
HAL Id: tel-01874680
https://theses.hal.science/tel-01874680

Submitted on 14 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Native simulation of MPSoC : instrumentation and
modeling of non-functional aspects

Oumaima Matoussi

To cite this version:
Oumaima Matoussi. Native simulation of MPSoC : instrumentation and modeling of non-functional as-
pects. Modeling and Simulation. Université Grenoble Alpes, 2017. English. �NNT : 2017GREAM075�.
�tel-01874680�

https://theses.hal.science/tel-01874680
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Oumaima MATOUSSI

Thèse dirigée par Frédéric PETROT

préparée au sein du Laboratoire Techniques de l'Informatique
et de la Microélectronique pour l'Architecture des systèmes
intégrés (TIMA)
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Native Simulation of MPSoC:
Instrumentation and Modeling of Non-
Functional Aspects

Thèse soutenue publiquement le 30 novembre 2017,
devant le jury composé de :

Monsieur FREDERIC PETROT
PROFESSEUR, GRENOBLE INP, Directeur de thèse
Madame CHRISTINE ROCHANGE
PROFESSEUR, UNIVERSITE TOULOUSE-III-PAUL-SABATIER,
Rapporteuse
Madame FLORENCE MARANINCHI
PROFESSEUR, GRENOBLE INP, Présidente
Monsieur FRANÇOIS PECHEUX
PROFESSEUR, UNIVERSITE PIERRE ET MARIE CURIE, Rapporteur
Monsieur BENOÎT DUPONT DE DINECHIN
DIRECTEUR DE LA TECHNOLOGIE, KALRAY S.A. - MONTBONNOT-
SAINT-MARTIN, Examinateur
Monsieur ABDOULAYE GAMATIE
DIRECTEUR DE RECHERCHE, CNRS DELEGATION LANGUEDOC-
ROUSSILLON, Examinateur

Acknowledgement

I am particularly grateful to my thesis advisor Prof. Frédéric Petrot for his continuous sup-
port of my research, his immense knowledge and his guidance.
I would like to thank my jury members, Prof. Florence MARANINCHI, Prof. Abdoulaye
GAMATIE, Prof. Christine ROCHANGE, Prof. François PECHEUX and Dr. Benoit DUPONT
DE DINECHIN for their insightful comments.
I wish to acknowledge the help of Prof. Frédéric Rousseau, Dr. Guillaume Sarrazin, Dr.
Liliana Lilibeth Andrade Porras and all those whose assistance proved to be a milestone in
the accomplishment of this thesis.
To all my labmates, especially the SLS Team, it has been great sharing the laboratory with
you during these past three years.
Finally, I owe my deepest gratitude to my family who has provided me with moral and
emotional support.

iii

Résumé

Les systèmes embarqués modernes intègrent des dizaines, voire des centaines, de cœurs sur
une même puce communiquant à travers des réseaux sur puce, afin de répondre aux exi-
gences de performances édictées par le marché. On parle de systèmes massivement multi-
cœurs ou systèmes many-cœurs. La complexité de ces systèmes fait de l’exploration de
l’espace de conception architecturale, de la co-vérification du matériel et du logiciel, ainsi
que de l’estimation de performance, un vrai défi. Cette complexité est généralement com-
pensée par la flexibilité du logiciel embarqué. La dominance du logiciel dans ces architec-
tures nécessite de commencer le développement et la vérification du matériel et du logiciel
dès les premières étapes du flot de conception, bien avant d’avoir accès à un prototype
matériel.

Ainsi, il faut disposer d’un modèle abstrait qui reproduit le comportement de la puce
cible en un temps raisonnable. Un tel modèle est connu sous le nom de plateforme virtuelle
ou de simulation. L’exécution du logiciel sur une telle plateforme est couramment effec-
tuée au moyen d’un simulateur de jeu d’instruction (ISS). Ce type de simulateur, basé sur
l’interprétation des instructions une à une, est malheureusement caractérisé par une vitesse
de simulation très lente, qui ne fait qu’empirer par l’augmentation du nombre de cœurs.

La simulation native est considérée comme une candidate adéquate pour réduire le
temps de simulation des systèmes many-cœurs. Le principe de la simulation native est de
compiler puis exécuter la quasi totalité de la pile logicielle directement sur la machine hôte
tout en communiquant avec des modèles réalistes des composants matériels de l’architecture
cible, permettant ainsi de raccourcir les temps de simulation. La simulation native est beau-
coup plus rapide qu’un ISS mais elle ne prend pas en compte les aspects non-fonctionnels,
tel que le temps d’exécution, dépendant de l’architecture matérielle réelle, ce qui empêche
de faire des estimations de performance du logiciel.

Ceci dresse le contexte des travaux menés dans cette thèse qui se focalisent sur la sim-
ulation native et s’articulent autour de deux contributions majeures. La première s’attaque
à l’introduction d’informations non-fonctionnelles dans la représentation intermédiaire (IR)
du compilateur. L’insertion précise de telles informations dans le modèle fonctionnel est
réalisée grâce à un algorithme dont l’objectif est de trouver des correspondances entre le
code binaire cible et le code IR tout en tenant compte des optimisations faites par le com-
pilateur. La deuxième contribution s’intéresse à la modélisation d’un cache d’instruction et
d’un tampon d’instruction d’une architecture VLIW pour générer des estimations de per-
formance précises.

Ainsi, la plateforme de simulation native associée à des modèles de performance précis
et à une technique d’annotation efficace permet, malgré son haut niveau d’abstraction, non
seulement de vérifier le bon fonctionnement du logiciel mais aussi de fournir des estima-
tions de performances précises en des temps de simulation raisonnables.

v

Abstract

Modern embedded systems are endowed with a high level of parallelism and significant
processing capabilities as they integrate hundreds of cores on a single chip communicating
through network on chip. The complexity of these systems and their dedicated software
should not be an excuse for long design cycles, even though the design space is enormous
and the underlying design decisions are critical. Thus, design space exploration, hard-
ware/software co-verification and performance estimation need to be conducted within a
reasonable amount of time and early enough in the design process to avoid any tardy de-
tection of functional or performance deficiencies.

Co-simulation platforms are becoming an increasingly important part in design and ver-
ification steps. With instruction interpretation-based software simulation platforms being
too slow as they model low-level details of the target system, an alternative software sim-
ulation approach known as native simulation or host-compiled simulation has gained mo-
mentum this past decade. Native simulation consists of compiling the embedded software
to the host binary format and executing it directly on the host machine. However, this tech-
nique fails to reflect the performance of the embedded software and its actual interaction
with the target hardware. So, the speedup gained by native simulation comes at a price,
which is the absence of non-functional information (such as time and energy) needed for es-
timating the performance of the entire system and ensuring its proper functioning. Without
such information, native simulation approaches are limited to functional validation.

Yielding accurate estimates entails the integration of high-level abstract models that
mimic the behavior of target-specific micro-architectural components in the simulation plat-
form and the accurate placement of the obtained non-functional information in the high-
level code. Back-annotating non-functional information at the right place requires a map-
ping between the binary instructions and the high-level code statements, which can be chal-
lenging particularly when compiler optimizations are enabled.

In this thesis, we propose an annotation framework working at the compiler interme-
diate representation level to accurately annotate performance metrics extracted from the
binary code, thanks to a dedicated mapping algorithm. This mapping algorithm is further
enhanced to deal with aggressive compiler optimizations, such as loop unrolling, that radi-
cally alter the structure of the code. Our target architecture being a VLIW processor, we also
model at a high level its instruction buffer to faithfully reproduce its timing behavior.

The experiments we conducted to validate our mapping algorithm and component mod-
els yielded accurate results and high simulation speed compared to a cycle accurate ISS of
the target platform.

Keywords: native simulation, performance estimation, back-annotation, intermediate-
level simulation (ILS), intermediate representation (IR), control flow graph (CFG), mapping
algorithm, compiler optimizations, very long instruction word (VLIW), instruction cache
model, instruction buffer model

vii

Contents

Résumé v

Abstract vii

List of Figures xiii

List of Tables xiii

1 Introduction 1
1.1 Many-Core SoC: The Need for Higher Degrees of Parallelism 1
1.2 Hardware/Software Co-Simulation . 2
1.3 Scope of the Thesis . 3
1.4 Outline . 4

2 Problem Definition and Motivations 7
2.1 HW/SW Co-Simulation of MPSoCs . 7
2.2 Software Execution Approaches in a Virtual Platform 8

2.2.1 Interpretive Simulation Techniques . 9
2.2.2 Static Binary Translation . 10
2.2.3 Native Simulation . 11

2.3 Hardware Simulation: Abstraction Levels of Virtual Prototyping 14
2.4 Conclusion and Key Questions . 17

3 Preliminaries and Prior Work: On Native Execution of SW on Top of a Virtual
Platform 19
3.1 Target vs. Host Address Spaces . 19

3.1.1 Using a Unified Address Space . 20
3.1.2 Using Hardware Assisted Virtualization 20

3.2 Software Annotation for Performance Estimation 22
3.2.1 Source-Level Simulation (SLS) . 23
3.2.2 Intermediate-Level Simulation (ILS) . 27
3.2.3 Binary-Level Simulation (BLS) . 30

3.3 Modeling Micro-Architectural Components: Lack of Consideration for Com-
plex Architectures . 31
3.3.1 Estimation of Pipeline Effects . 32
3.3.2 Estimation of Cache Effects . 33
3.3.3 Branch Penalty . 35

3.4 Conclusion . 36

ix

CONTENTS

4 IR-Level Annotation Framework for Performance Estimation 37
4.1 Annotation Framework Overview . 37
4.2 Choice of the Intermediate Representation . 38

4.2.1 GCC’s Intermediate Representations and IR to C Conversion 39
4.2.2 Compiler Optimizations and Code Structure 41

4.3 Proposed Mapping Approach Between IR and Binary CFGs 45
4.3.1 Basic Mapping Scheme: Tackling Standard Compiler Optimizations . 46
4.3.2 Upgraded Mapping Scheme: Tackling Aggressive Compiler Optimiza-

tions . 53
4.4 Conclusion . 61

5 Modeling the Impact of Cache Memories on the System Performance 63
5.1 Data Cache Performance Estimation . 63

5.1.1 Data Cache Model . 64
5.1.2 Inserting The Annotation Functions In The High-Level Code 64
5.1.3 Obtaining Memory addresses . 65

5.2 Modeling Instruction Cache and Instruction Buffer for Performance Estima-
tion of VLIW Architectures . 67
5.2.1 Overview and Particularities of a VLIW Architecture 68
5.2.2 Generic Instruction Cache Modeling . 70
5.2.3 The Effect of VLIW on Instruction Cache Performance Estimation . . . 72
5.2.4 Instruction Buffer Impact on Instruction Cache Performance Estimation 74
5.2.5 Limitations: Variable-Sized Bundles . 77

5.3 Conclusion . 78

6 Experimental Results 81
6.1 HW Environment . 82

6.1.1 Target Architecture: Kalray MPPA-256 82
6.1.2 Host Machine . 84

6.2 SW Environment . 84
6.2.1 Simulation Platforms . 84
6.2.2 Benchmarks . 87

6.3 Validation of the Mapping Approach . 87
6.3.1 Basic Mapping Scheme . 88
6.3.2 Upgraded Mapping Scheme . 94

6.4 Performance Estimation of the Instruction Cache and Instruction Buffer in a
VLIW Architecture . 96

6.5 Conclusions . 101

7 Conclusions and Perspectives 103
7.1 Conclusions . 103
7.2 Perspectives . 105

Publications 107

Glossary 110

Bibliography 110

x

List of Figures

1.1 A block diagram of Tilera’s Gx8072 Tile [Til] 1
1.2 Hierarchical architecture of Kalray MPPA-256 manycore processor [DdDAB+13] 2

2.1 A simplified co-simulation platform . 8
2.2 Rough classification of the different abstraction levels of software simulation

(adapted from [PFG+11]) . 8
2.3 Overview of an ISS platform . 9
2.4 Overview of a simulation platform based on DBT 10
2.5 Overview of a simulation platform based on SBT 11
2.6 Software encapsulation in a hardware module equipped with an OS model . 12
2.7 Overview of a native simulation platform . 13
2.8 Y diagram of hardware simulation abstraction levels (adapted from the Gajski-

Kuhn Y-chart) . 15

3.1 Native simulation using HAV . 21
3.2 User, guest, kernel transition flow in case of a PMIO request in HAV-based

native simulation . 21
3.3 An example of a source-level CFG . 23
3.4 Source code annotation . 24
3.5 Mapping information . 25
3.6 Dominator relation . 26
3.7 An IR example . 28
3.8 The iSciSim Approach [ZH09] . 29
3.9 IR-level annotation technique using an extended compiler [BGP09] 30
3.10 Two approaches of binary-to-binary translation taken from [ZM96] 30
3.11 An example of C code generated from target binary code [Wan10] 31
3.12 Execution cost of a basic block . 32
3.13 Annotation of branch prediction effects [GHP09] 35

4.1 The IR-level annotation framework . 38
4.2 GCC’s intermediate representations . 39
4.3 Generation of a compilable IR . 40
4.4 An example of two different binary codes generated from the same source code 43
4.5 An example of isomorphic IR and binary CFGs 44
4.6 IR and binary CFGs of a simple C code compiled with gcc -O2 45
4.7 An example of SCCs . 47
4.8 SCC decomposition using DFS . 47
4.9 The IR CFG (a) and the binary CFG (b) of the BubbleSort example 48

xi

LIST OF FIGURES

4.10 Identification of loop blocks in the IR and binary CFGs of the BubbleSort ex-
ample . 49

4.11 Condensed IR and binary CFGs of the BubbleSort example 50
4.12 Recursive Mapping of SCCs . 51
4.13 Control flow graphs of (a) source code, (b) intermediate representation (IR)

and (c) the binary code compiled using the highest level of compiler opti-
mizations (gcc -O3) . 54

4.14 Loop unrolling with LLVM . 55
4.15 The trip count is a multiple of (UF + 1) . 56
4.16 The trip count is not a multiple of (UF + 1) . 57
4.17 The trip count is unknown at compile time . 58
4.18 Loop Inversion . 59
4.19 If conversion . 59
4.20 Other branch optimizations . 60

5.1 An example of a 2-way set associative cache (left) and its corresponding cache
model (right) . 64

5.2 Data cache annotation functions . 65
5.3 Annotating memory accesses to local and global variables 66
5.4 An example of a VLIW instruction format . 68
5.5 A simple example of bundle construction . 69
5.6 Overview of a VLIW architecture . 69
5.7 Comparison of the pipeline’s fetch stage between VLIW and scalar 70
5.8 The instruction cache simulation process . 71
5.9 Scalar vs. VLIW . 73
5.10 Bundles in assembly language . 73
5.11 Basic block data base . 73
5.12 Instruction Buffer . 74
5.13 Nominal Case . 74
5.14 Branch Case . 75
5.15 A line-crossing bundle case . 76
5.16 A miss case (a blocking cache) . 76
5.17 Problematic situation: full IB . 77
5.18 Unbalanced FIFOs of the IB . 78

6.1 A bird’s eye view of the experimental environment 81
6.2 An overview of the Kalray-MPPA . 82
6.3 An internal view of a cluster from the kalray-MPPA 83
6.4 Interaction between the NPU and the VM . 85
6.5 A screen shot of the event window of kcachegrind 86
6.6 Validation of the mapping algorithm at the gcc -O2 optimization level using

the instruction count as a performance metric 89
6.7 Mapping source code to target binary code using debug information for SLS . 90
6.8 Comparison of the simulation time between ISS and native simulation 91
6.9 Validation of the mapping algorithm at the gcc -O3 optimization level using

the instruction count as a performance metric 93
6.10 IR annotation with instruction cache function calls and performance metrics . 97
6.11 Cycle count error (%) . 99
6.12 Simulation speedup . 100

xii

List of Tables

3.1 Classification of previous works according to the adopted functional model . 23

4.1 The mapping data base of the example of fig. 4.9 52

6.1 Host CPU information . 84
6.2 Benchmarks . 87
6.3 O2 optimizations observed for each application 92
6.4 Comparison of the number of executed instructions (O2) 92
6.5 O3 optimizations observed for each application 95
6.6 Comparison of instruction count and simulation time (O3) 96
6.7 Instruction cache performance . 99
6.8 Comparison of the cycle count . 100

xiii

Chapter 1

Introduction

To cater for the continuously increasing requirements for better performance; high com-
putational capabilities, low power consumption, flexibility, programmability, short time to
market and a reasonable cost, the VLSI (Very Large Scale Integration) technology allows
IC (Integrated Circuit) designers to integrate billions of transistors into a single chip. As
a result, groundbreaking hardware architectures composed of multiple processor cores, the
so-called Multi-Processor System on Chip (MPSoC), have become ubiquitous since 2001, the
release date of the first general purpose multicore processor POWER4 of IBM that integrated
two cores on a single silicon die.

Figure 1.1: A block diagram of Tilera’s Gx8072 Tile [Til]

1.1 Many-Core SoC: The Need for Higher Degrees of Parallelism

MPSoCs with a small number of cores, although relatively recent, are outstripped by their
many-core successors. MPSoCs containing dozens or even hundreds of cores have be-
come in vogue these last years (Kalray MPPA-256 [DdDAB+13], Intel SCC [HDH+10] ,Tilera
TileMx [Til] fig 1.1) offering more parallelism and more processing capabilities. These cores

1

Chapter 1. Introduction

are usually organized in clusters (a.k.a. tiles). As depicted in fig 1.1, the Tilera device is
structured as a 2D array of tiles and it includes 72 tiles in total. Each tile is composed of a
64-bit processor core and a L1 data and instruction caches.

Figure 1.2: Hierarchical architecture of Kalray MPPA-256 manycore processor [DdDAB+13]

Kalray MPPA [DdDAB+13] also offers a clustered architecture (fig 1.2), but with more
parallelism inside individual clusters by incorporating 16+1 cores in each one of its 16 com-
pute clusters. Each tile (fig 1.2-middle part) is also equipped with a shared memory, a DMA
(Direct Memory Access) unit, a DSU (Debug Support Unit) and interfaces for the intercon-
nect.

Having multiple clusters on a single chip entails inter-cluster communication. In the first
generation of multi-core processor systems, the communication was usually performed by a
conventional bus shared between the different cores. Due to the need for more bandwidth,
Netwok on Chip (NoC) has emerged 15 years ago as a bus replacement.

For more performance gains, parallelism does not stop at the process level (fig 1.2-left
side) or thread (fig 1.2-middle part) level, but also reaches the instruction level (fig 1.2-right
side). VLIW (Very Long Instruction Word) and superscalars bear witness to the evolution
of architectures from scalar processors that issue one instruction per cycle to processors that
have the capabilities to exploit ILP (Instruction Level Parallelism). The current breed of pro-
cessors, e.g. MPPA manycore by Kalray [DdDAB+13], ST200 series by ST microelectronics in
platform 2012 [MBF+12], the Tilera processor in Tile64 [TKM+02], etc., makes use of VLIW
architectures to achieve high execution speed at low energy. Fig 1.2-right side illustrates an
example of a VLIW core. It is the Kalray 5-issue VLIW core with five execution units: two
arithmetic and logic units (ALU0, ALU1), a multiply-accumulate and floating-point unit
(MAU), a load/store unit (LSU), and a branch and control unit (BCU).

1.2 Hardware/Software Co-Simulation

The unquenchable thirst for better performance led to the advent of these massively-parallel
and complex architectures featuring a large number of clusters with many sophisticated
processors, which benefit from ILP design techniques and are able to communicate through
advanced interconnects. These complex architectures are deployed to run equally complex
software. So, the performance of many-core architectures is governed not only by hard-
ware characteristics, such as the processor type (VLIW, Superscalar, out-of-order, etc.), the

2

1.3. Scope of the Thesis

number of processors and the NoC type, but also by the software executed on top of these
hardware components. Thus, the design space of such systems is enormous. Many design
alternatives should be analyzed and many decisions involving both software and hardware
need to be taken. Scheduling strategies and task mapping need to be examined at early
design stages and a large amount of functionality and performance properties need to be
validated without having to wait until the hardware chip is manufactured. Consequently,
early design space exploration, HW/SW co-verification and performance analysis of mas-
sively parallel MPSoCs create the need for fast yet accurate modeling and simulation tools.

A virtual prototype (VP) is basically a software code that models and simulates the be-
havior of a hardware system including processors, memories, peripherals and the intercon-
nect. VPs can be used by software engineers to debug and validate software applications
if the real hardware is not available yet or if early prototypes are not affordable. VPs are
also used by hardware engineers for design space exploration and performance evaluation
of micro-architectural models. VPs enable the software development process to start early
on and simultaneously to hardware design. The closer the models are to reality, the slower
the simulation is, and the more accurate the results are. However, the competitiveness of
MPSoC vendors cannot afford long design cycles and delayed time-to-market, which entails
efficient simulation tools; short simulation time and accurate simulation results.

A trade-off between simulation accuracy and simulation speed is imposed on system
designers. Raising the abstraction level will definitely increase the simulation speed but
will penalize the accuracy of the results as models will contain less implementation details.
This is obviously true for both hardware models and software simulation tools.

1.3 Scope of the Thesis

Simulation of many-core architectures is a contradicting problem as it entails accurate sim-
ulation results at a fast simulation speed. A renowned software simulation approach used
for conducting performance estimation of the target software is cycle accurate Instruction
Set Simulation (ISS). ISS is a software interpretation approach that consists of transforming
target machine instructions into host instructions. The interpretation process is organized in
a loop where the target processor simulator sequentially performs instruction fetching, de-
coding and execution, at run time, based on the semantics described in the target ISA. Thus,
ISS yields accurate performance estimates to the detriment of simulation speed, which is
inadequate for early system-level design space exploration (DSE).

Native simulation, a.k.a. host-compiled simulation, techniques have emerged as an al-
ternative that aims at abstracting the target low-level micro-architectural details in order
to achieve significantly higher simulation speed compared to conventional cycle-accurate
ISS. Host-compiled simulation consists of compiling the target software code on the host
machine and natively executing the generated host instructions on the host computer to
achieve the fastest possible functional simulation. Thus, native approaches have always
been considered as functional simulation approaches with little to no focus on performance
estimation because of the lack of target-specific details in such approaches.

The gap in performance estimation of many-core architectures between cycle accurate
but very slow ISS and very fast but coarse-grained native simulation could be narrowed by
back-annotating the target software with target-specific performance metrics obtained from
abstract performance models of the target architecture. When annotated with accurate non-
functional information (e.g. execution cycles, execution time, power consumption, etc.), the
natively simulated software will yield accurate performance estimates while achieving a

3

Chapter 1. Introduction

speed higher than cycle accurate ISS. This way, host-compiled simulation is leveraged to
reproduce not only the functional behavior of the target code but also its non-functional
(e.g. temporal) behavior at the system-level.

Software back-annotation raises two orthogonal issues. The first one concerns the com-
putation of non-functional information. Some information could be determined statically
(e.g. the instruction count) by merely analyzing the target binary code. Other performance
metrics (e.g. number of cache misses) are highly-dependent on the target micro-architectural
components (memory caches, branch prediction mechanism, pipeline, etc.). So, modeling
the impact of these components at a high abstraction level is key in obtaining accurate es-
timates. With the ever evolving architectures of MPSoCs and their distinguishing features
(VLIW, super-scalar, out-of-order, etc.), using generic performance models is too inaccurate.
So, new methodologies are required for performance estimation of such complex systems
that take into account their distinctive features while maintaining a reasonable simulation
speed.

The second issue concerns the coupling of the performance models and the functional
model, i.e. the target software. In other words, where do we insert the performance metrics
in the software code? It should be noted that the functional model could be employed at
different representation levels: source level, compiler intermediate representation (IR) level
or binary level. Since the compiler performs multiple advanced optimizations, the struc-
ture of the original code changes from one compilation stage to another. So, the choice of
an adequate representation level is a crucial step in the back-annotation process. Insert-
ing non-functional information into the right place in the functional model is not always
a straightforward task because this information is extracted from the target binary code,
which is the result of the final compilation stage. Establishing a mapping strategy between
the target binary and the functional model is pivotal in injecting the annotations at the right
place in the software and obtaining accurate performance estimates.

1.4 Outline

The remainder of this dissertation is organized as follows:

• Chapter 2: We lay the groundwork by explaining the concept of hardware/software
co-simulation and presenting the different approaches of SW execution, as well as
the different abstraction levels of virtual prototyping. We focus especially on native
execution of software on top of a virtual platform and we describe its key issues, which
we look to address in this thesis.

• Chapter 3: We review state-of-the-art approaches that deal with performance esti-
mation using native simulation and we establish the fundamental concepts of native
simulation.

• Chapter 4: We present our first contribution, which is an annotation framework that
aims at inserting non-functional information into a functional model for the purpose
of performance estimation. We explain our choice of the representation level of the
functional model and we detail the proposed mapping approach.

• Chapter 5: We describe our second contribution, which is a cache performance model.
Firstly, we present a conventional data cache model used as an example to explain
the modeling process and the combination of a performance model with a functional

4

1.4. Outline

model. Secondly, we explain the proposed performance estimation model of an in-
struction cache and an instruction buffer of a VLIW architecture.

• Chapter 6: We conduct a set of experiments to validate our contributions and we
discuss the obtained results.

• Chapter 7: We conclude the dissertation by summarizing the key contributions and
proposing directions for future work.

5

Chapter 2

Problem Definition and Motivations

The complexity of MPSoCs is increasing as the integration of a large number of cores in
a single silicon die is practically achievable and it is also considered an efficient architec-
tural solution to support the execution of intensively parallel applications. Such complexity
entails an onerous design process. At a very early design stage, analytical models are gener-
ally used. However, to facilitate design space exploration and early software development,
simulation models are adopted instead. The simulation speed and the accuracy of simula-
tion results are the two most seeked requirements when it comes to taking pertinent design
decisions in a reasonable period of time. To meet the different design and precision needs,
several abstraction levels are available for both hardware and software simulation. We will
describe these abstraction levels, highlight the level that we are interested in and define the
problems that we wish to address in this thesis. But first, we will start by briefly explaining
the concept of Hardware/Software co-simulation of Multi-processor systems on chip.

2.1 HW/SW Co-Simulation of MPSoCs

During the early years of microprocessor utilization in embedded systems, software devel-
opment was delayed until a hardware prototype was fabricated. This sequential design
workflow leads to late discovery of HW/SW integration problems, which can be very ex-
pensive (money-wise and time-wise) to solve. However, the advances made in the area of
hardware modeling and simulation, by means of virtual prototyping, enables the concurrent
development of hardware and software.

Virtual prototyping consists in creating a software model that replicates the target archi-
tecture and is used for functional validation, performance evaluation, early software devel-
opment, non-intrusive debugging and architecture exploration. The availability of a virtual
platform allows a good visibility of the hardware models and their interaction with each
other as well as valuable information about software execution and its impact on the overall
system performance. Thus, HW/SW co-simulation speeds up the design process and is fun-
damental for a successful HW/SW co-design methodology as it enables the early validation
of both functional and non-functional properties of the simulated system.

Fig. 2.1 shows a simplified HW/SW co-simulation environment. The virtual platform
(right side of fig. 2.1), which we will alternatively refer to as simulation platform, is com-
posed of models of the hardware components found in the target architecture (left side of
fig. 2.1) such as, the memory system, the core (EU: Execution Unit in the simulation plat-
form), the peripherals, etc. These components communicate with each other via a commu-
nication medium (e.g. bus or NoC), which is represented as an abstract interconnect model

7

Chapter 2. Problem Definition and Motivations

Core

Communication Medium

DMAMemory

peripheral ITC
target architecture

source codetarget compilertarget bin

executed by sc module

EU Memory ITC Peripheral DMA Interconnect

virtual simulation platform

software execution
approach?

Host workstation

compiled and executed by

Figure 2.1: A simplified co-simulation platform

in the virtual platform. Modeling these hardware components is performed using HDLs
(e.g. SystemC), which provide different levels of precisions ranging from RTL to TLM. As
for the software that is intended to run on the target machine, it is executed by the EU in the
simulation platform according to a chosen software execution approach (ISS, native simula-
tion, etc.). Once fully developed, the simulation platform is compiled and executed on the
host machine (e.g. X86 desktop machine) as a software application.

2.2 Software Execution Approaches in a Virtual Platform

functional +

sim

performance

estimation

functional

sim

sim speed
sim accuracy

ISS DBT SBT timed

native sim

host-compiled

sim

instruction interpretation

binary translation

Figure 2.2: Rough classification of the different abstraction levels of software simulation
(adapted from [PFG+11])

Given the key role played by co-simulation in the design process of embedded systems,
increasing the simulation performance has been the focal point of HW/SW co-design re-
search, which led to the emergence of different abstraction levels of hardware modeling and
various approaches of software execution on top of these hardware models.

Different strategies with various abstraction levels [PFG+11] (fig. 2.2) have been pro-
posed to deal with software execution on top of virtual platforms. These propositions differ
in their simulation speed and their simulation accuracy and they can be categorized into
instruction interpretation methods and native execution methods [PFG+11].

In fig. 2.2, the simulation speed decreases from right to left while the simulation accuracy
increases from right to left. Software interpretation approaches depend on the target archi-
tecture as they simulate, more or less, internal low level details of processor operations, such
as dependencies between intsructions, pipeline stages, instruction latencies and delay slots,

8

2.2. Software Execution Approaches in a Virtual Platform

etc., which makes them suitable for evaluating both the functionality and the performance
of the system. However, each additional detail implies more simulation time.

On the other end of the spectrum, host-compiled simulation (a.k.a. native simulation)
is independent of the target architecture, which makes this simulation approach limited to
functional verification. Efforts have been made in order to upgrade host-compiled simula-
tion approaches from simple functional simulators to performance estimation tools as well
(e.g. timed native simulation).

2.2.1 Interpretive Simulation Techniques

The basic idea behind software interpretation is to transform instructions of the cross-compiled
target binary code into instructions of the host processor.

Instruction Set Simulation

source code target compiler target bin Memoryloaded in fetch decode execute

reg1
...

regn

update

EU
(ISS)

component1 ... componentk

Simulation Platform

Figure 2.3: Overview of an ISS platform

One of the most mature interpretive simulation techniques is Instruction Set Simulation
(ISS), which incorporates a detailed model of the target processor micro-architecture in order
to closely mimic its behavior and yield accurate performance estimations. ISS allows the
execution of software at a detailed instruction level and simulates the target machine state
for each interpreted instruction. Such low-level interpretive simulation approach can be
very accurate but extremely slow.

Usually virtual prototypes simulate the behavior of the target processor by performing
computations using an ISS (SimpleScalar [ALE02], gem5 [BBB+11] formerly M5 [BDH+06]).
As shown in fig. 2.3, target instructions are loaded in the memory component model. The
execution of software is organized in an infinite loop. During each iteration of this loop, the
processor model sequentially fetches the next instruction from the memory model (possibly
from the instruction cache if memory hierarchy is modeled), decodes the fetched instruction
and performs the operations (e.g. load, store, arithmetic and logical operations) according
to the semantics of the instruction while updating the simulated registers and memory.

The amount of functional and non-functional features of many-core SoCs is too extensive
to be verified and validated by ISS as the simulation would take a considerable amount of
time. To improve the simulation performance, a simulation technique known as compiled
simulation works at a coarser granularity by translating a block of instructions instead of a
single instruction at a time. Two approaches of compiled simulation can be distinguished:
Dynamic Binary Translation (DBT) and Static Binary Translation (SBT), which is not based
on instruction interpretation.

9

Chapter 2. Problem Definition and Motivations

Dynamic Binary Translation

Just like the previously mentioned interpretive simulation technique, the key idea of
dynamic binary translation is to translate the target code into a behaviorally-equivalent code
that is executable on the host machine running the simulation platform.

target bin Memory

PC known?

fetch

decode

translate

branch instr?

generation translation
cache execution

no

yes

no

yes

reg1

...
regn

update

EU
(DBT)

component1 ... componentk

Simulation Platform

Figure 2.4: Overview of a simulation platform based on DBT

As illustrated in fig. 2.4, the target binary is decomposed into blocks, called translation
blocks (TB) in the DBT terminology. A TB starts at the current PC and ends with a branch
instruction. The most intuitive way of dynamic translation is to directly find the equivalent
of the target instructions in the host ISA (Instruction Set Architecture). This implicates that
for each new target and/or host machine, a new translator should be devised. For a retar-
getable dynamic translator, an additional step is performed. This step consists of translating
the target binary into an intermediate representation IR that is independent of both the host
and target processors (QEMU, [CM96]). The IR is then translated to a host code (generation
step in fig. 2.4).

As shown in fig. 2.2, DBT is placed after ISS and before SBT in the simulation-speed slow-
fast continuum, but dynamic translation requires a strenuous development effort, which
might not be the perfect solution for MPSoC simulation at early design stages.

2.2.2 Static Binary Translation

SBT is a simulation technique that eases the burden of instruction interpretation by mov-
ing the frequent decoding task from run time to compile time. The idea behind SBT is to
translate the complete target binary code to a functionally-equivalent intermediate repre-
sentation before simulation time. Thus, the decode stage is separated from the fetch and
execute stages. The intermediate representation is then compiled and executed on the host
machine. At run-time, the EU executes the decoded and translated instructions without any
translation overhead.

