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Abstract 

 
The environmental issues, especially the global warming due to greenhouse effect, has 

become more and more critical in recent decades. As one potential candidate among 

different alternative “green energy” solutions for sustainable development, the Proton 

Exchange Membrane Fuel Cell (PEMFC) has been received extensive research attention 

since many years for energy and transportation applications. The PEMFC stacks, can 

produce electricity directly from electrochemical reaction between hydrogen and oxygen 

in the air, with the only by–products of water and heat. If the hydrogen is produced from 

renewable energy sources, this energy conversion is 100% eco–friendly. The PEMFCs 

are getting more and more attention because they are considered as potential candidates 

of clean energy solution in the near future. Besides, the PEMFCs contain no moving parts 

in the structures, this feature ensures both compactness and reliability of fuel cell systems. 

Thus, the PEMFCs are especially considered to be used in transportation applications 

such as hybrid or electrical vehicles. 

However, the relatively short lifespan of PEMFCs operating under non steady–state 

conditions (for vehicles for example) impedes its massive use. The accurate prediction of 

their aging mechanisms can thus help to design proper maintenance patterns of PEMFCs 

by providing foreseeable performance degradation information. In addition, the 

prediction could also help to avoid or mitigate the unwanted degradation of PEMFC 

systems during operation. In this thesis, we have proposed a novel data driven approach 

to predict the performance degradation of the PEMFC using improved relevance vector 

machine method.  

In chapter 1, we briefly introduced the theoretical description of the PEMFC during 

operation. Then followed an extensively detailed illustration on impacts of operational 

conditions on PEMFC performance. We also discussed the degradation mechanisms on 

each components of PEMFC. At the end, the different approaches of PEMFC 

performance prediction in the literature are briefly introduced. 

In chapter 2, we proposed a performance prediction method using an improved Relevance 

Vector Machine (RVM), the prediction results based on different training zones from the 
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historical data were thoroughly discussed and compared with the prediction results using 

conventional Support Vector Machine (SVM).  

The predictions are fairly acceptable based on different training zones. However, all of 

the prediction were using fixed kernels, which would impede the prediction performance 

of proposed method. In chapter 3, we further introduced a self-adaptive kernel RVM 

prediction method. At the same time, the design matrix of the RVM training was also 

modified in order to acquire higher precision during prediction. The prediction results are 

illustrated and discussed in the end. 

Apart from the proposed data driven approach, two physical degradation prediction 

models focused on the platinum dissolution on catalyst layer and its precipitation in the 

membrane were also briefly introduced in APPENDIX I. and II. 

In summary, this dissertation mainly discussed the analysis of the PEMFC performance 

prediction using advanced machine learning methods. 
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GENERAL INTRODUCTION 

 
In last few decades, the environmental issues have become more and more serious 

than ever, massive use of the fossil fuels in the society have resulted to a variety 

kinds of problems, such as air pollution, global warming, which would have huge 

impact on the environment. According to the report of U.S. Energy Information 

Administration (EIA), the International Energy Outlook 2016 (IEO 2016) 

Reference case, world energy-related CO2 emissions will increase from 32.3 billion 

metric tons in 2012 to 35.6 billion metric tons in 2020 and to 43.2 billion metric 

tons in 2040 [1]. This is an amount of predictable 40% of increase in carbon dioxide 

emission. It may not happen if different countries around the world would take this 

into serious consideration. 

In these decades, the world has been facing the increase of global energy demand, 

the surging prices of the fossil fuels, and the growth of air pollution with the 

increasing emission of the greenhouse gases. All of these have tremendously 

pushed us forward in the research and development of renewable energy field. The 

fuel cell has been one of the most promising clean energy solutions to provide the 

electrical energy in the stationary or mobile application. 

The fuel cell is an electrochemical energy conversion device which is completely 

environmental friendly if the hydrogen (i.e. the fuel) is produced 100% from 

renewable energy. Zero emission of carbon dioxide, high energy density, and 

without using the fossil fuels make it a very promising energy solution in the future. 

Specifically, comparing with battery energy sources, the inherent energy density of 

fuel cells is significantly higher, as shown in Fig. 1, which compares the specific 

energy (energy per unit weight) of current deep discharge lead acid (Pb-A) batteries, 

nickel metal hydride (NiMH), Lithium Ion battery, the US ABC (Advanced Battery 

Consortium) goal with the specific energy of a proton exchange membrane fuel cell 

(PEMFC) plus compressed hydrogen storage tanks. Two hydrogen pressures are 

shown: 35 MPa and 70 MPa with fiber wrapped composite tanks. The 70 MPa 
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hydrogen tanks weigh more than the 35 MPa tanks due to the requirement for extra 

fiber wrap to provide the needed strength [2]. 

 

 

Fig. 1 The specific energy of hydrogen and fuel cell systems compared to the 

specific energy of various battery systems 

According to different operation conditions and types of electrolyte, there are 

different types of fuel cells in mobile, transport and stationary application: 

 
! Proton exchange membrane fuel cells (PEMFC) 

! Alkaline fuel cells (AFC) 

! Phosphoric acid fuel cells (PAFC) 

! Molten carbonate fuel cells (MCFC) 

! Solid oxide fuel cells (SOFC) 

 
A brief summary of these different kinds of fuel cells is illustrated in TABLE 1. 

The idea of fuel cell was firstly discovered and introduced in 1838 by the Swiss 

scientist Christian Friedrich Schönbein. At the meantime, an independent discovery 

of Sir William Robert Grove also made contributions to the early time of the fuel 

cell development. However, the first time a fuel cell was implemented to real 

application can be dated back to 1939, by the British engineer Francis Thomas 
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Bacon. In the early 1960s, General Electric developed a fuel cell system and it was 

practically used in the US space program, the Gemini Program. Since then, we 

could see the use of the fuel cells as the energy sources in the Apollo Missions of 

NASA, and more recently, of the automobiles, submarines and tractors. 

 
TABLE 1  

TYPES OF FUEL CELLS 

Fuel Cells Electrolytes 
Operating 

Temperature  
Fuels Advantages Disadvantages 

PEMFC 

Proton 

conducting 

Polymer 

40 – 90 °C H2  
Low temperature 

Quick start up 

Expensive 

Vulnerable to 

impurities 

AFC KOH 60 – 200 °C H2 

Cheap 

Cathode reaction 

faster 

Vulnerable to 

impurities 

PAFC 
Phosphoric 

acid 
200 °C H2  

Tolerance to the 

fuel impurities 

Low 

performance 

Long start 

time 

MCFC 
Molten 

Carbonate 
650 °C CH4, H2, CO 

No precious 

metal needed for 

catalyst  

Fuel flexibility 

Low 

performance 

Long start 

time 

High 

temperature 

SOFC Solid Oxide 800 – 950 °C CH4, H2, CO 

No certain 

choices of 

catalysts 

Fuel flexibility 

Solid electrolyte 

Prolonged 

start time due 

to high 

temperature 

 
 

Nowadays, there have been more and more areas using the PEMFC. Comparing 

with other kinds of fuel cells, PEMFC holds several advantages such as low 

operating temperature (<80°C), solid electrolyte (no leakage) and quick start-up. It 

can be implemented in the areas of transportation, electronics, aerospace, and also 

stationary applications. Regarding to the mobile use, the PEMFC could be used in 

many means of transportations: cars, buses, bicycles, aircraft, ships or submarines. 
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In most of the cases, the PEMFC is coupled with other energy providers such as 

batteries or super capacitors. In these years, many prototypes of PEMFC buses and 

cars have already been proposed, and more and more hydrogen stations are 

emerging all around the world. 

However, the PEMFC is still relatively a new technology for most of the people all 

over the world. Its usage is still limited. Some people would fear from the hydrogen 

related technology simply because of its flammable and combustible properties. 

This may cause danger in some cases. 

Apart from this, the PEMFC is still expensive for industrial application indeed. 

TABLE 2 shows the PEMFC system cost in the US from 2010 to 2015 according 

to the reported statistics from the Department of Energy (DOE) in 2015 [3]. Its 

commercial unfriendly is partly because of the fabrication cost of the proton 

exchange membrane or the nano platinum particles, which is the main component 

of the catalyst layer in the PEMFC.  

 
TABLE 2 

SYSTEM DESIGN PARAMETERS AND SYSTEM COST FROM 2010 TO 2015 EVALUATED 

AT RATED POWER 

Characteristic Units 2010 2011 2012 2013 2014 2015 

Gross stack 
power 

kW 87.9 89.25 88.2 89.4 92.8 88.2 

Stack 
efficiency 

% 55 55 55 57 55 53 

Cell voltage V 0.676 0.676 0.676 0.695 0.672 0.661 
Air 

stoichiometric 
ratio 

 2.5 1.5 1.5 1.5 2 1.5 

Stack inlet 
pressure 

atm 1.69 3 2.5 2.5 2.5 2.5 

Stack exit 
coolant 

°C 85 90 82 92 95 94.1 

Total PGM 
loading 

mg/cm² 0.15 0.186 0.196 0.153 0.153 0.142 

MEA areal 
power density 

kW/°C 833 1110 984 692 834 746 

Q/Tb kW/°C 1.66 1.52 1.78 1.37 1.45 1.45 
System cost $/kWnet 51 49 47 55 55 53 
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Moreover, its relatively lower durability also impedes it from massive usage in our 

daily life. For instance, the current announced lifetime of PEMFC in transportation 

applications is about 2500 h. In order to be competitive on the market, fuel cell 

systems should have the durability similar to current internal combustion engines 

(ICE) systems, while the  identified durability target is of 5000 h (equivalent to 

300,000 km of driving) with less than 10% loss of performance [4]. 

In other words, the poor durability of PEMFC is a problem and challenging task 

that need to overcome. There are many factors that could influence the long term 

durability of PEMFC. Its different operating conditions would also have different 

impacts on the fuel cell stack itself. And usually, the degradation phenomena are 

coupled together, making them extremely hard to be separated and identified. 

Therefore, in order to extend the lifetime of PEMFC, one need to understand: 

 
! What could impede its performance? 

 
! What are the degradation mechanisms in detail? 

 
! How the observed performance would change during its degradation during 

long term operation? 

 
In this thesis work, we illustrated first the degradation mechanisms of PEMFC in 

detail with literature review (chapter 1). We then proposed a mathematical way to 

macroscopically identify the fuel cell stack performance degradation (chapter 2, 3). 

Microscopically, we attempted to model the degradation of the electrochemistry 

catalyst surface area (ECSA) in the fuel cell stack (APPENDIX I. & II.), specifically 

of the platinum particles. In general, this thesis is organized as follow: 

In chapter 1, the PEMFC principles are introduced with theoretical descriptions of 

the PEMFC. It is well-known that the performance of the PEMFC stack could be 

significantly impacted and deviated from the output performance by different 

operation conditions. We specifically illustrate in this chapter the impacts of 

performance from different operation conditions. The degradation mechanisms are 

also extensively detailed in terms of different components. In the end, we 

introduced the topic of PEMFC prognostics with literature review.  
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The main scientific contributions of this thesis are presented in chapter 2 and 3. In 

chapter 2, we proposed the PEMFC stack performance prediction using feature 

extended relevance vector machine (RVM). Firstly, the mathematical formulation 

of RVM was illustrated, then the proposed RVM method is implemented on the 

performance prediction using two datasets of performance degradation measured 

from consecutive operation in 400 h. The results have been thoroughly discussed 

and compared with the prediction results from conventional methods using Support 

Vector Machine (SVM). 

In chapter 3, the performance prediction using self-adaptive kernel RVM is 

proposed and analyzed. Specifically, this is proposed to enhance the prediction 

performance by automatically choosing the most proper kernel width during the 

prediction process, especially in an on-line prediction environment with different 

training zone. In this chapter, we firstly introduce what the kernel trick is, then the 

proposed self-adaptive kernel relevance vector machine has been illustrated and 

developed, followed by the description of the prediction implementation process. 

In the end, the prediction results acquired from different training sets and different 

prediction conditions have been extensively demonstrated and compared with both 

the SVM and the original RVM. 

In the last chapter, the contributions of this thesis are concluded, and the future 

works of this thesis are proposed. 

In the appendix, the first two appendixes are about the physical modelling of 

platinum dissolution on the catalyst layer and its precipitation in the membrane. The 

third appendix represents the list of publications from this thesis work.  
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CHAPTER 1. 

GENERALITIES on PEMFC and 

DEGRADATION 

 
The PEMFC can produce electricity directly from electrochemical reaction between 

hydrogen and oxygen in the air, with the only by–products of water and heat. If the 

hydrogen is produced from renewable energy sources, this energy conversion is 

100% eco–friendly. The PEMFCs are getting more and more attention because they 

are considered as potential candidates of clean energy solution in the near future. 

Besides, the PEMFCs contain no moving parts in the structures, this feature ensures 

both compactness and reliability of fuel cell systems. Thus, the PEMFCs are 

especially considered to be used in transportation applications such as hybrid or 

electrical vehicles.  

 

1.1 General description of PEMFC and systems 

 
When we were saying the PEMFC, it could be referring to the PEMFC single cell 

or the PEMFC stacks. Typically, a PEMFC stack is consisted of up to dozens or 

even hundreds of single cells in order to get the needed power. These identical 

single cells are electrically connected in series to form a PEMFC stack. For example, 

the 1.2kW Ballard NEXA stack that we used in our test cases is composed of 47 

single cells.  

 

1.1.1 PEMFC structure 

 
Fig. 1-1 shows a typical layout of a single cell of a PEMFC [5][6]. During its 

operation, the hydrogen is supplied to the anode side and the air (oxygen) is 
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supplied to the cathode side. The hydrogen and oxygen are then diffused through 

the gas diffusion layer to the catalyst layer on each side. At anode catalyst layer, the 

hydrogen molecules are disassociated to protons and electrons with the presence of 

platinum catalyst. The protons then migrate through the humidified polymer 

electrolyte (membrane) from the anode side to the cathode side, while at the same 

time the electrons are conducted through the external circuit from anode to cathode 

to form the electrical current. Finally, at the cathode catalyst layer, the protons, the 

electrons and the oxygen molecules are combined to form water and heat as 

byproduct. 

 

 

Fig. 1-1 Layout of a single cell of PEMFC 

 
From a structural point of view, each single cell is composed by: 

 
1. Polymer electrolyte membrane 

 
The polymer electrolyte membrane (or the proton exchange membrane) in 

a cell is responsible for conduction of protons, separation of reaction gases, 

and electrical insulation of the electrodes. The polymer electrolyte allows 

the single cell operating with a very thin membrane while still withstanding 

high pressures, resulting in low ohmic losses and facilitate the proton 

conduction across the membrane.  

The membranes used in the PEMFCs are a kind of ionomers, which contains 

a large portion of polymers ions, usually the sulphonic end groups. The 
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hydrophilic ionic end groups are the keys to enable the transporting of 

protons across the membrane. Several types of membranes were used before, 

but now the perfluorosulfonic acid (usually abbreviated as PFSA in the 

literature) membranes are widely used in the PEMFC. It is more commonly 

known as the NafionTM type membrane. The structure of the PFSA could 

provide on one hand, the stability in the acid environment which is caused 

by the hydrogen ions within itself, and also at the meantime, the ability to 

provide the pathway for the hydrogen ions diffusing from the anode to the 

cathode. For today’s PEMFCs, its thickness does not exceed 25 microns in 

general [7]. When the membrane absorbs water, the water molecules would 

tend to agglomerate and form the clusters on the hydrophilic end groups of 

the PFSA, then these water clusters could provide the pathways for the 

protons travelling from anode to cathode. The membrane would have higher 

proton conductivity with higher water uptake. 

Normally, the membrane would be regarded as properly functioned if it can 

endure in these two environments. Firstly, physically, it should be intact to 

be a separation between the pressurized gases in anode and cathode, with 

nearly no gases crossover. Moreover, it should be chemically stable in some 

harsh conditions which are the results of the activity of catalysts, 

temperature fluctuations, extremely high temperatures or the attacks from 

the oxidative radicals originally formed from the H&O&. Specifically, the 

radicals are produced either from the incomplete chemical reactions 

between the hydrogen and oxygen on the cathode, or in the membrane, 

where they are created on surface of the precipitated platinum particles. So 

based on all of these, in general, the ideal membrane for the PEMFC stack 

should have excellent proton conductivity, high chemical and thermal 

stability, mechanical strength, flexibility, nearly zero gas permeability, low 

cost and availability. 

In the literature, [8] has been addressed different types of membranes used 

in the application of the PEMFC stacks. It allows us to be acknowledged of 

those different kinds of membranes, and also their properties and the 

degradation related information. In fact in a fuel cell, its lifetime is strongly 
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related to its membrane durability [9]. We have to acknowledge the aging 

mechanisms that are involved in the membrane performance degradation. 

However, the degradation mechanisms of membrane are hard to be 

separated and identified because the membrane degradations could be 

caused by many operation factors. The impacts of these factors on 

membranes are usually coupled together. Therefore, the research on 

membrane degradation mechanisms still remain a challenging task. 

 
2. Catalyst layers 

  
The electrodes of a PEMFC single cell are the two thin catalyst layers 

located on both sides of the polymer electrolyte membrane. All the 

electrochemical reactions take place at the catalyst layers. In fact, the 

conventional catalyst layer is majorly composed of platinum nanoparticles 

supported by carbon surface with a mixture of controlled amount of ionomer. 

The carbon surface in this layer would give way for both platinum 

dispersion and electron conductivity. The ionomer, which in principle 

provides the structural integrity of the catalyst layer, contains many discrete 

hydrophilic and hydrophobic fields for the reactants and protons to access 

to the active sites of platinum nano particles, in which the reactions could 

happen. As shown in Fig. 1-1, the hydrogen oxidation reaction takes place 

on the active sites of catalyst layer on the left side (the anode side), and the 

oxygen reduction reaction takes place on the right side (the cathode side). 

 
3. Gas diffusion layer (GDL) 

 
The layer between the catalyst layer and bipolar plate is the gas diffusion 

layer (GDL). There are mainly two kinds of GDLs: the nonwoven carbon 

paper and woven carbon cloth. It allows the hydrogen and oxygen (or air) 

in the flow field channels of bipolar plates from both sides of the cell 

diffusing into the catalyst layers, where the electrochemical reaction would 

happen. Specifically, the modes of diffusion of reactants passing through 

the compressed GDL could be divided as the diffusion and convection-
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diffusion. These depend on the geometry of the pores of GDL and the 

channel design of flow field channels in the bipolar plates. 

The GDL is usually treated with hydrophobic coating of 

Polytetrafluoroethylene (PTFE) for effective transportation of liquid water 

and reactive gases. The hydrophobic characteristics of GDL is very 

important to the water management of the whole cell. The proportion of 

hydrophilic and hydrophobic areas on surface of GDL would tremendously 

influence the efficiency of gas and water transportation [10]. The PTFE 

treatment on porous of GDL facilitates the water management of the catalyst 

layer and the membrane. It could allow water vapor diffusing within the 

pores of itself along with the reactant gases, thereby ensuring a sufficient 

humidity environment in the membrane. In addition, it helps at the 

meantime to be able to evacuate the liquid water produced on the cathode 

side of each cell, and thereby prevents the water from blocking the pores to 

the active sites. Moreover, GDL are electrically connected to the catalyst 

layer and the bipolar plates. This could ensure the transfer of electrons 

between the active sites and the bipolar plates.  

In PEMFC, the GDLs are usually functioning under the environment of high 

compressive stress. So the GDL should function properly in circumstances 

of the plastic or elastic deformations, and provide sufficient air permeability 

under compression.  

The GDLs along with the catalyst layers are usually fabricated on both sides 

of the membrane to form the Membrane Electrode Assembly (MEA). The 

catalyst layer along with the GDL on each side of MEA could be regarded 

as two electrodes. Each electrode is electrically insulated from each other 

by the membrane. 

 
4. Bipolar plates 

 
The bipolar plates are essential to supply the reaction gases to the electrodes 

with the flow field channels on their surface. Besides, the bipolar plates are 

also essential for multiple cell configurations for its ability of electrically 

connection with different cells in series. Moreover, they can structurally 
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support the cells in a pressed and compact configuration, making it more 

reliable during operation. Among all of these, the abilities of collecting 

reactant gases and allowing them diffusing into the electrodes are the most 

important functions of the bipolar plates. In fact, the design of the flow field 

channels in the bipolar plates is crucial for the efficiency of gas diffusion. 

Different designs have been discussed in [11]. 

