
HAL Id: tel-01874839
https://theses.hal.science/tel-01874839

Submitted on 14 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Next generation state-machine replication protocols for
data centers

Mohamad Jaafar Nehme

To cite this version:
Mohamad Jaafar Nehme. Next generation state-machine replication protocols for data centers. Dis-
tributed, Parallel, and Cluster Computing [cs.DC]. Université Grenoble Alpes, 2017. English. �NNT :
2017GREAM077�. �tel-01874839�

https://theses.hal.science/tel-01874839
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE la Communauté UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Mohamad Jaafar NEHME

Thèse dirigée par Vivien QUEMA
et codirigée par Kamal BEYDOUN

préparée au sein Laboratoire d’Informatique de Grenoble (LIG)
et de l’Ecole Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique (EDMSTII)

Next generation state-machine
replication protocols for Data cen-
ters
Protocoles de réplication de machines á états
de prochaine génération pour les centres de
données

Thèse soutenue publiquement le 05.12.2017,
devant le jury composé de :

Mr. Didier DONSEZ
Professeur, Grenoble Alps University, Président
Mr. Gael THOMAS
Professeur, Telecom SudParis, Rapporteur

Mr. Laurent RÉVEILLÈRE
Professeur, Université de Bordeaux, Rapporteur
Ms. Sonia BEN-MOKHTAR
CHARGE DE RECHERCHE, CNRS, Examinatrice

Mr. Vivien QUÉMA
Professeur, Grenoble INP, Directeur de thèse
Mr. Kamal BEYDOUN
Maître de conférences, Université Libanaise, Co-Directeur de thèse



2



Contents

Title 1

Table of Contents 5

List of Figures 8

List of Tables 9

Abstract 11

Résumé 12

Acknowledgements 14

Dedication 15

Introduction 17

1 State of the art on Total Order Broadcast Protocols 21
1.1 Background and Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.1 State Machine Replication . . . . . . . . . . . . . . . . . . . . 22
1.1.2 Broadcast Specifications . . . . . . . . . . . . . . . . . . . . . 23
1.1.3 Performance Metrics: Throughpuyt vs. Latency . . . . . . . . 25
1.1.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Existing TOB Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.1 TOB Classification . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.2 LCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.3 FastCast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.4 Paxos and Fast Paxos . . . . . . . . . . . . . . . . . . . . . . 33

3



1.2.5 Ring Paxos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.2.6 Multi Ring Paxos . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.2.7 Ridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.3 Performance of Existing Protocols in Multi-Datacenter Environments 41
1.3.1 Message Pattern of LCR . . . . . . . . . . . . . . . . . . . . . 41
1.3.2 Message Pattern of Ridge . . . . . . . . . . . . . . . . . . . . 42
1.3.3 Latency of Ridge and LCR . . . . . . . . . . . . . . . . . . . . 45
1.3.4 Throughput of Ridge and LCR . . . . . . . . . . . . . . . . . 47

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 The MDC-cast protocol 52
2.1 Protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1.1 Message dissemination . . . . . . . . . . . . . . . . . . . . . . 52
2.1.2 Message ordering . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.1.3 Pseudo-code of the dissemination and ordering mechanisms . . 56
2.1.4 Membership management . . . . . . . . . . . . . . . . . . . . 58

2.2 Correctness of the protocol . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3 Bandwidth Allocation Mechanism . . . . . . . . . . . . . . . . . . . . 62

2.3.1 The need for a bandwidth allocation mechanism . . . . . . . . 62
2.3.2 Bandwidth allocation example . . . . . . . . . . . . . . . . . . 64
2.3.3 Detailed pseudo-code of the bandwidth allocation mechanism . 65
2.3.4 Illustration of the bandwidth allocation mechanism . . . . . . 67

2.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Performance Evaluation 75
3.1 Theoretical assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.1 Optimal throughput . . . . . . . . . . . . . . . . . . . . . . . 75
3.1.2 Performance in Presence of Background Traffic . . . . . . . . . 78
3.1.3 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3 Configuration Methodology . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 The Need For a Configuration Methodology . . . . . . . . . . 82
3.3.2 Describing the Configuration Methodology Using an Example 84

4



3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Conclusion 94

Bibliography 103

5



List of Figures

1.1 Latency Vs. Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 TOB Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3 LCR Protocol: Dissemination Pattern Phase (Normal Arrows) and

Acknowlegment Phase (Dashed Arrows) . . . . . . . . . . . . . . . . 30
1.4 FastCast Protocol: Dissemination pattern (Phase I:left part); Assign-

ing Sequence number (Phase II:middle part); Acknowledgment phase
(Phase III:right part) . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Paxos and Fast Paxos . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6 Comparison between Paxos and Ring Paxos provided in [MPSP10] . . 35
1.7 Percentage of packet losses when multicasting messages (1 to 3 senders).

(Figure borrowed from [MPSP10]). . . . . . . . . . . . . . . . . . . . 35
1.8 Multi Ring Paxos algorithm. . . . . . . . . . . . . . . . . . . . . . . . 38
1.9 Ridge Protocol with one ensemble (Phase II). . . . . . . . . . . . . . 40
1.10 Example of a multi-datacenters environment comprising 5 machines

located in two datacenters. . . . . . . . . . . . . . . . . . . . . . . . . 41
1.11 Broadcast pattern in the LCR protocol when process P5 is initiating a

broadcast: logical view (top part) and networking view (bottom part). 42
1.12 Broadcast pattern in the Ridge protocol when process Acceptor1 is

initiating a broadcast: logical view (top part) and networking view
(bottom part). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.13 Broadcast pattern in the Ridge protocol when process Learner5 is
disseminating a message: logical view (top part) and networking view
(bottom part). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.14 Broadcast pattern in the Ridge protocol when each Acceptor is also a
Learner. Acceptor5 initiates a broadcast: logical view (top part) and
networking view (bottom part). . . . . . . . . . . . . . . . . . . . . . 44

1.15 The latency of LCR with N senders. . . . . . . . . . . . . . . . . . . 46
1.16 The latency of Ridge with N senders. . . . . . . . . . . . . . . . . . . 46

6



1.17 Throughput comparison between LCR and Ridge in one datacenter
(left two bars) and in a multi-datacenters environment (right two bars). 47

1.18 Network usage in LCR and Ridge when all processes initiate message
broadcasts (topology depicted in Figure 1.10). . . . . . . . . . . . . . 48

2.1 Broadcast pattern in the MDC-cast protocol when process P5 is initi-
ating a broadcast: logical view (toppart) and networking view (bottompart).
IP-Multicast messages are depicted in red, whereas unicast TCP mes-
sages are depicted in black. . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 Network usage in MDC-cast when all processes initiate message broad-
casts (topology depicted in Figure 1.10). . . . . . . . . . . . . . . . . 55

2.3 Pseudo-code of the dissemination and ordering mechanisms. . . . . . 57
2.4 Pseudo-code of the membership management sub-protocol. . . . . . . 59
2.5 Throughput when five processes IP-multicast messages as a function

of the individual multicasting rate. . . . . . . . . . . . . . . . . . . . 63
2.6 Bandwidth allocation example - intra-datacenters level. . . . . . . . . 64
2.7 Bandwidth allocation example - inter-datacenters level. . . . . . . . . 64
2.8 Pseudo-code of the bandwidth allocation protocol executed by any

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.9 Pseudo-code of the bandwidth allocation protocol executed by Ex-

porters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.10 Pseudo-code of the bandwidth allocation protocol executed by the

Sequencer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1 Phase I of MDC-cast . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 Phase II and phase III of MDC-cast . . . . . . . . . . . . . . . . . . 77
3.3 A network composed of five nodes distributed over two datacenters . 79
3.4 The basic topology used in the experiments . . . . . . . . . . . . . . 81
3.5 The available bandwidth on links in a system of two datacenters. . . . 83
3.6 The Required bandwidth on links when using MDC-cast. . . . . . . . 83
3.7 The Theoretical_Needs of Ridge . . . . . . . . . . . . . . . . . . . . 85
3.8 Comparison between MDC-cast, LCR and Ridge in one datacenter

(left three bars) and in a multi-datacenters environment (right three
bars). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.9 Performance of LCR,Ridge and MDC-cast in a setup comprising three
datacenters, when varying the number of nodes per datacenter. . . . . 88

3.10 Throughput as a function of message size for LCR, Ridge and MDC-
cast (with and without batching). . . . . . . . . . . . . . . . . . . . . 89

7



3.11 Latency of LCR, Ridge and MDC-cast with one sender . . . . . . . . 90
3.12 Latency of LCR, Ridge and MDC-cast with N senders . . . . . . . . 90

8



List of Tables

1.1 The theoretical assessment of the latency of LCR and Ridge. . . . . . 45
1.2 Intra-datacenter link usage . . . . . . . . . . . . . . . . . . . . . . . . 49
1.3 Inter-datacenter link usage . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1 MDC-cast theoretical link usage . . . . . . . . . . . . . . . . . . . . . 55
2.2 MDC-cast theoretical link usage . . . . . . . . . . . . . . . . . . . . . 56
2.3 A first example execution of the bandwidth allocation protocol. . . . 69
2.4 A second example execution of the bandwidth allocation protocol. . . 70
2.5 A third example execution of the bandwidth allocation protocol. . . . 71

3.1 The theoretical assessment of the latency of LCR, Ridge and MDC-
cast in multi-datacenter environments. . . . . . . . . . . . . . . . . . 80

3.2 Links usage of a system running Ridge with one sender: A1 . . . . . 85
3.3 Links usage of a system running Ridge with five senders . . . . . . . 86
3.4 The response time between datacenters in micro seconds measured

using ping tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9



10



Abstract

Many uniform total order broadcast protocols have been designed in the last 30

years. They can be classified into two categories: those targeting low latency, and

those targeting high throughput. Latency measures the time required to complete

a single message broadcast without contention, whereas throughput measures the

number of broadcasts that the processes can complete per time unit when there is

contention. All the protocols that have been designed so far make the assumption

that the underlying network is not shared by other applications running. This is a

major concern provided that in modern data centers (aka Clouds), the networking

infrastructure is shared by several applications. The consequence is that, in such

environments, uniform total order broadcast protocols exhibit unstable behaviors.

In this thesis, I present MDC-cast a new protocol for total order broadcasts that is

optimized for multi-data center environments. MDC-cast combines the benefits of

IP-multicast in cluster environments and TCP/IP unicast to get a hybrid algorithm

that achieves very good performance in modern datacenters.

Keywords. State Machine, Datacenter, Cloud Computing, Replication, Total Order

Broadcast.
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Résumé

De nombreux protocoles protocoles de diffusion avec ordre total ont été conçus au

cours des 30 dernières années. Ils peuvent être classés en deux catégories: ceux qui

visent une faible latence, et ceux qui visent un haut débit. La latence mesure le

temps nécessaire pour diffuser un seul message sans contention, alors que le débit

mesure le nombre de diffusions que les processus peuvent réaliser par unité de temps

(quand il y a contention). Tous les protocoles qui ont été conÃğus font l’hypothèse

que le réseau n’est pas partagé par d’autres applications en cours d’exécution. Cette

hypothèse n’est pas valide dans les centres de données modernes (appelÃľs Clouds),

au sein desquels l’infrastructure réseau est partagée par plusieurs applications. La

conséquence est que, dans de tels environnements, les protocoles de diffusion avec

ordre total présentent des comportements instables.

Dans cette thèse, j’ai conçu et mis en œuvre un nouveau protocole pour la diffusion

avec ordre total, appelé MDC-cast. Ce protocole optimise les performances lorsqu’il

est exécuté dans des centre de données modernes (ou des groupes de centres de don-

nées). MDC-cast combine les avantages de la multidiffusion IP quand c’est possible

de l’utiliser et l’efficacité des communications unicast TCP/IP quand nécessaire. Le

protocole résultant est ainsi hybride et permet d’obtenir de très bonnes performances

dans les environnements d’exécution modernes.

Mots-clés. Centres de données, Réplication, Diffusion avec ordre total.
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Introduction

In this chapter, we first present the scientific context of this document, and more

specifically, we focus on the performance of totally ordered broadcasts in multi-

datacenter environments. We detail our objectives and the contributions of this

research work. Finally, we give a brief description of the contents of this document.

Scientific Context The need for high accessibility and fault tolerance drives large

enterprises to maintain multiple copies of their databases over several machines

(Often called replicas). This mechanism is commonly referred to as State Machine

Replication [Sch90] in the context of distributed systems. Coordinating messages in

between replicas is not a trivial task. One of the primitives found for solving the issue

is ordering messages among replicas. Total Order Broadcast [HT93] (Sometimes

called Atomic Broadcast) is a primitive designed for coordinating the communication

among data replicas. It asserts that messages are received in the same order from

all the nodes. A Uniform Total Order Broadcast protocol ensures the following

properties for all messages that are broadcast: (1) Uniform agreement: if a replica

delivers a message m, then all correct replicas eventually deliver m; (2) Strong

uniform total order: if some replica delivers some message m before message m0,

then a replica delivers m0 only after it has delivered m.

Research Motivation Computing stepped out the boundaries of a single central

processing unit into what is called a distributed system. Thereupon, tackling the

performance of a system running over spatially apart servers became a real chal-

17



lenge especially with the dramatic increase of Internet users. Companies are ulti-

mately aware for their data consistency. Loosing a piece of information or corrupting

few bytes even may lead to catastrophic consequences. Achieving data consistency

among several replicas requires reliable and totally ordered broadcast of requests

or commands among them. This is the role of total order broadcast algorithms to

provide this functionality.

Recently, [GLPQ10] declared the optimal throughput of TOB protocols in cluster en-

vironments. In the same article, they proposed an algorithm, LCR, and proved that

it matches that throughput. From that time, the challenge has changed into find-

ing an algorithm that matches that throughput in cluster environment and achieves

better performance regarding some other metrics. For instance, FastCast [BQ13],

proposed a solution where they achieve the optimal throughput in cluster environ-

ment but have a lower latency. Nowadays, with the distributed systems revolution

brought by Clouds, the challenge has changed. Systems are no more limited to the

bounds of clusters but rather distributed over the globe. More precisely, replicas

are no more confined in the same datacenter but rather are spread over several

datacenters distributed across the globe. Existing Total-Order Broadcast protocols

have been designed for uniform environments (e.g. Clusters of machines). These

protocols fail to achieve good performance in multi-datacenters environments which

are characterized by non-uniform network connectivity.

