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en géométrie
sphérique et hyperbolique

Elena Frenkel

Institut de Recherche Mathématique Avancée
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7 rue René Descartes

67084 Strasbourg Cedex
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1 INTRODUCTION (EN FRANÇAIS)

1 Introduction (en français)

L’essence de cette thèse se situe dans l’étude de la transition entre la géométrie
sphérique et la géométrie hyperbolique, au niveau de certains théorèmes. Notre
but était de prouver quelques théorèmes en géometrie hyperbolique, en s’appuyant
sur les méthodes d’Euler, Schubert et de Steiner en géométrie sphérique. Ces
théorèmes sont intéressants pour eux-mêmes mais aussi pour comprendre com-
ment les méthodes des preuves se transmettent d’une géométrie à l’autre.
Il faut se rappeler à ce propos que même si la géométrie sphérique et hy-
perbolique font toutes les deux partie de ce qu’on appelle “géométrie non-
Euclidienne”, ces deux géométries sont différentes et on ne peut pas toujours
espérer que les théorèmes de l’une ont un analogue dans l’autre. Par exem-
ple, sur la sphère, deux géodésiques se rencontrent toujours en deux points, et
elles sont de longueur finie. C’est une propriété que l’on utilise souvent dans
les preuves des théorèmes sur la sphère, et elle n’a evidemment pas d’analogue
dans le plan hyperbolique.
Nous commençons par des considérations basées sur deux mémoires d’Euler.
Dans le premier mémoire [6], Euler donne les preuves d’un ensemble complet de
formules trigonométriques sphériques pour les triangles rectangles en utilisant
une méthode variationnelle. L’avantage de cette méthode est qu’elle n’utilise
pas l’espace Euclidean ambiant. Par conséquent, la méthode est en quelque
sorte intrinsèque et peut être utilisée avec quelques modifications dans le cadre
de la géométrie hyperbolique. Afin d’obtenir les formules trigonométriques, Eu-
ler travaille dans les coordonnées dites équidistantes sur la sphère et il dérive
l’élément de longueur ds dans ces coordonnées. Il utilise à de nombreux endroits
le fait que la géométrie sphérique est infinitésimalement Euclidienne, c’est-à-dire
que les relations Euclidiennes sont satisfaites au niveau des différentielles.
Nous travaillons (théorème 1) dans le cadre de la géométrie de Lobachevsky in-
troduite dans [14]. Il y a quelques intersections entre les résultats de Lobachevsky
et ceux d’Euler. Tous les deux, ils travaillent dans des systèmes de coordonnées
analogues – le premier adapté au plan hyperbolique, et l’autre à la sphère. Une
différence entre les deux approches est que Lobachevsky utilise la trigonométrie,
qu’il développe à partir des principes premiers, afin de trouver l’élément de
longueur ds tandis qu’Euler utilise l’élément de longueur ds et la propriété de
la géométrie sphérique d’être infinitésiment Euclidienne, afin de reconstruire la
trigonométrie.
Nous donnons l’analogue hyperbolique des formules de la trigonometrie des tri-
angles rectangles hyperboliques utilisant les méthodes du calcul des variations.
C’est un travail en collaboration avec Weixu Su.

Théorème 1 (Frenkel, Su; [9]). Dans le plan hyperbolique, soit ABC un trian-
gle rectangle avec longueurs des côtés a, b, c et angles opposés α, β, π

2 . Alors,
ces quantités satisfont aux relations trigonométriques suivantes:

sinh b =
tanh a

tanα
; cosh b =

u

sinα cosh a
; tanh b =

cosα sinh a

u
, (1)

sinh c =
sinh a

sinα
; cosh c =

u

sinα
; tanh c =

sinh a

u
, (2)

sinβ =
cosα

cosha
; cosβ =

u

cosha
; tanβ =

cosα

u
, (3)
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1 INTRODUCTION (EN FRANÇAIS)

où u =
√
cosh 2a− cos2 α.

Le second mémoire d’Euler, sur lequel j’ai travaillé, [7], concerne une formule
de l’aire en géométrie sphérique en termes des longueurs des côtés d’un triangle,
ainsi qu’un problème lié, connu sous le nom le problème de Lexell. Ce problème
fut résolu par Lexell dans [13] dans le cas sphérique et par A’Campo et Pa-
padopoulos dans [1] dans le cas hyperbolique.
Nous utilisons l’analogue hyperbolique d’une formule d’Euler pour l’aire dans
la formulation et la résolution du problème de Lexell dans le cas hyperbolique.
Le théorème suivant est l’analogue hyperbolique de cette formula d’Euler. C’est
aussi un travail qui j’ai fait en collaboration avec Weixu Su.
Théorème 2 (Frenkel, Su; [9]). Dans le plan hyperbolique, l’aire A d’un triangle
de côtés de longueurs a, b, c est donnée par

cos
A
2

=
1 + cosha+ cosh b+ cosh c

4 cosh 1
2a cosh

1
2b cosh

1
2c

.

Après avoir prouvé le théorème 2, nous le revisitons pour donner une forme
courte et une interpretation géometrique de la formule pour l’aire. Ces con-
sidérations sont liées au problème de Lexell suivant:
Problème de Lexell: En géométrie hyperbolique, étant donnés deux points dis-
tincts A, B, déterminer le lieu des points P de telle sorte que l’aire du triangle
dont les sommets A, B et P est égal à une constante donnée S.
La construction géométrique qu’on utilise dans la preuve du problème de Lexell
est très utile pour donner une forme courte de la formule d’Euler. Nous donnons
au passage une preuve du problème de Lexell, un peu differente de la preuve du
Théorème 5.11 dans [1].
Théorème 3 (Frenkel, Su; [9]). Dans le plan hyperbolique, l’aire A d’un tri-
angle dont la base est de longueur a et dont le segment qui relie les milieux de
deux côtés restants du triangle est de longueur ma, est donnée par

cos
A
2

=
coshma

cosh a
2

.

Ensuite, nous considerons les analogies de Néper1. Nous donnons l’analogue
hyperbolique de ces relations. Nous les utilisons pour déduire des formules al-
ternatives pour l’aire d’un triangle hyperbolique (théorèmes 5 et 6 ci-dessous)
en analogie avec le cas sphérique. Ensuite, nous appliquons ces formules pour
donner l’equation de la courbe de Lexell (théorème 7) qui est la solution du
problème de Lexell2.

Théorème 4. Soit ABC un triangle hyperbolique avec longueurs de côtés a, b,
c et angles opposés α, β et γ, respectivement. Alors les identités suivantes sont
vraies:

tan
1

2
(α+ β) = cot

1

2
γ
cosh 1

2 (a− b)

cosh 1
2 (a+ b)

. (4)

tan
1

2
(α − β) = cot

1

2
γ
sinh 1

2 (a− b)

sinh 1
2 (a+ b)

. (5)

1”l’analogie”, en grec, signifie ”le rapport”.
2Voir Note X dans [12] pour le cas sphérique.
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1 INTRODUCTION (EN FRANÇAIS)

Théorème 5. Un triangle hyperbolique étant donné, avec longueurs de côtés a,
b et c et angles opposés α, β et γ, respectivement, soit A l’aire de ce triangle.
Alors

cot
1

2
A =

coth 1
2a coth 1

2b− cos γ

sin γ
. (6)

Théorème 6. Soit ABC un triangle hyperbolique avec longueurs de côtés a, b
et c et angles opposés α, β et γ, respectivement. Soit A l’aire de ce triangle.
Alors

cot
1

2
A =

1 + cosha+ cosh b+ cosh c

sin γ sinh a sinh b
. (7)

Pour le résultat suivant, nous devons introduire les coordonnées équidistantes :
Nous introduisons les coordonnées dans le plan hyperbolique comme suit. Soit
O un point et Ox et Oy deux lignes orthogonales, qui se croisent en O. Nous
choisissons un côté positif sur chaque ligne par rapport à O. Ces lignes sont les
axes x y du repère. SoitM un point quelconque dans le plan hyperbolique. Nous
désignons par Px le pied de la perpendiculaire de M à Ox. En analogie avec
les coordonnées cartésiennes habituelles dans le plan Euclidien, nous associons
à M le couple de nombres réels (x, y), données par

x = ±Long (OPx), (8)

y = ±Long (PxM). (9)

Nous rappelons cependant que contrairement au plan euclidien, le plan hy-

Px

M

y

xO X

Y

Figure 1: Les coordonnée equidistantes (x, y)

perbolique et la sphère ne sont pas munis de deux feuilletages orthogonaux
géodésiques.
Nous posons x (ou y) positfif, si M se trouve dans le même demi-plan limité
par la ligne Oy (ou OX) que le côté positif de Ox (ou le côté positif de Oy). De
même, nous posons x (ou y) négatif, si M et le côté positif de Ox (ou le côté
positif de Oy) se trouvent dans les demi-plans différents avec la ligne du bord
Oy (ou OX).
Théorème 7. Dans les coordonnées equidistantes (x, y), l’equation de la courbe
de Lexell a la forme

coshx cosh y = coth
1

2
A sinh

c

2
sinh y − cosh

c

2
. (10)
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1 INTRODUCTION (EN FRANÇAIS)

Une application du théorème de Lexell est la construction d’une famille con-
tinue des figures de même aire. Si cette famille est paramétrée par t ∈ [0, 1], on
a pour t = 0 un quadrilatère hyperbolique et pour t = 1 un triangle. On donne
aussi une condition angulaire pour l’existence d’une telle famille.

Les formules trigonométriques suivantes donnent une nouvelle formule pour
l’aire et trouvent leur application dans les théorèmes 9 et 10 ci-dessous, voir [3]
pour la version spherique.
Théorème 8 (Théorème de Cagnoli). Dans le plan hyperbolique, étant donné
un triangle avec longueurs de côtés a, b, c et angles opposés α, β, γ, son aire A
est donné par

sin
A
2

=
sinh b

2 sinh
c
2 sinα

cosh a
2

. (11)

En particulier,

sinh
a

2
=

√

sin A
2 sin (A2 + α)

sinβ sin γ
; cosh

a

2
=

√

sin (A2 + γ) sin (A2 + β)

sinβ sin γ

sinh
b

2
=

√

sin A
2 sin (A2 + β)

sinα sin γ
; cosh

b

2
=

√

sin (A2 + α) sin (A2 + γ)

sinα sin γ

sinh
c

2
=

√

sin A
2 sin (A2 + γ)

sinα sinβ
; cosh

c

2
=

√

sin (A2 + α) sin (A2 + β)

sinα sinβ
.

Théorème 9 (Théorème de Steiner). Pour tous les triangles hyperboliques, les
droites qui passent par un sommet et qui coupent le triangle en deux parties de
même aire, sont concourantes.
Théorème 10 (Théorème de Neuberg). Parmi tous les triangles avec deux
côtés données, b et c, celui qui a l’aire maximale A∗ satisfait les relations

sin
A∗

2
= tanh

b

2
tanh

c

2
(12)

et
α = β + γ. (13)

Nous passons maintenant au problème de Schubert.
Problème de Schubert: Trouver les maxima et les minima des triangles sphériques
ayant une longueur de la base et longueur d’altitude données.
La résolution de ce problème dans les cas sphérique et hyperbolique est faite
en collaboration avec Vincent Alberge. Nous nous sommes inspirés de l’article
de Schubert [22]. Nous résolvons ce problème de deux manières différentes;
la première preuve est essentiellement la même que celle donnée par Schubert
dans [22]. La deuxième preuve est différente.
Pour résoudre ce problème, Schubert étudie les variations de la fonction d’aire,
qui est donnée en fonction des angles. Il décompose le triangle en deux triangles
rectangles et utilise des relations trigonométriques (comme dans le théorème 1
ci-dessus), afin de calculer les variations des angles et donc de l’aire. Schubert

6



1 INTRODUCTION (EN FRANÇAIS)

PSfrag replacements

P (λ, ϕ)

P ′

ϕ

λ

x

y

z

O(0, 0)

Figure 2: Les coordonnées sphériques (λ,ϕ) sur la sphère unité

trouve deux points critiques pour sa fonction d’aire et il étudie le signe de la
dérivée seconde à ces points. Les deux points réalisent le minimum et le maxi-
mum, respectivement (voir la figure 2). Bien que les calculs de Schubert soient
naturels et élémentaires, nous utilisons dans notre preuve une autre relation
pour l’aire d’un triangle rectangulaire. Cela nous permet d’éviter l’étude de la
dérivée seconde.
Cette preuve est faite en coordonnées sphériques (λ, ϕ), où λ ∈ [0, 2π[ et ϕ ∈
[−π

2 ,
π
2 ], voir Figure 2. Nous utilisons également la formule de conversion bien

connue des coordonnées sphériques à cartésiennes sur la sphère unité :

(λ, ϕ) 7→ (cosϕ cosλ, cosϕ sinλ, sinϕ)

Notre deuxième preuve est purement géométrique et utilise les courbes de Lexell,
qui sont les solutions du problème de Lexell. Une telle courbe a d’abord été
étudiée par Lexell dans [13]. Plus tard, Euler dans [7] et Steiner dans [23] ont
donnés d’autres constructions de ces courbes.
Nous avons obtenu les résultats suivants:
Théorème 11 (Alberge, Frenkel, version sphérique). Soit C0 le point de E(h)
tel que le pied de la hauteur de ce point est le milieu de AB. Soit Cπ le point
tel que le pied de la hauteur de ce point est le milieu de A′B′, où A′ et B′ sont
les points antipodaux de A et de B, respectivement. Alors

∀C ∈ E(h), Aire(ABC0) ≤ Aire(ABC) ≤ Aire(ABCπ).

Théorème 12 (Alberge, Frenkel, version hyperbolique). Soit AB un segment
sur une droite donnée G et soit E(h) la courbe equidistante à G à distance h.
Alors, il y a une unique position C∗ sur E(h) telle que l’aire du triangle ABC∗

est extrémale. De plus, le triangle ABC∗ est isoscèle et l’aire du triangle ABC∗

est maximale.

7



1 INTRODUCTION (EN FRANÇAIS)

Figure 3: Nous traçons une géodesique G passant par deux points A et B. Nous
traçons une courbe equidistante E (h) qui est à distance sphérique h de cette
géodésique. Les points C et C′ sont les lieux où l’aire du triangle ayant pour
base AB et un sommet sur E(h) est minimale et maximale, respectivement. De
plus, les sommets de deux triangles appartiennent à la géodesique qui passe par
le pôle de G (et ainsi de E(h)) et le milieu de AB.

Dans le cas hyperbolique, nous donnons aussi deux preuves, deux analogues du
cas sphérique. La première preuve est faite dans le modèle de Poincaré. La sec-
onde est faite en coordonnées équidistantes. L’idée, comme dans le cas sphérique,
est d’étudier les points d’intersection des courbes de Lexell avec un horocycle fixe.
Le choix des coordonnées correspond à notre but, car l’équation de l’horocycle
en coordonnées équidistantes a la forme simple: y = const. Malgré le fait que
dans la géométrie hyperbolique il n’y ait pas de points antipodaux et que la
construction de la courbe de Lexell par Steiner n’y fonctionne pas, les courbes
de Lexell peuvent être définies d’une manière différente, de manière à ce que la
méthode puisse toujours être utilisée.
De plus, nous revisitons la formule de l’aire d’un triangle rectangle hyperbolique
en donnant deux preuves. La première utilise la méthode d’Euler et la deuxième
utilise les relations du Théorème de Cagnoli.
Théorème 13 (Formule de l’aire pour le triangle rectangle). Soit ABC un
triangle rectangle hyperbolique avec longueurs de côtés a et h. Alors l’aire de ce
triangle satisfait à l’équation

tan
A
2

= tanh
a

2
tanh

h

2
.

Ensuite, nous considérons le théorème de Steiner suivant ( [23], p.109):
Entre tous les triangles isopérimètres et de même base le triangle isoscèle est
un maximum.
Soit AB un segment de longueur (hyperbolique) a sur une drôıte G, et soit H(d)

8



1 INTRODUCTION (EN FRANÇAIS)

un ensemble de points C tel que la somme de longueurs (hyperboliques) AC et
BC soit égale à une constante donnée d > 0. C’est l’analogue hyperbolique de
l’ellipse.
Théorème 14. Dans les coordonnées equidistantes (x, y), l’equation de l’ellipse
a la forme

acosh
(

cosh(x+
a

2
) cosh y

)

+ acosh
(

cosh y cosh(x − a

2
)
)

= d. (14)

L’analogue hyperbolique du problème de Steiner est:
Théorème 15. Soit AB un segment de longueur (hyperbolique) a sur une drôıte
donnée G et soit d ≥ a. Il y a alors quatre positions sur H(d) pour lesquelles
la surface de ABC est extrémale. Ce sont les deux triangles isocèles ABC et
ABC′ et les deux triangles dégénérés ABL et ABR. Dans le cas de ABC et
ABC′, l’aire est maximale. Dans les deux cas dégénérés, nous obtenons des
minima.