The bipolar plates should have these characteristics: high electrical 

conductivity, high corrosion resistance, high mechanical strength, low 

electrical or thermal contact resistance, low permeability of reactant gases 

and also, low friability [12], [13]. To fulfill these requirements, a variety 

kinds of material of bipolar plates (either metal, composite or graphite) are 

qualified to be fabricated to bipolar plates. The researches would always 

need to balance the anti-corrosion ability and the contact resistance of the 

bipolar plates material. They need to choose those with higher anti-

corrosion ability with lowest resistance. Usually, higher anti-corrosion of a 

material would lead to higher contact resistance. 

 
In order to acquire sufficient electric power output, the cells are connected in series 

in configuration as shown in Fig. 1-2. 

 

 

Fig. 1-2 Typical layout of a PEMFC stack 

 
From this figure we could see, for each cell, it is the two halves of bipolar plates 

that compress the MEA in a compact configuration to form each of the single cell. 

In fact, the hydrogen and oxygen are supplied to each side of the bipolar plates, then 

MEA 

Bipolar plates 

End plates 

H& 
H& 

O& or air 

O& or air 
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the reactant gases in the flow field channels could diffuse to the anode or cathode 

of each cell to make the electrochemical reactions possible during PEMFC 

operation. 

 

1.1.2 PEMFC system 

 
The PEMFC stack would always need auxiliaries to functionally provide electricity. 

The whole system containing the stack and auxiliaries is called a PEMFC system 

Fig. 1-3. Generally, the auxiliaries could be categorized as 5 subsystems: 

 
! Reactant supply subsystem 

! Heat management subsystem 

! Water management subsystem 

! Power conditioning subsystem 

! Power management subsystem 

 

 

Fig. 1-3 Typical layout of a PEMFC system 

 
1. Reactant supply subsystem 
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Generally, the reactant supply subsystem is consisted of hydrogen and air 

supply subsystem.  

The objective of the hydrogen supply subsystem is to control the hydrogen 

pressure and flow rate in the anode. Generally, the hydrogen supply 

subsystem is consisted of a pressurized hydrogen tank connected to the 

anode through a pressure reduction valve and a pressure control valve. 

Sometimes the anode is working under a dead-end mode, which means the 

hydrogen outlet is closed and all hydrogen supplied in the channels is 

consumed in the fuel cells. The hydrogen outlet is periodically opened for 

purging by the purge valve in the anode outlet in order to let out the 

produced water, accumulated impurities or the nitrogen diffused from the 

air in the cathode side. When the anode is working under a flow through 

mode, the hydrogen would flow back to the hydrogen inlet from the outlet 

by a recirculation pump device.  

The air supply subsystem is usually composed of an air compressor or a 

blower which could inject the pressurized air to the cathode from the 

environment. Its objective is to supply air with certain flow rate to ensure 

the proper functioning of the PEMFC stack. The pressure is regulated by a 

pressure valve at cathode circuit outlet. Usually the cathode side is 

pressurized up to 2.5 bar in order to acquire higher output power. However, 

this power increase from stack level should be balanced with the power 

needed for the compressor on a system level. 

 
2. Heat management subsystem 

 
The heat management subsystem is consisted of the stack cooling system 

and the reactant heating system. In fact, the general optimized zone of 

PEMFC operation temperature would be around 60 – 80 °C. So the 

effectiveness of a heat management subsystem is strongly correlated to the 

performance of a PEMFC system. In some cases, the byproduct of heat 

would be reused, either for the heating of the reactant gases at inlet or other 

purposes. 
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3. Water management subsystem 

 
Water management in the PEMFC system is very important to maintain the 

PEMFC working in an efficient profile. Proper water management can 

prevent the PEMFC stack or system from unwanted degradation. Water is 

produced on the cathode side from the oxygen reduction reaction. However 

in some cases, for example in a high current output profile, the amount of 

water produced on cathode side would be too much and it could influence 

the performance of the PEMFC by blocking the GDL. In some other cases, 

in a low current output profile, the PEMFC, especially the membrane would 

be dehydrated if the reactant gases are not properly humidified. This would 

also impact the performance of the PEMFC. Therefore, the water 

management subsystem is very important because its effectiveness is 

strongly correlated with the PEMFC performance. Detailed illustrations 

could be referred to subsection 1.2.1. In most of the cases, the water 

management is done by active or passive interchange humidifiers between 

the reactant gas inlets and outlets, from which the humidity of the reactant 

gases can be regulated, and also the excessive water on the electrodes can 

be removed.  

The water management is a challenging task, because the relative humidity 

levels in different components of PEMFC are coupled and could be 

influenced by the operation conditions such as the temperature and the load 

variation. Moreover, the humidification level could influence the 

performance of the PEMFC due to the changing of the reactant 

stoichiometry. That is to say, the optimal humidity level may not be 

compatible with an efficient flux level of the reactant gases in order to best 

fulfill the load demand.  

Generally, there are three ways for reactant humidification: 

  
a. Gas bubbling:  

  
The method of gas bubbling is usually used in a laboratory environment, 

rather than in a commercial application. The gases would be bubbling 
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through a water tube in a regulated temperature. In this case, the 

humidity level of the reactant gases would be influenced and controlled 

by the temperature. However in some cases, the liquid water would be 

present in the reactant gases after humidification. 

 
b. Direct vapor injection: 

 
This is usually done by injecting the moisture mist into the reactant gases. 

In order to improve the humidification quality, a heat source would be 

used to produce the fine water vapor. The humidification level is 

controlled solely by the amount of injected moisture. 

  
c. Water exchange through permeable material: 

 
The permeable material such as a NafionTM membrane would be brought 

to use in this case. On one side of the membrane, the liquid water would 

flow through the surface of the membrane, and the reactant gases would 

circulate on the other side of the membrane, and get humidified by the 

diffused water through the membrane. The humidification level of 

reactant gases can be controlled by the temperature of the water flow. 

 

4. Power conditioning subsystem 

 
The voltage of each single cell of PEMFC stack could be influenced by a 

variety kinds of operation parameters, such as the gas humidification level, 

gas flow rate and stoichiometry, stack temperature distribution, membrane 

hydration level, current density, etc. So the output voltage of PEMFC stack 

need to be regulated before being supplied to the load demand. 

The power conditioning subsystem is usually composed of DC/DC or 

DC/AC regulators. The DC/DCs or DC/ACs coupling with transformers 

could on one hand extend the output voltage range of the PEMFC stack, and 

also ensure the electric isolation between the load and the stack. In many 

cases, the regulated output voltage could be used either by the load or the 
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system auxiliaries, which means there would be more than one regulators 

conditioning the PEMFC output in the system. 

 
5. Power management subsystem 

 
In fact, the power management subsystem is rather an integration of PEMFC 

system into power generation system. The power management subsystem is 

usually set up in an operation environment where there are also other energy 

output or storage devices such as super capacitors, or battery packs. If no 

other energy sources included, the full load would be supplied by the 

PEMFC stack, hence there would be no need to include power management 

module in this condition. However if there are other energy sources in the 

system, e.g., a hybrid or electrical vehicle case, it is necessary to implement 

a power management subsystem inside and distribute the output power 

when needed.  

 

 

1.1.3 PEMFC operation principles and functioning layers 

 
Basically, the produced electricity from a functioning PEMFC is transferred from 

the released chemical energy from the electrochemical reactions happened on the 

electrodes. In the PEM fuel cell, it would be composed of two half-electrochemical 

reactions on each of the electrodes: 

 
At the anode: 

 2H& → 4H? + 4eK (1-1) 

 
At the cathode: 

 O& + 4H? + 4eK → 2H&O (1-2) 

 
Overall: 
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2H& + O& → 2H&O (1-3) 

 

The enthalpy1 of this global reaction is the difference between the enthalpy of 

products and the reactants, so: 

 

∆H = HMN0 − HMN − 12 H0N = −286kJ (1-4) 

 

The negative sign in here means this amount of energy is released in this reaction, 

so for this exothermic reaction, 286kJ of energy is released per mole of H& 

consumed during the overall reaction. The premise for this amount of released 

enthalpy is that we assume the water is released in liquid form at 25℃ under the 

atmospheric pressure condition.  

However, not 100% of the enthalpy can be converted into electricity. A certain 

amount of enthalpy is inherent cannot be converted into work, i.e., only part of the 

286kJ being released per mole H& consumed during operation may be transferred 

to electricity. This part of energy is the Gibbs free energy2 ∆G, where, 

 ∆G = ∆H − T∆S (1-5) 

  ∆S, the entropy, is the irreversible losses during the electrochemical reaction, T is 

the reaction temperature in the cell. ∆S  would change with different operating 

conditions: the temperature and the pressure of the reactants. From [14], the Gibbs 

free energy out of the total available energy in the overall reaction is valued as -

237.34kJ per mole hydrogen consumed at 25℃ under the atmospheric pressure 

condition. Here same as the enthalpy, the negative sign means this amount of energy 

is being released during reaction. 

                                                      

1 Enthalpy is a measurement of energy in a thermodynamic system. It is the thermodynamic quantity 
equivalent to the total heat content of a system. It equals to the internal energy of the system plus 
the product of pressure and volume. 
2 The greatest amount of mechanical work which can be obtained from a given quantity of a certain 
substance in a given initial state, without increasing its total volume or allowing heat to pass to or 
from external bodies, except such as at the close of the processes are left in their initial condition 
[106]. 
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The electrical work is the product of charge and potential, the theoretical potential 

that could be driven from this energy is: 

 

EY078Z76Z = −∆GnF = 237.34kJ/mol2 ∙ 96485As/mol = 1.23V (1-6) 

 
F is the faraday constant, valued as 96485 (C/mol), n stands for the number of 

electrons involved in the overall reaction per mole of hydrogen being consumed. 

The 1.23V is the voltage getting from the standard condition. In fact, 

electrochemically, the potential the electrodes could provide would be deviated 

from 1.23 V if it is not working in the standard condition: 

 

E = EY078Z76Z − RTnF ln 4 aMN0aMN ∙ a0Nh.i6 (1-7) 

 
where a stand for the activity of different species. However in most of the cases, 

the fuel cell would have different losses during operation, and that would usually 

lead to a much lower power supply comparing with this value.  

Generally, the losses [5] can be categorized to three parts: 

 
1. Activation losses 

 
The activation losses are due to the electrode kinetics in order to provide 

continuous electrical current by giving necessary activation energy during 

the electrochemical reaction. The losses happened at both anode and 

cathode side, while the losses on the cathode are much higher than the anode 

side. This is because the hydrogen oxidation reaction happened on the anode 

side is much easier than the oxygen reduction reaction,  

Basically, the activation loss could be deduced from the Tafel equation on 

the electrodes, and may have the formulation of: 

 

V7(0 = RTαF ln 4 iih6 (1-8) 
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where α is the transfer coefficient, i is the current density, and the ih is the 

exchange current density on the electrode. It may be in a form of [5]: 

 

ih = ih64ka(L( m P0NP0N64kno exp r− E(RT 41 − TT64k6s (1-9) 

 ih64k is the reference exchange current density, a( is the electrode specific 

area, L( is platinum loading on the catalyst layer, P0N and P0N64k are the actual 

and reference oxygen partial pressure in cathode, λ  is the pressure 

coefficient, E(  is the activation energy on cathode for oxygen reduction 

reaction on catalyst, T  and T64k  are actual and reference temperature, 

respectively. From a degradation point of view, for a long term operation 

PEMFC, the exchange current density would drop due to the platinum loss 

on catalyst layer. As shown in eq. (1-9), the a( would drop over time when 

operating under different conditions. 

 
2. Ohmic losses 

 
The ohmic losses are caused by the resistance either to the flow of the ions 

in the proton electrolyte membrane, or of the electrons in the electrically 

conductive parts in the fuel cell such as the bipolar plates, GDL, etc. This 

amount of losses is linearly proportional to the current because the 

resistance of each electrically conductive components are nearly constant 

during operation, it could be formulated as: 

 Vtu3'( = iR' (1-10) 

 
Here the R' is the total cell internal resistance. The R' would increase during 

long term operation and cause the increase of ohmic losses of PEMFC over 

time. 

 
3. Concentration losses 
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The concentration losses are usually happening when the reactant gases are 

consumed rapidly. Due to the diffusion limitation of different gases in the 

GDL and bipolar plates, the pressure on the reaction site is different with 

the reactant pressure in the flow field channel. This happens especially 

during the higher output current condition, in this circumstance, the real 

pressure at reaction sites would drop considerably comparing with the 

reactant pressure in the flow field channel. Usually, the concentration loss 

could be empirically expressed as: 

 

V(t8( = RTnF ln 4 i$'3'0i$'3'0 − i6 (1-11) 

 
Where the i$'3'0 stands for the limiting current density. It is the amount of 

current density the electrode can provide at most due to the diffusion 

limitation from the flow field channel to the electrode surface. 

 

These three voltage losses happened on each cell would considerably influence the 

output performance of the PEMFC stack. They are dominated in zone I, II, III in 

Fig. 1-4, separately. 

 

 

Fig. 1-4 Polarization curve of PEMFC 

 



GENERALITIES on PEMFC and DEGRADATION 

22 

 

As shown from this figure, the output voltage of the PEMFC stack would be: 

 Vt#0&#0 = E − V7(0 − Vtu3'( − V(t8( (1-12) 

 

1.1.4 Subsection summary 

 
In this subsection, we have briefly introduced the generalities and principles of 

PEMFC and systems. In fact, the Vt#0&#0 in eq. (1-12) is indeed highly dependent 

to the PEMFC operation conditions. In order to optimize the performance of a 

PEMFC stack, many operation parameters need to be controlled such as the 

temperature, stoichiometry or flow rate of reactant gases, the water environment in 

the stack etc. The inadequate control of these operating factors would lead to 

performance drop of PEMFC. In next subsection, we would like to introduce those 

operation conditions which could influence or hinder the output performance of the 

PEMFC stacks. 

  

 

1.2 Impacts of operating conditions on the PEMFC 

performance 

 
The output performance of the PEMFC could be strongly influenced by its 

operating conditions. Most of the performance variations of the PEMFC are due to 

poor working conditions. We would like to illustrate this topic on different 

operating conditions: the insufficient water management, poor temperature 

management, gas starvation, the fuel contaminations and the load cycling. 

 

1.2.1 Insufficient water management 

 
The water management in the PEMFC can greatly impact its output performance. 

In a PEMFC, water can be either carried into the fuel cell through the humidified 

reactant gases, or produced at the cathode side during electrochemical reactions. 
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The reactant gases are pre-humidified before supplying to the anode, then the water 

would be diffused into the membrane and by this way, secure the sufficient proton 

conductivity of the membrane. On the cathode side, the oxygen reduction reaction 

produces the water as well. 

There’s nothing else in the PEMFC could be more paradox than water management. 

A good water management strategy is crucial to secure the performance of the 

PEMFC. On one hand, the protons could not diffuse through the polymer membrane 

from anode to cathode side without the presence of water. While on the other hand, 

water could block the flow field channels of bipolar plates or the porous in the GDL, 

and impede the reactions in the fuel cell. This could lead to the local reactant 

starvation in the fuel cells during operation. Moreover, the excessive water could 

result a much more humidified environment. The components in the fuel cell such 

as the bipolar plates, or the GDL would suffer from the corrosions in this excess 

water environment. In other words, the excessive water will accelerate the aging of 

GDL and bipolar plates due to its ability to introduce the corrosion environment. It 

aggregates the degradation of the GDL and the bipolar plates. Therefore, the water 

management in the fuel cell is very important during normal application. 

Basically, the insufficient water management could lead to the flooding on the 

electrodes or the membrane dehydration. 

 

1.2.1.1 Flooding of the electrodes 

 
The flooding of the electrodes could happen both at the anode and the cathode side.  

 
1. Flooding at the cathode side: 

 
Usually the flooding at the cathode side is much more common than at the 

anode side. This is because the water is produced during the reaction in the 

fuel cell at the cathode side, and also, the protons travelling from the anode 

side would drag the water molecules from the anode side to the cathode side, 

cause the cathode flooding. In this process, the water dragging phenomenon 

is called the electro - osmosis. The flooding on the cathode side could 

impede the mass transportation within the GDL. This could particularly 
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create hindrance preventing the oxygen from reaching the reaction sites. In 

some extreme cases, this blockage of the pores in the GDL could cause the 

local oxygen starvation. Due to the blockage, the oxygen would flow in 

other channels. This could lead to the pressure imbalance in the flow field 

channels and cause the performance drop of the PEMFC stack [15]. The 

cathode flooding is usually happening under higher current densities. He et 

al. [16] demonstrated a specific experiment showing the output voltage of a 

single cell would drop from 0.9V to 0.3V when the cathode is flooded from 

1.5 kPa to around 3 kPa. Usually the cathode flooding could be mitigated 

from purging the cathode. As what has been mentioned before, the GDL in 

the PEMFC should all have the PTFE coating treatment on its surface. So 

the portion of the hydrophobic pores in the GDL are somehow directly 

correlated with the maximum power of the PEMFC stack. Because when 

the stack is operating in a high current profile, the hydrophobic pores are of 

crucial to let out the water produced on the cathode.  

Moreover, the excessive water existing in the cathode would lead to the 

corrosion on the bipolar plates during long term operation. The dissolute or 

dissolved particles from the corrosion sites on the bipolar plates could block 

the pores of the GDL, and the particles could also even diffuse into the 

membrane and cause a decrease of the proton conductivity of the membrane. 

Both of this could cause the performance drop of a PEMFC stack. 

 
2. Anode flooding 

 
The anode flooding is not common in a properly functioned PEMFC stack. 

However, under some certain cases, the anode would also suffer from 

flooding and cause same consequences as the cathode flooding. Generally, 

the flooding on the anode side of the fuel cell is often happening when the 

stack is operating under a relatively low current density.  In a low current 

working profile, the electro - osmosis would not be enough to balance the 

water environment in the anode, due to low flux of protons travelling from 

the anode to the cathode in the membrane. This kind of anode flooding could 

happen especially when the anode is fueled with hydrogen of high hydration 
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state. Furthermore, an improper injection of water into the anode may also 

cause the anode flooding. 

 

1.2.1.2 Membrane dehydration 

 
The dehydration is usually happening on the anode side of the fuel cell due to the 

electro-osmosis in the membrane. The protons could drag the water molecules to 

the other side of the membrane, and cause the difference of water content between 

two sides of the membrane. Even though the water replenishment by back diffusion 

is physically favored, the anode could still suffer from the dehydration during 

operation especially when operating under high current densities or being supplied 

with low humidified fuels [17].  

The decreasing water content in the membrane could cause the low proton 

conductivity of the membrane. This would result the performance drop during 

operation. From the experiment of [18], Büchi et al. observed a PEMFC during 

1200 hours’ consecutive operation under no humidification conditions on the anode 

side. The current density dropped from 170 to 130 mA/cm² at the constant output 

potential at 0.61V. It is possible that the performance could be recovered from the 

rehydration process on the anode side. However, long term membrane dehydration 

would result the irreversible performance degradation. The membranes which are 

operating under dry conditions would always suffer from the brittleness or cracks 

within itself. The increasing amount of cracks would surely increase the amount of 

the gas crossover between the electrodes. The crossed over gases would react on 

the dissolute platinum particles inside the membrane, and lead to the creation of the 

pinholes. These pinholes would in turn cause more amount of gas crossover. This 

is a main phenomenon of degradation existing in the membrane.  

 

1.2.2 Poor temperature management 

 
The poor temperature management in the PEMFC stacks could cause the 

performance drop or degradation during long term operation. In normal applications, 

the performance of the PEMFC stack increases with temperature in the operation 
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range under 80°C. However, it could drop considerably under the freezing 

conditions [19]. And the performance drops also when working under an elevated 

temperature (>80°C) [20], [21]. Therefore, when we are saying the poor 

temperature management, it could lead to the sub-zero temperature condition or an 

elevated temperature condition. 

 

1.2.2.1 Sub-zero condition 

 
In the fuel cell, the most common temperature related condition that could cause 

the performance drop or degradation is the sub-zero working condition, or the 

freezing condition. 

A non-operating PEMFC stack would encounter damages within itself if the stack 

is exposed in the freezing environment for a long time. This damages are always 

caused by the ice formation originated from the residual water contained in the 

membrane. The density difference of ice and liquid water in the membrane could 

cause the membrane volume change during the temperature changing around zero. 

The changing of the volume could lead to the excessive mechanical stress within 

the membrane. This stress could cause the degradation of the catalyst layer and also 

the membrane.  

Specifically on the catalyst layer, the platinum particles are attached on the carbon 

substrate, the freeze/thaw cycles could cause the frequent volume change of the 

membrane, the mechanical stress changing with the melting water could reduce the 

physical stability of the attachment of platinum particles. The particles and the 

carbon substrate could dissolute with the melting water and diffused and 

precipitated in other part of the cell.  