Objectives and Contributions This thesis studies boosting the performance

of systems operating total order broadcast protocols in datacenter environments.

The thesis presents a novel and scalable Total Order Broadcast primitive MDC-

cast, that not only achieves the optimal throughput of cluster environments, but

also bypasses this throughput when encountering bottlenecks between sites. The

performance of MDC-cast is assessed under several circumstances and on different

testbeds showing significant improvement over other Total Order Broadcast primi-

tives in multi-datacenter environments.
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Organization of this document This thesis is organized into 3 chapters:

• State of the Art: Chapter 1 describes the state of the art on Total Order

Broadcast protocols. We first define the Total Order broadcast notations and

state the system model. Thereafter, we mention the related work and focus

on the protocols that achieves the optimal throughput defined in [GLPQ10].

Finally, we analyze the performance of existing protocols.

• MDC-cast: Chapter 2 presents the MDC-cast protocol. In the first place, the

chapter includes an overview of MDC-cast. Secondly, it includes a description

of the system features and sub-protocols.

• Performance Evaluation: Chapter 3 presents the implementation of MDC-

cast and its performance evaluation. Firstly, the experimental setup is de-

scribed. Then, MDC-cast is evaluated under several circumstances and from

various performance metrics. Finally, the algorithm is compared to LCR and

Ridge.

At the end of the document, we conclude it and expand on the possible future works.
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Chapter 1

State of the art on Total Order

Broadcast Protocols

Several (Uniform) Total-Order Broadcast protocols have been designed in the past

10 years [GLPQ10, BCP15, BQ13, MPSP10, MPP12]. A Uniform Total Order

Broadcast protocol is a building block for state-machine replication. It allows a

set of replicas to broadcast messages and deliver them in the same (total) order at

each replica. More precisely, a Uniform Total-Order Broadcast protocol ensures the

following properties for all messages that are broadcast: (1) Uniform agreement: if

a replica delivers a message m, then all correct replicas eventually deliver m; (2)

Strong uniform total order: if some replica delivers some message m before message

m0, then a replica delivers m0 only after it has delivered m.

The recent Total-Order Broadcast protocols that have been designed aim at achiev-

ing high throughput and low latency. They are actually very efficient, but have been

designed for fully switched networks, such as those found in datacenters and clus-

ters. Nevertheless, more and more companies want to deploy geo-replicated systems

and are thus looking for protocols that work efficiently when used across several

datacenters. Unfortunately, this is not the case of existing protocols, as we show in

Section 1.3. There are mostly two reasons for this inefficiency in multi-datacenters

environments. First, some algorithms [BQ13, MPP12] rely on IP-multicast for
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broadcasting messages between servers. IP-multicast is usually not available across

datacenters and must be replaced by ad-hoc, inefficient message dissemination pat-

terns (e.g. a server can replace IP-multicast by sending the same messages to all

servers using UDP or TCP). Second, because these algorithms target fully-switched

environments, they equally balance the load among each network link, which is not

optimal in multi-datacenters environments where inter-datacenter links are shared

across nodes, unlike intra-datacenter links.

This chapter is organized as follows. Section 1.1 presents the system model, as well

as notations and terms used throughout the chapter. Related works are described in

Section 1.2. Section 1.3 describes the theoretical performance that would be achieved

by the two best protocols in a multi-datacenters environment, before presenting a

table that sumarizes all the studied protocols in Section 1.4.

1.1 Background and Model

In this section, I describe the notations and concepts used in the document, as well

as the the system model we assume when designing a new total order broadcast

protocol.

1.1.1 State Machine Replication

A State Machine is a virtual representation of the state of a system that starts at an

initial state and changes after inserting some inputs into one or more other states.

This concept was originally first pointed out with the works of Huffman [Huf55]

and Moore [Moo58]. For example, a computer system could be seen as a very

complex State Machine. State Machine Replication (SMR) [Lam78, Sch90, Pol] is

a distributed protocols that aims to keep several replicas of a same State Machine

consistent, robust, fault tolerant and available. Replicas (sometimes called processes

too) communicate by message passing.
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1.1.2 Broadcast Specifications

Firms possessing critical data are attentive for their data consistency. Mis-ordering

messages may lead to catastrophic consequences. In a replicated database [CMZ04],

executing INSERT before UPDATE instead of UPDATE before INSERT leads

to unstable results. For example, in a bank account of balance one million dollar,

deposing an amount of million dollar then having an interest 10% is different than

getting 10% interest for the first million then deposing another million. The first

means 2.2 million dollars while the latter means 2.1 million dollars.

[HT93] divided the communication patterns that interact by message passing in

SMR systems into (1) Point − to − point and (2) Broadcast. In order to have

a consistent communication, they define some properties and classify guarantees

according to their reliability level, as well to their ordering mechanism. Since my

work lays under the topic of TOB, I discuss here the Broadcast specication in general

and then focus on Total Order Broadcast. They defined two primitives Broadcast

and Deliver. When a process p sends a message m, this is called a Broadcast. When

the system completes delivering m to all processes, this is called Deliver.

Reliability Guarantees

Reliable Broadcast is the weakest type of fault-tolerant broadcasts. It guarantees

three properties (1)Validity: If a correct process Broadcasts a message m, then it

eventually Delivers m. (2) Agreement: If a correct process Delivers a message m,

then eventually all correct processes Deliver m. (3) Integrity: for any message m, any

correct process pj Deliver m at most once, and only if m was previously Broadcasted

by some correct process pi. A process is considered a correct process if it never

fails. Uniform Broadcast protocol ensures the Uniform Agreement: If a replica (be

it correct of faulty) delivers a message m, then all correct replicas eventually deliver

m.
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Ordering Guarantees

Several ordering guarantees can be ensured: FIFO Broadcast, Causal Broadcast,

Total order Broadcast, Timed Broadcast, FIFO Total order Broadcast and Causal

Total order Broadcast.

FIFO Broadcast is a reliable broadcast in addition to FIFO Order property: If a

process Broadcasts a message m before it Broadcasts a message m′, then no correct

process Delivers m′ unless it has previously Delivered m. Causal Broadcast is a reli-

able broadcast in addition to Causal Order property: If the Broadcast of a message

m causally precedes the Broadcast of message m′, then no correct process Delivers m′

unless it has previously Delivered m. Total order Broadcast is a reliable broadcast

in addition to Total Order property: For any two messages m and m′, if any process

pi Deliver m without having delivered m′, then no process pj Deliver m′ before m.

Timed Broadcast is a reliable broadcast in addition to Timeliness property: There is

a known constant δ such that if a message m is Broadcast at time t , then no correct

process Delivers m after time t + δ. FIFO Total order Broadcast: A combination

between FIFO broadcast and Total order broadcast. And finally, Causal Total order

Broadcast: A combination between Causal broadcast and Total order broadcast.

Uniform Total Order Broadcast

As a Conclusion, Uniform Total Order Broadcast is a primitive that allows imple-

menting SMR protocols. Uniform Total Order Broascast allows ordering messages

among replicas in order to ensure reliable and consistent data system. Uniform TOB

satisfies the following properties:

• Validity: If a correct process pi Broadcast a message m, then pi eventually

Deliver m.

• Integrity: For any message m, any correct process pj Deliver m at most once,

and only if m was previously Broadcast by some correct process pi.
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• Uniform Agreement: If any process pi Deliver any message m, then every

correct process pj eventually Deliver m.

• Total Order: For any two messages m and m′, if any process pi Deliver m

without having delivered m′, then no process pj Deliver m′ before m.

1.1.3 Performance Metrics: Throughpuyt vs. Latency

In the context of this document, we will consider two performance metrics: Latency

and Throughput. Latency represents the time needed to deliver one message, while

Throughput is the number of delivered messages per time unit. A lot of TOB

algorithms favor Latency over throughput [KT96, AFM92, Car85, GMS91, BvR96,

WS95] while others favor throughput [GLPQ10]. Finaly, FastCast [BQ13] achieves

optimal throughput in cluster environment and achieves also low latency as well as

Ridge [BCP15].

To explain the difference between a latency-optimal and a throughput-optimal al-

gorithm, I borrow Figure 1.1 from [GLPQ10] and describe it.

Figure 1.1: Latency Vs. Throughput

In AlgorithmA, p1 sends a message m to p2 which forwards it to p4. In the second

round, p1 sends m to p3. By now, m is broadcast from p1 to all other nodes. Another

message is broadcast in the third round and so on. Thus, it lasts two rounds for

a message to be broadcast. The broadcast latency, hence, is two rounds. While,

it is possible to broadcast one message each two rounds. The throughput, hence,

is one message per two rounds (i.e. half message per round). On the other hand,
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in AlgorithmB, p1 sends a message m to p2 which forwards it to p3 and then from

p3 to p4. As noticed, it needs three rounds for a message to be delivered, so the

latency is three. While, three messages are delivered in three rounds which means

that a message is delivered per round. Therefore, the throughput is one message

per round.

1.1.4 System Model

MDC-cast is designed to work in a multi-datacenters environment. We assume a

set S = {p1, ...pN} of N processes (also called "machines") distributed over several

datacenters. Each datacenter is composed of a local area network that contains a

number of interconnected processes G = {pi, ...pj}. Nodes in different datacenters

inter-communicate over a wide area network. We assume that machines can only fail

by crashing (i.e. Byzantine failures are out of the scope of our interest), that crashes

are rare, and that each node is equipped with a perfect failure detector (P ) [CT96a].

The failure detector is implemented as follows: MDC-cast creates a TCP connection

between each two nodes and maintains this connection during the entire execution of

the protocol with setting the KeepAlive flag. The failure detector provides periodic

heart-beating to specify whether the remote node is responding or not. When a

connection fails or lasts long, the machine tries to re-establish it five times with an

exponentially increasing delay between each connection attempt. If the connection

cannot be re-established, we consider that the target node has crashed. If the node

reappears before or during the recovery procedure, we force the node to crash.

1.2 Existing TOB Protocols

TOB is studied since the ends of 1970s. A wide number of algorithms have been

designed and published since that time. Even in multi-datacenters situation, MDC-

castis not the first protocol used. Out of these systems, I discuss the most relevant

work. I start the state-of-the-art by classifying systems according to their ordering
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Figure 1.2: TOB Classification

mechanism. Then, I introduce some of them and discuss in details those that share

some similarities with my work. I focus on their message transmission patterns and

the communication techniques they use.

1.2.1 TOB Classification

In order to classify TOB protocols, I summarize the taxonomy of [DSU04], where

they classified the literature into five kinds [Figure 1.2] according to their synchro-

nization mechanism:

• Fixed-Sequencer: As the name indicates, in fixed-sequencer systems, one

node is elected as the sequencer of the group. A sequencer is in charge of

ordering messages where each message has to take a sequence number from

the sequencer. Examples of algorithms using a fixed-sequencer include [KT96,

AFM92, Car85, GMS91, BvR93, WS95, Jia, CH, SH97, SNN, Reib, Reia,

MPSP10, Ban07, BQ13, BCP15].

• Moving-Sequencer: They are based on the same principle as the Fixed-

Sequencer algorithms. In the moving-sequencer systems [CM84, WMK94,

KK97, CMA97], they avoid the bottleneck of the fixed sequencer by moving

this role among participating nodes.
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• Privilege-Based: Protocols [FR97, Cri91, ESU04, AMMS+95, GT89, ADMA+04a]

rely on the idea that senders can broadcast messages only when they are

granted the privilege to do so. The sender should have a token in order to

broadcast a message.

• Communication History: In protocols using Communication history [PBS89,

MSS96, EMS95, Ng91, MMSA93], a sender has the ability to send every time.

But, the privilege is needed on delivery instead of sending.

• Destination Agreement: In destinations agreement algorithms [PBS89,

MSS96, EMS95, Ng91, MMSA93, CT96b, BJ87b, LG90, FIMR01, Anc97],

as the name indicates, the delivery order results from an agreement between

destination processes.

1.2.2 LCR

LCR [GLPQ10] is a Uniform TOB primitive for building SMR system that is efficient

in failure free periods. It has been designed for small homogeneous clusters, in

which machines are connected by a fully switched network. It is based on a ring

topology and only relies on point-to-point interprocess communication where each

node communicates just with its successor. The article defines a theorem that states

the optimal throughput that can be achieved in cluster environments:

Theorem 1. Maximum Throughput. For a broadcast protocol in a system with

n processes in the round-based model used in [GLPQ06, GKLQ07], the maximum

throughput µmax in completed broadcasts per round is:

µmax =

⎧⎪⎪⎨⎪⎪⎩
n/(n − 1) if there are n senders

1 otherwise
(1.1)

Also, the authors propose an algorithm, LCR, that matches this optimal throughput.

Its name is derived from the fact that it relies on Logical Clocks in addition to Ring
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topology. The mechanism of LCR is as follows: In order to broadcast a message

m, a process pi will send m just once to its successor pi+1. Each process pj will

forward m to its successor unless process pi−1 which creates an acknowledgement

and sends it to the predecessor of pi (Commonly represented as pi−1). pi−1 creates an

acknowledgement ACK and sends it to pi. ACK will be forwarded by processes one

by one until pi−2. Each node can deliver the message as soon as it receives ACK due

to the fact that it knows that all nodes have received the message correctly. Order

in LCR is computed according to which messages are received by the last process

in the ring, that is, process pn−1. LCR assumes a perfect failure detector to which

each process has access and that failures are rare. Processes in LCR are arranged in

views. Each node that wants to participate will try to join the view. When a node

crashes it will leave automatically the view. When a process joins or leaves the view,

the view_change will be triggered and the view will be changed into another view

that contains the new participating nodes. On every view_change some messages

may got lost. To solve this issue the authors introduce a recovery method. Firstly,

the nodes share their knowledge about pending messages. Then they deliver all

relevant messages. Finally, they start over with the new view.