Tous les problèmes sur l’aire que j’ai addressés dans ma thèse peuvent être
adressés dans le cas du volume, et tous sont des problèmes ouverts en dimen-
sion ≥ 3.

La variation du volume d’une famille lisse (Pt) dépendante d’un paramètre réel
de polyèdres sur la sphère Sn, n ≥ 3, a été donnée par Schläfli et étendue dans
l’espace hyperbolique par Sforza (voir [16] pour plus de références). Le résultat
de Schläfli est en fait une généralisation au premier ordre du calcul de l’aire par
excès ou défaut des polygones sur la sphere S2 ou plan hyperbolique d’après la
formule classique d’Albert Girard. Dans un exposé à Cagliari, 2015, A’Campo
a esquissé le fait qu’en utilisant la géométrie intégrale le résultat classique en
dimension 2 implique le théorème de Schläfli. Dans notre travail nous donnons
les grandes lignes de ce résultat de A’Campo.

9



2 INTRODUCTION

2 Introduction

The essence of this thesis is to study the transition from spherical to hyperbolic
geometry at the level of certain theorems. Our goal is to prove some theorems in
the hyperbolic geometry based on the methods of Euler, Schubert and Steiner in
the spherical geometry. These theorems, interesting in their own right, exhibit
a way to adapt methods of proofs from spherical to hyperbolic geometry.
We need to recall that even if the spherical and hyperbolic geometries belong
both to the common field of ”Non-Euclidean geometry”, these two geometries
are different and we can not always expect that the theorems of one have ana-
logues in another one. For example, on the sphere, two lines intersect always
in two points and each line has a finite length. This property is often used in
the proofs of the theorems on the sphere, and it has clearly no analogues in the
hyperbolic plane.
We start by considerations based on two memoirs of Euler. In the first mem-
oir [6] Euler gives the proofs of a complete set of spherical trigonometric formulae
for right triangles using a variational method. The advantage of his method is
that it does not use the ambient Euclidean 3-space. Therefore, the method is
in some sense intrinsic and may be used with some modifications in the setting
of hyperbolic geometry. In order to obtain the trigonometric formulae, Euler
works in the so-called equidistant coordinates on the sphere and derives the
length element ds in these coordinates. He uses at many places the fact that
spherical geometry is infinitesimally Euclidean, i.e. the Euclidean relations are
satisfied at the level of differentials.
We work (Theorem 1) in the setting of Lobachevsky’s geometry as introduced
in [14]. There are some intersections between Lobachevsky’s and Euler’s results.
Both use ”equidistant” coordinates which are appropriately defined in each case;
Lobachevsky adapts them to the hyperbolic case and Euler on the sphere. One
difference between the two approaches is that Lobachevsky uses trigonometry,
which he develops from the first principles, in order to find the length element
ds, whereas Euler uses ds and the property of spherical geometry of being in-
finitesimally Euclidean, in order to reconstruct the trigonometry.
We give the hyperbolic analogues of trigonometric formulae for right hyperbolic
triangles. This is a joint work with Weixu Su.

Theorem 1 (Frenkel, Su; [9]). In the hyperbolic plane, let ABC be a right tri-
angle with the sides a, b, c and angles α, β, π

2 . Then the following trigonometric
identities hold:

sinh b =
tanh a

tanα
; cosh b =

u

sinα cosh a
; tanh b =

cosα sinha

u
, (1)

sinh c =
sinh a

sinα
; cosh c =

u

sinα
; tanh c =

sinh a

u
, (2)

sinβ =
cosα

cosh a
; cosβ =

u

cosha
; tanβ =

cosα

u
, (3)

where u =
√

cosh2 a− cos2 α.

We prove these hyperbolic formulae using the methods of Euler.
The second memoir of Euler that we use, [7], deals with an area formula in
spherical geometry in terms of side lengths and a related problem, known as

10



2 INTRODUCTION

Lexell’s problem. This problem was solved by Lexell (a young collaborator of
Euler) in [13] for the spherical case and by A’Campo and Papadopoulos in [1]
for the hyperbolic case.
We give here Euler’s area formula and the formulation of Lexell’s problem for
the hyperbolic case.
The following theorem is the hyperbolic analogon of the Euler’s formula men-
tionned above. This is also a work that I did with Weixu Su.

Theorem 2 (Frenkel, Su; [9]). In the hyperbolic plane, the area A of a triangle
with side lengths a, b, c is given by

cos
A
2

=
1 + cosha+ cosh b+ cosh c

4 cosh 1
2a cosh

1
2b cosh

1
2c

.

After proving Theorem 2, we revisit it in order to give a short form and geomet-
ric interpretation of the area formula. Our considerations are related to Lexell’s
problem, which is stated as follows.
Lexell’s Problem. In hyperbolic geometry, given two distinct points A, B, deter-
mine the locus of points P such that the area of the triangle with vertices A, B
and P is equal to a given constant S.
The geometric construction that we use in the proof of Lexell’s problem is use-
ful for giving a short form of Euler’s area formula. We give casually a proof of
Lexell’s problem, which differs slightly from the proof of Theorem 5.11 in [1].
Among the many mathematicians working on Lexell’s problem, a special place
have Euler (see [7]), Steiner (see [23]), Legendre (see [12]), and Lebesgue (see
[11]). A recent work on spherical Lexell’s problem was done by Maehara and
Martini in [15].

Theorem 3 (Frenkel, Su; [9]). In the hyperbolic plane, the area A of a triangle
with the base of length a and the length of a segment joining the midpoints of
two other sides of the triangle ma, is given by

cos
A
2

=
coshma

cosh a
2

.

Further, we consider Néper analogies.3 We give the hyperbolic analogue of these
relations. We use them in order to deduce alternative formulae for the area of
a hyperbolic triangle (Theorems 5 and 6 below) in analogy with the spherical
case. Next, we apply these formulae in order to give the equation of a Lexell’s
curve (Theorem 7) which is the solution of Lexell’s problem, see Note X in [12]
for a spherical case.

Theorem 4. Given a hyperbolic triangle with the side lengths a, b, c and oppo-
site angles α, β and γ, respectively. Then Néper analogies hold:

tan
1

2
(α+ β) = cot

1

2
γ
cosh 1

2 (a− b)

cosh 1
2 (a+ b)

. (4)

tan
1

2
(α − β) = cot

1

2
γ
sinh 1

2 (a− b)

sinh 1
2 (a+ b)

. (5)

3”l’analogie” signifies ”the rapport”

11



2 INTRODUCTION

Theorem 5. Given a hyperbolic triangle with side lengths a, b and c and with
opposite angles α, β and γ, respectively. Let A be the area of this triangle. Then

cot
1

2
A =

coth 1
2a coth 1

2b− cos γ

sin γ
(6)

Theorem 6. Given a hyperbolic triangle with side lengths a, b and c with op-
posite angles α, β and γ, respectively, let A be the area of this triangle. Then

cot
1

2
A =

1 + cosha+ cosh b+ cosh c

sin γ sinha sinh b
(7)

For the following result, we have to introduce the equidistant coordinates:
We introduce coordinates in the hyperbolic plane as follows. Let O be a point
and OX and OY two orthogonal lines which intersect at O. We choose a side
on each line with respect to O, which we call positive. These lines will become
x− and y− axes of the coordinate system (see Figure 1). Let M be a point in
the hyperbolic plane. We denote by Px the foot of the perpendicular from M

to OX . In analogy with the usual Cartesian coordinates in the Euclidean plane,
we associate to M the pair of real numbers (x, y), given by

x = ±Length (OPx), (8)

y = ±Length (PxM). (9)

The signs of x and y are chosen as follows. We take x (or y) positive, if M lies
in the same halfplane bounded by the line OY (or OX) as the positive side of
OX (or the positive side of OY ). Likewise, we take x (or y) negative, if M and
the positive side of OX(or the positive side of OY ) lie in the different halfplanes
with the boundary line OY (or OX). Note that the hyperbolic plane and the

Px

M

y

xO X

Y

Figure 1: Equidistant coordinates (x, y).

sphere do not admit orthogonal foliations by geodesics, unlike the Euclidean
plane.

Theorem 7. In the ”equidistant coordinates” (x, y) the equation of Lexell curve
has a form

coshx cosh y = cot
1

2
A sinh

a

2
sinh y − cosh

a

2
. (10)

One application of Lexell’s theorem is the construction of a continuous family
of figures with the same area. If this family is parametrized by t ∈ [0, 1], we
have at t = 0 a hyperbolic quadrilateral and at t = 1 a triangle. We give also

12
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an angular condition for the existence of such a family.

The following trigonometric formulae give a new area fomula and find their
application in Theorem 9 and 10 below, see [3] for the spherical version.

Theorem 8. Cagnoli’s theorem. In hyperbolic plane, given a triangle with side
lengths a, b, c and the opposite angles α, β, γ, the area A of this triangle is
given by

sin
A
2

=
sinh b

2 sinh
c
2 sinα

cosh a
2

. (11)

In particular, the following relations hold

sinh
a

2
=

√

sin A
2 sin (A2 + α)

sinβ sin γ
; cosh

a

2
=

√

sin (A2 + γ) sin (A2 + β)

sinβ sin γ

sinh
b

2
=

√

sin A
2 sin (A2 + β)

sinα sin γ
; cosh

b

2
=

√

sin (A2 + α) sin (A2 + γ)

sinα sin γ

sinh
c

2
=

√

sin A
2 sin (A2 + γ)

sinα sinβ
; cosh

c

2
=

√

sin (A2 + α) sin (A2 + β)

sinα sinβ
.

Theorem 9 (Steiner’s Theorem). In a hyperbolic triangle, the lines that pass
through vertices and bisect the area, are concurrent.

Theorem 10. The maximal area A∗ among the triangles with two given sides
b and c is given by

sin
A∗

2
= tanh

b

2
tanh

c

2
. (12)

Moreover, the triangle with maximal area satisfies an equation

α = β + γ. (13)

Now we pass to Schubert’s problem.
Schubert’s Problem: To find the maxima and the minima for the area of spherical
triangles with a given base length and altitude’s length.
The solution of this problem in the spherical and the hyperbolic cases is done in
collaboration with Vincent Alberge. We are inspired by the paper of Schubert
[22]. We solve this problem in two different ways; the first proof is essentially the
same as the one given by Schubert dans [22]. The second proof is different. In
order to solve this problem Schubert studies the variations of the area function,
which is given in terms of the angles. He decomposes the triangle into two right-
angled triangles and uses trigonometric relations (as in Theorem 1 above), in
order to compute the variations of angles and therefore of the area. Schubert
finds two critical points for his area function and he studies the sign of the
second derivative at these points. The two points realize the minimum and the
maximum, respectively (see figure 3). Although the computations of Schubert
are natural and elementary, we use in our proof another relation for the area
of a right-angled triangle. This permits us to avoid the study of the second
derivative.
This proof is done in the spherical coordinates (λ, ϕ), where λ ∈ [0, 2π[ and

13
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PSfrag replacements

P (λ, ϕ)

P ′

ϕ

λ

x

y

z

O(0, 0)

Figure 2: Spherical coordinates (λ,ϕ) on the unit sphere.

ϕ ∈ [−π
2 ,

π
2 ], see Figure 2. We use also the well-known conversion formula from

spherical to Carthesian coordinates of the ambient space R3 on the unit sphere:

(λ, ϕ) 7→ (cosϕ cosλ, cosϕ sinλ, sinϕ)

Our second proof is purely geometric and uses the Lexell curves that are so-
lutions of Lexell’s problem. Such a curve was studied firstly by Lexell in [13].
Later, Euler in [7] and Steiner in [23] gave another constructions of Lexell’s
curves.
We obtained the following results:

Theorem 11 (Alberge, Frenkel, spherical version). Let C0 be the point of E(h)
such that the foot of the altitude from it onto the line AB is the midpoint of
AB. Let Cπ be the point of E(h) such that the foot of the altitude from it onto
the line is the midpoint of A′B′, where A′ and B′ are the antipodal points of A
and B, respectively. Then

∀C ∈ E(h), Area(ABC0) ≤ Area(ABC) ≤ Area(ABCπ).

Theorem 12 (Alberge, Frenkel, hyperbolic version). Among the hyperbolic tri-
angles with a base AB and with the third vertex belonging to the equidistant
set E(h), the isosceles triangles ABC and ABC′ are the only triangles with the
maximal area and the only triangles with the extremal area.

In the hyperbolic case we give also two proofs, two analogues of the spheri-
cal case. The first proof is made in the Poincaré model. The second one is
made in equidistant coordinates. The idea, as in the spherical case, is to study
the intersection points of the Lexell curves with a fixed horocycle. The choice
of coordinates corresponds to our goal, because the equation of horocycle in
equidistant coordinates has a simple form: y = const. Although in the hyper-
bolic geometry there are no antipodal points and the construction of the Lexell

14
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Figure 3: We draw a line G with two points A and B on it. We draw an
equidistant curve E (h) which is at the (spherical) distance h. The points C
and C′ are the loci where the area of the corresponding triangle is minimal
and maximal, respectively. Furthermore, they belong to the line which passes
through the pole of G (and thus of E (h)) and the midpoint of AB.

curve due to Steiner does not work, the Lexell curves can be defined in the
different manner, such that the method is still applicable.
Moreover, we revisit the area formula of a right hyperbolic triangle and give two
proofs. The first one uses Euler’s method and the second one uses the relations
of Cagnoli’s theorem.

Theorem 13 (Area Formula for Right Triangle). Let ABC be a right hyperbolic
triangle with the lengths of catheta a and h. Then

tan
A
2

= tanh
a

2
tanh

h

2
.

Further, we consider the following Steiner’s theorem ( [23], p.109):
Among all the isoperimetric triangles with a fixed base the isoscelle triangle has
the maximal area.
Let AB be a segment of (hyperbolic) length a on a line G, and let H(d) be a
set of points C such that the sum of (hyperbolic) lengths AC and BC is equal
to a given constant d > 0. This is a hyperbolic analogon of an ellipse.

Theorem 14. In the equidistant coordinates (x, y), the ellipse equation has a
form

acosh
(

cosh(x+
a

2
) cosh y

)

+ acosh
(

cosh y cosh(x − a

2
)
)

= d. (14)

The hyperbolic analogon of Steiner’s problem is:

Theorem 15. In the hyperbolic plane, let AB be a segment of length a on a
given line G and let d ≥ a. Then there are four positions on the ellipse H such
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that the area of ABC is extremal at these points. These are the two isosceles
triangles ABC and ABC′ and two degenerate triangles ABL and ABR. In the
case of ABC and ABC′ the area is maximal. At the two degenerate cases we
get the minima.

All the preceeding problems and theorems on the area that we treated in this
thesis can be generalized to the case of higher dimensions (n ≥ 3), where they
are all open problems.

The variation of the volume for a smooth one-parametric family Pt of com-
pact polyhedra depending on a real parameter t on the sphere Sn was given
by Schläfli, and extended by Sforza to the hyperbolic space Hn, n ≥ 2 (see [16]
for more references). The result of Schläfli is a generalisation of first order area
calculation by angle excess or defect of polygons on the sphere S2 or on the hy-
perbolic plane after the classical formula of Albert Girard. In a talk in Cagliari,
2015, A’Campo gave the sketch of the proof using integral geometry which says
that the classical result in dimension 2 for area implies the Schläfli theorem in
higher dimensions. In our work, we give this result of A’Campo.
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3 AN AREA FORMULA FOR HYPERBOLIC TRIANGLES

3 An area formula for hyperbolic triangles

3.1 The length element in Lobachevsky’s work Euler introduced in [6]
the coordinates on the sphere, such that y = const-curves are a chosen great
circle G and the small circles equidistant to it, x = const-curves are the great
circles, which are orthogonal to G. Thereafter, he deduced the formula for the
length element ds in these coordinates

ds2 = cos2 y dx2 + dy2. (1)

Lobachevsky proved in [14] the analogue of this formula

ds2 = cosh2 y dx2 + dy2. (2)

In this Section we will explain this result and introduce the related concepts
and notions, which will be also used in the proof of Theorem 1.

