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Abstract

Climate changes bring problems related to nature evolutions. Global warming

has an impact on sea level, weather patterns, and wild life. A number of national

and international organizations are developing research programs in these directions,

including threats on cultures and insect proliferation. Monitoring these phenomena,

observing consequences, elaborating counteracted strategies are critical for the economy

and society.

The initial motivation of this work was the understanding of change impacts in the

Mekong Delta region. From there, automatic observation tools were designed with a

real time information system able to integrate environmental measures, then to support

knowledge production.

Tracking environment evolutions is distributed sensing, which can be the association

of efficient sensors and radio communications, operated under the control of an infor-

mation system. Sensing insects is very complex due to their diversity and dispersion.

However, this is feasible in the case of intensive agricultural production as it is the case

of rice, having a small number of pests. An automatic vision observatory is proposed

to observe the main threats for the rice, as an evolution of manual light traps. Radio

communication weaves these observatories into a network with connection to databases

storing measures and possible counteractions. An example observatory has a fisheye

camera and insect counting algorithms for the BPH practical case in Vietnam.

By considering the observation system as an input for an abstract machine, and con-

sidering decision and actions taken as a possible control on the environment, we obtain a

framework for knowledge elaboration that can be useful in lots of other situations.

The detail of chapters is as follows: global warming context, automatic light traps

design, "cyber-physical" environment machine concept, and its supporting information

system. A study of insect invasion in Mekong Delta, Vietnam is used as an illustration.

It advocates feasibility by a starting implementation.

Keyword: climate change, vision system, light trap, fisheye lens vision, insect

counting, Brown Planthopper, environment machine, cellular automata, synchronous

network, geographic information system





Résumé

Les changements climatiques ont des impacts considérables sur le temps, les océans

et les rivages, la vie sauvage. Ils amènent des problèmes désormais considérés comme

majeurs par les gouvernements et organisations internationales. La région du Delta du

Mékong subit actuellement des évolutions hydrologiques et biologiques contre lesquelles

des efforts d’observation et de compensation sont entrepris.

Ces efforts ont fourni un cadre à cette thèse, qui propose de procéder en boucle

fermée de l’observation d’insectes ravageurs, avec des centaines de capteurs en réseau

("light traps"), au système d’information, et enfin à des décisions de lutte, manuelles ou

automatiques. Le point d’appui pratique est la conception d’un système de comptage

d’insectes proliférant dans les cultures de riz (BPH). L’abstraction que nous développons

est celle d’une machine environnementale de grande taille, distribuée, qui capte et

synthétise l’information , élabore des connaissances, et prend des décisions. Autour

de cette abstraction, nous avons élaboré un système de vision "fisheye" effectuant le

comptage des insectes.

Nous proposons un système d’information géographique directement connecté au

réseau de capteurs.

Le couplage direct, "cyber-physique", entre les systèmes d’information et l’observa-

tion de l’environnement à échelle régionale est une nouveauté transposable, qui permet

de comprendre et contrôler quantité d’évolutions.

Ces travaux sont partie intégrante du projet STIC-Asie SAMES financé par le Minis-

tère des Affaires Etrangères (UBO/LabSTICC et al.). Le gouvernement du Vietnam a

financé la thèse en liaison avec l’Université de Cantho (CTU).

Mots clés : changement climatique, système de vision, piège lumineux, caméra

fisheye, classification comptage d’insectes, Cicadelle brune, machine environnementale,

automates cellulaires, réseau synchrone, système d’information géographique
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1
Introduction

1.1 Climate change

1.1.1 Impacts

Climate change is an alteration in typical or average weather of region, city or country

during a long period of time, e.g decades, century or millennium. Human activities

may promote the ongoing process, often referred to global warming [37]. This Global

Warming can be caused by natural processes and/or human activities. However, the

meaning of that term, which is commonly used nowadays, is mainly considered as

produced by human activities. Actually, those two terms have different senses since the

last is about the rising trend in average temperature of earth while the first one is a wider

concept which refers to long-term changes in the climate such as temperature, rainfall,

sea level rise as well as other effects on nature and human being.

Effects of climate change vary from average temperature and sea level rise to increase

1
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of frequency of natural disasters and extreme weather.

The Asia-Pacific region is considered as one of the most vulnerable and affected

regions. Many kinds of natural disasters, climatic events and extreme weather happen

with increase of scale, frequency and intensity. The 2015 report of United Nations

Economic and Social Commission for Asia and the Pacific [178] shows that, out of a

total of 90 storms and 344 disaster events in the world, 47% of those occur in Asia-Pacific

countries and territories.

The world wide average temperature has increased rapidly since the beginning of

the Industrial Revolution. In the fourth assessment report taken by Intergovernmental

Panel on Climate Change (IPCC) [35], from 1906-2005, average global temperature had

an increase of 0.74°. In the last 50 years, average temperature rose twice in comparison

with previous years. The 1990s was the hottest decade since 1861, even in the last 1000

years in the Northern Hemisphere.

Average sea level increased approximately of 1.8 mm/year in the period 1961-2003

[35]. It is due to thermal expansion of water and melting of continental ice at poles and

on high peak mountains.

Extreme weather conditions have been recorded since 1950:

• In most continents, number of cold days and nights have declined while number

of warm days and nights have been increased.

• There are evidences of increasing of sunny days in Asia, Africa and South Ameria

and growth of global number of rainy days recorded.

• Large tidal waves tend to happen more often due to sea level rise in the second

part of the 20th century.

Climate change is a disadvantage for countries for which agriculture is the main

sector of economy (most of them are located in Africa and Asia) [42]. Indeed, high

temperatures, erratic rainfall directly affect productivity/yield of crops and threaten their

food security. For example, in Nigeria, due to climate change, productivity of plants is

expected to decrease from 10% to 20%, even up 50% in 2050 [87]. At the same time,

the agricultural activities have remarkably increased climate change using old methods

producing significantly amounts of greenhouse gases [116].

1.1.2 Global strategies

There are two strategies to confront with climate change: mitigation and adaption.
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• Mitigation prevents global warming by reducing greenhouse gas emissions. In

fact, it addresses root causes and allows limitation magnitude or rate of long-term

changes [52].

• Adaption is about anticipating the adverse effects to prevent or reduce their dam-

ages. It includes human activities to adapt and enhance resilience to impact so

people can exploit its favorable aspects.

Researches in this field can be divided in three major groups [138]:

• Nature, causes, and physical mechanisms. The mission is to assess, answer

questions about evidence of modern climate change, demonstrate its causes, show

ability of climate models to simulate past and present, rationality of greenhouse

gas emission scenarios as well as produce projections of future climate.

• Assess impacts, vulnerability to climate change and adaptation. The mission

is to assess impact, vulnerability, resilience and strategies, and action plans for

adaptation. The main issue is that climate change can bring benefits to a number

of subjects, sectors and areas, but this assessment here is mainly emphasized in

terms of its negative impact.

• Solutions, strategies and action plans to mitigate. The mission is to find solutions

for mitigation. Mitigation term is understood in the goal to reduce green house gas

emissions to keep earth’s climate stable within a certain limits. It is also motivated

by development of clean technologies, the production and use of green energies.

1.1.3 Past and current international efforts

Climate change has received attention of most countries and global organizations in the

world 1. United Nations and Food & Agriculture Organization of United Nations put a

lot of effort into realization, including:

United Nations

The United Nations support the fight against climate change via convention and agree-

ment, as follow:

1https://en.wikipedia.org/wiki/World_Climate_Conference
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• United Nations Framework Convention on Climate Change. It is an environmental

international agreement negotiated at the United Nations Conference on Envi-

ronment and Development (UNCED), commonly known as the Earth Summit in

Rio de Janeiro, Brazil from 3 - 14/06/1992. Its goal is that the Conference of the

Parties may adopt is to achieve, in accordance with the relevant provisions of the

Convention, stabilization of greenhouse gas concentrations in the atmosphere at a

level that would prevent dangerous anthropogenic interference with the climate

system (Article 2 in [189]). As of September 2017, UNFCCC has 198 parties and

observers 2.

• Kyoto Protocol [190]. It extends the 1992 United Nations Framework Convention

on Climate Change of the United Nations with the goal of reducing greenhouse

gas emissions. It was adopted in Kyoto, Japan, on 11/12/1997, and entered into

force on 16/02/2005. An important content of Kyoto Protocol is that industrialized

countries reduce their overall emissions of greenhouse gases by at least 5% below

1990 levels in the commitment period 2008 to 2012.

• Paris Agreement [191]. It is an agreement within the United Nations Conference

on Climate Change 2015 under the United Nations Framework Convention on

Climate Change (UNFCCC) that governs carbon dioxide emission reductions

from 2020. This agreement was negotiated at the 21st Conference of the Parties

to the UNFCCC and adopted December 12, 2015. Some main contents relates

to holding the increase in the global average temperature to well below 2°C

and pursuing efforts to limit the temperature increase to 1.5°C. Moreover, 18

industrialized countries state that by 2020, they provide $100 billion a year to

developing countries from a wide variety of sources, for meaningful mitigation

actions 3.

Food and Agriculture Organization of the United Nations - FAO

To FAO, climate change is put as a top line priority by following main activities [56]:

• Agriculture prioritizes adaptation since changing of climatic conditions, which

negatively affect rural livelihoods as well as food security. Between 2003 and

2013, natural hazards and disasters in developing countries have cost $494 billion

2http://unfccc.int/parties_and_observers/parties/items/2352.php
3http://newsroom.unfccc.int/financial-flows/18-industrial-states-release-climate-finance-statement/
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and affected 1.9 billion people [55]. However, there is no report about damage in

agriculture sector, although the sector is important to economy. There is a clear

gap in terms of disasters damage on agriculture and livelihoods as well as food

security of populations. FAO makes effort to fill this gap.

• Supporting countries to deal with impacts. Agriculture sector is very sensitive to

climate change. From assessment of post-disaster needs 2003-2013 data [53], agri-

cultural activities, including crops, livestock, fisheries and forestry, absorb 22% of

the total economic impact caused by natural hazards. Those activities, combining

with global food production and livelihoods, allow integrating agriculture and

adaption efforts.

• Data, methods and tools. They are created to inventory and measure of emissions

as well as for assess risks and vulnerabilities. For example, Locust Watch is a

system designed to monitor desert locusts, weather and ecological conditions and

it is used to provide global early warning system for transboundary plant pests and

diseases 4. Another example is databases on green house gases emissions from

agriculture and relating sectors. They are maintained to provide a coherent and

internationally neutral data platform 5.

• Actions on ground to address adaptation and mitigation in agricultural sectors.

For example, UN-REDD program 6 is an effort of FAO with United Nations

Development Programme (UNDP) and United Nations Environment Programme

(UNEP) to create financial value from carbon stored in forests, for reducing

emissions caused deforestation and forest degradation (REDD) in 64 partner

countries across Africa, Asia-Pacific, Latin America and the Caribbean.

1.1.4 Climate change in Vietnam

Located in South-East Asia, Vietnam is a tropical monsoon country of which agriculture

is the main sector of economy. Agricultural and forest area account for 77% of country

area with 50,178,378 tonnes of cereal in 2014 (FAO estimate [54]). The country is in the

top 10 of the most affected by impacts of extreme weather events in terms of fatalities

as well as economic losses from 1996 to 2015 (Global Climate Risk Index 2017 [99]).

4www.fao.org/ag/locusts
5http://faostat3.fao.org/browse/G1/*/E
6http://www.un-redd.org/
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According to Ministry of Natural Resources and Environment of Vietnam [120], one

probable scenario shows mean sea level rise on coastal area (or line) of Vietnam will be

25cm in 2050 and 73 cm in 2100. Other scenarios give mean sea level rise on coastal

zone of Vietnam higher than global mean sea level rise. In Vietnam, the most affected

region due to climate change is Mekong Delta.

Mekong Delta, Western Region (Vietnamese: Mien Tay) or the South Western Region

(Vietnamese: Tay Nam Bo), is a southern region of Vietnam, including one big city (Can

Tho) and 12 provinces (Long An, Tien Giang, Ben Tre, Vinh Long, Tra Vinh, Dong Thap,

An Giang, Kien Giang, Hau Giang, Soc Trang, Bac Lieu and Ca Mau). The delta, which

produces nearly half of the country’s rice, is experiencing impacts of climate change

which is expected to be worse by the time passing. These effects include:

Figure 1.1: Mekong Delta - A rice region of Vietnam: its rice crop map derived from
Envisat ASAR WSM data from 2007 (taken from [123].

• Floods. They appear during the rainy season, from May to December. Indeed,

living with floods to take their benefits [39][124] is an adaption strategy that
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government and citizens have applied. However, after heavy raining, the low

elevation land in the delta gets long inundation. For example, in Can Tho city, the

largest city in this region, daily maximum inundation depth, is around 10cm on

street now, it should reach 70cm in 2050 [163].

• Sea level rise. From 1993 to 2010, data measured from satellites shows that

mean water level for the entire coastal zone of Vietnam increases approximately

2.9mm/year where it tends to rise more strongly in Mekong Delta [120]. It is able

to impact inundation projection by increasing base level [173]. And coast line

should be shift up in 2030 and 2100 of 25 km and 50 km respectively in the lands

[201].

• Drought and salinity intrusion. From 2015 to 2016, the whole country and par-

ticularly the delta have suffered from a historical salinity intrusion [192] causing

drought emergencies in seven on thirteen provinces of the region and salt water

intrusion which has been extended 20-25km further inland than seasonal averages

due to particular high sea water level.

Insect pest is another problem due to its strong growth and high dissemination

which impact the environment and agricultural activities since decades. The growth

of those particular insect species is facilitated by good weather condition (hot

temperature) particularly favored by the climate change. Recent projection of

climate change urge to tackle this issue. Combination of climate change and insect

pest can be disastrous. That question is investigated to illustrate a framework

supporting climate change modeling and simulation.

1.2 Rice insect threat in climate change condition

1.2.1 Study of Brown Planthopper threat

The brown plant hopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae) is a

major insect pest of rice in Mekong Delta, South Vietnam. This type of insects causes big

loss of rice production by sucking rice leaves and transmitting two virus diseases: Rice

Ragged Stunt Virus disease (RRSV) and Rice Grassy Stunt Virus (RGSV) disease [23],

spread over the delta, resulting fall of rice production. For example, from 2006-2007,

rice, particularly in the Mekong Delta, suffered a major setback due to BPH which has
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caused the loss of 348,927 ha in 2006 and 572,419 ha in 2007 [25].

Characteristics of BPH as any living organism are defined by two aspects its ca-

pacity to multiply and to move what can be summarized in two models: one based on

reproduction and the other on propagation [125][137][150].

Reproduction model of BPH

A reproduction model tries to define capacity of a living organism to live enough to be

able to produce descendants (i.e., to multiply the species). All in all, life cycle of BPHs

extends on 26-30 days [150] depending on environmental factors and it is distributed in

three phases: eggs, nymphs and adults. Growth time lapse of each phase is as followed:

eggs 6-8 days, nymph 12-15 days, adults 19 days (figure 1.2).

Figure 1.2: Three stages of development of BPHs. 7after hatching

Reproduction of BPHs is controlled by meteorological conditions such as tempera-

ture, humidity, precipitation, and wind as well as other factors such as rice maturation,

insecticide concentration or its natural predator [78][125][82].

Impact of rice maturation on BPH development (Effect of rice on BPH prolifera-

tion)

Rice, is the main food of hoppers, goes through three phases in its growth [151]: vegeta-

tive, reproductive and ripening phases. It takes, normally, three to six months from seeds

to be matured plants depending on its varieties and environmental factors. Usually, it is

divided into two groups: long variety which matures in 150 days and short variety which

matures around 120 days. The three phases of the rice growth are:

7(Source: http://agropedialabs.iitk.ac.in/agrilore/sites/default/files/BPH%20rice.pdf)
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• Vegetative phase. It starts at germination and ends just before panicle initiation

about 52 days after sowing. The number of days in this phase depends on the

variety of rice, normally from 55-85 days.

• Reproductive phase. It is from the developing panicle to flowering. This phase

is about 30 days and is almost the same for long-duration varieties as well as

short-duration varieties.

• Ripening phase starts at flowering and ends when the grain is mature and ready to

be harvested. It takes place about 30 days for almost tropical varieties but may be

65 days in cold countries. This phase can be subdivided into milky, dough, yellow,

ripe, and maturity stages; normally their characteristics are based on the texture

and color of the growing grains.

The best conditions for the development of BPHs are young rice, developing panicle

and milky stage.

BPH main predator

In the wild BPHs have predator, natural enemy, which is a factor to control them. In fact,

these enemies are able to eat and transmit diseases to kill hoppers. The major predator

for BPHs is Cyrtorhinus lividipennis Reuter (Hemiptera, Miridae) [152] which has a life

cycle of less than 20 days (table 1.1):

Table 1.1: Three life cycle of Cyrtorhinus lividipennis Reuters.

Stage Name Days

1 Eggs 6

2

Nymph age 1 3

Nymph age 2 3

Nymph age 3 3

Nymph age 4 3

3
Male adult 17-19

Female adult 17-19
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Pesticide

Usage of phytosanitary (chemical) product had been increase since the last 50 year. It is

a factor which is able to control BPHs. Actually, pesticides are chemical compounds

derived from nature or chemical synthesis and used for pest and disease control. Some

pesticides just influence BPHs while others can kill predators as well. Impacts of those

products on farmer health force them to reduce their usage. Resilience those molecules

allow them to be found in rice produced and in the soil years after.

Propagation model of BPH

When conditions are unfavorable, BPHs tend to propagate to other places. Indeed, young

rices are their favorite food, hoppers tend to stay on those fields to eat until food is

depleted. When rices become mature or ripe, with the assistance of the strength of

wind, adults equipped with long wing are able migrate to other fields to find new food

resources. Wind can advect hoppers to far away places, however, without it, they can

also propagate to near fields with their own velocities, approximate 0.4m/s [31].

Under some weather conditions, BPHs can propagate to very far destinations (500km

up to 750km) [130]. Therefore, radar systems can also be used to observe those migra-

tions. Observations using high frequency radar in China [153] shows that long distance

return migrations, causing by northeastern wind, occur in mid and late September. It

also found that hopper clouds take off in the late afternoon or at dusk, fly at heights

between 400 and 1000m above ground level (AGL) under air temperature around 16°C.

Other observations [145] recognize that flight durations are about 9-10h at heights below

1800m AGL in summer and below 1100m AGL in autumn. Those migrations are caused

by northeastern wind as well.

1.2.2 Manual measurement system: Light trap

Light trap is a device which is able to attract insects to its light bulb due to their phototaxis.

From insects collected in the device, their species and densities are calculated, therefore,

trap acts as measure device, or a classifier/counter.

Light trap (figure 1.3) is considered as an useful tool in pest management. For

instance, in Britain, Rothamsted light traps [36] have been established since the early

1960s in order to understand insect population change during pest and to measure and

analyze their diversity [203]. In addition, to confront with Brown Planthopper (BPH)
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impact, light traps have been used in Mekong Delta [25] so people can better know

situations of their fields and take the best decision.

Figure 1.3: Picture of manual insect light trap taken in O Mon, Can Tho.