Figure 1.3 shows a network of five nodes {P1, P2, P3, P4 and P5} running LCR

algorithm where process P1 broadcasts a message by transmitting it to its successor

P2. P2 forwards the message to its successor P3 which forwards it to P4 and

then from P4 to P5. P5 then generates an acknowledgment and transmit it to the

message sender P1. The acknowledgment will be forwarded to P2 and successively

to P3, P4 and P5.

TCP/IP does not provide fairness among sending sockets. Since LCR relies on

TCP/IP communications, the bandwidth used for forwarding from one process can

overwhelm other processes. In other words, if all processes broadcast messages,

it is possible, in some cases, that the distribution of bandwidth among nodes will

not be fair. LCR does thus provide a mechanism that ensures that each process

will have equal opportunity to have its messages delivered by all processes. Each
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P1

P2

P3P4

P5

Figure 1.3: LCR Protocol: Dissemination Pattern Phase (Normal Arrows) and Ac-
knowlegment Phase (Dashed Arrows)

process has two queues: send_queue that contains messages to be broadcast and

forward_queue that contains messages broadcast by predecessors that should be

forwarded. By this, each node will count the messages and assert that transmitted

number of messages is fair between processes. The latency of the protocol is equal

to 2n − 2 rounds due to the fact that a message needs n − 1 rounds to be broadcast

and n − 1 rounds to be acknowledged.

The protocol was implemented in C. The implementation contains two network lev-

els where both of them rely on TCP/IP: (1) The ring topology layer where each pro-

cess establishes a connection with its successor and (2) The group membership layer

where it relies on mesh topology and makes use of the Spread toolkit [ADMA+04a].

It is compared to two state-of-the-art systems: the Spread toolkit [ADMA+04a]

and JGroups [Ban07] with various performance metrics: throughput, response time,

fairness, and CPU consumption. LCR achieves optimal throughput for one sender

as JGroups. For n senders, its throughput is also optimal and significantly better

than the one achieved by Spread and JGroups. Its response time is reasonable as

well as its CPU consumption which does not exceed 55 percent in worst cases.

Even though LCR is throughput optimal and scalable, it uses all of the links between
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nodes equally and so it is not optimal in WAN systems which are prone to bandwidth

bottlenecks, as we will see later in this document.

1.2.3 FastCast

FastCast is a total order broadcast based algorithm that achieves optimal through-

put with low latency. It works in a fully switched network of inter-connected pro-

cesses (machines). In order to broadcast a message, the process transmits data to all

other processes directly relying on IP-multicast which is on top of UDP/IP. Then,

acknowledgments are collected in a second step. The system is designed for small

clusters of homogeneous machines interconnected by a local area network. FastCast

assumes that machines do not partially fail, that crashes are rare and that each node

is equipped with a perfect failure detector (the same as LCR).

In order to broadcast a message m, a process pi multicasts m just once to all other

nodes (Phase I). The Leader creates an acknowledgment ACK stamped by a se-

quence number and multicast it to all processes (Phase II). Thereafter, each process

pj creates an acknowledgement and multicasts it (Phase III). Processes in FastCast

are arranged in groups. Each node that needs to participate joins the group. When

a node crashes it leaves automatically the group. When a process joins or leaves

the group, the view_change is triggered and the view is changed into another view

that contains the new participating nodes. On every view_change some messages

may got lost. To solve this issue FastCast introduces a Recovery method. Firstly,

the processes exchange their knowledge about pending messages. Then, they deliver

relevant messages and start with the new view.

Figure 1.4 shows a network of five nodes {P1, P2, P3, P4 and P5} running FastCast

algorithm where P4 is the Leader. The figure illustrates the three consecutive phases

of FastCast where process P1 broadcasts a message m. In the left part, which depicts

the dissemination pattern phase, m is transmitted from P1 to other nodes directly

using IP-multicast. Then, in the middle part, the Leader assigns a unique sequence
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number to m and IP-multicast the message. Finally, in the right part, each message

acknowledges m by IP-multicasting an acknowledgment message.

P1

P2P5

P3P4

P1

P2P5

P3P4

P1

P2P5

P3P4

Figure 1.4: FastCast Protocol: Dissemination pattern (Phase I:left part); As-
signing Sequence number (Phase II:middle part); Acknowledgment phase (Phase
III:right part)

IP-multicast is prone to message losses. For that purpose, authors added a band-

width allocation sub-protocol that imitates the congestion protocol of TCP. The

goal of the bandwidth allocation protocol is to allocate bandwidth for each sending

node in order to allow multiple nodes to simultaneously and fairly send IP multicast

packets, while reducing message losses. To realize this mechanism, authors firstly

assume that each node knows the bandwidth requirements of all other nodes and

then they use a max-min fair bandwidth allocation algorithm [Bou00]. Nodes de-

clare the changes in their bandwidth usage. More precisely, if a node requires to

decrease its bandwidth, it can do it directly and then inform all other nodes about

this change. If a node needs to increase its bandwidth, it needs to communicate with

other nodes to check if this is possible. Then each node sends an acknowledgment.

After receiving ACKs from all other nodes, the node can increase its bandwidth.

The protocol is throughput optimal because each n−1 rounds, there are n messages

delivered. The latency is equal to three rounds due to the fact that a message needs

one round to be broadcast, one round to be assigned a sequence number and one

round to be acknowledged.

The protocol has been implemented in C++ using the same code base as the Ring

Paxos protocol. It was compared with two state-of-the-art systems LCR [GLPQ10]
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and Ring Paxos [MPSP10] with various performance metrics: throughput, response

time and latency. FastCast achieves optimal throughput like LCR. However its

response time and latency are lower than LCR and Ring Paxos.

Even though FastCast is throughput optimal and with low latency, it cannot scale

to multi-datacenter environments because IP-multicasting is not supported between

datacenters.

1.2.4 Paxos and Fast Paxos

Paxos has been designed to solve consensus, which is, roughly speaking, equivalent to

total order broadcast. We explain the behavior of Paxos because it is used as a basis

for several TOB protocols, e.g., Ring Paxos [MPSP10], Multi-Ring Paxos [MPP12]

and Ridge [BCP15].

(a) Paxos Algorithm (b) Fast Paxos Algorithm

Figure 1.5: Paxos and Fast Paxos

We can explain the consensus problem by considering that a set of processes want

to take a decision. One way to do that is to as follows. A process Pi would ask to

take the token. When it gets the permission, it would propose something and the

processes would vote for it (thus reaching consensus). Finally, the decision would be
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announced to all processes. Pi is represented in Paxos by a Proposer while processes

that vote are called Acceptors and the replicas are called Learners. It is sufficient

to have a reply from a quorum (majority of Acceptors) in order to take a decision.

A consensus ensures that only one proposed value is finally accepted and learned by

every node even though messages can take arbitrarily long to be delivered, can be

duplicated, and can be lost. Paxos nevertheless assumes that messages cannot be

corrupted.

More precisely, the Paxos algorithm can be split into five tasks (noting that the first

two tasks are called the selection phase):

• Plebiscite: The Proposer sends a PREPARE message to a majority of

Acceptors.

• Allegiance: Acceptors respond by showing their allegiance (The first two

tasks are a sort of synchronization preamble).

• Proposition: After collecting a quorum of allegiance messages and being

selected, the Proposer proposes its value to Acceptors by sending the message

to the Coordinator (One node of the Acceptors elected as Coordinator) which

forwards it to the Acceptors.

• Learning: When an Acceptor receives a new proposed value, it votes for it

and informs Learners about it.

• Delivery: A message is delivered after getting a majority of votes.

Paxos algorithm is depicted in figure 1.5a without its selection phase (The first

two tasks), a Proposer P proposes a value and send it to the Coordinator C.

The Coordinator forwards the value to each Acceptors. Each Acceptor informs

eventually each Learner about its decision.

Paxos was later improved. The resulting protocol, called Fast Paxos [Lam06] (Fig-

ure 1.5b) works by shrinking the steps of delivering a message. The key difference

between the two algorithms is that instead of sending a PREPARE message for
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each instance, in Fast Paxos it is sufficient to send one PREPARE message for a

sequence of instances.

1.2.5 Ring Paxos

Figure 1.6: Comparison between Paxos and Ring Paxos provided in [MPSP10]

Ring Paxos [MPSP10] is a total order broadcast algorithm derived from Paxos. It

provides some optimizations like the ring topology (as its name implies) and the IP-

multicast. It has been designed for small homogeneous clusters, in which machines

are connected by a fully switched network.

Figure 1.7: Percentage of packet losses when multicasting messages (1 to 3 senders).
(Figure borrowed from [MPSP10]).

Like Paxos, there are three main roles in Ring Paxos: Proposers, Acceptors and
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Learners in addition to the Coordinator which is one of the Acceptors. The pro-

cedure can be split into five phases like Paxos with a difference in the Learning and

Delivery phases.

Figure 1.6 shows a comparison between Paxos and Ring Paxos [MPSP10]. In

Paxos, when a Proposer proposes a value, it sends it to the coordinator. The

Coordinator sends it to all Acceptors, then, to vote for it. However, in Ring Paxos,

the Coordinator is in charge of multicasting the message directly to all nodes. The

Coordinator’s successor then forwards it to its successor and so on until it comes

back again to the Coordinator. After finishing its ring, the message will get in its

final stage: Delivery. The Coordinator then multicasts again the message to all

Acceptors and Learners to be delivered.

It is well known that IP-multicast is subject to message losses due to buffer overflow.

To minimize these losses, Ring Paxos limits the throughput of multicasting from

each sending node and configure the communication buffer sizes. But there is still

a problem, multicasting from several simultaneous senders. Figure 1.7 (borrowed

from [MPSP10]) shows the throughput impact when multiple senders multicast mes-

sages. It can be observed that when the system runs with 5 senders, the percent of

lost messages is under the threshold of 5% until the aggregated sending rate meets

around 800Mb/s where it faces a bottleneck. Authors treat this issue by replacing

the way that Acceptors multicast messages by a point-to-point communication in a

ring topology (they order Acceptors in a ring topology).

The protocol was implemented in C language and compared experimentally to

some state-of-the-art systems: LCR, Spread toolkit [ADMA+04a], LibPaxos [lib]

and Paxos4sb [KA08]. The article shows a comparison between the Maximum

Throughput Efficiency (MTE 1) of the algorithms. Results show that the max-

imum throughput efficiency of Ring Paxos is very good as well as LCR but the

algorithm has several advantages such as a better latency.
1They introduced the notion of Maximum Throughput Efficiency and define it by the rate

between the maximum achieved throughput per receiver and the nominal transmission capacity of
the system per receiver.
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1.2.6 Multi Ring Paxos

As its name indicates, Multi-Ring Paxos is a protocol derived from Paxos that

combines several instances of Ring Paxos algorithm into a new algorithm in order

to improve the system performance. Multi-Ring Paxos uses multiple independent

instances of Ring Paxos which are considered as groups of Acceptors.A Proposer

can initialize a message broadcast and send it to one of the groups. Also, Learners

subscribe to groups they would like to deliver messages from. If a Learner subscribes

to groups gl1, gl2 , ..., glk , where l1 < l2 < ... < lk , then the Learner could first

deliver M messages from gl1 , then M messages from gl2 , and so on, where M is

a parameter of the algorithm [MPP12]. Synchronization between groups is handled

via a deterministic merge procedure.

The idea of Multi Ring Paxos is that a Proposer sends a proposition to one of the

groups which will treat it as in Ring Paxos. Then the message will be sent to the

subscribed learners. Inside a group, Acceptors act exactly like in Ring-Paxos: the

Coordinator multicasts every message, and the message will be then forwarded in

a ring topology between Acceptors.

In the enclosed figure (Figure 1.8), an illustrated scenario clarifies the system.

The figure shows a system running Multi-Ring Paxos with two groups g1 and g2

where each group contains a set of Acceptors. The system includes two Proposers

(Proposer1 and Proposer2) and two Learners (Learner1 and Learner2). Proposer1

initializes two message broadcasts (m1 and m3) and sends them to g1. Proposer2

initializes two message broadcasts (m2 and m4). m2 is sent to g1 while m4 is sent

to g2. Learner1 subscribes to group g1 and Learner2 subscribes to groups g1 and

g2. M is considered to be 1 which means that a Learner has the choice to switch

between groups on each message.

The protocol was implemented assuming that decisions can be stored in main mem-

ory (and not on disk) and compared experimentally to some state-of-the-art systems:

LCR, Spread and Ring Paxos using several performance metrics: Throughput, La-

tency and CPU usage.
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Figure 1.8: Multi Ring Paxos algorithm.

Even though Multi-Ring Paxos is throughput optimal, it is not adapted to multi-

datacenters setups provided it relies on IP-multicasts.

1.2.7 Ridge

Ridge is another TOB algorithm from the Paxos family that differs from the former

algorithms in the fact that it targets WAN systems. Roughly speaking, Ridge does

not rely on IP-multicast and achieves better throughput than Paxos and Fast Paxos.

It also intersects with Multi-Ring in the idea of having several intercommunicating

groups called ensembles. Each ensemble contains 2f + 1 Acceptors, where f is the

maximum number of failures tolerated by the ensemble [BCP15]. We first explain

Ridge with one ensemble. In order to explain Ridge, it is necessary to describe Paxos

in more details. The consensus phase implemented by Acceptors can be split into

two phases:

• Election: The Coordinator creates a new unique ID and sends it to all

Acceptors. Acceptors will vote for it. If the Coordinator receives majority of

votes, it starts the second phase.

38



• Taking Decision: The coordinator proposes a new value to all Acceptors.

Acceptors will vote for it. If the Coordinator receives majority of votes, it

notifies Acceptors about the new voted decision.

Ridge optimizes the second phase of Paxos. The Coordinator sends a message m

to an Acceptor which forwards it to another one and so on until ensuring that a

majority of Acceptors have received m. Then, the last Acceptor knows that m has

been accepted by a quorum m. In order to take a decision, the last Acceptor sends

m to a Learner with the help of a load balancer. This Learner is is in charge of

distributing the decision by sending m to all other Learners directly. This phase

(Phase II) could be split into two stages: Phase IIa which is similar to ring algorithms

and Phase IIb which is multi-unicasting (i.e. sending from one node to each other

node aside). The procedure can be split into several steps:

• Proposer: A Proposer proposes the message to one or more groups by send-

ing the value to their Coordinators.

