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Preface
The work that is introduced in this thesis takes its roots in a previous work that was done
at the end of my Master de Recherche [Joudrier, 2013]. Following a brief introduction,
the state of the art is detailed - it mentions and defines all of the prerequisite concepts
that one should be familiar with in the following chapters. At the end of the thesis, the
results are presented as well as the limits of the method. It also states how future works
might originate from this thesis.

Also, within the scope of the ROADEF/EURO international challenge 2014 titled
"Rolling Stock Unit Management on Railways sites" [Ramond and Nicolas, 2014], another
research project has been studied in collaboration with Florence Thiard at the time of
this research. However the methods that were applied to deal with this problem has little
to do with the methods that are described in this thesis. The use of a specific arithmetic
that would deal with sets of values and the use of constraint programming are two of
these methods.

Unfortunately, because of the large amount of time this challenge required from us,
the global and deterministic optimization method used in this thesis could not be applied
on this project on time. However, some positive results allowed us to reach the first rank
in the junior category of the contest and the all categories fourth rank. The results of
this cooperation are presented in the appendix of this document and are published in the
Annals of Operations Research [Joudrier and Thiard, 2017].
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In this thesis, a set of methods are presented in order to solve multi-physics dy-
namic problems with guarantees. These systems are largely used in fundamental re-
search (physic, chemistry, biology, environment, etc) and they can be applied in various
domains such that engineering design process, model of chemical reactions and electronic
components, simulation of biological and economic systems or even to predict an athletic
performance.

The resolution of these optimization problems is made of two stages that are named
the model stage and the resolution stage. These two steps are interdependent because
the resolution methods depend on the model that is used and the model is affected by
the resolution processes that are considered. The model stage consists in defining the
mathematical model by setting up the equations for the problem. It is made of a set of
variables, a set of constraints and one or several cost functions that have to be minimized.

The engineering sciences require some tools to help the decision making through the
development stages. Indeed, a lot of decisions (represented by a set of real variables
x ∈ X ⊆ Rp in the model) made during design processes have a strong impact on final
products. These decisions are restricted by the specifications that the final product has
to respect. The specifications of the problems that are considered can be modeled with
two sets of constraints.

These constraints link the decision variables x ∈ X ⊆ Rp with output secondary
variables y ∈ Y ⊆ Rs and output unary-functions u ∈ U ⊆ (R→ R)n of the model.

• The decision variables x ∈ X ⊆ Rp are real variables that describe the system and
allow us to modify its behavior. These variables evolve in a set of values X ⊆ Rp

that is the search space.

• The output secondary variables y ∈ Y ⊆ Rs are variables that describe features
on which it is not possible or desirable to act directly. However, these variable are
used to control the properties that depend on the decision variables, the functional
variables and the constraints.

• The output unary-functions u ∈ U ⊆ (R→ R)n are functional variables which are
used to control the dynamics of the system that result from the decision variables,
the output secondary variables and the constraints.

The first set of constraints is the set of Algebraic Constraints Eq. (1). It usually
stems from the engineering and is used to describe the components from a static point
of view. These constraints are usually non-convex, sometimes non-continuous and can
describe some properties (size, weight, density, volume, stiffness, etc) of one or a set of
sub-components.

g(x,y,u) ≤ 0 (1)

where g is an application from X × Y × U to Rm.
The second set of constraints is the set of Differential Constraints Eq. (2). They are

used to describe some physico-chemical properties (electric, mechanical, electromagnetic,
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thermal, kinetics, etc), wear or any modelable features evolving with the component use.
These constraints are defined by Ordinary Differential Equations (ODEs).

u′(t) = d(x,y,u(t)) (2)

where d is an application from X × Y × Im(U) (with Im(U) = Rn) to Rn that describes
the behavior of u and t in R is a descriptive variable that represents the state of progress
of the physical components or the chemical reactions.

The combination of the algebraic constraints and the differential constraints makes
possible the description of dynamical components and bound a feasible solution set SX
Eq. (3). A feasible solution s̃x in SX is a value in X × Y × U such as all the constraints
Eq. (1) and (2) from the model are satisfied.

SX =
{

(x,yx,ux) ∈ X × Y × U
∣∣∣∣∣ g(x,yx,ux) ≤ 0

d(x,yx,ux(t)) = u′(t)

}
(3)

While the sets of constraints bound the model and draw the set of solutions SX that
respect the specifications, the optimization is driven by a cost function which has to be
minimized Eq. (4). The cost function fcost is used to measure the quality of a feasible
solution for the final components depending on one or several criteria (volume, weight,
environmental impact factor, reaction rate, energy produced, etc). It could mean that
these features are sensitive but do not require to be strongly controlled by some algebraic
constraints.

Minimize fcost(x,y,u) (4)
Where fcost is a function from X ×Y ×U to Rk. Depending on the value of k, single and
multi-objectives optimization problems can be considered indiscriminately. The multi-
objective optimization is motivated by handling some conflicting objectives like

• maximize a population and minimize its impact on the environment,

• maximize an athlete performance and minimize the energy it requires,

• maximize the quality of a product and minimize its production cost,

• maximize the temperature of a room and minimize the energy expenditure,

because design problems often involve multiple criteria such as investment, profit, quality,
efficiency, operation time, etc.

The cost function provides a partial order on the feasible solution set SX and allows
us to compare some of them. An optimal solution from an optimization problem is a set
of values s∗ that is feasible (s∗ is an element of SX ) and minimal according to the cost
function fcost. Then a Dominant Set Eq. (5) can be formed gathering all the optimal
solutions:

DX = {(x∗,y∗,u∗) = s∗ ∈ SX | @s̃x ∈ SX , fcost(̃sx) < fcost(s∗)} (5)
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The heterogeneity of models that are considered drives them hardly solvable. It comes
from the combination and the complexity of the different types of constraints (algebraic,
differential), their attributes (non-continuous, non-convex) and the variety of the rough
sizes involved in the problem description. Moreover, when the cost function is non-
regular, a large number of local minima exists which makes finding the optimal solution
more difficult.

In addition to this complexity, some special differential constraints are defined in
the dynamic design problems that are considered. The specificity of this new type of
constraints comes from the piecewise differential description Eq. (6) which makes them
more hardly solvable than classic differential constraints.

u′(t) =


d1(x,y,u(t)) if c1(x,y,u(t))

...
dq(x,y,u(t)) if cq(x,y,u(t))

(6)

where for all i from 1 to q, di from X × Y × Im(U) to Rn is the description of the i-th
dynamical behavior guarded by the Boolean function ci from X × Y × Im(U) to B (B is
the Boolean set {False, True}).

These constraints are useful to model some dynamic behaviors with some changing
phases depending on the state of the components. As an example, this formalism makes
it possible to model a mechanical component with a first dynamic describing its motion,
and a second one that depends on a set of states reached through the first dynamic. Note
that this kind of dynamic systems can be viewed as a peculiar case of hybrid systems
[Ábrahám and Schupp, 2012].

The second stage that is the optimization consists in using a set of methods in order
to extract one or all the solutions from the model. However, the complexity of these
problems as well as the limits of the existing tools prevent the use of guaranteed global
optimization methods. Consequently, for each of these two phases, different levels of
approximation are presented in the scientific literature.

In some cases, engineering design problems are modeled and solved. They are many
approximation levels of the model, from the sidelining of the dynamic part to the convex-
ification. But the dynamic modelization is an important part of these problems and the
solutions extracted from these approximated models are not relevant in use. Also, some
approximated methods can be used in the solving process. About the optimization we
could tackle evolutionary algorithms [Coello et al., 2002] that do not guarantee the opti-
mality of the solution. Numerical approaches like numerical integration used to integrate
differential equations [Cartwright and Piro, 1992] and propagate these constraints inside
the optimization algorithm do not certify the feasibility of the solution. However, it gives
some good results in practice but it does not guarantee the feasibility or the optimality
of the solutions.

That are the reasons why a global optimization tool, that could solve these problems
while trying to guarantee that the solutions are feasible and optimal, has been developed
during this research work. The software named GDODynS (Global and Deterministic
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Optimization for Dynamic Systems) has been implemented in C++, and its architecture
(see Fig. 0) is based on several modules that are detailed in the next chapters.

Figure 0: Architecture of the optimisation tool developed: GDODynS

Following this introduction, the model of the problems that are considered in this
thesis is detailed in Chapter 1 with two design problems, a constant magnetic engine
[Kone et al., 1993] and an electromagnetic contactor [Mazhoud, 2014], that come from
industrial applications.
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In Chapter 2, the guaranteed arithmetics are introduced with the interval arithmetic
[Moore, 1966] and the tube arithmetic [Aubry et al., 2013].

• The interval arithmetic (IA) is a specific arithmetic that is used to guarantee the
results of numerical operations as well as to represent continuous sets of values.
At first, the guarantee is assured by representing the real values with the smallest
numerically representable intervals containing them. In a second step, the guarantee
is preserved by redefining the arithmetic operators and the usual functions with a
strict control on the rounding of the computation unit that provides rigorous bounds
for the results of operations. In this chapter, the benefits as well as the drawbacks
of the interval arithmetic are discussed.

• The tube arithmetic (TA) is an extension of the interval arithmetic that is used to
describe sets of unary functions and to extend the guarantee of numerical operations
on these functions. In this chapter several representations of tubes are presented
and detailed.

Chapter 3 is dedicated to the guaranteed integration of ordinary differential equations
(ODEs) in order to deal with the differential constraints defined in the model. In this
chapter an iterative algorithm is studied that is made of two steps that compute first a
global enclosure of the solution and then its contraction inside a local enclosure. Several
methods are exposed in order to reduce the enclosure and decrease the computation time
it requires. In particular, two methods based on the Picard’s operator (FOE and HOE
[Nedialkov et al., 2001]) are developed to compute the global enclosure. Also, Taylor
series with mean value forms [Nedialkov et al., 1999], modifications of the coordinate
systems using QR-Factorization [Householder, 1958, Lohner, 1987] and pruning methods
based on consistency properties [Deville et al., 2000] are detailed to compute the local
enclosures.

Bases of Constraint Programming (CP) are introduced in Chapter 4 to solve Con-
straint Satisfaction Problems (CSP) with filtering and contraction methods. These
problems consist in finding one or several feasible solutions. The algorithms developed
in this chapter are used to provide a faster convergence toward feasible domains that
restrain the search space by using the constraints. Atomic contractors based on the
hull-consistency [Benhamou et al., 1999] like HC4 are detailed to deal with algebraic
constraints and the methods from Chapters 3 and 5 are used to develop specific con-
tractors for differential constraints. Peculiar contractor schemes dedicated to specific
set of constraints are introduced with meta-contractors through contractor programming
[Chabert and Jaulin, 2009a].

In Chapter 5, the issues related to the guaranteed integration of piecewise differential
equations (p-ODEs) are discussed and the specificities of the developed guaranteed inte-
gration method is detailed. The algorithm and the methods applied on the guaranteed
integration of ODEs from Chapter 3 are limited by peculiar areas when applied on p-
ODEs. Therefore, a theorem is proposed with its proof and is used to create a guaranteed
integration algorithm for those specific areas.
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All the methods previously described are integrated in Chapter 6 within a determin-
istic global optimization algorithm. It is based on an interval extension of the Branch
and Bound algorithm (IBBA) [Messine et al., 2001] using interval constraint propaga-
tion techniques [Messine, 2004] with contactor programming from Chapter 4. Also, in
this chapter, a paradoxical limit of the guaranteed optimization that is the loss of the
guarantee for systems containing related constraints is detailed.

In Chapter 7, the methods described in this thesis are applied on different systems.
First, the guaranteed optimization algorithm is applied on the industrial problem that
is detailed in the second chapter. Because of this first problem does not contain any
differential constraint, the guaranteed integration algorithm detailed in Chapters 3 and 5
is applied on a specific piecewise ordinary differential equations. The global optimization
algorithm from Chapter 6 is applied on an optimization problem that contains piecewise
differential constraints.

The final part summarizes the work presented in this thesis and broaches some per-
spectives on this topic.
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Model 1
What distinguishes a mathematical model from, say, a poem, a song, a portrait or any
other kind of "model", is that the mathematical model is an image or picture of reality
painted with logical symbols instead of with words, sounds or watercolors.

– John L. Casti

Contents
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1.2 Design of a constant magnetic engine . . . . . . . . . . . . . . . . . . . . 26
1.3 Design of an electromagnetic contactor . . . . . . . . . . . . . . . . . . . 29

Abstract

In this chapter, the modelling formalism that is considered in this thesis is introduced
in the first section (Sect. 1.1) and then two models are introduced as examples. The first
one is detailed in Section 1.2. It models the design problem of a constant magnetic engine.
The second model describes the design problem of an electromagnetic contactor and is
introduced in Section 1.3. This model is more complex because it contains a specific
piecewise dynamic constraint that is difficult to integrate with rigorous bounds.

The guaranteed optimization process applied on this specific model motivated at first
the research work presented in this thesis.
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MODEL 1.2

1.1 Generic Model
The goal of the work presented in this thesis is to optimize with guarantee the results of
complex dynamic problems that can be modeled such as the following generic model:

Minimizex∈X fcost(x,y,u) (1.1)
s.c g(x,y,u) ≤ 0 (1.2)

u′(t) =


d1(x,y,u(t)) if c1(x,y,u(t))

...
dq(x,y,u(t) if cq(x,y,u(t))

(1.3)

where

• x is the vector of decision variables (input) in X ⊆ Rp.

• y is the vector of control variables (output) in Y ⊆ Rs.

• u is the vector of dynamic variables (output unary functions) in U ⊆ (R→ R)n.

• fcost is a function from X × Y × U to Rk.

• g is a function from X × Y × U to Rm.

• di are functions from X × Y × Rn to Rn.

• ci are Boolean functions X × Y × Rn to B.

The existence of solutions and the guarantee of the results provided by the tool GDO-
DynS that has been implemented in this work are discussed in Sections 3.2.5 and 6.3.3.

Such a model makes possible to deal with a lot of various problems. In the next
sections, two design problems are introduced. They are extracted from a previous work
[Mazhoud, 2014] where the author studied interval optimization methods and the impact
of the reformulation of these problems in order to get an optimal model to optimize
such problems. The research work presented in this thesis follows this previous work
and focuses on the specific use of guaranteed methods to solve the dynamic parts of the
problems.

1.2 Design of a constant magnetic engine
The first problem is the design of a magnetic engine. This problem does not contain
dynamic parts. However, it is composed of a set of constraints to model several physical
aspects: electric, magnetic, mechanical and thermal from a static point of view. The
problem is multi-physic and the constraints model the relationship between the electro-
magnetism and the flow conservation [Kone et al., 1993] [Messine et al., 1998].

The model is composed of 17 parameters
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1.2 DESIGN OF A CONSTANT MAGNETIC ENGINE 1.2

• 10 decision variables (Table 1.1)

• 7 fixed parameters (Table 1.2)

and 6 algebraic constraints that are non-linear and non-convex.

Label Definition Range value
D The cylinder bore [0.001; 0.5]
Be The magnetic field inside the air-gap [0.1; 1]
Kf The leak coefficient [0.01; 0.5]
Jcu The power density inside the copper [105; 107]
e The mechanical air-gap [0.0001; 0.005]
la The thickness of the magnets [0.001; 0.05]
E The thickness of the winding [0.001; 0.05]
C The thickness of the cylinder heads [0.001; 0.05]
β The polar arc coefficient [0.8; 1]
λ The shape factor of the device [1; 2.5]

Table 1.1: Parameters and range values

Label Definition Value
kr The filling coefficient of the winding 0.7
Bfer The induction of the iron 1.5
Ech The heating of the device 1011

Γem The electromagnetic torque 10
M The magnetisation of the magnets 0.9
p The number of pole couple 4
∆p The double polar step 0.1

Table 1.2: Fixed values

Because of the bill of specifications, the values of e and Kf must respect these addi-
tional constraints:

e ≥ 0.001
Kf ≤ 0.3

The magnetic torque Γem, the heating of the engine Ech, the magnetic leak coefficient
Kf , the magnetic field Be inside the air-gap, the thickness of the cylinder heads C and
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1.2 MODEL 1.2

the number of pole couples p are computed and controlled by the following equations

Γem = π

2λ(1−Kf )
√
kr.β.Ech.ED

2(D + E)Be (1.4)

Ech = kr.E.J
2
cu (1.5)

Kf = 1.5pβ e+ E

D
(1.6)

Be = 2laM
Dlog

[
D+2E

D−2(la+e)

] (1.7)

C = πβBe

4pBfer

D (1.8)

p = πD

∆p

(1.9)

More details of this model can be found in [Kone et al., 1993]. The optimization
problem is to minimize the volume of the active parts of the device.

Vu = π
D

λ
(D + E − e− la)(2C + E + e+ la) (1.10)

Va = πβla
D

λ
(D − 2e− la) (1.11)

Pj = πρcu
D

λ
(D + E)Ech (1.12)

where ρcu = 17.10−9 is the electrical resistivity of the copper. The search space is contin-
uous and is detailed in the previous table (Table 1.1 and 1.2).

The reformulation given by [Mazhoud, 2014] reduces the complexity of the model
by decreasing the number of decision variables. From 10 decision variables in the initial
model, the new formulation only contains 4 decision variables (the other variables depend
on these 4 variables) that are detailed in Table 1.3.

Label Definition Range value
e The mechanical air-gap [0.0001; 0.005]
la The thickness of the magnets [0.001; 0.05]
E The thickness of the winding [0.001; 0.05]
β The polar arc coefficient [0.8; 1]

Table 1.3: Parameters and range values

Consequently, the model is rewritten as follows:
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1.2 DESIGN OF AN ELECTROMAGNETIC CONTACTOR 1.3

Minimize Vu = πD

λ
(D + E − e− la)(2C + E + e+ la);

s.c



D = p∆p

π

Jcu =
√
Ech
krE

Be = 2laM
Dlog

(
D+2E

D−2(la+e)

)
Kf = 1.5pβ (e+ E)

D

λ = π

2× Γem
(1−Kf )D2(D + E)Be

√
krβEchE

C = πβ
Be

4pBfer

D

1.3 Design of an electromagnetic contactor
The electromagnetic contactor is an industrial device made of a coil powered by an electric
circuit and a magnetic circuit which is composed of two air gaps made of iron. One of
the air-gap is fixed when the other part is free to move.

Figure 1.1: Design of the electromagnetic contactor - open position

On figure 1.1 the electromagnetic contactor is opened. The kernel of the device closes
the contactor with the electromagnetic field that is produced, when the coil is powered,
which attracts the hammer. The consequence is that it closes the electric circuit on the
left (Fig. 1.2).

Because of the online command on the thyristor, the signal that gives power to the
coil is not known beforehand. Moreover, the coil resistor is significant and has to be
added on the equivalent electrical circuit.

The air-gap consists in a cut in a magnetic circuit. It increases the reluctance of the
circuit and increases the power that overloads the circuit as well. Also, it assures the
movement of a part of the circuit, for example on stator/rotor devices.
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Figure 1.2: Design of the electromagnetic contactor - closed position

This device can be modeled with the following set of equations in order to model the
electrical behavior Eq. (1.13) and the mechanical behavior Eq. (1.14) of the component.
Note that some coefficients of the equations are variables.

U(t) = R× i(t) + ∂

∂t
(L(i(t), z(t))× i(t)) (1.13)

F (i(t), z(t)) = m
d2z(t)
dt2

(1.14)

where i is the power, z is the length of the air gap, R is the resistor of the coil, L is the
induction of the coil, m is the weight of the kernel and F is the force applied on the kernel
which is a composition of the magnetic force, the friction and the electric charge. Note
that the magnetic behavior is not modeled in the following equations because it requires
to compute the force and the induction which are functions of the power in the coil and
the width of the air-gap. It turns out to do the assumption that the electromagnetic
phenomena are fast compared to the electrical and mechanical time constants.

Because of the need of robustness and safety in the use of the contactor in the industry,
some additional constraints are required. First the contactor must be lightning-struck
resistant, then it has to accept any voltage from 50 to 400 volts and finally the closing of
the magnetic component must happen in less than 30ms without any damage.

The goal of the optimization problem associated to the device is to minimize its global
volume while respecting all the previous constraints.

The system is modeled with a reluctance network that consists in 37 non linear al-
gebraic constraints, a large multi-dimensional piecewise ODE system and 61 real and
functional variables. Because of practical reasons and a non-disclosure agreement, this
model is not detailed in this thesis.

This design problem can be modeled from a static point of view, but the length of the
air-gap varies in relation with the use of the component and it impacts the electric behav-
ior as well as the mechanical behavior. Indeed, when the length z(t) changes with time
t, the value of L(i(t), z(t)) changes as well as U(t) and the mechanical force F (i(t), z(t)).
That is why it is more relevant to solve this problem from a dynamic point of view.

However, the dynamic model is difficult to solve, because the motion of the mechanical
part is stopped when the air-gap is closed. This is the break in the dynamic behavior
of the component and this is what motivated the work presented in this thesis. Two
approaches can be considered in order to describe the dynamic model.
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1.3 DESIGN OF AN ELECTROMAGNETIC CONTACTOR 1.3

• The first model is based on an hybrid system in which the state machine is made
of two states. One state is used to model the closure action and the other one is
used to model the device when the air-gap is closed.

• The second model is based on a piecewise differential equation in which the first
piece is used to model the system when the air-gap is positive and the second piece
is used to model the system when the air-gap is negative.

The first model is closer to the reality but the behavior of the component after the
closure is not important. Moreover the second model has been studied in a previous work
[Mazhoud, 2014] in which the dynamic parts were not solved using guaranteed integration
methods. It motivated this work through the development of guaranteed methods in order
to tackle such constraints.
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Guaranteed Arithmetics 2
- And you guarantee that they don’t deal the drugs in those neighborhoods?
- I don’t guarantee that. I guarantee that I’ll kill anyone who does.

– The Godfather: Part III
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GUARANTEED ARITHMETICS 2.1

2.1 Introduction
This chapter introduces basic notions of guaranteed arithmetics. They have been devel-
oped in order to quantify the errors of numerical computations. Because the computed
results are often rounded to the nearest representable values and because computers have
become faster gradually, thus increasing the rate of operations number computable in one
time unit, the global errors rate increases at the same time without any control over it.

Through linear and non-linear systems of equations [Neumaier, 1990], path planning,
rolling stock unit management (Appendix A), and the evolution of dynamic systems,
guaranteed arithmetics are a robust counterpart to the probabilistic approaches usually
used to solve these complex problems.

This chapter is organized as followed: Section 2.2 introduces the basics of interval
arithmetic and Section 2.3 presents its evolution towards the multi-interval arithmetic.
A different approach is briefly described in Section 2.4 via the affine arithmetic. These
first sections are used to model sets of real values. Ultimately, in order to represent and
deal with sets of functions, Section 2.5 defines the tube arithmetic which is an extension
of these first concepts.
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2.1 INTERVAL ARITHMETIC 2.2

2.2 Interval Arithmetic
The main aspect of the interval arithmetic [Moore, 1966] is the use of interval repre-
sentation instead of using real numbers. Values and results of operations (noted •) are
bounded by controlling the rounding (up •↑, down •↓) of the unit core computing and by
redefining basic operations and functions.

The interval arithmetic makes possible the manipulation of uncertainty on parameters
and the representation of random variables with imprecise probability density functions.
It is possible to induce some reasoning on a continuous set of values without having to
enumerate all of them. It is relevant when dealing with global optimization over real
inputs.

2.2.1 Definitions
The set of intervals IR on the real line R is defined as below:

IR :=
{

[a; a]
∣∣∣∣∣ (a, a) ∈ R2

a ≤ a

}

The lighter notation [a] = [a, a] is used. Let [x] = [x, x] a non-empty interval with floating
point bounds ([x] ∈ IF ⊂ IR). It defines the following set:

[x, x] := {x ∈ R | x ≤ x ≤ x} (2.1)

The middle Eq. (2.3), width Eq. (2.2) and the interior Eq. (2.5) of the non-empty
interval [x] are defined by:

width([x]) := x− x (2.2)

midpoint([x]) := x+ x

2 (2.3)

magnitude([x]) := max(|x|, |x|) (2.4)
interior([x]) := {x ∈ R | x < x < x} (2.5)

The intersection and union of two non-empty intervals [x] and [y] are defined as below:

[x] ∩ [y] =
{

[max(x, y); min(x, y)] if max(x, y) ≤ min(x, y)
∅ otherwise (2.6)

[x] ∪ [y] = [min(x, y); max(x, y)] (2.7)

The interval union defined here is the smallest interval hull of the simple union, meaning
the simple union is bounded by the interval union although they are not necessarily equal.

2.2.1.1 Example: Some unions and intersections on intervals

[2; 4] ∩ [6; 8] = ∅ [3; 6] ∩ [4; 7] = [4; 6]
[2; 4] ∪ [6; 8] = [2; 8] [3; 6] ∪ [4; 7] = [3; 7]
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2.2 GUARANTEED ARITHMETICS 2.2

2.2.2 Arithmetic Operators and Usual Functions

In order to compute operations on IR, arithmetic operators � and functions f ∈ {abs,
cos, sin, tan, exp, log, power, root} can be extended to the interval arithmetic Eq. (2.8)
and (2.9). Let [x] and [y] two non-empty intervals, then:

[x] � [y] = {x � y | x ∈ [x], y ∈ [y]} (2.8)
f([x]) = {f(x) | x ∈ [x]} (2.9)

The operations redefined on these models Eq. (2.8) and (2.9) are inclusion monotonic.
Let [x], [X], [y] and [Y ] four intervals such that [x] ⊆ [X] and [y] ⊆ [Y ], then

[x] � [y] ⊆ [X] � [Y ]
f([x]) ⊆ f([X])

(2.10)

The basic binary arithmetic operators � ∈ {+,−,×,÷} are redefined in interval arith-
metic as below:

[x] + [y] = [x+↓ y;x+↑ y] (2.11)
[x]− [y] = [x−↓ y;x−↑ y] (2.12)

[x]× [y] = [xy↓;xy↑] where

 xy↓ = min{x×↓ y, x×↓ y, x×↓ y, x×↓ y}
xy↑ = max{x×↑ y, x×↑ y, x×↑ y, x×↑ y}

(2.13)

[x]
[y] = [x]× 1

[y] = [x]× [1÷↓ y; 1÷↑ y] with 0 6∈ [y] (2.14)

Note that for all intervals [x] and [y] with 0 ∈ [y], the operation [x]
[y] is strictly forbid-

den. The interval arithmetic is just allowed to represent closed intervals [Hansen, 1968],
thus the segment ]0; 3] cannot be represented by interval, the extreme value 0 has to
be included in the interval [0; 3]. The inversion is legal on the first segment ]0; 3] but
illegal on its interval representation [0; 3]. In order to avoid this, an extension to the
infinite bounds intervals of the interval arithmetic has been developed [Kahan, 1968]
[Hansen and Walster, 2003]. A second version of the inversion can be used, which is not
included in the IEEE 1788-2015 Standard for Interval Arithmetic, to compute with any
interval containing 0.

1
[y] =



∅ if [y] = [0; 0]
[1÷↓ y; 1÷↑ y] if 0 6∈ [y]
[1÷↓ y; +∞] if y = 0 and y > 0
[−∞; 1÷↑ y] if y < 0 and y = 0
[−∞; +∞] if y < 0 and y > 0

(2.15)
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2.2.2.1 Example: Some arithmetic operations

[−1; 3] + [5; 6] = [4; 9]
[−1; 3]− [5; 6] = [−7;−2]
[−1; 3]× [5; 6] = [−6; 18]
[−1; 3]÷ [5; 6] = [−1/6; 3/5]

Most of the usual unary functions are extended to the interval arithmetic exploiting
their monotonic properties. Let [x] a non-empty interval, then:

abs([x]) =


[x] if 0 < x

[−↓x;−↑x] if x < 0
[0; max(−↑x, x)] otherwise

(2.16)

exp([x]) = [exp↓([x]); exp↑([x])] (2.17)
log([x]) = [log↓([x]); log↑([x])] if 0 < x (2.18)

When functions are not monotonic they should be considered as piecewise monotonic.
Therefore each monotonic piece of the functions is detailed.

2.2.2.2 Example:
Because the trigonometric functions cosine and sine are non-monotonic on the interval
[−π, π], then

cos([−π, π]) = [−1; 1]
[cos↓(−π); cos↑(π)] = [−1;−1]

⇒ cos([−π, π]) 6= [cos↓(−π); cos↑(π)]

However, the function cosine is piecewise monotonic, increasing on [−π; 0] and decreasing
on [0;π].

cos([−π, π]) = cos([−π; 0]) ∪ cos([0;π])
= [cos↓(−π); cos↑(0)] ∪ [cos↓(π); cos↑(0)]
= [−1; 1] ∪ [−1; 1] = [−1; 1]

2.2.3 Boxes or Interval Vectors
An interval vector (box) [x] of Rn is the direct product of n intervals. The set of all
interval vectors of Rn is denoted by IRn.

[x] = ([x1], . . . , [xn]) = ([x1;x1], . . . , [xn;xn]) (2.19)

A simple interval is denoted by [x] instead of an interval vector [x]. All operators and
functions on simple intervals can be extended to boxes, by applying them on each com-
ponent of the boxes.
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Let [x] a box of size n. The bounds x, x and the width are defined :

x = (x1, . . . , xn) (2.20)
x = (x1, . . . , xn) (2.21)

width([x]) = max
1≤i≤n

width([xi]) (2.22)

Some additional quantities can be defined on boxes such as the volume

volume([x]) =
i≤n∏
i=1

width([xi]) (2.23)

The term box is used as well as interval vector or interval (which can be considered as a
1-dimensional interval vector).

2.2.4 Inclusion function
Considering a function f from Rn to Rm and intervals [x] in IRn, range(f , [x]) (Fig. 2.1)
in IRm is the minimal enclosure of the evaluation of f on [x].

range(f , [x]) = {f(x) | x ∈ [x]} (2.24)

Figure 2.1: range of f over [a]

Let f a function on the set of reals Rn. To evaluate f over a box [x] from IRn an
inclusion function [f ] of f has to be defined. An inclusion function has to bound the
minimal enclosure to be valid on [x]. In other words, [f ] is valid iff:

range(f , [x]) ⊆ [f ]([x]) (2.25)

2.2.4.1 Definition: Inclusion monotonicity
The inclusion functions should be monotonic with the inclusion operator:

[x] ⊆ [y]⇒ [f ]([x]) ⊆ [f ]([y]) (2.26)
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2.2.4.2 Remark:
For each function f an infinite number of inclusion functions [f ] exist which are more or
less accurate. It is a complex problem to find the best expression of the inclusion function
[f ] for a function f [Ratschek, 1985].

2.2.4.3 Definition: Hausdorff metric on intervals
To measure how far two intervals [x] and [y] are from each other, the set IR can be
equipped with the Hausdorff metric q([x], [y]) [Henrikson, 1999], such that

q([x], [y]) = min
{
q ∈ R+

∣∣∣∣∣ [x] ⊆ [y] + [−q; q]
[y] ⊆ [x] + [−q; q]

}
= max(|x− y|, |x− y|)

= |midpoint([x])−midpoint([y])|+ |width([x])− width([y])|
2

(2.27)

When [x] ⊆ [y] the Hausdorff distance computes the overestimation of [y] in relation to
[x]. Therefore, the Hausdorff distance can be used to compare and contrast the accuracy
of several inclusion functions on the same expression.

2.2.4.4 Definition: Natural Inclusion Function
The natural inclusion function of a complex function f(x1, . . . , xn) over intervals [a1] . . . [an],
denoted by [fN]([a1], . . . , [an]) is obtained by replacing all variables (x1 . . . xn) with their
respective interval values ([a1] . . . [an]) and by replacing all usual functions with their in-
terval extensions. Natural inclusion functions provide the exact results not only when all
the intervals are degenerate

x = x ⇒ [fN]([x]) = range(f , [x]) = f([x])

but also when all the non-degenerated intervals are paired with single occurrence variables
from the expression [fN].

Figure 2.2: Image of the box [x] by the function f , by the inclusion function [f ] and by
the minimal inclusion function [f ]∗
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2.2.4.5 Definition: Convergence
Let f a function from Df ⊆ Rn to R and [f ] an inclusion function of f . This inclusion
function [f ] has an order of convergence α through the Hausdorff distance q when for all
[x] ⊆ Df

q(range(f, [x]), [f ]([x])) = O(width([x])α) (2.28)

2.2.4.6 Property: Lipschitz condition and order of convergence
When the inclusion function satisfies a Lipschitz condition on D ⊆ Rn, it has a linear
convergence for any [x] ⊆ D ([Moore, 1966] and then [Neumaier, 1990]):

q(range(f, [x]), [f ]([x])) = O(width([x])) (2.29)

where q is the Hausdorff metric.

2.2.4.7 Definition: Mean value form [Moore, 1966]
Let f a function from Rn to R, x ∈ X ⊆ Rn and [x] an interval vector such that x ∈ [x].
If f is continuously differentiable on X , then

f(x) ∈ [fM ]([x]) = f(x̂) + [f ′]([x]− x̂) (2.30)

where x̂ ∈ [x] ⊆ X .

2.2.4.8 Property: Quadratic convergence of the mean value form
When the inclusion function [f ′] of the differential f ′ is interval lipschitzien, the first
order inclusion function of the function f given by the mean value form checks that

q(range(f, [x]), [fM ]([x])) ≤ O(width([x])2) (2.31)

Therefore the mean value form is a quadratically convergent approximation [Neumaier, 1990]
and provides more relevant results than the natural inclusion functions. The distance be-
tween range(f, [x]) and [fM ]([x]) tends towards 0 as width([x])2, when width([x]) tends
towards 0.

2.2.4.9 Remark: The inclusion functions using mean value forms have a better con-
vergence than natural inclusion functions. However, the natural form usually provides
tighter enclosures when the size of the arguments is large. The mean value form is mostly
used when the width of the intervals is small.

2.2.4.10 Definition: Integration of inclusion functions
Let f be a continuous function from R to Rm and [a] ∈ IR an interval. The function f
can be integrated on the interval [a], using the operators previously defined.

∫ a

a
f(x)dx = (a− a)× range(f , [a]) ∈ width([a])× [f ]([a]) (2.32)
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2.2.5 Evaluation
Let f the real function from R to R such as

f(x) = x2 − 2x (2.33)

and [a] the interval [2; 5]. The evaluation of f over [a] denoted by [f ]([a]) must bound
the minimal enclosure range(f, [a]) = range(f, [2; 5]) = [0; 15].

The natural evaluation of f over the interval [a] = [2; 5] is computed step by step as
below:

[f ]([2; 5]) = [2; 5]2 − 2× [2; 5] = [4; 25]− [4; 10] = [−6; 21] (2.34)
The evaluation of the inclusion function acquired by the natural extension to interval
arithmetic over-approximates the exact result (which is its own limit). This limit comes
from the presence of multi-occurrence variables in the explicit form of the inclusion func-
tion. As a consequence, when the evaluation is performed, the value of x can be considered
equal to 2 in the first part of the expression x2 and equal to 5 in the second part −2x at
the same time. In other words, all the occurrences of the same variable are independent
during the evaluation step.

However, there are several ways to tackle this overestimation effect. The first one is
to make a piecewise evaluation [Moore, 1966] (Fig. 2.3) computing many evaluations of
f over sub-intervals (for example {[2; 3], [3; 4], [4; 5]} sub-intervals of [2; 5]) thus strength-
ening the relationship between all the occurrences of the same variable.

[f ]([2; 3]) = [−2; 5]
[f ]([3; 4]) = [1; 10]
[f ]([4; 5]) = [6; 17]

Then finally

[f ]([2; 5]) = [f ]([2; 3]) ∪ [f ]([3; 4]) ∪ [f ]([4; 5]) = [−2; 17]

A second method is to rewrite the expression of the inclusion function [f ] into a syn-
tactically different but mathematically equivalent function, in order to either set a limit
to the number of occurrences of each variable or to reinforce their dependencies. Auto-
matic methods exist such as using Horner forms or Bernstein basis [Martin et al., 2002]
but the expressions they provide are usually sub-optimals. For example, on the following
equations the expression of f1 is the Horner form of the initial expression f while f2 is a
recast of the expression f such that the variable x becomes a single occurrence variable.

f(x) = x2 − 2x ⇔ f1(x) = x(x− 2) ⇔ f2(x) = (x− 1)2 − 1

[f1]([2; 5]) = [2; 5]× ([2; 5]− 2) = [2; 5]× [0; 3] = [0; 15]
[f2]([2; 5]) = ([2; 5]− 1)2 − 1 = [1; 4]2 − 1 = [1; 16]− 1 = [0; 15]
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Figure 2.3: Piecewise evaluation of f(x) = x2 − 2x over [0; 5]

Note that over [a] = [2; 5], the inclusion functions [f1] and [f2] are optimals. On
the contrary, when the evaluation is computed over [a] = [−1; 1], the Honer form
[f1]([−1; 1]) = [−3; 3] provides an enclosure that is larger than the natural extension
[f ]([−1; 1]) = [−2; 3] while the inclusion function [f2]([−1; 1]) = [−1; 3] computes the
exact enclosure.

2.2.6 Automatic Differentiation
Automatic differentiation [Wengert, 1964], [Linnainmaa, 1970] is a technique to evaluate
the derivative of a function. It is based on the separation of the differential along the
following chain rule:

∂y

∂x
= ∂y

∂w

∂w

∂x

Let f the function of two variables x1, x2 and its syntax tree composed by the set of
nodes {w1, . . . , w6} such as:

f(x1, x2) = exp(x1) + (x1x2)2

= exp(w1) + (w1w2)2

= w3 + w2
4

= w3 + w5

= w6

(2.35)

Two modes have been developed to compute the final derivative, the forward accumulation
Eq. (2.36) and the reverse accumulation Eq. (2.37).