10

2.2. Software Execution Approaches in a Virtual Platform

native bin host compiler IR code IR generation target bbs bb extraction target instrs instr decoder target bin

Memory find next bb execute bb

reg1

...
regn

update

EU
(SBT)

component1 ... componentk

Simulation Platform

Figure 2.5: Overview of a simulation platform based on SBT

Fig. 2.5 showcases the different translation steps. First, the target instructions are de-
coded and the corresponding information (instruction type, operands, etc.) is stored in
memory objects for later use in translation. Then, the target instructions are scanned for
basic block (bb) extraction. A basic block is detected when a statically known branch target
instruction is encountered or after the exit point (branch/jump) of a previous basic block.
After target basic block construction, target instructions are converted into an Intermediate
Representation (IR) that is independent of both host and target machine architectures. The
IR is then compiled to a host binary code. At simulation time, the EU fetches the next basic
block, which is already translated, and executes its behavior.

Alhtough faster than ISS, SBT has its own set of limitations, which are related to cer-
tain aspects that cannot be translated statically, such as self-modifying code and indirect
branches.

2.2.3 Native Simulation

On the other extreme of the simulation speed continuum (fig. 2.2), there is native simulation
(a.k.a. source-level simulation or host-compiled simulation). This simulation approach is
much faster than the interpretive methods that we briefly described (ISS,DBT) because it
eschews instruction decoding and interpretation by directly compiling and executing the
software on the host machine.

The first endeavors to natively simulate the target software appeared in [GCM92], [GYNJ01],
[CHB09b]. These primitive approaches consist of encapsulating the software in a bare-metal
hardware module. These initial proposals are simple but suffer from limited parallelism.
Moreover, since the software tasks are executed in the context of a hardware module, all
software data allocations are made in the simulator address space instead of the simulated
target memory, therefore data allocated by software is inaccessible by the target platform
components.

To enable the execution of a more complex software and to support concurrency, a high-
level model of a light-weight operating system can also be encapsulated in a hardware mod-
ule of the simulation platform [GYG03], [MPC04] (fig. 2.6). The OS model implements ser-
vices such as Inter-Process Communication (IPC), task creation, event handling, delay mod-
eling, interrupt handling, etc., but it remains very restricted and lacks many details (such as
library calls including memory management routines). As for the scheduling, the OS model

11

Chapter 2. Problem Definition and Motivations

task1 task5

OS API

OS Model

EU1

task2 task3 task4

OS API

OS Model

EU2

component1 componentk...

Figure 2.6: Software encapsulation in a hardware module equipped with an OS model

relies on the primitives offered by the simulator scheduler rather than implementing the
actual OS scheduler.

The common limitation of software encapsulation is that software is highly tied to its en-
compassing hardware module and uses its underlying communication interface to interact
with the other software tasks that reside in other hardware modules. Also, dynamic task
creation and migration are not supported.

Hybrid approaches where specific portions of the software are executed using an ISS,
while other portions are executed natively, emerged [MRRJ05], [KGW+07]. The challenges
of such approaches lie in the selection process (which part of the software should be exe-
cuted by which simulator?), the definition of the execution context and the synchronization
between the two simulation environments, while keeping the run-time overhead caused by
switching between the two simulators in check.

To maximize the amount of software that could be natively simulated, without the help
of an ISS and independently of hardware modules but with the possibility to interact with
the event-driven simulation environment, layering the software into different abstraction
levels starting from the Hardware Abstraction Layer (HAL) to the functional abstraction
layer is a requisite. Thus, native execution of the target code on the virtual platform is
achievable, using specific software APIs to interact with the simulation models of the target
hardware components.

As depicted in fig. 2.7, the software stack consists of a high-level application, standard
libraries , the OS, and a HAL [YJ03]. In addition, the software relies on two different APIs:
the hardware-dependent software API (HDS), which offers OS services, and the HAL, which
provides the processor subsystem services to the HDS. The number of software layers is de-
termined according to the adopted software simulation approach. In case of target code
interpretation, no abstraction is needed as the software is loaded in its entirety (all the soft-
ware layers) in the memory. In native simulation, the execution unit (EU) uses software APIs
to abstract either the OS layer [TRKA07], [BBY+05] or the HAL [BYJ04], [YBB+03] (fig. 2.7).
Abstracting the OS layer is a tedious task because it requires the implementation of all the
OS and library (Math, C, Communication, etc.) functionalities by the EU.

Our simulation approach relies on the definition of a thin HAL used for all hardware-
related accesses [Sar16]. The declaration of HAL functions are present in the software stack
but the implementation of these functions are made in the hardware platform, namely in
the EU. This results in a hardware-independent software stack that only interacts with the
hardware when a HAL API function is solicited.

Although very fast and suitable for early DSE, native simulation is not free from chal-

12

2.2. Software Execution Approaches in a Virtual Platform

HAL API
HAL
EU

Memory

component1 componentk...
Simulation platform

Host workstation

Application
HDS (OS API)

OS

compiler
(host back-end)

host
binary

loaded as a dynamic library

Figure 2.7: Overview of a native simulation platform

lenges. One of the main issues is the different host and guest address spaces. The software,
on the one hand, is compiled for the host machine and loaded into the host memory as a
dynamic library. So, the software is only aware of the host address space. The hardware
platform, on the other hand, simulates the target hardware components whose addresses
are predefined by the target system designers. Thus, the hardware models are only aware
of the target address space. The presence of these two different and possibly conflicting or
overlapping address spaces is emphasized when the software wants to access a hard-coded
address of a hardware component or, in the opposite case, when a hardware component
(such as a DMA) wants to access an address of a dynamically allocated variable by the
natively-compiled software. This heterogeneity between address spaces prohibits certain
interactions between the hardware models and the software.

Moreover, since the natively-simulated software is completely dissociated from the tar-
get ISA and executes unknowingly of the virtual hardware components thanks to the ab-
straction layer, the simulation is bereft of accuracy. In fact, the simulation accuracy depends
on both the correctness of the functional model and the precision of the performance model.
The functional model simulates the functionality of the target software and it can be repre-
sented at the source level, the intermediate level (IL) or the binary level.

The simulation of the functional representation on the host machine does not provide
any insight on the performance of the software, such as its temporal behavior (i.e. the com-
putation delays caused by the target platform). The software is executed in the context of the
EU, which is a simulation thread, in zero time. As we mentioned above, the only time the
software interacts with the virtual platform is when a HAL API function is invoked. In be-
tween two HAL functions the notion of time does not exist. The abscence of non-functional

13

Chapter 2. Problem Definition and Motivations

information restricts native simulation to functional verification.
Target-specific performance metrics depend on the target ISA, the effects of the target

processor micro-architecture and the effects of compiler optimizations. To be able to carry
out performance estimation in a native simulation platform, a performance model is indis-
pensable. It should take into account the important target effects on the performance of the
system and provide the corresponding performance estimates. This performance model is
coupled with the functional model in order to generate a high-level simulation model capa-
ble of running on the host processor, while providing performance estimates of the target
processor. This coupling is carried out by back-annotating the functional model with the re-
sults obtained by the performance model. However, the abstraction of the target processor
details and the difference between the host-compiled functional model and the target binary
get in the way of accurate performance estimation.

The difference between the target binary code and the host-compiled code, even though
they are both generated from the same software, is not only caused by the possibly different
ISAs but especially by compiler optimizations, which may have different effects on the struc-
ture of the code depending on the platform architecture. In addition, micro-architectural
components that have no impact on the functional behavior of the system are usually dis-
missed in order to alleviate the modeling effort and speedup the simulation. Instead, host
machine resources are leveraged. For instance, using directly the memory hierarchy of the
host computer during the simulation does not change the functionality of the software but
may yield inaccurate performance estimates because these estimates are highly influenced
by the dynamic behavior of these micro-architectural components and their interaction with
software. For example, the miss ratio may be different from one platform to another as it
depends, among other factors, on cache memory configuration. Architectural features such
as VLIW, which is common in MPSoC systems but not as much in desktop machines, is
another example of target characteristics that affect the execution time but does not change
the functional behavior of software.

2.3 Hardware Simulation: Abstraction Levels of Virtual Prototyp-
ing

In a full-scale simulation platform, the target software is executed on top of a virtual hard-
ware platform. A virtual platform is a collection of models of the target hardware com-
ponents including its processors, peripherals and interconnect mechanism (fig. 2.1). These
models can be described at different abstraction levels, which enables progressive refine-
ment of a given specification to the final implementation.

Hardware description languages (HDLs) allow us to model hardware components; their
parallel semantics, their structural and timing behavior and their communication interfaces
at different abstraction levels. Each level allows the simulation of full or part of the system
with a certain degree of architectural and timing accuracy. Thus, depending on the design
stage, designers are able to choose the most suitable abstraction level. Such a choice is
always a game of balancing the trade-off between performance and accuracy of a potential
simulation model.

The two extreme ends of the SoC design flow, as portrayed by fig. 2.8, are: the system-
level at the highest end of the flow and the circuit level at the other end of the flow. We will
discuss the top levels of abstraction.

14

2.3. Hardware Simulation: Abstraction Levels of Virtual Prototyping

transistors
gates
registers
packets

cpu, mem, i/o devices

transistor functions
boolean equations

register transfer
data transactions

system specifications

schematic layout

VHDL
VHDL,SystemC

SystemC

C/C++,Simulink

circuit

logic

RTL

TLM

system

Structural domainFunctional domain

Modeling domain

Figure 2.8: Y diagram of hardware simulation abstraction levels (adapted from the Gajski-
Kuhn Y-chart)

Register Transfer Level (RTL)

RTL is a very low-level design abstraction where the circuit’s behavior is defined in
terms of data transfer or the flow of signals between hardware registers and the operations
performed on these signals. RTL models written in hardware description languages, such
as VHDL and Verilog, describe explicitly the registers that define the internal state of the
target system components. The internal architecture described in a synthesizable RTL model
is rigorously identical to the real hardware. A RTL description has an explicit clock. All
operations are scheduled to occur in specific clock cycles. A RTL description is usually
converted to a gate-level description of the circuit by a logic synthesis tool. Placement and
routing tools are then applied on the synthesis results to create a physical layout.

Evidently, the benefit of RTL simulation is its fidelity to the real hardware implementation
allowing accurate functional and performance analysis of the SoC. However, the lengthy
RTL simulation time and development phase, that keep getting worse lately due to the high
SoC complexity, is a price too expensive to pay. It is, thus, too long to wait for the devel-
opment of RTL hardware models before the HW/SW co-verification can start. Moreover, at
this level of the design flow, the breadboard is almost ready, which makes any system mod-
ification very costly. Thus, raising the abstraction level above RTL was deemed necessary
for early design space exploration and co-verification.

Cycle Accurate Level

The cycle accurate level, which is not represented in fig. 2.8, and the RTL are usually used
to designate the same level of abstraction. The CA level , however, is a little faster than the
RTL one. Although it provides accurate description of the data transfer on the components
interfaces at each clock cycle and it implements the same communication protocol as in

15

Chapter 2. Problem Definition and Motivations

real hardware (all of the signals are represented exactly as they are in a real platform), a
CA model can use a representation at a higher level of abstraction than the real hardware
realization. Thus, a CA representation cannot be directly synthesized.

The simulation speed of a cycle accurate model is still too slow to run a significant
amount of software and the development cost is also too high to make up for the incon-
sequential benefits of cycle-accurate models (merely an order of magnitude faster than the
equivalent RTL models).

System Level

On the other end of the Y diagram, we find the most abstract level: the system level (also
referred to as the algorithmic level). This level offers high performance, but is purely func-
tional and could be implemented using SystemC, Simulink or even C/C++. Starting with
initial requirements, designers can model such specifications in highly abstracted descrip-
tions leading to a well defined executable specification model that will serve as a reference.
This reference models neither a clock nor platform specific details. It is an untimed func-
tional model with only causal ordering between tasks. Since this abstraction level does not
include any information about the target architecture or its temporal behavior, it is only
used to verify certain functional properties of the software application. As a result, an in-
termediate modeling level that offers a reasonable simulation speed, is detailed enough to
run the embedded software stack and to provide accurate results, and is relatively quick to
develop with a considerably lightweight modeling effort, is required.

Transaction Level Modeling TLM

TLM has been put forward as the best bid to balance the trade-off between simulation
accuracy and speed. TLM is a transaction-based abstraction level founded on object ori-
ented programming languages such as C++ and considered as the doorway to early MPSoC
exploration. TLM resides between the cycle accurate model and the untimed algorithmic
model (a.k.a. system level) in the design flow. In order to facilitate the integration and com-
patibility of transaction-level models, the industry-wide standard, a.k.a. SystemC, is used to
develop such models. The Open SystemC Initiative (OSCI) [OSC] was the first contributor
to the creation of TLM standards.

TLM focuses on communication abstraction to improve the simulation performance.
Communication architectures are modeled as channels that provide interfaces to functional
units. Thus, signal-based communication interfaces are replaced with transaction-level func-
tion calls. In this modeling style, communication and computation can be modeled sepa-
rately.

The term transaction in the TLM context refers to the exchange of data or/and control
information between two hardware component models. The term transaction level does not
designate a single level of abstraction, but rather a continuum of levels that differ in the
degree of functional or temporal details they incorporate. For instance, simulation mod-
els that aim at achieving high simulation speed, abstract the details of the communication
protocols used to convey the transactions. Moreover, time modeling in communication in-
terfaces can be ruled out. Such completely untimed models are known as Programmer’s View
(PV) models [CMMC08]. To improve the simulation accuracy, detailed communication pro-
tocols could be implemented and communication interfaces could be annotated with time
information. Timed models are commonly known as Programmer’s View with Time (PVT) or
TLM with time (TLM-T) [HSAG10].

16

2.4. Conclusion and Key Questions

In this thesis, we use a native simulation platform that consists in natively compiling the
software and executing the generated host binaries on top of a virtual hardware platform
modeled using SystemC/TLM-T.

2.4 Conclusion and Key Questions

Native simulation of software, although it might seem simple compared to other software
simulation approaches, has its own set of problems. One of these problems is the address-
space differences between target and host machines. The other problem, which is the focus
of this thesis, is the lack of target-specific performance information in host-compiled simu-
lation. In order to be able to perform software performance estimation, native simulation
should be supplemented with a performance model. Obtaining accurate performance esti-
mates relies mainly on two key factors:

• The accurate coupling of the performance model with the functional model.

• The accuracy of the performance model.

The first factor depends on the level of abstraction of the functional model:

1. Which software representation (source code, compiler intermediate representation or
target binary code) is the most suitable for fast and accurate performance estimation?

If a high-level representation is selected as a functional model, the difference between its
structure and the binary structure creates some challenges:

2. How to correctly insert non-functional information computed using the target binary
code into the high-level code when they could have different control flow graphs
(CFGs) due to compiler optimizations? In other words, how to find correspondences
between the target binary code and the high-level code CFGs when:

• common compiler optimizations are enabled (e.g. gcc -O2)?

• aggressive compiler optimizations that radically change the CFG are turned on
(e.g. gcc -O3)?

The second factor consists of the ability of the performance model to faithfully re-create
the non-functional behavior of the target SoC:

3. How to develop a performance model that takes into consideration the target MP-
SoC’s micro-architectural components and their advanced features (e.g. the instruc-
tion cache and instruction buffer of a VLIW processor)?

We intend to address these key questions in the following chapters.

17

Chapter 3

Preliminaries and Prior Work: On
Native Execution of SW on Top of a
Virtual Platform

Native execution of software has become the go-to functional simulation approach at early
design stages of MPSoCs thanks to its high simulation speed. Early techniques were based
on the encapsulation of software in a hardware module of the virtual platform with little
to no distinction between a software module and a hardware IP, which brings about unso-
licited concurrency between software tasks. More advanced techniques rely on a hardware
abstraction layer HAL to validate as many software layers as possible. However, both these
techniques suffer from the heterogeneity of the host and target address spaces making the
interactions between native software and target hardware models very tricky. Different ap-
proaches have been proposed to solve this problem, which will be explained in the first
section with a special focus on the retained approach. Performance estimation is another
challenge facing native simulation because of the lack of target architecture information in
native software. Overcoming this challenge has led to the appearence of intelligent mod-
eling approaches that, if correctly coupled with the functional model, help preserve the
simulation accuracy. A run down of software annotation techniques for performance esti-
mation will be presented in the second section and examples of performance models will be
described in the third section.

3.1 Target vs. Host Address Spaces

The hardware components of the target platform (DMA, ADC, ITC, RAM, etc.) have hard-
coded addresses, i.e. their address mappings are statically defined by the target system
designers. Consequently, the address decoder in the hardware simulation platform uses
these mappings to ensure correct communication between the hardware models. The soft-
ware application, on the other hand, is natively compiled and loaded in the host memory
as a dynamic library, which means that software addresses are resolved at runtime and are
allocated in the host virtual address space. To resolve the problem of these two incoherent
address spaces, two main approaches have been proposed.

19

Chapter 3. Preliminaries and Prior Work: On Native Execution of SW on Top of a Virtual
Platform

3.1.1 Using a Unified Address Space

The unification of host and target address spaces was suggested in [Ger09]. The idea is to
use the host address space as a uniform memory representation for both the software and
the hardware models. To do so, a number of modifications are performed on the hardware
models. Dynamically allocated host addresses are used for the software accessible memory
resources. Each hardware component in the virtual platform should provide a list of Symbols
and information about its mappings (memory region: size, base address and name). This in-
formation is leveraged dynamically during the elaboration phase of the simulation in order
for the communication network model to construct the address decoding table. It no longer
uses the statically known target addresses but the dynamically allocated host addresses. Not
only does this approach require the modification of the hardware platform components but
it also restricts the software as hard-coded addresses cannot be used and the new hardware
addresses can only be resolved by software until the start of the simulation.

3.1.2 Using Hardware Assisted Virtualization

Authors of [SHP12] exploited hardware extensions available for the Hardware Assisted Vir-
tualization (HAV) technology, which has been introduced a decade ago in the majority of
high-performance processors (x86, SPARC, PowerPC, ARM) to provide a second set of page
tables, in order to solve the problem of the two address spaces in the context of native sim-
ulation. While researchers have attempted to solve this problem by merging the host and
target address spaces into a joint address space used for the software stack (application and
embedded OS), the simulated hardware components and the host system, Shen et al. pro-
posed to keep these two address spaces separate in order to avoid any kind of conflict or
overlap. They rely on a hardware-defined address translation layer based on the HAV fea-
ture of the host processor. Using this layer makes address translation completely transparent
to the entire software stack.

The HAV technology provides a new operating mode, called guest mode (fig. 3.1), where
a new address space, called guest address space, can be fully customized to cater for the target
address space. The address spaces of both the memory as well as the memory-mapped
input/output (MMIO) modeled devices can stay the same as the ones of the target platform.
This way, the host and target address spaces can be kept intact thanks to the two distinct
execution contexts of the host machine: user space and target space.

In [SHP12], Shen et al. used the HAV technology by integrating a hypervisor (or a Vir-
tual Machine Monitor (VMM)), more precisely the Linux hypervisor called Kernel Virtual
Machine (KVM), in an event-driven transaction level simulation environment. KVM is con-
stituted of a linux kernel driver used in kernel mode and a library used in user mode. The
KVM library is encapsulated in the SystemC environment in user mode. This library allows
the instantiation and the configuration of a VMM that is in charge of its associated Virtual
Machine(s) (VM) (fig. 3.1). It also enables interactions between user mode and guest mode.

At the begining of the simulation, a memory zone is allocated in the virtual memory in
user mode and is passed to KVM. This memory zone corresponds to the physical memory
in guest mode where the host-compiled software will be loaded and then executed by a VM.
Each EU is equipped with an interface with KVM allowing it to control its corresponding
VM. Simulating a core consists in executing its dedicated VM. A VM reads the program
instructions loaded in guest memory space and executes these instructions natively in the
host processor guest mode. Once a VM starts executing the host binary, it does not stop un-
less the guest mode has to be exited for a particular reason (synchronization time is reached,

20

3.1. Target vs. Host Address Spaces

HAL API

HAL

EU 3

HAL API

HAL

EU 1

HAL API

HAL

EU 2

component1 componentk...

Simulation platformKVM lib

Host workstation

linux kernelKVM driver

Application
HDS (OS API)

OS
HAL API

compiler
(host back-end)

host
binary

0x0 0xffffffff ffffffffvirtual memory
(user space)

physical memory
(guest space)

0x0 0xffffffff

U
serm

ode
G

uestm
ode

VM1 VM2 VM3

Figure 3.1: Native simulation using HAV

annotation function, page fault caused by a memory access to an address outside the previ-
ously allocated memory zone, access to a memory-mapped input/output component, etc.).
The KVM driver examines the reason behind exiting the guest mode and handles it, if pos-
sible (e.g. page fault), in kernel mode. Otherwise, the host processor switches to user mode
and it is up to the simulator to handle the exit reason. After the exit reason is handled, the
host processor returns to the guest mode via the KVM kernel driver.

Comm. module

I/O module

...

ITC

EU

issue guest exec.

handle PMIO

...

User Mode

SystemC Environment

Kernel Mode

enter guest mode

examine exit reason

PMIO

handle exit reason

Guest Mode

VM

execute bin.

yes

no

Figure 3.2: User, guest, kernel transition flow in case of a PMIO request in HAV-based native
simulation

In this thesis, we use a HAV-based native simulation platform developed by Shen et

21

Chapter 3. Preliminaries and Prior Work: On Native Execution of SW on Top of a Virtual
Platform

al. [SHP12] and revamped by Sarrazin [Sar16] because it is characterized by a fast simulation
speed and it efficiently handles the problem of the two address spaces. We will leverage this
platform to conduct performance estimation. Thus, we will only describe the underlying
support provided by this platform to enable performance estimation. Functional aspects
such as timer handling, interrupt handling, memory mapping, I/O accesses, etc., will not
be detailed and we assume a correct functional simulation.

Time annotations, among other target performance metrics, are inserted in the software,
which is executed by the VM in guest mode. This time information is used to advance
the simulated time, which requires the use of SystemC timing mechanism. This entails
a communication mechanism between the code executed by the VM and the simulation
platform in user mode. So, to exit the guest mode, the annotation function used in the
software stack is mapped to an I/O port and the timing data is sent to a port-mapped I/O
(PMIO). This PMIO request (fig. 3.2) shifts the control to the EU in the SystemC environment
in user mode, which uses the time information to update the simulated time by calling
the SystemC wait() function. When the requested amount of time is consumed by the core
model, control is given back to the target code in guest mode.

The transition from guest mode to kernel mode and then to user mode (in case of a
MMIO or PMIO request for instance) takes thousands of cycles. On top of that, handling the
exit reason by linux kernel, choosing the SystemC component concerned with the request
and finally simulating the request, takes additional time. This slows down the simulation
time significantly. To reduce this overhead, Sarrazin et al. [Sar16] proposed an approach to
handle the I/O requests in guest mode as much as possible, thus avoiding mode switches.
This necessitated the extension of the HAL in the software stack as well as the addition of a
memory region in guest mode.

3.2 Software Annotation for Performance Estimation

Research regarding software simulation is focused on enhancing the simulation speed by
setting aside low level details of the target architecture and using the host machine re-
sources instead. Raising the abstraction level has given rise to fast simulation techniques
such as SBT, DBT and native simulation. However, the higher the abstraction level is the
more prominent the loss of accuracy becomes. Obtaining accurate performance estimation
results, such as an approximation of the execution time of software, using native simulation
is not a trivial task. Efforts have been made to enhance the accuracy of the results by intro-
ducing target-specific metrics into the natively executed functional model. This technique is
known as software annotation ([CHB09a], [LLT10], [MSVSL08a], etc.). Obtaining precise es-
timates depends on both the functional model, where the annotations will be inserted, and
the accuracy of the annotations themselves. First, it is necessary to decide at which stage of
the software compilation process the information is back-annotated. There are three possi-
bilities: in the original source code, in the host binary code, or in the compiler intermediate
representation (IR). In the current section, we will give a rundown of the three abstraction
levels (source-level, intermediate-representation level and binary-level) used in literature
for the functional model, as illustrated in Table 3.1. We will highlight the challenges that
come with each level and explain our inclination for one specific level of abstration.

22

3.2. Software Annotation for Performance Estimation

Table 3.1: Classification of previous works according to the adopted functional model

Source-level Intermediate-level Binary-level
simulation (SLS) simulation (ILS) simulation (BLS)

[LLT10] [ZH09] [LBH+00]
[Wan10] [GCK12] [PWH12]
[WH12] [GCZ13] [ZM96]

[LMGS12] [BGP09]
[MGLS11]
[SBR11b]
[SBR11a]

3.2.1 Source-Level Simulation (SLS)

To obtain performance estimates of the target platform, while natively executing a host-
compiled functional model, a feasible solution is to insert pre-estimated target-specific per-
formance metrics directly into the source code (e.g. written in C language). Annotating at
the source code level is referred to as Source Level Simulation (SLS). This approach is abun-
dantly adopted in performance estimation techniques for its high level of abstraction and
the simplicity gained from working with a source code.

int odd=0;
int even=0;
for(i=N−1;i>=0;i−−){

if(T[i]%2)
odd++;

else
even++; }

printf(”odd=%d”,odd);

(a) source code

bb2

bb3

bb4

bb5 bb6

bb7

bb8

(b) source-level CFG

Figure 3.3: An example of a source-level CFG

The general approach is to extract non-functional information from the target binary
code, usually at a basic block level granularity, and back-annotate it into the source code
from which the binary was generated. A basic block is a maximal sequence of consecutive
instructions that the program control flow can only enter at its first instruction and leave
at its last instruction, i.e. there is no possibility of branching in a basic block except at its
last instruction. A basic block is considered as the ideal estimation unit because it is the
smallest unit used by the compiler for optimization purposes. Moreover, the program is
usually represented by a control flow graph (CFG), a directed graph, where the nodes V are
the basic blocks of the program and each directed edge indicates the flow of control between
the nodes (fig. 3.3-(b)). CFG = (V,E), E ⊆ V × V . In fig. 3.3, a simple C code and its CFG
are delineated. A CFG has a unique entry node from which the execution of a program
starts.

23

Chapter 3. Preliminaries and Prior Work: On Native Execution of SW on Top of a Virtual
Platform

1: for (i = 0; i < n; i++) {
2: nb instr+=6;
3: a = b + c;
4: T[i] = (i+1)*a;}

source code

...
addl b(%rip), %ecx
.L3: movl %edx, (%rax)
addq $4, %rax
addl %ecx, %edx
cmpq %rsi, %rax
jne .L3

target binary code

line 3

debug info:

instr operands latency exec. unit ...
MOV r,r 1 ALU ...

...
ADD m,r 7 ALU ...

target ISA data sheet

bb cycles instrs
...

bb6 14 6
...
target perf. metrics

+

annotation

insertion

Figure 3.4: Source code annotation

As shown in fig. 3.4, performance metrics (e.g. number of instructions and number of
cycles) are statically extracted from the target binary with reference to the target ISA data
sheet. A more elaborate analysis would also include a detailed study of the pipeline and
the effect of the other micro-architectural components in order to accurately compute the
number of cycles. After this non-functional information is determined, it has to be inserted
at the right place in the source code (i.e. the source code portion that corresponds to the
binary basic block from which this information was extracted). Accurate placement of an-
notations requires a mapping between the source code and the binary code. It goes without
saying that finding correspondences between both codes is very difficult because of all the
compiler optimizations. These optimizations introduce many transformations to the orig-
inal source code leading in all but the most simple cases to a binary code with a control
flow graph (CFG) different from the original one. As a result, a one-to-one correspondence
between the source code CFG and the binary code CFG is typically broken by compiler op-
timizations, while establishing a precise mapping between the two CFGs is crucial to inject
the annotations at the right place in the high-level code and to obtain accurate performance
estimates.

The simple example in fig. 3.4 showcases a compiler optimization called loop-invariant
code motion. The value of variable a in line 3 of the source code does not change with each
iteration of the loop. So, the addition instruction should be performed only once and thus it
would be logical to hoist it outside of the loop body. In the machine code, the effect of this
compiler optimization is obvious (red instruction in machine code corresponds to line 3 in
the source code, but it no longer resides in the loop body). This optimization, among many
others, makes it hard to associate binary basic blocks to their source code counterparts. To
address this issue, mapping binary code to source code approaches have been propounded.

In [LLT10], the source code is represented by a control flow graph. Each node of the
CFG, i.e. basic block, is considered as the estimation unit where timing information is
placed. The source code is cross-compiled and the generated target binary code is analyzed.
The cycle count of each target binary basic block is estimated statically and annotated in
the corresponding source code basic block. This static analysis is coupled with run-time
corrections once the actual execution path of the program is known. The authors claim that
the source and binary CFGs are identical, even though they use an optimized binary code,

24

3.2. Software Annotation for Performance Estimation

and they conduct the mapping between the two CFGs using "compiler pragmas or symbols"
without giving any further explanation.

In [Wan10], a Source code instrumentation based Simulation (SciSim) is proposed and
more details about the mapping process using debug information is given. The authors
extract performance metrics from the binary code at a basic block level and insert the anno-
tations of each basic block before its corresponding source line. For complex C statements
like loop constructs for instance, they devised special instrumentation rules that define the
placement of the annotation code, i.e. before or/and after the corresponding source line,
with respect to the different loop parts (loop count initialization, loop condition and loop
count update). Other complex C constructs like While loop, Do-While loop and a function’s
prologue and epilogue have their own set of instrumentation rules. However, these rules
are tightly dependent on the syntax of the C programming language.

line @1 @2

3 —> 0x13360 0x13360

4 —> 0x13364 0x13364

5 —> 0x13368 0x1337c

Figure 3.5: Mapping information

As for the mapping between binary code basic blocks and source code statements, it
is established with the help of debug information dumpded automatically during cross-
compilation. Fig. 3.5 shows some mapping information excerpted from the DWARF’s line
table, which describes the correspondence between source lines and machine code instruc-
tions. According to fig. 3.5, the entry "5 −→ 0x13368 − 0x1337c" indicates that the instruc-
tions stored in memory region "0x13368 − 0x1337c" are produced from line 5 in the source
code. It is a seemingly efficient and elegant way to conduct an accurate mapping between
source and binary codes, however, when compiler optimizations are enabled (e.g. gcc -O2/-
O3/-Os), debug information might fail in providing correct mapping information leading to
estimation errors. Sometimes, even with correct debug information, if the annotations are
straightforwardly inserted in the source code according to the DWARF line table, estimation
errors will occur. This problem is depicted in fig. 3.4. Although debug information denotes
that the hoisted machine instruction (in red) corresponds to line 3 in source code, which
is correct, performance metrics related to this instruction should not be inserted inside the
loop body. Thus, the number of instructions (for example) inside the loop should exclude
the hoisted instruction (2 : nbinstr+ = 5). If this particularity is not taken into account
and we only rely on debug information, although correct, the number of executed instruc-
tions after natively simulating the software will be nb_hoisted × nb_loop_itr = 1 × 100 (for
example) times over what they should be.

Unsurprisingly, SciSim [Wan10] led to large mapping errors when used for optimized
(gcc -O2) code, especially when control flows were drastically changed by compiler opti-
mizations. Consequently, the authors of [Wan10] admitted that SciSim is restricted to per-
formance estimation of unoptimized (gcc -O0) software.

The limited usability of SciSim motivated Zhonglei et al. to propose a new mapping ap-
proach that takes into consideration compiler optimizations. So, in their work [WH12], the
idea behind the mapping consists of pinpointing loops in binary and source codes and at-
tributing levels to these loops. These loops are scrutinized in order to find out the effects of
compiler optimizations. In case the compiler did not alter the structure of the code and only
performed code motion optimizations, mapping problems between source code and binary

25

Chapter 3. Preliminaries and Prior Work: On Native Execution of SW on Top of a Virtual
Platform

code caused by these optimizations are addressed using a method called fine-grained flow
mapping, which also relies on debug information as in [Wan10], but with consideration to
these code motions. In case of aggressive compiler optimizations, flow mapping fails to
match source code portions to their equivalent binary basic blocks because of the heavily
modified code structure (which is usually the case with loops). So, their fall-back solution
is to identify the highly-altered loops of the source code and replace them with their op-
timized IR-level counterparts. The result is a mixture of the original source code and the
optimized IR code. However, the IR structure is not always identical to the binary structure,
as will be explained in subsection 3.2.2, which leads us to believe that only replacing source
code with IR code is not sufficient in obtaining a CFG identical to the binary one. Further
mapping efforts are needed to account for the dissimilarities between IR loops and binary
loops caused by aggressive compiler optimizations.