• Coordinator: The Coordinator proposes the message to the ensemble.

• Acceptor: the Acceptor takes its role in voting as described in one ensemble.

• Learner: The learner finally delivers the message according to its order.

Figure 1.9 shows a system running Ridge algorithm. The system is composed of six

Proposers, five Acceptors and four Learners where a Proposer P broadcasts a mes-

sage m. Firstly, Ridge runs the first phase of Paxos, then the Coordinator C sends

m to an Acceptor A which forwards it to another Acceptor and so on until the major-

ity of acceptors have received the message. The last Acceptor knows that a quorum

has known about m so it forwards it to a Learner with the help of a load balancer

(This Learner is called the Distributing Learner). The Distributing Learner then

forwards the message to every other Learner.

In case of several ensembles, Ridge makes use of a merging algorithm that coordi-

nates messages.

39



P

P

P

P

C

A

A

A

A

A
P

L

L L

L

Figure 1.9: Ridge Protocol with one ensemble (Phase II).

In addition, Ridge provides an optimistic delivery which is strongly coupled with

what is published in [BPGG13]. As its name indicates, using this mechanism,

Learners deliver messages before being broadcast to Acceptors. The Proposer

sends the message m directly to all Learners. Simultaneously, the proposer sends

m to the Coordinator which proceeds with Phase II of Paxos for m. Once the mes-

sage is accepted by f + 1 messages, the last message just notifies Learners about

it.

Ridge has been compared against Spread, LibPaxos and Ring Paxos with one en-

semble and varying the number of destinations. The evaluation shows that Ridge is

better than other algorithms in general with varying message size and the number

of destinations. Results show that latency is relatively good. As well, Ridge has

been compared to Spread, LibPaxos and Multi-Ring Paxos with several ensembles.

Results show Ridge improves both the latency and the throughput. Finally, the

optimized-delivery algorithm was assessed and the percent of mistaken deliveries

did not exceed 3% even under high throughput.

Even though Ridge has been designed to work in WAN systems, it is highly affected

by bottlenecks that can be observed on network links, as we show in Chapter 3.
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1.3 Performance of Existing Protocols in Multi-

Datacenter Environments

We have presented several TOB protocols. Only some of them are throughput-

optimal, namely: FastCast [BQ13], Multi-Ring Paxos [MPP12], LCR [GLPQ10],

and Ridge [BCP15]. The first two protocols rely on IP-multicast and can therefore

not be used efficiently in multi-datacenters environments. We therefore focus on the

LCR and Ridge protocols.

Throughout this section, we consider the multi-datacenters settings presented in

Figure 1.10. This settings comprises two datacenters (A and B), having two and

three machines, respectively. Machines on each datacenter are interconnected via a

switch (noted SW1 and SW2) using "network cables" C1, C2, · · · , C5. The commu-

nications across datacenters use "network link" L1. Link L1 is shared by all machines

belonging to datacenters A and B. Network cables are obviously not shared.

p2

SW1

p1

p3

p4

p5

SW2

C2

C1

C3

C4

C5

L1

Datacenter A Datacenter B

Figure 1.10: Example of a multi-datacenters environment comprising 5 machines
located in two datacenters.

1.3.1 Message Pattern of LCR

The message pattern of the LCR protocol is depicted in Figure 1.11 in the case when

process P5 initiates a message broadcast. The process simply sends the message to

each other nodes, using the TCP protocol. LCR uses a ring topology to disseminate

messages. As the figure shows, the message is successively forwarded by processes
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P1, P2, and P3. When P4 receives the message it does not forward it because it

knows that the message originates from P5. In order to ensure message ordering,

LCR piggybacks some data on every forwarded messages (i.e. a vector clock) that

allows acknowledging messages and defining the order in which messages must be

delivered.

Datacenter BDatacenter A

p2

p1

p3

p4

p5

p2

SW1

p1

p3

p4

p5

SW2

Figure 1.11: Broadcast pattern in the LCR protocol when process P5 is initiating a
broadcast: logical view (top part) and networking view (bottom part).

1.3.2 Message Pattern of Ridge

As explained before, Ridge improves the decision phase of Paxos in order to increase

the system performance and adapt the protocol to WAN systems. The message pat-

tern of the decision phase of the Ridge protocol is depicted in Figure 1.12. Acceptor1

sends m to its successor Acceptor2. Acceptor2 knows that the quorum is achieved

(two Acceptors out of three). It forwards the message to a Learner with the help of

a load balancer (We assume that it is to Learner1 which is the best case). Learner1

sends m to all other Learners directly. In our example, there exists only one other
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Learner which is Learner2.

Datacenter BDatacenter A

Learner2

Acceptor1

Learner1

Acceptor3

Acceptor2

SW1 SW2

Learner2

Acceptor1

Learner1

Acceptor3

Acceptor2

Figure 1.12: Broadcast pattern in the Ridge protocol when process Acceptor1 is
initiating a broadcast: logical view (top part) and networking view (bottom part).

The decision phase of the Ridge protocol at its core is composed of a quorum phase

(Acceptors quorum) and a message dissemination phase (Among Learners). The

dissemination pattern we present is more efficient than that of the actual Ridge

protocol which we depict in Figure 1.13 where Learner5 disseminates a message. In

the actual prootocol, the process simply sends the message to all other nodes, using

the TCP protocol.

Ridge implements a set of features that does not actually improve its throughput.

The most interesting one is its ability to combine several components in one physical

node. The message pattern of the Ridge protocol when roles are collocated in one

process is depicted in Figure 1.14. A process can be an acceptor but also a Learner.

Acceptor1 sends m to its successor Acceptor2. Then Acceptor2 forwards m to its

successor Acceptor3. Acceptor3 knows that the quorum is achieved (three Acceptors

out of five). It forwards the message to a Learner with the help of a load balancer

(We assume that it is to Learner5 which is the best case). Learner5 sends m to all

other Learners directly.
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Figure 1.13: Broadcast pattern in the Ridge protocol when process Learner5 is
disseminating a message: logical view (top part) and networking view (bottom part).
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Figure 1.14: Broadcast pattern in the Ridge protocol when each Acceptor is also
a Learner. Acceptor5 initiates a broadcast: logical view (top part) and networking
view (bottom part).
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1.3.3 Latency of Ridge and LCR

In table 1.1, we provide the theoretical latency achieved by LCR and Ridge in a

cluster environment. The network assumed is composed of N homogeneous nodes

interconnected by a switch. The latency is showed in terms of t, the time needed

for a message to be sent from one node to another. The table studies two cases (1)

when one sender only Broadcasts a message and (2) when each node is broadcasting

a message. First, we study when just one sender Broadcast a message. Using LCR,

when a process P Broadcast a message m, it sends m to its successor process. m

is forwarded from each process to its successor until it arrives to the predecessor

process of P . So, the time needed to disseminate the message is (N − 1) ∗ t. Using

Ridge, when a process P Broadcast a message m, it sends it directly to each other

process. So, the overall latency of the Broadcast of m using Ridge is t. On the other

hand, in the case of N senders, both algorithms have the same latency (N − 1) ∗ t.

Because the two protocols have optimal throughput, they both need N − 1 rounds

to deliver N messages as stated in [GLPQ10] (N −1 rounds). Thus, the time needed

to Broadcast N messages is (N − 1) ∗ t. This is due to the fact that using Ridge, it

is impossible to send a message to two different processes at the same instant but

rather messages are sent sequentially.

LCR Ridge
One sender (N − 1) ∗ t t
N senders (N − 1) ∗ t (N − 1) ∗ t

Table 1.1: The theoretical assessment of the latency of LCR and Ridge.

To confirm the above results, we illustrate with two figures (Figure 1.15 and Fig-

ure 1.16) the dissemination pattern when five messages are sent simultaneously. In

both protocols, the number of rounds needed to Broadcast five messages using is

equal to four.
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Figure 1.15: The latency of LCR with N senders.
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Figure 1.16: The latency of Ridge with N senders.
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1.3.4 Throughput of Ridge and LCR

In this section, we study the throughput achieved by Ridge and LCR. We performed

experiments using two setups. In the first setup, five machines are located in the

same datacenter and communicate using a fully-switched network (using a 1Gb/s

ethernet network). In the second setup, 5 machines are spread in two datacenters, as

depicted in Figure 1.10. Figure 1.17 compares the performance of LCR and Ridge.
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Figure 1.17: Throughput comparison between LCR and Ridge in one datacenter
(left two bars) and in a multi-datacenters environment (right two bars).

Within each datacenter, machines communicate using a fully-switched 1Gb/s net-

work, whereas across datacenters, machines communicate using link L1 that has a

bandwidth of 500Mb/s. The reason why link L1 has a lower bandwidth available

for the protocol is that it can be simultaneously used by all machines belonging to

datacenters A and B. In both cases, all machines initiate message broadcasts.

In the "one datacenter" setup, Ridge and LCR both achieve optimal throughput as

defined in [GLPQ10]: N
N−1 × 1Gb/s with N = 5 machines. In the multi-datacenters

setup, LCR and Ridge achieve a much lower throughput. We explain this result in

the remainder of this section.

To understand the performance depicted in Figure 1.17, we analytically study, the

number of messages that transit on each network cable and link for the two protocols

(using the setup depicted in Figure 1.10).
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Figure 1.18: Network usage in LCR and Ridge when all processes initiate message
broadcasts (topology depicted in Figure 1.10).

Figure 1.18 depicts the number of messages that are sent and received on each

network cable and link when 5 messages are broadcast (one by each process). As

network cables and links are bidirectional, we distinguish the two directions: "In"

and "Out". We first observe that all nodes are receiving 4 messages in the two

protocols ("In" direction of each network cable). This is expected provided that

each machine must receive each broadcast message once.

Using LCR, each process generates its own message in addition to forwarding three

other messages. Consequently, each machine sends 4 messages on the "Out" direction

of its network cable. L1, the link connecting the two datacenters, is used to send

messages from P2 to P3 and from P5 to P1. This explains why 4 messages transit

on this link in the two directions.

Using Ridge, each machine sends to all other machines the messages it broadcasts.

Consequently, each node sends 4 messages on the "Out" direction of its cable. L1,

the link connecting the two datacenters, is used to send messages from each node

in datacenter A towards each node in datacenter B, and vice versa. So, in total, 6

messages are sent over L1 in both directions.

This analysis explains the performance drop observed in the multi-datacenters setup.

For both protocols link L1 is the bottleneck. More precisely, for LCR, this link

conveys as many messages as other cables, but has half the bandwidth than the

latter. For Ridge, besides having half the bandwidth of other cables, link L1 also

conveys 50% more messages than cables (6 messages against 4). This explains why
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Ridge achieves lower performance than LCR in the multi-datacenters setup.

LCR requires sharing L1 between four nodes (Each message is forwarded three

times) on each lane so the theoretical throughput of generating messages is limited

to 125Mb/s for each node. Thus, the overall theoretical expected throughput is

625Mb/s. The achieved throughput is around 600Mb/s which is very cloe. Ridge,

on the other hand, sends two messages from datacenter A on L1 and three messages

from datacenter B on L1 per round. A node in datacenter A is allowed to transmit

250Mb/s to nodes in datacenter B over L1 which means generating around 83Mb/s.

A node in datacenter B is allowed to transmit 166Mb/s to nodes in datacenter A

over L1 which means generating around 83Mb/s. Thus, the whole system is able

to generate theoretically around 415Mb/s which is near to the experimental results

shown in the figure.

Intra-datacenter link usage

In table 1.2, we provide the usage of intra-datacenter links in the LCR and Ridge

assuming that each process Pi utBroadcasts one message. We assume a system

containing a set S = {p1, ...pN} of N processes distributed over several datacenters.

Each datacenter contains a group of processes G = {pi, ...pj}. In LCR, each node

transmits its own messages and forwards all other messages except those initiated

from its successor in the ring. Thus, in LCR each intra-datacenter link transmits

N − 1 messages. Similarly, each node receives messages from all other nodes (that

is N − 1 messages). Concerning Ridge, each node sends its messages to all other

nodes directly, which means that each node transmits N − 1 messages and receives

N − 1 messages.

LCR Ridge
Out N − 1 N − 1
In N − 1 N − 1

Table 1.2: Intra-datacenter link usage
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Inter-datacenter link usage

In table 1.3, we provide the usage of inter-datacenters links with LCR and Ridge

assuming that each process Pi utBroadcasts one message. Since LCR relies on a ring

topology and each node transmits fairly equal bandwidth to its successor, a node

transmits over a cable exactly as much as it transmits over a link, that is N − 1

messages. Using Ridge, each node in group, Dj sends a message to each node in

group Dk. Hence, a link in between Dj and Dk transmits Gj ∗ Gk and respectively

receives Gk ∗ Gj where Gi represents the number of nodes is Di.

LCR Ridge
Out N − 1 Gj ∗ Gk

In 0 Gk ∗ Gj

Table 1.3: Inter-datacenter link usage

1.4 Conclusion

We have studied existing TOB protocols. Our study shows that only two protocols

are throughput optimal and are able to work in multi-datacenter environments:

LCR and Ridge. A deeper study of those two protocols has highlighted the fact

that their usage of inter-datacenter network links is not optimal, thus yielding poor

throughput in this setup. In the remainder of this document, we describe a new

protocol that outperforms those two protocols in multi-datacenter setups.
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Chapter 2

The MDC-cast protocol

In this chapter we present MDC-cast, a Total Order Broadcast protocol specifically

designed for multi-datacenters environments.

This section is organized as follows. Section 2.1 presents the description of the

protocol. TSection 2.2 proves the correctness of our approach. Section 2.3 presents

the bandwidth allocation mechanism. In Section 2.4, we describe some optimizations

to MDC-cast. Finally, section 2.5 concludes the chapter.

