbox

Part I contains two chapters which are adapted from the following papers:

∗ J. Brasseur: A Bourgain-Brezis-Mironescu characterization of higher
order Besov-Nikol’skii spaces, Ann. Inst. Fourier (2017), (forthcoming).

∗ J. Brasseur: On restrictions of Besov functions, Nonlinear Anal. 170
(2018), p. 197-225.
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3.1.1 A Bourgain-Brezis-Mironescu characterization of Besov-Nikol’skii spaces

In Chapter 1, we study a problem in functional analysis that emerges in the study
of some nonlocal Fisher-KPP type equations. Precisely, we consider the equation

1

εm
(Jε ∗ u(x)− u(x)) + u(x)(a(x)− u(x)) = 0 in RN , (3.1)

where ε > 0, m ∈ [0, 2], u is the density of a given population, Jε(z) := 1
εN
J
(
z
ε

)
,

with J ∈ C ∩L1(RN), is a symmetric positive dispersal kernel with unit mass having
finite m-th order moment, and a ∈ C2(RN) is a function satisfying

lim sup
|x|→∞

a(x) < 0.

The parameter ε is a measure of the spread of dispersal of the species and 1/εm

is a rate of dispersal which arises when considering a “cost function” (see [16]).
As an example, one may think of a population of trees producing and dispersing

seeds. Several dispersal strategies are then possible: either it disperses few seeds
but over large distances (ε � 1) or it disperses many of them but over smaller
distances (ε� 1). The parameter m measures the influence of the cost function on
the different possible strategies.

Studying persistence of the population amounts to seeking for a positive solution
to (3.1). Of particular interest is the asymptotic behavior of solutions, which allows
to determine whether one of the extreme strategies (ε� 1 or ε� 1) yield persistence
or extinction. But if we have a clear picture when ε → ∞ (see [16, Theorems 1.3
and 1.4]) it is only poorly understood when ε→ 0+ and 0 < m < 2.

The best result in this direction is due to Berestycki, Coville and Vo [16]. They
have proved that if J behaves sufficiently well, for example if it is compactly sup-
ported with J(0) > 0, and if a is such that max{a, 0} 6≡ 0, then, when ε → 0+,
uε converges pointwise almost everywhere to some non-negative bounded function v
satisfying

v(x)(a(x)− v(x)) = 0 in RN . (3.2)

Unfortunately, this equation admits infinitely many solutions, so one cannot directly
infer a persistence strategy for that case.

However, it is known that solutions to (3.1) satisfy

ˆ
RN

ˆ
RN
ρε(x− y)

|uε(x)− uε(y)|2

|x− y|m
dxdy 6 C for all ε > 0, (3.3)

where ρε(z) = ε−m|z|mJε(z), see [16, Lemma 5.1(ii)]. This inequality is in fact the
key tool which allows to handle the case m = 2. Indeed, (3.3) together with the
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recent characterization of Sobolev spaces derived by Bourgain, Brezis, Mironescu
[27] and Ponce [118] implies that (uε)ε>0 is relatively compact in L2

loc(RN) and that
it converges along a subsequence to some function v satisfying

lim
ε→0+

ˆ
RN

ˆ
RN
ρε(x− y)

|v(x)− v(y)|2

|x− y|2
dxdy 6 C,

which, by the result of Bourgain et al. [27, Theorem 2], is equivalent to saying that
v belongs to the Sobolev space H1(RN). Then, relying on standard elliptic theory,
it can be shown that v is the unique nontrivial solution of

β∆v(x) + v(x)(a(x)− v(x)) = 0,

where β > 0 is some constant depending on N and J .
Unfortunately, there is no such characterization when 0 < m < 2, which prevents

from using this strategy. Whence, a detailed study of functionals of the type of (3.3)
is needed. This is the main purpose of Chapter 1.

More precisely, given s ∈ (0, 1] and p ∈ [1,∞), we study the properties of func-
tions f ∈ Lp(RN) satisfyingˆ

RN

ˆ
RN
ρε(x− y)

|f(x)− f(y)|p

|x− y|sp
dxdy 6 C as ε→ 0+, (3.4)

where (ρε)ε>0 ⊂ L1(RN) is a standard sequence of mollifiers, i.e. such that

ρε > 0 a.e. in RN for any ε > 0,ˆ
RN
ρε(z)dz = 1 for any ε > 0,

lim
ε→0+

ˆ
|z|>δ

ρε(z)dz = 0 for all δ > 0.

(3.5)

In their paper, Berestycki et al. [16] were expecting (3.4) with 0 < s < 1 to
provide a description of fractional Sobolev spaces. However, the underlying space
happens to be of a different nature. Precisely, we show that it coincides with the
so-called Besov-Nikol’skii space Bs

p,∞(RN) (see Definition 3.3) provided that (ρε)ε>0

satisfies

ρε(z) =
1

εN
ρ
(z
ε

)
for some ρ ∈ L1(RN). (3.6)

That is, we prove the following

Theorem — Let s ∈ (0, 1) and p ∈ [1,∞). Let (ρε)ε>0 ⊂ L1(RN) be a sequence
of radial functions satisfying (3.5) and (3.6). Then, f ∈ Lp(RN) satisfies (3.4) if,
and only if, f ∈ Bs

p,∞(RN). Moreover,

[f ]p
Bsp,∞(RN )

∼ sup
ε>0

ˆ
RN

ˆ
RN
ρε(x− y)

|f(x)− f(y)|p

|x− y|sp
dxdy.
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The main difficulty in establishing this result is that the techniques of proof used
in [27, 33, 118] to handle the case of Sobolev spaces do not adapt. There are at least
two reasons for this: on the one hand, many properties of the growth rate which
arises in (3.4) when s = 1 are lost in the fractional case s ∈ (0, 1) and, on the other
hand, smooth functions are not dense in Bs

p,∞(RN). To cope with this, we develop a
new strategy relying essentially on elementary arguments.

Further, we prove that an important property does no longer hold: compactness.
When s = 1, it is known that any bounded sequence (fε)ε>0 ⊂ Lp(RN) satisfying

ˆ
RN

ˆ
RN
ρε(x− y)

|fε(x)− fε(y)|p

|x− y|p
dxdy 6 C as ε→ 0+,

must be relatively compact in Lploc(RN) provided that (ρε)ε>0 satisfies some mild
symmetry properties (see e.g. [27, 118]).

We show that, surprisingly, this does not extend to the fractional setting.

Theorem — Let s ∈ (0, 1) and p ∈ [1,∞). Let (ρε)ε>0 be a sequence of mollifiers
of the form (1.8) with ρ ∈ L1(RN) satisfying

ˆ
RN
ρ(z)|z|p(1−s)dz <∞.

Then, there exists a bounded sequence (fε)ε>0 ⊂ Lp(RN) satisfying

ˆ
RN

ˆ
RN
ρε(x− y)

|fε(x)− fε(y)|p

|x− y|sp
dxdy 6 C as ε→ 0+,

but which is not relatively compact in Lploc(RN).

Chapter 1 is in fact concerned with more general functionals than (3.4). Beyond
theoretical interest, this extra degree of generality allows one to handle both the
(delicate) case p = ∞ and the higher order case s > 1 (see Theorem 2.3). A
remarkable consequence of this is that it enables to derive new characterizations
for both Lipschitz and Zygmund-Hölder spaces (see Theorem 2.5). So that, in the
end, we obtain a unified approach for representing as diverse scales as Sobolev, BV ,
Lipschitz, Besov-Nikol’skii and Zygmund-Hölder spaces.

On another note, we exhibit several consequences of our results which allow to
clarify the relationship between the usual Besov spaces Bs

p,q(RN) with q < ∞ and
the Nikol’skii spaces Bs

p,∞(RN), see in particular Examples 2.10, 2.11 and 2.19.
Chapter 1 contains several other results with different flavors. In particular, we

extend the by-now celebrated limiting embedding:

q−1/q‖∇f‖Lp(RN ) ∼ lim
r→1−

(1− r)1/q‖f‖Brp,q(RN ) for 1 < p, q <∞,
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to the Lipschitz case p = ∞ (see Theorem 2.12). In the same vein, we investigate
the analogue of this for Besov-Nikol’skii spaces. Namely, we ask wether it holds that

sup
0<r<s

(s− r)1/q‖f‖Brp,q(RN ),

yields a equivalent semi-norm on Bs
p,∞(RN). It turns out that this is not true (see

Theorem 2.14) which suggests that, differently from the integer order case, the re-
striction to (3.6) in Theorem 3.1 cannot be removed.

3.1.2 On restrictions of Besov functions

Chapter 2 is certainly our most theoretical contribution. There, we study the
“restriction property” in the context of Besov spaces Bs

p,q(RN). Function spaces
X(RN) having this property are those which admit that

f(·, y) ∈ X(Rd) for a.e. y ∈ RN−d,

whenever f ∈ X(RN). This property, which holds true on the vast majority of
functions spaces, plays a fundamental role in lifting theory and, by extension, in
some reaction-diffusion problems of Ginzburg-Landau type, see [27, 108].

With moderate work, it can be shown to hold in Bs
p,q(RN) whenever q 6 p in the

whole range of relevant parameters, that is: 0 < q 6 p 6∞ and s > σp where

σp := N

(
1

p
− 1

)
+

.

We prove that this is no longer the case when p < q.
Namely, we obtain the following

Theorem — Let N > 2, 1 6 d < N , 0 < p < q 6 ∞ and let s > σp. Then,
there exists a function f ∈ Bs

p,q(RN) such that

f(·, y) /∈ Bs
p,q(Rd) for a.e. y ∈ RN−d.

This result is doubly surprising since it has no comparable antecedents and be-
cause Besov spaces are mere microscopic modifications of fractional Sobolev spaces
which are known to satisfy this property.

Our construction is nontrivial and requires advanced decomposition techniques,
most notably subatomic decompositions.

One of the major property of these spaces (and what makes them so useful) is
that they embed in nice spaces. This is particularly relevant for applications as it
allows to grasp some additional regularity. For example, the standard embedding
theorem (which holds independently of the value of q) says that

Bs
p,q(RN) ↪→ As,p(RN), (3.7)
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where As,p(RN) stands for

Cs−N
p (RN), BMO(RN) and L

Np
N−sp ,∞(RN),

when respectively sp > N , sp = N and sp < N (the precise definitions will be given
in Chapter 2, see Definition 2.19). In particular, since Bs

p,q(RN) enjoys the restriction
property when q 6 p, it is easily seen that

f(·, y) ∈ As,p(Rd) for a.e. y ∈ RN−d. (3.8)

whenever f ∈ Bs
p,q(RN). It is quite natural to ask wether (3.8) still holds when p < q.

But we prove that even this weaker property fails.

Theorem — Let N > 2, 1 6 d < N , 0 < p < q 6 ∞ and let s > σp. Then,
there exists a function f ∈ Bs

p,q(RN) such that

f(·, y) /∈ As,p(Rd) for a.e. y ∈ RN−d.

Furthermore, we establish a positive result about the regularity of these restric-
tions. Precisely, we exhibit a function space X(RN) that is intermediate between
Bs
p,q(RN) and Bs′

p,q(RN) for all 0 < s′ < s and such that

∀f ∈ Bs
p,q(RN), f(·, y) ∈ X(Rd) for a.e. y ∈ RN−d.

This space X is a so-called Besov space of generalized smoothness, usually denoted by
B

(s,Ψ)
p,q (we refer to Definition 2.11 for the definition of these spaces). In this setting, s

remains the dominant smoothness parameter and Ψ is a positive function of log-type,
called admissible, which allows encoding more general types of smoothness.

Of course, this depends on the interplay between Ψ and the parameters p and q.
We prove that restrictions of Besov functions to almost every hyperplanes belong to
the space B

(s,Ψ)
p,q (Rd), whenever ∑

j>0

Ψ(2−j)χ <∞, (3.9)

where χ = qp
q−p (resp. χ = p if q =∞).

Theorem — Let N > 2, 1 6 d < N , 0 < p < q 6 ∞, s > σp and let Ψ be an
admissible function satisfying (3.9). Suppose that f ∈ Bs

p,q(RN). Then,

f(·, y) ∈ B(s,Ψ)
p,q (Rd) for a.e. y ∈ RN−d.

We also prove that the condition (3.9) is optimal, at least when q = ∞. When
q <∞, it still can be shown to be sharp but under the additional requirement that

χ <
1

c∞
where c∞ := sup

0<t61
log2

Ψ(t)

Ψ(t2)
, (3.10)
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and χ is as in (3.9). In other words, we arrive at a sharp characterization of the
aforementioned loss of regularity.

Theorem — Let N > 2, 1 6 d < N , 0 < p < q 6 ∞, s > σp and let Ψ be
an admissible function that does not satisfy (3.9). If q < ∞ and Ψ is increasing
suppose, in addition, that (3.10) holds true. Then, there is a function f ∈ Bs

p,q(RN)
such that

f(·, y) /∈ B(s,Ψ)
p,q (Rd) for a.e. y ∈ RN−d.

In the course of Chapter 2 we also establish the analogue of the above results in
the setting of Besov spaces of generalized smoothness. This is of independent interest
given their relevance in stochastic calculus and in the theory of pseudo-differential
operators (where they appear in a natural way), see e.g. [1, 85, 99, 101, 126].

These results may find applications in lifting theory and in the study of some
turbulence phenomena in fluid mechanics, where the need for this type of property
recently appeared, see [86] and references therein. Also, they suggest an implicit link
with other results related to fractal geometry and may lead to further developments
in this direction, see [9, 60, 61].

3.2 Rigidity results

Part II contains three chapters which are adapted from the following papers:

∗ J. Brasseur, J. Coville, F. Hamel & E. Valdinoci: Liouville
type results for a nonlocal obstacle problem, hal-01672149 (2017).

∗ J. Brasseur & J. Coville: A counterexample to the Liouville prop-
erty of some nonlocal problems, hal-01769598 (2018).

∗ J. Brasseur & S. Dipierro: Some monotonicity results for general
systems of nonlinear elliptic PDEs, J. Diff. Equations 261 (2016), no. 5,
p. 2854-2880.

3.2.1 Liouville type results for a nonlocal obstacle problem

Chapter 3 is a work in collaboration with J. Coville, F. Hamel and E. Valdinoci.
To a certain extent, it may be seen as a contribution towards the following problem:

how does the geometry of the environment affects the evolution of a
population with nonlocal dispersal?

(3.11)

The focus here is on perforated domains, that is when the environment possesses some
inaccessible regions. To be more specific, Chapter 3 is concerned with qualitative
properties of solutions to nonlocal reaction-diffusion equations of the form

Lu+ f(u) = 0 in RN \K, (3.12)
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where K ⊂ RN is a compact “obstacle”, L is the nonlocal operator given by

Lu(x) :=

ˆ
RN\K

J(x− y)(u(y)− u(x))dy, (3.13)

and f ∈ C1([0, 1]) is a bistable nonlinearity. To clarify the ideas, suppose that

f(u) = λu(1− u)(u− θ) for some θ ∈ (0, 1) and λ > 0.

Before we go any further, some comments are in order. This problem may be thought
of as a nonlocal version of{

∆u+ f(u) = 0 in RN \K,
∇u · ν = 0 on ∂K,

(3.14)

where ν is the outward unit vector normal to K (assuming that K is smooth enough).
The local problem (3.14) was first studied by Berestycki, Hamel and Matano in

[17]. There, it is shown that there exist an entire solution u(t, x) to the parabolic
problem 

∂u

∂t
= ∆u+ f(u) in R× RN \K,

∇u · ν = 0 on R× ∂K,
(3.15)

satisfying 0 < u(t, x) < 1 for all (t, x) ∈ R× RN \K, and a classical solution u∞(x)
to the elliptic problem

∆u∞ + f(u∞) = 0 in RN \K,
∇u∞ · ν = 0 on ∂K,

0 6 u∞ 6 1 in RN \K,
u∞(x)→ 1 as |x| → +∞.

(3.16)

This latter solution is obtained as the large-time limit of u(t, x) in the sense that

u(t, x)→ u∞(x) as t→∞ locally uniformly in x ∈ RN \K.

Moreover, this result is independent of the geometry of K. Of course, this does not
mean that the geometry does not play a role: its influence is encoded in the stationary
solution u∞. Berestycki et al. proved that if the obstacle K satisfies some “good”
geometrical properties, for example if K is starshaped, then the solution u∞ to (3.16)
must be identically equal to 1 in the whole set RN \K (see [17, Theorem 6.1]). Per
contra, if K is no longer starshaped but merely simply connected, they show that
this Liouville type property may fail.
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If we interpret u as the density of a population with bistable growth this means
that, after some large time, whether the population tends to occupy the whole space
depends on the geometry of K.

In Chapter 3, we deal with qualitative properties of solutions to equation (3.12),
together with some asymptotic limiting conditions at infinity similar to those ap-
pearing in (3.16). Namely, we will be concerned with solutions to

Lu+ f(u) = 0 in RN \K,
0 6 u 6 1 in RN \K,
u(x)→ 1 as |x| → +∞.

(3.17)

By analogy, it is natural to expect the influence of the environment in the nonlocal
setting to be encoded by (3.17). Therefore, a first step towards answering (3.11) lies
in the study of solutions to (3.17).

The goal of Chapter 3 is to find geometrical conditions on K ensuring that the
solutions to (3.17) are identically equal to 1 in the whole set RN \K.

We show that this holds true whenever K is convex.

Theorem — Let K ⊂ RN be a compact convex set and let u ∈ C(RN \K, [0, 1])
be a function satisfying {

Lu+ f(u) 6 0 in RN \K,
u(x)→ 1 as |x| → +∞.

(3.18)

Then, u = 1 in RN \K.

Whereas the solutions to (3.16) are automatically classical C2 solutions (by stan-
dard elliptic theory), there is, in general, no smoothing effect for (3.18) and the
solutions may even not be continuous at all. This is the reason why we require some
a priori continuity.

Nonetheless, if we ask for a solution instead of a super-solution, we prove that it
is possible to get rid of this a priori assumption provided that the nonlinearity does
not vary “too much”. Precisely,

Theorem — Let K ⊂ RN be a compact convex set. Suppose that

max
[0,1]

f ′ <
1

2
. (3.19)

Let u : RN \K → [0, 1] be a measurable function satisfying{
Lu+ f(u) = 0 a.e. in RN \K,

u(x)→ 1 as |x| → +∞.

Then, u = 1 a.e. in RN \K.
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We prove several improvement of these results. In particular, we prove that
when J is compactly supported and square integrable, then the requirement on the
asymptotic behavior of u can be weakened to

sup
RN\K

u = 1,

which is even stronger than what is known in the local case (see Theorem 2.4).
Chapter 3 also contains a “robustness” result. Namely, we prove that if a compact

set K is sufficiently close to a compact convex set (in the C0,α topology), then the
Liouville property still holds (see Theorem 2.6). In fact, this result is a sort of
dichotomy: if the Liouville property can be shown to hold for a given set K, then it
still holds for all compact sets sufficiently close it (in the C0,α topology).

Our results are mainly based on sub- and super-solutions techniques and, to this
end, we prove various comparison principles which are of independent interest (see
Lemmata 4.1, 4.2 and 4.3).

3.2.2 A counterexample to the Liouville property of some nonlocal problems

Chapter 4 is a work in collaboration with J. Coville. It is meant as a follow-up
to Chapter 3, although it may be read independently. The purpose here is to better
pinpoint the geometrical conditions under which the Liouville property established
at the previous chapter remains valid. An angle of this question consists in finding
an obstacle K for which it does not hold. Chapter 4 provides an answer to this
question. Precisely, we establish the following

Theorem — There are (non-starshaped) simply connected compact obstacles
K and data f and J for which problem{

Lu+ f(u) = 0 in RN \K,
u(x)→ 1 as |x| → +∞,

has a solution u ∈ C(RN \K, [0, 1]) which is not identically equal to 1 in RN \K.

The main difficulty in our construction lies in the lack of compactness. We
show how to circumvent this difficulty relying on the Bourgain-Brezis-Mironescu
characterization of Sobolev spaces. This enables us to obtain a priori estimates
which allow the use of variational methods.

Remarkably, our construction is flexible enough to handle broader classes of non-
local operators where the dispersal process need not be isotropic but instead depends
on the geodesic distance between points in RN \K. For example, we prove that the
same result holds when L is replaced by

Lgu(x) :=

ˆ
RN\K

J̃(dg(x, y))(u(y)− u(x))dy, (3.20)
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where dg(·, ·) is the geodesic distance on RN \K and J̃ ∈ L1
loc(0,∞) is a locally

integrable kernel such that

sup
x∈RN\K

ˆ
RN\K

J̃(dg(x, y))dy <∞.

Operators of the type of (3.20) are actually of interest in their own right. They
give an alternative way to describe the evolution of individuals in a heterogeneous
medium which, in some situations, may be regarded as more realistic. Their most
interesting feature is that the individuals can no longer travel through the obstacle:
they are compelled to bypass it as if it were a material obstacle.

3.2.3 Some monotonicity results for general systems of nonlinear elliptic PDEs

Chapter 5 is a work in collaboration with S. Dipierro. It is concerned with
symmetry and monotonicity properties of general systems of nonlinear elliptic partial
differential equations. Although the topic is rather old, recent years have seen a
renewed interest in these questions. A typical example which has raised a lot of
attention is: 

∆u = uv2,

∆v = vu2,

u, v > 0.

(3.21)

This system emerges in the study of phase separation phenomena for Bose-Einstein
condensates with multiple states. A natural question to ask is:

under which conditions do u and v enjoy monotonicity properties? (3.22)

Such rigidity property plays an important role in the study of (3.21), inter alia, it
allows the classification of solutions. In this perspective, it is also of interest to ask
for De Giorgi type results. For example:

under which conditions are u and v one-dimensional? (3.23)

Some answers to (3.22) and (3.23) are known, see for example [18, 20, 62, 152].
However, if (3.21) has a relatively “simple” form, things can get significantly

tougher when considering more general nonlinearities and (possibly anomalous) dif-
fusion processes. For example, one may want to address similar questions for systems
of the form: {

(−∆)s1u = F1(u, v),

(−∆)s2v = F2(u, v),
(3.24)
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where s1, s2 ∈ (0, 1] and F1, F2 are the derivatives with respect to the first and the
second variable, respectively, of some function F ∈ C1,1(R2). Systems of the type
of (3.24) have recently been investigated (see e.g. [133, 134, 147, 152]) and some
symmetry results have been obtained under various assumptions (see e.g. [56, 67]).

The purpose of Chapter 5 is to find a method providing an answer to (3.22) and
(3.23) in a general setting (including (3.21) and (3.24) as particular cases).

Precisely, the goal of Chapter 5 is to show that minima and stable solutions of
general energy functionals of the form

E (u, v) =

ˆ
Ω

F (∇u,∇v, u, v, x)dx,

enjoy some monotonicity properties, under an assumption on the growth at infinity
of the energy, which we call the “stability inequality” (see (3.26) below).

This setting allows not only to handle systems with general nonlinearities, but
also with quite general diffusion operators, possibly of degenerate type. The most
distinguished examples are the p-Laplacian and the mean curvature operator. By
the Caffarelli-Silvestre extension theorem [43], this covers also fractional (and, hence,
nonlocal) operators such as the fractional Laplacian.

The usual approach to obtain such rigidity results is to apply some stability
inequality to a cut-off function. But this approach is generally difficult to implement
because it requires to work with the precise form of the energy (which can be quite
complicated).

Our strategy, inspired by [124, 125], relies on a completely different argument.
Loosely speaking, it consists in comparing the energies of (u, v) and a perturbed
translation of itself. Then, using the stability inequality and a contradiction ar-
gument, we can prove that the solutions indeed enjoy some rigidity properties. In
doing so, we do not need to work with the precise form of the potential F and we
can therefore deal with general energy functionals.

Our working hypotheses are the following. First, we assume that both the domain
Ω and the potential F are invariant under translation in the eN -direction, namely

Ω = V × R for some V ⊆ RN−1,

and F does not depend on the xN -coordinate. We also suppose that

F = F (p1, p2, z1, z2, x
′) ∈ C(R2N × R2 × V ), (3.25)

and that F is C2 and convex with respect to the first two variables. Also, we
assume that there exists a constant C > 0 such that, for any p1, p2, q1, q2 ∈ RN

with |q1| 6 |p1 · eN |/4 and |q2| 6 |p2 · eN |/4, it holds that

|Fp1p1(p1 + q1, p2, z1, z2, x
′)| 6 C|Fp1p1(p1, p2, z1, z2, x

′)|,
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|Fp2p2(p1, p2 + q2, z1, z2, x
′)| 6 C|Fp2p2(p1, p2, z1, z2, x

′)|,
|Fp1p2(p1 + q1, p2 + q2, z1, z2, x

′)| 6 C|Fp1p2(p1, p2, z1, z2, x
′)|.

Notice that these assumptions are fairly general and apply, in particular, to (3.21)
and (3.24).

The first result of Chapter 5 deals with minimizers. Namely, we obtain the
following

Theorem — Let u, v ∈ C1(Ω) be such that (u, v) is a minimizer of E and that
the growth condition

ˆ
Ω∩BR

|Fp1p1||∇u|2 + |Fp2p2||∇v|2 + |Fp1p2||∇u||∇v| dx . R2, (3.26)

is satisfied for large enough R > 0, where the derivatives of F are evaluated at
(∇u,∇v, u, v, x′). Then, u and v are monotone on each line in the eN -direction, i.e.,
for any x ∈ Ω, either uN(x+teN) > 0 or uN(x+teN) 6 0, and either vN(x+teN) > 0
or vN(x+ teN) 6 0, for any t ∈ R. In particular, u and v are one-dimensional.

Moreover, we show that a similar result holds for stable solutions up to a slight
additional regularity requirement on F and (u, v).

Theorem — Suppose that F ∈ C3,α(R2N × R2 × V ). Let (u, v) be such that
either u, v ∈ C0,1(Ω) are convex or u, v ∈ C1,1(Ω). Moreover, suppose that (u, v) is a
stable solution of E , and that the growth condition (3.26) holds true. Then, u and v
are monotone in the eN -direction, i.e. either uN > 0 or uN 6 0 and either vN > 0 or
vN 6 0 in Ω.

The results contained in Chapter 5 are, in fact, slightly more general. They still
hold when replacing the notions of stable and minimal solutions by weaker ones.
Indeed, we prove that it suffices to consider minimizers and stable solutions among
the class of functions which are obtained by piecewise Lipschitz deformations in the
eN -direction (see Theorems 1.5 and 1.10).

Several applications of our results are presented at the end of Chapter 5.
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Part I

A functional analytic toolbox





Chapter 1

A Bourgain-Brezis-Mironescu
characterization of higher order
Besov-Nikol’skii spaces

This chapter is inspired by the paper [28], accepted for publication
in Annales de l’Institut Fourier.

1 Introduction

1.1 A brief state of art

Let (ρε)ε>0 ⊂ L1(RN) be a sequence of mollifiers, i.e. a sequence satisfying

ρε > 0 a.e. in RN for any ε > 0,ˆ
RN
ρε(z)dz = 1 for any ε > 0,

lim
ε→0+

ˆ
|z|>δ

ρε(z)dz = 0 for all δ > 0.

(1.1)

Let M ∈ N∗, 1 6 p < ∞ and s ∈ (0,M ]. We are interested in the properties of
functions f ∈ Lp(RN) satisfyingˆ

RN
ρε(h)ω

(ˆ
RN

|∆M
h f(x)|p

|h|sp
dx

)
dh 6 C as ε→ 0+, (1.2)

where ω : R+ → R+ is an increasing, concave function and ∆M
h f(x) stands for the

usual M -th order forward difference of f given by

∆M
h f(x) :=

M∑
j=0

(−1)M−j
(
M

j

)
f(x+ hj), x, h ∈ RN . (1.3)
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The assumptions on ω will be made precise later on.
Functionals of the type of (1.2) were initially introduced by Bourgain, Brezis and

Mironescu [27, 33] to obtain a new characterization of the Sobolev space W 1,p(RN).
Namely, for M = s = 1 and ω(t) = t, (1.2) reads

ˆ
RN

ˆ
RN
ρε(h)

|f(x+ h)− f(x)|p

|h|p
dxdh 6 C as ε→ 0+, (1.4)

and the result of Bourgain, Brezis and Mironescu states that, any f ∈ Lp(RN)
satisfying (1.4) belongs to the Sobolev space W 1,p(RN) if 1 < p <∞, or to BV (RN)
if p = 1, provided (ρε)ε>0 is radial. More precisely, they have shown that

lim
ε→0+

ˆ
RN

ˆ
RN
ρε(h)

|f(x+ h)− f(x)|p

|h|p
dxdh = Kp,N‖∇f‖pLp(RN )

,

where

Kp,N :=

ˆ
SN−1

|σ · e|pdH N−1(σ), e ∈ SN−1.

As a result, they were able to establish the following limiting embedding

lim
r→1−

(1− r)p‖f‖p
W r,p(RN )

= Kp,N‖∇f‖pLp(RN )
. (1.5)

Since this work, numerous new characterizations of the Sobolev spaces W k,p(RN) or
BV (RN) have been obtained [24, 25, 54, 68, 118, 119, 131] and various asymptotic
formulae characterizing the Sobolev norms in terms of fractional norms have been
derived [89, 94, 105, 142]. For instance, Maz’ya and Shaposhnikova [105] obtained
the counterpart of (1.5) in the critical case r → 0+, that is

lim
r→0+

rp‖f‖p
W r,p(RN )

= 2σN‖f‖pLp(RN )
,

whenever f ∈
⋃

0<r<1W
r,p(RN) and where σN stands for the superficial measure of

the unit sphere SN−1.
Also, let us mention the work of Ponce [119] who was the first to obtain a charac-

terization of the space BV (RN) in terms of a class of functions in L1(RN) satisfying

ˆ
RN

ˆ
RN
ρε(h) Ω

(
|f(x+ h)− f(x)|

|h|

)
dxdh 6 C as ε→ 0+, (1.6)

under suitable growth assumptions on Ω ∈ C(R+,R+).
More recently, such type of characterizations were extended by Borghol [25],

Bojarski, Ihnatsyeva, Kinnunen [24] and Ferreira, Kreisbeck and Ribeiro [68], who
considered the cases 1 < p <∞ in higher order Sobolev spaces. Typically, in [68] it
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is shown that the spaces W k,p(RN), with p ∈ (1,∞) and k ∈ N∗, can be characterized
by quantities of the type

ˆ
RN

ˆ
RN
ρε(h) Ω

(
|∆k

hf(x)|
|h|k

)
dxdh, (1.7)

where Ω : R+ → R+ is an increasing, convex function such that

m1t
p 6 Ω(t) 6 m2t

p,

for all t > 0 and some positive constants 0 < m1 < m2.

To our knowledge, very few is known in the case 0 < s < M . Nonetheless, recent
works of Lamy and Mironescu [98] suggest a connection between expressions of the
type of (1.2) and Besov spaces. In [98], the authors prove the following

Theorem 1.1 (Lamy, Mironescu, [98]). — Let s > 0, p, q ∈ [1,∞] and let
(ρε)ε>0 ⊂ L1(RN) satisfying (1.1) and such that

ρε(h) =
1

εN
ρ

(
h

ε

)
for some ρ ∈ L1(RN). (1.8)

Then,

‖f‖Bsp,q(RN ) . ‖f‖Lp(RN ) +

∥∥∥∥ 1

εs
‖f ∗ ρε − f‖Lp(RN )

∥∥∥∥
Lq((0,1),dε

ε
)

. (1.9)

The converse of this holds under some additional moment condition on ρ (see
[98] for further details). In fact, the case q =∞ is not properly stated nor explicitly
proven in [98]. To fill this gap, we shall give some additional details at the end of the
chapter. A consequence of this, which has not been noticed in [98], is the following

Proposition 1.2. — Let s ∈ (0, 1), p ∈ [1,∞) and (ρε)ε>0 ⊂ L1(RN) satisfying
(1.1) and (1.8). Then, the following statements are equivalent:

(i) f ∈ Bs
p,∞(RN),

(ii) f ∈ Lp(RN) satisfies

ˆ
RN

ˆ
RN
ρε(h)

|f(x+ h)− f(x)|p

|h|sp
dxdh 6 C as ε→ 0+. (1.10)

Moreover,

‖f‖p
Bsp,∞(RN )

∼ ‖f‖p
Lp(RN )

+ sup
ε∈(0,1)

ˆ
RN

ˆ
RN
ρε(h)

|f(x+ h)− f(x)|p

|h|sp
dxdh. (1.11)
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It is worth noticing that, by contrast with the representation of Bs
p,∞(RN) ob-

tained in [98], no moment condition on ρε is needed. Moreover, since ρε does not
need to be radial, some directions may be privileged, yet with no impact on the
resulting norm. This is in clear contrast with the case s = 1 (see also [46, Remark
10] or [119, Corollary 3, p.232]).

This sheds new lights on how to describe smoothness and could be of potential
interest in some problems of the calculus of variations and in the study of some
integro-differential equations (see e.g. [2, 8, 16, 76, 77, 135]).

Also, in view of Proposition 1.2, it is natural to ask for corresponding assertions of
(1.6) and (1.7) in the framework of the fractional Besov-Nikol’skii spaces Bs

p,∞(RN).
For example: what can be said about the limiting behavior of (1.10) when ε→ 0+?
Can one describe higher order Besov-Nikol’skii spaces via expressions of the type
(1.2)? It is the main concern of this chapter to deal with these issues.

1.2 Main Motivation

This work originates in a problem raised in [16]. Consider the heterogeneous Fisher-
KPP equation:

1

εm
(
Jε ∗ u(x)− u(x)

)
+ f(x, u) = 0, u = uε, x ∈ RN , ε > 0, (1.12)

where m ∈ [0, 2], u is the density of a given population, Jε(z) := 1
εN
J
(
z
ε

)
, with

J ∈ C ∩ L1(RN) a symmetric positive dispersal kernel with unit mass and having
finite m-th order moment, and f ∈ C1,α(RN+1) is a heterogeneous KPP type non-
linearity, that is:

f(·, 0) = 0,

for all x ∈ RN , f(x, s)/s is decreasing with respect to s ∈ (0,∞),

there exists S(x) ∈ C(RN) ∩ L∞(RN) such that f(·, S(·)) 6 0.

For the sake of simplicity, we restrict our attention to non-linearities of the form

f(x, s) = s(a(x)− s), with lim sup
|x|→∞

a(x) < 0.

Roughly speaking, f models the growth rate of the population and J the probability
to jump from one location to another. The parameter ε is a measure of the spread
of dispersal of the species. The scaling term 1

εm
can be interpreted as the rate of

dispersal of the species. It arises when considering a cost function (see [16, Section
2] for a more detailed explanation on the matter). Consider for instance a tree pro-
ducing and dispersing seeds. Then, ε� 1 represents a strategy where the dispersal
rate is large but the seeds are spread over smaller distances, and ε � 1 represents
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the opposite strategy (i.e. smaller dispersal rate but the seeds are spread over larger
distances). As for the parameter m, it measures the influence of the cost function
on the different strategies.

Existence of positive solutions to (1.12) is naturally expected to provide a persis-
tence criteria for the population under consideration. Nonetheless, if the asymptotic
behavior of solutions to (1.12) is quite well understood when ε→∞ (see [16]), it is
not the case when ε→ 0+ and 0 < m < 2. Berestycki et al. [16] were able to prove
the following result.

Theorem 1.3 (Berestycki, Coville, Vo, [16]). — Assume that J is compactly
supported with J(0) > 0, that m ∈ (0, 2), that max{a, 0} 6≡ 0 and that a ∈ C2(RN).
Then, when ε→ 0+, the solution uε of (1.12) converges almost everywhere to some
non-negative bounded function v satisfying

v(x)(a(x)− v(x)) = 0 in RN . (1.13)

Unfortunately, equation (1.13) admits infinitely many solutions, so it may hap-
pen that v ≡ 0 (extinction) or that v = a+1K for some compact K ⊂ supp(a+)
(persistence in a given area of the ecological niche). Whence, one cannot directly
infer a persistence strategy for that case.

However, it is known that solutions to (1.12), when they exist, satisfy

ˆ
RN

ˆ
RN
ρε(x− y)

|uε(x)− uε(y)|2

|x− y|m
dxdy 6 C for all ε > 0, (1.14)

with ρε(z) = ε−m|z|mJε(z) a smooth mollifier satisfying (1.1) (see [16, Lemma 5.1(ii)]
for a proof).

To quote Berestycki et al.: “If for the case m = 2 we could rely on elliptic
regularity and the new description of Sobolev spaces developed in Bourgain et al.
[27], Brezis [33], Ponce [118, 119] to get some compactness, this characterization
does not allow us to treat the case m < 2. We believe that a new characterization of
fractional Sobolev spaces in the spirit of the work of Bourgain, Brezis and Mironescu
[27, 33] will be helpful to resolve this issue.”

This motivates the study of general classes of functions of the type of (1.2), in
particular the forthcoming Theorems 2.3 and 2.15.

1.3 Comments

If (1.10) is very similar to (1.4), the underlying spaces, W 1,p(RN) and Bs
p,∞(RN), are

very different in nature and one has to cope with some technicalities. Among others,
it is not clear anymore whether the limit of (1.10) as ε → 0+ exists nor, even if it
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does, whether it provides an equivalent semi-norm. In the integer order case, things
are not too controversial in the sense that

‖∇f‖Lp(RN ) ∼ lim sup
|h|→0

‖∆1
hf‖Lp(RN )

|h|
= sup

h6=0

‖∆1
hf‖Lp(RN )

|h|
. (1.15)

(see e.g. [142] or Lemma 7.1), while the counterpart of (1.15) in the fractional case
s ∈ (0, 1) is not true in general. Indeed, every nontrivial function f ∈ C∞c (RN)
satisfies

lim
|h|→0

‖∆1
hf‖Lp(RN )

|h|s
= 0 < sup

h6=0

‖∆1
hf‖Lp(RN )

|h|s
= [f ]Bsp,∞(RN ), (1.16)

whenever s ∈ (0, 1), p ∈ [1,∞]. Finiteness of either or both the two first terms in the
left-hand side of (1.16) equally describes Bs

p,∞(RN) in the sense that they define the
same set of functions. But the respective (semi-)norms induced by these quantities
are not equivalent (see Section 5). For these reasons, at some places, it will be more
convenient to state our results in terms of suprema as in (1.11) instead of limits.

On the other hand, smooth functions are not dense in Bs
p,∞(RN), so that the

arguments used in the integer case do not simply adapt. We show how to do this
in a way that allows, not only to give a meaning, but also to handle the tricky case
p =∞ in both the integer and the fractional case, using only elementary arguments.
Also, in the particular case where ρ is radially symmetric, we improve (1.11) to a semi-
norm equivalence at all orders s > 0. More general quantities are also investigated
as well as compactness in the case of a sequence (fε)ε>0 ⊂ Lp(RN).

At the end, this yields a common nonlocal description for the Besov-Nikol’skii
spaces Bs

p,∞(RN), the Hölder-Zygmund spaces C s(RN), the BV (RN) space, the
Sobolev spaces W k,p(RN) and the Lipschitz space C0,1(RN). As a by-product, we
obtain new characterizations for these spaces and a new limiting embedding between
Lipschitz and Besov spaces which extends the previous known results.

2 Main results

2.1 A new characterization of Besov-Nikol’skii spaces

To state our results, we shall introduce some notations and terminology.

Definition 2.1. — A function ω : R+ → R+ is said to be roughly subadditive
if there exists a constant A > 0 such that,

ω(t1 + t2) 6 A {ω(t1) + ω(t2)} ,

for every t1, t2 ∈ R+. If A = 1, then we say that ω is subadditive.
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To shorten our statements, it will be more convenient to call Cinc the set of all
continuous, increasing functions ω : [0,∞)→ [0,∞) satisfying ω(0) = 0 and

lim
t→∞

ω(t) =∞.

Also, we set

C+
inc :=

{
ω ∈ Cinc such that ω is roughly subadditive

}
.

Remark 2.2. — Observe that if ω1, ω2 ∈ C+
inc, then ω1 ◦ ω2 ∈ C+

inc.

Typical examples of functions in C+
inc are:

(i) ω1(t) = tα with α > 0,

(ii) ω2(t) = ln(1 + t),

(iii) ω3(t) = t tanh(t),

(iv) ω4(t) = arsinh(t), ...

More generally, if ω ∈ Cinc is concave, then ω ∈ C+
inc (see e.g. [36, Theorem 5]).

As indicated by the example of tα with α > 1, C+
inc contains also some convex

functions as long as they do not increase too fast. Indeed, a direct computation
shows that if ω : [0,∞)→ [0,∞) is a continuous, convex function with ω(0) = 0 and
if ω(2t) 6 κ ω(t), for all t > 0 and some constant κ > 0 (independent of t), then
ω ∈ C+

inc.
Our first result reads as follows

Theorem 2.3. — Let M ∈ N∗, s ∈ (0,M) and p ∈ [1,∞]. Let ω ∈ C+
inc and

(ρε)ε>0 ⊂ L1(RN) be a sequence of radial functions satisfying (1.1) and (1.8). Then,
the following statements are equivalent:

(i) f ∈ Bs
p,∞(RN),

(ii) f ∈ Lp(RN) is such that

ˆ
RN
ρε(h) ω

(‖∆M
h f‖Lp(RN )

|h|s

)
dh 6 C as ε→ 0+. (2.1)

Moreover,

ω
(

[f ]Bsp,∞(RN )

)
∼ sup

ε>0

ˆ
RN
ρε(h) ω

(‖∆M
h f‖Lp(RN )

|h|s

)
dh.

Remark 2.4. — It is noteworthy that the assumptions of Theorem 2.3 are some-
how self-improving. For example, if ω ∈ Cinc is such that

α1 ω 6 ω 6 α2 ω a.e. in RN ,

for some ω, ω ∈ C+
inc and α1, α2 > 0, then ω still characterizes Bs

p,∞(RN). Note also
that the Jensen inequality allows to extend this result to convex ω ∈ Cinc.

45



Moreover, the conclusion of Theorem 2.3 still holds under the slightly weaker
assumption that (ρε)ε>0 ⊂ L1(RN) satisfies (1.1) and (1.8) with ρ ∈ L1(RN) such
that there exists a number δ > 0 and a nonnegative radial function ϕ with ρ > ϕ
a.e. in Bδ and

´
Bδ
ϕ > 0.

Also, when 1 6 p <∞, the fact that ω ∈ C+
inc allows one to replace (2.1) by

ˆ
RN
ρε(h) ω

(ˆ
RN

Ω

(
|∆M

h f(x)|
|h|s

)
dx

)
dh, (2.2)

for any continuously increasing Ω : R+ → R+ with Ω(0) = 0 and

m1t
p 6 Ω(t) 6 m2t

p, (2.3)

for all t > 0 and some 0 < m1 6 m2.

By the same token, we obtain the following counterpart for the Lipschitz space.

Theorem 2.5. — Let ω ∈ C+
inc and (ρε)ε>0 ⊂ L1(RN) be a sequence of radial

functions satisfying (1.1) and (1.8). Then, the following statements are equivalent:

(i) f ∈ C0,1(RN),

(ii) f ∈ L∞(RN) is such that
ˆ
RN
ρε(h) ω

(‖f(·+ h)− f‖L∞(RN )

|h|

)
dh 6 C as ε→ 0+.

Moreover,

ω
(
[f ]C0,1(RN )

)
∼ lim sup

ε→0+

ˆ
RN
ρε(h) ω

(‖f(·+ h)− f‖L∞(RN )

|h|

)
dh.

In fact, our proof also allows to cover first order Sobolev spaces. For example, in
view of (2.2), we have the

Theorem 2.6. — Let 1 6 p < ∞, (ω,Ω) ∈ C+
inc × Cinc with Ω satisfying (2.3)

and (ρε)ε>0 ⊂ L1(RN) be a sequence of radial functions satisfying (1.1) and (1.8).
Then, the following statements are equivalent:

(i) f ∈ W 1,p(RN) (resp. f ∈ BV (RN) if p = 1),

(ii) f ∈ Lp(RN) is such that
ˆ
RN
ρε(h) ω

(ˆ
RN

Ω

(
|f(x+ h)− f(x)|

|h|

)
dx

)
dh 6 C as ε→ 0+.

Moreover,

ω
(
‖∇f‖p

Lp(RN )

)
∼ lim sup

ε→0+

ˆ
RN
ρε(h) ω

(ˆ
RN

Ω

(
|f(x+ h)− f(x)|

|h|

)
dx

)
dh. (2.4)
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Note that the limit superior in the right-hand side of (2.4) may not necessarily
coincide with the limit inferior, depending on the choices of ω and Ω.

Remark 2.7. — If ω(t) = t and Ω is convex, then the corresponding assertion still
holds in higher order Sobolev spaces, see [68] for a proof.

Here are some straightforward consequences of Theorem 2.3.

Example 2.8. — Let M ∈ N∗, s ∈ (0,M) and J ∈ L1(RN) be a radial function
such that

J :=

ˆ
RN
J(z)|z|sqdh <∞ for some 1 6 q <∞.

Then, choosing

ρε(h) =
1

J

|h|sq

εsq
Jε(h),

and ω(t) = tq we obtain

[f ]Bsp,∞(RN ) ∼ sup
ε>0

(
1

εsq

ˆ
RN
Jε(h)‖∆M

h f‖
q
Lp(RN )

dh

)1/q

. (2.5)

Remark 2.9. — Notice that the quantity (1.14) appearing in the study of the
nonlocal Fisher-KPP equation (1.12) can be seen as a particular case of (2.5).

Other choices of ρε highlight interesting links with the more classical Besov spaces
Bs
p,q(RN) with 1 6 q <∞ (see Definition 3.3 on Section 3 for the definition of these

spaces).

Example 2.10. — Given 1 6 q <∞, the choice ω(t) = tq and

ρε(h) =
1

C|h|N
1(ε,2ε)(|h|), (2.6)

where C = σN ln(2), yields

[f ]Bsp,∞(RN ) ∼ sup
ε>0

(ˆ
ε<|h|<2ε

‖∆M
h f‖

q
Lp(RN )

|h|N+sq
dh

)1/q

.

Example 2.11. — Given 1 6 q <∞, the choice ω(t) = tq and

ρε(h) =
1

σNε(s−r)q
(s− r)q
|h|N−(s−r)q 1(0,ε)(|h|),

for some r ∈ (0, s), gives

q−1/q[f ]Bsp,∞(RN ) ∼ sup
ε>0

(s− r)1/q

εs−r

(ˆ
|h|<ε

‖∆M
h f‖

q
Lp(RN )

|h|N+rq
dh

)1/q

.
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2.2 Limits of Besov norms

Following the original result of Bourgain, Brezis and Mironescu in [27]; Karadzhov,
Milman, Xiao [89] and Triebel [142] proved the following limiting embedding

q−1/q‖∇f‖Lp(RN ) ∼ lim
r→1−

(1− r)1/q[f ]Brp,q(RN ) for 1 < p, q <∞. (2.7)

See e.g. [142] where higher order derivatives are also studied.
The counterpart of Example 2.11 for the Lipschitz space leads one to ask wether

(2.7) still holds in the critical case p =∞ (recall W 1,∞(RN) is the same as C0,1(RN)).
However, because of the restriction to (1.8) in Theorem 2.5 one cannot directly infer
that this is the case. In addition, spaces of the type W 1,∞(RN) or Bs

∞,q(RN) do not
admit spaces such as C∞c (RN) as dense subset (they are not even separable) and
they inherit from the “bad” properties of L∞(RN). This makes the validity of (2.7)
in the case p =∞ rather unclear.

We prove that a weaker version of (2.7) still holds when p =∞.

Theorem 2.12. — Let q ∈ [1,∞) and assume f ∈ L∞(RN) is such that

lim sup
r→1−

(1− r)1/q‖f‖Br∞,q(RN ) <∞. (2.8)

Then, f ∈ C0,1(RN). Moreover,

q−1/q[f ]C0,1(RN ) ∼ lim sup
r→1−

(1− r)1/q‖f‖Br∞,q(RN ). (2.9)

Remark 2.13. — Due to the lack of continuity of the translations in L∞(RN) it
is not clear wether the lim sup in (2.8) (resp. in (2.9)) can be replaced by a lim inf.

The proof can be carried out using subadditivity and monotonicity arguments via
an improvement of the Chebychev inequality due to Bourgain, Brezis and Mironescu
[27] together with Theorem 2.3.

However, in the fractional case, one lose the aforementioned monotonicity and
the arguments fail. In view of Example 2.11 and C s(RN) = Bs

∞,∞(RN) it is natural
to ask wether or not the counterpart holds for Bs

p,∞(RN).
Using subatomic decompositions we were able to show that this is not the case.

Theorem 2.14. — Let s > 0, p ∈ [1,∞) and q ∈ [1,∞). Then, there exists a
function f ∈ Lp(RN) \Bs

p,∞(RN) such that

sup
0<r<s

(s− r)1/q‖f‖Brp,q(RN ) <∞.

Here, “‖f‖Brp,q(RN )” stands for the Br
p,q(RN)-norm of f in the sense of subatomic

decomposition theory (see Definition 4.2 below).
In particular, this suggests that the restriction to (1.8) in Theorems 1.2 and 2.3

(and actually also in (1.9) when q =∞) is not far from being optimal.
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2.3 A non-compactness result

In the integer case s = 1, it is known that any bounded sequence (fε)ε>0 ⊂ Lp(RN)
satisfying

ˆ
RN

ˆ
RN
ρε(h)

|fε(x+ h)− fε(x)|p

|h|p
dxdh 6 C as ε→ 0+,

must be relatively compact in Lploc(RN) provided (ρε)ε>0 is a suitable sequence of
mollifiers (e.g. nonincreasing if N = 1 [27] or radially symmetric if N > 2 [118]).

Per contra, we show that this phenomenon does not extend to s ∈ R+ \ N, at
least if ρε exhibits a reasonable decay at infinity.

Theorem 2.15. — Let M ∈ N∗, s ∈ (0,M) and p ∈ [1,∞). Let (ρε)ε>0 be
a sequence of mollifiers of the form (1.8) with ρ ∈ L1(RN) satisfying the moment
condition

ˆ
RN
ρ(z)|z|p(M−s)dz <∞.

Then, there exists a bounded sequence (fε)ε>0 ⊂ Lp(RN) satisfying

ˆ
RN

ˆ
RN
ρε(h)

|∆M
h fε(x)|p

|h|sp
dxdh 6 C as ε→ 0+,

but which is not relatively compact in Lploc(RN).

Remark 2.16. — In some particular cases it is possible to get rid of assumption
(1.8). For instance, if the ρε’s are non-increasing and supported in some ball of the
form Brε for all ε > 0 and some r > 0, then the result still holds. Notice also that
the conclusion of Theorem 2.15 still holds for slightly more general functionals in the
spirit of (2.1) with, say, ω = |·|q/p, Ω = |·|p, for any q > 1.

In the same vein, we obtain the following

Theorem 2.17. — Let s > 0, p ∈ [1,∞) and q ∈ [1,∞). Then, there exists a
bounded sequence (fε)ε>0 ⊂ Lp(RN) satisfying

lim sup
ε→0+

ε‖fε‖qBs−εp,q (RN )∗
<∞, (2.10)

but which is not relatively compact in Lploc(RN).

The subscript “∗” in (2.10) means that the Bs−ε
p,q -norm of fε is calculated using

(bsc + 1)-th order finite differences (according to Definition 3.3). This is no longer
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true if, instead, we use smaller order differences. For example, if (fε)ε>0 is bounded
in Lp(RN), then

lim sup
ε→0+

ε‖fε‖pW 1−ε,p(RN )
<∞,

implies that (fε)ε>0 is relatively compact in Lploc(RN), while

lim sup
ε→0+

ε‖fε‖pB1−ε
p,p (RN )∗

<∞,

does not. Evidently, this restriction is immaterial if 0 < s /∈ N.

2.4 An approximation criteria

It is well-known that neither C∞c (RN) nor S (RN) are dense in Bs
p,∞(RN). If the

question of how to approximate a given f ∈ Bs
p,q(RN) in a “suitable manner” has

already been well-studied (see e.g. [95, 114, 132]), to the author’s knowledge it
seems, however, that no criterion to recognize a function f ∈ Bs

p,∞(RN) which can
be approximated by smooth functions in its natural (strong) topology is available in
the literature.

An interesting consequence of (the proof of) Theorem 2.3 is that it gives such a
criterion.

Corollary 2.18. — Let M ∈ N∗, s ∈ (0,M), p ∈ [1,∞). Let (ρε)ε>0 ⊂ L1(RN)
be a sequence of radial functions satisfying (1.1) and (1.8), and let ω ∈ C+

inc. Then,
the following statements are equivalent:

(i) f ∈ Lp(RN) is such that

lim
ε→0+

ˆ
RN
ρε(h) ω

(‖∆M
h f‖Lp(RN )

|h|s

)
dh = 0,

(ii) f ∈ Bs
p,∞(RN) and there exists (fn)n>0 ⊂ C∞c (RN) such that

‖f − fn‖Bsp,∞(RN ) → 0 as n→∞.

A noteworthy consequence of Corollary 2.18 is the following

Example 2.19. — Let s ∈ (0, 1) and p ∈ [1,∞). Then, with the choice (2.6) and
ω(t) = tp we find that condition (ii) above is equivalent to

lim
ε→0+

ˆ
RN

ˆ
ε<|x−y|<2ε

|f(x)− f(y)|p

|x− y|N+sp
dxdy = 0,
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or, more generally, to

lim
ε→0+

ˆ
ε<|h|<2ε

‖∆M
h f‖

q
Lp(RN )

|h|N+sq
dh = 0,

in the higher order case.

In Sections 3 and 4 we detail all our notations and useful definitions. In Section
5, we show some preliminary estimates which aims to simultaneously open the way
to Corollary 2.18 and to explain why it is more convenient to represent Bs

p,∞(RN)
in terms of the supremum of (2.1) rather than in terms of its limits. Section 6 is
devoted to the proof of Theorem 2.3 and Section 7 to that of Theorems 2.5, 2.6, and
2.12. In Section 8 we establish Theorem 2.14. In Section 9, we prove Theorems 2.15
and 2.17. Finally, in the Appendix, we discuss Proposition 1.2.

3 Notations and definitions

Throughout this chapter we will make use of the following notations.

SN−1 : is the unit sphere of RN ;
H N−1 : is the (N − 1)-dimensional Hausdorff measure;
|K| : is the Lebesgue measure of the set K;
1K : is the characteristic function of the set K;
BR : is the ball of radius R > 0 centered at the origin;

BR(x) : is the ball of radius R > 0 centered at x ∈ RN ;
τh : is the translation operator τhf(x) = f(x+ h), x, h ∈ RN ;

f ∗ g : is the convolution of f and g;
. : is the “approximatively-less-than” symbol: a . b⇔ a 6 Cb;
∼ : is the equivalence symbol: a ∼ b⇔ a . b and b . a;ffl
A

: is the integral mean symbol:
ffl
A
f = 1

|A|

´
A
f .

