Keywords: State Machine, Datacenter, Cloud Computing, Replication, Total Order Broadcast

Many uniform total order broadcast protocols have been designed in the last 30 years. They can be classified into two categories: those targeting low latency, and those targeting high throughput. Latency measures the time required to complete a single message broadcast without contention, whereas throughput measures the number of broadcasts that the processes can complete per time unit when there is contention. All the protocols that have been designed so far make the assumption that the underlying network is not shared by other applications running. This is a major concern provided that in modern data centers (aka Clouds), the networking infrastructure is shared by several applications. The consequence is that, in such environments, uniform total order broadcast protocols exhibit unstable behaviors.

In this thesis, I present MDC-cast a new protocol for total order broadcasts that is optimized for multi-data center environments. MDC-cast combines the benefits of IP-multicast in cluster environments and TCP/IP unicast to get a hybrid algorithm that achieves very good performance in modern datacenters.

3.4

The basic topology used in the experiments

3.5

The available bandwidth on links in a system of two datacenters. . . .

3.6

The Required bandwidth on links when using MDC-cast.

3.7

The T heoretical_N eeds of Ridge .

Comparison between MDC-cast, LCR and

List of Tables

Résumé

De nombreux protocoles protocoles de diffusion avec ordre total ont été conçus au cours des 30 dernières années. Ils peuvent être classés en deux catégories: ceux qui visent une faible latence, et ceux qui visent un haut débit. La latence mesure le temps nécessaire pour diffuser un seul message sans contention, alors que le débit mesure le nombre de diffusions que les processus peuvent réaliser par unité de temps (quand il y a contention). Tous les protocoles qui ont été conÃğus font l'hypothèse que le réseau n'est pas partagé par d'autres applications en cours d'exécution. Cette hypothèse n'est pas valide dans les centres de données modernes (appelÃľs Clouds), au sein desquels l'infrastructure réseau est partagée par plusieurs applications. La conséquence est que, dans de tels environnements, les protocoles de diffusion avec ordre total présentent des comportements instables.

Dans cette thèse, j'ai conçu et mis en oeuvre un nouveau protocole pour la diffusion avec ordre total, appelé MDC-cast. Ce protocole optimise les performances lorsqu'il est exécuté dans des centre de données modernes (ou des groupes de centres de données). MDC-cast combine les avantages de la multidiffusion IP quand c'est possible de l'utiliser et l'efficacité des communications unicast TCP/IP quand nécessaire. Le protocole résultant est ainsi hybride et permet d'obtenir de très bonnes performances dans les environnements d'exécution modernes.

Mots-clés. Centres de données, Réplication, Diffusion avec ordre total.

I would first like to express my appreciation to the persons whom this thesis might not have been written without. In particular, I thank my thesis advisor Vivien QUEMA, for directing and guiding my work. I warmly thank him for the great effort he provided and for his constructive comments. His tremendous expertise and his constructive criticism helped me to complete this work. Also, I thank Kamal BEYDOUN, my second supervisor, who has given me the honor to be kindly the co-director of my thesis. I thank him for the freedom he has left me during my thesis, for his availability and his advices. I would also like to thank Nicolas PALIX who helped me during the first year of my PhD.

I would also like to thank Gael THOMAS and Laurent REVEILLERE who accepted to report on my work. Many thanks Sonia BEN-MOKHTAR and Didier DONSEZ who accepted to be part of my thesis committee. It is a great honor for me.

I must express my very profound gratitude to the funding received from the Islamic Center Association for Guidance and Higher Education.

As well, I would like to thank warmly my Parents, for their encouragement. They followed me since I was born and helped me carry out my projects until their completion. They have given me everything and I owe them everything. In addition, I want to thank my wife, Jinan, who accompanied me during the past years and supported me with all her love in difficult times, the greatest gift of my thesis and my life.

Many aspects of this work are indebted to Abbass ZEINEDDINE because of the frequent and deep discussions he made with me to help me crystallize my thoughts and bypass some obstacles. Many thanks for my friends who have spent time in the administration procedures in spite of their many duties and responsibilities, notably

Ibrahim SAFIEDDINE and Ali HALLAL.

Finally, I want to thank my family members and my colleagues for their constant enthusiasm.

Dedication

To the person living my heart...

To whom I harbor my sincere love...

To the grace withheld from my eyes...

To whom I sound eager to meet...

I dedicate my humble work

"Do not follow majority; follow the truth ..."

Imam Ali

Introduction

In this chapter, we first present the scientific context of this document, and more specifically, we focus on the performance of totally ordered broadcasts in multidatacenter environments. We detail our objectives and the contributions of this research work. Finally, we give a brief description of the contents of this document.

Scientific Context

The need for high accessibility and fault tolerance drives large enterprises to maintain multiple copies of their databases over several machines (Often called replicas). This mechanism is commonly referred to as State Machine

Replication [START_REF] Schneider | Implementing fault-tolerant services using the state machine approach: a tutorial[END_REF] in the context of distributed systems. Coordinating messages in between replicas is not a trivial task. One of the primitives found for solving the issue is ordering messages among replicas. Total Order Broadcast [START_REF] Hadzilacos | Fault-tolerant broadcasts and related problems[END_REF] (Sometimes called Atomic Broadcast) is a primitive designed for coordinating the communication among data replicas. It asserts that messages are received in the same order from all the nodes. A Uniform Total Order Broadcast protocol ensures the following properties for all messages that are broadcast: (1) Uniform agreement: if a replica delivers a message m, then all correct replicas eventually deliver m; (2) Strong uniform total order: if some replica delivers some message m before message m 0 , then a replica delivers m 0 only after it has delivered m.

Research Motivation

Computing stepped out the boundaries of a single central processing unit into what is called a distributed system. Thereupon, tackling the performance of a system running over spatially apart servers became a real chal-lenge especially with the dramatic increase of Internet users. Companies are ultimately aware for their data consistency. Loosing a piece of information or corrupting few bytes even may lead to catastrophic consequences. Achieving data consistency among several replicas requires reliable and totally ordered broadcast of requests or commands among them. This is the role of total order broadcast algorithms to provide this functionality.

Recently, [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF] declared the optimal throughput of TOB protocols in cluster environments. In the same article, they proposed an algorithm, LCR, and proved that it matches that throughput. From that time, the challenge has changed into finding an algorithm that matches that throughput in cluster environment and achieves better performance regarding some other metrics. For instance, FastCast [START_REF] Berthou | Fastcast: a throughput-and latency-efficient total order broadcast protocol[END_REF],

proposed a solution where they achieve the optimal throughput in cluster environment but have a lower latency. Nowadays, with the distributed systems revolution brought by Clouds, the challenge has changed. Systems are no more limited to the bounds of clusters but rather distributed over the globe. More precisely, replicas are no more confined in the same datacenter but rather are spread over several datacenters distributed across the globe. Existing Total-Order Broadcast protocols have been designed for uniform environments (e.g. Clusters of machines). These protocols fail to achieve good performance in multi-datacenters environments which are characterized by non-uniform network connectivity.

Objectives and Contributions

This thesis studies boosting the performance of systems operating total order broadcast protocols in datacenter environments.

The thesis presents a novel and scalable Total Order Broadcast primitive MDCcast, that not only achieves the optimal throughput of cluster environments, but also bypasses this throughput when encountering bottlenecks between sites. The performance of MDC-cast is assessed under several circumstances and on different testbeds showing significant improvement over other Total Order Broadcast primitives in multi-datacenter environments.

Organization of this document

This thesis is organized into 3 chapters:

• State of the Art: Chapter 1 describes the state of the art on Total Order Broadcast protocols. We first define the Total Order broadcast notations and state the system model. Thereafter, we mention the related work and focus on the protocols that achieves the optimal throughput defined in [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF].

Finally, we analyze the performance of existing protocols.

• MDC-cast: Chapter 2 presents the MDC-cast protocol. In the first place, the chapter includes an overview of MDC-cast. Secondly, it includes a description of the system features and sub-protocols.

• Performance Evaluation: Chapter 3 presents the implementation of MDCcast and its performance evaluation. Firstly, the experimental setup is described. Then, MDC-cast is evaluated under several circumstances and from various performance metrics. Finally, the algorithm is compared to LCR and

Ridge.

At the end of the document, we conclude it and expand on the possible future works.

Chapter 1

State of the art on Total Order

Broadcast Protocols

Several (Uniform) Total-Order Broadcast protocols have been designed in the past Strong uniform total order: if some replica delivers some message m before message m 0 , then a replica delivers m 0 only after it has delivered m.

The recent Total-Order Broadcast protocols that have been designed aim at achieving high throughput and low latency. They are actually very efficient, but have been designed for fully switched networks, such as those found in datacenters and clusters. Nevertheless, more and more companies want to deploy geo-replicated systems and are thus looking for protocols that work efficiently when used across several datacenters. Unfortunately, this is not the case of existing protocols, as we show in Section 1.3. There are mostly two reasons for this inefficiency in multi-datacenters environments. First, some algorithms [START_REF] Berthou | Fastcast: a throughput-and latency-efficient total order broadcast protocol[END_REF][START_REF] Marandi | Multi-ring paxos[END_REF] rely on IP-multicast for broadcasting messages between servers. IP-multicast is usually not available across datacenters and must be replaced by ad-hoc, inefficient message dissemination patterns (e.g. a server can replace IP-multicast by sending the same messages to all servers using UDP or TCP). Second, because these algorithms target fully-switched environments, they equally balance the load among each network link, which is not optimal in multi-datacenters environments where inter-datacenter links are shared across nodes, unlike intra-datacenter links.

This chapter is organized as follows. Section 1.1 presents the system model, as well as notations and terms used throughout the chapter. Related works are described in Section 1.2. Section 1.3 describes the theoretical performance that would be achieved by the two best protocols in a multi-datacenters environment, before presenting a table that sumarizes all the studied protocols in Section 1.4.

Background and Model

In this section, I describe the notations and concepts used in the document, as well as the the system model we assume when designing a new total order broadcast protocol.

State Machine Replication

A State Machine is a virtual representation of the state of a system that starts at an initial state and changes after inserting some inputs into one or more other states.

This concept was originally first pointed out with the works of Huffman [START_REF] Huffman | The synthesis of sequential switching circuits[END_REF] and Moore [START_REF] Moore | Gedanken-experiments on sequential machines[END_REF]. For example, a computer system could be seen as a very

Uniform Total Order Broadcast

As a Conclusion, Uniform Total Order Broadcast is a primitive that allows implementing SMR protocols. Uniform Total Order Broascast allows ordering messages among replicas in order to ensure reliable and consistent data system. Uniform TOB satisfies the following properties:

• Validity: If a correct process p i Broadcast a message m, then p i eventually Deliver m.

• Integrity: For any message m, any correct process p j Deliver m at most once, and only if m was previously Broadcast by some correct process p i .

• Uniform Agreement: If any process p i Deliver any message m, then every correct process p j eventually Deliver m.

• Total Order: For any two messages m and m ′ , if any process p i Deliver m without having delivered m ′ , then no process p j Deliver m ′ before m.

Performance Metrics: Throughpuyt vs. Latency

In the context of this document, we will consider two performance metrics: Latency and Throughput. Latency represents the time needed to deliver one message, while

Throughput is the number of delivered messages per time unit. A lot of TOB algorithms favor Latency over throughput [KT96, AFM92, Car85, GMS91, BvR96, WS95] while others favor throughput [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF]. Finaly, FastCast [START_REF] Berthou | Fastcast: a throughput-and latency-efficient total order broadcast protocol[END_REF] achieves optimal throughput in cluster environment and achieves also low latency as well as

Ridge [START_REF] Bezerra | Ridge: high-throughput, low-latency atomic multicast[END_REF].

