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Abstract 

 

Multiciliated mammalian cells play a crucial role in the propulsion of physiological 

fluids. Their dysfunction can be lethal or cause severe chronic diseases. In contrast to the 

strict centriole number control in cycling cells, multiciliated cell differentiation is marked by 

the production of up to several hundred centrioles, each nucleating a motile cilium. The 

mechanisms of centriole amplification or centriole number control in these cells were 

unknown and new centrioles were thought to appear de novo in the cytoplasm. At the 

beginning of this PhD project, videomicroscopy combined with correlative super-resolution 

and electron microscopy has enabled us to determine that all procentrioles are generated via 

runs of nucleation from the pre-existing progenitor cell centrosome. We show that the 

daughter centriole of the centrosome is the primary nucleation site for 95% of the new 

centrioles in multiciliated cells and thus refute the de novo hypothesis.  Then, we provide 

evidence of an activation of the Cdk1-CyclinB1 complex along with its mitotic regulatory 

network during the centriole amplification dynamic. By coupling single cell live imaging with 

pharmacological modulation of mitosis regulators, we show that the mitosis machinery 

orchestrates the spatiotemporal progression of centriole amplification in terminally 

differentiating multiciliated cell progenitors. The fine-tuning of Cdk1 activity prevents mitosis 

while allowing the timely coordination of centriole number, growth, and disengagement 

through checkpoint-like phase transitions necessary for subsequent functional motile ciliation. 

Collectively, these results provide a new paradigm for studying multiciliated cell 

differentiation, cilia-related diseases and pathological centriole amplification associated with 

cancer and microcephaly. 
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CENTROSOME OVERVIEW 

Almost 130 years ago, a puzzling cellular organelle caught the simultaneous attention 

of two scientists conducting research on chromosome divisions in nematodes. In 1887, both 

Edouard van Beneden in Liège and Theodor Boveri in Munich provided independent reports 

of a centrally localized and self-replicating organelle that seemed to organize the cell as well 

as its division 1–3. This central cell organizer retained Boveri’s nomenclature and became 

known as the “Centrosome”. 

The present day centrosome is often referred to as the major microtubule organizing centre 

(MTOC) of animal cells 4,5. By organizing the cytoskeleton in quiescent cells, the centrosome 

modulates the foundations for cellular architecture and participates in polarized epithelial 

tissue design 6. The microtubules nucleated by the centrosome position cellular organelles as 

well as the cellular secretory system by providing the infrastructure necessary for 

bidirectional cargo and vesicle transport 7–9. The competency of the centrosome to 

continuously remodel the microtubules supports cellular motility and morphology in cells 

undergoing migration 10,11. In parallel, the centrosome can dock to the apical plasma 

membrane and nucleate the primary cilium, a microtubule-based cell projection embedded 

with receptors that sense the external environment and provide developmental signalling cues 

12,13. In addition to conveying signalling molecules through its cilium nucleation capacity, the 

centrosome itself can act as a signalling hub and modulate cell cycle progression by becoming 

a platform for the convergence of DNA damage sensing molecules and for the activation of 

mitosis signalling cascades 14–22.  As the cell cycle progresses, the centrosome duplicates and 

the two centrosomes engage in the organization of the mitotic microtubule bipolar spindle 

23,24. During mitosis, the two centrosomes participate in the balanced segregation of genetic 

material between the future daughter cells by generating pulling and pushing forces on the 

centromeres and the cell cortex to separate sister chromatids. It is worth noting that age 
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differences between the duplicated centrosomes can also source asymmetric cell behaviour in 

the daughter cells 25–27. In the mouse brain for example, preferential inheritance of the older 

centrosome by neural progenitors maintains their stem cell properties, thus positively 

regulating embryonic brain development 27. The centrosome can therefore be viewed as a 

dynamic organelle that modulates cellular signalling in addition to organizing cellular 

architecture during quiescence and proliferation.  

 

By the end of the 19th century, Boveri’s research focus shifted towards the 

centrosome’s physiological relevance based on his ensuing short report 28 and landmark 

monograph 29 . He makes key observations on paraffin sections of sea urchin embryos, stained 

with iron haemotoxylin, on centrosome’s composition, behaviour, and function (Fig. 1). First, 

he observes that the centrosome is composed of 2 distinct granules, or “centrioles”, and a 

surrounding “centroplasm”, a circular cloud of a homogenous slightly fibrillated substance. 