A control flow mapping algorithm, based on the analysis of loop and control depen-
dency properties of source code and binary code, is presented in [MGLS11]. Line references
provided by debug information are used, along with the analysis information, to match
branch edges and loops in the source code CFG and binary CFG. Standard transformations
activated at gcc -O2 optimization level, like while to repeat loop transformation and function
inlining, are reflected back into the source code CFG when no matching is found using line
references. Partial loop unrolling is not supported.

bb2

bb3

bb4 bb5

bb6

bb7

(a) bin-level CFG

bb2

bb3

bb4 bb5bb6

bb7

bbx dominates bby if
every path from entry node
to bby goes through bbx.
dom(bb3) = {bb4, bb5, bb6}

(b) dominator tree

Figure 3.6: Dominator relation

In [LMGS12], the CFGs of the source code and binary code are matched using the dom-
inance principle (fig. 3.6), which is bound to fail as stated by the authors, due to compiler
optimizations. So, the source and binary codes are divided into sub-graphs of loop regions
and branch regions. Each binary subgraph is matched to its source code counterpart in
a top-down manner by matching their root nodes using debug information, which is yet
again prone to errors. The problem is that due to compiler optimizations, there is no guar-
antee that the number of regions in the source code equals those of the binary code (in case
of aggressive compiler optimizations, such as complete loop unrolling, the number of loops of
the binary code becomes less than the one of the source code) or that the dominance prin-
ciple still holds, which may cause the matching process not to go as smoothly as described
by the authors. In case no proper mapping is found between two regions, which is mainly

26

3.2. Software Annotation for Performance Estimation

caused by loop optimizations, the authors resort to worst case estimation and the result is
annotated outside the source code loop.

In [SBR11b], debug information is used to relate the source code and the binary code.
Markers are inserted in the source code to indicate which portions correspond to which bi-
nary basic blocks. The binary-level control flow is reconstructed at the source level using
these markers and a path simulation code generated from the binary level CFG. The authors
assert that this technique of path simulation helps consider structural differences between
source code and binary code caused by compiler optimizations, such as loop unrolling and
function inlining. Only the case of loop unrolling where the CFG remains unaltered is briefly
explained and handled through manual identification and annotation of unrolled loops. To
overcome the inaccuracies caused by using debug information, the work in [SBR11a], which
is a continuation of [SBR11b], is based on a technique similar to [LMGS12] that compares the
execution order of source code statements and machine instructions using dominator homo-
morphism. This comparison is used to reconstruct and disambiguate compiler-generated
debug information. The authors claim that their approach is evaluated with respect to ag-
gressive compiler optimizations, such as loop unrolling, but they do not give any explana-
tion on how these optimizations are managed.

Mapping the source code CFG to the binary code CFG can be very complicated when
the two CFGs are dissimilar. SLS mapping techniques usually succeed with unoptimized
code. However, in practice, program developers usually compile their programs while en-
abling compiler optimizations (at least gcc -O2). These optimizations can radically change
the structure of the source code, which may impede the mapping process. So, using low-
level functional models have been sought to account for compiler optimizations and thus
facilitate the mapping.

3.2.2 Intermediate-Level Simulation (ILS)

IR-level simulation approaches use the compiler intermediate representation (IR) as a func-
tional model where non-functional information will be back-annotated. The IR code is gen-
erated by the compiler after certain optimization passes. So, the IR encompasses several
compiler optimizations. The discrepancy in the CFG structure between the source code and
the binary is avoided by working on the IR code whose structure is close to the binary CFG
and that allows for a simulation as fast as SLS.

Fig. 3.7 shows the intermediate representation corresponding to the same source code
featured in fig. 3.4. The invariant code motion optimization is present in the IR. In fact, in-
struction pretmp_19 = pretmp_2 + pretmp_12 in the IR, which corresponds to the loop
invariant code a = b+ c in the C code, is placed before the loop body, i.e. basic block 4 (bb4)
in the IR.

The presence of high-level, i.e. architecture-independent, compiler optimizations in the
IR made ILS popular in the performance estimation field [ZH09], [GCK12], [BGP09], etc. An
approach called intermediate source code instrumentation based simulation (iSciSim) is proposed
in [ZH09]. The authors convert the IR to a C code called intermediate source code (ISC). In
fact, their annotation flow (fig. 3.8) goes through three compilation steps and the source
code undergoes some modifications. The source code is cross compiled to generate an IR.
The IR is then transformed to an intermediate source code (ISC) (fig. 3.8-1). The ISC is
cross-compiled to generate a binary code from which debug information, as well as time
measures, are extracted (fig. 3.8-2). Time information is determined prior to simulation
using static pipeline analysis. This step in particular makes us question the accuracy of the

27

Chapter 3. Preliminaries and Prior Work: On Native Execution of SW on Top of a Virtual
Platform

<bb 2>:

if (n.4 14> 0)

goto<bb 3>;

else

goto<bb 6>;

<bb 3>:

pretmp 2 = b;

pretmp 12 = c;

pretmp 19 = pretmp 2 + pretmp 12;

pretmp 19 = pretmp 2 + pretmp 12;

...

goto<bb 4>;

<bb 4>:

...

ivtmp.14 4 = ivtmp.14 20 + 4;

if (ivtmp.14 4 != 28)

goto<bb 4>;

else

goto<bb 5>;

<bb 5>:

a = pretmp 19;

goto<bb 6>;

<bb 6>:

return;

for (i = 0; i< n; i++) {

a = b + c;

T[i] = (i+1)*a;}

source code

corresponding

IR CFG

Figure 3.7: An IR example

method because the ISC is different from the original source code, which means that the
binary generated from the ISC and from which they extract time information is definitely
different from the one generated from the source code. Besides, the mapping between the
binary code and the ISC is based on debug information, which is not reliable due to compiler
optimizations. Finally, a third compilation step takes place (fig. 3.8-3) where the annotated
ISC is compiled for the host machine and coupled with an on-line performance model (e.g.
cache memory and branch prediction models) and then it is natively simulated.

The work in [GCK12] is similar to [ZH09] in that debug information is used to map
addresses of assembly instructions to the optimized source line numbers. To obtain the
desired debug information, the binary is generated from the IR instead of the original source
code, which raises the same problems as before. To avoid the discrepancies caused by debug
information, the authors resorted to turning off compiler optimizations. They enhanced
their approach in a later work [GCZ13] by improving their mapping scheme with a more
elaborate Binary-to-IR mapping algorithm using a heuristic subgraph matching scheme.
However, this algorithm may lead to several possible matches for a single basic block, which
they dealt with using debug information. In their approach, they especially focus on CFG
structure changes caused by branch optimizations. Loop optimizations, on the other hand,
have a drastic impact on the CFG structure. When they are poorly-handled, they may lead
to far more erroneous estimations than "out-of-loop" mismatched blocks, in that the time
spent by a program on executing a loop usually outweighs the time spent on code portions
outside a loop.

28

3.2. Software Annotation for Performance Estimation

Figure 3.8: The iSciSim Approach [ZH09]

In [BGP09], the annotation scheme is based on the low level virtual machine (LLVM).
The authors extend the compiler by adding passes to the back-end (fig. 3.9) in order to
keep track of all compiler optimizations and reverberate them to a high-level IR that they
call cross-IR. The distinguishing feature of the cross-IR is that it contains both front-end and
back-end compiler optimizations. To do so, for all the target-dependent optimizations they
had to find their equivalents in the LLVM’s processor-independent ISA. Thus, the obtained
cross-IR CFG is equivalent to the target binary CFG, while being independent of the target
architecture. However, finding such equivalences is not a sure-fire process, which may lead
to unmatching CFGs. Adding to the fact that this approach is compiler intrusive, it also
relies on the target-specific instructions in order to find their match in the LLVM’s target-
independent ISA. This implies that whenever a new target is simulated, the matching pass
needs to be changed to cater for the new architecture.

Compiler optimizations are well-known for improving the run-time performance of pro-
grams. However, for approaches that aim at finding a relation between source code state-
ments and optimized binary code, these optimizations are perceived as a hindrance because
they significantly alter the structure of the code. Aggressive optimizations, like loop un-
rolling, make it impossible to match source-level statements to binary-level instructions only
relying on debug information. Even when IR code is leveraged instead of source code for its
optimized structure, there is no guarantee that a straightforward mapping between IR and
binary codes exists. For this reason, the majority of existing approaches either turn off all
compiler optimizations [SB08], [MSVSL08a] or rule out optimizations that heavily alter the

29

Chapter 3. Preliminaries and Prior Work: On Native Execution of SW on Top of a Virtual
Platform

Figure 3.9: IR-level annotation technique using an extended compiler [BGP09]

control flow graph [MGLS11], [ZH09], [GCZ13].

3.2.3 Binary-Level Simulation (BLS)

target
binary

simulation
compiler

host
binary

(a)

target
binary

simulation
compiler

host
binary

C
compiler

C
program

(b)

Figure 3.10: Two approaches of binary-to-binary translation taken from [ZM96]

To avoid the matching problems caused by compiler optimization, the target binary-
level code is used as a functional model [ZM96], [LBH+00], [PWH12]. This code contains
all the optimizations made by the target compiler. The target binary cannot be executed
on the target machine if the host and target ISAs are different, which is usually the case.
So, to be able to natively execute the target binary code, it is statically converted to either
functionally-equivalent host machine instructions (fig. 3.10-(a)) or a high level language
code written in C or C++ (fig. 3.10-(b)). The translation is carried out by a so-called sim-
ulation compiler.

30

3.3. Modeling Micro-Architectural Components: Lack of Consideration for Complex
Architectures

Figure 3.11: An example of C code generated from target binary code [Wan10]

Non-functional information is inserted in the re-constructed code in a straightforward
manner because both the functional model and the performance model are extracted from
the same target binary code. So, the simulation accuracy only depends on the performance
model.

BLS is very similar to SBT and presents the same set of limitations caused by the presence
of indirect jumps and potentially run-time self-modifying code. The authors of [ZM96] use
interpretive simulation, in addition to the compiled simulation, as a fallback mechanism in
case of self-modifying code, which slows down the simulation speed. To deal with indirect
branch instructions, authors in [LBH+00] consider every instruction as a possible indirect
branch target and thus they add a label in front of each one of them. The existence of such
labels in the translated code hinders the compiler optimization process during host code
generation.

In this thesis, we chose to use the compiler intermediate representation as a functional
model, where target-specific performance metrics will be inserted.

3.3 Modeling Micro-Architectural Components: Lack of Consider-
ation for Complex Architectures

In addition to the precise placement of annotations in the functional model (section 3.2), the
accuracy of the estimates also depends on the accuracy of the annotation data itself. The
retrieval of precise non-functional information and the careful abstraction and modeling of
target components play an important role in accurate and fast native simulation. For clarity
reasons, we will take the cycle count, the instruction count and the miss count as examples
of non-functional information in the remaining of this thesis.

MPSoCs tend to increase the level of parallelism by integrating VLIW processors with
instruction buffers, out-of-order processors, high-performance branch predictors, advanced
prefetch mechanisms, etc. Taking into account the impact of target-specific features on the
performance of the system in native simulation while maintaining a reasonable simulation
time has been addressed, to an extent, in previous research.

Estimating the execution time of a program can be handled by associating each instruc-
tion with its corresponding latency [MSVSL08b] using information provided by the target

31

Chapter 3. Preliminaries and Prior Work: On Native Execution of SW on Top of a Virtual
Platform

processor manual and simply tallying up the latencies of single instructions. This naive
approach is unrealistic and inaccurate because it completely blacks-out low-level timing ef-
fects of the processor micro-architecture such as pipeline effects, caching, branch prediction,
network congestion, superscalarity, etc. More in-depth approaches perform static and/or
dynamic analysis of the target code in order to yield accurate estimates.

Some effects such as pipeline stalls due to certain dependencies between instructions can
be determined statically, whereas the execution time of memory instructions or a pipeline
flush delay, caused by a conditional branch at the end of a basic block, are highly dynamic
and context-related and cannot be accurately determined prior to simulation. So, joining
static analysis to dynamic execution can be advantageous.

3.3.1 Estimation of Pipeline Effects

B

tB

(a)

A

tA

(b)

B

tB

CB

A tA

(c)

B

tB

CB

C

tC

Figure 3.12: Execution cost of a basic block

Most modern MPSoCs use a pipeline, which makes the execution time of a basic block
dependent on the sequence of its predecessors and also successors because the execution of
successive basic blocks may overlap. As a consequence, the execution time of a sequence
of basic blocks may be different from the sum of execution times of individual basic blocks,
as illustrated in fig. 3.12. The execution cost of a basic block is the difference between its
completion time and the completion time of its predecessor. The execution cost of the first
executed basic block (entry basic block) is equal to its execution time. So, the execution time
of a sequence of basic blocks can be computed as the sum of their execution costs (not their

execution times): Exectime(B1→ B2→ ...→ Bn) =
n∑

i=1
CBi .

As shown in fig. 3.12-(b), the execution time of basic block B depends on its predeces-
sor A. In fact, its execution time is longer than when B is executed in an empty pipeline
fig. 3.12-(a). This can be explained by the fact that some instructions of basic block A are
still in the pipeline and might stall some instructions of B because of data dependencies
or resource conflicts (pipeline stages, functional units, register values, etc.). The execution

32

3.3. Modeling Micro-Architectural Components: Lack of Consideration for Complex
Architectures

time of a basic block can also be affected by its successors in case the processor features a
superscalar pipeline with dynamic instruction scheduling or if it exhibits out-of-order exe-
cution capabilities. In fig. 3.12-(c), the execution time of B is affected by both its succesor
and predecessor and it is shorter than tB in fig. 3.12-(a). Since the sequence of instructions in
a basic block is known at compile time, pipeline effects such as data and structural hazards
can be studied statically.

In [RS09], a pipeline analysis is conducted by building execution graphs, also employed
in [LRM06] to determine an upper bound of block execution time, to model the execution
of basic blocks and the way they are processed through the pipeline. The authors take
into consideration all possible contexts by representing each context as a set of parameters
representing the availability of pipeline resources. They derive block costs from relative
start and finish times and as a function of the modeled parameters. Although the latency
of instructions also depends on the content of instruction and data caches and the branch
predictior table, Rochange et al., do not address this issue and assume perfect (always hit)
caches and oracle branch predictor.

In [GHP09] and [CHB09a], the stalling of the pipeline is reflected by statically determin-
ing interlocks between instructions and accordingly adding extra dependency cycles. These
dependencies are detected by examining the registers used in machine instructions. For
instance, if a register is loaded by an instruction and it is immediately used by the follow-
ing instruction, a dependency is pinpointed. The second instruction cannot start execution
unless its input register has been loaded by the previous instruction. However, modern pro-
cessors allow the execution of an instruction even if its data is not yet available. The authors
of [GHP09] advocate the use of the approach in [RS09] for superscalar processors.

3.3.2 Estimation of Cache Effects

Almost all modern MPSoCs are equipped with data caches to improve their performance
and to tighten the gap between their fast processing units and slow memory accesses by
taking advantage of the locality principle offered by these fast small memories. Therefore,
non-functional properties like execution time are ruled by the interaction between the soft-
ware and the cache. A cache hit for instance takes less time (and consumes less power) than
a memory access that has to cross the memory hierarchy to reach main memory. Conse-
quently, the number of hits and misses have a consequential impact on the execution time
of the software. So, estimating the performance of MPSoCs calls for taking into considera-
tion cache effects. These effects have been considered in static and dynamic techniques.

The Worst Case Execution Time (WCET) has been adopted in many researches in order
to estimate the software performance and guarantee that the execution time of the soft-
ware does not surpass a certain bound. This makes the WCET technique more convenient
with real-time embedded systems. Integer linear programming (ILP) has been proposed
in [LSA95] to estimate a tight bound on the WCET taking into account the instruction cache
effect. The idea of the ILP scheme is to represent the execution time of a program as a cost
function. Program structural constraints, program functionality constraints and instruction
cache constraints are determined then passed to an ILP solver in order to maximize the cost
function. Another approach based on computing the WCET for static instruction cache anal-
ysis is proposed in [PLH11]. They resorted to a fixed-point free analysis technique to avoid
the high consumption of memory and time. Their method offers a twofold estimation: a
mandatory basic analysis involving an intra basic block, as well as a loop analysis and an
optional analysis, which entails an inter basic block analysis and an inter call analysis.

33

Chapter 3. Preliminaries and Prior Work: On Native Execution of SW on Top of a Virtual
Platform

In [PJ15], an analytic method based on the computation of the reuse distance distri-
bution is employed to estimate cache performance. Different models are tailored to suit
various cache configurations (fully associative and N-way set associative with Random/
LRU/PLRU/bit-PLRU replacement policy). The main idea of these models is to keep track
of the cache behavior between two consecutive accesses to the same cache line using traces
of memory access sequences. The models are represented by a Markov chain in which tran-
sitions between different states depend on the reuse distribution. By analyzing the Markov
chain, a prediction of a miss ratio is determined.

In [SGCB12], a method to model memory accesses in a source level simulation was pro-
posed. This method relies on static cache analysis using the concept of "must" and "may"
states (as not every memory access can be statically determined to be either a hit or a miss).
To estimate these potential cache states, memory addresses are needed. However, not all
addresses can be known statically. So, interval analysis is used to determine the possible
address range of a memory access. This static analysis is then coupled with dynamic path
simulation. The result is a range of cache hits and misses; some accesses remain unclassified.

In [LMGSB13], the authors avoid the simulation overhead that may be caused by cache
modeling (also referred to as in-place caches) in a host compiled simulation by conduct-
ing a cache-conflict aware annotation. For instruction caches, a cache conflict analysis is
conducted for all loops before simulation. So, no instruction cache simulation needs to be
performed within loop bodies. For data caches, aggregated data cache simulation is used.
Instead of annotating every single memory access, a large data block with a large address
range (e.g. an array) is annotated at once. They also use data locality (stack, heap and data
section) to determine an address range, which can be used to estimate the number of data
cache misses. In this case, an over estimation of cache misses may occur.

Static approaches fall short of providing accurate performance estimation results be-
cause of the dynamic nature of cache memories. The state of the cache is highly dependent
on the execution context of the program, which can only be known at run-time. For this
reason, dynamic estimation techniques ([KMGS13], [WH13], [DPE11], [PCG09],[YMH+14])
rely on abstract models that imitate the behavior (performance-wise and not necessarily
functionality-wise) of the target micro-architectural components. Instruction and data cache
models are used during simulation in order to recreate the dynamic behavior of the real
caches. These models are triggered during simulation via appropriate functions, called an-
notation functions, inserted in the software. The interaction between the software and such
architectural models help determine the statically-unpredictible number of cache misses and
their delay.

However, these approaches are valid for simple architectures, such as scalar or in-order
processors, where instructions are executed sequentially and where memory accesses are
considered to be blocking. However, in more complex architectures like superscalar, VLIW
or out-of-order processors, a more complex dynamic behavior is exhibited. Out-of-order
processors, for example, are capable of executing instructions in advance, i.e. the proces-
sor does not stall on a cache miss, instead it continues executing independent instructions.
Moreover, load/store operations may be reordered by an out-of-order processor. So, the
above-mentioned approaches are not suitable for complex architectures.

An approach consisting of computing the stack distance histogram using memory traces
is used in [DAP15]. The main contribution was to propose an approximation of the num-
ber of misses and execution cycles with respect to different cache setups in an out-of-order
processor.

The authors of [PWH12] propose a new performance estimation technique dealing with

34

3.3. Modeling Micro-Architectural Components: Lack of Consideration for Complex
Architectures

dynamic out-of-order effects of the instruction queue and non-blocking caches. Since out-
of-order execution occurs at the instruction level, they model the out-of-order effects using
BLS as it allows the representation of the target code at the granularity of instructions. The
code is annotated with time information measured with a reference ISS. They make use of
the dependency chains generated by the cycle-accurate simulator to determine dependency
between load/store instructions and to perform static reordering of these instructions for
the purpose of simulating a non-blocking cache.

One of the contributions of this thesis is to propose a performance estimation approach
of an instruction cache taking into consideration the particularities of a VLIW architecture.

3.3.3 Branch Penalty

Modern pipelined microprocessor architectures make use of branch predictors to enhance
their performance. The role of a branch predictor is to speculate about which path a branch
will follow before the branch is even evaluated. An example of a branch prediction policy
is the static not-taken policy of ARM9. A conditional jump can either be taken and jumps to
its target in a different memory region, or not-taken and continues execution with the basic
block whose first address immediately follows the address of the branch instruction. In the
not-taken policy, the instructions of the consecutive block are always fetched and specula-
tively executed. If, at run time, it turns out that it is the other block that has to be executed,
the pipeline has to be flushed and a new fetch (of the correct instructions) is performed. This
branch misprediction incurs a non negligeable number of additional clock cycles.

Figure 3.13: Annotation of branch prediction effects [GHP09]

In order to take into account the misprediction delay, auhtors of [GHP09] annotate the
arcs of the target processor CFG by inserting additional basic blocks that contain the mispre-

35

Chapter 3. Preliminaries and Prior Work: On Native Execution of SW on Top of a Virtual
Platform

diction penalties on the corresponding arcs of the host CFG (fig. 3.13). A similar approach is
employed in [CHB09a]. More complex branch prediction techniques, such as bimodal, local,
global, two-level, TAGE [SM06], etc., may require the integration of a prediction model to
the annotation scheme and possibly the annotation of both taken and not-taken arcs. How-
ever, embedded processors usually still use static branch predictors.

The more the micro-architectural effects are accounted for, the higher the precision is and
the lower the simulation speed is. It is a compromise the developer has to make based on
the aspects of the MPSoC that need to be validated and whether the time allotted to design
space exploration allows exhaustive simulation or not.

3.4 Conclusion

In this chapter, we presented the solutions provided by previous works to the key issues
in native simulation. These issues include the difference between host and target address
spaces, which was addressed by the use of the HAV technology, and the inability of host-
compiled simulation to provide information about the performance of the system. An
overview of performance estimation techniques dealing with the latter issue was given.
We classified these techniques according to the abstraction level of the employed functional
model: source level, intermediate level and binary level. We also highlighted the advan-
tages and limitations of each approach insisting on the adopted mapping strategy between
the target binary and the high-level functional model for the purpose of annotation inser-
tion. As for the computation of performance metrics, previous approaches focused on the
effects of certain micro-architectural components (e.g. pipeline and instruction and data
caches) on the performance of the system and made a number of simplifications, which are
not valid for complex systems. Complex architectures that incorporate superscalar or VLIW
processors were not considered.

In the following chapters, we will present the key contributions of this thesis, which
include an IR-based annotation framework that aims at accurately placing non-functional
information into the IR code using a loop-oriented mapping algorithm and that computes
target-specific performance metrics by recreating the behavior of the real instruction cache
and instruction buffer of a VLIW architecture.

36

Chapter 4

IR-Level Annotation Framework for
Performance Estimation

Native simulation is one of the most suitable candidates to speed up the architecture space
exploration and early design validation steps. However, it lacks time information, which
is crucial in software performance estimation. To cater for the absence of time, a plenitude
of approaches that aim at annotating the software with time information have emerged.
These approaches (be it SLS, BLS or ILS) tend to either rely on debugging information when
mapping the binary code to the high-level code, which can be misleading due to compiler
optimizations, disregard (some or all) compiler optimizations or at best consider all com-
piler optimizations while being dependent on the target architecture.

In this chapter, we propose an IR-level (GIMPLE-CFG) annotation framework that is ar-
chitecture independent and that reflects compiler optimizations through a mapping scheme.
This mapping scheme is conducted at a basic block level, between the binary and the high-
level IR with a special focus on loop structures, as they are the most challenging part of the
mapping process.

We will give an overview of the proposed annotation framework in section 4.1, followed
by a detailed description of the espoused intermediate representation in section 4.2. The
mapping approach, which is the core of this chapter, will be discussed in section 4.3. A
mapping scheme devised to tackle common compiler optimizations (gcc -O2) will be ex-
plained and applied to a toy example, followed by a description of an overhauled version
of the mapping approach that deals with aggressive compiler optimizations (gcc -O3).

4.1 Annotation Framework Overview

The proposed ILS approach brings about two orthogonal issues. The first one concerns the
way of extracting non-functional information and the second is about where to place this
information in the IR. Thus, a two-fold strategy is required. Retrieving precise performance
metrics of the target processor is achieved by incorporating a performance model that takes
into account the effects of the target micro-architectural components. Inserting the obtained
information into the IR code requires a mapping scheme between the IR and binary CFGs.
As compilers perform many optimizations to enhance software performance, the high-level
code and the binary code structures may be radically different. Consequently, this mapping
process, which is key to correct performance estimation, is challenging to conduct, especially
when aggressive compiler optimizations are enabled.

37

Chapter 4. IR-Level Annotation Framework for Performance Estimation

source code

cross

compiler

IR-CFG

Gimple-CFG-To-C

compilable IR-CFG

time analysis

and annot insertion

annotated compilable

IR-CFG

target binary

Extract CFG

target binary CFG

Extract BB Info BB data base

CFG mapping mapping data base

native

sim platform

Figure 4.1: The IR-level annotation framework

We developed an IR-level annotation framework (fig. 4.1) that computes performance
metrics of the target processor and places them in their correct positions in the IR code
through a loop-oriented mapping scheme.

The workflow of the framework is outlined in fig. 4.1. The source code is percolated
through the framework leading to the generation of an optimized high-level code: Annotated
compilable IR-CFG.

First, the source code is cross-compiled generating both the intermediate representa-
tion (IR-CFG), after high-level compiler optimization passes are performed, and the target
binary containing both front-end and back-end compiler optimizations. Despite its easy-to-
understand syntax, Gimple CFG is not compilable. So, we converted it into a compilable
and optimized C code that maintains the CFG structure (uppermost flow). To do so, we
developed a tool called GIMPLE-CFG-To-C that carries out the transformation of the IR to
a particular compilable C code. This code preserves the functionality of the original source
code but has an optimized structure (inherited from Gimple CFG) that exposes the basic
block boundaries and accounts for the high-level optimizations. As for the binary, a CFG
is recovered from it and non-functional information available at compile time (number of
instructions, first and last addresses, number of cycles, etc.) is extracted from each basic
block of the binary CFG and stored in a basic block data base (lower-most flow). A full-blown
performance model would also include dynamic timing effects caused by components like
instruction and data caches.

As we mentioned earlier, extracting precise non-functional information from the target
binary is not enough in producing accurate performance estimates. This information has to
be inserted at the right place in the IR, hence the need for a precise mapping between the
binary CFG and the IR CFG (the middle flow fig. 4.1). The mapping algorithm results in a
Mapping data base, which will come in handy during the time analysis and annotation insertion.
Finally, annotations are inserted in the IR-like C code according to the mapping algorithm.

4.2 Choice of the Intermediate Representation

Due to compiler optimizations (branch optimizations, function inlining, loop optimizations,
etc.), accurate annotation of the source code, with low-level target-specific information, is
challenging. The discrepancy in the CFG structure between the source code and the bi-
nary code, which may lead to estimation errors, is avoided by working on the IR code that

38

4.2. Choice of the Intermediate Representation

encompasses machine-independent optimizations and whose structure is very close to the
binary CFG. One of the perks of using a high-level IR as a functional model is that it is
architecture-independent, unlike the BLS approach, which requires knowledge of the target
ISA. This makes our annotation approach retargetable.

4.2.1 GCC’s Intermediate Representations and IR to C Conversion

The GCC compiler is composed of three main parts: a front-end, which is language depen-
dent, a middle-end (a.k.a. Tree optimizer), which is language and target machine independent,
and a back-end, which is target dependent. The front-end and the middle-end are usually con-
sidered as one part. Fig. 4.2 depicts two decoupled parts, namely the front-end (and middle-
end) and the back-end. GCC offers a variety of options to dump intermediate representations
at different optimization stages. As illustrated by fig. 4.2, the final optimized file generated

source code

front-end
&

middle-end
low-level
Gimple

back-end

RTL

Parser

generic

Gimplifier

high-level
Gimple

Tree Optimizer

Figure 4.2: GCC’s intermediate representations

by the back-end right before assembly code generation is gcc-RTL (Register Transfer Level:
not to be confused with the RTL used in hardware description languages, is the final opti-
mization pass in GCC). Thus, the RTL format, which could be output using GCC’s dump
option -fdump-rtl-pass, is the closest to machine code as it encompasses machine-dependent
optimizations. However, RTL is a very low-level IR that highly depends on the target archi-
tecture. One of the optimization passes that takes place at the RTL level is register allocation.
This pass aims at replacing the pseudo registers with hard registers, which requires knowl-
edge of the target processor.

On the other hand, there are the GCC Tree Optimizer IRs, which are generated before
the RTL. These IRs contain front-end optimizations and can be dumped in a pretty print
format, which is a format that resembles (but not identical to) C code. The front-end parses
the source code and checks for syntactical errors. It converts the input source code into a
tree representation. An AST (abstract syntax tree)/GENERIC IR, which is independent of the
programming language, is then generated from this tree. Later, it is converted to a high-
level Gimple representation, which is a three-address representation. Gimple is a family of
intermediate representations (IR) based on the tree data structure. The gimplifier, which is a
compiler pass that is in charge of converting GENERIC into Gimple, allows simplifying com-
plex source code expressions, like for, while, do-while, switch,etc., by re-expressing them using
if and go-to statements and breaks statements into simpler code with three operands each.
To do so, it creates new temporary variables to keep the value of the sub-expressions. These
temporaries are called expression temporaries. The Tree Optimizer, then, performs several opti-
mization passes on high-level Gimple after lowering it to a CFG representation leading to the

39

Chapter 4. IR-Level Annotation Framework for Performance Estimation

generation of low-level Gimple.
What interests us is the last pass before RTL, which is Gimple CFG generation (low-level

Gimple in fig. 4.2) because it includes all machine-independent optimizations. Low-level
Gimple can be dumped using gcc -fdump-tree-optimized. Gimple CFG is both source-language
and target-machine independent.

while(i<100){

b[i]=a[i]× i;

i++;}

(a) source code

compiler front-end

<bb 3>:

i 13= (int) ivtmp.4 12 ;

4=MEM[symbol: a, index: ivtmp.4 12, step: 4, offset: 0B];

5 = 4× i 13 ;

MEM[symbol: b, index: ivtmp.4 12, step: 4, offset: 0B] = 5 ;

ivtmp.4 2= ivtmp.4 12 + 1 ;

if (ivtmp.4 2 != 100)

goto<bb 3>;

else

goto<bb 4>;

(b) Gimple code

Gimple-CFG-To-C

bb3:

i 13= (int) ivtmp 4 12 ;

a 4= *(int*)((unsigned int) a + (unsigned int) ivtmp 4 12× 4 + 0);

b 5 = a 4× i 13 ;

(int)((unsigned int)b + (unsigned int) ivtmp 4 12× 4 + 0)= b 5 ;

ivtmp 4 2= ivtmp 4 12 + 1 ;

if (ivtmp 4 2 != 100)

goto bb3 ;

else

goto bb4 ;

(c) Compilable IR code

Figure 4.3: Generation of a compilable IR

Although the high-level IR has a structure close to the binary code while retaining high-
level information of the original source code, such as variable names and high-level oper-
ations, Gimple is not compilable because of some naming rules of its temporary variables
and a few Gimple operations that do not comply with C syntax.

Fig. 4.3 outlines the generation process of a compilable IR code from a C code. First,
an intermediate representation is generated from the source code (fig. 4.3-(a)) and dumped
using gcc’s front-end. This IR (fig. 4.3-(b)) encompasses all architecture-independent op-
timizations. As mentioned earlier, the gimplifier pass converts complex C statements into

40

4.2. Choice of the Intermediate Representation

sets of simpler expressions. All control structures in the C code are lowered to conditional
jumps in Gimple. For instance, the while loop in the source code is broken down to if-else
statements in the IR. These conditional branches are followed by jump statements to the de-
sired targets using goto with the label of the target basic block (the borders of basic blocks
in the IR are delimited with labels). Basic block labels are also not C-friendly. We can also
notice the presence of new variables i.e. the temporaries, (e.g. ivtmp.4_12) to hold inter-
mediate values in complex expressions. In addition, some memory accesses (dealing with
arrays in particular) are performed using the MEM syntax (fig. 4.3-(b)). This MEM syntax
has the following structure: MEM [symbol : s, base : b, index : i, step : st, offset : of] (where
all parameters default to zero except for st, it defaults to one) and it refers to a memory
address(s+ b+ i× st+ of). This structure also does not conform to C syntax.

Other differences that are not represented in the example may be observed in function
definitons, pointer arithmetic operations and tree structures like ABS_EXPR, MIN_EXPR
and MAX_EXPR.

These differences between IR and C syntax, although small, prohibits the IR from being
compilable. So, a tool was devised (Gimple-CFG-To-C) to convert the IR into a compilable
C code. This tool handles the above-mentioned discrepencies between IR and C syntax
and generates a compilable IR (i.e. optimized C code) that maintains the same function-
ality as the original source code and has the same structure and optimizations as Gimple
(fig. 4.3-(c)). As shown in the compilable IR example, variables and labels are renamed. The
MEM structure is transformed by extracting the address to which the structure refers and
the data type (e.g. integer) of the value accessed by this memory address. The address is
cast as a pointer to the determined data type (e.g. (int *)) and a dereferencing operator (*) is
added to access the value located at that address: *(int *)((unsigned int)s + (unsigned int)b
+ (unsigned int)i × st + of). Once all conversions have been performed, the IR becomes
compilable and is used as a functional model.