∂f

∂x1
= ∂f

∂w1

∂w1

∂x1
= ∂f

∂w1

(
∂w1

∂w2

∂w2

∂x1

)
= ∂f

∂w1

(
∂w1

∂w2

(
∂w2

∂w3

∂w3

∂x1

))
= . . . (2.36)
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∂f

∂x1
= ∂f

∂w1

∂w1

∂x1
=
(
∂f

∂w2

∂w2

∂w1

)
∂w1

∂x1
=
((

∂f

∂w3

∂w3

∂w2

)
∂w2

∂w1

)
∂w1

∂x1
= . . . (2.37)

2.2.6.1 Forward Mode

The forward mode [Wengert, 1964] is easy to implement since the differential computing
is performed during the evaluation of the syntax tree of the expression. The atomic
differential values depend on the variable (x1 or x2) chosen to compute the derivative and
are coupled with the leaves of the syntactic tree:

w′1 = ∂w1

∂x1
= 1 , w′2 = ∂w2

∂x1
= 0 or w′1 = ∂w1

∂x2
= 0 , w′2 = ∂w2

∂x2
= 1

Now the chain rule can be used to compute the derivative of the function f . Here the
computation of the derivative with x1 as the independent variable (in other words ∂f

∂x1
),

is introduced:
Syntactic tree Operations to compute derivative Value of the derivative
w1 = x1 w′1 = 1 w′1 = 1
w2 = x2 w′2 = 0 w′2 = 0
w3 = exp(w1) w′3 = w′1exp(w1) w′3 = exp(x1)
w4 = w1w2 w′4 = w′1w2 + w1w

′
2 w′4 = x2

w5 = w2
4 w′5 = 2w′4w4 w′5 = 2x1x

2
2

w6 = w3 + w5 w′6 = w′3 + w′5 w′6 = exp(x1) + 2x1x
2
2

2.2.6.2 Reverse Mode

The reverse mode [Linnainmaa, 1970] is the exact opposite of the forward accumulation.
In this method, the derivative is computed from the root of the syntactic tree to the leaves,
but cannot be expressed explicitly from the root. Then a new quantity, the adjoint wi,
is used for each node of the tree to represent the differential of the expression f over the
subexpression wi.

wi = ∂f

∂wi
(2.38)

The set of all the adjoints can be computed with the following operations:
f = w6 = 1

w5 = w6
∂w6

∂w5
= w6

w4 = w5
∂w5

∂w4
= 2w4w5

w3 = w6
∂w6

∂w3
= w6

w2 = w4
∂w4

∂w2
= w1w4

w1 = w3
∂w3

∂w1
+ w4

∂w4

∂w1
= exp(w1)w3 + w2w4
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By substitution, we finally get

∂f

∂x1
= w1 = exp(w1) + 2w1w

2
2 = exp(x1) + 2x1x

2
2

∂f

∂x2
= w2 = 2w2w

2
1 = 2x2

1x2

Note that in one round, the partial derivatives of the function f are known on each
dimension.

The interval arithmetic (IA) allows fast computations and does not require much
memory. It makes safe and rigorous computing as well as global reasoning possible, even
on infinite-sized sets. However, by overestimating the range of an expression, it may be
difficult to get accurate and relevant results. Two methods can be used to gain control over
these negative aspects: reformulation and piecewise evaluation. Yet, to reformulate any
expression into a better one while keeping it mathematically equivalent (to the former
one) is a truly complex issue [Ratschek, 1985] (hard problem in terms of complexity).
Another method which is easy to implement is the piecewise evaluation. It increases
the number of operations during the evaluation (pn computations with n the number
of variables and p the number of pieces for each variables), but those can be controlled
by reducing the number of pieces p for each variable. As an example, single occurrence
variables should not be concerned with piecewise treatment.
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2.3 Multi-intervals
Another limit to the interval arithmetic is the incapacity to represent a value in a dis-
jointed set of range which is inherent to the interval representation. It can be surpassed by
using a natural evolution of the interval arithmetic: the Multi-Interval Arithmetic (MIA).
The latter is very similar with the IA, in terms of objectives and processes. The difference
is in the representation of values: an interval is a pair of reals whereas a multi-interval is
a set of intervals.

2.3.1 Definitions
The set of multi-intervals noted MIR is defined as the power set P (IR):

MIR = P (IR) =
{
{[a1], . . . , [ak]}

∣∣∣∣∣ k ∈ N, k ≥ 1
∀i ∈ {1 . . . k}, [ai] ∈ IR

}
(2.39)

A lighter notation [a] = {[a1], . . . , [ak]} is used. Let [x] = {[x1], . . . , [xk]} ∈ MIR a
non-empty multi-interval, it represents the following set (Fig. 2.4):

[x] = {[x1], . . . , [xk]} = {x ∈ R | ∃[xi] ∈ [x], x ∈ xi} (2.40)

In the next pages, the notation is simplified as below:

• [xi] ∈ [x] means that [x] = {[x1], . . . , [xi], . . . , [xk]}. In other words, [xi] is an
interval in the description of [x], which is different that [xi] ⊆ [x].

• x ∈ [x] means that x is a real value contained in [x] (the latter can be an interval
or a multi-interval)

Figure 2.4: Representation of the multi-interval [x] = {[0; 1], [3; 5], [6; 10]} Eq. (2.40)

2.3.1.1 Definition: Equivalence class
Two multi-intervals [x] and [y] are equivalent Eq. (2.41) if they represent Eq. (2.40) a
similar set of reals.

[x] ∼ [y] ⇔
{
∀x ∈ [x],∃y ∈ [y], x = y
∀y ∈ [y],∃x ∈ [x], x = y

(2.41)
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2.3.1.2 Definition: Canonical form
When there is not a smaller set of intervals [y] ∈MIR leading to the same subset of reals,
a multi-interval [x] = {[x1], . . . , [xk]} is on its canonical form Eq. (2.42). The latter is
unique and is necessarily defined by a set of disjointed intervals.

[x] is canonic ⇔ ∀(i, j) ∈ {1, . . . , k}2, i 6= j ⇒ [xi] ∩ [xj] = ∅ (2.42)

2.3.1.3 Example: A few multi-intervals
Let [x], [y] and [z] three sets of intervals or multi-intervals (Fig. 2.5a):

[x] = {[4; 5], [7; 9]}
[y] = {[3; 8], [7; 9]}
[z] = {[3; 9]}

(2.43)

In this example, the multi-interval [x] is a subset of [y] and [z]. Note that the multi-
intervals [y] and [z] are equivalent because they lead to the similar set of reals.

[y] = {x ∈ R | x ∈ [3; 8] ∨ x ∈ [7; 9]}
= {x ∈ R | 3 ≤ x ≤ 8 ∨ 7 ≤ x ≤ 9} ∼ {x ∈ R | 3 ≤ x ≤ 9}

= [z]

Because the multi-interval [z] is the shortest way to describe the set of reals it produces,
it is considered as canonic. On the contrary, [y] is not canonic.

(a) Multi-intervals [x], [y] and [z] Eq. (2.43) (b) Multi-intervals [x], [y] and [z] = ∅

Figure 2.5: Few examples of multi-intervals

Note that on Figure 2.5b, the multi-interval [z] is empty whereas the multi-interval
[x] (resp. [y]) is equal to {[1; 3], [6; 7]} (resp. {[4; 6], [8; 10]}).

2.3.2 Functions and operations
In order to manipulate multi-intervals, some quantities are defined which are related to
the set of multi-intervals. Let [x] = {[x1], . . . , [xk]} a multi-interval, we define

• the number of intervals in the set: size([x]) = k
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• the i-th interval of the set:

interval([x], i) =
{

[xi] if 1 ≤ i ≤ k
∅ otherwise

• the lower and upper bounds of a multi-interval:

lower([x]) = min
[xi]∈[x]

xi

upper([x]) = max
[xi]∈[x]

xi

• the minimal interval bounding a multi-interval:

hull([x]) = [lower([x]);upper([x])] (2.44)

In order to decrease the difficulty of dealing with intervals and multi-intervals, intervals
will be considered as single multi-intervals. Indeed any interval [x] can be converted into
a multi-interval {[x]}. By opposition, multi-interval [x] can be converted into a single
interval via the hull function hull([x]) when necessary. Then we note x = lower([x]) and
x = upper([x]) the lower and upper bounds of a value bounded by a multi-interval [x].

Also, all the functions available on intervals can be applied on multi-intervals once
the latter is converted into the former using the hull as mentioned before Eq. (2.44).
Just a few functions can be specified, such as the width or the interior:

width([x]) :=
∑

[xi]∈[x]
width([xi]) (2.45)

interior([x]) := ∪[xi]∈[x]interior([xi]) (2.46)

About the binary operators such that {+,−,×,÷}, an automatic computation scheme
can be applied, although it has for a consequence to increase the number of operations
required to perform the computation. Let �IR a binary operator valid on intervals, [x]
and [y] two multi-intervals. The operator �IR can be extended to the multi-intervals �MIR

as follows:
�MIR([x], [y]) =

⋃
[xi]∈[x]
[yj ]∈[y]

�IR([xi], [yj]) (2.47)

where the union ∪ is the classic union operation of sets.
Note that the extension of these operators on multi-intervals requires much more

operations and memory depending on the number of intervals within multi-intervals. At
the end of several operations, the result might be made of a large number of intervals.

2.3.2.1 Reduction process towards the canonical form
A first answer to these issues is to always keep and deal with canonic form intervals
and do as such for any computations. Let [x] = {[x1], . . . , [xk]} ∈ MIR a non-empty
multi-interval. To reduce [x] towards its canonical form, the following method can be
used:
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1. sorting the set {[x1], . . . , [xk]} using the order defined below:

xi < xj ∨ (xi ≤ xj ∧ xi < xj) ⇒ [xi] ≺ [xj] (2.48)

2. grouping the adjacent intervals [xi], [xi+1] iff

[xi] ∩ [xi+1] 6= ∅ ⇒ [x]← ([x] \ {[xi], [xi+1]}) ∪ ([xi] ∪ [xi+1]) (2.49)

where the first ∪ is the set operator while the second one ([xi]∪[xi+1]) is the interval
operator.

2.3.2.2 Example: Computation of the union with disjointed intervals
Let [x] ∈ MIR and [y] ∈ MIR two multi-intervals such that [x] ∩ [y] = ∅. Let [x] =
{[1; 3], [6; 7]} and [y] = {[4; 6], [8; 10]} two multi-intervals (Fig. 2.5b). The result [z] of
the union of [x] and [y] can be computed with the interval arithmetic (Fig. 2.6a):

hull([x]) ∪ hull([y]) = [1; 7] ∪ [4; 10] = [1; 10] (2.50)

with the multi-interval arithmetic (Fig. 2.6b) and the canonic reduction (Fig. 2.6c):

[x] ∪ [y] = {[1; 3], [4; 6], [6; 7], [8; 10]} ∼ {[1; 3], [4; 7], [8; 10]} (2.51)

(a) Computation of hulls
(interval)

(b) Union of sets
(multi-interval)

(c) Canonic union of sets
(multi-interval)

Figure 2.6: Three versions of the computation [z]← [x] ∪ [y]

2.3.2.3 Approximate the best enclosure
A second solution could be to limit the size of multi-intervals to a value k, and then to
merge the nearest pairs of intervals as long as the size is illegal. Let [x] a multi-interval of
size k+ 1, several multi-intervals [y] exist such that [x] ⊂ [y] and size([y]) = size([k])− 1
(Fig. 2.7).

Then a measure of the distance between two intervals [xi] and [xj] has to be deter-
mined. Naively, the distance from the first midpoint to the second could be considered,
but it would not minimize the over-approximation.
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(a) Multi-interval [x] = {[0; 1], [3; 5], [6; 10]}

(b) Multi-interval [x] = {[0; 5], [6; 10]}

(c) Multi-interval [x] = {[0; 1], [3; 10]}

Figure 2.7: Limitation of the size of a multi-interval (Fig. 2.4)

Let [x] = {[x1], . . . , [xk]} a canonic multi-interval of size k. What is the nearest multi-
interval [y] of size k − 1 ? It is the tiniest multi-interval (in terms of width). In other
words, [y]∗ is such that

[x] ⊂ [y]∗ (2.52)
∧ ∀[y] ∈MIR, [x] ⊂ [y] ∧ size([y]) = k − 1⇒ width([y]∗) ≤ width([y]) (2.53)

Because [x] is on its canonical form then width([x]) ≤ width([y]∗). As a result of
size([y]∗) = size([x])− 1, two intervals [xi] and [xj] in [x] have to merge into one another
then must be deleted. Then

width([y]∗) = width([x])− width([xi])− width([xj]) + width([xi] ∪ [xj])) (2.54)

Consequently, the tiniest multi-interval [y]∗ of size k− 1 that contains [x] is the one that
merges the two nearest elements of [x] depending on the following metric

distance([x], [y]) = width(hull([x] ∪ [y]))− width([x])− width([y]) (2.55)

2.3.2.4 Example:
From the initial example (Fig. 2.4) in which [x] = {[0; 1]; [3; 5]; [6; 10]},

[x1] = interval([x], 1) = [0; 1]
[x2] = interval([x], 2) = [3; 5]
[x3] = interval([x], 3) = [6; 10]

the computation of the distances provides the following results

distance([x1], [x2]) = width([0; 5])− width([0; 1])− width([3; 5]) = 5− 1− 2 = 2
distance([x1], [x3]) = width([0; 10])− width([0; 1])− width([6; 10]) = 10− 1− 4 = 5
distance([x2], [x3]) = width([3; 10])− width([3; 5])− width([6; 10]) = 7− 2− 4 = 1
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Because the distance between [x2] and [x3] is the tiniest, they are the best candidates
in order to be merged together and decrease the size of the multi-interval. Note that
multi-intervals are defined with successive intervals, thus the computation of the distance
from [x1] to [x3] does not make any difference and only k− 1 computations are required.

In this section the multi-interval arithmetic (MIA) has been introduced in order to
improve the ability to represent non-continuous sets of values. Just like the interval
arithmetic, it allows fast computations and does not require much memory while the size
of the multi-intervals is controlled and remains acceptable (in terms of number of intervals
contained in their definition). The multi-interval arithmetic has the same advantages
and limits as the interval arithmetic such as rigorous computing, global reasoning and
overestimation of the range of expressions. As a consequence similar methods can be
used to get more accurate and relevant results: reformulation of the inclusion functions
and piecewise evaluation.
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2.4 Affine Arithmetic
The affine arithmetic [De Figueiredo and Stolfi, 2004] is a computational model which
provides guaranteed enclosures. The possibilities given by the affine arithmetic are similar
to the ones provided by the interval arithmetic. The particularity of the former resides
in the use of the linear combinations to represent values including error terms. Let x a
value, its affine representation is described as below

x = x0 + x1ε1 + x2ε2 + · · ·+ xnεn

where xi are reals and εi are symbolic variables representing errors through intervals equal
to [−1; 1]. The strength of this arithmetic is the accuracy of the results it provides during
computations, as opposed to the interval arithmetic and its dependency problems. The
affine representation has some interesting properties, given that quantities are represented
by zonotopes (which are invariant by rotations). But the representation with first order
approximation increases the operations cost (important memory and computing time
requirements).

The affine arithmetic is efficient in global optimization algorithms [Messine, 2002], but
it is more difficult to implement and the cost in terms of memory and time computing
are the reason the use of interval arithmetic is preferred in this work. Therefore this
arithmetic is not defined here but it provides several advantages, thus it should be consider
to extend the methods developed in the tool GDODynS that has been implemented
through this work.
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2.5 Tube Arithmetic
The tube arithmetic is a natural evolution of the interval arithmetic when it comes
to represent sets of functions [Kurzhanskĭı and Vályi, 1997], [Le Bars et al., 2012]. The
advantages of this arithmetic are quite similar to the ones of the interval arithmetic:
supporting safe computations and reasoning on sets of a priori unknown functions.

The interval arithmetic is useful to compute safely on real values, but the model that
is considered in this thesis also contains functional variables, meaning variables which
represent functions instead of reals.

Dealing with functional values improves the expressive power of the model because a
single functional value can replace an infinite number of real values.

2.5.1 Definition
The set of tubes IF on the real functions from R to R is defined as below Eq. (2.56).

IF =
{

[u;u]
∣∣∣∣∣ u ∈ (Du ⊆ R)→ R
u ∈ (Du ⊆ R)→ R

}
(2.56)

where Du and Du are the definition domains of the functions u and u. A tube [u] = [u;u]
represents a set of unary functions u from Du ⊆ Du ∩ Du to R, such that the latter is
bounded by u and u Eq. (2.57). The intersection of the domains Du ∩ Du is noted D[u].

[u] = [u;u] =
{
u ∈ Du → R

∣∣∣ ∀x ∈ Du ⊆ D[u], u(x) ≤ u(x) ≤ u(x)
}

(2.57)

Figure 2.8 represents a tube [u] defined from the set of values x in D[u] = {[a; f ], [g; j]}
to a subset of R which is bounded by the two functions u and u.

Figure 2.8: Tube [u] enclosing u
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2.5.1.1 Definition: Function enclosed in a tube
Let [u] ∈ IF a tube, and u a real function from Du ⊆ R to R. The real function u is in
the tube [u] iff

Du ⊆ D[u] (2.58)
∧ ∀x ∈ Du, u(x) ≤ u(x) ≤ u(x) (2.59)

2.5.1.2 Example: Inclusion of functions in a tube (Fig. 2.9)
On Figure 2.9, a tube [u] = [u;u] and four functions u1, u2, v1 and v2 are defined. The
first pair of functions u1 and u2 is enclosed in the tube [u] (Fig. 2.9a) whereas the second
pair (v1 and v2) is not (Fig. 2.9b).

• v1 6∈ [u] : v1 is not enclosed in the tube [u] because there is a set of real values x
such that v1(x) is lower than the lower bound u(x).

• v2 6∈ [u] : v2 is not enclosed in the tube [u] because there is a set of real values x
such that v2(x) is defined while u and u are not (x 6∈ D[u] = Du ∩ Du).

(a) u1 and u2 enclosed by the tube [u] (b) v1 and v2 not enclosed by the tube [u]

Figure 2.9: Functions inside and outside a tube

The set operations can be applied on tubes which represent sets of unary functions
Eq. (2.57).

2.5.1.3 Definition: Inclusion of tubes
Let two tubes [u] ∈ IF and [v] ∈ IF. [v] is a subset of [u] iff

∀f ∈ (R→ R), f ∈ [v]⇒ f ∈ [u] (2.60)

2.5.1.4 Remark: On Figure 2.9, both pairs of functions u1, u2 and v1, v2 define a
tube. There is an interesting side to the tube [u1;u2], the boundary function u1 is apart
from the set it bounds. Similarly, v1 and v2 are not elements of the tube [v1; v2]. The two
tubes [u1;u2] and [v1; v2] are included in the tube [u].
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2.5.1.5 Remark: Regarding at the definition of a tube, the inclusion property can
be described as below

[v] ⊆ [u] ⇔


D[v] ⊆ D[u]

∧ ∀x ∈ D[v],

{
v(x) > v(x)

∨ u(x) ≤ v(x) ≤ v(x) ≤ u(x)
(2.61)

2.5.1.6 Definition: Intersection and Union of tubes
The intersection is defined by a restriction over the domains where the functions are
defined as well as on the set of accessible values. Let [u] and [v] two tubes, then

[u] ∩ [v] = {f ∈ R→ R | f ∈ [u] ∧ f ∈ [v]} (2.62)

The union is defined by an extension of the domains and the reachable values which are
defined by at least one of the tubes.

[u] ∪ [v] = {f ∈ R→ R | f ∈ [u] ∨ f ∈ [v]} (2.63)

2.5.2 Equivalence classes and canonical form
The definition of the set of tubes IF induces a large number of equivalent tubes Eq. (2.64).
A set of functions can be generated by different tubes, all of them being equivalent and
members of the same equivalence class. For each equivalence class, a tube exists which
is revealed on a canonic form.

2.5.2.1 Definition: Equivalence class
Two tubes [u] ∈ IF and [v] ∈ IF are equivalent if they represent a similar set of functions.

[u] ∼ [v] ⇔ [u] ⊆ [v] ∧ [v] ⊆ [u] (2.64)

Then many tubes [u] can be gathered within an equivalence class Eq. (2.65) noted IF[u].
Therefore all the tubes from the same class are equivalent.

IF[u] = {[v] ∈ IF | [v] ∼ [u]} (2.65)

In the next paragraphs, the reduction from each tube towards its canonic equivalent
is presented through two complementary methods.

2.5.2.2 First reduction
The first reduction consists in limiting the domains Du and Du of the boundary function
u and u.

Let [u] = [u;u] a tube defined over D[u] = Du ∩ Du, where u in Du → R and u in
Du → R. Let D[u] a non-empty set of reals, such that D[u] = (Du ∪ Du) \ D[u]. The set
D[u] is equal to [d; e] on Figure 2.10a. Then the tube [uc] = [uc;uc] where

uc :
(Du \ D[u])→ R

x 7→ u(x)
and uc :

(Du \ D[u])→ R
x 7→ u(x)

(2.66)
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is equivalent to [u].

[u] = [u;u] =
{
u ∈ Du → R

∣∣∣∣∣ Du ⊆ Du ∩ Du

∀x ∈ Du, u(x) ≤ u(x) ≤ u(x)

}

⇔
{
u ∈ Du → R

∣∣∣∣∣ Du ⊆ (Du \ D[u]) ∩ (Du \ D[u])
∀x ∈ Du, uc(x) ≤ u(x) ≤ uc(x)

}
= [uc;uc] = [uc]

(a) Tube [u] : Non canonic (b) Tube [u] : Canonic

Figure 2.10: Two equivalent tubes [u]

2.5.2.3 Second reduction
Let [u] ∈ IF a tube and X[u] ⊆ D[u] a set or reals such that

X[u] = {x ∈ D[u] | u(x) > u(x)} (2.67)

The set X[u] is equal to [b; c] on Figure 2.10a. Thus the set X[u] can be removed from
the domain D[u] given that a function u ∈ [u] cannot be defined over it. Let v and v two
functions such that:

v :
D[v] → R
x 7→ u(x)

and v :
D[v] → R
x 7→ u(x)

(2.68)

where D[v] = (Du ∩ Du) \ X. Then the tube [v] = [v; v] is equivalent to [u].

[v] = [v; v] = {v ∈ Dv → R} . (2.69)

2.5.2.4 Definition: Canonical form of a tube
A tube [u] = [u;u] is on a canonical form iff there are no functions v from Dv ⊂ Du to R
or v from Dv ⊂ Du to R such that [u] ∼ [u; v] or [u] ∼ [v;u]. In other words:

[u] is canonic ⇔
Du = Du = D[u]

∧ ∀x ∈ D[u], u(x) ≤ u(x)
(2.70)
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2.5.3 Numerical representation
Previously, a tube [u] was defined as an enclosure made of two functions u and u, in order
to enclose sets of functions and compute operations on them. But the storage of such
functions (using expression trees) requires memory while the computations need time.
Here two different ways to represent the boundary functions u and u are introduced.

• On one hand, piecewise linear functions to model the lower and upper bounds u
and u are used.

• On the other hand, piecewise constant functions will be used to replace the piece-
wise linear functions introduced in the first point. This will lead to the use of
piecewise interval functions in order to model tubes.

2.5.3.1 Definition: Piecewise linear function
A piecewise linear function f is a function from Df ⊆ R to R, defined on k segments Dfi

Eq. (2.71) such that:

f :

Df → R

x 7→


f1(x) if x ∈ Df1

...
fk(x) if x ∈ Dfk

where
⋃

1≤i≤k
Dfi

= Df (2.71)

in which each piece fi of f is an affine function :

fi : Dfi
→ R

x 7→ αix+ βi

2.5.3.2 Example: Affine representation of a tube (Fig. 2.11a)
On Figure 2.11a, the tube [u] is bounded by two piecewise linear functions u and u. They
are defined from {[a; f ], [g; j]} to R as below:

u : x 7→



u1(x) if x ∈ Du1 = [a; b]
u2(x) if x ∈ Du2 = [b; d]
u3(x) if x ∈ Du3 = [d; f ]
u4(x) if x ∈ Du4 = [g;h]
u5(x) if x ∈ Du5 = [h; j]

and u : x 7→



u1(x) if x ∈ Du1 = [a; c]
u2(x) if x ∈ Du2 = [c; e]
u3(x) if x ∈ Du3 = [e; f ]
u4(x) if x ∈ Du4 = [g; i]
u5(x) if x ∈ Du5 = [i; j]

Note that the definition domains of the pieces of u and u are not synchronized.
Tubes can be represented with piecewise linear functions and the bound functions

definition can be simplified to its extreme limit through the use of piecewise constant
functions. This is a peculiar case of the affine function, whose the terms αi are forced to
be equal to 0. At last by synchronizing the boundary functions u and u, the tube [u] can
be defined by a single piecewise interval function (Fig. 2.11b).
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(a) Tube [u] : Affine representation (b) Tube [u] : Interval representation

Figure 2.11: Numerical representations of a tube

2.5.3.3 Definition: Piecewise interval function
A piecewise interval function is a function defined on segments Eq. (2.71) such that each
of them is mapped to an interval. Let [u] a piecewise interval function made of k pieces,
then [u] is defined as below:

[u] :

D[u] → R

x 7→


[u1] if x ∈ D[u1]

...
[uk] if x ∈ D[uk]

where
⋃

1≤i≤k
D[ui] = D[u] (2.72)

2.5.3.4 Example: Interval representation of a tube (Fig. 2.11b)
On Figure 2.11b, the tube [u] is defined by a piecewise interval function made of eight
pieces:

[u] : x 7→



[u1] if x ∈ D[u1] = [a; b]
[u2] if x ∈ D[u2] = [b; c]
[u3] if x ∈ D[u3] = [c; d]
[u4] if x ∈ D[u4] = [d; e]

. . .



. . .

[u5] if x ∈ D[u5] = [e; f ]
[u6] if x ∈ D[u5] = [g;h]
[u7] if x ∈ D[u5] = [h; i]
[u8] if x ∈ D[u5] = [i; j]

(2.73)

A simplified notation of the tubes details will be used in the rest of this thesis.

[u] =


[x1] 7→ [u1]

...
[xk] 7→ [uk]

 (2.74)

2.5.3.5 Definition: Canonical form of the piecewise interval function
Using piecewise numerical representation introduces new conditions for tubes to be canonic.
Since all the pieces of the function are defined on closed domains, they can be locally
covered on the borders of their domain. Let [u] a piecewise interval function Eq. (2.72),

page 59 of 214



2.5 GUARANTEED ARITHMETICS 2.5

whose [xi] 7→ [ui] and [xj] 7→ [uj] are two different pieces. The tube [u] is canonic iff the
previous Eq. (2.70) and new Eq. (2.75), (2.76) and (2.77) conditions are respected. The
first condition Eq. (2.75) guarantees that the pieces are not more covered than on the
border.

interior([xi]) ∩ interior([xj]) = ∅ (2.75)

The aim of the second condition Eq. (2.76) is to protect the tube from having two similar
adjacent pieces (they should merged into a single piece).

[xi] ∩ [xj] 6= ∅ ⇒ [ui] ∩ [uj] ⊂ [ui] ∪ [uj] (2.76)

The third condition Eq. (2.77) is applied on degenerate domains [xi] where xi = xi
because of the first condition Eq. (2.75). It allows the degenerate intervals to be covered
by another one, iff they are decreasing the local width of the tube.

[xi] ⊆ [xj] ⇒ [ui] ⊂ [uj] (2.77)

2.5.3.6 Definition: Union and intersection of piecewise interval functions
Using the interval representation [u] = {[xi] 7→ [ui]}1≤i≤m and [v] = {[yi] 7→ [vi]}1≤i≤n,
the intersection [u] ∩ [v] as well as the union [u] ∪ [v] produces a tube [w] = [u] ∩ [v] =
{[zi] 7→ [wi]}1≤i≤o.

• The intersection produces a tube [w] such that for all ([xi] 7→ [ui]) in [u] and
([yj] 7→ [vj]) in [v]:

[xi] ∩ [yj] 6= ∅ ⇒ ∃[zk] 7→ [wk] ∈ [w],
{

[zk] = [xi] ∩ [yj]
∧ [wk] = [ui] ∩ [vj]

(2.78)

• The union produces a tube [w] such that [u] ⊆ [w] and [v] ⊆ [w].

2.5.3.7 Definition: Subset of piecewise interval function
Let [u] = {[xi] 7→ [ui]}1≤i≤m and [v] = {[yi] 7→ [vi]}1≤i≤n two piecewise interval functions.
The tube [v] is a subset of the tube [u] if and only if:

• the domain D[v] on which the function [v] is defined, is a subset of the domain D[u]
on which the tube [u] is defined:

domain([v]) ⊆ domain([u]) (2.79)

• the set of reachable values of the function [v] is a subset of the values reached by
the function [u]:

∀([xi] 7→ [ui]) ∈ [u], ∀([yj] 7→ [vj]) ∈ [v], [xi] ∩ [yj] 6= ∅ ⇒ [vj] ⊆ [ui] (2.80)
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(a) Tube [u1] (b) Multi-Tube [u1] ∪ [u2] (c) Tube [u2]

Figure 2.12: Operation on tubes [u1] and [u2]

2.5.3.8 Remark: Limits of interval representation
Unfortunately, as shown on Figure 2.13, the definition of a tube [u] with a piecewise
interval function might suffer from an over-approximation problem. Compared to the
minimal enclosure of the functions u (u1, u2, u and u are represented) in which the
functions v1 and v2 are not enclosed (see Fig. 2.9b), the interval representation does
enclose v1.

This last point is a price that has to be paid in order to keep computations fast and
efficient. Moreover, this drawback can be reduced by increasing the number of pieces to
define the tube [u].

Figure 2.13: Tube [u] enclosing u : Numerical representation

2.5.3.9 Remark: Variations around piecewise interval functions
The set of piecewise interval functions [u] = {([xi] 7→ [ui])}1≤i≤k in IF can be upgraded
by replacing the set of images. Instead of the interval [ui] in IR, we can use

• boxes ([ui] in IRn) to describe n-dimensional tubes IFn

• multi-intervals ([ui] in multi− IR) to describe multi-tubes multi− IF
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• multi-interval boxes ([ui] in multi − IRn) to describe n-dimensional multi-tubes
multi− IFn.

In this thesis, the interval representation of tubes is used because it is easy to imple-
ment (a layer above the interval arithmetic) and is efficient in numerous ways : First,
this representation does not require much memory and the operations on these struc-
tures are fast. Moreover, it takes the advantages of the interval arithmetic use and,
ultimately, it can easily adapt itself to take into account interval vectors, multi-intervals,
and multi-interval vectors thus defining n-dimensional multi-tubes.

However, the internal way to represent tubes (arrays, lists, trees, etc) does not impact
any of the theoretical aspects presented here; only the experimental results might differ
(in terms of memory or computation time) because of the computational complexity to
perform basics operations (to get the k-th segment of the tube, to add a new segment,
etc).

2.5.4 Metrics, evaluation and operations on tubes
The tubes [u] in IF, are arithmetic objects, therefore a set of quantities are available.

2.5.4.1 Definition: A few metrics on tubes
Let [u] ∈ IF a tube defined by k pieces [xi] 7→ [ui]. The length Eq. (2.83) of a tube
is the width of the domain D[u] = domain([u]) Eq. (2.81) while the width Eq. (2.84)
corresponds to maximal width of the domain reached by the application of [u] over its
domain D[u]. The volume Eq. (2.85) is equal to the surface or the volume (in multi-
dimensional cases), as described by the tube. The interior Eq. (2.86) is the set of all the
functions u strictly enclosed in the tube.

domain([u]) =
⋃

1≤i≤k
[xi] (2.81)

image([u]) =
⋃

1≤i≤k
[ui] (2.82)

length([u]) = width(domain([u])) (2.83)
width([u]) = width(image([u])) (2.84)

volume([u]) =
∑

i∈{1,...,k}
width([xi])× volume([ui]) (2.85)

interior([u]) =
{
u ∈ [u]

∣∣∣ ∀x ∈ D[u], u(x) < u(x) < u(x)
}

(2.86)

2.5.4.2 Definition: Local and global evaluation
Tubes [u] are groups of unknown functions, whose bounds u and u are known. Those
bounds can be used to evaluate these sets of functions over both a local value x ∈ R
Eq. (2.87) and a global value [x] ∈ IR Eq. (2.89) which can be either an interval or a
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multi-interval.

[u](x) = {u(x) | u ∈ [u]} (2.87)

=
⋂

([xi] 7→[ui])∈[u]

{
[ui] if x ∈ [xi]
[−∞; +∞] otherwise (2.88)

[u]([x]) = {u(x) | u ∈ [u], x ∈ [x]} (2.89)

=
⋃

([xi] 7→[ui])∈[u]

{
[ui] if [x] ∩ [xi] 6= ∅
∅ otherwise (2.90)

2.5.4.3 Remark:
Note that to perform the evaluation on a single value x the intersection operator is used to
accumulate the result, whereas the accumulation is done using the union operator when
evaluating the tube over interval values [x]. The reason is that the unknown functions
considered in this thesis are continuous, then tubes such as the one represented on Figure
2.8 are not required and for each piece [xi] 7→ [ui] of the tube definition, the enclosure is
guaranteed which improve the enclosure of the local evaluation.

∀u ∈ [u], ∀x ∈ [xi], u(x) ∈ [ui] (2.91)

When [u] is evaluated on real values x covered by several pieces [xi] 7→ [ui] and [xj] 7→ [uj],
[u](x) belongs to [ui] and [uj]. For example, on Figure 2.11b, the value x = d is part of
two segments of the function [u] Eq. (2.73), then for all u in [u]:

u(d) ≤ u(d) ≤ u(d) ⇒
u3(d)
u4(d)

≤ u(d) ≤
u3(d)
u4(d)

⇒ u3(d) ≤ u(d) ≤ u4(d) (2.92)

However, when functions contained in tubes are not necessarily continuous, the local
evaluation has to be computed with the global evaluation over the degenerate interval.

When the value x is not a single real value but a set of real values, such that an
interval [x], if the latter is covered by several pieces [xi] 7→ [ui] and [xj] 7→ [uj], a part of
[u]([x]) belongs to [ui] while the other part belongs to [uj]. For example, on the tube [u]
that is defined previously Eq. (2.73 and (Fig. 2.11b), let [x] = [(d+ e)/2; (e+ f)/2]) an
interval which intersects two segments: [d; e] and [e; f ]. Then for all function u enclosed
by [u]:

u([x]) ≤ u([x]) ≤ u([x]) ⇒
{
u4 ≤ u([x; e]) ≤ u4

u5 ≤ u([e;x]) ≤ u5

⇒ min(u4, u5) ≤ u([x]) ≤ max(u4, u5)
⇒ u5 ≤ u([x]) ≤ u4

(2.93)
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2.5.4.4 Warning:
Let [x] = [d; e], then [c; d] ∩ [x] = d 6= ∅ as well as [e; f ] ∩ [x] = e 6= ∅, then with the
previous formulation of the evaluation Eq. (2.90):

[u]([x]) = [u3] ∪ [u4] ∪ [u5] (2.94)

This problem can be overtaken by extracting from [u] a new tube [v] on the domain [x]
Eq. (2.96), using a reduction method then makes the result canonic Eq. (2.70), (2.77),
(2.75), (2.76), and finally get the hull of the tube :

[u]([x]) = hull(canonic(extract([u], [x]))) (2.95)

2.5.4.5 Definition: Extraction
Let [u] a tube of k pieces [xi] 7→ [ui] and [x] an interval subset of D[u]. The extraction of
a tube [u] on a domain [x] is defined as below.

extract([u], [x]) =
⋃

[xi] 7→[ui]∈[u]
extract([xi], [ui], [x]) (2.96)

where
extract([xi], [ui], [x]) =

{
∅ if [xi] ∩ [x] = ∅
([xi] ∩ [x]) 7→ [ui] otherwise

}
(2.97)

2.5.4.6 Properties of tubes
Let the tube [u] in IF, a piecewise interval function.

• Tubes are monotonic; Let [U ] in IF a piecewise interval function such that [u] ⊆ [U ].
Then

∀[x] ⊆ D[u], [u]([x]) ⊆ [U ]([x]) (2.98)

• The evaluation of tubes is monotonic in terms of inclusion. Let [x] and [X] two
intervals subset of D[u], then

[x] ⊆ [X] ⇒ [u]([x]) ⊆ [u]([X]) (2.99)

2.5.5 Arithmetic operators and usual functions
Just like interval arithmetic, arithmetic operators have to be overwritten and extended
to deal with tubes in order to build tube arithmetic. Also, tubes can be used as interval
extended functions.

Let [u] = {([xi], [ui])}1≤i≤l and [v] = {([yj], [vj])}1≤j≤q two non-empty tubes. The
result of the binary arithmetic operation � in {+,−,×,÷} is a new tube [w] such that:

[w] = [u] � [v] = {([z1], [w1]), . . . , ([zp], [wp])} (2.100)
D[w] = D[u] ∩ D[v] =

⋂
[xi]∈D[u]
[yj ]∈D[v]

[xi] ∩ [yj] (2.101)
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The result [w] is defined such that for all ([xi], [ui]) ∈ [u] and for all ([yj], [vj]) ∈ [v], a
pair ([zk], [wk]) is defined, as follows, for each non-empty intersection [xi] ∩ [yj]:

[zk] = [xi] ∩ [yj]
[wk] = [ui] � [vj]

where � is the equivalent interval operator.