3.1.1 The theory of parallels and the angle of parallelism. In the
Pangeometry Lobachevsky presents a summary of his lifelong work on hyperbolic
geometry. He starts with first principles and develops from there the theory of
parallel lines. He uses first the characteristic property of hyperbolic geometry:
the sum of the angles in a right triangle is strictly less than two right angles.
Based on this fact he defines a function Π, called the angle of parallelism as
follows.
First, we recall the notion of parallel lines in the sense of Lobachevsky. Consider
a line l and a point P not belonging to l. There is the unique perpendicular
from P to the line l. We denote it by PP ′ and its length by p. Let L be the set
of lines passing through P . Each line from L can be parametrized by the angle
θ ∈ [0, π[, which this line makes with the perpendicular PP ′ on a given side of
a line containing PP ′. Then the parallel line to l through P (on a given side of
PP ′) is the line l′ = lθ∗ characterized by the property that for θ < θ∗ the lines
lθ intersect l and for θ ≥ θ∗, the lines lθ and l do not intersect. Therefore, a
parallel line l′ to l is the limiting position of lines through P , which intersect l
on a given side of P ′. The angle θ∗ is called the angle of parallelism (see Figure
1).

l

l′
θ∗

P

P ′

p

Figure 1: Angle of parallelism θ∗ = Π(p)

Definition 1. Let l be a line and P a point not on l. Let P ′ be the foot of the
perpendicular dropped from P to l and p the length of PP ′. A parallel line to l
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3 AN AREA FORMULA FOR HYPERBOLIC TRIANGLES

through P makes with the perpendicular PP ′ two angles, one of which is acute.
This angle is called the angle of parallelism, and it is denoted by Π(p).

This notation, used by Lobachevsky, emphasizes the dependance of the angle of
parallelism on the length p of the perpendicular PP ′, which can be seen as the
angle of parallelism function.
The first analytic formula in [14] precises the relation Π(p) ( [14], p. 25):

cosΠ(p) = tanh(p). (3)

3.1.2 Equidistant coordinates. We introduce coordinates in the hyper-
bolic plane as follows. Let O be a point and OX and OY two orthogonal lines,
which intersect at O. We choose a side on each line with respect to O, which we
call positive. These lines will become x− and y− axes of the coordinate system
(see Figure 2). Let M be a point in the hyperbolic plane. We denote by Px the
foot of the perpendicular from M to OX . In analogy with the usual Cartesian
coordinates in the Euclidean plane, we associate to M the pair of real numbers
(x, y), given by

x = ±Length (OPx), (4)

y = ±Length (PxM). (5)

The signs of x and y are chosen as follows. We take x (or y) positive, if M lies
in the same halfplane bounded by the line OY (or OX) as the positive side of
OX (or the positive side of OY ). Likewise, we take x (or y) negative, if M and
the positive side of OX(or the positive side of OY ) lie in the different halfplanes
with the boundary line OY (or OX).

Px

M

y

xO X

Y

Figure 2: Equidistant coordinates (x, y)

Remark 1. In these coordinates, the y = const–lines are the line OX and the
equidistant curves to OX, and the x = const–lines are the lines which are
orthogonal to OX. Interesting facts on these coordinates systems in Euclidean,
spherical and hyperbolic geometries can be found in [25].

3.1.3 The length element ds in coordinates. In this Section we intro-
duce ds in equidistant coordinates (x, y), due to Lobachevsky ( [14], p.43)

ds =

√

dx2

sin2 Π(y)
+ dy2. (6)
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3 AN AREA FORMULA FOR HYPERBOLIC TRIANGLES

From (3),
1

sinΠ(y)
= cosh y.

Therefore, we can rewrite (6) as (2).

3.2 Trigonometry in Right Triangles In this Section we will see, how
to reconstruct trigonometry from ds as in (2) and from the assumption that
hyperbolic geometry is at the infinitesimal level Euclidean. Practically, we as-
sume in the proof of the following result that the hyperbolic relations limit to
the Euclidean ones.

A C

B

a

b

c

α

β

Figure 3: Right hyperbolic triangle

Theorem 1. In the hyperbolic plane, let ABC be a right triangle with the sides
a, b, c and angles α, β, π

2 as indicated in Figure 3). Then the following trigono-
metric identities hold:

sinh b =
tanh a

tanα
; cosh b =

u

sinα cosh a
; tanh b =

cosα sinha

u
, (7)

sinh c =
sinh a

sinα
; cosh c =

u

sinα
; tanh c =

sinh a

u
, (8)

sinβ =
cosα

cosh a
; cosβ =

u

cosha
; tanβ =

cosα

u
, (9)

where u =
√

cosh2 a− cos2 α.

Proof. We work in the equidistant coordinates (x, y). We take A as the origin
O of the coordinate system and the line containing AC as OX . The positive
side of OX (with respect to O) is a side containing the point C. We choose the
positive side of OY such that the ordinate of the point B is positive.
The line AB in coordinates (x, y) can be seen as the graph of a function g :
[0, b] → R

AB = Graph(g) = {(x, g(x))|x ∈ [0, b]}.
This provides a parametrization of AB by γ : [0, b] → R2, given by x 7→ (x, g(x)),
and the length of AB can be computed by means of ds (compare with (2)):

Length (AB) =

∫ b

0

√

cosh2 g(x) + (g′(x))2 dx. (10)
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A C

B

P

M

θ

M ′

L′

P ′

α

y = g(x) y2

x

s =
r(x

)

∆x

∆s l′

Figure 4: Proof of Theorem

Since g(b) = a, the function g is useful in the search for the relations between
the sides of the triangle ABC. We used in (10) implicitly another function of
this type, r : [0, b] → [0, c], given by r(x) = Length(AM), where M has the
coordinates (x, g(x)). We have r(b) = c. The function under the integral sign
in (10) is the derivative of r,

r′(x) =

√

cosh2 g(x) + (g′(x))2. (11)

The idea of the proof is to deduce a differential equation in terms of g(x) and
g′(x) using method of variations. This equation combined with (11) will allow
us to find r(b) and the other relations of this Theorem.
Among all the curves connecting A and B, which can be represented in coordi-
nates as graphs of differentiable functions, the line segment AB has the minimal
length. Therefore, the function g(x) minimizes the length functional L, given
by

L(f) = Length (cf ) =

∫ b

0

√

cosh2 f(x) + (f ′(x))2 dx (12)

and defined on the functional space

C1
0,a([0, b], R) = {f : [0, b] → R| f is differentiable, f(0) = 0 and f(b) = c}.

In (12), we denote by cf a curve connecting A and B, such that it can be
represented in coordinates as Graph (f).
The differential of L vanishes necessarily at g and in particular we have

d

dε
L(g + ǫh)|ǫ=0 = 0 (13)

for every differentiable function h : [0, b] → R with g + εh ∈ C1
0,a([0, b], R).

For the sake of brevity, we introduce a function F : R2 → R, given by

F (x1, x2) =

√

cosh2 x1 + x22,

such that the functional L becomes

L(f) =

∫ b

0

F (f(x), f ′(x)) dx.
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The directional derivative in the left-hand side of (13) after integration by parts
becomes

d

dε
L(g + εh)|ε=0 =

∫ b

0

(

∂F

∂x1
(g(x), g′(x))− d

dx

∂F

∂x2
(g(x), g′(x))

)

h dx.

This relation vanishes if and only if the term in brackets is identically zero. We
obtain this result by taking a positive function ϕ for h. The next relation was
named later on Euler-Lagrange Formula

∂F

∂x1
(g(x), g′(x)) − d

dx

∂F

∂x2
(g(x), g′(x)) = 0 for all x ∈ [0, b] (14)

We simplify further the notation by means of the functions

Gi(x) =
∂F

∂xi
(g(x), g′(x)), i = 1, 2. (15)

The Euler-Lagrange Formula (14) gives the simple relation

G1 = G′
2. (16)

On the other hand, we manipulate the function r′(x), which stands under the
integral sign in L(g) (compare with (11))

r′′(x) =
∂F

∂x1
(g(x), g′(x)) g′(x) +

∂F

∂x2
(g(x), g′(x)) g′′(x),

or in terms of the functions Gi and using further the relation for Gi, given by
the Euler-Lagrange Formula (16)

r′′ = G1 g
′ +G2 g

′′ = G′
2 g

′ +G2 g
′′ = (G2 g

′)′,

we finally get
r′ = G2 g

′ + C,

where C is a constant with respect to the variable x.
We rewrite this relation using the definition of G2 (see (15)) and the relation
r′(x) (see (11))

√

(g′)2 + cosh2 g =
(g′)2

(g′)2 + cosh2 g
+ C.

Resolving this equation in g′ gives

g′(x) =
cosh g(x)

√

cosh2 g(x)− C2

C
(17)

and (11) takes the form

r′(x) =
cosh2 g(x)

C
. (18)

Let M and M ′ be two points on AB with coordinates (x, y) and (x′, y′), respec-
tively. We denote by P and P ′ the feet of the perpendiculars dropped from M

and M ′. Let l′ be a halfline, orthogonal to MP . We denote the intersection of
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A C

B

P ′

M ′

α

∆s

∆x

Figure 5: Case M = A.

l′ with M ′P ′ by L′. We obtain the trirectangular quadrilateral PML′P ′ with
the acute angle L′. We denote the length of L′P ′ by y2, the length of AM by s,
which coincides with r(x), the length of MM ′ by ∆s, x′ − x by ∆x and y′ − y

by ∆y (see Figure 4).
Taking M = A, we determine the value of a constant C from a limit Euclidean
relation for cosα in the triangle AM ′P (see Figure 5).
In a right hyperbolic triangle holds a limit Euclidian relation:

cosα = lim
∆s→0

∆x

∆s
=

1

r′(0)
= C.

We obtain
C = cosα. (19)

We return to the general situation again, i.e. M is an arbitrary point on AB. We
denote the angle ∠AMP by θ. In the triangle MM ′L′, the angle ∠M ′ML′ =
π
2 − θ. If Length(MM ′) → 0, the angle ∠M ′L′M tends to π

2 and for MM ′L′

holds a limit Euclidean relation for right triangles

sin (∠M ′ML′) = lim
∆s→0

y′ − y2

∆s
.

In MM ′L′, we have χ = π
2 − θ. The value of θ = ∠AMP depends on the posi-

tion of M . We define a function w : [0, b] → [0, β], such that w(x) = ∠AMP .

cosw(x) = lim
∆s→0

y′ − y2

∆s
= lim

∆s→0

∆y

∆s
=
g′(x)

r′(x)
=

√

cosh2 g(x)− C2

cosh g(x)
.

Taking x = b in this relation and replacing C by (19), we get

cosβ =

√

cosh2 a− cos2 α

cosha
. (20)

We get the relations for r(b) and g−1(a) by means of (17) and (18)

c = r(b) =

∫ b

0

r′(x) dx =

∫ a

0

cosh g
√

cosh2 g − C2
dg = acosh

cosh2 a− C2

1− C2

b =

∫ b

0

dx =

∫ a

0

C

cosh g
√

cosh2 g − C2
dg = asinh

C tanh a√
1− C2
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Replacing C by (19), we finally obtain:

cosh c =

√

cosh2 a− cos2 α

sinα
, (21)

sinh b =
cosα tanh a

sinα
=

tanh a

tanα
. (22)

The remaining relations of Theorem follow easily from (20), (21), (22) and from
the properties of the functions cosh, sinh and cos.

3.3 An area formula by a method of Euler

Theorem 2 (Hyperbolic Euler Formula). In the hyperbolic plane, the area A
of a triangle with side lengths a, b, c is given by

cos
A
2

=
1 + cosha+ cosh b+ cosh c

4 cosh 1
2a cosh

1
2b cosh

1
2c

.

Beforehand, we deduce a formula for the area of the hyperbolic circular region
Kr,ϕ with radius r and angle ϕ (see Figure 6), which we will use in the proof.

ϕ r

Figure 6: Region Kr,ϕ

For this, we cite the result of J.-M. de Tilly from his work on hyperbolic geometry
[4], see also [5] for the description of a cinematical approach of de Tilly. De
Tilly introduced a function circ(r), which is defined as the circumference of the
hyperbolic circle of radius r and showed without use of trigonometry that

circ(r) = 2π sinh r. (23)

Lemma 1. The area of the hyperbolic circular region Kr,ϕ with radius r and
angle ϕ is

Area(Kr,ϕ) = |ϕ|(cosh r − 1).

Proof. By (23), the circumference of the hyperbolic circle of radius x is 2π sinhx
and hence, the length l(x) of the hyperbolic circular arc of the same radius and
angle ϕ is sinhx|ϕ|. Then, for the area of circular segment, we have

Area(Kr,ϕ) = |ϕ|
∫ r

0

sinhx dx = |ϕ| (cosh r − 1).
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A B

Z

x
(t

′ )
y(t ′)

Z ′

t′

ϕ(t′) ψ(t′)

Figure 7: Proof of Theorem 1

Proof of the Hyperbolic Euler Formula. Let AB be a segment of fixed length a.
Let Z be a point in a chosen connected component of H2\{l}, where l is a line
containing A and B. We fix a ray r, starting at Z and consider the area function
A : [0, ǫ) → R>0, given by A(t′) = Area (ABZ ′), where Z ′ is a point on r such
that the length of ZZ ′ is t′.
Besides the function A, we define in the same manner the functions x, y, ϕ and
ψ, such that x(t′), y(t′), ϕ(t′) and ψ(t′) are the values of the side lengths AZ ′,
BZ ′ and of the angles ∠Z ′AB and ∠ABZ ′, respectively (see Figure 5) .
We are looking for the expression for the differential dA. We consider the area
change

∆A(t′) = Area (ABZ ′)−Area (ABZ).

The area change is given by

∆A = sgn(∆ϕ) Area(AZZ ′) + sgn(∆ψ) Area(BZZ ′) . (24)

In order to see this, we distinguish the four cases

1. sgn(∆ϕ) = sgn(∆ψ) = 1,

2. sgn(∆ϕ) = sgn(∆ψ) = −1,

3. sgn(∆ϕ) = −1, sgn(∆ψ) = 1,

4. sgn(∆ϕ) = 1, sgn(∆ψ) = −1.

Since ∆A corresponding to the cases 1 and 3 is equal to −∆A in the cases 2
and 4, respectively, we reduce our consideration to the cases 1 and 3.
In the case 1, one triangle is entirely contained in the other one and Formula
(24) can be easily seen from Figure 8.
In the case 3 a side of one triangle intersects a side of another triangle. We
denote the intersection point by O (see Figure 5 for the case 3).
First, the area difference does not change, if one removes from the triangles
ABZ ′ and ABZ the common triangle AOB

Area(ABZ ′)− Area(ABZ) = Area(BOZ ′)− Area(AOZ).
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Further, adding ZOZ ′ to both triangles BOZ ′ and AOZ does not affect the
area difference again, therefore we finally get

Area(ABZ ′)− Area(ABZ) = Area(BZZ ′)− Area(AZZ ′),

which is Formula (24) for the case 3.
We consider

lim
t′→+0

∆A(t′)

t′
=

= sgn(∆ϕ) lim
t′→+0

Area(AZZ ′)

t′
+ sgn(∆ψ) lim

t′→+0

Area(BZZ ′)

t′
. (25)

Since the area of AZZ ′ is enclosed by the areas of the hyperbolic circular seg-
ments Kx(0),ϕ and Kx(t′),ϕ, by Lemma 1 we have an estimation

|∆ϕ|(coshx(0)− 1) ≤ Area(AZZ ′) ≤ |∆ϕ|(coshx(t′)− 1),

from which it follows

lim
t′→+0

Area(AZZ ′)

t′
= |∆ϕ| (coshx(0)− 1). (26)

For the sake of brevity, we denote x(0) by x and y(0) by y.
Combining (26) with (25), we get the following relations in terms of the differ-
entials dA, dϕ and dψ

dA = (coshx− 1) dϕ+ (cosh y − 1) dψ. (27)

In order to rewrite this relation in terms of the differentials of the sides dx and
dy, we use the First Cosine Law. Applying it to ABZ ′, we obtain

cosϕ(t′) =
cosha coshx(t′)− cosh y(t′)

sinh a sinhx(t′)
.