Then, he highlights the centrosome’s dynamic behaviour and reports that centrosomes 

duplicate in interphase before separating in nuclear contact at the onset of mitosis. Finally, he 

Figure 1 Theodor Boveri’s  illustration 
of a mitotic cell from 1900 29 

 Note the two spindle poles with 
centrosomes (red arrows). Each 
centrosome is illustrated with two 
centrioles surrounded by a concentric 
pericentrosomal region that he named 
“centroplasm”. Adapted from 100 . 
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states that it is solely the centroplasm that acts as an “excitation” and organizing centre of the 

mitotic astral rays. His pioneering work and impressive observational skills provided a 

comprehensive foundation for modern day centrosome biology. More than a century of 

research later, significant advances in microscopy allowed to confirm and to enrich the 

knowledge of the centrosome and of its composition.  

CENTROSOME COMPOSITION 

Cells inherit a single centrosome from the previous cell division. The resting G0 phase 

centrosome is composed of a cloud of satellite proteins that surround a pair of centrioles 

tethered by interconnecting fibres 4 (Fig. 2). Long assumed to be amorphous, the cloud 

surrounding the centrioles is in fact a highly organized concentric and layered assembly of 

accessory proteins that constitute the pericentriolar material (PCM) 30,31. Permanent residents 

of the PCM mainly consist of proteins that mediate microtubule nucleation or mitotic spindle 

assembly. Other molecules that include the scaffold protein Cep152 or the mitotic kinases 

Plk1 (Polo-like kinase 1) and Aurora A localize to the PCM to regulate the initiation or the 

Figure 2 Centrosome illustration and ultrastructure 

a, Schematic view of the centrosome composed of a mature mother centriole, a less mature daughter 
centriole, and the surrounding PCM. b, Transmission electron microscopy section of a centrosome. Cross 
section of the distal portion (top right inset; sub distal appendages) and the proximal portion (bottom right 
inset; note the microtubule triplets that compose the cylinder) of the mother centriole. Scale bar, 
0.2µm.Adapted from 95 . 
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progression of the centrosome duplication cycle 22,32–35. 

The centrally localized pair of centrioles are microtubule based cylinders that measure 

approximately half a micron long and quarter of a micron wide. Both centrioles are composed 

of a circular assembly of nine microtubule triplets and display a proximal to distal 

polarization (Fig. 2b). However, centrosomal centrioles are not equivalent since they 

inherently present age-related and structural asymmetries 36. The older “mature” mother 

centriole is decorated by sub-distal and distal appendages that are absent from the younger 

“immature” daughter centriole. Cells use this generational asymmetry of the centrioles 

composing its centrosome to perform different tasks. Sub-distal and distal appendages allow 

only the mature mother centriole to nucleate and anchor microtubules or to function as a basal 

body for the nucleation of the primary cilium 26,37.  

The primary cilium is an antenna-like structure that emanates from the apical surface of the 

cell to reception chemical as well as mechanical stimuli of the external environment 13,38,39. 

The nucleation of the cilium depends on the attachment of the mother centriole to the apical 

plasma membrane via distal appendages 26,40–42 (Fig. 3). Similar to the mother centriole itself, 

Figure 3 Primary cilium nucleation 

Schematic view of the centrosome. 
The mother centriole (red) docks to 
the apical membrane to function as a 
basal body for the nucleation of the 
primary cilium. Adapted from 4 . 
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the ciliary axoneme presents a nine-fold symmetry, in the form of 9 peripheral microtubule 

doublets. Dynamic intraflagellar transport supports the architecture of the cilium and relays 

the signaling messages from the cilium into the cell where they can subsequently regulate 

developmental programs 13. 

CENTROSOME CYCLE 

With every cell cycle, the cycling cell replicates its DNA and duplicates its 

centrosome to pass them on to daughter cells (Fig. 4). Despite the mentioned age and structure 

asymmetry, the mature mother centriole and the immature daughter centriole are both 

regarded as equivalent in their ability to form new centrioles. Their symmetric duplication 

during the cell cycle results in the formation of two new centrosomes, which is crucial for cell 

homeostasis and proper genetic partitioning between the daughter cells 43–47.  

