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Abstract

Reconstructing the 3D shape of objects from multiple images is an important goal in computer
vision and has been extensively studied for both rigid and non-rigid (or deformable) objects.
Structure-from-Motion (SfM) is an algorithm that performs the 3D reconstruction of rigid
objects using the inter-image visual motion from multiple images obtained from a moving
camera. SfM is a very accurate and stable solution. Deformable 3D reconstruction, however,
has been widely studied for monocular images (obtained from a single camera) and still
remains an open research problem. The current methods exploit visual cues such as the
inter-image visual motion and shading in order to formalise a reconstruction algorithm. This
thesis focuses on the use of the inter-image visual motion for solving this problem. Two
types of scenarios exist in the literature: 1) Non-Rigid Structure-from-Motion (NRSfM) and
2) Shape-from-Template (SfT). The goal of NRSfM is to reconstruct multiple shapes of a
deformable object as viewed in multiple images while SfT (also referred to as template-based
reconstruction) uses a single image of a deformed object and its 3D template (a textured 3D
shape of the object in one configuration) to recover the deformed shape of the object.

We propose an NRSfM method to reconstruct the deformable surfaces undergoing iso-
metric deformations (the objects do not stretch or shrink under an isometric deformation)
using Riemannian geometry. This allows NRSfM to be expressed in terms of Partial Differ-
ential Equations (PDE) and to be solved algebraically. We show that the problem has linear
complexity and the reconstruction algorithm has a very low computational cost compared to
existing NRSfM methods. This work motivated us to use differential geometry and Cartan’s
theory of connections to model NRSfM, which led to the possibility of extending the solution
to deformations other than isometry. In fact, this led to a unified theoretical framework for
modelling and solving both NRSfM and SfT for various types of deformations. In addition, it
also makes it possible to have a solution to SfT which does not require an explicit modelling
of deformation. An important point is that most of the NRSfM and SfT methods reconstruct
the thin-shell surface of the object. The reconstruction of the entire volume (the thin-shell
surface and the interior) has not been explored yet. We propose the first SfT method that

reconstructs the entire volume of a deformable object.
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Resumé

La reconstruction 3D d’objets a partir de plusieurs images est un objectif important de la
vision par ordinateur. Elle a été largement étudiée pour les objets rigides et non rigides (ou
déformables). Le Structure-from-Motion (SfM) est un algorithme qui effectue la reconstruc-
tion 3D d’objets rigides en utilisant le mouvement visuel entre plusieurs images obtenues a
I’aide d’une caméra en mouvement. Le SfM est une solution tres précise et stable. La recon-
struction 3D déformable a été largement étudiée pour les images monoculaires (obtenues a
partir d’une seule caméra) mais reste un probleme ouvert. Les méthodes actuelles exploitent
des indices visuels tels que le mouvement visuel inter-image et 'ombrage afin de construire
un algorithme de reconstruction. Cette these se concentre sur 1'utilisation du mouvement
visuel inter-image pour résoudre ce probleme. Deux types de scénarios existent dans la
littérature: 1) le Non-Rigid Structure-from-Motion (NRSfM) et 2) le Shape-from-Template
(SfT). L’objectif du NRSfM est de reconstruire plusieurs formes d’un objet déformable tel
qu’il apparait dans plusieurs images, alors que le SfT (également appelé reconstruction a
partir d’'un modele de référence) utilise une seule image d’un objet déformé et son modele 3D
de référence (une forme 3D texturée de I'objet dans une configuration) pour estimer la forme
déformée de 'objet.

Nous proposons une méthode de NRSfM pour reconstruire les surfaces déformables
soumises a des déformations isométriques (les objets ne s’étirent pas ou ne se contractent
pas sous une déformation isométrique) en utilisant la géométrie riemannienne. Cela per-
met d’exprimer le NRSIfM en termes d’équations aux dérivées partielles et de le résoudre
algébriquement. Nous montrons que le probleme a une complexité linéaire et que ’algorithme
de reconstruction proposé a un cofit de calcul tres bas comparé aux méthodes existantes de
NRSEfM. Ce travail nous a motivé a utiliser la géométrie différentielle et la théorie des con-
nexions de Cartan pour modéliser le NRSfM, ce qui nous a permis d’étendre la solution a
des déformations autres que l'isométrie. En fait, cela a conduit a un cadre théorique unifié
pour modéliser et résoudre le NRSfM et le SfT pour différents types de déformations. Ce
cadre permet également d’avoir une solution au SfT qui ne nécessite pas de modélisation
explicite de la déformation. Un point important est que la plupart des méthodes de NRSfM
et de ST reconstruisent la surface de 'objet (hypothese coque mince). La reconstruction de
I’ensemble d’un volume (la surface et I'intérieur d’un objet) n’avait pas encore été explorée.
Nous proposons la premiere méthode de SfT qui reconstruit le volume complet d’un objet

déformable.
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Chapter

Introduction

1.1 Background

An important task in 3D computer vision is to recover 3D information from 2D images
obtained by the camera. This task is widely termed as 3D reconstruction. Although there
are active image sensors such as the Kinect and Time-of-Flight (ToF') cameras available which
can obtain the depth of the view under consideration, passive 3D reconstruction from images
remains an interesting topic for researchers because the scope of 3D sensors is limited due to
the various constraints of size, cost and accuracy. 3D reconstruction methods rely on various
visual cues from images (such as shading, texture, silhouettes, contours and motion) in order
to find 3D descriptors such as the depth map and local surface orientation (or normals) of
the objects.

The objects found in nature can be roughly classified into rigid or non-rigid (or de-
formable) objects. The 3D reconstruction of rigid objects using motion cues, also known
as Structure-from-Motion (SfM) [Hartley and Zisserman, 2000] (see figure 1.1a), has been
widely studied for the past few decades and there are solutions available which are stable
and accurate. SfM exploits the inter-image visual motion information in order to reconstruct
3D from multiple 2D images taken from different views of a rigid object. Rigidity allows
the inter-image visual motion to be expressed in terms of the rotation and translation of the
camera coordinate frames of the images. However, SfM cannot be extended to deformable
objects as between any two images, the deformable object may undergo a deformation and
therefore, the inter-image visual motion cannot be expressed only in terms of the camera
rotation and translation.

In the past decade, the deformable 3D reconstruction problem has been studied exten-
sively in over a hundred research papers. Some of the methods combine motion with other
visual cues to disambiguate the problem and make it well-posed. For example, [Liu-Yin et al.,
2016; Moreno-Noguer et al., 2009; Varol et al., 2012b] combine shading with motion, [Gal-
lardo et al., 2016, 2017] combine shading and contours with motion and [Choe and Kashyap,

1991; White and Forsyth, 2006] combine shading with texture. However, the existing solu-
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tions are not close to SfM in terms of accuracy and stability. Deformable 3D reconstruction
is an important problem to solve as it has a wide range of applications such as in the medical,
sports, entertainment and advertising domains. Some applications are explored in augmented
reality: 1) [Smith et al., 2016] shows how to study the impact of a soft ball on various sur-
faces. This is useful in designing and testing sports equipments. 2) [Haouchine et al., 2013,
2016; Koo et al., 2017; Maier-Hein et al., 2014] show how to augment the deformations of
the body organs in order to aid minimally invasive medical surgeries. 3) [Collins and Bar-
toli, 2015; Ngo et al., 2015] recover the deformation of the objects in real-time which can be
useful in various industries. For example, they can be used by online shopping companies to
enable the customers to try clothes and accessories virtually. Figure 1.2 shows some of these

applications.

SfM

Images

a) 3D reconstruction of rigid objects

Image 1 Image 2 3D Shape 1l 3D Shape?2 3D Shape N

SIT

Image
Template 9 3D Shape

b) 3D reconstruction of non-rigid objects

Figure 1.1: 3D reconstruction methods. For rigid objects, SfM is a widely used method (Images
taken from [Snavely et al., 2007]). The 3D reconstruction of deformable objects can be performed by
either NRSfM or SfT methods.

This thesis focuses on the monocular deformable 3D reconstruction methods that use
motion as a visual cue in monocular imaging conditions. We now define the problem in detail

and describe our contributions.
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Rughy ball template

Tewture Geometry

Application: Interactive image augmentation
with & virtual 20 deformable model

I 30 position and deformiation of the juice botthe s manped to the milc botile, which & then rendered and biended with a 20 scene In reafiime

a) [Collins et al., 2015] shows an application for real-time SfT. The deformations of an object viewed in a single
image can be transformed to other objects.

b) [Smith et al., 2016] shows an abplication for SFT. The reconstructed deformed ball can be used to study the
impact of the ball on different surfaces. This can be used in sports industry to design and test equipments that

are resistant to ball impact.

¢) [Haouchine et al., 2013] shows an application for SfT in minimally invasive surgery. From the reconstructed
surface, it estimates the deformation in depth and augments the liver (the wireframe) with a tumor (in purple),
heptic vein (in blue) and portal vein (in purple).

d) [Koo et al., 2017] shows an application for SfT in minimally invasive surgery. It deforms a given model of liver
and aligns it with the image obtained from laparoscopic camera. It uses additional cues of shading and contour
for alignment. The tumor and vein are shown in green and blue respectively.

Figure 1.2: Some applications of the deformable 3D reconstruction methods.
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1.2 3D Reconstruction of Deformable Objects

As mentioned earlier, the 3D reconstruction of rigid objects by SfM cannot be directly ex-
tended to deformable objects. As these objects may undergo deformations, the inter-image
visual motion (strictly induced by the change in camera coordinate frame in the case of SfM)
is now dependent on both camera motion and object deformation. Exploiting this visual
motion (coupled with deformations) becomes a challenging task as the constraints are weaker
in this case.

The goal of this thesis is to propose a general framework for modelling and solving de-
formable 3D reconstruction. At this point, we classify deformable objects as thin-shell (ob-
jects with an infinitesimal thickness, such as a piece of cloth, paper, etc.) and volumetric
objects (objects with non-negligible thickness such as a sponge, cushion, etc.). Volumetric
objects can be considered as thin-shell objects in cases they are represented by their outer-
shells only but at the price of losing inner constraints. We now discuss the two categories of

deformable 3D reconstruction problems that arise in computer vision.

1.2.1 Shape-from-Template

SIT (see figure 1.1b) is the generic name for a set of methods which perform the monocular
3D reconstruction of deformable objects using a 3D template of the object. It is also called
template-based (or model-based) reconstruction in the literature. The inputs of SfT are a
single image and the object’s template, and its output is the object’s deformed shape. The
template (sometimes also called model) is a very strong object-specific prior as it includes a
reference shape, a texture-map and a deformation model. Some ST problems, such as the
reconstruction of isometric thin-shell objects, have been extensively studied. Some of these
methods are [Bartoli et al., 2015; Brunet et al., 2014; Chhatkuli et al., 2016b; Haouchine
et al., 2014; Moreno-Noguer et al., 2009; Oswald et al., 2012; Perriollat et al., 2011; Salzmann
and Fua, 2011; Vicente and Agapito., 2013]. SfT methods with real-time implementation
are [Collins and Bartoli, 2015; Ngo et al., 2016].

Most of the SfT' methods use the thin-shell isometric deformation model which implies
that the geodesic distances between any two points on the object do not change due to the
deformation. Isometry can be seen as local rigidity. Isometry is a very good approximation as
most of the objects in nature undergo near-isometric deformations. Mathematically, it is also
relatively easier to model isometry than other deformations. Our work focuses on isometry
but we do explore other deformations as well and present a general modelling framework

which makes it easier (and practical) to express various deformations.

