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Institut de Mathématiques de Toulouse (UMR 5219)

Directeur(s) de Thèse :
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mathématique, et pour leur patiente aide dans ma quête de compréhension de quelques-uns de
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Pour finir, merci à la “famille du basket gersois” pour son soutien dans des moments qu’il
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Modèles stochastiques pour des mouvements collectifs de
populations

Dans cette thèse, nous nous intéressons à des systèmes stochastiques modélisant un des
phénomènes biologiques les plus mystérieux, les mouvements collectifs de populations. On les
observe lors de vols d’oiseaux et au sein de bancs de poissons, mais aussi chez certaines popula-
tions de bactéries, troupeaux de bétail ou encore pour des populations humaines. Ce genre de
comportements apparâıt également dans de nombreux autres domaines tels que la finance, la
linguistisque ou encore la robotique.

Nous étudions la dynamique d’un groupe de N individus, et plus particulièrement deux types
de comportements asymptotiques. D’une part, nous nous intéressons aux propriétés d’ergodicité
en temps long : existence d’une probabilité invariante via des fonctionnelles de Lyapunov, vitesse
de convergence du semi-groupe de transition vers cette probabilité. Egalement au centre de nos
recherches la notion de flocking : on la définit comme le fait qu’un ensemble d’individus atteigne
un consensus en l’absence d’une structure hiérarchique ; d’un point de vue mathématique, cela
correspond à l’alignement des vitesses et au regroupement des individus en essaim. D’autre part,
nous étudions le phénomène de propagation du chaos quand le nombre de particules N tend vers
l’infini : les dynamiques des différents individus deviennent asymptotiquement indépendantes.

Le modèle de Cucker-Smale, un modèle déterministe cinétique de champ moyen pour une
population sans structure hiérarchique, est notre point de départ. L’interaction entre deux par-
ticules varie selon leur “taux de communication”, qui dépend de leur distance relative et décrôıt
polynomialement.
Dans le premier chapitre, nous étudions les comportements asymptotiques d’un modèle de
Cucker-Smale avec perturbation stochastique et de certaines de ces variantes.
Le chapitre 2 présente plusieurs définitions du flocking dans un cadre aléatoire : diverses dy-
namiques stochastiques, correspondant à différentes formes de bruit – évoquant par exemple un
environnement perturbé, le “libre-arbitre” de chaque individu ou une transmission brouillée –
sont reprises et étudiées en conjonction avec ces notions.
Le troisième chapitre est basé sur la méthode de développement en amas, outil issu de la
mécanique statistique. Nous prouvons l’ergodicité exponentielle de certains processus non-
markoviens à dérive non-régulière, et nous appliquons ces résultats à des perturbations du pro-
cessus d’Ornstein-Uhlenbeck.
Dans la dernière partie, nous nous intéressons à l’équation parabolique-elliptique en dimension
2 de Keller-Segel, et en particulier au système de particules en champ moyen que l’on peut en
dériver. Nous démontrons l’existence d’une solution, unique dans un certain sens, en déterminant
les types de collisions possibles entre les particules, grâce à des comparaisons avec des processsus
de Bessel et à la théorie des formes de Dirichlet.





Stochastisches Modell für kollektive Bewegung von
Populationen

In dieser Doktorarbeit befassen wir uns mit stochastischen Systemen, die eines der mys-
teriösesten biologischen Phänomene als Modell darstellen: die kollektive Bewegung von Gemein-
schaften. Diese werden bei Vögel- und Fischschwärmen, aber auch bei manchen Bakterien,
Viehherden oder gar bei Menschen beobachtet. Dieser Verhaltenstyp spielt ebenfalls in anderen
Bereichen wie Finanzwesen, Linguistik oder auch Robotik eine Rolle.

Wir nehmen uns der Dynamik einer Gruppe von N Individuen, insbesondere zweier asympto-
tischen Verhaltenstypen an. Einerseits befassen wir uns mit den Eigenschaften der Ergodizität in
Langzeit: Existenz einer invarianten Wahrscheinlichkeitsverteilung durch Ljapunow-Funktionen,
und Konvergenzrate der Übergangshalbgruppe gegen diese Wahrscheinlichkeit. Eine ebenfalls
zentrale Thematik unserer Forschung ist der Begriff Flocking: es wird damit definiert, dass eine
Gruppe von Individuen einen dynamischen Konsens ohne hierarchische Struktur erreichen kann;
mathematisch gesehen entspricht dies der Aneinanderreihung der Geschwindigkeiten und dem
Zusammenkommen des Schwarmes. Andererseits gehen wir das Phänomen der “Propagation
of Chaos” an, wenn die Anzahl N der Teilchen ins Unendliche tendiert: die Bewegungen der
jeweiligen Individuen werden asymptotisch unabhängig.

Unser Ausgangspunkt ist das Cucker-Smale-Modell, ein deterministisches kinetisches Molekular-
Modell für eine Gruppe ohne hierarchische Struktur. Die Wechselwirkung zwischen zwei Teilchen
variiert gemäß deren “Kommunikationsrate”, die wiederum von deren relativen Entfernung
abhängt und polynomisch abnimmt.
Im ersten Kapitel adressieren wir das asymptotische Verhalten eines Cucker-Smale-Modells mit
Rauschstörung und dessen Varianten.
Kapitel 2 stellt mehrere Definitionen des Flockings in einem Zufallsrahmen dar: diverse stochastis-
che Systeme, die verschiedenen Rauschformen entsprechen (die eine gestörte Umgebung, den
“freien Willen” des jeweiligen Individuums oder eine unterbrochene Übertragung suggerieren)
werden im Zusammenhang mit diesen Begriffen unter die Lupe genommen.
Das dritte Kapitel basiert auf der “Cluster Expansion”-Methode aus der statistischen Mechanik.
Wir beweisen die exponentielle Ergodizität von gewissen nicht-Markow-Prozessen mit nicht-
glattem Drift und wenden diese Ergebnisse auf Störungen des Ornstein-Uhlenbeck-Prozesses an.
Im letzten Teil, nehmen wir uns der zweidimensionalen parabolisch-elliptischen Gleichung von
Keller-Segel an. Wir beweisen die Existenz einer Lösung, welche in gewisser Hinsicht einzig
ist, indem wir, mittels Vergleich mit Bessel-Prozessen und der Dirichlet Formtheorie, mögliche
Stoßtypen zwischen den Teilchen ermitteln.
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A general introduction

0.1 About the modelling of collective behaviour

As if a cast of grain leapt back to the hand,
A landscapeful of small black birds, intent

On the far south, convene at some command
At once in the middle of the air, at once are gone

With headlong and unanimous consent
From the pale trees and fields they settled on.

What is an individual thing? They roll
Like a drunken fingerprint across the sky!

Richard Wilbur

A flock of birds crosses the sky, and disappears on the horizon, between the dark, quiet
blue of the sea and the fading, once explosive, lights of the sunset. The closing seconds of a
nice, random, wildlife documentary about the mating rituals of an underrated flying species.
Probably about to be extinct, thanks to global warming, deforestation and plastic bags.

A school of fish, roaming in the cold, inhospitable, unsettling abysses of the ocean, hidden
from the scrutiny of all but the least casual of observers. Hundreds, thousands of them, en-
trenched in the most fluid of choreographies, without any jostling or bumping. How are they
doing it? This is a rather good question. Why are they doing it? This is a rather good question.
Because of an inherent, visceral belief in the “safety in numbers” theory? Because of the twinge
of hunger, and the conviction that if being part of such a large entity does not bring easier food,
at least, cannibalism will not be so far-fetched an idea?
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0.1.1 Motivations: collective behaviour, a near-ubiquitous phenomenon

Those are but two instances of “collective motion of population”, a rather loosely defined ex-
pression encompassing the “group behaviour” of a population of members of a single (or closely
related) species. The word “flocking” is frequently used as a synonym. Once specifically em-
ployed about birds, as in a “flock of birds”, it will take on both a wider and more specific
meaning in a mathematical context. For now, let it be, from the words of [67], a “collective,
coherent motion of large numbers of organisms”. Note that the term “swarming” – derived from
insect behaviour – can also, at times, describe similar antics: according to Wikipedia it is “a
collective behaviour exhibited by entities, particularly animals, of similar size which aggregate
together, perhaps milling about the same spot or perhaps moving en masse or migrating in some
direction”. Later, we shall distinguish them.

“One of the most familiar and ubiquitous biological phenomena” ([67] again), flocking can be
found, for a large enough cluster of individuals, among many living species with few in common
between each other: from the flights of starlings in the German sky to amoeba and bacteria
involved in chemotaxis ([39], [40]) phenomena (say hello to the biologists’ darling, Escherichia
Coli), from marching locusts to pods of dolphins, from insect clouds to wolf packs, from herds
of rhinoceros or elephants to loose platypus...

Beyond those examples, we can also mention the ant colonies, and their incredible ability to
find – collectively – the best source of food in the surroundings to then implement a pheromone-
based foraging trail between their colony and their future meal (see for instance [53]).
And humans. We are not exempt from this sort of behaviour, far from it. Off chance (!), let us
consider a crowd exiting a basketball arena at the end of a game: people tends to avoid walls,
each other (in most cases, at least) and any other hurdles coming their way, while trying to find
the quickest way outside (usually, following the person in front of them as closely as (humanly)
possible). Imagine now that the team star player makes an impromptu appearance in the middle
of the corridor. Instinctively, most people will converge towards him, or her.

As Lawren puts it in [42], flocking behaviour is “one of nature’s oldest and most confounding
mysteries”, one that has fascinated and bewildered onlookers in equal measures for millennia.
Well, at least two millennia: the earliest recorded observations of such phenomena are widely
considered to be those of Pliny the Elder, the famous Roman naturalist, in its Naturalis Historia,
written between the years 77 and 79. In particular, in Book X, The Natural History of Birds, he
describes different flying patterns: for instance, not long after discussing the mythical phoenix,
one can learn in chapter XXXI that stocks are never seen either to depart or to arrive, and he
writes in chapter XXXV:

“It is a peculiarity of the starling to fly in troops, as it were, and then to wheel around in a
globular mass like a ball, the central troop acting as a pivot for the rest.”

This underlines that even amongst a family of species, birds in this case, different kinds of
collective motions can be observed: the “V-formation” (or “follow-the-leader” formation), and
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other line formations, but also cluster formations, for example for large groups of pigeons.

In front of such behaviour, one’s mind is assaulted by two main questions: “how?” and
“why?”. The “how does it work” issue is too wide to consider; we will ignore the foundation
of biological motion, and the “tiny motor proteins operating at the molecular scale” evoked by
Vicsek in [68] (himself quoting [27] and [3]).

While not irrelevant, as we are considering emergent phenomena, we will not delve into it,
as our interest will be in the collective movements observed. How are these patterns possi-
ble, what are the decision-making processes involved? Is there a hierarchical structure, or are
decisions reached by consensus? Pliny raises the problem of leadership, concerning cranes:

“These birds agree by common consent at what moment they shall set out, fly aloft to look out
afar, select a leader for them to follow, and have sentinels duly posted in the rear, which relieve
each other by turns, utter loud cries, and with their voice help the whole flight in proper array.”

Another additional question follows: in a group of hundreds or thousands individuals in what
seems like a coordinated motion, how is the information about the movement direction trans-
mitted to each member? The seemingly near-instantaneous changes of direction that can be
observed in flocks of birds can be mind-boggling: how to explain that seagulls, for instance,
when suddenly disturbed (by a strolling passer-by or a sharp noise) take flight in a what looks
like a perfectly coordinated sweep, without visual interaction between every individual?

It led Selous, in 1931, after decades of studies of birds behaviours, to emit the rather far-fetched
hypothesis that birds have some psychic abilities that enable them to communicate by telepathy,
through some sort of group mind, in a book aptly titled Thought-transference (or what?) in birds
[59]. Around this time, Nichols [48] was also mesmerized by this collective precision: “flocks
at times fly holding a close ranked formation, and the seemingly instantaneous precision with
which they wheel in unison, as though each individual were motivated by a common impulse,
rather than adjusting itself to the movements of its companions”. While noticing that the flocks
seem to proceed without leadership, he made a conjecture.

“A simple explanation of mechanism would be that the faster [birds] finding themselves isolated
in the van turn back and in so doing provide a single visual impulse on which the remainder of

the flock may swerve almost instantaneously.”

A detailed review of the study of bird behaviour, both for line formations and cluster flocks
can be found in [5], as well as a survey of the proposed explanations for the different types of
flocking formation they can adopt.

Hypotheses are more readily available for the “why?”, that is the reasons for flocking be-
haviours. Chief among them, when one thinks of a migrating species covering (very) long
distances, is the lessening of the fluid resistance. Let us quote Pliny, again, who gives an aero-
dynamic reason for the “V-formation”, about geese and swans, in chapter XXXII:
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“The flocks, forming a point, move along with great impetus, much, indeed, after the manner of
our Liburnian beaked galleys, and it is by doing so that they are enabled to cleave the air more
easily than if they presented to it a broad front. The flight gradually enlarges in the rear, much
in the form of a wedge, presenting a vast surface to the breeze as it impels them onward; those

that follow place their necks on those that go before, while the leading birds, as they become
wary, fall to the rear.”

Beyond birds, one cannot help but think of middle-distance runners or, especially, cyclists in a
peloton, looking to benefit from a sensible drag reduction (and in case of strong sideways winds,
trying to trap opponents with the “elastic bang” effect !). One should also mention migration
amongst aquatic species, notably eels: the endangered European eel lives in fresh water rivers
or lakes of mainland Europe, but spawns in the Sargasso sea, near North America, thousands
of kilometres from there! The better the hydrodynamic (and so the higher the locomotion)
efficiency, the better their chances to make it out of this trek alive...

Which leads us to a second clue: the “security in numbers” concept, which can take two (and
even three) aspects. On the one hand (the dissuasion effect), one can imagine that a predator
will have more qualms about attacking a large group of animals, maybe doubting its ability
to prevail uninjured, and will rather go for an easier victim, typically an isolated prey. On
the other hand (the anonymity effect), if the predator does attack, then the risk for a given
individual to be the actual target decreases as the size of the group augments. According to
Radakov [54], in a school (different of a shoal, a more loosely defined structure) of fish – defined
as “a temporary group of individuals, usually of the same species, all or most of which are in the
same phase of the life cycle, actively maintains mutual contact, and manifest, or may manifest
at any moment, organized actions which are as a rule biologically useful for all the members of
the group” – predators can be avoided if each fish exactly copies the relative movements of its
nearest neighbours, even though most of them cannot see the incoming danger. Staying with
fish, Milinski and Heller, in [45], study the “confusion effect”, that is the difficulty encountered
by a predator when aiming for an individual target in “high prey densities”.

Looking the other way at the prey-predator relationship, one would expect an increased for-
aging efficiency in a large population: either – for a carnivorous species – in killing preys or
in localizing (we will talk about intelligence gathering in a few sentences) sources of food or
water for the group to share (such as for the previously mentioned ant colonies). However, in
an environment with limited resources, being part of too large a gathering can be a hindrance:
too few to split between too many can lead to rather nefarious consequences...
Millions of Mormon crickets – not real crickets, but members of a flightless grasshopper-like
insect species from North America – swarm over long distances in destructive marches, in search
for food... and to avoid being eaten by their congeners. Cannibalism, indeed, becomes a frequent
answer, especially as the Mormon crickets themselves are a major source of salt and protein, the
two nutritional resources they are the most desperate for, according to [61]. As a stationary indi-
vidual is more likely to be attacked, this lead to a “forced march” (see [8]) and more devastation.
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Going back to the positives, being surrounded by members of the same species makes it easier
to mate, and probably to raise the offspring as well, so ensuring the survival of the species.
As touched upon above when mentioning food gathering, the decision making, and thus the
continued existence, of the group is improved by the information and intelligence provided by
its members, which share the knowledge at their disposal (presence of preys, predators, water,
unidentified specimen or (flying) object). Unfortunately, they can also spread around infections
with a greater likelihood (see [71]).

As complex, mysterious and fascinating as it is on its own, collective motion is only a part
of a much larger field, collective behaviour, as is explained in Vicsek and Zafeiris comprehensive
survey on collective motion [70]. According to [58], in a sociological sense, collective behaviour
is

“Potentially a very wide-ranging field of study which deals with the ways in which collective
behaviours emerge as responses to problematic circumstances and situations. At one extreme
this can mean the study of coordinated and organized social movements; at the other, it refers

to the seemingly spontaneous eruption of common behavioural patterns, as for example in
episodes of mass hysteria. Between these are responses to natural disasters, riots, lynchings,

crazes, fads, fashions, rumours, booms, panics, and even rebellions or revolutions.”

For us, in a much wider context, collective behaviour will concern a set of “agents” that interact
between each other, at times exhibiting patterns at group-level not always predictable from the
individual behaviour.

The diversity of the fields impacted is huge: linguistic in [23], with the emergence of languages
(and vowel systems) in primitive societies an example mentioned in Cucker and Smale first paper
[22] and abundantly rehearsed since; another classic is the emergence (this word again) of a com-
mon belief in a price system (for instance the correlation structure of a creditworthiness index in
[37]), thus involving finance, or economy [64]. Nowadays, robotics – see [62] or [43] for systems
of multiple mobile robots – is also affected, with systems of mobile autonomous agents, such as
vehicles, mobile sensors or satellites. One of the most striking examples was the involvement in
the control mechasnisms of the proposed Darwin space mission [52], finally abandoned, involving
between four and nine spacecrafts, searching for life on hospitable planets, and requiring for the
spacecrafts to adopt, and keep, a group structure. One can also mention artificial life research,
animation movies or urban design (based on the behaviour of pedestrian human crowds, as in
Section 6.2 of [68], and cars in the streets). Even social networks are concerned, with a study
of the network of scientific cooperations [7], as are cell populations (and thus medicine) and
granular media. Many other references on the spectrum of collective behaviour and emergence
can be found in [49].

The existence or formation of collective behaviour is closely linked to the idea of emergence,
one that is not clearly defined. According to the Online Oxford Dictionary, emergence, from the
latin emergere, “to bring to light” is either “the process of becoming visible after being concealed”
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or “the process of coming into existence or prominence”. On the internet, another definition one
can stumble upon is “order arising out of chaos”, which can be a rather apt description of
some of the phenomena described above, when nothing about the intrinsic properties of each
agent suggests such a collective pattern and self-organization. One can also say that it is the idea
that the collective is more than the sum of its parts, a faithful motto for most team sport coaches.

0.1.2 Modelling: from wildebeests and ants to self-propelled particles

The big question, now that we have mentioned some of the phenomena that we are interested
in, is how to model them, and first, how to model an “agent”. In everything that follows, unless
stated otherwise, whether representing a wildebeest fleeing a lion, a cancerous cell or a car on
a highway, we will considered a point-like, weightless, self-propelled particle, which will interact
with other point-like, weightless, self-propelled particles.

Onto the models themselves now: as one would expect, there are loads of them, simple or
complex, discrete (step by step) or continuous, deterministic or stochastic, made by computer
scientists, biologists, physicists or mathematicians. Most of the earliest, often computer-friendly,
models, however, have in common some basic “behavioural rules”, general guidelines for each
particle to follow: in Reynolds’ words: separation, alignment and cohesion (see Figure 1):

• separation: there will be no collisions, since the particles will avoid each other, as they
“steer to avoid crowding local flockmates”;

• alignment: they move in the same direction, as they “steer towards the average heading
of local flockmates”;

• cohesion: formation of a group, as the particles “steer to move toward the average position
of local flockmates”.

These rules can vary, but most models are built around (some variations of) these three princi-
ples.

Reynolds’ model, published in [56], was, in 1987, one the firsts to appear: it is a purely
deterministic model, in which the particles, self-propelled, called “boids” (from “bird-oid ob-
jects”) follow the three aforementioned rules. An artificial life program, it has been used in
various video games and animation films (e.g. the “bat swarms and armies of penguins march-
ing through the streets of Gotham City” in Batman returns, in 1992, according to [5], and the
same theory was used for the wildebeest stampede (“animators working with computers can
figure out what the behavior of the animal is and replicate it” according to Scott Johnson,
Computer Generated Imagery supervisor) in The Lion King, in 1994).

Three years later, another computer-simulated bird flock model was introduced, by Heppner
and Grenander in [38]. Much more biologically-oriented, with 15 parameters that can be altered
(such as the maximum distance repulsion between birds or the strength of the attractiveness of
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Figure 1: Image taken from Craig Reynolds’ website, http://www.red3d.com/cwr/boids/. From
top to bottom: separation, alignment and cohesion. The red arrow corresponds to the movement
of the green particle.

the neighbours), this is a stochastic model, with randomness given by a Poisson process, assumed
to represent “wind gusts and random local disturbances”, which can reproduce “flock-like be-
haviour”. This model was inspired by Conway’s zero-player Game of Life, a cellular automaton
on a square-grid, with each square representing a cell either living or dead, governed by very
simple rules, step by step: if a live cell has two or three live neighbours, it lives; if not, it dies,
either by isolation or over-population. If a “dead” cell has three neighbours, it becomes alive.
Depending on the starting position, the subsequent evolution can be fascinating; it is a classical
example of emergence. One example can be seen in Figure 2.

One of the reference models in the field is the so-called Vicsek model [69], stochastic, time-

Figure 2: From left to right, a 3-stage loop for Conway’s Game of Life. Screenshots from
https://bitstorm.org/gameoflife/
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discrete, with particles evolving at constant absolute speed such that:

“The only rule of the model is: at each time step a given particle driven with a constant
absolute velocity assumes the average direction of motion of the particles in its neighborhood of

radius r with some random perturbation added.”

Let us consider N particles, with xi (resp. vi) the position (resp. velocity) of the i-th particle.
They follow the Vicsek model if, for given parameters r, η and v, they satisfy the system, for
every t ∈ N,


xi(t+ 1) = xi(t) + vi(t) ∆t, i ∈ {1, ..., N}

θi(t+ 1) = < θj(t) >r + δi(t),

where ∆t = 1 is the time step, < θj(t) >r is the average direction of the velocities of the particles
j within range r of particle i, δi(t) is identically distributed between −η2 and η

2 , and vi(t+ 1) is
such that |vi(t+ 1)| = v and arg vi(t+ 1) = θi(t+ 1).

This model has been the basis for many subsequent studies, with many variations introduced
down the years, both discrete and continuous (for instance [41] or [28]), with or without an
explicit alignment rule (which is not necessary, in some settings). Its main characteristic is that
when the “density of particles” increases, one obtains an ordered collective motion.

Amongst the simplest organisms exhibiting collective behaviour, bacterial colonies have not
been forgotten by researchers in the field: notably, a biological model, giving numerical results,
was proposed for the hydrodynamics and colony evolution of swimming bacteria, Bacillus sub-
tilis, by [24] which appears to coincide with experimental data. A general “phenomenological
model”, “based on a ferromagneticlike coupling of the velocities of self-propelled particles” and
taking in at least five microscopic interactions. In the same vein, we can also mention [25] and
[17].

Different types of models have been studied, such as the “nonequilibrium continuum dynam-
ical model” of Toner and Tu [66], for biological organisms such as birds and slime molds, starting
from the continuum equations of motion. In this kind of models, with infinitely many agents
modelled as a fluid, it is the density, or the concentration, of the organism involved which is
studied, like in the Keller-Segel model [39] for chemotaxis, an attractive chemical phenomenon
between bacteria.

And then, there is Cucker-Smale model. Introduced in 2007 by Cucker and Smale in [21]
and [22], it is a time-continuous, mean-field kinetic deterministic model describing a
N -particle system in Rd:
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
x′i(t) = vi(t), i ∈ {1, ..., N}

v′i(t) = − 1
N

N∑
j=1

ψ(xi(t), xj(t)) (vi(t)− vj(t)),

(0.1.1)

where ψ is a positive symmetric function called communication rate.

This model, the starting point from chapters 1 and 2, is a good test subject to discuss the
interactions taken into account. Here, there is only one deterministic interaction, an attractive
force depending on the relative velocities between the particles, weighted by the “communication
rate”.

There are at least three items from the previous sentence that are open to debate: first, how to
choose this communication rate (and more generally, the shape of the interactions)? Typically,
in Cucker and Smale works, it is of the form

ψ(x, y) = ψ̄(x− y) with ψ̄(u) = λ

(1 + |u|2)γ ,

where λ is a positive constant, representing the intensity of this interaction. Thus, it vanishes
when the distance between the two agents – let them be two birds – goes to infinity. It sounds
pretty sensible (even though one could also imagine a straight cut-off): two birds too far away
are not going to be able to “see” – or detect – each other. However, when two birds are very
close, the rate goes to λ, thus potentially leading to collisions, or at least very close proximity
(remember that the birds are modelled by point-like particles). One could imagine that the
interaction would become strongly repulsive between two birds in each other vital space... after
all, one does not often see bird collisions in full flight! Of course, as we will see, results will
be hard enough to come by with the Cucker-Smale communication rate, let alone with such a
3-regime one as described above... and one should recall that the aim of a model is not always
to describe the reality as closely as possible, and can be to give a better understanding of a part
of this reality.
This said, this 3-phase model is not without reminding of Aoki [4] computer model, as early as
1982, for schools of fish: two fish interact between each other if they are at a distance smaller
than the “radius of extent of near-field interactions”, denoted by RC. If the distance between
them is larger than a given D2, the “approach distance”, they are attracted to each other; it it
is smaller than the “avoidance distance” D1, then a repulsive force comes into play. The same
ideas can be found in [18], with zones of repulsion, orientation and attraction.

Second, and strongly linked to what precedes, one can see that, in the dynamics (0.1.1), the
sum is over every particle of the system, with a strength depending on the distance between
them. However, Ballerini et al. [6] argue that one should consider the topological distance
rather than the metric distance. More precisely, it seems that birds only take into account their
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six or seven – depending on the species – closest neighbours, whatever their relative distances.
In [12], the authors agree, as they found the models based on this topological distance to be
more stable than those based on the metric distance. Though, as noticed in [70], other studies,
with other kinds of agents do tend in the opposite direction: for instance in [11], when studying
marching locusts, the authors observe that “insects adjust their direction to align with neighbors
within an interaction range”. The problem was also tested in [31]. In the case of the Cucker-
Smale model, the authors in [47] try to offset this problem by giving more relative weight to the
interactions due to the nearest neighbours, the drawback being a loss of symmetry in the system.

Third, the deterministic nature of the interaction, and, subsequently, of the dynamics. In-
deed, why should the trajectories of a group of herrings be entirely predetermined? What about
the glorious uncertainty of life? And, as put in [14], the craziness of each individual? Hence the
need for a stochastic touch. But then, under what guise? From a practical point of view, a ran-
dom noise, from a mathematical one, a Brownian motion. If one wishes to represent the wind,
or a stream, global enough to concern all individuals, then a common noise, affecting similarly
all particles (e.g. [65]). If one wish to represent localized wind gusts, or oceanic currents, or the
free will of each agent, its right to (a slice of) self-determination, then a different noise for each
individual (e.g. [35]). Stochastic dynamics are what we will be interested in (mind you, maybe
the title had given that away).

Numerous deterministic variations of the Cucker-Smale model have been proposed: hierarchical
leadership is presented by Shen ([60]), a collision-avoiding model is introduced by Cucker and
Dong ([19]), the idea of a “vision cone” for the agents (birds in this case) is studied by Agueh,
Illner and Richardson ([1]), amongst many others. As well as a few stochastic ones: in addition
to those previously quoted, one should mention [2], where is considered multiplicative noise, and
[20], where is shown “nearly-alignment” with a certain probability.

0.1.3 Mathematical aims: asymptotic behaviours

To sum it up, models exist. Loads of them. From very different horizons and of very different
kinds. And we will introduce a few others in the following two chapters of this work. That is
great. What for, though? What are we looking for? The answer takes two words. Asymptotic
behaviour.

On the one hand, time-asymptotic behaviour. What does the system “look like”, after a long
time? Are the particles clustered, or scattered? And how to quantify the proximity of the
individuals? This is where we need a few useful notions.
Time to define what flocking and swarming are, for us, in a more precise way. Flocking, phe-
nomena in which a large number of agents reaches a consensus without a hierarchical structure,
shall correspond to both an alignment of the velocities and the formation of a group structure:
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it happens if, for all i ∈ {1, ..., N},

lim
t→∞
|vi(t)− vc(t)|2 = 0 and sup

06t<∞
|xi(t)− xc(t)|2 <∞ (0.1.2)

with xc = 1
N

N∑
j=1

xj and vc = 1
N

N∑
j=1

vj the centres of mass for the positions and the velocities

(see figure 3).

Figure 3: Flocking for a group of particles.

For instance, the main results concerning the Cucker-Smale model can be summed up by
the following assertion (see [22] and [36]): when considering the dynamics (0.1.1), for a commu-
nication rate

ψ(x, y) = λ

(1 + |x− y|2)γ ,

there is always flocking if γ 6 1/2; otherwise, there is “conditional flocking”, depending on the
initial configuration (positions and velocities) of the system.

A less restrictive notion, swarming will only require “cohesion preserving” of the group, that
is

sup
06t<∞

|vi(t)− vc(t)|2 <∞ and sup
06t<∞

|xi(t)− xc(t)|2 <∞.

Of course, both definitions are for a deterministic setting. To extend them to a stochastic
framework is quite a challenge, to find which definition(s) make(s) the most sense... do we ask
for similar results almost surely? Or simply in average, as in [35]? Or in Lp? Or by involving
concentration theory? Attempts were made in [14], that is Chapter 3 of this work: we give
more details later in this introduction (see paragraph 0.2.2), and for now we only define what
probably are the two more relevant notions.
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First, we say that there is almost sure flocking for the stochastic system (xi, vi) if almost surely
the property (0.1.2) is satisfied.
Second, L2-flocking happens if

lim
t→∞

E[|vi(t)− vc(t)|2] = 0 and sup
06t<∞

E[ |xi(t)− xc(t)|] <∞.

Armed with those definitions, and others, we shall thus determine whether the long-time be-
haviour can be classified as such, or whether we have an invariant probability measure, and so
ergodicity of the system, or whether an explosion or a scattering of the particles...

On the other hand, the behaviour when the number N of particles goes to infinity (as was
done for example for an instance of stochastic Vicsek model in [10]). In particular, we shall
hope for propagation of chaos results (in the spirit of those first obtained by Sznitman [63]).
Take, for any integer k, a group of k particles. If those k particles become independent and
identically distributed when N goes to infinity, then there is propagation of chaos. In mathe-
matical terms, one says that a sequence (QN )N>1 of probability measure on EN is Q-chaotic
for a probability measure Q on a Polish space E, if for any fixed integer k and any continuous
bounded functions f1, ..., fk on E,

lim
N→∞

∫
f1(x1) ... fk(xk) dQN (x1, ..., xN ) =

k∏
i=1

∫
fi(xi) dQ(xi). (0.1.3)

In this context, chaos simply means some independence of the particles.

One can notice that both those asymptotic aspects, one corresponding to self-organization,
the other to propagation of chaos are not exactly two sides of the same coin!

The main initial objective of this thesis was to extend the results obtained in [35] to more
general stochastic Cucker-Smale models (see Chapter 2), using both Lyapunov functions and
propagation of chaos techniques (see Chapter 1), and also to focus on collision avoidance, with
the introduction of hard spheres, and dynamics involving local times, in the spirit of [34] and
[15]. This second part was rather quickly forsaken, but should be the aim of future works. In-
stead the focus shifted to other avenues: one was the 2-D Keller-Segel equation (see Chapter 4)
and the mean-field particle system one can associate with it. While the propagation of chaos for
this dynamics is still a big open challenge, we were able to prove existence and weak uniqueness.
Another lead was to consider the Cucker-Smale model as a system for the velocities only, with
infinite delay and to use the cluster expansion method (see Chapter 3), which also turned out
to be not fully satisfactory, because of assumptions too restrictive.
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0.2 Contents of this work

Each of the four chapters of this thesis corresponds to an article, either published or a preprint.
We now give an overview of each of them, briefly presenting their respective framework, the
methods and techniques used, and underlining the main results.

0.2.1 About Chapter 1: Asymptotic properties of various stochastic Cucker-
Smale dynamics

The starting point of the chapter ([51], submitted in April 2017) is the stochastic Cucker-Smale
model introduced by Ha, Lee and Levy in [35], with a random Brownian noise independent for
each of the N particles in Rd,


dxi(t) = vi(t) dt

dvi(t) = − 1
N

N∑
j=1

ψ(xi(t), xj(t)) (vi(t)− vj(t)) dt+
√
D dWi(t)

We give an overview of the asymptotic results for this model, and a variation of it, mainly with
a constant communication rate, as well as for a more general rate, in particular settings.

The dynamics is decomposed in two parts: on one side, a “macroscopic” part, xc = 1
N

N∑
i=1

xi

and vc = 1
N

N∑
i=1

vi, that satisfies


xc(t) = xc(0) + t vc(0) +

√
D

∫ t

0
Wc(s) ds

vc(t) = vc(0) +
√
D Wc(t)

with Wc(t) = 1
N

N∑
i=1

Wi(t), and follows a Gaussian dynamics.

On the other side, a “microscopic” part, the relative fluctuations, x̂i = xi − xc and v̂i = vi − vc
for all i ∈ {1, ...N}.

For a constant communication rate ψ = λ, the global system is


dxi(t) = vi(t) dt

dvi(t) = −λ (vi(t)− vc(t)) dt+
√
D dWi(t),

(0.2.1)
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and with Ŵi = Wi −Wc, the microscopic part can be given explicitly


x̂i(t) =

∫ t

0
v̂i(t) dt

v̂i(t) = e−λt v̂i(0) +
∫ t

0
e−λ(t−s) dŴi(s).

It is an Ornstein-Uhlenbeck type process, and thus a Gaussian process as well, associated with
a covariance matrix of the form 1

2λ (1− e−2λt) ΠN,d, where ΠN,d is a certain Nd×Nd matrix.

While the process v̂ of the relative velocities admits the law N
(

0, 1
2λ ΠN,d

)
as its unique

reversible probability measure, the behaviour of the relative positions x̂ is less to our taste, as
they satisfy the central limit theorem, inspired by [13],

1√
t
x̂(t) L−−−→

t→∞
N
(

0, 1
λ2 ΠN,d

)
.

Hence the absence of formation of a group structure as the particles scatter, and of a recogniz-
able collective behaviour. Furthermore, in this scenario, there is only a weak form of flocking
(see the next subsection), no almost sure or Lp-flocking of any kind.

To obtain a more aggregating behaviour, we add an attractive interaction in −β (xi − xj);
the microscopic part of the stochastic differential system becomes


dx̂i(t) = v̂i(t) dt

dv̂i(t) = −λv̂i(t) dt− βx̂i(t) dt+ dŴi(t),

with the macroscopic part unchanged. With this new interaction, without a true biological
meaning (but then, taking a constant communication rate is already something of an aberration
from this point of view!), one can find an invariant probability measure for the microscopic
system (x̂, v̂), restricted to the subspace {(x, v) ∈ RNd|x1 + ...+ xN = 0 and v1 + ...+ vN = 0}.
It is the measure with density

1
Z
exp (−λ (φ(x̂1, ..., x̂N−1) + β φ(v̂1, ..., v̂N−1))) ,

with respect to the Lebesgue measure, where φ(z1, ..., zN−1) =
N−1∑
i=1
|zi|2 +

∣∣∣∣∣
N−1∑
i=1

zi

∣∣∣∣∣
2

and Z is a

renormalization constant.
Furthermore, thanks to a Down-Meyn-Tweedie (see [29]) type argument, resting on the exis-
tence of a well-chosen Lyapunov function, one can conclude to the exponential ergodicity of the
dynamics.

In the last part, for a non-constant communication rate ψ (but still under rather restrictive
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assumptions: ψ must be bounded above and below by positive numbers, and Lipschitz continu-
ous), we prove that chaos propagates (in the sense of (0.1.3)), following standard proofs in this
field, notably by Sznitman [63] and Méléard [44]. This is done in three stages: first, we show
the tightness of the sequence of probability measures, then we link the accumulation points of
this sequence with a martingale problem, and finally we prove the uniqueness of this martingale
problem.

With ηN , defined by ηN (ω) = 1
N

N∑
i=1

δ(x̂Ni ,v̂
N
i )(ω), the empirical measure associated with the

N -particle system
dx̂i(t) = v̂i(t)dt

dv̂i(t) = − 1
N

N∑
i=1

ψ(x̂i(t), x̂j(t)) (v̂i(t)− v̂j(t)) dt+
√
D dŴi(t),

:

one can show that the sequence (ηN )N is η-chaotic, where η, a probability measure on C([0, T ],R2Nd),
is the unique solution of the martingale problem associated with the non-linear dynamics



xt = x0 +
∫ t

0
vs ds

vt = v0 +Wt −
∫ t

0

∫
ψ(xs, x)(vs − v) Qs(dx, dv) ds

Qt = L(xt,vt),

which itself admits a unique solution, as we will prove. This propagation of chaos result was
previously proven, using a different method, in [9].

0.2.2 About Chapter 2: Stochastic Cucker-Smale models: old and new

This chapter corresponds to [14], and was submitted in April 2017.

Different stochastic Cucker-Smale models, and in particular different kinds of random noises,
lead to different asymptotic behaviours, and to different forms of flocking. One of the main goals
here is to look at the effect of the random noise on the dynamics: what happens when one dis-
turbs a certain equilibrium? Conversely, is it possible to obtain flocking when the corresponding
deterministic model was deprived of it?

To quantify self-organization behaviour, different sorts of stochastic flocking (as well as swarm-
ing) are introduced:

• mean-flocking(the weakest form of flocking) : flocking property (0.1.2) is satisfied in mean:
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for all i ∈ {1, ..., N},

lim
t→∞
|E[vi(t)]− E[vc(t)]|2 = 0 and sup

06t<∞
|E[xi(t)]− E[xc(t)]|2 <∞ ;

• weak-flocking: it more or less corresponds to the convergence in probability towards the
center of mass. There is weak flocking with rate ε(R), with lim

R→+∞
ε(R) = 0, if for all

R > 0 and all i ∈ {1, ..., N},

lim sup
t→+∞

P(|vi(t)− vc(t)| > R) 6 ε(R) ;

• almost-sure-flocking: as previously mentioned, it means that, almost surely (0.1.2) holds:

∀i ∈ {1, ..., N}, lim
t→∞
|vi(t)− vc(t)| = 0 a.s. and sup

06t<∞
|xi(t)− xc(t)| <∞ a.s. ;

• Lp,q-flocking: a generalized, quite self-explanatory, version of the L2-flocking defined ear-
lier. There is convergence in Lp of the velocities towards the center of mass, and the
difference between the positions and their center of mass is bounded in Lq:

∀i ∈ {1, ..., N}, lim
t→∞

E[|vi(t)− vc(t)|p] = 0 and sup
06t<∞

E[ |xi(t)− xc(t)|q] <∞.

If q = 1, we simply say that there is Lp-flocking.

Then, we take a tour of various stochastic Cucker-Smale models proposed in the literature,
to see what kind of flocking behaviour they exhibit, for a constant communication rate.
In [35], stochastic flocking is defined as mean-flocking. We prove in Chapter 1 that there is weak
flocking with a rate of convergence given by a χ2-tail for the dynamics (0.2.1):

dvi(t) = −λ (vi(t)− vc(t)) dt +
√
D dwi(t) (0.2.2)

For the system inspired by [2], for a common noise w and some constant velocity ve,

dvi(t) = −λ (vi(t)− vc(t)) dt + D (vi(t)− ve) dw(t) , (0.2.3)

we show that there are always almost-sure-flocking and L1-flocking, and, if and only if 2λ > D2,
L2,2-flocking as well.
The parameters play an even bigger role for a version of the model introduced in [30], with an
individual-dependent noise, and a constant σ,

dvi(t) = −λ (vi(t)− vc(t)) dt + σ (vi(t)− vc(t)) dwi(t) , (0.2.4)

Indeed, the value α := (1− 1/N) σ2 − 2λ determines the behaviour of the system: almost-sure
and L2,2-flocking if α < 0 but no L2-flocking, and even the norm in L2 of vi going to infinity if
α > 0!
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These three simple equations, only distinguished by their diffusion coefficient, have quite
different flocking behaviours; this is not surprising, considering that the last two admits some
kind of “dynamical equilibrium” for vi(t) = vc(0) and vi(t) = ve respectively, and not the first
one, whose flocking properties are much weaker.

We also establish results for general communication rates, first in a noisy environment, that
is the same random noise w(t) affecting all particles,

dvi(t) = − λ

N

N∑
j=1

ψij(t)(vi(t)− vj(t)) dt + σ(vi(t)) dw(t) , (0.2.5)

with ψi,j = ψi,j(v(.), x(.)) locally Lipschitz, as a function of t, non-negative and symmetric, and
σ globally K-Lipschitz continuous.

Theorem 1. (i) If 2λ inf
i,j,x,v

ψi,j(v, x) > 4K2d2, there is almost-sure and L2,2-flocking.

(ii) Moreover, if σ(vi) is linear in vi, then, the system always flocks almost surely (this does
not hold in the deterministic framework!).

(iii) Besides, with this same dynamics, assuming that ψi,j = ψ̄(|xi − xj |2), we can affirm that
there is conditional flocking (which is not without recalling the deterministic case), that is
for a subset of initial conditions, with a positive probability.

We also prove that similar results hold with noisy communication rates,

dvi(t) = − λ

N

N∑
j=1

ψij(t)(vi(t)− vj(t)) dt + 1
N

N∑
j=1

σij(t) (vi(t)− vj(t)) dwi,j(t).

From this few elements, the most demanding type of flocking appears to be the L2-flocking,
rather than the almost-sure-flocking, which can be found (contrary to L2-flocking) even in cases
(see (ii) of Theorem 1 just above) where the corresponding deterministic system does not flock.
Thus, in some particular scenarios, adding noise can foster flocking. Conversely, in other set-
tings, it can create an environment averse to collective behaviour, and leads to a scattering of
the particles (see the dynamics (0.2.1), studied in Chapter 1).

0.2.3 About Chapter 3: Exponential ergodicity for a class of non-Markovian
stochastic processes

Chapter 3, [50], was submitted in March 2017.

One can see the system (0.2.1) as an autonomous stochastic differential equation in vi, for
every i ∈ {1, ..., N}, with infinite delay:

dvi(t) = − 1
N

N∑
j=1

ψ((vj)t0, (vi)t0) (vi(t)− vj(t)) dt+
√
D dWi(t),
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where (v)t0 = {v(s) | 0 6 s 6 t} is the trajectory between the times 0 and t.

Even though it was ultimately unsuccessful, as can be seen in Section 4.2 of Chapter 1, with an
unconvincing result for finite delay (even though one can very well imagine that the impact of the
far way past is negligible, thus justifying a finite delay) and non-explicit communication rates,
this was the starting point of this chapter. The tools used here are very different from those
of the previous two chapters, and quite new for the study of the ergodicity of stochastic processes.

Indeed, this work is based on techniques coming from statistical mechanics, and in particu-
lar Gibbs theory: using the cluster expansion method, as for instance in [46] and [26], we prove
the exponential ergodicity of a class of non-Markovian stochastic processes, with non-regular
drift and finite delay.

