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Climate changes bring problems related to nature evolutions. Global warming has an impact on sea level, weather patterns, and wild life. A number of national and international organizations are developing research programs in these directions, including threats on cultures and insect proliferation. Monitoring these phenomena, observing consequences, elaborating counteracted strategies are critical for the economy and society.

The initial motivation of this work was the understanding of change impacts in the Mekong Delta region. From there, automatic observation tools were designed with a real time information system able to integrate environmental measures, then to support knowledge production.

Tracking environment evolutions is distributed sensing, which can be the association of efficient sensors and radio communications, operated under the control of an information system. Sensing insects is very complex due to their diversity and dispersion. However, this is feasible in the case of intensive agricultural production as it is the case of rice, having a small number of pests. An automatic vision observatory is proposed to observe the main threats for the rice, as an evolution of manual light traps. Radio communication weaves these observatories into a network with connection to databases storing measures and possible counteractions. An example observatory has a fisheye camera and insect counting algorithms for the BPH practical case in Vietnam.

By considering the observation system as an input for an abstract machine, and considering decision and actions taken as a possible control on the environment, we obtain a framework for knowledge elaboration that can be useful in lots of other situations.

The detail of chapters is as follows: global warming context, automatic light traps design, "cyber-physical" environment machine concept, and its supporting information system. A study of insect invasion in Mekong Delta, Vietnam is used as an illustration. It advocates feasibility by a starting implementation.

Climate change is an alteration in typical or average weather of region, city or country during a long period of time, e.g decades, century or millennium. Human activities may promote the ongoing process, often referred to global warming [START_REF] Council | Advancing the Science of Climate Change[END_REF]. This Global Warming can be caused by natural processes and/or human activities. However, the meaning of that term, which is commonly used nowadays, is mainly considered as produced by human activities. Actually, those two terms have different senses since the last is about the rising trend in average temperature of earth while the first one is a wider concept which refers to long-term changes in the climate such as temperature, rainfall, sea level rise as well as other effects on nature and human being.

Effects of climate change vary from average temperature and sea level rise to increase of frequency of natural disasters and extreme weather.

The Asia-Pacific region is considered as one of the most vulnerable and affected regions. Many kinds of natural disasters, climatic events and extreme weather happen with increase of scale, frequency and intensity. The 2015 report of United Nations Economic and Social Commission for Asia and the Pacific [START_REF]The United Nations Economic and Social Commission for Asia and the Pacific (ESCAP)[END_REF] shows that, out of a total of 90 storms and 344 disaster events in the world, 47% of those occur in Asia-Pacific countries and territories.

The world wide average temperature has increased rapidly since the beginning of the Industrial Revolution. In the fourth assessment report taken by Intergovernmental Panel on Climate Change (IPCC) [START_REF]Fourth Assessment Report: Climate Change 2007: The AR4 Synthesis Report[END_REF], from 1906-2005, average global temperature had an increase of 0.74°. In the last 50 years, average temperature rose twice in comparison with previous years. The 1990s was the hottest decade since 1861, even in the last 1000 years in the Northern Hemisphere.

Average sea level increased approximately of 1.8 mm/year in the period 1961-2003 [START_REF]Fourth Assessment Report: Climate Change 2007: The AR4 Synthesis Report[END_REF]. It is due to thermal expansion of water and melting of continental ice at poles and on high peak mountains.

Extreme weather conditions have been recorded since 1950:

• In most continents, number of cold days and nights have declined while number of warm days and nights have been increased.

• There are evidences of increasing of sunny days in Asia, Africa and South Ameria and growth of global number of rainy days recorded.

• Large tidal waves tend to happen more often due to sea level rise in the second part of the 20 th century.

Climate change is a disadvantage for countries for which agriculture is the main sector of economy (most of them are located in Africa and Asia) [START_REF] Dixon | Farming Systems and Poverty: Improving Farmers' Livelihoods in a Changing World[END_REF]. Indeed, high temperatures, erratic rainfall directly affect productivity/yield of crops and threaten their food security. For example, in Nigeria, due to climate change, productivity of plants is expected to decrease from 10% to 20%, even up 50% in 2050 [START_REF] Jones | Croppers to livestock keepers: livelihood transitions to 2050 in africa due to climate change[END_REF]. At the same time, the agricultural activities have remarkably increased climate change using old methods producing significantly amounts of greenhouse gases [START_REF] Maraseni | Greenhouse gas emissions from rice farming inputs: a cross-country assessment[END_REF].

Global strategies

There are two strategies to confront with climate change: mitigation and adaption.

• Mitigation prevents global warming by reducing greenhouse gas emissions. In fact, it addresses root causes and allows limitation magnitude or rate of long-term changes [START_REF] Fisher | Issues related to mitigation in the long-term context (chapter 3)[END_REF].

• Adaption is about anticipating the adverse effects to prevent or reduce their damages. It includes human activities to adapt and enhance resilience to impact so people can exploit its favorable aspects.

Researches in this field can be divided in three major groups [START_REF] Van | Climate change in Vietnam: Some research results, challenges and opportunities in international integration[END_REF]:

• Nature, causes, and physical mechanisms. The mission is to assess, answer questions about evidence of modern climate change, demonstrate its causes, show ability of climate models to simulate past and present, rationality of greenhouse gas emission scenarios as well as produce projections of future climate.

• Assess impacts, vulnerability to climate change and adaptation. The mission is to assess impact, vulnerability, resilience and strategies, and action plans for adaptation. The main issue is that climate change can bring benefits to a number of subjects, sectors and areas, but this assessment here is mainly emphasized in terms of its negative impact.

• Solutions, strategies and action plans to mitigate. The mission is to find solutions for mitigation. Mitigation term is understood in the goal to reduce green house gas emissions to keep earth's climate stable within a certain limits. It is also motivated by development of clean technologies, the production and use of green energies.

Past and current international efforts

Climate change has received attention of most countries and global organizations in the world 1 . United Nations and Food & Agriculture Organization of United Nations put a lot of effort into realization, including:

United Nations

The United Nations support the fight against climate change via convention and agreement, as follow:

• United Nations Framework Convention on Climate Change. It is an environmental international agreement negotiated at the United Nations Conference on Environment and Development (UNCED), commonly known as the Earth Summit in Rio de Janeiro, Brazil from 3 -14/06/1992. Its goal is that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system (Article 2 in [START_REF]United Nations Framework Convention on Climate Change[END_REF]). As of September 2017, UNFCCC has 198 parties and observers 2 .

• Kyoto Protocol [START_REF]Kyoto Protocol to the United Nations framework convention on climate change[END_REF]. It extends the 1992 United Nations Framework Convention on Climate Change of the United Nations with the goal of reducing greenhouse gas emissions. It was adopted in Kyoto, Japan, on 11/12/1997, and entered into force on 16/02/2005. An important content of Kyoto Protocol is that industrialized countries reduce their overall emissions of greenhouse gases by at least 5% below 1990 levels in the commitment period 2008 to 2012.

• Paris Agreement [191]. It is an agreement within the United Nations Conference on Climate Change 2015 under the United Nations Framework Convention on Climate Change (UNFCCC) that governs carbon dioxide emission reductions from 2020. This agreement was negotiated at the 21 st Conference of the Parties to the UNFCCC and adopted December 12, 2015. Some main contents relates to holding the increase in the global average temperature to well below 2°C and pursuing efforts to limit the temperature increase to 1.5°C. Moreover, 18 industrialized countries state that by 2020, they provide $100 billion a year to developing countries from a wide variety of sources, for meaningful mitigation actions 3 .

Food and Agriculture Organization of the United Nations -FAO

To FAO, climate change is put as a top line priority by following main activities [START_REF]FAO's work of climate change[END_REF]:

• Agriculture prioritizes adaptation since changing of climatic conditions, which negatively affect rural livelihoods as well as food security. Between 2003 and 2013, natural hazards and disasters in developing countries have cost $494 billion and affected 1.9 billion people [START_REF]The Impact of Natural Hazards and Disasters on Agriculture and Food Security and Nutrition[END_REF]. However, there is no report about damage in agriculture sector, although the sector is important to economy. There is a clear gap in terms of disasters damage on agriculture and livelihoods as well as food security of populations. FAO makes effort to fill this gap.

• Supporting countries to deal with impacts. Agriculture sector is very sensitive to climate change. From assessment of post-disaster needs 2003-2013 data [START_REF]Post Disaster Needs Assessment (PDNA)[END_REF], agricultural activities, including crops, livestock, fisheries and forestry, absorb 22% of the total economic impact caused by natural hazards. Those activities, combining with global food production and livelihoods, allow integrating agriculture and adaption efforts.

• Data, methods and tools. They are created to inventory and measure of emissions as well as for assess risks and vulnerabilities. For example, Locust Watch is a system designed to monitor desert locusts, weather and ecological conditions and it is used to provide global early warning system for transboundary plant pests and diseases 4 . Another example is databases on green house gases emissions from agriculture and relating sectors. They are maintained to provide a coherent and internationally neutral data platform 5 .

• Actions on ground to address adaptation and mitigation in agricultural sectors. For example, UN-REDD program 6 is an effort of FAO with United Nations Development Programme (UNDP) and United Nations Environment Programme (UNEP) to create financial value from carbon stored in forests, for reducing emissions caused deforestation and forest degradation (REDD) in 64 partner countries across Africa, Asia-Pacific, Latin America and the Caribbean.

Climate change in Vietnam

Located in South-East Asia, Vietnam is a tropical monsoon country of which agriculture is the main sector of economy. Agricultural and forest area account for 77% of country area with 50,178,378 tonnes of cereal in 2014 (FAO estimate [54]). The country is in the top 10 of the most affected by impacts of extreme weather events in terms of fatalities as well as economic losses from 1996 to 2015 (Global Climate Risk Index 2017 [START_REF] Kreft | Global climate risk index[END_REF]).

According to Ministry of Natural Resources and Environment of Vietnam [START_REF]Scenarios for climate change and sea level rise in Vietnam. Vietnam environmental resources and maps[END_REF], one probable scenario shows mean sea level rise on coastal area (or line) of Vietnam will be 25cm in 2050 and 73 cm in 2100. Other scenarios give mean sea level rise on coastal zone of Vietnam higher than global mean sea level rise. In Vietnam, the most affected region due to climate change is Mekong Delta.

Mekong Delta, Western Region (Vietnamese: Mien Tay) or the South Western Region (Vietnamese: Tay Nam Bo), is a southern region of Vietnam, including one big city (Can Tho) and 12 provinces (Long An, Tien Giang, Ben Tre, Vinh Long, Tra Vinh, Dong Thap, An Giang, Kien Giang, Hau Giang, Soc Trang, Bac Lieu and Ca Mau). The delta, which produces nearly half of the country's rice, is experiencing impacts of climate change which is expected to be worse by the time passing. These effects include: Figure 1.1: Mekong Delta -A rice region of Vietnam: its rice crop map derived from Envisat ASAR WSM data from 2007 (taken from [START_REF] Nguyen | Mapping Rice Seasonality in the Mekong Delta with multi-year envisat ASAR WSM Data[END_REF].

• Floods. They appear during the rainy season, from May to December. Indeed, living with floods to take their benefits [START_REF] Danh | Living with Floods: An Evaluation of the Resettlement Program of the Mekong Delta of Vietnam[END_REF][124] is an adaption strategy that government and citizens have applied. However, after heavy raining, the low elevation land in the delta gets long inundation. For example, in Can Tho city, the largest city in this region, daily maximum inundation depth, is around 10cm on street now, it should reach 70cm in 2050 [START_REF] Smajgl | Responding to rising sea levels in the Mekong Delta[END_REF].

• Sea level rise. From 1993 to 2010, data measured from satellites shows that mean water level for the entire coastal zone of Vietnam increases approximately 2.9mm/year where it tends to rise more strongly in Mekong Delta [START_REF]Scenarios for climate change and sea level rise in Vietnam. Vietnam environmental resources and maps[END_REF]. It is able to impact inundation projection by increasing base level [START_REF] Takagi | Sea-Level Rise and Land Subsidence: Impacts on Flood Projections for the Mekong Delta's Largest City[END_REF]. And coast line should be shift up in 2030 and 2100 of 25 km and 50 km respectively in the lands [START_REF] Wassmann | Sea level rise affecting the vietnamese mekong delta: Water elevation in the flood season and implications for rice production[END_REF].

• Drought and salinity intrusion. From 2015 to 2016, the whole country and particularly the delta have suffered from a historical salinity intrusion [START_REF]Vietnam Consolidated Report on Drought and Saltwater Intrusion (Reporting period[END_REF] causing drought emergencies in seven on thirteen provinces of the region and salt water intrusion which has been extended 20-25km further inland than seasonal averages due to particular high sea water level.

Insect pest is another problem due to its strong growth and high dissemination which impact the environment and agricultural activities since decades. The growth of those particular insect species is facilitated by good weather condition (hot temperature) particularly favored by the climate change. Recent projection of climate change urge to tackle this issue. Combination of climate change and insect pest can be disastrous. That question is investigated to illustrate a framework supporting climate change modeling and simulation.

Rice insect threat in climate change condition 1.2.1 Study of Brown Planthopper threat

The brown plant hopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae) is a major insect pest of rice in Mekong Delta, South Vietnam. This type of insects causes big loss of rice production by sucking rice leaves and transmitting two virus diseases: Rice Ragged Stunt Virus disease (RRSV) and Rice Grassy Stunt Virus (RGSV) disease [START_REF] Cabauatan | Rice viruses transmitted by the brown planthopper Nilaparvata lugens Stål[END_REF], spread over the delta, resulting fall of rice production. For example, from 2006-2007, rice, particularly in the Mekong Delta, suffered a major setback due to BPH which has caused the loss of 348,927 ha in 2006 and 572,419 ha in 2007 [START_REF] Catindig | Situation of planthoppers in Asia[END_REF].

Characteristics of BPH as any living organism are defined by two aspects its capacity to multiply and to move what can be summarized in two models: one based on reproduction and the other on propagation [START_REF] Nguyen | On weather affecting to brown plant hopper invasion using an agent-based model[END_REF][137] [START_REF] Reissig | Illustrated guide to integrated pest management in rice in tropical Asia[END_REF].

Reproduction model of BPH

A reproduction model tries to define capacity of a living organism to live enough to be able to produce descendants (i.e., to multiply the species). All in all, life cycle of BPHs extends on 26-30 days [START_REF] Reissig | Illustrated guide to integrated pest management in rice in tropical Asia[END_REF] depending on environmental factors and it is distributed in three phases: eggs, nymphs and adults. Growth time lapse of each phase is as followed: eggs 6-8 days, nymph 12-15 days, adults 19 days (figure 1.2). Figure 1.2: Three stages of development of BPHs. 7 

after hatching

Reproduction of BPHs is controlled by meteorological conditions such as temperature, humidity, precipitation, and wind as well as other factors such as rice maturation, insecticide concentration or its natural predator [START_REF] Huynh | Spatial estimator of brown plant hopper density from light traps data[END_REF][125] [START_REF]Brown Planthopper: Threat to Rice Production in Asia[END_REF].

Impact of rice maturation on BPH development (Effect of rice on BPH proliferation)

Rice, is the main food of hoppers, goes through three phases in its growth [151]: vegetative, reproductive and ripening phases. It takes, normally, three to six months from seeds to be matured plants depending on its varieties and environmental factors. Usually, it is divided into two groups: long variety which matures in 150 days and short variety which matures around 120 days. The three phases of the rice growth are:

• Vegetative phase. It starts at germination and ends just before panicle initiation about 52 days after sowing. The number of days in this phase depends on the variety of rice, normally from 55-85 days.

• Reproductive phase. It is from the developing panicle to flowering. This phase is about 30 days and is almost the same for long-duration varieties as well as short-duration varieties.

• Ripening phase starts at flowering and ends when the grain is mature and ready to be harvested. It takes place about 30 days for almost tropical varieties but may be 65 days in cold countries. This phase can be subdivided into milky, dough, yellow, ripe, and maturity stages; normally their characteristics are based on the texture and color of the growing grains.

The best conditions for the development of BPHs are young rice, developing panicle and milky stage.

BPH main predator

In the wild BPHs have predator, natural enemy, which is a factor to control them. In fact, these enemies are able to eat and transmit diseases to kill hoppers. The major predator for BPHs is Cyrtorhinus lividipennis Reuter (Hemiptera, Miridae) [START_REF] Reyes | The life-history and consumption habits of cyrtorhinus lividipennis reuter (hemiptera: Miridae)[END_REF] which has a life cycle of less than 20 days (table 1.1): 

Pesticide

Usage of phytosanitary (chemical) product had been increase since the last 50 year. It is a factor which is able to control BPHs. Actually, pesticides are chemical compounds derived from nature or chemical synthesis and used for pest and disease control. Some pesticides just influence BPHs while others can kill predators as well. Impacts of those products on farmer health force them to reduce their usage. Resilience those molecules allow them to be found in rice produced and in the soil years after.

Propagation model of BPH

When conditions are unfavorable, BPHs tend to propagate to other places. Indeed, young rices are their favorite food, hoppers tend to stay on those fields to eat until food is depleted. When rices become mature or ripe, with the assistance of the strength of wind, adults equipped with long wing are able migrate to other fields to find new food resources. Wind can advect hoppers to far away places, however, without it, they can also propagate to near fields with their own velocities, approximate 0.4m/s [START_REF] Cheng | Studies on the migrations of brown planthoppers nilaparvata 1ugens[END_REF].