2.1 Protocol description

2.1.1 Message dissemination

Description of the dissemination pattern

In order to achieve high performance in multi-datacenters environments, it is nec-

essary to reduce the traffic as much as possible. Thus, we rely on IP-multicast.

But IP-multicast is not supported among inter-datacenter links. So, we use IP-

multicasting within datacenters and unicast communication across datacenters (I.e.

on inter-datacenter links). In each datacenter, a node is delegated as an Importer

which is in charge of forwarding messages coming from nodes in other datacenters
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into nodes in its datacenter. In other words, we use IP-multicast where possible (i.e.

between nodes in the same datacenter) and forward messages over TCP/IP between

datacenters. This mechanism is handled by two machines in each datacenter, called

Exporter and Importer. Other nodes are called standard nodes.

The message dissemination pattern is depicted in Figure 2.1. The figure illustrates

a network of five processes {P1, P2, P3, P4 and P5} distributed over two datacenters:

A and B. The figure contains both the logical view in the top part and the net-

working view in the bottom part. It shows the dissemination pattern of message m

when process P5 broadcasts a message with MDC-cast. The Broadcast primitive is

implemented in two phases: the first phase is an intra-datacenter phase, whereas the

second phase is an inter-datacenter phase. More precisely, when a node Broadcasts

a message m, it first multicasts it inside its datacenter (phase 1). Then, the data-

center’s Exporter forwards m to all the other datacenters by sending m directly to

Importers located in other datacenters over TCP/IP (phase 2). Each Importer, then,

IP-multicasts m inside the datacenter it belongs to (phase 3). We denote the Ex-

porter of a datacenter by the node holding the smaller ID number in the datacenter

while the Importer is the node holding the largest ID.

Specifically, in Figure 2.1, P5 IP-multicasts m locally to its neighbors1 P3 and P4.

P3, which is the Exporter of datacenter B, exports m to the other datacenter A by

sending it directly to the Importer of A: P2. P2 receives the message and forwards

it to its neighbors using IP-multicast.

Illustration of the link usage

Figure 2.2 depicts the number of messages that are sent on each network cable

and link when five messages are broadcast (one by each process) using the MDC-

cast protocol. In datacenter A, P1 is the Exporter and P2 is the Importer. In

datacenter B, P3 is Exporter and P5 is Importer. We borrow the same system and

configurations depicted in figure 1.18 to ensure a fair comparison. We observe that,
1We denote two processes as neighbors if they are both localized in the same datacenter
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Figure 2.1: Broadcast pattern in the MDC-cast protocol when process P5 is ini-
tiating a broadcast: logical view (top part) and networking view (bottom part).
IP-Multicast messages are depicted in red, whereas unicast TCP messages are de-
picted in black.

like other protocols, each node is receiving four messages. Moreover, each node

is generating its own message. Exporters forward the messages produced within

their datacenter to other datacenters: for instance, P1 outputs three messages: m1

that it multicasts and exports, and m2 that it exports. The Importer is in charge

of forwarding messages received from other datacenters. For instance, P2 outputs

four messages: m2 that it multicasts, and three messages received from datacenter

B that it forwards: m3, m4 and m5. As a conclusion, we can say that unlike

other protocols, MDC-cast optimizes the usage of inter-datacenter links. Indeed,

only two (respectively three) messages are sent from datacenter A to datacenter B

(respectively from datacenter B to datacenter A).

Theoretical assessment of the link usage

Table 2.1 shows the link usage of MDC-cast in a network composed of five processes.

The figure studies the broadcast of a message represented in figure 2.1. The case is
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Figure 2.2: Network usage in MDC-cast when all processes initiate message broad-
casts (topology depicted in Figure 1.10).

analyzed in two dimensions: inter-datacenter and intra-datacenter.

Links (Inter-datacenter) Cables (Intra-datacenter)
Exporter: Gk ∗ (D − 1) + 1

Out Gj Importer: N − Gk + 1
Others: 1

In Gk N − 1

Table 2.1: MDC-cast theoretical link usage

Internally, in each datacenter nodes are of three types Exporter, Importer and a

normal node. A normal node transmits one message. An Exporter in Dk is in charge

of forwarding Gk messages to each datacenter. That is GK ∗ (D − 1) in addition

to generating its own message which means that an Exporter transmits GK ∗ (D −

1) + 1 messages. An Importer receives from each Exporter in other datacenters and

forwards the received messages N −Gk times. In addition, an Importer generates its

own messages which means that an Importer transmits N −Gk +1 messages. Finally,

each node receives N − 1 messages, a message from each node. A link connecting

two datacenters Dj and Dk is used to forward messages from the Exporter of Dj

into the Importer of Dk and on the other lane from the Exporter of Dk towards the

Importer of Dj. Thus, the link usage is Gj on the first lane and Gk on the other.

The link usage of MDC-cast is compared to the link usage of LCR and Ridge and

shown in table 2.2. We observe from the table that MDC-cast uses inter datacenter

links less than LCR and Ridge.
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Links (Inter-datacenter) Cables (Intra-datacenter)

LCR IN N − 1 N − 1
OUT 0 N − 1

Ridge IN Gk ∗ Gj N − 1
OUT Gj ∗ Gk N − 1

MDC-cast

IN Gk N − 1
Exporter: Gk ∗ (D − 1) + 1

OUT Gj Importer: N − Gk + 1
Others: 1

Table 2.2: MDC-cast theoretical link usage

2.1.2 Message ordering

For ordering messages, MDC-cast uses the well-known fixed-sequencer pattern [DSU04].

More precisely, a fixed Sequencer is in charge of ordering messages by assigning a

sequence number to each message. The Sequencer is elected by other processes using

a group membership system explained in section 2.1.4.

2.1.3 Pseudo-code of the dissemination and ordering mech-

anisms

The pseudo-code is provided in Figure 2.3. The protocol works as follows. Each

node multicasts a message in its datacenter (line 12), the Exporter of this datacenter

forwards this message to other datacenters (line 20) and the message follows the

path designed and explained before. The Importer is in charge of receiving messages

from other datacenters and multicasting these messages to its datacenter (line 22).

In order to ensure uniform agreement on message delivery, the sequencer assigns a

novel and unique ID for each message (line 26) and multicasts an acknowledgment

holding the new sequence number (line 28). In addition, every node acknowledges

about the reception of messages and the sequence numbers associated with them

(line 28). In order to deliver a message m, it should be received by all nodes first.

So, for delivering a message m, each node waits m to be acknowledged by each other
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node (lines 43 and 44). That way, a node is sure that m is already known and it

holds a sequence number. If a message is not delivered after some amount of time

(a specific timeout), the message is resent again (line 49).

Procedure executed by any process Pi in datacenter Gj

1: procedure initialize(initial_view)
2: pendings[]← ∅
3: seqnos[]← ∅
4: acks[][]← ∅
5: snT oDeliver ← 0
6: sequencer = p0
7: exporter = ps where s = min k, pk ∈ Gj

8: importer = pt where t = max k, pk ∈ Gj

9: sn← 0

10: procedure utoBroadcast(m)
11: idm ← hash(pi, m)
12: multicast ⟨Data, idm, m⟩ to Gj

13: if Pi = exporter then
14: forward ⟨Data, idm, m⟩ to all Importers
15: pendings[idm]← m
16: SetTimeout ⟨idm⟩

17: upon Receive ⟨Data, idm,m⟩ from Pj do
18: if Pj ∈ Gj and Pi = exporter then
19: for each imp ∈ Importers do
20: forward ⟨Data, idm, m⟩ to imp
21: if Pj /∈ Gj and Pi = importer then
22: multicast ⟨Data, idm, m⟩ to Gj

23: if Pi = sequencer then
24: if ̸ ∃ seqnos[idm] then
25: seqnos[idm]← sn
26: sn← sn + 1
27: acks[idm][pi] = 1
28: multicast ⟨Ack, idm, seqnos[idm]⟩ to Gj

29: pendings[idm]← m

30: upon Receive ⟨Ack, idm, snm⟩ from Pj do
31: if Pj ∈ Gj and Pi = exporter then
32: for each imp ∈ Importers do
33: forward ⟨Ack, idm, m⟩ to imp
34: if Pj /∈ Gj and Pi = importer then
35: multicast ⟨Ack, idm, m⟩ to Gj

36: if Pj = sequencer and ∃ pendings[idm] then
37: multicast ⟨Ack, idm, snm⟩ to all processes
38: acks[idm][pi] = 1
39: seqnos[idm]← snm

40: acks[idm][pj ] = 1
41: tryDeliver()

42: procedure tryDeliver()
43: while ∃ idm s.t. (seqnos[idm] = snT oDeliver and sum(acks[idm]) = n) do
44: Deliver(m)
45: snT oDeliver ← snT oDeliver + 1
46: pendings← pendings− pendings[idm]

47: upon Timeout⟨idm⟩ do
48: if ∃ pendings[idm] then
49: multicast ⟨Data, idm, pendings[idm]⟩ to all processes
50: SetTimeout ⟨idm⟩

Figure 2.3: Pseudo-code of the dissemination and ordering mechanisms.
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2.1.4 Membership management

Machines are prone to failures and crashes. In order to handle machines joining and

leaving the system, the MDC-cast protocol is built on top of a group communication

system [BJ87a] relying on an external perfect failure detector (P) that guarantees

strong accuracy (No process is suspected before it crashes) and strong completeness

(Eventually every process that crashes is permanently suspected by every correct

process) [CT96a].

Figure 2.4 presents the membership management subprotocol. When a process

leaves or joins the group, the view_change procedure is triggered. Firstly, every

process completes the execution of all other procedures (if any) which is described

in Figure 2.3. Then it starts the recovery part of the view change procedure. The

functions make use of two primitives Rsend (reliable send) and Rreceive (reliable

receive) that implement reliable communication channels over TCP/IP. Each process

synchronizes its pending lists by sending each message in its pendings along side with

its sequence numbers (seqnos) to all processes in the new view (line 2).

Upon receiving these arrays, every process updates its own pendings and seqnos

arrays using those received from all other processes (lines 17 and 19). Then, the

processes send back an Ack_Recover message (line 20). Processes wait until

they receive Ack_Recover messages from all processes (line 3) before sending an

End_Recovery message to all (line 4). When a process receives End_Recovery

messages from all processes (line 5), it means that the message is ready to be deliv-

ered when its sequence number matches the waited sequence number, snToDeliver

(lines 21 to 26). So, after the view change procedure finishes, all processes belonging

to the new view will have delivered the same messages in the same order. Each pro-

cess then empties its pendings, seqnos and acknowledgments (acks) arrays (lines 8

to 10). Moreover, each process uses as new Sequencer the first process in the new

view (line 11). Each datacenter uses the first process as the Exporter (line 12) and

the last process as the Importer (line 13).

58



Procedures executed by any process Pi

1: upon view_change(new_view) do
2: Rsend ⟨Recover, Pi, pendings, seqnos⟩ to all Pj ∈ new_view
3: Wait until received ⟨Ack_Recover⟩ from all Pj ∈ new_view
4: Rsend ⟨End_Recovery⟩ to all Pj ∈ new_view
5: Wait until received ⟨End_Recovery⟩ from all Pj ∈ new_view
6: forceDeliver()
7: view ← new_view
8: pendings[]← ∅
9: seqnos[]← ∅

10: acks[][]← ∅
11: sequencer = first process in view
12: Exporter = first process in its datacenter
13: Importer = last process in its datacenter
14: sn← nextT oDeliver

15: upon Rreceive ⟨Recover, pendingspj , seqnospj ⟩ from Pj do
Z for each [idm] ∈ pendingspj do

16:17: pendings[idm]← pendingspj [idm]
18: if ∃ seqnospj [idm] then
19: seqnos[idm]← seqnospj [idm]
20: Rsend ⟨Ack_Recover⟩ to pj

21: procedure forceDeliver()
22: for each idm ∈ seqnos[idm], ordered by increasing sequence number do
23: if ∃ pendings[idm] and seqnos[idm] ≥ snT oDeliver then
24: Deliver(pendings[idm])
25: pendings← pendings− pendings[idm]
26: snT oDeliver ← seqnos[idm] + 1
27: for each idm ∈ keys(pending[idm]), ordered by increasing idm do
28: Deliver(pendings[idm])
29: pendings← pendings− pendings[idm]

Figure 2.4: Pseudo-code of the membership management sub-protocol.
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2.2 Correctness of the protocol

In this section, we prove that MDC-cast is a uniform total order broadcast proto-

col. We proceed by successively proving that MDC-cast ensures the four properties

mentioned at the beginning of Section 1.1: validity, integrity, uniform agreement

and total order.

Lemma 1. Validity: if a correct process Pi Broadcast a message m, then Pi even-

tually Deliver m.

Proof. If a correct process Pi Broadcast a message m, m is added to Pi’s pending list

(Line 15 of Figure 2.3). If there is a membership change, m will be in the new view

(Line 7 of Figure 2.4). This view change guarantees that pending messages enter a

recovery procedure. Message are resent again and they are eventually delivered. Let

us now consider the case when there is no membership change. When a process Pj

receives a message m from a process Pk, this message is added to Pk’s pending list

(Line 29 of Figure 2.3). The dissemination procedure ensures that, in the free-failure

case, m is forwarded to every process in the current view through Exporters and

Importers. Thereafter, the sequencer assigns a new unique ID (Called Sequence

Number) to m and sends an acknowledgment to every process. When a process Pj

receives an acknowledgment from the sequencer, it multicasts an acknowledgment

ACK and Broadcast it in order to inform all other processes about receiving m

(Line 37 of Figure 2.3). When a process Pi receives an acknowledgment ACK

about a message m from each process in the system which is already in the pending

list, it knows that all other nodes have received m with its sequence number and m

can be delivered. The message m is then delivered if its sequence number matches

the expected sequence number (Line 44 of Figure 2.3). If m is not received by some

process, then the sender Pi will wait for an acknowledgment for some period, consider

it as undelivered and re-broadcast it after some timeout (Line 49 of Figure 2.3).

Consequently, all messages undelivered will be delivered. Eventually, m is delivered.

60



Lemma 2. Integrity: for any message m, any correct process Pj Deliver m at most

once, and only if m was previously Broadcast by some correct process Pi.