Consider stochastic differential dynamics of the form

dXt =
(
−1

2 ∇V (Xt) + β b((X)tt−t0)
)
dt+ dWt, (0.2.6)

seen as a perturbation of a stochastic differential equation, the “reference process”,

dXt = −1
2 ∇V (Xt) dt+ dWt. (0.2.7)

Our main result is the theorem:

Theorem 2. Assume that there exists a reversible probability measure for the dynamics (0.2.7)
admitting a Poincaré inequality, and a transition density with a finite moment of order 8. If β
is small enough and the perturbation drift b bounded, measurable, then,

• the system (0.2.6) admits a unique stationary weak solution (this was already known, see
[57]).

• moreover, there is exponential ergodicity, and the property of exponential decorrelation
holds.

The proof rests on the convergence of certain sequence of probability measures (QN ) – law
on the finite-time windows [−N,N ] of an approximation of (0.2.6) – and the finding of a “clus-
ter representation”, and then “cluster estimates”, for their renormalization constants ZN called
“partition functions”.

Then, we apply this result taking as reference process the Ornstein-Uhlenbeck process, in di-
mension 1, thus considering perturbed equations of the form

dXt =
(
−λXt + β b((X)tt−t0)

)
dt+ dWt.

As the existence of a unique stationary solution was already known since works from Scheut-
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zow (see [57]), the true novelty here is the explicit rate of convergence, which is exponential.

This result has, however, two main drawbacks: first, because of the nature of the cluster ex-
pansion method, there is no way to truly quantify what “small enough” means for the parameter
β, thus ruling out explicit drifts and applications; second, verifying that the hypotheses needed
for Theorem 2 really hold is, in practice, not an easy thing to do (with the notable exception of
the Ornstein-Uhlenbeck case), especially the existence of a moment of order 8 for the density,
whose explicit expression is seldom known.

0.2.4 About Chapter 4: The 2-D stochastic Keller-Segel particle model: ex-
istence and uniqueness.

Chapter 4, [16], was published in ALEA in 2016.

The Keller-Segel model for chemotaxis was introduced by... Keller and Segel in [39] and [40].
Originally, it represents the interaction of micro-organisms, amoebae, which can lead to aggre-
gation, through the mediation of acrasin, or chemo-attractant, a chemical substance which is
then degraded by an enzyme, acrasinase, both produced by the amoebae.

The modelling of the chemical reaction between acrasin and acrasinase, of Fick’s law of dif-
fusion and of the variations of the concentration of amoeba due to “an oriented chemotactic
motion in the direction of a positive gradient of acrasin and a random motion analogous to
diffusion” brings a number of partial differential equations, one each for the evolution of the
different concentrations of the substances involved.

A simplified version of this system, known as the 2-D parabolic-elliptic Keller-Segel model,
is the following single non-linear partial differential equation in R2:

∂tρt(x) = ∆xρt(x) + χ∇x.((K ∗ ρt)ρt)(x)

where ρt : R2 7→ R is the density at time t of the organisms (e.g. the amoebae), χ is a positive
constant – linked to the chemotactic sensitivity, the rate of production of acrasin, the total
mass and the product of diffusivities – and K : x 7→ ∇ log(‖x‖) = x

‖x‖2
is the gradient of the

harmonic kernel in dimension 2.

One of the most striking characteristics of this equation is the blow-up phenomenon it ex-
hibits: basically, if χ > 4, there is explosion of the solution in a known finite time; else, there
exists a global solution.

Our interest here lies in the mean-field stochastic particle system one would imagine to ad-
mit this non-linear equation as the limit law, when N goes to infinity, that is, for i ∈ {1, ..., N}:

dXi
t =
√

2 dBi
t −

χ

N

∑
j 6=i

Xi
t −X

j
t

‖Xi
t −X

j
t ‖2

dt.
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Long before focusing on the original ultimate goal, the propagation of chaos – which has, as of
yet, not been reached –, one has to deal with the matter of the existence and uniqueness for
these dynamics.
Indeed, because of the obvious singularity of the drift K(.) in 0, the system is not defined, as
the potential explodes when two particles i and j “collide”. The most pressing question thus
becomes: do collisions happen? If so, what kind of collisions? And what happens then?

Using comparison theorems for one-dimensional diffusion processes and well-known properties of
squared Bessel processes, we show that when N > 4 and χ < 4

(
1− 1

N − 1

)
, the only possible

k-collisions (that is k particles colliding simultaneously) are for k = 2, and that, then, the sep-
aration is instantaneous (as squared Bessel processes are immediately reflected when reaching 0).

This leads to the following result, with help from Dirichlet forms theory and a uniqueness
result from [33] (where very similar results are obtained, using a different method).

Theorem 3. Set M = {x ∈ R2N such that there exists at most one pair i 6= j such that xi =
xj}. Then,

• for N > 4 and χ < 4
(

1− 1
N − 1

)
, there exists a unique (in distribution) non explosive

solution, starting from any x ∈ M . Moreover, the process is strong Markov, lives in M
and admits a symmetric, σ-finite, invariant measure.

• if N > 2 and χ > 4, there is no global solution.

• if N > 2 and χ = 4, in finite time, either there is explosion or the N particles are “glued”.

Notice that the value 4 remains the pivotal threshold for the parameter χ and that the blow-
up phenomenon is also present, as with the partial differential equation. The next step should
be to prove that system (0.2.4) “converges” towards the stochastic differential equation


dXt =

√
2 dBt − χ (K ∗ ρt)(Xt) dt

ρt(x) dx = L(Xt).

However, it has, for now, eluded us.

0.3 Mathematical stuff: notations, framework and stochastic
calculus

We recall here a few (mainly) standard notations, and a few results from probability theory for
stochastic processes.

0.3.1 Notations

Better be safe than sorry. Or lost in an ocean of unknown letters and symbols.
We give here a few basic and well-spread notations that will be used throughout this work.
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Given a random variable X, we will denote by E[X] its expectation and var(X) its variance.
For a probability measure µ, Pµ will be a law on the pathspace with initial distribution µ, and
Eµ (resp. varµ(X)) the associated expectation (resp. variance).
L(X) will indicate the law of X and, if X follows the distribution µ, we will write L(X) ∼ µ;

N (m,Σ) is the Gaussian law in Rd, for a certain integer d, with mean m and covariance matrix
Σ. In the same way, Xn−→Z, with L(Z) = µ, means that X converges in law (or in distribution)
towards the probability measure µ.
P(Ω) is the set of probability measures on any given set Ω. Let µ1 and µ2 be two measures

from P(Ω); then µ1 ⊗ µ2 is the product probability measure on Ω × Ω. The norm in Lp(Ω),
p ∈ (0,∞], for any space Ω is denoted by ‖.‖p and the total variation norm by ‖.‖TV .

0.3.2 Stochastic calculus: tools and basic notions

Consider (Xt)t∈R+ a Rd-valued process solution of the stochastic differential equation

dXt = b(Xt) dt+ Σ(Xt) dBt (0.3.1)

where b : Rd → Rd, the drift function, and Σ : Rd → Rd × Rd, the diffusion coefficient, are
measurable functions and (Bt)t∈R+ is a standard d-dimensional Brownian motion.

The transition semi-group associated to the Markovian process (Xt)t>0, denoted by (Pt)t>0,
is the family of operators defined, for f regular enough (a priori, measurable and bounded), by

Ptf(x) = Ex[f(Xt)].

It has a number of fundamental properties, two of which we mention here.

Proposition 1. (Properties of the semi-group)

• (Pt)t>0 satisfies the “semi-group” property (also called the Chapman-Kolmogorov equation),
that is for every non-negative t and s, Pt+s = PtPs.

• A contraction property holds: for every bounded function f , ‖Ptf‖∞ 6 ‖f‖∞.

The infinitesimal generator L is given, for any function f for which it makes sense, by

Lf = lim
t→0

Ptf − f
t

.

In our case, if (Xt)t>0 satisfies equation (0.3.1), L can be explicitly stated:

L = 1
2
∑
i,j

aij∂
2
ij +

∑
i

bi∂i,

where aij = (ΣΣ∗)ij and bi is the i-th component of b. The generator L associated with a
diffusion process is a second-order, elliptic, operator, defined at least on the set of C2-functions
with a compact support.

37



A measure µ is said to be invariant for the process, and the process (Xt) stationary, if for
every f measurable and bounded, ∫

Ptf dµ =
∫
f dµ.

Invariant measures can also be characterized with the help of the infinitesimal generator.

Proposition 2. (Invariance and generator, see [32])
The measure µ is invariant for the process associated with the generator L if, and only if, for
every function f in the domain of definition of L,∫

Lf dµ = 0

Notice that, if µ is an invariant measure which happens to be a probability, it means that
if µ is the initial law of the process, then µ is the law of the process at all time – that is
L(X0) = µ implies that for every non-negative t, L(Xt) = µ. It is also equivalent to the fact
that for every integer k, every positive t1 < ... < tk, and time translation τ , (Xt1 , ..., Xtk) and
(Xt1+τ , ..., Xtk+τ ) have the same law under Pµ.

Now, let us give similar properties about reversible measure: one says that a measure µ is
symmetric, and that the process (Xt)t is reversible, if for every t, every f and g, measurable
and bounded, ∫

f Ptg dµ =
∫
g Ptf dµ.

There also exists a characterization of such objects involving the infinitesimal generator:

Proposition 3. (Reversibility and generator, see [32])
The measure µ is symmetric for the process (Xt)t if, and only if, for every f and g smooth
enough for the generator to make sense,∫

f Lg dµ =
∫
g Lf dµ

Consider a probability measure µ: it being symmetric means that for every integer k, every
positive τ , the processes (Xt1 , ..., Xtk)t1,...,tk and (Xτ−t1 , ..., Xτ−tk)t1,...,tk have the same law un-
der Pµ.

From what is above, one can easily see that if a measure is symmetric for a certain process,
then it is also invariant. The converse is not true.

In this report, we will be very (very) interested in finding symmetric or invariant measures,
especially symmetric or invariant probability measures. This is not just some weird obsession.
There is a (real) (mathematical) reason for it. Here it comes.

Proposition 4. (Probability measure: uniqueness and ergodicity)
Under some assumptions of irreducibility and strong recurrence, there is uniqueness of the in-
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variant probability measure. Furthermore, for every starting point x, f 7→ Ptf(x) converges
towards µ, for the total variation distance, when t goes to infinity.

Thus, knowing that a probability measure is invariant for a process gives us a feeling about
the long-time behaviour of the dynamics considered.

The process is then said to be ergodic, and depending on the speed of this convergence,
one will have “geometric ergodicity”, or “exponential ergodicity”, amongst other possibilities.
Thus, the existence of an invariant probability measure brings valuable information as to the
time-asymptotic behaviour of the considered process.

For readers not overly familiar with stochastic calculus, we finish this introduction by re-
calling one of the paramount results in the field. Due to Itô, it can be seen as the basis of
stochastic differential calculus, or as a stochastic generalization of the chain rule. It will be used
throughout this thesis. Here, we present it in one of its multi-dimensional versions, taken from
[55].

Theorem 4. (Itô’s formula)
Let Xi be the i-th component of the process X and φ : Rd → R a smooth enough function. Then,

φ(Xt) = φ(X0) +
d∑
i=1

∫ t

0
∂iφ(Xs) dXi

s + 1
2

d∑
i,j=1

∫ t

0
∂2
i,jφ(Xs) d < Xi, Xj >s

= φ(X0) +
d∑
i=1

∫ t

0
∂iφ(Xs) bi(Xs) ds +

d∑
i,j=1

∫ t

0
∂iφ(Xs) Σi,j(Xs) dBj

s

+ 1
2

d∑
i,j,k=1

Σi,k(Xs) Σj,k(Xs) ∂2
i,jφ(Xs) ds,

the second equality holding for the process X defined by (0.3.1).

Bibliography

[1] M. Agueh, R. Illner, and A Richardson. Analysis and simulations of a refined flocking and
swarming model of Cucker-Smale type. Kinet. Relat. Models, 48(1):1–16, 2011.

[2] S.M. Ahn and Y. Ha. Stochastic flocking dynamics of the Cucker-Smale model with mul-
tiplicative white noises. J. Math. Phys., 51, 2010.

[3] B. Alberts, D. Bray, M. Raff, K. Roberts, and J. Watson. Molecular Biology of the Cell.
New York : Garland, 1994.

[4] I. Aoki. A simulation study on the schooling mechanism in fish. Nippon Suisan Gakkaishi,
48(8):1081–1088, 1982.

[5] I.L. Bajec and F.H. Heppner. Organized flight in birds. Animal Behaviour, 78(4):777 – 789,
2009.

39



[6] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte,
A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal
collective behavior depends on topological rather than metric distance: Evidence from a
field study. Proceedings of the National Academy of Sciences, 105(4):1232–1237, 2008.

[7] A.L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, and T. Vicsek. Evolution of
the social network of scientific collaborations. Physica A : Statistical Mechanics and its
Applications, 311(3):590–614, 2002.

[8] S. Bazazi, J. Buhl, J.J. Hale, M.L. Anstey, G.A. Sword, S.J. Simpson, and I.D. Couzin.
Collective motion and cannibalism in locust migratory bands. Current Biology, 18(10):735
– 739, 2008.
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Bulletin des Sciences Mathématiques, 124(4):287 – 318, 2000.

[35] S-Y. Ha, K. Lee, and D. Levy. Emergence of time-asymptotic flocking in a stochastic
Cucker-Smale system. Commun. Math. Sci., 7(2):453–69, 2009.

[36] S-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking.
Kinet. Relat. Models, 1(3):415–35, 2008.

41



[37] S.Y. Ha, K.K. Kim, and K. Lee. A mathematical model for multi-name credit based on
community flocking. Quantitative Finance, 15(5):841–851, 2015.

[38] F. Heppner and U. Grenander. A stochastic nonlinear model for coodinated bird flocks,
pages 233–238. AAAS publications, 1990.

[39] E.F. Keller and L.A. Segel. Initiation of slime mold aggregation viewed as an instability.
J. Theor. Biol., 26:399–415, 1970.

[40] E.F. Keller and L.A. Segel. Model for chemotaxis. J. Theor. Biol., 30:225–234, 1971.

[41] V. L. Kulinskii, V. I. Ratushnaya, A. V. Zvelindovsky, and D. Bedeaux. Hydrodynamic
model for a system of self-propelling particles with conservative kinematic constraints. EPL
(Europhysics Letters), 71(2):207, 2005.

[42] B. Lawren. Going with the crowd. National Wildlife, 1992.

[43] K. Lerman, A. Martinoli, and A. Galstyan. A Review of Probabilistic Macroscopic Models
for Swarm Robotic Systems, pages 143–152. Springer Berlin Heidelberg, 2005.
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Chapter 1

Asymptotic properties of various
stochastic Cucker-Smale dynamics

This chapter was submitted, under the same title, in March 2017.

Abstract : Starting from the stochastic Cucker-Smale model introduced by Ha, Lee, and Levy,
we look into its asymptotic behaviours. First in term of ergodicity, when t goes to infinity, seek-
ing invariant probability measures and using Lyapunov functionals. Second, when the number
N of particles becomes large, leading to results about propagation of chaos.

Keywords : Cucker-Smale dynamics, ergodicity, propagation of chaos.
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1.1 Introduction

Phenomena in which a large number of agents reaches a consensus without a hierarchical struc-
ture have been studied abundantly in recent years, as they occur in numerous scientific fields.
Indeed, can be considered as such, events as diverse as the emergence of a new language in
a primitive society, the belief in a price system in an active market or the collective motions
of a population. This last instance encompasses itself very different situations : amongst oth-
ers, the behaviours of school of fish, flights of birds, bacterial populations or even human groups.

The so-called Cucker-Smale model is one of many attempts at representing such phenomena.
It was introduced in 2007 by Cucker and Smale in [11] and [12]. It is a mean-field kinetic
deterministic model describing a N -particle system evolving in Rd through the position xi and
the velocity vi of particle number i for i ∈ {1, ..., N} :


x′i(t) = vi(t)

v′i(t) = − 1
N

N∑
j=1

ψ(xj(t), xi(t)) (vi(t)− vj(t))

(1.1.1)

where ψ a positive, symmetric function called communication rate. Typically, in Cucker and
Smale works, it is of the form

ψ(x, y) = ψ̄(x− y) with ψ̄(u) = λ

(1 + |u|2)γ

where λ is a positive constant, representing the intensity of this interaction.

A fundamental property of this model, due to the symmetry of the communication rate, is

that the center of mass of the velocities, vc = 1
N

N∑
j=1

vj , is constant at all times : that is, for

every t, vc(t) = vc(0). Thus, if the initial velocities vi(0) are all equal, then the velocities are
constant, and so equal, at all times : for every i and t, vi(t) = vc(0). This is a kind of equilibrium
situation, towards which tends the system.

Indeed, the main result of Cucker and Smale is related to flocking, a phenomenon in which
self-propelled individuals or particles organize themselves to reach a motion with global coher-
ence, characterized in a mathematical sense by both velocity alignment and formation of a group
structure. More precisely, here is the definition for (deterministic) flocking :

Definition 1. Flocking happens for a set of N particles if, for all i ∈ {1, ...N},

• lim
t→∞
|vi(t)− vc(t)|2 = 0, with vc(t) = 1

N

N∑
j=1

vj(t) ;

• sup
06t<∞

|xi(t)− xc(t)|2 <∞, where xc(t) = 1
N

N∑
j=1

xj(t).
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Cucker and Smale main statement is that there is flocking, whatever the initial conditions,
when γ < 1/2 and that it still occurs under some condition depending only on the initial config-
uration (xi(0), vi(0))i otherwise ; it was later shown (see [16]) that there is also always flocking
if γ = 1/2.

This result is a major reason why, since then, various authors have studied properties of such
models, given alternative proofs of the results (for instance, [15]) and proposed refined, more
“reality-compliant” versions of the model : hierarchical leadership is presented by Shen ([22]), a
collision-avoiding model is introduced by Cucker and Dong ([9]), the idea of a “vision cone” for
the agents (birds in this case) is studied by Agueh, Illner and Richardson ([1]), amongst many
others.

There have been a fair number of attempts (including by Cucker and Mordecki in [10], where
is added smooth noise, Ahn and Ha in [2] or Ton, Linh and Yagi in [24]) to introduce a random
component in this model. Indeed, in the above system, the effects of the environment are ne-
glected : what of the effects of some (very) localized ocean currents or wind gusts, for fishes or
birds respectively ? What of the free will of each individual ? And why should the trajectory of
a particle be totally predetermined by its initial configuration ?

In this paper, we will focus mainly on the model presented in [14] by Ha, Lee and Levy in
2009, the main difference with the system (1.1.1) being the addition of a stochastic noise, which
takes the form of a Brownian motion :

dxi(t) = vi(t) dt

dvi(t) = − 1
N

N∑
j=1

ψ(xj(t), xi(t)) (vi(t)− vj(t)) dt+
√
D dWi(t)

(1.1.2)

for every i ∈ {1, ..., N}, where D is a non-negative number, representing the intensity of
the noise, ψ : Rd × Rd → R∗+ is positive symmetric function, and W1, ...,WN are d-dimensional
independent standard Brownian motions.

Here the choice of stochastic noise is such that one can see the Wi, random and independent
from each other, as a way of representing the degree of freedom of each individual. In order to
model the wind, for example, one should consider the same Brownian motion for all particles :
the behaviour of such models is studied in [8]. Notice that, here, because of this choice of noise,
and contrary to the deterministic model, the equality of all initial velocities vi(0) does not imply
the equality of all velocities at any given time. That is, having for every i vi(0) = vc(0) does
not mean that vi(t) = vc(t) at time t > 0. Thus, the model is no more a perturbation of some
equilibrium.

The first question that comes to mind is whether it is possible to obtain results similar to
those proven by Cucker and Smale. However, one must first determine what should be the
stochastic equivalent of flocking, especially concerning the velocities.
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This is a complex problem : in [14], stochastic flocking is defined as deterministic flocking
for the expectations of the velocities and positions of the particles. This is a weak condition, one
that does not require much in terms of behaviour of the model. Alternatively, one can imagine
an almost sure type of flocking, as in [2], if definition 1 holds almost surely, a Lp-flocking (see
[24]) if the difference between the velocity of a particle and the center of mass goes to 0 in Lp

or even some kind of weak flocking. For more detailed explanations about the different types of
flocking and their appearances in conjunction with different types of stochastic noise, one can
read [8].
Here, the independence of the Wi rules out almost sure- and Lp-flockings. We thus focus on the
asymptotic behaviour of the system (1.1.2).

In order to study this stochastic dynamics, we will decompose it in two different parts, as is
done in [14], corresponding to two different scales :

• On the one hand, we consider a macroscopic (or coarse-scale) system represented by the
center of mass xc of the positions xi, and its velocity vc (which, incidentally, is also the

center of mass of the velocities vi) : xc = 1
N

N∑
i=1

xi and vc = 1
N

N∑
i=1

vi.

From (1.1.2), we deduce the stochastic differential equations satisfied by xc and vc :


dxc(t) = vc(t) dt

dvc(t) =
√
D dWc(t)

where Wc(t) = 1
N

N∑
i=1

Wi(t) is a Rd-valued Gaussian process, with expectation 0 and

covariance matrix D

N
t Id, for every t > 0.

This system can therefore be explicitly solved :


xc(t) = xc(0) + t vc(0) +

√
D

∫ t

0
Wc(s) ds

vc(t) = vc(0) +
√
D Wc(t)

(1.1.3)

• On the other hand, we will be interested in a microscopic (or fine-scale) system described
by the relative fluctuations of the positions and velocities, around the center of mass and
its velocity, x̂i = xi − xc and v̂i = vi − vc. Notice that for every positive t,

N∑
i=1

x̂i(t) =
N∑
i=1

v̂i(t) = 0. (1.1.4)

Assume that ψ is of the form ψ(x, y) = ψ̄(x − y), with ψ̄ : Rd → R∗+ a positive, even,
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function. Therefore, the relative fluctuations satisfy, for all i ∈ {1, ...N},

dx̂i(t) = v̂i(t)dt

dv̂i(t) = − 1
N

N∑
i=1

ψ(x̂i(t), x̂j(t)) (v̂i(t)− v̂j(t)) dt+
√
D dŴi(t),

(1.1.5)

setting Ŵi = Wi −Wc.

Studying these equations will prove to be much more challenging, especially with some
nondescript communication rate ψ. We will mainly focus on this relative (or microscopic)
system in this work.

We first turn our attention to the particular – nonsensical from a biological point of view but
computation-friendly – case of a constant communication rate. We study the time-asymptotic
behaviour of system (1.1.5) in this setting and then try to improve it by slightly modifying it
in the following section, with the addition of an attractive, linear, input of the positions in the
velocity equations, in the same vein as [9]. In this case, as proven in section 3, there exists an
invariant probability measure for the couple position-velocity and the system is exponentially
ergodic.

Then, in two particular settings, we obtain the existence of an invariant probability measure
and ergodicity for variations from the constant communication rate case, in section 4. On the
one hand we prove polynomial ergodicity for a class of explicit non-constant communication
rates for two particles. On the other hand, using the cluster expansion method presented in
[20], we obtain exponential ergodicity for non-explicit drifts with finite delay.

In section 5, we give further results on stationarity, based on Itô-Nisio celebrated result (see
[17]) : in particular, we obtain stationary solutions for a larger class of communication rates.
This approach requires moment controls as does the final part, section 6, where is investigated
system (1.1.2) when the number N of agents goes to infinity to obtain propagation of chaos
results, after proving the uniqueness of the associated non-linear stochastic differential system.
The results we present in this section can be seen as a particular case of those obtained in [6] ;
however our proof, purely based on probability theory, is very different from [6], where transport
equations methods are adapted to this framework.

1.2 The basic stochastic Cucker-Smale model with a constant
communication rate

From here to the end of Section 4, we place ourselves on Ω = C(R+,R2d), the canonical contin-
uous R2d-valued path space, with F the canonical Borel σ-field on Ω.
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As it shall not have any impact on any of the results presented in this paper, we shall take in
everything, except subsection 1.4.1, that follows D = 1, for the sake of simplicity.

Suppose that the communication rate is constant, and more specifically that ψ = λ, for a
certain positive constant λ. This means that whatever the distance between two particles, the
interaction between them will be of the same intensity. This does not really seem credible :
one would likely imagine that if two individuals are close, their interaction will become strongly
repulsive, so as to avoid collisions, and on the contrary, if they are far from each other, they will
have difficulties to be influenced mutually, thus resulting in a weak interaction. Unfortunately,
such a 3-regime communication rate is beyond what we can do, and we deal first with the easiest
possible rate.

1.2.1 Explicit expression and distribution for the relative velocities

From observation (1.1.4), the microscopic system (1.1.5) becomes, in this case, for every positive
t, for every i ∈ {1, ...N},


dx̂i(t) = v̂i(t) dt

dv̂i(t) = −λv̂i(t) dt+ dŴi(t)

(1.2.1)

Remark that the second equation is autonomous in v̂i ; moreover it is the equation satisfied
by what is called an Ornstein-Uhlenbeck type process. Stochastic calculus, and in particular
Itô’s formula, gives us an explicit expression for v̂i.

Proposition 5. For every t > 0, and for every i ∈ {1, ..., N},

v̂i(t) = e−λt v̂i(0) +
∫ t

0
e−λ(t−s) dŴi(s).

Proof. Apply Itô’s formula to t 7→ f(t, v̂i(t)) = eλt v̂i(t). Then,

eλtv̂i(t) = v̂i(0) +
∫ t

0
eλs dŴi(s) +

∫ t

0

(
λ eλs v̂i(s)− eλs λ v̂i(s)

)
ds.

Furthermore, the v̂i are Gaussian processes : as such, their distribution is entirely determined
by their expectation and their variance. Thus, setting v̂(t) the element of RNd defined by

v̂(t) = (v̂1(t), ..., v̂N (t)),
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and ΠN,d the following square block matrix of size Nd,

ΠN,d =



(1− 1
N

)Id − 1
N
Id · · · − 1

N
Id

− 1
N
Id (1− 1

N
)Id · · · − 1

N
Id

... . . . . . . ...

− 1
N
Id − 1

N
Id · · · (1− 1

N
)Id



, (1.2.2)

the proposition below holds.

Proposition 6. For every t > 0,

v̂(t) ∼ N
(
e−λt E[v̂(0)],ΛN,d(t)

)

where ΛN,d(t) = 1
2λ (1− e−2λt) ΠN,d.

Remark 1. Notice that the eigenvalues of ΠN,d are 0 with multiplicity d and 1 with multiplicity
(N − 1)d. Thus, the matrix ΠN,d is not invertible and the law of v̂ is degenerate at all time. In
particular, it is not absolutely continuous with respect to Lebesgue measure on RNd, which will
prove problematic in later stages.

Remark 2. One can notice from the form of ΠN,d that many results in dimension d are going to
be straightforward generalizations of results in dimension 1.

1.2.2 Invariant probability measure for v̂

Let µ be the Gaussian distribution N
(

0, 1
2λ ΠN,d

)
.

Firstly, we prove that µ is a reversible (and thus, invariant) probability measure for the
vector v̂ of the relative velocities with respect to the center of mass vc.

Proposition 7. The process v̂(.) admits µ = N
(

0, 1
2λ ΠN,d

)
as its unique reversible probability

measure.

Remark 3. As previously noticed in Remark 1, µ does not admit a probability density with re-
spect to the Lebesgue measure and, so, we cannot use the characterization of reversible measures
involving the infinitesimal generator associated with the process in L2(µ).

For every i ∈ {1, ..., N}, we write x̂αi (t) (resp. v̂αi (t)) for α ∈ {1, ..., d} the αth-component of
the Rd vector x̂i(t) (resp. v̂i(t)).

Proof. We prove the invariance of µ. One can obtain its reversibility in a very similar way.
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µ is invariant if and only if for every n, 0 < t1 < ... < tn, τ > 0, (v̂(t1), ..., v̂(tn)) and
(v̂(t1 + τ), ..., v̂(tn + τ)) have the same distribution under Pµ, the law with initial distribution
µ. As both are Gaussian processes, it is sufficient to show that they have same expectation and
covariance matrix.
For every i ∈ {1, ..., N}, t > 0,

Eµ[v̂i(t)] = 0

and for every α, β ∈ {1, ..., d}, i, j ∈ {1, ..., N}, t > 0,

covµ(v̂αi (t), v̂βj (t)) = δα,β
1

2λ (δi,j −
1
N

).

Thus, for every non negative t and τ , v(t) and v(t+ τ) have the same distribution under Pµ.

Furthermore, for t1 < t2,

Eµ[v̂αi (t1 + τ)v̂βj (t2 + τ)] = e−λ(t1+t2+2τ) Eµ[v̂αi (0) v̂βj (0)]

+ δα,β (δi,j −
1
N

) Eµ
[∫ t1+τ

0
e−λ(t1+τ−s) dWi(s)

∫ t2+τ

0
e−λ(t2+τ−s) dWi(s)

]
= e−λ(t1+t2+2τ) δα,β

1
2λ(δi,j −

1
N

) + δα,β (δi,j −
1
N

)
∫ t1+τ

0
e−λ(t1+t2+2τ−s) ds

= δα,β
1

2λ (δi,j −
1
N

)
(
e−λ(t1+t2+2τ) + e−λ(t1+t2+2τ) (e2λ(t1+τ) − 1)

)
= δα,β

1
2λ (δi,j −

1
N

) e−λ(t2−t1) = Eµ[v̂αi (t1) v̂βj (t2)].

Hence, covµ(v̂αi (t1 + T ), v̂βj (t2 + T )) = covµ(v̂αi (t1), v̂βj (t2)).

(v̂(t1), ..., v̂(tn)) and (v̂(t1 + τ), ..., v̂(tn + τ)) have same expectation and covariance matrix
under Pµ, and subsequently the same distribution.

In the same fashion, to prove the reversibility of µ, one has to show that for every n ∈ N,
0 < t1 < ... < tn < τ , (v̂(t1), ..., v̂(tn)) and (v̂(τ − t1), ..., v̂(τ − tn)) have the same distribution
under Pµ.

Secondly, setting x̂ = (x̂1, ..., x̂N ), we show that the pair (x̂, v̂) does not admit an invariant
probability measure but an invariant σ-finite measure.

Proposition 8. The measure dx ⊗ µ is invariant for (x̂, v̂), with dx the Lebesgue measure on
RNd.

Proof. Using Itô’s formula, we obtain the infinitesimal generator L̂ associated with the system
(1.2.1) : for a function f regular enough, for x, v ∈ RNd,

L̂f(x, v) = L̂xf(x, v) + L̂vf(x, v)
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where

L̂xf(x, v) =
N∑
i=1

vi∇xif

and

L̂vf(v) = −λ
N∑
i=1

vi∇vif + 1
2

N∑
i=1

∆vif −
1
N

N∑
j=1

d∑
α=1

∂2
vαi v

α
j
f

 .
As µ is invariant for v̂, ∫ (∫

L̂vf(v) dµ(v)
)
dx =

∫
0 dx = 0.

Besides, denoting by x̄αi the vector x missing its (i, α)-component,

∫
L̂xf dx⊗ µ =

∑
i,α

∫ (∫
vαi ∂xαi f(x, v) dxαi

)
dx̄αi dµ(v)

= −
∑
i,α

∫ (∫
f(x, v) ∂xαi v

α
i

)
dx dµ(v) = 0

because ∂xαi v
α
i = 0.

It follows that
∫
L̂f dx⊗ µ = 0.

As dx ⊗ µ is a measure with an infinite mass, there is no invariant probability measure for
the random system (x̂(.), v̂(.)).

1.2.3 Behaviour of x̂ and central limit theorem

In this subsection, we will shed light on the asymptotic behaviour of the relative positions x̂1(t),
..., x̂N (t), when t goes to infinity. This is indeed of interest to us as we try to assert whether
the flocking definitions mentioned in the introduction are really making sense in this context.

Recall that
x̂(t) = x̂(0) +

∫ t

0
v̂(s) ds.

Using the ergodic theorem,

1
t
x̂(t) = 1

t

(∫ t

0
v̂(s) ds+ x̂(0)

)
−→

∫
v̂ µ(dv̂) = 0.

Looking for a more precise result, we prove the following convergence result :

Proposition 9. The central limit theorem below holds :

1√
t
x̂(t) L−−−→

t→∞
N
(

0, 1
λ2 ΠN,d

)
.

Proof. The proof is based on results and methods presented by Cattiaux, Chafäı and Guillin in
[7]. We start with a lemma about the variance of the components of x̂ = (x̂αi )α∈{1,...,d},i∈{1,...,N}.
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Lemma 1. For every α ∈ {1, ..., d} and i ∈ {1, ..., N},

1
t
varµ

(∫ t

0
v̂αi (s) ds

)
−→
t→+∞

1
λ2

(
1− 1

N

)
.

Proof. There are different ways to prove this lemma (a direct computation works fairly well for
instance). We do it by using the method, based on the invariance of the probability measure µ,
used in the proof of Lemma 2.3 of [7].

varµ

(∫ t

0
v̂αi (s) ds

)
= Eµ

[(∫ t

0
v̂αi (s) ds

)2]
= 2 Eµ

[∫ t

0

∫ s

0
v̂αi (s)v̂αi (u) du ds

]
= 2

∫ t

0

∫ s

0
Eµ[v̂αi (s− u)v̂αi (0)] du ds by invariance of µ.

Moreover, as the initial conditions and the Brownian motions are independent, it follows that,

Eµ[v̂αi (s− u) v̂αi (0)] = Eµ[e−λ(s−u) v̂αi (0)2] = e−λ(s−u) 1
2λ

(
1− 1

N

)
,

and

1
t
varµ

(∫ t

0
v̂αi (s) ds

)
= 1

λt

(
1− 1

N

)∫ t

0
e−λs

(∫ s

0
eλu du

)
ds

= 1
λ2

(
1− 1

N

)(
1− 1

t
(1− e−λt)

)

−→
t→+∞

1
λ2

(
1− 1

N

)
.

Therefore, according to Theorem 3.3 of [7], under Pµ, for all i ∈ {1, ..., N} and α ∈ {1, ..., d},

1√
t

∫ t

0
v̂αi (s)ds L−−−→

t→∞
N
(

0, 1
λ2 (1− 1

N
)
)
. (1.2.3)

Most of the work towards obtaining the proposition has been done : the only thing left to prove
is that for i 6= j, α, β,

1
t
cov

(∫ t

0
v̂αi (s) ds,

∫ t

0
v̂βj (s) ds

)
−−−→
t→∞

− δα,β
1

λ2N
.

A direct computation leads to :

1
t
cov

(∫ t

0
v̂αi (s) ds,

∫ t

0
v̂βj (s) ds

)
= 1
t

(1− e−λt)2 E[v̂αi (0) v̂βj (0)]

+ 1
t
E
[∫ t

0

∫ s

0
e−λ(s−u) dŴα

i (u) ds
∫ t

0

∫ s

0
e−λ(s−u) dŴ β

j (u) ds
]

= − δα,β
1

2λNt (1− e−λt)2 − δα,β
1
Nt

E
[(∫ t

0

∫ s

0
e−λ(s−u)dWα

i (u) ds
)]

= − δα,β

(
1

2λNt (1− e−λt)2 + 1
Nt

∫ t

0

(∫ t

u
e−λ(s−u) ds

)2
ds

)

−−−→
t→∞

− δα,β
1
N

(∫ ∞
u

e−λ(s−u) ds

)2
= −δα,β

1
λ2N

.

54



This asymptotic behaviour of x̂ confirms the result of the previous subsection : there is no
invariant probability measure for the relative system (x̂, v̂) associated with the model (1.1.2)
introduced in [14] : indeed the particles do not particularly tend to come closer from each other,
and thus there is not formation of a group structure.

We will come back to this later, but first we briefly turn our attention to the global process
(x, v) and what can be said about its behaviour when t is large.

1.2.4 Back to the original system of absolute motion

In this setting, that is with a constant communication rate, the stochastic differential equations
(1.1.2) become :


dxi(t) = vi(t) dt

dvi(t) = −λ (vi(t)− vc(t)) dt+ dWi(t).

(1.2.4)

As was shown previously, x = x̂+ xc and v = v̂ + vc have a known explicit expression. vc is
a Brownian motion (and thus admits the Lebesgue measure as an invariant measure) ; therefore
v cannot admits an invariant measure with finite mass. Nevertheless, we can find an invariant
(and even symmetric) measure for the vector of the global velocity v. Indeed,

Proposition 10. The measure ν with infinite mass given by

dν(v) = exp
(
−λ

d∑
α=1

N∑
i=1

(vαi − vαc )2
)
dv

is reversible for v defined in (1.2.4).

The proof of this proposition follows from a classical result on gradient diffusions :

Lemma 2. If X is solution in Rn of

dXt = η dWt −∇F (Xt) dt

where Wt is a n-dimensional standard Brownian motion, F a smooth function and η a real
number, then X admits ρ(dx) = e

− 2
η2 F (x)

dx as reversible measure.

Proof. The associated infinitesimal generator is defined by

Lf = −
n∑
i=1

∂if ∂iF + η2

2

n∑
i=1

∂2
i f.
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To prove the reversibility of ρ, we have to show that for every smooth f and g,
∫
gLf dρ =∫

fLg dρ.

∫
f(x)Lg(x) dρ(x)−

∫
g(x)Lf(x) dρ(x)

= −
n∑
i=1

∫
(f ∂ig − g ∂if) ∂iF e

− 2
η2 F (x)

dx + η2

2

n∑
i=1

∫ (
f ∂2

i g − g ∂2
i f
)
e
− 2
η2 F (x)

dx

= −
n∑
i=1

∫ ((
∂ig ∂if + g ∂2

i f − ∂if ∂ig − f ∂2
i g
) η2

2 + η2

2
(
f ∂2

i g − g ∂2
i f
))

dρ(x) = 0.

Proposition 10 follows by applying this lemma, with n = Nd, for

F (v) = −λ2

d∑
α=1

N∑
i=1

(vαi − vαc )2 .

In the next section we will present a slightly modified version of (1.1.2), and, again, study
its asymptotic properties.

1.3 Introducing x in the v-equation

As mentioned at the beginning of the previous section, one can imagine that the correlation
between the velocities of two particles i and j will be more complex that a linear interaction in
vi − vj . A simple idea can be to add a linear attractive term in xi − xj , as is done for instance
with kinetic models. Indeed it seems reasonable to imagine that the distance between the parti-
cles will play a part in the evolution of the direction and the amplitude of the movement of the
particle.

For i ∈ {1, ..., N}, we now consider


dxi(t) = vi(t) dt

dvi(t) = −λ (vi(t)− vc(t)) dt− β (xi(t)− xc(t)) dt+ dWi(t)

(1.3.1)

where β is a positive parameter coding the intensity of this new interaction.

As in the previous section, we divide this system in two parts, a “macroscopic” one and a
“microscopic” one. The center of mass (xc, vc) is subject to exactly the same dynamics and the
expressions of xc and vc are still given by (1.1.3).
Changes appear for the relative fluctuations, however, and instead of (1.2.1), one now obtains,
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for every i in {1, ..., N},


dx̂i(t) = v̂i(t) dt

dv̂i(t) = −λv̂i(t) dt− βx̂i(t) dt+ dŴi(t).

(1.3.2)

We now focus on finding an invariant probability measure for stochastic differential processes
satisfying equations (1.3.2).

1.3.1 Invariant probability measure on a “d-hyperplane” for the relative fluc-
tuations

We hope that the introduction of this new interaction will bring an invariant probability measure
for the microscopic system. Such an occurrence is impossible for the global system (x, v) ;
however, one can easily check the validity of the following proposition as well as the fact that
the measure involved has an infinite mass.

Proposition 11. The measure µβ defined on (Rd × Rd)N by

dµβ(x, v) = exp

(
−λ

[
N∑
i=1
|vi − vc|2 + β

N∑
i=1
|xi − xc|2

])
dx dv

is invariant for the system of stochastic differential equations (1.3.1).

This result is nevertheless helpful : by substituting variables and projecting on the subspace

H = {(x, v) ∈ RNd|x1 + ...+ xN = 0 and v1 + ...+ vN = 0}

of codimension 2d, we obtain what we were seeking :

Proposition 12. Define φ(z1, ..., zN−1) =
N−1∑
i=1
|zi|2 +

∣∣∣∣∣
N−1∑
i=1

zi

∣∣∣∣∣
2

.

The probability measure µ̂β on (Rd × Rd)N−1 whose density is

f̂β(x̂1, ..., x̂N−1, v̂1, ..., v̂N−1) = 1
Z
exp (−λ (φ(x̂1, ..., x̂N−1) + β φ(v̂1, ..., v̂N−1))) ,

where Z is a renormalisation constant, is invariant for the projection on H of the stochastic
dynamics defined in (1.3.2).

Having found this elusive invariant probability measure, we wish to determine its rate of
convergence towards the associated semi-group. This is where Lyapunov function theory comes
in.

1.3.2 Lyapunov functions and ergodicity

Even restricting oneself to the field of stochastic analysis, one can find a plethora of definitions
for Lyapunov functions, however similar they usually are. Thus, we first precise in exactly what
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sense we mean it here.

Definition 2. A positive, continuous, smooth enough, function V is called Lyapunov function
for the system associated with the infinitesimal generator L if there exists K > 0 such that,
outside of a certain compact set U ,

LV 6 −K V.

Remark 4. Given a compact U , one can always find a ball B(0, R), with R > 0 such that
U ⊂ B(0, R).

The existence of Lyapunov functions associated with an infinitesimal generator is strongly
linked with the ergodicity of the system. This can be seen in the following theorem, the main
result of this section.

Theorem 5. Let P βt be the semi-group associated with the system (1.3.2). Assume that λ2 > 2β.
For all (x̃, ṽ) ∈ (Rd × Rd)N−1, P βt ((x̃, ṽ), .) converges exponentially towards µβ for the total
variation distance : there exists ρ > 0 and C > 0 such that for all t :

‖P βt ((x̃, ṽ), .)− µβ‖TV 6 C V (x̃, ṽ) e−ρ t

where V is the Lyapunov function defined in (1.3.3), associated with the stochastic system
(1.3.2).
In this case, we shall say that µβ is exponentially ergodic.

Proof. The proof rest on the following theorem, due to Down, Meyn and Tweedie (see [13]) ; it
also appears in other papers, such as [4]. It explicits the link between Lyapunov functions and
ergodicity.

Theorem 6 (Down, Meyn, Tweedie, 1995). Let a process be irreducible, in the sense defined in
[13]. Let L be its infinitesimal generator and (Pt)t>0 its semi-group. Assume that it admits an
invariant probability measure µ. Assume, in addition, that there exists some Lyapunov function
V for the generator L.
Then, µ is exponentially ergodic.