Under some weather conditions, BPHs can propagate to very far destinations (500km up to 750km) [START_REF] Otuka | Migration of rice planthoppers and their vectored reemerging and novel rice viruses in east asia[END_REF]. Therefore, radar systems can also be used to observe those migrations. Observations using high frequency radar in China [START_REF] Riley | The long-distance migration of Nilaparvata lugens (Stål) (Delphacidae) in China: radar observations of mass return flight in the autumn[END_REF] shows that long distance return migrations, causing by northeastern wind, occur in mid and late September. It also found that hopper clouds take off in the late afternoon or at dusk, fly at heights between 400 and 1000m above ground level (AGL) under air temperature around 16°C. Other observations [START_REF] Qi | Radar observations of the seasonal migration of brown planthopper (Nilaparvata lugens Stål) in Southern China[END_REF] recognize that flight durations are about 9-10h at heights below 1800m AGL in summer and below 1100m AGL in autumn. Those migrations are caused by northeastern wind as well.

Manual measurement system: Light trap

Light trap is a device which is able to attract insects to its light bulb due to their phototaxis. From insects collected in the device, their species and densities are calculated, therefore, trap acts as measure device, or a classifier/counter. Light trap (figure 1.3) is considered as an useful tool in pest management. For instance, in Britain, Rothamsted light traps [START_REF] Conrad | Monitoring biodiversity: measuring long-term changes in insect abundance[END_REF] have been established since the early 1960s in order to understand insect population change during pest and to measure and analyze their diversity [START_REF] Woiwod | Flying in the face of change: The Rothamsted Insect Survey[END_REF]. In addition, to confront with Brown Planthopper (BPH) impact, light traps have been used in Mekong Delta [START_REF] Catindig | Situation of planthoppers in Asia[END_REF] so people can better know situations of their fields and take the best decision. However, these samples as table 1.2 are retrieved manually. Therefore, an automatic device to categorize and number insects would be a great help to avoid hand-operated computations.

How to mitigate BPHs threat : Problem statements

The case presented in sections 1.2.1 and 1.2.2 points out following problems:

• How to classify and/or calculate insect densities automatically? An automatic mechanism is able to reduce labor force in manual counting.

• Any capable solutions to interact/control insects at local sites? Interaction is defined as possibility to change insect behaviors.

• Networking all sample locations. Network can provide global information, spatially distributed, to confront with insect pest.

Actually, the goal of this thesis is to design an insect early warning system in Mekong Delta based on data collection in local stations. An early warning system is defined as "a chain of information communication systems comprising sensor, detection, decision, and broker, in the given order, working in conjunction, forecasting and signalling disturbances adversely affecting the stability of the physical world; and giving sufficient time for the response system to prepare resources and response actions for minimizing the impact on the stability of the physical world" (Waidyanatha's definition [START_REF] Waidyanatha | Towards a typology of integrated functional early warning systems[END_REF]).

eLocust3 [START_REF] Cressman | eLocust3: An innovative tool for crop pest control[END_REF] is that kind of system to survey, control locust, record data and transmit them through satellite in real time. It is composed by following functionalities:

• Regular surveillance. Handheld devices8 controlled by field officers are able to manually record current situations including ecological factors, insect conditions, pesticide use. Firstly, environmental parameters such as habitat type, soil moisture, vegetation conditions and state, rainfall are mandatory storage for both operationally and for basic research purposes. If locusts are present, their statuses, comprised of type of infestations (hoppers, bands, adults, swarms) and their stage, density, size, colour, behaviour and activity, are entered by employees. Next, control operations are also considered for later evaluation of treatments.

• Data transmission. Collected data is transmitted via satellites (Inmarsat9 ) to centralized locust control centre within a matter of minutes.

• Analysis and forecasts. Models and simulations are done based on GIS (Geographic Information System) analysis to get forecast insect migrations, rainfall, locust eggs and hoppers estimations.

However, data collection in eLocust3 is done manually with the assistance of handheld devices. The insect surveillance in the thesis, in the other hands, contains automatic sites to categorize/count insects and transmit numeric data to a centre where simulations are done to estimate the current situation and future trends. 

Definitions of model can be given as:

• A model is a representation of an idea, an object or even a process or a system that is used to describe and explain phenomena that cannot be experienced directly10 .

• Computer model is a representation of a system or process created on a computer, to assist calculations and predictions 11 . Models, which present insect invasion, are categorized in two types: continuousness and discreteness.

Continuous models

Insect invasions can be described as continous models by using differential equations. Rolling swarms of locusts [START_REF] Topaz | A model for rolling swarms of locusts[END_REF] are introduced to model the insect migration by using numerical simulations and tools from statistical mechanics, the notion of H-stability. This kinematic model incorporates social interactions, gravity, wind, and the effect of the impenetrable boundary formed by the ground. The rolling structure is similar to the ones observed by biologists, including all locust activities from takeoff, landing zone, and how they rest and feed. Mathematical models [START_REF] Edelstein-Keshet | Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts[END_REF], which depict how swarm cohesion can be maintained by huge population of insects over long distances and long periods of time, are proposed by using travelling wave solutions. Those models focus on interactions among organisms in an insect swarm and are mostly concerned by forces which hold the swarm together once it is formed.

Discrete models

Locust outbreaks can be expressed by discrete modeling. A tool for insect dynamic simulation based on cellular automata 12 [START_REF] Traore | Insect dynamic cellular modeling and simulation[END_REF] is designed to model spatially and temporally desert locust population dynamics in relation with geographic area. A physical system, place where desert locusts behave, allows performing synchronous simulation with space and time discretization. Simulations are concurrent and can be executed on multi-core processors or graphic accelerators. Locust population evolves after a certain number of synchronous turns can be seen with respect to insect life cycles. Stochastic cellular automaton model of locust population-dynamics on lattices [START_REF] Kizaki | A stochastic lattice model for locust outbreak[END_REF] is introduced to model the gregarious phase and interactions among individuals of insects. Simulations are made by changing environmental parameters of the model to clarify the relation between the weather data and insect behaviors.

BPH behaviors under environmental factors [START_REF] Phan | An agent-based approach to the simulation of brown plant hopper (BPH) invasions in the mekong delta[END_REF] [START_REF] Nguyen | On weather affecting to brown plant hopper invasion using an agent-based model[END_REF] are modeled and simulated by using agent based approach in GAMA [START_REF] Taillandier | GAMA: A Simulation Platform That Integrates Geographical Information Data, Agent-Based Modeling and Multi-scale Control[END_REF]. The first work about BPH invasion modeling is depicted in [START_REF] Phan | An agent-based approach to the simulation of brown plant hopper (BPH) invasions in the mekong delta[END_REF] where wind is the main factor for describing hopper behaviors. The wind data is a parameter simulation scenarios, it is not taken from an outside sources likes meteorological stations. In addition to wind, other factors such as temperature, humidity are also considered to model BPH reproduction [START_REF] Nguyen | On weather affecting to brown plant hopper invasion using an agent-based model[END_REF]. Common things in those studies are the weather data which is not taken from a meteorological source and the calculation of the simulation is done based on administrative area (districts, cities). BPH behaviors and light traps are combined into a model to optimize the light trap network for monitoring inversions of insects [START_REF] Truong | Optimization by Simulation of an Environmental Surveillance Network : application to the Fight against Rice Pests in the Mekong Delta (Vietnam). (Optimisation par simulation de réseaux de surveillance environnementale : application à la lutte contre les insectes ravageurs du riz dans le delta du Mekong (Vietnam))[END_REF]. Light traps are also considered as part of model to produce best estimation of insect populations. Perception zone and neighbor zone of a light trap are proposed and those are similar to sensing range and communication range of a sensing device.

Insect classification and counting

Solutions for estimate insect densities are varying from imaging or acoustic method and are able to run on or offline. The common objective of these solutions is to free people from manual counting which is particularly time consuming and leads to fatigue and an increase of error rate.

Image processing is a common method to count insect densities [START_REF] Yao | An Insect Imaging System to Automate Rice Light-Trap Pest Identification[END_REF][118] [START_REF] Ding | Automatic moth detection from trap images for pest management[END_REF]. The idea is to distribute a camera system in order to capture insect images, next some segmentation methods are used to extract insect images from the background. Background subtraction is the most common used, however, some other methods (e.g Seeded Region Growing) may be used to increase reliability of the segmentation phase. Some features including color, shape and texture features of each pest are extracted into a classifier for classifying and counting. Nevertheless, authors in [START_REF] Ding | Automatic moth detection from trap images for pest management[END_REF] use a pineline based on deep learning, part of a broader family of machine learning methods, for identifying and counting pests in images taken inside field traps. This solution relies more on data, not on human knowledge since it uses no pest-specific engineering which enables it to adapt to other species and environments with minimal human effort.

Photoacoustic sensor can be used to classify insects thanks to their wingbeats [START_REF] Batista | Sigkdd demo: Sensors and software to allow computational entomology, an emerging application of data mining[END_REF] [START_REF] Potamitis | Novel noise-robust optoacoustic sensors to identify insects through wingbeats[END_REF]. The logical design of the sensor is described in figure 1.4. It is composed of a low-powered laser source and a phototransitor. An electronic board is connected to the phototransitor. The laser is pointed at a total internal reflector which returns the slightly scattered light back to the source, with some of it hitting the phototransistor. When a flying insect crosses the laser beam, its wings partially occlude the light, causing small light fluctuations captured by the phototransistor. These signals are filtered and amplified and they are treated as audio signals.

Simulation and multi-simulation solution

Simulation represents behaviors of a system which is described as a model while multisimulation relates to interplays between several ones. The High Level Architecture (HLA) [START_REF]IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Federate Interface Specification[END_REF][100] [START_REF]IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Object Model Template (OMT) Specification. IEEE Std 1516[END_REF], a standard for distributed simulations, is used for interoperability Figure 1.4: Diagram of photacoustic sensor (from [START_REF] Batista | Sigkdd demo: Sensors and software to allow computational entomology, an emerging application of data mining[END_REF]) used to recognize insects. and reusability in context of latter. In HLA terminology, the whole problem which needs to be modeled and simulated is represented by a federation. Each simulator (sub models) referring to the federation is called a federate. A set of federates is connected via a Run Time Infrastructure (RTI). In this case, a RTI can be considered as distributed operating systems for cooperation of federates (figure 1.5). Federates exchange data together via RTI. For example, a federation has two federates of which the second one relies on values provided by the first one. Initially, the first federate publishes its states to RTI and the second needs to subscribe them. Whenever the second receives states from RTI, values of state variables in its simulator are updated to make suitable behaviors. However, the second federate publishes its states but the first one does not need to subscribe.

Besides, both federates need to register synchronous points (figure 1.6) to synchronize their data as well as activities. This can be done by defining a protocol in HLA Time Management Services. 

Methodology: Sensing, understanding, controlling

To our knowledge, it seems that there is no complete solution from local practical automatic observations at sampling locations to global system for modeling and simulating insect invasion in a small or average region (or area). Therefore, this dissertation focuses on that kind of such solutions.

Objective of this dissertation is to design of sensing machine to understand threats as well as measure and control counteract factors. It is applied on the case study in section 1.2 so:

• Old light trap is replaced by automatic sensing device which frees farmer from manual classification and numbering.

• New devices are connected to networks to feed collection of data used in insect or environment simulation.

Sensor is a device which detects or measures a physical property and records, indicates, or otherwise responds to it 13 . Their distribution is able to measure surrounding conditions to give values of the environment at sampling locations. It also plays as actuators to activate environmental factors. The two ways relation between these equipments and the environment is one of the research topic of this thesis.

Sensing devices are deployed to constitute a whole system to monitor natural phenomena in a defined area. Components of the system are able to provide global picture of physical world to face climatic events.

Thesis layout

The rest of the thesis is organized as followed:

• Chapter 2 illustrates a methodology to observe automatically the surrounding conditions by the design of vision sensor architectures and application. It is about sensing aspect, thereby, the local scale interaction is able to be found here.

Using sensors local scale interaction can be defined and complete a cyber physical modeling.

• Chapter 3 deals with method to consider the physical world as a machine on which processes are executed synchronously and presents an information system solution for that machine. The proposed solution is able to integrate data of different types from different sources as well as allow data sharing via multiple simulations.

Global decisions are probably made when observing historical data through years.

• Chapter 4 presents a study case merging model insect behaviors under environmental factors developed in chapter 3 and insects monitoring based on vision sensing developed in chapter 2. Variables used are wind, temperature, humidity, precipitation to assess capacity of environmental model to provide an overall view of the insect pest (or to predict behavior of insect pest).

• Chapter 5 presents conclusions of work done in the dissertation. Future plans are drawn to extend analysis of local and global sensing system.

A vision observatory: insect sampling

Automatic observatory -Basic principles

Observatory is best known as a room housing astronomical telescope or other scientific equipment for the study of natural phenomena1 . In our context, it is understood as a station equipped with sensing devices to study environment. Another example of observatory is a site built to observe boat activities on a wide surface to notify drivers whether boats are in their right tracks to avoid collisions. If both monitoring and notification are done automatically, it becomes an automatic observatory.

World Meteorological Organization (WMO) provides some clarifications with automatic weather station. It is defined as meteorological station at which observations are made and transmitted automatically [START_REF]International Meteorological Vocabulary (WMO-No. 182[END_REF]. Therefore, automatic station (or automatic observatory) is a site equipped with sensing devices to locally diagnose phenomena happening in field of biology, chemistry, geology and physics and to send results to destinations via automated transmissions. Sensing devices are able to measure phenomena values at a defined timestamp (or time step). For instance, sensors are equipped with hydrological meteorological station to compute regular weather parameters (know as factors in computer application), water level and water flow in Vietnam [121]. The typical frequency of measurements is four times per day. Vietnamese hydrological meteorological station, using time series, the trend is sampled and plays as an early warning system of floods for habitants in a region. Another example is the insect trap (also know as bio-diversity trap) which monitors behaviors of insects and other arthropods. It is able to reduce their populations by attracting them to a light bulb and destroying. Their population numbers are processed to better understand situation of crops.

In addition, those devices are able to cause repulsing. That means they have impact on natural phenomena. Ultrasound is used as a sound trap [START_REF] Kawahara | Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation[END_REF] [5] which is able to control bats activities.

As a result, the presence of an observatory induces interactions between natural phenomena and sensing equipments as shown in figure 2.1.

In the second example, actuator in the trap is the main factor ables to change insect behaviors, thus, it is popular use in agriculture (as in [START_REF] Jonason | Surveying Moths Using Light Traps: Effects of Weather and Time of Year[END_REF] [START_REF] Bowden | The relationship between light-and suction-trap catches of chrysoperla carnea (stephens) (neuroptera: Chrysopidae), and the adjustment of lighttrap catches to allow for variation in moonlight[END_REF]). Actuator is defined as a person or thing which can make a machine or a device operate 2 . Indeed, light bulb in a light trap stimulates insects due to their phototactics. In fact, the structure of the compound eyes of insects influences their spectral sensitivities. It is the case of yellowish devices with planthoppers, leafhoppers, aphids, whiteflies and leafminer flies [START_REF] Vaishampayan | Spectral specific responses in the visual behavior of the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae)[END_REF] [START_REF] Esker | Trap Height and Orientation of Yellow Sticky Traps Affect Capture of Chaetocnema pulicaria (Coleoptera: Chrysomelidae)[END_REF]. Bio-diversity trap is a sensing device having its own sensing range. For example, in the case of light trap, sensing range relies on several factors, from trap itself to lunar phases [START_REF]Efficiency of light traps in relation the number of caught species[END_REF]:

• Although luminous intensity of artificial light is theoretically constant, but change of voltage may modify some parameters such as life cycle, power input, and light efficiency.

• Natural illumination (time and span of twilights, Moon phase, light pollution) may be added to intensity of the light bulb as well. This illumination may be calculated upon geographical position, season of the year or during one night.

According to Nowinszky L. et. al [START_REF]Efficiency of light traps in relation the number of caught species[END_REF], the sensing range of a light trap can be calculated as:

r = � I ES + EM + EN + ELp (2.1)
Where

• r: sensing radius (m).

• I: luminance of the lamp, measured in cadela (cd).

• Denominator: Natural illumination consists of the sunlight (ES), the moon (EM), the starry night sky (EN) and the light pollution (ELp). For example, the sensing radius for 125W mercury vapour lamp [START_REF] Bowden | An analysis of factors affecting catches of insects in light-traps[END_REF] is 35m at a Full Moon, 518m at a New Moon. Another example [START_REF] Dufay | Contribution à l'étude du phototropisme des lépidoptères Noctuides[END_REF] is a 125W HPL light source which has the sensing radius of 70m at a Full Moon and 830m at a New Moon. They are calculated in lux (lx) equivalent to lumen per square meter (lm/m 2 ), flux of light on the surface of the trap.

This chapter explains natural rules and counteract of building automatic observatory, with a special focus on vision systems. The general orientation is to set small programmable autonomous communicating systems able to do local diagnostics and to emit synthetic information toward remote databases. In fact, this chapter describes a methodology for automatic observatories equipped with vision sensors architecture applied on bio-diversity trap for insects categorizing and numbering.

The rest of the chapter 3 is organized as follows. Section 2 depicts architecture of an automatic observation system using vision sensor equipped with fisheye lens to observe an insect trap. The next section presents camera calibration method to estimate object size in insect trap. It also provides indications to create dataset and use it to categorize and to count insects in the section 4. Experiment results and evaluation are described in section 5. Section 6 illustrates operating principals of automatic trap including some scenarios and establishments which are able to change insect behaviors. A summary of the chapter is discussed in the last section.

Automatic vision system 2.2.1 Objectives of the visual sensor

Automatic vision system (AVS) is understood as a site uses vision devices and other instruments to observe environment and collect data locally. Therefore, it is designed as an integrated concept of various measuring devices to combine data acquisition and processing. It is unnecessary to transmit collected images via a network as problems concerned in [START_REF] Gao | A Robust Image Transmission Scheme for Wireless Channels Based on Compressive Sensing[END_REF] [START_REF] Pham | Performances of multi-hops image transmissions on ieee 802[END_REF]. Nevertheless, in an AVS, executions are done on site and the data is transmitted to destination. No image is maintained in the station.