To explain the difference between a latency-optimal and a throughput-optimal algorithm, I borrow Figure 1.1 from [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF] and describe it. In AlgorithmA, p 1 sends a message m to p 2 which forwards it to p 4 . In the second round, p 1 sends m to p 3 . By now, m is broadcast from p 1 to all other nodes. Another message is broadcast in the third round and so on. Thus, it lasts two rounds for a message to be broadcast. The broadcast latency, hence, is two rounds. While, it is possible to broadcast one message each two rounds. The throughput, hence, is one message per two rounds (i.e. half message per round). On the other hand, in AlgorithmB, p 1 sends a message m to p 2 which forwards it to p 3 and then from p 3 to p 4 . As noticed, it needs three rounds for a message to be delivered, so the latency is three. While, three messages are delivered in three rounds which means that a message is delivered per round. Therefore, the throughput is one message per round.

System Model

MDC-cast is designed to work in a multi-datacenters environment. We assume a set S = {p 1 , ...p N } of N processes (also called "machines") distributed over several datacenters. Each datacenter is composed of a local area network that contains a number of interconnected processes G = {p i , ...p j }. Nodes in different datacenters inter-communicate over a wide area network. We assume that machines can only fail by crashing (i.e. Byzantine failures are out of the scope of our interest), that crashes are rare, and that each node is equipped with a perfect failure detector (P) [START_REF] Chandra | Unreliable failure detectors for reliable distributed systems[END_REF].

The failure detector is implemented as follows: MDC-cast creates a TCP connection between each two nodes and maintains this connection during the entire execution of the protocol with setting the KeepAlive flag. The failure detector provides periodic heart-beating to specify whether the remote node is responding or not. When a connection fails or lasts long, the machine tries to re-establish it five times with an exponentially increasing delay between each connection attempt. If the connection cannot be re-established, we consider that the target node has crashed. If the node reappears before or during the recovery procedure, we force the node to crash.

Existing TOB Protocols

TOB is studied since the ends of 1970s. A wide number of algorithms have been

TOB Classification

In order to classify TOB protocols, I summarize the taxonomy of [START_REF] Défago | Total order broadcast and multicast algorithms: Taxonomy and survey[END_REF], where they classified the literature into five kinds [Figure 1.2] according to their synchronization mechanism: as the name indicates, the delivery order results from an agreement between destination processes.

LCR

LCR [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF] is a Uniform TOB primitive for building SMR system that is efficient in failure free periods. It has been designed for small homogeneous clusters, in which machines are connected by a fully switched network. It is based on a ring topology and only relies on point-to-point interprocess communication where each node communicates just with its successor. The article defines a theorem that states the optimal throughput that can be achieved in cluster environments:

Theorem 1. Maximum Throughput. For a broadcast protocol in a system with n processes in the round-based model used in [START_REF] Guerraoui | High Throughput Total Order Broadcast for Cluster Environments[END_REF][START_REF] Guerraoui | A High Throughput Atomic Storage Algorithm[END_REF], the maximum throughput µ max in completed broadcasts per round is:

µ max = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ n/(n -1) if there are n senders 1 otherwise (1.1)
Also, the authors propose an algorithm, LCR, that matches this optimal throughput.

Its name is derived from the fact that it relies on Logical Clocks in addition to Ring topology. The mechanism of LCR is as follows: In order to broadcast a message m, a process p i will send m just once to its successor p i+1 . Each process p j will forward m to its successor unless process p i-1 which creates an acknowledgement and sends it to the predecessor of p i (Commonly represented as p i-1). p i-1 creates an acknowledgement ACK and sends it to p i . ACK will be forwarded by processes one by one until p i-2 . Each node can deliver the message as soon as it receives ACK due to the fact that it knows that all nodes have received the message correctly. Order in LCR is computed according to which messages are received by the last process in the ring, that is, process p n-1 . LCR assumes a perfect failure detector to which each process has access and that failures are rare. Processes in LCR are arranged in views. Each node that wants to participate will try to join the view. When a node crashes it will leave automatically the view. When a process joins or leaves the view, the view_change will be triggered and the view will be changed into another view that contains the new participating nodes. On every view_change some messages may got lost. To solve this issue the authors introduce a recovery method. Firstly, the nodes share their knowledge about pending messages. Then they deliver all relevant messages. Finally, they start over with the new view.

Figure 1.3 shows a network of five nodes {P 1, P 2, P 3, P 4 and P 5} running LCR algorithm where process P 1 broadcasts a message by transmitting it to its successor P 2. P 2 forwards the message to its successor P 3 which forwards it to P 4 and then from P 4 to P 5. P 5 then generates an acknowledgment and transmit it to the message sender P 1. The acknowledgment will be forwarded to P 2 and successively to P 3, P 4 and P 5.

TCP/IP does not provide fairness among sending sockets. Since LCR relies on TCP/IP communications, the bandwidth used for forwarding from one process can overwhelm other processes. In other words, if all processes broadcast messages, it is possible, in some cases, that the distribution of bandwidth among nodes will not be fair. LCR does thus provide a mechanism that ensures that each process will have equal opportunity to have its messages delivered by all processes. Each process has two queues: send_queue that contains messages to be broadcast and f orward_queue that contains messages broadcast by predecessors that should be forwarded. By this, each node will count the messages and assert that transmitted number of messages is fair between processes. The latency of the protocol is equal to 2n -2 rounds due to the fact that a message needs n -1 rounds to be broadcast and n -1 rounds to be acknowledged.

The protocol was implemented in C. The implementation contains two network levels where both of them rely on TCP/IP: (1) The ring topology layer where each process establishes a connection with its successor and (2) The group membership layer where it relies on mesh topology and makes use of the Spread toolkit [ADMA + 04a].

It is compared to two state-of-the-art systems: the Spread toolkit [ADMA + 04a] and JGroups [START_REF] Ban | JGroups -A Toolkit for Reliable Multicast Communication[END_REF] with various performance metrics: throughput, response time, fairness, and CPU consumption. LCR achieves optimal throughput for one sender as JGroups. For n senders, its throughput is also optimal and significantly better than the one achieved by Spread and JGroups. Its response time is reasonable as well as its CPU consumption which does not exceed 55 percent in worst cases.

Even though LCR is throughput optimal and scalable, it uses all of the links between nodes equally and so it is not optimal in WAN systems which are prone to bandwidth bottlenecks, as we will see later in this document.

FastCast

FastCast is a total order broadcast based algorithm that achieves optimal throughput with low latency. It works in a fully switched network of inter-connected processes (machines). In order to broadcast a message, the process transmits data to all other processes directly relying on IP-multicast which is on top of UDP/IP. Then, acknowledgments are collected in a second step. The system is designed for small clusters of homogeneous machines interconnected by a local area network. FastCast assumes that machines do not partially fail, that crashes are rare and that each node is equipped with a perfect failure detector (the same as LCR).

In order to broadcast a message m, a process p i multicasts m just once to all other nodes (Phase I). The Leader creates an acknowledgment ACK stamped by a sequence number and multicast it to all processes (Phase II). Thereafter, each process p j creates an acknowledgement and multicasts it (Phase III). Processes in FastCast are arranged in groups. Each node that needs to participate joins the group. When a node crashes it leaves automatically the group. When a process joins or leaves the group, the view_change is triggered and the view is changed into another view that contains the new participating nodes. On every view_change some messages may got lost. To solve this issue FastCast introduces a Recovery method. Firstly, the processes exchange their knowledge about pending messages. Then, they deliver relevant messages and start with the new view. IP-multicast is prone to message losses. For that purpose, authors added a bandwidth allocation sub-protocol that imitates the congestion protocol of TCP. The goal of the bandwidth allocation protocol is to allocate bandwidth for each sending node in order to allow multiple nodes to simultaneously and fairly send IP multicast packets, while reducing message losses. To realize this mechanism, authors firstly assume that each node knows the bandwidth requirements of all other nodes and then they use a max-min fair bandwidth allocation algorithm [START_REF] Boudec | Rate adaptation, congestion control and fairness: A tutorial[END_REF]. Nodes declare the changes in their bandwidth usage. More precisely, if a node requires to decrease its bandwidth, it can do it directly and then inform all other nodes about this change. If a node needs to increase its bandwidth, it needs to communicate with other nodes to check if this is possible. Then each node sends an acknowledgment.

After receiving ACKs from all other nodes, the node can increase its bandwidth.

The protocol is throughput optimal because each n -1 rounds, there are n messages delivered. The latency is equal to three rounds due to the fact that a message needs one round to be broadcast, one round to be assigned a sequence number and one round to be acknowledged.

The protocol has been implemented in C++ using the same code base as the Ring Paxos protocol. It was compared with two state-of-the-art systems LCR [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF] and Ring Paxos [START_REF] Marandi | Ring paxos: A high-throughput atomic broadcast protocol[END_REF] with various performance metrics: throughput, response time and latency. FastCast achieves optimal throughput like LCR. However its response time and latency are lower than LCR and Ring Paxos.

Even though FastCast is throughput optimal and with low latency, it cannot scale to multi-datacenter environments because IP-multicasting is not supported between datacenters.

Paxos and Fast Paxos

Paxos has been designed to solve consensus, which is, roughly speaking, equivalent to total order broadcast. We explain the behavior of Paxos because it is used as a basis for several TOB protocols, e.g., Ring Paxos [START_REF] Marandi | Ring paxos: A high-throughput atomic broadcast protocol[END_REF], Multi-Ring Paxos [START_REF] Marandi | Multi-ring paxos[END_REF] and Ridge [START_REF] Bezerra | Ridge: high-throughput, low-latency atomic multicast[END_REF]. We can explain the consensus problem by considering that a set of processes want to take a decision. One way to do that is to as follows. A process P i would ask to take the token. When it gets the permission, it would propose something and the processes would vote for it (thus reaching consensus). Finally, the decision would be announced to all processes. P i is represented in Paxos by a P roposer while processes that vote are called Acceptors and the replicas are called Learners. It is sufficient to have a reply from a quorum (majority of Acceptors) in order to take a decision.

A consensus ensures that only one proposed value is finally accepted and learned by every node even though messages can take arbitrarily long to be delivered, can be duplicated, and can be lost. Paxos nevertheless assumes that messages cannot be corrupted.

More precisely, the Paxos algorithm can be split into five tasks (noting that the first two tasks are called the selection phase):

• Plebiscite: The P roposer sends a P REP ARE message to a majority of Acceptors.

• Allegiance: Acceptors respond by showing their allegiance (The first two tasks are a sort of synchronization preamble).

• Proposition: After collecting a quorum of allegiance messages and being selected, the P roposer proposes its value to Acceptors by sending the message to the Coordinator (One node of the Acceptors elected as Coordinator) which forwards it to the Acceptors.

• Learning: When an Acceptor receives a new proposed value, it votes for it and informs Learners about it.

• Delivery: A message is delivered after getting a majority of votes. Coordinator sends it to all Acceptors, then, to vote for it. However, in Ring Paxos, the Coordinator is in charge of multicasting the message directly to all nodes. The Coordinator's successor then forwards it to its successor and so on until it comes back again to the Coordinator. After finishing its ring, the message will get in its final stage: Delivery. The Coordinator then multicasts again the message to all

Paxos

Ring Paxos

Acceptors and Learners to be delivered.