Figure 4 Centrosome duplication cycle 

Schematic view of the centrosome duplication cycle in relation to the cell cycle phases. Adapted from 100 . 
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At the onset of centrosome duplication, a conserved molecular cascade controls the formation 

of one procentriole from a single nucleation point focalized on the proximal segment of each 

existing centriole 5,24,48,49 (Fig. 5a). In late G1 phase, procentriole biogenesis is initiated from 

the mother and daughter centrioles when the PCM scaffold Cep152 recruits the Polo-like 

kinase 4, Plk4, to the nucleation region 32,50–53. Plk4 then phosphorylates Stil  that favors the 

loading of the structural cartwheel protein Sas-6 in charge of scaffolding the future centriolar 

nine-fold symmetry 54–58. In early S-phase, a nascent procentriole is built as microtubules 

associate onto the cartwheel base and are stabilized by Centrobin 59,60. As of this point, the 

two newly formed procentrioles are linked to and orthogonally aligned with their parental 

centrioles. This angular centriole-procentriole configuration, known as centriole engagement, 

Figure 5 Notable events of the centrosome 
duplication cycle 

Illustration of important steps of the 
centrosome duplication cycle with a selection 
of molecular regulators of the corresponding 
events (green boxes on the right; see text for 
further details). Adapted from 100 . 
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inhibits the potential untimely initiation of additional procentrioles and is maintained until the 

end of the centrosome cycle 61. The procentrioles then start elongating through the S and G2 

phases by continuous tubulin incorporation while maintaining their engagement. Procentriole 

elongation is regulated by capping proteins such as Cpap and CP110 62 as core centriolar 

proteins that include tubulin, Cep120, and Centrin are incorporated 63–65. At the G2/M 

transition, Poc5 constructs the distal portion of the procentrioles while polyglutamylation 

stabilizes the elongated tubulin cylinders 66,67. At the onset of mitosis, resorption of the 

primary cilium 68 in addition to the loss of the interphasic connecting fibers composed of C-

nap1 and rootletin allows the separation of the duplicated centrosomes along the nuclear 

membrane as they migrate to opposite poles of the cell in preparation for mitotic spindle 

formation 69–71 (Fig. 5b-c). In parallel to the separation, the daughter centriole becomes the 

mother centriole of the newly duplicated centrosome as it acquires appendages and expands 

its own PCM to enhance microtubule nucleation 72.  During late mitosis, the tight orthogonal 

centriole-procentriole configuration is relaxed in both centrosomes during a process called 

mitotic licensing 61,73 (Fig. 5d). Consequently, each newly formed daughter cell inherits a 

centrosome with disengaged mother/daughter centrioles licensed to initiate a new round of 

procentriole biogenesis necessary for the consecutive centrosome cycle. 

Centrosome duplication is highly synchronized with the progression of DNA replication. 

Centriole duplication onset parallels the initiation of DNA replication at the G1/S transition 

74,75. Later on, in parallel to DNA condensation and dependent on the activity of the G2/M 

checkpoint regulators, new centrosomes separate along the nuclear membrane 34,76,77. Then, in 

parallel to sister chromatid separation and dependent on spindle assembly checkpoint (SAC) 

regulators, mother/daughter centrioles disengage 61,73,78.  

Such synchronization is achieved through the use of common regulators for both DNA and 

centriolar events (Fig. 5). At the G1 to S phase transition, the E2F family of transcription 
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factors and the Cyclin-dependent kinase 2 (Cdk2) trigger the onset of  DNA replication and 

centriole duplication  74,75. The master M-phase regulator Cyclin-dependent kinase 1 (Cdk1) 

associated with G2/M cyclins, along with Aurora A kinase and Plk1, phosphorylate 

downstream targets to trigger mitosis onset, a process marked by DNA condensation and 

nuclear envelope breakdown 19,20,22,79–88. Regulators involved in M-phase entry are also 

involved in mitotic cytoskeletal reorganization and in the migration of the centrosomes along 

the nuclear envelope 77,89,90. During the metaphase-to-anaphase transition, the ubiquitin ligase, 

known as the anaphase promoting complex in association with its activator Cdc20 (APC/C-

Cdc20), targets mitotic cyclins for proteasome degradation thereby decreasing Cdk1 activity 

for mitosis exit. In parallel, Securin is also targeted for degradation and results in the release 

of an active Separase. The mitotic activity of Plk1 followed by the now active Separase 

initiate final steps of mitosis by disconnecting replicated chromosomes and duplicated 

centrosomal centrioles73,91–93. 