What is left to prove is that, if λ2 > 2β, the function V defined by

V (x, v) = exp

(∑
i

(1
2βλ |xi|

2 + β xivi + 1
2λ |vi|

2)
)

(1.3.3)

is a Lyapunov function for the system (1.3.2).
The infinitesimal generator associated with system (1.3.2) is, for all f regular enough,

Lβf(x, v) = 1
2
∑
i,α

∂2
vαi
f(x, v)− 1

N

∑
j

∂2
vαi v

α
j
f(x, v)


+
∑
i,α

vαi ∂xαi f(x, v)−
∑
i,α

(λvαi + βxαi )∂vαi f(x, v),

where i ∈ {1, ..., N} and α ∈ {1, ..., d}.
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We start by computing LβV for every (x, v) ∈ R2Nd :

LβV (x, v) = 1
2
∑
i,α

λ+ (β xαi + λ vαi )2 − 1
N

∑
j

(β xαi + λ vαi )
(
β xαj + λ vαj

) V (x, v)

+
∑
i,α

(β(vαi )2 + λvαi x
α
i ) V (x, v)−

∑
i,α

(λvαi + βxαi )2 V (x, v)

=

1
2λNd−

1
2
∑
i,α

(λvαi + βxαi )2 − 1
N

∑
α

(∑
i

(βxαi + λvαi )
)2

+
∑
i,α

(β(vαi )2 + λvαi x
α
i )

V (x, v)

6

1
2λNd−

1
2
∑
i,α

(
−λ2(vαi )2 − β2(xαi )2 + 2β(vαi )2

)V (x, v)

= −1
2
(
(λ2 − 2β)|v|2 + β2|x|2 − λNd

)
V (x, v).

Thus, if λ2 > 2β, setting K = min((λ2 − 2β), β2), when |x|2 + |v|2 is large enough,

LβV (x, v) 6 −K V (x, v).

1.4 Non-constant communication rate : two particular cases

We go back to the stochastic Cucker-Smale model (1.1.2) : we now turn our attention to non-
constant, and, one hopes, more realistic communication rates.

First, we try to adapt the method of the previous paragraph, using some Lyapunov functions
to obtain ergodicity, when considering only two particles. Even in this reduced setting, we are
only able to obtain a polynomial convergence of the semi-group towards its invariant probability
measure, which we are not able to explicit.

Second, we consider as communication rate a small perturbation of a constant one. Apply-
ing results from [20], based on the cluster expansion method, from statistical physics, we obtain
some exponential ergodicity for general drifts with finite delay.

1.4.1 One (or two) particle(s) along the real line

Consider (x1, v1) and (x2, v2) satisfying a generalized version of (1.3.1) for N = 2 and d = 1,
for a communication rate ψ(x, y) = λ

(1 + (x− y)2)γ , similar to those introduced by Cucker and

Smale in their original model (see [12] and [11]). It can also be seen as equation 1.1.2 in which
is added the term in β introduced in the previous section.
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If we set x = x1 − x2 and v = v1 − v2, then x and v form a solution of the stochastic
differential system :


dxt = vt dt

dvt = − λ vt
(1 + x2

t )γ
dt− βxt dt+

√
DdWt.

(1.4.1)

One can also consider these equations as the modelization of a single particle moving along
the real line, according to some version of the modified stochastic Cucker-Smale model (1.3.1),
studied in the previous section.

The main result of this paragraph is the following convergence theorem :

Theorem 7. We define the function φγ by

φγ(t) =


(γ t+ 1)−

1−γ
γ for γ 6

1
2(4γ − 1

4γ t+ 1
)− 1

4γ−1
for γ >

1
2 .

.

The process (xt, vt) defined by (1.4.1) admits an invariant probability measure, called µγ.
Moreover, the semi-group converges towards µγ for the total variation distance and the conver-
gence rate is at least φγ.

To prove this result, we first establish a criterion for the existence of an invariant probability
measure, before applying it to our system (1.4.1). Then, we prove the polynomial ergodicity.

A criterion for the existence of an invariant probability measure

We first give in the theorem below a sufficient condition for the existence of an invariant prob-
ability measure. Though this result is part of the folklore, we did not find a proof of it in the
literature. The one we propose is adapted from Theorem 12.3.4 in Meyn and Tweedie’s book
[19], from discrete time to continuous time.

Theorem 8. Let (Ut)t>0 be a Feller Markov process on Ω, whose infinitesimal generator L is
such that there exists a non-negative function V , a real b and a compact set C satisfying, for
every u,

LV (u) 6 −1 + b 1C(u) (1.4.2)

Then, the process (Ut)t>0 admits a unique invariant probability measure on Ω.

Proof. We begin by showing the following proposition :

Proposition 13. If a Feller Markov process does not admit an invariant probability measure,
then for any u and any compact set C,

lim
t→∞

1
t

∫ t

0
Ps(u,C) ds = 0.
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Proof. We prove this result by contradiction : we suppose that the aforementioned limit is not
0 and that there is no invariant probability measure for the process considered.

Thereby, we can find a continuous function f with compact support, a positive number δ
and two sequences (ti)i∈N and (yi)i∈N satisfying, for every i, ρi(f) = 1

ti

∫ ti

0
Psf(yi) ds > δ.

There exists a subsequence (ni)i∈N, and a subprobability ρ∞ such that (ρni)i∈N converges vaguely
towards ρ∞ (that is, for every continuous f which goes to 0 at infinity, ρni(f) −→ ρ∞(f)), thanks
to Proposition D.5.6(i) of [19]).

First, remark that ρ∞(f) > lim inf
i→∞

ρni(f) > δ > 0, which implies ρ∞ 6= 0.

Next, for every non-negative r, for every g continuous with compact support,

ρni(Prg) = 1
ti

∫ ti

0
Ps+rg(yi) ds = 1

ti

∫ ti+r

r
Pug(yi) du

= 1
ti

∫ ti+r

0
Pug(yi) du−

1
ti

∫ r

0
Pug(yi) du −→ ρ∞(g),

as the first part goes towards ρ∞(g) and the second to 0 when i goes to infinity.

Furthermore, as we deal here with a Feller process, for all r, Prg is continuous ; thus,
ρ∞(Prg) 6 lim inf

i→∞
ρni(Prg), by Lemma D.5.5 of [19], and ρ∞(Prg) 6 ρ∞(g).

As ρ∞ ◦ Pr(1) = ρ∞(1), ρ̄∞ ◦ Pr(g) 6 ρ̄∞(g) where ρ̄∞ is the probability ρ∞
ρ∞(1) .

Finally, for every non-negative r, ρ̄∞(Prg) = ρ̄∞(g).

As ρ̄∞ is not the trivial measure, it is an invariant probability measure, which contradicts
the hypothesis and concludes the proof of the proposition.

We now prove the theorem. Thanks to Itô’s formula,

EV (Ut) = EV (U0) +
∫ t

0
E[LV (Us)] ds

= V (u) +
∫ t

0

∫
V (y)Ps(u, dy) ds

6 V (u)− t+ b

∫ t

0
Ps(u,C) ds , with the help of (1.4.2).

Hence,

1
t

∫ t

0
Ps(u,C) ds >

1
b

(
1 + 1

t
(EV (Ut)− V (u))

)

>
1
b

(
1− 1

t
V (u)

)
−−−−→
t→∞

1
b
.
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Thus,
lim inf
t→∞

1
t

∫ t

0
Ps(u,C) ds > 1

b
> 0.

We then apply the proposition, which gives us the existence of an invariant probability measure.

Application to our system (1.4.1)

The infinitesimal generator associated with (1.4.1) is the differential operator defined by

Lx,v = D ∂2
v + v ∂x −

λv

(1 + x2)γ ∂v − βx ∂v.

Set
Vγ : (x, v) 7→ βx2 + λ fγ(x) v + v2,

where fγ is the primitive of ψγ : x 7→ 1
(1 + x2)γ that vanishes at 0 (which exists by continuity

of ψγ).
Applying the generator L to Vγ , we obtain

LVγ(x, v) = D − λv2

(1 + x2)γ −
λ2v

(1 + x2)γ fγ(x)− λβ xfγ(x). (1.4.3)

The proposition below guarantees that Theorem 8 can be applied.

Proposition 14. For a positive large enough R , if max(|x|, |v|) > R, then

LVγ(x, v) 6 −1.

Proof. We begin by giving a few properties of fγ : as ψγ is positive, fγ is increasing, with fγ(x)
positive (resp. negative) if x is positive (resp. negative). In particular, for every x, xfγ(x) is
non-negative. Furthermore, ψγ is an even function, making fγ an odd one.

ψγ is integrable on R if, and only if, γ > 1
2 ; in this case fγ tends towards the finite number∫ ∞

0

1
(1 + u2)γ du when x goes to infinity. When γ < 1

2, there exists a positive Cγ such that for

x large, fγ(x) ∼ Cγx1−2γ .

Suppose that max(|x|, |v|) > R.

• If |v| < R, from (1.4.3),

LVγ(x, v) 6 2D − λ fγ(x)
(
β x+ λ v

(1 + x2)γ
)

6 2D − λ |fγ(x)|
(
β |x| − λ |v|

(1 + x2)γ
)

6 2D − λ |fγ(x)|
(
β R− λ R

(1 +R2)γ
)
.
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We briefly notice that λ R

(1 +R2)γ ∼R→∞ λ R1−2γ and 1− 2γ < 1 if and only if γ < 0.

Whatsoever,

β R >
λ R

(1 +R2)γ ⇔ (1 +R2)γ >
λ

β
⇔ R >

√
1 +

(
λ

β
)
)γ
.

For R >

√
1 +

(
λ

β
)
)γ

, LVγ(x, v) 6 2D − λ |fγ(R)|
(
β R− λ R

(1 +R2)γ
)

.

Hence, if R is such that R >
√

1 + (λ/β)γ and 2D − λ |fγ(R)| (β R − λ R

(1 +R2)γ ) 6 −1,
we have

LVγ(x, v) 6 −1.

• If |x| < R, for every positive γ, |fγ(x)| ∈ o(x) ; therefore, for R sufficiently large,

|v| > λ |fγ(x)| and λ |fγ(x)| ∈ o(|v|). (1.4.4)

Accordingly, on the one hand, if γ < 1,

LVγ(x, v) 6 2D − λ v

(1 + x2)γ (v + λ fγ(x))

6 2D − λ |v|
(1 + x2)γ (|v| − λ |fγ(x)|)

6 2D − λ R

(1 +R2)γ (R− λ fγ(R))

∼ −λ R2(1−γ) for 2(1− γ) > 0, that is γ < 1

We can thus find R such that LVγ(x, v) 6 −1.

On the other hand, when γ > 1, keeping (1.4.4) in mind,

LVγ(x, v) 6 2D − λ |v|
(1 + x2)γ (|v| − λ |fγ(x)|)− λβ xfγ(x).

(i) If v 6 x2γ , LVγ(x, v) 6 2D − λβ fγ(R
1

2γ )R
1

2γ 6 −1 for R large enough.

(ii) Otherwise, if v > x2γ , LVγ(x, v) 6 2D − λ |v| (|v| − λ |fγ(x)|)
(1 + vγ−1)γ

.

For |v| sufficiently large, the fraction is equivalent to λv, which allows us to conclude.
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• If |x| > R and |v| > R, we will use Young’s inequality : for every positive real numbers p
and q satisfying 1

p
+ 1
q

= 1,

λ2 |v|
(1 + x2)γ |fγ(x)| 6 1

p

λp |v|p

(1 + x2)γp + 1
q
λq |fγ(x)|q.

Subsequently,

LVγ(x, v) 6 2D −
(

λ v2

(1 + x2)γ −
1
p

λp |v|p

(1 + x2)γp

)
−
(
λβ xfγ(x)− 1

q
λq |fγ(x)|q

)

= 2D − a1(x, v)− a2(x, v).

Roughly, a1(x, v) ≈ λ v2

|x|2γ
−λ

p

p

|v|p

|x|2γp
and a2(x, v) ≈ Cγλβ |x|1+max(0,1−2γ)−Cqγ

λq

q
|x|qmax(0,1−2γ)

where Cγ is a positive real number depending only on γ (αγ if γ < 1
2, else fγ(∞)).

We would like to find p and q such that a1 and a2 tends to infinity when x and v do,
regardless of the ratio x/v.

We will obtain such a thing if each of the following assumptions is satisfied :

(a) 1
p

+ 1
q

= 1

(b) p < 2

(c) 2γ < 2γp

(d) qmax(0, 1− 2γ) < 1 + max(0, 1− 2γ).

Conditions (b) and (c) come from the expression of a1, (d) from the expression of a2.

As γ 6= 0, (b) and (c) can be summed up by (e) : 1 < p < 2.

If 1− 2γ > 0, ie γ < 1
2,

q <
2(1− γ)
1− 2γ ⇔ 1− 1

p
>

1− 2γ
2(1− γ) ⇔

1
p
<

1
2(1− γ) ⇔ p > 2(1− γ).

Thus, for every γ > 0, p ∈ (max(1, 2(1− γ)), 2).

When γ <
1
2, we set p = 2− γ, hence q = 2− γ

1− γ ; otherwise, we choose p = 3
2 and q = 3.

Next, we check that we indeed observe the behaviour we were looking for :
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If γ > 1
2, a1(x, v) 6 λv2

(1 + x2)γ −
3λ

3
2

2
|v|

3
2

(1 + x2)
3γ
2

is non-negative for R sufficiently large and

a2(x, v) = λβ xfγ(x)− λ3

3 fγ(∞)3 > 2D + 1 when x is large enough, and we are therefore
able to conclude in this situation.

A similar verification can be done when γ <
1
2.

Finally, for every positive real number γ, there exists some positive real number R such that

LVγ 6 −1 + δ1Bγ

where Bγ = {(x, v) ∈ R2|max(|x|, |v|) 6 R} and δ a real number.

Bγ being a compact set of R2, and Vγ being bounded on B̄(0, R), the stochastic dynamical
system (1.4.1) admits an invariant probability measure, thanks to Theorem 8.

Now, we know there exists an invariant measure, µγ ; we would like to go one step further
and find a convergence rate for the semi-group towards this probability measure.

Polynomial ergodicity

Recall that φγ(t) =


(γ t+ 1)−

1−γ
γ for γ 6

1
2(4γ − 1

4γ t+ 1
)− 1

4γ−1
for γ >

1
2 .

The proof of the second part of Theorem 7 follows from Theorem 1.2 of [4] and the following
proposition.

Proposition 15. Let H be the function defined on R+ by H(u) = |u|1−γ if γ 6
1
2 and H(u) =

|u|
1

4γ if γ >
1
2 .

For a positive, large enough, R , if max(|x|, |v|) > R, then

∀(x, v) ∈ R2, LVγ(x, v) 6 −Kγ H(Vγ(x, v))) (1.4.5)

where Kγ is a positive constant, depending only on γ.

Proof. We prove the proposition. It will follow a pattern similar to the one of proposition 14.

Notice that H is a non-negative, increasing and concave map.
Suppose that max(|x|, |v|) > R.
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• If γ 6
1
2, we would like to prove that there exists Kγ such that for R large enough,

Kγ(βx2 + λfγ(x)v + v2)1−γ 6 −D + λv2

(1 + x2)γ + λ2v

(1 + x2)γ fγ(x) + λβxfγ(x). (1.4.6)

– Suppose that |x| < |v| and |v| > R.

On the one hand, for R such that λfγ(R)
R

< 1,

(βx2 + λfγ(x)v + v2)1−γ = |v|2(1−γ)
(

1 + βx2

v2 + λfγ(x)
v

)1−γ

6 (2 + β)1−γ |v|2(1−γ).

On the other hand, if R is sufficiently large,

−D + λv2

(1 + x2)γ + λ2v

(1 + x2)γ fγ(x) + λβxfγ(x) > −D + λv2

2(1 + x2)γ >
λv2

4(1 + x2)γ .

Furthermore, if R > 1,

λv2

4(1 + x2)γ >
λv2

4× 2γ max(1, x2)γ >
1
8λv

2 min(1, x−2γ) > 1
8λv

2 min(1, |v|−2γ) > 1
8λ|v|

2(1−γ).

Thus, with, for instance, Kγ = 1
16(2 + β)1−γ , (1.4.6) is satisfied.

– Suppose that |v| 6 |x| and |x| > R.
We proceed in exactly the same way, swapping x and v, to obtain the inequality

(βx2 + λfγ(x)v + v2)1−γ 6 (2 + β)1−γ |x|2(1−γ).

Besides, with similar arguments as those previously used,

−D + λv2

(1 + x2)γ + λ2v

(1 + x2)γ fγ(x) + λβxfγ(x) > −D + 1
2λβ|x| × Cγ |x|

1−2γ

where Cγ is a positive constant such that fγ(|x|) ∼ Cγ |x|1−2γ when |x| is quite large.

Thus,

−D+ λv2

(1 + x2)γ + λ2v

(1 + x2)γ fγ(x)+λβxfγ(x) > 1
4λβCγ |x|

2(1−γ) > Kγ(2+β)1−γ |x|2(1−γ)

for R big enough and Kγ below λβCγ
4(2 + β)1−γ , which implies inequality (1.4.6).

• If γ >
1
2, we aim to show that we can find a positive constant Kγ such that for R large

enough,

Kγ(βx2 + λfγ(x)v + v2)
1

4γ 6 −D + λv2

(1 + x2)γ + λ2v

(1 + x2)γ fγ(x) + λβxfγ(x). (1.4.7)
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– Suppose that |v| 6 |x| and |x| > R.

Then, for a large enough R,

(βx2 + λfγ(x)v + v2)
1

4γ 6 (2 + β)
1

4γ |x|
1

2γ .

Moreover,

−D + λv2

(1 + x2)γ + λ2v

(1 + x2)γ fγ(x) + λβxfγ(x) > 1
4λβCγ |x|

when R is large enough, with Cγ = lim
|x|→∞

fγ(|x|).

Hence (1.4.7), with Kγ 6
λβCγ

4(2 + β)
1
γ

.

– Suppose that |x| < |v| and |v| > R. We have, by analogy with previous assumptions,

(βx2 + λfγ(x)v + v2)
1

4γ 6 (2 + β)
1

4γ |v|
1

2γ .

Furthermore,

−D + λv2

(1 + x2)γ + λ2v

(1 + x2)γ fγ(x) + λβxfγ(x) > λv2

2(1 + x2)γ + 1
2λβCγ |x|.

(i) If |x2γ 6 |v|, then

λv2

2(1 + x2)γ + 1
2λβCγ |x| >

λv2

2(1 + v
1
γ )γ

>
λv2

2(2v
1
γ )γ

>
1
8 |v| > Kγ(2 + β)

1
4γ |v|

1
2γ

with Kγ = 1
8(2 + β)

1
4γ

, as 2γ 6 1 and (1.4.7) is satisfied.

(ii) If |x2γ > |v|, we have

λv2

2(1 + x2)γ + 1
2λβCγ |x| >

1
2λβCγ |x| >

1
2λβCγ |v|

1
2γ > Kγ(2 + β)

1
4γ |v|

1
2γ

for Kγ = λβCγ

2((2 + β)
1

4γ )
and R large enough, ensuring us of the validity of inequal-

ity (1.4.7).

For two different values of γ, we illustrate the veracity of the proposition we have just proven.
These graphics were realised with Matlab ; in blue/dark is LVγ , in green/light is −KγH(Vγ).
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Figure 1.1: Case γ = 0.2, with D = 0.1, λ = 5, β = 2 and Kγ = 8.3.

We indeed observe that, in both situations, when we are far enough from the origin, the
green/lighter surface is under the blue/darker one, which illustrates the drift condition shown
in this section.

Figure 1.2: Case γ = 2, with D = 0.1, λ = 5, β = 2 and Kγ = 17.

Thanks to Theorem 1.2 of [4], we know that the semi-group associated with the process
converges towards the invariant measure ; furthermore we can obtain an indication about the
convergence rate, hence φγ .

Remark 5. It should be noticed that other communication rates ψ give similar results as those
obtained here, as long as they satisfy the following hypotheses, where Ψ is the primitive of ψ
vanishing at 0 :
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• ψ is bounded

• Ψ is non-decreasing

• for all x ∈ R , x Ψ(x) > 0.

This is for instance the case of ψ(x) = 1
1 + ln(1 + x2)b for a non-negative b.

Remark 6. Results of this subsection are only valid for d = 1. Indeed, we are not able to find
Lyapunov functions in higher dimensions.

1.4.2 Ergodicity for small perturbations : the cluster expansion method

In this section, we look to apply the cluster expansion method to our problem : we start from
a well-known symmetric diffusion, the case of the constant communication rate. Our aim is
to disrupt it through a small perturbation with finite delay t0, to obtain a perturbation of a
stochastic Cucker-Smale model whose drift has a finite delay t0.

For the sake of simplicity, computations are done here in the case d = 1. The symmetry of
the system ensures it is possible without loss of generality on the final result, even though some
constants depend on d.

We saw in paragraph 1.2.2 that the system corresponding to the communication rate ψ = λ,

dv̂i(t) = −λv̂i(t)dt+ dŴi(t), i ∈ {1, ..., N} (1.4.8)

admits a reversible probability measure, µ = N
(

0, 1
2λ ΠN

)
, setting ΠN = ΠN,1, defined in

(1.2.2).

In this subsection, we wish to apply results using the cluster expansion method established
in [20] to obtain ergodicity for slight perturbations of the drift in this model.

Consider the dynamics :

dv̂(t) = −λv̂(t)dt+ ΠN dW (t), t ∈ R+ (1.4.9)

where v̂ ∈ RN and W is a N -dimensional standard Brownian motion.

The law of the Ornstein-Uhlenbeck process studied in section 1.2 is degenerate - in particular,
the N ×N matrix ΠN is not invertible (see Remark 1), nor is ΠNΠ∗N (and a projection on the
first N − 1 coordinates of ΠN satisfies neither of these requirements). Thus, in order to apply
results from [20], we have to project our system on an ad hoc subspace, where the process will
be elliptic, once we have established an adequate orthonormal basis on it. We then introduce
the perturbation on this subspace.
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As previously mentioned, the vector of the microscopic velocities (v̂1, ..., v̂N ) is living on the
hyperplane H = { v ∈ RN | v1 + ... + vN = 0 }. One can check that the set (ei)i∈{1,...,N−1}

defined by

eji =
√

i

i+ 1

(1
i
δj6i − δj=i+1

)
for every j ∈ {1, ..., N}, is an orthonormal basis of H.

In what follows, we set αi =
√

i

i+ 1 . Let eN be the element of RN such that ejN = 1√
N

for

every j. Then (ei)i∈{1,...,N} is an orthonormal basis of RN .

The microscopic system v̂(t) has in the basis (ei)i∈{1,...,N} the coordinates ui(t) = e∗i v̂(t),
i = 1, ..., N .

Thus,

uN (t) = 1√
N

N∑
k=1

v̂k(t)

and for i ∈ {1, ...N − 1},

ui(t) = αi

(
1
i

i∑
k=1

v̂k − v̂i+1

)
.

This means that, on the one hand,

uN (t) =
√

1
N

N∑
k=1

Ŵk(t) = 0

and on the other hand,

dui(t) = αi

1
i

i∑
k=1

−λv̂k(t) dt+ (dWk(t)−
1
N

N∑
j=1

dWj(t))


+λv̂i+1(t) dt− (dWi+1(t)− 1

N

N∑
j=1

dWj(t))


so that

dui(t) = −λui(t) dt+ αi

(
1
i

i∑
k=1

dWk(t)− dWi+1(t)
)
.

Setting U = (u1, ..., uN−1), it satisfies in RN−1

dU(t) = −λU(t) dt+ σ dW (t) (1.4.10)

with σ the (N − 1) × N matrix whose j-th row is αj e∗j . The system is now non degenerate :
σσ∗ is invertible.

U is another Ornstein-Uhlenbeck type process (different from (1.4.9)) : as was done in section
1.2, one can give the explicit expression of U , its expectation and its covariance matrix :
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Proposition 16. For every t > 0,

U(t) = e−λt U(0) +
∫ t

0
e−λ(t−s) σ dW (s),

U(t) ∼ N
(
e−λt E[U(0)] , 1

2λ (1− e−2λt) IN−1

)
.

Finally, we find a reversible probability measure for U . This proposition can be proven using
the same tools as before.

Proposition 17. ρ = N (0, 1
2λ IN−1) is a reversible probability measure for the process U defined

in (1.4.10).

One can check that all the hypotheses required for Theorem 2 in [20] are satisfied. As a
consequence, theorem 9 holds :

Theorem 9. Assume that b : C(R+,RN−1) → RN−1 is a measurable function, bounded by 1,
and local, in the sense that there exists t0 > 0 such that, for any u ∈ Ω, b(u) = b((u)tt−t0).
Then, when β is small enough, the system with delay

dZ(t) = (−λZ(t) + β b((Z)tt−t0) dt+ σ dW (t),

where (Z)tt−t0 is the trajectory of Z between times t− t0 and t, admits a unique weak stationary
solution Q, probability measure on C(R+,RN−1).
Moreover, there is exponential ergodicity : there exist θ > 0 and C : RN−1 → R+ such that for
t and t′ large enough, for every z ∈ RN−1, for every bounded measurable function f ,

|EQ[f(Z(t))|Z(0) = z]− EQ[f(Zt′)|Z(0) = z]| 6 C(z) e−θ |t−t′|.

Finally, we go back to the canonical basis, where this result will hold for a certain class of
perturbation drift.

Let, for b = (b1, ..., bN−1) : C(R+,RN−1) → RN−1, the function B = (B1, ..., BN−1) :
C(R+,RN−1)→ RN−1 be given by

Bi(.) =
N−1∑
j=i

1√
j(j − 1)

bj(P .) −

√
i− 1
i

bi−1(P .)

with P = (Pij)i,j∈{1,...,N} the square matrix of size N such that, for all j ∈ {1, ..., N},

Pij =
√

i

i+ 1

(1
i
δj6i − δi=j+1

)
if i < N and PNj = 1√

N
.

Corollary 1. Assume that b is as in Theorem 9 and B as defined just above. Then, if β is
small enough, the dynamics

dv̂(t) =
(
− λv̂(t) + β B

(
(v̂)tt−t0

))
dt+ ΠN dW (t)

admits a weak stationary solution and there is exponential ergodicity.
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Remark 7. Following Scheutzow in [21] (see Theorem 3), we knew already that there exists a
unique invariant probability measure for such dynamics. The only novelty here is the fact that
the convergence happens at an exponential rate.

Remark 8. That we consider a finite delay instead of an unbounded one, as in the original
Cucker-Smale model, is not that much of a stretch : indeed, one can imagine that the behaviour
of a particle at time t depends on the difference of the positions at times t and t − t0, for a
certain t0.

1.5 Stationarity solutions and moment controls

In the previous section, we have obtained very partial results in two particular situations ; here
our goal is to obtain a more general result about the existence of an invariant probability mea-
sure, in a certain sense. To do this, we apply results from the work of Itô and Nisio ([17]) to prove
the existence of stationary solutions, and thus of a certain form of invariant probability measures.

First, however, we introduce a few hypotheses :

• (H1) : There exists a even, positive, function ψ̄ : Rd → R such that, for all x and y,
ψ(x, y) = ψ̄(x− y).

• (H2) : There exists two constants ψ1 and ψ2 such that, for all s ∈ Rd, 0 < ψ1 6 ψ̄(s) 6 ψ2.

• (H3) : ψ̄ is bounded and Lipschitz continuous.

1.5.1 Stationarity results

We place ourselves in the general case of the microscopic velocities of the stochastic Cucker-Smale
system (1.1.5), seen as a delayed equation with unbounded delay :

dv̂i(t) = − 1
N

N∑
j=1

ψ̃
(
(v̂i)t−∞, (v̂j)t−∞

)
(v̂i(t)− v̂j(t)) dt+ dŴi(t), i ∈ {1, ..., N} (1.5.1)

where (X)t−∞ = (Xs)s∈(−∞,t] and ψ̃
(
(v)t−∞, (v′)t−∞

)
:= ψ(xt, x′t), and setting v̂(t) = v̂(0) for

every t 6 0.

Theorem 10. Assume (H1) and (H2). Then the delayed equation (1.5.1) admits at least one
stationary solution.

Proof. The key ingredient of the proof is Theorem 3 of [17] ; we give it here in the version that
we will be interested in :
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Theorem 11 (Itô-Nisio, 1964). Consider the stochastic differential equation

dXt = a((X)t−∞) dt+ b((X)t−∞) dBt, t ∈ R. (1.5.2)

Let the following hypotheses be satisfied :

• (H4) : a(f) and b(f) are continuous on the space of the continuous functions on R−.

• (H5) : there exist M > 0 and a bounded measure K with compact support on R such that
for every continuous f ,

|a(f)|2 + |b(f)|2 6M +
∫ 0

−∞
|f(t)|2 dKt.

• (H6) : there is a uniform control of the second-order moments :

sup
t∈R

E[X2
t ] < +∞.

Then, equation (1.5.2) admits a stationary solution, that is, a solution that is invariant under
the time shift.

An argument of weak compactness is at the center of its proof.

In our case, one can easily verify that (H4) is satisfied. Furthermore, so is (H5), when ψ is
bounded by ψ2, with M = |(δi=j − 1/N)i,j |∞ = 1− 1/N and dKt = 4N2ψ2 δ0(dt).

The crucial point to apply this result is the hypothesis (H6) : we will show in the next
paragraph that it holds under more restrictive assumptions on ψ. Indeed, from Proposition 18,
we will be able to state that

E
[
|v̂(t)|2

]
6 E

[
|v̂(0)|2

]
+ dN

2ψ1
, (1.5.3)

if there exists a positive constant ψ1 such that for all non-negative s, 0 < ψ1 6 ψ̄(s), that is, if
assumption (H3) holds.

Thus, we have the existence of a stationary solution for this particular class of communication
rates.

Remark 9. To the best of our knowledge, we cannot conclude anything about the uniqueness of
such stationary solutions.

We now prove the necessary results to obtain the upper bound (1.5.3), as well as other mo-
ment controls that will be useful in the last section of this paper.
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1.5.2 Various controls of first and second order moments

Lemma 3, proposition 18 and corollary 2 can all be found in [14].

Assume (H1) and (H2). First we truly conclude the proof of Theorem 10 with the crucial
result that brings about the inequality (1.5.3).

Proposition 18. Suppose that (H1) and (H2) are satisfied, and that the initial law has a finite
second order moment.
For all t > 0,

N∑
i=1

E[|v̂i(t)|2] 6
N∑
i=1

E[|v̂i(0)|2] e−2ψ1t + d(N − 1)
2ψ1

(1− e−2ψ1t).

Proof. We start with two almost sure inequalities.

Lemma 3. Suppose that (H1) and (H2) are satisfied, and that the initial law has a finite second
order moment. Let t be any (stopping) time. Then, almost surely,

a) |x̂(t)|2 6 |x̂(0)|2 + 2
∫ t

0

√
|x̂(s)|2 |v̂(s)|2 ds.

b) |v̂(t)|2 6 |v̂(0)|2 − 2ψ1

∫ t

0
|v̂(s)|2 ds+ d(N − 1) t+ 2

N∑
i=1

∫ t

0
v̂i(s) dŴi(s).

Proof. a) We apply Itô’s formula to the function t 7→ |x̂i(t)|2:

|x̂i(t)|2 = |x̂i(0)|2 + 2
∫ t

0

d∑
α=1

x̂αi (s)v̂αi (s) ds.

Then, as
N∑
i=1
||x̂i(t)|2 = |x̂(t)|2, we have |x̂(t)|2 = |x̂(0)|2 + 2

N∑
i=1

∫ t

0
x̂i(s)v̂i(s) ds.

Furthermore, by using twice Cauchy-Schwarz inequality, almost surely,

N∑
i=1

x̂i(s) v̂i(s) 6
N∑
i=1
|x̂i(s)| |v̂i(s)|

6

√√√√ N∑
i=1
|x̂i(s)|2

√√√√ N∑
i=1
|v̂i(s)|2.

b) Using once more Itô’s formula :

|v̂i(t)|2 = |v̂i(0)|2 +
∫ t

0

N∑
j=1

2
N
ψ̄(x̂i(s)− x̂j(s))v̂i(s) (v̂j(s)− v̂i(s)) ds

+ 2
∫ t

0
v̂i(s) dŴi(s) +

∫ t

0

d∑
α=1

(σσT )α,α ds.

with σα,j =
(
δi,j −

1
N

)
for j ∈ {1, ..., N} and α ∈ {1, ..., d}.
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Thus, |v̂(t)|2 = |v̂(0)|2 + 2
N

N∑
i,j=1

∫ t

0
ψ̄(x̂i(s)− x̂j(s)) v̂i(s) (v̂j(s)− v̂i(s)) ds

+2
∫ t

0
v̂i(s) dŴi(s) + d(N − 1) t.

Besides,

2
N∑

i,j=1
ψ̄(x̂i − x̂j) v̂i (v̂j − v̂i) =

N∑
i,j=1

ψ̄(x̂i − x̂j) v̂i (v̂j − v̂i)

+
N∑

i,j=1
ψ̄(x̂i − x̂j) v̂j (v̂i − v̂j)

=
N∑

i,j=1
ψ̄(x̂i − x̂j) (v̂i − v̂j) (v̂j − v̂i)

= −
N∑

i,j=1
ψ̄(x̂i − x̂j) |v̂i − v̂j |2,

and ψ̄(x̂i − x̂j) > ψ1.
Finally, as

N∑
i,j=1

|v̂i − v̂j |2 =
N∑

i,j=1

[
|v̂i|2 + |v̂j |2 − 2 v̂iv̂j

]

= 2N |v̂|2 − 2
N∑
i=1

v̂i N∑
j=1

v̂j

 = 2N |v̂|2,

we have a.s.

2
N∑

i,j=1
ψ̄(x̂i − x̂j) v̂i (v̂j − v̂i) 6 −2Nψ1 |v̂|2,

which leads to b).

We introduce Tk = inf { u > 0 | |v̂(u)|2 > k }. Then, with part b) of lemma 3,

E[|v̂(Tk)|2] 6 E[|v̂(0)|2]− 2 ψ1 E
[∫ Tk

0
|v̂(s)|2 ds

]
+ d(N − 1) E[Tk]

6 |v̂(0)|2 + d(N − 1) t.

Hence, when k goes to infinity, we obtain the finiteness of E[|v̂(t)|2].
Furthermore,

E[|v̂(t)|2] = E[|v̂(0)|2]− 1
N

∫ t

0
E

 N∑
i,j=1

ψ̄(x̂i − x̂j) |v̂i − v̂j |2
 ds+ d(N − 1) t,
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so that by differentiation,

∂t

(
E[|v̂(t)|2]− d(N − 1)

2ψ1

)
= − 1

N
E

 N∑
i,j=1

ψ̄(x̂i − x̂j) |v̂i − v̂j |2
+ d(N − 1)

6 d(N − 1)− 2ψ1 E[|v̂(t)|2]

Thus, by Gronwall’s lemma,

E[|v̂(t)|2] 6 E[|v̂(0)|2] e−2ψ1t + d(N − 1)
2ψ1

(1− e−2ψ1 t).

As var(v̂αi (t)) 6 E[|v̂(t)|2], a uniform bound for the variance can be produced :

Corollary 2. Suppose that (H1) and (H2) are satisfied, and that the initial law has a finite
second order moment.

∀i ∈ {1, ..., N}, α ∈ {1, ..., d}, lim
t→∞

var(v̂αi (t)) 6 d(N − 1)
2ψ1

.

We now focus on results that will be needed in the next section, dealing with propagation of
chaos, adding exchangeability to our assumptions.
We recall (see for instance [3]) that particles are said to be exchangeable if every permutation of
these particles has the same law : that is (X1, ..., Xn) are exchangeable if for any permutation
σ of {1, ..., n}, (X1, ..., Xn) and (Xσ(1), ..., Xσ(n)) have same law.

Proposition 19. Suppose that (H1) and (H2) are satisfied and that the particles are exchange-
able at time t = 0 ; in particular particles have the same initial law. Assume also that this initial
law has a finite second order moment.
For all i ∈ {1, ...N},

sup
t>0

E
[
|v̂i(t)|2

]
6 E

[
|v̂i(0)|2

]
+ d

2ψ1
.

Proof. We have previously seen that :

E
[
N∑
i=1
|v̂i(t)|2

]
6 E

[
N∑
i=1
|v̂i(0)|2

]
e−2ψ1 t + d(N − 1)

2ψ1
(1− e−2ψ1 t).

Exchangeability leads to :

E
[
|v̂i(t)|2

]
6 E

[
|v̂i(0)|2

]
e−2ψ1 t + d(N − 1)

2ψ1N
(1− e−2ψ1 t),

which brings the conclusion of the proof.

Corollary 3. Suppose that (H1) and (H2) are satisfied and that the particles are exchangeable
at time t = 0. Assume also that the common initial law has a finite second order moment.
For all non-negative t, there exists a positive constant Mt, such that

sup
i∈{1,...,N}

E [|x̂i(t)), v̂i(t)|] 6Mt.
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Proof. Let C1 = E
[
|v̂i(0)|2

]
+ d

2ψ1
. Then,

|x̂i(t)|2 = |x̂i(0)|2 +
∣∣∣∣∫ t

0
v̂i(s) ds

∣∣∣∣2 + 2 x̂i(0)
∫ t

0
v̂i(s) ds.

Thus, by multiple uses of Cauchy-Schwarz inequality,

E
[
|x̂i(t)|2

]
6 E

[
|x̂i(0)|2

]
+ C1 t

2 + 2
√
C1 E [|x̂i(0)|2] t

Then, choosing Mt =
√
C1 + E [|x̂i(0)|2] + C1 t2 + 2

√
C1 E [|x̂i(0)||2] t , by Proposition 19,

E [|(x̂i(t), v̂i(t))|] 6
√
E [|(x̂i(t), v̂i(t))|2] 6Mt.

We now seek a different kind of moment control, one involving a single particle and a stop-
ping time. This will be useful to apply Aldous criterion in section 1.6.

As we now delve into controls that are not uniform in time, we restrain the trajectories to
a finite time interval : we place ourselves on ΩT = C([0, T ],R2d), the canonical continuous R2d-
valued path space, where T is a fixed positive constant. This proposition will be helpful to prove
a tightness result via Aldous lemma.

Proposition 20. Suppose that (H1) and (H2) are satisfied and that the particles are exchange-
able at time t = 0. Assume also that the common initial law has a finite second order moment.
There exist two constants, C and K, independent of N , such that, for two stopping times τ1 and
τ2 on ΩT satisfying τ1 6 τ2 6 (τ1 + θ) ∧ T ,

sup
i∈{1,...,N}

E
[
|(x̂i(τ2)− x̂i(τ1), v̂i(τ2)− v̂i(τ1))|2

]
6 K θ + C θ2.

Proof. We apply Itô’s formula : :

|v̂i(τ2)− v̂i(τ1)|2 = M τ2
τ1 +

∫ τ2

τ1
d

(
1− 1

N

)
du

− 2
N

∫ τ2

τ1
(v̂i(u)− v̂i(τ1))

N∑
j=1

ψ(x̂i(u), x̂j(u)) (v̂i(u)− v̂j(u)) du

where M τ+u
τ is a martingale and satisfies E[M τ+u

τ ] = 0 for every u.
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This leads to

E[|v̂i(τ2)− v̂i(τ1)|2]

= d

(
1− 1

N

)
E[τ2 − τ1]− 2

N
E

∫ τ2

τ1
(v̂i(u)− v̂i(τ1))

N∑
j=1

ψ(x̂i(u), x̂j(u)) (v̂i(u)− v̂j(u)) du


6 d

(
1− 1

N

)
θ + 2ψ2

N

N∑
j=1

(
E
[∫ τ2

τ1
|v̂i(u)− v̂i(τ1)| |v̂i(u)− v̂j(u)| du

])

6 d

(
1− 1

N

)
θ + 2ψ2

N

N∑
j=1

∫ θ

0

√
E[|v̂i(τ1 + u)− v̂i(τ1)|2]

×
√
E[|v̂i(τ1 + u)− v̂j(τ1 + u)|2] du,

thanks to Cauchy-Schwarz inequality.
According to Lemma 3, for all τ (stopping) time smaller than T + θ,

E[|v̂(τ)|2] 6 E[|v̂(0)|2]− 2ψ1 E
[∫ τ

0
|v̂(s)|2 ds

]
+ d(N − 1) E[τ ] 6 E[|v̂(0)|2] + 2d(N − 1)T

Using the exchangeability, for all i,

E[|v̂i(τ)|2] 6 E[|v̂i(0)|2] + 2d
(

1− 1
N

)
T 6 E[|v̂i(0)|2] + 2dT =: C.

It means that

E[|v̂i(τ2)− v̂i(τ1)|2] 6 d

(
1− 1

N

)
θ + 2ψ2

∫ θ

0
4 C du 6 K θ,

with
K = d+ 8ψ2C.

Besides,

|x̂i(τ2)− x̂i(τ1)|2 =
∣∣∣∣∫ τ2

τ1
v̂i(u) du

∣∣∣∣2 6
(∫ τ2

τ1
|v̂i(u)| du

)2
6 (τ2 − τ1)

∫ τ2

τ1
|v̂i(u)|2 du,

using once again Cauchy-Schwarz inequality.

Thus, the proof is concluded, as

E[|x̂i(τ2)− x̂i(τ1)|2] 6 θ

∫ θ

0
E
[
|v̂i(τ1 + u)|2

]
du 6 C θ2.

1.6 Propagation of chaos

We now switch our perspective : we look into the behaviour of the system when considering a
very large number N of particles. As we are considering mean-field systems, one would expect
propagation of chaos properties, as introduced by Sznitman [23] in the late 1980s.
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The results presented here have been previously obtained, in a more general case by Bolley,
Cañizo and Carrillo in [6]. One should note however, that the two proofs are very different.

In this section we assume that hypotheses (H1), (H2) and (H3), introduced at the beginning
of Section 1.5, are satisfied.

Let T be a fixed positive constant. Recall that ΩT = C([0, T ],R2d) is the canonical continu-
ous R2d-valued path space, with F the canonical Borel σ-field on ΩT .

First, we recall the definition of chaoticity.

Definition 3. We consider E a Polish space, Q a probability measure on E and for N ∈ N,
QN a probability measure on EN . The sequence (QN )N>1 is Q-chaotic if for any fixed integer
k and any continuous bounded functions f1, ..., fk on E,

lim
N→∞

∫
f1(x1) ... fk(xk) dQN (x1, ..., xN ) =

k∏
i=1

∫
fi(xi) dQ(xi).

In other words, it means that whenN goes towards infinity, any fixed finite number of coordinates
become independent with the same distribution Q.

The objective here is on the one hand to show the convergence, in law and in probability, of
the empirical measure, in N , associated with the N -particle system (1.1.5) towards a limit η,
and one the other hand to prove that we have a chaotic behaviour.

Remember that the system (1.1.5) is, for every i ∈ {1, ...N},

dx̂i(t) = v̂i(t) dt

dv̂i(t) = − 1
N

N∑
i=1

ψ(x̂i(t), x̂j(t)) (v̂i(t)− v̂j(t)) dt+ dŴi(t)

If there is chaoticity, the “natural” limit would be the non linear system :



xt = x0 +
∫ t

0
vs ds

vt = v0 +Wt −
∫ t

0

∫
ψ(xs, x)(vs − v) Qs(dx, dv) ds

Qt = L(xt,vt)

(1.6.1)

At this point, we need to introduce a few notations.