It is well known that IP-multicast is subject to message losses due to buffer overflow.

To minimize these losses, Ring Paxos limits the throughput of multicasting from each sending node and configure the communication buffer sizes. But there is still a problem, multicasting from several simultaneous senders.

Multi Ring Paxos

As its name indicates, Multi-Ring Paxos is a protocol derived from Paxos that combines several instances of Ring Paxos algorithm into a new algorithm in order to improve the system performance. Multi-Ring Paxos uses multiple independent instances of Ring Paxos which are considered as groups of Acceptors.A P roposer can initialize a message broadcast and send it to one of the groups. Also, Learners subscribe to groups they would like to deliver messages from. If a Learner subscribes to groups g l 1 , g l 2 , ..., g l k , where l 1 < l 2 < ... < l k , then the Learner could first deliver M messages from g l 1 , then M messages from g l 2 , and so on, where M is a parameter of the algorithm [START_REF] Marandi | Multi-ring paxos[END_REF]. Synchronization between groups is handled via a deterministic merge procedure.

The idea of Multi Ring Paxos is that a P roposer sends a proposition to one of the groups which will treat it as in Ring Paxos. Then the message will be sent to the subscribed learners. Inside a group, Acceptors act exactly like in Ring-Paxos: the Coordinator multicasts every message, and the message will be then forwarded in a ring topology between Acceptors.

In the enclosed figure (Figure 1.8), an illustrated scenario clarifies the system.

The figure shows a system running Multi-Ring Paxos with two groups g1 and g2

where each group contains a set of Acceptors. The system includes two P roposers (P roposer1 and P roposer2) and two Learners (Learner1 and Learner2). P roposer1 initializes two message broadcasts (m1 and m3) and sends them to g1. P roposer2 initializes two message broadcasts (m2 and m4). m2 is sent to g1 while m4 is sent to g2. Learner1 subscribes to group g1 and Learner2 subscribes to groups g1 and g2. M is considered to be 1 which means that a Learner has the choice to switch between groups on each message.

The protocol was implemented assuming that decisions can be stored in main memory (and not on disk) and compared experimentally to some state-of-the-art systems:

LCR, Spread and Ring Paxos using several performance metrics: Throughput, Latency and CPU usage. Even though Multi-Ring Paxos is throughput optimal, it is not adapted to multidatacenters setups provided it relies on IP-multicasts. • Proposer: A P roposer proposes the message to one or more groups by sending the value to their Coordinators.

Ridge

• Coordinator: The Coordinator proposes the message to the ensemble.

• Acceptor: the Acceptor takes its role in voting as described in one ensemble.

• Learner: The learner finally delivers the message according to its order. In case of several ensembles, Ridge makes use of a merging algorithm that coordinates messages. Results show Ridge improves both the latency and the throughput. Finally, the optimized-delivery algorithm was assessed and the percent of mistaken deliveries did not exceed 3% even under high throughput.

Even though Ridge has been designed to work in WAN systems, it is highly affected by bottlenecks that can be observed on network links, as we show in Chapter 3.

Performance of Existing Protocols in Multi-

Datacenter Environments

We have presented several TOB protocols. Only some of them are throughputoptimal, namely: FastCast [START_REF] Berthou | Fastcast: a throughput-and latency-efficient total order broadcast protocol[END_REF], Multi-Ring Paxos [START_REF] Marandi | Multi-ring paxos[END_REF], LCR [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF],

and Ridge [START_REF] Bezerra | Ridge: high-throughput, low-latency atomic multicast[END_REF]. The first two protocols rely on IP-multicast and can therefore not be used efficiently in multi-datacenters environments. We therefore focus on the LCR and Ridge protocols.

Throughout this section, we consider the multi-datacenters settings presented in

Message Pattern of LCR

The message pattern of the LCR protocol is depicted in Figure 1.11 in the case when process P 5 initiates a message broadcast. The process simply sends the message to each other nodes, using the TCP protocol. LCR uses a ring topology to disseminate messages. As the figure shows, the message is successively forwarded by processes P 1 , P 2 , and P 3 . When P 4 receives the message it does not forward it because it knows that the message originates from P 5 . In order to ensure message ordering, LCR piggybacks some data on every forwarded messages (i.e. a vector clock) that allows acknowledging messages and defining the order in which messages must be delivered.

Message Pattern of Ridge

As explained before, Ridge improves the decision phase of Paxos in order to increase the system performance and adapt the protocol to WAN systems. The message pattern of the decision phase of the Ridge protocol is depicted in Figure 1.12. Acceptor 1 sends m to its successor Acceptor 2 . Acceptor 2 knows that the quorum is achieved (two Acceptors out of three). It forwards the message to a Learner with the help of a load balancer (We assume that it is to Learner 1 which is the best case). The decision phase of the Ridge protocol at its core is composed of a quorum phase (Acceptors quorum) and a message dissemination phase (Among Learners). The dissemination pattern we present is more efficient than that of the actual Ridge protocol which we depict in Figure 1.13 where Learner 5 disseminates a message. In the actual prootocol, the process simply sends the message to all other nodes, using the TCP protocol.

Ridge implements a set of features that does not actually improve its throughput.

The most interesting one is its ability to combine several components in one physical node. The message pattern of the Ridge protocol when roles are collocated in one process is depicted in Figure 1.14. A process can be an acceptor but also a Learner.

Acceptor 1 sends m to its successor Acceptor 2 . Then Acceptor 2 forwards m to its successor Acceptor 3 . Acceptor 3 knows that the quorum is achieved (three Acceptors out of five). It forwards the message to a Learner with the help of a load balancer (We assume that it is to Learner 5 which is the best case). Learner 5 sends m to all other Learners directly.

Latency of Ridge and LCR

In table 1.1, we provide the theoretical latency achieved by LCR and Ridge in a cluster environment. The network assumed is composed of N homogeneous nodes interconnected by a switch. The latency is showed in terms of t, the time needed for a message to be sent from one node to another. The table studies two cases (1) when one sender only Broadcasts a message and (2) when each node is broadcasting a message. First, we study when just one sender Broadcast a message. Using LCR, when a process P Broadcast a message m, it sends m to its successor process. m is forwarded from each process to its successor until it arrives to the predecessor process of P . So, the time needed to disseminate the message is (N -1) * t. Using Ridge, when a process P Broadcast a message m, it sends it directly to each other process. So, the overall latency of the Broadcast of m using Ridge is t. On the other hand, in the case of N senders, both algorithms have the same latency (N -1) * t.

Because the two protocols have optimal throughput, they both need N -1 rounds to deliver N messages as stated in [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF] (N -1 rounds). Thus, the time needed to Broadcast N messages is (N -1) * t. This is due to the fact that using Ridge, it is impossible to send a message to two different processes at the same instant but rather messages are sent sequentially.

LCR Ridge

One sender (N -1) * t t N senders (N -1) * t (N -1) * t Table 1.1: The theoretical assessment of the latency of LCR and Ridge.

Throughput of Ridge and LCR

In this section, we study the throughput achieved by Ridge and LCR. We performed experiments using two setups. In the first setup, five machines are located in the same datacenter and communicate using a fully-switched network (using a 1Gb/s ethernet network). In the second setup, 5 machines are spread in two datacenters, as depicted in Figure 1.10. Figure 1.17 compares the performance of LCR and Ridge. Within each datacenter, machines communicate using a fully-switched 1Gb/s network, whereas across datacenters, machines communicate using link L1 that has a bandwidth of 500M b/s. The reason why link L1 has a lower bandwidth available for the protocol is that it can be simultaneously used by all machines belonging to datacenters A and B. In both cases, all machines initiate message broadcasts.

In the "one datacenter" setup, Ridge and LCR both achieve optimal throughput as defined in [GLPQ10]: N N -1 × 1Gb/s with N = 5 machines. In the multi-datacenters setup, LCR and Ridge achieve a much lower throughput. We explain this result in the remainder of this section.

To understand the performance depicted in Figure 1.17, we analytically study, the number of messages that transit on each network cable and link for the two protocols (using the setup depicted in Figure 1.10). Figure 1.18 depicts the number of messages that are sent and received on each network cable and link when 5 messages are broadcast (one by each process). As network cables and links are bidirectional, we distinguish the two directions: "In" and "Out". We first observe that all nodes are receiving 4 messages in the two protocols ("In" direction of each network cable). This is expected provided that each machine must receive each broadcast message once.

Using LCR, each process generates its own message in addition to forwarding three other messages. Consequently, each machine sends 4 messages on the "Out" direction of its network cable. L1, the link connecting the two datacenters, is used to send messages from P 2 to P 3 and from P 5 to P 1 . This explains why 4 messages transit on this link in the two directions.

Using Ridge, each machine sends to all other machines the messages it broadcasts. Consequently, each node sends 4 messages on the "Out" direction of its cable. L1, the link connecting the two datacenters, is used to send messages from each node in datacenter A towards each node in datacenter B, and vice versa. So, in total, 6 messages are sent over L1 in both directions. This analysis explains the performance drop observed in the multi-datacenters setup.

For both protocols link L1 is the bottleneck. More precisely, for LCR, this link conveys as many messages as other cables, but has half the bandwidth than the latter. For Ridge, besides having half the bandwidth of other cables, link L1 also conveys 50% more messages than cables (6 messages against 4). This explains why Ridge achieves lower performance than LCR in the multi-datacenters setup.

LCR requires sharing L1 between four nodes (Each message is forwarded three times) on each lane so the theoretical throughput of generating messages is limited to 125M b/s for each node. Thus, the overall theoretical expected throughput is

Intra-datacenter link usage

In table 1.2, we provide the usage of intra-datacenter links in the LCR and Ridge assuming that each process P i utBroadcasts one message. We assume a system containing a set S = {p 1 , ...p N } of N processes distributed over several datacenters.

Each datacenter contains a group of processes G = {p i , ...p j }. In LCR, each node transmits its own messages and forwards all other messages except those initiated from its successor in the ring. Thus, in LCR each intra-datacenter link transmits N -1 messages. Similarly, each node receives messages from all other nodes (that is N -1 messages). Concerning Ridge, each node sends its messages to all other nodes directly, which means that each node transmits N -1 messages and receives

N -1 messages. LCR Ridge Out N -1 N -1 In N -1 N -1 Table 1.2: Intra-datacenter link usage

Inter-datacenter link usage

In table 1.3, we provide the usage of inter-datacenters links with LCR and Ridge assuming that each process P i utBroadcasts one message. Since LCR relies on a ring topology and each node transmits fairly equal bandwidth to its successor, a node transmits over a cable exactly as much as it transmits over a link, that is N -1 messages. Using Ridge, each node in group, D j sends a message to each node in group D k . Hence, a link in between D j and D k transmits G j * G k and respectively receives G k * G j where G i represents the number of nodes is D i .

LCR Ridge Out N -1 G j * G k In 0 G k * G j
Table 1.3: Inter-datacenter link usage

Conclusion

We have studied existing TOB protocols. Our study shows that only two protocols are throughput optimal and are able to work in multi-datacenter environments:

LCR and Ridge. A deeper study of those two protocols has highlighted the fact that their usage of inter-datacenter network links is not optimal, thus yielding poor throughput in this setup. In the remainder of this document, we describe a new protocol that outperforms those two protocols in multi-datacenter setups.

into nodes in its datacenter. In other words, we use IP-multicast where possible (i.e.

between nodes in the same datacenter) and forward messages over TCP/IP between datacenters. This mechanism is handled by two machines in each datacenter, called

Exporter and Importer. Other nodes are called standard nodes.