We denote by Lp(RN) the Lebesgue space of (equivalence classes of) functions
for which the p-th power of the absolute value is Lebesgue integrable (resp. essen-
tially bounded functions when p =∞); by C∞c (RN) the space of smooth compactly
supported functions; by S (RN) the Schwartz space of rapidly decaying functions;
and, by S ′(RN), its dual, the space of tempered distributions. The Lipschitz space
C0,1(RN) is the space of functions f ∈ L∞(RN) for which the semi-norm

[f ]C0,1(RN ) := sup
h6=0

‖τhf − f‖L∞(RN )

|h|
, (3.1)

is finite. The space C0,1(RN) is a Banach space for the norm

‖f‖C0,1(RN ) := ‖f‖L∞(RN ) + [f ]C0,1(RN ) .
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The number (3.1) is called the Lipschitz constant of f . For the sake of clarity, we
recall some further definitions.

Definition 3.1. — Let p ∈ [1,∞) and k ∈ N∗. The k-th order Sobolev space
W k,p(RN) is defined as the closure of C∞c (RN) under the norm

‖f‖Wk,p(RN ) := ‖f‖Lp(RN ) +

( ∑
16|α|6k

‖Dαf‖p
Lp(RN )

)1/p

.

Definition 3.2. — The space of functions of bounded variation, denoted by
BV (RN), is the space of all f ∈ L1(RN) such that

[f ]BV (RN ) := sup

{ˆ
RN
f(x) div φ(x) dx : φ ∈ C1

c (RN), ‖φ‖L∞(RN ) 6 1

}
<∞,

naturally endowed with the norm

‖f‖BV (RN ) := ‖f‖L1(RN ) + [f ]BV (RN ).

Definition 3.3. — Let M ∈ N∗, s ∈ (0,M) and p, q ∈ [1,∞]. The Besov space
Bs
p,q(RN) consists of all functions f ∈ Lp(RN) such that

[f ]Bsp,q(RN ) :=

(ˆ
RN
‖∆M

h f‖
q
Lp(RN )

dh

|h|N+sq

) 1
q

<∞, (3.2)

which, in the case q =∞, is to be understood as

[f ]Bsp,∞(RN ) := sup
h∈RN\{0}

‖∆M
h f‖Lp(RN )

|h|s
<∞,

where ∆M
h f is given by (1.3). The space Bs

p,q(RN) is naturally endowed with the
norm

‖f‖Bsp,q(RN ) := ‖f‖Lp(RN ) + [f ]Bsp,q(RN ).

Remark 3.4. — Of course, if one denotes the semi-norm (3.2) by [f ]
(M)

Bsp,q(RN )
, then

for M1,M2 ∈ N∗ with M1 < M2 and s ∈ (0,M1) it holds

[f ]
(M1)

Bsp,q(RN )
∼ [f ]

(M2)

Bsp,q(RN )
,

(similarly when q = ∞), so that the definition above is indeed consistent. We refer
to [136] (e.g. estimate (45) on p.99) or Lemma 6.3 for further details.
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Remark 3.5. — The integral in (3.2) can be indifferently replaced by an integral
over {|h| 6 δ} for any δ > 0, or on the whole RN since the singular part in h in the
integral arises when h is close to zero, while the integral on {|h| > δ} can always be
dominated by the Lp-norm of f .

Of special interest are the cases q = p, p = ∞ and/or q = ∞. The fractional
Sobolev spaces W s,p(RN) (sometimes also called Slobodeckij, Gagliardo, or Aron-
szajn spaces) is defined by W s,p(RN) = Bs

p,p(RN) for s /∈ N. In this context, the
semi-norm (3.2) when s ∈ (0, 1) is often referred to as the Gagliardo semi-norm.

When q =∞, the space Bs
p,∞(RN) is called the Nikol’skii space. This scale gives

another interesting way to measure the convergence rate of the translate of a given
function to itself. It is well-known that, for any p, q ∈ [1,∞) and s > 0,

Bs
p,q(RN) ↪→ Bs

p,∞(RN),

where “↪→” stands for the continuous imbedding symbol. We refer to [129, 138] for
a proof of this fact. When p = q =∞, then the space Bs

∞,∞(RN) coincides with the
Hölder-Zygmund space C s(RN).

Moreover, by contrast with W s,p(RN) (see e.g. [72] for a simple proof of this fact)
or, more generally, with the spaces Bs

p,q(RN) with p, q ∈ (1,∞), neither C∞c (RN)
nor S (RN) are dense in Bs

p,∞(RN), see e.g. [138, Theorem 2.3.2 (a), p.172]. The
Nikol’skii spaces are Banach spaces but, unlike, say, W s,p(RN) with 1 < p < ∞,
neither reflexive [138, Remark 2, p.199] nor separable [138, Theorem 2.11.2 (d),
p.237].

4 Subatomic decompositions

There exists many ways to decompose a function f ∈ Bs
p,q(RN) into “building blocks”.

The theory of subatomic (or quarkonial) decompositions developed by Triebel in
[137, 139] is one of them of particular interest because, unlike related decompositions
of atomic or, say, Littlewood-Paley type, it yields a decomposition of any function
f ∈ Bs

p,q(RN) on a suitable system of functions which is independent of f and the
resulting coefficients are linearly dependent on f . In such a framework, the search for
a function amounts, roughly speaking, to seeking for a discrete sequence of numbers.

For the convenience of the reader we recall some basic definitions.

Definition 4.1. — Let ν > 0, m ∈ ZN and ψ ∈ C∞c (RN) be a non-negative
function with supp(ψ) ⊂ B2r for some r > 0 and∑

k∈ZN
ψ(x− k) = 1, if x ∈ RN .
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Let Qν,m be the cube of sides parallel to the coordinate axis with side-length 2−ν and
centered at 2−νm. Let s ∈ R, 1 6 p 6∞, β ∈ NN and

ψβ(x) = xβψ(x) := xβ1

1 ... x
βN
N ψ(x).

Then,

(βqu)ν,m(x) := 2−ν(s−N
p

)ψβ(2νx−m), x ∈ RN ,

is called an (s, p)-β-quark relative to Qν,m.

Definition 4.2. — Let s > 0, 1 6 p, q 6 ∞ and (βqu)ν,m be (s, p)-β-quarks
according to Definition 2.4. Let % > r where r has the same meaning as in Definition
2.4. For all λ = {λβν,m ∈ C : (ν,m, β) ∈ N× ZN × NN} we set

‖λ‖%,p,q := sup
β∈NN

2%|β|
(∑

ν>0

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

,

with obvious modification if p =∞ and/or q =∞.
We call Bs

p,q(RN) the collection of all f ∈ S ′(RN) which can be represented as

f(x) =
∑
β∈NN

∞∑
ν=0

∑
m∈ZN

λβν,m(βqu)ν,m(x), (4.1)

endowed with the norm

‖f‖Bsp,q(RN ) := inf ‖λ‖%,p,q, (4.2)

where the infinimum is taken over all admissible representations (4.1).

The standard fact of subatomic decompositions states as follows

Theorem 4.3. — Let s > 0 and 1 6 p, q 6 ∞. Then, (4.2) does not depend
upon the choice of % nor on ψ, and Bs

p,q(RN) is a Banach space which coincides with
the space Bs

p,q(RN) introduced in Definition 3.3. Moreover,

‖f‖Bsp,q(RN ) ∼ ‖f‖Bsp,q(RN ).

We refer to [139] and references therein for a proof of this. In fact, there are
optimal subatomic coefficients, i.e. coefficients λβν,m(f) realizing the infinimum in
(4.2) and which can be obtained as a dual pairing of the form 〈f,Ψβ,%

ν,m〉S ′,S where
(Ψβ,%

ν,m) ⊂ S (RN) is an appropriate sequence of functions. We refer to [139] for
further details.
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5 The space N s,p(RN)

The aim of this section is twofold. On the one hand, we point out that, even though
the spaces Bs

p,∞(RN) can be characterized as limits superior (see Proposition 5.2
below), it does not yield an equivalent norm (as it does for the Sobolev spaces
W 1,p(RN) with p > 1, see e.g. Lemma 7.1). As will become clear in the next section,
this is the reason why Bs

p,∞(RN) is more conveniently described as the supremum
of (2.1) rather than as its limit superior. On the other hand, we provide some
preliminary results towards Corollary 2.18. For simplicity, we consider only first
order differences ∆1

hf = τhf−f but all the results of this section also hold for higher
order differences.

For the sake of convenience, we define a “new” function space which, in fact, is
merely another way to look at the Nikol’skii space Bs

p,∞(RN) as shown hereafter.

Definition 5.1. — Let s ∈ (0, 1) and p ∈ [1,∞]. Then, the space N s,p(RN)
consists of all functions f ∈ Lp(RN) such that

[f ]Ns,p(RN ) := lim sup
|h|→0

‖τhf − f‖Lp(RN )

|h|s
<∞.

It is endowed with the following norm:

‖f‖Ns,p(RN ) := ‖f‖Lp(RN ) + [f ]Ns,p(RN ).

In addition, we also define

N s,p
0 (RN) :=

{
f ∈ N s,p(RN) : [f ]Ns,p(RN ) = 0

}
.

As expected, we have the

Proposition 5.2. — Let s ∈ (0, 1) and p ∈ [1,∞]. Then,

Bs
p,∞(RN) = N s,p(RN).

Remark 5.3. — The equality here holds in the sense of sets: the topology of
both are not precisely equivalent as shown below. In fact, “[·]Ns,p(RN )” is a quite
crude way to characterize the Nikol’skii space. For these reasons (and in order not to
mix with both topologies) we shall write Bs

p,∞(RN) = (Bs
p,∞(RN), ‖·‖Bsp,∞(RN )) and

N s,p(RN) = (Bs
p,∞(RN), ‖·‖Ns,p(RN )).

Proof. — Let f ∈ Bs
p,∞(RN). Then, for all δ > 0, we have

[f ]Bsp,∞(RN ) := sup
h∈RN\{0}

‖τhf − f‖Lp(RN )

|h|s
> sup

0<|h|<δ

‖τhf − f‖Lp(RN )

|h|s
.
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Letting δ → 0+, we get

[f ]Bsp,∞(RN ) > lim sup
|h|→0

‖τhf − f‖Lp(RN )

|h|s
=: [f ]Ns,p(RN ), (5.1)

and so f ∈ N s,p(RN). Conversely, let f ∈ N s,p(RN). Then, for all η > 0 there is a
δ0 > 0 such that for all δ ∈ (0, δ0) we have∣∣∣∣∣ sup

0<|h|<δ

‖τhf − f‖Lp(RN )

|h|s
− [f ]Ns,p(RN )

∣∣∣∣∣ < η.

Now fix such η and δ. By the triangle inequality we obtain

sup
0<|h|<δ

‖τhf − f‖Lp(RN )

|h|s
< η + [f ]Ns,p(RN ) <∞.

On the other hand,

sup
δ6|h|

‖τhf − f‖Lp(RN )

|h|s
6

2

δs
‖f‖Lp(RN ) <∞.

Therefore, f ∈ Bs
p,∞(RN).

Proposition 5.4. — Let s ∈ (0, 1) and p ∈ (1,∞]. Then,

W 1,p(RN) ⊂ N s,p
0 (RN) and BV (RN) ⊂ N s,1

0 (RN).

Proof. — First, let f ∈ W 1,p(RN) (resp. f ∈ BV (RN) if p = 1). Then,

‖τhf − f‖Lp(RN )

|h|s
6 |h|1−s‖∇f‖Lp(RN ), ∀h ∈ RN .

Taking the limit superior as |h| → 0 gives f ∈ N s,p
0 (RN).

Proposition 5.5. — Let s ∈ (0, 1), p ∈ [1,∞) and N̊ s,p(RN) denote the closure
of C∞c (RN) in N s,p(RN). Then,

N̊ s,p(RN) = N s,p
0 (RN).

In particular, N s,p
0 (RN) is a closed subspace of N s,p(RN).
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Proof. — “⊂”: By definition, C∞c (RN) is dense in N̊ s,p(RN), whence the inclu-
sion N̊ s,p(RN) ⊂ N s,p

0 (RN) is straightforward.

“⊃”: Let f ∈ N s,p
0 (RN) and let (fn)n>0 ⊂ C∞c (RN) be such that

‖f − fn‖Lp(RN ) → 0 as n→∞.

Then, clearly,

‖f − fn‖Ns,p(RN ) := ‖f − fn‖Lp(RN ) + [f − fn]Ns,p(RN )

6 ‖f − fn‖Lp(RN ) + [f ]Ns,p(RN ) + [fn]Ns,p(RN )

= ‖f − fn‖Lp(RN ) → 0 as n→∞.

Whence, f ∈ N̊ s,p(RN). Moreover, the map

Θ : f ∈ N s,p(RN) 7→ [f ]Ns,p(RN )

is continuous. Therefore N s,p
0 (RN) = Θ−1({0}) is closed in N s,p(RN).

Proposition 5.6. — Let s ∈ (0, 1), p ∈ [1,∞) and B̊s
p,∞(RN) (resp. N̊ s,p(RN))

denote the closure of C∞c (RN) in Bs
p,∞(RN) (resp. N s,p(RN)). Then,

f ∈ N̊ s,p(RN) if, and only if, f ∈ B̊s
p,∞(RN).

Proof. — Let f ∈ N̊ s,p(RN) and (fn)n>0 ⊂ C∞c (RN) be such that

fn → f in N s,p(RN) as n→∞.

Thus, for all η > 0 there exists n0 = n0(η) > 0 and δ0 = δ0(η) > 0 such that

n > n0, δ ∈ (0, δ0) =⇒ sup
|h|<δ

‖∆1
h(f − fn)‖Lp(RN )

|h|s
< η.

Now, fix such η, δ and n0. On the other hand, for all η > 0 and all δ > 0 there is a
n1 = n1(η, δ) > 0 such that

n > n1 =⇒ sup
|h|>δ

‖∆1
h(f − fn)‖Lp(RN )

|h|s
< η.

Indeed, this is because

sup
|h|>δ

‖∆1
h(f − fn)‖Lp(RN )

|h|s
6

2

δs
‖f − fn‖Lp(RN ) → 0 as n→∞.
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Therefore, for all n > max{n0, n1},

sup
h6=0

‖∆1
h(f − fn)‖Lp(RN )

|h|s
< η.

Summing up, we find that, for all η > 0, there exists M > 0 such that

n >M =⇒ [f − fn]Bsp,∞(RN ) < η.

Thus, f ∈ B̊s
p,∞(RN).

Conversely, let f ∈ B̊s
p,∞(RN) and (fn)n>0 ⊂ C∞c (RN) be such that fn → f in

Bs
p,∞(RN). Using (5.1) we find

[f ]Ns,p(RN ) 6 [f − fn]Ns,p(RN ) + [fn]Ns,p(RN )

= [f − fn]Ns,p(RN )

6 [f − fn]Bsp,∞(RN ) → 0 as n→∞.

Thus f ∈ N̊ s,p(RN).

6 Characterization of Besov-Nikol’skii spaces

6.1 Preliminary

For the sake of clarity we shall introduce the following short notation

Dω(ρε, f) :=

ˆ
RN
ρε(h) ω

(‖∆M
h f‖Lp(RN )

|h|s

)
dh.

First, an easy observation.

Proposition 6.1. — Let M ∈ N∗, s > 0, p ∈ [1,∞] and (ρε)ε>0 be a sequence
of mollifiers. Assume ω ∈ C+

inc. Then,

lim sup
ε→0+

Dω(ρε, f) 6 ω

(
lim sup
|h|→0

‖∆M
h f‖Lp(RN )

|h|s

)
,

and

sup
ε>0

Dω(ρε, f) 6 ω

(
sup
h6=0

‖∆M
h f‖Lp(RN )

|h|s

)
.
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Proof. — Let η > 0 be any fixed number. Then, we have

Dω(ρε, f) =

(ˆ
06|h|6η

+

ˆ
|h|>η

)
ρε(h) ω

(‖∆M
h f‖Lp(RN )

|h|s

)
dh.

On the one hand,

ˆ
06|h|6η

ρε(h) ω

(‖∆M
h f‖Lp(RN )

|h|s

)
dh

6 sup
06|h|6η

ω

(‖∆M
h f‖Lp(RN )

|h|s

) ˆ
06|h|6η

ρε(h)dh

6 sup
06|h|6η

ω

(‖∆M
h f‖Lp(RN )

|h|s

)
.

On the other hand, since ω is non-decreasing

ˆ
|h|>η

ρε(h) ω

(‖∆M
h f‖Lp(RN )

|h|s

)
dh 6 ω

(
2M‖f‖Lp(RN )

ηs

) ˆ
|h|>η

ρε(h)dh

−→ 0 as ε→ 0+.

Therefore,

lim sup
ε→0+

ˆ
RN
ρε(h) ω

(‖∆M
h f‖Lp(RN )

|h|s

)
dh 6 sup

06|h|6η
ω

(‖∆M
h f‖Lp(RN )

|h|s

)
.

Taking now the limit as η → 0+ and using ω ∈ C+
inc we obtain

lim sup
ε→0+

Dω(ρε, f) 6 ω

(
lim sup
|h|→0

‖∆M
h f‖Lp(RN )

|h|s

)
.

The remaining inequality follows by a direct application of Hölder’s inequality.

Here is another estimate we shall need.

Lemma 6.2. — Let p ∈ [1,∞], M ∈ N∗, h1, h2 ∈ RN and h = h1 + h2. Then,

‖∆2M
h f‖Lp(RN ) . ‖∆M

h1
f‖Lp(RN ) + ‖∆M

h2
f‖Lp(RN ),

for all f ∈ Lp(RN).

This is essentially covered by [136, Estimate (16), p.112] but, for the sake of
completeness, we choose to provide the details.
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Proof. — Let f ∈ S (RN). Since translations τhf have Fourier transform eih·ξf̂ ,
the Fourier transform of ∆M

h f writes

F [∆M
h f ](ξ) = f̂(ξ)

M∑
j=0

(
M

j

)
(−1)M−j(eih·ξ)j.

And so, by applying the binomial formula and taking the inverse Fourier transform
of the result one gets

∆M
h f = F−1[(eih·ξ − 1)M f̂ ].

Now let h1, h2 ∈ RN and h = h1 + h2. Notice that we have

eih·ξ − 1 = eih1·ξ(eih2·ξ − 1) + eih1·ξ − 1.

Let P ∈ C[X, Y ] be the polynomial defined by

P (X, Y ) = (X(Y − 1) + (X − 1))2M .

By the binomial formula one may find Q1, Q2 ∈ C[X, Y ] such that

P (X, Y ) = (X − 1)MQ1(X, Y ) +XM(Y − 1)MQ2(X, Y ).

This holds for any X, Y ∈ C. In particular

(eih·ξ − 1)2M = (eih1·ξ − 1)MQ1(eih1·ξ, eih2·ξ) + eiMh1·ξ(eih2·ξ − 1)MQ2(eih1·ξ, eih2·ξ).

Multiplying this equality by f̂(ξ) and taking the inverse Fourier transform of the
result, we obtain:

∆2M
h f = F−1

[
M∑

k,`=0

αk,`(e
ih1·ξ − 1)MF

[
f(·+ kh1 + `h2)

]]

+ F−1

[
M∑

k,`=0

βk,`e
iMh1·ξ(eih2·ξ − 1)MF

[
f(·+ kh1 + `h2)

]]
,

where αk,` and βk,` are the respective coefficients of Q1 and Q2. Otherwise said,

∆2M
h f =

M∑
k,`=0

αk,`∆
M
h1
f
(
·+kh1 + `h2

)
+

M∑
k,`=0

βk,`∆
M
h2
f
(
·+(k +M)h1 + `h2

)
.

We therefore obtain that, for each f ∈ S (RN)

‖∆2M
h f‖Lp(RN ) 6 C

(
‖∆M

h1
f‖Lp(RN ) + ‖∆M

h2
f‖Lp(RN )

)
,

for some constant C > 0 depending only on M , Q1 and Q2. Since S (RN) is dense
in Lp(RN) for p < ∞ the result follows for every f ∈ Lp(RN). When p = ∞, the
above still holds in the S ′ sense and, thus, extends to L∞(RN) as well.

60



Also, we recall the following well-known fact.

Lemma 6.3. — Let M ∈ N∗, s ∈ (0,M) and f ∈ Lp(RN). Then,

sup
h6=0

‖∆M
h f‖Lp(RN )

|h|s
6 C(s,M) sup

h6=0

‖∆2M
h f‖Lp(RN )

|h|s
, (6.1)

for some constant C(s,M) > 0 depending only on s and M . Similarly,

lim sup
|h|→0

‖∆M
h f‖Lp(RN )

|h|s
6 C(s,M) lim sup

|h|→0

‖∆2M
h f‖Lp(RN )

|h|s
. (6.2)

This is a consequence of [136, Estimate (45), p.99], but the proof being very short
we chose to provide all the details.

Proof. — Let f ∈ Lp(RN) and P ∈ C[X] be the unique polynomial such that

P (X)(X − 1) = 1−
(
X + 1

2

)M
. (6.3)

Note that P exists because X − 1 is a divisor of the right-hand side of (6.3). In
particular, we have that

(X − 1)M =
1

2M
(X2 − 1)M + (X − 1)M+1P (X).

Hence, for every h, ξ ∈ RN we have

(eih·ξ − 1)M =
1

2M
(ei2h·ξ − 1)M + (eih·ξ − 1)M+1P (eih·ξ).

Whence, reasoning as in Lemma 6.2, we obtain

∆M
h f(x) =

1

2M
∆M

2hf(x) + ∆M+1
h

(∑
`∈L

a`f(x+ h`)

)
,

for some finite set of indices L ⊂ N and coefficients a` depending on P . Thus, for
every s ∈ (0,M), h 6= 0 and f ∈ Lp(RN) it holds,

‖∆M
h f‖Lp(RN )

|h|s
6

1

2M−s
‖∆M

2hf‖Lp(RN )

|2h|s
+ C

‖∆M+1
h f‖Lp(RN )

|h|s
.

We obtain that(
1− 1

2M−s

)
sup
h6=0

‖∆M
h f‖Lp(RN )

|h|s
6 C sup

h6=0

‖∆M+1
h f‖Lp(RN )

|h|s
.

Therefore (6.1) follows by induction. The proof of (6.2) is similar.
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6.2 Proof of Theorem 2.3

Let M ∈ N∗, s > 0, p ∈ [1,∞], ω ∈ C+
inc and (ρε)ε>0 be as in Theorem 2.3. Here

again, we will make use of the short notation

Dω(ρε, f) :=

ˆ
RN
ρε(h) ω

(‖∆M
h f‖Lp(RN )

|h|s

)
dh.

In addition, we call M(RN) the set of mollifiers (ρε)ε>0 ⊂ L1(RN) satisfying (1.8)
for some ρ ∈ L1(RN) such that there exists a number δ > 0 and a nonnegative,
nondecreasing, radial function Ψ ∈ C(RN) with

ρ(h) > Ψ(h) for a.e. h ∈ Bδ and

ˆ
Bδ/4

Ψ > 0. (6.4)

Note that, by Proposition 6.1, we only need to establish a one-sided inequality.
We begin with a few preliminary facts (Claim A and Claim B) showing that the

proof of Theorem 2.3 reduces to the case where (ρε)ε>0 ∈M(RN).

Claim A. — It is enough to establish Theorem 2.3 for radial ρ’s such that

ess inf
A

ρ > 0, (6.5)

for some annulus A ⊂ RN centered at zero.

Proof of Claim A. — Let ρ ∈ L1(RN) be a nonnegative radial function with unit
mass. Then, there is a nonnegative function ρ̃ ∈ L1

loc(R+) with ρ(z) = ρ̃(|z|). In
particular, we may find some 0 < c1 < c2 such thatˆ c2

c1

ρ̃(θ)dθ > 0.

Let 0 < θ0 < 1 be such that c1 > c2θ0 and let ρ∗ be the radial function given by

ρ∗(z) := C

 1

θ0

ρ(θz)dθ = C

 1

θ0

ρ̃(θ|z|)dθ for z ∈ RN ,

where C > 0 is given by

C := (1− θ0)

(ˆ 1

θ0

dθ

θN

)−1

.

Notice that, by the Fubini theorem, ρ∗ ∈ L1(RN) and ρ∗ has unit mass. Indeed, this
is because

‖ρ∗‖L1(RN ) =
C

1− θ0

ˆ 1

θ0

ˆ
RN
ρ(θz)dzdθ =

C

1− θ0

ˆ 1

θ0

dθ

θN
= 1.
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Furthermore, one easily checks that ρ∗ satisfies (6.5). Indeed, we have

ess inf
|z|∈

[
c2,

c1
θ0

] ρ∗(z) =
C

1− θ0

ess inf
|z|∈

[
c2,

c1
θ0

]
ˆ |z|
θ0|z|

ρ̃(θ)
dθ

|z|
>

Cθ0

c1(1− θ0)

ˆ c2

c1

ρ̃(θ)dθ > 0.

On the other hand, we have

ρε(θ ·) = θ−Nρε/θ 6 θ−N0 ρε/θ for any θ ∈ [θ0, 1].

Hence,

1

C
Dω(ρ∗ε, f) =

 1

θ0

Dω(ρε(θ ·), f)dθ 6 θ−N0 sup
θ06θ61

Dω(ρε/θ, f). (6.6)

Assuming that Theorem 2.3 holds for mollifiers with ρ satisfying (6.5), we finally
obtain

ω
(

[f ]Bsp,∞(RN )

)
. sup

ε>0
Dω(ρε, f).

Thus, the claim follows.

Claim B. — It is enough to establish Theorem 2.3 for (ρε)ε>0 ∈M(RN).

Proof of Claim B. — Let ρ ∈ L1(RN) be a nonnegative radial function with unit
mass. Then, there is a nonnegative function ρ̃ ∈ L1

loc(R+) with ρ(z) = ρ̃(|z|). On
account of Claim A, we may assume that there are some 0 < r1 < r2 and some α > 0
with

ρ̃(t) > α1(r1,r2)(t) =: Ψ(t) for a.e. t > 0.

If r1 <
r2
4

, then (ρε)ε>0 ∈ M(RN) and the claim is trivial. Hence, we may assume
that r1 > r2

4
. To show that the latter case reduces to the former, we simply clip

together rescaled copies of Ψ as follows. For any j > 0, define

θj :=

(
r1

r2

)j
and Ψθj(t) := θ−Nj Ψ

(
t

θj

)
.

Observe that, by construction, θj → 0 as j →∞ and

0 < · · · < θj+1r1 < θj+1r2 = θjr1 < θjr2 < · · · < θ1r2 = r1 < r2.

Thus, the supports of the Ψθj ’s are mutually disjoint and they form a countable
partition of [0, r2]. Now take an integer k ∈ N such that

k >
ln
(

1
5

)
ln
(
r1
r2

) .
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By construction, this guarantees that θk <
1
5

and, in turn, that

supp(Ψθk) ⊂
[
0,
r2

5

]
.

In particular, we have [
r2

5
, r2

)
⊂

k⋃
j=0

supp(Ψθj).

Fix such a k ∈ N and set J = [[0, k]]. Then, the function

η∗(t) :=
∑
j∈J

Ψθj(t), for t > 0,

is bounded and [
r2

5
, r2

)
⊂ supp(η∗) ⊂ [0, r2].

Moreover, η∗ satisfies the following monotonicity property:

η∗(t1) > η∗(t2) > α whenever
r2

5
< t1 < t2 < r2.

Thus, there is a nondecreasing function Φ∗ ∈ C(R+) with

η∗ > Φ∗ a.e. in [0, r2] and

ˆ r2/4

0

Φ∗(t) tN−1dt > 0. (6.7)

Indeed, it suffices to take e.g.

Φ∗(t) :=
5α

4r2

(
t− r2

5

)
1(

r2
5
,∞)(t).

See Figure 1.1 for a visual evidence. Now, set

Φ(x) :=
1

c
Φ∗(|x|) and η(x) :=

1

c
η∗(|x|) where c :=

ˆ
Br2

η∗(|x|)dx.

By construction, η ∈ L1(RN) and η has unit mass. Moreover, by (6.7), we have

η > Φ a.e. in Br2 and

ˆ
Br2/4

Φ > 0.

Whence, (ηε)ε>0 ∈M(RN). On the other hand,

c Dω(ηε, f) =
∑
j∈J

Dω

(
Ψθjε(|·|), f

)
6
∑
j∈J

Dω(ρθjε, f). (6.8)
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Figure 1.1. Construction of η∗ and Φ∗.

Hence, one obtains

sup
ε>0

Dω(ηε, f) 6
#J

c
sup
ε>0

Dω(ρε, f).

Assuming that Theorem 2.3 holds for mollifiers belonging to M(RN), we finally
obtain

ω
(

[f ]Bsp,∞(RN )

)
. sup

ε>0
Dω(ρε, f).

Thus, the claim follows.

Remark 6.4. — By (6.6) and (6.8) we also have that

ω

(
lim sup
|h|→0

‖∆M
h f‖Lp(RN )

|h|s

)
. lim sup

ε→0+

Dω(ρε, f),

holds for any radial (ρε)ε>0 satisfying (1.1) and (1.8) whenever it holds for any (ρε)ε>0

belonging to M(RN).

We may now complete the proof of Theorem 2.3.

Step 1: case M = 1 and s ∈ (0, 1).

Let p ∈ [1,∞], (ρε)ε>0 ∈M(RN), ω ∈ C+
inc and f ∈ Lp(RN) satisfying (2.1). Let

h ∈ RN (to be fixed later) and let z ∈ RN . Then, we have

τzf − f = τhf − f + τh(τz−hf − f). (6.9)
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This implies

‖τhf − f‖Lp(RN ) 6 ‖τzf − f‖Lp(RN ) + ‖τz−hf − f‖Lp(RN ). (6.10)

Now, choose z ∈ B|h|(h). Then, since z and z − h belong to B2|h|, it comes

1

2s
‖τhf − f‖Lp(RN )

|h|s
6
‖τzf − f‖Lp(RN )

|z|s
+
‖τz−hf − f‖Lp(RN )

|z − h|s
. (6.11)

Since ω is roughly subadditive, there exists a constant Aω > 0 depending only on ω
and such that, for every x, y ∈ R+,

ω(x+ y) 6 Aω {ω(x) + ω(y)} . (6.12)

Remark 6.5. — Note that (6.12) implies ω(2x) 6 2Aωω(x) and, since ω ∈ C+
inc,

it is increasing, thus ω(2sx) 6 2Aωω(x) for s 6 1. Similarly, when s 6M ∈ N∗, one
has ω(2sx) 6 (2Aω)Mω(x).

From (1.8), Remark 6.5 and since s 6 1, using the short notation ∆1
hf = τhf − f we

have

ω

(‖∆1
hf‖Lp(RN )

|h|s

)
6 ω

(
2s
‖∆1

zf‖Lp(RN )

|z|s
+ 2s
‖∆1

z−hf‖Lp(RN )

|z − h|s

)
6 Aω

{
ω

(
2s
‖∆1

zf‖Lp(RN )

|z|s

)
+ ω

(
2s
‖∆1

z−hf‖Lp(RN )

|z − h|s

)}
6 2A2

ω

{
ω

(‖∆1
zf‖Lp(RN )

|z|s

)
+ ω

(‖∆1
z−hf‖Lp(RN )

|z − h|s

)}
. (6.13)

Using (ρε)ε>0 ∈ M(RN) we know there exist a radially nondecreasing Ψ ∈ C(RN)
and a number δ > 0 such that

ρε(z) > Ψε(|z|) for a.e. z ∈ Bεδ and all ε > 0. (6.14)

As seen in Figure 1.2, we clearly have

Ψε(|z − h|) 6 Ψε(|z|) for all h ∈ Bεδ/2, z ∈ B|h|/2(h) and ε > 0. (6.15)

Let h ∈ Bεδ/2. Multiplying (6.13) by Ψε(|z − h|) and using (6.14)-(6.15) we obtain

Ψε(|z − h|) ω
(‖∆1

hf‖Lp(RN )

|h|s

)
6 2A2

ω

{
ρε(z) ω

(‖∆1
zf‖Lp(RN )

|z|s

)
+ ρε(z − h) ω

(‖∆1
z−hf‖Lp(RN )

|z − h|s

)}
,
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Figure 1.2. Spatial conditions on h and z.

and this holds for all h ∈ Bεδ/2 and a.e. z ∈ B|h|/2(h). So, taking |h| = δε/2 and
integrating over z ∈ B|h|/2(h), yields:

C(Ψ, δ) ω

(‖∆1
hf‖Lp(RN )

|h|s

)
6 2A2

ω

ˆ
B|h|/2(h)

ρε(z) ω

(‖∆1
zf‖Lp(RN )

|z|s

)
dz

+ 2A2
ω

ˆ
B|h|/2(h)

ρε(z − h) ω

(‖∆1
z−hf‖Lp(RN )

|z − h|s

)
dz

6 4A2
ω

ˆ
RN
ρε(z) ω

(‖∆1
zf‖Lp(RN )

|z|s

)
dz,

where

C(Ψ, δ) :=

ˆ
B|h|/2(h)

Ψε(|z − h|)dz =

ˆ
Bδ/4

Ψ(|z|)dz > 0.

Whence,

ω

(‖∆1
hf‖Lp(RN )

|h|s

)
6

4A2
ω

C(Ψ, δ)

ˆ
RN
ρε(z) ω

(‖∆1
zf‖Lp(RN )

|z|s

)
dz. (6.16)

Passing to the limit superior as |h| → 0 in (6.16) it follows

ω
(
[f ]Ns,p(RN )

)
6

4A2
ω

C(Ψ, δ)
lim sup
ε→0+

ˆ
RN
ρε(z) ω

(‖∆1
zf‖Lp(RN )

|z|s

)
dz,
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where we used the continuity of ω. This, together with Proposition 6.1 yields

ω
(
[f ]Ns,p(RN )

)
∼ lim sup

ε→0+

ˆ
RN
ρε(z) ω

(‖∆1
zf‖Lp(RN )

|z|s

)
dz. (6.17)

Similarly, taking the supremum over h 6= 0 in (6.16), we obtain

ω
(

[f ]Bsp,∞(RN )

)
∼ sup

ε>0

ˆ
RN
ρε(h) ω

(‖∆1
hf‖Lp(RN )

|h|s

)
dh.

Remark 6.6. — Estimate (6.17) together with Proposition 5.6 and Remark 6.4
prove Corollary 2.18 for 1 6 p <∞ and s ∈ (0, 1) (recall we have assumed ω(0) = 0).

Step 2: case M > 2 and s ∈ (0,M).

The assumption s ∈ (0, 1) being artificial (by Remark 6.5) the above still holds
for general s > 0. In particular, replacing (6.10) by the estimate of Lemma 6.2, for
f ∈ Lp(RN), one obtains

ω

(‖∆2M
h f‖Lp(RN )

|h|s

)
6 C(M,ρ, ω)

ˆ
RN
ρε(z) ω

(‖∆M
z f‖Lp(RN )

|z|sp

)
dz, (6.18)

for any s ∈ (0,M). Taking the supremum over ε > 0 (i.e. over |h| > 0) and recalling
that ω is a continuous, non-decreasing function, we find that

ω
(

[f ]Bsp,∞(RN )

)
. sup

ε>0

ˆ
RN
ρε(z) ω

(‖∆M
z f‖Lp(RN )

|z|s

)
dz.

This is because the space Bs
p,∞(RN) with s ∈ (0,M) is characterized by finite differ-

ences of order M , i.e.

[f ]Bsp,∞(RN ) ∼ sup
|h|6=0

‖∆2M
h f‖Lp(RN )

|h|s
, ∀s ∈ (0,M),

Indeed, recall Lemma 6.3 and ‖∆2M
h f‖Lp(RN ) 6 C(M)‖∆M

h f‖Lp(RN ).

Remark 6.7. — As above, we still have

ω

(
lim sup
|h|→0

‖∆M
h f‖Lp(RN )

|h|s

)
∼ lim sup

ε→0+

Dω(ρε, f).

So that Corollary 2.18 follows in that case too.
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Remark 6.8. — Note that, when (ρε)ε>0 ∈ M(RN) (with corresponding Ψ and
δ), we have actually proved a stronger estimate than needed. Indeed, we have shown
that for any h ∈ RN \ {0}, s ∈ (0, 1], p ∈ [1,∞] and (ρε)ε>0 ∈M(RN) it holds

ω

(‖∆1
hf‖Lp(RN )

|h|s

)
6 C(Ψ, δ, Aω)

ˆ
RN
ρε(|h|)(z) ω

(‖∆1
zf‖Lp(RN )

|z|s

)
dz,

where ε(t) = 2t
δ

and Aω is as in Definition 2.1.

Step 3: proof of Remark 2.4.

Let 1 6 p <∞, ω ∈ C+
inc and Ω ∈ Cinc satisfying (2.3). Then, we have

ω

(ˆ
RN

Ω

(
|∆M

h f(x)|
|h|s

)
dx

)
> ω

(
m1

‖∆M
h f‖

p
Lp(RN )

|h|sp

)

> K1(m1, Aω)ω

(
‖∆M

h f‖
p
Lp(RN )

|h|sp

)
,

where K1(m1, Aω) > 0 and Aω > 0 is a number such that ω satisfies the condition
of Definition 2.1 with A = Aω. Similarly, for some K2(m2, Aω) > 0,

ω

(ˆ
RN

Ω

(
|∆M

h f(x)|
|h|s

)
dx

)
6 K2(m2, Aω)ω

(
‖∆M

h f‖
p
Lp(RN )

|h|sp

)
.

Now, since ω̃ = ω ◦ |·|p lies in C+
inc (by Remark 2.2) we obtain the desired claim, i.e.

that

ω
(

[f ]p
Bsp,∞(RN )

)
∼ sup

ε>0

ˆ
RN
ρε(h)ω

(ˆ
RN

Ω

(
|∆M

h f(x)|
|h|s

)
dx

)
dh.

The remaining claims of Remark 2.4 follow by a similar argument of comparison.

7 Characterization of Sobolev and BV spaces

We begin with a preliminary result.

Lemma 7.1. — Let p ∈ [1,∞], f ∈ Lp(RN) and let

A := sup
h6=0

‖∆1
hf‖Lp(RN )

|h|
.

If A is finite, then,

A = lim sup
|h|→0

‖∆1
hf‖Lp(RN )

|h|
.
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Although our argument is much simpler, a proof of a similar result (involving
moduli of continuity) may be found in [142]. However, the argument in [142] heavily
relies on the continuity of ‖∆1

hf‖Lp(RN ) and, thus, does not cover the case p = ∞.
We show that, in fact, it is enough to ask only for some kind of subadditivity.

Proof. — Let f ∈ Lp(RN), 1 6 p 6∞. For any t ∈ R, define

F (t) := sup
σ∈SN−1

‖∆1
σtf‖Lp(RN ).

Clearly, F is measurable. Now, let t1, t2 ∈ R. Specializing (6.10) in h = (t1 + t2)σ
and z = t1σ, for some σ ∈ SN−1, yields

‖∆1
σ(t1+t2)f‖Lp(RN ) 6 ‖∆1

σt1
f‖Lp(RN ) + ‖∆1

−σt2f‖Lp(RN ) 6 F (t1) + F (t2).

Consequently, F (t1 + t2) 6 F (t1) + F (t2) for all t1, t2 ∈ R. Whence, F : R→ [0,∞)
is a measurable, subadditive function. Now suppose that

A := sup
t>0

F (t)

t
<∞.

Then, by the limit theorem of subadditive functions [96, Theorem 16.3.3, p.467],

A = lim
t→0+

F (t)

t
= lim

t→0+
sup

σ∈SN−1

‖∆1
σtf‖Lp(RN )

t
.

This proves the lemma.

7.1 Proofs of Theorems 2.5 and 2.6

Proof. — The proof follows from a straightforward adaptation of the proof of
Theorem 2.3 in the case M = 1 and s ∈ (0, 1) with Lemma 7.1 and the fact that,
using for example [27, Theorem 2, Theorem 3’],

‖∇f‖Lp(RN ) ∼ lim sup
|h|→0

‖f(·+ h)− f‖Lp(RN )

|h|
, (7.1)

for all 1 6 p <∞ (when p = 1 the left-hand side of (7.1) is to be understood in the
BV -sense, i.e. as the total mass of the Radon measure ∇f).

The case p = ∞ follows from the arguments above and the definition of the
Lipschitz semi-norm.
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7.2 A limiting embedding between Lipschitz and Besov spaces

This subsection is devoted to the proof of Theorem 2.12. To this end, we recall
the following improvement of the Chebychev inequality due to Bourgain, Brezis and
Mironescu [27].

Lemma 7.2 (Bourgain, Brezis, Mironescu, [27]). — Let g, h : (0, δ) → R+. As-
sume that g(t) 6 g(t/2) for all t ∈ (0, δ) and that h is non-increasing. Then, for
some constant C = C(N) > 0,

δ−N
ˆ δ

0

tN−1g(t)dt

ˆ δ

0

tN−1h(t)dt 6 C

ˆ δ

0

tN−1g(t)h(t)dt.

We are now ready to prove Theorem 2.12.

Proof of Theorem 2.12. — Let q ∈ [1,∞) and let (ρε)ε∈(0,1] be defined by

ρε(t) :=
1

|B1|
ε1−ε

tN−ε
1(0,ε)(t) for all ε ∈ (0, 1] and all t > 0.

Note that ˆ ∞
0

ρε(t) t
N−1dt =

1

|B1|
for all ε ∈ (0, 1]. (7.2)

In addition, we also set

ηε(h) := ε−N C2
|h|
ε
1Bε(h) for all ε ∈ (0, 1] and all h ∈ RN ,

where C2 > 0 is a constant such that ηε has unit mass for each ε. Notice that
(ηε)ε>0 ⊂ L1(RN) is a sequence of radial functions satisfying (1.1) and (1.8). In
particular, by Theorem 2.5, we know that

[f ]C0,1(RN ) . lim sup
ε→0+

ˆ
Bε

ηε(h)
‖∆1

hf‖L∞(RN )

|h|
dh. (7.3)

Next, for every t > 0, define

F (t) :=

ˆ
SN−1

‖∆1
σtf‖L∞(RN )dH N−1(σ).

By the triangle inequality we have F (2t) 6 2F (t) so that if we let

g(t) :=
F (t)

t
,
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we have g(t) 6 g(t/2). In these notations, we have the identity:

ˆ
Bε

ρε(|h|)
‖∆1

hf‖L∞(RN )

|h|
dh =

ˆ ε

0

tN−1ρε(t)g(t)dt.

Invoking Lemma 7.2 and (7.2) we deduce that, for every ε ∈ (0, 1],

ˆ
Bε

ρε(|h|)
‖∆1

hf‖L∞(RN )

|h|
dh & ε−N

ˆ ε

0

tN−1ρε(t)dt

ˆ ε

0

tN−1g(t)dt

=

 
Bε

‖∆1
hf‖L∞(RN )

|h|
dh

> ε−1

 
Bε

‖∆1
hf‖L∞(RN )dh

&
ˆ
Bε

ηε(h)
‖∆1

hf‖L∞(RN )

|h|
dh.

Whence, using (7.3), we come up with

[f ]C0,1(RN ) . lim sup
ε→0+

ˆ
Bε

ρε(|h|)
‖∆1

hf‖L∞(RN )

|h|
dh.

Now, use the Jensen inequality to deduce that

[f ]q
C0,1(RN )

. lim sup
ε→0+

ˆ
Bε

ρε(|h|)
‖∆1

hf‖
q
L∞(RN )

|h|q
dh

. lim sup
ε→0+

ε−ε

(
ε

ˆ
Bε

‖∆1
hf‖

q
L∞(RN )

|h|N+q−ε dh

)

. lim sup
ε→0+

ε

ˆ
RN

‖∆1
hf‖

q
L∞(RN )

|h|N+q−ε dh.

Define σ ∈ (1− 1
q
, 1) by the relation ε = q(1− σ). Then,

[f ]q
C0,1(RN )

. lim sup
σ→1−

q(1− σ)[f ]q
Bσ∞,q(RN )

.

The converse of this is covered by Proposition 6.1.

8 A non-limiting embedding theorem

This section is devoted to the proof of Theorem 2.14. The idea of the proof is very
similar to that of Theorem 4.4 (ii) on p.36 in [136] (see in particular pp.39-40 there).
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Nevertheless, we choose to give more details in order to make the dependence of the
constants involved on s, p and q as explicit as possible.

We will need some preliminary estimates.

Lemma 8.1. — Let (uj)j>0 be the sequence defined by

uj :=

{
k if j = 2k for some k ∈ N
0 else

Then, (uj)j>0 /∈ `∞(N) and

sup
ε>0

ε
∑
j>0

2−jεuj 6
2

e ln(2)
.

Proof. — Let ε > 0 and set

Aε :=
∑
j>0

ε2−jεuj =
∑
k>0

ε2−2kεk.

Using the (trivial) estimate e−x 6 1/(ex), we have 2−x 6 1/(ex ln(2)). Thus,

Aε 6
1

e ln(2)

∑
k>0

k2−k.

Recalling the well-known identity
∑
kxk = x/(1 − x)2 (for 0 6 x < 1), we finally

obtain

Aε 6
2

e ln(2)
.

Since this holds for every ε > 0, we obtain the desired claim.

Lemma 8.2. — Let M ∈ N∗ and (uk)k>1 be a sequence of non-negative numbers.
Let ψ ∈ C∞c (R) be such that ψ is not a polynomial of degree less than or equal to
M − 1, and such that

supp(ψ) ⊂ [−η, η] for some η > 1,

and set

f(x1, ... , xN) =
∑
k>1

uk ψ

(
x1 − 2(M + η)k

2−k

)
... ψ

(
xN − 2(M + η)k

2−k

)
.

Then, for any fixed j > 1, we have

sup
1

2j+1 6|h|6
1

2j

‖∆M
h f‖Lp(RN ) > c uj2

−jN
p ,

for some constant c > 0 depending only on N , p, M and ψ.
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Proof. — We begin with the case N = 1. Fix any j > 1 and let |h| 6 2−j. Let
us set

xj := 2(M + η)j and Rj := 2−j(M + η).

Since supp(ψ) ⊂ [−η, η] and |h| 6 2−j, for any ` ∈ [[0,M ]], we have

x ∈ supp ψ

(
·+ `h− xj

2−j

)
⇔ x+ h` ∈

[
xj − η2−j, xj + η2−j

]
⇔ x ∈

[
xj − h`− η2−j, xj − h`+ η2−j

]
=: B`,j.

And, clearly

supp

(
∆M
h ψ

(
· − xj
2−j

))
⊂

⋃
`∈[[0,M ]]

B`,j.

Thus,

supp

(
∆M
h ψ

(
· − xj
2−j

))
⊂ [xj −Rj, xj +Rj] =: Bj.

Furthermore,

Rj+1 +Rj = 2−j(M + η)

(
1 +

1

2

)
< 2(M + η) = xj+1 − xj,

and so, the Bj’s are mutually disjoint. Therefore, given any fixed j > 1 and ε > 0 a
small parameter less than Rj, we have

‖∆M
h f‖

p
Lp(R) =

∥∥∥∥∥∑
k>1

uk∆
M
h ψ

(
· − xk
2−k

)∥∥∥∥∥
p

Lp(R)

>
ˆ xj+ε

xj−ε

∣∣∣∣∑
k>1

uk∆
M
h ψ

(
x− xk

2−k

) ∣∣∣∣pdx
= upj

ˆ xj+ε

xj−ε

∣∣∣∣∆M
h ψ

(
x− xj

2−j

)∣∣∣∣p dx

= upj 2−j
ˆ ε/2−j

−ε/2−j
|∆M

h/2−jψ(x)|pdx.

Whence, writing Kj := B2−j \B2−(j+1) for j > 0 we have

sup
h∈Kj
‖∆M

h f‖
p
Lp(R) > upj 2−j sup

h∈Kj

ˆ ε

−ε
|∆M

h/2−jψ(x)|pdx

= cpε u
p
j 2−j.
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where

cε = cε(M, p, ψ) := sup
1
2
6|h|61

(ˆ ε

−ε
|∆M

h ψ(x)|pdx
)1/p

.

Since ε > 0 is an arbitrary small parameter and ψ is not a polynomial of degree less
than or equal to M − 1, we may find a number ε0 > 0 such that cε0 > 0.

The proof when N > 2 follows by a straightforward adaptation of the case N = 1
using the product structure ψ(x1) ... ψ(xN) and Fubini’s theorem which gives the
result with c = cNε0 .

We are now ready to prove Theorem 2.14.

Proof of Theorem 2.14. — Let M ∈ N∗ be such that s ∈ (0,M) and let uj be the
sequence of Lemma 8.1. Also, we choose ψ ∈ C∞c (RN) such that

supp(ψ) ⊂ B2 and
∑
m∈ZN

ψ(x−m) = 1 for any x ∈ RN .

In addition, we suppose that ψ has the product structure

ψ(x) = Ψ(x1) ...Ψ(xN),

for some Ψ ∈ C∞c (R) different from a polynomial of degree less than or equal to
M − 1. Then, we set

mj := 2(M + 2)j 1 ∈ ZN with 1 := (1, ... , 1) ∈ ZN ,

and we define

f(x) :=
∑
j>1

u
1/q
j 2−j(s−

N
p

)ψ(2j(x−mj))

=
∑
j>1

(
u

1/q
j 2−jε

)
2−j(s−ε−

N
p

)ψ(2j(x−mj)).

where x ∈ RN . It follows from Definition 2.4 that

2−j(s−ε−
N
p

)ψ(2j(x−mj))

can be interpreted as (s − ε, p)-0-quarks. Accordingly, by Definition 4.2, we have
that

ε‖f‖q
Bs−εp,q (RN )

6 ε
∑
j>1

(
2−jεu

1/q
j

)q
.
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Using Lemma 8.1 we obtain that

ε‖f‖q
Bs−εp,q (RN )

6
2q−1

e ln(2)
<∞, ∀ε ∈ (0, s).

In particular, recalling Theorem 4.3, f ∈ Lp(RN). Also, for all j > 1, we write

Kj := {2−(j+1) 6 |h| 6 2−j}.

Recall that

‖f‖Bsp,∞(RN ) ∼ ‖f‖Lp(RN ) + sup
j>1

2js sup
h∈Kj
‖∆M

h f‖Lp(RN ),

is an equivalent norm on Bs
p,∞(RN) (this is a discretized version of Theorem 2.5.12

on p.110 in [136]). Using this together with Lemma 8.2 we get

‖f‖Bsp,∞(RN ) > c sup
j>1

u
1/q
j =∞.

Here c = c(N, p,M, ψ) > 0. Thus f /∈ Bs
p,∞(RN). This completes the proof.

9 Non-compactness results

This section is devoted to the proofs of Theorem 2.15 and Theorem 2.17. We begin
with the former one.

Proof of Theorem 2.15. — For simplicity, we replace ε > 0 by 1/n with n > 1
and write ρn instead of ρ1/n. We write

x = (x1, ... , xN) ∈ RN ,

y = (x1, ... , xN−1) ∈ RN−1,

and, for all n > 1, we let

fn(x) := n
M−s
Mp Φ(n

M−s
M xN)ϕ(y),

for some arbitrary Φ ∈ C∞c (R) and ϕ ∈ C∞c (RN−1) (if N = 1, replace ϕ by 1) with

max
{
‖Φ‖WM,p(R), ‖ϕ‖WM,p(RN−1)

}
6 C0. (9.1)

Note that fn → 0 a.e. in RN . Further, from Fubini’s theorem we infer that

ˆ
RN
|fn(x)|pdx =

(ˆ
RN−1

|ϕ(y)|pdy
)(

n
M−s
M

ˆ
R
|Φ(n

M−s
M xN)|pdxN

)
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= ‖ϕ‖p
Lp(RN−1)

‖Φ‖pLp(R) = C1.

On the one hand, we observe that (9.1) gives

‖Dαfn‖pLp(RN )
. 1 for each α = (α1, ... , αN−1, 0) ∈ NN with |α| 6M.

While, on the other hand, for all j ∈ [[1,M ]],∥∥∥∥∂jfn∂xjN

∥∥∥∥p
Lp(RN )

= n
(M−s)
M

jp‖ϕ‖p
Lp(RN−1)

n
M−s
M

ˆ
R
|Φ(j)(n

M−s
M xN)|pdxN

= n
(M−s)
M

jp‖ϕ‖p
Lp(RN−1)

‖Φ(j)‖pLp(R)

6 n(M−s)p‖ϕ‖p
Lp(RN−1)

max
j∈[[1,M ]]

‖Φ(j)‖pLp(R).

Whence, using the product structure of fn we get

sup
|α|6M

‖Dαfn‖pLp(RN )
6 C2n

(M−s)p for all n > 1.

Moreover, for all h 6= 0, it holds

‖∆M
h fn‖

p
Lp(RN )

6 |h|Mp sup
|α|6M

‖Dαfn‖pLp(RN )
6 C2|h|Mpn(M−s)p.

Then,

ˆ
RN

ˆ
RN
ρn(h)

|∆M
h fn(x)|p

|h|sp
dxdh .

ˆ
RN
ρn(h)|h|p(M−s)np(M−s)dh

=

ˆ
RN
ρ(h)|h|p(M−s)dh.

We thus conclude that
ˆ
RN

ˆ
RN
ρn(h)

|∆M
h fn(x)|p

|h|sp
dxdh 6 C3 for any n > 1.

Yet, (fn)n>1 is not relatively compact in Lploc(RN).

The proof of Theorem 2.17 is as follows.

Proof of Theorem 2.17. — The proof in this case is very similar to that of The-
orem 2.15. We let M ∈ N∗, s ∈ (0,M) and pick a slightly different sequence of
functions, for example

fn(x) := n
γ
Mp Φ(n

γ
M xN)ϕ(y),

77



where 0 6 γ 6 1
q
, Φ ∈ C∞c (R) and ϕ ∈ C∞c (RN−1). Also, we set

ρn(h) :=
1

nσN |h|N−1/n
1(0,1)(|h|).

As above, one has

‖fn‖Lp(RN ) = ‖Φ‖Lp(R)‖ϕ‖Lp(RN−1) and sup
|α|6M

‖Dαfn‖Lp(RN ) . nγ.

Whence, we arrive at
ˆ
B1

ρn(h)
‖∆M

h fn‖
q
Lp(RN )

|h|sq
dh .

ˆ
B1

ρn(h)|h|(M−s)qnγqdh

= nγq−1

ˆ 1

0

dr

r1−(q(M−s)+1/n)

=
nγq

1 + (M − s)qn
.

1

n1−γq .

Since 0 6 γ 6 1
q
, we obtain

ˆ
B1

ρn(h)
‖∆M

h fn‖
q
Lp(RN )

|h|sq
dh 6 C for all n > 1.

However, (fn)n>1 is not relatively compact in Lploc(RN).

Appendix

In [98], Lamy and Mironescu proved the

Theorem 9.1 (Lamy, Mironescu, [98]). — Let s > 0, p ∈ [1,∞) and (ρε)ε>0

satisfying (1.1) and (1.8). Then,

‖f‖Bsp∞(RN ) . ‖f‖Lp(RN ) + sup
ε∈(0,1)

‖ρε ∗ f − f‖Lp(RN )

εs
. (9.2)

Since Theorem 9.1 is not properly stated in [98] nor its proof, we shall give a brief
sketch of the proof in order to justify that their result indeed applies to the scale
Bs
p,∞(RN).