1.2.2 Non-Rigid Structure-from-Motion

NRSIM (see figure 1.1b) is the generic name for a set of methods which perform the monocular
3D reconstruction of deformable objects from multiple images only. It is also called template-

free (or model-free) reconstruction in the literature. The inputs to NRSfM are multiple images
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and its output is the object’s 3D shape for every image. In NRSfM, the rigidity constraint of
SfM is replaced by constraints on the object’s shape and deformation model. NRSfM methods
were proposed initially with the low-rank shape basis [Bregler et al., 2000], the trajectory
basis [Akhter et al., 2009], isometry [Chhatkuli et al., 2014; Varol et al., 2009; Vicente and
Agapito, 2012], inextensibility [Chhatkuli et al.; 2016a] and elasticity [Agudo et al., 2016].
Existing methods suffer from one or several limitations amongst solution ambiguities, low
accuracy, ill-posedness, inability to handle missing data and high computation cost. NRSfM
thus still exists as an open research problem.

Based on the modelling framework, existing NRSfM methods can be divided into two
main categories: 1) methods with statistics-based modelling and 2) methods with physics-
based modelling. physics-based modelling is the most recent. Most of the NRSfM methods
use a statistics-based modelling. While statistics-based modelling does not take the object’s

nature into account, physics-based modelling is usually limited to thin-shell objects only.

1.2.3 Current Limitations

With this discussion, we want to emphasize the following limitations of existing SfT and
NRSfM methods:

1) Methods with physics-based modelling are capable of handling more complex defor-
mations than methods with statistics-based modelling and they proved to be very successful
in SfT. However, physics-based modelling is seldom used in NRSfM.

2) Most of the existing thin-shell NRSfM methods work with the orthographic projection
model which suffers from flip ambiguities. Therefore, the focus of the new techniques should
be towards solving NRSfM using perspective projection as these solutions are more accurate.

3) Most of the methods deal with isometry or near-isometry which is relatively easier to
model. Other deformations have been less explored.

4) Volumetric SfT has not been explored yet. There are some methods that recover the
closed thin-shell of the object but a complete 3D reconstruction of a deformable object has
not been achieved yet.

Now we discuss our contributions to SfT and NRSfM in detail.

1.3 Contributions

This thesis has three main contributions. Our first contribution is about solving NRSfM with
the use of Riemannian geometry. This is a local formulation which means that the points
on a surface can be reconstructed independently. The particles on an object are attached to
each other and therefore the force causing deformation acts globally. However, the impact
of the force is not necessarily uniform throughout the object which makes it interesting to
study the deformations locally. This local formulation using Riemannian Geometry allows
NRSfM to be expressed in terms of polynomial expressions whose variables are independent

of the number of images under consideration. Our second contribution is about proposing a
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modelling framework for NRSfM and ST (using differential geometry) which is general and
makes it convenient to handle various kinds of deformations. These solutions are obtained
in terms of the differential or local quantities expressed at a surface, as a set of Partial
Differential Equations (PDE) that hold at each point on the surface. In order to solve the
PDE, we convert them to algebraic expressions by replacing the differentials in the PDE with
algebraic variables. Given enough constraints, these algebraic equations yield a local solution.
This solution can be obtained independently for each point. However, it may not always be
possible to find such a solution. We discuss such conditions. The third contribution is a
solution to SfT for volumetric objects.

To sum up, this thesis contributes in finding an answer to the following questions:

1) Is it possible to the extend the differential physics-based modelling of SfT [Bartoli
et al., 2015] for isometric deformations to NRSfM? Can we solve NRSfM locally from a
PDE formulation?

2) Is it possible to the extend the local formulation of NRSfM to deformations other than
isometry?

3) Can we reconstruct the entire volume of a deformable object in a model-based scenario?

A fundamental assumption. Our framework relates the 3D shapes using the inter-image
warps. These are the functions that register one image to another. Registering wide-baseline
images can be accomplished by Scale Invariant Feature Transform (SIFT) [Lowe, 2004] which
is a sparse-registration method. Dense or semi-dense registration can be achieved using
SIFT Flow [Liu et al., 2011] and DeepFlow [Weinzaepfel et al., 2013] respectively. In order
to register short-baseline images (for example, images from a video sequence), optical flow
methods can be used. It usually gives a dense-registration. Some of the efficient methods
are [Brox et al., 2004; Garg et al., 2013b; Sundaram et al.; 2010]. These methods yield a
dense registration. The first and higher order derivatives of the registration can be computed
from the keypoint correspondences (obtained from the previous methods) using [Bookstein,
1989; Pizarro et al., 2016]. We make the assumption that in SfT and in NRSfM, the image
registration can be established by using existing methods. Nevertheless, we only need to find
these warps locally at each point. We use the first and the second-order derivatives of the
warps in the first two contributions while in the third we only need the first order derivatives.
The second-order derivatives are usually noisy, we correct them using Schwarps [Pizarro et al.,

2016]. We show that the use of Schwarps is theoretically justified as well.

Contribution 1: Non-Rigid Structure-from-Motion using Riemannian geometry.
We present a solution to NRSfM using the thin-shell isometric deformation model, that we
hereinafter denote as Iso-NRSfM. We model Iso-NRSfM using concepts from Riemannian
geometry.

We model the object’s 3D shape for each image as a Riemannian manifold and deforma-
tions as isometric mappings. We parametrise each manifold by embedding the corresponding

retinal plane. This allows us to reason on advanced surface properties, namely the metric
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tensor and the Christoffel Symbols (CS), directly in retinal coordinates, and in relationship to
the warps. These metric properties allow us to express the differential properties of surfaces,
such as length, which are to be preserved under isometric deformations.

We formulate Iso-NRSfM locally with five variables which are functions of the first and
the second-order derivatives of the inverse-depth of the surface undergoing deformation. We
write the metric tensor and the CS in terms of these variables. We prove two new theorems
showing that for isometric deformations, the metric tensor and the CS may be transferred
between views using only the warps. This limits the number of variables to only five for any
number N of views.

First, we solved Iso-NRSfM in [Parashar et al., 2016] (see figure 1.3) by assuming that
the surface is planar in the infinitesimal neighbourhood of each point. This is the assumption
of Infinitesimal Planarity (IP) which lets us get rid of the second-order derivatives in the
expression of the CS. This limits the variables to only two. These variables correspond to
the ratio of first-order derivatives of the inverse-depth function to the inverse-depth function.
We obtained a system of two cubics in two variables that involve the first and the second-order
derivatives of the warps. This system holds at each point on the surface.

Then, we extended the solution to Iso-NRSfM without the assumption of [P. Our solution
is obtained in two steps. 1) We solve for the first-order derivatives assuming that the second-
order derivatives are known. This is initialised using the solution with IP. 2) We solve for
the second-order derivatives with the first-order derivatives obtained in the previous step.
We obtain a system of 4N — 4 linear equations in three variables which is solved using Linear
Least Squares (LLS). We iterate these two steps until the first-order derivatives converge.
The solution gives an estimate of the metric tensor field, and thus of the surface’s normal
field, in all views. The shape is finally recovered by integrating the normal field for each

view. The proposed method has the following features. 1) It has a linear complexity in
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Figure 1.3: Comparison of Iso-NRSfM (with and without IP) with [Chhatkuli et al., 2016a].

the number of views and number of points. 2) It uses a well-posed point-wise solution from
N > 3 views, thus covering the minimum data case. 3) It naturally handles missing data

created by occlusions. 4) It substantially outperforms existing methods in terms of speed
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and accuracy, as we experimentally verified using synthetic and real datasets.

Contribution 2: a unified framework for the 3D reconstruction of deformable
objects using Cartan’s connections. Unlike SfM which is modelled using algebraic pro-
jective geometry, there is no consensus on the modelling framework of NRSfM yet. We
present a modelling framework for NRSfM using the differential geometry of surfaces. In
mathematics, differential geometry is the basis to study the properties of curves and surfaces.
Recently, [Fabbri and Kimia, 2016] proposed to solve SfM using the differential geometry of
3D curves. [Fabbri, 2010] proposed pose estimation and camera calibration using differential
geometry of 3D curves. However, it is not widely used in modelling surfaces for deformable
3D reconstruction. Recently, [Bartoli et al., 2015] proposed solutions to ST using differential
geometry. These solutions are analytic and therefore, they are very fast and need not be
initialised. The success of our first contribution where we solve NRSfM with Riemannian
geometry (which is a special case of differential geometry) is a motivation for us to use dif-
ferential geometry to propose a general framework to model NRSfM and SfT. Riemannian
geometry is limited to isometric (geodesic-distances preserving) and conformal (angles pre-
serving) deformations whereas differential geometry is more general and can model a wider
range of deformations.

This framework can therefore handle a wide variety of deformation models (including
isometry) in a convenient way and therefore is a practical approach towards NRSfM. We
model surfaces as smooth manifolds [Lee, 2003] and extract differential properties of the
surfaces using differential geometry. Our work is essentially based on Cartan’s theory of
connections [Cartan, 1923, 1924, 1926] devised using the differential geometry of smooth
manifolds and the theory of moving frames [Cartan, 1937]. The connections were at first
formalised as the entities that enable movement along the curves as a parallel transport i.e.,
the orientation of a vector on the curve or surface does not change when it moves in a closed
curve. This is known as a Levi-Civita connection [Lee, 1997]. Cartan generalised the idea
of connections as the entities that transport tangent plane vectors along the curve. Cartan’s
connections are not limited to parallel transport along the curves and therefore, they are
more generic. In this thesis, we always work with Cartan’s connections.

A moving frame is defined as a local frame of reference defined at a point on a surface (or a
manifold). The differential properties of the surfaces such as lengths, angles and areas can be
described using the moving frames. The connections are derived using the moving frame and
its derivatives. They are related to the first, second and the third fundamental forms of the
surfaces [O'Neill, 2006]. Cartan proved that connections are necessary and sufficient to study
the properties of 3D surfaces. From these properties, we derive differential constraints on the
surfaces that lead to a solution to NRSfM and SfT. We solve these constraints algebraically.

We use moving frames and connections to design a modelling framework for the study of
thin-shell deformable objects. Our framework has the following characteristics.

1) Our framework relies on the Infinitesimal Linearity (IL) assumption [Kock, 2010].

Under this assumption, any smooth deformation may be considered to be linear in the in-
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finitesimal neighbourhood of a point while globally it could still be non-linear. This allows
us to express the moving frame and the connections in terms of two variables (the first-order
derivatives of the inverse-depth) only.

2) We prove a theorem stating that connections on any two surfaces can be related to
each other for any kind of smooth (IL) deformation they undergo. This allows the number
of variables to be only two for any number of views used in the reconstruction.

3) We express the physical properties of surfaces (such as lengths, angles and areas) locally
in terms of the moving frames. We express deformation constraints as the physical properties
they preserve. For example, isometry preserves both lengths and angles. We express isometric
deformation constraints as the preservation of lengths and angles defined using moving frames.
We express constraints for other deformations such as conformal (angles made by any three
points on a surface do not change under deformation) and equiareal (areas are preserved under
deformations). We propose a deformation that is a combination of anisotropic scaling (along
surfaces’ frame-basis) and a conformal deformation. We call it the skewless deformation. We
explain it further in chapter 5.

4) These physical properties are related by the image warps across surfaces.

This theoretical framework leads to local solutions to deformable 3D reconstruction in
terms of PDE which we solve algebraically (see figure 1.4 for more details). This frame-
work represents surfaces analytically. Therefore, it is very easy to change surface definition

which makes it very easy for this framework to adapt for different representations. By ex-
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Figure 1.4: A broad overview of the problem. Moving frames and connections are the generalisa-
tion of the concepts of metric tensors and CS from Riemannian geometry. We use them to express
differential constraints in terms of PDE. The manipulation of these constraints with or without the
1L assumption leads to reconstruction equations that are also PDE. IL is not necessary to find these
equations, however we use it to simplify the problem. These reconstruction equations may or may
not have an algebraic solution. Here, an algebraic solution implies that the equations can be solved
locally at each point. In this thesis, we solve the equations with possible algebraic (or local) solution.

pressing the deformation constraints in terms of the moving frame and using our theorem
of transfer of connections, we present solutions to deformable 3D reconstruction for various
deformations like isometry, conformity, skewless or equiareal. The solution to NRSfM under

a) isometric/conformal deformations is given by solving a system of two cubics, b) skewless
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deformations is given by solving a system of two septics (exploiting the first and second-order
derivatives of the warps) in terms of two variables only.