4.2.2 Compiler Optimizations and Code Structure

Compilers offer a multitude of advanced optimizations that improve software performance
(common wisdom suggests up to 30%) and/or code size by exploiting instruction-level par-
allelism (ILP), data level parallelism, data locality, etc., [BEP04]. Enabling optimizations
comes at the expense of compilation time and debugging capabilities.

During the different optimization phases, the compiler uses the IR under the CFG format
because it facilitates the analysis and optimization process. Optimizations can be classified
in two categories:

• Machine-dependent optimizations: They exploit specific target machine features and
they are mainly based on register allocation and the use of special instructions of the
target machine (e.g. peephole optimizations, register allocation, hardware loops, loop
unrolling, if-conversion, etc.). These optimizations are performed by the compiler
back-end.

• Machine-independent optimizations: They improve the target code by operating on
abstract programming concepts (structures, loops, objects, etc.) that do not require any
consideration of the target machine properties (e.g. hoisting, renaming of temporary
variables, constant propagation, dead code elimination, loop distribution, etc.). These
optimizations are performed by the compiler front-end.

41

Chapter 4. IR-Level Annotation Framework for Performance Estimation

Compiler optimizations can have a local effect (local to a vertex of the CFG, i.e. a basic
block) or a global effect (the scope of the entire CFG). Locally-scoped optimizations only
look at the instructions inside a basic block (e.g. instruction combining, interchange of two
independent adjacent instructions, etc.), so they do not require a lot of information and they
are easier to perform compared to global optimizations that necessitate a global view of
the program and complex computations (e.g. code block reordering, cross jumping, func-
tion inlining, dead code elimination, vectorization, etc.). Also, some optimizations preserve
the structure of the code (e.g. common sub-expression elimination, dead code elimination,
constant folding and propagation, hoisting, instruction combining, etc.), others introduce
many transformations to the original source code leading in all but the most simple cases
to a binary code with a control flow graph (CFG) different from the original one (e.g. if-
conversion, loop distribution, loop unswitching, loop fusion, vectorization, jump threading,
loop unrolling, etc.). Optimizations are enabled if a Ox (x = 1, 2, 3) level is specified on the
command line when gcc is invoked. With O0, no optimization is performed and the source
code is directly transformed to machine instructions. Fig. 4.4 shows two different binary
codes generated from the same source code. Fig. 4.4-(b) corresponds to the unoptimized
binary and fig. 4.4-(c) corresponds to the optimized one. With the optimization level O2 the
code size is reduced compared to the unoptimized one.

A higher optimization level is inclusive of all the optimizations enabled at lower levels
and turns on additional optimizations. The O3 level for example, applies a larger number
of optimizations compared to the level O2 including aggressive ones that radically change
the structure of the code, like loop unrolling. More (aggressive) optimizations does not nec-
essarily mean more performance gain as the code can grow in size (in case of certain op-
timizations like loop unrolling or function inlining), which increases memory requirements,
and a slowdown in execution time can sometimes be observed when a very small instruc-
tion cache is used. Developers usually use level O2, where most common compiler opti-
mizations are turned on while maintaining a reasonable code size, or level Os, where all O2
optimizations that do not increase the executable size are enabled.

As we can notice in fig. 4.5, the IR and the binary code have the same CFG structure.
So, there is a one-to-one relationship between basic blocks of the CFGs, which facilitates the
mapping process. These two CFGs are said to be isomorphic. It should be noted that this
best case scenario (i.e. isomorphic CFGs), as depicted in fig. 4.5, does not always occur. An
isomorphism from CFGIR(VIR, EIR) to CFGbin(Vbin, Ebin) is a pair of bijections:

φ : VIR → Vbin, ψ : EIR → Ebin

such that ∀e ∈ EIR and vertices u, v ∈ VIR, the edge e is incident with u, v iff the edge ψ(e)
is incident with the vertices φ(u), φ(v):

e = uv ⇔ ψ(e) = φ(u)φ(v).

CFGIR and CFGbin are said to be isomorphic when such pair of bijections exists. In this
case, we benefit the most from the IR representation because the code preserves its structure
till the end of the compilation. However, once a loop is introduced, which is illustrated in
fig. 4.6, the CFGs are not isomorphic anymore. In addition to loops, the compiler back-end
may optimize branch statements by using target-specific instructions (if-conversion), which
may further change the structure of the code.

As discussed before, Gimple-CFG does not take into account target specific optimiza-
tions which will lead, in certain cases, to a CFG different from the target binary one. How-

42

4.2. Choice of the Intermediate Representation

while(i<100){

b[i]=a[i]× i;

i++;}

(a) source code

BLOCK 2

pushq %rbp

.cf def cfa offset 16

.cf offset 6, -16

movq %rsp, %rbp

.cf def cfa register 6

subq $696, %rsp

SUCC: 4 [100.0%]

jmp .L2

BLOCK 3

.L3: movl -804(%rbp), %eax

cltq

movl -800(%rbp,%rax,4), %eax

movl %eax, %edx

imull -804(%rbp), %edx

movl -804(%rbp), %eax

cltq

movl %edx, -400(%rbp,%rax,4)

SUCC: 4

addl $1, -804(%rbp)

BLOCK 4

.L2: cmpl $99, -804(%rbp)

SUCC: 3 5

jle .L3

BLOCK 5

movl -280(%rbp), %eax

leave

.cf def cfa 7, 8

SUCC: EXIT [100.0%]

ret

.cf endproc

BLOCK 2

subq $688, %rsp

.cf def cfa offset 696

xorl %eax, %eax

SUCC: 3 [100.0%]

BLOCK 3

.p2align 4,,10

.p2align 3

.L5: movslq %eax, %rdx

movl -120(%rsp,%rdx,4), %ecx

imull %eax, %ecx

addl $1, %eax

cmpl $100, %eax

movl %ecx, 280(%rsp,%rdx,4)

SUCC: 3 [99.0%]4 [1.0%]

jne .L5

BLOCK 4

movl 400(%rsp), %eax

addq $688, %rsp

.cf def cfa offset 8

SUCC: EXIT [100.0%]

ret

.cf endproc

(b) unoptimized binary code

(c) optimized binary code

gcc -O0
gcc -O2

Figure 4.4: An example of two different binary codes generated from the same source code

ever, many optimizations take place in the GCC Tree Optimizer as the trend in GCC con-
sists of advancing the RTL optimization passes to the Tree Optimizer level [Nov06]. Target-
independent loop optimizations are more and more carried out before the back-end. In fact,
some tree loop optimizations can be manually activated through specific flags (for eg: -floop-
interchange, -ftree-loop-im, -ftree-parallelize-loops, etc.) as they are not automatically activated
by just precising an optimization level.

Fig. 4.6 illustrates a simple example of a C code compiled with gcc, using the optimiza-

43

Chapter 4. IR-Level Annotation Framework for Performance Estimation

<bb2>
D.3434=n.2 & 1;
If (D.3434==0)
goto <bb3>;

else
goto <bb4>;

<bb3>
printf(”Even”);
goto <bb5>;

<bb4>
printf(”Odd”);
goto <bb5>;

<bb5>
D.3438=0;

n={CLOBBER};
return D.3438;

<bb2>
lw $r0=28[$r12]
cb.even $r0, .L5

<bb3>
make $r0=.LC3

call puts
goto .L3

<bb4>
.L5: make $r0=.LC2

call puts
goto .L3

<bb5>
.L3:lw $r8=16[$r12]

make $r0=0
add $r12=$r12.16

set $ra=$r8
ret

(b) Odd even binary CFG(a) Odd even IR CFG

Figure 4.5: An example of isomorphic IR and binary CFGs

tion level O2, and its corresponding IR and binary CFGs. The IR is generated by the com-
piler after the front-end so it contains high-level optimizations. The binary, on the other
hand, encompasses both front-end and back-end compiler optimizations, hence the differ-
ence between the IR and binary CFGs. The C code (fig. 4.6-(a)) underwent several compiler
transformations before reaching the binary generation pass. One of the obvious transforma-
tions present in both the IR (fig. 4.6-(b)) and binary (fig. 4.6-(c)) CFGs is Loop Reversal, which
consists of running the loop backward. Moreover, the loop in the IR is not identical to the
one in the binary because it went through tail duplication and branch target expansion. First,
the tail (bb6ir) is duplicated. Then, bb6ir and its clone (bb6ir) are merged into their predeces-
sors (bb4ir and bb5ir), which are the targets of the condition in bb3ir , leading to bb4bin and
bb5bin. The expansion of the branch targets often increases code size but by forming larger
blocks of instructions, more possibilities of optimization and scheduling are created.

Although, the IR is closer in its structure to the binary than the source code is, disparities
can sometimes occur due to optimizations (the loop in fig. 4.6-(b) is composed of four basic
blocks including one loop latch while the one in fig. 4.6-(c) has only three basic blocks and
two loop latches). An accurate mapping should be able to circumvent such mismatches. For
example, mapping the CFG in fig. 4.6-(b) to the one in fig. 4.6-(c), without modifying the IR
structure, results in: bb2ir ⇔ bb2bin, bb3ir ⇔ bb3bin, bb4ir ⇔ bb4bin, bb5ir ⇔ bb5bin , bb6_ir ↔ ∅
and bb7ir ⇔ bb6bin .

44

4.3. Proposed Mapping Approach Between IR and Binary CFGs

for(i = 0; i < N ; i++)
if (cond(x))

op1(x);
else

op2(x)
return x;

bb2
init()

bb3
if (cond(x))

bb4
op1(x)

bb5
op2(x)

bb6
i−−

if (i ≤ 0)

bb7
return x

bb2
init()

bb3
if (cond(x))

bb4
op1(x)
i−−

if (i < 0)

bb5
op2(x)
i−−

if (i < 0)

bb6
return x

(a) C code

(b) IR CFG (c) BIN CFG

Figure 4.6: IR and binary CFGs of a simple C code compiled with gcc -O2

4.3 Proposed Mapping Approach Between IR and Binary CFGs

The linchpin of accurate coupling of the performance model and the functional model (IR
code) is the mapping process. In order to accurately place the annotations in the IR code,
a precise mapping needs to be performed. Although, we decided to meet the binary code
halfway by using the IR instead of the source code, a straightforward mapping is not guar-
anteed because low-level Gimple does not contain back-end optimizations. The compiler
back-end may introduce further optimizations to the IR leading to different IR and binary
CFGs.

Mapping branch structures is not very complicated as it falls back either to ignoring the
extra basic blocks in the IR (i.e. extra bbs remain unmapped) or to mapping a basic block in
the IR to more than one basic block in the binary. Some cases of branch optimizations and
their effect on the structure of the code are addressed in [LMGS12] and [GCZ13]. Further
details about mapping branch structures will be provided in subsection 4.3.2. The main
focus of our mapping scheme is to match IR basic blocks to their equivalents in the binary
CFG with special consideration to loop structures.

Compilers perform several loop transformations, such as loop unrolling, loop permuta-

45

Chapter 4. IR-Level Annotation Framework for Performance Estimation

tion, loop fusion, loop fission, etc., to speed up a program. Due to these optimizations, even
a small annotation error will lead to serious repercussions on the overall performance of the
software because this insignificant error will be magnified as it will be repeated as many
times as the number of loop iterations.

In our mapping scheme, we focus on loops because codes without loop statements do
not engender major mapping problems. Indeed, programs spend the majority of their ex-
ecution time on code inside loops, thus we consider loops as hotspots. On the bright side,
target-independent loop optimizations are more and more carried out before the back-end
(i.e. before RTL) [PCB06], thus minimizing stucture dissimilarity between the IR and the
binary CFGs. As a result, analyzing loop structures at the IR level is very profitable as op-
posed to source code [WH12]. Finding which loop in the binary code corresponds to which
loop in the source code is not a trivial task [LMGS12] as source code and binary code have
very different structures.

We will start first, in subsection 4.3.1, by explaining the proposed mapping algorithm
that aims at finding a correspondence between basic blocks of IR and binary CFGs. This
algorithm tackles compiler optimizations enabled at level O2. Then, in subsection 4.3.2, we
will describe how we adapted the mapping algorithm to aggressive optimizations enabled
at level O3, namely loop unrolling.

4.3.1 Basic Mapping Scheme: Tackling Standard Compiler Optimizations

Our mapping process aims at matching basic blocks of the IR CFG with their counterparts
in the binary CFG using an algorithm based on CFG condensation and the principle of fixed
points. Before we dive into the details of this algorithm, we will give an insight about two
concepts, which are considered to be the pillars of the proposed mapping approach.

Fixed Points

In the context of matching IR and binary CFGs, if two elements, each from a graph, are
determined to be equivalent, they are both considered fixed points. We designate by element
a subgraph SG = (VSG, ESG) of a CFG = (VCF G, ECF G):

SGCF G := (VSG ⊆ VCF G ∧ ESG ⊆ ECF G),

that satisfies a property P , which will be descibed hereafter. A basic block is an example
of such subgraph. Entry basic blocks of the IR and binary CFGs are considered fixed points
because control flow can only enter a program through one entry point, which makes these
entry basic blocks equivalent. The objective is to find as many fixed points as possible.

The idea of fixed points is inspired from [DR05] in which the authors conduct a bijective
mapping using fixed points between two differing executables of the same source code, for
the purpose of malware analysis. However, loop optimizations were not considered. Need-
less to say that finding fixed points in our case is more delicate because we are working with
two different CFG representations: IR and binary.

Strongly Connected Component (SCC)

A subgraph SG, used in the mapping algorithm, should satisfy property P : SG should
be a maximal strongly conncected subgraph, i.e. a strongly connected component (SCC). A
SCC of a directed graph is a maximal set of vertices such that for every pair u and v in the
set, there is a path from u to v, p1 = u → v, and a path form v to u, p2 = v → u, i.e. each
vertex of the set is reacheable from every other vertex of that same set. Fig. 4.7 highlights a

46

4.3. Proposed Mapping Approach Between IR and Binary CFGs

1 2 3

4 5

SCC1 SCC2

SCC3

Figure 4.7: An example of SCCs

simple directed graph decomposed into three SCCs. SCC1 is composed of three vertices,
SCC2 and SCC3 are composed of one node each.

1 (1,1)

2(2,1)

3(3,3)

5(4,4)

4 (5,1)

tree edge

back edge

Figure 4.8: SCC decomposition using DFS

To decompose the CFGs into SCCs we rely on Tarjan’s algorithm [Tar72], which is
O(n + m) where m is the number of vertices and n is the number of arcs of a given graph.
Tarjan reduces the problem of finding the strongly connected components of a graph to
the problem of finding the roots of the SCCs. To do so, a depth first search (DFS) is con-
ducted leading to the genaration of a tree/forest and two values (LOWVINE ,LOWPT) are
computed for each node of the tree. LOWVINE(v) is the time/order at which node v was
discovered during the DFS. LOWPT (v) indicates LOWVINE(u) such that u is the earliest
visited vertex (the vertex with minimum discovery time) that can be reached from subtree
rooted with v. Node v is the root of a SCC in Graph G iff LOWPT (v) = LOWVINE(v).
Nodes with the same LOWVINE value form a strongly connected component.

Fig. 4.8 illustrates the DFS tree of the graph in fig. 4.7 and the (LOWVINE ,LOWPT)
values of each node. For an in-depth description of the SCC extraction algorithm, as well as
its implementation, we invite our readers to peruse [Tar72].

Mapping Algorithm

Algorithm 1 presents a high-level view of the proposed mapping approach.
We now give a detailed explanation using the example of fig. 4.9.

i) First, the IR and binary CFGs are both decomposed into SCCs using Tarjan’s algo-
rithm [Tar72] (line 2).

Fig. 4.9 shows the Gimple CFG (a) and the binary CFG (b) of the toy example BubbleSort. The
Gimple CFG and the binary CFG are both composed of 8 SCCs. For example, the IR SCCs

47

Chapter 4. IR-Level Annotation Framework for Performance Estimation

Algorithm 1 MAPCFG(CFGir,CFGbin)

1: for x ∈ {ir, bin} do
2: SCCx ← EXTRACTSCC(CFGx)
3: . SCCx is a set of CFGs, CFGx is a CFG
4: SCCx_loop ← EXTRACTLOOP(SCCx)
5: . SCCx_loop is a set of CFGs
6: SCCx_cont ← CONTRACTSCC(SCCx_loop)
7: . SCCx_cont is a set of single-node CFGs
8: CFGx_cond ← CONDENSECFG(CFGx, SCCx_cont)
9: . CFGx_cond is a directed acyclic graph

10: end for
11: MATCH(CFGir_cond, CFGbin_cond)
12: . builds mapping (⇔) between IR and binary SCCs
13: for all {sccir, sccbin} ∈ (SCCir_loop, SCCbin_loop) do
14: if sccir ⇔ sccbin then
15: REMOVEBACKARCS(sccir, sccbin)
16: MAPCFG(sccir, sccbin)
17: end if
18: end for

2 SCC1i r

4

SCC2i r

3
5 SCC3i r

12

6

10SCC4i r

117

8

9

13 SCC5i r

15 SCC6i r

14
16 SCC7i r

exit SCC8i r

(a) IR CFG

2 SCC1bi n

3 SCC2bi n

4 SCC3bi n

5

6

7 SCC4bi n

8 9

10 SCC5bi n

11 SCC6bi n

12 SCC7bi n

exit SCC8bi n

(b) Bin CFG

Figure 4.9: The IR CFG (a) and the binary CFG (b) of the BubbleSort example

are: SCC1 = {bb2}, SCC2 = {bb3, bb4} , SCC3 = {bb5}, ..., SCC8 = {bbExit} as indicated in
fig. 4.9-(a).

48

4.3. Proposed Mapping Approach Between IR and Binary CFGs

2

4

3
5

12

6

10

117

8

9

13

15

14
16

exit

LP0 1

LP0 2

LP0 3

(a) IR CFG

2

3

4

5

6

7

8 9

10

11

12

exit

(b) Bin CFG

LP’0 1

LP’0 2

LP’0 3

Figure 4.10: Identification of loop blocks in the IR and binary CFGs of the BubbleSort exam-
ple

ii) Second, we identify SCCs that are loop blocks among the extracted SCCs (line 4). A
SCC with at least one arc is a loop block.

Fig. 4.10 highlights the IR and binary loop blocks after step ii. Among the SCCs extracted at
step i, there are three SCCs, in each CFG, that are composed of at least one arc. These loop
blocks represent level-0 loops (i.e. outermost loops) that we call LP0_i for the IR and LP ′0_i
for the binary.

iii) Third, SCCs with at least one arc (i.e. loop blocks) are contracted into a single node
(line 6).

At this level of the algorithm, we are not interested in the basic blocks that constitute a loop
block, but we are rather interested in the loop block as a whole. That is why we abstract
away these basic blocks and consider a loop block as a single node (fig. 4.11).

iv) Fourth, we reconnect the SCCs again forming a new CFG that is the condensation of the
original CFG (line 8). This resulting CFG is a directed acyclic graph since its nodes are
SCCs.

Fig. 4.11 delineates the condensed IR and binary CFGs.

49

Chapter 4. IR-Level Annotation Framework for Performance Estimation

2SCC1i r

SCC2i r

5SCC3i r

SCC4i r

13SCC5i r

SCC6i r

16SCC7i r

exitSCC8i r

(a) IR CFG

2 SCC1bi n

SCC2bi n

4 SCC3bi n

SCC4bi n

10 SCC5bi n

SCC6bi n

12 SCC7bi n

exit SCC8bi n

(b) Bin CFG

Figure 4.11: Condensed IR and binary CFGs of the BubbleSort example

v) In the fifth step, we match the binary and IR condensed CFGs (line 11). The mapping
process becomes easier as we contracted the loops into single nodes. At this level,
basic blocks outside level-0 loops, as well as level-0 loops, are matched. The way our
matching scheme works is to find as many fixed points as possible. A fixed point, as
explained before, is an SCC in the IR-CFG that has a surefire corresponding SCC in
the binary CFG, which is also considered as a fixed point. Entry SCCs, which are fixed
points, are insufficient in propagating fixed points across the CFGs. So, we need to
find more of them. Under the assumption that the number of loops in the IR remains
the same in the binary (this assumption may not hold when using optimization level
O3 as several loop optimizations that are susceptible of changing the number of loops
are activated, whereas, in this section, we focus on optimization level O2), each loop
in the IR will map to exactly one loop in the binary. So, if we find out which loop in
the IR corresponds to which one in the binary we will have loop blocks as fixed points
which will facilitate the mapping process of the whole CFG. To do so, we use debug
information to match each loop in the IR code to its corresponding loop in the binary.
And since, in our case, there is only one possible match for each loop block in the IR,
debug information is conclusive. Thus, loop blocks are matched and considered as
fixed points.

More fixed points can be created iteratively starting with the already-established fixed

50

4.3. Proposed Mapping Approach Between IR and Binary CFGs

points (loop blocks and the entry SCCs) and the relation PRED(SCC) (resp. SUCC(
SCC)), which returns the immediate predecessor (resp. successor) of a given fixed-
point (eg. PRED(LP0_2) = SCC3ir = bb5ir, SUCC(LP0_1) = SCC3ir = bb5ir,
PRED(LP ′0_2) = SCC3bin = bb4bin, SUCC(LP ′0_1) = SCC3bin = bb4bin so bb5ir ⇔
bb4bin), until no more fixedpoints can be found.

Some instructions contained in the basic blocks (such as function calls, exit and return
statements) along with debug information may be used as clues to curtail the ambi-
guity that may arise when designating fixed points and thus improve the accuracy of
the mapping. This may sound contradictory as we previously denounced the use of
debug information. However, our mapping scheme does not rely entirely on debug
information. Instead, debugging is only used to solve equivocal cases.

The mapping between the condensed IR and the binary CFGs in our example, consid-
ering loop blocks as fixedpoints and using the PRED/SUCC relations, is straightforward:
bb2ir ⇔ bb2bin, LP0_1 ⇔ LP ′0_1, bb5ir ⇔ bb4bin, LP0_2 ⇔ LP ′0_2, bb13ir ⇔ bb10bin,
LP0_3⇔ LP ′0_3, bb16ir ⇔ bb12bin, bbEXITir ⇔ bbEXITbin. To differentiate between basic
blocks from the IR CFG and the binary CFG, we will use (respectively) this notation (only
when an ambiguous situation arises): bbiir and bbibin.

12SCC1i r

6SCC2i r

10

11 SCC4i r7SCC3i r

=

LP1 1 8

9

(a) LP0 2

5 SCC1bi n

6

SCC2bi n

=

L’P1 1

7

8 9

SCC3bi n

(b) LP’0 2

Figure 4.12: Recursive Mapping of SCCs

In order to take into account basic blocks that constitute the level-0 loop, we have to
recursively apply the same process (steps i, ii, iii, iv and v) but for loop blocks instead of the
entire CFGs (line 13):

vi) Sixth, we start by removing the back arcs of the loop block, in that if we keep them we
cannot decompose it into SCCs, by definition of a SCC (line 15).

We take LP0_2 and LP ′0_2 as examples from fig. 4.10, to demonstrate the recursive
mapping process. Back arc bb11ir → bb12ir is removed from LP0_2. Similarly, back arc
bb9bin → bb5bin is removed from LP ′0_2. The result is shown in fig. 4.12.

51

Chapter 4. IR-Level Annotation Framework for Performance Estimation

vii) Seventh, we apply i, ii and iii on the modified loop block (line 1).

The SCCs of the "modified" subgrapghs LP0_2 and LP ′0_2 after removing their back
arcs are highlighted in fig. 4.12. LP0_2 and LP ′0_2 each enclose one nested loop, SCC3ir

and SCC2bin that we contracted to LP1_1 and LP ′1_1 (respectively). We will have to apply
steps vi and vii on these loops as well. We repeat the same process for each loop level in the
CFGs until no more SCCs with at least one arc are found (in other words, no more loops are
found).

There are less SCCs in LP ′0_2 than in LP0_2 due to compiler optimizations. To reflect
these optimizations in the IR, certain nodes in LP0_2 will remain unmapped. To decide
which nodes will be unmapped, we start first by matching the loop blocks as they constitute
fixed points at this level of the recursion from which we will infer more: LP1_1 ⇔ LP ′1_1.
PRED(LP1_1) = bb6, PRED(LP ′1_1) = bb5. So, bb6ir ⇔ bb5bin (bb6ir and bb5bin become
fixed points). SUCC(LP1_1) = bb11, SUCC(LP ′1_1) = bb9. So, bb11ir ⇔ bb9bin (bb11ir and
bb9bin become fixed points).

As a result, bb12ir remains unmapped. We then, apply vi and vii on LP1_1 and LP ′1_1.
SCC(LP1_1) : {bb10, bb7, bb8, bb9}, SCC(LP ′1_1) : {bb6, bb7, bb8}.

Here, we also have more SCCs in LP1_1 than in LP ′1_1. In this case, we have a branch
inside the loop blocks. In the IR (fig. 4.12-(a)), the loop header (bb10) and the branch state-
ment (bb7) are in two separate basic blocks. However, in the binary (fig. 4.12-(b)), they are
grouped together in one block bb6. To reflect this optimization, the basic block containing
the branch statement in the IR will be mapped to the basic block of the branch and the loop
in the binary: bb7ir ⇔ bb6bin. The branch targets in the IR are mapped to their equivalents
in the binary: bb8ir ⇔ bb7bin, bb9ir ⇔ bb8bin. bb10ir will stay unmapped.

Table 4.1: The mapping data base of the example of fig. 4.9

IR bb2 bb3 bb4 bb5 bb6 bb7 bb8 bb9
BIN bb2 ∅ bb3 bb4 bb5 bb6 bb7 bb8
IR bb10 bb11 bb12 bb13 bb14 bb15 bb16 exit

BIN ∅ bb9 ∅ bb10 ∅ bb11 bb12 exit

Table 4.1 illustrates the mapping data base resulting from applying mapping algorithm 1
on the CFGs in fig. 4.9.

By following these mapping steps, multi-level loops can be easily matched because the
problem of dealing with complicated loop structures always falls back to dealing with a one-
level loop thanks to the contraction method. The only challenge we may face with a loop is
when it encompasses branches (like in our example when the loop header and the branch
statement are amalgamated in one block in the binary). Loops with a condition-free body
are relatively easy to match: if the number of basic blocks in the loop block is the same in the
IR and the binary code then the mapping is straightforward. Otherwise, if the basic blocks
in the IR outnumber the ones in the binary code, certain blocks will remain unmapped in
the IR. In the opposite case, several basic blocks of the binary code will be mapped to one
basic block in the IR.

In this section, we proposed an annotation framework that aims at accurately placing
annotations in the high-level IR code using a mapping algorithm that takes into account O2
compiler optimizations. The algorithm pays particular attention to loop structures as they

52

4.3. Proposed Mapping Approach Between IR and Binary CFGs

considerably affect the accuracy of the estimations. The mapping scheme allows us to reflect
the behavior of the optimized binary code onto the IR. There are, however, extreme cases
where the mapping cannot take into account all the optimizations in the binary code. These
cases occur when a node in the binary code has more (ingoing or/and outgoing) arcs than
its corresponding node in the IR. These arcs represent possible execution paths that the code
may take. These paths are not represented in the IR as we do not introduce any structural
modification to the original IR (we neither add nor reduce any arcs or nodes) at this level.

4.3.2 Upgraded Mapping Scheme: Tackling Aggressive Compiler Optimizations

The mapping algorithm, described in subsection 4.3.1, succeeds in dealing with the major-
ity of structure modifications caused by optimizations enabled at level O2 without changing
the IR CFG. Thus, it provides an accurate mapping between an IR CFG and its correspond-
ing binary CFG compiled with the gcc -O2 optimization level where the number of loops
in the IR is identical to the one in the binary. Experiments on the instruction count, which
are detailed in the experimentation chapter (chapter 6, subsection 6.3.1), prove the accuracy
of the algorithm by showing a small error value (an average of 2%). However, at the O3
optimization level, aggressive compiler optimizations, such as loop unrolling, are activated.
These optimizations can radically change the CFG and may lead in certain cases to a dif-
ferent number of loops between the IR and the binary code. So, obtaining accurate results
by merely applying the proposed algorithm without performing any modification on the IR
CFG is simply not feasible.

The Inadequacy of Algorithm 1 to Deal with O3 Level Optimizations

Fig. 4.13 shows a simple program (consisting of the addition of two arrays inside a loop
with an unknown trip count) at three different compilation stages: before any compiler
optimization is conducted (fig. 4.13-(a)), after machine-independent optimizations are per-
formed (fig. 4.13-(b)) and after all (i.e. front-end and back-end) compiler optimizations are
carried-out (fig. 4.13-(c)). These figures were obtained using gcc -O3.

The figure captures the salient effects of compiler optimizations on the different CFGs.
In addition to the optimizations automatically enabled at level O3, we also enabled an op-
timization called Strip-mining by activating a Graphite (a framework that brings more high-
level loop optimizations to Gimple) flag. Strip-mining affects the structure of the code by
transforming a single loop into a nested loop. This transformation is noticeable in the IR
code (fig. 4.13-(b)) by the presence of an additional loop compared to the source code (node
6).

This optimization is no exception as several others (loop fusion, loop distribution, com-
plete unrolling of small loops, loop unswitching, just to name a few) can be enabled. These
optimizations can radically change the structure of the code by introducing major transfor-
mations to loops resulting, in many cases, in the appearance/disappearance of new/exist-
ing loops [BEP04].

Fig. 4.13-(b) and fig. 4.13-(c) show the same number of loops in the IR and the binary
code after strip-mining, but the two CFGs are different due to the unrolling of the inner
loop. We will apply algorithm 1 on the example of fig. 4.13 to show its limitations when
used on an O3 optimized code. First, the IR and binary CFGs are decomposed into strongly
connected components. For example, fig. 4.13-(b) is composed of 5 SCCs: SCC1ir = {bb2},
SCC2ir = {bb4}, SCC3ir = {bb5, bb6, bb7}, SCC4ir = {bb3} and SCC5ir = {exit}, among
which, SCC3ir is a level-0 loop. Fig. 4.13-(c) is also composed of 5 SCCs: SCC1bin = {bb2},

53

Chapter 4. IR-Level Annotation Framework for Performance Estimation

int i=0

i<n

exit a[i]=b[i]+c[i]

false true

(a)

2SCC1

4SCC2

5

6

7

SCC3

3SCC4

exitSCC5

noth

(b)

2 SCC1

3SCC2

4

5

6

7

8

9 SCC3

10

11

12

13

14

15 SCC4

exit SCC5

(c)

Figure 4.13: Control flow graphs of (a) source code, (b) intermediate representation (IR) and
(c) the binary code compiled using the highest level of compiler optimizations (gcc -O3)

SCC2bin = {bb3}, SCC3bin = {bb4, bb5, . . . bb14} (a level-0 loop), SCC4bin = {bb15} and
SCC5bin = {exit}.

Then, the SCCs are reconnected forming new acyclic CFGs that are the condensation
of the original CFGs. The new CFGs have the extracted SCCs as nodes, which facilitates
the mapping process as loops are contracted into single nodes. The condensed IR CFG of
fig. 4.13-(b) is: SCC1ir ⇒ SCC2ir ⇒ SCC3ir ⇒ SCC4ir ⇒ SCC5ir.

After CFG condensation, the different SCCs of both CFGs are matched using fixed points.
Entry SCCs of fig. 4.13-a and fig. 4.13-b are fixed-points: SCC1ir ⇔ SCC1bin. Loops are also

54

4.3. Proposed Mapping Approach Between IR and Binary CFGs

considered as fixed points (binary and IR have equal numbers of loops at the O2 optimiza-
tion level): SCC3ir ⇔ SCC3bin.

To propagate fixed points throughout the CFGs, the already established fixed points are
used along with the immediate predecessor/successor relations. For example:
PRED(SCC3ir) = SCC2ir, PRED(SCC3bin) = SCC2bin, SUCC(SCC1ir) = SCC2ir,
SUCC(SCC1bin) = SCC2bin so SCC2ir ⇔ SCC2bin (SCC2ir/bin are considered as fixed-
points).

These same steps (SCC extraction, loop block contraction, CFG condensation and fixed
points designation) are applied recursively on SCCs that are loop blocks until no more loops
can be found and we reach the granularity of basic blocks. Before doing so, back arcs of loop
blocks have to be removed (bb7 → bb5 in loop block SCC3ir and bb14 → bb4 in loop block
SCC3bin). Then, these loop blocks are in turn decomposed into SCCs and fixed points are
pinpointed (bb6ir and bb12bin are fixed-points).

2SCC1

3SCC2

4

5

6

7

SCC3

8SCC4

exitSCC5

noth

Figure 4.14: Loop unrolling with LLVM

However, at the O3 optimization level, loop unrolling introduces several transforma-
tions to the IR (SCC3ir and SCC3bin have very different structures) and can cause the ap-
pearance of an additional loop in the binary in case of the LLVM compiler (fig. 4.14). Fig. 4.14
shows the binary CFG of the same example in fig. 4.13-(a) compiled with LLVM -O3. An ad-
ditional loop (bb6bin) is introduced in the binary CFG because of loop unrolling.