Table 1.2 depicts densities of BPHs collected in Dong Thap, Vietnam in 01/2011.

Normally, light traps are operated around 4 hours per day and insect densities are

calculated in the next morning.
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However, these samples as table 1.2 are retrieved manually. Therefore, an automatic

device to categorize and number insects would be a great help to avoid hand-operated

computations.

1.2.3 How to mitigate BPHs threat : Problem statements

The case presented in sections 1.2.1 and 1.2.2 points out following problems:

• How to classify and/or calculate insect densities automatically? An automatic

mechanism is able to reduce labor force in manual counting.

• Any capable solutions to interact/control insects at local sites? Interaction is

defined as possibility to change insect behaviors.

• Networking all sample locations. Network can provide global information, spa-

tially distributed, to confront with insect pest.

Actually, the goal of this thesis is to design an insect early warning system in Mekong

Delta based on data collection in local stations. An early warning system is defined as

"a chain of information communication systems comprising sensor, detection, decision,

and broker, in the given order, working in conjunction, forecasting and signalling

disturbances adversely affecting the stability of the physical world; and giving sufficient

time for the response system to prepare resources and response actions for minimizing

the impact on the stability of the physical world" (Waidyanatha’s definition [198]).

eLocust3 [92] is that kind of system to survey, control locust, record data and transmit

them through satellite in real time. It is composed by following functionalities:

• Regular surveillance. Handheld devices 8 controlled by field officers are able

to manually record current situations including ecological factors, insect condi-

tions, pesticide use. Firstly, environmental parameters such as habitat type, soil

moisture, vegetation conditions and state, rainfall are mandatory storage for both

operationally and for basic research purposes. If locusts are present, their statuses,

comprised of type of infestations (hoppers, bands, adults, swarms) and their stage,

density, size, colour, behaviour and activity, are entered by employees. Next,

control operations are also considered for later evaluation of treatments.

8http://www.fao.org/ag/locusts/en/activ/DLIS/eL3/index.html
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• Data transmission. Collected data is transmitted via satellites (Inmarsat 9) to

centralized locust control centre within a matter of minutes.

• Analysis and forecasts. Models and simulations are done based on GIS (Geo-

graphic Information System) analysis to get forecast insect migrations, rainfall,

locust eggs and hoppers estimations.

However, data collection in eLocust3 is done manually with the assistance of hand-

held devices. The insect surveillance in the thesis, in the other hands, contains automatic

sites to categorize/count insects and transmit numeric data to a centre where simulations

are done to estimate the current situation and future trends.

1.3 System methods to confront BPH

1.3.1 Modeling and simulation: A key point

As shown in section 1.1.3, several initiatives were led about insect invasion model-

ing, classification/counting and even technical issues for cooperation between different

simulations on different platforms.

Definitions of model can be given as:

• A model is a representation of an idea, an object or even a process or a system that

is used to describe and explain phenomena that cannot be experienced directly 10.

• Computer model is a representation of a system or process created on a computer,

to assist calculations and predictions 11.

Models, which present insect invasion, are categorized in two types: continuousness

and discreteness.

Continuous models

Insect invasions can be described as continous models by using differential equations.

Rolling swarms of locusts [181] are introduced to model the insect migration by using

9https://www.inmarsat.com/
10Source: https://www.sciencelearn.org.nz/resources/575-scientific-modelling
11Oxford dictionary: https://en.oxforddictionaries.com/definition/computer_model
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numerical simulations and tools from statistical mechanics, the notion of H-stability.

This kinematic model incorporates social interactions, gravity, wind, and the effect of the

impenetrable boundary formed by the ground. The rolling structure is similar to the ones

observed by biologists, including all locust activities from takeoff, landing zone, and how

they rest and feed. Mathematical models [44], which depict how swarm cohesion can be

maintained by huge population of insects over long distances and long periods of time,

are proposed by using travelling wave solutions. Those models focus on interactions

among organisms in an insect swarm and are mostly concerned by forces which hold the

swarm together once it is formed.

Discrete models

Locust outbreaks can be expressed by discrete modeling. A tool for insect dynamic

simulation based on cellular automata 12 [115] is designed to model spatially and

temporally desert locust population dynamics in relation with geographic area. A

physical system, place where desert locusts behave, allows performing synchronous

simulation with space and time discretization. Simulations are concurrent and can be

executed on multi-core processors or graphic accelerators. Locust population evolves

after a certain number of synchronous turns can be seen with respect to insect life cycles.

Stochastic cellular automaton model of locust population-dynamics on lattices [97] is

introduced to model the gregarious phase and interactions among individuals of insects.

Simulations are made by changing environmental parameters of the model to clarify the

relation between the weather data and insect behaviors.

BPH behaviors under environmental factors [137][125] are modeled and simulated

by using agent based approach in GAMA [172]. The first work about BPH invasion

modeling is depicted in [137] where wind is the main factor for describing hopper

behaviors. The wind data is a parameter simulation scenarios, it is not taken from an

outside sources likes meteorological stations. In addition to wind, other factors such as

temperature, humidity are also considered to model BPH reproduction [125]. Common

things in those studies are the weather data which is not taken from a meteorological

source and the calculation of the simulation is done based on administrative area (districts,

cities).

BPH behaviors and light traps are combined into a model to optimize the light trap

network for monitoring inversions of insects [184]. Light traps are also considered as

12to appear in 2017 Winter Simulation Conference (WSC)
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part of model to produce best estimation of insect populations. Perception zone and

neighbor zone of a light trap are proposed and those are similar to sensing range and

communication range of a sensing device.

1.3.2 Insect classification and counting

Solutions for estimate insect densities are varying from imaging or acoustic method and

are able to run on or offline. The common objective of these solutions is to free people

from manual counting which is particularly time consuming and leads to fatigue and an

increase of error rate.

Image processing is a common method to count insect densities [146][118][41]. The

idea is to distribute a camera system in order to capture insect images, next some seg-

mentation methods are used to extract insect images from the background. Background

subtraction is the most common used, however, some other methods (e.g Seeded Region

Growing) may be used to increase reliability of the segmentation phase. Some features

including color, shape and texture features of each pest are extracted into a classifier

for classifying and counting. Nevertheless, authors in [41] use a pineline based on deep

learning, part of a broader family of machine learning methods, for identifying and

counting pests in images taken inside field traps. This solution relies more on data, not

on human knowledge since it uses no pest-specific engineering which enables it to adapt

to other species and environments with minimal human effort.

Photoacoustic sensor can be used to classify insects thanks to their wingbeats

[12][139]. The logical design of the sensor is described in figure 1.4. It is composed of a

low-powered laser source and a phototransitor. An electronic board is connected to the

phototransitor. The laser is pointed at a total internal reflector which returns the slightly

scattered light back to the source, with some of it hitting the phototransistor. When a

flying insect crosses the laser beam, its wings partially occlude the light, causing small

light fluctuations captured by the phototransistor. These signals are filtered and amplified

and they are treated as audio signals.

1.3.3 Simulation and multi-simulation solution

Simulation represents behaviors of a system which is described as a model while multi-

simulation relates to interplays between several ones. The High Level Architecture

(HLA) [79][100][80], a standard for distributed simulations, is used for interoperability
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Figure 1.4: Diagram of photacoustic sensor (from [12]) used to recognize insects.

and reusability in context of latter. In HLA terminology, the whole problem which needs

to be modeled and simulated is represented by a federation. Each simulator (sub models)

referring to the federation is called a federate. A set of federates is connected via a Run

Time Infrastructure (RTI). In this case, a RTI can be considered as distributed operating

systems for cooperation of federates (figure 1.5).

Figure 1.5: HLA federation architecture used in multi-simulation.

Federates exchange data together via RTI. For example, a federation has two federates

of which the second one relies on values provided by the first one. Initially, the first

federate publishes its states to RTI and the second needs to subscribe them. Whenever

the second receives states from RTI, values of state variables in its simulator are updated

to make suitable behaviors. However, the second federate publishes its states but the first

one does not need to subscribe.

Besides, both federates need to register synchronous points (figure 1.6) to synchronize

their data as well as activities. This can be done by defining a protocol in HLA Time

Management Services.
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Figure 1.6: Synchronous points in a federation.

1.3.4 Methodology: Sensing, understanding, controlling

To our knowledge, it seems that there is no complete solution from local practical auto-

matic observations at sampling locations to global system for modeling and simulating

insect invasion in a small or average region (or area). Therefore, this dissertation focuses

on that kind of such solutions.

Objective of this dissertation is to design of sensing machine to understand threats as

well as measure and control counteract factors. It is applied on the case study in section

1.2 so:

• Old light trap is replaced by automatic sensing device which frees farmer from

manual classification and numbering.

• New devices are connected to networks to feed collection of data used in insect or

environment simulation.

Sensor is a device which detects or measures a physical property and records, indi-

cates, or otherwise responds to it 13. Their distribution is able to measure surrounding

conditions to give values of the environment at sampling locations. It also plays as actua-

tors to activate environmental factors. The two ways relation between these equipments

and the environment is one of the research topic of this thesis.

Sensing devices are deployed to constitute a whole system to monitor natural phe-

nomena in a defined area. Components of the system are able to provide global picture

of physical world to face climatic events.

13Oxford directory (https://en.oxforddictionaries.com/definition/sensor)
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1.3.5 Thesis layout

The rest of the thesis is organized as followed:

• Chapter 2 illustrates a methodology to observe automatically the surrounding

conditions by the design of vision sensor architectures and application. It is

about sensing aspect, thereby, the local scale interaction is able to be found here.

Using sensors local scale interaction can be defined and complete a cyber physical

modeling.

• Chapter 3 deals with method to consider the physical world as a machine on which

processes are executed synchronously and presents an information system solution

for that machine. The proposed solution is able to integrate data of different

types from different sources as well as allow data sharing via multiple simulations.

Global decisions are probably made when observing historical data through years.

• Chapter 4 presents a study case merging model insect behaviors under environ-

mental factors developed in chapter 3 and insects monitoring based on vision

sensing developed in chapter 2. Variables used are wind, temperature, humidity,

precipitation to assess capacity of environmental model to provide an overall view

of the insect pest (or to predict behavior of insect pest).

• Chapter 5 presents conclusions of work done in the dissertation. Future plans are

drawn to extend analysis of local and global sensing system.





2
A vision observatory: insect sampling

2.1 Automatic observatory - Basic principles

Observatory is best known as a room housing astronomical telescope or other scientific

equipment for the study of natural phenomena 1. In our context, it is understood as

a station equipped with sensing devices to study environment. Another example of

observatory is a site built to observe boat activities on a wide surface to notify drivers

whether boats are in their right tracks to avoid collisions. If both monitoring and

notification are done automatically, it becomes an automatic observatory.

World Meteorological Organization (WMO) provides some clarifications with auto-

matic weather station. It is defined as meteorological station at which observations are

made and transmitted automatically [209]. Therefore, automatic station (or automatic

observatory) is a site equipped with sensing devices to locally diagnose phenomena

1Oxford dictionary: https://en.oxforddictionaries.com/definition/observatory

21
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happening in field of biology, chemistry, geology and physics and to send results to

destinations via automated transmissions.

Figure 2.1: Diagram of local automatic diagnostics showing relation between natural
phenomena and sensing devices.

Sensing devices are able to measure phenomena values at a defined timestamp (or

time step). For instance, sensors are equipped with hydrological meteorological station

to compute regular weather parameters (know as factors in computer application), water

level and water flow in Vietnam [121]. The typical frequency of measurements is four

times per day. Vietnamese hydrological meteorological station, using time series, the

trend is sampled and plays as an early warning system of floods for habitants in a region.

Another example is the insect trap (also know as bio-diversity trap) which monitors

behaviors of insects and other arthropods. It is able to reduce their populations by

attracting them to a light bulb and destroying. Their population numbers are processed

to better understand situation of crops.

In addition, those devices are able to cause repulsing. That means they have impact

on natural phenomena. Ultrasound is used as a sound trap [90][5] which is able to control

bats activities.

As a result, the presence of an observatory induces interactions between natural

phenomena and sensing equipments as shown in figure 2.1.
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In the second example, actuator in the trap is the main factor ables to change insect

behaviors, thus, it is popular use in agriculture (as in [86][17]). Actuator is defined as

a person or thing which can make a machine or a device operate 2. Indeed, light bulb

in a light trap stimulates insects due to their phototactics. In fact, the structure of the

compound eyes of insects influences their spectral sensitivities. It is the case of yellowish

devices with planthoppers, leafhoppers, aphids, whiteflies and leafminer flies [194][46].

Bio-diversity trap is a sensing device having its own sensing range. For example, in

the case of light trap, sensing range relies on several factors, from trap itself to lunar

phases [101]:

• Although luminous intensity of artificial light is theoretically constant, but change

of voltage may modify some parameters such as life cycle, power input, and light

efficiency.

• Natural illumination (time and span of twilights, Moon phase, light pollution) may

be added to intensity of the light bulb as well. This illumination may be calculated

upon geographical position, season of the year or during one night.

According to Nowinszky L. et. al [101], the sensing range of a light trap can be

calculated as:

r =

�

I

ES+EM+EN +ELp
(2.1)

Where

• r: sensing radius (m).

• I: luminance of the lamp, measured in cadela (cd).

• Denominator: Natural illumination consists of the sunlight (ES), the moon (EM),

the starry night sky (EN) and the light pollution (ELp). For example, the sensing

radius for 125W mercury vapour lamp [18] is 35m at a Full Moon, 518m at a New

Moon. Another example [43] is a 125W HPL light source which has the sensing

radius of 70m at a Full Moon and 830m at a New Moon. They are calculated in

lux (lx) equivalent to lumen per square meter (lm/m2), flux of light on the surface

of the trap.

2Oxford dictionary: https://en.oxforddictionaries.com/definition/actuate
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This chapter explains natural rules and counteract of building automatic observa-

tory, with a special focus on vision systems. The general orientation is to set small

programmable autonomous communicating systems able to do local diagnostics and

to emit synthetic information toward remote databases. In fact, this chapter describes

a methodology for automatic observatories equipped with vision sensors architecture

applied on bio-diversity trap for insects categorizing and numbering.

The rest of the chapter 3 is organized as follows. Section 2 depicts architecture of an

automatic observation system using vision sensor equipped with fisheye lens to observe

an insect trap. The next section presents camera calibration method to estimate object

size in insect trap. It also provides indications to create dataset and use it to categorize

and to count insects in the section 4. Experiment results and evaluation are described

in section 5. Section 6 illustrates operating principals of automatic trap including some

scenarios and establishments which are able to change insect behaviors. A summary of

the chapter is discussed in the last section.

2.2 Automatic vision system

2.2.1 Objectives of the visual sensor

Automatic vision system (AVS) is understood as a site uses vision devices and other

instruments to observe environment and collect data locally. Therefore, it is designed

as an integrated concept of various measuring devices to combine data acquisition and

processing. It is unnecessary to transmit collected images via a network as problems

concerned in [62][136]. Nevertheless, in an AVS, executions are done on site and the

data is transmitted to destination. No image is maintained in the station.

An AVS can be built from following components:

• Autonomous system node. An autonomous sensor [3] is a device able to perform

its task without being connected to a control unit. Emergence of application fields

requires increase of computational capabilities with suitable power consumption

in the sensor node. Raspberry pi [148], NVIDIA Jetson Tk1 [128] are examples of

such devices that are able to deal with new challenges of application fields (figure

2.2, 2.3).

3Content of the chapter is progressed during the thesis time
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Figure 2.2: Rasperry 3.0 equipped
with a camera.

Figure 2.3: Jetson Tk1 board with
an eCam camera.

• Radio link and network organization. Sensor nodes are connected each other

mostly using radio connection in a network topology. By integration of radio

transceiver, each sensor node is able to transmit its messages to distant destinations.

For instance, Zigbee [2] can transmit a message at roughly 50m while LORA

[160] is able to reach tens of kilometers at low data rate. Mobile communication

(3G, 4G, 5G) is another solution to carry messages to distant destinations.

• Suitable power consumption with high performance. For example, Raspberry Pi

3.0 consumes typically 800mA, 4W in it tasks while Jetson Tk1 requires 12W in

peak GFXBench 3.0 Performance Metrics.

• Sensors. Sensing station consists of sensors such as temperature, accelerator, or

even more specific as acoustic and vision. Using data from sensors, sensing station

is able to carry out its task locally (local processing) and transmit output to a data

center via radio links.

The AVS is applied in a bio-diversity trap in Mekong Delta, Vietnam to classify/count

insect densities automatically so that it can free farmers from current manual tasks. The

requirement is that quantities of insects are collected periodically (e.g 30 minutes, 1

hour, 1 day), therefore, realtime observation is not necessary. The only obligation is,

after a period of time, to return the values from the station. That gives the local view of

insects with respect of surrounding conditions at the node.

2.2.2 Camera system and technical issues

Camera system is a kind of device which is able to be used as a sensor in vision

applications. Generally, a camera system is composed by two main components: vision

sensor and lens.
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Vision at low level process

The key point of vision applications is the relation between the pixel matrix sensor and

the processing unit. In practice, there are three types of cameras as shown in figure 2.4:

Figure 2.4: Several vision approaches: (a) standard camera separating vision matrix
and processing unit, (b) smart sensor with photodiode matrix and processing on the
same chip, (c) camera assembly with DMA between the vision matrix and a graphics
processing unit memory (GPU).

1. Figure 2.4a illustrates the architecture of widespread cameras as used in mobile

phones, for example. They are inexpensive and follow standardization of access

interfaces. In principle, a camera has a sensor matrix which is isolated with a

processing unit. A micro-controller can control structure of the image, resolution,

acquisition speed in frames per second. This affects the quality of videos relevant

to final user.

2. Intelligent cameras for industrial controls integrate the processor (a parallel pro-

cessor) and the sensor array (figure 2.4b). Analysis can thus be carried out directly

into the camera without rendering image format. These cameras can recognize

tens of thousands of objects per second, without significant energy expenditure

and they also allow development of machine learning techniques.

Figure 2.5, 2.6 depicts a prototype of that kind of camera (G. Fabregat et al. [48]).

It consists of parallel processor integrating with sensor array and also registers.

Via registers, commands are made to ask some lines of the matrix, then these

lines are mapped to the processor for analyse. It is a kind of smart sensors where

diagnostics are done locally.
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Figure 2.5: Camera integrating a parallel
processor and sensor array.

Figure 2.6: The smart camera equipped
with a lens.

Camera in 2.5 and 2.6 is a ’smart optical sensor’ since it has a combination of

sensor and processor in the same chip. It uses MAPP2200 (Matrix Array Picture

Processor) vision chip [154][6] which has 256*256 array of photodiodes to capture

an image. It is able to handle a row of pixels in parallel thanks to its SIMD (Single

Instruction, Multiple Data) processor. Figure 2.7 illustrates the block diagram of

its integrated circuit.

Object size calculation is able to be done inside the camera using its parallel

processor. Image data is read out line by line to a parallel array of amplifier. Once

a line of data is mapped to the PD register, a threshold is applied to the row to

emerge object pixels without using A/D conversion (Analog to Digital). Size

calculation algorithm starts from first line. Operation MARK provided from the

instruction set of the sensor is able to combine objects in the new line (the register)

which is vertically connected to objects in the previous rows which are maintained

as a row in the accumulator. Its result is stored in the accumulator (figure 2.8).