We show that Iso-NRSfM (our first contribution) can be obtained using this framework as
well. In this solution, we chose isometry to be solved as conformity as it makes the problem
simpler to solve.

Our framework is directly extended to SfT. The existing solutions to isometric and
conformal SfT [Bartoli et al., 2015] can be derived using this framework. We obtain an SfT
solution to a) isometric/conformal and equiareal deformation as two linear expressions, b)
skewless deformation as a system of two cubics in terms of two variables. These expressions
exploit the first and the second-order derivatives of the warps.

Due to our theorem of transfer of connections across smooth surfaces using the inter-image
warps, we propose a solution to ST which is independent of the deformation constraints
and only imposes deformation to be locally smooth. ST has previously been solved under
the assumption of smooth deformation in [Bartoli and Ozgiir, 2016]. We compare it with
our results of SfT. [Salzmann et al., 2007] discussed that such a solution is not well-posed,
however, we show that our solution to smooth deformations is well-posed. We discuss the
reasons which make it well-posed.

Summing up, the proposed framework has the following features. 1) It is a unified mod-
elling framework for NRSfM (and SfT) using differential geometry assuming IL, which can
be extended to various deformations. 2) It brings the solutions to isometric/conformal and
skewless NRSfM as a set of two cubic and septic polynomials respectively in terms of two
variables for any number of views. 3) It brings the solutions to isometric/conformal and
equiareal SfT using a linear system of two equations in two variables only. 4) It brings the
solution to skewless SfT by solving a cubic system of two equations in two variables only. 5)
It also brings a solution to ST for smooth deformations which is also a system of two linear

equations in two variables only.

Contribution 3: Shape-from-Template for volumetric objects. As discussed earlier,
existing ST methods are thin-shell SfT essentially, as they are designed for thin objects such
as a piece of paper. However, while thin-shell ST handles thicker objects such as the woggle
of figure 1.5 or a foam ball, it does not fully exploit the strong constraints induced by the
object’s non-empty interior.

We bring SfT one step further by introducing volumetric SfT, defined as an SfT method
which uses a deformation constraint on the object’s outer surface and interior. An example
is shown in figure 1.5. Volumetric SfT reconstructs the object’s interior deformation, which
is not reconstructed by thin-shell SfT', and reconstructs the object’s outer surface more accu-
rately than thin-shell SfT thanks to the stronger deformation constraint it uses. Volumetric
SfT is challenging as only the front part of the object’s surface is visible in the image: the
object’s back surface and interior have to be inferred with no direct visual observations.

It is important to note that strictly speaking, isometry leads to rigidity in volumes. Only

rigid volumetric objects can preserve geodesic-distances while undergoing deformation. We
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Template Input image Ground truth Proposed volumetric SfT
Front Front
Thin-shell SfT [Bartoli et al., 2012] Thin-Shell SfT [Ostlund et al., 2012]

Figure 1.5: Volumetric SfT versus thin-shell S{T. Existing methods are thin-shell SfT. They use
deformation constraints on the object’s surface. For instance, [Bartoli et al., 2012] uses isometric
constraints on the object’s visible (front) surface and reconstructs the object partially, while [Ostlund
et al., 2012] uses isometric constraints on the object’s whole closed outer surface and reconstructs
it entirely. Volumetric SfT uses deformation constraints on the object’s surface and interior. This
greatly improves reconstruction accuracy and facilitates reconstruction of the object’s interior. In this
example, the thin-shell ST methods [Bartoli et al., 2012; Ostlund et al., 2012] reach a 3D error of
20 mm and 13 mm respectively on the visible surface, while the proposed volumetric SfT method
reaches a 3D error of 7 mm. It reconstructs the non-visible (back) surface, for which no visual data is
available, with a 3D error of 17 mm.

propose to instantiate volumetric SfT using the As-Rigid-As-Possible (ARAP) deformation
model (a relaxation of isometry), which has been used extremely successfully in Computer
Graphics [Sorkine and Alexa., 2007; Zhang et al., 2010]. The ARAP model maximises local
rigidity while penalising stretching, sheering and compression. More specifically, ARAP has
been widely used to perform mesh editing of animated characters [Zhou et al., 2005; Zollhofer
et al., 2012] because the resulting deformations locally preserve the object’s structure.
Contrary to thin-shell ST, volumetric SfT is largely unexplored. Recently, [[nnmann
et al., 2016] proposed a method that reconstructs the closed thin-shell surface of the de-
formable object in real-time. This method is named “VolumeDeform” however it does not
reconstruct the interior of the object. The closest method to volumetric ST is perhaps [Vi-
cente and Agapito., 2013], where SfT has been combined with silhouette-based reconstruction.
However this method requires stronger image cues, including silhouette and point correspon-
dences, and recovers two-way ambiguous shape solutions. In contrast, we solve volumetric
ST without restricting the topology of the object and using the perspective camera. By using
ARAP, our method preserves the object’s interior structure while jointly reconstructing the
deformation of the object’s full outer surface and interior, as illustrated in figure 1.6. ARAP
volumetric SfT involves solving a non-convex constrained variational optimisation problem.
We discretise the object’s volume and relax the constraints to convert the variational problem
into an unconstrained non-linear least-squares optimisation problem. This problem can then

be solved with standard numerical solvers such as Levenberg-Marquardt. We propose two
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Figure 1.6: As opposed to thin-shell SfT, volumetric SfT reconstructs the object’s interior deforma-
tion. In this example using the data from figure 1.5, a virtual cylinder is placed inside the woggle’s
template. It is then deformed using the deformation reconstructed by volumetric S{T to aid visual-
ization of the object’s reconstructed interior deformation. The second deformation is the one shown
in figure 1.5.

initialisation methods. These methods use isometric thin-shell ST and propagate the result
through the object’s volume.

The proposed contribution has the following features. 1) We show that isometry in
volumes is essentially a local rigidity or inextensibility constraint. 2) We solve volumetric
ST in two steps: initialisation and refinement. 3) We propose two methods for initialisation.
4) We perform refinement in two ways: minimising L1 and L2 norms. 5) Experimental
results on synthetic and real data show that volumetric SfT improves accuracy to a large

extent compared to state-of-the-art thin-shell SfT methods.

Thesis layout. We have divided this thesis into 7 chapters. We discuss the state of the
art in chapter 2, mathematical preliminaries in chapter 3. Chapters 4, 5 and 6 give our
first, second and third contributions. Chapter 7 presents our conclusions and perspectives

for future work.
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Chapter

Related Work

In this chapter we discuss the existing works on SfT" and NRSfM that use motion as a visible
cue in two sections. We sub-categorise these methods based on the constraints they use.
Most of these methods are designed for thin-shell objects but we also discuss the works that

are related to volumetric objects.

2.1 Shape-from-Template

The SfT methods were introduced much later than NRSfM but they evolved quickly. Now
there are stable and real-time SfT methods [Collins and Bartoli, 2015; Ngo et al., 2016].
In general, SfT uses a 3D template of a thin-shell object. This is a very strong prior and
makes ST a better-posed problem than NRSfM. We classify current ST methods into two
categories: initialisation and refinement methods. The initialisation methods are the ones
which achieve a fast solution to ST using deformation constraints. They do not employ
a heavy non-convex optimisation to minimise a cost which consists of a set of constraints
such as deformation, smoothness or reprojection which is the case with refinement methods.
Refinement methods are computationally expensive but more accurate. However, they need
to be initialised. The performance of these methods depends on the accuracy of initialisation.
A good initialisation can significantly reduce their computation time. We recall that the
current SfT solutions are for thin-shell objects only, SfT for volumetric objects has not been

proposed however, we discuss some of the works that use non thin-shell models.

Most of the SfT methods exploit physics-based modelling. Most of them use isometry
as a physical prior but there are some solutions that use elasticity [Haouchine et al.; 2014;
Malti et al., 2013], the particle model [Ozgiir and Bartoli, 2016] or smoothness [Bartoli and
Ozgiir, 2016]. We organise these two categories of initialisation and refinement into methods
that employ isometric and non-isometric constraints. We now discuss these two categories of

methods.
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2.1.1 Thin-Shell Initialisation Methods
2.1.1.1 Isometric Constraints

Most of the initialisation methods use isometry as a deformation prior. Isometry is a physi-
cal prior on deformation which can be seen as local rigidity. Isometry preserves the geodesic
distances between points on a surface undergoing deformations. Therefore stretching or
shrinking of the surfaces is not allowed. Inextensibility is a relaxation of isometry. It means
that the Euclidean distances between the neighbouring points on the deformed surfaces are
always lower than or equal to the corresponding geodesic distances on the original surface.

Figure 5.1 shows two surfaces S7 and So related by a deformation. The isometric and inex-
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Figure 2.1: A surface S; transforms to surface So due to a deformation. The points (Py, P2) on Sy
transform to (Q1,Q2) on Ss.

tensibility constraints on the points (P, P;) on S7 and (Q1,Q2) on Sy in terms of distances

between the points can be written as

Q2 — Qillg = | P2 — Pillg isometry constraint 2.1)
|Q2 — Qill2 < ||P> — Pi||g inextensibility constraint '

where ||.||2 represents the Euclidean distance and ||.||; represents the geodesic distance be-
tween two points on a surface. Therefore, we can see that intextensibility is a relaxed form
of isometry. However, expressing geodesics on an arbitrary surface is not easy. Therefore,
most of the methods approximate the geodesics with euclidean distances by assuming that
the points are very close to each other. For example, the geodesic of (Q1,Q2) on S2 can be
written as the Euclidean distance between them given that Q2 is close enough to Q1. The
sense of closeness or neighbourhood of these points are defined by the methods. Inextensibil-
ity needs to be combined with maximum depth in order to prevent the reconstructed surface
from shrinking. This is called as Maximum Depth Heuristics (MDH).

We now discuss the initialisation methods that use inextensibilty and isometry constraints

in two sections.

2.1.1.2 Inextensibility Constraints

[Perriollat et al., 2011] was the first method to model isometry using the inextensibility
constraint (2.1). It is based on the MDH. It finds a solution to SfT by maximising depth
heuristically while imposing inextensibility constraints. Figure 2.2 shows two surfaces related
with an isometric mapping. Consider 1 at a distance p; from the camera. Assuming that

@2 is a neighbouring point of ()1, it can be parametrised with the angle a9 between their
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Figure 2.2: A surface S; transforms to surface Sy due to an isometric deformation. The points
(P, Py) on S; transform to (Q1, Q2) on Sa. The sightlines of the two points (Q1, Q2) from the camera
C' pass through (g1, ¢2) on the image plane.

sightlines from the camera C. Therefore, we can write

[ pa cos (a2)
Qi=10], Q2= |ugsin(a)| . (2.2)
0

Using this parametrisation of the points, the inextensibility constraint in equation (2.1) gives

the upper bound of u; as
di2

~ sinags’

(2.3)

where dy9 is the geodesic distance between the 3D points P; and P, in the template. This is
the upper bound on the depth of each point. It is chosen to be the minimum upper bound

of all the neighbouring points such that the inextensibility constraint (2.1) is satisfied.