2.5.5.1 Definition: Operations over a real value
Let x ∈ R a real value, then the operations:

[u] � [v](x) = [u](x) � [v](x) (2.102)
[u] ◦ [v](x) = [v]([u](x)) (2.103)

shift([u], α)(x) = [u](x+ α) (2.104)

2.5.5.2 Warning
If the binary operation available on tubes � is accurate over real values, such is not the
case over intervals or multi-intervals.

[u] � [v]([x]) ⊆ [u]([x]) � [v]([x]) (2.105)

2.5.5.3 Example: Let [u] and [v] two tubes such as:

[u] =
[

[0; 1] 7→ [3; 4]
[1; 3] 7→ [8; 9]

]
and [v] =


[0; 1] 7→ [1; 5]
[1; 2] 7→ [−2; 0]
[2; 3] 7→ [2; 3]

 (2.106)

Then the result of the operation [u] + [v] over the interval [0; 3] is such that

([u] + [v])([0; 3]) ⊂ [u]([0; 3]) + [v]([0; 3]) (2.107)

where the computations of [u]([0; 3]) and [v]([0; 3]) are detailed below Eq. (2.108) as well
as the computation of ([u] + [v])([0; 3]) Eq. (2.109).

[u]([0; 3]) = {[3; 4], [8; 9]}
[v]([0; 3]) = {[−2; 0], [1; 5]}

[u]([0; 3]) + [v]([0; 3]) = {[3; 4], [8; 9]}+ {[−2; 0], [1; 5]}
= {[1; 14]}

(2.108)

([u] + [v])([0; 3]) =


[0; 1] 7→ [4; 9]
[1; 2] 7→ [6; 9]
[2; 3] 7→ [10; 12]

 ([0; 3])

= {[4; 9], [10; 12]}

(2.109)
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2.5.5.4 Definition: Integration
Tubes can be integrated as any real function and, as mentioned before Eq. (2.57), they
represent functions which are not necessarily defined on the domain D[u]. However their
integration on an interval [a; b] subset of D[u] takes exclusively into account the functions
u in [u] defined over the same interval [a; b]. Trivially

∫ b

a
[u](x)dx =

[∫ b

a
u(x)dx;

∫ b

a
u(x)dx

]
(2.110)

=
∑

[xi]7→[ui]
(width([a; b] ∩ [xi])× [ui]) (2.111)

2.5.5.5 Definition: Composition with usual functions
The usual functions f ∈ {abs, cos, sin, tan, exp, log, power, root, . . . } can be composed
with tubes [u], in order to create a new tube [z] Eq. (2.112).

[z] = [u] ◦ f = f([u]) = f




[x1] 7→ [u1]
...

[xk] 7→ [uk]


 =


[x1] 7→ f([u1])

...
[xk] 7→ f([uk])

 (2.112)

In this section, the tube arithmetic has been presented so that, the advantages the
guaranteed arithmetics have shown, on the set of reals, could be applied on the set of
unary functions. A specific representation of the tubes has been discussed through the
use of intervals and their variations (boxes, multi-interval, multi-boxes). A set of methods
has been used to get control on internal tubes representations in order to deal with their
canonic form. Tubes will be used in the next chapters to represent sets of functions such
as the results of guaranteed integration (of ordinary differential equations) and constraint
satisfaction problems on sets of functions [Raıssi et al., 2004], [Goldsztejn et al., 2011].
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2.6 Conclusion
In this chapter basic notions were introduced and mathematical concepts of guaranteed
arithmetics have been defined. Through the use of interval arithmetic (Section 2.2), the
advantages (safe computations, robustness, infinite sets representation, etc) and draw-
backs (over-approximation) of these approaches have been thought out. Uncertain values
were able to be represented more accurately using multi-interval methods (Section 2.3).
In order to do so, time computation and memory requirements are increased. The affine
arithmetic (Section 2.4) has been briefly described and is useful to perform good quality
results of operation but require much memory and computation time.

Finally, tube arithmetic (Section 2.5) has been introduced, in order to extend these
methods and these tools to sets of functions and uncertain functions. Several represen-
tations have been discussed such that the affine and the interval representations. In this
work, the variation of the interval representation defined with multi-interval boxes is used
under its canonical form.

In the next chapters, interval and tube arithmetics are used in order to perform
guaranteed integration (Chapters 3 and 5) of (piecewise) ordinary differential equations,
the solutions of which will be represented as tubes. Then, these arithmetic concepts will
be used to solve both constraint satisfaction problems (Chapter 4) using contractors and
optimization problems using global optimization methods (Chapter 6).
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GUARANTEED INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS 3.1

3.1 Introduction
Astronomy, physics and chemistry have found in differential equations the most natural
way to express their laws. These systems of equations are now widely used to model
dynamic behaviors in engineering, economy, ecology, epidemiology, neuroscience, etc.
Thus the resolution of such systems is used in a large number of applications, but most
of the differential equations do not have an explicit solution, therefore many approaches
can be considered.

Qualitative methods sometimes lead to subsets of solutions which provide some in-
formation about the differential equations. However, only a few families of differential
equations allow a full theoretical treatment from an analytic point of view — systems
of linear differential equations acting as such. In what follows, attention is focused on
non-linear differential equations which are not treated on an analytic point of view.

To begin with, this chapter introduces the Ordinary Differential Equations in Section
3.2. Then, in Section 3.3, an algorithm is discussed in order to rigorously integrate
these differential equations. It is based on two global methods that compute a global
enclosure (Section 3.3.2) and a local enclosure (Section 3.3.3). These two methods can
be improved using specific processes such that the QR-Factorization that is detailed in
Section 3.3.4. Also, a piecewise evaluation and a pruning method that are based on the
backward consistency argument are presented in Section 3.4.
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3.2 Ordinary Differential Equations (ODEs)

3.2.1 Definition
Ordinary differential equations (ODEs) map out a large number of behaviors which evolve
continuously with time. Let t ∈ R and u ∈ R→ R, so that u(t) is an unknown function
in t. Let d ∈ R× Rn → R a function of t, u(t) and its derivatives. An explicit Ordinary
Differential Equation (ODE) of order n, is an equation of the form

u(n)(t) = d(t, u(t), u′(t), u′′(t), . . . , u(n−1)(t)) (3.1)

where variable u is called the dependent variable and t the independent variable or time.
Let a family of n unknown functions ui ∈ R → R and a set of n applications di ∈

Rn+1 → R. Θ defines an n-dimensional first-order ODE system.

Θ


u′1(t) = d1(t, u1(t), . . . , un(t))

...
u′n(t) = dn(t, u1(t), . . . , un(t))

(3.2)

The system of equations can be represented in a clearer notation: the vectorial notation
Eq. (3.3).

u′(t) = d(t,u(t)) (3.3)
The ordinary differential equation Eq. (3.3) is known as non-autonomous because

the function d depends on the time variable t. In other cases, systems are considered
autonomous, meaning their behaviors depend exclusively on their states so that they
are conservative along the time window. Most of the natural dynamic systems are au-
tonomous.

u′(t) = d(u(t)) (3.4)
An ODE system can be controlled by an external input x ∈ Rp such that

u′(t) = d(t,x,u(t)) (3.5)

These systems are parametric, they are used to model dynamics depending on outer
conditions. When expressing complex problems in which the ODEs are led by other
constraints, such systems are adequate, using the parametric variables x to share infor-
mation. These systems can be reduced into an equivalent ODE with a new evolution
function d2(t,u(t)) := d(t,x,u(t)) because the value of x is constant all along the inte-
gration of the dynamic.

In this thesis, ODEs are defined over a time windows T that can be a restriction of
R, then t ∈ T ⊆ R.

3.2.2 Reductions
Any n-th order differential equation can be reduced into an n-dimensional first-order
ODEs system Θ Eq. (3.2) through the use of n additional variables. This property is
very important since first-order ODEs are easier to solve numerically.
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3.2.2.1 Example: Reduction of an ODE into a first order differential sys-
tem
Let the following ordinary differential equation of order 5:

u(5)(t) + cos(u′(t))u(4)(t)− sin(tu(3)(t)) + 8tu(2)(t)2 + exp(u(t)) = log(t)

Then, introducing the variables u1 = u, u2 = u′, u3 = u(2), u4 = u(3), u5 = u(4) the ODE
can be turned into the following system:

u′1 = u2 = u′

u′2 = u3 = u(2)

u′3 = u4 = u(3)

u′4 = u5 = u(4)

u′5 = −cos(u′)u(4) + sin(tu(3))− 8tu(2)2 − exp(u) + log(t) = u(5)

= −cos(u2)u5 + sin(tu4)− 8tu3
2 − exp(u1) + log(t)

Using the same technique, any non-autonomous system may become autonomous
through the enlargement of the system Θ, adding a new variable u0 such that:

u′0(t) = 1
u′(t) = d(u0(t),u(t))

3.2.3 Examples of famous ODE Models
Ordinary differential equations are widely used to describe natural phenomena and have
immediate repercussions in many fields. In order to illustrate their usefulness, here are
some models.

3.2.3.1 Example: Newton
The first use of ODE was introduced by Newton in the XVIIth century, so as to define
the base model of the cinematic. It consists in a second order differential equation in
which the acceleration of a point equals the sum of external forces that are applied on it.

∑
F (x) = m · a = m · d

2x

dt
⇒


x′(t) = v(t)

v′(t) = 1
m

∑
F (x)

Many physical models can be described through the various expressions of F .

F (x) = −kx

F (x) = −mg

l
sin(x)

F (x) = λ(x)x
F (x) = −gradV (x)
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3.2.3.2 Example: Field-Noyes
Consider a chemical reaction involving three chemical components such that

A+B → C

where each product has a concentration a, b and c. Then the consumption and the
production of each one of them can be modeled as

dc

dt
= −da

dt
= −db

dt

in which the reaction rate of the form Kaαbβcγ has its values K, α, β and γ chosen
according to the experiments. More peculiarly, the Belousov-Zhabotinskii reaction can
be modeled using the Field-Noyes model [Hastings and Murray, 1975]:

x′(t) = qy − xy + x(1− x)
ε

y′(t) = −qy − xy + 2rz
λ

z′(t) = x− z

where ε, λ, q and r are parametric values.

3.2.3.3 Example: Lotka-Volterra
The Lotka-Volterra ODE systems are frequently used to describe biological systems com-
posed of two species. The variable x (resp. y) represents the density of preys (resp.
predators).

{
x′(t) = x(α1 − α2y)
y′(t) = y(β1x− β2)

where α and β, being positive reals, define the interaction between the two species.
The Lotka–Volterra system of equations is a particular Kolmogorov model which

defines a more general framework [Cheng et al., 1982]. The Kolmogorov model manages
the dynamics of ecological systems by following several criteria such as predator-prey
interactions, competitions, diseases, etc.

3.2.4 Solution of an Initial Value Problem (IVP)
A solution of an ODE is a function u(t) such that the system

u′(t) = d(t,x,u(t)) (3.6)

is respected for all t in T , which is the application domain of the constraint.
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3.2.4.1 Example: Explicit solution of an ODE
Let the following ordinary differential equation:

u′1(t) = u2(t)
u′2(t) = u3(t)
u′3(t) = 0

Then u3(t) is a constant function for all t in T = [0; 1]. This system describes the
movement of an object where u1 represents the object’s position, u2 represents its velocity
and u3 its acceleration.

A solution to this system is u1(t) = u2(t) = u3(t) = 0 for all t in T . However it is
not the only one because others can be found. The set of all solutions is defined by the
following expression of u: 

u1(t) = u10 + u20 · t+ t2

2 u30

u2(t) = u20 + u30 · t
u3(t) = u30

where u10, u20 and u30 are reals (initial conditions).
As seen in the previous example, an infinite number of functions are solutions to an

ordinary differential equation Θ. The Initial Value Problem (IVP) is defined by adding
an initial value u0 into the system.

u′(t) = d(t,x,u(t))
u(t0) = u0

(3.7)

Usually, to model most of the natural phenomena, the initial values are acquired through
the experiments. The solution u∗ is a continuous function such that u∗ satisfies the
following equations:

u∗′(t) = d(t,x,u∗(t)) (3.8)
u∗(t0) = u0 (3.9)

From now on, the notation u(t0,u0, t) will represent the value u∗(t) of the solution
u∗ at t from the initial value u∗(t0) = u0. Note that u∗(t) also depends on the value of
x which is not considered in u(t0,u0, t). The reason is that the value x is constant all
along the integration (from t0 to tf ), thus it can be replaced by an equivalent constant
value in the expression of d.

3.2.4.2 Analysis of Figure 3.1:
This figure depicts three different solutions u∗0, u∗1 and u∗3 of an ODE system defined from
t = t0 to t = t4

u(n)(t) = d(t,u(t),u(1)(t),u(2)(t), . . . ,u(n−1)(t)) (3.10)

page 74 of 214



3.2 ORDINARY DIFFERENTIAL EQUATIONS (ODEs) 3.2

Figure 3.1: Solutions of various IVPs

when paired with three different initial value u0, u1 and u3.
Note that the initial value is not necessarily defined at the lowest valid time-step t0.

Here u1 and u3 are two initial values defined at t1 and t3. As a consequence, an initial
value fix all the trajectory of the associated solution. Because the solution u∗3 go through
u3 at t3 it implies the solution u∗3 comes from u(t3,u3, t1) at t1.

3.2.5 Existence and uniqueness conditions
Note that on Figure 3.1, the solutions u∗1, u∗2 and u∗3 exist. Moreover, the solution is
unique when an initial value is defined. But an ODE may have no solution, a unique
solution or an infinite number of solutions. For example, from the initial value u(0) = 1,
the ODE

• u′(t) =
√
−u(t)− 2 has no solution,

• u′(t) = 2u(t) has a unique solution u(t) = 1 + t2,

• u′(t) = u(t)−1
t

has an infinite number of solutions u(t) = 1 + αt with α ∈ R.

In this thesis, the study is focused on ODEs such that the solutions exist and are unique,
in order to guarantee the integration method. These two conditions can be ensured when
the evolution function d(t,x,u(t)) satisfies a few conditions.

• A sufficient condition to guarantee that the solution exists is that d is continuous.

• A sufficient condition to guarantee the uniqueness of the solution is that for all t,
x, u1(t) and u2(t) the following inequality is valid:

|d(t,x,u1(t))− d(t,x,u2(t))| ≤ L|u1(t)− u2(t)|
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which is a uniform Lipschitz condition, where L is the Lipschitz constant.

Also, if the ODE is associated with several constraints, the solution could not exist.
On the figure, there is no solution associated with the following set of constraints:

u(t1) = u1 ∧ u(t3) = u3 (3.11)

However, an infinite number of different ODEs (with different evolution functions d2)
which are not represented on this figure

u(n)(t) = d2(t,u(t),u(1)(t),u(2)(t), . . . ,u(n−1)(t)) (3.12)

exist such that a solution u∗ could cross the points u∗(t0) = u0, u∗(t1) = u1 and u∗(t3) =
u3.

In most initial value problems Eq. (3.7), the explicit expression of their solutions
cannot be found. Indeed only some specific cases such as the linear differential equations
can be solved thanks to dedicated tools.

Approximations of the solutions can nonetheless be computed through numerical ap-
proaches, as in the Runge-Kutta methods. They provide good solutions in practice and
are therefore widely used in engineering; however, they might derive from the exact result
for some problems. The use of the guaranteed methods which are based on a step by
step integration scheme can get round this limit. Moreover, in this thesis, IVPs whose
the initial values can be uncertain

u′(t) = d(t,x,u(t)) (3.13)
u(t0) ∈ [u0] (3.14)

have to be dealt with, which makes the classic numerical approaches obsolete. The nota-
tion u(t0,u0, tk) is then extended to interval initial value problems, where [u](t0, [u0], t)
represents the set of all the values u∗(t) of the solution u∗ at tk for all the initial values
u∗(t0) = u0 ∈ [u0].
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3.3 Guaranteed Integration Algorithm
In the following paragraphs is detailed an automatic, guaranteed and global approach
from literature which is able to solve initial value problems that possess an uncertain
initial value. The interval arithmetic is used to describe values and to perform operations.
The provided result then describes a tube which guarantees the enclosure of the solutions
(Fig. 3.2).

Figure 3.2: Enclosure of an ODE solution u∗ returned by Algorithm 1

3.3.1 Strategy of the algorithm
The guaranteed integration algorithm (Alg. 1) introduced here is a two-step method
that is quite similar to the predictor-corrector integration schemes. To sum things up
briefly, the guaranteed integration algorithm is a sub-integration loop that defines the
tube enclosing the solutions. A set of values ti are defined on the time window T = [t0; tf ]
such that

t0 < · · · < ti−1 < ti < ti+1 < · · · < tf

At each step ti, two subroutines aim at computing first a global enclosure [ũi] and then
a local enclosure [ui+1] of the solution to prepare the next iteration at ti+1.

Because these subroutines require a great number of computations, the number of
iterations should be kept as low as possible. Unfortunately, the global enclosures are
frequently overestimated by the algorithms. However lower stepsizes δi = ti+1−ti improve
the accuracy of enclosures. Therefore it is often necessary for stepsizes to be decreased in
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Algorithm 1 : Integrate(t0 ∈ R, [u0] ⊆ IRn, tf ∈ R)
1: int i← 0 ; real t← t0
2: while t 6= tf do
3: ([ũi], ti+1)← GlobalEnclosure(ti, [ui], tf )
4: [ui+1]← LocalEnclosure(〈t0, . . . , ti〉, 〈[u0] . . . [ui]〉, 〈[ũ0] . . . [ũi]〉, ti+1)
5: t← ti+1 ; i← i+ 1
6: end while
7: return Tube(t0, [u0], [ũ0], t1, [u1], [ũ1], . . . , ti−1, [ui−1], [ũi−1], ti, [ui])

such methods as to certify enclosures. As a consequence, it is essential to have optimal
control of the stepsize δi [Nedialkov et al., 2001] in order to provide a tight enclosure [u]
of the solution u∗ in reasonable time.

Usually a tolerance threshold set by the user is used to configure how the stepsize
should evolve. When the function d is stable, the stepsize δi increases, whereas it decreases
when the variations rate of the function d becomes more intense (Fig. 3.3).

Figure 3.3: Adaptive stepsize

3.3.1.1 Step 1: Global enclosure (Fig. 3.4b)
The global enclosure method is the process of computing a stepsize δi and an a priori
enclosure [ũi], such that u(ti,ui, t) exists and is guaranteed to be in [ũi] for all t in
[ti; ti + δi] and all ui in [ui].

GlobalEnclosure(ti, [ui], tf ) (3.15)

Usually, the global enclosure method uses Picard’s existence and uniqueness theorem
associated with Banach’s fixed point theorem. Two methods based on these theorems are
detailed in Section 3.3.2.

3.3.1.2 Step 2: Local enclosure (Fig. 3.4c)
The local enclosure method is the process of computing an enclosure [ui+1] of ui+1 =
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u(ti,ui, ti + δi) which is tighter than [ũi] through a contraction process. The contraction
can be computed from either an explicit or implicit schemes which has natural contractive
properties.

In the multistep approach, the local enclosure at time-step ti+1 = ti + δi is computed
from the previous enclosures at time-steps ti−k to ti Eq. (3.16) where k is a positive
integer.

LocalEnclosure(〈t0 . . . ti〉, 〈[u0] . . . [ui]〉, 〈[ũ0] . . . [ũi]〉, ti+1) (3.16)

When only the last iteration of the multistep approach is used to compute the following
enclosure (k = 0), the term single step approach is used Eq. (3.17).

LocalEnclosure(ti, [ui], [ũi], ti+1) (3.17)

This contraction step is necessary to compute the tiniest enclosures that can be
reached, minimizing the error and allowing higher stepsizes. In this perspective, sev-
eral methods which can be combined are introduced in the following sections. In order to
enclose and control the error term, the local enclosure is usually computed by Taylor se-
ries that are improved when under their Horner form and their Mean-Value form (Section
3.3.3). At the same time, the coordinate system can be adapted to limit what is called
the wrapping effect (Section 3.3.4). Ultimately, the contraction may be improved thanks
to consistency properties (Section 3.4.2) and the use of a piecewise evaluation (Section
3.4.1).

(a) Initial Value [ui] (b) Global Enclosure [ũi] (c) Local Enclosure [ui+1]

Figure 3.4: Global Enclosure [ũi] and Local Enclosure [ui+1]

In the next sections, the method that is detailed does not consider parametric ODEs.
However, the guaranteed integration of ODEs with interval parameters has been studied
[Lin and Stadtherr, 2006b] and the methods presented in this thesis can be easily adapted
to this generic case.
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3.3.2 Global Enclosure
The global enclosure method Eq. (3.18) allows the user to compute both a time-step ti+1
and an a-priori guaranteed enclosure [ũi] of the solution [u](ti, [ui], t) for all t in [ti; ti+1],
from any initial enclosure [ui] at time ti.

([ũi], ti+1)← GlobalEnclosure(ti, [ui], tf ) (3.18)

TheGlobalEnclosure method was introduced by [Moore, 1966],[Al-Abedeen and Arora, 1978]
and improved more recently by [Corliss and Rihm, 1996] and [Nedialkov et al., 2001].
Based on the Picard’s Existence and Uniqueness Theorem and on the Banach’s fixed
point theorem for Operators, this process certifies the return of a safe enclosure of the
solution, by iterating on the Picard Operator Φ Eq. (3.22). At the same time, it provides
a proof that the solution exists and is unique.

Theorem 3.3.1 (Banach’s fixed point)
Let M = (Y , d) a complete metric space, and f : Y → Y a contraction. Let 0 ≤ α < 1
such that

∀(x1, x2) ∈ Y2, d(x1, x2) ≤ α× d(f(x1), f(x2)) (3.19)

then f converges to a fixed point.

Theorem 3.3.2 (Picard-Lindelöf theorem)
Assuming that is B such that

B =
{

(t, y(t)) ∈ R2
∣∣∣∣∣ |t− t0| ≤ α

∧ |y(t)− y0| ≤ β

}

and f(t, y(t)) a continuous function that satisfies a Lipschitz condition in y; then the
problem

y′(t) = f(t, y(t)) (3.20)
y(t0) = y0 (3.21)

has a unique solution and the box B is ultimately an a priori bound of the solution y on
[t0; t].

Proof is detailed in [Coddington, 2012], [Teschl, 2012]. The combination of those
two theorems is at the origins of the Picard-Lindelöf operator Φ Eq. (3.22). The lat-
ter is used in the First Order Enclosure (FOE) algorithm [Al-Abedeen and Arora, 1978]
[Eijgenraam, 1981] to define the global enclosure [ũi] and to prove both the existence and
uniqueness of the solution.
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3.3.2.1 Definition: Picard-Lindelöf operator
Let Θ the system u′ = d(t,u), with d α-lipschitzian having first order partial derivatives
(a Jacobian) on [ti, ti+1]. Let [ui] and [ũi] two enclosures such that [ui] ⊆ [ũi]. The
Picard-Lindelöf operator Φ is defined as below:

ui +
∫ ti+1

ti
d(t,ui(t))dt ∈ ui +

∫ ti+1

ti
[d](t, [ũ0

i ])dt

⊆ ui + [0; δi][d]([ti; ti+1], [ũ0
i ])

⊆ [ui] + [0; δi][d]([ti; ti+1], [ũ0
i ]) = Φ([ũ0

i ])

(3.22)

where δi = ti+1 −↑ ti. If Φ([ũi]) ⊆ [ũi] then

1. The system Θ with the initial value u(ti) ∈ [ui] has a unique solution u∗ on [ti, ti+1].

2. The box Φ([ũi]) is an enclosure of u∗ on [ti, ti+1] with respect to u∗(ti) ∈ [ui].

The operator Φ previously defined, once used in an algorithm, can compute the
stepsize δi and the global enclosure [ũi] of the solution u∗ on [ti; ti+1] where ti+1 = ti + δi.
Starting from the initial stepsize δi,0, this method creates successive boxes [ũj

i] such that

[ũj+1
i ] = ε(Φ([ũj

i])) ⊇ Φ([ũj
i]) ⊇ [ũj

i] (3.23)

where ε is a function used to inflate the enclosure as long as the final condition Φ([ũj
i]) ⊆

[ũj
i] is not reached. When the final enclosure is infinite, the stepsize δi,k decreases and

the process reboots with the new stepsize δi,k+1 < δi,k.

(a) Φ([ũ0
i ]) * [ũ0

i ] (b) [ũ1
i ] = Φ([ũ0

i ]) + ε([ũ0
i ])

Figure 3.5: Failure of the Picard iteration, ε-inflation

3.3.2.2 Analysis of Figures 3.5 and 3.6:
On Figure 3.5a, the initial box [ũ0

i ] and its image Φ([ũ0
i ]) via the operator Φ do not
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respect the condition Φ([ũ0
i ]) ⊆ [ũ0

i ]. Thus a new box [ũ1
i ] is computed through the ε-

inflation so as to prepare the next iteration, as depicted on Figure 3.5b. On the contrary,
on Figure 3.6a, the box [ũ2

i ] has enclosed its image Φ([ũ2
i ]) via the operator Φ. Therefore

the iteration can be stopped and the a priori enclosure [ũi] = Φ([ũ2
i ]) is guaranteed to

enclose all the solutions [u](ti, [ui], t) for all t in [ti; ti+1], as depicted on Figure 3.6b.

(a) Φ([ũ2
i ]) ⊆ [ũ2

i ] (b) [ũi] = Φ([ũ2
i ])

Figure 3.6: Success of the Picard iteration

Unfortunately, the Picard-Lindelöf operator Eq. (3.22) frequently decreases the step-
size δi to provide a global enclosure [ũi] as it was the case in AWA [Lohner, 1992]. As a
consequence, the number of iterations increases inside the global enclosure method. Sim-
ilarly, the number of iterations also increases inside the global algorithm because there
are more time-steps. This limit has been tackled in other tools such that COSY VI
[Berz and Makino, 1998] using high order polynomial.

3.3.2.3 Definition: High Order Enclosure methods (HOE)
The high order enclosure method has been improved by [Nedialkov et al., 2001] and comes
from the Corliss and Rihm’s theorem [Corliss and Rihm, 1996]. It is an evolution of the
FOE method – which is limited and restrains the stepsize used in the integration.

Assuming that d is uniformly Lipschitz continuous. Let two boxes [ui] ⊆ interior([ũi])
and a stepsize δi such that

[ui] +
k−1∑
j=1

(t− ti)j
j! [d(j)](ti, [ui]) + (t− ti)k

k! [d(k)]([ti; ti + δi], [ũi]) ⊆ [ũi] (3.24)

for all t in [ti; ti + δi] where [d(j)] is the interval extension of the functions d(j) defined by

d(0)(t,u(t)) := ui(t) (3.25)

d(i)(t,u(t)) := ∂d(j−1)

∂t∂u
d(t,u(t)) (3.26)
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Thus, for all t in [ti; ti + δi] and all ui in [ui], a unique solution u(ti,ui, t) exists and is
enclosed by [ũi] .

When k = 1, the HOE method is equivalent to the FOE method, thus the time-step is
frequently decreases. The strength of the HOE resides in its ability to use higher orders
and, consequently, larger stepsizes. However the computation of high order polynomials
first requires the computation of high order differential functions and coefficients. Even
through the automatic differentiation, which is a fast and efficient method to compute
coefficients, the number of operations still remains far too high and additional methods
(heuristics, lazy evaluation, contractions, pruning methods) are used to speed up the
guaranteed integration

3.3.2.4 Remark: How to define δi and [ũi] ?
The enclosure [pi] of all the values of the polynomial part (without the error term) from
any initial point ui in [ui] and at any time-step t in [ti; ti + δi,0] is defined as below

[pi] = [ui] +
k−1∑
j=1

[0; δi,0]j

j! [d(j)](ti, [ui]) (3.27)

The error term noted [ei] and associated to [pi] is defined such that

[ũi] = [pi] + [ei] and [ui] ∈ interior([ũi]) (3.28)

Theorem 3.3.3 [Nedialkov et al., 2001]:
When the value δi is equal to the minimum value between δi,0 and δi,1, where δi,1 is defined
such that

[0; δi,1]k

k! [d(k)]([ti; ti + δi,0], [ũi]) ⊆ [ei] (3.29)

the solution u(ti,ui, t) does exist, is unique and is bounded by [ũi] for all t ∈ [ti; ti + δi]
and for all ui ∈ [ui].

3.3.2.5 Proof:
For any ui ∈ [ui] and any t ∈ [ti; ti + δi] it is easy to verify that

ui +
k−1∑
j=1

(t− ti)j
j! [d(j)](ti,ui) ∈ [pi] (3.30)

Moreover

(t− ti)k
k! [d(k)]([ti; ti + δi], [ũi]) ⊆

[0; δi]k

k! [d(k)]([ti; ti + δi], [ũi]) (3.31)

⊆ [0; δi,1]k

k! [d(k)]([ti; ti + δi,0], [ũi]) (3.32)

⊆ [ei] (3.33)
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Finally

u(ti,ui, t) ∈ ui +
k−1∑
j=1

(t− ti)j
j! [d(j)](ti,ui) + (t− ti)k

k! [d(k)]([ti; ti + δi], [ũi]) (3.34)

⊆ [pi] + [ei] = [ũi] (3.35)

The enclosure of the error [ei] is symmetric and not equal to zero on any of the com-
ponents. Then, in [Nedialkov et al., 2001] the authors assume that the k-th coefficient,
d(k) does not vary much from one step to another. In other words:

[d(k)]([ti, ti+1], [ũi])
k! ≈ [d(k)]([ti−1, ti], [ũi−1])

k! (3.36)

Consequently, the error [ei] can be approximated using the previous global enclosure
method.

[ei] = α
δki,0
k! [−βi−1; +βi−1] (3.37)

where βi is the magnitude Eq. (2.4) of the error on each component of the previous
global enclosure and α is a coefficient used to increase the probability of having a correct
enclosure of the error term.

βi = magnitude([d(k)]([ti; ti + δi], [ũi])) (3.38)

3.3.2.6 Stepsize control
The HOE method allows larger stepsizes than the FOE method. Thus the stepsize δi
can be increased when the function d is stable. That is why it is necessary to have an
efficient adaptive stepsize to use the HOE algorithm at its full potential. A relevant
strategy consists in computing an initial stepsize δ0 and then, at each step, to update the
initial value of the next stepsize δi+1 according to the situation at ti with the stepsize δi.
Some adaptive stepsize methods are introduced in [Nedialkov et al., 2001]. One of these
is easy to put into practice: it consists in considering a linear combination of the stepsizes
δi,0 and δi,1 as the basis for the next stepsize:

δi+1,0 = (1− λ)δi,0 + λ.δi,1 (3.39)

with 0 ≤ λ ≤ 1. The value λ = 0 induces a constant stepsize, δi,0 = δ0,0 for all stepsizes
i, which is not efficient. On the other side, the strategy with λ = 1 (δi+1,0 = δi,1) is
interesting because during the i-th step, the method proved with (δi = δi,1) or could have
proven with (δi = δi,0) that the enclosure exists, is unique and guaranteed (using the
adaptive stepsize δi,1).
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3.3.3 Local Enclosure
The local enclosure method is used once an a-priori guaranteed enclosure [ũi] is defined
on a time window [ti; ti+1]. It basically consists in the contraction of the previously
mentioned a-priori guaranteed enclosure towards a tighter guaranteed enclosure [ui+1] of
the solution [u](ti, [ui], ti+1]) at ti+1.

[ui+1]← LocalEnclosure(ti, [ui], [ũi], ti+1) (3.40)

The local enclosure method introduced here is based on the Taylor models. They are
widely used in guaranteed integration schemes [Nedialkov et al., 1999] because they have
the ability to compute guaranteed bounds for the solutions of ODE. The guarantee of
the enclosures provided by the Taylor series rests on

• the use of interval arithmetic to assure the operations’ results

• the knowledge of an a priori guaranteed enclosure [ũi] that bounds the Taylor error
term

However, and because of the dependency problem of interval arithmetic, the contraction
provided by the local enclosure method is limited by the overestimation of operations.

3.3.3.1 Definition: Taylor Model
Let [ui] the initial value at time ti and [ũi] a guaranteed enclosure of the solution u∗ over
the integration time-step δi. A local enclosure [ui+1] of the solution at ti+1 = ti + δi and
tighter than [ũi] can be computed using the Taylor model. This model is made of two
parts: the polynomial (noted Tp) and the error term (noted Te) (Fig. 3.7).

LocalEnclosure(ti, [ui], [ũi], ti+1) := Tp(ti, [ui], ti+1) + Te(ti, [ũi], ti+1) (3.41)

with

Tp(ti, [ui], ti+1) := [ui] + δi
1! [d

(1)](ti, [ui]) + · · ·+ δk−1
i

(k − 1)! [d
(k−1)](ti, [ui]) (3.42)

Te(ti, [ũi], ti+1) := δki
k! [d(k)]([ti, ti+1], [ũi]) (3.43)

where δi = ti+1−ti and [d(j)] is an interval-arithmetic extension of d(j) inductively defined
by

d
(1)
i (t, u1(t), . . . , un(t)) := di(t, u1(t), . . . , un(t)) (3.44)

d
(j)
i (t, u1(t), . . . , un(t)) := ∂d

(j−1)
i

∂t
+

n∑
m=1

∂d
(j−1)
i

∂um
dm(t, u1(t), . . . , un(t)) (3.45)
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Figure 3.7: Enclosure [ui+1] computed with Taylor model

3.3.3.2 Definition: Horner Form
The Horner form can be used to strengthen the relationship between variables, thus
restraining the dependency issue (that is caused by the use of interval arithmetic) on
each one of them.

Tp(ti, [ui], ti+1) := [ui] + δi ×
[d(1)](ti, [ui])

1! + · · ·+ δki ×
[d(k−1)](ti, [ui])

(k − 1)!

:= [ui] + δi

(
[d(1)](ti, [ui]) + δi

2

(
· · ·+ δi

k − 1
(
[d(k−1)](ti, [ui])

)
. . .

))

The Horner form can also be used to compute the enclosure [pi] in the HOE algorithm
[Nedialkov et al., 2001] used in the global enclosure method.

3.3.3.3 Definition: Mean Value Form
Furthermore, the mean value form’s contractive property can be used to limit the depen-
dency problem, thus computing enclosures which are expected to be tinier.

[ui+1] ⊆ ûi +
k−1∑
j=1

δji [d(j)](ûi) + δki [d(k)]([ũi]) +
I +

k−1∑
j=1

δji
∂[d(j)]
∂u

[ui]
 ([ui]− ûi)

(3.46)
The limit set to the dependency problem by the mean value form essentially comes from
the computation’s first terms which now involve real values instead of interval values.
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Figure 3.8: The three parts of the mean value form

The expression of the mean value form can be decomposed into three parts (Fig. 3.8):

[vi+1] = ûi +
k−1∑
j=1

δji [d(j)](ûi) (3.47)

[li+1] = δki [d(k)]([ũi]) (3.48)

[gi] =
I +

k−1∑
j=1

δji
∂[d(j)]
∂u

[ui]
 ([ui]− ûi) (3.49)

where

• [vi+1] is an approximation point of u(ti, ûi, ti+1);

• [li+1] is an enclosure of the truncation error, which is the local excess added within
the enclosure during the i-th integration step;

• [gi] is the global excess propagated to ti+1.

Thus the computation of [ui+1] can be written

[ui+1] = [vi+1] + [li+1] + [gi] (3.50)

The information given by the values [li+1] and [gi] can be used in the global algorithm
to compute and to adapt the stepsize δi+1,0.

In this section the Taylor models were introduced along with various forms used to
limit the dependency problem that is caused by the interval arithmetic. First, the Horner
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form was defined as the rewriting of the expression of the Taylor polynomial. Then, the
mean value form was defined as one of its arithmetic equivalent with the particularity
of having contractive properties and containing real values. However, because of the
global excess term [gi] Eq. (3.49), an overestimation still limits the contraction. This
overestimation derives from another limit named the wrapping effect. This effect is the
direct consequence of using interval vectors (boxes) when enclosing multi-dimensional
domains.

In the next section, the wrapping effect as well as the method used to contain it are
discussed and detailed.
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3.3.4 Wrapping Effect
The enclosure of multi-dimensional domains always requires a minimal overestimation
when the shape to be enclosed does not match the one of the enclosure. This necessary
overestimation is what makes the wrapping effect. More specifically, and as far as intervals
are concerned, when multi-dimensional domains cannot be represented by boxes they are
overestimated by their enclosures. It also has to be noted that the coordinate system
selected to define such enclosures might be sub-optimal.

Figure 3.9: Evolution of the enclosure during the guaranteed integration

3.3.4.1 Analysis of Figure 3.9:
On this figure the feasible domain at ti is wrapped and enclosed by the box [ui] along with
some irrelevant values. As a consequence, both the relevant values which are situated
inside the feasible set and the irrelevant (yet enclosed) values which are situated outside
of the feasible set are taken into account during the following computations. On the
depicted transformation, the overestimation of the set of solutions is increased from ti
to tk and then from tk to tj because of both the wrapping effect and the succession of
enclosures [uk] and [uj]. The result [uj] is then enclosed by a larger box in the same
coordinate system. Note that in practice the enclosures are larger than the ones on
this figure because there are other sources that may lead to an overestimation such as:
the error terms that enclose the error of the approximation, the dependency problem of
interval arithmetic, and the roundings that assure the guarantee of computations.