Sizes of objects are kept in another register. When processing a new line, if objects

in accumulator disappear (e.g third object as in figure 2.8), their sizes are returned.

If they are still exists, their sizes are accumulated with sizes in the new line. The

process continues to the last line, then sizes of objects are calculated. In addition,

no image information are maintained.

3. Halfway between these two techniques, devices in figure 2.4c) are able to control



28 Chapter 2. A vision observatory: insect sampling

Figure 2.7: MAPP220 Block diagram (source from [154]), chip equipped with a photo
matrix, 114 digital registers, an analog register and three types of pixel processing units:
Point Logical Unit (PLU), Neighborhood Logical Unit (NLU), Global Logical Unit
(GLU).
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Figure 2.8: Description of object extraction using MARK operation. In the register,
objects vertically connected to objects in the accumulator are preserved (source from
[154]).

acquisition of image segments by sending them directly to a GPU.

What is important in concept of parallel vision (case b and c) is that pixels appear in

lines, or group of lines, they are treated as a whole: there are no sequential loop over a

line, but concurrent processing of several pixels. That is the result of properties of the

architecture and warranty the virtualization of the array processing.

Some pros and cons of three types of camera are illustrated in table 2.1. The table

uses Raspberry Pi with camera as type 1 (2.2), IVP MAPP 2200 as type 2, Jetson board

with camera as type 3 (figure 2.3).

Table 2.1: Comparisons between three types of cameras.

Camera (a) Camera (b) Camera (c)

Processor Embedded CPU Parallel processor Embedded CPU and GPU

Data acquisition & processing unit Seperated Integrated Seperated

Power consumption 4W

Low. Because there is no energy spent

for transferring data from data

acquisition and processing

12W in peak GFXBench 3.0

Performance Metrics

Programming General purpose A specific task General purpose

Design Pre-designed Full custom designed Pre-designed

Depending on each monitoring application, a suitable camera type is used. For

example, to observe wildlife or birds, type (b) or (c) are necessary; however, in the

insect case, camera (a) is chosen. Technically, an image is captured by the camera and

micro-controllers process this image to give density values.
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Basics in optics

Because light rays are projected on sensor surface of a camera to form an image, they

must pass through a lens. Amount and quality of light passing through the lens determine

quality of the projected image.

In a homogeneous medium, light travels in straight lines. One example of this

characteristic is pinhole camera [29]. A pinhole camera is an optical imaging device

formed by closed box which has a very small hole (O) in the front face and a screen at

the back (figure 2.9). If an object AB is placed in front of the hole, an inverted image

will A’B’ will appear on the screen.

Figure 2.9: Pinhole camera with line II’ is the optical axis and I’ is the principal point or
image center.

The size of object in real world and in image plane are related to the pinhole position

by the equation:

Image size

Ob ject size
=

Distance o f screen f rom hole

Distance o f ob ject f rom hole
(2.2)

Terms relating to lens (figure 2.10) are:

• Focal length. It is the distance from the optical center of a lens to the vision sensor

when the lens is focused on an object at infinity.

• Field of View. It is the angle over which the sensor can see through the lens.
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Figure 2.10: Focal length and field of view of a camera lens.

For a given sensor size, specified by the diagonal length of a single frame of sensor,

a lens may be classified [200] as a:

• Normal lens. It has a focal length approximately equal in length to the diagonal.

• Wide-angle lens. It has a focal length shorter than normal. Fisheye lens belongs to

this type and is able to produce a circular image on the sensor.

• Long-focus lens. It has the focal length longer than normal.

2.2.3 Observation by using fisheye lens camera

Figure 1.3 depicts a manual light trap where counting is done by hand in the next morning.

During the design of new automatic device, one requirement was that structure of trap

stays unchanged. Therefore, our new device is similar to the old one, only electronic

equipments are added to allow local processing.

Figure 2.11 depicts a typical insect trap equipped with light bulb to attract insects.

The figure shows the cone used to pick up insects, sometimes a bag is placed at the

bottom of the cone to contain their bodies. The top is a solar panel to generate electricity

for operating the trap. Sensors are installed under the panel while there is a box which

contains electronic devices such as Raspberry Pi, Adruino, battery to control the trap.

A camera to observe the cone can be considered as a solution for insect counting.

It is almost impossible to observe the whole cone surface using a regular lens camera

(figure 2.12), instead, at least two rectilinear lens cameras are needed to handle that.

The reason is objects (if applicable) in the cone are not on the same plane. It induces



32 Chapter 2. A vision observatory: insect sampling

Figure 2.11: Pictures (view) of an installed automatic bio-diversity trap.

difference between objects and camera distance. If it is assumed that they are located in

the cone surface, the situation still exists since the surface is not flat as well. Depth and

scale information is lost when 3D points are projected onto a 2D image with a normal

camera. Thus, another camera is used to compose a stereo one so that both can compute

objects in the world coordinate.

3D camera is able to keeps all information in the 3D world. An alternative is to use a

fisheye lens camera to take wide angles of view of image planes. From this, calibration

method is executed to adapt cone surface on projected image. The latter is chosen in this

thesis and becomes a practical solution in the case study.

Fisheye lens [74] is a lens to provide wide-angle view, generally from 100°to 180°.

Normally, it produces a circular image which appears convex, bulging out at the center,

toward the edge of the image (figure 2.12). In situations such as shooting in a confined

spaces or requirement of wide field of view, the fisheye lens is useful. Indeed, interiors

of objects such as car or plane are shot by fisheye lenses and sometimes stitched together

in 360°panoramas.

To observe the whole cone surface, the camera is attached on the top of the cone to

compose a structure as in figure 2.13. It is an inverse cone which has 50cm diameter

large circle, 10cm diameter small circle and 35.8cm distance between the two circles.

The fisheye lens camera is fixed at the center of the large circle to observe objects located
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Figure 2.12: View of cone of bio-diversity trap, on the left an installed device (smartphone
camera) on the right view from the fisheye lens camera

in the small circle and on cone’s sides. Distance between the camera and the small circle

is 34cm. Normally, insects, which are attracted by the light bulb, are falling down in the

cone and sometimes slide to the small inner circle. In other cases, they are still localized

on cone’s sides.

Figure 2.13: Diagram of a cone surface used in the automatic bio-diversity trap.

One problem appearing by exploitation of bio-diversity trap is how to classify and

estimate insect densities. For example, from an image taken from the trap in figure 2.14,

people need to know how many insects (and their species) are in the trap? Insect size

becomes a main feature to categorize species in this dissertation because each insect
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Figure 2.14: Insects caught by the trap, on the left distorted image taken by a fisheye
lens camera on the right rectilinear image taken by rectilinear lens camera.

type has its own size, such as 20-30mm length in Brown Planthopper [84], 38-50mm

length in Grasshopper [119]. To solve the problem, from an image captured on the cone

surface of the trap by a fisheye lens camera, object size estimation need to be done.

The question is How to evaluate the size? It is a process done on the cone surface

of the trap as in figure 2.13. It means the camera is put such as its images will have

concentric center with the small inner circle. It requires engineering aspect to justify that

camera and trap reach this constraint. Computer science approach is the implementation

of a workflow for insect classifying/counting in a trap observed by a fisheye lens camera

(figure 2.15). The workflow includes a camera calibration method to estimate object size

in distorted images and application of the method to categorize and calculate amounts

(figure 2.15).

Figure 2.15: Workflow of insect classification/counting in a bio-diversity trap using
fisheye lens camera.
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2.3 Camera calibration in bio-diversity traps

2.3.1 Fisheye projection functions

Pinhole camera model depicts relationship between coordinates of a world point and its

projection to image plane in ideal pinhole camera, where camera aperture is described

as a point and no lenses is used to focus light. The pinhole projection, or rectilinear

projection, preserves the recti-linearity of projected scene. It respects the function given

as [122]:

ru = f tan(θ) (2.3)

where f is the distance between the principal point and the image plane, θ is the

incident angle of the projected ray of the optical axis of the camera and ru is the projected

radial distance from the principal point on the image plane (figure 2.16).

Figure 2.16: Object size projection in pinhole camera.

Formula 2.2 gives:

ru

D
=

f

F
(2.4)

Where ru becomes the object size in image plane, D is the object size in world

coordinates, F is the distance between the object to the camera.

The fisheye projection is quite different from the pinhole projection since projected

radial distance from the principal point on image plane is close proportional to the true

angle of separation.

There are several fisheye projection [122] which listed as follow:
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• Equidistant projection ⇒ rd = f θ

• Equisolid projection ⇒ rd = 2 f sin(θ
2)

• Orthographic projection ⇒ rd = f sin(θ)

• Stereographic projection ⇒ rd = 2 f tan(θ
2)

These fisheye projections can be summarized as ⇒ rd = f g(θ), where g(θ) depicts

proportion of distance from the principal point on image plane and incident angle of

projected ray passing though the optical center O of the camera (figure 2.17).

Figure 2.17: Object size projection in fisheye lens camera.

⇒ ru
rd
= f tan(θ)

f g(θ)

Thus, ⇒ ru =
f tan(θ)
f g(θ) rd

(2.4) gives

rd

D
=

f

F

g(θ)

tan(θ)
=

f

F
h(θ) (2.5)

Similar to the rectilinear projection, rd becomes the object size in image plane.

Therefore, rd
D

becomes the scale between the object pixels and the real object area.

Figure 2.17 shows that when the distance F between the object and the optical center

is unchanged, the nearer/farther A’ comes to I’ (the principal point), the nearer/farther A

comes to I. Therefore, an object’s size is proportional to the distance between its location

on image plane to image center.
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2.3.2 Image center calculation

Formula 2.5 confirms that an object’s size depends on its distance to the principal point.

This value can be determined by using one of methods in [213][66][77].

These methods detect features from several images to estimate camera parameters.

First, a pattern with some special features (corners, circles as figure 2.18) is observed by

a camera with different orientations by moving either the pattern or the camera. Next the

radial lens distortion is modelled and camera parameters are calculated by a nonlinear

refinement based on the maximum likelihood criterion. The solution of Zhang 2000

[213] is used in this thesis to detect image center:

Figure 2.18: A checkboard pattern which corner points are used to estimate camera
parameters.

• Print out a pattern and attach it on to a planar surface.

• Take some images of the pattern with different orientations by moving the pattern

or the camera.

• Detect feature points in the pattern (corner, circle, ...).

• Estimate internal and external parameters of the camera.

• Estimate coefficients of the radial distortion.

• Refine solution using least square method.
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2.3.3 Size object estimation

Description of vision in fisheye

A fisheye lens camera is attached to a light trap as in figure 2.12, it can take image of

the whole cone surface. The camera is put such as the principal point of the camera

coincides with the center of the bottom circle and OO’ becomes axis of symmetry of

the cone surface. Insects captured by trap are either located on bottom or on sides of the

cone. As a result, camera calibration, which allows object size estimation, is divided into

two sub cases: bottom and side.

Figure 2.19: Diagram of objects located on cone sides of bio-diversity light trap with
camera places at O and principal point coincides with the bottom center.

Objects in cone bottom

When objects are localized at the cone bottom, it means objects are on a flat surface

which is parallel with the camera lens. Formula 2.5 confirms that object’s image size

relies on its distance to image center. Technically, it is necessary to identify bottom

surface from cone image as in figure 2.12. From that, it is easy to check whether an

object image belongs to bottom surface or not. Actually, bottom of the cone has circle

shape, therefore, it becomes an ellipse in the image taken from fisheye lens camera. An

ellipse detector is used to detect this condition.
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Objects in cone sides

Figure 2.19 depicts the case where these objects A, B are located in edges of the cone.

Suppose that A, B in the same flat surface which parallels with the camera. Image sizes

of A and B have linear relations with their distances to the center I of the flat surface.

However, position I can move from O to O’. It means that image sizes of objects A or B

rely on
�

�

�

−→
IO

�

�

�
or

�

�

�

−→
IO�

�

�

�
.

In implementation,
−→
IO� is easy to be identified because O’ is just the center of the

ellipse imaged of the cone bottom.

Moreover, IO� = O�Acosβ1 (figure 2.19)

Therefore, image sizes of any objects A (B) depend on O’A (O’B) or on the distance

between each object image location and the center of the cone bottom (the principal

point).

Workflow of camera calibration

Workflow for camera calibration in a light trap to estimate object size is illustrated in

figure 2.20. In this workflow, the first step is to estimate camera parameters, especially

the image center (as in section 2.3.2)[213]. Next, contours of known objects in the image

are identified to calculate their pixel sizes. From that, scales between those sizes and real

sizes can be computed for later usages.

Figure 2.20: Workflow of camera calibration process used to estimate sample object
sizes in a light trap.
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2.3.4 Validation of calibration method

The workflow in figure 2.20 assumes that object’s image size relies on its distance to

image center. In other words, if objects have the same distance to the image center,

then their image sizes are almost the same. In practice, it is necessary to validate this

assumption, therefore, an experiment, which is done independently to the workflow in

figure 2.20, is set up and some statistical methods are used for testing it.

This experiment allows the measure of image sizes of known objects in a distorted

image. In this case, known objects are distributed on a plane surface and they almost

have the same distance to a center (as in figure 2.21). A fisheye lens camera is set up

such as distorted image center is coincides with the center of the plane surface. Next

some detector methods are applied to estimate object sizes in image (pixels) and the

scale between these sizes and real sizes.

Figure 2.21: Picture of pattern of concentric circle composed by 4mm radius objects
used to test distant assumption.
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In order to estimate image object sizes, as example in figure 2.21, the method in

[213] is used to identify camera parameters. After adjusting camera position, images of

the plane surface, which consists of objects, are taken. Ellipse detectors are applied in

these distorted images to extract objects’ contours and compute their scales.

Raspberry Pi Camera Module with Fisheye Lens is also used in this experiment and

some results are obtained as follow:

• Images are rendered as 640x480 size and the image center is estimated at (317.868,

261.45).

• Tables 2.2 and A.1 (in appendix A.2) depict scales and distances to image center

of objects detected as in figure 2.21.

Scales between object sizes in the distorted image and real sizes follow normal

distribution. Indeed, figure 2.22 and A.2 (appendix A.2) depict some statistical results

of objects in group 1 and group 2, respectively. These results obtained from R-cran

software show probability density function, quantile-quantile (q-q) plot and some tests

(Shapiro-Wilk and Kolmogorov-Smirnov - appendix A.1) of object sizes in the image.

For example, probability density functions represent almost bell curves while points

of scales fall along straight lines of quantile-quantile plots. Moreover, Shapiko-Wilk

and Kolmogorov-Smirnov tests do not reject the hypothesis of normality. To sum up,

in distorted images, scale between object’s pixel size and real size is the ratio with the

distance between its image and the image center.

Figure 2.22: Result of statistical analysis of objects size of group 2 : on left probability
density function on right Normalized quantile-quantile plot.

The Kolmogorov-Smirnov normality test which is applied on these measurements

gives the test statistic D = 0.061399 and the significance level p_value = 0.9564.
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Table 2.2: Expectation and deviation of measured sizes (pixels and scale) of objects in
group 2 (distance around 136.32 pixels from the image center).

Object
Distance

from center
Pixels

Scale

(pixels/mm2)
Object

Distance

from center
Pixels

Scale

(pixels/mm2)

15 131.419 121.297 0.414399 1 136.393 164.163 0.306192

19 131.754 127.757 0.393446 8 136.470 126.495 0.397373

22 132.003 121.802 0.412682 55 136.944 133.423 0.376737

26 132.051 126.956 0.395928 10 137.146 112.363 0.447348

27 132.253 120.514 0.417092 12 137.659 115.364 0.435712

36 132.577 131.468 0.382339 57 137.817 134.716 0.373121

7 132.659 118.189 0.425297 58 138.240 140.941 0.356643

11 132.813 126.323 0.397911 13 138.294 122.908 0.408968

9 132.847 120.096 0.418543 18 138.382 124.015 0.405318

5 133.206 118.777 0.423192 59 138.681 145.799 0.344759

32 133.370 135.041 0.372224 56 139.456 144.054 0.348936

47 133.719 128.748 0.390418 23 139.862 131.524 0.382176

39 133.831 132.739 0.378678 50 139.922 135.816 0.370101

3 133.928 120.388 0.417530 54 140.093 141.599 0.354985

2 134.142 116.573 0.431194 46 140.392 138.081 0.364030

44 134.205 129.595 0.387865 37 140.459 140.261 0.358370

49 134.542 141.582 0.355028 52 140.731 146.393 0.343359

51 135.710 130.880 0.384057 41 140.791 135.979 0.369656

6 135.740 132.201 0.380220 48 140.797 141.234 0.355901

4 135.788 130.133 0.386262 31 141.080 129.413 0.388412

53 136.096 137.696 0.365047 33 141.131 132.763 0.378612
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Experiment results confirm one more time that an object’s pixel size depends on its

distance to the image center.

2.4 Application of the camera calibration method

2.4.1 Linear regression

In statistics, linear regression [59][210] is an approach for modeling the relationship

between a scalar variable y and independent variables denoted x. For example, it can be

related distance between an insect and the cone center to its pixel size in light trap using

a linear regression model.

A simple linear regression has the equation y = a+bx+e where x is the independent

(explanatory) variable and y is the scalar (dependent) variable. The slope of the line is b

and a is an intercept while e is the error.

A common method to fit the regression line is the leasts squared method. It calculates

the best fitting line from observed data by minimizing sum of squares of the vertical

deviations from each data point to the line.

For example, table 2.2 shows an association between the object scale and the distance

between the object to the image center. The regression equation Scale =−0.004452∗
Distance+0.992450 shows this relation and it is graphically represented in figure 2.23.

Figure 2.23: Object pixel scales relate to distance to (the cone) center, the line represents
the linear regression.
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Least squares method [144] is a method to approach solution of overdetermined

systems by minimizing the sum of squared residual (a residual: the difference between

an observed value and the fitted value provided by a model).

In simple linear regression, this method finds a, b such that ∑n
i=1(yi − (a+ bxi))

2

reaches the minimum value. After transformation, coefficients a and b satisfy the

condition and are given as:

b̂ =
∑n

i=1(xi − x)(yi − y)

∑n
i=1(xi − x)2 (2.6)

â = y− b̂x (2.7)

Where x,y are mean values of X, Y. â, b̂ are estimation of a, b (not a, b) since a, b

can not be calculated exactly. After that, one can estimate yi for each xi as below:

ŷi = â+ b̂xi (2.8)

where ŷi depicts the mean value for each xi and the rest (yi − ŷi) is the residual. The

variance of residual can be estimated: s2 = ∑n
i=1(yi−ŷi)

n−2

2.4.2 Insect size dataset

An insect size dataset is created by collecting insect species, distribute them to the trap

surface, taken images and process these images. This phase uses camera parameters

and referenced object scales from previous phase (Sample object scale estimation in

workflow 2.15). Contour of each object is drawn and extracted to get number of pixels

that the object occupies in the image. Linear regression is done to identify scale of the

object based on its distance to the image center and the usage of the referenced object

scales table. Object scale and number of pixels give an estimated size of the object.