Sketch of the proof. — It is well-known that each tempered distribution f ∈
S ′(RN) can be decomposed as

f =
∑
j>0

fj, (9.3)

where f0 = f ∗ ζ, fj = f ∗ ϕ21−j , j > 1, and ζ, ϕ ∈ S (RN) are functions satisfying
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(i) supp(ζ̂) ⊂ B2 and ζ̂ ≡ 1 in a neighborhood of B̄1,

(ii) ϕ := ζ1/2 − ζ with ϕ̂ = ζ̂(·/2)− ζ̂ and supp(ϕ̂) ⊂ B4 \ B̄1.

where the subscript ϕk means k−Nϕ(·/k) and ϕ̂ stands for the Fourier transform of
ϕ (similarly for ζ). Formula (9.3) is called the Littlewood-Paley decomposition of f .
Furthermore, it is known that each function in Bs

p,∞(RN) is a tempered distribution,
so that this decomposition makes sense here and may even serve to formulate an
equivalent norm on this space via the formula

‖f‖Bsp,∞(RN ) ∼ sup
j>0

2js‖fj‖Lp(RN ).

To see that Theorem 9.1 holds it suffices to discretize the last term on the right-hand
side of (9.2) as

sup
ε∈(1/2,1)

sup
j>0

2js‖f − f ∗ ρ2−jε‖Lp(RN ).

At this stage, all the estimates obtained in [98] directly apply because it is the terms
‖fj‖Lp(RN ) which are estimated there (and not their sum nor their integral) in terms
of the quantity ‖f − f ∗ ρ2−jε‖Lp(RN ).

Using this result, Proposition 1.2 can be proved by arguing as follows.

Proof of Proposition 1.2. — Suppose without loss of generality that the ρε’s are
compactly supported and that supp(ρ) ⊂ B1. Also, up to replace ρε by ρε(h)+ρε(−h)

2
,

we can always assume that each ρε is even. Then, by the Jensen inequality,

‖ρε ∗ f − f‖pLp(RN )

εsp
=

1

εsp

ˆ
RN

∣∣∣∣ˆ
RN
ρε(h)[f(x− h)− f(x)]dh

∣∣∣∣p dx

6
ˆ
RN

ˆ
Bε

ρε(−h)
|f(x+ h)− f(x)|p

εsp
dhdx

6
ˆ
RN

ˆ
Bε

ρε(h)
|f(x+ h)− f(x)|p

|h|sp
dhdx.

Whence,

sup
ε∈(0,1)

‖ρε ∗ f − f‖pLp(RN )

εsp
. sup

ε∈(0,1)

ˆ
RN

ˆ
RN
ρε(h)

|f(x+ h)− f(x)|p

|h|sp
dhdx.

And so, by Theorem 9.1, f ∈ Bs
p,∞(RN). The proof when ρ is not compactly sup-

ported follows by a simple comparison argument: cutting off ρ as ρ̃ := ρ1BR for some
R > 0 with |BR ∩ supp(ρ)| > 0, we clearly have ρ > ρ̃ and (1.10) implies that the
same property holds for ρ̃ instead of ρ (up to some multiplicative factor ‖ρ‖L1(BR) to
make ρ̃ε a sequence of mollifiers), i.e. that f ∈ Bs

p,∞(RN).
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Chapter 2

On restrictions of Besov functions

This chapter is inspired by the paper [29], published in Nonlinear Analysis.

1 Introduction

In this chapter, we address the following question: given a function f ∈ Bs
p,q(RN),

what can be said about the smoothness of f(·, y) for a.e. y ∈ RN−d ?

In order to formulate this as a meaningful question, one is naturally led to restrict
oneself to 1 6 d < N , 0 < p, q 6∞ and s > σp, where

σp = N

(
1

p
− 1

)
+

, (1.1)

since otherwise f ∈ Bs
p,q(RN) need not be a regular distribution.

Let us begin with a simple observation. If f ∈ Lp(RN) for some 0 < p 6∞, then

f(·, y) ∈ Lp(Rd) for a.e. y ∈ RN−d.

This is a straightforward consequence of Fubini’s theorem. Using similar Fubini-type
arguments, one can show that, if f ∈ W s,p(RN) for some 0 < p 6∞ and σp < s /∈ N,
then we have f(·, y) ∈ W s,p(Rd) for a.e. y ∈ RN−d. We say that these spaces have
the restriction property.

Unlike their cousins, the Triebel-Lizorkin spaces F s
p,q(RN), Besov spaces do not

enjoy the Fubini property unless p = q, that is

N∑
j=1

∥∥∥‖f(x1, ... , xj−1, ·, xj+1, ... , xN)‖Bsp,q(R)

∥∥∥
Lp(RN−1)

,
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is an equivalent quasi-norm on Bs
p,q(RN) if, and only if, p = q; while the counterpart

for F s
p,q(RN) holds for any given values of p and q where it makes sense (see [139,

Theorem 4.4, p.36] for a proof). In particular, Bs
p,p(RN) and F s

p,q(RN) have the
restriction property. It is natural to ask wether or not this feature holds in Bs

p,q(RN)
for an arbitrary q 6= p.

Let us recall some known facts.

Fact 1.1. — Let N > 2, 1 6 d < N , 0 < q 6 p 6∞, s > σp and f ∈ Bs
p,q(RN).

Then, it holds that

f(·, y) ∈ Bs
p,q(Rd) for a.e. y ∈ RN−d.

(A proof of a slightly more general result will be given in the sequel, see Propo-
sition 5.1.)

In fact, there is a weaker version of Fact 1.1, which shows that this stays “almost”
true when p < q. This can be stated as follows

Fact 1.2. — Let N > 2, 1 6 d < N , 0 < p < q 6∞, s > σp and f ∈ Bs
p,q(RN).

Then, it holds that

f(·, y) ∈
⋂
s′<s

Bs′

p,q(Rd) for a.e. y ∈ RN−d.

See e.g. [86, Theorem 1] or [9, Theorem 1.1].
Mironescu [107] suggested that it might be possible to construct a counterexample

to Fact 1.1 when p < q. We prove that this is indeed the case. This is quite
remarkable since, to our knowledge, the list of properties of the spaces Bs

p,q where q
plays a crucial role is rather short.

Our first result is the following

Theorem 1.3. — Let N > 2, 1 6 d < N , 0 < p < q 6∞ and let s > σp. Then,
there exists a function f ∈ Bs

p,q(RN) such that

f(·, y) /∈ Bs
p,∞(Rd) for a.e. y ∈ RN−d.

Remark 1.4. — Note that this is actually stronger than what we initially asked
for, since Bs

p,q ↪→ Bs
p,∞.

Remark 1.5. — We were informed that, concomitant to our work, a version of
Theorem 1.3 for N = 2 and p > 1 was proved by Mironescu, Russ and Sire in [108].
We present another proof independent of it with different techniques. In fact, we
will even prove a generalized version of Theorem 1.3 that incorporates other related
function spaces (see Theorem 6.1) which is of independent interest.
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Despite the negative conclusion of Theorem 1.3, one may ask if something weaker
than Fact 1.1 still holds when p < q. For example, by standard embeddings, we know
that

Bs
p,q(RN) ↪→ As,p(RN) for any 0 < q <∞,

where As,p(RN) stands for

Cs−N
p (RN), BMO(RN) and L

Np
N−sp ,∞(RN), (1.2)

when respectively sp > N , sp = N and sp < N (see Subsection 2.3). In particular,
we may infer from Fact 1.1 that if q 6 p, then for every f ∈ Bs

p,q(RN) it holds

f(·, y) ∈ As,p(Rd) for a.e. y ∈ RN−d.

It is tempting to ask wether the same is true when p < q. But, as it turns out,
even this fails to hold. This is the content of our next result.

Theorem 1.6. — Let N > 2, 1 6 d < N , 0 < p < q 6∞ and let s > σp. Then,
there exists a function f ∈ Bs

p,q(RN) such that

f(·, y) /∈ As,p(Rd) for a.e. y ∈ RN−d.

It is nonetheless possible to refine the conclusions of Fact 1.2 and Theorem 1.3.
We find that a natural way to characterize such restrictions is to look at a more
general scale of functions known as Besov spaces of generalized smoothness, denoted
by B

(s,Ψ)
p,q (RN) (see Definition 2.11). This type of spaces was first introduced by

the Russian school in the mid-seventies (see e.g. [88, 97, 103]) and was shown to be
useful in various problems ranging from Black-Scholes equations [126] to the study of
pseudo-differential operators [1, 85, 99, 101]. A comprehensive state of art covering
both old and recent material can be found in [65]. Several versions of these spaces
were studied in the literature, from different points of view and different degrees of
generality. We choose to follow the point of view initiated by Edmunds and Triebel
in [60] (see also [48, 61, 100, 111, 139]), which seems better suited to our purposes.
Here, s remains the dominant smoothness parameter and Ψ is a positive function of
log-type called admissible (see Definition 2.9). That admissible function is a finer
tuning that allows encoding more general types of smoothness. The simplest example
is the function Ψ ≡ 1 for which one has B

(s,Ψ)
p,q (RN) = Bs

p,q(RN).

More generally, the spaces B
(s,Ψ)
p,q (RN) are intercalated scales between Bs−ε

p,q (RN)
and Bs+ε

p,q (RN). For example: if Ψ is increasing, then we have

Bs
p,q(RN) ↪→ B(s,Ψ)

p,q (RN) ↪→ Bs′

p,q(RN) for every s′ < s,

see [111, Proposition 1.9(vi)].
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We prove that restrictions of Besov functions to almost every hyperplanes belong
to B

(s,Ψ)
p,q (Rd), whenever Ψ satisfies the following growth condition∑

j>0

Ψ(2−j)χ <∞, (1.3)

with χ = qp
q−p (resp. χ = p if q =∞).

More precisely, we prove the following

Theorem 1.7. — Let N > 2, 1 6 d < N , 0 < p < q 6∞, s > σp and let Ψ be
an admissible function satisfying (1.3). Suppose that f ∈ Bs

p,q(RN). Then,

f(·, y) ∈ B(s,Ψ)
p,q (Rd) for a.e. y ∈ RN−d.

It turns out that the condition (1.3) on Ψ in Theorem 1.7 is optimal, at least when
q = ∞. In other words, we obtain a sharp characterization of the aforementioned
loss of regularity.

Theorem 1.8. — Let N > 2, 1 6 d < N , 0 < p < q 6 ∞, s > σp and let Ψ
be an admissible function that does not satisfy (1.3). If q < ∞ and Ψ is increasing
suppose, in addition, that

qp

q − p
<

1

c∞
where c∞ := sup

0<t61
log2

Ψ(t)

Ψ(t2)
. (1.4)

Then, there is a function f ∈ Bs
p,q(RN) such that

f(·, y) /∈ B(s,Ψ)
p,q (Rd) for a.e. y ∈ RN−d.

Remark 1.9. — Notice that condition (1.4) is sufficient and also not far from being
necessary to ensure that (1.3) does not hold, as it happens that for some particular
choices of Ψ, (1.3) is equivalent to qp

q−p >
1
c∞

.

A fine consequence of Theorem 1.7 is that it provides a substitute for As,p(Rd)
when p < q (in Theorem 1.6), which could be of interest in some applications (see
e.g. [27, 108]). For example, if sp > d, p < q and (1.3) is satisfied, then by Theorem
1.7 and [40, Proposition 3.4] we have

∀f ∈ Bs
p,q(RN), f(·, y) ∈ C(s− d

p
,Ψ)(Rd) for a.e. y ∈ RN−d,

where C(α,Ψ)(Rd) is the generalized Hölder space B
(α,Ψ)
∞,∞ (Rd) (see Remark 2.21 below).

Remark 1.10. — It is actually possible to formulate Theorems 1.7 and 1.8 in terms
of the space B

w(·)
p,q (Rd) introduced by Ansorena and Blasco in [3, 4], even though their
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results do not allow to handle higher orders s > 1 and neither the case 0 < p < 1
nor 0 < q < 1. Nevertheless, this is merely another side of the same coin and we
wish to avoid unnecessary complications. Beyond technical matters, our approach is
motivated by the relevance of the scale B

(s,Ψ)
p,q (Rd) in physical problems and in fractal

geometry (see e.g. [60, 61, 111, 137, 139]).

In the course of the chapter we will also address the corresponding problem with
f ∈ B(s,Ψ)

p,q (RN) instead of f ∈ Bs
p,q(RN) which is of independent interest. In fact, as

we will show, our techniques allow to extend Theorems 1.3, 1.7 and 1.8 to this gener-
alized setting with almost no modifications, see Theorems 6.1, 7.1, 7.2 and Remark
7.3.

Chapter 2 is organized as follows. In the forthcoming Section 2 we recall some
useful definitions and results related to Besov spaces. In Section 3, we give some
preliminary results on sequences which will be needed for our purposes. In Section
4, we establish some general estimates within the framework of subatomic decom-
positions and, in Section 5, we use these estimates to prove a generalization of Fact
1.1 which will be used to prove Theorem 1.7. In Section 6, we prove at a stroke
Theorems 1.3 and 1.6 using the results collected at Section 3. Finally, in Section 7,
we prove Theorems 1.7 and 1.8.

2 Notations and definitions

For the convenience of the reader, we specify below some notations used all along
this chapter.

As usual, R denotes the set of all real numbers, C the set of all complex numbers
and Z the collection of all integers. The set of all nonnegative integers {0, 1, 2, ...}
will be denoted by N, and the set of all positive integers {1, 2, ...} will be denoted by
N∗.

The N -dimensional real Euclidean space will be denoted by RN . Similarly, NN

(resp. ZN) stands for the lattice of all points m = (m1, ... ,mN) ∈ RN with mj ∈ N
(resp. mj ∈ Z).

Given a real number x ∈ R we denote by bxc its integral part and by x+ its
positive part max{0, x}. By analogy, we write R+ := {x+ : x ∈ R}.

The cardinal of a discrete set E ⊂ Z will be denoted by #E. Given two integers
a, b ∈ Z with a < b we denote by [[a, b]] the set of all integers belonging to the segment
line [a, b], namely

[[a, b]] := [a, b] ∩ Z.

We will sometimes make use of the approximatively-less-than symbol “.”, that
is we write a . b for a 6 C b where C > 0 is a constant independent of a and b.
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Similarly, a & b means that b . a. Also, we write a ∼ b whenever a . b and b . a.
We will denote by LN the N -dimensional Lebesgue measure and by BR the N -

dimensional ball of radius R > 0 centered at zero.
The characteristic function of a set E ⊂ RN will be denoted by 1E.
We recall that a quasi-norm is similar to a norm in that it satisfies the norm

axioms, except that the triangle inequality is replaced by

‖x+ y‖ 6 K(‖x‖+ ‖y‖) for some K > 0.

Given two quasi-normed spaces (A, ‖·‖A) and (B, ‖·‖B), we say that A ↪→ B
when A ⊂ B with continuous embedding, i.e. when

‖f‖B . ‖f‖A for all f ∈ A.

Further, we denote by `p(N), 0 < p <∞, the space of sequences u = (uj)j>0 such
that

‖u‖`p(N) :=

(∑
j>0

|uj|p
)1/p

<∞,

and by `∞(N) the space of bounded sequences.
As usual, S (RN) denotes the (Schwartz) space of rapidly decaying functions and

S ′(RN) its dual, the space of tempered distributions.
Given 0 < p 6 ∞, we denote by Lp(RN) the space of measurable functions f in

RN for which the p-th power of the absolute value is Lebesgue integrable (resp. f is
essentially bounded when p =∞), endowed with the quasi-norm

‖f‖Lp(RN ) :=

(ˆ
RN
|f(x)|pdx

)1/p

,

(resp. the essential sup-norm when p =∞).
We collect below the different representations of Besov spaces which will be in

use in this chapter.

2.1 Classical Besov spaces

Perhaps the simplest (and the most intuitive) way to define Besov spaces is through
finite differences. This can be done as follows.

Let f be a function in RN . Given M ∈ N∗ and h ∈ RN , let

∆M
h f(x) =

M∑
j=0

(−1)M−j
(
M

j

)
f(x+ hj),

be the iterated difference operator.
Within these notations, Besov spaces can be defined as follows.
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Definition 2.1. — Let M ∈ N∗, 0 < p, q 6∞ and s ∈ (0,M) with s > σp where
σp is given by (1.1). The Besov space Bs

p,q(RN) consists of all functions f ∈ Lp(RN)
such that

[f ]Bsp,q(RN ) :=

(ˆ
|h|61

‖∆M
h f‖

q
Lp(RN )

dh

|h|N+sq

)1/q

<∞,

which, in the case q =∞, is to be understood as

[f ]Bsp,∞(RN ) := sup
|h|61

‖∆M
h f‖Lp(RN )

|h|s
<∞.

The space Bs
p,q(RN) is naturally endowed with the quasi-norm

‖f‖Bsp,q(RN ) := ‖f‖Lp(RN ) + [f ]Bsp,q(RN ). (2.1)

Remark 2.2. — Different choices of M in (2.1) yield equivalent quasi-norms.

Remark 2.3. — If p, q > 1, then ‖·‖Bsp,q(RN ) is a norm. However, if either 0 < p < 1

or 0 < q < 1, then the triangle inequality is no longer satisfied and it is only a quasi-
norm. Nevertheless, we have the following useful inequality

‖f + g‖Bsp,q(RN ) 6
(
‖f‖η

Bsp,q(RN )
+ ‖g‖η

Bsp,q(RN )

)1/η

,

where η := min{1, p, q}, which compensates the absence of a triangle inequality.

For our purposes, we shall require a more abstract apparatus which will be pro-
vided by the so-called subatomic (or quarkonial) decompositions. This provides a
way to decompose any f ∈ Bs

p,q(RN) along elementary building blocks (essentially
made up of a single function independent of f) and to, somehow, reduce it to a
sequence of numbers (depending linearly on f). This type of decomposition first
appeared in the monograph [137] of Triebel and was further developed in [139] (see
also [84, 92, 112, 140]). We outline below the basics of the theory.

Given ν ∈ N and m ∈ ZN , we denote by Qν,m ⊂ RN the cube with sides parallel
to the coordinate axis, centered at 2−νm and with side-length 2−ν .

Definition 2.4. — Let ψ ∈ C∞(RN) be a nonnegative function with

supp(ψ) ⊂
{
y ∈ RN : |y| < 2r

}
,

for some r > 0 and ∑
k∈ZN

ψ(x− k) = 1 for any x ∈ RN .
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Let s > 0, 0 < p 6∞, β ∈ NN and ψβ(x) = xβψ(x). Then, for ν ∈ N and m ∈ ZN ,
the function

(βqu)ν,m(x) := 2−ν(s−N
p

)ψβ(2νx−m) for x ∈ RN , (2.2)

is called an (s, p)-β-quark relative to the cube Qν,m.

Remark 2.5. — When p =∞, (2.2) means (βqu)ν,m(x) := 2−νsψβ(2νx−m).

Definition 2.6. — Given 0 < p, q 6∞, we define bp,q as the space of sequences
λ = (λν,m)ν>0,m∈ZN such that

‖λ‖bp,q :=

( ∞∑
ν=0

( ∑
m∈ZN

|λν,m|p
)q/p)1/q

<∞.

For the sake of convenience we will make use of the following notations

λ =
{
λβ : β ∈ NN

}
with λβ =

{
λβν,m ∈ C : (ν,m) ∈ N× ZN

}
.

Then, we have the

Theorem 2.7. — Let 0 < p, q 6 ∞, s > σp and (βqu)ν,m be (s, p)-β-quarks
according to Definition 2.4. Let % > r (where r has the same meaning as in Definition
2.4). Then, Bs

p,q(RN) coincides with the collection of all f ∈ S ′(RN) which can be
represented as

f(x) =
∑
β∈NN

∞∑
ν=0

∑
m∈ZN

λβν,m(βqu)ν,m(x), (2.3)

where λβ ∈ bp,q is a sequence such that

‖λ‖bp,q ,% := sup
β∈NN

2%|β|‖λβ‖bp,q <∞.

Moreover,

‖f‖Bsp,q(RN ) ∼ inf
(2.3)
‖λ‖bp,q ,% , (2.4)

where the infimum is taken over all admissible representations (2.3). In addition,
the right hand side of (2.4) is independent of the choice of ψ and % > r.

An elegant proof of this result may be found in [137, Section 14.15, pp.101-104]
(see also [139, Theorem 2.9, p.15]).

Remark 2.8. — It is known that, given f ∈ Bs
p,q(RN) and a fixed % > r, there

is a decomposition λβν,m (depending on the choice of (βqu)ν,m and %) realizing the
infimum in (2.4) and which is said to be an optimal subatomic decomposition of f .
We refer to [139] (especially Corollary 2.12 on p.23) for further details.
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2.2 Besov spaces of generalized smoothness

Before we define what we mean by “Besov space of generalized smoothness”, we first
introduce some necessary definitions.

Definition 2.9. — A real function Ψ on the interval (0, 1] is called admissible
if it is positive and monotone on (0, 1], and if

Ψ(2−j) ∼ Ψ(2−2j) for any j ∈ N.

Example 2.10. — Let 0 < c < 1 and b ∈ R. Then,

Ψ(x) := | log2(cx)|b for x ∈ (0, 1],

is an example of admissible function. Another example is

Ψ(x) := (log2 | log2(cx)|)b for x ∈ (0, 1].

Roughly speaking, admissible functions are functions having at most logarithmic
growth or decay near zero. They may be seen as particular cases of a class of functions
introduced by Karamata in the mid-thirties [91, 90] known as slowly varying functions
(see e.g. [23, Definition 1.2.1, p.6] and also [34, Section 3, p.226] where the reader
may find a discussion on how these two notions relate to each other as well as various
examples and references).

We refer the interested reader to [111, 139] for a detailed review of the properties
of admissible functions.

Definition 2.11. — Let M ∈ N∗, 0 < p, q 6∞, s ∈ (0,M) with s > σp and let

Ψ be an admissible function. The Besov space of generalized smoothness B
(s,Ψ)
p,q (RN)

consists of all functions f ∈ Lp(RN) such that

[f ]
B

(s,Ψ)
p,q (RN )

:=

(ˆ 1

0

sup
|h|6t
‖∆M

h f‖
q
Lp(RN )

Ψ(t)q

t1+sq
dt

)1/q

<∞,

which, in the case q =∞, is to be understood as

[f ]
B

(s,Ψ)
p,∞ (RN )

:= sup
0<t61

t−sΨ(t) sup
|h|6t
‖∆M

h f‖Lp(RN ) <∞.

The space B
(s,Ψ)
p,q (RN) is naturally endowed with the quasi-norm

‖f‖
B

(s,Ψ)
p,q (RN )

:= ‖f‖Lp(RN ) + [f ]
B

(s,Ψ)
p,q (RN )

. (2.5)

Remark 2.12. — Different choices of M in (2.5) yield equivalent quasi-norms.
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Remark 2.13. — Observe that, by taking Ψ ≡ 1, we recover the usual Besov
spaces, that is we have

‖f‖
B

(s,1)
p,q (RN )

∼ ‖f‖Bsp,q(RN ),

see [136, Theorem 2.5.12, p.110] for a proof of this.

Remark 2.14. — As already mentioned in the introduction, these spaces were in-
troduced by Triebel and Edmunds in [60, 61] to study some fractal pseudo-differential
operators, but the first comprehensive studies go back to Moura [111] (see also
[35, 40, 39, 81, 92, 140, 141]). In the literature these spaces are usually defined
from the Fourier-analytical point of view (e.g. in [111, 139]) but, as shown in [81,
Theorem 2.5, p.161], the two approaches are equivalent.

Remark 2.15. — Notice that, here as well, the triangle inequality fails to hold
when either 0 < p < 1 or 0 < q < 1, but, in virtue of the Aoki-Rolewicz lemma,
we have the same kind of compensation as in the classical case, see [87, Lemma 1.1,
p.3]. That is, there exists η ∈ (0, 1] and an equivalent quasi-norm ‖·‖

B
(s,Ψ)
p,q (RN ),∗ with

‖f + g‖
B

(s,Ψ)
p,q (RN ),∗ 6

(
‖f‖η

B
(s,Ψ)
p,q (RN ),∗

+ ‖g‖η
B

(s,Ψ)
p,q (RN ),∗

)1/η

.

A fine property of these spaces is that they admit subatomic decompositions. In
fact, it suffices to modify the definition of (s, p)-β-quarks to this generalized setting
in the following way.

Definition 2.16. — Let r, ψ and ψβ with β ∈ NN be as in Definition 2.4. Let
s > 0 and 0 < p 6 ∞. Let Ψ be an admissible function. Then, in generalization of
(2.2),

(βqu)ν,m(x) := 2−ν(s−N
p

)Ψ(2−ν)−1ψβ(2νx−m) for x ∈ RN ,

is called an (s, p,Ψ)-β-quark.

Then, we have the following

Theorem 2.17. — Let 0 < p, q 6 ∞, s > σp and Ψ be an admissible function.
Let (βqu)ν,m be (s, p,Ψ)-β-quarks according to Definition 2.16. Let % > r (where r

has the same meaning as in Definition 2.16). Then, B
(s,Ψ)
p,q (RN) coincides with the

collection of all f ∈ S ′(RN) which can be represented as

f(x) =
∑
β∈NN

∞∑
ν=0

∑
m∈ZN

λβν,m(βqu)ν,m(x), (2.6)

where λβ ∈ bp,q is a sequence such that

‖λ‖bp,q ,% := sup
β∈NN

2%|β|‖λβ‖bp,q <∞.
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Moreover,

‖f‖Bsp,q(RN ) ∼ inf
(2.6)
‖λ‖bp,q ,% , (2.7)

where the infimum is taken over all admissible representations (2.6). In addition,
the right hand side of (2.7) is independent of the choice of ψ and % > r.

This result can be found in [111, Theorem 1.23, pp.35-36] (see also [92, Theorem
10, p.284]).

Remark 2.18. — The counterpart of Remark 2.8 for B
(s,Ψ)
p,q (RN) remains valid,

see [111, Remark 1.26, p.48].

2.3 Related spaces and embeddings

Let us now say a brief word about embeddings. Given a locally integrable function
f in RN and a set B ⊂ RN having finite nonzero Lebesgue measure, we let

fB :=

 
B

f(y) dy =
1

LN(B)

ˆ
B

f(y) dy,

be the average of f on B.
Moreover, we denote by f ∗ : R+ → R+ the decreasing rearrangement of f , given

by
f ∗(t) := inf

{
λ > 0 : µf (λ) 6 t

}
,

for all t > 0, where

µf (λ) := LN

({
x ∈ RN : |f(x)| > λ

})
,

is the so-called distribution function of f .

Definition 2.19. — Let s > 0 and 0 < p <∞.

(i) The Zygmund-Hölder space Cs(RN) is the Besov space Bs
∞,∞(RN).

(ii) The space of functions of bounded mean oscillation, denoted by BMO(RN),
consists of all locally integrable functions f such that

‖f‖BMO(RN ) := sup
B

 
B

|f(x)− fB| dx <∞, (2.8)

where the supremum in (2.8) is taken over all balls B ⊂ RN .

(iii) The weak Lp-space, denoted by Lp,∞(RN), consists of all measurable functions
f such that

‖f‖Lp,∞(RN ) := sup
t>0

t1/pf ∗(t) <∞,

where f ∗ is the decreasing rearrangement of f .
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Let us now state the following

Theorem 2.20 (Sobolev embedding theorem for Bs
p,q). — Let 0 < p, q <∞ and

let s > σp. Then, the following hold true:

(i) if sp > N , then Bs
p,q(RN) ↪→ Cs−N

p (RN);

(ii) if sp = N , then Bs
p,q(RN) ↪→ BMO(RN);

(iii) if sp < N , then Bs
p,q(RN) ↪→ L

Np
N−sp ,∞(RN).

In particular, Bs
p,q(RN) ↪→ As,p(RN) where As,p(RN) is as in (1.2).

Proof. — The cases (i), (ii) and (iii) are respectively covered by [136, Formula
(12), p.131], [108, Lemma 6.5] and [117, Théorème 8.1, p.301].

Remark 2.21. — Let us briefly mention that a corresponding result holds for the
spaces B

(s,Ψ)
p,q (RN). As already mentioned in the introduction, the space B

(s,Ψ)
p,q (RN) is

embedded in a generalized version of the Hölder space when sp > N . When sp < N ,

it is shown in [40] that B
(s,Ψ)
p,q (RN) embeds in a weighted version of L

Np
N−sp ,∞(RN).

Yet, when sp = N , the corresponding substitute for BMO does not seem to have
been clearly identified nor considered in the literature, see however [39, 78, 79, 110]
where some partial results are given.

3 Preliminaries

In this section, we study the properties of some discrete sequences which will play an
important role in the sequel. More precisely, we will be interested in the convergence
of series of the type ∑

j>0

2j|λj,b2jxc| for x > 0,

where λ = (λj,k)j,k>0 is an element of some Besov sequence space, say, b1,q with q > 1.

3.1 Some technical lemmata

Let us start with a famous result due to Cauchy.

Theorem 3.1 (Cauchy’s condensation test). — Let λ ∈ `1(N) be a nonnegative,
nonincreasing sequence. Then,∑

j>1

λj 6
∑
j>0

2jλ2j 6 2
∑
j>1

λj.
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Remark 3.2. — The monotonicity assumption on λ is central here. Indeed, there
exist nonnegative sequences λ ∈ `1(N) which are not nonincreasing and such that∑

j>0 2jλ2j =∞. Take for example:

λj =

{
1/k2 if j = 2k and k 6= 0,

2−j else.

Then, clearly, λ ∈ `1(N). However, 2jλ2j = 2j

j2
when j > 1, so that (2jλ2j)j>0 /∈ `1(N).

A simple consequence of Cauchy’s condensation test is the following

Lemma 3.3. — Let λ ∈ `1(N) be a nonnegative, nonincreasing sequence. Then,∑
j>0

2jλb2jxc 6 φ(x)
∑
j>1

λj for any x > 0,

where φ(x) := 4
|x|

(
1[1,∞)(x) + (1− log2 |x|)1(0,1)(x)

)
.

Proof. — Let k ∈ N and 2k 6 x 6 2k+1. Then, by Cauchy’s condensation test∑
j>0

2jλb2jxc 6
∑
j>0

2jλ2k+j = 2−k
∑
j>k

2jλ2j 6 2−k
∑
j>0

2jλ2j 6
4

x

∑
j>1

λj.

In like manner, for 2−(k+1) 6 x 6 2−k, we have∑
j>0

2jλb2jxc 6
∑
j>0

2jλb2j−k−1c = 2k+1
∑

j>−k−1

2jλb2jc 6 2k+1(k + 1)
∑
j>0

2jλ2j .

Finally, invoking again Cauchy’s condensation test, we have∑
j>0

2jλb2jxc 6 2k+2(k + 1)
∑
j>1

λj 6
4

x

(
1− log2(x)

)∑
j>1

λj.

This completes the proof.

In some sense, this “functional version” of Cauchy’s condensation test may be
generalized to sequences which are not necessarily nonincreasing.

Indeed, one can show that

L1

({
x ∈ R+ :

∑
j>0

2j|λb2jxc| = +∞
})

= 0,

whenever λ ∈ `1(N). This is due to the fact that `p-spaces can be seen as “amalgams”
of Lp(1, 2) and a weighted version of `p.

More precisely, we have
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Lemma 3.4. — Let 0 < p <∞ and let λ ∈ `p(N). Then,(∑
j>1

|λj|p
)1/p

=

( ˆ
[1,2]

∑
j>0

2j|λb2jxc|p dx

)1/p

.

Proof. — It suffices to assume p = 1 and that λ is nonnegative. Then,

1

2k

∑
2k6j<2k+1

λj =

 
[2k,2k+1]

λbxc dx =
1

2k

ˆ
[1,2]

λb2kyc2
k dy =

ˆ
[1,2]

λb2kyc dy,

which yields∑
j∈N∗

λj =
∑
k∈N

∑
2k6j<2k+1

λj =
∑
k∈N

2k
ˆ

[1,2]

λb2kxc dx =

ˆ
[1,2]

(∑
k∈N

λb2kxc2
k

)
dx.

The proof is complete.

We now establish a technical inequality which will be needed in the sequel.

Lemma 3.5. — Let N > 1 and 0 < p < ∞. Let λ = (λβj,k)(j,β,k)∈N×NN×NN be a

sequence such that the partial sequences (λβj,k)k∈NN belong to `p(NN) for all (j, β) ∈
N × NN . Then, for any positive (αj)j>0 ∈ `1(N) there exists C = C(λ, α,N, d) > 0
such that for any (j, β) ∈ N× NN ,

2jN |λβ
j,b2jxc|

p 6 C
max{1, |β|N+1}

αj

∑
k∈NN

|λβj,k|
p,

holds for a.e. x = (x1, ... , xN) ∈ [1, 2]N where

b2jxc = (b2jx1c, ... , b2jxNc) ∈ NN .

Proof. — For the sake of convenience, we use the following notations

Uj,β(x) := 2jN |λβ
j,b2jxc|

p and U j,β :=
∑
k∈NN

|λβj,k|
p.

We have to prove that

Uj,β(x) 6 C
max{1, |β|N+1}

αj
U j,β,

for a.e. x ∈ [1, 2]N and any (j, β) ∈ N×NN . By iterated applications of Lemma 3.4,
we have ˆ

[1,2]N
Uj,β(x) dx 6 U j,β. (3.1)

94



Now, define

Γj,β :=

{
x ∈ [1, 2]N : Uj,β(x) >

max{1, |β|N+1}
αj

U j,β

}
.

Then, applying Markov’s inequality and using (3.1), we have

LN(Γj,β) 6
αj

max{1, |β|N+1}
for any (j, β) ∈ N× NN .

In turn, this gives ∑
β∈NN

∑
j>0

LN(Γj,β) <∞.

Therefore, we can apply the Borel-Cantelli lemma and deduce that there exists
j0, β0 > 0 such that

Uj,β(x) 6
max{1, |β|N+1}

αj
U j,β,

for any j > j0 and/or |β| > β0 and a.e. x ∈ [1, 2]N . On the other hand, for any
j 6 j0 and |β| 6 β0 we have

Uj,β(x) 6 2j0N max{1, |β|N+1}max06j6j0 αj
αj

U j,β.

This completes the proof.

3.2 Some useful sequences

We now construct some key sequences which will be at the heart of the proofs of
Theorems 1.3, 1.6 and 1.8.

Lemma 3.6. — There exists a sequence (ζk)k>0 ⊂ R+ satisfying

sup
j>0

1

2j

∑
2j6k<2j+1

ζk 6 1, (3.2)

and such that

sup
j>0

ζb2jxc =∞ for all x ∈ [1, 2). (3.3)

Proof. — Let us first construct an auxiliary sequence satisfying (3.2).
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Figure 2.1. Construction of the first terms of (ζk)k>0.
The hatched zone corresponds to the values of x for which ζb2jxc

takes nonzero values.

Let (λk)k>0 be a sequence such that λ0 = λ1 = 0 and such that, for any j > 1,

the b2j

j
c first terms of the sequence (λk)k>0 on the discrete interval [[2j, 2j+1−1]] have

value j and the remaining terms are all equal to zero. Then, for any j > 1, we have

1

2j

∑
2j6k<2j+1

λk =
j + · · ·+ j + 0 + · · ·+ 0

2j
=
jb2j

j
c

2j
6 1.

For the sake of convenience, we set

Tj := [[2j, 2j+1 − 1]] for any j > 0.

We will construct a sequence (ζk)k>0 satisfying both (3.2) and (3.3) by rearranging the
terms of (λk)k>0. To this end, we follow the following procedure. For k ∈ [[0, 23 − 1]]
we impose ζk = λk. For j = 3, we shift the values of (λk)k>0 on T3 in such a way that
the smallest x ∈ [1, 2) such that ζb23xc is nonzero coincides with the limit superior of
the set of all z ∈ [1, 2) such that ζb22zc is nonzero. For j = 4, we shift the values of
(λk)k>0 on T4 in such a way that the smallest x ∈ [1, 2] such that ζb24xc is nonzero
coincides with the limit superior of the set of all z ∈ [1, 2) such that ζb23zc is nonzero,
and so on. When the range of nonzero terms has reached the last term on Tj for
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some j > 1, we start again from Tj+1 and set ζk = λk on Tj+1, and we repeat the
above procedure. See Figure 2.1 for a visual illustration.

If, for some j > 0, it happens that the above shifting of the λk’s on Tj exceeds
Tj, then we shift the λk’s on Tj in such a way that the limit superior of the set of all
x ∈ [1, 2] for which ζb2jxc is nonzero coincides with x = 2.

Note that this procedure is well-defined because the proportion of nonzero terms
on each Tj is 2−jb2j

j
c which has a divergent series thus allowing us to fill as much

“space” as needed.
Then, by construction, for any x ∈ [1, 2) there are infinitely many values of j > 0

such that ζb2jxc = j. Consequently, (3.3) holds. Moreover, (3.2) is trivially satisfied.
This completes the proof.

As an immediate corollary, we have

Corollary 3.7. — Let 0 < p < q 6 ∞. Then, there exists a sequence
(λj,k)j,k>0 ⊂ R+ satisfying (∑

j>0

(∑
k>0

λpj,k

)q/p)1/q

<∞,

(with the usual modification if q =∞) and such that

sup
j>0

2j/pλj,b2jxc =∞ for all x ∈ [1, 2).

Remark 3.8. — By “usual modification if q = ∞” we mean that, when q = ∞,
the quasi-norm ‖·‖`q(N) = (

∑
j>0 |·|

q)1/q is replaced by ‖·‖`∞(N) = supj>0 |·|.

Proof. — When q =∞, it suffices to set

λj,k =

{
2−j/pζ

1/p
k if 2j 6 k < 2j+1,

0 otherwise,
(3.4)

where (ζk)k>0 is the sequence constructed at Lemma 3.6.
When q <∞, we simply replace (ζk)k>0 in (3.4) by (ξk)k>0 where

ξk = j−
√

p
q ζk for any k ∈ [[2j, 2j+1 − 1]] with j > 1,

and ξ0 = ξ1 = 0. Then, we obtain

∑
j>1

(
1

2j

∑
2j6k<2j+1

ξk

)q/p
=
∑
j>1

(
j−
√

p
q · 1

2j

∑
2j6k<2j+1

ζk

)q/p
6
∑
j>1

j−
√

q
p <∞.
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Moreover, by construction of (ζk)k>0, for any x ∈ [1, 2), there is a countably infinite
set Jx ⊂ N such that ζb2jxc = j for any j ∈ Jx. In particular,

ξb2jxc = jα for any j ∈ Jx and x ∈ [1, 2),

where α = 1−
√
p/q > 0. Thus,

sup
j>0

2jλp
j,b2jxc = sup

j>0
ξb2jxc > sup

j∈Jx
jα =∞ for any x ∈ [1, 2),

which is what we had to show.

We conclude this section by a weighted version of Corollary 3.7.

Lemma 3.9. — Let 0 < p < q 6∞. Let Ψ be an admissible function that does
not satisfy (1.3). If q <∞ and Ψ is increasing assume, in addition, that

χ =
qp

q − p
<

1

c∞
,

where c∞ is as in Theorem 1.8. Then, there exists a sequence (λj,k)j,k>0 ⊂ R+ such
that (∑

j>0

(∑
k>0

λpj,k

)q/p)1/q

<∞, (3.5)

(with the usual modification if q =∞) and(∑
j>0

2j
q
pλq

j,b2jxcΨ(2−j)q
)1/q

=∞ for all x ∈ [1, 2), (3.6)

(with the usual modification if q =∞).

Proof. — The proof is essentially the same as in the unweighted case with minor
changes that we shall now detail.

Let us begin with the case q = ∞. Let βj := Ψ(2−j)p. Since βj > 0 and
(βj)j>0 /∈ `1(N) we may find another positive sequence (γj)j>0 which has a divergent
series and such that

βj
γj
→∞ as j →∞,

i.e. (γj)j>0 diverges slower than (βj)j>0. Take, for example

γj =
βj∑j
k=0 βk

,
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see e.g. [7]. Note that 0 < γj 6 1 for all j > 0. Let (%k)k>0 be a sequence such
that %0 = %1 = 0 and such that, for any j > 1, the b2jγjc first terms of the sequence
(%k)k>0 on the discrete interval Tj := [[2j, 2j+1 − 1]] have value 1

γj
and the remaining

terms are all equal to zero. Then, for any j > 1, we have

1

2j

∑
2j6k<2j+1

%k =

1
γj

+ · · ·+ 1
γj

+ 0 + · · ·+ 0

2j
=

1
γj
b2jγjc
2j

6 1.

Now, since the proportion of nonzero terms on each Tj is 2−jb2jγjc which has a
divergent series, we may apply to (%j)j>0 the same rearrangement as in the proof of
Lemma 3.6. That is, we can construct a sequence (%∗j)j>0 such that

1

2j

∑
2j6k<2j+1

%∗k 6 1 for all j > 0,

and for any x ∈ [1, 2) there is a countably infinite set Jx ⊂ N such that

βj%
∗
b2jxc =

βj
γj

=

j∑
k=0

βk for all j ∈ Jx,

i.e. we have

sup
j>0

βj%
∗
b2jxc > lim

j→∞
j∈Jx

j∑
k=0

βk =∞.

Therefore, letting

λj,k =

{
2−j/p(%∗k)

1/p if 2j 6 k < 2j+1,

0 otherwise,

we obtain a sequence satisfying both (3.5) and (3.6).
Let us now prove the lemma when q < ∞. Notice that if Ψ is either constant

or decreasing there is nothing to prove since the result is a consequence of Corollary
3.7. Hence, we may assume that Ψ is increasing. By our assumptions, we have

1

p
log2

βj
β2j

6 c∞ <
1

χ
,

which implies that

βj 6 2c∞pβ2j 6 · · · 6 2kc∞pβ2kj for any k ∈ N. (3.7)
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By Cauchy’s condensation test, we have

2
∑
j>0

β
q
q−p
j >

∑
j>0

2jβ
q
q−p
2j

> β
q
q−p
1

∑
j>0

2j(1−c∞χ) =∞.

Thus, we may infer as above that the following positive sequence has divergent series:

γ̃j =
β

q
q−p
j∑j

k=0 β
q
q−p
k

.

Notice that γ̃j 6 1/(j+1). Now define (τj)j>0 by τj := γ̃j/βj. Since 2−c∞pβ1 6 jc∞pβj
for any j > 1 (by (3.7) and the monotonicity of βj), our assumptions on χ and c∞
then imply

∑
j>0

τ
q/p
j 6 τ

q/p
0 +

∑
j>1

β
−q/p
j

(j + 1)q/p
6 τ

q/p
0 +

∑
j>1

2c∞qβ
−q/p
1

jq(1/p−c∞)
<∞.

The conclusion now follows by letting λ̃j,k := τ
1/p
j λj,k where λj,k is the sequence

constructed above with γ̃j instead of γj. Indeed, we have

∑
j>0

(∑
k>0

λ̃pj,k

)q/p
6
∑
j>0

τ
q/p
j <∞,

and, for each x ∈ [1, 2), there is a countably infinite set J̃x ⊂ N such that

2j/pλ̃j,b2jxcβ
1/p
j = 2j/p τ

1/p
j

(
βj
γ̃j

)1/p

2−j/p = 1 for any j ∈ J̃x.

Therefore, (2j/pλ̃j,b2jxcβ
1/p
j )j>0 /∈ `q(N). This completes the proof.

4 General estimates

Throughout this section we will write x ∈ RN as x = (x1, ... , xN) = (x′, x′′) with
x′ ∈ Rd, x′′ ∈ RN−d and, similarly, m = (m′,m′′) ∈ ZN and β = (β′, β′′) ∈ NN . Also,
we set

D := {0, 1}N−d.

Let ψ ∈ C∞0 (RN , [0, 1]) be such that supp(ψ) ⊂ B1 and that

2−ν(s−N
p

)ψβ(2νx−m),
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are (s, p)-β-quarks. Also, we assume that ψ has the product structure

ψ(x1, ... , xN) = ψ(x1) ... ψ(xN). (4.1)

Let % > 0 and f ∈ Bs
p,q(RN). Then, by Theorem 2.7, there are coefficients λβν,m such

that

f(x) =
∑
β∈NN

∞∑
ν=0

∑
m∈ZN

λβν,m2−ν(s−N
p

)ψβ(2νx−m). (4.2)

We can further assume that

‖f‖Bsp,q(RN ) ∼ sup
β∈NN

2%|β|
(∑

ν>0

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

, (4.3)

i.e. that λβν,m = λβν,m(f) is an optimal subatomic decomposition of f . Note, however,
that the optimality of the decomposition λβν,m(f) depends on the choice of % > 0
(this can be seen from [139, Corollary 2.12, p.23]). Of course, by Theorem 2.7, we
still have

‖f‖Bsp,q(RN ) . sup
β∈NN

2%
′|β|
(∑

ν>0

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

,

for any positive %′ 6= %. Using (4.1) and (4.3), we can decompose f(·, x′′) as

f(x′, x′′) =
∑
ν>0

∑
β′∈Nd

∑
m′∈Zd

bβ
′

ν,m′(λ, x
′′)2−ν(s− d

p
)ψβ

′
(2νx′ −m′),

where we have set

bβ
′

ν,m′(λ, x
′′) := 2ν

N−d
p

∑
β′′∈NN−d

∑
m′′∈ZN−d

λβν,mψ
β′′(2νx′′ −m′′). (4.4)

Then, defining

J%p,q(λ, x
′′) := sup

β′∈Nd
2%|β

′|
(∑

ν>0

( ∑
m′∈Zd

|bβ
′

ν,m′(λ, x
′′)|p
)q/p)1/q

, (4.5)

we obtain
‖f(·, x′′)‖Bsp,q(Rd) . J%p,q(λ, x

′′).

In fact, we also have

‖f(·, x′′)‖Bsp,q(Rd) . J%
′

p,q(λ, x
′′), (4.6)
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for any %′ > 0. For the sake of convenience, we introduce some further notations.
Given any δ ∈ D , we set

bβ
′,δ
ν,m′(λ, x

′′) := 2ν
N−d
p

∑
β′′∈NN−d

|λβν,m′,b2νxd+1c+δd+1,...,b2νxN c+δN |, (4.7)

J%,δp,q (λ, x′) := sup
β′∈Nd

2%|β
′|
(∑

ν>0

( ∑
m′∈Zd

|bβ
′,δ
ν,m′(λ, x

′′)|p
)q/p)1/q

. (4.8)

Notice that since supp(ψβ) ⊂ B1, we have

ψβ
′′
(2νx′′ −m′′) 6= 0 =⇒ mi ∈ {b2νxic, b2νxic+ 1} for all i ∈ [[d+ 1, N ]].

And so, using (4.4) and (4.5), we can derive the following bounds

bβ
′

ν,m′(λ, x
′′) 6

∑
δ∈D

bβ
′,δ
ν,m′(λ, x

′′),

and

J%p,q(λ, x
′′) 6 c

∑
δ∈D

J%,δp,q (λ, x′′), (4.9)

for some c > 0 depending only on #D , p and q.
As a consequence of (4.6) and (4.9), to estimate ‖f(·, x′′)‖Bsp,q(Rd) from above one

only needs to estimate the terms (4.8) from above, for each δ ∈ D .
Within these notations, we have the following

Lemma 4.1. — Let N > 2, 0 < p, q 6 ∞, δ ∈ D and 0 < %′ < %0. Then, with
the notations above

J%
′,δ
p,q (λ, x′′) . sup

β∈NN
2%0|β|

(∑
ν>0

( ∑
m′∈Zd

|λβν,m′,b2νx′′c+δ|
p2ν(N−d)

)q/p)1/q

,

for a.e. x′′ ∈ RN−d (with the usual modification if p =∞ and/or q =∞), where

b2νx′′c+ δ = (b2νxd+1c+ δd+1, ... , b2νxNc+ δN) ∈ ZN−d.

Proof. — Suppose first that p, q <∞. For simplicity, we will write

m′′ν,δ := b2νx′′c+ δ.

Using (4.7) and (4.8) we get

J%
′,δ
p,q (λ, x′′) . sup

β′∈Nd
2%
′|β′|
(∑

ν>0

( ∑
m′∈Zd

( ∑
β′′∈NN−d

|λβν,m′,m′′ν,δ |
)p

2ν(N−d)

)q/p)1/q

.
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Write λβν,m = 2−%0|β|Λβ
ν,m and let a := %0 − %′. Then,

2%
′|β′||λβν,m| = 2%

′|β′|−%0|β||Λβ
ν,m| 6 2−a|β||Λβ

ν,m| 6 2−a|β
′′||Λβ

ν,m|.

Hence, by Hölder’s inequality we have

J%
′,δ
p,q (λ, x′′) . sup

β′∈Nd

(∑
ν>0

( ∑
m′∈Zd

( ∑
β′′∈NN−d

2−a|β
′′||Λβ

ν,m′,m′′ν,δ
|
)p

2ν(N−d)

)q/p)1/q

6 Ka/2 sup
β′∈Nd

(∑
ν>0

( ∑
m′∈Zd

sup
β′′∈NN−d

2−p
a
2
|β′′||Λβ

ν,m′,m′′ν,δ
|p2ν(N−d)

)q/p)1/q

,

where we have used the notation

Kα =
∑

β′′∈NN−d
2−α|β

′′| for α > 0.

Since the `p spaces are increasing with p, by successive applications of the Hölder
inequality, we have

J%
′,δ
p,q (λ, x′′) . Ka/2 sup

β′∈Nd

(∑
ν>0

( ∑
β′′∈NN−d

2−p
a
2
|β′′|

∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

6 Ka/2K
1/p
pa

4
sup
β′∈Nd

(∑
ν>0

(
sup

β′′∈NN−d
2−p

a
4
|β′′|

∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

= Ka/2K
1/p
pa

4
sup
β′∈Nd

(∑
ν>0

sup
β′′∈NN−d

2−q
a
4
|β′′|
( ∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

6 Ka/2K
1/p
pa

4
sup
β′∈Nd

(∑
ν>0

∑
β′′∈NN−d

2−q
a
4
|β′′|
( ∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

= Ka/2K
1/p
pa

4
sup
β′∈Nd

( ∑
β′′∈NN−d

2−q
a
4
|β′′|
∑
ν>0

( ∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

6 Ka/2K
1/p
pa

4
K

1/q
q a

4
sup
β∈NN

(∑
ν>0

( ∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

.

Letting Ka,p,q := Ka/2K
1/p
pa

4
K

1/q
q a

4
and recalling λβν,m = 2−%0|β|Λβ

ν,m we get

J%
′,δ
p,q (λ, x′′) 6 Ka,p,q sup

β∈NN
2%0|β|

(∑
ν>0

( ∑
m′∈Zd

|λβν,m′,m′′ν,δ |
p2ν(N−d)

)q/p)1/q

,

which is the desired estimate. The proof when p = ∞ and/or q = ∞ is similar but
technically simpler.
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Remark 4.2. — Of course, when p = ∞, the term “2ν(N−d)” disappears (recall
Remark 2.5) so that, in this case, Fact 1.1 follows directly from the above lemma.

Remark 4.3. — The same kind of estimate holds in the setting of Besov spaces
of generalized smoothness. That is, given a function f ∈ Bs

p,q(RN) decomposed as

above by (4.2) with (4.1) and (4.3), we can estimate the B
(s,Ψ)
p,q (Rd)-quasi-norm of

its restrictions to almost every hyperplanes f(·, x′′) exactly in the same fashion. It
suffices to replace the (s, p)-β-quarks (βqu)ν,m in the decomposition of f(·, x′′) by
Ψ(2−ν)−1(βqu)ν,m in order to get (s, p,Ψ)-β-quarks. From here, we can reproduce
the same reasoning as in Lemma 4.1 with Ψ(2−ν)λβν,m instead of λβν,m and we obtain

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

.
∑
δ∈D

J̃%0,δ
p,q (λ, x′′),

with

J̃%0,δ
p,q (λ, x′′) := sup

β∈NN
2%0|β|

(∑
ν>0

(
Ψ(2−ν)p

∑
m′∈Zd

|λβν,m′,b2νx′′c+δ|
p2ν(N−d)

)q/p)1/q

.

Similarly, given a function f ∈ B
(s,Ψ)
p,q (RN), we can estimate the B

(s,Ψ)
p,q (Rd)-quasi-

norm of its restrictions f(·, x′′) in the same spirit. This is done up to a slight modifi-
cation in the discussion above. It suffices to multiply the (s, p)-β-quarks considered
above by a factor of Ψ(2−ν)−1 and to take ηβν,m, the optimal subatomic decomposition

of f ∈ B
(s,Ψ)
p,q (RN) with respect to these new quarks. Then, the B

(s,Ψ)
p,q (RN)-quasi-

norm of f and the B
(s,Ψ)
p,q (Rd)-quasi-norm of its restrictions f(·, x′′) satisfy the same

relations as when Ψ ≡ 1 with ηβν,m instead of λβν,m. That is, we still have

‖f‖
B

(s,Ψ)
p,q (RN )

∼ sup
β∈NN

2%|β|
(∑

ν>0

( ∑
m∈ZN

|ηβν,m|p
)q/p)1/q

,

and
‖f(·, x′′)‖

B
(s,Ψ)
p,q (Rd)

.
∑
δ∈D

J%0,δ
p,q (η, x′′),

where %, %0 > 0 and J%0,δ
p,q (η, x′′) is as in (4.8).

5 The case q 6 p

This section is concerned with Fact 1.1 (Fact 1.2 being only a consequence of Theorem
1.7). We will use subatomic decompositions together with the estimate given at
Lemma 4.1 to get the following generalization of Fact 1.1.
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Proposition 5.1. — Let N > 2, 1 6 d < N , 0 < q 6 p 6∞ and s > σp. Let Ψ

be an admissible function. Let K ⊂ RN−d be a compact set and let f ∈ B(s,Ψ)
p,q (RN).

Then, it holds that(ˆ
K

‖f(·, x′′)‖q
B

(s,Ψ)
p,q (Rd)

dx′′
)1/q

6 C‖f‖
B

(s,Ψ)
p,q (RN )

,

for some constant C = C(K,N, d, p, q) > 0 (with the usual modification if q =∞).

Proof. — Without loss of generality, we may consider the case K = [1, 2]N−d only
(the general case follows from standard scaling arguments). Also, we can suppose
that p <∞ since otherwise, when p =∞, the desired result is a simple consequence
of Lemma 4.1 (recall Remark 4.2). Let us first prove Lemma 5.1 for Ψ ≡ 1 (it will
be clear at the end why this is enough to deduce the general case).

Let f ∈ Bs
p,q(RN). Given the (s, p)-β-quarks (βqu)ν,m and % > r defined at Section

4 we let λβν,m = λβν,m(f) be the corresponding optimal subatomic decomposition. In
particular

f(x) =
∑
β∈NN

∞∑
ν=0

∑
m∈ZN

λβν,m(βqu)ν,m(x),

with

‖f‖Bsp,q(RN ) ∼ sup
β∈NN

2%|β|
(∑

ν>0

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

.

By the discussion in Section 4, we have that

‖f(·, x′′)‖Bsp,q(Rd) .
∑
δ∈D

J%
′,δ
p,q (λ, x′′), (5.1)

for all %′ ∈ (0, %), where J%
′,δ
p,q (λ, x′′) is given by (4.8). Define

Λβ
ν,m′′ :=

( ∑
m′∈Zd

|λβν,m′,m′′ |
p

)1/p

.