By differentiation, we get

− sinϕdϕ =
(− cosha+ cosh y coshx) dx− sinhx sinh y dy

sinh a sinh2 x
,

where x, y and ϕ denote x(0), y(0) and ϕ(0).
From now on and until the relation (31), we follow the computations of Euler,
in order to find a well-suited substitution v = f(a, x, y) for the integration of
dA.
Since

sinϕ =
√

1− cos2 ϕ =
w

sinh a sinhx
,

where

w :=

√

1− cosh2 x− cosh2 a− cosh2 y + 2 cosha coshx cosh y,

we have

dϕ =
(cosha− cosh y coshx) dx + sinhx sinh y dy

sinhxw
.
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Analogously, we obtain

dψ =
(cosh a− coshx cosh y) dy + sinhx sinh y dx

sinh y w
.

Therefore (27) becomes

dA =
(cosh a− cosh y coshx) dx + sinhx sinh ydy

sinhxw
(coshx− 1)

+
(cosha− coshx cosh y) dy + sinhx sinh y dx

sinh y w
(cosh y − 1).

Now, using the trigonometric formulae

tanh
x

2
=

coshx− 1

sinhx
=

sinhx

coshx+ 1
,

we simplify our equation

w dA = tanh
x

2
(cosha+ cosh y − coshx− 1) dx

+tanh
y

2
(cosha+ coshx− cosh y − 1) dy.

Taking the symmetric expression

s := cosha+ coshx+ cosh y,

we get

w dA = (−1+s)(tanh
x

2
dx+tanh

y

2
dy)−2 tanh

x

2
coshx dx−2 tanh

y

2
cosh y dy.

Applying again the (former) expression of tanh x
2 , we have

tanh
x

2
coshx = − tanh

x

2
+ sinhx,

so that
w dA
1 + s

= tanh
x

2
dx+ tanh

y

2
dy − 2

sinhx dx+ sinh y dy

1 + s
. (28)

Using
∫

tanh 1
2x dx = 2 ln(cosh 1

2x) and

∫

sinhx dx + sinh y dy

1 + s
=

∫

d(1 + s)

1 + s
= ln(1 + s),

we can find the primitive of the right-hand side of the equation (28) and we get

∫

w dA
1 + s

= 2 ln
q

(1 + s) cosh a
2

, (29)

where q is given by the symmetric expression

q := cosh
a

2
cosh

x

2
cosh

y

2
.

26



3 AN AREA FORMULA FOR HYPERBOLIC TRIANGLES

Taking p := q
1+s

and derivating the equation, we obtain

w dA
1 + s

= 2
dp

p
,

or equivalently,

dA =
2dp

p

1 + s

w
. (30)

The term 1+s
w

can be expressed as a function of p. Indeed, we note that

w2 + (1 + s)2 = 2(1 + cosha)(1 + coshx)(1 + cosh y)

= 16 cosh2
a

2
cosh2

x

2
cosh2

y

2

= 16q2.

Hence,
w =

√

16q2 − (1 + s)2

and therefore
w

1 + s
=

√

16p2 − 1.

Then (30) takes the form

dA =
2dp

p
√

16p2 − 1
.

Letting now v = 1
4p , we obtain

dA = − 2dv√
1− v2

. (31)

In terms of v, the primitive of dA can be computed, so that we get

A = C + 2 arccosv

= C + 2 arccos
1 + cosha+ coshx+ cosh y

4 cosh 1
2a cosh

1
2x cosh

1
2y

.

We determine the constant C by considering the degenerate Euclidean case
A = 0. If x = a, we get y = 0, such that the form of our equation becomes

0 = C + 2 arccos
2 + 2 cosha

4 cosh2 1
2a

.

From 4 cosh2 1
2a = 2 + 2 cosha follows C = 0.

Taking now x = b and y = c, we finally get the result

cos
1

2
A =

1 + cosha+ cosh b+ cosh c

4 cosh a
2 cosh

b
2 cosh

c
2

.

Lemma 2. The solution of the Lexell problem is a smooth curve.
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Proof. Let P1 be a chosen connected component of H\{l}, where l contains the
points A and B. The solution of the Lexell problem is the set

L = {Z ∈ P1| Area(ABZ) = A}.

L is a smooth curve, if the area function B : P1 → R>0, given by

B(Z) = Area(ABZ)

is regular or, equivalently, for every point Z ∈ P1 there is a ray r starting at Z,
such that the value of B changes in the direction of this ray.

A B

Z

Z ′A′ B′

Figure 8: Area function A is regular.

For a fixed Z ∈ P1 consider Z ′ ∈ P1 in the interior of ∠A′ZB′, where the points
A′ and B′ belong to the extensions of the sides AZ and BZ respectively (see
Figure 8). Using Pasch’s axiom of neutral geometry, one can deduce that ABZ
is contained in ABZ ′, which gives B(Z ′) > B(Z). This gives that the area value
changes along ZZ ′. Therefore, the function B is regular.

Lemma 2 also follows from the fact that the area of triangles is a function
that depends real analytically on the three vertices and that it is non-degenerate.

3.4 The area formula revisited and Lexell’s problem We start this
Section by recalling the Girard theorem, which states that the area of a spherical
triangle on a sphere of radius 1 is the angular excess, i.e. the (positive) difference
between sum of the angles of this triangle and π. In the case of the hyperbolic
plane, the following is the hyperbolic analogon of this theorem.

Theorem 3 (Hyperbolic Girard Theorem ). In the hyperbolic plane, the area
of a triangle with angles α, β and γ is given by the angular deficit

A = π − (α+ β + γ).

A proof of this Theorem without use of trigonometry can be found in [1], Sec.
5.3.
In his proof of Area formula, Euler fixes the length of one side of triangle, being
inspired by the Lexell problem, where one is looking for the configuration set
of all triangles with the same base and the same area. The quantity v, which
appears at the end of the proof of Theorem 2 has the property that it varies or
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remains constant at the same time with the area A, according to the form of
(31). Recall that

v =
1 + cosha+ cosh b+ cosh c

4 cosh a
2 cosh

b
2 cosh

c
2

. (32)

In order to give a geometrical interpretation of the Euler formula, one is led
then to look for the quantities, which will not be affected by the change of the
area.
The crucial construction here is the dissection of the hyperbolic triangle ex-
plained in [1], Ch. 5.5.
Before giving this construction, let us note that we use here the term congruence
of triangles or more generally, of plane figures F1 and F2, as a primary notion of
hyperbolic geometry, developped from the first principles (see [1] Ch. 2 for more
details). We will write F1 ≡ F2 for this relation. Moreover, we say that two
figures F1 and F2 are scissors equivalent, if one of these figures can be cut into
a finite number of pieces and reassembled into another one. It is easy to show
that the relation of scissors congruence defines an equivalence relation on plane
figures and that the scissors equivalent figures have the same area, in whatever
reasonable sense area is defined. (In fact, in Euclid’s Elements the notion of
”having the same area” is defined as scissors equivalence of figures.)
Let ABZ be a triangle in the hyperbolic plane, let A′ and B′ the midpoints
of AZ and BZ respectively, and let F , H , G be the feet of the perpendiculars
dropped from A, B, Z respectively on the line A′B′ (see Figure 9). By con-
struction, the following congruences hold: AFA′ ≡ A′GZ and ZGB′ ≡ B′BH .
From this one deduces easily that the triangle ABZ is scissors equivalent to the
Khayyam-Saccheri quadrilateral BHFA (i.e. a quadrilateral, which has two op-
posite edges of the same length and makes right angles with the third common
edge ( [1] Def. 3.28)).

A B

Z

F H
A′ B′

G

q

Figure 9: Dissection of Hyperbolic Triangle and the Lexell Problem.

This construction is closely related to the solution of the Lexell problem. Indeed,
consider a triangle with notation as in Figure 9. Let A denote the area of this
triangle. Let q be an equidistant curve to the line A′B′, which contains Z. Then
every triangle ABZ ′ such that Z ′ lies on q and close to Z has the same area
A. This follows immediately from the consideration that all such triangles are
scissors equivalent to the same quadrilateral BHFA. By Lemma 2, the solution
of the Lexell problem is a smooth curve. Thus, the solution is exactly the curve
q.

Remark 2. Lexell’s problem in H3. Given a tetrahedron ABCD with the base
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ABC in hyperbolic space H3. To find the locus of points P such that

Vol3(ABCP ) = Vol3(ABCD).

The natural conjecture, seen the result in the dimension 2, is that the solution
of Lexell’s problem in the dimension 3 is an equidistant surface passing through
the point D to the plane determined by the three middle points MAD, MBD

and MCD.

Let m denote the hyperbolic length of A′B′. By construction, in the quadrilat-
eral BHFA the length of HF is 2m, and the length of AF is the same as the
length of BH and is equal to h and the length of AB is a. Therefore, these quan-
tities can be related to v, since they remain constant if the area stays constant.
A computation shows that

coshm =
1+ cosha+ cosh b+ cosh c

4 cosh b
2 cosh

c
2

. (33)

Thus the quantity v turns out to be

v =
coshm

cosh a
2

and we get immediately an alternative elegant expression for the hyperbolic
Euler formula

cos
A
2

=
coshm

cosh a
2

. (34)

We will justify the formula (33) in a Theorem (see [24] of Terquem for a spherical
version).

Theorem 4. In a hyperbolic triangle with notations as in Figure 10, the length
of the mediane is given by

coshAN =
cosha+ cosh b

2 cosh c
2

(35)

and the length of the middle line is given by

coshMN =
1 + cosha+ cosh b+ cosh c

4 cosh b
2 cosh

c
2

. (36)

Proof. 1.To find the length of the mediane AN . Let |AN | = x. Applying First
Cosine Law to the triangles ABN , BCA gives:

cos ∠B = −coshx− cosha cosh c
2

sinh a sinh c
2

= −cosh b− cosha cosh c

sinh a sinh c

(coshx− cosha cosh
c

2
) sinh a sinh c = (cosh b− cosha cosh c) sinh a sinh

c

2
.

(coshx− cosha cosh
c

2
) sinh c = (cosh b− cosha cosh c) sinh

c

2
.

coshx sinh c = cosha(cosh
c

2
sinh c− cosh c sinh

c

2
) + cosh b sinh

c

2
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PSfrag replacements

a

b c
M N

A
B

C

Figure 10: middle line MN

coshx =
cosh a sinh c

2 + cosh b sinh c
2

sinh c

coshx =
cosha+ cosh b

2 cosh c
2

.

2. To find the length of the middle segment we use the first part of this proof.
From CAN :

coshMN =
coshAN + cosh c

2

2cosh b
2

.

From ABC:

coshAN =
cosh a+ cosh b

2 cosh c
2

coshMN =

cosh a+cosh b
2 cosh c

2

+ cosh c
2

2 cosh b
2

=

=
cosh a+ cosh b+ 2 cosh2 c

2

2 cosh c
2 cosh

b
2

=

=
1 + cosha+ cosh b+ cosh c

4 cosh b
2 cosh

c
2

.

Further, we formulate the hyperbolic analogue of Gudermann’s theorem in spher-
ical geometry, which is a corollary of short form of area (34). The spherical
version of Gudermann’s Theorem can be found in [19].

Corollary 1 (Gudermann’s Theorem in [19]). In hyperbolic geometry, let T be
the set of triangles with a fixed side length a and a fixed area A. Then the length
ma of a segment that joins the midpoints of two other sides is also fixed.

As a conclusion, we will give a geometric interpretation of (34) on the quadrilat-
eral BHFA. The perpendicular bisector of AB divides the Khayyam-Saccheri
quadrilateralBHFA into two congruent trirectangular quadrilaterals ( [1], Chap.
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3.6). On the one hand, by the dissection argument, the area of such a quadrilat-
eral is equal to A

2 and on the other hand, by the Hyperbolic Girard Theorem,
it is given by the angle defect 2π − (α+ 3π

2 ) =
π
2 − α. So we have

cos
A
2

= cos(
π

2
− α) = sinα.

Thus the formula (34) reflects the trigonometrical relation in the trirectangular
quadrilaterals

sinα =
coshm

cosh a
2

,

which can be found in [1], Chap. 6.6. The proof is a trigonometric computation
which uses the trigonometric formulas on triangles introduced in this Chapter.

Remark 3. Volume formula in H3. Several significant mathematicians were
working on the volume formula. Among them, Lobachevsky in [14], Thurston
and Milnor in [17], Vinberg in [25]. Finding of a simple volume formula in the
case of a tetrahedron is still an open question.
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4 Area formulae and their Application to Lex-

ell’s problem

4.1 Background Recall (can be skipped by the reader familiar with trigonom-
etry)

sinh(x± y) = sinhx cosh y ± coshx sinh y. (37)

We take x = 1
2 (α+ β) and y = 1

2 (α− β) then x+ y = α and we have

sinh(α) = sinh
1

2
(α+ β) cosh

1

2
(α − β) + cosh

1

2
(α+ β) sinh

1

2
(α− β).

sinh(β) = sinh
1

2
(α+ β) cosh

1

2
(α − β)− cosh

1

2
(α+ β) sinh

1

2
(α− β).

Adding and subtracting these two formulae, we get

sinhα+ sinhβ = 2 sinh
1

2
(α+ β) cosh

1

2
(α− β) (38)

sinhα− sinhβ = 2 cosh
1

2
(α+ β) sinh

1

2
(α− β) (39)

Analogously, with addition theorem for Cosines. Finally we get

coshα+ coshβ = 2 cosh
1

2
(α+ β) cosh

1

2
(α− β) (40)

coshα− coshβ = 2 sinh
1

2
(α+ β) sinh

1

2
(α− β) (41)

We recall here the corresponding spherical formulae

sinα+ sinβ = 2 sin
1

2
(α+ β) cos

1

2
(α− β) (42)

sinα− sinβ = 2 cos
1

2
(α+ β) sin

1

2
(α− β) (43)

cosα+ cosβ = 2 cos
1

2
(α + β) cos

1

2
(α− β) (44)

cosα− cosβ = −2 sin
1

2
(α+ β) sin

1

2
(α− β) (45)

Another formula that we use is

tanh
x

2
=

coshx− 1

sinhx
(46)

It can be proven by passing to half angle.

4.2 Néper analogies

Lemma 3. Let ABC be a hyperbolic triangle with the side lengths a, b and c
and with the opposite angles α, β and γ. Then the following holds:

cosα sinh c = cosha sinh b− cos γ sinh a cosh b. (47)
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Proof. Replacing cosα and cos γ in the formula (47) by First Cosine Law:

cosα = −cosha− cosh b cosh c

sinh b sinh c
,

cos γ = −cosh c− cosha cosh b

sinh a sinh b
,

we get

−cosha− cosh b cosh c

sinh b
= cosha sinh b+

cosh c− cosha cosh b

sinh b
cosh b,

−cosha− cosh b cosh c

sinh b
=

cosha (sinh2 b− cosh2 b) + cosh b cosh c

sinh b
,

−cosha− cosh b cosh c

sinh b
= −cosha − cosh b cosh c

sinh b
.

Another equation is obtained by permutation of a and b

cosβ sinh c = cosh b sinh a− cos γ sinh b cosha (48)

Taking a sum of relations (47) and (48) and reducing, we have

sinh c (cosα+ cosβ) = (1− cos γ) sinh(a+ b) (49)

Another formula is obtained using Sine Law

sinh c

sin γ
=

sinh a

sinα
=

sinh b

sinβ
.

We have
sinh c sinα = sinh a sin γ

sinh c sinβ = sinh b sin γ

Adding/Substracting these two relations, we get

sinh c (sinα+ sinβ) = sin γ(sinh a+ sinh b), (50)

sinh c (sinα− sinβ) = sin γ(sinh a− sinh b). (51)

Dividing succesively these two relations by relation (49), we obtain

sinα+ sinβ

cosα+ cosβ
=

sin γ

1− cos γ
· sinh a+ sinh b

sinh(a+ b)
(52)

sinα− sinβ

cosα+ cosβ
=

sin γ

1− cos γ

sinh a− sinh b

sinh(a+ b)
. (53)

Using the formulae (38), (39), (42), (43), (44) and (46), we pass from (52)-(53)
to (54)-(55). The former identities are called Néper analogies.

Theorem 5. Given a hyperbolic triangle with the side lengths a, b, c and the
opposite angles α, β and γ, respectively. Then Néper analogies hold:

tan
1

2
(α+ β) = cot

1

2
γ
cosh 1

2 (a− b)

cosh 1
2 (a+ b)

. (54)

tan
1

2
(α − β) = cot

1

2
γ
sinh 1

2 (a− b)

sinh 1
2 (a+ b)

. (55)
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4.3 Area Formula

Theorem 6. Given a hyperbolic triangle with side lengths a, b and c and with
the opposite angles α, β and γ, respectively. Let A be the area of this triangle.
Then

cot
1

2
A =

coth 1
2a coth 1

2b− cos γ

sin γ
(56)

Proof. From Girard Theorem 3,

A = π − (α+ β + γ).