Moreover for the membrane, He et al. [22] demonstrated a comparative study 

testing the difference impact on different membranes during a sub-zero condition. 

The results showed the volume change due to ice formation is strongly related with 

the water content and membrane thickness. For two membranes having been fully 

hydrated before sub-zero test, the NafionTM 117 membrane is much thicker than the 

NafionTM 112 membrane after this freezing test. Physically, the sub-zero or cycling 

around 0 °C condition could create the cracks inside the membrane, and this could 
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increase the amount of crossover between the electrodes. The pinholes could be 

formed during the operation and in turn cause more cracks inside the membrane 

and cause the performance drop of the fuel cell stack. However, it is interesting that 

for those cells which were completely dried after operation, Kim et al. [23] shows 

that no physical damage could be observed in the membrane or on the catalyst layer 

during freezing. 

 

1.2.2.2 Elevated temperature condition 

 
Sometimes the engineers would tend to keep the PEMFC stack working under 

higher temperatures (>100°C) for some reasons. Firstly, the electrochemical 

reactions would have higher reaction kinetics at higher temperature. Also, higher 

temperature could make the PEMFC have more tolerance to the impurities in the 

fuels. Which means in this circumstance, the impact of CO poisoning could be 

reduced, and this can lead to more robustness of the PEMFC stack when supplying 

with hydrogen with lower quality.  

However, the elevated temperature could cause the performance drop or long term 

degradation in the fuel cell. What is most important in here is that elevated 

temperature could increase the degradation rate of the catalyst layers. The platinum 

particles would be more energetically unstable in a high temperature environment 

at the cathode side. This way, the nano platinum particles would tend to 

agglomerate together in order to have lower chemical potential3. This aggregation 

process or the Ostwald ripening phenomenon, could cause the loss of ECSA and 

cause the potential drop during long run.  

Furthermore, the elevated temperature could cause the unwanted reaction 

happening on the cathode side. The oxygen molecules would split to two oxygen 

atoms excited by the high temperature environment with high potential in the 

cathode side. This way the carbon substrate could react with the atoms to form the 

carbon dioxide or the carbon monoxide within the cell. That means the elevated 

temperature could increase the carbon corrosion rate in the catalyst layer, or even 

influence the carbon structure in the GDL.  

                                                      

3
 All systems tend to have lower chemical potentials.[107] 
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The proton conductivity could be reduced also due to elevated temperature 

operation conditions, especially when supplying with the non-properly pre-

humidified fuels. The reduced proton conductivity could increase the ohmic losses 

in the membrane and cause the performance drop for the whole stack. 

 

1.2.3 Gas starvation 

 
Gas starvation in the fuel cell means the inadequate supply of fuels or oxygen (air). 

This would always cause the fuel cell working under a sub-stoichiometric 

operational conditions. The gas starvation could cause the potential drop so the 

performance drop of the fuel cell. Usually the gas starvation in the fuel cell could 

cause some undesired facts happening on both electrodes. At the cathode side when 

supplying with oxygen the fuel cell should produce water. However, in a gas 

starvation condition, hydrogen could be detected to release from the cathode side 

from this reaction: 

 2H47/6? + 2eK → H&4x6 (1-13) 

 
while on the anode side, the oxygen could be released from: 

 2H&O47/6 → O&4x6 + 4H47/6? + 4eK (1-14) 

 
In some cases, the CO2 could also be detected and the following reaction could 

happen on the cathode side: 

 C4Y6 + 2H&O47/6 → CO&4x6 + 4H47/6? + 4eK (1-15) 

 
From these several reactions, one could see the gas starvation could reverse the gas 

composition at each electrode, that is, produce hydrogen at the cathode side and the 

oxygen at the anode side. Apart from this reactant gases reverse phenomenon, the 

carbon support is oxidized and consumed due to the gas starvation at the anode side, 

this could lead to the long term degradation of the electrodes. 
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The gas starvation is generally caused by the cold start-ups or the insufficient water 

management. In both cases the water or the ice could block the pores in the gas 

diffusion layer and prevent the reactant gases from reaching the reaction sites. The 

imbalanced flow field channel design or sudden load rising could also lead to the 

gas starvation, and cause the performance degradation of the fuel cell. 

 

1.2.4 Contamination 

 
Contamination could cause the performance drop of the fuel cell. Usually, the 

contamination could be defined as the impurities coming inside of the fuel cell 

along with the fuels. In some cases, the impurities could also be found originally 

from the components within the cell. After all, the impurities of the contamination 

usually include the CO, NO{, SO2, catalyst particles and the metallic ions. 

The contamination could strongly influence the performance of the membrane and 

the electrodes.  

For the membrane, the protons could be prevented from being attached on the PFSA 

end groups due to the contamination of the impurities such as the ammonium or 

alkaline metal ions. This phenomenon could severely cause the performance 

degradation of the fuel cell due to elevated ohmic resistance. In some extreme cases, 

the contamination could cause the dehydration at the cathode side due to low 

electro-osmosis inside the membrane, which would then cause the lower exchange 

current density and lower output performance [24].  

Moreover, for the electrodes, the contamination is usually caused by the carbon 

monoxide on the anode side. This contamination process is called the CO poisoning. 

The CO is introduced to the cell originally with the hydrogen if the hydrogen is 

reformed from the hydrocarbons. The mechanism of the CO poisoning is that, the 

molecules of CO could be attached to the platinum particles on the catalyst layers 

and cause an extremely decrease of the ECSA. In this process, the hydrogen is 

unable to reach the covered reaction sites on the catalyst layers due to the high 

coverage of CO, and this could lead to the decrease of the output performance. 

However, the CO poisoning is recoverable and reversible. The influence of CO 

poisoning could be mitigated by simply introducing some air into the anode side, 
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and the attached CO molecules would be burned and transformed to CO2 with the 

air bleed [25]. 

 

1.2.5 Load cycling 

 
The load cycling could cause the platinum agglomeration on the catalyst layer and 

lead to decrease of the ECSA. This phenomenon is called the ECSA shrinking. In 

fact, during the ECSA shrinking, it is the number of potential cycling that influences 

and decreases the ECSA in the fuel cell at the cathode side [26]. The more the 

potential cycles, the more ECSA degradation would be. Moreover, in normal 

operations (<1V), the peak value of the potential cycling also plays an important 

role on ECSA aging. The higher the potential cycles, the faster the ECSA would 

degrade.  

In the PEMFC stack, the load cycling could only influence the catalyst layer on the 

cathode side, because the platinum particles could only dissolute on higher 

potentials [27]. The potential on the interface of membrane and cathode is much 

higher than the potential on the anode side. So the cathode catalyst layer is much 

more vulnerable than the layer on the anode side to the load cycling.  

In fact, it is interesting that higher cathode potential (>1V) during cycling could 

also create PtO layer on surface of the platinum particles. This oxide layer formed 

in higher potential could in turn prevent the platinum particles from dissolution into 

the membrane. In the covering process, the covering rate of PtO is proportional to 

the potential, higher potential would cause faster covering rate of PtO on surfaces 

of platinum particles. 

Specifically, this ECSA related degradation is also illustrated in APPENDIX I. The 

readers are kindly referred to APPENDIX I. for more detailed information. We only 

take into account the creation of the monolayer of PtO and dissolution of platinum 

particles which are influenced by the changing of the potential.  

Apart from the ECSA degradation, the potential cycling could also lead to the 

carbon corrosion on the catalyst layer or the GDL. 

 

1.2.6  Subsection summary 
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In this subsection, we collected the detailed information about the impacts on 

PEMFC performance from different operation conditions. Specifically, some of 

them could cause severe degradation on the PEMFC stack. In the next subsection, 

we would like to illustrate the degradation in detail regarding to different 

components in the PEMFC stack. 

 
1.3 PEMFC degradation mechanisms of different 

components 

 
During normal operation, the PEMFC components are subject to the aging 

phenomena, so they can degrade or fail to function, thus causing the PEMFC 

degradation or failure. Therefore, it is very important that the degradation 

mechanisms to be thoroughly and profoundly studied and understood. In fact, the 

degradation mechanisms of components in a fuel cell are usually influenced by each 

other, so cannot be simply separated. However, in order to make it clear and 

readable for the readers, it is better to illustrate the different mechanisms on each 

component separately. 

 

1.3.1 Causes and effects of PEMFC degradation 

 
Electrochemical reactions in the PEMFCs are not perfect, different kinds of 

degradation could happen during fuel cell operation [28]. Generally, most of the 

degradations take place in GDL, catalyst layer and polymer membrane. In the GDL, 

the major degradation phenomenon is carbon corrosion. The GDL is usually made 

of carbon paper or cloth. In most cases the carbon corrosion is the result of high 

humidity and/or potential (load) cycling of the PEMFC [29]–[31]. Furthermore, the 

platinum (catalyst) dissolution or reorganization (sintering) in the catalyst layer are 

also commonly considered as critical factors influencing long–term performance of 

PEMFC. The platinum particles are attached on the surface of carbon support or 

substrate in electrodes, so they are vulnerable when carbon structure starts to 

degrade. Besides, the platinum particles sintering can be commonly observed under 
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load cycling and/or operating conditions such as high humidity or high 

temperature[32], [33]. For the polymer membrane, it is believed that the chemical 

attacks caused by hydroxyl (OH⦁) and hydroperoxyl (OOH⦁) radicals initiate the 

membrane degradation. These radicals are stemmed from hydrogen peroxide 

(H&O&) which is formed due to either contamination of fuels or gas crossover. The 

chemical attack along with the transient operating conditions results to polymer 

structure degradation and modification of membrane properties [34]–[37]. In 

conclusion, different major degradation mechanisms and causes can be summarized 

in TABLE 1-1. 

 

TABLE 1-1 

CAUSES & EFFECTS OF PEMFC PERFORMANCE DEGRADATION 

 

 
Carbon 

corrosion 
Platinum 

loss 
Membrane 

degradation 
Structural 

stress 

Electrical 

potential 
Cycling 
potential 

High or 
cycling 

potential 

Potential 
cycling 

 

Humidity High High 
Low or 
cycling 

humidity 
 

Load 
Cycling 

load 

Low or 
Load 

cycling 
Cycling load  

Temperature High  High  High  
Freezing or 

cycling 
condition 

Impurities   
Impurities in 

the fuel 
 

 

 

1.3.2 PEMFC degradation components 

 
In this section, we would like to introduce the degradation phenomena of different 

components separately in the fuel cell in detail. 
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1.3.2.1 Membrane degradation 

 
In most of the literature reviews, the membrane degradation could be separated to 

chemical degradation, mechanical degradation and thermal degradation. In [7] , 

Gittleman et al. presented a slightly different classification: the chemical 

degradation, mechanical degradation and the crossover related damage. In this 

thesis work, the degradation of the membrane would be illustrated based on these 

three aspects. 

 
1. Chemical degradation 

 
Chemical degradation is recognized as a major limit of the lifetime of the 

polymer membrane. The chemical degradation of the membrane is 

characterized as thinning of the membrane and the emission of HF, CO2 and 

H2SO4 during operation. A reduced thickness of the membrane initiates the 

gas crossover and would lead to the mechanical fragility of the membrane. 

Basically, it is attributed to the actions of species of aggressive radicals that 

are formed during operation of the stack, along with the poisoning of the 

polluted species.  

The radicals could attack the vulnerable links of the polymer structure. The 

perfluorocarbon-sulfonic acid ionomer (PSA) is the essential material for 

the membrane because of their high chemical stability. It should be 

chemically and mechanically stable in the fuel cell environment. However, 

perfluorinated materials are not inert during operation of the stack during 

long term operation. The chemical degradation is caused by direct attacks 

of the polymer by radical species leading to the decomposition of the 

membrane. The reactive species such as hydroxyl (OH •), the hydro peroxyl 

radicals (• OOH) and hydrogen peroxide (H2O2) are the major species 

responsible for attacks to the membrane. The radical attack phenomenon is 

discussed in [7], [34], [37]–[39]. 

The oxidative environment on the cathode side and the anode reductive 

environment imposes an unstable membrane condition, which could 

accelerate the membrane chemical degradation. The operation of the 
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PEMFC with relatively low humidity and higher potential could also 

increase the chemical degradation rates. 

Moreover, the chemical degradation of the membrane is accelerated by 

poisoning species. These species include the cations of Fe3+, Cu2+ etc, which 

are thought to be produced from the peripheral metallic pipes or equipment. 

The membrane is particularly vulnerable to the presence of these cations 

because their ability of attachment to the end groups in the polymer 

electrolyte, would reduce the place for the attachment of the protons in the 

membrane, and this phenomenon would cause the decrease of the 

conductivity of the membrane and so to the output voltage of the whole 

stack.  

 
2. Mechanical degradation 

 
Usually the mechanical degradation is caused by the cyclic working 

conditions. When the membrane swells and shrinks with the humidity or 

temperature cycling, the membrane would be subject to mechanical 

degradation, specifically in this case, called the hydrothermal fatigue. This 

kind of degradation would cause small pinholes in the membrane and would 

result in the increase of the gas crossover rate from both sides of the 

membrane. 

Furthermore, the accumulation of the catalyst particles would also create 

local stress in certain part of the membrane, i.e, the Xo plane. It is 

thoroughly discussed in the references [31], [40]. In fact, even if during the 

ordinary operation condition, the Pt particles would tend to diffuse into the 

membrane. Specifically, the Pt particles on the cathode side would dissolved 

into the membrane because the involved dissolution reaction is favored in 

higher potential. Those dissolved platinum ions can be reduced by the 

hydrogen crossed over from the anode side, and accumulate in a certain 

region (the Xo plane) in the membrane where the concentration ratio of the 

crossed over hydrogen or oxygen is favored (Appendix II). 

 
3. Crossover related damage 
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In a PEMFC, the crossover means that the hydrogen or the oxygen could 

penetrate within the membrane to reach the reaction sites on the other 

electrode. The crossed over reactant gases could react with each other either 

on the electrodes or inside the membrane. 

The reactions happened on electrodes with the crossover gases involved 

would not be considered as the electrochemical reaction, rather than, a 

chemical combustion reaction. Therefore, this part of the reactants supplied 

to the fuel cell is considered to be wasted during the crossover. Because a 

PEMFC would be considered to be an energy converter only when the 

electrons driven by the converter are coming through an external circuit, 

rather than being simply wasted on the electrodes.  

Moreover, the crossover of the reactant gases in the membrane would cause 

the gases reacting inside the membrane on surface of the precipitated 

platinum particles. This combustion reaction would cause severely damage 

to the membrane and in turn result more crossover through the membrane.  

In the literature, several researches [41], [42] have reported the 

exponentially increasing profile of crossover through the membrane aging 

over time.  

 

1.3.2.2 GDL degradation 

 
Like other degradation components, the GDL degradation would also have impacts 

on the fuel cell stack performance during aging through operation time. As what 

has been mentioned before, the GDL layer is usually made of carbon paper or cloth, 

majorly compressed between the bipolar plates and MEA in each cell. It is an 

important component in the PEMFC which is responsible of providing path for 

transporting, diffusion of the reactants from the bipolar plates to the reaction sites, 

while at the same time, let out the byproduct water in case the droplets would block 

the porous through which the reactant gases pass. 

In this thesis work, the GDL degradation would be illustrated from the aspects of 

chemical degradation and the physical degradation, in detail: 
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1. Chemical degradation 

 
The chemical properties of the GDL would change over time. Specifically, 

the GDL would loss the hydrophobicity during aging. Generally, the GDL 

is coated with PTFE treatment on the surface during fabrication. The PTFE 

is widely used as the coating for the non-stick pans, known as the Teflon 

pans. This coating would make the GDL have the advantages of high 

hydrophobicity and operating temperature, extremely low coefficient of 

friction, fair abrasion resistance and good chemical resistance.  

However, the gradual transition from hydrophobic to hydrophilic always 

occurs over time. The aging tests reported by [38] showed that the 

hydrophobicity would increase with operating temperature, while decrease 

over time. When the PTFE coating separates from the carbon cloth, the 

binding forces of the fibers decrease and this can create hydrophilic surfaces 

on the GDL. During long term operation, the reactant gases would be 

blocked by the water droplets from reaching the reaction sites due to the 

increasing amount of hydrophilic surfaces. 

 
2. Physical degradation 

 
The physical degradation is always regarded as the change of the physical 

properties. This is mainly due to the carbon corrosions, which would 

mechanically lead to the change of structural completeness of the GDL, and 

also cause the unbalanced force distribution from the membrane or the 

bipolar plate. 

Carbon corrosion is always involved in the physical degradation of the GDL. 

It is well known that the carbon is thermodynamically unstable on the 

cathode side, where the potential is much higher than the equilibrium 

potential for the carbon oxidation reaction (0.207V) [43]. More specifically, 

the carbon corrosion would tend to occur in the start-stop operations when 

the air is presented on the anode side, which would cause potential elevation, 

and in turn increase the carbon corrosion rate on the cathode side of the fuel 

cell [44]–[46].  
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Moreover, the fuel starvation would also induce the carbon corrosion [47]. 

The carbon corrosion could cause the cracks or separation on the GDL layer, 

this could mechanically lead to the structural change of the GDL, and also 

cause the unbalanced distribution of force either from the membrane or the 

bipolar plate. All of these outcomes would consequently cause the change 

of the electric or thermal resistance of the GDL layer. 

 

1.3.2.3 Catalyst layer degradation 

 
The catalyst is majorly consisted of nano platinum particles, ranging from diameters 

of 2~5 nm. Those small particles would tremendously change the performance of 

the PEMFC stack if properties of the tiny particles would change. According to [48], 

the platinum particles would be hardly affected by the dissolution, oxidation or 

agglomeration on the anode side. However, the platinum particles on the cathode 

side are somewhat not stable due to the higher potential environment. This higher 

potential would cause an oxidative environment in which the platinum particles 

would be oxidized to platinum ions then dissolved into the membrane. This would 

result a decrease of the ECSA of the catalyst layer over time. Usually it can be 

resulted from the cyclic working conditions, such as the potential cycling or 

temperature cycling operation profile. 

Generally, the catalyst degradation is identified as these three phenomena: 

 
1. Dissolution and diffusion of platinum particles through the ionomer, 

redeposition on other platinum particles and form larger particles (Ostwald 

ripening), diffusion through membrane to create the platinum band (Xo 

plane). 

 
2. Generating oxidative species that would cause the degradation of the 

membrane. These species would always include the hydrogen peroxide 

(H2O2), hydroxyl (•OH) or hydroperoxyl (•OOH) radicals (usually 

happened on the platinum particles precipitated in the membrane). 
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3. Reversible or irreversible adsorption of pollutants from the air, reactants or 

other degraded components. 

 
In this thesis work, we would specifically illustrate the Ostwald ripening, which is 

involved in the catalyst degradation and would cause the ECSA reducing. 

The Ostwald ripening is an observed phenomenon in solid (or liquid) solutions 

which describes the evolution of an inhomogeneous structure over time. The 

phenomenon was first described by Wilhelm Ostwald [49] in 1896. When a phase 

precipitates out of a solid, energetic factors will cause large precipitates to grow, 

drawing material from the smaller precipitates, which shrink. In other words, in an 

inhomogeneous environment, the size of larger particles tends to increase while the 

size of the smaller ones tends to shrink. This process is shown in Fig. 1-5. 

 

 

Fig. 1-5 Ostwald ripening processes 

 
This thermodynamically-driven spontaneous process occurs because larger 

particles are more energetically stable than smaller particles. This is due to the 

internal pressure is reversely proportional to the radius of the particles. It stems 

from the fact that the molecules on the surface of a particle are energetically less 

stable than the ones already well ordered and packed in the interior. Large particles, 

with their lower surface to volume ratio, results in a lower energy state, which 

means they would have a lower surface energy. As all chemical system tries to 

lower its overall energy, molecules on the surface of a small (energetically 

unfavorable) particle will tend to detach and diffuse through solution and then 

attach to the surface of larger particle. Therefore, the number of smaller particles 

continues to shrink, while larger particles continue to grow.  
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In the fuel cell environment, the platinum particles would have this kind of 

phenomena especially when the particles are on the surface of the cathode side 

catalyst layer or in the membrane. This is happening because the higher potential 

in the cathode side would excite the platinum particles to an unstable state, they 

tend to dissolve from the reaction site once the potential is favored. As for the 

platinum particles in the membrane, they tend to precipitate and agglomerate in the 

membrane due to the oxidative reaction with the H2 crossed over from the anode 

side.  