For example, figure 2.24 presents a distorted image obtained from the insect trap in

the creation phase of dataset. Each insect contour is extracted and calculated its distance

to the image center (e.g: d1, d2). From the distance, formulas 2.6 and 2.8 are used to

estimate the object’s scale. Next, the object size can be computed with the assistance of

the contour size and the scale (Ob ject_size =Contour_size∗Scale).
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Figure 2.24: Distorted view of insect bodies at the surface of bio-diversity light trap
cone.

2.4.3 Insect classification/counting

This phase is done in bio-diversity traps at rice fields. Everyday, insect densities in a trap

are collected as presented in section 2.6 and these values are transmitted from the trap

to a data center. Periodically, following steps are processed to count insects and thus

compute densities:

• Take an image of the cone surface of the insect trap.

• Execute object segmentation methods. First, background subtraction is applied,

and connected component labeling is used to extract object contours.

• Calculate area (in pixels) of each contour.

• Use k-nearest neighbors algorithm (kNN) and the insect size dataset to estimate

quantity numbers.
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2.5 Experimentation of camera calibration

2.5.1 Implementation

Implementation of this chapter is done in C using OpenCV. There are several tools

involving in it:

• Camera calibration. Calibrate fisheye lens camera to retrieve the distorted image

center.

• Scale estimation. Calculate scale of known objects to create a referenced size

table.

• Dataset creation. Take offline images from the trap, calculate sample insect sizes

and store the dataset.

• Insect counting. Count densities periodically.

These tools run on Rasperry Pi 3.0 and camera and Raspberry Pi Camera Module

with Fisheye Lens.

2.5.2 Results

Camera calibration and scale estimation

The camera calibration is done in the cone of the light trap in figure 2.11. Some known

sample objects (circles with 9mm radius) are put either in the bottom or on cone sides

(figure 2.12). The cone image taken by the Raspberry pi camera of which fisheye lens

provides image center (317.868, 261.45) at 640x480 mode.

Results of the camera calibration are depicted in figure 2.25 and table 2.2.

Counting at insect trap

Based on the referenced table 2.3, a size dataset which consists of 200 BPHs and 50

other individuals of other species are created. The dataset has some following columns:

distance to image center, scale between insect image and its real size, estimated real

size, and species name. Only two types of insects are considered: BPHs and others (not

BPHs) since normally people pay more attention to BPHs and their impacts to rice fields.
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Figure 2.25: Sample objects detected in the camera calibration. The yellow ellipse
depicts the cone bottom.

Table 2.3: Reference table for object sizes in insect trap.

Real

size

254.35

mm2

Image

center

(317.868,

261.45)

No
Distance

to center
Pixels

Scale

(pixels/mm2)
Position No

Distance

to center
Pixels

Scale

(pixels/mm2)
Position

0 261.45 330.891 0.769042 Outside 13 166.717 370.441 0.686935 Outside

1 209.875 351.979 0.722967 Outside 14 173.409 354.752 0.717315 Outside

2 191.087 352.8 0.721283 Outside 15 109.256 287.497 0.88512 Outside

3 265.857 340.521 0.747294 Outside 16 259.999 364.577 0.697984 Outside

4 301.15 267.75 0.950397 Outside 17 285.945 373.075 0.682086 Outside

5 105.278 259.14 0.981975 Outside 18 144.736 335.367 0.758778 Outside

6 146.619 308.268 0.825479 Outside 19 127.699 317.272 0.802052 Outside

7 212.646 383.929 0.662803 Outside 20 146.17 330.773 0.769315 Outside

8 257.813 368.956 0.689701 Outside 21 203.719 400.488 0.635397 Outside

9 15.2669 125.091 2.03426 Inside 22 254.573 405.898 0.626929 Outside

10 10.4587 130.297 1.953 Inside 23 245.993 418.818 0.607588 Outside

11 29.8484 125.15 2.03331 Inside 24 247.342 420.186 0.60561 Outside

12 26.2375 120.768 2.10709 Inside 26 254.688 404.305 0.629399 Outside
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Figure 2.26 illustrates two results of counting insects in a trap in the rice field. In

practice, there is no window view as in the figure, instead, after each counting, three

values are returned to a Uno Adruino so the Adruino can transmit them to a data center

via means of communication. The three values are the number of BPHs, the number of

Not BPHs and the time that executes the counting.

Figure 2.26: 2 results of insect counting in a bio-diversity trap.

Evaluation

The proposed method is evaluated using accuracy. It is calculated by the division of the

number of true counting (TC) and the number of insects (NI) in the test data. The test

data here consists of 5 images which contain 178 insect specimen.

Accuracy =
TC

NI
∗100% =

143
178

∗100% = 80.33%

Some issues are addressed with the 80% accuracy. It is not a very high accuracy that

is mainly because BPHs are small and produce very small image areas which make hard

to identify them well. Additionally, under surrounding conditions such as: darkness,

light illumination change; the quality of images may be impacted. Nevertheless, the

result is generally satisfactory to reduce labor intensity of farms who should do manually

previously.
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2.6 Operating principals of automatic bio-diversity trap

2.6.1 Light traps network

Light traps in the same region are connected to a center to compose a network (figure

2.27). Communications between center and children (traps) include transmitting insect

densities as well as meteorological parameters values from a child to the center and

sending commands to change child behaviors from the center.

Figure 2.27: Regional network composed by three light traps connecting to a center.

That network is in test operation, it is composed of ten light traps distributed in Can

Tho, An Giang, Dong Thap, three typical rice provinces in Mekong Delta. After two

months operated in lab conditions, at that day (November 2017), three stations have been

commissioning in Can Tho city since September, 2017. Others will be installed soon.
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2.6.2 Trapping insects

Light bulbs are turned on from 19:00 to 23:00, however, this parameter can be customized

depending on battery capacity and hopper level (table 2.4). The whole trap uses DC

power for both fluorescent and light-emitting diode (LED) solutions. In a traditional

light-trap, fluorescent lamps are commonly used due to its long time used story [11][81].

BPH behaviors may also be affected by several colors, not a lot researches have

been conducted on it. However, in general, insects are able to have color receptors.

A representatives study on different insects [20] found that most species possess blue

receptors (λ ∼ 440nm). The study also shows that most insects have green receptors

maximally sensitive at λ ∼ 530nm. Besides, ultraviolet (UV) receptors (λmax ∼ 350nm)

were found and there seems no species were confirmed the lacking of UV receptors.

Moreover, color sensitivity in the UV plays an important role in foraging, navigation,

and mate selection in almost invertebrate animals [157]. Many insects such as BPHs

operate at dusk in which blue black and ultraviolet rays overwhelm other colors.

We use the LED-based trap [14] since it allows studying the extent of BPHs attraction

for different light colors: UVA, blue, green. The size and capacity of LED are compatible

with those in fluorescent lamps so that they are interchangeable if necessary. Other

highlights of the LED are high brightness, energy saving and long life expectancy.

2.6.3 Scenarios of trapping

Automatic sensing devices are operated in two main situations: normal night and peak

night. In normal night scenario which has few hoppers, light traps gather, analyze and

transmit data twice a night (at 20:00 and 23:00). In peak night scenario, they work at

higher frequencies as well as exhibit more complex handling and communication than

the normal one.

The difference between normal and peak night scenerios depends on the BPH level in

a trap. This level is calculated based on hopper density [186] (table 2.4). Actually, values

of the table were used in traditional traps to depict the damage level caused by caught

insects. Nevertheless, when changing to new devices, they are reused for compatibility.

When the level changes, the rate of picture took and analysed is automatically

adjusted, indicating increase or decrease of monitoring frequency. Scenario describes as

follow, for example, at 20:00, the trap 1 gives 5500 hopper individuals, reaching level 4.

It sends that value to the center and the center replies a command to ask the rise of the

collection time interval at client sides to every 30 minutes and remaining the light on 30
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Table 2.4: Hopper level related to number of insects caught by the light trap.

Number of

hoppers/trap
Level

<1000 1

1000 -<2500 2

2500 -<5000 3

5000 -<10000 4

� 10000 5

minutes more. At 23:30, the quantity does not exceed level 4, before switching off the

light, it sends data and returns to the normal monitoring frequency.

2.7 Summary

We present a design method based on smart sensor nodes acting as cyber physical devices,

devices which are able to manage interactions between the information system and the

physical aspects, including estimation and simulation of the physical situation.

A local analysis is supported in each node with example of insect classification and

counting using fisheye lens camera. It is also shown that local computation can be

extended to support an architecture for high performance vision suitable to handle object

recognition using parallel processor cameras.

Many applications can benefit from those integrated vision approaches, as example

sound analysis.

Cyber physical characteristics can also be assessed by the possible control from

sensors. It is known that physical measurements often depend on several basic param-

eters, and sensors may also affect those measures. For instance, it is possible to emit

light signals of different colors and different intensities to probe environment. It is

also possible to rotate light signal, camera, microphone or speaker. One can see that

measurements, control devices, recognition form an indivisible whole which can be

classified in Cyber Physic field.





3
Cellular simulation and information

system structure

3.1 Introduction

Chapter 2 depicts relation between natural phenomena and sensing devices through the

example of a local automatic diagnostic station (figure 2.1). This type of device can

produce interactions between computing mechanisms and physical aspects. The device

not only measures surrounding conditions but also emits information that can lead to

modify the environment. A question is what behaviorrs will come if these stations are

combined as a whole system for monitoring environment in a broad aea?

A global view of this combination is illustrated in figure 3.1. Local stations, dis-

tributed in a monitored area, can be connected together and compose a network that

measures and controls of the environment. A database maintains all data relating with

53
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cyber and physical interactions.

Figure 3.1: Global view of an environmental monitoring application composed by local
observatory elements (or nodes) presented in figure 2.1.

Several aspects are concerned in this situation:

• Geographic objects. They can be called spatial objects of Geographic Information

Systems. Example of geographical objects are varying from rivers, roads, tramlines

to agricultural land, forest land. Most of them have their defined boundaries and

other properties such as name, type, etc. For example, Mekong River has its own

boundary and has Mekong as its name (property). Normally, these objects are

stored in geographic database management systems such as PostGIS, MapInfo.

• Sensor capabilities and locations. Sensor capabilities depict attributes of the

sensor such as maximum range, manufacturer, power requirements, and resolution

while locations describe localizations of the sensor (latitude, longitude) (figure

3.2).
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Figure 3.2: Sensors deployment to monitor a service area. Sensing field is a kind of
capability to sense environment around the sensor location.

• Timed measures. Values of sensors at different moments. For example, table 3.1

illustrates sensing values over time in a station which is composed by 3 sensors:

camera for insect counting, temperature and humidity. Localizations of sensors are

changed after each timestamp as well. Figure 3.3 shows another example where

weather data is obtained for the location Brest of France on September 12th 2017.

Table 3.1: Sensing values in a station over the time.

Time stamp
Camera

Temperature Humidity
BPHs Not BPHs

19:00 06/09/2017 42 5 30.0 70%

19:30 06/09/2017 50 6 30.0 70%

20:00 06/09/2017 55 8 29.5 71%

• Estimation of environment. From the discrete sampling on sensors, it is possible

to extrapolate values for the whole service area (as figure 3.2). In other words,

some estimations are done to infer the current status of the whole service area.

For example, with the current data collection in light traps, what is the rice field

expected density? What is the current pest situation? How to estimate other

weather parameters as in figure 3.4?

• Simulation. Current data from above aspects and rules are used to predict the

physical system at a timestamp in the future (as in figure 3.5). In that figure, data
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Figure 3.3: Snapshot of Brest weather forecast data of September 12th 2017 (from
https://www.worldweatheronline.com/brest-weather/bretagne/fr.aspx).

Figure 3.4: Meteorological parameters including wind, temperature at Mekong
Delta in 04/09/2017 using ZyGrib [http://www.zygrib.org/index.php?page=home]
and GFS/NOAA data [https://www.ncdc.noaa.gov/data-access/model-data/model-
datasets/global-forcast-system-gfs].
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Figure 3.5: Simulation for predicting the future of the physical system.

is an element which not only participates in the current dataset but also contributes

on an historical window allowing to combine with rules element to forecast.

• Simulation results. Results of simulation can be populated back to the data element

in figure 3.5 in order to be used later.

Two issues appear in this context. First, what is a suitable way to model the physical

system from above data aspects? For example, from data collected in light traps, what

are situations of rice fields and insect pest? One solution is to divide the physical world

as cells (figure 3.1) which above data aspects are mapped into. From that, rules are

applied to guess next situations.

Another issue is that environmental monitoring (EM), in a general sense, requires

different data descriptions and data types. For example, an insect monitoring requires

weather data, light traps, insect simulation results as inputs (more on chapter 4) where

a water flows monitoring may use data collection from stations, geomorphology of

rivers. Obviously, each above data element is different from its descriptions and types.

Therefore, a suitable database architecture needs to be introduced to adapt with these

dynamic features.

This chapter presents how to model environments from local observatory elements. It

also introduces an information system to tackle above questions in environment machines

as presented in figure 3.1.

The rest of the chapter is as follows. Section 2 summarizes some previous work

including meteorological modeling, cellular automata and sensor networks. Section

3 depicts how to model the physical system using cellular automata. Next section

introduces an architecture of data access in CA sensing machine to deal with different
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kinds of data. The core of this approach is a data description model that integrates

data from different sources and types. Section 5 describes the implementation of the

architecture where some common algorithms are introduced. Results of the proposed

architecture is depicted in the section 6 while the last section presents some summary of

this chapter.

3.2 Related tools and techniques

Environment modeling and the information system in this chapter inherit and develop

features of following theoretical and practical aspects:

3.2.1 Modeling and simulation

Synchronous system principle

Synchronous message model [114] describes system as a synchronized series of message

exchange and computation. It consists of fragment of processes which may send and

receive messages simultaneously.

A synchronous distributed system can be considered as a graph G where processes

are located at its nodes and these processes communicate together via their edges using

message sending.

Each node in a synchronous system is termed as a process which consists of the

following components:

• statesi : a collection of states at process i.

• msgsi : a message-generation (MG) function specifies that process i sends to an

indicated neighbor, starting from the given state.

• transi : a state-transition (ST) function specifies a new state to which process i

moves from the current state and messages from incoming neighbors.

Cellular automata

Cellular automata (CA) are mathematical models built from adjacent elementary compo-

nents. Each of these components are simple but together they are capable of complex

behaviors.
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A cellular automaton consists of a regular lattice with a discrete variable at each cell

[204] [133]. The variable receives a value to define a state at each time step. At next

time step, state is updated by executing a transition rule φ which is a cell neighborhoods

depending function.

Figure 3.6: Neighborhood structure for 2 dimensional CA, from left to right: 5 neighbors
square (Van Neumann scheme), 9 neighbors square (Moore scheme) and 7 neighbors
hexagonal.

Complex network

Complex network derived from cellular automaton [91][180] is a technique which is

commonly used to model climate data [155][49]. It is considered as a graph where cells

are defined as vertices and relations between cells depict time dependent weights.

One of its application is to represent global climate system [169][170] in which

raw data is distributed in grid cells representing a 5°x 5°latitude-longitude spherical

grid. In those studies, pieces of data are normalized by de-seasonalizing values which

have significantly lower autocorrelation than raw data and detrending it by fitting linear

regression model and retaining only residuals. Complex network is constructed by

considering each spatial point in data set as vertex and statistical relationship between

corresponding times series pairs (anomaly) [188] as weighted edges. At a global scale,

number of nodes, density of edges, clustering coefficient, and characteristic path length

were all examined and interpreted in context of climate. At regional scale, regions of

high intensity are connected to a large fraction of globe, and hence can be interpreted as

indicators for global climate system such as El Niño-Southern Oscillation (ENSO) or

Pacific Index.

Pruning technique is used to avoid correlation computation for all possible pairs

of nodes, its results are a fully connected network [170] since most edges have very
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low weights. From that, properties of networks are analyzed to gain insights in climate

domain. Clustering is performed on the network, then each cluster allows prediction of

target variables with linear regression.

Clustering is also used to find interesting pattern in earth science data [168]. Common

climate indices ( time series of temperature and pressure in this study) are represented by

performing it on the climate data with Singular Value Decomposition (SVD) and Shared

Nearest Neighbor(SNN) techniques. Its applications for discovery of common indices

on complex network can be considered as the conclusion for that work.

Building a complex network from climate data is also mentioned in [188], however,

the study skips depersonalization step and focuses more on interpretation of complex

network properties exhibited by the climate system. In the study, the network is com-

posed by an architecture with two ’small world’ networks: one operating in tropics and

another acting as agent establishing links between the two hemispheres. That architec-

ture provides extensions of other complex systems with many degrees of freedom and

interactions at several space and time scales.

3.2.2 Data and simulation

Data from sensor networks

Sensing data from sensor stations provides information to enable humans and machines

to understand better surrounding conditions [63]. Actually, those samples of data are

categorized into three types: data generated by sensors, data describing sensors, and

data describing environment [10]. Integration of those types of data is able to support

designing, evaluating and planning public policies linked to the management of natural

resources.

A collaborative approach for metadata management is introduced to acquire and

manage metadata related to the physical devices and their surrounding environment [67].

The data aspect of this approach considers three types of data:

1. Sensor observation data. The actual measurements generated by the sensor. For

example, humidity sensor measures and reports the relative humidity in the air.

2. Sensor metadata. The model which describes sensors and their capabilities in third

parties format such as Sensor ML (Sensor Modeling Language) 1 or the Semantic

1SensorML provides a means by which sensor systems or processes can make themselves known and
discoverable - http://www.ogcnetwork.net/sensorml.
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Sensor Networks Ontology 2.

3. Data processing rules. Specific rules which help to standardize management of

data in applications and for decision support.

Metadata is "data which provides information about other data" 3. In other words, it

contains necessary information to understand and use data. These information can be

either of following types [127]:

• Descriptive metadata. It describes information for discovery or identification.

• Administrative metadata. It provides management information.

• Structural metadata. It depicts the container of information and indicates how data

elements is put together.

Metadata is critical in multi sensor analysis.

Practical aspects of data integration

A framework, which allows combination of different data sources and analysis of the

integrated data at different scales, is proposed in [183]. It provides means to handle

big data from different data sources and perform analyses as well. Its principle is to

combine Multi-Agent Simulation and Business Intelligence methodologies to adapt

several purposes with among others: model and execute multi-agent simulation, manage

input/output data of simulations, integrate data from different sources and analyze high

volume of data. The framework focuses on simulation data to calibrate simulation as

well as to manage a large amount of those sample data and to make analysis supporting

decision-making processes. However, it seems that there is no information of sensor data

and sensor description in the framework.

To maintain meteorological data, Meteo France 4 has a structure to include five

datatypes [140] where each has abilities to access to the primary data as well as to under-

stand its associative and descriptive realms. Actually, real data is stored in meteorological

formats (normally BUFR 5), or in relational models, or in mixing of two methods. To

2an ontology which describes sensors - https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
3https://www.merriam-webster.com/dictionary/metadata
4http://www.meteofrance.com
5Binary Universal Form for the Representation of meteorological data (BUFR) - a binary data for-

mat maintained by the World Meteorological Organization (http://www.wmo.int/pages/prog/www/
WMOCodes/WMO306_vI2/LatestVERSION/).
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retrieve it, one routine inspecting to the associative and descriptive parts to access the

raw one in the primary structure. Therefore, each datatype represents metadata which

allows retrieving data from the primary structure.