[Salzmann and Fua, 2011] made an improvement by modelling this problem as an Second-
order Cone Program (SOCP) which can be globally solved using convex optimization. The
method parametrises 3D points as the back-projection of 2D image points. Therefore any

point @); can be expressed as

|4
Qi =z L] (2.4)

where z; is the depth at the i*" point and ¢; is the normalized image point. The idea is to
maximise the sum of all the depths z; such that the inextensibility constraint (2.1) is satisfied.
This method uses a learned space of deformations using linear local models for small patches.
This limits the applicability of this method to surfaces whose linear local models are known.
However, it shows good performance when there is enough perspective in the images. [Brunet
et al., 2014] proposed an initialization method based on inextensibility constraints solved

using MDH. Tt used a parametric representation of surfaces using cubic B-splines [Dierckx,
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1993] which reduces the dimensionality of the problem and provides a solution faster.

[Ngo et al., 2016] proposed a modified approach, where the method uses a laplacian
smoothness prior along with inextensibility constraints. The laplacian of the template is
calculated which is assumed to be preserved under the deformation. The laplacian is linearly
parametrised and therefore, the problem can be solved using LLS. It is used as an initialisation
method to the real-time solution to SfT proposed in [Ngo et al., 2015].

The above-mentioned methods use inextensibility constraints which is a relaxation on
isometry and therefore, it is not a strict physical constraint. A more accurate representation

of deformation constraints is possible by using differential modelling which we discuss next.

2.1.1.3 First-Order Differential Isometric Constraints

Recently, [Bartoli et al., 2015] proposed a local analytical solution to SfT using a warp and
first-order differential isometric constraints. It shows that SfT is a well-posed problem for
isometric deformations. It expresses the constraints in terms of first-order PDE and finds an
algebraic solution to it. Since the method is analytical, it is very fast. However, it suffers with
instabilities under near-affine conditions. [Chhatkuli et al., 2016b] proposed an improvement
on these solutions to find an analytical stable solution to depth using the gradient of the
depths which were otherwise discarded in [Bartoli et al., 2015].

The success of these SfT' methods inspires us to extend the physics-based differential
modelling of deformation to NRSfM as well. We use differential geometry to formulate the
NRSfM and ST problems in terms of PDE and we find algebraic solution to them.

2.1.1.4 Non-Isometric Constraints

[Bartoli and Ozgiir, 2016] proposed to solve ST by using only smoothness as a deformation
prior. The solution is unique and obtained by solving an LLS problem. It finds the solution
to SfT using reprojection constraints and a smoothness constraint for a fixed scale. The
problem with this method is that smoothness is a very weak constraint which can make this
method unstable.

[Bartoli et al., 2015] also proposed an analytical solution to conformal SfT. This solution
was also formulated using PDE and solved algebraically. Even though this method suffers
form instabilities, it usually performs better or as well as isometric SfT [Bartoli et al., 2015].
Therefore, differential modelling proves to be a good tool for non-isometric deformations as

well.

2.1.2 Thin-Shell Refinement Methods

These methods formulate global deformation constraints and solve them by using a non-
convex optimisation. Therefore, these methods need to be initialised. The initialisation
methods discussed in the previous section can be used to initialise these methods. In fact,
initialisation methods should always be combined with refinement methods in order to get

the best possible reconstruction. The accuracy of initialisation methods makes the refinement
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significantly faster. [Chhatkuli et al., 2016b] showed results by initialising [Brunet et al., 2014]
with their result. They achieved an almost real-time reconstruction. [Collins and Bartoli,
2015] made an improvement on this and achieved a real-time reconstruction. We now discuss
the refinement methods that use isometric and non-isometric constraints in the next two

sections.

2.1.2.1 Isometric Constraints

[Brunet et al., 2014] proposed the first solution to SfT which optimises a statistically opti-
mal cost. The cost is composed of three errors: 3D back-projection, differential isometric
constraints and smoothness. The 3D back-projection error (Eyeprojection) accounts for the
difference when the 3D points of the deformed shape project back to the corresponding in-
put image points. The differential isometric constraint error (Ejsometry) forces that isometry
holds at infinitesimal level. It ensures that the deformed shape is isometric. The smoothness
error (Egmootn) forces the solution to be smooth. This problem is non-convex and relies on
iterative local optimization such as Levenberg-Marquardt which requires to be initialised and

has a high computation time. The cost is written as

Cost = Ereprajection + lisometryEisometry + lsmoothEsmooth7 (25)

where the two parameters l;sometry and lsmootn are weights to the isometric and smoothness
constraints and need to be tuned. We use a similar cost in order to find a solution to

volumetric S{T.

[Yu et al., 2015] introduced a temporal smoothness constraint in addition to the above

mentioned constraints in order to improve the refinement.

2.1.2.2 Non-Isometric Constraints

[Maltiet al., 2011; Ngo et al.; 2015] model deformation as conformal and use the pixel intensity
error instead of the reprojection error. [Ngo et al., 2015] is initialised with [Ngo et al., 2016]
and handles occlusions and poorly textured surfaces.

[Ozgiir and Bartoli, 2016] proposed a solution to SfT by expressing the object as a set of
particles where deformation acts as a set of forces on it. It uses deformation and reprojection
constraints and finds a solution by evolving particles to achieve a global equilibrium due to

the action of various forces (including gravity). It uses boundary points to fix the solution.

[Haouchine et al., 2014; Malti et al., 2013] proposed a solution to SfT for extensible
surfaces by modelling deformation with elasticity. The idea is to minimise the stretching

energy such that the reprojection constraint and boundary points are satisfied.

ST methods using non-isometric constraints are mostly solved using non-convex optimi-

sation.
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2.1.3 Shape-from-Template for Volumetric Objects

Volumetric objects have non-zero thickness. SfT methods using elasticity [Haouchine et al.,
2014; Malti et al., 2013] require the surface model to include thickness, which must however be
‘small” so that extension along normal direction may be neglected. In continuum mechanics,
this means that the thickness is at least ten times smaller than the object’s largest dimension.
Therefore, these methods are categorised as thin-shell methods. They require one to provide
the Young modulus of the object’s material and, more importantly, boundary conditions
expressed as a set of known 3D point coordinates, which may restrict their applicability.

A related goal was pursued in [Vicente and Agapito., 2013] where a silhouette-based
method was combined with SfT. The template is also reconstructed from a reference image
using a silhouette-based method inspired from [Oswald et al., 2012]. This method recon-
structs objects that have a plane of symmetry parallel to the image plane and does not infer
concavities, which is also a limitation of most silhouette-based methods [Oswald et al., 2012;
Prasad et al., 2006]. The template is then deformed using a data term based on silhouette,
area and orthographic reprojection constraints. The deformation model extends thin-shell
isometry by placing virtual nodes in the object’s interior, with the objective of preserving the

object’s volume.

2.1.4 Relationship to our Work

In chapter 4, we propose a modelling framework for SfT using differential geometry. This
framework is coherent with methods based on differential modelling [Bartoli et al., 2015] and
is general, therefore, other deformation models can be used. We also propose a solution to
SfT assuming that the deformation is smooth. This means that Sf'T can be solved analytically
for any kind of deformation without explicitly modelling the deformations.

In chapter 5, we propose volumetric SfT which, in contrast to thin-shell SfT, recovers the
deformation of the object’s outer surface and interior. It formulates the deformation globally

in terms of a cost function and minimises it using non-convex optimisation.
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2.2 Non-Rigid Structure-from-Motion

The first solution to NRSfM for thin-shell objects was proposed in [Bregler et al., 2000] which
modelled deformation using a low-rank shape-basis. It assumes that the shape of an object
can be represented as a linear combination of a low-dimensional shape-basis. We discuss
the two categories of NRSfM methods based on the modelling framework: statistics-based

modelling and physics-based modelling.

2.2.1 Methods with Statistics-based Models

Starting from the work of [Bregler et al.; 2000], the low-rank shape-basis has been the most
commonly used shape prior in NRSfM. It is a statistical prior on a set of 3D point cor-
respondences expressed in terms of point correspondences in images that forces the matrix
containing these correspondences to have a fixed low-rank. This matrix can be further de-
composed into a shape-basis and their weights. Inspired from this method, [Akhter et al.,
2009] proposed NRSfM which modelled deformation as a set of trajectory basis. We discuss

statistics-based methods under these two categories.

2.2.1.1 Low-Rank Shape-Basis

For N images, the image observation matrix consisting of the P matched point correspon-

dences across the images is written as

[l ub)]
ol . ob
W = e (2.6)
W ul)
U

J
where (u], v]

) represents the image coordinates of the i point on the j** image. Any shape
can be written as a linear combinations of the K shape-basis B;. Therefore the shape S? of

the i*" image can be written as
K
St =Y "liBi, (2.7)
t=1

where each shape-basis By is 3 x P matrix and [} is the set of weights that decide the scale.
Projecting these shape-basis on images under a scaled orthographic projection, we can write

the observation matrix as

ul ub
vl Lo b HRY ... ILR'| | B
W=1: . tl=1 : "~ D | = @B, (2.8)
u ol VRN .. IXRN| | By
A
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where R’ consists of the first two rows of the camera projection matrix. The goal is to
decompose W into two matrices ) and B which contain the information of the scale and
the set of shape-basis respectively. Once ) and B are found any shape can be written using
equation (2.7). @ can be further decomposed in order to find the pose.

[Bregler et al., 2000] used Singular Value Decomposition (SVD) to decompose W into @
and B by fixing K as a low positive integer. ) and B are called the coefficient matrix and
shape-basis matrix respectively. This problem is non-convex and suffers from ambiguities
in the solution to the shape-basis. [Del Bue et al., 2004] proposed a non-linear refinement
to improve the solution. However in order to deal with these ambiguities, different kinds of
priors were proposed by various methods:

1) [Del Bue, 2008] proposed to use shape-basis priors to constrain the B matrix. The
idea is to estimate the shape-basis for some known 3D shapes and use them along with the
unknown shape basis in order to estimate the shapes for all the images. This means that some
of the basis in B are already calculated using few known 3D shapes and W is decomposed in
a way that these known shape bases do not change. Given that the first b elements of B are

known, the shape prior L according to [Del Bue, 2008] is given by

By
L=N|:|=nNB. (2.9)
By

The joint decomposition of W and L into (), N and B improves the conditioning of the
shape. [Tao and Matuszewski, 2013] extended this idea to allow shapes to have non-linear
deformations by allowing L to be non-linear. B is found from a manifold whose embeddings
are learnt from a representative training dataset of the deformable object under consideration.
This is not a traditional NRSfM method (as it heavily relies on training to find B), however
it does highlight the success of manifold learning.

2) [Torresani et al., 2001] solves this problem by adding a shape regulariser term that
imposed spatial smoothness in the observed shape using an iterative optimisation.

3) [Olsen and Bartoli, 2008] solves this problem by optimising the shape-basis using spatial
and temporal smoothness priors.

4) [Bartoli et al., 2008] uses deformation modes and closeness of points in the mean shape
as priors. It solves the ambiguity by using a low-rank coarse-to-fine shape model which
prioritises the deformation modes that give the coarsest deformations.

5) [Fayad et al., 2010] proposed to model the deformations (patch-wise) with quadratic
models where the linear modes allow shearing and stretching, quadratic modes allow bending
and the mixed modes allow the twisting of the surfaces. These modes are optimised for each
(overlapping) patch using the temporal smoothness priors. Then they are stitched together
to obtain a global surface.

5) [Akhter et al., 2009] shows that an ambiguity in the SVD does not necessarily lead to

an ambiguous reconstruction. They introduced a correction matrix that can be used to obtain
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a unique solution. They showed that the camera orthonormality conditions are sufficient to
find the correction matrix. [Dai et al., 2012] proposed a more efficient solution to find this
matrix by minimising the trace of the shape-basis. Trace-minimisation is a tighter constraint
than rank-minimisation (used in [Akhter et al., 2009]). [Garg et al., 2013a] also used trace
minimisation of the correction matrix in order to find the low-rank shapes. They formulated
the problem as a global variational energy minimisation problem. The goal is to minimise
the trace of the shape-basis, reprojection error and the total spatial variation. This method
performs dense reconstruction and yields good results for faces. However, this algorithm is
computationally very expensive.