On one hand for the Ostwald ripening on the cathode side, the ECSA would be 

reduced over time with the increasing size of the platinum particles. While on the 

other hand in the membrane, the Ostwald ripening would cause the platinum 

precipitation in the membrane. This would lead to the mechanical degradation of 

the membrane, which would create small pinholes and accelerate the gas crossover 

from both sides of the membrane. 

 

1.3.2.4 Degradation on bipolar plates, gaskets, and others 

 
In the literature, we only find two articles which have addressed the degradation of 

bipolar plates [13], [48]. From these two papers, three mechanisms are involved: 

 
1. Long term corrosion due to the acid environment of bipolar plates would 

cause the production of unwanted cations, and this would seriously 

influence the durability of the membrane and catalyst layers; 

 
2. The long term corrosion would create a resistive surface layer leading to a 

high ohmic contact resistance; 

 
3. Deformations or fractures would happen on the plates. These are due to 

cyclic working conditions such as the temperature cycling, which would 

cause the unbalanced temperature distribution in the bipolar plates. 

 
Apart from the bipolar plates, the stacks are compressed by the gaskets and seals. 

The degradation of these components is still unknown. Some causes and effects are 

illustrated in [13]. The acidic environment and the thermal stress can affect the 



GENERALITIES on PEMFC and DEGRADATION 

40 

 

compression force the gaskets would provide. In some cases, the materials could be 

dissolute or dissolved in this acidic environment. Their migration and precipitation 

in the electrodes could affect the hydrophobicity of the GDL and probably poison 

the catalysts and membrane. Moreover, traces of decomposition products can be 

found in the MEA during long term operation. At present, no degradation model of 

this component has been proposed in the literature. 

 

1.3.3 Subsection summary 

 
In this subsection, the degradation mechanisms on different components of the 

PEMFC stack have been thoroughly illustrated along with related literature review. 

One could find the degradation mechanisms in a fuel cell are usually influenced by 

each other. This coupling characteristics could make the degradation of the fuel cell 

more complicated than what it seems to be on each component. From this 

subsection, it’s clear that the degradation of PEMFC is always accelerated when 

working under non steady–state, and this is the key that impedes its durability, so 

to its massive use. The accurate prediction of their aging mechanisms can thus help 

to design proper maintenance patterns of PEMFCs by providing foreseeable 

performance degradation information. In addition, the prediction could also help to 

avoid or mitigate the unwanted degradation of PEMFC systems during operation. 

In next subsection, we would like to introduce the PEMFC prognostics. 

  

1.4 State of art on PEMFC prognostics 

 
Generally, prognostics means the prediction of the future performance of one or 

more components by assessing the extent of deviation or degradation of a system 

from its expected normal operating conditions [50]. With the help of performance 

prediction, the engineer would have information about when the system or a 

component would no longer perform an intended function. In many works in the 

literature, the performance prediction is always correlated to the prognostics, which 

involves the remaining useful life (RUL) prediction. In this thesis work we are 

talking about the performance prediction of PEMFC. It means the prediction, or 
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forecast of the long term performance variation of the fuel cell stack by evaluating 

the acquired historical data. 

Basically in the research area of engineering control, the approaches of prognostics 

could be divided to three categories, the data driven, model based and the hybrid 

approaches. The articles available in the literature have always addressed 

approaches on these three categories. 

 

1.4.1 Data driven approaches 

 
The data driven approaches are based on the monitored and acquired historical data. 

The engineer would need to use the data driven methods to extract the degradation 

or behavior features from the acquired data. The historical data can be trained and 

then a RUL or the performance variation could be predicted. As a matter of fact, 

most of the researches about the prognostics are about the data driven approaches. 

There are Bayesian probabilistic related works [51]–[55], neuro network related 

works [56]–[60], kalman filter related works [61], or just simple regression tools 

related works [62]. These approaches do not require analytical models of the system 

degradation, and are relatively simple to implement, and usually calculation 

friendly. However, they sometimes would have low accuracy during prediction thus 

the models would get results deviated from the actual behavior of the system. 

Therefore, the data driven approaches represent a compromise, or a balance 

between the applicability and accuracy. 

  

1.4.2 Model based approaches 

 
The model based approaches require the construction of a physical dynamic model 

representing the system behavior, and integrating the degradation phenomenon 

(mainly the phenomenon of fatigue, wear or corrosion) whose evolution could be 

modeled [63]–[68]. 

Generally this kind of methods could provide more accurate prognostic results than 

the two other approaches. However they have some major drawbacks. On one hand, 

the physical dynamic model is hard to build because usually the degradation 
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mechanisms are difficult to be analytically described. On the other hand, if the 

physical degradation model is acquired, the model usually would be hard to be 

implemented in the in-situ prognostic situation, where the fast and efficient 

prognostic model is always favored. Moreover, the physical dynamic model of one 

system or component is sometimes lack of generality with the others, which means 

the degradation model would be hard to be implemented on other components or 

systems. Therefore, the application range of model based approaches are relatively 

restricted. 

 

1.4.3 Hybrid approaches 

 
The hybrid methods of prognostic are usually a kind of approach which is a mixture 

of the model based approaches with data driven approaches. The information of the 

data part and the physical model part of a system is exchanged during the prognostic 

process. Specifically, there are two major ways of hybrid approaches: the series 

configuration or the parallel configuration.  

The series configuration is usually identified as a model based prognostic approach, 

while some of the unobservable parameters in the physical dynamic model are 

estimated or predicted by some data driven methods. This kind of prognostic 

approach is addressed in [69]. 

A so-called parallel configuration is to combine the output of a physical model with 

that of a data driven approach to provide an overall output. This kind of approach 

is somewhat similar to the data fusion like method, where the output result of two 

models are fused to provide a global prognostic result. In the literature, these articles 

have been addressing this topic of area [70], [71]. 

 

1.4.4 Literature review on PEMFC prognostics 

 
The PEMFC stack is an energy converter with too much complexity inside. The 

interchange and influence between different parameters and different operating 

conditions would make it somewhat difficult to isolate the interested parameters. In 

other words, the high complexity of the fuel cell stack could make it difficult to 
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implement accurate prognostics. The main limitations of prognostics now in 

PEMFC are: 

 
1. Data acquiring level (difficult to monitor some interested parameters 

without interruption); 

 
2. Prognostic level (no universal standard in PEMFC prognostics); 

 
3. Validation level (the aging mechanisms on auxiliaries maybe ignored). 

 
For the prognostic approaches used on topic of PEMFC prognostics, there haven’t 

been too much articles in these years addressing this research topic:  

A particle filter framework based PEMFC prognostic was proposed in [72]. The 

main contribution of this work was to use the particle filter to achieve the RUL 

prediction of two fuel cell stacks. The model was configured with three state models 

(linear model, logarithm model, and the exponential model). All of these three 

models were tested and compared. The results showed the prediction with logarithm 

model would have the best prognostic performance (RUL prediction error of 90h 

in a 1000h case). However, as the knowledge of the author, sometimes the particle 

filter would have the issue of particle depletion during functioning, usually the 

particle filter would need much data in order to acquire good prediction result.  

Morando et al. [73] proposed an Echo State Network (ESN) approach to achieve 

the PEMFC prognostics. The data of stack output voltage was used by the author to 

predict the output performance degradation of the PEMFC stack. The ESN is a rapid 

learning approach, the prognostics was finished with the direct and parallel 

structures. However, it would be requiring configuration of some training 

parameters regarding to the prediction algorithm. And different preset parameters 

could cause inconsistency between different prediction results. 

Silva et al. [74] proposed a data driven approach which could be used to predict the 

voltage variation of two PEMFC stacks. The Adaptive Neuro Fuzzy Inference 

System (ANFIS) prediction proposed in this paper could be used as the online 

prognostic. In this paper, the author divided the training data of aging voltage to 

two components, the normal aging part and the external perturbations. However, 

the prediction using ANFIS is based on slow iterative learning steps. The 
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computational time would increase with the size of data. Besides, the ANFIS is a 

soft computing approach. The complexity of the training algorithm is directly 

dependent on the amount of experimental data and the number of initialize 

parameters. 

Vianna et al. [75] proposed a regression based approach to estimate the EIS 

(Electrochemical Impedance Spectroscopy) impedance of a PEMFC stack. The 

linear regression method and a higher order polynomial regression were brought to 

use in the prediction problem. The training was from 0-515h with the fitted 

impedance values. The results were validated with the experimental data with 

respect to the impedance measured on four different frequencies in different times: 

5.18Hz, 505Hz, 50MHz and 789MHz in 685h, 823h and 991h. The results showed 

higher prediction accuracy with the linear regression in this impedance prediction 

case. This may be due to there’s not too much portion of non-linear degradation 

components in the impedance changing profile over time.  

Hochstein et al. [76] mainly illustrated the algorithm of Regime Switching Vector 

Autoregressive (RSVAR). Generally, this algorithm could usually be used to model 

the changing dependency structures of multivariate time series. In the end the author 

briefly introduced a prognostic case of a constant output PEMFC stack, with the 

datasets containing a variety kinds of parameters such as the stack voltage, current, 

inlet/outlet temperature for the fuels, etc… The prediction result was promising. 

However, this algorithm would need different operational parameters and 

measurable data during training and predicting. Usually it would need a large 

dataset if one would demand a good prediction result. 

Kimotho et al. [77] proposed a PEMFC prognostic of a PEMFC stack using particle 

filter framework. In this paper, the author introduced the “self-healing factor” into 

the prediction case. The self-healing means the output performance of the PEMFC 

stack would be recovered automatically after the measurement of data every certain 

amount of time during aging. The predictive result was good with the introduced 

self-healing factor during prediction.  

Kim et al. [78] proposed an Equivalent Circuit Model (ECM) approach to predict 

the impedance aging over time of two PEMFC stacks. Basically for a normal ECM 

description of a PEMFC stack in [78], the model would contain 10 parameters. The 
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author simplified the model to a 4-parameter-model in order to lower the 

complexity. However, whether it is reasonable or not is somewhat questioned, 

because some of those parameters were not supposed to be fixed or constant for this 

simplified model. In fact, at the knowledge of us, the double layer capacity is 

strongly related to the ECSA and would drop over time. However, this parameter 

was set to be fixed and pruned from the prognostic model. 

Lechartier et al. [79] illustrated two model based approaches on the PEMFC stack 

performance degradation prediction. A Butler-Volmer equation based static model 

was used to predict the degradation tendency of the polarization curve. And an 

equivalent circuit model was also brought to use to form a dynamic model to predict 

the EIS impedance degradation tendency during long term operation. Both of the 

models were tuned with nonlinear regression to fit the aging of the PEMFC stack. 

The prognostic results were promising, while its generality on other stacks is 

questioned because the models were tuned only based on the tested PEMFC stack. 

Bressel et al. [80] proposed an observer based prognostic model for PEMFC using 

the Extended Kalman Filter (EKF). The observer was used to estimate the time 

varying parameter and derivative which can represent the aging of the cell. The 

developed method provided good prediction results on voltage degradation under 

different load conditions. The RUL prediction was also provided and showed its 

effectiveness. Moreover, it’s interesting that the author indicated that the exchange 

current density would remain unchanged during long term operation for more than 

1000 hours. 

All of the reviewed articles in literature have been listed in TABLE 1-2 for better 

review. 

 
TABLE 1-2 

LITERATURE REVIEW ON PEMFC PROGNOSTICS 

Prognostics 

category 
Methods being used 

Monitored 

parameter 
Year Reference 

Data driven Particle Filter Stack voltage 2013 [72] 

Data driven Echo State Network Cell voltage 2014 [73] 
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Data driven 
Adaptive Neuro 

Fuzzy Inference 
Stack voltage 2014 [74] 

Data driven Regression EIS Impedance 2014 [75] 

Data driven 
Switching Vector 

Autoregressive 
Stack voltage 2014 [76] 

Data driven Particle Filter Stack voltage 2014 [77] 

Hybrid 
Equivalent Circuit 

Model 
EIS Impedance 2015 [78] 

Model based 
Equivalent Circuit 

Model 

Polarization curve 

/ EIS Impedance 
2015 [79] 

Data driven 
Extended Kalman 

filter 
Stack voltage 2016 [80] 

 

The characteristics of each research work are described in TABLE 1-2. From this 

table we could see the data driven method is more popular than the other two. This 

is because on topic of PEMFC prognostics, the data driven methods are more 

practical than others in most cases. Moreover, the stack voltage was mostly being 

used. This is due to the stack voltage is the most accessible parameter one could 

measure for the sake of state of health or output performance monitoring, especially 

in a constant operation profile. 

However, for most of the data driven approaches in the literature, each of the work 

may have one or more of limitations as listed below: 

 
1. High computational demand; 

 
2. Need large dataset during training; 

 
3. Lack of validation in variation load conditions; 

 
4. Generalities on different stacks in different conditions. 

 
In order to overcome the limitations, in this thesis work, we would like to propose 

a data driven prediction method based on a machine learning method: Relevance 

Vector Machine (RVM). All the prediction works in this thesis based on RVM 
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would need at most 100 historical data of stack voltage aging, and also the 

computation is fast (<1s for training / prediction for each study case described in 

chapter 2; for each prediction step on each time point described in chapter 3). 

Moreover, this method is also brought to use to predict the voltage variation in a 

dynamic load condition in chapter 3 (PM 200 case). The generalities are 

demonstrated based on different implementations on different stacks working under 

different conditions, with different training zones (3 different training zone in 

chapter 2, and recursively changing training zone in chapter 3).  

The detailed illustration on our proposed RVM prediction method would be 

introduced in next two chapters. 

 

1.4.5 Subsection summary 

 
In this subsection, we mainly illustrated the state of the art of the PEMFC 

prognostics, three prognostics approaches: the data driven, model based and the 

hybrid approaches have been briefly illustrated. In the end, a detailed literature 

review based on the listed articles has been presented.  

  

1.5 Summary 

 

In this section, we firstly introduced the principles of the PEMFC, then a detailed 

demonstration on the topic of the degradation mechanisms of PEMFC has been 

thoroughly given. In the end, we briefly introduced the prognostics approaches 

addressed in the literature. In the next chapter, we would like to propose a PEMFC 

performance prediction method using Relevance Vector Machine. 
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CHAPTER 2.  

PEMFC PERFORMANCE 

PREDICTION USING FEATURE 

EXTENDED RELEVANCE VECTOR 

MACHINE  

 
The performance of PEMFC stack is strongly influenced by the operating 

conditions, which may cause performance variation or degradation. However, the 

structural and physical complexity of PEMFCs still make the accurate prediction of 

the stack performance a great challenge today.  

 

2.1 Research background 

 
As what has been mentioned in last chapter, the PEMFC stack performance 

prediction can be categorized into model–based, data–driven and hybrid prediction 

approaches. Generally speaking, the model–based method provides the prediction 

or performance evaluation based on specific physical model of one component or 

the whole stack. The data–driven approach stands for the methodologies evaluating 

the performance degradation by analyzing the historical data related to the 

degradation with machine learning or data mining based solutions. The hybrid 

prediction approach is achieved by combining physical and data-driven model into 

PEMFC degradation evaluation. From a fairly practical point of view on prognostic 

scenario of PEMFC, the data driven approaches are usually easy to deploy, and 

computational friendly when predicting the non-linear trends in the PEMFC 

performance degradation. However, it should be noted that, the observed non–linear 
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fuel cell performance degradation curve (Fig. 2-1) is caused by multiple complex 

electrochemical phenomena during fuel cell operation and is highly dependent on 

operation conditions. Thus, it is difficult to find a simple pattern to represent and 

predict the observed non–linearity. This feature more or less limits the effectiveness 

of classic mathematical regression solutions such as linear least square regression. 

Fig. 2-1 shows an example of measured output performance variation and 

degradation of a single cell in an 8kW, 96–cell PM 200 PEMFC stack. (data 

measured under cyclic load (between 0.30 and 0.97A/cm2) and start/stops operation 

conditions (two start/stops per hour) over 400 hours). 

 

 

Fig. 2-1 Fuel cell measured voltage degradation during operation for an 8 kW, 96 
cells PEMFC stack 

 
From this figure, we could see the degradation curve contains high portions of non–

linearity, which cannot be correctly represented by conventional linear regression 

approaches. Consequently, the non–linear regression methods are thought to have 

potential to cope with the fuel cell non–linear aging prediction problem.  

Although we have found that the non–linear regression methods have been 

successfully used in the literature for Lithium–ion battery performance degradation 

modeling and prediction [81]–[83], there have been only few papers in the literature 
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[72], [74], [84] that discussed the fuel cell aging / degradation modeling and 

prediction using non–linear regression approaches.  

Among different non-linear regression methods, the vector machines have shown 

their great interest in classification or regression problems. The vector machines 

have several advantages: it is defined as a convex optimization problem (no local 

minima), making it an efficient method. Moreover, vector machines can always 

deal with large datasets without problems of over fitting whenever they are in 

classification or regression use. In a PEMFC degradation context, the output voltage 

is one of the easiest parameters we could acquire to reflect the performance 

degradation. We would have a huge amount of data for a long term operated 

PEMFC. In this circumstances, we proposed in this thesis a novel approach to 

predict PEMFC non-linear performance degradation trend based on the voltage 

degradation using Relevance Vector Machine (RVM). 

Before looking into the performance prediction of PEMFC stack using RVM, we 

need at first know what the vector machine is, or, what the machine learning is. 

Machine learning is a subfield of computer science that “gives computers the ability 

to learn without being explicitly programmed” [85]. It usually involves providing 

rules between the input and output of data using predefined learning algorithms. 

Basically, machine learning could help us to build the mathematical relationship 

between inputs and outputs when the model of the system in interest is hard to be 

acquired.  

Machine learning tasks can be typically classified into three broad categories, 

depending on the nature of the learning "signal" or "feedback" available to a 

learning system. 

 
1. Supervised learning 

 
The supervised learning corresponds to the determination of a mapping 

function from the input to output of the dataset which are given by the 

“supervisors”. With this learned model, the computer could get the output 

of an arbitrary data once the input is provided. (Vector machines, etc…) 

 
2. Unsupervised learning 
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The unsupervised learning means the computer program is given with a 

group of inputs without outputs. The program need to find the “hidden 

patterns” within the group of inputs. (Clustering, etc…) 

 
3. Reinforcement learning 

 
The reinforcement learning means the computer program need to interact 

with the environment and the program need to be enhanced all the way from 

the beginning to the end. (Chess game, etc…)  

 
The learning task using vector machine is a kind of supervised learning. It always 

copes with finding the mapping function from the inputs to the outputs of the given 

data. In this work of PEMFC stack performance prediction, the vector machine 

could be used to find the hidden function between the operation time and the 

measured stack voltage. The vector in here denotes the inputs that are used to create 

the learned model after training, which means the prediction results from this 

learned model are balanced by these inputs (vectors) from the historical dataset. 

Generally speaking, the vector machine could be further divided into two 

counterparts, the Support Vector Machine (SVM) and the Relevance Vector 

Machine (RVM). The SVM was introduced much earlier than the RVM. The 

concept of SVM was firstly introduced by Vladimir N. Vapnik and Alexey Ya. 

Chervonenkis in 1963. It was then modified in 1992, by Bernhard E. Boser, Isabelle 

M. Guyon and Vladimir N. Vapnik. They suggested a way to create a nonlinear 

classifier by applying the kernel trick to maximum-margin hyperplanes [86]. The 

current standard incarnation (soft margin) was proposed by Corinna Cortes and 

Vapnik in 1993 and published in 1995 [87]. 

The RVM approach uses Bayesian based filtering framework that could provide at 

the same time the predictive results and also the corresponding confidence intervals. 

This feature is particularly useful when dealing with non–linear and uncertain 

prediction problems [88]. The RVM was firstly introduced by Tipping et al. [88]–

[91] around 2001, and has the identical functional form with the Support Vector 

Machine (SVM). It should be noted that, RVM and SVM are both kernel function 
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based methods and are both efficient when coping with non–linear regression and 

prediction problems. However, the RVM shows some advantages than SVM.  

 

1. RVM is capable of providing predictions with confidential intervals, that is, 

the probabilistic prediction, while SVM cannot; 

 

2. Unlike SVM, RVM doesn’t have limitations on choosing kernel functions 

during training even though both RVM and SVM are kernel based data 

driven approaches. Indeed, the kernel functions are completely not 

compatible in SVM if they couldn’t meet the Mercer’s criteria, which means, 

for an arbitrary kernel function >49, :6, it  has to fulfill Mercer's condition 

for all square functions }496:  

 

~ >49, :6}496}4:6ü9ü: ≥ 0 (2-1) 

 
3.  RVM could give much sparser model in general than SVM after training, 

which indicates much lower computational demand during regression or 

classification. This advantage makes the RVM particularly suitable for real 

time prognostic applications.  