In most initial value problems, the guaranteed integration algorithm is not able to en-
close solutions because of the wrapping effect. Indeed, a large number of dynamic systems

page 89 of 214



3.3 GUARANTEED INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS 3.3

have solutions whose trajectories are curved. That is why, when bounding the domains
along the resolution, the orientation of the boxes should be different. In [Moore, 1966],
the author expresses the need to re-pack the enclosure of the solutions of the ODE in
order to limit the wrapping effect.

3.3.4.2 Definition: Oriented Interval Vectors
Given that a conservative coordinate system is a source of overestimation of the enclo-
sures in multi-dimensional spaces, interval vectors (boxes) should be defined in a moving
coordinate system. Thus the enclosures can adapt their coordinate systems to minimize
the irrelevant areas enclosed. Boxes are defined as follows:

IRn =

x̂ +Ax[rx]

∣∣∣∣∣∣∣
x̂ ∈ Rn

Ax ∈ Rn×n

[rx] ∈ IRn

 (3.51)

where Ax is nonsingular.

3.3.4.3 Application to the mean value form Eq. (3.50):
The initial enclosure [u0] at time-step t0 can be written [u0] = û0 +A0[r0], with:

û0 = midpoint([u0]), A0 = I and [r0] = [u0]− û0 (3.52)

Let [ui] an enclosure of the solution at ti such that [ui] = ûi +Ai[ri], the contraction at
time-step ti+1 is computed as follows

[ui+1] = [vi+1] + [li+1] +
I +

k−1∑
j=1

δji
∂[d(j)]
∂u

[ui]
Ai[ri] (3.53)

Ultimately, the expression [ui+1] is converted into the new form [ui+1] = ûi+1 +Ai+1[ri+1]
in order to prepare the next iteration, where

ûi+1 = midpoint([vi+1] + [li+1]) (3.54)

[ri+1] = A−1
i+1

I +
k−1∑
j=1

δji
∂[d(j)]
∂u

[ui]
Ai[ri] +A−1

i+1 ([li+1]−midpoint([li+1])) (3.55)

The computation of Ai+1 is very important and will determine the orientation of the
enclosure. In particular, the parallelepiped method [Eijgenraam, 1981] can be defined
with

Ai+1 = midpoint

I +
k−1∑
j=1

δji
∂[d[j]]
∂u

[ui]
Ai

 (3.56)

but the enclosure computed using this method is unstable and may often provide bounds
that are too large after a few time-steps. A more relevant choice for the computation of
Ai+1 is the Q-factor from the QR-Factorization [Lohner, 1988]:

Qi+1Ri+1 = midpoint

I +
k−1∑
j=1

δji
∂[d[j]]
∂u

[ui]
Ai

 (3.57)
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This computation of Ai+1 is more stable [Lohner, 1987] than the parallelepiped method
Eq. (3.56) because it always fits the longest edge of the domain to bound (Fig. 3.10b).

(a) Shortest Edge Fitting (b) Longest Edge Fitting

Figure 3.10: Comparison of the shortest and longest edges fitting

In this section the wrapping effect has been discussed as well as the overestimation it
leads to, which needs to be limited. Afterwards, a method named QR-Factorization was
introduced.

In the next sections additional processes are presented that can be used to reach a
better contraction. However these methods require a greater number of computations
and are expensive.
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3.4 Consistency and Piecewise Evaluation
In this section, two methods are introduced to compute tighter enclosures and to reduce
the overestimation. The first method is the piecewise evaluation (Section 3.4.1). It
improves the accuracy of the LocalEnclosure methods to compute a tighter enclosure
[ui+1] at ti+1 from the enclosure [ui] at ti and the a priori enclosure [ũi] on [ti; ti+1].

The second method is the backward consistency pruning (Section 3.4.2). It has the
ability to erase some parts of the enclosure [ui+1] (previously computed) thanks to a
consistency property on the enclosure at ti and ti+1.

These techniques are based on the computation made on tighter enclosures that limits
the dependency problem and uses the convergence properties of the inclusion functions
(Section 2.2.4). However, these methods could require a greater number of computations.

3.4.1 Piecewise Evaluation
The piecewise evaluation is a technique that is used to reduce the overestimation of the
operation’s results [Deville et al., 2000]. It uses the convergence properties of inclusion
functions. When enclosures become too large, the overestimation increases as well. That
is why the piecewise evaluation can be used to increase the accuracy of the results. Indeed,
it reduces the dependency problem by reducing the width of the boxes on which com-
putations are done, thus increases as well the convergence of the computation’s results.
Nevertheless such an operation could require a greater number of computations.

Figure 3.11: Complete piecewise evaluation on [ui]

page 92 of 214



3.4 CONSISTENCY AND PIECEWISE EVALUATION 3.4

3.4.1.1 Definition: Piecewise evaluation
The piecewise evaluation is defined as follows: the enclosure [ui] at time-step ti is divided
into p pieces from [u1

i ] to [up
i ], which are tighter enclosures, such that each piece [uk

i ] is
a subset of [ui] and

[ui] ⊆
⋃

1≤j≤p
[uj

i] (3.58)

Then from each enclosure [uk
i ] at ti, a guaranteed enclosure [uk

i+1] of [u](ti, [uk
i ], ti+1) is

computed thanks to a guaranteed integration method.

[uk
i+1] = LocalEnclosure(ti, [uk

i ], [ũk
i ], ti+1) (3.59)

where [ũk
i ] is an a priori enclosure of [u](ti, [uk

i ], t) for all t in [ti; ti+1]. Note that [ũk
i ]

is a subset of [ũi], which can be used to avoid the series of computations done by the
GlobalEnclosure method. Ultimately, the final result is the union of all the enclosures
[uk

i+1]
[ui+1] =

⋃
1≤j≤p

[uj
i+1] (3.60)

3.4.1.2 Analysis of Figure 3.11:
On this figure, the guaranteed enclosure [ui] at ti is divided into 16 boxes from [u1

i ] to
[u16

i ]. The guaranteed integration is consequently performed from ti to ti+1 upon the 16
previously mentioned enclosures. Here, only five integrations are represented. Ultimately,
all these enclosures are gathered into a single enclosure [ui+1].

(a) Piecewise evaluation of [u1
i+1] (b) Piecewise evaluation of [u2

i+1]

Figure 3.12: Piecewise evaluation

3.4.1.3 Analysis of Figure 3.12:
On these figures, the guaranteed enclosure [ui] at ti is independently divided into four
pieces on each of the two dimensions [u1,1

i ] . . . [u1,4
i ] and [u2,1

i ] . . . [u2,4
i ]. Both of the en-

closure [u1
i+1] (computed from [u1,1

i ] . . . [u1,4
i ]) and [u2

i+1] (computed from [u2,1
i ] . . . [u2,4

i ])

page 93 of 214



3.4 GUARANTEED INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS 3.4

are guaranteed to enclose the solution at ti+1. Thus their intersection is guaranteed to
enclose the solution as well. Consequently

[ui+1] =
⋂

1≤k≤n
[uk

i+1] (3.61)

where n = 2 is the dimension of the tube and

[uk
i+1] =

⋃
1≤j≤p

[uk,j
i+1] (3.62)

with p = 4 is the number of pieces considered on each dimension.

3.4.2 Consistency
The consistency is a property concerning the computed enclosures, it was introduced by
[Deville et al., 2000]. A pruning method can be defined that reduces the overestimation
of local enclosures when the consistency property is combined with the guarantee prop-
erty provided by the previously introduced LocalEnclosure method in both forward and
backward directions of the integration.

3.4.2.1 Definition: Consistency
Let [ui] and [uj] two boxes which are guaranteed to enclose the solution of the ODE
system Θ at time-steps ti and tj. These boxes are consistent if at least one solution u∗
exists, such that u∗(ti) ∈ [ui] and u∗(tj) ∈ [uj]. In other words:

[u](ti, [ui], tj) ∩ [uj] 6= ∅ (3.63)
[u](tj, [uj], ti) ∩ [ui] 6= ∅ (3.64)

Otherwise, these enclosures are inconsistent, thus proving there are no solutions to such
systems.

3.4.2.2 Analysis of Figure 3.13a:
On this figure, the guaranteed enclosures [u], [v] and [w] are represented along with the
two time-steps ti and tj.

Here the enclosures [u] and [v] are inconsistent because at tj the enclosure [uj] does
not intersect [vj]. Similarly, the enclosures [v] and [w] are inconsistent because of the
empty intersection at ti between [vi] and [wi].

On the other side the enclosures [u] and [w] are consistent. However this does not
assure that the enclosure [wj] contains a solution in [u](ti, [ui], tj) — and such is also the
case with the enclosure [ui] and the set of solutions [w](tj, [wj], ti).

The consistency property can be used to reduce the local enclosure [ui+1] that has
been previously computed. Indeed, a part [vi+1] of the guaranteed enclosure [ui+1] at
ti+1 can be removed from [ui+1] when it is inconsistent with a guaranteed enclosure [ui]
at time-step ti. The proof of the inconsistency can be computed through the use of
the previously described guaranteed integration methods because they would provide a
guaranteed enclosure of [v](tj, [vj], ti).
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(a) Inconsistency of [v] with [u] and [v] (b) Erosion of [uj]

Figure 3.13: Consistency and inconsistency

3.4.2.3 Analysis of Figure 3.13b:
On this figure two time-steps ti and tj are represented along with their respective guar-
anteed enclosures [ui] and [uj]. An enclosure [vj] (which is not guaranteed to contain
the solution) is defined at tj from [uj]. Here, the box [vj] is inconsistent with the enclo-
sure [ui] at ti because the guaranteed enclosure of [u](tj, [vj], ti) denoted by [vi] does not
intersect [ui]. Consequently the enclosure [vj] can be removed from [uj].
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3.5 Conclusion
In this chapter the guaranteed integration of ordinary differential equations has been
presented. The global integration algorithm (Section 3.3) is a loop made of two methods:
one computes a global enclosure (Section 3.3.2) of the solution over a continuous set of
time-steps while the other one computes its contraction into a local enclosure (Section
3.3.3).

The first method is the combination of two algorithms based on two theorems: the
Cauchy-Lipschitz’s existence and uniqueness theorem and the Banach’s fixed point the-
orem. A first algorithm called FOE was introduced along with its limitations. That is
why a second algorithm, named HOE was presented that allows larger stepsizes during
the integration process.

The second method uses the Taylor series, on which several improvements have been
made such as the use of the Horner form and the Mean Value form [Caprani and Madsen, 1980].
The Taylor models are widely used to solve these integration problems because they are
efficient at bounding the error term. However, other methods can be more adapted to
enclose the solutions of IVPs. For instance, in [Nedialkov and Jackson, 1999] the Inter-
val Hermite-Obreschkoff (IHO) method is discussed. The authors compare the stability
between the IHO method and the previously introduced method based on the Taylor
models. It appears the IHO method is more stable than the Taylor models, the overesti-
mation is therefore reduced. Besides, it also has some interesting properties to consider
on the reduction of the wrapping effect [Jackson and Nedialkov, 2002]. Nevertheless, the
methods based on Taylor models must not be neglected given that positive results have
recently been presented [Makino and Berz, 2011] after such models were used to limit the
wrapping effect.

It has to be highlighted that, theoretically, the concatenation of all the Taylor mod-
els occurring during the integration method defines a tube which is closer to the exact
solution than the set of global enclosures [ũi]. Nevertheless, because of the large amount
of memory it would take and the complexity of computation using such data, the Taylor
series are not stored in memory.

In this work, the package Vnode-lp [Nedialkov et al., 2001] that is a reference in the
domain of the guaranteed integration based on the interval arithmetic is used to perform
the guaranteed integration of ODEs. This tool has been developed in order to provide
tiny local enclosures and fast computation. It implements all the improvements that have
been introduced in this chapter.
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In the future, every industry should be an environmental industry. In a world where energy
and carbon emissions are constrained, every business must take resource productivity
seriously.

– David Miliband
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GUARANTEED CONSTRAINT PROGRAMMING 4.1

4.1 Introduction
The Constraint Satisfaction Problems or CSPs are defined by sets of constraints. There-
fore, solutions to a CSP have to be found while taking those into account.

The CSPs are said to be combinatorial because of the numerous combinations which
have to be considered before a solution respecting each constraint is found. The computa-
tion power does not suffice (in itself) to consider all possible combinations in a reasonable
time; that is why it is necessary to introduce some processes that could lead the inquiry
towards the most relevant solutions. These algorithms are called CSP solvers.

A non-exhaustive list gathering examples of simple problems that can be modeled
as a constraint satisfaction problem would include: eight queens puzzle, map coloring
problem, sudoku and many other logic puzzles.

In this chapter, basics of constraint programming are presented with some additive
methods. The Constraint Satisfaction Problems and their solutions are introduced in
Section 4.2 with a few examples. An extension with guaranteed arithmetics and intervals
is detailed in Section 4.3 as well as a specific logic. Section 4.4 presents some specific
methods to solve CSP with guaranteed methods called contractors which are combined
and used to reduce the domain of the variables. These methods are improved in Section
4.5 through a Set Inversion method based on the interval analysis.
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4.2 Constraint Satisfaction Problems (CSPs)

4.2.1 Definition
A Constraint Satisfaction Problem (CSP) [Tsang, 2014] is a mathematical problem which
involves the search for one or all assignments on a set of variables V with a set of values
X driven by a set of constraints C. Then a CSP is defined from a Constraint Network
that is made of triple 〈V ,X , C〉 where

• V = {x1, . . . , xn} is the set of the n variables of the problem.

• X = {d1, . . . , dn} is a set of the respective domains of the n variables, in other
words:

∀i ∈ {1 . . . n}, xi ∈ di (4.1)

• C = {c1, . . . , cm} is a set of m constraints.

Each variable xi in V can be assigned to any value in its respective domain di in X . There
are several types of CSPs depending on the domain X . Indeed CSP can be defined over
integer domains (n-queens, sudoku), real domains (spreadsheets), binary domains (digital
circuits) and even non-numeric domains in case of symbolic CSP (crossword puzzles).

4.2.1.1 Definition: Constraints
Every constraint cj ∈ C is defined by a couple (Vc, ρc) where

• Vc = {xc1, . . . , xck} ⊆ V is a subset of k variables.

• ρc is an k-ary relation defining the set of all assignments allowed for the set of
variables xi ∈ Vc.

The set of variables involved in the constraint c is denoted by var(c) = Vc. Variables
which are involved together in a constraint are called linked variables. Possibilities are
reduced by the relation of each constraint cj ∈ C dealing with the subsets of variables.

4.2.1.2 Definition: Evaluation
An evaluation s̃ is a function from a subset of variables xi ∈ Vs̃ ⊂ V to a particular set
of values vi in the matching subset Xs̃ ⊂ X .

s̃ :
Vs̃ → Xs̃
xi 7→ vi

(4.2)

An evaluation is consistent when all constraints are satisfied by the evaluation. A con-
straint c = (Vc, ρc) is satisfied when Vc = (xc1, . . . , xck) and (s̃(xc1), . . . , s̃(xck)) ∈ ρc.
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4.2.2 Resolution
Solving a CSP consists in finding an assignment throughout X for all the variables from
V such that all the constraints in C are satisfied. The solution can be found using filtering
algorithms (Contractors) that would remove inconsistent values from the domains di in
X .

4.2.2.1 Definition: Solution of a CSP
A CSP is solved when each variable xi ∈ V is assigned to a value in its domain di ∈ X
while respecting the set of constraints C.

4.2.3 Example
Usually, the constraints are algebraic, and the variables are either integer or real.

x2 ≤ y + z (4.3)

where x, y and z are reals, evaluated in their respective domains x ∈ [−5; 5], y ∈ [−5; 5]
and z ∈ [2; 4]. The constraints programming allows the expression of many peculiar
constraints on reals or integers such as

AllDifferent(x, y, z) (4.4)

which force the variables to being assigned with non-equal values over finite domains.
In the problems that are considered, new types of variables should however be man-

aged: the functional variables (defined by tubes) that represent unary functions. Conse-
quently, new constraints can be written based on functional properties. For instance the
constraint

Increase(u, x1, x2) (4.5)

where u is a functional variable, x1 and x2 two reals tends to remove from the tube
[u] associated to u the functions which are not increasing between x1 and x2. Also,
the guaranteed integration scheme previously described can be used inside the following
constraint

Differential(u,d(x,u), t0, tf ) (4.6)

to contract the tube [u] from t0 to tf using the differential u′(t) = d(x,u(t)).
Note that in this thesis, only continuous CSP are considered. However the tool that

has been implemented can be extended in order to take into account discrete CSP and
it could be an improvement to deal with mixed CSP models. It would requires the
implementation of a specific module that should take the advantages of existing tools
such as Choco [Jussien et al., 2008]. Moreover, the filtering techniques used on continuous
CSP such that 3B-coherence [Lhomme, 1993] have equivalents on finite CSP such that
the singleton arc-consistency [Debruyne and Bessiere, 1997].
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4.3 Guaranteed solutions of CSPs with intervals
In this section an extension of the CSP is introduced that aims to certify the solution
feasibility. In this process, the guaranteed arithmetics are used to compute the operations
safely.

4.3.1 Definition: Interval CSP
The interval Constraint Satisfaction Problem is an extension of the CSP model. In this
interval extension, the domains di in X are intervals [xi] or tubes [ui] according to the
set of variables considered. Then interval CSP is defined as quintuple 〈VX ,VU ,X ,U , C〉
where

• VX = {x1, . . . , xp} is the set of the p real variables of the problem.

• VU = {u1, . . . , un} is the set of the n functional variables of the problem.

• X = {[x1], . . . , [xp]} is the set of the respective domains of the p real variables.

• U = {[u1], . . . , [un]} is the set of the respective domains of the n functional variables.

• C = {c1, . . . , cm} is a set of m constraints.

such that every constraint cj ∈ C is defined by a triple (VX c,VUc, ρc) where

• VX c = {xc1, . . . , xck1} ⊆ VX is a subset of k1 real variables.

• VUc = {uc1, . . . , uck2} ⊆ VU is a subset of k2 functional variables.

• ρc is a k-ary relation defining the set of all assignments allowed for the set of
variables xi ∈ VX and ui ∈ VU .

The use of the interval arithmetic implies some limitations: it could make it impossible
to prove whether a complete assignment function is a feasible solution or not, especially
when such a function is close to the frontier of the set of solutions.

Indeed, when using the interval arithmetic in the following algebraic constraint c in
C defined such that

h(x) ≤ 0 (4.7)

where h is a function from Rn to Rm, the result of the evaluation can be ambiguous.
Let s. a complete assignment function for the set of variables VX . An interval [z] =
[h↓(s.(x)); h↑(s.(x))] is then computed through the use of the interval arithmetic to
guarantee the operations’ results.

h(s.(x)) ∈ [z] = [h↓(s.(x)); h↑(s.(x))] =
{
z ∈ Rm

∣∣∣ h↓(s.(x)) ≤ z ≤ h↑(s.(x))
}

(4.8)

Depending on the values of the bounds of [z], three cases have to be distinguished:
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• When h↑(s.(x)) ≤ 0 then the result h(s.(x)) which is guaranteed to be lower than
or equal to h↑(s.(x)) is also guaranteed to be lower than or equal to 0. In this
context the assignment function defined by s. is guaranteed to be in the feasible
domain of the constraint c.

• When h↓(s.(x)) > 0 then the result h(s.(x)) is guaranteed to be strictly higher than
0. Thus the assignment function defined through s. is guaranteed to be unfeasible
within the constraint c.

• When h↓(s.(x)) ≤ 0 < h↑(s.(x)) then the complete assignment function s. cannot
be certified as feasible or unfeasible because the frontier defined by 0 is contained
within the interval [z] along with the evaluation of h(s.(x)). This ambiguity cannot
be removed without any further information.

In response to the third scenario, the Boolean set that is used to express the validity
of the constraints has to be extended with a new value that would define indeterminate
values.

4.3.1.1 Interval and tube assignment functions:
The strength of this approach is in the ability to compute the feasibility of a constraint (or
a set of constraints) on a set of complete assignment functions. An interval assignment
function s[.]

X can be used to define a set of assignment functions from the set of variables
xi ∈ VX to specific intervals [yi] ([yi] being a subset of [xi] ∈ X ). Similarly, a tube
assignment function s

[.]
U is used to define a set of assignment functions from the set of

variables ui ∈ VU to a specific tube [vi] ([vi] being a subset of [ui] ∈ U).

s
[.]
X :
VX → X
xi 7→ [yi]

and s
[.]
U :
VU → U
ui 7→ [vi]

(4.9)

When a variable xi moves within an interval [yi] which represents several values, a set
of possible assignments for xi is defined. Thus an infinite number of evaluations can
easily be characterized. The assignment function s[.] defines a box [y] that matches the
dimension of x

s[.](x) =


s[.](x1)

...
s[.](xn)

 =


[y1]
...

[yn]

 = [y] (4.10)

and, reciprocally, a box [x] that matches the dimension of x can be used to define an
interval assignment function s[.].

4.3.2 Three-valued logic
A set of situations has been previously exposed that favors the extension of the classic
Boolean arithmetic with a third value [Mukaidono, 1986], thus modeling indeterminate
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values between > (True) and ⊥ (False). This new value is noted Ξ, and the set of three
logic values IB is defined as below:

IB = {>,⊥,Ξ} (4.11)

It has to be noted that when dealing with this third value Ξ, the Boolean arithmetic
must be extended as well, which explains why the classic logic operations ∧, ∨, ¬ are
overloaded. The results of the operations that include this new value Ξ are defined in
table 4.1.

Operator ∧ Operator ∨ Operation ¬ Operation ⇒
>∧ Ξ = Ξ
Ξ ∧ > = Ξ
Ξ ∧ Ξ = Ξ
Ξ ∧ ⊥ = ⊥
⊥ ∧ Ξ = ⊥

> ∨ Ξ = >
Ξ ∨ > = >
Ξ ∨ Ξ = Ξ
Ξ ∨ ⊥ = Ξ
⊥ ∨ Ξ = Ξ

¬Ξ = Ξ

> ⇒ Ξ = Ξ
Ξ⇒ > = >
Ξ⇒ Ξ = Ξ
Ξ⇒ ⊥ = Ξ
⊥ ⇒ Ξ = >

Table 4.1: Truth tables and results of classic logic operations with the indeterminate
value Ξ

When using this extended set of logic values, the constraint can be certified as valid
or invalid according to an interval assignment function s[.]. Let c ∈ C a constraint which
can be evaluated via the interval assignment function s[.] such that

cj(s[.](x)) = cj(s[.](x1), . . . , s[.](xn)) = cj([y1], . . . , [yn]) ∈ IB (4.12)

When the constraint c is valid for all complete assignment functions s. in s[.], the
constraint c is then valid through the interval assignment function s[.].

4.3.2.1 Validity of a constraint through an interval assignment function:
When the constraint c is certified as feasible through the interval assignment function
s[.], it means that all the assignment functions s. it contains are valid for this constraint
c.

c(s[.](x)) = > ⇒ ∀s. ∈ s[.], c(s.(x)) = > (4.13)

On the other hand, when the constraint c is certified as unfeasible by the interval assign-
ment function s[.], then no complete assignments s. are feasible within s[.].

c(s[.](x)) = ⊥ ⇒ @s. ∈ s[.], c(s.(x)) = > (4.14)

In the case where c(s[.](x)) = Ξ, then the constraint does not provide any information
about the complete assignment functions s. which are contained in s[.].
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4.3.2.2 Definition: Characterization of an interval assignment function within
a guaranteed CSP
Let [x] a box that describes a set of possibilities for the variables x. The box [x] can be
associated to an interval assignment function s[.] such that

s[.] : xi 7→ [x]i (4.15)

The feasibility of the interval assignment function s[.] is given by the conjunction of the
feasibility of each constraint.

feasible(s[.]([x])) =
∧
c∈C

c(s[.](x)) (4.16)

When all the constraints c ∈ C are evaluated as > through the interval assignment
function s[.], any complete assignment s. within s[.] is a guaranteed solution of the CSP.

s. : xi 7→ vi with vi ∈ s[.](xi) (4.17)

On the contrary, when at least one constraint c ∈ C is evaluated as ⊥ through the interval
assignment function s[.], it is then guaranteed that there is no complete assignment s.
within s[.] that could be a solution of the CSP.

Otherwise, there is no constraint c ∈ C that is evaluated as ⊥ through the inter-
val assignment function s[.]; but at least one indeterminate constraint does exist (that
is evaluated as Ξ). Consequently, the solution existence (or nonexistence) cannot be
guaranteed.
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4.4 Contractors
Derived from constraint programming and filtering algorithms, contractor programming
[Chabert and Jaulin, 2009a] aims at reducing the domain of boxes (Interval vectors, IRn)
and tubes (IFn) in order to filter continuous domains [Sam-Haroud and Faltings, 1996].
Two types of contractors can be considered. Atomic contractors and meta-contractors
that result from operations on contractors. As much atomic contractors as there are
constraints can be defined.

4.4.1 Definition: Contractor [Chabert and Jaulin, 2009a]
Let X a feasible domain subset of Rn and CX an operator. If for all [x] in IRn the equations
4.18 (Contraction) and 4.19 (Completeness) are satisfied, then CX is a contractor on [x]
associated to the set X.

CX([x]) ⊆ [x] (4.18)
[x] ∩ X ⊆ CX([x]) (4.19)

The first property Eq. (4.18) means that the contractor returns a subdomain of the
input. The second Eq. (4.19) asserts that all of the feasible solutions from the initial
domain [x] are preserved by the contraction and are also included in the final domain
CX([x]).

Figure 4.1: Contraction and completeness of the operator CX

On Figure 4.1, the feasible domain X is represented by the shape drawn with black
stroke and the initial box to contract [x] is purple. The green area is the part of the feasible
domain X which is accessible from (inside) the box [x] whereas the feasible domain X
situated outside the box is not accessible. Such a phenomenon happens when several
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constraints are used to reduce the domain of the box [x]. On the figure the result of the
contraction made by the contractor CX is the box bounded by the blue stroke. Note that
the result CX([x]) is a subset of the initial enclosure [x] (Contraction: Eq. (4.18)) and
encloses the accessible feasible domain X ∩ [x] (Completeness: Eq. (4.19)).

4.4.1.1 Definition: Tube contractors
Let U a feasible set of functions from R to Rn and [u] an n-dimensional tube in IFn. The
operator CU is a tube contractor if

∀x ∈ R, CU([u])(x) ⊆ [u](x) (4.20)
[u] ∩ U ⊆ CU([u]) (4.21)

Figure 4.2: Contraction and completeness of the operator CU

Figure 4.2 represents the contraction of a tube [u] toward the domain U with the
contractor CU. The initial tube [u] intersects the set of feasible functions U inside the
contracted tube CU([u]).

4.4.1.2 Definition: Properties
The contractors may have additional properties.

• Minimal : ∀[x] ∈ IRn, CX([x]) = X ∩ [x]

• Monotonic : ∀[x] ⊆ [y] ∈ IRn, CX([x]) ⊆ CX([y])

• Idempotent : ∀[x] ∈ IRn, CX(CX([x])) = CX([x])

• Convergent : ∀[x] ∈ IRn, CX([x]) −→
width([x])→0

X ∩ [x]

Note that when a contractor is minimal, it is convergent, idempotent and monotonic.
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4.4.2 Atomic contractors
The atomic contractors are associated to the constraints which can be found in the
CSPs. In the next paragraphs, examples of atomic contractors are introduced both on
real (intervals) and functional (tubes) variables.

4.4.3 The Forward-Backward method and the algebraic
constraints

The following equations are named algebraic constraints

(x1 − x2)2 ≤ x1x2

h1(x) = 0
u(t0) ∈ g(x0)

These expressions can be used in order to restrain the values for x1, x2, x, u, t0 and x0.
The most basic contractor is the atomic contractor HC4 which consists of a sequence

of two phases [Messine, 1997] [Benhamou et al., 1999].
Let the constraint c in C such that h(x) ≤ 0 and s[.] an interval assignment function

for the variables x.

s[.] :
{
V → IX
xi 7→ [vi]

where [vi] ⊆ di ∈ X (4.22)

The first step is the forward propagation, a process that computes rigorous bounds
for the enclosure [z] of the evaluation of the function h over the box [x].

[z] = [z; z] = [h↓([x]); h↑([x])] (4.23)

Using the lower or equal constraint, it is known that [z] has to be lower than 0, thus
implying that z must be lower than 0. This is the second step.

[z] ≤ 0⇔ [z; z] ≤ 0 ⇒ z ≤ 0⇔ h↑([x]) ≤ 0 ⇒ [x] ⊆ h−1([z; 0]) (4.24)

4.4.3.1 Example:
(x1 − x2)2 − x1x2 ≤ 0 (4.25)

The expression (x1 − x2)2 − x1x2 can be divided in a series of primitive operations (each
one of them being a node in the expression tree).

e1 = x1 − x2 (4.26)
e2 = x1x2 (4.27)
e3 = e2

1 (4.28)
e4 = e3 − e2 = (x1 − x2)2 − x1x2 (4.29)
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Assuming that the current interval assignment function is such that x1 ∈ s[.](x1) = [x1] =
[−3; 3] and x2 ∈ s[.](x2) = [x2] = [2; 3], the enclosure of each node is computed with the
forward evaluation step.

e1 ∈ [x1]− [x2] = [−3; 3]− [2; 3] = [−6; 1] = [e1]
e2 ∈ [x1]× [x2] = [−3; 3]× [2; 3] = [−9; 9] = [e2]
e3 ∈ [e1]2 = [−6; 1]2 = [0; 36] = [e3]
e4 ∈ [e3]− [e2] = [0; 36]− [−9; 9] = [−9; 45] = [e4]

The constraint is used to restrain the interval [e4] that contains all the accessible values
for the root e4. Because e4 = (x1− x2)2− x1x2 and (x1− x2)2− x1x2 ≤ 0 all the positive
values inside [e4] are inconsistent. In order to respect this constraint the interval [e4] is
contracted into a new one noted [e4]′.

(e4 ≤ 0) ∧ (e4 ∈ [e4] = [−9; 45]) ⇒ e4 ∈ [−9; 0] = [e4]′ (4.30)
Similarly, all the nodes of the tree can recursively be contracted when processing the
backward propagation (by using the specific contractors for each operation). For instance,
from e4 = e3 − e2, once [e4] is computed into [e4]′ ⊆ [e4], new enclosures [e3]′ and [e2]′
are computed. First the operations are reversed in order to isolate each node from the
previously contracted nodes.

e4 = e3 − e2 ⇒
{
e3 = e4 + e2
e2 = e3 − e4

⇒
{
e3 ∈ [e4]′ + [e2]
e2 ∈ [e3]− [e4]′

e3 = e2
1 ⇒ e1 = ±√e3 ⇒ e1 ∈

√
[e3]′ ∪ −

√
[e3]′

As a consequence, having knowledge that e3 ∈ [e3], e2 ∈ [e2] and e1 ∈ [e1], the new
enclosures [e3]′, [e2]′ and [e1]′ can be computed as below

e3 ∈ ([e4]′ + [e2]) ∩ [e3] = [−18; 9] ∩ [0; 36] = [0; 9] = [e3]′
e2 ∈ ([e3]− [e4]′) ∩ [e2] = [0; 45] ∩ [−9; 9] = [0; 9] = [e2]′

e1 ∈ ±
√

[e3]′ ∩ [e1] = [−3; 3] ∩ [−6; 1] = [−3; 1] = [e1]′

Ultimately, the enclosures [x1] and [x2] can be contracted using the expressions e1 =
x1 − x2, e2 = x1x2 and the contracted enclosures [e1]′, [e2]′.

e1 = x1 − x2 ⇒
{
x1 = e1 + x2
x2 = x1 − e1

⇒
{
x1 ∈ [e1]′ + [x2]
x2 ∈ [x1]− [e1]′

e2 = x1x2 ⇒
{
x1 = e2/x2
x2 = e2/x1

⇒
{
x1 ∈ [e2]′/[x2]
x2 ∈ [e2]′/[x1]

x1 ∈ ([e1]′ + [x2]) ∩ ([e2]′/[x2]) ∩ [x1] = [−1; 4] ∩ [0; 9/2] ∩ [−3; 3] = [0; 3] = [x1]′
x2 ∈ ([x1]− [e1]′) ∩ ([e2]′/[x1]) ∩ [e2] = [−4; 6] ∩ [−∞; +∞] ∩ [2; 3] = [2; 3] = [x2]′

In a nutshell, when x1 in [−3; 3], x2 in [2; 3] and (x1 − x2)2 − x1x2 ≤ 0 the forward-
backward contraction process proves that x1 necessarily is in [0; 3] and x2 is in [2; 3].
Note that in this example, at the last step, the division has been used to inverse the
multiplication. In practice, a peculiar operator is defined to inverse the multiplication
in order to avoid any division by 0 (for example, when x ∗ y = z with [y] = [0], the
contraction of [x] should not be computed with [z]/[0]) [Goualard, 2007].
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4.4.3.2 Warning on the contraction on tubes
The contraction that goes along with the forward-backward method can be used on tubes
[Jaulin, 2002]. But such a contraction process should be used carefully on tubes. Indeed,
the formal constraint

u(x) ≤ y (4.31)
where u is a functional variable represented with the tube [u] = [u; u] and x (resp. y)
are real variables represented with the interval [x] = [x; x] (resp. [y] = [y; y]) can be
used in order to reduce the domains of the variables

• y using u(x) because the values y ∈ [y] that are lower than the lower bound of
[u]([x]) are inconsistent and can be removed (Fig. 4.3b).

• x using u and y because the values x ∈ [x] such that the lower bound of [u](x) is
greater than the upper bound of [y] can be removed (Fig. 4.3b).

• u using x and y when [x] is a degenerate interval that is to say when x = x.
This condition is important, and on Figure 4.3b the interval [x] is large, then the
contraction of the tube [u] that is represented on Figure 4.3c is forbidden. The
reason the contraction is forbidden is detailed in the next paragraph.

(a) Initial values (b) Contraction of [x] and [y] (c) Forbidden contraction of [u]

Figure 4.3: Contraction of [x] and [y]

Considering x, y in the boxes [x], [y] and u in the tube [u], the constraint

u(x)− y ≤ 0 (4.32)

can be rewritten (with the interval extension)

[u]([x])− [y] ≤ 0 (4.33)

The forward-backward process tends to the functions u ∈ [u] and the values x ∈ [x]
and y ∈ [y] such that u(x) is lower than or equal to the value y.
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The restriction of the tube [u] should not occur over [x], except when the latter is
a degenerate interval. When x is represented with an interval [x], it means "a value x
exists in [x] such that [u](x) is lower than [y]" which is very different than "for all x
in [x], [u](x) is lower than [y]". Nevertheless, when the interval [x] is degenerate, then
a single and unique value x does exist in [x] and, consequently, the contraction can be
applied on the tube.

On the contrary, the box [y] can be contracted using the forward-backward contraction
process while the box [x] is contracted depending on the tube [u] such that [u]([x]) ≤ [y]
(the values x in [x] such that the tube [u] evaluated over x is greater than [y] are
inconsistent and can be removed).

A forward-backward approach that deals with algebraic constraints has been de-
scribed. Unfortunately, some complex problems contain non-algebraic constraints which
require the use of specific contractors. They can express some functional constraints like
monotonicity, periodicity or differential constraints.

4.4.3.1 Increase, Decrease and Monotony

The terms increase, decrease and monotony are properties used to describe transforma-
tions performed between two ordered sets such that the order is preserved or reversed.
These properties can be considered as constraints to filter any set of unary functions
(which are defined as piecewise interval functions).

4.4.3.1 Definition: Increasing and decreasing piecewise interval functions
Let [u] a tube defined from the domain D[u] to the domain R with a piecewise interval
function. If and only if for all pieces ([xi] 7→ [ui]) and ([xj] 7→ [uj]) in [u] with xi ≤ xj:

• ui ≤ uj ∧ ui ≤ uj then the tube [u] is increasing.

• ui ≥ uj ∧ ui ≥ uj then the tube [u] is decreasing.

Thus, assuming that the pieces of [u] are ordered by the increasing values of the
domain (xi ≤ xi+1), the contraction of the tube [u] with

• the contractor Cincrease on any interval piece [xi] 7→ [ui] is done as follows (Fig. 4.4):

[ui]← [ui] ∩ [ui−1;ui+1] (4.34)

• the contractor Cdecrease on any interval piece [xi] 7→ [ui] is done as follows (Fig. 4.5):

[ui]← [ui] ∩ [ui+1;ui−1] (4.35)

The monotonicity is the property of a transformation performed between two ordered
sets, thus preserving or reversing the order. As a constraint, it can be applied to any set of
unary functions and puts away the functions which are neither increasing nor decreasing.
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Figure 4.4: Contraction of the tube [u] with the Cincrease

Figure 4.5: Contraction of the tube [u] with the Cdecrease

4.4.3.2 Definition: Monotonicity
A function u, from an ordered set (E,≤E) to another ordered set (F,≤F), is monotonic
iff u is either increasing or decreasing.

