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Introduction

Asset allocation is an investment strategy that attempts to balance risk versus reward

by adjusting the percentage of each asset in an investment portfolio according to the

investor’s risk tolerance, goals and investment time frame. Essentially, asset allocation

is not putting all of your eggs in one basket when it comes to investing. Having all

investments in a single security or issuance can result in the entire portfolio being wiped

out if the investment goes bad. Markowitz (1952) quantifies with mathematics the benefits

of this concept, by developing the workhorse theory of mean-variance efficiency.

The seminal paper by Brinson et al. (1986) reports that asset allocation (measured

as the average quarterly exposure to stocks, bonds, and cash) explained 93.6% of the

variability of returns for the total portfolio holdings. Many citations of Brinson et al.

(1986) falsely suggest that their analysis makes conclusions about return attribution.

Yet, explaining 93.6% of the monthly variance in total returns is not the same thing as

saying that the portfolio mix determines 93.6% of the returns.

Ibbotson and Kaplan (2000) recognize the omnipresence of misperception around Brin-

son et al. (1986) and set out to correct this in their paper. They confirm that asset allo-

cation is the main factor to explain the variability of returns over time: market evolution

of asset classes dictates 90% of the movement of your portfolio. Moreover, they answered

two related questions: to what degree does asset allocation explain the variability of

performance between funds and institutions, and; to what degree does asset allocation

explain the level of long-term performance?

To determine how well asset allocation explained the dispersion in returns across funds,

1
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the authors performed a cross sectional regression of returns from funds and institutions

against respective policy benchmarks. They determined that 40% of the difference in

returns across funds is explained by differences in asset allocation policy, with the balance

determined by a combination of tactical shifts, sector bets, security selection, and fees.

Lastly, Ibbotson and Kaplan (2000) perform an attribution analysis to determine the

percent of long-term performance explained by asset allocation. They calculated the long-

term performance of each fund’s policy portfolio and compared it against actual long-term

fund returns. They state that, on average, asset allocation explained about 104% of long-

term returns. It is surprising: how can asset allocation explain greater than 100% of total

returns? as a matter of fact, the total return to portfolios were decomposed into the total

return to the fund’s policy portfolio using asset class benchmarks, plus the active return,

minus trading frictions. So the results of this study demonstrate that, over the periods

studied in the analyses, the average institutional investor lost 4% of total return to fees,

ineffective active management or poor manager selection.

To sum up, those studies emphasize the importance of asset allocation for investors:

diversification is the only free lunch in investing.

In practice, Ilmanen (2011) highlights that institutional practices have evolved from

the traditional 60/40 equity/government bond split, i.e. 60% of the portfolio allocated

to equities and 40% to fixed income securities (bonds), to globally diversified portfolios,

often including emerging markets and alternative assets, which were seen as having almost

no correlation with traditional stocks and bonds. Large institutional losses in 2008 raised

significant questions about the best way to pursue asset allocation: Page and Taborsky

(2011) showed that diversification does not accomplish its goals: diversification often

disappears when most needed:
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Figure 1: Traditional institutional portfolios (Author’s calculations)

To alleviate the difficulties encountered in the context of the Great Recession, this

thesis proposes certain topics for reflection and discussion on the measures to be taken to

truly diversify portfolios. The first one is to deepen the knowledge of interaction dynamics

between financial markets the macroeconomy (Chapters 1 to 3). The second one is to

explore a new way of capital allocation (Chapter 4).

With a view to a better understanding of the complex relationship between financial

markets and the macroeconomy, a well-worked theory of macro-based asset allocation is

introduced in the Chapter 1. The objective is to illustrate that asset returns are not

correlated with the business cycle but are primarily caused by the economic cycles. To

demonstrate this claim, economic cycles are first rigorously defined, namely the classi-
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cal business cycle and the growth cycle, which is better known as the output gap. The

description of different economic phases is refined by jointly considering both economic

cycles. The theoretical influence of economic cycles on time-varying risk premiums is

then explained based on two key economic concepts: nominal GDP and adaptive expec-

tations. It is exhibited over the period from January 2002 to December 2013: dynamic

investment strategies based on economic cycles turning points emphasize the importance

of economical cycles, especially the growth cycle, for euro and dollar-based investors. An

empirical analysis in the United States over the period from January 2002 to December

2013 highlight that this economic cyclical framework can improve strategic asset allocation

choices.

In theory, dynamic macro-based regime-switching asset allocations achieve thus su-

perior risk adjusted returns. Yet, economic turning points detection in real time is a

notorious difficult task. One stylised fact of economic cycles is the non-linearity: the

relationship between variables is not simply static and stable, but instead is dynamic and

fluctuating. For example, Phillips (1958) concludes the last sentence of his first para-

graph with: ”The relation between unemployment and the rate of change of wage rates

is therefore likely to be highly non-linear”.

Real-time regime classification and turning points detection require thus methods ca-

pable of taking into account the non-linearity of the cycles. In this respect, many para-

metric models have been proposed, especially Markov switching models (see Piger (2011)

for a review) and probit models (see Liu and Moench (2016) for a review). Parametric

models are effective if the true data generating process (DGP) linking the observed data

to the economic regime is known. In practice, however, one might lack such strong prior

knowledge.

Non-parametric methods, such as machine-learning algorithms1, do not rely on a spec-

ification of the DGP. The machine-learning approach assumes that the DGP is complex

1Machine learning generally refers to the development of methods that optimize their performance
iteratively by ”learning from the data”. Machine learning is broadly understood as a group of methods
that analyse data and make useful discoveries and inferences from the data.
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and unknown and attempts to learn the response by observing inputs and responses and

finding dominant patterns. This places the emphasis on a model’s ability to predict well

and focuses on what is being predicted and how prediction success should be measured2.

Machine learning is used in spam filters, ad placement, credit scoring, fraud detection,

stock trading, drug design, and many other applications, but it is largely unknown in

economics (with the exception of Giusto and Piger (ming), Ng (2014) and Berge (2015)).

The real-time ability of several machine learning algorithms (from very simple to quite

complex) to nowcast economic turning points is gauged in Chapter 2 and Chapter 3. The

aim is to quickly and accurately detect economic turning points in the United States and

in the euro area.

In Chapter 3, probabilistic indicators are created from a simple and transparent su-

pervised machine-learning algorithm known as Learning Vector Quantization (Kohonen

(2001)). Those indicators are robust, interpretable and preserve economic consistency. In

Chapter 3, a more complex approach is evaluated: ensemble machine learning algorithms,

referred to as random forest (Breiman (2001)) and as boosting (Schapire (1990)), are ap-

plied. The two key features of those algorithms are their abilities to entertain a large

number of predictors and to perform estimation and variable selection simultaneously.

In both chapters, profit maximization measures are computed in addition to more

standard criteria to assess the value of the models to take into account the disconnection

between econometric predictability and actual profitability (see, among others, Cenesi-

zoglu and Timmermann (2012) or Brown (2008)).

Importantly in this Thesis, when comparing predictive accuracy and profit measures,

the model confidence set procedure proposed by Hansen et al. (2011) is applied to avoid

2For prediction, the most common form of machine learning is supervised learning. Imagine that we
want to build a system that can classify images as containing, say, a house, a car, a person or a pet. We
first collect a large data set of images of houses, cars, people and pets, each labelled with its category.
During training, the machine is shown an image and produces an output in the form of a vector of scores,
one for each category. We want the desired category to have the highest score of all categories, but this
is unlikely to happen before training. We compute an objective function that measures the error (or
distance) between the output scores and the desired pattern of scores. The machine then modifies its
internal adjustable parameters to reduce this error. These adjustable parameters, often called weights,
are real numbers that can be seen as ”knobs” that define the input-output function of the machine.
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data snooping. Data snooping occurs when a given set of data is used more than once

for purposes of inference or model selection and leads to the possibility that any results

obtained in a statistical study may simply be due to chance rather than to any merit

inherent in the method yielding the results (White (2000))3.

Both approaches are effective to detect economic turning points in real time over the

period from January 2002 to December 2013. Strategies based on the turning points of

the growth cycle induced by the models achieve thus excellent risk-adjusted returns in

real time: timing the market is possible.

At last, modern and complex portfolio optimisation methods are optimal in-sample,

but out-of-sample underperform alternative methods that are suboptimal in-sample. For

instance, DeMiguel et al. (2009) demonstrate that the equal-weighted allocation, which

gives the same importance to each assets, beats the entire set of commonly used portfolio

optimization techniques.

López de Prado (2016a) points out that these methods lack the notion of hierarchy,

thereby allowing weights to vary freely in unintended ways. Indeed, Nobel prize laureate

Herbert Simon has demonstrated that complex systems can be arranged in a natural

hierarchy, comprising nested sub-structures (Simon (1962)): ”the central theme that runs

through my remarks is that complexity frequently takes the form of hierarchy, and that

hierarchic systems have some common proper-ties that are independent of their specific

content. Hierarchy, I shall argue, is one of the central structural schemes that the architect

of complexity uses”.

Building upon the fundamental notion of hierarchy, a hierarchical clustering based

asset allocation method, which uses unsupervised machine learning techniques4, is in-

3Researchers conducting multiple tests on the same data tend to publish only those that pass a
statistical significance test, hiding the rest. Because negative outcomes are not reported, readers are only
exposed to a biased sample of outcomes. This problem, called ”selection bias”, is caused by multiple
testing combined with partial reporting. It appears in many different forms: analysts who do not report
the full extent of the experiments conducted (”file drawer effect”), journals that only publish ”positive”
outcomes (”publication bias”), managers who only publish the history of their (so far) profitable strategies
(”self selection bias”), etc. What all these phenomena have in common is that critical information is
hidden from the decision maker, with the effect of a much larger than anticipated Type I Error probability.

4Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets
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troduced in Chapter 4. The out-of-sample performances of hierarchical clustering based

portfolios and more traditional risk-based portfolios are evaluated across three disparate

datasets, which differ in terms of number of assets and composition of the universe (”S&P

sectors”, multi-assets and individual stocks). The empirical results indicate that hierarchi-

cal clustering based portfolios are robust, truly diversified and achieve statistically better

risk-adjusted performances than commonly used portfolio optimization techniques.

The rest of the thesis proceeds as follows. Chapter 1 provides a clear, precise and

efficient framework for macro-based investment decisions. Chapter 2 underlines that a

very simple simple machine-learning algorithm known as Learning Vector Quantization

appears very competitive with commonly used alternatives. Chapter 3 points out the

interest of ensemble machine learning algorithms, referred to as random forest and as

boosting. Chapter 4 presents the hierarchical clustering based asset allocation method.

consisting of input data without labeled responses.
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Chapter 1

Time-varying risk premiums and

economic cycles

Abstract

Asset returns are not correlated with the business cycle but are primarily caused

by the economic cycles. To validate this claim, economic cycles are first rigorously

defined, namely the classical business cycle and the growth cycle, better known as

the output gap. The description of different economic phases is refined by jointly

considering both economic cycles. The theoretical influence of economic cycles on

time-varying risk premiums is then explained based on two key economic concepts:

nominal GDP and adaptive expectations. Simple dynamic investment strategies

confirm the importance of economical cycles, especially the growth cycle, for euro

and dollar-based investors. At last, this economic cyclical framework can improve

strategic asset allocation choices.

9
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Introduction

The willingness of investors to bear risk varies over time, larger in good times, and less

in bad times, leading to time-varying risk premiums (Cochrane (2016)). Yet, there is still

no consensus on the definition of good and bad time.

The most common approach is to consider the business cycle expansions and recessions

(see, among others, Lustig and Verdelhan (2012)). Cooper and Priestley (2009) choose

a slightly different way and point out the importance of the output gap for investment

decisions. They note that the output gap is a classical business cycle variable that begins

to fall before and throughout every recession. At last, some authors sometimes consider

four distinct phases of the business cycle: ”expansion”, ”peak”, ”recession” and ”recovery

” (see, for example, Ahn et al. (2016)). The business cycle is thus a fundamental yet

ambiguous concept, since it can refer to conceptually different economic fluctuation.

To deepen the knowledge of interaction dynamics between financial markets the macroe-

conomy, this ambiguity needs above all to be removed. To this end, economic cycles are

rigorously defined, namely the classical business cycle and the growth cycle, which seeks

to represent the fluctuations around the trend. If we consider the trend growth rate as

the potential growth rate, the growth cycle is better known as the output gap. The de-

scription of different economic phases is then refined by jointly considering both economic

cycles. It improves the classical analysis of economic cycles by considering sometimes two

distinct phases and sometimes four distinct phases.

To explain the theoretical the influence of economic cycles on the time-varying risk

premiums, the key concept is nominal growth expectations, which is the same thing as

saying that income expectations are crucial. Indeed, a fall in nominal GDP growth tends

to lead to mass unemployment, lower profits and sharply higher debt defaults (Keynes

(1936) and Sumner (2014)). Forward-looking investors adjust thus their portfolios accord-

ing to their ever-changing current expectations of future events. The theory of adaptive

expectations (Fisher (1911)) makes the link between the cyclical framework and nomi-
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nal growth expectations. For example, when the real growth rate is above its potential,

inflation pressures surge: the nominal growth rate of the economy increases. Adaptive

expectations imply that nominal growth rate expectations should increase.

To gauge the potential value of this cyclical framework, dynamic investment strategies

based on economic cycles turning points are created. Empirical results highlight the

importance of economical cycles, especially the growth cycle, for euro and dollar-based

investors. Indeed, strategies based on output gap turning points statistically outperform

not only passive buy-and-hold benchmarks, but also business cycles’ strategies, in the

United States and in the euro area.

In other words, asset prices and returns are not correlated with the business cycle

(Cochrane (2016)) but are primarily caused by the economic cycles. Assessing if the

current growth rate of the economy is above or under the trend growth rate is thus the

most crucial task for investors.

At last, the presence of regimes with different correlations and assets’ characteristics

can enhance strategic asset allocation, which is the most important determinant of long

run investment success (Campbell and Viceira (2002)). Since correlations should theoret-

ically vary during economic regimes, the main idea is to build a portfolio that would stay

diversified when needed. Empirical results illustrate the influence of the correlation ma-

trix on strategic asset allocation. In particular, investment-grade corporate bonds are not

substitute to government bonds and risk-averse investors should select an asset allocation

based on a correlation matrix whose elements are generated from bad times periods.

1.1 Cyclical framework

1.1.1 Economic cycles definitions

The classical business cycle definition is due to Burns and Mitchell (1946): ”Business

cycles are a type of fluctuation found in the aggregate economic activity of nations that
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organize their work mainly in business enterprises: a cycle consists of expansions occur-

ring at about the same time in many economic activities, followed by similarly general

recessions, contractions, and revivals which merge into the expansion phase of the next

cycle”. The business cycle is meant to reproduce the cycle of the global level of activity

of a country. The turning points of that cycle (named B for peaks and C for troughs)

separate periods of recessions from periods of expansions.

Burns and Mitchell (1946) point out two main stylised facts of the economic cycle. The

first is the co-movement among individual economic variables: most of macroeconomic

time series evolve together along the cycle. The second is non-linearity: the effect of

a shock depends on the rest of the economic environment. In other words, economic

dynamics during economically stressful times are potentially different from normal times.

For instance, small shock, such as a decrease in housing prices, can sometimes have large

effects, such as recessions.

The growth cycle, introduced by Mintz (1974), seeks to represent the fluctuations

of the GDP around its long-term trend. Mintz (1974) indicates that the rationale for

investigating the growth cycle is that absolute prolonged declines in the level of economic

activity tend to be rare events when the economy grows at a sustained and stable rate, so

that in practice many economies do not very often exhibit recessions in classical terms. As

a consequence, other approaches to produce information on economic fluctuations have

to be proposed.

Growth cycle turning points (named A for peaks and D for troughs) have a clear

meaning: peak A is reached when the growth rate decreases below the trend growth rate

and the trough D is reached when the growth rate overpasses it again. Those downward

and upward phases are respectively named slowdown and acceleration. A slowdown signals

thus a prolonged period of subdued economic growth though not necessarily an absolute

decline in economic activity. In other words, all recessions involve slowdowns, but not all

slowdowns involve recessions.
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If the long-term trend is considered as the estimated potential level1, then the growth

cycle equals the output gap. A turning point of the output gap occurs when the current

growth rate of the activity is above or below the potential growth rate, thereby signalling

increasing or decreasing inflation pressures.

The ABCD approach (Anas and Ferrara (2004)) refines the description of different

economic phases by jointly considering the classical business cycle and the growth cycle.

Let us suppose that the current growth rate of the activity is above the trend growth rate

(acceleration phase). The downward movement will first materialize when the growth rate

will decrease below the trend growth rate (point A). If the slowdown gains in intensity, the

growth rate could become negative enough to provoke a recession (point B). Eventually,

the economy should start to recover and exits from the recession (point C). As the recovery

strengthens, the growth rate should overpass its trend (point D). However, a slowdown

will not automatically translate into a recession: if the slowdown is not severe enough to

become a recession, then point A will not be followed by point B, but by point D.

This framework improves thus the classical analysis of economic cycles by allowing

sometimes two distinct phases, if the slowdown is not severe enough to become a recession,

and sometimes four distinct phases, if the growth rate of the economy becomes negative

enough to provoke a recession.

1.1.2 Turning point chronology

A cycle turning point chronology is required for empirical studies to create and validate

real-time detection and forecasting methods. The turning point chronology is only suitable

for ex post explanatory analyses and not for ex ante decision making.

In the United States, the NBER’s Business Cycle Dating Bureau’s Committee deter-

mines the peaks and troughs of the classical business cycle. In the euro area, the CEPR

euro area Business Cycle Dating Committee establishes the chronology of recessions and

1The potential output is the maximum amount of goods and services an economy can turn out at full
capacity.
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expansions. The European chronology is only available on a quarterly basis. To refine the

chronology, the monthly GDP introduced by Raffinot (2007)2 is exploited in this article.

For instance, the monthly GDP allows to select the month with the lowest level within

the quarter selected by the CEPR to be chosen as the through of the recession.

If dating the classical business cycle is not an easy task, then dating the growth cycle is

quite challenging since the series must first be de-trended. Several growth cycle extraction

methods have been proposed in statistical literature, ranging from filtering techniques to

parametric modelling, mainly based on state-space models and Markov switching models

(see Anas et al. (2008) for a review). As advocated by Nilsson and Gyomai (2011), a

double Hodrick-Prescott filter (18 months-96 months) is used on the monthly GDP3 (see

Appendix 1.A for more information on this filter).

The turning points of the growth cycle are then estimated by the non-parametric

procedure introduced by Harding and Pagan (2002). The algorithm first identifies peaks as

observations that are lower over a two-sided window of five months and troughs are points

associated with observations in the five month window that are higher. The algorithm

then applies censoring rules to narrow the turning points of the reference cycle: the

duration of a cycle must be no less than 15 months, while the phase (peak to trough or

trough to peak) must be no less than 5 months.

The complete chronology is contained in the table 1.14. The turning point chronology

highlights the persistence of the regimes and the non-linearity of the cycles: the sequence of

up and down phases is recurrent but not periodic. Expansions are longer than recessions.

Moreover, even if the American and euro area chronologies are linked, they are quite

distinct. For example, there was no double dip in the United States following the Great

Recession and there was no recession in the euro area following the dot-com bubble burst.

2A temporal disaggregation based on business surveys of the non revised values of gross domestic
product GDP is used to develop a monthly indicator of GDP.

3In unreported results, others filters were tested, such as Christiano and Fitzgerald (2003) and Baxter
and King (1999). The empirical results are qualitatively similar.

4The American chronology starts in 1985, since Stock and Watson (2003) demonstrate that approxi-
mately 40% of 168 macro variables have significant breaks in their conditional variance during 1983-1985.
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Table 1.1: Turning point chronology

Euro area (Jan 1999-December 2013) United States (Jan 1985-Dec 2013)

Trough D February 1999 Peak A November 1985
Peak A December 2000 Trough D April 1987

Trough D September 2003 Peak A December 1989
Peak A May 2004 Peak B July 1990

Trough D May 2005 Trough C March 1991
Peak A October 2007 Trough D August 1991
Peak B March 2008 Peak A January 1993

Trough C April 2009 Trough D July 1993
Trough D August 2009 Peak A September 94
Peak A June 2011 Trough D March 1996
Peak B August 2011 Peak A June 2000

Trough C November 2012 Peak B March 2001
Trough D March 2013 Trough C November 2001

Trough D February 2003
Peak A October 2007
Peak B December 2007

Trough C June 2009
Trough D September 2009
Peak A June 2011

Trough D December 2011
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Figures 1.1 and 1.2 illustrate the monthly GDP, its trend, the growth cycle and exhibit

the turning points in the euro area between 2001 and 2009. The euro area experienced

a slowdown without recession in 2000-2003. In 2003, the recovery started to materialise

(Point D), but the activity fell apart in May 2004 (Point A). The slowdown was short-

lived: staring in May 2005 (point D) a building boom got under way. The slowdown

starting in October 2007 (Point A) translated into the Great Recession a few months

later (Point B). In April 2009, the recession was over (Point C).

Figure 1.1: Euro area monthly GDP and its trend over 2001-2009

Figure 1.2: Euro area growth cycle over 2001-2009
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1.2 Asset classes and economic cycles

1.2.1 The economic rationale

Key economic concepts

Two key basic economic concepts are needed to deepen the knowledge of interaction

dynamics between financial markets the macroeconomy: nominal GDP and adaptive ex-

pectations.

The economy is simply the sum of all transactions - the exchange of money and credit

for goods, services, and financial assets - among individuals, banks, and governments. The

technical term for the value of everything a country produces is nominal Gross Domestic

Product (nominal GDP). It is total output (real GDP) times the current prices paid. Since

all income is derived from production (including the production of services), the gross

domestic income of a country should exactly equal its gross domestic product. Indeed,

the gross domestic income is the total income received by all sectors of an economy within

a State.

When nominal GDP falls, there is no longer enough spending to sustain the same

number of jobs unless wages fall. Because wages are slow to adjust, unemployment rises

instead (see Keynes (1936) and Sumner (2014)). Moreover, since most debts are not

indexed to inflation, nominal income is the best measure of a person’s ability to repay

their debts. When determining how much debt to take on, borrowers consider their

ability to repay that debt. If income gains falls short of these expectations, interest and

principal payments will be more burdensome than what was planned for. Problems of

debt overhang become that much worse for the economy and debt defaults rise. To sump

up, a fall in nominal GDP growth tends to lead to mass unemployment, lower profits and

sharply higher debt defaults.

Adaptive expectation models are ways of predicting an agent’s behaviour based on

their past experiences and past expectations for that same event. They are introduced by
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(Fisher (1911)) and most famously used by Friedman (1957). For example, if consumers

begin to actually see prices rising, they will begin to form robust expectations of inflation-

ary expectations. The same theory might claim that consumers will expect an economic

recovery to begin only after ample evidence that the turning point has been passed. The

expectations-augmented Phillips curve introduces adaptive expectations into the Phillips

curve. This equation appears in many recent New Keynesian dynamic stochastic general

equilibrium models (Roberts (1995)).

Interactions between economic cycles and asset classes

The existing link between asset classes and the economy is not straightforward, especially

for equities.

The stock price or the value of a company is the sum of all future dividend payments

discounted to its present value. Under a constant payout ratio, the dividend growth rate

will equate to the growth rate in earnings. In other words, investors buy a stock for its

future earnings potential. Since the sum of all money earned in an economy each year

is the nominal GDP, equity prices should thus be linked to nominal growth expectations

(not real growth expectations). When the real growth rate is above its potential, inflation

pressures surge: the nominal growth rate of the economy increases. Adaptive expectations

imply that nominal growth rate expectations should increase, which is the same thing as

saying that income expectations should rise5. In theory, equities should thus perform

well during acceleration phases and suffer during slowdowns. Since slowdowns signal a

prolonged period of subdued economic growth though not necessarily an absolute decline

in economic activity, equities performances can thus be negative when real growth rate

are positive.

In theory, government bonds should perform well during slowdowns and recessions.

Indeed, the expectations theory of the term structure holds that the long-term interest

5A link with the classical drivers of the equity risk premium can be done. For example, market
participants’ expectations about the future economic activity affect the determination of dividends and
thus stock return premiums.
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rate is a weighted average of present and expected future short-term interest rates plus

a term premium (the latter captures the compensation that investors require for bearing

interest rate risk). If the growth rate of the activity is lower than the potential growth

rate, inflation pressures trend down and the central bank is more likely to cut rates. In

consequence, investors should forecast a lower path of future short-term interest rates.

Long-term rates should thus decrease (and bond prices increase).

Because a company’s capacity to service its debt is uncertain, corporate bond should

offer a higher expected return compared to sovereign bonds. Corporate bonds can thus

be decomposed as the sum of a government bond plus a spread, which compensates for

the expected losses due to default. The probability of default for an investment grade

firm is quite small, but raises when corporate income expectations decline. Investment

grade bonds should benefit from falling rates during slowdowns, but to a lesser extent that

government bonds. During acceleration and expansion, investment grade bonds should

take advantage of the declining spread and the coupon. High-yield bonds should behave

more like equities, since defaults have always been commonplace.

For all assets, volatility is higher during bad times. One plausible explanation is that

the uncertainty around the likely course of monetary policy rises during bad times, leading

to an increase in the volatility of the safest and riskiest assets.