Let, for every integer N larger than 1, ηN (ω) = 1
N

N∑
i=1

δ(x̂Ni ,v̂
N
i )(ω) be the empirical measure

on ΩT associated with the N -particle system defined by (1.1.5), and πN its law on P(ΩT ).
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We then introduce the martingale problems, associated respectively with systems (1.1.5) and
(1.6.1) :

1. A probability measure QN on C([0, T ],R2dN ) is a solution of the martingale problem (PN )
if for all Φ in C2

b (R2dN ), MN
t (Φ) defined by

MN
t (Φ) = Φ(x̂(t), v̂(t))− Φ(x̂(0), v̂(0))−

∫ t

0
L̂Nφ(x̂(s), v̂(s)) ds (1.6.2)

is a QN -martingale such that,

< MN
t (Φ) >=

N∑
i=1

∫ t

0
|∇viΦ(x̂(s), v̂(s))− 1

N

N∑
j=1
∇vjΦ(x̂s, v̂s)|2 ds

where L̂N is the infinitesimal generator associated with (1.1.5), that is

L̂NΦ(x̂, v̂) =
N∑
i=1

v̂i ∇x̂iΦ−
1
N

N∑
i,j=1

ψ(x̂i, x̂j) (v̂i−v̂j) ∇v̂iΦ+1
2

N∑
i=1

∆v̂iΦ−
1
N

N∑
j=1

d∑
α=1

∂2
v̂αi v̂

α
j

Φ

 .
When Φ(x̂, v̂) = φ(x̂i, v̂i) with φ in C2

b (R2d), we set MN,i
t (φ) := MN

t (Φ).

2. A probability measure Q on ΩT = C([0, T ],R2d) is a solution of the martingale problem
(P∞) if for all φ in C2

b (R2d),

Mφ
t (Q) = φ(xt,vt)− φ(x0,v0)−

∫ t

0
∇xφ(xs,vs) vs ds

+
∫ t

0

∫
ψ(xs, x) ∇vφ(xs,vs) (vs − v) Qs(dx, dv) ds− 1

2

∫ t

0
∆vφ(xs,vs) ds, (1.6.3)

where Qs is defined by Qs = Q ◦ (xs,vs)−1, is a Q-martingale such that

< Mφ
t >=

∫ t

0
|∇vφ(xs,vs)|2 ds.

The main result is the following theorem :

Theorem 12. Assume (H1), (H2) and (H3).
Suppose that the particles are exchangeable at time t = 0. Assume also that the initial law η0 on
Rd × Rd has a finite second order moment and that for all a > 0, E[ea|v0|] <∞.
The sequence of the empirical measures (ηN )N>1 converges in law and in probability to η, the
unique solution of (1.6.3, if ηN (0) converges in probability towards η0 when N goes to infinity

Remark 10. Notice that, while the uniqueness of the solution of (1.6.3) will be established as we
prove the theorem, its existence derives from the convergence and will be a consequence of the
proof.
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From this, to obtain the chaoticity of the system, we need the following proposition, whose
proof can be found in [23] or in [18].

Proposition 21. If (QN )N>1 is a sequence of exchangeable probability measures on EN , it is
Q-chaotic if and only if the associated empirical measure converges in law - and in probability -
as P(E)-valued variables under QN , towards the probability measure Q.

And thus, we deduce that the system is indeed chaotic, and that there is propagation of
chaos.

Corollary 4. Under the hypotheses of Theorem 12, the sequence (ηN )N>1 is η-chaotic.

Remark 11. If we consider a small number of particles among a large amount, they behave
independently from each other, which seems quite far from the concept of flocking.

To prove Theorem 12, we will follow a classical procedure and proceed in three steps, in the
last three subsections of this work :

1. first, the tightness of (πN )N>1 in P(P(ΩT )) ;

2. then, the link between the accumulation points of (πN )N>1 and a martingale problem ;

3. finally, the uniqueness of the solution of (1.6.3), coming from the uniqueness of the solution
of the limit process (1.6.1).

We actually start with the third one.

1.6.1 Uniqueness of the non-linear equation, and of the associated martingale
problem

We thank Andrey Pilipenko for the discussion in Potsdam in December 2015 which helped us to
solve this uniqueness problem.

Consider the non-linear stochastic differential system, on [0, T ], :

(SW )



xt = x0 +
∫ t

0
vs ds

vt = v0 +Wt −
∫ t

0

∫
ψ(xs, x)(vs − v) Qs(dx, dv) ds

Qt = L(xt,vt)

Recall in particular that ψ(x, y) = ψ̄(x− y) with ψ̄ an even, k-Lipschitz continuous function
such that 0 < ψ̄(x) 6 ψ2 for all x ∈ Rd.
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Theorem 13. Assume (H1) and (H3).
For a fixed initial condition (x0, v0) with a finite second order moment and such that for all
a > 0, E[ea|v0|] <∞, the non-linear stochastic system (SW ) admits at most one strong solution.

Corollary 5. Assume (H1) and (H3).
For a fixed initial condition (x0, v0) with a finite second order moment and such that for all
a > 0, E[ea|v0|] < ∞, the martingale problem (1.6.3) associated with (SW ) admits at most one
solution.

The proof that we give here is based on manipulations of expectations and multiple uses of
Gronwall lemma.

Let (Wt)t∈[0,T ] and (W̃t)t∈[0,T ] be two independent, standard Rd-valued Brownian motions.
We will sometimes construct W (resp. (W̃ )) on the first (resp. second) component of the prod-
uct space ΩT × ΩT , and denote, in this subsection alone, by E (resp. Ẽ) the expectation with
respect to the first coordinate (resp. the second coordinate) of this product space.

Reformulation of the problem

System (SW ) can also be seen as :


xt = x0 +

∫ t

0
vs ds

vt = v0 +Wt −
∫ t

0
Ẽ[ψ(xs, x̃s)(vs − ṽs)] ds

(1.6.4)

where (x̃t, ṽt)t∈[0,T ] is an independent copy of (xt,vt)t∈[0,T ] and satisfies system (S
W̃

), that is



x̃t = x̃0 +
∫ t

0
ṽs ds

ṽt = ṽ0 + W̃t −
∫ t

0

∫
ψ(x̃s, x)(ṽs − v) Qs(dx, dv) ds

Qt = L(ṽt, ṽt)

Suppose now that there exist two processes, (x,v) and (x′,v′), strong solutions of SW on
ΩT , with the same initial condition (x0,v0) and respective laws Q and Q′. Considering the
processes, in ΩT × ΩT , ((x,v), (x̃, ṽ)) and ((x′,v′), (x̃′, ṽ′)) – defined as in equation (1.6.4), we
will show that they are almost surely equal, hence the strong uniqueness.

We can write :
vt = v0 +Wt −

∫ t

0
Ẽ[ψ(xs, x̃s)(vs − ṽs)] ds, (1.6.5)
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v′t = v0 +Wt −
∫ t

0
Ẽ[ψ(x′s, x̃′s)(v′s − ṽ′s)] ds.

Control of the trajectories

First we track an upper bound for sup
t∈[0,T ]

|vt| and sup
t∈[0,T ]

|v′t|.

E[|vt|] = |v0|+ E[|Wt|] +
∫ t

0
E
[
Ẽ[ψ(xs, x̃s)(vs − ṽs)]

]
ds 6 |v0|+

√
2T
π

+ 2ψ2

∫ t

0
E[|vs|] ds.

We can then apply Gronwall lemma : for every t < T ,

E[|vt|] 6

|v0|+

√
2T
π

 e2ψ2T .

From there, and keeping in mind that E[|vt|] = Ẽ[|ṽt|]

|vt| 6 |v0|+ ψ2

∫ t

0
|vs| ds+ ψ2

∫ t

0
Ẽ[|ṽs|] ds+ sup

t∈[0,T ]
|Wt|

6 |v0|+ ψ2T

|v0|+

√
2T
π

 e2ψ2T + sup
t∈[0,T ]

|W (t)|+ ψ2

∫ t

0
|vs|ds.

Thus, thanks again to Gronwall lemma,

sup
t∈[0,T ]

|vt| 6 CW (1.6.6)

where the random variable CW satisfies

CW =

|v0|+ ψ2T

|v0|+

√
2T
π

 e2ψ2T + sup
t∈[0,T ]

|W (t)|

 eψ2T .

Besides, as xt = x0 +
∫ t

0
vs ds,

sup
t∈[0,T ]

|xt| 6 |x0|+ T CW .

In a similar way, with

C
W̃

=

|v0|+ ψ2T

|v0|+

√
2T
π

 e2ψ2T + sup
t∈[0,T ]

|W̃ (t)|

 eψ2T ,

one has
sup
t∈[0,T ]

|ṽt| 6 C
W̃
. (1.6.7)

Note that we also have sup
t∈[0,T ]

|v′t| 6 CW and sup
t∈[0,T ]

|ṽ′t| 6 C
W̃

.
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Constants and Lipschitz continuity

Let x, x′, v and v′ be in Rd.
If we suppose that |v| 6M , then,

|ψ̄(x) v − ψ̄(x′) v′| 6 |ψ̄(x)− ψ̄(x′)| |v|+ ψ̄(x′) |v − v′| 6 kM |x− x′|+ ψ2|v − v′|

6 (kM + ψ2) (|x− x′|+ |v − v′|).

In particular, using (1.6.6) and (1.6.7), as ψ̄ is bounded by ψ2 and k-Lipschitz continuous,

|ψ̄(xs − x̃s) (vs − ṽs)− ψ̄(x′s − x̃′s) (v′s − ṽ′s)|

6 (k (CW + C
W̃

) + ψ2) (|xs − x̃s − x′s + x̃′s|+ |vs − ṽs − v′s + ṽ′s|)

6 (KW +K
W̃

) (|xs − x′s|+ |vs − v′s|) + (KW +K
W̃

) (|x̃s − x̃′s|+ |ṽs − ṽ′s|), (1.6.8)

setting the random variables KW = k CW + ψ2
2 and K

W̃
= k C

W̃
+ ψ2

2 .

Computations towards the uniqueness

Using (1.6.5) and (1.6.8),

|vt − v′t| 6 −
∫ t

0
Ẽ[|ψ(xs, x̃s)(vs − ṽs)− ψ(x′s, x̃′s)(v′s − ṽ′s)] ds

6
∫ t

0
Ẽ[(KW +K

W̃
) (|xs − x′s|+ |vs − v′s|) ds+

∫ t

0
Ẽ[(KW +K

W̃
) (|x̃s − x̃′s|+ |ṽs − ṽ′s|) ds

= Ẽ[KW +K
W̃

]
∫ t

0
(|xs − x′s|+ |vs − v′s|) ds+

∫ t

0
Ẽ[(KW +K

W̃
) (|x̃s − x̃′s|+ |ṽs − ṽ′s|) ds.

Thus, setting
SW (s) = sup

u∈[0,s]
|xu − x′u|+ sup

u∈[0,s]
|vu − v′u|,

S
W̃

(s) = sup
u∈[0,s]

|x̃u − x̃′u|+ sup
u∈[0,s]

|ṽu − ṽ′u|,

we can affirm that

sup
u∈[0,t]

|vu − v′u| 6 Ẽ[KW +K
W̃

]
∫ t

0
SW (s) ds +

∫ t

0
Ẽ[(KW +K

W̃
) S

W̃
(s)] ds.

As sup
u∈[0,t]

|xu − x′u| 6 T sup
u∈[0,t]

|vu − v′u|, we have

SW (t) 6 (1 + T ) Ẽ[KW +K
W̃

]
∫ t

0
SW (s) ds+ (1 + T )

∫ t

0
Ẽ[(KW +K

W̃
) S

W̃
(s)] ds.

Applying a generalized version of Gronwall inequality,

SW (t) 6 cW

∫ t

0
Ẽ[(KW +K

W̃
) S

W̃
(s)] ds,
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with cW = (1 + T ) e T (1+T ) Ẽ[KW+K
W̃

].

In order to bound t 7→ E[(KW + K
W̃

) SW (t)], we will apply yet again Gronwall lemma. One
can notice that both the following equalities are true :

E[(KW +K
W̃

) SW (t)] = K
W̃

E[SW (t)] + E[KW SW (t)],

Ẽ[(KW +K
W̃

) S
W̃

(t)] = KW E[SW (t)] + E[KW SW (t)].

From there,

E[(KW +K
W̃

) SW (t)] 6 E
[
(KW +K

W̃
) cW

∫ t

0
Ẽ[(KW +K

W̃
) S

W̃
(s)] ds

]
6 E[cW (KW +K

W̃
) KW ]

∫ t

0
E[SW (s)] ds+ E[cW (KW +K

W̃
)]
∫ t

0
E[KW SW (s)] ds

6 E[cW (KW+K
W̃

)2 ]
∫ t

0
E[SW (s)] ds+E

[
cW (KW +K

W̃
)
(

1 + KW

K
W̃

)]∫ t

0
E[KW SW (s)] ds,

which leads, finally, to

E[(KW +K
W̃

) SW (t)] 6 E
[
cW (KW +K

W̃
)
(

1 + KW

K
W̃

)] ∫ t

0
E[(KW +K

W̃
) SW (s)] ds.

Thus, by Gronwall inequality,

E[(KW +K
W̃

) SW (t)] = 0 a.s.

for all t ∈ [0, T ], which implies, as all terms are non-negative, that

(KW +K
W̃

) SW (T ) = 0 a.s.

By definition of SW , it means that, for all t ∈ [0, T ], (xt,vt) = (x′t,v′t) a.s., which ends the proof.

1.6.2 Tightness of the (πN)N

The following lemma can be found in [18], and we will admit it :

Lemma 4. The tightness of (πN )N>1 in P(P(ΩT )) is equivalent to the tightness of the law of
(x̂N1 , v̂N1 )N>1 in P(ΩT ).

In order to prove the tightness of the law of (x̂N1 , v̂N1 ), we will use Aldous criterion.
We start by proving the tightness of the law of (x̂N1 (t), v̂N1 (t)) for a.e. t. Take ε > 0.

P(|(x̂N1 (t), v̂N1 (t))| > α) 6 1
α

E[|(x̂N1 (t), v̂N1 (t))|] 6 Mt

α
,

according respectively to Markov’s inequality and Corollary 3.
Thus, for α = Mt

ε
, P((x̂N1 (t), v̂N1 (t)) ∈ B̄(0, α)) > 1− ε.
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We take ε, η > 0. According to Aldous criterion (see [5]) what we need to show is that there
exist δ > 0 and an integer N0 such that

sup
N>N0

sup
τ1,τ2∈T

τ16τ26(τ1+δ)∧T

P(|(x̂N1 (τ2)− x̂N1 (τ1), v̂N1 (τ2)− v̂N1 (τ1))| > ε) 6 η,

where T is the set of stopping times on ΩT .
Again thanks to Markov’s inequality, and Proposition 20, we have :

P(|(x̂N1 (τ2)− x̂N1 (τ1), v̂N1 (τ2)− v̂N1 (τ1))| > ε)

6
1
ε2 E[|(x̂N1 (τ2)− x̂N1 (τ1), v̂N1 (τ2)− v̂N1 (τ1))|2] 6 Kδ + Cδ2

ε2 .

Thus, δ such that Kδ + Cδ2 = η ε2, which is δ = −K +
√
K2 + 4Cη ε2

2C , provides the solution,
and allows us to conclude to the tightness of (x̂N1 , v̂N1 ), as K and C are independent from N

(but depend on T ).

1.6.3 The accumulation points of (πN)N

We now know that the sequence (πN )N>1 is tight ; hence its relative compactness, thanks to
Prohorov’s theorem.

Let π∞ be one of its accumulation points ; we still denote by (πN )N>1 the subsequence that
converges towards it. Our goal is to show that under π∞, for almost every Q in P(ΩT ),

EQ[Mφ
t (Q)−Mφ

s (Q)|Fs] = 0,

with Mφ
t defined in (1.6.3), this shall mean that Q is a solution of the martingale problem (P∞).

For q ∈ N∗, 0 6 s1 < ... < sq 6 s 6 t 6 T and g1, ..., gq ∈ Cb(R2d), we define

Fs,t(Q) =
∫

ΩT
(Mφ

t (Q)−Mφ
s (Q)) g1(xs1 , vs1) ... gq(xsq , vsq) dQ(x, v).

.

Lemma 5. For every q ∈ N, 0 6 s1 < ... < sq 6 s 6 t 6 T and g1, ..., gq ∈ Cb(R2d),∫
P(ΩT )

|Fs,t(Q)|π∞(dQ) = 0.

Proof. For the sake of simplicity, we forego here the ever-present exponent N for the x̂i and the
v̂i.

Recall that πN is the law on P(ΩT ) of ηN = 1
N

N∑
i=1

δ(x̂i,v̂i), the empirical measure on ΩT associated

86



with the N -particle system defined by (1.1.5). It immediately follows that∫
F 2
s,t(Q) πN (dQ) = E[Fs,t(ηN )2].

As Fs,t(ηN ) = 1
N

N∑
i=1

(MN,i
t (φ)−MN,i

s (φ))g1(x̂i(s1), v̂i(s1))...gq(x̂i(sq), v̂i(sq)),

∫
F 2
s,t(Q)πN (dQ) = 1

N
E
[
(MN,1

t (φ)−MN,1
s (φ))2(g1(x̂1(s1), v̂1(s1))...gq(x̂1(sq), v̂1(sq)))2

]
+ N(N − 1)

N2 E
[
(MN,1

t (φ)−MN,1
s (φ))(MN,2

t (φ)−MN,2
s (φ))

×g1(x̂1(s1), v̂1(s1))...gq(x̂1(sq), v̂1(sq))g1(x̂2(s1), v̂2(s1))...gq(x̂2(sq), v̂2(sq))] .

The first part goes to zero when N tends towards infinity because g1, ..., gq are bounded, and
for t ∈ [0, T ], the expectation of MN,1

t (φ)2 is uniformly bounded in N .

As for the second term,

< MN,1(φ),MN,2(φ) >= 1
2(< MN,1(φ) +MN,2(φ) > − < MN,1(φ) > − < MN,2(φ) >) = 0.

Thus, we have lim
N→∞

∫
F 2
s,t(Q)πN (dQ) = 0 which implies lim

N→∞

∫
|Fs,t(Q)|πN (dQ) = 0.

(πN )N>1 is a sequence of probability measures converging towards π∞, thus the uniform
integrability of (Fs,t(ηN )) (by virtue of being bounded in L2) allows us to affirm that∫

|Fs,t(Q)|π∞(dQ) = 0

by inverting limit and integral.

Then, for every q ∈ N, 0 6 s1 < ... < sq 6 s 6 t and g1, ..., gq ∈ Cb(R2d), for π∞-a.e. Q in
P(ΩT ), Fs,t(Q) = 0. Using the pathwise continuity, we conclude that for π∞-a.e. Q, (Mφ

t (Q))t>0

is a Q-martingale.

This means that if π∞ is some limiting point of (πN )N>1, then every Q in P(ΩT ) which is
in the support of π∞ is solution of (1.6.3).
Thanks to corollary 5, we know that there exists a unique probability measure η on ΩT such
that π∞ = δη; furthermore, π∞ is entirely determined, and subsequently, unique.

As δη is a Dirac measure, this convergence in law implies the convergence in probability. And
so, Theorem 12 holds.
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[17] K. Itô and M. Nisio. On stationary solutions of a stochastic differential equation. J. Math.
Kyoto Univ., 4(1):1–75, 1964.

88
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Chapter 2

Stochastic Cucker-Smale models :
old and new.

This paper was a joint work with Fanny Delebecque and Patrick Cattiaux, and was submitted
in May 2017.

Abstract : In this paper we revisit and generalize various stochastic models extending the
deterministic Cucker-Smale model for self organization. We study flocking and swarming prop-
erties. We show how these properties strongly depend on the structure and on the variance of
the noise.

Keywords : Cucker-Smale dynamics, stochastic interacting particles, flocking.
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2.1 Introduction, motivations and existing models.

In recent years the observation, the description and the modeling of collective motions deserved
a lot of attention and consequently produced a huge literature. These kinds of collective behav-
iors have been observed for several types of populations: humans, fishes, birds, insects, bacteria,
macromolecules, cells ... We refer to the beautiful survey [15] for a nice description of various
models introduced during the last fifteen years. Despite its fundamental importance, the vali-
dation of such models will be ignored in the present work, where we will focus on mathematical
properties. However we shall make some small comments on the structure of the models under
study throughout the whole paper, and summarize them (with some additional comments) in
the final section.
If we read a lot of interesting papers on the subject, it turns out that we do not always com-
pletely understand all the mathematical arguments contained in some of them, in particular
those dealing with stochastic models. That is why, instead of pointing out these misunderstand-
ings, we decided to make this paper self-contained, at least for the potential readers a little bit
familiar with stochastic calculus.
Finally we shall only look at stochastic models where the noise comes from some Brownian
motion (or some continuous Ito process). Of course one should also look at jump processes
(P.D.M.P. for instance) or fractional processes whose local behavior could introduce other inter-
esting properties.
Let us come to the subject of this work.

The so-called Cucker-Smale model introduced in [4, 5] is a mean-field kinetic deterministic
model that intends to describe self organization of individuals in a population. Originally it is
written as

d

dt
xi(t) = vi(t)

d

dt
vi(t) = − λ

N

N∑
j=1

ψij(t) (vi(t)− vj(t)) . (2.1.1)

Here the pair (xi(t), vi(t)) ∈ Rd ⊗ Rd denotes the pair position/velocity of the “particle” i ∈
{1, ..., N} at time t, λ is some positive parameter and ψij(.) is for all (i, j) a non-negative function
called the communication rate.
In the original model

ψij(t) = ψ(|xi(t)− xj(t)|2) with ψ(u) = 1
(1 + u)r for r > 0. (2.1.2)

The goal was to propose a model for flocking. In the deterministic context, flocking means the
following. Introduce the center of mass of the system

x̄(t) = 1
N

N∑
j=1

xj(t) , v̄(t) = 1
N

N∑
j=1

vj(t) , (2.1.3)
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the system (2.1.1) is said to flock if

for all i, lim
t→∞

|vi(t)− v̄(t)| = 0 and sup
t>0
|xi(t)− x̄(t)| < +∞ . (2.1.4)

It is known that in the situation of (2.1.2), flocking occurs for all initial conditions (unconditional
flocking) provided r 6

1
2, and for some initial conditions otherwise (see [4, 5, 8, 9]). Of course

this is nothing else than convergence to some “equilibrium”. Indeed if all initial velocities are
the same (hence all equals to v̄), they do not evolve in time and the motion of the positions
block is simply a translation. This is some equilibrium for the model and flocking is thus some
kind of convergence to this equilibrium.

A lot of modified models have then been studied in the deterministic context, including
delays, no collisions and many other features. Some of them have introduced some randomness
in the model, in various ways. The goal of the present paper is to revisit, extend and study
these stochastic Cucker-Smale models.

The first question to ask is: where (and why) does randomness enter the game ?

The first idea is to consider that each individual has a degree of freedom (or craziness)
represented by some random noise independent of the behavior of all other individuals in the
population. This leads to the following system for the velocities

dvi(t) = − λ

N

N∑
j=1

ψij(t) (vi(t)− vj(t)) dt + σi(t) dwi(t) , (2.1.5)

where σi only depends on (xi, vi) and the wi’s are independent Rd valued noises. This kind of
model has been studied in [3] for “smooth” noises (actually smooth regularizations of Brownian
motions) and in [7] for independent d-dimensional standard Brownian motions wi and a constant
diffusion matrix σi (actually σi =

√
D Idd). The latter case has been revisited and completed

by one of us in the recent [12]. Here and in what follows the meaning of dw is the Ito differential
(we shall come back later to this).

The second idea is to consider that the dynamics of the velocities is perturbed by a noisy
environment. This yields the following model

dvi(t) = − λ

N

N∑
j=1

ψij(t) (vi(t)− vj(t)) dt + σi(t) dw(t) , (2.1.6)

where this time the noise w is the same for all particles.
A very peculiar form of this model is studied in [1]. The authors consider therein a noise
w = (W,W, ...,W ) i.e. the same Brownian motion in all the directions of Rd and a diagonal
diffusion matrix σi(t) whose diagonal entries are given by the vector σ(vi(t)) where

σ(v) = D(v − ve)

for some constant state ve, telling us that the “noise intensity” depends (in a simple way) on
the localization of the velocity.
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Another idea is to consider that the “infinitesimal” communication rate is perturbed by some
noise. This leads to the following model

dvi(t) = − λ

N

N∑
j=1

(vi(t)− vj(t)) (ψij(t) dt + σij(t) dwi,j(t)) , (2.1.7)

where the wij are again one dimensional noises.
This is done in [14] with wi,j = w for all i, j and with a constant σi,j = σ, i.e. for some new
constant σ̄,

dvi(t) = − λ

N

N∑
j=1

ψij(t) (vi(t)− vj(t)) dt + σ̄ (vi(t)− v̄(t)) dw(t) . (2.1.8)

Actually the authors replaced the Ito differential by a Stratonovitch differential. This choice is
not really natural since it introduces some repulsive modification on the drift due to the Ito-
Stratonovitch correction.
In the recent [6] the authors consider instead N independent one dimensional Brownian noises
wi and the following system

dvi(t) = − λ

N

N∑
j=1

ψij(t) (vi(t)− vj(t)) dt + σi
N

N∑
j=1

ψij(t) (vi(t)− vj(t)) dwi(t) , (2.1.9)

for constant σi. Actually these authors also introduce some delay in the coefficients. A similar
model to (2.1.9) is also discussed in [13].

One immediately sees an important difference in nature between all these models. In (2.1.8)
or (2.1.9), the dynamics vi(t) = vi(0) = v̄(0) for all i is still a solution, hence as for the
deterministic system we have some “dynamical” equilibrium. Similarly, if we assume vi(0) = ve

for all i, vi(t) = ve furnishes again some dynamical equilibrium for (2.1.6). In the general case
of (2.1.5) such a trivial solution does no more exist. This shows that the asymptotic behavior
of these stochastic systems may be (and actually is) very different.

The second point is to understand what kind of asymptotic flocking is expected. Indeed since
the solutions are random processes, one can look at various behaviors: almost sure behavior,
moments behavior, distribution behavior. We will thus introduce three different notions of
stochastic flocking

Definition 2.1.10. Let (xi(t), vi(t))i=1,...,N be a Rd ⊗ Rd valued stochastic process such that
dxi(t) = vi(t) dt for all i = 1, ..., N . Denote by v̄ and x̄ the centers of masses defined in (2.1.3).
We shall say that:

1) The system is almost surely flocking if (2.1.4) holds almost surely.

2) The system is flocking in Lp,q (p, q > 1) if for all i,

E(|vi(t)− v̄(t)|p) → 0 as t→ +∞
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and
sup
t>0

E(|xi(t)− x̄(t)|q) < +∞ .

Actually we will only look at the cases (p, q) = (1, 1), (2, 1), (2, 2). When q = 1 we simply
write Lp flocking.

3) The system is weakly flocking with rate ε(R) if for all R > 0 and all i,

lim sup
t→+∞

P(|vi(t)− v̄(t)| > R) 6 ε(R) .

Remark 2.1.11. Of course quick enough convergence to 0 for the “centered” velocities is enough
to ensure boundedness for the “centered” positions.
For instance,

E(sup
t>0
|xi(t)− x̄(t)|) 6 E(|xi(0)− x̄(0)|) +

∫ +∞

0
E(|vi(s)− v̄(s)|) ds < +∞ .

Similarly if for some function η,

∫ +∞

0
E(|vi(t)− v̄(t)|2) η(t) dt < +∞

we have

E(sup
t>0
|xi(t)− x̄(t)|2) 6 2E(|xi(0)− x̄(0)|2) + 2E

[(∫ +∞

0
|vi(s)− v̄(s)| ds

)2]
6 2E(|xi(0)− x̄(0)|2) +

+ 2
(∫ +∞

0
E(|vi(s)− v̄(s)|2) η(s) ds

)(∫ +∞

0
η−1(s) ds

)

so that if in addition
∫ +∞

0
η−1(s) ds < +∞, E(sup

t>0
|xi(t)− x̄(t)|2) < +∞ too. ♦

Results in [1] concern almost sure flocking, results in [14] concern L2 flocking and those in
[12] concern weak flocking.
Another very weak form of stochastic flocking is sometimes discussed: mean-flocking, i.e.

lim
t→+∞

|E(vi(t)− v̄(t))| = 0 and sup
t>0
|E(xi(t)− x̄(t))| < +∞ . (2.1.12)

Actually it is this type of flocking which is studied in [7, 6]. We confess that we are not really
convinced that this kind of property really describes some “collective” behavior, though (2.1.12)
can be seen at a first glance as the immediate generalization of deterministic flocking.

In all cases the same strategy of study is used: first look at the motion of the center of mass
v̄(t) (the macroscopic level), then look at the fluctuations v̂i(t) = vi(t) − v̄(t) (the microscopic
level). As in all the previous works we shall assume in the whole paper that

for all i, j , ψij = ψji . (2.1.13)
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Under this assumption,
N∑
i=1

N∑
j=1

ψij(t) (vi(t)− vj(t)) = 0

so that the motion of v̄(t) is only driven by the noise.

In order to understand the difference in nature of all these models we shall first look at the
simplest case i.e. with a constant communication rate and a constant diffusion coefficient. This
is done in the next section 2.2. In the following section we introduce the notion of swarming and
look at its connection with flocking, as it is the case in the deterministic situation. In the two
following sections, we still look at constant communication rates but with more general diffusion
coefficients for (2.1.6) and (2.1.7). This will be the opportunity to introduce the methods that
will be mainly used in the general case. In addition, as we shall see in section 2.6, many results
for a non constant communication rate can be deduced from the ones obtained in the constant
case. Up to section 2.6 what is obtained is “unconditional” flocking, that is, without restriction
on the initial condition.
Section 2.6 studies the case of non constant communication rate for the latter two models (2.1.6)
and (2.1.7). Actually if the communication rate is bounded from below, one can reduce the study
to the one with constant communication rate. If it is not bounded from below, we prove some
“conditional” flocking results, that is we extend for the first time the corresponding deterministic
results to the stochastic situation. The final section deals with comments and simulations.

In order to keep the paper into a reasonable size, we will not discuss here other models of
Cucker-Smale type, introducing a mean field term depending on the positions too, or a local
mean field dependence as in [11]. This will be the aim of future work(s). However, some aspects
are already contained in [12] for the model (2.1.5).

For the sake of simplicity we will assume throughout the paper that the initial conditions
(v(0), x(0)) are deterministic. All the results can be extended to random initial conditions such
that v(0) − v̄(0) and x(0) − x̄(0) are almost surely bounded. We shall also denote by |y| the
euclidean norm of a vector y ∈ Rm whatever m is.

2.2 Constant communication rate. A new visit of the existing
models.

In this section we assume that, for all t,

ψij(t) = ψji(t) = ψ > 0 . (2.2.1)

Notice that in this situation, under mild assumptions on the diffusion coefficients (ensuring that
the stochastic integral is a true martingale) the expectations (E(vi(t)),E(xi(t))) satisfy (2.1.1)
with a constant communication rate, so that one always has mean-flocking.

First we will revisit (and extend) the known results we recalled in the introduction, hence
we assume that

(H1) in (2.1.5) we consider σi(t) =
√
D Idd,
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(H2) in (2.1.6) as in [1] we consider σi(t) = D (vi(t) − ve) , but here we assume that w is a
d-dimensional process w = (w1, ..., wd) such that each wk is a standard linear Brownian
motion (we do not make any assumption on the correlations),

(H3) in (2.1.8) the same assumption for w is made as in (H2),

(H4) in (2.1.9) the same assumption is made for each wi = (w1
i , ..., w

d
i ) (the wi’s being indepen-

dent) and in addition σi = σ for all i.

We will prove the following

Theorem 2.2.2. Consider the previous models assuming (2.2.1). Then,

1. If (H1) is satisfied, the system (2.1.5) is weakly flocking with a rate ε(R) given by some
χ2 tail.

2. If (H2) is satisfied, the system (2.1.6) is always almost surely flocking and L1 flocking, but
is L2 flocking if and only if 2λψ > D2 (or vi(0) = v̄(0) for all i). In this case it is also L2,2

flocking.
In addition v̄(t) goes almost surely to ve as t goes to infinity and x̄(t)− tve is almost surely
bounded.

3. If (H3) is satisfied, the system (2.1.8) is always almost surely flocking and L1 flocking, but
is L2 flocking if and only if 2λψ > σ̄2 (or vi(0) = v̄(0) for all i). In this case it is also L2,2

flocking.
In addition v̄ is constant hence x̄(t) is linear in t.

4. Assume that the system (2.1.9) is not at equilibrium i.e. does not satisfy vi(0) = v̄(0) for
all i. If (H4) is satisfied for (2.1.9), we have the following situation: define

α = (1− 1/N)(σψ)2 − 2λψ ,

then

(a) if α < 0 the system is almost surely and L2,2 flocking. In addition the center of mass
v̄(t) converges almost surely and in L1 to some given random variable, while x̄(t) has
some asymptotic linear behavior.

(b) If 0 6 α the system is not L2 flocking, moreover when α > 0, the L2 norm of all the
v̂i(t) are going to infinity,

(c) if 2(σ ψ)2

N
> α > 0 the system is almost surely flocking (but not L2). This condition

implies N 6 2, which is not really interesting.

Remark 2.2.3. The previous Theorem clearly shows the importance of defining the type of
stochastic flocking one wants to get, since on the same elementary model one can have one
flocking property and not another one. It also seems that L2 flocking is more demanding. ♦
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Proof. In the first three cases one can find an explicit solution for the involved stochastic differ-
ential equations using that

1
N

N∑
j=1

(vi − vj) = vi − v̄ .

Let start with (2.1.8) assuming (H3). It can be rewritten for all i = 1, ..., N and all k =
1, ..., d,

dvki (t) = −λψ (vki (t)− v̄k(t)) dt + σ̄ (vki (t)− v̄k(t)) dwk(t) . (2.2.4)

In particular dv̄k(t) = 0 so that v̄k(t) = v̄k(0) = vke and (2.2.4) becomes a particular case of
(2.1.6) with ve = v̄(0). This yields the following explicit solution

vki (t) = v̄k(0) + (vki (0)− v̄k(0)) eσ̄ wkt − ( 1
2 σ̄

2+λψ) t . (2.2.5)

Since
wkt
t
→ 0 almost surely as t→ +∞,

there is almost sure convergence to the constant center of mass for the velocities. But if B. is a
linear standard Brownian motion,

∫ +∞

0
eaBt−bt dt is almost surely bounded for any a ∈ R and b > 0 (2.2.6)

thanks to the previous remark on the asymptotic behavior of Bt/t. Thus we have shown almost
sure flocking for the model (2.2.4). Notice that the center of mass of the positions is here simply
given by x̄(t) = x̄(0) + tv̄(0).

In addition, on one hand

E(|vki (t)− v̄ki (t)|) = |vki (0)− v̄k(0)|E(eσ̄ wkt −
1
2 σ̄

2 t) e−2λψ t

= |vki (0)− v̄k(0)| e−2λψ t

while

E((vki (t)− v̄ki (t))2) = (vki (0)− v̄k(0))2 E(e2σ̄ wkt − (σ̄2+2λψ) t)

= (vki (0)− v̄k(0))2 e(−2λψ+σ̄2)t E(e2σ̄ wkt − 2σ̄2 t)

= (vki (0)− v̄k(0))2 e(−2λψ+σ̄2)t .

Hence if −2λψ + σ̄2 > 0 there is no L2 flocking. For the positions we may use the Remark
(2.1.11) to get L1 flocking. For L2,2 flocking, assuming −2λψ + σ̄2 < 0, since

eθt E(|v̂ki (t)|2)→ 0 as t→ +∞

for some θ > 0, we also have,

∫ +∞

0
eθt/2 E(|v̂ki (t)|2) dt < +∞ ,
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so that we are again in the situation of the remark.

Remark 2.2.7. This result differs from [14] since almost sure flocking occurs in all cases while
small noise is required in [14] (that actually does not really study almost sure flocking). This
is only due to the fact that, as we said before, the Ito-Stratonovitch correction introduces some
repulsive part in the drift in [14]. ♦

(2.1.6) assuming (H2) is thus a little bit more general if v̄(0) 6= ve. In this case

v̄k(t) = vke + (v̄k(0)− vke ) eDwkt −
D2 t

2 (2.2.8)

converges almost surely to vke , and at the microscopic level v̂ki (t) = vki (t)− v̄k(t) satisfies

dv̂ki (t) = −λψ v̂ki (t) dt + D v̂ki (t) dwk(t)

so that
v̂ki (t) = v̂ki (0) eDwkt − ( 1

2 D
2+λψ) t

and we get almost sure flocking as before. This time the center of mass v̄(t) goes almost surely
to ve as t goes to infinity and x̄(t)− t ve is almost surely bounded.

The key point here is that, summing up the equations over i, we obtain an autonomous
S.D.E. for the motion of v̄.

Actually the same occurs under (H1) in (2.1.5). Thanks to the independence of the wi’s, v̄ is
simply a Brownian motion with covariance matrix D

N
Idd. We can then get an explicit solution

for the motion of v̂ which becomes some degenerate dN -dimensional Ornstein-Uhlenbeck process
(see [12] section 1),

dv̂i(t) = −λv̂i(t) dt +
√
D

(
1− 1

N

)
dwi(t) −

√
D

N

∑
j 6=i

dwj(t) , (2.2.9)

degenerate means that since
∑
i

v̂i = 0 the process is an O-U process on this subspace. It is then

easy to show that v̂ is ergodic with a (degenerate but explicit) gaussian invariant distribution so
that it is weakly flocking with a rate ε(R) corresponding to some χ2 tail. However using a Central
Limit Theorem one can see that x̂(t) behaves like

√
t times a gaussian vector (in distribution)

so that the Probability for x̂(t) to belong to some bounded set goes to 0 as t → +∞ for all
bounded sets, that is, weak flocking really only concerns the velocities. We refer to [12] for the
details and the explicit computations.

Finally let us look at (2.1.9) assuming (H4). We first get

dv̄(t) = σ ψ

N

(
N∑
i=1

vi(t) dwi(t) − v̄(t)
N∑
i=1

dwi(t)
)

(2.2.10)
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and then

dv̂ki (t) = −λψ v̂ki (t) dt + σ ψ

(
1− 1

N

)
v̂ki (t) dwi(t) −

σ ψ

N

∑
j 6=i

v̂kj (t) dwj(t) . (2.2.11)

Of course since the coefficients are global Lipschitz, (2.2.11) admits a unique strong solution.
Thus using Ito’s formula we get,

zk(t) :=
N∑
i=1

(v̂ki )2(t) = zk(0) − 2λψ
∫ t

0
zk(s) ds + 2σψ

N∑
i=1

(∫ t

0
(v̂ki )2(s) dwi(s)

)

− 2σψ
N

N∑
i,j=1

(∫ t

0
(v̂ki v̂kj )(s) dwj(s)

)
+ (σψ)2

(
1− 1

N

)2 ∫ t

0
zk(s) ds

+ (σψ)2

N2

N∑
i6=j=1

∫ t

0
(v̂kj )2(s) ds (2.2.12)

= zk(0) +
(
−2λψ + (σψ)2

(
1− 1

N

)) ∫ t

0
zk(s) ds

+ 2σψ
N∑
i=1

(∫ t

0
(v̂ki )2(s) dwi(s)

)
,

since
∑
j

v̂kj (s) = 0.

It follows

uk(t) := E(zk(t)) = uk(0) +
(
−2λψ + (σψ)2

(
1− 1

N

)) ∫ t

0
uk(s) ds . (2.2.13)

A rigorous proof of (2.2.13) is straightforward: it is enough to stop the process at the exit time
of open balls of radius R (to be sure that the stochastic integrals are true martingales), to take
the expectation and then to use the monotone convergence theorem for letting R go to infinity.
(2.2.13) is exactly solved by

uk(t) = uk(0) eαt where α = (1− 1/N)(σψ)2 − 2λψ . (2.2.14)

We thus have to distinguish three cases: when α > 0 uk(t) grows to infinity and there is no L2

flocking, when α < 0 we may have L2 flocking, when α = 0 there is no L2 flocking.

We can be more precise. First we have (with an obvious new notation)

uki (t) = uki (0) +
(
−2λψ + (σψ)2

(
1− 1

N

)2
) ∫ t

0
uki (s) ds + (σψ)2

N2

∑
j 6=i

∫ t

0
ukj (s) ds

= uki (0) +
(
−2λψ + (σψ)2

(
1− 2

N

)) ∫ t

0
uki (s) ds + (σψ)2

N2

∫ t

0
uk(s) ds

= uki (0) +
(
α− (σψ)2

N

) ∫ t

0
uki (s) ds + (σψ)2 uk(0)

αN2 (eαt − 1) ,

so that it is easily seen (by contradiction for instance) that when α > 0, uki (.) cannot be bounded
by some C eβt for β < α. Hence all the uki (t) are growing to infinity at an exponential rate.

Of course for α < 0, E((v̂ki )2(s))) decays exponentially fast; hence we get L2,2 flocking as
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before.

Notice in this case that

E(|v̄k(t)− v̄k(0)|2) = (σψ)2

N2

∫ t

0
uk(s) ds = (σψ)2

N2
uk(0)
|α|

(1− eαt)

is bounded. According to (2.2.10), (v̄k(t) − v̄k(0))t>0 is thus a martingale which is bounded in
L2. According to Doob’s convergence of martingale theorem we know that there exists a random
variable ak such that

(v̄k(t)− v̄k(0))→ ak a.s. as t→ +∞ .

Since the convergence also holds in L1 we get in addition that x̄(t)− x̄(0)−t(v̄(0)+a) is bounded
in L1.

What can be said about the almost sure behavior ? Using Ito formula we get that for all
t < T0, where T0 is the hitting time of 0 for zk(.) (notice that for t > T0 one has zkt = 0 almost
surely),

ln(zkt ) = ln(zk(0)) + αt+ 2σψ
N∑
i=1

∫ t

0

(v̂ki )2(s)
zks

dwi(s)− 2(σ ψ)2
N∑
i=1

∫ t

0

(v̂ki )4(s)
(zks )2 ds . (2.2.15)

Since
∑
i

β4
i 6 (

∑
i

β2
i )2, the martingale term

Mk(t) =
N∑
i=1

∫ t

0

(v̂ki )2(s)
zks

dwi(s)

whose bracket is given by

〈Mk〉(t) =
∫ t

0

(
∑N
i=1 v̂

k
i )4(s)

(
∑N
i=1(v̂ki )2(s))2

ds 6 t

satisfies the two following properties

1. t−1/2Mk
t is bounded in L2 for t ∈ [1,+∞[,

2. t−1Mk
t → 0 almost surely as t→ +∞.

The second point is the standard law of large numbers for martingales.