In particular,

‖f‖Bsp,q(RN ) ∼ sup
β∈NN

2%|β|
(∑

ν>0

( ∑
m′′∈ZN−d

|Λβ
ν,m′′ |

p

)q/p)1/q

.

Then, the conclusion of Lemma 4.1 rewrites

J%
′,δ
p,q (λ, x′′)q . sup

β∈NN
2%0q|β|

∑
ν>0

2νq
N−d
p |Λβ

ν,b2νx′′c+δ|
q for all δ ∈ D ,
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and some %0 ∈ (%′, %). Integration over [1, 2]N−d yields

Iδ :=

ˆ
[1,2]N−d

J%
′,δ
p,q (λ, x′′)qdx′′ .

ˆ
[1,2]N−d

sup
β∈NN

2%0q|β|
∑
ν>0

2νq
N−d
p |Λβ

ν,b2νx′′c+δ|
qdx′′

6
∑
β∈NN

2%0q|β|
∑
ν>0

ˆ
[1,2]N−d

2νq
N−d
p |Λβ

ν,b2νx′′c+δ|
qdx′′.

Now, we observe that

2νq
N−d
p |Λβ

ν,b2νx′′c+δ|
q 6

( ∑
k∈NN−d

|Λβ

ν,b2kd+1xd+1c+δd+1,··· ,b2kN xN c+δN
|p2kd+1+···+kN

)q/p
.

Hence, using the fact that q 6 p and applying N − d times Lemma 3.4, we get

Iδ .
∑
β∈NN

2%0q|β|
∑
ν>0

( ∑
k∈NN−d

|Λβ
ν,k+δ|

p

)q/p

6
∑
β∈NN

2(%0−%)q|β| sup
β∈NN

2%q|β|
∑
ν>0

( ∑
k∈NN−d

|Λβ
ν,k+δ|

p

)q/p

= K%,N,q sup
β∈NN

2%q|β|
∑
ν>0

( ∑
k∈NN−d

|Λβ
ν,k+δ|

p

)q/p
6 K%,N,q sup

β∈NN
2%q|β|‖λβ‖qbp,q .

Thus, recalling (5.1), we arrive at(ˆ
[1,2]N−d

‖f(·, x′′)‖q
Bsp,q(Rd)

dx′′
)1/q

. ‖f‖Bsp,q(RN ).

Now, having in mind Remark 4.3, we can reproduce exactly the same proof when
Ψ 6≡ 1 with almost no modifications. This completes the proof.

6 The case p < q

In this section we prove, at a stroke, Theorem 1.3 and Theorem 1.6. As will become
clear, the proof of Theorem 1.6 will easily follow from that of Theorem 1.3.

Let us begin with the following more general result:

Theorem 6.1. — Let N > 2, 1 6 d < N , 0 < p < q 6∞ and s > σp. Let Ψ be

an admissible function. Then, there exists a function f ∈ B(s,Ψ)
p,q (RN) such that

f(·, x′′) /∈ B(s,Ψ)
p,∞ (Rd) for a.e. x′′ ∈ RN−d.
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Proof. — We will essentially follow two steps.

Step 1: case d = N − 1.

We will construct a function satisfying the requirements of Theorem 6.1 (and
hence of Theorem 1.3) via its subatomic coefficients.

Let Ψ be an admissible function. Let 0 < p < q 6 ∞, s > σp, M = bsc + 1 and
let (λj,k)j,k>0 ∈ bp,q be the sequence constructed at Corollary 3.7.

Also, we let ψ ∈ C∞c (RN) be a function such that

supp(ψ) ⊂ [−2, 2]N , inf
z∈[0,1]N

ψ(z) > 0 and
∑
m∈ZN

ψ(· −m) ≡ 1. (6.1)

In addition, we will suppose that ψ has the product structure

ψ(x) = ψ(x1) ... ψ(xN). (6.2)

Notice that such a ψ always exists.1 Then, we define

f(x) =
∑
j>0

∑
k>0

λj,k2
−j(s−N

p
)Ψ(2−j)−1

× ψ(2j(x1−CMj)) ... ψ(2j(xN−1−CMj))ψ(2jxN−k),

(6.3)

where CM = 2(M + 2). It follows from Definition 2.16 that

Ψ(2−j)−12−j(s−
N
p

)ψ(2jx−m) for x ∈ RN ,

with
m = (CM2jj, ... , CM2jj, k) ∈ ZN ,

can be interpreted as (s, p,Ψ)-0-quarks relative to the cube Qj,m. Consequently, by
Theorem 2.17 and Corollary 3.7, we have

‖f‖
B

(s,Ψ)
p,q (RN )

6 c

(∑
j>0

(∑
k>0

λpj,k

)q/p)1/q

<∞,

(modification if q = ∞). Therefore, f ∈ B(s,Ψ)
p,q (RN). In particular, the sum in the

right-hand side of (6.3) converges in Lp(RN) and is unconditionally convergent for

1Here is an example. Let u(t) := e−1/t
2

1(0,∞)(t) (extended by 0 in (−∞, 0]) and let v(t) =
u(1 + t)u(1− t). Then,

ψ(x) :=

N∏
j=1

1

2
ψ0

(xj
2

)
where ψ0(t) =

v(t)

v(t− 1) + v(t) + v(t+ 1)
,

is a smooth function satisfying (6.1) and (6.2).
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a.e. x ∈ RN (notice the terms involved are all nonnegative) and, by Fubini, f(·, xN)
also converges in Lp(RN−1) for a.e. xN ∈ R. Thus, letting

Λj(xN) :=
∑
k>0

λj,k2
j/pψ(2jxN − k),

we may rewrite (6.3) as

f(x′, xN) =
∑
j>0

Λj(xN)2−j(s−
N−1
p

)Ψ(2−j)−1ψ(2j(x1 − CMj)) ... ψ(2j(xN−1 − CMj)).

Notice that assumption (6.1) implies that there is a c0 > 0 such that

ψ(2jxN − b2jxNc) > c0 > 0 for all xN ∈ [1, 2] and j > 0.

In particular, we have

Λj(xN) > c0 λj,b2jxN c2
j/p. (6.4)

Now, for all j > 0, we write

Kj :=
{
h ∈ RN−1 : 2−(j+1) 6 |h| 6 2−j

}
. (6.5)

By [28, Lemma 8.2] (in fact in [28] it is implicitly supposed that 1 6 p <∞ but the
proof still works when 0 < p < 1) and (6.4), we have

sup
h∈Kj
‖∆M

h f(·, xN)‖Lp(RN−1) > c 2−jsΨ(2−j)−1Λj(xN)

> c′ 2−jsΨ(2−j)−1 2j/pλj,b2jxN c, (6.6)

for any j > 0 and some c′ > 0 independent of j. Recall that

‖g‖
B

(s,Ψ)
p,∞ (RN−1)

∼ ‖g‖Lp(RN−1) + sup
j>1

2jsΨ(2−j) sup
h∈Kj
‖∆M

h g‖Lp(RN−1),

is an equivalent quasi-norm on B
(s,Ψ)
p,∞ (RN−1) (this is a discretized version of Definition

2.11). This together with (6.6) and Corollary 3.7 gives

‖f(·, xN)‖
B

(s,Ψ)
p,∞ (RN−1)

& sup
j>0

2j/pλj,b2jxN c =∞ for a.e. xN ∈ [1, 2].

Therefore, f(·, xN) /∈ B(s,Ψ)
p,∞ (RN−1) for a.e. xN ∈ [1, 2].

We will show that one can construct a function satisfying the requirements of The-
orem 6.1 by considering a weighted sum of translates of the function f constructed
above. To this end, we let

fl(x
′, xN) := f(x′, xN + l) for l ∈ Z,
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and we define
g :=

∑
l∈Z

2−|l|fl.

Then, by the triangle inequality for Besov quasi-norms, we have

‖g‖η
B

(s,Ψ)
p,q (RN )

6
∑
l∈Z

2−η|l|‖fl‖η
B

(s,Ψ)
p,q (RN )

6 cη‖f‖η
B

(s,Ψ)
p,q (RN )

<∞,

for some 0 < η 6 1. Hence, g ∈ B(s,Ψ)
p,q (RN). To complete the proof we need to show

that

g(·, xN) /∈ B(s,Ψ)
p,∞ (RN−1) for a.e. xN ∈ R. (6.7)

Let m ∈ Z. Then, by the triangle inequality for Besov quasi-norms we have

2−η|m|‖fm(·, xN)‖η
B

(s,Ψ)
p,∞ (RN−1)

6 ‖g(·, xN)‖η
B

(s,Ψ)
p,∞ (RN−1)

+
∑
l 6=m

2−η|l|‖fl(·, xN)‖η
B

(s,Ψ)
p,∞ (RN−1)

6 ‖g(·, xN)‖η
B

(s,Ψ)
p,∞ (RN−1)

+ cη sup
l 6=m
‖fl(·, xN)‖η

B
(s,Ψ)
p,∞ (RN−1)

. (6.8)

Clearly, the left-hand side of (6.8) is infinite for a.e. xN ∈ [1−m, 2−m]. Thus, to
prove (6.7), one only needs to make sure that the last term on the right-hand side of
(6.8) is finite for a.e. xN ∈ [1−m, 2−m]. For it, we notice that, by construction, it
is necessary to have

j > 1 and 2j 6 k < 21+j, (6.9)

for λj,k 6= 0 to hold. In particular, Λ0 ≡ 0 and Λj(xN) consists only in finitely many
terms for a.e. xN ∈ R. In addition, by our assumptions on the support of ψ, we have
ψ(2jxN − k) 6= 0 provided ∣∣∣∣xN − k

2j

∣∣∣∣ 6 21−j. (6.10)

By (6.9) and (6.10), we deduce that if xN ∈ R \ [1, 2], then there are only finitely
many values of j > 1 such that Λj(xN) 6≡ 0. In particular,

f(·, xN + l) ∈ B(s,Ψ)
p,∞ (RN−1) for a.e. xN ∈ [1, 2] and all l ∈ Z \ {0}. (6.11)

Moreover, a consequence of (6.9) and (6.10) is that

j > 1 and xN ∈ supp(Λj) =⇒ 1− 21−j 6 xN < 2 + 21−j.

In turn, this implies that the support of Λj is included in [0, 3]. Therefore,

f(·, xN + l) ≡ 0 for a.e. xN ∈ [1, 2] and all l ∈ Z with |l| > 2. (6.12)
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Hence, by (6.11) and (6.12), we infer that

max
l 6=0
‖fl(·, xN)‖

B
(s,Ψ)
p,∞ (RN−1)

<∞ for a.e. xN ∈ [1, 2].

In like manner, for every m ∈ Z, we have

max
l 6=m
‖fl(·, xN)‖

B
(s,Ψ)
p,∞ (RN−1)

<∞ for a.e. xN ∈ [1−m, 2−m].

This proves the theorem for d = N − 1.

Step 2: case 1 6 d < N − 1.

By the above, we know that Theorem 1.3 holds for any N > 2 and d = N − 1. In
particular, there exists a function f ∈ B(s,Ψ)

p,q (Rd+1) such that f(·, xd+1) /∈ B(s,Ψ)
p,∞ (Rd)

for a.e. xd+1 ∈ R. Now, pick a function w ∈ S (RN−d−1) with w > 0 on RN−d−1 and
set

g(x) = g(x1, ... , xN) = f(x1, ... , xd, xd+1)w(xd+2, ... , xN).

It is standard that g ∈ Lp(RN) where p := max{1, p}. Then, letting M = bsc + 1
and using [136, Formula (16), p.112], we have that

sup
|h|6t
‖∆2M

h g‖Lp(RN ) . ‖f‖Lp(Rd+1) sup
|h′′|6t

‖∆M
h′′w‖Lp(RN−d−1)

+ ‖w‖Lp(RN−d+1) sup
|h′|6t
‖∆M

h′ f‖Lp(Rd+1),

for any h = (h′, h′′) ∈ RN \ {0} with h′ = (h1, ... , hd+1) and h′′ = (hd+2, ... , hN). In
particular, recalling Remark 2.12, we see that this implies

‖g‖
B

(s,Ψ)
p,q (RN )

. ‖f‖Lp(Rd+1)‖w‖B(s,Ψ)
p,q (RN−d−1)

+ ‖w‖Lp(RN−d−1)‖f‖B(s,Ψ)
p,q (Rd+1)

.

Hence, g ∈ B(s,Ψ)
p,q (RN). Moreover, it is easily seen that

g(·, xd+1, ... , xN) = f(·, xd+1)w(xd+2, ... , xN) /∈ B(s,Ψ)
p,∞ (Rd),

for a.e. (xd+1, ... , xN) ∈ RN−d. This completes the proof.

The function we have constructed above (in the proof of Theorem 6.1) turns out
to verify the conclusion of Theorem 1.6.

Proof of Theorem 1.6. — For simplicity, we outline the proof for N = 2 and
d = 1 only (the general case follows from the same arguments as above). Let f be
the function constructed in the proof of Theorem 6.1 with Ψ ≡ 1, namely

f(x1, x2) :=
∑
j>0

Λj(x2)2−j(s−
1
p

)ψ(2j(x1 − CMj)),
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with
Λj(x2) :=

∑
k>0

λj,k2
j/pψ(2jx2 − k),

where ψ, CM and (λj,k)j,k>0 are as in the proof of Theorem 6.1. Clearly,

‖f‖Bsp,q(R2) 6 c

(∑
j>0

(∑
k>0

λpj,k

)q/p)1/q

<∞.

Hence, f ∈ Bs
p,q(R2). We now distinguish the cases sp > 1, sp = 1 and sp < 1.

Step 1: case sp > 1.

This case works as in Theorem 6.1. Indeed, by the supports of the functions
involved, we have for a.e. x2 ∈ [1, 2],

‖f(·, x2)‖
C
s− 1

p (R)
∼ sup

j>0
2j(s−

1
p

) sup
h∈Kj
‖∆M

h f(·, x2)‖L∞(R) & sup
j>0

2j/pλj,b2jx2c =∞,

where Kj is given by (6.5). We may now conclude as in the proof of Theorem 6.1.

Step 2: case sp = 1.

It suffices to notice that, for any k > 0, we have

‖f(·, x2)‖BMO(R) >
 CMk+2−k

CMk−2−k

∣∣∣∣∣
 CMk+2−k

CMk−2−k

[
f(x, x2)− f(z, x2)

]
dz

∣∣∣∣∣ dx
=

 CMk+2−k

CMk−2−k

∣∣∣∣∣∑
j>0

Λj(x2)

 CMk+2−k

CMk−2−k

[
ψ(2j(x− CMj))− ψ(2j(z − CMj))

]
dz

∣∣∣∣∣ dx.
Hence, by the support of the functions involved we deduce that

‖f(·, x2)‖BMO(R)

> Λk(x2)

 CMk+2−k

CMk−2−k

∣∣∣∣∣
 CMk+2−k

CMk−2−k

[
ψ(2k(x− CMk))− ψ(2k(z − CMk))

]
dz

∣∣∣∣∣ dx
= Λk(x2)

 1

−1

∣∣∣∣ 1

−1

[
ψ(x)− ψ(z)

]
dz

∣∣∣∣ dx > c′Λk(x2).

Therefore, we have

‖f(·, x2)‖BMO(R) & sup
j>0

Λj(x2) = sup
j>0

2j/pλj,b2jx2c =∞ for a.e. x2 ∈ [1, 2].

Thus, we may again conclude as in the proof of Theorem 6.1.
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Step 3: case sp < 1.

Define r := p
1−sp and rewrite f as

f(x1, x2) :=
∑
j>0

cj(x2) 2j/rfj(x1),

where we have set fj(x1) := ψ(2j(x1 − CMj)) and

cj(x2) := 2−j(s−
2
p

) 2−j/r
∑
k>0

λj,kψ(2jx2 − k).

Since the fj’s have mutually disjoint support we find that

f(·, x2)∗(t) > cj(x2) 2j/rf ∗j (t) for any t > 0 and j > 0.

Moreover, it is easy to see that f ∗j (t) = ψ∗(2jt). In turn, this implies that

‖f(·, x2)‖Lr,∞(R) > cj(x2) 2j/r sup
t>0

t1/rψ∗(2jt) = cj(x2)‖ψ‖Lr,∞(R) & 2j/pλj,b2jx2c.

Hence, for a.e. x2 ∈ [1, 2],

‖f(·, x2)‖Lr,∞(R) & sup
j>0

2j/pλj,b2jx2c =∞.

This completes the proof.

7 Characterization of restrictions of Besov func-

tions

In this section, we prove that Besov spaces of generalized smoothness are the natural
scale in which to look for restrictions of Besov functions. More precisely, we will
prove Theorems 1.7 and 1.8. We present several results, with different assumptions
and different controls on the norm of f(·, x′′).

Let us begin with the following

Theorem 7.1. — Let N > 2, 1 6 d < N , 0 < p < q 6 ∞ and let s > σp. Let
K ⊂ RN−d be a compact set. Let Φ and Ψ be two admissible functions such that∑

j>0

Φ(2−j)−pΨ(2−j)p <∞. (7.1)
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Let f ∈ B(s,Φ)
p,q (RN). Then, there exists a constant C > 0 such that

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

6 C‖f‖
B

(s,Φ)
p,q (RN )

for a.e. x′′ ∈ K.

Moreover, the constant C is independent of x′′ but may depend on f , K, N , d, p, q,
Φ and Ψ.

Proof. — Let us first suppose that q < ∞ and that Φ ≡ 1. Without loss of
generality we may take K = [1, 2]N−d, the general case being only a matter of
scaling. Here again, we use the following short notation

b2νx′′c = (b2νxd+1c, ... , b2νxNc) ∈ NN−d.

Let f ∈ Bs
p,q(RN) and write its subatomic decomposition as

f(x) =
∑
β∈NN

∑
ν>0

∑
m∈ZN

λβν,m(βqu)ν,m(x),

where the (s, p)-β-quarks (βqu)ν,m are as in Section 4 and λβν,m = λβν,m(f) is the
optimal subatomic decomposition of f , i.e. such that

‖f‖Bsp,q(RN ) ∼ sup
β∈NN

2%|β|‖λβ‖bp,q . (7.2)

Let ε > 0 be small. Rewriting f as in the discussion at Section 4 and using Lemma
4.1 together with Remark 4.3 we have

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

.
∑
δ∈D

J̃%−ε,δp,q (λ, x′′), (7.3)

where

J̃%−ε,δp,q (λ, x′′) := sup
β∈NN

2(%−ε)|β|
(∑

ν>0

(
2ν(N−d)Ψ(2−ν)p

∑
m′∈Zd

|λβν,m′,b2νx′′c+δ|
p

)q/p)1/q

.

By Lemma 3.5, we know that for any positive sequence (αν)ν>0 ∈ `1(N) there is a
constant C = C(λ, α,N, d) > 0 such that

2ν(N−d)
∑
m′∈Zd

|λβν,m′,b2νx′′c+δ|
p 6 C

max{1, |β|N−d+1}
αν

∑
m∈ZN

|λβν,m|p,

for a.e. x′′ ∈ [1, 2]N−d and any (ν, β) ∈ N× NN . In particular, we have

J̃%−ε,δp,q (λ, x′′) . sup
β∈NN

2(%−ε)|β|max
{

1, |β|
N−d+1

p
}(∑

ν>0

(
Ψ(2−ν)p

αν

∑
m∈ZN

|λβν,m|p
)q/p)1/q

.
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Now, by assumption (7.1), we can choose αν = Ψ(2−ν)p. Therefore, recalling (7.3),
we have

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

. sup
β∈NN

2(%−ε)|β|max
{

1, |β|
N−d+1

p
}(∑

ν>0

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

6 sup
β∈NN

2%|β|
(∑

ν>0

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

.

Finally, recalling (7.2), we have

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

. ‖f‖Bsp,q(RN ) for a.e. x′′ ∈ [1, 2]N−d.

The proof when q = ∞ and/or Φ 6≡ 1 is similar (recall Remark 4.3). It this latter
case, one only have to adjust the (s, p)-β-quarks by a factor of Φ(2−ν)−1 and to replace

λβν,m by ηβν,m, the optimal decomposition of f ∈ B
(s,Φ)
p,q (RN) along these (s, p,Φ)-β-

quarks. Then, as in Remark 4.3, it suffices to replace Ψ(2−ν)λβν,m in the estimate (7.3)
of ‖f(·, x′′)‖

B
(s,Ψ)
p,q (Rd)

by Ψ(2−ν)/Φ(2−ν) ηβν,m and the same proof yields the desired

conclusion.

We carry on with the following generalization of Theorem 1.7.

Theorem 7.2. — Let N > 3, 1 6 d < N , 0 < r 6 p < q 6 ∞, s > σp and let
χ = qr

q−r (resp. χ = r if q =∞). Let Φ and Ψ be two admissible functions such that∑
j>0

Φ(2−j)−χΨ(2−j)χ <∞. (7.4)

Let K ⊂ RN−d be a compact set and suppose that f ∈ B(s,Φ)
p,q (RN). Then,(ˆ

K

‖f(·, x′′)‖r
B

(s,Ψ)
p,r (Rd)

dx′′
)1/r

6 C‖f‖
B

(s,Φ)
p,q (RN )

,

for some constant C = C(K,N, d, p, q,Φ,Ψ) > 0.

Proof. — By Hölder’s inequality, the definition of the norms involved and our
assumptions on s, p, q, r, χ, we see that (7.4) implies that B

(s,Φ)
p,q (RN) ⊂ B

(s,Ψ)
p,r (RN)

continuously, i.e.

‖f‖
B

(s,Ψ)
p,r (RN )

6

(∑
j>0

Φ(2−j)−χΨ(2−j)χ
)1/χ

‖f‖
B

(s,Φ)
p,q (RN )

.

Using now Proposition 5.1, we obtain the desired conclusion.
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We now prove Theorem 1.8.

Proof of Theorem 1.8. — The proof works exactly as in Theorem 1.3 and, here
again, it suffices to prove the result for N > 2, d = N − 1. We prove the case
N = 2 only but the general case N > 2 is similar. Let (λj,k)j,k>0 be the sequence
constructed at Lemma 3.9. Let M ∈ N∗ with s < M . We consider the following
function

f(x1, x2) =
∑
j>0

∑
k>0

λj,k2
−j(s− 2

p
)ψ(2j(x1 − CMj))ψ(2jx2 − k),

where ψ and CM are as in the proof of Theorem 1.3. There, we have shown that

‖f‖Bsp,q(R2) 6 c‖λ‖bp,q ,

(thus implying f ∈ Bs
p,q(R2)) and

sup
h∈Kj

‖∆M
h f(·, x2)‖Lp(R) > c 2−js2j/pλj,b2jx2c,

for any j > 0 and a.e. x2 ∈ [1, 2], where Kj is as in (6.5). From this it follows that

2jsΨ(2−j) sup
h∈Kj

‖∆M
h f(·, x2)‖Lp(R) > cΨ(2−j)2j/pλj,b2jx2c.

Now, by Lemma 3.9 and since

‖g‖
B

(s,Ψ)
p,q (R)

∼ ‖g‖Lp(R) +

(∑
j>0

2jsqΨ(2−j)q sup
h∈Kj

‖∆M
h g‖

q
Lp(R)

)1/q

,

is an equivalent quasi-norm on B
(s,Ψ)
p,q (R), we have f ∈ Bs

p,q(R2) and f(·, x2) /∈
B

(s,Ψ)
p,q (R) for a.e. x2 ∈ [1, 2]. Then, arguing exactly as in Theorem 1.3, we obtain a

function satisfying the requirements of Theorem 1.8. This completes the proof.

Remark 7.3. — This can be generalized in the spirit of Theorem 7.1. Indeed,
repeating the arguments of the proof of Theorem 6.1, we can prove that if (7.4) is

violated, then there is a function f ∈ B(s,Φ)
p,q (RN) such that f(·, x′′) /∈ B(s,Ψ)

p,q (Rd) for
a.e. x′′ ∈ RN−d.
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Part II

Rigidity results





Chapter 3

Liouville type results for a
nonlocal obstacle problem

This chapter is inspired by the paper [31] written in collaboration
with J. Coville, F. Hamel and E. Valdinoci.

1 Introduction

A classical topic in applied analysis consists in the study of diffusive processes in
media with an obstacle: roughly speaking, a dispersal follows a Brownian motion in
an environment that possess an inaccessible region. At the level of partial differential
equations, this translates into a reaction-diffusion equation that is defined outside a
set K, which acts as an impenetrable obstacle and along which Neumann conditions
are prescribed.

One of the cornerstones in the study of these processes lies in suitable rigidity
results of Liouville-type, which allow the classification of stationary solutions, at least
under some geometric assumption on the obstacle K.

In this chapter, we will study a nonlocal version of a diffusion equation and
provide a series of Liouville-type results (whose precise statements will be given in
Section 2). Not only the results obtained have a theoretical interest in the devel-
opment of the theory of nonlocal equations, but they also possess several potential
applications (especially in mathematical biology, where the dispersal of biological
populations often presents nonlocal features, see e.g. formula (1) in [49], or in [19]).

Concretely, we will suppose that the diffusion operator arises by convolution with
an integrable kernel and we will show that solutions of bistable stationary equations
with fixed behavior at infinity are necessarily constant, at least when the obstacle
is convex or “close to being convex” (we also observe that similar rigidity results do
not hold in general for nonconvex obstacles).
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Interestingly, in the nonlocal case, the boundary conditions along the obstacle do
not need to be prescribed a priori (differently from the classical case).

In addition, the nonlocal operator that we consider here is not “regularizing”,
so some care is needed in our case to deal with a possible lack of regularity of the
solutions.

We now provide the detailed mathematical description of the problem that we
take into account.

1.1 A nonlocal obstacle problem

Throughout this chapter, K denotes a compact set of RN with N > 2, and |·| denotes
the Euclidean norm in RN . We are interested in qualitative properties of bounded
solutions to the following nonlocal semilinear equation

Lu+ f(u) = 0 in RN \K, (1.1)

where L is the nonlocal diffusion operator given by

Lu(x) :=

ˆ
RN\K

J(x− y)(u(y)− u(x))dy. (1.2)

The kernel J ∈ L1(RN) is a radially symmetric non-negative function with unit mass
and f is a C1 “bistable” nonlinearity (precise assumptions on f and J will be given
later on).

This problem may be thought of (see the next page for more explanations) as a
nonlocal version of the following problem{

∆u+ f(u) = 0 in RN \K,
∇u · ν = 0 on ∂K,

(1.3)

where ν is the outward unit vector normal to K, assuming for (1.4) that K is smooth
enough. For problem (1.4) with the local diffusion operator ∆u, it was shown in [17]
that there exist a time-global classical solution u(t, x) to the parabolic problem

∂u

∂t
= ∆u+ f(u) in R× RN \K,

∇u · ν = 0 on R× ∂K,
(1.4)

satisfying 0 < u(t, x) < 1 for all (t, x) ∈ R× RN \K, and a classical solution u∞(x)
to the elliptic problem

∆u∞ + f(u∞) = 0 in RN \K,
∇u∞ · ν = 0 on ∂K,

0 6 u∞ 6 1 in RN \K,
u∞(x)→ 1 as |x| → +∞.

(1.5)
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The function u∞ is a stationary solution of (1.4) and it is actually obtained as the
large time limit of u(t, x), in the sense that u(t, x) → u∞(x) as t → +∞ locally
uniformly in x ∈ RN \K. Under some geometric conditions on K (e.g. if K is
starshaped or directionally convex, see [17] for precise assumptions) it is shown in [17,
Theorems 6.1 and 6.4] that solutions to (1.5) are actually identically equal to 1 in the
whole set RN \K. This Liouville property shows that the solutions u(t, x) of (1.4)
constructed in [17] then satisfy

u(t, x) −→
t→+∞

1 locally uniformly in x ∈ RN \K. (1.6)

To some extent, this result can be given an ecological interpretation. Consider a
population with trajectories describing a Brownian motion in an environment con-
sisting of the whole space RN with a compact obstacle K, and suppose that f rep-
resents the demographic rate of the population. Then, the solution u(t, x) to (1.4)
can be understood as the density of the population at time t and location x. In this
context, (1.6) means that, at large time, the population tends to occupy the whole
space.

Assuming now that the trajectories follow, say, a compound Poisson process, then
the diffusion phenomena are better described by a convolution-type operator such
as (1.2). The reaction-diffusion equation ∂u

∂t
= ∆u + f(u) is then replaced by the

equation
∂u

∂t
= Lu+ f(u),

with the nonlocal dispersion operator L, see [69, 83]. In this chapter, we deal with
qualitative properties of the stationary solutions of equation (1.1), together with
some asymptotic limiting conditions at infinity similar to those appearing in (1.5).
Namely, we will be mainly concerned with solutions of

Lu+ f(u) = 0 in RN \K,
0 6 u 6 1 in RN \K,
u(x)→ 1 as |x| → +∞.

(1.7)

It is expected that (1.5) and (1.7) share some common properties. One of the
goals of the present chapter is, as for (1.5), to find some geometric conditions on K
which guarantee that the solutions u to (1.7) are identically equal to 1. Moreover,
as in [26] for (1.5), we will also show the robustness of the Liouville type results
for (1.7).

We notice however that, whereas the solutions of (1.5) are automatically classical
C2 solutions in RN \K if the boundary ∂K is smooth enough (by standard interior
and boundary elliptic estimates), there is in general no smoothing effect for the
nonlocal problems (1.1) or (1.7). The solutions u may even not be continuous in
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general. Yet some regularity results (uniform or Hölder continuity) will be shown here
under additional assumptions on the data J and f . Actually, one of the difficulties
and novelties of this chapter, as compared to [17], is to deal with this a priori lack
of regularity in general.

We observe also that, in (1.1) or (1.7), we do not ask for any additional boundary
condition on ∂K. To understand why this is so, let us give some heuristic motivation.
First of all, the most intuitive nonlocal counterpart of (1.5) would be to replace ∆u

in (1.5) by L̃εu with ε > 0 small, where

L̃εu(x) :=
1

βε2

ˆ
RN\K

J̃ε(x− y)(u(y)− u(x))dy,

and J̃ε(z) = ε−N J̃(ε−1z), J̃ being a radially symmetric kernel with

β = (2N)−1

ˆ
RN
J̃(z)|z|2dz.

In other words, the nonlocal dispersion operator Lu in (1.1) or (1.7) would be re-

placed by L̃εu and the kernel J would be given by (βε2)−1J̃ε. Furthermore, us-

ing for example [27], the associated energy of (1.7), with L̃ε in place of L, can be
thought of as an approximation of that of (1.5) (see [2] and also [16, 19, 83] where
similar quantities are considered in a biological framework). Now, to see how the

Neumann boundary condition in (1.5) can be recovered from (1.1) or (1.7) with L̃ε
as ε→ 0+, let us consider for simplicity the case where ∂K is of class C1 with unit
normal ν and the bounded function u is of class C1(RN \K) and is extended as a
C1(RN) function still denoted by u. Formula (1.1) then also holds by continuity in
RN \K and, for every x, y ∈ RN \K, there exists a point cx,y ∈ [x, y] such that

u(y)− u(x) = ∇u(cx,y) · (y − x). It follows that, for every x ∈ RN \K,

−f(u(x)) =
1

βε

ˆ
RN\K

Ĵε(x− y)∇u(cx,y) ·
y − x
|y − x|

dy,

where Ĵε(z) = ε−N Ĵ(ε−1z) and Ĵ(z) = J̃(z)|z|. Then, for all x ∈ ∂K, a formal
computation leads to

γ∇u(x) · ν = lim
ε→0+

ˆ
RN\K

Ĵε(x− y)∇u(cx,y) ·
y − x
|y − x|

dy = lim
ε→0+

(
− εβf(u(x))

)
= 0,

where γ = (1/2)
´
RN J̃(z)|z1|dz > 0. Hence, ∇u · ν = 0 on ∂K and (1.7) is then a

reasonable nonlocal counterpart for (1.5). The above calculation justifies, at least
formally, why no additional boundary condition on ∂K is required in (1.1) or (1.7).
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1.2 General assumptions, notations and definitions

Let us now specify the detailed assumptions made throughout the chapter. As al-
ready mentioned above, we suppose that f is of “bistable” type and J is a radially
symmetric kernel. More precisely, we will assume that

f ∈ C1([0, 1]), f(0) > 0, f ′(1) < 0, (1.8){
J ∈ L1(RN) is a non-negative, radially symmetric kernel with unit mass,

there are 0 6 r1 < r2 such that J(x) > 0 for a.e. x with r1 < |x| < r2,

(1.9)
and there exists a function φ ∈ C(R) satisfying{

J1 ∗ φ− φ+ f(φ) > 0 in R,
φ is increasing in R, φ(−∞) = 0, φ(+∞) = 1,

(1.10)

where J1 ∈ L1(R) is the non-negative even function with unit mass given for a.e.
x ∈ R by

J1(x) :=

ˆ
RN−1

J(x, y2, · · · , yN) dy2 · · · dyN .

We notice that, in addition to the first property in (1.9), the second one is imme-
diately fulfilled if J is assumed to be continuous. Moreover, we notice that con-
dition (1.10) implies immediately that 0 < φ < 1 in R. As is well-known (see
e.g. [13, 50]), condition (1.10) is satisfied if, in addition to (1.8) and (1.9), the fol-
lowing assumptions are made on f and J :

∃ θ ∈ (0, 1), f(0) = f(θ) = f(1) = 0, f < 0 in (0, θ), f > 0 in (θ, 1),ˆ 1

0

f > 0, f ′(0) < 0, f ′(θ) > 0, f ′(1) < 0, f ′ < 1 in [0, 1],
ˆ
R
J1(x)|x|dx < +∞ and J ∈ W 1,1(RN).

(1.11)

Let us also list in this subsection a few notations and definitions that will be used
all along the chapter:

|E| : is the Lebesgue measure of the measurable set E;
1E : is the characteristic function of the set E;
BR : is the open Euclidean ball of radius R > 0 centered at the origin;

BR(x) : is the open Euclidean ball of radius R > 0 centered at x ∈ RN ;
A (R1, R2) : is the open annulus BR2 \BR1 for 0 6 R1 < R2, by setting B0 = {0};

A (x,R1, R2) : is the open annulus x+ A (R1, R2);
g ∗ h : is the convolution of g and h;
g+ : is the positive part of g, i.e. g+ := max{0, g}.
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Given Ω ⊂ RN and p ∈ [1,∞], we denote by Lp(Ω) the Lebesgue space of (equiv-
alence classes of) measurable functions g for which the p-th power of the absolute
value is Lebesgue integrable when p < ∞ (resp. essentially bounded when p = ∞).
When the context is clear, we will write ‖g‖p instead of ‖g‖Lp(Ω). Given α ∈ (0, 1]
and p ∈ [1,∞], Bα

p,∞(RN) stands for the Nikol’skii space consisting in all measurable
functions g ∈ Lp(RN) such that

[g]Bαp,∞(RN ) := sup
h6=0

‖g(·+ h)− g‖Lp(RN )

|h|α
< +∞.

We note that, when p =∞, the space Bα
∞,∞(RN) coincides with the classical Hölder

space C0,α(RN). For a set E ⊂ RN and g : E → R, we set

[g]C0,α(E) = sup
x∈E, y∈E, x 6=y

|g(x)− g(y)|
|x− y|α

.

Let us finally recall some useful notions of regularity of a compact set K.

Definition 1.1. — Let α ∈ (0, 1]. We say that a compact set K ⊂ RN has
C0,α boundary if there exist r > 0, p ∈ N, p rotations (Ri)16i6p of RN , p points
(zi)16i6p of ∂K and p functions (ψi)16i6p defined in the (N − 1)-dimensional ball
BN−1
r =

{
x′ ∈ RN−1; |x′| < r

}
of class C0,α(BN−1

r ) and such that

∂K =
⋃

16i6p

Ri

({
xN = ψi(x

′); x′ ∈ BN−1
r

})
, (1.12)

and
◦
K ∩Br(zi) = Ri

({
xN > ψi(x

′); x′ ∈ BN−1
r

})
∩Br(zi), (1.13)

for every 1 6 i 6 p.

Definition 1.2. — Let α ∈ (0, 1], let K ⊂ RN be a compact convex set with
non-empty interior (∂K is then automatically of class C0,α) and let (Kε)0<ε61 ⊂ RN

be a family of compact, simply connected sets having C0,α boundary. We say that
(Kε)0<ε61 is a family of C0,α deformations of K if the following conditions are fulfilled:

(i) K ⊂ Kε1 ⊂ Kε2 for all 0 < ε1 6 ε2 6 1;

(ii) Kε → K as ε ↓ 0 in C0,α, in the sense that there exist r > 0, p ∈ N, p rotations
(Ri)16i6p of RN , p points (zi)16i6p of ∂K, p functions (ψi)16i6p and p families
of functions (ψi,ε)16i6p, 0<ε61 of class C0,α(BN−1

r ) describing ∂K and ∂Kε as
in (1.12) and (1.13) above, and such that

‖ψi − ψi,ε‖C0,α(BN−1
r ) → 0 as ε ↓ 0, for every 1 6 i 6 p.
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2 Main results

The Liouville property for the local problem (1.5) says that u = 1 in RN \K under
some geometric conditions on K, in particular when K is convex, see [17]. When the
obstacle K is convex, we prove that this Liouville property still holds for (1.7) with
the nonlocal operator L. We will actually prove several results, which correspond to
various assumptions on the solutions u and the data f and J . We will also show the
robustness of the Liouville type property with respect to small deformations of the
obstacle K. The assumptions (1.8), (1.9) and (1.10) will be common assumptions of
almost all results. In some statements, assumption (1.10) is replaced by the stronger
assumption (1.11).

2.1 A first rough Liouville type result

Under rather mild additional assumptions on K, we first state a “rough” Liouville
type property for the solutions of (1.7), if f is assumed to be non-negative on the
range of u.

Proposition 2.1. — Let K ⊂ RN be a compact set such that RN \K is con-
nected. Assume that f ∈ C1([0, 1]) and J satisfies (1.9). Let θ ∈ [0, 1) and assume
that f > 0 in [θ, 1]. Let u : RN \K → [θ, 1] be a continuous solution of{

Lu+ f(u) = 0 in RN \K,
u(x)→ 1 as |x| → +∞.

(2.1)

Then, u = 1 in RN \K.

One of the main goals of the chapter is to understand under which conditions
on K this Liouville type property still holds or does not hold when u ranges in the
whole interval [0, 1].

2.2 Liouville type properties for convex obstacles

Our first main theorem is the following result dealing with continuous super-solutions
to L(u) + f(u) = 0 ranging in [0, 1].

Theorem 2.2. — Let K ⊂ RN be a compact convex set. Assume (1.8), (1.9),
(1.10) and let

u ∈ C(RN \K, [0, 1]), (2.2)

be a function satisfying {
Lu+ f(u) 6 0 in RN \K,

u(x)→ 1 as |x| → +∞.
(2.3)
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Then, u = 1 in RN \K.

If we ask for a solution of (1.7) instead of a super-solution, it turns out that the
regularity or limiting conditions required on u to obtain a Liouville type result can
be considerably weakened, by strengthening the assumptions made on f and/or J .

Firstly, the continuity assumption (2.2) can be relaxed provided the nonlinearity
does not vary too much. More precisely, we will prove the following result.

Theorem 2.3. — Let K ⊂ RN be a compact convex set. Assume (1.8), (1.9),
(1.10) and suppose that

max
[0,1]

f ′ <
1

2
. (2.4)

Let u : RN \K → [0, 1] be a measurable function satisfying{
Lu+ f(u) = 0 a.e. in RN \K,

u(x)→ 1 as |x| → +∞.

Then, u = 1 a.e. in RN \K.

Secondly, assuming that f and J satisfy (1.11) instead of (1.10), that J ∈ L2(RN)
and is compactly supported, and that f does not vary too much or u is a priori
uniformly continuous, then the assumptions on the asymptotic behaviour of u at
infinity can be noticeably weakened. More precisely, the following result holds.

Theorem 2.4. — Let K ⊂ RN be a compact convex set and assume that f and
J satisfy (1.8), (1.9) and (1.11). Assume further that J is compactly supported and
J ∈ L2(RN). If u : RN \K → [0, 1] is uniformly continuous in RN \K and obeys Lu+ f(u) = 0 in RN \K,

sup
RN\K

u = 1, (2.5)

then u = 1 in RN \K. Similarly, if (2.4) holds and if u : RN \ K → [0, 1] is a
measurable function satisfying Lu+ f(u) = 0 a.e. in RN \K,

ess sup
RN\K

u = 1, (2.6)

then u = 1 a.e. in RN \K.

Remark 2.5. — Condition (2.4) ensures that u actually has a uniformly contin-
uous representative in RN \K (see Lemma 2.2 and Remark 3.3). However, if u is
already known to be uniformly continuous, then Theorem 2.4 provides the same
conclusion without assumption (2.4) (see Lemma 7.2 for further details).
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2.3 Robustness of the Liouville property for nearly convex
obstacles K

Under some flatness assumptions on f , and following a line of ideas in [26], it turns
out that the Liouville property is still available under small Hölder perturbations of
a given convex obstacle K. Namely, the following result holds.

Theorem 2.6. — Let α ∈ (0, 1], let K ⊂ RN be a compact convex set with
non-empty interior and let (Kε)0<ε61 be a family of C0,α deformations of K. As-
sume (1.8), (1.9), (1.11) and suppose that J ∈ Bα

1,∞(RN) and

max
[0,1]

f ′ < inf
0<ε61

inf
x∈RN\Kε

‖J(x− ·)‖L1(RN\Kε).

For 0 < ε 6 1, let Lε be the operator given by, for every v ∈ L∞(RN \Kε),

Lεv(x) :=

ˆ
RN\Kε

J(x− y)(v(y)− v(x))dy.

Then there exists ε0 ∈ (0, 1] such that for all ε ∈ (0, ε0] the unique measurable
solution uε of 

Lεuε + f(uε) = 0 a.e. in RN \Kε,

0 6 uε 6 1 a.e. in RN \Kε,

uε(x)→ 1 as |x| → +∞,
(2.7)

is uε = 1 a.e. in RN \Kε.

Remark 2.7. — It should be noted that the monotonicity assumption (i) in Defi-
nition 1.2 has been made for simplicity and is not necessary for our purposes. More-
over, the conclusion of Theorem 2.6 remains true whenever (Kε)0<ε61 is a family of
C0,α deformations of any compact set K for which the conclusion of Theorem 2.3
is valid. Since there exist some smooth, compact, non-convex and simply connected
sets which are C0,α close to a smooth, compact and convex set, Theorem 2.6 im-
plies that the Liouville property holds for some smooth, compact and non-convex
obstacles, and then also for their C0,α perturbations. Finally, we conjecture that the
Liouville property of Theorem 2.3 holds for any starshaped compact obstacle as well.

However, as in the local case (see [17, Theorem 6.5]), the above Liouville type
properties cannot be expected for general obstacles. For example, one can easily
find counterexamples if K is no longer simply connected. Take for instance K =
A (1, 2) = B2 \ B1 and suppose that J is supported in B1/2. Then, the function u
defined by

u(x) =

{
1 if x ∈ RN \B2,

0 if x ∈ B1,

is a continuous solution of (1.1). Yet, u is not identically 1 in the whole set RN \K.
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Outline of the chapter. The following first sections are concerned with general
results on the solutions to problems (1.1) or (1.7). Namely, in Section 3, we show
that the solutions are uniformly continuous, more precisely they have a uniformly
continuous representative, if rather mild assumptions are made on f . In Section 4,
we give several comparison principles that fit our purposes. We then use these
comparison principles in Section 5 to construct a radially symmetric lower bound for
the solutions. In Section 6, we study an auxiliary problem which will enable us to
pave the way towards the proof of Theorem 2.4. The remaining part of the chapter
is devoted to the proofs of our main results. In Section 7, we prove, at a stroke,
Theorems 2.2 and 2.3, and with more work we show how to relax the assumptions on u
when the kernel J is compactly supported, that is we prove Theorem 2.4. In Section 8,
as a preliminary result we prove the rough Liouville-type result Proposition 2.1 and
then we establish our robustness result Theorem 2.6.

3 Some auxiliary regularity results

Throughout this section, K is any compact subset of RN , f is any C1(R) function,
and J is any L1(RN) non-negative and radially symmetric kernel with unit mass.
For x ∈ RN , we write

J (x) :=

ˆ
RN\K

J(x− y)dy.

Notice that J is a uniformly continuous function in RN . In the sequel, for any
δ > 0, we will denote Kδ the closed thickening of K with width δ, defined by

Kδ := K +Bδ.

We now prove that, when J is compactly supported and f ′ is not too large in
[0, 1], then the measurable solutions u to (1.7) are continuous far away from the
obstacle.

Lemma 3.1. — Suppose that K ⊂ RN is a compact set and that J is supported
in the ball Bδ for some δ > 0. Suppose that

max
[0,1]

f ′ < 1. (3.1)

Let u ∈ L∞(RN \K, [0, 1]) be a solution of Lu+ f(u) = 0 a.e. in RN \K. Then u is
uniformly continuous in RN \Kδ, in the sense that u has a representative in its class
of equivalence that is uniformly continuous in RN \Kδ. If, in addition, J ∈ Bα

1,∞(RN)

for some α ∈ (0, 1], then u ∈ C0,α(RN \Kδ) and
(
1 − max[0,1] f

′)[u]
C0,α(RN\Kδ) 6

[J ]Bα1,∞(RN ).
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Proof. — For every x and y in RN \Kδ, we have

Lu(x)− Lu(y) =

ˆ
RN\K

u(z)
(
J(x− z)− J(y − z)

)
dz

− u(x)

ˆ
RN\K

J(x− z) dz + u(y)

ˆ
RN\K

J(y − z)dz

= −J (x)u(x) +J (y)u(y) +

ˆ
RN\K

u(z)
(
J(x− z)− J(y − z)

)
dz.

Since J has unit mass and is supported in Bδ, we get that J (x) = J (y) = 1.
Therefore,

Lu(x)− Lu(y) + u(x)− u(y) =

ˆ
RN\K

u(z)
(
J(x− z)− J(y − z)

)
dz.

Now, remember that u is a solution to Lu + f(u) = 0 a.e. in RN \ K. In
particular, there exists a measurable negligible set E such that Lu(z) + f(u(z)) = 0
(and u(z) ∈ [0, 1]) for all z ∈ RN \ (K ∪ E). Hence, letting

g(t) := t− f(t),

for t ∈ [0, 1], we obtain that

g(u(x))− g(u(y))=

ˆ
RN\K

u(z)
(
J(x−z)−J(y−z)

)
dz =: h(x, y), (3.2)

for all x, y ∈ RN \ (Kδ∪E). Notice that, since J ∈ L1(RN) and u ∈ L∞(RN \K), the
function h defined by the right-hand side of the previous equation can actually be
defined in RN×RN and it is uniformly continuous in RN×RN . Furthermore, by (3.1),
the function g ∈ C1([0, 1]) is such that g′ > 0 in [0, 1]. It is then a C1 diffeomorphism
from [0, 1] to [g(0), g(1)] = [−f(0), 1− f(1)]. Let us denote g−1 : [g(0), g(1)]→ [0, 1]
its reciprocal.

Fix y0 ∈ RN \ (Kδ ∪ E). For every x ∈ RN \ (Kδ ∪ E), (3.2) yields

g(u(y0)) + h(x, y0) = g(u(x)) ∈ [g(0), g(1)].

Since the function x 7→ g(u(y0)) +h(x, y0) is continuous (in the whole RN) and since
E is negligible, it follows that g(u(y0)) + h(x, y0) ∈ [g(0), g(1)] for all x ∈ RN \Kδ

(since any point of the open set RN \ Kδ is the limit of a sequence of points in
RN \ (Kδ ∪ E)). Define now

ũ(x) = g−1
(
g(u(y0)) + h(x, y0)

)
for x ∈ RN \Kδ.
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By (3.2), one has ũ = u in RN \ (Kδ ∪ E). Furthermore, ũ is uniformly continuous
in RN \Kδ owing to its definition, since h is uniformly continuous in RN × RN and
g−1 is C1 hence Lipschitz continuous in [g(0), g(1)].

Even if it means redefining u by ũ in RN \Kδ, it follows that u is uniformly
continuous in RN \Kδ and that (3.2) holds, by continuity, for all x, y ∈ RN \Kδ. In
particular, since 0 6 u 6 1 in RN \K, we get that

∀x, y ∈ RN \Kδ, |g(u(x))− g(u(y))| 6 ‖J(·+ x− y)− J‖L1(RN ). (3.3)

Finally, if J ∈ Bα
1,∞(RN) with α ∈ (0, 1], then (3.3) yields g(u) ∈ C0,α(RN \Kδ) and

[g(u)]
C0,α(RN\Kδ) 6 sup

h6=0

‖J(·+ h)− J‖L1(RN )

|h|α
= [J ]Bα1,∞(RN ).

Since max[g(0),g(1)] |(g−1)′| 6 (1 − max[0,1] f
′)−1 and 0 6 u 6 1, one concludes that

u ∈ C0,α(RN \Kδ) and
(
1−max[0,1] f

′)[u]
C0,α(RN\Kδ) 6 [J ]Bα1,∞(RN ).

We now establish a regularity result for u in the whole set RN \K for flatter
nonlinearities.

Lemma 3.2. — Suppose that K ⊂ RN is a compact set and that

max
[0,1]

f ′ < inf
RN\K

J . (3.4)

Let u ∈ L∞(RN \K, [0, 1]) be a solution of Lu+f(u) = 0 a.e. in RN \K. Then, u can
be redefined up to a negligible set and extended as a uniformly continuous function
in RN \K. If, in addition, J ∈ Bα

1,∞(RN) for some α ∈ (0, 1], then u ∈ C0,α(RN \K)
and (

inf
RN\K

J −max
[0,1]

f ′
)

[u]
C0,α(RN\K)

6 2 [J ]Bα1,∞(RN ).

Remark 3.3. — In the case of a compact convex obstacle K, then the conclusion
of Lemma 2.2 still holds if (2.5) is replaced by

max
[0,1]

f ′ <
1

2
.

Indeed, J > 1/2 in RN \ K when K is convex (remember also that J is always
assumed to be a non-negative radially symmetric kernel with unit mass). The bound
1/2 is somehow optimal, since K can be as large as desired, still in the class of
compact convex sets. However, this bound deteriorates considerably if K is only
starshaped, as the infimum of J in RN \K can become arbitrarily small. Roughly
speaking, the less convex the obstacle K, the flatter the nonlinearity f needs to be
to insure (2.5) and the interior continuity of the solution u.
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Proof of Lemma 2.2. — Reasoning exactly as in the proof of Lemma 3.1, there
exists a measurable negligible set E such that

∀x, y ∈ RN \ (K ∪ E), G(x, u(x))−G(y, u(y)) = h(x, y), (3.5)

where h(x, y) is defined in (3.2) (remember also that h is uniformly continuous in
RN × RN) and

G(x, s) = J (x) s− f(s) for (x, s) ∈ RN × [0, 1].

By (2.5) and the continuity of J , the function G is such that ∂sG(x, s) > 0 for all

(x, s) ∈ RN \K × [0, 1]. For every x ∈ RN \K, the function G(x, ·) is then a C1 dif-
feomorphism from [0, 1] to [G(x, 0), G(x, 1)]. Let us denote Hx : [G(x, 0), G(x, 1)]→
[0, 1] its reciprocal, that is, Hx(G(x, t)) = t for all x ∈ RN \K and t ∈ [0, 1].

Fix y0 ∈ RN \ (K ∪ E). For every x ∈ RN \ (K ∪ E), (3.5) yields

G(y0, u(y0)) + h(x, y0) = G(x, u(x)) ∈ [G(x, 0), G(x, 1)].

Since the function x 7→ G(y0, u(y0))+h(x, y0) is continuous (in the whole space RN),
since G is itself continuous in RN × [0, 1] and since E is negligible, it follows that
G(y0, u(y0)) + h(x, y0) ∈ [G(x, 0), G(x, 1)] for all x in the open set RN \ K. Define
now

ũ(x) = Hx

(
G(y0, u(y0)) + h(x, y0)

)
for x ∈ RN \K.

By (3.5), one has ũ = u in RN \ (K ∪ E). Furthermore, ũ is continuous in RN \K
owing to its definition, since h is continuous in RN × RN and (x, s) 7→ Hx(s) is
continuous in the set

{
(x, s) ∈ RN \K ×R; s ∈ [G(x, 0), G(x, 1)]

}
. Even if it means

redefining u by ũ in RN \ K and extending it by ũ in RN \K, it follows that u is
continuous in RN \K and that (3.5) holds, by continuity, for all x, y in the open set
RN \K and then in RN \K. In particular, since 0 6 u 6 1 in RN \K, we get that

∀x, y ∈ RN \K, |G(x, u(x)))−G(y, u(y))| 6 ‖J(·+ x− y)− J‖L1(RN ). (3.6)

Finally, define
β := inf

RN\K
J −max

[0,1]
f ′ > 0,

the positivity of β resulting from (2.5). From (3.6) together with the definition of G
and the inequalities 0 6 u 6 1 in RN \K, one infers that, for all x, y ∈ RN \K,∣∣J (x) (u(x)− u(y))− (f(u(x))− f(u(y)))

∣∣
6 ‖J(·+ x− y)− J‖L1(RN ) +

∣∣u(y) (J (x)−J (y))
∣∣

6 2 ‖J(·+ x− y)− J‖L1(RN ).

131



It follows from the mean value theorem and the above definition of β that

β |u(x)− u(y)| 6 2 ‖J(·+ x− y)− J‖L1(RN ),

for all x, y ∈ RN \K. In particular, the function u is uniformly continuous in
RN \K. Furthermore, if J ∈ Bα

1,∞(RN) for some α ∈ (0, 1], then u ∈ C0,α(RN \K)
and β [u]

C0,α(RN\K)
6 2 [J ]Bα1,∞(RN ). The proof of Lemma 2.2 is thereby complete.

4 Comparison principles

In this section, we collect some comparison principles that fit for our purposes.
Throughout this section, K is any compact subset of RN , f is any C1(R) func-
tion, and J is any L1(RN) non-negative and radially symmetric kernel with unit
mass.

We start with a weak maximum principle.

Lemma 4.1 (Weak maximum principle). — Assume that

f ′ 6 −c1 in [1− c0,+∞), for some c0 > 0, c1 > 0. (4.1)

Let H ⊂ RN be an open affine half-space such that K ⊂ Hc = RN \ H. Let
u, v ∈ L∞(RN \K) be such that

u, v ∈ C
(
H
)
, (4.2)

and {
Lu+ f(u) 6 0 in H,

Lv + f(v) > 0 in H.
(4.3)

Assume also that
u > 1− c0 in H, (4.4)

that
lim sup
|x|→+∞

(
v(x)− u(x)

)
6 0, (4.5)

and that
v 6 u a.e. in Hc \K. (4.6)

Then, v 6 u a.e. in RN \K.

Proof. — We let w := v − u. We want to prove that w 6 0 a.e. in RN \ K.
From (4.6), we only have to show that w 6 0 in H (remember that from (4.2) both
functions u and v are assumed to be continuous in H). We argue by contradiction and

132



we suppose that supH w > 0. Then, thanks to (4.6), one has supRN\K w = supH w > 0

and there exists a sequence (xj)j∈N in H such that

lim
j→+∞

w(xj) = sup
RN\K

w > 0.

