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Résumé étendu en français

La simplification syntaxique, ou slicing, est une technique permettant d’ex-
traire, à partir d’un programme et d’un critère consistant en une ou plusieurs
instructions de ce programme, un programme plus simple, appelé slice, ayant le
même comportement que le programme initial vis-à-vis de ce critère. Dans cette
thèse, nous nous intéressons à la forme initiale du slicing introduite par Mark
Weiser en 1981, appelée slicing statique arrière.

Les méthodes d’analyse de code permettent d’établir les propriétés d’un pro-
gramme. Ces méthodes sont souvent coûteuses, et leur complexité augmente rapi-
dement avec la taille du code. Il serait donc souhaitable d’appliquer ces techniques
sur des slices plutôt que sur le programme initial, mais cela nécessite de pouvoir
justifier théoriquement l’interprétation des résultats obtenus sur les slices.

Cette thèse apporte cette justification pour le cas de la recherche d’erreurs à
l’exécution. Dans ce cadre, deux questions se posent. Si une erreur est détectée dans
une slice, cela veut-il dire qu’elle se déclenchera aussi dans le programme initial ?
Et inversement, si l’absence d’erreurs est prouvée dans une slice, cela veut-il dire
que le programme initial en est lui aussi exempt ?

Dans un premier temps, nous rappelons les différents concepts du slicing sta-
tique arrière classique sur un mini-langage impératif. Classiquement, le calcul de
la slice s’appuie sur deux relations de dépendance : les dépendances de contrôle
et les dépendances de données. Les dépendances de contrôle relient une instruc-
tion aux instructions pouvant décider de son exécution (par exemple, dans notre
langage, les instructions dans les branches d’une condition ont une dépendance de
contrôle envers la condition). Les dépendances de données relient une instruction
aux affectations pouvant modifier la valeur d’une de ses variables. En se basant
sur ses deux dépendances, on peut calculer l’ensemble des instructions à préserver
dans la slice, aussi appelé slice set : c’est l’ensemble des instructions dont dépend
directement ou indirectement le critère de slicing. En partant du programme initial
et du slice set, on peut construire la slice en supprimant les instructions qui ne sont
pas contenues dans le slice set. Comme exprimé ci-dessus, la slice est censée avoir
le même comportement que le programme initial vis-à-vis du critère de slicing. Ce
lien est formalisé par la propriété de correction qui relie la sémantique du pro-
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gramme initial et celle de la slice. Informellement, si le programme initial termine
sur une entrée donnée, alors sa slice termine aussi sur cette entrée et les exécutions
du programme et de sa slice s’accordent après chaque instruction préservée dans
la slice sur les valeurs des variables apparaissant dans cette instruction. Formelle-
ment, cette propriété de correction s’écrie comme une égalité des projections des
trajectoires du programme initial et de sa slice.

Pour répondre aux deux questions listées plus haut, nous étendons ce mini-
langage de façon à ce qu’il soit représentatif pour notre problème. Pour ce faire,
nous devons introduire des erreurs dans le langage et établir une propriété de cor-
rection qui décrit aussi les exécutions infinies. Nous introduisons les erreurs sous la
forme d’assertions qui stoppent l’exécution du programme lorsque leur condition
n’est pas vérifiée et n’ont aucun effet sinon. Nous faisons l’hypothèse que seules
les assertions peuvent produire des erreurs, les autres instructions devant être pro-
tégées par des assertions si elles contiennent des expressions dites menaçantes,
c’est-à-dire dont l’évaluation peut conduire à une erreur. Nous réutilisons le cadre
utilisé pour le cas classique. Le slicing s’appuie sur les dépendances de contrôle
et de données, auxquelles viennent s’ajouter les dépendances d’assertion qui asso-
cient les instructions aux assertions qui les protègent. Ces dépendances d’assertion
permettent de s’assurer que l’hypothèse de protection faite plus haut reste valide
dans les slices. Le slice set et la slice sont définis comme précédemment mais en
utilisant les trois relations de dépendance. Une nouvelle propriété de correction est
établie dans ce cadre plus général, qui est plus faible que la propriété classique.
D’après cette nouvelle propriété, la projection de l’exécution du programme initial
est un préfixe de la projection de l’exécution de la slice. Bien que la propriété
établie soit plus faible, elle permet tout de même de répondre aux deux questions
précédentes. Si la slice contient une erreur, alors trois situations sont possibles
dans le programme initial : soit la même erreur se produit, soit elle est masquée
par une autre erreur qui se produit avant, soit elle est masquée par une boucle
infinie qui empêche l’exécution de l’atteindre. Si, en revanche, la slice ne contient
pas d’erreurs, alors le programme initial ne contient pas d’erreurs non plus, si on
se restreint aux instructions que le programme initial et sa slice ont en commun.
Pour obtenir une confiance élevée dans les résultats, nous les formalisons dans
l’assistant de preuve Coq. Un slicer certifié pour notre mini-langage représentatif
peut être extrait de ce développement Coq.

Pour généraliser ces résultats, nous nous intéressons à la première brique d’un
slicer indépendant du langage : le calcul générique des dépendances de contrôle.
Nous formalisons dans Coq une théorie élégante de dépendances de contrôle sur
des graphes orientés finis arbitraires proposée par Danicic et al. en 2011. Sur des
graphes orientés quelconques, on ne peut pas utiliser la définition simple des dé-
pendances de contrôle utilisée dans le cadre de notre mini-langage, ni la définition
classique en termes de post-dominateurs qui nécessite l’existence dans le graphe
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d’un unique nœud de sortie atteignable depuis tous les autres nœuds. Danicic et al.
propose une définition applicable dans ce cadre plus général. Contrairement aux
deux cas cités, il ne définit pas une relation binaire sur les nœuds du graphe, mais
plutôt caractérise des ensembles de nœuds qui ont de bonnes propriétés. Un en-
semble de nœuds est dit clos pour les dépendances de contrôle si, pour tout nœud
du graphe atteignable depuis cet ensemble, l’ensemble des nœuds atteignables en
premier dans cet ensemble depuis ce nœud est au plus un singleton. Un tel ensemble
serait un slice set si seules les dépendances de contrôle étaient prises en compte
pour le slicing. Si l’ensemble de sommets considéré n’est pas clos, on veut pouvoir
calculer le plus petit sur-ensemble clos, appelé clôture. Danicic et al. montrent qu’il
faut ajouter les sommets décideurs pour cet ensemble, qui sont les derniers points
de choix sur les chemins qui terminent dans cet ensemble. Ils proposent également
un algorithme pour calculer la clôture d’un ensemble de sommets. Comme pour le
slicer pour le mini-langage, une version certifiée de l’algorithme peut être extrait
du développement Coq.

L’algorithme proposé par Danicic et al. est correct, comme en atteste sa for-
malisation en Coq, mais il n’est pas très optimisé, comme admis par Danicic et
al. eux-mêmes. Nous proposons une amélioration de l’algorithme de Danicic et
al. Nous partons du constat que cet algorithme ne tire pas avantage de sa struc-
ture itérative. Au cours d’une itération, des calculs intermédiaires sont effectués,
mais seuls les résultats sont transmis à l’itération suivante alors qu’elle pourrait
réutiliser une partie des résultats intermédiaires obtenus. Nous proposons donc un
algorithme où d’avantage d’information est transmise entre les itérations. Cette in-
formation est enregistrée sous la forme d’un étiquetage des sommets du graphe. À
chaque itération cet étiquetage est partiellement mis à jour et utilisé pour détecter
de nouveaux nœuds à ajouter dans la clôture. Cet algorithme est lui aussi certifié,
mais cette fois-ci à l’aide de Why3 qui est plus adapté que Coq pour la transcrip-
tion d’un algorithme impératif et dont la force réside dans la possibilité d’appeler
des prouveurs automatiques pour éliminer les preuves simples et se concentrer sur
les preuves plus compliquées.

Pour confirmer que le nouvel algorithme proposé est bien plus rapide que l’al-
gorithme de Danicic et al., nous les avons comparés sur des graphes générés aléa-
toirement. Nous avons également comparé des variantes de chaque version, en par-
ticulier la version extraite de la formalisation en Coq de l’algorithme de Danicic
et al. Les expériences montrent d’une part que la version extraite de Coq est par-
ticulièrement lente, et d’autre part que notre algorithme optimisé est notablement
plus rapide que l’algorithme de Danicic et al.
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Chapter 1

Introduction

Nowadays, we are surrounded by software in our everyday lives. It is in our
computers, in our tablets and in our smartphones. On these devices, we run a
wide variety of programs, some provided by the manufacturer, some recommended
by third parties, such as antivirus programs, and some that we choose to install
ourselves to take advantage of the functionalities they offer. Using such complex
systems, it is not rare to experience bugs. Does this mean that developers refuse
to spend time on ensuring that their programs run correctly? Actually, this is not
pure laziness from the developers and can be explained.

First, as presented above, programs are run on a wide variety of platforms
which all have their specificities. Writing a program that behaves well on every
hardware and on every operating system is really a hard task. When, moreover,
programs rely on the interactions with other programs, it increases the probability
of the occurrence of a bug.

Second, one can argue that, if developers follow a guide of good practices,
they can avoid introducing a lot of bugs in their developments. This includes
respecting some coding rules, having a good test suite and taking into account
bugs reported by users using tools like bug tracking systems. The remaining bugs
may be considered too rare by developers to be worth spending more time on
detecting and correcting them. This allows them to focus on the functionalities
of their software, whose presence will be far more visible than the presence of the
few bugs that were not eliminated.

Third, a lot of the programs that we use are or contain free software, which
is often written fully or partly by volunteers who can argue that, since they work
freely, they are not forced to guarantee anything about the quality of their software.
This is even written clearly in the header template of one the most famous free
license, the GNU GPL license [FSF07]:

This program is distributed in the hope that it will be useful, but

1
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WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

Fourth, is the presence of a few minor bugs so annoying? If it concerns non-
critical software, such as a multimedia player, it can be worth benefiting from its
functionalities at the cost of a few bugs. If movies are shown correctly most of the
time, it can be acceptable that sometimes the sound is not of good quality or even
that the window closes without notice.

But if the presence of bugs can be tolerated in non-critical software, it is clearly
not acceptable in critical software, when a large sum of money or human lives are
at stake, since the consequences are quickly catastrophic. This kind of software
can be found for instance in nuclear power plants and aircraft systems. To give
an idea of the possible consequences of a bug in a critical system, the first Ariane
5 rocket, which exploded subsequent to a software bug [Lio96], was estimated at
hundreds of millions of dollars. For this kind of software, it is thus important to
detect and eliminate each and every bug.

To ensure the absence of bugs in software, we can make use of techniques called
formal verification methods.

1.1 Formal Verification
Formal verification denotes the use of formal methods, techniques using mathemat-
ical representations of objects to mathematically reason about them, for software
verification, the activity of proving that a program respects a given specification,
or at least satisfies some key properties. One property of interest is the absence
of runtime errors, such as divisions by zero and invalid memory accesses, that
could prevent the normal execution of the program. Formal methods are particu-
larly adapted to manipulate software, since programs are written in programming
languages which are formal languages with a precise semantics.

Well-known examples of formal verification techniques include:

• Model checking [CES86]: model checking combines abstraction and exhaus-
tive space exploration to show that a program respects a given specification.

• Symbolic execution [Kin76]: the program is executed with symbolic values,
branching execution on conditional statements.

• Abstract interpretation [CC77]: the program is executed, but instead of
connecting variables to concrete values, they are connected to abstractions
that over-approximate the concrete values they could take in the concrete
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executions. For example, an integer variable can be connected to its sign or
to an interval containing the possible values it could take.

• Deductive verification [Hoa69]: a program is proved to satisfy a specification
using techniques à la Hoare.

Note that the four techniques presented all manipulate the program without con-
cretely executing it. Such techniques are called static analyses.

Formal verification methods can be costly. Their cost can increase greatly
with the size of the program under study. Reducing the size of the program under
certain conditions can help apply certain techniques that would be too costly
otherwise.

1.2 Program Slicing
Program slicing is a method allowing to extract from a program a simpler program
that has the same behavior with respect to a given criterion, called the slicing
criterion. Typically, the slicing criterion is a statement of the program, and the
slicing removes the instructions that have no impact on that statement. The
resulting program is called the program slice.

Usually, a slice has to be a valid program. In particular, it has to be executable.
However, some works in the literature define slices as subsets of statements of the
original program. Such slices may be non-executable. This is discussed e.g. in
[Tip95]. In this thesis, though, we consider only executable slices.

The original version introduced by Mark Weiser in 1981 [Wei81] is now called
static backward slicing, where “static” means that the program slice must preserve
the behavior of the initial program for all possible inputs, and “backward” means
that the preserved statements are those that impact directly or indirectly the
slicing criterion, since such statements are selected in a backward search from the
criterion.

The opposite notions to “static” and “backward” exist, and are informally
described below.

• In contrast with static slicing, dynamic slicing [KL88] computes a program
slice valid for a given input instead of all possible inputs. Dynamic slicing
can thus be more precise than static slicing.

• In contrast with backward slicing, forward slicing [BC85, RB89] preserves the
statements impacted by the slicing criterion (selected in a forward search),
instead of those that impact the slicing criterion.
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The classifications static/dynamic and backward/forward are orthogonal. There
exist the four variants (e.g. [Ven91]): backward static, forward static, backward
dynamic and forward dynamic slicing.

A lot of other flavors of program slicing have been proposed and explored. Here
is a non-exhaustive list.

• Quasi-static slicing [Ven91] lies between static and dynamic slicing. Some
subset of the input space is considered, but is not restricted to a singleton
like dynamic slicing.

• Conditioned [CCL98], precondition-based [LCYK01], postcondition-based
[CH96], specification-based [LCYK01] and assertion-based slicing [BdCHP12]
are various forms of program slicing that use parts of contracts as slicing cri-
terion.

• Amorphous slicing [HBD03]. Most of the variants of slicing allows only to
remove statements (or replacing them with no-op statements). In this kind
of slicing, other semantic-preserving transformations are allowed.

• Observation-based slicing [BGH+14], also called ORBS, computes the slice
differently from the other variants. Instead of first determining which state-
ments have to be removed and then computing the slice, ORBS proposes
to first remove some statements from the original program and then checks
whether the resulting program still compiles and preserves the behavior of
the original program on some inputs. If this is the case, the program is said
to be a slice of the original program. The strength of ORBS is that it can
slice programs written in multiple languages.

• Abstract slicing [MZ17] uses as slicing criterion a property of some data
instead of its precise value, allowing to produce smaller slices.

• Specialization slicing [AHJR14] proposes to revisit slicing using ideas taken
from the field of partial evaluation.

While applying slicing to a given language requires to handle the specific fea-
tures of the language, some works (e.g. [FRT95, WZ07, WLS09]) observe that
the concept of slicing is independent of the underlying language, and propose
language-independent definitions.

Program slicing has proved to be useful in a lot of areas. It has been pro-
posed for program understanding [KR98, HBD03], software maintenance [GL91],
debugging [ADS93, KNNI02], testing [Bin98], program integration [BHR95] and
software metric [PKJ06].
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(b) Slice with respect to instruction l

Figure 1.1 – Schematic illustration of slicing applied to program understanding

To give a better intuition on slicing and illustrate one of its uses, let us explain
informally how it is used to help program understanding. Consider a program with
an instruction of interest denoted l. This program is schematically represented in
Figure 1.1a. Instruction l is surrounded by many other instructions, so that it is
rather difficult to understand its purpose in the program. To detect the statements
that are needed to execute l and remove the other ones, we apply backward slicing
on the program with respect to instruction l. The resulting slice is represented in
Figure 1.1b. The structure of the slice reveals that only l1 and l2 are needed to
understand the context in which l is executed. We can study the three instructions
in isolation in the slice, and, since backward slicing preserved all the instructions
impacting l, we know that they have the same interaction in the initial program.
Note that if we are interested in the statements impacted by l rather than those
impacting l, we can apply forward slicing instead of backward slicing.

Program slicing is not a purely theoretic domain. There exist implementations
of slicers for real programming languages. Some of them are rather on the research
side (for instance, the Frama-C platform [KKP+15] has a slicing plug-in for the
C language; Indus [RH07] is a slicer for concurrent Java programs with an Eclipse-
based GUI), while some are available in the industry (for instance, Codesurfer
[ART03] for C and C++).

Several surveys were conducted on program slicing. The best-known is prob-
ably the one written by Frank Tip [Tip95] in 1995, but it is becoming a bit old.
Other surveys include [BG96, BH04, Kri05, XQZ+05, Sil12].

In this thesis, we are interested in static backward program slicing that pro-
duces executable slices. In the remainder of this document, unless stated otherwise,
the word “slicing” will refer to this version of slicing.

One goal of slicing is to produce the smallest possible slice, i.e. the slice with the
minimal number of statements. But computing the minimal slice is undecidable
[Wei84]. Slices are thus conservative over-approximations of the minimal slice.
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More precisely, the statements preserved in the slice are all the statements that
may have an influence on the slicing criterion.

Traditionally, in static backward slicing, the impact of a statement on another
one is modeled using control dependencies and data dependencies [FOW87]. In
a given program, statement s2 is control dependent on statement s1 if the exe-
cution of s1 influences whether s2 is executed. Statement s2 is data dependent
on statement s1 if a variable read in s2 may have been last assigned at s1. The
slice contains all the statements on which the slicing criterion is directly and indi-
rectly control or data dependent. We present this approach in much more detail
in Chapter 4.

1.3 Slicing for Verification
Static backward slicing appears like a good candidate for reducing the size of a
program and applying formal verification techniques that otherwise would be too
expensive. But the use of program slicing in the context of program verification
requires a solid theoretical foundation that has not been clearly established. This
means that either we refuse to use slicing for verification because of this lack of
foundation or we still decide to use it at the cost of a reduced confidence in the
results.

Below we detail two techniques that successfully apply slicing to help verifica-
tion.

Chebaro et al. [CKGJ12] describe a method called sante, that takes advantage
of static backward slicing to help detect runtime errors in a given C program p.

The sante method has three steps. In a first step, a value analysis of p
is conducted using abstract interpretation that detects possible runtime errors
(alarms) such as divisions by zero, out-of-bounds array accesses and some cases
of invalid pointers. This analysis detects all such errors, but can produce false
positives. The objective of the following steps is to classify the alarms as true
errors or as false positives. In a second step, p is sliced into one or several slices.
The resulting slices p1, . . . , pn each contain a subset of alarms. The third step
applies dynamic analysis to each slice pi and tries to find, for each alarm in pi,
an input that triggers the associated error. This analysis classifies each alarm, or
returns unknown if it does not succeed in classifying it.

The sante method was implemented in the Frama-C platform [KKP+15].
First experiments [CKGJ12, CCK+14] showed that the approach of sante is ef-
fective. Especially, combining value analysis and slicing allows the verification to
be on average 43% faster when applying sante with slicing than when apply-
ing the dynamic analysis directly on the initial program (without even a value
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analysis).

Slabý et al. [SST12] also propose to use program slicing in a verification process.
More precisely, their goal is to prove that a program verifies a property described
by a finite state machine. The architecture of their technique is similar to that of
sante. First, the program is instrumented to reflect the behavior of the finite state
machine in the program. Second, the program is sliced such that the slice has the
same behavior as the original program with respect to the instrumentation. Third,
the slice is symbolically executed to determine if an error of the instrumentation
can be reached.

Early experiments on C programs show that slicing removes on average 60% of
the code of the instrumented programs. Slabý et al. implemented their technique
in a tool called Symbiotic that operates on C programs [SST13].

sante and Symbiotic are therefore two approaches taking advantage of pro-
gram slicing in the context of verification. However, the soundness of these ap-
proaches was not clearly established by the authors. In this thesis, we aim to
provide a justification of the use of slicing in these techniques to provide a high
level of confidence in their results.

1.4 Contributions and Outline
This thesis brings the required theoretical foundation to support the use of program
slicing in the context of verification. We focus on the detection of errors determined
by the program state such as runtime errors. Especially, we answer the following
questions about the link between the presence or the absence of errors in a program
and in its slices:

• If we prove the absence of errors in a slice, what can be said of the original
program?

• If an error is detected in a slice, does the same error occur in the original
program?

We model our problem using a simple representative imperative language with
potential runtime errors and non-terminating loops. Allowing the presence of non-
terminating loops in addition to runtime errors is important since they occur in
realistic programs and cannot be excluded before running some verification on
them.

In this general context, the classic soundness property of program slicing does
not hold. Indeed, since non-terminating loops and runtime errors can both pre-
vent the execution of the following statements, removing them by slicing breaks the
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equivalence of behaviors between the original program and the slice. The straight-
forward solution would be to add more dependencies than in the standard case.
Instead, we introduce relaxed slicing that keeps few dependencies and establish an
appropriate soundness property. This soundness property, weaker than the classic
one, still allows us to establish the link between the presence or the absence of
errors in the original program and in its slices, and thus answer the two questions
asked above.

To ensure the highest confidence in the results as possible, the whole work
(the definition of relaxed slicing, the soundness property and the consequences for
verification) is formalized in the Coq proof assistant for a language representative
for our purpose. A certified slicer for this language can be automatically extracted
into OCaml from this formalization.

To apply our results on richer languages, and still be able to extract a certi-
fied implementation, we propose to formalize a generic, i.e. language-independent,
slicer. The first step in this direction is the formalization of an algorithm comput-
ing generic control dependence.

We formalize a generalization of control dependence on arbitrary finite directed
graphs [DBH+11] taken from the literature in the Coq proof assistant. This in-
cludes both the theoretical concepts, an iterative algorithm to compute from a
subset of vertices the smallest superset closed under control dependence, and a
proof that this algorithm is correct.

The formalized algorithm is iterative but does not fully take advantage of
its iterative nature to share information between iterations. We propose a new
iterative algorithm that shares intermediate results between iterations and is thus
more efficient than the original one. This new algorithm being more complex,
its proof of correctness relies on more complicated invariants than the original
one. We choose the Why3 proof system to formalize it, to take advantage of the
automatic provers that it can call. The formalization includes all the necessary
concepts, the algorithm and a proof of its correctness.

To compare experimentally the original algorithm and our optimized version,
we implement both in OCaml and run them on thousands of randomly generated
graphs with up to thousands of vertices. These experiments show that our new
algorithm clearly outperforms the original one.

This thesis is structured as follows.

Chapter 2 presents the two main proof systems that we use in this thesis: the
Coq proof assistant and the Why3 platform. In particular, it illustrates how to
prove the correctness of an insertion sort in these systems.

Chapter 3 introduces some notations that are used in the rest of the thesis. It
is written to serve as a reference.
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Chapter 4 presents classic static backward slicing on a simple imperative lan-
guage. It recalls the main definitions of program slicing and illustrates them on
this language.

The following chapters present the main contributions of this thesis. I was
the main contributor of these achievements and the main author of the papers
[LKL16a, LKL16b, LKL18a, LKL18b, LKL18c].

• Chapter 5 reuses and extends the definitions of Chapter 4 for the same lan-
guage augmented with errors. On this language, it justifies the use of slicing
for verification. Then it presents the related work on slicing for verification.
In particular, this chapter introduces:

– the notion of relaxed slicing for structured programs with possible errors
and non-termination, which keeps fewer statements than it would be
necessary to satisfy the classic soundness property of slicing;

– a new soundness property for relaxed slicing using a trajectory-based
denotational semantics;

– a characterization of verification results, such as absence or presence
of errors, obtained for a relaxed slice, in terms of the initial program,
that constitutes a theoretical foundation for conducting verification on
slices;

– the formalization and proof of correctness of relaxed slicing in Coq for a
representative language, from which a certified slicer for the considered
language can be extracted.

This work has been published in [LKL16a, LKL16b]. An extended version of
it has been published in [LKL18a]. The Coq code discussed in this chapter
is available online [Léc16].

• Chapter 6 presents the formalization in Coq of the theory of control depen-
dence on finite directed graphs of [DBH+11], together with the associated
algorithm and the proof of its correctness. It first reviews the domain of
control dependence, then presents and illustrates some concepts introduced
in [DBH+11], the algorithm and the proof of its correctness.
This work has been published in [LKL18b, LKL18c]. The Coq code presented
in this chapter is available online [Léc18].

• Chapter 7 presents and illustrates a new algorithm optimizing Danicic’s al-
gorithm by taking benefit from preserving some intermediate results between
iterations.
This work has been published in [LKL18b, LKL18c].
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• Chapter 8 describes in detail the mechanized correctness proof of this new
algorithm in the Why3 tool that also includes a formalization of the necessary
concepts.
Part of this work has been published in [LKL18b, LKL18c]. The Why3 code
presented in this chapter is available online [Léc18].

• Chapter 9 presents the implementation of both algorithms in OCaml, their
evaluation on random graphs and a comparison of their execution times.
Part of this work has been published in [LKL18b, LKL18c]. The OCaml
code of the implementations is available online [Léc18].

Chapter 10 concludes and presents some perspectives.



Chapter 2

Presentation of Coq and Why3

In this chapter, we present two programs that allow to write computer-aided proofs
and that are used to machine-check the main results of this thesis (see Chapters 5,
6 and 8): the Coq proof assistant [Coq17, BC04] and the Why3 proof platform
[Why18, FP13].

The main difference between the two programs is their level of automation.
Coq is an interactive theorem prover, and thus it requires human interaction, at
least to some extent. On the contrary, the strength of Why3 is that it can call
automatic solvers as backends to prove the goals automatically.

This chapter presents Coq in Section 2.1 and Why3 in Section 2.2. In each
chapter, we briefly introduce the tool, before illustrating it on the proof of an
insertion sort.

2.1 Coq

2.1.1 Presentation
Coq is a proof assistant, that has been successfully used to produce both theoretical
results, such as the four-color theorem [Gon08], and more practical ones, such as
the formalization of a C compiler called CompCert [Ler09].

From a user point of view, Coq allows to:

• define objects (e.g. lists of natural numbers) and functions (e.g. a sorting
function) in a pure functional language;

• define properties about these objects (e.g. the sortedness of a list) in higher-
order logic;

11
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• state theorems (e.g. the list returned by the call of the sorting function on
an arbitrary list is sorted);

• prove these theorems.

As a programming language, Coq is a rather unusual one. From a user per-
spective, there exist two languages. The first language, called Gallina, can be
used for the three first points listed above: defining objects, their properties and
stating theorems. The second language is used for the fourth point: proving the
theorems. When we want to prove a theorem, what we get is a list of hypotheses
and a conclusion to be proved. This is called a goal. This second language defines
instructions, called tactics, that allow to reduce a goal to a simpler one, such that
if we prove the second one, we have a proof of the first one. After applying several
tactics, we can reduce the initial goal to a list of basic goals that can be proved in
a straightforward manner, which proves the theorem.

While at first sight there seem to be two really different languages, the Coq
kernel which is the trusted base of Coq, understands only one, Gallina. Coq
indeed relies on the Curry-Howard correspondence, which means that the logic is
encoded in the typing system. More precisely, certain types are seen as formulas,
and objects of these types are seen as proofs of these formulas. Checking that
an object is a proof of a theorem comes down to checking that it has the right
type. Tactics are just user-friendly instructions that allow the user to manipulate
the goals in an intuitive manner. But behind the scenes, a Gallina term is built
progressively. At the end of the proof, the type-checker verifies that the term built
by the tactics is indeed a proof of the theorem, i.e. has the correct type.

For the interested reader, the theory behind Coq is called the Calculus of
Inductive Constructions. We do not present this theory in this chapter. Rather,
we focus on a presentation of Coq as a tool. The next section presents the concrete
syntax and some basic mechanisms in the context of the proof of correctness of an
insertion sort.

2.1.2 Proof of Correctness of an Insertion Sort
In this section, we show how to prove an insertion sort on lists of natural numbers
in Coq.

First, we recall the definitions of the standard types that we need: natural
numbers and lists. Figure 2.1 presents the definitions of these two types in the
Coq standard library. Both are introduced by keyword Inductive and end with
a dot “. ”. This is a general rule about commands in Gallina. They begin with
a keyword and end with a dot. This kind of definition with Inductive defines
inductive types. An inductive type is introduced with some constructors that are
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Inductive nat : Set :=
| O : nat
| S : nat → nat.

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A → list A → list A.

Figure 2.1 – Definitions of natural numbers and lists in the standard library

the only way to construct objects of this type. In the case of nat, a natural number
(of type nat) is either O, interpreted as zero, or S n, interpreted as the successor
of n, i.e. n +1. Likewise, a list (of type list) is either the empty list (nil) or the
addition of an element to a list (cons).

Three remarks can be made about these definitions. First, the types are defined
in the sorts Set and Type. This means that they are considered as datatypes (as
opposed to logic types). In this context, Inductive introduces classic algebraic
datatypes. Second, one can observe that the definition list is parametrized by A
of type Type. This defines list as a polymorphic type. For instance, list nat is
the type of lists of natural numbers; list (list nat) is the type of lists of lists
of natural numbers. Third, constructors, and more generally functions in Coq,
are curried. This means that they receive their arguments one by one instead of
receiving a tuple once. For instance, the type assigned to cons in the definition
of list is A → list A → list A. This means that it has two arguments: one
of type A, the other of type list A. We can provide them one after the other.
For instance, cons 2 is a function that adds the number 2 at the front of a list.
cons 2 nil is a list with 2 as its single element.

We can now define our sorting algorithm. It is given in Figure 2.2. It is made
up of two functions. In terms of notations:

• [] denotes the empty list;

• [ n] denotes a list with a single element, n;

• “ :: ” is an infix notation for cons; m :: l’ can be read as cons m l’;

• “<=?” is the less than or equal operator on nat; it returns a Boolean of type
bool.

The first function, insert, inserts a number into a list. insert n l searches
for the first element in l that is less than or equal to n and inserts n just before
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Fixpoint insert (n : nat) (l : list nat) :=
match l with
| [] ⇒ [n]
| m:: l’ ⇒ if n <=? m then n::l else m::insert n l’
end.

Fixpoint insertion_sort (l : list nat) :=
match l with
| [] ⇒ []
| m:: l’ ⇒ insert m (insertion_sort l’)
end.

Figure 2.2 – Definition of the sorting algorithm in Coq

that element. insert is written to insert correctly the number in an already sorted
list, so that the resulting list is also sorted. This definition uses two features that
have not been presented yet: recursion and pattern-matching.

insert is indeed a recursive function. It is defined using keyword Fixpoint
that introduces recursive functions in Coq. The particularity of recursive functions
in Coq is that they must terminate. This is for consistency reasons, since non-
terminating functions could lead in certain circumstances to a proof of False, from
which we could prove anything. Coq can automatically detect that some function
terminates, if one argument is structurally smaller in the recursive calls than in
the definition. Indeed, this guarantees that there cannot exist an infinite chain
of recursive calls. In the case of insert, l is the decreasing argument, since the
argument of the recursive call in the case where l is non-empty is l’ which is
strictly smaller than l. This is shown by the message produced by Coq when it
reads the definition of insert:

“insert is recursively defined (decreasing on 2nd argument).”
If we try to define a non-terminating function, Coq refuses the definition. For
example, if we replace l’ in the recursive call with l, Coq fails with the message:

“Error: Cannot guess decreasing argument of fix.”

Coq proposes several mechanisms to define functions that do not respect this
criterion but still terminate. In this relax setting, one can define a custom well-
founded order and prove that some argument of the recursive function is smaller
in the recursive calls than in the definition with respect to this well-founded order.
This is briefly discussed in Section 6.6.5.

The other feature that the definition of insert uses is pattern-matching that
allows to perform case-analysis on an object that has an inductive type. This is
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Inductive Sorted : list nat → Prop :=
| Sorted_nil : Sorted []
| Sorted_single : forall n, Sorted [n]
| Sorted_cons : forall n m l, n <= m → Sorted (m::l) → Sorted (n::m::l).

Figure 2.3 – Definition of the notion of sortedness in Coq

the case of list l, that is either the empty list ([]) or a non-empty list (m:: l’).
The main function of this sorting algorithm is insertion_sort. If the list

given as an argument is empty, then the empty list is returned. It the list is non-
empty, the tail of the list is recursively sorted by insertion_sort l’ and the first
element is inserted at the right position using insert.

Now that we have defined the sorting algorithm, we want to prove that it is
correct. We first need to define what it means to be sorted. This is defined using
an inductive predicate. The exact definition is shown in Figure 2.3. Actually, a
more general notion is defined in the Coq standard library, but we do not use it
for pedagogical reasons.

Sorted operates on lists of type list nat, i.e. on lists of natural numbers, and
returns in Prop that is the sort of the logical formulas. Due to the Curry-Howard
correspondence, we recognize familiar concepts that we have already used in Type.
First, the definition of Sorted uses the same construction as the definitions of
nat and list. It is also defined inductively. In the context of logical formulas,
inductive definitions introduces predicates à la Prolog. Second, in Sorted_cons,
one can observe that the arrow “→ ” that is used to denote a function type is also
used to denote implication. This is because, in the Curry-Howard correspondence,
an implication P → Q is really the type of functions transforming proofs of P into
proofs of Q. Like the type of functions, the implications are curried. Instead of
writing P ∧ Q → R (i.e. “if P and Q then R), we rather write P → Q → R (i.e. “if P
then if Q then R”).

By definition of Sorted, a list of natural numbers is sorted if and only if:

• it is empty (Sorted_nil), or

• it contains a single element (Sorted_single), or

• it contains at least two elements, the first one is less than or equal to the
second one, and the tail of the list is sorted (Sorted_cons).

Note that in the definition of Sorted, we use the notation “<=”, while in the
definition of insert we used the notation “<=?”. Actually, “<=?” is the Boolean
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operator that can be used to write the functions. “<=” is the logical operator
which can be used in the logical world. What we can prove is that “<=?” is
a correct implementation of “<=”, i.e. that for two natural numbers n and m,
n <=? m returns true if and only if n <= m. This is proved in the Coq standard
library:
Lemma leb_le : forall n m : nat, (n <=? m) = true ↔ n <= m.

What we want to prove about insertion_sort is that it sorts correctly. In
other words, we want to prove that the returned list is sorted and has the same
elements as the input list. For the sake of concision, we prove only that the
returned list is sorted.1 In the language of Coq, this can be written like this:
Theorem insertion_sort_sorted : forall (l : list nat),

Sorted (insertion_sort l).
To prove this result about insertion_sort, we need to establish some results

about insert. Again for the sake of concision, we admit that insert inserts
correctly an element in a sorted list. In Coq, this corresponds to the following
axiom:
Axiom insert_sorted : forall (n : nat) (l : list nat), Sorted l

→ Sorted (insert n l).
With this axiom, the proof insertion_sort_sorted is simple. We give it

in Figure 2.4. It is introduced with the keyword Proof. This is a simple proof
by induction. The first tactic, intros, introduces l in the context. This is the
equivalent of the English sentence: “Let l be an arbitrary list of natural numbers”.
The second tactic, induction l, performs induction on l. This produces two goals,
each introduced by a dash.

• The first goal is the base case. We need to prove that the theorem holds if
l is the empty list, i.e.

Sorted (insertion_sort [])

The tactic simpl simplifies insertion_sort [] into [] . Thus, what we need
to prove is:

Sorted []

This is exactly Sorted_nil, that we use with tactic apply.
1The full proof is available on http://perso.ecp.fr/~lechenetjc/tools/.

http://perso.ecp.fr/~lechenetjc/tools/
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Theorem insertion_sort_correct : forall (l : list nat),
Sorted (insertion_sort l).

Proof.
intros. induction l.
− simpl. apply Sorted_nil.
− simpl. apply insert_sorted. assumption.

Qed.

Figure 2.4 – Proof that insertion_sort returns a sorted list

• The second goal is the induction step. We need to prove that, given a number
n and provided that Sorted (insertion_sort l) (the induction hypothesis),
we have:

Sorted (insertion_sort (n::l)

We first use simpl to compute insertion_sort (n::l). This gives:

Sorted (insert n (insertion_sort l)

This is where we can apply the axiom insert_sorted. We obtain:

Sorted (insertion_sort l)

This is the induction hypothesis. We conclude with assumption that proves
the goal if the conclusion is one of the hypotheses.

We end the proof with Qed. Coq verifies that the proof term built by the tactics is
correct and defines insertion_sort_sorted. Theorem insertion_sort_sorted
thus becomes an established fact that can be used in the rest of the development.

One last feature that we want to highlight is the extraction mechanism, that
allows to extract any Coq function (in Type) into a functional language such as
OCaml, Haskell or Scheme. In this thesis, we use several times the extraction
mechanism into OCaml (see Sections 5.5.1 and 6.6.1). For example, we can extract
function insertion_sort. The command is:

Extraction insertion_sort.
The OCaml code that is produced is shown in Figure 2.5. This allows to produce
an executable version of function insertion_sort. If we trust the extraction
mechanism, since we have proved that insertion_sort is correct in Coq, we can
describe the OCaml version as a certified implementation of a insertion sort.
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(** val insertion_sort : nat list -> nat list **)

let rec insertion_sort = function
| Nil -> Nil
| Cons (m, l’) -> insert m (insertion_sort l’)

Figure 2.5 – Extraction of insertion_sort into OCaml

Obviously, this example has covered only a small portion of the principles of
Coq. This should be sufficient, though, to understand the high-level structure of
the proofs. The interested reader can refer to the official website [Coq17] for more
resources about Coq. Two of them [PCG+15, BC04] are particularly appropriate
for beginners.

2.2 Why3

2.2.1 Presentation
Why3 is a proof platform that can be used at least for two purposes:

• It can be used as an interface with backend provers. In this use case, Why3
is only seen as a logical language with convenient access to multiple provers.

• Why3 can also be used as a tool to model algorithms. They can be written
in a language called WhyML. This language allows both to write programs
in a language similar to OCaml and to write logic in a first-order logic with
inductive predicates. Our use of Why3 falls into this second category.

To prove programs written in WhyML, we use deductive verification à la Hoare.
Programs are given specifications in the form of contracts listing some precondi-
tions and postconditions. To prove that these contracts are valid, we annotate the
function bodies. We use three types of annotation:

• We annotate each loop with loop invariants that abstract the behavior of
the loop body. If we prove that the invariants hold when entering the loop
and are preserved by a loop iteration, we obtain that they also hold when
leaving the loop.

• We annotate each loop with an expression called a variant. If we prove that,
after each iteration, this variant is smaller than before the iteration with
respect to a given well-founded order, we show that the loop cannot run an



2.2. WHY3 19

infinite number of times and thus terminates. In the simple cases, the variant
is a non-negative integer expression and the order used is the standard less
than order on integers.

• We add assertions at specific points in the program. They state that some
intermediate fact holds at the point where they are located. They are not
strictly needed, but help the proof.

We present some elements of the syntax of WhyML on the proof of an insertion
sort.

2.2.2 Proof of Correctness of an Insertion Sort
In this section, we show how to prove an insertion sort on arrays of integers in
Why3. Contrary to the insertion sort that we have presented for Coq in Sec-
tion 2.1.2, we do not operate on lists but on arrays, and the sorting is performed
in-place. It is quite possible to prove the same sorting algorithm on lists,2 but
we prefer to present an imperative program rather than a functional one. This
resembles more the kind of programs we prove with Why3 in this thesis (see Sec-
tion 8.5).

Like in the previous section, for the sake of concision, we do not prove that the
sorting function preserves the contents of the array. We only prove that the array
at the end of the function is sorted.3

We first define a logical predicate sorted to define what is a sorted array:
predicate sorted (a : array int) (i : int) (j : int) =

forall k l. i <= k <= l < j -> a[k] <= a[l]

Given an array of integers a and two integers i and j, sorted a i j states that a
is sorted between i (included) and j (excluded). We use a definition of sortedness
that compares each pair of indices in the array. We prefer this definition to the
definition in Section 2.1.2 that defines sortedness by comparing only consecutive
indices. Since the less than order on natural numbers is transitive, both definitions
are equivalent. But the one that we use in this section is manipulated more easily
by SMT provers. In particular, it does not require to perform inductive reasoning.

The definition of annotated algorithm is given in Figure 2.6. It has one post-
condition introduced by ensures on line 2, which states that at after the call to
insertion_sort, the array a is sorted between the indices 0 and Array.length a,
i.e. is fully sorted.

2The proof of the insertion sort on lists is presented in the gallery of examples of Why3
(http://toccata.lri.fr/gallery/insertion_sort_list.en.html).

3The full proof is available on http://perso.ecp.fr/~lechenetjc/tools/.

http://toccata.lri.fr/gallery/insertion_sort_list.en.html
http://perso.ecp.fr/~lechenetjc/tools/
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1 let insertion_sort (a : array int)
2 ensures { sorted a 0 (Array.length a) }
3 =
4 for i = 0 to Array.length a - 1 do
5 invariant { sorted a 0 i }
6 let tmp = a[i] in
7 let j = ref i in
8 label Loop in
9 while !j > 0 && a[!j-1] > tmp do

10 invariant { 0 <= !j <= i }
11 invariant { forall k. 0 <= k < !j -> a[k] = a[k] at Loop }
12 invariant { forall k. !j+1 <= k < i+1 -> a[k] = a[k-1] at Loop }
13 invariant { forall k. !j+1 <= k < i+1 -> tmp <= a[k] }
14 variant { !j }
15 a[!j] <- a[!j-1];
16 j := !j -1
17 done;
18 a[!j] <- tmp
19 done

Figure 2.6 – Definition of the sorting algorithm in Why3
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Figure 2.7 – Schematic relation between (a at Loop) and a

The body of the function performs a standard insertion sort on a. We sort
gradually the array, storing the sorted sub-array in the left part of array a. To
process the next element, we insert it at the right index in the sorted sub-array.
For that, we shift all the elements of the sorted sub-array that are greater than
the new element one cell to the right. This leaves a free cell where we insert the
new element.

More precisely, we process each value in a one after the other in the loop on
line 4. Let us consider iteration (i+1)th. First, we copy the value of a at index i
in variable tmp (on line 5). Then, we traverse the array backwards from i with the
loop on line 9. The current inspected index is stored in reference j. References
are the simplest way to have mutable variables in WhyML and OCaml. While !j
(the value contained in j) is greater than zero, and the value at index !j - 1 is
greater than a[i], we copy a[!j - 1] into a[!j] (line 15) and decrement j (line
16). If we reach the beginning of a or if we find before some j such that a[!j-1]
is greater than a[i], we insert a[i] into a at index !j (line 18).

To prove the correctness of the function, we add loop invariants and variants
to the loops on line 4 and 9.

The invariant of the outer loop on line 4 is simple. It states that the sub-array
between indices 0 and i is sorted.

The invariants of the inner loop on line 9 are a bit more complex. The first
one (on line 10) describes the range of values taken by !j.

The next two invariants relate the contents of a after some iterations of the
inner loop and the contents of a when entering the inner loop. For that, we
introduce a label named Loop on line 8 to refer to the point of the program just
before the loop. In the invariants, we use the expression at Loop to refer to the
value of a variable at the point of the program designated by Loop, i.e. its value
before entering the inner loop. After some iterations, a can be described based
on a at Loop, as illustrated in Figure 2.7. The left part (between 0 and !j) is
identical to the left part of a at Loop, the right part (between !j+1 and i+1) is
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the right part of a at Loop moved one cell to the right. The value of a at index
!j is not specified.

The last invariant allows us to prove that we insert a[i] at the right index. It
states that if we have not inserted it yet when testing index !j-1, all the shifted
elements, i.e. those at indices between !j+1 and i+1, are greater than tmp, i.e.
a[i].

Let us briefly explain how the invariants of the inner loop can prove that the
insertion performed at line 18 is correct, i.e. guarantees the sortedness of the left
part of a. When leaving the inner loop, we know that either !j is equal to zero,
or a[!j-1] is less than or equal to tmp. If !j is equal to zero, then by the third
invariant of the inner loop, the section of a between indices 1 and i+1 is sorted,
and by the fourth invariant, tmp is smaller than all the elements in this section.
By inserting tmp at index 0 on line 18, we get an array a that is sorted between
indices 0 and i+1. If a[!j-1] is less than or equal to tmp, then by the second
invariant, the left section (between indices 0 and !j) is sorted, and all its elements
are smaller than or equal to a[!j-1], and thus are smaller than or equal to tmp.
By the third invariant, the right section (between indices !j+1 and i+1) is sorted
too, and all its elements are greater then or equal to tmp by the fourth invariant.
By inserting tmp at index !j, we get an array a is sorted between indices 0 and
i+1.

In Why3, we do not implement this reasoning manually. We take advantage
of one of the provers it can call. This includes the following SMT solvers: Alt-
Ergo [Alt16, BCCL08], CVC4 [CVC17, BCD+11] and Z3 [Z16, dMB08], and a
theorem prover called E [E17, Sch13]. In the case where some goal is too difficult
for the automatic provers, Why3 can also call Coq to prove it manually. The
strength of Why3 is that it can use a different prover for each goal. For example,
we can use Alt-Ergo to prove most of the goals, then CVC4 on the remaining ones,
and then Coq if some goals are still unproved. Section 8.5 shows a non-trivial use
case where the five provers that we have just mentioned are used together. For
this simple use case, though, all the goals are proved automatically by Alt-Ergo in
0.12s.

The insertion sort on arrays is also formalized and proved in the gallery of
examples of Why3.4 More generally, a rich variety of resources is available on
the Why3 website [Why18], including the manual, the gallery of examples and
some links to publications. Note however that the version of Why3 that we use
in this thesis is the development version.5 The reader might experience some
differences between what is presented in this thesis and what is available online

4http://toccata.lri.fr/gallery/insertion_sort.en.html
5https://gitlab.inria.fr/why3/why3

http://toccata.lri.fr/gallery/insertion_sort.en.html
https://gitlab.inria.fr/why3/why3
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which is compatible with the current release (0.88.3). The main ideas are the
same, though.





Chapter 3

Notations

This chapter presents the few notations that are used in this thesis. This is just a
compilation of them that can be used as a reference. It can be skipped on a first
reading.

3.1 Program and Trajectory Notations

3.1.1 Programs
We have three types whose exact definitions are left abstract:
• labels (often denoted l);

• arithmetic expressions (often denoted e);

• Boolean expressions (often denoted b).
Using these three types, we can give an explicit definition of the syntax Stmt

of statements (see Chapter 4 and Chapter 5). Statements are often denoted s.

The syntax Prog of programs is defined as a (possible empty) list of statements.
Formally:

Prog ::= Stmt∗

A program is either empty (denoted λ), or a finite sequence of statements (denoted
s1; . . . ; sk, where s1, . . . , sk are statements). Programs are often denoted p.

3.1.2 Trajectories
States. States are mappings associating integer values to variables. They are often
denoted σ. The set of states is denoted Σ. Two notations are used to manipulate
states:
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26 CHAPTER 3. NOTATIONS

• A state can be defined explicitly, giving the extensive list of bindings. The
state σ = {x1 7→ v1, . . . , xn 7→ vn} associates, for any i such that 1 ≤ i ≤ n,
the value vi to the variable xi.

• A state can be defined using another state, by adding one or more bindings
to it. If one of the added bindings affects a variable which already has a value
in the original state, it overrides the previous value. If σ is a state, σ[x← v]
adds the binding x 7→ v to the state σ. We can update multiple variables at
the same time, if these variables are pairwise distinct. For example,

σ[x← v, y ← w]

adds the bindings x 7→ v and y 7→ w to σ.
Given the variables x, y and z and the state σ = {x 7→ 0, y 7→ 1},

– σ[x← 2] = {x 7→ 2, y 7→ 1};
– σ[x← 0] = {x 7→ 0, y 7→ 1};
– σ[z ← 2] = {x 7→ 0, y 7→ 1, z 7→ 2}.

Trajectories. Trajectories, also named traces, are finite or countably infinite lists
of (label, state)-pairs. They are often denoted T and are represented using angle
brackets (“〈” and “〉”) enclosing them.

• T = 〈〉 is the empty trajectory.

• T = 〈(l1, σ1) . . . (lk, σk)〉 is a finite trajectory of length k, where for any i such
that 1 ≤ i ≤ k, (li, σi) is the i-th element of T

• T = 〈(l1, σ1) . . . (li, σi) . . .〉 is a possibly infinite trajectory.

Concatenation of trajectories. ⊕ is the concatenation operator over trajecto-
ries. When applied on two trajectories T1 and T2, if T1 is finite and does not end
with the error state (see Chapter 5), T1⊕T2 is defined classically as the trajectory
obtained by adding the elements of T2 at the end of the elements of T1. Formally,
given a finite trajectory

T1 = 〈(l1, σ1) . . . (lk, σk)〉

that does not end with the error state, and

T2 = 〈(m1, τ1) . . . (mi, τi) . . .〉

the concatenation of T1 and T2 is defined as follows:
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T1 ⊕ T2 = 〈(l1, σ1) . . . (lk, σk)(m1, τ1) . . . (mi, τi) . . .〉

In the case where T1 is infinite or ends with the error state, the concatenation
T1⊕T2 is equal to T1. Moreover, ⊕ is lazy and ignore T2 in that case. This means
that we can write some equations including concatenations of the form T1 ⊕ T2,
with T2 not defined properly when T1 is infinite or ends with the error state. This
is used in Chapter 4 and Chapter 5.

Last state of a trajectory. For a finite trajectory T and a state σ ∈ Σ, we
define LSσ(T ) as the last state of T (i.e. the state component of its last element)
if T 6= 〈 〉, and σ otherwise. Formally, we define a function with two arguments:

LS_(_) : State× Trajectory → State

that verifies:

• LSσ(〈〉) = σ;

• LSσ(〈(l1, σ1) . . . (ln, σn)〉) = σn, if n > 0;

• LSσ(T ) is undefined if T is infinite.

Choice operator. Given a Boolean value v and two trajectories T1 and T2, we
define (v → T1, T2) as

(v → T1, T2) =

T1 if v = True
T2 if v = False

Prefix of trajectories. Given a natural number n and a trajectory

T = 〈(l1, σ1) . . . (li, σi) . . .〉

of length at least n (or infinite), the prefix of T of length n, denoted T (n), is defined
classically as the finite trajectory containing the n first elements of T . Formally,

T (n) = 〈(l1, σ1) . . . (ln, σn)〉
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3.1.3 Finite Syntactic Paths

Finite syntactic paths. Finite syntactic paths are finite lists of labels. They
can be obtained from finite trajectories by removing the state component of each
element. They are often denoted π.

• π = 〈〉 is the empty finite syntactic path.