3.3 Cellular automata and sensing machine

3.3.1 Sensing station and sensor coverage

In figure 3.1, sensing devices monitor a physical parameter which can come from

climate events or be an extreme phenomenon as insect invasion, flooding, rainfall. These

equipments are deployed over a geographical region called R to measure parameters

relating to climate. A collection of them called C composes a network which uses

wireless connection or other communication types.

Each device is able to observe its vicinity. Sensing field of device si, referred as f (si),

is the area around it. The field f (si), which is covered by device si, means that any point

∈ f (si) is covered by si. If f (si) is a disk, the sensing range rsi of f (si) is the disk radius

(figure 3.7). If the region R has an area S(R), the minimum number of equipments to

monitor the whole area is N �
S(R)
πrsi

2 .

Figure 3.7: Coverage of sensing devices in a geographic area. On left ideal case
homogeneous sensing range rsi , on right more realistic case complex sensing field f (si).

The collection C gives a set of measurements of the region R. A question is what

are current situation and trend of physical world? One way to answer is to simulate the

phenomena according to values given by sensing devices. As a result, physical world

model is necessary.
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3.3.2 Coverage problem

One important problem highlight in figure 3.1 is is the observation network qualify? Or

in other words, how measurements of values are really reflecting the physical world?.

This issue relates in many aspects to sensor placement, phenomena nature or even

understanding.

The observation simulation and physical simulation are coordinated to understand

what is observed. By simulating a physical system it can be guessed what will happen at

any places and any time. As a result, the sensor coverage can be optimized related to

the physical evolution to monitor. For example, simulation of river flow allows to guess

where and when to observe species or product dissemination.

In some monitoring applications, deployment of a large enough number of sensing

devices is infeasible, as a result, small number of equipments are distributed in a region

R. Issue here is to identify the minimum of stations to cover the region, where each

device has the sensing field f (si) with the range rsi . More clearly, it is about minimizing

number of devices in respect of the k covering monitoring area [179][26]. For example,

polynomial-time algorithms [75] are proposed to determine redundant stations so that

they can check whether every point in service area of the network is covered by at least k

stations.

In practice, coverage area of a network can be affected by surrounding conditions

and terrain. An approach considers obstacles as interfere elements of sensing process

and compose a shadow-fading model [187], model similar to radio wave propagation.

Another is to assume that physical event arises in each grid point and it is detected with

a probability defined between 0 and 1 (Elfes model [45]).

In addition, station positioning may depend on experts in domain fields and on other

factors. For example, escape strategy and other management methods [130][71][32] are

applied successfully to control insect outbreaks for rice in Vietnam. For these solutions,

people use light traps to capture insects and the amount of insects becomes an indication

to understand current situation and predict state for a wide area in next days.

3.3.3 Maps data and cellular automata modeling

Map is a diagrammatic representation of an area of land or sea showing physical

features, cities, roads, etc (6). Map can help to locate a position on earth as well as

6Oxford dictionary
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identify distribution of a mountain, a river or even populations.

The geographical region R, represented by a map where phenomena take place, can

be considered as a cellular system by being divided into cells (figure 3.8). A cell consists

of several attributes such as width, height, geographic position (including elevation).

Cell is elementary unit of a cellular automaton, so it is indivisible.

Figure 3.8: Map division into cells to compose a spatial cellular automaton structure,
case of Brest harbor with 7 on 4 cells (grid size = 5733m x 5733m).

Sensor stations, which are distributed over the region R, can be considered in cellular

automaton. Each station belongs to at most one cell, and vice versa, each cell may consist

of at most one device.

A spatial cellular automaton described in section 3.3.3 is a kind of synchronous

system where each cell represents a process and where link between a cell and its

neighbors (Von Neumann, Moore, hexagon) compose edges allowing exchange of

messages.

One view point is that CA synchronous system is a sensing machine where each cell

is called as a process. Those processes execute in parallel the same program (MG and

ST functions) to compose processes’ new states (figure 3.9). These local executions

respect a principle: a process has responsibility for one thing at a time. It is similar to

how nature operates: local operations happening everywhere at once.
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Conceptually, an environment sensing machine consists of several overlapped cellular

automata (figure 3.10) in which the spatial one, referred as the host cellular automaton,

represents the geographical region R. Because each state of a process is a composition of

values including meteorological and other factors, for all processes over the host one,

each factor creates another cellular automaton. The compound CA system at a time ti is

called a configuration of the sensing machine at that time.

Temporal aspect of the machine is also described in figure 3.10. In fact, each process

of the host cellular automaton is positioned as (i, j) where i, j are row and column indices.

A transition rule method ft(i, j) (including MG and ST functions), applied synchronously

on all cells at the time t, specifies a new configuration to be computed from states of

neighbors of (i,j). Cell (i,j) itself can be considered as an adjacent as well.

Figure 3.10: Structure of a complex multi-layer cellular automata machine at two
consecutive states (t and t+1) : transition rules (MG and ST functions) described the
state change.

3.3.4 Coverage issue modeling

The problem presented in section 3.3.2 can be addressed and modeled using CA. Indeed,

the map representing the monitoring area is divided as cells while each sensing radius rsi

depicts a phenomenon to model (figure 3.7). Thus, shadows-fading [187], Elfes [45]), or

other methods can be implemented by distribution method using automata machines.
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In the implementation, parameters which interfere with behaviors of sensors can be

populated from external data sources. These elements including building, meteorological

factors, terrain will be discussed in next sections as a data aspect of CA modeling.

3.4 Data access architecture

3.4.1 How practical data is accessed

Architecture in figure 3.11 presents different ways to access to data in environmen-

tal monitoring systems. Several databases are stored in a GIS Relational Database

Management System where there are metadata which illustrates how data is organized

in storing databases. Usage of GIS enables maintenance of spatial data such as: river,

building, road. In implementation level, OpenStreetMap (OSM) 7 is used and maintained

in Postgres SQL.

Before storing external data to GIS RDBMS, some preprocessing steps are done to

normalize raw data from different sources and formats to adapt with the data organization.

External users are able to access data via different ways such as: web, CSV, SensorML

or even MetView 8. In addition, internal users can make queries to metadata as well as

storing databases to elaborate future tasks.

A metadata database (description database or datatype) is the core of the architecture

(figure 3.11) to provide descriptions about the maintenance of storing data. For example,

what data types of insects are kept in insect monitoring application? Where are environ-

mental factors coming in this application? Or which sensors are used as well as what are

their types of data values?

The most important role of metadata is in data reuse and data sharing. Highly detailed

instructions or documentations of data are supported in order to interpret and analyze

data accurately.

In environmental monitoring applications, metadata is more necessary since a lot

of information involving to sensors need to be maintained. These kinds of information

relating to historical calibration and coefficient data of sensors. Sensor values and types

need to be described to better understand the surrounding conditions that sensors measure.

In addition, in some cases, calibration characteristics of each sensor are stored before the

7https://www.openstreetmap.org/
8A meteorological workstation application designed to be a complete working environment for both

the operational and research meteorologist - https://software.ecmwf.int/wiki/display/METV/Metview
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Figure 3.11: Architecture of data access in environmental monitoring systems.
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sensor is deployed to a remote station.

For example, to monitor insects in rice fields, people deploy sensor stations (figure

3.12) to measure factors influencing insect growth such as temperature, wind, humidity,

rain, insect density. These factors have different types of values such as floating point

number (wind velocity, insect density), integer (wind direction, rain flow). Moreover,

cameras which are used to count insect densities are calibrated to estimate their internal

and external parameters such as image center, distorted parameters. All of those things

need to be specified as metadata so that they can be stored for later purposes.

Figure 3.12: Representation of sensor stations distributed on study area to sample
physical parameters (map with grid size = 3822m x 3822m).

3.4.2 Description of data in cellular automata sensing machine

Data in environmental monitoring systems (figure 3.13) can be populated from different

sources such cellular automata (CA), meteorological, simulation objects, geographic and

sensor data. The cellular automata data is the center in which all others are distributed

into cells of the CA. It can be said that there are several layers of CA, which each

represents from meteorological and geographical data to simulation objects or sensor

data. These layers overlap together or are mapped to the lattice representation of the
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spatial host cellular automaton (figure 3.14).

Figure 3.13: Interaction of data in environmental monitoring systems.

123

(3.5,5.5)

Figure 3.14: Two CA layers overlapped together, first layer stores wind vector (u, v) data
in each cell and second one is holding insect density.

External data sources

Indeed, natural phenomena can accept inputs from various parameters. For example,

insect invasions in Mekong Delta are influenced by wind, temperature, humidity, insec-

ticide spraying, and others factors. Or urban flood inundation is affected by elevation,

rainfall, the water depth, infiltration rate to previous surface, roughness coefficient and

drainage rate of inlets [30][113]. Those kinds of data share the similar thing: they are

provided by external data sources in different formats such as PostGIS, CSV files, GRIB
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9, or NetCDF 10.

Based on time dimension, those kinds of data is divided into two categories:

• Less sensitive to time variation such as building, roads, rivers and other geographi-

cal features. They can be maintained in databases such as Open Street Map 11 in

PostGIS format.

• Continuous and frequently varying over time such as environmental parameters

(temperature, humidity, ...) , universe (galaxies, planets, stars, satellites). They are

stored in different self-descripting standard files.

Meteorological data description External sources include weather data from mete-

orological service providers as well. For example, Météo-France maintains following

meteorological datatypes [140] in their architectures:

• Point forecasts (surface and upper air) produced by models and forecasters.

• Quality/Control flags put on observations by models and forecasters.

• Observations made by either direct/indirect instruments or eyes of human ob-

servers.

• Numeric Models Outputs.

• Image.

However, that study focuses on forecast data from service providers under conditions

of a spatial and temporal resolutions. Spatial resolution depicts how many forecasts

within a given area while temporal one illustrates how often the forecast is updated. It

means that a grid of points, which is updated periodically, are provided as inputs of

preprocessing step in figure 3.13. For instance, wind and temperature data in figure 3.4

are retrieved from zyGrib (http://www.zygrib.org which provides services to retrieve

weather data from National Oceanic and Atmospheric Administration - NOAA) under

GRIB format with (0.5°latitude x 0.5°longitude) resolution.

9 (GRIdded Binary or General Regularly-distributed Information in Binary form) is a concise data
format commonly used in meteorology to store historical and forecast weather data https://www.wmo.int

10a set of software libraries and self-describing, machine-independent data formats that support the cre-
ation, access, and sharing of array-oriented scientific data https://www.unidata.ucar.edu/software/
netcdf

11https://www.openstreetmap.org/
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Object description

Monitorable objects, which are related to a phenomenon as either main actor or with

supporting role, are described. For instance, in the case study, BPH is the main actor

which causes pest outbreaks but rice is also necessary because it is the main food for

hoppers.

Sensor station description

Sensor stations are geo-localized to measure the environment. Each station has its own

sensors that hold values. These values can be seen as inputs of the phenomenon or a

capable way to validate the model of the phenomenon.

Schema of data descriptions in EM applications

Schema in figure 3.15 depicts all above data descriptions in EM applications. In other

words, it presents metadata of environment machines.

Figure 3.15: Description of data and object interactions used in environment machines,
composed for meteorological data, object and sensor (more details in appendix D.1).

An application is termed as a project which has its own attributes such as: ID, name,

creation date time. For example, table 3.2 depicts attribute values of 2 applications:
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insect monitoring in Mekong Delta and radio signal propagation.

Table 3.2: Example of attributes of 2 applications: insect monitoring and radio propaga-
tion.

ID Name Datetime Note

001 BPH Mekong 2017-08-01 04:05:06 Insect monitoring in Mekong Delta

002 Radio wave simulation 2017-09-02 05:06:07 Simulation of radio propagation

Spatial CA descriptions is a main element of an EM application. An application

(project) has at least 1 spatial CA. Main attributes of a CA are resolutions (or cell

resolutions), top left and right bottom geo-locations of the region that phenomena take

place. The CA description has relationships with descriptions of weather data, object,

and sensor.

• Meteorological data description. It depicts weather factors used as well as their

data types, data sources.

• Object description. It illustrates meta data of objects which participate to the

phenomena. These descriptions include main attributes such as object name,

object type.

• Sensor station description. It shows descriptions in details about stations as well

as their sensors in the EM application.

3.4.3 Transformation to data definition

From the description data model, it is possible to generate a EM database structure by

identifying some following information:

• Meteorological factors which impact phenomena need to be monitored. Descrip-

tions of these factors such as data types, source are also provided.

• Objects representing phenomena. For example, in a flooding monitoring project,

objects participating to the phenomenon (water level, rain fall, ground water) are

depicted as well.

• Description of sensor stations (if any).
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Table 3.3: Information of weather factors in an insect monitoring application.

No
Meteorological

factor
Domain Length

Number of

Precision

1 Temperture Number 14 8

2 Wind u Number 14 8

3 Wind v Number 14 8

4 Humidity Number 14 8

5 Precipitation Number 14 8

6 Pressure Number 14 8

Table 3.4: BPHs density and rice ages in insect invasion monitoring application.

No Object name Attribute Domain Length Precision
Number of

items

1 BPH Density Number 14 8 28

2 Rice Age Integer

All these above information are maintained in a database which is the implementation

for the schema shown in figure 3.15. Next, a storing database is created automatically to

allow data manipulation in the monitoring application.

For instance, the invasion of insects in Mekong (BPH) is influenced by wind, tem-

perature, humidity, rain falls, pressure. Moreover, rice age is another factor which has

ability to susten BPHs because young rice is their best food. Besides, it is necessary to

estimate the number of BPHs in a region (e.g cell), therefore, a structure to maintain

hopper densities is depicted as well. Those information are illustrated in table 3.3 and

3.4.

As a consequence, generated database has following layout (figure 3.16):
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From the metadata schema in figure 3.15, a workflow for development an environ-

mental monitoring application is emerged. It can be found in the appendix D.2.

3.5 Expected behaviors of the environmental machine

Behaviors depict the temporal aspect of environment machines (figure 3.10). In fact, a

compound value is assigned to each process at the time t to compose the state of the cell

at the time t. Because the value is a combination of simple ones, in an abstraction view,

there are several cellular automata overlapped together (section 3.4.2).

In implementation, the machine consists of transition rules functions to depict such

behaviors. Actually, those functions are represented as varieties of growth and propaga-

tion algorithms of CA.

3.5.1 Growth and propagation algorithms

Growth algorithm

When the new state ft+1(i, j) of a cell is calculated from its local state ft(i, j) (instead

of all its neighbors’ one), this type of rules is called a local rule. For instance, the rule

’Death rate of insects is 10% per day’ is local since it is applied to the cell that contains

insects. Or ’every day an adult insect may give 10 eggs’ belongs to this type as well. All

local rules in a cell compose the growth algorithm of this cell.

Propagation algorithm

The new state ft+1(i, j) of a cell is calculated from its neighbors. For example, the rule

’insect may transmit to adjacent area due to wind’ composes a propagation algorithm for

insects.

To implement the growth and propagation algorithms, bilinear interpolation is neces-

sary since sensing devices provide data at sampling locations, however, values in all over

the spatial cellular automaton are required. In addition, in the beginning, it is required to

downscale gridded meteorological data to the grid of the host cell system because these

grids are often different in terms of resolution.
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3.5.2 Behavior implementation

The concurrent model of cellular automata synchronous system requires usage of a

parallel programming language in the implementation phase. The tool PickCell [15][115]

can produce CA codes in destination programming languages. The integration of features

described in section 3.4 contributes to the code generation as well. Occam and CUDA

are currently used in this phase.

Occam language

Occam is a parallel programming language developed by David May [117], based on

Communicating Sequential Processes (CSP) [72]. It is used for implementing syn-

chronous system in CA machine and synthesis, message behaviors for WSN.

In Occam, cells are processes and are able to be executed concurrently. Passing

messages along point to point channels is used to communicate among those concurrent

processes [40]. Figure 3.17 depicts a message sending from process P1 to process P2

along channel C.

Figure 3.17: Description of message sending in cellular automata network: process P1
sends a message via channel C to process P2 (from [40]). It is generated from the tool
PickCell.

CUDA language

CUDA (Compute Unified Device Architecture) is a parallel computing platform which al-

lows developers use CUDA-enabled graphics processing unit (GPU) for general purpose

processing (GPGPU) [24].

A kernel, parallel portion of a CUDA application, consists an array of threads which

execute the same code. Therefore, for realization synchronous system, cells in CA are

depicted as threads in CUDA kernel and their transition rules functions are described as

kernel codes. Figure 3.18 depicts how a CUDA application executes by transmision data

from CPU from/to GPU and processing in GPU.
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Figure 3.18: Schema showing how the execution of a CUDA application. The CPU sends
data to GPU to manipulate and receives data results after processing for later purposes.

3.5.3 Some algorithms in spatial CA

Bilinear interpolation for meteorological data

Figure 3.1 depicts the distribution of sensor stations in some locations. Thus, to calculate

meteorological factors for all points of CA grid, interpolation is expected to be run.

Bilinear interpolation [142] (figure 3.19) interpolates the value of I (f(I)) based on

values of its 4 neighbors A1(x1,y1),A2(x1,y2), A3(x2,y1),A4(x2,y2):

f (I) = (x2−x)(y2−y)
(x2−x1)(y2−y1)

f (A1)+
(x−x1)(y2−y)
(x2−x1)(y2−y1)

f (A2)+
(x2−x)(y−y1)
(x2−x1)(y2−y1)

f (A3)+
(x−x1)(y−y1)
(x2−x1)(y2−y1)

f (A4)
(3.1)

Because meteorological values are measured at defined points on the earth (spherical

surface), when formula 3.1 is used to interpolate meteorological values, subtraction

operators are replaced by distance between two points on the earth’s surface.

Algorithm in appendix B.2 depict an implementation in CUDA. It uses the structure

3.1 which is generated automatically from PickCell for CA cell declarations.

t y p e d e f s t r u c t C e l l P o s i t i o n {

i n t i d e n t i t y ; / / i d e n t i t y o f t h e n o d e

i n t x , y ; / * c e l l g e o m e t r i c p o s i t i o n * /

double l o n g i t u d e , l a t i t u d e , e l e v a t i o n ; / * g e o p o s i t i o n * /
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Figure 3.19: Description of bilinear interpolation at point I based on its four neighbors
A1,A2,A3,A4.

} C e l l P o s i t i o n ;

Listing 3.1: Geometric and geographic declarations of cells generated from PickCell

Distance between points on the earth’s surface

Haversine formula [162] determines the distance between two points on a sphere given

their longitudes and latitudes.

In figure 3.20, let α1,φ1 and α2,φ2 be the geographical latitude and longitude in

radians of two points P and Q. ∆φ,∆α are their differences and ∆σ is the central angle

between them. Then the distance d between P and Q, the arc length, is given:

d = r∆σ (3.2)

Where r is the radius of the sphere and ∆σ given in radians.