It follows then from (4.5) that the sequence (xj)j∈N is bounded. Thus, up to extrac-
tion of a subsequence, there exists a point x̄ ∈ H such that xj → x̄ as j → +∞,
hence w(x̄) = limj→+∞w(xj) > 0 by (4.2). As a consequence, (4.3) yields

Lw(x̄) = Lv(x̄)− Lu(x̄) > −f(v(x̄)) + f(u(x̄))

= −w(x̄)

ˆ 1

0

f ′(tv(x̄) + (1− t)u(x̄))dt. (4.7)

Moreover, combining (4.4) and w(x̄) > 0, we obtain that v(x̄) = w(x̄) + u(x̄) >
u(x̄) > 1 − c0, and so tv(x̄) + (1 − t)u(x̄) > 1 − c0 for all t ∈ [0, 1]. From this
and (4.1), we conclude that f ′

(
tv(x̄) + (1− t)u(x̄)

)
6 −c1 < 0 for all t ∈ [0, 1]. This

inequality, together with w(x̄) > 0, yields

−w(x̄)

ˆ 1

0

f ′(tv(x̄) + (1− t)u(x̄))dt > 0.

By inserting this information into (4.7), we get Lw(x̄) > 0. That is, recalling (1.2)
and the nonnegativity of J ,

0 < Lw(x̄) =

ˆ
RN\K

J(x̄− y)(w(y)− w(x̄))dy

=

ˆ
RN\K

J(x̄− y)

(
w(y)− sup

RN\K
w

)
dy 6 0.

This is a contradiction, and so the desired result is established.

The next lemma is concerned with a strong maximum principle.

Lemma 4.2 (Strong maximum principle). — Assume that J satisfies (1.9), with
0 6 r1 < r2. Let H ⊂ RN be an open affine half-space such that K ⊂ Hc. Let
u, v ∈ L∞(RN \K) satisfy (4.2) and (4.3). Assume also that

v 6 u a.e. in RN \K, (4.8)

and that there exists x̄ ∈ H such that v(x̄) = u(x̄). Then,

v = u a.e. in (H +Br2) \K.
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Proof. — We let w := v−u. Notice that w(x̄) = 0. As a consequence, using (4.3),
we can write

Lw(x̄) = Lv(x̄)− Lu(x̄) > −f(v(x̄)) + f(u(x̄)) = 0.

On the other hand, w(y) 6 0 = w(x̄) for a.e. y ∈ RN \ K, thanks to (4.8), and
therefore

Lw(x̄) =

ˆ
RN\K

J(x̄− y)(w(y)− w(x̄))dy 6 0.

Hence, Lw(x̄) = 0 and

0 =

ˆ
RN\K

J(x̄− y)(w(y)− w(x̄))dy =

ˆ
RN\K

J(x̄− y)w(y)dy.

From our assumptions, we have w 6 0 a.e. in RN \K. Accordingly, since J is such
that J > 0 a.e. in the annulus A (r1, r2) from the general assumption (1.9), it follows
that

w(x) = 0 i.e. v(x) = u(x) for a.e. x ∈ A (x̄, r1, r2) ∩ RN \K.
In particular, since u and v are continuous in H and H ⊂ RN \K, we get that

v(x) = u(x) for all x ∈ A (x̄, r1, r2) ∩H =: Ω1(x̄).

Applying the same arguments as above to the new set of contact points Ω1(x̄) we
obtain that v(x) = u(x) for all x ∈ A (x1, r1, r2) ∩ H and for all x1 ∈ Ω1(x̄). As a
consequence, v(x) = u(x) for all x ∈ Bµ(x̄) ∩ H with µ := r2 − r1. Iterating this

procedure over again implies that v(x) = u(x) for each x in B2µ(x̄)∩H and so on in

Bkµ(x̄) ∩H for any k ∈ N. Hence, v = u in H.
Therefore, as in the beginning of the proof, it follows that Lw(x) = 0 for all

x ∈ H and

v = u a.e. in
(
H + A (r1, r2)

)
∩
(
RN \K

)
= (H +Br2) \K.

The proof of Lemma 4.2 is thereby complete.

Finally, we derive a sweeping-type result in the spirit of Serrin’s sweeping the-
orem [127] (see also [106], and page 29 in [120] for a very clear explanation of the
method).

Lemma 4.3 (Sweeping principle). — Assume that J satisfies (1.9), with 0 6
r1 < r2. Let g : R → R be a continuous function, let a, b, s1, s2, s3, s4 be some real
numbers such that a 6 b and r2 6 s1 6 s2 < s3 6 s4. Let u ∈ C(A (s1, s4)) satisfy

ˆ
A (s1,s4)

J(x− y)u(y)dy − u(x) + g(u(x)) 6 0 for all x ∈ A (s1, s4), (4.9)
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and ˆ
A (s1,s4)

J(x− y)u(y)dy − u(x) + g(u(x)) < 0 for all x ∈ A (s2, s3). (4.10)

Let (wτ )τ∈[a,b] be a continuous family in C(A (s1, s4)) such thatˆ
A (s1,s4)

J(x− y)wτ (y)dy − wτ (x) + g(wτ (x)) > 0 for all x ∈ A (s1, s4). (4.11)

Assume further that there exists τ0 ∈ [a, b] such that wτ0 6 u in A (s1, s4). Then
wτ 6 u in A (s1, s4) for every τ ∈ [a, b].

Proof. — Let us define Σ ⊂ [a, b] to be the following set:

Σ :=
{
τ ∈ [a, b]; wτ 6 u in A (s1, s4)

}
.

To prove the theorem, we will show that Σ is a non-empty open and closed set
relatively to [a, b]. It will then follow that Σ = [a, b] and the theorem will be proved.
First of all, by definition, Σ is a closed subset of [a, b] and τ0 ∈ Σ. To finish our proof,
it remains to show that Σ is an open set relatively to [a, b]. So let us pick τ ∈ Σ. We
have wτ 6 u in A (s1, s4). By continuity of u and wτ in the compact set A (s1, s4),
either maxA (s1,s4)(wτ − u) < 0 or there exists z ∈ A (s1, s4) such that wτ (z) = u(z).

In the latter case, using wτ 6 u in A (s1, s4) together with (4.9) and (4.11) at the
point z, we get that

0 6
ˆ

A (s1,s4)

J(z − y)(u(y)− wτ (y))dy 6 0.

Using the continuity of both u and wτ and the fact that J > 0 a.e. in A (r1, r2)
for some 0 6 r1 < r2 by (1.9), it follows that wτ = u in A (z, r1, r2) ∩ A (s1, s4)
(which is nonempty since r2 6 s1) and then wτ = u in A (z′, r1, r2) ∩ A (s1, s4) for
all z′ ∈ A (z, r1, r2) ∩ A (s1, s4). In particular, it is easy to see that there exists
r > 0 such that wτ = u in Br(z) ∩A (s1, s4). As a consequence, the non-empty set{
x ∈ A (s1, s4); wτ (x) = u(x)

}
is both (obviously) closed and open relatively to the

(connected) set A (s1, s4) and it is thus equal to A (s1, s4). In other words, wτ = u
in A (s1, s4), henceˆ

A (s1,s4)

J(x− y)u(y)dy − u(x) + g(u(x)) = 0 for all x ∈ A (s1, s4),

contradicting (4.10) in A (s2, s3). Therefore, we must have maxA (s1,s4)(wτ − u) < 0.
Since wτ is continuous with respect to τ in the uniform norm, there exists δ > 0 such
that wτ ′ 6 u in A (s1, s4) for all τ ′ ∈ (τ−δ, τ+δ)∩[a, b]. Hence, (τ−δ, τ+δ)∩[a, b] ⊂
Σ, which shows that Σ is open relatively to [a, b].
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Remark 4.4. — The previous arguments immediately show that, when r1 = 0
in (1.9), the sweeping principle holds in any compact connected set F . Namely, if
J satisfies (1.9) with r1 = 0, if u ∈ C(F ) satisfies (4.9) with F instead of A (s1, s4)
and the strict inequality somewhere in F , if (wτ )τ∈[a,b] is a continuous family in C(F )

satisfying (4.11) with F instead of A (s1, s4) and if wτ0 6 u in F for some τ0 ∈ [a, b],
then wτ 6 u in F for every τ ∈ [a, b].

5 Construction of radially symmetric lower bounds

In this section, we derive a first lower bound on continuous non-negative super-
solutions u of (2.3) that we constantly use along this chapter. Throughout this
section, K is any compact subset of RN , f is any C1(R) function, and J is any
L1(RN) non-negative and radially symmetric kernel with unit mass. We recall that
J1 is the non-negative even L1(R) kernel with unit mass defined for a.e. y1 ∈ R by

J1(y1) :=

ˆ
RN−1

J(y1, y2, · · · , yN) dy2 · · · dyN ,

and that assumption (1.10) means the existence of a continuous increasing function
φ : R→ (0, 1) such that

ˆ
R
J1(τ − σ)(φ(σ)− φ(τ))dσ + f(φ(τ)) > 0 for all τ ∈ R,

φ(−∞) = 0, φ(+∞) = 1.
(5.1)

Then, for such φ, we establish the following lemma:

Lemma 5.1. — Assume that f and J satisfy (4.1) and (1.10), let γ ∈ (0, 1] and
let u ∈ C

(
RN \K, [γ, 1]

)
be a function satisfying (2.3). Then, there exists r0 > 0

such that
φ(|x| − r0) 6 u(x) for all x ∈ RN \K.

Proof. — Since u(x) → 1 as |x| → +∞, there exists R0 > 0 so large that
K ⊂ BR0 and u > 1− c0 in RN \BR0 , where c0 > 0 is given in (4.1). By (5.1), there
exists A > 0 such that φ 6 γ in (−∞,−A]. Define

r0 = R0 + A > 0,

and let us check that the conclusion of Lemma 5.1 holds with this real number r0.
Let e be any unit vector of RN , that is, e ∈ ∂B1 = SN−1. For r ∈ R, let φr,e be

the function defined by

φr,e(x) := φ(e · x− r) for x ∈ RN ,
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where e · x stands for the standard inner product in RN . Let (e1, · · · , eN) be the
canonical basis of RN and let R be a rotation such that e = Re1. Set now ẽi := Rei
for all i ∈ {2, · · · , N} and, for x, y ∈ RN and r ∈ R, let us define x∗ = x − re,
y∗ = y − re and{

X = (X1, · · · , XN) = (x∗ · e, x∗ · ẽ2, · · · , x∗ · ẽN) = R−1y∗,

Y = (Y1, · · · , YN) = (y∗ · e, y∗ · ẽ2, · · · , y∗ · ẽN) = R−1y∗.

Since J is rotationally invariant, we deduce from (5.1) that, for all x ∈ RN and r ∈ R,

LRNφr,e(x) :=

ˆ
RN
J(x− y)(φr,e(y)− φr,e(x))dy

=

ˆ
R
J1(X1 − Y1)(φ(Y1)− φ(X1))dY1

> −f(φ(X1)) = −f(φ(x · e− r)) = −f(φr,e(x)). (5.2)

Set He := {x ∈ RN ; x · e > R0} (notice that He ∩K = ∅). We remark that, if r > r0

and x ∈ Hc
e \K, then

φr,e(x) = φ(x · e− r) 6 φ(R0 − r0) = φ(−A) 6 γ 6 u(x).

Furthermore, if r > r0, y ∈ K and x ∈ He, then y · e− r 6 |y| − r 6 R0 − r and

φr,e(x) = φ(x · e− r) > φ(R0 − r) > φ(y · e− r) = φr,e(y).

Accordingly, by (5.2) and the definition of He, for any r > r0 and x ∈ He,

Lφr,e(x) = LRNφr,e(x)−
ˆ
K

J(x− y)(φr,e(y)− φr,e(x))dy > −f(φr,e(x)). (5.3)

Consequently, we can exploit the weak comparison principle of Lemma 4.1 (used here
with H = He ⊂ RN \K and v = φr0,e) and deduce that

φ(x · e− r0) = φr0,e(x) 6 u(x),

for every x ∈ RN \K and also for every x ∈ RN \K by continuity. This inequality
holds for every e ∈ ∂B1, while r0 > 0 does not depend on e. In particular, taking
into account the possible choice of e = x/|x| if x 6= 0 (and any e ∈ ∂B1 if x = 0), we
conclude that

φ(|x| − r0) 6 u(x) for all x ∈ RN \K.

This proves Lemma 5.1.
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Remark 5.2. — If RN \ K is connected, if f(0) > 0 and if J satisfies (1.9)
with r1 = 0 (for instance, if J is continuous at the origin with J(0) > 0), then
Lemma 5.1 holds with γ = 0. Indeed, these additional assumptions imply that
infRN\K u > 0. If not, then by continuity of u and the limiting conditions in (2.3),

there exists x0 ∈ RN \K such that u(x0) = 0. Thus, by (2.3) and f(0) > 0,

0 > Lu(x0) =

ˆ
RN\K

J(x0 − y)(u(y)− u(x0))dy,

and u(y) = u(x0) = 0 for all y ∈ Br2(x0) ∩ RN \K. Therefore, u(y) = 0 for all
y ∈ RN \K by repeating this argument and by connectedness of RN \ K. This
contradicts the limit u(y) → 1 as |y| → +∞. Finally, infRN\K u > 0 and the
conclusion of Lemma 5.1 holds.

6 Construction of solutions in large balls

We recall that BR(x) denotes the open Euclidean ball of RN centered at x ∈ RN and
of radius R > 0, and that BR = BR(0). Throughout this section we suppose that
f and J satisfy (1.8), (1.9) and (1.11). Here, for any R > 0 large enough and any
x0 ∈ RN , we will construct and study the properties of positive continuous solutions
of the following auxiliary problem

LBR(x0)[v](x)− v(x) + f(v(x)) = 0 for x ∈ BR(x0), (6.1)

where

LBR(x0)[v](x) :=

ˆ
BR(x0)

J(x− y)v(y)dy. (6.2)

Besides the own interest of (6.1), the properties of some particular solutions v of (6.1)
are essential in the proof of Theorem 2.4, as they will provide key estimates ensuring
to derive the asymptotic behaviour of the solutions u of (2.5) or (2.6). So in Sec-
tions 6.1 and 6.2, our main concern will be to establish, for any x0 ∈ RN and R > 0
large enough, the existence of a positive maximal solution vx0,R to (6.1), such that
vx0,R → 1 locally uniformly in RN as R → +∞. Based on the construction of these

solutions in closed balls BR(x0), we will next show in Section 6.3 the existence of
continuous and compactly supported sub-solutions in RN .

6.1 Existence of a positive solution in BR(x0)

This section is devoted to the proof of the existence of a positive continuous solution
of (6.1) in BR(x0), for any R > 0 large enough and any x0 ∈ RN .
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Lemma 6.1. — Assume that f and J satisfy (1.8), (1.9) and (1.11). Assume
further that J is compactly supported and J ∈ L2(RN). Then there exists d0 =
d0(f, J) > 0 such that for every x0 ∈ RN and R > d0, problem (6.1) admits a
positive continuous solution v : BR(x0) → (0, 1) such that maxBR(x0) v > θ, where

θ ∈ (0, 1) is defined in (1.11).

Proof. — Let x0 ∈ RN be fixed, let also RJ > 0 be fixed (independently of x0)
such that

supp(J) ⊂ BRJ ,

and pick any R > RJ . To construct a solution, we adapt the strategy used in [47]
for the construction of a solution of a local reaction-diffusion equation. The proof is
divided into three main steps.

Step 1: definition and elementary properties of an energy functional E

In the proof of Lemma 6.1, let us extend f by f ′(1)(s − 1) for s > 1 and by

−f(−s) for s 6 0 and denote f̃ this extension. Now, define

F (t) :=

ˆ t

0

f̃(s)ds for t ∈ R, c(x) := 1−
ˆ
BR(x0)

J(x− y)dy ∈ [0, 1] for x ∈ RN ,

and consider the following energy functional

E (u) :=
1

4

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)(u(y)− u(x))2dxdy

+
1

2

ˆ
BR(x0)

c(x)u2(x)dx−
ˆ
BR(x0)

F (u(x))dx,

(6.3)

defined for u ∈ L2(BR(x0)). Since J ∈ L1(RN), E is well defined in L2(BR(x0)).

Moreover, using the definition of F and the oddness of f̃ , we haveˆ
BR(x0)

F (u(x))dx =

ˆ
BR(x0)

F (|u(x)|)dx, (6.4)

for any u ∈ L2(BR(x0)), while elementary computations yield

E (u) = −1

2

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)u(x)u(y)dxdy

+
1

2

ˆ
BR(x0)

u2(x)dx−
ˆ
BR(x0)

F (u(x))dx.

(6.5)

From the last two formulas, one infers that, for any u ∈ L2(BR(x0)),

E (|u|) = −1

2

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)|u(y)||u(x)|dxdy
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+
1

2

ˆ
BR(x0)

|u(x)|2dx−
ˆ
BR(x0)

F (|u(x)|)dx 6 E (u).

To complete Step 1, let us check that the functional E is bounded from below in
L2(BR(x0)). From (1.11) and (6.4), the definition of F and f̃ , and since f̃(s) 6 0
for s > 1, we see that, for any u ∈ L2(BR(x0)),

ˆ
BR(x0)

F (u(x))dx 6
ˆ
BR(x0)

ˆ min{1,|u(x)|}

0

f̃(s)ds 6 RN |B1|
ˆ 1

0

f(s)ds,

where |B1| denotes the Lebesgue measure of the unit ball. Setting

C0 := |B1|
ˆ 1

0

f(s)ds > 0,

we thus get that

E (u) > −C0R
N for any u ∈ L2(BR(x0)). (6.6)

Hence, the quantity
γ := inf

u∈L2(BR(x0))
E (u), (6.7)

is finite.

Step 2: the infimum of E in L2(BR(x0)) is achieved

We shall now see that γ is achieved for some v ∈ L2(BR(x0)). So, let (un)n∈N be
a minimising sequence. From the inequality E (|u|) 6 E (u), we may assume without
loss of generality that the functions un are all non-negative.

Let us first check that the sequence (un)n∈N is bounded in L2(BR(x0)). To do so,
we recall the definition (6.2) of LBR(x0) and we notice that the principal eigenvalue
λp of the operator LBR(x0)−Id is negative (see for example [2, 15, 51, 75] for a precise
definition of λp and some of its properties) and satisfies

−λp = inf
‖ϕ‖L2(BR(x0))=1

Ẽ (ϕ),

where

Ẽ (ϕ) :=
1

2

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)(ϕ(y)− ϕ(x))2dxdy +

ˆ
BR(x0)

c(x)ϕ2(x)dx.

As a consequence, from (6.6), we get

E (un) > −λp
2

ˆ
BR(x0)

u2
n(x)dx− C0R

N ,
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for all n ∈ N. Therefore the sequence (un)n∈N is bounded in L2(BR(x0)) since it
is a minimising sequence and since λp < 0. Up to extraction of a subsequence,
the sequence (un)n∈N converges weakly in L2(BR(x0)) to a non-negative function
v ∈ L2(BR(x0)).

We actually claim that
E (v) = γ. (6.8)

Due to the lack of compactness in this non-local minimisation problem, we cannot
expect to get a strong convergence in L2(BR(x0)) for the minimising subsequence
and therefore passing to the limit in the energy (6.3) is not immediate. To overcome
this difficulty, let us observe that by introducing the function

G(t) :=

ˆ t

0

(s− f̃(s))ds =
t2

2
− F (t),

we get from (6.5) that, for any n ∈ N,

E (un) = −1

2

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)un(x)un(y)dxdy +

ˆ
BR(x0)

G(un(x))dx,

and therefore

E (un)− E (v) = −1

2

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)[un(x)un(y)− v(x)v(y)]dxdy

+

ˆ
BR(x0)

[G(un(x))−G(v(x))]dx.

(6.9)

Observe that the double integral in the right-hand side of (6.9) can be rewritten as

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)un(x)un(y)dxdy

=

ˆ
BR(x0)

un(x)

(ˆ
BR(x0)

J(x− y)[un(y)− v(y)]dy

)
dx

+

ˆ
BR(x0)

v(y)

(ˆ
BR(x0)

J(x− y)un(x)dx

)
dy.

Using Lebesgue’s dominated convergence theorem, together with the assumption
J ∈ L2(RN) and the L2(BR(x0)) weak convergence of the sequence (un)n∈N, it is
easy to see that

lim
n→+∞

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)un(x)un(y)dxdy =

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)v(x)v(y)dxdy,
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and therefore

lim
n→+∞

−1

2

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)[un(x)un(y)− v(x)v(y)]dxdy = 0. (6.10)

On the other hand, since f̃ ′(s) < 1 for all s ∈ R (by assumption), the function G is
convex and, for all n ∈ N, we get

ˆ
BR(x0)

[G(un(x))−G(v)(x)]dx >
ˆ
BR(x0)

G′(v(x))[un(x)− v(x)]dx.

From the definition of G and f̃ , together with the fact that v ∈ L2(BR(x0)), we infer
that G′(v) ∈ L2(BR(x0)). Using the L2(BR(x0)) weak convergence of (un)n∈N to v,
it follows that

lim inf
n→+∞

ˆ
BR(x0)

[G(un(x))−G(v(x))]dx > 0. (6.11)

Thus passing to the limit in (6.9), and using (6.10) and (6.11), we obtain γ−E (v) > 0.
Together with the definition (6.7) of γ, this shows that v is a minimiser of the energy
E , that is, (6.8) holds.

Step 3: v is a continuous positive solution u of (6.1)

We first show in this step that v is a solution to (6.1) with f̃ instead of f .
From (6.8), v is a critical point of E and in particular, it follows from the formula-

tion (6.5) of E that v is a non-negative weak solution of LBR(x0)[v] − v + f̃(v) = 0

in BR(x0). Since all functions LBR(x0)[v], v and f̃(v) belong to L2(BR(x0)), the

function v satisfies LBR(x0)[v](x)− v(x) + f̃(v(x)) = 0 for a.e. x ∈ BR(x0). Further-
more, since J ∈ L2(RN), the Cauchy-Schwarz inequality implies that LBR(x0)[v] ∈
L∞(BR(x0)). Therefore, since by (1.11) the function s 7→ s− f̃(s) is a C1 diffeomor-
phism from R+ onto R+ and since v is non-negative, it follows from the equation
LBR(x0)[v]− v+ f̃(v) = 0 a.e. in BR(x0) that v ∈ L∞(BR(x0)). Thus by reproducing
the arguments of the proof of Lemma 3.1 we deduce that v has a representative, still
denoted by v, which is continuous in BR(x0) and satisfies

LBR(x0)[v](x)− v(x) + f̃(v(x)) = 0 for all x ∈ BR(x0). (6.12)

Remember now that, from (1.9), J > 0 a.e. in A (r1, r2) with 0 6 r1 < r2, and
that R > RJ > r2 > r1, with supp(J) ⊂ BRJ . As a consequence, if there exists a

point x ∈ BR(x0) such that v(x) = 0, then, arguing as in the proof of the strong max-
imum principle (Lemma 4.2) or as in the proof of the sweeping principle (Lemma 4.3),
it follows that v = 0 in A (x, r1, r2) ∩ BR(x0), hence v = 0 in A (y, r1, r2) ∩ BR(x0)
for all y ∈ A (x, r1, r2)∩BR(x0) and finally v = 0 in Br(x)∩BR(x0) for some r > 0.
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Therefore, the non-empty set
{
x ∈ BR(x0); v(x) = 0

}
is both (obviously) closed

and open relatively to BR(x0) and is thus equal to BR(x0). As a consequence, either
v ≡ 0 in BR(x0) or v > 0 in BR(x0).

In this paragraph, we prove that the solution v constructed is a solution of (6.1),
namely we just need to show that v 6 1 in BR(x0). To do so, define M =
maxBR(x0) v > 0 and let x̄ ∈ BR(x0) be such that v(x̄) = M . Assume by con-

tradiction that M > 1. By evaluating (6.12) at x̄ and using the definition of f̃ , we
get that

ˆ
BR(x0)

J(x̄− y)v(y)dy = LBR(x0)[v](x̄) = M − f̃(M) > M.

Since v 6 M in BR(x0), this leads to a contradiction. Hence M 6 1 and thus v
is a non-negative continuous solution of (6.1) in BR(x0). Furthermore, as for the
positivity of v, one gets that either v ≡ 1 in BR(x0) or v < 1 in BR(x0). The former
case is impossible since LBR(x0)[v] 6≡ 1 in BR(x0) (indeed,

´
BR(x0)

J(x− y)dy < 1 for

all x ∈ ∂BR(x0)). Thus, 0 6 v < 1 in BR(x0).
Finally, let us verify that the solution v constructed is not the trivial solution.

To do so, it is enough to show that E (v) 6= E (0) = 0. We claim that, for R > RJ

large enough, E (v) < 0. Indeed, let us consider the test function ϕ := 1BR(x0) ∈
L2(BR(x0)). We have

E (ϕ) =
1

4

ˆ
BR(x0)

ˆ
BR(x0)

J(x− y)
(
ϕ(y)− ϕ(x)

)2
dxdy

+
1

2

ˆ
BR(x0)

c(x)ϕ2(x)dx−
ˆ
BR(x0)

F (ϕ(x))dx

=
1

2

ˆ
BR(x0)

c(x)dx−RN |B1|
ˆ 1

0

f(s)ds

=
1

2

ˆ
BR(x0)

ˆ
RN\BR(x0)

J(x− y)dxdy −RN |B1|
ˆ 1

0

f(s)ds.

Since supp(J) ⊂ BRJ , the above equality yields

E (ϕ) =
1

2

ˆ
BR(x0)\BR−RJ (x0)

ˆ
RN\BR(x0)

J(x− y)dxdy −RN |B1|
ˆ 1

0

f(s)ds,

6
1

2
|B1|

(
RN − (R−RJ)N

)
−RN |B1|

ˆ 1

0

f(s)ds.

Thus, since
´ 1

0
f(s)ds > 0, there exists d0 = d0(J, f) ∈ (RJ ,+∞), independent of x0,

such that, for every R > d0, the right-hand side of the above inequality is negative
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and thus E (v) 6 E (ϕ) < 0, which proves our claim. Furthermore, since 0 6 v < 1 in
BR(x0) and F 6 0 in [0, θ], one infers that maxBR(x0) v > θ, hence v > 0 in BR(x0)

(remember that v was either positive or identically equal to 0 in BR(x0)).
As a conclusion, for every R such that R > d0, there exists a solution v ∈

C(BR(x0), (0, 1)) to (6.1) with maxBR(x0) v > θ. The point x0 ∈ RN being arbitrary
and the constant d0 being independent of x0, the proof of Lemma 6.1 is thereby
complete.

6.2 Existence and properties of the maximal solution in BR(x0)

Let us now look more closely at the properties of positive solutions of (6.1) and in
particular at the maximal solution, if any. To this end, let us in this subsection
extend continuously f by f ′(1)(s− 1) for s > 1 and by 0 for s 6 0. To simplify our
presentation let us still denote f this extension.

Let us first recall the notion of maximal solution for problem (6.1).

Definition 6.2. — Let x0 ∈ RN and R > 0. A function v ∈ C(BR(x0), [0, 1])
is called a maximal solution to (6.1) in BR(x0) if any solution w ∈ C(BR(x0), [0, 1])
satisfies w 6 v in BR(x0).

The following lemma provides the existence and uniqueness of a maximal solution
to the problem (6.1) when R > 0 is large enough.

Lemma 6.3. — Assume that f and J satisfy (1.8), (1.9) and (1.11). Assume
further that J is compactly supported and J ∈ L2(RN). Then there exists d0 =
d0(f, J) > 0, given as in Lemma 6.1, such that for every x0 ∈ RN and R > d0,
problem (6.1) admits a unique maximal solution vx0,R in BR(x0) and vx0,R satisfies

0 < vx0,R < 1 in BR(x0).

Proof. — Let x0 ∈ RN be fixed and let R be fixed such that R > d0, where
d0 = d0(f, J) > 0 is given in Lemma 6.1. We will check that the conclusion holds
with this quantity d0. First of all, the uniqueness of the maximal solution in BR(x0),
if any, is a trivial consequence of its definition.

Let us then focus on the construction of a maximal solution. From Lemma 6.1,
there exists a solution v ∈ C(BR(x0), (0, 1)) to (6.1). Now, remember that 1 is a
strict super-solution to (6.1). Therefore, since f is Lipschitz continuous, it follows
that we can construct a maximal solution vx0,R ∈ C(BR(x0), (0, 1)) to (6.1) such that

0 < v 6 vx0,R < 1 in BR(x0),

by using standard monotone iterative scheme as in [51, Theorem A.1]. For the sake
of completeness, let us describe this scheme in the next paragraph.
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First, let us observe that, from the assumptions on J , the linear operator LBR(x0)

is a continuous operator in C(BR(x0)). Next let us choose a real number k > 0 large
enough such that the function s 7→ −ks− f(s) is decreasing in R. We can increase
further k if necessary to ensure that k + 1 ∈ ρ(LBR(x0)), where ρ(LBR(x0)) denotes
the resolvent of the operator LBR(x0). We note that, by this choice of k, the operator

LBR(x0)− (k+ 1) satisfies a comparison principle, in the sense that if w ∈ C(BR(x0))

satisfies LBR(x0)[w] − (k + 1)w > 0 in BR(x0) then w 6 0 in BR(x0) (see [51, 53]).

Now, set v0 = 1 and let v1 ∈ C(BR(x0)) be the solution of the following linear
problem

LBR(x0)[v1](x)− (k + 1)v1(x) = −kv0(x)− f(v0(x)) for x ∈ BR(x0). (6.13)

The function v1 is well defined, since by construction the continuous operator LBR(x0)−
(k + 1) is invertible. We claim that v 6 v1 6 v0 in BR(x0). Indeed, since v (6 1)
and v0 = 1 are respectively a solution and a super-solution of (6.1), we have, for
x ∈ BR(x0),

LBR(x0)[v1 − v0](x)− (k + 1)(v1(x)− v0(x)) = −LBR(x0)[1](x) + 1,

LBR(x0)[v1 − v](x)− (k + 1)(v1(x)− v(x)) = −kv0(x)− f(v0(x)) + kv(x) + f(v(x)).

Thus implying that

LBR(x0)[v1 − v0](x)− (k + 1)(v1(x)− v0(x)) > 0,

LBR(x0)[v1 − v](x)− (k + 1)(v1(x)− v(x)) 6 0.

So, the inequality v 6 v1 6 v0 in BR(x0) follows from the comparison principle
satisfied by the operator LBR(x0) − (k + 1). In particular, 0 < v1 6 1 in BR(x0).

Now let v2 ∈ C(BR(x0)) be the solution of (6.13) with v2 instead of v1 in the left-
hand side and v1 instead of v0 in the right-hand side. From the monotonicity of
s 7→ −ks − f(s) and from the comparison principle, we have v 6 v2 6 v1 6 v0

in BR(x0). By induction, we can construct a non-increasing sequence of functions
(vn)n∈N in C(BR(x0)) satisfying v 6 vn+1 6 vn 6 v0 in BR(x0) and

LBR(x0)[vn+1](x)− (k + 1)vn+1(x) = −kvn(x)− f(vn(x)) for x ∈ BR(x0). (6.14)

Since the sequence is non-increasing and bounded from below, the quantity

vx0,R(x) := inf
n∈N

vn(x) = lim
n→+∞

vn(x) ∈ [v(x), 1] (⊂ (0, 1])

is well defined for every x ∈ BR(x0). Moreover, by passing to the limit in the
equation (6.14) and using Lebesgue’s dominated convergence theorem, it follows
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that vx0,R is a solution of (6.1). As in the proof of Lemma 3.1, we infer that vx0,R

is continuous in BR(x0) and, as in the proof of Lemma 6.1, we get that vx0,R < 1 in

BR(x0). To sum up, vx0,R is a solution of (6.1) belonging to C(BR(x0), (0, 1)).
We finally claim that vx0,R is a maximal solution to (6.1). Indeed, let w ∈

C(BR(x0), [0, 1]) be any solution to (6.1). By replacing v with w in the arguments of
the previous paragraph and using the fact that the sequence (vn)n∈N is defined with
the same initial value v0 = 1, we get that w 6 vn in BR(x0) for every n ∈ N, hence
w 6 vx0,R in BR(x0). The proof of Lemma 6.3 is thereby complete.

The maximal solutions vx0,R possess some important properties, in particular they
are monotone non-decreasing with respect to the domains.

Lemma 6.4. — Let us assume that f and J satisfy (1.8), (1.9) and (1.11).
Assume further that J is compactly supported and J ∈ L2(RN). Let d0 = d0(f, J) >
0 be given as in Lemmata 6.1 and 6.3. The following properties hold:

(i) for every x1, x2 ∈ RN and d0 6 R1 6 R2 such that BR1(x1) ⊂ BR2(x2), then

vx1,R1(x) 6 vx2,R2(x) for all x ∈ BR1(x1);

(ii) for every x0 ∈ RN and R > d0, the function v0,R(· − x0) defined in BR(x0)

satisfies v0,R(· − x0) = vx0,R in BR(x0);

(iii) for every x0 ∈ RN and R > d0,

min
BR(x0)

vx0,4R > max
BR(x0)

vx0,2R.

Proof. — The proof of (i) is straightforward. Indeed, let x1, x2 ∈ RN and d0 6
R1 6 R2 be such that BR1(x1) ⊂ BR2(x2). Recall from the proof of Lemma 6.3 that
vx2,R2 ∈ C(BR2(x2), (0, 1)) can be defined as vx2,R2 = limn→+∞ vn, where (vn)n∈N is

the sequence of positive functions in C(BR2(x2), (0, 1]) defined by induction by v0 = 1
in BR2(x2) and, for n ∈ N,

LBR2
(x2)[vn+1](x)− (k + 1)vn+1(x) = −kvn(x)− f(vn(x)) for x ∈ BR2(x2).

Here k > 0 is such that k + 1 ∈ ρ(LBR2
(x2)) and the function s 7→ −ks − f(s) is

decreasing. By increasing k if necessary we may assume that k + 1 ∈ ρ(LBR2
(x2)) ∩

ρ(LBR1
(x1)). Now observe that, for any n ∈ N, vn satisfies

LBR1
(x1)[vn+1](x)− (k+ 1)vn+1(x) 6 −kvn(x)− f(vn(x)) for x ∈ BR1(x1), (6.15)

that is, the function vn+1 is a super-solution to problem (6.14) in BR1(x1). We claim
that, for every n ∈ N,

vx1,R1(x) 6 vn(x) for all x ∈ BR1(x1).
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To do so, we proceed by induction. By construction of vx1,R1 and the definition of

v0, we know that vx1,R1(x) 6 v0(x) for all x ∈ BR1(x1). For n ∈ N, assume that

vx1,R1(x) 6 vn(x) for all x ∈ BR1(x1), and let us prove that vx1,R1(x) 6 vn+1(x) for

all x ∈ BR1(x1). Let w := vx1,R1 − vn+1 in BR1(x1). From (6.15), since the function

s 7→ −ks− f(s) is decreasing and vx1,R1(x) 6 vn(x) for all x ∈ BR1(x1), we see that
w satisfies

LBR1
(x1)[w](x)− (k + 1)w(x) > −kvx1,R1(x)− f(vx1,R1(x)) + kvn(x) + f(vn(x)) > 0,

for x ∈ BR1(x1). Since the operator LBR1
(x1) − (k + 1) satisfies the maximum

principle we then deduce that w 6 0 in BR1(x1), that is, vx1,R1(x) 6 vn+1(x) for all

x ∈ BR1(x1). Therefore, for every x ∈ BR1(x1), we have vx1,R1(x) 6 limn→+∞ vn(x) =
vx2,R2(x).

(ii) follows from the following observations. For any x0 ∈ RN , the function
v0,R(· − x0) ∈ C(BR(x0), (0, 1)) satisfies

LBR(x0)[v0,R(· − x0)](x)− v0,R(x− x0) + f(v0,R(x− x0)) = 0 for all x ∈ BR(x0).

Therefore, by the maximality of vx0,R, it follows that v0,R(· − x0) 6 vx0,R in BR(x0).
Similarly, one can show that vx0,R(·+ x0) 6 v0,R in BR. Finally, v0,R(· − x0) = vx0,R

in BR(x0).
To prove (iii), we simply observe that, for any x1 ∈ B2R(x0), one has B2R(x1) ⊂

B4R(x0) and, by (i), vx0,4R > vx1,2R in B2R(x1). Property (ii) yields vx0,2R(· − (x1 −
x0)) = vx1,2R in B2R(x1), hence

vx0,4R(x) > vx0,2R(x− (x1 − x0)) for all x1 ∈ B2R(x0) and x ∈ B2R(x1).

Now, since for every x, y ∈ BR(x0) there exists (a unique) x1 ∈ B2R(x0) such that
y = x− (x1 − x0) and x ∈ BR(x1) ⊂ B2R(x1), the latter inequality implies that

vx0,4R(x) > vx0,2R(x− (x1 − x0)) = vx0,2R(y),

for all x, y ∈ BR(x0), which completes the proof.

We can now state our last property about the maximal solution.

Lemma 6.5. — Let us assume that f and J satisfy (1.8), (1.9) and (1.11).
Assume further that J is compactly supported and J ∈ L2(RN). Then, for every
x0 ∈ RN , vx0,R → 1 as R→ +∞ locally uniformly in RN .

Proof. — Let x0 ∈ RN be fixed. Consider any non-decreasing sequence (Rn)n∈N
in [d0,+∞) and converging to +∞, where d0 = d0(f, J) > 0 is given in Lemmata 6.1
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and 6.3 (we recall that d0 > RJ , where supp(J) ⊂ BRJ ). Thanks to part (i) of
Lemma 6.4, the sequence (vx0,Rn)n∈N is non-decreasing, in the sense that vx0,Rn 6
vx0,Rp in BRn(x0) for all n 6 p. Moreover, 0 < vx0,Rn < 1 in BRn(x0) for each n ∈ N.
As a consequence, the sequence (vx0,Rn)n∈N converges pointwise in RN to a function
0 < v̄ 6 1 which, thanks to Lebesgue’s dominated convergence theorem, satisfies

J ∗ v̄(x)− v̄(x) + f(v̄(x)) = 0 for all x ∈ RN . (6.16)

As in the proof of Lemma 3.1, the function v̄ can be viewed as a uniformly continuous
function and therefore the limit vx0,Rn → v̄ holds locally uniformly in RN .

Consider now any x1 ∈ RN and any δ ∈ [d0,+∞). We can then extract a
subsequence of (Rn)n∈N that we still denote (Rn)n∈N such that, for all n ∈ N,
Bδ(x1) ⊂ BRn(x0) and Rn+1 > 4Rn. By Lemma 6.1 and parts (i) and (iii) of
Lemma 6.4, we get that

1 > min
Bδ(x1)

vx0,Rn+1 > min
BRn (x0)

vx0,Rn+1 > min
BRn (x0)

vx0,4Rn > max
BRn (x0)

vx0,2Rn > · · ·

· · · > max
BRn (x0)

vx0,Rn > max
Bδ(x1)

vx0,Rn > max
Bδ(x1)

vx1,δ > θ.
(6.17)

Taking the limit as n→ +∞ in the inequality

min
Bδ(x1)

vx0,Rn+1 > max
Bδ(x1)

vx0,Rn ,

we obtain that
min
Bδ(x1)

v̄ > max
Bδ(x1)

v̄.

Hence, v̄ is equal to a constant Cx1,δ in Bδ(x1) and, thanks to (6.17), there holds
θ < Cx1,δ 6 1. Furthermore, since x1 ∈ RN is arbitrary, it follows that v̄ is equal to
a constant C ∈ (θ, 1] in RN .

Lastly, (6.16) yields f(C) = 0. Since f satisfies (1.11) and θ < C 6 1, we infer
that C = 1. Therefore, v̄ = 1 in RN and thus the sequence (vx0,Rn)n∈N converges to
1 locally uniformly in RN as n → +∞. Since the non-decreasing sequence (Rn)n∈N
converging to +∞ is arbitrary, and so is δ ∈ [d0,+∞), it follows that vx0,R converges
to 1 locally uniformly in RN as R → +∞. The proof of Lemma 6.5 is thereby
complete.

6.3 Compactly supported continuous sub-solutions in RN

In this section, we construct compactly supported continuous sub-solutions from RN

to [0, 1] of problems of the type (6.1). Such continuous sub-solutions will then serve
as a building block of some lower bounds in the proof of Theorem 2.4.
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Let us first introduce some useful notations. For x0 ∈ RN , R > 0 and x ∈ RN , let
Px0,R(x) be the projection of x on the closed convex set BR(x0), that is, Px0,R(x) ∈
BR(x0) and

|x−Px0,R(x)| = dist(x,BR(x0)) = min
y∈BR(x0)

|x− y|.

Lemma 6.6. — Assume that f and J satisfy (1.8), (1.9) and (1.11). Assume
further that J is compactly supported and J ∈ L2(RN). Let d0 = d0(f, J) > 0 be
given as in Lemmata 6.1 and 6.3 and, for any x0 ∈ RN and R > d0, let vx0,R ∈
C(BR(x0), (0, 1)) be the maximal solution of (6.1). Then there exists δ0 > 0 such
that, for any x0 ∈ RN , R > d0 and δ ∈ (0, δ0], the continuous function wx0,R,δ :
RN → [0, 1) defined by

wx0,R,δ(x) = max
{
vx0,R(Px0,R(x))− δ−1 |x−Px0,R(x)|, 0

}
, (6.18)

satisfies ˆ
BR′ (x0)

J(x− y)wx0,R,δ(y)dy︸ ︷︷ ︸
=LBR′ (x0)[wx0,R,δ

](x)

−wx0,R,δ(x) + f(wx0,R,δ(x)) > 0, (6.19)

for all x ∈ RN and all R′ > R + δ.

Proof. — In view of (6.18), we see that, for every x0 ∈ RN , R > d0 and δ > 0, the
function wx0,R,δ is continuous RN , that 0 6 wx0,R,δ < 1 in RN , that wx0,R,δ = vx0,R in

BR(x0) and that wx0,R,δ = 0 in RN \BR+δ(x0).
We set g(s) := s− f(s) for s ∈ [0, 1]. From (1.11), we see that

γ := min
[0,1]

g′ > 0. (6.20)

We recall that, by (1.11), J is assumed to belong to W 1,1(RN), and set

δ0 := γ ·
(ˆ

RN
|∇J(z)| dz

)−1

> 0. (6.21)

Let us now fix any x0 ∈ RN , R > d0, δ ∈ (0, δ0] and let us check that (6.19) holds
for any R′ > R+ δ. Since both wx0,R,δ and J are non-negative and since wx0,R,δ = 0
in RN \BR+δ(x0), recalling also that f(0) = 0 due to (1.11), we see that it is sufficient
to show (6.19) for x ∈ BR+δ(x0). Furthermore, by monotonicity of the integral with
respect to R′, it is enough to show (6.19) for R′ = R + δ.

For any x ∈ BR+δ(x0), there holds
ˆ
BR+δ(x0)

J(x− y)wx0,R,δ(y)dy =

ˆ
BR+δ(x0)\BR(x0)

J(x− y)wx0,R,δ(y)dy
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+

ˆ
BR(x0)

J(x− y)vx0,R(y)dy.

Therefore, it follows from the above equality and the definitions of vx0,R and wx0,R,δ

that, for x ∈ BR(x0),
ˆ
BR+δ(x0)

J(x− y)wx0,R,δ(y)dy−wx0,R,δ(x) + f(wx0,R,δ(x))

=

ˆ
BR+δ(x0)\BR(x0)

J(x− y)wx0,R,δ(y)dy > 0.

To complete our proof, we have to show that the above inequality holds also for
x ∈ BR+δ(x0) \BR(x0). To this end, let us consider x ∈ BR+δ(x0) \BR(x0) and set

s(x) := vx0,R(Px0,R(x)) and τ(x) := dist(x,BR(x0)) = |x−Px0,R(x)| > 0,

that is, wx0,R,δ(x) = max{s(x)−δ−1τ(x), 0}. From the nonnegativity of J and wx0,R,δ

and the fact that wx0,R,δ = vx0,R in BR(x0), we have

ˆ
BR+δ(x0)

J(x− y)wx0,R,δ(y)dy − wδ,R,x0(x) + f(wδ,R,x0(x))

>
ˆ
BR(x0)

J(x−y)vx0,R(y)dy−max{s(x)−δ−1τ(x), 0}+f(max{s(x)−δ−1τ(x), 0}).

(6.22)
Now, two situations may occur: either s(x) 6 δ−1τ(x) (that is, wx0,R,δ(x) = 0), or
s(x) > δ−1τ(x) (that is, wx0,R,δ(x) > 0). In the first situation, we easily conclude
that ˆ

BR+δ(x0)

J(x− y)wx0,R,δ(y)dy−wx0,R,δ(x) + f(wx0,R,δ(x))

>
ˆ
BR(x0)

J(x− y)vx0,R(y)dy > 0.

So let us now assume that s(x) > δ−1τ(x), that is,

0 < wx0,R,δ(x) = s(x)− δ−1τ(x) 6 s(x) = vx0,R(Px0,R(x)) < 1. (6.23)

Let us rewrite the first integral in the right-hand side of (6.22) as
ˆ
BR(x0)

J(x− y)vx0,R(y)dy =

ˆ
BR(x0)

[J(x− y)− J(Px0,R(x)− y)]vx0,R(y)dy

+

ˆ
BR(x0)

J(Px0,R(x)− y)vx0,R(y)dy.
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Since vx0,R solves (6.1) in BR(x0), since

Px0,R(x) ∈ BR(x0) and s(x) = vx0,R(Px0,R(x)),

and since J ∈ W 1,1(RN), the above equality yieldsˆ
BR(x0)

J(x− y)vx0,R(y)dy > s(x)− f(s(x))−
ˆ
BR(x0)

|J(x− y)−J(Px0,R(x)− y)|dy.

> s(x)− f(s(x))−
ˆ
RN
|J(x− y)−J(Px0,R(x)− y)|dy.

> s(x)− f(s(x))− τ(x)×
ˆ
RN
|∇J(z)| dz.

Combining now the above inequality with (6.22) and s(x) − δ−1τ(x) > 0, and us-
ing (4.38), (4.39) and (4.40), we getˆ

BR+δ(x0)

J(x− y)wx0,R,δ(y)dy − wx0,R,δ(x) + f(wx0,R,δ(x))

> g(s(x))− g(s(x)− δ−1τ(x))− γ δ−1
0 τ(x) > (γ δ−1 − γ δ−1

0 )τ(x) > 0.

This is the desired inequality and the proof of Lemma 6.6 is thereby complete.

7 The case of convex obstacles: proofs of the main

Liouville type results

In this section, we prove our main results. We first consider in Section 7.1 the case
where J is a general kernel satisfying (1.9), namely we prove Theorems 2.2 and 2.3.
Once this is done, we consider in Section 7.2 kernels having compact support and
we prove Theorem 2.4. Section 7.3 is devoted to the proof of a lemma used in the
proof of Theorem 2.4. Throughout Section 7, we always assume that K is a compact
convex set and that f and J satisfy the conditions (1.8), (1.9) and (1.10).

7.1 General kernels: proofs of Theorems 2.2 and 2.3

Let us start our proof of Theorem 2.2 with the following simple observation.

Lemma 7.1. — Let K ⊂ RN be a compact convex set and assume (1.8) and (1.9).
Let u ∈ C(RN \K, [0, 1]) satisfy (2.3), that is,

Lu+ f(u) 6 0 in RN \K, (7.1)

u(x)→ 1 as |x| → +∞. (7.2)

Then there exists γ ∈ (0, 1] such that γ 6 u 6 1 in RN \K.
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Proof. — We proceed by contradiction. Suppose that the conclusion does not
hold. Then, by continuity of u and (7.2), there exists a point x0 ∈ RN \K, such that
u(x0) = 0. Arguing as in the proof of the strong maximum principle (Lemma 4.2)
or in the proof of the sweeping principle (Lemma 4.3), we get that u = 0 in
A (x0, r1, r2) ∩ RN \K, where 0 6 r1 < r2 are given in (1.9), and then u = 0 in
A (x1, r1, r2) ∩ RN \K for all x1 ∈ A (x0, r1, r2) ∩ RN \K. Since K is convex, it
follows in particular that u = 0 in Br(x0)∩RN \K for some r > 0. Finally, the non-
empty set

{
x ∈ RN \K; u(x) = 0

}
is both (obviously) closed and open relatively to

the connected set RN \K. Hence u = 0 in RN \K, contradicting (7.2).

We now turn to the proof of Theorem 2.2.

Proof of Theorem 2.2. — Let K, f , J and u be as in Theorem 2.2. Firstly, with-
out loss of generality, one can assume by (1.8) that f is extended to a C1(R) function
satisfying (4.1). Secondly, by (2.3) and the boundedness of K, there exists R0 > 0
large enough so that K ⊂ BR0 and u > 1 − c0 in RN \ BR0 , where c0 > 0 is given
in (4.1).

We proceed the proof by contradiction, and suppose that

inf
RN\K

u < 1. (7.3)

From (2.3) and (7.3), together with the continuity of u, there exists then x0 ∈ RN \K
such that

u(x0) = min
RN\K

u ∈ [0, 1).

We observe that, by Lemma 7.1, one has u(x0) > 0. Now, since K is convex, there
exists e ∈ ∂B1 such that K ⊂ Hc

e , where He is the open affine half-space defined by

He := x0 +
{
x ∈ RN ; x · e > 0

}
.

In light of assumption (1.10), there exists an increasing function φ ∈ C(R) such that{
J1 ∗ φ− φ+ f(φ) > 0 in R,
φ(−∞) = 0, φ(+∞) = 1.

Let us also define the function

ϕr(x) := φr,e(x) = φ(x · e− r), x ∈ RN ,

and the following quantity

r∗ := inf
{
r ∈ R ; ϕr 6 u in RN \K

}
.
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From Lemmata 5.1 and 7.1, we know that r∗ ∈ [−∞, r0], where r0 > 0 is given in
Lemma 5.1.

We claim that in fact
r∗ = −∞. (7.4)

The proof of (7.4) is by contradiction. We assume that r∗ ∈ R. Then, there exists a
sequence (εj)j∈N of positive real numbers such that ϕr∗+εj(x) = φ(x·e−r∗−εj) 6 u(x)

for all x ∈ RN \K and εj → 0 as j → +∞. Thus passing to the limit as j → +∞,
we obtain that

ϕr∗(x) 6 u(x) for all x ∈ RN \K.

Let us denote H the open affine half-space

H =
{
x ∈ RN ; x · e > R0

}
.

Notice that H ∩ K = ∅ and that u is well defined and continuous in H. We also
observe that, by construction,

sup
Hc

ϕr∗ < 1. (7.5)

Two cases may occur.
Case 1: infHc\K(u−ϕr∗) > 0. In this situation, thanks to the uniform continuity

of φ, there exists ε > 0 such that

inf
Hc\K

(u− ϕr∗−ε) > 0.

Now, we observe that u and ϕr∗−ε satisfy
Lu+ f(u) 6 0 in H,

Lϕr∗−ε + f(ϕr∗−ε) > 0 in H (by (5.3)),

u > ϕr∗−ε in Hc \K,

together with u > 1− c0 in RN\BR0 ⊃ H and lim|x|→+∞ u(x) = 1, while ϕr∗−ε 6 1 in
RN . Thus, by the weak maximum principle (Lemma 4.1) and the continuity of u and
ϕr∗−ε in RN \K, we get that u > ϕr∗−ε in RN \K. This contradicts the minimality
of r∗ and therefore Case 1 is ruled out.

Case 2: infHc\K(u − ϕr∗) = 0. In this situation, by (7.2) and (7.5), and by

continuity of u and ϕr∗ , there exists a point x̄ ∈ Hc \K such that u(x̄) = ϕr∗(x̄).
Note that x̄ ∈ He, since otherwise x̄ ∈ RN \He, namely x̄ · e < x0 · e, and the chain
of inequalities

u(x̄) = ϕr∗(x̄) < ϕr∗(x0) 6 u(x0) = min
RN\K

u
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leads to a contradiction. Therefore, we have ϕr∗ 6 u in RN \K with equality at a
point x̄ ∈ RN \K ∩He. Since K ⊂ Hc

e and ϕr∗ and u satisfy respectively{
Lu+ f(u) 6 0 in He,

Lϕr∗ + f(ϕr∗) > 0 in He (by (5.3)),

it follows in particular from the strong maximum principle (Lemma 4.2) that ϕr∗ = u
in He. Thus, for any e⊥ ∈ ∂B1 such that e⊥ · e = 0, one infers from (7.2) and the
definition of ϕr∗ that

1 = lim
t→+∞

u(x0 + te⊥) = lim
t→+∞

ϕr∗(x0 + te⊥) = ϕr∗(x0) < 1.

This contradiction rules out Case 2 too.
Hence (7.4) holds true and as a consequence we have that ϕr 6 u in RN \K for

any r ∈ R. In particular, recalling that φ(+∞) = 1, we get that

1 > u(x0) > lim
r→−∞

ϕr(x0) = lim
r→−∞

φ(x0 · e− r) = 1,

a contradiction. Therefore, (7.3) can not hold. In other words, infRN\K u = 1, i.e.

u = 1 in RN \K. The proof of Theorem 2.2 is thereby complete.

We observe that, by the same token, we obtain Theorem 2.3.

Proof of Theorem 2.3. — By Lemma 2.2, Remark 3.3 and our assumptions on f ,
we know that u has a (uniformly) continuous representative u∗ ∈ C(RN \K) in its
class of equivalence and we can identify u with u∗. The desired result now follows as
a consequence of Theorem 2.2.

7.2 Compactly supported kernels: proof of Theorem 2.4

In this subsection we prove Theorem 2.4. That is, provided some additional as-
sumptions on f and J are satisfied, we show that the Liouville result obtained in
Theorem 2.2 holds true when the uniform limit of u as |x| → +∞, namely condi-
tion (7.2), is replaced by the following weaker condition

ess sup
RN\K

u = 1, (7.6)

where u : RN \K → [0, 1] is a measurable solution of Lu+ f(u) = 0 a.e. in RN \K.
The condition (7.6) can be rewritten as

sup
RN\K

u = 1, (7.7)
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if u is already assumed to be uniformly continuous in RN \K. Note that the extra
assumptions (2.4) made on f (namely f ′ < 1/2 in [0, 1]) actually guarantees that u
has a uniformly continuous representative in its class of equivalence, as follows from
Lemma 2.2 and Remark 3.3. As a consequence, in the proof of Theorem 2.4 we can
assume without loss of generality that u : RN \K → [0, 1] is uniformly continuous
and satisfies (7.7). Notice immediately that the same arguments as in the proof of
Lemma 7.1 imply that

u > 0 in RN \K. (7.8)

Otherwise u would be identically equal to 0 in RN \K, contradicting the assump-
tion (7.7).

The key-point in the proof of Theorem 2.4 is the following lemma.

Lemma 7.2. — Let K ⊂ RN be a compact set and assume that f and J satisfy
(1.8), (1.9) and (1.11). Assume further that J is compactly supported and J ∈
L2(RN). Let u : RN \K → [0, 1] be a uniformly continuous solution of (2.5). Then,
u(x)→ 1 as |x| → +∞.