Most of these methods express shapes as a linear combinations of shape-basis. This forces
the deformations to be linear. Therefore these methods are applicable to simple deformations
such as a talking face. They do not cope up with the larger deformations such as a walking

man or a tree moving due to the wind unless more constraints are provided.

2.2.1.2 Low-Rank Trajectory-Basis

[Akhter et al., 2009] proposed to replace the shape-basis by a trajectory-basis in the formu-
lation suggested by [Bregler et al., 2000]. This method can easily reconstruct larger defor-
mations than the above-mentioned methods. The fundamental idea behind this method is
to express the trajectory of a point on an image as a linear combination of the trajectory-
basis. The trajectory-basis are obtained using a Discrete Cosine Transformation (DCT)
basis. [Akhter et al., 2009] proposed to decompose the image observation matrix W in equa-
tion (2.6) into R and T using SVD, where R contains the R’ (the first two rows of camera
projection matrix for the i** image) and T is the trajectory-basis matrix.

[Gotardo and Martinez, 2011] proposed a solution that uses additional higher frequencies
of the DCT basis in order to estimate large deformations better than [Akhter et al., 2009].
This method first estimates the 3D using trajectory-basis. It then estimates the shape-basis
by applying a kernel transformation which generalises the inner product with a radial basis
function.

[Torresani et al., 2008] also uses a parametric representation of shape and trajectory-
basis and finds 3D by estimating these parameters using Probabilistic Principal Component
Analysis.

These methods can handle large deformations better than the low-rank shape model
methods but they still need video-sequences or short-baseline data to achieve good results.

Table 2.1 summarises the statistics-based NRSfM methods. All these methods use the or-
thographic projection model. All these methods solve NRSfM with a non-convex formulation
except [Dai et al., 2012] which uses a convex relaxation.

Most of the statistics-based methods use orthographic camera projection which may lead
to flip ambiguities in the reconstruction. Also, these methods are designed for short-baseline
images and therefore, they cannot handle large deformations. For good results, these methods

need a large number of views.
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Method Type of basis Additional priors Complexity of basis
[Bregler et al., 2000] Shape - Linear

[Del Bue, 2008] Shape Shape Linear
[Tao and Matuszewski, 2013] ~ Shape Shape Non-linear
[Dai et al., 2012] Shape - Linear
[Torresani et al., 2001] Shape Spatial smoothness Linear
[Olsen and Bartoli, 2008] Shape Spatio-temporal smoothness Linear
[Bartoli et al., 2008] Shape Deformation modes, point closeness Linear
[Akhter et al., 2009] Trajectory - Linear
[Torresani et al., 2008] Shape, trajectory Spatio-temporal smoothness Linear
[Gotardo and Martinez, 2011] ~ Shape, trajectory - Non-Linear

Table 2.1: Summary of statistics-based NRSfM methods

2.2.2 Methods with Physics-based Models

For a long time, the focus of the research community has been on the statistics-based mod-
elling of deformation. Physics-based modelling for NRSfM is rather recent. In general, these
methods use the physical properties of thin-shell objects to model deformation as in SfT.
They can handle more complex deformations and work with fewer images than methods with
statistics-based modelling. Most of these methods, for example [Chhatkuli et al., 2014, 2016a;
Collins and Bartoli, 2010; Russell et al., 2014; Taylor et al., 2010; Varol et al., 2009; Vicente
and Agapito, 2012] use isometry as a deformation model except [Agudo et al., 2016] which
models deformations using elasticity. [Agudo et al.; 2016] first reconstructs the surface by as-
suming that there are no deformation acting on it (basically SfM) and then uses this solution
the predict the deforming shapes. Therefore, this method resembles SfT even though it is
presented as a NRSfM method by the authors.

[Collins and Bartoli, 2010; Taylor et al., 2010] approximate isometry with a rigid rotation
and translation at a local (or piecewise) level. For example, [Collins and Bartoli, 2010; Tay-
lor et al., 2010] solved NRSfM by expressing isometry as local rigidity with an orthographic
camera projection. [Taylor et al., 2010] finds sets of 3 rigid points reconstructed using SfM
whereas [Collins and Bartoli, 2010] performs automatic clustering of point sets. These meth-
ods rely on finding the 3 points in a close neighbourhood in order to make sure that the
assumption of rigid transformation holds. Another approximation was made by [Russell
et al., 2014; Varol et al., 2009], they exploited isometry as piecewise-rigidity. [Russell et al.,
2014] computes fundamental matrices [Hartley and Zisserman, 2000] to obtain the solution
to surface normals. However, fundamental matrices may be unstable in case of small patches.

An improvement on [Varol et al.,; 2009] was proposed by [Chhatkuli et al., 2014] which
defines isometric constraints between points that are infinitesimally close to each other
while [Varol et al., 2009] defines these constraints on a small patch (assuming piecewise-
rigidity). Both of them assume perspective projection. [Chhatkuli et al., 2014] assumes the
surface to be a set of infinitesimal planes while [Varol et al., 2009] assumes the surfaces to be
represented as a set of planar patches. They then obtain a homography between the corre-
sponding normalised image points of the planes and use homography decomposition [Malis

and Vargas, 2007] to obtain the surface normals. The surface normals thus obtained have
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.
]

a two-fold ambiguity which is resolved by using spatial smoothness in [Varol et al., 2009]
while [Chhatkuli et al., 2014] uses additional views to disambiguate the normals. The surface
normals thus obtained are integrated to obtain an up-to-scale representation of the surface.

[Vicente and Agapito, 2012] expressed the deformation using isometric constraint (see
equation (2.1)) and proposed a global solution to NRSfM by performing a discrete non-
convex optimisation based on energy minimization of isometry constraints of all the points
considered. They provided solutions for both orthographic and perspective projection. The
method does not yield a globally optimal solution. The solution assuming orthographic
projection suffers from flip ambiguities.

Recently, [Chhatkuli et al., 2016a] proposed a solution to NRSfM by modelling defor-
mation with the inextensibility constraint (2.1) using the perspective camera model. Relax-
ing isometry to inextensibility makes the problem convex and a globally optimal solution
is obtained using second-order cone programming. The problem is formulated using the
MDH [Perriollat et al., 2011] where the goal is to maximise the point depth for each image
correspondence in the retinal frame under the inextensibility constraints. The point depths
are bounded by the sum of the unknown template distances in order to make sure that a
global minimum is reached.

[Agudo et al., 2014] solves NRSfM using a mix of physics-based deformation prior and
statistics-based priors. [Agudo et al., 2016] solves NRSfM for potentially extensible surfaces.
It requires the surface to be represented as a thin-plate (a surface with considerable thickness),
however it does not reconstruct the volumes. It represents the object’s mechanics in terms of
in-plane stress and out of plane bending. It models the deformation using Navier’s equation
which are solved by using Finite Element Method. However, this method works only for video
sequences. [Agudo et al., 2014, 2016] require an initialisation which is obtained by using SfM
on the first few frames. Therefore these methods resemble ST in their approach rather than
NRSfM.

Table 2.2 summarises the NRSfM methods using physical priors. The use of physical
priors in NRSfM is limited to isometry. Other deformation priors are unexplored. Most of
these methods are applicable to both short-baseline and wide-baseline data except [Chhatkuli
et al., 2014, 2016a] which break on short-baseline data.

NRSfM methods based on physics-based modelling of deformations (for example, isometry
can be modelled with a rotation and translation at a local level, which incorporates camera’s
rotation and translation as well) do not decouple camera motion and deformation unlike
the NRSfM methods based on statistics-based modelling. The motion of the object or the
camera are both treated as a deformation and hence, camera-motion is not recoverable. A

deformation is therefore regarded as the change in the object from one view to another.

2.2.3 Relationship to our Work

Most of the current NRSfM methods suffer from ambiguities and poor performance in re-

construction. Deformations other than isometry are very rarely explored. The success of
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Table 2.2: Summary of physics-based NRSfM methods

Method Physical prior Constraint Camera model
[Chhatkuli et al., 2014] Local rigidity Local Perpective
[Varol et al., 2009] Local rigidity Piecewise Perspective
[Russell et al., 2014] Local rigidity Piecewise Orthographic
[Taylor et al., 2010] Local rigidity Local Orthographic
[Collins and Bartoli, 2010] Local rigidity Local Orthographic
[Vicente and Agapito, 2012] Isometry Global Orthographic
[Chhatkuli et al., 2016a] Inextensibility ~ Global Perspective
[Agudo et al., 2016] Elasticity Global Perspective

physics-based methods in SfT inspires us to explore NRSfM with the same modelling.

We

use differential geometry and Cartan’s theory of connections to model this problem and pro-

pose a modelling framework that extends NRSfM to deformations other than isometry.
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Chapter

Mathematical Formulation

3.1 Notation

We define a set of rules that we follow in the next chapters in order to make them easier to
understand. We describe here the general rules and the exceptions we make.

1) We use small-case Latin letters to denote scalars. Ezception: In chapter 6, we use p
and « to denote scalars.

2) Bold Latin letters denote 2D and 3D vectors.

3) We use Greek letters to denote functions. We express the inverse-depth function in
chapters 4, 5 as ( (in the case of planar surfaces) and « (in the case of non-planar surfaces).
Ezception: In chapters 4 and 5, we use I' to express CS and components of a connection
respectively. In chapter 5, f is a multi-valued smooth function defined in R™ with the coor-
dinates f* and their respective basis as e; where i € [1,...,n].

4) We use a subscript to index the images and a superscript to index the coordinates of
a point.

5) We use calligraphic letters for objects and images. In chapter 6, we use calligraphic
letters for sets, and | A for the size of set A.

6) We use the operator J, for the Jacobian of a function ¢.

7) In chapter 4, we use g to denote the metric tensor and T' to denote the CS matrix.

8) In chapter 5, differential 1-forms are represented as w. d is the operator for exterior
differentiation. The origin is denoted as O.

9) In chapters 4 and 5, we give our modelling for a pair of views. It straightforwardly
generalises to any number of views. We consider two surfaces M; and M;, which are rep-
resented by images Z; and Z;. A point in Z; is denoted by x and the corresponding one in
Z; by y. We name the points this way to avoid the subscripts in the equations. Similarly, a
point on the surface M; is denoted by z and the corresponding point on M; by w.

10) In chapter 6, the 3D points on the template and object are given by P and Q. Their
corresponding points on the images are given by p and q respectively. A tetrahedron attached

to a 3D point, for example, P is given as a set of 3D points (P,1, Ppa, Pp3, Ppa).
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11) In chapters 4 and 5 we omit x and just write the functions described at x as «;, 5;

and ¢; (instead of a;(x), B;(x) and ¢;(x) ) in order to make the equations compact.

s 98; O 92
12) In chapters 4 and 5, we also write a—zz as ¢, a—f: as Bit, 6—?; as @i, 76xtg;5 as
9%, 5%,
Qi ts, 8?8&:55 as 62'7155 and 8$t§;5 as d)i,ts-

13) In chapters 4 and 5, we write (ki, ko, ks, k4, ks) as the expressions that represent
the ratio of first and second-order derivatives of the inverse-depth of the surface M; to the
inverse-depth, (p1, p2, p3) which are known quantities on M;, written in terms of the second-
order derivatives and (c1, ¢, €3, ¢4, ¢5, ¢g) which represent the CS at M;. On M, we write
these expressions with a bar as (ki1, ko, k3, k4, k5), (P1, D2, P3) and (1, 2, €3, €4, Cs, ).

We remind some of these notations in the chapters.