Cell cycle coupled coordination of centrosome duplication in addition to a tight control of 

centriolar protein expression ensure a strict spatiotemporal control of centriole number in 

cycling cells 56,94–96. Aberrant numbers of centrioles lead to defects in cytoskeletal 

organisation and thus to incorrect chromosome segregation and abnormal cell migration 43–

45,97. Perturbing the mechanistic links between centrosome duplication and DNA replication 

may result in centriole amplification. For instance, the absence or the premature loss of 

centriole-procentriole engagement due to Plk1 or Cdk1 dysfunction licenses the formation of 

more than two centriole copies per cycle. Another mechanism of centriole amplification lies 

in the upregulation of centriole biogenesis initiators, such as Cep152 and Plk4, or of the 

cartwheel proteins, Stil and Sas-6 32,56,78,94,98,99. Regardless of the various mechanistic origins 

sourcing supernumerary centrioles in cycling cells, pathological centriole amplification is 
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continuously attracting scientific attention as numerous reports increasingly link this 

phenomenon to microcephaly and tumorigenesis 43–46. 

CENTRIOLE AMPLIFICATION 

Late 19th century observations of defective mitosis in carcinomas led Boveri to state 

that centrosome number deregulations cause mitotic abnormalities and initiate cancer (Fig. 

6a). Boveri’s hypothesis was disputed and subsequently remained dormant for decades before 

being revived by increasing documentations of centrosome number aberrations in a large 

majority of human cancers 100. Whether centriole amplification is a cause or a consequence of 

mammalian tumorigenesis remains a debatable question. However, an increasing line of 

evidence points out possible or validated mechanisms through which centrosome 

amplification may deregulate cell behaviour and proliferation, or contribute to tumorigenesis.  

Figure 6 Past and present observations of centriole 
number aberrations in cancer cells 

a, Drawings of patient-derived larynx carcinoma cells as 
observed by Hansemann (1891). Aberrant spindle poles led 
Boveri to postulate a causal link between centriole number 
deregulations and mitotic abnormalities. b, Abnormal 
centriole number and aberrant spindle poles in mitotic 
HELA cells. Bipolar control spindles (top left inset; 2 
centrosomes), monopolar spindles (top right inset; 1 
centrosome), multipolar spindles (bottom left inset; 6 
centrosomes), and bipolar spindles (bottom left inset; >4 
centrosomes in clusters) are represented. Centrioles are in 
red, microtubules in green, and DNA in blue. Adapted from 
100  
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During interphase, additional centrioles excessively recruit PCM proteins resulting in 

increased centrosomal microtubule nucleation capacities with possible repercussions on cell 

polarity and secretory activities 8,101,102. Increases in microtubule nucleation renders cell 

migration more efficient and may provide invasive characteristics that translate 

experimentally into metastatic behaviour within a tumorigenic context 45. Supplementary 

centrosomes have also been shown to nucleate auxiliary primary cilia 103,104, thus 

compromising the cilium-dependant Sonic hedgehog signalling pathway 104. Moreover, the 

centrosome itself is also a platform for mediating initial Cdk1-CyclinB1 activity propagation 

17,22,72. Additional centrosomes could therefore compromise centrosome mediated signalling 

and potentially promote premature mitotic entry and licensing. 

 Chromosomal instabilities are hallmarks of cancer that could be generated in mitotic cells 

with more than two centrosomes 105–108. Cells with excess centrosomes can either form bipolar 

mitotic spindles or transient multipolar spindles that defectively attach microtubules with 

kinetochores and cause faltered chromosome separation (Fig. 6b; lower insets). Lagging 

chromosomes that do not integrate the nucleus on time form cytoplasmic micronuclei, which 

are more prone to DNA damage due to a lack of a fully protective nuclear membrane 109. The 

micronuclei that reintegrate the main nuclear compartment in the following cycle can lead to 

cancer-associated chromothripsis 110,111. The result of a single catastrophic event, 

chromothripsis is characterized by shuffled reintegration of shattered DNA back into the 

nucleus that gives  rise to a large number of mutational rearrangements in localized regions of 

single chromosomes. Chromothripsis can therefore be a generator of DNA replication errors 

as well as a direct contributor to transcriptional defects.  