1.2.2 Historical facts

Table 1.2 details the four asset classes in consideration. The investment universe is as

stripped-down and simple as possible without raising concerns that the key results will

not carry over to more general and intricate asset classes or factors.
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Table 1.2: Asset classes

Asset class Index

Equities
Euro area Euro Stoxx 50 (total return)
United States S&P 500 (total return)

Government bonds
Euro area IBOXX SOVEREIGNS EUROZONE ALL MATS (total return)
United States BOFA Merrill Lynch Treasury Master Index (total return)

Invesment Grade bonds
Euro area IBOXX Euro Corp All Mats (total return)
United States Barclays Capital U.S. Corporate Investment Grade Index (total return)

High-yield bonds
Euro area IBOXX EUR High Yield Index (total return)
United States BOFA Merrill Lynch High Yield 100 Index (total return)

All series are provided by Datastream.

Table 1.3 confirms that asset classes perform differently during different stages of both

economic cycles and no single asset class dominate under all economic conditions, in line

with the theory.

The returns of the riskiest assets, equities and high yield bonds, are pro-cyclical and

contrasted. For instance, in the United States, equities increase at a rate of 18.7% dur-

ing expansions, whereas they fall by almost 17% during slowdowns. The amplitude of

expected returns equals thus 35%.

The expected returns of government bonds and investment grade bonds are always

positive, even if they are more attractive during bad times. For example, in the euro

area, the performance of government bonds is four time higher during slowdowns (7.9%)

than during expansions (1.9%).

Moreover, the presence of asymmetric volatility for risky assets is most apparent during

bad times (slowdowns) and very bad times (recessions) when a large decline in stock

prices or high yield prices is associated with a significant increase in market volatility.

For example, in the euro area, the stock market volatility increases from 14.3% during

accelerations to 22.9% during slowdowns.

In the euro area, the performance of high yield bonds is surprisingly the same during

accelerations and slowdowns. This is not in line with the theory and with the results

observed in the United States. The limited size of this market and the short sample

period may partly explain this anomaly.

Importantly, the performance to volatility ratio, which compares the expected returns
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of an investment to the amount of risk undertaken to capture these returns, is statistically

different at a 95% confidence level in each macroeconomic environment (except for the

American government bonds as regards the business cycle).

1.3 Dynamic investment strategies

1.3.1 Active portfolio management and economic cycles

To study time-varying risk premiums, the traditional approach is to test whether assets

excess returns are predictable. The literature on return predictability is voluminous (see,

for example, Rapach et al. (2013) for a review on stocks returns, Zhou and Zhu (2017)

for government bonds returns and Lin et al. (2016) for corporate bonds returns). One

drawback with this approach is the disconnection between econometric predictability and

actual profitability (see, among others, Cenesizoglu and Timmermann (2012) or Brown

(2008)). This paper only focusses on profitability6.

To examine the economic value of market forecasts, the current practice is to calculate

realized utility gains for a mean-variance investor who optimally allocates across equities

(or bonds or corporate bonds) and the risk-free asset on a real-time basis. Portfolio

weights are usually constraint to lie between -50% and 150% each month.

Another approach has been preferred, mainly for two reasons. First, the mean-variance

optimisation requires the investor to forecast the excess returns and the variance of as-

set returns.But, even small estimation errors can result in large deviations from optimal

allocations in an optimizer’s result (Michaud (1989)). This is why, academics and practi-

tioners have developed risk-based portfolio optimization techniques (minimum variance,

equal risk contribution, risk budgeting,...), which do not rely on return forecasts (Roncalli

(2013)). Yet, even the variance is hard to estimate. A ten-year rolling window or five-year

6To test the predictability of the proposed economic framework, a regression between asset returns
and the evolution of the output gap should be done. The evolution of the output gap exhibits if the
current growth rate of the economy is above the trend or not. It differs from Cooper and Priestley (2009)
because the sign and the magnitude of the output gap are not taken into account.
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Table 1.3: Summary of returns and risk measures in each macroeconomic en-
vironment, 1999-2013

Euro area

Growth cycle Business cycle Full Period
Slowdown Acceleration Recession Expansion

Equities
Average returns -8.9* 18.1 -14.8* 7.2 4

Volatility 22.9* 14.3 25.6* 18.1 19.5
Performance to volatility ratio -0.4* 1.3 -0.6* 0.4 0.2

Government bonds
Average returns 7.9* 1.9 10.8* 3.6 4.7

Volatility 4.1* 3.4 8.2* 3.4 3.8
Performance to volatility ratio 1.9* 0.6 1.3* 1.1 1.2
Invesment Grade bonds

Average returns 7* 2.3 4.4 4.7 4.7
Volatility 4.6* 2.9 6.4* 3.3 3.9

Performance to volatility ratio 1.5* 0.8 0.7* 1.4 1.2
High-yield bonds
Average returns 9.9 9.8 -2.1* 13.3 9.9

Volatility 15* 5.3 19.8* 7.2 11.1
Performance to volatility ratio 0.7* 1.8 -0.1* 1.8 0.9

United States

Growth cycle Business cycle Full Period
Slowdown Acceleration Recession Expansion

Equities
Average returns -16.9* 18.7 -16.1* 9.8 5.9

Volatility 20.4* 11.2 23.2* 13.6 15.6
Performance to volatility ratio -0.8* 1.7 -0.7* 0.7 0.4

Government bonds
Average returns 10.1* 2.6 6.8* 4.7 4.9

Volatility 5.5* 3.9 6.4* 4.2 4.6
Performance to volatility ratio 1.8* 0.7 1.1 1.1 1.1
Invesment Grade bonds

Average returns 8.1* 5.5 5.4* 6.4 6.3
Volatility 7.9* 4.6 10* 4.6 5.7

Performance to volatility ratio 1* 1.2 0.5* 1.4 1.1
High-yield bonds
Average returns 0.0* 9.4 -6.7* 8.9 6.7

Volatility 13.8* 5.6 16.8* 6.7 8.9
Performance to volatility ratio 0.0* 1.7 -0.4* 1.3 0.8

Note: This table reports annualized average monthly returns, annualized standard deviation (volatility) and performance to volatility
ratio of asset classes during different economic regimes over the period 1999-2013. The performance to volatility ratio compares the
expected returns of an investment to the amount of risk undertaken to capture these returns, the higher the better. * signals that the
null hypothesis of equal mean of the Wilcoxon rank sum is rejected at a 95% confidence level.
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rolling window is often applied to estimate the variance. In a regime switching framework,

another solution has to be found.

Second, the relative profitability of a dynamic strategy using econometrically superior

forecasts shrinks significantly if the investor is highly risk averse and heavily constrained

(Baltas and Karyampas (2016)). As a matter of fact, investors typically face a number

of constraints, either by mandate or regulation, which put hard thresholds on minimum

and maximum allocation across risky assets. For instance, by law in France, equity funds

managers must have at least 60% of their portfolio invested in equities.

To address the same problem with another approach, simple hypothetical dynamic

trading strategies are created7. Dynamic strategies should take advantage of positive

economic regimes, as well as withstand adverse economic regimes and reduce potential

drawdowns.

We consider an investor managing a portfolio consisting of an unique asset class (either

stocks or government bonds) investing 100e or 100$ on January 1, 1999. Each month

the investor decides upon the fraction of wealth to be invested based on the current state

of the economy. If the asset class should perform well, then the investor can leverage

his portfolio (120% of his wealth is invested on the asset and 20% of cash is borrowed),

otherwise he only invests 80% of his wealth and 20% is kept in cash. The active strategies

are then compared among them and with the buy-and-hold strategy - henceforth a passive

strategy. These strategies are named 120/80 hereafter8.

To avoid look-ahead bias, the reallocation takes place at the beginning of the month

following the turning point. As a matter of fact, an investor could not know at the

beginning of any month whether a turning point would occur in that month.

In contrast to the standard approach, asset returns are not predicted but only condi-

7These strategies reflects the investment process in place in the asset management companies where I
used to work.

8Since asset classes perform differently during different stages of the growth cycle, it might be reason-
able to rebalance the portfolio (shifting allocation weights) based on the stage of the economic cycles.
For brevity reasons, the results of such strategies are not presented. Yet if the 120/80 strategies work for
both bonds and equities, it seems reasonable to conclude that dynamic asset allocation strategies should
perform well.
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tioned on the stage of the economic cycle.

The main weakness is that the strategies described so far are not implementable be-

cause investors do not know turning point dates in real time. Yet, recent academic studies

such as Ng (2014) and Berge (2015) apply a machine learning algorithm referred to as

boosting ((Schapire (1990))) to the problem of identifying business cycle turning points in

the United States. Even if forecasting turning points remains challenging, they conclude

that nowcasting turning points in real time is feasible.

1.3.2 Comparison criteria

Performance and risk measures

To compare the different strategies, four different performance and risk measures are

computed:

• The annualized average returns (µ)

• The annualized standard deviation (Volatility)(σ)

• The certainty-equivalent return (CEQ) is the risk-free rate of return that the investor

is willing to accept instead of undertaking the risky portfolio strategy.

CEQ = (µ− rf )−
γ

2
σ2

where rf is the risk-free rate9 and γ is the risk aversion. Results are reported for the

case of γ = 1; 3; 5. More precisely, the CEQ captures the level of expected utility of

a mean-variance investor, which is approximately equal to the certainty-equivalent

return for an investor with quadratic utility (DeMiguel et al. (2009)).

• The Max drawdown (MDD) is an indicator of permanent loss of capital. It measures

the largest single drop from peak to bottom in the value of a portfolio. In brief, the

MDD offers investors a worst case scenario.

9A risk-free interest rate of zero is assumed when calculating the CEQ.
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Pesaran and Timmermann (1994) and Han et al. (2013) demonstrate that the total

cost of transactions appears to be low, less than 1% (around 50 basis points when trading

in stocks while the cost for bonds is 10 basis points). To simplify, since economic turning

points are rare, no transaction costs are considered.

Data snooping

To avoid data snooping, which occurs when a given set of data is used more than once for

purposes of inference or model selection (White (2000)), the model confidence set (MCS)

procedure proposed by Hansen et al. (2011) is computed.

The MCS procedure is a model selection algorithm, which filters a set of models from

a given entirety of models. The resulting set contains the best models with a probability

that is no less than 1− α with α being the size of the test.

An advantage of the test is that it not necessarily selects a single model, instead

it acknowledges possible limitations in the data since the number of models in the set

containing the best model will depend on how informative the data are.

More formally, define a setM0 that contains the set of models under evaluation indexed

by: i = 0, ...,m0. Let di,j,t denote the loss differential between two models by

di,j,t = Li,t − Lj,t, ∀i, j ∈M0

L is the loss calculated from some loss function for each evaluation point t = 1, ..., T . The

set of superior models is defined as:

M∗ = {i ∈M0 : E[di,j,t] ≤ 0 ∀j ∈M0}

The MCS uses a sequential testing procedure to determine M∗. The null hypothesis

being tested is:
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



H0,M : E[di,j,t] = 0 ∀i, j ∈M whereM is a subset ofM0

HA,M : E[di,j,t] 6= 0 for some i, j ∈M

When the equivalence test rejects the null hypothesis, at least one model in the set M

is considered inferior and the model that contributes the most to the rejection of the null

is eliminated from the set M . This procedure is repeated until the null is accepted and

the remaining models in M now equal M̂∗
1−α.

According to Hansen et al. (2011), the following two statistics can be used for the

sequential testing of the null hypothesis:

ti,j =
di,j√

v̂ar(di,j)
and ti =

di√
v̂ar(di)

where m is the number of models in M , di = (m − 1)−1
∑

j∈M di,j, is the simple

loss of the ith model relative to the averages losses across models in the set M , and

di,j = (m)−1
∑m

t=1 di,j,t measures the relative sample loss between the ith and ith models.

Since the distribution of the test statistic depends on unknown parameters a bootstrap

procedure is used to estimate the distribution.

In this paper, the MCS is applied with a profit maximization loss function (CEQ).

As regards investment strategies, the MCS aims at finding the best model and all

models which are indistinguishable from the best, not those better than the benchmark.

To determined if models are better than the benchmark, the stepwise test of multiple

reality check by Romano and Wolf (2005) and the stepwise multiple superior predictive

ability test by Hsu et al. (2013) should be considered. However, if the benchmark is not

selected in the best models set, investors can conclude that their strategies ”beat” the

benchmark.
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1.3.3 Empirical results

Tables 1.4 and 1.5 highlight that active investment strategies based on the growth cycle

statistically outperform not only passive buy-and-hold benchmarks, but also business

cycles’ strategies, in the United States and in the euro area.

For both government bonds and equities, strategies based on growth cycle turning

points are always the only constituent of the best models set M̂∗
75%, whatever the degree

of risk aversion.

In comparison with the benchmark, 120/80 equities strategies based on output gap

turning points reduce the volatility and the losses in extreme negative events (MDD). For

instance, the MDD decreases from 59.9% to 52.4% in the euro area and from 50.9% to

43% in the United States. To sum up, strategies based on the growth cycle improve the

returns and reduce risk measures.

As regards governments bonds, 120/80 strategies based on the growth cycle improve

returns while taking almost the same risk. In the euro area, the MDD declines from 5.7%

to 5.2%, whereas the MDD slightly increases from 4.8% to 5% in the Unites States.

The business cycles’ strategies produced mixed results. In particular, for bond in-

vestors, they do not add any value and the CEQ of the strategy is lower than the CEQ

of the benchmark for all the degrees of risk aversion. As regards equities, avoiding the

worst times is undoubtedly a good idea to get better returns, especially in the United

States. The performance progresses from 4% to 5.4% in the euro area and from 5.9% to

8.3% in the United States. Yet risk measures increase. In particular,, the MDD surge

from 59.9% to 65.4% in the euro area and the volatility rises from 15.5% to 16.8% in the

United States.

In the end, expansions, which are composed of both acceleration and slowdown periods,

can not be considered as good times, especially for the safest assets. The only suitable

definition of good and bad times is thus acceleration and slowdown periods.
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Table 1.4: Equities: 120/80 investment strategies

Euro area

Growth cycle 120/80 Business cycle 120/80 Full period
Average returns 6.8 5.4 4.0

Volatility 18.0 21.5 19.5
CEQ : γ = 1 0.052* 0.031 0.021
CEQ : γ = 3 0.019* -0.015 -0.017
CEQ : γ = 5 -0.013* -0.062 -0.055

MDD -52.4 -65.4 -59.9

United States

Growth cycle 120/80 Business cycle 120/80 Full period
Average returns 9.7 8.3 5.9

Volatility 15.1 16.8 15.5
CEQ : γ = 1 0.086* 0.069 0.047
CEQ : γ = 3 0.063* 0.041 0.023
CEQ : γ = 5 0.040* 0.012 -0.001

MDD -43.0 -51.0 -50.9

Note: This table reports the characteristics of active strategies based on the state of the economic cycle over the period from January
1999 to December 2013. A 120/80 equity strategy is computed. Returns are monthly and annualized. The volatility corresponds to the
annualized standard deviation. The certainty-equivalent return (CEQ) is the risk-free rate of return that the investor is willing to accept
instead of undertaking the risky portfolio strategy. The Max drawdown (MDD) measures the largest single drop from peak to bottom in

the value of a portfolio. * indicates the model is in the set of best models M̂∗

75%
.

Table 1.5: Government bonds: 120/80 investment strategies

Euro area

Growth cycle 120/80 Business cycle 120/80 Full period
Average returns 5.2 4.4 4.7

Volatility 4.0 3.6 3.8
CEQ : γ = 1 0.051* 0.043 0.046
CEQ : γ = 3 0.050* 0.042 0.045
CEQ : γ = 5 0.048* 0.041 0.043

MDD -5.2 -5.2 -5.7

United States

Growth cycle 120/80 Business cycle 120/80 Full period
Average returns 5.2 4.3 4.9

Volatility 4.8 4.4 4.6
CEQ : γ = 1 0.051* 0.042 0.048
CEQ : γ = 3 0.049* 0.040 0.046
CEQ : γ = 5 0.046* 0.038 0.044

MDD -5.0 -5.4 -4.8

Note: This table reports the characteristics of active strategies based on the state of the economic cycle over the period from January
1999 to December 2013. A 120/80 bond strategy is computed. Returns are monthly and annualized. The volatility corresponds to the
annualized standard deviation. The certainty-equivalent return (CEQ) is the risk-free rate of return that the investor is willing to accept
instead of undertaking the risky portfolio strategy. The Max drawdown (MDD) measures the largest single drop from peak to bottom in

the value of a portfolio. * indicates the model is in the set of best models M̂∗

75%
.

These results have also implications for the risk management and hedging. Especially,

in the options market one can utilize the current state of the economy to hedge the

portfolio against the possible price declines. For example, besides following one of the
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the previous strategy, writing an out-of-money covered call or buy a put option when the

stock market is expected to decrease (slowdown or recession) would limit the losses.

Timing of turning point detection

A cyclical framework with learning gives content to the idea of an economy moving grad-

ually from one regime to another, particularly if the central bank as well as the public is

assumed to be updating its beliefs (Bernanke (2007)).

It implies that the strategies described in the previous sections should not rely on an

exact timing of turning points detection. To verify the validity of this claim, the 120/80

strategies are computed based on different timings of the turning points detection: up to

three months in advance, right in time or up to three months late.

Tables 1.6 and 1.7 illustrate that timing is an important issue, but an exact timing is

not needed.

Table 1.6: Government bonds: 120/80 investment strategies and timing of
growth cycle turning points detection

Euro area

Right timing One month Two months Three months One month Two months Three months
ahead ahead ahead late late late

Average returns 5.2 5.1 5.0 5.0 5.2 5.1 5.0
Volatility 4.0 4.0 4.0 4.0 4.1 4.1 4.1

CEQ : γ = 1 0.051* 0.050* 0.049 0.049 0.051* 0.050* 0.049
CEQ : γ = 3 0.050* 0.049* 0.048 0.048 0.049* 0.048 0.047
CEQ : γ = 5 0.048* 0.047* 0.046 0.046 0.048* 0.047* 0.046

MDD -5.2 -5.2 -5.2 -5.2 -5.2 -5.7 -6.0

United States

Right timing One month Two months Three months One month Two months Three months
ahead ahead ahead late late late

Average returns 5.2 5.3 5.1 5.1 5.1 5.0 4.9
Volatility 4.8 4.8 4.7 4.8 4.8 4.8 4.7

CEQ : γ = 1 0.051* 0.052* 0.050 0.050 0.050 0.049 0.048
CEQ : γ = 3 0.049* 0.050* 0.048 0.048 0.048 0.047 0.046
CEQ : γ = 5 0.046* 0.047* 0.045 0.045 0.045 0.044 0.045

MDD -5.0 -5.0 -5.0 -5.0 -5.3 -5.4 -5.4

Note: This table reports the characteristics of the active strategies based on different timing of the turning point detection: in advance,
right in time or late. It is an in-sample analysis. A 120/80 equity strategy and a 120/80 bond strategy are computed. Returns
are monthly and annualized. Active strategies are then compared with the buy-and-hold strategy. The volatility corresponds to the
annualized standard deviation. The certainty-equivalent return (CEQ) is the risk-free rate of return that the investor is willing to accept
instead of undertaking the risky portfolio strategy. The Max drawdown (MDD) measures the largest single drop from peak to bottom in

the value of a portfolio. * indicates the model is in the set of best models M̂∗

75%
.
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Table 1.7: Equities: 120/80 investment strategies and timing of growth cycle
turning points detection

Euro area

Right timing One month Two months Three months One month Two months Three months
ahead ahead ahead late late late

Average returns 6.8 6.9 7.1 7.0 5.9 4.9 4.4
Volatility 18 18.2 18.4 18.4 18 18.3 18.6

CEQ : γ = 1 0.052* 0.052* 0.054* 0.053 0.043 0.032 0.023
CEQ : γ = 3 0.019* 0.019* 0.020* 0.019* 0.010 -0.001 -0.012
CEQ : γ = 5 -0.013* -0.014* -0.014* -0.015* -0.022 -0.035 -0.046

MDD -52.4 -53.0 -52.0 -52.5 -53.0 -55.0 -55.6

United States

Right timing One month Two months Three months One month Two months Three months
ahead ahead ahead late late late

Average returns 9.3 9.5 9.3 9.2 9.2 9.1 8.7
Volatility 15.5 15.6 15.7 15.9 15.5 15.5 15.3

CEQ : γ = 1 0.081* 0.083* 0.081* 0.079 0.080 0.079 0.075
CEQ : γ = 3 0.057* 0.058* 0.056 0.054 0.056 0.055 0.052
CEQ : γ = 5 0.033* 0.034* 0.031 0.029 0.032 0.031 0.028

MDD -43.0 -43.3 -43.0 -45.7 -43.0 -43.0 -44.0

Note: This table reports the characteristics of the active strategies based on different timing of the turning point detection: in advance,
right in time or late. It is an in-sample analysis. A 120/80 equity strategy and a 120/80 bond strategy are computed. Returns
are monthly and annualized. Active strategies are then compared with the buy-and-hold strategy. The volatility corresponds to the
annualized standard deviation. The certainty-equivalent return (CEQ) is the risk-free rate of return that the investor is willing to accept
instead of undertaking the risky portfolio strategy. The Max drawdown (MDD) measures the largest single drop from peak to bottom in

the value of a portfolio. * indicates the model is in the set of best models M̂∗

75%
.

Table 1.6 highlights that bonds investors should rebalance their portfolio around the

turning points or a month sooner in the United States and around the turning points or

little bit later in the euro area. In the United States, the strategies ”right in time” and

”one month ahead” compose the best models sets M̂∗
75% for all the degrees of risk aversion.

In the euro area, the best models sets M̂∗
75% consist of many strategies and differ

depending on the degree of risk aversion. Yet, the strategies: ”right in time”, ”one month

ahead”, ”one month late” and ”two months late” belong to all best models sets. These

results are in line with the fact that markets forecast a monetary tightening only when

there are inflation pressures: the current growth rate of the economy has to be above its

potential.

Table 1.7 paints a contrasted picture. The behaviour of the investor differ depending

on the country. In the United States, for all the degrees of risk aversion, the strategies

”right in time” and ”one month ahead” form the best models set M̂∗
75%. In the euro area,

investors should shift weights in advance of the turning points: the strategy ”three months

ahead” belongs to all best models set M̂∗
75%. This result may stem from the leading role

for the United States as regards stocks markets (RAPACH et al. (2013)).
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To validate this claim, the same 120/80 investment strategy is tested on European

equities, but the rebalancing of investments is based on American turning points instead

of European turning points. Table 1.8 highlights that the 120/80 strategy based on the

American cycle achieves higher returns (8.8% against 6.8%) than the one based on euro

area cycle and is the only strategy in the best models set M̂∗
75%. Euro-based equity

investors should thus focus on the American chronology instead of their own cycle.

Table 1.8: European equities: 120/80 investment strategies based on the Amer-
ican chronology

Euro area

European Growth cycle 120/80 American Growth cycle 120/80 Full period
Average returns 6.8 8.8 4.0

Volatility 18.0 19.1 19.5
CEQ : γ = 1 0.052 0.070* 0.021
CEQ : γ = 3 0.019 -0.033* -0.017
CEQ : γ = 5 -0.013 -0.003* -0.055

MDD -52.4 -52.2 -59.9

Note: This table reports the characteristics of active strategies based on the state of the economic cycle over the period from January
1999 to December 2013. A 120/80 equity strategy is computed. Returns are monthly and annualized. The volatility corresponds to the
annualized standard deviation. The certainty-equivalent return (CEQ) is the risk-free rate of return that the investor is willing to accept
instead of undertaking the risky portfolio strategy. The Max drawdown (MDD) measures the largest single drop from peak to bottom in

the value of a portfolio. * indicates the model is in the set of best models M̂∗

75%
.

1.4 Strategic asset allocation and economic cycles

The primary goal of a strategic asset allocation is to create an asset mix which will provide

an optimal balance between expected risk and return for a long-term investment horizon.

Strategic asset allocation is the most important determinant of long run investment success

(Campbell and Viceira (2002).

The asset allocation basis is to combine assets with low correlations to reduce the

variance, or riskiness, of a portfolio. It is said to be the only the ”only free lunch”

in investing (Markowitz (1952)). The traditional inputs required for an optimizer are

expected returns, volatility and a correlation matrix. Even with more modern techniques,

such as risk-based portfolio (Roncalli (2013)) or ”Hierarchical Risk Parity” (López de

Prado (2016a)), a correlation matrix is still needed.
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1.4.1 Correlations and economic cycles

Tables 1.9 and 1.10 highlight that correlations are time varying and sensitive to economic

cycles. In particular, asset classes are more correlated during bad times than during good

times. We recall that bad times refer to slowdown periods (and thus recessions) and good

times refer to acceleration periods. Expansions can not be considered as good times, since

they are composed of both acceleration and slowdown periods.

An important implication of higher correlation is that otherwise-diversified portfolio

lose some of diversification benefit during bad times, when most needed.

The correlation between stocks and bonds is arguably the most important correlation

input to the asset allocation decision. The full sample average of the realized correlation

is -0.14 in the euro area and -0.04 in the United States, but there has been substantial

variation around this mean. From a theoretical point of view, equities should suffer during

bad times and bonds should perform well. The correlation should be negative.

Good times are more complex to analyse. Equities should increase. Government

bonds should benefit from the reinvestment of the coupons. Indeed, during good times,

government interest rates should be high and coupons should support the performance of

this asset10.

The correlation between equities and government bonds should thus be slightly posi-

tive, especially near the end of an acceleration period. Tables 1.9 and 1.10 confirm this

assessment: the realized correlation during acceleration periods is 0.01 in the euro area

and 0.05 in the United States.

The covariation between equities and credit bonds is also a crucial input to managing

the risk of diversified portfolios. For instance, if credit appears attractive relative to

equities, portfolio managers may choose to take a kind of equity risk via credit bonds.