An AVS can be built from following components:

• Autonomous system node. An autonomous sensor [3] is a device able to perform its task without being connected to a control unit. Emergence of application fields requires increase of computational capabilities with suitable power consumption in the sensor node. • Radio link and network organization. Sensor nodes are connected each other mostly using radio connection in a network topology. By integration of radio transceiver, each sensor node is able to transmit its messages to distant destinations. For instance, Zigbee [2] can transmit a message at roughly 50m while LORA [160] is able to reach tens of kilometers at low data rate. Mobile communication (3G, 4G, 5G) is another solution to carry messages to distant destinations.

• Suitable power consumption with high performance. For example, Raspberry Pi 3.0 consumes typically 800mA, 4W in it tasks while Jetson Tk1 requires 12W in peak GFXBench 3.0 Performance Metrics.

• Sensors. Sensing station consists of sensors such as temperature, accelerator, or even more specific as acoustic and vision. Using data from sensors, sensing station is able to carry out its task locally (local processing) and transmit output to a data center via radio links.

The AVS is applied in a bio-diversity trap in Mekong Delta, Vietnam to classify/count insect densities automatically so that it can free farmers from current manual tasks. The requirement is that quantities of insects are collected periodically (e.g 30 minutes, 1 hour, 1 day), therefore, realtime observation is not necessary. The only obligation is, after a period of time, to return the values from the station. That gives the local view of insects with respect of surrounding conditions at the node.

Camera system and technical issues

Camera system is a kind of device which is able to be used as a sensor in vision applications. Generally, a camera system is composed by two main components: vision sensor and lens.

Vision at low level process

The key point of vision applications is the relation between the pixel matrix sensor and the processing unit. In practice, there are three types of cameras as shown in figure 2.4: 1. Figure 2.4a illustrates the architecture of widespread cameras as used in mobile phones, for example. They are inexpensive and follow standardization of access interfaces. In principle, a camera has a sensor matrix which is isolated with a processing unit. A micro-controller can control structure of the image, resolution, acquisition speed in frames per second. This affects the quality of videos relevant to final user.

2. Intelligent cameras for industrial controls integrate the processor (a parallel processor) and the sensor array (figure 2.4b). Analysis can thus be carried out directly into the camera without rendering image format. These cameras can recognize tens of thousands of objects per second, without significant energy expenditure and they also allow development of machine learning techniques.

Figure 2.5, 2.6 depicts a prototype of that kind of camera (G. Fabregat et al. [START_REF] Fabregat | Embedded system modeling and synthesis in OO environments. A smart-sensor case study[END_REF]). It consists of parallel processor integrating with sensor array and also registers. Via registers, commands are made to ask some lines of the matrix, then these lines are mapped to the processor for analyse. It is a kind of smart sensors where diagnostics are done locally. Object size calculation is able to be done inside the camera using its parallel processor. Image data is read out line by line to a parallel array of amplifier. Once a line of data is mapped to the PD register, a threshold is applied to the row to emerge object pixels without using A/D conversion (Analog to Digital). Size calculation algorithm starts from first line. Operation MARK provided from the instruction set of the sensor is able to combine objects in the new line (the register) which is vertically connected to objects in the previous rows which are maintained as a row in the accumulator. Its result is stored in the accumulator (figure 2.8). Sizes of objects are kept in another register. When processing a new line, if objects in accumulator disappear (e.g third object as in figure 2.8), their sizes are returned.

If they are still exists, their sizes are accumulated with sizes in the new line. The process continues to the last line, then sizes of objects are calculated. In addition, no image information are maintained.

3. Halfway between these two techniques, devices in figure 2.4c) are able to control acquisition of image segments by sending them directly to a GPU.

What is important in concept of parallel vision (case b and c) is that pixels appear in lines, or group of lines, they are treated as a whole: there are no sequential loop over a line, but concurrent processing of several pixels. That is the result of properties of the architecture and warranty the virtualization of the array processing. Some pros and cons of three types of camera are illustrated in table 2 Depending on each monitoring application, a suitable camera type is used. For example, to observe wildlife or birds, type (b) or (c) are necessary; however, in the insect case, camera (a) is chosen. Technically, an image is captured by the camera and micro-controllers process this image to give density values.

Basics in optics

Because light rays are projected on sensor surface of a camera to form an image, they must pass through a lens. Amount and quality of light passing through the lens determine quality of the projected image.

In a homogeneous medium, light travels in straight lines. One example of this characteristic is pinhole camera [START_REF] Chattopadhyay | Elements of Physics (Third Edition)[END_REF]. A pinhole camera is an optical imaging device formed by closed box which has a very small hole (O) in the front face and a screen at the back (figure 2.9). If an object AB is placed in front of the hole, an inverted image will A'B' will appear on the screen. For a given sensor size, specified by the diagonal length of a single frame of sensor, a lens may be classified [START_REF] Warren | Photography. Student Material TV Series[END_REF] as a:

• Normal lens. It has a focal length approximately equal in length to the diagonal.

• Wide-angle lens. It has a focal length shorter than normal. Fisheye lens belongs to this type and is able to produce a circular image on the sensor.

• Long-focus lens. It has the focal length longer than normal. During the design of new automatic device, one requirement was that structure of trap stays unchanged. Therefore, our new device is similar to the old one, only electronic equipments are added to allow local processing.

Observation by using fisheye lens camera

Figure 2.11 depicts a typical insect trap equipped with light bulb to attract insects. The figure shows the cone used to pick up insects, sometimes a bag is placed at the bottom of the cone to contain their bodies. The top is a solar panel to generate electricity for operating the trap. Sensors are installed under the panel while there is a box which contains electronic devices such as Raspberry Pi, Adruino, battery to control the trap.

A camera to observe the cone can be considered as a solution for insect counting. It is almost impossible to observe the whole cone surface using a regular lens camera (figure 2.12), instead, at least two rectilinear lens cameras are needed to handle that. The reason is objects (if applicable) in the cone are not on the same plane. It induces difference between objects and camera distance. If it is assumed that they are located in the cone surface, the situation still exists since the surface is not flat as well. Depth and scale information is lost when 3D points are projected onto a 2D image with a normal camera. Thus, another camera is used to compose a stereo one so that both can compute objects in the world coordinate.

3D camera is able to keeps all information in the 3D world. An alternative is to use a fisheye lens camera to take wide angles of view of image planes. From this, calibration method is executed to adapt cone surface on projected image. The latter is chosen in this thesis and becomes a practical solution in the case study.

Fisheye lens [START_REF] Horenstein | Black & White Photography: A Basic Manual[END_REF] is a lens to provide wide-angle view, generally from 100°to 180°. Normally, it produces a circular image which appears convex, bulging out at the center, toward the edge of the image (figure 2.12). In situations such as shooting in a confined spaces or requirement of wide field of view, the fisheye lens is useful. Indeed, interiors of objects such as car or plane are shot by fisheye lenses and sometimes stitched together in 360°panoramas.

To observe the whole cone surface, the camera is attached on the top of the cone to compose a structure as in figure 2.13. It is an inverse cone which has 50cm diameter large circle, 10cm diameter small circle and 35.8cm distance between the two circles. The fisheye lens camera is fixed at the center of the large circle to observe objects located Figure 2.12: View of cone of bio-diversity trap, on the left an installed device (smartphone camera) on the right view from the fisheye lens camera in the small circle and on cone's sides. Distance between the camera and the small circle is 34cm. Normally, insects, which are attracted by the light bulb, are falling down in the cone and sometimes slide to the small inner circle. In other cases, they are still localized on cone's sides. One problem appearing by exploitation of bio-diversity trap is how to classify and estimate insect densities. For example, from an image taken from the trap in figure 2.14, people need to know how many insects (and their species) are in the trap? Insect size becomes a main feature to categorize species in this dissertation because each insect type has its own size, such as 20-30mm length in Brown Planthopper [START_REF] Jedeliza | Adaptation of the brown planthopper, Nilaparvata lugens (Stål), to resistant rice varieties[END_REF], 38-50mm length in Grasshopper [START_REF] Bond | Grasshopper[END_REF]. To solve the problem, from an image captured on the cone surface of the trap by a fisheye lens camera, object size estimation need to be done.

The question is How to evaluate the size? It is a process done on the cone surface of the trap as in figure 2.13. It means the camera is put such as its images will have concentric center with the small inner circle. It requires engineering aspect to justify that camera and trap reach this constraint. Computer science approach is the implementation of a workflow for insect classifying/counting in a trap observed by a fisheye lens camera (figure 2.15). The workflow includes a camera calibration method to estimate object size in distorted images and application of the method to categorize and calculate amounts (figure 2.15). 

Camera calibration in bio-diversity traps 2.3.1 Fisheye projection functions

Pinhole camera model depicts relationship between coordinates of a world point and its projection to image plane in ideal pinhole camera, where camera aperture is described as a point and no lenses is used to focus light. The pinhole projection, or rectilinear projection, preserves the recti-linearity of projected scene. It respects the function given as [START_REF] Miyamoto | Fish eye lens[END_REF]:

r u = f tan(θ) (2.3)
where f is the distance between the principal point and the image plane, θ is the incident angle of the projected ray of the optical axis of the camera and r u is the projected radial distance from the principal point on the image plane (figure 2.16). 

r u D = f F (2.4)
Where r u becomes the object size in image plane, D is the object size in world coordinates, F is the distance between the object to the camera.

The fisheye projection is quite different from the pinhole projection since projected radial distance from the principal point on image plane is close proportional to the true angle of separation.

There are several fisheye projection [START_REF] Miyamoto | Fish eye lens[END_REF] which listed as follow:

• Equidistant projection ⇒ r d = f θ • Equisolid projection ⇒ r d = 2 f sin( θ 2 ) • Orthographic projection ⇒ r d = f sin(θ) • Stereographic projection ⇒ r d = 2 f tan( θ 2 )
These fisheye projections can be summarized as ⇒ r d = f g(θ), where g(θ) depicts proportion of distance from the principal point on image plane and incident angle of projected ray passing though the optical center O of the camera (figure 2.17).

Figure 2.17: Object size projection in fisheye lens camera.

⇒ r u r d = f tan(θ) f g(θ) Thus, ⇒ r u = f tan(θ) f g(θ) r d (2.4) gives r d D = f F g(θ) tan(θ) = f F h(θ) (2.5)
Similar to the rectilinear projection, r d becomes the object size in image plane. Therefore, r d D becomes the scale between the object pixels and the real object area. Figure 2.17 shows that when the distance F between the object and the optical center is unchanged, the nearer/farther A' comes to I' (the principal point), the nearer/farther A comes to I. Therefore, an object's size is proportional to the distance between its location on image plane to image center.

Image center calculation

Formula 2.5 confirms that an object's size depends on its distance to the principal point. This value can be determined by using one of methods in [START_REF] Zhang | A flexible new technique for camera calibration[END_REF][66] [START_REF] Hughes | Equidistant (f(θ)) Fish-eye Perspective with Application in Distortion Centre Estimation[END_REF].

These methods detect features from several images to estimate camera parameters. First, a pattern with some special features (corners, circles as figure 2.18) is observed by a camera with different orientations by moving either the pattern or the camera. Next the radial lens distortion is modelled and camera parameters are calculated by a nonlinear refinement based on the maximum likelihood criterion. The solution of Zhang 2000 [START_REF] Zhang | A flexible new technique for camera calibration[END_REF] is used in this thesis to detect image center: • Print out a pattern and attach it on to a planar surface.

• Take some images of the pattern with different orientations by moving the pattern or the camera.

• Detect feature points in the pattern (corner, circle, ...).

• Estimate internal and external parameters of the camera.

• Estimate coefficients of the radial distortion.

• Refine solution using least square method.

Size object estimation Description of vision in fisheye

A fisheye lens camera is attached to a light trap as in figure 2.12, it can take image of the whole cone surface. The camera is put such as the principal point of the camera coincides with the center of the bottom circle and OO' becomes axis of symmetry of the cone surface. Insects captured by trap are either located on bottom or on sides of the cone. As a result, camera calibration, which allows object size estimation, is divided into two sub cases: bottom and side. 

Objects in cone bottom

When objects are localized at the cone bottom, it means objects are on a flat surface which is parallel with the camera lens. Formula 2.5 confirms that object's image size relies on its distance to image center. Technically, it is necessary to identify bottom surface from cone image as in figure 2.12. From that, it is easy to check whether an object image belongs to bottom surface or not. Actually, bottom of the cone has circle shape, therefore, it becomes an ellipse in the image taken from fisheye lens camera. An ellipse detector is used to detect this condition. 

Objects in cone sides

� � � -→ IO � � � or � � � -→ IO � � � �. In implementation,
-→ IO � is easy to be identified because O' is just the center of the ellipse imaged of the cone bottom.

Moreover,

IO � = O � A cos β 1 (figure 2.19)
Therefore, image sizes of any objects A (B) depend on O'A (O'B) or on the distance between each object image location and the center of the cone bottom (the principal point).

Workflow of camera calibration

Workflow for camera calibration in a light trap to estimate object size is illustrated in figure 2.20. In this workflow, the first step is to estimate camera parameters, especially the image center (as in section 2.3.2) [START_REF] Zhang | A flexible new technique for camera calibration[END_REF]. Next, contours of known objects in the image are identified to calculate their pixel sizes. From that, scales between those sizes and real sizes can be computed for later usages. 

Validation of calibration method

The workflow in figure 2.20 assumes that object's image size relies on its distance to image center. In other words, if objects have the same distance to the image center, then their image sizes are almost the same. In practice, it is necessary to validate this assumption, therefore, an experiment, which is done independently to the workflow in figure 2.20, is set up and some statistical methods are used for testing it.

This experiment allows the measure of image sizes of known objects in a distorted image. In this case, known objects are distributed on a plane surface and they almost have the same distance to a center (as in figure 2.21). A fisheye lens camera is set up such as distorted image center is coincides with the center of the plane surface. Next some detector methods are applied to estimate object sizes in image (pixels) and the scale between these sizes and real sizes. In order to estimate image object sizes, as example in figure 2.21, the method in [START_REF] Zhang | A flexible new technique for camera calibration[END_REF] is used to identify camera parameters. After adjusting camera position, images of the plane surface, which consists of objects, are taken. Ellipse detectors are applied in these distorted images to extract objects' contours and compute their scales.

Raspberry Pi Camera Module with Fisheye Lens is also used in this experiment and some results are obtained as follow:

• Images are rendered as 640x480 size and the image center is estimated at (317.868, 261.45).

• Tables 2.2 and A.1 (in appendix A.2) depict scales and distances to image center of objects detected as in figure 2.21.

Scales between object sizes in the distorted image and real sizes follow normal distribution. Indeed, figure 2.22 and A.2 (appendix A.2) depict some statistical results of objects in group 1 and group 2, respectively. These results obtained from R-cran software show probability density function, quantile-quantile (q-q) plot and some tests (Shapiro-Wilk and Kolmogorov-Smirnov -appendix A.1) of object sizes in the image. For example, probability density functions represent almost bell curves while points of scales fall along straight lines of quantile-quantile plots. Moreover, Shapiko-Wilk and Kolmogorov-Smirnov tests do not reject the hypothesis of normality. To sum up, in distorted images, scale between object's pixel size and real size is the ratio with the distance between its image and the image center. Experiment results confirm one more time that an object's pixel size depends on its distance to the image center.

Application of the camera calibration method 2.4.1 Linear regression

In statistics, linear regression [START_REF] Freedman | Statistical Models : Theory and Practice[END_REF][210] is an approach for modeling the relationship between a scalar variable y and independent variables denoted x. For example, it can be related distance between an insect and the cone center to its pixel size in light trap using a linear regression model.

A simple linear regression has the equation y = a + bx + e where x is the independent (explanatory) variable and y is the scalar (dependent) variable. The slope of the line is b and a is an intercept while e is the error.

A common method to fit the regression line is the leasts squared method. It calculates the best fitting line from observed data by minimizing sum of squares of the vertical deviations from each data point to the line. Least squares method [START_REF] Puntanen | Linear Models and Generalizations: Least Squares and Alternatives, 3rd Edition by C. Radhakrishna Rao, Helge Toutenburg, Shalabh, Christian Heumann[END_REF] is a method to approach solution of overdetermined systems by minimizing the sum of squared residual (a residual: the difference between an observed value and the fitted value provided by a model).

In simple linear regression, this method finds a, b such that ∑ n i=1 (y i -(a + bx i )) 2 reaches the minimum value. After transformation, coefficients a and b satisfy the condition and are given as:

b = ∑ n i=1 (x i -x)(y i -y) ∑ n i=1 (x i -x) 2 (2.6) â = y -bx (2.7)
Where x, y are mean values of X, Y. â, b are estimation of a, b (not a, b) since a, b can not be calculated exactly. After that, one can estimate y i for each x i as below:

ŷi = â + bx i (2.8)
where ŷi depicts the mean value for each x i and the rest (y i -ŷi ) is the residual. The variance of residual can be estimated:

s 2 = ∑ n i=1 (y i -ŷi ) n-2

Insect size dataset

An insect size dataset is created by collecting insect species, distribute them to the trap surface, taken images and process these images. This phase uses camera parameters and referenced object scales from previous phase (Sample object scale estimation in workflow 2.15). Contour of each object is drawn and extracted to get number of pixels that the object occupies in the image. Linear regression is done to identify scale of the object based on its distance to the image center and the usage of the referenced object scales table. Object scale and number of pixels give an estimated size of the object.

For example, figure 2.24 presents a distorted image obtained from the insect trap in the creation phase of dataset. Each insect contour is extracted and calculated its distance to the image center (e.g: d1, d2). From the distance, formulas 2.6 and 2.8 are used to estimate the object's scale. Next, the object size can be computed with the assistance of the contour size and the scale (Ob ject_size = Contour_size * Scale). 

Insect classification/counting

This phase is done in bio-diversity traps at rice fields. Everyday, insect densities in a trap are collected as presented in section 2.6 and these values are transmitted from the trap to a data center. Periodically, following steps are processed to count insects and thus compute densities:

• Take an image of the cone surface of the insect trap.