Another form of chromosomal instabilities induced by abnormal spindles comprises 

aneuploidy arising from asymmetric segregation of chromosomes 97. The loss of tumour 

suppressor genes or the gain of oncogenes can provide a platform for tumorigenesis in the 
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subsequent cycles. However, cells with aberrant numbers of chromosomes often undergo 

checkpoint arrest followed by a programmed suicide. That is the case in the developing brain 

where neural stem cell aneuploidy caused by divisions in presence of amplified centrioles is 

countered by p53-dependent checkpoint arrests. The prolonged blockage results in apoptotic 

death of progenitors leading to tissue degeneration followed by viable microcephaly or 

organismal death 46,112. 

To summarize, the formation of supernumerary centrioles in cycling cells may potentially 

affect numerous centrosome-related functions beyond mitotic spindle establishment and 

fidelity that include intracellular signalling, polarity, cell migration, as well as asymmetric cell 

divisions (Fig. 7a-f). Centriole amplification in cycling cells is therefore considered to be 

contributor to tumorigenesis as well as a cause of tissue degeneration.  

Figure 7 Centrosome defects linked to potential consequences 

Schematic overview linking abnormal centrosome function or number with potential consequences on cell 
homeostasis or proliferation. Adapted from 100 . 
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In stark contrast to the cycling cell context, centriole amplification is part of the 

physiological differentiation process observed in post-mitotic multiciliated cells (MCC) 113. In 

the course of differentiation of MCC, the number of centrioles in stem cells shifts from 2 to 

more than 100 to nucleate the same number of motile cilia required for the efficient propelling 

of physiological fluids.  

MULTICILIATED CELLS  

After the invention of the microscope in the 17th century, one of the first cells to be 

observed and described by Antonie van Leewenhoek were multiciliated unicellular organisms 

known as ciliates. In a communication to the Royal Society of London dating back to 1667, 

he stated that these protozoans were covered with “little legs [cilia]” which “brought off 

incredibly quick motions”. The motile cilium is therefore one of the first cellular organelles to 

be documented in the history of cell biology. We now know that numerous vertebrate tissues 

are lined by MCC which are specialized epithelial cells with patches of multiple motile cilia 

protruding from their apical surface 114–119. In addition to completing the epithelial barrier 

function in tissues, MCC employ their motile cilia for the generation of a directional and 

transporting stream of fluids and particles 117,120,121. Depending on the tissue of localization, 

the patches of cilia in MCC are composed of tens to more than several hundreds of motile 

cilia that reach an average height of 10 micrometres above the apical surface 122–124. Each 

motile cilium stems from a single centriolar basal body and has a similar width of 

approximately 250 nanometres 38,125. The motile cilium differs functionally from the primary 

cilium by its motility that is made possible by structural differences in axoneme components. 

The main structural difference is that the 9 peripheral microtubule doublets, composing the 

outer axoneme of the motile cilium, are physically bridged to an additional central pair of 

singlet microtubules via connecting fibres known as radial spokes (Fig. 8a). ATP dependant 

interactions between the axonemal dynein motor proteins and the peripheral doublets cause 
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Figure 8 Cilia structure and motile cilia beating 

a, Schematic cross-section view of structural differences between a motile cilium (left panel) and a primary 
cilium (right panel). b, Time sequence showing ependymal motile cilia beating that is marked by an 
effective stroke (00-25) and a recovery stroke (50-75). Time in ms; scale bar,5µm. Adapted from 271,272 . 