• π = 〈l1, . . . , lk〉 is a finite syntactic path of length k, where for any i such
that 1 ≤ i ≤ k, li is the i-th element of π.

For instance, to a trajectory T = 〈(l1, σ1)(l2, σ2)(l3, σ3)〉 of length 3, we can
associate the finite syntactic path π = 〈l1, l2, l3〉 of the same length.

Concatenation of finite syntactic paths. The concatenation of finite syntactic
paths is defined classically, and uses the same notation ⊕ as the concatenation of
trajectories. This notation is again extended to support the concatenation of
sets of finite syntactic paths (often denoted P ). The concatenation of two sets is
classically defined as the set of the concatenations. Formally, given P1 and P2 two
sets of finite syntactic paths,

P1 ⊕ P2 = {π1 ⊕ π2|π1 ∈ P1, π2 ∈ P2}

Given a set of finite syntactic paths P and a natural number n, we define P n

as the set of the concatenations of n finite syntactic paths, each taken from P .
Formally, we define P n recursively as follows:

P n =

{〈〉} if n = 0
{π1 ⊕ π2|π1 ∈ P n−1, π2 ∈ P} otherwise

P ∗ is the set of concatenations of any number of finite syntactic paths taken
from P . It is defined as the union of all the P n:

P =
⋃
n∈N

P n

3.1.4 Projections
Projections are operations that filter some information from the objects on which
they are applied.

Projection of a state. The projection of a state σ ∈ Σ to a set of variables V ,
denoted σ↓V , is the restriction of σ to V .

Given the variables x, y and z and the state σ = {x 7→ 0, y 7→ 1},
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Figure 3.1 – Example graph G

• σ↓{x} = {x 7→ 0};

• σ↓{x, y} = {x 7→ 0, y 7→ 1};

• σ↓{x, z} = {x 7→ 0}.

Projection of a trajectory. The projection of a one-element sequence 〈(l, σ)〉
to a set of labels L, denoted 〈(l, σ)〉↓L, is defined as follows:

〈(l, σ)〉↓L =

〈(l, σ↓used(l))〉 if l ∈ L,
〈 〉 otherwise

where used(l) is informally the set of variables occurring in the statement of label
l (see Section 4.2.2 for the exact definition).

The projection of a trajectory T = 〈(l1, σ1) . . . (lk, σk) . . .〉 to L, denoted ProjL(T ),
is defined element-wise:

ProjL(T ) = 〈(l1, σ1)〉↓L ⊕ . . .⊕ 〈(lk, σk)〉↓L ⊕ . . .

3.2 Graph Notations
In this section, we introduce some notations about finite directed graphs. Through-
out the section, G = (V,E) denotes a graph with set of vertices V and set of edges
E, and V ′ denotes a subset of V .

We illustrate the notations presented on this section on the example graph
shown in Figure 3.1.

Path. A path in G between two vertices u and v is a sequence of vertices

u0 = u, . . . , un = v (n ≥ 0)
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such that
∀i, 0 ≤ i < n =⇒ (ui, ui+1) ∈ E

The existence of a path between two vertices u and v is denoted u path−−→ v.
In the graph of Figure 3.1, u1

path−−→ u3, since u1, u3 is a path in G; u2
path−−→ u0,

since u2, u4, u5, u6, u0 is a path in G; u3
path−−→ u3, since u3 is a (trivial) path in G.

Reachable nodes. The set of vertices in G reachable from V ′ is the set of
vertices that are reachable from at least one vertex in V ′. It is denoted RG(V ′).

In the example graph, RG({u3}) = {u3}, RG({u2, u4}) = V .

V ′-disjoint path and V ′-path. A V ′-disjoint path in G is a path whose
vertices are not in V ′ except the last one that may or may not be in V ′. The
existence of such a path between two vertices u and v is denoted u V ′−disjoint−−−−−−−→ v.

A V ′-path is a V ′-disjoint path whose last vertex is in V ′. If a V ′-path exists
between two vertices u and v, we write u V ′−path−−−−−→ v.

In the example graph (cf. Figure 3.1), for V ′ = {u1, u3}, u6
V ′−disjoint−−−−−−−→ u2 (by

V ′-disjoint path u6, u0, u2) and u6
V ′−disjoint−−−−−−−→ u1 (by V ′-disjoint path u6, u0, u1).

Since u2 is not in V ′, it is false that u6
V ′−path−−−−−→ u2. Since u1 is in V ′, we have not

only u6
V ′−disjoint−−−−−−−→ u1, but also u6

V ′−path−−−−−→ u1.

Observable set. Given a vertex u ∈ V , the set of nodes that u can reach
using a V ′-path is called the set of observable vertices from u in V ′ and denoted
obsG(u, V ′).

In the example graph (cf. Figure 3.1), for V ′ = {u1, u3}, u6
V ′−path−−−−−→ u1,

thus u1 ∈ obsG(u6, V
′). More precisely, obsG(u6, V

′) = V ′. u1 is the only vertex
that u1 can reach using a V ′-path (the trivial path from u1 is a V ′-path), thus
obsG(u1, V

′) = {u1}.

V ′-weakly committing vertex. A vertex u ∈ V is V ′-weakly committing
if obsG(u, V ′) contains at most one element. The set of V ′-weakly committing
vertices is denoted WCG(V ′).

In the graph of Figure 3.1, WCG({u1, u3}) = {u1, u3}, WCG({u5, u6}) = V and
WCG(V ) = V .

V ′-weakly deciding vertex. A vertex u ∈ V is V ′-weakly deciding if there
exist two V ′-paths from u that share no vertex except u. The set of V ′-weakly
deciding vertices is denoted WDG(V ′).

In the example graph (cf. Figure 3.1), for V ′ = {u1, u3}, u6 ∈ WDG(V ′) (by
V ′-paths u6, u0, u1 and u6, u4, u3). Likewise, u0, u2 and u4 are V ′-weakly deciding
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vertices. On the contrary, u5 6∈ WDG(V ′) since every V ′-path from u5 has u6 as
second vertex. Therefore, WDG(V ′) = {u0, u2, u4, u6}.

Weak control-closure. The weak control-closure of V ′ is the smallest superset
W of V ′ such that all the vertices reachable from W are W -weakly committing.
It is denoted WCCG(V ′). We can prove (see Theorem 6.1) that WCCG(V ′) =
V ′ ∪ (WDG(V ′) ∩ RG(V ′)).

In the example graph (cf. Figure 3.1), for V ′ = {u1, u3}, we have RG(V ′) = V
and WDG(V ′) = {u0, u2, u4, u6}. Thus,

WCCG(V ′) = {u0, u1, u2, u3, u4, u6} = V \ {u5}





Chapter 4

Background: Static Backward
Slicing on a WHILE Language

As stated in Chapter 1, in this thesis we focus on the original version of program
slicing: static backward slicing. The inputs of static backward slicing are a program
p and a slicing criterion C. The slicing criterion may have several forms. Initially,
in Weiser’s work [Wei81, Wei82], it was a pair (l, V ), where l is an instruction in p
and V a subset of the variables occurring in p. It can also be only an instruction
l (e.g. [OO84]). This second form is a particular case of the first one where V
contains all the variables occurring in instruction l. We use in this thesis another
form of slicing criterion: a list of instructions (like e.g. [Amt08]). This last form
asks to preserve every statement contained in the slicing criterion C.

In this chapter, we describe and illustrate the classic definition of static back-
ward slicing (as defined in [Wei81, RY89]) on a simple WHILE language (e.g.
[NNH99]) using the formalism of [BBD+10]. This chapter is the basis of Chap-
ter 5, which will use a slightly extended version of this language.

This WHILE language is an imperative language with arithmetic expressions,
assignments, conditionals and loops. We use a trajectory-based semantics (as in
e.g. [BBD+10]). We define static backward slicing in a classic way using control
and data dependence relations. Using these relations, we can construct from the
slicing criterion the set of instructions that have an influence on the slicing criterion
and thus have to be preserved in the slice, called the slice set (e.g. [RAB+07]).
Using this slice set and the initial program, we can finally construct the program
slice.

This chapter is organized as follows. Section 4.1 presents the syntax and the
semantics of the WHILE language. Next, Section 4.2 describes the two dependence
relations on this language and uses them to define program slicing on this WHILE
language. Section 4.3 states the soundness property that connects the semantics
of the initial program and its slices.
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Prog ::= Stmt∗

Stmt ::= l : skip |
l : x = e |
if (l : b) Prog else Prog |
while (l : b) Prog

where
l, l′ : label
e : expression
b : Boolean expression

Figure 4.1 – Syntax of the WHILE language

Each result presented in this chapter has a counterpart in the next chapter
for the slightly extended language. Moreover, the results of the next chapter
are mechanically proved in Coq (see Section 5.5). Strictly speaking, the results
of this chapter are not proved in Coq, but, since the languages and the proved
statements are similar in both chapters, we abusively mark a proof in this chapter
as mechanized in Coq when its equivalent in the next chapter is mechanized in
Coq.

4.1 Presentation of the WHILE Language

4.1.1 Syntax
We first describe the structure of the WHILE language. It is a simple imperative
language, with conditionals and loops. Its precise syntax is described in Figure 4.1.

A program (Prog) is a possibly empty list of statements (Stmt). The empty
list is denoted λ, and the list separator is “;”. A program p can be decomposed
into the list of its statements p = s1; . . . ; sn, with n ≥ 0.

Defining programs as lists of statements allows us to consider empty programs,
which is convenient to define empty branches, and to manipulate statements with-
out being hampered by the associativity of “;” for statements. For example, any
non-empty program p can be decomposed into its first statement s followed by the
rest of the program q, written p = s; q. This will be systematically used in the
recursive definitions and the proofs by induction.
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There are four kinds of statements. These are basic blocks found in most
imperative languages. Their semantics is briefly described here, but is given in
more detail in Section 4.1.2.

• the l : skip statement, which, as its name suggests, does nothing

• the assignment l : x = e, where x is assigned the evaluation of e

• the conditional if (l : b) p else q, evaluating p or q depending on the
evaluation of b

• the loop while (l : b) p, evaluating p as long as the evaluation of b is true

Figure 4.1 does not specify the precedences of the constructions of the languages.
For completeness, we give to else and while higher precedences than the sequence
operator “;”. For example, while (l : b) p1; p2 is read as (while (l : b) p1); p2. In
practice, though, we systematically add curly brackets (“{” and “}”) around the
branches of the conditions and the bodies of the loops when needed to avoid any
ambiguity.

Each statement is given a label. Labels are identifiers that give names to the
statements of a program. We assume that the labels of any given program are
distinct, so that a label uniquely identifies a statement in this program. The exact
type of labels is left abstract. In practice, line numbers are a simple solution to
associate labels to statements. In the following of this section, we systematically
refer to a statement using its label. Given a program p, the set of its labels is
denoted L(p). The slicing criterion C is a set of labels of p, i.e. C ⊆ L(p).
Function L is illustrated below on the example of Figure 4.2.

Like labels, the type of expressions is left abstract. They are usual Boolean and
arithmetic expressions. The important property of our expressions is that they are
pure, i.e. they have no side effect and thus cannot modify variables directly. We
assume that expressions come with a function vars such that for any Boolean or
arithmetic expression e, vars(e) returns the set of variables occurring in e. Function
vars is illustrated below on Figure 4.2.

We now introduce the running example that is used in this section to illus-
trate the concepts of program slicing. It is a simple program p, written in the
WHILE language, represented in Figure 4.2, which takes as inputs two positive
integer variables a and b and returns 1 if b divides a and 0 otherwise. Actually,
our language does not contain a “return” statement, thus we need to model the
“return” instruction. In this program, we chose to store the result of the program
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1: quo = 0;
2: r = a;

while (3: b <= r) {
4: quo = quo + 1;
5: r = r - b;

}
if (6: r != 0) {

7: res = 0;
} else {

8: res = 1;
}

Figure 4.2 – Original program p

in a variable named res. The first part of the program (instructions 1–5) com-
putes the euclidean division of a by b. The second part (instructions 6–8) tests
the remainder r of the division to determine if b divides a.

Program p contains labels 1, 2, 3, 4, 5, 6, 7, 8, therefore, by definition, L(p) =
{1, 2, 3, 4, 5, 6, 7, 8}.

We illustrate vars on certain expressions occurring in p:
• vars(quo + 1) = {quo}

• vars(r != 0) = {r}

• vars(r - b) = {r, b}

4.1.2 Semantics
We now give the precise meaning of WHILE programs. As described above, as-
signments, conditions and loops have the usual semantics, and skip does nothing.

To formalize this, we use a denotational trajectory-based semantics, like in e.g.
[BBD+10].

First, we need the notion of program state. In the WHILE language, it is simply
a mapping from variables to values. Let Σ denote the set of program states. We
use two notations to manipulate states:
• A program state can be specified explicitly, giving the exact list of variables

defined and associated values. The state

σ = {x1 7→ v1, . . . , xn 7→ vn}

associates, for any i such that 1 ≤ i ≤ n, the value vi to the variable xi.
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• A program state can be defined from another program state, adding one or
more bindings to it. Given σ ∈ Σ, σ[x ← v] is σ updated with the binding
x 7→ v, which means that each variable is connected to the same value as
in σ except x which is connected to v. If x is not bound in σ, a binding is
added in σ[x← v]. If x is bound in σ, the binding is updated in σ[x← v].
Given the variables x, y and z and the state σ = {x 7→ 0, y 7→ 1},

– σ[x← 2] = {x 7→ 2, y 7→ 1};
– σ[x← 0] = {x 7→ 0, y 7→ 1};
– σ[z ← 2] = {x 7→ 0, y 7→ 1, z 7→ 2}.

Given a program, not all the states are interesting. Indeed, they need to be
related to the program, i.e. to contain bindings about the variables present in the
program. Furthermore, they need to give a value to all the variables read before
being assigned in the program, to rule out the case where an expression cannot be
evaluated due to undefined variables. We choose a conservative way of ensuring
that the execution will not be stuck. We consider only the states that give a value
to each variable of the program. We call such states initial states of the program.

Definition 4.1: Initial state

Given a program p, an initial state of p is a state that associates a value to
every variable in p.

Consider program p shown in Figure 4.2. The set of variables present in p is
{a, b, quo, r, res}, an initial state of p must therefore define each variable in this
set. For example, {a 7→ 1, b 7→ 1, quo 7→ 20, r 7→ 200, res 7→ 5} is an initial state
of p. On the contrary, {a 7→ 1, b 7→ 1} is not an initial state of p, while p could be
correctly executed on it.

We can now introduce informally the concept of trajectory. Trajectories are
lists of (label, state)-pairs encountered during the execution of a program. More
precisely, let p be a program and σ ∈ Σ be an initial state of p. The trajectory of the
execution of p on σ, denoted T JpKσ, is the sequence of pairs (l1, σ1) . . . (li, σi) . . . ,
where l1, . . . , lk, . . . is the sequence of labels of the executed instructions, and
σi ∈ Σ is the state of the program after the execution of instruction li.
T can be seen as a (partial, since we consider only initial states) function

T : Prog × Σ→ Seq(L× Σ)

where Seq(L × Σ) is the set of sequences of pairs (l, σ) ∈ L × Σ. Trajectories
can be finite if the execution terminates or (countably) infinite if the execution
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does not terminate. Trajectories are denoted using enclosing angle brackets (“〈”
and “〉”). In particular, the empty trajectory is denoted 〈 〉. A finite trajectory
of size n is denoted 〈(l1, σ1) . . . (ln, σn)〉. A possibly infinite trajectory is denoted
〈(l1, σ1) . . . (li, σi) . . .〉.

Formally, T is defined by recursion over our WHILE language. We first need
to introduce a few definitions and notations before giving this formal definition.

Let ⊕ be the concatenation operator over sequences. The definition of T1⊕ T2
is standard if T1 is finite. If T1 is infinite, then we set T1 ⊕ T2 = T1 for any T2
(and even if T2 is not well-defined, in other words, ⊕ performs lazy evaluation of
its arguments).

We also need a function that returns the last state of a finite trajectory. It
takes as arguments a trajectory and a state to be returned in the case where the
trajectory is empty. For a finite trajectory T and a state σ ∈ Σ, we define LSσ(T )
as the last state of T (i.e. the state component of its last element) if T 6= 〈 〉, and
σ otherwise. Formally, we define a function with two arguments:

LS_(_) : State× Trajectory → State

that verifies:

• LSσ(〈〉) = σ;

• LSσ(〈(l1, σ1) . . . (ln, σn)〉) = σn, if n > 0;

• LSσ(T ) is undefined if T is infinite.

We denote by E an evaluation function for expressions that is standard and
not detailed here. For any (pure) expression e and state σ ∈ Σ associating a
value to each variable in e, EJeKσ is the evaluation of expression e using σ to
evaluate the variables present in e. For example, given the variables x and y, if
σ = {x 7→ 1, y 7→ 0}, then

EJ2 ∗ x+ x ∗ yKσ = 2 ∗ 1 + 1 ∗ 0 = 2

The last notation we need is a choice operator to define the meaning of con-
ditionals and loops. Given a Boolean value v and two trajectories T and T ′, we
introduce the notation (v → T, T ′) as

(v → T, T ′) =

T if v = True
T ′ if v = False

We can now give the recursive definition of T for any valid state σ ∈ Σ.
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Definition 4.2

The trajectory T JpKσ of a program p on initial state σ is recursively defined
as follows:

T JλKσ = 〈 〉 (1)
T Js; pKσ = T JsKσ ⊕ T JpK(LSσ(T JsKσ)) (2)

T Jl : skipKσ = 〈(l, σ)〉 (3)
T Jl : x = eKσ = 〈(l, σ[x← EJeKσ])〉 (4)

T Jif (l : b) p else qKσ = 〈(l, σ)〉 ⊕ (EJbKσ → T JpKσ, T JqKσ) (5)
T Jwhile (l : b) pKσ = 〈(l, σ)〉 ⊕ (EJbKσ → (6)

T JpKσ ⊕ T Jwhile (l : b) pK(LSσ(T JpKσ)),
〈 〉)

The definition of T is adapted from the one given in [BBD+10, Section 4.1].
Due to its recursive nature, its well-definedness is questionable.1 In particular,
case (6) defines the trajectory of a loop based recursively on the trajectory of itself
(on another state). Case (6) can thus be applied indefinitely if EJbKσ is evaluated
to true in each recursive call, i.e. if the considered loop runs infinitely on state σ.
Actually, this infinite recursion is intentional, since infinite loops are supposed to
produce countably infinite trajectories, but it requires some justification. The key
point that justifies this definition is the fact that for any non-zero natural number
k, the k-th element of a trajectory, when it exists, can be computed in finite time.
Indeed, the evaluation of each statement (cases (3)–(6)) produces a (label, state)-
pair, and the only operation used to assemble trajectories is the concatenation
(cases (2), (5) and (6)) that preserves the first elements of the trace. Thus, in
case of infinite traces, each element, say at rank k, of the trace is uniquely defined,
since intuitively it suffices to perform k elementary execution steps of statements
to get its value.

We describe each rule of Definition 4.2 hereafter.

(1) The trajectory produced by an empty program is always empty.

(2) The trajectory of a sequence s; p on σ, where s is a statement and p a
program, in the case where the trajectory T of s on σ is finite, is the con-
catenation of T and the trajectory of p on the last state of T if T is not

1In [BBD+10], this issue is not discussed. The function T is considered naturally well-defined.
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empty and σ otherwise, which is exactly LSσ(T ). Actually, T cannot be
empty due to the definition of T in cases (3)–(6), thus LSσ(T ) is the last
state of T . This corresponds to executing s on σ first and then executing p
on the resulting state.
If the trajectory T of s on σ is infinite, LSσ(T ) is not defined, but we rely
on the laziness of the ⊕ operator. In this case, since T is infinite, the second
operand is ignored.

(3) skip does not modify the state on which it is executed, but still modifies
the trajectory, contrary to the empty program.

(4) An assignment to a variable x updates the input state so that, after the
assignment, x contains the result of the evaluation of the expression assigned
to it. We use the notation introduced before to denote the overriding of the
input state by the binding x 7→ EJeKσ. An assignment to x only modifies x,
by the assumption that we only have pure expressions.

(5) The definitions for a conditional and a loop both rely on the notation (v →
T, T ′). The trajectory of a conditional on σ is the trajectory of a skip
statement, followed by the trajectory of the then-branch on σ if the Boolean
condition is evaluated to True, or the trajectory of the else-branch on σ if it
is evaluated to False.

(6) The trajectory of a loop is the classic unrolling into successive conditionals. If
the Boolean condition is evaluated to True, the body of the loop is evaluated
once and we recursively evaluate the loop on the resulting state. Note that,
here again, we rely on the laziness of ⊕ to obtain a correct definition even if
the loop body produces an infinite trace.

Let us illustrate this concept of trajectories by using the running example
shown in Figure 4.2. Let σ = {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 0, res 7→ 0}. By
Definition 4.1, σ is an initial state of p. By using Definition 4.2, we can compute
the trajectory of p on σ. It is given in Figure 4.3. As expected, it enters twice
the loop of the euclidean division, then leaves it and assigns res to 1 since the
remainder r is zero.

4.2 Dependence-Based Program Slicing on the
WHILE Language

Now that we have properly defined the language by giving its syntax and its
semantics, we can define static backward slicing for this language. We define
control and data dependences, and then program slicing based on these relations.



4.2. DEPENDENCE-BASED PROGRAM SLICING 41

T JpKσ = 〈(1, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 0, res 7→ 0})
(2, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 2, res 7→ 0})
(3, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 2, res 7→ 0})
(4, {a 7→ 2, b 7→ 1, quo 7→ 1, r 7→ 2, res 7→ 0})
(5, {a 7→ 2, b 7→ 1, quo 7→ 1, r 7→ 1, res 7→ 0})
(3, {a 7→ 2, b 7→ 1, quo 7→ 1, r 7→ 1, res 7→ 0})
(4, {a 7→ 2, b 7→ 1, quo 7→ 2, r 7→ 1, res 7→ 0})
(5, {a 7→ 2, b 7→ 1, quo 7→ 2, r 7→ 0, res 7→ 0})
(3, {a 7→ 2, b 7→ 1, quo 7→ 2, r 7→ 0, res 7→ 0})
(6, {a 7→ 2, b 7→ 1, quo 7→ 2, r 7→ 0, res 7→ 0})
(8, {a 7→ 2, b 7→ 1, quo 7→ 2, r 7→ 0, res 7→ 1})
〉

where

σ = {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 0, res 7→ 0}

Figure 4.3 – Example trajectory of program p of Figure 4.2



42 CHAPTER 4. BACKGROUND: STATIC BACKWARD SLICING

Traditionally, in the literature, several intermediate objects are introduced to
compute the slice. First, a program is assimilated to its control flow graph (CFG).
Then, the slice is computed using dataflow equations [Wei84], or using another
program representation such as the program dependence graph (PDG) [OO84,
FOW87] if the program contains a unique procedure, in which case the slicing is
said to be intraprocedural, or the system dependence graph (SDG) [HRB88] if
the program contains multiple procedures, in which case the slicing is said to be
interprocedural. For the sake of simplicity, and because the WHILE language is
simple, structured and does not allow to write programs with multiple procedures,
we use the more direct approach of [BBD+10]. We work directly on programs, not
CFGs, and do not use any intermediate structure.

4.2.1 Control Dependence
Control dependence models the impact that statements have on the control flow
of the program. Informally, statement s2 is control dependent on statement s1 if
s1 decides whether s2 is executed.

The classic definition of control dependence in terms of post-domination (e.g.
[FOW87], see also Section 6.1) can be reworded for this structured language in a
simple way. The following formulation is based on the fact that, in this WHILE
language, only conditionals and loops can introduce control dependence.

Definition 4.3: Control dependence Dc

The control dependencies in p are defined by if and while statements in p
as follows:

• For any statement if (l : b) q else r and l′ ∈ L(q) ∪ L(r), we define
l
Dc−→ l′;

• For any statement while (l : b) q and l′ ∈ L(q), we define l Dc−→ l′.

In our example represented in Figure 4.2, instructions 4 and 5 are both control
dependent on line 3 (3 Dc−→ 4 and 3 Dc−→ 5); instructions 7 and 8 are control
dependent on line 6 (6 Dc−→ 7 and 6 Dc−→ 8).

Note that Definition 4.3 defines a transitive control dependence relation. For
example, if a while loop is nested in the body of another while loop, the statements
in the inner loop body are control dependent not only on the inner while condition
but also on the outer while condition. With a non-transitive definition, such state-
ments would not be directly control dependent on the outer loop condition. They
would only be transitively control dependent on it, since they would be control de-
pendent on the inner loop condition that would be itself control dependent on the
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outer loop condition. In the literature (cf. Section 6.1.2), there exist both tran-
sitive definitions of control dependence and non-transitive ones. Since program
slicing relies on the reflexive and transitive closure of the dependence relations (cf.
Section 4.2.3), this does not really make a difference.

4.2.2 Data Dependence
Data dependence models the impact of statements on the values of variables.
Informally, statement s2 is data dependent on statement s1 if a variable read at s2
may have been last assigned at s1.

Data dependence is classically defined in terms of def-use paths [ASU86]. A
def-use path is a path in the CFG of a program between two statements s1 and
s2 such that a variable v is assigned at s1, read at s2 and not assigned meanwhile
on this path. Def-use paths can be computed using a standard dataflow analysis
called reaching definitions [NNH99].

Formally, in our WHILE language, we define data dependence using finite
syntactic paths, like in [BBD+10]. Finite syntactic paths are a way of modeling
finite paths in the CFG without introducing the CFG. Intuitively, a finite syntactic
path is an abstraction of a finite trajectory, where we keep only the labels and
ignore the state components. This means that when encountering a conditional or
a loop, it is always possible to choose which branch is selected or how many times
the loop executes. Note in particular that given a finite trajectory, the list of the
labels occurring in this trajectory is a finite syntactic path. The definition is thus
very similar to the definition of trajectories.

We reuse ⊕, already introduced in Section 4.1.2 to denote the concatenation
of traces, to denote the concatenation of paths. We extend it further to denote
the concatenation of a set of paths as the set of concatenations of their elements.
Formally, given two sets of finite syntactic paths P1 and P2,

P1 ⊕ P2 = {π1 ⊕ π2|π1 ∈ P1, π2 ∈ P2}

We use the classic notation “∗” to denote Kleene closure. Given a set of finite
syntactic paths P and natural number n, we define P n as the set of the concate-
nations of n finite syntactic paths, each taken from P . Formally, we define P n

recursively as follows:

P n =

{〈〉} if n = 0
{π1 ⊕ π2|π1 ∈ P n−1, π2 ∈ P} otherwise

P 0 contains only the empty finite syntactic path 〈〉. If n > 0, P n contains the
concatenations of any finite syntactic path in P n−1 and any finite syntactic path
in P .
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P ∗ is the set of concatenations of any number of finite syntactic paths taken
from P . It is defined as the union of all the P n:

P =
⋃
n∈N

P n

Definition 4.4: Finite syntactic paths

The set of finite syntactic paths P(p) of a program p is recursively defined as
follows:

P(λ) = {〈〉} (1)
P(s; p) = P(s)⊕ P(p) (2)

P(l : skip) = {〈l〉} (3)
P(l : x = e) = {〈l〉} (4)

P(if (l : b) p else q) = {〈l〉} ⊕ (P(p) ∪ P(q)) (5)
P(while (l : b) p) = ({l} ⊕ P(p))∗ ⊕ {〈l〉} (6)

We describe each rule of Definition 4.4 hereafter.

(1) The empty program produces a single finite syntactic path, the empty one.

(2) A finite syntactic path of a sequence s; p is the concatenation of a finite
syntactic path of the first statement s and a finite syntactic path of the rest
of the program p.

(3) A skip instruction produces a single finite syntactic path containing only its
label.

(4) An assignment also produces a single finite syntactic path containing only
its label.

(5) A finite syntactic path of a conditional of label l is the prepending of l to a
finite syntactic path of the then-branch or the else-branch.

(6) A finite syntactic path of a loop is built by traversing an arbitrary number
of times in the condition and the loop body, and in the condition one more
time.
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In our example shown in Figure 4.2, 〈1, 2, 3, 4, 5, 3, 6, 7〉 is a finite syntactic
path of p.

We now introduce a few classic definitions to designate variables read or written
at a given statement. Let l denote a label.

The set def(l) denotes the set of variables defined at statement l. Since only
assignments define variables, def(l) = {x} if l is an assignment to variable x, and
∅ otherwise. Note that compound statements, i.e. conditionals and loops, are
considered not defining any variable, even though one of their branches or theirs
bodies could contain assignments.

Definition 4.5

The set def(l) of the variables defined at l is defined as follows:

def(l : skip) = ∅
def(l : x = e) = {x}

def(if (l : b) p else q) = ∅
def(while (l : b) p) = ∅

Considering program p of Figure 4.2,

def(1) = {quo}, def(2) = {r} and def(3) = ∅.

The set ref(l) denotes the set of variables referenced or read at statement l. Its
definition is based on function vars introduced in Section 4.1.1 which, given an ex-
pression, returns the set of variables occurring in this expression. Note that, again,
compound statements are handled in a particular manner, since they are consid-
ered referencing only the variables in their Boolean condition, not the variables
occurring in one of their branches or their bodies.

Definition 4.6

The set ref(l) of the variables referenced at l is defined as follows:

ref(l : skip) = ∅
ref(l : x = e) = vars(e)

ref(if (l : b) p else q) = vars(b)
ref(while (l : b) p) = vars(b)
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Considering program p of Figure 4.2,

ref(1) = ∅, ref(2) = {a} and ref(3) = {b, r}

The set used(l) denotes the set of variables either defined or referenced at l. It
is simply defined as the union of def(l) and ref(l).

Definition 4.7

The set used(l) of the variables used at l is defined as follows:

used(l) = def(l) ∪ ref(l)

Considering program p of Figure 4.2,

used(1) = {quo}, used(2) = {r, a} and used(3) = {b, r}

From finite syntactic paths on the one hand, and def and ref sets on the other
hand, we can define data dependence.

Definition 4.8: Data dependence Dd

Let l and l′ be labels of a program p. We say that there is a data dependency
l
Dd−→ l′ if def(l) 6= ∅ and def(l) ⊆ ref(l′) and there exists a path π = π1lπ2l

′π3 ∈
P(p) such that for all l′′ ∈ π2, def(l′′) 6= def(l). Each πi may be empty.

Recall that, by Definition 4.5, def(l) is a singleton if l is an assignment, and is
empty otherwise. Thus, in this definition, the condition def(l) 6= ∅ means that l is
an assignment, and def(l′′) 6= def(l) means that either l′′ is not an assignment, or
is an assignment to another variable than that defined at l.

In the example shown in Figure 4.2, let us consider the finite syntactic path
〈1, 2, 3, 4, 5, 3, 6, 7〉 corresponding to entering once in the loop and taking the then-
branch of the conditional. Since

quo ∈ def(1), quo 6∈ def(2), quo 6∈ def(3) and quo ∈ ref(4),

there is data dependency of statement 4 on statement 1, i.e. 1 Dd−→ 4.



4.2. DEPENDENCE-BASED PROGRAM SLICING 47

4.2.3 Slice Set
The slice set is the set of labels that must be preserved in the slice.

It is constructed from the slicing criterion, using control and data dependences
to decide which labels must be added to it. It contains all the labels on which the
slicing criterion is directly or indirectly control or data dependent.

To give the definition of the slice set, we need two notations. Let R denote a
binary relation over a set X.

• Let n be a natural number. Rn is defined as the binary relation connecting an
element y to an element x if there exists a sequence u0 = x, u1, . . . , un−1, un =
y such that for any 0 ≤ i < n, (ui, ui+1) ∈ R. We can define it recursively as
follows:

Rn =

{(x, x)|x ∈ X} if n = 0
{(x, y)|∃z, (x, z) ∈ Rn−1 ∧ (z, y) ∈ R} otherwise

The reflexive and transitive closure R∗ of R is the smallest reflexive and
transitive relation containing R. It is well-known that:

R∗ =
⋃
n∈N

Rn

• The inverse relation R−1 of R is the relation connecting y to x if R connects
y to x.

R−1 = {(x, y)|(y, x) ∈ R}

Definition 4.9: Slice set

Given a program p and a slicing criterion C ⊆ L(p), the slice set S of p with
respect to C is the inverse image of the reflexive and transitive closure of the
union of Dc and Dd. We can note

S = {l ∈ L(p) | ∃l′ ∈ C, l (Dc∪Dd)∗−−−−−→ l′}

or
S = ((Dc ∪ Dd)∗)−1(C)

Figure 4.4a gives an example of slice set computation, reusing the example
presented in Figure 4.2. Figure 4.4a shows the program annotated with the control
and data dependencies needed to compute the slice set with respect to {8}. Line
8 is control dependent on line 6, since it is inside its else-branch. Line 6 reads r,
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1: quo = 0;
2: r = a;

while (3: b <= r) {
4: quo = quo + 1;
5: r = r - b;

}
if (6: r != 0) {

7: res = 0;
} else {

8: res = 1;
}
control data

(a) Original program p annotated with de-
pendence information with respect to line 8

2: r = a;
while (3: b <= r) {

5: r = r - b;
}
if (6: r != 0) {

} else {
8: res = 1;

}

(b) Slice q of p with respect to line 8

Figure 4.4 – The original program p and its slice with respect to line 8

hence it is data dependent on lines 2 and 5. Line 5 is control dependent on line
3 and data dependent on line 2 and on itself (not shown in Figure 4.4a since it is
not useful for the computation of the slice set). Line 3 is data dependent on line
2. The slice set is thus {2, 3, 5, 6, 8}.

4.2.4 Quotient

Using control and data dependences, we manipulate only labels, and produce a set
of labels, the slice set. But program slicing is expected to produce a program, not
a set of statements. The next step is thus to produce a program from the initial
program and the slice set.

The goal is to construct a program q from p by removing zero, one or more
statements from it, such that the set of labels of q is the slice set. We use a variant
of the notion of quotient used in [BBD+10] to formalize the fact that the slice is
constructed by removing statements from the initial program (in [BBD+10], parts
of the program are replaced by skip, while we simply delete them).
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Definition 4.10: Quotient

A program p′ is said to be a quotient of a program p, denoted p′ ≤q p, if this
can be deduced from the following set of rules.

λ ≤q λ (1)
if p′ ≤q p, p′ ≤q s; p (2)

if s′ ≤q s and p′ ≤q p, s′; p′ ≤q s; p (3)
if s is skip or an assignment, s ≤q s (4)

if p′1 ≤q p1 and p′2 ≤q p2, if (b) p′1 else p′2 ≤q if (b) p1 else p2 (5)
if p′ ≤q p, while (b) p′ ≤q while (b) p (6)

We describe each rule of Definition 4.10 hereafter.

(1) The empty program is a quotient of itself.

(2) A quotient of a program p is also a quotient of the bigger program s; p.

(3) The sequence of two quotients is a quotient of the sequence. This rule allows
to deeply remove statements from a program, not only the first one as allowed
by rule (2).

(4) A simple statement (skip or an assignment) is a quotient of itself. This rule
allows the quotient relation to be reflexive.

(5) The conditional built using quotients of the branches is a quotient of the con-
ditional. This rule also allows to deeply remove statements in the branches
of the conditional.

(6) The loop built using a quotient of the body is a quotient of the loop. Again,
this rule allows to deeply remove statements in the body of the loop.

The choice of the symbol “≤q” to denote the quotient relation is significant.
One can show that it is indeed an order relation (i.e. it is reflexive, antisymmetric
and transitive).

Given a program p = s1; s2; s3, the programs s3 and s1; s3 are two quotients
of p. Indeed, s3 ≤q p by rule (2) applied twice, and s1; s3 ≤q p by rules (3) and
(2), and by reflexivity of ≤q.

Let us illustrate this notion of quotient using the running example of Figure 4.2.
Two possible quotients of it are represented in Figure 4.5a and 4.5b. The first
quotient in Figure 4.5a is obtained from p by removing statements 4 and 8. The
second quotient in Figure 4.5b is obtained from p by removing every statement
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1: quo = 0;
2: r = a;

while (3: b <= r) {

5: r = r - b;
}

if (6: r != 0) {
7: res = 0;

} else {

}

(a)

2: r = a;

(b)

5: r = r - b;

(c)

Figure 4.5 – Examples ((a) and (b)) and counter-example ((c)) of quotients of p
(see Figure 4.2)

except 2. The program in Figure 4.5c is not a quotient of p. Indeed, we cannot
remove the loop with label 3 without removing the statement of label 5.

Using the notion of quotient, our goal can be rephrased in the following way.
Our objective is to construct a quotient of p whose set of labels is the slice set.

With the syntax of our WHILE language, given a program p and a subset of
labels L ⊆ L(p), it is clear that there is at most one quotient of p whose set of
labels is L. But there can also be no quotient at all. For instance, it is not possible
to create the quotient of our program p (cf. Figure 4.2) whose set of labels is {5},
since, as discussed above, instruction 5 cannot be preserved without instruction 3.

But our slice set is not an arbitrary subset of labels of p. It was built using
control and data dependences. We prove that, as soon as control dependence is
included in the dependence relation used, a slice set can be associated to a quotient.

Lemma 4.1: Existence of the slice

Let p be a program, C a subset of labels of p and D a dependence relation
on p satisfying Dc ⊆ D. Then (D∗)−1(C) is the set of labels of a (uniquely
defined) quotient of p.

To prove the existence of such a quotient, we construct it explicitly. Given a
set of labels L, we introduce a function named FL such that for any program p,
FL(p) removes from program p all the statements whose labels are not in L. This
function does not suppose that L is a slice set, nor even that it contains only labels
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in L. Though, it is designed to return the slice with set of labels L when L is a
slice set of p.

Definition 4.11

FL is defined recursively over Prog as follows:

• For an empty program:
FL(λ) = λ

• For a sequence of statements:

FL(s; p) = FL(s);FL(p)

• For a skip statement or an assignment s with label l:

FL(s) =

s if l ∈ L
λ otherwise

• For an if statement:

FL(if (l : b) q else r) =

if (l : b) FL(q) else FL(r) if l ∈ L
λ otherwise

• For while statements:

FL(while (l : b) q) =

while (l : b) FL(q) if l ∈ L
λ otherwise

Given a program p, FL(p) inspects each statement of p, tests whether its label
is in L, removes it if it not the case and inspects it more deeply otherwise. In
particular, in presence of a conditional or a loop, it checks first the label of the
statement itself and removes it if the label is not in L, without inspecting the
branches or the body at all. This guarantees that any label not in L is removed.
On the contrary, this does not guarantee that labels in L are kept. For example,
considering program p of Figure 4.2, F{5}(p) = λ, since every other statement than
statement 5 is removed. In particular, the loop with label 3 is removed with its
body, which contains statement 5.

Function FL has two properties of interest. The first one is that FL(p) system-
atically returns a quotient of p, for arbitrary p. This is Lemma 4.2.
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Lemma 4.2

For any program p, FL(p) is a quotient of p.

Proof. 2 This is proved by induction on the program p. We detail only the case of
the conditional statement. The complete proof is available in the Coq development
[Léc16].

Given two programs q and r, let us assume that FL(q) and FL(r) are quotients
of q and r respectively. Let l be a label and b a Boolean expression. Let us show
that FL(if (l : b) q else r) is a quotient of if (l : b) q else r. Either l ∈ L or
l 6∈ L.

• Assume l ∈ L. By Definition 4.11,

FL(if (l : b) q else r) = if (l : b) FL(q) else FL(r)

By Definition 4.10, since FL(q) and FL(r) are quotients of q and r respec-
tively, if (l : b) FL(q) else FL(r) is a quotient of if (l : b) q else r.

• Assume l 6∈ L. By Definition 4.11,

FL(if (l : b) q else r) = λ

λ is a quotient of every program. In particular, it is a quotient of if (l :
b) q else r.

The second property of interest describes the set of labels of FL(p), but only in
the case where L is a slice set of p for a dependence relation D that contains Dc.
Actually, due to the recursive definition of F , we need to reason inductively about
the programs considered. But we cannot allow arbitrary programs, since the link
between L and p is important. We introduce the notion of sub-programs, also taken
from [BBD+10]. Like quotients, sub-programs are built using pieces of the original
program. But while quotients preserve the structure of the original program,
creating holes in it, sub-programs are instead continuous portions of it. Reasoning
about the sub-programs of p allows to reason inductively in a restrictive setting
where we consider only pieces of program p. Since each program manipulated
during the inductive proof is a sub-program of p, we are able to make the link
between its structure and L. In particular, the interesting property is that the
control dependencies of a sub-program of p are included in those of p.

2The mechanized version of this proof is available in [Léc16].
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Note that we could define the quotients of a given program using the no-
tion of sub-programs, as the programs obtained by removing zero, one or more
sub-programs from that program. Actually, this is nearly the definition given in
[BBD+10] (but as noted above, in [BBD+10] sub-programs are replaced by skip,
not removed like we propose here).

Definition 4.12 defines sub-programs formally.

Definition 4.12: Sub-program

A program p′ is said to be a sub-program of a program p, denoted p′ ≤s p, if
this can be deduced from the following set of rules.

p ≤s p (1)
if p′ ≤s s then p′ ≤s s; p (2)
if p′ ≤s p then p′ ≤s s; p (3)

if p′1 ≤s p1 then p′1 ≤s if (b) p1 else p2 (4)
if p′2 ≤s p2 then p′2 ≤s if (b) p1 else p2 (5)
if p′ ≤s p then p′ ≤s while (b) p (6)

We describe each rule of Definition 4.12 hereafter.

(1) p is a sub-program of itself.

(2) A sub-program of a statement s is a sub-program of the sequence s; p. Note
that this rule deliberately relates a program and a statement, instead of two
statements.

(3) A sub-program of a program p is a sub-program of the sequence s; p.

(4) A sub-program of the first branch of a conditional is a sub-program of the
conditional.

(5) A sub-program of the second branch of a conditional is a sub-program of the
conditional.

(6) A sub-program of the body of a loop is a sub-program of the loop.

Note that this relation is not symmetrical in the case of the sequence. Given a
program p = s1; s2; s3, the program s2; s3 is a sub-program of p thanks to rules
(3) and (1), while the program s1; s2 is not a sub-program of p in general.
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Like for quotients, the choice of the symbol “≤s” to denote the sub-program
relation is significant, since we can again show that being a sub-program is an
order relation.

Given a program p, p is a trival sub-program of itself. Like for quotients, the
empty program is a sub-program of every program.

We can illustrate this notion of sub-program more concretely using the running
example p of Figure 4.2 and the programs of Figure 4.5. The program in Figure 4.5a
is not a sub-program of p since, as noted above, we cannot preserve the first two
statements if we do not preserve the whole program. The program in Figure 4.5b
is a valid sub-program of p, showing that a program can be both a quotient and a
sub-program of p. Figure 4.5c is also a correct sub-program of p. Preserving only
the whole loop or the whole conditional would also produce a valid sub-program
of p.

We can now state and prove the second property of FL.

Lemma 4.3

Let p be a program, C a subset of labels of p and D a dependence relation
on p satisfying Dc ⊆ D. Let S denote the slice set (D∗)−1(C). Then, for any
sub-program q of p, the set of labels of FS(q) is S ∩ L(q).

Proof. 3 This is proved by induction on the sub-programs of p. We detail only
the case of the conditional statement. The complete proof is available in the Coq
development [Léc16].

Let if (l : b) q else r be a sub-program of p. Let us assume that

L(FS(q)) = L(q) ∩ S

and
L(FS(r)) = L(r) ∩ S

And let us show that

L(FS(if (l : b) q else r)) = L(if (l : b) q else r) ∩ S

By definition of L,

L(if (l : b) q else r) ∩ S = ({l} ∪ L(q) ∪ L(r)) ∩ S
= ({l} ∩ S) ∪ (L(q) ∩ S) ∪ (L(r) ∩ S)

Either l 6∈ S or l ∈ S.
3The mechanized version of this proof is available in [Léc16].
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• Assume that l 6∈ S. Then, by Definition 4.11,

L(FS(if (l : b) q else r) = L(λ) = ∅

Since l 6∈ S, thanks to the hypothesis on control dependence and the fact
that if (l : b) q else r is a sub-program of p, we can deduce that L(q)∩S = ∅
and L(r) ∩ S = ∅, otherwise l would have been preserved in S by control
dependence. Therefore,

({l} ∩ S) ∪ (L(q) ∩ S) ∪ (L(r) ∩ S) = ∅ ∪ ∅ ∪ ∅ = ∅

Thus, for the case l 6∈ S, we can conclude that

L(FS(if (l : b) q else r)) = ∅ = L(if (l : b) q else r) ∩ S

• Assume now that l ∈ S. In this case, by Definition 4.11,

FS(if (l : b) q else r) = if (l : b) FS(q) else FS(r)

Thus, we have

L(FS(if (l : b) q else r)) = {l} ∪ L(FS(q)) ∪ L(FS(r))

By hypothesis, L(FS(q)) = L(q) ∩ S and L(FS(r)) = L(r) ∩ S. And since
l ∈ S, we have

L(FS(if (l : b) q else r)) = ({l} ∩ S) ∪ (L(q) ∩ S) ∪ (L(r) ∩ S)

This gives L(FS(if (l : b) q else r)) = L(if (l : b) q else r) ∩ S for the
case l ∈ S.

Based on Lemma 4.2 and Lemma 4.3, we can now prove Lemma 4.1.

Proof of Lemma 4.1. 4 By Lemma 4.2, FS(p) is a quotient of p. Since p is a sub-
program of itself, it follows from Lemma 4.3 that L(FS(p)) = L(p) ∩ S = S, as S
is a subset of the labels of L(p).

Therefore FS(p) is a quotient of p containing exactly the labels of S = (D∗)−1(C).

4The mechanized version of this proof is available in [Léc16].
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4.2.5 Static Backward Slicing
Using the results of the previous section, we can define the program slice as the
quotient of the original program whose set of labels is the slice set.

Definition 4.13: Slice

Let p be a program and C ⊆ L(p). The slice of p with respect to C is the
quotient of p whose set of labels is ((Dc ∪ Dd)∗)−1(C).

Figure 4.4b represents the program slice of p with respect to {8}. Only state-
ments on which the slicing criterion depends were preserved (lines 2, 3, 5, 6, 8).
The other lines (1, 4, 7) were removed.

4.3 Soundness Property of Program Slicing
The intuition behind static backward slicing is that the slice has the same behavior
as the original program with respect to the slicing criterion. In this section, we
formalize it using our trajectory-based semantics.

Initially, in Weiser’s work [Wei84], the preservation of behavior established by
the soundness theorem focused only on the slicing criterion. Informally, the slice is
proved to have the same behavior as the original program at the statement in the
slicing criterion for the variables in the slicing criterion. Then, Reps et al. [RY89]
established that the equivalence of behavior was valid for all statements preserved
in the slice, not just at the slicing criterion. Since this second version is strictly
stronger than Weiser’s one, we present it here.

We first show on a few examples that we cannot compare the trajectory of
the initial program and that of the slice directly, and introduce the well-known
notion of projection [Wei84] to compare them in Section 4.3.1. Then, we state the
soundness theorem of slicing in Section 4.3.2.

4.3.1 Projections
Let us consider the program p of Figure 4.2 and its slice q of Figure 4.4b to give
some intuition about the difficulties of the comparison of the trajectories of the
initial program and of its slice. Recall that Figure 4.3 presents the trajectory of
p on the initial state σ = {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 0, res 7→ 0}. Figure 4.6
represents the trajectory of slice q on the same initial state σ.

First, we can note that the trajectory produced by q contains fewer elements
than the one produced by p. This is the direct consequence of q containing fewer
statements than p. A first step could be to remove from the trajectory of p each
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T JqKσ = 〈(2, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 2, res 7→ 0})
(3, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 2, res 7→ 0})
(5, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 1, res 7→ 0})
(3, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 1, res 7→ 0})
(5, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 0, res 7→ 0})
(3, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 0, res 7→ 0})
(6, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 0, res 7→ 0})
(8, {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 0, res 7→ 1})
〉

where

σ = {a 7→ 2, b 7→ 1, quo 7→ 0, r 7→ 0, res 7→ 0}

Figure 4.6 – Example trajectory of program q of Figure 4.4b

element whose label component was not preserved in q, thus giving traces of equal
lengths.

But this is not enough. Even if we only compare the elements with the same
labels, the trajectories disagree on the value of quo. Indeed, quo is modified in p
while it totally disappeared from q. This is because all the statements containing
it were removed when constructing q. The value of quo therefore always remains
equal to its initial value during the execution of q, disagreeing with the execution
of p as soon as quo is modified. We could choose to ignore in the trajectory of p
the variables not present in q. It happens that this is enough in this example, but
not in general.

Consider the program p′ in Figure 4.7a. This program is contrived and is
designed only to illustrate our current point. This program assigns variable a (line
1) and stores its value in b (line 2). Then it gives a value to c (line 3), changes
the value of a (line 4) and stores in d the sum of a and c (line 5). The program
q′ in Figure 4.7b is the slice of this program with respect to line 5. Statements on
lines 3 and 4 were preserved due to data dependencies, statements on lines 1 and
2 were removed.

Consider the initial state

σ = {a 7→ 0, b 7→ 0, c 7→ 0, d 7→ 0}

Figure 4.8 shows the trajectories of p′ and q′ on σ.
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1: a = 1;
2: b = a;
3: c = 2;
4: a = 3;
5: d = a + c;

(a) Original program p′

3: c = 2;
4: a = 3;
5: d = a + c;

(b) Program slice q with respect to line 5

Figure 4.7 – A program and its slice with respect to line 5

T Jp′Kσ =

〈(1, {a 7→ 1, b 7→ 0, c 7→ 0, d 7→ 0})
(2, {a 7→ 1, b 7→ 1, c 7→ 0, d 7→ 0})
(3, {a 7→ 1, b 7→ 1, c 7→ 2, d 7→ 0})
(4, {a 7→ 3, b 7→ 1, c 7→ 2, d 7→ 0})
(5, {a 7→ 3, b 7→ 1, c 7→ 2, d 7→ 5})
〉

(a) Trajectory of program p′

of Figure 4.7a

T Jq′Kσ =

〈

(3, {a 7→ 0, b 7→ 0, c 7→ 2, d 7→ 0})
(4, {a 7→ 3, b 7→ 0, c 7→ 2, d 7→ 0})
(5, {a 7→ 3, b 7→ 0, c 7→ 2, d 7→ 5})
〉

(b) Trajectory of program q′

of Figure 4.7b
where

σ = {a 7→ 0, b 7→ 0, c 7→ 0, d 7→ 0}

Figure 4.8 – Example trajectories of programs of Figure 4.7



4.3. SOUNDNESS PROPERTY OF PROGRAM SLICING 59

Let us ignore the first two elements of the trajectory of p′, since they corre-
spond to statements not preserved in q′. Let us look at the third element. Both
trajectories agree on the values of c and d, but disagree on the values of a and b.
Variable b does not appear in q′, thus we could choose to ignore it in the same way
as variable quo in our running example. But variable a is present in q′, on line
4. This shows that only ignoring removed statements and removed variables when
comparing the trajectories of the original program and its slice is not enough.