3.2 Manifolds and Surfaces

In general, a manifold is a topological space that resembles the Euclidean space R™ locally.
Therefore, at each point of the manifold one can find a neighbourhood that is homeomorphic
to the Euclidean space of dimension n. 2D manifolds represent surfaces. If embedded in 3D,

they represent 3D surfaces.

3.2.1 Infinitesimal Planarity

IP refers to the assumption that a surface at each point is approximately planar in its in-
finitesimal neighbourhood. This is fundamentally different from piece-wise planarity: in IP,
the surface is globally curved, but in an infinitesimal neighbourhood, it may be represented
by a plane. In other words, each infinitesimal model agrees with the global surface at the
point where IP is assumed, but this agreement holds only at the zeroth order. We define
the IP approximation of any surface as the IP surface where at each point the infinitesimal
plane is the tangent plane of the original surface. Note that while the surface can be globally
curved, the [P approximation is point-wise planar. It is a very interesting concept as it makes

it simpler to derive properties of surfaces.

3.2.2 Infinitesimal Linearity

IL refers to the assumption that a smooth mapping between two surfaces can be represented
by a set of linear mappings which map the infinitesimal neighbourhoods of the correspond-
ing points on the surfaces. Figure 3.1 shows two curves related by a smooth mapping 1.
According to the formulation of IL in synthetic differential geometry [Kock, 2010] (it uses
IL to formalise theory of connections), given that ¢ maps P to Q, there exists at least one
linear function v that maps the infinitesimal neighbourhood of P to Q. Therefore, v is
represented with an infinite set of linear mappings v, that map infinitesimal neighbourhoods
of the curves. ¥y, has the same first-order differentials as 1. It only assumes that the second

or higher-order differentials are zero as it is a linearization of .
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Figure 3.1: Illustration of IL. Two smooth curves are related by a mapping ¥. According to IL,
there exists a linear map 17, that relates P and Q and agrees with ¢ at zeroth and first-order.

3.3 Projection

A surface is mathematically related to an image with an image projection function. Figure 3.2
shows a surface M € R3 being projected into the image Z € R? with the function II : R3 —

R2. We model projection with the perspective camera, where II takes as input the point

T T
zZ = (zl 22 23) on the surface M and outputs its retinal coordinates x = (.’L‘l x2> in

x= (a! xQ)T:H(z):<Zl Z2>T. (3.1)

23 23

the image:

Figure 3.2: An image embedding ¢ that relates the 3D surface M with its image Z.
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3.4 Image Embedding

The image embedding, denoted as ¢ : Z — M (see figure 3.2), represents the inverse of II
restricted to the surface M € R3, as it maps retinal coordinates to the 3D surface. It must

satisfy the following identity:
x = (ITo ¢)(x). (3.2)
Smooth functions that comply with equation (3.2) can be expressed with a depth function
p € C>*(Z,R), where:
M@zp&“xlfi (3.3)
Alternatively, let o = p~! be the inverse-depth function. This allows us to re-define the

image embedding in equation (3.3) as:

b(x) = —— (X 1)T. (3.4)

where « is a function that represents the inverse of the depth of the surface at a point

x = (z',2%) in Z. A point on the surface M is given by

T

z:¢:a4(ﬂ 22 Q . (3.5)

For general surfaces, « is a non-linear function but for planar surfaces it is linear. Due to the
assumption of IP, the restriction of o to a point becomes linear.
In chapter 4, we will show that working with the inverse-depth for defining the image

embedding has an important role while defining the differential properties of surfaces.
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Chapter

Non-Rigid Structure-from-Motion with

Riemannian Geometry

Summary
In this chapter, we propose Isometric Non-Rigid Structure-from-Motion (Iso-NRSfM) using
a theoretical framework based on the Riemmanian manifold to represent the unknown 3D sur-
faces as embeddings of the camera’s retinal plane. This allows us to use the manifold’s metric
tensor and CS fields. These are expressed in terms of the inverse-depth of the 3D surfaces and
its first and second-order derivatives. These are the unknowns for Iso-NRSfM. We prove that
the metric tensor and the CS are related across images by simple rules depending only on the
warps. We show that Iso-NRSfM is solvable from local image warps. It proves that NRSfM
can be solved locally from a PDE formulation. We propose two solutions to Iso-NRSfM: with
and without the assumption of IP. This chapter is based on our published work [Parashar
et al., 2016].
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4.1 Introduction

Research in NRSfM is still at an early stage. As we discussed in chapter 2, statistics-based
modelling in NRSfM limits the applicability to short-baseline images only. Also, the use of
orthographic camera projection leads to flip ambiguities. Physics-based modelling in NRSfM
is very recent. It is widely used in SfT [Salzmann and Fua, 2011] and recent works [Bartoli
et al., 2015; Chhatkuli et al., 2016b] show that the differential modelling of surfaces results in
local analytical solution to SfT and makes is a well-posed problem for isometric deformations.
Therefore, local SfT methods are powerful and computationally cheap.

The success of differential modelling in SfT' is our motivation for this work. Our goal is
to extend this modelling to NRSfM. We use Riemannian geometry for differential modelling
of NRSfM. The differential quantities metric tensors and CS, defined in this geometry,
represent the properties of surfaces such as length, angles, areas and curvature. For isometric
deformations, we found that these properties are preserved across surfaces. This leads to a
solution for NRSfM using isometry as a deformation prior which we present in this chapter.

This solution performs significantly better than the compared state-of-the-art methods.
The method handles missing data and occlusions, needs very few images to perform recon-
struction, handles large images conveniently without affecting the computation time and

works for both short and wide-baseline images.

Chapter outline. We present the mathematical background of our solution in section 4.2.
It describes the modelling of NRSfM, the concepts of metric tensor and CS, the effect of
the IP assumption on these quantities, the preservation of these quantities under isome-
try. Section 4.3 shows how to use these concepts to write the reconstruction equations for
NRSfM under isometric deformations with and without the assumption of IP. Section 4.4
explains the algorithms and analyses their computational complexity. Section 4.5 discusses

the experiments and section 4.6 concludes.

4.2 Mathematical Background

4.2.1 General Model

Our model of NRSfM is shown in figure 4.1. We have N input images 71, ...,Zy that show
the projection of different isometric deformations of the same surface. The registration warps
(ni; and 7n;;) between the pair of images (Z;, Z;) are known. In this framework, we compute
these warps using [Pizarro et al., 2016]. This choice is explained and justified by theorem 4.
Abusing notation, we also use Z; to denote an image’s retinal plane, with Z; C R?. Surfaces
in 3D are modeled as Riemannian manifolds. This allows us to define lengths, angles and
tangent planes on the surface [Lee, 1997]. We denote M; C R3 as the i*" manifold, which can
be seen as a two-dimensional subset embedded in 3D. We use the extrinsic definition of M;,
where a function embeds a subset of the plane R? into R3. With embedding functions, one

can easily compute manifold characteristics [LL.ee, 2003] such as the metric tensor and the CS.
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Figure 4.1: The proposed model of NRSfM, where each surface M, is a Riemannian manifold defined
by embedding the corresponding retinal plane Z;.

However, these characteristics change according to the coordinate frame. We use the retinal
plane Z; as coordinate frame for M; and define as ¢; € C°°(Z;, R3) the image embedding for
M. We define as 1;; the isometric mapping between manifolds M; and M.

4.2.2 The Metric Tensor

The metric tensor (see appendix A for more details) is a differential quantity used to define
lengths, angles and areas on the surface [Lee, 1997]. The metric tensor of ¢; (in figure 4.2)
is denoted as g,n[¢;]. We use the standard Einstein tensor notation and thus g, [¢;] is a
combined reference to all elements of the metric tensor, a 2 X 2 matrix in this case. According
to the Einstein summation convention, the summation is done over the indices appearing twice
in the expression. Also, the free indices in an expression (the ones that do not appear twice
in the expression) can be seen as both the indexed element or the whole arrangement. The

indices m and n refer to the components of the coordinate frame of ¢;. In figure 4.2, we have

M; Mj
Vij
T oY T é;
7, 7,
Nji y

Figure 4.2: Simplified notation for two images.
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z = ¢;(x) and:
oxt  Ox'  Ox!
Jg = (4.1)
ox? 0z  Ox?
The metric tensor of ¢; is then:
T 2% 9zF
gmn[¢z] =J iJ@ = Ww sk (4.2)

with d5 the Kronecker delta function. We recall that according to the Einstein summation
convention, the summation in equation (4.2) is done over indices s and k. The inverse of the

metric tensor is expressed with raised indices g™"[¢;]. Given the change of coordinates:

-
x=1(y) with y= (yl y2) , (4.3)
the metric tensor of ¢; o 1 is obtained as:

_ Oz™ 9"

. —_gryT7 ) — - 1. .
gst[¢z o 77] Jn J(j)i']tbz']n 8y5 (‘9yt gmn [¢z] (4 4)

4.2.3 Christoffel Symbols

CS (see appendix B for more details) of the second kind are function arrays that describe
several properties of a Riemannian manifold, such as the curvature tensor, the geodesic
equations of curves and the parallel transport of vectors on surfaces [Lee, 1997]. We denote
the CS of embedding ¢; as Th,[¢;]. It is useful to represent the CS of ¢; as two 2 x 2

matrices T} [#;] and T2, [¢;], where the upper indices 1 and 2 make reference to the 2D

image coordinates x = (a;l :z:2> , where ¢; is defined. The CS are given by:

1
I‘Irjrm [¢Z} = Egpl [¢z] (glm,n[¢i] + gln,mkbi] — 8mn,l [¢z]) ) (45)
where g, , = On8im- Given a change of coordinates x = 7(y), the CS in the new coordinates
are given as:
ox™ Oz Iyt oyl 9*x!
' (¢ = —TI? [di] =— + =————. 4.6
st[(z) © 77] ays 8yt mn[¢ ]a$p + 8xl aysayt ( )

Note that even though CS are expressed with tensor notation, they are not tensors and thus
equation (4.6) does not correspond to the way tensors change coordinates. The CS of the
image embedding, defined via the inverse-depth in equation (3.4), has a special structure

given in Theorem 1.
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Theorem 1 (CS Structure). Let x € Z;, then T, [¢:(x)] is given by:

1

2ai i )2 A (o i
I‘}nn[ﬁbz(x)] = —— ( Qi1 o ’2> + (a ) <a A1 G412

12 (22

I2,[6:(x)] = —— ( ! a“) + (@) Bi (%11 Qi12

Qi12 G292

ai \ a2 0 D;

78] 20&1‘72 Di
80@ 62%

oxk’ Yimm = oxnox™ and:

where ; ), =

Aj = —zto; + (1 + (331)2) Qi1 + xlx%‘i,?
B; = —2?a; + (1 + (:B2)2) Q2 + 301532041',1

2
D; = (o — zloyg — 1‘2011',2) + (ai1)* + (io)®.

)
)

(4.7)

(4.8)

Proof. From the definition of ¢;(x) in equation (3.4), we can write the Jacobian matrix of

¢i(x) as:
. 1. 1.,
o; — X 04171 —X a%g
1
J = — —22a0; — 22y
¢i(x) 2 Qi1 Q;j Q5.2
a;
—Qy 1 —Q52

(4.9)

Next we compute the metric tensor by substituting the Jacobian matrix from equation (4.9)

in equation (4.2). The metric tensor is given by

g11]¢i(x)] = % (62 (ai1)* + (a;)* — 23310%%,1)

1

gulei(x)] = — (Cairaiz =zl oo — 2?aiaq1)
7
1

99 [¢1(X)] = g (62 (Oli,2)2 + (ai)Z _ 25520[1‘041',2) .