Figure 9 Localization of multiciliated 
cell epithelia in humans 

Schematic view of tissues containing 
MCC in the human body. Adapted from 
203 . 

microtubule sliding that is countered by the radial spokes, thus inducing prompt unilateral 

bending of the motile cilium. The consecutive bendings visually translate into characteristic 

motile ciliary beatings which are binary: a rapid forward “effective” stroke is always followed 

by a relatively slower backward “recovery” stroke 38,126 (Fig. 8b). Although cilia beat 

frequencies depend on numerous environmental, experimental, and regulatory factors 127–134 , 

measured beat frequencies of motile cilia can exceed 40Hz (beats per second) and propel 

fluids above them at speeds ranging from 20 to 500 µm/s. To reach such impressive 

propulsion speeds, ciliary beatings are directionally coordinated not only within a single patch 

of motile cilia, but also along the epithelium that the MCC line 38,126,135,136.  In addition, tissue-

wide coordination generates energy-efficient polarized and propagated waves of ciliary 

beatings that can theoretically induce an up to a three-fold increase in the global fluid 

propulsion velocity on the macroscale of a tissue 130. In mammals, MCC execute their 

functions in epithelial tissues contained within the reproductive, respiratory, as well as the 

central nervous systems (Fig. 9).  

 



    20 
 

Figure 10 Multiciliated cells in 
reproductive tracts 

Scanning electron microscopy 
images showing MCC lining 
vertebrate (ostrich) efferent ducts 
(a) and mouse fallopian tubes (b). 
“S” in a indicates maturing 
spermatozoa in the efferent duct. 
Scale bar in a, 1µm; magnification 
X5000 in b. Adapted from 119,273 . 

MULTICILIATED CELLS IN THE REPRODUCTIVE SYSTEMS 

In the male reproductive system, developing spermatozoa exit the seminiferous 

tubules via the rete testis in a bath of luminal fluids and accumulate in the proximal regions of 

multiciliated tubal epithelia known as efferent ducts (Fig. 10a). From there, the motile ciliary 

beating of an increasing gradient of MCC coupled to surrounding smooth muscle contractions 

conduct the spermatozoa along the duct and towards the epididymis. In parallel, stirring of the 

luminal fluids by the motile cilia aids neighbouring complementary non-ciliated cells to 

absorb up to 90% of the initially deposited fluid volume, therefore increasing concentrations 

of spermatozoa as they reach the epididymis and acquire their own axoneme motility 137,138. 

As millions of spermatozoa are inseminated, only thousands bypass the cervical mucus and 

the uterotubal junction in the female reproductive tract 139. After passing these first two 

barriers, the remaining spermatozoa reach the Fallopian tubes, which are multiciliated tubal 

epithelia (Fig. 10b) bridging the uterus to the two ovaries. Spermatozoa then arrest in the 

proximal segment of the fallopian tube as sperm heads bind to the ciliated cells via species 

specific carbohydrate moieties 140. Ciliated cells are thus proposed to form a viable sperm 

reservoir where spermatozoa remain latent, up to six days in humans, until ovulation 139–141. In 

some species such as reptiles, the duration of spermatozoa storage can surprisingly exceed 

several months of time 142. After ovulation, the cumulus-oocyte-complex (a.k.a. COC) is first 

picked up by ciliary adhesions of MCC in the distal segment of the Fallopian tube 117,143. As 

the current of oviductal fluid generated by the ciliary beating guides the COC in direction of 
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Figure 11 Multiciliated cells in airways 

a, Scanning electron microscopy image showing MCC lining the mouse trachea b, Schematic view of major 
components of human airway tract epithelium. Scale bar, 2µm. Adapted from 147,274 . 

the uterus, the ciliated cells in the proximal segment of the fallopian tube are proposed to 

release discrete batches of spermatozoa in a sequential manner 117,139,140,144. The most motile 

spermatozoa are able to slither against the oviductal fluid current generated by the MCC until 

successful fertilization in the central segment of the Fallopian tube. Fertilization induces a 

significant decrease in the ciliary beat frequency of motile cilia as the ciliated cells along with 

smooth muscle contractions delicately channel the newly formed zygote outwards through the 

tube into the uterus for implantation 117,133. In addition to transporting and selecting for vital 

female and motile male gametes, MCC of the fallopian tube thus contribute to directional 

transport of the embryo in its earliest stages of development.  