∆σ is calculated as followed:

∆σ = arctan

�

(cosφ2 sin(∆λ))2 +(cosφ1 sinφ2 − sinφ1 cosφ2 cos(∆λ)2)2

sinφ1 sinφ2 + cosφ1 cosφ2 cos(∆λ)
(3.3)

CUDA implementation of this algorithm can be found in appendix B.2.
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Figure 3.20: Distance between two points P, Q on a sphere of center O. α1,φ1 are the
longitudinal and latitudinal angles of P, respectively. ∆σ is the angle between the two
segments OP and OQ.
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Wind calculation

A horizontal wind vector w is represented by two components (u, v) (figure 3.21), where:

• Zonal velocity u. The component of the horizontal wind TOWARDS EAST.

• Meridional velocity v. The component of the horizontal wind TOWARDS NORTH.

Figure 3.21: Velocity wind vector components u and v in meteorological wind direction.

Let α be the direction TOWARDS which the wind is blowing and φ be the wind vector

polar angle in two-dimensions. The wind velocity and the polar angle are calculated as:

|w|=
√

u2 + v2

φ = 180
π ∗ arctan2(u,v)

(3.4)

3.6 Data querying in environmental monitoring appli-

cations

Executions of EM applications produce data which can be used for post investigations

such as decision making, reuse or representation. Some questions may be raised in that

matter. For instance, what is the tendency of insect invasion What is wind direction in an

area in past two years? Can a monitoring application represent monthly growth chart of
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insects? These kinds of problems can be answered by querying the generating database

(as the example in figure 3.16) and the description database (figure 3.15).

This section shows 2 examples of querying data from an EM application. The first

example is about wind rose calculation at a location after wind vector evolves after a

number of simulation steps. It means that after each step, simulation results are populated

to the database (as schema in figure 3.16). When the simulation finishes, an algorithm

under SQL query is called to compute the wind rose at a location. The second example

shows how to retrieve sensor data from the database in schema 3.16).

3.6.1 Wind rose algorithm

A wind rose gives a succinct view of how wind speed and direction are typically dis-

tributed at a particular location 12. Wind roses were predecessors of the compass rose

[28] and by representing on a polar coordinate system, the frequency of winds over a

time period is plotted by wind direction, with color bands showing wind speed ranges.

From the database of which schema shown in figure 3.16, the wind rose dataset for a

location in the application (Mekong Delta in this example) can be created by querying

data in table TMeteoToBPHData with calculations using formulas 3.4.

In the application Insect Mekong, table TMeteoToBPHData contains 164388 records.

These records are populated after each step of the insect invasion simulation (in CUDA).

The CUDA implementation allows querying data as algorithm 1, grouping data and

displaying the wind rose as following figure 3.22.

Figure 3.22 depicts the wind rose captured after executing insect invasion simulation

in a Cao Lanh, Vietnam. It can be seen that the direction of wind tends to come from

South West (SW), SSW and S. This tendency is similar to the one of the data in the

beginning of September, 2017 (www.zygrib.org/).

3.6.2 Data collection from sensor stations

Data collections from a sensor station, sometimes, need to be extracted to better under-

stand situation at the station’s location. Some questions about the information system

may arise around stations and their values. For example, what are sensor values of a

station at a period of time? What is the tendency of BPHs density at a sensor station in

the past three months? What are tracks of a node if these devices are mobile?

12https://www.wcc.nrcs.usda.gov/climate/windrose.html
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Algorithm 1: Query to calculate wind velocity and direction.
Input: LocationID of cell, Table TCellularSystem, TCell, TMeteoToBPHData

Output: Wind velocity, wind direction (angle) of a point in the application ’Insect Mekong’

SELECT windu, windv, sqrt(windu*windu+windv*windv)/5 as mg,

CASE WHEN (sqrt(windu*windu+windv*windv)/5 < 5) THEN ’<5km/s’

WHEN (sqrt(windu*windu+windv*windv)/5 < 10) THEN ’From 5 To <10km/s’

WHEN (sqrt(windu*windu+windv*windv)/5 < 15) THEN ’From 10 To <15km/s’

WHEN (sqrt(windu*windu+windv*windv)/5 < 20) THEN ’From 15 To <20km/s’

ELSE ’>20km/s’

END WindGroup,

round((cast((270-atan2(windv,windu)*180/3.1457) as int)%360)/22.5)

as angle

FROM tcellularsystem cs Inner Join TCell c

On cs.cellsystemid = c.cellsystemid

Inner Join tmeteotobphdata m On c.cellid= m.cellid;

WHERE cellsystemname = ’Insect Mekong’

And c.CellID = LocationID; -- parameter
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Figure 3.22: Wind rose computed at a point of insect invasion application after executing
the simulation.

The following algorithm (algorithm 2) illustrates how to retrieve sensor values from

a station in an EM application. Implementation of the query is done by a function in

Postgres SQL; next a Smalltalk program is able to call and represent it as figure 3.23.

3.7 Summary

The chapter advocates a method to model physical world as CA machine. The machine

consists of cells (processes) which are able to execute synchronously same transition

rule method to compose a new configuration. In addition, sensing stations are distributed

over its geographical region to monitor a service area (coverage) of the physical world.

In addition, the chapter depicts an information system to contribute to the develop-

ment of global sensing machine in modeling environmental monitoring. Technically,

the system allows integration of data from several sources such as: observation points,

meteorological services, GIS. Its structure is maintained in PostGIS to take advantages

of GIS data (points, polygons, shape data) and to integrate other data with the assistance

of a proper database description. Besides, a method combining CA and data approach is



3.7. Summary 85

Algorithm 2: Query to get data from a sensor station in the application.
Input: Table TBPHSensorValues

Output: Temperature, Wind velocity, wind direction (angle), Humidity, BPHs density, Not

BPHs density on 10/09/2017 at station 10

SELECT temperature, windu, windv, sqrt(windu*windu+windv*windv)/5 as mg,

round((cast((270-atan2(windv,windu)*180/3.1457) as int)%360)/22.5)

as angle, humidity, BPHDensity, NotBPHsDensity

FROM TBPHSensorValues

WHERE Cast(NodeTime as Date) = ’2017-09-10’ -- ISO-8601 format, YYYY-MM-DD

And NodeID = 10;

Figure 3.23: Example of accessing to values of the sensing station 10 from map, values
include temperature, wind, humidity, BPHs and not BPHs densities (Map with grid size
= 3822m x 3822m).
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also introduced to simulate natural phenomena and extract data for post processing.

The information system provides means of data in order to develop third application

such as visualization as in http://www.smartmekong.vn/ and sames.univ-brest.fr.

By the time passing, when the volume of data starts to be large, business intelligence

(BI) solutions may take advantages from it for analyzing and presentation.



4
Application: Modeling rice insect pest

using cellular automata machine

4.1 Introduction

Insect pests can cause severe crop damages. For example, locust pests create dense insect

clouds and destroy every plants they found by eating them. In March 2013, nearly 50%

agricultural surface areas of Madagascar have suffered from swarms of locusts, with

billions of individuals in each swarm [1]. This infestation devastates 60% of rice crop

of the country and costs millions of dollars for pest control. Another example is Brown

Planthoppers (BPHs) which cause hopper fire in young rice and damage several hundred

thousands tons of rice production in Vietnam.

Several solutions to confront with insect pests are proposed and solutions with sensor

networks emerge as suitable choices [109][185]. This kind of solution uses sensors to

87
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measure environments and insects behaviors. Sensed values will be sent via a network

to a data center. Next, a back-end system will manipulate these values and propose

solutions relating to data collection. Such application is a kind of environment machines

shown in figure 3.1.

To implement such system, it is important to understand factors influencing insect

behaviors and use them as model. Actually, these factors occur continuously and

concurrently. Continuous occurrence means that they compose an unbroken whole while

concurrency allows them to happen at the same time. For example, some factors such

as temperature and wind are influencing BPHs invasion [125][137] from one place to

another, in a continual way. Besides, they are concurrent since motivation for propagating

from a source to a destination comes with surrounding conditions of the source and its

neighbors. Conditions of different places must be executed simultaneously.

In this chapter, we apply the sensing machine based on synchronous system [114] and

cellular automata [206] topology to depict the concurrency and continuity of influence

factors. In fact, this chapter is an illustration of local and global observation systems

which are mentioned in chapter 2 and chapter 3.

The rest of this chapter is as follows. Section 2 is about modeling insect invasion

phenomenon as a synchronous system with cellular automata topology. Next section

depicts some algorithms to implement the model described in section 2. Section 4

illustrates simulation results of the insect invasion monitoring application. The last

section is a summary in respect with cyber physical aspects developed in chapter 2 and

chapter 3.

4.2 Modeling insect invasion using cellular sensing ma-

chine

4.2.1 Cellular automata synchronous system

The map representing the working space of insects is divided in cells. In other words,

the map is modeled as a lattice of a cellular automaton (figure 4.1).

The space in figure 4.1 depicts a spatial cellular automaton which is described by a

triple (S, n, f ) where:

1. S is a finite set of state. Each cell has a state, composition of environmental factors
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Figure 4.1: Map representing insect behaviors in their working space divided in as cells
(grid size = 7644m x 7644m).

and biological of monitorable objects in the insect pest, to illustrate its status.

2. Distance n identifying neighbor cells, normally n=1. When n=1, a cell has at most

4, 6, or 8 surrounding cells.

3. Transition rule f: Sn → S depicts the change of a cell’s state at a specific time

based on its current state neighbors’ values.

In figure 4.1, the space is represented by a matrix of cells, 2-dimensions. However,

in theory, this space has an infinite number of dimensions. Each cell in the space can, at

any given time, be in a finite number of states. At the time t, state of a cell depends on

state at time t-1 of its neighbors. The cell itself can be integrated in its neighborhood.

Updating the rules is identical to all cells. Whenever the rules are applied to the entire

system, they could change the entire system synchronously.

CA are capable to combine spatial and temporal relationship (figure 3.10). Lattices,

cells, neighborhoods depict spatial characteristics. In fact, each cell represents a variable

that hold the cell’s values at the time t. Transition rule f manages changes in variables of

the cell and its neighbors from time t to time t+1, given as input automaton outside data

of time t.
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CA also imply data aspect. Indeed, values of cell’s variables may come from either

environmental or biological factors. For example, in flooding modeling, water level,

downstream or upstream are an important factors to identify where water moves to.

Geology and river floor at a cell are considered as well.

As a result, CA modeling is constituted of three aspects: spatial, temporal and data

(figure 4.2).

Figure 4.2: Description of CA modeling interactions.

4.2.2 State variables of cells

The space where insects live and act is divided as cells shown in figure 4.1. It is

considered as a graph G of which nodes are cells and edges are created between a cell to

its neighbors.

By the time passing, each cell updates its values with the assistance of a function f.

The function f depends on the cell’s states which is composed of either environmental

or biological factors: wind, temperature, humidity, density of hoppers, rice ages. These

elements come from external data sources, monitorable objects or sensor stations as

described in section 3.4.2.

Meteorological data

In short, a state contains following factors:
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• Temperature and humidity. Because they have influence on all phases of hoppers.

• Precipitation. There is a relation between rainfall and hopper death rate.

• Wind: the wind magnitude. According to biological characteristics of hoppers,

most part of the propagation (only adult ones) are due to wind advection, thus

strong wind help the propagation.

Biological data

The most important biological factor is the hopper itself (hopper life cycle). Because

life cycle is around 28 days and is spread in 3 phases, it can be considered as an one

dimensional cellular automaton of which cell i contains the number of i days old BPHs

(figure 4.3).

Figure 4.3: Biological cellular automaton illustrating life cycle of BPH in cell based on
its age in days.

Let the number of i days old BPHs is n(i), after a day, principle of updating cell i

(without weather conditions) in the biological cellular automaton is n(i) = n(i−1),∀i ∈
[1,27].

In addition, rice is an important factor which influences insect behaviors because

insects consider young rice as their main food.

To sum up, variable of a cell consists of two parts:

• Weather data including: wind, temperature, humidity, precipitation.

• Biological data. The biological cellular automaton is depicting the number of

hoppers which are i days old ∀i ∈ [0,27]. In addition, rice age is another input

parameter.
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Sensor stations

Some sensor stations are deployed to measure insect densities and meteorological factors

at some defined locations. These values can be counted to either as weather data or

biological cellular automaton to compose state variables.

4.2.3 Data model for insect invasion application

After configuring the above information in section 4.2.1 and 4.2.2 by using the data

description schema in figure 3.15, D.1, D.2, D.3, a data model for the insect invasion

application is generated as the schema shown in figure 3.16.

4.3 Rice insect pest implementation

4.3.1 Retrieval of environmental data from external sources

Environmental factors are populated from an external source in GRIB format. GRIB is

an efficient vehicle for transmitting large volumes of gridded data to automated centers

over high-speed telecommunication lines using modern protocols [129]. GRIB is a

self-describing, compact structure and is multi-platform compatible.

It is necessary to interpolate parameters from GRIB data to adapt with the cellular

structure. The reason is that both the cellular system and GRIB data represent in grid

formats but they may have different resolutions. For example, parameters in figure 3.4

are described in (0.5, 0.5) (latitude, longitude) resolution while the cell size is variant

depending on the number of pixels chosen for the modeling. Figure 3.4 illustrates the

temperature and wind displaying in zyGRIBViewer while figure 4.4 is our spatial cellular

system (around 100km2/cell) which presents wind vector in each cell.

Bilinear interpolation [142] (figure 3.19) is used to interpolate parameters on a

rectilinear 2D grid. Algorithm in section 3.5.3 is implemented in CUDA to realize this

interpolation (Appendix B.1).

CUDA implementation for bilinear interpolation in this phase is necessary since it

brings better performance in comparison with PostgresSQL version (Appendix B.2).

Table 4.1 shows performances of PostgresSQL and CUDA implementation when taking

GRIB data (0.5,0.5) (latitude, longitude) resolution (49 cells) as input in order to output

a cellular system consisting of 31311 cells.
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Figure 4.4: Cellular system with (40 pixels, 40 pixels) grid, approximately 100km2 per
cell, blue arrows representing the wind direction.

Table 4.1: PostgresSQL and CUDA implementation performance in cells definition
phase.

PostgresSQL CUDA

Performance

(second)
912 27
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4.3.2 Insect behaviours implementation

Processing model

Each process in the CA machine is presented as a single processing element on GPGPU

with bidirectional channels to the other cells. State and Communication links are two

main components for mapping the machine to General-purpose computing on graphics

processing units (GPGPU) memory.

1. State. A formal record representing as CUDA structures inside GPGPU memory.

Those records are private for each process so they are not supposed to be reached

directly by others.

2. Communication links. Links between a process and its neighbors (4 or 8 neighbors).

If wind is taken into account, a process has only one link to a leeward neighbor

(figure 4.5).

Figure 4.5: Neighbors of a process under wind condition.

To communicate with neighbors, the synchronous model of processing on GPGPU

can be resumed as two kernel functions:

1. Buffer writing. Processes write data to output buffers in the shared memory (Send

to buffers).

2. Buffer reading. Processes read data from their neighbors’ output buffers. Next,

those buffers are reset for the next execution (Update states).

Both reproduction and propagation models (in section 1.2.1) are depicted in these

two algorithms.
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Send to buffers That task allows transmission of a part of process’s values to its

buffers. Depending on surrounding conditions, a number of insects is advected to its

neighbors. Algorithm is as followed:

Input: currentStates_d: Current states of all nodes

Input: buffNodes_d: Buffers of all nodes

Input: channels: Cellular network

Output: A number of insects in a node transmitted to the node’s buffers

1 idx ← threadIdx.x+blockIdx.x∗blockDim.x

2 if idx < numberOfNodes then

3 curState ← currentStates_d[idx]; curBu f f ← bu f f Nodes_d[idx];

// - Get environment of current day

// - Calculate current BPH based on preproduction model

// - Add BPHs number invasion from neighbors

// - Calculate light trap (if applicable)

4 seed ← curState.seed;

// Reproduction model

5 pEggs2Nymphs ← _ f rand(seed,1.0 f ,30.0 f ) // %eggs 30%

6 pNymphs2Adults ← _ f rand(seed,1.0 f ,40.0 f ) // %nymphs 40%

7 numberAdults2Eggs ← _ f rand(seed,150.0 f ,300.0 f ) // an adult may give 300 eggs a day

8 pInsects ← _ f rand(seed,1.0 f ,10.0 f ) // may 10% insects die per day

9 incAges(curState, curBuffer);

10 layEggs(curState, 4, curBuffer, numberAdults2Eggs);

11 toNymphs(curState, 2, curBuffer, pEggs2Nymphs);

12 toAdults(curState, 3, curBuffer, pNymphs2Adults);

13 foreach child i ∈ channels[idx].read do

14 nodeRead ← i.node

15 identity ← i.identity

16 if nodeRead! =−1 then

17 j ← order_o f (i) ∈ channels[idx].read

18 windDirection ← sourceCell.meteo.windDirection

19 if windDirectionistonodeRead then

20 pMigrations ← _ f rand(seed,1.0 f ,40.0 f ) // may 20% insects migrates

21 moveOut(curState, j, curBuffer, pMigrations);

// move pMigration% from idx to curBuffer[j]

22 selfdestroyInsects(curState, curBuffer, pInsects);

23 currentStates_d[idx]← curState;

Algorithm 3: Data transmission to buffers in each node.

Update states This task has responsibility to move data from output buffers to cor-

responding processes and update their values to compose new states. Details of this
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algorithm can be found as followed:
Input: currentStates_d: Current states of all nodes

Input: buffNodes_d: Buffers of all nodes

Input: channels: cellular network

Output: Change values of currentState_d

1 idx ← threadIdx.x+blockIdx.x∗blockDim.x

2 if idx < numberOfNodes then

3 curState ← currentStates_d[idx]; curBu f f ← bu f f Nodes_d[idx];

4 foreach child i ∈ channels[idx].read do

5 nodeRead ← i.node if nodeRead! =−1 then

6 j ← order_o f (idx) ∈ channels[nodeRead].read bu f f ← bu f f Nodes_d[nodeRead][ j] // Get buffer j of nodeRead

7 readBuffer(curState, buff);

// increase number of insects in curState

8 writeBuffer(curState, curBuff);

// deduct number of insects in curState

9 currentStates_d[idx]← curState;

Algorithm 4: Updating node states based on their buffers.

Other operations relating to these two algorithms can be found in appendix E.1.

4.3.3 Simulation result analyse

Some questions can be raised in the simulation result in figure 4.6. How many areas

are infected by BPHs? How many percentages of infected areas over the total of rice

growing areas? How many of them are hopper-burn? How many of them are tending to

become hopper-burn? Technically, these kinds of questions can be solved by combining

adjacent cells which have the same infected level into a polygon and maintaining the

polygon to the database.

Connected Component Labeling [167][158] (CCL) is a solution for the above combi-

nation. It can be done by considering cell system as a map of infected levels from 0 to 5

(0: no infection, 5 hopper burn, table 2.4) and trying to merge the same level connected

cells into a polygon (figure 4.7). This algorithm is called right after the execution of the

updating cell function in page 95.