Using in addition that
N∑
i=1

β4
i >

1
N

(
N∑
i=1

β2
i )2, we immediately deduce that zk(t) converges

almost surely to 0, hence that we have almost sure flocking, as soon as α <
2(σ ψ)2

N
and that

zk(t) goes to infinity (hence no almost sure flocking) if α > 2(σ ψ)2. But the latter cannot occur
due to the value of α.

2.3 Some general properties.

In this section we introduce some general properties (holding true for any of the model we are
considering) that we will use in the sequel.
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We start with some simple algebraic remarks:

∑
16i,j6N

|vi − vj |2 = 2
∑

16i,j6N
〈vi, vi − vj〉 = 2N

N∑
i=1
|vi|2 − 2N2|v̄|2 = 2N

N∑
i=1
|vi − v̄|2 , (2.3.1)

∑
16i,j6N

|vi − vj |2 =
∑

16i,j6N
|v̂i − v̂j |2 = 2N

N∑
i=1
|v̂i|2 . (2.3.2)

and similarly, if ψij = ψji,

∑
16i,j6N

ψij〈vi, vi − vj〉 = 1
2

∑
16i,j6N

ψij |vi − vj |2 , (2.3.3)

and more generally

∑
16i,j6N

ψij〈ui, vi − vj〉 = 1
2

∑
16i,j6N

ψij〈ui − uj , vi − vj〉 . (2.3.4)

The final (2.3.4) will allow us, to control in some cases, flocking by a weaker notion called
swarming we will define now.

Definition 2.3.5. Let (xi(t), vi(t))i=1,...,N be a Rd⊗Rd valued stochastic process such that dxi(t) =
vi(t) dt for all i = 1, ..., N . Denote by v̄ and x̄ the centers of masses defined in (2.1.3). We shall
say that:

1) The system is almost surely (resp. Lp) weakly swarming if

for all i, sup
t>0
|vi(t)− v̄(t)| < +∞ almost surely (2.3.6)

respectively
for all i, sup

t>0
E(|vi(t)− v̄(t)|p) < +∞ . (2.3.7)

2) The system is almost surely (resp. Lp, resp. Lp,q ) strongly swarming if in addition, for
all i,

sup
t>0
|xi(t)− x̄(t)| < +∞

almost surely, respectively

sup
t>0

E(|xi(t)− x̄(t)|) < +∞ ,

respectively
sup
t>0

E(|xi(t)− x̄(t)|q) < +∞ .

When E(sup
t>0
|xi(t)− x̄(t)|q) < +∞ we shall say that the swarming property is uniform (in time).

In some situations, proving swarming is enough to get flocking. Indeed, assume that

ψij(v, x) = ψ(|xi − xj |2) and define Ψ(b) =
∫ b

0
ψ(a) da . (2.3.8)
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We thus have

Ψ(|xi(t)− xj(t)|2)−Ψ(|xi(0)− xj(0)|2) = 2
∫ t

0
ψij(s) 〈xi(s)− xj(s), vi(s)− vj(s)〉 ds .

Hence, denoting xij = xi − xj and vij = vi − vj ;

〈xij(t), vij(t)〉 = 〈xij(0), vij(0)〉 − λ

N

∫ t

0

N∑
l=1

ψil(s) 〈xij(s), vil(s)〉 ds

+ λ

N

∫ t

0

N∑
l=1

ψjl(s) 〈xij(s), vjl(s)〉 ds +
∫ t

0
|vi(s)− vj(s)|2ds+Mij(t)

where Mij(.) is a local martingale term. Let sum up in i, j. The following term appears

A = −
∑
i,j,l

ψil〈xi − xj , vi − vl〉+
∑
i,j,l

ψjl〈xi − xj , vj − vl〉 .

Let us calculate A, first exchanging the role of i and j in the second term,

A = − 2
∑
i,j,l

ψil〈xi − xj , vi − vl〉

= − 2N
∑
i,l

ψil〈xi, vi − vl〉 + 2
∑
j

〈
xj ,
∑
i,l

ψil (vi − vl)
〉

= − 2N
∑
i,l

ψil〈xi, vi − vl〉 = −N
∑
i,l

ψil〈xi − xl, vi − vl〉

thanks to (2.3.4) and since
∑
i,l

ψil (vi − vl) = 0.

As usual using some exhausting sequence of stopping times (if it exists) we may integrate up to
these random times, for which we get true martingales, take the expectation and then pass to
the limit. So we may assume that we have true martingales if we can check that the brackets of
the Mij have finite expectation. We shall come back to this point later.
Hence we sum up over all indices and take the expectation, in order to get

N∑
i,j=1

E(〈xij(t), vij(t)〉) =
N∑

i,j=1
E(〈xij(0), vij(0)〉) +

∫ t

0
E(

N∑
i,j=1

|vi(s)− vj(s)|2) ds

+λ

∫ t

0

N∑
i,j=1

E(ψij(s) 〈xi(s)− xj(s), vi(s)− vj(s)〉) ds
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and finally

∫ t

0
E(

N∑
i,j=1

|vi(s)− vj(s)|2) ds =
N∑

i,j=1
(E(〈xij(t), vij(t)〉 − 〈xij(0), vij(0)〉)) (2.3.9)

− λ2

N∑
i,j=1

E(Ψ(|xi(t)− xj(t)|2)−Ψ(|xi(0)− xj(0)|2))

6 2N2 max
i,j

(
(sup
s>0

E(|xi(s)− xj(s)|2))
1
2 (sup

s>0
E(|vi(s)− vj(s)|2))

1
2

)

− λ2

N∑
i,j=1

E(Ψ(|xi(t)− xj(t)|2)−Ψ(|xi(0)− xj(0)|2)) .

We shall thus use the following elementary Lemma

Lemma 2.3.10. Let h : R→ R+ be a C1 function with a bounded derivative.
If
∫ +∞

0
h(s) ds < +∞, then h(t)→ 0 as t→ +∞.

We can thus easily deduce that L2,2 swarming implies L2,2 flocking, as soon as Ψ is at most
linear, in order to control the second term in the previous sum. Let us state a general result
that will be completed in the situations we are looking at later

Lemma 2.3.11. Consider any of our models. Assume that (2.3.8) is fulfilled for some bounded
function ψ. Assume in addition that,

(1) a unique solution (v(.), x(.)) exists and is such that for all i, j, 〈vi(.)−vj(.), xi(.)−xj(.)〉
is a L2 semi martingale,

(2) for all i, j, s 7→ E(|vi(s) − vj(s)|2) is well defined and differentiable with a bounded
derivative,

(3) the system is L2,2 strongly swarming.

Then the system is L2,2 flocking.

We shall check the required assumptions for each model.

2.4 Relaxing (H2) in (2.1.6) for constant communication rates.

In this section we shall study the model (2.1.6), still assuming that (2.2.1) is satisfied, but
relaxing the assumption (H2). Namely we will consider the following general model

dvi(t) = − λψ
N

N∑
j=1

(vi(t)− vj(t)) dt + σ(vi(t), xi(t)) dw(t) , (2.4.1)

where w is a d-dimensional Brownian motion (the same for all the particles). That is, we consider
that the dynamics of a particle is perturbed by a noisy environment depending on the position
and the velocity of this particle.

Once again the dynamics of the center of mass is given by a (at least local) martingale

dv̄(t) = 1
N

(
N∑
i=1

σ(vi(t), xi(t))
)
dw(t) := s(v(t), x(t)) dw(t) . (2.4.2)

104



It follows

dv̂ki (t) = −λψ v̂ki (t) dt+
d∑
l=1

θk,li (v(t), x(t)) dwl(t)

where

θk,li (v, x) = σk,l(vi, xi)− sk,l(v, x) = 1
N

N∑
j=1

(σk,l(vi, xi)− σk,l(vj , xj)) .

Of course we will assume enough regularity on σ for (2.4.1) to admit a unique solution. Notice
that if

vi(0) = v0 and xi(0) = x0 for all i,

then the unique solution of (2.4.1) is given by a dynamic equilibrium vi(t) = v̄(t) and xi(t) = x̄(t)
for all i, where (v̄, x̄) solves

dv̄(t) = σ(v̄(t), x̄(t)) dw(t)

dx̄(t) = v̄(t) dt .

There is however a difference with the deterministic model (or the model assuming (H2)): this
time one has in general to fix the initial positions to get some equilibrium.

As we did in the first section we define

zk(t) :=
N∑
i=1

(v̂ki )2(t) = zk(0) − 2λψ
∫ t

0
zk(s) ds + 2

N∑
i=1

d∑
l=1

∫ t

0
v̂ki (s) θk,li (v(s), x(s)) dwl(s)

+
∫ t

0

(
N∑
i=1

d∑
l=1

(θk,li )2(v(s), x(s))
)
ds , (2.4.3)

so that

z(t) :=
d∑

k=1
zk(t) = z(0) − 2λψ

∫ t

0
z(s) ds + 2

N∑
i=1

d∑
l=1

∫ t

0

(
d∑

k=1
v̂ki (s) θk,li (v(s), x(s))

)
dwl(s)

+
∫ t

0

(
d∑

k=1

N∑
i=1

d∑
l=1

(θk,li )2(v(s), x(s))
)
ds . (2.4.4)

Hence
u(t) := E(z(t)) = u(0) − 2λψ

∫ t

0
u(s) ds +

∫ t

0
U(v(s), x(s)) ds

where

U(v(s), x(s)) =
d∑

k=1

N∑
i=1

d∑
l=1

E
[
(θk,li )2(v(s), x(s))

]
. (2.4.5)
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Finally, at least formally (and rigorously up to the first time z(.) hits 0)

ln z(t) = ln z(0) + 2
N∑
i=1

d∑
l=1

∫ t

0

(
d∑

k=1

v̂ki (s) θk,li (v(s), x(s))
z(s)

)
dwl(s) − 2λψ t

+
∫ t

0

(
N∑
i=1

d∑
l=1

d∑
k=1

(θk,li )2(v(s), x(s))
z(s)

)
ds (2.4.6)

− 2
∫ t

0

d∑
l=1


[∑N

i=1
∑d
k=1 v̂

k
i (s) θk,li (s)

]2
(z(s))2

 ds .

2.4.1 A first natural generalization of (H2).

Introduce the following assumption
(H2-1) σ only depends on v and is Lipschitz continuous, i.e. there exists K such that for

all k, l, all (v, v′) ,
|σk,l(v)− σk,l(v′)| 6 K |v − v′| .

In this situation we have

|θk,li (v, x)| 6
1
N

∑
j 6=i
|σk,l(vi)− σk,l(v̄) + σk,l(v̄)− σk,l(vj)|

6
N − 1
N

|σk,l(vi)− σk,l(v̄)|+ 1
N

∑
j 6=i
|σk,l(vj)− σk,l(v̄)|

6 K |v̂i|+
K

N

N∑
j=1
|v̂j | .

Hence
N∑
i=1
|θk,li (v, x)|2 6 K2

 N∑
i=1
|v̂i|2 + 3

N

 N∑
j=1
|v̂j |

2
 6 4K2

N∑
i=1
|v̂i|2

and finally
d∑

k=1

N∑
i=1

d∑
l=1

(θk,li )2(v(t), x(t)) 6 4d2K2 z(t) . (2.4.7)

Of course if σ is diagonal, we may replace d2 by d, and if in addition σk,k only depends on vk

we may replace d by 1 (as for (H2)).
Similarly, using Cauchy-Schwartz inequality it is easily seen that

[∑N
i=1

∑d
k=1 v̂

k
i (t) θk,li (t)

]2
(z(t))2


is uniformly bounded above.
We may thus use the same arguments as for the end of the previous proof of Theorem 2.2.2,
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except that we do no more have any better lower bound for
[∑N

i=1
∑d
k=1 v̂

k
i (t) θk,li (t)

]2
(z(t))2


than 0. We have thus obtained

Theorem 2.4.8. Assume that (H2-1) is satisfied in (2.4.1). Then if 2λψ > 4K2d2, the system
(2.4.1) is almost surely and L2,2 flocking.
However, contrary to what happens when (H2) is satisfied, the center of mass v̄(t) does not
necessarily converge as t→ +∞.

Let us look at a very particular case: the case when σ is diagonal and σk,k(v) = σk,k(vk).
We can thus rewrite (2.4.1)

dvki (t) = − λψ
N

N∑
j=1

(vki (t)− vkj (t)) dt + σk,k(vki (t)) dwk(t) , (2.4.9)

i.e. we can look at the system independently for each coordinate k, or if one prefers, reduce the
problem to the case of one dimensional particles i.e. d = 1. In the sequel we thus suppress the
superscript k.
The first elementary remark is that, if vi(0) = vj(0) for some pair i 6= j, the uniqueness of
the solution shows that vi(t) = vj(t) for all t. Using the Markov property, the same holds for
t > T for any stopping time T such that vi(T ) = vj(T ). Reordering the indices if necessary we
may assume that v1(0) 6 v2(0) 6 ... 6 vN (0) so that the dynamics preserves the order of the
velocities of the particles. The best quantity to look at is thus D1N (t) = vN (t) − v1(t) instead
of z(t), since D1N > v̂i for all i. The dynamics of D1N is given by

dD1N (t) = −λψD1N (t) dt+ (σ(vN (t))− σ(v1(t))) dw(t) .

Since D1N is non negative we have

lnD1N (t) = lnD1N (0)−λψ t−
∫ t

0

(σ(vN (s))− σ(v1(s)))2

2D2
1,N (s)

ds+
∫ t

0

(σ(vN (s))− σ(v1(s)))
D1N (s) dw(s) ,

and

D2
1N (t) = D2

1N (0)−
∫ t

0
(2λψD2

1N (s) − (σ(vN (s))− σ(v1(s)))2) ds

+
∫ t

0
2D1N (s) (σ(vN (s))− σ(v1(s))) dw(s) .

Using the same arguments as before we thus have

Theorem 2.4.10. Assume that (H2-1) is satisfied in (2.4.9). Then the system (2.4.9) is always
almost surely flocking. If in addition 2λψ > K2, then it is also L2,2 flocking.
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2.4.2 More general environments.

One may ask about the physical meaning of a random environment acting on the velocities only.
It can be the case for some aerodynamical perturbations for instance. But of course, it is more
natural (or at least as natural) to add some random perturbation that depends on the position
(and possibly the velocity too) of each particle. We shall now discuss briefly this situation.

Assume for instance that all σk,l are bounded, say by M . We thus have

E(zt) := u(t) 6 u(0)− 2λψ
∫ t

0
u(s) ds + 4M2N d2 t , (2.4.11)

so that
lim sup
t→+∞

u(t) 6
2M2Nd2

λψ
. (2.4.12)

In particular u(.) is bounded on R+. Hence if all the σ’s are bounded in (2.4.1), the system is L2

weakly swarming, while in general it is hard to say anything about strong swarming. Concerning
this last point let us look at some particular case, namely

(H2-2) σ(v, x) = σ(x) is C1 with partial derivatives bounded by K (but the σk,l are not
necessarily bounded themselves).

As for (2.4.9) we may look at each coordinate k individually, i.e. consider a system of Nd
1-dimensional particles governed by

dvki (t) = − λψ
N

N∑
j=1

(vki (t)− vkj (t)) dt +
d∑
l=1

σk,l(xi(t)) dwl(t) . (2.4.13)

Contrary to the situation of Theorem 2.4.10, in general the order of the velocities vki is not
preserved by the dynamics, and the only trivial equilibrium is given by vi(t) = v̄(0) and xi(t) =
x̄(0) + tv̄(0) for all t.
We shall nevertheless look at

vki,j(t) = vki (t)− vkj (t) and xi,j(t) = xi(t)− xj(t)

which solves

dvki,j(t) = −λψ vki,j(t) dt+
d∑
l=1

σk,li,j (t) dwlt

where σk,li,j (t) = σk,l(xi(t)) − σk,l(xj(t)). We already know that, if σ is bounded, the system is
L2 weakly swarming. Here we assume that

sup
t>0

E(|xi(t)− xj(t)|2) 6M2
i,j < +∞. (2.4.14)

Of course when σ is bounded (2.4.14) implies that the system is L2 strongly swarming. We shall
first show that it is still the case when (H2-2) is satisfied.
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Let us make some computations: first if TR denotes the first time |vi,j |(.) exceeds R, we have

E((vki,j)2(t ∧ TR)) = E((vki,j)2(0))− 2λψ E
(∫ t∧TR

0
(vki,j)2(s) ds

)
+ E

(∫ t∧TR

0

d∑
l=1

(σk,li,j )2(s) ds
)

6 E((vki,j)2(0)) + dK2M2
i,j t

so that uki,j(t) = E((vki,j)2(t)) is well defined and satisfies

E((vki,j)2(t)) := uki,j(t) 6 uki,j(0)− 2λψ
∫ t

0
uki,j(s) ds+ dK2M2

i,j t

and finally

lim sup
t→+∞

uki,j(t) 6
dK2M2

i,j

2λψ . (2.4.15)

It follows that
sup
t>0

E((vki,j)2(t)) 6 N2
i,j < +∞ .

Using what precedes we also see that s 7→ E((vki,j)2(s)) is differentiable with

d

ds
E((vki,j)2(s)) = − 2λψ E((vki,j)2(s)) + E(

d∑
l=1

(σk,li,j )2(s))

which is bounded below by − 2λψN2
i,j and bounded above by dM2

i,jK
2. Hence we may use

Lemma 2.3.11 in order to get

Lemma 2.4.16. Consider the system (2.4.1) under the assumption (H2-2). If for all pair (i, j),

sup
t>0

E(|xi(t)− xj(t)|2) 6M < +∞

then the system (2.4.1) is L2,2 flocking.

But we can go further. Indeed, in the situation of the previous lemma, we first of all have

E((vki,j)2(0)) +
∫ +∞

0
E(

d∑
l=1

(σk,li,j )2(s)) ds = 2λψ
∫ +∞

0
E((vki,j)2(s)) ds < +∞ . (2.4.17)

On one hand, using lemma 2.3.10 again (it is easily seen that the assumptions are satisfied) we
thus obtain

lim
t→+∞

E((σk,li,j )2(t)) = lim
t→+∞

E((σk,l(xi(t))− σk,l(xj(t)))2) = 0 . (2.4.18)

On the other hand, as before the martingale mk
i,j(t) =

d∑
l=1

∫ t

0
σk,li,j (s) dwl(s) converges (as t →

+∞) almost surely and in L2 to a random variable mk
i,j such that

E[mk
i,j |Fk(t)] = mk

i,j(t) ,
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Fk(.) being the filtration of the Brownian motion w(.). Notice that

mk
i,j(t) = (λψ xki,j(t) + vki,j(t))− (λψ xki,j(0) + vki,j(0)) . (2.4.19)

We deduce that xki (t)− xkj (t) converges in Probability as t→ +∞ to

1
λψ

mk
i,j + ((xki (0)− xkj (0)) + 1

λψ
(vki (0)− vkj (0)))

(since vki,j(t) goes to 0 in L2 hence in Probability). In addition

lim
t→+∞

E((xki,j)2(t)) = E((xki,j(0) + 1
λψ

vki,j(0))2) + 1
(λψ)2 E((mk

i,j)2) . (2.4.20)

It follows that the above convergence in Probability also holds in Lp for all p < 2.
Hence

Proposition 2.4.21. Consider the system (2.4.1) under the assumption (H2-2). If for all pair
(i, j),

sup
t>0

E(|xi(t)− xj(t)|2) 6M < +∞

then the system (2.4.1) satisfies the following

(1) it is L2,2 flocking,

(2) there exists some random vector x̂(∞) such that x̂(t) converges in Lp (p < 2) towards
x̂(∞) as t→ +∞.

Remark 2.4.22. Notice that if lim
t→+∞

E((xki,j)2(t)) = 0, then 0 = λψ xki,j(0) + vki,j(0) and

mk
i,j = 0.

If mk
i,j = 0, then mk

i,j(t) = 0 for all t > 0, so that

vki,j(t) = vki,j(0) e−λψ t ; xki,j(t) = xki,j(0) +
vki,j(0)
λψ

(1− e−λψ t) .

So
0 = λψ xki,j(0) + vki,j(0) = λψ xki,j(t) + vki,j(t) .

But, since mk
i,j(t) = 0 for all t, we also have for all l,

σk,l(xi(t)) − σk,l(xj(t)) = 0 for all t > 0 .

In particular if σk,. : Rd 7→ Rd is one to one, we get xi,j(t) = 0 for all t, hence vi,j(t) = 0 for all
t. ♦

Let us illustrate the previous remark with a simple example

Example 2.4.23. Almost affine diffusion coefficient.
Assume that for some k,

σk(x) = Ax+B
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for some constant invertible matrix A and constant vector B. Then, if (2.4.14) is satisfied for
all pair (i, j), (2.4.18) yields

lim
t→+∞

E(|xi(t)− xj(t)|2) = lim
t→+∞

E(|A−1(σk(xi(t))− σk(xj(t))|2) = 0 ,

for all pair (i, j). According to the previous remark, the system is thus at equilibrium. Hence

Proposition 2.4.24. In addition to (H2-2), if for some k, σk(x) = Ax + B for some constant
invertible matrix A and constant vector B, the system (2.4.1) cannot be strongly L2,2 swarming,
except if it is at equilibrium (all coordinates are equal).

More generally (almost) the same occurs if one of the σk (k-th row of the matrix σ), in addition to
be one to one, satisfies the following property: for a sequence (x(n), y(n)), σk(x(n))−σk(y(n))→
0 implies x(n)− y(n)→ 0.
To see it, recall that (2.4.18) implies that σk(xi(t)) − σk(xj(t)) → 0 in Probability. Hence up
to a subsequence tn we may assume that it converges almost surely, so that xi(tn)− xj(tn)→ 0
almost surely. But since xi(t)−xj(t) goes to some xi,j(∞) as t→ +∞ in Probability, we deduce
that xi,j(∞) = 0. Using Lebesgue’s bounded convergence theorem we can thus deduce

Proposition 2.4.25. In addition to (H2-2), assume that for some k, σk is one to one and satisfies
(H2-21): for a sequence (x(n), y(n)), σk(x(n))− σk(y(n))→ 0 implies x(n)− y(n)→ 0.
Then if the system (2.4.1) is uniformly L2,2 swarming (i.e. max

i,j
sup
t>0
|xi(t)− xj(t)| = M ∈ L2),

the system (2.4.1) is at equilibrium (all coordinates are equal).

The latter statement can be extended: if for instance σk(x(n))− σk(y(n))→ 0 only implies
xk(n) − yk(n) → 0, then the conclusion of the proposition is still true provided the previous
property is satisfied for all k. ♦

The previous assumptions on σ imply in a sense that it cannot be bounded. Indeed for d = 1,
a smooth one to one function from R to R which is bounded, admits a limit at infinity and thus
cannot satisfy (H2-21). The typical example of smooth bounded (and presumably interesting
from a physical point of view) function is the case of periodic functions we shall look at now.

Example 2.4.26. Periodic diffusion coefficient.
Assume now that σ is T -periodic. For x ∈ Rd we denote x̃ the unique vector in [0, T [d such that
xk − x̃k belongs to TZ for all k = 1, ..., d. By T -periodic we mean that σ(x) = σ(x̃).
We shall introduce a new “one to one” assumption:
(H2-22). The set

N = {z̃ = x̃− ỹ such that for all (k, l) , σk,l(x)− σk,l(y) } is reduced to {0} .

For instance if d = 2, the matrix

σ(x1, x2) =


sin(x1) cos(x2)

cos(x1) sin(x2)


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satisfies (H2-22) with T = 2π. The matrix

σ(x1, x2) =


sin(x1) cos(x1)

cos(x2) sin(x2)


also does, but this case reduces after an immediate change of Brownian motion, to the case of
a constant diffusion coefficient.

If the system is strongly L2,2 swarming, we can as in the previous example, find some se-
quence tn such that for all (k, l), σk,l(x̃i(tn)) − σk,l(x̃j(tn)) → 0 almost surely. According to
proposition 2.4.21, xi(t)− xj(t) goes to xi,j(∞) in probability, so that taking a subsequence of
tn if necessary (we still denote by tn), we may assume that the convergence is almost sure. It
follows that x̃i(tn)− x̃j(tn) goes almost surely to x̃i,j(∞).
Thanks to compactness, we have that for each ω for which both previous convergences hold, ex-
tracting another subsequence if necessary both x̃i(t′n, ω) and x̃j(t′n, ω) converge to limits x̃i(∞, ω)
and x̃j(∞, ω), for which, using the continuity of σ, it holds that σk,l(x̃i(∞, ω))−σk,l(x̃j(∞, ω)) =
0. If (H2-22) is satisfied, we deduce that x̃i(∞, ω)− x̃j(∞, ω) = 0, i.e x̃i,j(∞, ω) = 0 for almost
all ω. It means that xi,j(∞) is a random variable taking its values in (TZ)d.
The key point now is the following: if we add to x(0) any L2 random vector whose coordi-
nates belong to (TZ)d, we do not change the dynamics of the v(.). Hence, replacing all xi(0)
by x′i(0) = xi(0) + x1,i(∞) (for i > 1), we do not change the dynamics of the vi, we do not
change the strong swarming property, nor the uniform swarming property, and we get in the
limit x′1,i(∞) = 0, hence for all (i, j), x′i,j(∞) = 0. But now we may use remark (2.4.22),
periodicity and (H2-22) to conclude that all x′i,j(.) and all vi,j(.) are equal to 0 as soon as
lim

t→+∞
E(((x′)ki,j(t))2) = 0, which is satisfied, thanks to Lebesgue bounded convergence theo-

rem as soon as the system is uniformly L2,2 swarming. Notice that now any random vector
(v, x) = (0, x) which x taking values in (TZ)dN is an equilibrium. We thus have

Proposition 2.4.27. In addition to (H2-2), assume that σ is T periodic and satisfies (H2-22).
Then if the system (2.4.1) is uniformly L2,2 swarming (i.e. max

i,j
sup
t>0
|xi(t)− xj(t)| = M ∈ L2),

the system (2.4.1) is at equilibrium (all velocities are equal and the differences between the
positions belong to (TZ)d).

Hence in all situations we are able to handle, uniform swarming does not occur, unless the
system is at equilibrium, telling us that for a random environment depending on the positions
only, it seems difficult to swarm out of equilibrium. ♦

2.5 A general form of (2.1.7) for constant communication rates.

We have already seen that the particular form (2.1.8) of (2.1.7) with constant communication
rate is a particular case of (2.1.6). Also notice that, still for constant communication rate, when
wi,j = wi for all j, the wi being independent, and σi,j = σi ψi,j , we recognize (2.1.9). We shall
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now look at another case, namely

dvi(t) = − λψ
N

N∑
j=1

(vi(t)− vj(t)) dt + 1
N

N∑
j=1

σij(t) (vi(t)− vj(t)) dwi,j(t) , (2.5.1)

where the wij are d-dimensional noises (here vw is the vector such that each coordinate (vw)k

is given by vkwk). We shall assume that

σij = σji , wi,j = wj,i , and (wi,j)i<j are independent. (2.5.2)

The meaning of these assumptions seems a little bit more natural that for the (2.1.9) model:
each pair of individuals (i, j) are interacting symmetrically with a constant communication rate
which is perturbed by some noise (we may include ψ in the σij), all the interaction noises being
independent. Since we are speaking of constant communication rate, we shall also assume that
the σij are constant (more general situations will be discussed in the next section).

As we did before we shall look at vi,j = vi − vj which solves

dvi,j(t) = −λψ vi,j(t) dt + 1
N

N∑
l=1

σil vi,l(t) dwi,l(t) −
1
N

N∑
m=1

σjm vj,m(t) dwj,m(t) .

As before we can look separately at each coordinate (vk, xk). For the sake of simplicity, we skip
the superscript k in the sequel, or if one prefers we take d = 1.
Hence if we define z(t) =

∑
16i,j6N

(vi,j)2(t) (we skip the 2N in (2.3.1)), we have (being careful

with the indices for which the Brownian motions are independent on one hand or the same on
the other hand)

dz(t) = − 2λψ z(t) dt+ 4
N

N∑
i,j,l=1

σil vi,l(t) vi,j(t) dwi,l(t)

+ 2
N2

 N∑
i,j,l=1

σ2
ilv

2
i,l(t) +

N∑
i,j=1

σ2
ijv

2
i,j(t)

 dt (2.5.3)

= − 2λψ z(t) dt+ 4
N∑

i,l=1
σil vi,l(t) v̂i(t) dwi,l(t) + 2(N + 1)

N2

 N∑
i,j=1

σ2
ijv

2
i,j(t)

 dt .

It follows

u(t) := E(z(t)) = u(0) − 2λψ
∫ t

0
u(s) ds+ 2(N + 1)

N2

∫ t

0

 N∑
i,j=1

σ2
ijE(v2

i,j(s))

 ds ,

from which we deduce((N + 1)
N2 min

i,j
σ2
ij − λψ

)∫ t

0
u(s) ds 6 u(t)− u(0)

2 6 −
(
λψ − (N + 1)

N2 max
i,j

σ2
ij

)∫ t

0
u(s) ds .

The latter furnishes conditions for L2,2 flocking or non flocking.
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For almost sure flocking we may consider as we did before ln(z(t)) which solves

d(ln(z(t)) = − 2λψ dt+ 4
N∑

i,l=1

(σil vi,l v̂i)(t)
z(t) dwi,l(t) (2.5.4)

+2(N + 1)
N2

N∑
i,l=1

(σ2
il v

2
i,l)(t)

z(t) dt − 4
N∑

i,l=1

(σ2
il v

4
i,l)(t)

z2(t) dt .

The non constant part of the drift term can be rewritten

A(t) = 2
z2(t)

N + 1
N

 N∑
i,l=1

(σ2
il v

2
i,l)(t)

  1
N

N∑
i,l=1

(v2
i,l)(t)

 − 2
N∑

i,l=1
(σ2
il v

4
i,l)(t)



so that using again
N∑
i=1

β4
i >

1
N

(
N∑
i=1

β2
i )2 we get

A(t) 6 2
N

(
N + 1
N

max
i,j

σ2
ij − 2 min

i,j
σ2
ij

)
.

Now we may argue as in the previous section. We have thus obtained

Theorem 2.5.5. Consider the system (2.5.1), under the assumption (2.5.2) and with constant
σij . Then

(1) If λψ > N + 1
N2 max

i,j
σ2
ij the system is L2,2 flocking.

(2) If λψ < N + 1
N2 min

i,j
σ2
ij the system is not L2 flocking.

(3) If λψ − 1
N

(
N + 1
N

max
i,j

σ2
ij − 2 min

i,j
σ2
ij

)
> 0, the system is almost surely flocking. In

particular if σij = σ for all pair (i, j), the system is always almost surely flocking.

Notice that the flocking properties are still the same if we consider bounded processes σij(.)
instead of constants. Also note that we could improve the bounds for almost sure flocking by
using a more accurate comparison between

∑
σ2
il v

2
i,l and

∑
v2
i,l, but the present statement is

easier.

Remark 2.5.6. If we compare with (2.1.7) in his (2.1.8) version, the correspondence is σ̄ = σ

N
.

The comparison for flocking is thus between λψ and σ2/N2 and not with σ/N . Of course this
is simply the observation that the variance of the noise is of order 1/N2 in (2.1.8) while it is of
order 1/N here. ♦

2.6 General communication rate.

Since we are mainly interested in flocking or swarming properties, we shall only consider models
for which such properties may hold for constant communication rate. [12] contains informations
on (2.1.5) for which it is possible to show the existence of stationary solutions (using Ito-Nisio
theory for stochastic delayed equations) as well as propagation of chaos when N grows to infinity
(also see [2] for this latter point). If we consider models for random environment, we will only
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look at the case where the environment depends on the velocity only. Hence we will focus on
two type of systems.
First, noisy communication rates i.e.

dvi(t) = − λ

N

N∑
j=1

ψij(t)(vi(t)− vj(t)) dt + 1
N

N∑
j=1

σij(t) (vi(t)− vj(t)) dwi,j(t) , (2.6.1)

where the wij are d-dimensional noises (again vw is the vector such that each coordinate (vw)k

is given by vkwk), wi,j = wj,i and the (wi,j)i<j are independent Brownian motions.
Next, noisy environment

dvi(t) = − λ

N

N∑
j=1

ψij(t)(vi(t)− vj(t)) dt + σ(vi(t)) dw(t) , (2.6.2)

where w is a d-dimensional Brownian motion.

2.6.1 Study of (2.6.2).

Consider the model given by (2.6.2). We shall introduce assumptions ensuring first existence
and uniqueness.

Proposition 2.6.3. Assume that

(1) The processes ψij(t) can be written ψij(t) = ψij(v(t), x(t)), where all the functions ψij
are local Lipschitz, non-negative and satisfy ψij = ψji,

(2) σ satisfies (H2-1) i.e. is globally K-Lipschitz or σ is local Lipschitz and bounded.

Then, for all initial state (v(0), x(0)) ∈ L2 the system (2.6.2) admits a unique non-explosive
(global) strong solution.

Proof. Existence of a unique local strong solution is immediate thanks to our assumptions. The
only thing to prove is that it is global. Actually it is enough to show that v(.) does not explode
and to this end, as usual, it is enough to show that for all t > 0,

sup
R>0

E(|v(t ∧ TR)|2) < +∞

where TR denotes the first (stopping) time |v(.)| hits the value R. Defining V (.) = |v(.)|2 we
have, using Ito’s formula and (2.3.3), that for t 6 TR,

dV (t) = − λ
N

∑
16i,j6N

ψij(t)|vi(t)− vj(t)|2 dt+
N∑
i=1

Trace (σ(vi(t))σ∗(vi(t))) dt

+ 2
(

N∑
i=1

v∗i (t)σ(vi(t))
)
dw(t) ,

where a∗ denotes the transposed of the vector (or the matrix) a. When σ is K-Lipschitz,
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|σk,l(vi)| 6 K|vi|+ c for all (k, l), so that

E(|v(t ∧ TR)|2) 6 E(|v(0)|2) + C(N)
(∫ t

0
KE(|v(s ∧ TR)|2) ds+ ct

)
,

and the result follows using Gronwall’s lemma. When σ is bounded the result is immediate.

Remark 2.6.4. It is worth noticing that if vi(0) = v̄(0) for all i, the unique solution of (2.6.2)

is given by vi(t) = v̄(t), xi(t) = xi(0) +
∫ t

0
v̄(s)ds, where v̄(.) solves

dv̄(t) = σ(v̄(t)) dw(t) .

This is in full generality the only dynamic equilibrium of the system. ♦

We consider again

z(t) =
N∑
i=1
|vi(t)− v̄(t)|2 = 1

2N
∑

16i,j6N
|vi(t)− vj(t)|2 .

Using this time (2.3.1), Ito’s formula and (2.3.3), we obtain

dz(t) = − λ
N

∑
16i,j6N

ψij(t)|vi(t)− vj(t)|2 dt+
N∑
i=1

Trace (σ(vi(t))σ∗(vi(t))) dt

−N Trace

((
1
N

N∑
i=1

σ(vi(t))
)(

1
N

N∑
i=1

σ∗(vi(t))
))

dt

+ 2
(

N∑
i=1

v̂∗i (t)σ(vi(t))
)
dw(t) ,

(recall that a∗ denotes the transposed of the vector (or the matrix) a). But since
∑
i

v̂i = 0, we

may replace σ(vi) by σ(vi)−σ(v̄) in the martingale term. After simple manipulations, it follows

dz(t) = − λ
N

∑
16i,j6N

ψij(t)|vi(t)− vj(t)|2 dt (2.6.5)

+ 2
(

N∑
i=1

v̂∗i (t)(σ(vi(t))− σ(v̄(t)))
)
dw(t)

+ 1
2N Trace

 ∑
16i,j6N

(σ(vi(t))− σ(vj(t)))(σ∗(vi(t))− σ∗(vj(t)))

 dt ,
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and

d(ln z)(t) = − λ
N

∑
16i,j6N

ψij(t)
|vi(t)− vj(t)|2

z(t) dt (2.6.6)

+ 2
(

N∑
i=1

v̂∗i (t)(σ(vi(t))− σ(v̄(t)))
z(t)

)
dw(t)

+ 1
2N Trace

 ∑
16i,j6N

(σ(vi(t))− σ(vj(t)))(σ∗(vi(t))− σ∗(vj(t)))
z(t)

 dt

− 2

∣∣∣∑N
i=1 v̂

∗
i (t)(σ(vi(t))− σ(v̄(t)))

∣∣∣2
z2(t) dt .

Of course, except for the part of the drift involving the ψij ’s, these expressions are exactly the
same as in subsection 2.4.1 (in a more compact form). Hence we know how to manage each
term except this part of the drift. But of course if we define

ψmin = inf
i,j,v,x

ψi,j(v, x) and ψmax = sup
i,j,v,x

ψi,j(v, x) , (2.6.7)

we may write, on one hand

E(z(t)) 6 E(z(0))− 2λψmin
∫ t

0
E(z(s)) ds

+ 1
2N

∫ t

0
Trace

 ∑
16i,j6N

(σ(vi(s))− σ(vj(s)))(σ∗(vi(s))− σ∗(vj(s)))

 ds

and on the other hand

E(z(t)) > E(z(0))− 2λψmax
∫ t

0
E(z(s)) ds

+ 1
2N

∫ t

0
Trace

 ∑
16i,j6N

(σ(vi(s))− σ(vj(s)))(σ∗(vi(s))− σ∗(vj(s)))

 ds ,

so that we may argue exactly as in subsubsection 2.4.1 to study L2 flocking or non flocking.
Similarly, we can get an upper bound for ln(z(t)) replacing all ψij(t) by ψmin, and a lower bound
if σ is diagonal with linear diagonal terms as in (2.1.6), and argue exactly as in subsubsection
2.4.1 and theorem 2.2.2 (2) in order to study almost sure flocking. This yields the following two
results

Theorem 2.6.8. Assume that ψij(t) = ψij(v(t), x(t)) where all the functions ψij are local Lips-
chitz, non-negative and satisfy ψij = ψji, and that σ satisfies (H2-1) i.e. is globally K-Lipschitz.
Define ψmin and ψmax as in (2.6.7). Then :

(1) if 2λψmin > 4K2d2 the system (2.6.2) is almost surely and L2,2 flocking. When σ is
diagonal we may replace d2 by d, if in addition the diagonal term σk,k(v) = σk,k(vk) we
may replace d by 1.

(2) If σ is diagonal with linear entries, i.e. σk,k(v) = D(vk−vke ), the system is always almost
surely flocking provided D 6= 0.
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If 2λψmax 6 D2, the system is not L2 flocking.

For (2) just remark that, when σ is diagonal with linear entries, it holds

Trace

 ∑
16i,j6N

(σ(vi(t))− σ(vj(t)))(σ∗(vi(t))− σ∗(vj(t)))
z(t)

 −
− 2

∣∣∣∑N
i=1 v̂

∗
i (t)(σ(vi(t))− σ(v̄(t)))

∣∣∣2
z2(t) 6 −D2 ,

so that we get almost sure flocking (looking at ln(z(t)) as soon as D 6= 0.
For the L2 non-flocking property it is enough to look at the lower bound for E(z(t)) since the
second integral is explicit for this σ.

Remark 2.6.9. Since for positive constant communication rate the deterministic Cucker-Smale
is always flocking, the introduction of noises in the previous section only introduced in some
cases new (L2) non-flocking properties.
But here, for linear σ we obtain, whatever ψ and the initial condition are, almost sure flocking,
so that this time the noise can help to (almost surely) flock, since for the classical communication
rate (2.1.2), we only know that flocking holds true for some initial conditions in the deterministic
case (D = 0) when r >

1
2. ♦

Comparing swarming and flocking is also easy. Indeed, when (2.3.8) is satisfied, if the process
is L2,2 swarming, the local martingale term of 〈xij , vij〉, given by

∫ t

0
(x∗i (s)− x∗j (s)) (σ(vi(s))− σ(vj(s))) dw(s)

is a true L2 martingale once σ is globally Lipschitz (recall that swarming means boundedness
for both the expectations of |vi − vj |2 and |xi − xj |2). In addition, it is easily seen that, if ψ is
bounded, condition (2) in Lemma 2.3.11 is satisfied under the L2,2 swarming assumption (recall
that this assumption includes sup

t
E(|vi(t)− vj(t)|2) < +∞). Hence

Proposition 2.6.10. In the situation of theorem 2.6.8, assume that (2.3.8) is satisfied and that ψ
is bounded. Then L2,2 swarming implies L2,2 flocking.

Of course (1) in theorem 2.6.8 is not fully satisfactory, since it is reasonable to consider
models where the communication rate decays with the distance between particles as in (2.1.2).
Let us consider such cases assuming that (2.3.8) is in force. Define

ψl(r) = min
06u6r

ψ(u) , (2.6.11)

and
Tr = inf{s > 0 ; max

i,j
|xi(s)− xj(s)| > r} . (2.6.12)

Remark 2.6.13. Back to the deterministic model.
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Assume that σ = 0, hence consider the deterministic model. First of all dz(t) 6 0, so that
z(t) 6 z(0) i.e. for all (i, j), sup

t
|vi(t) − vj(t)| < +∞. Hence, according to Proposition 2.6.10

(where one can forget all the expectations and squares), the process is flocking as soon as
sup
t
|xi(t)− xj(t)| < +∞ for all (i, j). But for t 6 Tr,

dz(t) 6 − 2λψl(r2) z(t)

so that z(t) 6 z(0) e− 2λψl(r2) t and

|xi(t)− xj(t)| 6 |xi(0)− xj(0)|+
∫ t

0
|vi(s)− vj(s)| ds

6 |xi(0)− xj(0)|+
∫ t

0
z

1
2 (s) ds

6 |xi(0)− xj(0)|+ z
1
2 (0)

λψl(r2) (1− e−λψl(r2) t) ,

i.e. for all (i, j),

sup
t6Tr

|xi(t)− xj(t)| 6 |xi(0)− xj(0)|+ z
1
2 (0)

λψl(r2) . (2.6.14)

In particular if for all (i, j), |xi(0) − xj(0)| + z
1
2 (0)

λψl(r2) < r then Tr = +∞ and the system is
flocking.
Choosing r0 = max

i,j
|xi(0)− xj(0)| and some C > 1, it is thus enough that

z
1
2 (0) 6 λ r0 (C − 1)ψl(C2 r2

0) . (2.6.15)

We recover that if the decay to 0 of ψl(r) is (strictly) slower than r−
1
2 , the system is flocking

for all initial conditions (we may let C go to infinity), while if it is faster, one has to choose the
initial conditions in such a way that (2.6.15) (where one can optimize in C) is satisfied. Note
that we are far from the optimal conditions, but the previous approach is completely elementary.
♦

In the stochastic case, for t < Tr (which is now a random stopping time), we have (a.s.)

ln(z(t))− ln(z(0)) 6 − (2λψl(r2)− 4K2d2) t+ ln(N(t)) , (2.6.16)

where
Nt = eM(t)− 1

2 〈M〉(t)

and M. is a martingale whose bracket satisfies 〈M〉(t) =
∫ t

0
α(s) ds with |α(t)| 6 4K2. Remark

that the remaining stochastic term is the logarithm of an exponential (true) martingale.
Of course, if

θ(r,K) = 2λψl(r2)− 4K2d2 > 0 , (2.6.17)

(2.6.16) shows that z(t) → 0 as t → +∞ almost surely on the set {Tr = +∞}. To understand
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the behavior of Tr, write

|xi(t ∧ Tr)− xj(t ∧ Tr)| 6 |xi(0)− xj(0)| + z
1
2 (0)

∫ t

0
e− (λψl(r2)−2K2d2) sN

1
2 (s) 1s<Tr ds .