Moreover,

cot
1

2
A = cot

1

2
(π − (α+ β + γ)) =

= tan
1

2
(α+ β + γ).

By Addition Theorem for Tangens, we have

tan
1

2
((α+ β) + γ) =

tan 1
2 (α+ β) + tan γ

2

1− tan α+β
2 tan γ

2

. (57)

Applying Néper analogy (54) to (57), we become

tan 1
2 (α+ β) + tan γ

2

1− tan α+β
2 tan γ

2

=

=
cot γ

2 cosh
1
2 (a− b) + tan γ

2 cosh 1
2 (a+ b)

cosh 1
2 (a+ b)− cosh 1

2 (a− b)
.

With ω = cot γ
2 , the former relation becomes

ω cosh 1
2 (a− b) + 1

ω
cosh 1

2 (a+ b)

cosh 1
2 (a+ b)− cosh 1

2 (a− b)
.

By aid of Addition Theorems, we continue to simplify this relation

cosh 1
2a cosh

1
2b (ω + 1

ω
)− sinh 1

2a sinh
1
2b (ω − 1

ω
)

2 sinh 1
2a sinh

1
2b

Since
ω + 1

ω

2
=

1

sin γ

and
ω − 1

ω

2
=

cos γ

sin γ
,

we finally get
coth 1

2a coth
1
2b− cos γ

sin γ
.

Thus,

tan
1

2
(α+ β + γ) =

cot 1
2a cot

1
2b− cos γ

sin γ

and therefore,

cot
1

2
A =

cot 1
2a cot

1
2b− cos γ

sin γ
.
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4.4 Modified Area Formula

Theorem 7. Given a hyperbolic triangle with side lengths a, b and c with the
opposite angles α, β and γ, respectively. Let A be the area of this triangle. Then

cot
1

2
A =

1 + cosha+ cosh b+ cosh c

sin γ sinha sinh b
(58)

Proof. We start with (56):

cot
1

2
A =

cot 1
2a cot 1

2b− cos γ

sin γ
.

Applying First Cosine Law to cos γ and using formulae

coth
a

2
=

1 + cosha

sinh a

coth
b

2
=

1 + cosh b

sinh b
,

we get for

sin γ cot
1

2
A =

(1 + cosha)(1 + cosh b)

sinh a sinh b
− cos γ =

=
(1 + cosha)(1 + cosh b)

sinh a sinh b
+
cosh c− cosh a cosh b

sinh a sinh b
=

1 + cosha+ cosh b+ cosh c

sinh a sinh b
.

Therefore,

cot
1

2
A =

1 + cosha+ cosh b+ cosh c

sinh a sinh b sin γ
.

4.5 Equation of Lexell curve

Theorem 8. In the ”equidistant coordinates” (x, y) the equation of Lexell curve
has a form

coshx cosh y = cot
1

2
A sinh

a

2
sinh y − cosh

a

2
. (59)

C
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Figure 11: equation of Lexell curve
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Proof. Let ABC be a triangle with a given side a, let M be a midpoint of AB.
We put this triangle in the coordiante system of the equidistant coordinates such
that the origin O coincides with a point M and the OX-axis coincides with the
line connecting A and B (see Figure 11). Let the area of ABC be given, we
denote it by A. Moreover, let CD be an altitude of ABC to the base AB. Let
|MD| = x and |DC| = y. In other words, C has coordinates (x, y).
Then |AD| = x+ a

2 and |BD| = a
2 − x.

These two relations hold independent of whether D lies inside or outside of the
segment AB.
We consider the two right triangles, ADC and DBC and apply Pythagoras:

cosh b = cosh y cosh(x− a

2
),

cosh c = cosh y cosh(x+
a

2
).

Summing the last two relations, we get

cosh b+ cosh c = cosh y (cosh(x− a

2
) + cosh(x+

a

2
)) =

= cosh y (2 coshx cosh
a

2
),

We obtain
cosh b+ cosh c = cosh y (2 coshx cosh

a

2
). (60)

Together with 1+ cosha = 2 cosh2 a
2 we transform Modified Area Formula (58):

cot
1

2
A =

1 + cosha+ cosh b+ cosh c

sinα sinh b sinh c

cot
1

2
A =

2 cosh2 a
2 + 2 cosh a

2 coshx cosh y

sinα sinh b sinh c
=

=
2 cosh a

2 (cosh
a
2 + coshx cosh y)

sinα sinh b sinh c
=

=
2 cosh a

2 (cosh
a
2 + coshx cosh y)

sinh b sin γ sinha
=

=
2 cosh 1

2a(cosh
a
2 + coshx cosh y)

sinh b sin γ 2 sinh a
2 cosh

a
2

=
cosh a

2 + coshx cosh y

sinh b sin γ sinh a
2

.

By relation for right hyperbolic triangle

sinh b sin γ = sinh y

we finally get:

cot
1

2
A =

cosh a
2 + coshx cosh y

sinh a
2 sinh y

or

coshx cosh y = cot
1

2
A sinh

a

2
sinh y − cosh

a

2
.
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5 CONSTRUCTION OF A FAMILY OF FIGURES USING LEXELL’S PROBLEM

5 Construction of a family of figures using Lex-

ell’s problem

In the hyperbolic plane, given an arbitrary quadrilateral Q with angles w1, w2,
w3, w4 and area A, the question is whether it is possible to find a continuous
family of figures of the same area that turns this quadrilateral into a triangle.
A brief observation shows that this deformation is not always possible, due to the
fact that the area of a hyperbolic triangle is bounded by π, where the maximum
area is realized by an ideal triangle. Thus, such a quadrilateral of area A > π

does not support this continuous family.
We will propose in this section a construction of such a family of figures. We
will give afterwards an exact condition in terms of angles for the existence of
this construction. This condition is summarized in Theorem 10 below.
Construction. We divide the quadrilateral Q into two triangles T1 and T2 by
drawing a diagonal AC (see Figure 12). Then, we consider the Lexell curve q for
the triangle ACD with base AC, that is the locus of vertices of triangles of fixed
area (of triangle ACD) and fixed base (AC). The line lBC , which is an extension
of a side BC, may intersect the curve q or may not. In the case of intersection,
let D′ denote the intersection point. We obtain then the triangle ABD′, which
has the same area as Q. In order to get the associated family of figures with
the desired properties, we parametrize the piece (DD′)q of the Lexell curve q
by γ : [0, 1] → (DD′)q, γ(0) = D. We obtain {Qt = ABCDt}, t ∈ [0, 1], which
is the continuous family of congruent figures that transforms a quadrilateral Q
into the triangle ABD′.
Criterion of existence. Let us note that given a quadrilateral, we have
eight possibilities to apply the above construction. These possibilities can be
parametrized by a pair, consisting of a vertex of the quadrilateral and a side
that does not contain this vertex (compare with the pair (D, BC) on Figure
12).

A
C

D

B

q

PSfrag replacements

T1

T2

D′

Figure 12: ABD′ is a triangle of the same area as ABCD

In order to give an angular condition for the existence of this construction, we
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5 CONSTRUCTION OF A FAMILY OF FIGURES USING LEXELL’S PROBLEM

need to single out the elements of our construction, which are responsible for
the existence of the intersection point D′.
First, we recall the construction of the Lexell curve. We draw the midline lm,
i.e. the line joining the midpoints of sides AD and CD of the triangle ACD.
The Lexell curve is then the equidistant curve to lm passing through D. If the
line lBC intersects the curve q, then it necessarily intersects the midline lm, and
vice versa. We justify this fact with the following lemma.

Lemma 4. Let q and q′ be the two connected components of an equidistant set
to the line l. Let Hq and Hq′ be two open half-planes, which are the sides of l
containing q and q′, respectively. A line l′ having a point S in Hq′ intersects
the line l if and only if it intersects the curve q.

Proof. Assume that l′ intersects l with some angle θ, but does not intersect q.
Let M be the intersection point of l′ and l, N a point on l′ in Hq and P the
foot of the perpendicular from N to l. The family of right triangles MNtPt,
depending on a parameter t > 0, which is the hyperbolic length of MPt (see
Figure 13).
Let δt be the hyperbolic length of PtNt. Then for every t > 0 we have the
following relation in the triangleMNtPt (compare with first relation in Theorem
1):

tan θ =
tanh δt
sinh t

. (61)

By assumption, l′ does not intersect q, so we have δt < d for all t > 0, where
d denotes the distance between l and q. Then the right-hand side of (61) tends
to 0 for t → +∞, whereas the left-hand side of (61) remains a strictly positive
constant. This gives a contradiction.
Conversely, if l′ intersects q in a point in Hq and moreover, it has a point in
Hq′ , then it necessarily intersects the line l which separates Hq from Hq′ .

M

PSfrag replacements

θ

t

Nt

Pt

δt

q

l

l′

q′

d

Figure 13: Proof of Lemma

We refer again to Figure 12. By Lemma 4, the existence of D′ is equivalent to
the existence of the intersection point of lBC and lm, denoted by M .
Secondly, we consider a Khayyam-Saccheri quadrilateral CHFA, obtained by
drawing the perpendiculars AF and CH from A and C to the midline lm (see
Figure 14). Recall that in neutral geometry, the Khayyam-Saccheri quadrilateral
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5 CONSTRUCTION OF A FAMILY OF FIGURES USING LEXELL’S PROBLEM

is a quadrilateral with two equal opposite sides, which are both perpendicular
to the third side.
This quadrilateral has the same area as the triangle ACD, since it is the result

A
C

F H

D

G

q

PSfrag replacements
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η

α
α

lm

lBC

χ

Figure 14: Non-euclidean dissection

of a non-Euclidean dissection of this triangle. For completeness, we justify here
this fact. Let G be a perpendicular from D to a line lm and let A′ and C′ be the
intersection points of lm with AD and CD, respectively, hence the midpoints
of AD and CD. We have then the following congruences: AFA′ ≡ A′GD and
DGC′ ≡ C′CH , from which follows the result.
This way of cutting a triangleACD into the finite number of pieces and rearrang-
ing them to the Khayyam-Saccheri quadrilateral CHFA is the non-Euclidean
analogue of a classical construction of Euclid (see Chapter 5.5 of [1] for more
details).
Further, if the equal acute angles in CHFA have measure α, then the area of
CHFA is given by

Area (CFHA) = 2π − (π + 2α) = π − 2α. (62)

The computation of the area of the quadrialateral CHFA uses a straightforward
generalization of Hyperbolic Girard theorem for triangles to the case of polygons:

Theorem 9. In the hyperbolic plane, the area of a polygon with n vertices and
angles {αi}ni=1 is given by the angular deficit

Area(P ) = (n− 2)π −
∑

i

αi.

Thirdly, we observe that the intersection of the lines lm and lBC is also controlled
by the angle θ, which the line lBC makes with the perpendicular CH . Since the
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5 CONSTRUCTION OF A FAMILY OF FIGURES USING LEXELL’S PROBLEM

angle sum in the triangle CHM is less than π, the intersection pointM does not
exist for θ ≥ π

2 . We can obtain a more precise estimation using Lobachevsky’s
angle of parallelism function Π(p). Before giving this estimation, let us recall
some notions of the theory of parallel lines, introduced by Lobachevsky (compare
Ch. 7 in [1]).
In hyperbolic geometry, the line l′ through a point P not on l is parallel to l′,
if it is the limiting position of lines passing through P and points on a given
side of l with respect to the point P ′, which is the foot of perpendicular from
P on l. More precisely, we can consider a family of lines {lθ}θ passing through
P and making an angle θ ∈ [0, π[ with the perpendicular PP ′ on a given side
of PP ′ (see Figure 15). Then a parallel line l′ = l∗θ to l is a line characterized
by the property that for all θ < θ∗ the lines lθ intersect l on a given side of
P ′, and for θ > θ∗, they do not intersect l. The lines lθ with θ > θ∗ are called
ultra-parallel. By this definition, through a given point P not belonging to l pass
exactly two parallel lines to l (corresponding to two sides of P ′), and infinitely
many ultra-parallel lines.

P

P’

l

PSfrag replacements

θ

θ∗

l′′

l′

lθ

Figure 15: l′ and l are parallel, l′′ and l are ultra-parallel

The angle θ∗, called Lobachevsky’s angle of parallelism, depends only on the
hyperbolic length p of perpendicular PP ′. This dependence called Lobachevsky’s
angle of parallelism function and denoted by Π(p) (see Ch. 7.6 of [1]) is given
by Lobachevsky’s relation

cosΠ(p) = tanh p.

Applying Lobachevsky’s angle of parallelism function to our situation, we have
that the lines lm and lBC intersect, if θ < Π(p2) <

π
2 , where p2 is the hyperbolic

length of the perpendicular CH , and do not intersect otherwise.
With notation as in Figure 15, the angle θ = π− (χ+α). Then the lines lm and
lBC do not intersect for

π − (χ+ α) ≥ Π(p2). (63)

Applying the same argument to the lines lm and lBA, we get for the non-
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intersection of these lines the analogous condition

π − (η + α) ≥ Π(p2). (64)

Note that because of the symmetry of the Khayyam-Saccheri quadrilateral
CHFA with respect to the perpendicular bisector of AC, we have |AF | =
|CH | = p2 and ∠A = ∠C = α.
Let A1 denote the area of the triangle ACD and A2 the area of the triangle
ABC. For the area A1 we have

A1 = Area (CFHA) = π − 2α (65)

and
A2 = π − (χ+ η + w2). (66)

Combining (65) and (66) with conditions (63) and (64), we obtain

A = A1 +A2 = π − (χ+ α) + π − (η + α)− w2 ≥ 2Π(p2)− w2. (67)

Let us recall that the non-existence of the continuous family {Qt}t∈[0,1], ob-
tained by the construction explained above is garanteed by the non-existence
of intersection points in all 8 possible situations of applying this construction.
Condition (67) controls the failing only of 2 of them, namely those correspond-
ing to the choice of D and of the extension lines BC and BA. This answer can
be parametrized by the angle w2 and the length p2 of the perpendicular |AF |.
Repeating our argument for the remaining cases, we get

A ≥ max
i=1,..,4

(2Π(pi)− wi). (68)

We are able now to formulate the main result of this section.

Theorem 10. In the hyperbolic plane, let Q be a quadrilateral with angles w1,
w2, w3, w4 and area A. Let wi be the angle at the vertex Ai and pi the length
of semialtitude (i.e. the perpendicular to a midline of a triangle) drawn from
the vertex Ai+2 (opposite vertex to Ai). The condition for the existence of
continuous family {Qt}t∈[0,1] of figures of the same area A such that Q0 = Q

and Q1 is a triangle, is:

A < max
i=1,..,4

(2Π(pi)− wi), (69)

where Π(pi) denotes the Lobachevsky’s angle of parallelism associated to pi.

Spherical analogue. Let us note that in spherical geometry, the Construction
described above is always possible. The reason is a remarkable property of
spherical geometry that two lines within it always intersect. Indeed, by deriving
the angular estimation in the hyperbolic case we observed that the possibility
of the construction depends on the existence of an intersection point between
the midline lm and the line lBC . The same observation is also valid in spherical
geometry. Since the lines lm and lBC always intersect, the construction is always
possible.
Euclidean analogue. In the case of Euclidean geometry the base line lAB and
the midline lm are parallel. Since lBC intersects lAB, it intersects necessarily
lm. Therefore, also in the Euclidean case, the construction is always applicable,
though the reason is different from that of spherical geometry.
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A
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D D’

Figure 16: spherical case
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Theorem 11. In the spherical or Euclidean plane, let Q be a quadrilateral.
There exists a continuous family {Qt}t∈[0,1] of figures of the same area A such
that Q0 = Q and Q1 is a triangle.

6 Cagnoli’s identities and their Applications

6.1 Cagnoli’s identities and Area formula

Theorem 12. Cagnoli’s theorem. In hyperbolic plane, given a triangle with
side lengths a, b, c and the opposite angles α, β, γ, the area A of this triangle
is given by

sin
A
2

=
sinh b

2 sinh
c
2 sinα

cosh a
2

. (70)

In particular, the following relations hold

sinh
a

2
=

√

sin A
2 sin (A2 + α)

sinβ sin γ
; cosh

a

2
=

√

sin (A2 + γ) sin (A2 + β)

sinβ sin γ

sinh
b

2
=

√

sin A
2 sin (A2 + β)

sinα sin γ
; cosh

b

2
=

√

sin (A2 + α) sin (A2 + γ)

sinα sin γ

sinh
c

2
=

√

sin A
2 sin (A2 + γ)

sinα sinβ
; cosh

c

2
=

√

sin (A2 + α) sin (A2 + β)

sinα sinβ
.