Union Find algorithm

The CCL problem can be solved by finding disjoint sets of objects in a graph representing

processes in the CA machine. The number of disjoint sets is the number of connected

vertices (or connected components) in the graph. For example, figure 4.8 illustrates 10

nodes with 3 connected components which each has 1, 2, 7 nodes, respectively.

Union Find algorithm [175][61] is an algorithm defining two operators in a disjoint

graph: Find and Union. Find operator is used to determine whether two objects are in
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Figure 4.6: Meshed map showing result of the BPH invasion simulation in one step
process (grid size = 7644m x 7644m).

Figure 4.7: Simulation result on a grid represents five distinct polygons a.k.a. area, two
of light infection (in blue) 6 and 5 cells, one area of medium infection (in red) and two
heavy infection polygons of 3 and 5 cells (in red).
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Figure 4.8: CCL problem represented as topology issue, used to find number of connected
vertices.

the same sub set while Union operator allows merging two sub sets into one. Thus, CCL

problem is solved since those operators have been applied on all nodes of the graph. In

the visiting process, nodes belonging to the same set lead to the same root. Therefore,

the Find operator checks that two nodes p, q have the same root while Union assigns the

root of p to the root of q.

Figure 4.9 depicts an example to solve the CCL in figure 3.19. For any pair p and q,

for example, 3 and 9, the root of p is connected to the root of q. After 7 merges, all nodes

(10 nodes) in the figure are visited to compose 3 connected vertices. It can be deduced

that the number of connected components is 10−7 = 3.

Combine cells into polygons

After executing CCL algorithm, all adjacent cells which share same infection level are

combined together to merge into polygons. This mechanism can be done by creating a

polygon for each cell and then combining them together by using function ST_Union

function in PostgreSQL. Algorithm 10 in appendix E.2 is able to do these tasks.

4.4 Experiment

4.4.1 Configuration of experimentations

Simulation of insect pest monitoring application uses data collections in Can Tho city,

a typical rice producing city in the Mekong Delta. Can Tho area is divided in 31311
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Figure 4.9: Example of Union Find algorithm used to solve CCL of figure 3.19.
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cells (Moore neighbors) with approximately 0.18km2 of surface area for each. The

administrative map of that city is used in these experiments where the scale is 1:50000.

Automatic light traps (circles in figure 4.10) provides a data collection including

insect densities. Environmental factors are populated from GRIB data.

To visualize infected BPHs in the insect monitoring application, a color table is used

to illustrate a warning level of BPHs based on hoppers density in rice fields [137]. This

correspondence is shown in table 4.2.

Table 4.2: Ascending levels of infested BPHs in rice fields.

BPH density

(BPHs/m2)
Color Meaning

<500 rgb[135,206,250] Normal infection

500 -<2500 rgb[0,255,0] Light infection

2500 -<5000 rgb[255,255,0] Medium infection

5000 -<10000 rgb[255,105,180] Heavy infection

≥10000 rgb[255,0,0] Hopper burn

4.4.2 Scenario 1: Observing hoppers at a defined location

This scenario allows observation of the reproduction phase of hoppers at a defined

location. In this scenario, some communes in Can Tho lightly suffer from hoppers (light

infection color of rice fields and warning level of sensor stations in figure 4.10) while the

rest are not cultivated yet.

Figure 4.11 describes the hoppers infection in Can Tho city at the day 3, 4, 6, 7. At

the day 3, most of the experimental communes suffer from heavy infection of BPHs.

Hoppers density reaches the peak point at the day 4 and starts decreasing a few days later.

During the day 7, normal infections appear in some communes although other are still

light, medium or even heavy (warning level of sensor stations in figure 4.12). However

until the day 9, hoppers seem not to appear in Can Tho city.

This scenario depicts the reproduction of hoppers in Can Tho city. Initially, exper-

imental communes are infested lightly due to hoppers. By the time passing, hoppers

are growing and become adults. At the adult phase, hoppers can propagate to other

places due to wind intensity, however, these new locations do not have rice, therefore,
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Figure 4.10: Light infections at some communes in Can Tho city.

Figure 4.11: Hoppers infection level in Can Tho city for days 3, 4, 6, 7 at several
locations.
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propagated hoppers die because of food lacking. Densities of hoppers at experimental

communes decline gradually and return at normal infestation level around 6 to 7 days

after the peak day of hoppers.

Figure 4.12: Map of Hoppers infection in Can Tho city at day 7.

The hopper reproduction in the scenario shows how ’Escape Strategy’ (or ’Chien

Luoc Ne Ray’ in Vietnamese) does to confront with hoppers [71]. This strategy is done

by monitoring historical light traps data through several years to recognize the trend of

hoppers migrations. Next, crops are sown after the peak season of BPHs. When the

next generation of hoppers comes (28 days later), the rice is strong enough to resist to

hoppers. In this case light trap stations can help to sense the surrounding conditions and

transmit data to the database center (schemas as in figure 3.16) for storage so the peak of

hoppers can be identified later.

4.4.3 Scenario 2: Hoppers propagation due to wind

This scenario assumes that the Thoi Lai district is an infection source with lightly

infestation in almost its communes (figure 4.13). A current unique sensor at Dinh Mon,
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Thoi Lai provides following meteorological data: wind velocity: 5km/h, wind direction:

North North Wind - NNW (from Dinh Mon toward Phong Dien) and also indicates the

light infection at the rice field in this commune.

Figure 4.13: Hoppers infestation in Thoi Lai and Phong Dien in 7 days.

Due to wind, hoppers can propagate to leeward fields. At the day 3, the whole Thoi

Lai is burned and a part of Phong Dien is lightly infected (figure 4.13, 4.14). At the

day 7, the light trap at Dinh Mon still gives burn warning although other communes

in this district become normal. However, the area of infestation in Phong Dien district

is broaden from Truong Long, Tan Thoi, to Nhon Ai, Nhan Nghia. BPHs spread over

these communes from heavy infection in Truong Long to light ones (almost normal)

in Nhon Ai, Nhon Nghia (figure 4.15). Indeed, under the wind, the commune Truong

Long, Phong Dien is the leeward of the commune Truong Thanh, Thoi Lai. Similarly,

the commune Tan Thoi, Phong Dien is the leeward of the commune Dinh Mon, Thoi Lai.

Same situations can be found in Nhon Ai,Tan Thoi and Nhon Nghia.

The light trap in Dinh Mon uses a led 4W, 220V/50Hz as the light bulb. Although

we never measure the sensing range in practice (formular 2.1), assumptions are made to

calculate the coverage area of the trap.

Assume that the light bulb has sensing radius of 830m (value in FullMoon in [43]),

in ideal case, the sensing field has an area: S = πr2 = 2163146m2 ≈ 2.16km2.

Thoi Lai district (Dinh Mon is a town of it) has 20,345.16 ha rice field 1. Therefore,

the minimum number of equipments to monitor the whole area is N � 94 traps.

Nevertheless, in practice, distribution of dense traps is not necessary since one device

can be used as an indication value for insect situation of a wide area. By observing

historical trap values, Escape Strategy is applied for planning crop calendar which can

avoid insect peak days.

The deployment of Rothamsted light trap network in Britain is not dense as well. Cur-

rently, the network has 87 sites in operation [202], where the country has ≈ 242,000km2

1http://cantho.gov.vn/wps/portal/thoilai
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Figure 4.14: Hoppers infection in Thoi Lai and Phong Dien at day 3.

Figure 4.15: Map of leeward communes in Phong Dien district, arrow represents the
average wind direction
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of surface area 2.

4.5 Summary

The chapter presents the model of a rice insect pest application based on data oriented

using cellular automata. Environmental, biological factors and spatial cellular system

are integrated into a unit to form the static part while the dynamic aspect, transition rule,

is applied locally to compose a CA machine for insect monitoring.

The simulation shows cyber physical relations in the insect monitoring application.

Feedback loops are found with the collaboration between physical phenomena (insect,

rice) and trap devices. Current situation of insects is measured by sites and vice versa,

trap stations attract and kill insects to reduce their populations. It reflects the local cyber

physical aspect. On the other hands, ’Escape Strategy’ is a kind of solution to face with

pest and it illustrates the global interaction of an environment machine.

2https://www.mapsofworld.com/united-kingdom/britain/
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Conclusions

5.1 Thesis results

As described in section 1.2.3, goal of this thesis is about an early warning system of which

data collection is from sensor stations. The system consists of following components

which are done during the thesis time:

• Sensor stations. They measure environmental factors and classify/count insect

densities automatically. The principle is done based on vision sensors of which

principles are depicted in chapter 2. These sites constitute an automatic light trap

network in Mekong Delta.

• Modeling and simulation. Simulation is done with the assistance of environment

machine (chapter 3) which is built on cellular automata modeled synchronous

system. The machine consists of processes which are able to execute the same

program concurrently.

107
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• Information system for environment machine. The machine requires collecting

and analyzing of data from different sources. As a result, the architecture proposed

in figure 3.11 and the schema presented in figure 3.15 are able to adapt with data

requirements in environmental monitoring applications.

Those components emerge local/global cyber physical system concepts and are

supported by developed tools.

5.2 Local vs. Global Cyber Physical System

A Cyber Physical System (CPS) [112] is a system of collaborating computation and

physical processes. Embedded computers and sensor networks monitor the physical

processes, essentially with feedback loops in respect of interaction between processes

and computations. In physical world, time passage and concurrency are two core

characteristics.

An environmental monitoring system fits into a CPS framework. Environmental

factors become physical entities while the observation network is the computation.

For example, sensor nodes, are able to monitor the surrounding conditions and with

the assistance of data collection over time, people can make decision relating to their

situations. These elements build together a temporal loop between physical entities and

numerical computation.

That study goes through the Cyber Physical System concept from local to global

scale. Figure 2.1 and 3.1 describe those scales.

Observation systems are distributed sensing devices which collect information locally,

elaborate diagnostics on physical process, and report those diagnostics. Each of them

permits two-ways interactions between physical world and sensing devices. Automatic

trap station, a practical application of that principle to monitor insects in rice fields, is

studied to show that two-ways interaction. Fisheye lens camera in the trap periodically

classifies/measures densities of insects while light bulb and other components are capable

of changing insects behaviors by attracting them to the light. Ten automatic trap stations

currently in test in Mekong Delta are the final product of that study.

Connected observation systems compose a global Cyber Physical System which

shows feedback loops between physical and computation world. Natural phenomena, rep-

resentation of physical world, occur and are measured by sampling sensing devices. The

information system behind the CPS is able to control and reduce impact of phenomena.
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Combination of automatic trap stations is a representation of that relationship. Insects

breed quickly and spread in order to find food to eat but acting like that action they

destroy rice fields. Their quantities are periodically estimated by trap stations running.

And observation of long series of data allow to make the appropriate choice to face insect

pest. ’Escape Strategy’ is one of those decisions based on data analysis.

5.3 NetGen and Pickcell

Tools for Cyber Physical System (especially those presented in chapter 3 & chapter 4)

are implemented as update versions of NetGen and Pickcell [15]. NetGen is a framework

developed in the group Wireless Sensor Network, University of Western Brittany, France

by Professor Bernard Pottier with initial purposes design and validation of networks

under a practical environment and using graphical interface. Pickcell is a module of

NetGen to create spatial cellular systems from GIS data. In general, the framework

provides these common characteristics:

1. Practical system description based on geometry. As example, from a map, one can

decide sensor locations by taking into account physical considerations, decide on

a wireless technology, and infer workable communication links.

Description can be achieved based on maps, or pictures. Alternatively, generators

allow to produce random distributions of different characteristics. An input text

format allows exchange of network topologies with external tools.

2. Behaviour description. As example, nodes will execute programs to control locally

a physical phenomenon and to contribute to activities of the distributed system,

such as collecting, transforming data or sending alerts.

3. The core of NetGen is Pickcell tool which allows modeling spatial spaces as

cellular automata. Figure 3.8 shows an interface of PickCell where the spatial

space is divided in a 25*25 resolution cells.

Cyber Physical System characteristics can be found in NetGen framework. From

the CPS concept map (figure 5.1) provided by Edward A. Lee, University of California,

Berkeley, main features can be recognized:

1Source: http://cyberphysicalsystems.org/



110 Chapter 5. Conclusions

Figure 5.1: Concept map of Cyber Physical System1.

• Application fields. The framework covers of a lot of situations, from the nano scale

to the universe scale and lots of domains such as distributed sensing, distributed

computing, communication systems, environment modeling, bio-systems. For

example, the context addressed in this manuscript is environmental monitoring as

well as distributed sensing devices to measure and control the environment.

• Networks and Distributed computations. Important focus of the framework is on

wireless sensor networks design in regards to practical situations in environmental

field.

• Feedback loops. Organization of data collection in the framework allows under-

standing and control the behavior of environment. The case study shows that

characteristic.

• Specification, modeling, and analysis. Pickcell tool in the framework is able to

model physical world as a cellular automata synchronous system that ensures

interoperability and communication between processes. Those elements are main

problems of Cyber Physical Systems.
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5.4 Future plans

Several plans are taken into considerations to continue the development of sensing

machines particularly for insect pest mitigation. Three of them are presenting below

including sensors type, validation methods and computation capacity:

• Camera with parallel processor. Despite the fact that fisheye lens camera with

embedded processor is able to classify and count insect densities in a trap site, it is

unable to do the same in more complicated cases such as tracking, moving objects

recognition. Camera integrating data acquisition and processing unit is the best

choice for those more complex usages.

• Validation and verification. Validation is the process of checking whether a

design captures the customer’s needs whereas verification determines that a design

meets requirements, specifications. If requirements, specifications are given as

formal languages, the concurrent model using CA machine may be possible to

be automated the verification (also know as formal verification). Meanwhile, CA

models generated by Pickcell software will be included in a validation process of

which verification is a part. That process can not be automated, but possibly by

simulation.

• Cellular automata on super computers equipped with large amount of nodes. CA

synchronous model is adjusted so that it can be implemented on many computers

to process big data. Message Passing Interface (MPI) [57] is capable to generate

solution for that.
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Appendix A

A.1 Validation methods

A.1.1 Normal distribution

Let x depicts sizes of image objects which have the same distance to the image center.

Because these objects have the same real size, their images represent random vari-

ables which converge in distribution to the normal, or normal distribution (Gaussian

distribution) [50].

The probability density function (figure A.1) of a normal distribution is calculated as:

f (x;µ,σ) =
1

σ
√

2π
e
−(x−µ)2)

2σ2

where:

• µ: mean or expectation of the distribution

• σ: standard deviation

• σ2: variance
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Figure A.1: Probability density function of a normal distribution.

A.1.2 Shapiro-Wilk test

The Shapiro-Wilk [161] test is a normality test to detect if a sample x1, ...,xn coming

from a normal distribution. The test statistic:

W =
(∑n

i=1 aix(i))
2

∑n
i=1 xi − x

Where

• x(i): the ith order statistic, or the ith smallest number in the sample.

• x: the sample mean

• ai calculated by:

(a1, ...,an) =
mTV−1

√
mTV−1V−1m

where:

– m = (m1, ...,mn)
T

– m1, ...,mn: expected values of the order statistics independent and identically

distributed random variables sampled from the standard normal distribution.

– V : the covariance matrix of those order statistics.

Hypothesis of normality is rejected if the p-value is less than or equal 0.05. A failed

test states that at 95% confidence data does not fit to the normal distribution while passing

the test just states that no significant departure from normality was found.

A.1.3 Kolmogorov-Smirnov test

Kolmogorov-Smirnov test [27] [135] tests a sample from a population with a specific

distribution. It is based on the empirical distribution function (ECDF). Given N ordered

data points Y1,Y2, ...,YN , the ECDF is defined as:
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EN =
n(i)

N

where n(i) is the number of points less than Yi and the Yi are ordered from smallest to

largest value.

The test is defined by:

• H0: the data follows a specified distribution (e.g normal).

• Ha: the data does not follow the specified distribution.

• Test Statistic:

D = max
1≤i≤N

(F(Yi)−
i−1

N
,

i

N
−F(Yi))

• P value (significance level): to see how much different data collected in one

situation (is compared to data collected in a different situation. If p value is smaller

or equal 0.05, the hypothesis of distribution (normality) is rejected.

A.2 Validation results

Figure A.2: Some statistical results of objects in group 1: Probability density function,
quantile-quantile (q-q) plot of object scales in the image.

The Shapiro-Wilk normality test which is applied on these measurements gives the

test statistic W = 0.96391 and the significance level p_value = 0.7329.
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Table A.1: Expectation and deviation of measured sizes (pixels and scale) of objects in
group 1 (distance around 73.32 pixels from the image center).