What we have to do is to control the almost sure behavior of N(t). To this end we first prove a
lemma

Lemma 2.6.18. Let M(t) be a martingale satisfying 〈M〉(t) 6 Ct. Define

S(a, b) = inf{t > 0 , M(t)− b〈M〉(t) > a} .

Then
P(S(a, b) < +∞) 6 e−2ab .

Proof. We know that under our assumptions, for all η > 0, eηM(t)− η
2
2 〈M〉(t) is a martingale.

Hence
E
(
eηM(t∧S(a,b))− η

2
2 〈M〉(t∧S(a,b))

)
= 1 .

Choose η = 2b. This yields

E
(
1S(a,b)<+∞ e

2bM(t∧S(a,b))−2b2〈M〉(t∧S(a,b))
)
6 1 .

Using Lebesgue bounded convergence theorem we may let t go to infinity and obtain the desired
result.

Remark 2.6.19. If M is a standard Brownian motion, it is known that the inequality is an
equality. ♦

We deduce from this lemma, that with probability larger than 1− e−2ab,

N(t) 6 ea+(b− 1
2 )〈M〉(t) 6 ea+4(b− 1

2 )K2 t ,

so that

|xi(s ∧ Tr)− xj(s ∧ Tr)| 6 |xi(0)− xj(0)| + z
1
2 (0) e

a
2

λψl(r2)− 2K2d2 − 2K2(b− 1
2)
,

provided λψl(r2) > 2K2d2 + 2K2(b− 1
2).

Thus, on {S(a, b) = +∞} we may let s go to infinity and get that on {Tr < +∞},

r 6 |xi(0)− xj(0)| + z
1
2 (0)e

a
2

λψl(r2)− 2K2d2 − 2K2(b− 1
2)
, (2.6.20)

which is no more random. Hence, if (2.6.20) is not satisfied, we have

P(Tr = +∞ , S(a, b) = +∞) > 1− e−2ab .

We have thus obtained:
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Theorem 2.6.21. In the situation of theorem 2.6.8 assume in addition that (2.3.8) is in force.
Let r > 0. Let a, b > 0. Assume that

• λψl(r2) > 2K2(d2 +(b− 1
2)) (replace d2 by 1 when σ is diagonal, and by 1 if the diagonal

term only depends on the corresponding coordinate) where ψl is defined in (2.6.11),

• the initial condition satisfies, for all (i, j),

|xi(0)− xj(0)| + z
1
2 (0) e

a
2

λψl(r2)− 2K2(d2 + (b− 1
2))

< r

where z(0) =
N∑
k=1
|vk(0)− v̄(0)|2.

Then the system (2.6.2) is flocking with a probability larger than 1− e−2ab.

The previous result is apparently the first one dealing with “conditional flocking” (i.e. flock-
ing for a subset of initial conditions) in a stochastic context (the results in [3] have some similar-
ities but are actually different since they deal with approximate flocking before some stopping
time).

Remark 2.6.22. Remark that when K = 0 corresponding to a constant σ, we may take any b
going to infinity and a going to 0 so that ba goes to infinity. We thus obtain almost sure flocking
under the same initial conditions than for the deterministic result (in particular for any initial
condition if r ψl(r2)→ +∞ as r → +∞). This is not surprising since the microscopic variables
satisfy the deterministic system of differential equations. Only the center of mass is driven by
some Brownian motion.
Also notice that when ψl is bounded from below, we recover the almost sure statement in
Theorem 2.6.8, taking b = 1

2, r = +∞ and finally letting a go to infinity.
Finally remark that on Tr = +∞, ψl is bounded from below by ψl(r2), so that according to
(2.6.16) and the law of large numbers for the martingale Nt, z(t) goes to 0 at an exponential
(random) rate (depending on sup

t
(Nt/t)), or if one prefers, for any κ < λψl(r2)− 2K2d2, there

exists a random time τκ such that for t > τκ the decay of z(t) to 0 is at least Ce−κ(t−τκ). τκ is
simply the last time Nt/t is bigger than λψl(r2)− 2K2d2 − κ. ♦

2.6.2 Study of (2.6.1).

Let us turn to (2.6.1). Looking at the calculations (2.5.3) we see that we can mimic what we

have just done with the following main modifications: replace 4K2d2 by 2(N + 1)
N2 max

i,j
‖ σ2

i,j ‖∞
and for the variance of the martingale part 4K2 by 4 max

i,j
‖ σ2

i,j ‖∞. In the very particular case
where for all (i, j), σij = σ for some constant σ, we can argue as in Theorem 2.5.5 (3).

Hence we only state a general result whose proof is left to the reader :

Theorem 2.6.23. Consider (2.6.1). Assume that the processes ψij(t) = ψij(v(t), x(t)) where all
the functions ψij are local Lipschitz, non-negative and satisfy ψij = ψji, that the processes
σi,j(t) = σi,j(x(t), v(t)) where all the functions σij are local Lipschitz, bounded and satisfy
σij = σji. Define ψmin and ψmax as in (2.6.7). Then:

121



(1) for all initial state (v(0), x(0)) ∈ L2 the system admits a unique non-explosive (global)
strong solution.

(2) If λψmin >
N + 1
N2 max

i,j
‖ σ2

i,j ‖∞ the system is L2,2 flocking.

(3) If λψmax <
N + 1
N2 min

i,j
inf
t>0

σ2
i,j(t) then the system is not L2 flocking.

(4) If λψmin >
N + 1
N2 max

i,j
‖ σ2

i,j ‖∞ −
2
N

min
i,j
‖ σ2

i,j ‖∞ the system is almost surely
flocking.

(5) If σij = σ for all pair (i, j) and some constant σ, the system is always almost surely
flocking, whatever ψ is.

Assume in addition that ψ satisfies (2.3.8). Then

(6) if ψ is bounded, L2,2 swarming implies L2,2 flocking.

(7) Let r > 0, a, b > 0. Assume that

(a)
λψl(r2) >

(
2b+ N + 1

N2

)
max
i,j
‖ σ2

i,j ‖∞ −
2
N

min
i,j

inf
t>0

σ2
i,j(t)

where ψl is defined in (2.6.11),

(b) the initial condition satisfies, for all (i, j),

|xi(0)−xj(0)|+ z
1
2 (0) e

a
2

λψl(r2)−
(
2b+ N+1

N2

)
maxi,j ‖ σ2

i,j ‖∞ + 2
N mini,j inft>0 σ2

i,j(t)
< r

where z(0) =
N∑
k=1
|vk(0)− v̄(0)|2.

Then the system is flocking with a probability larger than 1− e−2ab.

Once again when σ goes uniformly to 0 we recover the deterministic situation just by choosing
a and b in an appropriate way.

2.6.3 A simple example with N = 2 for (2.6.2).

The reader certainly remarked that, when σ is constant in (2.6.2), changing v(t) into v(t)−σw(t),
the system obeys the deterministic dynamics (this is the favorite random situation for the non
probabilists). Hence in this situation, conditional flocking or non flocking holds with probability
1, depending on the deterministic behavior.
It should be interesting to exhibit an example (even with two particles) where almost sure
flocking holds with a strictly positive probability strictly less than 1. This seems to be a hard
task. However we shall study in details simple examples to better understand what happens.
For reasons we shall explain later, we shall consider the case N = 2 and d = 1.

122



An explicit deterministic example.

Take N = 2, d = 1 and look at the deterministic system

dv1(t) = −2 v1(t)− v2(t)
1 + |x1(t)− x2(t)|2 dt

dv2(t) = −2 v2(t)− v1(t)
1 + |x1(t)− x2(t)|2 dt ,

with an initial condition v1(0) = −v2(0), x1(0) = −x2(0). The unique solution satisfies v1(t) =
−v2(t), x1(t) = −x2(t) and the difference v(t) = v1(t)− v2(t) = 2v1(t) satisfies

dv(t) = − v(t)
1 + |x(t)|2 dt

so that
v(t)− v(0) = arctan(x(0))− arctan(x(t))

and
x(t)− x(0) =

∫ t

0
(v(0) + arctan(x(0))− arctan(x(s))) ds .

We confess that we do not know how to solve the O.D.E.

x′(t) = c− arctan(x(t)) .

Nevertheless we can study the qualitative behavior of the system. Indeed one can notice the
following points

1. if v(0) = 0 the unique solution is v(t) = 0 and x(t) = x(0).

2. It follows that if v(0) > 0, then the solution v(t) > 0 for all t > 0. Indeed if v(.) reaches 0
then it is sticked at 0 according to the previous point.
If one prefers, one can also write

v(t) = v(0) e−
∫ t

0
ds

1+|x(s)|2 > v(0) e−t .

Hence x(.) is non decreasing, so that assuming that x(0) > 0, lim
t→+∞

x(t) = x(∞) 6 +∞.

Now consider a solution such that x(0) = 0 (for simplicity) and v(0) > 0. If x(∞) < +∞,

since x(t) 6 x(∞), (v)′(t) 6 − v(t)
1 + |x(∞)|2 so that v(t) → 0 as t → +∞ at an exponential

rate. Thus, 0 = v(0) − arctan(x(∞)) by letting t go to infinity. Similarly if x(∞) = +∞,
lim

t→+∞
v(t) = v(0)− π

2 > 0 since v(t) > 0.
Hence

1. if x(0) = 0 and 0 6 v(0) < π

2 , x(∞) < +∞ so that v(t) → 0 and x(t) → tan(v(0)), the
system is flocking,

2. if x(0) = 0 and v(0) >
π

2 , x(t) → +∞ and v(t) → v(0) − π

2 , so that the system is not
flocking.
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Back to the stochastic model.

Consider the general case with ψ satisfying (2.3.8). If we add a stochastic term such that
σ(−v) = −σ(v) (assuming as before that σ is K-Lipschitz) we still have v1(t) = −v2(t), x1(t) =
−x2(t) and the difference v(t) satisfies

dv(t) = −ψ(|x(t)|2) v(t) dt+ 2σ
(
v(t)

2

)
dw(t) .

Again the unique solution starting from v(0) = 0 and x(0) is v(t) = 0, x(t) = x(0), so that using
the Markov property, if v(0) > 0, v(t) > 0 for all t > 0. For simplicity again we assume that
x(0) = 0 and v(0) > 0.
Hence, up to the first time v(.) reaches 0 (and then is sticked at 0) we may write

d(ln(v(t))) = −ψ(|x(t)|2) dt− 2 σ
2(v(t)/2)
v2(t) dt+ 2 σ(v(t)/2)

v(t) dw(t) . (2.6.24)

Here again we have
v(t) = v(0) e−

∫ t
0 ψ(|x(s)|2) ds eN(t)− 1

2 〈N〉(t) (2.6.25)

whereN(.) is a L2 martingale, so that v(.) does not hit 0 in finite time a.s. But this representation
allows us to obtain more information. Indeed lemma 2.6.18 tells us that for any a > 0,

P
(

sup
t>0

(N(t)− 1
2〈N〉(t)) > a

)
6 e−a .

Hence

P
(

lim sup
t→+∞

v(t) = +∞
)
6 P

(
lim sup
t→+∞

(N(t)− 1
2〈N〉(t)) = +∞

)
= 0 . (2.6.26)

We know that the martingale term in (2.6.24) satisfies almost surely,

lim
t→+∞

1
t

∫ t

0

σ(v(s)/2)
v(s) dw(s) = 0 .

Assume that

σ is of class C1 with a bounded derivative, σ′(0) > 0, and σ(v) > 0 for all v > 0. (2.6.27)

As a consequence
inf

06v6a

σ(v)
v

= σmin(a) > 0 .

Notice that (2.6.27) is satisfied in particular if σ(v) > Cv for some C > 0 and all v > 0,
which is nothing else than a simple extension of the linear case, since in this case, for v > 0,
Cv 6 σ(v) 6 Kv.
Now for almost all given ω, lim sup v(t)(ω) = vmax(ω) < +∞, so that

1
t

∫ t

0

σ2(v(s)(ω)/2)
v2(s)(ω) ds >

1
4 σ

2
min(vmax(ω)/2) . (2.6.28)
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It follows that ln(v(t)) → −∞ i.e. v(t) → 0, and that the latter convergence is exponential
(at least e−

1
2 σ

2
min(v2

max(ω)/2) t), so that x(t) is almost surely bounded, and the system is almost
surely flocking. We have proved

Proposition 2.6.29. Consider (2.6.2) for N = 2, d = 1 with σ(v) = −σ(−v), and assume that
(2.3.8) and (2.6.27) are satisfied. Then the system is always almost surely flocking.

Remark 2.6.30. (1) In the previous proof, since we know that v(t) goes to 0, using
L’Hospital’s and Cesaro’s rules, we obtain

lim
t→+∞

1
t

∫ t

0
2 σ

2(v(s)/2)
v2(s) ds = 1

2 (σ′(0))2 ,

which is no more random. But one has to be careful because this limit is not uniform in
ω.

(2) Of course what we have just done is to show (exponential) stability for some stochastic
differential equation. Indeed, since we are in dimension 1 and the interaction term is
non-positive, we know that v(t) 6 u(t) where u(.) solves

du(t) = σ(u(t)) dw(t) .

Our proof shows that u(t)→ 0 at an exponential rate almost surely.

(3) Assume that σ is compactly supported, say by [−M,M ]. Thus, (2.6.27) is not fulfilled.
Take ψ(u) = 1

1 + u2 . If v(0) > M + π

2 , then v(.) behaves like the deterministic model
(hence stays larger than M) and does not flock. Hence in (2.6.27) the behavior of σ(v)/v
near the origin is not sufficient to control flocking.

(4) However if we only skip the assumption σ′(0) > 0 in (2.6.27) and replace it by σ′(0) = 0,
the previous proof shows that lim inf

t→+∞
v(t) = 0. Indeed if not we get again a lower bound as

in (2.6.28), by taking the minimum of σ(v/2)/v on the interval [vmin = lim inf v(t), vmax =
lim sup v(t)].

Is it possible to get flocking while the process u(.) in (2) does not flock, that is to get an
example where the interaction ψ really does matter ? Here is almost one.
Choose

σ(v/2) = v
3
2

1 + v2 .

Then if 0 6 v 6 vmax,
v

(1 + v2
max)2 6

σ2(v2 )
v2 6 v .

Hence, since vmax = lim sup v(t) < +∞ almost surely, if
∫ +∞

0

σ2(v(s)/2)
v2(s) ds < +∞ (resp.

= +∞), sup
t
x(t) 6

∫ +∞

0
v(s) ds < +∞ (resp. = +∞) almost surely, so that in all cases

∫ +∞

0

(
ψ(|x(t)|2) + 2 σ

2(v(t)/2)
v2(t)

)
dt = +∞ .
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Come back to the expression (2.6.25). We know that eN(t)− 1
2 〈N〉(t) is almost surely finite, so that

if
∫ +∞

0
ψ(|x(t)|2) dt = +∞, v(t)→ 0. In addition, lemma 2.6.18 tells us that for any a > 0,

P
(

sup
t>0

(N(t)− b〈N〉(t)) > a

)
6 e−2ab ,

so that for b < 1
2, eN(t)−b〈N〉(t) is almost surely finite. Thus if

〈N〉(t) = 4
∫ t

0

σ2(v(s)/2)
v2(s) ds→ +∞ ,

eN(t)− 1
2 〈N〉(t) goes to 0 and so does v(t) again.

But we do not know whether sup
t
x(t) is always a.s. finite or not, so that we do not know

whether the process is flocking or not. ♦

Finally, in the particular case ψ(u) = 1
1 + u2 , if v(0) > π

2 , x(0) = 0, the system is not L1

flocking. Indeed, taking the expectation (v(t) > 0) we have

E(v(t)) = v(0)− E(arctan(x(t))) > v(0)− π

2 > 0 .

So once again, Lp flocking is much more demanding.

2.7 Comments and simulations.

What kind of (temporary) conclusions can we draw after this study ?

1. All the models we have discussed in the introduction (except (2.1.9) for which we do not
have a convincing interpretation) have their “reasonable” physical (or biological) interpre-
tation and at the same time suffer potential criticism. They are only models and certainly
not a description of reality.

2. Too independent noises destroy the collective behavior (without any politically correct
reference).

3. Random environment depending in a certain way of the positions can also destroy the
collective behavior.

4. Noises whose variances depend either linearly on the velocities or on the differences between
velocities may help, at least at the almost sure level, to flock. But actually in many of these
situations, the communication between individuals is simply a perturbation of a stochastic
system which is already stable (though, except in a very few number of particular cases,
one cannot reduce the study to the use of the theory of stability of S.D.E. as detailed in
the book [10]).

5. Due to the previous item, L2 flocking is presumably more convincing.
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We shall now illustrate our results (and the situations that are not covered by our results)
with some simulations. First we shall consider the system (2.6.2)

dvi(t) = − λ

N

N∑
j=1

ψij(t)(vi(t)− vj(t)) dt + σ(vi(t)) dw(t) .

In all the section we will choose

ψij(t) = ψ(|xi(t)− xj(t)|) with ψ(u) = (1 + u2)−1

in dimension d = 2 with N = 9 particles and communication intensity λ = 10.
We shall consider two basic sets of initial configurations (x1(0), v1(0)) and (x2(0), v2(0))

given by x1(0) = 0

v1(0) =


−0.4 0.2 −0.3 −0.3 −0.1 −0.2 0.2 0.5 0.2

0.4 −0.1 0.2 0.5 0.3 0.1 −0.3 0.2 0.3



x2(0) =


1 0 0 0 0 0 0 0 0

−4 0 0 0 0 0 0 0 0



v2(0) =


−0.3 2 −0.5 −1.5 −0.1 −0.2 1.2 0.5 1.5

0.7 −0.6 2.1 0.4 0.8 2.6 −3.4 −0.6 0.2


Define z(0) =

N∑
k=1
|vk(0) − v̄(0)|2 and Mx(0) = max

i,j
|xi(0) − xj(0)|. Recall the discussion

preceding (2.6.15) to ensure flocking starting from (x(0), v(0)), i.e. we want to find some r > 0
such that the function g defined by

g(r) = Mx(0) +
√
z(0)
λ

(1 + r2)− r

is negative at r. This is equivalent to the following

√
z(0) < λ

2

(√
Mx(0)2 + 1

4 −Mx(0)
)

and it is easy to show that the first set of initial data satisfies this condition, while the second
one does not (see Figure 2.1 below). In the sequel we shall use modified initial data of the form
(xi(0), θvi(0)) for some given θ’s and will plot the function g to see whether the corresponding
initial data do satisfy the condition or not.

We shall now plot several simulations of the stochastic model or numerical approximations
in the deterministic case. In both cases the numerical scheme is a simple explicit Euler scheme.
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Figure 2.1: r 7→ g(r) in case (x2(0), v2(0))

On each Figure we draw the evolution in time of

t 7→
(

N∑
i=1
|vi(t)− v̄(t)|2

) 1
2

for both the stochastic and deterministic systems. Recall that we do not have theoretical results
about the flocking property for the deterministic system once condition (2.6.15) is not satisfied.

In the next Figure 2.2 we choose σ(v) = v and initial conditions (x2(0), v2(0)). According to
Theorem 2.6.8 (2), we know that the stochastic system is almost surely flocking, but we do not
know about L2 flocking.

Figure 2.2: t 7→
(

N∑
i=1
|vi(t)− v̄(t)|2

) 1
2

for σ(v) = v in case (x2(0), v2(0))
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We observe that in this case the deterministic system flocks too and a reasonably quick
convergence for the stochastic system.

Next, still with σ(v) = v, we change the initial configuration by choosing (x2(0), 5 v2(0)). In
this situation we see that the deterministic system does not flock anymore, while the stochastic
system almost surely flocks. In Figure 2.3 we plot the evolution of the velocities on the right
hand side, but also, on the left hand side, the evolution of t 7→ max

i,j
|xi(t)− xj(t)|.

Figure 2.3: (x2(0), 5 v2(0)) , σ = v first case.

The next two figures are obtained with the same data (be careful with the vertical scale which
is not the same for each figure). The convergence to 0 in the stochastic case can be surprisingly
quick (Figure 2.5), very slow (Figure 2.4 where the fluctuation size presumably indicates that
there is no L2 flocking) or similar to the previous case (Figure 2.3 where we also observe a
chaotic stabilization of the positions).

Figure 2.4: (x2(0), 5 v2(0)) , σ = v second case. Figure 2.5: (x2(0), 5 v2(0)), σ = v third case.

The next situation we want to illustrate is the one of Theorem 2.6.21. To this end we choose
σ(vi) = 1 + sin vi for each of the two coordinates vi of v, hence a diagonal σ. Since σ is 1-
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Lipschitz, we choose b = 1/2 and a = ln 2 so that if the initial conditions satisfy the assumption
in Theorem 2.6.21, the latter tells us that the stochastic system flocks with a probability larger
than or equal to 1

2.
To fulfill this assumption we choose this time (x1(0), 0.1 v1(0)) as initial conditions. We thus

know that the deterministic system is flocking. The next figure 2.6 plots the condition showing
that some r can be found, while figure 2.7 presents an example of simulation. Actually in this
case we were not able to obtain a non-flocking stochastic simulation, showing that, for sure, our
result is far from optimal.

To observe something interesting we have to change the initial conditions and thus take
(x2(0), 3 v2(0)). If we still have the flocking property for the deterministic model, we have
observed (as the two examples show) various cases in the stochastic setting, with or without
flocking, indicating that flocking may occur with some probability strictly larger than 0 and
strictly smaller than 1.

Figure 2.6: (x1(0), 0.1 v1(0)) condition Figure 2.7: (x1(0), 0.1 v1(0)) and σ = 1+sin(v).

Figure 2.8: (x2(0), 3 v2(0)) , σ(v) = 1 + sin(v)
with flock

Figure 2.9: (x2(0), 3 v2(0)) , σ(v) = 1 + sin(v)
with no flock
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Finally, we show some simulations when σ is a function of x and no more of v. As we have
seen, this situation is completely unclear, even for a constant communication rate. This chaotic
behavior is illustrated by the final three pictures where, as before, we have drawn the behavior
of the positions on the left hand side and of the velocities on the right hand side.

Figure 2.10: (x2(0), v2(0)), σ = 1 + sin(x) first case

Figure 2.11: (x2(0), v2(0)), σ = 1 + sin(x) with flock
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Figure 2.12: (x2(0), v2(0)), σ = 1 + sin(x) with no flock
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Chapter 3

Exponential ergodicity for a class of
non-Markovian stochastic processes

This chapter was submitted, under the same title, in March 2017.

Abstract : We prove the exponential ergodicity of a class of solutions of stochastic differ-
ential equations with finite delay. This is done, in this non-Markovian setting, using the cluster
expansion method, inspired from previous works. As a consequence, the results hold for small
perturbations of ergodic diffusions.

Keywords : cluster expansion, SDE with delay, long-time behaviour.
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3.1 Introduction

The aim of this paper is to prove that exponential ergodicity holds for a class of solutions of
stochastic differential equations with finite delay and non regular drift.

We will consider Rd-valued stochastic differential equations of the form :

dXt =
(
g(Xt) + β b((X)tt−t0)

)
dt+ dWt,

where (X)ts := {Xu|u ∈ [s, t]} is the path of the process X between times s and t, and t0 is a
fixed positive number. We will make certain assumptions on the underlying semi-group of the
reference process, weak solution of

dXt = g(Xt) dt+ dWt

The additional drift term b, will only be required to be time-local, measurable and bounded by 1.

Our interest in those equations comes from possible applications for stochastic Cucker-Smale
type models in (Rd)N - such as the one presented by Ha, Lee and Levy in [10]. It is a N -particle
mean-field system in Rd, whose velocity v(t) = (v1(t), ..., vN (t)) satisfies, for all t > 0, the
stochastic differential equation

dv(t) = − λ
N
F ((v)t0) dt+ dW (t)

where for all i ∈ {1, ..., N}, Fi((v)t0) =
N∑
j=1

ψ((vj)t0, (vi)t0) (vi(t) − vj(t)) and W is a standard

dN -dimensional Brownian motion. The function ψ, supposed to be non-negative and symmetric,
is called communication rate and quantifies the interaction between each pair of particles.

Various results about the existence of invariant probability measures for stochastic differen-
tial equations with delay can be found in the literature, going back to the paper of [12], where
is proven that, when the drift and diffusion coefficients are continuous, there exist stationary
solutions for delayed processes. Since then, one can mention, among many others, the papers by
[21],[3], or the book of [7], especially Chapter 10. General results on stochastic differential delay
equations up to 2003 are gathered in a survey by Ivanov, Kazmerchuk and Swishchuk ([13]).
However, they are mainly valid under strong regularity assumptions on the coefficients, despite
the fact that non-regular coefficients appear in various fields, such as finance (see for instance
[2], about pricing options) or physics (with bistable systems, in [25]) ; stability of non-regular
processes is also a fixture in [18].

One notable exception is [24], where the author considers the equation

dx(t) = F ((x)tt−1) dt+ dWt
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for a function F measurable and locally bounded. Assuming the existence and uniqueness of a
weak solution, and a restrictive recurrence condition (holding if some condition on certain Lya-
punov functionals are met), the existence of – and the convergence in total variation distance
towards – an invariant probability measure is proven, using the strong Markov property satisfied
by ((x)tt−1)t∈R+ . Nothing is said, however, about the rate of convergence for such processes. The
true novelty of our work is the exponential rate of the ergodicity.

As we are dealing with non-Markovian processes, most standard methods of stochastic anal-
ysis are not available. Thus, our main tool here will be the so-called cluster expansion method,
mainly used in statistical mechanics, in particular in Gibbs field theory. As a consequence,
our results will hold for irregular but small (albeit not insignificant) perturbations of the refer-
ence process. Technical results for the adaptation of the cluster expansion methods to Gibbs
random fields can be found in the book by [17]. Subsequent papers have implemented those
methods for stochastic processes, for example, interacting diffusions systems or one-dimensional
non-Markovian diffusions. It was done in [11], and, more recently, amongst others in [8], [9] or
[19].

Our main result is the exponential ergodicity of the process. Moreover, with the same tech-
nique, one obtains that the decay of correlations is exponentially quick. It follows that a central
limit theorem can be derived from the mixing properties implied by this inequality.

Contrary to what was done in [8], we do not require for the semi-group associated with the ref-
erence process to be ultracontractive, but we only need some strong form of hypercontractivity.
One instance of a well-known process which is not ultracontractive but verifies our assumptions is
the Ornstein-Uhlenbeck process. We will present some explicit results in this particular setting.
Actually, the stochastic Cucker-Smale model can be seen as a mean-field perturbation of the
Ornstein-Uhlenbeck process, and this led to this work. The lack of ultracontractive bounds for
the underlying reference process introduces several new technical difficulties. We will therefore
present a detailed proof for the cluster estimates. The use of these estimates to get to the final
main theorem follows the lines of, for instance, what was done in [8] and [19] and we will go
rather quickly over this part.

We start by introducing our framework, the objects we will encounter and the assumptions
that will be needed, before giving our main result. Then, we obtain, in section 3, a cluster
representation for the partition function defined in the first part. In section 4, we study the
cluster estimates and show that they tend to 0 when β does. In section 5, we conclude the proof
and present a few consequences of our convergence theorem. Finally, in section 6, we explicitly
compute some of the bounds in the Ornstein-Uhlenbeck setting.
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3.2 Framework and main theorem

We introduce here the process which will serve as reference in our work : a stochastic process
sufficiently regular to be exponentially ergodic with respect to its invariant (and even reversible)
probability measure. We present all the assumptions that will be necessary to extend this er-
godicity to small perturbations of this process.

3.2.1 The reference process

First, we introduce the framework in which we are considering such a stochastic process :

• Ω = C(R,Rd) shall be the canonical continuous Rd-valued path space, for some d > 1, and
F the canonical Borel σ-field on Ω. (Xt)t∈R shall be, as usual, the canonical process.

• W shall be the Wiener measure on (Ω,F), the law of a standard d-dimensional Brownian
motion (Wt)t∈R.

We consider the following stochastic differential equation, for any t ∈ R,

dXt = g(Xt) dt+ dWt (3.2.1)

with g : Rd → Rd a smooth function (say Ck, for a certain k > 2) and (Wt) a standard d-
dimensional Brownian motion. We suppose that there exists a reversible probability measure,
µ, for this process. We will soon give conditions to ensure that (3.2.1) has a unique stationary
weak solution.
Let L be its associated infinitesimal generator, defined by

L = 1
2
∑
i,j

∂2
ij +

∑
i

gi ∂i.

L is uniformly elliptic, and, as µ is reversible, symmetric in L2(µ) : for all f and g smooth
enough,

∫
f Lg dµ =

∫
g Lf dµ. It is known that µ is then absolutely continuous with respect

to the Lebesgue measure, with a positive density. Thus, µ is of the form dµ(x) = C e−V (x) dx ;
in addition, V : Rd → R is smooth (at least Ck).
According to Kolmogorov’s characterization of reversible diffusions, in [15], this even implies
that g can be written as a gradient function of a potential function V : g = −1

2 ∇V . Thus,
equation (3.2.1) becomes :

dXt = −1
2 ∇V (Xt) dt+ dWt (3.2.2)

The probability measure P on (Ω,F) shall denote the weak stationary solution of (3.2.2),
with marginal law the invariant probability measure µ.

To ensure that the equation (3.2.2) indeed admits a stationary weak solution on R, and in
particular, that there is non-explosion in finite time, we further assume (see e.g. [23]) that one
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of the two following assertions on the potential V is true :

(1) V (x) −→
|x|→∞

+∞ and |∇V |2 −∆V is bounded from below

(2) There exist a, b ∈ R such that, for all x, x∗ ∇V (x) > −a |x|2 − b

where x∗ is the transpose of x.

In this case, there even exists a unique strong solution (Theorem 2.2.19 in [23]). The semi-
group (Pt) admits a smooth transition density with respect to µ, denoted by p(t, x, y). As the
probability measure µ is reversible, p(t, ., .) is symmetric :

∀ t, x, y, p(t, x, y) = p(t, y, x).

We now introduce two assumptions which will be essential in the following :

• (H1) : µ satisfies a Poincaré inequality : there exists a constant CP such that for all
smooth functions f in L2(µ),

‖ f −
∫
f dµ ‖2L2(µ) 6 CP

∫
|∇f |2 dµ

• (H2) : There exists δ > 0 such that

sup
t>δ
‖p(t, ., .)‖L8(µ⊗µ) <∞

Remark 12. It is well-known (see [1] for example) that hypothesis (H1) is equivalent to the
exponential convergence of the semi-group towards µ, i.e. there exists a constant CS such that
for all f ∈ L2(µ), for all t > 0,

‖ Ptf −
∫
f dµ ‖L2(µ) 6 e−CSt‖ f −

∫
f dµ ‖L2(µ)

and, moreover, CS = 1/CP (see [6] for a more general statement).

In particular, if
∫
fdµ = 0, then (H1) implies that for every t > 0,

‖Ptf‖L2(µ) 6 e−t/CP ‖f‖L2(µ) (3.2.3)

Remark 13. Using Cauchy-Schwarz’s and Jensen’s inequalities,
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‖Pδf‖8L8(µ) =
∫ (∫

p(δ, x, y)f(y) µ(dy)
)8
µ(dx)

6
∫ (∫

|f(y)|2 µ(dy)
)4 (∫

p(δ, x, y)2 µ(dy)
)4
µ(dx)

6 ‖f‖8L2(µ)

∫ ∫
p(δ, x, y)8 µ(dy) µ(dx)

This means that :
‖Pδf‖L8(µ) 6 ‖p(δ, ., .)‖L8(µ⊗µ) ‖f‖L2(µ). (3.2.4)

Thus, if (H2) is satisfied, Pδ : L2(µ)→ L8(µ) is a bounded operator.
If, in addition, (H1) is satisfied, for every k > 2, Pt : L2(µ)→ Lk(µ) is bounded by 1 when t is
large enough.

Example 1. (H1) is satisfied, for instance, if V is uniformly convex outside of a compact set,
that is if the Hessian matrix of V is a non-degenerate quadratic form outside of a compact set.
It is, however, difficult to obtain a generic condition on the potential V for hypothesis (H2) to
hold ; one can look at Section 3 of [5] to understand the underlying difficulties : in particular,
condition (A4), introduced at the beginning of Section 2 in [5] is fairly close to our hypothesis
(H2). In the special case an Ornstein-Uhlenbeck reference process, discussed in section 3.6, (H2)
is proven thanks to the known explicit expression of the density function p.

We now prove a proposition, taking into account hypotheses (H1) and (H2) and yielding the
assumption we will use in practice, rather than (H1) itself.

Proposition 22. Under hypotheses (H1) and (H2), for t > 2δ,

‖p(t, ., .)− 1‖L8(µ⊗µ) 6 γδ(t)
(
‖p(δ, ., .)‖L8(µ⊗µ) ∨ 1

)
where γδ(t) = 2Mδ e

−(t−2δ)/CP with Mδ = sup
a>δ
‖p(a, ., .)‖L8(µ⊗µ) ∨ 1

In particular, γδ(t) goes to 0 exponentially fast when t goes to infinity.

Proof. The following lemma is essential for the proof of the proposition.

Lemma 6. Set δ > 0. Suppose that (H1) holds true.
Then for all smooth f such that

∫
fdµ = 0,

∀t > δ, ‖Ptf‖L8(µ) 6 e−(t−δ)/CP ‖p(δ, ., .)‖L8(µ⊗µ) ‖f‖L8(µ)

Remark 14. It is possible for both sides of the above inequality to be infinite.

Proof. Let t be a positive number with t > δ and f a smooth function such that
∫
fdµ = 0.
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For any t > δ, thanks to the inequality (3.2.4) proven in remark 13,

‖Ptf‖L8(µ) = ‖Pδ(Pt−δf)‖L8(µ) 6 ‖p(δ, ., .)‖L8(µ⊗µ) ‖Pt−δf‖L2(µ)

As (H1) is supposed to be satisfied, so is (3.2.3) ; hence the conclusion of this proof :

‖Ptf‖L8(µ) 6 e−(t−δ)/CP ‖p(δ, ., .)‖L8(µ⊗µ) ‖f‖L2(µ) 6 e−(t−δ)/CP ‖p(δ, ., .)‖L8(µ⊗µ) ‖f‖L8(µ)

We prove the proposition and start by expressing p(t, x, y)− 1 using the semi-group :

p(t, x, y)− 1 =
∫

(p(t− δ, x, z) p(δ, z, y)− 1)µ(dz)

= Pt−δ(p(δ, ., y))(x)− 1 = Pt−δ(p(δ, ., y)− 1)(x)

Thus, applying Lemma 6 for f = p(δ, ., y)− 1 at time t− δ (> δ as t > 2δ),

∫
(p(t, x, y)− 1)8µ(dx) =

∫
P 8
t−δ(p(δ, ., y)− 1)(x) µ(dx)

6 e−8(t−2δ)/CP ‖p(δ, ., .)‖8L8(µ⊗µ) ‖p(δ, ., y)− 1‖8L8(µ)

6 e−8(t−2δ)/CP 28 ‖p(δ, ., .)‖8L8(µ⊗µ)

(
‖p(δ, ., y)‖8L8(µ) ∨ 1

)
,

which leads to :∫
(p(t, x, y)− 1)8µ(dx)µ(dy) 6 e−8(t−2δ)/CP 28 ‖p(δ, ., .)‖8L8(µ⊗µ)

(
‖p(δ, ., .)‖8L8(µ⊗µ) ∨ 1

)
Hypothesis (H2) ensures that ‖p(u, ., .)‖L8(µ⊗µ) is bounded uniformly in u for u > δ, hence the
result.

Remark 15. As can be seen in the proof, Mδ is a priori not the optimal bound (although it
corresponds with ‖p(δ, ., .)‖L8(µ⊗µ) as will be seen in the Ornstein-Uhlenbeck example in section
3.6) but will be good enough for our needs (and will simplify later computations).

3.2.2 The perturbed stochastic differential equation

We turn our attention to the stochastic differential equation with finite delay t0, for all t ∈ R,

dXt =
(
−1

2 ∇V (Xt) + β b((X)tt−t0)
)
dt+ dWt (3.2.5)

where the potential V and the Brownian motion (Wt) are as previously defined, β is a positive
constant, which shall be small enough for the result to hold.

The perturbation drift, b shall satisfy the assumption (H3) detailed below :

(H3) : b : Ω→ Rd is a measurable function, bounded by 1, and local, in the sense that there
exists a delay t0 > 0 such that, for any u ∈ Ω, b(u) = b((u)tt−t0).
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Example 2. We give here a few examples for perturbation drifts b satisfying (H3) :

• we can consider b of the form b((u)tt−t0) =
∫ t

t−t0
f(ut, us) ds for any trajectory u ∈ Ω with

f bounded by 1 and measurable ; for instance, f(x, y) = sign(x − y) or f(x, y) = 1y∈A

with A a subset of Rd (thus obtaining an occupation time);

• we may have a dependence in the past depending on a single time, of the form b((u)tt−t0) =
g(ut−t0) for a certain function g measurable and bounded by 1, but not necessarily con-
tinuous ;

• one can also consider a drift function with jumps, such as b((u)tt−t0) = 1(u)tt−t0∈A
with A

a subset of C([−t0, 0],Rd).

One of the main advantages of our method is that we only require from b that it satisfies
(H3), without any stronger condition on its regularity.

Recall that the probability measure Q on Ω is said to be a weak solution of the stochastic
differential system (3.2.5) if the process

(
Xt −

∫ t

0

(
−1

2 ∇V (Xs) + β b((X)ss−t0)
)
ds

)
is a Q-Brownian motion.

3.2.3 The main result

Our main theorem is the following convergence result for the stochastic differential equation
with delay, for t ∈ R,

dXt =
(
−1

2 ∇V (Xt) + β b((X)tt−t0)
)
dt+ dWt (3.2.5)

considered as a perturbation of the reference process

dXt = −1
2 ∇V (Xt) dt+ dWt. (3.2.2)

Theorem 14. Assume that the assumptions (H1) and (H2) are satisfied by the reference stochas-
tic differential equation (3.2.2). Assume also that the perturbation drift b of equation (3.2.5)
verifies (H3).

Then, for β small enough,

(i) The stochastic differential equation (3.2.5) admits a unique weak stationary solution Q,
and thus a unique invariant probability measure ν.
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(ii) There is exponential ergodicity : there exist θ > 0 and C : Rd → R+ such that for |t| and
|t′| large enough, for every x ∈ Rd, for every bounded measurable function f ,

|EQ[f(Xt)|X0 = x]− EQ[f(Xt′)|X0 = x]| 6 C(x) e−θ |t−t′|.

(iii) The decay of correlations is exponentially quick : there exist two positive constants θ1 and
θ2„ such that for |t| and |t′| large enough, for all f and g measurable and bounded by 1, it
holds :

|EQ[f(Xt) g(Xt′)]− EQ[f(Xt)] EQ[g(Xt′)]| 6 θ1 e
−θ2 |t−t′|.

The rest of the paper is devoted to the proof and the consequences of this theorem.

3.3 Approximation on finite-time windows and cluster repre-
sentation

The main idea behind the proof is to build approximations on finite-time windows that will
converge uniformly towards what will be the weak stationary solution of (3.2.5) ; the properties
of these approximations will then be inherited by this limit.

3.3.1 Approximations

We set the following notations :

• a, a fixed positive number, destined to become quite large ;

• for every j in Z, Ij = [ja, (j + 1)a] ;

• for every N in N∗, I(N) = [−Na,Na] =
N−1⋃
j=−N

Ij ;

• for every u in Ω, u(N)(t) = u(Na) if t > Na, u(N)(t) = u(t) if −Na 6 t 6 Na, and
u(N)(t) = u(−Na) if t 6 −Na. That is : u(N) is equal to u frozen outside of the interval
I(N).

Using Girsanov theorem (see e.g. [16]), we can show that the restriction to any finite time
interval I of the law of the perturbed process is absolutely continuous with respect to the law of
the reference process, P, and that its density is of the form exp(−HI(u))du where the associated
Hamiltonian HI is defined by

HI(u) = −
∫
I
β b((u)tt−t0)∗ dWt + β2

2

∫
I
|b((u)tt−t0)|2 dt (3.3.1)

143



for every trajectory u in the path space Ω. We will denote HN = HI(N).

To obtain the theorem, our main objective is to prove the convergence of the sequence of
probability measures (QN )N∈N∗ , defined on Ω by

QN (du) = 1
ZN

exp (−HN (u(N))) P(du), (3.3.2)

towards a weak solution of the equation (3.2.5) that will be time stationary. From this point,
classical results of Gibbs theory shall lead to Theorem 14.

Remark 16. Under QN , the canonical process (Xt) is a weak solution of the stochastic differential
system (3.2.5), for t ∈ I(N), but not a stationary one.

3.3.2 The partition function and its cluster representation

The renormalization constant in (3.3.2), also called partition function, is given by

ZN =
∫

Ω
exp (−HN (u(N))) P(du)

The aim of our next section will be to expand ZN with respect to β uniformly in N . Note that,
contrary to QN , ZN will not converge when N goes to infinity.

The bulk of the proof shall then be to control the different terms involved in this series ex-
pansion, to show that they are smaller than a certain function of β that vanishes when β goes
to 0.

The cluster expansion method, very useful in statistical mechanics, shall then lead us first
to the convergence of the sequence (QN )N towards a weak stationary solution Q of equation
(3.2.5) and the existence of a invariant probability measure, second to the exponential ergodicity
and Theorem 14.

First, however, we aim to expand the partition function into clusters, that is to obtain an
expression of ZN of the form :

ZN = 1 +
∑
τ

∏
i

Γτi

with the meaning and nature of each of τ , i and Γτi to be determined.