Tables 1.9 and 1.10 emphasize that equities and credit bonds are more correlated

10Low interest rates are not the symbol of easy monetary policy, but rather an outcome of excessively
tight monetary policy (see Friedman (1992) and Friedman (1997)). If monetary conditions are tight then
inflation and growth expectations decrease and as a consequence bond yields will also fall.
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during bad times than during good times. For instance, in the euro area, there is a

marked increase from -0.04 to 0.67 in the correlation between equities and investment

grade bonds bonds during recessions. In the United States, the correlation between equi-

ties and investment grade bonds is much more significant during slowdowns (0.63) than

during accelerations (0.30). From a theoretical point of view, Merton (1974) posits that

equity should behave like a call option on the assets of the firm, whereas risky debt should

behave like a government bond plus a short position in a put option on the firm’s assets.

The short option position embedded in credit bonds leads to negative convexity in their

payoff profile. As a result, the relationship between credit and equity returns becomes

stronger in the Merton model when firm and equity valuations fall.

As a consequence, investment-grade corporate bonds are not substitute to government

bonds. Indeed, correlation to equities during bad times should be positive for investment-

grade corporate bonds and negative for government bonds. The increasing importance of

investment-grade corporate bonds in large institutional portfolios (Ilmanen (2011)) may

partly explains the large losses during the last crisis.

Table 1.9: Return correlations in the euro area, 1999-2013

Eurostoxx Gov IG
Eurostoxx
Gov -0.14
IG 0.35 0.55
HY 0.62 -0.08 0.62

Acceleration

Eurostoxx Gov IG
Eurostoxx
Gov 0.01
IG 0.09 0.83
HY 0.55 0.21 0.53

Slowdown

Eurostoxx Gov IG
Eurostoxx
Gov -0.18
IG 0.48 0.42
HY 0.66 -0.18 0.66
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Expansion

Eurostoxx Gov IG
Eurostoxx
Gov -0.12
IG 0.08 0.73
HY 0.55 0.04 0.56

Recession

Eurostoxx Gov IG
Eurostoxx
Gov -0.08
IG 0.67 0.38
HY 0.69 -0.14 0.69
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Table 1.10: Return correlations in the United States, 1988-2013

S&P500 Gov IG
S&P500
Gov -0.04
IG 0.32 0.73
HY 0.57 -0.02 0.48

Acceleration

S&P500 Gov IG
S&P500
Gov 0.05
IG 0.30 0.86
HY 0.53 0.09 0.45

Slowdown

S&P500 Gov IG
S&P500
Gov -0.10
IG 0.39 0.53
HY 0.63 -0.10 0.54

Expansion

S&P500 Gov IG
S&P500
Gov -0.02
IG 0.25 0.86
HY 0.51 0.06 0.42

Recession

S&P500 Gov IG
S&P500
Gov -0.10
IG 0.51 0.34
HY 0.70 -0.20 0.61

1.4.2 A truly diversified strategic asset allocation

Since correlations vary during economic regimes, the main idea is to build a portfolio

that would stay diversified when needed. Indeed, assets correlations are a key input and

nothing prevents from carefully selecting the correlation matrix used to establish the asset

allocation. Only a chronology of the regimes is needed.

An out-of-sample analysis in the United States illustrates this important point (there

is no recession in our sample before 2007 in the euro area, thereby drastically limiting an

out-of-sample analysis).

Three different strategic asset allocations are computed. Only the correlation matrix

used to estimate the weights differs. The first correlation matrix is calculated over the

complete period 1988-2002. The second is calculated over the months labelled as slowdown
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during the period 1988-2002. The third is calculated over the months labelled as recession

during the period 1988-2002.

While respecting the chosen asset allocation, the three portfolios evolve from January

2003 to December 2013.

The investment universe is composed of the following assets: cash (Fed funds), S&P500,

governments bonds, investment grade bonds and high-yield bonds.

The chosen targeted volatilities equal 6%, for risk adversed investors, and 10%, which

is comparable to the historical volatility of the classical 60/40 asset allocation over the

period 1988-2002.

Tables 1.11 and 1.12 confirm the importance of the correlation matrix for asset al-

location choices. In comparison with the benchmark, allocations based on slowdown or

recession matrix reduce the out-of-sample volatility and the losses in extreme negative

events (MDD). This is what risk-averse investors value the most.

For instance, considering the worst times (recessions) to build the correlation matrix,

allows to reduce the MDD from 18.8% to 17.5% for a targeted volatility of 6% and from

42.0% to 37.6% for a targeted volatility of 10%.

Moreover, for all the degrees of risk aversion and all the targeted volatilities, the strate-

gies based on the slowdown matrix are selected in the best models sets M̂∗
75%. Strategies

based on the recession matrix are selected in all best models sets M̂∗
75% but one. These

results confirm the interest of this approach. The strategy based on the full period matrix

is only selected in one best models sets M̂∗
75%, for a targeted volatility of 10% and γ = 1.

This strategy achieves higher returns (8.9%) but the volatility is higher than 10% and

equals 11.8%, which is not in line with the initial objective.

To sum up briefly, investors should favour asset allocations based on bad times corre-

lation matrix, since the portfolios stay diversified when needed.
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Table 1.11: Strategic asset allocation, 6% volatility

United States (2003-2013)

Full period Slowdown Recession
Average returns 6.7 6.9 6.8

Volatility 6.7 6.4 6.4
CEQ : γ = 1 0.064 0.067* 0.067*
CEQ : γ = 3 0.060 0.063* 0.062*
CEQ : γ = 5 0.054 0.059* 0.058*

MDD -18.8 -17.9 -17.5
Note: This table reports out-of-sample strategic asset allocation strategies’ performances in the United States. Three portfolios are
build based on correlation matrix, whose elements are generated from the different economic regimes (full period, slowdown, recession)
over the period 1988-2002. The targeted volatility is 6%. While respecting the chosen asset allocation, the five portfolios evolve from
January 2003 to December 2013. Returns are monthly and annualized. The volatility corresponds to the annualized standard deviation.
The certainty-equivalent return (CEQ) is the risk-free rate of return that the investor is willing to accept instead of undertaking the
risky portfolio strategy. The Max drawdown (MDD) measures the largest single drop from peak to bottom in the value of a portfolio. *

indicates the model is in the set of best models M̂∗

75%
.

Table 1.12: Strategic asset allocation, 10% volatility

United States (2003-2013)

Full period Slowdown Recession
Average returns 8.9 8.7 8.5

Volatility 11.8 10.4 10.2
CEQ : γ = 1 0.082* 0.082* 0.080
CEQ : γ = 3 0.068 0.071* 0.070*
CEQ : γ = 5 0.054 0.060* 0.059*

MDD -42.0 -40.1 -37.6
Note: This table reports out-of-sample strategic asset allocation strategies’ performances in the United States. Three portfolios are build
based on correlation matrix, whose elements are generated from the different economic regimes (full period, slowdown, recession) over the
period 1988-2002. The targeted volatility is 10%, which is comparable to the historical volatility of the classical 60/40 asset allocation
over the period 1988-2002. While respecting the chosen asset allocation, the five portfolios evolve from January 2003 to December 2013.
Returns are monthly and annualized. The volatility corresponds to the annualized standard deviation. The certainty-equivalent return
(CEQ) is the risk-free rate of return that the investor is willing to accept instead of undertaking the risky portfolio strategy. The Max
drawdown (MDD) measures the largest single drop from peak to bottom in the value of a portfolio. * indicates the model is in the set

of best models M̂∗

75%
.

Conclusion

The willingness of investors to bear risk varies over time, larger in good times, and less

in bad times, leading to time-varying risk premiums (Cochrane (2016)). Yet, there is still

no consensus on the definition of good and bad time. This paper tries to fill this gap.

To this aim, economic cycles are first rigorously defined, namely the classical business

cycle and the growth cycle, which seeks to represent the fluctuations around the trend.

The growth cycle is better known as the output gap. The description of different economic
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phases is refined by jointly considering both economic cycles. It improves the classical

analysis of economic cycles by considering sometimes two distinct phases and sometimes

four distinct phases. In particular, all recessions involve slowdowns, but not all slowdowns

involve recessions. A complete chronology of the macroeconomic regimes is established.

Then, the theoretical influence of economic cycles on time-varying risk premiums is

explained and exhibited. The key concept is nominal growth expectations, which is the

same thing as saying that income expectations are crucial. The theory of adaptive expec-

tations (Fisher (1911)) makes the link between the cyclical framework and nominal growth

expectations. For example, when the real growth rate is above its potential, inflation pres-

sures surge: the nominal growth rate of the economy increases. Adaptive expectations

imply that nominal growth rate expectations should increase. Forward-looking investors

adjust thus their portfolios according to increasing income expectations.

Dynamic investment strategies based on economic cycles turning points highlight the

importance of economical cycles, especially the growth cycle, for euro and dollar-based

investors. Indeed, strategies based on output gap turning points statistically outperform

not only passive buy-and-hold benchmarks, but also business cycles’ strategies, in the

United States and in the euro area.

In theory, asset returns are thus not correlated with the business cycle but are primarily

caused by the economic cycles. Assessing if the current growth rate of the economy is

above or under the trend growth rate is the most crucial task for investors.

The presence of regimes with different correlations and assets’ characteristics can en-

hance strategic asset allocation, which is the most important determinant of long run

investment success (Campbell and Viceira (2002)). In particular, investment-grade cor-

porate bonds are not substitute to government bonds and risk-averse investors should

select an asset allocation based on a correlation matrix whose elements are generated

from bad times periods.

Last but not least, this article opens the door for further research. An asset allocation

based on real time leading indicators comes naturally to mind. It could also be very inter-
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esting to study how macroeconomic regimes impact the diversifying power of alternative

asset classes, such as real estate, commodities, hedge funds or private equity.
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Appendix

1.A The double Hodrick-Prescott filter

A time series yt may be decomposed into a trend or growth component gt and a cyclical

component ct.

yt = gt + ct, t = 1, 2, . . . , T

The Hodrick–Prescott filter effects such a decomposition by minimizing the following:

T∑

t=1

(yt − gt)
2 + λ

T−1∑

t=2

((gt+1 − gt)− (gt − gt−1))
2 .

The first term above is the sum of squared cyclical components ct = yt − gt. The second

term is a multiple λ of the sum of squares of the trend component’s second differences.

This second term penalizes variations in the growth rate of the trend component: the

larger the value of λ, the higher is the penalty and hence the smoother the trend series.

The Hodrick-Prescott filter is applied twice to become a bandpass filter. The long

term trend is first filtered by setting λ to a high value. The filter is then applied again

with a small λ to remove seasonal patterns.
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Chapter 2

Can macroeconomists get rich

nowcasting output gap turning

points with a simple

machine-learning algorithm?

Abstract

To nowcast output gap turning points, probabilistic indicators are created from a

simple and transparent machine-learning algorithm known as Learning Vector Quan-

tization. Those indicators need to be robust, interpretable and preserve economic

consistency. The real-time ability of the indicators to quickly and accurately detect

economic turning points in the United States and in the euro area is gauged. To

assess the value of the indicators, profit maximization measures based on trading

strategies are employed in addition to more standard criteria. When comparing

predictive accuracy and profit measures, the bootstrap based model confidence set

43
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procedure is applied to avoid data snooping. A substantial improvement in profit

measures over the benchmark is found: macroeconomists can get rich nowcasting

output gap turning points.

Introduction

In his seminal paper, Okun (1962) defines the potential Gross Domestic Product as the

maximum amount of goods and services an economy can produce under conditions of

full employment. The output gap, which is the deviation of actual output from estimated

potential, has played an important role in the conduct of monetary policy and fiscal policy

ever since.

A turning point of the output gap occurs when the current growth rate of the activity

passes above or below the potential growth rate, thereby signalling increasing or decreasing

inflation pressures. Output gap turning points provide thus extremely reliable pieces of

information. For instance, if a central bank wants to tighten monetary policy, because

the economy is overheating, a peak of the output gap would indicate that its strategy

starts to bear fruit. Moreover, Chapter 1 emphasizes that investment strategies based

on output gap turning points achieve impressive risk-adjusted returns, even better than

those based on business cycle turning points 1.

However, detecting economic turning points in real time is easier said than done. For

instance, in May 2001, the Survey of Professional Forecasters, conducted by the American

Statistical Association and the National Bureau of Economic Research, said there would

not be a recession in 2001, even though one had already started.

One stylised fact of economic cycles is the non-linearity: the relationship between

economic variables is not simply static, but instead is dynamic and fluctuating. In other

words, economic dynamics during economically stressful times are potentially different

1With a complete different approach, Cooper and Priestley (2009) point out the importance of the
output gap for investment decisions. To read more on this subject, see Chapter 1.
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from normal times. For example, Phillips (1958) states that the relation between unem-

ployment and the rate of change of wage rates is likely to be highly non-linear.

Real-time regime classification requires thus methods capable of taking into account

the non-linearity of the cycles. In this respect, many non-linear parametric models have

been proposed, such as smooth-transition autoregressive models (see, for example, Ferrara

and Guegan (2005)), non-linear probit models (see, among others, Liu and Moench (2016))

or Markov switching models (see Piger (2011) for a review). Parametric models are

effective if the true data generating process (DGP) linking the observed data to the

economic regime is known. Nevertheless, the assumption of a particular DGP is often

too restrictive or unrealistic. It implies practical issues in estimating parametric models,

especially the presence of frequent local maxima in the likelihood. Therefore, in the

absence of knowledge of the true DGP, non-parametric methods, such as machine-learning

algorithms, may be preferable as they do not rely on a specification of the DGP (Giusto

and Piger (ming)).

The machine-learning approach treats the DGP as unknown and performs prediction

and classification by generalizing from examples. Giusto and Piger (ming) introduce in

economics a transparent and simple machine-learning algorithm known as Learning Vector

Quantization (LVQ henceforth), which appears very competitive with commonly used

alternatives. LVQ has significant computational advantages over parametric methods:

the algorithm is intuitive, easily implemented and can be modified to incorporate data

series that arrive with different reporting lags, as well as data series of mixed reporting

frequency (Giusto and Piger (ming)). The interpretability of the resulting model makes

LVQ especially attractive for complex real life applications: LVQ has been successfully

applied to various supervised classification tasks such as radar data extraction or spam

email detection.

To get useful signals for policy makers and for investors, this paper attempts to create

indicators from LVQ, which could quickly and accurately detect output gap turning points

in real time, not only in the United States but also in the euro area. Those indicators



46

should be robust, interpretable and preserve economic consistency. Indeed, the ability of

policy makers to understand these models is indispensable, since it may be a prerequisite

for trust (Ribeiro et al. (2016)).

To prove that the models built are effective, several alternative classifiers are computed.

Importantly, to avoid data snooping, which occurs when the same data set is employed

more than once for inference and model selection, the comparison of predictive accuracy

and profit measures is assessed using the model confidence set procedure proposed by

Hansen et al. (2011).

The results provide evidence that LVQ is very effective, despite its simplicity. Indeed,

a substantial improvement in profit measures over the benchmark and competitive models

is found: macroeconomists can get rich nowcasting output gap turning points.

2.1 Learning Vector Quantization

This section briefly introduces LVQ. Refer to Kohonen (2001) for a detailed exposition of

this approach.

The LVQ is a prototype-based supervised classification algorithm. The basic idea of

this algorithm is to find a natural grouping in a set of data. As supervised method, LVQ

uses known target output classifications for each input pattern of the form. LVQ algo-

rithms do not approximate density functions of class samples like Vector Quantization or

Probabilistic Neural Networks2 do, but directly define class boundaries based on proto-

types, a nearest-neighbour rule and a winner-takes-it-all paradigm. In other words, LVQ

takes both historical data and its classification as an input, which is then used to train

the algorithm. Based on this training, the model can label new data that has not yet

been classified.

LVQ has significant computational advantages over parametric methods: the algorithm

2LVQ can be understood as a special case of an artificial neural network: LVQ is a feedforward net
with one hidden layer of neurons, fully connected with the input layer.
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is intuitive, simply performed and can be easily modified to incorporate data series that

arrive with different reporting lags, as well as data series of mixed reporting frequency

(Giusto and Piger (ming)). Moreover, LVQ can be implemented when there is a large

number of indicators with little increase in computational complexity.

The main idea of the algorithm is to cover the input space of samples with ”codebook

vectors” (CVs), each representing a region labelled with a class. Once these relevant points

are singled out, data is classified to belong to the same class as the closest codebook vector.

In this paper, the Euclidean metric is used as it is the dominant metric in the literature.

Learning means modifying the weights in accordance with adapting rules and, there-

fore, changing the position of a CV in the input space. Since class boundaries are built

piecewise-linearly as segments of the mid-planes between CVs of neighbouring classes, the

class boundaries are adjusted during the learning process. The tessellation induced by

the set of CVs is optimal if all data within one cell indeed belong to the same class.

Giusto and Piger (ming) describe LVQ algorithm as follows. Let X be a collection of

N observations xn ∈ R
m, n = 1, ..., N for which the classification in the set {Ck}Kk=1 is

known. Let there be N̄ ∈ [K,N ] codebook vectors mi ∈ R
m, i = 1, 2, ..., N̄ with given

initial locations. Finally, let g = 1, 2, ..., G denote iterations of the algorithm and let

αg be a decreasing sequence of real numbers bounded between zero and one. Given the

initial location of the N̄ codebook vectors, the LVQ algorithm makes adjustments to their

location through these steps:

Step 1 Let g = 1 and n = 1

Step 2 Identify the codebook vector mc
g closest to the data point xn

c = argmini∈{1,...,N̄}‖xn −mg
i ‖

Step 3 Adjust the location of the codebook vector with index c according to the following
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rule:





mg+1
c = mg

c + αg[xn −mg
c ] if xn andmg

c belong to the same class

mg+1
c = mg

c − αg[xn −mg
c ] otherwise

Step 4 If n+1 ≤ N let n = n+1 and repeat from step 2. Otherwise let n = 1 and g = g+1

and if g ≤ G repeat from step 2; stop otherwise.

Classification after learning is based on a presented sample’s vicinity to the CVs: the

classifier assigns the same class label to all samples that fall into the same tessellation. This

process is analogous to the in-sample parameter estimation and out-of-sample prediction

steps employed with parametric statistical models.

Let xN+1 a new point for which the classification is unknown. Its class is predicted by

first finding the codebook vector mc that is closest to xN+1 in the Euclidean metric:

c = argmini∈{1,...,N̄}‖xN+1 −mi‖

and then xN+1 is assigned to the same class as is assigned to codebook vector mc.

To define parameters N̄ , α and G, Kohonen (2001) recommendations are followed.

They are based on a survey of a large number of empirical implementations of the LVQ

algorithm. N̄ , the total number of codebooks, is set to 70 and the same number of

codebooks is assigned to each class. The parameter α equals 0.3, while the number of

algorithm iterations, G, is set to 40 times the total number of codebook vectors.

Giusto and Piger (ming) test several approaches to initialize the codebook vectors (k-

means, k-medoids, and self-organizing maps) and recommend to initialize the codebook

vectors to a randomly drawn set of data vectors in their training sample.

Last but not least, LVQ is transparent: there is no issue on how forecasts are derived

(i.e., they do not come from the magical ”black box”). The interpretability of the resulting

model provides further insight into the nature of the data and makes LVQ especially

attractive for complex real life applications.
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2.2 Empirical setup

2.2.1 Real time recursive estimation

To implement the LVQ classifier, a classification of economic regimes is needed. The

turning points of the output gap separate periods of slowdowns (the growth rate of the

economy is below the potential growth rate) and accelerations (the growth rate of the

economy is above the potential growth rate)3. A slowdown signals a prolonged period of

subdued economic growth though not necessarily an absolute decline in economic activity.

This is distinct from business cycles which are defined as a succession of periods of absolute

growth (expansion) and decline in economic activity (recession). As a matter of fact, all

recessions involve slowdowns, but not all slowdowns involve recessions. For instance, if

a slowdown is not severe enough, thanks to counter cyclical policies, then the economy

does not fall into recession, but, on the contrary, starts to grow again.

Two economic phases are considered: slowdown and acceleration. Applied to the

context of nowcasting, it can be summarized as follows:

Rt =





1, if in acceleration

0, otherwise

This paper employs the turning point chronology established in Chapter 1. In the

euro area, over the period from January 1999 to December 2013, the number of periods

identified as slowdown equals the number of periods identified as acceleration. In the

United States, 71 % of the data are classified as acceleration. Over the period from

January 1999 to December 2013, there were 9 turning points in the growth cycle in the

euro area and in the United States.

In the empirical analysis, a recursive estimation is computed: each month the model

3To implement the investment strategies, the sign and the magnitude of the output gap, which are
subject to considerable uncertainty are not needed. The turning points estimations are more robust
(Nilsson and Gyomai (2011)).
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is estimated with the data and the chronology that would have been available at the time

the nowcasting is done. In real time, the complete chronology is not available, but the

monthly GDP introduced by Raffinot (2007)4 allows to quickly refine the turning point

chronology.

The LVQ classifier is thus trained each month on a sample that extends from the

beginning of the sample through month T − 12, over which the turning point chronology

is assumed known5. For instance, in January 2012, the chronology that would have been

available to implement the LVQ classifier runs over the period from January 1988 to

January 2011. The estimation windows is thus expanding as data accumulates.

The turning point identification procedure is based on 100 runs of the LVQ algorithm

with different random initializations for codebook vectors, therefore providing 100 results

of either 1 or 0. The mean of those results is computed and is assumed to be the probability

Pt of being in the regime 1 (acceleration). For a given covariate xn, based on the learning

sample (R1, x1), ..., (RT−12, xT−12):

P x
t = E[Rt = 1|xt]

A threshold of 0.5 appears logical to classify regimes:

R̂x
t =





1, if P x
t ≥ 0.5

0, otherwise

2.2.2 Data set

The real-time detection of turning points faces the difficult issues of late release dates

and data revision. As a matter of fact, key statistics are published with a long delay,

are subsequently revised and are available at different frequencies. For example, official

4A temporal disaggregation based on business surveys of the non revised values of gross domestic
product GDP is used to develop a monthly indicator of GDP

5In unreported results, samples through month T −18 and T −24 have been tested and lead to almost
the same results.
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estimates of economic growth are available on a quarterly basis with a time span of one to

three months. To make matters worse, updates to statistical methods can cause revisions

even after three years have passed.

However, monthly business and consumer surveys provide unique information such

as confidence, rating of business conditions and respondents’ expectations for the next

months. They are released before the end of the month they relate to or just a few days

after and are subject to very weak revisions. They are widely used to detect turning points

in the economic cycle. In the euro area, surveys published by the European Commission

have been proven to be very effective (Bengoechea et al. (2006)) (see Table 2.A.1 in

Appendix 2.A for an exhaustive list).

In the United States, the surveys published by the Institute for Supply Manage-

ment(ISM), the Conference Board and the National Association of Home Builders (NAHB)

are often tested in the literature (Liu and Moench (2016)) (see Tables 2.A.2, 2.A.3 and

2.A.4 in Appendix 2.A for an exhaustive list). The only real economic data tested is the

four-week moving average of initial claims for unemployment insurance, which is a weekly

measure of the number of jobless claims filed by individuals seeking to receive state jobless

benefits.

Moreover, financial series, which are not revised and often available on a daily basis,

have also been considered: government bond yields, different yield curves, investment-

grade yields, high-yield corporate yields, corporate spreads against government bonds,

stock markets, assets volatility, the volatility of volatility of these indexes, the VIX index,

the VSTOXX index, which is the VIX equivalent for the euro area and some commodity

prices (see Table 2.A.5 in Appendix 2.A for an exhaustive list). This paper uses end of

month values to match stock index futures and options contracts settlement prices.6

To detect the turning points in real-time, not only original series are screened, but also

differentiated series (to underline the phases of low and high pace of growth). Because of

the classical trade-off between reliability and advance, different lags of differentiation were

6http://www.cmegroup.com/trading/equity-index/fairvaluefaq.html
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considered: 3 months, 6 months, 9 months, 12 months. The large dataset of predictors

consists of more than 450 monthly variables in the euro area and 500 in the United States.

2.2.3 Model evaluation

Classical set of model selection

Two classical economic metrics are computed to evaluate the quality of classification of a

model.

The first one is the Brier’s Quadratic Probability Score (QPS), defined as follows:

QPS =
1

F

F∑

t=1

(R̂t −Rt)
2

where t = 1, ..., F is the number of forecasts. The best model should strive to minimize

the QPS.

The second one is the area under the Receiver Operating Characteristics curve (AU-

ROC). Given a classifier and an instance, there are four possible outcomes. If the instance

is positive and it is classified as positive, it is counted as a true positive (Tp(c)). If the

instance is negative and classified as negative, it is counted as a true negative (Tn(c)). If

a negative instance is misclassified as positive, it is counted as a false positive (Fp(c)). If

a positive instance is misclassified as negative, it is counted as a false negative (Fn(c)).

The Receiver Operating Characteristics (ROC) curve describes all possible combina-

tions of true positive (Tp(c)) and false positive rates (Fp(c)) that arise as one varies the

threshold c used to make binomial forecasts from a real-valued classifier. As c is varied

from 0 to 1, the ROC curve is traced out in (Tp(c), Fp(c)) space that describes the classi-

fication ability of the model. A perfect classifier would fall into the top left corner of the

graph with a True Positive Rate of 1 and a False Positive Rate of 0.

Accuracy is measured by the Area Under the ROC curve (AUROC), defined by:
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AUROC =

∫ 1

0

ROC(α)dα

An area of 1 represents a perfect test, an area of 0.5 represents a worthless test. A

general rule of thumb is that an AUROC value exceeding 0.85 indicates a useful prediction

performance.

Hanley and McNeil (1982) propose a test to compare the AUROC predictive accuracy.