What happens with variable a is that it is set on line 1 but never used with
this value in the slice. Indeed, when variable a is read on line 5, its value comes
from the assignment on line 3. When comparing the trajectories, we should focus
on the variables whose current values will be used later in the execution of the
slice, i.e. on the variables that will be read in the slice before being reassigned.
Such variables are named relevant variables in the literature [Wei84, RAB+07].
This is not surprising that we should focus on relevant variables. Indeed, they are
the ones captured by data dependence, since data dependence links a statement
referencing a variable to the possible last assignments to this variable. If there
exists an assignment to this variable that is masked by another assignment in the
original program, it is ignored by data dependence and is not necessarily preserved
in the slice. When it is not preserved, the behavior of the program slice and the
behavior of the original program temporarily disagree on this variable until it is
reassigned in a statement in the slice.

Summarizing the last paragraphs, when comparing trajectories, we should re-
move the elements corresponding to non-preserved statements and, for the remain-
ing ones, we should compare only the values of the variables that are relevant in
the slice. Actually, for the second point, for the sake of simplicity, we choose
to use an under-approximation of the set of relevant variables. It consists, when
comparing two elements of trajectories corresponding to the same statement, in
focusing on variables read (or referenced) at that statement. Indeed, it is clear
that such variables are relevant variables in the slice, since they are immediately
read in that statement. Moreover, since trajectories manipulate states after the
execution of statements, we can also include in the comparison the value of the
potential variable assigned in the statement. Indeed, if all the variables referenced
in the statement have the same values in the behaviors of the original program and
the slice, the variable assigned will be given the same value in both executions.
This means that we can focus on the variables used at that statement. This is
formalized by the following notion of projection.

The projection of a state to a set of variables hides the values of variables not
in this set.
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Definition 4.14: Projection of a state

The projection of a state σ ∈ Σ to a set of variables V , denoted σ↓V , is the
restriction of σ to V .

Let us illustrate this definition. Given the variables x, y and z and the state
σ = {x 7→ 0, y 7→ 1},

• σ↓{x} = {x 7→ 0};

• σ↓{x, y} = {x 7→ 0, y 7→ 1};

• σ↓{x, z} = {x 7→ 0}.

Projecting a trajectory to a set of labels L consists in removing elements whose
labels are not in L, and, for each remaining pair (l, σ), projecting the state σ on
the set of variables used at statement l, i.e. used(l).

Definition 4.15: Projection of a trajectory

The projection of a one-element sequence 〈(l, σ)〉 to a set of labels L, denoted
〈(l, σ)〉↓L, is defined as follows:

〈(l, σ)〉↓L =

〈(l, σ↓used(l))〉 if l ∈ L,
〈 〉 otherwise.

The projection of a trajectory T = 〈(l1, σ1) . . . (lk, σk) . . .〉 to L, denoted
ProjL(T ), is defined element-wise:

ProjL(T ) = 〈(l1, σ1)〉↓L ⊕ . . .⊕ 〈(lk, σk)〉↓L ⊕ . . .

For instance, the projection of the trajectory of Figure 4.3 on the slice set
S = {2, 3, 5, 6, 8} is presented in Figure 4.9. As discussed above, variable quo
must be ignored when comparing the trajectories of the initial program and its
slice. We can remark that, accordingly, quo is absent from the projection.

4.3.2 Soundness Theorem
Using the notion of projection, we can state and prove the soundness property of
static backward slicing.
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ProjS(T JpKσ) = 〈(2, {a 7→ 2, r 7→ 2})
(3, {b 7→ 1, r 7→ 2})
(5, {b 7→ 1, r 7→ 1})
(3, {b 7→ 1, r 7→ 1})
(5, {b 7→ 1, r 7→ 0})
(3, {b 7→ 1, r 7→ 0})
(6, {r 7→ 0})
(8, {res 7→ 1})
〉

Figure 4.9 – Projection of T JpKσ (cf. Figure 4.3) on S = {2, 3, 5, 6, 8}

Theorem 4.1: Soundness of slicing

Let C ⊆ L(p) be a slicing criterion of program p. Let q be the slice of p with
respect to C, and S = L(q) the slice set, i.e. the set of labels preserved in q.
Then for any initial state σ ∈ Σ of p, if p terminates on σ, then q terminates
on σ and:

ProjS(T JpKσ) = ProjS(T JqKσ)

Proof. 5 Let σ ∈ Σ. Since p terminates on σ, there exists some i ≥ 0 such that:

T JpKσ = 〈(l1, σ1) . . . (li, σi)〉

By Definition 4.15,

ProjS(T JpKσ) = 〈 (lf(1), σf(1)↓used(lf(1))) . . . (lf(j), σf(j)↓used(lf(j)))〉

where j ≤ i and f is a strictly increasing function.
Moreover, since we cannot assume that q terminates, the trajectory of q on σ

is of the form:
T JqKσ = 〈(l′1, σ′1)(l′2, σ′2) . . .〉

Because S is exactly the set of labels of q, projecting T JqKσ on it does not remove
elements from the trajectory, but just projects the states. By Definition 4.15,

ProjS(T JqK) = 〈 (l′1, σ′1↓used(l′1))(l′2, σ′2↓used(l′2)) . . . 〉
5The mechanized version of this proof is available in [Léc16].
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In particular, T JqKσ and ProjS(T JqKσ) have the same length, i.e. either they are
both infinite or they are both finite and have the same length.

In the rest of this proof, we manipulate prefixes of trajectories. We introduce
the notation U (k) to denote the prefix of U of size k, for a natural number k and
a trajectory U of length at least k (or infinite).

Let us denote by k the greatest natural number such that:

• (ProjS(T JpKσ))(k) is well-defined, i.e. k ≤ j;

• (ProjS(T JqKσ))(k) is well-defined, i.e. T JqKσ is infinite or it is finite and k is
smaller than or equal to its length;

• (ProjS(T JpKσ))(k) = (ProjS(T JqKσ))(k), i.e. the prefixes of length k of the
projections of the trajectories of p and q are equal.

We have:

ProjS(T JpKσ))(k) = 〈 (lf(1), σf(1)↓used(lf(1))) . . . (lf(k), σf(k)↓used(lf(k)))〉

and
ProjS(T JqKσ))(k) = 〈 (l′1, σ′1↓used(l′1)) . . . (l′k, σ′k↓used(l′k)) 〉

Thus, (ProjS(T JpKσ))(k) = (ProjS(T JqKσ))(k) means that, for any m = 1, 2, . . . , k,
lf(m) = l′m and σf(m)↓used(lf(m)) = σ′m↓used(l′m).

Let us prove that k = j. We reason by contradiction and assume that k < j.
By maximality of k, there can be three different cases:

1. T JqKσ is of size k, i.e. the trajectory T JqKσ ends prematurely, or

2. l′k+1 exists, but lf(k+1) 6= l′k+1, i.e. the (k + 1)-th elements of ProjS(T JpKσ))
and ProjS(T JqKσ) disagree on the label components, or

3. l′k+1 exists, lf(k+1) = l′k+1, but σf(k+1)↓used(lf(k+1)) 6= σ′k+1↓used(l′k+1), i.e.
the (k + 1)-th elements of ProjS(T JpKσ)) and ProjS(T JqKσ) agree on the
label components but not on the state components.

Since l′k = lf(k), the executions of p and q are at the same program point at that
execution step. Given our language, if both executions disagree afterwards, either
because q terminates (case 1) or because it reaches a program point different from
the one reached by p (case 2), this can only be because a control flow statement
(i.e. if or while), situated in the execution of p between lf(k) and lf(k+1)−1, is not
present in q or evaluated differently in the executions of p and q.

If such a statement occurred at label lf(k) = l′k, its condition would be evaluated
identically in both executions since σf(k)↓used(lf(k)) = σ′k↓used(l′k). If such a
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statement occurred between lf(k)+1 and lf(k+1)−1 in the execution of p, this would
mean that lf(k+1) is part of the body of some non-preserved if or while statement,
which is impossible by definition of control dependence (cf. Definition 4.3).

Thus cases 1 and 2 are impossible. The only possible cause of divergence
between the two projections is case 3, i.e. l′k+1 exists and is equal to lf(k+1), but
the projected states are disjoint (σf(k+1)↓used(lf(k+1)) 6= σ′k+1↓used(lf(k+1)).

In case 3, the key idea is to remark that

σf(k+1)−1↓ ref(lf(k+1)) = σ′k↓ ref(lf(k+1))

i.e. that all the variables read at statement lf(k+1) are evaluated similarly in the
states reached by the executions of p and q before the execution of statement
lf(k+1), which are σf(k+1)−1 and σ′k respectively.

To prove this, assume that there exists a variable v ∈ ref(lf(k+1)) such that
σf(k+1)−1(v) 6= σ′k(v). Variable v was assigned previously in the execution of p,
otherwise it would have the same value in both executions, equal to its initial
value in σ. The last assignment to v in the execution of p before its use at lf(k+1)
must be preserved in q because of data dependence (cf. Definition 4.8), so it has
a label lf(u) = l′u for some 1 ≤ u ≤ k. By definition of k, the state projections
after this statement are equal: σf(u)↓used(lf(u)) = σ′u↓used(l′u), so the last values
assigned to v before its use at lf(k+1) are equal, which contradicts the assumption
σf(k+1)−1(v) 6= σ′k(v).

This shows that all the variables referenced in lf(k+1) have the same values in
both execution, so the resulting states cannot differ, and case 3 is not possible
either.

Therefore, neither case 1, case 2, nor case 3 are possible. We can conclude that
k = j, and we have:

ProjS(T JpKσ) = (ProjS(T JqKσ))(j)

The only case that we need to exclude is the case where the projected execution
of q is longer than that of p. This corresponds to the case where (ProjS(T JqKσ))(j)

is a strict prefix of ProjS(T JqKσ). Assume that this is the case. This means as
before that a control flow statement executed in p causes the divergence of the two
trajectories. This divergence is due to an if or a while. By the same reasoning
as in cases 1 and 2 above, we show that its condition must be evaluated in the
same way in both trajectories and thus it cannot lead to a divergence.

Therefore, (ProjS(T JqKσ))(j) = ProjS(T JqKσ), which gives the desired result:

ProjS(T JpKσ) = ProjS(T JqKσ)
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Using our example (cf. Figure 4.4), we can verify that on

σ = {a 7→ 2, b 7→ 1, q 7→ 0, r 7→ 0, res 7→ 0}

the projection of the trajectory of q shown in Figure 4.6 is identical to the projection
of the trajectory of p shown in Figure 4.9.

In this chapter, we defined and illustrated classic static backward slicing based
on control and data dependencies on a small imperative language. We expressed
formally the soundness property that guarantees the equivalence of behaviors of
a program and its slice: if the initial program terminates, so does the slice, and
both executions agree after each preserved statement on the values of the variables
occurring in that statement.

In the next chapter, we use the same concepts and notations to justify the use
of slicing for error detection.



Chapter 5

Justification of Program Slicing
for Verification on a
Representative Language

The previous chapter (Chapter 4) presents classic static backward program slicing
on a small WHILE language in an ideal case. Indeed, the soundness theorem
established (Theorem 4.1) considers only finite executions of the initial program.
Moreover, the trajectory-based semantics used for this language (see Section 4.1.2)
gives a meaning to every statement as soon as the initial state considered gives a
value to every variable occurring in that statement. This means that statements
that can raise runtime errors, such as integer division or array access, are silently
excluded from this language.

To apply slicing in the context of verification, we must allow trajectories pos-
sibly infinite or with errors. The first step is thus to propose an extension of the
language to introduce errors. This is done using assertions that produce errors
when failing, i.e. when their Boolean condition is evaluated to false. Instead of
adding significantly more dependencies to have a soundness property similar to
the classic one (cf. Theorem 4.1), we keep dependencies similar to the classic
case and establish a new, weaker soundness property for this language. We call
relaxed slicing this approach of slicing where we prefer the smallness of the slices
to the strength of the soundness theorem. From this new soundness property, we
are able to deduce the link between the presence or the absence of errors in the
original program and in its slices. This development is formalized in the Coq proof
assistant to ensure a high confidence in the results.

This chapter is organized as follows. Section 5.1 presents the new extended
language. Next, Section 5.2 introduces a third dependence in addition to the
two classic dependence relations and uses them to define program slicing on this
WHILE language with errors. Section 5.3 states the new soundness property that

65
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connects the semantics of an initial program and its slices. Section 5.4 shows how
to use the results of Section 5.3 in the context of verification. Section 5.5 presents
the Coq development formalizing the concepts of this section and highlights some
difficulties encountered. Finally, Section 5.6 presents the related work about slicing
for verification and concludes this chapter.

As discussed in Section 5.5, the results of this chapter are mechanically proved
in Coq. Nevertheless, paper-and-pencil proofs are given for the sake of complete-
ness. The proofs that have a mechanized counterpart in the Coq formalization
[Léc16] are marked as such. Note that a paper-and-pencil proof is not necessarily
structured in the same way as its Coq counterpart, even though it proves the same
statement.

5.1 Presentation of the WHILE Language with
Errors

5.1.1 Syntax
We want to add errors to the WHILE language. For that, we introduce some
expressions whose evaluation can fail. We call such expressions error-prone or
threatening (we also use these adjectives to denote statements containing such
expressions). For instance, we add integer division and array access to the language
of expressions. For the sake of simplicity, the arrays that we consider in this
language are fixed-size arrays, i.e. arrays whose sizes are known at compile time.
Like in Section 4.1.1, the exact language of expressions is left abstract, and we
assume that a function vars is provided that returns the set of variables occurring
in an expression.

To handle errors in a controlled manner, we choose to model them using as-
sertions. Our assertions have the classic semantics: an assertion takes a Boolean
condition as argument, stops the program if the condition is evaluated to false,
and does nothing otherwise. We consider that, in the programs we consider, all
error-prone statements are protected by assertions. These assertions ensure that,
if they pass, the evaluation of the statements they protect will not trigger an error.
This implies that errors will only be produced by assertions.

Figure 5.1 gives an example of two error-prone statements, each accompanied
by a protecting assertion, in a C-like syntax. In Figure 5.1a, the error-prone
expression is an integer division: k/N. The protecting assertion ensures that the
statement is executed only when N is not zero. In Figure 5.1b, the error-prone
expression is the access to the k-th element of an array a of known size N. The
protecting assertion ensures that the statement is executed only if k is a valid
index, i.e. if 0 ≤ k < N.
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assert (N != 0);
x = k/N;

(a) Division by N

assert (0 <= k < N);
x = a[k];

(b) Access to a of known size N

Figure 5.1 – Examples of statements with their protecting assertions

Prog ::= Stmt∗

Stmt ::= l : skip |
l : x = e |
if (l : b) Prog else Prog |
while (l : b) Prog
l : assert (b, l′)

where
l, l′ : label
e : expression
b : Boolean expression

Figure 5.2 – Syntax of the WHILE language

Adding such protecting assertions is also interesting from the point of view of
slicing. Indeed, assertions only manipulate the threatening expressions contained
in the statements they protect, not the whole statement. This means that as-
sertions can make reference to fewer variables than the protected statement. For
example, in Figure 5.1a, the assertion reads only variable N while the protected
statement reads variables k and N and defines variable x. Choosing as slicing cri-
terion the assertion rather than the protected statement may lead to significantly
smaller slices.

This hypothesis that threatening statements are systematically protected by
assertions is not too restrictive, since these assertions can be added statically and
automatically based on the syntax of the program. This is true in our small lan-
guage, but even for real languages. For example, in the C language, the RTE
plug-in of the Frama-C platform [KKP+15] can add such assertions. This hy-
pothesis is also satisfied in the sante method presented in Section 1.3 after the
value analysis step.

Like for the definition of the WHILE language without assertions (Defini-
tion 4.1), we give to else and while higher precedences than the sequence operator
“;”. Again, we use curly brackets (“{” and “}”) to disambiguate the programs when
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l3: assert (z != 0, l1);
l2: assert (w != 0, l);
l1: assert ((y/z) + 1 != 0, l);
l : z = x / ((y/z) + 1) + v/w;

(a) Chained assertions
l1: assert (k != 0, l);

while (l : j <= N/k) {
...

l2: assert (k != 0, l);
}

(b) Protection of a loop condition

Figure 5.3 – Two examples illustrating the use of labels in assertions

needed. Note that this ambiguity is not present in the Coq formalization, since
we define the language by its abstract syntax (cf. Definition 5.12).

The syntax of the new WHILE language with errors is given in Figure 5.2.
The only difference between this new syntax and the old one (cf. Figure 4.1) is
the introduction of the assert statement. This assert statement is the only
statement which contains two labels. The first one is, like in the other statements,
the label of the assertion itself. The second one is the label of the protected
statement. An assertion often protects the following line. But this second label is
particularly useful in two cases (see Figure 5.3).

The first case is when some assertions need to be themselves protected by
other assertions because they contain a threatening expression. For instance, in
Figure 5.3a, the statement of label l contains several threatening sub-expressions.
Two assertions of labels l1 and l2 are added to protect l. But the assertion of
label l1 contains itself a threatening expression. A third assertion of label l3 is
added to protect l1. In this example, at least one assertion cannot be located just
before the instruction it protects. The label is used to establish the link between
the assertions and the right statements.

The second case is when the condition in a while contains a threatening ex-
pression. In this case, two assertions are added: one before the while, and one at
the end of the loop body. This is illustrated in Figure 5.3b, in which two assertions
of labels l1 and l2 are added to protect the loop condition of label l. This second
assertion of label l2 is obviously not located before the condition of the while.
The explicit label is thus needed to indicate that this assertion protects the loop
of label l.

This syntax of assertions is flexible enough to allow the user to add its own
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assertions in a program and check other properties than runtime errors. In this
case, assertions are actually used like standard assertions in major programming
language (e.g. in C). By inserting custom assertions, the user can insert the checks
he wants in the program, e.g. verifying that a variable is positive before executing
some piece of code. It can happen in this case that the second label is not needed.
But the syntax of the language requires two labels for each assertion. A solution
is to fill in this second label with a label not present. Another solution is to fill
it in with the label of the assertion itself. In this document, though, we will not
introduce any user-defined assertions in the programs we will consider. Thus, we
do not go into more detail about them. Note that the user-added assertions are
no exceptions to the rule and have to be themselves protected by assertions if
necessary.

Figure 5.4 presents a program p written in our new language. This time, line
numbers are used for labels. This program takes as input an array a of size N
and an integer k such that both 0 ≤ N ≤ 100 and 0 ≤ k ≤ 100. We also assume
that all the values in a are bounded between 0 and 100. Moreover, we assume
that operations on the integers are done modulo a given maximal integer. All
this allows us to ignore overflow problems, i.e. to consider that all arithmetic
operations in this program are well-defined and thus do not need to be protected
by assertions.

This program computes the average of the values of a in two different (and
buggy) ways, assuming that it has non-zero values only at indices multiple of k,
compares the two averages obtained and set res to 1 if they are equal and 0
otherwise. The two ways of computing the average of the values of a are supposed
to be equivalent, thus the expected final value of res is 1. This is written as a
contract to the program in an ACSL-like syntax [BFH+16]. The line beginning
with “requires” specifies the precondition of the program: all values of a at indices
that are not divisible by k are equal to zero. The line beginning with “ensures”
specifies the postcondition of the program: res is equal to 1 at the end of the
program.

In the first part of the program (lines 3 – 8), the index i varies from 0 to the
largest multiple of k less than N, and is increased at each iteration by k. The sum
of the values of a at indices i is stored in s1. Note that if k = 0, the loop on line
4 clearly runs indefinitely (because variable i is not modified in the loop body) if
the execution enters that loop at least once, i.e. if 0 < N.

In the second part of the program (lines 9 – 16), the index j varies between
0 and N/k and is increased by 1 at each iteration. The sum of the values of a at
indices k*j is stored in s2. Note that if k divides N, the last value of k*j is equal
to N, producing an out-of-bounds access to a. If k does not divide N, this second
loop computes correctly the sum of the elements of a.
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requires ∀i < N,¬(k | i) =⇒ a[i] = 0
ensures res = 1

1 s1 = 0;
2 s2 = 0;
3 i = 0;
4 while (i < N){
5 assert (i < N, 6);
6 s1 = s1 + a[i];
7 i = i + k;
8 }
9 j = 0;

10 assert (k != 0);
11 last = N/k;
12 while (j <= last ){
13 assert (k*j < N, 14);
14 s2 = s2 + a[k*j];
15 j = j + 1;
16 }
17 assert (N != 0, 18);
18 avg1 = s1 / N;
19 assert (N != 0, 20);
20 avg2 = s2 / N;
21 if(avg1 == avg2)
22 res = 1;
23 else
24 res = 0;

Figure 5.4 – Program p computing in two ways the average of the values of an
array a of size N, provided that only values at indices multiple of k are not zero
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The last part of the program (lines 17–24) computes the averages avg1 and
avg2 respectively from sum1 and sum2 and compares them, setting res to 1 is
they are equal and to 0 otherwise.

In this program, there are multiple error-prone expressions: some divisions by
N (lines 11, 18 and 20) and some accesses to a (lines 6 and 14). In accordance
with our hypotheses, protecting assertions are systematically introduced (lines 5,
10, 13, 17 and 19) to ensure that errors can be triggered only by assertions.

This example program is rather contrived. However, it is a good illustration for
our purpose, since it contains both potential errors and infinite loops. Moreover,
as it has already been mentioned and as we will see in more detail hereafter, it
contains multiple bugs.

5.1.2 Semantics
We define the semantics of the WHILE language with errors in the same way as
the semantics of the WHILE language introduced in Section 4.1.2. In particular,
the restriction that a program can be executed only on its initial states, i.e. the
states giving a value to every variable occurring in that program, still holds. The
only difference is the addition of the semantics of assertions.

An assertion stops the execution of the program in an error state if its condition
is evaluated to false. It behaves like a skip statement otherwise. We extend our
set of states Σ into Σε = Σ ∪ {ε}, where ε denotes an error state, but still use
only valid states, i.e. states in Σ, for initial states. We again define a denotational
trajectory-based semantics T of type:

T : Prog × Σ→ Seq(L× Σε)

The type of T reflects the fact that the initial state must be valid, while errors
can appear during the execution.

We reuse the notations ⊕, LSσ and (v → T, T ′) introduced in Chapter 4.
As a reminder, T1⊕T2 is the standard concatenation of T1 and T2 if T1 is finite.

If T1 is infinite, then T1⊕T2 = T1 for any T2 (and even if T2 is not well-defined, in
other words, ⊕ performs lazy evaluation of its arguments). We add another case
to the laziness of the ⊕ operator. Indeed, we define T1 ⊕ T2 as equal to T1 if T1
is infinite as before, but also if it ends with the error state ε. In both cases, T2 is
not evaluated and is allowed to be ill-defined.

LSσ is defined exactly as in Section 4.1.2. For a finite trajectory T and a state
σ ∈ Σ, we define LSσ(T ) as the last state of T (i.e. the state component of its last
element) if T 6= 〈 〉, and σ otherwise.

The notation (v → T, T ′) is also defined in the same way as in Section 4.1.2.
Given a Boolean value v and two trajectories T and T ′, the notation (v → T, T ′)
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is defined as

(v → T, T ′) =

T if v = True
T ′ if v = False

The semantics of expressions is again denoted E . Given an expression e and a
valid state σ ∈ Σ, EJeKσ is defined as before as the evaluation of e using σ to give
a value to the variables occurring in e. Thanks to our assumption that statements
containing error-prone expressions are protected by assertions, we do not have to
define EJeKε. Indeed, in the same way as we execute programs only on valid states,
we evaluate expressions only in valid states.
T is again defined by recursion over the language. This definition is given

hereafter.

Definition 5.1

The trajectory T JpKσ of a program p on initial state σ is recursively defined
as follows:

T JλKσ = 〈 〉 (1)
T Js; pKσ = T JsKσ ⊕ T JpK(LSσ(T JsKσ)) (2)

T Jl : skipKσ = 〈(l, σ)〉 (3)
T Jl : x = eKσ = 〈(l, σ[x← EJeKσ])〉 (4)

T Jif (l : b) p else qKσ = 〈(l, σ)〉 ⊕ (EJbKσ → T JpKσ, T JqKσ) (5)
T Jwhile (l : b) pKσ = 〈(l, σ)〉 ⊕ (EJbKσ → (6)

T JpKσ ⊕ T Jwhile (l : b) pK(LSσ(T JpKσ)),
〈 〉)

T Jl : assert(b, l′)Kσ = (EJbKσ → 〈(l, σ)〉, 〈(l, ε)〉) (7)

Definition 5.1 is questionable in the same way as Definition 4.2. The same idea
justifies its existence: the k-th element of the trajectory, when it exists, can be
computed in finite time, for any natural k.

Cases (1)–(6) are identical to the ones described in Section 4.1.2. We do not
present them again here.

The new case (7) defines the semantics of assertions. Independently of the
evaluation of the Boolean expression b, the trajectory of an assertion contains a
single element whose label component is equal to the label of the assertion. If b is
evaluated to true, the assertion does not modify the input state. If it is evaluated
to false, the new state is the error state ε. It should be noted that this last case
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is the only case in the definition of T that is able to produce the error state.
Moreover, since ⊕ ignores the second operand when the first one ends with ε, if
an error state occurs in the trajectory of a program on a given state, it necessarily
occurs at the end of the trajectory.

Using our example shown in Figure 5.4, we can illustrate the three possible
kinds of trajectory: finite ending without error (see Figure 5.5), finite ending with
an error (see Figure 5.6) and infinite (see Figure 5.7). Note that in all three figures,
the program is executed on a valid initial state, i.e. a state associating a value to
each variable present in the program.

Figure 5.5 illustrates a normal execution of program p of Figure 5.4. In the
trajectory, we make abundant use of the notation σ[x ← v], which is the state σ
updated with the binding x 7→ v, and its n-ary version

σ[x1 ← v1, . . . , xn ← vn]

where x1, . . . , xn are pairwise distinct variables, that updates σ with n bindings.
This allows to avoid repeating the values of the variables that are never modified
in p.

In Figure 5.5, p is called on a input state where k is not equal to 0 and does not
divide N, thus there is no error during the execution and the averages computed
are equal, whence res is set to 1 at the end of the execution. More precisely, the
execution enters the first loop since i = 0 and N = 1. After one iteration, i = 2,
so the execution does not enter the loop again. last = 0 and j = 0, thus the
second loop is executed once. Then, the averages avg1 and avg2 are computed
and compared. Since they are equal, res is set to 1.

Figure 5.6 illustrates an execution of program p of Figure 5.4 that ends with
an error. Initially, both N and k are equal to 0. The execution does not enter the
first loop. Then the assertion on line 10 fails, and the execution stops here in an
error state.

Figure 5.7 illustrates an infinite execution of program p of Figure 5.4. As
discussed in Section 5.1.1, since in the initial state k is equal to 0 and N is different
from 0, the loop on line 4 runs indefinitely.

5.2 Dependence-Based Program Slicing on the
WHILE Language with Assertions

To define program slicing on this new language, we try to extend in a straight-
forward way the definitions of the previous chapter. Moreover, to preserve in the
slices the hypothesis that threatening statements are protected by assertions, like
in the original program, we add a new dependence relation that makes threatening
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T JpKσ = 〈
(1, σ), (2, σ), (3, σ), (4, σ), (5, σ), (6, σ[s1← 2]), (7, σ[s1← 2, i← 2]),
(4, σ[s1← 2, i← 2]), (9, σ[s1← 2, i← 2]), (10, σ[s1← 2, i← 2]),
(11, σ[s1← 2, i← 2, last← 0]), (12, σ[s1← 2, i← 2, last← 0]),
(13, σ[s1← 2, i← 2, last← 0]),
(14, σ[s1← 2, i← 2, last← 0, s2← 2]),
(15, σ[s1← 2, i← 2, last← 0, s2← 2, j← 1]),
(12, σ[s1← 2, i← 2, last← 0, s2← 2, j← 1]),
(17, σ[s1← 2, i← 2, last← 0, s2← 2, j← 1]),
(18, σ[s1← 2, i← 2, last← 0, s2← 2, j← 1, avg1← 2]),
(19, σ[s1← 2, i← 2, last← 0, s2← 2, j← 1, avg1← 2]),
(20, σ[s1← 2, i← 2, last← 0, s2← 2, j← 1, avg1← 2, avg2← 2]),
(21, σ[s1← 2, i← 2, last← 0, s2← 2, j← 1, avg1← 2, avg2← 2]),
(22, σ[s1← 2, i← 2, last← 0, s2← 2, j← 1,

avg1← 2, avg2← 2, res← 1])
〉

where

σ = {k 7→ 2, N 7→ 1, a 7→ [2], s1 7→ 0, s2 7→ 0, i 7→ 0, j 7→ 0,
last 7→ 0, avg1 7→ 0, avg2 7→ 0, res 7→ 0},

Figure 5.5 – Example of a finite trajectory ending without error using program p
of Figure 5.4

T JpKσ = 〈(1, σ), (2, σ), (3, σ), (4, σ), (9, σ), (10, ε)〉

where

σ = {k 7→ 0, N 7→ 0, a 7→ [], s1 7→ 0, s2 7→ 0, i 7→ 0, j 7→ 0,
last 7→ 0, avg1 7→ 0, avg2 7→ 0, res 7→ 0}

Figure 5.6 – Example of abnormal termination using program p of Figure 5.4
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T JpKσ = 〈
(1, σ), (2, σ), (3, σ),
(4, σ), (5, σ), (6, σ), (7, σ),
(4, σ), (5, σ), (6, σ), (7, σ),
(4, σ), (5, σ), (6, σ), (7, σ),
. . .

〉

where

σ = {k 7→ 0, N 7→ 1, a 7→ [0], s1 7→ 0, s2 7→ 0, i 7→ 0, j 7→ 0,
last 7→ 0, avg1 7→ 0, avg2 7→ 0, res 7→ 0}

Figure 5.7 – Example of infinite trajectory using program p of Figure 5.4

statements depend on their protecting assertions, so that these statements cannot
be preserved in the slice without the assertions protecting them.

5.2.1 Control Dependence
The definition of control dependence is identical to the one given in the previous
chapter, Definition 4.3. Indeed, we choose not to consider assertions as sources of
control dependence, and thus, as before, only conditionals and loops can introduce
control dependence. Other works have made different choices (see Section 5.6.3).

Definition 5.2: Control dependence Dc

The control dependencies in p are defined by if and while statements in p
as follows:

• For any statement if (l : b) q else r and l′ ∈ L(q) ∪ L(r), we define
l
Dc−→ l′;

• For any statement while (l : b) q and l′ ∈ L(q), we define l Dc−→ l′.

Like Definition 4.3, Definition 5.2 defines a control dependence relation that is
transitive.

For example, considering the program p in Figure 5.4, the assertion at line 5 is
control dependent on the loop on line 4, which can be denoted 4 Dc−→ 5.
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5.2.2 Data Dependence
Data dependence is again defined using finite syntactic paths.

The extension of finite syntactic paths is straightforward.

Definition 5.3: Finite syntactic paths

The set of finite syntactic paths P(p) of a program p is inductively defined as
follows:

P(JλK) = {λ} (1)
P(Js; pK) = P(s)⊕ P(p) (2)

P(Jl : skipK) = {l} (3)
P(Jl : x = eK) = {l} (4)

P(Jif (l : b) p else qK) = {l} ⊕ (P(p) ∪ P(q)) (5)
P(Jwhile (l : b) pK) = ({l} ⊕ P(p))∗ ⊕ {l} (6)
P(Jl : assert (b, l′)K) = {l} (7)

The new rule about assertion (Definition 5.3, (7)) describes the only finite
syntactic path associated to an assertion: a syntactic path of length 1 containing
the label of the assertion, i.e. the same rule as skip (Definition 5.3, (3)).

For example, 〈1, 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22〉 is one finite syntactic
path of p of Figure 5.4, where 10, 17 and 19 are labels of assertions.

We introduce the same classic definitions to designate variables read or written
at a given statement.

Definition 5.4: Sets def, ref and used

Let l be a label.

• def(l) denotes the set of variables defined at l (that is, def(l) = {v} if l
is an assignment to variable v, and ∅ otherwise)

• ref(l) denotes the set of variables referenced (or read) at l

• used(l) denotes the set of variables defined or read at l, i.e. used(l) =
def(l) ∪ ref(l)

In particular, if l is the label of the assertion l : assert(b, l′), def(l) = ∅, ref(l)
contains all the variables occurring in b and used(l) = ref(l).
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For a concrete example, let us consider the assertion on line 5 of program p of
Figure 5.4. We have: ref(5) = {i, N}, def(5) = ∅ and used(5) = ref(5) = {i, N}.

The definition of data dependence is stated identically to Definition 4.8, but is
based on extended versions of finite syntactic paths and def, ref and used sets.

Definition 5.5: Data dependence Dd

Let l and l′ be labels of a program p. We say that there is a data dependency
l
Dd−→ l′ if def(l) 6= ∅ and def(l) ⊆ ref(l′) and there exists a path π = π1lπ2l

′π3 ∈
P(p) such that for all l′′ ∈ π2, def(l′′) 6= def(l). Each πi may be empty.

In program p of Figure 5.4, variable i is read at 5 and can be last assigned at
3, therefore 5 is data dependent on 3, i.e. 3 Dd−→ 5. Variable i can also be last
assigned at 7, therefore 7 Dd−→ 5.

5.2.3 Assertion Dependence

We introduce a third dependence to make threatening statements depend on their
protecting assertions. We call it assertion dependence. It is denoted Da. It simply
connects the two labels occurring in an assertion.

Definition 5.6: Assertion dependence Da

For every assertion l : assert (b, l′) in p with l, l′ ∈ L(p), we define an assertion
dependency l Da−→ l′.

For instance, in our program p shown in Figure 5.4, we have the following
assertion dependencies: 5 Da−→ 6, 10 Da−→ 11, 13 Da−→ 14, 17 Da−→ 18 and 19 Da−→ 20.

5.2.4 Slice Set

The slice set is constructed from the slicing criterion, using the three dependence
relations: control, data and assertion dependences.
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Definition 5.7: Slice set

Given a program p and a slicing criterion C ⊆ L(p), the slice set S of p with
respect to C is the inverse image of the reflexive and transitive closure of the
union of Dc, Dd and Da. We can note

S = {l ∈ L(p) | ∃l′ ∈ C, l (Dc∪Dd∪Da)∗−−−−−−−−→ l′}

or
S = ((Dc ∪ Dd ∪ Da)∗)−1(C)

Note that an assertion that is not in the slicing criterion can be added to the
slice only using assertion dependence, since it is not the source of any control de-
pendency nor data dependency. Moreover, if a protecting assertion is preserved
due to assertion dependence, it will not be responsible of the addition of more
statements. Indeed, on the one hand, it is control dependent on the same state-
ments than the protected statement. On the other hand, it manipulates a subset
of the variables of the protected statement, it is therefore data dependent on a sub-
set of the statements on which the protected statement is data dependent. Thus,
preserving protecting assertions due to assertion dependence does not add more
statements to the slice than the protecting assertions themselves.

Figure 5.8a shows the program p of Figure 5.4 annotated with the dependencies
needed to compute the slice set with respect to the slicing criterion {18} (depen-
dencies of a statement on itself are ignored since they do not change the slice). In
addition to control and data dependencies, we have two assertion dependencies:
5 Da−→ 6 and 17 Da−→ 18. The resulting slice set is S = {1, 3, 4, 5, 6, 7, 17, 18}.

5.2.5 Quotient

Here again, the definition is straightforwardly extended from Definition 4.10.
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1 s1 = 0;
2 s2 = 0;
3 i = 0;
4 while (i < N){
5 assert (i < N, 6);
6 s1 = s1 + a[i];
7 i = i + k;
8 }
9 j = 0;

10 assert (k != 0);
11 last = N/k;
12 while (j <= last ){
13 assert (k*j < N, 14);
14 s2 = s2 + a[k*j];
15 j = j + 1;
16 }
17 assert (N != 0, 18);
18 avg1 = s1 / N;
19 assert (N != 0, 20);
20 avg2 = s2 / N;
21 if(avg1 == avg2)
22 res = 1;
23 else
24 res = 0;

control data

assertion
(a) Original program p annotated with depen-
dence information with respect to line 18

1 s1 = 0;
2

3 i = 0;
4 while (i < N){
5 assert (i < N, 6);
6 s1 = s1 + a[i];
7 i = i + k;
8 }
9

10

11

12

13

14

15

16

17 assert (N != 0, 18);
18 avg1 = s1 / N;
19

20

21

22

23

24

(b) Slice q1 of p with respect to line
18

Figure 5.8 – The original program p and its slice q1 with respect to line 18
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Definition 5.8: Quotient

A program p′ is said to be a quotient of a program p, denoted p′ ≤q p, if this
can be deduced from the following set of rules.

λ ≤q λ (1)
if p′ ≤q p, p′ ≤q s; p (2)

if s′ ≤q s and p′ ≤q p, s′; p′ ≤q s; p (3)
if s is skip, an assignment or an assertion, s ≤q s (4)

if p′1 ≤q p1 and p′2 ≤q p2, if (b) p′1 else p′2 ≤q if (b) p1 else p2 (5)
if p′ ≤q p, while (b) p′ ≤q while (b) p (6)

The assertions are handled the same way as the other simple statements in rule
(4).

This definition verifies the same property as before: given a program, there
exists one unique quotient whose set of labels is the slice set, provided that control
dependencies are included in the considered dependencies.

Lemma 5.1: Existence of the slice

Let p be a program, C a subset of labels of p and D a dependence relation
on p satisfying Dc ⊆ D. Then (D∗)−1(C) is the set of labels of a (uniquely
defined) quotient of p.

Proof. 1 The proof is really similar to the proof of Lemma 4.1. The presence of
assertions just adds one case in the proofs by induction.

5.2.6 Static Backward Slicing
The program slice is again defined as the quotient of the original program whose
set of labels is the slice set.

Definition 5.9: Slice

Let p be a program and C ⊆ L(p). The slice of p based on Dc, Dd and Da with
respect to C is the quotient of p whose set of labels is ((Dc∪Dd∪Da)∗)−1(C).

Figure 5.8b represents the program slice q1 of p with respect to {18}, i.e. the
definition of the first average avg1. Note that the assertions at line 5 and 17 are
preserved thanks to assertion dependence.

1The mechanized version of this proof is available in [Léc16].
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Since this program has two independent parts, one computing s1 and avg1 on
the one hand, one computing s2 and avg2 on the other hand, slicing is particularly
efficient: all statements related to s2 and avg2 are absent from the slice.

5.2.7 Illustrating Examples
In this new language allowing errors, and when considering not only finite but
also infinite executions, does the same soundness theorem as Theorem 4.1 or some
direct extension of it still hold? Previous works on slicing with infinite executions
and errors (see Section 5.6) showed in their context that it was not the case.

But let us illustrate some possible cases using our program p of Figure 5.4 and
the slices q1 shown in Figure 5.8b and q2 shown in Figure 5.9b. We have already
introduced q1 which is the slice of p with respect to the definition of the first
average avg1 on line 18. q2 is equivalent of q1 for the second average avg2. It is
defined as the slice of p with respect to the definition of the second average avg2
on line 20. Since the computations of avg1 and avg2 are completely independent,
the two slices q1 and q2 have no statement in common.

We provide 5 examples, whose corresponding initial states are named σ1, . . . ,
σ5. We specify only the inputs k, N and a. Actually, a does not influence the
behavior of the program nor of its slices, but it is given nevertheless for the sake
of clarity. The summary of the results is given in Figure 5.10.

On each execution, each program can have one of the three following behaviors.
It can:

• end normally (denoted “—”), or

• end abnormally on a failed assertion at line l (denoted “ line l”), or

• not end at all and run indefinitely due to the loop at line l (denoted “	 line
l”).

Data σ1 shows an execution of the original program complying with the speci-
fication of the program (cf. the contract in Figure 5.4), while σ2, . . . , σ5 explicit
the bugs mentioned above.

• On σ1, both s1 and s2 contain a[0] + a[2] + a[4], which is the expected
value.

• On σ2, the assertion at line 13 prevents the access of s2 at an invalid index
in line 14. Indeed, if k divides N, which is the case in σ2, k*j can be equal to
k× last = N, which is not a valid index for a. But the error is not so easy
to correct, because turning <= into < in the test j <= last would make σ2
work, but would also make σ1 compute the wrong sum, namely a[0]+a[2].
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1 s1 = 0;
2 s2 = 0;
3 i = 0;
4 while (i < N){
5 assert (i < N, 6);
6 s1 = s1 + a[i];
7 i = i + k;
8 }
9 j = 0;

10 assert (k != 0);
11 last = N/k;
12 while (j <= last ){
13 assert (k*j < N, 14);
14 s2 = s2 + a[k*j];
15 j = j + 1;
16 }
17 assert (N != 0, 18);
18 avg1 = s1 / N;
19 assert (N != 0, 20);
20 avg2 = s2 / N;
21 if(avg1 == avg2)
22 res = 1;
23 else
24 res = 0;

control data

assertion
(a) Original program p annotated with dependence
information with respect to line 20

1

2 s2 = 0;
3

4

5

6

7

8

9 j = 0;
10 assert (k != 0);
11 last = N/k;
12 while (j <= last ){
13 assert (k*j < N, 14);
14 s2 = s2 + a[k*j];
15 j = j + 1;
16 }
17

18

19 assert (N != 0, 20);
20 avg2 = s2 / N;
21

22

23

24

(b) Slice q2 of p with respect to
line 20

Figure 5.9 – The original program p and its slice q2 with respect to line 20
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Initial
state σ1 σ2 σ3 σ4 σ5

Inputs k = 2
N = 5

k = 2
N = 4

k = 0
N = 4

k = 2
N = 0

k = 0
N = 0

Example
array [3, 0, 4, 0, 3] [3, 0, 1, 0] [12, 0, 0, 0] [] []

A
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m
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q1

q2

—  line 13 	 line 4  line 13  line 10
— — 	 line 4  line 17  line 17
—  line 13  line 10  line 13  line 10

Figure 5.10 – Errors ( ), non-termination (	) and normal termination (—) of
programs p (of Figure 5.4), q1 (of Figure 5.8b) and q2 (of Figure 5.9b) for some
inputs.

• σ3 reveals the infinite loop at line 4 when k = 0 and N 6= 0.

• σ4 and σ5 test the case where the array a is empty, i.e. N = 0. In σ4 where
k 6= 0, this is again a situation where k divides N. The assertion fails at line
13, like on σ2.

• In σ5, k = 0, the assertion at line 10 protecting the division by k at line 11
fails.

Do the two slices q1 and q2 behave like p on these data? On σ1, the three
programs all terminate normally. And on the other test data, when the statement
responsible for the abnormal termination or the infinite execution of p is preserved
in one of the slice, this slice has the same behavior as p. This is the case of p and
q2 that both fail at line 13 on σ2, and p and q1 that both enter an infinite loop
on σ3. On the contrary, when the statement responsible for the termination or
the infinite execution of p is not preserved in one of the slices, this slice behaves
differently from p. Indeed, the statement being not present in the slice, it cannot
influence its behavior. For example, on σ2, slice q1 does not contain line 13, thus
cannot end on a failed assertion at line 13. Instead, it terminates normally. On
σ3, since q2 did not preserve the loop at line 4, it cannot enter the same infinite
loop as p. Instead, it ends at line 10 where the assertion fails.

Reasoning the other way around, i.e. from the slices to the original program,
this shows that if a slice terminates normally, the original program may or may
not also end normally. Indeed, it may have encountered earlier a failed assertion
or an infinite loop that was not preserved. For instance:

• On σ1, q1 ends normally and so does p.
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• But on σ2, q1 ends normally while p fails at line 13.

Likewise, an error found in a slice may or may not occur in the original program
because it may again have encountered earlier a failed assertion or an infinite loop
that was not preserved. For instance:

• On σ2, the error found at line 13 in q2 can also be found in p.

• On σ3, q2 fails at line 10, while p enters an infinite loop at line 4. Because of
the infinite loop at line 4, the execution of p never reaches the statement at
line 10. We say that the error at line 10 in q2 is hidden by the infinite loop
at line 4 in p.

• Likewise, in σ4, q1 fails at line 17, while the original program fails at line 13.
Because of the failed assertion at line 13, the execution of p never reaches
the statement at line 17. We say that the error in q1 at line 17 is hidden by
the error at line 13 in p.

When the error detected by a slice is hidden by an error or an infinite loop in
the initial program, this is detected on the particular input tested. When we can
find another input where the same error is found in the execution of the initial
program, we say that this error is partially hidden. This means that, on some
inputs, some non-preserved infinite loop or failed assertion hides this error, but on
some other inputs, this error is not hidden. For example, on σ3, the error at line
10 in q2 is hidden in p by the loop at line 4. However, on σ5, q2 still fails on the
same error and this time p also fails at line 10. The loop at line 4 therefore hides
the error at line 10 partially.

Instead, when an error provoked by a slice cannot be reproduced in the initial
program, we say that it is totally hidden. This is the case of the error at line 17
in q1, which is hidden either by the error at line 10, like on σ5, or the error at line
13, like on σ4.

We can represent schematically the behaviors observed on the data. This
schematic representation is given in Figure 5.11. Due to space constraints, this
figure exchanged the rows and the columns of Figure 5.10. Indeed, the rows are
the five input states σ1, . . . , σ5, while the columns are the program p and its slices
q1 and q2.

The cell corresponding to row σi and program r contains an abstract represen-
tation of r, where statements are represented by lines, and of its behavior on σi,
represented by a downside arrow along the program representation. The arrow is
solid alongside statements, and dashed alongside removed statements (if r is q1 or
q2). The end of the arrow represents the point of the execution reached. The arrow
can end with a symbol representing the kind of termination of the execution:
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• If the arrow ends with no symbol, r terminates normally.

• If the arrow ends with  , r terminates on a failed assertion.

• If the arrow ends with 	, r enters an infinite loop.

Figure 5.11 illustrates graphically the observations made above:

• When a slice does not produce an error, then it does not give any information
on the non-preserved statements. For example, a non-preserved statement
can produce an error (p and q1 on σ2).

• When an error is found in a slice, then either the same error can be found in
the original program (p and q2 on σ2), or it can be hidden by another error
(p and q1 on σ4), or it can be hidden by an infinite loop (p and q2 on σ3).

These examples clearly show that the equality of projections guaranteed for
terminating executions by Theorem 4.1 does not hold in general in this wider con-
text, since the behaviors of the original program and its slice can diverge after an
infinite loop or an error in the original program not preserved in the slice. How-
ever, as long as the original program has a normal behavior in the non-preserved
statements, the comparison between the program and its slice seems reliable. We
characterize this formally in the next sections.

5.3 Soundness Property of Relaxed Slicing
The two situations where an error in the slice is hidden by another error or an
infinite loop not preserved have in common the fact that this interrupts the pro-
jected trajectory of the initial program, while the projected trajectory of the slice
can continue growing. For a comparison of the two projections to be meaningful,
we must thus compare the projected trajectory of the initial program with the
first part of the projected trajectory of the slice, and ignore the second part of the
projected trajectory of the slice that represents the behavior of the slice after it
had diverged from the behavior of the initial program.

For example, on the input state σ2 (see Figure 5.10), the execution of program
p terminates at line 13, while the execution of q1 continues and stops (normally)
at line 18. We must compare both executions only until line 13.

We formalize this idea using the notion of prefix.

5.3.1 Projections
We first need to reintroduce the notions of projections, taking into account the
error states. The projection of the error state is itself.
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Figure 5.11 – Schematic behaviors of programs p (cf. Figure 5.4), q1 (cf. Fig-
ure 5.8b) and q2 (cf. Figure 5.9b) for inputs σ1, . . . , σ5.
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Definition 5.10: Projection of a state

The projection of a state σ to a set of variables V , denoted σ↓V , is the
restriction of σ to V if σ 6= ε, and ε otherwise.

The definition of the projection of a trajectory is identical to the classic case
(cf. Definition 4.15), with the exception that it uses the projection of states that
has just been defined (Definition 5.10).

Definition 5.11: Projection of a trajectory

The projection of a one-element sequence 〈(l, σ)〉 to a set of labels L, denoted
〈(l, σ)〉↓L, is defined as follows:

〈(l, σ)〉↓L =

〈(l, σ↓used(l))〉 if l ∈ L,
〈 〉 otherwise.

The projection of a trajectory T = 〈(l1, σ1) . . . (lk, σk) . . .〉 to L, denoted
ProjL(T ), is defined element-wise:

ProjL(T ) = 〈(l1, σ1)〉↓L ⊕ . . .⊕ 〈(lk, σk)〉↓L ⊕ . . .

5.3.2 Soundness Theorem
We can now state the soundness property of program slicing based on control, data
and assertion dependence relations.

Theorem 5.1: Soundness of slicing

Let C ⊆ L(p) be a slicing criterion of program p. Let q be the slice of p based
on control, data and assertion dependences with respect to C, and S = L(q)
the set of labels preserved in q. Then for any initial state σ ∈ Σ of p and finite
prefix T of T JpKσ, there exists a prefix T ′ of T JqKσ, such that:

ProjS(T ) = ProjS(T ′)

Moreover, if p terminates without error on σ, T JpKσ and T JqKσ are finite, and

ProjS(T JpKσ) = ProjS(T JqKσ)

The proof of Theorem 5.1 is really similar to the proof of the classic soundness
theorem (Theorem 4.1). Indeed, if we look closely at the proof of Theorem 4.1, we
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can remark that the first part actually proves that the projected trajectory of p is
a prefix of the projected trajectory of q, and its second part proves that they are
even equal.