Applying the mapping steps on SCC3gcc
ir/bin (fig. 4.13-(b) and fig. 4.13-(c)), which are

loop blocks, leads to unmapped basic blocks (bb5gcc
bin, bb6gcc

bin,...,bb11gcc
bin and bb13gcc

bin have no

55

Chapter 4. IR-Level Annotation Framework for Performance Estimation

match in the IR). These unmapped basic blocks are the result of partial loop unrolling. A
transformation called peeling is performed by gcc during the loop unrolling optimization.
Peeled instructions are placed before the unrolled loop, bb12gcc

bin, as a prologue (fig. 4.13-(c)),
which explains the difference between SCC3ir and SCC3gcc

bin

LLVM, on the other hand, gathers the peeled instructions in a loop block and places it as
an epilogue, bb6llvm

bin (fig. 4.14). If we apply the same algorithm on fig. 4.13-(b) and fig. 4.14,
we will end up with an unmapped loop block: bb6llvm

bin has no match in fig. 4.13-(b).
In addition to this obvious structural CFG transformation, another modification is present

inside the unrolled loop. In fact, the unrolled loop has more instructions than the original
loop, but it requires less iterations. This is true for gcc as well as LLVM. In the remainder of
this section, we propose an approach to troubleshoot this mapping limitation.

Loop Unrolling

Loop unrolling is a compiler optimization that replicates the loop body UF (unrolling
factor) times. Consequently, the unrolled loop requires less iterations than the original loop
and the loop counter is modified fewer times. Unrolling also reduces the number of branch
instructions and exposes more possibilities of ILP. The UF is chosen by the compiler based
on the loop trip count. Loops with a small number of iterations (a maximum of 17 iterations
in gcc) are fully unrolled (a.k.a. peeled) before the back-end. This transformation leads to
the disappearance of the loop structure and is visible at the IR level.

Loops with bigger or unknown number of iterations are partially unrolled by the back-
end. Partial loop unrolling leads to different CFG transformations depending on whether
or not the loop iteration count is known at compile time. In the best case, the control flow
is unchanged, but keeping the same loop bound of the IR leads to erroneous estimates. In
most cases, however, IR and binary CFGs become different.

loop body(i)
cnt++
if (cnt <= 2)
{inst count+=nb inst}
i++

i<20
(a) IR loop (max itr bound=20)

loop body(i)
loop body(i+1)
...
loop body(i+9)
i+=10

i<20
(b) Unrolled binary loop (max itr bound=2, UF=9)

Figure 4.15: The trip count is a multiple of (UF + 1)

• In case the loop trip count is known at compile time, the IR CFG and the binary CFG
are identical, as shown in fig. 4.15. So, a graph matching tool would be tempted to apply
a straightforward mapping algorithm without considering the modification of the iteration
bound, which will inevitably lead to overestimations. Two cases should be taken into ac-
count:

a) If the loop trip count is a multiple of (UF + 1) then the loop body is duplicated ex-
actly (UF + 1) times in the binary. In the example of fig. 4.15, the trip count is 20
and the UF is 9. The loop body is thus duplicated 10 times in the binary code, which

56

4.3. Proposed Mapping Approach Between IR and Binary CFGs

reduces the number of loop iterations tenfold. Using the instruction count as a per-
formance metric and assuming a straightforward mapping, if we annotate the IR loop
with the number of instructions of the corresponding binary loop, the instruction exe-
cution count after natively simulating the IR will be multiplied (UF + 1 = 10) times,
which is a considerable error. To fix this problem, we add a counter and a test in the IR
loop body. The test is only entered when the counter satisfies the following condition:
cnt <= (loop_trip_count/(UF + 1)).
Placed under this condition, the instruction count will yield accurate results (see chap-
ter 6).

...
inst count+=nb inst

loop body(i)
cnt++
if (cnt <= 2)
{inst count+=nb inst}
i++

i<23
(a) IR loop (max itr bound=23)

...
loop body(0)

loop body(i)
loop body(i+1)
...
loop body(i+10)
i+=11

i<23
(b) Unrolled binary loop (max itr bound=2, UF=10, first itr peeled)

debug info

Figure 4.16: The trip count is not a multiple of (UF + 1)

b) If the loop trip count is not a multiple of (UF + 1), then the loop body is unrolled
(UF +1) times and the leftover iteration(s) (trip_count%(UF +1)), which might be the
few first or last iteration(s), are moved outside of the loop and placed in a prologue or
epilogue. In the example of fig. 4.16, only the first iteration of the loop is peeled by the
compiler and placed in a prologue.
Mapping approaches based on debug information, such as line reference, would map
the peeled iterations, although placed outside the binary loop, inside the IR loop, which
leads to overestimation. Our solution is to proceed as in a) and to deal with the peeled
iterations outside the loop body. In the example of fig. 4.16-(a), the instruction count
is incremented with the number of peeled instructions in the predecessor of the basic
block containing the loop.

• In the very common case in which the loop trip count is unknown at compile time, the
backend generates a complex structure preceding the unrolled loop in the binary CFG, as
shown in fig. 4.13-(c) (the unrolled loop is the innermost loop, which is bb12). In fact, when
the trip count is only available at execution time, the compiler cannot decide if it is a multiple
of (UF + 1) or not at compile time. As a result, it always adds a prologue/epilogue for the
remaining iterations (gcc, for instance, adds a prologue).

In fig. 4.13-(c), only the innermost loop is unrolled (which is always the case). The prologue
(bb6→ bb11) is more intricate than the prologue in fig. 4.16-(b) because the compiler does not
know the exact number of iterations that should be performed before entering the unrolled
loop body. Hence, a few tests (fig. 4.13-(c): bb6 → bb8), one for each possible excess, are
carried out. The number of tests depends on the UF. When the trip count is unknown, gcc

57

Chapter 4. IR-Level Annotation Framework for Performance Estimation

if (n mod 4)==0

if (n mod 4)==1

if (n mod 4)==2

if (n mod 4)==3

inst count+=nb inst

inst count+=nb inst

inst count+=nb inst

loop body(i)
cnt++
if (cnt <= (n/4))
{inst count+=nb inst}
i++

i<n
(a) adding a prologue with if statements to the IR

loop body(i)
cnt++
if (cnt <= (n/4))
{inst count+=nb inst}
i++

i<n

(b) adding an epilogue with a loop to the IR

inst count+=nb inst
j++

j<(n mod4)

Figure 4.17: The trip count is unknown at compile time

sets the UF to 7. For space reason, we changed the UF to 3 for the example of fig. 4.13-(c) and
fig. 4.14. So the possible number of the remaining iterations is: (trip_count%(UF + 1)) =
n%4 = {0, 1, 2, 3}.

The prologue in the binary code has no equivalent in the IR. So, basic blocks in the pro-
logue cannot be mapped to any basic block in the IR as no match exists. Leaving these basic
blocks unmapped may lead to underestimations. The solution is to add a structurally equiv-
alent prologue that has no functional purpose (i.e. no peeling is really performed) in the IR
(fig. 4.17-(a)). Basic blocks in the added prologue will hold non-functional information ex-
tracted from the actual prologue. Fig. 4.17-(a) corresponds to bb6 in fig. 4.13-(b) to which we
added a prologue (represented by the red rectangles). The instruction count is incremented,
in the added prologue, according to the number of peeled iterations, which is decided at
run time.

LLVM, on the other hand, handles loop unrolling with an unknown trip count in a dif-
ferent way. A new loop is created as an epilogue in the binary to account for the remaining
iterations. In this new loop, the last few iterations (trip_count%(UF + 1)) of the original
loop are executed. As shown in fig. 4.17-(b), we add a new loop in the IR to reflect this
modification.

For clarity reasons, the loop example that we use to explain our mapping approach is
made of straight-line code (i.e. the loop body is contained in one basic block, there are no
branches). Consequently, the peeled iterations are also contained in one basic block each (eg.

58

4.3. Proposed Mapping Approach Between IR and Binary CFGs

the three basic blocks right above the loop block in fig. 4.17-(a)), which makes the structure
of the prologue/epilogue relatively simple. However, if the loop body contains convoluted
control flow, the epilogue/prologue added by the compiler will not be as simple as in our
example since each peeled iteration will have the same control flow as the loop body. Either
way, the peeled iterations added in the IR should replicate the structure of those in the
binary since our main goal is to facilitate the mapping process by bringing the IR CFG as
close as possible (structure-wise) to the binary one.

It should be noted that the additional basic blocks that we introduce in the IR CFG are
not aimed at changing the functional behavior of the code.

Miscellaneous Optimizations

Other optimizations that are enabled at the O3 level and that change the code struc-
ture are discussed in this section. Optimizations that preserve the control flow (peephole
optimizations, instruction splitting, instruction scheduling, etc.) do not need a particular
mapping strategy.

...

check condition

loop body ...
tru

e false

bb1ir

bb3irbb2ir

bb1bin

bb2bin

bb3bin

check condition

loop body
check condition

...

tru
e

false

true

false

(a) while loop (b) do-while loop

Figure 4.18: Loop Inversion

Loop inversion (fig. 4.18) is a compiler optimization that transforms a while loop to a do-
while loop (it moves the loop-test from before the loop body to after the loop body) in or-
der to reduce the number of jumps. The do-while loop is wrapped in an if-statement. In
fig. 4.18-(b), the loop is no longer composed of two basic blocks as in fig. 4.18-(a). The loop
body and the loop-test are gathered in one basic block. This block (bb2bin) is mapped to
bb2ir. As for bb1ir, it remains unmapped and we add a new basic block (the red rectangle)
immediately before bb1ir to account for bb1bin.

condition

... ...
...

bb1ir

bb2ir bb3ir

bb4ir

tru
e false

(a) If-then-else in the IR

predicated instruction bb1bin

(b) If-conversion in the binary

Figure 4.19: If conversion

If-conversion is a back-end optimization that consists of converting conditional branches
into predicated instructions supported by the target instruction set architecture. One of the

59

Chapter 4. IR-Level Annotation Framework for Performance Estimation

features of ARM ISA, for example, is that almost all instructions are predicated. Consider
the simple C code:

1 if (a > 15) {
2 a = 15;}
3 else {
4 a = a + 1;}

This produces the following machine code:

1 cmp r0, #15
2 movhs r0, #15
3 addlo r0, r0, #1

In fig. 4.19, the if-then-else statement composed of three basic blocks in the IR (a bb for the
conditional statement and one bb for each condition outcome) is converted to a single basic
block containing predicated operations in the binary code. Mapping these two different
structures in fig. 4.19 doesn’t entail any modification in the IR. We simply map bb1bin to
bb1ir and leave bb2ir and bb3ir unmapped.

bb1ir

bb2ir bb3ir

bb4ir

true false

(a)

bb1bin

bb2bin

bb3bin

true

false

bb1ir bb2ir

bb3ir

bb4ir bb5ir

bb1bin bb2bin

bb3bin bb4bin

(b)

Figure 4.20: Other branch optimizations

Other branch optimizations like the examples in fig. 4.20 may be conducted by the com-
piler and lead to further mismatches between IR and binary CFGs. These optimizations
boil down to basic blocks being added to or removed from the code by the compiler. For
example, the mapping breakdown of the two CFG snippets in fig. 4.20-(a) is: bb1ir ⇔ bb1bin,
bb2ir ⇔ bb2bin, bb4ir ⇔ bb3bin and bb3ir remains unmapped. The opposite case where the
right side of fig. 4.20-(a) is the IR CFG and the left side is the binary CFG may also take place.
To handle this case, a basic block is added in the IR to account for the extra basic block in
the binary. As for fig. 4.20-(b), the mapping is: bb1ir ⇔ bb1bin, bb2ir ⇔ bb2bin, bb4ir ⇔ bb3bin,
bb5ir ⇔ bb4bin and bb3ir remains unmapped.

If the hardware loop feature (a.k.a. zero overhead loop) is supported by the target archi-
tecture, the compiler chooses loops that are eligible to be executed as hardware loops (only
innermost loops with no control transfer except for the loop branch) in order to minimize cy-
cle cost overhead induced by pipeline stalls due to jump instructions. Indeed, the hardware
module dedicated specifically to loop execution (a loop counter, a register for the number of
instructions, a pointer to next instruction, a loop buffer, etc.) eliminates branch logic in the
loop. As for the structural changes, a minor transformation is observed (according to the
experiments we conducted using the Kalray processor [DdDAB+13], which supports the
HW loop feature). One basic block is added as a pre-header. All incoming arcs to the loop
basic block are redirected to the added pre-header block. So, all we need to do is to add an

60

4.4. Conclusion

identical block right before the IR loop header that will hold the non-functional information
extracted from the corresponding binary basic block.

After introducing the above mentioned transformations in the IR CFG, algorithm 1 can
be efficiently applied, especially that loop unrolling is no longer a hindrance in propagating
fixed-points all the way through the CFGs.

4.4 Conclusion

In this chapter, we proposed an IR-level annotation framework that takes into consideration
front-end compiler optimizations, thanks to the choice of the IR level, and back-end opti-
mizations with the help of the proposed CFG matching strategy. Although, we decided to
meet the binary code halfway by using the IR instead of the source code, a straightforward
mapping is not guaranteed, especially when loop optimizations are performed. Hence, the
necessity for an accurate mapping approach.

The proposed mapping approach is architecture independent, thus retargetable. It con-
sists of matching the binary and the IR CFGs at a basic block level using fixedpoints and
propagating them throughout the CFGs. The mapping is conducted recursively between
SCCs of the binary and IR CFGs until reaching the basic block level.

We transformed loop blocks from a puzzling issue into a facilitator in the mapping pro-
cess by considering them as fixedpoints. This is valid under the assumption that the number
of loops remains unchanged from IR to binary generation, which is true with O2 optimiza-
tions.

With the presence of aggressive compiler optimizations such as loop unrolling, which
are activated at the O3 optimization level, the proposed mapping algorithm fails at gener-
ating accurate mapping information. Some optimizations entail many transformations of
the control flow leading to a binary CFG completely different from the original code. To cir-
cumvent this problem, we proposed to change the structure of the IR (without modifying its
functional behavior) merely by replicating the binary CFG portions that have no equivalents
in the IR. Applying the proposed mapping algorithm on the binary CFG and the modified
IR CFG yields accurate mapping results according to the instruction count experiments pre-
sented in chapter 6.

61

Chapter 5

Modeling the Impact of Cache
Memories on the System Performance

MPSoCs continuously incorporate more powerful CPUs and CPU subsystems with ad-
vanced features, such as fast instruction and data caches, prefetch mechanisms, branch
prediction mechanisms, out-of-order or VLIW capabilities, etc., in order to further increase
their speed. Non-functional aspects are tightly influenced by the behavior of the micro-
architectural components and their inter-dependency with software. On that account, ob-
taining sufficiently accurate performance estimates requires accurate and fast modeling
techniques of the system components. In this chapter, we will start first by describing the
modeling and dynamic performance estimation process using a classic data cache model as
an example. Then, we will detail the proposed performance model of an instruction cache
and an instruction buffer of a VLIW architecture after giving an overview of such architec-
ture and highlighting its distinctive features.

5.1 Data Cache Performance Estimation

Cache behavior is affected by software and its content is dictated by the execution path
followed by the program during run time. This dynamic nature of caches makes static ap-
proaches not very accurate at estimating cache hit/miss rates and computing the delay they
incur. It is hard to know the behavior of the program before its execution and it is quite im-
possible to delimit all possible paths that might be taken by the program. Given the pivotal
role played by caches in enhancing the performance of embedded systems, simulating their
behavior has become a key factor to accurate performance estimates.

The purpose of this section is to explain the concepts of a performance model of a
micro-architectural component and how it is coupled with the functional model, through
an annotation function, in order to perform dynamic performance estimation. The micro-
architectural component serving as an example is the data cache, which has been abun-
duntly studied in literature. So, both the data cache model and the annotation function
presented in this section are similar to what has been proposed in literature. We will also
touch on the major issue with data cache performance estimation, which is the retrieval of
data addresses. This issue has already been tackled in previous works leading to various
solutions, which we will describe briefly.

Simulation of data caches allows the imitation of the dynamic behavior of the real cache,
in terms of hits and misses, without performing any transaction between main memory and

63

Chapter 5. Modeling the Impact of Cache Memories on the System Performance

the cache model. In other terms, there is no actual data stored in the cache model as it is only
leveraged for performance estimation and not for functional simulation. As for the task of
obtaining correct functional results, it is the responsibility of the host machine running the
simulation, which natively takes care of the actual data. In order to re-create the data cache
behavior of the target platform and yield accurate performance estimates with minimum
simulation overhead, several modeling choices need to be made.

5.1.1 Data Cache Model

2-way set associative cache 2-way set associative cache model

valid tag data valid tag data index

set0

set1

set2

set3

block0 block1

valid tag valid tag

tag index offsetaddr

= =
& &

or hit?

Figure 5.1: An example of a 2-way set associative cache (left) and its corresponding cache
model (right)

The cache model is a behavioral model that replicates the same characteristics of the on-
chip cache (fig. 5.1), such as associativity, number of lines, line size, the writing policy and
the replacement policy. Establishing a behavioral cache model that is a replica of the on-chip
cache helps imitate the dynamic behavior of the real cache, which increases the estimation
accuracy. Moreover, a behavioral model offers the possibility to explore different areas of
optimizations and assist designers in making the most suitable architectural choices. As
depicted in fig. 5.1, the cache model is simply a matrix of address tags and valid bits, where
the rows represent the number of sets (4 sets) and the columns, in pairs of (valid, tag),
represent the number of blocks (2 blocks) per set. Since the cache model is purely behavioral,
data is not represented in the matrix.

For more flexibility, the cache model can be easily made reconfigurable. The cache setup
can be tuned for the purpose of studying various cache configurations (e.g. a larger/smaller
k-way associative cache may be more/less convenient) and whether they can be optimized
to yield better performances. With such a model, the user can inspect the state of the cache
at any point in time and test different configurations.

5.1.2 Inserting The Annotation Functions In The High-Level Code

The cache model described hereinbefore is triggered whenever a memory access is detected
in the high-level code. To do so, annotation functions are inserted in the code for every

64

5.1. Data Cache Performance Estimation

encountered access. With data caches, two operations may take place: a read from the cache
and a write to the cache. These two operations have different impacts on the cache. So,
they need to be modeled with two different annotation functions. When a memory access is
located, a call to the appropriate annotation function, depending on the access type, is made
and the cache model is activated in order to figure out whether the access is a hit or a miss.

...

a=b+5

DCache Read(&b)

DCache Write(&a)

Annotated high-level code

DCache Read(@)

idx=DCache Line Present(@idx,@tag)

if(idx==-1){

dcache read miss++

idx=DCache Line Replace(@idx)

DCacheModel[idx][tag]=@tag

DCacheModel[idx][valid]=1 }

dcache read hit++

Figure 5.2: Data cache annotation functions

As shown in the example of fig. 5.2, two memory accesses are pinpointed in one instruc-
tion. As a result, the instruction is followed by two annotation functions. The first one sim-
ulates a read access of variable b. When the value of b is successfully retrieved, the addition
operation is performed and the result is stored in variable a. This is illustrated by the second
annnotation function, which simulates a write access. Once again, no actual write in the data
cache model is conducted, which makesDCache_Write() andDCache_Read() functionally
similar except for the access type (dcache_read_miss/hit and dcache_write_miss/hit may
have different delays).

The annotation functions take as a parameter the address to which a memory access is
made in order to determine whether the data at that memory location is present in the cache
model. All the information needed to locate the data in the cache model is deduced from the
address. The index is used to find out the cache set the data should reside in. For each block
of that set, the tag of the block is compared to the address tag. If they are different, then the
data is not in the cache. If they match, then the valid bit of the block where the data was
found has to be checked. If it is 1 then the access is a cache hit. Otherwise, it is a miss. These
checking steps are summarized by Dcache_Line_Present() in fig. 5.2. In case of a miss, a
replacement policy is applied to eject an old block from the cache and replace it with the new
one. The most common algorithm is the LRU (Least Recently Used) replacement policy and
it can be implemented in Dcache_Line_Replace(). The state of the DCacheModel should
always be maintained by updating the tag and valid cells of the matrix when required.

5.1.3 Obtaining Memory addresses

The annotation functions and the data cache model used to accurately track the occurence
of misses and hits rely on the data addresses as explained in the previous section. However,
in the context of native simulation, two address spaces exist: the host address space and
the target address space. The most obvious and simple solution is to directly use the native
addresses (eg. &a and &b in fig. 5.2) [ZH09], [KKW+06], [GHP09].

In [ZH09] and [KKW+06], the addresses in the host memory space are used for data
cache simulation because the authors conjectured similar spatial and temporal localities of
the same program running on two different architectures (host and target). Similarly, au-
thors of [GHP09] use directly data addresses from the native software during run time for
their cache performance estimation. Their data cache simulation method slightly differs

65

Chapter 5. Modeling the Impact of Cache Memories on the System Performance

from [ZH09]. The authors reckon that the number of memory accesses made by the same
variable may be different from one architecture to another. So, they apply heuristics in or-
der to associate to each variable the corresponding number of memory accesses in the target
platform.

Since the software is natively compiled and executed, it is only aware of the host address
space. Host and target address spaces may be different and the way variables are organized
in memory may also differ. The layout of data in memory is controlled by the compiler and
the operating system. The compiler is responsible for arranging the statically declared vari-
ables. The stack and static variables, for instance, can be placed in very different locations
for the host and the target machines. As for memory accesses made to dynamically allo-
cated variables, their locations are determined by the operating system. If the target OS is
not simulated and the native OS is used instead, then a discrepancy in data locality between
the host and the target is expected. Additionally, the two architectures may differ in data
sizes (eg. a 64-bit Intel X86 processor for a host vs. a 32-bit Kalray processor for a target).
Thus, many factors can contribute to the host architecture’s having a different spatial local-
ity from the target’s. In that capacity, the outcome of the data cache model can diverge from
the real cache, which may lead to substantial loss of simulation accuracy if native addresses
are used without any modification.

int b[50];

sp=0x800; //sp initialization

fct(){

int a;

sp-=60;

...

a=b[i];

DCache Read(0x2030+4*i);

DCache Write(sp+40);

...

sp+=60;

}

Figure 5.3: Annotating memory accesses to local and global variables

In order to realistically simulate memory accesses and the conflicts in referencing shared
resources, as if they were performed by the target architecture itself, target addresses need to
be reconstructed with information from the target binary code [KMGS13], [WH13], [DPE11],
[PCG09].

In [DPE11], native addresses are transformed to target addresses, but the transforma-
tion is based on the assumption that the order of the variables in each memory section is
maintained given the same compiler front-end and the same linkage order. But, the authors
do not prove in any way the correctness of their assumption. Besides, in their transforma-
tion, they disregarded changing the base address because, according to the authors, cache
performance depends mainly on spatial locality.

The approach, in [PCG09], is limited to global variables whose base addresses are ob-
tained from the symbol table and back annotated in the user code for cache simulation.

[KMGS13] and [WH13] present two similar ways for accurately computing target ad-
dresses of the accessed memory in order to perform precise cache simulation in SLS. They
simulate the target memory allocation mechanisms and thus they can handle global/static
variables, dynamically allocated data and stack data. The idea is to identify memory ac-

66

5.2. Modeling Instruction Cache and Instruction Buffer for Performance Estimation of
VLIW Architectures

cesses at the binary level, after compiler optimizations have been performed, and to de-
termine their addresses. These addresses are then fed to the annotation functions, which
are placed in the high-level code. The difficulty of this approach is twofold: first, to accu-
rately place the annotation functions in the high-level code, the target binary-level memory
accesses (LOAD and STORE operations) should be painstakingly mapped to their corre-
sponding high-level code instructions, which is the responsibility of the mapping algorithm.
Second, the addresses of binary-level memory accesses cannot be all resolved statically. In
fact, these accesses are classified in two categories:

• Data accesses whose addresses can be known at compile time: this category encom-
passes static and global variables, which are allocated statically.

• Data accesses whose addresses can only be known at execution time: this category
includes stack data and dynamically allocated variables.

Addresses that belong to the first category can be reconstructed statically using the symbol
table in the ELF file provided by the debugger. Addresses in the second category are more
complicated to reconstruct because they change dynamically depending on the execution
context. These addresses are handled by simulating the heap allocation mechanism (for
dynamically allocated variables) and the state of the stack pointer (for local variables) of the
target processor in the natively-simulated code.

The example in fig. 5.3 illustrates the computation of the target addresses of a global
variable (b) and a local variable (a) in a high-level code. The base address of b (0x2030)
is extracted from the symbol table. As for the address of a, it is determined by tracing the
value of the stack pointer. So, a variable sp is introduced in the code to track the dynamic
behavior of the target stack pointer. The initial value of sp (0x800) is defined by the boot
loader. At the entrance, respectively exit, of the function (fct()), sp is increased, respectively
decreased, by the stack size (60) of fct() taken from the target binary code. The address of
the local variable a is obtained by adding its offset (40) to the stack pointer. The offset is
computed by decoding load/store instructions from the target binary.

By exploiting the target memory allocation mechanisms, not only the number of misses
and hits are computed, but also their timeline is faithfully re-created. However, for each
memory access, address computations are performed adding a large simulation overhead.

5.2 Modeling Instruction Cache and Instruction Buffer for Perfor-
mance Estimation of VLIW Architectures

Just like data caches, instruction caches are employed to meet stringent run-time and power
consumption constraints. Given their impact on the non-functional aspects of the system,
simulating the behavior of instruction caches has been the focus of many performance esti-
mation approaches [LSA95], [WH13], [YMH+14].

Simulating an instruction cache has always been considered less challenging than simu-
lating a data cache because instructions’ addresses are known at compile time. Most of the
existing native simulation techniques use generic tag-search based cache models. Similar to
the data cache model, no instruction needs to be stored in the array as the instrcution cache
model is only behavioral. In these classical cache models, an instruction is checked, during
run time, to be a hit or a miss using its tag.

Reducing tag search [WH13] and minimizing the access frequency to the cache model
[YMH+14] are the two axes of improvements that have been tackled when it comes to in-

67

Chapter 5. Modeling the Impact of Cache Memories on the System Performance

struction cache modeling in native simulation. However, these generic cache models may
work for simple architectures, but will definitely lead to erroneous estimations when used
for architectures that exploit ILP, such as VLIW processors. ILP techniques have been in-
creasingly used by processors’ manufacturers to improve performance. The current breed
of modern processors like Itanium by Intel, SHARC by Analog Devices, MPPA manycore by
Kalray, ST200 series by STMicroelectronics, C674 by Texas instruments, TriMedia by NXP,
etc., makes use of VLIW architectures to achieve high execution speed at low energy [Let09].

Although simulating micro-architectural components dynamically leads to accurate es-
timations and a clear view of the target architecture, it introduces a considerable simulation
time overhead. This is why, existing approaches that simulate the instruction cache dynam-
ically settle for classic architectures and do not take into account common performance-
enhancing features, such as the ones used in VLIW processors.

In this section, we explain our contribution, which consists of demonstrating a software
performance estimation approach by presenting a realistic instruction cache model that ac-
curately reflects the impact of a component necessary to handle the instruction parallelism
in a VLIW architecture, called the instruction buffer (IB). The behavior of the instruction
cache and the IB is dynamically simulated using a native simulation platform while main-
taining a reasonable simulation speed.

5.2.1 Overview and Particularities of a VLIW Architecture

In the 1980’s, a new style of ILP technology called VLIW emerged as a natural outgrowth of
horizontal microcode and have had a huge impact on the computer industry ever since [Let09].
A VLIW processor (a.k.a. static multiple-issue processor) executes n independent RISC in-
structions in parallel.

Bundles

The difference between a machine that supports ILP and one that doesn’t is not the type
of the execution units but their number. In a VLIW architecture, many execution units are
made available to the program allowing the execution of several operations simultaneously.
VLIW CPUs execute operations in parallel according to a dependence analysis between op-
erations and a static schedule determined by the compiler (rather than the hardware), which
avoids encumbering the hardware but requires a more complex software (i.e. advanced
compiler). So, the role of the compiler is to find enough independent operations to keep the
execution units busy. The number of operations issued simulatneously in a VLIW architec-
ture is a function of the output of the dependence analysis performed by the compiler and
of the available hardware functional units.

Branch op Integer op1 Integer op2 Integer op3 Floating point op Memory op1 Memory op2

(BCU) (ALU1) (ALU2) (MAU) (FPU) (LSU1) (LSU2)

Figure 5.4: An example of a VLIW instruction format

In a VLIW architecture, a bundle (also called execute packet or VLIW instruction [AFY05])
is a set of independent instructions that can be executed in parallel, each instruction being
composed of syllables (32-bit words). Fig. 5.4 shows an example of a VLIW instruction for-
mat that might include seven operations: three integer operations, two memory operations,
one floating point operation and one branch operation. A VLIW instruction also contains a
control field for each of the execution units (ALU, BCU, etc.).

68

5.2. Modeling Instruction Cache and Instruction Buffer for Performance Estimation of
VLIW Architectures

e=(a+b)*(c+d)
a+=b;

Original code

A: r1=a+b
B: r2=c+d
C: e=r1*r2
D:a=a+b

3-address code

A B

CD

flow dependence

anti-dependence

Dependence Graph

bundle1 add r1, a, b add r2, c, d add a, a, b
bundle2 mul e, r1, r2 nop nop

VLIW instructions

Figure 5.5: A simple example of bundle construction

A simple example of bundle construction is sketched in fig. 5.5. The original code is
transformed into RISC-like operations (a 3-address code). Then, a precedence graph based
on dataflow analysis (flow dependence, output dependence, anti-dependence, control de-
pendence, etc.) conducted by the compiler is established to expose parallelism. Independent
operations are packed into bundles and are executed simultaneously on the available exe-
cution units. In fig. 5.5, two bundles are formed. The first one is composed of three add
operations scheduled for concurrent execution, which requires the availability of at least
three ALUs. In the second bundle, there are no concurrent operations that can be scheduled
with the mul operation. So, the compiler pads the unused slots with nops (null operations).
Null operations are dummy operations that do nothing but they do occupy the memory,
which is undesirable. Some VLIW architectures avoid nops by varying the size of the bun-
dles [DdDAB+13].

Instruction Buffer

icache line instruction buffer

fetch phases

4*32 4*32

b
u
n
d
le
d
ec
o
d
e
an
d
d
is
p
at
ch

o
p
.1

o
p
.2

o
p
.3

o
p
.4

32

32

32

32

E
U
1

E
U
2

E
U
3

E
U
4

Figure 5.6: Overview of a VLIW architecture

During execution, a contiguous sequence of syllables (a.k.a. a fetch packet), is fetched
from the instruction cache and placed in a buffer (referred to as instruction buffer-IB [AFY05],
[Int10], [STM04] or prefetch buffer-PFB [DdDAB+13]), as shown in fig. 5.6. A fetch packet

69

Chapter 5. Modeling the Impact of Cache Memories on the System Performance

is thus composed of either a subset of a bundle, a single bundle or multiple bundles. In the
example of fig. 5.6, four 32-bit instructions (i.e. a fetch packet of 128 bits) are fetched from
the instruction cache and pushed in the instruction buffer (IB). Then, during the decode and
dispatch stage, the fetch packet is decoded, exposing the constituent bundle(s). The fetch
packet, in the example of fig. 5.6, is composed of one bundle, that is, all four instructions of
the fetch packet are dispatched to the four existing functional units and executed simulta-
neously.

bundle1 Creq Cres Bpop

bundle2 Creq Cres Bpop

instr1 fetch

(a) VLIW (b) Scalar

instr2 fetch

instr3 fetch

instr4
...

fetch

...

Figure 5.7: Comparison of the pipeline’s fetch stage between VLIW and scalar

The instruction buffer is the intermediary between the instruction cache and the proces-
sor. It is responsible for requesting fetch packets from the cache and issuing bundles to the
core. So, the IB does not have an impact on the behavior of the cache in terms of hits/misses,
but it certainly impacts the performance in terms of CPI (cycle per instruction), as shown in
fig. 5.7. Since we are specifically interested in studying the instruction cache, only the fetch
phases of the pipeline are represented.

In the example of fig. 5.7-(a), the VLIW architecture features a three-phase fetch stage:
cache request (Creq), cache response (Cres) and instruction buffer pop (Bpop). As for the
pipelined scalar architecture (fig. 5.7-(b)), the fetch stage is composed of one phase. Assum-
ing that each pipeline stage takes 1 cycle, bundles are composed of four instructions and
that fetch phases are ideal (no stalls), bringing eight 32-bit instructions from the instruction
cache to the pipeline takes 4 cycles in case of a VLIW architecture and 8 cycles in case of a
scalar architecture. In case of scalar processors, computing the number of hits and misses,
using the traditional cache models and annotating the software with their respective time
delays, is a feasible approach and it has been abundantly adopted in literature. Yet, a naïve
estimation of the number of cycles based solely on the number of cache hits and misses will
lead to unreliable results for VLIW architectures because of the complex timing behavior of
the fetch phase.

5.2.2 Generic Instruction Cache Modeling

The estimation of instruction cache performance has been intensively researched in litera-
ture using both static and simulation-based methods. In [SB08], [LLT10], [YMH+14] and
[WH13], the instruction cache behavior is studied at execution time. These works share the
same idea, which consists of dividing basic blocks of the high-level code into smaller blocks
(called cache analysis blocks in [SB08]). Instructions inside a cache analysis block fit into
the same cache line (i.e. these instructions have the same tag). A function at the end of
each basic block is added. At run time, this function checks whether the tag of each cache
analysis block is found in the instruction cache model or not, and it consequently updates
the cache model (valid bit, LRU, tag) if necessary. In [WH13], the authors further enhance
cache simulation by reducing tag search.