(2

where €2 =1+ (x1)2 + (332)2. The inverse of metric tensor is given by

1y (x)] —  822[0i(X)]  (q)® goo[9i(x))]
& 0= qilela) D

127 (oy) — __ 812[0i(X)] () gafdi(%)]
1) = ~ o)) D,

iy oy B0 (00* @16
SO0 Geglah T D

The derivatives of the metric tensor are given by

gr11[¢i(x)] = _4251 en1é:()] + 2Eiai2111
! (o)
2o H; | B+ Fio
g12,1[¢i(x)] = — Zi,l g12[0s(x)] — (ai)4 « 71(20%)4 ;11
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822,1[¢4(x)] = 4%1%22[(151( )+ 2Li4 2Fiai;112
(ai) (o)
4 i 2H; 2F;q;
g11,2[¢i(x)] = ngn[qb@( x)| + % (a(:);lm
@12 2[6s()] = 4azzg12[¢z( - (534 Ei&i,2(2a‘|")fi04i,12
22.2001(0)] = — "2 [ (x)] + 2?;?;;32, (4.12)

where E; = (1 + (.%'1)2 + ($2)2> Qi1 — :rlai, F;, = (1 + (.1131)2 + (1'2)2) Q2 — .%'2052',

H; = 2? (Oéi,l)2 +aja;n — 2l 1, and L = ot (%,2)2 i1 + —xa; 1.
According to equation (4.5), the CS are given by

L7 [01(x)] = 587 [0i(%)] (81m,n[01(%)] + &1n,m 03 (%)] — G, 1[¢3()])

(4.13)

M‘H[\D\H

"%[01(x)] (82,0 [01(x)] + 820,m[0i(%)] — Gimn,2[d:(x)]) -

Using the metric tensor and its derivatives from equations (4.10) and (4.12) in the expression
for the CS given in equation (4.13), gives the result in equation (4.7). For example, T'}; [¢;(x)]

is given by

T [6:(x)] =58 [6:00)] (111 [01(]) + 58" [04(x)] (2801.1[01(0)] — @11 201())

 (00)° gao[gi(x)] _2%1 Eiai
N D; < «; nleiG)] + (ai)4 >
() guleix)] (daiy o 28,
D; < Q; g12(i(x)] (ai)4>
) i\X i Qg 40y i)’ A
- (o Bl (Bou B o)) - ot 4 CFR )

4.2.4 Commutativity under Isometry

Images and surfaces in Iso-NRSfM follow the commutative diagram shown in figure 4.2.

Therefore,

¢ = Yij © i onji

(4.15)
Jo; = Iy Ioi i
The metric tensor of ¢; can be written according to equation (4.2). It is given by
T _ 1T 1T 1T _ 1T 7T
o3, = In I T Jvi Ioidn = Iy, 36,36, I, - (4.16)

The fact that mappings between manifolds are isometric (J LJJ wi; = I3x3) [Bartoli et al.,
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2015] allows us to derive the following fundamental result: in Iso-NRSfM, both metric tensors
and CS commute between surfaces with a change of variable given by the image warps. This

result is formalised with Theorem 2 and Corollary 1.

Theorem 2 (Metric Tensor Commutation). Let v;; be an isometric mapping between the
manifolds M; and M;, then Gmn|d;] = Emn|di 0 nji] with (i,j) € [1,N] x [1, N].

Proof. We first write ¢; in terms of ¢; using the isometric mapping 1;;:
¢ = ij © di 0 Nji. (4.17)

From equations (4.4) and (4.17) we have:

0x® Oxt
gmn|®j] = mn|(Vij 0 i) onji] = Cf)yimaf;gst [4i5 © ¢il. (4.18)

By definition, isometric mappings do not change the local metric and so g[v;; o ¢;] = g[i],
which applied to equation (4.18) gives:

oz Ozt
8mn|d;] = ayimai;:ngst[d)i]- (4.19)

Identifying equation (4.4) with equation (4.19) gives the equality gmn[¢j] = mn[dion;]. O

Corollary 1 (CS Commutation). Let 1;; be an isometric mapping between the manifolds
M, and M;, then T, [¢;] = Dhunlei o nji] with (i,5) € [1, N] x [1, N].

Proof. As described in equation (4.5), T'h.n[¢;] is a function of g,,[¢;] and its derivatives.
From Theorem 2 we have that gmn[¢;] = 8mnldi © 1;:]. By multiplying this expression in
both sides by g""[¢;], we get:

8" [0518mnld5] = 8™ [d5]8mnldi 0 nji] = Gmn, (4.20)

from which we deduce that g™"[¢;] = g™"[¢; o n;]. Also, by differentiating gn[¢;] =

Emn|@i © 1;i] on both sides we have:

018mn[®5] = 018mn[Pi © 1jil, (4.21)

gIving Cumn.i[0j] = 8mn,ildi © nji]. By substitution of these identities in equation (4.19) we

obtain:

1
e = §gpl [#i © 15i) (81m.n[®i © Nji) + Ginm[Bi © Mji) — Gmnildi 0 nji)),

and thus the equality I, [¢;] = Thn[¢i o 1] holds. O

These results show that, given the metric tensor and the CS for one image embedding, they

can be transferred to the rest of the embeddings using the warps, which are known entities
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in Iso-NRSfM. Note that this result cannot be generalised to non-isometric mappings. This
establishes the ground rules for developing a local solution to Iso-NRSfM where the number
of unknowns does not grow with the number of images. The main idea is to define the

unknowns in a reference image and to use the warps to transfer all constraints into it.

4.2.5 Infinitesimal Planarity

We study the differential properties of the image embedding when the surface is a plane. We
then invoke IP to extend these properties point-wise to non-planar surfaces. In this regard

we present Theorem 3 and Corollary 2.

Theorem 3 (Linear Inverse-Depth of a Plane). If M is a plane then its image embedding
atx €T is ¢p(x) = B(x)"Hx 1)" with B a linear function.

Proof. Suppose M is a plane described by the equation n'z + d = 0, where z =
(21 22 23) and n is the plane’s normal. From equation (3.3), the embedding is expressed

-
with a depth function ¢(x) = p(x) (x 1) . By combining the depth parametrisation with

the plane equation, we have:

n' p(x) <x 1)T +d=0, (4.22)

from which we compute p as:
d
plx)=———"——. (4.23)

n' (x 1>T
By defining 8(x) = (p(x))~!, ¢ is written as:
o(x)=p(x)"M(x 1T, (4.24)

where 3(x) is linear in x. O

Corollary 2 (CS of a Plane). Let M be a plane and ¢(x) the image embedding at x € I,
the CS Thu[p(x)] are given by:

0, [000] = 0 (‘Wx) ‘52(")) r%nn[qs(x)]:l( y ‘/31(")),

Bx) \ —pa(x) 0 Bx) \~pi(x) —262(x)
(4.25)
where [1(x) = 8535};) and PBa(x) = agiQX)

Proof. From the definition of ¢(x) in equation (4.24), we can write the Jacobian matrix of

o(x) as:
. B(x) — x'f1(x) —a! Ba(x)
Jo(x) = 5007 —2?Bi(x)  B(x) —22Ba(x) | (4.26)
—f1(x) —Ba2(x)
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Using equation (4.2), the metric tensor at ¢(x) can be written as J ;(X)J #(x) - The expression

is given by
Bulo(o] = 5 (& (907 + 6 — 2161
g120(x)] = 51( 28,8 — ' 86, — 26, (4.27)
Balo(o)] = 5z (& (37 + 8 — 257660

where €2 =1+ (1:1)2 + (x2)2. The derivatives of the metric tensor are given by:

g1 1[$(x)] = —‘lglgu[é(xﬂ

(502 (B1)? + BBz — 3615152)

4
B12a(0(x)] =~ g12lo(00)] - —
2 (2! (B2)? B1B + —2?B1 3
g22.1[0(x)] = _Zlglgm[(ﬁ(x)] 4 ( ? (15)4 1 2)
2 (22 ()% + BB2 — ' 18
811,2[¢>(X)] = _4§Qg11[¢(x)] + < 1 (/8)42 1 2)
2! (B2)? BB+ —22p1 B
g12,2[d(x)] = _452%12[@5(1&)] ( 2 1@)4 1 2)
g222[0(x)] = —422322[925(}{)]. (428)

Note that there are no second-order derivatives in the above expression because they vanish
in the case of planes. This leads to the CS in equation (4.25). O

Theorem 3 shows that the inverse-depth 3 of a planar surface is a linear function. Corol-
lary 2 is derived from Theorem 1 and Theorem 3. It shows that the CS have a simplified
structure under infinitesimal planarity, where at any point they have 3 degrees of freedom: (8
and its first-order derivatives. Moreover this also shows that both the metric tensor and the
CS share the same 3 unknowns.

From Corollary 2 we find the following constraints over the elements of the CS:

Do[p(x)] =Thlex)] =0  2P}[(x)] =T5[6(x)]  Tiié(x)] = 2 (x)).  (4.29)

We derive Theorem 4 from equation (4.29). It shows that the warps must comply with the
2D Schwarzian derivatives [Sasaki and Yoshida, 2002], which are second-order bilinear PDE

that arise in the field of projective differential geometry.

Theorem 4 (2D Schwarzian Equations for Planes). Given that M; with i € [1,N] are

planes, the registration warps n;; with (i,7) € [1, N] x [1, N| are point-wise solutions of the
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2D Schwarzian equations.

Proof. The elements of the CS for M; with ¢ = [1,..., N] have the form of (4.25), and thus

must comply with the following algebraic constraints:

Do (ei] =T'1[di] =0 2T%[¢] = T5[ei]  Tiyli] = 2T%5[¢i)- (4.30)

From Corollary 1 we have T'},.[¢;] = Thnn[d; 0 75i]. Now we use equation (4.6) to compute
Lhm[9i 0 mji] from Tm[¢i] given in equation (4.25). Given that x = n;i(y), we write

Y omjil = Ony” <—26i’8mx18nx1 B2

Bi 5

ﬁﬁi’? Oz Ona? — BBZ (Bm:clanz:Q + 8mzv28nx1)) + OyPO?, xt + OgyPO>, 22

(8m:n18nx2 + 8mx28n:):1)> +

82yp <2
(4.31)

By forcing conditions in equation (4.30) in I'[¢; on;;] we obtain the following four second-order

PDE only in n;;

(4.32)

These are the 2D Schwarzian equations introduced in [Pizarro et al., 2016], where point-wise

projective warps were investigated. O

The 2D Schwarzian derivatives were used in [Pizarro et al., 2016] as a penalty to com-
pute ‘Schwarps’, smooth warps that preserve the deformation’s local projective structure.
Schwarps were shown to improve accuracy in both SfT and NRSfM with respect to other
smoothing penalties based on the bending energy. Theorem 4 theoretically justifies our
choice to use Schwarps for computing our image warps. Nonetheless our method can also be

used with any means to compute the local image warps.

4.3 Reconstruction Equations

We study local solutions to Iso-NRSfM, based on the differential properties derived in the
previous section. We show that Iso-NRSfM can be posed as a non-linear PDE system and
that we can find non-holonomic solutions of this system. We do not deal with boundary
conditions in the PDE as we find algebraic solutions of the system in terms of the non-
holonomic variables. This follows the same path as [Bartoli et al., 2015] for finding local

solutions in Iso-SfT.
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For planes, there is a unique linear relationship between the metric tensor and the CS,
which is why Iso-NRSfM is solvable under the assumption of IP. Corollary 2 shows that both
of them can be expressed in terms of the first-order derivatives of the inverse-depth of the
surface only. We explore this relationship for non-planar surfaces, where we need the first
and the second-order derivatives of the inverse-depth of the surface to express the metric
tensor and the CS. We argue that there is no uniqueness in the relationship between the
metric tensor and the CS anymore, and therefore, there is not a unique solution to Iso-NRSfM
locally. Then, we propose to solve Iso-NRSfM by solving for the first and the second-order

derivatives separately.