∀(e1, e2) ∈ E, e1 ≤E e2 ⇒ u(e1) ≤F u(e2) (4.36)

Thus, monotonicity can be applied on unary functions u : x 7→ u(x) such that Du and
IMu are two ordered domains

Du = {x | u(x) is defined}
IMu = {u(x) : x ∈ Du}

Let U a collection of functions, then, the monotonic contractor tends toward the subset
Umonotonic of the monotonic functions in U . Various implementations of this contractor is
used depending on the knowledge it has gathered on the function u.
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The constraints of monotonicity, increase and decrease on a function u(x) represented
by a tube [u] from the value x = a to the value x = b are expressed as follows

increase([u], [a; b]) (4.37)
decrease([u], [a; b]) (4.38)

monotonic([u], [a; b]) (4.39)

Here, the attention is focused on the filtering of tubes that are defined as piecewise interval
functions. The contractor Cmonotony uses the contraction of the contractors Cincrease and
Cdecrease depending on the situation. To begin with, a first strategy is to reduce the
monotonicity constraint toward the increasing or decreasing constraint in order to perform
a more efficient contraction (tinier enclosure and fast computation). This statement
requires to find two pieces that would disjoint the values [ui] and [uj].

[ui] ∩ [uj] = ∅

Assuming such pieces are found such that [xi] is lower than [xj] then if

• [ui] < [uj] the tube [u] is increasing and the contractor Cincrease can be used.

• [ui] > [uj] the tube [u] is decreasing and the contractor Cdecrease can be used.

When such pieces do not exist, the contractor Cmonotonic that is associated to the
monotonicity constraint of [u] on the domain [a; b] ⊆ D[u] noted Cmonotonic([u], [a; b]) can
be defined as the union of the contractor Cincrease and Cdecrease (Fig. 4.6). The union is
an operator that is used to build a meta-contractor which is described later.

Figure 4.6: Contraction of the tube [u] with the Cmonotonic

Note that when a tube is increasing (resp. decreasing), it can contains functions that
are not necessarily increasing (resp. decreasing). The goal of these contractors is to filter
some of the functions from the initial tubes that are not increasing (resp. decreasing).
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4.4.4 Contraction with Ordinary Differential Equations
A function u represented by a tube [u] ∈ IFn can be contracted with differential con-
straints [Cruz and Barahona, 2003]

u′(t) = d(x,u(t)) ∀t ∈ [t0; tf ] (4.40)

using the specific contractor Cdiff ([u],d([x], [u]), [t0; tf ]).
The tube [u] is contracted using the guaranteed integration algorithm previously

described in order to remove some parts of the enclosure [u] which are guaranteed not to
contain functions that respect the differential constraints (and the tube restrictions). In
this context, when the tube [u] is not restrictive enough (for example when [u] is defined
such that [u] = {[t0; tf ] 7→ [−∞; +∞]}), then the differential constraints cannot be used
to contract the tube.

Figure 4.7: The tube [u] encloses all the functions

To begin with, all the time-steps ti from t0 to tf which bound the application domain
of the pieces [xi;xi] 7→ [ui] that constitute the tube [u] are defined (Fig. 4.7).

t0 = x0

t1 = x0 = x1

t2 = x1 = x2

. . .

Then an initial value problem (noted Pi) is defined for each value ti.

v′(t) = d(x,v(t)) ∀t ∈ [t0; tf ]
v(ti) ∈ [ui−1] ∩ [ui]

The contraction of the initial tube [u] can be performed by intersecting it with the tube
[vi] that is provided by the guaranteed integration over [t0; tf ] for each problem Pi. They
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Figure 4.8: Forward integration

Figure 4.9: Backward integration

can be solved independently and, in order to have a maximal contraction through this
process, it is required to have as many complete integrations as there are problems.

Because each integration costs memory and time processing, a limitation of the num-
ber of complete integrations into one contraction will be beneficial. One improvement
is to use a forward and backward scheme (Fig. 4.10): it is based on two complete in-
tegrations, one from t0 to tf (Fig. 4.8) and the other from tf to t0 (Fig. 4.9), in order
to decrease the complexity (that is to say the number of computations). From one piece
[ti; ti+1] to another [ti+1; ti+2], the integration takes into account all the restrictions on
each previous pieces [t0; ti+1]. Moreover, the contraction can be speed up by performing
the integration over the pieces that can be reduced while ignoring the unmodified pieces,
when using a dedicated lazy contractor (Section 4.4.5.5).
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Figure 4.10: Intersection of the Forward and Backward integrations

4.4.5 Meta-Contractors
The Meta-Contractors [Chabert and Jaulin, 2009a] are operators on contractors, they are
high order contractors that need sub-contractors in order to be operational. Note that
meta-contractor can be applied on both interval contractors and tube contractors. Let
three contractors C1, C2 and C3 defined on intervals [x] and tubes [u].

C1([x], [u]) , C2([x], [u]) and C3([x], [u])

All the meta-contractors that are defined in the next paragraphs are represented
through examples (Fig. 4.11, 4.12, 4.13, 4.14 and 4.15) by the contractors CX, CX1 , CX2 ,
CX3 . These contractors are applied on boxes and they are paired with the respective
feasible domains X, X1, X2 and X3.

CX([x]) , CX1([x]) , CX2([x]) and CX3([x])

4.4.5.1 Intersection, Union and Composition

The intersection and union operators can be extended to contractors. Basically, the
intersection of two contractors (Fig. 4.12a) creates a new contractor which is associated to
the intersection of the feasible domains X1 and X2. Another contractor that characterizes
the hull of the domains X1 and X2 can be built when using the union (Fig. 4.12b) of
these contractors. These two contractors are defined as below

Cintersection(C1, C2)([x], [u]) = (C1 ∩ C2)([x], [u]) = C1([x], [u]) ∩ C2([x], [u]) (4.41)
Cunion(C1, C2)([x], [u]) = (C1 ∪ C2)([x], [u]) = C1([x], [u]) ∪ C2([x], [u]) (4.42)

Another operation that links two contractors is the composition (Fig. 4.13). It builds
a contractor from a chain made of two other contractors.

Ccomposition(C1, C2)([x], [u]) = C1 ◦ C2([x], [u]) = C2(C1([x], [u])) (4.43)
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(a) X1 and CX1 (b) X2 and CX2

Figure 4.11: Domains X1, X2 with their associated contractors

(a) CX1 ∩ CX2 (b) CX1 ∪ CX2

Figure 4.12: Intersection and union of the contractors CX1 and CX2

Usually the composition is preferred to the intersection because the convergence is
faster while the feasible domains represented by these contractors remain identical. How-
ever the intersection can sometimes be more relevant when using parallel computing on
C1([x], [u]) on one side and C2([x], [u]) on the other side.

In the next paragraphs are introduced various contractors which can be applied on a
single variable xi from the set of variables V that is defined in the CSP. Their application
on sets of variables is made possible through the creation of a contraction chain (using
the composition and the intersection of contractors).
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(a) CX1 (b) CX1 ◦ CX2

Figure 4.13: Composition of the contractors CX1 and CX2

4.4.5.2 Piecewise Contractor

The piecewise contractor is inspired from the Constructive Interval Disjunction Con-
tractor (CID) [Trombettoni and Chabert, 2007] which is based on the piecewise evalu-
ation properties [Moore, 1966] and the use of another contractor to perform the sub-
contractions. The piecewise contractor relies on the split of one dimension i (xi), and on
the subsequent contraction of the sub-nodes such as

Cpiecewise(C3, xi, k)([x], [u]) = C3





[x1]
...

[xi]1
...

[xn]

 , [u]

 ∪ · · · ∪ C3





[x1]
...

[xi]k
...

[xn]

 , [u]

 (4.44)

where [xi] ⊆
⋃j≤k
j=1 [xi]j.

The use of piecewise contractors usually improves the contraction. When such is not
the case it is because of the non-monotonicity of the initial contractor C3. One solution is
to build a chain using the intersection or the composition contractor with the piecewise
contractor and C3:

Ccomposition(Cpiecewise(C3, xi, k), C3)
Cintersection(Cpiecewise(C3, xi, k), C3)

Also, the contractor Cpiecewise(C3, xi, k) requires k times more operations than C3. At-
tention should be focused on the relative position of the piecewise contractor inside the
contractive chain. Indeed, depending on which meta-contractor C3 is used to create the
chain, the computational complexity of the contraction may become exponential.
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(a) contractions (b) final

Figure 4.14: Piecewise meta-contractor over CX

4.4.5.1 Remark:
In this example (Fig. 4.14) it is assumed the contractor CX is monotonic. The initial do-
main [x] is split in three parts [x]1, [x]2 and [x]3 following one dimension that is defined by
the variable xi. The result Cpiecewise(CX, xi, 3)([x]) of the contraction noted CpiecewiseX ([x])
on Figure 4.14b is the union of each contraction CX([x]1), CX([x]2) and CX([x]3). Because
of the piecewise evaluation property on intervals, the result CpiecewiseX ([x]) is more accurate
than CX([x]).

4.4.5.3 Erosion

The goal of the erosion that is inspired from the shaving operator [Chabert and Jaulin, 2009a]
is to erase the extremities of the domain [xi] associated to the variable xi. On each in-
terval [xi]j from the multi-interval value [xi] two external oriented slices [xi]jL and [xi]jR
are considered. When using the subcontractor C3, whenever an inconsistency is found
within any slice, then the slice can be removed from the domain [xi]. Otherwise, when
none is found, the size of the slice is only reduced and a new iteration is performed. The
contractor Cerode can be defined as follows:

Cerode(C3, xi, k)([x], [u]) = ([x], [u]) \ (CerodeL(C3, xi, k) ∪ CerodeR(C3, xi, k)) ([x], [u])

where CerodeL and CerodeR return the parts the domain [xi] that are inconsistent via the
contractor C3.

CerodeL(C1, xi, k)([x], [u]) =
{
CerodeL(C1, xi, k − 1)([x]L, [u]) if C1([x]L, [u]) 6= ∅
([x]L, [u]) ∪ CerodeL(C1, xi, k − 1)([x]R, [u]) otherwise

CerodeR(C1, xi, k)([x], [u]) =
{
CerodeR(C1, xi, k − 1)([x]R, [u]) if C1([x]R, [u]) 6= ∅
([x]R, [u]) ∪ CerodeR(C1, xi, k − 1)([x]L, [u]) otherwise

with [x]L = ([x1], . . . , [xi]L, . . . , [xn]) and [x]R = ([x1], . . . , [xi]R, . . . , [xn]) with [xi]L =
[xiL;xiL] such that xiL = xi and [xi]R = [xiR;xiR] such that xiR = xi. This is a recursive
method, with decreasing value of k. When k = 0 the recursion stop.

CerodeL(C1, xi, 0)([x], [u]) = ∅
CerodeR(C1, xi, 0)([x], [u]) = ∅
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An improvement of the 3B-coherence presented here is the partition-one arc consis-
tency (POAC) that is discussed in [Bennaceur and Affane, 2001], [Balafrej et al., 2014].
It speeds up the contraction because it is able to prune values on several variable, which
is not the case with the operator that is described here.

4.4.5.4 Fixed point

Let CX a contractor for X. The fixed point contractor C∞(C3) is equivalent to an infinite
composition of C3 [Chabert and Jaulin, 2009a].

C∞(C3)([x], [u]) = C3 ◦ · · · ◦ C3([x], [u]) (4.45)

The fixed point meta-contractor C∞ on any contractor C3 is idempotent (see §4.4.1.2).
If C3 is minimal, then C∞(C3) remains its equivalent and is therefore useless.

Figure 4.15: fixed point contractor

In practice, even though the fixed point contractor consists in an infinite computation
of the composition, it only computes the right amount of iterations to approach the
convergent point. Basically, in order to avoid an infinite computation, the contractor is
not called for when unnecessary (the last computation is not contractive enough) and/or
a limit is set on the iteration number. On Figure 4.15, the contraction appears to be
slower at each iteration.

4.4.5.5 Lazy

The role of the lazy contractor is to avoid useless contractions in order to save computa-
tion time. It is made of a set of variables Vl ⊆ V , and a sub contractor C3. Each time
the contractor Clazy is called, the current domains [xi] which are associated to each vari-
able xi from Vl are compared to the ones that were used in the last contraction [xi]prev
performed. The contractor C3 is called as long as one of the domain is significantly
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contracted (meaning it goes beyond a minimal contraction limit once compared to the
previous iteration).

Clazy(C3,Vl, [x]prev, [u]prev, α)([x], [u]) =


C3([x], [u]) if ∃xi ∈ Vl,

width([xi])
width([xi]prev)

< α

([x], [u]) otherwise

When the contraction happens, the domains [x]prev and [u]prev are updated with the
values returned by C3([x], [u]). Such a contractor is useful to avoid computation from
complex contractors when these are not efficient enough. It can be combined with the
fixed point to limit its infinite number of contraction.

page 120 of 214



4.4 SET INVERSION VIA INTERVAL ANALYSIS 4.5

4.5 Set Inversion Via Interval Analysis
The contraction process was defined in the previous section. It is used to converge
towards solutions of one or more sets of constraints. Unfortunately, what results from the
intervals computed through the contraction processes previously described may remain
inconsistent with the constraints they are associated with. The desire to get the tiniest
enclosure possible leads to the use of another tool: the Set Inversion Via Interval Analysis
algorithm (SIVIA) [Jaulin and Walter, 1993].

The method has been developed to get the inverse image x = f−1(y) such that
f(x) = y where f is a function from X to Y. SIVIA can also be used to specify some
of the feasible and unfeasible parts of the domains according to a constraint (a part of
the domain still remains ambiguous and draws a line between the feasible and unfeasible
subdomains).

The initial enclosure [x] of f−1([y]) is computed with interval and tube arithmetics
using the results of several evaluations of the interval function f over subdomains [x]′
from X. Then, depending on the intersection with [y], the respective results [y]′ are used
to define the initial domain [x]′. This process can be seen on Figures 4.16, 4.17 and 4.18.

In Figure 4.16, three initial boxes [x1], [x2] and [x3] picture different possibilities
for [x]′. These values are associated to the respective boxes f([x1]), f([x2]) and f([x3])
through the function f .

Figure 4.16: Sivia results - step 1: evaluation with f

Three distinctive situations are pictured depending on the relative positions of the
final boxes (f([x1]), f([x2]), f([x3])) in relation with the validity of the constraint domain
X (Fig. 4.17):

• When the final box is guaranteed to be out of the domain X, it is red: f([x2]).

• When the final box is guaranteed to be inside of the domain X, it is green: f([x3]).

• Otherwise, the situation is unclear. A part of the final box goes inside the domain
X while the other part goes out of it. The box is gray: f([x1]).
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Figure 4.17: Sivia results - step 2: information on f([x])

At last, the colors assigned to f([x1]), f([x2]) and f([x3]) are used to characterize the
initial domains [x1], [x2] and [x3] (Fig. 4.18).

Figure 4.18: Sivia results - step 3: backward propagation of information with f−1

Let [x]′ an enclosure which is guaranteed to enclose f−1([y]), then the global algorithm
consists in a succession of subdivisions over the domain [x]′. While [y]′ = f([x]′) is not
guaranteed to be exclusively inside or exclusively outside the validity domain X (like
f([x1]) on Figure 4.18), [x]′ is split into several pieces on which the SIVIA is applied.
This process is represented on Figure 4.19.

On Figure 4.19, the SIVIA is applied on a tube [u](t) that is restrained to a single
piece:

[ti; ti+1] 7→ [ũi]

A function that is represented with the red surface that crosses the tube (Fig. 4.19a).
The red section splits the tube in two parts: the upper parts on the top-left corner and
the lower part on the bottom-right corner. The cross section can be defined with an
explicit multi-dimensional functions [f ]([u], t) and used as a constraint on the tube to
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(a) initial step (b) step 2

(c) step 4 (d) final step

Figure 4.19: Application of the SIVIA on a tube

remove the bottom-right corner of [ũi].

[u](t) ≥ [f ]([u], t) ∀t ∈ [ti; ti+1]

The contractors are not able to contract the tube [u], but the SIVIA can be used to define
parts of the tube that are inconsistent.

At the step two (Fig. 4.19b), the initial tube is split into four parts. One part of
the tube is guaranteed to be consistent and is represented in black. The yellow tubes do
not provide relevant information. Consequently, they are split one more time into tinier
tubes, this is the step four (Fig. 4.19c) and the information is better because three parts
of the tubes are guaranteed to be consistent with the constraint (black tubes). The other
domains of the tube [u] (yellow tubes) require to be split again in order to extract more
information according to the consistency with the constraint.

At the final step (Fig. 4.19d) the three tubes in red on the bottom-right corner are
guaranteed to be inconsistent. Note that in this example, the SIVIA only splits the tube
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[u] on its domain [ũi] but the time windows [ti; ti+1] can be split as well.

The SIVIA can be applied in several situations such that state estimation, robust
control, robotics [Jaulin et al., 2001]. In this work, SIVIA can be used when it comes to
integrate piecewise ordinary differential equations (Chapter 5), because they are defined
with several dynamics paired with guards. On Figure 4.19d the yellow part of the tube is
the intersection between the tube [u] that could be the guaranteed enclosure of an ODE
and a guard on [ti; ti+1]. Unfortunately, this algorithm is costly in computational time,
that is why it has to be used carefully: to limit the number of recursive iterations is an
easy and efficient trick to limit the complexity of the algorithm.

4.5.1 IBEX library and plugins
The Interval Based EXplorer (IBEX - http://www.ibex-lib.org/) [Chabert, 2007] is
a library based on several layers that are the guaranteed arithmetics layer (with the
interval arithmetic and the affine arithmetic presented in Chapter 2) and the constraint
programming layer with contractor programming [Chabert and Jaulin, 2009a] that has
been introduced in this chapter.

A plugin named IbexSolve has been developed and solves rigorously non-linear equa-
tions systems. All the contractors discussed in this chapter are implemented with other
specific contractors in order to improve the efficiency of the solver. The constructive
interval disjunction contractor introduced in [Trombettoni and Chabert, 2007] has been
improved ACID in [Neveu and Trombettoni, 2013] and [Neveu et al., 2015]. The hull con-
sistency (HC4) is improved with monotonicity properties in [Chabert and Jaulin, 2009b],
[Araya et al., 2010]. A contractor based on the convexification of the constraints is de-
scribed in [Araya et al., 2012]. A specific contractor that is used to compute efficiently
the q-relaxed intersection of several boxes is detailed in [Carbonnel et al., 2014].

Recently, a specific plugin named DynIbex that is under development aims to solve
initial value problems of ordinary differential equations (Chapter 3) with Runge-Kutta
schemes and affine arithmetic [Alexandre dit Sandretto and Chapoutot, 2016a] to guar-
antee the integration.

A global optimization plugin named IbexOpt [Trombettoni et al., 2011], [Ninin, 2015]
is detailed in Section 6.3.
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4.6 Conclusion
This chapter introduced the basics of constraint satisfaction problems (Section 4.2) and
constraint programming on intervals (Section 4.3) and tubes by using the interval arith-
metic computation as well as the tube arithmetic and contractors (Section 4.4).

Essential bricks have been developed to deal with specific constraints using atomic
contractors. With HC4 is the classic approach to deal with algebraic constraints, but
monotonic or differential contractors can deal with some functional and differential con-
straints. Afterwards, high level contractors are used to get more accurate results. This
entire process leads to the creation of a chain made of several contractors such as

C∞
(
Cpiecewise (C3, x1, 8) ∩ Clazy

(
C1 ∩ C2, {x2, x4}, 10−2

))
∩ · · · ∩ Cerode(C4, x2, 6)

These chains are more efficient than atomic contractors because they exploit some specific
properties of the interval arithmetic. Nevertheless, it should be underlined that there are
some contrasts between these results and the increase of computation time and of memory
requirements.
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Complex Ordinary
Differential Equations 5

Abandon the urge to simplify everything, to look for formulas and easy answers, and to
begin to think multidimensionally, to glory in the mystery and paradoxes of life, not to be
dismayed by the multitude of causes and consequences that are inherent in each experience
– to appreciate the fact that life is complex.

– M. Scott Peck
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5.1 Introduction
In the previous chapters, some specific methods have been introduced in order to perform
rigorous computation with intervals and tubes. In the problems that are considered,
many constraints are used to bound the feasible domain. From these ones, the algebraic
constraints are treated with the atomic contractor HC4 and the differential constraints are
propagated using the differential contractor that is made of the guaranteed integration
scheme that has been detailed previously. However, the method to take into account
the piecewise differential constraints that are the specificity of the problems that are
considered has not been developed yet. Thus, the objective of this chapter is to detail
such a method as well as to proof that the results provided with the integration algorithm
are guaranteed.

The initial optimization problem that is tackled in this section includes some piecewise
differential equations. Thus, it must be noted that each piece is defined by an Ordinary
Differential Equation (ODE) and that the complexity resides in the fact that all of the
pieces intersect each other at some point.

First, a definition of the piecewise-ODE system and of some metrics are introduced in
Section 5.2. Afterwards, the uncertain time initial value problems (which is a variant of
the initial value problem) are presented along with the process of guaranteed integration
in Section 5.3. Ultimately the guaranteed integration process that is required to solve
piecewise-ODE is discussed and demonstrated in Section 5.4.
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5.2 Piecewise Ordinary Differential Equations
The Piecewise Ordinary Differential Equation systems allow the creation of dynamic
systems that are much more complex than simple ODEs. Thanks to ODEs, the regular
dynamic systems can be described, but the systems that are considered in this thesis
imply that several dynamics could be applied on the same solution along its resolution.
The passage from one dynamic to another is performed on a breaking point.

Many solutions can be applied depending on what is known about the breaking point
to take it into consideration. When the break occurs at an accurate time-step that is
independent of the integration, then multiple ODEs can be used to solve the different
parts of the solution (before and after the breaking point). In the model that has been
introduced at the beginning of the thesis, some complex dynamic systems were presented
that may possess several breaking points. Moreover, these breaking points cannot be
planned out because their creations may differ according to the resolution, the initial
values, the dynamics and the guards the dynamics are paired with.

5.2.1 Definitions

5.2.1.1 Definition: Piecewise-ODE
A piecewise-ODE (also noted p-ODE) is defined as a set of ODEs guarded by logical
expressions cp(t,u(t)) with p = 1, . . . , q Eq. (5.1).

u′(t) =


d1(t,u(t)) if c1(t,u(t))

...
dq(t,u(t)) if cq(t,u(t))

(5.1)

where u ∈ R→ Rn and for all p from 1 to q, dp ∈ R× Rn → Rn and cp ∈ R× Rn → B.

5.2.1.2 Important note:
Systems such as this one Eq. (5.1) are hardly solvable due to their non-continuous behav-
ior: the solution can oscillate between many states (from 1 to q) being driven by several
differential functions and because of the trajectory changes happening at unknown times
(depending on the resolution).

5.2.1.3 Hybrid Systems
The hybrid systems [Ábrahám and Schupp, 2012] are dynamic systems that combines
continuous and discrete dynamic behaviors. They are defined with a state machine in
which each state is paired with a dynamic and a set of transition states that model the
changes from one state to another. These transition states can be controlled with an
external operator, discrete conditions, or the state of the dynamic.

Consequently, the piecewise-ODE that are considered in this thesis correspond to a
specific case of hybrid systems such that
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• the states sp of the automaton are paired with the pieces p ∈ {1 . . . q} of the p-ODE,

• the dynamic applied on each state sp is the dynamic dp of the piece p it is associated
with.

• all the states of the automaton are connected together through transition states
and the state could change from the state si to another state sj when the guard cj
is activated.

The reachability problem1 on hybrid automata is undecidable [Alur et al., 1993]. A lot
of tools and results exist on specific cases of hybrid systems such as timed automata or
linear hybrid automata. Hyson [Bouissou et al., 2012] is a set based simulation tool that
computes a precise simulation, which is not guaranteed, of uncertain systems. DynIbex
[Alexandre dit Sandretto and Chapoutot, 2016a] is able to compute the guaranteed inte-
gration of ODEs and can control, using tools provided by the Ibex framework, that the
solutions stay inside a given box. SpaceEx [Frehse et al., 2011] implements several meth-
ods in order to compute the reachable space for linear hybrid systems. Also, the reachable
space for non-linear hybrid systems can be computed with Flow* [Chen et al., 2012]. In
this chapter an alternative method is presented, which is based on interval and tube
arithmetics, in order to compute the reachable space for peculiar hybrid systems that are
considered in this thesis: piecewise-ODEs.

In the next paragraphs, many metrics and notations are defined in order to simplify
the analysis of p-ODE systems, solutions, theorems and proofs of guaranteed integration.

5.2.1.4 Differential discontinuity in solution of p-ODE
Let u∗ a solution of p-ODEs system. u∗ is a continuous function, but the differential u∗′
of u∗ is not necessarily continuous if several dynamics are involved on [t0; tf ]. Let dp1 ,
dp2 two of the dynamics involved by u∗ and tj a transition time-step such that at tj − ε
the first dynamic dp1 is considered Eq. (5.2), and then at tj + ε the second one is used
Eq. (5.3).

u∗′(tj − ε) =ε→0 dp1(tj − ε,u∗(tj − ε)) (5.2)
u∗′(tj + ε) =ε→0 dp2(tj + ε,u∗(tj + ε)) (5.3)

As a consequence, if the values of the functions dp1 and dp2 are not equal when ε tends
to 0

dp1(tj − ε,u∗(tj − ε)) 6=ε→0 dp2(tj + ε,u∗(tj + ε))

then the differential of u∗ is not continuous at tj

u∗′(tj − ε) 6=ε→0 u∗′(tj + ε)
1The reachability problem which is a central problem in hybrid-system verification is to decide if

there exists an execution of the automata from a given initial location l0 to a given final location lf
[Raskin, 2011].
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Nevertheless, the left differential that leads to tj (dp1) and the right differential which
starts from tj (dp2) are well known. Therefore the differential dp1 (resp. dp2) can still
be used to integrate u∗ to tj (resp. from tj) using the continuity property of u∗.

lim
ε→0

u∗(tj − ε) + ε× dp1(tj − ε,u∗(tj − ε))

= lim
ε→0

u∗(tj + ε)− ε× dp2(tj + ε,u∗(tj + ε))

= u∗(tj)

(5.4)

5.2.1.5 Definition : Validity Domain of Dynamics
In case of p-ODEs, the validity domain of each piece p from 1 to q is noted Vp. The set
Vp ⊆ R× U is defined by the guard cp that is linked with the dynamic dp.

Vp = {(t,u) ∈ Tp × U | cp(t,u(t))} (5.5)

where Tp is the validity time domain of the piece p. The set of functions u ∈ U such as
u(t) is within the boundaries of the validity domain of the piece p is noted V tp (t ∈ Tp).
In that sense, the guard that is associated with the piece p on the function u at time-step
t is active.

V tp = {u ∈ U | (t,u) ∈ Vp}

This notation is extended with quantifiers and interval time-steps so as to get V∃Tp and
V∀Tp with T ⊆ Tp. It defines two sets of unary-functions u ∈ U .

V∃Tp = {u ∈ U | ∃t ∈ T , (t,u) ∈ Vp} =
⋃
t∈T
V tp

V∀Tp = {u ∈ U | ∀t ∈ T , (t,u) ∈ Vp} =
⋂
t∈T
V tp

Choice is made that the evaluation of the validity domain Vp on a piece p at a time-step
t ∈ Tp and a set of time-steps T ⊆ Tp are defined as below.

Vp(t) =
⋃

u∈Vt
p

u(t) and then Vp(T ) =
⋃
t∈T
Vp(t) (5.6)

On Figure 5.1 several curves are drawn, they represent unary functions from U . The
blue area at the top of the figure defines the validity domain V1 whereas its complement
is the validity domain V0. The gray vertical domain represents a set of time-steps T .
According to this domain, the two functions u1 and u2 (green curves at the top) are
elements of the set V∀T1 , the function u3 (black curve on the middle) is an element of the
set V∃T1 and the solution u4 (red curve at the bottom) is out of the validity domain V1
over T .

5.2.1.6 Remark
Let u∗ a solution of a p-ODE system, and Tp the set of values such that u∗ ∈ V∀Tp

p , then

∀t ∈ Tp, u∗(t) ∈ Vp(t) (5.7)

and for all t ∈ Tp, the solution u∗ is driven by the dynamic dp.
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Figure 5.1: Validity domains V0 and V1 of dynamics

5.2.1.7 Definition : Pieces used by a solution
A solution u∗ of the p-ODE uses one and only one dynamic at a time-step t. The
dynamic that is used respects the validity domains. The main difficulty is to deal with
non continuous states and to guarantee the numeric computation with tubes and intervals.
This is why the times t − ε and t + ε around t are considered. Let u∗ a solution of a
p-ODE system, then the piece used by u∗ at time t to reach u∗(t − ε) (resp. u∗(t + ε))
is noted Bt−u∗ (resp. Bt+u∗), with ε > 0, ε→ 0:

Bti−u∗ = p ∈ {1 . . . q} such that


v(ti) = u∗(ti)

v(ti − ε) = u∗(ti − ε) ε > 0, ε→ 0
v′(t) = dp(t,v(t)) ∀t ∈ [ti − ε; ti]

u∗ ∈ V∀[ti−ε;ti]p

(5.8)

Bti+u∗ = p ∈ {1 . . . q} such that


v(ti) = u∗(ti)

v(ti + ε) = u∗(ti + ε) ε > 0, ε→ 0
v′(t) = dp(t,v(t)) ∀t ∈ [ti; ti + ε]

u∗ ∈ V∀[ti;ti+ε]p

(5.9)

By extension, the set of pieces used by u∗ on the interval [t1; t2] defines B[t1;t2]
u∗ :

B[t1;t2]
u∗ =

⋃
t∈[t1;t2[

Bt+u∗ =
⋃

t∈]t1;t2]
Bt−u∗ (5.10)

The obstacle is to guarantee the integration process of the solution u∗ on time windows
[t1; t2] such that B[t1;t2]

u∗ contains several pieces.

5.2.1.8 Definition : (ε-)Boundary of validity domain
For p-ODEs, F εp defines the ε-boundary of the validity domain Vp for each dynamic dp.
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The set F εp ⊆ Vp is defined as below :

F εp =
{

(t,u) ∈ Vp
∣∣∣∣∣ ∃k ∈ Rn+1,

|k| < ε

(t,u) + k 6∈ Vp

}
(5.11)

When ε is close to 0, the ε-boundary F εp defines the boundary Fp of Vp.

F εp =ε→0 Fp (5.12)

5.2.1.9 Definition : Sets of Transition Times and States
Let p1 and p2 two different pieces from the p-ODE Θ. The set of transition times between
several pieces is noted T∇ (and Tp1∇p2 between p1 and p2). Similarly, the set of transition
states is noted U∇ (and Up1∇p2).

U∇ = {u ∈ U | ∃t ∈ T∇, (u, t) ∈ Vp1 ∩ Vp2} (5.13)
T∇ = {t ∈ Tp1 ∩ Tp2 | ∃u ∈ U∇, (u, t) ∈ Vp1 ∩ Vp2} (5.14)

5.2.1.10 Definition : Guards Disjunction (Partial and Total)
Let Φ a piecewise ODE. The total disjunction between the two dynamics di, dj is qualified
by the empty intersection of their validity domains Vi with Vj.

Vi ∩ Vj = ∅

The domains are totally disjointed: the dynamic from one domain cannot reach the other
domain. The guaranteed integration method previously described can be used separately
on each dynamic. The partial disjunction has more subtlety to it because the dynamics
must share a common set of validity domains. Then the intersection of Vi with Vj exists
and is contained within the boundaries of the validity domains Fi and Fj Eq. (5.15).

Vi ∩ Vj ⊆ Fi ∩ Fj (5.15)

These definitions can be extended to sets of multiple dynamics when applied on all distinct
pairs of dynamics.

On the opposite, guards can intersect each other inside a volume that is larger than
their respective frontiers. For example, let Φ the following piecewise ODEs system Eq.
(5.16) with two dynamics d1, d2:

u′(t) =
{

d1(t,u(t)) if u(t) ≤ 10
d2(t,u(t)) if 0 ≤ u(t)

(5.16)

Then a state set of the system can induce more than one dynamic because of the non-
disjointed guards. The set of pairs (t,u(t)) such that 0 ≤ u(t) ≤ 10 represents all
the states thus making both of the dynamics valid simultaneously while the respective
frontiers are u(t) = 10 for the first piece and u(t) = 0 for the second one.

These intersections on guards are critical points since the solution goes from one
dynamic to another. Sometimes the breaking point is uncertain and many dynamics may
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therefore be valid in theory (although in reality only one dynamic at a time is valid). The
behavior of the dynamics is important and many situations may happen. This situation is
used to model physic states whose limits are known with a limited accuracy. For example
the limit between the atmosphere and the empty space is not clearly defined, also the
limit between the hydrosphere and the atmosphere is moving in many areas because of
waves and is unpredictable. However these environments can be bounded: at a level of 15
meters above the average level of the ocean it is the atmosphere, on the contrary at a level
below -15 meters it is the hydrosphere, between these two extrema the environment is
uncertain and both environments have to be considered in order to guarantee the position
of an object that falls down into the ocean.

5.2.1.11 Definition : Cooperation of the dynamics
The term cooperative is used to describe a consistent global behavior that is shared by
many dynamics of a piecewise ODE Φ, over a period of time T∇ and a set of solutions
U∇ ⊆ U . Let Ho a subset of dynamics extracted from the piecewise ODE Φ and di
another dynamic from Φ. The set Ho is cooperative with di on T∇ × U∇ if and only if:

• All the dynamics dj ∈ Ho are purgative, that is to say they drive all the solutions
u ∈ U∇ out of their domains Vj over t ∈ T∇.

∀(t1,u) ∈ Vj ∩ (T∇×U∇), ∃(t2,v) ∈ T∇×U ,


t1 ≤ t2

∧ (t2,v) 6∈ Vj
∧ v′(t) = dj(t,v(t))
∧ v(t1) = u(t1)

 (5.17)

• The dynamic di is conservative and keeps all the solutions u ∈ U∇ in its domain Vi
over t ∈ T∇.

∀(t1,u) ∈ Vi ∩ (T∇×U∇), @(t2,v) ∈ T∇×U ,


t1 ≤ t2

∧ (t2,v) 6∈ Vi
∧ v′(t) = di(t,v(t))
∧ v(t1) = u(t1)

 (5.18)

5.2.1.12 Cooperative dynamics (Fig. 5.2):
Cooperative dynamics guarantee that the solutions u∗ that are elements of U∇ go from
one dynamic to another on the time window T∇. The complexity of this situation comes
from the bounding of the time window T∇ to get an upper bound of the time to end the
integration with d1 and a lower bound of the time to begin the integration with d2.

5.2.1.13 Competitive dynamics – Conservative vs Purgative (Fig. 5.3):
Competitive dynamics can induce distinctive situations that depend on the conservative
or the purgative behavior of these dynamics:

• When all the dynamics are conservative, the solutions from each piece stay inside
the validity domain of this piece (Fig. 5.3a).
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Figure 5.2: Cooperative dynamics

• When all the dynamics involved drive the solutions out of their domains (purgative),
the solutions will follow the intersection between the guards in play (Fig. 5.3b).

(a) Conservative (b) Purgative

Figure 5.3: Competitive dynamics

As a consequence, the guaranteed integration can diverge largely depending on the set of
solutions (Fig. 5.4) and because of the over-approximation when the enclosure is led to
intersect several pieces. Starting from the set of transition times, more than one dynamic
might have to be considered at each time-step. In order to get tinier enclosures when it
happens, multi-tubes are used to bound solutions.

In the previous paragraphs several cases (cooperative and competitive) have been
developed. On these examples the domains V1 and V2 are partially disjointed, meaning
that the intersection between the domains is contained inside the intersection of their
frontiers F1 ∩ F2.
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Figure 5.4: Conservative dynamics on a set of solutions

A more complex case has to be considered: the existence of non-disjointed guards
when the domains V1 and V2 intersect one another outside of their frontiers F1 and F2
(Fig. 5.5). Although it is mathematically impossible for a state u∗(t) ∈ [u](t) to have
multiple differential values at a given time-step t in T∇, in such a situation it is necessary
to take into account all the plausible dynamics in order to guarantee that the enclosure
computed encloses all the solutions.

Figure 5.5: Set of solutions of a p-ODE with non-disjointed guards in a cooperative
situation

For example, when in a transition time window T∇ that implicates two dynamics
d1 and d2, all of the possibilities have to be taken into account for all the couples of
time-steps (t1, t2) in T 2

∇:

• d1 at time t1 ∈ T∇ and t2 ∈ T∇
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• d2 at time t1 ∈ T∇ and t2 ∈ T∇

• d1 at time t1 ∈ T∇ and d2 at time t2 ∈ T∇

• d2 at time t1 ∈ T∇ and d1 at time t2 ∈ T∇

In a situation such as this one, when the dynamics are cooperative (or competitive and
purgative), the solutions remain enclosed in a relatively tiny enclosure that depends on
the size of the intersection of the validity domains V1 ∩ V2. On the opposite, the set of
solutions becomes dramatically huge in case of competitive and conservative dynamics.