Proof. When a message m is Deliver, the sequence number is incremented by one

(Line 45 of Figure 2.3) and the next message to be delivered should hold the new

unique sequence number. Also, the message is removed from the pending list

(Line 46 of Figure 2.3). Similarly, when there is a membership change, Line 17

of Figure 2.4 guarantees that process Pj will not deliver messages twice.

Lemma 3. Uniform Agreement: if any process Pi Deliver any message m in the

current view, then every correct process Pj in the current view eventually Deliver m.

Proof. We consider a message mk initiated by process Pk and delivered by Pi in the

current view. We study two cases with and without membership change. On the

first hand, if mk is not delivered on a membership change. The protocol ensures that

mk is received and acknowledged by every correct process before being delivered by

Pi. Each process sends acknowledgment for mk and it will be transmitted to every

correct process. Thus, every correct process delivers mk when it becomes the first

entity in the pending list (Line 44 of Figure 2.3). Consequently, all correct processes

will eventually deliver mk. On the other hand, if mk is delivered by process Pi

during a membership change, then Pi should have mk in its pending list before

executing line 24 or line 28 of Figure 2.4. However, correct processes synchronize

their pending lists frequently. So, processes that has not delivered mk yet still have

mk in their pending lists before executing line 6 of Figure 2.4. Consequently, all

correct processes in the current view will eventually deliver mk.

Lemma 4. Total Order. for any two messages m and m′, if any process Pi Deliver

m without having delivered m′, then no process Pj Deliver m′ before m.

Proof. Let m be a message Deliver by Pi before m′. Then m should have been

matched the expected sequence number before m′ (Line 44 of Figure 2.3). This is
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to say that the sequence number of m is smaller than the sequence number of m′.

However, the sequencer is the only process that issues sequence numbers (Line 25

of Figure 2.3) in strictly increasing order (Line 26 of Figure 2.3). Thus, each pro-

cess delivers messages according to the same ordering which is maintained by the

sequencer and checked on the delivery (Line 43 of Figure 2.3). Hence, the message

that holds the smaller sequence number will be delivered before on every process.

Therefore, m will be delivered before m′. So, for any two messages m and m′, if

any process Pi Deliver m without having delivered m′, then no process Pj Deliver m′

before m.

Theorem 2. Total Order. MDC-cast is a uniform total order broadcast protocol.

Proof. By Lemma 1, Lemma 2, Lemma 3, and Lemma 4, we can derive the fact

that the MDC-cast protocol ensures validity, integrity, uniform agreement, and total

order. Thus, it is a uniform total order broadcast protocol.

2.3 Bandwidth Allocation Mechanism

2.3.1 The need for a bandwidth allocation mechanism

Since MDC-cast uses IP-multicasting (which is unreliable) inside datacenters, pack-

ets can get lost if the network throughput exceeds the available bandwidth over

intra-datacenter cables. For instance, a cable of bandwidth 1Gb/s is capable of

receiving packets up to 1Gb/s and drops additional packets. Figure 2.5 shows the

overall throughput of a Gigabit network of five processes {P1, P2, P3, P4, P5} where

each process IP-multicasts messages in a fixed throughput rate. The throughput is

increasing until each process multicasts 250Mb/s. This is due to the fact that each

server is able to receive 1GB/s. When the sending throughput is higher, the overall

throughput dramatically decreases. This is what we observe for instance when each

process tries to IP-multicast at throughput rate 400Mb/s (exceeding 150Mb/s).

This behavior motivates the development of a bandwidth allocation mechanism.
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Figure 2.5: Throughput when five processes IP-multicast messages as a function of
the individual multicasting rate.

Several group communication systems has been developed [BvR93, vRBM96, BVG+96]

that have rate and congestion control mechanisms. They commonly address the IP-

multicast issue using one of the three following techniques. In the first technique,

they inhibit the throughput of each process [BC94]. The second technique is to

imitate what is developed in TCP/IP by dynamically varying window sizes. They

create virtual windows in the application space and IP-multicast them as ordinary

messages. They distinguish between small windows for basic flow control and large

windows for total ordering. The third technique is to to keep the gap between con-

current messages. This is done by limiting the number of concurrent senders in each

group. This technique is used for large networks where the number of senders is

relatively big.

In this section, we describe a bandwidth allocation mechanism that works as follows.

The bandwidth allocation mechanism is managed by the Sequencer. It uses the TCP

protocol to communicate with all machines in the system. Using TCP, the Sequencer

asks each machine the throughput at which it wants to broadcast messages including

resent messages. It then uses a max-min fair bandwidth allocation algorithm [Bou00]

which shares at its core the same concept of inhibiting the throughput of each

process [BC94]. We start by describing an example. We then provide the detailed

pseudo-code.
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2.3.2 Bandwidth allocation example

We illustrate this mechanism in the case of the topology described in Figure 1.10. In

this topology, there are two datacenters: A has two nodes {P1, P2} and B has three

nodes {P3, P4, P5}. Nodes inside each datacenter are interconnected by a 1Gb/s

Ethernet switch. Moreover, for the purpose of this example, we consider that the

inter-datacenter link L1 has a bandwidth of 300Mb/s.

C2
p2

SW1

p1

p3

p4

p5

SW2

C1

C3

C4

C5

L1

Datacenter A

300Mb/s

400Mb/s

500Mb/s

400Mb/s

200Mb/s

400Mb/s

Datacenter B

Figure 2.6: Bandwidth allocation example - intra-datacenters level.
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SW2
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Datacenter A

300Mb/s

Datacenter B

250Mb/s

250Mb/s

250Mb/s

200Mb/s
250Mb/s

Figure 2.7: Bandwidth allocation example - inter-datacenters level.

As depicted in Figure 2.6, we assume that P1 wants to broadcast 500Mb/s, P2,

P3 and P4 want to broadcast 400Mb/s, and P5 wants to broadcast 200Mb/s. In

a first step, each machine deterministically computes the following fair bandwidth

allocation: 250Mb/s for nodes {P1, P2, P3, P4}, and 200Mb/s for P5 (see Figure 2.7).

It is indeed not possible to allocate more than 250Mb/s to nodes {P1, P2, P3, P4}.

Otherwise, P5 would have to receive more than its bandwidth capability (1Gb/s),

which is impossible.
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In a second step, machines take into account the bandwidth of link L1 (300Mb/s in

our example). With the bandwidth allocation described in the previous paragraph,

L1 would need to send 500Mb/s and receive 700Mb/s, which is not possible provided

that it has a capability of 300Mb/s. Consequently, the two sites have to decrease

their export to 300Mb/s each. This leads to decrease the bandwidth of {P1, P2} to

150Mb/s, and the bandwidth of {P3, P4, P5} to 100Mb/s.

2.3.3 Detailed pseudo-code of the bandwidth allocation mech-

anism

Figure 2.8 provides the bandwidth allocation mechanism executed by standard pro-

cesses (not the Sequencer). If a node wants to decrease its throughput (line 4), it

decreases it directly then notifes the Sequencer about this decrease (line 10). If a

node wants to increase its throughput, it sends a demand to the Sequencer (line 16)

and waits for the response to update its throughput (line 18) if possible.

Procedures executed by any process Pi unless Sequencer
1: procedure initialize(initial_view)
2: currentBW ← 0
3: required_bandwidth← 0

4: procedure decrease_BW(amount)
5: required_bandwidth← currentBW − amount
6: currentBW ← required_bandwidth
7: if Sequencer then
8: BW_allocation()
9: else

10: Rsend ⟨Decr, amount⟩ to Sequencer

11: procedure increase_BW(amount)
12: required_bandwidth← currentBW + amount
13: if Sequencer then
14: BW_allocation()
15: else
16: Rsend ⟨Incr, amount⟩ to Sequencer

17: upon Rreceive ⟨new_throughput⟩ from Pj do
18: currentBW ← new_throughput
19: required_bandwidth← 0

Figure 2.8: Pseudo-code of the bandwidth allocation protocol executed by any pro-
cess.

Figure 2.9 shows the pseudo-code executed by Exporters. In order to calculate the
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available bandwidth between datacenters, Exporters push messages (that are to be

forwarded) into a forwarding queue. During their transmission, they monitor the

sending throughput. An Exporter will update the Sequencer (line 7) on significant

changes (at least 10%).

Figure 2.10 gives the pseudo-code of the bandwidth allocation protocol executed

by the Sequencer. On a throughput change, each node sends its required band-

width to the Sequencer. The Sequencer is in charge of managing the throughput

of each node. Firstly, the Sequencer stores the bandwidth requirements of other

nodes in the bwRequirements array and their current bandwidth in the currentBW

variable. In addition, the Sequencer stores the required_throughput field that is used

when a node wants to increase its bandwidth. The required_throughput stores the

required increase (before being processed). In order to manage the usage of links

between datacenters, the Sequencer stores the available bandwidths of each link in

the available_bandwidths field.

Procedures executed by any Exporter
1: procedure initialize(initial_view)
2: BW _of_adjacent_links← default_bandwidth

3: upon change_Available_bandwidth(BW _of_adjacent_links) do
4: if Sequencer then
5: BW_allocation()
6: else
7: Rsend ⟨BW _of_adjacent_links⟩ to Sequencer

Figure 2.9: Pseudo-code of the bandwidth allocation protocol executed by Exporters.

Before going into the details of the protocol, let us remark that the limit_cables

function (line 30) implements a classical max-min fair bandwidth allocation algo-

rithm [Bou00]. The only important point to mention is that it uses a variable, called

link_availableBW, that represents the maximum capability of a network cable inside

a datacenter. On the other hand, the limit_links function (line 21) covers the case

of inter-datacenters links.

The Sequencer receives either an increase demand (line 11) or a decrease demand

(line 8) from a standard node or the available bandwidth from the Exporters (line 14).

If a node wants to increase or decrease its bandwidth, the Sequencer will update
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the bwRequirements with the amount (lines 8 and 11) and then recompute the

bandwidth allocation on all nodes and cables (lines 9 and 12). The new bandwidth

allocation is then sent to all the nodes (line 44). Finally, the Sequencer updates its

currentBW (line 20).

2.3.4 Illustration of the bandwidth allocation mechanism

We provide three illustrations of the bandwidth allocation protocol in Table 2.3,

Table 2.4, and Table 2.5. We consider a system of two datacenters g1 and g2, where

g1 has three nodes {p0, p1, p2} and g2 has two nodes {p3, p4}. P0 is the Exporter

of g1 (respectively P3 the Exporter of g2), P2 is the Importer of g1 (respectively

P4 the Importer of g2) and P0 is the Sequencer. Nodes inside each datacenter are

interconnected by a 1Gb/s Ethernet switch whereas we suppose that datacenters

are connected to each other by a cable of 300Mb/s uniformly on the two lanes. In

each table, we describe a set of steps that happen in the system and we illustrate

how the different fields of the processes are updated. Initially, processes have a null

bandwidth (currentBW is equal to 0 in Table 2.3, step S1).

In Table 2.3 we depict what happens when from this initial state P1 calls in-

crease_BW(400) and P4 calls increase_BW(300). Processes reach a state (step S6)

in which P1 has its currentBW variable equal to 400Mb/s and P4 has its currentBW

variable equal to 300Mb/s. From that state (also depicted in Table 2.4, step S7),

Table 2.4 depicts what happens when the Exporter of g1 declares that it wants

to decrease its throughput. Processes reach a state (step S12) in which P1 has

its currentBW variable equal to 400Mb/s and P4 has its currentBW variable equal

to 300Mb/s. From that state (also depicted in Table 2.5, step S13), Table 2.5 de-

picts what happens when P1 calls decrease_BW(200) and P3 calls increase_BW(250).

Processes reach a state (step S18) in which P1 has its currentBW variable equal to

200Mb/s, P3 has its currentBW variable equal to 150Mb/s and P4 has its currentBW

variable equal to 150Mb/s.
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Procedures executed by the Sequencer of a system of n nodes
1: procedure initialize(initial_view)
2: bwRequirements[]← [0, · · · , 0]
3: new_BW s[]← [0, · · · , 0]
4: BW _summation← default_bandwidth ∗ n/(N − 1)
5: link_capacity[]← [0, · · · , 0]
6: currentBW ← 0

7: upon Rreceive ⟨Decr, amount⟩ from Pi or decrease amount do
8: bwRequirements[Pi]← bwRequirements[Pi]− amount
9: BW_allocation()

10: upon Rreceive ⟨Incr, amount⟩ from Pi or increase amount do
11: bwRequirements[Pi]← bwRequirements[Pi] + amount
12: BW_allocation()

13: upon Rreceive ⟨BW _of_adjacent_links⟩ from Exporter of datacenter gj or change BW _of_adjacent_links
do

14: link_capacity[gj ]← BW _of_adjacent_links
15: BW_allocation()

16: function BW_allocation()
17: limit_links()
18: limit_cables()
19: distribute_new_allocation()
20: currentBW ← new_BW s[Sequencer ]

21: function limit_links()
22: group_members← all the members of group G
23: temp_link_capacity ← link_capacity
24: for Pj in group_members do
25: if bwRequirements[Pj ] ≤ temp_link_capacity[G]/size(group_members) then
26: group_members← group_members− Pj

27: temp_link_capacity[G]← temp_link_capacity[G]− bwRequirements[Pj ]
28: new_BW s[Pj ]← bwRequirements[Pj ]
29: allocated = true

30: function limit_cables()
31: nodes← the biggest (N − 1) values in bwRequirements
32: link_availableBW ← B
33: do
34: allocated = false
35: for Pj in nodes do
36: if bwRequirements[Pj ] ≤ link_availableBW/size(nodes) then
37: nodes← nodes− Pj

38: link_availableBW ← link_availableBW − bwRequirements[Pj ]
39: new_BW s[Pj ]← bwRequirements[Pj ]
40: allocated = true
41: while nodes ̸= ∅ and allocated = true do
42: if Pi ∈ nodes then
43: new_BW s[Pj ]← link_availableBW/size(nodes)

44: function distribute_new_allocation()
45: nodes← all processes unless Sequencer
46: for Pj in nodes do
47: Rsend ⟨new_BW s[Pj ]⟩ to Pj