Object
Distance from

the center

Number of

pixels

Scale

pixels/mm2

28 69.9978 175.733 0.286034
34 70.0073 173.253 0.290128
24 70.6433 169.415 0.296701
38 70.7466 175.167 0.286957
42 71.5176 175.337 0.286679
21 71.6129 162.553 0.309224
17 72.1238 170.446 0.294905
45 72.8646 180.712 0.278152
43 73.3217 186.706 0.269223
14 74.3196 166.072 0.302673
40 75.1910 189.445 0.265330
35 75.7579 183.239 0.274317
16 76.0527 166.813 0.301328
25 76.0905 184.948 0.271782
20 76.2874 177.625 0.282986
30 76.5369 185.829 0.270494
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B.1 Bilinear interpolation implementation in PostgresSQL

Input: Geographic position (latitude, longitude) of a cell

Output: uWind, vWind, temperature, humidity, precipitation, pressure at this position

Drop Table If Exists TestWeather;

--TestWeather(x int, y int, latitude numeric, longitude numeric,

-- uValue numeric, vValue numeric, temperature numeric,

--- humidity numeric, precipitation numeric, pressure numeric)

Create Table TestWeather As Select * From getWeatherData();

Select into minLat, minLon Min(Latitude)*10, Min(Longitude)*10

From TestWeather;

m_iLat := lat*10; m_iLon := lon*10;

xPos := (m_iLat-minLat)/5; yPos := (m_iLon-minLon)/5;

---- x increases from bottom to top, y from left to right -----

-- point 1

Select into u1, v1, t1, h1, pp1, p1 uValue, vValue, temperature,

humidity, precipitation, pressure

from TestWeather

Where x = (cast(xPos as int)) AND y = cast(yPos as int);
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-- point 2

Select into u2, v2, t2, h2, pp2, p2 uValue, vValue, temperature,

humidity, precipitation, pressure

from TestWeather

Where x = (cast(xPos as int) + 1) AND y = cast(yPos as int);

-- point 3

Select into u3, v3, t3, h3, pp3, p3 uValue, vValue, temperature,

humidity, precipitation, pressure

from TestWeather

Where x = (cast(xPos as int)+1) AND y = (cast(yPos as int)+1);

-- point 4

Select into u4, v4, t4, h4, pp4, p4 uValue, vValue, temperature,

humidity, precipitation, pressure

from TestWeather

Where x = cast(xPos as int) AND y = (cast(yPos as int) + 1);

--- Bilinear interpolation

tt1 := (trunc(yPos) + 1 - yPos)*u2 + (yPos - trunc(yPos))*u3;

tt2 := (trunc(yPos) + 1 - yPos)*u1 + (yPos - trunc(yPos))*u4;

uWind := (trunc(xPos) + 1 - xPos)*tt1 + (xPos - trunc(xPos))*tt2;

tt1 := (trunc(yPos) + 1 - yPos)*v2 + (yPos - trunc(yPos))*v3;

tt2 := (trunc(yPos) + 1 - yPos)*v1 + (yPos - trunc(yPos))*v4;

vWind := (trunc(xPos) + 1 - xPos)*tt1 + (xPos - trunc(xPos))*tt2;

tt1 := (trunc(yPos) + 1 - yPos)*t2 + (yPos - trunc(yPos))*t3;

tt2 := (trunc(yPos) + 1 - yPos)*t1 + (yPos - trunc(yPos))*t4;

temp := (trunc(xPos) + 1 - xPos)*tt1 + (xPos - trunc(xPos))*tt2;

tt1 := (trunc(yPos) + 1 - yPos)*h2 + (yPos - trunc(yPos))*h3;

tt2 := (trunc(yPos) + 1 - yPos)*h1 + (yPos - trunc(yPos))*h4;

hum := (trunc(xPos) + 1 - xPos)*tt1 + (xPos - trunc(xPos))*tt2;

tt1 := (trunc(yPos) + 1 - yPos)*pp2 + (yPos - trunc(yPos))*pp3;

tt2 := (trunc(yPos) + 1 - yPos)*pp1 + (yPos - trunc(yPos))*pp4;

prep := (trunc(xPos) + 1 - xPos)*tt1 + (xPos - trunc(xPos))*tt2;

tt1 := (trunc(yPos) + 1 - yPos)*p2 + (yPos - trunc(yPos))*p3;

tt2 := (trunc(yPos) + 1 - yPos)*p1 + (yPos - trunc(yPos))*p4;

press := (trunc(xPos) + 1 - xPos)*tt1 + (xPos - trunc(xPos))*tt2;

Algorithm 5: Bilinear interpolation to calculate environmental parameters at a
geographic location.
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B.2 Bilinear interpolation implementation in CUDA

Input: A(lat1, lon1), B(lat2, lon2)

Output: Distance between A & B

__device__ double getDistance(double lat1, double lon1,

double lat2, double lon2)

{

double earthRadiusKm = 6371;

double dLat = degreesToRadians(lat2-lat1);

double dLon = degreesToRadians(lon2-lon1);

lat1 = degreesToRadians(lat1);

lat2 = degreesToRadians(lat2);

double a = sin(dLat/2) * sin(dLat/2) + sin(dLon/2) *

sin(dLon/2) * cos(lat1) * cos(lat2);

double c = 2 * atan2(sqrt(a), sqrt(1-a));

return earthRadiusKm * c;

}

Algorithm 6: Distance between 2 points in the earth.
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Input: Climate data in resolution 0.5*0.5 (latitude, longitude) from GRIB source

Output: New cellular system with smaller resolution

__global__ void doInterpolation(ClimateData *data_d, int nSize,

CellArray *cell_d, int nCells)

{

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < nCells)

{

CellArray cell = cell_d[idx];

double lat = cell.position.latitude*10;

double lon = cell.position.longitude*10;

double minLat,minLon,maxLat,maxLon;

int minX, minY, maxX, maxY, minPos, maxPos, pos;

double u_B3, v_B3, u_B1, v_B1, u,v;

double u1,v1,u2,v2,u3,v3,u4,v4;

bool found;

//Min value

minLat = ((int)lat)/5*5;

minLon = ((int)lon)/5*5;

maxLat = ((int)lat)/5*6;

maxLon = ((int)lon)/5*6;

minPos = getPosition(maxLat,minLon,data_d,nSize, found);

//max value

maxPos = getPosition(minLat,maxLon,data_d,nSize, found);

minX = data_d[minPos].x;

minY = data_d[minPos].y;

maxX = data_d[maxPos].x;

maxY = data_d[maxPos].y;

lat = lat/10;

lon = lon/10;
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// Pos 1 (minLat, minLon) A1 , Pos 2 (minLat, maxLon) A2

// Pos 3 (maxLat, maxLon) A3 , Pos 4 (maxLat, minLon) A4

// Pos (lat, lon) I

// B1 (minLat, lon), B2 (lat, maxLon)

// B3 (maxLat, lon), B4 (lat, minLon)

u4 = data_d[minPos].uWind;

v4 = data_d[minPos].vWind;

u2 = data_d[maxPos].uWind;

v2 = data_d[maxPos].vWind;

//get values of remaining

pos = getPosition(minLat,minLon,data_d,nSize, found);

u1 = data_d[pos].uWind;

v1 = data_d[pos].vWind;

pos = getPosition(maxLat,maxLon,data_d,nSize, found);

u3 = data_d[pos].uWind;

v3 = data_d[pos].vWind;

//Step 1

// a

u_B3 = getDistance(maxLat, maxLon, maxLat, lon)/getDistance(maxLat,maxLon,maxLat,minLon)*u4 +

getDistance(maxLat,lon,maxLat,minLon)/getDistance(maxLat,maxLon,maxLat,minLon)*u3;

v_B3 = getDistance(maxLat, maxLon, maxLat, lon)/getDistance(maxLat,maxLon,maxLat,minLon)*v4 +

getDistance(maxLat,lon,maxLat,minLon)/getDistance(maxLat,maxLon,maxLat,minLon)*v3;

//b

u_B1 = getDistance(minLat,maxLon,minLat,lon)/getDistance(minLat,maxLon,minLat, minLon)*u1 +

getDistance(minLat,lon,minLat,minLon)/getDistance(minLat, maxLon, minLat, minLon)*u2;

v_B1 = getDistance(minLat,maxLon,minLat,lon)/getDistance(minLat,maxLon,minLat, minLon)*v1 +

getDistance(minLat,lon,minLat,minLon)/getDistance(minLat, maxLon, minLat, minLon)*v2;

//Step 2

u = getDistance(minLat, lon,lat,lon)/getDistance(minLat, lon, maxLat, lon)*u_B3 +

getDistance(lat,lon,maxLat, lon)/getDistance(minLat, lon, maxLat, lon)*u_B1;

v = getDistance(minLat, lon,lat,lon)/getDistance(minLat, lon, maxLat, lon)*v_B3 +

getDistance(lat,lon,maxLat, lon)/getDistance(minLat, lon, maxLat, lon)*v_B1;

cell.weatherArray.ugrd = u;

cell.weatherArray.vgrd = v;

cell_d[idx] = cell;

}

}

Algorithm 7: Bilinear interpolation implementation in CUDA.
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C.1 Sensing machine modeling in NetGen

Principles of a global sensing machine can be modeling in NetGen [15], a framework

is dedicated to WSN design and validation in regards of practical situations in the

environment. Workflow for generating and executing the machine [182][107] is shown

in figure C.1.

The design and implementation of the machine contain three important parts: data

structure, states and behaviors. Firstly, data structure (cells in figure 3.8) is generated

from geographic data using PickCell tool in NetGen [15]. Next, states and behaviors are

implemented in parallel programming languages to respect synchronous features in the

machine.

For example, cells under a synchronous system structure is generated into CUDA

code [24] as following:

# d e f i n e NODE_NUMBER 31311
# d e f i n e MAX_FANOUT 8

t y p e d e f s t r u c t s_mapped {
i n t node ;
i n t c a n a l ;
i n t i d e n t i t y ;

}mapped ;
t y p e d e f s t r u c t s_canaux {

123



124 Appendix C. Appendix C

Figure C.1: Work flow for modeling insect physical and WSN system.
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i n t nbOut ;
i n t nbIn ;
i n t nbDyn ;
mapped w r i t e [MAX_FANOUT] ;
mapped r e a d [MAX_FANOUT] ;

} canaux ;
t y p e d e f s t r u c t {

i n t x ;
i n t y ;
i n t r a n g e ;

} node_param ;

Each node of the network represents a process in the machine. That process maintains

a structure to store its states by the time passing. Definition of the structure is variant

and depends on which on application the machine is applied.
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D.1 Data descriptions for meteorological, object and sen-

sor data

Those descriptions are depicted in figure D.1, D.2 and D.3.

D.2 Workflow for developing an environmental moni-

toring application

The schema in figure 3.15 allows the conception of a workflow (figure D.4) for develop

environmental monitoring applications such as insect invasion, flooding, rain falls. Data

definition step helps to define meteorological factors, objects as well as sensor nodes

which involve the phenomena. These elements of data will be generated to parallel

programming languages for behavior implementations. Those implementations, in

general sense, are done as illustration in section 4.3. Finally, simulation as well as other

data can be queried for user purposes such as aggregation, tendency prediction.

For example, to simulate insect invasion, after defining environmental factors, the

sensing machine has a structure similar to the one presented in figure 3.9. Next, the

cellular automaton and relating data are generated into two CUDA files: one file for

cellular automaton description (listing D.1) and another for relating data (listing D.2).

# d e f i n e NODE_NUMBER 31311
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Figure D.1: Descriptions of data relating to CPSs: meteorological data.
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Figure D.3: Descriptions of data relating to CPSs: sensor stations.
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Figure D.4: A proposed workflow to develop an environmental monitoring application.

# d e f i n e MAX_FANOUT 8

t y p e d e f s t r u c t s_mapped {
i n t node ;
i n t c a n a l ;
i n t i d e n t i t y ;

}mapped ;
t y p e d e f s t r u c t s_canaux {

i n t nbOut ;
i n t nbIn ;
i n t nbDyn ;
mapped w r i t e [MAX_FANOUT] ;
mapped r e a d [MAX_FANOUT] ;

} canaux ;
t y p e d e f s t r u c t {

i n t x ;
i n t y ;
i n t r a n g e ;

} node_param ;

Listing D.1: A cellular network for the insect monitoring application. There are 31311
cells with the usage of Moore neighbors.

/ / S e n s o r n o d e
t y p e d e f s t r u c t {

i n t x , y ;
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double lon , l a t ;
f l o a t commin ica t ionRange ;
f l o a t BPHdensi ty ;

} SensorNode ;
/ / O b j e c t s ( p a r a m e t e r s )
t y p e d e f s t r u c t

{
f l o a t r i c e S t a g e ; / / r i c e a g e s
/ / L i f e c i r c l e 28 d a y s , e g g s 0−6 d a y s ,
/ / nymphs 7−14 d a y s ; a d u l t s : 15−28 d a y s
f l o a t h o p p e r s [ LIFE_CIRCLE ] ;

} I n t e r n a l S t a t e ;
/ / M e t e o r o g i c a l d a t a
t y p e d e f s t r u c t {

double ugrd ; / / c o m p o s a n t e u du v e n t
double vgrd ; / / c o m p o s a n t e v du v e n t
double w i n d D i r e c t i o n ; / / w i n d d i r e c t i o n a c c o r d i n g t o CA
double t e m p e r a t u r e ;
double h u m i d i t y ;
double p r e c i p i t a t i o n ;
double p r e s s u r e ;

} WeatherData ;
/ / C e l l s t a t e
t y p e d e f s t r u c t

{
i n t s eed ; / / Random n u m b e r
C e l l P o s i t i o n c e l l P o s i t i o n ; / / p o s i t i o n
I n t e r n a l S t a t e i n _ S t a t e ; / / O b j e c t s
WeatherData meteo ; / / e n v i r o n m e n t f a c t o r s
f l o a t n e i g h b o r s [ 8 ] [ LIFE_CIRCLE ] ; / / F o r p r o p a g a t i n g

} C e l l S t a t e ;

Listing D.2: The data relating to the cellular automaton in listing D.1. Wind, temperature,
precipitation, humidity are taken into account for simulating insect invasion.
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E.1 Algorithms for implementing insect behaviors

In implementation, most of operations confront with one dimensional biological cellular

automaton BPH (figure 4.3). Actually, this cellular automaton is an array v for which

each value v[i] depicts number of i-days old BPH. Thus, propagation can be considered

as the movement of a number of k-days old BPH at a source cell to l-days old BPH at a

destination cell.

Left side of figure E.1 illustrates the principle of the movement algorithm from a

source to a destination buffer. To BPH, only adult individuals are able to migrate due

to surrounding conditions, therefore, the migration is the movement of a number of

i-days old BPH in the source to i-days old BPH in the destination (∀i ∈ [15,27]). It is
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Figure E.1: Implementation of BPH invasion from a source buffer to a destination buffer
as well as the self increase in age of BPH after a day.

the principle to implement the function moveOut as follows:

Input: curCell: the current node

Input: buffCell: the node buffer

Input: j: migration to a destination which is child j of curCell

Input: pMigrations: percentage of migration

Output: Transfer data from a cell to its buffer

(1) density ← curCell.in_State.hoppers

(2) for i ∈ [15,LIFE_CIRCLE −1] do

(3) p ← _ f rand(seed,1.0 f , pMigrations)
(4) numInsects ← p/100.0∗density[i]
(5) if numInsects>0 then

(6) bu f fCell[ j].hoppers[i]←= bu f fCell[ j].hoppers[i]+numInsects

Algorithm 8: BPH migration implementation. Actually, it is the transfer of data
from the cell to the cell’s buffer. The final transfer will be called in function
readBuffer.

The right side of figure E.1 illustrates the growth of BPH after a day. The idea is sim-

ple: after a day, each specimen has one day old more. Therefore, an i days BPH becomes

an i+1 days BPH (∀i ∈ [1..LIFE_CIRCLE −2]). Those who are LIFE_CIRCLE −1

days old can be declared dead and number of 0-day old BPH is 0 for the new day. Details
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of the algorithm can be found as follows:
Input: curCell: the current node

Output: Increase each BPH 1 day old

(1) for i ∈ [1,LIFE_CIRCLE −1] do

(2) curCell.in_State.hoppers[i]← curCell.in_State.hoppers[i−1]

(3) curCell.in_State.hoppers[0]← 0
(4) curCell.in_State.riceStage ← curCell.in_State.riceStage+1

// rice age increase 1

Algorithm 9: The self growth algorithm of BPH after day.

E.2 Cells combination into polygon

Algorithm for section 4.3.3 as follows:
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Input: Top left and right bottom geographic position (latitude, longitude) of cells which have

the same label (infection level) in a text form

Output: A polygon for these cells

Begin

pos := position(’:’ in str);

Select into ptrResult ST_GeomFromText(’GEOMETRYCOLLECTION EMPTY’);

ptr := ptrResult;

If (pos!=0) then

s := left(str,pos-1); -- Get the string: the id and the level of polygon

pos1 := position(’ ’ in s);

-- Get id and level

idS := left(s, pos1-1);

levelS := right(s, character_length(s)-pos1);

-- Process for the rest containing the list of points

str := right(str, character_length(str)-pos);

pos := position(’;’ in str);

while (pos!=0) loop

--Get the string for the first points list

s := left(str,pos-1);

-- Get 2 points

pos1 := position(’,’ in s);

-- the first point string

tlS := left(s, pos1-1);

-- the second point

rbS := right(s, character_length(s)-pos1);

-- 1st point in the list

pos2 := position(’@’ in tlS);

x1 := left(tlS, pos2-1);

y1 := right(tlS, character_length(tlS)-pos2);

-- 3rd point in the list

pos3 := position(’@’ in rbS);

x3 := left(rbS, pos3-1);

y3 := right(rbS, character_length(rbS)-pos3);

polygonStr := ’POLYGON((’||x1||’ ’||y1||’, ’||x1||’ ’||y3||’, ’;

polygonStr := polygonStr ||x3||’ ’||y3||’, ’||x3||’ ’||y1;

polygonStr := polygonStr || ’, ’ || x1 || ’ ’|| y1 || ’))’;

Select into ptr1 ST_GeomFromText(polygonStr, 4326);

Select into ptrResult ST_Union(ptr, ptr1);

ptr := ptrResult;

-- the rest of the string

str := right(str, character_length(str)-pos);

pos := position(’;’ in str);

end loop;

Insert Into ResultPolygon (id, polygonResult, level) Values

(cast(idS as int), ptrResult, cast(levelS as int));

End If;

End;

Algorithm 10: Cells combination into a polygon in PostgreSQL code.
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Résumé

Réseaux de capteurs sans fil pour l’observation du climat et de la biologie dans une région tropicale

d’agriculture intensive

Méthodes, outils et applications pour le cas du Delta du Mékong, Vietnam

Les changements climatiques ont des impacts considérables  sur le temps, les océans et les rivages, la vie sauvage. Ils

amènent des problèmes désormais considérés comme majeurs par les gouvernements et organisations internationales.

Ces efforts ont fourni un cadre à cette thèse, qui propose de procéder en boucle fermée de l’observation d’insectes

ravageurs, avec des centaines de capteurs en réseau ("light traps"), au système d’information, et enfin à des décisions

de lutte, manuelles ou automatiques. Le point d’appui pratique est la conception d’un système de comptage d’insectes

proliférant  dans  les  cultures  de  riz  (BPH).  L’abstraction  que  nous  développons  est  celle  d’une  machine

environnementale de grande taille, distribuée, qui capte et synthétise l’information, élabore des connaissances, et prend

des décisions. Autour de cette abstraction, nous avons élaboré un système de vision "fisheye" effectuant le comptage

des insectes. 

Nous proposons un système d’information géographique directement connecté au réseau de capteurs. 

Le couplage direct, "cyber-physique", entre les systèmes d’information et l’observation de l’environnement à échelle

régionale est une nouveauté transposable, qui permet de comprendre et contrôler quantité d’évolutions.

Mot-clés:  changement  climatique,  système de  vision,  piège  lunineux,  caméra  fisheye,  classification  comptage

d'insectes,  Cicadelle  brune,  machine  environnementale,  automates  cellulaires,  réseau  synchrone,  système

d'information géographique

Abstract

Sensors and wireless networks for monitoring climate and biology in a tropical region of intensive agriculture

Methods, tools and applications to the case of the Mekong Delta of Vietnam

Climate changes bring problems related to  nature evolutions. Global warming has an impact on sea level,  weather

patterns, and wild life. A number of national and international organizations are developing research programs in these

directions,  including  threats  on  cultures  and  insect  proliferation.  Monitoring  these  phenomena,  observing

consequences, elaborating counteracted strategies are critical for the economy and society. 

The initial motivation of this work was the understanding of change impacts in the Mekong Delta region. From there,

automatic  observation  tools  were  designed  with  a  real  time  information  system able  to  integrate  environmental

measures, then to support knowledge production.

Tracking environment evolutions is distributed sensing, which can be the association of efficient sensors and radio

communications, operated under the control of an information system.  Sensing insects is very complex due to their

diversity and dispersion. However, this is feasible  in the case of intensive agricultural production as it is the case of

rice, having a small  number of pests. An automatic vision observatory is proposed to observe the main threats for the

rice, as an evolution of manual  light traps. Radio communication weaves these observatories into a network with

connection to databases storing measures and possible counteractions. An example observatory has a fisheye camera

and insect counting algorithms for the BPH practical case in Vietnam.

By considering the observation system as an input for an abstract machine, and considering decision and actions taken

as a possible control on the environment, we obtain a framework for knowledge elaboration that can be useful in lots

of other situations.

Keywords:  climate  change,    vision  system,  light trap,  fisheye lens  vision,  insect  counting,  Brown Planthopper,

environment machine, cellular automata, synchronous network, geographic information system
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