The message dissemination pattern is depicted in when process P 5 broadcasts a message with MDC-cast. The Broadcast primitive is implemented in two phases: the first phase is an intra-datacenter phase, whereas the second phase is an inter-datacenter phase. More precisely, when a node Broadcasts a message m, it first multicasts it inside its datacenter (phase 1). Then, the datacenter's Exporter forwards m to all the other datacenters by sending m directly to Importers located in other datacenters over TCP/IP (phase 2). Each Importer, then, IP-multicasts m inside the datacenter it belongs to (phase 3). We denote the Exporter of a datacenter by the node holding the smaller ID number in the datacenter while the Importer is the node holding the largest ID.

Specifically, in Figure 2.1, P 5 IP-multicasts m locally to its neighbors1 P 3 and P 4 .

P 3 , which is the Exporter of datacenter B, exports m to the other datacenter A by sending it directly to the Importer of A: P 2 . P 2 receives the message and forwards it to its neighbors using IP-multicast.

Illustration of the link usage

Figure 2.2 depicts the number of messages that are sent on each network cable and link when five messages are broadcast (one by each process) using the MDCcast protocol. In datacenter A, P 1 is the Exporter and P 2 is the Importer. In datacenter B, P 3 is Exporter and P 5 is Importer. We borrow the same system and configurations depicted in figure 1.18 to ensure a fair comparison. We observe that, analyzed in two dimensions: inter-datacenter and intra-datacenter.

Theoretical assessment of the link usage

Links (Inter-datacenter) Cables (Intra-datacenter) Exporter: The link usage of MDC-cast is compared to the link usage of LCR and Ridge and shown in table 2.2. We observe from the table that MDC-cast uses inter datacenter links less than LCR and Ridge.

G k * (D -1) + 1 Out G j Importer: N -G k + 1 Others: 1 In G k N -1 Table 2.1: MDC-cast
Links (Inter-datacenter) Cables (Intra-datacenter)

LCR IN N -1 N -1 OUT 0 N -1 Ridge IN G k * G j N -1 OUT G j * G k N -1 MDC-cast IN G k N -1 Exporter: G k * (D -1) + 1 OUT G j Importer: N -G k + 1 Others: 1 Table 2.2: MDC-cast theoretical link usage

Message ordering

For ordering messages, MDC-cast uses the well-known fixed-sequencer pattern [START_REF] Défago | Total order broadcast and multicast algorithms: Taxonomy and survey[END_REF].

More precisely, a fixed Sequencer is in charge of ordering messages by assigning a sequence number to each message. The Sequencer is elected by other processes using a group membership system explained in section 2.1.4.

Pseudo-code of the dissemination and ordering mechanisms

The pseudo-code is provided in Figure 2.3. The protocol works as follows. Each node multicasts a message in its datacenter (line 12), the Exporter of this datacenter forwards this message to other datacenters (line 20) and the message follows the path designed and explained before. The Importer is in charge of receiving messages from other datacenters and multicasting these messages to its datacenter (line 22).

In order to ensure uniform agreement on message delivery, the sequencer assigns a novel and unique ID for each message (line 26) and multicasts an acknowledgment holding the new sequence number (line 28). In addition, every node acknowledges about the reception of messages and the sequence numbers associated with them (line 28). In order to deliver a message m, it should be received by all nodes first.

So, for delivering a message m, each node waits m to be acknowledged by each other node (lines 43 and 44). That way, a node is sure that m is already known and it holds a sequence number. If a message is not delivered after some amount of time (a specific timeout), the message is resent again (line 49).

Membership management

Machines are prone to failures and crashes. In order to handle machines joining and leaving the system, the MDC-cast protocol is built on top of a group communication system [START_REF] Birman | Exploiting virtual synchrony in distributed systems[END_REF] relying on an external perfect failure detector (P) that guarantees strong accuracy (No process is suspected before it crashes) and strong completeness (Eventually every process that crashes is permanently suspected by every correct process) [START_REF] Chandra | Unreliable failure detectors for reliable distributed systems[END_REF].

Figure 2.4 presents the membership management subprotocol. When a process leaves or joins the group, the view_change procedure is triggered. Firstly, every process completes the execution of all other procedures (if any) which is described in Figure 2.3. Then it starts the recovery part of the view change procedure. The functions make use of two primitives Rsend (reliable send) and Rreceive (reliable receive) that implement reliable communication channels over TCP/IP. Each process synchronizes its pending lists by sending each message in its pendings along side with its sequence numbers (seqnos) to all processes in the new view (line 2).

Upon receiving these arrays, every process updates its own pendings and seqnos arrays using those received from all other processes (lines 17 and 19). Then, the processes send back an Ack_Recover message (line 20). Processes wait until they receive Ack_Recover messages from all processes (line 3) before sending an

End_Recovery message to all (line 4). When a process receives End_Recovery messages from all processes (line 5), it means that the message is ready to be delivered when its sequence number matches the waited sequence number, snToDeliver (lines 21 to 26). So, after the view change procedure finishes, all processes belonging to the new view will have delivered the same messages in the same order. Each process then empties its pendings, seqnos and acknowledgments (acks) arrays (lines 8 to 10). Moreover, each process uses as new Sequencer the first process in the new view (line 11). Each datacenter uses the first process as the Exporter (line 12) and the last process as the Importer (line 13).

Procedures executed by any process P i 1: upon view_change(new_view) do 2:

Rsend ⟨Recover, P i , pendings, seqnos⟩ to all P j ∈ new_view 3:

Wait until received ⟨Ack_Recover⟩ from all P j ∈ new_view 4:

Rsend ⟨End_Recovery⟩ to all P j ∈ new_view 5:

Wait until received ⟨End_Recovery⟩ from all P j ∈ new_view 6:

forceDeliver() 7:

view ← new_view 8:

pendings[] ← ∅ 9:

seqnos[] ← ∅ 10:

acks

Correctness of the protocol

In this section, we prove that MDC-cast is a uniform total order broadcast protocol. We proceed by successively proving that MDC-cast ensures the four properties mentioned at the beginning of Section 1.1: validity, integrity, uniform agreement and total order.

Lemma 1. Validity: if a correct process P i Broadcast a message m, then P i eventually Deliver m.

Proof. If a correct process P i Broadcast a message m, m is added to P i 's pending list (Line 15 of Figure 2.3). If there is a membership change, m will be in the new view (Line 7 of Figure 2.4). This view change guarantees that pending messages enter a recovery procedure. Message are resent again and they are eventually delivered. Let us now consider the case when there is no membership change. When a process P j receives a message m from a process P k , this message is added to P k 's pending list (Line 29 of Figure 2.3). The dissemination procedure ensures that, in the free-failure case, m is forwarded to every process in the current view through Exporters and Importers. Thereafter, the sequencer assigns a new unique ID (Called Sequence Number) to m and sends an acknowledgment to every process. When a process P j receives an acknowledgment from the sequencer, it multicasts an acknowledgment ACK and Broadcast it in order to inform all other processes about receiving m (Line 37 of Figure 2.3). When a process P i receives an acknowledgment ACK about a message m from each process in the system which is already in the pending list, it knows that all other nodes have received m with its sequence number and m can be delivered. The message m is then delivered if its sequence number matches the expected sequence number (Line 44 of Figure 2.3). If m is not received by some process, then the sender P i will wait for an acknowledgment for some period, consider it as undelivered and re-broadcast it after some timeout (Line 49 of Figure 2.

3).

Consequently, all messages undelivered will be delivered. Eventually, m is delivered.

Lemma 2. Integrity: for any message m, any correct process P j Deliver m at most once, and only if m was previously Broadcast by some correct process P i .

Proof. When a message m is Deliver, the sequence number is incremented by one (Line 45 of Figure 2.3) and the next message to be delivered should hold the new unique sequence number. Also, the message is removed from the pending list (Line 46 of Figure 2.3). Similarly, when there is a membership change, Line 17 of Figure 2.4 guarantees that process P j will not deliver messages twice.

Lemma 3. Uniform Agreement: if any process P i Deliver any message m in the current view, then every correct process P j in the current view eventually Deliver m.

Proof. We consider a message m k initiated by process P k and delivered by P i in the current view. We study two cases with and without membership change. On the first hand, if m k is not delivered on a membership change. The protocol ensures that m k is received and acknowledged by every correct process before being delivered by P i . Each process sends acknowledgment for m k and it will be transmitted to every correct process. Thus, every correct process delivers m k when it becomes the first entity in the pending list (Line 44 of Figure 2. that have rate and congestion control mechanisms. They commonly address the IPmulticast issue using one of the three following techniques. In the first technique, they inhibit the throughput of each process [START_REF] Birman | Performance of the isis distributed computing toolkit[END_REF]. The second technique is to imitate what is developed in TCP/IP by dynamically varying window sizes. They create virtual windows in the application space and IP-multicast them as ordinary messages. They distinguish between small windows for basic flow control and large windows for total ordering. The third technique is to to keep the gap between concurrent messages. This is done by limiting the number of concurrent senders in each group. This technique is used for large networks where the number of senders is relatively big.

In this section, we describe a bandwidth allocation mechanism that works as follows.

The bandwidth allocation mechanism is managed by the Sequencer. It uses the TCP protocol to communicate with all machines in the system. Using TCP, the Sequencer asks each machine the throughput at which it wants to broadcast messages including resent messages. It then uses a max-min fair bandwidth allocation algorithm [START_REF] Boudec | Rate adaptation, congestion control and fairness: A tutorial[END_REF] which shares at its core the same concept of inhibiting the throughput of each process [START_REF] Birman | Performance of the isis distributed computing toolkit[END_REF]. We start by describing an example. We then provide the detailed pseudo-code.

Bandwidth allocation example

We illustrate this mechanism in the case of the topology described in Figure 1.10. In this topology, there are two datacenters: A has two nodes {P 1 , P 2 } and B has three nodes {P 3 , P 4 , P 5 }. Nodes inside each datacenter are interconnected by a 1Gb/s Ethernet switch. Moreover, for the purpose of this example, we consider that the inter-datacenter link L1 has a bandwidth of 300M b/s. It is indeed not possible to allocate more than 250M b/s to nodes {P 1 , P 2 , P 3 , P 4 }.

Otherwise, P 5 would have to receive more than its bandwidth capability (1Gb/s), which is impossible.

In a second step, machines take into account the bandwidth of link L1 (300M b/s in our example). With the bandwidth allocation described in the previous paragraph, L1 would need to send 500M b/s and receive 700M b/s, which is not possible provided that it has a capability of 300M b/s. Consequently, the two sites have to decrease their export to 300M b/s each. This leads to decrease the bandwidth of {P 1 , P 2 } to 150M b/s, and the bandwidth of {P 3 , P 4 , P 5 } to 100M b/s.