5.2.1.14 Reduction through non-piecewise ODE systems with additional con-
straints
This paragraph is a theoretical consideration about the characterization of an exact so-
lution u∗ on [ti, ti+1] of a partially disjointed n-dimensional first-order p-ODE system Θ
defined by q pieces Eq. (5.19) from a single initial value Eq. (5.20):

∀t ∈ [ti; ti+1], u′(t) =


d1(t,u(t)) if c1(t,u(t))

...
dq(t,u(t)) if cq(t,u(t))

(5.19)

u(ti) ∈ [ui] (5.20)

where for each piece p, dp is continuous and has first order partial derivatives on [ti; ti+1].
If a piece p exists such that the solution u∗ is exclusively driven by the dynamic dp from
ti to t∇ ∈ [ti; ti+1], then u∗ is also a solution of the classic ODE system:

∀t ∈ [t0; tf ], u′(t) = dp(t,u(t)) (5.21)
u(t0) ∈ [u0] (5.22)

with the additional constraint:

t0 = ti ∧ tf = t∇ ∧ [u0] = [ui] ∧ ∀t ∈ [t0; tf ], cp(t,u(t)) (5.23)

The solution u∗ of the p-ODE from t0 to tf can then be considered as a succession of
solutions of several ODEs. The guaranteed integration of the IVP Eq. (5.21) and (5.22)
with these additional constraints Eq. (5.23) is also a part of the guaranteed integration
of the p-ODE IVP Eq. (5.19) and (5.20) because uncertainty reside in the value of t∇
and ti when it comes from a previous dynamic.

In this section piecewise-ODE and some metrics (validity domains V , frontiers F ,
cooperative dynamics...) were introduced. The guaranteed integration process on such
dynamic systems is described in the next sections. The first section will consider Un-
certain Time Initial Value Problem on ODE (ODE-UTIVP), a more global ODE-IVP
system (with a single piece, not a piecewise ODE) with a variation about the initial value
and a resolution strategy that consists in a reduction towards a classic ODE-IVP system.
Then, this reduction will be used in the resolution process of piecewise-ODE.
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5.3 Uncertain Time Initial Value Problems
This section is dedicated to the definition and the resolution of more generic cases than
IVPs previously introduced. ODE systems are considered, with an initial value which
is contained in an interval. The specificity of this problem is that the initial time on
which the initial value is valid is also uncertain and is contained in an interval. In the
context of this thesis the main advantage of this model is that it can be used to solve
piecewise-ODEs. Moreover, this model still possesses some other positive aspects, such
as its robustness when it comes to integrate ODEs with guarantees - an approximation
over the time-step of the initial value thus being a loss of guarantee. Consequently, an
interval value to enclose the initial time-step is an efficient way to get the guarantee back.

5.3.1 Integration

5.3.1.1 Definition : Uncertain Time Initial Value Problem
The initial value problem Eq. (3.7) is extended with uncertain time over the initial values
enclosure Eq. (5.25). The system is modeled as below:

∀t ∈ [t0; tf ], u′(t) = d(t,u(t)) (5.24)
∃t ∈ [t0; tk], u(t) ∈ [u0] (5.25)

where t0 ≤ tk ≤ tf . Then the initial value u0 ∈ [u0] exists at a time-step t ∈ [t0; tk]. Note
that many pairs (t,u0) are equivalent and lead to identical solutions u∗.

The resolution process (guaranteed integration) of the ODE-UTIVPs is based on the
resolution of the ODEs as previously detailed. The trick is to build an ODE-IVP from
the ODE-UTIVP. The next paragraphs describe the reduction method.

5.3.1.2 Reduction from the Uncertain Time IVPs to the IVPs
In order to get an IVP from an uncertain time IVP, one should first focus on the peculiar
case of UTIVP in which tf = tk.

∀t ∈ [t0; tk], u′(t) = d(t,u(t)) (5.26)
∃t ∈ [t0; tk], u(t) ∈ [u0] (5.27)

Theorem 5.3.1 (Extension of the Picard operator)
Let u∗ a solution of the system and ti in [t0; tk] such that u∗(ti) ∈ [u0]. Let [ũi]+ an
interval vector such that [u0] ⊆ [ũi]+. A new Picard operator is defined where the time-
step bounds are larger than the original ones.

Φ+([ũi]+) = [u0] + [0; tk −↑ t0][d]([t0; tk], [ũi]+) (5.28)

The operator that is defined this way has the same properties than the original one. If
Φ+([ũi]+) ⊆ [ũi]+ then

1. The system Θ with the initial value u(ti) ∈ [u0] has a unique solution u∗ on [ti, tk].
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2. The box Φ+([ũi]) is an enclosure of u∗ on [ti, tk] with respect to u∗(ti) ∈ [u0].

The application of the operator Φ+ allows to build and find an enclosure of the solution
u∗ on [ti; tk] for all ti in [t0; tk].

5.3.1.3 Proof
Using the classic Picard operator Φ that is defined in Chapter 3,

Φ([ũi]+) = [u0] + [0; tk −↑ ti][d]([ti; tk], [ũi]+)

it is known that if Φ([ũi]+) ⊆ [ũi]+ then Φ([ũi]+) is an enclosure of u∗ on [ti; tk]. Using
the interval inclusion Eq. (5.29) and (5.30) and the monotonicity inclusion properties of
interval arithmetic, it can be proven that Φ([ũi]+) ⊆ Φ+([ũi]+):

[0; tk −↑ ti] ⊆ [0; tk −↑ t0] (5.29)
[ti; tk] ⊆ [t0; tk] (5.30)

Φ([ũi]+) ⊆ [uk] + [0; tk −↑ t0][d]([t0; tk], [ũi]+) = Φ+([ũi]+) (5.31)

If an interval vector [ũi]+ is found such that Φ+([ũi]+) ⊆ [ũi]+, then Φ+([ũi]+) is an
enclosure of Φ([ũi]+) which is an enclosure of u∗ on [ti; tk].

5.3.1.4 Generalization
Although tk 6= tf in the general case, an enclosure of the solution can be integrated
from the restriction to tf = tk. Indeed, the enclosure Φ+([ũi]+) of the solution can be
computed from any ti in [t0; tk] to tk with the operator Φ+. This enclosure guarantees
that the solution is enclosed in Φ+([ũi]+) at tk. Thus, the classic IVP defined as below
can be solved.

∀t ∈ [tk; tf ], u′(t) = d(t,u(t)) (5.32)
u(tk) ∈ [ũi]+ (5.33)

The difficulty is that the time-step [t0; tk] can be large and the stepsize should not be
decreased in order to guarantee the enclosure. Therefore the enclosure Φ+([ũk]+) cannot
be computed or, when computed, is irrelevant and should not be used as an initial value
at tk to define the classic IVP. In order to face this issue, one could divide the time window
[t0; tk] into a set of intervals [tk1 ] . . . [tkn ] with tk1 = t0, tki

= tki+1 and tkn = tf that defines
several UTIVPs. They can be solved separately and then merged into a single enclosure
using the classic integration scheme from each tki

to tf .
In this section, a method to compute the guaranteed forward integration of UTIVPs

has been detailed. Similarly, in case of backward integration, the Picard operator Φ−
can be defined.
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5.4 Guaranteed Integration of Piecewise ODEs
Piecewise ODEs can be solved thanks to the previous results. Indeed the guaranteed
enclosure of the solution is reached when all the possible dynamics are visited. However,
in the case where a single piece is used, the resolution of a p-ODE can be reduced to the
guaranteed integration of an ODE. Otherwise, when more than one piece are involved, the
resolution is more complex because there are transitions from one dynamic to another.
When situated outside of these transitions areas, the resolution of a p-ODE is equivalent
to the integration of a classic ODE. Therefore, what matters the most in this context
and that will be dealt with in the following paragraphs is the resolution of the p-ODEs
through the specific treatment of the transition areas.

5.4.1 The relationship between ODE, UTIVP and p-ODE
The relation resides in the strategy that is used to solve p-ODEs. Solving the p-ODEs
begins with the resolution of the ODEs that correspond to the pieces that were enabled
by the initial value. For each one of those pieces, as long as their dynamics are enabled
by the guard they are associated with, the integration process goes on. At the end of the
resolution of each piece, the intersections between the solutions and the other domains
are computed. The results of the non-empty intersections have to be considered as initial
values to the other dynamics involved. These new initial values are uncertain time initial
values.

On Figure 5.6a, the solution of a p-ODE is driven by the two dynamics d1 and d2,
with the respective validity domains V1 and V2.

The enclosure computed exclusively using the first branch d1 is not guaranteed to be
a safe enclosure of the solution of the p-ODE on [t0; tf ] (Fig. 5.6b). However, the global
enclosure [ũ0] is a safe enclosure of the solution as far as the first dynamic on [t0; t1], [u0]
at t0 and [u1] at t1 is considered. On the contrary, the solution is clearly not enclosed
in [ũ1] on the second time window [t1; t2] and only a part of the solution (the one using
the first dynamic d1) is guaranteed to be enclosed on the interval [t1; t∇] where t∇ is the
transition time. It can be noted that although the second part that is driven by d2 is
partially enclosed, the enclosure is not guaranteed and the enclosure [u2] at t2 does not
contain the solution.

The main difficulties lie in knowing how to compute the crossing time of the boundary
and in knowing which new initial value must be used in order to compute a second
enclosure of the solution driven by the second dynamic d2. The example that is developed,
is deliberately easy because it has only one crossing time (and not a set of those) and a
punctual value u∗(t∇). However simple it may look it has no effect on the complexity of
the solving process since tubes are used to enclose the solution.

The solution developed in this thesis is to consider the enclosure [ũ1] as an uncertain
time initial value [u2] that would initiate the integration with the second dynamic d2
(Fig. 5.7a). From this UTIVP, a new bounding box can be computed using the second
dynamic d2 over the time window [t1; t2] (Fig. 5.7b). A new and classic initial value
problem is built using the bounding box [ũ2] as the initial value [u3] at time-step t2 (Fig.
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(a) Solution (b) Classic Integration (c) Contraction

Figure 5.6: integration of a piecewise ODE - classic integration

5.7c). Now the guaranteed integration method that was described previously can be used
from (t2, [u3]) to t3.

(a) Initial Value [u2] with
uncertain time [t1; t2]

(b) Global Enclosure [ũ2] on
[t1; t2] from the initial value

[u2] with uncertain time [t1; t2]
via the dynamic d2

(c) Final Value [u3]

Figure 5.7: computing the new initial value

5.4.2 Issues
The integration process that was developed seems to be sufficient enough to compute a
guaranteed integration of piecewise-ODEs. However, it appears that the process is not
reliable enough. Indeed, as depicted on the set of Figures 5.7, a piece of the uncertain
time initial value [u2], as well as a piece of the global bounding box [ũ2] and of the initial
value [u3] intersect the domain V1. Moreover, this method does not guarantee that the
solution does not return from the second dynamic d2 to the first one d1. This critical
issue underlines how necessary the following theorem is; It guarantees the enclosure of
the solution along the integration even when the solutions go back and forth over several
dynamics.
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The theorem requires to build several uncertain time initial values, one for each piece
that is involved in the transition. All these pieces must meet specific requirements over
these uncertain time initial values and the results of the Picard operator each piece is
associated with.

Theorem 5.4.1 (Global enclosure for p-ODEs on transition time windows)
Let Θ a n-dimensional first-order p-ODE system defined by q pieces where for each piece
p, dp is continuous and has first order partial derivatives on [ti] = [ti; ti]. Let [ui] an
enclosure of the initial value of the solution u∗ on the same uncertain interval [ti].

u′(t) =


d1(t,u(t)) if c1(t,u(t))

...
dq(t,u(t)) if cq(t,u(t))

∃ti ∈ [ti], u∗(ti) = ui ∈ [ui]

Let the set of initial values {[ui]1 . . . [ui]q} consistent with each piece p:

∀p ∈ {1 . . . q}, [ui]p = [ui] ∩ Vp([ti]) (5.34)

Let {[ũi]+1 . . . [ũi]+q } a set of q interval vectors. For each piece p, the Picard operator noted
Φ+
p is defined as:

Φ+
p ([ũi]+p ) =

(
[ui]p + [0; ti − ti][dp]([ti], [ũi]+p )

)
∩ Vp([ti]) (5.35)

where [dp] is an interval extension of dp.
If the following conditions are satisfied

∀p ∈ {1 . . . q}, Φ+
p ([ũi]+p ) ⊆ [ũi]+p (5.36)

∀(p1, p2)p1 6=p2 ∈ {1 . . . q}2, Φ+
p1([ũi]+p1

) ∩ Vp2([ti]) ⊆ [ui]p2 (5.37)

then [ũi]+ is an enclosure of u∗ on [ti; ti], provided the solution exists, where [ũi]+ is
defined as below.

[ũi]+ =
⋃

p∈{1...q}
Φ+
p ([ũi]+p ) (5.38)

5.4.2.1 Proof:
Let ti and tj in [ti] = [ti; ti] with ti ≤ tj. Let u∗ a solution on [ti] of a p-ODE system Θ.
From the proof 5.3.1.3, it is known that for all the pieces p, if

u∗(ti) ∈ [ui]p (5.39)
∀t ∈ [ti; tj[, u∗′(t) = dp(t,u∗(t)) (5.40)

then Φ+
p ([ũi]+p ) encloses u∗ on [ti; tj]. In particular Φ+

p ([ũi]p) encloses u∗(tj):

u∗(tj) ∈ Φ+
p ([ũi]+p ) (5.41)
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Two cases have to be considered depending on the value of tj, tj = ti and tj ≤ ti.
In the first case, when tj is equal to ti the solution u∗ is enclosed by Φ+

p ([ũi]+p ) ⊆ [ũi]+
on [ti; ti].

In the second case, considering tj < ti, let ε > 0, then at the time-step tj the following
property is achieved:

u∗′(tj − ε) =ε→0 dp(tj,u∗(tj)) 6=ε→0 u∗′(tj + ε) (5.42)

Since u∗ is a solution on [ti], it exists on [tj; ti]. Then a piece r 6= p exists in the set
{1 . . . p− 1, p+ 1 . . . q} with (tj,u∗) ∈ Vr such that

u∗′(tj + ε) =ε→0 dr(tj,u∗(tj)) (5.43)

It is known from (tj,u∗) ∈ Vr that u∗(tj) ∈ V tjr (tj) ⊆ V [ti]
r ([ti]) and from Eq. 5.41 that

u∗(tj) ∈ Φ+
p ([ũi]+p ). Ultimately, once the theorem condition Eq. (5.37) is applied on the

pieces p and r it is known that

Φ+
p ([ũi]+p ) ∩ V [ti]

r ([ti]) ⊆ [ui]r (5.44)
u∗(tj) ∈ [ui]r (5.45)

Then u∗ is enclosed by [ũi]+ on [ti; ti].
Similarly, following the same steps it can be proven that u∗ is enclosed by [ũi]− on

the time windows [ti; ti].

5.4.3 Improvements
In order to integrate the output dynamics, the uncertain time initial value should be the
tiniest one. Indeed, when it is not tiny enough then the enclosure could quickly explode
and the final enclosure could be irrelevant. Several methods can be used together.

1. First, the presence of another domain V2 can be used to contract the tube so as
to get a tinier enclosure. Because of its inconsistency with the domain V2, a part
of the tube enclosing the solution driven by the first dynamic d1 can be removed
(Fig. 5.6c).

[ũi]← [ũi] ∩ V1

2. Second, it has to be noted that the enclosure [u2] that is associated with the first
dynamic d1 does not exist at t2 anymore. This is an important piece of information;
it implies that the solution that is only driven by d1 necessarily crosses the guard,
and does not exist at t2. Then the time-step can be reduced to decrease the size of
the box along the time dimension.

3. Once the global enclosure is contracted, the uncertain time initial value can also be
contracted using the inconsistency argument with the original domain V1.

[ui+1]← [ũi] ∩ V2
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4. Finally, a complementary method can be used on the uncertain time initial value
[ui+1] and the time window [t1; t2]: the SIVIA algorithm. It returns a set of uncer-
tain time initial values. The uncertain time initial value [ui+1] is subdivided into
several boxes that enclose the frontier. These boxes are the uncertain time initial
values which are used to continue the integration with the second dynamic d2 that
is associated with the domain V2.

On Figures 5.8, there is a global bounding box [ũi] which is computed from an initial
value [ui] at time-step ti and that is contracted with the previous improvements (1 and
2) over the time window [ti; ti+1] (Fig. 5.8a). Then an uncertain time initial value is
computed (Fig. 5.8b) from this bounding box thanks to the contraction process detailed
in the third improvement. Finally the SIVIA algorithm refines the uncertain time initial
value (Fig. 5.8c) and a large part of the uncertain time initial value is removed and not
taken into account to continue the integration.

(a) Global enclosure [ũi] (b) Contraction of UTIVP (c) SIVIA

Figure 5.8: Refinement of the UTIVP with contraction and SIVIA

5.4.4 Limitations
This theorem guarantees that the enclosure computed safely encloses the solutions of
p-ODEs from a set of uncertain time initial values [ui]p on a time window [ti; ti]. Unfor-
tunately its impact is limited in practice because of the over-wrapping interval arithmetic
properties. Therefore, the theorem can only be used to prove the guarantee of an enclo-
sure when the conditions are respected. However, such enclosures appear to be difficult
to find (with the exception of the infinite enclosure ]−∞;∞[n of Rn). This limitation is
drawn on Figures 5.9.

On the first figure (Fig. 5.9a) a bounding box [ũi]′ is computed by using the second
dynamic d2. It is computed from the uncertain time initial value [ui]′ over the time
window [ti; ti+1]. In the bounding box [ũi]′, a part of the enclosure is in the domain V1.
Then, a new uncertain time initial value [ui](2) is built (Fig. 5.9b) that replicates the
process with the first dynamic. Using the first dynamic, a new bounding box is computed
[ũi](2) (Fig. 5.9c). A part of this bounding box goes back in the second dynamic and is
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(a) Integration with d1 from [ui]′ (b) New uncertain time initial value [ui](2)

(c) Integration with d2 from [ui](2) (d) New uncertain time initial value [ui](3)

Figure 5.9: Growth of the uncertain time initial value

not included in the uncertain time initial value [ui]′ that was previously used to compute
the integration with the second dynamic. As a consequence, the theorem cannot be
applied, and a new integration must be computed with the second dynamic d2 on a
larger uncertain time initial value [ui](3).

Thus, the number of returns allowed by the solutions in each dynamic must be con-
trolled and is defined with a limit l. This aims to avoid an infinite enclosure and to
limit the computation time that is required by the algorithm. The assumption that is
made about the limit l allows the creation of a guaranteed enclosure of all the solutions
of a p-ODE system with an uncertain time initial value. Indeed, it is now made possible
because all of the solutions that are enclosed can oscillate between the same dynamics l
times at most. The cooperative systems can be solved with guarantee by assigning the
value 1 to l; similarly, by choosing a larger value l some non-cooperative systems can be
dealt with.
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5.5 Conclusion
In this chapter the guaranteed integration of piecewise ordinary differential equations (p-
ODEs) has been presented. In the first section (Section 5.2) specific mathematical objects
have been defined such as the validity domains V or the frontiers F of the dynamics. These
objects were used to detail the problematic of the guaranteed integration of p-ODEs that
come from the dynamics engaged and their validity domains that can be disjointed or not.
Dynamics can be conservative or purgative in regards to their behaviors and their validity
domains. When they are linked one another in a p-ODEs, the global behavior is induced
by the properties of each dynamic and the system can be cooperative or competitive.

In the second section (Section 5.3), the uncertain time initial value problem (UTIVP)
that is an extension of the initial value problem presented in Chapter 3 has been intro-
duced. A reduction toward the initial value problem has been detailed through the use
of an extension of the Picard operator.

In the last section (Section 5.4), a guaranteed integration algorithm has been devel-
oped on piecewise-ODE. This algorithm is based on the algorithm previously detailed in
Chapter 3 with a specific treatment of the areas defined by the intersection of the different
validity domains. Consequently, a new theorem has been developed and proved, that is
based on the extension of the Picard iterator defined in Section 5.3. The practical limits
of this theorem have been discussed, and a limited version has been presented with some
improvements such that the use of the SIVIA previously presented at the end of Chapter
4.

The precision of the enclosures computed by the method presented in this chapter
is limited by the tube representation (piecewise interval functions) used to guarantee
the enclosure of solutions. The size of the enclosures may be reduced using alternative
representations:

• Affine Arithmetic instead of Interval Arithmetic
(see DynIbex [Alexandre dit Sandretto and Chapoutot, 2016a])

• Piecewise Taylor Models (based on the Interval Arithmetic) instead of Piecewise
Interval Functions (see Flow* [Chen et al., 2012])
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Application to the
Optimization 6

Effectiveness is doing the things that get you closer to your goals. Efficiency is performing
a given task (whether important or not) in the most economical manner possible. Being
efficient without regard to effectiveness is the default mode of the universe.

– Timothy Ferriss
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APPLICATION TO THE OPTIMIZATION 6.1

6.1 Introduction
The performance is an important aspect in our society. The optimization allows to get
better results in a system, without any evolution of its model. The optimization is an
important part of many industrial processes, it consists in being smarter and using tricks
in order to get the full potential of the system.

The optimization process is a complex method that is used to find the best parameters
inside a range of values. The range of values can be explicitly or implicitly described. In
the second case, the process becomes more complex because of a subproblem to solve in
order to get the explicit range of values.

This chapter is organized as follows: in Section 6.2, the optimization problem is
defined. In Section 6.3 a deterministic global optimization algorithm that is guaranteed
is detailed and its limits are discussed. Finally, in Section 7, the optimization algorithm
is applied on several examples, as well as the guaranteed integration method that has
been developed in Chapter 5.
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6.2 Optimization Problems
A continuous optimization problem is composed of a real function fcost which has to be
minimized over a set of variables x.

minx∈Dxfcost(x) (6.1)

where:
- x = (x1, . . . , xn) are the decision variables
- fcost : Dx ⊆ Rn → Rm is the cost function
- Dx is the feasible domain

6.2.1 Local and Global Minima
An optimization problem is solved when a global minimum x∗ in the set of all the feasible
domain Dx is found. Such a process is difficult because there are numerous of elements
in Dx (an infinite number if Dx ⊆ Rn) and because of the function fcost’s irregularity
(non-linearity, non-convexity) in which a large number of local minima exist.

6.2.1.1 Definition: Local minimum
The value x ∈ Dx ⊆ Rn is a local minimum of the function fcost over Dx when the
following condition is valid:

∀y ∈ Dx ∩ V , fcost(x) ≤ fcost(y) (6.2)

where V is an open subset containing x.

6.2.1.2 Definition: Global minimum
The value x ∈ Dx ⊆ Rn is a global minimum of the function fcost over Dx when

∀y ∈ Dx, fcost(x) ≤ fcost(y) (6.3)

6.2.2 Single objective vs. multi-objectives
In order to take different quantities into account, the cost function fcost may take mul-
tiple forms: the single objective form or the multi-objective form. The majority of the
industrial problems are expressed through multi-objective cost functions because of the
conflicting criteria which have to be optimized.

6.2.2.1 Single and multi-objective problems
The evaluation of the cost function fcost returns a value in Rm. Then the optimization
problem gets either one best value (m = 1) or a set of values which cannot be compared
pairwise (m ≥ 2). The set that contains the best values is known as the Pareto set.
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6.2.2.2 Definition : Domination
Let x1 and x2 two elements in Dx. The first element x1 dominates the second x2 through
the evaluation of the cost function fcost when

fcost(x1) ≤ fcost(x2) (6.4)

Since fcost is valued in Rm, it can be detailed

∀i ∈ {1 . . .m}, fcost(x1)i ≤ fcost(x2)i (6.5)

6.2.2.3 Definition : Pareto front
When it is associated to a function fcost, the Pareto frontier is noted Pfcost . It is a set of
non dominated solutions through fcost.

∀x1,x2 ∈ Pfcost , fcost(x1) 6≤ fcost(x2) ∧ fcost(x2) 6≤ fcost(x1) (6.6)

6.2.3 Optimization with regards to constraints
The optimization process of a real function fcost onto a validity domain Dx is a complex
problem which comes from

• the large number of variables,

• the size of the validity domain Dx,

• the large number of local minima.

Usually the feasible domain Dx is not explicitly described and has to be computed
from a set of constraints. The optimization problem consequently becomes even more
complex:

min
x∈Dx

fcost(x) (6.7)

w.r.t. C(x) (6.8)

where C represents the set of constraints.
Many techniques can be used to find the best value x∗ with respect to the set of

constraints C. If C is a set of linear constraints as well as the cost function fcost such that

min
x∈Dx

c.x (6.9)

w.r.t. Ax ≤ b (6.10)

then the simplex algorithm is used to compute the optimal point.
As far as optimization is concerned, many methods exist. Attention should be focused

on the complete search process, because it checks all of the elements in the search area
and finds out those which are feasible and, among them, the ones which are global optima.

It has to be reminded that when the area in which the search takes place contains an
infinite number of elements x, the interval representation is required. This representation
can be associated with branch and bound methods in order to perform optimization.
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6.3 Interval Branch and Bound Algorithm

The interval Branch and Bound algorithm (IBBA) [Messine, 1997], [Messine et al., 2001],
[Messine, 2005] is an algorithm used to find the best feasible values according to an
objective function and a set of constraints. The strength of this method resides in the
fact that it provides a proof of the existence or of the non-existence of a feasible solution
and its optimality.

This method consists in a recursive split and recursive evaluation of the domain by the
objective function. At each iteration the current search space is divided into several parts
which are evaluated afterwards via the objective function that has to be minimized. After
a large number of iterations, the optimal value emerges when the domains considered are
small enough.

The main limitation of this method is that it requires a great amount of memory as
well as a long computation time, which is problematic when the search space is large.
Moreover, in the problem that is tackled in this thesis, because the values are continuous,
the search space may be infinitely split (it depends on the numerical precision used to
represent the values).

The interval branch and bound algorithm can therefore be improved thanks to some
pruning methods. Indeed they would remove the parts of the search space which are
guaranteed not to contain a feasible solution or the optimal solution. An upper bound
over the objective function is updated at each step and decreases all along the process.
When an area of the search space is above the upper bound it can be ignored because
the current solution (that is the current value that minimizes the objective function) is
better than all the feasible solutions that are inside this area.

However, even with this improvement, the method suffers from an exponential com-
plexity that increases with the number of decision variables x and it also requires a lot
of computations in case of complex models with several local optima. A faster conver-
gence towards some feasible domains and solutions can be reached when this algorithm
is coupled with the constraint satisfaction process [Messine, 2004] in which the algebraic,
functional, ODEs and p-ODEs constraints propagators are included. Finally a global
algorithm based on decomposition, contraction, evaluation and pruning is built.

The algorithm is detailed in Algorithm 2. For each step of the IBBA, a node is
selected according to a strategy (depth-first, width-first, best-first...) and bisected in
sub-nodes on the selected dimension (round-robin, largest side...). The sub-nodes are
then contracted using the constraint satisfaction process through two steps. First, alge-
braic constraints are used to filter search domains using hull-consistency methods (HC4)
[Benhamou et al., 1999], because they are fast to compute. If the nodes still contain
some feasible domains then the differential constraints are propagated (Interval based
guaranteed integration). This step costs memory and time computing; they are the main
negative impacts from the methods previously mentioned.

At the end of each iteration, if the node still contains some feasible solutions, a final
step is usually used in the IBBA in order to update the upper bound. This part consists
in finding a feasible solution in the domain described by the node. This local value can
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Algorithm 2 : Optimize(x ∈ X )
1: Node_Collection searchSpace← {createNode(x)}
2: Node_Collection solutions← ∅
3: while searchSpace 6= ∅ do
4: Node_Collection subnodes← cut(extract(searchSpace))
5: for all node in subnodes do
6: contract(node, upperBound(solutions))
7: if unfeasible(node) or isDominated(node, solutions) then
8: subnodes← subnodes \ {node}
9: else
10: searchSpace← searchSpace ∪ {node}
11: Node point← lookForFeasiblePoint(node)
12: if feasible(point) and not isDominated(point, solutions) then
13: searchSpace← removeNodesDominatedBy(searchSpace, point)
14: solutions← solutions ∪ {point}
15: end if
16: end if
17: end for
18: end while
19: return solutions

be computed at the middle of the current area of the search space considered, or it can
be computed randomly inside this area. Computing both feasibility and cost from a
punctual value (and not from an interval vector) limits the over-approximation caused
by Interval Arithmetic; a tinier enclosure is reached. When a feasible solution is found,
it is added to the solution manager which can have many implementations according
to the multi-objective properties (Pareto set, lexicographic, coefficients...). The value of
the objective can also be used to reduce the search space domains, with the intention to
minimize the goal function.

6.3.1 Implementation
In this work, the IBBA has been developed using several components in order to apply
specific strategies to specific problems. The search space is stored inside a root node, and
the algorithm creates sub-nodes from this initial root node. The components are listed
on the following lines.

• The Pareto object is the component that stores the set of optimal solutions. Dif-
ferent Pareto objects are used according to the objective function. On a multi-
objective problems, a Lexicographic-Pareto will have a different behavior that a
(α, β, γ)-Pareto where coefficients are paired with objectives.

• The Contractor is the algorithm that computes the contraction of the nodes ac-
cording to the model. The global contractor is a meta-contractor that is made of
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subcontractors so that each constraint or set of constraints may have a peculiar
contractor. It allows us to treat each constraint specifically. The contractor used
to contract ODEs is different from a contractor for an algebraic constraint.

• The Picker is the component that chooses which node to treat inside the set of
nodes. Each Picker possesses a specific strategy. Largest-Picker selects the node
that has the larger size, Queue-Picker implements a breadth first search algorithm
while Stack-Picker applies the depth-first-search strategy. Also the BestNode-Picker
and WorstNode-Picker select the nodes that have the lowest lower bound and the
highest upper bound depending on the cost function.

• The Cutter is the module that is used to cut the nodes on one dimension. The
Picker can then follow the Round-Robin strategy or it can cut the largest dimension
depending on the strategy.

• The Tracker is the module that tries to find a local solution within the node. The
Middle-Tracker consider the point in the middle of the node while the Random-
Tracker randomly choose a point inside the node. Smarter versions are the Mid-
dleContract and the RandomContract Trackers that use a contractor to reduce the
domains of all the dimensions each and every time a dimension is fixed.

This implementation design is inspired from the IBEX global optimization plugin,
and is useful to develop new modules or meta modules.

6.3.2 IbexOpt plugin
The IBEX library [Chabert, 2007] has been extended with IbexOpt that is a global op-
timization plugin [Trombettoni et al., 2011], [Ninin, 2015] based on the interval branch
and bound that is presented in the last section with several improvements. A robust and
efficient interval linearization that is used to update the lower and the upper bounds is
presented in [Trombettoni et al., 2011] and extended in [Araya et al., 2014]. A filtering
algorithm is detailed in [Sans et al., 2016] that improves the computation of these bounds.
These specific works aim to reduce the search space, thus the computation time of the
algorithm by improving the computation of the lower and the upper bounds. Another
aspect that could have a strong impact on the efficiency of the global algorithm is the
strategy used in the selection node. In [Neveu et al., 2016], because it is necessary to find
a balance between diversification and intensification that is relevant, the authors present
two node selection policies that are based on the upper bound of each node and on the
feasible regions at each node of the best-first search.

6.3.3 Loss of guarantees
Basically, the IBBA is used to guarantee the results of the optimization process. If the
results computed using these algorithms are guaranteed in theory, the overapproximation
of the results with Interval Arithmetic is a fact that should not be neglected and that
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could ruin the guarantee of the results in most situations. The solution is guaranteed
with a certain amount of tolerance towards the constraints. An example of a solution
that is not guaranteed is developed in this paragraph.

Using Interval-based guaranteed integration, the enclosure of the solution of the differ-
ential systems can be computed. In the case of an IVP model, the solution is guaranteed
to exist and thus to be enclosed in a tube afterwards. The initial value problems are
described in our model by an ODE or a p-ODE, and then by an algebraic constraint that
describes the initial value. For such systems, the existence of the solution as well as its
enclosure inside the tube are guaranteed.

However, the situation becomes critical when more than one algebraic constraint
exists on one solution of a differential system (representing a system with multiple initial
values). The reason for this is that the second constraint could remove the part of the
enclosure that contains the solution without generating an inconsistent enclosure (due
to the growing effect from the IA). The step by step integration method suffers from
over-approximation, that is why an enclosure could still exist even though if the solution
is not inside.

For example, on Figures 6.1, two initial value problems are considered with the same
ODE.

u′(t) = d(t,u)
u(t1) ∈ [u1]

and
u′(t) = d(t,u)
u(t3) ∈ [u3]

(6.11)

The first figure (Fig. 6.1a) represents the exact solution of each IVP. In other words, it
represents the minimal tubes that contain all the solutions for each IVP.

(a) Sets of solutions for each IVP of an ODE (b) Non empty enclosure of the multi-IVP of
an ODE

Figure 6.1: Enclosure of an unfeasible solution

Now, taking into consideration a more complex system that would be composed of
the same ODE, then, with the two initial values:

u′(t) = d(t,u)
u(t1) ∈ [u1]
u(t3) ∈ [u3]
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There is no solution since the intersection of the solutions of the previous IVP is empty
and does not exist over [t1; t3]. The problem is that when the interval arithmetic is used
to solve this complex dynamic system, the enclosure could still exist and not be empty
because of the over-approximation (Fig. 6.1b). That is problematic, because this solution
could be considered as feasible in the IBBA, and could be used to prune other areas of
the search space that could contain feasible solutions. At worst, the algorithm could
return a non-feasible solution and consider that it is feasible and optimal. As long as this
remains a possibility, one way to avoid such a situation is not to model complex problems
in which multiple points of the ODE are implied in constraints.

Another issue that involves p-ODEs is, similarly, the over-approximation along the
resolution process. This issue is caused by the existence of totally disjointed guards in the
p-ODEs, which may draw a space with no dynamic. First figure (Fig. 6.2a) represents
the exact solution of a p-ODE from an initial value at t0. Because of the guards that
limit the domain D1 of the first dynamic, the solution does not exist at time-step tf .
However, because of the over-approximation during the guaranteed integration process
(Fig. 6.2b), the enclosure that is computed intersects the domain D2 and an enclosure
of the solution is found at time-step tf . The enclosure is guaranteed and it encloses the
solution of the p-ODE. However the value of the enclosure at time-step tf could be used
in the IBBA to compute the evaluation of the objective function. When this happens,
the enclosure is considered as a feasible solution and is used to update the upper bound,
to prune the other parts of the search space, and could therefore be considered as the
optimal solution.

(a) Set of solutions for the IVP of a p-ODE (b) Non-empty enclosure of the solution

Figure 6.2: Enclosure of an unfeasible solution at tf

It seems the presence of ODEs with algebraic constraints over several time-steps or
p-ODEs with domains that are not assigned to any dynamic may possibly lead to the loss
of the guarantee. The previous cases dealing with the loss of guarantee with ODEs in the
optimization problems may also be found along with the algebraic constraints that link
the same groups of variables. Considering the fact that the main interest of the method
is to certify the feasibility of a solution, and to make that solution optimal, the loss of
the guarantee is a major issue.

However, in practice, this method provides good solutions and is more robust than

page 157 of 214



6.3 APPLICATION TO THE OPTIMIZATION 6.3

the numerical approaches.

As it was stated earlier, and as far as optimization is concerned, this kind of approach
is exponential depending on the number of variables in the system that needs to be
optimized.

The amount of time required to optimize large-sized problems may still be a problem
even when the contraction method is used as well as some smart heuristics to branch on
the variables.

In the recent years, some progress has been achieved. The idea is to tend toward
the creation of some cooperative optimization algorithms, using parallel computing along
with evolutionary algorithms coupled with an IBBA [Vanaret, 2015].
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6.4 Conclusion
In this chapter optimization problems have been introduced with their solutions. A
deterministic algorithm that is an interval extension of the Branch and Bound algorithm
has been presented. Its implementation has been detailed through the use of five modules
that are:

• the solution manager that stores the optimal and feasible solution,

• the global contractor that contracts the domains of the variables,

• the picker that selects the node to treat,

• the cutter that cuts the node in subnodes,

• the tracker that tries to find a local solution.

This implementation inspired by IBEX is an advantage because it allows the user to
design the global optimization that will be adapted to the instance of the model is facing.
Also, new strategies can easily be implemented because it only requires to implement the
module that is concerned.

In this chapter, a relevant paradox has been discussed that is the loss of the guaran-
tee when using interval based guaranteed arithmetics on related constraints which can
be both differential and algebraic constraints, because of the overapproximation of the
interval arithmetic.

Results of numerical tests computed with the optimization tool discussed in this chap-
ter are presented in Chapter 7 on several optimization problems.
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7.1 Introduction
This chapter presents the results of the methods that were previously applied on problems
of various kind. The first result that is detailed is the one of the optimization method.
This method was applied on the design of a constant magnetic engine (as it was defined
at the beginning of this thesis). Afterwards, the results focused on the guaranteed inte-
gration method that was developed to solve piecewise ODEs. At last, the global method
was applied on an optimization problem that contains both algebraic and piecewise ODEs
constraints.

7.2 Optimization of the Constant Magnetic Engine
In this section the solution returned by the proposed optimization tool on the design of
a constant magnetic engine is detailed. After 50000 iterations, the algorithm returns the
following solution, the objective of which is 6.0857.10−4.

Variable Value in the solution
e 1.0076.10−3

la 5.1313.10−3

E 3.5922.10−3

beta 8.0144.10−1

The results of the test are computed within the IBBA as planned below:

• The HC4 contractor provides the contraction at each iteration

• The Largest First picker takes out the node with the largest side from the list of
nodes

• The Round-Robin cutter then splits successively each dimension of the selected
node

Two different strategies are tested to find a feasible solution inside the current node.
The first one of those is the classic IBBA; it tests how feasible the center of the current
node is. The second one is named IBBA+. As soon as the tracker fixes a dimension it
also computes a set of contractions. However it does require more computation time.
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After the 50000-th iterations, 52503 nodes are still waiting on the list of nodes to be
treated in the IBBA+. The updates of the upper bound in both versions of the algorithm
are detailed in Table 7.1.