Proof. 1. We consider the Second Law of Cosines

cosα = − cosβ cos γ + sinβ sin γ cosha

and the Addition Theorem for Cosines

cos (β + γ) = cosβ cos γ − sinβ sin γ.

We take their sum:

cosα+ cos (β + γ) = (cosh a− 1) sinβ sin γ
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Using the trigonometric identity cosh(a)− 1 = 2 sinh2 a
2 , we get

sinh
a

2
=

√

cosα+ cos (β + γ)

2 sinβ sin γ

By relation (44), we get

sinh
a

2
=

√

cos α+β+γ
2 cos α−(β+γ)

2

sinβ sin γ

By Girard’s theorem, the area A of a triangle ABC is given by the angular
defect formula A = π − α+ β + γ. We have

cos
α+ β + γ

2
= cos

(

(π − α− β − γ)− π

2

)

= − sin
A
2

and

cos
α− (β + γ)

2
= cos

(

(π − α− β − γ) + 2α− π

2

)

= − sin (
A
2
+ α)

Therefore,

sinh
a

2
=

√

sin A
2 sin (A2 + α)

sinβ sin γ
. (71)

Analogously,

sinh
b

2
=

√

sin A
2 sin (A2 + β)

sinα sin γ

and

sinh
c

2
=

√

sin A
2 sin (A2 + γ)

sinα sinβ
.

2. Again, summing up the Second Law of Cosine and another Addition Theorem

cosα = − cosβ cos γ + sinβ sin γ cosha

cos (β − γ) = cosβ cos γ + sinβ sin γ

we get:
cosα+ cos(β − γ) = (1 + cosh a) sinβ sin γ

1 + cosh a = 2 cosh2
a

2
.

Resolving in cosh a
2 gives

cosh
a

2
=

√

cos α+β−γ
2 cos α−β+γ

2

sinβ sin γ
.

Taking in consideration

cos
α+ β − γ

2
= cos

(

(π − α− β − γ) + 2γ − π

2

)

= − sin (
A
2
+ γ)
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and

cos
α− β + γ

2
= cos

(

(π − α− β − γ) + 2β − π

2

)

= − sin (
A
2
+ β)

we finally get

cosh
a

2
=

√

sin (A2 + γ) sin (A2 + β)

sinβ sin γ
.

Analogously,

cosh
b

2
=

√

sin (A2 + α) sin (A2 + γ)

sinα sin γ
(72)

and

cosh
c

2
=

√

sin (A2 + α) sin (A2 + β)

sinα sinβ
. (73)

Using formulae (70), (102) and (103) for sinh b
2 , sinh

c
2 and cosh a

2 , we get the
Area formula

sin
A
2

=
sinh b

2 sinh
c
2 sin α

cosh a
2

.

6.2 Steiner’s theorem The following result is an analogue of a Theorem
of Steiner in spherical geometry.

Theorem 13 (Steiner’s Theorem). In a hyperbolic triangle, the lines that pass
through vertices and bisect the area, are concurrent.

A

B

C

R

Q

S

a

b

c

Figure 18: Lines that bisect the area are concurrent.

Proof. Let ABC be a triangle with side lenghts a, b, c and opposite angles α,
β, γ, respectively. Let AQ, BR and CS be the segments that bisect the area of
ABC (see Figure 18). The segments AQ, BR, CS bisect the area of ABC.
First, the triangles ABQ and ACQ have the same area. We use formula (70).

sinh c
2 sinh

|BQ|
2 sinβ

cosh |AQ|
2

=
sinh b

2 sinh
|CQ|
2 sin γ

cosh |AQ|
2
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Hence,

sinh |BQ|
2

sinh |CQ|
2

=
cosh c

2

cosh b
2

.

The last relation holds because

cosh c
2

cosh b
2

=
sinh b

2 sin γ

sinh c
2 sinβ

,

which is equivalent to the Law of Sines

sinh c

sinh b
=

sin γ

sinβ
.

We proceed in the same way with the two other pairs of triangles: ABR, BRC
and ACS, BCS and we get the formulae

sinh |AR|
2

sinh |CR|
2

=
cosh c

2

cosh a
2

and
sinh |AS|

2

sinh |BS|
2

=
cosh b

2

cosh a
2

.

It follows that

sinh
|BQ|
2

sinh
|CR|
2

sinh
|AS|
2

= sinh
|QC|
2

sinh
|RA|
2

sinh
|SB|
2

. (74)

Secondly, the triangles ABQ, SBC have equal areas. We use another area
hyperbolic formula that was proven here in Theorem Sec6:

cot
A
2

=
coth a

2 coth
b
2 − cos γ

sin γ
.

Since the triangles BCR and CQA have a common angle γ, we get

coth
a

2
coth

|CR|
2

= coth
|QC|
2

coth
b

2
. (75)

Analogously, we get the relations for both other pairs of triangles. We get for
ASC and ARB (with common angle α):

coth
c

2
coth

|AR|
2

= coth
|AS|
2

coth
b

2
. (76)

And we get for BCS and ABQ (with common angle β):

coth
c

2
coth

|BQ|
2

= coth
|SB|
2

coth
a

2
. (77)

From these three relations we get

coth
|BQ|
2

coth
|CR|
2

coth
|AS|
2

= coth
|QC|
2

coth
|RA|
2

coth
|SB|
2

. (78)
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From (74) and (78) we get

cosh
|BQ|
2

cosh
|CR|
2

cosh
|AS|
2

= cosh
|QC|
2

cosh
|RA|
2

cosh
|SB|
2

. (79)

From (74) and (79) we get

sinh |BQ| sinh |CR| sinh |AS| = sinh |QC| sinh |RA| sinh |SB|.

By hyperbolic analogue of Ceva’s theorem (see ??), the segments AQ, BR and
CS are concurrent.

6.3 Neuberg’s theorem

Theorem 14. The maximal area A∗ among the triangles with two given sides
b and c is given by

sin
A∗

2
= tanh

b

2
tanh

c

2
. (80)

Moreover, the triangle with maximal area satisfies an equation

α = β + γ, (81)

The following proof is based on Neuberg’s trigonometric proof in spherical
geometry (see [3], Chap. V).

Proof. We consider a relation of Cagnoli’s theorem 12 with b, c being given

sin(α +
A
2
) = sin

A
2
coth

b

2
coth

c

2
. (82)

Firstly, we observe that an inequality

coth
b

2
coth

c

2
> 1 (83)

holds for every pair (b, c) ∈ R2.
Indeed, (83) is equivalent to

cosh
b − c

2
> 0,

which is true for all pairs (b, c).
Secondly, in order that the triangle is possible, due to Formula (82), we must
restrict the value of sin A

2 . If

sin
A
2

≤ tanh
b

2
tanh

c

2
,

the triangle with two given sides b, c is possible.
If

sin
A
2

= tanh
b

2
tanh

c

2
,

the area is maximal, equation (82) becomes sin(α+ A
2 ) = 1, or α+ A

2 = π
2 . By

Girard’s theorem, this is equivalent to

α = β + γ. (84)
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Figure 19: On the left hand side we have a right-angled triangle whose vertices
are A, B and C. The lengths of AB and AC are denoted by c and h respectively.
On the right hand side, we draw the particular right-angled triangle whose length
AC is equal to π − h. The point A′ is the antipodal point of A.

7 Schubert’s spherical problem

7.1 Background in spherical geometry In this Section, we deal with the
unit sphere S2 in the Euclidean space R3. We recall that S2 is equipped with the
so-called angular metric and that the lines are the great circles. The parallels
(or the equidistant curves) to a given line are the small circles (or latitudes)
whose the corresponding pole is the same as the one of the line. In the rest of
this section, we shall recall a trigonometric formula along with an application
for the area of a (spherical) triangle.
We recall without proof that the area of a spherical triangle ABC is

Area(ABC) = ÂBC + ÂCB + B̂AC − π, (85)

and then if the triangle is right at A we have

Area(ABC) = ÂBC + ÂCB − π

2
. (86)

Formula (85) is known as the Girard formula. There are well-known proofs of
this formula, and one of them is contained in Euler’s paper [8].
We now give a useful trigonometric formula. Let ABC be a right-angled triangle
which is right at A and whose lengths AB, and AC are c and h, respectively, If
we set α = ∠B and β = ∠C, then

tan (α) =
tan (c)

sin (h)
and tan (β) =

tan (h)

sin (c)
. (87)

For more details about these relations we can refer to [1].

Lemma 5 (Area formula). Let T be a right-angled spherical triangle whose
length of the base is c and whose altitude is h. Then

Area(T ) = 2 arctan

(

tan

(

h

2

)

tan
( c

2

)

)

.

Although the proof is elementary, we provide it for the convenience of the reader.
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Proof. Let ABC be a right-angled triangle with a right angle γ. See Figure
19 for a picture. We shall deal with the four different cases, depending on the
values of α and β.

Case I: Assume that α = β = π
2 . Then we have a triangle with three

right angles. It implies that the triangle ABC is equilateral with the side
length π

2 . Then the area is π
2 . On the other hand, c = h = π

2 and therefore

arctan
(

tan
(

h
2

)

tan
(

c
2

))

= π
4 , so the lemma is proved in this case.

Case II: Assume that either α or β is right. The triangle is then isosceles.
Without loss of generality we assume that α = π

2 . Then, the area is equal to β.
On the other hand, h = π

2 and c = α so the lemma is also proved here.
The last two cases depend on whether or not α + β = π. But because of

the law of sines applied to the triangle ABC, we have β + γ = π if and only
if c + h = π or c = h. However, because of (87), we cannot have c = h, so
α+ β = π if and only if c+ h = π.

Case III: Assume now that α + β = π, or equivalently c = π − h. On
the one hand we then have Area(ABC) = π

2 , and on the other hand we have

tan
(

h
2

)

tan
(

π−h
2

)

= 1. Therefore, the lemma is also proved in this case.
Case IV: Assume finally that α + β 6= π, which by what we saw above is

equivalent to c 6= π−h. From classical relations for trigonometric functions and
from Relations (86) and (87) we have

tan (Area(ABC)) =
−1

tan (α+ β)

=
−1 + tan (α) tan (β)

tan (α) + tan (β)

=
−1 + 1

cos(h) cos(c)

tan(h)
sin(c) + tan(c)

sin(h)

=
sin (h) sin (c) (1− cos (h) cos (c))

sin2 (h) cos (c) + sin2 (c) cos (h)

=
sin (h) sin (c) (1− cos (h) cos (c))

cos (c)− cos2 (h) cos (c) + cos (h)− cos2 (c) cos (h)

=
sin (h) sin (c)

cos (h) + cos (c)
. (88)

In the same vein we have

tan
(

2 arctan
(

tan
(

h
2

)

tan
(

c
2

)))

=
2 tan

(

h
2

)

tan
(

c
2

)

1− tan2
(

h
2

)

tan2
(

c
2

)

=
sin (h) sin (c)

2
(

cos2
(

h
2

)

cos2
(

c
2

)

− sin2
(

h
2

)

sin2
(

c
2

))

=
sin (h) sin (c)

2
(

1 + cos(h)−1
2 + cos(c)−1

2

)

=
sin (h) sin (c)

cos (h) + cos (c)
. (89)

Comparing (88) and (89), the lemma is proved in this case and so is in all
cases.

49
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PSfrag replacements
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Figure 20: Spherical coordinates (λ,ϕ) on the unit sphere.

Our proof is made in spherical coordinates (λ, ϕ), where λ ∈ [0, 2π[ and
ϕ ∈ [−π

2 ,
π
2 ], see Figure 20. We use also the well-known conversion formula

from spherical to carthesian coordinates on the unit sphere:

(λ, ϕ) 7→ (cosϕ cosλ, cosϕ sinλ, sinϕ)

7.2 An analytic solution In order to solve Schubert’s extremal problem,
we shall give a useful expression for the area. We fix two points A and B on
the sphere which are at distance c > 0. We denote by G the line through these
two points. Let h ∈

(

0, π2
)

. We denote by E(h), one of the equidistant lines (a
small circle) from G at distance h. We can assume that G is the equator and
E(h) is the small circle at distance h in the northern hemisphere. By using the
well-known spherical coordinates on the unit sphere, we have without loss of
generality

A =
(

cos
(

c
2

)

,− sin
(

c
2

)

, 0
)

and B =
(

cos
(

c
2

)

, sin
(

c
2

)

, 0
)

.

Furthermore, the equidistant curve E(h) is seen as the image of the mapping

t ∈ R 7→ (cos(t) cos(h), sin(t) cos(h), sin(h)) . (90)

Hence, a triangle with base AB and a third vertex on E(h), has an area which
depends on t. We denote by A(t) the area of the triangle ABCt where

Ct = (cos(t) cos(h), sin(t) cos(h), sin(h)) .

We then have a 2π-periodic function A(t) and since the symmetry with respect
to the plane {y = 0} is an isometry, this function is an even function. Thus, we
shall study A(t) on the interval [0, π]. Let us first find the general expression for
this function. The idea is quite elementary and consists of dividing the triangle
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Figure 21: We draw using the spherical coordinates, two different sorts of tri-
angle ABCt. The point Dt is the foot of the altitude from Ct onto AB and the
point A′ is the antipodal point of A. On the left hand side, we have c

2 < t < π− c
2 .

In this case the area of ABCt is the same as the difference between the area of
ADtCt and BDtCt. On the right hand side, since π − c

2 < t < π the segment
ADt has length equal to 2π − t− c

2 , and the sum of the areas of ABCt, ADtCt

and BDtCt is equal to the area of the northern hemisphere which is 2π.

ABCt into two right-angled triangles and using the formula given by Lemma
17.

Let t ∈ [0, π] and Ct be the corresponding point on E(h). By drawing the
altitude from Ct, we obtain a point Dt on the line G, and then two right-angled
triangles ADtCt and DtBCt. Note that Dt = (cos(t), sin(t), 0). Depending on
the position of Dt (and then on the values of t) we have by using twice Lemma
17 (see also Figure 21) the following.
If 0 ≤ t ≤ c

2 , this means: if Dt is situated between the midpoint of AB and B,
then

A(t) = Area(ADtCt) + Area(DtBCt),

where the length of ADt is equal to t+
c
2 and of BDt is

c
2 − t. This gives us by

Lemma 17:

A(t) = 2 arctan
(

tan
(

h
2

)

tan
(

t
2 + c

4

))

+ 2 arctan
(

tan
(

h
2

)

tan
(

c
4 − t

2

))

. (91)

If c
2 ≤ t < π − c

2 , this means: if Dt is between B and the antipodal point A′ to
A. In this case

A(t) = Area(ADtCt)−Area(DtBCt),

where length of ADt is equal to t + c
2 and of BDt is t − c

2 . This gives us the
same relation (91). This is the situation of Figure 21 on the left side.
And if π − c

2 < t ≤ π, this means that Dt lies between A′ and the antipodal
point to the midpoint of AB. In this case the sum of the areas of ABCt, ADtCt

and BDtCt is equal to the area of the northern hemisphere which is 2π. The
length of ADt is equal to 2π − t − c

2 and of BDt is t − c
2 . This is situation of

Figure 21 on the right side.

A(t) = 2π + 2 arctan
(

tan
(

h
2

)

tan
(

t
2 + c

4

))

+ 2 arctan
(

tan
(

h
2

)

tan
(

c
4 − t

2

))

.

(92)
We can now solve the problem by study of the function A(t). Note that from
(91), (92) and the parity, A(t) is at least of class C1 on R. Straight-forward
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π 2π−π−2π

Figure 22: The graphs of the area function for two different pairs of values for
c and h. The thick curve is for h = 2π

7 and c = 3π
4 . The thin curve is for h = π

5
and c = 2π

3 .

computations give us that on [0, π] \
{

π − c
2

}

A′(t) =
tan

(

h
2

) (

1 + tan2
(

t
2 + c

4

))

1 + tan2
(

h
2

)

tan2
(

t
2 + c

4

) − tan
(

h
2

) (

1 + tan2
(

t
2 − c

4

))

1 + tan2
(

h
2

)

tan2
(

t
2 − c

4

)

and then by setting

g(t) =
tan

(

h
2

)

(

1 + tan2
(

h
2

)

tan2
(

t
2 + c

4

)) (

1 + tan2
(

h
2

)

tan2
(

t
2 − c

4

)) , (93)

we have

∀t ∈ [0, π] \
{

π − c

2

}

,
A′(t)

g(t)
=

(

1 + tan2
(

t
2 + c

4

)) (

1 + tan2
(

h
2

)

tan2
(

t
2 − c

4

))

−
(

1 + tan2
(

t
2 − c

4

)) (

1 + tan2
(

h
2

)

tan2
(

t
2 + c

4

))

=
(

1 + tan2
(

h
2

)) (

tan2
(

t
2 + c

4

)

− tan2
(

t
2 − c

4

))

.