The proof of the general case of Theorem 5.1 is thus really similar to the first
part of the proof of Theorem 4.1, while the proof of the normal termination case
is similar to the second part of the proof of Theorem 4.1. The major difference is
the addition of assertions.

Proof. 2 Let σ ∈ Σ be an initial state of p,

T JpKσ = 〈(l1, σ1)(l2, σ2) . . .〉

and
T JqKσ = 〈(l′1, σ′1)(l′2, σ′2) . . .〉

Let T = 〈(l1, σ1) . . . (li, σi)〉 be a finite prefix of T JpKσ. By Definition 5.11, the
projections of T and T JqKσ to S = L(q) have the following form

ProjS(T ) = 〈 (lf(1), σf(1)↓used(lf(1))) . . . (lf(j), σf(j)↓used(lf(j))) 〉
ProjS(T JqKσ) = 〈 (l′1, σ′1↓used(l′1))(l′2, σ′2↓used(l′2)) . . . 〉

where j ≤ i and f is a strictly increasing function. Note that projecting the
trajectory of the slice does not remove elements from it, since S is exactly the set
of labels of the slice q.

We reintroduce the notation U (k) to denote the prefix of U of size k, for a
natural number k and a trajectory U of length at least k (or infinite).

Let us denote by k the greatest natural number such that:

• (ProjS(T ))(k) is well-defined, i.e. k ≤ j;

• the prefix of T JqKσ of length (ProjS(T JqKσ))(k) is well-defined, i.e. T JqKσ is
infinite or it is finite and k is smaller than or equal to its length;

• (ProjS(T ))(k) = (ProjS(T JqKσ))(k), i.e. the prefixes of length k of the projec-
tions of the trajectories of p and q are equal.

Let T ′ = 〈(l′1, σ′1) . . . (l′k, σ′k)〉 be the prefix (T JqKσ)(k). By Definition 5.11 and
because S is the set of labels of q, we have

ProjS(T ′) = (ProjS(T JqKσ))(k) = 〈 (l′1, σ′1↓used(l′1)) . . . (l′k, σ′k↓used(l′k)) 〉

Since, by definition of k, (ProjS(T ))(k) = ProjS(T ′), we have lf(m) = l′m and
σf(m)↓used(lf(m)) = σ′m↓used(l′m) for anym = 1, 2, . . . , k. Let us write σ0 = σ′0 = σ.

Let us prove that k = j. We reason by contradiction and assume that k < j.
By maximality of k, there can be three different cases:

2The mechanized version of this proof is available in [Léc16].
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1. T JqKσ is of size k, i.e. the trajectory T JqKσ ends prematurely, or

2. l′k+1 exists, but lf(k+1) 6= l′k+1, i.e. the (k + 1)-th elements of ProjS(T ) and
ProjS(T JqKσ) disagree on the label components, or

3. l′k+1 exists, lf(k+1) = l′k+1, but σf(k+1)↓used(lf(k+1)) 6= σ′k+1↓used(l′k+1), i.e.
the (k + 1)-th elements of ProjS(T ) and ProjS(T JqKσ) agree on the label
components but not on the state components.

Since lf(k) = l′k, the executions of p and q are at the same program point at that
execution step. Given our language, if both executions disagree afterwards, either
because q terminates (case 1) or because it reaches a program point different from
the one reached by p (case 2), this can only be because a control flow statement (i.e.
if, while or assert), situated in the execution of p between lf(k) and lf(k+1)−1, is
not present in q or is evaluated differently in the executions of p and q.

If such a statement occurred at label lf(k) = l′k, its condition would be evaluated
identically in both executions since σf(k)↓used(lf(k)) = σ′k↓used(l′k). Assume that
such a statement occurs between lf(k)+1 and lf(k+1)−1. This means that it is not
preserved in the slice q, since it occurs only in the projected trajectory of p. If this
statement is a conditional or a loop, this means that lf(k+1) is part of a branch of
this conditional or the body of this loop. Since this statement is not preserved,
this is impossible due to control dependence (cf. Definition 5.2). If this statement
is an assertion, either the assertion passed and it had no effect on the execution of
p, either it failed and stopped the execution of p, which is contradictory since the
execution of p reaches lf(k+1).

Thus cases 1 and 2 are impossible. The only possible cause of divergence
between the two projections is case 3, i.e. l′k+1 exists and is equal to lf(k+1), but
the projected states are disjoint (σf(k+1)↓used(lf(k+1)) 6= σ′k+1↓used(lf(k+1))).

In case 3, the key idea is to remark that

σf(k+1)−1↓ ref(lf(k+1)) = σ′k↓ ref(lf(k+1))

i.e. that all the variables read at statement lf(k+1) are evaluated similarly in the
states reached by the executions of p and q before the execution of statement
lf(k+1), which are σf(k+1)−1 and σ′k respectively.

To prove this, assume that there exists a variable v ∈ ref(lf(k+1)) such that
σf(k+1)−1(v) 6= σ′k(v). v was assigned previously in the execution of p, otherwise
it would have the same value in both executions, equal to its initial value in σ.
The last assignment to v in the execution of p before its usage at lf(k+1) must
be preserved in q because of data dependence (cf. Definition 5.5), so it has a
label lf(u) = l′u for some 1 ≤ u ≤ k. By definition of k, the state projections
after this statement are equal: σf(u)↓used(lf(u)) = σ′u↓used(l′u), so the last values
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assigned to v before its usage at lf(k+1) are equal, which contradicts the assumption
σf(k+1)−1(v) 6= σ′k(v).

This shows that all the variables referenced in lf(k+1) have the same values, so
the resulting states cannot differ, and case 3 is not possible either.

Therefore, neither case 1, case 2, nor case 3 are possible. We can conclude that
k = j, and T ′ satisfies

ProjS(T ) = ProjS(T ′)

If p terminates without error on σ, by the first part of the theorem we have a
prefix T ′ of T JqKσ such that ProjS(T JpKσ) = ProjS(T ′). If T ′ is a strict prefix of
T JqKσ, this means as before that a control flow statement executed in p causes the
divergence of the two trajectories. By assumption, there are no failing assertions
in the execution of p, therefore it is due to an if or a while. By the same
reasoning as in cases 1 and 2 above, we show that its condition must be evaluated
in the same way in both trajectories and cannot lead to a divergence. Therefore,
T ′ = T JqKσ.

Theorem 5.1 has two parts.
The first part describes the relation between the semantics of the program and

its slice in the general case. It is weaker than the classic property (cf. Theorem 4.1).
It compares only prefixes of projections of trajectories instead of comparing the
whole projections. In formalizing our version of slicing, we chose to produce slices
similar to the ones produced by classic slicing, and adapt the soundness theorem,
instead of modifying the slices and keep the same soundness theorem. Indeed,
this second approach could have produced far larger slices, e.g. if we had decided
to keep all statements located after a potential infinite loop or a potential failing
assertion. Since we decided to relax the soundness property, we call this version
of slicing relaxed slicing, and the slices produced relaxed slices.

The second part focuses on executions that terminate without error. In this
case, the equality of projections of trajectories is guaranteed, like in the classic
case (cf. Theorem 4.1). Actually, the soundness property of classic slicing can be
seen as a corollary of this second part.

5.4 Verification on Relaxed Slices
In this section, we show how the absence and the presence of errors in relaxed
slices can be soundly interpreted in terms of the initial program.
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Lemma 5.2

Let q be a relaxed slice of p and σ ∈ Σ an initial state of p. If the preserved
assertions do not fail in the execution of q on σ, they do not fail in the
execution of p on σ either.

Proof. 3 Let us show the contrapositive. Assume that T JpKσ ends with (l, ε) where
l ∈ L(q) is a preserved assertion. Let L = L(q). From Theorem 5.1 applied
to T = T JpKσ, it follows that there exists a finite prefix T ′ of T JqKσ such that
ProjL(T ) = ProjL(T ′). The last state of ProjL(T ′) is ε, therefore the last state of
T ′ is ε too. It means that ε appears in T JqKσ, and by definition of semantics (cf.
Section 5.1.2) this is possible only if ε is its last state. Therefore T JqKσ ends with
(l, ε) as well.

The following theorem and corollary immediately follow from Lemma 5.2.

Theorem 5.2

Let q be a relaxed slice of p. If all assertions contained in q never fail, then
the corresponding assertions in p never fail either.

Corollary 5.1

Let q1, . . . , qn be relaxed slices of p such that each assertion in p is preserved
in at least one of the qi. If no assertion in any qi fails, then no assertion fails
in p.

The last result justifies the detection of errors in a relaxed slice.

Theorem 5.3

Let q be a relaxed slice of p and σ ∈ Σ an initial state of p. We assume that
T JqKσ ends with an error state. Then one of the following cases holds for p:

(i) T JpKσ ends with an error at the same label, or

(ii) T JpKσ ends with an error at a label not preserved in q, or

(iii) T JpKσ is infinite.

3The mechanized version of this proof is available in [Léc16].
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Proof. 4 Let L = L(q) and assume that T JqKσ ends with (l, ε) for some preserved
assertion at label l ∈ L. We reason by contradiction and assume that T JpKσ does
not satisfy any of the three cases. Then two cases are possible.

First, T JpKσ ends with (l′, ε) for another preserved assertion at label l′ ∈ L
(with l′ 6= l). Then reasoning as in the proof of Lemma 5.2 we show that T JqKσ
ends with (l′, ε) as well, that contradicts l′ 6= l.

Second, T JpKσ is finite without error. Then the second part of Theorem 5.1
can be applied and thus ProjS(T JpKσ) = ProjS(T JqKσ). This is contradictory since
T JqKσ contains an error (at label l ∈ L) and T JpKσ does not.

For instance, consider the example of Figure 5.8 with hypotheses 0 < k ≤ 100
and 0 < N ≤ 100. In this case we can prove that slice q1 does not contain any
error, thus we can deduce by Theorem 5.2 that the assertions at lines 5 and 17
(preserved in slice q) never fail in the initial program either. If in addition we
replace N/k by (N-1)/k at line 11 of Figure 5.9, we can show that neither of the
two slices of Figure 5.8 and Figure 5.9 contains any error. Since these slices cover
all assertions, we can deduce by Corollary 5.1 that the initial program is error-free.

Theorem 5.3 shows that despite the fact that an error detected in q does not
necessarily appear in p, the detection of errors on q has a precise interpretation.
It can be particularly meaningful for programs supposed to terminate, for which a
non-termination within some time τ is seen as an anomaly. In this case, detection
of errors in a slice is sound in the sense that if an error is found in q for initial
state σ, there is an anomaly (same or earlier error, or non-termination within time
τ) in p whose type can be easily determined by running p on σ.

It can be noticed that a result similar to Theorem 5.3 can be established for
non-termination: if T JqKσ is infinite, then either (ii) or (iii) holds for p.

In the framework of a verification method, Corollary 5.1 and Theorem 5.3
indicate how to safely transpose to the initial program the verification results
obtained on the slices. In particular, they properly justify the use of program
slicing in sante (cf. Section 1.3). More precisely, they show that, in the sante
method, the interpretation of the errors found by dynamic analysis applied on the
slices is correct. In particular, the sante method can soundly conclude that a
program is safe when all the alarms are classified as false positive when analyzing
the slices. The method behind the Symbiotic tool can probably be justified in
the same way.

4The mechanized version of this proof is available in [Léc16].
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Inductive prog : Type :=
| P_nil : prog (* the empty program *)
| P_cons : stmt → prog → prog (* a statement plus a program *)
with stmt :=
| S_skip : label → stmt (* skip *)
| S_ass : label → id → aexp → stmt (* assignment *)
| S_if : label → bexp → prog → prog → stmt (* if *)
| S_while : label → bexp → prog → stmt (* while *)
| S_assert : label → bexp → label → stmt. (* assertion *)

Figure 5.12 – Language definition

5.5 Remarks about the Coq Formalization
To ensure a high confidence in the results, we formalize the theory of relaxed slicing
in the Coq proof assistant. This formalization contains 10 000 lines of Coq code
(3 200 lines of specification, 6 500 lines of proof).

We present an overview of the Coq formalization [Léc16] in Section 5.5.1 and
focus on some interesting aspects of it in the next subsections.

5.5.1 Overview
The structure of the Coq development [Léc16] follows the formalization of this
chapter.
Language The WHILE language defined in Coq is very similar to the one given
in Section 5.1.1.

The definition is readable even for those who are not familiar with Coq. It
is given in Figure 5.12. The definition is mutually-inductive. prog is defined as
either the empty program (P_nil) or a sequence of a statement and a program
(P_cons), i.e. prog is a list of statements. stmt describes the five possible kinds
of statements: a skip, an assignment, a conditional, a loop or an assertion.

In this definition, id and label are basically nat, the type of natural integers,
and aexp (resp. bexp) is the type of arithmetic (respectively Boolean) expressions.
For convenience reasons, expressions that can produce an error, such as integer
divisions, are not allowed. Expressions of type aexp and bexp thus trivially cannot
produce any error. This is discussed in more detail in Section 5.5.2. The definition
of the language and most of the basic notions are strongly inspired by a Coq
tutorial [PCG+15].

As it can be seen in the definition, all statements are labelled, and assertions
have a second label to point to other statements.



94 CHAPTER 5. PROGRAM SLICING FOR VERIFICATION

Semantics. The normal states of a program are expressed as functions from
identifiers to values (of type state := id → nat). A state is of type

state_eps := option state

i.e. it is either None (the error state) or Some st, where st is a normal state.
The denotational semantics is given as a recursive function

traj_prog : nat → state_eps → prog → traj

taking as parameters a desired number of trajectory steps, an initial state and a
program, and returning a finite prefix of the full trajectory of the program from
this initial state (of type traj := list (label ∗ state_eps)).

A similar function

proj_traj_prog : nat → state_eps → prog → set label → partial_traj

takes as an additional parameter a set of labels and computes the projected tra-
jectory to this set. Its return type is

partial_traj = list (label ∗ partial_state_eps)

where partial_state_eps is either the error state or a partially defined state.

Dependences. The dependence relations are defined in a similar way to Sec-
tion 5.2.

The definition of assertion dependence, shown in Figure 5.13, is the simplest
one. As Definition 5.6, it connects the two labels of an assertion. Most of the cases
(ADP_here, ADP_after, ADS_ifb_l, ADS_ifb_r, ADS_while) explore the program
recursively, while the key case, really generating dependencies, is ADS_assert.

The definition of (unitary) control dependence is given in Figure 5.14 (cf.
Definition 5.2). Most of the cases only ensure the recursive descent, as in the
definition of rel_assert. They are omitted in the figure. Unitary control de-
pendencies can arise from the then-branch (CDS_ifb_cond_l) or the else-branch
(CDS_ifb_cond_r) of a condition, or the body of a loop (CDS_while_cond). Re-
lation rel_top_labels p l holds if and only if a statement of label l is in the
top-level sequence of program p, i.e. not in a nested condition or loop. This pred-
icate ensures that rel_control characterizes only unitary control dependencies.
Since slicing manipulates reflexive transitive closures of dependence relations, this
will not change the slices.

Data dependence, given in Figure 5.15, is defined in the same spirit as Defini-
tion 5.5. It also uses finite syntactic paths, using two predicates is_flat_of and
flat_data. The predicate is_flat p q states that q is (a specific representation
of) a syntactic path of program p, while flat_data q l l’ states that q carries the
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Inductive rel_assert : prog → relation label :=
| ADP_here : forall s p l l’, rel_assert_stmt s l l’ →

rel_assert (P_cons s p) l l’
(* assertion dependence from inside the first statement *)

| ADP_after : forall s p l l’, rel_assert p l l’ →
rel_assert (P_cons s p) l l’

(* assertion dependence from inside
the remainder of the program *)

with rel_assert_stmt : stmt → relation label :=
| ADS_ifb_l : forall l b p1 p2 l’ l’’, rel_assert p1 l’ l’’ →

rel_assert_stmt (S_if l b p1 p2) l’ l’’
(* assertion dependence from inside the then-branch *)

| ADS_ifb_r : forall l b p1 p2 l’ l’’, rel_assert p2 l’ l’’ →
rel_assert_stmt (S_if l b p1 p2) l’ l’’

(* assertion dependence from inside the else-branch *)
| ADS_while : forall l b p l’ l’’, rel_assert p l’ l’’ →

rel_assert_stmt (S_while l b p) l’ l’’
(* assertion dependence from inside the body *)

| ADS_assert : forall b l l’, rel_assert_stmt (S_assert l b l’) l l’.
(* an assertion of label l protecting l’

gives the dependency l → l’ *)

Figure 5.13 – Implementation of assertion dependence in Coq (cf. Definition 5.6)
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Inductive rel_control : prog → relation label :=
| CDP_here : ...

(* control dependence from inside the first statement *)
| CDP_after : ...

(* control dependence from inside
the remainder of the program *)

with rel_control_stmt : stmt → relation label :=
| CDS_ifb_l : ...

(* control dependence from inside the then-branch *)
| CDS_ifb_r : ...

(* control dependence from inside the else-branch *)
| CDS_while : ...

(* control dependence from inside the body *)
| CDS_ifb_cond_l : forall l l’ b p1 p2, rel_top_labels p1 l’ →

rel_control_stmt (S_if l b p1 p2) l l’
(* control dependencies of (a top-level statement of)

the then-branch on the condition *)
| CDS_ifb_cond_r : forall l l’ b p1 p2, rel_top_labels p2 l’ →

rel_control_stmt (S_if l b p1 p2) l l’
(* control dependencies of (a top-level statement of)

the else-branch on the condition *)
| CDS_while_cond : forall l l’ b p, rel_top_labels p l’ →

rel_control_stmt (S_while l b p) l l’.
(* control dependencies of (a top-level statement of)

the body on the condition *)

Figure 5.14 – Implementation of control dependence in Coq (cf. Definition 5.2)

Inductive rel_data : prog → relation label :=
| DDP_flat : forall p q, is_flat_of q p → forall l l’,

flat_data q l l’ → rel_data p l l’.
(* a data dependency along a path q of p

is a data dependency in p *)

Figure 5.15 – Implementation of data dependence in Coq (cf. Definition 5.5)
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data dependency of l’ on l. By collecting data dependencies in every syntactic
path of p, we reconstruct all the data dependencies of p.

Slice computation. As mentioned in Section 5.2, the computation of the slice
is divided into two parts: the computation of the set of instructions that must
be preserved, called the slice set, and the computation of the slice itself from the
original program and the slice set.

For the computation of the slice set, we implement three functions named
control_prog, data_prog and assert_prog that compute the control, data and
assertion dependencies respectively of a program as a list of pairs of labels, and
that are proved correct with respect to rel_control, rel_data and rel_assert
respectively.

While control_prog and assert_prog can be written easily, data_prog is
more difficult to implement. This is discussed in Section 5.5.6.

control_prog, data_prog and assert_prog are used in a function denoted

set_slice : prog → set label → set label

set_slice p L computes the inverse image of the slicing criterion L under the
reflexive transitive closure of the union of the dependence relations.

As for the second part, the computation of the slice from the slice set, it is
implemented by a function called slice : prog → set label → prog. slice p L
computes the quotient of p whose set of labels is set_slice p L. It uses a function

keep_L_prog : prog → set label → set label

which is the equivalent in Coq of function FL (cf. Definition 4.11), and which
basically iterates on the statements of the program and removes those whose labels
are not to be preserved.

Results. The main results, presented in Figure 5.16, formalize in Coq the sound-
ness of relaxed slicing (Theorem 5.1). The first part of Theorem 5.1 is imple-
mented by theorem slice_proj_prefix in Figure 5.16a. In this theorem, prefix
formalizes a standard notion of prefix for lists. Thus, the theorem in Figure 5.16a
expresses in Coq that the projection of the trajectory of the initial program is a
prefix of the projection of the trajectory of its slice.

The second theorem (given in Figure 5.16b) is more complex, since we manipu-
late finite prefixes instead of the whole trajectory (this is discussed in Section 5.5.4).
The condition length (traj_prog N0 ste p) < N0 ensures that the execution of p
stopped before N0 steps.

last_state (traj_prog N0 ste p) ste <> None
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Theorem slice_proj_prefix :
forall p L n ste,
prefix (proj_traj_prog n ste p (set_slice p L))

(proj_traj_prog n ste (slice p L) (set_slice p L)).

(a) Soundness theorem in the general case

Theorem slice_proj_equal :
forall n ste p L,
length (traj_prog n ste p) < n →
(* the execution of p terminates in less than n steps *)
last_state (traj_prog n ste p) ste <> None →
(* the execution of p does not reach an error *)
length (traj_prog n ste (slice p L)) < n ∧
(* the slice terminates in less then n steps *)
last_state (traj_prog n ste (slice p L)) ste <> None ∧
(* the slice does not reach an error *)
proj_traj_prog n ste p (set_slice p L) =
proj_traj_prog n ste (slice p L) (set_slice p L).
(* the projections of the trajectories are equal *)

(b) Soundness theorem in the case of normal termination

Figure 5.16 – Soundness theorem (cf. Theorem 5.1) formalized in Coq
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1: q := 0;
2: r := a;
WHILE 3: b <= r DO

4: q := q + 1;
5: r := r - b

END;
IF 6: not (r == 0) THEN

7: res := 0
ELSE

8: res := 1
FI

Figure 5.17 – Program p of Figure 4.2 in the syntax accepted by the extracted
slicer

expresses that the last state is not an error. Together, those conditions characterize
a normal termination for the execution of p from ste in less than N0 steps.

From these theorems, we can prove the formalizations in Coq of the two theo-
rems of Section 5.4. They can be found in the Coq development [Léc16].

Extraction. The function slice can be extracted into OCaml, giving a certified
implementation of a slicer for the WHILE language with errors. Adding a wrapper
to read a file and adapting the simple parser described in [PCG+15], this gives an
executable program reading a program in a file and displaying the slice. Due to
limitations in the parser, the names of the variables are lost during parsing, thus
new names are generated for the printing. We choose to display both the original
program with the new variable names and the slice so that the user can easily
compare the two programs.

Figure 5.17 presents the program of Figure 4.2 written in the concrete syntax
accepted by the parser.

Calling the extracted slicer on the file containing this program with the addi-
tional argument [8] produces the slice of the program with respect to the state-
ment of label 8. The exact output is given in Figure 5.18. As expected, statements
1, 4 and 7 are sliced away.

5.5.2 WHILE language with Errors
The WHILE language defined in Coq is slightly less expressive than the one pre-
sented in Section 5.1.1. Indeed, for convenience reasons, elements that can lead to
threatening expressions such as integer division or arrays are not included in the
language. This trivially guarantees the hypothesis that all threatening statements
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Figure 5.18 – Output of the extracted slicer on the program of Figure 5.17

are protected by assertions, since there are none. This language is still represen-
tative for our purpose, though, since it contains errors modeled as assertions and
possible infinite loops.

5.5.3 Formalization of States
In this document, we make the assumption that, given a program, we consider as
initial states only valid states, i.e. states that differ from the error state and define
every variable occurring in the program. This hypothesis is not made in Coq.

First, in Coq, states are formalized using total functions, thus systematically
giving a value to every possible variable. In Coq’s language, states have type
state := id → nat, where id is the type of variables (an alias to nat actually).

Second, for the sake of simplicity, we allow a pervasive use of error states. For
example, the function computing the trajectory of a program, described in more
detail hereafter, takes a state_eps := option state as parameter, where None
denotes the error state ε and Some s denotes a valid state s.

5.5.4 No Use of Coinductive Types
Coinductive types in Coq allow to model countably infinite data whose finite pre-
fixes are computable in finite time. For example, Figure 5.19 illustrates how to
define coinductive lists in Coq. infList is a polymorphic type of finite and infinite
lists. Note that the definition of infList is identical to the definition of standard
inductive lists (cf. Figure 2.1), except CoInductive is used in place of Inductive.
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CoInductive infList (A:Type) : Type :=
| nil : infList A
| cons : A → infList A → infList A.

Figure 5.19 – Definition of coinductive lists in Coq

Definition one_zero := cons 0 nil.

Fixpoint finite_zeros n :=
match n with
| 0 ⇒ nil
| S n’ ⇒ cons 0 (finite_zeros n’)

end.

CoFixpoint infinite_zeros := cons 0 infinite_zeros.

Figure 5.20 – Examples of coinductive lists

An element of this type is either the empty list (nil) or the addition of an element
to a possibly infinite list (cons).

Figure 5.20 shows three ways to define infinite lists. Finite lists can be defined
using Definition or Fixpoint. Such definitions would also be valid definitions of
standard inductive lists. The list one_zero is a list of one element, containing only
0. For any natural number n, finite_zeros n is the list of length n containing
only 0. Infinite lists can be defined using CoFixpoint. infinite_zeros is an
infinite list containing only 0.

The limitation that each finite prefix of a coinductive data has to be accessible
in finite time imposes a syntactic restriction on the way CoFixpoint functions can
be defined. In the definition of a CoFixpoint function, every corecursive call must
be guarded by a constructor. This ensures that, for any natural number n, the n
first elements of the object obtained by calling that CoFixpoint function are acces-
sible in n recursive calls, and thus in finite time. The definition of infinite_zeros
in Figure 5.20 comply with this rule. Indeed, the occurrence of infinite_zeros
in the body is guarded by the constructor cons. Figure 5.21 shows two other ten-
tative CoFixpoint definitions on infinite lists. The first one, add_1 (Figure 5.21a),
takes a possibly infinite list of natural numbers and increments each element by 1.
The corecursive call add_1 l’ is guarded by the constructor cons. This definition
is thus a valid CoFixpoint definition. The second tentative definition, filter
(Figure 5.21b), removes from the input list l the elements that do not satisfy the
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CoFixpoint add_1 l :=
match l with
| nil ⇒ nil
| cons n l’ ⇒ cons (n+1) (add_1 l’)
end.

(a) Correct definition that increments each element of the input list l by 1

CoFixpoint filter (A : Type) (f : A → bool) (l : infList A) :=
match l with
| nil ⇒ nil
| cons x l’ ⇒ if f x then cons x (filter A f l’) else filter A f l’
end.

(b) Incorrect definition that removes from l the elements not satisfying f

Figure 5.21 – Tentative CoFixpoint definitions on infinite lists

predicate function f. The corecursive call in the then-branch is guarded by the
constructor cons, but this is not the case of the corecursive call in the else-branch.
Coq rejects this definition with the following message:

“Error: Recursive definition of filter is ill-formed. [..] Unguarded recursive
call in filter A f l’.”

The semantics of our programs is given as trajectories which are finite or (count-
ably) infinite objects. Moreover, even when they are infinite, every finite prefix
can be computed in finite time. Trajectories are thus good candidates for the use
of coinductive types in Coq.

However, just like filter of Figure 5.21b, the projection operator ProjL can
remove an unpredictable number of consecutive elements in the trajectory on which
it is applied. For example, when there is an infinite loop in the original program not
preserved in the slice, the projection remove all the (label, state)-pairs produced
by the loop, and there is an infinity of such pairs. This implies the impossibility to
write the projection as a CoFixpoint, because such definition would not respect
the guard condition of CoFixpoint functions.

To circumvent this problem, all the trajectories manipulated are finite. Propo-
sitions are then written using finite trajectories, but of unbounded sizes. For
example, the function returning the trajectory of a program on a given input has
type:

traj_prog : nat → state_eps → prog → traj
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where prog is the type of programs and traj := list (label ∗ state_eps) de-
notes lists of (label, state)-pairs. traj_prog n s p computes the n first elements
of the trajectory of p on state s. If the trajectory of p on s is shorter than n, then
it returns the whole trajectory.

5.5.5 Non-Uniqueness of Labels
On this thesis, we make the assumption that the labels in a program are all dis-
tinct. To avoid passing this assumption everywhere, it was not made in the Coq
formalization. In practice, this means that statements with the same label are not
distinguished by slicing. When one statement is preserved, then all the statements
with the same label must be preserved, with their dependencies. As said above,
this allows to have lighter lemmas and theorems. But it also has major drawbacks.

First, the non-uniqueness of labels implies that a subset of labels does not
uniquely identify a quotient. This is thus not possible to define the slice as “the”
quotient whose set of labels is the slice set. We conservatively define it as the
largest quotient.

Second, it prevents from writing a function computing the projection. Indeed,
the projection removes the elements whose labels are not in the set and projects
the states of the remaining elements to the variables occurring in the statement
that have generated them. Therefore, to compute the projection, it needs to
retrieve a statement by its label. This is not possible a posteriori due to the non-
uniqueness of labels, that is why we need to do it at the moment we generate the
trajectory, and create a new function rather than reusing traj_prog. It is named
proj_traj_prog and its type is the following:

proj_traj_prog : nat → state_eps → prog → partial_traj

where

partial_traj = list (label ∗ partial_state_eps)

and partial_state_eps is either the error state or a partially defined state.

5.5.6 Formalization of Data Dependencies
Control and assertion dependence relations were relatively easy to formalize and
manipulate, since they are rather simple and follow the structure of the program.
They are thus well-suited for inductive reasoning. This is not the case of data
dependence. Indeed, its formalization is the generic one, in terms of def-use
paths (more precisely, data dependence is defined in the Coq formalization us-
ing a concept similar to finite syntactic paths (cf. Definition 5.3)). To handle
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it, we wrote three auxiliary recursive functions (mustdef_prog, maydef_prog and
mayread_prog) that compute parts of the data dependence information of a pro-
gram. They allow to write an alternative definition of data dependence in the form
of a recursive function, called set_data_prog, which computes data dependence
in a structural way and is thus easier to manipulate in inductive proofs. This
function is proved to correctly implement the inductive relation that defines data
dependence in terms of def-use paths.

5.6 Related Work
This section presents works from the literature that are closely related to this
chapter.

5.6.1 Debugging and Dynamic Slicing
The usage of slicing that is maybe the best established one is debugging. This
application of slicing was even proposed by Mark Weiser [Wei82] soon after he
proposed program slicing. Weiser suggests that programmers mentally use slice
when debugging or understanding a program.

Korel et al. [KL88] and Agrawal et al. [ADS93] insist on the fact that static
slicing is not adapted to debugging. Indeed, a bug is found on one or several
specific inputs. One can use the information about these inputs to understand the
bug, but static slicing does not take it into account. Dynamic slicing, instead, can
take advantage of it and thus can be more precise than static slicing.

Hierons et al. [HHD99] propose to use static backward slicing in mutation
testing. They claim that the time-consuming part of mutation testing is the clas-
sification of some mutants that are equivalent to the program or hard to kill, thus
requiring human analysis. Static backward slicing can help classifying these mu-
tants, either by automatically detecting that they are equivalent or by providing
a simplified version to the user who can analyze it more easily.

While close to our topic, since it uses slicing in the context of a program with
errors, these works focus on revealing an error, instead of proving their absence.

5.6.2 Slicing and Non-Termination
In Weiser’s works [Wei81, Wei84], the link between the behaviors of the original
program and of its slice is established only for inputs on which the execution of
the original program terminates (cf. Theorem 4.1). In this restricted case, both
behaviors are equivalent with respect to the slicing criterion.
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Podgurski et al. [PC90] introduce the distinction between “strong control de-
pendence”, which is basically the standard control dependence also considered by
Weiser, and “weak control dependence” which intuitively also takes into account
the fact that loops that run indefinitely influences the statements following them,
since they can prevent these statements from being executed (see Section 6.1 for re-
lated work about control dependence). They compare both notions with “semantic
dependence”, that models the intuitive notion of dependence between statements.
In particular, they note that, since dependence based on strong control dependence
fails to capture the semantic dependence induced by loops, it does not fully justify
the usage of slicing proposed by Weiser for debugging. This work suggests that the
classic soundness property of slicing does not hold with standard (strong) control
dependence when non-termination is considered; and that, with more control de-
pendencies (weak control dependence), the classic soundness property holds even
in the presence of non-termination.

Three approaches have been explored in the literature to establish a soundness
property for program slicing in the presence of non-termination:

• Changing the semantics of the language to capture exactly what is preserved
by slicing

• Adding more dependencies, like the weak control dependence approach, so
that the equivalence of behaviors still holds in the presence of non-termination

• Keeping the classic control dependencies, like the strong control dependence
approach, and changing the soundness property

The third approach is the one adopted by relaxed slicing: keeping slices of rea-
sonable sizes and weakening the soundness property. These three approaches are
discussed below.
Changing the semantics. Some works are aware of the problems caused by
infinite loops for the equivalence of behaviors of the program and its slices. Instead
of modifying the slice or the semantic relation between the original program and
its slice, they propose other semantics than the classic one that somehow continue
execution even after an infinite loop.

Cartwright et al. [CF89] argue that the strict sequential semantics is too strict
when considering optimizations. With the natural semantics, if the evaluation of an
expressions diverges, or if a loop runs indefinitely, the whole resulting state becomes
undefined. They propose two lazy semantics that uncouple the updates done on
different variables. With these semantics, when the evaluation of a statement
diverges, only part of the state becomes undefined, not the whole state. Especially,
if a variable is not modified in a loop, its value after the loop is equal to its value
before the loop, whether the loop terminates or not.
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Giacobazzi et al. [GM03] and then Nestra [Nes09] note that slicing does not pre-
serve non-termination (a slice may terminate when the initial program diverges),
thus the standard denotational semantics is not adequate to model the link be-
tween a program and its slice. They propose transfinite generalizations of the
semantics, that observe computations even after executing infinite loops.

Barraclough et al. [BBD+10] propose yet another semantics adapted to pro-
gram slicing. Their semantics is strict. The program is given as semantics a family
of traces indexed by a natural number. This natural number is the maximal num-
ber of iterations a loop can execute. When this bound is reached, the loop is left
artificially, even if its condition is still evaluated to true. This is another way to
observe the computations done by a program after an infinite loop. They prove
that slicing preserves this semantics. They claim that it has several improvements
compared to the previous ones described above. It is in particular intuitive and
substitutive.

While these proposals are elegant, they are unsuitable for our purpose since
they all consider somehow non-natural trajectories. It is unclear how these tra-
jectories will combine with, for instance, path-oriented testing techniques like in
[CKGJ12, GTXT11].
Adding more dependencies. The discrepancy between the non-termination
behaviors of the program and its slice comes from some non-terminating statements
that are sliced away. Adding more dependences to prevent these statements from
being sliced away is a solution to establish the equivalence of behaviors in the
presence of non-termination.

This is, for example, the approach of Ranganath et al. [RAB+07]. The start
point of their reasoning is that control dependence definitions are not adapted to
modern program structures manipulating exceptions or allowing non-termination
on purpose, such as reactive systems. They propose two definitions of control
dependence adapted to modern programs, a non-termination sensitive one (corre-
sponding to the weak control dependence of [PC90]) and a non-termination insen-
sitive one (corresponding to the strong control dependence of [PC90]). Moreover,
they prove that slicing based on non-termination sensitive control dependence pre-
serves the behavior of the original program by constructing a weak bisimulation
between the executions of the initial program and its slice. This is discussed in
more detail in Section 6.1.

Hatcliff et al. [HCD+99] use the same notion of weak bisimulation for slicing
concurrent Java programs.

The limitations of these approaches is that slices are larger. Additional depen-
dences mean additional statements in the slice. In the case of non-termination
sensitive control dependence of [RAB+07], like for the case of weak control depen-
dence of [PC90], this means preserving each loop that could be evaluated before
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the slicing criterion. In our case with the addition of errors, this would mean
preserving each loop or error-prone statement that could be evaluated before the
slicing criterion. This does not seem realistic in the case of large programs.
Keeping the classic control dependencies. Instead of proposing new seman-
tics or algorithms, some works have focused on describing the link between the
program and its slices in terms of standard semantics.

Ball et al. [BH93] establish this link. In this work, they precisely describe a
slicing algorithm in the presence of arbitrary control-flow for a structured language
with breaks and gotos. They also prove its correctness, expressed as the replication
by each statement in the slice of the behavior of the same statement in the original
program. This replication is stated in two parts, in the same way as Theorem 5.1.

• For any state on which the initial program does not terminate normally,
given a statement preserved in the slice, the sequence of values observed at
this statement in the initial program is a prefix of that of the same statement
in the slice.

• For any state on which the initial program terminates normally, given a
statement preserved in the slice, the sequence of values observed at this
statement in the initial program is identical to that of the same statement
in the slice.

They make precise what they mean by “terminate normally”: the execution ter-
minates in a state called “EXIT”, adding that the “execution can fail to terminate
normally if the program includes an infinite loop or an exception such as division
by zero”. Apart from the difference of wording (“exception” instead of “error”),
the difference with our work is:

• Theorem 5.1 manipulates the global trajectory of the program instead of
the trajectory of values observed at each statement preserved in the slice.
Actually, this preservation of the trajectory is contained in their intermediate
results, but not in their final one.

• Contrary to their work, we apply this theorem in the context of verification
and deduce from it an answer to the questions asked in Section 1.4.

Amtoft [Amt08] uses the framework of [RAB+07] and focuses on non-termination
insensitive control dependence. It proves that the link between the behaviors of
the initial program and its slice computed using this form of control dependence is
a weak simulation, instead of a weak bisimulation in the case of non-termination
sensitive control dependence [RAB+07]. This is equivalent to the formulation in
terms of prefix used in this thesis (cf. Theorem 5.1).
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We use the same approach as these works, but focus on the link between the
program and its slice in terms of presence or absence of runtime errors. This
justifies detecting runtime errors on the slices instead of the initial program.

5.6.3 Slicing in the Presence of Errors
Compared to the problem of non-termination, only a few works in the literature
focus on slicing programs with possible errors.

Harman et al. [HSD96] focus on this topic. They note that classic algorithms
only preserve a lazy semantics. To obtain correct slices with respect to a strict se-
mantics, they propose to preserve all potentially error-prone statements by adding
pseudo-variables in the def(l) and ref(l) sets of all potentially erroneous statements
l. Our approach is more fine-grained in the sense that we can independently select
assertions to be preserved in the slice. This benefit comes from our dedicated
formalization of errors with assertions and a rigorous proof of soundness using a
trajectory-based semantics. In addition, we make a formal link about the presence
or the absence of errors in the program and its slices.

Harman et al. [HD95] use program slicing as well as meaning-preserving trans-
formations to analyze a property of a program not captured by its own variables.
They take the robustness of the accesses to an array as an example. They add
variables and assignments in the same idea as our assertions. The slice is seen as
an approximate answer to the question asked, which is often undecidable. If the
slice is reduced to a single statement, this corresponds to the algorithm answering
“yes” or “no”. If the slice is larger, it is a more precise answer than “unknown”.
This is not clear, though, how they deal with multiple types of errors at the same
time. Moreover, no formal justification is given.

Allen et al. [AH03] extend data and control dependences for Java program with
exceptions. They are mostly focused on Java checked exceptions that are supposed
to be caught by a calling function, and the impact it has on interprocedural control
and data dependences. However, they also discuss unchecked exceptions, that are
the equivalent to runtime errors in Java. They clearly make the connection with
non-termination: “How unchecked exceptions should be treated in the context
of slicing depends on the intended application. This question is related to the
question of whether or not a statement S that follows a loop should be control
dependent on the loop predicate”. They also rule out the approach of making each
statement following a statement that may raise an unchecked exception dependent
on this statement, since this would lead to too large slices. Contrary to our work,
no formal justification is given.

Rival [Riv05] designs static analyses to help the classification of alarms returned
by an abstract interpreter called Astrée. He proposes to use static backward pro-
gram slicing to apply these analyses on smaller programs. He uses a model that is
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very similar to ours. His language is close to the WHILE language with assertions
described in Section 5.1.1, but also includes some non-determinism in the form
of an input statement. He also assumes that errors occur only after failed asser-
tions. Moreover, he also proposes to use assertions as slicing criteria. However, he
does not introduce new dependencies for assertions. Indeed, his expressions are
supposed to be error-free, thus do not need to be protected like ours. A soundness
property of slicing is given that compares sets of trajectories, not single trajecto-
ries, between the original program and its slice. This soundness property claims
that each (label, state)-pair in the set of trajectories of the initial program can be
associated to a (label, state)-pair in the set of trajectories of the slice. The order
of execution is not considered in this soundness property, though, and thus the
notion of prefix cannot be used. However, this result is strong enough to justify the
application of the static analyses on the slice rather than on the initial program. In
particular, Rival notes about this soundness property that: “The approximation
[. . .] is strict in general, because slicing may remove causes for non-termination or
errors, hence, introduce strictly more behaviors in the statements after while or
assert statements.” However, contrary to our work, no proof is given. Moreover,
the analysis of the link between the presence or the absence of errors between a
program and its slices is not precisely studied.

5.6.4 Certified Slicing
The ideas developed in [Amt08, RAB+07] were applied in [BMP15, Was11] using
proof assistants.

Wasserrab et al. [WLS09, Was11] build a framework in Isabelle/HOL to for-
mally prove a slicing defined in terms of graphs in the intraprocedural and inter-
procedural cases. Their formalization is independent both from the language and
from the exact definition of control dependence in the intraprocedural case. They
use the simulation-based proof of Amtoft [Amt08]. While far more advanced than
our formalization, their development does not adopt the verification point of view
under which we look at slicing. Moreover, it is really axiomatic and thus not so
adequate to extract an executable slicer.

Blazy et al. [BMP15] propose an unproven but efficient slice calculator for an
intermediate language of the CompCert C compiler [Ler09], as well as a certified
slice validator and a slice builder written in Coq. The soundness property is also
simulation-based, following Amtoft’s [Amt08] and Wasserrab’s [Was11] approach.
The modeling of errors and the soundness of verification on slices is not specifically
addressed in this work. Moreover, it is not clear whether the hypothesis that the
program has a well-defined semantics, which is pervasive in CompCert, allows to
use the soundness property established for verification, where input programs are
supposed to be unsafe until analyzed.
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This chapter presented relaxed slicing, i.e. a notion of slicing relying on stan-
dard control and data dependences even in the presence of errors (modeled as
assertions) and non-termination, thus producing slices of reasonable sizes. An ap-
propriate soundness property was established, that justifies the usage of slicing
in verification chains, such as the two methods presented in Section 1.3: sante
[CKGJ12] and the theory behind the Symbiotic tool [SST12].

Relaxed slicing has been formalized in the Coq proof assistant on a represen-
tative structured language from which a certified program slicer can be extracted.

An obvious limit of this formalization of relaxed slicing is the choice of the
language which is a WHILE language with errors. Abstracting from the language,
like [Was11], seems a natural direction to extend the significance of our results.
This is discussed in the next chapter.



Chapter 6

Formalization of Weak
Control-Closure in Coq

The previous chapter proved that program slicing could be used for verification on
a simple but representative language, namely a WHILE language with assertions
which allows both infinite loops and errors modeled as failed assertions. One step
further is to prove this in a richer language, e.g. one containing unstructured con-
trol flow such as goto statements. To progress into this direction, one would have
to formalize dependence relations in a larger context. While in the previous chap-
ters, the definition of data dependence was a generic one in terms of def-use paths
(cf. Section 5.2.2), and thus could potentially be reused in a different context,
control dependence was tightly coupled to the WHILE languages presented (cf.
Sections 4.2.1 and 5.2.1). Indeed, the simple definition used completely relied on
the fact that, in both languages, only if and while statements can introduce con-
trol dependence. To handle different and more complex languages, we can change
the definition of control dependence, and adopt one of the language-independent
definitions found in the literature.

We choose the definition given by Danicic et al. [DBH+11] that generalize
control dependence on arbitrary finite directed graphs. We focus on the theory
about non-termination insensitive control dependence (cf. Section 5.6) that we
formalize and prove in the Coq proof assistant. This includes theoretical concepts,
an algorithm computing from a given set the smallest superset closed under non-
termination insensitive control dependence and a proof of the correctness of this
algorithm.

This chapter is organized as follows. Section 6.1 presents the different forms of
control dependence found in the literature, and in particular the definition given
by Danicic et al. [DBH+11]. The next sections present in detail the theory of
Danicic et al. about non-termination insensitive control dependence. They re-
flect the Coq formalization. Section 6.2 introduces weakly control-closed sets that
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are sets closed under control dependence. Next, Section 6.3 proves the existence
of weak control-closure, i.e. the smallest superset that is weakly control-closed.
Section 6.4 illustrates on an example (the program of Figure 4.2) that Danicic et
al.’s framework extends classic slicing by showing that the slice based on Danicic
et al.’s weak control dependence is identical to the slice based on classic control
dependence (cf. Figure 4.4). Then, Section 6.5 presents Danicic et al.’s algorithm
computing weak control-closure along with its proof of correctness. Section 6.6
presents the Coq formalization and gives some observations about it.

Although all results presented in Sections 6.2, 6.3 and 6.5 of this chapter are
mechanically proved in Coq (see Section 6.6), we present the paper-and-pencil
version of the proofs in order to make this chapter complete. The proofs that have
a mechanized counterpart in the Coq formalization [Léc18] are marked as such.
Like the proofs of Chapter 5, the paper-and-pencil proofs of this chapter are not
necessarily structured in the same way as their Coq counterparts, even though
they prove the same statements.

6.1 State of the Art about Control Dependence
Control dependence informally characterizes the influence of certain statements on
the execution of other statements in a program. If the evaluation of s1 decides
whether s2 is executed afterwards or not, then s2 is said to be control dependent
on s1.

6.1.1 Structured Control Flow
In structured programs, like those manipulated in Chapters 4 and 5, control de-
pendence is defined structurally (cf. Definition 5.2) and algorithms computing
control dependence can be just syntax analyzers [KL88].

6.1.2 Unstructured Control Flow Using Control Flow
Graphs

When programs with unstructured control flow are considered, this is more com-
plicated. The literature came up with definitions of control dependence that
are language-independent and applicable on control flow graphs [ASU86, All70]
(CFGs) representing programs. An hypothesis is made on these CFGs: there ex-
ists a unique exit node1 reachable by all the other nodes. In this case, control
dependence can be defined using post-domination, as explained hereafter.

1We will use node or vertex indifferently in this thesis to denote points in a graph.
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enter

quo=0
u1

r=a
u2

while (b<=r)
u3

quo=quo+1
u4

r=r-b
u5

if(r!=0)
u6

res=0
u7

res=1
u8

exit

Figure 6.1 – Control flow graph G of the program of Figure 4.2

To illustrate the subsequent definitions, we introduce the CFG G of program p
testing the divisibility using euclidean division introduced in Figure 4.2. It is given
in Figure 6.1. Each statement of p is associated to a node in the CFG and is given
a label. Two nodes are added: a node enter representing the start of an execution
that is connected to the first statement (u1) and a node exit representing the end
of an execution that is connected to the possible last statements executed (u7 and
u8). Edges in the CFG indicate the possible control flow transfers:
• Assignments (u1, u2, u4, u5, u7 and u8) can transfer the control flow only to

the next statement.

• Conditionals (u6) and loops (u3) introduce branching. The conditional in
node u6 can transfer the flow either to the then-branch (u7) or to the else-
branch (u8). The loop in node u3 can lead to its body (u4) or to the next
statement (u6).

Note that exit is a unique exit vertex reachable by every other node, this CFG is
thus appropriate to illustrate control dependence based on post-domination.

Denning et al. [DD77] were the first to introduce control dependence (that
they call “implicit flow”) in the presence of unstructured control flow using the
notion of post-dominator (that they call “forward dominator”).

To clearly describe Denning et al.’s work, we first introduce post-domination
and one of its well-known properties.

Definition 6.1: Post-dominator

A node n2 post-dominates a node n1 if it lies on every path from n1 to the
exit vertex.
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We choose to allow that a node post-dominates itself, like in e.g. [PC90]. There
also exist definitions where this is not allowed (e.g. [DD77]).

Considering the CFG of Figure 6.1, u2 post-dominates u1, u5 post-dominates
u4, u6 post-dominates u4 and exit post-dominates u7. u4 does not post-dominate
u2, since there exists a path (u2, u3, u6, u7, exit) from u2 to exit that does not
traverse u4. Likewise, u7 does not post-dominate u2 nor u6.

For each node different from the exit vertex, there exists a post-dominator that
is closer to this node than any other post-dominator [ASU86, PC90].

Property 6.1

On the paths from a given node u, distinct from the exit vertex, to the exit
vertex, the first post-dominator encountered that is not u itself is independent
of the path considered. It is called the immediate post-dominator of u.

Proof. We give a sketch of the proof [ASU86]. Actually, we first prove a stronger
result about acyclic paths. The post-dominators of u always occur in the same
order on all the acyclic paths from u to the exit vertex. Let v1 and v2 be two
distinct post-dominators of u and assume that there exist two acyclic paths π1
and π2 from u to the exit vertex such that v1 occurs before v2 on π1 and v2 occurs
before v1 on π2. If we concatenate the prefix of π1 from u to v1 and the suffix of
π2 from v1 to the exit vertex, we obtain a path from u to the exit vertex that does
not contain v2, which contradicts that v2 is a post-dominator of u.

Let π1 and π2 be two paths from u to the exit vertex and let v1 and v2 be the
first post-dominators occurring on π1 and π2 respectively. Assume that v1 and v2
are distinct. Since v2 post-dominates u, it also occurs on π1, but after the first
occurrence of v1. From π1, it is possible to construct an acyclic path π′1 from u to
the exit vertex such that v1 occurs before v2 on it. Likewise, from π2, it is possible
to construct an acyclic path π′2 from u to the exit vertex such that v2 occurs before
v1 on it. But, according to what we have just proved about acyclic paths, this is
contradictory.

Denning et al. define, given a conditional node u, the set of nodes affected by
u as the set of nodes occurring on a path from u to its immediate post-dominator,
where the immediate post-dominator occurs only at the end, and that are not u
or its immediate post-dominator.
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Definition 6.2

A node n2 is control dependent on a node n1 if n2 is distinct from n1 and from
the immediate post-dominator of n1, and there exists a path from n1 to its
immediate post-dominator, containing the immediate post-dominator only at
its end, that contains n2.

Applying this definition on the CFG of Figure 6.1, we can deduce from the
path u3, u4, u5, u3, u6 connecting u3 to its immediate post-dominator u6 that u4
and u5 are control dependent on u3. Likewise, from the paths u6, u7, exit and
u6, u8, exit that connect u6 to its immediate post-dominator exit, we can deduce
that u7 and u8 are control dependent on u6. This definition gives therefore the
same control dependencies than the structural one (cf. Section 5.2.1).

Weiser [Wei84] defines slicing based on the same characterization of control
dependence as Denning et al. [DD77], but calls post-dominators “inverse domina-
tors”.