70

5.2. Modeling Instruction Cache and Instruction Buffer for Performance Estimation of
VLIW Architectures

The proposed instruction cache simulation process

IR-CFG BIN-CFG

mapping algo(2) extract BB info (1)

IR BIN

bb1 bb1

bb2 bb2+bb3

.. ..

Mapping data base

(a)

BB SubBlock First@ nbInstr

bb1
sb11 @1 nb1

sb12 @2 nb2

bb2 sb21 @3 nb3

bb3

sb31 @4 nb4

sb32 @5 nb5

sb33 @6 nb6

..

Basic Block data base (b)

icache simulation fct insertion (3)

bb1:

...

nb sb=2;%nbr of sub-blocks%

For(sb=0;sb<nb sb;sb++)

Icache Sim(FirstAddr[bb1][sb],NbInstr[bb1][sb]);

bb2:

...

Annotated IR(4)

Figure 5.8: The instruction cache simulation process

In order to simulate the instruction cache behavior, a cache model identical to the real
cache is used. The instructions’ addresses are also required. Unlike data cache simulation,
where data addresses are determined at run time, instruction addresses are known at com-
pile time and are extracted from the target binary code (fig. 5.8-(1)).

To mitigate the simulation load, we exploit the accessibility of instruction addresses at
compilation time by doing as many computations as possible statically i.e. before simu-
lation. So, to reduce tag search, each basic block is divided into sub-blocks such that all
the instructions of a sub-block fit in the same cache line. A basic block data base is cre-
ated (fig. 5.8-(b)) to hold the statically collected information about each binary basic block:
number of sub-blocks, first address and number of instructions of each sub-block.

Since our annotation approach is based on ILS, the annotations are inserted inside the
basic blocks of the IR code. As a reminder, the IR and binary control flow graphs are not
always isomorphic due to compiler optimizations. So, a mapping (chapter 4) between the
binary CFG and the IR CFG is conducted (fig. 5.8-(2)) resulting in a mapping data base
(fig. 5.8-(a)). For example, bb2bin and bb3bin both correspond to bb2ir, which means that
information (for e.g. nbInstr) about bb2bin and bb3bin should be inserted in bb2ir .

The annotation function Icache_Sim() is then inserted in the IR basic blocks (fig. 5.8-(3)).
Instead of calling the annotation function for each instruction of a basic block, it is only
called as many times as the number of sub-blocks inside a basic block (fig. 5.8-(4)).

71

Chapter 5. Modeling the Impact of Cache Memories on the System Performance

Algorithm 2 ICACHE_SIM(first_addr,nb_instr)

1: present = Icache_Line_Present(first_addr)
2: if present == −1 then
3: line=Icache_Line_Replace(first_addr)
4: Icache_Update(line,first_addr)
5: delay+ = miss_penalty
6: end if
7: delay+ = icache_access_time ∗ (nb_instr)

The Generic Instruction Cache Annotation Function

Algorithm 2 illustrates the instruction cache annotation function. Icache_Sim() takes
as parameters the first address and the number of instructions of a given sub-block. A tag
search in the cache model is performed for the first instruction only (line 1). If the first
instruction of the sub-block is not in the instruction cache then the replacement algorithm is
used (line 3) and the cache model is updated with information about the new line (line 4).
Only the tag and the index are needed as no real instructions will be loaded in the cache.
Following a cache miss, the delay is augmented with the miss penalty of the first instruction
(line 5). Finally, the total instruction cache access time of the sub-block is tallied and added
to the delay (line 7).

During simulation, when a basic block is executed, the underlying instruction cache
annotation function is called and the instruction cache model is triggered. Even though
annotation functions are inserted in all the mapped basic blocks in the IR, only basic blocks
that are reached during simulation call their annotation functions. So, a different execution
may lead to a different miss ratio, which is expected because the cache behavior tightly
depends on the program context, hence the benefits of dynamically simulating the cache as
opposed to the static approaches.

In a generic cache simulation approach (algorithm 2), the delay is computed as follows:

delay+ = nbr_misses×miss_penalty + nbr_accesses× icache_access_time (5.1)

This formula is based on a simple association of number of hits and misses to their respective
delays. Each time a basic block is visited during execution, the delay is incremented with a
newly computed value corresponding to the current basic block.

This approach, though efficient with scalar processors, is incapable of accurately reflect-
ing the impact of VLIW architectures on the performance of instruction caches.

5.2.3 The Effect of VLIW on Instruction Cache Performance Estimation

Fig. 5.9 shows a comparison between the execution of two simple operations using a scalar
processor and a rudimentary VLIW processor with two load/store units, one multiply and
one add unit. The symbol "//" portrays parallelism between instructions.

As can be noticed in the example of fig. 5.9, the VLIW processor executes up to three in-
structions simultaneously. These concurrently executed instructions are placed in a bundle.
In our example, instructions are grouped in 4 bundles. Assuming that each instruction can
be completed in one unit of time, then the VLIW processor takes 4 units, which is half the
time taken by the scalar processor.

To accommodate ILP, the VLIW architecture offers multiple independent functional units.
The processor fetches a bundle from the instruction cache and dispatches the instructions

72

5.2. Modeling Instruction Cache and Instruction Buffer for Performance Estimation of
VLIW Architectures

Operations Scalar processor VLIW processor
with 2 load/store units
1 add unit,1 mul unit

op1: m=a+b load a r1 load a r1 // load b r2
op2:n=c*d load b r2 load c r3 // load d r4 //

add r1 r2 r5
add r1 r2 r5 mul r3 r4 r6 // store r5 m
store r5 m store r6 n
load c r3
load d r4
mul r3 r4 r6
store r6 n

Figure 5.9: Scalar vs. VLIW

get $r2 = $ra

copy $r0 = $r12

copy $r12 = $r0

sw -4 [$r12] = $r31;;

copy $r31 = $r0

add $r0 = $r0, -8

sw -8 [$r0] = $r2

add $r12 = $r12, -16 ;;

basic block

sub bndl1

sub bndl2

bundle1

sub bndl1

sub bndl2
bundle2

Figure 5.10: Bundles in assembly language

for parallel execution on the different functional units. To keep all of these units busy, the
compiler’s goal is to gather as many instructions as the number of units in a bundle.

As depicted in fig. 5.10, bundles can be discerned easily at compile time. The basic block
shown in fig. 5.10 contains two bundles separated by ";;". Each bundle is composed of four
32-bit instructions.

BB bundle sub-bundle first@

bb1

bndl11 sub-bndl111 @1

bndl12 sub-bndl121 @2
sub-bndl122 @3

bndl13 sub-bndl131 @4
..

Figure 5.11: Basic block data base

At the basic block information extraction step, instead of dividing basic blocks into sub-
blocks, like we did in the generic cache simulation method (fig. 5.8-(b)), we divide basic
blocks into bundles. Each bundle is then divided into sub-bundles (fig. 5.11). A sub-bundle
has the same definition as a sub-block. The cache annotation function is called for each

73

Chapter 5. Modeling the Impact of Cache Memories on the System Performance

sub-bundle. If the first instruction of the sub-bundle is in the cache, then

delay+ = icache_access_time,

otherwise,
delay+ = miss_penalty + icache_access_time.

Since instructions in a sub-bundle are executed synchronously, only the first instruction
is considered in the delay computation, as opposed to eq. (5.1). So, there is no need to record
the number of instructions of sub-bundles in the basic block data base (fig. 5.11).

5.2.4 Instruction Buffer Impact on Instruction Cache Performance Estimation

At this level, we handled parallelism inside bundles. However, we considered bundles to
be executed sequentially. In many architectures ([STM04, DdDAB+13, Int10]), the instruction

.. ... I8 I9 I10 I11

...

Instruction Cache

.. .. I8

.. .. I9

.. .. I10

.. .. I11

Instruction Buffer

req4
(1)

push4
(2)

core
pop4

(3)

Figure 5.12: Instruction Buffer

cache is further enhanced with an instruction buffer (fig. 5.12). An instruction buffer is in
charge of fetching a sequence of instructions (i.e. a fetch packet) from the instruction cache
and providing it to the core. The interesting aspect of an IB is the ability to fetch instructions
ahead of time (before the core even requests them), which offers a sort of parallelism among
fetch packets.

In the example of fig. 5.12, the IB is composed of four FIFOs with three stages each. The
IB can hold four 32-bit instructions in each one of its three stages. Each clock cycle, the IB
requests four instructions from the instruction cache (fig. 5.12-(1)). The cache pushes the
four requested instructions into the instruction buffer’s FIFOs (fig. 5.12-(2)), which are then
popped into the next stages of the pipeline (fig. 5.12-(3)) to be decoded and executed as
bundles. In the remaining of this section, the IB example (fig. 5.12) will be used to explain
the IB behavior and its influence on the execution time. For clarity reasons and without loss
of generality, we assume that a fetch packet is composed of one bundle. Thus, the terms
bundle and fetch packet will be used interchangeably.

Breaking up the execution of bundles into sub-steps enables the bundles to overlap (to
be executed partially at the same time) and offers better performances. As can be depicted
in fig. 5.13, the sub-steps are: CacheRequest, CacheRespond, and IBPop, which respectively
correspond to (1), (2) and (3) in fig. 5.12. These sub-steps constitute the 3 phases of the
pipeline’s fetch stage.

Given the VLIW architecture and with the instruction buffer in the picture, the paral-
lelism is both intra- and inter-bundles. So, the delay computation is more complicated than
explained in the previous section as several cases arise.

Nominal Case

In the nominal case (fig. 5.13), the IB requests 4 instructions from the cache in the first
cycle. In the following cycle, assuming that the instructions hit in the cache and they are

74

5.2. Modeling Instruction Cache and Instruction Buffer for Performance Estimation of
VLIW Architectures

bundle1 CacheReq CacheResp IBPop

bundle2 CacheReq CacheResp IBPop

bundle3 CacheReq CacheResp IBPop

cycle1 cycle2 cycle3 cycle4 cycle5

Figure 5.13: Nominal Case

in the same cache line, the cache pushes the requested instructions in the buffer and the
buffer initiates a new request during the same cycle. In the third cycle, the core requests
a bundle of four 32-bit instructions, which is already in the IB. So, the bundle is popped
into the pipeline. During the third cycle, three bundles are handled simultaneously: the
first bundle is already in the pipeline, the second bundle is in the IB and the third bundle
is fetched from the cache. Starting from the fourth cycle, a steady state is reached where a
bundle is executed per cycle.

To be able to reflect the overlapping of bundles in the delay computation, the delay
formula of the nominal case (i.e. cache hit, the requested instructions reside in the same
cache line and the core requests a 4-instruction bundle) is:

delaynom = k + nbr_bundles− 1, (5.2)

where k is the number of phases of the fetch stage (3 in our case), and nbr_bundles is the
number of the executed bundles. For example, the delay of the 3 bundles (fig. 5.13) is 5
cycles. In order to keep track of the number of executed bundles, a bundle counter is intro-
duced in the IR code. During simulation, each time a basic block is visited, the counter is
incremented with the number of bundles of the visited basic block.

Branch Case

bundle1 CacheReq CacheResp
IBPop

bundle1’ CacheReq Flush Starved

bundle2 CacheReq CacheResp IBPop

cycle1 cycle2 cycle3 cycle4 cycle5

(branch)

Figure 5.14: Branch Case

When a branch is executed (fig. 5.14), the buffer has to flush its FIFOs because it has
already filled them with sequentially fetched instructions that may not be valid anymore.
In cycle 3, bundle1 (the bundle that comprises the branch instruction) is popped into the
pipeline to be decoded and dispatched to the different execution units. When a branch is
executed, the IB flushes its FIFOs and sends a request to the instruction cache in order to
retrieve four instructions starting from the address of the branch target. During the fourth
cycle, the core attempts to pop a bundle from the buffer, but fails as the buffer is still empty.
So, the pipeline is starved for one cycle. In the fifth cycle, the core can finally retrieve a
bundle since it is available in the IB.

As a consequence, a bundle that is a target of a branch (a branch can be a function call)
takes 1 extra cycle to be brought to the pipeline, under the same conditions as the nominal

75

Chapter 5. Modeling the Impact of Cache Memories on the System Performance

case. Accordingly, the starting bundle of each basic block, except the entry basic block, is a
target of a branch (by definition of a basic block) and as a result takes 1 extra cycle:

delaybranch = nbr_basic_blocks− 1 (5.3)

A Line-Crossing Bundle Case

bundle1 CacheReq 1 instr Starved

bundle1 CacheReq CacheResp IBPop

cycle1 cycle2 cycle3 cycle4

Figure 5.15: A line-crossing bundle case

In case of a line-crossing bundle (fig. 5.15), the cache responds with less instructions than
requested by the IB because the bundle crosses the cache line boundary. Thus, more than
one cache access is needed. In the example of fig. 5.15, only one instruction of bundle1 is
pushed into the buffer in the second cycle. Consequently, the pipeline is starved during the
third cycle since it wants a bundle of four instructions and only one instruction is available
in the buffer. The three remaining instructions are requested by the buffer in the second
cycle, pushed in its FIFOs in the third cycle and popped into the pipeline in the fourth cycle.
So, each sub-bundle introduces an extra cycle:

delaycross =
nbr_bundles∑

i=1
nbr_sub_bundlesi − 1 (5.4)

For each bundle, the number of added cycles is the number of its sub-bundles minus one.
We subtract 1 for each visited bundle because its first sub-bundle is already included in
eq. (5.2). Assuming that a cache line can hold more than four instructions, a bundle can
span two cache lines at most. So, it can be divided into two sub-bundles, each one resides
in a different cache line. Thus, the added delay of a line-crossing bundle is 1 cycle (in case
both sub-bundles hit in the cache).

A Miss Case

bundle1 CacheReq Miss CacheResp IBPop

bundle2 CacheReq CacheResp IBPop

Figure 5.16: A miss case (a blocking cache)

In case a cache miss occurs (fig. 5.16) (in a blocking cache), the cache cannot respond to
the ensuing requests issued by the IB until the missing bundle is brought to the cache. So,
subsequent requests are delayed by the miss penalty of the missing bundle.

delaymiss = miss_cycles× (nbr_misses) (5.5)

76

5.2. Modeling Instruction Cache and Instruction Buffer for Performance Estimation of
VLIW Architectures

The number of misses is computed during simulation using the cache model and the cache
annotation approach explained hereinbefore. The number of misses is recorded in a counter
and updated whenever a basic block is visited.

The overall delay (in cycles) caused by the instruction cache and the IB is the sum of
equations (5.2), (5.3), (5.4) and (5.5):

delay = delaynom + delaybranch + delaycross + delaymiss (5.6)

5.2.5 Limitations: Variable-Sized Bundles

In the different cases discussed in the previous subsection 5.2.4, the core always requests a
4-syllable bundle. However, in reality, the core can pop variable-sized bundles.

I5 I9

I6 I10

I7 I11

I4 I8 I12

IB

push4

I13,I14,I15,I16

req4

I17,I18,I19,I20

pop
I3

Figure 5.17: Problematic situation: full IB

The instruction buffer should be able to hold instructions sent from the instruction cache
at any point in time. The case where instructions are ready to be pushed in the IB but the
IB can’t receive them because it has no room, should not occur (fig. 5.17). When a 4-syllable
bundle is popped each cycle from the instruction buffer, the IB will never face the problem
delineated in fig. 5.17. However, when the core decides to pop smaller bundles, the IB may
reach a state where it is full and cannot store all the syllables that it requested from the
instruction cache, during the previous cycle, in its FIFOs.

To solve this problematic situation, the instruction buffer initiates a fetch request only if
it is sure it will be able to hold the requested instructions in its FIFOs:

∀i ∈ [0, 3],
2∑

k=0
nbFIFOi[k] + pendingi < k, (5.7)

where i designates a specific FIFO (among the four FIFOs in our example), k designates
a specific stage (among the three stages in our example) of a given FIFO, nbFIFOi is the
number of syllables (0 or 1) stored in FIFO number i and FIFO stage number k, and pendingi

corresponds to the number of syllables (0 or 1) intended for FIFO number i. If this condition
is fulfilled, then the IB will always have room for the previously requested instructions, but
this solution may lead to the imbalance of the FIFOs, which may cause the pipeline to starve.

At cycle 1, in the example of fig. 5.18, four syllables are pushed in the IB, four syllables
are requested from the cache, and two syllables are requested by the core from the IB. At
cycle 2, a 2-syllable bundle is popped from the IB. The IB does not perform a fetch request
because:

nbFIFO2,3[0] + nbFIFO2,3[1] + nbFIFO2,3[2] + pending2,3 = 1 + 1 + 0 + 1 = 3.

Since the IB did not request any syllable from the instruction cache during the previous
cycle, nothing is pushed in the IB at cycle 3. At cycle 3, the core requests a 4-syllable bundle

77

Chapter 5. Modeling the Impact of Cache Memories on the System Performance

I1

I2

I3

I4

IB
(cycle 1)

push4

I1,I2,I3,I4

req4

I5,I6,I7,I8

pop2

I5

I6

I3 I7

I4 I8

IB
(cycle 2)

push4

I5,I6,I7,I8

no req pop4

I7

I8

IB
(cycle 3)

nothing to push

req4

I9,I10,I11,I12

pop4

I9

I10

I7 I11

I8 I12

IB
(cycle 4)

push4

I9,I10,I11,I12

no req pop4

starved

Figure 5.18: Unbalanced FIFOs of the IB

from the IB, but only two syllables are available. The IB launchs a fetch request, as its
state fulfills condition (5.7). At cycle 4, nothing is removed from the IB and the pipeline is
starved. The pipeline requests a 4-syllable bundle from the IB again and this time the IB has
the requested bundle. This bundle is popped at cycle 5. The state of the IB at cycle 4 is the
same as in cycle 2. In fact, starting from cycle 4, cycles 2 and 3 will be repeated as long as a
4-syllable bundle is popped each time. The imbalance of FIFOs caused by a smaller bundle
(less than 4 syllables) causes the pipeline to starve periodically.

We did not take into account the impact of the irregular bundle size on the instruction
cache and instruction buffer performance because different successions of bundles can lead
to different outcomes. For instance, if the core in the example of fig. 5.18 requested a 2-
syllable bundle at cycle 2, the starvation problem wouldn’t have arisen. Alternatively, if
the pipeline stalls for some reason (cache miss, data dependencies, etc.) the IB would have
more time to bring more instructions to its FIFOs and the problem described above would
not occur.

Since the disadvantageous pattern that we described in fig. 5.18 (i.e. the core keeps
requesting 4-syllable bundles after it had requested a 3-syllable bundle), is usually broken
by requesting a (4-n)-syllable bundle or a (8-n)-syllable bundle, where n is 2 in our example,
the approximation that we made does not have a consequential imapct on the accuracy of
the estimates. In the worst case scenario, where a bundle mean size is 4 syllables and a single
smaller bundle (1, 2 or 3 syllable-bundle) perturbs the balance of the IB, the performance of
the code is downgraded by 33% compared to the optimal case (i.e. a series of exactly 4-
syllable bundles), according to Kalray.

5.3 Conclusion

Micro-architectural components have a consequential impact on the performance of the sys-
tem. Thus, their effects should be accounted for, in performance estimation. Pipeline and
cache behavior have been given a lot of attention in performance estimation approaches.
Yet, the ever evolving architectures of MPSoCs are characterized by the incorporation of
highly advanced hardware components with superscalar or VLIW features in order to cater
for the continuous quest for better computing capabilities. To yield accurate performance

78

5.3. Conclusion

estimates, the distinguishing features of such complex architectures should be accurately
modeled.

In this chapter, we presented a generic data cache model used for performance estima-
tion. Then, we gave an overview of a VLIW architecture and we underlined the limitation
of a generic instruction cache model in reflecting the behavior of such architecture.

So, we presented an approach to estimate the performance of an instruction cache in a
VLIW architecture with an instruction buffer. In the instruction cache simulation, bundles
were considered instead of instructions. Several cases related to parallelism among bun-
dles were explained and their effects on the delay computation were formalized in separate
formulas.

We only addressed fixed-size bundles, whereas in reality, a processor can request variable-
sized bundles, which may lead to unbalanced FIFOs of the instruction buffer and conse-
quently additional delay cycles. The irregular aspect of such bundles makes the computa-
tion of the delay very challenging as many elements should be factored in the computation.

79

Chapter 6

Experimental Results

To validate the accuracy of the proposed mapping approach, as well as the instruction cache
and instruction buffer performance models, we present and analyze a set of experimental
results using two simulation environments: a native simulation platform and an instruction
set simulator used as a touchstone. We evaluated the proposed mapping approach and the
performance models quantitatively in terms of simulation speed and accuracy. The accuracy
of the mapping approach is measured using the instruction count as a metric. As for the
precision of the instruction cache and instruction buffer, it is assessed using miss count and
cycle count. These performance estimates obtained by native simulation are compared to
the ones generated by ISS.

Before we tackle the experimental results of our contributions in sections 6.3 and 6.4, we
will start by dissecting the quintessential constituents of the experimental environment.

SW applications + performance models

ISS Native simulation

Virtual simulation platform (SystemC-TLM)

Host SMP workstation

CPU0 CPU1 ... CPUn
C0 C1

C3C2

C0 C1

C3C2

cluster0 cluster1

MPSoC architecture

SW environment

HW environment

Figure 6.1: A bird’s eye view of the experimental environment

As showcased in fig. 6.1, the experimental environment can be roughly divided into two
parts:

• a hardware part that includes the host machine, where the simulation is conducted,
and the simulated target MPSoC,

• a software part that incorporates the software applications (benchmarks), which are

81

Chapter 6. Experimental Results

coupled with the performance models, and the simulation environment, i.e. the soft-
ware simulation platform (ISS/Native) and the hardware simulation platform (Sys-
temC/TLM).

The hardware environment is decribed in section 6.1 and the software environment is de-
tailed in section 6.2.

6.1 HW Environment

The target platform that we simulate is the Kalray MPPA-256 SoC. The platform on which
the simulation of the target SoC is conducted, a.k.a. host machine, is a x86 desktop.

6.1.1 Target Architecture: Kalray MPPA-256

Figure 6.2: An overview of the Kalray-MPPA

MPPA (fig. 6.2) is a family of programmable and massively parallel processor array
(MPPA) intended for real-time, low power, compute-intensive applications, such as au-
tonomous vehicles software and storage in data centers.

A clustered architecture

The kalray MPPA-256 architecture integrates 256 user cores and 32 system cores. These
cores are organized in 16 compute clusters and 4 quad-core I/O subsystems located at the
periphery of the chip (fig. 6.2). This array of compute clusters and I/O subsystems are
connected to a toroidal 2D NoC. Each compute cluster (fig. 6.3), which is the basic processing
unit of the MPPA architecture, is multicore and is composed of 16 processing elements (PEs)
dedicated to application processing and one core referred to as the resource manager (RM),
characterized by a connection to NoC interfaces and in charge of controlling the cluster
(firmware uploads, system code execution, security functions, etc.).

82

6.1. HW Environment

Figure 6.3: An internal view of a cluster from the kalray-MPPA

A VLIW core

Each core (RM or PE) implements a 5-issue VLIW architecture with a 7-stage instruction
pipeline and five execution units: two arithmetic and logic units, a multiply-accumulate/floating-
point unit, a load/store unit, and a branch and control unit.

Memory hierarchy

A compute cluster is equipped with a 2MB shared memory organized in 16 parallel
banks of 128KB each. Kalray-1 VLIW core implements separate instruction and data caches
with no hardware cache coherence. When needed, cache coherence has to be maintained
by software. Each VLIW core (RM or PE) has its own independent 8K-bytes, 64-byte lines,
2-way set associative instruction cache and 8K-bytes, 32-byte lines 2-way set associative
data cache. A prefetch buffer (PFB), i.e. instruction buffer, in charge of issuing instruction
bundles to the core is also a part of a the Kalray-1 VLIW architecture. The PFB is composed
of four 3-stage FIFOs. Each stage of the PFB can hold up to four 32-bit instructions.

Interconnect

The 16 compute clusters and the 4 I/O subsystems are connected to a NoC with bi-
directional links, characterized by its 2D-wrapped-around torus topology and wormhole
switching providing a full duplex bandwidth up to 3.2 GB/s between two adjacent clusters.
In fact, The MPPA NoC comprises two parallel networks: a data NoC (D-NoC) optimized
for bulk data transfer and a control NoC (C-NoC) optimized for small messages at low
latency. Each compute cluster is linked to one NoC node. Each I/O subsystem, on the other
hand, is associated with four NoC nodes. A NoC node consists of a D-NoC router and a
C-NoC router. Both NoCs ensure reliable delivery and messages that take the same route
arrive in order.

83

Chapter 6. Experimental Results

6.1.2 Host Machine

Table 6.1: Host CPU information

Model name Intel(R) Xeon(R) CPU
Architecture x86-64
Frequency 3.47GHZ

Nbr of cores 6
L1 dcache: 32KB

caches L1 icache: 32KB
L2 cache: 256KB
L3 cache: 12288KB

The host processor, on which the native simulation platform is executed, is an Intel x86,
64-bit, SMP 6-core that runs at 3.47GHz (table 6.1). During our experiments, only one core
is used.

6.2 SW Environment

In the software environment, we will focus on the simulation platforms: the native simu-
lator, which is the testbed for all the experiments we conducted, and a cycle accurate ISS,
which is used as a guideline to measure the accuracy of our contributions. We will also give
a rundown of the chosen benchmarks.

6.2.1 Simulation Platforms

Native Simulation

The native simulation platform that we adopted is the one proposed in [Sar16], which
relies on the integration of KVM into an event-driven simulation environment (SystemC) to
solve the address space problem.

The software is compiled to the host machine format. At the start of the simulation, a
memory region is allocated in user space and passed to KVM using a dedicated system call
(ioctl(KVM_SET_USER_MEMORY_REGION)). The host instructions are loaded in that memory
zone. Simulating a processor consists of executing the VM associated to it using system call
ioctl(KVM_RUN). This VM reads the host instructions and executes them natively in guest
mode. One of the reasons for which the guest mode is exited is when a synchronization
with the virtual simulation platform (SystemC) in user mode is required. In other words,
when a time annotation is encountered while executing the software by the VM, the VM
halts and the SystemC platform, more precisely a SystemC module called native processing
unit (NPU) (fig. 6.4), takes over and advances the execution time by the value indicated in
the annotation. A switch from guest mode to user mode happens in two steps: a switch
from guest mode to kernel mode and a switch from kernel mode to user mode.

To bridge the gap between the kernel driver and the virtual platform in user mode
the NPU provides the interface between hardware SystemC components and KVM ker-
nel driver using the KVM user-space library (fig. 6.4). Among the services requested by
the native processor from the KVM driver are: the creation of a new virtual machine

84

6.2. SW Environment

NPU

SC THREAD

semi-hosting

(annot. fcts)

MMIO

(callback fcts)

SystemC/TLM ports

ca
ll
b
ac
k
s

(i
n
te
ra
ct
io
n
w
it
h
k
v
m
)

...

...

Simulation platform

KVM user space lib

Host workstation

linux kernel
KVM driver

exit reason ioctl()s

VM

(native code

execution)

v
m

ex
it

v
m

en
tr
y

User Mode

Kernel Mode

Guest Mode

Figure 6.4: Interaction between the NPU and the VM

(KVM_CREATE_VM) with one or more virtual CPUs (KVM_CREATE_VCPU), the creation or modi-
fication of a guest memory slot in user space (KVM_SET_USER_MEMORY_REGION), the launch of
a VM execution (KVM_RUN). These requests are sent to KVM using the ioctl() mechanism.
The native processor also provides SystemC interfaces, such as TLM ports (fig. 6.4).

Listing 6.1: Time annotation request
1 bb30:
2 ...
3 exec_time += 60;
4 cpu_kvm_io_callback(ANNOTATION_BASEPORT , &exec_time);
5 return D5731;

To transmit a time annotation request from the application running in guest mode to the
SystemC platform, a trap mechanism based on PMIO (port mapped I/O) access is used, as il-
lustrated in listing 6.1. The function that triggers the mode switch (cpu_kvm_io_callback())
takes two parameters: the first one is the annotation port, which is defined in KVM (e.g. #define
ANNOTATION_BASEPORT 0x4000) and the second one is the address of the variable containing
the time annotation.

Listing 6.2: Guest to host address transformation
1 uintptr_t host_vaddr = (uintptr_t)guest_flat_to_host(kvm_cpu ->kvm ,

guest_addr);
2 systemc_annotate_function(sc_kvm_wrapper , kvm_cpu ->cpu_id , *((int

*) host_vaddr));
3 ...

This address in guest memory is transformed by a KVM callback function to a virtual ad-
dress in host memory suitable for the SystemC platform (listing 6.2).

Listing 6.3: Wait function call
1 void systemc_annotate_function(void* sc_kvm_wrapper , int cpu_id ,

int exec_time)

85

Chapter 6. Experimental Results

2 {wait(exec_time , SC_NS);}

The NPU retrieves the value of the variable exec_time and calls the SystemC wait()
function (listing 6.3).

However, a switch from guest mode to user mode is very costly (almost 10000 cycles
to handle the mode switch i.e. go to kernel mode, determine the exit reason, switch to
user mode, execute the wait function and return to guest mode). To minimize these mode
switches, annotations should be accumulated and the trap function should only be called in
exit basic blocks (i.e. basic blocks that contain an instruction that could possibly be the last
executed instruction of the program, e.g. a basic block containing a return statement).

ISS

The kalray-1 toolchain comes with a k1-cluster simulation platform that instantiates
multiple instances of Kalray-1 processor ISS and peripherals to model a MPPA cluster. The
k1 is an abstract model of the actual processor and it offers two execution modes: a func-
tional simulation mode (k1-cluster --prog), with maximum simulation speed at the ex-
pense of simulation accuracy, and a cycle-based simulation mode (k1-cluster --cycle-based
--prog), with maximum simulation accuracy and slower simulation time. In this cycle-
accurate mode, a simplified processor pipeline is used and additional execution cycles due
to pipeline stalls, instruction prefetch mechanism and cache memory accesses are taken into
account. In all of our experiments, the cycle-based mode is used, even if we do not explicitly
mention it in the examples.

The k1 simulator also provides profiling support, which is extremely useful because it
produces detailed profiling files containing valuable information about instruction and cy-
cle counts and cache miss/hit counts. This information is key in evaluating the efficiency of
the proposed mapping algorithm and the instruction cache performance model. Profiling
is enabled with the --profile option. The generated profiling files can be analyzed and
converted by external profiling tools in order to produce user-friendly output files in the
desired formats. The currently available output files are disassembly execution traces gener-
ated by the (k1-disasm) tool and callgrind files generated by the (k1-callgrind) tool. In
our work, we use the well-known profiling tool cachegrind from the valgrind tool suite to
generate profiling information and we visualize it by the kcachegrind tool.

Figure 6.5: A screen shot of the event window of kcachegrind

Figure 6.5 gives a view of the kcachegrind event window and the cost types (executed
bundles, executed instructions, executed cycles, instruction/data cache hit/miss count) sup-
ported by the k1 simulator.

86

6.3. Validation of the Mapping Approach

Table 6.2: Benchmarks

Benchmark Description
Polybench

covar Covariance Computation
atax Matrix Transpose and Vector Multiplication

reg-detect 2-D Image processing
trmm Triangular matrix-multiply

gemver Vector Multiplication and Matrix Addition
trisolv Triangular solver

jacobi-2d 2-D Jacobi stencil computation
syr2k Symmetric rank-2k operations
3mm 3 Matrix Multiplications (E = A.B;F = C.D;G = E.F)

lu LU decomposition
Splash2

FFT complex one-dimensional FFT
radix Integer Radix sort

Lu Matrix triangulation
other

matmult 1 Matrix Multiplication
bubbleSort Bubble Sort
blowfish Symmetric-key block cipher

crc Cyclic redundancy check computation
fft1 Fast Fourier Transform using the Cooley-Tukey algorithm.

6.2.2 Benchmarks

Most of the applications used in the experimentation are taken from benchmark Poly-
bench [Pou] because they are characterized by a significant number of (multi-level) loops,
which will help test our loop-based mapping algorithm especially that loop-intensive code
is prone to radical CFG transformations by the compiler, as explained before. Three ap-
plications (FFT, Lu, radix) from the mature benchmark suite Splash2 [WOT+95] are also
selected because they feature a convoluted control flow (an important number of if-else
and switch-case statements) and they are considered relatively big applications in terms of
number of instructions and memory accesses. Other applications like bubbleSort, blowfish,
crc, fft1, matmult are chosen because they are highly used by similar approaches in litera-
ture [WH12], [SBR11b], [SBR11a]. The different applications used in the experiments are
presented in Table 6.2 with brief descriptions.

6.3 Validation of the Mapping Approach

In this section, we aim at validating the proposed mapping approach, which consists of
finding correspondences between the target binary basic blocks and the IR basic blocks in
order to accurately insert target-specific performance metrics into the functional model.