4.3.1 Relating the Metric Tensor and the Christoffel Symbols

For a non-planar surface, the CS at z € M; are given by equation (4.7). We define them as:

Th6i(x)] = ( "3> T2, [¢i(x)] = ( ) (4.33)

¢3 G5 €4 Co

where c¢1, co, ¢3, ¢4, c5 and cg are expressed in terms of the first and second-order derivatives

of a;(x) defined in equation (3.4). The expressions in equation (4.7) are:

c1 = —2k1 + k3 A; co = k3B; c3 = —ko + k4 A;

(4.34)
cy = —ki1 + kq4B; cs = ksA; cg = —2ko + k5 B;,
with:
A = —az' + (1 + (:1:1)2) ki + 22k
B; = —2® + (1 + (x2)2) ko + zlaky (4.35)
D, = (1 — xlkjl — x2k2)2 + (k1)2 + (/{:2)2 R
where k; = ai’l, ko = ai’Q, ks = i, 11 , kg = 9,12 and ks = 9i22 The jacobian and hence
Q; a; a; D; a; D; a; D;

the metric tensor at z can be written in terms of (k1,k2). Our goal is to find a relationship
between the metric tensor parametrised with (k1, k2) and the CS (c1, ¢2, 3, ¢4, ¢5, ¢). Having
such a relationship, we can formulate a system of equations exploiting the transfer of variables
in the CS and metric tensor from one surface to another. From ¢; and cg in equation (4.34),

we can write:

ca+2k A
_ = — 4.36
. B, (4.36)
Similarly, from ¢5 and c¢g in equation (4.34), we can write:
Cs Al
— = . 4.37
Ce + 2](32 Bl ( )
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k A;
From c3 and ¢4 in equation (4.34), we find —* = Cs 1l We substitute —" in equations (4.36)
B;  ca+ ke B;
and (4.37), we obtain:
(c1 + 2k1)(cq + k1) = ca(es + ko) (c6 + 2k2)(c3 + ko) = c5(ca + k1). (4.38)

(c1 4+ 2k1)(ca + k1)

C2
substitute it in the second expression. We obtain the following quartic in k;:

From the first expression in equation (4.38), we find ko = — c3 and

(64 + k‘l) (8]6% + 8 (Cl + C4) k% + 2 (Cl (Cl + 404) + co (CG — 263)) k1 + 20%64 + cico (C@ — 203) — 0305) =0.
(4.39)

This gives up to four possible solutions to ki, which means that there is not a unique rela-

tionship between the CS and the metric tensor.

Combining equation (4.38) with equation (4.34), we can express (k1, k2) in terms of the
CS (e1,¢2,c3,c4,05,¢6) as a rational expression of degree two. This gives a system of two
polynomials of degree 8 in 6 variables for each pair of views. Existing solvers such as [Henrion
and Lasserre, 2003] cannot solve such high degree polynomial systems. We conclude that the
first and second-order derivatives of «;(x) cannot be solved jointly via estimating the CS.
However, we see that the expressions of the CS in equation (4.34) are linear in terms of (k1, k2)
and (ks, k4, ks). By assuming (ks, k4, k5) to be known, we can find a unique relationship
between the metric tensor and the CS and vice versa. Therefore, splitting the problem in
two steps of solving for the first and the second-order derivatives of a;(x) separately leads to
a solution to Iso-NRSfM.

4.3.2 Solving for the First-Order Derivatives

We assume that the second-order derivatives of a;(x) are known. They can be assumed to
be zero (as in the case of the infinitesimal planarity assumption) or they can be obtained
by the method we describe next. We show how to solve for the first-order derivatives of
a;(x). We also show that this solution has a similar structure as the solution to Iso-NRSfM
under IP assumption. We first select a pair of surfaces (M;, M;) (see figure 4.2) and a
point x = (2!, 22)T € Z;. We evaluate Thy,[¢;] at x, namely T'h,,[¢i(x)]. According to
equation (4.7), it is given by:

—2k1 + Aipr —k2 + Aipo Bip1 —k1 + Bipo

T, [¢i(x)] = 7, [¢i(x)] = :
—ky + Aip2 Aips —k1 + Bips  —2ka + Bips

(4.40)

where k1 = prx) and ko = P2 (X) The expressions (p1, p2, p3) are functions of second-order

Bx) B(x)

derivatives of «;(x) and therefore, they are known. A; and B; are linear expressions in (k1, k2)
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according to equation (4.8). Next we compute Jy, in terms of (ki, k2):

1 1— klxl —]{721’1
J. =— | —ki2? — 20, 4.41
@i (X) B (X) k'll{:l' 1 ZQ"L‘ ( )
—h1 —h2

By substitution of equation (4.41) in equation (4.2) we have:

g11[0i(x)] :ﬁ(icﬂ <k12 + (kz' = 1) + (k1x2)2>
g12[0i(x)] 25(1)()2 (kle (1 + (2 + (x2)2) — kot — k1x2) (4.42)
g22(0i(x)] :5(1)()2 <k22 + (koz")? + (koa® — 1)2> :

We define Gup[0:i(x)] = B(x)%gmn[¢:i(x)], which only depends on (ki,ks). Let x = nji(y).
We use equation (4.6) and Corollary 1 to compute T'%, [6;(y)] = T, [(¢i o n;i)(y)] as:

Tl (6 omii) ()] = (2’_“1“]'@ E2+Am2>

—ko + A;jpo Ajps3
Bjp —k1 + Bjp>
~k1 + Bjps —2ko + Bjps )’

(4.43)
T2 (6 on;i)(y)] = (

where according to equation (4.6), (ki, k) are linear combinations of (ki1, k2) and (p1, p2, P3)-
(p1, P2, p3) are known. A; and B; are linear expressions in (k1, k2) according to equation (4.8).

From equation (4.42) one can find gs[¢;(y)] in function of (k1,k2), and thus in function of
(K1, k2).

Alternatively, from equation (4.4) and using the definition of Gy, [¢i(x)] and Gy [0 (y)]

we have the following identity:

1 1 ox™ oz™

Fo07 Sl = 553 50 B

B(x) G [91(%)]. (4.44)

We cancel §(x) and (y) by converting system (4.44) into the following two equations:

G 6 (y)] (ggemn[¢i<x>1) — Gualo, )] (%ﬁlf}jemwxxn) o
ox™ Ox™ ox™ Ox™ (4'45)
Gnliy (y) (aylaygc:mn[@(x)]) ~ Gualé, )] (WWGmn[@(xn) o,

We recall that both Gy, [¢i(x)] and Gg[¢;(y)] are only functions of (ki, k2) and x.

Equation (4.45) is a system of two cubics in variables (k1, k2) modeling Iso-NRSfM for
manifolds M; and M; at point x € Z;. We denote the two equations as Q;;(x, n1;(x), k1, k2).
By keeping the first index as the reference manifold, for instance ¢ = 1, and obtaining the

polynomials for the rest of the views we have 2N — 2 polynomial equations in two vari-
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ables Q1 (k1, k2) = {Q1;(x,m15(x), k1, k2) ;-V:z. The solution (k1, k2) to the polynomial system
Q1 (k1, ko) at the point x = x; allows us to reconstruct the metric tensor, the CS and the
tangent plane for point x; in view Z;. Using equation (4.41) we can reconstruct Jg, (x1) up
to an unknown scale 3(x;)~!. It is not necessary to recover this scale to estimate a unit
normal, which is computed by taking the cross product of the two columns of J4, (x1) and

normalising.

We solve system Qj(ki, k) by finding the values of (ki, ks) that minimise the sum-of-
squares of all polynomials in the system. This optimisation is solved globally using moment
based convex optimisation [Henrion and Lasserre, 2003]. Given (k1, ko), we calculate (ky, k2)

by using equation (4.6) at each point.

Notice that the structure of the CS given in equation (4.25) for planes is very similar to
equation (4.40) with (p1, p2, p3) as zeros. This shows that the solution to Iso-NRSfM with the
IP assumption is a special case of this solution. We express the system with zero second-order

derivatives as Pi(k1, k2), which is solved in a similar way as Q1 (ki, k2).

4.3.3 Solving for the Second-Order Derivatives

We now show how to solve for the second-order derivatives of o;(x), assuming that the first-
order derivatives of a;(x) are known from the previous step (we start by solving for the
first-order derivatives assuming that second-order derivatives are null). The expressions for
the CS in equation (4.40) become linear in the second-order derivatives of a;(x). This means

that T, [¢i(x)] is a linear function of (kg, ks, ks). Given that x = 1;;(y) and equation (4.6),
Lhnl(¢i o nji)(y)] is given by:

rim[wionﬂ)(y)]:(él 53) ran[wionﬁ(y))]:(@ ) (4.46)

C3 Cp €4 Cg

where (¢, ¢2, €3, C4, G5, Cg) are expressed as a linear combination of (ks, k4, k5). Therefore, at

M, (ks, ks, ks5) are given by the following expressions:

3 (51 + 2/;:1) Aj + EQBj 7 (53 + Eg) Aj + (54 + ]2?1) Bj 3 E5Aj + (56 + 2/;;2) Bj
4 == == .

3= 2 2 - 2 2 5 2 2
Aj—l—Bj Aj+Bj AJ+BJ
(4.47)

These expressions show that (ks, ks, ks) can be expressed as a linear combination of
(k3, ka, ks).

In order to solve for the second-order derivatives of «;(x), we differentiate the first-order
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4.3. RECONSTRUCTION EQUATIONS

reconstruction equations (4.45). The expressions are given in equation (4.48).

0G11[9j(y)] [ Oz™ Ox™ . 0G12[0;(y)] [ Ox™ dz™ '
(s Gt ) - 25 (SO G0 )
& [0x™ dz" o [0x™md
+G11[¢j(}’)]@ (azl;yQGmn[ﬁbi(X)]) Gi2(0;(y 87 <8g;0yl ;1 ¢Z(X)]> =0
8G11[(]§j (y)] 83:’” 8.75” ) 8G12 ¢ ( 8.CEm 83;
0z? <8y1 Oy? Gmn[@(x)]) 8x2j <8y1 oyl G [4(x >]>
o [0zmd o [0xmd
4Gty (9] (ot gz Gl )]) Gralos(¥)) 55 (a oG qsi(x)]) —0
8G22 (25]( )] &rm 8:3 ) 8G12 ¢ ( 8:Em 8::: )
2 ( oot Gl ) = 2B (FEEE 6 oo )
o (0x™md o [dx™md
+Galos )y (G g Gonnl 03] ) = Galss ] (o ey Gnli0]) =0
OGgg[qu( )] ox™ ox™ 8G12 (25 ( ox™ dx™ '
20 ( oot Gl ) = 2 (FEEE 6 oo )
o [0z dz" o [dx™md
+Ganlts 5 (G g Gonn 05000 ) = Gralos (155 (S oy G )] ) =0
(4.48)
The derivatives of G, [¢i(x)] in equation (4.45) are given in equation (4.49).
aGl(})[ﬁ"(X)] =2k (z'ky — 1) + 2 (eky — z') (k3D — k1?)
OGuléix)] _ 22 k) — 1) + (eko — 22) (k3D — k1) + (eky — 1) (k4D — K1k
8.’131 2( 1 ) ( 2 ) ( 3 1 ) ( 1 )( 4 1 2)
8@:2;[;517;()()] = 2&?1]{322 + 2 (6](32 — :132) (kJ4D — klkz)
W = 222y + 2 (eky — 21) (kuD — Kyk) (4.49)
aGlng(X)] = k1 (22%ky — 1) + (eko — 2%) (kaD — kiks) + (k1 — 2') (ks D — ks?)
m%ﬁ"(x)] = 2k (2°ky — 1) + 2 (ekg — 2°) (ksD — ko?) |

with D = (1 —a'ky — x2k2)2 + k2 + ko ande=1+ (x1)2 + (332)2.

Equation (4.49) shows that the deri