The proof of Lemma 7.2 is postponed in Section 7.3. In this section, we complete
the proof of Theorem 2.4.

Proof of Theorem 2.4. — From the previous paragraphs, the function u can be
assumed to be uniformly continuous in RN \K without loss of generality. Then, since
the condition (1.11), together with (1.8) and (1.9), implies the condition (1.10), the
assumptions of Theorem 2.2 are all fulfilled, thanks to Lemma 7.2. Therefore u = 1
in RN \K, completing the proof of Theorem 2.4.

7.3 Proof of Lemma 7.2

This section is devoted to the proof of Lemma 7.2. It is divided into four main steps.
To prove Lemma 7.2, it suffices to show that for any ε > 0 small enough there exists
R(ε) > 0 such that u > 1 − ε in RN \ BR(ε). To obtain such a lower bound, our
strategy relies on the existence of continuous families of continuous sub-solutions wτ
which satisfy wτ > 1− ε in B1(xτ ) for some xτ ∈ RN (these sub-solutions are drawn
from Section 6.3). Then, we use the sweeping principle to propagate the lower bound
satisfied by the wτ ’s to a lower bound for u.

Step 1: the solution u is close to 1 in some large balls

In this step, we show that, for any ε > 0, ` > 0, and R > 0, there exists a point
x∗ ∈ RN \K such that

|x∗| > `, BR(x∗) ⊂ RN \K, and u > 1− ε in BR(x∗). (7.9)
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To do so, notice first that, from (2.5) and the continuity of u in RN \K, two
situations may occur: namely, either there exists a sequence (xn)n∈N ⊂ RN \K such
that

lim
n→+∞

|xn| = +∞ and lim
n→+∞

u(xn) = 1, (7.10)

or there exists a point x̄ ∈ RN \K such that u(x̄) = 1. In the latter case, since
f(u(x̄)) = f(1) = 0, we get, as in the proof of Lemma 7.1, that u = 1 in RN \K:
the claim (7.9) is therefore trivial in this case.

Thus, it suffices to treat the former case (7.10) only. Consider the functions un
defined in RN \K − xn by

un(x) = u(x+ xn).

Since u is uniformly continuous in RN \K and sinceK is compact and limn→+∞ |xn| =
+∞, it follows that, for every r > 0, the functions un’s, ranging in [0, 1], are de-
fined in Br for all n large enough and are uniformly equicontinuous in Br. From
Arzela-Ascoli theorem and the diagonal extraction process, there exists a continuous
function u∞ : RN → [0, 1] such that, up to extraction of a subsequence, un → u∞
locally uniformly in RN as n → +∞. Furthermore, u∞(0) = 1 by (7.10). On the
other hand, the functions un’s satisfyˆ

(RN\K)−xn
J(x− y)un(y)dy −

(ˆ
(RN\K)−xn

J(x− y)dy

)
un(x) + f(un(x)) = 0,

for all x ∈ RN \K − xn. Lebesgue’s dominated convergence theorem implies that

J ∗ u∞ − u∞ + f(u∞) = 0 in RN .

Since f(u∞(0)) = f(1) = 0 and u∞ 6 1 in RN , we get as in the proof of Lemma 7.1
that u∞ = 1 in RN . In particular, for any fixed ε > 0, ` > 0, and R > 0, it follows
that, for every n ∈ N large enough, there holds |xn| > `, BR(xn) ⊂ RN \ K and
un > 1− ε in BR, that is, u > 1− ε in BR(xn). In other words, the claim (7.9) holds
with x∗ = xn and n large enough.

Step 2: a sub-solution in a ball

Fix ε > 0 small enough so that f ′ < 0 in [1 − ε, 1], and let us now establish a
lower bound for u in a ball far away from K, by using a sub-solution drawn from
Section 6.3. We recall here that RJ > 0 is such that supp(J) ⊂ BRJ .

We first claim that there exist x∗ ∈ RN , 0 < RJ 6 RK 6 R and a function
w ∈ C(RN , [0, 1)) such that{

BR+1(x∗) ⊂ RN \BRK ⊂ RN \K, u > 1− ε in BR+1(x∗),

L
BR+1(x∗) [w]−w+f(w) > 0 in RN , w>1−ε in B1(x∗), w=0 in RN \BR+1(x∗).

(7.11)
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To show this claim, let RK > max{1, RJ} be such that K ⊂ BRK . Then choose
R > max{RK , d0} > 1 (d0 > 0 is given as in Lemmata 6.1 and 6.3) such that the
maximal solution v0,R ∈ C(BR, (0, 1)) to problem (6.1) in BR satisfies

v0,R > 1− ε in B1. (7.12)

Note that such a real number R exists according to Lemmata 6.3 and 6.5. On the
one hand, as far as the first line in (7.11) is concerned, formula (7.9), applied here
with ` = R+1+RK > 0 and R+1 > 0 in place of R, yields the existence of x∗ ∈ RN

such that
|x∗| > R + 1 +RK , (7.13)

(hence, BR+1(x∗) ⊂ RN \BRK ⊂ RN \K) and

u > 1− ε in BR+1(x∗). (7.14)

Thanks to (7.12) and part (ii) of Lemma 6.4, the maximal solution

vx∗,R ∈ C(BR(x∗), (0, 1)),

to problem (6.1) in BR(x∗) satisfies vx∗,R > 1 − ε in B1(x∗). On the other hand, as
far as the second line in (7.11) is concerned, Lemma 6.6 provides the existence of a
function w ∈ C(RN , [0, 1)) such that

L
BR+1(x∗) [w]− w + f(w) > 0 in RN , w = vx∗,R in BR(x∗) ⊃ B1(x∗),

and w = 0 in RN \BR+1(x∗). As a consequence, x∗, RK , R and w fulfill (7.11).
We then claim that

w 6 u in RN \K. (7.15)

Since w = 0 in RN \ BR+1(x∗) and u > 0 in RN \K, we only need to show that
w 6 u in BR+1(x∗) (⊂ RN \K). Denote

z := w − u,

in BR+1(x∗) and assume that

max
BR+1(x∗)

z = z(x̄) > 0,

for some x̄ ∈ BR+1(x∗). Since BR+1(x∗) ⊂ RN \K and u and J are non-negative
with J having a unit mass in L1(RN), it follows from the equation Lu + f(u) = 0
satisfied by u in RN \K that

LBR+1(x∗)[u](x̄)− u(x̄) + f(u(x̄)) 6 0.
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Together with the first inequality of the second line of (7.11) applied at x̄, we get
that

LBR+1(x∗)[z](x̄)− z(x̄) + f(w(x̄))− f(u(x̄)) > 0. (7.16)

Since z 6 z(x̄) in BR+1(x∗), one has LBR+1(x∗)[z](x̄) − z(x̄) 6 0. Furthermore,
remembering (7.14) and the choice of ε, there holds 1 − ε 6 u(x̄) = w(x̄) − z(x̄) <
w(x̄) < 1 and f ′ < 0 in [1−ε, 1], hence f(w(x̄))−f(u(x̄)) < 0. This contradicts (7.16).
Therefore, maxBR+1(x∗) z 6 0, that is, w 6 u in BR+1(x∗) and then in RN \K.

Step 3: a lower bound in annuli with large inner radii

Let us now construct some families of sub-solutions and exploit the sweeping
principle (Lemma 4.3) to get a lower bound of u in some annuli. To do so, let
x∗ ∈ RN , 0 < RJ 6 RK 6 R and w ∈ C(RN , [0, 1)) be as in (7.11). Consider any
orthonormal basis (e1, · · · , eN) of RN and, for τ ∈ [0, 2π], let Rτ be the rotation of
angle τ in the plane spanned by (e1, e2) (that is, Rτe1 = (cos τ)e1 + (sin τ)e2 and
Rτe2 = −(sin τ)e1 + (cos τ)e2) and leaving invariant the vectors e3, · · · , eN . We set

A := A (|x∗| −R− 1, |x∗|+R + 1) = B|x∗|+R+1 \B|x∗|−R−1.

From (7.11), note that A ⊂ RN \BRK ⊂ RN \K (hence, A ∩K = ∅). Now for each
τ ∈ [0, 2π] and x ∈ RN , we set

wτ (x) := w(Rτx).

Thanks to the rotational invariance of J and A, and since BR+1(x∗) ⊂ A and both
J and w are non-negative, it follows from (7.11) that each function wτ satisfies

L
A

[wτ ]− wτ + f(wτ ) > 0 in RN .

On the other hand, it follows from (2.5) that the function u obeys

L
A

[u](x)−u(x) + f(u(x))

= −
ˆ
RN\(K∪A)

J(x− y)u(y)dy − u(x)

(
1−

ˆ
RN\K

J(x− y)dy

)
6 0,

for all x ∈ RN \K and therefore for all x ∈ A. In addition, thanks to positivity
of u in RN \K (remember (7.8)) and the fact that J > 0 a.e. in A (r1, r2) with
0 6 r1 < r2 6 RJ 6 RK 6 R (remember (1.9) and supp(J) ⊂ BRJ ), one infers that
ˆ
RN\(K∪A)

J(x−y)u(y)dy > 0 for all x ∈ A′ := A (|x∗|+R+1−r2, |x∗|+R+1) (⊂ A),

hence
L

A
[u](x)− u(x) + f(u(x)) < 0 for all x ∈ A′.
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Since w 6 u in A (⊂ RN \K) by (7.15) and r2 6 RK 6 |x∗|−R−1 by (7.13), it follows
from the sweeping principle (Lemma 4.3) applied to u, to the family (wτ )τ∈[0,2π] and
to

(s1, s2, s3, s4) = (|x∗| −R− 1, |x∗|+R + 1− r2, |x∗|+R + 1, |x∗|+R + 1),

that
wτ 6 u in A for every τ ∈ [0, 2π]. (7.17)

Notice also (even if the following inequalities will not explicitly be used in the next
step) that, since w > 1 − ε in B1(x∗) by (7.11), the family of estimates in (7.17)
implies in particular that u > 1 − ε in

⋃
τ∈[0,2π] B1(R−1

τ x∗). Since the previous

arguments are independent of the choice of the orthonormal basis (e1, . . . , eN), we
also get that u > 1− ε in A (|x∗| − 1, |x∗|+ 1).

Step 4: conclusion

Let us now finish our argument. To complete the proof of Lemma 7.2, we will
again construct an adequate family of sub-solutions and use the sweeping principle
to push further the estimates obtained in the previous step. To do so, pick some
ρ > 0 and consider the domain

Aρ := A (|x∗| −R− 1, |x∗|+R + 1 + ρ),

where R > 0 is defined in Steps 2 and 3. From (7.11), we note that Aρ ⊂ RN \
BRK ⊂ RN \K (hence, Aρ ∩ K = ∅). Next, consider any rotation R of RN , let
e := x∗/|x∗| ∈ ∂B1 and, for each σ ∈ [0, ρ] and x ∈ RN , denote

Wσ(x) := w(R x− σ e).

As in the previous step, from the rotational invariance of J and Aρ, and since
BR+1(x∗ + σe) ⊂ Aρ for every σ ∈ [0, ρ] and both J and w are non-negative, it
follows from (7.11) that each function Wσ satisfies

L
Aρ

[Wσ]−Wσ + f(Wσ) > 0 in RN .

Similarly, it follows from (2.5) that the function u obeys

L
Aρ

[u]− u+ f(u) 6 0 in RN \K,

(and therefore in Aρ), while

L
Aρ

[u]− u+ f(u) < 0 in A (|x∗|+R + 1 + ρ− r2, |x∗|+R + 1 + ρ) (⊂ Aρ).

From the inequality (7.17) of the previous step (which holds for every τ ∈ [0, 2π]
and for every orthonormal basis (e1, · · · , eN)), we have W0 6 u in A and then in
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RN \K (since W0 = 0 in RN \ A and u > 0 in RN \K. As a consequence, W0 6 u
in Aρ. Finally, it follows from the sweeping principle (Lemma 4.3) applied to u, to
the family (Wσ)σ∈[0,ρ] and to

(s1, s2, s3, s4) = (|x∗| −R− 1, |x∗|+R+ 1 + ρ− r2, |x∗|+R+ 1 + ρ, |x∗|+R+ 1 + ρ),

that Wσ 6 u in Aρ for every σ ∈ [0, ρ]. Since w > 1 − ε in B1(x∗) by (7.11), we
obtain in particular that

u > 1− ε in
⋃

σ∈[0,ρ]

B1(R−1(x∗ + σe)).

The previous arguments being independent of the choice of ρ > 0 and the rotation
R of RN , we conclude that

u(x) > 1− ε for all |x| > |x∗| − 1.

Since ε > 0 can be arbitrarily small, the proof of Lemma 7.2 is thereby complete.

8 The case of small perturbations of convex ob-

stacles

In this section, we explore further the validity of the Liouville Theorem 2.2 and
we prove Theorem 2.6, a kind of stability result for the Liouville property. In the
spirit of the results of Bouhours [26], we show that the Liouville property obtained
in Theorem 2.2 still holds true for small perturbations of convex obstacles, provided
some additional assumptions are made on f and J . To do so, we adapt to our problem
the arguments developed in [26] and, in particular, we will rely on the following

Lemma 8.1. — Assume all hypotheses of Theorem 2.6. Then, for every δ ∈ (0, 1),
there exists a real number Rδ > 0 such that, for any ε ∈ (0, 1] and any measurable
solution uε : RN \Kε → [0, 1] of (2.7), there holds uε(x) > 1− δ for a.e. |x| > Rδ.

Before proving Lemma 8.1, let us first establish a preliminary “rough” Liouville-
type result, namely Proposition 2.1.

Proof of Proposition 2.1. — We recall that f ∈ C1([0, 1]), that J is assumed to
satisfy (1.9), that K is a compact set such that RN \ K is connected, and that
u : RN \K → [θ, 1] is a continuous solution of (1.1) such that f > 0 on [θ, 1]. Let
us set

m = inf
R\K

u ∈ [θ, 1].
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Suppose, by contradiction, that m < 1. Let (xn)n∈N ⊂ RN \K be a sequence such
that u(xn)→ m as n→ +∞. Since u(x)→ 1 as |x| → +∞, the sequence (xn)n∈N is
bounded and, up to extraction of a subsequence, we may assume that it converges
to some x̄ ∈ RN \K. Evaluating the equation satisfied by u at xn, we obtain

ˆ
RN\K

J(xn − y)(u(y)− u(xn))dy + f(u(xn)) = 0.

By assumption, f(u(x)) > 0 for all x ∈ RN \K and therefore

ˆ
RN\K

J(xn − y)(u(y)− u(xn))dy 6 0.

Since J ∈ L1(RN) passing to the limit in the above inequality results in

0 6
ˆ
RN\K

J(x̄− y)(u(y)−m)dy 6 0.

Thus, arguing as in Section 4 and using (1.9) and the connectedness of RN \ K,
we obtain that u = m (< 1) in RN \K. Since u(x) → 1 as |x| → +∞, we get a
contradiction. The proof of Proposition 2.1 is thereby complete.

Let us now turn our attention to the proof of Lemma 8.1.

Proof of Lemma 8.1. — First of all, in virtue of Lemma 2.2, we know that, for
every ε ∈ (0, 1], every measurable solution uε : RN \Kε → [0, 1] of (2.7) possesses a
Hölder continuous representative u∗ε ∈ C0,α(RN \Kε). Consequently, we are allowed
to identify uε with u∗ε. For simplicity, we omit the superscript ∗ and write simply uε
instead of u∗ε.

Let us then continuously extend f by f ′(0)s for s 6 0 and by f ′(1)(s − 1) for
s > 1 and still denote f this extension. We also observe that, since (Kε)0<ε61 is a
family of (at least) C0,α deformations of K in the sense of Definition 1.2, there exists
a real number R0 > 0 such that

Kε ⊂ BR0 for all 0 < ε 6 1. (8.1)

Notice now that it is sufficient to show the conclusion of Lemma 8.1 for δ > 0
small enough. For any δ > 0 small enough, we are going to consider an auxiliary
problem whose solutions will provide an appropriate lower bound for uε, allowing us
to prove the desired uniform convergence as |x| → +∞. To this end, for δ ∈ (0, 1),
denote

fδ(s) := f(s)− f(1− δ/2) for s ∈ R, and sδ :=
f(1− δ/2)

f ′(0)
.
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It is immediate to check that there exists δ1 ∈ (0, 1) such that, for every δ ∈ (0, δ1),
one has sδ < 0 < 1− δ/2 < 1 and

fδ 6 f in R, f ′δ = f ′ < 1/2 in R,
fδ(sδ) = 0, f ′δ(sδ) < 0, fδ(1− δ/2) = 0, f ′δ(1− δ/2) < 0,

´ 1−δ/2
sδ

fδ(r)dr > 0,

fδ vanishes only once in (sδ, 1− δ/2).

Using the results obtained in [13, 45, 50, 155], we know that, for every δ ∈ (0, δ1),
there exists a continuous function φδ : R→ (sδ, 1− δ/2) satisfying

LRφδ + fδ(φδ) = J1 ∗ φδ − φδ + fδ(φδ) > 0 in R,
φδ is increasing in R,
φδ(−∞) = sδ, φδ(0) = 0, φδ(+∞) = 1− δ/2.

Fix in the sequel any δ ∈ (0, δ1), any ε ∈ (0, 1] and any (Hölder-continuous)
function uε : RN \Kε → [0, 1] solving (2.7). For A > 0, we let Φδ,A be the function
defined in RN by

Φδ,A(x) := φδ(|x| − A).

We observe that, by construction, we have

Φδ,R0(x) 6 0 6 uε for all x ∈ BR0 \Kε. (8.2)

Our aim is to extend the above relation to all x ∈ RN \ BR0 . Since uε(x) → 1 as
|x| → +∞, there exists Rε > R0 such that uε(x) > max(1 − c0, 1 − δ/2) for all
|x| > Rε where c0 > 0 is such that f ′ < 0 in [1 − c0,+∞). Then, reasoning as in
Lemma 5.1 (or using directly that Φδ,A → sδ < 0 as A → +∞ locally uniformly in
RN and Φδ,A < 1− δ/2 < 1 in RN), we obtain that, for some Aε > 0,

Φδ,Aε 6 uε in RN \Kε.

Consequently, it makes sense to define

A∗ := inf
{
A ∈ R ; Φδ,A 6 uε in RN \Kε

}
6 Aε.

We claim that
A∗ 6 R0, (8.3)

We argue by contradiction and assume that A∗ > R0. From the definition of A∗ and
the continuity of φδ, we have

Φδ,A∗ 6 uε in RN \Kε. (8.4)
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If minBRε\Kε
(uε − Φδ,A∗) > 0, then from the uniform continuity of φδ, there exists

τ > 0 small enough such that Φδ,A∗−τ 6 uε in BRε \Kε. On the other hand, Φδ,A∗−τ <

1 − δ/2 6 uε in RN \ BRε . Hence, Φδ,A∗−τ 6 uε in RN \Kε, a contradiction with
the definition of A∗. Therefore, minBRε\Kε

(uε − Φδ,A∗) = 0. Since uε and Φδ,A∗ are

continuous, there exists x0 ∈ BRε \Kε such that

Φδ,A∗(x0) = uε(x0).

Since A∗ > R0 by assumption, it follows from (8.2) and the strict monotonicity of
Φδ,A with respect to A that x0 ∈ BRε \BR0 . Let us set e0 = x0/|x0| and define the
open affine half-space

H :=
{
x ∈ RN ; x · e0 > R0

}
(⊂ RN \Kε).

From (8.4) and the definition of Φδ,A∗ , we have

uε(x) > ϕ(x) := φδ(x · e0 − A∗) for all x ∈ RN \Kε.

Reasoning as in Lemma 5.1 and recalling the assumptions on fδ, we have that
Lεuε + f(uε) = 0 in H,

Lεϕ+ f(ϕ) > 0 in H (as in (5.3)),

uε > ϕ in RN \Kε,

uε(x0) = ϕ(x0) with x0 ∈ H.

Applying the strong maximum principle (Lemma 4.2) we obtain in particular that
uε = ϕ in H. This is impossible since uε(x)→ 1 as |x| → +∞, while ϕ < 1−δ/2 < 1
in RN . As a consequence, the claim (8.3) holds true.

From (8.3) and the monotonicity of Φδ,A with respect to A, we then deduce that

Φδ,R0 6 Φδ,A∗ 6 uε in RN \Kε.

Since ε ∈ (0, 1] and uε : RN \Kε → [0, 1] solving (2.7) were arbitrary, since R0 > 0
verifying (8.1) was independent of ε, and since φδ(+∞) = 1−δ/2 > 1−δ, the desired
conclusion follows.

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. — First of all, as in the proof of Lemma 8.1, it follows from
Lemma 2.2 that, for every ε ∈ (0, 1], every measurable solution uε : RN \Kε → [0, 1]
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of (2.7) can be identified with its Hölder continuous C0,α(RN \Kε) representative.
Furthermore, Lemma 2.2 yields

[uε]C0,α(RN\Kε) 6 A :=
2[J ]Bα1,∞(RN )

inf
0<η61

inf
x∈RN\Kη

‖J(x− ·)‖L1(RN\Kη) −max
[0,1]

f ′
.

Note that A is independent of ε. In particular, for every ε∗ ∈ (0, 1] and every R > R0,
where R0 > 0 is chosen as in (8.1), the family (uε)0<ε6ε∗ is uniformly bounded in
C0,α(BR \Kε∗). Recalling that Kε → K as ε → 0+ in the C0,α sense, there exists
a sequence (εj)j∈N ∈ (0, 1] converging to 0+ and a function u0 ∈ C0,α(RN \K) such
that, for all R > R0 and β ∈ (0, α),

‖uεj − u0‖C0,β(BR\Kεj ) → 0 as j → +∞. (8.5)

Notice that 0 6 u0 6 1 in RN \K. By Lemma 8.1 we know that uε(x)→ 1 uniformly
in ε > 0 as |x| → +∞. Consequently,

u0(x)→ 1 as |x| → +∞. (8.6)

Now, we claim that

Lu0(x) + f(u0(x)) = 0 in RN \K, (8.7)

where L is given by (1.2). This can be seen as follows. First, fix x in the open set
RN \K and an integer j0 large enough such that x ∈ RN \Kεj for all j > j0. Notice
that f(uεj(x))→ f(u0(x)) as j → +∞ since f is continuous. Next, for all j > j0 we
have

Lεjuεj(x)− Lu0(x) =

ˆ
RN\Kεj

J(x− y)
[
(uεj − u0)(y)− (uεj − u0)(x)

]
dy

−
ˆ
Kεj \K

J(x− y)(u0(y)− u0(x))dy.

For every R > R0 and j > j0, there holds

|Lεjuεj(x)− Lu0(x)| 6 2

ˆ
Kεj \K

J(x− y) dy + 2

ˆ
RN\BR

J(x− y) dy

+‖uεj − u0‖L∞(BR\Kεj ) + |uεj(x)− u0(x)|.

Since Kεj → K in the C0,α sense and J ∈ L1(RN), we have in particular that the
first term in the right-hand side converges to 0 as j → +∞. Recalling (8.5) and
letting first j → +∞ and then R→ +∞, we find that

Lεjuεj(x)− Lu0(x)→ 0 as j → +∞.
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Therefore, (8.7) holds for all x ∈ RN \K and finally for all x ∈ RN \K by continuity
and boundedness of u0 in RN \K.

Remember now that u0 ∈ C(RN \K, [0, 1]). By (8.6), (8.7) and Theorem 2.2,
we infer that u0 = 1 in RN \K. This also shows that the limit of the functions
uεj is unique and, hence, uε → 1 as ε → 0+ in the sense of (8.5), not only along a
subsequence.

We conclude by contradiction. Suppose then that there exists countably infinitely
many numbers in (0, 1], which we label in decreasing order as (εj)j∈N, such that
εj → 0+ as j → +∞ and

∀ j ∈ N, ∃xj ∈ RN \Kεj , uεj(xj) = min
RN\Kεj

uεj < 1. (8.8)

Note that this makes sense since, without loss of generality, we have identified
the functions uεj with their continuous representatives in RN \Kεj . We observe
that (1.11), (8.8) and Proposition 2.1 yield that

uεj(xj) < θ for all j ∈ N.

Now, since the functions uεj converge uniformly to 1 as |x| → +∞ (by Lemma 8.1),
the sequence (xj)j∈N is bounded. Hence, up to extraction of a subsequence, we may

assume that xj → x̄ as j → +∞, for some x̄ ∈ RN \K. Furthermore, since the
functions uεj converge to u0 ≡ 1 as j → +∞ in the sense of (8.5), we obtain that

1 > θ > uεj(xj) −→
j→+∞

u0(x̄) = 1.

This is a contradiction. Therefore, there exists an ε0 ∈ (0, 1] such that uε = 1 in
RN \Kε for every ε ∈ (0, ε0) and for every measurable solution uε : RN \ Kε →
[0, 1] of (2.7) (after identification with its continuous representative). The proof of
Theorem 2.6 is thereby complete.
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Chapter 4

A counterexample to the Liouville
property of some nonlocal
problems

This chapter is inspired by the paper [30] written in collaboration
with J. Coville.

1 Introduction

1.1 A nonlocal problem in heterogeneous media

Let K be a compact set of RN with N > 2, and let |·| be the Euclidean norm in RN .
We are interested in the qualitative properties of positive solutions u to the following
problem 

Lu+ f(u) = 0 in RN \K,
0 6 u 6 1 in RN \K,
u(x)→ 1 as |x| → +∞,

(1.1)

where f is a bistable nonlinearity with f(0) = f(1) = 0 and L is the nonlocal operator

Lu(x) :=

ˆ
RN\K

J(x− y)(u(y)− u(x))dy, (1.2)

with J ∈ L1(RN) a non-negative kernel with unit mass. The precise assumptions on
f and J will be given later on.

This type of model naturally arises in the study of the behavior of particles
evolving in a heterogeneous medium. The typical kind of problem we have in mind
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comes from population dynamics. In this setting, the movement of the individu-
als is modelled by a stochastic process that is defined in a domain that possesses
several inaccessible regions (reflecting the heterogeneity of the environment). At the
macroscopic level, the corresponding density of population u(t, x) satisfies a reaction-
diffusion equation that is defined outside a set K, which acts as an obstacle. When
the individuals follow isotropic Poisson jump processes, this reaction-diffusion equa-
tion is given by

∂u

∂t
= Lu+ f(u) in R× RN \K, (1.3)

and the solutions to (1.1) are particular stationary solutions to (1.3).
In recent years, much attention has been paid to the case of Brownian diffusion.

In this situation, the reaction-diffusion equation takes the form
∂u

∂t
= ∆u+ f(u) in R× RN \K,

∇u · ν = 0 on R× ∂K.
(1.4)

This problem was first studied by Berestycki, Hamel and Matano in [17]. There,
it is shown that there exists a solution to (1.4) that satisfies 0 < u(t, x) < 1 for all
(t, x) ∈ R× RN \K, as well as a classical solution, u∞, to

∆u∞ + f(u∞) = 0 in RN \K,
∇u∞ · ν = 0 on ∂K,

0 6 u∞ 6 1 in RN \K,
u∞(x)→ 1 as |x| → +∞.

(1.5)

This latter solution is actually obtained as the large time limit of u(t, x); more
precisely:

u(t, x)→ u∞(x) as t→∞, locally uniformly in x ∈ RN \K.

In addition, they were able to classify the solutions u∞ to (1.5) under some geomet-
ric assumptions on K. When the obstacle K is either starshaped of directionally
convex (see [17, Definition 1.2]), they prove that the solutions to (1.5) are actually
identically equal to 1 in the whole set RN \K. This was further extended to more
complex obstacles by Bouhours who showed a sort of “stability” of this Liouville type
property with respect to small regular perturbations of the obstacle, see [26]. From
the biological standpoint, this means that, after some large time, the population
tends to occupy the whole space.

Yet, when the domain is no longer starshaped nor directionally convex but merely
simply connected, it is shown in [17] that this Liouville type property may fail.
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In other words, the geometry of the domain may force the population to diffuse
heterogeneously in space, even after some large time.

It is expected that (1.1) and (1.5) share some common properties. In particular,
some of the results obtained for (1.5) should, to some extent, hold true as well for
(1.1).

Recently, Brasseur et al. [31] have shown that (1.1) enjoys a similar Liouville
type property when K is convex (or close to being convex) and when the data f and
J satisfy some rather mild assumptions. That is, any solution u to (1.1) is identically
equal to 1 in the whole set RN \K. They also point out that this cannot be expected
for general obstacles since one can easily find counterexamples when K is no longer
simply connected. Indeed, take for instance K = A (1, 2) = B2 \ B1 and suppose
that J is supported in B1/2. Then, the function u defined by

u(x) =

{
1 if x ∈ RN \B2,

0 if x ∈ B1,

is a continuous solution to (1.1); yet, u is not identically 1 in the whole set RN \K.
In view of this, it is natural to ask:

what are the optimal geometric assumptions on K ensuring that (1.1)
enjoys such a Liouville property?

So far, this question remains open.
In this chapter, our main concern is to find out whether it is possible to construct

a nontrivial simply connected obstacle K, as well as data f and J , for which (1.1)
has a continuous solution u which is not identically equal to 1.

Note that this is actually a quite reasonable question. Indeed, since the Liouville
property does not hold true on annuli it is quite natural to expect counterexamples
on simply connected obstacles which are “ε-close” to an annulus. We will see that
this is indeed the case. Precisely, we will construct a family of simply connected
compact sets Kε and data fε and Jε for which the solution to (1.1) need not be
identically equal to 1.

1.2 Main results

Before we state our main results, let us first specify the assumptions made all along
this chapter. We will assume that J is such that

J ∈ L1(RN) is a non-negative, radially symmetric kernel with unit mass,

there are 0 6 r1 < r2 such that J(x) > 0 for a.e. x with r1 < |x| < r2,

M1(J) :=

ˆ
RN
J(x)|x|dx < +∞ and J ∈ W 1,1(RN),

(1.6)
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and that f ∈ C1([0, 1]) is a “bistable” nonlinearity, namely
∃ θ ∈ (0, 1), f(0) = f(θ) = f(1) = 0, f < 0 in (0, θ), f > 0 in (θ, 1),ˆ 1

0

f(s)ds > 0, f ′(0) < 0, f ′(θ) > 0, f ′(1) < 0, f ′ < 1 in [0, 1].
(1.7)

Our first result reads as follows

Theorem 1.1. — Let N > 2. Then, there are smooth (non-starshaped) simply
connected compact obstacles K and data f and J satisfying (1.6) and (1.7) for which
problem (1.1) has a positive nonconstant solution u ∈ C(RN \K, [0, 1]).

The obstacles constructed in Theorem 1.1 are almost of the same nature as those
given in [17] for the local case. Namely, we consider an annulus A into which a small
channel is pierced, see Figure 4.1 below for a visual illustration.

By contrast with the classical reaction-diffusion, the operator L does not enjoy
strong compactness properties and has no regularising effects. So our construction is
not a simple adaptation of the techniques of proof used for the local problem (1.5).
One of the novelties of this chapter is that we show how to circumvent these issues.
As we shall explain in the sequel, our argument is in fact general enough to recover
the local problem as a limit case (see our remarks below).

Let us briefly describe our approach. Our strategy relies essentially on two ingre-
dients. First, we take advantage of the fact that the kernel J and the nonlinearity f
may be chosen at our convenience. That is, instead of considering the problem (1.1),
we can consider a rescaled version of (1.1) given an appropriate choice of J . In our
setting, J will be such that

supp(J) = Br for some r > 0, and J ∈ L2(RN) is radially non-increasing. (1.8)

Then, given a small parameter ε, we look for a nonconstant positive solution uε toˆ
RN\K

Jε(x− y)(uε(y)− uε(x))dy + fε(uε(x)) = 0 in RN \K, (1.9)

that further satisfies 0 6 uε 6 1 in RN \K and uε(x)→ 1 as |x| → +∞, where

fε(s) := ε2f(s) and Jε(z) =
1

εN
J
(z
ε

)
.

In order to prove Theorem 1.1, we only need to show that, for some ε > 0, there is
some obstacle Kε such that (1.9) admits a positive nonconstant solution uε.

Second, we consider a well-chosen family of smooth simply connected obstacles
(Kε)0<ε<1 that look like an annulus with a tiny channel of diameter of the order of
εN/(N−1) pierced in it (see the Figure 4.1). Given such a family, we prove that, for ε
small enough, (1.9) indeed admits a positive nonconstant continuous solution. More
precisely, we prove the following
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Theorem 1.2. — Let N > 2. Let J and f be such that (1.6), (1.7) and (1.8)
hold. Then, there exist ε∗ > 0 and a family of smooth simply connected obstacles
(Kε)0<ε<1 ⊂ RN such that, for all 0 < ε < ε∗, there is a positive nonconstant solution
uε ∈ C(RN \Kε, [0, 1]) to (1.9).

Due to the lack of a strong regularising property of (1.9), the construction of uε
relies essentially on elementary arguments. In particular, we obtain a solution uε to
(1.9) using an adequate monotone iterative scheme and elementary estimates. The
main difficulty in our proof lies in the construction of an adequate pair of ordered
continuous sub- and super-solution in a context where the equation (1.1) does not
allow the use of traditional schemes based on compactness arguments. To cope with
this major difficulty, we make a detailed construction of the obstacle Kε and design
it in such a way that we still can obtain standard L2-estimates by elementary means.
This requires a detailed analysis of all the parameters involved at each steps of our
construction, especially when we construct our super-solution. To construct our
super-solution we rely on the fact that a solution uε to (1.9) satisfies in particular

1

ε2

ˆ
RN\Kε

Jε(x− y)(uε(y)− uε(x))dx+ f(uε(x)) = 0, (1.10)

and, from there, relying essentially on the Bourgain-Brezis-Mironescu characterisa-
tion of Sobolev spaces (see e.g. [27, 118]), we can interpret the first term on the
left-hand side as a nonlocal approximation of ∆u in the sense that its energy ap-
proximates the L2-variation of u. This, in turn, with a pertinent choice of Kε and
a well-chosen auxiliary problem, allows one to derive a priori bounds to construct a
super-solution by means of variational methods.

A striking consequence of our construction is that it adapts almost straightfor-
wardly to other situations. For example, it applies to the standard reaction-diffusion
equation (1.5) providing so an alternative proof of the existence of a counterexam-
ple. But it also extends to broader classes of nonlocal operators where the dispersal
process need not be isotropic but instead depends on the geodesic distance between
points in RN \K. Indeed, our proof also adapts (with almost no changes) to opera-
tors of the form

Lgu(x) :=

ˆ
RN\K

J̃(dg(x, y))(u(y)− u(x))dy, (1.11)

where dg(·, ·) is the geodesic distance on RN \K and J̃ ∈ L1
loc(0,∞) is such that

sup
x∈RN\K

ˆ
RN\K

J̃(dg(x, y))dy <∞, (1.12)

and z 7→ J̃(|z|) satisfies (1.6). More precisely, we have
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Theorem 1.3. — Let N > 2. Then, there are smooth (non-starshaped) simply

connected compact obstacles K and data f and J̃ satisfying (1.7) and (1.12) for
which the problem {

Lgu+ f(u) = 0 in RN \K,
u(x)→ 1 as |x| → +∞,

(1.13)

has a solution u ∈ C(RN \K, [0, 1]) which is not identically equal to 1 in RN \K.

The obstacle K and the data f and J (= J̃(|·|)) constructed at Theorem 1.3 are
exactly the same as in Theorem 1.1.

Problem (1.13) is of interest in its own right. It gives an alternative way to
describe the evolution of particles within a perforated domain which, in some situ-
ations, may be regarded as more realistic. The point here is that particles cannot
travel through K (as is it the case for problem (1.1)). Instead, they are compelled
to “bypass” K as if it was a material obstacle. This particularity may be helpful to
study the dynamics of some species (such as worms or spores) for which this behavior
is well-suited.

When needed we will state in side remarks the necessary changes to make to the
proofs in order to handle this type of dispersal processes.

Remark 1.4. — It turns out that the techniques of proof used in [31] to establish
the Liouville property of (1.1) for convex domains also apply to this modified setting
(at least when J is non-increasing), but we leave this to a subsequent paper.

The chapter is organized as follows. After describing our notations, we recall
some results from the literature in Section 2. In Section 3, given a pair (J, f) we
construct an adequate family of obstacles. Then, in Section 4, we construct some
particular super-solutions to the problem (1.9). Finally, in Section 5, we use the
super-solution constructed at Section 4 to prove Theorem 1.2.

Notations

Let us list a few notations that will be used throughout the chapter.
As usual, SN−1 denotes the unit sphere of RN and BR(x) the open Euclidean ball

of radius R > 0 centred at x ∈ RN (when x = 0, we simply write BR). We denote
by A (R1, R2) the open annulus BR2 \BR1 .

For a compact set Ω ⊂ RN , we denote by diam(Ω) its diameter, given by

diam(Ω) := sup
x,y∈Ω

|x− y|.

The N -dimensional Hausdorff measure will be denoted by H N . For a measurable
set E ⊂ RN , we denote by |E| its Lebesgue measure and by 1E its characteristic
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function. If 0 < |E| <∞ and if g : RN → R is locally integrable, we denote by
 
E

g(x)dx =
1

|E|

ˆ
E

g(x)dx,

the average of g in the set E. Also, we denote by Lp(E), 1 6 p 6 ∞, the Lebesgue
space of (equivalence classes of) measurable functions g for which the p-th power of
the absolute value is Lebesgue integrable when p < ∞ (resp. essentially bounded
when p =∞).

2 Preliminaries

In this section, we recall some known results that will be used throughout the chapter.
In most cases, we will omit their proofs and point the interested reader to the relevant
references.

We first state a general existence result.

Lemma 2.1. — Assume that f and J satisfy (1.6) and (1.7). Let K ⊂ RN be a
compact set and let u, u ∈ C(RN \K) be such that{

Lu+ f(u) 6 0 in RN \K,
Lu+ f(u) > 0 in RN \K.

Assume, in addition, that

lim sup
|x|→∞

u(x) = lim
|x|→∞

u(x) = 1, (2.1)

and that

0 6 u 6 u 6 1 in RN \K. (2.2)

Then, there exists u ∈ L∞(RN \K) such that{
Lu+ f(u) = 0 in RN \K,

u 6 u 6 u in RN \K.

Although the proof of Lemma 2.1 relies on rather standard arguments it is not
straightforward. For this reason, we will give a detailed proof (which is postponed
to the Appendix at the end of the chapter).

Next, we recall a regularity result for nonlocal equations of the form
ˆ

Ω\K
J(x− y)u(y)dy −J (x)u(x) + f(u(x)) = 0 in Ω \K, (2.3)
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where

J (x) :=

ˆ
RN\K

J(x− y)dy. (2.4)

Precisely,

Lemma 2.2. — Assume that f ∈ C1([0, 1]) and that J satisfies (1.6). Let Ω ⊂ RN

be an open set having C1 boundary. Suppose that K ⊂ Ω is a compact set and that

max
[0,1]

f ′ < inf
Ω\K

J . (2.5)

Let u ∈ L∞(Ω\K, [0, 1]) be a solution to (2.3) a.e. in Ω\K. Then, u can be redefined
up to a negligible set and extended as a uniformly continuous function in Ω \K.

For a detailed proof, we refer to [31, Lemma 3.2] (see also [13, 19]).

Remark 2.3. — Note that Ω need not be bounded. In particular, Lemma 2.2
holds when Ω = RN .

Finally, we recall the following result

Lemma 2.4. — Let K ⊂ RN is a compact set and suppose that f and J satisfy
(1.6) and (1.7). Assume further that J is compactly supported and that J ∈ L2(RN).
Let u ∈ C(RN \K, [0, 1]) be a solution to Lu+ f(u) = 0 in RN \K,

sup
RN\K

u = 1, (2.6)

Then, u(x)→ 1 as |x| → ∞.

The proof may be found in [31, Lemma 7.2].

Remark 2.5. — The above results still hold when J(x−y) is replaced by J̃(dg(x, y)).
For the validity of Lemma 2.1 in this case, we refer to Remark 5.4 in the Appendix.
On the other hand, a careful inspection of the proof of [31, Lemma 3.2] shows that
the condition (2.6) with J replaced by

J̃ (x) :=

ˆ
RN\K

J̃(dg(x, y))dy, (2.7)

still implies the continuity of solutions toˆ
Ω\K

J̃(dg(x, y))u(y)dy − J̃ (x)u(x) + f(u(x)) = 0,

in Ω \K. Similarly, Lemma 2.4 holds as well with Lg (as given by (1.11)) instead of
L since its proof requires only estimates on convex regions on which it trivially holds
that dg(x, y) = |x− y|.
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Figure 4.1. Illustration of Kε in dimension 2.

3 Construction of a family of obstacles

This section is devoted to the construction of an appropriate family of obstacles
(Kε)0<ε<1. Our construction will depend on the interplay with the datum (J, f). As
mentioned in the introduction, we will assume that J satisfies (1.6) and (1.8) and
that f satisfies (1.7). However, before constructing (Kε)0<ε<1, we need to define some
important quantities depending on f and J . We will call C0 > 0 and M2(J) > 0 the
constants respectively defined by

C0 := max
s∈[0,1]

f(s), (3.1)

M2(J) :=

ˆ
RN
J(z)|z|2dz. (3.2)

Note that the assumptions (1.6) and (1.7) guarantee that these two numbers are
well-defined. Furthermore, we introduce two quantities, CN,J and R∗0, respectively
defined by 

CN,J :=
π2M2(J)

32N
, (3.3)

R∗0(J, f) :=

√
θCN,J
5C0

. (3.4)

Let us now start the construction of the obstacle. Fix some R1 > 2 and let
0 < R0 < R∗0(J, f) (where R∗0(J, f) is as in (3.4)). Let 0 < ε < 1 be a small
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parameter and set γ := N
N−1

. We call A the annulus A := A (R0, R1) and we

consider a smooth compact simply connected set Kε ⊂ A satisfying the following
properties:

(i) A ∩
{
x ∈ RN ; x1 6 0

}
⊂ Kε,

(ii) A ∩
{
x ∈ RN ; x1 > 0, |x′| > 2εγ

}
⊂ Kε,

(iii) Kε ⊂
(
A ∩

{
x ∈ RN ; x1 6 0

})
∪
(
A ∩

{
x ∈ RN ; x1 > 0, |x′| > εγ

})
,

(iv) A (R0 + εγ/4, R1 − εγ/4) ∩
{
x ∈ RN ;x1 > 0, |x′| > εγ

}
⊂ Kε,

where x = (x1, x
′) and x′ = (x2, . . . , xN) (see Figure 4.1).

Furthermore, we define the following open set:

Fε := A \Kε.

We will refer to (Kε)0<ε<1 as the family of obstacles associated to the pair (J, f).
Let us also list in this section a preparatory lemma.

Proposition 3.1. — Let N > 2 and let (J, f) be a pair satisfying (1.7) and
(1.8). Let (Kε)0<ε<1 be the family of obstacles associated to the pair (J, f). Let

fε(s) := ε2f(s) and Jε(z) :=
1

εN
J
(z
ε

)
. (3.5)

Then, there exists some ε0 > 0 depending only on N , R0, J and f ′, such that

max
[0,1]

f ′ε < inf
x∈RN\Kε

ˆ
RN\Kε

Jε(x− y)dx, for all ε ∈ (0, ε0). (3.6)

Proposition 3.1 will play an important role in the sequel. Inter alia, it guarantees
that the solutions of some nonlocal equations defined in the sequel are continuous.

Proof. — By assumption (1.8), up to rescale J , we may assume without loss of
generality that supp(J) = B1/2. Now, let 0 < ε < ε1 := min{1, R0/2}, x ∈ RN \Kε

and define

F̃ε := {z ∈ RN ;R0 < z1 < R1, |z′| < εγ} and Λε(x) := Bε/2 ∩ (F̃ε − x).

We will estimate from below the integral in the right-hand side of (3.6). For it, we

will treat separately the case where x ∈ F̃ε and the case where x ∈ RN \ (Kε ∪ F̃ε).

Step 1: Lower bound in F̃ε

Let x ∈ F̃ε. Since Jε is radially non-increasing, non-negative and supported in
Bε/2, there is some J̃ε : R+ → R+ such that Jε(z) = J̃ε(|z|) and supp(J̃ε) = [0, ε/2).
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Thus, passing to polar coordinates, the mass carried by Jε(x−·) in F̃ε can be written
as

ˆ
F̃ε

Jε(x− y)dy =

ˆ
Λε(x)

Jε(y)dy =

ˆ
SN−1

(ˆ ε/2

0

1Λε(x)(σt)J̃ε(t)t
N−1dt

)
dH N−1(σ).

Notice that Λε(x) is a convex set and that 0 ∈ Λε(x). In particular, both t 7→
1Λε(x)(σt) and t 7→ J̃ε(t) are non-increasing functions. Hence, using Chebyshev’s
integral inequality (see e.g. [109, Theorem 2.5.10, p.40]), we have

ˆ
F̃ε

Jε(x−y)dy >
N

(ε/2)N

ˆ
SN−1

(ˆ ε/2

0

1Λε(x)(σt)t
N−1dt

ˆ ε/2

0

J̃ε(t)t
N−1dt

)
dH N−1(σ).

Since Jε has unit mass and supp(Jε) = Bε/2, one has

ˆ ε/2

0

J̃ε(t)t
N−1dt = σ−1

N =
(
N |B1|

)−1
,

where σN = H N−1(SN−1). Ergo,

ˆ
F̃ε

Jε(x− y)dy >
1

|Bε/2|

ˆ
SN−1

(ˆ ε/2

0

1Λε(x)(σt)t
N−1dt

)
dH N−1(σ)

=
1

|Bε/2|

ˆ
Bε/2

1Λε(x)(y)dy.

Since F̃ε ⊂ RN \Kε and Λε(x) = Bε/2 ∩ (F̃ε − x), we get

ˆ
RN\Kε

Jε(x− y)dy >
|Bε/2(x) ∩ F̃ε|
|Bε/2|

, for any x ∈ F̃ε. (3.7)

Let us now estimate the quantity |Bε/2(x) ∩ F̃ε|. Observe that for ε small enough,
say when 0 < ε < ε2 := 4−(N−1), one has ε/2 > 2εγ. In particular, this implies that

Bε/2(x) ∩ F̃ε always contains an hyper-rectangle of the form T
(
(0, ε/4)× (0, 2εγ)×

· · · × (0, 2εγ)
)

for some translation T of RN , so that

|Bε/2(x) ∩ F̃ε| > (ε/4)× (2εγ)N−1 = 2N−3εN+1.

Therefore, recalling (3.7), we obtain that, for all 0 < ε < ε2 and all x ∈ F̃ε, it holds
ˆ
RN\Kε

Jε(x− y)dy > C1ε, (3.8)
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for some C1 > 0 depending on N only.

Step 2: Lower bound in RN \ (Kε ∪ F̃ε)

Let us now consider the case where x ∈ RN \ (Kε∪ F̃ε). For it, we first note that,
since 0 < εγ < ε < R0/2 (remember 0 < ε < ε1), the point x0 := (R0, ε

γ, 0, · · · , 0) ∈
∂F̃ε satisfies

|x0|2 = R2
0 + ε2γ < R2

0 +R0ε
γ/2 < (R0 + εγ/4)2,

which implies that F̃ε ∩ BR0+εγ/4 6= ∅. On the other hand, it is clear from the

definition of F̃ε that F̃ε \BR1−εγ/4 6= ∅. A consequence of this is that

F̃ε∩A (R0 +εγ/4, R1−εγ/4) = A (R0 +εγ/4, R1−εγ/4)∩
{
z ∈ RN ; z1 > 0, |z′| < εγ

}
.

Whence, recalling properties (i) and (iv) in the definition of Kε, we deduce that

A (R0 + ε/4, R1 − ε/4) ⊂ A (R0 + εγ/4, R1 − εγ/4) ⊂ Kε ∪ F̃ε,

where, in the left-hand side, we have used the fact that εγ < ε. In turn, this implies
that

x ∈ RN \A (R0 + ε/4, R1 − ε/4).

In particular, since 0 < ε < R0/2 < R0, we may find a point z ∈ RN such that

|x− z| = 3ε

8
and Bε/8(z) ⊂ Bε/2(x) \A ⊂ RN \Kε. (3.9)

Indeed, when x ∈ RN \ BR1−ε/4, this follows from the convexity of BR1 ; and, when
x ∈ BR0+ε/4, the constraint 0 < ε < R0/2 allows one to choose z on the diagonal of
BR0+ε/4 containing x. On account of this, we may write

ˆ
RN\Kε

Jε(x− y)dy >
ˆ
Bε/8(z)

Jε(x− y)dy =

ˆ
Bε/8(z−x)

Jε(y)dy =

ˆ
B1/8( z−xε )

J(y)dy.

Now, by (3.9), we have (z − x)/ε ∈ ∂B3/8. Thus,

ˆ
RN\Kε

Jε(x− y)dy >
ˆ
B1/8(ex)

J(y)dy =: MJ(ex) for some ex ∈ ∂B3/8.

Notice that B1/8(ex) ⊂ B1/2 = supp(J) (because ex ∈ ∂B3/8) which implies MJ(ex) >
0. Moreover, since J is radially symmetric, the quantity MJ(ex) does not depend on
the choice of ex ∈ ∂B3/8, namely

MJ(ex) = MJ(e) ≡MJ > 0, for every e ∈ ∂B3/8,
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and some constant MJ depending on J only.

Therefore, for any 0 < ε < ε1 and x ∈ RN \ (Kε ∪ F̃ε), it holds

ˆ
RN\Kε

Jε(x− y)dy >MJ > 0. (3.10)

Step 3: Conclusion

Since RN \Kε = F̃ε ∪ (RN \ (F̃ε ∪Kε)), by (3.8) and (3.10), we obtain

inf
x∈RN\Kε

ˆ
RN\Kε

Jε(x− y)dy > min {MJ , C1} ε,

for any 0 < ε < ε3 := min{ε1, ε2}. Whence, letting

ε0 := min

{
ε3,

min {MJ , C1}
max[0,1] f ′

}
,

and recalling that fε(s) = ε2f(s), we obtain

max
[0,1]

f ′ε < inf
x∈RN\Kε

ˆ
RN\Kε

Jε(x− y)dx for any ε ∈ (0, ε0),

which is the desired inequality.

Remark 3.2. — Since Jε is radially non-increasing and satisfies (1.6), there is

some non-increasing J̃ε ∈ L1
loc(0,∞) satisfying Jε(z) = J̃ε(|z|). In particular, since

dg(x, y) > |x− y|, it holds that

sup
x∈RN\Kε

ˆ
RN\Kε

J̃ε(dg(x, y))dy 6 sup
x∈RN\Kε

ˆ
RN\Kε

Jε(x− y) dy = 1,

thus implying that J̃ε satisfies (1.12). Moreover, Proposition 3.1 still holds when

Jε(x− y) is replaced by J̃ε(dg(x, y)), i.e. we still have

max
[0,1]

f ′ε < inf
x∈RN\Kε

ˆ
RN\Kε

J̃ε(dg(x, y))dy. (3.11)

Indeed, this is because our proof reduces to estimate the mass carried by Jε(x − ·)
on convex sub-domains of RN \Kε and, in this case, the geodesic distance coincides

with the Euclidean distance, namely it holds that Jε(x− y) = J̃ε(dg(x, y)).
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4 Construction of a global super-solution

In this section we construct a global super-solution to (1.9). Precisely, given a pair
(J, f) satisfying (1.7) and (1.8) and given the family of obstacles (Kε)0<ε<1 associated
to (J, f) (as defined in Section 3), we construct a global super-solution ūε to

ˆ
RN\Kε

Jε(x− y)(ūε(y)− ūε(x))dy + fε(ūε(x)) 6 0 for x ∈ RN \Kε, (4.1)

that further satisfies

ūε ≡ 1 for x ∈ RN \BR, (4.2)

for some large R > 0, where fε and Jε are as in (3.5). More precisely, we prove the
following

Lemma 4.1. — Let N > 2 and let (J, f) be a pair satisfying (1.7) and (1.8).
Let (Kε)0<ε<1 be the family of obstacles associated to the pair (J, f) (as defined in
Section 3). Let fε and Jε be as in (3.5). Then, there exists R∗ > 0 and ε∗ > 0 such
that, for all 0 < ε < ε∗ and all R > R∗, there is a continuous positive nonconstant
function ūε satisfying (4.1) and (4.2).

The proof of Lemma 4.1 follows essentially two steps. In the first step, we con-
struct a positive solution to a suitable auxiliary problem defined in BR \Kε for some
large R. Then, in a second step, we regularise this solution to obtain a super-solution
that satisfies both (4.1) and (4.2). To simplify the presentation each step of the proof
corresponds to a subsection.

4.1 An auxiliary problem in BR \Kε

Let us first construct an adequate auxiliary problem. To do so, we define a new
nonlinearity, f̃ , satisfying

f̃(s) :=


−κs for s 6 3θ

4
,

f0(s) for 3θ
4
< s < θ,

f(s) for θ 6 s 6 1,

f ′(1)(s− 1) for s > 1,

(4.3)

where θ ∈ (0, 1) is as in (1.7), κ > 0 is a small number and f0 is a smooth function

such that f̃ ∈ C1(R). From (1.7), we can choose κ > 0 and f0 such that

f 6 f̃ in [0, 1], max
[0,1]

f̃(s) = max
[0,1]

f and sup
R
f̃ ′ 6 sup

[0,1]

f ′. (4.4)
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Now, for R > R1 + 2, we let LR,ε be the operator given by

LR,εw(x) :=

ˆ
BR\Kε

Jε(x− y)(w(y)− w(x))dy, (4.5)

and we consider the following problem

LR,εuε,R(x) + cε(x)(1− uε,R(x)) + f̃ε(uε,R(x)) = 0 for all x ∈ BR \Kε, (4.6)

where

f̃ε(s) = ε2f̃(s) for s ∈ R and cε(x) :=

ˆ
RN\BR

Jε(x− y)dy for x ∈ BR \Kε. (4.7)

Our goal in this step is to show that, for each ε ∈ (0, 1) small enough, there exists a
continuous function uε,R : BR \Kε → (0, 1) satisfying (4.6).

Remark 4.2. — Observe that, by construction (remember (4.4)), the function

ûε,R :=

{
uε,R in BR \K,

1 in RN \BR,

provides a discontinuous super-solution to (4.1) satisfying (4.2). We are thus on the
right track to construct the required super-solution.

For it, we observe that, by setting vε,R := 1− uε,R, (4.6) rewrites

LR,εvε,R(x)− cε(x)vε,R(x) + gε(vε,R(x)) = 0 for x ∈ BR \Kε, (4.8)

with gε(s) := −ε2f̃(1 − s). Therefore, to construct uε,R it suffices to construct a

positive solution vε,R : BR \K → (0, 1) to (4.8). As in [17], this will be done using
a variational argument. To do so, we define

g(s) := −f̃(1− s), G(t) :=

ˆ t

0

g(s)ds and Gε(t) := ε2G(t),

for all s, t ∈ R and ε ∈ (0, 1). Now, for any ε ∈ (0, 1) and any domain Ω ⊂ BR \Kε,
we consider the following energy functional

Eε,Ω(w) :=
1

4

ˆ
Ω

ˆ
Ω

Jε(x−y)(w(x)−w(y))2dxdy+
1

2

ˆ
Ω

cε(x)w2(x)dx−
ˆ

Ω

Gε(w(x))dx,

(4.9)
for w ∈ L2(Ω). Observe that for any ε > 0 and any domain Ω ⊂ BR \Kε, the null
function w ≡ 0 is a global minimiser of Eε,Ω. Therefore, we have to construct a local
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minimiser. However, unlike its local analogue, the energy functional Eε,Ω does not
posses strong compactness properties, rendering this type of approach very delicate
to implement.