 
Different applications of RVM could be found in the literature. He et al. [92] used 

the RVM to get a model which can predict the Zinc coating weights in cold rolling 

strip hot-dip galvanizing. The result indicated a superior accuracy in prediction, the 

main thing discussed in this work was how to implement RVM with a novel type 

of kernel function. RVM was also brought to use to estimate the component aging 

crack growth which was characterized by Paris-Erdogan model in [93]. The results 

were compared with other data-driven approaches, and showed higher accuracy and 

lower computational demand of RVM. Li et al. [94] forecasted the state of health 

(SOH) of Lithium battery using RVM implementation, and the results were then 

compared with that of SVM and Autoregressive Integrated Moving Average 

(ARIMA), which proved the effectiveness of RVM and its potential to be applied 

to online battery monitoring and prognostics. Zhou et al. [95] proposed an online 
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learning and training strategy of RVM on predicting the remaining useful lifetime 

(RUL) of lithium battery which also showed relatively good performance of RVM. 

In [96], relevance vectors obtained during RVM training were brought to be used 

to form a three-parameter model to forecast the RUL of lithium battery. Barré et al. 

[97] proposed a real-time method predicting the state of health (SOH) and 

remaining useful life (RUL) of lithium-ion battery in electric vehicles based on 

RVM.   

The relevance vector machine has been increasingly used in the prognostics work. 

However at the best knowledge from the author, the relevant vector machine has 

never been used in the area of PEMFC performance degradation prediction. 

 

2.2 Performance prediction with feature extended 

RVM 

 

In this subsection, we would like to introduce the PEMFC stack performance 

prediction using the featured extended relevance vector machine. Basically, the 

extended feature means each input is extended comparing with the original RVM 

during training and prediction, in order to get higher effectiveness during training 

using historical data.  

 

2.2.1 The original RVM explained 

 
Traditionally, when we have a group of measured data set 49(, +(6 4Ç = 1,2, … , Ñ6 

sampled from an unknown linear function :496, it can be fitted by a function :;496: 

 :;496 = 4Ö*9*9 + Ö&9&9 + ⋯ + Ö99996 + Öh 

                   = 7456á 
(2-2) 

 
where 7456 = [1, 9*9, 9&9, … , 999], á = [Öh, Ö*, … , Ö9]ä. However, if the data 

set are sampled from a non–linear function, we can firstly use a transformation 

method (through the kernel function) to map the non–linear data set to a higher 
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dimensional space, in which the initial non–linear relationship of data can be 

transformed to linear one, so that they can be fitted using linear regression in that 

higher dimensional space. The kernel function, usually expressed in the form of >4*, ã6, represents the inner product of a and b in higher dimensional space. Thus, 

we can substitute each 9(94Ç = 1,2, … , Ñ6 in (2-2) with >49(, 96,  which indicate the 

inner product of 9(  and 9 in higher dimensional space.  

Therefore, equation (2-2) can be rewritten in its general form as: 

 

:;496 = ç Ö(>49, 9(69
(:* + Öh (2-3) 

 
Generally, a RVM regression problem can be expressed to find the most probable 

weight vector é to fit with the training data set 49(, +(6 4Ç = 1,2, … , Ñ6: 

 èê = ë456á (2-4) 

where: 

 

                   ë456 =  [7* 7& … 79?*] 
=

íìì
ììî
1 >49*,  9*6 >49*,  9&6 … >49*,  99611⋮

>49&,  9*6>49,,  9*6⋮
>49&,  9&6>49,,  9&6⋮

……⋮ >49&,  996>49,,  996⋮1 >499,  9*6 >499,  9&6 … >499,  996ñóó
óóò 

èê = [:;*, :;&, … , :;8]ô 

(2-5) 

 ë456  is the design matrix which is created by Gaussian kernel functions 

>49(, 996 = ,9ö 4− ‖{úK{ù‖N&ûN 6. We assume that there is a Gaussian noise ü( , which 

could be regarded as the observation error, associated to each measured +( 
compared to :;(, where ü( ~ °40, -&6, i.e.: 
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+( ~ °4:;(, -&6 (2-6) 

 
For the derivation needs later on, the likelihood of Ñ pairs of training set 49(, +(6 

could be expressed as: 

 

¢4£|5, á, -&6 ~ • °4:;(, -&6¶
(:*  

= 42ß-&6K¶& ,9ö r− 12-& ‖£ − ëá‖&s 

 (2-7) 

 
In RVM method, the weight vector á is in the following form: 

 ¢4Ö(|'(6~°40, '(K*6 (2-8) 

In which '(K* can be seen as a constrain factor to individual weight value Ö(. Many 

of Ö( in weight vector á would be deleted from weight vector because those '(K* 

would be too small during training. 

The posterior probability over all the parameters mentioned before could be 

expressed as:  

 ¢4á, ®, -&|£6 = ¢4á|£, ®, -&6¢4®, -&|£6 (2-9) 

 
In RVM, we are trying to find which combination of á, ®, -& may maximize ¢4á, ®, -&|£6. Regarding the first part after the equal sign in (2-9), based on Bayes’ 

Rule, we have: 

 ¢4á|£, ®, -&6 ~ °4©, ™6 (2-10) 

 
In here the © and ™ are the expectation and variance of the normal distribution of 

vector á respectively, with: 

© = -K&™ëä£ (2-11) 
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™ = 4üÇ*}4®6 + -K&ëäë6K* (2-12) 

-K& = ) (2-13) 

 
For the second part of the right hand side of (2-9): 

 ¢4®, -&|£6 ∝ ¢4£|®, -&6¢4®6¢4-&6 ∝ ¢4£|®, )6 (2-14) 

 
In RVM method, the objective is thus to find ® and ) that could maximize the 

marginal likelihood: 

 

¢4£|®, )6 = ¨ ¢4£|á, )6¢4á|®6dáÕ
KÕ  (2-15) 

 
It is feasible to use the maximum–likelihood estimation to evaluate ® and ) in (2-

15). The logarithm of the marginal likelihood is: 

 

ℒ4®6 = Ø–}¢4£|®, )6 = Ø–} ¨ ¢4£|á, )6¢4á|®6dáÕ
KÕ  

              = − *& [ÑØ–}2ß + Ø–}|±| + £ä±K*£] (2-16) 

 
where, 

 ± =  -&“ +  ë”K¥ëä (2-17) 

 
The most probable ® which can maximize (2-15) can then be calculated when: 

 ∂ℒ4®6∂'( = 0 4Ç ∈ {1 … Ñ + 1}6 (2-18) 

 

In general, the ® *Ñü ) have the following form:   
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® = 4'*, '&, … '9?*6ä;  '( = 1 − '(Σ((ª(  
(2-19) 

) = Ñ − ∑ 41 − '(Σ((69?*(:*‖£ − ë©‖&  
(2-20) 

 
The final value of ® *Ñü )  which maximize ¢4£|®, )6  can be determined 

iteratively from properly chosen initial values. In (2-19) and (2-20), both of © and ™ can be calculated from (2-11) and (2-12). Once the convergence criteria is met, 

the final converged values of ®∗, )∗ correspond to the maximum of ¢4á, ®, -&|£6. 

Then, the final values of ©∗ and ™∗ can be determined from ®∗ and )∗. Finally with 

all of these parameters we can make the prediction of +̂9ø¿ from new input 99ø¿: 

 +̂9ø¿ ~ °4:;9ø¿, -;&9ø¿6 (2-21) 

:;9ø¿ = ©∗ä7499ø¿6 (2-22) 

-;&9ø¿ = )∗ K* + 7499ø¿6ä™∗7499ø¿6 (2-23) 

 
As we can see in (2-21), the RVM prediction holds the probabilistic feature with 

confidence intervals accompanying with the prediction results. 

 

2.2.2 Feature extended RVM 

 
In original RVM regression cases, Ñ pairs of successive degradation data should be 

denoted as stack output voltage £ = [+( , +(?*, … , +(?9K*]ä and their corresponding 

operation time points 5 = [9(, 9(?*, … , 9(?9K*]ä . Ñ  represents the number of 

training points, i.e., 49(, +(6, 49(?*, +(?*6, … , 49(?9K*, +(?9K*6 . However, in this 

section, the vector 5 is expanded to an Ñ × 10 matrix which can be expressed by: 
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    5 = [5(, 5(?*, … , 5(?9K*]ä = ¬9(K„ 9(Kƒ9(Kƒ 9(KÂ ⋯ 9(?9K*h⋯ 9(?9K„⋮ ⋮9( 9(?* ⋯ ⋮⋯ 9(?9K*
Ê

ä
 (2-24) 

 
The reason why we expand the time points 5 to a matrix is, we perceive that in an 

aging data prediction case, each measured value +((stack output voltage) should not 

be only related to its corresponding measured time point 9(, but also to the historical 

events (thus previous time points). Specifically, in here we choose the time points 

vector 5( = [9(K„, 9(Kƒ, … , 9(]ä  which comprises 9 successive time points 

preceding 9(, as the attributes or feature vector corresponding to each +(. Comparing 

to the original 49(,  +(6 data pairs, this novel approach using modified expansion 

formation of 45(,  +(6  ensures the RVM training taking the historical numerical 

events into fully consideration. Specifically, each time point 9( should be scaled to [0,1]  before the formation of 5  in order to ensure both high effectiveness and 

accuracy of the model during training process. 

With the expended structure of matrix 5, the design matrix could be formulated as 

what is shown in (2-5) with Gaussian kernel function. Favorable starting points of ® and ) should be chosen to initiate the re-estimation process until the converged 

values of ®∗, )∗ are reached which can maximize the posterior in (2-15). Actually 

most of the weight elements can be pruned, because during this iteration, most of 

the elements in ®∗ would be infinity. The pruning of those element results from (2-

8) which clearly shows an infinite '( indicates a zero peaked Ö(. After this iteration 

process, one can calculate the prediction result with the sparse weight vector ©∗ 

given a new input of 59ø¿. Specifically, the predictive result is subject to a normal 

distribution over the predictive value :;9ø¿ = ©∗ä7459ø¿6with the variance of -;9ø¿& = )∗ K* +  7459ø¿6ä«∗7459ø¿6. The associated confidential intervals can 

thus be demonstrated as two curves determined by deviation of [−3-;9ø¿, +3-;9ø¿] 
based on :;9ø¿, which indicate a 99.7% confidence level. In order to make it simple 

and clear, the different training steps of the proposed RVM algorithm are shown in 

the flow chart in Fig. 2-2. 
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Fig. 2-2 Flow chart of RVM training steps 

 

2.2.3 Implementation 

 
By applying the above mentioned RVM method, two experimental output voltage 

aging data sets of two identical PEMFC stacks (1.2 kW Ballard NEXA commercial 

PEM fuel cell stacks) for 400 h operation under two different working conditions 

were used. Specifically, the corresponding fuel cell operation conditions of two 

experimental degradation data sets are listed below in TABLE 2-1. 

During the experimental tests, the fuel cell voltage output is measured and logged 

every ten minutes (thus 6 data points per hour). It has to be mentioned that, before 

applying to the model, the original measured data have been down-sampled during 

data post-processing to eliminate too similar or unreliable measurement data points. 

As shown in Fig. 2-3, degradation data plotted in (a) are composed of 104 

successive measurements of the stack working under current of 30 A at 35 °C, while 

the other was measured under a stack current of 36 A at 40 °C and consists of 92 

data points. For both data sets, we choose at first the measured points between 0 h 
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and 240 h for RVM training and evaluate the predictive results with the remaining 

data between 240 h and 400 h. 

 
TABLE 2-1  

TWO DIFFERENT OPERATION CONDITIONS DURING EXPERIMENTS 

Stack configuration 

Fuel cells type PEMFC dead-end mode 
Cell numbers 47 cells 
Fuel supply 99.99% dry H2 @1.2 bar 
Air supply Air blower 
Cooling Air fan cooled 
 
Operation conditions  - First experimental test (Fig. 2-3a) 

Operation time  400 hours 
Operation temperature 35 °C 
Operation current 30 A 
Output power range (aging) 960 W (0h) – 885 W (400h) 
Air supply flow rate 55.75 slpm 
Measurement base sampling rate 1 measure point / 10 minutes 
 
Operation conditions  – Second experimental test (Fig. 2-3b) 

Operation time  400 hours 
Operation temperature 40 °C 
Operation current 36 A 
Output power range (aging) 1098 W (0h) – 990 W (400h) 
Air supply flow rate 62.39 slpm 
Measurement base sampling rate 1 measure point / 10 minutes 
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Fig. 2-3 Two data sets of training and remaining data 

 
We’ve been acquiring two data sets of performance degradation of a PEMFC stack 

operating under different conditions. For each of them, the data measured between 

0 and 240 hours were selected as the training set, and the rest in 240h – 400h were 

used to verify the accuracy of the points predicted by the improved RVM method 

proposed in this paper. i.e., for each of the training set, one mathematical RVM 

model could be obtained. The trained RVM model results between 0h – 240h 

(training zone) correspond thus to the RVM regression results, and model results 

after 240h (prediction zone) correspond to the forecasted results. In our cases, the 

prediction results are given between 240h and 400h, which indicate a forecast 

horizon of 160h. Specifically, the prediction curve from the trained RVM model 

could be obtained as shown in Fig. 2-4. The RVM model parameters (©∗, ™∗, ®∗, )∗) 

are deduced from the training steps shown in Fig. 2-2. 

 

 

Fig. 2-4 Prediction curve calculation of trained RVM model 
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b. Dataset measured under 36A 40°C
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where 49», 9»?*, … , 9ø9…6 stand for the time points from 0h to 400h, :; stands for 

the predictive value and [:; − 3-;, :; + 3-;] indicate the confidential interval of 99.7% 

as explained in the last section. The 49», :;»6, 49»?*, :;»?*6, … , 49ø9…, :;ø9…6 indicate 

the predictive values (blue line), while the 49», :;» + 3-;»6, 49»?*, :;»?* +3-;»?*6, … , 49ø9…, :;ø9… + 3-;ø9…6  and 49», :;» − 3-;»6, 49»?*, :;»?* −3-;»?*6, … , 49ø9…, :;ø9… − 3-;ø9…6  represent the upper and lower limit of the 

confidential interval, respectively, of the predictive results (pink lines) calculated 

by the proposed modified RVM algorithm. 

Moreover, in order to highlight the superiority of the proposed method, the results 

are also compared with the ones obtained from SVM training using the same 

training set and forecast horizon. 

 

2.2.4 Prediction results 

 
2.2.4.1 Prediction with training zone before 240 hours 

The performance prediction results from the condition of 30A 35°C and the 36A 

40°C are shown in Fig. 2-5, all of these prediction results are based on the training 

zone from 0h -240h. the prediction curve (blue curve) plotted in each of the figures 

can be separated to two parts, the plotted curve before 240h can be regarded as the 

regression result because this is within the training set, while the plotted curve after 

240h are the predictive result. The pink curves in all the figures stand for the error 

bars of [−3-, +3-]. 
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a. RVM results for dataset under 30A 35°C (240 h)
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Fig. 2-5 Voltage drop trends prediction for two data set (240h) 
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b. SVM  results for dataset under 30A 35°C (240 h)
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c. RVM results for dataset under  36A 40°C (240 h)
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d. SVM results for dataset under  36A 40°C (240 h)
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As shown in Fig. 2-5, the performance of RVM can be clearly demonstrated. From 

(a) and (c), the forecasted curves are showing their conformity with the dropping 

tendency of the points remaining in the validation zone. Specifically, in (a) we can 

see a good agreement between remaining and prediction around 250h even with the 

presence of a sharp voltage drop. Besides, from (a) and (c) in Fig. 2-5 the confidence 

intervals predicted by the proposed RVM method are presented to show their 

effectiveness, because most of the remaining points have been included in the 

predicted interval.  

Additionally, the comparisons of data regression errors of RVM and SVM methods 

under both working conditions are shown in TABLE 2-2. Specifically, the mean 

absolute percentage error (MAPE), root-mean-square error (RMSE), coefficient of 

determination (%&) and number of vectors are compared between the proposed 

RVM and the classic SVM. 

MAPE = 1Ñ ç À( − :;(À(
9

(:*  (2-25)  

RMSE = Ã∑ 4:;( − À(6&9(:* Ñ  (2-26)  

%& = 1 − ∑ 4À( − :;(6&9(:*∑ 4À( − ÀÕŒ6&9(:*  (2-27)  

 
where, :;( stands for the predicted voltage; À( stands for the measured voltage; ÀÕŒ stands for the mean value of the measured voltage; Ñ stands for the number of points we are interested. 

 
For MAPE and RMSE, smaller values indicate lower error and thus better 

prediction. Values of %& indicate how well the statistical models fit pairs of data. 

The values range from 0 to 1 and larger values indicate better fits (1 represent 

perfect fit). Number of vectors accounts for the mathematical complexity of the 

model given by RVM and SVM. Smaller number of vectors indicate less 
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complexity of models and lower computational demand, thus in turn leads to faster 

of computation. 

TABLE 2-2  

ERROR ASSESSMENT (240H) 

 
RVM 

30A 35°C 

SVM 

30A 35°C 

RVM 

36A 40°C 

SVM 

36A 40°C 

MAPE 0.0044 0.0054 0.0068 0.0067 

RMSE 0.1751 0.2022 0.2244 0.2263 %& 0.9153 0.8896 0.9296 0.9224 

Number of vectors 3 11 3 8 

 

From this table, we can see the RVM can achieve better performance than SVM. 

Besides, RVM holds the advantage of providing prediction results with confidence 

intervals which is not the case for SVM method.  

Comparing with the predictive results in published previous work, the MAPE and 

RMSE of predicting result in this paper using newly proposed design matrix 

formation is 30% and 15% percent less than that presented in [98] respectively. It 

should be noted that the data set measured under 30A 35°C shows more non-linear 

characteristics than the data set of 36A 40°C, and this precision improvement 

indicates the potential ability of RVM prediction when dealing with non-linear 

prediction case. 

 

2.2.4.2 Prediction with longer training zone 

 
In order to thoroughly evaluate the performance of the proposed RVM comparing 

to SVM, more prediction results acquired from different training intervals are 

compared and evaluated.  

In addition to the previously used 0 to 240h training interval, the data between 0 to 

300h and 0 to 350h of each voltage data set are also chosen as the new training sets 

for the validation purpose of both RVM and SVM methods. As what is expected, 

the performance of RVM in predicting the voltage drop trends is still better than 
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SVM in the two later cases, as shown in Fig. 2-6, Fig. 2-7, TABLE 2-3 and TABLE 

2-4. 
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a. RVM results for dataset under  30A 35°C (300 h)
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b. SVM  results for dataset under 30A 35°C (300 h)
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c. RVM  results for dataset under 30A 35°C (350 h)
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Fig. 2-6 Voltage drop trends prediction 30A 35°C 

 
TABLE 2-3  

ERROR ASSESSMENT 30A 35°C 

30A 35°C  
RVM 

300h 

SVM 

300h 

RVM 

350h 

SVM 

350h 

MAPE 0.0050 0.0054 0.0038 0.0054 

RMSE 0.1847 0.1892 0.1534 0.2071 %& 0.9014 0.8778 0.9334 0.8842 

Number of vectors 3 5 4 6 
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d. SVM  results for dataset under 30A 35°C (350 h)
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a. RVM  results for dataset under 36A 40°C (300 h)
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Fig. 2-7 Voltage drop trends prediction 36A 40°C 
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b. SVM results for dataset under 36A 40°C (300 h)
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c. RVM results for dataset under 36A 40°C (350 h)
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d. SVM results for dataset under 36A 40°C (350 h)
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TABLE 2-4  

ERROR ASSESSMENT 36A 40°C 

36A 40°C 
RVM 

300h 

SVM 

300h 

RVM 

350h 

SVM 

350h 

MAPE 0.0069 0.0070 0.0064 0.0069 

RMSE 0.2258 0.2312 0.2175 0.2309 %& 0.9250 0.9189 0.9402 0.8896 

Number of vectors 3 11 3 13 

 

From the figures and obtained error analysis, it could be clearly demonstrated that 

the proposed modified RVM method can achieve better accuracy comparing to 

SVM method. Nearly all the values of MAPE and RMSE getting from RVM of 

different training sets are smaller than those getting from SVM. And for %&, all 

values getting from RVM are closer to 1 than those from SVM. This indicates better 

fitting of RVM than SVM. Most of the remaining points in the approach of RVM 

are included in the confidence intervals which SVM could not provide.  Besides, 

the numbers of vectors given from models of RVM are much smaller than the 

numbers of vectors given from SVM. This proves the models given by RVM are 

much sparser than SVM, and this can reduce the computational demand during 

prediction. Moreover, with the results coming from different training intervals, the 

influence of the number of training data on the performance of RVM and SVM can 

also be evaluated. For the proposed RVM method, we can see the MAPE of the 

results predicted from training length of 240 h, 300 h, 350h under condition 30A 

and 35 °C are 0.0044, 0.0050, and 0.0038, respectively. Thus, it seems that, a longer 

training data set doesn’t necessarily improve the precision of prediction results 

provided by the proposed RVM method. Once the training length is more than a 

certain value (threshold), the prediction precision will no longer be highly 

dependent on the training length. This non-synchronized phenomenon between 

expansion of training length and improvement of prediction accuracy is also 

reflected from the values of RMSE, %&. 
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2.2.4.3 Prediction with extremely limited training zone 

 
In addition, in order to highlight the extended prediction capacity of proposed 

modified RVM method compared to classic SVM method, the fuel cell output 

voltage aging prediction is also processed with the data sets of 36A 40°C. The 

training zone of this prediction only contains very few training data. In Fig. 2-8 

shows the prediction results with the training length limited only to first 50 hours. 