Detailed pseudo-code of the bandwidth allocation mechanism

Figure 2.8 provides the bandwidth allocation mechanism executed by standard processes (not the Sequencer). If a node wants to decrease its throughput (line 4), it decreases it directly then notifes the Sequencer about this decrease (line 10). If a node wants to increase its throughput, it sends a demand to the Sequencer (line 16) and waits for the response to update its throughput (line 18) if possible. Figure 2.9 shows the pseudo-code executed by Exporters. In order to calculate the available bandwidth between datacenters, Exporters push messages (that are to be forwarded) into a forwarding queue. During their transmission, they monitor the sending throughput. An Exporter will update the Sequencer (line 7) on significant changes (at least 10%). variable. In addition, the Sequencer stores the required_throughput field that is used when a node wants to increase its bandwidth. The required_throughput stores the required increase (before being processed). In order to manage the usage of links between datacenters, the Sequencer stores the available bandwidths of each link in the available_bandwidths field. If a node wants to increase or decrease its bandwidth, the Sequencer will update the bwRequirements with the amount (lines 8 and 11) and then recompute the bandwidth allocation on all nodes and cables (lines 9 and 12). The new bandwidth allocation is then sent to all the nodes (line 44). Finally, the Sequencer updates its currentBW (line 20).

Procedures executed by any process P i unless

Procedures executed by any

Illustration of the bandwidth allocation mechanism

We provide three illustrations of the bandwidth allocation protocol in

Optimizations

In order to improve the performance of MDC-cast, we implemented an optimization that is very often used in existing protocols: it consists in batching small messages in order to improve the network usage. The second optimization is relative to retransmitted messages. Basically, when a process P i sends a message m, some

ACKs may get lost as well as m itself. In this case, P i will wait the timeout and resend m again. In the datacenter environment, we propose to organize the retransmission mechanism in three steps. From P i to Exporter, then from Exporter to another datacenter (The path between datacenters), then inside the receiving datacenter.

Assume that a message m is generated by a process P i located in a datacenter D. The message firstly is IP-multicast in D and then forwarded from D to other datacenters. If m is received patially by some nodes in a datacenter D ′ , but not received by all nodes in D ′ , then there is no need to get the message back from D.

It is sufficient to get it from a process that already received it in D ′ (At least the importer has received it). We define two timeouts, intra_timeout which is short because it is used inside the datacenter, and timeout for the complete procedure of the message broadcast. P i sends a message and waits ACKs from its datacenter and from other datacenters. It will wait intra_timeout to get ACKs from its datacenter and wait timeout to get ACKs from other processes that should pass through the Importer. Similarly, if Importer receives at least an ACK from another datacenter, this means that m has arrived to that datacenter via its Importer. This Importer will wait to get ACKs from all members of the local datacenter D ′ . After intra_timeout, the Importer of D ′ will re-multicast the message again.

Conclusion

Existing optimal total order broadcast protocols target fully switched networks. In this chapter, we have presented MDC-cast, a Total Order Broadcast protocol that specifically targets multi-datacenters environments. MDC-cast optimizes the use of inter-datacenters links and decrease the impact of background traffic. In addition is makes use of a bandwidth allocation mechanism to ensure that the network is not congested.

in [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF] and show that MDC-cast matches this bound. Then, we show a case study and analyze it. First, we recall the maximum throughput for a Total Order Broadcast protocol in a system with n processes stated in [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF]: Hence, delivering N messages needs N -1 (D * G -1 rounds) rounds. In the case with less than N senders, a non-sender process receives one and only one message per round. Thus, it delivers one message per round. So, the maximum throughput is equal to 1 for less than N senders. in the third round while P 1 receives the message of P 2 . In the fourth round, nodes receive the message Broadcasted by P 2 while P 2 receives the message of P 3 . In the last round, nodes receive the remaining messages. The message Broadcasted by P 4 is received by all nodes while P 4 receives the message of P 3 . Thus in five rounds, 15 messages are IP-multicasted each in its datacenter.

µ max = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ n/(n -1)

Illustration of the throughput optimality

Performance in Presence of Background Traffic

Links connecting data centers are impacted by background traffic and prone to saturation. In this section, we study the impact of the background traffic on links connecting datacenters. The remaining available bandwidth on a lane of link connecting two datacenters is noted AV B.

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ BW*(N/(N-1)) if AV B ≥ min AV B min AV B * N/G j otherwise (3.2)
where G j is the number of nodes inside the datacenter and min AV B = G j * BW/(N -1).

The equation can be considered in three distinct situations: (1) if there is no background traffic on the links in between datacenters, (2) If there is background traffic but not affecting the overall throughput of the system (i.e. the AV B on all links is sufficient to achieve the optimal throughput), and (3) If there is background traffic on the links in between datacenters that affects the overall throughput of the system.

The first two situations together mean that if the available bandwidth on links connecting datacenters is more than or equal to the needs, then it is possible to achieve the optimal throughput (the first line of the equation); otherwise the overall throughput is proportionally affected (The second line of the equation).

Latency

The latency of LCR and Ridge in cluster environments is presented in table 1.1.

Nonetheless, their latency is not the same in multi-datacenter environments due to the heterogeneity of links. The latency of a message transmitted between two processes each in a distinct datacenter is represented by O. We assume that the time needed to send messages between processes in the same datacenter is homogeneous but negligible. This is due to the fact that in our experiments, the latency intradatacenter almost does not exceed 5% of the latency inter-datacenters. Using LCR, when a process P Broadcast a message m, it sends m to its successor process. m is forwarded from each process to its successor until it arrives to the predecessor process of P . The message traverses all the datacenters and returns back to its origin datacenter (The datacenter that contains the sender). Thus, the time needed to disseminate the message is (D -1) * O. Using Ridge, when a process P Broadcast a message m, it sends it directly (and in parallel) to all other processes.

So, the overall latency of the Broadcast of m using Ridge is O. Using MDC-cast, the Broadcast is done in three phases: a message is IP-multicast, then forwarded to the Importers in other datacenters which IP-multicast them in their datacenters.

As for Ridge, the sending of m to all other datacenters can be performed in parallel.

Consequently, the overall latency of the Broadcast of m using MDC-cast is O.

On the other hand, in the case of N senders, the three algorithms have the same latency (N -1) * O. Because the protocols have optimal throughput, they all need N -1 rounds to deliver N messages. Thus, the time needed to Broadcast N messages is (N -1) * O.

Experimental Setup

The experiments focus on the failure-free case that is the common case in the targeted systems. We describe firstly the experimental setup of the testbed before characterizing the performance of the three algorithms from two points of view: throughput and latency. Grid'5000 is a real testbed, hence the background traffic is almost variable and unstable. In order to obtain stable and deterministic results, we limit to 500M b/s the bandwidth of inter-datacenters links using the tc Linux tool. In order to ensure a fair evaluation among the three prototypes, we implemented MDC-cast, Ridge and LCR using the same networking libraries (in C++). Indeed, there exists some group communication toolkits that we could have relied on to design our system such as Spread [ADMA + 04b] but we preferred to create our own communication mechanism to have stronger control over packets transmission. Our performance evaluations basically study a network topology of nine nodes distributed over three datacenters. Nodes inside each datacenter are intended to be within the same cluster and connected to the same switch. Datacenters are interconnected by shared links. Since experiments are done on distributed servers, we adjusted the window size to be able to scale up to the needed size. The presented experiments were preceded by a warm-up phase to ensure that all links and buffers were filled up.

Configuration Methodology

The Need For a Configuration Methodology

As we have seen in the previous sections and chapters, the performance of a protocol are often strongly depending on the bandwidth available on links inter and intra-datacenters. Let us consider a system S composed of five processes {p 1 , ...p 5 }, where each process p i is connected to the network via a cable called C i respectively.

Processes are distributed over two datacenters A and B, interconnected by link L1.

Datacenter A contains processes p 1 and p 2 , while datacenter B contains processes p 3 , p 4 and p 5 . Processes inside the same datacenter are interconnected by a Gigabit local area network, while datacenters communicate over a wide area network. We

Describing the Configuration Methodology Using an

Example

In this section, we will describe the configuration methodology using an example.

More precisely, we will explain how to tune the number of Acceptors in the Ridge protocol. The configuration methodology comprises three successive steps:

• max_lane: we first detect the bottleneck link and more specifically the bottleneck lane of the link2 which we call max_lane. That value represents the number of messages that transit on the bottleneck link for each step of an algorithm.

• max_gen: we then calculate the maximum throughput that could be generated from the bottleneck node if it initiates message broadcasts. This throughput, noted max_gen is equal to BW/max_lane.

• possible_throughput: we finally calculate the overall possible throughput, if several nodes are broadcasting messages: possible_throughput = max_gen * G (where G is the number of generators).

We provide an illustrative scenarios to explain our methodology. Let us consider a system of nine servers interconnected by a Gigabit fully-switched network. Let us assume that the system runs Ridge [START_REF] Bezerra | Ridge: high-throughput, low-latency atomic multicast[END_REF]. Finally, let us assume that there are five Acceptors named {A 1 , ...A 5 } and four Learners named {L 1 , ...L 4 }. Briefly, in Ridge, when an Acceptor receives a request, it forwards it to its successor Acceptor and so on until getting a majority of Acceptors which is three successive nodes in our example. Then the message will be sent to a Learner which the load balancer chooses. This learner is in charge of broadcasting the message using TCP/IP messages to all other Learners. So, when A1 receives a new request, it forwards it to A2 as shown in figure 3.7. A2 forwards it to A3 and A3 notices that the message is acknowledged by a majority will receive two messages, let us say it is L1. So, L1 is going to broadcast two messages and the OU T lane of the link connected to L1 will be used to send six messages as shown in table 3 In this scenario, the maximum throughput of this system will be 834M b/s:

• max_lane = 6

• max_gen = (1Gb/s)/6 = 166M b/s

• possible_throughput = 5 * 166M b/s = 834M b/s
As a conclusion, the maximum throughput of the system depends on the network topology and the way the algorithm is deployed

Experimental Evaluation

To assess the throughput of the three protocols, we deploy N nodes that initiate and broadcast messages. The message size is fixed to 10KB. Each node periodically computes and reports the delivery throughput. The throughput is calculated as the ratio of delivered bytes over the time elapsed since the end of the warm-up phase.

The plotted throughput is the average of the values computed by each process.

Throughput comparison against LCR and Ridge

We first compare the performance of MDC-cast against LCR and Ridge. The results are shown in Figure 3.8. We observe that MDC-cast achieves a similar throughput to LCR in the one datacenter setup, and a much higher throughput than other protocols in a multi-datacenters setup. In the multi-datacenters setup, the throughput of LCR and Ridge are degraded by about 50%. This is due to the impact of the background traffic. MDC-cast is not affected by this amount of background traffic (which is around 500M b/s). This result was expected and is explained by the fact that MDC-cast optimizes the utilization of inter-datacenters link, as explained in Section 1.

Throughput when varying the number of nodes per datacenter

This experiment makes use of the topology depicted in figure 3.4. The topology contains three datacenters with three nodes in each datacenter. In this experiment we vary the number of nodes inside each datacenter (X axis) respectively. Figure 3.9

shows the throughput of LCR, Ridge and MDC-cast in a setup comprising three datacenters, when varying the number of nodes per datacenter. We observe that when the number of nodes increases inside the datacenter the throughput of LCR 3.12 shows the latency of LCR, Ridge and MDC-cast with N senders in three datacenters, the topology of figure 3.4. We observe that LCR, Ridge and MDC-cast achieve close latencies (the Y axis starts at 16ms). This is not surprising as in this case, the latency is limited by the throughput. As MDC-cast achieves the higher compared its performance to that achieved by two state-of-the-art protocols: Ridge and LCR from several points of view. Our performance evaluation shows that MDCcast significantly outperforms other protocols in the datacenter environment.