• Execute object segmentation methods. First, background subtraction is applied, and connected component labeling is used to extract object contours.

• Calculate area (in pixels) of each contour.

• Use k-nearest neighbors algorithm (kNN) and the insect size dataset to estimate quantity numbers.

Experimentation of camera calibration 2.5.1 Implementation

Implementation of this chapter is done in C using OpenCV. There are several tools involving in it:

• Camera calibration. Calibrate fisheye lens camera to retrieve the distorted image center.

• Scale estimation. Calculate scale of known objects to create a referenced size table.

• Dataset creation. Take offline images from the trap, calculate sample insect sizes and store the dataset.

• Insect counting. Count densities periodically.

These tools run on Rasperry Pi 3.0 and camera and Raspberry Pi Camera Module with Fisheye Lens.

Results

Camera calibration and scale estimation

The camera calibration is done in the cone of the light trap in figure 2.11. Some known sample objects (circles with 9mm radius) are put either in the bottom or on cone sides (figure 2.12). The cone image taken by the Raspberry pi camera of which fisheye lens provides image center (317.868, 261.45) at 640x480 mode.

Results of the camera calibration are depicted in figure 2.25 and table 2.2.

Counting at insect trap

Based on the referenced table 2.3, a size dataset which consists of 200 BPHs and 50 other individuals of other species are created. The dataset has some following columns: distance to image center, scale between insect image and its real size, estimated real size, and species name. Only two types of insects are considered: BPHs and others (not BPHs) since normally people pay more attention to BPHs and their impacts to rice fields. 

Evaluation

The proposed method is evaluated using accuracy. It is calculated by the division of the number of true counting (TC) and the number of insects (NI) in the test data. The test data here consists of 5 images which contain 178 insect specimen.

Accuracy = TC NI * 100% = 143 178 * 100% = 80.33%
Some issues are addressed with the 80% accuracy. It is not a very high accuracy that is mainly because BPHs are small and produce very small image areas which make hard to identify them well. Additionally, under surrounding conditions such as: darkness, light illumination change; the quality of images may be impacted. Nevertheless, the result is generally satisfactory to reduce labor intensity of farms who should do manually previously. That network is in test operation, it is composed of ten light traps distributed in Can Tho, An Giang, Dong Thap, three typical rice provinces in Mekong Delta. After two months operated in lab conditions, at that day (November 2017), three stations have been commissioning in Can Tho city since September, 2017. Others will be installed soon.

Operating principals of automatic bio-diversity trap

Trapping insects

Light bulbs are turned on from 19:00 to 23:00, however, this parameter can be customized depending on battery capacity and hopper level (table 2.4). The whole trap uses DC power for both fluorescent and light-emitting diode (LED) solutions. In a traditional light-trap, fluorescent lamps are commonly used due to its long time used story [START_REF] Barrett | Functional association of light trap catches to emission of blacklight fluorescent lamps 1[END_REF] [START_REF]The Major Insect Pests of the Rice Plant: Proceedings[END_REF].

BPH behaviors may also be affected by several colors, not a lot researches have been conducted on it. However, in general, insects are able to have color receptors. A representatives study on different insects [START_REF] Briscoe | The evolution of color vision in insects[END_REF] found that most species possess blue receptors (λ ∼ 440nm). The study also shows that most insects have green receptors maximally sensitive at λ ∼ 530nm. Besides, ultraviolet (UV) receptors (λ max ∼ 350nm) were found and there seems no species were confirmed the lacking of UV receptors. Moreover, color sensitivity in the UV plays an important role in foraging, navigation, and mate selection in almost invertebrate animals [START_REF] Salcedo | Molecular basis for ultraviolet vision in invertebrates[END_REF]. Many insects such as BPHs operate at dusk in which blue black and ultraviolet rays overwhelm other colors.

We use the LED-based trap [START_REF] Bergstrőm | Blue LEDs -Filling the world with new light[END_REF] since it allows studying the extent of BPHs attraction for different light colors: UVA, blue, green. The size and capacity of LED are compatible with those in fluorescent lamps so that they are interchangeable if necessary. Other highlights of the LED are high brightness, energy saving and long life expectancy.

Scenarios of trapping

Automatic sensing devices are operated in two main situations: normal night and peak night. In normal night scenario which has few hoppers, light traps gather, analyze and transmit data twice a night (at 20:00 and 23:00). In peak night scenario, they work at higher frequencies as well as exhibit more complex handling and communication than the normal one.

The difference between normal and peak night scenerios depends on the BPH level in a trap. This level is calculated based on hopper density [START_REF] Truong | Managing the brown planthopper caught by light traps for supporting of rice cultivation in the mekong delta[END_REF] (table 2.4). Actually, values of the table were used in traditional traps to depict the damage level caused by caught insects. Nevertheless, when changing to new devices, they are reused for compatibility.

When the level changes, the rate of picture took and analysed is automatically adjusted, indicating increase or decrease of monitoring frequency. Scenario describes as follow, for example, at 20:00, the trap 1 gives 5500 hopper individuals, reaching level 4. It sends that value to the center and the center replies a command to ask the rise of the collection time interval at client sides to every 30 minutes and remaining the light on 30 

Summary

We present a design method based on smart sensor nodes acting as cyber physical devices, devices which are able to manage interactions between the information system and the physical aspects, including estimation and simulation of the physical situation.

A local analysis is supported in each node with example of insect classification and counting using fisheye lens camera. It is also shown that local computation can be extended to support an architecture for high performance vision suitable to handle object recognition using parallel processor cameras.

Many applications can benefit from those integrated vision approaches, as example sound analysis.

Cyber physical characteristics can also be assessed by the possible control from sensors. It is known that physical measurements often depend on several basic parameters, and sensors may also affect those measures. For instance, it is possible to emit light signals of different colors and different intensities to probe environment. It is also possible to rotate light signal, camera, microphone or speaker. One can see that measurements, control devices, recognition form an indivisible whole which can be classified in Cyber Physic field.

Cellular simulation and information system structure

Introduction

Chapter 2 depicts relation between natural phenomena and sensing devices through the example of a local automatic diagnostic station (figure 2.1). This type of device can produce interactions between computing mechanisms and physical aspects. The device not only measures surrounding conditions but also emits information that can lead to modify the environment. A question is what behaviorrs will come if these stations are combined as a whole system for monitoring environment in a broad aea?

A global view of this combination is illustrated in figure 3.1. Local stations, distributed in a monitored area, can be connected together and compose a network that measures and controls of the environment. A database maintains all data relating with cyber and physical interactions. Several aspects are concerned in this situation:

• Geographic objects. They can be called spatial objects of Geographic Information Systems. Example of geographical objects are varying from rivers, roads, tramlines to agricultural land, forest land. Most of them have their defined boundaries and other properties such as name, type, etc. For example, Mekong River has its own boundary and has Mekong as its name (property). Normally, these objects are stored in geographic database management systems such as PostGIS, MapInfo.

• Sensor capabilities and locations. Sensor capabilities depict attributes of the sensor such as maximum range, manufacturer, power requirements, and resolution while locations describe localizations of the sensor (latitude, longitude) (figure 3.2). • Simulation. Current data from above aspects and rules are used to predict the physical system at a timestamp in the future (as in figure 3.5). In that figure, data is an element which not only participates in the current dataset but also contributes on an historical window allowing to combine with rules element to forecast.

• Simulation results. Results of simulation can be populated back to the data element in figure 3.5 in order to be used later.

Two issues appear in this context. First, what is a suitable way to model the physical system from above data aspects? For example, from data collected in light traps, what are situations of rice fields and insect pest? One solution is to divide the physical world as cells (figure 3.1) which above data aspects are mapped into. From that, rules are applied to guess next situations.

Another issue is that environmental monitoring (EM), in a general sense, requires different data descriptions and data types. For example, an insect monitoring requires weather data, light traps, insect simulation results as inputs (more on chapter 4) where a water flows monitoring may use data collection from stations, geomorphology of rivers. Obviously, each above data element is different from its descriptions and types. Therefore, a suitable database architecture needs to be introduced to adapt with these dynamic features.

This chapter presents how to model environments from local observatory elements. It also introduces an information system to tackle above questions in environment machines as presented in figure 3.1.

The rest of the chapter is as follows. Section 2 summarizes some previous work including meteorological modeling, cellular automata and sensor networks. Section 3 depicts how to model the physical system using cellular automata. Next section introduces an architecture of data access in CA sensing machine to deal with different kinds of data. The core of this approach is a data description model that integrates data from different sources and types. Section 5 describes the implementation of the architecture where some common algorithms are introduced. Results of the proposed architecture is depicted in the section 6 while the last section presents some summary of this chapter.

Related tools and techniques

Environment modeling and the information system in this chapter inherit and develop features of following theoretical and practical aspects:

Modeling and simulation

Synchronous system principle Synchronous message model [START_REF] Lynch | Distributed Algorithms[END_REF] describes system as a synchronized series of message exchange and computation. It consists of fragment of processes which may send and receive messages simultaneously.

A synchronous distributed system can be considered as a graph G where processes are located at its nodes and these processes communicate together via their edges using message sending.

Each node in a synchronous system is termed as a process which consists of the following components:

• states i : a collection of states at process i.

• msgs i : a message-generation (MG) function specifies that process i sends to an indicated neighbor, starting from the given state.

• trans i : a state-transition (ST) function specifies a new state to which process i moves from the current state and messages from incoming neighbors.

Cellular automata

Cellular automata (CA) are mathematical models built from adjacent elementary components. Each of these components are simple but together they are capable of complex behaviors.

A cellular automaton consists of a regular lattice with a discrete variable at each cell [START_REF] Wolfram | Statistical mechanics of cellular automata[END_REF] [START_REF] Packard | Two-dimensional cellular automata[END_REF]. The variable receives a value to define a state at each time step. At next time step, state is updated by executing a transition rule φ which is a cell neighborhoods depending function. 

Complex network

Complex network derived from cellular automaton [91][180] is a technique which is commonly used to model climate data [START_REF] Russo | A complex network theory approach for the spatial distribution of fire breaks in heterogeneous forest landscapes for the control of wildland fires[END_REF] [START_REF] Feldhoff | Complex networks for climate model evaluation with application to statistical versus dynamical modeling of south american climate[END_REF]. It is considered as a graph where cells are defined as vertices and relations between cells depict time dependent weights.

One of its application is to represent global climate system [START_REF] Steinhaeuser | Complex Networks In Climate Science: Progress, Opportunities And Challenges[END_REF] [START_REF] Steinhaeuser | Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science[END_REF] in which raw data is distributed in grid cells representing a 5°x 5°latitude-longitude spherical grid. In those studies, pieces of data are normalized by de-seasonalizing values which have significantly lower autocorrelation than raw data and detrending it by fitting linear regression model and retaining only residuals. Complex network is constructed by considering each spatial point in data set as vertex and statistical relationship between corresponding times series pairs (anomaly) [START_REF] Tsonis | The architecture of the climate network[END_REF] as weighted edges. At a global scale, number of nodes, density of edges, clustering coefficient, and characteristic path length were all examined and interpreted in context of climate. At regional scale, regions of high intensity are connected to a large fraction of globe, and hence can be interpreted as indicators for global climate system such as El Niño-Southern Oscillation (ENSO) or Pacific Index.

Pruning technique is used to avoid correlation computation for all possible pairs of nodes, its results are a fully connected network [START_REF] Steinhaeuser | Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science[END_REF] since most edges have very low weights. From that, properties of networks are analyzed to gain insights in climate domain. Clustering is performed on the network, then each cluster allows prediction of target variables with linear regression.

Clustering is also used to find interesting pattern in earth science data [START_REF] Steinbach | Discovery of climate indices using clustering[END_REF]. Common climate indices ( time series of temperature and pressure in this study) are represented by performing it on the climate data with Singular Value Decomposition (SVD) and Shared Nearest Neighbor(SNN) techniques. Its applications for discovery of common indices on complex network can be considered as the conclusion for that work.

Building a complex network from climate data is also mentioned in [START_REF] Tsonis | The architecture of the climate network[END_REF], however, the study skips depersonalization step and focuses more on interpretation of complex network properties exhibited by the climate system. In the study, the network is composed by an architecture with two 'small world' networks: one operating in tropics and another acting as agent establishing links between the two hemispheres. That architecture provides extensions of other complex systems with many degrees of freedom and interactions at several space and time scales.

Data and simulation

Data from sensor networks

Sensing data from sensor stations provides information to enable humans and machines to understand better surrounding conditions [START_REF] Gubbi | Internet of Things (IoT): A vision, architectural elements, and future directions[END_REF]. Actually, those samples of data are categorized into three types: data generated by sensors, data describing sensors, and data describing environment [START_REF] Barnaghi | Semantics for the Internet of Things: Early Progress and Back to the Future[END_REF]. Integration of those types of data is able to support designing, evaluating and planning public policies linked to the management of natural resources.

A collaborative approach for metadata management is introduced to acquire and manage metadata related to the physical devices and their surrounding environment [START_REF] Hassan | A collaborative approach for metadata management for internet of things: Linking micro tasks with physical objects[END_REF]. The data aspect of this approach considers three types of data:

1. Sensor observation data. The actual measurements generated by the sensor. For example, humidity sensor measures and reports the relative humidity in the air.

2. Sensor metadata. The model which describes sensors and their capabilities in third parties format such as Sensor ML (Sensor Modeling Language) 1 or the Semantic Sensor Networks Ontology2 .

3. Data processing rules. Specific rules which help to standardize management of data in applications and for decision support.

Metadata is "data which provides information about other data" 3 . In other words, it contains necessary information to understand and use data. These information can be either of following types [START_REF]Understanding metadata[END_REF]:

• Descriptive metadata. It describes information for discovery or identification.

• Administrative metadata. It provides management information.

• Structural metadata. It depicts the container of information and indicates how data

elements is put together.

Metadata is critical in multi sensor analysis.

Practical aspects of data integration

A framework, which allows combination of different data sources and analysis of the integrated data at different scales, is proposed in [START_REF] Truong | An implementation of framework of business intelligence for agent-based simulation[END_REF]. It provides means to handle big data from different data sources and perform analyses as well. Its principle is to combine Multi-Agent Simulation and Business Intelligence methodologies to adapt several purposes with among others: model and execute multi-agent simulation, manage input/output data of simulations, integrate data from different sources and analyze high volume of data. The framework focuses on simulation data to calibrate simulation as well as to manage a large amount of those sample data and to make analysis supporting decision-making processes. However, it seems that there is no information of sensor data and sensor description in the framework.

To maintain meteorological data, Meteo France4 has a structure to include five datatypes [START_REF] Pottier | Operational databases at meteo-france[END_REF] where each has abilities to access to the primary data as well as to understand its associative and descriptive realms. Actually, real data is stored in meteorological formats (normally BUFR 5 ), or in relational models, or in mixing of two methods. To retrieve it, one routine inspecting to the associative and descriptive parts to access the raw one in the primary structure. Therefore, each datatype represents metadata which allows retrieving data from the primary structure.

Cellular automata and sensing machine 3.3.1 Sensing station and sensor coverage

In figure 3.1, sensing devices monitor a physical parameter which can come from climate events or be an extreme phenomenon as insect invasion, flooding, rainfall. These equipments are deployed over a geographical region called R to measure parameters relating to climate. A collection of them called C composes a network which uses wireless connection or other communication types.

Each device is able to observe its vicinity. Sensing field of device s i , referred as f (s i ), is the area around it. The field f (s i ), which is covered by device s i , means that any point ∈ f (s i ) is covered by s i . If f (s i ) is a disk, the sensing range r s i of f (s i ) is the disk radius (figure 3.7). If the region R has an area S(R), the minimum number of equipments to monitor the whole area is N � S(R)

πr s i 2 .
Figure 3.7: Coverage of sensing devices in a geographic area. On left ideal case homogeneous sensing range r s i , on right more realistic case complex sensing field f (s i ).

The collection C gives a set of measurements of the region R. A question is what are current situation and trend of physical world? One way to answer is to simulate the phenomena according to values given by sensing devices. As a result, physical world model is necessary.

Coverage problem

One important problem highlight in figure 3.1 is is the observation network qualify? Or in other words, how measurements of values are really reflecting the physical world?. This issue relates in many aspects to sensor placement, phenomena nature or even understanding.

The observation simulation and physical simulation are coordinated to understand what is observed. By simulating a physical system it can be guessed what will happen at any places and any time. As a result, the sensor coverage can be optimized related to the physical evolution to monitor. For example, simulation of river flow allows to guess where and when to observe species or product dissemination.

In some monitoring applications, deployment of a large enough number of sensing devices is infeasible, as a result, small number of equipments are distributed in a region R. Issue here is to identify the minimum of stations to cover the region, where each device has the sensing field f (s i ) with the range r s i . More clearly, it is about minimizing number of devices in respect of the k covering monitoring area [START_REF] Tian | A coverage-preserving node scheduling scheme for large wireless sensor networks[END_REF] [START_REF] Chakrabarty | Grid coverage for surveillance and target location in distributed sensor networks[END_REF]. For example, polynomial-time algorithms [START_REF] Huang | The coverage problem in a wireless sensor network[END_REF] are proposed to determine redundant stations so that they can check whether every point in service area of the network is covered by at least k stations.

In practice, coverage area of a network can be affected by surrounding conditions and terrain. An approach considers obstacles as interfere elements of sensing process and compose a shadow-fading model [START_REF] Tsai | Sensing coverage for randomly distributed wireless sensor networks in shadowed environments[END_REF], model similar to radio wave propagation. Another is to assume that physical event arises in each grid point and it is detected with a probability defined between 0 and 1 (Elfes model [START_REF] Elfes | Using occupancy grids for mobile robot perception and navigation[END_REF]).