It could be seen from the figures that, due to the extremely limited amount of 

training data, both predictions are not highly accurate especially when the predict 

time is far from the first 50h.  

 

 

 

 

Fig. 2-8 Voltage drop trends prediction 36A 40°C (50h) 
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a. RVM results for dataset under 36A 40°C (50 h)
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b. SVM results for dataset under 36A 40°C (50 h)
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However, under this extreme condition, the results obtained from the proposed 

modified RVM is obviously better than SVM because the RVM prediction couldn’t 

show its conformity with the remaining sets until 200 more hours, which is much 

longer than that of SVM. This proves RVM has the potential to get a fairly 

acceptable result even when the acquiring data are extremely limited at hand. 

 

2.2.5 Subsection summary 

 
According to the aging data specialty in the cases of data prediction, the formulation 

of the feature extended RVM was introduced. The implementation of the proposed 

RVM was then presented for the prediction of the voltage degradation trends from 

two experimentally measured data sets (from two 1.2 kW NEXA fuel cell stacks). 

In order to highlight the advantages of using the proposed RVM method, the 

obtained results were also compared with the ones obtained from a classic Support 

Vector Machine (SVM) method. The results obtained from different conditions are 

then compared and discussed thoroughly. It can be concluded that, both the 

predictive results coming from RVM and SVM were indicated to have good 

agreements with the measured data points. However, the prediction accuracy of 

RVM is better than that of SVM, especially in certain conditions when the training 

data are extremely limited. The models getting from RVM are much sparser than 

that from SVM which can also reduce the computational demand for prediction 

applications. Furthermore, the confidence intervals of RVM were also proved to 

have good effectiveness which classic SVM cannot give. What’s more, comparing 

with the results of original RVM, the results of the feature extended RVM are higher. 

In conclusion, the proposed modified RVM method has been proved to be a nice 

option of predicting the performance degradation of PEMFC stacks. 

 

2.3 Summary 

 
In this section, we firstly introduced the background of the topic on PEMFC stack 

performance degradation prediction. Then the formulation and implementation 

process of the feature extended RVM was fully illustrated, and the implementation 
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process of the proposed RVM training and prediction was demonstrated. The results 

were compared with the results getting from SVM with different training zone. The 

prediction performance of the proposed RVM is promising in comparison with 

SVM. Moreover, comparing with the results of original RVM, the results of the 

feature extended RVM are more accurate. In general, the prediction results of this 

feature extended RVM method were good and would have the potential to be used 

in the PEMFC performance prediction. 
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CHAPTER 3. 

The SELF-ADAPTIVE KERNEL 

RELEVANCE VECTOR MACHINE 

PREDICTION and VALIDATION 
 

Generally, in the RVM training problem, or a vector machine training problem, the 

prediction results getting from constant kernel width using extended feature RVM 

are good enough. However, the kernel width is usually a critical parameter for 

vector machines, and could influence the prediction results. Therefore, it is 

reasonable to have a self-adaptive kernel approach during prediction, and this 

would make the prediction algorithms smarter, and more optimized. In this chapter, 

we would like to introduce a self-adaptive kernel RVM in the PEMFC performance 

prediction case. The prediction capacity of this newly proposed method would be 

thoroughly demonstrated with different data from different stacks under different 

operation conditions.  

Before looking into the self-adaptive kernel prediction, firstly we need to know 

what the kernel trick is. 

 

3.1 What is the kernel trick? 

 
Let’s assume there is a group of points (¢*, ¢&, … , ¢9) on the 9–: plane as shown in 

Fig. 3-1. In a common sense of a regression problem, the target is usually to find a 

function, or a curve which would best fit the points. However, it is sometimes hard 

to find a proper function if there are too much non-linearity within the hidden 

function of this group of points. With the kernel trick, one could possibly solve this 

non-linear regression problem easily by mapping those points with non-linearity 
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feature at lower dimensional space into higher dimensional space, in which the 

relationship among those mapped points become less non-linear at higher 

dimension. The kernel function, usually expressing in the form of  >4¢(,  ¢?6 , 

represents the inner product of œ4¢(6 and œ4¢?6 in higher dimensional space. As 

what has been shown in this figure, those points on 9–: plane could be easily fitted 

after mapping into the higher dimensional space. 

Generally, the RVM regression problem usually deals with finding a proper 

prediction function that could best fit the given group of data. 

 :;496 = 4Ö*9*9 + Ö&9&9 + ⋯ + Ö99996 + Öh (3-1) 

 

Fig. 3-1 The kernel trick explained 

 
The kernel trick could help us deal with the regression problem in a higher 

dimensional space. With the help of kernel function, the regression equation could 

be modified to: 

 

:;496 = ç Ö(>49, 9(69
(:* + Öh (3-2) 
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In fact, there are plenty of choices of kernel functions. Such as the linear kernel, 

polynomial kernel, Gaussian kernel, exponential kernel etc. In this thesis work, we 

choose the Gaussian kernel in all of the vector machine trainings. 

The Gaussian kernel: 

 

>–¢(,  ¢?— = ,9ö4 − “¢( − ¢?“&21& 6 (3-3) 

 

where 1 is the kernel width, this value denotes the sparsity between the mapped 

points in the higher dimensional space. It is reasonable to consider that the points 

would be better fitted in a sparser distributed condition. So this value is of 

importance during the regression or prediction problems. 

 

3.2 Prediction implementation using self-adaptive 

kernel RVM 

 
Before introducing the self-adaptive kernel RVM, something need to be done with 

the iteration process of the RVM algorithm. As what have been mentioned in last 

section, generally in RVM method, the objective is to find the ® and ) that could 

maximize the marginal likelihood: 

 

¢4£|®, )6 = ¨ ¢4£|á, )6¢4á|®6dáÕ
KÕ  (3-4) 

 
It is feasible to use the maximum–likelihood estimation to evaluate ® and ) in (3-

4). The logarithm of the marginal likelihood is: 

 

ℒ4®6 = Ø–}¢4£|®, )6 = Ø–} ¨ ¢4£|á, )6¢4á|®6dáÕ
KÕ  

= − 12 [ÑØ–}2ß + Ø–}|±| + £ä±K*£] (3-5) 

 



The SELF-ADAPTIVE KERNEL RELEVANCE VECTOR MACHINE PREDICTION and 

VALIDATION 

76 

 

where, 

 ± =  -&“ +  ë”K¥ëä (3-6) 

 
The most probable ® which can maximize (3-4) can then be calculated when: 

∂ℒ4®6∂'( = 0 4Ç ∈ {1 … Ñ + 1}6 (3-7) 

 
The original RVM method intends to differentiate (3-7) directly. However, it would 

be computationally expensive to get the result of ®  afterwards. Thus, some 

additional modifications could be done from (3-5).  

For instance, ± can be further decomposed as: 

 

± =  -&“ + ç '”K*7”7”ä
9?*
” ‘( +  '(K*7(7(ä 

= ±K( +  '(K*7(7(ä 

(3-8) 

 
In this way the ± is separated to two parts, the first part is completely independent 

of '( (namely ±K() while the rest is a function of '(. This way, equation (3-5) can 

be expressed as: 

 ℒ4®6 =  ℒ4®K(6 +  ℒ4'(6  (3-9) 

 
where: 

 

ℒ4®K(6 =  − 12 [ÑØ–}42ß6  +  Ø–}|±K(| + £ä±K(K*£] 
ℒ4'(6 =  12 [Ø–}'(  − log4'(  +  7(ä±K(K*7(6 +  47(ä±K(K*£6&'(  +  7(ä±K(K*7(] 

(3-10) 
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By applying the above–mentioned method, the '(  can be isolated from the log 

marginal likelihood ℒ4®6 in (3-5). Therefore, the most probable '( is the one when 

the gradient of ℒ4®6 with respect to '( equals to zero: 

 ∂ℒ4®6∂'( =  ∂ℒ4'(6∂'( =  '(K*÷(& − 4˜(& − ÷(624'( + ÷(6& =  0 (3-11) 

 
where: 

 ÷( =  7(ä±K(K*7(  ;   ˜( =  7(ä±K(K*£   (3-12) 

 
From (3-11) it shows that the log marginal likelihood ℒ4®6 can reach its unique 

maximum under following two circumstances: 

 

'( =  ÿúNŸúNKÿú       when ˜(& > ÷(  
'( =  +∞         when ˜(& ≤ ÷( 

(3-13) 

 
During the fitting process, ˜(& ≤ ÷( indicates that 7( and Ö( should be set to zero 

because in this case, only when '( =  +∞ the log marginal likelihood could reach 

its maximum. However from (2-8), Ö( is limited to zero when '( =  +∞. So this 

indicates  Ö( does not play the role of weight in this model and need to be pruned. 

During the process, 

 

-& =  )K* = ‖£ − ë©‖&Ñ − ∑ 41 − '(Σ((69?*(:*  (3-14) 

 
As soon as we get the final value of ® and ), we can calculate the © and ™. The 

predictive value +9ø¿ can then be obtained in the form of normal distribution: 

 +9ø¿ ~ °4:;9ø¿ , -9ø¿& 6 (3-15) 
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7499ø¿6 = [1  >49*, 99ø¿6  >49&, 99ø¿6  …   >499, 99ø¿6] 
:;9ø¿ =  7499ø¿6© 

-9ø¿& =  -& +  7499ø¿6ä™7499ø¿6 

 
It should be noted that, during the process of deducing '(, many weight elements Ö( are set to zero and thought to basically ensure the mathematical sparsity of the 

predictive model. 

In this chapter, the performance prediction would involve two case studies. The first 

one would be about the performance prediction using 4 datasets measured from four 

identical NEXA stacks under four different operation conditions. The second one 

would use a dataset measured from a PM 200 stack operating under variable 

condition (road test). 

 

• Case study 1:  1.2 kW Ballard NEXA commercial fuel cell stacks (47 cells) 

working under four different operation conditions. (4 data sets) 

 

• Case study 2: 8 kW PM 200 PEMFC stack (96 cells) working under 

mobile/dynamic application. (1 data set) 

 

All of the five data sets are the experimentally measured fuel cell stack output 

voltage values during about 400 to 450 hours of continuous fuel cell operation, and 

each of them contains around 100 data points. Specifically, the 4 data sets from the 

1.2 kW Ballard NEXA stacks were measured and post–processed under steady–

state operation conditions of 12A 30°C, 30A 35°C, 36A 40°C and 44A 40°C 

respectively. The data set of the PM 200 stack was measured under a cyclic load 

output condition with a current density profile varies between 0.30–0.97 A/cm&, 

and two start/stops per operation hour. The detailed operation conditions and the 

V–I characteristics (polarization curves) of the measured NEXA and PM 200 fuel 

cell stacks are listed in TABLE 3-1 and illustrated in Fig. 3-2 respectively. 
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TABLE 3-1  

OPERATION CONDITIONS OF NEXA AND PM 200 FUEL CELL STACKS 

 Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 

Stack type NEXA PM 200 

Air supply Air blower + filter 

Operating 

hours 
400 h 

Number of 

cells  
47 96 

Operation 

mode 
Dead–end mode Recirculation mode 

Cooling Air fan cooled DI–Water / Glycol 

Fuel supply 99.99% dry H2 @1.2 bar 
99.99% dry H2 @1.5 

bar 

Air 

stoichiometry 
4.2 2.2 2.0 2.0 1.7 

Stack 

temperature 
30°C 35°C 40°C 44°C 58°C 

Stack current 

density 
0.08A/cm& 0.20A/cm& 0.24A/cm& 0.30A/cm& 

0.30A/cm& – 

0.97A/cm&(cyclic) 

 

 

Fig. 3-2 V–I characteristics for NEXA and PM 200 PEMFC stacks 
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For a given fuel cell stack and operation conditions, we have N data points in one 

data set, which can be expressed in the form of 49*, +*6, 49&, +&6, … , 49(, +(6, … , 49¶ , +¶6 . 9(  represents the sampling time and +( 
represents the corresponding stack output voltage measured at time 9(. The index 

N denotes the total number of data points in each data set. 

With ! initial training points 49*, +*6, 49&, +&6, … , 49», +»6, the RVM model is trained 

first to calculate the corresponding weight vector á». Then the values of the new 

voltage :;»?* at new time point 9»?* can be predicted from the trained model. When 

the system reaches time 9»?*, the newly measured voltage +»?* is added into the 

updated data set 49*, +*6,   49&, +&6, … , 49»?*, +»?*6 ,  and the RVM model is 

trained again to get the new weight vector á»?* to predict :;»?& at time point 9»?&. 

The same sequence is repeated for :;»?,, :;»?›…etc. That is to say, for N training 

points, we need to train and predict iteratively for 4° − !6 times (i.e., 4° − !6 

times one–step–ahead predictions) to get the prediction result [:;»?*, :;»?&, … , :;¶]. 
This iterative dynamic training method can ensure a higher prediction accuracy. It 

has also to be noted that, even the RVM model need to be re–trained at each time 

point in our proposed algorithm, the training time with a given data set is relatively 

short (less than 1 s in our cases with up to 100 data points). Thus, it can be seen as 

an on-line prediction method. The proposed RVM training steps are developed in 

detail hereafter:  

 

1.  Creation of the design matrix ë456 

 

As shown in (2-5), the design matrix is composed by one bias column [1, 1, … , 1]ä and s kernel columns for s training data points. This kind of kernel 

dominated design matrix can achieve relatively higher regression precision in 

highly non–linear circumstances. However, the voltage degradation feature of 

the fuel cell contains also linear tendencies comparing to the pure non–linear 

data sets. Thus, in order to have better fitting results, the original RVM design 

matrix is modified in here with additional linear columns. That is to say, in 

addition to the s kernel columns and one bias column, the modified design 
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matrix ë456 can be created by appending s extra columns to the original design 

matrix using values of 9*, 9&, … , 9», as shown in (3-16). 

 ë456 = [7*   7&   …  7»?*   7»?&   …   7&»?*] 
=

íìì
ììî
1 >49*,  9*6 … >49*,  9»6 9* 9& … 9»11⋮1

>49&,  9*6>49,,  9*6⋮>49»,  9*6
……⋮…

>49&,  9»6>49,,  9»6⋮>49»,  9»6
9*9*⋮9*

9&9&⋮9&
……⋮…

9»9»⋮9»ñóó
óóò (3-16) 

 
Consequently, the corresponding weight vector á is also modified by adding s 

weight elements for the s newly appended columns. Also s more hyper–

parameters of '(  should be introduced into the training process. With the 

proposed modification, the linear part in the data sets could be better predicted 

with the help of the newly added s more weight elements. It should also be noted 

that all the 9(, which represent the different time points during fuel cell aging 

test in a time value range of [0, 400] (hours), are needed to be proportionally 

normalized to [0, 1] before creating the design matrix in order to get higher 

regressive accuracy. 

 

2. Acquisition of the proper weight vector á 

 

To start the RVM model training, we can randomly choose a column vector 7( 
from the design matrix, using (3-13), the '( can thus be calculated from: 

 

'( =  ‖7(‖&“7(ä£“&‖7(‖& − -& 
(3-17) 

 
While other 'fi4> ≠ Ç6 are set to infinity, it is then possible to calculate the ÷( and ˜(  using (3-8) and (3-12). The rule applied here is, if ˜(& − ÷(& > 0 ,  

update '(, else if ˜(& − ÷(& < 0, set this 7( column in the design matrix to zero 
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and the '( to infinite. We can thus calculate all the ˜?& − ÷?& (· = 1, 2 , … , 2! +1) using the same method with 7? choosing from columns of ë456 to see if 

they are positive or negative. The negative values indicate that the 

corresponding ‚?  and '?  should be ruled out from the mathematical model, 

while the '? can be updated when the corresponding  ˜?& − ÷?& are positive. At 

the same time, we can use (3-14) to update the -&. With the final updated values 

of  ® , -&and ë456, the proper weight vector á can then be deduced from © 

using (2-11) and (2-12), as shown in Fig. 3-3 This diagram illustrates the 

different calculation steps in detail to determine the proper weight vector á. 

 

 

Fig. 3-3 Calculation flow chart for deducing vector w 

 

3. Adaptive kernel of 1 
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The Gaussian kernel function in the design matrix ë456  is expressed as 

>49(, 996 = ,9ö 4− ‖{úK{ù‖N&ûN 6. The 1, which is called the kernel width, plays an 

important role in linear or non–linear regression of RVM method and its value 

should be carefully tuned. If it is overestimated, the exponential will behave 

almost linearly and the higher–dimensional projection will start to lose its non–

linear feature. On the other hand, if it is underestimated, the predictive curve 

would be sensitive to noise in the training data which could lead to the over 

fitting problem. In this paper, an innovative method of self-adaptive kernel is 

proposed to overcome the above–mentioned problems. The proposed 

adaptation steps are summarized as follow: 

For those data sets having been finely normalized in [0, 1], the most proper 

kernel width is located in [0, 10], we randomly choose a values from this zone 

to form a group of adaptive candidates 41*, 1&, … , 1„6 ∈ [0, 10]. Each 1( can be 

used to create a unique ë456. 

Each of the ë456 based on s training sets can help to deduce a proper weight 

vector á» which is peaked in ©» as detailed in the second step. The adaptive 

kernel width is proposed as the expression of: 

 1„…„‰Â(Êø = arg ªÇÑû∈[h,*h]4:;» − +»6 (3-18) 

 
where: 

 :;» = 749»6©» 

749»6  = [1  >49», 9*6  >49», 9&6  …   >49», 9»6  9*  9&  … 9»] (3-19) 

 
Once 1„…„‰Â(Êø is acquired, the ë456 creating from 1„…„‰Â(Êø is chosen as the 

design matrix, and its deduced á» is chosen as the most probable weight vector 

corresponding to these s data points training set. 

It should be noted that higher values of a indicate higher precision of the 

prediction results. Because a higher value of a would lead to bigger kernel 
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candidates of 41*, 1&, … , 1„6 ∈ [0, 10], thus makes it more possible to find an 

adaptive kernel which is very close to the most proper kernel for prediction. In 

our case, we choose * = 100. 

 

4. Prediction 

After acquiring the most probable weight vector Ö», with the s initial training 

data, we can calculate the predictive result of  :;»?* =  749»?*6©»?*   with a 

confidence interval of [−3-»?*, +3-»?*], which indicates 99.7% confidence 

level. We have mentioned at the beginning of this section that it would take us ° − ! training iterations to get all the predictive results for [:;»?*, :;»?&, … , :;¶]: 
 èê‰Áø…(ËÂ = [:;»?*, :;»?&, … , :;¶] 

= [749»?*6©»?*, 749»?&6©»?&, … , 749¶6©¶]    (3-20) 

èêÈ‰‰øÁ Í(”(Â 
= [4:;»?* + 3-»?*6, 4:;»?& + 3-»?&6, … , 4:;¶ + 3-¶6 ] 
= [749»?*6©»?* + 3 × 4-»?* + 749»?*66ä™»?*749»?*6, 

749»?&6©»?& + 3 × 4-»?& + 749»?&66ä™»?&749»?&6, … 

749¶6©¶ + 3 × 4-¶ + 749¶66ä™¶749¶6] 
(3-21) 

èêÍÎ¿øÁ Í(”(Â 
= [4:;»?* − 3-»?*6, 4:;»?& − 3-»?&6, … , 4:;¶ − 3-¶6 ] 
= [749»?*6©»?* − 3 × 4-»?* − 749»?*66ä™»?*749»?*6, 

749»?&6©»?& − 3 × 4-»?& − 749»?&66ä™»?&749»?&6, … 

749¶6©¶ − 3 × 4-¶ + 749¶66ä™¶749¶6] 
(3-22) 

 
where 749»?*6 denotes the corresponding design vector for the prediction of :;»?* from ! data points training data sets, expressed as: 
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749»?*6  
= [1  >49»?*, 9*6  >49»?*, 9&6  …   >49»?*, 9»6  9*  9&  … 9»] 
749»?&6  
= [1  >49»?&, 9*6  >49»?&, 9&6  …   >49»?&, 9»6  9*  9&  … 9»?*] 

⋮ 
749¶6  
= [1  >49¶ , 9*6  >49¶ , 9&6  …   >49¶ , 9¶K*6  9*  9&  … 9¶K*] 

(3-23) 

 
Above illustrated the mathematical modifications of proposed RVM accompanied 

with the detailed steps of implementation. 