3. 4

 4 Experimental Evaluation . 3.5 Conclusion . Vs. Throughput . 1.2 TOB Classification . 1.3 LCR Protocol: Dissemination Pattern Phase (Normal Arrows) and Acknowlegment Phase (Dashed Arrows) 1.4 FastCast Protocol: Dissemination pattern (Phase I:left part); Assigning Sequence number (Phase II:middle part); Acknowledgment phase (Phase III:right part) . 1.5 Paxos and Fast Paxos . 1.6 Comparison between Paxos and Ring Paxos provided in [MPSP10] . . 1.7 Percentage of packet losses when multicasting messages (1 to 3 senders). (Figure borrowed from [MPSP10]). 1.8 Multi Ring Paxos algorithm. 1.9 Ridge Protocol with one ensemble (Phase II). 1.10 Example of a multi-datacenters environment comprising 5 machines located in two datacenters. .

 Ridge in one datacenter (left three bars) and in a multi-datacenters environment (right three bars). 3.9 Performance of LCR,Ridge and MDC-cast in a setup comprising three datacenters, when varying the number of nodes per datacenter. 3.10 Throughput as a function of message size for LCR, Ridge and MDCcast (with and without batching). .

Figure 1 . 1 :

 11 Figure 1.1: Latency Vs. Throughput

 Figure 1.2: TOB Classification

Figure 1 . 3 :

 13 Figure 1.3: LCR Protocol: Dissemination Pattern Phase (Normal Arrows) and Acknowlegment Phase (Dashed Arrows)

Figure 1 .Figure 1

 11 Figure 1.4 shows a network of five nodes {P 1, P 2, P 3, P 4 and P 5} running FastCast algorithm where P 4 is the Leader. The figure illustrates the three consecutive phases of FastCast where process P 1 broadcasts a message m. In the left part, which depicts the dissemination pattern phase, m is transmitted from P 1 to other nodes directly using IP-multicast. Then, in the middle part, the Leader assigns a unique sequence

 Figure 1.5: Paxos and Fast Paxos

 algorithm is depicted in figure 1.5a without its selection phase (The first two tasks), a P roposer P proposes a value and send it to the Coordinator C. The Coordinator forwards the value to each Acceptors. Each Acceptor informs eventually each Learner about its decision. Paxos was later improved. The resulting protocol, called Fast Paxos [Lam06] (Figure 1.5b) works by shrinking the steps of delivering a message. The key difference between the two algorithms is that instead of sending a P REP ARE message for each instance, in Fast Paxos it is sufficient to send one P REP ARE message for a sequence of instances.

Figure 1

 1 Figure 1.6: Comparison between Paxos and Ring Paxos provided in [MPSP10]

Figure 1 . 7 :

 17 Figure 1.7: Percentage of packet losses when multicasting messages (1 to 3 senders). (Figure borrowed from [MPSP10]).

Figure 1 .

 1 Figure 1.6 shows a comparison between Paxos and Ring Paxos [MPSP10]. In Paxos, when a P roposer proposes a value, it sends it to the coordinator. The

 Figure1.7 (borrowed from[START_REF] Marandi | Ring paxos: A high-throughput atomic broadcast protocol[END_REF]) shows the throughput impact when multiple senders multicast messages. It can be observed that when the system runs with 5 senders, the percent of lost messages is under the threshold of 5% until the aggregated sending rate meets around 800M b/s where it faces a bottleneck. Authors treat this issue by replacing the way that Acceptors multicast messages by a point-to-point communication in a ring topology (they order Acceptors in a ring topology).The protocol was implemented in C language and compared experimentally to some state-of-the-art systems: LCR, Spread toolkit [ADMA + 04a], LibPaxos[lib] and Paxos4sb[START_REF] Kirsch | Paxos for system builders: An overview[END_REF]. The article shows a comparison between the Maximum Throughput Efficiency (M T E 1) of the algorithms. Results show that the maximum throughput efficiency of Ring Paxos is very good as well as LCR but the algorithm has several advantages such as a better latency.

Figure 1

 1 Figure 1.8: Multi Ring Paxos algorithm.

Figure 1 .

 1 Figure 1.9 shows a system running Ridge algorithm. The system is composed of six P roposers, five Acceptors and four Learners where a P roposer P broadcasts a message m. Firstly, Ridge runs the first phase of Paxos, then the Coordinator C sends m to an Acceptor A which forwards it to another Acceptor and so on until the majority of acceptors have received the message. The last Acceptor knows that a quorum has known about m so it forwards it to a Learner with the help of a load balancer (This Learner is called the Distributing Learner). The Distributing Learner then forwards the message to every other Learner.

Figure 1

 1 Figure 1.9: Ridge Protocol with one ensemble (Phase II).

Figure 1 . 10 .Figure 1 . 10 :

 110110 Figure 1.10. This settings comprises two datacenters (A and B), having two and three machines, respectively. Machines on each datacenter are interconnected via a switch (noted SW1 and SW2) using "network cables" C1, C2, • • • , C5. The communications across datacenters use "network link" L1. Link L1 is shared by all machines belonging to datacenters A and B. Network cables are obviously not shared.

Figure 1

 1 Figure 1.11: Broadcast pattern in the LCR protocol when process P 5 is initiating a broadcast: logical view (top part) and networking view (bottom part).

Figure 1

 1 Figure1.12: Broadcast pattern in the Ridge protocol when process Acceptor 1 is initiating a broadcast: logical view (top part) and networking view (bottom part).

Figure 1 Figure 1

 11 Figure 1.13: Broadcast pattern in the Ridge protocol when process Learner 5 is disseminating a message: logical view (top part) and networking view (bottom part).

 To confirm the above results, we illustrate with two figures (Figure1.15 and Figure 1.16) the dissemination pattern when five messages are sent simultaneously. In both protocols, the number of rounds needed to Broadcast five messages using is equal to four.

Figure 1 Figure 1

 11 Figure 1.15: The latency of LCR with N senders.

.

Figure 1

 1 Figure 1.17: Throughput comparison between LCR and Ridge in one datacenter (left two bars) and in a multi-datacenters environment (right two bars).

Figure 1

 1 Figure 1.18: Network usage in LCR and Ridge when all processes initiate message broadcasts (topology depicted in Figure 1.10).

 625M b/s. The achieved throughput is around 600M b/s which is very cloe. Ridge, on the other hand, sends two messages from datacenter A on L1 and three messages from datacenter B on L1 per round. A node in datacenter A is allowed to transmit 250M b/s to nodes in datacenter B over L1 which means generating around 83M b/s. A node in datacenter B is allowed to transmit 166M b/s to nodes in datacenter A over L1 which means generating around 83M b/s. Thus, the whole system is able to generate theoretically around 415M b/s which is near to the experimental results shown in the figure.

 Figure 2.1. The figure illustrates a network of five processes {P 1 , P 2 , P 3 , P 4 and P 5 } distributed over two datacenters: A and B. The figure contains both the logical view in the top part and the networking view in the bottom part. It shows the dissemination pattern of message m

Figure 2

 2 Figure 2.1: Broadcast pattern in the MDC-cast protocol when process P 5 is initiating a broadcast: logical view (top part) and networking view (bottom part). IP-Multicast messages are depicted in red, whereas unicast TCP messages are depicted in black.

Figure 2 . 2 :

 22 Figure 2.2: Network usage in MDC-cast when all processes initiate message broadcasts (topology depicted in Figure 1.10).

 theoretical link usage Internally, in each datacenter nodes are of three types Exporter, Importer and a normal node. A normal node transmits one message. An Exporter in D k is in charge of forwarding G k messages to each datacenter. That is G K * (D -1) in addition to generating its own message which means that an Exporter transmits G K * (D -1) + 1 messages. An Importer receives from each Exporter in other datacenters and forwards the received messages N -G k times. In addition, an Importer generates its own messages which means that an Importer transmits N -G k +1 messages. Finally, each node receives N -1 messages, a message from each node. A link connecting two datacenters D j and D k is used to forward messages from the Exporter of D j into the Importer of D k and on the other lane from the Exporter of D k towards the Importer of D j . Thus, the link usage is G j on the first lane and G k on the other.

Figure 2 . 4 :

 24 Figure 2.4: Pseudo-code of the membership management sub-protocol.

Figure 2 . 5 :

 25 Figure 2.5: Throughput when five processes IP-multicast messages as a function of the individual multicasting rate.

Figure 2 . 6 :

 26 Figure 2.6: Bandwidth allocation example -intra-datacenters level.

Figure 2

 2 Figure 2.7: Bandwidth allocation example -inter-datacenters level.

Figure 2 . 8 :

 28 Figure 2.8: Pseudo-code of the bandwidth allocation protocol executed by any process.

Figure 2 .

 2 Figure 2.10 gives the pseudo-code of the bandwidth allocation protocol executed by the Sequencer. On a throughput change, each node sends its required bandwidth to the Sequencer. The Sequencer is in charge of managing the throughput of each node. Firstly, the Sequencer stores the bandwidth requirements of other nodes in the bwRequirements array and their current bandwidth in the currentBW

Figure 2

 2 Figure 2.9: Pseudo-code of the bandwidth allocation protocol executed by Exporters.

Figure 2 . 10 :

 210 Figure 2.10: Pseudo-code of the bandwidth allocation protocol executed by the Sequencer.

if there are n sendersTheorem 3 .

 3 The throughput of MDC-cast matches the optimal throughput for Total Order Broadcast algorithms.Proof. The Broadcast is composed of three phases: (1) Phase I : The IP-multicast inside the sender's datacenter (Also called Origin Datacenter). (2) Phase II : The export phase, which is to forward the message from one datacenter to other datacenters. The export phase is to forward the message through the Exporter of the origin datacenter to each Importer in other datacenters. (3) Phase III : The IP-multicast from each Importer to other nodes inside its datacenter. We first consider the case with N senders. In a system of D datacenters each containing G nodes, phase I needs G -1 rounds to be accomplished where each node multicast one message.Then, phase II and phase III run simultaneously. An Importer is able to receive messages from other datacenters in (D -1) * G rounds. As well, non importers are able to receive IP-multicasted messages coming from other datacenters in (D -1) * G rounds. So, phase II and phase III needs (D -1) * G rounds to be accomplished.

Figure 3 .

 3 Figure 3.1: Phase I of MDC-cast

Figure 3 .

 3 Figure 3.2 discusses both the second and the third phase of the dissemination pattern because the two phases are performed simultaneously. The second and the third phase are composed of five identical stages, thus the figure depicts just the first stage. Roughly speaking, each Exporter is in charge of exporting five messages to each datacenter (i.e. 10 messages) and each Importer is in charge of IP-multicasting five messages coming from each datacenter (i.e. 10 messages). The figure discusses the export procedure of one message to each datacenter and how the importer receives the message and IP-multicast it. Exporter1 forwards a message to Importer2 and Importer3 which needs two consecutive rounds because over TCP/IP, a process is unable to send more than one message per round. Respectively, Exporter2 forwards a message to Importer1 and Importer3 in two rounds and Exporter3 forwards a message to Importer1 and Importer2 in two rounds too. When an Importer receives a message, it IP-multicasts it to each node inside it datacenter. This stage is repeated five times. Thus, the broadcast of 15 messages costs 14 rounds (4 rounds for phase I, and 10 rounds for both phase II and phase III).

Figure 3 .Figure 3 . 3 :

 333 Figure 3.3: A network composed of five nodes distributed over two datacenters

Figure 3 . 4 :

 34 Figure 3.4: The basic topology used in the experiments

Figure 3 .