We will start first by describing the experimental setup and results of the mapping al-
gorithm applied on the selected benchmarks compiled with gcc -O2, in subsection 6.3.1.

87

Chapter 6. Experimental Results

Then, in subsection 6.3.2, we will show the efficiency of the mapping approach in matching
highly-optimized binaries (compiled with gcc -O3) to the IRs, at a basic block level, pro-
vided that certain transformations (as described in chapter 4, section 4.3.2) are conducted
on the IR CFG.

6.3.1 Basic Mapping Scheme

Experimental Setup

Fig. 6.6 illustrates the different steps of the experimental process leading up to the ob-
tained results. We start off by a source code. We took an excerpt of the C code of a Matrix
Multiplication (matmult) application as an example, in fig. 6.6. For space reasons, only snip-
pets of the code at its different compilation and instrumentation stages are displayed.

The source code is cross-compiled (k1-gcc -O2 -fdump-tree-optimized) leading to the
generation of a target binary code (on the right) and low-level Gimple (the IR on the left).
Cross-compilation is the process of generating binaries for a processor (Kalray k1 processor
in our case) other than the host processor on which we run the compilation (x86 in our
case). The Cross-compiler used in our work (k1-gcc) is part of Kalray’s design kit. Although
we employ gcc-based (cross-) compilers, our approach can be applicable to other compilers
that use intermediate representations.

The IR code is transformed into a compilable IR (a.k.a. optimized C code). As for the
target binary, it is executed using a cycle-accurate instruction set simulator (k1-cluster, also
provided by Kalray). The results obtained with the ISS are very close to the ones obtained
with the real platform. For this reason, the ISS is used as a reference to which we compare
the results generated by native simulation.

The metric we retain to evaluate the accuracy of our mapping approach is the number
of executed instructions: indeed, it depends only on the control flow path followed during
execution and not on the accuracy of the SystemC models within the system as would timing
do. So, the accuracy of the instruction count depends uniquely on the mapping algorithm
between the IR and the binary, unlike cycle count for example, which depends both on
the mapping and the time analysis strategy. Thus, by simulating the application on the
ISS, while enabling the profiling option (--profile), we are able to generate the number of
executed instructions. We also measure the simulation time of the original code executed
on the ISS to which we will compare the simulation time of the original and optimized code
(IR) executed on the native simulation platform.

The number of executed instructions of the host-compiled and natively executed IR is
not representative of the number of executed instructions of the target code when it is run
on the real platform, simply because the host and target machines have different ISAs. So,
the target binary and the binary resulting from compiling the IR on the host machine will
most likely have a different number of instructions. In order to be able to generate accu-
rate estimates of the executed instructions using native simulation, we extract the number
of instructions of each basic block of the binary CFG and store them in a data base (e.g.
nb_instr(bb6bin) = 4).

88

6.3. Validation of the Mapping Approach

for (Outer = 0; Outer < UPPERLIMIT; Outer++)
for (Inner = 0; Inner < UPPERLIMIT; Inner++){

Res [Outer][Inner] = 0;
for (Index = 0; Index < UPPERLIMIT; Index++)

Res[Outer][Inner] += A[Outer][Index] × B[Index][Inner];}

source code

...
<bb 5>:
Inner 27 = Inner 36 + 1;
ivtmp.54 19 = ivtmp.54 18 + 4;
if (Inner 27 ! = 20)

goto <bb 3>;
else

goto <bb 6>;
...

IR code

...
BLOCK 6
add $r9 = $r9, 1
add $r32 = $r32, 4
;;
comp.ne $r3 = $r9, 20
;;
SUCC: 4 7
cb.nez $r3, .L14
;;
...

bin code

simulation with ISS

(k1-cluster - -profile)

nb executed instrs=79104

sim time=0.277(sec)

...
bb5:
Inner 27 = Inner 36 + 1;
ivtmp 54 19 = ivtmp 54 18 + 4;
if (Inner 27 ! = 20)

goto bb3;
else
goto bb6;
...

compilable IR code

bbs nb instrs
bb2 2
... ...
bb6 4
... ...

non-functional information

IR bbs bin bbs
bb2 bb2
... ...
bb5 bb6
... ...

mapping data base

...
bb5:
Inner 27 = Inner 36 + 1;
ivtmp 54 19 = ivtmp 54 18 + 4;
nb instr+=4;
if (Inner 27 ! = 20)

goto bb3;
else
goto bb6;
...

Annotated compilable IR

k1-gcc -O2 -fdump-tree-optimized

Gimple-CFG-To-C

static analysis

mapping algorithm

back annotation

native compilation &simulation

nb executed instrs=79111

sim time=0.168(sec) speedup=

sim time(ISS)
sim time(Native) = 1.65

error=

|nb instrs(Native)−nb instrs(ISS)|
nb instrs(ISS) × 100 = 0.00%

Figure 6.6: Validation of the mapping algorithm at the gcc -O2 optimization level using the
instruction count as a performance metric

89

Chapter 6. Experimental Results

Then, the mapping algorithm is applied on both the target binary and the IR CFGs lead-
ing to a mapping data base in which basic blocks of the IR are associated to their matching
basic blocks in the target binary CFG (e.g. bb5ir ⇔ bb6bin). According to the established
mapping information, the instruction count of a binary basic block is accurately inserted in
the corresponding IR basic block.

An instruction counter (nb_instr) is introduced in the optimized code, which follows the
execution path while keeping track of the number of instructions of each visited basic block.
Finally, the annotated compilable IR is compiled on the host machine (k1nsim-gcc -O2 -o
annot_ir annot_ir.c) and is natively executed (k1nsim-cluster --annot_ir). At the end
of the simulation, the estimated number of executed instructions as well as the simulation
time are output.

for (Outer = 0; Outer < UPPERLIMIT; Outer++)
for (Inner = 0; Inner < UPPERLIMIT; Inner++){

Res [Outer][Inner] = 0;
for (Index = 0; Index < UPPERLIMIT; Index++)

Res[Outer][Inner] += A[Outer][Index] × B[Index][Inner];}

source code

...
BLOCK 6
add $r9 = $r9, 1
add $r32 = $r32, 4
;;
comp.ne $r3 = $r9, 20
;;
SUCC: 4 7
cb.nez $r3, .L14
;;
...

target binary code

k1-gcc -O2 -g

file name line nbr instr @
...
matmult.c 76 0x12f38

... ...
83 0x12f68
90 0x12f68
... ...

line number information

k1-objdump - -dwarf=decodeline

for (Outer = 0; Outer < UPPERLIMIT; Outer++){
nb instr+=1;

for (Inner = 0; Inner < UPPERLIMIT; Inner++){
nb instr+=2;
Res [Outer][Inner] = 0;
for (Index = 0; Index < UPPERLIMIT; Index++){

nb instr+=5;
Res[Outer][Inner] += A[Outer][Index] * B[Index][Inner]; }}}

Annotated source code

back annotation

native exec &simulation

nb executed instrssim time

Figure 6.7: Mapping source code to target binary code using debug information for SLS

The speedup gained by native simulation is computed as follows:

speedup = sim_time(ISS)
sim_time(Native) .

The error percentage caused by the mapping algorithm is determined using the following
formula:

error(%) = |nb_exec_instrs(Native)− nb_exec_instrs(ISS)|
nb_exec_instrs(ISS) × 100.

The mean absolute error (a.k.a. average error) of N applications is:

erroravg(%) =

N∑
i=1

error i(%)

N
.

90

6.3. Validation of the Mapping Approach

In addition to our IR-based approach (a.k.a ILS), in which the mapping is conducted using
the proposed loop-oriented algorithm, we also implemented the traditional SLS approach,
in which the mapping between the source code and the binary code is conducted based
on debug information (fig. 6.7). This approach is inspired from [Wan10]. The source code
is cross-compiled with the debug option (k1-gcc -O2 -g). Debug information is generated
from the target binary code (k1-objdump --dwarf=decodeline), and a file containing line
number information is produced. In this file, source line numbers are coupled with the
addresses of their corresponding target machine instructions. Based on this information,
we annotate the source code with the instruction count. The annotated source code is then
compiled and executed natively. The results of SLS are an estimation of the number of
executed instructions, as well as the simulation time. These metrics are compared to the
results generated by our approach (ILS) and the cycle accurate simulator (ISS).

Figure 6.8: Comparison of the simulation time between ISS and native simulation

Analysis of the Results

Table 6.3 lists the main optimizations, in each application, observed at the optimization
level O2. Optimizations that are enabled by the compiler in a given application are marked
with the "×" symbol, otherwise, they are marked with "-". The table also provides informa-
tion about the number of loops in each application and the degree of loop nests.

Fig. 6.8 shows the simulation time in seconds of the original codes executed using the
ISS and the native simulation platform. Native Simulation offers a significant speedup for
all the applications. As we can notice, the use of the IR code that we transformed to C code
(referred to as optimized code in fig. 6.8) does not introduce any prominent effect on the
simulation time compared to the original code, using the native simulation platform. In
fact, the slowdown is approximately a factor of 1 for the different applications.

Table 6.4 shows the number of the executed instructions of the natively-executed opti-
mized code (ILS) compared to the number of the executed instructions of the original code

91

Chapter 6. Experimental Results

Table 6.3: O2 optimizations observed for each application

FFT bubbleSort matmult Radix Trmm Lu atax 3mm
loops 35 2 3 24 3 23 4 9

NL*(ND*) 9(4,4,3,2,1,1,1,1,1) 1(1) 1(2) 2(1,1) 1(2) 8(1,1,1,1,1,1,1,3) 1(1) 3(2,2,2)
complete unrolling × - - × - × - -

of small loops
small fct inlining × - - × × × × ×

branch optims (mainly
cross jumping, if conversion × × × × × × × ×

and jump threading)
other loop optims × × × × × × × ×

covar. gemm reg-detect jacobi gesu. durbin trisolv syr2k
loops 7 3 10 5 2 4 2 5

NL*(ND*) 3(1,1,2) 1(2) 1(3) 1(2) 1(1) 1(1) 1(1) 2(1,2)
complete unrolling - - - - - - - -

of small loops
small fct inlining × × × × × × × ×

branch optims(same) × × × × × × × ×
other loop optims × × × × × × × ×

*NL: nesting loop (outer loop or level 0 loop), *ND: nesting degree (number of inner loops inside a NL)

run on the ISS, and the resulting error (ILS-ERROR). The results of SLS are also compared
to ISS, and the error is presented in table 6.4.

As can be noticed, the SLS-ERROR has elevated values. These high values are caused by
the unreliable debug information that failed to keep track of compiler optimizations. The
impact of these optimizations on the structure of the code is significant, especially in the
presence of a large number of loops. On the other hand, the use of our mapping scheme that
takes into account compiler optimizations and focuses on loops led to a small percentage
of error. This small ILS-ERROR is due to some differences between the binary CFG and
the IR CFG (caused by some compiler back-end optimizations, which are target-specific
optimizations that are not present in the IR) that could not be handled by our mapping
scheme.

Experiments on instruction count, using the IR as a functional model and the proposed
mapping algorithm, show, in average, around 2% of error while maintaining a considerable
speedup compared to instruction set simulation.

Table 6.4: Comparison of the number of executed instructions (O2)

Benchmark FFT bubbleSort matmult Radix Trmm Lu atax 3mm
ISS 35399998 5451974 79104 6565782 148695 16672930 28251 782941
ILS 35038273 5451998 79111 6572218 151822 16568886 28571 806692
ILS-ERROR -1.02% 0.00% 0.00% 0.09% 2.10% -0.62% 1.13% 3.03%
SLS-ERROR -67.08% -81.51% -21.97% -39.48% -28.84% -41.55% -53.14% -22.4%
Benchmark covar. gemm reg-detect jacobi gesu. durbin trisolv syr2k
ISS 175205 320192 10251 66719 28279 26224 14911 479761
ILS 179861 318642 10310 68022 29066 27232 15160 489156
ILS-ERROR 2.66% -0.48% 0.58% 1.95% 2.78% 3.84% 1.67% 1.96%
SLS-ERROR -69.98% -31.05% -66.22% -74.97% -68.2% -68.67% -61.63% -75.55%

92

6.3. Validation of the Mapping Approach

for (Outer = 0; Outer < UPPERLIMIT; Outer++)
for (Inner = 0; Inner < UPPERLIMIT; Inner++){

Res [Outer][Inner] = 0;
for (Index = 0; Index < UPPERLIMIT; Index++)

Res[Outer][Inner] += A[Outer][Index] × B[Index][Inner];}

source code

...
bb10:
...
a 12 = ivtmp 18 34 * 4;
a 14=*(int *)((unsigned int)

a 9+(unsigned int)a 12*1+0);
...
if (ivtmp 18 37 ! = a 52)

goto bb10;
else

goto bb31;
...

Compilable IR code

...
BLOCK 22
...
lw $r52 = 0[$r0]
add $r34 = $r1, 1
add $r48 = $r1, 3
add $r49 = $r1, 5
;;
lw.add.x4 $r51 = $r1[$r7]
add $r50 = $r1, 7
add $r1 = $r1, 8
add $r0 = $r0, 960
...

bin code

...
matmult.c:18:9: loop unrolled 3 times

...

OptimInfo

k1-gcc -O3 -fdump-tree-optimized -fopt-info-optimized=OptimInfo

...
bb16:

if((a 52 % 4)==0) goto bb23;
else goto bb17;

bb17:
if((a 52 % 4)==1) goto bb22;
else goto bb18;

bb18:
if((a 52 % 4)==2) goto bb21;
else goto bb19;

bb19: goto bb20;
bb20: ;
bb21: ;
bb22: ;
bb23: ;
bb10:
...
a 12 = ivtmp 18 34 * 4;
a 14=*(int *)((unsigned int)

a 9+(unsigned int)a 12*1+0);
...
cnt ++;
if(cnt<=((int)(a 52/4))){;}
if (ivtmp 18 37 ! = a 52)

goto bb10;
else

goto bb31;
...

IR transformation

Modified IR

IR bbs bin bbs
bb10 bb22
bb16 bb7
... ...
bb19 bb10
... ...
bb23 bb20
... ...

mapping data base

mapping algorithm

Figure 6.9: Validation of the mapping algorithm at the gcc -O3 optimization level using the
instruction count as a performance metric

93

Chapter 6. Experimental Results

6.3.2 Upgraded Mapping Scheme

Applied in isolation, the different cases of loop unrolling and their effect on the mapping
method were explained in chapter 4, section 4.3.2, using examples contrived to highlight
each case. However, in real applications compiler optimizations are not enabled separately.
Instead, they depend on each other and many are only beneficial when others have been
applied beforehand to lay the groundwork.

The applications used in this experimentation are compiled with gcc’s highest level of
optimization O3, where aggressive loop optimizations, like loop unrolling along with other
code transformations, like branch optimizations, are turned on. We left the compiler in
charge of choosing the right combination of optimizations (i.e. which optimizations should
be enabled together) as our objective is not to evaluate nor to improve the performance of
compiler optimizations. Instead, we are only concerned with providing an accurate map-
ping scheme, while leaving the task of effectively choosing the optimizations to the com-
piler.

Experimental Setup

The experimental process of the upgraded mapping scheme involves a few more steps
than the basic approach. These steps can be depicted in fig. 6.9. We also use the instruction
count as a performance metric to validate the accuracy of the mapping approach.

The source code is cross-compiled, this time, at the O3 optimization level and with an
additional compilation option (-fopt-info-optimized=OptimInfo) in order to output a file
(OptimInfo) containing information about certain optimizations performed by the compiler
at the O3 level. More scpecifically, we are looking for the unrolling factor chosen by the
compiler, which we will use later on to introduce a few modifications to the IR code for
annotation purposes. The OptimInfo, in the example of fig. 6.9, indicates that the unrolling
factor of the inner loop is UF = 3. Accordingly, we modify the compilable IR by adding
a prologue contating non-functional basic blocks to account for the peeled instructions in
the binary code. The number of leftover iterations (a_52%(3 + 1)) is determined at run time
(because the trip count is unknown at compile time in this example), which explains the
if-else structure preceding the loop body (bb10 in the IR code). We also add a counter (cnt)
and a condition on the counter (as explained in chapter 4, section 4.3.2) inside the loop,
in order not to exceed the number of iterations of the unrolled loop when calculating the
number of instructions.

After performing the necessary modifications (structure-wise) to the IR, the CFG of the
modified IR is closer to the binary CFG. At this stage, we apply algorithm 1 to the binary
CFG and the modified IR CFG, leading to the generation of a mapping data base. The
remaining steps (binary basic block analysis, back-annotation of the instruction count, exe-
cution of the binary with ISS, native simulation of the annotated compilable IR, etc.), which
are not represented in fig. 6.9, are identical to the steps in fig. 6.6.

Three mapping methods are tested: the proposed mapping approach ILS+O3Map that
handles O3 optimizations, the former mapping approach ILS+O2Map (described in chap-
ter 4, section 4.3.1) that yields accurate results with O2 optimizations, but is not adapted
to O3 optimizations, and finally the former mapping approach readjusted to cater for loop
unrolling ILS+O2Map+. In the latter approach, we only protected the instruction count in
the IR loops with a test (like we did with cnt in fig. 6.9), so as to simulate the number of
iterations of the corresponding unrolled loop. However, no prologue/epilogue is added to
account for the peeled iterations, as the former mapping algorithm does not introduce any
modification to the IR control flow.

94

6.3. Validation of the Mapping Approach

Table 6.5: O3 optimizations observed for each application

matmult bubbleSort covar atax reg-detect trmm gemver trisolv jacobi-2d
loops 3 2 7 4 10 3 7 2 5

NL*(ND*) 1(2) 1(1) 3(1,1,2) 1(1) 1(3) 1(2) 3(1,1,1) 1(1) 1(2)
UL*(UF) 1(7) 1(7) 3(7,7,7) 2(7,7) 3(7,7,7) 1(7) 4(3,7,7,7) 1(7) 2(3,7)

branch optims - × × × - - - × -
HW loop × - × × × × × × ×

loop-distribute-patterns:
loop initialization is distributed

other observations (split to 0 loops) and a library call
(memset zero) is generated

syr2k 3mm lu blowfish crc fft1
loops 5 9 4 9 3 11

NL*(ND*) 2(1,2) 3(2,2,2) 1(2) 3(1,1,1) 0 2(2,1)
UL*(UF) 2(7,3) 3(7,7,7) 2(7,7) 3(16cmp* , 16cmp, 5cmp) 2(3,9cmp) 3(8cmp, 8cmp, 6cmp)

branch optims - × - - × -
HW loop × × × - × -

loop-distribute-patterns: loop unswitching:
other observations one loop is distributed (split to 0 loops) loop-invariant conditions are moved

and a library call (memcpy) is generated out of the loop, 2 loops are created
*NL: nesting loop (outer loop or level 0 loop), *ND: nesting degree (number of inner loops inside a NL), *UL: unrolled loop, *cmp: completely unrolled loop

For each mapping approach, the number of executed instructions is generated at the end
of the native execution. It is compared to the number of executed instructions of the original
code executed on the ISS provided by Kalray.

Analysis of the results

Table 6.5 lists the main O3 optimizations that are enabled (marked with "×" symbol) by
the compiler for each application and that have an impact on the structure of the code. It
also provides information about the number of loops in each application, the degree of loop
nests, and whether loop unrolling is performed, in which case the unrolling factor is pointed
out.

Table 6.6 shows a comparison of the instruction count and the simulation time between
the IR, which is simulated natively and mapped to the binary using the three mapping
methods (each one at a time), and the target binary code executed on the ISS.

As expected, ILS+O2Map causes overestimations in the instruction count, which are
proved by the high error values that reached a maximum of 584.75% for application 3mm.
Only by simulating the number of iterations of the unrolled binary loop in its correspond-
ing rolled loop in the IR (ILS+O2Map+), we notice a considerable improvement of the error
values. The absolute error value dropped from 584.75% (with ILS+O2Map) to 11.43% (with
ILS+O2Map+) for this application. This confirms that inaccuracies come primarily from
mapping errors inside loops because even a small error will become critical if it is repeated
as many times as the number of loop iterations. As for the negative error values, they can
be explained by the non consideration of the peeled iterations, as well as the other O3 opti-
mizations in the mapping approach.

On the other hand, the proposed mapping approach ILS+O3Map yields accurate results
as it fully handles the different cases of loop unrolling, as well as the other O3 optimizations.
Structural transformations are introduced in the IR, so as to have a CFG similar to the binary
CFG. As a result, the average instruction count error is 0.59%.

Applications blowfish and fft1 yield the same results with the three mapping approaches
because at O3 there are no further structural dissimilarities between the IR and the binary
CFGs. In fact, as indicated in Table 6.5, the compiler performs complete loop unrolling in
both applications. As mentioned earlier, even though this optimization contributes to the
modification of the CFG, it is carried out before the compiler back-end so, it is present in the

95

Chapter 6. Experimental Results

IR. Moreover, in blowfish another optimization called loop-distribute-patterns is performed.
This optimizaion is also present in the IR.

As for the simulation time, native simulation is noticeably much faster than ISS. Even
with the transformations that we introduced in the IR to deal with compiler optimizations
(ILS+O3Map), the average speedup is 24.83. It should be noted that the simulation time
includes the overhead caused by the instantiation and destruction of the simulation compo-
nents.

There are, however, certain cases (matmult, blowfish, crc, fft1), where the speedup is below
5. In these cases, small speedup values are also observed with the original source codes. In
fact, these applications are simple and do not make any OS function calls. This leads to
fast simulation times even with the ISS (less than 1s), which may explain the small gains in
simulation performance obtained with native simulation.

6.4 Performance Estimation of the Instruction Cache and Instruc-
tion Buffer in a VLIW Architecture

In addition to the instruction count, we measure the accuracy of the simulation by taking
into account the effects of the instruction cache and instruction buffer in a VLIW architec-
ture. We evaluated our instruction cache model by simulating 8 programs from Polybench
[Pou] compiled with gcc -O2.

Table 6.6: Comparison of instruction count and simulation time (O3)

matmult bubbleSort covar atax reg-detect trmm gemver
ISS 155993 2646028 151302 25748 9892 136033 40556

ILS+O3Map 155993 2656128 154561 25684 10011 136321 40809
error_O3Map +0.0% +0.38% +2.15% -0.25% +1.2% +0.21% +0.62%

instr_count ILS+O2Map 954293 10498510 902115 109985 18213 862273 176398
error_O2Map +511.75% +296.76% +496.23% +327.16% +84.12% +533.87% +334.95%
ILS+O2Map+ 102893 3600010 98327 14625 5741 88129 29686

error_O2Map+ -34.04% +36.05% -35.01% -43.20% -41.96% -35.21% -26.80%

ISS 0.624 2.863 9.006 2.020 1.396 38.086 4.208
ILS+O3Map 0.180 0.184 0.284 0.196 0.180 0.348 0.196

speedup_O3Map 3.47 15.56 31.71 10.31 7.76 109.44 21.47
sim_time(s) ILS+O2Map 0.170 0.180 0.282 0.192 0.172 0.348 0.188

speedup_O2Map 3.67 15.91 31.94 10.52 8.12 109.44 22.38
ILS+O2Map+ 0.176 0.180 0.282 0.194 0.176 0.348 0.188

speedup_O2Map+ 3.56 15.91 31.94 10.41 7.93 109.44 22.38

trisolv jacobi-2d syr2k 3mm lu blowfish crc fft1
ISS 14089 63726 464043 836817 111592 145564 15714 1467

ILS+O3Map 14135 64020 466986 842961 112680 145823 15834 1467
error_O3Map +0.33% +0.46% +0.63% +0.73% 0.97% +0.18% +0.76% 0.00%

instr_count ILS+O2Map 25236 179452 1778442 5730076 509272 145823 18375 1467
error_O2Map +79.12% +181.60% +283.25% +584.75% +356.37% +0.18% +16.93% 0.00%
ILS+O2Map+ 2836 31561 445450 741148 99898 145823 15823 1467

error_O2Map+ -79.87% -50.47% -4.01% -11.43% -10.48% +0.18% +0.69% 0.00%

ISS 1.940 9.594 11.813 15.684 9.751 0.629 0.536 0.542
ILS+O3Map 0.192 0.240 0.336 0.332 0.264 0.180 0.188 0.184

speedup_O3Map 10.10 39.98 35.16 47.24 36.94 3.49 2.85 2.95
sim_time(s) ILS+O2Map 0.184 0.236 0.332 0.328 0.260 0.180 0.184 0.184

speedup_O2Map 10.54 40.65 35.58 47.82 37.50 3.49 2.91 2.95
ILS+O2Map+ 0.188 0.238 0.336 0.332 0.262 0.180 0.184 0.184

speedup_O2Map+ 10.32 40.31 35.16 47.24 37.22 3.49 2.91 2.95

96

6.4. Performance Estimation of the Instruction Cache and Instruction Buffer in a VLIW
Architecture

Experimental Setup

...

source code

...
BLOCK 14
...
add $r42 = $r42, 1
.LVL55: add $r39 = $r39, 256
add $r6 = $r6, 256
;;
comp.eq $r8 = $r42, $r0
;;
cb.eqz $r8, .L36
;;
...

bin code

ISS & valgrind

(k1-cluster - -profile)
(k1-callgrind - -trace=profile/RM.16 - -output=trace)

(k1-kcachegrind trace)

accesses misses cycles
252328 47 1385707

k1-gcc -g -O2 -fdump-tree-optimized

compilable IR code

IR bbs bin bbs
... ...
bb9 bb14
... ...

mapping data base

mapping algo

bbs bundles sub bundles first@ last@
...
bb14 3 3(1,1,1) 0x133ec 0x133fc
...

non-functional information

static analysis

...
bb9:
...
nb bndl+=3;
nb sub bndl+=1-1;
nb bb+=1;
for(addr=0x133ec;addr<=0x133fc;addr+=4)

icache read(addr);
i = i + 1;
nb instr+=1;
...
bb29:
...
delay=3+nb bndl-1+nb sub bndl+nb bb-1

+(nb misses*miss cycles);
return D4847;

Annotated compilable IR

back annotation

Figure 6.10: IR annotation with instruction cache function calls and performance metrics

To validate our instruction cache model, which is a replica of the real cache, we also used
the ISS platform as a reference and we based our comparison on the miss count, cycle count
and the simulation time. Thus, the number of accesses to the instruction cache, as well as
the number of misses, should be generated for the target binary simulated by the ISS, as
well as the natively simulated code.

Listing 6.4: Instruction cache configuration and declaration
1 #define ICACHE_LINES 128 /* number of lines*/
2 #define ICACHE_ASSOC_BITS 1 /* 2 sets */

97

Chapter 6. Experimental Results

3 #define ICACHE_LINE_BITS 6 /* 2^6=64 lines per set*/
4 uint8_t ** icache_flags; /* [cpuid][set_way(target_addr)] */
5 uint32_t ** icache_tag; /* [cpuid][set_way(target_addr)] */

Listing 6.4 illustrates the configuration of the instruction cache model, which is identical
to the configuration of the hardware cache.

The instruction cache model is implemented using two arrays. One array holds the tags
and the other holds the flags, as represented in listing 6.4. The data (i.e. instructions here)
is not represented because the model is behavioral, as we explained before. We allocate an
instruction cache (a tag array and a flag array) for each processor of the platform. In the
experiments we conducted, we used one processor (nb_cpu_cache = 1).

As portrayed in fig. 6.10, the target binary code is executed on the ISS leading to the gen-
eration of a trace file (RM.16), which is then interpreted by the profiling tool callgrind. The
profiling data is displayed by the visualization tool kcachegrind. This profiling tool gives
us access to non-functional information, such as the number of instruction cache accesses,
number of misses/hits and the number of cycles.

To generate such information by native simulation, the functional model (a.k.a. com-
pilable IR) is supplemented with function calls to an instruction cache model, as well as
other non-functional information, to account for the instruction buffer effects. To do so, a
data base containing information about each target binary basic block is formed (fig. 6.10).
In order to compute the delay caused by the instruction cache (formula (5.6)), information
like the number of executed bundles, basic blocks, sub-bundles and the number of misses
are required. From each basic block of the target binary CFG, we extract the number of
bundles, as well as their first and last addresses, which are used to divide the bundles into
sub-bundles (instructions inside a sub-bundle belong to the same cache line) and determine
the number of sub-bundles (e.g. bb14 is made of 3 bundles, each bundle is composed of 1
sub-bundle 3(1, 1, 1), fig. 6.10, "non-functional information" table).

Accordingly, three counters are introduced in each basic block of the IR code: nb_bb,
nb_bndls and nb_subbndls. Each time a basic block is visited during the native execution
of the IR code, the counters are updated with the corresponding values obtained from the
basic block data base.

This non-functional information is inserted in the compilable IR, according to the pro-
posed mapping algorithm 1. So, the accuracy of the estimates depends on the instruction
cache and instruction buffer models, the non-functional information obtained from the anal-
ysis of the binary code, and also on the mapping algorithm.

Regarding the number of misses, it is updated inside the instruction cache annotation
function, which is also inserted in every basic block of the IR code. The delay is computed
according to formula (5.6), explained in chapter 5-section 5.2.4, in exit basic blocks of the
compilable IR (e.g. bb29).

Analysis of the Results

Table 6.7 shows the miss count and the cache access count recorded for different pro-
grams executed on the ISS platform and natively executed with the ILS approach that we
enhanced with an instruction cache model. The model takes into account VLIW and instruc-
tion buffer effects. The average miss error has an absolute value of 2.76%.

It should be noted that since the performance metrics and the annotation functions are
inserted in the application code, and not in the OS and library functions, performance es-
timates obtained by native simulation are associated with the simulated application only.
To make a fair comparison, the results generated by ISS are based on valgrind’s self costs

98

6.4. Performance Estimation of the Instruction Cache and Instruction Buffer in a VLIW
Architecture

Table 6.7: Instruction cache performance

ISS ILS+icacheVLIW
accesses misses accesses misses miss_error

gemm 103835 32 104950 30 -6.25%
reg_detect 3687 16 3706 16 0.00%
bubbleSort 3252 5 3205 5 0.00%

atax 15059 89 14897 88 -1.12%
3mm 252328 47 261634 44 -6.38%

jacobi_2d 24245 14 24703 14 0.00%
trisolv 11280 12 11426 13 8.3%
syr2k 158212 14 156864 14 0.00%

(i.e. the sum of all self costs of instructions belonging to a function) and not the inclusive
costs (i.e. self cost of a function plus inclusive cost of its callees). Thus, we only consider
the application and we disregard the effects of the OS and library functions on the perfor-
mance of the instruction cache in both simulators. Performance estimation of the whole
software stack (application + OS + libraries) with the proposed annotation framework is
possible, using the same methodology, which means that OS and library functions should
also be transformed into IR code, mapped to their binary counterparts and annotated with
performance metrics and instruction cache annotation functions.

Figure 6.11: Cycle count error (%)

We also used our cache simulation approach to compute the cycle count (table 6.8) and
compared it to the ISS and the generic instruction cache simulation approach (i.e. no con-
sideration for the VLIW aspect, instructions are used instead of bundles as described in
chapter 5, section. 5.2.2). As depicted in fig. 6.11, the proposed instruction cache simula-
tion approach offers more accurate cycle count estimates than the generic approach for the
different simulated programs.

99

Chapter 6. Experimental Results

Table 6.8: Comparison of the cycle count

ISS ILS+icacheVLIW
cycle_count cycle_count cycle_error

gemm 595123 675888 13.57%
reg_detect 9511 10847 14.05%
bubbleSort 6220 6290 1.12%

atax 44857 47769 6.49%
3mm 1385707 1503928 8.53%

jacobi_2d 117789 127494 8.24%
trisolv 25494 29470 15.60%
syr2k 1286076 1373793 6.82%

The variation of the miss count error and cycle count error between the different applica-
tions is due to compiler optimizations. So, the IR and the binary may have different CFGs.
The more different the CFGs are, the less straightforward the mapping process between
binary and IR basic blocks becomes and the less accurate the estimates are.

Figure 6.12: Simulation speedup

Fig. 6.12 plots the speedup of ILS-with-icache and ILS-without-icache compared to ISS.
Since simulating an instruction cache requires the insertion of annotation functions that trig-
ger the cache model whenever they are reached during simulation, as well as the introduc-
tion of several counters in the software code, a simulation overhead is expected compared to
ILS-without-icache. The maximum slow down that we have is under 6 for application 3mm
(which is the largest application among the simulated ones in terms of instruction cache
accesses).

100

6.5. Conclusions

6.5 Conclusions

This chapter provided experimental results that corroborate the efficiency of our contibu-
tions. These results were obtained from the execution of several applications using a HAV-
based native simulation platform that interacts with a TLM-based virtual platform of the
target architecture. The native simulation results were compared to the results obtained by
the execution of the same applications using a cycle-accurate ISS of the target platform. The
simulated target platform is Kalray MPPA-256.

We evaluated the efficiency of both the basic and upgraded mapping approaches using
the instruction count as a performance metric. Experimental results of the basic mapping
algorithm showed small error values whith applications compiled with gcc -O2, but the al-
gorithm reached its limits with applications compiled with gcc -O3 leading to elevated error
values. The upgraded mapping approach that deals with aggressive compiler optimizations
yielded accurate results with gcc -O3 optimizations.