Figure 2.10: Pseudo-code of the bandwidth allocation protocol executed by the
Sequencer.
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Table 2.3: A first example execution of the bandwidth allocation protocol.
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S1
g1

p0 † ‡ [0, 0, 0, 0, 0] 0 0 300 [300, 300] [0, 0, 0, 0, 0]

Initial state
p1 − 0 0 − − −
p2∗ − 0 0 − − −

g2 p3† − 0 0 300 − −
p4∗ − 0 0 − − −

S2
g1

p0 [0, 0, 0, 0, 0] 0 0 300 [300, 300] [0, 0, 0, 0, 0]

p1 calls increase_BW(400)
p4 calls increase_BW(300)

p1 − 0 400 − − −
p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 0 300 − − −

S3
g1

p0 [0, 400, 0, 0, 300] 0 0 300 [300, 300] [0, 0, 0, 0, 0]

Sequencer Rreceives ⟨Incr, 400⟩p1
Sequencer Rreceives ⟨Incr, 300⟩p4

p1 − 0 400 − − −
p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 0 300 − − −

S4
g1

p0 [0, 100, 0, 0, 0] 0 0 300 [300, 300] [0, 300, 0, 0, 300]

Sequencer calls limit_links() for g1
Sequencer calls limit_links() for g2

p1 − 0 400 − − −
p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 0 300 − − −

S5
g1

p0 [0, 100, 0, 0, 0] 0 0 300 [300, 300] [0, 300, 0, 0, 300]

Sequencer calls limit_cables() for g1
Sequencer calls limit_cables() for g2

p1 − 0 400 − − −
p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 0 300 − − −

S6
g1

p0 [0, 100, 0, 0, 0] 0 0 300 [300, 300] [0, 300, 0, 0, 300]

p1 Rreceives ⟨300⟩Sequencer
p4 Rreceives ⟨300⟩Sequencer

p1 − 300 0 − − −
p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 300 0 − − −
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Table 2.4: A second example execution of the bandwidth allocation protocol.
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S7
g1

p0 [0, 100, 0, 0, 0] 0 0 300 [300, 300] [0, 300, 0, 0, 300]

Initial state
(equal to S6 in Table 2.3)

p1 − 300 0 − − −
p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 300 0 − − −

S9
g1

p0 [0, 100, 0, 0, 0] 0 0 500 [500, 300] [0, 300, 0, 0, 300]
p0 calls change_Available_bandwidth⟨500⟩p1 − 300 0 − − −

p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 300 0 − − −

S10
g1

p0 [0, 0, 0, 0, 0] 0 0 500 [500, 300] [0, 400, 0, 0, 300]
Sequencer calls limit_links() for g1p1 − 300 0 − − −

p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 300 0 − − −

S11
g1

p0 [0, 0, 0, 0, 0] 0 0 500 [500, 300] [0, 400, 0, 0, 300]
Sequencer calls limit_cables() for g1p1 − 300 0 − − −

p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 300 0 − − −

S12
g1

p0 [0, 0, 0, 0, 0] 0 0 500 [500, 300] [0, 400, 0, 0, 300]
p1 Rreceives ⟨400⟩Sequencerp1 − 400 0 − − −

p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 300 0 − − −
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Table 2.5: A third example execution of the bandwidth allocation protocol.
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S13
g1

p0 [0, 0, 0, 0, 0] 0 0 500 [500, 300] [0, 400, 0, 0, 300]
Initial state

(equal to S12 in Table 2.4)
p1 − 400 0 − − −
p2 − 0 0 − − −

g2 p3 − 0 0 300 − −
p4 − 300 0 − − −

S14
g1

p0 [0, 0, 0, 0, 0] 0 0 500 [500, 300] [0, 400, 0, 0, 300]
p1 calls decrease_BW(200)
p3 calls increase_BW(250)

p1 − 200 −200 − − −
p2 − 0 0 − − −

g2 p3 − 0 250 300 − −
p4 − 300 0 − − −

S15
g1

p0 [0,−200, 0, 250, 0] 0 0 500 [500, 300] [0, 400, 0, 0, 300]
Sequencer Rreceives ⟨Decr, 200⟩p1
Sequencer Rreceives ⟨Incr, 250⟩p3

p1 − 200 −200 − − −
p2 − 0 0 − − −

g2 p3 − 0 250 300 − −
p4 − 300 0 − − −

S16
g1

p0 [0, 0, 0, 100, 150] 0 0 500 [500, 300] [0, 200, 0, 150, 150]
Sequencer calls limit_links() for g1
Sequencer calls limit_links() for g2

p1 − 200 −200 − − −
p2 − 0 0 − − −

g2 p3 − 0 250 300 − −
p4 − 300 0 − − −

S17
g1

p0 [0, 0, 0, 100, 150] 0 0 500 [500, 300] [0, 200, 0, 150, 150] Sequencer calls limit_links() for g1
Sequencer calls limit_cables() for

g2
p1 − 200 −200 − − −
p2 − 0 0 − − −

g2 p3 − 0 250 300 − −
p4 − 300 0 − − −

S18
g1

p0 [0, 0, 0, 100, 150] 0 0 500 [500, 300] [0, 200, 0, 150, 150] p1 Rreceives ⟨200⟩Sequencer
p3 Rreceives ⟨150⟩Sequencer
p4 Rreceives ⟨150⟩Sequencer

p1 − 200 −200 − − −
p2 − 0 0 − − −

g2 p3 − 150 250 300 − −
p4 − 150 0 − − −
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2.4 Optimizations

In order to improve the performance of MDC-cast, we implemented an optimization

that is very often used in existing protocols: it consists in batching small messages

in order to improve the network usage. The second optimization is relative to

retransmitted messages. Basically, when a process Pi sends a message m, some

ACKs may get lost as well as m itself. In this case, Pi will wait the timeout

and resend m again. In the datacenter environment, we propose to organize the

retransmission mechanism in three steps. From Pi to Exporter, then from Exporter

to another datacenter (The path between datacenters), then inside the receiving

datacenter.

Assume that a message m is generated by a process Pi located in a datacenter

D. The message firstly is IP-multicast in D and then forwarded from D to other

datacenters. If m is received patially by some nodes in a datacenter D′, but not

received by all nodes in D′, then there is no need to get the message back from D.

It is sufficient to get it from a process that already received it in D′ (At least the

importer has received it). We define two timeouts, intra_timeout which is short

because it is used inside the datacenter, and timeout for the complete procedure of

the message broadcast. Pi sends a message and waits ACKs from its datacenter and

from other datacenters. It will wait intra_timeout to get ACKs from its datacenter

and wait timeout to get ACKs from other processes that should pass through the

Importer. Similarly, if Importer receives at least an ACK from another datacenter,

this means that m has arrived to that datacenter via its Importer. This Importer will

wait to get ACKs from all members of the local datacenter D′. After intra_timeout,

the Importer of D′ will re-multicast the message again.
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2.5 Conclusion

Existing optimal total order broadcast protocols target fully switched networks. In

this chapter, we have presented MDC-cast, a Total Order Broadcast protocol that

specifically targets multi-datacenters environments. MDC-cast optimizes the use of

inter-datacenters links and decrease the impact of background traffic. In addition is

makes use of a bandwidth allocation mechanism to ensure that the network is not

congested.
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Chapter 3

Performance Evaluation

In this chapter, we assess the performance of MDC-cast against two state of the

art protocols: LCR [GLPQ10] and Ridge [BCP15]. Firstly, we present a theoretical

assessment in section 3.1. Then, we describe the experimental setup in section 3.2

and our methodology to ensure that we achieve the best possible performance in

Section 3.3. Finally, we present the experimental evaluation results in section 3.4.

Finally, the chapter is concluded in 3.5.

3.1 Theoretical assessment

MDC-cast achieves the optimal throughput defined in [GLPQ10] in both cluster

and multi-datacenter environments. In this section, we prove that the throughput

of MDC-cast is optimal assuming that there is no background traffic. Then, we

study MDC-cast in the presence of background traffic.

3.1.1 Optimal throughput

First, we show that the throughput of MDC-cast is optimal and that no other

broadcast protocol can obtain strictly higher throughput. We do this by relying on

the upper bound of the performance of any Total Order Broadcast protocol defined
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in [GLPQ10] and show that MDC-cast matches this bound. Then, we show a case

study and analyze it. First, we recall the maximum throughput for a Total Order

Broadcast protocol in a system with n processes stated in [GLPQ10]:

µmax =

⎧⎪⎪⎨⎪⎪⎩
n/(n − 1) if there are n senders

1 otherwise
(3.1)

Theorem 3. The throughput of MDC-cast matches the optimal throughput for Total

Order Broadcast algorithms.

Proof. The Broadcast is composed of three phases: (1) Phase I : The IP-multicast

inside the sender’s datacenter (Also called Origin Datacenter). (2) Phase II : The

export phase, which is to forward the message from one datacenter to other datacen-

ters. The export phase is to forward the message through the Exporter of the origin

datacenter to each Importer in other datacenters. (3) Phase III : The IP-multicast

from each Importer to other nodes inside its datacenter. We first consider the case

with N senders. In a system of D datacenters each containing G nodes, phase I

needs G − 1 rounds to be accomplished where each node multicast one message.

Then, phase II and phase III run simultaneously. An Importer is able to receive

messages from other datacenters in (D − 1) ∗ G rounds. As well, non importers are

able to receive IP-multicasted messages coming from other datacenters in (D−1)∗G

rounds. So, phase II and phase III needs (D − 1) ∗ G rounds to be accomplished.

Hence, delivering N messages needs N − 1 (D ∗ G − 1 rounds) rounds. In the case

with less than N senders, a non-sender process receives one and only one message

per round. Thus, it delivers one message per round. So, the maximum throughput

is equal to 1 for less than N senders.

Illustration of the throughput optimality
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Figure 3.1: Phase I of MDC-cast

Figure 3.2: Phase
II and phase III of
MDC-cast

We study an illustrating scenario to clarify the issue. Fig-

ure 3.1 illustrates the first phase of the Broadcast. The figure

studies a network composed of three datacenters each con-

taining five processes running MDC-cast algorithm where

each process Broadcasts one message. The figure shows the

dissemination pattern inside only one datacenter because

other datacenters perform the same pattern and Broadcast

simultaneously. The first datacenter contains five nodes

{P0, P1, P2, P3 and P4} where P0 is the Exporter and P4

is the Importer. Each round is represented by a vertical slot

while a horizontal slot represents a process. IP-multicast

allows the node to send a message to several node at the

same time, but a node is not able to receive two messages

in the same time slot. The first round shows the Broad-

cast of five nodes simultaneously. The second round shows

that {P1, P2, P3 and P4} receive the message Broadcasted

by P0. P0 is able to receive a message, it receives the mes-

sage of P1. Nodes receive the message Broadcasted by P1

in the third round while P1 receives the message of P2. In the fourth round, nodes

receive the message Broadcasted by P2 while P2 receives the message of P3. In the

last round, nodes receive the remaining messages. The message Broadcasted by P4
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is received by all nodes while P4 receives the message of P3. Thus in five rounds, 15

messages are IP-multicasted each in its datacenter.

Figure 3.2 discusses both the second and the third phase of the dissemination pattern

because the two phases are performed simultaneously. The second and the third

phase are composed of five identical stages, thus the figure depicts just the first stage.

Roughly speaking, each Exporter is in charge of exporting five messages to each

datacenter (i.e. 10 messages) and each Importer is in charge of IP-multicasting five

messages coming from each datacenter (i.e. 10 messages). The figure discusses the

export procedure of one message to each datacenter and how the importer receives

the message and IP-multicast it. Exporter1 forwards a message to Importer2 and

Importer3 which needs two consecutive rounds because over TCP/IP, a process is

unable to send more than one message per round. Respectively, Exporter2 forwards

a message to Importer1 and Importer3 in two rounds and Exporter3 forwards a

message to Importer1 and Importer2 in two rounds too. When an Importer receives

a message, it IP-multicasts it to each node inside it datacenter. This stage is repeated

five times. Thus, the broadcast of 15 messages costs 14 rounds (4 rounds for phase

I, and 10 rounds for both phase II and phase III ).

3.1.2 Performance in Presence of Background Traffic

Links connecting data centers are impacted by background traffic and prone to sat-

uration. In this section, we study the impact of the background traffic on links

connecting datacenters. The remaining available bandwidth on a lane of link con-

necting two datacenters is noted AV B. Figure 3.3 depicts an example of a network

composed of five nodes distributed over two datacenters where the link connecting

the two datacenters is exposed to background traffic.

We consider a system S composed of N processes distributed over several datacenters

each containing G nodes. The overall throughput of S when running MDC-cast
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Figure 3.3: A network composed of five nodes distributed over two datacenters

protocol with N senders is stated as follows:

⎧⎪⎪⎨⎪⎪⎩
BW*(N/(N-1)) if AV B ≥ minAV B

minAV B ∗N/Gj otherwise
(3.2)

where Gj is the number of nodes inside the datacenter and minAV B = Gj ∗BW/(N −

1).

The equation can be considered in three distinct situations: (1) if there is no back-

ground traffic on the links in between datacenters, (2) If there is background traffic

but not affecting the overall throughput of the system (i.e. the AV B on all links is

sufficient to achieve the optimal throughput), and (3) If there is background traffic

on the links in between datacenters that affects the overall throughput of the system.

The first two situations together mean that if the available bandwidth on links

connecting datacenters is more than or equal to the needs, then it is possible to

achieve the optimal throughput (the first line of the equation); otherwise the overall

throughput is proportionally affected (The second line of the equation).

3.1.3 Latency

The latency of LCR and Ridge in cluster environments is presented in table 1.1.

Nonetheless, their latency is not the same in multi-datacenter environments due

to the heterogeneity of links. The latency of a message transmitted between two
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processes each in a distinct datacenter is represented by O. We assume that the time

needed to send messages between processes in the same datacenter is homogeneous

but negligible. This is due to the fact that in our experiments, the latency intra-

datacenter almost does not exceed 5% of the latency inter-datacenters.