In addition, station positioning may depend on experts in domain fields and on other factors. For example, escape strategy and other management methods [START_REF] Otuka | Migration of rice planthoppers and their vectored reemerging and novel rice viruses in east asia[END_REF][71] [START_REF] Chien | Management of rice planthopper and related virus diseases in mekong delta, south vietnam[END_REF] are applied successfully to control insect outbreaks for rice in Vietnam. For these solutions, people use light traps to capture insects and the amount of insects becomes an indication to understand current situation and predict state for a wide area in next days.

Maps data and cellular automata modeling

Map is a diagrammatic representation of an area of land or sea showing physical features, cities, roads, etc ( 6 ). Map can help to locate a position on earth as well as identify distribution of a mountain, a river or even populations.

The geographical region R, represented by a map where phenomena take place, can be considered as a cellular system by being divided into cells (figure 3.8). A cell consists of several attributes such as width, height, geographic position (including elevation). Cell is elementary unit of a cellular automaton, so it is indivisible. Sensor stations, which are distributed over the region R, can be considered in cellular automaton. Each station belongs to at most one cell, and vice versa, each cell may consist of at most one device.

A spatial cellular automaton described in section 3.3.3 is a kind of synchronous system where each cell represents a process and where link between a cell and its neighbors (Von Neumann, Moore, hexagon) compose edges allowing exchange of messages.

One view point is that CA synchronous system is a sensing machine where each cell is called as a process. Those processes execute in parallel the same program (MG and ST functions) to compose processes' new states (figure 3.9). These local executions respect a principle: a process has responsibility for one thing at a time. It is similar to how nature operates: local operations happening everywhere at once. Figure 3.9: Sketch structure of a synchronous observation system related to CA: cells or process run same program at a time (parallelism and locality are described).

Conceptually, an environment sensing machine consists of several overlapped cellular automata (figure 3.10) in which the spatial one, referred as the host cellular automaton, represents the geographical region R. Because each state of a process is a composition of values including meteorological and other factors, for all processes over the host one, each factor creates another cellular automaton. The compound CA system at a time t i is called a configuration of the sensing machine at that time.

Temporal aspect of the machine is also described in figure 3.10. In fact, each process of the host cellular automaton is positioned as (i, j) where i, j are row and column indices. A transition rule method f t (i, j) (including MG and ST functions), applied synchronously on all cells at the time t, specifies a new configuration to be computed from states of neighbors of (i,j). Cell (i,j) itself can be considered as an adjacent as well. 

Coverage issue modeling

The problem presented in section 3.3.2 can be addressed and modeled using CA. Indeed, the map representing the monitoring area is divided as cells while each sensing radius r s i depicts a phenomenon to model (figure 3.7). Thus, shadows-fading [START_REF] Tsai | Sensing coverage for randomly distributed wireless sensor networks in shadowed environments[END_REF], Elfes [START_REF] Elfes | Using occupancy grids for mobile robot perception and navigation[END_REF]), or other methods can be implemented by distribution method using automata machines.

In the implementation, parameters which interfere with behaviors of sensors can be populated from external data sources. These elements including building, meteorological factors, terrain will be discussed in next sections as a data aspect of CA modeling.

Data access architecture 3.4.1 How practical data is accessed

Architecture in figure 3.11 presents different ways to access to data in environmental monitoring systems. Several databases are stored in a GIS Relational Database Management System where there are metadata which illustrates how data is organized in storing databases. Usage of GIS enables maintenance of spatial data such as: river, building, road. In implementation level, OpenStreetMap (OSM) 7 is used and maintained in Postgres SQL.

Before storing external data to GIS RDBMS, some preprocessing steps are done to normalize raw data from different sources and formats to adapt with the data organization. External users are able to access data via different ways such as: web, CSV, SensorML or even MetView8 . In addition, internal users can make queries to metadata as well as storing databases to elaborate future tasks.

A metadata database (description database or datatype) is the core of the architecture (figure 3.11) to provide descriptions about the maintenance of storing data. For example, what data types of insects are kept in insect monitoring application? Where are environmental factors coming in this application? Or which sensors are used as well as what are their types of data values?

The most important role of metadata is in data reuse and data sharing. Highly detailed instructions or documentations of data are supported in order to interpret and analyze data accurately.

In environmental monitoring applications, metadata is more necessary since a lot of information involving to sensors need to be maintained. These kinds of information relating to historical calibration and coefficient data of sensors. Sensor values and types need to be described to better understand the surrounding conditions that sensors measure. In addition, in some cases, calibration characteristics of each sensor are stored before the sensor is deployed to a remote station.

For example, to monitor insects in rice fields, people deploy sensor stations (figure 3.12) to measure factors influencing insect growth such as temperature, wind, humidity, rain, insect density. These factors have different types of values such as floating point number (wind velocity, insect density), integer (wind direction, rain flow). Moreover, cameras which are used to count insect densities are calibrated to estimate their internal and external parameters such as image center, distorted parameters. All of those things need to be specified as metadata so that they can be stored for later purposes. 

Description of data in cellular automata sensing machine

Data in environmental monitoring systems (figure 3.13) can be populated from different sources such cellular automata (CA), meteorological, simulation objects, geographic and sensor data. The cellular automata data is the center in which all others are distributed into cells of the CA. It can be said that there are several layers of CA, which each represents from meteorological and geographical data to simulation objects or sensor data. These layers overlap together or are mapped to the lattice representation of the 

External data sources

Indeed, natural phenomena can accept inputs from various parameters. For example, insect invasions in Mekong Delta are influenced by wind, temperature, humidity, insecticide spraying, and others factors. Or urban flood inundation is affected by elevation, rainfall, the water depth, infiltration rate to previous surface, roughness coefficient and drainage rate of inlets [START_REF] Chen | A GIS-based model for urban flood inundation[END_REF] [START_REF] Liu | Developing an effective 2-d urban flood inundation model for city emergency management based on cellular automata[END_REF]. Those kinds of data share the similar thing: they are provided by external data sources in different formats such as PostGIS, CSV files, GRIB 9 , or NetCDF 10 .

Based on time dimension, those kinds of data is divided into two categories:

• Less sensitive to time variation such as building, roads, rivers and other geographical features. They can be maintained in databases such as Open Street Map 11 in PostGIS format.

• Continuous and frequently varying over time such as environmental parameters (temperature, humidity, ...) , universe (galaxies, planets, stars, satellites). They are stored in different self-descripting standard files.

Meteorological data description External sources include weather data from meteorological service providers as well. For example, Météo-France maintains following meteorological datatypes [START_REF] Pottier | Operational databases at meteo-france[END_REF] in their architectures:

• Point forecasts (surface and upper air) produced by models and forecasters.

• Quality/Control flags put on observations by models and forecasters.

• Observations made by either direct/indirect instruments or eyes of human observers.

• Numeric Models Outputs.

• Image.

However, that study focuses on forecast data from service providers under conditions of a spatial and temporal resolutions. Spatial resolution depicts how many forecasts within a given area while temporal one illustrates how often the forecast is updated. It means that a grid of points, which is updated periodically, are provided as inputs of preprocessing step in figure 3.13. For instance, wind and temperature data in figure 3.4 are retrieved from zyGrib (http://www.zygrib.org which provides services to retrieve weather data from National Oceanic and Atmospheric Administration -NOAA) under GRIB format with (0.5°latitude x 0.5°longitude) resolution. 9 (GRIdded Binary or General Regularly-distributed Information in Binary form) is a concise data format commonly used in meteorology to store historical and forecast weather data https://www.wmo.int 10 a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data https://www.unidata.ucar.edu/software/ netcdf 11 https://www.openstreetmap.org/

Object description

Monitorable objects, which are related to a phenomenon as either main actor or with supporting role, are described. For instance, in the case study, BPH is the main actor which causes pest outbreaks but rice is also necessary because it is the main food for hoppers.

Sensor station description

Sensor stations are geo-localized to measure the environment. Each station has its own sensors that hold values. These values can be seen as inputs of the phenomenon or a capable way to validate the model of the phenomenon.

Schema of data descriptions in EM applications

Schema in figure 3.15 depicts all above data descriptions in EM applications. In other words, it presents metadata of environment machines. An application is termed as a project which has its own attributes such as: ID, name, creation date time. For example, table 3.2 depicts attribute values of 2 applications: insect monitoring in Mekong Delta and radio signal propagation. Spatial CA descriptions is a main element of an EM application. An application (project) has at least 1 spatial CA. Main attributes of a CA are resolutions (or cell resolutions), top left and right bottom geo-locations of the region that phenomena take place. The CA description has relationships with descriptions of weather data, object, and sensor.

• Meteorological data description. It depicts weather factors used as well as their data types, data sources.

• Object description. It illustrates meta data of objects which participate to the phenomena. These descriptions include main attributes such as object name, object type.

• Sensor station description. It shows descriptions in details about stations as well as their sensors in the EM application.

Transformation to data definition

From the description data model, it is possible to generate a EM database structure by identifying some following information:

• Meteorological factors which impact phenomena need to be monitored. Descriptions of these factors such as data types, source are also provided.

• Objects representing phenomena. For example, in a flooding monitoring project, objects participating to the phenomenon (water level, rain fall, ground water) are depicted as well.

• Description of sensor stations (if any). All these above information are maintained in a database which is the implementation for the schema shown in figure 3.15. Next, a storing database is created automatically to allow data manipulation in the monitoring application.

For instance, the invasion of insects in Mekong (BPH) is influenced by wind, temperature, humidity, rain falls, pressure. Moreover, rice age is another factor which has ability to susten BPHs because young rice is their best food. Besides, it is necessary to estimate the number of BPHs in a region (e.g cell), therefore, a structure to maintain hopper densities is depicted as well. Those information are illustrated in table 3.3 and 3.4.

As a consequence, generated database has following layout (figure 3.16): From the metadata schema in figure 3.15, a workflow for development an environmental monitoring application is emerged. It can be found in the appendix D.2.

Expected behaviors of the environmental machine

Behaviors depict the temporal aspect of environment machines (figure 3.10). In fact, a compound value is assigned to each process at the time t to compose the state of the cell at the time t. Because the value is a combination of simple ones, in an abstraction view, there are several cellular automata overlapped together (section 3.4.2).

In implementation, the machine consists of transition rules functions to depict such behaviors. Actually, those functions are represented as varieties of growth and propagation algorithms of CA.

Growth and propagation algorithms

Growth algorithm

When the new state f t+1 (i, j) of a cell is calculated from its local state f t (i, j) (instead of all its neighbors' one), this type of rules is called a local rule. For instance, the rule 'Death rate of insects is 10% per day' is local since it is applied to the cell that contains insects. Or 'every day an adult insect may give 10 eggs' belongs to this type as well. All local rules in a cell compose the growth algorithm of this cell.

Propagation algorithm

The new state f t+1 (i, j) of a cell is calculated from its neighbors. For example, the rule 'insect may transmit to adjacent area due to wind' composes a propagation algorithm for insects.

To implement the growth and propagation algorithms, bilinear interpolation is necessary since sensing devices provide data at sampling locations, however, values in all over the spatial cellular automaton are required. In addition, in the beginning, it is required to downscale gridded meteorological data to the grid of the host cell system because these grids are often different in terms of resolution.

Behavior implementation

The concurrent model of cellular automata synchronous system requires usage of a parallel programming language in the implementation phase. The tool PickCell [START_REF] Pottier | Dynamic networks "Netgen: objectives, installation, use, and programming[END_REF] [START_REF] Traore | Insect dynamic cellular modeling and simulation[END_REF] can produce CA codes in destination programming languages. The integration of features described in section 3.4 contributes to the code generation as well. Occam and CUDA are currently used in this phase.

Occam language

Occam is a parallel programming language developed by David May [START_REF] May | Occam[END_REF], based on Communicating Sequential Processes (CSP) [START_REF] Hoare | Communicating sequential processes[END_REF]. It is used for implementing synchronous system in CA machine and synthesis, message behaviors for WSN.

In Occam, cells are processes and are able to be executed concurrently. Passing messages along point to point channels is used to communicate among those concurrent processes [START_REF] Daniel | Introduction to the Programming Language Occam[END_REF]. Figure 3.17 depicts a message sending from process P1 to process P2 along channel C. Figure 3.17: Description of message sending in cellular automata network: process P1 sends a message via channel C to process P2 (from [START_REF] Daniel | Introduction to the Programming Language Occam[END_REF]). It is generated from the tool PickCell.

CUDA language

CUDA (Compute Unified Device Architecture) is a parallel computing platform which allows developers use CUDA-enabled graphics processing unit (GPU) for general purpose processing (GPGPU) [START_REF] Nardone | Cuda programming model[END_REF].

A kernel, parallel portion of a CUDA application, consists an array of threads which execute the same code. Therefore, for realization synchronous system, cells in CA are depicted as threads in CUDA kernel and their transition rules functions are described as kernel codes. Figure 3.18 depicts how a CUDA application executes by transmision data from CPU from/to GPU and processing in GPU. 

Some algorithms in spatial CA

Bilinear interpolation for meteorological data Figure 3.1 depicts the distribution of sensor stations in some locations. Thus, to calculate meteorological factors for all points of CA grid, interpolation is expected to be run.

Bilinear interpolation [START_REF] Press | Numerical Recipes in C: The Art of Scientific Computing[END_REF] (figure 3.19) interpolates the value of I (f(I)) based on values of its 4 neighbors A 1 (x 1 , y 1 ), A 2 (x 1 , y 2 ), A 3 (x 2 , y 1 ), A 4 (x 2 , y 2 ):

f (I) = (x 2 -x)(y 2 -y) (x 2 -x 1 )(y 2 -y 1 ) f (A 1 ) + (x-x 1 )(y 2 -y) (x 2 -x 1 )(y 2 -y 1 ) f (A 2 )+ (x 2 -x)(y-y 1 ) (x 2 -x 1 )(y 2 -y 1 ) f (A 3 ) + (x-x 1 )(y-y 1 ) (x 2 -x 1 )(y 2 -y 1 ) f (A 4 ) (3.1) 
Because meteorological values are measured at defined points on the earth (spherical surface), when formula 3.1 is used to interpolate meteorological values, subtraction operators are replaced by distance between two points on the earth's surface.

Algorithm in appendix B.2 depict an implementation in CUDA. It uses the structure 3.1 which is generated automatically from PickCell for CA cell declarations. 

Distance between points on the earth's surface

Haversine formula [START_REF] Sinnott | Virtues of the Haversine[END_REF] determines the distance between two points on a sphere given their longitudes and latitudes.

In figure 3.20, let α 1 , φ 1 and α 2 , φ 2 be the geographical latitude and longitude in radians of two points P and Q. ∆φ, ∆α are their differences and ∆σ is the central angle between them. Then the distance d between P and Q, the arc length, is given:

d = r∆σ (3.2)
Where r is the radius of the sphere and ∆σ given in radians.

∆σ is calculated as followed:

∆σ = arctan � (cos φ 2 sin(∆λ)) 2 + (cos φ 1 sin φ 2 -sin φ 1 cos φ 2 cos(∆λ) 2 ) 2 sin φ 1 sin φ 2 + cos φ 1 cos φ 2 cos(∆λ) (3.3) 
CUDA implementation of this algorithm can be found in appendix B.2.

Figure 3.20: Distance between two points P, Q on a sphere of center O. α 1 , φ 1 are the longitudinal and latitudinal angles of P, respectively. ∆σ is the angle between the two segments OP and OQ.

Wind calculation

A horizontal wind vector w is represented by two components (u, v) (figure 3.21), where:

• Zonal velocity u. The component of the horizontal wind TOWARDS EAST.

• Meridional velocity v. The component of the horizontal wind TOWARDS NORTH. Let α be the direction TOWARDS which the wind is blowing and φ be the wind vector polar angle in two-dimensions. The wind velocity and the polar angle are calculated as:

|w| = √ u 2 + v 2 φ = 180 π * arctan 2(u, v) (3.4) 

Data querying in environmental monitoring applications

Executions of EM applications produce data which can be used for post investigations such as decision making, reuse or representation. Some questions may be raised in that matter. For instance, what is the tendency of insect invasion What is wind direction in an area in past two years? Can a monitoring application represent monthly growth chart of insects? These kinds of problems can be answered by querying the generating database (as the example in figure 3.16) and the description database (figure 3.15).

This section shows 2 examples of querying data from an EM application. The first example is about wind rose calculation at a location after wind vector evolves after a number of simulation steps. It means that after each step, simulation results are populated to the database (as schema in figure 3.16). When the simulation finishes, an algorithm under SQL query is called to compute the wind rose at a location. The second example shows how to retrieve sensor data from the database in schema 3.16).

Wind rose algorithm

A wind rose gives a succinct view of how wind speed and direction are typically distributed at a particular location 12 . Wind roses were predecessors of the compass rose [START_REF] Chakravarti | Cartographical Innovations: an International Handbook of Mapping Terms to[END_REF] and by representing on a polar coordinate system, the frequency of winds over a time period is plotted by wind direction, with color bands showing wind speed ranges.

From the database of which schema shown in figure 3.16, the wind rose dataset for a location in the application (Mekong Delta in this example) can be created by querying data in table TMeteoToBPHData with calculations using formulas 3.4.

In the application Insect Mekong, table TMeteoToBPHData contains 164388 records. These records are populated after each step of the insect invasion simulation (in CUDA). The CUDA implementation allows querying data as algorithm 1, grouping data and displaying the wind rose as following figure 3.22. Figure 3.22 depicts the wind rose captured after executing insect invasion simulation in a Cao Lanh, Vietnam. It can be seen that the direction of wind tends to come from South West (SW), SSW and S. This tendency is similar to the one of the data in the beginning of September, 2017 (www.zygrib.org/).

Data collection from sensor stations

Data collections from a sensor station, sometimes, need to be extracted to better understand situation at the station's location. Some questions about the information system may arise around stations and their values. For example, what are sensor values of a station at a period of time? What is the tendency of BPHs density at a sensor station in the past three months? What are tracks of a node if these devices are mobile? 