 

3.3 Results and discussions 

 
In order to verify experimentally the effectiveness and the validity of the proposed 

modified RVM approach, the method is applied to each test case. It has to be noted 

that, the results presented in 3.3.1, 3.3.2 and 3.3.3 correspond to the single–step–

ahead prediction results or comparisons with the proposed modified RVM and 

SVM, original RVM (i.e. the corresponding prediction time is about 4 hours). 

Multi–step–ahead prediction (up to 20 hours) is presented in 3.3.4. 

 

3.3.1 RVM prediction results 

 

3.3.1.1 Case Study 1 

 

In this case, four experimental output voltage degradation data sets of a 1.2 kW 

PEMFC stack (Ballard NEXA commercial fuel cell stack) for 400 h continuous 

operation under different working conditions are presented. The data sets are used 

to train the modified RVM model, and the predicted results are then compared with 

the measured ones in order to validate experimentally the prediction method 

proposed in this paper. For each of the data sets, we impose in this study the initial 
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number of data points ! = 15, which indicates the first 15 data points are selected 

to initiate the prediction. By applying the previously developed RVM method, the 

model predicted results are shown and discussed hereafter. 
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Fig. 3-4 RVM predictive results under four different conditions with s=15 (NEXA 
stack) 

 
In Fig. 3-4, the experimental voltage degradation data points tested under four 

groups of operating currents and temperatures are marked as red crosses in all four 

figures. They show the measured data sets 49*, +*6, 49&, +&6, … , 49¶ , +¶6  are 

distributed in a time interval of [0h, 400h], where 9*, 9&, … , 9¶  represent the 

sampling time and the +*, +&, … , +¶  represents the corresponding measured stack 

output voltage. The RVM model predicted results are presented in green lines, 

starting from data point ! + 1 , noted as 49*Ï, :;*Ï6 , 49*Â, :;*Â6 ,…, 49¶ , :;¶6 . In 
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addition, two blue dotted lines in each figure indicate the upper/lower limit of the 

prediction confidence interval. As mentioned before, this confidence interval are 

bounded by both lining up 49*Ï, :;*Ï + 3-*Ï6, 49*Â, :;*Â + 3-*Â6, … , 49¶ , :;¶ + 3-¶6 

and 49*Ï, :;*Ï − 3-*Ï6, 49*Â, :;*Â − 3-*Â6, … , 49¶ , :;¶ − 3-¶6 . The ±3-  in 

Gaussian distribution indicates a 99.7% confidence interval. 

It can be seen clearly from Fig. 3.4 that, the proposed RVM method with improved 

design matrix and adaptive algorithm can accurately predict both voltage 

degradation tendency and voltage values from the data sets. The deduced 

confidence intervals are also effective to cover most of the data. 

 

3.3.1.2 Case Study 2 

 

In order to demonstrate the capability and effectiveness of the prediction of the 

proposed RVM method on different fuel cell stacks, another experimental voltage 

aging data set from an 8 kW PM 200 PEMFC stack (96 cells) working under 

mobile/dynamic application is also trained in this section. The RVM model training 

process remains the same. The prediction is also initiated with an initial number of 

data points ! = 15. 

The prediction results of a single cell (the middle cell in 96 cells stack) voltage 

degradation are illustrated in Fig. 3-5. The green line represents the RVM model 

predicted results, and the two blue dotted lines indicate the confidence interval of 

the prediction. The measured data points are drawn as red crosses (same with 

before). Fig. 3.5 clearly shows again that, the predicted results from the proposed 

RVM method can precisely follow the trend of the non–linear experimental data set 

with a great accuracy.  
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Fig. 3-5 Single cell voltage prediction results for mobile application with s=15 
(PM 200 stack) 

 

3.3.2 Proposed modified RVM vs. SVM 

 

In order to show the advantages and effectiveness of the proposed RVM method in 

predicting the voltage degradation of PEMFC, the results from the support vector 

machine (SVM) method using same training data sets are presented in this section 

(same adaptive kernel), and they are compared with that of the proposed RVM 

method.  

Using the same five data sets implemented by the improved RVM method before, 

the predictive results of classic SVM method are presented in Fig. 3-6. It is clear to 

see from the figures that, the SVM method can give fairly good prediction results 

of fuel cell voltage degradation at the beginning of fuel cell operation time. 

However, in some cases, when the operation time passes 300h, the prediction results 

from SVM become unacceptable, especially in the cases of 44A 40°C of NEXA 

(Fig. 3-6d) and PM 200 mobile operation (Fig. 3-6e), from which the prediction 

results after 300h begin to slightly deviate from the data set, and the deviation 

remains until the end of prediction. 
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Fig. 3-6 Predictive results of SVM with ! = 15 

 
In order to show in detail the effectiveness of predictions of RVM and SVM over 

the entire fuel cell operation time interval, three types of error analysis—Mean 

Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and 

Coefficient of  Determination (%&) — are conducted and discussed in the following. 

Unlike the MAPE or RMSE, larger values of %& indicate better fittings (usually 0 < %& ≤ 1). By applying the MAPE, RMSE and %& error analysis, the analysis 

results for RVM and SVM methods over fuel cell operation time range are 

illustrated in Fig. 3-7 and 3-9, respectively, for all five experimental data sets. The 

MAPE, RMSE or %& getting from RVM and SVM methods under the same fuel 

cell operation conditions (four conditions of NEXA stack and one mobile condition 

of PM 200 stack in total) are plotted with the same color, while the solid lines stand 

for RVM results and dotted lines stand for SVM results. 

The MAPE results are presented in Fig. 3-7, it can be seen clearly from the figure 

that, the MAPE of RVM is smaller than that of SVM under all five operation 

conditions. Especially for the mobile condition of 8 kW PM 200 stack, the MAPE 

of RVM results is nearly 40% less than that of SVM results. Moreover, the MAPE 

of SVM predicted results for NEXA data sets under 36A 40°C and 44A 40°C are 

both slightly deviated upward through time, which means the accumulated 

prediction errors are relatively higher using classic SVM method when training with 
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larger amount of data. In contrast, the MAPE of improved RVM method under all 

five conditions are much more consistent than SVM.  

The RMSE is scale–dependent, which means if data sets are not scaled into same 

range, it may lead to different magnitude of RMSE. This is the reason why the 

RMSE, either of RVM or SVM, for prediction of PM 200 stack is around 10 times 

higher than that of data sets from NEXA stack. In order to clarify this difference, 

the RMSE results for PM 200 stack under mobile condition is labelled on the right 

axis while the rest of RMSE results from NEXA stack under four different operation 

conditions are labelled on the left axis using different scales. It can be concluded 

again from the Fig. 3-8 that, comparing with the RMSE results from SVM, the 

RVM shows stronger capability on maintaining high precision when predicting 

after training relatively larger amount of data. Moreover, the RMSE results from 

NEXA stack under 36A 40°C and 44A 40°C using classic SVM method increase 

through time, while the RMSE results using modified RVM method remain stable 

for the entire fuel cell operation time range. 

At last, the %& results under different conditions are shown in Fig. 3-9. The dotted 

and the solid lines represent the results from SVM and modified RVM, respectively. 

Generally, a higher %& indicates a better fitting. In addition, if compared among 

different data sets, a lower %& value indicates a more random or non–linear feature 

of the data set compared with the others. It can be seen from Fig. 3-9 that, for both 

of RVM and SVM, we have %,ÏÓ ›h°1& ≈ %››Ó ›h°1& > %,hÓ ,i°1& > %ÚÛ&hh& >%*&Ó ,h°1& . This observation indicates the data sets measured from 12A 30°C for 

NEXA stack is the most non–linear one, while the data from 44A 40°C or 36A 40°C 

are least fluctuated comparing with other data sets. Furthermore, from this figure 

we can see that the %& of improved RVM method are always higher than that of 

classic SVM method for all 5 experimental data sets, which indicate the proposed 

RVM method shows clearly better fitting results.  
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Fig. 3-7 MAPE comparison 

 

 

 

 

Fig. 3-8 RMSE comparison 
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Fig. 3-9 %& comparison 

 

3.3.3 Proposed modified RVM vs. original RVM 

 
Furthermore, in order to highlight the prediction accuracy improvements of the 

proposed self-adaptive kernel RVM method compared to the original RVM in the 

case of PEMFC aging prediction, the MAPE and RMSE comparison between the 

results of the two methods have been given in Fig. 3-10a and Fig.3-10b respectively 

for both fuel cell stacks (NEXA and PM 200) under different operation conditions 

in the range of 0 – 400h. The shallow grey bars denote the errors of modified RVM 

and the dark grey bars indicate the errors obtained from the original RVM method. 

In both MAPE and RMSE comparison cases, a better prediction performance of our 

proposed method are demonstrated. The results show the modified RVM could 

achieve at least 15% of accuracy improvement in all tested cases, and could achieve 

nearly 60% improvement on the MAPE or RMSE errors in some specific cases 

compared with the original RVM method. 

Moreover, the voltage degradation prediction results of all the five data sets from 

both the modified RVM and the original RVM have been illustrated from Fig. 3-11 

to Fig. 3-15. It can be seen clearly from these figures that, the modified RVM has 

more advantage on presenting the non–linear part of the degradation data during 
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prediction (i.e. predicted values are fluctuated more dynamically with the observed 

tendencies of the datasets). 

 

 

 

 

 

 

 

Fig. 3-10 MAPE and RMSE comparisons with original RVM 
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Fig. 3-11 Comparison between proposed modified RVM and original RVM 
(NEXA 12A 30°C) 

 

For the results of Fig. 3-11, the linear columns have been added into the design 

matrix, however it seems the prediction improvement is not significant with the 

appending linear columns in this condition. The improvement of this prediction 

case (better trend tracking) from the self-adaptive kernel RVM is due to the adaptive 

kernel. The result getting from the constant kernel (original RVM) make the 
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prediction curve around 300 hours a little “flat”. In Fig. 3-11a the prediction curve 

around 300 h seems to perfectly predict those data. 

 

 

 

 

Fig. 3-12 Comparison between proposed modified RVM and original RVM 
(NEXA 30A 35°C) 

 

For results of Fig. 3-12, this couple of comparison is similar with the predicting 

case shown in Fig. 3-11, from 250 hours to 350 hours, the prediction results from 

modified RVM is enhanced. This better trend tracking is mainly due to the kernel 

0 50 100 150 200 250 300 350 400
29

29.5

30

30.5

31

31.5

32

Operation time [h]

S
ta

c
k

 o
u

tp
u

t 
v

o
lt

a
g

e
 [

V
]

a.  NEXA 30A 35°C  self−adaptive kernel RVM

 

 

 Training sets

 Predictive results

 Upper limit

 Lower limit

0 50 100 150 200 250 300 350 400
29

29.5

30

30.5

31

31.5

32

Operation time [h]

S
ta

c
k

 o
u

tp
u

t 
v

o
lt

a
g

e
 [

V
]

b.  NEXA 30A 35°C Original RVM

 

 

 Training sets

 Predictive results

 Upper limit

 Lower limit



The SELF-ADAPTIVE KERNEL RELEVANCE VECTOR MACHINE PREDICTION and 

VALIDATION 

99 

 

changing during prediction, which in turn optimizes the prediction results in this 

region. 

 

 

 

 

Fig. 3-13 Comparison between proposed modified RVM and original RVM 
(NEXA 36A 40°C) 

 

As what are shown in Fig. 3-13, the data points of 36A 40°C is the most linear 

datasets in all tested 5 datasets. Even the original RVM could provide a good 

prediction. Not to say the prediction results getting from the self-adaptive kernel 

RVM. It can basically capture all the variation tendencies during prediction. 
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Fig. 3-14 Comparison between proposed modified RVM and original RVM 
(NEXA 44A 40°C) 

 

In this two prediction results in Fig. 3-14, the results from original RVM are not 

very accurate in the prediction in the region from 250-300 hours. Comparing to the 

original one, the prediction results of modified RVM is more accurate. The kernel 

width of the modified RVM would change during the prediction case, and make the 

prediction algorithm have the ability of automatically choose the optimized kernel 

to deploy the prediction algorithm in different situations. 
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Fig. 3-15 Comparison between proposed modified RVM and original RVM 
(PM200) 

 
In Fig. 3-15, the predicted results from the modified RVM are better than the 

original one, especially from 250-300 hours. The prediction results of the modified 

RVM also fixed several “predicted peaks” (inaccurate predictions) in the result of 

the original RVM prediction by introducing the self-adaptive kernel. 
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As indicated, the results presented in the previous section correspond to the single–

step–ahead prediction. The proposed modified RVM method has also the capability 

to provide multi–step–ahead prediction results, which will be discussed here. It 

should be noted that, from our test data sets, the time interval between two data 

points is around 4 hours. Thus, one prediction step could be considered as 4 hours 

ahead in time. 

In order to demonstrate the capability of multi–step–ahead prediction of our 

modified RVM method in a general way, multi–step–ahead predictions with 4 

different prediction times (2 steps to 5 steps) for all tested fuel cell operation 

conditions have been performed. The obtained corresponding prediction errors 

(MAPE and RMSE) are presented in TABLE 3-2 and 3-3 for the prediction results 

in the time range of 0 – 400h. 

As mentioned previously, the time interval between 2 data points is around 4 hours 

in our test cases. Thus, the results of 1 to 5 step–ahead prediction correspond to a 

forecast time of 4 hours to 20 hours respectively. It can be seen clearly from the 

tables that, the accuracy of the prediction decreases when the prediction time 

increases. However, the 5–step–ahead predictions of the proposed modified RVM 

are still acceptable in all 5 tested cases if compared with the single–step–ahead 

prediction results from the original RVM method. 

 
TABLE 3-2  

MAPE ON MULTI-STEP-AHEAD PREDICTION OF THE MODIFIED RVM 

 

12A 

30°C 

(NEXA) 

30A 

35°C 

(NEXA) 

36A 

40°C 

(NEXA) 

44A 

40°C 

(NEXA) 

PM 200 

1-step 0.0049 0.0058 0.0062 0.0057 0.0041 

2-step 0.0057 0.0054 0.0075 0.0064 0.0059 

3-step 0.0056 0.0062 0.0087 0.0080 0.0075 

4-step 0.0055 0.0065 0.0101 0.0089 0.0083 

5-step 0.0072 0.0075 0.0113 0.0105 0.0090 
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TABLE 3-3  

RMSE ON MULTI-STEP-AHEAD PREDICTION OF THE MODIFIED RVM 

 

12A 

30°C 

(NEXA) 

30A 

35°C 

(NEXA) 

36A 

40°C 

(NEXA) 

44A 

40°C 

(NEXA) 

PM 200 

1-step 0.2138 0.2282 0.2247 0.1985 3.5753 

2-step 0.2510 0.2168 0.2727 0.2443 4.3814 

3-step 0.2545 0.2353 0.3305 0.2959 5.6659 

4-step 0.2629 0.2589 0.3707 0.3378 6.3731 

5-step 0.3090 0.2928 0.3979 0.3926 7.0437 

 
In addition, the results comparison from single–step–ahead and 5–step–ahead 

predictions (4 hours and 20 hours, respectively) are given in figures from Fig. 3-16 

to Fig.3-20. It can be seen from these figures that, the 5–step–head prediction results 

can always represent correctly the non–linear fuel cell voltage degradation feature.  
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Fig. 3-16 Multi-step-ahead prediction comparison (NEXA 12A 30°C) 

 
In Fig. 3-16, the results from 5-step-ahead prediction is a little left behind around 

225 and 275 hours, however in most of the prediction time, the 5-step-ahead 

prediction could provide nearly the same results with the 1-step-ahead prediction. 

However, both of the prediction results at the beginning around 75-100 hours are 

less accurate, this may be due to lack of the training set at the beginning of the 

prediction. 
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Fig. 3-17 Multi-step-ahead prediction comparison (NEXA 30A 35°C) 

 
In Fig. 3-17, it seems each of the prediction results is no difference with each other. 

Both of them could provide good prediction except for the region within 200-250 

hours in which the prediction results are a little elevated than the real measured data. 

However in most of the cases, the prediction results and confidence intervals can 

provide effective prediction results. 
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Fig. 3-18 Multi-step-ahead prediction comparison (NEXA 36A 40°C) 

 

In Fig. 3-18, both of the prediction results can prove the good prediction 

performance, and the confidence intervals are almost containing all the datasets. 

The result of 5-step-ahead prediction is a little legged behind in some certain time 

points. However, it seems the 5-step-ahead prediction profile didn’t influence its 

prediction effectiveness in this prediction case. 
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Fig. 3-19 Multi-step-ahead prediction comparison (NEXA 44A 40°C) 

 

For the prediction results shown in Fig. 3-19, both predictions have a lower 

accuracy from 175 – 200 hours range. Around 260 and 350 hours the prediction are 

also less accurate. However in most of other regions, the prediction results are of 

high accuracy especially in the regions of 100-150 hours and 200-250 hours. 
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Fig. 3-20 Multi-step-ahead prediction comparison (PM 200) 

 
The 1-step-ahead prediction could provide prediction results with high accuracy in 

Fig. 3-20. The 5-step-ahead prediction is a little left behind due to much more 

fluctuated distribution of the points (the data is trained in the unit of mV, not in V, 

so numerically more fluctuated). However, most part of the prediction results are 

acceptable without any problem. The predictions of both cases didn’t do the 

prediction of the last point in the RVM program because it’s located outside of our 

pre-set prediction range (450 hours for all datasets). 

 

3.3.5 Subsection summary 

 

In this subsection, we provided an extensively detailed demonstration and 

discussion of the prediction results from self-adaptive kernel RVM. It can provide 

better prediction results comparing with the SVM and the original RVM. Moreover, 

it could still achieve a fairly acceptable prediction accuracy at multi–step–ahead 

prediction (up to 20 hours in our cases). Comparing with the SVM or original RVM 

methods in one-step-ahead prediction, the proposed self-adaptive kernel RVM in 

multi-step-ahead prediction could provide similar prediction accuracy with a much 

longer forecast time (4 hours vs. 20 hours in our cases). 
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3.4 Summary 

 
In this section, the self-adaptive kernel RVM has been proposed for the use of 

PEMFC performance degradation prediction. At the beginning, the kernel trick has 

been briefly introduced, then the proposed non–linear mathematical approach of 

Relevance Vector Machine has been developed and illustrated thoroughly, followed 

by a detailed description of algorithm implementation process. Compared with 

conventional RVM formulation, two enhancements of the proposed RVM method 

are proposed and complied: 

 

1. Comparing with the all kernel function based design matrix in conventional 

RVM approach, the design matrix proposed in this paper was extended by 

appending with non–kernel columns in order to acquire both linear and non–

linear features from the fuel cell degradation data during training; 

 

2. An innovative adaptive kernel width determination algorithm, which can 

iteratively choose the most effective kernel width value from different training 

data set, has been proposed in order to make training or learning process more 

intelligent and effective.  

 

The advanced self–adaptive approach of RVM is trained and implemented using 

experimental voltage degradation data from two different kinds of PEMFC stacks 

(Ballard NEXA (1.2 kW) / PM 200 (8 kW)). The predicted results of this improved 

RVM method show great agreements with the experimental results under different 

operation conditions. In order to demonstrate the effectiveness of the proposed 

method, the error assessments of prediction results have also been compared with 

that of SVM method. The results analysis convincingly showed that, the proposed 

modified RVM could achieve better performance than SVM approach. In general 

cases, the errors of RVM are 30% – 40% less than that of SVM, specifically in 

terms of the MAPE and RMSE. Moreover, the prediction results from the proposed 

modified RVM method are also compared with the results from original RVM. The 

comparison results indicated clearly that, the proposed modified RVM could 

achieve higher accuracy and shows higher potential to follow observed non–
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linearity. Furthermore, comparisons and discussion between single–step–ahead and 

multi–step–ahead prediction from the proposed modified RVM are also provided. 