(94)

Finally from (93) and (94), we deduce that

∀t ∈ (0, π) , A′(t) > 0 and A′(0) = A′(π) = 0.

As an illustration we give in Figure 22 two examples of the graph of A(t).
In conclusion, we proved the following result which solves the Schubert’s prob-
lem.

Theorem 15. Let C0 be the point of E(h) such that the foot of the altitude from
it onto the line AB is the midpoint of AB. Let Cπ be the point of E(h) such that
the foot of the altitude from it to the line AB is the midpoint of A′B′, where A′

and B′ are the antipodal points of A and B, respectively. Then

∀C ∈ E(h), Area(ABC0) ≤ Area(ABC) ≤ Area(ABCπ).

Although the preceding proof is elementary, it uses some computations, so the
natural question is about the existence of a proof which is entirely geometric.
Such a proof exists and uses the notion of Lexell curve.
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7 SCHUBERT’S SPHERICAL PROBLEM

Figure 23: Three Lexell curves for a given base AB. The thickest Lexell curve
intersects the equidistant curve E(h) at two points. The two other Lexell curves
are extremal cases, where the intersection with E(h) consists of only one points.

7.3 The use of the Lexell curves The Lexell curve is the locus of third
vertices of triangles with a given base and area. Let us recall Steiner’s construc-
tion of Lexell curve. Let AB be a fixed segment on the unit sphere and C a
third point on it which does not belong to the great circle containing the points
A and B. We recall that A′ and B′ represent the antipodal points of A and B,
respectively. The intersection between the sphere and the plane containing A′,
B′ and C is a small circle which is the Lexell curve. More precisely, any point D
on this circle defines a triangle ABD which has the same area as ABC. Further-
more, the corresponding pole of the Lexell curve belongs to the perpendicular
bisector of AB.

Let us see now how Lexell curves are used in the resolution of the Schubert’s
problem. As before, we fix two points A, B and an equidistant curve E(h)
which is at distance h from the line G which passes through A and B. Again,
we denote by A′ and B′ the corresponding antipodal points. Let C0 and Cπ

be the intersection points between E(h) and the perpendicular bisector of AB.
The point C0 being the closest point to the base AB. Let us take now a point
C which lies inside the segment C0Cπ. We draw the corresponding Lexell curve;
it is clear that such a curve intersects E(h) at two points. This process gives
us a natural one to one correspondence between the segment C0Cπ and the
equidistant curve E(h). Since the area strictly increases as C moves from C0 to
Cπ, the minimal area is attained at C0 and the maximal area is attained at Cπ.
This gives another proof of the Schubert’s problem.
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8 SCHUBERT’S HYPERBOLIC PROBLEM

8 Schubert’s hyperbolic problem

Theorem 16. Among the hyperbolic triangles with a base AB and with the
third vertex belonging to the equidistant set E(h), the isosceles triangles ABC
and ABC′ are the only triangles with the maximal area and the only triangles
with the extremal area.

8.1 Background in hyperbolic geometry The area of a hyperbolic tri-
angle ABC is given, up to a scalar factor, by the angular dificit

Area(ABC) = π − ∠A− ∠B − ∠C. (95)

For a simple proof we refer to [2]. In particular, the area of a right hyperbolic
triangle with ∠B = π

2 becomes

Area(ABC) =
π

2
− ∠A− ∠C. (96)

We continue with hyperbolic right-angled triangles by recalling some trigono-
metric relations. They were proven in Section 3.2. Let ABC be a right-angled
hyperbolic triangle with the right angle B and with the (hyperbolic) lengths
of catheta |AB| = a and |BC| = h and the (hyperbolic) measures of angles
∠C = α and ∠A = β (see Figure 24), then

tan α =
tanh a

sinh h
and tan β =

tanh h

sinh a
. (97)

PSfrag replacements

A
B

C

c
h

a

α

β

Figure 24: Right-angled hyperbolic triangle.

These trigonometric formulae can be proven in many different ways. In partic-
ular, a proof, which uses cinematic approach, can be found in [4] by J.-M. de
Tilly. See also the essay [5] by D. Slutskiy.

Lemma 6 (Area Formula for Right Triangle). Let T be a right hyperbolic tri-
angle with the lengths of catheta a and h (see Figure 24). Then

tan
Area(T )

2
= tanh

a

2
tanh

h

2
.
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Proof. Let ABC be a right-angled triangle as in Figure 24. From classical
relations for hyperbolic4 and trigonometric functions and from Relations (96)
and (97) we get

tan (Area(ABC)) =
1

tan (α+ β)
=

1− tan α tan β

tan α+ tan β

=
1− 1

cosh h cosh a
tanh h
sinh a

+ tanh a
sinh h

=
sinh h sinh a (cosh h cosh a− 1)

sinh2 h cosh a+ sinh2 a cosh h

=
sinh h sinh a (cosh h cosh a− 1)

cosh2 h cosh a− cosh a+ cosh2 a cosh h− cosh h

=
sinh h sinh c

cosh h+ cosh c
. (98)

Analogously,

tan

(

2 arctan

(

tanh
h

2
tanh

a

2

))

=
2 tanh h

2 tanh a
2

1− tanh2 h
2 tanh2 a

2

=
2 (cosh h− 1) (cosh a− 1)

sinh h sinh a
(

1−
(

cosh h−1
sinh h

)2 ( cosh a−1
sinh a

)2
)

=
2 sinh h sinh a (cosh h− 1) (cosh a− 1)

sinh2 h sinh2 a− (cosh h− 1)
2
(cosh a− 1)

2

=
sinh h sinh a

cosh h+ cosh a
. (99)

Comparing the two computations, we deduce the lemma.

The two other proofs of this area formula are given later in Section 8.4.
Lemma 17 is used to obtain a remarkable area formula for hyperbolic triangles
in terms of altitude length |CH | = h and of oriented segment lengths |AH | = p1
and |BH | = p2.

Corollary 2 (Area Formula for Arbitrary Triangle). Let T be a hyperbolic
triangle with an altitude of length h that divides a side of triangle into the two
segments of lengths p1 and p2. Then

Area(T ) = 2 arctan

(

tanh
p1

2
tanh

h

2

)

+ 2 arctan

(

tanh
p2

2
tanh

h

2

)

or equivalently,

tan
Area(T )

2
=

(tanh p1

2 + tanh p2

2 ) tanh h
2

1− tanh p1

2 tanh p2

2 tanh2 h
2

.

Finally, let us recall a few facts about Poincaré half-plane model of hyperbolic
plane. Poincaré half-model is a half-plane H = {z ∈ C | Im(z) > 0}, which is
equipped with a hyperbolic metric dH:

dH (z1, z2) = 2 arctanh

( |z1 − z2|
|z1 − z2|

)

for all z1, z2 ∈ H.

4We essentially meant cosh2
x− sinh2 x = 1 and tanh (2x) = cosh x−1

sinh x
.
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With respect to this metric, the isometries are either of the form

z ∈ H 7→ az + b

cz + d
such that (a, b, c, d) ∈ R

4 and ad− bc = 1, (100)

or of the form

z ∈ H 7→ az + b

cz + d
such that (a, b, c, d) ∈ R

4 and ad− bc = −1. (101)

In this model, the geodesic lines are represented by the half-circles with the
centers situated on the real axis or by the vertical lines. The hypercycles to
a given geodesic line are the circular arcs or the straight lines that share the
end points with those of the geodesic line. These two kinds of hypercycles are
elements of Figure 25 below.

8.2 An analytic solution of Schubert’s problem We work in the Poincaré
half-plane model. Let A and B be the two points at the hyperbolic distance a
on a line l. Up to conjugacy by an isometry (a mapping of the form (100) or
(101)) we can assume that B has a coordinate i and A has a coordinate eai.
We reduce our consideration to the connected component mh of E(h), since by
aid of reflection with respect to the axis l the results can be extended to another
connected component m′

h. In the Poincaré model, we assume that the hypercy-
cle mh is the half-straight line

{

αeiθh | α > 0
}

where θh = 2 arctan
(

eh
)

. For
our problem, we reparametrize mh by setting Ct as a point on mh with a coor-
dinate e

a
2
+teiθh for t ∈ R. According to this parametrization the area function

A(t) = Area(ABCt) is an even function, since the area A(t) remains invariant
under reflection with respect to the perpendicular bisector of AB (corresponds

to the isometry z 7→ el

z̄
). Let Dt be the foot of the perpendicular from Ct to l.

The coordinate of Dt is then e
a
2
+ti. By Corollary 2, the area of ABCt is

A(t) = 2 arctan

(

tanh
(

t+
a

4

)

tanh
h

2

)

− 2 arctan

(

tanh
(

t− a

4

)

tanh
h

2

)

.

(102)
An immediate consequence of this formula is

lim
t→−∞

A(t) = 0 = lim
t→+∞

A(t). (103)

A is a continuous even function that vanishes at infinity. We shall prove that
the area function attains its unique maximum at t = 0. It suffices to show that
t = 0 is the unique critical point of A.
We have for all t ∈ R,

A′(t) =
2 tanh h

2

(

1− tanh2
(

t+ l
4

))

1 + tanh2 h
2 tanh2

(

t+ l
4

) − 2 tanh h
2

(

1− tanh2
(

t− l
4

))

1 + tanh2 h
2 tanh2

(

t− l
4

) .

By setting

g(t) =

(

1 + tanh2
h

2
tanh2

(

t+
l

4

))(

1 + tanh2
h

2
tanh2

(

t− l

4

))

, (104)

we get

A′(t) =
2 tanh h

2

(

1 + tanh2 h
2

) (

tanh2
(

t− l
4

)

− tanh2
(

t+ l
4

))

g(t)
. (105)
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The straightforward computation gives that A′(t) = 0 is equivalent to t = 0 if
we exclude the degenerate cases (i.e. a = 0 or h = 0).
The unique maximum of A corresponds to the triangle ABC0 with the property
that the altitude C0D0 bisects AB. Thus, the triangle ABC0 is isosceles, and
Theorem 16 follows.

PSfrag replacements

H
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e2t+
l
2 eiθh

e2t+
l
2 i
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i
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l

Figure 25: l is a geodesic line passing through the points A and B with the
coordinates eai and i, respectively. The (hyperbolic) distance between A and B
is then a. mh is an equidistant curve to l at (hyperbolic) distance h. Each point
Ct of coordinate e

t+a
2 eiθh on mh gives two right-angled triangles. Our extremal

problem is invariant under reflection with respect to the perpendicular bisector
of AB, represented as the half-circle C with the center at the origin and the
radius e

a
2 .

8.3 A solution using Lexell curves Let us recall the definition of a hyper-
bolic Lexell curve. We fix a hyperbolic segment AB and we take a third point
C, which is not on the geodesic containing AB. The question is about the locus
of points that define a triangle of base AB and with the same area as ABC.
Such a problem in spherical geometry is called the Lexell problem. We will call
Lexell curve the solution of Lexell problem. Our proof is made in equidistant
coordinates. We will use the equation of Lexell curve, given in Section 4.5.
Let A and B be two fixed points in the hyperbolic plane which lie on the geodesic
line G, and let h be a positive real number. We denote by C one of the two
points at distance h from the segment AB such that ABC is isosceles. We still
use the notation mh for the equidistant curve of axis G which passes through C.
We will give a solution using equidistant coordinates.
We introduce the coordinate system such that OX coincides with G and OY is
on a perpendicular bisector of AB, (the origin is in O).
For every point D on an altitude OC, except of O and C, the corresponding
Lexell curve intersects mh in two points, D1 and D2. Indeed, the intersection
points of corresponding Lexell curve

coshx cosh y = cot
1

2
A(ABD) sinh

a

2
sinh y − cosh

a

2

and of equidistant curve mh:
y = h
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PSfrag replacements
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Figure 26: Solution of Schubert’s problem: isoscele triangle ABC.

are D1 = (−x1, h) and D2 = (x1, h), where ±x1 satisfy

cosh(±x1) =
cot 1

2A(ABD) sinh a
2 sinhh− cosh a

2

coshh
. (106)

Then for every D on OC, the triangles ABD1, ABD and ABD2 have the same
area.
Moreover, the bigger is the distance from AB to D, the bigger is the area of
ABD and the closer the points of intersection D1 and D2 to C. Indeed, consider
two Lexell curves LD and LE that correspond to the isosceles triangles ABD
and ABE, where |OD| < |OE| (see Figure 26). From (106) we have

cosh(±xD1 ) =
cot 1

2A(ABD) sinh a
2 sinhh− cosh a

2

coshh
. (107)

cosh(±xE1 ) =
cot 1

2A(ABE) sinh a
2 sinhh− cosh a

2

coshh
. (108)

Since |OD| < |OE|, the areas A(ABD) < A(ABE) and cot 1
2A(ABD) >

cot 1
2A(ABE)5. From (107) and (108) follows that cosh(±xD1 ) > cosh(±xE1 ),

i.e. [−xE1 , xE1 ] ⊂ [−xD1 , xD1 ] in R. Equivalently, the segment [E1, E2] lies inside
of [D1, D2] on mh.
We deduce that the maximum of area will be attained in a point xC = 0, where
the Lexell curve LC is tangent to mh. The corresponding triangle ABC is
isoscele.

5cot(·) is a monotonically decreasing function
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Remark 4. Schubert’s problem in H3. Given a tetrahedron ABCD with a fixed
base triangle ABC and a vertex D on an equidistant surface E(h) to the plane
determined by ABC at distance h > 0. To find a position of D on E(h) such
that Vol3(ABCD) is maximal.
The natural conjecture for Schubert’s problem is that the solution is isoscele
tetrahedron, i.e. the tetrahedron with

Area(ABD) = Area(ACD) = Area(BCD).

8.4 An Area formula for Right Triangles revisited In this Section we
will give another two proofs for The Area formula for Right Triangles (Lemma
17). We will use

tan α =
tanh a

sinh h
and tan β =

tanh h

sinh a
. (109)

Theorem 17 (Area Formula for Right Triangle). Let ABC be a right hyperbolic
triangle with the lengths of catheta a and h (see Figure 3). Then

tan
A
2

= tanh
a

2
tanh

h

2
.

This proof is inspired by the proof of Euler’s formula in [9]. This proof uses
Relation (109) above.

A

PSfrag replacements
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Figure 27: Right-angled hyperbolic triangle

Proof. Let ABC be a right hyperbolic triangle with a fixed cathetus a. We
consider the area function A(h), which to every length of the second cathetus h
assigns the area of a triangle ABCh and in the same manner the functions c(h)
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and α(h) (see Figure 27).
We have

Area(ABCh+∆h)−Area(ABCh) = sgn(∆α)Area(AChCh+∆h).

Moreover,AChCh+∆h is enclosed between two circular regionsKc,∆α andKc+∆c,∆α.
Then by Lemma 1,

|∆α|(cosh c− 1) ≤ Area(AChCh+∆h) ≤ |∆α|(cosh(c+∆c)− 1)

and

∆α (cosh c− 1) ≤ sgn(|∆α|)Area(AChCh+∆h) ≤ ∆α (cosh(c+∆c)− 1)

Dividing by ∆h and passing to the limit ∆h→ 0 gives

A′(h) = α′(h)(cosh c(h)− 1)

or
dA = (cosh c− 1) dα.

As next, we derive the trigonometric relation

tan α =
tanh h

sinh a
(110)

to obtain

(1 + tan2 α) dα =
1− tanh2 h

sinh a
dh

and using (110)
(

1 +
tanh2 h

sinh2 a

)

dα =
1− tanh2 h

sinh a
dh.

Then we obtain the differential relation

dα =
1− tanh2 h

sinh a (1 + tanh2 h
sinh2 a

)
dh =

sinh a

cosha coshh+ 1
dh,

which can be integrated so that we finally get

T =

∫ b

0

sinh a

cosh a coshh+ 1
dh = 2 arctan

(

tanh
a

2
tanh

h

2

)

.