Summary

The chapter advocates a method to model physical world as CA machine. The machine consists of cells (processes) which are able to execute synchronously same transition rule method to compose a new configuration. In addition, sensing stations are distributed over its geographical region to monitor a service area (coverage) of the physical world.

In addition, the chapter depicts an information system to contribute to the development of global sensing machine in modeling environmental monitoring. Technically, the system allows integration of data from several sources such as: observation points, meteorological services, GIS. Its structure is maintained in PostGIS to take advantages of GIS data (points, polygons, shape data) and to integrate other data with the assistance of a proper database description. Besides, a method combining CA and data approach is Application: Modeling rice insect pest using cellular automata machine

Introduction

Insect pests can cause severe crop damages. For example, locust pests create dense insect clouds and destroy every plants they found by eating them. In March 2013, nearly 50% agricultural surface areas of Madagascar have suffered from swarms of locusts, with billions of individuals in each swarm [START_REF]Locust plague threatens to trigger severe food crisis in Madagascar[END_REF]. This infestation devastates 60% of rice crop of the country and costs millions of dollars for pest control. Another example is Brown Planthoppers (BPHs) which cause hopper fire in young rice and damage several hundred thousands tons of rice production in Vietnam.

Several solutions to confront with insect pests are proposed and solutions with sensor networks emerge as suitable choices [109][185]. This kind of solution uses sensors to measure environments and insects behaviors. Sensed values will be sent via a network to a data center. Next, a back-end system will manipulate these values and propose solutions relating to data collection. Such application is a kind of environment machines shown in figure 3.1.

To implement such system, it is important to understand factors influencing insect behaviors and use them as model. Actually, these factors occur continuously and concurrently. Continuous occurrence means that they compose an unbroken whole while concurrency allows them to happen at the same time. For example, some factors such as temperature and wind are influencing BPHs invasion [START_REF] Nguyen | On weather affecting to brown plant hopper invasion using an agent-based model[END_REF][137] from one place to another, in a continual way. Besides, they are concurrent since motivation for propagating from a source to a destination comes with surrounding conditions of the source and its neighbors. Conditions of different places must be executed simultaneously.

In this chapter, we apply the sensing machine based on synchronous system [START_REF] Lynch | Distributed Algorithms[END_REF] and cellular automata [START_REF] Wolfram | Cellular automata as models of complexity[END_REF] topology to depict the concurrency and continuity of influence factors. In fact, this chapter is an illustration of local and global observation systems which are mentioned in chapter 2 and chapter 3.

The rest of this chapter is as follows. Section 2 is about modeling insect invasion phenomenon as a synchronous system with cellular automata topology. Next section depicts some algorithms to implement the model described in section 2. Section 4 illustrates simulation results of the insect invasion monitoring application. The last section is a summary in respect with cyber physical aspects developed in chapter 2 and chapter 3.

Modeling insect invasion using cellular sensing machine 4.2.1 Cellular automata synchronous system

The map representing the working space of insects is divided in cells. In other words, the map is modeled as a lattice of a cellular automaton (figure 4.1).

The space in figure 4.1 depicts a spatial cellular automaton which is described by a triple (S, n, f ) where:

1. S is a finite set of state. Each cell has a state, composition of environmental factors In figure 4.1, the space is represented by a matrix of cells, 2-dimensions. However, in theory, this space has an infinite number of dimensions. Each cell in the space can, at any given time, be in a finite number of states. At the time t, state of a cell depends on state at time t-1 of its neighbors. The cell itself can be integrated in its neighborhood. Updating the rules is identical to all cells. Whenever the rules are applied to the entire system, they could change the entire system synchronously.

CA are capable to combine spatial and temporal relationship (figure 3.10). Lattices, cells, neighborhoods depict spatial characteristics. In fact, each cell represents a variable that hold the cell's values at the time t. Transition rule f manages changes in variables of the cell and its neighbors from time t to time t+1, given as input automaton outside data of time t.

CA also imply data aspect. Indeed, values of cell's variables may come from either environmental or biological factors. For example, in flooding modeling, water level, downstream or upstream are an important factors to identify where water moves to. Geology and river floor at a cell are considered as well.

As a result, CA modeling is constituted of three aspects: spatial, temporal and data (figure 4.2). 

State variables of cells

The space where insects live and act is divided as cells shown in figure 4.1. It is considered as a graph G of which nodes are cells and edges are created between a cell to its neighbors.

By the time passing, each cell updates its values with the assistance of a function f. The function f depends on the cell's states which is composed of either environmental or biological factors: wind, temperature, humidity, density of hoppers, rice ages. These elements come from external data sources, monitorable objects or sensor stations as described in section 3.4.2.

Meteorological data

In short, a state contains following factors:

• Temperature and humidity. Because they have influence on all phases of hoppers.

• Precipitation. There is a relation between rainfall and hopper death rate.

• Wind: the wind magnitude. According to biological characteristics of hoppers, most part of the propagation (only adult ones) are due to wind advection, thus strong wind help the propagation.

Biological data

The most important biological factor is the hopper itself (hopper life cycle). Because life cycle is around 28 days and is spread in 3 phases, it can be considered as an one dimensional cellular automaton of which cell i contains the number of i days old BPHs (figure 4.3). Let the number of i days old BPHs is n(i), after a day, principle of updating cell i (without weather conditions) in the biological cellular automaton is n(i) = n(i -1), ∀i ∈ [START_REF]Locust plague threatens to trigger severe food crisis in Madagascar[END_REF][START_REF] Chakravarti | Handbook of Methods of Applied Statistics[END_REF].

In addition, rice is an important factor which influences insect behaviors because insects consider young rice as their main food.

To sum up, variable of a cell consists of two parts:

• Weather data including: wind, temperature, humidity, precipitation.

• Biological data. The biological cellular automaton is depicting the number of hoppers which are i days old ∀i ∈ [0, 27]. In addition, rice age is another input parameter.

Sensor stations

Some sensor stations are deployed to measure insect densities and meteorological factors at some defined locations. These values can be counted to either as weather data or biological cellular automaton to compose state variables.

Data model for insect invasion application

After configuring the above information in section 4. Environmental factors are populated from an external source in GRIB format. GRIB is an efficient vehicle for transmitting large volumes of gridded data to automated centers over high-speed telecommunication lines using modern protocols [START_REF] Organization | A guide to the code form FM 92-IX Ext. GRIB[END_REF]. GRIB is a self-describing, compact structure and is multi-platform compatible.

It is necessary to interpolate parameters from GRIB data to adapt with the cellular structure. The reason is that both the cellular system and GRIB data represent in grid formats but they may have different resolutions. For example, parameters in figure 3.4 are described in (0.5, 0.5) (latitude, longitude) resolution while the cell size is variant depending on the number of pixels chosen for the modeling. Figure 3.4 illustrates the temperature and wind displaying in zyGRIBViewer while figure 4.4 is our spatial cellular system (around 100km 2 /cell) which presents wind vector in each cell.

Bilinear interpolation [START_REF] Press | Numerical Recipes in C: The Art of Scientific Computing[END_REF] (figure 3. [START_REF] Bradski | The OpenCV Library[END_REF]) is used to interpolate parameters on a rectilinear 2D grid. Algorithm in section 3.5.3 is implemented in CUDA to realize this interpolation (Appendix B.1).

CUDA implementation for bilinear interpolation in this phase is necessary since it brings better performance in comparison with PostgresSQL version (Appendix B.2). Table 4.1 shows performances of PostgresSQL and CUDA implementation when taking GRIB data (0.5,0.5) (latitude, longitude) resolution (49 cells) as input in order to output a cellular system consisting of 31311 cells. To communicate with neighbors, the synchronous model of processing on GPGPU can be resumed as two kernel functions:

1. Buffer writing. Processes write data to output buffers in the shared memory (Send to buffers).

2. Buffer reading. Processes read data from their neighbors' output buffers. Next, those buffers are reset for the next execution (Update states).

Both reproduction and propagation models (in section 1.2.1) are depicted in these two algorithms.

Send to buffers That task allows transmission of a part of process's values to its buffers. Depending on surrounding conditions, a number of insects is advected to its neighbors. Algorithm is as followed:

Input: currentStates_d: Current states of all nodes Input: buffNodes_d: Buffers of all nodes Input: channels: Cellular network Output: A number of insects in a node transmitted to the node's buffers Algorithm 4: Updating node states based on their buffers.

1 idx ← threadIdx.x + blockIdx.x * blockDim.x 2 if idx < numberOfNodes then 3 curState ← currentStates_d[idx]; curBu f f ← bu f f Nodes_d[idx]; // -Get
Other operations relating to these two algorithms can be found in appendix E.1.

Simulation result analyse

Some questions can be raised in the simulation result in figure 4.6. How many areas are infected by BPHs? How many percentages of infected areas over the total of rice growing areas? How many of them are hopper-burn? How many of them are tending to become hopper-burn? Technically, these kinds of questions can be solved by combining adjacent cells which have the same infected level into a polygon and maintaining the polygon to the database. Connected Component Labeling [START_REF] Stava | Connected component labeling in cuda[END_REF][158] (CCL) is a solution for the above combination. It can be done by considering cell system as a map of infected levels from 0 to 5 (0: no infection, 5 hopper burn, table 2.4) and trying to merge the same level connected cells into a polygon (figure 4.7). This algorithm is called right after the execution of the updating cell function in page 95.

Union Find algorithm

The CCL problem can be solved by finding disjoint sets of objects in a graph representing processes in the CA machine. The number of disjoint sets is the number of connected vertices (or connected components) in the graph. For example, figure 4.8 illustrates 10 nodes with 3 connected components which each has 1, 2, 7 nodes, respectively. Union Find algorithm [START_REF] Tarjan | Efficiency of a good but not linear set union algorithm[END_REF][61] is an algorithm defining two operators in a disjoint graph: Find and Union. Find operator is used to determine whether two objects are in the same sub set while Union operator allows merging two sub sets into one. Thus, CCL problem is solved since those operators have been applied on all nodes of the graph. In the visiting process, nodes belonging to the same set lead to the same root. Therefore, the Find operator checks that two nodes p, q have the same root while Union assigns the root of p to the root of q. Figure 4.9 depicts an example to solve the CCL in figure 3.19. For any pair p and q, for example, 3 and 9, the root of p is connected to the root of q. After 7 merges, all nodes (10 nodes) in the figure are visited to compose 3 connected vertices. It can be deduced that the number of connected components is 10 -7 = 3.

Combine cells into polygons

After executing CCL algorithm, all adjacent cells which share same infection level are combined together to merge into polygons. This mechanism can be done by creating a polygon for each cell and then combining them together by using function ST_Union function in PostgreSQL. Algorithm 10 in appendix E.2 is able to do these tasks.

Experiment

Configuration of experimentations

Simulation of insect pest monitoring application uses data collections in Can Tho city, a typical rice producing city in the Mekong Delta. Can Tho area is divided in 31311 Hoppers density reaches the peak point at the day 4 and starts decreasing a few days later. During the day 7, normal infections appear in some communes although other are still light, medium or even heavy (warning level of sensor stations in figure 4.12). However until the day 9, hoppers seem not to appear in Can Tho city. This scenario depicts the reproduction of hoppers in Can Tho city. Initially, experimental communes are infested lightly due to hoppers. By the time passing, hoppers are growing and become adults. At the adult phase, hoppers can propagate to other places due to wind intensity, however, these new locations do not have rice, therefore, The hopper reproduction in the scenario shows how 'Escape Strategy' (or 'Chien Luoc Ne Ray' in Vietnamese) does to confront with hoppers [START_REF] Van Chien | Rice "Escapes" Brown Plant Hoppers in Mekong Delta[END_REF]. This strategy is done by monitoring historical light traps data through several years to recognize the trend of hoppers migrations. Next, crops are sown after the peak season of BPHs. When the next generation of hoppers comes (28 days later), the rice is strong enough to resist to hoppers. In this case light trap stations can help to sense the surrounding conditions and transmit data to the database center (schemas as in figure 3.16) for storage so the peak of hoppers can be identified later.

Scenario 2: Hoppers propagation due to wind

This scenario assumes that the Thoi Lai district is an infection source with lightly infestation in almost its communes (figure 4.13). A current unique sensor at Dinh Mon, Thoi Lai provides following meteorological data: wind velocity: 5km/h, wind direction: North North Wind -NNW (from Dinh Mon toward Phong Dien) and also indicates the light infection at the rice field in this commune. The light trap in Dinh Mon uses a led 4W, 220V/50Hz as the light bulb. Although we never measure the sensing range in practice (formular 2.1), assumptions are made to calculate the coverage area of the trap.

Assume that the light bulb has sensing radius of 830m (value in FullMoon in [START_REF] Dufay | Contribution à l'étude du phototropisme des lépidoptères Noctuides[END_REF]), in ideal case, the sensing field has an area: S = πr 2 = 2163146m 2 ≈ 2.16km 2 .

Thoi Lai district (Dinh Mon is a town of it) has 20,345.16 ha rice field1 . Therefore, the minimum number of equipments to monitor the whole area is N � 94 traps.

Nevertheless, in practice, distribution of dense traps is not necessary since one device can be used as an indication value for insect situation of a wide area. By observing historical trap values, Escape Strategy is applied for planning crop calendar which can avoid insect peak days.

The deployment of Rothamsted light trap network in Britain is not dense as well. Currently, the network has 87 sites in operation [START_REF] Woiwod | The Rothamsted light-trap network[END_REF], where the country has ≈ 242, 000km 2 

Summary

The chapter presents the model of a rice insect pest application based on data oriented using cellular automata. Environmental, biological factors and spatial cellular system are integrated into a unit to form the static part while the dynamic aspect, transition rule, is applied locally to compose a CA machine for insect monitoring.

The simulation shows cyber physical relations in the insect monitoring application. Feedback loops are found with the collaboration between physical phenomena (insect, rice) and trap devices. Current situation of insects is measured by sites and vice versa, trap stations attract and kill insects to reduce their populations. It reflects the local cyber physical aspect. On the other hands, 'Escape Strategy' is a kind of solution to face with pest and it illustrates the global interaction of an environment machine.

Conclusions

Thesis results

As described in section 1.2.3, goal of this thesis is about an early warning system of which data collection is from sensor stations. The system consists of following components which are done during the thesis time:

• Sensor stations. They measure environmental factors and classify/count insect densities automatically. The principle is done based on vision sensors of which principles are depicted in chapter 2. These sites constitute an automatic light trap network in Mekong Delta.

• Modeling and simulation. Simulation is done with the assistance of environment machine (chapter 3) which is built on cellular automata modeled synchronous system. The machine consists of processes which are able to execute the same program concurrently.

• Information system for environment machine. The machine requires collecting and analyzing of data from different sources. As a result, the architecture proposed in figure 3.11 and the schema presented in figure 3.15 are able to adapt with data requirements in environmental monitoring applications.

Those components emerge local/global cyber physical system concepts and are supported by developed tools.

Local vs. Global Cyber Physical System

A Cyber Physical System (CPS) [START_REF] Lee | CPS Foundations[END_REF] is a system of collaborating computation and physical processes. Embedded computers and sensor networks monitor the physical processes, essentially with feedback loops in respect of interaction between processes and computations. In physical world, time passage and concurrency are two core characteristics. An environmental monitoring system fits into a CPS framework. Environmental factors become physical entities while the observation network is the computation. For example, sensor nodes, are able to monitor the surrounding conditions and with the assistance of data collection over time, people can make decision relating to their situations. These elements build together a temporal loop between physical entities and numerical computation.

That study goes through the Cyber Physical System concept from local to global scale. Figure 2.1 and 3.1 describe those scales.

Observation systems are distributed sensing devices which collect information locally, elaborate diagnostics on physical process, and report those diagnostics. Each of them permits two-ways interactions between physical world and sensing devices. Automatic trap station, a practical application of that principle to monitor insects in rice fields, is studied to show that two-ways interaction. Fisheye lens camera in the trap periodically classifies/measures densities of insects while light bulb and other components are capable of changing insects behaviors by attracting them to the light. Ten automatic trap stations currently in test in Mekong Delta are the final product of that study.

Connected observation systems compose a global Cyber Physical System which shows feedback loops between physical and computation world. Natural phenomena, representation of physical world, occur and are measured by sampling sensing devices. The information system behind the CPS is able to control and reduce impact of phenomena.

Combination of automatic trap stations is a representation of that relationship. Insects breed quickly and spread in order to find food to eat but acting like that action they destroy rice fields. Their quantities are periodically estimated by trap stations running. And observation of long series of data allow to make the appropriate choice to face insect pest. 'Escape Strategy' is one of those decisions based on data analysis.

NetGen and Pickcell

Tools for Cyber Physical System (especially those presented in chapter 3 & chapter 4) are implemented as update versions of NetGen and Pickcell [START_REF] Pottier | Dynamic networks "Netgen: objectives, installation, use, and programming[END_REF]. NetGen is a framework developed in the group Wireless Sensor Network, University of Western Brittany, France by Professor Bernard Pottier with initial purposes design and validation of networks under a practical environment and using graphical interface. Pickcell is a module of NetGen to create spatial cellular systems from GIS data. In general, the framework provides these common characteristics: 1. Practical system description based on geometry. As example, from a map, one can decide sensor locations by taking into account physical considerations, decide on a wireless technology, and infer workable communication links.

Description can be achieved based on maps, or pictures. Alternatively, generators allow to produce random distributions of different characteristics. An input text format allows exchange of network topologies with external tools.

2. Behaviour description. As example, nodes will execute programs to control locally a physical phenomenon and to contribute to activities of the distributed system, such as collecting, transforming data or sending alerts.

3. The core of NetGen is Pickcell tool which allows modeling spatial spaces as cellular automata. Figure 3.8 shows an interface of PickCell where the spatial space is divided in a 25*25 resolution cells.