Iteration Classic IBBA IBBA+
0 8.8458608342810625 10.2152959486188303
1 7.5370391369965011 8.0354003492125149
3 7.5661081382451560
7 7.2275685866515999

16 7.0732293231167245
23 6.8221865383365666 6.6553217552697938
37 6.6507260315448171
55 6.3977628136495173
59 6.5967377277043970

155 6.2655233014983895
188 6.3689039770893586
300 6.2056857181902784
315 6.3455713114835498

1112 6.1632080592304700
1206 6.2333580492079140
1210 6.1225309866000551
1314 6.2020896440044093
7144 6.1082986231933748
1790 6.1911465910313181
7798 6.1747863873140205
7814 6.1416725529062251
9478 6.1071718877779796

10362 6.1380297300968952
13859 6.0980763545317182
14568 6.1377531920707386
20454 6.1312195826489170
42942 6.1180383295963796
43054 6.1058220574739712
44874 6.0857241659314132
49860 6.1054260091690201

Time(s) 46.13 59.05

Table 7.1: Update of the upper bound (10−4) during the optimization depending on the
strategy used to find a feasible solution

As the tracker chooses a value on one dimension, then propagates this value on other
dimensions thanks to the set of constraints, the algorithm is efficient and provides relevant
upper bounds after only a few iterations.

The other side of the coin is that at each iteration, while searching for a feasible solu-
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tion, a large number of contractions is performed, therefore increasing the computation
time. As a consequence the limit of 50000 iterations is reached in only 46s with the classic
IBBA and in 59s with IBBA+.

In this reformulated problem the search for a feasible solution is a difficult problem
and is not required. However, in some more complex problems in which the computation
of a feasible solution is a difficulty, this trick could be relevant. Another strategy could be
to track feasible solutions at the beginning of the optimization process with this robust
strategy and then to use the classic approach by trying the center of the boxes when they
are small enough.

7.3 Guaranteed integration of piecewise-ODE
In this paragraph, in order to focus on the guaranteed integration of a piecewise ODE,
a simple situation is modeled. It is inspired from ballistics because this science uses
kinematics equations. Let an object launch upward from an initial height x0 ∈ [10; 15]
with a velocity v0 ∈ [10; 11]. In the first environment the friction does not exist and the
object is the subject of a gravity force g. At some point in its free fall, the object reaches
a lower limit l ∈ [−0.5; 0.5] and below this level a second environment is defined that
creates a friction f and slows down the free fall of the object depending on its vertical
velocity.

Let u = (u1, u2) the couples of functions such that u1 is the height of the object
function of time t and u2 is its velocity. Then the initial value u(t0) is defined as following

u(t0) =
(
u1
u2

)
(t0) ∈

(
h0
v0

)
=
(

[10; 15]
[10; 11]

)
(7.1)

From this initial situation, the trajectory of the object defined with two dynamics d1 and
d2

d1(u, t) =
(

u2
[−g]

)
and d2(u, t) =

(
u2

[−g]− [2].u2

)
(7.2)

depending on its elevation u1 and the limit l.

u′ =
{

d1(u, t) if u1(t) ≥ l
d2(u, t) if u1(t) ≤ l

(7.3)

Note that the limit l is defined with the interval [−1; 1] so that when the object elevation
is within this range, the two dynamics are valid at the same time.

The guaranteed integration of this dynamic system is computed by the contractor
developed in this research work and introduced in this thesis from the time-step t0 = 0
to the final time-step tf = 9. The results are presented on Figure 7.1. Knowing which
model allows us to set a limit on the number of returns that are allowed for each dynamic.
When the object reaches the second environment, it is not supposed to go back to the first
environment. Consequently, the limit that is defined on the number of allowed returns in
the previous dynamic is set to 0.
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(a) [u1](t) : enclosure of u1(t) (position) (b) [u2](t) : enclosure of u2(t) (velocity)

Figure 7.1: Results of the guaranteed integration

What could be relevant in a variation of this model would be if the initial value was
to be composed of multi-intervals.

u(t0) =
(
u1
u2

)
(t0) ∈

(
h0
v0

)
=
(

[10; 15][30; 35]
[10; 11]

)
(7.4)

On Figures 7.1a and 7.2a the two horizontal lines represent the boundaries of the
validity domain for each dynamic. Between these lines, the dynamics d1 and d2 are valid
at the same time. On Figures 7.1b and 7.2b the horizontal line underlines the moment
when the value of the velocity is equal to 0. On these pictures, the gray boxes represent
the global bounding boxes (the global enclosure of the solution over a time window) while
the red lines represent the local enclosures at a local time-step. A relevant observation
is that with no more information, the second dynamic d2 starts way before the local
enclosure reaches the limit because of the large bounding boxes. That is because of the
use of Vnode-lp [Nedialkov et al., 2001] to compute the guaranteed integration for each
dynamic. Vnode-lp has been designed to provide tiny local enclosures with a minimal
computation time; it was not designed to provide tiny global enclosures but the ones that
are sufficient enough to compute the guaranteed integration.

A first solution to this issue is to consider that in this model, the global enclosure can
be recomputed with the local enclosures such that the global enclosure from a time-step
to another is the minimal enclosure that encloses these two successive local enclosures.
With this method, the resolution of the piecewise-ODEs with multiple initial values is
more accurate and the result is represented on Figure 7.3.

In the generic case, such an approximation is a limit to the guarantee of the results.
However, for this peculiar dynamic system, only one global bounding box is not guar-
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(a) [u1](t) : enclosure of u1(t) (position) (b) [u2](t) : enclosure of u2(t) (velocity)

Figure 7.2: Results of the guaranteed integration with multiple initial values

(a) [u1](t) : enclosure of u1(t) (position) (b) [u2](t) : enclosure of u2(t) (velocity)

Figure 7.3: Results of the guaranteed integration with multiple initial values and minimal
global enclosure approximation

anteed to enclose all the solutions and it has no impact on the global resolution. This
non-guaranteed bounding box is the one that encloses the change in the direction of
the trajectory (from upward to downward). With this approximation and this specific
model, the enclosure is guaranteed through the transition phase from the first to the
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second dynamic.

7.4 Optimisation with a piecewise-ODE system
The previous results focused on the optimization methods and then on the contractor
dedicated to the contraction and the propagation of ODEs and p-ODEs constraints. Con-
sequently, the next step is to present a global test that optimizes the problems containing
p-ODEs constraints.

The optimization tool that has been developed in this work is not applied on the elec-
tromagnetic contactor because of its complexity. The large number of variables requires
an exponential number of iterations on the branch and bound algorithm and each itera-
tion would require too much time and memory to compute the guaranteed integration of
the p-ODE that is contained in the model.

In order to keep things easy, the p-ODE that is contained in this optimization problem
is the one that was previously tested. In this optimization problem the limit l used in the
guard of the p-ODE and that defines the boundaries of each environment is a decision
variable, as are the initial values h0 and v0 of the p-ODE system.

Minimizeh0,v0,l f

sc.

u(t0) ∈
(
h0
v0

)

u′(t) =


d1(u, t) =

(
u2

[−g]

)
if u1(t) ≥ l − [1]

d2(u, t) =
(

u2
[−g]− [2].u2

)
if u1(t) ≤ l + [1]

(7.5)

where h0 ∈ [50; 100], v0 ∈ [20; 50] and l ∈ [−10; 10]. Note that the decision variable l
is redundant with the variable h0. An equivalent model can be defined in which l = 0,
thus the variable h0 would evolve in the interval [40; 110]. The objective function f is
chosen to define three different problems, for each one of them the optimization process
returns a specific solution that is close to the optimal. These results are computed with a
limitation of 100 iterations for the IBBA+, which is enough to get relevant results. The
three objective functions and their solutions are described in what follows.

• When f = u1(tf ) it minimizes the elevation of the final position.

– h0 ∈ [62.81691269265343890993, 62.81691269265343890993]
– v0 ∈ [21.65528272995971192927, 21.65528272995971192927]
– l ∈ [−8.82797157686574962554,−8.82797157686574962554]

• When f = abs(u1(tf )) it leads the elevation toward 0 at the final position.

– h0 ∈ [61.78823573248844525097, 61.78823573248844525097]
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– v0 ∈ [33.69914115462412240731, 33.69914115462412240731]
– l ∈ [−6.64534120897079816359,−6.64534120897079816359]

• When f = −u1(tf ) it maximizes the elevation of the final position.

– h0 ∈ [99.71890292204632544326, 99.71890292204632544326]
– v0 ∈ [49.88195981155473646140, 49.88195981155473646140]
– l ∈ [5.42597042241877414170, 5.42597042241877414170]

The results of the optimization depend on the objective function. The p-ODE con-
tractor uses the approximation that was previously described and that contracts the
global bounding boxes of the enclosures using successive local enclosures. The evolution
of the upper bound during the optimization process is presented in the table 7.2 and the
solutions it returns are on Figures 7.4.

Iteration f = u1(tf ) f = abs(u1(tf )) f = −u1(tf )
0 -18.855 27.594 -89.396
1 22.980 -102.236
2 18.091 -147.337
3 -22.931 8.166
4 -160.865
5 -26.593

10 -174.900
13 -29.267
19 -31.164
23 3.586
30 -32.701 -176.053
34 1.657
38 -178.261
43 -182.683
50 1.418
65 0.580
73 -33.156
74 -182.911
75 -34.387
83 -34.388
88 -183.619
90 -184.156

Table 7.2: Update of the upper bound of the objective during the optimization process
over the problem defined in 7.5 depending on the cost function f .

On them (Fig. 7.4), the enclosure of the position u1 is represented by red squares while
the enclosure of the velocity is green. The horizontal gray line represents the horizontal
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axis. On Figure 7.4a the two horizontal black lines represent the boundaries of each
validity domain. Between these lines the two dynamics d1 and d2 are valid.

(a) f = u1(tf ) (b) f = abs(u1(tf )) (c) f = −u1(tf )

Figure 7.4: Enclosures [u1](t) and [u2](t) for each solution returned by the optimization
process according to the objective function

7.5 Conclusion
In this chapter, a set of models and problems were introduced and tests were made
upon them with the software GDODynS that was developed during this research work.
The analysis of these results underlines the possibilities and the potential that resides
in solving complex dynamic systems with guarantees. It also highlights the difficulties
encountered by the method and the limitations imposed by the use of Vnode in this
context.

The guaranteed integration of p-ODEs with the algorithm that was developed requires
more computation time. This computation time can be minimized thanks to a set of
optimizations in the algorithm. Nevertheless the cost of the algorithm that deals with
p-ODE constraints will remain high but it could be the price to pay to get the guarantee.

In order to limit the complexity when dealing with such constraints, one should de-
velop strategies within the IBBA that would limit the contraction of differential con-
straints. Another important aspect is the exponential complexity of IBBA. It requires a
lot of computations and it cannot manage large-sized problems. This is the reason the
results over the design of the electromagnetic contactor are not presented. A cooperative
optimization algorithm based on genetic algorithms could be a winning strategy in order
to provide good solutions faster, as well as to decrease the upper bound quickly and to
prune large areas from the initial search space.
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In this thesis a set of methods has been presented that would optimize complex
dynamic systems. During this work, an optimisation tool named GDODynS Global and
Deterministic Optimization for Dynamic Systems has been developed. GDODynS has
been developed in C++ and takes the advantages of the object-oriented programming
with the development of several modules. The architecture of this optimization tool is
presented on Figure 8 and all the modules have been detailed in the chapters of this
thesis.

Figure 8: Architecture of the optimisation tool developed: GDODynS
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The chapters followed a plan that led to a method to compute the guaranteed inte-
gration of piecewise ODE constraints (Chapter 5) and a global optimization algorithm
(Chapter 6), starting from the analysis of the problems that motivated this research
(Chapter 1).

All along this document, the reoccurring limitations of the methods were the compu-
tation time and the amount of memory required to compute solutions of the problems
considered. Their complexity comes from their size, that is to say the number of decision
variables, the type of variables (continuous, unary-functions) and the type of constraints
(algebraic, functional, differential and piecewise differential).

Given that the computation time increases or decreases with the size of the model,
choosing which method must be applied is of paramount importance. Consequently,
several methods have been introduced in this thesis and implemented in GDODynS in
order to solve these problems. All these methods are gathered into several modules that
are represented on Figure 8.

1. First, the guaranteed arithmetics (with the interval and the tube arithmetic) has
been detailed in Chapter 2. These arithmetic aspects are essential to guarantee
operations and deal with continuous real variables and functional variables. In
the optimization tool GDODynS, this module is based on the library Profil-BIAS
[Knüppel, 1994] that implements the interval arithmetic. All the other guaranteed
arithmetics, Multi-Intervals, Tubes and Multi-Tubes, are derived from the interval
arithmetic.

2. Second, the guaranteed integration process has been introduced in Chapter 3 and
is used to compute the enclosure of ODEs and to solve initial value problems. In
GDODynS this module is based on Vnode-LP [Nedialkov et al., 2001] because it
provides both relevant enclosures and fast computations.

3. Third, the problematic of solving piecewise ODEs have been detailed in Chapter
5 with the required assumptions is dealt with. A specific guaranteed integration
scheme has been developed that is based on a new Picard operator and a theo-
rem. In GDODynS this module is based on the module that computes guaranteed
integration of ODEs.

4. Fourth, the contraction methods have been studied in Chapter 4 using Contractor
Programming in order to reduce the domains of the variables and exploit algebraic
and functional constraints inside the models. This module requires the guaran-
teed arithmetics module to provide contractors from algebraic constraints and the
guaranteed integration modules that are used inside the differential contractors.

5. Fifth, all of the previous modules are combined within a global and determinis-
tic optimization algorithm in Chapter 6 to optimize models presented in the first
chapter.

At each step of this thesis, a new decision is taken that improves the quality of
the solution or the speed of the optimization process. Usually these two aspects are
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divergent, for example it is the case for the piecewise evaluation method; however it
has to be noted that, at some points, when the quality of the computation is improved,
the global computation time that is required is decreased as well. This is what happens
during the guaranteed integration of the ODEs in which the quality of the enclosure allows
larger stepsizes, or in the optimization algorithm in which the quality of the computation
improves the upper bound.

It has also been stated that the computation with rigorous bound can harm the
guarantee of the result granted by the optimization process.

The work presented in this thesis opens a lot of perspectives that can be studied and
developed in the future.

• Interval arithmetic is used to compute rigorous bounds of operations, but it is
limited. Therefore, other guaranteed arithmetics could be used such as the Affine
Arithmetic [De Figueiredo and Stolfi, 2004] and applied on guaranteed integration
of ODEs [Alexandre dit Sandretto and Chapoutot, 2016b] and global optimization
algorithms [Messine, 2002].

• The tubes may be represented differently in order to limit the overapproximation of
the solution that happens on transition phases during the guaranteed integration of
piecewise-ODEs. For example, the global enclosures of tubes could be represented
with polynomials.

• The IBBA requires a lot of computations and limits the size of the problems that
can be handled. That is why other methods such as the evolutionary methods
can be coupled with the IBBA so as to compute and update the upper bound
[Vanaret, 2015].

• The loss of guarantee is an important issue and some works should be dedicated to
how one should deal with this problem. One might also deal with the computation of
an indicator that would show how trustworthy the feasibility of a solution is, it could
be computed with the Hausdorff metric. At last, one could use a complement of the
interval arithmetic that rounds the result of operation inward instead of outward.

• The theorems and the algorithms that are used to perform the guaranteed in-
tegration of piecewise-ODEs should be extended to generic hybrid systems and
implemented into GDODynS.

• The optimization tool GDODynS has been thought to be modular, and the con-
tractor programming module allow the creation of new contractors. A specific
contractor could be implemented and paired with external libraries such as Choco
[Cambazard et al., 2006] in order to extend the model with integer variables and
new filtering algorithms.

Some of the contributions presented in this thesis were made public in national
[Joudrier and Hadj-Hamou, 2014] [Joudrier and Hadj-Hamou, 2016] and international con-
ferences [Joudrier and Hadj-Hamou, 2015]. Alongside the work presented in this thesis,
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an other research project has been studied in collaboration with Florence Thiard on a
rolling stock unit management problem. This problem [Ramond and Nicolas, 2014] has
been formulated by the SNCF within the scope of the ROADEF/EURO international
challenge 2014. The results of the developed methods are presented in the appendix A
and has been published [Joudrier and Thiard, 2017].
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ROADEF/EURO
Challenge 2014 A

A greedy approach for a rolling stock management
problem using multi-interval constraint propagation

In this article we present our contribution to the Rolling Stock Unit Management problem
proposed for the ROADEF/EURO Challenge 2014. We propose a greedy algorithm to
assign trains to departures. Our approach relies on a routing procedure using multi-
interval constraint propagation to compute the individual schedules of trains within the
railway station. This algorithm allows to build an initial solution, satisfying a significant
subset of departures.

A.1 Introduction
In this paper, we present our approach of the Rolling Stock Unit Management problem
presented in the ROADEF/EURO Challenge 2014 [Ramond and Nicolas, 2014]. This
problem combines in a single formulation various sub-problems of rolling stock manage-
ment, such as assignment of trains to departures, platform assignment, routing inside the
station, planning of maintenance operations... We propose a greedy algorithm to build an
initial solution, allowing an incomplete coverage of arrivals and departures. This solution
could serve as a basis for an optimization algorithm. Compared to the proposed prob-
lem, we make some simplifications by forbidding maintenance, junction and disjunction
operations (note that train convoys might be used as such), which limits the number of
coverable departures. Our solution is based on a greedy progressive assignment algorithm
to assign arrivals (and corresponding trains) to departures, and a routing algorithm using
multi-interval constraint propagation to prevent conflicts with already scheduled trains
while keeping as much flexibility as possible.

The rest of this paper is organized as follows: Section A.2 presents a simplified model
of the rolling stock management problem presented in the ROADEF/EURO Challenge
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Figure A.1: Example instance: railway station

2014. Section A.3 describes the pre-processing phase and the model used to represent
the structure of the station. Section A.4 details the multi-interval routing algorithm,
while Section A.5 describes the general assignment procedure. Note that the assignment
problem is not treated as a whole, separately from the routing problem, but progressively.
Finally Section A.6 presents an overview of the results and some perspectives. In the fol-
lowing, we will use the concepts and notations introduced by [Ramond and Nicolas, 2014].

A.2 Simplified model

The original formulation, as presented by [Ramond and Nicolas, 2014], aimed at treating
the rolling stock management problem as a whole, integrating constraints and costs of
various nature. Focusing mainly on the routing constraints, we chose to overlook some
aspects of the problem in order to work on a simplified model while still providing valid
solutions.

The original industrial problem consists in handling trains within a station over a
biweekly planning horizon, by deciding their route and schedule inside the station, and
assigning them to compatible departures. A station is composed of resources of several
types (track-groups, single tracks and yards for parking, maintenance facilities for per-
forming maintenance, platforms for arrival and departures), linked by gates. Routing
of the trains inside the station must respect the length and capacity of the resources, as
well as the trains’ order on the resources and train/resource compatibility constraints. To
be allowed to circulate, trains must be submitted to regular maintenance. Therefore, a
train might be assigned to a departure only if it has enough time and mileage left before
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a maintenance is required for the journey. Maintenance operations can be performed
in the stations on appropriate resources, at a cost. Some arrivals (joint arrivals) are
composed of several trains joined together; likewise, some departures (joint departures)
must be satisfied by several joint trains. Convoys of several joint trains might be formed
(respectively separated) by performing junction and disjunction operations.

The two main simplifications that were made are described below. Their main conse-
quence is to avoid modifying characteristics of the trains in the solution.

• Not performing maintenance operations. This choice simplifies the assignment deci-
sion process: the compatibility of a given train with a given departure depends only
on the instance data (including the time / distance remaining before maintenance),
and not on the choice to perform maintenance on it.

• Not performing junction nor disjunction operations. That way, trains can be treated
as immutable convoys from their arrivals to their departure. A convoy might be
formed of a single train, or of several trains coming from a joint-arrival, which might
then satisfy a joint-departure.

In this section we first extend the notations defined by [Ramond and Nicolas, 2014].
Then, we use these new notations to formalize our simplified model.

A.2.1 Definitions

A.2.1.1 Definition : Convoys
A convoy v is defined by a set of trains t in T . We note V the set of all the convoys.

V := P (T ) (A.1)

where P is the power set operator. The length and size of a convoys v in V can be
accessed with:

size(v) = #v (A.2)
length(v) =

∑
t∈v

length(t) (A.3)

We also define V+, the set of convoys actually used in the solution.

A.2.1.2 Definitions : About arrivals and departures

As our model treats convoys and not individual trains, joint arrivals (respectively
joint departures) can be treated as one single arrival (respectively departure). Thus, we
work with a set of extended arrivals (respectively departures), defined in this section. An
element of this set is either a unitary arrival (an arrival which is not a member of a joint
arrival), or a joint arrival (a set of arrivals joint together, treated as a single element).
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Let Uarr be the set of unitary arrival in opposition with Jarr the set of joint-arrivals
(and similarly the set of unitary departures).

Uarr := {a ∈ A | ∀B ∈ Jarr, a 6∈ B} (A.4)
Udep := {d ∈ D | ∀B ∈ Jdep, d 6∈ B} (A.5)

Now, we use the sets Jarr and Uarr to build a new set ExtArr called set of all extended
arrivals (and the set ExtDep with Jdep and Udep).

ExtArr := Jarr ∪ {{a} | a ∈ Uarr} (A.6)
ExtDep := Jdep ∪ {{d} | d ∈ Udep} (A.7)

A.2.1.3 Definitions : compatibility
For each convoy v ∈ V and departure in d ∈ ExtDep, a value Comp(v, d) ∈ {0, 1} is
defined. If Comp(v, d) = 1, v and d are said to be compatible. This value takes into
account several parameters of the initial formulation such as size, categories, time and
distance remaining before maintenance, and so on.

Similarly, a value Comp(v, a) ∈ {0, 1} is defined to express compatibility between a
convoy v ∈ V and an arrival a ∈ ExtArr.

Similarly, for each convoy v ∈ V and resource r ∈ R, Comp(v, a) ∈ {0, 1} expresses
the compatibility of all trains of v with the resource r.

A.2.1.4 Definition : Connectors
Connectors are couples of gates, representing transition between resources. Using this
concept, we can model the station as a directed graph.

The set of connectors noted CO is defined by

CO =
{

(g, g′) ∈ Gr × Gr′
∣∣∣∣∣ neighg = g′

neighg′ = g

}
(A.8)

Then a connector co ∈ CO is a couple of gates (g, g′) such that a convoy can leave the
resource r (g ∈ Gr) by the gate g to enter in the resource r′ by g′ (g′ ∈ Gr′).

It is important to note that the connector (g, g′) is not equivalent to the connector
(g′, g). The first one means an exit by g and an entry by g′ whereas the second one means
an exit by g′ and an entry by g.

The train station can then be modeled by a directed graph G(V , E) where the vertices
are connectors and the arcs are resources (Fig. A.2). This allows to represent reverse and
non-reverse resources.

Some values are associated with each edge of the graph G such as the minTrT ime
and the maxTrT ime which are the minimal and the maximal travelling time to go
from a connector to an other one through a resource. These parameter values aggregate
several parameters from the original problem formulation, depending on the resources
type, such as trT ime for trackgroups, maxDwellT ime for platforms, revT ime for the
reverse operations on single tracks, platform, yards...
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Figure A.2: Directed Graph Modelisation

A.2.1.5 Definition : Path through the station
A path through the station is defined by an alternate sequence of connectors in CO and
resources in R.

p := (co0, r0, co1, r1, co2 . . . con−2, rn−2, con−1, rn−1, con) (A.9)

The size of the path p is accessible via size(p) and returns the number of resources
crossed along the path.

size((co0, r0, co1, r1, co2 . . . con−2, rn−2, con−1, rn−1, con)) = n (A.10)

An n-sized path going through resources r0 . . . rn−1 requires n+ 1 connectors co0 . . . con.

A.2.1.6 Schedule of a path
The schedule of a path p, noted schedp, is a tuple of instants t in the horizon H which are
in bijection with the connectors of the path. These values describe the time of transition
from a resource to the other. Let p be a path composed by n resources (Eq. A.9). Then
a schedule for p is defined by

schedp = (t0, t1, t2 . . . tn−2, tn−1, tn) (A.11)

where ti in schedp is paired with coi in p, meaning that at ti the connector coi is used to
leave resource ri−1 and resource ri.
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A.2.2 Decision Variables

A.2.2.1 Arrival and Departure assignments

A convoy may come from an arrival (all trains composing the convoy enter the system
as elements of this arrival), and be assigned to a departure (all trains composing the
convoy leave the system satisfying elements of this departure).

∀v ∈ V ,
{
∀a ∈ ExtArr, from(v, a) ∈ {0, 1}
∀d ∈ ExtDep, assigned(v, d) ∈ {0, 1} (A.12)

A.2.2.2 Paths and schedules of convoys
A convoy v in V may be routed, thus associated with a path path(v) which is paired with
a schedule sched(v), of size nv.

path(v) = (co0, r0, co1, r1, co2 . . . con−2, rn−2, con−1, rn−1, conv) (A.13)
sched(v) = (t0, t1, t2 . . . tn−2, tn−1, tnv) (A.14)

A.2.3 Constraints

A.2.3.1 Convoys paired with Arrivals and Departures
Recall that V+ is the set of all convoys scheduled in the solution. Let v be a convoy in
V . If v is scheduled in the solution then v is paired with an arrival a in ExtArr and a
departure d in ExtDep.

v ∈ V+ ⇒
{ ∑

a∈ExtArr from(v, a) = 1∑
d∈ExtDep assigned(v, d) = 1 (A.15)

Otherwise, v is not an element of V+ and there is no arrival nor departure assigned to it.

v 6∈ V+ ⇒
{
∀a ∈ ExtArr, from(v, a) = 0
∀d ∈ ExtDep, assigned(v, d) = 0 (A.16)

A convoy v cannot be assigned to an incompatible arrival a or departure d. In other
words :

Comp(v, a) = 0⇒ from(v, a) = 0 (A.17)
Comp(v, d) = 0⇒ assigned(v, d) = 0 (A.18)
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A.2.3.2 Usage of resources
The usage in term of capacity and length has to be respected. Let v be a convoy, with
the schedule sched(v) associated to the path path(v). For each convoy v in V+ and each
instant t in H, we define use(v, t) the resource r in R used by the convoy v at t.

use(v, t) =
{
ri ∈ path(v) if ∃ti, ti+1 ∈ schedv, ti ≤ t < ti+1
∅ otherwise (A.19)

Then we define the value use(v, t, r), which is 1 if and only if the resource r is used
at time t in the schedule sched(v) of the path path(v) associated to the convoy v.

use(v, t, r) =
{

1 if use(v, t) = r
0 otherwise (A.20)

A.2.3.3 Length and capacity constraints

∀r ∈ R,∀t ∈ H,


∑
v∈V+

(use(v, t, r) ∗ size(v)) ≤ capa(r)
∑
v∈V+

(use(v, t, r) ∗ length(v)) ≤ length(r)
(A.21)

A.2.3.4 Valid path
Let v be a convoy in V+, and path(v) the associated path, of size nv. To be valid, the
path, defined as in (Eq. A.13), followed by v must satisfy the following constraints.

co0 = (∅, ginitial) (A.22)
conv = (gfinal, ∅) (A.23)

This means the convoy enters the station via the first connector of the path, and leaves
it via the last connector of the path.

Let us now consider the i-th connector coi, composed of two gates gout and gin. By
definition of connectors, neighgout = gin and neigh(gin) = gout. Additionally, for the path
to be valid, each resource must be consistent with the adjacent connectors:

rgout = ri−1 (A.24)
rgin

= ri (A.25)

A convoy v cannot use an incompatible resource r:

∀r ∈ R, Comp(v, ri) = 0⇒ ri 6∈ path(v) (A.26)

Since v is a convoy of the solution, it is assigned to an arrival a in ExtArr as well as
a departure d in ExtDep. Then the path followed by the convoy v must begin with the
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arrival sequence arrSeqa (Eq. A.27) and end with the departure sequence depSeqd (Eq.
A.27).

arrSeqa = (tga0 , . . . , tgan1) (A.27)
depSeqd = (tgd0 , . . . , tgdn2) (A.28)

The arrival (resp. departure) sequence is composed by n1 + 1 (resp. n2 + 1) track-groups.

∀ri ∈ path(v),

 i ≤ n1 ⇒ ri = tgai

nv − n2 − 1 ≤ i⇒ ri = tgdj with j = nv − n2 − 1 + i
(A.29)

Since the arrival and the departure must take place on a platform, we have:

rn1+1 ∈ P and rnv−n2−2 ∈ P (A.30)

A.2.3.5 Valid schedule
Let v ∈ V+ be a convoy of the solution. The schedule sched(v) must respect the delay
imposed by the graph G to go from one connector to another through a resource.

∀ti, ti+1 ∈ sched(v),
{
minTrT ime(coi, coi+1) ≤ ti+1 − ti

ti+1 − ti ≤ maxTrT ime(coi, coi+1)
(A.31)

The arrival time arrT imea and departure time depT imed must be respected. We assume
the arrival sequence is composed by n1 + 1 track-groups and the departure sequence by
n2 + 1 track-groups.

∀ti ∈ sched(v),
{

i = n1 + 1⇒ ti = arrT imea

i = nv − n2 − 1⇒ ti = depT imed
(A.32)

A.2.3.6 Conflicts between convoys

A.2.3.7 On single resources

Let v1, v2 in V+ be two convoys of the solution, path(v1) = (co1
0, r

1
0, . . . , co

1
nv2

),
path(v2) = (co2

0, r
2
0, . . . , co

2
nv2

) their respective paths, and sched(v1) = (t10, . . . t1nv1
),

sched(v2) = (t10, . . . t1nv2
) the respectively associated schedules.

If a same single resource (platform, single track or maintenance facility) belongs to
both path, the associated entry times must be different :

∀r1
i ∈ sched(v1), r2

j ∈ sched(v2), r1
i = r2

j ⇒ t1i 6= t2j (A.33)

192



Moreover, depending on the entry and exit connectors of both convoys, the following
constraints on their entry and exit times must be enforced to preserve the order of the
convoys on the resource (without loss of generality, we assume ti1 < t2j) :

∀r1
i ∈ sched(v1), r2

j ∈ sched(v2) | r1
i = r2

j , t
i
1 < t2j ,

(co2
j = co1

i+1 ∧ co2
j 6= co2

j+1)⇒ t2j > t1i+1

(co2
j+1 = co1

i+1 ∧ co2
j 6= co2

j+1)⇒ t2j+1 > t1i+1

(co2
j = co1

i+1 ∧ co2
j = co2

j+1)⇒ (t2j+1 > t1i+1 ∨ t2j > t1i+1)

(A.34)

A.2.3.8 On track groups

On track groups, a specific conflict constraint applies, depending on the respective
order of the entry and exit gates of both convoys. Though this constraint was implemented
in the final solution, we do not reproduce it here for the sake of simplicity. One can refer
to [Ramond and Nicolas, 2014].

A.2.3.9 At most one convoy assigned per extended arrival and departure

∀a ∈ ExtArr,
∑
v∈V+

from(v, a) ≤ 1 (A.35)

∀d ∈ ExtDep,
∑
v∈V+

assigned(v, d) ≤ 1 (A.36)

A.2.3.10 Example (Fig. A.3)
Let us consider the following instance: the sets of arrivals A = {a1 . . . a5} and departures
D = {d1 . . . d6}; The sets Jarr = {{a2, a3, a4}} and Jdep = {{d4, d5, d6}}. Then

ExtArr = {ea1 = {a1}, ea2 = {a2, a3, a4}, ea3 = {a5}}
ExtDep = {ed1 = {d1}, ed2 = {d2}, ed3 = {d3}, ed4 = {d4, d5, d6}}

The convoys v1 and v2 where

• v1 = {t1}, with from(v1, ea1) = 1 and assigned(v1, ed2) = 1

• v2 = {t2, t3}, with from(v2, ea2) = 1 and assigned(v2, ed4) = 1

are represented on the Fig. A.3.

A.2.4 Objective function
The original problem featured two optimization criteria assembled in a weighted sum:
maximization of the covered arrival and departures, and minimization of performance
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Figure A.3: Convoys with provenance and assignment to departures.

costs (platform usage costs, preferred reuse of trains, etc.). We focused on the maximiza-
tion of covered arrival and departures (while of course limited by our choices to disregard
maintenance, junction and disjunction operations). With the formalism defined in this
section, maximizing arrivals and departures coverage comes down to maximizing the
number of trains used in the solution:

max
∑
v∈V+

size(v) (A.37)

A.3 Data Structures and Pre-processing
In the remainder of the paper, we will use the instance represented on Fig. A.1 as an
example.

A maximum amount of convoy needs to be scheduled using the graph G previously
defined. In order to reduce the cost of the routing phase by avoiding redundant treatment
of very similar paths, we need a simplified structure with a higher granularity level.

The simplification consists of aggregating resources in groups (Fig. A.4) of resources
sharing the same characteristics and neighborhood [Rogers et al., 1991]. We define the
set RG of resources groups such that each resource r ∈ R is contained in one group
rg ∈ RG with the following properties:

∀rg ∈ RG,∀r1, r2 ∈ rg, neighSetr1 = neighSetr2 ∧ type(r1) = type(r2) (A.38)

where type is defined as follows:

type : r ∈ R →



0 if r ∈ K
1 if r ∈ P
2 if r ∈ S
3 if r ∈ Y
4 if r ∈ F

(A.39)
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The goal of this process is to break the systematic and redundant treatment of similar
resources while allowing for a more global reasoning.

Once the simplification is done, we can define a new graph G ′((V ′, E ′)), more global,
enclosing the graph G where vertices are groups connectors GCO and arcs are resources
groups RG. These two graphs represent the station with different levels of granularity:
the level which needs to be used depends on the step of the algorithm.

Figure A.4: Resource Aggregation

To simplify further the routing phase, we choose to consider the shortest path as the
preferred path between two resources depending on the category. Thus, shortest paths
between any two groups of resources, or rather group connectors, are computed during the
pre-processing phase using Floyd-Warshall algorithm [Floyd, 1962]. During the process,
a matrix of minimal and maximal travel time along this path is computed. Each resource
r ∈ R can be considered to have a minimum and a maximum usage time. For any track-
group k, the minimum bound is equal to the maximum one: trT imek. The other resources
have a minimum bound equal to minResT ime or max(minResT ime, revT ime) (in case
of similar input/output side) and the platforms have an upper bound maxDwellT ime.

Let gc1, gc2 be two group connectors and c a category. First, we compute the shortest
path to reach gc2 from gc1. Then we note minTrT imec(gc1, gc2) the lower time bound
and maxTrT imec(gc1, gc2) the upper time bound to travel from the input connector gc1
to the output connector gc2 on the path found compatible with category c.

A.4 Routing Procedure
This section deals with the effective scheduling and routing of a train along a given group-
level path. To schedule a train, the routing procedure considers the resource group-level
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path computed during the pre-processing phase, then tries to schedule the train at the
resource-level, taking into account resource capacities, maximum lengths, minimal and
maximal transition time, and conflicts with already scheduled trains. This is done by
constraint propagation on multi-interval variables. Section A.4.1 introduce the notion of
multi-interval variables in this context, and Section A.4.2 details the routing procedure.

A.4.1 Multi-interval variables
We use constraint propagation [Benhamou and Granvilliers, 2006] on hull and boxes
[Benhamou et al., 1999] using multi-intervals variables to filter solutions of the Path
Scheduling problem. First we introduce the notion of time interval IH (Eq. A.40) in
the planning horizons H, as defined by [Moore, 1966]:

IH :=

[h, h]

∣∣∣∣∣∣ (h, h) ∈ H2

h ≤ h

 (A.40)

We note [h] the interval [h, h]. Let [h1], [h2] be two intervals, we define the set operations
∩, ∪:

[h1] ∩ [h2] = [max(h1, h2),min(h1, h2)]
[h1] ∪ [h2] = [min(h1, h2),max(h1, h2)]

(A.41)

A large number of interval arithmetic libraries exist (see [Knüppel, 1994],
[Lerch et al., 2006]).

A generalization of IH is the power set P(IH). We callMIH = P(IH) the set of
all the time multi-intervals in the planning horizon. Let mi1 and mi2 be two elements of
MIH, the multi-interval intersection is defined as below:

mi1 ∩mi2 =
⋃

i1∈mi1
i2∈mi2

i1 ∩ i2 (A.42)

We introduce the operators lo and up on intervals and multi-intervals, which represent
the lower and upper bounds of these quantities (see Fig A.5 for an example).

∀x ∈ IH
{
lo(x) = x

up(x) = x
and then ∀y ∈MIH


lo(y) = min

x∈y
lo(x)

up(y) = max
x∈y

up(x)
(A.43)

Mathematical comparison operators can be defined to deal with intervals and multi-
intervals. Let x be an interval or a multi-interval quantity. Then the comparison of x
with a real value y implies conditions over the bounds of x.

x ≤ y ⇔ up(x) ≤ y (A.44)
y ≤ x ⇔ y ≤ lo(x) (A.45)

The inequality constraints are used to reduce the domain of the values through a set of
methods called contractors [Chabert and Jaulin, 2009a]. Atomic and meta-contractors
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can be considered as basic elements of a new paradigm called contractor programming in
order to perform efficient global optimization algorithm [Ninin, 2015] exploiting the prop-
erties of groups of constraints. In the next section of the paper we present a contraction
method for the Path Scheduling Problem previously introduced.