With this in mind, we will show that, for the family Kε constructed in Section 3
and ε small enough, the above energy has indeed a nontrivial local minimiser when
Ω = BR \Kε.

Following the scheme of construction introduced in [17], we first show that the
function w0 := 1BR0

is a strict minimiser of the functional Eε,BR0
when ε ∈ (0, 1) is

small enough.
More precisely,

Proposition 4.3. — Let N > 2, 0 < R0 < R∗0(J, f) (where R∗0(J, f) is given
by (3.4)) and let w0 := 1BR0

. Then, there exists κ0 > 0, 0 < ε1(J,N,R0) < 1 and

0 < δ0(R0) < |BR0 |1/2 such that, for each 0 < ε < ε1, it holds that

Eε,BR0
(w)− Eε,BR0

(w0) > κ0ε
2‖w − w0‖2

L2(BR0
),

for all w ∈ L2(BR0) such that ‖w − w0‖L2(BR0
) 6 δ0.

Proof. — Let us begin with some preliminary observations. First, we notice that
since g is linear around 1 (because f̃ is linear around 0), the function Gε is smooth

in a neighborhood of 1. In particular, there exists τ0(f̃) > 0 such that

Gε(t) = Gε(1) +G′ε(1)(t− 1) +
1

2
G′′ε(1)(t− 1)2 for any |t− 1| < τ0.

But since G′ε(1) = ε2G′(1) = ε2g(1) = 0 and G′′ε(1) = ε2G′′(1) = ε2g′(1) =

−ε2f̃ ′(0) = −ε2κ, this expansion can be rewritten as

Gε(t) = ε2G(1)− κε2

2
(t− 1)2 for any |t− 1| < τ0. (4.10)

Using the number τ0, we define

δ0 := min

{
θ

4
,
C0

κ
,
τ0

2

}
|BR0|1/2, (4.11)

where θ, C0 and κ are as in (1.7), (3.1) and (4.3); and we let w ∈ L2(BR0) be any
function such that

‖w − w0‖L2(BR0
) 6 δ0. (4.12)

Second, denoting by 〈w0〉 := spanL2(BR0
)(w0) the vector space spanned by w0 and let-

ting 〈w0〉⊥ be its orthogonal with respect to the standard scalar product of L2(BR0),
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we can write the space L2(BR) as the direct sum L2(BR0) = 〈w0〉 ⊕ 〈w0〉⊥. This
means that we may always find a constant α ∈ R and a function h ∈ 〈w0〉⊥ such that
w decomposes as w = αw0 + h. In particular, the orthogonality of h with respect to
w0 implies that
ˆ
BR0

h(x)dx = 0 and ‖w − w0‖2
L2(BR0

) = (1− α)2‖w0‖2
L2(BR0

) + ‖h‖2
L2(BR0

). (4.13)

In view of this, assumption (4.12) gives

− δ0

|BR0|1/2
6 (1− α) 6

δ0

|BR0|1/2
and ‖h‖L2(BR0

) 6 δ0. (4.14)

This fact will be abundantly used in the sequel.
This being said, we are now in position to prove Proposition 4.3. For it, we

observe that, since w0 ≡ 1 in BR0 , we have that

Eε,BR0
(w0) = −

ˆ
BR0

Gε(w0(x))dx = −Gε(1)|BR0| = −ε2G(1)|BR0|.

Furthermore, thanks to R > R0 + 2 and supp(Jε) ⊂ B ε
2
, we have that cε(x) ≡ 0 in

BR0 , for any 0 < ε < 1. Consequently, Eε,BR0
(w) rewrites

Eε,BR0
(w) =

1

4

ˆ
BR0

ˆ
BR0

Jε(x− y)(w(x)− w(y))2dxdy︸ ︷︷ ︸ −
ˆ
BR0

Gε(w(x))dx︸ ︷︷ ︸ .
II I

Let us first estimate II . In view of the Bourgain-Brezis-Mironescu representation of
H1(BR0) (see [27]), one can interpret II as a nonlocal approximation of ‖∇w‖2

L2(BR0
).

The crux of our strategy is that, as shown by Ponce [118, Theorem 1.1], this nonlocal
approximation enjoys a Poincaré-type inequality. Let us now proceed. Let (ρε)0<ε<1

be the family of radially symmetric mollifiers defined by

ρε(z) := M2(J)−1Jε(z)|z|2 ε−2 for ε ∈ (0, 1),

where M2(J) is given by (3.2). Notice that, by construction, it satisfies

ρε > 0 a.e. in RN ,

ˆ
RN
ρε(z)dz = 1 and lim

ε→0+

ˆ
|z|>τ

ρε(z)dz = 0,

for each 0 < ε < 1 and each τ > 0. Moreover, II can be rewritten as

II = ε2 M2(J)

4

ˆ
BR0

ˆ
BR0

ρε(x− y)
|w(x)− w(y)|2

|x− y|2
dxdy.
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Now, by [118, Theorem 1.1], we know that there exists some ε1 = ε1(J,N,R0) > 0
such that the following Poincaré-type inequality∥∥∥∥∥w −

 
BR0

w

∥∥∥∥∥
2

L2(BR0
)

6
2A0

K2,N

ˆ
BR0

ˆ
BR0

ρε(x− y)
|w(x)− w(y)|2

|x− y|2
dxdy

=
8A0 ε

−2

K2,NM2(J)
× II ,

holds for all ε ∈ (0, ε1) and all w ∈ L2(BR0). Here,

K2,N :=

ˆ
SN−1

(σ · e1)2 dH N−1(σ) =
1

N
,

and A0 > 0 is the smallest constant such that the standard Poincaré-Wirtinger
inequality holds. That is, A0 is the smallest positive constant such that∥∥∥∥∥w −

 
BR0

w

∥∥∥∥∥
2

L2(BR0
)

6 A0‖∇w‖2
L2(BR0

),

holds for any w ∈ H1(BR0). In our case, A0 satisfies the upper bound:

A0 6
diam(BR0)2

π2
=

4R2
0

π2
,

see [14, Theorem 3.2] (see also [116]). In particular, this gives

ε2 π
2M2(J)

32NR2
0

∥∥∥∥∥w −
 
BR0

w

∥∥∥∥∥
2

L2(BR0
)

6 II .

Now, since w = αw0 +h, since w0 ≡ 1 on BR0 and since h is integral free (by (4.13))
we have

II > ε2 CN,J
R2

0

‖h‖2
L2(BR0

), (4.15)

where CN,J is given by (3.3). We are now left to estimate I. For it, we rewrite I as
follows

I = Eε,BR0
(w0)−

ˆ
BR0

[
Gε(w(x))−Gε(w0(x))

]
dx. (4.16)

To estimate the last integral, we split it into two parts, I1 and I2, where

I1 := −
ˆ
BR0

[
Gε(w0+(α−1)w0+h)−Gε(w0+(α−1)w0)

]
,
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I2 := −
ˆ
BR0

[
Gε(w0+(α−1)w0)−Gε(w0)

]
.

Let us first estimate I2. Using (4.11), (4.12) and (4.14) we have in particular that
|1− α| < τ0. This, together with (4.10), gives

I2 = −
ˆ
BR0

[
Gε(w0+(α−1)w0)−Gε(w0)

]
=
κ

2
ε2|BR0 |(α− 1)2.

Therefore, recalling (4.16), we get

I = Eε,BR0
(w0) +

κ

2
ε2|BR0 |(α− 1)2 + I1. (4.17)

Let us now estimate I1. On account of (4.14), we may write

α = 1− η for some |η| 6 δ0

|BR0|1/2
. (4.18)

Then, a standard change of variables yields

I1 = ε2

ˆ
BR0

ˆ 1−η+h(x)

1−η
f̃(1− τ)dτdx = −ε2

ˆ
BR0

ˆ −h(x)

0

f̃(τ + η)dτdx.

Now, we set

Σ :=

{
x ∈ BR0 ;−h(x) >

θ

2

}
,

and we decompose I1 as

I1 = −ε2

(ˆ
Σ

ˆ −h(x)

0

f̃(τ + η)dτdx+

ˆ
BR0
\Σ

ˆ −h(x)

0

f̃(τ + η)dτdx

)
. (4.19)

We will estimate these two integrals separately. In view of (4.11) and (4.18), we have
that |η| 6 θ/4. In turn, this implies that

−h(x) + |η| 6 3θ

4
for any x ∈ BR0 \ Σ.

Since, by construction, f̃ is linear in (−∞, 3θ/4], we get

ˆ
BR0
\Σ

ˆ −h(x)

0

f̃(τ + η)dτdx = −κ
ˆ
BR0
\Σ

(ˆ η−h(x)

0

τdτ −
ˆ η

0

τdτ

)
dx

= −κ
2

ˆ
BR0
\Σ
h2(x)dx+ κη

ˆ
BR0
\Σ
h(x)dx
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= −κ
2

ˆ
BR0
\Σ
h2(x)dx− κη

ˆ
Σ

h(x)dx,

where, in the last equality, we have used the fact that h is integral free, that is:

ˆ
BR0
\Σ
h(x)dx+

ˆ
Σ

h(x)dx = 0.

Using now the Cauchy-Schwarz inequality, we get

ˆ
BR0
\Σ

ˆ −h(x)

0

f̃(τ + η)dτdx 6 −κ
2

ˆ
BR0
\Σ
h2(x)dx+ κ|η|

√
|Σ|‖h‖L2(Σ).

By the Bienaymé-Chebyshev inequality, we have

|Σ| 6
(

2

θ

)2

‖h‖2
L2(Σ), (4.20)

and thus

ˆ
BR0
\Σ

ˆ −h(x)

0

f̃(τ + η)dτdx 6 −κ
2

ˆ
BR0
\Σ
h2(x)dx+

2κ|η|
θ
‖h‖2

L2(Σ). (4.21)

Thanks to (4.11) and (4.18), (4.21) reduces to

ˆ
BR0
\Σ

ˆ −h(x)

0

f̃(τ + η)dτdx 6 −κ
2

ˆ
BR0
\Σ
h2(x)dx+

2C0

θ
‖h‖2

L2(Σ). (4.22)

Let us now estimate the first integral on the right-hand side of (4.19). For it, we
observe that

τ + η > −|η| > −δ0

|BR0|1/2
> −C0

κ
for any x ∈ Σ and any τ ∈ (0,−h(x)).

Recalling (4.4), we then obtain

sup
x∈Σ

sup
τ∈(0,−h(x))

f̃(τ + η) 6 sup
s>−C0

κ

f̃(s) = max
s∈[0,1]

f̃(s) = C0.

This, together with the Cauchy-Schwarz inequality, gives

ˆ
Σ

ˆ −h(x)

0

f̃(τ + η)dτdx 6 C0

ˆ
Σ

|h(x)|dx 6 C0

√
|Σ|‖h‖L2(Σ),
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Using the Bienaymé-Chebyshev inequality (4.20), we finally get

ˆ
Σ

ˆ −h(x)

0

f̃(τ + η)dτdx 6
2C0

θ
‖h‖2

L2(Σ). (4.23)

Collecting (4.15), (4.17), (4.22) and (4.23), we obtain that

Eε,BR0
(w)− Eε,BR0

(w0)

> ε2

(
κ

2
|BR0|(α− 1)2 +

κ

2
‖h‖2

L2(BR0
\Σ) −

4C0

θ
‖h‖2

L2(Σ) +
CN,J
R2

0

‖h‖2
L2(BR0

)

)
,

for all 0 < ε < ε1 and all w ∈ L2(BR0) with ‖w − w0‖L2(BR0
) 6 δ0. Recalling that

0 < R0 6 R∗0(J, f) and using (3.4), we have CN,J/R
2
0 > 5C0/θ. This, together with

the above inequality, yields

Eε,BR0
(w)− Eε,BR0

(w0) > ε2

(
κ

2
|BR0|(α− 1)2 +

C0

θ
‖h‖2

L2(BR0
)

)
.

Therefore, letting

κ0 := inf

{
κ

2
,
C0

θ

}
,

and recalling (4.13), we obtain

Eε,BR0
(w)− Eε,BR0

(w0) > ε2κ0‖w − w0‖2
L2(BR0

),

for all 0 < ε < ε1 and all w ∈ L2(BR0) with ‖w − w0‖L2(BR0
) 6 δ0.

Remark 4.4. — Note that the proof of Proposition 4.3 relies only on L2-estimates
and on a Poincaré-type inequality. Remarkably, this allows one to adapt straightfor-
wardly our arguments to the local analogue of Eε,BR0

.

Using Proposition 4.3, we now prove the following

Proposition 4.5. — Let N > 2, and let Eε,R be the energy functional defined by
(4.9) with Ω = BR\Kε. Then, there exists C∗ > 0, 0 < δ0 < |BR0 |1/2 and 0 < εδ0 < 1
such that, for any 0 < ε < εδ0 and any w ∈ L2(BR \Kε) with ‖w−w0‖L2(BR\Kε) = δ0,
it holds that

Eε,R(w)− Eε,R(w0) > C∗ε2.

Proof. — Let us first notice that our assumptions on f̃ imply that there is some
κ1 > 0 such that

−G(t) > κ1t
2 for every t ∈ R. (4.24)
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Let us now compute the energy of w0. Since supp(Jε) = Bε/2 and R1 − R0 > ε, a
straightforward calculation yields

Eε,R(w0) = Eε,BR0
(w0)+

1

2

ˆ
Fε

ˆ
BR0

Jε(x− y)dxdy.

In addition, elementary computations yield

1

2

ˆ
Fε

ˆ
BR0

Jε(x− y)dxdy =
1

2

ˆ
Fε∩BR0+ ε

2

(ˆ
BR0

Jε(x− y)dx

)
dy

6
|Fε ∩BR0+ ε

2
|

2
6 CεN+1,

for come constant C = C(N) > 0. As a consequence, we obtain

Eε,R(w0) 6 Eε,BR0
(w0) + CεN+1. (4.25)

Next, developing Eε,R(w), we get

Eε,R(w) = Eε,BR0
(w) + Eε,Fε(w) + Eε,BR\BR1

(w)

+
1

2

ˆ
Fε

(ˆ
BR0

+

ˆ
BR\BR1

)
Jε(x− y)(w(x)− w(y))2dxdy.

Using (4.24) we obtain that Eε,Ω(w) > κ1ε
2‖w‖2

L2(Ω) for any domain Ω ⊂ BR \ Kε.

In particular, since w0 = 0 in Fε ∪BR \BR1 we have

Eε,BR\Kε(w) > Eε,BR0
(w) + κ1ε

2‖w − w0‖2
L2(Fε∪BR\BR1

). (4.26)

Gluing together (4.25) and (4.26), we obtain

Eε,R(w)− Eε,R(w0) > Eε,BR0
(w)− Eε,BR0

(w0)

+ κ1ε
2‖w − w0‖2

L2(Fε∪BR\BR1
) − CεN+1.

(4.27)

Now, by Proposition 4.3, there exists κ0 > 0, 0 < δ0 < |BR0|1/2 and ε1 > 0 such that,
for any 0 < ε < ε1 and any w ∈ L2(BR0) with ‖w − w0‖L2(BR0

) 6 δ0, we have

Eε,BR0
(w)− Eε,BR0

(w0) > κ0ε
2‖w − w0‖2

L2(BR0
). (4.28)

Letting κ̄ := min{κ1, κ0} and combining (4.28) and (4.27), we obtain

Eε,R(w)− Eε,R(w0) > ε2κ̄‖w − w0‖2
L2(BR\Kε) − Cε

N+1 = ε2
(
κ̄δ2

0 − CεN−1
)
, (4.29)
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for all 0 < ε < ε1 and all w ∈ L2(BR \ Kε) with ‖w − w0‖L2(BR\Kε) = δ0. The
conclusion now follows from (4.29) and the choice

C∗ =
κ̄δ2

0

2
and εδ0 := min

{
ε1,

(
κ̄δ2

0

2C

) 1
N−1

}
.

The proof is thereby complete.

We are now in position to construct a positive solution to (4.8).

Proposition 4.6. — Let N > 2 and let (J, f) be a pair satisfying (1.7) and
(1.8). Let (Kε)0<ε<1 be the family of obstacles associated to the pair (J, f) (as

defined in Section 3). Let f̃ be the extension of f given by (4.3) and let f̃ε and Jε
be respectively given by (4.7) and (3.5). Then, there exists ε̄ > 0 such that, for all
0 < ε < ε̄, there is a function vε,R ∈ C(BR \Kε) satisfying (4.8) and 0 < vε,R < 1 in

BR \Kε.

Proof. — Let w0 := 1BR0
and let 0 < δ0 < |BR0|1/2 and 0 < εδ0 < 1 be quantities

constructed in the proof of Proposition 4.5, namely such that

Eε,R(w)− Eε,R(w0) > C∗ε2,

holds for some constant C∗ > 0 and for any 0 < ε < εδ0 and any w ∈ L2(BR \Kε)
with ‖w − w0‖L2(BR\Kε) = δ0. Let us fix 0 < ε < ε̄ := min{ε0, εδ0} where ε0 is as in
Proposition 3.1. Further, we denote by Bδ0(w0) the following set:

Bδ0(w0) :=
{
w ∈ L2(BR \Kε) ; ‖w − w0‖L2(BR\Kε) 6 δ0

}
,

and we define
m := inf

w∈Bδ0 (w0)
Eε,R(w).

Note that m is well-defined since Eε,R is a non-negative continuous functional in
L2(BR \Kε).

Using Lemma 4.5, we will show that there is a local minimum vε,R of the energy
Eε,R in the ball Bδ0(w0) which is also a solution to (4.8). However, it must be noted
that Eε,R lacks of strong compactness properties and passing to the limit along a
subsequence is not straightforward. So let us first show that m is achieved in Bδ0(w0).

Take a minimising sequence (vj)j∈N ⊂ Bδ0(w0). Notice that |w| ∈ Bδ0(w0) for
all w ∈ Bδ0(w0). Moreover, a straightforward computation shows that Eε,R(|vj|) 6
Eε,R(vj) for all j > 0. Thus, we may assume that the vj’s are a.e. non-negative
for every j > 0. By (4.24), we have −Gε(t) > κ1ε

2t2 for all t ∈ R. In particular,
Eε,R(vj) > κ1ε

2‖vj‖2
L2(BR\Kε) for all j > 0. Therefore (vj)j∈N is bounded in L2(BR \
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Kε). Whence, up to extract a subsequence, we obtain that vj converges weakly in
L2(BR \Kε) to some vε,R ∈ Bδ0(w0) (notice that Bδ0(w0) is closed in L2(BR \Kε)).
Let us check that vε,R is indeed a minimiser of Eε,R in Bδ0(w0). To this end, we shall
introduce the following notations

Jε(x) :=

ˆ
RN\Kε

Jε(x− y)dy and Hε(x, s) :=

ˆ s

0

(
Jε(x)τ − gε(τ)

)
dτ.

Since 0 < ε < ε0, by Proposition 3.1, we have

max
[0,1]

f ′ε < inf
RN\Kε

Jε.

Therefore, from the construction of gε (remember (4.4)), we have

g′ε(s) = ε2f̃ ′(1− s) 6 max
R

f̃ ′ε 6 max
[0,1]

f ′ε < inf
RN\Kε

Jε for any s ∈ R. (4.30)

Whence, Hε(x, ·) is convex for each fixed x. Developing the terms involved in the
definition of Eε,R we arrive at

Eε,R(w) = −1

2

ˆ
BR\Kε

ˆ
BR\Kε

Jε(x− y)w(x)w(y)dxdy +

ˆ
BR\Kε

Hε(x,w(x))dx.

Using the weak convergence of (vj)j∈N towards vε,R and the dominated convergence
theorem, we can pass to the limit in the double integral and get that

lim
j→+∞

ˆ
BR\Kε

ˆ
BR\Kε

Jε(x− y)vj(x)vj(y)dxdy

=

ˆ
BR\Kε

ˆ
BR\Kε

Jε(x− y)vε,R(x)vε,R(y)dxdy.

Moreover, since Hε(x, ·) is convex, we have
ˆ
BR\Kε

[
Hε(x, vj(x))−Hε(x, vε,R(x))

]
dx >

ˆ
BR\Kε

∂sHε(x, vε,R(x))(vj(x)−vε,R(x))dx.

From the definition of Hε, gε and from (4.30) a quick computation shows that
|∂sHε(x, s)| = |Jε(x)s − gε(s)| 6 A|s| for all s ∈ R and some constant A > 0.
Since vε,R ∈ L2(BR \ Kε), it follows that ∂sHε(·, vε,R(·)) ∈ L2(BR \ Kε). There-
fore, using the previous two displayed formulas and the weak convergence of vj
towards vε,R, we obtain limj→∞[Eε,R(vj)− Eε,R(vε,R)] > 0. Since, on the other hand,
limj→∞ Eε,R(vj) = m 6 Eε,R(vε,R), we finally obtain

Eε,R(vε,R) = m = inf
w∈Bδ0 (w0)

Eε,R(w) 6 Eε,R(w0).
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Now, thanks to Proposition 4.5, we deduce that vε,R ∈ Bδ0(w0) is a local minimiser

and, as such, vε,R solves (4.8) almost everywhere in BR \Kε.
Let us now check that vε,R is a continuous solution to (4.8) in the whole set

BR \Kε. Since Jε ∈ L2(RN) and vε,R ∈ L2(BR\Kε), it follows from the equation (4.8)
satisfied by vε,R that Nε(·, vε,R(·)) ∈ L∞(BR \Kε) where Nε(x, s) := Jε(x)s− gε(s).
By (4.30), the map Nε(x, ·) is bijective and thus vε,R ∈ L∞(BR \ Kε). Using now

Lemma 2.2 and (4.30) we may further infer that vε,R is continuous in BR \Kε.
To complete the proof it remains to show that 0 < vε,R < 1. Let us first prove

that vε,R < 1. Suppose, by contradiction, that ‖vε,R‖∞ > 1. Then, by continuity

of vε,R, there must be a point x̄ ∈ BR \Kε at which vε,R attains its maximum, i.e.
vε,R(x̄) = ‖vε,R‖∞. Using now the equation satisfied by vε,R, we have

0 >
ˆ
BR\Kε

Jε(x̄− y)(vε,R(y)− vε,R(x̄))dy = cε(x̄)vε,R(x̄)− gε(vε,R(x̄)) > 0.

Thus, since supp(Jε) = Bε/2, we have vε,R(y) = vε,R(x̄) for any y ∈ Bε/2(x̄)∩BR \Kε.

Note that Bε/2(x̄)∩BR \Kε is nonempty whence we may iterate this reasoning over
again and obtain that vε,R ≡ vε,R(x̄) > 1. Now choose x0 ∈ Ωε such that cε(x0) > 0.
Then, evaluating (4.8) at x0, one obtains

0 =

ˆ
BR\Kε

Jε(x0−y)(vε,R(y)−vε,R(x0))dy = cε(x0)vε,R(x0)−gε(vε,R(x0)) > cε(x0) > 0,

which is a contradiction.
Therefore vε,R < 1. Since, by construction, we have that vε,R > 0, it remains to

check that vε,R cannot cancel. Assume, by contradiction, that this is the case, namely

that there exists a point x0 ∈ BR \Kε such that vε,R(x0) = 0. Then, by (4.8), we
have that ˆ

BR\Kε
Jε(x0 − y)(vε,R(y)− vε,R(x0))dy = 0,

and, as above, this implies that vε,R ≡ 0. However, since vε,R ∈ Bδ0(w0) and δ0 <
|BR0|1/2, we have δ0 > ‖vε,R − w0‖L2(BR\Kε) = ‖w0‖L2(BR\Kε) = |BR0|1/2 > δ0, which
is a contradiction. The proof of Proposition 4.6 is thereby complete.

From now on (and until the end of Section 4), ε will be fixed and taken so small
that 0 < ε < ε̄, where ε̄ is as defined in Proposition 4.6.

4.2 An extension procedure

Let us now complete the proof of Lemma 4.1. We will modify the function vε,R
constructed above in order to get a continuous super-solution to (4.1) satisfying
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(4.2). Let us briefly explain our strategy. Since, by construction, vε,R satisfies (4.8),
the function uε,R = 1− vε,R verifies (4.6) and, as already noted above, extending the
function uε,R by 1 outside BR, we obtain a (discontinuous) super-solution to (4.1)
that satisfies (4.2). The aim of this section is to find the right extension of uε,R that
provides the desired super-solution.

To do so, we first introduce some useful notations. Given R > 0 and x ∈ RN , we
let PR(x) be the projection of x to the ball BR, that is

PR(x) ∈ BR and |x−PR(x)| = dist(x,BR) = min
y∈BR

|x− y|.

For σ > 0, we let uε,σ ∈ C(RN \Kε) be the following function

uε,σ(x) := min
{
uε,R(PR(x)) + σ−1 |x−PR(x)|, 1

}
. (4.31)

We shall see that, for well-chosen σ, the function uε,σ will satisfy

Lεuε,σ(x) + f̃ε(uε,σ(x)) 6 0 for all x ∈ RN \Kε, (4.32)

where Lε is the nonlocal operator given by

Lεw(x) :=

ˆ
RN\Kε

Jε(x− y)(w(y)− w(x))dy. (4.33)

Namely, we claim

Claim 4.7. — There exists σε > 0 such that uε,σ satisfies (4.32) for all σ < σε.

Observe that by proving Claim 4.7, we end the proof of Lemma 4.1. Indeed, by
construction, we have f 6 f̃ so that uε,σ trivially satisfies (4.1). As for condition
(4.2) it is also satisfied (by construction of uε,σ) provided that R is taken sufficiently
large.

Proof. — Define AR := RN \BR. As in the previous section, we set

Jε(x) =

ˆ
RN\Kε

J(x− y)dy and cε(x) =

ˆ
RN\BR

Jε(x− y)dy.

Then, in view of (4.31), we have

Lεuε,σ(x) + f̃ε(uε,σ(x)) 6
ˆ
BR\Kε

Jε(x− y)(uε,R(y)− uε,σ(x))dy

+ cε(x)(1− uε,σ(x)) + f̃(uε,σ(x)). (4.34)
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Since uε,σ(x) = uε,R(x) for all x ∈ BR \Kε, using (4.6) we easily get that

Lεuε,σ(x) + f̃ε(uε,σ(x)) 6 0 for x ∈ BR \Kε. (4.35)

To complete the proof, it remains to show that uε,σ satisfies (4.32) in the set AR.
We shall consider two sub-domains, Π+ and Π−, defined as follows

Π− := AR ∩
{
uε,σ < 1

}
,

Π+ := AR ∩
{
uε,σ = 1

}
.

Note that since uε,σ(x) = 1 for all x ∈ Π+, it follows directly from (4.34) that

Lεuε,σ(x) + f̃ε(uε,σ(x)) =

ˆ
RN\Kε

Jε(x− y)(uε,R(y)− 1)dy 6 0, (4.36)

for any x ∈ Π+. Thus, to conclude the proof we need only to check that (4.36) still
holds in Π−. To this end, for any x ∈ Π− and any s ∈ [0, 1], we set

gR(x, s) := Jε(PR(x))s− f̃ε(s). (4.37)

Now, since 0 < ε < ε0, it follows from Proposition 3.1 that there exists a γ > 0 such
that

inf
z∈RN\Kε

min
s∈[0,1]

∂sgR(z, s) > γ. (4.38)

Next, since J ∈ W 1,1(RN) (by (1.6)) we may set

σε := εγ ·
(ˆ

RN
|∇J(z)|dz

)−1

> 0. (4.39)

Let us also set

s(x) := uε,R(PR(x)) and τ(x) := dist(x,BR) = |x−PR(x)| > 0.

Then, uε,σ rewrites uε,σ(x) = s(x) + σ−1τ(x) and

0 < s(x) + σ−1τ(x) < 1 for any x ∈ Π−. (4.40)

Now, using (4.31) and the definition of Lε, we can rewrite Lεuε,σ(x) as

Lεuε,σ(x) = Lεuε,σ(PR(x)) +

ˆ
RN\Kε

[Jε(x−y)−Jε(PR(x)−y)](uε,σ(y)−uε,σ(x))dy

− τ(x)

σ

ˆ
RN\Kε

Jε(PR(x)− y)dy.
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Since PR(x) ∈ BR \Kε, since J ∈ W 1,1(RN) and since J > 0 a.e. in RN , by (4.35)
we obtain

Lεuε,σ(x) 6 −τ(x)

σ
Jε(PR(x))− f̃ε(s(x)) +

ˆ
RN\Kε

|Jε(x− y)− Jε(PR(x)− y)| dy.

6 −τ(x)

σ
Jε(PR(x))− f̃ε(s(x)) +

ˆ
RN
|Jε(x− y)− Jε(PR(x)− y)| dy.

6 −τ(x)

σ
Jε(PR(x))− f̃ε(s(x)) +

τ(x)

ε

ˆ
RN
|∇J(z)|dz.

Therefore, we get

Lεuε,σ(x) + f̃ε(s(x) + σ−1τ(x)) 6
(
f̃ε(s(x) + σ−1τ(x))− f̃ε(s(x))

)
− τ(x)

σ
Jε(PR(x)) +

τ(x)

ε

ˆ
RN
|∇J(z)|dz.

By adding and subtracting s(x)Jε(PR(x)) on the right hand side of the above
inequality and recalling (4.37), we obtain

Lεuε,σ(x) + f̃ε(uε,σ(x)) 6
(
gR (x, s(x))− gR

(
x, s(x) + σ−1τ(x)

))
+ γσ−1

ε τ(x).

where we have used (4.39). By (4.38), (4.40) and the mean value theorem, we deduce
that there exists some

ξ ∈
[
s(x), s(x) + σ−1τ(x)

]
⊂ [0, 1],

such that

gR (x, s(x))− gR
(
x, s(x) + σ−1τ(x)

)
= −∂sgR(x, ξ)σ−1τ(x) 6 −γσ−1τ(x).

Therefore, for every 0 < σ < σε, we obtain that

Lεuε,σ(x) + f̃ε(uε,σ(x)) 6 γτ(x)

(
1

σε
− 1

σ

)
< 0 for any x ∈ Π−.

The proof of Claim 4.7 is thereby complete.

Remark 4.8. — An analogue version of Lemma 4.1 holds when Jε(x−y) is replaced

by J̃ε(dg(x, y)) where J̃ε is a locally integrable function such that J̃ε(|z|) = Jε(z) and

dg(x, y) is the geodesic distance on RN \Kε. Indeed, the only places where the
structure of the radial kernel Jε came into place is when we used the Poincaré-
type inequality [118, Theorem 1.1] in Proposition 4.5, when we asserted that the
solutions to (4.8) satisfying max[0,1] f

′
ε < infBR\Kε Jε are continuous and when we
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made our extension procedure. But the Poincaré inequality was only needed in the
ball BR0 and, by convexity, it trivially holds that Jε(x − y) = J̃ε(dg(x, y)) for any
(x, y) ∈ BR0 × BR0 . Similarly, the extension procedure required only to evaluate
the new function on the annulus BR+σ \ BR but, since R − R1 > 0 is large and ε

is small, it still holds that Jε(x − y) = J̃ε(dg(x, y)) for any x ∈ BR+σ \ BR and any
y ∈ RN \Kε. Moreover, as already noted in Remark 2.5, condition (3.11) still implies
the continuity of solutions to the corresponding auxiliary problem:

ˆ
BR\Kε

J̃ε(dg(x, y))(vε,R(y)− vε,R(x))dy − c̃ε(x)vε,R + gε(vε,R(x)) = 0,

for x ∈ BR \Kε, where, by analogy, we have set

c̃ε(x) :=

ˆ
RN\BR

J̃ε(dg(x, y))dy.

In fact, the only place where some care should be taken is when justifying that if

ˆ
BR\Kε

J̃ε(dg(x̄, y))(vε,R(y)− vε,R(x̄))dy = 0, (4.41)

where x̄ ∈ BR \Kε is a point at which vε,R reaches an extremum, then it holds that

vε,R(y) ≡ vε,R(x̄) for any y ∈ BR \Kε (which is needed to establish the analogue of
Proposition 4.6). But, fortunately, the geometry of Kε is simple enough to ensure
that this is still the case. Indeed, (4.41) implies that vε,R(y) ≡ vε,R(x̄) for any

y ∈ Π1(x̄) := {z ∈ BR \Kε; dg(x̄, z) < ε/2}. By iteration, one finds that vε,R(y) ≡
vε,R(x̄) for any y ∈ Πj(x̄) and any j > 1, where Πj(x̄) is given by

Πj+1(x̄) :=
⋃

y∈Πj(x̄)

{
z ∈ BR \Kε; dg(y, z) < ε/2

}
, for any j > 1.

Then, one can show that, for some j0 > 1 (independent of x̄), it holds that Bε/4(x̄)∩
BR \Kε ⊂ Πj0(x̄). Whence, iterating the same reasoning over again, one gets that

vε,R(y) ≡ vε,R(x̄) for any y ∈ Bkε/4(x̄) ∩ BR \Kε and any k ∈ N; which then gives
the desired result.

5 Construction of continuous global solutions

In this final section we construct a positive nonconstant solution to (1.9). Our goal
will be to find an ordered pair of global continuous sub- and super-solution. That
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is, given 0 < ε < ε∗ (where ε∗ has the same meaning as in Lemma 4.1), we aim to
construct two functions, uε and uε, such that

Lεuε + fε(uε) 6 0 in RN \Kε,

Lεuε + fε(uε) > 0 in RN \Kε,

0 6 uε 6 uε 6 1 in RN \Kε,

(where Lε is as in (4.33)) and which further satisfy

lim
x1→+∞

uε(x) = 1 and lim
|x|→+∞

uε(x) = 1. (5.1)

Here, x1 = x · e1 where e1 := (1, 0, · · · , 0) ∈ SN−1. Then, by Lemmata 2.1 and 2.2
we automatically obtain the existence of a continuous solution uε to

Lεuε + fε(uε) = 0 in RN \Kε, (5.2)

satisfying 0 6 uε 6 uε 6 uε 6 1. This, together with (5.1), yields a continuous
solution to (5.2) satisfying 0 < uε < 1 and uε(x) → 1 as x1 → ∞. In particular,
we have supx∈RN\Kε uε(x) = 1. Since (1.6), (1.7) are satisfied, uε is continuous, Jε is

compactly supported and Jε ∈ L2(RN) (by (1.8)), we may apply Lemma 2.4 and we
obtain that lim|x|→+∞ uε(x) = 1, which proves that uε satisfies the requirements of
Theorem 1.2 and thus Theorem 1.1 is proved.

Therefore, to complete the proof of Theorem 1.2, we need only to prove the
following lemma.

Lemma 5.1. — Let (J, f) be a pair satisfying (1.7) and (1.8). Let (Kε)0<ε<1 be
the family of obstacles associated to the pair (J, f) (as defined in Section 3). Let
(Jε, fε) be as in (3.5) and let ε∗ > 0 be as in Lemma 4.1. Then, there exists r0 > 0
such that, for all 0 < ε < ε∗, there is

(i) a continuous global sub-solution uε to (5.2) satisfying uε ≡ 0 in {x1 6 r0} and
uε(x)→ 1 as x1 →∞,

(ii) a continuous global nonconstant super-solution uε to (5.2) satisfying uε ≡ 1 in
RN \Br0 and 0 < uε 6 1.

In particular, 0 6 uε < uε 6 1.

Proof. — By Lemma 4.1, we know that there exists some R∗ > 0 and some
0 < ε∗ < 1 such that, for all 0 < ε < ε∗, there is a nonconstant super-solution
uε ∈ C(RN \Kε) to (5.2) that satisfies uε ≡ 1 in RN \ BR∗ . So, we are left to prove
that there exists a sub-solution uε to (5.2) satisfying (i) and such that uε 6 uε.

To do so, let us extend f outside [0, 1] by f ′(0)s when s > 0 and f ′(1)(s− 1) for
s > 1. For simplicity, we still denote by f this extension. Now, we take δ ∈ (0, 1)
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and we let fδ be a C1 function defined in R such that

fδ 6 f in R, and fδ(s) = f(s) for s > θ,

fδ has only one zero, θδ = θ, in (−δ, 1),

fδ (−δ) = 0, fδ (1) = 0,

f ′δ(s) < 1 for any s ∈ [−δ, 1] and f ′δ (−δ) , f ′δ (1) < 0,´ 1

−δ fδ(s)ds > 0.

Since f ∈ C1(R) satisfies (1.7) such a function fδ ∈ C1
(
R
)

always exists provided
that δ is taken sufficiently small, say if 0 < δ < δ1 for some small δ1 > 0.

Let fε,δ(s) := ε2fδ(s) and let LRN be the operator given by

LRNu(x) :=

ˆ
RN
Jε(x− y)(u(y)− u(x))dy. (5.3)

Since Jε is radially symmetric (because J is), using the results obtained in [13, 45,
50, 155], we know that, for any 0 < ε < 1, there exists an increasing function
φε,δ ∈ C1(R) and a number cε,δ > 0 such that the function ϕε,δ(x) := φε,δ(x · e1)
satisfies{

LRNϕε,δ(x) + fε,δ(ϕε,δ(x)) = cε,δφ
′
ε,δ(x1) > 0 for all x ∈ RN ,

ϕε,δ(−∞) = −δ, ϕε,δ(∞) = 1 and ϕε,δ = 0 in He1 ,
(5.4)

where He1 is the hyperplane He1 := {x1 = 0}. Now, for any r0 > 0, we let ϕε,δ,r0 be
the function defined by

ϕε,δ,r0(x) := ϕε,δ(x− r0).

By construction, for every r0 > 0, we have

LRNϕε,δ,r0 + fε(ϕε,δ,r0) > LRNϕε,δ,r0 + fε,δ(ϕε,δ,r0) > 0 in RN . (5.5)

Now, we set

uε(x) := max
{

0, ϕε,δ,r0(x)
}

and H∗ :=
{
x ∈ RN ; x1 > r0

}
.

Note that, for all 0 < ε < ε∗, it holds that Kε ⊂ RN \H∗ provided that r0 is chosen
sufficiently large. Let us now prove that, for r0 large enough, uε is a sub-solution to
(5.2).

First, if x ∈ RN \ (K ∪H∗), then uε(x) = 0 and

Lεuε(x) + fε(uε(x)) =

ˆ
RN\Kε

Jε(x− y)uε(y)dy > 0. (5.6)
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Next, if x ∈ H∗, then, since Jε is compactly supported, we have⋃
x∈H∗

(
x+ supp(Jε)

)
⊂ RN \Kε,

provided that r0 is chosen sufficiently large. From this and (5.5), we deduce that

Lεuε(x) + fε(uε(x)) =

ˆ
RN\Kε

Jε(x− y)(uε(y)− ϕε,δ,r0(x))dy + fε(ϕε,δ,r0(x))

>
ˆ
RN\Kε

Jε(x− y)(ϕε,δ,r0(y)− ϕε,δ,r0(x))dy + fε(ϕε,δ,r0(x))

= LRNϕε,δ,r0(x) + fε(ϕε,δ,r0(x)) > 0.

Together with (5.6), we obtain that uε is a global sub-solution to (5.2) which, by (5.4),
satisfies uε(x) → 1 as x1 → ∞ and uε(x) = 0 if x1 6 r0. By increasing r0 to R∗ (if
necessary) we then achieve uε < uε when 0 < ε < ε∗. The proof of Lemma 5.1 is
thereby complete.

Remark 5.2. — Observe that, on account of Remarks 2.5, 3.2 and 4.8, the same
proof as above yields an analogous result with Lg in place of L. To see this, it suffices
to notice that our arguments are essentially focused on what is happening far away
from K and, since the kernel we consider is compactly supported, the operator Lg

will then coincide with L (possibly up to take R sufficiently large). In like manner,
as already mentioned in Remark 2.5, the fact that “supRN\Kε u = 1” implies that
“lim|x|→∞ u(x) = 1” still holds with Lg in place of L since, here as well, the proof
relies only on estimates of the behaviour of u far away from Kε.

Appendix

In this appendix, we prove Lemma 2.1. Our strategy closely follows [31, 52] and
relies on the well-known monotone iterative method. Before doing so, we first state
a preliminary lemma.

Lemma 5.3. — Let K ⊂ RN be a compact set and assume that J satisfies (1.6).
Let k > 0 and let w ∈ C(RN \K) be such that

Lw − kw > 0 in RN \K, (5.7)

and that

lim sup
|x|→∞

w(x) 6 0. (5.8)

Then,
w 6 0 in RN \K.
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Proof. — Suppose, by contradiction, that supRN\K w > 0. Then, by assumption
(5.8), there exists a number r > 0 with K ⊂ Br and a sequence (xj)j>0 ⊂ Br \ K
such that

lim
j>0

w(xj) = sup
Br\K

w = sup
RN\K

w > 0. (5.9)

Since (xj)j>0 is bounded, up to extraction of a subsequence, there exists a point

x̄ ∈ Br \K such that xj → x̄ as j →∞. Moreover, since w is continuous and (5.7)
is satisfied everywhere in RN \K, it makes sense to evaluate (5.7) at xj for any j > 0.
That is, we haveˆ

RN\K
J(xj − y)(w(y)− w(xj))dy > kw(xj) for any j > 0.

But, since k > 0, using (5.9) and the dominated convergence theorem, we obtain

0 >
ˆ
RN\K

J(x̄− y)

(
w(y)− sup

RN\K
w

)
dy > k sup

RN\K
w > 0,

which is a contradiction. The proof is thereby complete.

We are now in position to prove Lemma 2.1.

Proof of Lemma 2.1. — Let us first observe that, from the assumptions made on
J , the operator L is linear and continuous on (C0(RN \K), ‖·‖∞), where

C0(RN \K) :=

{
w ∈ C(RN \K); lim

|x|→∞
w(x) = 0

}
.

Indeed, this is because, given any w ∈ C0(RN \K), we have

Lw(x) =

ˆ
RN
J(y)

(
1x−RN\K(x)w(x− y)

)
dy −J (x)w(x),

where J is as in (2.4), and, by the dominated convergence theorem, we have that
Lw(x)→ 0 as |x| → ∞. The continuity of Lw is a mere consequence of the continuity
of translations in L1(RN) and of the continuity of w, as is easily seen from the (trivial)
inequality

|Lw(x1)−Lw(x2)| 6 2‖w‖∞
ˆ
RN
|J(y+x1−x2)−J(y)|dy + |w(x1)−w(x2)|, (5.10)

which holds for any x1, x2 ∈ RN \K. So that L indeed maps C0(RN \K) into itself.
Moreover, the continuity of the operator L follows from the fact that

‖Lw‖∞ 6 2‖w‖∞ for any w ∈ C0(RN \K).
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Next, we let k > 0 be a number large enough so that the map s 7→ −ks − f(s)
is decreasing in [0, 1] and that k ∈ ρ(L) where ρ(L) denotes the resolvent of the
operator L.

Let u and u be continuous global sub- and super-solutions to

Lu+ f(u) = 0 in RN \K, (5.11)

satisfying (2.1) and (2.2).
We will construct a solution u to (5.11) satisfying u 6 u 6 u using a monotone

iterative scheme. That is, we will construct u as the limit of an appropriate sequence
of functions. The main tool behind our construction is the comparison principle
Lemma 5.3. To this end, we have to make sure that the sequence we construct
has the right asymptotic behavior as |x| → ∞ (as required by Lemma 5.3). With
this aim in mind, we first construct an appropriate sequence of auxiliary functions.
Namely, we define v0 ≡ 0 and, for x ∈ RN \K and j > 0, we let

Lvj+1(x)− kvj+1(x) = −kvj(x)− f(u(x) + vj(x))− Lu(x). (5.12)

Let us check that the vj’s are well-defined elements of C0(RN \K). Since k ∈ ρ(L)
and 0 ≡ v0 ∈ C0(RN \K), v1 is a well-defined element of C0(RN \K) as soon as

f(u(·)) + Lu(·) ∈ C0(RN \K),

which is the case since f(1) = 0, f is continuous, u(x) → 1 as |x| → ∞ and
Lu ∈ C0(RN \K) (because u ∈ C(RN \K)) and

Lu(x) =

ˆ
RN
J(y)1x−RN\K(y)(u(x− y)− u(x))dy −→

|x|→∞

ˆ
RN
J(y)(1− 1)dy = 0.

Similarly, if, for some j > 0, it holds that vj ∈ C0(RN \K), then, given that k ∈ ρ(L)
and that Lu ∈ C0(RN \K), vj+1 is a well-defined element of C0(RN \K) as soon as

f(u(·) + vj(·)) ∈ C0(RN \K),

which trivially holds since f is continuous, f(1) = 0 and u(x) → 1, vj(x) → 0 as
|x| → ∞. Whence, by induction, we infer that the vj’s are, indeed, well-defined
elements of C0(RN \K).

Let us now define a sequence (uj)j>0 ⊂ C(RN \K) by setting uj := u+ vj. Then,
by construction, for any x ∈ RN \K and j > 0, we have

Luj+1(x)− kuj+1(x) = −kuj(x)− f(uj(x)), (5.13)

and the uj’s satisfy the limit condition

lim
|x|→∞

uj(x) = 1 for any j > 0. (5.14)
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We will show that the desired solution to (5.11) can be obtained as the pointwise
limit of (uj)j>0. Let us proceed step by step. First, when j = 0, we have

Lu1(x)− ku1(x) = −ku0(x)− f(u0(x)) for x ∈ RN \K. (5.15)

We claim that u 6 u1 6 u0 = u in RN \K. Indeed, we have{
L(u1 − u0)(x)− k(u1 − u0) =−Lu0(x)− f(u0(x)),

L(u1 − u)(x)− k(u1 − u)6 f(u(x)) + ku(x)− f(u0(x))− ku0(x).

Since u0 = u is a super-solution to (5.11), u 6 u and s 7→ −ks− f(s) is decreasing,
we obtain that {

L(u1 − u0)(x)− k(u1 − u0) > 0,

L(u1 − u)(x)− k(u1 − u) 6 0.
(5.16)

By construction of u1 (remember (2.1) and (5.14)), we have

lim
|x|→∞

(u1 − u0)(x) = 0 and lim inf
|x|→∞

(u1 − u)(x) > 0. (5.17)

This, together with Lemma 5.3, then gives that u 6 u1 6 u0 = u in RN \K.
Similarly, by (5.13), the function u2 ∈ C(RN \K) solves (5.15) with u2 in place of
u1 and u1 in place of u0. Thus, from (2.1), (5.14) and the monotonicity of s 7→
−ks − f(s), we deduce that (5.16) and (5.17) still hold with u2 instead of u1 and
u1 instead of u0. We may then apply the comparison principle Lemma 5.3 and we
deduce that u 6 u2 6 u1 6 u0 = u in RN \K. By induction, we infer that the uj’s
satisfy the monotonicity relation

u 6 · · · 6 uj+1 6 uj 6 · · · 6 u2 6 u1 6 u0 = u.

Since (uj)j>0 is non-increasing and bounded from below by u, the function

u(x) := lim
j→∞

uj(x) ∈ [u(x), u(x)] , (5.18)

is well-defined for any x ∈ RN \ K. In particular, since 0 6 u 6 u 6 1, it follows
from (5.18) that u ∈ L∞(RN \K). It remains only to check that the function u is
a solution to (5.11). For it, it suffices to let j → ∞ in (5.13) (using the dominated
convergence theorem), which then gives

Lu(x) + f(u(x)) = 0 for any x ∈ RN \K.

The proof is thereby complete.
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Remark 5.4. — The same arguments also apply when the operator L is replaced
by Lg provided that J = J̃(|·|) satisfies (1.8), since it still holds that if w(x)→ ` ∈ R
as |x| → ∞, then Lgw(x) → 0 as |x| → ∞. Moreover, the continuity of w still
implies the continuity of Lgw but the proof is less obvious since one can no longer
rely on the continuity of translations in L1(RN). For the sake of completeness, we
state a last lemma below which justifies why this is true.

Lemma 5.5. — Let K ⊂ RN be a compact set and assume that J̃ satisfies (1.12)

and that J̃ is supported in the segment line [0, r] for some r > 0. Let w ∈ C(RN \K).
Then, Lgw ∈ C(RN \K).

Proof. — Let x1, x2 ∈ RN \K with x1 fixed and x2 arbitrarily close to x1. For
w ∈ C(RN \K), the analogue of (5.10) is here:

|Lgw(x1)− Lgw(x2)| 6 2‖w‖∞
∣∣∣∣ˆ

RN
[J̃(dg(x1, y))− J̃(dg(x2, y))]dy

∣∣∣∣
+ ‖J̃ ‖∞|w(x1)− w(x2)|,

where J̃ is as in (2.7). Since w ∈ C(RN \K), the delicate part is to show that the
first term on the right-hand side vanishes as x2 → x1. This can be done as follows.
Let δ > 0 be small enough so that x2 ∈ Bδ/2(x1) ⊂ Bδ(x1) ⊂ RN \K. Then, we may
write ∣∣∣∣ˆ

RN\K
[J̃(dg(x1, y))− J̃(dg(x2, y))]dy

∣∣∣∣
6
ˆ
RN\(Bδ(x1)∪K)

|J̃(dg(x1, y))− J̃(dg(x2, y))|dy

+

ˆ
Bδ(x1)

|J̃(dg(x1, y))− J̃(dg(x2, y))|dy

=: I1(x1, x2) + I2(x1, x2).

Since dg(xi, y) = |xi − y| for any i ∈ {1, 2} and y ∈ Bδ(x1), we have

I2(x1, x2) 6 ‖J(·+ x1 − x2)− J‖L1(RN ) −→
x2→x1

0.

On the other hand, since J is radially symmetric, supp(J) = Br and J ∈ W 1,1(Br),

by [71, Theorems 1.1 and 2.3], we have that J̃ ∈ W 1,1((0, r), tN−1), J̃ is almost

everywhere equal to a continuous function, J̃ ′ exists almost everywhere and

ˆ r

0

|J̃ ′(t)|tN−1dt 6 C1

ˆ
Br

|∇J(z)|dz. (5.19)
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Therefore, using the fact that dg(xi, y) > |xi−y| > δ/2 for any y ∈ RN \(Bδ(x1)∪K),
we have

I1(x1, x2) 6
ˆ
RN\(Bδ(x1)∪K)

ˆ dg(x1,y)

dg(x2,y)

|J̃ ′(t)|dtdy

6

(
2

δ

)N−1 ˆ
RN\(Bδ(x1)∪K)

ˆ dg(x1,y)

dg(x2,y)

|J̃ ′(t)|tN−1dtdy. (5.20)

Now, since x1, x2 ∈ Bδ/2(x1) ⊂ RN \K and dg(·, ·) is a distance, we have

|dg(x1, y)− dg(x2, y)| 6 dg(x1, x2) = |x1 − x2| −→
x2→x1

0.

Therefore, using (5.19), (5.20) and the dominated convergence theorem, we obtain
that

I1(x1, x2)→ 0 as x2 → x1.

This completes the proof.
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Chapter 5

Some monotonicity results for
general systems of nonlinear
elliptic PDEs

This chapter is inspired by the paper [32] written in collaboration
with S. Dipierro, published in the Journal of Differential Equations.

1 Introduction

1.1 Monotonicity and 1-dimensional symmetry for systems

In this chapter, we study monotonicity properties of minima and stable solutions of
general energy functionals of the type

ˆ
Ω

F (∇u,∇v, u, v, x) dx, (1.1)

where Ω ⊂ RN .
Recent years have seen numerous ongoing research activities in investigating sym-

metry properties of systems of PDEs. A typical example is
∆u = uv2,

∆v = vu2,

u, v > 0.

(1.2)

which arise in phase separation for Bose-Einstein condensates with multiple states.
The interested reader may refer to [18, 20] (and references therein) for a derivation
of this phase separation model.
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In particular, in [18], the authors establish the existence, symmetry and non-
degeneracy of solutions to (1.2) in one dimension. They show that entire solutions
are reflectionally symmetric, i.e. there exists x0 ∈ R such that u(x−x0) = v(x0−x)
for any x ∈ R. They also establish a result which may be seen as the analogue of a
celebrated conjecture of De Giorgi for problem (1.2) in dimension 2. More precisely,
they show that monotone solutions to (1.2) in dimension 2 have one-dimensional
symmetry under the growth condition

u(x) + v(x) 6 C(1 + |x|),

for some C > 0. On the other hand, the linear growth is the lowest possible for
positive solutions to (1.2). Namely, if there exists α ∈ (0, 1) such that

u(x) + v(x) 6 C(1 + |x|)α,

then both u and v are constants, and at least one of them is 0, see [115].
In dimension 2, Farina [62] improves the result in [18] showing that if (u, v) is a

monotone solution to (1.2) and has at most algebraic growth at infinity, then it must
be one-dimensional. It turns out that the monotonicity condition can be weakened
in order to get the one-dimensional symmetry for solutions to (1.2). Indeed, it has
been proved in [20] that stable solutions to (1.2) are one-dimensional in R2.

Let us also mention [66] where symmetry results for systems in dimension 2
involving more general nonlinearities have been obtained. Quasilinear (possibly de-
generate) elliptic systems in R2 have also been considered in [55]. As for dimensions
higher than 2, in [64], the authors prove that if (u, v) has algebraic growth and

lim
xN→±∞

(
u(x′, xN)− v(x′, xN)

)
= ±∞ uniformly in x′ ∈ RN−1,

then (u, v) depends on xN only. Also, in [150, 151], it has been proved that if (u, v)
has linear growth, then it is one-dimensional.

Recently, the nonlocal counterpart of (1.2) has also been investigated, see e.g.
[133, 134, 147, 152], and some symmetry results have been obtained in [56] for a
quite general system of nonlocal PDEs of the form{

(−∆)s1u = F1(u, v),

(−∆)s2v = F2(u, v),

where F1 and F2 denote the derivatives of a function F ∈ C1,1
loc (R2) with respect to

the first and the second variable, respectively; s1, s2 ∈ (0, 1) and, given s ∈ (0, 1),
(−∆)s stands for the fractional Laplace operator

(−∆)su(x) := p.v.

ˆ
RN

u(x)− u(y)

|x− y|N+2s
dy,
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where p.v. denotes the Cauchy principal value (see [113] for the definition and further
details). See also [67] for symmetry results for nonlocal systems of equations.

Our aim in this chapter is to provide monotonicity results for minima and stable
solutions of energy functionals of the form (1.1) (thus embracing all the systems
considered above). We will consider the case in which both the domain Ω and the
functional F are invariant under translations in the eN -direction, and we will deal
with symmetry properties of minima or stable solutions in the class of functions
which are obtained by piecewise Lipschitz domain deformations in the eN -direction
(see Definitions 1.1 and 1.2). We will also require some rather mild assumptions on
F and a growth condition (see (1.5)).