Ferrante et al. [FOW87] use another definition of control dependence when
defining the program dependence graph. It is also based on post-domination but
not equivalent to Denning et al.’s definition [DD77].2

Definition 6.3

A node n2 is said to be control dependent on a node n1 if n2 does not post-
dominate n1 and there exists a path connecting n1 and n2 such that each node
on this path except n1 and n2 is post-dominated by n2.

Let us illustrate this second definition using the CFG of Figure 6.1. u4 does
not post-dominate u3 and it is vacuously true that on the path u3, u4 all the nodes
except u3 and u4 are post-dominated by u4, thus u4 is control dependent on u3. We
can show that u5 is also control dependent on u3, and that u7 and u8 are control
dependent on u6. This new definition of control dependence gives therefore the
same dependencies as Denning et al.’s and Weiser’s definition [DD77, Wei84] in
this example.

This is not true in the general case though. Consider the program represented in
Figure 6.2. According to Denning et al.’s definition [DD77], the statement u3 is con-
trol dependent on the conditional u1. Indeed, u3 occurs on the path u1, u2, u3, exit
that connects u1 to its immediate post-dominator exit. On the contrary, u3 is

2Definition 6.3 makes loop conditions not dependent on themselves, while they are in
[FOW87]. The difference comes from the fact that in [FOW87], a node cannot post-dominate
itself.
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1 if ( b1 ) {
2 if ( b2 ) {
3 x = e;
4 }
5 }

(a) Source code

enter

if ( b1 )
u1

if ( b2 )
u2

x = e
u3

exit

(b) CFG

Figure 6.2 – An example program with nested conditionals and its CFG

not control dependent on u1 using Ferrante et al.’s definition [FOW87]. Indeed,
the only path from u1 to u3 is u1, u2, u3 and u2 does not post-dominate u1. Both
definitions are thus not strictly equivalent.

However, one can show that, in Ferrante et al.’s definition [FOW87], u3 is
control dependent on u2 which is itself control dependent on u1. This means that
u3 is not directly control dependent on u1, but it is transitively. Ferrante et al.
[FOW87] observe that Denning et al.’s and Weiser’s definition [DD77, Wei84] is
equivalent to the transitive closure of their definition.

Ferrante et al.’s definition [FOW87] can be stated in an equivalent way (e.g.
[PC90, AH03, Was11, DBH+11]). A node n2 is said to be control dependent on a
node n1 if n1 6= n2 and n1 has two children n′1 and n′′1 such that n2 post-dominates
n′1 but not n′′1.

In the example CFG of Figure 6.1, u3 has two children u6 and u4. u4 post-
dominates itself but does not post-dominate u6, it is therefore control dependent
on u3.

Podgurski et al. [PC90] introduce two kinds of control dependence (already
discussed in Section 5.6): strong control dependence, equivalent to Denning et
al.’s and Weiser’s definition, and weak control dependence that also takes into
account control dependence due to possibly non-terminating loops. Weak control
dependence is defined using “strong forward domination” (Podgurski et al. use
the term “forward” like Denning et al. [DD77] to denote post-domination).
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Definition 6.4

A vertex n2 strongly forward dominates a vertex n1 if n2 forward dominates
(i.e. post-dominates) n1 and every path from n1 that is longer than a given
size contains n2.

The second part of the definition requires that n1 will reach n2 in finite time.
In particular, if n2 strongly forward dominates n1, there is no infinite loop that
could prevent the execution from reaching n2 from n1.

In the CFG shown in Figure 6.1, u6 does not strongly forward dominate u3
since there exists a path that does not leave the loop and thus never reaches u6.

Podgurski et al. define weak control dependence as follows, in a similar way to
the variant of Ferrante et al’s definition [FOW87] presented above.

Definition 6.5

A node n2 is directly weakly control dependent on a node n1 if n1 has two
children n′1 and n′′1 such that n2 strongly forward dominates n′1 but not n′′1.
Weak control dependence is defined as the transitive closure of direct weak
control dependence.

In the CFG of Figure 6.1, u6 is directly weakly control dependent on u3. Indeed,
u3 has two children u4 and u6, u6 does not strongly forward dominate u4 due to the
loop in u3, but strongly forward dominates itself. u3, u4 and u5 are also directly
weakly control dependent on u3. Vertices u7 and u8 are directly weakly control
dependent on u6 which is directly weakly control dependent on u3, they are thus
(indirectly) weakly control dependent on u3.

Bilardi et al. [BP96] propose to parametrize the definition of domination, and
thus the definition of control dependence, with a set of paths, giving rise to an
infinite number of variants of control dependence. They prove that Podgurski et
al.’s strong and weak control dependence relations [PC90] can be encoded in their
framework.

Algorithms computing control dependence based on post-domination compute
the “post-dominator tree” that stores efficiently post-domination information (e.g.
[FOW87]). The best-known algorithm that computes domination information is
probably the almost linear algorithm of Lengauer et al. [LT79]. Further amelio-
rations of this algorithm were proposed (e.g. [CHK01, GTW06, FGMT13]), and
even certified ones (e.g. [BDP15]). Since these algorithms computing domination
information are very efficient, algorithms computing control dependence that are
based on them are efficient too.
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6.1.3 Unstructured Control Flow on Arbitrary Graphs
All the definitions of control dependence that have been just given rely on the
hypothesis that the CFG has a unique exit node.

Ranganath et al. [RAB+07] observe that this hypothesis is not realistic any
more when recent programs, that heavily use exception-processing and that may
purposely non-terminate, are considered. This is especially the case of reactive
programs whose normal execution is infinite. They introduce non-termination
sensitive control dependence that is proved to extend Podgurski et al.’s weak con-
trol dependence [PC90] on CFGs without a unique end node. This form of control
dependence is called “non-termination sensitive” since it takes into account control
dependence due to potentially non-terminating statements. They prove that slic-
ing based on this form of control dependence preserves the behavior of the initial
program using a weak bisimulation between the executions of the original program
and its slice. They also introduce non-termination insensitive control dependence
that ignores control dependence due to potentially non-terminating statements. It
is proved to extend classic forms of control dependence (in particular Podgurski
et al.’s strong control dependence [PC90]) on CFGs without a unique end node.
They did not prove the correctness of this form of slicing.

Amtoft [Amt08] completes Ranganath et al.’s formalization by proving the cor-
rectness of slicing based on non-termination insensitive control dependence: the
link between the program and its slice is a weak simulation, not a weak bisimula-
tion. This formalizes the idea that the behavior of the original program is a prefix
of the behavior of the slice.

Danicic et al. [DBH+11] design a framework for control dependence that re-
moves all the constraints on CFGs and work with arbitrary directed graphs. They
prove that it subsumes all previous formalizations of control dependence in that it
coincides with former definitions of control dependence on the kinds of CFGs on
which these former definitions are defined.

More precisely, it introduces two kinds of control dependence:

• weak control dependence that is non-termination insensitive3 and subsumes
former non-termination insensitive control dependence definitions (Denning
et al.’s [DD77], Ferrante et al.’s [FOW87] and Amtoft’s [Amt08] presented
above),

• strong control dependence that is non-termination sensitive and subsumes
former non-termination sensitive control dependence definitions (Podgurski
et al.’s weak control dependence [PC90] and Ranganath et al.’s [RAB+07]
presented above).

3Note that the terminology in terms of “weak” and “strong” is the opposite of Podgurski et
al.’s [PC90]
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Their approach is quite different from previous works. Instead of characterizing
the relations between nodes, they rather directly characterize the fact of being
closed under control dependence. They define weakly (resp. strongly) control-
closed sets that formalize sets closed under weak (resp. strong) control dependence.
They prove the existence of weak (resp. strong) control-closure that is the smallest
superset weakly (resp. strongly) control-closed. They provide two algorithms
computing weak and strong control-closures and prove them correct.

Besides, they also give a semantics for each form of control dependence in
terms of projections of paths in the graph that resembles the soundness properties
established for slicing.

Two recent works of Amtoft reuse Danicic et al.’s framework for slicing. In
[AAC13], Amtoft et al. study the slicing of extended finite state machines. In
[AB16], Amtoft et al. focus on the slicing of probabilistic programs. In both
works, an algorithm computing weak control-closure is designed and integrated in
a rather efficient slicing algorithm.

Danicic et al.’s work is particularly interesting in the perspective of a generic
slicer, since it unifies all previous control dependence definitions and provides
algorithms.

As explained in Section 5.6, in this thesis we opt for non-termination insensitive
control dependence that allows to create slices of reasonable sizes and corresponds
to classic algorithms. Thus, from now on, we ignore strong control dependence
and focus only on weak control dependence.

In Danicic et al.’s work about weak control dependence, three results are of
particular interest for us:

• the definition of weak control-closed sets of vertices;

• the proof of existence of weak control-closure;

• the algorithm computing weak control-closure and its proof of correctness.

To ensure the same level of confidence in Danicic et al.’s result as in the results
of Chapter 5, we formalize the three points above in the Coq proof assistant,
slightly adapting some of Danicic et al.’s definitions of certain basic objects in
order to be closer to the definitions used in other works of the literature. These
small changes do not impact the meanings of the elaborated definitions such as
the one of weak control-closed set or weak control-closure. They are unchanged.

Next sections present in detail some elements of Danicic et al.’s formalization
of weak control dependence.
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u6 u5

u0

u2 u1

u4 u3

Figure 6.3 – Example graph G0, with V ′0 = {u1, u3}

6.2 Weak Control-Closed Sets

In this section and all the subsequent ones, G = (V,E) denotes a finite directed
graph with finite set of vertices V and set of edges E ⊆ V × V , and V ′ denotes a
subset of V . G must be thought of as the program control flow graph and V ′ as
the slicing criterion, in a form of program slicing where only control dependence
would be used as dependence relation.

We will use as a running example, in this chapter and the following ones, the
finite graph G0 = (V0, E0) shown in Figure 6.3, with considered subset of vertices
V ′0 = {u1, u3}. G0 is deliberately contrived to illustrate on a simple example the
multiple concepts defined hereafter. Note in particular that it does not have any
entry nodes or end nodes to highlight the fact that the upcoming definitions can
be applied on any finite directed graph.

Here are two basic preliminary definitions before really entering the world of
weak control dependence.

Definition 6.6: Path

We say that there is a path in G between two vertices u and v, denoted
u

path−−→ v, if there exist n ≥ 0 and vertices (in V ) u0 = u, . . . , un = v such that

∀i, 0 ≤ i < n =⇒ (ui, ui+1) ∈ E

In this case, we say that the path is of length n.

In G0 shown in Figure 6.3, u5, u6, u5, u6, u0 is a path of length 4. u0 is a path
of length 0, also referred as trivial.
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Definition 6.7: Reachable nodes

The set of vertices in G reachable from a subset V ′ of vertices is denoted
RG(V ′) = {v ∈ V | ∃u ∈ V ′, u path−−→ v}.

In G0 presented in Figure 6.3, RG0({u3}) = {u3}, since u3 is not the source
of any edges. RG0(V ′0) = V0, since except u3 every node can reach every other
node. Since every vertex in G0 is reachable from V ′0 , we will omit in the following
examples the parts of the definitions requiring reachability, since they are always
verified.

The first definition that we introduce is the one of V ′-path. It designates paths
that reach V ′ and ends as soon as they enter V ′.

Definition 6.8: V ′-path

A path π in G is said to be a V ′-path in G if the last vertex of the path is in
V ′ and all the other vertices in π are not in V ′. In particular, if u ∈ V ′, the
only V ′-path starting from u is the trivial path u. The existence of a V ′-path
between two nodes u and v is denoted u V ′−path−−−−−→ v.

For example, in our example graph G0 of Figure 6.3, u1 and u3 are trivial V ′0-
paths. u5, u6, u0, u1 is a V ′0-path. u0, u1, u4 and u0, u1, u3 are not V ′0-paths; indeed,
since u1 is in V ′0 , it should have been the last vertex of the paths.

Note that, if we consider another subset V ′1 verifying V ′1 ⊆ V ′, then every V ′-
path ending in V ′1 is a V ′1-path. This property will be used multiple times in proofs
in the rest of this document.

Based on the definition of V ′-path, we can build the concept of observable
vertices, following the naming of other works in the literature. Ranganath et al.
[RAB+07] uses indeed the term “first observable elements”, Wasserrab [Was11]
defines “observable sets”, while Blazy et al. [BMP15] designates such vertices as
“next observable vertices”. On the contrary, Danicic et al. only designate them
using a function Θ. Observable vertices from a node u in V ′ are the nodes in V ′
first-reachable from u. We can give a simple definitions using V ′-paths.

Definition 6.9: Observable vertex

Let u ∈ V . A vertex is an observable vertex from u in V ′ if it is the end
of a V ′-path from u. The set of observable vertices from u in V ′ is denoted
obsG(u, V ′), i.e. obsG(u, V ′) = {u′ ∈ V | u V ′−path−−−−−→ u′}.
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u6

{u1, u3}

u5

{u1, u3}

u0 {u1, u3}

u2

{u1, u3}

u1 {u1}

u4

{u1, u3}

u3 {u3}

Figure 6.4 – Example graph G0 annotated with the set of observable vertices with
respect to V ′0 = {u1, u3}

Note that, given a vertex u in V ′, since the only V ′-path from it is the trivial
path u, the set of observable vertices from it in V ′ is the singleton containing only
itself, i.e. obsG(u, V ′) = {u}.

Using our running example G0 of Figure 6.3,

obsG0(u1, V
′

0) = {u1} and obsG0(u3, V
′

0) = {u3}

The set of observable vertices in V ′0 from every other node is V ′0 . For instance, u0, u1
and u0, u2, u3 are two V ′0-paths, thus V ′0 ⊆ obsG0(u0, V

′
0). Since, obsG0(u0, V

′
0) ⊆ V ′0 ,

obsG0(u0, V
′

0) = V ′0 . Figure 6.4 shows G0 where each vertex is annotated with the
set of their observable vertices in V ′0 .

The definition of V ′-path is not the same as the one used in Danicic et al.’s
work. Danicic et al.’s definition requires the path to be at least of length 1, thus
rejecting trivial paths, and does not constrain the first vertex that may or may not
be in V ′. With this definition, u1, u4, u5, u6, u0, u1 would be a V ′0-path in G0 shown
in Figure 6.3. As stated above, the definition was changed so that observable
vertices could be defined in a simple way from V ′-paths and in a similar way to
other works using them in the literature.

We now introduce the concept of V ′-weakly committing vertices. These are
vertices that, if they can lead to V ′, always lead to the same node in V ′. Vertices
that cannot lead to V ′ are automatically V ′-weakly committing.

Definition 6.10: V ′-weakly committing vertex

A vertex u in G is V ′-weakly committing if all the V ′-paths from u have
the same end point (in V ′). In particular, any vertex u ∈ V ′ is V ′-weakly
committing. The set of V ′-weakly committed nodes in G is denoted WCG(V ′).
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This definition can be rephrased using the concept of observable vertex. A
vertex u in G is V ′-weakly committing if and only if |obsG(u, V ′)| ≤ 1, where |.| is
the classic notation for the cardinal of sets.

In G0 depicted in Figure 6.3, u1 and u3 belong to V ′0 and thus are V ′0-weakly
committing. As stated above, all vertices except u1 and u3 have a set of observable
vertices in V ′0 equal to V ′0 . Since |V ′0 | = 2, all theses vertices are not V ′-weakly
committing.

A node u which is not V ′-weakly committing is the source of two V ′-paths
leading to two different vertices in V ′. Intuitively, this is a decision node outside
the slice that can lead to two distinct points in the slice. It has an impact on the
slice but is itself not in the slice. This is the kind of nodes that prevent the slice
from being closed under control dependence.

We can finally introduce the notion of weakly control-closed set.

Definition 6.11: Weakly control-closed set

A subset V ′ of V is weakly control-closed in G if every vertex reachable from
V ′ is V ′-weakly committing.

In the rest of the document, we will not always specify in which graph the
subset is weakly control-closed when this is obvious.

Note that this definition is slightly different from Danicic et al’s. This difference
is inherited directly from the different definitions of V ′-paths. Indeed, in Danicic
et al.’s work, V ′ is V ′-weakly committing if and only if every vertex not in V ′ and
reachable from V ′ is V ′-weakly committing. With our different definition, nodes
in V ′ are trivially V ′-weakly committing, thus we can simplify a bit Danicic et al.’s
definition.

In our example graph G0, all nodes are reachable from u1 thus from V ′0 . Thus
every vertex must be V ′0-weakly committing for V ′0 to be weakly control-closed in
G0. But all the nodes not in V ′0 (u0, u2, u4, u5, u6) are not V ′0-weakly committing.
V ′0 is therefore clearly not weakly control-closed in G0. But other subsets of V0
are weakly control-closed in G0. The empty set ∅, the whole set of vertices V0 and
every singleton are weakly control-closed in G0 by definition. More interesting
weakly control-closed sets in G0 include {u0, u1}, {u0, u5, u6}, {u0, u1, u4, u6} and
{u0, u1, u2, u3, u4, u6}.

This definition of weakly control-closed set confirms the intuition given about
V ′-weakly committing vertices. These vertices are an issue when they are also
reachable from V ′. But it does not give a way, from an arbitrary V ′, to construct
the smaller weakly control-closed superset. Intuitively, it specifies what is a correct
slice, but does not give a method to construct it from the slicing criterion. Since
reachable non-V ′-weakly committing vertices are the problem, the naive solution
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would be to add all these vertices to V ′. While correct, this does not produce the
smaller slice. In Section 6.3, we will show that we can produce smaller slices using
another characterization of weakly control-closed sets.

6.3 Weak Control-Closure
In this section, the problem we consider is the following. Given an arbitrary subset
V ′ of V , can we and how can we construct the smaller superset of V ′ that is weakly
control-closed in G, i.e. what nodes should we add to V ′ to turn it into a weakly
control-closed subset? We suggested to add the seemingly problematic nodes, i.e.
the vertices both reachable from V ′ (i.e. in RG(V ′)) and not V ′-weakly committing
(i.e. in V \WCG(V ′)). Lemma 6.1 states that this intuition is correct.

Lemma 6.1

V ′ ∪
(
RG(V ′) ∩ (V \WCG(V ′))

)
is weakly control-closed in G.

Proof. 4 Let W = V ′ ∪
(
RG(V ′)∩ (V \WCG(V ′))

)
. Let us prove that W is weakly

control-closed using Definition 6.11 and Definition 6.10. Let u ∈ V reachable from
W . Let us show that u is W -weakly committing. For that, assume that there are
two W -paths π1 and π2 from u reaching vertices v1 and v2 respectively in W and
show that v1 = v2.

First, note that u is reachable from V ′. Indeed, by definition of W , every
vertex in W is reachable from V ′. Since u is reachable from W , by transitivity it
is reachable from V ′.

If one of the W -paths were trivial, we would have u = v1 = v2. Assume
that both W -paths are not trivial. In this case, u 6∈ W , i.e. u 6∈ V ′ and either
u 6∈ RG(V ′) or u ∈ WCG(V ′). Since u ∈ RG(V ′), we have u 6∈ V ′ and u ∈ WCG(V ′).

Both v1 and v2 belong to a union. Consider the case where one of them is
in the set RG(V ′) ∩ (V \WCG(V ′)). Assume without loss of generality that v1 ∈
RG(V ′)∩ (V \WCG(V ′)). This means that there are two V ′-paths π11 and π12 from
v1 ending in v11 and v12 respectively such that v11 6= v12. By prepending π1 to π11
and π12 respectively, we can construct two V ′-paths from u ending in v11 and v12.
Again, since u is V ′-weakly committing, this means that v11 = v12, contradicting
the hypothesis that they are distinct vertices.

Thus neither v1 nor v2 is in RG(V ′) ∩ (V \WCG(V ′)). This means that both
v1 and v2 are in V ′. π1 and π2 are thus not only W -paths, they are also V ′-paths.
Since u is V ′-weakly committing, we can deduce v1 = v2.

4The mechanized version of this proof is available in [Léc18].
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This proves that u is W -weakly committing, which means that W is weakly
control-closed.

Lemma 6.1 gives a first method to build a non-trivial superset of V ′ that is
weakly control-closed (V was indeed already known as a weakly control-closed su-
perset of V ′, but it is not a very interesting one). Is it an optimal construction? Let
us consider our example depicted in Figure 6.3. Applying Lemma 6.1 to V ′0 gives
us V0 as weakly control-closed superset of V ′0 . But another weakly-control superset
of V ′0 was presented earlier: {u0, u1, u2, u3, u4, u6}. This superset is strictly smaller
than V0, which proves that Lemma 6.1 does not provide an optimal construction.

Vertex u5 is wrongly added by Lemma 6.1, in the sense that, without it, the
set would already have been weakly control-closed. Vertex u5 is reachable from
V ′ and not V ′-weakly committing, like u0, u2 and u6, but what differentiates u5
from the other vertices is that every V ′-path from u5 goes through u6. Therefore,
if u6 is selected, u5 automatically has only one observable vertex in the resulting
set W and becomes W -weakly committing. We need a different notion that filters
out u5 but keeps the other vertices. We introduce the notion of V ′-weakly deciding
vertex.

Definition 6.12: V ′-weakly deciding vertex

A vertex u in G is V ′-weakly deciding if there exist two non-trivial V ′-paths
from u that share no vertex except u. Let WDG(V ′) denote the set of V ′-
weakly deciding vertices in G.

Definition 6.12 is again different than the equivalent one in [DBH+11], due to
the different notion of V ′-path. The most visible change is that in our formaliza-
tion, V ′-weakly deciding cannot be in V ′, while this is possible in [DBH+11].

Property 6.2

WDG(V ′) ∩ V ′ = ∅.

Proof. 5 This is immediate from Definitions 6.8 and 6.12. Since the V ′-paths are
non-trivial, this means that their start vertex, i.e. u, is not in V ′.

In our example graph G0 of Figure 6.3, u1 and u3 are not V ′0-weakly deciding,
due to Property 6.2. u6 is V ′0-weakly deciding, with associated V ′-paths u6, u0, u1
and u6, u4, u3. These V ′-paths are highlighted in Figure 6.5. Likewise, u0, u2 and
u4 are V ′0-weakly deciding. On the contrary, u5 is not V ′0-weakly deciding, since
every V ′0-path from u5 traverses u6. Thus, WDG0(V ′0) = {u0, u2, u4, u6}.

5The mechanized version of this proof is available in [Léc18].
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u6 u5

u0

u2 u1

u4 u3

Figure 6.5 – Example graph G0, with V ′0 = {u1, u3}, and u6 highlighted as a
V ′0-weakly deciding vertex

This notion of V ′-weakly deciding vertex can be used to give an alternative
definition to weakly control-closed subsets.

Lemma 6.2

V ′ is weakly control-closed in G if and only if there is no V ′-weakly deciding
vertex in G reachable from V ′.

Proof. 6 If V ′ is weakly control-closed in G, then by Definition 6.11, every vertex
reachable from V ′ is weakly-committing, thus not weakly-deciding.

Reciprocally, assume that there is no V ′-weakly deciding vertex reachable from
V ′. Let us also assume that there is a vertex u both reachable from V ′ and not
V ′-weakly committing, i.e. with at least two distinct observable vertices v1 and
v2 in V ′, and deduce a contradiction. There exist two V ′-paths π1 and π2 from u
ending in v1 and v2 respectively. Let us define v as the last intersection on π1 of π1
and π2. v is the source of two non-trivial V ′-paths, the suffixes of π1 and π2, that
share no vertex except v, thus v is V ′-weakly deciding. Moreover, v is reachable
from u which is itself reachable from V ′. v is therefore reachable from V ′. Thus, by
Definition 6.12, v is V ′-weakly deciding, which gives us the desired contradiction.
This gives us that every vertex reachable from V ′ is V ′-weakly committing, which
means by Definition 6.11 that V ′ is weakly control-closed.

In Figure 6.5, vertex u6 is highlighted as a V ′0-weakly deciding vertex in G0.
By Lemma 6.2, this gives another proof that V ′0 is not weakly control-closed in G0.

Intuitively, Lemma 6.2 shows that V ′-weakly deciding vertices reachable from
V ′ are good candidates to be added to V ′ to construct the weak control-closure of
V ′. And since there are fewer V ′-weakly deciding vertices reachable from V ′ than
non-V ′-weakly committing vertices reachable from V ′, we can hope to get this time

6The mechanized version of this proof is available in [Léc18].
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the minimality that we did not have in Lemma 6.1. Theorem 6.1 shows indeed
that this is the case, but we first prove several auxiliary results about V ′-weakly
deciding vertices.

Property 6.3

∀ V ′1 , V ′2 ⊆ V, V ′1 ⊆ V ′2 =⇒ WDG(V ′1) ⊆ V ′2 ∪WDG(V ′2)

Proof. 7 Let V ′1 and V ′2 two subsets of V such that V ′1 ⊆ V ′2 , and let u ∈ WDG(V ′1).
If u ∈ V ′2 , then trivially u ∈ V ′2 ∪WDG(V ′2). Assume that u 6∈ V ′2 and prove that
u ∈ WDG(V ′2). There exist two V ′1-paths π1 and π2 from u. Since V ′1 ⊆ V ′2 , π1
and π2 both have a vertex in V ′2 . Let v1 be the first vertex on π1 in V ′2 and v2
the first vertex on π2 in V ′2 , and let ρ1 and ρ2 the prefix of π1 ending in v1 and
the prefix of π2 ending in v2 respectively. π1 and π2 are two V ′2-paths from u.
Moreover, their intersection is equal to {u}, since they are the prefixes of paths
whose intersection is equal to {u}. By Definition 6.12, u is V ′2-weakly deciding,
which ends the proof.

Property 6.4

WDG(V ′ ∪WDG(V ′)) = ∅.

The proof of Property 6.4 turned out to be, if not difficult, at least very long.
The proof of the corresponding result [DBH+11, Lemma 53] in Danicic et al.’s work
is quite compact, reasoning by contradiction, but it appeared to be inaccurate. We
followed a different path. We state an auxiliary result and prove it by exploring all
the possible sub-cases and showing that they can be transformed into the standard
case.

We first introduce a new definition to manipulate weak variants of V ′-path.
These are V ′-paths but with the constraint on the last vertex removed. This
definition will reappear in Chapter 8.

Definition 6.13: V ′-disjoint path

A path π in G is said to be a V ′-disjoint path in G if all the vertices in π
except the last one are not in V ′. The existence of a V ′-disjoint path between
two vertices u and v is denoted u V ′−disjoint−−−−−−−→ v.

In G0 shown in Figure 6.3, u6, u0 is a V ′-disjoint path.
A V ′-path is a particular case of a V ′-disjoint path. Given V ′1 ⊆ V ′, every

V ′-disjoint path is also a V ′1-disjoint path.
7The mechanized version of this proof is available in [Léc18].
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u

v1 ∈ V ′

v2 6∈ V ′

v21 ∈ V ′

v22 ∈ V ′

π1

π2

π21

π22

Figure 6.6 – Schematic representation of the configuration of Lemma 6.3

u

v1 ∈ V ′

v2 6∈ V ′

v21 ∈ V ′

v22 ∈ V ′

π1

π21

π22

Figure 6.7 – If π2 contains some cycles, we can remove them

Lemma 6.3

Let u ∈ V . Assume that u is the source of a non-trivial V ′-path π1 and a
non-trivial V ′-disjoint path π2 ending in WDG(V ′), such that u is the only
vertex present both in π1 and π2. Then u is V ′-weakly deciding.

Proof. 8 Let v1 the end of π1 and v2 the end of π2. v2 is V ′-weakly deciding, thus
there exist two V ′-paths π21 ending in v21 and π22 ending in v22 that share no
vertex except v2. This configuration is illustrated in Figure 6.6. Intuitively, u is a
V ′-weakly deciding vertex, except one of the paths (π2) ends in WDG(V ′) instead
of V ′.

First, we can assume without loss of generality that π2 does not contain any
loop, since we can remove them and still have a valid path connecting u and v2.
Figure 6.7 illustrates the removal of the cycles in π2. We assume in the rest of this
proof that every vertex in π2 is distinct from any vertex in π2.

Second, we show that we can assume that π21 and π22 share no vertex with
π2 except v2. For that, we define u21 and u22 as the last points on π21 and π22
respectively that occur in π2. It is possible that both u21 and u22 are equal to v2.
Assume without loss of generality that u21 does not occur for the first time on π2

8The mechanized version of this proof is available in [Léc18].
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after u22. This configuration is represented in Figure 6.8. This means that π2 can
be split into three parts:

• π2a (maybe trivial) between u and u21

• π2b (maybe trivial) between u21 and u22

• π2c (maybe trivial) between u22 and v2

π21 can be split into two parts:

• π21a (maybe trivial) between v2 and u21

• π21b between u21 and v21, not trivial since v21 ∈ V ′ while u21 6∈ V ′ since u21
is in π2, that has u21 as only intersection with π2

π22 can be split into two parts:

• π22a between v2 and u22

• π22b between u22 and v22, not trivial since v22 ∈ V ′ while u22 6∈ V ′ since u22
is in π2, that has u22 as only intersection with π2

In this configuration, we can choose v′2 = u21, π′2 = π2a, π′21 = π21b and π′22 =
π2bπ22b. π′21 and π′22 are highlighted in Figure 6.8. We can show that v′2, π′2, π′21
and π′22 satisfy the same properties as π2, π21 and π22, with the addition that π′21
and π′22 share no vertex with π′2 except u21. Indeed, π′2 is a V ′-disjoint path, since
it is the prefix of a V ′-disjoint path. π′21 and π′22 are V ′-paths, since they are
the suffixes of V ′-paths, that have only one vertex in common, u21. Indeed, π21b
has only u21 as intersection with π2 thus with π2b, and π21b is disjoint from π22b,
because they are suffixes of π21 and π22, unless u21 = u22 = v2. In both cases u21
is the only intersection. Moreover, π′21 has a single intersection with π2 and thus
with π′2 since it is a prefix of π2. Likewise, π′22 only intersects π′2 in u22, because π2
does not contain any cycle, thus the intersection of π2a and π2b is the vertex u21,
and π22b is disjoint π2 unless u21 = u22 = v2. We assume in the rest of this proof
that π2 has a single vertex in common with π21 and π22 respectively, v2.

Third, we show that we can conclude, but this still requires to consider two
cases: the case where π1 intersects both π21 and π22 and the case where π2 is
disjoint from at least one of them.
If π1 intersects both π21 and π22, we can assume without loss of generality that it
encounters π21 first at vertex u21. This case is represented in Figure 6.9. We can
split π1 into π1a and π2b, and π21 into π21a and π21b. We can construct two paths
from u that share no vertex except u: π1aπ21b and π2π22. If π1 does not intersect
π21 or π22, we can assume without loss of generality that it does not intersect π22.
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u

v1 ∈ V ′

v2 6∈ V ′

π1

π2

v21 ∈ V ′
π21

u21 = v′2

π′21

v22 ∈ V ′

π21

u22

π′22

Figure 6.8 – Transformation of the problem when π2 intersects π21 and π22

u

v2 6∈ V ′

v21 ∈ V ′

v22 ∈ V ′

π1

u21

v1 ∈ V ′

π2

π21

π22

Figure 6.9 – Highlighting of the two V ′-paths in the case where π1 intersects first
π21 and then π22

u

v2 6∈ V ′

v21 ∈ V ′

v22 ∈ V ′

π1

v1 ∈ V ′
π2

π21

π22

Figure 6.10 – Highlighting of the two V ′-paths in the case where π1 and π22 are
disjoint



6.3. WEAK CONTROL-CLOSURE 131

u

v1 ∈ V ′ ∪WDG(V ′)

v2 ∈ V ′ ∪WDG(V ′)

π1

6∈ V
′ ∪WDG(V ′ )

π2

6∈ V ′∪WDG(V ′)

Figure 6.11 – Schematic representation of the configuration of Property 6.4

u

v1 ∈ V ′

v2 ∈ V ′

π1

6∈ V
′ ∪WDG(V ′ )

π2

6∈ V ′∪WDG(V ′)

Figure 6.12 – First sub-case of the proof of Property 6.4

In this case, the two V ′-paths π1 and π2π22 show that u is V ′-weakly deciding.
This is illustrated in Figure 6.10.

Based on Lemma 6.3, we can prove Property 6.4.

Proof of Property 6.4. 9 Let u ∈ WDG(V ′ ∪WDG(V ′)). There exist two non-trivial
V ′ ∪WDG(V ′)-paths π1 and π2 ending in v1 and v2 respectively that from u that
share no vertex except u. This is represented in Figure 6.11.

v1 and v2 can both be either in V ′ or in WDG(V ′). This gives four cases. We
show in each case that u ∈ WDG(V ′).

1. If v1 ∈ V ′ and v2 ∈ V ′ (cf. Figure 6.12), then π1 and π2 are not only
V ′ ∪WDG(V ′)-paths, but also V ′-paths. Therefore, u ∈ WDG(v′).

2. If v1 ∈ V ′ and v2 ∈ WDG(V ′) (cf. Figure 6.13), we can apply Lemma 6.3
with hypotheses stronger than required. This gives us u ∈ WDG(V ′).

9The mechanized version of this proof is available in [Léc18].
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u

v1 ∈ V ′

v2 6∈ V ′

v21 ∈ V ′

v22 ∈ V ′

π1

6∈ V
′ ∪WDG

(V
′ )

π2

6∈ V ′∪WD
G(V ′)

6∈ V
′

6∈ V ′

Figure 6.13 – Second sub-case of the proof of Property 6.4

3. If v1 ∈ WDG(V ′) and v2 ∈ V ′, we have a configuration symmetrical to the
second case and we can apply the same reasoning.

4. If both v1 ∈ WDG(V ′) and v2 ∈ WDG(V ′) (cf. Figure 6.14), we have two
V ′-paths π11 and π12 from v1, and two V ′-paths π21 and π22 from v2. Since
π11 and π12 share no vertex except v1, and v1 6= v2, at most one of them can
contain v2. Assume without loss of generality that π11 does not contain v2.
If π2 and π11 intersected, the last vertex in π2 also in π11 would satisfy the
hypotheses of Lemma 6.3, thus would be in WDG(V ′), which is impossible
on π2, since it is a V ′∪WDG(V ′)-path. Thus π2 and π11 do not intersect. By
applying again Lemma 6.3 on u and the V ′-paths π1π11 ending in V ′ and π2
ending in WDG(V ′), we deduce that u ∈ WDG(V ′).

In the four cases, we proved that u ∈ WDG(V ′). Since the choice of u is
arbitrary, this means that

WDG(V ′ ∪WDG(V ′)) ⊆ WDG(V ′)

Since
WDG(V ′ ∪WDG(V ′)) ∩ (V ′ ∪WDG(V ′)) = ∅

this gives the desired result.

Based on these two lemmas, we can prove that adding to V ′ the V ′-weakly
deciding vertices reachable from V ′ gives a weakly control-closed superset of V ′.
This is also the smallest weakly control-closed superset of V ′.
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u

v1 6∈ V ′

v2 6∈ V ′

v11 ∈ V ′

v12 ∈ V ′

v21 ∈ V ′

v22 ∈ V ′

π1

6∈ V
′ ∪WDG

(V
′ )

π11

6∈ V
′

π12

6∈ V ′

π2

6∈ V ′∪WD
G(V ′) π21

6∈ V
′

π22

6∈ V ′

Figure 6.14 – Second sub-case of the proof of Property 6.4

Theorem 6.1: Existence of the weak control-closure

Let W = WDG(V ′) ∩ RG(V ′) denote the set of vertices in WDG(V ′) that are
reachable from V ′. Then V ′ ∪ W is the smallest weakly control-closed set
containing V ′.

Proof. 10 We prove that V ′ ∪W is weakly control-closed in G. By Lemma 6.2, it is
sufficient to show that there is no element of WDG(V ′∪W ) reachable from V ′∪W .
Let u be an element of WDG(V ′ ∪W ) reachable from V ′ ∪W . By Property 6.3,
since V ′ ∪W ⊆ V ′ ∪WDG(V ′),

WDG(V ′ ∪W ) ⊆ V ′ ∪WDG(V ′) ∪WDG(V ′ ∪WDG(V ′))

Therefore, by Property 6.4,

WDG(V ′ ∪W ) ⊆ V ′ ∪WDG(V ′)

Thus u ∈ V ′ ∪WDG(V ′). Since u is reachable from V ′ ∪W , and all elements of W
are reachable from V ′, u is reachable from V ′. We can deduce that u ∈ V ′ ∪W .
But u ∈ WDG(V ′ ∪W ), which means u 6∈ V ′ ∪W , which is contradictory. Thus
V ′ ∪W is weakly control-closed in G as expected.

We now prove that V ′ ∪W is included in any weakly control-closed set con-
taining V ′. Let X be a weakly control-closed set containing V ′ and let u be an

10The mechanized version of this proof is available in [Léc18].
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element of V ′ ∪ W . Either u ∈ V ′, and thus u ∈ X, or u ∈ W . Assume that
u ∈ W . In particular, u ∈ WDG(V ′). By Property 6.3, WDG(V ′) ⊆ X ∪WDG(X).
If u is in X, the proof is done. If u ∈ WDG(X), u is a vertex X-weakly deciding
in G, reachable from V ′ ∪W and thus from X, which is contradictory to X being
weakly control-closed in G.

Definition 6.14: Weak control-closure

We call weak control-closure of V ′, denoted WCCG(V ′), the smallest weakly
control-closed set containing V ′. We have:

WCCG(V ′) = V ′ ∪
(
WDG(V ′) ∩ RG(V ′)

)

It follows from this definition that if V ′ is already weakly control-closed then
WCCG(V ′) = V ′.

Let us illustrate weak control-closure on the running example shown in Fig-
ure 6.3. As mentioned above, WDG0(V ′0) = {u0, u2, u4, u6}, thus by Definition 6.14
and since, as underlined in Section 6.2, each node in G0 is reachable from V ′0 , we
have:

WCCG0(V ′0) = V ′0 ∪WDG0(V ′0) = {u0, u1, u2, u3, u4, u6}

Weak control-closure has several properties that are more natural to express
than corresponding ones on V ′-weakly deciding vertices.

Property 6.5: Monotonicity of weak control-closure

Let V ′1 and V ′2 be subsets of V , such that V ′1 ⊆ V ′2 . Then:

WCCG(V ′1) ⊆ WCCG(V ′2)

Proof. 11 We know that:

1) WCCG(V ′1) = V ′1 ∪ (WDG(V ′1) ∩ RG(V ′1))

2) WCCG(V ′2) = V ′2 ∪ (WDG(V ′2) ∩ RG(V ′2))

3) WDG(V ′1) ⊆ V ′2 ∪WDG(V ′2) by Property 6.3

By 3),
WDG(V ′1) ∩ RG(V ′1) ⊆ (V ′2 ∪WDG(V ′2)) ∩ RG(V ′1)

11The mechanized version of this proof is available in [Léc18].
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Since V ′1 ⊆ V ′2 , RG(V ′1) ⊆ RG(V ′2), and thus:

WDG(V ′1) ∩ RG(V ′1) ⊆ (V ′2 ∪WDG(V ′2)) ∩ RG(V ′2)

Whence, since V ′2 ⊆ RG(V ′2),

WDG(V ′1) ∩ RG(V ′1) ⊆ V ′2 ∪WDG(V ′2) ∩ RG(V ′2)

Finally, using V ′1 ⊆ V ′2 ,

V ′1 ∪WDG(V ′1) ∩ RG(V ′1) ⊆ V ′2 ∪WDG(V ′2) ∩ RG(V ′2)

i.e. WCCG(V ′1) ⊆ WCCG(V ′2).

Property 6.6: Idempotence of weak control-closure

WCCG(WCCG(V ′)) = WCCG(V ′)

Proof. 12 WCCG(V ′) is already weakly control-closed, thus by Definition 6.14, its
weak control-closure is itself.

6.4 Link with Classic Control Dependence
The objective of this section is to illustrate on program p shown in Figure 4.2
that this new notion of weak control-closed set subsumes being closed under a
classic form of control dependence. For that we will show on the slicing criterion
of Figure 4.4 that interlacing computations of weak control-closure with classic
data dependencies gives the same slice set as classic static backward slicing.

To apply Danicic et al.’s definitions, we consider the CFG of p that is repre-
sented in Figure 6.1.

To make the comparison, we need to take as slicing criterion the equivalent to
{8}, the slicing criterion of Figure 4.4. Danicic et al. [DBH+11, Section 7] showed
that weak control-closure and closure under a classic form of control dependence
are comparable when enter and exit nodes are in the slicing criterion. Thus, we
choose as slicing criterion: V ′1 = {enter, u8, exit}.

Since enter can reach every vertex in the graph, to build the weak control-
closure of V ′1 , it is sufficient to add to V ′1 every V ′1-weakly deciding vertex. u6 is
V ′1-weakly deciding, since there are two non-trivial V ′-paths u6, u7, exit and u6, u8
that share no vertex except u6. u6 and its associated V ′1-paths are highlighted in

12The mechanized version of this proof is available in [Léc18].
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enter

quo=0
u1

r=a
u2

while (b<=r)
u3

quo=quo+1
u4

r=r-b
u5

if(r!=0)
u6

res=0
u7

res=1
u8

exit

V ′1-path V ′1-weakly deciding vertex

Figure 6.15 – Control flow graph G of program p of Figure 4.2, with slicing criterion
V ′1 = {enter, u8, exit}

Figure 6.15. This is the only V ′1-weakly deciding vertex, thus the first step returns
V ′11 = WCCG(V ′1) = {enter, u6, u8, exit}.

Since r is used at u6 and may be defined for the last time at u5 and u2,
data dependencies add vertices u5 and u2 to the slice set, resulting in the set
V ′12 = {enter, u2, u5, u6, u8, exit}, represented in Figure 6.16.

The next step consists in computing the weak control-closure of V ′12. u3 is
V ′12-weakly deciding, the two V ′12-paths being u3, u4, u5 and u3, u6 highlighted in
Figure 6.16. This is the only V ′12-weakly deciding vertex. The weak control-
closure of V ′12 is therefore V ′13 = {enter, u2, u3, u5, u6, u8, exit}. Data depen-
dence does not add any additional vertex. The resulting slice set is thus V ′13 =
{enter, u2, u3, u5, u6, u8, exit}, which corresponds as expected to the slice set
{2, 3, 5, 6, 8} computed in Figure 4.4.

6.5 Danicic’s Algorithm for Computing Weak
Control-Closure

Definition 6.14 gives an explicit definition of weak control-closure. One possible
algorithm could be to apply the definition literally and test each vertex in the
graph to check whether it is V ′-weakly deciding. If yes and if it is additionally
reachable from V ′, then we add it to V ′. By definition, the resulting set is the
weak control-closure of V ′ in G.

But this is not the path followed by Danicic et al [DBH+11]. Instead, they
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enter

quo=0
u1

r=a
u2

while (b<=r)
u3

quo=quo+1
u4

r=r-b
u5

if(r!=0)
u6

res=0
u7

res=1
u8

exit

V ′3-path V ′3-weakly deciding vertex

Figure 6.16 – Control flow graph G of program p of Figure 4.2, with slicing criterion
V ′12 = {enter, u2, u5, u6, u8, exit}

described an iterative algorithm relying on a sufficient condition for a node to be
V ′-weakly deciding.

First, we introduce this sufficient condition in Section 6.5.1 and study its prop-
erties. Then, we describe in Section 6.5.2 the algorithm designed by Danicic et
al., from now on referred to as Danicic’s algorithm. The correctness of Danicic’s
algorithm is completely guaranteed by the properties proved in Section 6.5.1.

6.5.1 Critical Edge

This section introduces V ′-critical edges, which are edges in G whose origins are
V ′-weakly deciding. Such edges are introduced by Danicic, but were not given a
name. We chose the name “critical edge”. Showing that a vertex is the origin of a
V ′-critical edge is thus a sufficient condition for proving it is V ′-weakly deciding.
However, this is not a necessary condition. Every V ′-weakly deciding vertex in G is
not the start node of a V ′-critical edge. But critical edges have a second interesting
property. When there is no V ′-critical edge in G whose source is reachable from
V ′, then there is no V ′-weakly deciding vertex reachable from V ′ either, and thus
V ′ is weakly control-closed in G.
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Definition 6.15: Critical edge

An edge (u, v) ∈ E is called V ′-critical if:

(1) | obsG(u, V ′)| ≥ 2;

(2) | obsG(v, V ′)| = 1;

(3) u is reachable from V ′ in G.

In our example graph G0 shown in Figure 6.4 with its vertices annotated with
their observable vertices in V ′0 , (u0, u1) is a V ′0-critical edge. Indeed, we have
| obsG0(u0, V

′
0)| = 2 and | obsG0(u1, V

′
0)| = 1. Likewise, (u2, u3) and (u4, u3) are

V ′0-critical edges. It should be noted that u6 is not the source of a V ′-critical
edge, since its two children u4 and u0 both have two observable vertices in V ′0 ,
while being V ′0-weakly deciding as shown in Section 6.3, illustrating that finding a
critical edge is not a necessary condition for finding a weakly deciding vertex.

We now prove that V ′-critical edges are indeed good objects when looking for
V ′-weakly deciding vertices.

Lemma 6.4

If V ′ is not weakly control-closed in G, then there exists a V ′-critical edge
(u, v) in G. Moreover, if (u, v) is such a V ′-critical edge, then u is a V ′-weakly
deciding vertex reachable from V ′, and thus u ∈ WCCG(V ′).

Proof. 13 Let x be a vertex in WDG(V ′) reachable from V ′. By Definition 6.12,
there exist two V ′-paths π1 and π2 ending in x1 and x2 respectively that share
no vertex except x. At the beginning of π1, we have obsG(x, V ′) ⊇ {x1, x2} and
thus | obsG(x, V ′)| ≥ 2. At the end of π1, we have obsG(x1, V

′) = {x1} and thus
| obsG(x1, V

′)| = 1. Let u be the last vertex on π1 with at least two observable
nodes in V ′ and v be its successor on π1. Then, by definition of u, | obsG(u, V ′)| ≥ 2
and | obsG(v, V ′)| < 2. Since obsG(v, V ′) ⊇ {x1}, | obsG(v, V ′)| ≥ 1 and therefore
| obsG(v, V ′)| = 1. Moreover, u is reachable from x which is itself reachable from
V ′. u is therefore reachable from V ′. By Definition 6.15, (u, v) is a V ′-critical
edge.

Assume there exists a V ′-critical edge (u, v). We know, by Definition 6.15, that
| obsG(v, V ′)| = 1. Let w be the observable vertex in V ′ from v and π be a V ′-path
from v to w. Since (u, v) ∈ E, w is also an observable vertex in V ′ from u. But
| obsG(u, V ′)| ≥ 2, thus u has another observable vertex w2 6= w in V ′ which is

13The mechanized version of this proof is available in [Léc18].
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not an observable vertex from v. Let π2 be a V ′-path from u to w2. π and π2
are two V ′-paths from u that are non-trivial, otherwise u ∈ V ′ which contradicts
| obsG(u, V ′)| ≥ 2. If π and π2 intersected at another vertex than u, this would
mean that w2 ∈ obsG(v, V ′) which would contradict the definition of w2. Thus,
π and π2 have only u in common. By Definition 6.12, u is V ′-weakly deciding.
Moreover, (u, v) being a V ′-critical edge also means that u is reachable from V ′.
This leads to u ∈ WCCG(V ′).

We can note that the key argument of the proof above is the fact that u has
at least one observable vertex in V ′ that is not an observable vertex from v in V ′.
v also needs to have at least one observable vertex in V ′. We could thus weaken
the definition of V ′-critical edge and just require that

1 ≤ | obsG(v, V ′)| < | obsG(u, V ′)|

6.5.2 Definition and Proof of Correctness of Danicic’s
Algorithm

Danicic’s algorithm is entirely based on Lemma 6.4. It consists in detecting critical
edges and adding their sources. Indeed, by Lemma 6.4, it is clear that such vertices
belong to the weak control-closure. But it was also shown in Section 6.5.1 that
being the source of a V ′-critical edge is not a necessary condition for being V ′-
weakly deciding and reachable from V ′. If applied only on V ′, this procedure will
thus not find all V ′-weakly deciding vertices that are reachable from V ′.

The idea of the algorithm is to proceed iteratively. It manipulates an inter-
mediate set W initialized to V ′ that grows during each iteration until it is equal
to the weak control-closure of V ′. More precisely, an iteration consists in looking
for a W -critical edge and, if one is found, adding its source to W . When there is
not any W -critical edge any more, the algorithm stops and returns W . Danicic’s
algorithm is presented as Algorithm 6.1.

It is of primary importance that the algorithm looks forW -critical edges instead
of V ′-critical edges. Indeed, as recalled just above, every vertex that needs to be
added to build the weak control-closure of V ′, i.e. every vertex inWCCG(V ′)\V ′, is
not the source of a V ′-critical edge. This means that during the first iteration, when
W = V ′, it is not possible either to find every vertex in WCCG(V ′) \ V ′. But the
correctness of the algorithm relies on the fact that every vertex in WCCG(V ′) \ V ′
becomes the source of a W -critical edge after some iterations.

The correctness of Danicic’s algorithm relies on the invariant V ′ ⊆ W ⊆
WCCG(V ′). At the beginning of the algorithm, W = V ′ and thus V ′ ⊆ W ⊆
WCCG(V ′). Assume that at the beginning of an iteration V ′ ⊆ W ⊆ WCCG(V ′)
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Input: G = (V,E) a directed graph
V ′ ⊆ V

Output: W ⊆ V the weak control-closure of V ′
Ensures: W = WCCG(V ′)

1 begin
2 W ← V ′

3 while there exists a W -critical edge in E do
4 choose such a W -critical edge (u, v)
5 W ← W ∪ {u}
6 end
7 return W

8 end

Algorithm 6.1: Danicic’s algorithm for computing weak control-closure

and there exists a W -critical edge (u, v). By Lemma 6.4, u is a W -weakly de-
ciding vertex reachable from W , i.e. u ∈ WCCG(W ). Since V ′ ⊆ W , we have
trivially V ′ ⊆ W ∪ {u}. By Property 6.5, WCCG is monotonic and thus from
W ⊆ WCCG(V ′), we can deduce WCCG(W ) ⊆ WCCG(WCCG(V ′)). By Prop-
erty 6.6, WCCG is idempotent, so we can conclude WCCG(W ) ⊆ WCCG(V ′). Com-
bining these results, we get V ′ ⊆ W ∪ {u} ⊆ WCCG(V ′), which proves that the
invariant is preserved after the iteration.