We start by conditioning the reference probability P on Ω with respect to the values of its
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marginals at times −Na, −(N − 1)a, ..., 0, a, ..., Na :

ZN =
∫

Ω
exp (−HN (u(N))) P(du)

=
∫
R(2N+1)d

∫
Ω

exp (−HN (u(N))) P(du|Xja = yj , j = −N, ..., N)

⊗ PX−Na(dy−N )
N−1
⊗

j=−N
PX(j+1)a(dyj+1|Xja = yj)

Let P a,b
I denote the law of the stochastic bridge over I obtained by conditioning P so that

Xinf I = a and Xsup I = b. Then, on the interval I(N),

P( . |Xja = yj , j = −N, ..., N) =
N−1
⊗

j=−N
P yj ,yj+1
Ij

( . ). (3.3.3)

Recall that by definition of the transition density p,

PX(j+1)a(dyj+1|Xja = yj) = p(a, yj , yj+1) µ(dyj+1) (3.3.4)

Combining (3.3.3) and (3.3.4), one obtains

ZN =
∫
R(2N+1)d

∫
Ω

exp (−HN (u(N)))
N−1
⊗

j=−N
P yj ,yj+1
Ij

(du)
N−1
⊗

j=−N
p(a, yj , yj+1)

N
⊗

j=−N
µ(dyj)

Next, we re-order the terms in a convenient way :

ZN =
∫
R(2N+1)d

∫
Ω

N−1∏
j=−N

(
exp (−HIj (u(N))) p(a, yj , yj+1)

) N−1
⊗

j=−N
P yj ,yj+1
Ij

(du)
N
⊗

j=−N
µ(dyj)

Contrary to what was done, by mistake, between equations (13) and (14) in [8], we cannot
exchange the product and the integral over Ω. This can be corrected in a way by a different
decomposition :

ZN =
∫
R(2N+1)d

∫
Ω

N−1∏
j=−N

αj(a, y, u)
N−1
⊗

j=−N
P yj ,yj+1
Ij

(du)
N
⊗

j=−N
µ(dyj)

where the coefficients αj are defined, for j ∈ {−N + 1, ..., N − 2}, by

αj(a, y, u) = exp (−HIj (u(N)))
√
p(a, yj−1, yj) p(a, yj , yj+1)

with the extremal cases j = −N and j = N − 1 as follows

α−N (a, y, u) = exp (−HI−N (u(N)))
√
p(a, y−N , y−N+1)

αN−1(a, y, u) = exp (−HIN−1(u(N)))
√
p(a, yN−2, yN−1) p(a, yN−1, yN )

In order to obtain a sum of a product of terms that are “temporally independent” from each
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other, we rewrite differently the product of the αj :

N−1∏
j=−N

αj(a, y, u) =
N−1∏
j=−N

(1 + αj(a, y, u)− 1) = 1 +
∑
S

∏
j∈S

(αj(a, y, u)− 1)

where the sum is taken on all non-empty subsets S of {−N, ..., N − 1}.
Thus,

N−1∏
j=−N

αj(a, y, u) = 1 +
∑
p∈N∗

∑
τ1t...tτp

p∏
i=1

∏
j∈τi

(αj(a, y, u)− 1)

where
∑

τ1t...tτp
is the sum over τ1, ..., τp of the form τ = {c, c+ 1, ..., c+ r}, with r > 0, |c| 6 N ,

c+ r 6 N , and d(τi, τj) > 2 if i 6= j.

More precisely, these sets, called clusters, satisfy three conditions :

• aτi ⊂ I(N), in the sense that if j ∈ τi, then j ∈ {−N, ..., N} ;

• if j1, j2 ∈ τi, with j1 < j2, and j1 6 j3 6 j2, then j3 ∈ τi (in some way, they are “connected
sets”, as subsets of Z) ;

• if j1 ∈ τi1 and j2 ∈ τi2 , with i1 6= i2, then |j1 − j2| > 2 (they are “disjoint sets”).

Notice that the sum over p is actually finite : according to the properties of the sets (τi), there
are less than 2 +Na of them, thus p 6 2 +Na.

Coming back to the expression of the partition function,

ZN =
∫
R(2N+1)d

∫
Ω

1 +
∑
p∈N∗

∑
τ1t...tτp

p∏
i=1

∏
j∈τi

(αj(a, y, u)− 1)


×

N−1
⊗

j=−N
P yj ,yj+1
Ij

(du)
N
⊗

j=−N
µ(dyj)

= 1 +
∑
p∈N∗

∑
τ1t...tτp

∫
R(2N+1)d

∫
Ω

p∏
i=1

∏
j∈τi

(αj(a, y, u)− 1)

×
N−1
⊗

j=−N
P yj ,yj+1
Ij

(du)
N
⊗

j=−N
µ(dyj) (3.3.5)

The decomposition of the product of the αj was done to be able to invert the product for
i from 1 to p and both integrals in the expression (3.3.5) just above. This is indeed now possible :

• Take a cluster τi = {ci, ..., ci + ri}.

As
∏
j∈τi

(αj(a, y, u)− 1) only depends on u(t) for

t ∈
⋃
j∈τi

[ja− t0, (j + 1)a] = [(cia− t0)) ∧ (−Na), (ci + ri + 1)a] ⊂ Ici−1 ∪ ... ∪ Ici+ri
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and (ci1 + ri1 + 1)a < ci2a− t0 for i1, i2 ∈ {1, ..., p}, i1 6= i2 and a large enough, we have

(
Ici1−1 ∪ ... ∪ Ici1+ri1

)
∩
(
Ici2−1 ∪ ... ∪ Ici2+ri2

)
= ∅.

This allows us to invert the product of the αj with the integral over Ω : we thus have

ZN = 1 +
∑
p∈N∗

∑
τ1t...tτp

∫
R(2N+1)d

p∏
i=1

∫
Ω

∏
j∈τi

(αj(a, y, u)− 1)

ci+ri−1
⊗

k=ci−1
P yk,yk+1
Ik

(du)
]

N
⊗

j=−N
µ(dyj)

• Moreover, notice that the expression between the square brackets only depends on yci−1, yci , ..., yci+ri .
As a consequence, we can interchange the integral over R2N+1 and the product in i.

Thus, we obtain the following cluster representation of the partition function ZN :

ZN = 1 +
∑
p∈N∗

∑
τ1t...tτp⊂I(N)

p∏
i=1

Γτi (3.3.6)

where

Γτ =
∫
R(|τ |+1)d

∫
Ω

∏
j∈τ

(αj(a, y, u)− 1)
max(τ)−1
⊗

k=min(τ)−1
P yk,yk+1
Ik

max(τ)
⊗

l=min(τ)−1
µ(dyl) (3.3.7)

with |τ | the cardinal of τ .

3.4 Cluster estimates

Having obtained the quantities Γτ associated to a cluster τ , we now wish to control them. More
specifically, we will show that, when the perturbation coefficient β is sufficiently small, there
exists a positive function η(β), which goes to 0 when β goes to 0, such that for a large enough,

|Γτ | 6 η(β)|τ |. (3.4.1)

3.4.1 First upper-bound for the clusters

In order to estimate this coefficient Γτ , we commute the integrals and the remaining product
(over the elements of τ), to obtain the following inequality.

Proposition 23. Setting

Aj(a) =
∫
R3d

∫
Ω

(αj(a, y, u)− 1)4 P yj−1,yj
Ij−1

(du) P yj ,yj+1
Ij

(du) µ(dyj−1) µ(dyj) µ(dyj+1),

we have, for every cluster τ involved in the decomposition (3.3.6),

Γτ 6
∏
j∈τ

Aj(a)1/4

Proof. The following lemma, taken from [20], is the main ingredient of the proof.
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Lemma 7. Let (µx)x∈X be a family of probability measures, each one defined on a space Ex,
where the elements x belong to some finite set X . Let us also define a finite family (fi)i of
functions on EX = ×x∈XEx such that each fi is Xi-local for a certain Xi ⊂ X , in the sense that

fi(e) = fi(e|Xi), for e = (ex)x∈X ∈ EX .

Let ρi > 0 be numbers satisfying the following conditions :

∀x ∈ X ,
∑
Xi3x

1
ρi

6 1.

Then ∣∣∣∣∣
∫
EX

∏
i

fi ⊗x∈X dµx

∣∣∣∣∣ 6∏
i

(∫
EXi

|fi|ρi ⊗x∈Xi dµx

)1/ρi

We apply lemma 7 twice consecutively, first with respect to the integral over Ω, then with
respect to the integral over R(|τ |+1)d.

• For τ = {c, ..., c+ r}, set

Iτ (y) =
∫

Ω

c+r∏
j=c

(αj(a, y, u)− 1)
c+r−1
⊗

k=c−1
P yk,yk+1
Ik

(du).

Taking X = {c−1, ..., c+r−1}, Xi = {i−1, i}, EX = Ω, Ek = C(Ik,R) and dµk = P yk,yk+1
Ik

,

for (ρj)j∈τ such that ρj > 1 and 1
ρj

+ 1
ρj+1

6 1, by Lemma 7,

Iτ (y) 6
c+r∏
j=c

gj(yj−1, yj , yj+1)1/ρj

where gj(yj−1, yj , yj+1) =
∫

Ω
|αj(a, y, u)− 1|ρj P yj−1,yj

Ij−1
(du) P yj ,yj+1

Ij
(du).

• Set now
∼
Γτ =

∫
R(r+2)d

c+r∏
j=c

g
1/ρj
j

c+r
⊗

l=c−1
µ(dyl).

Here we choose X = {c − 1, ..., c + r}, Xi = {i − 1, i, i + 1}, EX = R(r+2)d, Ex = Rd and
dµx = µ(yx), for (γj)j∈{−N,...,N} such that γj > 1 and 1

γj−1
+ 1
γj

+ 1
γj+1

6 1, lemma 7

ensures that

∼
Γτ 6

c+r∏
j=c

(∫
R3d
|gj |γj/ρj µ(dyj−1) µ(dyj) µ(dyj+1)

)1/γj
.

For every i ∈ τ , every j ∈ {−N, ..., N}, we take ρi = γj = 4, and this concludes the proof.

We now control this quantity and prove that it goes to 0, uniformly in j, and even indepen-
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dently of N , for a large enough time-scale a.

3.4.2 Decomposition of Aj(a)

Using that

xy − 1 = (x− 1) y + (y − 1) and that (xy − 1)4 6 8 ((x− 1)4 y4 + (y − 1)4)

for non-negative x and y, and coming back to the expression of the αj , we can decompose Aj(a)
in two parts that will be dealt with separately :

Aj(a) 6 8 Bj(a) + 8 Cj(a)

• if j ∈ {−N + 1, ..., N − 2},

Bj(a) :=
∫
R3d

∫
Ω

(e−HIj (u(N)) − 1)4 p(a, yj−1, yj)2 p(a, yj , yj+1)2

P yj−1,yj
Ij−1

(du) P yj ,yj+1
Ij

(du) µ(dyj−1) µ(dyj) µ(dyj+1)

=
∫

Ω
(e−HIj (u(N)) − 1)4 p(a, u((j − 1)a), u(ja)) p(a, u(ja), u((j + 1)a)) P(du)

Cj(a) :=
∫
R3d

∫
Ω

(√
p(a, yj−1, yj) p(a, yj , yj+1)− 1

)4

× P yj−1,yj
Ij−1

(du) P yj ,yj+1
Ij

(du) µ(dyj−1) µ(dyj) µ(dyj+1)

=
∫
R3d

(√
p(a, x, y) p(a, y, z)− 1

)4
µ(dx) µ(dy) µ(dz)

• if j = −N ,

B−N (a) :=
∫

Ω

(
e−HI−N (u(N)) − 1

)4
p(a, u(−Na), u((−N + 1)a)) P(du)

C−N (a) :=
∫
R2d

(√
p(a, x, y)− 1

)4
µ(dx) µ(dy)

• if j = N − 1,

BN−1(a) :=
∫

Ω

(
e−HIN−1 (u(N)) − 1

)4
p(a, u((N − 2)a), u((N − 1)a))

× p(a, u((N − 1)a), u(Na))2 P(du)

CN−1(a) :=
∫
R3d

(√
p(a, x, y) p(a, y, z)− 1

)4
µ(dx) µ(dy) µ(dz)

We will now study separately the Bj and the Cj , without omitting the two boundary cases,
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especially the one when j = N − 1, which will turn out to be the most troublesome.

3.4.3 Study of Bj(a)

Case j ∈ {−N + 1, ..., N − 2}

Using Cauchy-Schwarz’s inequality, we again decompose the integral in two parts :

Bj(a) =
∫

Ω
(e−HIj (u(N)) − 1)4 p(a, u((j − 1)a), u(ja)) p(a, u(ja), u((j + 1)a)) P(du)

6
∼
Bj(a) Kj(a)

with
∼
Bj(a) =

(∫
Ω
p(a, u((j − 1)a), u(ja))2 p(a, u(ja), u((j + 1)a))2 P(du)

)1/2

and
Kj(a) =

(∫
Ω

(e−HIj (u(N)) − 1)8 P(du)
)1/2

.

Notice that Kj(a) is bounded uniformly in j : indeed,

Kj(a)4 =
(∫

Ω
p(a, u((j − 1)a), u(ja))2 p(a, u(ja), u((j + 1)a))2 P(du)

)2

6
∫

Ω
p(a, u((j − 1)a), u(ja))4 P(du)

∫
Ω
p(a, u(ja), u((j + 1)a))4 P(du)

= E
[
p(a, y((j − 1)a), y(ja))4] E[p(a, y(ja), y((j + 1)a))4

]
=
(∫

R2d
p(a, x, y)4 p(a, x, y) µ(dx) µ(dy)

)2
= ‖p(a, ., .)‖10

L5(µ⊗µ)

The main goal of this subsection is to find an upper bound for

∼
Bj(a) =

(∫
Ω

(e−HIj (u(N)) − 1)8 P(du)
)1/2

,

depending on a and going to 0 as soon as a goes to infinity.

What follows is a direct adaptation of what was done in [22] and [8].

We start by noticing that for every x ∈ R,

(e−x − 1)8 = x8
(∫ 1

0
e−tx dt

)8
= x8

∫
[0,1]8

e−(t1+...+t8)x dt1 ... dt8

and thus
∼
Bj(a)2 =

∫
[0,1]8

∫
Ω
HIj (u(N))8 e

−(t1+...+t8) HIj (u(N)) P(du) dt1 ... dt8
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Set L(z) =
∫

Ω
e
−zHIj (u(N)) P(du).

Then, L is an holomorphic function, and its eighth derivative is

∂

∂z8 L(z) =
∫

Ω
HIj (u(N))8 e

−z HIj (u(N)) P(du)

which means we can rewrite
∼
Bj as

∼
Bj(a)2 =

∫
[0,1]8

∂

∂z8 L(z) |z=t1+...+t8 dt1 ... dt8 (3.4.2)

Notice that

|L(z)| 6
∫

Ω
|e−z HIj (u(N))| P(du) =

∫
Ω
e
− Re(z) HIj (u(N)) P(du) = L(Re(z))

Recall that the expression of the Hamiltonian H is given by equation (3.3.1).
For any real number x, we can obtain an alternative expression of L, using Cauchy-Schwarz
inequality and the martingale property of exp(−H) :

L(x) =
∫

Ω
exp

(
x

∫
Ij

β b((u)tt−t0)∗ dWt −
x

2

∫
Ij

β2 |b((u)tt−t0)|2 dt
)

P(du)

=
∫

Ω
exp

(
x

∫ (j+1)a

ja
β b((u)tt−t0)∗ dWt − x2

∫ (j+1)a

ja
β2 |b((u)tt−t0)|2 dt

)

× exp
(

2x2 − x
2

∫ (j+1)a

ja
β2 |b((u)tt−t0)|2 dt

)
P(du)

6

(∫
Ω

exp
(

2x
∫ (j+1)a

ja
β b((u)tt−t0)∗ dWt − 2x2

∫ (j+1)a

ja
β2 |b((u)tt−t0)|2 dt

)
P(du)

)1/2

×
(∫

Ω
exp

(
x(2x− 1)

∫ (j+1)a

ja
β2 |b((u)tt−t0)|2 dt

)
P(du)

)1/2

=
(∫

Ω
exp

(
x(2x− 1)

∫ (j+1)a

ja
β2 |b((u)tt−t0)|2 dt

)
P(du)

)1/2

We now apply Cauchy’s inequality to L, for ρ such that L is well defined on B(z, ρ) = {v ∈
C, |v − z| 6 ρ} : ∣∣∣∣ ∂∂z8 L(z)

∣∣∣∣ 6 8!
ρ8 sup

v∈B(z,ρ)
|L(v)| (3.4.3)

Thanks to the above expression of L,

|L(v)|2 6
∫

Ω
exp

(
Re(v) (2 Re(v)− 1)

∫ (j+1)a

ja
β2 |b((u)tt−t0)|2 dt

)
P(du)

As |v − z|2 = ρ2, we have (Re(v)− z) 6 ρ2 for z = t1 + ...+ t8, it follows that Re(v) ∈ {x ∈ R :
|z − x| < ρ}, hence Re(v) 6 z + ρ, which implies Re(v) (2 Re(v)− 1) 6 2 (z + ρ)2.
Subsequently,

|L(v)|2 6
∫

Ω
exp

(
2 (ρ+ z)2) aβ2

)
P(du),
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and thus,
sup

v∈C(z,ρ)
|L(v)| 6 exp

(
(ρ+ z)2 aβ2)

)
(3.4.4)

where C(z, ρ) = {v ∈ C, |v − z| = ρ}.

Combining (3.4.2), (3.4.3) and (3.4.4),

∼
Bj(a)2 6

∫
[0,1]8

8!
ρ8 exp

(
(ρ+ t1 + ...+ t8)2 aβ2

)
dt1 ... dt8 6

8!
ρ8 exp

(
(ρ+ 8)2 aβ2)

)
It implies that, for every ρ > 8,

∼
Bj(a)2 6

8!
ρ8 e

4ρ2 aβ2 (3.4.5)

We want to determine which ρ > 8 will minimize the right hand side of this last inequality.

Let f be the function given by f(ρ) = 8!
ρ8 e

4ρ2 aβ2 . Then, f ′(ρ) =
(
−8
ρ

+ 8ρ aβ2
)
f(ρ).

Thus, f ′(ρ) = 0 if and only if ρ2 = 1
aβ2 , which is larger than 8 if and only if

aβ2 6
1
8 , (3.4.6)

and the optimal inequality for (3.4.5) is

∼
Bj(a)2 6 8! e4 (aβ2)4 (3.4.7)

Finally coming back to the expression of Bj , we have obtained, under condition (3.4.6),

Bj(a) 6
√

8! e2 ‖p(a, ., .)‖5/2L5(µ⊗µ) (aβ2)2 (3.4.8)

Boundary cases, j ∈ {−N,N − 1}

Remember that

B−N (a) =
∫

Ω

(
e−HI−N (u(N)) − 1

)4
p(a, u(−Na), u((−N + 1)a)) P(du).

As in the previous case, we can write

B−N (a) 6 K−N (a)
(∫

Ω
(e−HI−N (u(N)) − 1)8 P(du)

)1/2

where
K−N (a)2 =

∫
Ω
p(a, u(−Na), u((−N + 1)a))2 P(du).

This square root can be dealt with in exactly the same fashion as is done above.
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Furthermore,

K−N (a)2 = E[p(a, y(−Na), y((−N + 1)a))2]

=
∫
R2d

p(a, x, y)2 p(a, x, y) µ(dx) µ(dy) = ‖p(a, ., .)‖3L3(µ⊗µ)

Hence the following result :

B−N (a) 6
√

8! e2 ‖p(a, ., .)‖3/2L3(µ⊗µ) (aβ2)2 (3.4.9)

We now turn our attention to

BN−1(a) =
∫

Ω

(
e−HIN−1 (u(N)) − 1

)4
p(a, u((N−2)a), u((N−1)a)) p(a, u((N−1)a), u(Na))2 P(du)

We proceed in a similar way to decompose BN−1(a) into the product of two terms and we have
to study the quantity :

KN−1(a) =
√∫

Ω
p(a, u((N − 2)a), u((N − 1)a))2 p(a, u((N − 1)a), u(Na))4 P(du)

In order to obtain an upper bound for a moment of p(a, ., .), with respect to µ ⊗ µ, smaller
than 8, Cauchy-Schwarz’s inequality will not suffice : we have to apply Hölder’s inequality. We
choose the conjugated numbers 3 and 3/2 :

KN−1(a)2 6
(∫

Ω
p(a, u((N − 2)a), u((N − 1)a))6 P(du)

)1/3

×
(∫

Ω
p(a, u((N − 1)a), u(Na))6 P(du)

)2/3

which leads to
KN−1(a) 6 ‖p(a, ., .)‖7L7(µ⊗µ)

and subsequently to
BN−1(a) 6

√
8! e2 ‖p(a, ., .)‖7/2L7(µ⊗µ) (aβ2)2 (3.4.10)

A bound for Bj(a), uniform in N

From (3.4.8), (3.4.9) and (3.4.10), we deduce that, for every j ∈ {−N, ..., N − 1},

Bj(a) 6
√

8! e2 ‖p(a, ., .)‖7/2L7(µ⊗µ) (aβ2)2 (3.4.11)
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3.4.4 Study of Cj(a)

General case, j ∈ {−N + 1, ..., N − 2}

We remind that

Cj(a) =
∫
R3d

(√
p(a, x, y) p(a, y, z)− 1

)4
µ(dx) µ(dy) µ(dz).

Again, we seek an upper bound for Cj(a) which vanishes when a goes to infinity.

It can be easily checked that for every positive real number U ,

(
√

1 + U − 1)4 6
1
16 U4, (3.4.12)

that for positive x and y,

xy − 1 = (x− 1) (y − 1) + (x− 1) + (y − 1)

and that, thanks to the convexity of u 7→ u4, for any a, b and c,

(a+ b+ c)4 6 27 (a4 + b4 + c4).

Subsequently,

Cj(a) 6 1
16

∫
R3d

(p(a, x, y) p(a, y, z)− 1)4 µ(dx) µ(dy) µ(dz)

6
1
16

∫
R3d

[(p(a, x, y)− 1) (p(a, y, z)− 1) + (p(a, x, y)− 1)

+(p(a, y, z)− 1)]4 µ(dx) µ(dy) µ(dz)

6
27
16

∫
R3d

((p(a, x, y)− 1) (p(a, y, z)− 1))4 µ(dx) µ(dy) µ(dz)

+ 27
8

∫
R2d

(p(a, x, y)− 1)4 µ(dx) µ(dy)

6
27
16

∫
R2d

(p(a, x, y)− 1)8 µ(dx) µ(dy) + 27
8

∫
R2d

(p(a, x, y)− 1)4 µ(dx) µ(dy)

using, once more, Cauchy-Schwarz’s inequality to obtain the final line.

Furthermore,

∫
R2d

(p(a, x, y)− 1)4 µ(dx) µ(dy) 6
√∫

R2d
(p(a, x, y)− 1)8 µ(dx) µ(dy).

Thus, according to Proposition 22,

Cj(a) 6 27
16 γδ(a)8

(
‖p(δ, ., .)‖8L8(µ⊗µ) ∨ 1

)
+ 27

8 γδ(a)4
(
‖p(δ, ., .)‖4L8(µ⊗µ) ∨ 1

)
.
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Boundary cases, j ∈ {−N,N − 1}

We can check that both boundary cases exhibit an analogous behaviour.

Indeed, on the one hand, recall that

C−N (a) =
∫
R2d

(√
p(a, x, y)− 1

)4
µ(dx) µ(dy).

Thus, thanks to (3.4.12) and Proposition 22,

C−N (a) 6 1
16

∫
R2d

(p(a, x, y)− 1)4 µ(dx) µ(dy)

6
1
16

√∫
R2d

(p(a, x, y)− 1)8 µ(dx) µ(dy)

6
1
16 γδ(a)4

(
‖p(δ, ., .)‖4L8(µ⊗µ) ∨ 1

)
.

On the other hand,

CN−1(a) =
∫
R3d

(√
p(a, x, y) p(a, y, z)− 1

)4
µ(dx) µ(dy) µ(dz.)

Notice that

(
√
p(a, x, y) p(a, y, z)− 1)4 6 8 (p(a, y, z)− 1)4 p(a, x, y)2 + 8 (

√
p(a, x, y)− 1)4.

With Cauchy-Schwarz inequality and the computation of C−N (a) thrown in, it leads to

CN−1(a) 6 8
∫
R3d

(p(a, y, z)− 1)4 p(a, x, y)2 µ(dx) µ(dy) µ(dz)

+ 8
∫
R2d

(
√
p(a, x, y)− 1)4 µ(dx) µ(dy)

6 8
√∫

R2d
(p(a, x, y)− 1)8 µ(dx) µ(dy)

√∫
R2d

p(a, x, y)4 µ(dx) µ(dy)

+ 1
2 γδ(a)4

(
‖p(δ, ., .)‖4L8(µ⊗µ) ∨ 1

)
6 8 γδ(a)4

(
‖p(δ, ., .)‖4L8(µ⊗µ) ∨ 1

)
‖p(a, ., .)‖2L4(µ⊗µ)

+ 1
2 γδ(a)4

(
‖p(δ, ., .)‖4L8(µ⊗µ) ∨ 1

)
=
(

8 ‖p(a, ., .)‖2L4(µ⊗µ) + 1
2

)
γδ(a)4

(
‖p(δ, ., .)‖4L8(µ⊗µ) ∨ 1

)
.

Global upper bound for all Cj

Taking into account all three cases, when a > 2δ, for every j ∈ {−N, ..., N − 1},

Cj(a) 6 γδ(a)4
(
‖p(δ, ., .)‖4L8(µ⊗µ) ∨ 1

)((27
16 γδ(a)4 + 8

)(
‖p(δ, ., .)‖4L8(µ⊗µ) ∨ 1

)
+ 4

)
(3.4.13)

To obtain the control of |Γτ | we are seeking, it remains to put all the pieces together and to
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determine its domain of validity with respect to a and b.

3.4.5 Back to the clusters

At last, the proposition below gives us the cluster estimates.

Proposition 24. Assume that (H1) and (H2) are satisfied. Let ε be a positive number.
There exist a minimal time-scale aε, defined in (3.4.22), and an upper-bound βε, given by
(3.4.23), such that if a > aε and β 6 βε, then, for every cluster τ , the quantity Γτ defined
in (3.3.7) satisfies

|Γτ | 6 ε|τ |. (3.4.14)

Proof. Suppose that a > 2δ and that (3.4.6) holds, i.e. β 6
1√
8a

.
Recall that

Mδ = sup
a>δ
‖p(a, ., .)‖L8(µ⊗µ) ∨ 1 (3.4.15)

Thus, we can obtain bounds for Bj and Cj easier to deal with : according to (3.4.11) and (3.4.13)
respectively,

Bj(a) 6
√

8! e2 M
7/2
δ (aβ2)2 (3.4.16)

Cj(a) 6M4
δ

(
4 + 2M4

δ

(
4 + γδ(a)4

))
γδ(a)4

Remember that
|Γτ (a)| 6

∏
j∈τ

(8 Bj(a) + 8 Cj(a))1/4 ,

so (3.4.14) will be satisfied if, for a sufficiently large, both Bj(a) and Cj(a) are smaller than ε4/16.

• One can check, by solving a second order inequality in γδ(a)4, that for all a such that

γδ(a)4 6

(
2 + 1

M4
δ

)(√
1 + ε4

32 (1 + 2 M4
δ )2 − 1

)
(3.4.17)

the condition Cj(a) 6 ε4

16 is true.

We remind that γδ was introduced in Proposition 22 and is defined by

γδ(a) = 2 Mδ e
−(a−2δ)/CP ,

with CP the constant associated with the Poincaré’s inequality satisfied by µ, according
to hypothesis (H1).
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Using this expression, and setting

aC(ε) = 2 δ − CP
4 ln

(
1

16 M4
δ

(
2 + 1

M4
δ

)(√
1 + ε4

32 (1 + 2 M4
δ )2 − 1

))
(3.4.18)

it can be shown that (3.4.17) is equivalent to :

a > aC(ε)

Thus, for every a > aC(ε), Cj(a) 6 ε4

16.

It can be noticed that

aC(ε) > 2δ if and only if ε 6 25/2 M2
δ (8 M8

δ + 2 M4
δ + 1)1/4. (3.4.19)

• From (3.4.16), it can be seen that Bj(a) 6 ε4

16 if

β 6
1

2
√
e (8!)1/8 M

7/8
δ

ε√
a

(3.4.20)

Notice that

ε

2
√
e (8!)1/8 M

7/8
δ

6
1√
8

if and only if ε 6
√
e

2 (8!)1/8 M
7/8
δ . (3.4.21)

Thus, according to (3.4.6), (3.4.17) and (3.4.20), setting

aε = aC(ε) ∨ (2δ)

that is

aε = 2 δ −
[
CP
4 ln

(
1

16 M4
δ

(
2 + 1

M4
δ

) (√
1 + ε4

32 (1 + 2 M4
δ )2 − 1

))]
−

(3.4.22)

where x− = min(x, 0), and

βε =
(

ε

2
√
e (8!)1/8 M

7/8
δ

∧ 1√
8

)
1
√
aε
,

that is,

βε =
ε

2
√
e (8!)1/8 M

7/8
δ

∧ 1√
8√

2δ −
[
CP
4 ln

(
1

16 M4
δ

(
2 + 1

M4
δ

)(√
1 + ε4

32 (1+2 M4
δ

)2 − 1
))]

−

(3.4.23)
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the proposition holds.

Remark 17. We recall hypothesis (H2) : there exists δ > 0 such that

sup
t>δ
‖p(t, ., .)‖L8(µ⊗µ) <∞.

One can notice that we only require ‖p(t, ., .)‖L8(µ⊗µ) to be finite for certain values of t and it
is not necessary for the supremum over t to be finite. However, the current form of (H2) simpli-
fies the writing of the proofs, and it is satisfied by the important case of the Ornstein-Uhlenbeck
process, as will be seen in section 3.6.

3.5 Completion of the proof of Theorem 14

In order to connect with the cluster expansion method, and to obtain an inequality of the form
of (3.4.1), we have to show that ε can be expressed as a function of β that will go to 0 when β

goes to 0.

Suppose that

ε 6
(
25/2 M2

δ (8M8
δ + 2 M4

δ + 1)1/4
)
∧
(√

e

2 (8!)1/8 M
7/8
δ

)
=: ε0. (3.5.1)

Then according to equivalences (3.4.19) and (3.4.21),

βε = ε

2
√

2e (8!)1/8 M
7/8
δ

√
δ − CP

8 ln
(

1
16 M4

δ

(
2 + 1

M4
δ

)(√
1 + ε4

32 (1+2 M4
δ

)2 − 1
)) (3.5.2)

One can see that ε 7→ βε is of the form

C1 ε√
1− C2 ln(C3 (

√
1 + C4 ε4 − 1))

,

for some C1, C2, C3 and C4 depending only on δ and CP , and is thus an invertible function.

Compute the derivative of βε with respect to ε :

β
′
ε = βε

ε

1 + C2 C4
C2

1

ε2 β2
ε√

1 + C4 ε4
(√

1 + C4 ε4 − 1
)


β
′
ε is positive for every ε in (0, ε0] ; thus, ε 7→ βε is (strictly) increasing from (0, ε0] to (0, βε0 ].

Therefore, ε 7→ βε admits an inverse function on η : (0, βε0 ] that we will call η : η is increasing
and η(x) goes to 0 when x goes to 0. For simplicity, denote by β0 the bound βε0 given by (3.5.1)
and (3.5.2).
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We can now rewrite Proposition 24 in a more amenable way :

Proposition 25. There exists β0 such that if β 6 β0, then, for every cluster Γτ ,

|Γτ | 6 η(β)|τ | (3.5.3)

where η, defined just above, is a function that goes to 0 in 0.

Remark 18. One can easily show that a first-order approximation of βε, when ε is small, is

βε ∼ C ε (− ln(ε))−1/2,

for a certain, explicit, constant C, depending only on the parameters δ and CP , given by the
hypotheses (H1) and (H2). Since, for any α > 0, when ε is small enough, − ln(ε) 6

1
ε2α , thus

βε > C ε1+α, and Proposition 25 holds, with η : y 7→ C y1/(1+α).

Recall that we wish to prove the convergence of the sequence of measures (QN )N , with

QN (du) = 1
ZN

exp(−HN (u(N))) P(du),

towards a weak stationary solution Q of the perturbed equation (3.2.5).

Proposition 25, just above, is the key point to prove this convergence : the cluster repre-
sentation (3.3.6) of the partition function ZN and the cluster estimate (3.5.3) are the crucial
elements in order to obtain in a canonical way an expansion for the measures QN (see [17]).
It has been explained in details in both [8] and [19] (see for instance paragraph 4.1.4 of [19],
with lemma 10 and what follows) ; we give here an overview of the reasoning, adapted to our
framework.

For a finite subset S of Z, we associate IS such that IS = ∪k∈S Ik.
We define the partition function on I by

ZI = 1 +
∑

τ1t...tτp

p∏
i=1

Γτi

where the τi are defined as in subsection 3.3.2 : they are connected sets, disjoint from each
other, such that aτi ⊂ I. Notice that I{−N,...,N−1} = I(N) and ZN = ZI(N).

For S1 ⊂ S2, we define

fS2
S1

=
ZIS2\ĪS1

ZIS2

where ĪS = ∪k∈S Īk and Īk = Ik−1 ∪ Ik ∪ Ik+1.
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The original version of the following lemma can be found in [17] ; here it is adapted to our
needs.

Lemma 8. For β small enough,

(i) There exists a positive constant C1, independent from S1 and S2, such that

|fS2
S1
| < C1 2|S1|. (3.5.4)

(ii) The following assertion holds

fS2
S1

= 1 +
∑

τ1,...,τp

CS1(τ1, ..., τp)
p∏
i=1

Γτi , (3.5.5)

where the sum is over every τ1, ..., τp for every possible integer p as defined in section 3.3.2,
such that IS1 ∩ a(τ1 t ... t τp) 6= ∅ and aτ1 t ... t aτp ⊂ IS2 . CS1(τ1, ..., τp) is independent
from S2. Furthermore, the series converges absolutely.

(iii) The expression (3.5.5) admits a limit fS1 when S2 tends towards Z and it satisfies

fS1 = 1 +
∑

IS1∩(aτ1t...taτp)6=∅
CS1(τ1, ..., τp)

p∏
i=1

Γτi . (3.5.6)

(iv) There exists a positive constant C2 such that

|fS2
S1
− fS1 | < C2 2|S̄|−d(IS1 ,I

c
S2

)

where S̄ is such that IS̄ = ĪS1 .

(v) The exists a positive constant C3 such that for any subsets S1 and Ŝ1 of S2,

|fS2
S1∪Ŝ1

− fS2
S1
fS2
Ŝ1
| < C3 3|S1|+|Ŝ1| η(β)d(IS1 ,IŜ1

)
,

|fS1∪Ŝ1
− fS1 fŜ1

| < C3 3|S1|+|Ŝ1| η(β)d(IS1 ,IŜ1
)
. (3.5.7)

Remark 19. This is where, despite the explicit bounds obtained in (3.4.23) and (3.5.1), we must
renounce to an explicit expression for the required smallness of β.

Let I be a finite interval and N large enough such that I ⊂ I(N). Let FI be a I-local
bounded measurable function on Ω, i.e. for every u in Ω, FI(u) = F (uI). Our aim is to show
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that when β is small enough, the sequence
(∫

FI dQN

)
N

converges.

Recall that ∫
FI dQN = 1

ZN

∫
Ω
FI(u) exp(−HN (u(N))) P(du)

From manipulations similar to those of section 3.3.2, one can establish that∫
FI dQN = 1

ZN

∑
τ1,...,τp

Kτ1,...,τp(FI) ZI(N)\(I∪τ1t...tτp)

with τ1 t ... t τp ⊂ {−N, ..., N} and where the coefficients Kτ1,...,τp(FI) can be given explicitly,
and do not depend on N .

The above expression can be written as∫
FI dQN =

∑
τ1,...,τp

Kτ1,...,τp(FI) f
I(N)
I∪(τ1t...tτp).

From (3.5.5), we have

∫
FI dQN =

∑
τ1,...τp

Kτ1,...,τp(FI)

1 +
∑

τ̂1,...,τ̂q

CI∪(τ1t...tτp)(τ̂1, ..., τ̂q)
q∏
j=1

Γτ̂j


with τ1t...tτp ⊂ {−N, ..., N}, τ̂1t...t τ̂q ⊂ {−N, ..., N} and (I∪(τ1t...tτp))∩(τ̂1t...t τ̂q) 6= ∅.
From (3.5.4) and (3.5.6), we can conclude that there is absolute convergence of the series over
τ̂1, ..., τ̂q when S2 converges towards Z, so that

lim
N→+∞

∫
FI dQN =

∑
τ1,...τp

Kτ1,...,τp(FI) fI∪(τ1t...tτp)

Setting
∫
FI dQ := lim

N→+∞

∫
FI dQN , the following result holds.

Proposition 26. Assume (H1) and (H2). For β small enough, there exists a unique stationary
probability measure Q on Ω such that :

Q = lim
N→∞

QN

The probability Q is the weak limit of the sequence (QN ), in the sense that it is the limit
for the topology of local convergence.

Due to the nature of the convergence in Proposition 26, properties that are satisfied by
the approximations QN are inherited by the limit Q. Indeed, further classical results taken
from Gibbs field theory (a combination of Proposition 2 and Lemma 4 in [8]) ensure that the
probability measure Q is truly a weak stationary solution of the equation :

dXt =
(
−1

2 ∇V (Xt) + β b((X)tt−t0)
)
dt+ dWt, (3.2.5)
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that is, under the probability measure Q, the canonical process (Xt) satisfy the stochastic sys-
tem (3.2.5).

Hence our main result.

The property of exponential decorrelations, (iii) of Theorem 14,∣∣∣∣∫ f(Xt) g(Xt′) dQ−
∫
f(Xt) dQ

∫
g(Xt′) dQ

∣∣∣∣ 6 θ1 e
−θ2 |t−t′|,

is a consequence of the inequality (3.5.7) and of a cluster representation for quantities of the
form : ∫

f(Xt) g(Xt′) dQN −
∫
f(Xt) dQN

∫
g(Xt′) dQN ,

for t, t′ ∈ I(N).

As the correlations decay at an exponential rate, we have strong mixing properties, and, in
particular, the central limit theorem below. Though this process is not Markovian, the proof of
the following corollary is similar to that of the famous result obtained in [14] and expanded in [4].

Corollary 6. If a smooth f is such that
∫
fdν = 0, then under Q,

1√
t

∫ t

0
f(Xs) ds

(d)−→
t→+∞

N (0, σ2
f )

with
σ2
f := 2

∫ +∞

−∞
EQ[f(X0) f(Xs)] ds =

∫
|∇f |2 dν

3.6 An example : the Ornstein-Uhlenbeck dynamics as refer-
ence process

Suppose the reference drift g is a linear one.
In order to simplify the writing of the computations, we restrict ourselves to the one-dimensional
situation d = 1 ; the behaviour in higher dimensions is completely similar.

We are thus considering the one-dimensional Ornstein-Uhlenbeck process solution of :

dXt = −λ Xt dt+ dWt

where λ is a positive parameter and (Wt) is a standard one-dimensional Brownian motion.
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3.6.1 Verification of the assumptions

It is a process whose explicit expression and general behaviour are well-known ; in particular, it
admits the Gaussian law µ = N (0, 1/2λ), whose density is given by

µ(dy) =

√
λ

π
e−λy

2
dy,

as its (unique) symmetric probability measure.

Furthermore, the transition density of (yt) with respect to µ is given by

p(t, x, y) = 1√
1− e−2λt

exp
(
− λ

1− e−2λt

(
(x2 + y2) e−2λt − 2 x y e−λt

))
.

Thus, all the assumptions made at the beginning of section 3.2.1 are satisfied, as are hypotheses
(H1) and (H2) :

Proposition 27. In this setting, assumptions (H1) and (H2) are satisfied, with CP = 1
2λ and

any δ > ln(7)
λ

. Furthermore, these bounds are optimal.

Proof. Indeed, thanks to a well-known result (see, for instance, [1]) on Poincaré’s inequalities
verified by Gaussian measures, for a smooth function f ,

V arµ(f) 6 1
2λ

∫
(f ′)2 dµ

which implies that (H1) holds, with CP = 1/2λ.

Moreover, (H2) follows from the lemma below :

Lemma 9. For every positive t and for k ∈ N∗,

∫
R2
p(t, x, y)k µ(dx) µ(dy) = 1

(1− e−2λt)k/2−1
√

(1 + (k − 1) e−2λt)2 − k2 e−2λt
(3.6.1)

We thus have immediately :

Corollary 7. For every integer k,‖p(t, ., .)‖Lk(µ⊗µ) goes to 1 when t goes to infinity, and for
every K > 1, there exists tK such that

sup
t>tK
‖p(t, ., .)‖Lk(µ⊗µ) 6 K

Proof. Set Ik(t) =
∫
R2
p(t, x, y)k µ(dx) µ(dy).
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Then, letting Kt = λ (1− e−2λ t)−1, ct = 1 + (k − 1)e−2λ t, and dt = k e−λ t,

Ik(t) = λ

π
(1− e−2λ t)−k/2

×
∫
R2

exp
(
− λ

1− e−2λ t

(
(1 + (k − 1) e−2λ t)(x2 + y2)− 2k x y e−λt

))
dx dy

= λ

π
(1− e−2λ t)−k/2

∫
R2

exp
(
−Kt ct (x− dt

ct
y)2
)

exp
(
−Kt ct (1− d2

t

c2
t

) y2
)
dx dy

= λ

π
(1− e−2λ t)−k/2

√
π

Kt ct

√√√√ π

Kt ct (1− d2
t

c2t
)

= λ (1− e−2λ t)−k/2 1

Kt

√
c2
t − d2

t

= (1− e−2λ t)1−k/2 1√
c2
t − d2

t

Hence the result we were looking for.

In particular,

‖p(a, ., .)‖8L8(µ⊗µ) = (1− e−2 λa)−3 (1− 50 e−2 λa + 49 e−4 λa)−1/2

which is finite if and only a > ln(7)
λ

.

Besides, a study of the function a 7→ (1 − e−2λa)−3 (1 − 50 e−2 λ a + 49 e−4 λ a)−1/2 shows

that it is decreasing towards 1 on the open interval
( ln(7)

λ
,+∞

)
.

Thus, for every δ > ln(7)
λ

,
sup
a>δ
‖p(a, ., .)‖L8(µ⊗µ) <∞

and, furthermore,

sup
a>δ
‖p(a, ., .)‖L8(µ⊗µ) = (1− e−2λδ)−3/8 (1− 50 e−2λδ + 49 e−4λδ)−1/16 = Mδ

where Mδ corresponds to the constant defined in (3.4.15).

The perturbed equation is

dxt =
(
−λxt + β b((x)tt−t0)

)
dt+ dWt

where b : R×C([−t0, 0],R)→ R is a measurable function, bounded by 1, satisfying the assump-
tion (H3) introduced in subsection 3.2.2, and β is a positive number.

3.6.2 Numerical applications

The map ε 7→ βε

We represent the function ε 7→ βε, where βε is the bound defined in (3.4.23), taking δ = 2
λ

(as
ln(7) ∼ 1.95).

164



Figure 3.1: The map ε 7→ b̄(ε) between 0 and
1. Figure 3.2: The surface (δ, λ) 7→ B0.9(δ, λ) for

δ ∈ [0, 10] and λ ∈ [0, 5].

Then Mδ = (1− e−4)−3/8(1− 50e−4 + 49e−8)−1/16 ' 1.16.

This map can be seen in figure 3.1, for ε evolving between 0 and 1. This curve is not linear,
and, as expected, non-decreasing : the smaller ε, the smaller βε, and it vanishes when ε vanishes.