The aim is to test the best models in the selection with another criterion, thereby further

reducing the set. The t-statistic for the test of H0 : AUROC1 = AUROC2 is given by:

t =
AUROC1 − AUROC2√
(σ2

1 + σ2
2 − 2rσ1 ∗ σ2

where, AUROC1 and AUROC2 are the areas under the curve for models 1 and 2 which

are being compared. Similarly, σ1 and σ2 refer to the variances of the AUROCs for model

1 and model 2, respectively. Finally, r is the correlation between the two AUROCs (see

Hanley and McNeil (1982) or Liu and Moench (2016) for more details on the test statistic

and its implementation.)

Profit maximization measures

For investors, the usefulness of a forecast depends on the rewards associated with the

actions taken by the agent as a result of the forecast. In addition to more standard

criteria, profit maximization measures are employed.

In order to frame the concept of active portfolio management, a specified investment

strategy is required. The investment strategies are as stripped-down and simple as possible

without raising concerns that the key results will not carry over to more general and

intricate methods or asset classes.

We first consider an equity portfolio manager investing 100e or 100$ on January

1, 2007. Each month, the investor decides upon the fraction of wealth to be invested

based on the current state of the economy induced by the indicator that would have been
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available at the time the decision was made. If the probabilistic indicator classifies the

period as acceleration, then the investor can leverage his portfolio (120% of his wealth is

invested on the asset and 20% of cash is borrowed), otherwise he only invests 80% of his

wealth and 20% is kept in cash.

Moreover, if different asset classes perform differently during different stages of the

growth cycle, it might be reasonable to rebalance the portfolio (shifting allocation weights)

based on the stage of the growth cycle. The second strategy aims at beating the classic

asset allocation for an institutional portfolio, i.e. 60% of the portfolio allocated to equities

and 40% to fixed income securities (bonds). The investor decides each month to rebalance

his portfolio. If the probabilistic indicator indicates acceleration, then 80% of the portfolio

is allocated to equities and 20% to bonds, otherwise 40% of the portfolio is allocated to

equities and 60% to bonds.

Pesaran and Timmermann (1994) and Han et al. (2013) demonstrate that the total

cost of transactions appears to be low, less than 1% (around 50 basis points when trading

in stocks while the cost for bonds is 10 basis points). To simplify, no transaction costs

are considered.

There are no look-ahead bias: the reallocation takes place at the beginning of the

month following the turning point. Indeed, in real time, an investor could not know at

the beginning of any month whether a turning point would occur in that month.

For conventional comparison of the portfolio performances, annualized average returns,

annualized standard deviation (volatility), Sharpe ratio (SR), which is the mean portfolio

return in excess of the risk-free rate divided by the standard deviation of the excess

portfolio return7 and max drawdown (MDD) are computed. The Sharpe ratio compares

the expected returns of an investment to the amount of risk undertaken to capture these

returns. The Max drawdown (MDD) is the largest drop from the maximum cumulative

return. In brief, the MDD offers investors a worst case scenario.

7A risk-free interest rate of zero is assumed when calculating the SR.
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Data snooping

Data snooping occurs when a the same data set is employed more than once for inference

and model selection. It leads to the possibility that any successful results may be spurious

because they could be due to chance (White (2000)). In other words, looking long enough

and hard enough at a given data set will often reveal one or more forecasting models that

look good but are in fact useless.

To avoid data snooping, the model confidence set (MCS) procedure proposed by

Hansen et al. (2011) is computed. The MCS procedure is a model selection algorithm,

which filters a set of models from a given entirety of models. The MCS aims at finding

the best model and all models which are indistinguishable from the best.

The resulting set contains the best models with with a probability that is no less than

1− α with α being the size of the test.

An advantage of the test is that it not necessarily selects a single model, instead

it acknowledges possible limitations in the data since the number of models in the set

containing the best model will depend on how informative the data are.

More formally, define a setM0 that contains the set of models under evaluation indexed

by: i = 0, ...,m0. Let di,j,t denote the loss differential between two models by

di,j,t = Li,t − Lj,t, ∀i, j ∈M0

L is the loss calculated from some loss function for each evaluation point t = 1, ..., T . The

set of superior models is defined as:

M∗ = {i ∈M0 : E[di,j,t] ≤ 0 ∀j ∈M0}

The MCS uses a sequential testing procedure to determine M∗. The null hypothesis

being tested is:



56





H0,M : E[di,j,t] = 0 ∀i, j ∈M whereM is a subset ofM0

HA,M : E[di,j,t] 6= 0 for some i, j ∈M

When the equivalence test rejects the null hypothesis, at least one model in the set M

is considered inferior and the model that contributes the most to the rejection of the null

is eliminated from the set M . This procedure is repeated until the null is accepted and

the remaining models in M now equal M̂∗
1−α.

According to Hansen et al. (2011), the following two statistics can be used for the

sequential testing of the null hypothesis:

ti,j =
di,j√

v̂ar(di,j)
and ti =

di√
v̂ar(di)

where m is the number of models in M , di = (m − 1)−1
∑

j∈M di,j, is the simple

loss of the ith model relative to the averages losses across models in the set M , and

di,j = (m)−1
∑m

t=1 di,j,t measures the relative sample loss between the ith and ith models.

Since the distribution of the test statistic depends on unknown parameters a bootstrap

procedure is used to estimate the distribution.

The MCS can be applied with classical criteria loss function (Brier’s Quadratic Proba-

bility Score) or with profit maximization loss function (risk-adjusted returns for example).

As regards investment strategies, it should be noted that the MCS aims at finding the

best model and all models which are indistinguishable from the best, not those better than

the benchmark. To determined if models are better than the benchmark, the stepwise test

of multiple reality check by Romano and Wolf (2005) and the stepwise multiple superior

predictive ability test by Hsu et al. (2013) should be considered. However, investors can

conclude that their strategies ”beat” the benchmark, if the benchmark is not selected in

the best models set.
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2.2.4 Model selection

Real time issue

In real time, the investor would not have known which models were selected if the classifier

is evaluated over the entire period from January 1999 to December 2013. To prove that

the chosen models can generate significant profits, a two-step selection process is needed.

A set of models is selected over the period from January 1999 to December 2006

based on classical criteria. Once the best models are selected, investment strategies are

computed over the period from January 2007 to December 2013.

Model selection based on classical metrics

Boivin and Ng (2006) suggest that cross-correlation of regressors in large datasets might

result in inaccurate forecasts and hence a smaller set is more likely to provide a smaller

average forecast error. To narrow down the predictors to only those that are relevant, the

identification of a first candidate set of time series of interest is done, by examining the

series one by one. The best 15 series according to the QPS are retained.

All possible combinations of four variables from the selected predictors are computed

(1365 models in total). Note that four is an arbitrary choice, consistent with the number

of series used in Stock and Watson (1989). The best models set is selected based on the

MCS procedure with QPS as loss function. Since the aim of this study is to highlight

that nowcasting turning points allows to make profits, the confidence level for the MCS

is set as low as possible to only select few superior models in the resulting set.

The test proposed by Hanley and McNeil (1982) to compare the Area Under the

Receiver Operating Characteristics curve (AUROC) predictive accuracy is then computed.

The idea is to test the selected models with another criterion, thereby potentially reducing

the set.
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2.2.5 Competitive models

To prove that the models are significantly better than random guessing, several alternative

classifiers, which assign classes arbitrarily, are computed. The first one (Acc) classifies all

data as ”acceleration”, the second one (Slow) classifies all data as ”slowdown” and the last

one (Random) randomly assigns classes based on the proportions found in the training

data. Thousand different simulations are computed and average criteria are provided.

A comparison of LVQ against competing parametric models comes naturally to mind.

Parametric models in academic studies rarely focus on output gap turning points and

often employ hard data, such as industrial production or unemployment. The delay of

publication and the revisions of the data make a ”pseudo real-time” comparison hard

to perform. Nevertheless, the term spread has been proved to be an excellent leading

indicator of recession in the United States (Liu and Moench (2016)) and in the euro area

(Duarte et al. (2005)). Nowcasts from probit models based on the term spread are thus

computed8.

For a given covariate xn, based on the learning sample (R1, x1), ..., (RT−12, xT−12), the

model is characterized by the simple equation:

P (Rprobit
t = 1) = Φ(α0 + α1xt)

where Φ denotes a standard Gaussian cumulative distribution function, i. e.

Φ(z) =
1√
2π

∫ z

−∞

e−
1
2
t2dt

The probit model maximizes the following log likelihood function:

8Markov-switching dynamic factor models have been proven effective to identify business cycle turning
points (Camacho et al. (2015)). But, as previously explained, variable selection in factor analysis is
not straightforward: forecasts often improve by focusing on a limited set of highly informative series.
Moreover, the factors are mixtures of all the different series which can mean that they are very difficult
to interpret economically.
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lnL(α0, α1) =
T−12∑

t=1

(1−Rt) ln[1− Φ(α0 + α1xt)] +Rt ln(Φ(α0 + α1xt))

Moreover, some parametric models can use the information of our large data sets

by throwing away series that provide little information. The most popular strategy for

very high-dimensional regression is the estimation of penalized linear models, especially

elastic-net (Zou and Hastie (2005)).

Elastic-net solves the following problem:

min
β0,β

1

N

N∑

i=1

wil(yi, β0 + βTxi) + λ
[
(1− α)||β||22/2 + α||β||1

]

over a grid of values of λ covering the entire range. Here l(y, η) is the negative log-

likelihood contribution for observation i. The elastic-net penalty is controlled by α, and

bridges the gap between lasso (α = 1, the default) and ridge (α = 0). The tuning

parameter λ controls the overall strength of the penalty and is chosen by 5-fold cross

validation.

2.3 Empirical results

2.3.1 United States

Models selection

The univariate analysis points out the importance of the following series9: Average weekly

initial claims for unemployment insurance, High-yield corporate spreads (BofA Merrill

Lynch US High Yield 100 Index), Investment grade corporate bonds, Current business

conditions (Conference Board), S&P500, VIX, Yield curve, ISM Purchasing Managers

Index (manufacturing survey), ISM new orders (manufacturing survey), ISM supplier

deliveries(manufacturing survey), Jobs hard to get (Conference Board), Jobs plentiful

9Given the large number of realized measures, presenting summary statistics for all possible combina-
tions is not feasible.
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(Conference Board), Jobs plentiful minus jobs hard to get (Conference Board), NAHB

present sales, NAHB sales Expected Next Six Months.

The MCS procedure selects two models in M̂∗
75%. They are very close: only one

component differs. The components of the first model are:

-Average weekly initial claims for unemployment insurance

-High-yield corporate spreads

-Current business conditions

-S&P500

As regards the second model, instead of the S&P500, the ISM Purchasing Managers

Index (manufacturing survey) is introduced.

The choice of the predictors clearly preserves economic consistency and is in accord

with other studies. In particular, Ng (2014) concludes that risky bonds and employment

variables have been proved to have predictive power, when the interest rate spreads were

uninformative.

Table 2.1 displays classical metrics. The performance of the models are impressive

and are consistent with the results found in Berge (2015) and in Ng (2014), as regards

nowcasting.

Table 2.1: Classical evaluation criteria in the United States

AUROC QPS

Model 1 0.92 0.062
Model 2 0.91 0.066

Note: This table reports two classical metrics used to evaluate the quality of classification of the best two models: the area under the
ROC curve (AUROC) and the Brier’s Quadratic Probability Score (QPS).

The test proposed by Hanley and McNeil (1982) highlights that no model is more

effective than the other, as regards the AUROC criterion.
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Investment strategies

Table 2.2 points out that active investment strategies based on the growth cycle turning

points induced by the LVQ models statistically outperform the passive buy-and-hold

benchmark and competitive models. Timing the stock market in real time based on

economic cycles is thus difficult but possible. These results have also implications for

the risk management and hedging. Especially, in the options market one can utilize the

current state of the economy to hedge the portfolio against the possible price declines. For

example, writing an out-of-money covered call or buy a put option when the stock market

is expected to decrease would limit the losses. The best models set M̂∗
75% consists of the

two LVQ models, but the first model displays better returns and a better performance to

volatility ratio.

Table 2.2: Summary of return and risk measures in the United States: 120/80
equity strategy

Average returns Volatily SR MDD
Model 1 10.6 17.7 0.61∗∗ -43.1
Model 2 10.3 17.4 0.59∗∗ -43.5
Prob 8.0 19.5 0.41 -52.4
Elastic− net 9.0 18.2 0.49 -48.4
Acc 8.1 20.4 0.40 -57.9
Slow 5.4 13.6 0.40 -43.0
Random 7.0 17.8 0.40 -50.9
Benchmark 6.7 17.1 0.39 -50.9

Note: This table reports profit maximization measures for 120/80 equity strategy based on the state of the growth cycle induced by
the models. Returns are monthly and annualized. The volatility corresponds to the annualized standard deviation. The performance to
volatility ratio (SR) compares the expected returns of an investment to the amount of risk undertaken to capture these returns. The
Max drawdown (MDD) measures the largest single drop from peak to bottom in the value of a portfolio. ** indicates the model is in

the set of best models M̂∗

75%
. Model 1 refers to the first model, Model 2 refers to the first model, Prob refers to the probit model based

on the term spread, Elastic − net refers to elastic-net logistic model, Acc classifies all data as ”acceleration”, Slow classifies all data
as ”slowdown”, Random randomly assigns classes based on the proportions found in the training data and Benchmark refers to the
passive buy-and-hold investment strategy.

Table 2.3 emphasizes that dynamic asset allocation delivers a substantial improvement

in risk-adjusted performance as compared to static asset allocation, especially for investors

who seek to avoid large losses. In real time, portfolio rebalancing based on the stage of

the output gap is thus realisable.

As regards model selection, it should be noted that the strategy based on Slow, which

is overweighted in bonds, belongs to M̂∗
75%, in line with the thrilling and non-reproducible
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performance of the bond market. Importantly, both LVQ models are still selected in the

best models set. Once again, the first model exhibits better returns along with a better

performance to volatility ratio.

Table 2.3: Summary of return and risk measures in the United States: dynamic
asset allocation

Average returns Volatily SR MDD
Model 1 8.6 9.7 0.89∗∗ -20.2
Model 2 8.3 9.8 0.84∗∗ -18.0
Prob 6.7 13.1 0.51 -39.2
Elastic− net 7.6 10.8 0.70 -24.6
Acc 6.4 13.4 0.48 -41.5
Slow 5.7 6.5 0.87∗∗ -18.0
Random 6.4 10.8 0.60 -29.8
Benchmark 6.1 9.8 0.61 -30.6

Note: This table reports profit maximization measures for a dynamic asset allocation between bonds and equities based on the state of
the growth cycle induced by the models. Returns are monthly and annualized. The volatility corresponds to the annualized standard
deviation. The performance to volatility ratio (SR) compares the expected returns of an investment to the amount of risk undertaken to
capture these returns. The Max drawdown (MDD) measures the largest single drop from peak to bottom in the value of a portfolio. **

indicates the model is in the set of best models M̂∗

75%
. Model 1 refers to the first model, Model 2 refers to the first model, Prob refers

to the probit model based on the term spread, Elastic−net refers to elastic-net logistic model, Acc classifies all data as ”acceleration”,
Slow classifies all data as ”slowdown”, Random randomly assigns classes based on the proportions found in the training data and
Benchmark refers to the passive buy-and-hold investment strategy.

Graphic illustration

Figure 2.1 illustrates the behavior of the first model in real time. The indicator gives

reliable signals. This indicator is not volatile and displays a high persistence in the

regime classification. November 2012 is the only false signal.
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Figure 2.1: Recursive real time classification of the output gap in the United States

2.3.2 Euro area

Models selection

The univariate analysis highlights the interest of the following series: Eurostoxx, Yield

curve, Economic Sentiment Indicator (ESI), Business climate indicator (BCI), Consumer

confidence index, Employment expectations for the months ahead in the consumer survey,

Financial situation over the last 12 months in the consumer survey, Financial situation

over the next 12 months in the consumer survey, Industrial confidence indicator, Produc-

tion expectations for the months ahead in the industry survey, Construction confidence

indicator, Employment expectations for the months ahead in the construction survey,

Price expectations for the months ahead in the construction survey, Retail confidence

indicator, Future business situation in the retail survey.

Just like for the United States, M̂∗
75% is composed of two models. Again, these models

are close and only one component differs. The components of the first model are:
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-Employment expectations for the months ahead in the consumer survey

-Financial situation over the last 12 months in the consumer survey

-Production expectations for the months ahead in the industry survey

-Employment expectations for the months ahead in the construction survey

As regards the second model, the last component is the price expectations for the

months ahead in the construction survey.

The importance of expectations survey questions to detect turning points should be

noted. Moreover, financial variables are not introduced in the indicators. This result may

stem from the preponderance of bank loans in corporate financing. About 70% of firms’

external financing in the euro area comes via the banking system, compared with only

30% in the United States. It implies that the corporate bond market is still small and that

corporate spreads are not necessarily representative of the businesses’ financing costs.

Table 2.4 highlights classical metrics for the best models in the euro area. The choice

between models is difficult to perform. The test proposed by Hanley and McNeil (1982)

emphasizes that no model is more effective than the other, as regards the AUROC crite-

rion.

Metrics in the euro area are less impressive than in the United States. Indeed, the per-

sistence of the regimes is smaller in the euro area growth cycle, the real-time classification

is thus more difficult.

Table 2.4: Classical evaluation criteria in the euro area

AUROC QPS

Model 1 0.89 0.105
Model 2 0.87 0.107

Note: This table reports two classical metrics used to evaluate the quality of classification of the best two models: the area under the
ROC curve (AUROC) and the Brier’s Quadratic Probability Score (QPS)..

Investment strategies

Table 2.5 emphasizes that several active investment strategies outperform the passive

buy-and-hold benchmark. In real time, timing the stock market based on output gap
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turning points is thus feasible. Naturally, the risk management and hedging implications

described for the United States also apply for the euro area.

The probit model Prob, the elastic-net model and the two LVQ models are selected in

the best models set M̂∗
75%. However, the first model seems to provide more useful signals

as it reduces the MDD and gets better returns associated with a better performance to

volatility ratio.

Table 2.5: Summary of return and risk measures in the euro area: 120/80
equity strategy

Average returns Volatily SR MDD
Model 1 4.7 17.8 0.26∗∗ -45.7
Model 2 4.5 17.7 0.25∗∗ -45.8
Prob 5.0 20.9 0.24∗∗ -48.3
Elastic− net 4.5 18.9 0.24∗∗ -48.4
Acc 3.2 23.4 0.14 -60.8
Slow 2.1 15.6 0.14 -45.5
Random 4.0 20.6 0.20 -52.6
Benchmark 2.7 19.5 0.14 -53.7

Note: This table reports profit maximization measures for 120/80 equity strategy based on the state of the growth cycle induced by
the models. Returns are monthly and annualized. The volatility corresponds to the annualized standard deviation. The performance to
volatility ratio (SR) compares the expected returns of an investment to the amount of risk undertaken to capture these returns. The
Max drawdown (MDD) measures the largest single drop from peak to bottom in the value of a portfolio. ** indicates the model is in

the set of best models M̂∗

75%
. Model 1 refers to the first model, Model 2 refers to the first model, Prob refers to the probit model based

on the term spread, Elastic − net refers to elastic-net logistic model, Acc classifies all data as ”acceleration”, Slow classifies all data
as ”slowdown”, Random randomly assigns classes based on the proportions found in the training data and Benchmark refers to the
passive buy-and-hold investment strategy.

Table 2.6 highlights that dynamic asset allocation delivers a substantial improvement

in risk-adjusted performance as compared to static asset allocation.

The best models set M̂∗
75% consists of the two LVQ models, but the first model exhibits

better returns along with a better performance to volatility ratio.

To sum up, Model 1 seems to be the better choice, even if it is not statistically better

than Model 2.
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Table 2.6: Summary of return and risk measures in the euro area: dynamic
asset allocation

Average returns Volatily SR MDD
Model 1 5.7 10.3 0.53∗∗ -20.9
Model 2 5.5 10.5 0.52∗∗ -21.3
Prob 5.4 13.2 0.41 -25.5
Elastic− net 5.1 11.3 0.45 -23.5
Acc 3.0 15.5 0.19 -44.5
Slow 3.7∗ 7.9 0.47 -21.4
Random 4.4 13.0 0.34 -31.7
Benchmark 3.4 11.6 0.29 -33.8

Note: This table reports profit maximization measures for a dynamic asset allocation between bonds and equities based on the state of
the growth cycle induced by the models. Returns are monthly and annualized. The volatility corresponds to the annualized standard
deviation. The performance to volatility ratio (SR) compares the expected returns of an investment to the amount of risk undertaken to
capture these returns. The Max drawdown (MDD) measures the largest single drop from peak to bottom in the value of a portfolio. **

indicates the model is in the set of best models M̂∗

75%
. Model 1 refers to the first model, Model 2 refers to the first model, Prob refers

to the probit model based on the term spread, Elastic−net refers to elastic-net logistic model, Acc classifies all data as ”acceleration”,
Slow classifies all data as ”slowdown”, Random randomly assigns classes based on the proportions found in the training data and
Benchmark refers to the passive buy-and-hold investment strategy.

Graphic illustration

The figure 2.2 illustrates the behavior of the first model in real time. The euro area prob-

abilistic indicator appears more volatile than the United States probabilistic indicator.

Yet, low phases detected are not erratic and display a high persistence. There are only

three false signals, which do not last for a long time: September 2003, September 2004

and June 2012.
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Figure 2.2: Recursive real time classification of the output gap in the euro area

Conclusion

Output gap turning points provide extremely reliable pieces of information for policy

makers: a turning point of the output gap occurs when the current growth rate of the

activity passes above or below the potential growth rate, thereby signalling increasing or

decreasing inflation pressures. Moreover, Chapter 1 emphasizes that investment strategies

based on output gap turning points achieve impressive risk-adjusted returns, even better

than those based on business cycle turning points.

To quickly and accurately detect output gap turning points in real time, probabilistic

indicators are created from a simple and transparent machine-learning algorithm known

as Learning Vector Quantization, recently introduced in economics by Giusto and Piger

(ming). Those indicators should be robust, interpretable and preserve economic consis-

tency. Indeed, the ability of polycy makers to understand these models is indispensable,

since it may be a prerequisite for trust.

To select the best model, profit maximization measures based on trading strategies
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are used in addition to more standard criteria, such as Quadratic Probability Score and

area under the ROC curve (AUROC). When comparing predictive accuracy and profit

measures, the model confidence set procedure proposed by Hansen et al. (2011) is applied

to avoid data snooping.

The results provide evidence that LVQ is very effective, despite its simplicity. Indeed, a

substantial improvement in profit measures over the benchmark and competitive models

is found. Economic and financial indicators can thus be exploited to quickly identify

turning points in real time in the United States and in the euro area. It leads to useful

implications for investors practising active portfolio and risk management and for policy

makers as tools to get early warning signals.

Last but not least, this article opens the door for further research. An attempt to

forecast output gap turning points three to twelve months ahead comes naturally to

mind.
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Appendix

2.A Explanatory variables

2.A.1 Economic Surveys

Table 2.A.1: European Commission’ surveys

Economic Sentiment Indicator
Euro area
Belgium
Germany
Ireland
Greece
Spain
France
Italy
Cyprus
Luxembourg
Malta
Netherlands
Austria
Portugal
Finland

Industry
Business Climate Indicator
Confidence Indicator
Production trend observed in recent months
Assessment of order-book levels
Assessment of export order-book levels
Assessment of stocks of finished products
Production expectations for the months ahead
Selling price expectations for the months ahead
Employment expectations for the months ahead

Services
Confidence Indicator
Business situation development over the past 3 months
Evolution of the demand over the past 3 months
Expectation of the demand over the next 3 months
Evolution of the employment over the past 3 months
Expectations of the employment over the next 3 months
Expectations of the prices over the next 3 months

Retail trade
Confidence Indicator
Business activity (sales) development over the past 3 months
Volume of stock currently hold
Orders expectations over the next 3 months
Business activity expectations over the next 3 months
Employment expectations over the next 3 months
Prices expectations over the next 3 months

Construction
Building activity development over the past 3 months
Evolution of your current overall order books
Employment expectations over the next 3 months



71

Table 2.A.2: Institute for Supply Management(ISM)

Manufacturing ISM
PMI
New Orders
Production
Employment
Supplier Deliveries
Inventories
Customers’ Inventories
Prices
Backlog of Orders
New Export Orders
Imports

Non-Manufacturing
BNI
New Orders
Production
Employment
Supplier Deliveries
Inventories
Customers’ Inventories
Prices
Backlog of Orders
New Export Orders
Imports
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Table 2.A.3: Conference Board

Consumer Confidence Index
Consumer Confidence Index
Present Situation
Expectations

Appraisal of Present Situation
Business Conditions
Good
Bad
Normal

Employment
Jobs plentiful
Jobs not so plentiful
Jobs hard to get

Expectations for Six Months Hence
Business Conditions
Better
Worse
Same

Employment
More jobs
Fewer jobs
Same

Income
Increase
Decrease
Same

Plans to Buy Within Six Months
Automobile
Home

Major appliances
Total plans
Refrigerator
Washing machine
TV Set
Vacuum Cleaner
Range
Clothes dryer
Air conditioner
Carpet

Table 2.A.4: National Association of Home Builders (NAHB)

Housing Market Index (HMI)
Single Family Sales: Present
Single Family Sales: Next 6 Months
Traffic of Prospective Buyers
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2.A.2 Financial series

Table 2.A.5: Financial variables

Government bond yields
3 months
6 months
1-year
2-year
5-year
10-year
30-year

Yield curves
6 months minus 3 months
1-year minus 3 months
1-year minus 6 months
2-year minus 3 months
2-year minus 6 months
2-year minus 1-year
5-year minus 3 months
5-year minus 6 months
5-year minus 1-year
5-year minus 2-year
10-year minus 3 months (term spread)
10-year minus 6 months
10-year minus 1-year
10-year minus 2-year
10-year minus 5-year
30-year minus 10-year

Investment-grade yields
AAA
AA
A
BBB

High-yield corporate yields
Corporate spreads against government bonds

AAA minus 5-year
AA minus 5-year
A minus 5-year
BBB minus 5-year
High-yield minus 5-year

Stock markets
large caps
large caps sectors
mid caps
small caps

Asset volatility
stock markets
government bonds
investment-grade bonds

Implicit volatility
VIX Index (United States)
VSTOXX Index (euro area)

Commodity prices (local currency)
crude oil
natural gas
gold
silver
CRB index
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Chapter 3

Investing through Economic Cycles

with Ensemble Machine Learning

Algorithms

Abstract
Ensemble machine learning algorithms, referred to as random forest and as boosting,

are applied to quickly and accurately detect economic turning points in the United

States and in the euro area. The two key features of those algorithms are their

abilities to entertain a large number of predictors and to perform estimation and

variable selection simultaneously. The real-time ability to nowcast economic turning

points is gauged. To assess the value of the models, profit maximization measures

are employed in addition to more standard criteria. When comparing predictive

accuracy and profit measures, the model confidence set procedure is applied to

avoid data snooping. The investment strategies based on economic regimes induced

by the models achieve impressive risk-adjusted returns: timing the market is thus

possible.