At the end of the algorithm, V ′ ⊆ W ⊆ WCCG(V ′). By the monotonicity
and the idempotence of WCCG (Properties 6.5 and 6.6), this gives WCCG(W ) =
WCCG(V ′). Moreover, there does not exist anyW -critical edge. By Lemma 6.4,W
is weakly control-closed in G, i.e. W = WCCG(W ). At the end of the algorithm,
we have W = WCCG(V ′) as expected.

As for the termination of Danicic’s algorithm, W strictly increases as long as
W -critical edges are found and is upper-bounded by WCCG(V ′).

At a given iteration, to findW -critical edges, Danicic’s algorithm computes the
set of observable vertices of multiple vertices in G. SinceW is modified afterwards,
these computations are no longer valid and must be redone. This observation leads
to two possible optimizations.

First, it is possible to add multiple vertices during each iteration. This will
reduce the number of iterations and thus avoid recomputing the set of observable
vertices too often. This change is correct, since the proof of correctness of the
algorithm relies on the fact that the singleton added toW is a subset ofWCCG(W ).
If we add multiple vertices, we also add to W a subset of WCCG(W ). Thus, at the
end, the algorithm still returns the weak control-closure of V ′.

Second, it is possible to weaken the definition of critical edge as explained in
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Section 6.5.1. Combined with the first optimization, this will further reduce the
number of iterations.

To illustrate Danicic’s algorithm on our running example graph G0 shown in
Figure 6.3, we apply the first optimization that we have just described for the sake
of concision, i.e. we have the possibility to add several vertices in one iteration.
The different steps are given in Figure 6.17. The algorithm starts with W = V ′0 =
{u1, u3} (Figure 6.17a). The first step consists in computing the set of observable
vertices of each vertex in W (Figure 6.17b). This reveals three W -critical edges:
(u0, u1), (u2, u3) and (u4, u3). We add u0, u2 and u4 to W , and throws away the
annotations that are no longer valid (Figure 6.17c). Again, we compute the set
of observable vertices of each vertex in W (Figure 6.17d). u6 is the origin of two
W -critical edges: (u6, u0) and (u6, u4). We add u6 to W and again remove the
annotations (Figure 6.17e). Once more, we compute the set of observable vertices
of each vertex in W (Figure 6.17f). This time, no W -critical edge is detected.
This ends the algorithm. The computed closure is W = {u0, u1, u2, u3, u4, u6}. It
is indeed equal to the weak control-closure of V ′0 computed from Definition 6.14 in
Section 6.3.

In terms of complexity, Danicic et al. [DBH+11] show the complexity of their
algorithm O(|V |3), under the assumption that the degree of each vertex is at most
2 (and thus that O(|V |) = O(|E|)). Indeed, the main loop of Algorithm 6.1 is
run at most O(|V |) times, and each loop body computes obs in O(|V |) for at most
O(|V |) edges.

6.6 Remarks about the Coq Formalization
The concepts presented in this chapter are taken from [DBH+11]. The contribution
of this chapter is therefore not the concepts themselves, but their formalization in
Coq. This formalization [Léc18] contains 6 600 lines of Coq code (2 000 lines of
specification, 4 600 lines of proof).

The previous sections gave a mathematical presentation of the Coq formaliza-
tion. We highlight some major points of the Coq development in Section 6.6.1 and
make some remarks about it in the next subsections.

6.6.1 Coq Formalization
The Coq development takes advantage of Coq’s module system to organize the
results into multiple refinements. One advantage is that it clearly separates the
theoretical results from the algorithm.
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Figure 6.17 – Optimized Danicic’s algorithm applied on G0 (cf. Figure 6.3) with
V ′0 = {u1, u3}
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Module Type ABSTRACT_GRAPH (V : UsualEq) (L : LABEL).
Parameter Graph : Type.
Parameter Rel : Graph → V.t → Label → V.t → Prop.
Parameter Support : Graph → Ensemble V.t.
Axiom Support_spec : forall g u l v,

Rel g u l v → Support g u ∧ Support g v.
End ABSTRACT_GRAPH.

Figure 6.18 – Abstract specification of graphs

Module Type ABSTRACT_FINITE_GRAPH (V : UsualEq) (L: LABEL).
Include ABSTRACT_GRAPH V L.

Axiom Support_finite : forall g, Finite (Support g).
Axiom Rel_finite : forall g u,

Finite (fun v ⇒ exists l, Rel g u l v).
End ABSTRACT_FINITE_GRAPH.

Figure 6.19 – Abstract specification of finite graphs

Let us first present the two abstract signatures of graphs that we use. They
are shown in a slightly simplified form in Figure 6.18 and Figure 6.19 respectively.

The most abstract signature is ABSTRACT_GRAPH. The type of graph, Graph, is
completely abstract. Two predicates are provided: Support that returns the set
of nodes in the graph and Rel that models the edge relation. Note that relations
in Rel are labeled. These labels are used by Danicic et al. [DBH+11] when
characterizing the semantics of control dependence. Labels are also present in the
Coq development, but since we do not formalize this part of Danicic et al.’s theory
(see Section 6.6.2), they are not really used. Axiom Support_spec expresses the
consistency between Support and Rel. It specifies that the end nodes of an edge
are necessarily vertices of the graph.

Signature ABSTRACT_FINITE_GRAPH adds two finiteness hypotheses to signa-
ture ABSTRACT_GRAPH. Support_finite states that the graph contains a finite
number of vertices, while Rel_finite states that each vertex has a finite number
of outgoing edges.

We can now present the four functors structuring the Coq formalization. They
are presented in a simplified version in Figure 6.20, ordered from the most theo-
retical to the least theoretical.
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Module AbstractGraphProperties (V : UsualEq) (L : LABEL)
(G : ABSTRACT_GRAPH V L).

Module AbstractGraphPropertiesDec
(V : UsualDecidableType) (L : LABEL) (G : ABSTRACT_GRAPH V C).

Include AbstractGraphProperties V L G.

Module AbstractGraphPropertiesDecFinite (V : UsualDecidableType)
(L : LABEL) (G : ABSTRACT_FINITE_GRAPH V C).

Include AbstractGraphPropertiesDec V L G.

Module preCFG (Vertex : UsualOrderedType) (Label : Labels)
(DG : Constructive_Directed_Graph Vertex Label).
Module V <: UsualDecidableType.
Module L <: LABEL.
Module G <: ABSTRACT_FINITE_GRAPH V C.

Module Graph := AbstractGraphPropertiesDecFinite V C G.

Figure 6.20 – Hierarchy of functors
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Definition Weakly_control_closed G V := forall u,
Reachable_from G V u → Weakly_committing G V u.

Figure 6.21 – Definition of weakly control-closed set in Coq

Lemma lemma53 : forall g V,
Weakly_deciding g (Union V (Weakly_deciding g V))
== Empty_set.

Figure 6.22 – Formulation of Property 6.4 in Coq (“53” refers to [DBH+11, Lemma
53])

AbstractGraphProperties. Functor AbstractGraphProperties defines most of
the basic definitions and some results. Graphs and sets are defined in an abstract
way using predicates in Prop. In particular, signature ABSTRACT_GRAPH is used,
which means that no hypothesis is made on the finiteness of the graph. For in-
stance, weakly control-closed sets (cf. Definition 6.11) are defined in this functor.
The exact definition is given in Figure 6.21.

AbstractGraphPropertiesDec. Functor AbstractGraphPropertiesDec makes
the additional hypothesis that the equality over vertices is decidable, which means
that functions are allowed to compare vertices. It inherits all the definitions and
results of AbstractGraphProperties. It especially contains the proof of Prop-
erty 6.4. Its formulation in Coq is given in Figure 6.22.

AbstractGraphPropertiesDecFinite. The next stage in the hierarchy is the
functor AbstractGraphPropertiesDecFinite that further assumes that graphs
are finite, since it uses ABSTRACT_FINITE_GRAPH and no longer ABSTRACT_GRAPH. It
inherits all the previous definitions and results of AbstractGraphPropertiesDec.
In particular, it contains the proof of Theorem 6.1, whose statement is shown as
Figure 6.23. Minimal_Weakly_control_closed is the explicit definition of the
weak control-closure (cf. Definition 6.14): the union of the initial set and the
weakly-deciding nodes reachable from it. Theorem th54_explicit states that
Minimal_Weakly_control_closed is the minimum of the weakly control-closed
supersets, i.e. it contains the initial set, it is weakly control-closed and it is included
in any weakly control-closed set containing the initial set. The hypotheses about
decidability of membership (of the form “forall u, X u ∨ ~ X u”, meaning that for
every vertex u, either u is in X or u is not in X) could be removed if the considered
sets were known to be finite. Indeed, in that case, membership is decidable since
it is sufficient to enumerate all the elements of the set to decide whether a vertex
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Definition Minimal_Weakly_control_closed g V :=
let W := fun u ⇒ Weakly_deciding g V u ∧ Reachable_from g V u in
Union V W.

Theorem th54_explicit : forall g V (V_In_dec : forall u, V u ∨ ~ V u),
Minimum (fun X ⇒ Included V X

∧ (forall u, X u ∨ ~ X u)
∧ Weakly_control_closed g X

) (Minimal_Weakly_control_closed g V).

Figure 6.23 – Formulation of Theorem 6.1 in Coq (“54” refers to [DBH+11, The-
orem 54])

Lemma real_algo61_correct : forall g U,
Ensemble_of_set (real_algo61 g U)
== Minimal_Weakly_control_closed g (Ensemble_of_set U).

Figure 6.24 – Formulation of the correctness of Danicic’s algorithm in Coq (“61”
refers to [DBH+11, Algorithm 61])

belongs to it. For instance, we could restrict the theorem to subsets in the graph,
that would be finite since the graph is finite. This is not done here.

preCFG. Functor preCFG takes as inputs concrete representations of vertices
(Vertex), labels (Label) and directed graphs (DG) defined as maps of vertices.
It then instantiate modules V, L and G to make the link between the concrete rep-
resentations and the abstract ones. Using these modules, it instantiates functor
AbstractGraphPropertiesDecFinite to get all the previous results. Using the
concrete representation of graphs, it defines Danicic’s algorithm (cf. Algorithm 6.1)
using the first optimization described in Section 6.5) and proves it correct. Fig-
ure 6.24 shows the main result of preCFG: the set returned by the algorithm (called
real_algo61) is equal to the weak control-closure.

To apply Danicic’s algorithm in Coq, it is thus sufficient to instantiate functor
preCFG by specifying the exact types of labels, vertices and graphs. This results
in a function real_algo61 that can be called on concrete graphs. It can also be
extracted into OCaml. This gives a certified implementation of Danicic’s algorithm
in OCaml. To interface with other OCaml code, one can write a small wrapper as
mentioned in 5.5.1.
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6.6.2 No Use of Coinductive Types
As for the WHILE case (cf. Section 5.5.4), projections are a problem. Indeed, the
paths in the graphs are modeled using CoInductive. It is not clear how to define
projection, either with CoInductive or CoFixpoint, due to the guard condition
that prevents an infinite number of removals. This partly explains why we did not
model the part of Danicic et al.’s theory about giving semantics to weak control
dependence.

6.6.3 No Generic Graph Library
There seems to be no generic Coq library manipulating graphs à la OCamlgraph
[CFS07] in OCaml. We used a prototype library presented in [DERV15].

6.6.4 Advantage of a Proof Assistant for Graph Theoretic
Proofs

Several proofs had to manipulate paths in a non-trivial way, especially the proofs
manipulating weakly deciding vertices. This is particularly true for the proof of
Lemma 6.3, which has to consider a lot of configurations. As usually in this kind
of situations, a proof assistant is very helpful to ensure that every corner case is
indeed taken into account and exclude any possible error.

6.6.5 Termination of Danicic’s Algorithm
The algorithm iterates until no node can be added. Termination is not structural.
Therefore, Coq cannot prove it alone. As usual, a difficulty was to find which Coq
construct (among Function, Program Fixpoint, etc.) and which well-founded
order were the best ones.

We chose to use Function which was powerful enough for our purpose. The
chosen well-founded order < is the strict subset inclusion of the complements in
the total set V of vertices of the graph:

W1 < W2 ⇐⇒ V \W1 ⊂ V \W2

Indeed, in Danicic’s algorithm (cf. Algorithm 6.1), a new iteration is done only if a
vertex is added to the working setW , i.e. only if its complement strictly decreases.

This chapter presented the formalization in Coq of a fragment of a generaliza-
tion of control dependence for arbitrary finite directed graphs due to Danicic et



148 CHAPTER 6. WEAK CONTROL-CLOSURE IN COQ

al. [DBH+11].
The Coq formalization includes:

• the definition of weak control-closed sets, generalizing sets closed under con-
trol dependence;

• the proof of existence, for any arbitrary subset, of the smallest superset
weakly control-closed, called the weak control-closure of that subset;

• the algorithm computing weak control-closure proposed by Danicic et al.;

• the proof of correctness of this algorithm.

The Coq formalization of the algorithm can be extracted into OCaml, giving a
certified implementation of Danicic’s algorithm.

However, as mentioned in Section 6.5.2, Danicic’s algorithm is cubic. We have
already proposed two optimizations (cf. Section 6.5.2, but there seems to be some
further room for improvement, as acknowledged by Danicic et al. themselves:
“It is believed that better than O(|V |3) worst-case time complexity algorithms
may exist”. In the next chapter, we propose a new algorithm computing weak
control-closure that optimizes Danicic’s algorithm. Then, we prove it correct in
Chapter 8.



Chapter 7

Design of a New Algorithm
Computing Weak Control-Closure

Danicic’s algorithm, presented in Section 6.5.2, is iterative. This means that it
applies repeatedly the same instructions until some condition becomes false. This
kind of algorithm can be improved in two ways:

• improving the instructions run at each iteration, so that each iteration does
more work in less time;

• improves the transfer of information from an iteration to the following ones,
so that these following iterations can take advantage of that information and
do less computation.

The two optimizations proposed to enhance Danicic’s algorithm in Section 6.5.2,
relaxing the critical edge definition and detecting as many critical edges as pos-
sible during each iteration, are of the first kind, since they allow to detect more
weakly deciding vertices at each iteration. They are particularly interesting (see
Chapter 9), because Danicic’s algorithm does not share any information between
iterations. Indeed, as mentioned in Section 6.5.2 and illustrated by Figure 6.17,
at the end of an iteration, all the information about observable sets is no longer
valid since the set with respect to which this information was computed is modi-
fied. Starting a new iteration means computing again some observable information
from scratch, it is thus costly. Both optimizations reduce the number of iterations,
thus reduce the number of times this information needs to be computed. They
would be less interesting if starting a new iteration were not so costly.

In this chapter, we address the second kind of optimization. We label each node
in the graph with some information about its observable set, that is not removed
at the end of an iteration and can thus be used by the following iterations.

149
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This chapter is organized as follows. Section 7.1 presents the general idea of
the algorithm. Next, Section 7.2 gives a precise but informal description of the
algorithm and illustrates it on the running example of Figure 6.3. Then, Section 7.3
gives the formal definition of the algorithm and describes its three functions.

7.1 General Idea of the Optimization
In this section, G = (V,E) denotes a finite directed graph with finite set of vertices
V and set of edges E ⊆ V × V , and V ′ denotes a subset of V .

We introduce our algorithm by highlighting its similarities and differences with
Danicic’s algorithm.

Contrary to Danicic’s algorithm, the new algorithm does not compute directly
the weak control-closure of the initial set V ′, but instead the set V ′ ∪WDG(V ′).
To get the weak control-closure WCCG(V ′), we can note that

WCCG(V ′) = V ′ ∪ (WDG(V ′) ∩ RG(V ′)) = (V ′ ∪WDG(V ′)) ∩ RG(V ′)

since every node in V ′ is reachable from V ′. It is thus sufficient to filter V ′ ∪
WDG(V ′) at the end of the algorithm to keep only vertices reachable from V ′.
This choice to ignore the reachability tests during the algorithm and make them
afterwards helps separate concerns and focus on the core part of the algorithm.
Moreover, in the case where we want the same results for slicing based on Danicic et
al.’s weak control dependence and for slicing based on classic control dependence,
we need to add to V ′ an enter node that reaches every other node in G, as
described in Section 6.4. In this case, all the nodes in G are reachable from
V ′, thus the question whether only reachable vertices are considered makes no
difference.

Although the new algorithm and Danicic’s one do not compute the exact same
results, they share the same structure. Our algorithm is also an iterative algorithm
which manipulates a set of vertices W equal to V ′ initially, that grows during the
execution of the algorithm, and is equal to the result at the end, i.e. V ′∪WDG(V ′)
for our algorithm. Like Danicic’s algorithm, during an iteration, our algorithm
detects some kind ofW -critical edges (u, v) and adds u toW . The main difference
is the way our algorithm detects these edges based on the labeling of the vertices
in the graph.

To introduce the labeling in more detail, we need to make precise the kind of
W -critical edge our algorithm is based on. Danicic’s algorithm proposes to detect
edges (u, v) such that (cf. Definition 6.15):
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(1) | obsG(u,W )| ≥ 2;

(2) | obsG(v,W )| = 1;

(3) u is reachable from W in G.

Condition (3) is needed to consider only vertices reachable from V ′, it is not useful
for our algorithm since we do not return the closure but V ′∪WDG(V ′). Conditions
(1) and (2) together are sufficient to make u a W -weakly deciding vertex (cf. the
proof of Lemma 6.4). But, as noted at the end of Section 6.5.1, the key point in
this definition is that u should have at least one observable vertex in W which is
not observable from v. In Section 6.5.1, this point is used to justify the following
weakened definition of W -critical edge:

1 ≤ | obsG(v,W )| < | obsG(u,W )|

Whether the initial or the weakened definition is used, a direct approach requires
to compute the complete set of observable vertices for the considered nodes. But
the key point of Section 6.5.1 actually gives a simpler sufficient condition to find
W -weakly deciding vertices. To prove that a vertex u is W -weakly deciding, we
can just find some u′ in W and some child v of u such that:

• v can reach W ,

• u′ is observable from u in W , and

• u′ is not observable from v in W .

It is thus not needed to compute the whole set of observable nodes, exhibiting such
an observable vertex u′ is enough.

Given a vertex u, proving that a vertex u′ in W is observable from u in W is
simple. It is sufficient to exhibit aW -path from u to u′. Such a path can be revealed
by traversing backwards the graph from u′ and stopping when encountering W .
All the nodes traversed have u′ as observable vertex in W .

Proving that a vertex u′ in W is not observable from v in W may seem more
complicated. But actually, the same backward traversal also addresses this ques-
tion, since not only all the nodes considered during the traversal have u′ as ob-
servable vertex in W , but they are exactly the nodes that have u′ as observable
vertex in W . This means that the other nodes do not have u′ as observable in W .

We propose to make successive backward traversals from vertices inW . During
the backward traversal from u′ ∈ W , we label by u′ each encountered vertex. At
the end of the traversal, the following is true:
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• nodes with label u′ have u′ as observable in W ;

• nodes that do not have label u′ do not have u′ as observable in W .

This labeling will be persistent though iterations. When propagating back-
wards another vertex u′′ ∈ W , we update the ancestors of u′′, but preserve the
labeling of the other nodes. At the end of the propagation of u′′, the following
properties are true:

• nodes with label u′′ have u′′ as observable in W ;

• nodes that have a label different from u′′ can reach W and do not have u′′
as observable in W .

Finding an edge (u, v) such that u has label u′′ and v has a label different from u′′

proves that u is W -weakly deciding. We can add all such nodes u to W and start
another traversal.

We make the following three remarks about the approach mentioned above,
before giving a full informal definition of our algorithm.

Remark 7.1. Each node is labeled by zero or one vertex, not by a set of vertices
like in Danicic’s algorithm (cf. Section 6.5.2). This is the fulfillment of the idea
that, to detect a W -critical edge (u, v), we do not need to compute the whole
observable sets of u and v; exhibiting one node in obsG(u,W ) but not in obsG(v,W )
is enough.

Remark 7.2. The order in which we run through the different actions is really
important:

• first, we make the whole backward traversal from a vertex u′ ∈ W ;

• at the end of the traversal, we detect edges (u, v) such that u is labeled with
u′ and v has another label;

• once we have detected all such edges, we add their sources to W and update
their labels.

The three actions cannot be interleaved, or at least not in a trivial way. Indeed,
the property we need from the traversal from u′ is that nodes with a label not
equal to u′ do not have u′ as observable vertex in W . This property does not hold
while the traversal is not completed. If we try to detect W -critical edges before
the traversal is finished, we could identify wrong W -critical edges. For example,
consider the graph shown in Figure 7.1. Initially, W = {u, v}, u is labeled with
u, v is labeled with v and every other vertex is unlabeled (see Figure 7.1a). We
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select one node in W that has not been propagated yet. Both u and v are possible
choices. We select u and propagate it backwards (see Figure 7.1b). Vertices x,
y and z are all labeled with u. Then we detect nodes labeled with u having a
child with a different label. We do not find any, thus we start another backward
propagation from v. Figure 7.1c illustrates one intermediate state of the graph
during the propagation. Nodes w, x and y are labeled with v, but z has not been
traversed yet and is still labeled with u. If we apply our criterion in this state, we
can detect the edge (y, z) since y has label v and z has a label different from v.
This would prove that y is W -weakly deciding. But this is obviously wrong, since
every W -path from y contains x. If we let the propagation finish before detecting
W -weakly deciding nodes (see Figure 7.1d), we correctly ignore the edge (y, z),
since z is labeled with v as well. Instead, we identify the edge (x, u) with x labeled
with v and u labeled with u. x is added to W and its label is updated to x (see
Figure 7.1e). The next step would be to propagate x backwards, but this is not
illustrated here.

Note that we cannot interleave the detection ofW -critical edges and the update
of W either, since this could again reveal wrong edges. For example, consider
Figure 7.1e. If we detect edges such that the source is labeled with v and the
target has a label distinct from v in this configuration, where we have already
added x to W and updated its label, we identify (y, x) with y labeled with v and
x having a label different from v. Thus, to avoid this kind of wrong detection, we
update W once we have ended the detection phase.

Since the three actions cannot be interleaved, this basically means that we
traverse the transitive predecessors of u′ three times: once to propagate the label,
once to detect W -critical edges and once to update the labels of the sources of the
identified edges. This is slightly more complicated than that as it is explained in
Section 7.2, but there is certainly room for improvement here.

Remark 7.3. A potential drawback of having a persistent labeling is that it needs
to be kept up-to-date. After the propagation of node u′ ∈ W , a node is labeled
with u′ if and only if it has u′ as observable vertex in W . But once we have
propagated another node u′′ ∈ W , what can be said about nodes labeled with u′?
Are they still correctly labeled by an observable vertex? Otherwise, do we need
to post-process the graph at the end of the propagation to make sure that all the
nodes with a label propagated before have a correct label? The answer to both
questions is no.

Indeed, let us recall how we detect W -weakly deciding nodes after the propa-
gation of u′′. These are nodes u labeled with u′′ having a child v with a different
label. The label of the child v is required to witness the fact that it can reach
W . If the label is still valid (i.e. still an observable vertex), this shows that the
child v can reach the node with which it is labeled, thus can reach W . If it is
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Figure 7.1 – Execution of the algorithm on an example graph. Initially, W =
{u, v}.
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outdated, this means that at least one new node was added to W that hides the
node with which the child v is labeled. In this case, the child v can reach at least
one of these new nodes and therefore can reach W . Thus, whether the label of the
child is outdated or not, it proves that the child can reach W , which is enough to
prove that the parent labeled with u′′ is W -weakly deciding. Our algorithm thus
allows nodes to have outdated labels, and runs correctly despite the presence of
such outdated labels.

This is illustrated by Figure 7.1e where y and z both have label v while their
only observable inW is x. Nevertheless, at the end of the algorithm, the labeling is
correct, in the sense that every vertex labeled is labeled with one of its observable
vertices in W (when it exists). Since at the end of the algorithm, we have W =
V ′ ∪ WDG(V ′), each node in the graph has at most one observable in W (this
follows straightforwardly from Property 6.4). This means that at the end of the
algorithm each node is labeled with its observable in W (when it exists). Our
algorithm can thus be viewed as returning two results: V ′ ∪WDG(V ′) that is the
main result, and the labeling of each node with its observable in V ′ ∪WDG(V ′)
(when it exists).

7.2 Informal Description of the New Algorithm
The inputs of our algorithm are a graph G and a subset of vertices V ′ of G. It
uses internally three variables:

• a set W , equal to V ′ initially, that grows during the execution of the algo-
rithm, and is equal to V ′ ∪WDG(V ′) at the end;

• a partial mapping obs associating to each node u in G at most one label
obs[u] which is a vertex in W reachable from u and is the unique observable
vertex from u in W at the end; initially, obs is defined on W and associates
each node in W to itself;

• a worklist L of nodes of W not processed yet, initially equal to V ′.

As mentioned before, the algorithm is iterative. Each iteration is structured as
follows:

• If the worklist L is empty, the algorithm ends.

• Otherwise, L is not empty. A node u is removed from L. Then:

1. A backward traversal of G from u is performed, so that each vertex that
transitively precedes vertex u in G and that is not hidden by vertices in
W is labeled with u; during the propagation, the vertices whose labels
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have changed (i.e. which had a label before the propagation and are
labeled with u after the propagation) and with at least two children are
accumulated in a set of candidate W -weakly deciding nodes C;

2. At the end of the propagation, the set of accumulated nodes C is filtered
so that only nodes with a child having a label different from u are kept.
Such nodes are W -weakly deciding.

3. When all the nodes have been identified, each of them is given itself as
a label in obs, and is added to W and L.

At the end of the algorithm, W and obs are returned and satisfy:

• W = V ′ ∪WDG(V ′);

• for every node u in G,

– if u can reach V ′ ∪WDG(V ′), then its unique observable vertex in V ′ ∪
WDG(V ′) is obs[u];

– otherwise, u has no label in obs, which we denote u 6∈ obs.

The presented algorithm is just a synthetic version of what was discussed in
Section 7.1. The only point that was omitted in Section 7.1 is the set C of vertices
accumulated during the backward propagation. Actually, the idea is that we can
exclude during the propagation some nodes that we are sure will not be identified
in the following step of the iteration as W -weakly deciding nodes. This allows to
avoid doing the second backward traversal that was discussed in Remark 7.2. We
could imagine complex filtering during the propagation, but here we decided to
use one of the simplest ones. We remove from the nodes accumulated in C:

• nodes that have only one child, since obviously they cannot be W -weakly
deciding;

• nodes that were previously unlabeled. Indeed, if a node is unlabeled at
the beginning of the propagation, this means that none of its children was
traversed during the past iterations. Thus the children are unlabeled too,
except if they are in V ′ initially and they have not been propagated yet.
Thus this filtering is not completely trivial, since with it the algorithm does
not behave exactly the same as the algorithm without the filtering. Actually,
nodes that are not detected as W -weakly deciding whereas they have a child
in V ′ not propagated yet will be identified in a later iteration, when the child
in question will be propagated.
For example, consider Figure 7.2, where a variant of the graph of Figure 7.1
is shown. x has no label initially (see Figure 7.2a), thus it is not added to
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Figure 7.2 – Execution of the algorithm on a variant of the graph shown in Fig-
ure 7.1. Initially, W = {u, v}.

the set of accumulated vertices during the propagation of u and thus is not
detected as a W -weakly deciding vertex at the end of the propagation (see
Figure 7.2b). However, at the end of the propagation, x is labeled u and it
has child v with label v different from u, thus it would be added to W if the
filtering was not applied during the propagation. x is actually identified as a
W -weakly deciding vertex in the next iteration, where v is propagated (see
Figure 7.2c).

Since the filtering done during the propagation step is really simple, it is unclear
whether it really improves the performance of the algorithm. This is studied in
Section 9.3.7.

Now that we have informally presented the full algorithm, let us apply it on
the running example of Figure 6.3. The execution is illustrated in Figure 7.3.

0. Initially (see Figure 7.3a), W = V ′ = {u1, u3} and all nodes in W are
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Figure 7.3 – The optimized algorithm applied on G0 (cf. Figure 6.3) with V ′0 =
{u1, u3}
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unprocessed, i.e. L = W = {u1, u3}. Each node in W is labeled with itself
(obs[u1] = u1, obs[u3] = u3).

1. 1st iteration:

• u1 is removed from L and is propagated backwards (see Figure 7.3b).
Since no vertex outside of W had a label before the propagation, no
vertex is accumulated during the propagation, so the iteration ends.

At the end of the iteration, W = {u1, u3} and L = {u3}.

2. 2nd iteration:

• u3 is removed from L and is propagated backwards (see Figure 7.3c).
Vertices u0, u2, u4 and u6 are accumulated during the propagation, since
their labels changed and they have at least two children. The label of
u5 changed too, but it has only one child.
• Among u0, u2, u4 and u6, only u0 has a child with a label different from
u3: u1, that has label u1. u0 is thus added to W and L, and its label is
updated to itself (see Figure 7.3d).

At the end of the iteration, W = {u0, u1, u3} and L = {u0}.

3. 3rd iteration:

• u0 is removed from L and is propagated backwards (see Figure 7.3e).
Vertices u2, u4 and u6 are accumulated during the propagation, since
their labels changed and they have at least two children.
• Among u2, u4 and u6, vertices u2 and u4 have a common child with a

label different from u0: u3, that has label u3. Vertices u2 and u4 are
thus added to W and L, and the label of each of them is updated to
itself (see Figure 7.3g).

At the end of the iteration, W = {u0, u1, u2, u3, u4} and L = {u2, u4}.

4. 4th iteration:

• u2 is removed from L and is propagated backwards (see Figure 7.3g),
but its only parent, u0, is already in W . Thus the propagation ends
without having accumulated any node, and the iteration ends.

At the end of the iteration, W = {u0, u1, u2, u3, u4} and L = {u4}.

5. 5th iteration:
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• u4 is removed from L and is propagated backwards (see Figure 7.3h).
u6 is accumulated during the propagation.
• u6 has child u0 with label u0 different from u4. u6 is thus added to W

and L, and its label is updated to itself (see Figure 7.3i).

At the end of the iteration, W = {u0, u1, u2, u3, u4, u6} and L = {u6}.

6. 6th iteration:

• u6 is removed from L and is propagated backwards (see Figure 7.3j). No
vertex is accumulated during the propagation, thus the iteration ends.

At the end of the iteration, W = {u0, u1, u2, u3, u4, u6} and L = ∅.

7. 7th iteration: L is empty, thus the algorithm ends.

W = {u0, u1, u2, u3, u4, u6} and the labeling obs as shown in Figure 7.3j are
returned. Since, as mentioned in Section 6.2, every node in G0 is reachable from
V ′0 , the result of our algorithm is directly equal to the weak control-closure of V ′0 .
The post-processing mentioned in 7.1 that removes from the final value of W the
nodes not reachable from V ′ does not remove any node here. We can verify that
the final value of W is equal to the weak control-closure of V ′0 computed using the
definition in Section 6.3 and using Danicic’s algorithm in Section 6.5.2.

7.3 Formal Definition of the New Algorithm
Our algorithm is split into three functions that are a nearly straightforward im-
plementation of the informal description given in Section 7.2:

• propagate takes a vertex and propagates backwards a label over its transitive
predecessors. It accumulates a set of vertices whose labels change during the
propagation and that have at least two children.

• confirm is used to check if a given node has a child with a label different
from a given label.

• main implements the optimized algorithm using calls to propagate and
confirm. More precisely, as long as there exist unprocessed nodes in the
manipulated set W , it selects such a node, marks it as processed, calls
propagate on it that returns candidate W -weakly deciding nodes, calls
confirm on them to keep only true W -weakly deciding nodes, adds them
to W and updates their labels.
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The implementations of these three functions assume that they have access to
the following operations on graphs:

• a function choose that selects a node in a set of vertices;

• a function pred such that pred (G, u) returns the set of direct predecessors
of vertex u in graph G;

• a function succ such that succ (G, u) returns the set of children of vertex u
in graph G;

• a function out_degree such that out_degree (G, u) returns the out-degree
of vertex u in graph G, i.e. the number of children of u in G.

In the rest of this section, we detail each of the three functions.

7.3.1 Function propagate

Function propagate takes five arguments, in this order:

• a graph G,

• a subset W of nodes of G,

• a labeling of nodes obs, i.e. a partial mapping obs : V → V ,

• a vertex u,

• a vertex v.

It traverses G backwards from u (stopping at nodes in W ) and updates obs so
that all transitive predecessors of u not hidden by vertices in W have label v at
the end of the function. It returns a set of potential W -weakly deciding vertices
accumulated during the propagation.

One can observe that the starting vertex u and the propagated vertex v can
be distinct, while in the informal description of the algorithm given in Section 7.2,
and this will be confirmed in the formal definition of main below, they are sys-
tematically the same vertex. We considered such simple generalization since it is
natural and does not make the proofs more difficult.

The formal definition of propagate is given as Algorithm 7.1. propagate
manipulates three sets of vertices:

• L, a worklist of nodes to be processed;
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• C, the set of nodes whose label changes during the propagation and that
have at least two children;

• P , that temporarily stores the set of direct predecessors of the vertex being
processed.

Initially, the single node to be processed is u and the set of accumulated nodes C
is empty (lines 2–3). The major part of propagate is a loop that iterates until no
more nodes need to be processed (lines 4–26).

Each iteration can be decomposed as follows:

• a node w is selected in L and removed from L (lines 5–6);

• P is assigned the set of direct predecessors of w in G (line 7);

• for each node w0 in P (lines 8–25):

– if w0 is not in W (line 11),
∗ if w0 has a label (line 12),
· if this label is different from v (line 13), this means that w0 has
not been traversed by the propagation yet; its label is updated
and it is added to the worklist (lines 14–15); moreover, if it has
at least two children, it is added to C (lines 16–17);
· if this label is equal to v, this means that w0 has already been
traversed by the propagation, we stop the propagation in this
direction and thus do nothing (line 13);

∗ if w0 is not labeled (line 12), this means that w0 has not been
traversed by the propagation yet; its label is updated and it is
added to the worklist (lines 21–22);

– if w0 is in W , we stop the propagation in this direction, and thus do
nothing (line 11).

When all nodes have been processed, propagate ends and returns C the set
of nodes whose label changed during the propagation and that have at least two
children. Note that propagate has side effects, since it modifies the labeling obs.

7.3.2 Function confirm

Function confirm takes four arguments, in this order:

• a graph G,

• a labeling of graph vertices obs,
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Input: G = (V,E) a directed graph
W ⊆ V a set of nodes ignored by the propagation
obs : Map(V, V ) associating at most one label to each vertex
u ∈ V the vertex where the propagation starts
v ∈ V the label to propagate

Output: obs modified in place
C ⊆ V containing potential W -weakly deciding nodes

1 begin
2 L← {u} // initialization
3 C ← ∅
4 while L 6= ∅ do // main loop
5 w ← choose (L)
6 L← L \ {w}
7 P ← pred (G,w)
8 while P 6= ∅ do // browses the predecessors of w
9 w0 ← choose (P )

10 P ← P \ {w0}
11 if w0 6∈ W then
12 if w0 ∈ obs then
13 if obs[w0] 6= v then
14 obs[w0]← v
15 L← L ∪ {w0}
16 if out_degree (G,w0) > 1 then
17 C ← C ∪ {w0}
18 end
19 end
20 else
21 obs[w0]← v
22 L← L ∪ {w0}
23 end
24 end
25 end
26 end
27 return C

28 end

Algorithm 7.1: Function propagate (G,W, obs, u, v)
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• a vertex u,

• a vertex u′.

It returns a Boolean. Its result is true if and only if at least one child v of u in G
has a label in obs different from u′.

The formal definition of confirm is given as Algorithm 7.2. It is pretty self-
explanatory. Boolean b is set to false initially (line 2). We traverse the children of
u (lines 3–9). If one of them has a label distinct from u′ (line 7), we set b to true.
When all children have been explored, b is returned (line 10).

Input: G = (V,E) a directed graph
obs : Map(V, V ) associating at most one label to each vertex
u ∈ V the vertex whose children are inspected
u′ ∈ V the label tested against those of the children

Output: b : bool, true if at least one child of u has a label distinct
from u′, false otherwise

1 begin
2 b← false
3 S ← succ (G, u)
4 while S 6= ∅ do
5 v ← choose (S)
6 S ← S \ {v}
7 if v ∈ obs and obs[v] 6= u′ then
8 b← true
9 end

10 return b

11 end

Algorithm 7.2: Function confirm (G, obs, u, u′)

7.3.3 Function main

Function main takes two arguments, in this order:

• a graph G,

• a subset of vertices V ′.

It returns V ′ ∪ WDG(V ′) and a labeling associating to each node its observable
vertex in this set if it exists.
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The formal definition of main is given as Algorithm 7.3. It uses a concise
notation to denote batch updates of partial mappings. Given a mapping obs :
Map(V, V ), a subset V ′ of V and a function f : V ′ → V ′, the notation obs|V ′ ← f
denotes the mapping obs′ such that:

∀u ∈ V, obs′[u] =

f(u) if u ∈ V ′

obs[u] otherwise

Given a subset V ′, we use idV ′ to denote the identity function restricted to V’, i.e.:

idV ′ : V ′ → V ′

u 7→ u

By combining these two notations, given a mapping obs : Map(V, V ) and a subset
V ′ of V , we can write obs|V ′ ← idV ′ which is a very concise way to denote obs with
the label of each node in V ′ updated to itself. This is used both in the initialization
(line 3) and at each iteration (line 15) of main.

main manipulates four sets of vertices:

• W , the set V ′ augmented with V ′-deciding vertices;

• L, a worklist of nodes of W not processed yet;

• C, a set of candidate W -weakly deciding vertices;

• ∆, a set of new W -weakly deciding vertices.

Initially, both W and L are equal to V ′ and each node in V ′ is given itself as a
label in obs (lines 2–4).

The major part of main is a loop that iterates until no more nodes need to be
processed (lines 5–19).

Each iteration can be decomposed as follows:

• a node u is selected in L and removed from L (lines 6–7);

• label u is propagated backwards from u by calling propagate (G,W, obs, u, u)
(line 8); the set of candidateW -weakly deciding vertices returned by the call
is assigned to C;

• for each node v in C (lines 10–15):

– if v has a child with a label distinct from u, which is established by
calling confirm(G, obs, v, u), it isW -weakly deciding, and is thus added
to ∆;
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Input: G = (V,E) a directed graph
V ′ ⊆ V the input subset

Output: W ⊆ V the main result
obs : Map(V, V ) the final labeling

1 begin
2 W ← V ′ // initialization
3 obs|V ′ ← idV ′
4 L← V ′

5 while L 6= ∅ do // main loop
6 u← choose(L)
7 L← L \ {u}
8 C ← propagate (G,W, obs, u, u) // propagation
9 ∆← ∅

10 while C 6= ∅ do // filtering
11 v ← choose(C)
12 C ← C \ {v}
13 if confirm (G, obs, v, u) = true then
14 ∆← ∆ ∪ {v}
15 end
16 W ← W ∪∆ // update
17 obs|∆ ← id∆
18 L← L ∪∆
19 end
20 return (W, obs)
21 end

Algorithm 7.3: Function main (G, V ′)
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• L and W are updated. They are added the nodes in ∆. The label of each
node in ∆ is updated to itself (lines 16–18).

When all nodes have been processed, main ends and returnsW = V ′∪WDG(V ′)
and obs the labeling of each vertex by its observable in W if it exists.

Notice that, as stated in Remark 7.2, the main steps (propagation, detection
and update) are performed one after the other (respectively line 8, lines 9–15 and
lines 16–18).

In this chapter, we presented the main ideas and the exact definition of our
optimized algorithm. But we did not provide any proof that it is correct, nor that
it is faster than Danicic’s. This is addressed by Chapters 8 and 9 respectively.



Chapter 8

Proof of Correctness of the New
Algorithm

To have the same level of confidence in the optimized algorithm described in Chap-
ter 6 as in Danicic’s algorithm formalized in Coq (cf. Chapter 6), we decided to
mechanically prove the optimized version too. Making a proof in Coq was consid-
ered, but since our algorithm is more complex than Danicic’s, the invariants on
which it relies are more subtle. To avoid doing everything manually, we opted for
a tool with greater automation: the Why3 proof platform. The automatic provers
that Why3 can use as backends automatically discharge the goals that are simple,
which allows to focus on the more complex ones that still require manual proofs.
Another advantage of Why3 is that it is more suitable than Coq for straightfor-
wardly implementing imperative algorithms, and the description of the algorithm
we gave in Section 7.3 is imperative. This last point is illustrated by the excerpts of
Why3 code given in Section 8.5 that can be compared to their paper counterparts
given in Section 7.3.

To establish the correctness of the algorithm, we prove separately the cor-
rectness of the three functions propagate, confirm and main. This consists in
annotating them with contracts specifying their preconditions and postconditions,
and proving that they respect these contracts. For that, we annotate their bodies
with invariants, variants and assertions where needed.

This chapter is organized as follows. Section 8.1 gives contracts to the graph
operations listed in Section 7.3. These contracts are needed to prove the correctness
of the functions of our algorithm. In Section 8.2, we prove the correctness of
function propagate. Next, in Section 8.3, we prove the correctness of function
confirm. Then, in Section 8.4, we use the contracts of propagate and confirm
to prove the correctness of main. Section 8.5 presents the Why3 formalization and
gives some observations about it.

As discussed in Section 8.5, the optimized algorithm is formalized and proved

169
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correct in Why3. For the sake of completeness, though, this chapter presents the
paper-and-pencil version of the proofs automatically or manually done in Why3.
Some of these proofs being rather technical, the reader can prefer to refer to the
mechanically checked formalization available in [Léc18].

8.1 Contracts of Graph Operations
In Section 7.3, we enumerated four operations on graph that we assumed avail-
able: choose, pred, succ and out_degree. Since these functions are called by
propagate, confirm and main, we need to give them contracts before proving the
latter.

The contract of choose, given as Algorithm 8.1 is straightforward. If the set
of vertices V given as an argument is non-empty, choose (V ) returns a vertex in
V .

Input: V a set of vertices
Output: u a vertex
Requires: V 6= ∅
Ensures: u ∈ V

Algorithm 8.1: Contract of function choose (V )

The contracts of pred and succ are similar and are based on a mathematical
definition of predecessors and successors respectively.

Definition 8.1

Given a directed graph G = (V,E) and a node u ∈ V , we define the set of
predecessors of u in G, denoted predG(u), and the set of successors of u in G,
denoted succG(u), respectively as:

• predG(u) = {v ∈ V | (v, u) ∈ E}.

• succG(u) = {v ∈ V | (u, v) ∈ E}.

Based on Definition 8.1, the contracts of pred and succ just assert that pred
and succ are correct implementations of predG and succG. Their contracts are
given as Algorithms 8.2 and 8.3 respectively.

The contract of out_degree is given as Algorithm 8.4. Given a graph G and
a node u in G, out_degree (G, u) returns the number of successors of u in G, i.e.
| succG(u)|.
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Input: G = (V,E) a directed graph
u ∈ V a vertex

Output: X ⊆ V
Ensures: X = predG(u)

Algorithm 8.2: Contract of function pred (G, u)

Input: G = (V,E) a directed graph
u ∈ V a vertex

Output: X ⊆ V
Ensures: X = succG(u)

Algorithm 8.3: Contract of function succ (G, u)

Now that we have a contract for those four functions, we can prove the cor-
rectness of the functions of the algorithm.

8.2 Proof of Correctness of propagate

First, we need to attach a contract to propagate. This contract is given as Algo-
rithm 8.5.

The contract contains two preconditions that must be satisfied when calling
propagate (G,W, obs, u, v):

(P1) Initially, u has label v and it is the only vertex to have label v. This is
required to ensure that the propagation does not stop too early. Indeed,
recall that propagate detects that a node has already been traversed by
looking at its label and testing whether it is equal to v (cf. Algorithm 7.1).
If initially some nodes already have label v, propagate will stop and will not
explore their predecessors.

(P2) Initially, vertex u is in W . Since W is not modified by propagate, this is
true during the execution of the function and at its end. This precondition

Input: G = (V,E) a directed graph
u ∈ V a vertex

Output: n ∈ N
Ensures: n = | succG(u)|

Algorithm 8.4: Contract of function out_degree (G, u)
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is needed to formulate the postconditions this way, since by Definition 6.8,
for any z ∈ V , z W−path−−−−−→ u implies that u is in W .

The contract contains three postconditions that are established by a call to
propagate (G,W, obs, u, v), if (P1) and (P2) held before the call:

(Q1) All nodes in V that have u as observable vertex in W are labeled with v at
the end of the function.

(Q2) All other nodes have the same label as before the call.

(Q3) At the end of the call, the set C contains exactly all the nodes that are
distinct from u, have u as observable vertex in W , had a label before the call
and have at least two children. This postcondition expresses formally the
filtering operated during the propagation that is discussed in Section 7.2.

Input: G = (V,E) a directed graph
W ⊆ V a set of nodes ignored by the propagation
obs : Map(V, V ) associating at most one label to each vertex
u ∈ V the vertex where the propagation starts
v ∈ V the label to propagate

Output: obs modified in place (called obs′ in the postconditions)
C ⊆ V containing all the possible conflicts of obs′

Requires: (P1) ∀z ∈ V, obs[z] = v ⇐⇒ z = u
Requires: (P2) u ∈ W
Ensures: (Q1) ∀z ∈ V, z W−path−−−−−→ u =⇒ obs′[z] = v

Ensures: (Q2) ∀z ∈ V,¬(z W−path−−−−−→ u) =⇒ obs′[z] = obs[z]
Ensures: (Q3) ∀z ∈ V, z ∈ C ⇐⇒ z 6= u ∧ z W−path−−−−−→ u ∧ z ∈ obs

∧| succG(z)| > 1

Algorithm 8.5: Contract of function propagate (G,W, obs, u, v)

Now that we have given a contract to propagate, we need to prove that it is
respected by the function. Classically, we annotate the body of propagate with
invariants, variants and assertions, as described in Section 2.2.1 in the context of
Why3. The correctness of propagate was unexpectedly hard to establish. Actu-
ally, proving that all the nodes traversed are relabeled is rather easy, but proving
that we traversed all of the transitive predecessors of the starting vertex turned
out to be difficult.

Algorithm 8.6 presents the body of function propagate with annotations. The
explicit definitions of the annotations used in Algorithm 8.6 are given in Figure 8.1.
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Compared to the body of propagate without annotations (cf. Algorithm 7.1), we
add invariants and variants to the loops at line 4 and at line 8, and two assertions
at the end of the program before the return instruction at line 27. Note that
some invariants are shared by both loops: (I1), (I2), (I4), (I5) and (I6). We also
added two labels, namely INIT at the beginning of the program and LOOP before
the inner loop at line 8, that are used in the invariants (e.g. (I5)) to refer to the
values hold by variables of the program at these program points. Formally, we
use the expression at(e, L) to designate the value of expression e at label L. For
example, at(obs, INIT) denotes the value of variable obs at the beginning of the
program, which is in fact the value passed as an argument when propagate is
called.

In the rest of this section, we present the annotations one by one and prove
that they are correct. Finally, we prove that they imply postconditions (Q1), (Q2)
and (Q3).

Let us start with the invariants.

Proof of invariant (I1) : ∀z ∈ V, obs[z] = v =⇒ z
W−path−−−−−→ u.1

Invariant (I1) states that each vertex that has label v has u as observable vertex
in W .

• It is true initially, since by (P1) only u has v as label and u is observable
from itself in W .

• Assume it holds at the beginning of an iteration of the outer loop at line 4.

– Then it holds at the entry of the inner loop at line 8.
– Assume that it holds at the beginning of an iteration of the inner loop.

To prove that it is true at the end of the iteration of the inner loop, it
is sufficient to prove that the updates to obs at lines 14 and 21 preserve
the property, i.e. that w0 has indeed u as observable in W . Both
updates are performed in the then-branch of the condition at line 11,
thus w0 6∈ W . Moreover, since w0 was extracted from P (line 9), it is
thus a parent of w (by invariant (I7)). w was itself extracted from L
(line 5), thus is labeled with u (by invariant (I4)), and thus there exists
a W -path w W−path−−−−−→ u by (I1) at the beginning of the iteration of the
inner loop. By prepending the edge (w0, w) to this W -path, we exhibit
a W -path between w0 and u. This proves that (I1) holds at the end of
the iteration of the inner loop.

1The mechanized version of this proof is available in [Léc18].



174 CHAPTER 8. PROOF OF THE NEW ALGORITHM

1 begin
INIT:

2 L← {u} // initialization
3 C ← ∅
4 while L 6= ∅ do // main loop

// invariant: I1 ∧ I2 ∧ I3 ∧ I4 ∧ I5 ∧ I6
// variant: (|{z ∈ V | obs[z] 6= v}|, |L|)

5 w ← choose (L)
6 L← L \ {w}
7 P ← pred (G,w)

LOOP:
8 while P 6= ∅ do // browses the predecessors of w

// invariant: I1 ∧ I2 ∧ I′3 ∧ I′′3 ∧ I4 ∧ I5 ∧ I6 ∧ I7 ∧ I8 ∧ I9
// variant: |P |

9 w0 ← choose (P )
10 P ← P \ {w0}
11 if w0 6∈ W then
12 if w0 ∈ obs then
13 if obs[w0] 6= v then
14 obs[w0]← v
15 L← L ∪ {w0}
16 if out_degree (G,w0) > 1 then
17 C ← C ∪ {w0}
18 end
19 end
20 else
21 obs[w0]← v
22 L← L ∪ {w0}
23 end
24 end
25 end
26 end

// assert: A1 ∧A2
27 return C

28 end

Algorithm 8.6: Annotated body of propagate (G,W, obs, u, v) (cf. Algo-
rithm 7.1)
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(I1) ∀z ∈ V, obs[z] = v =⇒ z
W−path−−−−−→ u

(I2) obs[u] = v

(I3) ∀z ∈ V, obs[z] = v ∧ z 6∈ L
=⇒ ∀z′ ∈ V, z′ ∈ predG(z) ∧ z′ 6∈ W =⇒ obs[z′] = v

(I4) ∀z ∈ L, obs[z] = v

(I5) ∀z ∈ V, obs[z] 6= v =⇒ obs[z] = at(obs[z], INIT)

(I6) ∀z ∈ V, z ∈ C ⇐⇒ z 6= u ∧ obs[z] = v ∧ z ∈ at(obs, INIT)
∧ | succG(z)| > 1

(I′3) ∀z ∈ V, obs[z] = v ∧ z 6∈ L ∧ z 6= w
=⇒ ∀z′ ∈ V ′, z′ ∈ predG(z) ∧ z′ 6∈ W =⇒ obs[z′] = v

(I′′3) ∀z ∈ predG(w), z 6∈ P ∧ z 6∈ W =⇒ obs[z] = v

(I7) P ⊆ predG(w)

(I8) ∀z ∈ V, at(obs[z], LOOP) = v =⇒ obs[z] = v

(I9) (∀z ∈ V, obs[z] = v =⇒ at(obs[z], LOOP) = v)
=⇒ L = at(L, LOOP)

(A1) ∀z ∈ V, obs[z] = v =⇒ z
W−path−−−−−→ u

(A2) ∀z ∈ V, z W−path−−−−−→ u =⇒ obs[z] = v

Figure 8.1 – Definitions of the invariants and assertions annotating the body of
propagate (G,W, obs, u, v) (cf. Algorithm 8.6)
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Thus (I1) is preserved by the inner loop, and therefore holds at the end of the
iteration of the outer loop.