Cyber Physical System characteristics can be found in NetGen framework. From the CPS concept map (figure 5.1) provided by Edward A. Lee, University of California, Berkeley, main features can be recognized: • Application fields. The framework covers of a lot of situations, from the nano scale to the universe scale and lots of domains such as distributed sensing, distributed computing, communication systems, environment modeling, bio-systems. For example, the context addressed in this manuscript is environmental monitoring as well as distributed sensing devices to measure and control the environment.

• Networks and Distributed computations. Important focus of the framework is on wireless sensor networks design in regards to practical situations in environmental field.

• Feedback loops. Organization of data collection in the framework allows understanding and control the behavior of environment. The case study shows that characteristic.

• Specification, modeling, and analysis. Pickcell tool in the framework is able to model physical world as a cellular automata synchronous system that ensures interoperability and communication between processes. Those elements are main problems of Cyber Physical Systems.

Future plans

Several plans are taken into considerations to continue the development of sensing machines particularly for insect pest mitigation. Three of them are presenting below including sensors type, validation methods and computation capacity:

• Camera with parallel processor. Despite the fact that fisheye lens camera with embedded processor is able to classify and count insect densities in a trap site, it is unable to do the same in more complicated cases such as tracking, moving objects recognition. Camera integrating data acquisition and processing unit is the best choice for those more complex usages.

• Validation and verification. Validation is the process of checking whether a design captures the customer's needs whereas verification determines that a design meets requirements, specifications. If requirements, specifications are given as formal languages, the concurrent model using CA machine may be possible to be automated the verification (also know as formal verification). Meanwhile, CA models generated by Pickcell software will be included in a validation process of which verification is a part. That process can not be automated, but possibly by simulation.

• Cellular automata on super computers equipped with large amount of nodes. CA synchronous model is adjusted so that it can be implemented on many computers to process big data. Message Passing Interface (MPI) [START_REF] Forum | MPI: A Message-Passing Interface Standard[END_REF] is capable to generate solution for that.

E N = n(i) N where n(i) is the number of points less than Y i and the Y i are ordered from smallest to largest value.

The test is defined by:

• H 0 : the data follows a specified distribution (e.g normal).

• H a : the data does not follow the specified distribution.

• Test Statistic:

D = max 1≤i≤N (F(Y i ) - i -1 N , i N -F(Y i ))
• P value (significance level): to see how much different data collected in one situation (is compared to data collected in a different situation. If p value is smaller or equal 0.05, the hypothesis of distribution (normality) is rejected.

A.2 Validation results

Figure A.2: Some statistical results of objects in group 1: Probability density function, quantile-quantile (q-q) plot of object scales in the image.

The Shapiro-Wilk normality test which is applied on these measurements gives the test statistic W = 0.96391 and the significance level p_value = 0.7329. Each node of the network represents a process in the machine. That process maintains a structure to store its states by the time passing. Definition of the structure is variant and depends on which on application the machine is applied. 

D.2 Workflow for developing an environmental monitoring application

The schema in figure 3.15 allows the conception of a workflow (figure D.4) for develop environmental monitoring applications such as insect invasion, flooding, rain falls. Data definition step helps to define meteorological factors, objects as well as sensor nodes which involve the phenomena. These elements of data will be generated to parallel programming languages for behavior implementations. Those implementations, in general sense, are done as illustration in section 4.3. Finally, simulation as well as other data can be queried for user purposes such as aggregation, tendency prediction.

For example, to simulate insect invasion, after defining environmental factors, the sensing machine has a structure similar to the one presented in figure 3.9. Next, the cellular automaton and relating data are generated into two CUDA files: one file for cellular automaton description (listing D.1) and another for relating data (listing D.2). 1.4 Diagram of photacoustic sensor (from [START_REF] Batista | Sigkdd demo: Sensors and software to allow computational entomology, an emerging application of data mining[END_REF]) used to recognize insects. . 17 

Figure 1 . 3 :

 13 Figure 1.3: Picture of manual insect light trap taken in O Mon, Can Tho.

  2011. Green cellsdepict the maximum of insects caught in a day of over light traps.
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 3 System methods to confront BPH1.3.1 Modeling and simulation: A key pointAs shown in section 1.1.3, several initiatives were led about insect invasion modeling, classification/counting and even technical issues for cooperation between different simulations on different platforms.
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 15 Figure 1.5: HLA federation architecture used in multi-simulation.
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 16 Figure 1.6: Synchronous points in a federation.

Figure 2 . 1 :

 21 Figure 2.1: Diagram of local automatic diagnostics showing relation between natural phenomena and sensing devices.
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 22 Figure 2.2: Rasperry 3.0 equipped with a camera.
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 23 Figure 2.3: Jetson Tk1 board with an eCam camera.
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 24 Figure 2.4: Several vision approaches: (a) standard camera separating vision matrix and processing unit, (b) smart sensor with photodiode matrix and processing on the same chip, (c) camera assembly with DMA between the vision matrix and a graphics processing unit memory (GPU).
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 25 Figure 2.5: Camera integrating a parallel processor and sensor array.
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 26 Figure 2.6: The smart camera equipped with a lens.
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 27 Figure 2.7: MAPP220 Block diagram (source from [154]), chip equipped with a photo matrix, 114 digital registers, an analog register and three types of pixel processing units: Point Logical Unit (PLU), Neighborhood Logical Unit (NLU), Global Logical Unit (GLU).
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 28 Figure 2.8: Description of object extraction using MARK operation. In the register, objects vertically connected to objects in the accumulator are preserved (source from [154]).
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 29 Figure 2.9: Pinhole camera with line II' is the optical axis and I' is the principal point or image center.
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 210 Figure 2.10: Focal length and field of view of a camera lens.
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 1 Figure 1.3 depicts a manual light trap where counting is done by hand in the next morning.During the design of new automatic device, one requirement was that structure of trap stays unchanged. Therefore, our new device is similar to the old one, only electronic equipments are added to allow local processing.
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 2 Figure 2.11: Pictures (view) of an installed automatic bio-diversity trap.
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 213 Figure 2.13: Diagram of a cone surface used in the automatic bio-diversity trap.
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 214 Figure 2.14: Insects caught by the trap, on the left distorted image taken by a fisheye lens camera on the right rectilinear image taken by rectilinear lens camera.
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 215 Figure 2.15: Workflow of insect classification/counting in a bio-diversity trap using fisheye lens camera.
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 216 Figure 2.16: Object size projection in pinhole camera.
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 2 Figure 2.18: A checkboard pattern which corner points are used to estimate camera parameters.
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 219 Figure 2.19: Diagram of objects located on cone sides of bio-diversity light trap with camera places at O and principal point coincides with the bottom center.

Figure 2 .

 2 Figure 2.19 depicts the case where these objects A, B are located in edges of the cone. Suppose that A, B in the same flat surface which parallels with the camera. Image sizes of A and B have linear relations with their distances to the center I of the flat surface. However, position I can move from O to O'. It means that image sizes of objects A or B rely on � � � -→ IO
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 220 Figure 2.20: Workflow of camera calibration process used to estimate sample object sizes in a light trap.
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 221 Figure 2.21: Picture of pattern of concentric circle composed by 4mm radius objects used to test distant assumption.

Figure 2 . 22 :

 222 Figure 2.22: Result of statistical analysis of objects size of group 2 : on left probability density function on right Normalized quantile-quantile plot.

  For example, table 2.2 shows an association between the object scale and the distance between the object to the image center. The regression equation Scale = -0.004452 * Distance + 0.992450 shows this relation and it is graphically represented in figure 2.23.
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 223 Figure 2.23: Object pixel scales relate to distance to (the cone) center, the line represents the linear regression.

Figure 2 . 24 :

 224 Figure 2.24: Distorted view of insect bodies at the surface of bio-diversity light trap cone.

Figure 2 . 25 :

 225 Figure 2.25: Sample objects detected in the camera calibration. The yellow ellipse depicts the cone bottom.

Figure 2 .

 2 Figure 2.26 illustrates two results of counting insects in a trap in the rice field. In practice, there is no window view as in the figure, instead, after each counting, three values are returned to a Uno Adruino so the Adruino can transmit them to a data center via means of communication. The three values are the number of BPHs, the number of Not BPHs and the time that executes the counting.

Figure 2 .

 2 Figure 2.26: 2 results of insect counting in a bio-diversity trap.

2. 6 . 1

 61 Light traps networkLight traps in the same region are connected to a center to compose a network (figure 2.27). Communications between center and children (traps) include transmitting insect densities as well as meteorological parameters values from a child to the center and sending commands to change child behaviors from the center.

Figure 2 . 27 :

 227 Figure 2.27: Regional network composed by three light traps connecting to a center.

Figure 3 . 1 :

 31 Figure 3.1: Global view of an environmental monitoring application composed by local observatory elements (or nodes) presented in figure 2.1.

Figure 3 . 2 :

 32 Figure 3.2: Sensors deployment to monitor a service area. Sensing field is a kind of capability to sense environment around the sensor location.

Figure 3 . 3 :

 33 Figure 3.3: Snapshot of Brest weather forecast data of September 12 th 2017 (from https://www.worldweatheronline.com/brest-weather/bretagne/fr.aspx).

Figure 3 . 4 :

 34 Figure 3.4: Meteorological parameters including wind, temperature at Mekong Delta in 04/09/2017 using ZyGrib [http://www.zygrib.org/index.php?page=home] and GFS/NOAA data [https://www.ncdc.noaa.gov/data-access/model-data/modeldatasets/global-forcast-system-gfs].

Figure 3 . 5 :

 35 Figure 3.5: Simulation for predicting the future of the physical system.

Figure 3 . 6 :

 36 Figure 3.6: Neighborhood structure for 2 dimensional CA, from left to right: 5 neighbors square (Van Neumann scheme), 9 neighbors square (Moore scheme) and 7 neighbors hexagonal.

Figure 3 . 8 :

 38 Figure 3.8: Map division into cells to compose a spatial cellular automaton structure, case of Brest harbor with 7 on 4 cells (grid size = 5733m x 5733m).

Figure 3 . 10 :

 310 Figure 3.10: Structure of a complex multi-layer cellular automata machine at two consecutive states (t and t+1) : transition rules (MG and ST functions) described the state change.

Figure 3 . 11 :

 311 Figure 3.11: Architecture of data access in environmental monitoring systems.

Figure 3 . 12 :

 312 Figure 3.12: Representation of sensor stations distributed on study area to sample physical parameters (map with grid size = 3822m x 3822m).

  spatial host cellular automaton (figure 3.14).

Figure 3 . 13 :Figure 3 . 14 :

 313314 Figure 3.13: Interaction of data in environmental monitoring systems.

Figure 3 . 15 :

 315 Figure 3.15: Description of data and object interactions used in environment machines, composed for meteorological data, object and sensor (more details in appendix D.1).

Figure 3 . 16 :

 316 Figure 3.16: Data model of the BPH invasion automatically generated from data description (figure 3.15).

Figure 3 . 18 :

 318 Figure 3.18: Schema showing how the execution of a CUDA application. The CPU sends data to GPU to manipulate and receives data results after processing for later purposes.

  Figure 3.19: Description of bilinear interpolation at point I based on its four neighbors A 1 , A 2 , A 3 , A 4 .

Figure 3 . 21 :

 321 Figure 3.21: Velocity wind vector components u and v in meteorological wind direction.

Algorithm 1 :

 1 Query to calculate wind velocity and direction. Input: LocationID of cell, Table TCellularSystem, TCell, TMeteoToBPHData Output: Wind velocity, wind direction (angle) of a point in the application 'Insect Mekong' SELECT windu, windv, sqrt(windu*windu+windv*windv)/5 as mg, CASE WHEN (sqrt(windu*windu+windv*windv)/5 < 5) THEN '<5km/s' WHEN (sqrt(windu*windu+windv*windv)/5 < 10) THEN 'From 5 To <10km/s' WHEN (sqrt(windu*windu+windv*windv)/5 < 15) THEN 'From 10 To <15km/s' WHEN (sqrt(windu*windu+windv*windv)/5 < 20) THEN 'From 15 To <20km/s' ELSE '>20km/s' END WindGroup, round((cast((270-atan2(windv,windu)*180/3.1457) as int)%360)/22.5) as angle FROM tcellularsystem cs Inner Join TCell c On cs.cellsystemid = c.cellsystemid Inner Join tmeteotobphdata m On c.cellid= m.cellid; WHERE cellsystemname = 'Insect Mekong' And c.CellID = LocationID; --parameter

Figure 3 . 22 :

 322 Figure 3.22: Wind rose computed at a point of insect invasion application after executing the simulation.

Algorithm 2 :

 2 Query to get data from a sensor station in the application.Input: TableTBPHSensorValues

Output:

  Temperature, Wind velocity, wind direction (angle), Humidity, BPHs density, Not BPHs density on 10/09/2017 at station 10 SELECT temperature, windu, windv, sqrt(windu*windu+windv*windv)/5 as mg, round((cast((270-atan2(windv,windu)*180/3.1457) as int)%360)/22.5) as angle, humidity, BPHDensity, NotBPHsDensity FROM TBPHSensorValues WHERE Cast(NodeTime as Date) = '2017-09-10' --ISO-8601 format, YYYY-MM-DD And NodeID = 10;

Figure 3 . 23 :

 323 Figure 3.23: Example of accessing to values of the sensing station 10 from map, values include temperature, wind, humidity, BPHs and not BPHs densities (Map with grid size = 3822m x 3822m).

Figure 4 . 1 :

 41 Figure 4.1: Map representing insect behaviors in their working space divided in as cells (grid size = 7644m x 7644m).

Figure 4 . 2 :

 42 Figure 4.2: Description of CA modeling interactions.

Figure 4 . 3 :

 43 Figure 4.3: Biological cellular automaton illustrating life cycle of BPH in cell based on its age in days.

Figure 4 . 4 :

 44 Figure 4.4: Cellular system with (40 pixels, 40 pixels) grid, approximately 100km 2 per cell, blue arrows representing the wind direction.

2 .

 2 Communication links. Links between a process and its neighbors (4 or 8 neighbors). If wind is taken into account, a process has only one link to a leeward neighbor (figure 4.5).

Figure 4 . 5 :

 45 Figure 4.5: Neighbors of a process under wind condition.

Figure 4 . 6 :

 46 Figure 4.6: Meshed map showing result of the BPH invasion simulation in one step process (grid size = 7644m x 7644m).

Figure 4 . 7 :

 47 Figure 4.7: Simulation result on a grid represents five distinct polygons a.k.a. area, two of light infection (in blue) 6 and 5 cells, one area of medium infection (in red) and two heavy infection polygons of 3 and 5 cells (in red).

Figure 4 . 8 :

 48 Figure 4.8: CCL problem represented as topology issue, used to find number of connected vertices.

Figure 4 . 9 :

 49 Figure 4.9: Example of Union Find algorithm used to solve CCL of figure 3.19.

Figure 4 .

 4 Figure 4.11 describes the hoppers infection in Can Tho city at the day 3, 4, 6, 7. At the day 3, most of the experimental communes suffer from heavy infection of BPHs.Hoppers density reaches the peak point at the day 4 and starts decreasing a few days later. During the day 7, normal infections appear in some communes although other are still light, medium or even heavy (warning level of sensor stations in figure 4.12). However until the day 9, hoppers seem not to appear in Can Tho city.

Figure 4 . 10 :

 410 Figure 4.10: Light infections at some communes in Can Tho city.

Figure 4 . 11 :

 411 Figure 4.11: Hoppers infection level in Can Tho city for days 3, 4, 6, 7 at several locations.

Figure 4 . 12 :

 412 Figure 4.12: Map of Hoppers infection in Can Tho city at day 7.

Figure 4 . 13 :

 413 Figure 4.13: Hoppers infestation in Thoi Lai and Phong Dien in 7 days.

Figure 4 . 14 :

 414 Figure 4.14: Hoppers infection in Thoi Lai and Phong Dien at day 3.

Figure 4 . 15 :

 415 Figure 4.15: Map of leeward communes in Phong Dien district, arrow represents the average wind direction

Figure 5 . 1 :

 51 Figure 5.1: Concept map of Cyber Physical System 1 .

D. 1

 1 Data descriptions for meteorological, object and sensor data Those descriptions are depicted in figure D.1, D.2 and D.3.
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Table 1 . 1 :

 11 Three life cycle of Cyrtorhinus lividipennis Reuters.

	Stage	Name	Days
	1	Eggs	6
		Nymph age 1 3
	2	Nymph age 2 3 Nymph age 3 3
		Nymph age 4 3
	3	Male adult Female adult 17-19 17-19

Table 1 .

 1 2 depicts densities of BPHs collected in Dong Thap, Vietnam in 01/2011. Normally, light traps are operated around 4 hours per day and insect densities are calculated in the next morning.

Table 1 .

 1 2: Densities of BPHs in light traps collected in Dong Thap, Vietnam from January, 1 st to January, 19 th

Table 2 .

 2 .1. The table uses Raspberry Pi with camera as type 1 (2.2), IVP MAPP 2200 as type 2, Jetson board with camera as type 3 (figure 2.3). 1: Comparisons between three types of cameras.

		Camera (a)	Camera (b)	Camera (c)
	Processor	Embedded CPU Parallel processor	Embedded CPU and GPU
	Data acquisition & processing unit Seperated	Integrated	Seperated
	Power consumption	4W	Low. Because there is no energy spent for transferring data from data acquisition and processing	12W in peak GFXBench 3.0 Performance Metrics
	Programming	General purpose A specific task	General purpose
	Design	Pre-designed	Full custom designed	Pre-designed

Table 2 .

 2 2: Expectation and deviation of measured sizes (pixels and scale) of objects in group 2 (distance around 136.32 pixels from the image center).