 3 Figure 3.4 illustrates the topology we use in our experiments.

3 .Figure 3 . 8 :

 338 Figure 3.8: Comparison between MDC-cast, LCR and Ridge in one datacenter (left three bars) and in a multi-datacenters environment (right three bars).

Figure 3 . 10 :

 310 Figure 3.10: Throughput as a function of message size for LCR, Ridge and MDC-cast (with and without batching).

 .14 Broadcast pattern in the Ridge protocol when each Acceptor is also a Learner. Acceptor 5 initiates a broadcast: logical view (top part) and networking view (bottom part). 1.15 The latency of LCR with N senders.17 Throughput comparison between LCR and Ridge in one datacenter (left two bars) and in a multi-datacenters environment (right two bars). 1.18 Network usage in LCR and Ridge when all processes initiate message broadcasts (topology depicted in Figure 1.10). 2.1 Broadcast pattern in the MDC-cast protocol when process P 5 is initiating a broadcast: logical view (toppart) and networking view (bottompart). IP-Multicast messages are depicted in red, whereas unicast TCP messages are depicted in black. 2.2 Network usage in MDC-cast when all processes initiate message broadcasts (topology depicted in Figure 1.10). 2.3 Pseudo-code of the dissemination and ordering mechanisms.

1.11 Broadcast pattern in the LCR protocol when process P 5 is initiating a broadcast: logical view (top part) and networking view (bottom part).

1.12 Broadcast pattern in the Ridge protocol when process Acceptor 1 is initiating a broadcast: logical view (top part) and networking view (bottom part). 1.13 Broadcast pattern in the Ridge protocol when process Learner 5 is disseminating a message: logical view (top part) and networking view (bottom part). 11.16 The latency of Ridge with N senders. 12.4 Pseudo-code of the membership management sub-protocol. 2.5 Throughput when five processes IP-multicast messages as a function of the individual multicasting rate. 2.6 Bandwidth allocation example -intra-datacenters level. 2.7 Bandwidth allocation example -inter-datacenters level. 2.8 Pseudo-code of the bandwidth allocation protocol executed by any process. 2.9 Pseudo-code of the bandwidth allocation protocol executed by Exporters. 2.10 Pseudo-code of the bandwidth allocation protocol executed by the Sequencer. 3.1 Phase I of MDC-cast . 3.2 Phase II and phase III of MDC-cast 3.3 A network composed of five nodes distributed over two datacenters .

 1.1 The theoretical assessment of the latency of LCR and Ridge. 1.2 Intra-datacenter link usage . 1.3 Inter-datacenter link usage .

2.1 MDC-cast theoretical link usage . 2.2 MDC-cast theoretical link usage . 2.3 A first example execution of the bandwidth allocation protocol. . . . 2.4 A second example execution of the bandwidth allocation protocol. . . 2.5 A third example execution of the bandwidth allocation protocol. . . . 3.1 The theoretical assessment of the latency of LCR, Ridge and MDCcast in multi-datacenter environments. 3.2 Links usage of a system running Ridge with one sender: A1 3.3 Links usage of a system running Ridge with five senders 3.4 The response time between datacenters in micro seconds measured using ping tool . 9

 Broadcasts a message m before it Broadcasts a message m ′ , then no correct process Delivers m ′ unless it has previously Delivered m. Causal Broadcast is a reliable broadcast in addition to Causal Order property: If the Broadcast of a message m causally precedes the Broadcast of message m ′ , then no correct process Delivers m ′ unless it has previously Delivered m. Total order Broadcast is a reliable broadcast in addition to Total Order property: For any two messages m and m ′ , if any process p i Deliver m without having delivered m ′ , then no process p j Deliver m ′ before m.

	1.1.2 Broadcast Specifications Ordering Guarantees
	Firms possessing critical data are attentive for their data consistency. Mis-ordering Several ordering guarantees can be ensured: FIFO Broadcast, Causal Broadcast,
	messages may lead to catastrophic consequences. In a replicated database [CMZ04], Total order Broadcast, Timed Broadcast, FIFO Total order Broadcast and Causal
	executing IN SERT before U P DAT E instead of U P DAT E before IN SERT leads Total order Broadcast.
	to unstable results. For example, in a bank account of balance one million dollar, FIFO Broadcast is a reliable broadcast in addition to FIFO Order property: If a
	deposing an amount of million dollar then having an interest 10% is different than getting 10% interest for the first million then deposing another million. The first means 2.2 million dollars while the latter means 2.1 million dollars. [HT93] divided the communication patterns that interact by message passing in SMR systems into (1) P oint -to -point and (2) Broadcast. In order to have a consistent communication, they define some properties and classify guarantees according to their reliability level, as well to their ordering mechanism. Since my process Timed Broadcast is a reliable broadcast in addition to Timeliness property: There is work lays under the topic of TOB, I discuss here the Broadcast specication in general a known constant δ such that if a message m is Broadcast at time t , then no correct and then focus on Total Order Broadcast. They defined two primitives Broadcast process Delivers m after time t + δ. FIFO Total order Broadcast: A combination and Deliver. When a process p sends a message m, this is called a Broadcast. When between FIFO broadcast and Total order broadcast. And finally, Causal Total order the system completes delivering m to all processes, this is called Deliver. Broadcast: A combination between Causal broadcast and Total order broadcast.
	Reliability Guarantees
	Reliable Broadcast is the weakest type of fault-tolerant broadcasts. It guarantees
	three properties (1)Validity: If a correct process Broadcasts a message m, then it
	eventually Delivers m. (2) Agreement: If a correct process Delivers a message m,
	then eventually all correct processes Deliver m. (3) Integrity: for any message m, any
	correct process p j Deliver m at most once, and only if m was previously Broadcasted
	complex State Machine. State Machine Replication (SMR) [Lam78, Sch90, Pol] is by some correct process p i . A process is considered a correct process if it never
	a distributed protocols that aims to keep several replicas of a same State Machine fails. Uniform Broadcast protocol ensures the Uniform Agreement: If a replica (be
	consistent, robust, fault tolerant and available. Replicas (sometimes called processes it correct of faulty) delivers a message m, then all correct replicas eventually deliver
	too) communicate by message passing. m.

• Fixed-Sequencer: As the name

	• Privilege-Based: Protocols [FR97, Cri91, ESU04, AMMS + 95, GT89, ADMA + 04a]
	rely on the idea that senders can broadcast messages only when they are
	granted the privilege to do so. The sender should have a token in order to
	broadcast a message.
	• Communication History: In protocols using Communication history [PBS89,
	MSS96, EMS95, Ng91, MMSA93], a sender has the ability to send every time.
	But, the privilege is needed on delivery instead of sending.
	• Destination Agreement: In destinations agreement algorithms [PBS89,
	MSS96, EMS95, Ng91, MMSA93, CT96b, BJ87b, LG90, FIMR01, Anc97],
	indicates, in fixed-sequencer systems, one
	node is elected as the sequencer of the group. A sequencer is in charge of
	ordering messages where each message has to take a sequence number from
	the sequencer. Examples of algorithms using a fixed-sequencer include [KT96,
	AFM92, Car85, GMS91, BvR93, WS95, Jia, CH, SH97, SNN, Reib, Reia,
	MPSP10, Ban07, BQ13, BCP15].
	• Moving-Sequencer: They are based on the same principle as the Fixed-
	Sequencer algorithms. In the moving-sequencer systems [CM84, WMK94,
	KK97, CMA97], they avoid the bottleneck of the fixed sequencer by moving
	this role among participating nodes.

 The coordinator proposes a new value to all Acceptors.Acceptors will vote for it. If the Coordinator receives majority of votes, it notifies Acceptors about the new voted decision.Ridge optimizes the second phase of Paxos. The Coordinator sends a message m to an Acceptor which forwards it to another one and so on until ensuring that a majority of Acceptors have received m. Then, the last Acceptor knows that m has been accepted by a quorum m. In order to take a decision, the last Acceptor sends m to a Learner with the help of a load balancer. This Learner is is in charge of distributing the decision by sending m to all other Learners directly. This phase

Ridge is another TOB algorithm from the Paxos family that differs from the former algorithms in the fact that it targets WAN systems. Roughly speaking, Ridge does not rely on IP-multicast and achieves better throughput than Paxos and Fast Paxos.

It also intersects with Multi-Ring in the idea of having several intercommunicating groups called ensembles. Each ensemble contains 2f + 1 Acceptors, where f is the maximum number of failures tolerated by the ensemble

[START_REF] Bezerra | Ridge: high-throughput, low-latency atomic multicast[END_REF]

. We first explain Ridge with one ensemble. In order to explain Ridge, it is necessary to describe Paxos in more details. The consensus phase implemented by Acceptors can be split into two phases:

• Election: The Coordinator creates a new unique ID and sends it to all Acceptors. Acceptors will vote for it. If the Coordinator receives majority of votes, it starts the second phase.

• Taking Decision:

(Phase II) could be split into two stages: Phase IIa which is similar to ring algorithms and Phase IIb which is multi-unicasting (i.e. sending from one node to each other node aside). The procedure can be split into several steps:

Table 2 .

 2 1 shows the link usage of MDC-cast in a network composed of five processes.

	Out
	In
	C1 C2 L1 C3 C4 C5

The figure studies the broadcast of a message represented in figure 2.1. The case is

 Table 2.3, Table 2.4, and Table2.5. We consider a system of two datacenters g1 and g2, where g1 has three nodes {p 0 , p 1 , p 2 } and g2 has two nodes {p 3 , p 4 }. P 0 is the Exporter of g1 (respectively P 3 the Exporter of g2), P 2 is the Importer of g1 (respectively P 4 the Importer of g2) and P 0 is the Sequencer. Nodes inside each datacenter are interconnected by a 1Gb/s Ethernet switch whereas we suppose that datacenters are connected to each other by a cable of 300Mb/s uniformly on the two lanes. In each table, we describe a set of steps that happen in the system and we illustrate how the different fields of the processes are updated. Initially, processes have a null bandwidth (currentBW is equal to 0 in Table2.3, step S1).In Table2.3 we depict what happens when from this initial state P 1 calls in-crease_BW(400) and P 4 calls increase_BW(300). Processes reach a state (step S6) in which P 1 has its currentBW variable equal to 400Mb/s and P 4 has its currentBW variable equal to 300Mb/s. From that state (also depicted in Table2.4, step S7), Table2.4 depicts what happens when the Exporter of g1 declares that it wants to decrease its throughput. Processes reach a state (step S12) in which P 1 has its currentBW variable equal to 400Mb/s and P 4 has its currentBW variable equal to 300Mb/s. From that state (also depicted in Table2.5, step S13), Table2.5 depicts what happens when P 1 calls decrease_BW(200) and P 3 calls increase_BW(250).