Proof of invariant (I2) : obs[u] = v.2
Invariant (I2) states that u has label v throughout the iterations.

• It is true initially thanks to precondition (P1).

• Assume it is true at the beginning of an iteration of the outer loop.

– Then it is true at the entry of the inner loop.
– Assume it is true at the beginning of an iteration of the inner loop. It

is sufficient to show that during the updates at lines 14 and 21, w0 6= u.
This last point is true, since by condition at line 11, w0 6∈ W , while
by precondition (P2), u ∈ W . Thus u has label v at the end of the
iteration of the inner loop.

Thus (I2) is preserved by the inner loop, and therefore holds at the end of
the iteration of the outer loop.

Proof of invariant (I3) : ∀z ∈ V, obs[z] = v ∧ z 6∈ L
=⇒ ∀z′ ∈ V, z′ ∈ predG(z) ∧ z′ 6∈ W =⇒ obs[z′] = v.3

Invariant (I3) states that if a vertex has label v and is not in worklist L, then it
has already been processed, which means that all its parents not in W have also
label v.

• It is vacuously true initially, since u is the only vertex with label v by (P1),
and L = {u}.

• Assume it is true at the beginning of an iteration of the outer loop. We show
that the invariants:

(I′3) ∀z ∈ V, obs[z] = v ∧ z 6∈ L ∧ z 6= w
=⇒ ∀z′ ∈ V ′, z′ ∈ predG(z) ∧ z′ 6∈ W =⇒ obs[z′] = v

and
(I′′3) ∀z ∈ predG(w), z 6∈ P ∧ z 6∈ W =⇒ obs[z] = v

are valid invariants of the inner loop. (I′3) is nearly identical to (I3), but
excludes w from the considered nodes. (I′′3) describes the labels of the parents
of w. All the parents that have already been processed and that are not in
W have label v.

2The mechanized version of this proof is available in [Léc18].
3The mechanized version of this proof is available in [Léc18].
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– In the entry of the inner loop, (I′3) holds by (I3) at the beginning of the
iteration of the outer loop, since the exclusion of w in (I′3) compensates
for the removal of w from L at line 6. (I′′3) is vacuously true, since
P = predG(w) by the postcondition of pred.

– Assume that (I′3) and (I′′3) are true at the beginning of an iteration of
the inner loop. At the end of the iteration, (I′3) holds for z = w, since
it is explicitly excluded; it holds for z = w0, since w0 was added to L;
and it holds for the other vertices, since w0 cannot be the parent of a
node distinct from w, that has label v and is not in L by (I′3) at the
beginning of the iteration. Thus (I′3) holds at the end of the iteration.
(I′′3) straightforwardly holds at the end of the iteration, since if w0 is
not in W , its label is set to v at line 14 or at line 21.

Thus (I′3) and (I′′3) are preserved by the inner loop. In particular, they hold
at the end of the inner loop. By combining them, we prove exactly (I3), by
applying (I′3) if z 6= w or (I′′3) if z = w. Thus (I3) holds at the end of the
execution of the outer loop.

Proof of invariant (I4) : ∀z ∈ L, obs[z] = v.4
Invariant (I4) states that each node in the worklist L has label v.

• This is true initially, since L = {u} and u has label v by (P1).

• Assume that this is true at the beginning of an iteration of the outer loop.

– Then it is true at the entry of the inner loop. Indeed, if every node in
L has label v, a fortiori each node in L \ {w} has label v.

– Assume that (I4) holds at the beginning of an iteration of the inner
loop. When w0 is added to L at line 15 or 22, its label has just been
set to v (line 14 or 21). Thus (I4) holds at the end of the iteration of
the inner loop.

Thus (I4) is preserved by the inner loop, and therefore holds at the end of
the iteration of the outer loop.

Proof of invariant (I5) : ∀z ∈ V, obs[z] 6= v =⇒ obs[z] = at(obs[z], INIT).5
Invariant (I5) states that the only change in the labeling obs that propagate is
allowed to perform is to set labels to v. If a node has no label or a label distinct
from v, then its labeling has not been modified during the propagation.

4The mechanized version of this proof is available in [Léc18].
5The mechanized version of this proof is available in [Léc18].
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• This is true initially, since obs = at(obs, INIT).

• Assume that (I5) holds at the beginning of an iteration of the outer loop.

– Then it holds at the entry of the inner loop.
– Assume that (I5) holds at the beginning of an iteration of the inner

loop. The only change applied to obs is to potentially set the label of
w0 to v. Thus (I5) is weaker at the end of the iteration than at the
beginning. Since it holds at the beginning, it holds at the end.

Thus (I5) is preserved by the inner loop, and therefore holds at the end of
the iteration of the outer loop.

Proof of invariant (I6) : ∀z ∈ V, z ∈ C ⇐⇒ z 6= u ∧ obs[z] = v
∧z ∈ at(obs, INIT)
∧| succG(z)| > 1.6

Invariant (I6) states that the nodes in C are exactly the nodes that are distinct
from u, have v as observable, had a label before the call to propagate and have
at least two children.

• This is true initially, since C = ∅ and u is the only node that has v as label
by (P1).

• Assume that (I6) is true at the beginning of an iteration of the outer loop.

– Then it holds at the entry of the inner loop.
– Assume that it is true at the beginning of an iteration of the inner

loop. We prove it is also true at the end of the iteration, by proving
successively the implication and its converse.
∗ Let z be a vertex in C at the end of the iteration of the inner loop.
· Assume that z was already in C at the beginning of the iteration
of the inner loop. By (I6) at the beginning of the iteration,
z 6= u, z had label v at the beginning of the iteration, z had
a label before the call to propagate and z has at least two
children. The possible changes to the labeling obs during the
iteration of the inner loop (lines 14 and 21) both update some
label to v. Thus z still has label v at the end of the iteration.

6The mechanized version of this proof is available in [Léc18].
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· Assume that z was not in C at the beginning of the iteration.
This implies that it was added on line 17. Therefore, z =
w0, w0 6∈ W , w0 had a label at the beginning of the iteration
and this label was not equal to v. We can make the following
observations. First, since w0 had not label v at the beginning
of the iteration of the inner loop, w0 6= u by (I4). Second, the
label of w0 was updated to v at line 14. Third, since w0 had a
label distinct from v at the beginning of the iteration, w0 had
the same label in obs before the call to propagate (by (I5)).
Fourth, by the postcondition of out_degree, | succG(w0)| > 1.

Thus, at the end of the iteration:
∀z ∈ V, z ∈ C =⇒ z 6= u ∧ obs[z] = v ∧ z ∈ at(obs, INIT)

∧ | succG(z)| > 1
∗ Let z be a vertex in V such that z 6= u, z is labeled with v at the

end of the iteration of the inner loop, z had a label before the call
to propagate and has at least two children. If z had already label
v at the beginning of the iteration, by (I6) at the beginning of the
iteration, z ∈ C. If z did not have label v before the iteration,
this means that z = w0 and its label was updated on line 14 or
on line 21. If its label was updated on line 14, since z has at least
two children, z was added to C on line 17 by the postcondition of
out_degree. If its label was updated on line 21, this means that
z did not have a label at the beginning of the iteration. But this
implies that z did not have a label before the call to propagate
either (by (I5)), which contradicts the hypotheses about z. Thus,
at the end of the iteration:
∀z ∈ V, z 6= u ∧ obs[z] = v ∧ z ∈ at(obs, INIT)

∧ | succG(z)| > 1 =⇒ z ∈ C
By combining both results, we get that (I6) holds at the end of the
iteration of the inner loop.

Thus (I6) is preserved by the inner loop, and therefore holds at the end of
the iteration of the outer loop.

Proof of invariant (I7) : P ⊆ predG(w).7
Invariant (I7) states that P contains only parents of w in G.

• When entering the inner loop, this is true since P = predG(w) by the post-
condition of pred.

7The mechanized version of this proof is available in [Léc18].
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• After an iteration, P is smaller than at the beginning of the iteration. Thus,
by the transitivity of inclusion, if (I7) holds at the beginning of the iteration,
it also holds at its end.

Proof of invariant (I8) : ∀z ∈ V, at(obs[z], LOOP) = v =⇒ obs[z] = v.8
Invariant (I8) states that nodes that already have label v when entering the inner
loop still have label v when leaving the loop.

• When entering the inner loop, this is true since obs = at(obs, LOOP).

• During an iteration of the inner loop, the only label that may change (line
14 or 21) is set to v. Thus, if (I8) holds at the beginning of the iteration, it
also holds at its end.

Proof of invariant (I9) : (∀z ∈ V, obs[z] = v =⇒ at(obs[z], LOOP) = v)
=⇒ L = at(L, LOOP).9

Invariant (I9) states that if, after some iterations of the inner loop, all the nodes
that have label v already had label v when entering the inner loop, then L contains
the same elements as when entering the inner loop.

• When entering the inner loop, this is true since L = at(L, LOOP).

• Assume that (I9) holds at the beginning of an iteration of the inner loop.
If, at the end of the iteration, there exists a node z ∈ V that has label v
whereas this was not the case at the beginning of the iteration, then (I9)
trivially holds, since the left part of the implication is false. On the contrary,
if all the nodes that have label v already had label v at the beginning of
the iteration, this means that obs[w0] has not changed and thus, since the
updates to L are coupled to the changes to obs[w0], L contains the same
elements as at the beginning of the iteration. By (I9) at the beginning of the
iteration, L contains the same elements as when entering the inner loop.

Thus all the invariants are valid. Let us prove that both loops terminate, by
proving the validity of the corresponding variants.

Proof of the variant of the outer loop: (|{z ∈ V | obs[z] 6= v}|, |L|).10

This is a lexicographic variant. The first component is the cardinality of the set
8The mechanized version of this proof is available in [Léc18].
9The mechanized version of this proof is available in [Léc18].

10The mechanized version of this proof is available in [Léc18].
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containing all vertices in G with a label distinct from v. The second part is the
size of the worklist L. The idea of this variant is that during the processing of
node w extracted from worklist L, the number of nodes with label v grows. But
it is possible that this number does not strictly increase, in the case where all the
parents of w are in W or have already label v. In that case, though, no node is
added to L, and since w has just been removed from it, L is strictly smaller than
at the beginning of the iteration of the outer loop.

Let us prove that this variant is correct formally. To prove that it is compatible
with the lexicographical order on N2, we prove that it is not smaller than (0, 0)
and that it strictly decreases during an iteration.

• Both components are cardinalities, thus are non-negative.

• To prove that the variant decreased after one iteration, we use invariants
(I8) and (I9) that were tailored to that purpose. Indeed (I8) states that
the number of vertices with label v does not decrease during an iteration,
which means that the number of vertices with label v does not increase
during an iteration. In the case where the number of vertices with label v
remains equal, then (I9) comes to the rescue, by proving that L has the same
elements as when entering the inner loop. Since w was removed from L on
line 6, L is strictly smaller at the end of the iteration of the outer loop than
at its beginning. This shows that the variant at the end of the iteration is
strictly smaller (with respect to the lexicographical order on N2) than at its
beginning.

Proof of the variant of the inner loop: |P |.11

This second variant is much simpler. It is the size of set P . Since it is the
cardinality of a set, it is non-negative. In each iteration of the inner loop, one
element is removed from P , thus the variant strictly decreases during an iteration
of the inner loop.

We can now prove the two assertions and the postconditions.
(A1) states that after the call to propagate(G,W, obs, u, v) every node labeled

with v has u as observable vertex in W . This is proved straightforwardly by
invariant (I1).

(A2) states that after the call to propagate (G,W, obs, u, v) every node that
has u as observable vertex in W has label v. This is proved using invariants (I2)
and (I3). Indeed, since L is empty when leaving the outer loop, (I3) is equivalent
to the following:

∀z ∈ V, obs[z] = v =⇒ ∀z′ ∈ V, z′ ∈ predG(z) ∧ z′ 6∈ W =⇒ obs[z′] = v

11The mechanized version of this proof is available in [Léc18].
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By (I2), u has label v, and by (I3), if a node has label v, then all its parents not in
W have also label v. By a simple induction, we can prove that every node z ∈ V
such that z W−path−−−−−→ u has label v.

Postcondition (Q1) is exactly assertion (A2), it is therefore true.
To prove (Q2), we use (I5) that states that each node whose label is not v has

the same label as before the call. By combining (A1) and (A2), we prove that the
nodes that are labeled with v after the call are exactly the nodes that have u in
their observable set in W . This implies that the nodes that are not labeled v are
the nodes that do not have u as observable vertex in W , which proves (Q2).

From (I6) and by observing again that the nodes with label v are the nodes
connected to u with W -path, we can deduce (Q3). This terminates the proof that
propagate fulfills its contract.

8.3 Proof of Correctness of confirm

Compared to the proof of propagate, the proof of confirm is quite simple. A
version of confirm annotated with a contract, invariants and variants is given as
Algorithm 8.7.

confirm does not have any precondition, and its single postcondition states
that it returns true if and only if one of the successors v of u has a label v′ distinct
from u′.

The first invariant states that the set of tested nodes S is a subset of the
children of u. This is true initially since S = succ(G, u) and remains true after an
iteration since S decreases.

The second invariant is identical to the postcondition except that it considers
only nodes that have been already explored, i.e. nodes in succG(u) \ S. This is
true initially, since b = false and succG(u) \ S = ∅ by the postcondition of succ.
This is preserved after one iteration, since the invariant describes exactly what is
tested in the while body.

The variant that proves the termination of the loop is the cardinality of set
S. Indeed, it is non-negative and strictly decreases during one iteration since an
element is removed from S.

8.4 Proof of Correctness of main

Now that we have given contracts to propagate and confirm and proved that
they are respected by the functions, we can do the same for function main. Algo-
rithm 8.8 presents function main annotated with a contract, invariants, variants
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Input: G = (V,E) a directed graph
obs : Map(V, V ) associating at most one label to each vertex
u ∈ V the vertex whose children are inspected
u′ ∈ V the label tested against those of the children

Output: b : bool, true if at least one child of u has a label distinct
from u′, false otherwise

Ensures: b = true ⇐⇒ ∃v, v′ ∈ V, v ∈ succG(u) ∧ obs[v] = v′ ∧ v′ 6= u′

1 begin
2 b← false
3 S ← succ (G, u)
4 while S 6= ∅ do

// invariant: S ⊆ succG(u)
// invariant: b = true ⇐⇒ ∃v, v′ ∈ V, v ∈ (succG(u) \ S)

∧obs[v] = v′ ∧ v′ 6= u′

// variant: |S|
5 v ← choose (S)
6 S ← S \ {v}
7 if v ∈ obs and obs[v] 6= u′ then
8 b← true
9 end

10 return b

11 end

Algorithm 8.7: Function confirm (G, obs, u, u′) with annotations
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and assertions. The explicit definitions of the invariants and the assertions are
given in Figure 8.2.

Let us first focus on the contract. No precondition is attached to main. Un-
surprisingly, there are two postconditions:

• the first one states that set W returned by main is equal to V ′ ∪WDG(W );

• the second one states that the labeling returned by main is correct, in the
sense that each node is labeled by its observable when it exists.

To prove the two postconditions, we attached invariants and variants to the
loops on line 5 and on line 10, and inserted four assertions before the return
instruction on line 20. We describe all of them hereafter. Like for propagate, we
inserted a label LOOP before the inner loop on line 10, that allows to refer to the
values hold by variables of the program at that program point.

Proof of invariant (I1) : L ⊆ W .12

Invariant (I1) states that each vertex in the worklist L is also in W .

• This is true initially since W = L = V ′.

• Assume that L ⊆ W at the beginning of an iteration. At the end of the
iteration, the new values of L and W are:

L′ = (L \ {u}) ∪∆ and W ′ = W ∪∆

Since L ⊆ W , we have L \ {u} ⊆ W , and thus L \ {u}) ∪∆ ⊆ W ∪∆, i.e.
L′ ⊆ W ′. This proves that (I1) holds at the end of the iteration.

Proof of invariant (I2) : ∀z ∈ W, obs[z] = z.13

Invariant (I2) states that each node in W has itself as a label.

• It is true initially since W = V ′ (line 2) and each node in V ′ has itself as a
label (line 3).

• Assume that (I2) holds at the beginning of an iteration. During the updates
ofW and obs (lines 16 and 17), the nodes that are added toW have their label
updated to themselves. And by postcondition (Q2) of propagate, nodes in
W have the same label at the end of the iteration as at its beginning, thus
have themselves as a label by (I2) at the beginning of the iteration. Thus
(I2) holds at the end of the iteration.

12The mechanized version of this proof is available in [Léc18].
13The mechanized version of this proof is available in [Léc18].
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Input: G = (V,E) a directed graph
V ′ ⊆ V the input subset

Output: W ⊆ V the main result
obs : Map(V, V ) the final labeling

Ensures: W = V ′ ∪WDG(V ′)
Ensures: ∀u, v ∈ V, obs[u] = v ⇐⇒ v ∈ obsG(u,W )

1 begin
2 W ← V ′ // initialization
3 obs|V ′ ← idV ′
4 L← V ′

5 while L 6= ∅ do // main loop
// invariant: I1 ∧ I2 ∧ I3 ∧ I4 ∧ I5 ∧ I6 ∧ I7
// variant: (|V \W |, |L|)

6 u← choose(L)
7 L← L \ {u}
8 C ← propagate (G,W, obs, u, u) // propagation
9 ∆← ∅

LOOP:
10 while C 6= ∅ do // filtering

// invariant: I′6 ∧ I′7 ∧ I8
// variant: |C|

11 v ← choose(C)
12 C ← C \ {v}
13 if confirm (G, obs, v, u) = true then
14 ∆← ∆ ∪ {v}
15 end
16 W ← W ∪∆ // update
17 obs|∆ ← id∆
18 L← L ∪∆
19 end

// assert: A1 ∧A2 ∧A3 ∧A4
20 return (W, obs)
21 end

Algorithm 8.8: Function main (G, V ′) with annotations
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(I1) L ⊆ W

(I2) ∀z ∈ W, obs[z] = z

(I3) ∀z, z′ ∈ V, obs[z] = z′ =⇒ z′ ∈ W

(I4) ∀z, z′ ∈ V, obs[z] = z′ ∧ z′ ∈ L =⇒ z = z′

(I5) ∀z, z′ ∈ V, obs[z] = z′ =⇒ z
path−−→ z′

(I6) V ′ ⊆ W ⊆ V ′ ∪WDG(V ′)

(I7) ∀y, z, z′ ∈ V, y W−disjoint−−−−−−−→ z ∧ obs[z] = z′ ∧ z′ 6∈ L =⇒ obs[y] = z′

(I′6) ∆ ⊆ WDG(W )

(I′7) ∀y, z, z′ ∈ V,
y 6∈ C ∧ y 6= u ∧ y W−path−−−−−→ u ∧ z ∈ succG(y) ∧ obs[z] = z′ ∧ z′ 6∈ L ∪ {u}
=⇒ y ∈ ∆

(I8) C ⊆ at(C, LOOP)

(A1) ∀y, z ∈ V, y W−path−−−−−→ z =⇒ obs[y] = z

(A2) WDG(W ) = ∅

(A3) V ′ ⊆ W ⊆ V ′ ∪WDG(V ′)

(A4) W = V ′ ∪WDG(V ′)

Figure 8.2 – Definitions of the invariants and assertions annotating the body of
function main (G, V ′) (cf. Algorithm 8.8)
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Proof of invariant (I3) : ∀z, z′ ∈ V, obs[z] = z′ =⇒ z′ ∈ W .14

Invariant (I3) states that all labels are in W .
• This is true initially since W = V ′ (line 2) and all labels are in V ′ (line 3).

• Assume that (I3) is true at the beginning of an iteration. At the end of the
iteration, the new value of W is W ′ = W ∪ ∆ and the new labeling obs′
satisfies:

∀z ∈ V, obs′[z] =


z if z ∈ ∆
u if z 6∈ ∆ ∧ z W−path−−−−−→ u

obs[z] if ¬(z W−path−−−−−→ u)
Let z be a vertex with label z′. There are three possible cases:

– if z′ ∈ ∆, then z′ ∈ W ′ since ∆ ⊆ W ′;
– if z′ = u, we can observe that u is extracted from L on line 7, thus it is

in W by (I1); therefore z′ ∈ W , whence z′ ∈ W ′;
– if z′ is the label of z at the beginning of the iteration, then z′ ∈ W by

(I3) at the beginning of the iteration; thus, z′ ∈ W ′.

Therefore, (I3) holds at the end of the iteration.

Proof of invariant (I4) : ∀z, z′ ∈ V, obs[z] = z′ ∧ z′ ∈ L =⇒ z = z′.15

Invariant (I4) states that labels in L have not been propagated yet. Given a node
z in L, z is the only node whose label is z.

• This is true initially since L = V ′ (line 3), all the nodes that are labeled are
in V ′ and each of these nodes has itself as a label.

• Assume that (I4) holds at the beginning of an iteration, i.e.

∀z, z′ ∈ V, obs[z] = z′ ∧ z′ ∈ L =⇒ z = z′

Let L′ and obs′ be the values of L and obs respectively at the end of the
iteration. As stated above,

L′ = (L \ {u}) ∪∆

Let z and z′ be two vertices in V . Let us assume that obs′[z] = z′ and z′ ∈ L′.
By invariant (I′6) of the inner loop (proved below), ∆ ⊆ WDG(W ), and thus,
by Property 6.2, ∆ ∩W = ∅. Since, by invariant (I1), L ⊆ W , this means
that L′ is the disjoint union of L \ {u} and ∆. Thus, either z′ ∈ L \ {u} or
z′ ∈ ∆.

14The mechanized version of this proof is available in [Léc18].
15The mechanized version of this proof is available in [Léc18].
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– Assume that z′ ∈ L\{u}. By postconditions (Q1) and (Q2) of propagate,
the nodes that have a label in L\{u} at the end of the iteration are the
same as at the beginning of the iteration. Thus, obs[z] = obs′[z] = z′,
and by (I4) at the beginning of the iteration, z = z′.

– Assume that z′ ∈ ∆. By (I3) at the beginning of the iteration, all the
labels at the beginning of the iteration are in W and W is disjoint from
∆ by (I′6). Thus, the label of z has just been updated to z′ in this
iteration. z′ 6= u, since u ∈ W , thus the last time the label of z was
modified was not the call to propagate. This means the label of z was
updated on line 17. Thus, z is in ∆ and z = z′.

This proves that (I4) holds at the end of the iteration.

Proof of invariant (I5) : ∀z, z′ ∈ V, obs[z] = z′ =⇒ z
path−−→ z′.16

Invariant (I5) states that if label z′ is associated to a node z then there exists a
path between z and z′.

• Initially, there exists a trivial path from each node in V ′ to itself, thus (I5)
holds.

• Assume that (I5) holds at the beginning of an iteration. Let z be a vertex
in V . At the end of the propagation, by postconditions (Q1) and (Q2) of
propagate, the new labeling obs′ satisfies:

∀z ∈ V, obs′[z] =


z if z ∈ ∆
u if z 6∈ ∆ ∧ z W−path−−−−−→ u

obs[z] if ¬(z W−path−−−−−→ u)

We explore the three different cases.

– If z ∈ ∆ and obs′[z] = z, there is a path from z to z.

– If z 6∈ ∆∧ z W−path−−−−−→ u and obs′[z] = u, there exists a W -path from z to
u and thus in particular a path from z to u.

– If ¬(z W−path−−−−−→ u) and obs′[z] = obs[z], we have a path between z and z′
by (I5) at the beginning of the iteration. Indeed, during the iteration,
we change sets W and L and labeling obs, but not the graph itself.
Thus, if there exists a path between two nodes at a given iteration, it
remains a valid path in all following iterations.

16The mechanized version of this proof is available in [Léc18].
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Thus (I5) holds at the end of the iteration.

Proof of invariant (I6) : V ′ ⊆ W ⊆ V ′ ∪WDG(V ′).17

Invariant (I6) states that W remains between V ′ and V ′ ∪WDG(V ′) during the
execution of the algorithm.

• This is true initially, since W = V ′.

• Assume that V ′ ⊆ W ⊆ V ′ ∪WDG(V ′) at the beginning of an iteration and
let us prove that V ′ ⊆ W ′ ⊆ V ′∪WDG(V ′) at the end of the iteration, where
W ′ is the value of W at the end of the iteration, i.e. W ′ = W ∪ ∆. Since
V ′ ⊆ W , we have trivially V ′ ⊆ W ′. To conclude, it is thus sufficient to
prove that W ′ ⊆ V ′ ∪WDG(V ′). Since, by hypothesis, W ⊆ V ′ ∪WDG(V ′),
it is sufficient to prove that ∆ ⊆ V ′ ∪WDG(V ′).
To prove it, we use the fact that, since W ⊆ V ′ ∪ WDG(V ′), we have, by
Properties 6.3 and 6.4,

WDG(W ) ⊆ V ′ ∪WDG(V ′)

It is thus sufficient to prove that ∆ ⊆ WDG(W ). This is established by the
invariant:

(I′6) ∆ ⊆ WDG(W )

of the inner loop on line 10. Let us prove that this invariant is valid for the
inner loop.

– When entering the inner loop, ∆ = ∅, thus (I′6) holds at that point.
– After an iteration, we must prove that the vertex v that has possibly

been added to ∆ is W -weakly deciding. We know that v is taken from
C. By (I8), C is a subset of the value of C when entering the inner
loop, thus by postcondition (Q3) of propagate:

v 6= u ∧ v W−path−−−−−→ u ∧ v ∈ obs ∧ | succG(v)| > 1

Moreover, the call to confirm on line 13 returned true, which means by
the postcondition of confirm that v has a child w with label w′ distinct
from u.
To prove that v is W -weakly deciding, we exhibit two V ′-paths from v
that share no vertex except v. The first one is the W -path from v to

17The mechanized version of this proof is available in [Léc18].
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u given by the postcondition of propagate. The second one requires a
bit more work. Since w has a label, there exists a path from w to W
by invariant (I5) at the beginning of the iteration of the outer loop. If
we consider the prefix of that path until its first intersection with W ,
we get a W -path from w. By prepending to it the edge (v, w), we get
the second W -path from v. Both W -paths do not intersect except in
v, since otherwise we would have a W -path w W−path−−−−−→ u, and thus the
label of w after the propagation would have been u and not w′, which
is contradictory. These two W -paths prove that v ∈ WDG(W ). This
proves that (I′6) holds at the end of the iteration of the inner loop.

Using (I′6), it is straightforward to conclude that

V ′ ⊆ W ∪∆ ⊆ V ′ ∪WDG(V ′)

i.e. that (I6) holds at the end of the iteration of the outer loop.

Proof of invariant (I7) : ∀y, z, z′ ∈ V, y W−disjoint−−−−−−−→ z ∧ obs[z] = z′ ∧ z′ 6∈ L
=⇒ obs[y] = z′.18

Invariant (I7) is by far the most complicated and the least obvious invariant. It
states that if there is a path between two vertices y and z that does not intersect
W , i.e. aW -disjoint path (cf. Definition 6.13), and z has a label already processed,
then y and z have the same label. It is stronger than one could expect. Indeed, a
more natural invariant would be similar to assertion (A1), i.e.:

∀y, z ∈ V, y W−path−−−−−→ z ∧ z 6∈ L =⇒ obs[y] = z

This formula is indeed an invariant, since it is implied by (I7) (by considering
z ∈ W \ L, the W -disjoint path between y and z is also a W -path, and z′ = z by
invariant (I2)). But it lacks a precious information about nodes that have already
been propagated: if a node has a label already propagated, and its parent is not in
W , then its parent has the same label. Transitively, all the transitive predecessors
of the node that are not inW have the same label, whence the notion ofW -disjoint
path in the definition of (I7).

The fact that a node not in W has the same label as its child if this label has
already been processed is one of the key arguments that explain the correctness
of the algorithm. Indeed, during the propagation, we select as candidate nodes
only those which had already a label before the propagation, and only afterwards
we apply confirm to detect true W -weakly deciding nodes. This means that we

18The mechanized version of this proof is available in [Léc18].
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miss the W -weakly deciding vertices that would have been detected by confirm if
they had not been filtered out during the propagation, as discussed in Section 7.2.
But invariant (I7) guarantees that there are some that will not be missed. Indeed,
given a node traversed during the propagation, if the call to confirm on it detects
a child with a label already processed, then it had the same label at the beginning
of the iteration, which means it is added to the set of candidate nodes during
the propagation, and thus is detected as a W -weakly deciding node despite the
filtering performed during the propagation. It is therefore possible, because of the
filtering performed during the propagation, to miss some nodes, but not those with
a label already processed at the beginning of the iteration. Informally, invariant
(I7) gives a lower bound of the progress of the algorithm.

Let us prove that (I7) is a valid invariant.

• Initially, W = L = V ′, and each node in V ′ is labeled with itself. Thus any
label is in the worklist L, which means that (I7) is vacuously true.

• Assume that (I7) holds at the beginning of an iteration. Let W ′, L′ and obs′
the values ofW , L and obs respectively at the end of the iteration. We recall
that W ′ = W ∪∆, L′ = (L \ {u}) ∪∆ and

∀z ∈ V, obs′[z] =


z if z ∈ ∆
u if z 6∈ ∆ ∧ z W−path−−−−−→ u

obs[z] if ¬(z W−path−−−−−→ u)

Let y, z and z′ be nodes in V . We assume that y (W∪∆)−disjoint−−−−−−−−−−→ z, obs′[z] = z′

and z′ 6∈ L′. Let us prove that obs′[y] = z′.
First, observe that z is not in ∆. Let us reason by contradiction and assume
that z ∈ ∆. By definition of obs′, obs′[z] = z, which means that z′ = z.
Thus, z′ is in ∆. But we also have in our hypotheses that z′ 6∈ (L\{u})∪∆,
which is contradictory. Thus z is not in ∆.
Likewise, we can prove that y is not in ∆ either, otherwise the (W ∪ ∆)-
disjoint path between y and z would be trivial, i.e. y = z. Thus, z would be
in ∆, which we have just shown is contradictory.
We examine three cases depending on whether there exist aW -path between
z and u and a W -path between y and u. The three cases are represented in
Figure 8.3.

– Let us assume that z W−path−−−−−→ u. Since y (W∪∆)−disjoint−−−−−−−−−−→ z, we have
in particular y W−disjoint−−−−−−−→ z. By concatenating that W -disjoint path
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Figure 8.3 – The three possible configurations in the proof of (I7)
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between y and z and the W -path between z and u, we get a W -path
between y and u. This is represented in Figure 8.3a. Thus, both y and
z have been relabeled with u during the propagation, i.e. obs′[y] = u
and obs′[z] = u. Thus, we have obs′[y] = z′ = u.

– Let us assume that there does not exist any W -path from z to u nor
any W -path from y to u. This is represented in Figure 8.3b. The labels
y and z were not changed by the propagation, i.e. obs′[y] = obs[y] and
obs′[z] = obs[z]. Moreover, y W−disjoint−−−−−−−→ z, since it is a consequence of
y

(W∪∆)−disjoint−−−−−−−−−−→ z. Thus, we can conclude by (I7) at the beginning of
the iteration, provided that we show that z′ is not in L. By assumption,
z′ is not in (L\{u})∪∆. It is thus sufficient to prove that z′ 6= u. Let us
assume that z′ = u, i.e. obs[z] = u. At the beginning of the iteration, u
has not been propagated yet (by (I4)), thus z = u, but this contradicts
that there does not exist any W -path between z and u. Thus z′ 6= u,
and obs′[y] = obs[y] = z′.

– Let us assume that there exists a W -path between y and u, but none
between z and u. This is represented by the first part of Figure 8.3c.
This means that the label of y was updated to u during the propagation,
i.e. obs′[y] = u, but z has the same label as before the propagation, i.e.
obs′[z] = obs[z] = z′. We show that this case is contradictory.
Consider the (W ∪∆)-disjoint path between y and z. y is connected to
u using a W -path, but z is not. We introduce v1 as the last vertex on
the (W ∪∆)-disjoint path connecting y and z that is also the origin of a
W -path to u, and v2 as its successor on this (W ∪∆)-disjoint path. v1
and v2 are represented in the second part of Figure 8.3c. We show that
v1 ∈ ∆, which contradicts the fact that it lies on the (W ∪∆)-disjoint
path from y to z.
To prove that v1 is in ∆, we make use of the invariant:

(I′7) ∀y, z, z′ ∈ V,
y 6∈ C∧y 6= u∧y W−path−−−−−→ u∧z ∈ succG(y)∧obs[z] = z′∧z′ 6∈ L∪{u}
=⇒ y ∈ ∆

of the inner loop. First, we prove that (I′7) is a valid invariant of the
inner loop. Then, we apply it to deduce that v1 is in ∆.
(I′7) states that ∆ contains all the nodes not in C and distinct from u
that have u as observable vertex in W and have a child with a label
not in L ∪ {u}. Note that, here, L denotes the value of L at the entry
of the inner loop. This means that u is not in L, since it was removed
from it on line 7. The expression L ∪ {u} is thus the value of L at the
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beginning of the iteration of the outer loop, before u was removed from
it. Hereafter, we prefer to use L to refer to its value at the beginning of
the iteration of the outer loop. We write therefore L instead of L∪{u}.

∗ When entering the inner loop on line 10, to prove that (I′7) holds,
we prove that, after the propagation, each node y such that y 6= u,
y

W−path−−−−−→ u and that has a child z with label z′ not in L (where
L denotes the value of L at the beginning of the outer loop, in
particular u ∈ L), is in C. By postcondition (Q3) of propagate,
it is enough to prove that y 6= u, y W−path−−−−−→ u, y had a label before
the propagation and has at least two children. The first two points
are in the hypotheses, so they are trivially true.
To prove the other two points, let us observe that there is no W -
path from z to u. Indeed, assume that there is one. This means
that z was traversed during the propagation, and thus its label z′
is equal to u. But this is contradictory, since z′ is not in L but
u is. Thus there is no W -path between z and u. This means in
particular that z has the same label as before the propagation.
The third point is proved thanks to (I7) at the beginning of the
iteration of the outer loop applied to y and its child z. Indeed,
from y 6= u and y

W−path−−−−−→ u, we can deduce that y is not in W .
Thus y, z is a W -disjoint path between y and z. Moreover, z had
label z′ not in L before the propagation. By (I7), the label of y
before the propagation was z′. In particular, y had a label before
the propagation.
For the fourth point, consider z and the second vertex on the W -
path from y to u. Both are children of y and they cannot be equal,
otherwise there would exist a W -path from z to u.
All this proves that y is in C after the propagation. We can conclude
that (I′7) holds when entering the inner loop.
∗ Let us assume that (I′7) is true at the beginning of an iteration of

the inner loop. Let y be a vertex such that y 6∈ C \ {v}, y 6= u,
y

W−path−−−−−→ u and there exists a child z of y with label z′ not in L
(where again L denotes the value of L at the beginning of the outer
loop). Let us prove that y is in ∆′, where ∆′ is the value of ∆ at
the end of the execution, i.e. ∆ ∪ {v} if the call to confirm on
line 13 returned true and ∆ otherwise. By hypothesis, y 6∈ C \{v},
thus y 6∈ C or y = v. If y 6∈ C, we can apply (I′7) that holds at the
beginning of the iteration and deduce that y ∈ ∆, and thus y ∈ ∆′.
Let us assume that y = v, and let us show that the call to confirm
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on line 13 returned true. By the postcondition of confirm, it is
enough to prove that v has a child with a label different from u.
This follows easily from the existence of the child z of y = v with
label z′ not in L and thus distinct from u, since u ∈ L.
Since the call to confirm returned true, ∆′ = ∆ ∪ {v} and thus
v ∈ ∆′. This proves that (I′7) holds at the end of the iteration of
the inner loop.

Thus (I′7) is preserved by the inner loop. In particular, it holds at the
end of the inner loop, where C = ∅, which gives:

∀y, z, z′ ∈ V, y 6= u ∧ y W−path−−−−−→ u ∧ z ∈ succG(y)
∧ obs[z] = z′ ∧ z′ 6∈ L
=⇒ y ∈ ∆

Let us apply this result to deduce that v1 is in ∆. We use it with y = v1,
z = v2 and z′ = z′. It is thus sufficient to prove that:
∗ v1 6= u: this is true, since v1 lies on a (W ∪∆)-path, and u ∈ W ;
∗ v1

W−path−−−−−→ u: this holds by definition of v1;
∗ v2 ∈ succG(v1): this is true by definition of v1 and v2;
∗ obs[v2] = z′: by definition of v2, there is a (W ∪ ∆)-disjoint path

from v2 to z, thus in particular a W -disjoint path from v2 to z.
Therefore, by (I7) at the beginning of the iteration, obs[v2] = z′;
∗ z′ 6∈ L: this holds by hypothesis about z′.

Thus v1 is in ∆, which contradicts its definition as a vertex on the
(W ∪ ∆)-disjoint path from y to z. This shows that this third case is
contradictory.

Thus (I7) holds at the end of the iteration of the outer loop.

This concludes the proof that (I7) is a valid invariant for the outer loop.

Proof of invariant (I8) : C ⊆ at(C, LOOP).19

Invariant (I8) states that set C after some iterations of the inner loop is a subset
of set C when entering the inner loop, which is equal to the value returned by
propagate on line 8.

• This is true when entering the loop, since C = at(C, LOOP).
19The mechanized version of this proof is available in [Léc18].
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• After an iteration, C is smaller than at the beginning of the iteration. Thus,
by the transitivity of inclusion, if (I8) holds at the beginning of the iteration,
it also holds at its end.

Thus all the invariants are valid. Let us prove that both loops terminate. For
that, we prove the validity of the corresponding variants.

Proof of the variant of the outer loop: (|V \W |, |L|).20

This is a lexicographic variant that resembles a lot the variant of the outer loop
of function propagate. The first component is the cardinality of the set of all the
vertices in G that are not in W . The second component is the cardinality of the
worklist L. Both components are cardinalities, thus are non-negative. Moreover,
during an iteration, the vertices in ∆ are added to W , and ∆ is disjoint from W
by invariant (I′6) of the inner loop, thus W grows. If ∆ 6= ∅, it grows strictly.
If ∆ = ∅, it remains the same. But in this case, L is smaller at the end of the
iteration than at its beginning by one vertex, u. This shows that the variant at the
end of the iteration is strictly smaller (with respect to the lexicographical order
on N2) than at its beginning.

Proof of the variant of the inner loop: |C|.21

This variant is the size of set C. Since it is the cardinality of a set, it is non-
negative. In each iteration of the inner loop, one element is removed from C, thus
the variant strictly decreases during an iteration of the inner loop.

We can now prove the four assertions and deduce from them and the invariants
the two postconditions.

(A1) states that if there exists a W -path between two nodes y and z at the
end of function main, then y is labeled with z. This is a consequence of invariant
(I7). Let y and z be two nodes verifying y W−path−−−−−→ z. The W -path between y and
z is in particular a W -disjoint path. Moreover, by invariant (I2), since z ∈ W , we
have obs[z] = z. We can also note that z 6∈ L, since at the end of main, L = ∅.
By (I7) at the end of the outer loop, obs[y] = z.

(A2) states that there is no W -weakly deciding node. This is actually a direct
consequence of (A1). Indeed, (A1) implies that each vertex y has at most one
observable in W , equal to obs[y] when it exists. A W -weakly deciding vertex
would have two observable vertices, thus WDG(W ) = ∅.

(A3) states that, at the end of main, V ′ is a subset ofW which is itself a subset
of V ′ ∪WDG(V ′). It is the direct consequence of (I5) at the end of the outer loop.

20The mechanized version of this proof is available in [Léc18].
21The mechanized version of this proof is available in [Léc18].



8.5. REMARKS ABOUT THE WHY3 FORMALIZATION 197

(A4) states thatW at the end of main is, as expected, equal to V ′∪WDG(V ′). It
can be deduced from (A2) and Property 6.3 applied to (A3). Indeed, since V ′ ⊆ W ,
we have WDG(V ′) ⊆ W ∪WDG(W ), i.e. WDG(V ′) ⊆ W since WDG(W ) = ∅ by
(A2). Thus

WDG(V ′) ⊆ W ⊆ V ′ ∪WDG(V ′)

Since V ′ ⊆ W ,
V ′ ∪WDG(V ′) ⊆ W ⊆ V ′ ∪WDG(V ′)

This gives W = V ′ ∪WDG(V ′).

Let us now prove the two postconditions.
The first postcondition is exactly assertion (A4), thus it holds.
The second postcondition is a consequence of assertion (A1) and invariant (I5).

(A1) is itself the left-to-right direction of the equivalence. Let us prove the right-
to-left direction. Let u, v be two nodes such that obs[u] = v, and let us prove that
v ∈ obsG(u,W ). By (I5), there is a path from u to v. Let w be the first element
in W on this path. Then u

W−path−−−−−→ w. By (A1), obs[u] = w. Thus, w = v and
u

W−path−−−−−→ v. This proves the second postcondition.

The two postconditions of main prove that, from an initial set V ′, it constructs
correctly the set V ′ ∪WDG(V ′) and labels each node with its observable vertex in
V ′∪WDG(V ′) when it exists. This shows that the optimized algorithm we propose
is correct.

8.5 Remarks about the Why3 Formalization
The three functions forming our algorithm, propagate, confirm and main, have
been implemented and proved correct in the Why3 proof platform [Léc18]. As
mentioned at the beginning of this chapter, their implementations in WhyML,
along with their contracts and the annotations used to prove their correctness are
very similar to what has been presented in the previous and the current chapters.

An overview of the formalization in Why3 is presented in Section 8.5.1. Then,
Section 8.5.2 describes the proof effort. Next, Section 8.5.3 highlights the dif-
ferences between the Why3 formalization and the formalization presented in the
previous chapter and this one. The possibility of extraction of the Why3 formal-
ization into OCaml is discussed in Section 8.5.4.

8.5.1 Overview of the Development
The Why3 formalization has two parts.



198 CHAPTER 8. PROOF OF THE NEW ALGORITHM

type graph
type vertex

val eq_vertex (v1 v2 : vertex) : bool
ensures { result = True <-> v1 = v2 }

function support graph : set vertex

val function succ graph vertex : set vertex
axiom succ_support : forall g u. mem u (support g)

-> subset (succ g u) (support g)

val function pred graph vertex : set vertex
axiom pred_succ : forall g u v. mem v (succ g u)

<-> mem u (pred g v)
axiom pred_support : forall g u. mem u (support g)

-> subset (pred g u) (support g)

val out_degree (g : graph) (u : vertex) : int
ensures { result = cardinal (succ g u) }

Figure 8.4 – The modeling of graphs in the Why3 formalization

• The first part is the set of definitions needed for the algorithm. This con-
sists of the modeling of graphs and a subset of the concepts related to weak
control-closure presented in Chapter 6. These are needed to write the algo-
rithm, its specification and to prove the algorithm correct with respect to its
specification. This part contains 7 lines of code and 52 lines of specification.

• The second part is the algorithm itself, i.e. the definitions of the three
functions propagate, confirm and main. This part consists of 122 lines of
code and 124 lines of specification.

Representation of graphs. We formalize finite graphs using a basic represen-
tation. We just introduce the few operations that we need. In particular, we
introduce Why3 versions of three of the graph functions presented in Section 7.3:
pred, succ and out_degree (the fourth function, choose, is provided by a Why3
library, see Section 8.5.3).

The Why3 definitions are given in Figure 8.4. We assume the existence of two
abstract types graph and vertex and of some functions manipulating them:

• A function eq_vertex is assumed that checks whether two vertices are equal,
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as specified by its postcondition.

• We assume the existence of a logical function support that models the finite
set of nodes in a graph. It is supposed to return from a graph the finite set
of vertices in that graph.

• A function succ is assumed that models the edge relation of a graph. It is
supposed to return the (finite) set of children of a node in a graph. Actually,
the keywords val function introduce both this function succ (the Why3
version of succ introduced in Section 7.3) and its logical counterpart also
named succ (the Why3 version of succG). Axiom succ_support claims that
the successors of a node in the graph are also in the graph.

• Similarly to succ, the identifier pred denotes simultaneously a function (the
Why3 version of pred introduced in Section 7.3) and its logical counterpart
(the Why3 version of predG). It is supposed to return the (finite) set of
parents of a node in a graph. Its behavior is specified by axiom pred_succ
with respect to the behavior of succ: a node u is a parent of a node v if and
only if v is a child of u. Like succ, all the parents of a node in the graph are
also in the graph as stated by pred_support.

• Last, a function out_degree (the Why3 version of out_degree) is intro-
duced. Its postcondition guarantees that it returns the number of successors
of a node in the graph.

Graph definitions. Based on this representation of graphs, several concepts are
defined: the notions of path (path) and V ′-disjoint path (v_disjoint) that are
both defined as inductive definitions based on succ. From that, we can define the
notion of V ′-path (v_path), observable set in V ′ (obs_g) and V ′-weakly deciding
nodes (wd). For instance, the definition of wd is given as Figure 8.5. Axiom
wd_spec specifies its meaning: a node u is v’-weakly-deciding if and only if there
exist two paths l1 and l2 from u that share only vertex u and that end in set v’
in two distinct points u1 and u2.

Graph properties. We state and prove several properties about the objects
that we have just defined. Most of the basic lemmas are proved by the automatic
provers, but the most complex ones are proved manually in Coq (see Section 8.5.2).
Actually, the results proved manually were all part of the Coq formalization de-
scribed in Section 6.6, or can be deduced from the results in this formalization,
so it is natural to wonder whether the Coq proofs of the Why3 results could have
been based on that Coq formalization. We did not try, so the answer is not clear,
but since we prove in Why3 only a few lemmas and the direct proofs that we wrote
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function wd : graph -> set vertex -> set vertex
axiom wd_spec : forall g v’ u. mem u (wd g v’)

<-> exists u1 l1 u2 l2. u1 <> u2
/\ is_v_path g v’ u u1 l1 /\ is_v_path g v’ u u2 l2
/\ forall z. LM.mem z l1 -> LM.mem z l2 -> z = u

Figure 8.5 – Definition of the set of V ′-weakly deciding nodes in Why3

lemma wd_disjoint : forall g v’ v. mem v (wd g v’)
-> not (mem v v’)

lemma wd_property_2 : forall g v1’ v2’. subset v1’ v2’
-> subset (wd g v1’) (union v2’ (wd g v2’))

axiom wd_property_3 :
forall g v’. is_empty (wd g (union v’ (wd g v’)))

Figure 8.6 – Some properties about wd

in Coq are not so long, connecting both developments would probably not have
been worth the effort.

Figure 8.6 shows a few results about wd. Lemma wd_disjoint states that,
given a subset of vertices V ′, vertices that are V ′-weakly deciding are not in V ′.
This corresponds to Property 6.2. Lemma wd_property_2 states that if two sub-
sets of vertices V ′1 and V ′2 verify V ′1 ⊆ V ′2 , then the V ′1-weakly deciding nodes are
either in V ′2 or V ′2-weakly deciding. This is the Why3 version of Property 6.3.
Lemma wd_property_3 states that, given a subset of vertices V ′, there is no
(V ′ ∪WDG(V ′))-weakly deciding nodes. This is the encoding in Why3 of Prop-
erty 6.4. One can observe that this last lemma is actually introduced with axiom.
We considered that, given that the proof of Property 6.4 is quite complex and that
the proof in Coq of the corresponding lemma called lemma53 (see 6.22) is quite
long, it would have been too costly to prove it again in the context of the Why3
formalization. We thus decided to turn it into an axiom.

Functions propagate, confirm and main. The three functions forming the
algorithm are written and annotated using the objects defined in the first part of
the formalization that has just been presented. These implementations are very
similar to what has been presented in the previous chapter and this one. We
illustrate this claim by two excerpts of the code of these functions.
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let propagate (g : graph) (w : B.t) obs (u v : vertex)
requires { forall z. LL.length (H.([]) obs z) <= 1 }
requires { mem u (support g) }
(* P_1 *)
requires { forall z. H.([]) obs z = Cons v Nil <-> z = u }
(* P_2 *)
requires { mem u w.B.contents }
ensures { forall z. LL.length (H.([]) obs z) <= 1 }
(* Q_1 *)
ensures { forall z. mem u (obs_g g z w.B.contents)

-> H.([]) obs z = Cons v Nil }
(* Q_2 *)
ensures { forall z. not (mem u (obs_g g z w.B.contents))

-> H.([]) obs z = H.([]) (old obs) z }
(* Q_3 *)
ensures { forall z. mem z result.B.contents

<-> z <> u /\ mem u (obs_g g z w.B.contents)
/\ H.([]) (old obs) z <> Nil
/\ cardinal (succ g z) > 1 }

Figure 8.7 – Excerpt of the definition of propagate

Figure 8.7 shows the beginning of the definition of propagate. Let us compare
it with its contract given as Algorithm 8.5. It has five arguments as expected: the
graph g, the set w, the labeling obs, and two vertices u and v. As for the precon-
ditions and the postconditions, they are also very similar. All the preconditions
((P1) and (P2)) and postconditions ((Q1), (Q2) and (Q3)) given in Algorithm 8.5
are in the Why3 version. The Why3 version contains two preconditions and one
postcondition more, but they are needed because of the encoding used in the for-
malization. They are explained in Section 8.5.3.