The results show that the modified RVM can still achieve acceptable prediction 

accuracy in multi–step–ahead prediction, which could provide up to 20 hours 

forecast time for proper maintenance planning of the studied fuel cells. 

In conclusion, this advanced self–adaptive approach of RVM was demonstrated to 

have good accuracy and effectiveness to predict the performance variation or 

degradation of PEMFC systems. 
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CONCLUSION and PERSPECTIVES 
 

Nowadays, the relatively short lifetime of the PEMFC has been a common issue 

that impedes it from massive use.  Good understanding of PEMFC degradation 

mechanisms along with accurate prediction model of PEMFC performance loss 

would clearly facilitate the ability of researchers to overcome this issue.  In this 

thesis, we illustrated a detailed state of the art of degradation mechanisms of 

PEMFC, as well as a novel data-driven model for long term performance prediction 

using an improved relevance vector machine (RVM) approach. 

Specifically in this thesis, we presented: 

 
1. An extensively detailed illustration of degradation mechanisms of PEMFC 

regarding to the impacts from the operation fallacies. The major operation 

fallacies considered are: the insufficient water management, poor 

temperature management, gas starvation, fuel contamination and load 

cycling. The influences were detailed and specifically demonstrated; 

 
2. A detailed degradation mechanisms description on different components of 

PEMFC stack. The degradation mechanisms have been thoroughly 

illustrated with literature review based on different PEMFC composing 

components: the membrane, catalyst layers, GDL and bipolar plates;  

 
3. PEMFC performance prediction model on two datasets from two stacks 

using feature extended RVM. The formulation of original RVM has been 

fully addressed at first, the feature extended RVM was then proposed and 

illustrated. In the prediction case with two Ballard NEXA 1.2 kW stacks, 

the proposed RVM could achieve better prediction performance regarding 

to different prediction results of conventional SVM with different prediction 

zone; 
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4. An updated self-adaptive kernel RVM is further proposed to predict the 

performance of the PEMFC stack based on the datasets of five stacks. The 

prediction results have been thoroughly compared with the SVM, and the 

original RVM. From the provided results, it can be concluded that the 

proposed self-adaptive kernel RVM can achieve better performance 

compared with other two methods. Moreover, the prediction performance 

was validated and discussed for multi-step-ahead prediction cases. The 

results demonstrated that, the proposed updated self-adaptive kernel RVM 

has clearly its potential to be used in the PEMFC performance prediction. 

 

The future works of this thesis is firstly to do more research regarding to the 

prediction of the PEMFC performance degradation using self-adaptive RVM, while 

involves other physical parameters than output voltage. In this thesis, we 

accomplished the prediction using these five datasets at hand, however, we didn’t 

have the degradation information about the polarization curves or the dynamic 

operation parameters of the PEMFC stack in the 400 to 450 hours of continuous 

operation. So we planned to finish this part in the future with the diagnostics of 

PEMFC once we could have the more detailed dynamic operation information. 

Moreover, we would like to complete the physical modelling of the PEMFC 

performance degradation. Apart from the performance prediction in PEMFC using 

machine learning method proposed in this thesis, a physical model would be a good 

counterpart or supplement of our work. In our proposed data driven approach, we 

only macroscopically take into consideration of the performance drop through time. 

A physical model of the PEMFC performance degradation would help us 

microscopically and quantitatively look inside of its degradation mechanisms. This 

would lead to higher accuracy, and also more effective without the need for training. 

Physically, for each of the single cell in a stack, it’s consisted of the catalyst layers, 

membrane, GDL and bipolar plates. The degradation of the first three components 

are more critical than the bipolar plates on influencing the performance of a stack. 

Respectively, the platinum loss, membrane degradation and carbon corrosion are 

the most critical issues in each of them. We have been working on the research of 
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platinum loss and membrane degradation. For the carbon corrosion modelling, we 

will focus on it after finishing the first two modelling cases. 

The preliminary models have been illustrated in the appendix I. and II. Specifically, 

the appendix I. is about the platinum dissolution, and the appendix II. is mainly 

about the platinum precipitation in the membrane. 

However, based on these two models, we couldn’t provide substantial prediction 

results until now, because both of them are still preliminary models. We are lack of 

some values of critical parameters in the Pt loss modelling case, or still need the 

modelling on radical attacks in the membrane degradation case. However, more 

efforts would make it possible for us to finish these future modelling works. 
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APPENDIX I. 

PLATINUM DISSOLUTION 

 
The dissolution of the nano Platinum particles plays an important role which 

influences the long term performance of the PEMFC stack. The nano Pt particles 

are the main constituents of both the catalyst layers on the anode and the cathode 

side. The dissolution of Pt particles would cause the decreasing of the 

electrochemistry surface area (ECSA).  

As what have been mentioned before, the electrochemical reactions take place in 

fuel cells on each of the electrode is: 

At the anode: 

 2H& → 4H? + 4eK 

 
At the cathode: 

 O& + 4H? + 4eK → 2H&O 

 
Overall: 

 2H& + O& → 2H&O 

 
The electrochemical reactions happened in the fuel cell would only take place on 

the reaction sites, known as tripe contact zone. Namely, the membrane, the void 

and the nano Pt particles. The membrane provides the path for the protons to travel 

from or to the reaction sites. The void allows the gases to reach the reaction sites. 

The nano Pt particles would play as a role of catalyst of the electrochemical 

reactions, from where the electrons detached from the hydrogen molecules would 
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travel through the platinum particles and carbon substrate to produce the electric 

current. 

 

Fig. a-1 Triple contact zone 

 
The ECSA is proportional to the number of the reaction sites. It is obvious that the 

smaller the platinum particle is, the more number of the platinum particles would 

be either in contact with the membrane and the reactant gases. This would directly 

lead to more reaction sites on the catalyst layer, and so lead to higher ECSA. So in 

here, the size of the platinum particles is a core factor that determines the value of 

ECSA. 

Generally, three chemical reactions would be involved in the platinum dissolution 

phenomena: [32] 

 

Pt4Y6 + H&O47/6 ↔ PtO4Y6 + 2H47/6? + 2eK  4U4/* = 0.98V6 (Reaction 1) 

PtO4Y6 + 2H47/6? ↔ Pt47/6&? + H&O47/6 (Reaction 2) 

Pt4Y6 ↔ Pt47/6&? + 2eK  4U4/& = 1.188V6 (Reaction 3) 

  
According to the Pourbaix diagrams of platinum [99], there are some other ionic 

species of platinum with higher oxidation states. However, they are not expected to 

be significant on the electrodes of PEMFC. The equilibrium potential of the two 

electrochemical reactions are indicated from the Pourbaix diagram and listed 

behind each of the reaction. 

For any of the electrochemical reactions, it is possible to use the Butler-Volmer 

equation to deduce the reaction rate once the equilibrium potential is acquired. 

However, in the scenario on the surface of the platinum particle, the equilibrium 
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potential is deviated from the value reported from Pourbaix diagram. This is due to 

the curvature of each platinum particles, which could cause the equilibrium 

potential deviated from the reported value (the reported value is tested and 

measured from the bulk platinum, whose surface is a flat plane). 

In order to solve this issue, the Gibbs-Thomson equation could be used to physically 

and geometrically describe the amount of the deviation of the equilibrium potential 

on surface of the particles from the bulk material. 

From the Gibbs–Thomson equation [100], the chemical potential of the nano 

platinum particle is inversely proportional to its size: 

 ∆ı = ı&760'($4 − ı5#$% = 4-V3)  (a-1) 

 
Here -  is the surface energy, V3  is the molar volume of the particle, )  is the 

diameter of the particle. ı&760'($4 and ı5#$% are the chemical potential of the nano 

platinum particles and bulk platinum, respectively. 

So the equilibrium potential would decrease with the increasing of particle size: 

 

ΔU = U4/ − U&760'($4 = ∆ıÑ˜ = 4-V3)Ñ˜  (a-2) 

 
where n is the number of electrons involved in the interested electrochemical 

reaction. U4/ and U&760'($4 are the equilibrium potential of bulk platinum and nano 

platinum particles, respectively. Based on the Butler-Volmer equation, the rate of 

reaction 1 is [32]: 

)*+,* = >* ¯exp r− 2˘%˙s exp˚Ñ*41 − )*6˜%˙ –E − U4/* + ΔU/00—¸
− ˘410K/M6&exp r−Ñ*)*˜%˙ 4E − U4/* + ΔU/006s˝ (a-3) 

 
Where the >* stands for the rate constant of reaction 1, the 2  is the PtO-PtO 

interaction energy, ˘ stands for the PtO coverage on the surface of the platinum 

particles. )* is the Butler-Volmer transfer coefficient, E is the electrode potential. 
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R, T, F is the ideal gas constant, electrode temperature, and the Faraday constant, 

respectively. 

Before looking into the reaction 2, we need to consider reaction 3 first. 

The rate of the reaction 3 could be deduced as: 

 

)*+,, = >, max–0, 41 − θ6— ¯exp˚Ñ,41 − ),6˜%˙ –E − U4/, + ΔU/0—¸˝
− 4˛&0N!

˛&0"#$N! 6exp ̊ −Ñ,),˜%˙ –E − U4/, + ΔU/0—¸ 

(a-4) 

 
where the >, is the rate constant of reaction 3, ), is the Butler-Volmer transfer 

coefficient for reaction 3, ˛&0N! is the concentration of the platinum ions in contact 

with the electrode, the ˛&0"#$N!  is its reference concentration. 

As now for the reaction 2, its reaction rate can be deduced as [32]: 

 

)*+,& = >& r˘410K/M6& − ˛&0N!
%& s (a-5) 

 
Here the >& stands for the rate constant of reaction 2, and %& is the equilibrium 

constant which could be deduced from: 

%& = exp &%̃˙ –Ñ,4U4/, − ΔU/06 − Ñ*4U4/* − ΔU/006—' (a-6) 

 
So now we obtained the rate of reactions regarding to the platinum dissolution 

phenomenon, however, the material balance equations are also required to describe 

the platinum dissolution. 

Firstly, the diameter of the particle size could be deduced from the reaction 1 and 

the reaction 3. In both of these reactions, the platinum could be formed and 

precipitated through the reverse reaction of each of them. That is to say the 

molecules of PtO could be transformed back to the platinum atoms on surface of 

the nano particles from the reverse reaction of the reaction 1. At the meantime, the 
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platinum ions could also be reduced to platinum atoms and precipitated on the 

platinum particles from the reverse reaction of reaction 3.  

The size of the platinum particles could thus change with the rates of both 

electrochemical reactions mentioned above, and the relationship could be illustrated 

as: 

 ü)ü+ = −4)*+,* + )*+,,6V3() (a-7) 

 
Here, the V3() is the molar volume of platinum. The assumption of this equation is 

that the platinum is transformed from PtO or precipitated from ions only on surfaces 

of the existing platinum particles, rather than creating new particles. Here are two 

reasons for this assumption: 

 
1. For the pathway of platinum atoms transformed from the molecules of PtO, 

the PtO is originally created from the atoms of platinum on surface of 

platinum particles with the reaction 1 once the potential is favored. Then the 

PtO is covering on surface of the nano platinum particles. So it is reasonable 

to assume the PtO could be reduced back to the surface platinum atoms of 

the nano particles; 

 
2. For the pathway of the precipitation of platinum from the platinum ions, it 

is possible that if we only look inside of the reaction equation, the reverse 

reaction of reaction 3 may have chances to create some new nano platinum 

particles with the agglomeration of produced platinum atoms. However, it 

is not electrochemical favorable. As what has been mentioned from eq. a-1, 

the chemical potential of smaller particles would be higher than the bigger 

particles. That is to say, the smaller ones are less energetically stable than 

the bigger ones. Therefore, the pathway of creating new platinum particles 

from agglomeration of platinum atoms is not energetically favorable, the 

platinum atoms produced from the reverse reaction of reaction 3 is much 

more possible precipitating on the surface of other nano platinum particles, 

and their sizes, get increased as consequence. 
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The coverage of the PtO could be calculated from this equation: 

 ü˘/00ü+ = )*+,* − )*+,&Γ  (a-8) 

 
where the Γ referred to the number of moles of active sites per unit of platinum area. 

It is assumed to be constant and could be tested and calculated from a specific 

charge of 220 μC/cm&  [101] through the electrode cyclic voltammetry test 

regarding to the hydrogen adsorption. In here, the PtO is produced from the reaction 

1 and the reverse reaction of reaction 2. 

The balance for the platinum ions is: 

 ü˛/0N!ü+ = ac4)*+,& + )*+,,6 (a-9) 

 
where a( in here is the specific surface area of the electrode, which stands for the 

area of the platinum particles per volume electrode. 

 

Summary 

 
In this part, we mainly focused on the platinum dissolution based on three involved 

reactions. Generally, the platinum dissolution would be influenced by their sizes, 

interface potential and also the PtO coverage on their surface. The model should 

have its effectiveness on providing a reasonable predictive results on platinum 

dissolution and particle size variation over time if the electrode potential is 

indicated. The particle size variation in here would either cause the change of the 

activation losses of the PEMFC output performance or the ECSA on the electrodes. 

However, in order to further finish and validate this model, we need to be 

acknowledged of the values of some critical parameters. For example, we don’t 

acquire a validated value of the specific surface area (a() on electrode. Missing this 

parameter would lead to an unreliable description on the concentration of the 

platinum ions, and so to the dissolution or regeneration of the platinum atoms on 
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surface of the nano particles. In our future work, we can to do some related tests in 

order to acquire this critical data.   

Moreover, it is rather practical to deduce the specific surface area from the electrode 

platinum loading. The specific area can be calculated with the number of platinum 

particles per volume electrode and their size distribution. A reliable size distribution 

of the platinum particles would be 2-5nm [102]. However, we still need to further 

acknowledge the relationship between the numbers of platinum particles per 

volume electrode with the platinum loading. This issue would be thoroughly 

understood in our future work with more literature reviews. 
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APPENDIX II. 

PLATINUM PRECIPITION MODEL in 

MEMBRANE 

 
The platinum ions dissolved from the surface of the electrode, would tend to diffuse 

into the membrane. In the membrane, the ions would meet the hydrogen crossed 

over from the anode side of the fuel cell. Then it would be reduced to the platinum 

atoms and may precipitate in the membrane. Generally, the precipitation would be 

divided to two stages, the first stage would be the uniform distributed precipitation, 

and the second stage would be the precipitation in the certain area (Xo plane) in 

the membrane [103]. 

 

1. The first stage precipitation 

In this stage of precipitation, the platinum ions dissolved from cathode would 

diffuse into the membrane and be reduced to the platinum atoms by the crossed 

over hydrogen in the membrane: 

 Pt47/6&? + H& → Pt4Y6 + 2H47/6?  (Reaction 4) 

 
The reduced platinum atoms in the membrane are much smaller than the size of the 

water clusters in the membrane, so it is reasonable to assume the diffusion 

coefficient of the reduced platinum atoms ./0 for diffusion in the membrane is the 

same with the diffusion in the bulk water. So the diffusion time of the small reduced 

platinum atoms reducing through the membrane would be: 

 +Z'kk#Y't8 = 134356784& ./0  (a-11) 
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The reduced platinum atoms would be uniformly distributed in the membrane. In 

fact, for a membrane of NafionTM 112, the membrane would have a thickness of 

50μm, with the ./0 = 10KÏcm&sK* , the diffusion time for the platinum atoms 

through the membrane would be 25s. Comparing with the time scale of the 

precipitation of the platinum in the membrane, it is much shorter and could be 

neglected. So it is reasonable to assume that the precipitated platinum atoms would 

have a uniform distribution in the membrane. The uniformly distributed platinum 

atoms would agglomerate in the membrane. According to the Smoluchowski 

equation [104], the concentration of the agglomerated platinum particles in the 

membrane would be: 

 ü˛9/0ü+ = 12 ç >(?(??:9 ˛(/0 ?̨/0 − ˛9/0 ç >(9˛(/0 + <19:*
Õ

(:*  (a-12) 

 
Where the ˛9/0 represents the concentration in the membrane bulk of the platinum 

particles which contain n platinum particles. 1 is the Kronecker delta, < represents 

the flux of platinum atoms. The >(? stands for the aggregation rate constant between 

particles containing i atoms and j atoms: 

 >(? = 4ß4.(/0 + .?/064)(/0 + )?/06 (a-13) 

.(/0 = ./0*/0)9  (a-14) 

Here, the .(/0  and .?/0  stands for the diffusion constant of small particles 

containing i or j platinum atoms, respectively. The r stands for the diameter of the 

platinum particles. 

This aggregation reaction stands for the aggregation of the platinum particles in the 

membrane. Specifically, the aggregation rate of n-atom particles equals to the 

creating rate of aggregation from other particles, and minus the consuming rate due 

to aggregation to other particles. 

 

2. The second stage precipitation 
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The size of the platinum particles in the membrane are thought to be uniformly 

increased in the membrane. This is due to the diffusion time +Z'kk#Y't8  of the 

platinum atoms in the membrane is quite small comparing with the time scale of 

hours of the precipitation, and this could cause a relatively uniform distribution of 

the platinum atoms, which would precipitate on the nano particles. The critical 

diameter of the platinum particles in the membrane is 2.5nm [103]. The reaction of 

the crossover gases in the membrane: the hydrogen oxidation reaction (HOR) and 

the oxygen reduction reaction (ORR) would start to be non-trivial on the surfaces 

of the platinum particles when they are beyond the critical size. This means the 

water would be formed on surface of those “big enough” platinum particles until 

the hydrogen or the oxygen is depleted in the vicinity of the platinum particles.  

This is critical to the platinum precipitation in the membrane because the platinum 

ions diffused from the cathode side couldn’t be transformed to atoms in certain part 

of the membrane, where the hydrogen are consumed completely. The overall 

reaction of the HOR and ORR in the membrane is: 

 

2H& + O& /0→ 2H&O 

 
Two moles of hydrogen would be consumed by one mole of oxygen on surface of 

the platinum particles. So it is fairly reasonable to assume that the platinum particles 

tend to precipitate at the location where the flux of oxygen is half of the flux of the 

hydrogen. [105] This is called the Xo plane, where the platinum particles start to 

precipitate in the membrane of a long term degradation PEMFC. From the Xo plane 

to the cathode side, the hydrogen would be depleted because of the HOR on the 

surface of platinum particles bigger than the critical size (2.5 nm). In this region the 

platinum ions couldn’t be reduced to atoms until they reach the Xo plane, where 

they precipitate. 

The following table lists the parameters for the models of the platinum dissolution 

and precipitation [32][103]. In fact, more critical parameters are still needed for the 

validation use, and also, for the evaluation of the compatibility of the listed 

parameters in the proposed models. 
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TABLE A-1  

PARAMETERS 

Parameter Value Unit >* 1.36e-11 mol cmK& sK* )*,, 0.5  

*/0 21.45 g cmK, M/0 195 g molK* 2 30000 J molK* -/0 2.37e-04 J cmK& -/00 1e-04 J cmK& ˛&0"#$N!  1e-03 mol cmK, 

*/00 14.1 g cmK, M/00 211 g molK* >& 3.2e-24 mol cmK& sK* >, 3.4e-13 mol cmK& sK* Γ 2.18e-09 mol cmK& */0 1.4 Å ./0 1e-05 cm& sK* 
 

Summary 
 
In here, we presented a preliminary model on the platinum precipitation in the 

membrane. In this model, the precipitation could be divided into two stages. The 

first one is a homogeneous stage during which the platinum atoms precipitate 

uniformly in the membrane. In the second stage, the inhomogeneous precipitation 

would mainly take place in the Xo plane after the particle sizes are beyond the 

critical size in the membrane.  

However, this work is only a preliminary model, based on which we need to further 

complete this model in order to quantify the degradation of the membrane due to 

the platinum precipitation. This degradation is mainly caused by the radical attacks 

created on the precipitated platinum particles. The description of radical attacks in 

this model could be further completed by introducing the concentration profile of 

the hydrogen and oxygen crossed over in the membrane into the model. This is 

because the creation rate of the radicals of hydroxyl and hydroperoxyl are related 

to the concentration of the crossover gases in the region of the platinum 
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precipitation. We need to do more work regarding to this in the future with more 

specific literature review on this topic of research. 
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