Determination of βε

We seek to obtain the largest possible value βε, to have the largest possible window of choice
for β satisfying Proposition 24. Indeed, one should note that its expression depends on the
parameter δ, which appears in hypothesis (H2) and is not uniquely determined : in our case,

any δ > ln(7)
λ

will do.

Consider Bε(., .) = βε as a function of ε, δ and λ :

Bε(δ, λ) = ε

2
√

2e(8!)1/8M
7/8
δ

(
δ − 1

16λ ln
(

2M4
δ + 1

16M8
δ

(√
1 + ε4

32(1 + 2M4
δ )2 − 1

)))−1/2

with Mδ = (1− e−2δ)−3/8 (1− 50 e−2δ + 49 e−4δ)−1/16.

Set ε = 0.9 and a = a0.9.
Differentiating B with respect to δ in order to find the points where the derivative vanishes, and
thus the maxima of the function, looks a rather hopeless case.
We draw the map of (δ, λ) 7→ B0.9(δ, λ) in Figure 3.2.

Looking closely at the relation between sup
δ
B0.9(δ, λ) and λ, one can conjecture that

sup
δ>

ln(7)
λ

B0.9(δ, λ) ' 0.0291
√
λ
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Chapter 4

The 2-D stochastic Keller-Segel
particle model : existence and
uniqueness.

This chapter, written in collaboration with Patrick Cattiaux, was published, under the same
title, in ALEA, Lat. Am. J. Probab. Math. Stat. 13 (1), 447− 463 (2016).

Abstract : We introduce a stochastic system of interacting particles which is expected to
furnish, as the number of particles goes to infinity, a stochastic approach of the 2-D Keller-Segel
model. In this note, we prove existence and some uniqueness for the stochastic model for the
parabolic-elliptic Keller-Segel equation, for all regimes under the critical mass. Prior results for
existence and weak uniqueness have been very recently obtained by Fournier and Jourdain.

Keywords : Keller-Segel model, diffusion processes, Bessel processes
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4.1 Introduction and main results.

The (Patlak) Keller-Segel system introduced in [12], is a tentative model to describe chemo-taxis
phenomenon, an attractive chemical phenomenon between organisms. In two dimensions, the
classical 2-D parabolic-elliptic Keller-Segel model reduces to a single non linear P.D.E.,

∂tρt(x) = ∆x ρt(x) + χ∇x.((K ∗ ρt)ρt)(x) (4.1.1)

with some initial ρ0.
Here ρ : R+ × R2 → R, χ > 0 and K : x ∈ R2 7→ x

‖ x ‖2
∈ R2 is the gradient of the harmonic

kernel, i.e. K(x) = ∇ log(‖ x ‖).
It is not difficult to see that (4.1.1) preserves positivity and mass, so that we may assume that
ρ0 is a density of probability, i.e. ρ0 > 0 and

∫
ρtdx =

∫
ρ0dx = 1.

With this choice, (4.1.1) is written in a non-dimensional form. In order to compare it to the
usual formulation, the reader can think that the parameter χ is actually given by

χ = χ0
αm

2πD

where χ0 is the chemotactic sensitivity, α is the rate of production of chemoattractant by the
cells, m is the total mass and D is the product of the diffusivities.
As usual, ρ is modeling a density of cells, and ct = K ∗ ρt is (up to some constant) the concen-
tration of chemo-attractant.

A very interesting property of such an equation is a blow-up phenomenon

Theorem 4.1.2. Assume that ρ0 log ρ0 ∈ L1(R2) and that (1+ ‖ x ‖2)ρ0 ∈ L1(R2). Then if
χ > 4, the maximal time interval of existence of a classical solution of (4.1.1) is [0, T ∗) with

T ∗ 6
1

2π χ (χ− 4)

∫
‖ x ‖2 ρ0(x) dx .

If χ 6 4 then T ∗ = +∞.

For this result, a wonderful presentation of what Keller-Segel models are and an almost up to
date state of the art, we refer to the unpublished HDR document of Adrien Blanchet (available
on Adrien’s webpage [1]). We also apologize for not furnishing a more complete list of references
on the topic, where beautiful results were obtained by brilliant mathematicians. But the present
paper is intended to be a short note.

Actually (4.1.1) is nothing else but a Mc Kean-Vlasov type equation (non linear Fokker-
Planck equation if one prefers), involving a potential which is singular at 0. Hence one can
expect that the movement of a typical cell will be given by a non-linear diffusion process

dXt =
√

2 dBt − χ (K ∗ ρt)(Xt) dt , (4.1.3)

ρt(x) dx = L(Xt) ,

where L(Xt) denotes the distribution of probability of Xt. A natural possible approach of (4.1.3)
is through the limit, as N goes to infinity, of a linear system of stochastic differential equations
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in mean field interactions given for i = 1, ..., N by

dXi,N
t =

√
2 dBi,N

t − χ

N

N∑
j 6=i

Xi,N
t −Xj,N

t

‖ Xi,N
t −Xj,N

t ‖2
dt , (4.1.4)

for a well chosen initial distribution of the X .,N
0 . Here the Bi,N

. are for each N independent
standard 2-D Brownian motions. Under some exchangeability assumptions, it is expected that
the distribution of any particle (say X1,N ) converges to a solution of (4.1.3) as N →∞, yielding
a solution to (4.1.1). This strategy (including the celebrated propagation of chaos phenomenon)
has been well known for a long time. One can see [16] for bounded and Lipschitz potentials,
[15, 4] for unbounded potentials connected with the granular media equation.

The goal of the present note is the study of existence, uniqueness and non explosion for
the system (4.1.4). That is, this is the very first step of the whole program we have described
previously. Moreover we will see how the N -particle system is feeling the blow-up property of
the Keller-Segel equation.

(4.1.4) can be viewed as a “modern” formulation of the microscopic description given by
Keller and Segel themselves in [13]. The main difficulty is of course that the potentials explode
when two particles are colliding. For such singular potentials very few is known.
Fournier, Hauray and Mischler [5] have tackled the case of the 2-D viscous vortex model, cor-

responding to K(x) = x⊥

‖ x ‖2
for which no blow-up phenomenon occurs. In the same spirit the

sub-critical Keller-Segel model corresponding to K(x) = x

‖ x ‖2−ε
for some ε > 0 is studied in

[8]. The methods of both papers are close, and mainly based on some entropic controls. These
methods seem to fail for the classical Keller-Segel model we are looking at. However, during
the preparation of the manuscript, we received the paper by N. Fournier and B. Jourdain [6],
who prove existence and some weak uniqueness by using approximations. Though some inter-
mediate results are the same, we shall here give a very different and much direct approach, at
least for existence and some uniqueness. However, we shall use one result in [6] to prove a more
general uniqueness result. Also notice that a similar model (but with a different treatment after
collisions) was studied from a numerical point of view in [9] and a theoretical one in [10].

It can also be noticed that when we replace the attractive potential K by a repulsive one (say
−K), we find models connected with random matrix theory (like the Dyson Brownian motion).

Our main theorem in this paper is the following

Theorem 4.1.5. Let M = {there exists at most one pair i 6= j such that Xi = Xj}. Then,

• for N > 4 and χ < 4
(

1− 1
N − 1

)
, there exists a unique (in distribution) non explosive

solution of (4.1.4), starting from any x ∈M . Moreover, the process is strong Markov, lives
in M and admits a symmetric σ-finite, invariant measure given by

µ(dX1, ..., dXN ) = Π16i<j6N ‖ Xi −Xj ‖−
χ
N dX1...dXN ,

• for N > 2, if χ > 4, the system (4.1.4) does not admit any global solution (i.e. defined on
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the whole time interval R+),

• for N > 2, if χ = 4, either the system (4.1.4) explodes or the N particles are glued in
finite time.

Let us explain a little bit more on the meaning of this statement. A (weak) solution of
(4.1.4) up to a stopping time T and starting from x is a Probability measure Px on the state of
continuous paths from R+ into (R2)N such that for all t > 0,

M i,N
t = Xi,N

t∧T − x
i −

∫ t∧T

0

χ

N

N∑
j 6=i

Xi,N
s −Xj,N

s

‖ Xi,N
s −Xj,N

s ‖2
ds

is well defined and is a martingale with brackets

〈M ik,N ,M jl,N 〉t = 2 (t ∧ T ) δik=jl .

(Recall that xi = (xi1 , xi2)). The supremum of all stopping times such that this property holds
is the explosion time or the lifetime, we shall denote by ξ in the sequel.
The first part of the Theorem thus tells us that for any x ∈ M such a solution Px exists with
ξ = +∞, Px almost surely. In addition the hitting time TMc of the complement of M is Px
almost surely infinite too. Finally, the family (Px)x∈M is a strong Markov family on C0(R+,M)
that admits µ as a symmetric measure.
When χ > 4 we shall not describe the explosion time ξ, but we shall prove that, denoting by
TN the first time of collision of all the N particles, ξ ∧ TN < +∞. If χ > 4 we will see that a
solution cannot exist after time TN , hence TN ∧ ξ = ξ < +∞. For χ = 4 the situation is more
intricate but on TN < t < ξ (which can be empty) we will see that all the particles are glued (i.e.
Xi,N
t = Xj,N

t for all i and j). The situation for 4
(

1− 1
N − 1

)
6 χ < 4 is still more intricate,

but some results are contained in [6].

The proof of this theorem is partly “pathwise”, based on comparisons between one dimen-
sional diffusion processes and the behavior of squared Bessel processes, partly based on Dirichlet
forms theory and partly based on an uniqueness result for 2 dimensional skew Bessel processes
obtained in [6]. The latter is only used to get rid of a non allowed polar set of starting positions
which appears when using Dirichlet forms.
Recall that a set E is polar if for all x ∈M the hitting time TE of E defined as

TE = inf{t > 0 , Xt ∈ E}

is Px almost surely infinite.

Since later we will be interested in the limit N → +∞, this theorem is in a sense optimal:
for χ < 4 we have no asymptotic explosion while for χ > 4 the system explodes. Also notice
that in the limiting case χ = 4, we have (at least) explosion for the density of the stochastic
system and not for the equation (4.1.1).
The remaining part of the whole program will be the aim of future works.
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4.2 Study of the system (4.1.4).

Most of the proofs in this section will use comparison with squared Bessel processes. Let us
recall some basic results on these processes.

Definition 4.2.1. Let δ ∈ R. The unique strong solution (up to some explosion time τ) of the
following one dimensional stochastic integral equation

Zt = z + 2
∫ t

0

√
Zs dBs + δ t ,

is called the (generalized) squared Bessel process of dimension δ starting from z > 0.

In general squared Bessel processes are only defined for δ > 0, that is why we used the word
generalized in the previous definition. For these processes the following properties are known

Proposition 4.2.2. Let Z be a generalized squared Bessel process of dimension δ. Let τ0 the first
hitting time of the origin.

• If δ < 0, then τ0 is almost surely finite and equal to the explosion time,

• if δ = 0, then τ0 < +∞ and Zt = 0 for all t > τ0 almost surely,

• if 0 < δ < 2, then τ0 < +∞ almost surely and the origin is instantaneously reflecting, i.e
starting from 0 the hitting time of ]0,+∞[ is almost surely equal to 0,

• if δ > 2, then the origin is polar (hence τ0 = +∞ almost surely).

For all this see [17] chapter XI, proposition 1.5.

Now come back to (4.1.4). For simplicity we skip the index N in the definition of the process.
Since all coefficients are locally Lipschitz outside the set

A =
{

there exists (at least) a pair i 6= j such that Xi = Xj
}

and bounded when the distance to A is bounded from below, the only problem is the one of
collisions between particles. As usual we denote by ξ the lifetime of the process. For simplicity
we also assume, for the moment, that the starting point does not belong to A, so that the
lifetime is almost surely positive.

For 2 6 k 6 N we define K = {1, ..., k} and K̄2 = {(i, j) ∈ K2|i 6= j}. We shall say that a
k-collision occurs at (a random) time T if Xi

T = Xj
T for all (i, j) ∈ K̄2, X l

T 6= Xi
T for all l > k.

Of course, there is no lack of generality when looking at the first k indices, and we can also
assume that at this peculiar time T , any other collision involves at most k other particles.
In what follows we denote Di,j = Xi −Xj , and

Zk =
∑

(i,j)∈K̄2

‖ Di,j ‖2 .

Of course a k-collision occurs at time T if and only if T < ξ and ZkT = 0.
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Let us study the process Zk. Applying Ito’s formula we get on t < ξ

Zkt = Zk0 + 2
√

2
∫ t

0

∑
(i,j)∈K̄2

Di,j
s (dBi

s − dBj
s) + 4k(k − 1)

(
2− χ

N

)
t (4.2.3)

− 2χ
N

∫ t

0

∑
(i,j)∈K̄2

Di,j
s

N∑
l=1
l6=i,j

(
Di,l
s

‖ Di,l
s ‖2

+ Dl,j
s

‖ Dl,j
s ‖2

)
ds .

We denote

dMk
s =

∑
(i,j)∈K̄2

Di,j
s (dBi

s − dBj
s)

Eks =
∑

(i,j)∈K̄2

Di,j
s

N∑
l=1
l6=i,j

(
Di,l
s

‖ Di,l
s ‖2

+ Dl,j
s

‖ Dl,j
s ‖2

)

the martingale part and the non-constant drift part.

4.2.1 Investigation of the martingale part Mk.

Let us compute the martingale bracket, using the immediate Di,l = −Dl,i and Di,l + Dl,j =
Di,j .

d < Mk >s =
∑

(i,j)∈K̄2

(l,m)∈K̄2

< Di,j
s (dBi

s − dBj
s), Dl,m

s (dBl
s − dBm

s ) >

=
∑

(i,j)∈K̄2

(l,m)∈K̄2

Di,j
s Dl,m

s (δil − δim − δjl + δjm) ds

=
∑

(i,j)∈K̄2

Di,j
s

∑
m∈K
m6=i

Di,m
s +

∑
l∈K
l6=i

Di,l
s +

∑
l∈K
l6=j

Dl,j
s +

∑
m∈K
m6=j

Dm,j
s

 ds

= 2
∑

(i,j)∈K̄2

Di,j
s

∑
m∈K
m6=i

Di,m
s +

∑
m∈K
m6=j

Dm,j
s

 ds
= 2k

∑
(i,j)∈K̄2

‖ Di,j
s ‖2

i.e. finally
d < Mk >s= 2k ZKs ds . (4.2.4)

According to Doob’s representation theorem (applied to 1Is<ξ d < Mk >s), there exists (on an
extension of the initial probability space) a one dimensional Brownian motion W k such that
almost surely for t < ξ

2
√

2
∫ t

0

∑
(i,j)∈K̄2

Di,j
s (dBi

s − dBj
s) = 4

√
k

∫ t

0

√
Zks dW

k
s . (4.2.5)
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4.2.2 Reduction of the drift term.

In order to study the drift term Ekt we will divide it into two sums: the first one, Ckt taking
into consideration the i and j in K, i.e. the pair of particles which will be directly involved in
the eventual k-collision; the other one Rkt , involving the remaining indices.

More precisely Ekt = Ckt +Rkt with

Ckt =
∑

(i,j)∈K̄2

∑
l∈K
l6=i,j

Di,j
t

(
Di,l
t

‖ Di,l
t ‖2

+ Dl,j
t

‖ Dl,j
t ‖2

)
,

Rkt =
∑

(i,j)∈K̄2

N∑
l=k+1

Di,j
t

(
Di,l
t

‖ Di,l
t ‖2

+ Dl,j
t

‖ Dl,j
t ‖2

)
.

We will deal with Rkt later. First we ought to simplify the expression of Ckt . Indeed

Ckt =
∑

(i,j)∈K̄2

∑
l∈K
l6=i,j

Di,j
t

(
Di,l
t

‖ Di,l
t ‖2

+ Dl,j
t

‖ Dl,j
t ‖2

)

=
∑

(i,l)∈K̄2

 Di,l
t

‖ Di,l
t ‖2

∑
j∈K
j 6=i,l

Di,j
t

+
∑

(j,l)∈K̄2

 Dl,j
t

‖ Dl,j
t ‖2

∑
i∈K
i6=j,l

Di,j
t



=
∑

(i,l)∈K̄2
i<l

 Di,l
t

‖ Di,l
t ‖2

∑
j∈K
j 6=i,l

Di,j
t + Dl,i

t

‖ Dl,i
t ‖2

∑
j∈K
j 6=i,l

Dl,j
t

 +

+
∑

(j,l)∈K̄2
j<l

 Dl,j
t

‖ Dl,j
t ‖2

∑
i∈K
i6=j,l

Di,j
t + Dj,l

t

‖ Dj,l
t ‖2

∑
j∈K
i6=j,l

Di,l
t



so that using again Dl,iDl,j = Di,lDj,l the latter is still equal to

=
∑

(i,l)∈K̄2
i<l

Di,l
t

‖ Di,l
t ‖2

∑
j∈K
j 6=i,l

(Di,j
t +Dj,l

t )

+
∑

(j,l)∈K̄2
j<l

Dl,j
t

‖ Di,l
t ‖2

∑
i∈K
i6=j,l

(Di,j
t +Dl,i

t )



and using again Di,l +Dl,j = Di,j , we finally arrive at

Ckt = 2 (k − 2) × #{(i, l) ∈ K2|i < l} = k(k − 1)(k − 2) . (4.2.6)

4.2.3 Back to the process Zk.

With the results obtained in (4.2.5) and (4.2.6) we may simplify (4.2.3), writing (still on t < ξ)

Zkt = Z0
t + 4

√
k

∫ t

0

√
Zks dW

k
s + 2k(k − 1)

(
4− kχ

N

)
t− 2χ

N

∫ t

0
Rks ds . (4.2.7)
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Hence defining
V k
t = 1

4k Z
k
t

the process V k satisfies

dV k
t = 2

√
V k
t dW

k
t + (k − 1)

(
2− kχ

2N

)
dt− χ

2kN Rkt dt , (4.2.8)

i.e. can be viewed as a perturbation of a squared Bessel process of dimension

δ = (k − 1)
(

2− kχ

2N

)
,

we shall denote by Uk in the sequel.

4.2.4 The case of an N-collision.

If k = N , RN = 0 so that V N is exactly the squared Bessel process of dimension N − 1
2 (4−χ).

Hence, according to proposition 4.2.2

• if χ > 4 there is explosion in finite time for the process V N (hence for X also),

• if χ = 4, there is an almost sure N -collision in finite time, and then all the particles are
glued, provided no explosion occurred before for the process X,

• if 4
(

1− 1
N − 1

)
< χ < 4 there is an almost sure N -collision in finite time, provided no

explosion occurred before for the process X,

• if χ 6 4
(

1− 1
N − 1

)
there is almost surely no N -collision (before explosion).

In particular we see that the particle system immediately feels the critical value χ = 4, in
particular explosion occurs in finite time as soon as χ > 4.
For 4

(
1− 1

N − 1

)
< χ < 4 we know that V N is instantaneously reflected once it hits the origin,

but it does not indicate whether all or only some particles will separate (we only know that they
are not all glued). Notice that when N = 2 this condition reduces to 0 < χ < 4, and then both
particles are separated. Hence in this very specific case, there is no explosion (for the distance
between both particles) in finite time almost surely, but there are always 2-collisions.

4.2.5 Towards non explosion for χ 6 4
(

1− 1
N − 1

)
.

As we said before, the lifetime ξ is greater than or equal to the first multiple collision time T .
Since we shall consider V k as a perturbation of Uk, what happens for the latter ?

• for χ > 4N
k

, Uk reaches 0 in finite time a.s. and then explosion occurs,

• for χ = 4N
k

, Uk reaches 0 and is sticked,

• for 4N
k

> χ >
4N
k

(
1− 1

k − 1

)
, Uk reaches 0 and is instantaneously reflected,

• for χ 6
4N
k

(
1− 1

k − 1

)
, Uk does not hit 0 in finite time a.s.
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Lemma 4.2.9. For all 3 6 k 6 N , it holds

4N
k

(
1− 1

k − 1

)
> 4

(
1− 1

N − 1

)
.

Proof. Introduce the function

u 7→ g(u) = 4N
u

(
1− 1

u− 1

)
defined for u > 1. Then

g′(u) = 4N
u(u− 1)

(2− u
u

+ 1
u− 1

)
is negative on [2 +

√
2,+∞[, so that the lemma is proved for N > k > 4. For k = 3, it amounts

to N

6 >
N − 2
N − 1 which is true for all N > 3 (with equality for N = 3 and N = 4).

In particular, since χ 6 4
(

1− 1
N − 1

)
, Uk never hits 0 for 3 6 k 6 N , while it reaches 0

but is instantaneously reflected for k = 2. What we expect is that the same occurs for V k.

In order to prove it, let T be the first multiple collision time. With our convention (changing
indices if necessary) there exists some 2 6 k 6 N such that T is the first k-collision time T k.
Note that this does not prevent other k′-collisions (with k′ 6 k) possibly at the same time T for
the particles with indices larger than k + 1. But as we will see this will not change anything.
The reasoning will be the same but the conclusion completely different for k = 2 and for k > 3.

No k-collisions for k > 3.

Introduce, for ε > 0, the random set

Akε = {T = T k < +∞ and inf
i∈K , l>k+1

inf
t6T
‖ Di,l

t ‖> 2ε} .

It holds
{T = T k < +∞} =

⋃
ε∈1/N

Akε .

In particular if P(T = T k < +∞) > 0 there exists some ε > 0 so that P(Akε) > 0.
We shall see that this is impossible when k > 3.

Indeed recall that

Rkt =
∑

(i,j)∈K̄2

N∑
l=k+1

Di,j
t

(
Di,l
t

‖ Di,l
t ‖2

+ Dl,j
t

‖ Dl,j
t ‖2

)
.
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So on Akε , we have, for t 6 T ,

|Rkt | 6
∑

(i,j)∈K̄2

N∑
l=k+1

‖ Di,j
t ‖

(
1

‖ Di,l
t ‖2

+ 1
‖ Dl,j

t ‖2

)

6
∑

(i,j)∈K̄2

‖ Di,j
t ‖

N − k
ε

6
N − k
ε

√
k(k − 1)

√
Zkt

the latter being a consequence of Cauchy-Schwarz inequality. Thus on Akε , for t 6 T

|Rkt | 6
2
ε

(N − k)k
√
k − 1

√
V k
t . (4.2.10)

Hence, on Akε for t 6 T the drift bk (which is not Markovian) of V k
t satisfies

bk > b̂k(v) = (k − 1)
2

(
4− Nχ

k

)
− 2
ε

(N − k)k
√
k − 1

√
v . (4.2.11)

In particular for any θ > 0,
b̂k(v) > (k − 1)

2

(
4− Nχ

k

)
− θ

provided v is small enough. Thus the hitting time of the origin for the process with drift
b̂k is larger than the one for the corresponding squared Bessel process (thanks to well known
comparison results between one dimensional Ito processes, see e.g. [11] Chap.6, Thm 1.1), and
since this holds for all θ, finally is larger than the one of Uk. But as we already saw, Uk never
hits the origin for 3 6 k. Using again the comparison theorem (this time with bk and b̂k(v)), V k

does not hit the origin in finite time on Akε which is in contradiction with P(Akε) > 0.

About 2-collisions.

Actually all we have done in the previous sub subsection is unchanged for k = 2, except the
conclusion. Indeed U2 reaches the origin but is instantaneously reflected. So V 2 (on A2

ε) can
reach the origin too, but is also instantaneously reflected. Actually using that

bk(v) 6 b̄k(v) = (k − 1)
2

(
4− Nχ

k

)
+ 2
ε

(N − k)k
√
k − 1

√
v ,

together with the Feller’s explosion test, it is easily seen that V 2 will reach the origin with a
(strictly) positive probability (presumably equal to one, but this is not important for us).

But this instantaneous reflection is not enough for the non explosion of the process X, be-
cause Xi is R2 valued. Before going further in the construction, let us notice another important
fact: there are no multiple 2-collisions at the same time, i.e. starting from Ac the process lives
in M at least up to the explosion time ξ. Of course this is meaningful provided N > 4.

To prove the previous sentence, first look at

Yt =‖ D1,2
t ‖2 + ‖ D3,4

t ‖2 ,
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assuming that YT = 0 and that no other 2-collision happens at time T . It is easily seen that
(just take care that we had an extra factor 2 in our definition of Zkt )

Yt = Y0 + 2
√

2
∫ t

0

(
D1,2
s (dB1

s − dB2
s ) +D3,4

s (dB3
s − dB4

s )
)

+ 8
(

2− χ

N

)
t

− χ

N

∫ t

0

D1,2
s

N∑
l=1
l6=1,2

(
D1,l
s

‖ D1,l
s ‖2

+ Dl,2
s

‖ Dl,2
s ‖2

)
+ D3,4

s

N∑
l=1
l6=3,4

(
D3,l
s

‖ D3,l
s ‖2

+ Dl,4
s

‖ Dl,4
s ‖2

) ds ,

so that, defining Vt = Yt/4 we get that

dVt = 2
√
Vt dWt + 2

(
2− χ

N

)
dt+ Rt dt

whereRt is a remaining term we can manage just as we did for Zkt . Since forN > 4, 2
(

2− χ

N

)
>

2, Vt, hence Yt does not hit the origin. Notice that if we consider k(> 2) 2-collisions, the same
reasoning is still true, just replacing 4 by 2k, the final equation being unchanged except for Rt.

Non explosion.

According to all what precedes what we need to prove is the existence of the solution of (4.1.4)
with an initial configuration satisfying X0 = x with x1 = x2, all other coordinates being different
and different from x1 = x2. Indeed, on ξ < +∞, Xξ ∈ δM the set of particles with exactly
two glued particles, so that if we can prove that starting from any point of δM , we can build
a strong solution on an interval [0, S] for some strictly positive stopping time S, it will show
that ξ = +∞ almost surely. However we will not be able to prove the existence of such a strong
solution. Actually we think that it does not exist. We will thus build some weak solution and
show uniqueness in some specific sense.

This will be the goal of the next sections.

4.3 Building a solution.

4.3.1 Existence of a weak solution.

Writing
M = ∪i<j ∩k 6=l ; l 6=i,j {Xk 6= X l}

we see that M is an open subset of R2N .
Recall that x ∈ δM means that exactly two coordinates coincide (say x1 = x2), all other

coordinates being distinct and distinct from x1. We may thus define

dx = min{i > 3 ; i 6= j ; j = 1, ..., N ; ‖ xi − xj ‖} > 0 ,

so that
Ωx = ΠN

j=1B(xj , dx/2) ⊂ M , (4.3.1)
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and points y ∈ Ωx ∩ δM will satisfy y1 = y2. If x /∈ δM , we may similarly define dx = min{i 6=
j ; j = 1, ..., N ; ‖ xi−xj ‖} and then Ωx. In all cases the balls B(., .) are the open balls. Now if
K is some compact subset of M we can cover K by a finite number of sets Ωx, so that for any
measure µ, a function g belongs to L1

loc(M,µ) if and only if g ∈ L1(Ωx, µ) for all x in M .

The natural measure to be considered is

µ(dX1, ..., dXN ) = Π16i<j6N ‖ Xi −Xj ‖−
χ
N dX1...dXN , (4.3.2)

since it is, at least formally, the symmetric measure for the system (4.1.4).
It is clear that for x /∈ δM , µ is a bounded measure on Ωx. When x ∈ δM , say that x1 = x2

and perform the change of variables

Y 1 = X1 −X2 , Y 2 = X1 +X2 .

In restriction to Ωx, µ can be written

µ(dX1, ..., dXN ) = C(N, x) ‖ Y 1 ‖−
χ
N dY 1 dY 2 dX3...dXN ,

hence is a bounded measure on Ωx provided χ < 2N just looking at polar coordinates for Y 1.
In this case it immediately follows that µ is a σ finite measure on M . Also remark that if f is
compactly supported by K and belongs to L2(dµ) then it belongs to L2(dX) and∫

K
f2 dX 6 sup

K
(‖ Y 1 ‖

χ
N )

∫
K
f2 dµ .

But we can say much more.

To this end consider the symmetric form

E(f, g) =
∫
M

< ∇f,∇g > dµ , f, g ∈ C∞0 (M) . (4.3.3)

First we check that this form is closable in the sense of [7]. To this end it is enough to show
that it is a closable form when restricted to functions f, g ∈ C∞0 (Ωx) for all x ∈ M . If x /∈ δM
the form is equivalent to the usual scalar product on square Lebesgue integrable functions, so
that it is enough to look at x ∈ δM .

Hence let fn be a sequence of functions in C∞0 (Ωx), converging to 0 in L2(dµ) and such that
∇fn converges to some vector valued function g in L2(dµ). What we need to prove is that g
is equal to 0. To this end consider a vector valued function h which is smooth and compactly
supported in Ωx∪{d(., δM) > ε} for some ε > 0. Then a simple integration by parts shows that∫

< g, h > dµ = lim
n

∫
< ∇fn, h > dµ = lim

n

∫
fnH dµ

for some H ∈ L2(dµ) so is equal to 0. Hence g vanishes almost surely on Ωx ∪ {d(., δM) > ε},
for all ε > 0, so that g is µ-almost everywhere equal to 0.

By construction, E is regular and local. Hence, its smallest closed extension (E ,D(E)) is a
Dirichlet form, which is in addition regular and local. According to Theorem 6.2.2. in [7], there
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exists a µ-symmetric diffusion process X. whose form is given by E . Notice that, integrating by
parts, we see that the generator of this diffusion process coincides with the generator L given by

L =
N∑
i=1

∆xi −
χ

N

N∑
i=1

∑
i6=j

xi − xj

‖ xi − xj ‖2

 ∇xi (4.3.4)

for the functions f in C∞0 (M) such that Lf ∈ L2(µ). This is a core for the domain D(L).

The Dirichlet form theory tells us that once f ∈ D(L), f(Xt) − f(X0) −
∫ t

0
Lf(Xs)ds is a Px

martingale for quasi every starting point x, i.e. for all x out of some subset E of M which is of
zero µ-capacity.

But remark that for any x ∈ M − E and t > 0, the transition kernel pt(x, .) of the Markov
semi-group is absolutely continuous with respect to µ. Indeed using the local Malliavin calcu-
lus as in [3] (or elliptic standard results), this transition kernel has a (smooth) density w.r.t.
Lebesgue measure (hence w.r.t. µ) on each open subset of M ∩ {d(., δM) > ε} for any ε > 0.
Hence if µ(A) = 0, µ(A∩ {d(., δM) > ε}) = 0 for all ε > 0 so that pt(x,A∩ {d(., δM) > ε}) = 0
and finally using monotone convergence, pt(x,A) = 0.
Since pt(x, .) is absolutely continuous w.r.t. µ, we deduce from Theorem 4.3.4 in [7] that the
sets of zero µ capacity are exactly the polar sets for the process.

Note that the function x 7→ x does not belong to D(L), so that we cannot use the previous
result. Nevertheless

Lemma 4.3.5. Assume that χ < N . Then for all x ∈M − E and all i = 1, ..., N ,

Xi
t −Xi

0 −
∫ t

0

χ

N

∑
i6=j

Xi
s −Xj

s

‖ Xi
s −X

j
s ‖2

 ds
is a Px martingale, and actually is Px almost surely equal to

√
2Bi

t for some Brownian motion.

Proof. To prove the lemma, for all x ∈ M − E it is enough to show the martingale property
starting from x up to the exit time S(x) of Ωx (since XS(x) ∈ M − E because E is polar, see
the discussion above). In the sequel, for notational convenience, we do not write the exit time
S(x) (all times t have to be understood as t ∧ S(x)) and we simply write M instead of Ωx.

To show this result it is actually enough to look locally in the neighborhood of a point x ∈ δM
such that x1 = x2, and with our previous notation to look at both coordinates of y = x1 − x2.
Indeed x 7→ x1 + x2 belongs (at least locally) to D(L) as well as all other coordinates xj for
j > 3.

Let gj(x) = yj for j = 1, 2 be the coordinate application of y = x1−x2. Clearly Lgj ∈ Lp(µ)
for p < 2− χ

N
, hence belongs to L1 thanks to our assumption on χ/N . Introduce the function

defined on R by,
hε(u) = sin2

(
π u

2ε

)
1|u|6ε + 1|u|>ε .

h is of C2 class except at |u| = ε. Now define vε(x) = g1(x)hε(g1(x)). We have

L(vε)(x) =
[
4h′ε(g1) + 2 g1 h′′ε(g1)− χ

N

(
2hε(g1) g1

|g1 + g2|2
+ 2h′ε(g1) + Rε

)]
(x)
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the remaining term Rε corresponding to the interactions with particles xj for j > 3.
For all ε > 0, vε thus belongs to D(L) and vε(Xt)−vε(X0)−

∫ t

0
Lvε(Xs)ds is a Px martingale,

with brackets 4
∫ t

0
|∇vε(Xs)|2 ds for all x ∈M − E.

But it is easily seen that Lvε converges to Lg1 in L1(µ) as ε → 0. Since vε converges to g1

in L1(µ) too, we deduce that

Eµ

(
g1(Xt+h)− g1(Xt)−

∫ t+h

t
Lg1(Xs)ds|Ft

)
= 0 for all t > 0 and h > 0, (4.3.6)

where Ft denotes the natural filtration on the probability space, since the same property is true
for vε. Similarly the brackets converge to 4t. Since the same holds for g2, we get the desired
result Pµ almost surely. Actually this result holds true Px almost surely for µ almost all x ∈M .

But since pt(x, .) is absolutely continuous w.r.t. µ for t > 0, it immediately follows using
the Markov property at time t, that (4.3.6) is true Px a.s. for all x ∈ M − E, but only for

t > 0. Hence for all x ∈ M − E and all t > 0, N s
t = g1(Xt+s) − g1(Xt) −

∫ t+s

t
Lg1(Xu)du is a

martingale defined on [t,+∞[, whose bracket is given by 4(s − t), i.e. is (2 times) a Brownian
motion. In particular for a fixed t, (N s

t )0<s6t is bounded in L2(Px). Up to a sub-sequence it is
thus weakly convergent in L2(Px) as s→ 0 so that N0

t = Nt is well defined Px a.s., and satisfies
(4.3.6) for all t > 0 this time. Thus it is a martingale with a linear bracket, i.e. 2 times a
Brownian motion.

The previous lemma shows that the diffusion X. is simply the µ symmetric solution of (4.1.4)
killed when it hits the boundary ∂M .

Assume in addition that χ 6 4
(

1− 1
N − 1

)
. Then the previous diffusion process never hits

∂M since the latter is exactly the set where either some k-collision occurs for some k > 3 or at
least two 2-collisions occur at the same time. So it is actually the unique µ-symmetric Markov
diffusion defined on M̄ solving (4.1.4). Indeed we could associate to any markovian extension
of (E , C∞0 (M)) another diffusion process, which would coincide with the previous one up to the
hitting time of ∂M which is almost surely infinite. We have thus obtained

Theorem 4.3.7. Assume that χ 6 4
(

1− 1
N − 1

)
and that N > 4.

Then there exists a unique µ-symmetric (see (4.3.2)) diffusion process (Xt,Px) (i.e. a Hunt
process with continuous paths), defined for t > 0 and x ∈ M − E where E ⊂ M is polar (or
equivalently of µ capacity equal to 0) such that for all f ∈ C∞0 (R2N ),

f(Xt)− f(x)−
∫ t

0
Lf(Xs)ds

is a Px martingale (for the natural filtration) with L given by (4.3.4). Furthermore X. lives in
M (never hits ∂M).

Proof. As for the previous lemma, it is enough to work locally in the neighborhood of the points
in δM and to look at the new particles (y = x1 − x2, z = x1 + x2, x3, ..., xN ). Let f ∈ C∞0 (M)
be written in these new coordinates. Using a Taylor expansion in y (z and all the others xj

being fixed) and the fact that if the partial derivatives at y = 0 of a smooth function of y
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are vanishing, then this function belongs to the domain of the generator, we see that proving
the martingale property for f amounts to the corresponding martingale property for smooth
functions g written as g(y, z, xj) = y h(z, xj) i.e. amounts to the previous lemma (and of course
the remaining particles for which there is no problem).

It remains to extend the martingale property we proved to hold for f ∈ C∞0 (M) to f ∈
C∞0 (R2N ). Take f ∈ C∞0 (R2N ) and define Sε as the first time the distance d(X., ∂M) is less
than ε. Then replacing f by some fε ∈ C∞0 (M) which coincides with f on d(y, ∂M) > ε, we

see that f(Xt∧Sε)− f(x)−
∫ t∧Sε

0
Lf(Xs)ds is a Px martingale. Since Sε growths to infinity the

conclusion follows from Lebesgue theorem.

Remark 4.3.8. The main disadvantage of the previous construction is that it is not explicit
and that it does not furnish a solution starting from all x ∈M but only for all x except those in
some unknown polar set. In particular, proving the regularity of the Markov transition kernels
up to δM requires additional work. The advantage is that if we require µ-symmetry, we get
uniqueness of the diffusion process.

This Theorem is to be compared with Theorem 7 in [6], where existence of a weak solution
is shown by using approximation and tightness, in the same χ 6 4

(
1− 1

N − 1

)
case (take care

of the normalization of χ which is not the same here and therein). Note that the result in [6] is
concerned with existence starting from some initial absolutely continuous density and does not
furnish a diffusion process. ♦

4.3.2 Existence and uniqueness of a weak solution.

In this subsection we assume that χ 6 4
(

1− 1
N − 1

)
and that N > 4. Our aim is to build

a solution starting from any point in M , i.e. to get rid of the polar set E in the previous sub-
section. The construction will be very similar (still using Dirichlet forms) but we shall here use
one result in [6], namely the uniqueness result for a 2 dimensional Bessel process.

We start with an important lemma

Lemma 4.3.9. Let Px be the solution of (4.1.4) built in Theorem 4.3.7 and starting from some
allowed point x. Then ∫ +∞

0
1IδM (Xs) ds = 0 , Px a.s.

Proof. We can cover δM by an enumerable union of Ωy (y ∈ δM). It is thus immediate that
the lemma will be proved once we prove that

∫ +∞

0
1IδM∩Ωy(Xs) ds = 0 , Px a.s.

But we have seen in the previous section that, when the process is in some Ωy (where say
y1 = y2), the process ‖ D1,2

t ‖2 is larger than or equal to the square of a Bessel process Ut of
index δ strictly between 0 and 2. But (see [17] proof of proposition 1.5 p.442), the time spent at

the origin by the latter is equal to 0, i.e.
∫ +∞

0
1IUs=0 ds = 0 almost surely. The same necessarily

holds for D1,2, hence the result.
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We intend now to prove some uniqueness, when starting from a point in δM . Actually,
using some standard tools of concatenation of paths, it is enough to look at the behavior of our
process starting at some y ∈ δM with y1 = y2, up to the exit time of Ωy (or some open non
empty subset of Ωy). In this case the only difficulty is to control the pair (X1

. , X
2
. ) since all

other coordinates are defined through smooth coefficients. Of course writing

D1,2
t = X1

t −X2
t , S1,2

t = X1
t +X2

t

we have that

dD1,2
t = 2 dW 1

t −
2χ
N

D1,2
t

‖ D1,2
t ‖2

dt+ b1(Xt) dt (4.3.10)

and
dS1,2

t = 2 dW 2
t + b2(Xt) dt (4.3.11)

where b1 and b2 are smooth functions (in Ωy), W 1 and W 2 being two independent 2 dimensional
Brownian motions.

Define Ω̄y as we defined Ωy (see (4.3.1), but replacing dy/2 by dy/4 and consider a smoothed
version η of the indicator of Ω̄y i.e. a smooth non negative function such that

1IΩ̄y 6 η 6 1IΩy .

We may extend all coefficients (except D/ ‖ D ‖2) as smooth compactly supported functions
outside Ωy, and replace D/ ‖ D ‖2 by η(X)D/ ‖ D ‖2. If we can show uniqueness for this new
system we will have shown uniqueness up to the exit time of Ω̄y for (4.3.10), (4.3.11) and the
remaining part of the initial system.

Hence our problem amounts to the following one: prove uniqueness for Y = (D,S, X̄) ∈
R2 × R2 × R2(N−2) solution of

dDt = 2 dWt −
2χ
N

Dt

‖ Dt ‖2
dt+ b(Dt, St, X̄t) dt ,

dSt = 2 dW ′t + b′(Dt, St, X̄t) dt , (4.3.12)

dX̄t =
√

2 dB̄t + b̄(Dt, St, X̄t) dt ,

where b, b′, b̄ are smooth and compactly supported in R2N .

Thus, after a standard Girsanov transform, we are reduced to prove uniqueness for

dDt = 2 dWt −
2χ
N

Dt

‖ Dt ‖2
dt,

dSt = 2 dW ′t , (4.3.13)

dX̄t =
√

2 dB̄t ,

hence for D.. U. = D./2 is some type of 2-dimensional skew Bessel process with dimension χ/2N
(see [2] for the one dimensional version). Its squared norm |U.|2 is a squared Bessel process of
dimension δ = 2− χ

N
, so that the origin is not polar for the process D..

As we did in the previous sub-section, we can directly prove the existence and uniqueness
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of a symmetric Hunt process (here the reference measure is |D|−χ/N dD) using the associated
Dirichlet form, and since the origin is not polar, we know the existence of a solution starting
from D0 = 0. Here we only need χ < N , but for the whole construction our initial assumption
on χ is required. Finally we can check that the occupation time formula of Lemma 4.3.9 is still
true.

But as before, if now we have existence starting from every initial point, we only have
uniqueness in the sense of symmetric Markov processes. To get weak uniqueness we can use
polar coordinates: the squared norm is a squared Bessel process, so that strong uniqueness
holds (with the corresponding dimension we are looking at); the polar angle is much tricky to
handle. This is the main goal of Lemmata 19 and 20 in [6], and the final weak uniqueness then
follows from the proof of Theorem 17 in [6] and the occupation time formula.

Remark 4.3.14. It can be noticed that this result is out of reach of the method developed by
Krylov and Röckner in [14] for a general Brownian motion plus drift b, since it requires that
b ∈ Lp(dX) for some p > 2. Also notice that one cannot use standard Girsanov transform for
solving (4.3.13), since for a 2-dimensional Brownian motion starting from the origin,

∫ t

0

1
|Bs|2

ds = +∞ a.s. for all t > 0 ,

see [17]. ♦

Remark 4.3.15. Of course our construction of a solution is quite abstract and one should ask
about the behavior of D0+ in (4.3.12) when D0 = 0. Since we do not have a strong solution,
this question is out of reach at least rigorously. But since the solution starting from 0 is rotation
invariant (this is easily seen), one can imagine that the particle starting from 0 will uniformly
choose an angle in [0, 2π] and start a (constant times) Bessel process of dimension 2− (χ/N) in
this direction for an “infinitesimal” time t = 0+. Of course for the initial process we also have
to add the drift coming from the Girsanov transformation. This leads to a time discretization
procedure which is different in nature from [9]. ♦
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[3] P. Cattiaux. Hypoellipticité et hypoellipticité partielle pour les diffusions avec une condition
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