Another figure that illustrates how similar the Why3 development is to what
is described in this thesis is Figure 8.8, that shows the definition of main in the
Why3 development deprived of its annotations. We can connect this definition to
the one given in Algorithm 7.3. Again, we ignore some of the particularities of the
Why3 version. Some of them are explained in Section 8.5.3. Without going into
details, we can observe they both have the same structure:

• The first step is the initialization of the main variables. W , obs and L are
initialized on lines 2–4 of Algorithm 7.3; w, obs and worklist are initialized
on lines 2–12 in Figure 8.8. The initialization is much longer in Why3. This
is because we do not have at our disposal in Why3 instructions as concise as
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1 let main g v’ =
2 let w = B.empty () in
3 let obs = H.create 97 in
4 let worklist = B.empty () in

6 let tmp = impset_of_set v’ in
7 while not (B.is_empty tmp) do
8 let u = B.choose_and_remove tmp in
9 B.add u w;

10 H.add obs u u;
11 B.add u worklist
12 done;

14 while not (B.is_empty worklist) do
15 let u = B.choose_and_remove worklist in
16 let candidates = propagate g w obs u u in

18 let new_nodes = B.empty () in
19 while not (B.is_empty candidates) do
20 let v = B.choose_and_remove candidates in
21 if confirm g obs v u then B.add v new_nodes
22 done;

24 while not (B.is_empty new_nodes) do
25 let v = B.choose_and_remove new_nodes in
26 B.add v w;
27 H.replace obs v v;
28 B.add v worklist;
29 done
30 done;

32 (w, obs)

Figure 8.8 – Definition of main in the Why3 development, with annotations re-
moved
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the ones we use in the pseudo-code version.

• The second step is a loop that iterates until all vertices in the worklist are
processed. This loop is on line 5 of Algorithm 7.3 and on line 14 of Figure 8.8.
The body of the loop is divided into three steps:

– The first step is the call to propagate (line 8 of Algorithm 7.3 and line
16 of Figure 8.8).

– The second step is the filtering of the candidate nodes returned by
propagate using confirm. This corresponds to lines 9–15 of Algo-
rithm 7.3 and lines 18–22 of Figure 8.8.

– The third step is the update of the three main variables. This is the
purpose of lines 16–18 of Algorithm 7.3 and lines 24–29 of Figure 8.8.
Like for the initialization, we cannot write the Why3 version as concisely
as the pseudo-code one.

8.5.2 Proof Effort
In this section, we focus on the proof effort needed to validate all the lemmas and
annotations. This does not measure the effort needed to write the specifications
and the annotations of the functions. Instead, this consists in determining by
which backend solver each subgoal is proved, how much time it takes, whether this
solver is automatic or not, and in case it is not how long is the manual proof. This
help answering the question whether we really take advantage of the automation
offered by Why3.

The backend solvers that we used are the following:

• four automatic SMT solvers, applied in that order:

– Alt-Ergo (version 1.30),
– CVC4 (version 1.5),
– the E theorem prover (version 2.0),
– Z3 (version 4.5.0);

• one interactive prover: Coq (version 8.6.1).

We give the results for each of the two parts of the Why3 development: the set
of definitions and the algorithm itself.

Results for the preliminary definitions. The results are given in Figure 8.9.
Among 34 subgoals, 10 are proved with Alt-Ergo, 14 are proved by CVC4, 4 are
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Alt-Ergo (1.30) CVC4 (1.5) Coq (8.6.1) E (2.0) Z3 (4.5.0)

Number 10 14 4 6 0
Min time (s) 0 0.02 0.27 0.01 0
Max time (s) 0.01 0.67 0.37 0.44 0
Avg time (s) 0.01 0.083 0.3 0.093 N/A

Figure 8.9 – Proof results for the preliminary definitions

Alt-Ergo (1.30) CVC4 (1.5) Coq (8.6.1) E (2.0) Z3 (4.5.0)

Number 233 12 4 4 2
Min time (s) 0.01 0.08 0.32 0.08 0.34
Max time (s) 3.96 0.83 0.76 2.35 3.18
Avg time (s) 0.18 0.46 0.48 0.72 1.76

Figure 8.10 – Proof results for the algorithm

proved manually in Coq, 6 are proved using E and none are proved with Z3. The
automatic proofs are all straightforward, since the maximal time needed is 0.67s.
The manual proofs are together 100 lines of Coq proof long.

Note that these results do not take into account axiom wd_property_3 (cf.
Figure 8.6) since we chose to admit it.

Results for the algorithm. The results for the proofs of the correctness of
propagate, confirm and main are given in Figure 8.10. There are much more
goals than in the first part (255). The very large majority of them are proved
automatically, especially by Alt-Ergo (233), but also by CVC4 (12), E (4) and Z3
(2). The remaining goals (4) are proved manually in Coq.

Some of the automatic proofs are more costly than those of the first part, but
they are still reasonably fast (3.96s for the longest automatic proof). And most of
them are really short. For instance, the average time of the proofs in Alt-Ergo is
0.18s.

Since, as explained in Section 8.5.1, the proofs done in Coq are those of the
main invariants, one can expect quite complex, and thus long, proofs. This is
indeed the case, since the four proofs together are 220 lines long. The longest one,
the proof of preservation of invariant (I7) (cf. Algorithm 8.8 and Figure 8.2), is
160 lines long.

8.5.3 Particularities of the Why3 Formalization
The Why3 version is not identical to what has been described in the previous
chapter and this one, since we need to adapt to the language and the libraries of
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Why3. We present some of the differences between the two versions.

Ghost code. The Why3 formalization heavily relies on ghost code. This is
code that is interleaved with the real code, but is not really executed. Instead, it
just helps the verification. For example, Figure 8.11 shows the implementation of
confirm in Why3. The set of children to process is assigned to s on line 9, and
nodes are removed from s one by one on line 22. To keep track of the nodes that
have already been processed, instead of describing them as the vertices in succ g
u but not in s, we preferred to explicitly introduce a second set s’ containing such
vertices (line 10). Since we do not want to make any use of this set apart from
helping verification, we make it ghost. To keep s’ up-to-date, we add to it each
node that is removed from s using a ghost instruction (line 23). The invariants of
the loop on line 11 describe the relation between s and s’: their union is equal to
the set succ g u (line 12), and they are disjoint (line 13).

Imperative sets. The sets manipulated in the algorithm are modified in-place.
To implement them in Why3, we chose a library of so-called "imperative sets" with
the following operations:

• a function called choose_and_remove which, as its name suggests, selects an
element in an imperative set, removes it from the set and returns it. This
is used to implement function choose presented in Section 7.3. Actually,
a function called choose also exists in the library, but since each time we
select a node in a set, we also remove it from that set (lines 5–6 and 9–10
of propagate (cf. Algorithm 7.1), lines 5–6 of confirm (cf. Algorithm 7.2),
and lines 6–7 and 11–12 of main (cf. Algorithm 7.3)), this was natural to
prefer choose_and_remove. An example call to choose_and_remove is line
22 of confirm in Figure 8.11.

• a function called add that adds an element to an imperative set (for instance,
line 23 in Figure 8.11);

• a function called remove that removes an element from an imperative set;

• a function called empty that creates a new empty imperative set (for instance,
line 10 of Figure 8.11);

• a function called is_empty that tests if an imperative set is empty (for
instance, line 11 in Figure 8.11);

• A function called mem that tests the membership of an element in a set.

These imperative sets are of a different type than normal sets. To make the
bridge between the two types, we have two operations at our disposal:
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1 let confirm g obs u u’
2 requires { forall z. LL.length (H.([]) obs z) <= 1 }
3 ensures { result <->
4 exists v v’. mem v (succ g u)
5 /\ H.([]) obs v = Cons v’ Nil
6 /\ v’ <> u’ }
7 =
8 let res = ref false in
9 let s = impset_of_set (succ g u) in

10 let ghost s’ = B.empty () in
11 while not (B.is_empty s) do
12 invariant { union s.B.contents s’.B.contents == succ g u }
13 invariant { inter s.B.contents s’.B.contents == empty }
14 invariant { !res <->
15 exists v v’.
16 mem v (diff (succ g u) s.B.contents)
17 /\ mem v (succ g u)
18 /\ H.([]) obs v = Cons v’ Nil
19 /\ v’ <> u’ }
20 invariant { subset (s.B.contents) (succ g u) }
21 variant { cardinal s.B.contents }
22 let v = B.choose_and_remove s in
23 ghost B.add v s’;
24 if H.mem obs v && not (eq_vertex u’ (H.find obs v)) then
25 res := true;
26 done;
27 !res

Figure 8.11 – Implementation of confirm in Why3, with its annotations
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• The first one is a function called impset_of_set that converts a set into an
imperative set. This function is not provided by the library, but was written
by us. It is used for example in confirm (line 9 of Figure 8.11) to convert
the set of children into the imperative set s.

• The second one is available only in the logical world. Imperative sets are
equipped with a logical field called contents that retrieves their contents as
normal sets. It is used for example in a loop invariant in function confirm
(line 20 in Figure 8.11).

Labeling as a hash table. To implement the labeling obs, we chose a library
of hash tables. The difficulty with this implementation is that the kind of hash
tables we use are allowed to associate multiple values to the same key. Actually,
only the most recently added value can be seen, but if this value is removed, then
the second most recently added value becomes visible. This explains the logical
representation of these hash tables as maps from keys to lists of values. In our
implementation, we take care of always having at most one value associated to each
key. For example in the update step of function main, we use function replace and
not add (line 27 in Figure 8.8), since the vertex whose label is updated has already
a label (the one that has just been propagated). But we need to keep track of this
invariant in the annotations. For instance, the Why3 implementation of confirm
has a precondition (cf. Figure 8.11), while our pseudo-code version does not (cf.
Algorithm 8.7). This precondition ensures that the received labeling associates
at most one value to each key, i.e. one label to each node. In the contract of
propagate given in Figure 8.7, we specify this property both as a precondition
and as a postcondition. This means that this property is preserved by function
propagate.

Function support. Our choice to model graphs using a function support re-
turning the set of nodes in a graph (cf. Section 8.5.1) make some annotations
heavy, since we need to specify multiple times that all the manipulated nodes are
nodes in the graph g, i.e. are in support g. For instance, propagate gets as a
precondition that the input vertex u is a valid vertex of the input graph g (cf.
Figure 8.7). Since this property seems trivial, one could be tempted to remove all
these annotations, but in this case, another modeling of the finiteness of the graph
has to be introduced.

8.5.4 Extraction into OCaml
Why3 has an extraction mechanism similar to Coq that allows to produce a correct-
by-construction executable program, e.g. in OCaml. However, we did not have
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time to understand and use this mechanism. Instead, we chose the simpler path of
implementing the algorithm manually in OCaml (see Chapter 9). The drawback
of this approach is a weaker confidence in the correctness of the OCaml imple-
mentation, but since WhyML and OCaml are really similar languages, we can still
have a relatively good confidence in the OCaml implementation, since it resembles
the Why3 version.

In this chapter, we saw that the algorithm that we propose is indeed correct.
The mechanized proof in Why3 gives us a high confidence in its correctness. We
still need to justify the second claim that we made, i.e. that our algorithm is faster
than Danicic’s. This is the purpose of the next chapter.



Chapter 9

Experimental Comparison of
Danicic’s and the New
Algorithms

In this chapter, we compare experimentally the so-called optimized algorithm pre-
sented in Chapter 7 and Danicic’s algorithm presented in Chapter 6 to measure
experimentally whether our proposition is really optimized with respect to the
latter.

Actually, we do not have only two implementations to test. Indeed, we also
want to test variants of each algorithm. For example, we want to check if the Coq
extraction of Danicic’s algorithm mentioned in Section 6.6.1 has reasonable perfor-
mance. We also want to check if the two optimizations described in Section 6.5.2
improve the running time of the algorithm and measure how much.

This chapter is organized as follows. Section 9.1 presents the framework we
used to perform these experiments. Next, Section 9.2 presents the variants of the
two algorithms that we have tested. Section 9.3 presents the results obtained and
tries to interpret them.

9.1 Methodology

9.1.1 Remarks about the Implementations
This section presents the common features that are shared by all the implementa-
tions we have tested.

The first point that we want to highlight is that all the implementations that
we have executed are written in the same language: OCaml. The only odd case is
the Coq extraction. Indeed, since it is originally written in Coq, we could argue

209
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that, contrary to the other implementations, it is not written in OCaml. But
since the version that we finally execute is the extraction into OCaml, we can also
consider that the source code compiled and executed is OCaml code. Admittedly,
since the extraction into OCaml produces more complex code than what we would
write directly in OCaml, this penalizes the Coq extraction with respect to the
other implementations. This may explain why the Coq extraction is so slow, as
discussed in Section 9.3.1.

All hand-written OCaml implementations, i.e. all but the Coq extraction, are
written using the same generic graph library called OCamlgraph (version 1.8.8)
[CFS07]. This library provides convenient functions to access the parents or the
children of a given node and to traverse the whole graph. It also comes with
high-level operations, such as:

• a function copy that clones a given graph;

• a function check_path that tests the reachability of a node from another
node and that comes with caching, so that new calls to the same function
can take advantage of previously computed results;

• helper functions to write in a simple way dataflow analyses.

This library allows to write the implementations in a concise way, which make
them relatively close to the high-level description given in this thesis, and thus
easy to write and to understand. OCamlgraph allows to choose between multiple
graph implementations:

• imperative, i.e. mutable, or persistent, i.e. immutable;

• directed or undirected;

• standard (every vertex can easily access its successors, but not its predeces-
sors) or bidirectional (every vertex can easily access both its successors and
its predecessors).

Initially, we used a standard directed imperative implementation.1 But since both
algorithms are based on backward traversal, we switched to a bidirectional di-
rected imperative implementation, that takes more memory space, but in which
accesses to predecessors are claimed to be in constant time instead of being linearly
dependent on the size of the graph.

Another fact that we had to take into account is that Danicic’s algorithm and
the optimized one do not compute the same set. Indeed, as explained in Chapter 7,

1The experimental results of [LKL18c] were obtained using that graph representation.
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from an initial set V ′ of vertices of graph G, Danicic’s algorithm computes the weak
control-closure of V ′ in G, WCCG(V ′), while the optimized algorithm computes
only V ′ ∪WDG(V ′), i.e. the addition of all the V ′-weakly deciding nodes to V ′.
Recall that the difference is that V ′ ∪WDG(V ′) contains by definition all the V ′-
weakly deciding vertices, while WCCG(V ′) contains only the V ′-weakly deciding
nodes that are reachable from V ′. Formally:

WCCG(V ′) = V ′ ∪ (WDG(V ′) ∩ RG(V ′))

This is not clear whether this difference favors or handicaps Danicic’s algorithm
with respect to the optimized version. Indeed, WCCG(V ′) is a smaller set than
V ′ ∪WDG(V ′), so it may be easier to compute. On the other hand, it is in general
easier to detect weakly deciding nodes with respect to a larger set, since paths
that lead to that set are shorter. Moreover, if we compute V ′ ∪WDG(V ′), we do
not need the reachability tests that Danicic’s algorithm realizes on each considered
vertex. This last point is discussed in Section 9.3.5.

To make the comparison fairer, we ensure that all the implementations that we
test compute the same result. In order to do this, we add to the algorithms that
do not compute the weak control-closure directly a filtering step at the end of the
algorithm that preserves only the vertices reachable from the initial subset V ′, as
suggested in Section 7.1.

9.1.2 Description of the Testing Procedure
This section presents the methodology we adopted for the experimentation.

The implementations are run on graphs that are randomly generated using
OCamlgraph. More precisely, we use the function Rand.graph of OCamlgraph
that takes as parameters a number v of vertices and a number e of edges and
generates a random graph with v vertices and e edges. For all the experiments, we
set the number of edges to twice the number of vertices. The initial set V ′ consists
in three vertices randomly taken in the graph. These choices are not made to get
realistic graphs, but to get cases where computing weak control-closure is often not
trivial, i.e. cases where the weak control-closure is often not reduced to the initial
subset V ′. We informally confirmed that fact during our experiments, since in most
of the cases the weak control-closure is not reduced to the initial V ′. Moreover, in
these cases, the resulting closure nearly always represents a significant part of the
set of vertices of the graph. The exact choice of 2 as the ratio between the number
of vertices and the number of edges is discussed in Section 9.3.8.

Before even running the first experiments, we wanted to obtain some guarantees
that our implementations are correct. Indeed, among our implementations, only
the Coq extraction is certified. For that, we ran all of them on random small graphs
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(typically 30 nodes, and thus 60 edges) and checked that they all computed the
same weak control-closure, and in particular the same results as the certified Coq
extraction. Moreover, during the experiments, when multiple implementations
are run on the same graph, we systematically check that the computed results are
identical. This does not prove that all the implementations are correct, but greatly
increase our confidence that they are.

The experimentation consisted in running each implementation on hundreds of
random graphs. The parameters used vary on the implementations. For expensive
implementations, such as the Coq extraction, the graphs contain a few hundreds
of nodes and the step between each graph size tested is 10. For the most efficient
implementations, the graphs contain up to hundreds of thousands of nodes and
the step used is 10 000. The exact parameters used are given in Section 9.3. For
each implementation and each size of graph tested, we run the implementation
on 10 graphs of this size. As discussed above, for the majority of the 10 graphs,
the weak control-closure is rather large. We decided to ignore the cases in which
the weak control-closure is equal to the initial V ′ and thus contains only three
vertices. Indeed, in these cases, the execution time is insignificant. The result for
that implementation and that size of graph is the average of the running times in
the cases where the weak control-closure is not trivial.

In terms of hardware, experiments have been performed on an Intel Core i7
4810MQ with 8 cores at 2.80 GHz and 16 GB RAM.

9.2 Presentation of the Implementations
In this section, we list the implementations that we have tested in the experimen-
tation. First, we present the variants of Danicic’s algorithm in Section 9.2.1. Then
we present the variants of the optimized algorithm in Section 9.2.2.

9.2.1 Variants of Danicic’s Algorithm
Let us first recall the two optimizations that we proposed in Section 6.5.2.

• The first optimization consists in detecting as many critical edges as possible
during each iteration. This is denoted as optimization 1.

• The second one consists in weakening the definition of critical edge. This is
denoted as optimization 2.

From a given implementation of Danicic’s algorithm, we can thus derive four vari-
ants depending whether none, only one or both optimizations are selected.
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In all the implementations of Danicic’s algorithm, including the Coq extraction,
the computation of the observable vertices is performed as described in [DBH+11].
Given a graph G, a subset of vertices V ′ and a node u in G, the set of observable
vertices from u in V ′ is computed by removing from G all the outgoing edges from
nodes in V ′ and selecting all the nodes in V ′ that are reachable from u in the
resulting graph H. Removing the edges that have their sources in V ′ guarantees
that the nodes in V ′ that are reachable from u in H are first-reachable from u in
V ′ in graph G, i.e. are observable from u in V ′ in graph G. In addition to the Coq
extraction, we propose two variants of Danicic’s algorithm that follow this scheme,
but differ in the implementation details.

The Coq extraction. The first implementation of Danicic’s algorithm that we
consider is the Coq extraction mentioned in Section 6.6.1. Recall that it is the
extraction of the implementation in Coq of Danicic’s algorithm based on a pro-
totype graph library presented in [DERV15]. As mentioned in Section 6.6.1, it
implements optimization 1 but not optimization 2. It is really naive in the sense
that little information is shared between operations, even inside a given iteration.
Consider a given iteration in the algorithm and let W be the auxiliary set used for
the algorithm. Testing if an edge (u, v) is W -critical is realized in three steps.

• We compute the graph H from the graph G by removing all the outgoing
edges starting inW . Then, we compute in H the set of nodes inW reachable
from v. The vertices that we get are the observable vertices from v in W
in graph G. If this set does not contain exactly one element, (u, v) is not
W -critical. Otherwise, we start the second step.

• We compute the set of observable vertices of node u in W in graph G. For
that, we reuse the graph H computed in the first step and compute the set
of vertices in W reachable from u in H. If there is strictly less than two
elements observable from u in W , (u, v) is not W -critical. Otherwise, we
start the third step.

• We check if u is reachable from V ′ in G. This requires a traversal of G. If u
is reachable from V ′, then (u, v) is W -critical. Otherwise, it is not.

Since optimization 1 is implemented, whether (u, v) is W -critical or not, we then
process one by one all the edges that have not been processed yet in this iteration.
For that, we apply the same three steps that we have just described.

Note how naive this implementation is. In particular, in the calculation of
the observable set of u, we do not use the observable set of v that has just been
computed, while all the nodes observable from v are straightforwardly observable
from u if u is not inW . Moreover, when we analyze a new edge, we do not use any



214 CHAPTER 9. EXPERIMENTS

of the intermediate results obtained when analyzing the previous edges in the same
iteration. In particular, H is recomputed, whereas it has not changed, and a new
traversal of G is performed for the reachability test that does not take advantage
of the reachability tests performed for the previous edges.

As discussed in Chapter 7, the main weakness of Danicic’s algorithm is the
absence of propagation of information between iterations. The Coq extraction, as
any implementation of Danicic’s algorithm, inherits this weakness. What makes
the Coq extraction particularly naive is that it does not propagate intermediate
results even inside each iteration, apart from the graph H that is shared between
the calculations of the observable sets of u and v in the analysis of edge (u, v). Its
only smart aspect is the implementation of optimization 1. But it is not sure that
this optimization is really interesting in this case. Indeed, the goal of optimization
1 is to reduce the number of iterations and do more work in each iteration. It is
interesting if doing some operations in a new iteration is more costly than doing
them in the same iteration. Considering the naive aspects of the Coq extraction,
it is not clear that this is the case, and thus it is not clear that this optimization
has a noticeable impact on the performance of the Coq extraction.

Naive OCaml implementation. We implemented Danicic’s algorithm as naively
as the Coq extraction, but in OCaml and using OCamlgraph. Actually, this OCaml
implementation is even more naive than the Coq extraction, since it does not im-
plement any of the two optimizations and does not even share the graphH between
the calculations of the observable sets of u and v in the analysis of edge (u, v).

There are four variants of this naive implementation of Danicic’s algorithm:
without the two optimizations, with optimization 1, with optimization 2, and with
both. As in the case of the Coq extraction, we expect the first optimization to be
of little interest, since there is no sharing even inside an iteration. Contrary to the
Coq extraction, we have two versions, one without optimization 1 and one with
optimization 1, which allows to confirm or refute that intuition experimentally (see
Section 9.3.2).

Smart OCaml implementation. We implemented Danicic’s algorithm much
more smartly, taking advantage of caching in several places. First, we compute
once at the beginning of the algorithm the set of nodes reachable from V ′ and
use this set for every reachability check needed later in the algorithm. Moreover,
at the beginning of an iteration, we create the graph H from G by removing the
outgoing edges starting from W and we compute simultaneously for every node
in G its observable set in W using the helper functions provided by OCamlgraph
to write a dataflow analysis. This analysis computes the observable set of a node
from the observable sets of its children, which allows to compute the observable
information for the whole graph G rather efficiently. Actually, this is close to what
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is described in the example of Figure 6.17, where each iteration annotates every
node with its set of observables (cf. Figures 6.17b, 6.17d and 6.17f).

Again, we have four variants: without the two optimizations, with optimization
1, with optimization 2, and with both. We also have a fifth variant that imple-
ments both optimizations, but does not check during the algorithm if the tested
nodes are reachable from V ′. Instead, it implements the filtering step discussed
in Section 9.1.1 that removes all the unreachable nodes at the end of the algo-
rithm. This fifth implementation allows to check whether the reachability tests
performed during Danicic’s algorithm have a negative impact on the performance
of the algorithm (see Section 9.3.5).

9.2.2 Variants of the Optimized Algorithm
We have implemented and tested three variants of the optimized algorithm.

Why3 implementation. As explained in Section 8.5.4, we did not extract the
WhyML code into OCaml using the extraction mechanism of Why3. However,
since WhyML is similar to OCaml, we adapted it manually. We took the WhyML
code, removed the annotations, replaced the graph library used in Why3 with calls
to OCamlgraph, and adapted the few remaining parts that needed to be adapted
to OCaml. This gives an implementation of the optimized algorithm that is really
close to the Why3 formalization.

OCaml implementation. We implemented the optimized algorithm directly in
OCaml, using OCaml idioms and the full power of OCamlgraph.

OCaml implementation with two traversals. The optimized algorithm de-
scribed in Chapter 7 adds the V ′-weakly deciding candidates it detects during the
propagation to a set that is filtered afterwards, so that only true V ′-weakly decid-
ing nodes are preserved. Since a lot of nodes are added to the set (all the nodes
whose label changes during the propagation and that have at least two children),
the manipulation of this set may be costly. As discussed in Remark 7.2, instead
of adding all the candidates to a set during the propagation, we could traverse
the graph a second time to perform the filtering. We implemented this variant in
order to check whether it is competitive with respect to the standard optimized
algorithm (see Section 9.3.7).

9.3 Results
This section presents the main results of the experiments.
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Figure 9.1 – Comparison between the Coq extraction and a naive implementation
in OCaml of Danicic’s algorithm

Implementations are compared pairwise. In each diagram, the ordinate is the
execution time in seconds and the abscissa is the number v of nodes in the graph.
Recall the the number of edges e is equal to 2× v, except in Section 9.3.8. For the
sake of clarity, we adopt the following convention. In each diagram, the implemen-
tation that is expected to be slower is represented using red triangles, while the
implementation that is expected to be faster is represented using blue plus signs.

9.3.1 Comparison between the Coq Extraction and a
Naive Danicic Implementation

The first diagram that we present compares the Coq extraction and the naive
implementation of Danicic’s algorithm without any optimization. As discussed in
Section 9.2.1, this implementation of Danicic’s algorithm is more naive than the
Coq extraction, since it does not implement any of the two optimizations, while the
Coq extraction implements optimization 1. However, the Coq extraction is written
in Coq using a prototype graph library, which has probably a more negative impact
than optimization 1 has a positive impact on the performance.

Figure 9.1 shows the results. The Coq extraction was run on graphs of sizes
equal to multiples of 10 between 10 and 150. The naive Danicic implementation
was run on graphs of sizes equal to multiples of 10 between 10 and 450.

We observe that the Coq extraction explodes for barely more than 100 nodes,
while the OCaml implementation can handle graphs with a few hundreds of nodes.
The Coq extraction is thus clearly penalized by the fact that it is written in Coq
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Figure 9.2 – Comparison between two naive OCaml implementations of Danicic’s
algorithm, with and without optimization 1

and by the prototype graph library it relies on.

9.3.2 Impact of the Optimizations on the Naive Danicic
Implementation

We study the impact of optimization 1 on the naive OCaml implementation of
Danicic’s algorithm by comparing its implementations with and without optimiza-
tion 1. As discussed in Section 9.2.1, we expect the optimization to have little
impact on the performance of the algorithm.

The comparison is shown in Figure 9.2. The naive Danicic implementation was
run on graphs of sizes equal to multiples of 10 between 10 and 450, while the naive
Danicic implementation with optimization 1 was run on graphs of sizes equal to
multiples of 10 between 10 and 900.

Rather surprisingly, optimization 1 has a noticeable impact on the performance
of the algorithm, since the implementation with optimization 1 can handle graphs
that are twice as large as those handled by the implementation without optimiza-
tion 1 in the same time. What can explain this fact is that starting over repeatedly
a new iteration implies that the same edges are analyzed again and again at the
beginning of each iteration. This does not happen when optimization 1 is imple-
mented.

We now study the impact of optimization 2, alone or in combination with
optimization 1 on the naive OCaml implementation. Alone, optimization 2 does
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Figure 9.3 – Comparison between two naive OCaml implementations of Danicic’s
algorithm, with and without optimization 2

not seem like a great improvement, since its impact is mainly to change the order
in which the nodes are detected. However, in combination with optimization 1,
it allows to detect more nodes at each iteration, and thus probably to reduce the
number of iterations.

The results are given in Figure 9.3 for optimization 2 alone and Figure 9.4 for
optimization 2 with optimization 1. In Figure 9.3, both algorithms were run of
graphs of sizes equal to multiples of 10 between 10 and 450. In Figure 9.4, both
algorithms were run of graphs of sizes equal to multiples of 10 between 10 and 900.

Surprisingly, alone or in combination with optimization 1, optimization 2 de-
teriorates the performance of the algorithm. In both cases, the negative impact
of optimization 2 is noticeable, but it seems more important in combination with
optimization 1. We may explain this negative impact by the fact that, since the
definition of critical edge is weaker, more edges look like critical edges and thus
more computation is needed to refute that they are critical. The fact that the
performance does not improve indicates that these additional calculations are not
counterbalanced by an early detection of weakly deciding nodes. This may mean
that, at least in the random graphs that we have generated, few edges are critical
in the weak sense but not critical in the standard sense.
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Figure 9.4 – Comparison between two naive OCaml implementations of Danicic’s
algorithm, one with optimization 1 and one with optimizations 1 and 2

9.3.3 Comparison of Naive and Smart Danicic
Implementations

We now compare the naive and smart OCaml implementations of Danicic’s algo-
rithm without any optimization. Recall the the naive optimization does a lot of
redundant computation, while the smart one caches most of the results and reuses
them directly. We expect an important speedup in the smart Danicic implemen-
tation.

Figure 9.5 shows the results. The naive implementation was run on graphs of
sizes equal to multiples of 10 between 10 and 450. The smart implementation was
run on graphs of sizes equal to multiples of 10 between 10 and 1 600.

Figure 9.5 clearly shows that the smart implementation outperforms the naive
implementation. While the naive implementation explodes for graphs with 500
nodes, the smart one can handle graphs that are three times larger.

9.3.4 Impact of the Optimizations on the Smart Danicic
Implementation

As in the case of the naive implementation, we study the impact of optimizations
1 and 2 on the performance of the smart implementation. Since the smart imple-
mentation shares intermediate results in each iteration, starting a new iteration
should be costly in comparison to performing more work in the same iteration.
Thus optimization 1 should be really interesting. As in the case of the naive im-
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Figure 9.5 – Comparison between the naive and smart OCaml implementations of
Danicic’s algorithm

plementation, optimization 2 is expected to have no impact alone, and to slightly
improve the performance in combination with optimization 1.

Figure 9.6 shows the comparison of the smart implementation without any
optimization and the smart implementation with optimization 1. The implemen-
tation without any optimization was run on graphs of sizes equal to multiples of
10 between 10 and and 1 600. The implementation with optimization 1 was run
on graphs of sizes equal to multiples of 100 between 100 and 10 000.

As expected, optimization 1 significantly improves the smart implementation.
The optimized variant can handle graphs with 10 000 nodes that are five times
larger than the graphs on which the unoptimized variant reaches its limits.

Figure 9.7 and Figure 9.8 shows the impacts of optimization 2, without and with
optimization 1 respectively. In Figure 9.7, both algorithms were run of graphs of
sizes equal to multiples of 10 between 10 and 1 600. In Figure 9.8, both algorithms
were run of graphs of sizes equal to multiples of 100 between 100 and 10 000.

Using optimization 2 alone does not reduce the execution times of the imple-
mentations, but, contrary to the naive implementation, it does not increase them
either. Using optimization 2 in combination with optimization 1 does not have
a significant impact, but it seems that, for large graphs of at least 6 000 nodes,
the variant with both optimizations is slightly faster than the variant with only
optimization 1. This can be explained as follows. As in the case of the naive
implementation, the definition of critical edge is weaker, thus more edges look like
critical edges and thus more computation is needed to refute that they are critical.
But this time, the additional computation is insignificant. Indeed, in the case of
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Figure 9.6 – Comparison between two smart OCaml implementations of Danicic’s
algorithm, with and without optimization 1
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Figure 9.7 – Comparison between two smart OCaml implementations of Danicic’s
algorithm, with and without optimization 2
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Figure 9.8 – Comparison between two smart OCaml implementations of Danicic’s
algorithm, one with optimization 1 and one with optimizations 1 and 2

the naive implementation, testing an edge means computing the observable sets
of its endpoints. In the case of the smart implementation, the observable set of
every node has already been computed at the beginning of the iteration. Testing
an edge amounts to reading the precomputed annotations, this is negligible.

9.3.5 Impact of the Reachability Tests on a Smart
Danicic Implementation

To analyze whether it is more interesting to test the reachability of the considered
nodes during the algorithm like in standard Danicic’s algorithm or at its end,
we compare the smart implementation with both optimizations that we have just
analyzed to a variant where the reachability checks are postponed until the end of
the algorithm. This variant simply applies a filtering step at the end, similarly to
what we perform for the optimized algorithm.

The results of the comparison are shown in Figure 9.9. Both implementations
were run on graphs of sizes equal to multiples of 100 between 100 and 10 000.

The running times are similar for both variants. The variant with the filtering
step at the end seems faster for large graphs of at least 7 000 nodes. This can be
attributed to the smaller number of reachability tests performed, or seen as a sign
that, as suggested in Section 9.1.1, detecting W -weakly deciding vertices is easier
if W is larger.
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Figure 9.9 – Comparison between two smart OCaml implementations of Danicic’s
algorithm with both optimizations, with or without reachability checks

9.3.6 Comparison between Danicic’s and the Optimized
Algorithms

The comparison between an implementation of Danicic’s algorithm and an imple-
mentation of the optimized algorithm is the main result of the experiments. We
use the smart OCaml implementation with optimizations 1 and 2 as implementa-
tion of Danicic’s algorithm, and the OCaml implementation as implementation of
the optimized one.

Figure 9.10 shows the results. The implementation of Danicic’s algorithm was
run on graphs of sizes equal to multiples of 100 between 100 and 10 000, while the
implementation of the optimized algorithm was run on graphs of sizes equal to
multiples of 100 between 100 and 30 000.

As already discussed in Section 9.3.4, Danicic’s algorithm with optimizations
1 and 2 can handle graphs with 10 000 nodes. But for the largest graphs, it takes
40 s to execute. There is no comparison with the optimized algorithm that takes
less of 1 s even for graphs with 30 000 nodes.

9.3.7 Comparison between the Implementations of the
Optimized Algorithm

We have just seen that the OCaml implementation of the optimized algorithm
significantly outperforms one of our implementations of Danicic’s algorithm. We
now want to test how the implementations of the optimized algorithm compare
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Figure 9.10 – Comparison between the smart OCaml implementation of Danicic’s
algorithm with both optimizations and the optimized algorithm

with each other.

We first compare the version that is close to the WhyML code with the OCaml
implementation.

Figure 9.11 shows the results of the comparison. Both algorithms were run on
graphs of sizes equal to multiples of 10 000 between 10 000 and 500 000.

Contrary to the Coq extraction that is much slower than all the other imple-
mentations, the manual extraction from Why3 is competitive with respect to the
implementation in OCaml. More precisely, the OCaml implementation is faster,
but only a little faster. On graphs with about 500 000 nodes, the OCaml version
runs in around 30 s. The manual extraction is around 4 s slower.

The other implementation that we want to compare with the OCaml version is
the implementation that performs a second traversal after the propagation instead
of analyzing a set of candidates built during the propagation.

The comparison is shown in Figure 9.12. Both algorithms were run on graphs
of sizes equal to multiples of 10 000 between 10 000 and 500 000.

Like the manual extraction, the implementation with a second traversal is
slower than the standard OCaml implementation, but reasonably slower. This ex-
perimentally confirms that preserving during the propagation all the nodes whose
labels change and that have at least two children is too simple to improve signifi-
cantly the running time of the algorithm.
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Figure 9.11 – Comparison between the manual extraction from WhyML and the
OCaml implementation of the optimized algorithm
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Figure 9.12 – Comparison between the implementation with a second traversal
and the standard implementation of the optimized algorithm
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Figure 9.13 – Comparison of the smart implementation of Danicic’s algorithm on
graphs with e/v = 2 and e/v = 1.5

9.3.8 Impact of the Number of Edges on the Experiments
The last experiment that we present does not compare another implementation. It
was performed to give confidence in the experimentation. Indeed, the graphs that
are used in the experiments are randomly generated by OCamlgraph with twice
as many edges as vertices. The results obtained in this setting may not be repre-
sentative of the general case. For example, the random generator of OCamlgraph
may introduce some bias in the results. We did not check whether it is the case.
But at least we wanted to question the choice of 2 as the ratio between the number
of edges e and the number of vertices v that seems rather arbitrary. Actually, it
is somewhat arbitrary, since it has no precise meaning, but was chosen intuitively
so that most of the generated graphs give a rather large weak control-closure. To
check that the results are not completely different with fewer edges, we reproduced
two experiments with the smaller ratio e/v = 1.5.

Figure 9.13 shows the results for the smart OCaml implementation of Danicic’s
algorithm. The smart implementation was run on graphs with e/v = 2 of sizes
equal to multiples of 10 between 10 and 1 600, and on graphs with e/v = 1.5 of
sizes equal to multiples of 10 between 10 and 3 800. Figure 9.14 shows the results
for the OCaml implementation of the optimized algorithm. This implementation
was run on graphs of sizes equal to multiples of 10 000 between 10 000 and 500 000,
first with e/v = 2 and then with e/v = 1.5.

For both implementations, the running times are noticeably smaller for the
graphs with fewer edges. For instance, regarding the smart OCaml implementation
of Danicic’s algorithm, graphs with around 4 000 nodes and a ratio e/v = 1.5 are
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Figure 9.14 – Comparison of the OCaml implementation of the optimized algorithm
on graphs with e/v = 2 and e/v = 1.5

processed in approximatively the same time as graphs with around 1 500 nodes
and a ratio e/v = 2.

However, the trends that are revealed are rather similar for both values of
e/v. Regarding the smart OCaml implementation of Danicic’s algorithm, whether
e/v is equal to 2 or 1.5, the implementation reaches its limits for graphs with a
few thousand nodes. More importantly, in both cases, the implementation of the
optimized algorithm is much more efficient than the implementation of Danicic’s
algorithm.

The main result of the experiments is the comparison of Danicic’s and the
optimized algorithms that confirms our expectations that the optimized algorithm
is faster than Danicic’s algorithm. The experimental results even show that the
difference in terms of running times between both algorithms is substantial.

The experiments also give more surprising results. Optimization 1 of Danicic’s
algorithm that consists in detecting at each iteration all the critical edges instead
of at most one is always an interesting optimization. On the contrary, optimization
2 that consists in relaxing the definition of critical edge is rarely interesting and
can even deteriorate the performance of the algorithm. Regarding the optimized
algorithm, building a set of candidate nodes during the propagation is beneficial,
but only slightly.





Chapter 10

Conclusion

10.1 Summary

In this thesis, we have provided machine-checked solutions to two problems about
program slicing: the justification of its use for runtime error detection and the
design of an optimized algorithm for arbitrary control dependence.

The first problem is formalized in the Coq proof assistant using a simple rep-
resentative imperative language that contains both errors, modeled as assertions,
and non-termination, in the form of potentially non-termination loops. For this
language, we show that classic program slicing based on standard control and data
dependence relations can be used in a sound way for verification purposes if the
results are interpreted with care. For that, we prove that slicing in this context
verifies a weaker soundness property than in the classic case, but that this weak-
ened property is strong enough to interpret the verification results obtained on a
slice in the context of the initial program. Namely, if a slice is proved to be free
from runtime errors, then the statements of that slice will not produce runtime
errors in the original program either. On the contrary, if a statement in the slice
can trigger an error, something can be deduced for the original program, but not
necessarily that the same error can be triggered. There are three possible cases.
The same error being triggered is one of them, but there are two other possibil-
ities. The error can be hidden either by another error or by a non-terminating
statement occurring before in the initial program. In the common case where the
original program is expected to always terminate, these three cases are viewed as
anomalies, so the detection of an error in the slice, even if it does not necessarily
lead to the detection of the same error in the original program, is of great interest.
These results justify the use of program slicing in verification techniques, where
slicing is applied to simplify the error detection step. Moreover, a certified slicer
can be extracted from the Coq development for the representative language that
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we consider.
Such a slicer is of limited interest, since it slices only programs written in the

simple language we use to model the first problem. To have more applicable results,
it is natural to consider larger languages. But to factorize the effort and taking ad-
vantage of the language-independent nature of slicing, we do not aim for a slicer for
a specific language but rather a generic, i.e. language-independent, one. The first
step towards this goal is an algorithm that computes generic control dependence.
The formalization proposed by Danicic et al. in 2011 appears as a good candidate,
since it proposes a generalized version of control dependence defined for arbitrary
finite directed graph that unifies previous forms of control dependence. More-
over, their formalization of control dependence comes with an algorithm proved
to compute correctly, from a given set, the smallest superset closed under control
dependence, which can be viewed as one of the two operations performed to com-
pute a slice. This brings us to the second problem mentioned above. To ensure a
high-confidence in the theory and the algorithm, we formalize them in Coq. This
formalization helped detect some inaccuracies in one of the proofs. The algorithm
is proved correct, but it is quite naive and thus of limited interest for large graphs.
We design a new algorithm that optimizes it by transmitting information between
iterations. This algorithm is proved correct in Why3 and experimentally clearly
outperforms the initial algorithm on random generated graphs.

10.2 Perspectives

In this section, we discuss some research directions that are natural follow-ups of
this thesis.

10.2.1 Detection of a Wider Class of Errors

The errors that we address in the justification of slicing for verification are run-
time errors. Those are errors determined by the current program state. This kind
of errors is appropriate to be modeled by assertions. Other kinds of errors, for
instance temporal errors such as use-after-free, cannot be directly handled in the
same manner. It would be interesting to explore how to extend our results in
this context. The last versions of the Symbiotic tool presented in Section 1.3,
Symbiotic 4 and 5 [CVS18], succeed in applying slicing to the detection of mem-
ory safety errors, by instrumenting the initial program before slicing it. This could
be a track to explore.
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10.2.2 A Certified Verification Chain
This thesis provides a formal justification of the use of slicing in verification chains
such as sante or the one behind the Symbiotic tool (see Section 1.3). This
justification is established in a proof assistant, Coq, which ensures a very high
confidence in the results. But the other parts of the toolchain are not considered
in the formalization. This would be a great improvement if the whole toolchain
was proved correct in one unique formalization. As a start point, we could consider
the Verasco static analyzer [JLB+15], which is an abstract interpreter formalized
in Coq, and tried to interface it with our Coq development justifying the use slicing
for verification.

10.2.3 Strong Control Dependence
The second half of this thesis (from Chapter 6) is based on the formalization of
weak control dependence on arbitrary finite graphs due to Danicic et al. [DBH+11].
As discussed in Section 6.1.3, weak control dependence is the generalization of
non-termination insensitive control dependence. which means in particular that
slicing based on this form of control dependence can produce a terminating slice
from a non-terminating program. In Section 6.1.3, we mentioned that, in their
work, Danicic et al. also propose strong control dependence that generalizes non-
termination sensitive control dependence. Contrary to non-termination insensitive
control dependence, non-termination sensitive control dependence results in forms
of slicing that preserve the non-termination status of the sliced program. In par-
ticular, slicing a non-terminating program gives a non-terminating slice. Like for
weak control dependence, Danicic et al. also propose an algorithm [DBH+11, Al-
gorithm 65] and prove it correct. Strong control dependence is not addressed by
the Coq formalization described in Section 6.6. One research axis would be to
formalize it as an extension of the existing Coq development, especially as some
concepts are common to both kinds of control dependence and thus are already in
the formalization.

10.2.4 Further Experiments
An analysis of the poor performance of the Coq extraction. As discussed
in Chapter 9, the Coq extraction of Danicic’s algorithm compares poorly with the
other implementations. This would be interesting to explore what the origin of
this poor performance is. Does this come from the Coq library of graphs that
the formalization is based on (cf. Section 6.6.3), from the conversions between
the graph representation of this library and that of the OCamlgraph library used
to generate the graphs for the experiments, from the Coq formalization itself, or



232 CHAPTER 10. CONCLUSION

from the extraction mechanism? We could first try to replace the extraction of
the Coq graph library with calls to OCamlgraph. The Coq extraction would then
use the same graph library as the other implementations (see Section 9.1.1). If we
measured a significant performance improvement, this would mean that the Coq
graph library, or at least its extraction into OCaml, is partly responsible of the
inefficiency of the Coq extraction.

Experiments on CFGs of real programs. As discussed in Section 9.1.2, the
graphs used in the experiments were randomly generated by OCamlgraph. This
was suitable for our purpose of experimentally evaluating the complexity of the
implementations on arbitrary graphs, but this did not evaluate the algorithms in
a realistic context. It would be interesting and complementary to experiment on
graphs derived from real programs.

10.2.5 A More Optimized Algorithm for Arbitrary
Control Dependence

The optimized algorithm that we have presented in Chapter 7 could itself be
optimized, since it is naive in some ways. As suggested in Remark 7.2 and as
shown in the experiments (cf. Section 9.3.7), the propagation is certainly the most
obvious part of the algorithm that can be improved. In particular, it should be
possible in certain cases to detect sooner that some node is weakly deciding. In
the current algorithm, we systematically wait for the end of the propagation before
detecting weakly deciding nodes. This is because some information is unsure while
the propagation is not finished. If we better understood which pieces of information
are unsure and which are sure, we could in some cases detect a weakly deciding
node directly during the propagation and not at its end.

Other ideas how to improve our algorithm could also be taken from the slicing
algorithms proposed by Amtoft et al. in their works on slicing of extended finite
state machines [AAC13] and probabilistic programs [AB16]. Their computation of
control dependence also detects weakly deciding nodes, but is based on breadth-
first search while ours is more depth-first search-based. We could compare our
approach with theirs and determine whether they can be mixed.

Another improvement track could be motivated by the integration of our al-
gorithm in a complete slicing algorithm that we discuss in the next subsection. A
slicing algorithm would typically interleave the additions of nodes due to control
dependence and those due to data dependence. In this thesis, we have shown how
to speed up the computation of control dependence thanks to a persistent labeling.
But this labeling is only persistent during one step of computation of control de-
pendence. After some nodes have been added due to data dependence, we start a
new step of computation of control dependence. A priori, a new labeling has to be
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used. One goal would be to make the labeling persistent during the whole slicing
algorithm. For that, we should describe how to manage in the labeling the nodes
added due to data dependence. From the point of view of control dependence, the
nodes inserted due to data dependence are nearly arbitrary. The algorithm that
we propose in this thesis correctly updates the labeling when detecting a new node
because this node is weakly deciding. It is not clear how to modify the algorithm
so that the labeling is correctly updated even when the node that is added is not
weakly deciding.

10.2.6 A Certified Generic Slicer
Our long-term goal is obviously the formalization of a certified generic slicer. There
is still a lot of work to be done about control dependence, but the next step towards
this generic slicer is a formalization of generic data dependence. The first question
that we should answer is whether we can really formalize a generic form of data
dependence or at least what level of genericity we could aim for, since formalizing
data dependence seems to imply some formalization of data and memory that could
be difficult to model fully generically. For the mechanized aspect of the problem,
we could be inspired by the formalizations in Coq of dataflow algorithms, such as
that found in the CompCert compiler [Ler09].
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Titre : Algorithmes certifiés pour la simplification syntaxique de programmes
Mots-clefs : Slicing, vérification formelle, dépendances de contrôle, théorie des graphes, Coq,
Why3
La simplification syntaxique, ou slicing, est une
technique permettant d’extraire, à partir d’un
programme et d’un critère consistant en une
ou plusieurs instructions de ce programme, un
programme plus simple, appelé slice, ayant le
même comportement que le programme initial
vis-à-vis de ce critère.

Les méthodes d’analyse de code permettent
d’établir les propriétés d’un programme. Ces
méthodes sont souvent coûteuses, et leur com-
plexité augmente rapidement avec la taille du
code. Il serait donc souhaitable d’appliquer ces
techniques sur des slices plutôt que sur le pro-
gramme initial, mais cela nécessite de pouvoir
justifier théoriquement l’interprétation des ré-
sultats obtenus sur les slices.

Cette thèse apporte cette justification pour
le cas de la recherche d’erreurs à l’exécution.
Dans ce cadre, deux questions se posent. Si une
erreur est détectée dans une slice, cela veut-il
dire qu’elle se déclenchera aussi dans le pro-

gramme initial ? Et inversement, si l’absence
d’erreurs est prouvée dans une slice, cela veut-
il dire que le programme initial en est lui aussi
exempt ? Nous modélisons ce problème sur un
mini-langage impératif représentatif, autorisant
les erreurs et la non-terminaison, et montrons le
lien entre la sémantique du programme initial
et la sémantique de sa slice, ce qui nous permet
de répondre aux deux questions précédentes.

Pour généraliser ces résultats, nous nous in-
téressons à la première brique d’un slicer indé-
pendant du langage : le calcul générique des
dépendances de contrôle. Nous formalisons une
théorie élégante de dépendances de contrôle sur
des graphes orientés finis arbitraires prise dans
la littérature et améliorons l’algorithme de cal-
cul proposé.

Pour garantir un maximum de confiance
dans les résultats, tous ces travaux sont prouvés
dans l’assistant de preuve Coq ou dans l’outil
de preuve Why3.

Title: Certified algorithms for program slicing
Keywords: Program slicing, formal verification, control dependence, graph theory, Coq, Why3
Program slicing is a technique that extracts,
given a program and a criterion that is one or
several instructions in this program, a simpler
program, called a slice, that has the same be-
havior as the initial program with respect to
the criterion.

Program analysis techniques focus on es-
tablishing the properties of a program. These
techniques are costly, and their complexity in-
creases with the size of the program. There-
fore, it would be interesting to apply these tech-
niques on slices rather than the initial program,
but it requires theoretical foundations to inter-
pret the results obtained on the slices.

This thesis provides this justification for
runtime error detection. In this context, two
questions arise. If an error is detected in the
slice, does this mean that it can also be trig-
gered in the initial program? On the contrary,

if the slice is proved to be error-free, does this
mean that the initial program is error-free too?
We model this problem using a small repre-
sentative imperative language containing errors
and non-termination, and establish the link be-
tween the semantics of the initial program and
of its slice, which allows to give a precise answer
to the two questions raised above.

To apply these results in a more general
context, we focus on the first step towards
a language-independent slicer: an algorithm
computing control dependence. We formalize
an elegant theory of control dependence on ar-
bitrary finite directed graphs taken from the
literature and improve the proposed algorithm.

To ensure a high confidence in the results,
we prove them in the Coq proof assistant or in
the Why3 proof plateform.
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