H

x

lo(x) up(x)

Figure A.5: Example of a multi-interval, with its lower and upper bounds.

The idea behind the routing procedure, described in the next section, is to consider
scheduling variables as two types of multi-interval variables, transition variables ti and
usage variables ui. That way, for a given convoy’s schedule, the multi-interval variable
ui represents the time intervals during which the corresponding resource of the convoy’s
path ri is available for the convoy (with respect, amongst other, to length and capacity
constraints). Similarly, the multi-interval variable ti represents the time intervals during
which the convoy may exit the previous resource and enter resource ri through connector
coi (with respect to other convoy’s transitions).

The path and schedule definition presented in the simplified model are extended ac-
cordingly, by adding to the schedule usage time variables ui in bijection with the resources
ri in the path:

path(v) = (co0, r0, co1, r1, co2 . . . con−2, rn−2, con−1, rn−1, con) (A.46)
sched(v) = (t0, u0, t1, u1, t2 . . . tn−2, un−2, tn−1, un−1, tn) (A.47)

The procedure consists in refining those multi-intervals by constraint propagation.
However, propagating constraints on multi-intervals variables is very expensive. Com-

puting speed may be increased using lazy evaluation [Madsen and Jensen, 1999]. Laziness
is especially used and developed in functional programming languages [Johnsson, 1984]
such as Haskell [Hudak et al., 2007]. It consists into a set of methods in order to limit
the number of computations by non-evaluating quantities which are not required. This
approach is not yet fully implemented in our solution, so there is still room for progress
and potential speed-up.

A.4.1.1 Definition : Hr,l,s

Let r be in R, and l, s in N. We define the set Hr,l,s as all the instants t in the planning
horizons H such that the resource can be used by a convoy of size s with a total length l.

Hr,l,s =

t ∈ H
∣∣∣∣∣∣∣∣∣

∑
v∈V+

(use(v, t, r)× size(v)) ≤ capa(r)− s
∑
v∈V+

(use(v, t, r)× length(v)) ≤ length(r)− l

 (A.48)
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A.4.2 Algorithm
In this section, we detail the procedure used to route and schedule a convoy along a
group-level path (Algorithm 3).

Let us consider am-sized convoy, of total length l, and a group-level path GlobalPath.
GlobalPath is formalized as an alternating list of connector-groups and resource-groups
(gco0, gr0, . . . , gco1, grn−1, gcon).

The procedure returns, if possible, a resource-level path (formalized as an alternating
list of connectors and resources (co0, r0, . . . , co1, rn−1, con) and a matching schedule. A
Schedule is an alternate list of transition multi-interval variables, and usage multi-interval
variables (t0, u0, . . . , tn−1, un−1, tn). ti represents the available intervals for transition be-
tween resources ri−1 and ri on connector coi, and ui the available intervals for usage of
resource ri.

Schedule is initialized using InitialSchedule. In practice, we initialize all multi-
interval variables to the full planning horizon, except for the transitions corresponding
to the arrival and departure of the convoy, which are reduced to the arrival (respectively
departure) time (see Fig. A.6a).

Algorithm (Alg. 3) consists of an iteration over every path path := (co0, r1, . . . ,
rn−1, con) enclosed in the GlobalPath. Each iteration is divided in 2 steps (FilterRe-
sourceUsagePath, and FilterConnectorPath), described below.

Algorithm 3 : Routing
Require: convoy
Require: globalPath := (gco0, gr0, . . . , gco1, grn−1, gcon)
Require: initSchedule := (t0, u0, . . . , tn−1, un−1, tn)
1: for all path = (co0, r0, . . . , con−1 ,rn−1, con) ∈ globalPath do
2: schedule ← FilterResourceUsagePath(convoy, path, initSchedule)
3: if (schedule) 6= ∅ then
4: schedule ← FilterConnectorPath(convoy, path, schedule)
5: if (schedule) 6= ∅ then
6: return (path, schedule)
7: end if
8: end if
9: end for
10: return (∅, ∅)

1. Refinement of the multi-interval scheduling variables (t0, u0, . . . , tn−1, un−1, tn)
associated with the path p by filtering on each resource rk, taking into account ca-
pacity, length and usage time constraints (Method FilterResourceUsagePath) using
the following contractors. An example of this step is unfolded (Fig. A.6) on the
simplified instance represented on Fig. A.1, using the parameters given in Tables
A.1 and A.2, with the parameters minResT ime = 00 : 02 : 00 and revT ime =
00 : 05 : 00.

uk ⊆ umaxk
(A.49)
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where umaxk
is the minimal multi-interval containing Hrk,l,m. This constraint (Eq.

A.49) represents the limitation in term of length and/or capacity of the resource
(Fig. A.6a, A.6b).

lo(tk) ≤ uk ≤ up(tk+1) (A.50)
This constraint (Eq. A.50) translates the fact that the convoy cannot occupy the
resource before entering it and after exiting it (Fig. A.6b, A.6c).

minTrTimerk
(cok, cok+1) ≤ lo(tk+1)− lo(tk)

up(tk+1)− up(tk) ≤ maxTrTimerk
(cok, cok+1)

(A.51)

These two constraints (Eq. A.51) express the relation between the enter time tk
and the exit time tk+1 depending on the minimal and maximal usage time of the
resource rk (Fig. A.6c, A.6d).

∀u ∈ uk, {u} ∩ tk 6= ∅ ∧ {u} ∩ tk+1 6= ∅ (A.52)

This constraint (Eq. A.52) means that the resource rk is able to welcome the convoy
from its entrance to its exit (Fig. A.6d, A.6e).

tk ⊆ uk

tk+1 ⊆ uk
(A.53)

This constraint (Eq. A.53) means that the convoy can enter and exit the resource
rk only when rk is able to receive it (Fig. A.6e, A.6f).

2. Similarly, procedure FilterConnectorPath contracts the multi-interval variables (t0,
u1, . . . , un−1, tn) associated with path by computing for each resource rk the conflicts
of enter time tk−1 and exit times tk+1 with already scheduled convoys occupying rk
and propagating the associated constraints. This step also propagates again, when
necessary, some of the previous constraints (Eq. A.51, A.52).

After both filtering procedures, if schedule is non-empty (which means it is possible
to schedule the train along path), the algorithm returns, if not, it moves on to the next
path.

Id arrTrain Time Sequence Platform idealDwell maxDwell
Arr1 Train1 08:00:00 TrackGroup1 Platform1 00:03:00 00:12:00
Dep1 08:17:00 TrackGroup1 Platform2 00:04:00 00:10:00

Table A.1: Example instance: arrivals/departures listing

Finally, the train is scheduled according to an “earliest possible time” strategy within
the allowed time intervals : each transition multi-interval is contracted to its lower bound,
and usage multi-intervals are contracted accordingly. Note that the malleability of the
structure leaves the possibility of implementing other strategies to avoid conflict with
subsequent train schedules or optimize the enter and exit time on each resource to reduce
penalty.
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(a) Initialization (b) Propagation Eq. A.49

(c) Propagation Eq. A.50 (d) Propagation Eq. A.51

(e) Propagation Eq. A.52 (f) Propagation Eq. A.53

(g) Constraint Propagation Result

Figure A.6: Multi-Interval Filtering on the example instance, from Arr1 to Dep1 (see
Table A.1) with the consumptions indicated in Table A.2.
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Resource Begin End
Yard1 08:01:00 08:02:00
Yard1 08:08:00 08:09:00
Yard1 08:15:00 08:16:00

Table A.2: Example instance: imposed consumptions listing

A.4.2.1 Example of propagation (Fig A.6)
Fig. A.6 illustrates an example of propagation. Each line represents a multi-interval

variable; lines labeled “Exit/Enter” are transition variables, and lines labeled with a
resource name are usage variables.

Initially (Fig. A.6a), none of the variables are restricted, except for the transitions cor-
responding to the arrival and departure (first and last “Exit/Enter”), which are restricted
to the exact arrival and departure times. Then, in Fig. A.6b the usage of resource Y ard1
is restricted according to the imposed consumptions listed in Table A.2. In Fig. A.6c,
usage of resources Platform1 and TrackGroup1 are restricted according to the preced-
ing “Exit/enter” transition variables: the convoy cannot use a resource before it enters
it. Then, the transition variables are restricted to allow sufficient time between the entry
and the exit on each resource (Fig. A.6d).

Let us now focus on resource Y ard1: the last interval of its usage variable doesn’t
intersect with the following transition variable, so the yard cannot be used during this
interval. It is thus removed in Fig. A.6e. The enter and exit transitions are adjusted
accordingly in Fig. A.6f, as the convoy may not enter or exist the yard at a given instant
if it is not available for use.

Fig. A.6g shows the result once a similar propagation has been performed Platform1
and Platform2.

A.5 Greedy Assignment Algorithm
The problem is complex due to the routing problem in the station. Resource usage is
crucial and we should avoid to engorge one resource of the station. This idea leads to the
strategy of the greedy algorithm we present in this section.

We call immediate arrivals-departure arrivals immediately followed by a departure
on the same platform. In this case, the convoy only has to be routed through the arrival
sequence and departure sequence, so the path is set except for the platform, and the
convoy occupies few resources.

If a departure is not an immediate departure, the convoy has to be routed to a parking
spot and parked between its arrival and its departure. We chose to park on yards only.

Our objective is the maximization of covered arrivals and departures as stated in
Section 2. However, to comply with the multi-criteria objective of the original problem
and limit penalties, considerations on trains reuses, preferred platform and platform usage
penalties are implemented in the solution.

The algorithm is composed of three main steps.
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1. First, we try to schedule immediate arrivals-departures while considering train reuses
as hard constraints.

2. Then, we relax these constraints and try to schedule immediate arrivals-departures.

3. Finally, we try to schedule remaining trains from the arrival to departure with a park-
ing phase (on yards only) in-between, first considering train reuses as hard constraints,
then relaxing these constraints.

To improve coverage of joint departures without performing junctions nor disjunctions,
each of these three main assignment phase follows the three steps described below.

(i) Try and assign joint arrivals to joint departures. Both departures and arrivals are
taken in decreasing order of convoy size. Between a given joint arrival and a given
joint departure, simple dynamic programming allows to compute an assignment
maximizing the number of arrivals and departures satisfied, while respecting com-
patibility and trains order. When at least some members of a joint arrival/departure
have been assigned, all the other members are locked and cannot be used in the sub-
sequent assignment steps.

(ii) Try and assign unitary arrivals to unitary departures.

(iii) Try and assign members from remaining joint arrivals to remaining unitary depar-
tures (joint or not) and symmetrically remaining unitary arrivals to members of
remaining joint departures. When one member is assigned, the other members are
locked.

Formally, these sub-steps are described by Alg. 4, using the following definitions:

• J +
arr (respectively J +

dep) the set of joint arrivals (respectively departures) used in
the solution,

J +
arr = {a ∈ Jarr|∃j = jointArra,∃a′ ∈ jaListj, a′ ∈ A+}
J +
dep = {d ∈ Jdep|∃j = jointDepd,∃d′ ∈ jdListj, d′ ∈ D+}

• A+ (respectively D+) the set of unitary arrivals (arrivals which are not members of
any joint arrival) used in the solution,

A+ = {a ∈ A|arrTraina ∈ T +} ∪ J +
arr

D+ = {d ∈ D|depTraind ∈ T +} ∪ J +
dep

• by complement, the sets of joint / unitary arrivals (respectively departures) not used
in the solution: A− = A−A+, D− = D−D+, J −arr = Jarr−J +

arr, J −dep = Jdep−J +
dep.

202



Algorithm 4 Assignment Greedy Algorithm Step
1: Assign(J −arr,J −dep)
2: Assign(A− − J −arr,D− − J −dep)
3: Assign(A−,D−)

Non-assigned departures and compatible arrivals are taken in increasing order. Each
time, the Routing procedure is used to schedule the corresponding convoy. This continues
until an arrival with a feasible routing has been found (then the arrival is assigned to the
departure), or until there is no more fit arrivals (then the departure remains unsatisfied).

To limit the number of infeasible attempts, arrivals and departures are filtered, taking
into account compatibility characteristics such as category and remaining time/distance
before maintenance, but also existence of a path between two arrival/departure sequences
and time between arrival and departure.

arrT imea +minTrT imecatTa
(Pa, Pd) ≤ depT imed (A.54)

The routing algorithm (Alg. 3) is used inside the greedy subroutines Assign (Alg. 4).
The latter consists in a serie of attempts, iterating on the arrivals and the departures
sets. For each couple arrival/departure, a compatible convoy is selected and a resource
group-level path (computed during the pre-processing phase) is selected to link the arrival
sequence with the departure sequence. Thus, the routing algorithm is applied this convoy
and global path. If the process fails to provide a valid resource-level path (Alg. 3, line
10), we move on to the next compatible couple. Otherwise, the convoy is scheduled along
the path, thus the arrival and the departure are respectively removed from the available
arrivals and the available departures sets.

Figure A.7: Greedy Algorithm : example

Fig. A.7 shows a simplified example on an instance with three arrivals and four depar-
tures. A departure is compatible with an arrival if they are represented using the same
shape (disc, square) and if the arrival takes place before the departure on the time line.
On the figure, a line from an arrival to a departure is an attempt to route and schedule
a convoy through the station from the arrival to the departure. A red dotted line is a
failure while a green plain line is a success. Here, the couple arr1/dep1 is compatible and
is successfully routed and scheduled. The couple arr2/dep2 is compatible but the rout-
ing procedure fails, so the next compatible couple arr2/dep3 is considered. The routing
procedure successfully returns a valid schedule, so arr2 and dep2 are assigned to each
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other, and the convoy is routed and scheduled. The last arrival, arr3, does not have any
compatible departure, so no routing attempt is made.

In order to limit platform assignment penalties, when scheduling a convoy from an
arrival to a departure, the preferred platform is tried in priority. To limit the platform
usage penalties, we limit the time that a train can spend on a platform. For immediate
departures, this amount of time is computed using the ideal dwell times of the departure
and the arrival, and the costs defined in parameters, in order to ensure that the platform
usage cost for this train does not exceed the Uncov penalty for not covering the arrival.
We filter the arrivals verifying this condition. For arrivals and departures separated by a
parking phase, we ensure during the routing phase that the ideal dwell times are exactly
respected.

A.6 Results and Conclusions
The experiments were performed on an Optiplex computer featuring an Intel Core 2 Duo
E8400 3.00GHz CPU with 4Go RAM running Xubuntu 64 bits. Table A.3 presents the
results obtained on set instance B, provided by the challenge organizers. The execution
was stopped after 10 minutes of running time. The table reports the results obtained when
stopping after the first two steps of the algorithm (which means allowing only immediate
departures), and the results obtained after full execution of the algorithm (thus allowing
a parking phase). In each case, we give the number and proportion of covered departures.
We also give, for information purposes, the value of the objective function used in the
original formulation of the ROADEF Challenge problem [Ramond and Nicolas, 2014],
which aggregates various performance costs as well as penalties for uncovered departures
and arrivals. However, within our simplified model, the number of covered departures
alone is a more pertinent indicator.

The solutions provided within the allowed time cover 20% to 40% of departures (and
as much arrivals). Of course, this is very few and not suited for a practical application.
Although, considering the complexity of the problem and the size of the search space, it
is actually quite reasonable for a simple greedy assignment algorithm. Moreover, given
that our approach does not allow maintenance, junction and disjunction operations, the
number of departures which can be covered is limited. This suggests that the routing
algorithm itself is quite powerful, and that paired with a more advanced assignment
optimization algorithm, it could lead to interesting results.

From Table A.3, one can notice that most covered departures are “immediate depar-
tures”, which are departures following directly the arrival on the same platform. The
second phase, allowing trains to change platforms between arrival and departure by tran-
siting through yards, gains only a few percent and is time consuming. Thus, considering
only immediate departures seems a suitable approach to compute rather quickly an initial
solution.

When considering immediate departures, the path and timing is already precisely
defined by the arrival and departure sequences. In this case, the Routing procedure
only serve to select determine the feasibility of this path and timing for a given couple ar-
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immediate departures only with parking phase
t (s) objective covered dep t (s) objective covered dep

B1 24 1812600 35% (443/1235) t/o 1749000 38% (474/1235)
B2 23 1682080 39% (490/1235) t/o 1656180 40% (503/1235)
B3 21 1711330 38% (472/1235) t/o 1665330 40% (495/1235)
B4 71 2578160 36% (649/1780) t/o 2561360 36% (657/1780)
B5 136 3190890 34% (747/2153) t/o 3155790 35% (764/2153)
B6 72 2584130 36% (645/1780) t/o 2559330 36% (657/1780)
B7 2 456112 34% (105/304) 68 420112 40% (123/304)
B8 2 473484 31% (96/304) 83 439884 37% (113/304)
B9 72 2978598 29% (590/1967) t/o 2858098 32% (649/1967)
B10 < 1 364594 18% (36/196) 226 321794 29% (57/196)
B11 3 1984144 16% (190/1122) t/o 1858544 22% (250/1122)
B12 1 1031864 16% (94/570) t/o 982164 20% (118/570)

Table A.3: Summary of the results on set instance B. The first 3 columns present the
results for the algorithm limited to immediate departures only, the last 3 when allowing
an intermediate parking phase in yards between arrival and departure. for each case,
we give the execution time in seconds, the value of the ROADEF Challenge objective
function and the proportion of covered departures. “t/o” means that the execution has
reached the timeout, set to 10 minutes.

rival/departure and select a platform, given the current state of the solution and avoiding
conflict with other trains. When allowing parking, additional decisions must be made,
namely the selection of the parking yard and the duration of stay. Thus, in this case the
exploration performed by the Routing procedure is heavier and more time consuming.

Total execution times appear shorter for instances with few departures and arrivals
(B7,B8,B10), as less routing attempts need to be made. The comparatively high execution
time for instance B10 might result of the high proportion of joint departures and arrivals
in this instance, as members of a joint arrival or departure may be tentatively routed
several times, as convoys and as unitary trains.

The most interesting point in the solution exposed in this paper is without any doubt
the association of the three-level routing algorithm with the greedy algorithm. While the
structure of the instance can be used by the greedy method, results are quickly returned.
When the situation becomes more intricated the routing algorithm is used to create
relevant routes. Indeed, the multi-interval constraint propagation is flexible, efficient and
returns a set of possible range-value to enter and exit from each resource.

Note that as a canonical path between any pair of resources is computed during
the preprocessing phase, trains travelling with a given origin and destination are always
routed along the same path. Choosing among a set of preferred paths, or computing on
the fly alternative paths forbidding certain resources could be useful to avoid engorgement.

However the solution we propose here is robust, and the optimizer always return a
feasible solution. An important aspect of the greedy algorithm is the ability to build a
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correct solution really fast on all the instances and to build a better solution if more time
is available.

A simple optimization process could merely consist of choosing a random train, then
removing it from the solution and finally try to build another schedule. Rather than just
choosing randomly, one could select the train which generates the most conflicts: each
time the algorithm tries and fails to schedule a train, the conflict value of the trains which
prevented the scheduling is incremented ; at the end, the train with the highest conflict
value is removed from the solution. This could be used as the basis for a local search
optimization procedure.
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Résumé en version
Française B

Ce mémoire présente un ensemble d’outils pour résoudre de manière garantie des prob-
lèmes d’optimisation de systèmes dynamiques multi-physiques. Ces systèmes sont large-
ment représentés dans la recherche fondamentale (physique, chimie, biologie, environ-
nement, etc) et trouvent des applications directes dans des domaines variés tels que
la conception en ingénierie, la modélisation de réactions chimiques et de composants
électroniques, la simulation de systèmes biologiques et économiques ou même dans la
prédiction de la performance sportive.

La résolution de ces problèmes d’optimisation s’effectue en deux phases, appelées
phase de modélisation (A) et phase de résolution (B) qui sont dépendantes l’une de l’autre.
Les méthodes de résolution dépendent du modèle utilisé, ce dernier étant également
influencé par les méthodes de résolution envisagées.

La phase de modélisation (A) consiste à mettre en équation le problème sous forme
d’un modèle mathématique constitué d’un ensemble de variables (1), d’un ensemble de
contraintes (2) ainsi que d’une ou plusieurs fonctions de coût (3) que l’on veut minimiser.

(1) L’ensemble des variables du modèle que nous considérons se divise en trois caté-
gories.

(a) Les variables de décision x ∈ X ⊆ Rp sont des variables entières ou réelles qui
permettent de décrire le système et d’agir sur son comportement. Ces variables
peuvent prendre différentes valeurs et l’espace dans lequel elles évoluent est
appelé espace de recherche.

(b) Les variables de contrôle y ∈ Y ⊆ Rs sont des variables réelles de sortie sur
lesquelles il n’est pas possible ou souhaitable d’agir directement. Cependant,
elles permettent de contrôler des grandeurs qui dépendent des variables de
décision (a), des variables fonctionnelles (c) et des contraintes (2).

(c) Les variables fonctionnelles u ∈ U ⊆ (R→ R)n sont des variables qui décrivent
des fonctions. Elles permettent de représenter et de contrôler la dynamique
du système induit par la valeur des variables de décision (a), des variables de
contrôle (b) et des contraintes (2).

(2) Dans le modèle que nous considérons, nous distinguons différents types de con-
traintes.
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(d) Les contraintes algébriques permettent de manipuler des grandeurs statiques
(quantité, taille, poids, volume, densité, etc). Elles sont la plupart du temps
non linéaires, non convexes et parfois discontinues. Ces contraintes permettent
de lier les variables de décisions aux variables réelles de contrôle (b) et aux
fonctions de contrôle (c).

g(x,y,u) ≤ 0

(e) Les contraintes fonctionnelles permettent de manipuler des grandeurs dy-
namiques. Ces contraintes peuvent être relativement simples comme la mono-
tonie, la périodicité, la croissance, mais aussi bien plus complexe par la prise
en compte de contraintes différentielles simples ou définies par morceaux. Les
équations différentielles sont généralement utilisées pour modéliser des com-
portements physico-chimiques (électriques, mécaniques, magnétiques, ther-
miques, cinétiques, etc), des propriétés d’usure et d’autres caractéristiques
qui varient lors de l’évolution du système.
∗ Les contraintes différentielles sont décrites à l’aide d’équations différen-

tielles ordinaires (ODEs). Elles permettent de modéliser simplement le
comportement d’un système tout au long de son évolution.

u′(t) = d(x,y,u(t))

∗ Les contraintes différentielles par morceaux permettent de modéliser des
systèmes dynamiques bien plus complexes, dont le comportement lui
même n’est pas constant mais varie au cours de l’évolution du système.
Ces contraintes particulières sont utiles pour modéliser des changements
d’environnement.

u′(t) =


d1(x,y,u(t)) if c1(x,y,u(t))

...
dq(x,y,u(t)) if cq(x,y,u(t))

Par exemple, un objet massif se déplaçant en orbite terrestre haute n’est
soumis qu’à l’unique force de gravitation. Une fois celui-ci rentré dans
l’atmosphère des forces de frottements viennent s’ajouter. Quand l’objet
tombe dans l’océan, les forces de frottement sont encore différentes en
raison du changement de milieu entre l’atmosphère et l’hydrosphère. De
plus la poussée d’Archimède ainsi que les courants marins modifient la
trajectoire de l’objet.

L’utilisation conjointe des contraintes algébriques ainsi que des contraintes fonction-
nelles rend possible la modélisation de systèmes dynamiques et permet de décrire
l’ensemble des solutions réalisables SX . Une solution réalisable est un ensemble de
valeurs, qui, une fois assignées à l’ensemble des variables, respectent chacune des
contraintes du modèle.

SX =
{

(x,yx,ux) ∈ X × Y × U
∣∣∣∣∣ g(x,yx,ux) ≤ 0

d(x,yx,ux(t)) = u′(t)

}
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(3) Les fonctions de coût fcost sont utilisées pour mesurer la qualité d’une solution
selon un ou plusieurs critères (volume, poids, impact environnemental, rapidité de
la réaction, énergie mécanique produite. . . ).

Minimize fcost(x,y,u)

Ces critères sont importants mais ne requièrent pas un contrôle strict à l’aide des
contraintes, ils sont considérés comme des préférences. L’optimisation de problèmes
multi-objectifs est motivée par la gestion de coûts parfois conflictuels les uns avec
les autres. Par exemple on peut chercher à:

– maximiser une population en minimisant son impact sur l’environnement,
– maximiser une performance sportive en minimisant la dépense énergétique

qu’elle requiert,
– maximiser la qualité d’un produit en minimisant son coût de production,
– maximiser la température d’une pièce en minimisant la dépense calorifique.

Les fonctions de coût permettent de munir l’ensemble des solutions réalisables d’un
ordre partiel et donc de comparer différentes solutions réalisables entre elles. Ainsi,
une solution optimale est une solution qui est réalisable et minimale au sens de
l’ordre partiel donné par la fonction de coût. Ainsi, il est possible de définir un
ensemble de solutions dominantes DX qui regroupe toutes les solutions optimales.

DX = {(x∗,y∗,u∗) = s∗ ∈ SX | @s̃x ∈ SX , fcost(̃sx) < fcost(s∗)}

L’optimisation de ce type de modèle est un problème difficile. Cette difficulté est
induite par le nombre, la nature et l’hétérogénéité des variables (entières, réelles et
fonctionnelles), les différents ordres de grandeur mis en jeu, mais également par la nature
des contraintes (algébriques, fonctionnelles) qui ne sont pas nécessairement convexes, ni
même continues. De plus les fonctions de coûts ne sont pas nécessairement régulières et
peuvent comporter un grand nombre de minima locaux, ce qui rend la recherche de la
solution optimale d’autant plus difficile.

La seconde phase (B) consiste à utiliser un ensemble de méthodes afin d’extraire du
modèle une ou plusieurs solutions. Cependant la complexité de ces problèmes ainsi que
la limite des outils existants sont deux freins à l’utilisation de méthodes d’optimisation
globale garantie dans le but de résoudre de tels problèmes. Pour cette raison, on trouve
dans la littérature scientifique plusieurs niveaux d’approximation concernant chacune de
ces deux phases.

Lors de la modélisation d’un problème, il est courant d’assister à une simplification
de sa partie dynamique, cette partie pouvant même être ignorée dans certains cas. Une
partie du modèle statique ou son intégralité peut aussi être rendue convexe ou linéarisée.

Lors de la résolution, des méthodes approchées peuvent être utilisées. La recherche
d’une solution optimale par des algorithmes évolutionnaires ne permet pas de garan-
tir l’optimalité de la solution obtenue. De la même manière, l’utilisation de méthodes
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numériques ne permet pas de garantir la résolution des contraintes différentielles et la
réalisabilité ou non de la solution.

Ces approximations donnent en pratique des résultats suffisants pour l’industrie,
cependant elles ne permettent pas de garantir l’optimalité ni même la réalisabilité de
la solution obtenue. De plus, la modélisation et la résolution des parties dynamiques sont
importantes et ces approximations ne permettent pas de garantir le comportement du
système au cours de son évolution.

C’est la raison pour laquelle on s’intéresse, dans cette thèse, à la création d’un outil
global permettant de résoudre de manière garantie les problèmes pouvant être modélisés
de cette manière. Après une courte introduction, nous introduisons plus en détail le
modèle des problèmes que nous souhaitons résoudre dans le premier chapitre (I) avec
quelques exemples d’applications industrielles sur des problèmes de conception.

(II) Dans le deuxième chapitre, nous abordons le cas des arithmétiques garanties avec
l’arithmétique d’intervalles et une extension appelée arithmétique de tubes.

– L’arithmétique d’intervalles (IA) est une arithmétique particulière permettant
de garantir les résultats numériques des opérations et de représenter des en-
sembles continus de valeurs. Dans un premier temps, cette garantie s’obtient
en représentant les valeurs réelles par les plus petits intervalles numériquement
représentables les contenant. Dans un second temps, la garantie se conserve
en redéfinissant les opérateurs arithmétiques et les fonctions usuelles avec un
contrôle strict des arrondis de l’unité de calcul. Dans ce chapitre, nous présen-
tons les aspects positifs de l’arithmétique d’intervalles, tels que la garantie des
résultats et la possibilité de raisonner sur des ensembles de cardinal infini. De
manière similaire, les limites portant sur la précision des intervalles résultant
d’opérations sont abordées et quelques astuces permettant d’augmenter leur
précision sont développées.

– L’arithmétique de tubes (TA) est une extension de l’arithmétique d’intervalles
qui permet de représenter des ensembles de fonctions unaires et dans le même
temps d’étendre la garantie des opérations sur ces fonctions. Dans ce chapitre
les opérations sont redéfinies et plusieurs représentations sont discutées, tout
comme leurs atouts et leurs limites.

(III) Le troisième chapitre est dédié à l’intégration garantie d’équations différentielles or-
dinaires (ODEs) afin de prendre en compte les contraintes différentielles de manière
efficace. Dans ce chapitre nous étudions un algorithme itératif qui repose sur deux
étapes permettant de calculer d’abord une inclusion globale de la solution puis une
inclusion locale par un processus de contraction. Différentes méthodes permettant
de gagner en précision et en efficacité y sont exposées. En particulier, pour le cal-
cul des inclusions globales deux méthodes FOE puis HOE basées sur l’opérateur
de Picard-Lindelöf, puis l’utilisation de polynômes de Taylor, de formes centrées,
de changements de repères par la QR-Factorization et de méthodes de coupes par
consistances pour la contraction.
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(IV) Dans le quatrième chapitre nous posons les bases de la Programmation Par Con-
traintes (CP) permettant de résoudre des Problèmes de Satisfaction de Contraintes
(CSP) avec des méthodes de filtrages et de contractions. Ces problèmes consistent
à rechercher une ou plusieurs solutions réalisables. Ces algorithmes sont utilisés
pour converger plus rapidement vers l’ensemble des solutions réalisables ce qui per-
met de restreindre l’espace de recherche. Dans ce chapitre nous étudions divers
contracteurs atomiques comme HC4, Cmonotonic et Cdiff permettant d’exploiter
les contraintes algébriques et fonctionnelles ainsi que quelques méta-contracteurs
permettant d’utiliser des schémas particuliers de contractions sur une partie ou
l’ensemble des contraintes.

(V) Dans le cinquième chapitre, nous exposons les problématiques liées à l’intégration
garantie d’équations différentielles ordinaires par morceaux (p-ODEs) ainsi qu’une
méthode pour y parvenir. Pour cela nous réutilisons les méthodes étudiées pour
l’intégration garantie d’ODEs. Cependant les limites posées par certaines zones
nécessitent un traitement spécifique. Nous développons donc un théorème avec sa
preuve permettant de construire un algorithme pour l’intégration garantie de ces
zones particulières.

(VI) Dans le sixième chapitre nous intégrons l’ensemble des méthodes précédemment
décrites au sein d’un algorithme d’optimisation globale déterministe. Celui-ci repose
sur l’utilisation conjointe de méthodes par intervalles et de l’algorithme Branch
and Bound bien connue dans le monde de la recherche opérationnelle. Aussi, nous
décrivons les limites paradoxales de l’optimisation garantie que sont la perte de
garantie pour des systèmes contenant des contraintes liées.

(VII) Dans le septième chapitre, nous testons les méthodes décrites sur différents sys-
tèmes. Dans un premier temps nous appliquons l’algorithme d’optimisation garantie
sur le problème industriel, détaillé dans le deuxième chapitre, qui ne contient pas
de contrainte fonctionnelle. Puis nous testons la méthode d’intégration garantie
d’équations différentielles ordinaires par morceaux sur un exemple académique
développé pour l’occasion. Finalement nous étudions le résultat de l’algorithme
d’optimisation globale sur un problème contenant des contraintes différentielles par
morceaux.

Au cours de ce travail de recherche, j’ai développé un outil GDODynS en langage
C++, inspiré d’IBEX, mettant en oeuvre l’ensemble des méthodes présentées pour la
prise en compte des incertitudes, pour garantir l’optimalité et la réalisabilité des solutions
à ces problèmes. Pour cela j’ai utilisé un ensemble de bibliothèques permettant la gestion
de l’arithmétique d’intervalles avec Profil-BIAS et la résolution garantie d’équations dif-
férentielles ordinaires avec Vnode-LP. J’ai également étendu les connaissances théoriques
pour permettre la résolution garantie d’équations différentielles ordinaires par morceaux.

Cependant, la taille des instances ainsi que la complexité que représente l’intégration
garantie d’équations différentielles constituent une barrière pour une optimisation rapide.
La mise en place d’heuristiques concernant la propagation des contraintes fonctionnelles
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semble être une approche intéressante de même que l’utilisation de nouvelles arithmé-
tiques garanties telles que l’arithmétique affine.

Durant cette thèse, j’ai également eu l’opportunité de travailler en collaboration avec
Florence Thiard sur un projet de recherche opérationnel proposé par la SNCF dans le
cadre du challenge international ROADEF/EURO 2014 que nous avons remporté dans
la catégorie Junior et où nous nous sommes classés 4ème dans la catégorie Senior. Le
résultat de cette collaboration a donné lieu à une publication dans Annals of Operations
Research, laquelle est disponible en annexe de ce document.
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Abstract

In this thesis a set of tools based on guaranteed methods are presented in order to
solve multi-physics dynamic problems. These systems can be applied in various domains
such that engineering design process, model of chemical reactions, simulation of biological
systems or even to predict athletic performances.

The resolution of these optimization problems is made of two stages. The first one
consists in defining a mathematical model by setting up the equations for the problem.
The model is made of a set of variables, a set of algebraic and functional constraints and
cost functions. The latter are used in the second stage in order to extract the optimal
solutions from the model depending on several criteria (volume, weight, etc).

Algebraic constraints are used to describe the static properties of the system (quan-
tity, size, density, etc). They are non-linear, non-convex and sometimes discontinuous.
Functional constraints are used to manipulate dynamic quantities. These constraints can
be quite simple such as monotony or periodicity or they can be more complex such as
simple or piecewise differential constraints. Differential equations are used to describe
physico-chemical properties (magnetic, thermal, etc) and other features evolving with the
component use.

Several levels of approximation exist for each of these two stages. These approx-
imations give some relevant results but they do not guarantee the feasibility nor the
optimality of the solutions.

After presenting a set of guaranteed methods in order to perform the guaranteed in-
tegration of ordinary differential equations, a peculiar type of hybrid system that can
be modeled with piecewise ordinary differential equation is considered. A new method
that computes guaranteed integration of these piecewise ordinary differential equations
is developed through an extension of the initial algorithm based on several proofs and
theorems. In a second step these algorithms are gathered within a contractor program-
ming module that have been implemented. It is used to solve algebraic and functional
constraint satisfaction problems with guaranteed methods. Finally, the considered opti-
mization problems are solved with a modular deterministic global optimization algorithm
that uses the previous modules.

Keywords: Global Optimization, Guaranteed Arithmetic, Constraint Programming,
Ordinary Differential Equation, Guaranteed Integration, Hybrid System.



Résumé

Ce mémoire présente une approche basée sur des méthodes garanties pour résoudre
des problèmes d’optimisation de systèmes dynamiques multi-physiques. Ces systèmes
trouvent des applications directes dans des domaines variés tels que la conception en
ingénierie, la modélisation de réactions chimiques, la simulation de systèmes biologiques
ou la prédiction de la performance sportive.

La résolution de ces problèmes d’optimisation s’effectue en deux phases. La première
consiste à mettre le problème en équations sous forme d’un modèle mathématique consti-
tué d’un ensemble de variables, d’un ensemble de contraintes algébriques et fonctionnelles
ainsi que de fonctions de coût. Celles-ci sont utilisées lors de la seconde phase qui consiste
à extraire du modèle les solutions optimales selon plusieurs critères (volume, poids, etc).

Les contraintes algébriques permettent de manipuler des grandeurs statiques (quan-
tité, taille, densité, etc). Elles sont non linéaires, non convexes et parfois discontinues.
Les contraintes fonctionnelles permettent de manipuler des grandeurs dynamiques. Ces
contraintes peuvent être relativement simples comme la monotonie ou la périodicité, mais
aussi bien plus complexe par la prise en compte de contraintes différentielles simples ou
définies par morceaux. Les équations différentielles sont utilisées pour modéliser des com-
portements physico-chimiques (magnétiques, thermiques, etc) et d’autres caractéristiques
qui varient lors de l’évolution du système.

Il existe plusieurs niveaux d’approximation pour chacune de ces deux phases. Ces
approximations donnent des résultats pertinents, mais elles ne permettent pas de garantir
l’optimalité ni la réalisabilité des solutions.

Après avoir présenté un ensemble de méthodes garanties permettant de résoudre
de manière garantie des équations différentielles ordinaires, nous formalisons un mod-
èle particulier de systèmes hybrides sous la forme d’équations différentielles ordinaires
par morceaux. A l’aide de plusieurs preuves et théorèmes nous étendons la première
méthode de résolution pour résoudre de manière garantie ces équations différentielles
par morceaux. Dans un second temps, nous intégrons ces deux méthodes au sein d’un
module de programmation par contracteurs, que nous avons implémenté. Ce module
basé sur des méthodes garantie permet de résoudre des problèmes de satisfaction de con-
traintes algébriques et fonctionnelles. Ce module est finalement utilisé dans un algorithme
d’optimisation globale déterministe modulaire permettant de résoudre les problèmes con-
sidérés.

Mots clefs: Optimisation Globale, Arithmétique Garantie, Programmation Par Con-
traintes, Équation Différentielle Ordinaire, Intégration Garantie, Système Hybride.