The last integral is computed using the ”universal” trigonometric substitution
s = tanh h

2 .

Another proof uses Cagnoli’s identities

Proof.

tanh
a

2
tanh

h

2
=

sinh a
2

cosh a
2

sinh b
2

cosh b
2

By Cagnoli’s formulae,

sinh
a

2
sinh

b

2
=

sin A
2

sin γ

√

sin(A2 + α) sin(A2 + β)

sinα sinβ
(111)
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and

cosh
a

2
cosh

b

2
=

sin(A2 + γ)

sin γ

√

sin(A2 + α) sin(A2 + β)

sinα sinβ
(112)

Dividing (111) by (112) we get

tanh
a

2
tanh

b

2
=

sin A
2

sin(A2 + γ)
.

Since γ = π
2 , we obtain

tanh
a

2
tanh

b

2
=

sin A
2

cos A
2

= tan
A
2
.

9 Steiner’s problem

9.1 Equation of Ellipse in equidistant coordinates

Definition 2. Let ABC be a triangle with lengths of base a and of two other
sides, b and c. Let d > a. We call ellipse and denote by H(d) a geometric locus
of points P such that |AP |+ |BP | = d, or equivalently, b+ c = d.

We position the coordinate system such that the origin is the midpoint of AB,
the x-axis on a line passing through A and B, we call it G and the y-axis
coincides with the perpendicular bisector (see Figure 28).
Let P be a point with coordinates (x, y), i.e. |OP ′| = x and |MP ′| = y, where
P ′ is a foot of a perpendicular from M to the x-axis.
From Pythagoras’ Theorem, we have

cosh(x +
a

2
) cosh y = cosh b

cosh(
a

2
− x) cosh y = cosh c

Then b+ c = d is equivalent to

acosh
(

cosh(x+
a

2
) cosh y

)

+ acosh
(

cosh y cosh(x− a

2
)
)

= d. (113)

9.2 An analytic solution of Steiner’s problem

Theorem 18. In the hyperbolic plane, let AB be a segment of length a on a
given line G and let d ≥ a. Then there are four positions on the ellipse H such
that the area of ABC is extremal at these points. These are the two isosceles
triangles ABC and ABC′ and two degenerate triangles ABL and ABR. In the
case of ABC and ABC′ the area is maximal. At the two degenerate cases we
get the minima.

The following proof does not use models.
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O

M(x,y)

Px

yb c

a/2 a/2
X

Y

Figure 28: Ellipse H(d), b+ c = d.

Proof. Given a triangle ABC. We assume that the length of AB is equal to
some a > 0. The main idea of this proof is to vary the third point C of the
triangle along the ellipse H(d). We recall that H(d) is given by the relation
b+ c = d, where b and c are the remaining sides of ABC. (see Figure 29).
We consider the area function A : H2 → R>0, which to every point C ∈ H2

assigns the area of ABC. We do not exclude the degenerate case, where C lies
on a line G passing through A and B.
Analogous to (27) we have

dA = (cosh b− 1) dα+ (cosh c− 1) dβ. (114)

Taking the derivative of the First Cosine Law, we want to pass from the differ-
entials of the angles dα and dβ to the differentials of the sides db and dc

− sin αdα =
(− cosh a+ cosh b cosh c) db− sinh b sinh c dc

sinh a sinh2 b

and

− sin β dβ =
(− cosh a+ cosh b cosh c) db− sinh b sinh c dc

sinh a sinh2 c
.

Applying again the Cosine Law, we get an expression for sin α and sin β

sinα =
w

sinh a sinh b

and
sinβ =

w

sinh a sinh c
,

where w denotes

w =
√

1− cosh2 a− cosh2 b− cosh2 c+ 2 cosh a cosh b cosh c.

This gives us the expressions for dα and dβ, which we put into the formula (114)
for dA

dA =
(cosh a− cosh b cosh c) db+ sinh b sinh c dc

sinh b w
(cosh b− 1)
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+
(cosh a− cosh b cosh c) dc+ sinh b sinh c db

sinh cw
(cosh c− 1).

Taking into consideration
db = −dc,

which comes from the relation b+c = d, the problem simplifies to one-dimensional.
In the following, c = c(b) = d− b

dA = (
cosh a− cosh b cosh c− sinh b sinh c

sinh b w
(cosh b− 1)+

cosh b cosh c+ sinh b sinh c− cosha

sinh cw
(cosh c− 1)) db,

which leads to

dA =
[cosh(a)− cosh(d)]

(

cosh b−1
sinh b

− cosh c−1
sinh c

)

w
db.

Now, the critical points of the area function are the solutions of dA = 0. This
relation is equivalent to

cosh a = cosh d (115)

or
sinh (b− c) = sinh b− sinh c. (116)

Equation (115) gives the solution a = ±d and Equation (116) holds whenever
b = c or b = 0 for all c ∈ R≥0 or c = 0 for all b ∈ R≥0. These solutions correspond
to the degenerate cases (C = A or C = B) and the isosceles triangles (case where
C lies on a perpendicular bisector of AB), see Figure 29.
It remains to verify the types of extrema at these points. We investigate the
second derivative

A′′(b) = (cosh a− cosh d)

(

1
2 cosh2 b

2

+ 1
2 cosh2 c

2

)

w − (tanh b
2 − tanh c

2 )w
′

w2
,

therefore

A′′(b)|b=c = (cosh a− cosh d)
1

cosh2 b
2

< 0,

since d > a. Thus, the isosceles triangle is a maximum for the area function
among all the triangles with a fixed base and the fixed sum of two other sides
d.
Moreover, we obtain that in the degenerate cases the second derivative does not
exist.

Remark 5. Steiner’s problem in H3. Given a tetrahedron ABCD with a fixed
base triangle ABC. Let H(d) be a set of points D such that Area(ABD) +
Area(BCD) + Area(ACD) is constant and equal to d > 0. To find position(s)
of D on H(d) such that Vol3(ABCD) is maximal.
The natural conjecture for Steiner problem is that the solution is isoscele tetra-
hedron, i.e. the tetrahedron with

Area(ABD) = Area(ACD) = Area(BCD).
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A B

C

C’

H

Figure 29: Two isosceles triangles, ABC and ABC′, give the maximal area
among the triangles with third vertex on H(d).

10 On a result of A’Campo concerning the varia-
tion of volume of polyhedra in non-Euclidean

geometry (Schläfli formula)

The variation of the volume for a smooth one-parametric family Pt of compact
polyhedra depending on a real parameter t on the sphere Sn was given by
Schläfli, and extended by Sforza to the hyperbolic space Hn, n ≥ 2 (see [16]
for more references). The result of Schläfli is a generalisation of first order
area calculation by angle excess or defect of polygons on the sphere S2 or on
the hyperbolic plane after the classical formula of Albert Girard. In a talk in
Cagliari, 2015, A’Campo gave the sketch of the proof using integral geometry
which says that the classical result in dimension 2 for area implies the Schläfli
theorem in higher dimensions. In our work, we give this result of A’Campo.
The classical Crofton formula is a formula in Euclidean integral geometry. It
gives the length of a segment in Euclidean n-space in terms of the measure of
the set of hyperplanes that intersect this segment. For this, one needs a measure
on the set of hyperplanes in Rn.
Let I be a segment in En, we denote by #(I ∩E) the number of intersections of
the segment I with an Euclidean hyperplane E. The formula in the Euclidean
setting is the following:

Length(I) = c1,n−1

∫

Grn−1(En)

#(I ∩ E) dµGrn−1(En)(E).

The case of dimension 2 is treated in [20], p.12-13. In this case, the constant
c1,2 = 2. There is a generalization of the Crofton formula for the sphere and
the hyperbolic space. The hyperbolic case of dimension 2 is treated in [21], p.
691. In this case, the constant is c1,2 = 2 as above.
Let us consider the principle for construction of Crofton formula. Let P be a
compact polyhedron or submanifold of dimension l ≤ n in Mn, where Mn =
Sn orHn, n ≥ 2. Let Grk(M

n) be the space of k-dimensional totally geodesic
connected maximal subspaces E inMn. Let µGrk(Mn) be a measure onGrk(M

n),
which is invariant by isometries of Mn. This measure is defined up to multipli-
cation by a constant factor c ∈ R\{0}. Let fP be the function on Grk(M

n) that
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assigns to every E ∈ Grk(M
n) the volume Volu(P ∩E), where u = k+ l−n and

this volume is induced from the Riemannian metric g of Riemannian manifold
Mn. This function is integrable with respect to µGrk(Mn) . The Crofton formula
says that there exists a constant ck,l(M

n) such that

∫

Grk(Mn)

fP (E) dµGrk(Mn)(E) = ck,l(M
n)Voll(P ) (117)

The Crofton formula is valid for u ≥ 0.
For n ≥ 2, let (Pt)t∈R be a smooth family of n-dimensional compact convex
polyhedra in Hn. We assume that the family is generic in the sense that for
every t, the interior of Pt is dense in Pt. For each t ∈ R, and for each 0 ≤ l ≤ n,
let Fl(Pt) be the set of l-dimensional faces of Pt. An (n−2)-face Kt ∈ Fn−2(Pt)
is the intersection of two (n− 1)-faces K ′

t, K
′′
t ∈ Fn−1(Pt). Let θ(Kt) ∈ [0, π[

be the angle of Pt along Kt, this is the dihedral angle between K ′
t,K

′′
t and also

between the hyperplanes that carry the faces K ′
t,K

′′
t .

Schläfli’s formula is a formula for the variation of the volume of (Pt), that is,
the derivative d

dt
Voln(Pt):

d

dt
Voln(Pt) = − 1

n− 1

∑

Kt∈Fn−2(Pt)

Voln−2(Kt)
d

dt
θ(Kt).

Our aim is to give a proof of this formula using integral geometry. In a first step
it is shown that there exists a constant sn that does not depend on the family
(Pt) such that the following formula holds:

d

dt
Voln(Pt) = −sn

∑

Kt∈Fn−2(Pt)

Voln−2(Kt)
d

dt
θ(Kt).

The value sn = 1
n−1 will be determined later.

The main tools for the proof are two Crofton type formulae andGirard’s theorem.
Girard’s formula is a formula for the area of a non- Euclidean triangle given by
angle defect π − (α + β + γ) in the hyperbolic case, where α, β and γ are the
angles of the triangle.
In integral geometry, one first needs a measure. Let Gr2(H

n) be the manifold
consisting of the two dimensional totally geodesic connected maximal subspaces
E in Hn. In Gr2(H

n) the notation stands for Grassmanian. It reminds us of
the name Grassmanian of a finite-dimensional vector space, which is a space
parametrizing the set of vector spaces of a certain dimension. Here, Gr2(H

n) is
the set of 2-planes of Hn. It is more complicated than the usual Grassmannian
because the setting of hyperbolic geometry is , unlike Rn, a non-linear setting.
The group of isometries Gn of Hn acts transitively on Gr2(H

n). We shall use
the fact that up to scaling there exists a unique positive measure µGr2(Hn) on
Gr2(H

n) that is Gn-invariant.
Let U be an open bounded subset in Hn. Define

ν(U) =

∫

Gr2(Hn)

Vol2(E ∩ U) dµGr2(Hn)(E)

The assignment U 7→ ν(U) is strictly increasing with respect to inclusion of
open subsets in Hn, additive with respect to unions of disjoint open sets and
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hence generates a measure on Hn. This measure is invariant by Gn and hence
equal up to scaling to the Riemannian measure Voln of hyperbolic space Hn.
By rescaling the measure µGr2(Hn) one obtains a first Crofton type formula

V oln(Pt) = ν(Pt) =

∫

Gr2(Hn)

Vol2(E ∩ Pt) dµGr2(Hn)(E).

A half-space in Hn is one of the two components bounded by a codimension-1
totally geodesic maximal connected subspace. Define a sector S as the union of
two half spaces A, B in Hn. Define a roof R as a triple (A,B,K) where K is a
polyhedron of dimension (n−2) that is contained in the intersection ∂A∩∂B of
the boundaries of the half spaces A, B. We call ∂A∩ ∂B the back of the sector
S.
Let R be a roof. Define α(R) to be the integral

α(R) =

∫

Gr2(Hn)

α(E;A,B,K) dµGr2(Hn),

where α(E;A,B,K) ∈ [0, π] equals 0 if E ∩ K = ∅ and the angle of the two-
dimensional sector E ∩ (A ∪B) (see Figure 30).
The quantity α(E;A,B,K) ∈ [0, π] is equal to the dihedral angle θ(A,B) of

PSfrag replacements

A

B

E

K

α

Figure 30: Roof R = (A,B,K) and surface angle α(E;A,B,K).

the sector A ∪ B if E intersects back of the sector A ∪ B under a right angle
and else α(E;A,B,K) may exceed the dihedral angle θ(A,B).
The quantity α(E;A,B,K) is monotone and additive with respect to K and
moreover additive if one subdivides the sector A ∪ B by the hyperplanes that
contain the back of the sector. It follows that there exists a constant sn such
that a second type of Crofton formula

α(E;A,B,K) = snVoln−2(K)θ(A,B)
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holds.
In the above integrals one can neglect all E’s that do not intersect the faces
of various dimensions of Pt transversally. We denote the remaining domain of
integration by Gr2,T (H

n). Indeed, the set of E’s that intersect a face Ft of Pt

non-transversally is of µGr2(Hn) - measure zero. More clearly, E ∈ Gr2,T (H
n) if

and only if E ∩ Ft = ∅ for all Ft ∈ Fn−3(Pt).
By using the Dominated Convergence Theorem of Lebesgue one gets the possi-
bility of inverting differentiation and integration. Hence

d

dt
Voln(Pt) =

d

dt

∫

Gr2(Hn)

Vol2(E ∩ Pt) dµGr2(Hn) =

∫

Gr2(Hn)

d

dt
Vol2(E ∩ Pt) dµGr2(Hn) =

−
∑

Kt∈Fn−2(Pt)

∫

Gr2,T (Hn)

d

dt
α(E;K ′

t,K
′′
t ,Kt) dµGr2(Hn) =

−sn
∑

Kt∈Fn−2(Pt)

Voln−2(Kt)
d

dt
θ(K ′

t,K
′′
t ).
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appliquées 1re série, tome 6 (1841), p. 105-170.
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L’objet de ce travail est de prouver des théorèmes de géométrie hyperbolique en utilisant
des méthodes développées par Euler, Schubert et Steiner en géométrie sphérique. Ces
théorèmes présentent une manière d’adapter des méthodes de géométrie sphérique à
la géométrie hyperbolique.
Nous commençons par donner des analogues hyperboliques de formules trigonomé-
triques pour les triangles rectangles en utilisant la méthode des variations et une formule
pour l’aire d’un triangle qui ne fait intervenir que les longueurs des trois côtés. Euler
utilisa cette idée en géométrie sphérique. Nous résolvons ensuite le problème de Lexell
en géométrie hyperbolique, un problème qui consiste à trouver le lieu géométrique des
troisièmes sommets des triangles dont la base et l’aire sont préalablement fixées. Cette
partie est basée sur un travail en collaboration avec Weixu Su. Nous continuons ensuite
par donner une formule pour l’aire d’un triangle qui est plus courte que celle d’Euler.
Ensuite, on donne l’analogue hyperbolique des identités dites de Cagnoli. Ces identités
nous permettrons de prouver deux résultats classiques en géométrie hyperbolique.
Nous poursuivons par donner les solutions aux problèmes de Schubert et de Steiner.
Le premier problème consiste à trouver les triangles d’aire extrémale où la base et la
hauteur sont fixées ; tandis que le deuxième problème consiste à trouver les extrema
d’aire des triangles de mêmes périmètres dont la base est donnée. L’étude du problème
de Schubert est basée sur un travail en collaboration avec Vincent Alberge.
En suivant les idées de Norbert A’Campo, nous finissons par donner l’ébauche de la
preuve de la formule de Schläfli en utilisant la géométrie intégrale.
Les théorèmes mentionnés et les problèmes abordés dans cette thèse peuvent être
généralisés au cas de la dimension 3 en utilisant, au moins partiellement, des techniques
similaires. Ceci est d’ailleurs un domaine ouvert dans la recherche actuelle.

INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE
UMR 7501

Université de Strasbourg et CNRS
7 Rue René Descartes

67 084 STRASBOURG CEDEX

Tél. 03 68 85 01 29
Fax 03 68 85 03 28

www-irma.u-strasbg.fr
irma@math.unistra.fr

IRMA 2018/004
...ISSN 0755-3390

Institut de Recherche
Mathématique Avancée