MULTICILIATED CELLS IN THE RESPIRATORY SYSTEM 

At birth, the respiratory system comes in direct contact with airborne biological, 

chemical, and physical contaminants. To face a lifelong exposition to environmental hazards, 

the respiratory epithelium (Fig. 11a) continually produces airway liquids that function as 

physical protective barriers and as a junction for immune defences 121,145–148. The liquid 

consists of two distinguishable layers. The first layer is composed of a less than 10 

micrometre band of hydrating fluids filling the periciliary region, whereas the second one is a 

layer of glycoproteins and salts that form the mucus. The viscous mucus is constantly 

transported by the tips of motile cilia 124,147,149. The airway liquids cover the entire respiratory 

epithelium that is composed of mucus secreting goblet cells, periciliary fluid-secreting serous 
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and clara cells, and an increasing gradient of MCC from the terminal bronchioles up to the 

nasal cavity (Fig. 11b). Neutrophils and macrophages associate to the mucus as external 

bodies accumulate. In parallel, all four types of airway epithelial cells directly contribute to 

innate immune defences by injection of microbial membrane disruptors and pro-inflammatory 

cytokines into the periciliary fluid that eventually initiate the adaptive immunity apparatus 

124,145,146.  The coordinated ciliary beating of MCC provides the necessary forces for the 

displacement of pathogen-filled mucus towards the oropharynx for elimination. Furthermore, 

MCC dependant mucociliary clearance allows the renewal of the periciliary fluid and thus 

maintains, in concertation with neighbouring secretory cells, a sustainable and efficient 

immune response as well as tissue-wide homeostasis.  

MULTICILIATED CELLS IN THE CENTRAL NERVOUS SYSTEM 

In the adult human central nervous system (CNS), half a litre of a watery vehicle of 

numerous nutrients and signalling molecules known as the cerebrospinal fluid (CSF) is 

secreted on a daily basis into the brain ventricular system and onto a specialized ciliated 

epithelium known as the ependyma. The CSF is composed of hundreds of molecules that, 

together with mechanical forces of the generated flow, modulate long-term CNS 

development, locomotion, as well as behaviour by actively participating in the maintenance of  

CNS homeostasis 150–152. During embryogenesis, the CSF delivers growth factors, such as 

sonic hedgehog and insulin like growth-factors, which stimulate brain progenitor 

proliferation. In addition, the CSF simultaneously provides the necessary internal pressure to 

support physical brain enlargement 151,153,154. In adults, the CSF contains modulators of 

appetite, seasonal circadian rhythms, and the sleep/wake cycle 151. For instance, the naturally 

occurring sleep-inducing fatty acid Oleamide accumulates in the CSF as a result of sleep 

deprivation 155,156, whereas presence of the hypothalamic excitatory neuropeptide Orexin-A 

promotes prolonged wakefulness 157. The CSF composition is additionally supplemented by 



    23 
 

physiological metabolic excretions of the CNS, pathological brain toxins, and infectious 

agents that are deposited into the brain ventricular system 120. In addition to its potent 

clearance function, the circulating CSF counters the deposited waste by channelling 

antioxidants like melatonin, as well as immune cells that bypass the blood brain barrier in 

response to infection and inflammation 120,150,151. 

CSF originates from the choroid plexus, flows across the walls of the lateral ventricles in 

direction of the third ventricle, prior to descending towards the fourth ventricle and down the 

central canal of the spinal cord. The fluid then circulates in the subarachnoid space where it is 

resorbed back into the lymphatic and blood system. CSF is produced by specialized secretory 

MCC outlining the choroid plexus, which is a thin epithelial sheet that forms a filtering blood-

brain barrier by encapsulating arborescent blood vessels 150. Due to the continuous secretory 

activity, the apical surfaces of the choroid plexus MCC have remarkably large amounts of 

microvilli and relatively low numbers of motile cilia. Consistently, the initial pulsatile CSF 

flow from the choroid plexus is generated by arterial pulsations instead of ciliary motility. 

Also, the pressure gradient created by the secretion of CSF at the back of each ventricle 

promotes CSF outflow at the front. As the CSF is pulsated towards the motile ciliary tufts of 

ependymal MCC lining the ventricles (Fig. 12a), metachronal waves of ciliary beating create 

a near-wall directional current of CSF oriented towards the next ventricular cavity 136,158. 