	Object	Distance from center	Pixels	Scale (pixels/mm 2 )	Object	Distance from center	Pixels	Scale (pixels/mm 2 )
	15	131.419 121.297	0.414399	1	136.393 164.163	0.306192
	19	131.754 127.757	0.393446	8	136.470 126.495	0.397373
	22	132.003 121.802	0.412682	55	136.944 133.423	0.376737
	26	132.051 126.956	0.395928	10	137.146 112.363	0.447348
	27	132.253 120.514	0.417092	12	137.659 115.364	0.435712
	36	132.577 131.468	0.382339	57	137.817 134.716	0.373121
	7	132.659 118.189	0.425297	58	138.240 140.941	0.356643
	11	132.813 126.323	0.397911	13	138.294 122.908	0.408968
	9	132.847 120.096	0.418543	18	138.382 124.015	0.405318
	5	133.206 118.777	0.423192	59	138.681 145.799	0.344759
	32	133.370 135.041	0.372224	56	139.456 144.054	0.348936
	47	133.719 128.748	0.390418	23	139.862 131.524	0.382176
	39	133.831 132.739	0.378678	50	139.922 135.816	0.370101
	3	133.928 120.388	0.417530	54	140.093 141.599	0.354985
	2	134.142 116.573	0.431194	46	140.392 138.081	0.364030
	44	134.205 129.595	0.387865	37	140.459 140.261	0.358370
	49	134.542 141.582	0.355028	52	140.731 146.393	0.343359
	51	135.710 130.880	0.384057	41	140.791 135.979	0.369656
	6	135.740 132.201	0.380220	48	140.797 141.234	0.355901
	4	135.788 130.133	0.386262	31	141.080 129.413	0.388412
	53	136.096 137.696	0.365047	33	141.131 132.763	0.378612

Table 2 .

 2 3: Reference table for object sizes in insect trap.

	Real	254.35
	size	mm 2
	Image	(317.868,
	center	261.45)

Table 2 .

 2 4: Hopper level related to number of insects caught by the light trap. At 23:30, the quantity does not exceed level 4, before switching off the light, it sends data and returns to the normal monitoring frequency.

	Number of	Level
	hoppers/trap	
	<1000	1
	1000 -<2500	2
	2500 -<5000	3
	5000 -<10000	4
	� 10000	5
	minutes more.	

Table 3 .

 3 

	Time stamp	Camera BPHs Not BPHs	Temperature Humidity
	19:00 06/09/2017	42	5	30.0	70%
	19:30 06/09/2017	50	6	30.0	70%
	20:00 06/09/2017	55	8	29.5	71%
	• Estimation of environment. From the discrete sampling on sensors, it is possible
	to extrapolate values for the whole service area (as figure 3.2). In other words,
	some estimations are done to infer the current status of the whole service area.
	For example, with the current data collection in light traps, what is the rice field
	expected density? What is the current pest situation? How to estimate other
	weather parameters as in figure 3.4?			

1: Sensing values in a station over the time.

Table 3 .

 3 2: Example of attributes of 2 applications: insect monitoring and radio propagation.

	ID	Name	Datetime	Note
	001 BPH Mekong	2017-08-01 04:05:06 Insect monitoring in Mekong Delta
	002 Radio wave simulation 2017-09-02 05:06:07 Simulation of radio propagation

Table 3 .

 3 3: Information of weather factors in an insect monitoring application.

	No	Meteorological	Domain Length	Number of
		factor		Precision
	1	Temperture	Number 14	8
	2	Wind u	Number 14	8
	3	Wind v	Number 14	8
	4	Humidity	Number 14	8
	5	Precipitation	Number 14	8
	6	Pressure	Number 14	8

Table 3 .

 3 4: BPHs density and rice ages in insect invasion monitoring application.

	No Object name Attribute Domain Length Precision	Number of
						items
	1	BPH	Density	Number 14	8	28
	2	Rice	Age	Integer		

  2.1 and 4.2.2 by using the data description schema in figure 3.15, D.1, D.2, D.3, a data model for the insect invasion application is generated as the schema shown in figure 3.16.

	4.3 Rice insect pest implementation
	4.3.1 Retrieval of environmental data from external sources

Table 4 .

 4 1: PostgresSQL and CUDA implementation performance in cells definition phase.Each process in the CA machine is presented as a single processing element on GPGPU with bidirectional channels to the other cells. State and Communication links are two main components for mapping the machine to General-purpose computing on graphics processing units (GPGPU) memory.1. State. A formal record representing as CUDA structures inside GPGPU memory.Those records are private for each process so they are not supposed to be reached directly by others.

		PostgresSQL CUDA
	Performance (second)	912	27

Table 4 .

 4 To visualize infected BPHs in the insect monitoring application, a color table is used to illustrate a warning level of BPHs based on hoppers density in rice fields[START_REF] Phan | An agent-based approach to the simulation of brown plant hopper (BPH) invasions in the mekong delta[END_REF]. This correspondence is shown in table 4.2. 2: Ascending levels of infested BPHs in rice fields.This scenario allows observation of the reproduction phase of hoppers at a defined location. In this scenario, some communes in Can Tho lightly suffer from hoppers (light infection color of rice fields and warning level of sensor stations in figure 4.10) while the rest are not cultivated yet.

	BPH density (BPHs/m 2 )	Color	Meaning
	<500	rgb[135,206,250] Normal infection
	500 -<2500	rgb[0,255,0]	Light infection
	2500 -<5000	rgb[255,255,0]	Medium infection
	5000 -<10000 rgb[255,105,180] Heavy infection
	≥10000	rgb[255,0,0]	Hopper burn
	4.4.2 Scenario 1: Observing hoppers at a defined location

Table A .

 A 1: Expectation and deviation of measured sizes (pixels and scale) of objects in group 1 (distance around 73.32 pixels from the image center).

	i n t nbOut ;		
	i n t n b I n ;		
	i n t nbDyn ;		
	mapped w r i t e [MAX_FANOUT ] ;	
	mapped r e a d [MAX_FANOUT ] ;	
	} c a n a u x ;			
	t y p e d e f s t r u c t {		
	i n t x ;			
	i n t y ;			
	i n t r a n g e ;		
	} node_param ;			
	Object	Distance from the center	Number of pixels	Scale pixels/mm 2
	28	69.9978	175.733	0.286034
	34	70.0073	173.253	0.290128
	24	70.6433	169.415	0.296701
	38	70.7466	175.167	0.286957
	42	71.5176	175.337	0.286679
	21	71.6129	162.553	0.309224
	17	72.1238	170.446	0.294905
	45	72.8646	180.712	0.278152
	43	73.3217	186.706	0.269223
	14	74.3196	166.072	0.302673
	40	75.1910	189.445	0.265330
	35	75.7579	183.239	0.274317
	16	76.0527	166.813	0.301328
	25	76.0905	184.948	0.271782
	20	76.2874	177.625	0.282986
	30	76.5369	185.829	0.270494

https://en.wikipedia.org/wiki/World_Climate_Conference

http://unfccc.int/parties_and_observers/parties/items/2352.php

http://newsroom.unfccc.int/financial-flows/18-industrial-states-release-climate-finance-statement/

www.fao.org/ag/locusts

http://faostat3.fao.org/browse/G1/*/E

http://www.un-redd.org/

(Source: http://agropedialabs.iitk.ac.in/agrilore/sites/default/files/BPH%20rice.pdf)

http://www.fao.org/ag/locusts/en/activ/DLIS/eL3/index.html

https://www.inmarsat.com/

Source: https://www.sciencelearn.org.nz/resources/575-scientific-modelling

Oxford dictionary: https://en.oxforddictionaries.com/definition/computer_model

to appear in 2017 Winter Simulation Conference (WSC)

Oxford directory (https://en.oxforddictionaries.com/definition/sensor)

Oxford dictionary: https://en.oxforddictionaries.com/definition/observatory

Oxford dictionary: https://en.oxforddictionaries.com/definition/actuate

SensorML provides a means by which sensor systems or processes can make themselves known and discoverable -http://www.ogcnetwork.net/sensorml.

an ontology which describes sensors -https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

https://www.merriam-webster.com/dictionary/metadata

http://www.meteofrance.com

Binary Universal Form for the Representation of meteorological data (BUFR) -a binary data format maintained by the World Meteorological Organization (http://www.wmo.int/pages/prog/www/ WMOCodes/WMO306_vI2/LatestVERSION/).

Oxford dictionary

https://www.openstreetmap.org/

A meteorological workstation application designed to be a complete working environment for both the operational and research meteorologist -https://software.ecmwf.int/wiki/display/METV/Metview

https://www.wcc.nrcs.usda.gov/climate/windrose.html

http://cantho.gov.vn/wps/portal/thoilai

https://www.mapsofworld.com/united-kingdom/britain/

Source: http://cyberphysicalsystems.org/

I forgot my wife, Duyen Hong NGUYEN who accepted me to study abroad, took care of my son -Huy Bao LAM, supported and encouraged me during my study in France. The work was in the scope of the "OBSNET -Optimizing the Brown Planthopper surveillance network using automatic light traps in the Mekong Delta region" project of the Ministry of Education and Training, Vietnam. I was also funded by the program 911 of that Ministry. Please let me express my deep gratitude to those who are responsible for these programs. The cooperation between Can Tho University and UBO was part of the STICAsie program SAMES, Ministry of Foreign Affairs, France, strengthening a lot this work.

also introduced to simulate natural phenomena and extract data for post processing.

The information system provides means of data in order to develop third application such as visualization as in http://www.smartmekong.vn/ and sames.univ-brest.fr. By the time passing, when the volume of data starts to be large, business intelligence (BI) solutions may take advantages from it for analyzing and presentation.

A Appendix A

A.1 Validation methods

A.1.1 Normal distribution

Let x depicts sizes of image objects which have the same distance to the image center. Because these objects have the same real size, their images represent random variables which converge in distribution to the normal, or normal distribution (Gaussian distribution) [START_REF] Feller | An Introduction to Probability Theory[END_REF].

The probability density function (figure A.1) of a normal distribution is calculated as:

where:

• µ: mean or expectation of the distribution

• σ: standard deviation • σ 2 : variance 

A.1.2 Shapiro-Wilk test

The Shapiro-Wilk [START_REF] Shapiro | An analysis of variance test for normality (complete samples)[END_REF] test is a normality test to detect if a sample x 1 , ..., x n coming from a normal distribution. The test statistic:

∑ n i=1 x i -x Where • x(i): the i th order statistic, or the i th smallest number in the sample.

• x: the sample mean • a i calculated by: (a 1 , ..., a n ) = m T V -1 √ m T V -1 V -1 m where:

m = (m 1 , ..., m n ) T m 1 , ..., m n : expected values of the order statistics independent and identically distributed random variables sampled from the standard normal distribution.

-V : the covariance matrix of those order statistics.

Hypothesis of normality is rejected if the p-value is less than or equal 0.05. A failed test states that at 95% confidence data does not fit to the normal distribution while passing the test just states that no significant departure from normality was found. Step 1 // a u_B3 = getDistance(maxLat, maxLon, maxLat, lon)/getDistance(maxLat,maxLon,maxLat,minLon)*u4 + getDistance(maxLat,lon,maxLat,minLon)/getDistance(maxLat,maxLon,maxLat,minLon)*u3; v_B3 = getDistance(maxLat, maxLon, maxLat, lon)/getDistance(maxLat,maxLon,maxLat,minLon)*v4 + getDistance(maxLat,lon,maxLat,minLon)/getDistance(maxLat,maxLon,maxLat,minLon)*v3; //b u_B1 = getDistance(minLat,maxLon,minLat,lon)/getDistance(minLat,maxLon,minLat, minLon)*u1 + getDistance(minLat,lon,minLat,minLon)/getDistance(minLat, maxLon, minLat, minLon)*u2; v_B1 = getDistance(minLat,maxLon,minLat,lon)/getDistance(minLat,maxLon,minLat, minLon)*v1 + getDistance(minLat,lon,minLat,minLon)/getDistance(minLat, maxLon, minLat, minLon)*v2; //Step 2 u = getDistance(minLat, lon,lat,lon)/getDistance(minLat, lon, maxLat, lon)*u_B3 + getDistance(lat,lon,maxLat, lon)/getDistance(minLat, lon, maxLat, lon)*u_B1; v = getDistance(minLat, lon,lat,lon)/getDistance(minLat, lon, maxLat, lon)*v_B3 + getDistance(lat,lon,maxLat, lon)/getDistance(minLat, lon, maxLat, lon)*v_B1; cell.weatherArray.ugrd = u; cell.weatherArray.vgrd = v; cell_d[idx] = cell; } } Algorithm 7: Bilinear interpolation implementation in CUDA.

A.1.3 Kolmogorov-Smirnov test

C Appendix C

C.1 Sensing machine modeling in NetGen

Principles of a global sensing machine can be modeling in NetGen [START_REF] Pottier | Dynamic networks "Netgen: objectives, installation, use, and programming[END_REF], a framework is dedicated to WSN design and validation in regards of practical situations in the environment. Workflow for generating and executing the machine [START_REF] Tran | A federation of simulations based on cellular automata in cyber-physical systems[END_REF]

The design and implementation of the machine contain three important parts: data structure, states and behaviors. Firstly, data structure (cells in figure 3.8) is generated from geographic data using PickCell tool in NetGen [START_REF] Pottier | Dynamic networks "Netgen: objectives, installation, use, and programming[END_REF]. Next, states and behaviors are implemented in parallel programming languages to respect synchronous features in the machine.

For example, cells under a synchronous system structure is generated into CUDA code [START_REF] Nardone | Cuda programming model[END_REF] as following: 

E Appendix E

E.1 Algorithms for implementing insect behaviors

In implementation, most of operations confront with one dimensional biological cellular automaton BPH (figure 4.3). Actually, this cellular automaton is an array v for which each value v[i] depicts number of i-days old BPH. Thus, propagation can be considered as the movement of a number of k-days old BPH at a source cell to l-days old BPH at a destination cell.

Left side of figure E.1 illustrates the principle of the movement algorithm from a source to a destination buffer. To BPH, only adult individuals are able to migrate due to surrounding conditions, therefore, the migration is the movement of a number of i-days old BPH in the source to i-days old BPH in the destination (∀i ∈ [START_REF] Pottier | Dynamic networks "Netgen: objectives, installation, use, and programming[END_REF][START_REF] Chakravarti | Handbook of Methods of Applied Statistics[END_REF]). It is Input: curCell: the current node Input: buffCell: the node buffer Input: j: migration to a destination which is child j of curCell Input: pMigrations: percentage of migration Output: Transfer data from a cell to its buffer (1) density ← curCell.in_State.hoppers (2) 

Algorithm 8: BPH migration implementation. Actually, it is the transfer of data from the cell to the cell's buffer. The final transfer will be called in function readBuffer.

The right side of figure E.1 illustrates the growth of BPH after a day. The idea is simple: after a day, each specimen has one day old more. Therefore, an i days BPH becomes an i + 1 days BPH (∀i ∈ [1..LIFE_CIRCLE -2]). Those who are LIFE_CIRCLE -1 days old can be declared dead and number of 0-day old BPH is 0 for the new day. Details of the algorithm can be found as follows:

Input: curCell: the current node Output: Increase each BPH 1 day old [START_REF]Locust plague threatens to trigger severe food crisis in Madagascar[END_REF] 

(3) curCell.in_State.hoppers[0] ← 0 (4) curCell.in_State.riceStage ← curCell.in_State.riceStage + 1 // rice age increase 1

Algorithm 9: The self growth algorithm of BPH after day.

E.2 Cells combination into polygon

Algorithm for section 4. Ces efforts ont fourni un cadre à cette thèse, qui propose de procéder en boucle fermée de l'observation d'insectes ravageurs, avec des centaines de capteurs en réseau ("light traps"), au système d'information, et en fin à des décisions de lutte, manuelles ou automatiques. Le point d'appui pratique est la conception d'un système de comptage d'insectes proliférant dans les cultures de riz (BPH). L'abstraction que nous développons est celle d'une machine environnementale de grande taille, distribuée, qui capte et synthétise l'information, élabore des connaissances, et prend des décisions. Autour de cette abstraction, nous avons élaboré un système de vision "fisheye" effectuant le comptage des insectes.

Nous proposons un système d'information géographique directement connecté au réseau de capteurs.

Le couplage direct, "cyber-physique", entre les systèmes d'information et l'observation de l'environnement à échelle régionale est une nouveauté transposable, qui permet de comprendre et contrôler quantité d'évolutions.

Mot-clés: changement climatique, système de vision, piège lunineux, caméra fisheye, classification comptage d'insectes, Cicadelle brune, machine environnementale, automates cellulaires, réseau synchrone, système d'information géographique

Abstract

Sensors and wireless networks for monitoring climate and biology in a tropical region of intensive agriculture Methods, tools and applications to the case of the Mekong Delta of Vietnam

Climate changes bring problems related to nature evolutions. Global warming has an impact on sea level, weather patterns, and wild life. A number of national and international organizations are developing research programs in these directions, including threats on cultures and insect proliferation. Monitoring these phenomena, observing consequences, elaborating counteracted strategies are critical for the economy and society.

The initial motivation of this work was the understanding of change impacts in the Mekong Delta region. From there, automatic observation tools were designed with a real time information system able to integrate environmental measures, then to support knowledge production.

Tracking environment evolutions is distributed sensing, which can be the association of efficient sensors and radio communications, operated under the control of an information system. Sensing insects is very complex due to their diversity and dispersion. However, this is feasible in the case of intensive agricultural production as it is the case of rice, having a small number of pests. An automatic vision observatory is proposed to observe the main threats for the rice, as an evolution of manual light traps. Radio communication weaves these observatories into a network with connection to databases storing measures and possible counteractions. An example observatory has a fisheye camera and insect counting algorithms for the BPH practical case in Vietnam.

By considering the observation system as an input for an abstract machine, and considering decision and actions taken as a possible control on the environment, we obtain a framework for knowledge elaboration that can be useful in lots of other situations. 
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