The key tool of our proofs relies on a technique introduced in [124] to study the
regularity of fractional minimal surfaces in dimension 2 (see [41] where these object
were introduced), and developed in [125] to work in a more general setting. See
also [42, 57] where these techniques have been used in the context of free boundary
problems.

Here we adapt the new strategy of [125] to the case of general systems of equations.
The idea is to look at the stability inequality without dealing with its precise form
(which, in some cases, can be very hard to handle), and to simply compare the energy
of the couple (u, v) to that of its translations. To this end, one also needs to modify
the “translated” couple at infinity to make it a compact perturbation of (u, v). Here
the growth condition comes into play and ensures that the energy of the perturbed
couple can be made arbitrarily close to the energy of (u, v). Then, if u and v are not
monotone in the eN -direction, one can modify locally the perturbed couple in order
to get lower energy, but this is in contradiction with the minimality of (u, v). This
strategy allows to deal with quite general form of energy functionals.

We now introduce the setting in which we will work and give precise definitions
and statements of our results.

1.2 The mathematical setting

We consider a domain Ω ⊂ RN and study the symmetry properties of minima for
functionals of the type

E (u, v) :=

ˆ
Ω

F (∇u,∇v, u, v, x)dx.

We assume that the domain Ω and the functional F are invariant under translations
in the eN -direction, namely

Ω = V × R, V ⊆ RN−1,
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and F does not depend on the xN -coordinate. We will denote a point in Ω by x =
(x′, xN) ∈ V × R. We also suppose that F is convex with respect to the first two
variables. Precisely, we assume that

F = F (p1, p2, z1, z2, x
′) ∈ C(R2N × R2 × V ), (1.3)

and F is C2 and uniformly convex in p1 and p2 at all p1, p2 with

p1 · eN 6= 0 and p2 · eN 6= 0, for all (z1, z2, x
′) ∈ R2 × V .

Finally, we assume that there exists a constant C > 0 such that

|Fp1p1(p1 + q1, p2, z1, z2, x
′)| 6 C|Fp1p1(p1, p2, z1, z2, x

′)|,
|Fp2p2(p1, p2 + q2, z1, z2, x

′)| 6 C|Fp2p2(p1, p2, z1, z2, x
′)|, (1.4)

|Fp1p2(p1 + q1, p2 + q2, z1, z2, x
′)| 6 C|Fp1p2(p1, p2, z1, z2, x

′)|,

for any p1, p2, q1, q2 ∈ RN with |q1| 6 |p1 · eN |/4 and |q2| 6 |p2 · eN |/4. We will make
these assumptions throughout the chapter.

Given R > 0, we consider the following energy functional

ER(u, v) :=

ˆ
Ω∩BR

F (∇u(x),∇v(x), u(x), v(x), x′)dx,

where, as usual, BR denotes the ball of radius R centered at the origin.
Following the line in [125], we want to study the symmetry properties of minimal

or stable solutions of the above functional among suitable perturbations, obtained by
domain deformations in the direction given by eN . To do this, we recall the following
definitions introduced in [125].

Definition 1.1. — Given a function w, an eN -Lipschitz deformation of w in BR

is a function w defined by

w(x) = w(x+ ϕ(x)eN) for any x ∈ Ω,

where ϕ ∈ C0,1(RN) is a function supported in BR with ‖∂Nϕ‖L∞(RN ) < 1.

Definition 1.2. — Given a function w ∈ C0,1(Ω), a piecewise eN -Lipschitz
deformation of w in BR is a function w ∈ C0,1(Ω) defined by

w(x) = w(i)(x) for some i (depending on x ∈ Ω),

where w(1), . . . , w(m) constitute a finite number of eN -Lipschitz deformations of w
in BR. In this case, we write w ∈ DR(w).

Also, if all w(i) satisfy

w(i)(x) = w(x+ ϕ(i)(x)eN) with ‖ϕ(i)‖C0,1(Ω) 6 δ

for some δ, we write w ∈ Dδ
R(w).
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We recall also some elementary properties of piecewise eN -Lipschitz deformations,
which follow easily from the definitions above.

Proposition 1.3. — The following properties hold true:

(i) if w1, w2 ∈ Dδ
R(w), then min {w1, w2} ,max {w1, w2} ∈ Dδ

R(w);

(ii) if w ∈ Dδ
R(w), w̃ ∈ Dδ

R(w), then w̃ ∈ D3δ
R (w);

(iii) if w ∈ Dδ
R(w), then ‖w − w‖L∞(Ω) 6 Cδ‖w‖C0,1(Ω);

(iv) if w ∈ Dδ
R(w), w ∈ C1,1(Ω), then ‖w − w‖C0,1(Ω) 6 Cδ‖w‖C1,1(Ω).

In the sequel, we will also assume a growth condition on the functional E . Namely,
we suppose that there exists a constant C > 0 such that, for R sufficiently large,

ˆ
Ω∩BR

|Fp1p1(∇u,∇v, u, v, x′)||∇u|2 + |Fp2p2(∇u,∇v, u, v, x′)||∇v|2

+ |Fp1p2(∇u,∇v, u, v, x′)||∇u||∇v|dx 6 CR2.

(1.5)

1.3 A monotonicity result for minimizers of the energy func-
tional

The first result here deals with eN -minimizers of E . To state it, we give the following:

Definition 1.4. — We say that (u, v), with u, v ∈ C0,1(Ω), is an eN -minimizer
for E if, for any R > 0, we have that ER(u, v) is finite and

ER(u, v) 6 ER(u, v),

for any u ∈ DR(u) and any v ∈ DR(v).

We are now in the position to state our first monotonicity result.

Theorem 1.5. — Let u, v ∈ C1(Ω) and let F satisfy (1.3) and (1.4). Suppose
that (u, v) is an eN -minimizer for the energy E and that the growth condition (1.5)
is satisfied. Then, u and v are monotone on each line in the eN -direction, i.e., for
any x ∈ Ω, either uN(x + teN) > 0 or uN(x + teN) 6 0, and either vN(x + teN) > 0
or vN(x+ teN) 6 0, for any t ∈ R.

Remark 1.6. — We notice that if a continuous function w is monotone on each
line in RN , then it is one-dimensional, that is there exist a function w0 : R→ R and
a unit direction ω ∈ SN−1 such that w(x) = w0(ω ·x) (see [125, Section 9] for a proof
of this fact).
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1.4 A monotonicity result for stable solutions

The second result that we state concerns stable critical points of the energy instead
of eN -minimizers. We give a definition of the stability condition that involves the
second variation of the functional E for deformations of the solution both in the eN -
direction and in the vertical eN+1-direction. Precisely, we give the following:

Definition 1.7. — Given a function w, a piecewise Lipschitz deformation of w
in the {eN , eN+1}-directions is a function w̃ defined as

w̃ = w + φ,

where w ∈ Dδ
R(w) and φ is a Lipschitz function with compact support in Ω ∩ BR,

and ‖φ‖C0,1(Ω) 6 δ. In this case, we write w ∈ Dδ
R(w).

Definition 1.8. — We say that (u, v) is an {eN , eN+1}-stable solution of E if
for every R > 0 and ε > 0 there exists δ > 0 depending on R, ε, u and v such that,
for any t ∈ (0, δ), we have that ER(u, v) is finite and

ER(ũ, ṽ)− ER(u, v) > −εt2, (1.6)

for any ũ ∈ D t
R(u) and any ṽ ∈ D t

R(v).

Remark 1.9. — As we shall see later on (see Lemma 2.1), this notion of {eN , eN+1}-
stable solution shares intimate links with the classical notion of stability. In fact,
this follows from the same arguments as in the case of a single equation (see [125]).
Actually, we can infer directly from the definition that

(i) if (u, v) is a classical minimizer of E , then (u, v) is {eN , eN+1}-stable for E ;

(ii) if (u, v) is {eN , eN+1}-stable for E , then (u, v) is a critical point for E .

This is because we allow perturbation in the eN+1-direction.

Next, we state our monotonicity result for {eN , eN+1}-stable solutions.

Theorem 1.10. — Let F ∈ C3,α(R2N × R2 × V ) satisfy (1.4) and let (u, v) be
such that either u, v ∈ C0,1(Ω) are convex or u, v ∈ C1,1(Ω). Moreover, suppose
that (u, v) is an {eN , eN+1}-stable solution of E , and that the growth condition (1.5)
holds true. Then, u and v are monotone in the eN -direction, i.e. either uN > 0 or
uN 6 0 and either vN > 0 or vN 6 0 in Ω.

By Theorem 1.10 and Remark 1.6 one obtains that an {eN , eN+1}-stable solution
of E is one-dimensional, in the sense that there exist u, v : R→ R and ωu, ωv ∈ SN−1

such that (u(x), v(x)) =
(
u(ωu · x), v(ωv · x)

)
. We remark that, in general, it is not

possible to conclude that u and v have the same direction of monotonicity. It is not
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true, for instance, for an uncoupled system of PDEs, such as{
∆u = 0,

∆v = 0.

See also [55, Remark 1.4] for a discussion on this fact.
Nonetheless, there are cases in which it is possible to obtain that u and v have the

same direction of monotonicity, even for quite general systems, see e.g. [55] and [56].

1.5 Organization of the chapter

In Section 2 we show that, under suitable assumptions, the notion of {eN , eN+1}-
stability is equivalent to the notion of classical stability. In Section 3 we perform a
local analysis and, in Section 4, we estimate the energy of the perturbation at infinity,
collecting the basic facts in order to prove Theorems 1.5 and 1.10 in Sections 5 and 6,
respectively. Finally, in Section 7, we investigate some applications of our results in
some concrete cases.

2 Stability property

The following lemma justifies Remark 1.9.

Lemma 2.1. — If Ω = RN , F ∈ C2 and u, v ∈ C2(RN), then (u, v) is a classical
stable solution for the energy functional E if, and only if, (u, v) is an {eN , eN+1}-
stable solution of E according to Definition 1.8.

Proof. — Suppose first that (u, v), with u, v ∈ C2(RN), is a classical stable
solution. That is, by definition, for any ϕ1, ϕ2 ∈ C0,1

0 (BR), we have

lim inf
t→0

ER(u+ tϕ1, v + tϕ2)− ER(u, v)

t2
> 0. (2.1)

In addition, setting

∆1
ϕ1,ϕ2F := F (∇u+t∇ϕ1,∇v+t∇ϕ2, u+tϕ1, v+tϕ2, x′)−F (∇u,∇v, u, v, x′), (2.2)

we have

∆1
ϕ1,ϕ2F = tH(ϕ1, ϕ2) +

t2

2
L(ϕ1, ϕ2) + o(t2), (2.3)

where

H(ϕ1, ϕ2) := F(p1)iϕ
1
i + Fz1ϕ

1 + F(p2)iϕ
2
i + Fz2ϕ

2,
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L(ϕ1, ϕ2) := F(p1)i(p1)jϕ
1
iϕ

1
j + Fz1z1(ϕ1)2 + 2F(p1)iz1ϕ

1ϕ1
i

+ F(p2)i(p2)jϕ
2
iϕ

2
j + Fz2z2(ϕ2)2 + 2F(p2)iz2ϕ

2ϕ2
i

+ F(p1)i(p2)jϕ
1
iϕ

2
j + 2Fz2z1ϕ

1ϕ2 + 2F(p2)iz1ϕ
2ϕ2

i

+ F(p2)i(p1)jϕ
2
iϕ

1
j + 2F(p1)iz2ϕ

2ϕ1
i ,

and the derivatives of F are evaluated at (∇u,∇v, u, v, x′).
Now, we observe that, since (u, v) is a critical point of E , it holds thatˆ

BR

H(ϕ1, ϕ2) = 0.

So integrating (2.3) and recalling (2.2), we obtain that

ER(u+ tϕ1, v + tϕ2)− ER(u, v) =
t2

2

ˆ
BR

L(ϕ1, ϕ2)dx+ o(t2). (2.4)

Dividing by t2 and recalling (2.1) we find thatˆ
BR

L(ϕ1, ϕ2)dx > 0.

Thus, (2.4) yields
ER(u+ tϕ1, v + tϕ2)− ER(u, v) > o(t2). (2.5)

Given ũ ∈ D t
R(u) and ṽ ∈ D t

R(v) we may choose ϕ1 := ũ−u
t

and ϕ2 := ṽ−v
t

. By
construction, the Lipschitz norm of ϕ1 and ϕ2 is bounded by a quantity that does not
depend on t. Therefore (2.5) implies (1.6), and so it follows that (u, v) is {eN , eN+1}-
stable.

Reciprocally, let (u, v) be an {eN , eN+1}-stable solution of E (and so, a critical
point). In this case, we choose ũ := u+ tϕ1 and ṽ := v + tϕ2 in (1.6). Then, taking
ε arbitrarily small, we prove (2.1). Therefore (u, v) is a stable solution of E . This
completes the proof.

3 Local analysis

In this section, we consider local perturbations of (u, v) in the eN -direction. More
precisely, we will show that we can perturb the couples(

max{u(x), u(x) + teN}, v(x)
)

and
(
u(x),max{v(x), v(x) + teN}

)
in such a way that the energy of the “perturbed couples” decreases.

We first show that if one of the two elements of a couple (u, v) is a maximum
of two functions that form an angle at an intersection point, then it cannot be an
eN -minimizer for E .
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Lemma 3.1. — Suppose that 0 ∈ Ω, and that u, u1, v, v1 are C1 functions which
satisfy

u(0) = u1(0), u1
N(0) < 0 < uN(0), (3.1)

and
v(0) = v1(0), vN(0) < 0 < v1

N(0).

Then, the couples

g1 := (max{u, u1}, v) and g2 := (u,max{v, v1}),

are not eN -minimizers for E in any ball Bη with η > 0.

Proof. — We prove the lemma for the couple g1, the proof for g2 being similar
with obvious modifications.

We argue by contradiction and we assume that g1 is an eN -minimizer in a ball Bη,
for some η > 0. We define F0(p1, p2) := F (p1, p2, 0, 0, 0). Moreover, we observe that
if we subtract a linear functional from F then this does not affect the minimality.
Indeed, if we consider

F̃ (p1, p2, z1, z2, x) := F (p1, p2, z1, z2, x)− p0 · p1,

and if Ẽ is the associated energy functional, then we have

ER(u, v)− ẼR(u, v) =

ˆ
BR

p0 · ∇u dx =

ˆ
∂BR

p0 u · ν dσ.

This means that the difference between ER(u, v) and ẼR(u, v) is a term which depends
only on the boundary value of u. Therefore, if (u, v) is an eN -minimizer for E , then

it is an eN -minimizer for Ẽ as well. In view of this, we may assume that

F0(∇u(0),∇v(0)) = F0(∇u1(0),∇v(0)). (3.2)

Moreover, we can suppose that u(0) = u1(0) = 0 (up to translate F in the vari-
able z1). Now, for small r > 0, we define the rescaled functions

ur(x) := r−1u(rx), u1
r(x) := r−1u1(rx) and vr(x) := r−1v(rx).

We also set gr := (max {ur, u1
r} , vr). If

Fr(p1, p2, z1, z2, x) := F (p1, p2, rz1, rz2, rx),

is the rescaled functional, we have that gr is an eN -minimizer for Fr in Bη/r. Send-
ing r → 0+, we obtain the following limits, which are uniform on compact sets:

Fr → F0(p1, p2),

ur(x)→ u0(x) := ∇u(0) · x,
u1
r(x)→ u1

0(x) := ∇u1(0) · x,
vr(x)→ v0(x) := ∇v(0) · x,

∇ur → ∇u0,

∇u1
r → ∇u1

0,

∇vr → ∇v0.

(3.3)
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Now, we set f0 := max {u0, u
1
0} and we consider the couple g0 := (f0, v0). The fact

that F is strictly convex in the variable p1 implies that

g0 is not a minimizer for F0. (3.4)

To see this, given the function

βR(x′) := c δmax {0, |x′| −R} ,

with R large and c, δ small, we define

h0 := 1 + αu0 + (1− α)u1
0 − βR(x′), (3.5)

where α ∈ (0, 1) is small. Then, we have that

the couple
(

max {f0, h0} , v0

)
agrees with g0 outside the ball BR+R1 . (3.6)

On the other hand, in BR, considering h0, we cut the graphs of two transversal linear
functions by a single one. Therefore, if we take R sufficiently large,

the couple
(

max {f0, h0} , v0

)
has lower energy for F0 than g0. (3.7)

To see this, we observe that, by definition, ∇f0 coincides with either ∇u0 or ∇u1
0,

and so from (3.2) we have that

F0(∇u0,∇v0) = F0(∇u1
0,∇v0) = F0(∇f0,∇v0).

Therefore, by the strict convexity of F0 with respect to the first variable, we have
that, fixed α and δ,

F0(∇h0,∇v0) =F0

(
(α∇u0 + (1− α)∇u1

0,∇v0

)
6 αF0(∇u0,∇v0) + (1− α)F0(∇u1

0,∇v0)− η
= F0(∇f0,∇v0)− η,

(3.8)

in BR∩{h0 > f0}, for some η > 0. On the other hand, the set {h0 > f0} is contained
in a strip in the eN -direction. This and (3.6) imply that, when we integrate (3.8) in
BR, then the energy of (max {f0, h0} , v0) is less than the energy of g0 minus a term of
order CηRN−1, whereas, when we integrate in BR+R1 , the energy of (max {f0, h0} , v0)
is less than the energy of g0 minus a term of order CηRN−2. All in all, if R is large
enough we obtain (3.7). In turn, this implies (3.4).

Now, we set
fr := max

{
ur, u

1
r

}
. (3.9)

Since the convergence in (3.3) is uniform, we have that

hr :=
(

max {fr, h0} , vr
)
,

214



has lower energy for Fr than gr as well.
Hence, we can scale back and obtain that h∗(x) := rhr(x/r) has lower energy

for F in Br(R+R1) ⊆ Bη than g1.
In order to get a contradiction, it remains to prove that h∗ is an allowed per-

turbation of g1 (according to Definition 1.2). Notice that this is equivalent to check
that hr is an allowed perturbation of gr. That is, recalling (3.9), we have to prove
that

max {fr, h0} is a piecewise Lipschitz domain deformation of fr

with Lipschitz norm bounded by δ.
(3.10)

To do this, we recall the uniform convergence of ur and u1
r to u0 and u1

0 respectively
(as given by (3.3)) and the definition of h0 given in (3.5) to obtain that

h0(x) = 1 + αur(x) + (1− α)u1
r(x)− βR(x′) + ωr(x), (3.11)

where ωr → 0 as r → 0+ locally uniformly, together with its derivatives.
Now we notice that our hypothesis in (3.1) gives that ∇u1

0 · eN < 0 < ∇u0 · eN .
This, together with the uniform convergence in (3.3), implies that we can apply the
Implicit Function Theorem, and we have that the part of the graph of max {fr, h0}
where h0 > fr can be obtained from ur by a Lipschitz domain deformation with
Lipschitz norm less than δ, provided that we take α sufficiently small. Indeed, fixed
x′ (and so looking at the 1-dimensional problem in the last variable only) and recalling
(3.11), we obtain that

ur(x
′, xN + ϕ(x)) = h0(x) = 1 + αur(x) + (1− α)u1

r(x)− βR(x′) + ωr(x),

thanks to the Implicit Function Theorem in 1-dimension. Furthermore, if α and r
are sufficiently small, the perturbation function ϕ has norm bounded by δ/2. This
shows (3.10) and finishes the proof of Lemma 3.1.

Now we deal with perturbations of the couples(
max{u(x), u(x) + teN}, v(x)

)
and

(
u(x),max{v(x), v(x) + teN}

)
with lower energy.

Lemma 3.2. — Let u, v ∈ C2(Ω) be such that (u, v) is a critical point for the
functional E in a neighborhood of the origin, and let F be C2 in a neighborhood of

(∇u(0),∇v(0), u(0), v(0), 0).

Suppose that
uN(0) = 0, ∇uN(0) 6= 0,
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and set

w1(x) := max {u(x), u(x+ teN)} . (3.12)

Then, for every η > 0, there exists a function ψ1 which is Lipschitz and has compact
support in Bη such that, for any small t,

Eη(w
1 + tψ1, v)− Eη(w

1, v) 6 −c t2,

where c > 0 is a small constant that depends on F , η and u.

Remark 3.3. — We point out that we have an analogous result if we consider the
function v instead of u. Precisely, if we assume that

vN(0) = 0, ∇vN(0) 6= 0,

and we consider

w2(x) := max {v(x), v(x+ teN)} ,

then, for every η > 0 there exists a function ψ2 which is Lipschitz and has compact
support in Bη such that, for any small t,

Eη(u,w
2 + tψ2)− Eη(u,w

2) 6 −ct2,

where c > 0 is a small constant depending on F, η and v.

Proof of Lemma 3.2. — We define

u1(x) :=
u(x+ teN)− u(x)

t
(3.13)

and we observe that

‖u1 − uN‖C0,1(Bη) = o(1) as t→ 0. (3.14)

We consider a Lipschitz function g1 and, using the fact that F ∈ C2 in the
variables p1 and z1, we compute

F (∇u+ t∇g1,∇v, u+ tg1, v, x
′) = F (∇u,∇v, u, v, x′) + t (Fp1∇g1 + Fz1g1)

+ t2
(

(∇g1)T Fp1p1∇g1 + Fz1z1g
2
1 + 2g1Fp1z1 · ∇g1

)
+ o(t2),

where the derivatives of F are evaluated at (∇u,∇v, u, v, x′) and the constant in the
error term o(t2) depends on u, F and ‖g1‖C0,1(Bη). Hence, we obtain

Eη(u+ tg1, v) = Eη(u, v) + t L(g1) + t2Q(g1) + o(t2),
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with

L(g1) :=

ˆ
Bη

(Fp1 · ∇g1 + Fz1g1) dx

and

Q(g1) :=

ˆ
Bη

G(∇g1, g1, x)dx

=

ˆ
Bη

(
(∇g1)T Fp1p1∇g1 + Fz1z1g

2
1 + 2g1Fp1z1 · ∇g1

)
dx.

Now, we take a Lipschitz function ψ1 with compact support in Bη, and we use the
fact that (u, v) is a critical point for E to obtain

Eη(u+ tu1
+ + tψ1, v)− Eη(u+ tu1

+, v) = t2
(
Q(u1

+ + ψ1)−Q(u1
+)
)

+ o(t2). (3.15)

Using (3.12) and (3.13), we can write

w1 = u+ tu1
+. (3.16)

Now, we claim that, for η sufficiently small,

Q(u1
+)−Q((uN)+) = o(1) and Q(u1

+ + ψ1)−Q((uN)+ + ψ1) = o(1), (3.17)

as t → 0. We focus on the first equality in (3.17), since the second is similar. To
prove it, fixed µ > 0, we define

B1
µ := Bη ∩ {|uN | 6 µ} and B2

µ := Bη ∩ {|uN | > µ}.

Notice that (3.14) implies that

lim
t→0
‖u1

+ − (uN)+‖C0,1(B2
µ) = lim

t→0
‖u1 − uN‖C0,1(B2

µ) = 0. (3.18)

As for the contribution coming from B1
µ, we observe that, since ∇uN(0) 6= 0, the

measure of B1
µ is at most of the order of µ. This, together with (3.18), gives that

lim
t→0
|Q(u1

+)−Q((uN)+)| 6 Cµ,

for some C > 0. Since µ can be taken arbitrarily small, this implies (3.17).
Formula (3.17) means that, for η sufficiently small, we can write (uN)+ instead

of u1
+ in the right hand side of (3.15). Hence, recalling also (3.16), we have that

Eη(w
1 + tψ1, v)− Eη(w

1, v) = t2
(
Q((uN)+ + ψ1)−Q((uN)+)

)
+ o(t2). (3.19)
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Now, we notice that uN , 0 and G satisfy the hypotheses of Remark 4.3 in [125], and
therefore (uN)+ is not a minimizer of Q. So we can choose the function ψ1 in such
a way that

Q((uN)+ + ψ1) 6 Q((uN)+)− c

for some small c, which may depend on u, F and η. This together with (3.19) gives
that, for small t,

Eη(w
1 + tψ1, v)− Eη(w

1, v) 6 −ct2

and this concludes the proof.

Now we show that, under an additional regularity hypothesis on F , the non-
degeneracy condition ∇uN 6= 0 in Lemma 3.2 is satisfied. For this we use the Hopf
Lemma, by adapting the proof of Lemma 4.6 in [125] to the slightly more delicate
case of a system of equations.

Lemma 3.4. — Assume that

either u, v ∈ C0,1(Ω) are convex,

or u, v ∈ C1,1(Ω).

Furthermore, assume that (u, v) is a critical point for E and F ∈ C3,α in a neighbor-
hood of (∇u(0),∇v(0), u(0), v(0), 0). Then, u and v are of class C3,α in a neighbor-
hood of 0. If, in addition, uN(0) = 0 (resp. vN(0) = 0) and uN (resp. vN) does not
vanish identically in a neighborhood V0 of 0, then there exists a point x0 ∈ V0 (resp.
x1 ∈ V0) such that

uN(x0) = 0, ∇uN(x0) 6= 0 and vN(x1) = 0, ∇vN(x1) 6= 0.

Proof. — Since (u, v) is a critical point for E it satisfies the elliptic system of
equation {

G1(∇2u,∇2v,∇u,∇v, u, v, x′) := divxFp1(M)− Fz1(M) = 0,

G2(∇2u,∇2v,∇u,∇v, u, v, x′) := divxFp2(M)− Fz2(M) = 0,

where M := (∇u,∇v, u, v, x′). Consider the first equation of the above system,
with v fixed. If v ∈ C0,1(Ω) is convex, then ∇v ∈ L∞(Ω)N and ∇2v ∈ L∞(Ω)N×N

exist almost everywhere (this follows from Rademacher’s theorem and Alexandrov’s
theorem). On the other hand, if v ∈ C1,1(Ω), then ∇2v ∈ L∞(Ω)N×N also exists
almost everywhere (this follows from Rademacher’s theorem). Thus, at fixed v,
the first equation (in the variable u = uv) is satisfied in the classical sense and
the corresponding solution uv belongs to C3,α(Ω) (this follows from Theorem 2.1
in [143], the Schauder estimates and the fact that F ∈ C3,α). In like manner, for
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any fixed u, the solution vu of the second1 equation belongs to C3,α(Ω). Therefore,
(u, v) ∈ C3,α(Ω)× C3,α(Ω). This shows the first claim of Lemma 3.4.

Now, we focus on the second claim of Lemma 3.4. To prove it, we observe that

G1 = G1(q1, q2, p1, p2, z1, z2, x
′) ∈ C1,α. (3.20)

Hence, differentiating in the eN -direction we see that w := uN ∈ C2,α(Ω) satisfies
the linearized equation (in the viscosity sense)

G1
(q1)ij

wij +G1
(p1)i

wi +G1
z1
w = −G1

(q2)ij
(vN)ij −G1

(p2)i
(vN)i −G1

z2
vN . (3.21)

Here, the derivatives of G1 are evaluated at (∇2u,∇2v,∇u,∇v, u, v, x′). For the
convenience of the reader, we rewrite (3.21) as

L1w = f1,

where

L1w := G1
(q1)ij

wij +G1
(p1)i

wi +G1
z1
w,

f1 := −G1
(q2)ij

(vN)ij −G1
(p2)i

(vN)i −G1
z2
vN .

Moreover, we set

P := {x ∈ V0 : f1(x) > 0},
E := {x ∈ V0 : f1(x) = 0},
N := {x ∈ V0 : f1(x) < 0}.

In addition, denote by (Pj)j∈J1 (resp. (Ej)j∈J2) the connected components of P (resp.
E). This makes sense since f1 ∈ C0,α(V0) (recall (3.20) and the fact that v is C3,α in
V0).

Note that if P = N = ∅ then f1 ≡ 0, and so the conclusion follows as in Lemma
4.6 in [125]. Thus, we may suppose now that either P or N are nonempty. Moreover,
we can assume that P is nonempty, otherwise it is enough to replace w by −w.

Also, we observe that

if there exists a compact set Σ b V0 such that w|Σ ≡ 0,

then, necessarily, Σ ⊂ E.
(3.22)

Now we take2 x0 ∈ {w = 0} ∩ P . Then, there exists j1 ∈ J1 such that x0 ∈ Pj1 . It
follows from (3.22) and the continuity of f1 that w cannot vanish identically in Pj1 .

1We may actually consider indifferently the first or the second equation, as only one equation is
needed.

2We use here the short notation {w = 0} = {x ∈ V0 : w(x) = 0}, and similarly for {w < 0} and
{w > 0}.
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Thus, we can apply the Hopf Lemma to w at the point x0, which admits a tangent
ball from either {w < 0} ∩ Pj1 or {w > 0} ∩ Pj2 , and the conclusion follows.

If x0 ∈ {w = 0} ∩N , we replace w with −w and we reason as above.
If x0 ∈ {w = 0} ∩ E, we let Ej2 , for some j2 ∈ J2, be the connected component

of E such that x0 ∈ Ej2 . By the continuity of f1, there exists j1 ∈ J1 such that
K := Ej2 ∪ Pj1 is connected (up to exchanging w with −w). Again, (3.22) implies
that w cannot vanish identically in K, and so we can apply the Hopf Lemma to w
at x0, which admits a tangent ball from either {w < 0} ∩K or {w > 0} ∩K. The
same arguments apply to vN . This completes the proof of Lemma 3.4.

Remark 3.5. — The above result states that the non-degeneracy hypothesis∇uN 6=
0 of Lemma 3.2 is always satisfied under a slightly stronger hypothesis on the po-
tential F . On the other hand, notice that we obtain a C3,α regularity for u and v
near 0, even though we asked only for, say, a C1,1 regularity. Thus, Lemma 3.2 is
consistent.

4 Perturbations at infinity

In this section we modify the couples(
max{u(x), u(x) + teN}, v(x)

)
and

(
u(x),max{v(x), v(x) + teN}

)
at infinity in such a way that they become compact perturbations of the couple (u, v).
For this, for any R > 1 we define the function ϕR : R→ R, which is Lipschitz, even
and with compact support, as

ϕR(s) :=


1 if 0 6 s 6

√
R,

2 logR−log s
logR

if
√
R < s < R,

0 if s > R.

(4.1)

We have that

ϕ′R(s) :=

{
0 if s ∈ (0,

√
R) ∪ (R,+∞),

−2
s logR

if s ∈ (
√
R,R).

(4.2)

Also, for any t ∈ (0,
√
R/4], we consider the following bi-Lipschitz change of coordi-

nates:

x 7→ y(x) := x+ tϕR(|x|)eN . (4.3)

In these new coordinates, we define the functions u+
R,t and v+

R,t as

u+
R,t(y) := u(x) and v+

R,t(y) := v(x).
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We observe that u+
R,t(x) and v+

R,t coincide with u(x−teN) and v(x−teN) respectively
in B√R/2 and with u(x) and v(x) respectively outside BR.

We also define u−R,t and v−R,t by replacing t with −t in (4.3).

Now, we want to obtain an estimate of ER(u+
R,t, v

+
R,t) and ER(u−R,t, v

−
R,t) in terms

of ER(u, v). For this, we notice that

Dxy = I + A,

where

A(x) := t ϕ′R(|x|)


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
x1

|x|
x2

|x| . . . xN
|x|

 ,

and that ‖A‖ 6 t |ϕ′R(|x|)| � 1. Moreover,

Dyx = (I + A)−1 = I − A

1 + tr(A)
.

Furthermore, the following relations hold:

∇yu
+
R,t = ∇xuDyx, ∇yv

+
R,t = ∇xv Dyx and dy =

(
1 + tr(A)

)
dx.

Hence, we have

ˆ
Ω∩BR

F
(
∇yu

+
R,t,∇yv

+
R,t, u

+
R,t, v

+
R,t, y

′) dy

=

ˆ
Ω∩BR

F

(
∇xu

(
I − A

1 + tr(A)

)
,∇xv

(
I − A

1 + tr(A)

)
, u, v, x′

)(
1 + tr(A)

)
dx.

Now we use the hypothesis (1.4) for F to bound the right hand side from above:
more precisely, since |(p1A)| 6 |p1 · eN |/4 and |(p2A)| 6 |p2 · eN |/4, we have that

F

(
p1

(
I − A

1 + tr(A)

)
, p2

(
I − A

1 + tr(A)

)
, z1, z2, x

′
)(

1 + tr(A)
)

6 F (p1, p2, z1, z2, x
′)
(
1 + tr(A)

)
− Fp1(p1, p2, z1, z2, x

′) · (p1A)− Fp2(p1, p2, z1, z2, x
′) · (p2A)

+ C
(
|Fp1p1(p1, p2, z1, z2, x

′)| |p1A|2 + |Fp2p2(p1, p2, z1, z2, x
′)| |p2A|2

+ 2 |Fp1p2(p1, p2, z1, z2, x
′)| |p1A| |p2A|

)
.
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If we consider u−R,t and v−R,t, we can write the same inequality with A replaced by −A.
Therefore, we obtain

ER(u+
R,t, v

+
R,t) + ER(u−R,t, v

−
R,t)− 2ER(u, v)

6 C

ˆ
Ω∩BR

(
|Fp1p1| |∇u|2|A|2 + |Fp2p2| |∇v|2|A|2 + 2 |Fp1p2| |∇u||∇v||A|2

)
dx

6
Ct2

(logR)2

ˆ
Ω∩(BR\B√R)

(
|Fp1p1||∇u|2 + |Fp2p2||∇v|2 + |Fp1p2 ||∇u||∇v|

) dx

|x|2
, (4.4)

where the derivatives of F are evaluated at (∇u,∇v, u, v, x′). Now we set

h(r) :=

ˆ
Ω∩Br

(
|Fp1p1||∇u|2 + |Fp2p2||∇v|2 + |Fp1p2||∇u||∇v|

)
dx.

Recalling (1.5), we have that h(r) 6 Cr2. Also, we see that

ˆ R

√
R

h′(r)

r2
dr 6

h(R)

R2
+ 2

ˆ R

√
R

h(r)

r3
dr 6 C logR. (4.5)

Passing to polar coordinates in the last integral in (4.4) and using (4.5) we get

lim sup
R→+∞

sup
t∈(0,

√
R/4)

ER(u+
R,t, v

+
R,t) + ER(u−R,t, v

−
R,t)− 2ER(u, v)

t2
6 0.

Remark 4.1. — We point out that in a similar way, by perturbing only one of the
element of the couple (u, v), one can obtain

lim sup
R→+∞

sup
t∈(0,

√
R/4)

ER(u+
R,t, v) + ER(u−R,t, v)− 2ER(u, v)

t2
6 0, (4.6)

and

lim sup
R→+∞

sup
t∈(0,

√
R/4)

ER(u, v+
R,t) + ER(u, v−R,t)− 2ER(u, v)

t2
6 0. (4.7)

We conclude this section recalling the following integral formulas:

ER
(
max

{
u−R,t, u

}
, v
)

+ ER
(
min

{
u−R,t, u

}
, v
)

= ER(u−R,t, v) + ER(u, v),

ER
(
u,max

{
v−R,t, v

})
+ ER

(
u,min

{
v−R,t, v

})
= ER(u, v−R,t) + ER(u, v).

(4.8)

222



5 Proof of Theorem 1.5

We recall the notation introduced at the beginning of Section 4, and we observe that,
since (u, v) is an eN -minimizer,

ER(u, v) 6 ER(u+
R,t, v).

From this and (4.6) we obtain that

lim
R→+∞

ER(u−R,t, v)− ER(u, v) = 0, (5.1)

at t fixed. Using again the minimality of (u, v), we have that

ER(u, v) 6 ER
(
min

{
u−R,t, u

}
, v
)
,

which, together with the first relation in (4.8), implies that

ER
(
max

{
u−R,t, u

}
, v
)
− ER(u−R,t, v) = ER(u, v)− ER

(
min

{
u−R,t, u

}
, v
)
6 0. (5.2)

Putting together (5.1) and (5.2) we obtain

lim
R→+∞

ER
(
max

{
u−R,t, u

}
, v
)
− ER(u, v) = 0. (5.3)

We set
fR,t := max

{
u−R,t, u

}
, (5.4)

and we observe that
fR,t = max {u(x), u(x+ teN)} ,

and fR,t ∈ Dt
R(u).

Now, we argue by contradiction, assuming that u ∈ C1(Ω) is not monotone on a
line in the direction eN . This implies that we can take t > 0 in such a way that u(x)
and u(x+ teN) satisfy the hypotheses of Lemma 3.1, say at some point x0 ∈ Ω (see
Remark 4.2 in [125]). Therefore, we have that gR,t := (fR,t, v) is not an eN -minimizer
for E . Hence, in a neighborhood of x0, we can perturb gR,t into g̃R,t in such a way
that

ER(g̃R,t) 6 ER(gR,t)− c,

for some c > 0 which depends only on (u, v). From the last inequality and (5.3) we
reach a contradiction with the minimality of (u, v) as R→ +∞.

If we assume that v ∈ C1(Ω) is not monotone on a line in the eN -direction, we
get again a contradiction with the fact that (u, v) is an eN -minimizer. Indeed we
can repeat the same argument as above, using (4.7) and the second integral formula
in (4.8). This concludes the proof of Theorem 1.5.
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6 Proof of Theorem 1.10

We recall the notation introduced at the beginning of Section 4. From (4.6) we
deduce that, for ε > 0, we can take R large such that

ER(u+
R,t, v) + ER(u−R,t, v)− 2ER(u, v) 6 εt2. (6.1)

Moreover, we know that (u, v) is {eN , eN+1}-stable, and so

ER(w1, v)− ER(u, v) > −εt2 for any w1 ∈ D t
R(u), (6.2)

for every t sufficiently small (see Definition 1.8).
Now, recalling the definition of fR,t in (5.4), we use the first integral formula

in (4.8) to obtain that

ER(fR,t, v)− ER(u, v) = ER(u−R,t, v)− ER
(
min

{
u−R,t, u

}
, v
)

= ER(u−R,t, v) + ER(u+
R,t, v)− 2ER(u, v) + ER(u, v)

− ER
(
min

{
u−R,t, u

}
, v
)

+ ER(u, v)− ER(u+
R,t, v)

6 3εt2,

where we have used (6.1) and (6.2).
Suppose, by contradiction, that uN changes sign in Ω. Then, by Lemma 3.4,

there exists a point x0 ∈ Ω such that the hypotheses of Lemma 3.2 are satisfied in
a neighborhood of x0. Hence, we have that we can perturb fR,t into f̃R,t near x0 in
such a way that

ER(f̃R,t, v) 6 ER(fR,t, v)− ct2,
where f̃R,t ∈ DCt

R (u), for some c, C > 0 which depend only on u. Then, we obtain

ER(f̃R,t, v) 6 ER(u, v) + (3ε− c)t2,
which gives a contradiction with the stability inequality (1.6) if we take ε� c.

If we assume that vN changes sign in Ω, we reason in a similar way, using (4.7),
the second integral formula in (4.8) and Remark 3.3 to reach the same contradiction.
Therefore, either uN > 0 or uN 6 0 and either vN > 0 or vN 6 0 in Ω. This
completes the proof of Theorem 1.10.

7 Some applications

7.1 Two-stated mixture of Bose-Einstein condensate

Here, we consider the following system
∆u = uv2,

∆v = vu2,

u, v > 0.

(7.1)
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As already mentioned in the Introduction, the above system arises in the analysis of
phase separation phenomena in binary mixtures of Bose-Einstein condensates with
multiple states.

The energy associated to (7.1) is the following:

E (u, v) :=
1

2

ˆ
RN
|∇u|2 + |∇v|2 + u2v2 dx.

Under a suitable growth condition, we show here that stable solutions of (7.1) are
one-dimensional, i.e. there exist u, v : R→ R and ωu, ωv ∈ SN−1 such that

(u(x), v(x)) =
(
u(ωu · x), v(ωv · x)

)
.

Precisely:

Proposition 7.1. — Let u, v ∈ C2(RN). Suppose that (u, v) is a stable solution
to (7.1), and that the following growth condition holds true: there exists a constant
C > 0 such that, for R sufficiently large,ˆ

BR

|∇u|2 + |∇v|2 dx 6 CR2. (7.2)

Then, (u, v) possesses one-dimensional symmetry.

Proof. — We define

F (p1, p2, z1, z2, x
′) :=

1

2

(
|p1|2 + |p2|2 + z2

1z
2
2

)
.

Notice that F is convex in p1 and p2 and satisfies (1.4). Moreover Fp1p1 = 1 = Fp2p2

and Fp1p2 = 0, therefore the growth condition (1.5) is ensured by (7.2). Then, we
can apply Theorem 1.10 (recall also Lemma 2.1) and we obtain that (u, v) is one-
dimensional.

As a corollary, we obtain the one-dimensional symmetry in dimension 2 for stable
solutions to (7.1) which have linear growth at infinity (see [20]).

Corollary 7.2. — Let N = 2 and let u, v ∈ C2(R2). Suppose that (u, v) is a
stable solution to (7.1), and that the following growth condition holds true: there
exists a constant C > 0 such that

|u(x)|+ |v(x)| 6 C(1 + |x|). (7.3)

Then, (u, v) possesses one-dimensional symmetry.

Proof. — We observe that, by Theorem 5.1 in [150], if (u, v) satisfies (7.3) then
|∇u| and |∇v| are bounded in R2. Therefore, condition (7.2) is trivially satisfied,
and so we get the desired result thanks to Proposition 7.1.
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7.2 General systems with p-Laplacian type operators

Theorem 1.10 actually applies to a broader class of operators and nonlinearities.
Indeed, with the notation introduced in [55] (see in particular pages 3474-3475 there),
one can consider {

div
(
a(|∇u|)∇u

)
= F̃1(u, v),

div
(
b(|∇v|)∇v

)
= F̃2(u, v),

(7.4)

where F̃ is a C1,1
loc function on R2 (it corresponds to the function F introduced in [55],

here denoted as F̃ to avoid confusion), and F̃1, F̃2 denote the derivatives of F̃ with
respect to the first and the second variable respectively.

Then, we have the following:

Proposition 7.3. — Let u ∈ C1(RN) ∩ C2({∇u 6= 0}) and v ∈ C1(RN) ∩
C2({∇v 6= 0}). Suppose that (u, v) is a stable solution to (7.4), and that condi-
tions (B1) and (B2) in [63] are satisfied for a, b, A and B. Also, assume that the
following growth condition holds true: there exists a constant C > 0 such that, for
R sufficiently large, ˆ

BR

Λ2(|∇u|) + Γ2(|∇v|) 6 CR2, (7.5)

where Λ2 and Γ2 are as in [55]. Then, (u, v) possesses one-dimensional symmetry.

Proof. — We define

F (p1, p2, z1, z2, x
′) := Λ2(|p1|) + Γ2(|p2|) + F̃ (z1, z2),

and we verify that ˆ
RN
F (∇u,∇v, u, v, x′) dx

satisfies the hypotheses needed to apply Theorem 1.10. Observe, first, that being
stable for the above energy is the same a being stable for (7.4) (see Definition 1.2 in
[55]). Now, recalling the notations used in [55], we derive

F(p1)i(p1, p2, z1, z2, x
′) = λ2(|p1|)(p1)i = a(|p1|)(p1)i,

F(p2)i(p1, p2, z1, z2, x
′) = γ2(|p2|)(p2)i = b(|p2|)(p2)i,

F(p1)i(p1)j(p1, p2, z1, z2, x
′) = a(|p1|)δij + a′(|p1|) |p1|−1 (p1)i(p1)j = Aij(p1),

F(p2)i(p2)j(p1, p2, z1, z2, x
′) = b(|p2|)δij + b′(|p2|) |p2|−1 (p2)i(p2)j = Bij(p2),

F(p1)i(p2)j(p1, p2, z1, z2, x
′) = 0.

Therefore, Lemma 2.1 in [55] implies the desired convexity properties on F . More-
over, it also gives that |Fp1p1(p1, p2, z1, z2, x

′)| and |Fp2p2(p1, p2, z1, z2, x
′)| are bounded
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from above and below by (λ1(|p1|) + λ2(|p1|)) and (γ1(|p2|) + γ2(|p2|)), respectively,
up to multiplicative constants. Furthermore, since conditions (B1) and (B2) in [63]
are satisfied for a, b, A and B, one can use Lemma 4.2 there to see that, if |p1|,
|p2| 6M , |q1| 6 |p1|/2 and |q2| 6 |p2|/2, then

λ1(|p1|) 6 CMλ2(|p1|), λ2(|p1 + q1|) 6 CMλ2(|p1|),
γ1(|p2|) 6 CMγ2(|p2|), γ2(|p2 + q2|) 6 CMγ2(|p2|),

for some CM > 0. As a consequence, we have

|Fp1p1(p1, p2, z1, z2, x
′)| 6 CMλ2(|p1|),

|Fp2p2(p1, p2, z1, z2, x
′)| 6 CMγ2(|p2|),

(7.6)

up to rename CM . Therefore, recalling also formulae (1.4)-(1.7) in [55], we get

|Fp1p1(p1 + q1,p2, z1, z2, x
′)| 6 CMλ2(|p1 + q1|)

6 CMλ2(|p1|) 6 CM |Fp1p1(p1, p2, z1, z2, x
′)|,

and

|Fp2p2(p1, p2+q2, z1, z2, x
′)| 6 CMγ2(|p2 + q2|)

6 CMγ2(|p2|) 6 CM |Fp2p2(p1, p2, z1, z2, x
′)|,

for any 2|q1| 6 |p1| 6M and 2|q2| 6 |p2| 6M . This means that (1.4) is satisfied.
It remains to check the growth condition (1.5). For this, notice that (7.6) and

formula (4.13) in [63] give that

|Fp1p1(p1, p2,z1, z2, x
′)| |p1|2 + |Fp2p2(p1, p2, z1, z2, x

′)| |p2|2

6 CM

(
λ2(|p1|)|p1|2 + γ2(|p2|)|p2|2

)
= CM

(
a(|p1|)|p1|2 + b(|p2|)|p2|2

)
6 CM

(
Λ2(|p1|) + Γ2(|p2|)

)
.

This and (7.5) imply that
ˆ
BR

|Fp1p1(∇u,∇v, u, v, x′)| |∇u|2 + |Fp2p2(∇u,∇v, u, v, x′)| |∇v|2 dx

6 CM

ˆ
BR

(Λ2(|∇u|) + Γ2(|∇v|)) dx 6 CMR
2,

up to rename CM . This shows (1.5) holds true. Hence, we can apply Theorem 1.10,
thus obtaining the desired monotonicity property.
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As paradigmatic examples in Proposition 7.3 one can take the p-Laplacian, with
p ∈ (1,+∞) if {∇u = 0} = ∅ and p ∈ [2,+∞) if {∇u = 0} 6= ∅ (in this case
a(t) = tp−2), or the mean curvature operator (in this case a(t) = (1 + t2)−1/2). We
stress on the fact that one can also take different operators a and b satisfying the
hypotheses (for instance, one can take a to be the p-Laplacian and b an operator of
mean curvature type).

Furthermore, we observe that condition (7.5) is satisfied, for instance, whenN = 2
and ∇u and ∇v are bounded (thanks to the hypotheses on a and b, see page 3474
in [55]), This means that we recover Theorem 7.1 of [55] for stable solutions, without

requiring conditions on the sign of F̃12.

7.3 Systems involving the fractional Laplacian

The general setting of our results allows us to treat also the case of nonlocal systems
of equations, i.e. {

(−∆)s1u = F̃1(u, v),

(−∆)s2v = F̃2(u, v),
(7.7)

where s1, s2 ∈ (0, 1), F̃ is a C1,1
loc function on R2 and F̃1 and F̃2 denote the derivatives

of F̃ with respect to the first and the second variable respectively.
As a matter of fact, as in [125, Remark 2.12], we observe that one can generalize

the functional considered in (1.1) to the following functional

ˆ
Ω

F (∇u,∇v, u, v, x′) dx+

ˆ
∂Ω

G(u, v, x′) dH N−1, (7.8)

where G satisfies the same regularity assumptions as F . Furthermore, the growth
condition in (1.5) can be weakened in the following way. We define `0(R) := R and

`k(R) := log
(
`k−1(R)

)
= log ◦ . . . ◦ log︸ ︷︷ ︸

k times

R for any k ∈ N∗.

We also set

πk(R) :=
k∏
j=0

`j(R).

Then, one can require that, for some k ∈ N,
ˆ

Ω∩BR
|Fp1p1(∇u,∇v, u, v, x′)||∇u|2 + |Fp2p2(∇u,∇v, u, v, x′)||∇v|2

+ |Fp1p2(∇u,∇v, u, v, x′)||∇u||∇v| dx 6 CRπk(R),

(7.9)
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instead of (1.5). Notice that if k = 0 then (7.9) corresponds to (1.5). See Remark 2.13
and Section 9 in [125] for the proof and further discussion on this fact.

We also recall that, using the extension result in [43], one can localize prob-
lem (7.7) by adding one variable, see e.g. formula (1.7) in [56]. We will denote
by U and V the extension functions of u and v, respectively (see e.g. formulae (2.3)
and (2.4) in [56]).

So one has to deal with an energy functional like (7.8) with
Ω := (0,+∞)× RN , V := (0,+∞)× RN−1,

F (p1, p2, z1, z2, x
′) := x1−2s1

1 |p1|2 + x1−2s2
1 |p2|2,

G(z1, z2, x
′) := F̃ (z1, z2),

(7.10)

(notice that in this application one has to replace N by N+1 to apply Theorem 1.10).
With this, we can prove the following:

Proposition 7.4. — Let u, v ∈ C2(RN). Suppose that (u, v) is a stable solution
to (7.7). Also, assume that the following growth condition holds true in the extension:
there exist a constant C > 0 and k ∈ N such that, for R sufficiently large,

ˆ
BR

x1−2s1
1 |∇U |2 + x1−2s2

1 |∇V |2 dx1 · · · dxN+1 6 CRπk(R). (7.11)

Then, (u, v) possesses one-dimensional symmetry.

Proof. — With the notation introduced in (7.10), we observe that the thesis
simply follows from (7.11) (that ensures the growth condition (7.9)) and Theo-
rem 1.10.

We remark that (7.11) is a reasonable energy growth condition, since it is satisfied
for instance in the case of a single equation when N = 2 for any s ∈ (0, 1) and
when N = 3 for s ∈ (1/2, 1), see [37, 38]. Moreover, if s1 = s2 = 1/2, it can be
checked as in [37] with suitable modifications under an additional assumption on the
bound of ∇U and ∇V (see in particular formula (1.16) and Section 4 in [37]). We
finally remark that, differently from [56], we do not need here any sign assumption

on F̃ .
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Some open problems

In this last chapter, we list a few possible extensions of our results.

On Chapter 1

A natural question is whether Theorem 2.3 extends to the case of Besov-Nikol’skii
spaces on domains, at least under some regularity assumptions.

Open problem — Let Ω ⊂ RN be a smooth domain (possibly unbounded). Let
s ∈ (0, 1), p ∈ [1,∞) and let (ρε)ε>0 ⊂ L1(RN) be a family of mollifiers of the form
ρε(z) = ε−Nρ(ε−1z). Then, is it true that

[f ]pBsp,∞(Ω) ∼ sup
ε>0

ˆ
Ω

ˆ
Ω

ρε(x− y)
|f(x)− f(y)|p

|x− y|sp
dxdy ?

Our guess is that this holds true for every domain Ω ⊂ RN whose complement
satisfies the measure density condition:

∃c > 0, |Br(x) ∩ cΩ| > crN for any (r, x) ∈ (0, 1]× cΩ.

Although this condition is quite weak it seems however sufficiently strong to avoid
“cusp” like singularities (such as a disk with a slit).

A related question would be to investigate whether functionals of the form

ˆ
Ω

ˆ
Ω

ρε(dg(x, y))
|f(x)− f(y)|p

dg(x, y)sp
dxdy,

where dg(·, ·) is the geodesic distance on Ω, can provide a description of Bs
p,∞(Ω)

and, if so, under which conditions on Ω. This could pave the way towards a new
description of Besov-Nikol’skii spaces in general metric spaces and may be useful in
problems of the type of those addressed at Chapters 3 and 4.

Another interesting perspective of research would be to figure out whether there
are some reasonable conditions ensuring that a bounded sequence (fε)ε>0 ⊂ Lp(RN)
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satisfying ˆ
RN

ˆ
RN
ρε(x− y)

|fε(x)− fε(y)|p

|x− y|sp
dxdy 6 C as ε ↓ 0,

is relatively compact in Lploc(RN).

On Chapter 2

In Chapter 2, we have shown that, for every f ∈ Bs
p,q(RN) with p < q, it holds that

f(·, y) ∈ B(s,Ψ)
p,q (Rd) for a.e. y ∈ RN−d,

provided that Ψ satisfies the growth condition(∑
j>0

Ψ(2−j)χ
)1/χ

<∞. (7.12)

If we could show that this latter condition is optimal when q = ∞, our results are
less satisfying when q <∞ since we required the further assumption that

qp

q − p
<

1

c∞
.

Is it possible to get rid of this extra condition?

Open problem — Let N > 2, 1 6 d < N , 0 < p < q < ∞, s > σp and let
Ψ be an admissible function that does not satisfy (7.12). Then, does there exist a
function f ∈ Bs

p,q(RN) such that

f(·, y) /∈ B(s,Ψ)
p,q (Rd) for a.e. y ∈ RN−d ?

On Chapters 3 and 4

In Chapter 3, we have shown that the requirement on the asymptotic behavior of
u can be replaced by a condition on the supremum of u provided that J is square
integrable. However, this assumption is quite unnatural and it would be interesting
to find out whether it is possible to get rid of it. The reason why we had to make this
hypothesis is because we had to cope with the lack of compactness which forced us
to make some additional assumptions on J . In some sense, it is a bit counterintuitive
because it says that J cannot be too singular, while, in the case of the fractional
Laplacian, it is precisely the singularity which yields compactness.
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Open problem — Let K ⊂ RN be a compact convex set. Suppose that J is
compactly supported. If u : RN \K → [0, 1] is uniformly continuous in RN \K and
obeys  Lu+ f(u) = 0 in RN \K,

sup
RN\K

u = 1,

then, is it true that u = 1 in the whole set RN \K?

It is also tempting to ask for a characterization of the set of all obstacles K for
which the Liouville property holds (however, this is not known even for the local case
which is a priori simpler).

And, of course, it remains the question of the existence and large-time convergence
of solutions to the evolution problem

∂u

∂t
= Lu+ f(u) in R× RN \K.

On Chapter 5

If the results of Chapter 5 are fairly general, they still require a variational structure.
One therefore cannot handle “prey-predator” type systems such as{

(−∆)su = u(α− βv),

(−∆)sv = −v(γ − δu).

It would be interesting to find a general method that could handle at least some
systems in non-variational form.
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[10] N. Bacaër, A short history of mathematical population dynamics, Springer-
Verlag London, 2011.
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predators not questioned: a reply to Edwards et al.”, arXiv:1210.2288 (2012).

244



[131] D. Spector, “Characterization of Sobolev and BV spaces”, Dissertation. 78
(2011).

[132] S. A. Stasyuk & S. Y. Yanchenko, “Approximation of functions from
Nikol’skii-Besov type”, Anal. Math. 41 (2015), p. 311-334.

[133] S. Terracini, G. Verzini & A. Zilio, “Uniform Hölder regularity with
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