One sender N senders
LCR (D − 1) ∗ O

(N − 1) ∗ ORidge O
MDC-cast O

Table 3.1: The theoretical assessment of the latency of LCR, Ridge and MDC-cast
in multi-datacenter environments.

In table 3.1, we provide the latency of LCR, Ridge and MDC-cast in multi-datacenter

environments. The studied network is composed of N homogeneous nodes dis-

tributed over D datacenters. Nodes inside datacenters are interconnected by switches

while datacenters are interconnected over one or several routers. The table studies

two cases (1) when one sender only Broadcasts a message and (2) when each node is

broadcasting a message. First, we study when just one sender Broadcast a message.

Using LCR, when a process P Broadcast a message m, it sends m to its successor

process. m is forwarded from each process to its successor until it arrives to the

predecessor process of P . The message traverses all the datacenters and returns

back to its origin datacenter (The datacenter that contains the sender). Thus, the

time needed to disseminate the message is (D −1)∗O. Using Ridge, when a process

P Broadcast a message m, it sends it directly (and in parallel) to all other processes.

So, the overall latency of the Broadcast of m using Ridge is O. Using MDC-cast,

the Broadcast is done in three phases: a message is IP-multicast, then forwarded

to the Importers in other datacenters which IP-multicast them in their datacenters.

As for Ridge, the sending of m to all other datacenters can be performed in parallel.

Consequently, the overall latency of the Broadcast of m using MDC-cast is O.

On the other hand, in the case of N senders, the three algorithms have the same

latency (N − 1) ∗ O. Because the protocols have optimal throughput, they all need
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N −1 rounds to deliver N messages. Thus, the time needed to Broadcast N messages

is (N − 1) ∗ O.

3.2 Experimental Setup

The experiments focus on the failure-free case that is the common case in the tar-

geted systems. We describe firstly the experimental setup of the testbed before

characterizing the performance of the three algorithms from two points of view:

throughput and latency.
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Figure 3.4: The basic topology used in the experiments

Experiments were conducted on Grid’5000 [gri17]1. We use servers comprising 8

cores, 16GB of RAM, and running the Linux 3.2.0-4-amd64 kernel. Nodes be-

longing to the same datacenter are interconnected by a Gigabit switch. The raw

bandwidth over IP is measured using Iperf [DEM+10]: 940Mb/s between any two
1Experiments presented in this chapter were carried out using the Grid’5000 testbed, supported

by a scientific interest group hosted by Inria and including CNRS, RENATER and several Univer-
sities as well as other organizations (see https://www.grid5000.fr).
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servers. Links between sites are shared by all machines of the Grid’5000 testbed.

Grid’5000 is a real testbed, hence the background traffic is almost variable and un-

stable. In order to obtain stable and deterministic results, we limit to 500Mb/s

the bandwidth of inter-datacenters links using the tc Linux tool. In order to ensure

a fair evaluation among the three prototypes, we implemented MDC-cast, Ridge

and LCR using the same networking libraries (in C++). Indeed, there exists some

group communication toolkits that we could have relied on to design our system

such as Spread [ADMA+04b] but we preferred to create our own communication

mechanism to have stronger control over packets transmission. Our performance

evaluations basically study a network topology of nine nodes distributed over three

datacenters. Nodes inside each datacenter are intended to be within the same cluster

and connected to the same switch. Datacenters are interconnected by shared links.

Figure 3.4 illustrates the topology we use in our experiments.

Since experiments are done on distributed servers, we adjusted the window size to

be able to scale up to the needed size. The presented experiments were preceded by

a warm-up phase to ensure that all links and buffers were filled up.

3.3 Configuration Methodology

3.3.1 The Need For a Configuration Methodology

As we have seen in the previous sections and chapters, the performance of a pro-

tocol are often strongly depending on the bandwidth available on links inter and

intra-datacenters. Let us consider a system S composed of five processes {p1, ...p5},

where each process pi is connected to the network via a cable called Ci respectively.

Processes are distributed over two datacenters A and B, interconnected by link L1.

Datacenter A contains processes p1 and p2, while datacenter B contains processes

p3, p4 and p5. Processes inside the same datacenter are interconnected by a Gigabit

local area network, while datacenters communicate over a wide area network. We

82



assume that the network is shared and exposed to background traffic. Figure 3.5

shows S, the described system with the available bandwidth on each link in Mb/s.

A link contains two lanes: lane IN which is colored blue and underlined, and lane

OUT which is colored red and bolt.
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Figure 3.5: The available bandwidth on links in a system of two datacenters.

We assume that MDC-cast is running over S. Unfortunately, the throughput re-

quired by MDC-cast (showed in Figure 3.6) is different than the available band-

width on links. The theoretical overall throughput of S with N senders if not

exposed to background traffic should be 1.125Gb/s which is the optimal through-

put. In the depicted case, the bottleneck link is C3 that has an available bandwidth

of 150Mb/s, but is supposed to transmit messages at 1000Mb/s. Our goal was

to design a methodology ensuring that we would find the deployment (i.e. where

to place importers and exporters in the case of MDC-cast) that achieves the best

possible performance.
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Figure 3.6: The Required bandwidth on links when using MDC-cast.
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3.3.2 Describing the Configuration Methodology Using an

Example

In this section, we will describe the configuration methodology using an example.

More precisely, we will explain how to tune the number of Acceptors in the Ridge

protocol. The configuration methodology comprises three successive steps:

• max_lane: we first detect the bottleneck link and more specifically the bot-

tleneck lane of the link 2 which we call max_lane. That value represents the

number of messages that transit on the bottleneck link for each step of an

algorithm.

• max_gen: we then calculate the maximum throughput that could be gener-

ated from the bottleneck node if it initiates message broadcasts. This through-

put, noted max_gen is equal to BW/max_lane.

• possible_throughput: we finally calculate the overall possible throughput,

if several nodes are broadcasting messages: possible_throughput = max_gen∗

G (where G is the number of generators).

We provide an illustrative scenarios to explain our methodology. Let us consider a

system of nine servers interconnected by a Gigabit fully-switched network. Let us

assume that the system runs Ridge [BCP15]. Finally, let us assume that there are

five Acceptors named {A1, ...A5} and four Learners named {L1, ...L4}. Briefly, in

Ridge, when an Acceptor receives a request, it forwards it to its successor Acceptor

and so on until getting a majority of Acceptors which is three successive nodes

in our example. Then the message will be sent to a Learner which the load bal-

ancer chooses. This learner is in charge of broadcasting the message using TCP/IP

messages to all other Learners.

So, when A1 receives a new request, it forwards it to A2 as shown in figure 3.7. A2

forwards it to A3 and A3 notices that the message is acknowledged by a majority
2A lane is a term commonly used for one direction of a link
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of Acceptors. So, A3 forwards the message to a Learner that, we assume, is L1.

Finally, L1 sends the message to L2, L3 and L4.

Figure 3.7: The Theoretical_Needs of Ridge

The link usage for this scenario is shown in table 3.2. As we can notice, the link L1

is used three times due to the fact that it sends the message to the three Learners:

L2, L3 and L4. So, we conclude that OUT of L1 is the max_lane.

A1 A2 A3 A4 A5 L1 L2 L3 L4
In 0 1 1 0 0 1 1 1 1

Out 1 1 1 0 0 3 0 0 0

Table 3.2: Links usage of a system running Ridge with one sender: A1

We can conclude that the maximum throughput of this system, if limited to one

Acceptor working at any given time, is 333Mb/s:

• max_lane = 3

• max_gen = (1Gb/s)/3 = 333Mb/s

• possible_throughput = 1 ∗ 333Mb/s = 333Mb/s

Let us now assume that there are five Acceptors concurrently working. The load

balancer is going to distribute messages over four Learners uniformly. There will

remain one message which will be forwarded to a Learner that already receives a

message before. Hence, each Learner will receive one message unless one of them
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will receive two messages, let us say it is L1. So, L1 is going to broadcast two

messages and the OUT lane of the link connected to L1 will be used to send six

messages as shown in table 3.3.

A1 A2 A3 A4 A5 L1 L2 L3 L4
In 2 2 2 2 2 5 5 5 5

Out 3 3 3 3 3 6 3 3 3

Table 3.3: Links usage of a system running Ridge with five senders

In this scenario, the maximum throughput of this system will be 834Mb/s:

• max_lane = 6

• max_gen = (1Gb/s)/6 = 166Mb/s

• possible_throughput = 5 ∗ 166Mb/s = 834Mb/s

As a conclusion, the maximum throughput of the system depends on the network

topology and the way the algorithm is deployed

3.4 Experimental Evaluation

To assess the throughput of the three protocols, we deploy N nodes that initiate

and broadcast messages. The message size is fixed to 10KB. Each node periodically

computes and reports the delivery throughput. The throughput is calculated as the

ratio of delivered bytes over the time elapsed since the end of the warm-up phase.

The plotted throughput is the average of the values computed by each process.

Throughput comparison against LCR and Ridge

We first compare the performance of MDC-cast against LCR and Ridge. The results

are shown in Figure 3.8. We observe that MDC-cast achieves a similar throughput to

LCR in the one datacenter setup, and a much higher throughput than other protocols
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in a multi-datacenters setup. In the multi-datacenters setup, the throughput of

LCR and Ridge are degraded by about 50%. This is due to the impact of the

background traffic. MDC-cast is not affected by this amount of background traffic

(which is around 500Mb/s). This result was expected and is explained by the fact

that MDC-cast optimizes the utilization of inter-datacenters link, as explained in

Section 1.3. If the the background traffic on links varies slightly, MDC-cast is not

affected. Actually, MDC-cast in such a topology is not affected until the available

bandwidth on links goes down 375Mb/s as the equation 3.2 states.
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Figure 3.8: Comparison between MDC-cast, LCR and Ridge in one datacenter (left
three bars) and in a multi-datacenters environment (right three bars).

Throughput when varying the number of nodes per datacenter

This experiment makes use of the topology depicted in figure 3.4. The topology

contains three datacenters with three nodes in each datacenter. In this experiment

we vary the number of nodes inside each datacenter (X axis) respectively. Figure 3.9

shows the throughput of LCR, Ridge and MDC-cast in a setup comprising three

datacenters, when varying the number of nodes per datacenter. We observe that

when the number of nodes increases inside the datacenter the throughput of LCR
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Figure 3.9: Performance of LCR,Ridge and MDC-cast in a setup comprising three
datacenters, when varying the number of nodes per datacenter.

and MDC-cast only decreases a little bit while the throughput of Ridge decreases

dramatically, due to the message dissemination pattern it employs.

Throughput when varying the message size

In this experiment, we use nine machines spread over three datacenters. We vary

the message size and compute the resulting throughput. Results are depicted in

Figure 3.10. We compare two variants of each protocol: with and without batching.

We observe that, when batching is not enabled, MDC-cast is more impacted than

other protocols by small messages. This is due to its use of IP-multicast inside

datacenters that yields poor results with small messages. With batching enabled,

the three protocols obtain stable results, whatever the message size.

Latency assessment

The last experiment assesses the latency achieved by LCR, Ridge and MDC-cast.

The round-trip time between datacenters is measured using ping and varies between

2.3ms and 18.2ms (see Table 3.4). Figure 3.11 shows the latency of LCR, Ridge
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Figure 3.10: Throughput as a function of message size for LCR, Ridge and MDC-cast
(with and without batching).

and MDC-cast with only one sender that periodically initiates message broadcasts.

The figure shows the latency of the three algorithms when varying the number of

datacenters. Results show that both MDC-cast and Ridge have almost stable latency

and are not impacted by varying the number of datacenters. While the latency of

LCR is proportional to the number of datacenters, it increases as the number of

datacenters increases.

Luxembourg Nancy Sophia Grenoble
Luxembourg 0 2.3 18.2 13.7

Nancy 2.3 0 16.1 11.6
Sophia 18.2 16.1 0 9.74

Grenoble 13.7 11.6 9.74 0

Table 3.4: The response time between datacenters in micro seconds measured using
ping tool

Figure 3.12 shows the latency of LCR, Ridge and MDC-cast with N senders in three

datacenters, the topology of figure 3.4. We observe that LCR, Ridge and MDC-cast

achieve close latencies (the Y axis starts at 16ms). This is not surprising as in this

case, the latency is limited by the throughput. As MDC-cast achieves the higher
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Figure 3.11: Latency of LCR, Ridge and MDC-cast with one sender

throughput, it exhibits the lowest latency.
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Figure 3.12: Latency of LCR, Ridge and MDC-cast with N senders

3.5 Conclusion

In this Chapter, we have presented a theoretical assessment of MDC-cast. We have

also evaluated MDC-cast in a real-life settings (the Grid’5000 testbed) and we have
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compared its performance to that achieved by two state-of-the-art protocols: Ridge

and LCR from several points of view. Our performance evaluation shows that MDC-

cast significantly outperforms other protocols in the datacenter environment.
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Conclusion

Summary During my thesis, I worked on the topic "Total Order Broadcast in

datacenter environments". After having studied the related works, we noticed that

existing algorithms were not able to perform well in the context of multi-datacenter

environments. We therefore decided to design a new total order broadcast proto-

col. That protocol is original in the sense that it combines the use of IP-multicast

within datacenters and the use of TCP between datacenters. We have proved that

the protocol is correct and we have performed both an analytical and a practical

performance evaluation on Grid 5000. Besides, as the studied environments are

not homogeneous, we have described the methodology we used to choose the best

possible deployments of protocols on network topologies.

Our evaluation shows that the protocol we propose, namely MDC-cast, achieves

similar performance than existing protocols in the context of homogeneous clusters,

and significantly outperform the in the context of multi-datacenter environments.

Future Work There are several topics for future work that I list below:

• we plan to study the impact of this protocol on real systems, such as Zookeeper.

• we plan to extend the protocol to deal with more severe failures, such as crash

recovery failures or even byzantine failures.

• we plan to extend our configuration methodology to other distributed systems

requiring high throughput. Indeed, we believe that many existing systems
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(e.g. Big Data systems comprising various components such as Spark, Kafka,

Cassandra) would benefit from automated ways to find the best possible de-

ployment.
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