75
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Introduction

The potential rewards of successful market timing are more than attractive. For instance,

investment strategies based on the turning points of the growth cycle, defined as the de-

viation of the real GDP to its long-term trend, achieve impressive risk-adjusted returns...

in theory (see Chapter 1)1.

Yet, economic turning points detection in real time is a notorious difficult task.

Economists often fail to detect if a new economic phase has already begun. For ex-

ample, the Survey of Professional Forecasters conducted in May 2008, by the American

Statistical Association and the National Bureau of Economic Research, said there would

not be a recession in 2008, even though one had already started.

One stylised fact of economic cycles is the non-linearity: the effect of a shock depends

on the rest of the economic environment. For instance, small shock, such as a decrease

in housing prices, can sometimes, but not always, have large effects, such as a recession.

Real-time regime classification and turning points detection require thus methods capable

of taking into account the non-linearity of the cycles. In this respect, many parametric

models have been proposed, especially Markov switching models (see, among others, Piger

(2011)) and probit models (see, for example, Liu and Moench (2016)). Parametric models

are effective if the true data generating process (DGP) linking the observed data to the

economic regime is known. In practice, however, one might lack such strong prior knowl-

edge. It leads to practical issues in estimating parametric models, especially the presence

of frequent local maxima in the likelihood. Therefore, in the absence of knowledge of the

true DGP, non-parametric methods are advocated, such as machine-learning algorithms,

as they do not rely on a specification of the DGP (Giusto and Piger (ming)).

1If the long-term trend is considered as the estimated potential level, then the growth cycle equals
the output gap. A turning point of the output gap occurs when the current growth rate of the activity is
above or below the potential growth rate, thereby signalling increasing or decreasing inflation pressures.
Quickly detecting growth cycle turning points provides thus extremely reliable pieces of information for
the conduct of monetary policy. For instance, if a central bank wants to loosen monetary policy, because
inflation is running under the target, a through of the output gap would indicate that its strategy starts
to bear fruit.
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The machine-learning approach assumes that the DGP is complex and unknown and

attempts to learn the response by observing inputs and responses and finding dominant

patterns. This places the emphasis on a model’s ability to predict well and focuses on what

is being predicted and how prediction success should be measured. Over the last couple of

decades, researchers in the computational intelligence and machine learning community

have developed complex methods, also called ensemble learning, which improve predic-

tion performances. Ensemble methods are learning models that achieve performance by

combining the opinions of multiple learners. The two most popular techniques for con-

structing ensembles are random forest (Breiman (2001)) and boosting (Schapire (1990)).

The two features of those algorithms are their abilities to entertain a large number of pre-

dictors and to perform estimation and variable selection simultaneously. Paradoxically,

both methods work by adding randomness to the data (Varian (2014)), although they

have substantial differences. Random forest relies on simple averaging of models in the

ensemble and boosting is an iterative process where the errors are kept being modelled.

While the random forest algorithm is usually applied in medical research and biological

studies, it is largely unknown in economics and to the best of my knowledge has not been

applied to economic turning point detection. Boosting is increasingly applied to empirical

problems in economics. Ng (2014) and Berge (2015) apply the algorithm to the problem

of identifying business cycle turning points in the United States.

In this paper, random forest and boosting algorithms are applied to create several

models aiming at quickly and accurately detecting growth cycle turning points in real

time, not only in the United States but also in the euro area.

The real-time ability to nowcast economic turning points is assessed. Since, for in-

vestors, the usefulness of a forecast depends on the rewards associated with the actions

taken by the agent as a result of the forecast, profit maximization measures based on

trading strategies are employed in addition to more standard criteria.

To avoid data snooping, which occurs when a given set of data is used more than once

for purposes of inference or model selection, the comparison of predictive accuracy and
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profit measures is assessed using the model confidence set procedure (Hansen et al. (2011)).

It is a model selection algorithm, which filters a set of models from a given entirety of

models. It aims at finding the best model and all models which are indistinguishable from

the best.

The findings of the paper can be summarized as follows: ensemble machine learning

algorithms detect economic turning points accurately. Investment strategies based on

economic regimes induced by the models achieve thus excellent risk-adjusted returns in the

United States and in the euro area. Among ensemble machine learning algorithms, there

is no clear winner. Depending on the data and the objective, random forest sometimes

performs better than boosting, sometimes not.

The rest of the paper proceeds as follows. Section 1 introduces ensemble machine

learning algorithms, referred to as random forest and as boosting. Section 2 describes

the empirical set up: the turning point chronology, the data-set, the alternative classifiers

and the evaluation of the forecasts. Section 3 analyses the empirical results.

3.1 Ensemble Machine Learning Algorithms

Making decisions based on the input of multiple people or experts has been a common

practice in human civilization and serves as the foundation of a democratic society. Over

the last couple of decades, researchers in the computational intelligence and machine

learning community have studied schemes that share such a joint decision procedure. En-

semble methods are learning models that achieve performance by combining the opinions

of multiple learners.

Two of the most popular techniques for constructing ensembles are random forest

(Breiman (2001)) and boosting (Schapire (1990)). The two key features of those al-

gorithms are their abilities to entertain a large number of predictors and to perform

estimation and variable selection simultaneously.

Paradoxically, both methods work by adding randomness to the data, but adding
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randomness turns out to be a helpful way of dealing with the overfitting problem (Varian

(2014)). Overfitting denotes the situation when a model targets particular observations

rather than a general structure: the model explains the training data instead of finding

patterns that generalize it. In other words, attempting to make the model conform too

closely to slightly inaccurate data can infect the model with substantial errors and reduce

its predictive power.

Nevertheless, those methods have substantial differences. Random forest relies on

simple averaging of models in the ensemble. They derive their strength from two aspects:

randomizing subsamples of the training data and randomizing the selection of features.

Boosting methods are based on a different strategy of ensemble formation: boosting

combines models that do not perform particularly well individually into one with much

improved properties. The main idea is to add new models to the ensemble sequentially.

At each particular iteration, a new weak, base-learner model is trained with respect to

the error of the whole ensemble learned so far.

3.1.1 Random forest

Random forest (RF henceforth) is a non-parametric statistical method for both high-

dimensional classification and regression problems, which requires no distributional as-

sumptions on covariate relation to the response.

RF is a way of averaging multiple deep decision trees, trained on different parts of the

same training set, with the goal of overcoming overfitting problem of individual decision

tree. In other words, RF builds a large collection of de-correlated trees and then averages

their predictions. The method is fast, robust to noise and produces surprisingly good

out-of-sample fits, particularly with highly nonlinear data (Caruana and Niculescu-Mizil

(2005)).



80

Classification and Regression Trees algorithm

Classification and regression trees (CART henceforth), introduced by Breiman et al.

(1984), are machine-learning methods for constructing prediction models from data that

can be used for classification or regression. The models are obtained by recursively par-

titioning the data space and fitting a simple prediction model within each partition. As

a result, the partitioning can be represented graphically as a decision tree.

The tree is generated in a recursive binary way, resulting in nodes connected by

branches. A node, which is partitioned into two new nodes, is called a parent node.

The new nodes are called child nodes. A terminal node is a node that has no child nodes.

A CART procedure is generally made up of two steps. In the first step, the full tree

is built using a binary split procedure. The full tree is an overgrown model, which closely

describes the training set. In the second step, the model is pruned to avoid overfitting.

Given a dataset with explanatory inputs x, the CART algorithm can be summarized

as follows:

Step 1 Find each predictor’s best split:

Sort each predictor’s entries by increasing value. Iterate over all values of the sorted

predictor and find the candidate for the best split. That is the value that maximizes

the splitting criterion.

Step 2 Find the node’s best split:

To actually perform the split, compare all evaluated predictors from step 1 and choose

the split, that maximizes the splitting criterion.

Step 3 Let s be this best split of the winning predictor. All x ≤ s are sent to the left node

and all x > s to the right node.

So constructing a CART is accomplished by finding the best split, which is just trying

every possibility, calculating the ”goodness”’ of every possible split and choose the best
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one. For every split at node t a splitting criterion ∆i(s|t) is calculated. The best split

s, at node t maximizes this splitting criterion ∆i(s|t), based on the Gini criterion in

classification problems and measured by mean squared error in regression trees. For

classification, given a node t with estimated class probabilities p(j|t) with j = 1, . . . , J

being the class label, a measure of node impurity given t is:

i(s|t) = 1−
∑

j

p(j|t)2 =
∑

j 6=k

p(j|t)p(k|t)

A search is then made for the split that most reduces node, or equivalently tree, impurity.

Construction of a random forest

RF is an ensemble of tree predictors. Each decision tree is built from a bootstrapped

sample of the full dataset (Efron and Tibshirani (1994)) and then, at each node, only

a random sample of the available variables is used as candidate variables for split point

selection. Thus, instead of determining the optimal split on a given node by evaluating

all possible splits on all variables, a subset of the input variables are randomly chosen,

and the best split is calculated only within this subset. Once an ensemble of K trees is

built, the predicted outcome (final decision) is obtained as the average value over the K

trees.

Averaging over trees, in combination with the randomisation used in growing a tree,

enables random forests to approximate a rich class of functions while maintaining a low

generalisation error. This enables random forests to adapt to the data, automatically

fitting higher-order interactions and non-linear effects, while at the same time keeping

overfitting in check (Ishwaran (2007)). As the number of trees increases, the generalization

error converges to a limit (Breiman (2001)).

A RF is constructed by the following steps:

Step 1 Given that a training set consists of N observations and M features, choose a number

m ≤ M of features to randomly select for each tree and a number K that represents
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the number of trees to grow.

Step 2 Take a bootstrap sample Z of the N observations. So about two third of the cases

are chosen. Then select randomly m features.

Step 3 Grow a CART using the bootstrap sample Z and the m randomly selected features.

Step 4 Repeat the steps 2 and 3, K times.

Step 5 Output the ensemble of trees TK
1

For regression, to make a prediction at a new point x:

ŷRF (x) =
1

K

K∑

i=1

Ti(x)

For classification, each tree gives a classification for x. The forest chooses the class

that has the most out of n votes. Calculating the associated probability is easily done.

Since Breiman (2001) uses unpruned decision trees as base classifiers, RF has basically

only one parameter to set: the number of features to randomly select at each node.

Typically, for a classification problem with M features,
√
M features (rounded down) are

used in each split and M/3 features (rounded down) with a minimum node size of 5 as

the default are recommended for regression problems (Friedman et al. (2000)).

3.1.2 Boosting

Boosting is based on the idea of creating an accurate learner by combining many so-called

”weak learners” (Schapire (1990)), i.e., with high bias and small variance. The main

concept of boosting is to add new models to the ensemble sequentially. At each particular

iteration, a new weak, base-learner model is trained with respect to the error of the whole

ensemble learned so far. The final model hopefully yields greater predictive performance

than the individual models. The heuristics is thus simple: an iterative process where the

errors are kept being modelled.
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The original boosting algorithms such as AdaBoost (Freund and Schapire (1997)),

were purely algorithm-driven, which made the detailed analysis of their properties and

performance rather difficult (Schapire (2003)). The gradient descent view of boosting

(Friedman (2001), Friedman et al. (2000)) has connected boosting to the more common

optimisation view of statistical inference. This formulation of boosting methods and the

corresponding models are called the gradient boosting machines (GBM henceforth).

Using a learning sample (yi;xi)(i=1,...,n), where the response y is continuous (regression

problem) or discrete (classification problem) and x = (x1, ...,xd) denotes a d-dimensional

explanatory input variables, the objective is to obtain an estimate f̂(x) of the function

f(x), which maps x to y. The task is thus to estimate the function f̂(x), that minimizes

the expectation of some loss function, Ψ(y, f), i.e.,

f̂(x) = argmin
f(x)

E(Ψ(y, f(x))

The loss function Ψ(y, f) is assumed to be smooth and convex in the second argument

to ensure that the gradient method works well.

An approximate solution to the minimization problem is obtained via forward stage-

wise additive modeling, which approximates the solution by sequentially adding new basis

functions to the expansion without adjusting the parameters and coefficients of those that

have already been added.

GBM take on various forms with different programs using different loss functions,

different base models, and different optimization schemes. This high flexibility makes

GBM highly customizable to any particular data-driven task and introduces a lot of

freedom into the model design thus making the choice of the most appropriate loss function

a matter of trial and error. As a matter of fact, Friedman et al. (2000) warn that given

a dataset, it is rarely known in advance which procedures and base learners should work

the best, or if any of them would even provide decent results.

Loss-functions can be classified according to the type of response variable y. In the
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case of categorical response, the response variable y typically takes on binary values

y ∈ 0, 1. To simplify the notation, let us assume the transformed labels ȳ = 2y − 1

making ȳ ∈ −1, 1.

The most frequently used loss-functions for classification are the following:

-Adaboost loss function: Ψ(y, f(x)) = exp(−ȳf(x))

-Binomial loss function: Ψ(y, f(x)) = − log(1 + exp(−2ȳf(x)))

The Binomial loss function is far more robust than the Adaboost loss function in noisy

settings (mislabels, overlapping classes).

The most frequently used loss-functions for regression are the following:

-Squared error loss: Ψ(y, f(x)) = (y − f(x))2

-Absolute loss: Ψ(y, f(x)) = |y − f(x|

Several types of weak learners have been considered in the boosting literature, in-

cluding decision trees (e.g., stumps, trees with two terminal nodes) (Friedman (2001)),

smoothing splines (Bühlmann and Yu (2003)), wavelets (Wu et al. (2004)) and many

more.

To design a particular GBM for a given task, one has to provide the choices of func-

tional parameters Ψ(y, f) and the weak learner h(x, θ), characterized by a set of param-

eters θ. For instance, for decision trees, θ describes the axis to be split, the split points

and the location parameter in terminal nodes.

The principle difference between boosting methods and conventional machine-learning

techniques is that optimization is held out in the function space (Friedman (2001)). That

is, the function estimate f̂(x) is parameterized in the additive functional form:

f̂(x) =

Mstop∑

i=0

f̂i(x)

Moreover, a common procedure is to restrict f̂(x) to take the form:
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f̂(x) =

Mstop∑

m=1

βmh(x, θm)

The original function optimization problem has thus been changed to a parameter

optimization problem.

The GBM algorithm can be summarized as follows:

Step 1 Initialize f̂0(x) = argminρ

∑N

i=1 Ψ(yi, ρ),m = 0.

Step 2 m = m+ 1

Step 3 Compute the negative gradient

zi = −
∂

∂f(xi)
Ψ(yi, f(xi))|

f(xi)=f̂m−1(xi)
, i = 1, . . . , n

Step 4 Fit the base-learner function, h(x, θ) to be the most correlated with the gradient

vector.

θm = argmin
β,θ

n∑

i=1

zi − βh(xi, θm)

Step 5 Find the best gradient descent step-size ρm

ρm = argmin
ρ

N∑

i=1

Ψ(yi, f̂(xi)m−1 + ρh(x, θm))

Step 6 Update the estimate of fm(x) as

f̂m(x)← f̂(x)m−1 + ρmh(x, θm))

Step 7 Iterate 2-6 until m = Mstop.

The classic approach to controlling the model complexity is the introduction of the

regularization through shrinkage. In the context of GBM, shrinkage is used for reducing,
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or shrinking, the impact of each additional fitted base-learner. It reduces the size of

incremental steps and thus penalizes the importance of each consecutive iteration. A

better improvement is done by taking many small steps than by taking fewer large steps.

Indeed, if one of the boosting iterations turns out to be erroneous, its negative impact

can be easily corrected in subsequent steps.

The simplest form of regularization through shrinkage is the direct proportional shrink-

age (Friedman (2001)). In this case the effect of shrinkage is directly defined as the pa-

rameter λ ∈ [0, 1]. The regularization is applied to the step 6 in the gradient boosting

algorithm:

f̂m(x)← f̂(x)m−1 + λρmh(x, θm))

A crucial issue is the choice of the stopping iterationMstop. Boosting algorithms should

generally not be run until convergence. Otherwise, overfits resulting in a suboptimal

prediction accuracy would be likely to occur (Friedman et al. (2000)).

One possible approach to choosing the number of iterations Mstop would be to use

an information criterion like Akaike’s AIC or some sort of minimum description length

criteria. However, they have been shown to overshoot the true number of iterations (Hastie

(2007)) and thus are not recommended for practical usage. Cross-validation techniques

should be used to estimate the optimal Mstop (Hastie (2007)).

Briefly, cross-validation uses part of the available data to fit the model, and a different

part to test it. K-fold cross-validation works by dividing the training data randomly into

K roughly equal-sized parts. For the kth part, the learning method is fit to the other

K − 1 parts of the data, and calculate the prediction error of the fitted model when

predicting the kth part of the data. This is done for k = 1, 2, ..., K and the K prediction

error estimates are averaged. An estimated prediction error curve as a function of the

complexity parameter is obtained (Hastie et al. (2009)). Typical choices of K are 5 and

10. When it comes to time series forecasting, Bergmeir et al. (2015) demonstrate that
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K-fold cross-validation performs favourably compared to both out-of-sample evaluation

and other time-series-specific techniques.

In contrast to the choice of the stopping iteration, the choice of λ has been shown to

be of minor importance for the predictive performance of a boosting algorithm. The only

requirement is that the value of λ is small, e.g. λ = 0.1 (Friedman (2001)).

In this paper, two different approaches are tested: a combination of a binomial loss

function with decision trees (”BTB”) as in Ng (2014) and a combination of a squared

error loss function with P-splines (”SPB”) as in Berge (2015) and Taieb et al. (2015). P-

splines ((Eilers and Marx (1996))) can be seen as a versatile modeling tool for non-linear

effects. Examples include smooth effects, bivariate smooth effects (e.g., spatial effects),

varying coefficient terms, cyclic effects and many more.

3.2 Empirical setup

3.2.1 Turning point chronology in real time

Researchers and investors focus mainly on the business cycle detection, which is meant to

reproduce the cycle of the global level of activity of a country. The turning points of that

cycle separate periods of recession from periods of expansion. Since absolute prolonged

declines in the level of economic activity tend to be rare events, Mintz (1974) introduces

the growth cycle to produce more precise information on economic fluctuations. Is is

defined as the deviation of the real GDP to its long-term trend and can be thus seen

as the output gap2. The turning points of that cycle separate periods of slowdowns and

accelerations.

A slowdown signals thus a decline in the rate of growth of the economy though not

necessarily an absolute decline in economic activity. if the slowdown is not severe enough,

2The sign and the magnitude of the output gap, which are subject to considerable uncertainty, are
not needed for the implementation of the investment strategies. However, turning points estimations are
more robust (Nilsson and Gyomai (2011)).
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there will be no recession. All recessions involve thus slowdowns, but not all slowdowns

involve recessions.

Chapter 1 emphasizes the importance of the growth cycle for euro and dollar-based

investors. Indeed, in theory, investment strategies based on growth cycle turning points

achieve better risk-adjusted returns than those based on business cycle turning points.

Two economic phases are thus considered: slowdown and acceleration. Applied to the

context of nowcasting, the variable of interest y can be summarized as follows:

yt =





1, if in acceleration

0, otherwise

ŷ is thus the probability of being in the regime referred to as acceleration.

To implement the ensemble machine learning algorithms, a chronology of economic

regimes is needed. This paper employs the turning point chronology established in Chap-

ter 1.

The training sample runs over the period from January 1988 to December 2001. The

performance of the models are then evaluated over the period from January 2002 to

December 2013. In the euro area, 54 % of the data are classified as slowdown. In the

United States, 71 % of the data are classified as acceleration. Over the period from

January 2002 to December 2013, there were 7 turning points in the growth cycle in the

euro area and 5 in the United States.

In the empirical analysis, a recursive estimation of the models is done: each month

the model is estimated with the data and the chronology that would have been available

at the time the nowcasting is done. In real time, the complete chronology is not available,

but the monthly GDP introduced by Raffinot (2007)3 allows to quickly refine the turning

point chronology. The models are thus trained each month on a sample that extends

from the beginning of the sample through month T − 12, over which the turning point

3A temporal disaggregation based on business surveys of the non revised values of gross domestic
product GDP is used to develop a monthly indicator of GDP.
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chronology is assumed known4. For instance, in January 2012, the chronology that would

have been available to implement the models runs over the period from January 1988 to

January 2011.

Re-estimating the model at each point in time also allows the relationship between

covariates and the dependent variable to change (see Ng (2014)). Since the aim of this

paper is to emphasize that ensemble machine learning algorithms can provide useful sig-

nals for policymakers and for investors in real time, analysing the most frequently selected

predictors is out of the scope of this study.

3.2.2 Data set

The real-time detection of turning points faces the difficult issues of late release dates

and data revision. As a matter of fact, key statistics are published with a long delay,

are subsequently revised and are available at different frequencies. For example, gross

domestic product (GDP) is only available on a quarterly basis with a time span of one

to three months, and sometimes with significant revisions. Moreover, the data available

at the time are often sending a different signal from what one sees once the data are

subsequently revise (Hamilton (2011)).

To partly overcome this issue, we only focus on variables published with almost no lag

along with practically no revisions: surveys and financial series5.

As a matter of fact, many monthly economic series are released giving indications of

short-term movements. Among them, business surveys provide economists for timely and

reliable pieces of information on business activity. They are subject to very weak revisions

and are usually less volatile than other monthly series. They are published before the end

of the month they relate to or just a few days after. In the euro area, surveys published

by the European Commission have been proven to be very effective (Bengoechea et al.

4In unreported results, samples through month T −18 and T −24 have been tested and lead to almost
the same results.

5All series are provided by Datastream.
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(2006)) (see Table 2.A.1 in Appendix 2.A for an exhaustive list). In the United States, the

surveys published by the Institute for Supply Management(ISM), the Conference Board

and the National Association of Home Builders (NAHB) are often tested in the literature

(Liu and Moench (2016)) (see Tables 2.A.2, 2.A.3 and 2.A.4 in Appendix 2.A for an

exhaustive list). The only real economic data tested is the four-week moving average of

initial claims for unemployment insurance, which is a weekly measure of the number of

jobless claims filed by individuals seeking to receive state jobless benefits.

Moreover, financial series, which are not revised and often available on a daily basis,

have also been considered: government bond yields, different yield curves, investment-

grade yields, high-yield corporate yields, corporate spreads against government bonds,

stock markets, assets volatility, the volatility of volatility of these indexes, the VIX index,

the VSTOXX index, which is the VIX equivalent for the euro area and some commodity

prices (see Table 2.A.5 in Appendix 2.A for an exhaustive list). This paper uses end of

month values to match stock index futures and options contracts settlement prices.6

To detect the turning points in real-time, not only original series are screened, but also

differentiated series (to underline the phases of low and high pace of growth). Because

of the classical trade-off between reliability and advance, different lags of differentiation

were considered: 1 to 18 months. The large dataset of predictors consists of more than

1000 monthly variables in the euro area and in the United States.

3.2.3 Alternative classifiers

Random guessing

To prove that ensemble models are significantly better than random guessing, several

alternative classifiers, which assign classes arbitrarily, are computed. The first one (Acc)

classifies all data as ”acceleration”, the second one (Slow) classifies all data as ”slowdown”.

The last one (Random) randomly assigns classes based on the proportions found in the

6http://www.cmegroup.com/trading/equity-index/fairvaluefaq.html
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training data. Thousand different simulations are computed and average criteria are

provided.

Parametric models

The term spread has been proved to be an excellent leading indicator of recession in

the United States (Liu and Moench (2016)) and in the euro area (Duarte et al. (2005)).

Nowcasts from probit models based on the term spread are thus computed7.

For a given covariate xn, based on the learning sample (R1, x1), ..., (RT−12, xT−12), the

model is characterized by the simple equation:

P (Rprobit
t = 1) = Φ(α0 + α1xt)

where Φ denotes a standard Gaussian cumulative distribution function, i. e.

Φ(z) =
1√
2π

∫ z

−∞

e−
1
2
t2dt

Markov-switching dynamic factor models are effective to identify economic turning

points (Camacho et al. (2015)). However, variable selection in factor analysis is a chal-

lenging task, especially among more than 1000 variables. Forecasts often improve by

focusing on a limited set of highly informative series: Boivin and Ng (2006) demon-

strate that factor-based forecasts extracted from 40 variables perform better than those

extracted from 147 variables. A proper comparison is left for future research.