Contributions of this chapter also include a demonstration of the accuracy of the sim-
ulation under consideration of a realistic performance model of an instruction cache and
instruction buffer of a VLIW architecture. The accuracy was measured in terms of miss
count and cycle count. In the proposed performance model, we assumed that the proces-
sor requests fixed-size bundles (4-syllable bundles), which is not usually the case in real-
ity. This simplification, along with the possible mapping error, explain the miss count and
the cycle count error values. These values are considered low nonetheless. The proposed
performance model is useful at early design stages, as it provides reasonable performance
estimates at a high simulation speed.

101

Chapter 7

Conclusions and Perspectives

For design space exploration of complex embedded systems, simulation is key in capturing
their dynamic behavior and providing performance estimates. An efficient technique for
fast and accurate software performance simulation is necessary in studying the impact of
software on the performance of the whole system and making pivotal decisions about task
mapping and scheduling and hardware/software partitioning.

In this thesis, we focused on enhancing native simulation, which is able to capture a sys-
tem’s functional behavior, but lacks the capability to estimate its performance. We proposed
an IR-level annotation framework that aims at introducing target-specific non-functional
information (namely instruction count, cycle count and instruction cache miss count) into
a functional model (IR) for the purpose of performance estimation for system-level design
(SLD) of embedded systems. For the accurate placement of annotations in the IR, a two-fold
mapping approach of the IR and target binary basic blocks that considers compiler opti-
mizations was proposed. We also proposed a performance model of an instruction cache
that takes into account the impact of a component necessary to ILP in VLIW architectures,
called instruction buffer. This performance model is triggered, at simulation time, by the IR,
through function calls inserted in the IR’s basic blocks according to the proposed mapping
algorithm. The conducted experiments prove the accuracy of both the mapping strategy
and the instruction cache performance model.

No doubt native simulation is fast as opposed to interpretive methods as it does not
depend on the ISA of the target processor, but it suffers from certain shortcomings that
hinder the process of performance estimation. The problems raised by native simulation
and affecting performance estimation were presented in chapter 2. In this chapter, we will
conclude the thesis by recapitulating these problems, underlining the key contributions and
presenting the advantages and limitations of the proposed approaches, in section 7.1, and
giving an outlook for future work, in section 7.2.

7.1 Conclusions

Although native simulation is one of the most suitable candidates to speed up the archi-
tecture space exploration and early design validation steps, it lacks information about the
target’s performance metrics, which is crucial in software performance estimation. To cater
for the absence of such information, target-specific performance metrics are injected into the
software code in order to reflect its behavior, as if it was executed on the target platform.
This process is referred to as back-annotation and it raises several questions:

103

Chapter 7. Conclusions and Perspectives

• Which representation level of the software (source code, intermediate representation or
binary code) is the best candidate for the accuracy/speed trade-off?

The accuracy of the performance estimates not only depends on the accuracy of the devised
performance model but also on the software simulation level. This accuracy should not
jeopardize one of the main characteristics of host-compiled simulation, which is its speed.
Using the source code as a functional model is an abundantly adopted approach in perfor-
mance estimation techniques for its high level of abstraction, the simplicity of manipulating
a source code and its high simulation speed. However, back-annotating a source code with
information extracted from the target binary code is very difficult because of the difference
between source and binary CFGs. SLS approaches use debug information, which is prone to
error because of all the compiler optimizations, to relate source code statements to machine
code instructions. So, they resort to turning off compiler optimizations.

Simulation of the target code at the binary level avoids the mapping problems raised by
SLS. BLS is always instruction accurate and accounts for all the optimizations of the target
compiler. However, the translation of the target binary code into a functionally equivalent
high-level code (e.g. C) is a burdensome and time consuming task and it necessitates knowl-
edge of the target ISA. A new target requires a new translation effort.

In our work, we chose the compiler intermediate representation (IR) as our functional
model, which offers the best of both worlds (BLS and SLS). The IR is close enough in its
structure to the binary code without being dependent on the target ISA. It is also close
enough in its syntax to source code, which makes it more readable and easier to manipulate
than a binary-level code, while containing compiler front-end optimizations. As we operate
on the dump file of the compiler and we do not introduce any modification to its internal
structure, unlike some ILS approaches, our approach is compiler non-intrusive and thus re-
targetable. However, the IR is not compilable, which requires an extra step of compilable-IR
generation as opposed to SLS. Also, ILS requires the availability of a source code, whereas
BLS allows simulation of target software for which the source code has not necessarily been
provided. More importantly, although close to the target binary structure, IR and binary
CFGs are not always isomorphic. This issue is expressed by the following question.

• How to establish an accurate mapping between the IR and binary basic blocks in order
to accurately place target performance metrics into the functional model? More precisely,
how to deal with common compiler optimizations (e.g. gcc -O2) and aggressive ones that
radically change the structure of the code (e.g. gcc -O3)?

The IR and binary CFGs may differ due to the compiler back-end optimizations, which are
not present in the IR. Programs spend the majority of their execution time on code inside
loops, thus loops are considered as hotspots. In order to reduce the overhead caused by
loop statements and thus enhance the speedup of a program, compilers perform several
loop transformations. Due to these optimizations, even one annotation misplacement will
lead to serious repercussions on the overall performance of the software because this in-
significant error will be repeated as many times as the number of loop iterations. Therefore,
we dedicated a special focus to loops in our mapping approach.

At the commonly used gcc -O2 optimization level, most loop optimizations are per-
formed before the back-end. Based on this observation, we proposed a mapping algorithm
that aims at matching binary basic blocks to their corresponding IR basic blocks using loops
as fixedpoints. Loops are pinpointed in both CFGs using the SCC algorithm and are con-
tracted into single nodes to facilitate the mapping process. The algorithm is recursively ap-

104

7.2. Perspectives

plied on loops until the basic block granularity is reached. Experiments on the instruction
count prove the efficiency of the mapping approach in dealing with gcc -O2 optimizations.

At the gcc -O3 optimization level, aggressive compiler optimizations, such as loop un-
rolling, that radically change the structure of the code and that can lead to the appearance/
disappearance of new/existing loops, are enabled. The proposed algorithm fails at finding
accurate mapping at this optimization level. So, we proposed to change the IR CFG so that
the mapping becomes feasible. To that aim, we added non-functional basic blocks in the IR
that reflect the effect of loop unrolling on the CFG. These basic blocks are only added for
annotation purposes and have no impact on the behavior of the code. We also simulated
the number of iterations of the unrolled loop in its equivalent IR loop. Other aggressive
loop and branch optimizations were taken into account by applying necessary transforma-
tions on the IR. These IR transformations, along with the mapping algorithm, yield accurate
mapping results at the O3 optimization level according to the experiments we conducted.

• How to create an accurate performance model that takes into consideration advanced
features of modern MPSoCs, such as VLIW architectures?

In native simulation, the reconstruction of the non-functional behavior of the target bi-
nary consists of a static part and a dynamic part. Statically computed performance metrics
are extracted from the target binary code before simulation (e.g. instruction count). Tar-
get micro-architectural components, such as cache memories, have a huge impact on the
performance of the system. Their effect cannot be determined at compile time. So, their dy-
namic behavior is reproduced at simulation time through performance models. The closer
the models are to the real hardware component, the more accurate the estimates are.

Modern MPSoCs incorporate cores with complex micro-architectures that support ILP
for faster execution of the software. These advanced features call for suitable performance
models, capable of reflecting the impact of such features on the performance of the system.
In this thesis, we proposed a performance model of an instruction cache and an instruction
buffer that considers the effects of a VLIW architecture. We handled the different cases of
parallelism among bundles and proposed formulas to compute the delay caused by each
case. However, in the proposed model we only considered fixed-size bundles (4 syllables).
Despite that we do not account for variable-sized bundles, the average cycle error of the
proposed instruction cache and instruction buffer performance model amounts to only 9.3%.

7.2 Perspectives

Different directions for possible future research could be drawn from the limitations of our
approach.

• The proposed mapping approach is applied to gcc’s intermediate representation and it
handles gcc’s optimizations. It would be interesting to test the mapping with applications
compiled with other compilers (e.g. LLVM).

• Detecting which part of the IR code was optimized in the binary code and what kind of
optimization was performed is not a trivial task. Using gcc to ouput a dump file containing
information about the performed optimizations can help to an extent. However, the gener-
ated file does not provide a comprehensive list. So, we had to further analyze and compare
the target binary code and the IR code. Automatizing this step would facilitate and speedup
the mapping process.

105

Chapter 7. Conclusions and Perspectives

• Taking into account variable-sized bundles in the instruction cache and instruction buffer
performance model, without overloading the model and slowing down the simulation speed,
would increase the accuracy of the estimation results

• MPSoC architectures are continuously changing in response to the on going demands
for better performance. Complex components, such as advanced caches possibly allowing
multiple outstanding misses, highly efficient prefetch mechanisms and branch prediction
techniques, etc., may be further implemented in embedded systems. Consideration of these
techniques for performance estimation becomes necessary.

• Detailed simulation of massively parallel MPSoCs containing dozens or hundreds of pro-
cessor cores interconnected through a network on chip (NoC) is afflicted with extensive
model development effort and extremely long runtimes. This calls for new modeling and
co-simulation methods that preserve simulation accuracy at very high simulation speed.
The performance of the co-simulation platform is dictated not only by the software execu-
tion approach, but also by the virtual protoypes of the target hardware components. While
the software has been successfully back annotated with target-specific performance metrics
and simulated by a fast native simulation approach, processor-level effects including the
communication aspects should be efficiently modeled, as they contribute significantly to
the overall model accuracy. However, modeling and simulating the communication aspects
of a many-core architecture can quickly become a hindrance to the simulation performance.
Therefore, abstraction should be applied at all layers of the system starting from the soft-
ware level down to the processor subsystem and communication layers. Communication
is usually modeled using TLM, where unnecessary low-level details are ignored, enabling
fast MPSoC architecture exploration that would otherwise be almost impossible using low
abstraction levels, such as gate-level description or RTL. Despite the rewarding benefits of
transaction-level modeling of hardware components, the speedup offered by TLM is not
enough for architectures containing hundreds of cores. In fact, traditional sequential sim-
ulation kernels (like SystemC) represent the bottleneck of the simulation, as they do not
exploit the parallelism offered by modern multi-core SMP workstations. Parallel discrete
event simulators (PDES) have emerged as a solution for providing faster simulation of vir-
tual platforms on SMP host machines. In PDES, component models are simulated by dif-
ferent simulation processes, which are executed in parallel by the different cores of an SMP
workstation.

So, coupling fast native simulation of annotated software with a parallel virtual simula-
tion platform containing fast and abstract processor subsystem and communication models
could be an efficient solution to the extremely long runtimes of complex many-core systems
simulations.

106

Publications

International Conferences

1. Omayma Matoussi and Frédéric Pétrot. Loop aware ir-level annotation framework for
performance estimation in native simulation. In Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), pages 220–225. IEEE, January 2017

2. Omayma Matoussi and Frédéric Pétrot. Modeling instruction cache and instruction
buffer for performance estimation of VLIW architectures using native simulation. In
Design, Automation Test in Europe Conference Exhibition (DATE), pages 266–269, March
2017

3. Omayma Matoussi and Frédéric Pétrot. IR-level annotation strategy dealing with ag-
gressive loop optimizations for performance estimation in native simulation. In Work-
in-progress at the 2017 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), October 2017

4. Omayma Matoussi and Frédéric Pétrot. A mapping approach between IR and binary
CFGs dealing with aggressive compiler optimizations for performance estimation. In
Asia and South Pacific Design Automation Conference (ASP-DAC), January 2018

Journal

1. Marcos Aurélio Pinto Cunha, Omayma Matoussi, and Frédéric Pétrot. Detecting soft-
ware cache coherence violations in MPSoC using traces captured on virtual platforms.
ACM Trans. Embedded Comput. Syst., 16(2):30:1–30:21, 2017

107

Glossary

API Application Programming Interface.

BLS Binary Level Simulation.

CA Cycle Accurate.

CFG Control Flow Graph.

CPI Cycle Per Instruction.

DBT Dynamic Binary Translation.

DFS Depth First Search.

DMA Direct Memory Access.

DSE Design Space Exploration.

DSU Debug Support Unit.

DWARF Debugging With Attributed
Record Formats.

EU Execution Unit.

HAL Hardware Abstraction Layer.

HAV Hardware Assisted Virtualization.

HDL Hardware Description Language.

HDS Hardware-Dependent Software.

HW Hardware.

IB Instruction Buffer.

IC Integrated Circuit.

IL Intermediate Level.

ILP Integer Linear Programming.

ILP Instruction-Level Parallelism.

ILS Intermediate Level Simulation.

IP Intellectual Property.

IPC Inter-Process Communication.

IR Intermediate Representation.

ISA Instruction Set Architecture.

ISC Intermediate Source Code.

ISS Instruction Set Simulator.

KVM Kernel Virtual Machine.

LLVM Low Level Virtual Machine.

LRU Least Recently Used.

MMIO Memory-Mapped Input Output.

MPPA Massively Parallel Processor Array.

MPSoC Multi Processor System on Chip.

NoC Network on Chip.

NPU Native Processing Unit.

PDES Parallel Discrete Event Simulation.

PE Processing Element.

PFB Prefetch Buffer.

PLRU Pseudo Least Recently Used.

PMIO Port-Mapped Input Output.

PV Programmer’s View.

RISC Reduced Instruction Set Computer.

109

Glossary

RM Resource Manager.

RTL Register Transfer Level.

SBT Static Binary Translation.

SCC Strongly Connected Component.

SLD System-Level Design.

SLS Source Level Simulation.

SMP Symmetric Multiprocessing.

SoC System on Chip.

SW Software.

TLM Transaction Level Modeling.

TLM-T Transaction Level Modeling with
Time.

UF Unrolling Factor.

VLIW Very Long Instruction Word.

VLSI Very Large Scale Integration.

VM Virtual Machine.

VMM Virtual Machine Monitor.

VP Virtual Prototype.

WCET Worst Case Execution Time.

110

Bibliography

[AFY05] J. A.Fisher, P. Faraboschi, and C. Young. Embedded Computing, a VLIW approach
to architecture, compilers and tools. Elsevier, 2005.

[ALE02] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for com-
puter system modeling. Computer, 35(2):59–67, Feb 2002.

[BBB+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, August 2011.

[BBY+05] A. Bouchhima, I. Bacivarovx, W. Youssef, M. Bonaciu, and A. A. Jerraya. Us-
ing abstract cpu subsystem simulation model for high level hw/sw archi-
tecture exploration. In Asia and South Pacific Design Automation Conference,
volume 2, pages 969–972. IEEE, Jan 2005.

[BDH+06] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The m5 simulator: Modeling networked systems. IEEE Micro,
26(4):52–60, July 2006.

[BEP04] D. Berlin, D. Edelsohn, and S. Pop. High-level loop optimizations for gcc. In
GCC Developers’ Summit, 2004.

[BGP09] A. Bouchhima, P. Gerin, and F. Pétrot. Automatic instrumentation of embed-
ded software for high level hardware/software co-simulation. In Asia and
South Pacific Design Automation Conference, pages 546–551, January 2009.

[BYJ04] A. Bouchhima, S. Yoo, and A. Jerraya. Fast and accurate timed execution of
high level embedded software using hw/sw interface simulation model. In
Asia and South Pacific Design Automation Conference 2004, pages 469–474. IEEE,
Jan 2004.

[CHB09a] E. Cheung, H. Hsieh, and F. Balarin. Fast and accurate performance sim-
ulation of embedded software for mpsoc. In Asia and South Pacific Design
Automation Conference, pages 552–557, Jan 2009.

[CHB09b] E. Cheung, H. Hsieh, and F. Balarin. Memory subsystem simulation in soft-
ware tlm/t models. In Asia and South Pacific Design Automation Conference,
pages 811–816, Jan 2009.

111

BIBLIOGRAPHY

[CM96] Cristina Cifuentes and Vishv Malhotra. Binary translation: Static, dynamic,
retargetable? In IEEE International Conference on Software Maintenance, pages
340–349, Los Alamitos, CA, USA, 1996. IEEE Computer Society.

[CMMC08] J. Cornet, F. Maraninchi, and L. Maillet-Contoz. A method for the efficient
development of timed and untimed transaction-level models of systems-on-
chip. In 2008 Design, Automation and Test in Europe, pages 9–14, March 2008.

[CMP17] Marcos Aurélio Pinto Cunha, Omayma Matoussi, and Frédéric Pétrot. De-
tecting software cache coherence violations in MPSoC using traces captured
on virtual platforms. ACM Trans. Embedded Comput. Syst., 16(2):30:1–30:21,
2017.

[DAP15] R. J. Douma, S. Altmeyer, and A. D. Pimentel. Fast and precise cache per-
formance estimation for out-of-order execution. In Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1132–1137, March 2015.

[DdDAB+13] Benoît Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps,
Patrice Couvert, Benoît Ganne, Pierre Guironnet de Massas, François Jacquet,
Samuel Jones, Nicolas Morey Chaisemartin, Frédéric Riss, and Thierry
Strudel. A clustered manycore processor architecture for embedded and ac-
celerated applications. In IEEE High Performance Extreme Computing Confer-
ence, pages 1–6. IEEE, 2013.

[DPE11] L. Díaz, H. Posadas, and E.Villar. Fast data-cache modeling for native co-
simulation. Design Automation Conference (ASP-DAC), January 2011.

[DR05] Thomas Dullien and Rolf Rolles. Graph-based comparison of executable ob-
jects. In Actes du Symposium sur la securite des technologies de l’information et des
communications, pages 1–13, 2005.

[GCK12] A. Gerstlauer, S. Charkravarty, and M. Kathuria. Abstract system-level mod-
els for early performance and power exploration. In Asia South-Pacific Design
Automation Conference, pages 213–218, January 2012.

[GCM92] R. K. Gupta, C. N. Coelho, and G. De Micheli. Synthesis and simulation of
digital systems containing interacting hardware and software components.
In Proceedings 29th ACM/IEEE Design Automation Conference, pages 225–230,
Jun 1992.

[GCZ13] A. Gerstlauer, S. Charkravarty, and Z. Zhao. Automated, retargetable back-
annotation for host compiled performance and power modeling. In Inter-
national Conference on Hardware/Software Codesign and System Synthesis, pages
1–10, September 2013.

[Ger09] Patrice Gerin. Modéles de Simulation pour la Validation Logicielle et l’Exploration
d’Architectures des Systémes Multiprocesseurs sur Puce. PhD thesis, Institut Poly-
technique de Grenoble, Grenoble, France, November 2009.

[GHP09] Patrice Gerin, Mian Muhammad Hamayun, and Frédéric Pétrot. Native
mpsoc co-simulation environment for software performance estimation. In
Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis, pages 403–412. ACM, 2009.

112

BIBLIOGRAPHY

[GYG03] A. Gerstlauer, Haobo Yu, and D. D. Gajski. Rtos modeling for system level
design. In Design, Automation and Test in Europe Conference and Exhibition,
pages 130–135, 2003.

[GYNJ01] P. Gerin, Sungjoo Yoo, G. Nicolescu, and A. A. Jerraya. Scalable and flexible
cosimulation of soc designs with heterogeneous multi-processor target archi-
tectures. In Proceedings of the ASP-DAC, pages 63–68, 2001.

[HDH+10] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins,
H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,
P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Linde-
mann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De,
R. Van Der Wijngaart, and T. Mattson. 48-core ia-32 message-passing proces-
sor with dvfs in 45nm cmos. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 108–109. IEEE, 2010.

[HSAG10] Y. Hwang, G. Schirner, S. Abdi, and D. G. Gajski. Accurate timed rtos model
for transaction level modeling. In 2010 Design, Automation Test in Europe Con-
ference Exhibition (DATE 2010), pages 1333–1336, March 2010.

[Int10] Intel. Intel Itanium Processor 9300 Series Reference Manual for Software Develop-
ment and Optimization. Intel, March 2010.

[KGW+07] S. Kraemer, L. Gao, J. Weinstock, R. Leupers, G. Ascheid, and H. Meyr.
Hysim: A fast simulation framework for embedded software development.
In International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 75–80, Sept 2007.

[KKW+06] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and H. Meyr.
A sw performance estimation framework for early system-level-design using
fine-grained instrumentation. In Proceedings of the Design Automation Test in
Europe Conference, volume 1, pages 6 pp.–, March 2006.

[KMGS13] L. Kun, D. Muller-Gritschneder, and U. Schlichtmann. Memory access recon-
struction based on memory allocation mechanism for source-level simulation
of embedded software. Design Automation Conference (ASP-DAC), January
2013.

[LBH+00] M. T. Lazarescu, J. R. Bammi, E. Harcourt, L. Lavagno, and M. Lajolo.
Compilation-based software performance estimation for system level design.
In International High-Level Design Validation and Test Workshop, pages 167–172.
IEEE, 2000.

[Let09] Richard A. Lethin. How vliw almost disappeared - and then proliferated.
IEEE Solid-State Circuits Magazine, 1(3):15–23, summer 2009.

[LLT10] K. Lin, C. Lo, and R. Tsay. Source-level timing annotation for fast and accurate
tlm computation model generation. Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 235–240, January 2010.

[LMGS12] K. Lu, D. M-Gritschneder, and U. Schlichtmann. Hierarchical control flow
matching for source-level simulation of embedded software. System On Chip
International Symposium, pages 1–5, October 2012.

113

BIBLIOGRAPHY

[LMGSB13] K. Lu, D. Muller-Gritschneder, U. Schlichtmann, and O. Bringmann. Fast
cache simulation for host-compiled simulation of embedded software. De-
sign, Automation and Test in Europe Conference and Exhibition (DATE), pages
637–642, March 2013.

[LRM06] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order
processors for wcet analysis. Real-Time Syst., 34(3):195–227, November 2006.

[LSA95] Y. Steven Li, S.Malik, and A.Wolfe. Performance estimation of embedded
software with instruction cache modeling. International conference of Computer-
Aided design,IEEE, November 1995.

[MBF+12] Diego Melpignano, Luca Benini, Eric Flamand, Bruno Jego, Thierry Lepley,
Germain Haugou, Fabien Clermidy, and Denis Dutoit. Platform 2012, a
many-core computing accelerator for embedded socs: performance evalua-
tion of visual analytics applications. In Proceedings of the 49th Annual Design
Automation Conference, pages 1137–1142. ACM, 2012.

[MGLS11] D. Mueller-Gritschneder, K. Lu, and U. Schlichtmann. Control-flow-driven
source level timing annotation for embedded software models on transaction
level. In Euromicro Conference on Digital System Design. IEEE, October 2011.

[MP17a] Omayma Matoussi and Frédéric Pétrot. IR-level annotation strategy deal-
ing with aggressive loop optimizations for performance estimation in native
simulation. In Work-in-progress at the 2017 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), October 2017.

[MP17b] Omayma Matoussi and Frédéric Pétrot. Loop aware ir-level annotation
framework for performance estimation in native simulation. In Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 220–225. IEEE, Jan-
uary 2017.

[MP17c] Omayma Matoussi and Frédéric Pétrot. Modeling instruction cache and in-
struction buffer for performance estimation of VLIW architectures using na-
tive simulation. In Design, Automation Test in Europe Conference Exhibition
(DATE), pages 266–269, March 2017.

[MP18] Omayma Matoussi and Frédéric Pétrot. A mapping approach between IR and
binary CFGs dealing with aggressive compiler optimizations for performance
estimation. In Asia and South Pacific Design Automation Conference (ASP-DAC),
January 2018.

[MPC04] R. Le Moigne, O. Pasquier, and J. P. Calvez. A generic rtos model for real-time
systems simulation with systemc. In Proceedings Design, Automation and Test
in Europe Conference and Exhibition, volume 3, pages 82–87 Vol.3, Feb 2004.

[MRRJ05] A. Muttreja, A. Raghunathan, S. Ravi, and N. K. Jha. Hybrid simulation for
embedded software energy estimation. In Proceedings. 42nd Design Automation
Conference., pages 23–26, June 2005.

[MSVSL08a] T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann, and D. Langen.
Source-level timing annotation and simulation for a heterogeneous multipro-
cessor. In Design Automation and Test Europe. ACM, March 2008.

114

BIBLIOGRAPHY

[MSVSL08b] T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann, and D. Langen.
Source-level timing annotation and simulation for a heterogeneous multipro-
cessor. In Design, Automation and Test in Europe, pages 276–279, March 2008.

[Nov06] D. Novillo. Gcc - an architectural overview, current status, and future direc-
tions. In Proceedings of the Linux Symposium, September 2006.

[OSC] Osci tlm-2.0 language reference manual. http://www.accellera.org/images/
downloads/standards/systemc/TLM_2_0_LRM.pdf.

[PCB06] S. Pop, A. Cohen, and C. Bastoul. Graphite: Polyhedral analyses and opti-
mizations for gcc. In Proceedings of the GCC Developers Summit, pages 1–18,
2006.

[PCG09] Ardavan Pedram, David Craven, and Andreas Gerstlauer. Modeling Cache Ef-
fects at the Transaction Level, pages 89–101. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[PFG+11] F. Pétrot, N. Fournel, P. Gerin, M. Gligor, M. Hamayun, and H. Shen. On
mpsoc software execution at the transaction level. IEEE design and test of com-
puters, 28(3):32–43, 2011.

[PJ15] X. Pan and B. Jonsson. A modeling framework for reuse distance-based es-
timation of cache performance. Performance Analysis of Systems and Software
(ISPASS), IEEE, pages 62–71, March 2015.

[PLH11] I. Puaut, B. Lesage, and D. Hardy. Scalable fixed-point free instruction cache
analysis. Real-Time System Symposium (RTSS), IEEE, December 2011.

[Pou] LN. Pouchet. Polybench benchmark. http://web.cse.ohio-state.edu/ pouchet/soft-
ware/polybench/.

[PWH12] R. Plyaskin, T. Wild, and A. Herkersdorf. System-level software performance
simulation considering out-of-order processor execution. In IEEE Interna-
tional Symposium on System On Chip, pages 1–7, October 2012.

[RS09] Christine Rochange and Pascal Sainrat. A Context-Parameterized Model for
Static Analysis of Execution Times, pages 222–241. Springer Berlin Heidelberg,
2009.

[Sar16] Guillaume Sarrazin. Simulation fonctionnelle native pour des systèmes many-
cœurs. PhD thesis, Institut Polytechnique de Grenoble, Grenoble, France, May
2016.

[SB08] J. Schnerr and O. Bringmann. High-performance timing simulation of em-
bedded software. Design Automation Conference (DAC), June 2008.

[SBR11a] S. Stattelmann, O. Bringmann, and W. Rosenstiel. Dominator homomorphism
based code matching for source-level simulation of embedded software. In
International Conference on Hardware/Software Codesign and System Synthesis.
ACM, October 2011.

115

http://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
http://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf

BIBLIOGRAPHY

[SBR11b] S. Stattelmann, O. Bringmann, and W. Rosenstiel. Fast and accurate source-
level simulation of software timing considering complex code optimizations.
In Design Automation Conference. IEEE, June 2011.

[SGCB12] S. Stattelmann, G. Gebhard, C. Cullmann, and O. Bringmann. Hybrid source-
level simulation of data caches using abstract cache models. Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), March 2012.

[SHP12] H. Shen, M. M. Hamayun, and F. Petrot. Native simulation of mpsoc using
hardware-assisted virtualization. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 31(7):1074–1087, July 2012.

[SM06] André Seznec and Pierre Michaud. A case for (partially) tagged geometric
history length branch prediction. J. Instruction-Level Parallelism, 8, 2006.

[STM04] STMicroelectronics. ST200 VLIW Series ST231 Core and Instruction Set Archi-
tecture Manual. STMicroelectronics, March 2004.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal
on computing, 1(2):146–160, 1972.

[Til] Tile-gx8072 processor product brief. http://www.tilera.com/files/drim_
_TILE-Gx8072_PB041-04_WEB_1_22_15_7639.pdf.

[TKM+02] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Gho-
drat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter
Lee, et al. The raw microprocessor: A computational fabric for software cir-
cuits and general-purpose programs. IEEE micro, 22(2):25–35, 2002.

[TRKA07] W. Tibboel, V. Reyes, M. Klompstra, and D. Alders. System-level design flow
based on a functional reference for hw and sw. In Design Automation Confer-
ence, pages 23–28. IEEE/ACM, June 2007.

[Wan10] Zhonglei Wang. Software Performance Estimation Methods for System-Level De-
sign of Embedded Systems. PhD thesis, Technical University of Munich, Mu-
nich, April 2010.

[WH12] Z. Wang and J. Henkel. Accurate source-level simulation of embedded soft-
ware with respect to compiler optimizations. In Design, Automation and Test
in Europe Conference and Exhibition, pages 382–387, March 2012.

[WH13] Z. Wang and J. Henke. Fast and accurate cache modeling in source-level simu-
lation of embedded software. Design, Automation and test in Europe Conference
and Exhibition (DATE), March 2013.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,
and Anoop Gupta. The splash-2 programs: Characterization and method-
ological considerations. SIGARCH Comput. Archit. News, 23(2):24–36, May
1995.

[YBB+03] Sungjoo Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and A. Jerraya. Building
fast and accurate sw simulation models based on hardware abstraction layer
and simulation environment abstraction layer. In Design, Automation and Test
in Europe Conference and Exhibition, pages 550–555. IEEE, 2003.

116

http://www.tilera.com/files/drim__TILE-Gx8072_PB041-04_WEB_1_22_15_7639.pdf
http://www.tilera.com/files/drim__TILE-Gx8072_PB041-04_WEB_1_22_15_7639.pdf

BIBLIOGRAPHY

[YJ03] Sungjoo Yoo and A. A. Jerraya. Introduction to hardware abstraction layers
for soc. In Design, Automation and Test in Europe Conference and Exhibition,
pages 336–337, 2003.

[YMH+14] R. Yan, D. Ma, K. Huang, X. Zhang, and S. Xiu. Annotation and analysis
combined cache modeling for native simulation. Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 406–411, January 2014.

[ZH09] W. Zhonglei and A. Herkersdorf. An efficient approach for system-level tim-
ing simulation of compiler-optimized embedded software. Design Automation
Conference (DAC), July 2009.

[ZM96] V. Zivojnovic and H. Meyr. Compiled hw/sw co-simulation. In Design Au-
tomation Conference Proceedings, pages 690–695. IEEE, Jun 1996.

117

	MATOUSSI_couverture_these
	66218_MATOUSSI_2017_archivage
	Résumé
	Abstract
	List of Figures
	List of Tables
	Introduction
	Many-Core soc: The Need for Higher Degrees of Parallelism
	Hardware/Software Co-Simulation
	Scope of the Thesis
	Outline

	Problem Definition and Motivations
	hw/sw Co-Simulation of mpsocs
	Software Execution Approaches in a Virtual Platform
	Interpretive Simulation Techniques
	Static Binary Translation
	Native Simulation

	Hardware Simulation: Abstraction Levels of Virtual Prototyping
	Conclusion and Key Questions

	Preliminaries and Prior Work: On Native Execution of sw on Top of a Virtual Platform
	Target vs. Host Address Spaces
	Using a Unified Address Space
	Using Hardware Assisted Virtualization

	Software Annotation for Performance Estimation
	Source-Level Simulation (sls)
	Intermediate-Level Simulation (ils)
	Binary-Level Simulation (bls)

	Modeling Micro-Architectural Components: Lack of Consideration for Complex Architectures
	Estimation of Pipeline Effects
	Estimation of Cache Effects
	Branch Penalty

	Conclusion

	ir-Level Annotation Framework for Performance Estimation
	Annotation Framework Overview
	Choice of the Intermediate Representation
	GCC's Intermediate Representations and ir to C Conversion
	Compiler Optimizations and Code Structure

	Proposed Mapping Approach Between ir and Binary cfgs
	Basic Mapping Scheme: Tackling Standard Compiler Optimizations
	Upgraded Mapping Scheme: Tackling Aggressive Compiler Optimizations

	Conclusion

	Modeling the Impact of Cache Memories on the System Performance
	Data Cache Performance Estimation
	Data Cache Model
	Inserting The Annotation Functions In The High-Level Code
	Obtaining Memory addresses

	Modeling Instruction Cache and Instruction Buffer for Performance Estimation of vliw Architectures
	Overview and Particularities of a vliw Architecture
	Generic Instruction Cache Modeling
	The Effect of vliw on Instruction Cache Performance Estimation
	Instruction Buffer Impact on Instruction Cache Performance Estimation
	Limitations: Variable-Sized Bundles

	Conclusion

	Experimental Results
	hw Environment
	Target Architecture: Kalray mppa-256
	Host Machine

	sw Environment
	Simulation Platforms
	Benchmarks

	Validation of the Mapping Approach
	Basic Mapping Scheme
	Upgraded Mapping Scheme

	Performance Estimation of the Instruction Cache and Instruction Buffer in a vliw Architecture
	Conclusions

	Conclusions and Perspectives
	Conclusions
	Perspectives

	Publications
	Glossary
	Bibliography