	Procedures executed by the Sequencer of a system of n nodes
	1: procedure initialize(initial_view)
	2:	bwRequirements[] ← [0, • • • , 0]
	3:	new_BW s[] ← [0, • • • , 0]
	4:	BW _summation ← def ault_bandwidth * n/(N -1)
	5:	link_capacity[] ← [0, • • • , 0]
	6:	currentBW ← 0
	7: upon Rreceive ⟨Decr, amount⟩ from P i or decrease amount do
	8:	bwRequirements[P i] ← bwRequirements[P i] -amount
	9:	BW_allocation()
	10: upon Rreceive ⟨Incr, amount⟩ from P i or increase amount do
	11:	bwRequirements[P i] ← bwRequirements[P i] + amount
	12:	BW_allocation()
	13: upon Rreceive ⟨BW _of _adjacent_links⟩ from Exporter of datacenter g j or change BW _of _adjacent_links
		do
	14:	link_capacity[g j] ← BW _of _adjacent_links
	15:	BW_allocation()
	16: function BW_allocation()
	17:	limit_links()
	18:	limit_cables()
	19:	distribute_new_allocation()
	20:	currentBW ← new_BW s[Sequencer]
	21: function limit_links()
	22:	group_members ← all the members of group G
	23:	temp_link_capacity ← link_capacity
	24:	for P j in group_members do
	25:	if bwRequirements[P j] ≤ temp_link_capacity[G]/size(group_members) then
	26:	group_members ← group_members -P j
	27:	temp_link_capacity[G] ← temp_link_capacity[G] -bwRequirements[P j]
	28:	new_BW s[P j] ← bwRequirements[P j]
	29:	allocated = true
	30: function limit_cables()
	31:	nodes ← the biggest (N -1) values in bwRequirements
	32:	link_availableBW ← B
	33:	do
	34:	allocated = f alse
	35:	for P j in nodes do
	36:	if bwRequirements[P j] ≤ link_availableBW/size(nodes) then
	37:	nodes ← nodes -P j
	38:	link_availableBW ← link_availableBW -bwRequirements[P j]
	39:	new_BW s[P j] ← bwRequirements[P j]
	40:	allocated = true
	41:	while nodes ̸ = ∅ and allocated = true do
	42:	if P i ∈ nodes then
	43:	new_BW s[P j] ← link_availableBW/size(nodes)
	44: function distribute_new_allocation()
	45:	nodes ← all processes unless Sequencer
	46:	for P j in nodes do
	47:	Rsend ⟨new_BW s[P j]⟩ to P j
	Processes reach a state (step S18) in which P 1 has its currentBW variable equal to
	200Mb/s, P 3 has its currentBW variable equal to 150Mb/s and P 4 has its currentBW
	variable equal to 150Mb/s.

Table 3 .

 3 1: The theoretical assessment of the latency of LCR, Ridge and MDC-cast in multi-datacenter environments.

		One sender	N senders
	LCR	(D -1) * O	
	Ridge	O	(N -1) * O
	MDC-cast	O	

In table

3

.1, we provide the latency of LCR, Ridge and MDC-cast in multi-datacenter environments. The studied network is composed of N homogeneous nodes distributed over D datacenters. Nodes inside datacenters are interconnected by switches while datacenters are interconnected over one or several routers. The table studies two cases (1) when one sender only Broadcasts a message and (2) when each node is broadcasting a message. First, we study when just one sender Broadcast a message.

Table 3 .

 3 .3. 3: Links usage of a system running Ridge with five senders

		A1 A2 A3 A4 A5 L1 L2 L3 L4
	In	2	2	2	2	2	5	5	5	5
	Out 3	3	3	3	3	6	3	3	3

Table 3 .

 3 4: The response time between datacenters in micro seconds measured using ping tool

		Luxembourg Nancy Sophia Grenoble
	Luxembourg	0	2.3	18.2	13.7
	Nancy	2.3	0	16.1	11.6
	Sophia	18.2	16.1	0	9.74
	Grenoble	13.7	11.6	9.74	0
	Figure				

They introduced the notion of Maximum Throughput Efficiency and define it by the rate between the maximum achieved throughput per receiver and the nominal transmission capacity of the system per receiver.

We denote two processes as neighbors if they are both localized in the same datacenter

Experiments presented in this chapter were carried out using the Grid'5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).

A lane is a term commonly used for one direction of a link

Acknowledgements

Chapter 2 The MDC-cast protocol

In this chapter we present MDC-cast, a Total Order Broadcast protocol specifically designed for multi-datacenters environments. This section is organized as follows. Section 2.1 presents the description of the protocol. TSection 2.2 proves the correctness of our approach. Section 2.3 presents the bandwidth allocation mechanism. In Section 2.4, we describe some optimizations to MDC-cast. Finally, section 2.5 concludes the chapter.

Protocol description

Message dissemination

Description of the dissemination pattern

In order to achieve high performance in multi-datacenters environments, it is necessary to reduce the traffic as much as possible. Thus, we rely on IP-multicast.

But IP-multicast is not supported among inter-datacenter links. So, we use IPmulticasting within datacenters and unicast communication across datacenters (I.e. on inter-datacenter links). In each datacenter, a node is delegated as an Importer which is in charge of forwarding messages coming from nodes in other datacenters to say that the sequence number of m is smaller than the sequence number of m ′ . However, the sequencer is the only process that issues sequence numbers (Line 25 of Figure 2.3) in strictly increasing order (Line 26 of Figure 2.3). Thus, each process delivers messages according to the same ordering which is maintained by the sequencer and checked on the delivery (Line 43 of Figure 2.3). Hence, the message that holds the smaller sequence number will be delivered before on every process.

Therefore, m will be delivered before m ′ . So, for any two messages m and m ′ , if any process P i Deliver m without having delivered m ′ , then no process P j Deliver m ′ before m. Theorem 2. Total Order. MDC-cast is a uniform total order broadcast protocol.

Proof. By Lemma 1, Lemma 2, Lemma 3, and Lemma 4, we can derive the fact that the MDC-cast protocol ensures validity, integrity, uniform agreement, and total order. Thus, it is a uniform total order broadcast protocol.

Bandwidth Allocation Mechanism

The need for a bandwidth allocation mechanism

Since MDC-cast uses IP-multicasting (which is unreliable) inside datacenters, packets can get lost if the network throughput exceeds the available bandwidth over intra-datacenter cables. For instance, a cable of bandwidth 1Gb/s is capable of receiving packets up to 1Gb/s and drops additional packets. Figure 2.5 shows the overall throughput of a Gigabit network of five processes {P 1 , P 2 , P 3 , P 4 , P 5 } where each process IP-multicasts messages in a fixed throughput rate. The throughput is increasing until each process multicasts 250M b/s. This is due to the fact that each server is able to receive 1GB/s. When the sending throughput is higher, the overall throughput dramatically decreases. This is what we observe for instance when each process tries to IP-multicast at throughput rate 400M b/s (exceeding 150M b/s).

This behavior motivates the development of a bandwidth allocation mechanism.

p 1 calls increase_BW(400) p 4 calls increase_BW(300)

p 0 [0, 400, 0, 0, 300] 0 0 300 [300, 300] [0, 0, 0, 0, 0]

p 0 [0, 100, 0, 0, 0] 0 0 300 [300, 300] [0, 300, 0, 0, 300]

Sequencer calls limit_links() for g1 Sequencer calls limit_links() for g2

Sequencer calls limit_cables() for g1 Sequencer calls limit_cables() for g2

p 0 [0, 0, 0, 0, 0] 0 0 500 [500, 300] [0, 400, 0, 0, 300] Sequencer calls limit_links()

Chapter 3 Performance Evaluation

In this chapter, we assess the performance of MDC-cast against two state of the art protocols: LCR [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF] and Ridge [START_REF] Bezerra | Ridge: high-throughput, low-latency atomic multicast[END_REF]. Firstly, we present a theoretical assessment in section 3.1. Then, we describe the experimental setup in section 3.2 and our methodology to ensure that we achieve the best possible performance in Section 3.3. Finally, we present the experimental evaluation results in section 3.4.

Finally, the chapter is concluded in 3.5.

Theoretical assessment

MDC-cast achieves the optimal throughput defined in [START_REF] Guerraoui | Throughput optimal total order broadcast for cluster environments[END_REF] in both cluster and multi-datacenter environments. In this section, we prove that the throughput of MDC-cast is optimal assuming that there is no background traffic. Then, we study MDC-cast in the presence of background traffic.

Optimal throughput

First, we show that the throughput of MDC-cast is optimal and that no other broadcast protocol can obtain strictly higher throughput. We do this by relying on the upper bound of the performance of any Total Order Broadcast protocol defined assume that the network is shared and exposed to background traffic. Figure 3.5 shows S, the described system with the available bandwidth on each link in M b/s.

A link contains two lanes: lane IN which is colored blue and underlined, and lane OU T which is colored red and bolt. We assume that MDC-cast is running over S. Unfortunately, the throughput required by MDC-cast (showed in Figure 3.6) is different than the available bandwidth on links. The theoretical overall throughput of S with N senders if not exposed to background traffic should be 1.125Gb/s which is the optimal throughput. In the depicted case, the bottleneck link is C3 that has an available bandwidth of 150M b/s, but is supposed to transmit messages at 1000M b/s. Our goal was to design a methodology ensuring that we would find the deployment (i.e. where to place importers and exporters in the case of MDC-cast) that achieves the best possible performance. The link usage for this scenario is shown in table 3.2. As we can notice, the link L1 is used three times due to the fact that it sends the message to the three Learners: L2, L3 and L4. So, we conclude that OU T of L1 is the max_lane.

Table 3.2: Links usage of a system running Ridge with one sender: A1

We can conclude that the maximum throughput of this system, if limited to one Acceptor working at any given time, is 333M b/s:

Let us now assume that there are five Acceptors concurrently working. The load balancer is going to distribute messages over four Learners uniformly. There will remain one message which will be forwarded to a Learner that already receives a message before. Hence, each Learner will receive one message unless one of them

Throughput when varying the message size

In this experiment, we use nine machines spread over three datacenters. We vary the message size and compute the resulting throughput. Results are depicted in Figure 3.10. We compare two variants of each protocol: with and without batching.

We observe that, when batching is not enabled, MDC-cast is more impacted than other protocols by small messages. This is due to its use of IP-multicast inside datacenters that yields poor results with small messages. With batching enabled, the three protocols obtain stable results, whatever the message size.

Latency assessment

The last experiment assesses the latency achieved by LCR, Ridge and MDC-cast.

The round-trip time between datacenters is measured using ping and varies between 2.3ms and 18.2ms (see Table 3.4). Figure 3.11 shows the latency of LCR, Ridge

Conclusion

In this Chapter, we have presented a theoretical assessment of MDC-cast. We have also evaluated MDC-cast in a real-life settings (the Grid'5000 testbed) and we have

Conclusion

Summary During my thesis, I worked on the topic "Total Order Broadcast in datacenter environments". After having studied the related works, we noticed that existing algorithms were not able to perform well in the context of multi-datacenter environments. We therefore decided to design a new total order broadcast protocol. That protocol is original in the sense that it combines the use of IP-multicast within datacenters and the use of TCP between datacenters. We have proved that the protocol is correct and we have performed both an analytical and a practical performance evaluation on Grid 5000. Besides, as the studied environments are not homogeneous, we have described the methodology we used to choose the best possible deployments of protocols on network topologies.

Our evaluation shows that the protocol we propose, namely MDC-cast, achieves similar performance than existing protocols in the context of homogeneous clusters, and significantly outperform the in the context of multi-datacenter environments.

Future Work There are several topics for future work that I list below:

• we plan to study the impact of this protocol on real systems, such as Zookeeper.

• we plan to extend the protocol to deal with more severe failures, such as crash recovery failures or even byzantine failures.

• we plan to extend our configuration methodology to other distributed systems requiring high throughput. Indeed, we believe that many existing systems the International Workshop on Theory and Practice in Distributed Systems, pages 33-57, London, UK, 1994. Springer-Verlag.