7Since the literature on growth cycle detection is quite small, there is no classical benchmark for
models comparison. Considering the euro area makes things worse, since there is no equivalent to the
Chicago Fed National Activity Index (CFNAI) or the the Aruoba, Diebold and Scotti (ADS) Business
Conditions Index maintained by the Federal Reserve Bank of Philadelphia. Nevertheless, the aim of the
paper is to highlight that timing the market is possible in real time nowcasting growth cycle turning
points, more than providing the best method to do so.
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3.2.4 Model evaluation

Classical criteria

Two metrics are computed to evaluate the quality of classification of a model.

The first one is the Brier’s Quadratic Probability Score (QPS), defined as follows:

QPS =
1

F

F∑

t=1

(ŷt − yt)
2

where t = 1, ..., F is the number of forecasts. The best model should strive to minimize

the QPS.

The second one is the area under the Receiver Operating Characteristics curve (AU-

ROC). Given a classifier and an instance, there are four possible outcomes. If the instance

is positive and it is classified as positive, it is counted as a true positive (Tp(c)). If the

instance is negative and classified as negative, it is counted as a true negative (Tn(c)). If

a negative instance is misclassified as positive, it is counted as a false positive (Fp(c)). If

a positive instance is misclassified as negative, it is counted as a false negative (Fn(c)).

The Receiver Operating Characteristics (ROC) curve describes all possible combina-

tions of true positive (Tp(c)) and false positive rates (Fp(c)) that arise as one varies the

threshold c used to make binomial forecasts from a real-valued classifier. As c is varied

from 0 to 1, the ROC curve is traced out in (Tp(c), Fp(c)) space that describes the classi-

fication ability of the model. A perfect classifier would fall into the top left corner of the

graph with a True Positive Rate of 1 and a False Positive Rate of 0.

Accuracy is measured by the Area Under the ROC curve (AUROC), defined by:

AUROC =

∫ 1

0

ROC(α)dα

An area of 1 represents a perfect test, an area of 0.5 represents a worthless test. A

general rule of thumb is that an AUROC value exceeding 0.85 indicates a useful prediction

performance.
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Hanley and McNeil (1982) propose a test to compare the AUROC predictive accuracy.

The aim is to test the best models in the selection with another criteria, thereby further

reducing the set. The t-statistic for the test of H0 : AUROC1 = AUROC2 is given by:

t =
AUROC1 − AUROC2√
(σ2

1 + σ2
2 − 2rσ1 ∗ σ2

where, AUROC1 and AUROC2 are the areas under the curve for models 1 and 2 which

are being compared. Similarly, σ1 and σ2 refer to the variances of the AUROCs for model

1 and model 2, respectively. Finally, r is the correlation between the two AUROCs (see

Hanley and McNeil (1982) or Liu and Moench (2016) for more details on the test statistic

and its implementation).

In this paper, a two-step model selection is computed. The first step is to select the

best set of models according to Brier’s Quadratic Probability Score (QPS) and then the

selection is refined based on the the area under the ROC curve (AUROC) and the test

proposed by Hanley and McNeil (1982).

Profit maximization measures

For investors, the usefulness of a forecast depends on the rewards associated with the ac-

tions taken by the agent as a result of the forecast. Simple hypothetical trading strategies

are thus created to gauge the economic magnitude of the models.

Since asset classes behave differently during different phases of the economic cycles

(Chapter 1), investment strategies based on economic regimes induced by the models

should generate significant profits.

In order to frame the concept of active portfolio management, a specified investment

strategy is required. The investment strategies are as stripped-down and simple as possible

without raising concerns that the key results will not carry over to more general and

intricate methods or asset classes.
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Simple dynamic trading strategies are computed8, which should take advantage of

positive economic regimes, as well as withstand adverse economic regimes and reduce

potential drawdowns.

We first consider an equity portfolio manager investing 100e or 100$ on January 1,

2002. Each month, the investor decides upon the fraction of wealth to be invested based

on the current state of the economy induced by the model. If the model classifies the

period as acceleration, then the investor can leverage his portfolio (120% of his wealth is

invested on the asset and 20% of cash is borrowed), otherwise he only invests 80% of his

wealth and 20% is kept in cash.

Moreover, since asset classes perform differently during different stages of the growth

cycle, it might be reasonable to rebalance the portfolio (shifting allocation weights) based

on the stage of the growth cycle (Chapter 1). The second strategy aims at beating the

classic asset allocation for an institutional portfolio, i.e. 60% of the portfolio allocated

to equities and 40% to fixed income securities (bonds). The investor decides each month

to rebalance his portfolio. If the model indicates acceleration, then 80% of the portfolio

is allocated to equities and 20% to bonds, otherwise 40% of the portfolio is allocated to

equities and 60% to bonds.

Pesaran and Timmermann (1994) and Han et al. (2013) demonstrate that the total

cost of transactions appears to be low, less than 1% (around 50 basis points when trading

in stocks while the cost for bonds is 10 basis points). To simplify, no transaction costs

are considered.

To avoid look-ahead bias, the reallocation takes place at the beginning of the month

following the turning point. As a matter of fact, an investor could not know at the

beginning of any month whether a turning point would occur in that month.

For conventional comparison of the portfolio performances, annualized average returns,

annualized standard deviation (volatility), Sharpe ratio (SR), which is the mean portfolio

8These strategies reflects the investment process in place in the asset management companies where I
used to work.
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return in excess of the risk-free rate divided by the standard deviation of the excess

portfolio return9 and max drawdown (MDD) are computed. The Sharpe ratio compares

the expected returns of an investment to the amount of risk undertaken to capture these

returns. The Max drawdown (MDD) is the largest drop from the maximum cumulative

return. In brief, the MDD offers investors a worst case scenario.

Data snooping

Data snooping, which occurs when a given set of data is used more than once for purposes

of inference or model selection, leads to the possibility that any results obtained in a

statistical study may simply be due to chance rather than to any merit inherent in the

method yielding the results (White (2000)).

To avoid data snooping, the model confidence set (MCS) procedure (Hansen et al.

(2011)) is computed.

The MCS procedure is a model selection algorithm, which filters a set of models from

a given entirety of models. The resulting set contains the best models with a probability

that is no less than 1− α with α being the size of the test.

An advantage of the test is that it not necessarily selects a single model, instead

it acknowledges possible limitations in the data since the number of models in the set

containing the best model will depend on how informative the data are.

More formally, define a setM0 that contains the set of models under evaluation indexed

by: i = 0, ...,m0. Let di,j,t denote the loss differential between two models by

di,j,t = Li,t − Lj,t, ∀i, j ∈M0

L is the loss calculated from some loss function for each evaluation point t = 1, ..., T . The

set of superior models is defined as:

9A risk-free interest rate of zero is assumed when calculating the SR.
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M∗ = {i ∈M0 : E[di,j,t] ≤ 0 ∀j ∈M0}

The MCS uses a sequential testing procedure to determine M∗. The null hypothesis

being tested is:





H0,M : E[di,j,t] = 0 ∀i, j ∈M whereM is a subset ofM0

HA,M : E[di,j,t] 6= 0 for some i, j ∈M

When the equivalence test rejects the null hypothesis, at least one model in the set M

is considered inferior and the model that contributes the most to the rejection of the null

is eliminated from the set M . This procedure is repeated until the null is accepted and

the remaining models in M now equal M̂∗
1−α.

According to Hansen et al. (2011), the following two statistics can be used for the

sequential testing of the null hypothesis:

ti,j =
di,j√

v̂ar(di,j)
and ti =

di√
v̂ar(di)

where m is the number of models in M , di = (m − 1)−1
∑

j∈M di,j, is the simple

loss of the ith model relative to the averages losses across models in the set M , and

di,j = (m)−1
∑m

t=1 di,j,t measures the relative sample loss between the ith and ith models.

Since the distribution of the test statistic depends on unknown parameters a bootstrap

procedure is used to estimate the distribution.

In this paper, the MCS is applied with classical criteria loss function (Brier’s Quadratic

Probability Score) and with profit maximization loss function (one-year rolling Sharpe

ratio). As regards investment strategies, it should be noted that the MCS aims at finding

the best model and all models which are indistinguishable from the best, not those better

than the benchmark. To determined if models are better than the benchmark, the stepwise

test of multiple reality check by Romano and Wolf (2005) and the stepwise multiple
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superior predictive ability test by Hsu et al. (2013) should be considered. However, if

the benchmark is not selected in the best models set, investors can conclude that their

strategies ”beat” the benchmark.

3.3 Empirical results

3.3.1 United States

The two-step model selection is computed as described previously. The first step of the

model selection is to find the best set of models according to the MCS procedure based

on Brier’s Quadratic Probability Score (QPS) and then the model selection is refined

based on the the area under the ROC curve (AUROC). The AUROC metric is thus only

computed for models included in M̂∗
75%. Table 3.1 highlights classical metrics for the

models in the United States.

Table 3.1: Classical evaluation criteria in the United States

QPS AUROC

SPB 0.13
RF 0.07∗∗ 0.94
BTB 0.05∗∗ 0.94
Prob 0.22
Acc 0.21
Slow 0.79
Random 0.25

Note: This table reports classical metrics used to evaluate the quality of the models: the area under the ROC curve (AUROC) and the

Brier’s Quadratic Probability Score (QPS). ** indicates the model is in the set of best models M̂∗

75%
. SPB refers to a boosting model

based on squared error loss with P-splines, RF refers to a random forest model, BTB refers to a boosting model based on binomial loss
function with decision trees, , Prob refers to the probit model based on the term spread, Acc classifies all data as ”acceleration”, Slow

classifies all data as ”slowdown” and Random randomly assigns classes based on the proportions found in the training data.

The performance of the models are impressive and are consistent with the results

found in Berge (2015). Ensemble machine learning models built are significantly and

statistically better than random guessing. ”RF” and ”BTB” belong to M̂∗
75%. ”SPB”

is the only ensemble model not selected in any best models set. Comparisons made with

the test proposed by Hanley and McNeil (1982) between models in M̂∗
75% conclude that

no model is better than the others.
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Table 3.2 indicates that ”RF” and ”BTB” do not miss any turning point. They

identify peaks and troughs with a maximum lag time of three months. ”SPB” does not

detect the 2011 slowdown. It explains why this model is not selected in the best models

set.

Table 3.2: Turning point signals of the reference cycle in the United States

SPB RF BTB

Trough: February 2003 0 -1 -2
Peak: October 2007 1 -2 -1
Trough: September 2009 1 1 0
Peak: June 2011 - 3 2
Trough: December 2011 1 1

Note: Value shown is the model-implied peak/trough calculated using a 0.5 threshold. The minus sign refers to the lead in which the
models anticipate the turning point dates. ”-” indicates that the model did not generate any signal. SPB refers to a boosting model
based on squared error loss with P-splines, RF refers to a random forest model, BTB refers to a boosting model based on binomial loss
function with decision trees.

Figure 3.1 exhibits some false signals, especially for ”SPB”. For RF , November 2006

is the only false signal. As regards BTB, January and February 2007 are the only false

signals.

Figure 3.1: Recursive real time classification of the growth cycle in the United States
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The ability to produce profits it now tested. Since models detect tuning points accu-

rately, investment strategies should be performing well. Tables 3.3 and 3.4 emphasize that

active investment strategies based on the growth cycle achieve impressive risk-adjusted

returns and outperform the passive buy-and-hold benchmark.

Table 3.3: Summary of return and risk measures in the United States: 120/80
equity strategy

Average returns Volatily SR MDD
SPB 0.110 0.149 0.74∗∗ -0.43
RF 0.107 0.147 0.72 -0.43
BTB 0.109 0.146 0.75∗∗ -0.44
Prob 0.094 0.173 0.54 -0.57
Acc 0.099 0.177 0.56 -0.58
Slow 0.066 0.118 0.56 -0.43
Random 0.092 0.155 0.59 -0.51
Benchmark 0.083 0.147 0.56 -0.51

Note: This table reports profit maximization measures for 120/80 equity strategy based on the state of the growth cycle induced by the
models. Returns are monthly and annualized. The volatility corresponds to the annualized standard deviation. The Sharpe ratio (SR)
compares the expected returns of an investment to the amount of risk undertaken to capture these returns. The Max drawdown (MDD)
measures the largest single drop from peak to bottom in the value of a portfolio. ** indicates the model is in the set of best models

M̂∗

75%
. SPB refers to a boosting model based on squared error loss with P-splines, RF refers to a random forest model, BTB refers to

a boosting model based on binomial loss function with decision trees, , Prob refers to the probit model based on the term spread, Acc

classifies all data as ”acceleration”, Slow classifies all data as ”slowdown”, Random randomly assigns classes based on the proportions
found in the training data and Benchmark refers to the passive buy-and-hold investment strategy.

Table 3.4: Summary of return and risk measures in the United States: dynamic
asset allocation

Average returns Volatily SR MDD
SPB 0.091 0.090 1∗∗ -0.18
RF 0.088 0.088 0.98 -0.18
BTB 0.091 0.087 1∗∗ -0.20
Prob 0.074 0.113 0.66 -0.39
Acc 0.075 0.116 0.65 -0.42
Slow 0.060 0.058 1 -0.18
Random 0.076 0.095 0.79 -0.30
Benchmark 0.068 0.085 0.79 -0.31

Note: This table reports profit maximization measures for a dynamic asset allocation between bonds and equities based on the state of
the growth cycle induced by the models. Returns are monthly and annualized. The volatility corresponds to the annualized standard
deviation. The Sharpe ratio (SR) compares the expected returns of an investment to the amount of risk undertaken to capture these
returns. The Max drawdown (MDD) measures the largest single drop from peak to bottom in the value of a portfolio. ** indicates the

model is in the set of best models M̂∗

75%
. SPB refers to a boosting model based on squared error loss with P-splines, RF refers to a

random forest model, BTB refers to a boosting model based on binomial loss function with decision trees, , Prob refers to the probit
model based on the term spread, Acc classifies all data as ”acceleration”, Slow classifies all data as ”slowdown”, Random randomly
assigns classes based on the proportions found in the training data and Benchmark refers to the passive buy-and-hold investment
strategy.

Table 3.3 points out that several strategies outperform the benchmark: it is thus

possible to time the stock market based on economic cycles in real time. These results
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have naturally implications for the risk management and hedging. Especially, in the

options market one can utilize the current state of the economy to hedge the portfolio

against the possible price declines. For example, writing an out-of-money covered call or

buy a put option when the stock market is expected to decrease (slowdown) would limit

the losses.

Selecting the best model is still complicated. In comparison with the ”classical”

case, M̂∗
75% turns out to be different. ”SPB” is not included in the best models set for

economists but can be useful for investors, since it is chosen in M̂∗
75%. Surprisingly, ”RF”

is not selected. Importantly, ”BTB” is selected in the best models set for economists and

for equity investors.

Moreover, Table 3.4 highlights that dynamic asset allocation delivers a substantial im-

provement in risk-adjusted performance as compared to static asset allocation, especially

for investors who seek to avoid large losses. The reduction of the MDD, which focuses on

the danger of permanent loss of capital as a sensible measure of risk, is what risk-averse

investors value the most. Portfolio rebalancing based on the stage of the growth cycle

in real time is thus realisable in the United States. One more time, SPB is attached to

M̂∗
75%, ”RF” is not selected and ”BTB” is selected in the best models set.

To sum up, ensemble machine learning algorithms detect growth cycle turning points

accurately, leading to outperforming investment strategies. However, depending on the

data and the objective, the model selection is quite different. Yet, ”BTB” is always

selected in the best models set.

3.3.2 Euro area

The same model selection methodology is applied in the euro area. The first step is to

find the best set of models according to the MCS procedure based on Brier’s Quadratic

Probability Score (QPS) and then this selection is refined based on the the area under

the ROC curve (AUROC). Table 3.5 highlights classical metrics for the models in the
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euro area.

Table 3.5: Classical evaluation criteria in the euro area

QPS AUROC

SPB 0.12∗∗ 0.90
RF 0.11∗∗ 0.91
BTB 0.12∗∗ 0.90
Prob 0.25
Acc 0.45
Slow 0.54
Random 0.48

Note: This table reports classical metrics used to evaluate the quality of the models: the area under the ROC curve (AUROC) and the

Brier’s Quadratic Probability Score (QPS). ** indicates the model is in the set of best models M̂∗

75%
. SPB refers to a boosting model

based on squared error loss with P-splines, RF refers to a random forest model, BTB refers to a boosting model based on binomial loss
function with decision trees, , Prob refers to the probit model based on the term spread, Acc classifies all data as ”acceleration”, Slow

classifies all data as ”slowdown” and Random randomly assigns classes based on the proportions found in the training data.

The performance of ensemble machine learning models are notable and are significantly

better than random guessing and other competitive classifiers: the three machine learning

algorithms are included in the best models sets. The test proposed by Hanley and McNeil

(1982) concludes that no model is better than the other.

Metrics in the euro area are less remarkable than in the United States. Indeed, the

persistence of the regimes is smaller in the euro area. The real-time classification is thus

harder.

Table 3.6 confirms this statement. Some turning points are difficult to detect, in

particular the short slowdown of 2004-2005. Nevertheless, ensemble machine learning

models detect all other turning points with a maximum lag time of three months. In real

time, the models would have signalled the 2007 and 2011 slowdowns.
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Table 3.6: Turning point signals of the reference cycle in the euro area

SPB RF BTB

Trough: September 2003 1 1 0
Peak: May 2004 11 9 10
Trough: May 2005 4 3 4
Peak: October 2007 -1 1 -2
Trough: August 2009 1 3 2
Peak: June 2011 -1 -2 -2
Trough: March 2013 2 2 3

Note: Value shown is the model-implied peak/trough calculated using a 0.5 threshold. The minus sign refers to the lead in which the
models anticipate the turning point dates. ”-” indicates that the model did not generate any signal. SPB refers to a boosting model
based on squared error loss with P-splines, RF refers to a random forest model, BTB refers to a boosting model based on binomial loss
function with decision trees.

Figure 3.2 highlights that there is no false signals.

Figure 3.2: Recursive real time classification of the growth cycle in the euro area

The ability to generate profits it now analysed. Since models detect tuning points

quite accurately, investment strategiess should be performing well. Tables 3.7 and 3.8

highlight that active investment strategies based on the growth cycle achieve excellent

risk-adjusted returns and outperform the passive buy-and-hold benchmark. Naturally,
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the risk management and hedging implications described for the United States also apply

in the euro area.

Table 3.7: Summary of return and risk measures in the euro area: 120/80
equity strategy

Average returns Volatily SR MDD
SPB 0.085 0.161 0.53∗∗ -0.46
RF 0.083 0.160 0.52∗∗ -0.46
BTB 0.079 0.158 0.50 -0.46
Prob 0.075 0.182 0.41 -0.48
Acc 0.077 0.207 0.37 -0.61
Slow 0.051 0.138 0.37 -0.43
Random 0.076 0.182 0.42 -0.53
Benchmark 0.064 0.173 0.37 -0.54

Note: This table reports profit maximization measures for 120/80 equity strategy based on the state of the growth cycle induced by the
models. Returns are monthly and annualized. The volatility corresponds to the annualized standard deviation. The Sharpe ratio (SR)
compares the expected returns of an investment to the amount of risk undertaken to capture these returns. The Max drawdown (MDD)
measures the largest single drop from peak to bottom in the value of a portfolio. ** indicates the model is in the set of best models

M̂∗

75%
. SPB refers to a boosting model based on squared error loss with P-splines, RF refers to a random forest model, BTB refers to

a boosting model based on binomial loss function with decision trees, , Prob refers to the probit model based on the term spread, Acc

classifies all data as ”acceleration”, Slow classifies all data as ”slowdown”, Random randomly assigns classes based on the proportions
found in the training data and Benchmark refers to the passive buy-and-hold investment strategy.

Table 3.8: Summary of return and risk measures in the euro area: dynamic
asset allocation

Average returns Volatily SR MDD
SPB 0.081 0.094 0.86∗∗ -0.21
RF 0.080 0.093 0.86∗∗ -0.22
BTB 0.075 0.091 0.83 -0.22
Prob 0.064 0.114 0.56 -0.25
Acc 0.060 0.137 0.44 -0.44
Slow 0.052 0.070 0.75 -0.21
Random 0.064 0.115 0.55 -0.32
Benchmark 0.06 0.10 0.55 -0.34

Note: This table reports profit maximization measures for a dynamic asset allocation between bonds and equities based on the state of
the growth cycle induced by the models. Returns are monthly and annualized. The volatility corresponds to the annualized standard
deviation. The Sharpe ratio (SR) compares the expected returns of an investment to the amount of risk undertaken to capture these
returns. The Max drawdown (MDD) measures the largest single drop from peak to bottom in the value of a portfolio. ** indicates the

model is in the set of best models M̂∗

75%
. SPB refers to a boosting model based on squared error loss with P-splines, RF refers to a

random forest model, BTB refers to a boosting model based on binomial loss function with decision trees, , Prob refers to the probit
model based on the term spread, Acc classifies all data as ”acceleration”, Slow classifies all data as ”slowdown”, Random randomly
assigns classes based on the proportions found in the training data and Benchmark refers to the passive buy-and-hold investment
strategy.

As regards equities, several strategies based on the growth cycle induced by several

models outperform the benchmark.

Selecting the best model is still complicated. In comparison with the ”classical” case,

M̂∗
75% turns out to be different. In this case, ”BTB” is less effective than the others two
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ensemble models as it is not selected in the best models set. No alternative classifiers are

included in the best models set.

Tables 3.8 emphasizes that dynamic asset allocation delivers a substantial improve-

ment in risk-adjusted performance as compared to static asset allocation, especially for

investors who seek to avoid large losses. It is thus possible to rebalance the portfolio based

on the stage of the growth cycle in real time in the euro area.

SPB and RF perform well as those models belongs to M̂∗
75%. ”BTB” is again less

effective than the others two ensemble models.

All in all, all results found for the United States also apply for the euro area. Depending

on the data and the objective the best models set can be quite different. This time, SPB

and RF are always selected in the best model set.

Conclusion

Investment strategies based on the turning points of the growth cycle, better known as

the output gap, achieve impressive risk-adjusted returns... in theory. But, in real time,

economists often fail to detect if a new economic phase has already begun.

Over the last couple of decades, researchers in the machine learning community have

developed more complex methods, also called ensemble learning, which improve predic-

tion performances. Ensemble methods are learning models that achieve performance by

combining the opinions of multiple learners. The two most popular techniques for con-

structing ensembles are random forests (Breiman (2001)) and boosting (Schapire (1990)).

The two features of those algorithms are their abilities to entertain a large number of

predictors and to perform estimation and variable selection simultaneously. Paradoxi-

cally, both methods work by adding randomness to the data (Varian (2014)), although

they have substantial differences. Random forests rely on simple averaging of models in

the ensemble and derive their strength from two aspects: randomizing subsamples of the

training data and randomizing the selection of features. Boosting combines models that
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do not perform particularly well individually into one with much improved properties. It

is an iterative process where the errors are kept being modelled.

Three models based on random forest and boosting algorithms are created to quickly

and accurately detect growth cycle turning points in real time, in the United States and

in the euro area.

To assess the value of the models, profit maximization measures are employed in ad-

dition to more standard criteria, since, for investors, the usefulness of a signal depends

on the rewards associated with the actions taken by the agent as a result of the fore-

cast. When comparing predictive accuracy and profit measures, the model confidence set

procedure (Hansen et al. (2011)) is applied to avoid data snooping.

Ensemble machine learning algorithms are effective to detect economic turning points

in real time. Strategies based on the turning points of the growth cycle induced by the

models achieve thus excellent risk-adjusted returns in real time: timing the market is

possible. It leads to useful implications for investors practising active portfolio and risk

management and for policy makers as tools to get early warning signals.

The selection of the best model is difficult. For instance, economists and investors

would not always choose the same model. Moreover, depending on the data and the

objective, random forest sometimes performs better than boosting, sometimes not.

Last but not least, this article opens the door for further research. An attempt to

forecast growth cycle and business cycle turning points three to twelve months ahead

could be very interesting. Evaluating the diversifying power of alternative asset classes in

real-time may be newsworthy for investors.
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Chapter 4

Hierarchical Clustering based Asset

Allocation

Abstract

A hierarchical clustering based asset allocation method, which uses graph theory

and machine learning techniques, is proposed. Hierarchical clustering refers to the

formation of a recursive clustering, suggested by the data, not defined a priori. Sev-

eral hierarchical clustering methods are presented and tested. Once the assets are

hierarchically clustered, a simple and efficient capital allocation within and across

clusters of assets at multiple hierarchical levels is computed. The out-of-sample per-

formances of hierarchical clustering based portfolios and more traditional risk-based

portfolios are evaluated across three disparate datasets. To avoid data snooping,

the comparison of profit measures is assessed using the bootstrap based model con-

fidence set procedure. The empirical results indicate that hierarchical clustering

based portfolios are robust, truly diversified and achieve statistically better risk-

adjusted performances than commonly used portfolio optimization techniques.
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Introduction

Nobel Prize winner Harry Markowitz described diversification, with its ability to en-

hance portfolio returns while reducing risk, as the only the ”only free lunch” in investing

(Markowitz (1952)). Yet diversifying a portfolio in real life is easier said than done.

Investors are aware of the benefits of diversification but form portfolios without giving

proper consideration to the correlations (Goetzmann and Kumar (2008)). Moreover,

modern and complex portfolio optimisation methods are optimal in-sample, but often

provide rather poor out-of-sample forecast performance. For instance, DeMiguel et al.

(2009) demonstrate that the equal-weighted allocation, which gives the same importance

to each assets, beats the entire set of commonly used portfolio optimization techniques. In

fact, optimized portfolios depend on expected returns and risks, but even small estimation

errors can result in large deviations from optimal allocations in an optimizer’s result

(Michaud (1989)).

To overcome this issue, academics and practitioners have developed risk-based port-

folio optimization techniques (minimum variance, equal risk contribution, risk budget-

ing,...), which do not rely on return forecasts (Roncalli (2013)). However, the inversion of

a positive-definite covariance matrix remains needed, which lead to errors of such magni-

tude that they entirely offset the benefits of diversification (López de Prado (2016b)).

Exploring a new way of capital allocation, López de Prado (2016a) introduces a port-

folio diversification technique called ”Hierarchical Risk Parity” (HRP), which uses graph

theory and machine learning techniques. One of the main advantages of HRP is to manage

to compute a portfolio on an ill-degenerated or even a singular covariance matrix.

The starting point of his analysis is that a correlation matrix is too complex to be

properly analysed and understood. If you have N assets of interest, there are 1
2
N(N − 1)

pairwise correlations among them and that number grows quickly. For example, there

are as many as 4950 correlation coefficients between stocks of the FTSE 100 and 124750

between stocks of the S&P 500. More importantly, López de Prado (2016a) points out that
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correlation matrices lack the notion of hierarchy. Actually, Nobel prize laureate Herbert

Simon has demonstrated that complex systems can be arranged in a natural hierarchy,

comprising nested sub-structures (Simon (1962)). But, a correlation matrix makes no

difference between assets. Yet, some assets seem closer substitutes of one another, while

others seem complementary to one another. This lack of hierarchical structure allows

weights to vary freely in unintended ways (López de Prado (2016a)).

To simplify the analysis of the relationships between this large group of relative prices,

López de Prado (2016a) applies a correlation-network method known as ”Minimum Span-

ning Tree (MST)”1. Its main principle is easy to understand: the heart of correlation

analysis is choosing which correlations really matter; in other words, choosing which links

in the network are important, and removing the rest, keeping N − 1 links2.

Graph theory is linked to unsupervised machine learning. For instance, the MST is

strictly related to a hierarchical clustering algorithm, named the ”Single Linkage” (Tum-

minello et al. (2010)) and another hierarchical clustering method, the ”Average Linkage”,

has been shown to be associated to a slightly different version of spanning tree called

Average Linkage Minimum Tree (Tumminello et al. (2007)). Hierarchical clustering refers

to the formation of a recursive clustering, suggested by the data, not defined a priori.

The objective is to build a binary tree of the data that successively merges similar groups

of points. Hierarchical clustering is thus another way to filter correlations. Another

variants of hierarchical clustering algorithm (Complete Linkage, Ward’s method) are not

associated to a spanning tree representation. Yet, they may provide interesting results.

Building upon López de Prado (2016a) and Simon (1962), this paper exploits the

1Since the seminal work of Mantegna (1999), correlation-networks have been extensively used in
Econophysics as tools to filter, visualise and analyse financial market data (see Baitinger and Papenbrocky
(2016) for a review)

2One concrete example would be a telecommunications company which is trying to lay out cables in
new neighborhood. In any case, the easiest possibility to install new cables is to bury them along roads.
Some of those paths might be more expensive, because they are longer, or require the cable to be buried
deeper. These paths would be represented by edges with larger weights. A spanning tree for that graph
would be a subset of those paths that has no cycles but still connects to every house. There might be
several spanning trees possible. A minimum spanning tree would be one with the lowest total cost would
then represent the least expensive path for laying the cable.
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notion of hierarchy. Different hierarchical clustering methods are presented and tested,

namely Simple Linkage, Complete Linkage, Average Linkage, Ward’s Method. Once the

assets are hierarchically clustered, a simple and efficient capital allocation within and

across clusters of assets at multiple hierarchical levels is computed.

The out-of-sample performances of hierarchical clustering based portfolios and risk-

based portfolios are evaluated across three empirical datasets, which differ in terms of

number of assets and composition of the universe (”S&P sectors”, multi-assets and indi-

vidual stocks). To avoid data snooping, which occurs when a given set of data is used

more than once for purposes of inference or model selection, the comparison of profit

measures is assessed using the bootstrap based model confidence set procedure proposed

by Hansen et al. (2011). It prevents strategies that perform by luck to be considered as

effective.

The findings of the paper can be summarized as follows: hierarchical clustering based

portfolios are robust, truly diversified and achieve statistically better risk-adjusted perfor-

mances than commonly used portfolio optimization techniques. Among clustering meth-

ods, there is no clear winner.

The rest of the paper proceeds as follows. Section 1 describes the risk budgeting

approach. Section 2 introduces hierarchical clustering methods and their application to

asset allocation. Section 3 presents the empirical set up: the datasets and the comparison

criteria. Section 4 analyses the empirical results.

4.1 Risk Budgeting Approach

This section briefly describes risk budgeting portfolios. Refer to Roncalli (2013) for a

detailed exposition of this approach. In a risk budgeting approach, the investor only

chooses the risk repartition between assets of the portfolio, without any consideration

of returns, thereby partially dealing with the issues of traditional portfolio optimization

methods.
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4.1.1 Notations and definitions

Consider a portfolio invested inN assets with portfolio weights vector w = (w1, w2, · · · , wN)
′.

Returns are assumed to be arithmetic: rt,i = (pt,i − pt−1,i)/pt−1,i = pt,i/pt−1,i − 1. The

portfolio return at time t is thus:

rP,t =
∑N

i=1
wirt,i

Let σ2
i be the variance of asset i, σij be the covariance between assets i and j and Σ

be the covariance matrix.

The volatility is defined as the risk of the portfolio:

Rw = σw =
√
w′Σw

and µ is the expected return:

µ = E(rP ) =
∑N

i=1
wiE(ri)

.

4.1.2 Risk budgeting portfolios

In a risk budgeting portfolio, the risk contribution from each components is equal to the

budget of risk defined by the portfolio manager.

Since the risk measure is coherent and convex, the Euler decomposition is verified:

Rw =
N∑

i=1

wi

∂Rw

∂wi

With the volatility as the risk measure, the risk contribution of the ith asset becomes:

RCwi
= wi

(Σw)i√
w′Σw



112

A long-only, full invested risk budgeting portfolio is defined as follows (Roncalli (2013)):





RCwi
= biRCw

bi > 0
∑N

i=1 bi = 1

wi ≥ 0
∑N

i=1 wi = 1

Once a set of risk budgets is defined, the weights of the portfolio are computed so that

the risk contributions match the risk budgets.

In this paper, four risk budgeting portfolios are considered3:

• The minimum variance (MV) portfolio is a risk budgeting portfolio where the risk

budget is equal to the weight of the asset:

bi = wi

• The most diversified portfolio (MDP) (Choueifaty et al. (2013)) is a risk budgeting

portfolio where the risk budgets are linked to the product of the weight of the asset

and its volatility:

bi =
wiσi∑N

i=1 wiσi

• The equal risk contribution portfolio (ERC) (Maillard et al. (2010)) is a risk budgeting

portfolio where the risk contribution from each asset is made equal:

bi =
1

N

3Five if the equal weighted portfolio is considered as a risk budgeting portfolio.
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• The inverse-variance (IVRB) risk budgeting portfolio defines risk budgets as follows:

bi =
σ−2
i∑N

i=1 σ
−2
i

The cyclical coordinate descent (CCD) algorithm for solving high dimensional risk

parity problems (Griveau-Billion et al. (2013)) is employed to estimate the risk-based

models.

4.2 Hierarchical clustering and asset allocation

4.2.1 Notion of hierarchy

Nobel Prize winner Herbert Simon has demonstrated that complex systems, such as fi-

nancial markets, have a structure and are usually organized in a hierarchical manner, with

separate and separable sub-structures (Simon (1962)). The hierarchical structure of inter-

actions among elements strongly affects the dynamics of complex systems. The need of a

quantitative description of hierarchies to model complex systems is thus straightforward

(Anderson (1972)).

López de Prado (2016a) points out that correlation matrices lack the notion of hi-

erarchy, which allows weights to vary freely in unintended ways. Moreover, he provides

a concrete example to highlight the interest of the notion of hierarchy for asset alloca-

tion: ”stocks could be grouped in terms of liquidity, size, industry and region, where

stocks within a given group compete for allocations. In deciding the allocation to a large

publicly-traded U.S. financial stock like J.P. Morgan, we will consider adding or reducing

the allocation to another large publicly-traded U.S. bank like Goldman Sachs, rather than

a small community bank in Switzerland, or a real estate holding in the Caribbean”. To

sum up, a correlation matrix makes no difference between assets. Yet, some assets seem

closer substitutes of one another, while others seem complementary to one another.
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4.2.2 Hierarchical clustering

The purpose of cluster analysis is to place entities into groups, or clusters, suggested by

the data, not defined a priori, such that entities in a given cluster tend to be similar to

each other and entities in different clusters tend to be dissimilar.

Hierarchical clustering refers to the formation of a recursive clustering. The objective

is to build a binary tree of the data that successively merges similar groups of points. The

tree based representation of the observations is called a dendrogram. Visualizing this tree

provides a useful summary of the data.

Hierarchical clustering requires a suitable distance measure. The following distance is

used (Mantegna (1999) and López de Prado (2016a)):

Di,j =
√
2(1− ρi,j)

where Di,j is the correlation-distance index between the ith and jth asset and ρi,j is

the respective Pearson’s correlation coefficients. The distance Di,j is a linear multiple of

the Euclidean distance between the vectors i, j after z-standardization, hence it inherits

the true-metric properties of the Euclidean distance (López de Prado (2016a)).

Four agglomerative clustering variants are tested in this study, namely: Single Linkage

(SL), Average Linkage (AL), Complete Linkage (CL), Ward’s Method (WM).

An agglomerative clustering starts with every observation representing a singleton

cluster and then combines the clusters sequentially, reducing the number of clusters at

each step until only one cluster is left. At each of the N − 1 steps the closest two (least

dissimilar) clusters are merged into a single cluster, producing one less cluster at the next

higher level. Therefore, a measure of dissimilarity between two clusters must be defined

and different definitions of the distance between clusters can produce radically different

dendrograms. The clustering variants are described below:

• Single Linkage: the distance between two clusters is the minimum of the distance

between any two points in the clusters. For clusters Ci, Cj:
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dCi,Cj
= minx,y{D(x, y) | x ∈ Ci, y ∈ Cj}

This method is relatively simple and can handle non-elliptical shapes. Nevertheless, it

is sensitive to outliers and can result in a problem called chaining whereby clusters end

up being long and straggly. The SL algorithm is strictly related to the one that provides

a Minimum Spanning Tree (MST). However the MST retains some information that

the SL dendrogram throws away.

• Complete Linkage: the distance between two clusters is the maximum of the distance

between any two points in the clusters. For clusters Ci, Cj:

dCi,Cj
= maxx,y{D(x, y) | x ∈ Ci, y ∈ Cj}

This method tends to produce compact clusters of similar size but, is quite sensitive to

outliers.

• Average linkage: the distance between two clusters is the average of the distance be-

tween any two points in the clusters. For clusters Ci, Cj:

dCi,Cj
= meanx,y{D(x, y) | x ∈ Ci, y ∈ Cj}

This is considered to be a fairly robust method.

• Ward’s Method (Ward (1963)): the distance between two clusters is the increase of the

squared error that results when two clusters are merged. For clusters Ci, Cj with sizes

mi,mj, respectively,

dCi,Cj
=

mimj

mi +mj

||ci − cj||2.

where ci, cj are the centroids for the clusters.
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This method is biased towards globular clusters, but less susceptible to noise and

outliers. It is one of the most popular methods.

To determine the number of clusters, the Gap index (Tibshirani et al. (2001)) is

employed. It compares the logarithm of the empirical within-cluster dissimilarity and the

corresponding one for uniformly distributed data, which is a distribution with no obvious

clustering.

4.2.3 Asset allocation weights

Once the clusters have been determined, the capital should be efficiently allocated both

within and across groups. Indeed, a compromise between diversification across all invest-

ments and diversification across clusters of investments at multiple hierarchical levels has

to be found.

Since asset allocation within and across clusters can be based on the same or different

methodologies, there are countless options.

The chosen weighting scheme attempts to stay very simple and focuses not only on

the clusterings, but on the entire hierarchies associated to those clusterings. The principle

is to find a diversified weighting by distributing capital equally to each cluster hierarchy,

so that many correlated assets receive the same total allocation as a single uncorrelated

one. Then, within a cluster, an equal-weighted allocation is computed.

For example, Figure 4.1 exhibits a small dendrogram with five assets and three clusters.

The first cluster is made up of assets 1 and 2, asset 5 constitutes the second cluster and

the third cluster consists of assets 3 and 4. Based on the hierarchical clustering weighting,

weights for cluster number one is 0.5 (1
2
= 0.5) and weights for clusters 2 and 3 are 0.25

(0.5
2

= 0.25). Since there are two assets in the cluster number one, final weights for assets

1 and 2 are 0.5
2

= 0.25. Asset 5 would have a weight of 0.25
1

= 0.25. At last, assets 3 and

4 would get a weight of 0.25
2

= 0.125.
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Figure 4.1: Asset allocation weights: a small example

This weighting scheme should guarantee the diversification and the robustness of the

portfolio. For instance, since at least two clusters are considered, the weights are con-

strained: ∀i : 0 ≤ wi ≤ 0.5. Moreover, if clusters are lasting, then weights should be very

stable. At last, neither expected returns nor risk measures are required, thereby making

the method more robust.

The will to exploit the nested clusters or in other words the notion of hierarchy ex-

plains why clustering methods such as K-means or K-medoids have not been tested.

Indeed, these algorithms provide a single set of clusters, with no particular organisation

or structure within them4.

4The results of applying K-means or K-medoids clustering algorithms depend on the choice for the
number of clusters to be searched and a starting configuration assignment. In contrast, hierarchical
clustering methods do not require such specifications.
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4.3 Investment strategies comparison

Portfolios are updated on a daily basis via a 252 days rolling window approach, with no

forward-looking biases. This approach differs from the traditional one, where portfolio

are rebalanced on a more realistic monthly basis5. Nevertheless, the main objective of

this paper is not to create a real investment strategy, but to compare asset allocation

methods. The daily rebalancing framework should help highlighting the strengths and

weaknesses of the different approaches, especially the robustness.

4.3.1 Datasets

The out-of-sample performances of models are evaluated across three very disparate

datasets. The three considered datasets differ in term of assets’ composition and number

of assets6:

• The ”S&P sectors” dataset consists of daily returns on 10 value weighted industry port-

folios formed by using the Global Industry Classification Standard (GICS) developed

by Standard & Poor’s. The 10 industries considered are Energy, Material, Industri-

als, Consumer-Discretionary, Consumer-Staples, Healthcare, Financials, Information-

Technology, Telecommunications, and Utilities. The data span from January 1995 to

August 2016.

Figure 4.1 illustrates that the average of the absolute correlation between the ”S&P

sectors” is time varying and ranges between 0.26 and 0.85.

5For investors, the choice of the rebalancing strategy is crucial. The periodic rebalancing is not optimal
and others options should be investigated (Sun et al. (2006)).

6Data are available from the author upon request.
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Figure 4.1: S&P sectors: absolute average correlation (rolling 252 days)

Figures 4.2 and 4.3 display the distribution of the correlation matrix for the the stock

market downturn of 2002 and the rebound of 2009. The ”S&P sectors” correlations are

always positive, yet the distribution is time varying.

Figure 4.2: Correlation matrix distribu-
tion: 2002

Figure 4.3: Correlation matrix distribu-
tion: 2009

• The multi-assets dataset is constituted of asset classes exhibiting different risk-return
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characteristics (in local currencies): S&P 500 (US large cap), Russell 2000 (US small

cap), Euro Stoxx 50 (EA large cap), Euro Stoxx Small Cap (EA small cap), FTSE

100 (UK large cap), FTSE Small Cap (UK small cap), France 2-Year bonds, France 5-

Year bonds, France 10-Year bonds, France 30-Year bonds, US 2-Year bonds, US 5-Year

bonds, US 10-Year bonds, US 30-Year bonds, MSCI Emerging Markets (dollars), Gold

(dollars).

France has been chosen over Germany for data availability reasons. A difficult decision

has been made for fixed-income indices: coupons are not reinvested. The reasoning is

the following: rates are low and are expected to stay low for a long time7. It implies that

performances in the future will not come from coupons. As the aim is to build portfolios

that will perform and not that have performed, this solution has been preferred (see

Appendix A for more on this subject). As a consequence, no dividends are reinvested.

The data span from February 1989 to August 2016.

Figure 4.4 highlights that the average of the absolute correlation between the multi-

assets changes with time and lies between 0.18 and 0.51. Asset classes are more corre-

lated during bad times (recession for examples) than during good times. An important

implication of higher correlations is that otherwise diversified portfolio lose some of

diversification benefit during bad times, when most needed.

7Off topic: low interest rates are not the symbol of easy monetary policy, but rather an outcome of
excessively tight monetary policy (see Friedman (1992) and Friedman (1997)).
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Figure 4.4: Multi-assets: absolute average correlation (rolling 252 days)

Figures 4.5 and 4.6 illustrate the distribution of the correlation matrix for the years

2002 and 2009. Correlations between assets can be strong and negative, especially

during bad times. It implies that hedging strategies can be implemented.

Figure 4.5: Correlation matrix distribu-
tion: 2002

Figure 4.6: Correlation matrix distribu-
tion: 2009

• 357 individual stocks with a sufficiently long historical data from the current S&P 500
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compose the last dataset. The objective is to get ”real” correlations between stocks.

Obviously, this dataset does not incorporate information on delistings. Since there is

a strong survivor bias, comparisons with the S&P 500 are meaningless. Nevertheless,

comparisons between different models are meaningful. The data span from January

1996 to August 2016.

Figure 4.7 displays that the average of the absolute correlation between the individual

stocks is time varying and ranges between 0.12 and 0.59.

Figure 4.7: Individual stocks: absolute average correlation (rolling 252 days)

Figures 4.8 and 4.9 exhibit the distribution of the correlation matrix for the the stock

market downturn of 2002 and the rebound of 2009. During good times, correlations are

positive and higher than during bas times, which implies that the diversification effect

of stock picking may be smaller during good times.
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Figure 4.8: Correlation matrix distribu-
tion: 2002

Figure 4.9: Correlation matrix distribu-
tion: 2009

Although more data history would have been desirable, the different periods cover a

number of different market regimes and shocks to the financial markets and the world

economy, including the ”dot-com” bubble, the Great Recession and the 1994 and 1998

bond market crashes as regards the multi-asset dataset.

4.3.2 Comparison measures

Given the time series of daily out-of-sample returns generated by each strategy in each

dataset, several comparison criteria are computed:

• The Adjusted Sharpe Ratio (ASR) (Pezier and White (2008))8 explicitly adjusts for

skewness and kurtosis by incorporating a penalty factor for negative skewness and excess

kurtosis:

ASR = SR[1 + (
µ3

6
)SR+

(µ4 − 3)

24
)SR2]

8Similar to the Adjusted Sharpe Ratio, the Modified Sharpe Ratio uses Modified VaR adjusted for
skewness and kurtosis as a risk measure.
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where µ3 and µ4 are the skewness and kurtosis of the returns distribution and SR

denotes the traditional Sharpe Ratio (SR =
µ−rf
σ

, where rf is the risk-free rate9).

• The certainty-equivalent return (CEQ) is the risk-free rate of return that the investor

is willing to accept instead of undertaking the risky portfolio strategy. DeMiguel et al.

(2009) define the CEQ as:

CEQ = (µ− rf )−
γ

2
σ2

where γ is the risk aversion. Results are reported for the case of γ = 1 but other values of

the coefficient of risk aversion are also considered as a robustness check. More precisely,

the employed definition of CEQ captures the level of expected utility of a mean-variance

investor, which is approximately equal to the certainty-equivalent return for an investor

with quadratic utility (DeMiguel et al. (2009)). It is the most important number to

consider to build profitable portfolios (Levy (2016)).

• The Max drawdown (MDD) is an indicator of permanent loss of capital. It measures

the largest single drop from peak to bottom in the value of a portfolio. In brief, the

MDD offers investors a worst case scenario.

• The average turnover per rebalancing (T O):

T O =
1

F

F∑

t=2

|wi,t − wi,t−1|

where F is the number of out-of-sample forecasts.

• The Sum of Squared Portfolio Weights (SSPW) used in Goetzmann and Kumar (2008)

exhibits the underlying level of diversification in a portfolio and is defined as follows:

SSPW =
1

F

F∑

t=2

N∑

i=1

w2
i,t

9A risk-free interest rate of zero is assumed when calculating the ASR and CEQ.
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SSPW ranges from 0 to 1, where 1 represents the most concentrated portfolio.

No transactions costs or economic costs generated by the turnover are reported. In-

deed, the study of transactions costs is difficult because investors face different fees and

the same strategy can be implemented via Futures or ETF or CFD or cash. Moreover,

taxes and the chosen rebalancing strategy influence costs. Nevertheless, high average

turnover per rebalancing leads to expensive strategies.

Data snooping

To avoid data snooping (White (2000)), the model confidence set (MCS) procedure pro-

posed by Hansen et al. (2011) is computed. The MCS procedure is a model selection

algorithm, which filters a set of models from a given entirety of models. The resulting set

contains the best models with a probability that is no less than 1 − α with α being the

size of the test (see Hansen et al. (2011)).

An advantage of the test is that it not necessarily selects a single model, instead

it acknowledges possible limitations in the data since the number of models in the set

containing the best model will depend on how informative the data are.

More formally, define a setM0 that contains the set of models under evaluation indexed

by: i = 0, ...,m0. Let di,j,t denote the loss differential between two models by

di,j,t = Li,t − Lj,t, ∀i, j ∈M0

L is the loss calculated from some loss function for each evaluation point t = 1, ..., F . The

set of superior models is defined as:

M∗ = {i ∈M0 : E[di,j,t] ≤ 0 ∀j ∈M0}

The MCS uses a sequential testing procedure to determine M∗. The null hypothesis

being tested is:
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



H0,M : E[di,j,t] = 0 ∀i, j ∈M whereM is a subset ofM0

HA,M : E[di,j,t] 6= 0 for some i, j ∈M

When the equivalence test rejects the null hypothesis, at least one model in the set M

is considered inferior and the model that contributes the most to the rejection of the null

is eliminated from the set M . This procedure is repeated until the null is accepted and

the remaining models in M now equal M̂∗
1−α.

According to Hansen et al. (2011), the following two statistics can be used for the

sequential testing of the null hypothesis:

ti,j =
di,j√

v̂ar(di,j)
and ti =

di√
v̂ar(di)

where m is the number of models in M , di = (m − 1)−1
∑

j∈M di,j, is the simple

loss of the ith model relative to the averages losses across models in the set M , and

di,j = (m)−1
∑m

t=1 di,j,t measures the relative sample loss between the ith and ith models.

Since the distribution of the test statistic depends on unknown parameters a bootstrap

procedure is used to estimate the distribution.

In this paper, the MCS is applied with profit maximization loss function (ASR and

CEQ). It should be noted that the MCS aims at finding the best model and all models

which are indistinguishable from the best, not those better than a benchmark. To deter-

mined if models are better than a benchmark, the stepwise test of multiple reality check

by Romano and Wolf (2005) and the stepwise multiple superior predictive ability test by

Hsu et al. (2013) should be considered. However, a small trick is possible: if the bench-

mark is not selected in the best models set, investors can conclude that their strategies

”beat” the benchmark.
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4.4 Empirical results

4.4.1 S&P sectors

Table 4.1 highlights the interest of hierarchical clustering based portfolios, especially the

CL based model. It is the only model selected in the best models set M̂∗
75% for both

ASR and CEQ. This portfolio is diversified (SSPW=0.114) and the average turnover

per rebalancing is quite low (T O=0.817%).

The MV is included in M̂∗
ASR−75% but its diversification ratio SSPW is by far the

highest of all models: the portfolio is concentrated instead of being diversified.

Table 4.1: Investment strategies comparison: S&P 500 sectors (January 1996-
August 2016)

ASR CEQ MDD T O SSPW
EW 0.422 6.81 54.2 - 0.100
MV 0.448∗∗ 5.75 37.8 1.78 0.480
MDP 0.344 5.28 57.6 1.83 0.217
ERC 0.442 6.40 51.6 0.294 0.107
IVRB 0.428 6.51 49.0 0.474 0.121
SL 0.418 6.53 53.4 0.669 0.115
CL 0.430∗∗ 6.87∗∗ 51.0 0.817 0.114
AL 0.421 6.62 52.6 0.762 0.114
WM 0.415 6.49 52.9 0.883 0.149

Note: This table reports comparison criteria used to evaluate the quality of the models: the Adjusted Sharpe Ratio (ASR), the certainty-
equivalent return (CEQ) in percent, the Max drawdown (MDD) in percent, the average turnover per rebalancing ((T O) in percent, the

Sum of Squared Portfolio Weights (SSPW). ** indicates the model is in the set of best models M̂∗

75%
. EW refers to the equal weight

allocation, MV refers to the minimum variance allocation, MDP refers to the most diversified portfolio allocation, ERC refers to the equal
risk contribution allocation ,IVRB refers to the inverse-volatility risk budget allocation, SL refers to the simple linkage based allocation,
CL refers to the complete linkage based allocation, AL refers to the average linkage based allocation, WM refers to the Ward’s method
based allocation.

Table 4.2 exhibits that the number of clusters selected by the Gap index seems sta-

ble (the standard deviation is small for all methods). It explains why the hierarchical

clustering based portfolios presents low average turnover per rebalancing.
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Table 4.2: Number of clusters: S&P 500 sectors (January 1996-August 2016)

Mean SD Max Min
SL 7.0 0.23 7 6
CL 6.9 0.33 7 4
AL 6.9 0.29 7 5
WM 6.9 0.26 7 5

Note: This table reports the mean, the standard deviation (SD), the max and the min of the number of clusters. SL refers to the simple
linkage based allocation, CL refers to the complete linkage based allocation, AL refers to the average linkage based allocation, WM refers
to the Ward’s method based allocation.

4.4.2 Multi-assets dataset

Table 4.3 paints a contrasting picture: risk-based portfolios achieve impressive ASR along

with low CEQ. For instance, IVRB constitutes the best models set M̂∗
ASR−75%. Moreover,

MDP and ERC display high ASR in comparison with others models: 0.717 and 0.707.

That said, risk-based portfolios attain very low CEQ, especially IVRB (CEQ=0.951, while

CEQ=4.71 for AL). Above all, they do not produce diversified portfolios ( SSPW=0.500

for IVRB for example). It implies that portfolios are almost only invested in bonds,

thereby being very exposed to shocks from this asset class. This is not what diversified

portfolios aim at.

Hierarchical clustering based portfolios do not face the same problems. Al and SL

compose M̂∗
CEQ−75%, while delivering reasonably good ASR. All portfolios are diversified

and the average turnover per rebalancing is low.
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Table 4.3: Investment strategies comparison: multi-assets (February 1989-
August 2016)

ASR CEQ MDD T O SSPW
EW 0.601 4.02 24.9 - 0.0625
MV 0.611 1.31 7.49 4.22 0.403
MDP 0.717 1.95 7.7 2.92 0.296
ERC 0.707 1.91 9.34 0.509 0.164
IVRB 0.581∗∗ 0.951 6.85 0.500 0.342
SL 0.597 4.67∗∗ 31.4 1.28 0.086
CL 0.586 4.51 29.9 1.15 0.085
AL 0.602 4.71∗∗ 29.7 1.19 0.085
WM 0.583 4.47 29.9 1.25 0.084

Note: This table reports comparison criteria used to evaluate the quality of the models: the Adjusted Sharpe Ratio (ASR), the certainty-
equivalent return (CEQ) in percent, the Max drawdown (MDD) in percent, the average turnover per rebalancing ((T O) in percent, the

Sum of Squared Portfolio Weights (SSPW).** indicates the model is in the set of best models M̂∗

75%
. EW refers to the equal weight

allocation, MV refers to the minimum variance allocation, MDP refers to the most diversified portfolio allocation, ERC refers to the equal
risk contribution allocation ,IVRB refers to the inverse-volatility risk budget allocation, SL refers to the simple linkage based allocation,
CL refers to the complete linkage based allocation, AL refers to the average linkage based allocation, WM refers to the Ward’s method
based allocation.

Table 4.4 exhibits that the number of clusters lies between 5 and 10 for CL based

portfolios and between 7 and 10 for others methods. Al and SL are selected in M̂∗
CEQ−75%

and display the lowest standard deviation. It seems thus that stable clusters lead to better

performances.

Table 4.4: Number of clusters: multi-assets (February 1989-August 2016)

Mean SD Max Min
SL 9.8 0.53 10 7
CL 9.1 1.1 10 5
AL 9.2 0.96 10 7
WM 9.1 1.2 10 7

Note: This table reports the mean, the standard deviation (SD), the max and the min of the number of clusters. SL refers to the simple
linkage based allocation, CL refers to the complete linkage based allocation, AL refers to the average linkage based allocation, WM refers
to the Ward’s method based allocation.

4.4.3 Individual stocks

Table 4.5 points out that hierarchical clustering based portfolios outperform risk-based

portfolios. Indeed, WM is the only model selected in the best models set M̂∗
ASR−75% and

the best models set M̂∗
CEQ−75% is only constituted by one model: AL. WM based portfolio

seems more diversified (SSPW=0.041 for AL and SSPW=0.0051 for WM).
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The main drawback is the surprising elevated average turnover per rebalancing. Table

4.6 highlight that the number of clusters is more volatile than in others datasets (the

standard deviations is around 4 and the min-max ranges from 46 to 80 clusters). This

point needs to be further investigated, in particular, the impact of the criteria used to

select the number of clusters and the consequences of the correlation matrix ”shrinkage”

on the stability of the clusters.

Table 4.5: Investment strategies comparison: Individual stocks (January 1996-
August 2016)

ASR CEQ MDD T O SSPW
EW 0.595 13.3 52.2 - 0.0028
MV 0.600 13.0 51.2 0.021 0.0048
MDP 0.658 16.4 45.1 7.21 0.052
ERC 0.570 12.1 49.4 0.79 0.0036
IVRB 0.560 10.8 47.1 0.98 0.0045
SL 0.492 19.2 43.1 32.4 0.0552
CL 0.473 16.5 47.4 33.7 0.0151
AL 0.520 19.5∗∗ 46.1 33.6 0.041
WM 0.572∗∗ 14.2 51.2 33.4 0.0051

Note: This table reports comparison criteria used to evaluate the quality of the models: the Adjusted Sharpe Ratio (ASR), the certainty-
equivalent return (CEQ) in percent, the Max drawdown (MDD) in percent, the average turnover per rebalancing ((T O) in percent, the

Sum of Squared Portfolio Weights (SSPW).** indicates the model is in the set of best models M̂∗

75%
. EW refers to the equal weight

allocation, MV refers to the minimum variance allocation, MDP refers to the most diversified portfolio allocation, ERC refers to the equal
risk contribution allocation ,IVRB refers to the inverse-volatility risk budget allocation, SL refers to the simple linkage based allocation,
CL refers to the complete linkage based allocation, AL refers to the average linkage based allocation, WM refers to the Ward’s method
based allocation.

Table 4.6: Number of clusters: Individual stocks (January 1996-August 2016)

Mean SD Max Min
SL 78.0 4.6 80 48
CL 76.2 4.5 80 46
AL 77.4 4.4 80 51
WM 78.2 4.4 80 50

Note: This table reports the mean, the standard deviation (SD), the max and the min of the number of clusters. SL refers to the simple
linkage based allocation, CL refers to the complete linkage based allocation, AL refers to the average linkage based allocation, WM refers
to the Ward’s method based allocation.

4.5 Future research

The aim of this paper is to introduce hierarchical clustering based asset allocation. The

previous section highlight the interest of this method. Nevertheless, there may be several
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way of improving the out-of-sample performance.

• Typical machine learning issues have to be investigated, such as the choice of the

distance measure and the criteria used to select the number of clusters. Different

number of clusters lead to different assets weights. For instance, in the small example

described before in the paper, if we consider two clusters instead of three, the weight

of asset 5 decreases from 0.25 to 0.1667:

Figure 4.1: Asset allocation weights: a small example revisited

• Trying other modern clustering methods (Kernel K-means, Spectral clustering,...) may

(or may not) provide impressive out-of-sample performances, even if clusters are not

nested.

• Another weighting strategy is obviously possible. For instance, López de Prado (2016a)

employs an inverse-variance weighting allocation with no selection of clusters. One

drawback of the proposed approach is that risk management is not part of the weighting
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strategy. Since assets within a clusters are correlated, a combination with risk parity

or Sharpe parity could lead to interesting results.

• Even if the proposed method does not require a matrix to be inverted, the correlation

matrix has still to be estimated. Historical asset returns are commonly used. But,

in many cases, the length of the asset returns’ time series used for estimation is not

long enough compared to the number of assets considered (Jobson and Korkie (1980)).

As a result, the estimated correlation matrix is unstable. One approach to improving

estimation is to use ”shrinkage”. The general idea is that a compromise between a

logical/theoretical estimator and a sample estimator will yield better results than either

method (see Ledoit and Wolf (2004), Ledoit and Wolf (2014) and Gerber et al. (2015)).

Conclusion

Diversification is often spoken of as the only free lunch in investing. Yet, truly diversifying

a portfolio is easier said than done. For instance, modern portfolio optimization techniques

often fail to outperform a basic equal-weighted allocation (DeMiguel et al. (2009)).

Building upon the fundamental notion of hierarchy (Simon (1962)), López de Prado

(2016a) introduces a new portfolio diversification technique called ”Hierarchical Risk Par-

ity”, which uses graph theory and machine learning techniques.

Exploiting the same basic idea in a different way, a hierarchical clustering based asset

allocation is proposed. Classical and more modern hierarchical clustering methods are

tested, namely Simple Linkage, Complete Linkage, Average Linkage, Ward’s Method.

Once the assets are hierarchically clustered, a simple and efficient capital allocation within

and across clusters of investments at multiple hierarchical levels is computed. The main

principle is to find a diversified weighting by distributing capital equally to each cluster

hierarchy, so that many correlated assets receive the same total allocation as a single

uncorrelated one.
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The out-of-sample performances of hierarchical clustering based portfolios and more

traditional risk-based portfolios are evaluated across three empirical datasets, which differ

in terms of number of assets and composition of the universe (”S&P sectors”, multi-assets

and individual stocks). To prevent strategies that perform by luck to be considered as

effective, the comparison of profit measures is assessed using the bootstrap based model

confidence set procedure (Hansen et al. (2011)).

The empirical results point out that hierarchical clustering based portfolios are truly

diversified and achieve statistically better risk-adjusted performances, as measured by the

the Adjusted Sharpe Ratio (Pezier and White (2008)) and by the Certainty-Equivalent

Return on all datasets. The only exception concerns the multi-assets dataset where risk-

based portfolios produce impressive ASR along with ridiculous low CEQ. Among clus-

tering methods, there is no clear winner.

Last but not least, this article opens the door for further research. Testing other

clustering methods and investigating typical machine learning issues, such as the choice

of the distance measure and the criteria used to select the number of clusters, come

naturally to mind. Above all, improving the estimation of the correlation matrix seems

to be the most important priority. Potential improvements may come from the use of

”shrinkage” or/and the detection of current phase of the economic cycles.
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Appendix

4.A Bond market

In 1994 and in 2016, the bond market suffered a sharp and sudden selloff. In 1994, the

coupon yield was high enough to partly protect the investors. Since rates are low in 2016,

the change in rates is a constant drag on performance that the initially anaemic coupon

yield can not cover.
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Conclusion

Diversification is the only free lunch in finance (Markowitz (1952)), yet it is easier said

than done. To create portfolios that stay diversified when needed, this thesis proposes

lines of thinking. The first one is to deepen the knowledge of interaction dynamics between

financial markets the macroeconomy. The second one is to explore a new way of capital

allocation.

The willingness of investors to bear risk varies over time, larger in good times, and

less in bad times, leading to time-varying risk premiums (Cochrane (2016)). Yet, there is

still no consensus on the definition of good and bad time. To fill this gap, the theoretical

influence of economic cycles on time-varying risk premiums is explained based on two

key economic concepts, nominal GDP and adaptive expectations. It is then exhibited

over the period from January 2002 to December 2013: dynamic investment strategies

based on economic cycles turning points emphasize the importance of economical cycles,

especially the growth cycle, better known as the output gap, for euro and dollar-based

investors. The theoretical definition of good time is thus when the current growth rate of

the economy is above the trend growth rate.

To quickly and accurately detect economic turning points in real time in the United

States and in the euro area, probabilistic indicators are first created from a simple and

transparent machine-learning algorithm known as Learning Vector Quantization (Koho-

nen (2001)). Those indicators are robust, interpretable and preserve economic consistency.

A more complex approach is then evaluated: ensemble machine learning algorithms, re-

ferred to as random forest (Breiman (2001)) and as boosting (Schapire (1990)), are ap-
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plied. The two key features of those algorithms are their abilities to entertain a large

number of predictors and to perform estimation and variable selection simultaneously.

Both approaches are effective to detect economic turning points in real time over the

period from January 2002 to December 2013. Strategies based on the turning points of

the growth cycle induced by the models achieve thus excellent risk-adjusted returns in

real time: timing the market is possible.

Modern and complex portfolio optimisation methods are optimal in-sample, but of-

ten provide rather poor out-of-sample forecast performance (DeMiguel et al. (2009)). To

allocate capital differently, a new portfolio diversification technique called hierarchical

clustering based asset allocation is proposed. Once the assets are hierarchically clustered,

a simple and efficient capital allocation within and across clusters of investments at mul-

tiple hierarchical levels is computed. The main principle is to find a diversified weighting

by distributing capital equally to each cluster hierarchy, so that many correlated as-

sets receive the same total allocation as a single uncorrelated one. The out-of-sample

performances of hierarchical clustering based portfolios and more traditional risk-based

portfolios are evaluated across three disparate datasets, which differ in terms of number

of assets and composition of the universe (”S&P sectors”, multi-assets and individual

stocks). The empirical results indicate that hierarchical clustering based portfolios are

robust, truly diversified and achieve statistically better risk-adjusted performances than

commonly used portfolio optimization techniques.

At last, this thesis opens doors to many areas for further research and development.

An attempt to forecast business cycle turning points three to twelve months ahead could

be very interesting. To this aim, the use of data generated by individuals (social media

posts, product reviews, search trends, etc.), to data generated by business processes (com-

pany exhaust data, commercial transaction, credit card data, etc.) and data generated

by sensors (satellite image data, foot and car traffic, ship locations, etc.) could provide

new interesting explanatory variables. Moreover, deep learning methods have dramati-

cally improved the state-of-the-art in speech recognition, visual object recognition, object



139

detection and many other domains such as drug discovery and genomics, but are largely

unknown in economics. They could achieve better results than ensemble machine learning

algorithms...or not. Finally, hierarchical clustering based asset allocation has been proven

to be effective. Nevertheless, there may be several way of improving the out-of-sample

performance, which have to be developed.
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Introduction

La crise économique et financière mondiale, appelée communément Grande
Récession, a mis en exergue le besoin d’approfondir les liens entre le contexte
macroéconomique et les marchés financiers.

la crise a mis à mal la théorie moderne du portefeuille développée en 1952
par Harry Markowitz. Markowitz (1952) avait formalisé et quantifié l’adage
de ne pas mettre tous ses oeufs dans le même panier : la diversification. Ainsi,
une combinaison judicieuse de nombreux actifs dans un portefeuille permet de
réduire le risque total subi, mesuré par la variance de sa rentabilité, pour un
taux de rentabilité espérée donné. Ces stratégies d’investissement diversifiées
étaient censées pouvoir affronter des crises sans subir de lourdes pertes, la
réalité a prouvé qu’il n’en était rien. La diversification a échoué au moment
où elle aurait du être le plus utile (Page and Taborsky (2011)).

Cette thèse cherche à lier les cycles économiques et la gestion de porte-
feuille. Le premier chapitre construit un cadre théorique entre les cycles
économiques et les primes de risques. Il met en évidence l’importance des
points de retournement du cycle de croissance, plus connu sous le nom d’écart
de production. Les deux chapitres suivants ont pour objectif de détecter en
temps réel ces points de retournement. La première approche se concentre
sur une méthode non paramétrique d’apprentissage automatique simple et
facilement compréhensible appelée quantification vectorielle adaptative. La
seconde approche utilise des méthodes plus complexes d’apprentissage au-
tomatique, dites ensemblistes : les forêts aléatoires et le boosting. Les deux
démarches permettent de créer des stratégies d’investissement performantes
en temps réel. Enfin, le dernier chapitre élabore une méthode d’allocation
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d’actifs à partir de différents algorithmes de regroupement hiérarchique. Les
résultats empiriques démontrent l’intérêt de cette tentative : les portefeuilles
crées sont robustes, diversifiés et lucratifs.

Premier chapitre: Primes de risques et cycles

économiques

Il est de coutume de dire que les classes d’actifs sont corrélées au cycle
d’affaires (business cycle) ((Cochrane (2016))). L’objectif de ce chapitre est
de démontrer que les actifs ne sont pas corrélés aux cycles économiques mais
bien causés par ces derniers. Pour ce faire, il faut définir précisément les
cycles économiques.

De manière simple, le cycle des affaires est le cycle du niveau de l’activité,
tel que défini par Burns and Mitchell (1946). Ses points de retournement
opposent les périodes de croissance négative (ou récessions) aux périodes de
croissance positive (ou expansions). Suivant cette définition du cycle, les pics
et les creux correspondent donc aux entrées et sorties de récession. Ce cy-
cle des affaires est caractérisé par un mouvement commun à des nombreuses
variables économiques et par la présence de fortes asymétries selon la phase
du cycle. Historiquement, le cycle de croissance trouve son origine au NBER
dans un article écrit par Mintz (1974) dans lequel l’auteur introduit le con-
cept de cycle de déviation (deviation cycle) qui mesure l’écart à un instant
donné entre la variable censée représenter l’évolution globale de l’économie,
en général le PIB, et sa tendance de long terme. La tendance de long terme
peut être vue comme la croissance tendancielle ou potentielle selon les ap-
pellations. Le pic de ce cycle correspond au moment où le taux de croissance
repasse en dessous du taux de croissance tendanciel (l’output gap est alors à
un maximum) et, par symétrie, le creux représente le moment où il repasse
au-dessus (l’output gap atteint alors un minimum). L’OCDE a popularisé
cette notion de cycle de croissance à travers la diffusion de ses indicateurs
avancés composites (Composite Leading Indicators), toujours calculés par
l’institution internationale depuis 1981, et visant à anticiper en temps réel
les pics et les creux du cycle de croissance.

L’approche cyclique peut être raffinée en considérant à la fois le cycle
d’affaire et le cycle de croissance. En effet, il existe une chronologie naturelle
entre les points de retournement de ces différents cycles et l’analyse conjointe
des cycles économiques selon l’approche ABCD développée par Anas and
Ferrara (2004) permet une analyse plus fine du lien entre les classes d’actifs
et l’économie, principalement pour les actifs risqués.
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La relation théorique entre les cycles économiques et les primes de risques
est clairement expliquée à partir de deux notions usuelles : le PIB nominal
et les anticipations adaptatives.

Le prix d’une action ou la valeur d’une entreprise est la somme de tous
les paiements de dividendes futurs actualisés à leur valeur actuelle. En
d’autres termes, les investisseurs achètent une action pour son potentiel
de bénéfices futurs. Puisque la somme de tous les revenus gagnés dans
une économie chaque année est le PIB nominal, le prix des actions devrait
donc être lié aux anticipations de croissance nominale (et non aux anticipa-
tions de croissance réelle). Lorsque le taux de croissance réel est supérieur
à son potentiel, les pressions inflationnistes augmentent: le taux de crois-
sance nominal de l’économie augmente. Les anticipations adaptatives im-
pliquent que les anticipations de taux de croissance nominales devraient aug-
menter, ce qui équivaut à dire que les anticipations de revenus devraient aug-
menter. En théorie, les actions devraient donc bien performer lors des phases
d’accélération et souffrir lors des ralentissements. Puisque les ralentissements
signalent une période prolongée de croissance économique modérée, mais pas
nécessairement un déclin absolu de l’activité économique, les performances
des actions peuvent donc être négatives lorsque les taux de croissance réels
sont positifs.

En théorie, les obligations d’État devraient bien performer pendant les
ralentissements et les récessions. En effet, la théorie des anticipations de
la structure par terme considère que le taux d’intérêt à long terme est une
moyenne pondérée des taux d’intérêt actuels et attendus plus une prime de
terme (cette dernière capte la compensation nécessaire pour supporter le
risque de taux). Si le taux de croissance de l’activité est inférieur au taux
de croissance potentiel, les pressions inflationnistes reculent et la banque
centrale est plus susceptible de réduire les taux. En conséquence, les in-
vestisseurs devraient prévoir une trajectoire inférieure des taux d’intérêt à
court terme futurs. Les taux à long terme devraient donc diminuer (et les
prix des obligations augmenter).

Des stratégies dynamiques d’allocation d’actifs servent à prouver l’intérêt
théorique de l’approche et mettent en évidence l’importance des points de
retournement du cycle de croissance.

De plus, ce cadre théorique d’analyse des marchés permet une amélioration
concrète de l’élaboration d?une allocation stratégique.
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Second et troisième chapitres: Détection des

points de retournement du cycle de croissance

grâce à des méthodes d’apprentissage automa-

tique

L’objectif est de détecter en temps réel les points de retournement du cy-
cle de croissance afin de pouvoir intelligemment réallouer son portefeuille, à
savoir changer la pondération de chaque actifs dans son portefeuille. Or, la
principale caractéristique des cycles économiques est leur aspect non-linéaire
: un choc dans un petit secteur de l’économie (l’immobilier par exemple)
peut avoir des conséquences bien plus importantes pour l’économie dans
son ensemble, voire même provoquer des récessions. Les méthodes statis-
tiques envisagées doivent donc pouvoir prendre en compte ces non-linéarités.
Les méthodes paramétriques traditionnellement utilisées sont les modèles
à changement de régimes markoviens (Hamilton (1990)) ou les modèles de
régression à seuils (Ferrara and Guegan (2005)). Giusto and Piger (ming)
ont démontré que ces méthodes fonctionnaient très bien si le ≪ Data Gen-
erating Process ≫ était connu, autrement ils préconisent des méthodes dites
non-paramétriques. Parmi ces dernières, les méthodes d’apprentissage au-
tomatique, machine learning en anglais, semblent une piste de recherche
prometteuse. Certains auteurs commencent même les appliquer pour détecter
les récessions aux Etats-Unis (Giusto and Piger (ming), Berge (2015), Ng
(2014)), mais aucune application concerne la zone euro et encore moins le
cycle de croissance.

A la maitrise de ces techniques s’ajoute la nécessaire compréhension des
interconnexions dynamiques entre les marchés financiers et la macroéconomie
afin de faire un choix judicieux de variables explicatives. En effet, un adage en
statistique computationnelle dit : ≪poubelle en entrée, poubelle en sortie ≫,
c’est-à-dire que même le meilleur des algorithmes ne pourra pas produire de
résultats de qualité s’il est ≪ nourri ≫ par des données qui n’ont pas de sens.
La difficulté est de trouver des variables économiques fiables, disponibles
rapidement et peu révisées. Les données d’enquêtes et les données de marchés
semblent des candidats naturels.

Le second chapitre se concentre sur une méthode non paramétrique d’apprentissage
automatique simple et facilement compréhensible appelée quantification vec-
torielle adaptative (Kohonen (2001)). Le but est de se concentrer sur un
modèle avec peu de variables explicatives, car seuls ces modèles peuvent con-
vaincre un dirigeant ou un économiste de les suivre.

Le troisième chapitre applique des méthodes plus complexes d’apprentissage
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automatique, dites ensemblistes : les forêts aléatoires (Breiman (2001)) et le
boosting . Ces deux algorithmes ont la particularité d’effectuer de concert
la sélection des variables et l’estimation des modèles (Schapire (1990)). Le
désavantage est que ces modèles sont des boites noires et ne permettent pas
une interprétation des modèles.

En plus des critères statistiques standards de comparaison de modèles
de prévision (QPS, AUROC), des stratégies d’investissement sont mises en
place. En effet, bien prévoir ne signifie pas automatiquement gagner de
l’argent (Cenesizoglu and Timmermann (2012) or Brown (2008))

Enfin, pour tester le bien fondé des innovations précitées, une méthode
de sélection de modèles sera nécessaire. L’emploi d’un même historique pour
tester les différentes options engendre des difficultés statistiques. En effet,
une avancée peut apparaitre bénéfique par chance (résultat positif erroné),
phénomène appelé data snooping dans la littérature académique (White
(2000)). Pour palier ce problème, la procédure dite ”Model Confidence Set”
(Hansen et al. (2011)) est appliquée.

L’efficacité des deux différents approches pour détecter les points de re-
tournements en temps réel est démontrée. Il est alors possible de créer
des stratégies d’investissement performantes à partir des modèles développés
dans le second et troisième chapitre, conformément au cadre théorique développé
dans le premier chapitre.

Quatrième chapitre: Allocation d’actifs à par-

tir d’algorithmes de regroupement hiérarchique

Enfin, les études démontrent que méthodes usuelles d’allocation d’actifs,
crées dans le cadre moyenne-variance de Markowitz, ne permettent pas d’obtenir
des résultats satisfaisants ≪ out-of-sample ≫.

Les méthodes d’optimisation de portefeuille modernes et complexes sont
optimales ”in-sample”, mais ne permettent pas d’obtenir des résultats satis-
faisants ≪ out-of-sample ≫. Par exemple, DeMiguel et al. (2009) démontre
que l’allocation näıve, qui donne la même importance à chaque actif, bat
l’ensemble des techniques d’optimisation de portefeuille couramment utilisées.

López de Prado (2016) fait remarquer que ces méthodes font fi de la notion
de hiérarchie, ce qui permet aux poids de varier librement. Or, le prix Nobel
Herbert Simon a démontré que les systèmes complexes peuvent être disposés
dans une hiérarchie naturelle , comprenant des sous-structures imbriquées
(Simon (1962)): textit ”le thème central qui traverse mes remarques est que
la complexité prend souvent la forme de la hiérarchie, et que les systèmes
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hiérarchiques ont des propriétés communes qui sont indépendantes de leur
contenu spécifique La hiérarchie, dirais-je, est l’un des schémas structurels
centraux que l’architecte de la complexité utilisée”.

Sur la base de la notion fondamentale de hiérarchie, le quatrième chapitre
propose une méthode d’allocation d’actifs à partir de différents algorithmes
de regroupement hiérarchique. Pour ce faire, les actifs sont dans un premier
temps partitionnés, puis une pondération hiérarchique des actifs est réalisée.
Une solution simple d’allocation est proposée (allocation hiérarchique näıve)
dans la veine des travaux de DeMiguel et al. (2009).

Les performances des différentes méthodes (traditionnelles et hiérarchique)
sont évaluées sur trois ensembles de données disparates, qui diffèrent en
termes de nombre d’actifs et de composition de l’univers. Les résultats
empiriques indiquent que les portefeuilles formées à partir de la classifica-
tion hiérarchique sont robustes, vraiment diversifiés et atteignent des per-
formances ajustées au risque statistiquement meilleures que les techniques
d’optimisation de portefeuille communément utilisées.
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