Instead of being the predominant generators of a directional CSF bulk flow, which is 

promoted by choroid plexus secretion yet subjected to reversal at each cardiac cycle, 

ependymal MCC lining the lateral ventricles are proposed to generate an active directional 

flow at the ventricular surfaces 134 and through the thin-sectioned interventricular aqueducts 

130. In lateral ventricles, the subventricular zone (SVZ), which is the main neurogenic region 

of the adult mammalian brain, notably lies beneath the ependymal MCC epithelium 159–161 

(Fig. 12b). Interestingly, a study conducted in mice proposed that the directional CSF flow 
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Figure 12 Ependymal multiciliated cells lining the ventricles and the SVZ 

a, Scanning electron microscopy image showing ependymal MCC lining the mouse lateral ventricle b, 
Schematic view of the mouse ventricular and subventricular zone (SVZ). Directional CSF flow (black 
arrows) generated by ependymal MCC guides the migration 158 of newly formed neuroblasts (red arrows). 
Scale bar, 10µm. Adapted from 159,274 . 

propagated by motile ciliary beating of ependymal cells creates a caudo-rostral gradient of 

chemorepellent Slit molecules that guides the migration, in the parenchyma, of newly formed 

neuroblasts towards the olfactory bulb 158. In addition to providing an epithelial barrier, 

ependymal multiciliated cells in the lateral ventricles may therefore contribute to sustained 

lifelong development and function of the CNS. 

MULTICILIATED CELLS AND DISEASE 

Present in the three biological systems, mammalian MCC support a large array of 

functions with an outreach beyond their organs of localization that impact global organism 

homeostasis. Absence of motile cilia or defects in ciliary length or motility cause defective 

fluid and particle transport that leads to life threatening diseases. In the reproductive tracts, 

alterations in MCC associate with infertility and can give rise to extra-tubal implantations of 

the embryo 117. Presence of dysfunctional MCC in respiratory conduits leads to excessive 

accumulation of mucus and flattening of the periciliary environment resulting in chronic chest 

infections 162. In the brain, ciliary dysfunction causes a progressive accumulation of the CSF 

in the ventricles that increases intracranial pressure and eventually enlarges the ventricles 

120,163–165. Hydrocephalus, the medical term designating the enlargement of brain ventricles 
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due to the accumulation of CSF (Fig. 13), causes functional brain defects affecting 

locomotion and sources profound neuropsychological anomalies. In a short and long term 

developmental context, hydrocephalus also affects neurogenesis by modulating the 

architecture and the function of the SVZ 158,166.  

Infectious agents are also capable of compromising the function of MCC in all three systems. 

To increase chances of respiratory infection, corona and influenza viruses or pneumolysin, a 

Streptococcus pneumoniae virulence factor, halter mucociliary clearance by inducing ciliary 

dyskinesia and disrupting epithelial integrity 162. Chlamydia trachomatis infections of the 

fallopian tube correlate to tubal deciliation and infertility 117, whereas the mumps virus can 

cause hydrocephalus by damaging multiciliated ependymal cells lining the brain ventricles 

167,168. 

Figure 13 Hydrocephalus in 
humans and mice 

a, Illustration of human infant 
ventricles in control (left panel) 
and hydrocephalus case (right 
panel) with consequences on brain 
anatomy. b, Magnetic resonance 
imaging comparing human adult 
ventricle size between a control 
(left panel) and a hydrocephalic 
patient (right panel). c, 
Hematoxylin and Eosin stained 
coronal sections comparing 
ventricle size between P10 control 
mouse (left panel) and 
corresponding motile ciliary 
mutant mouse (right panel); lateral 
ventricles indicated by arrows. 
Scale bar, 4mm. Adapted from 
163,166,275 . 
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Genetic mutations of proteins required for the development of MCC or necessary for ciliary 

beating result in motile ciliopathies that are often systemic. Primary Cilia Dyskinesia is 

caused in most cases by mutations in outer or inner dynein arms and results in immotile or 

disorganized ciliary beating 169. Primary cilia dyskinesia patients are consequently less fertile, 

have increased risks of ectopic pregnancies as well as respiratory infections, and present a 

higher risk of hydrocephalic symptoms 169. Recently, mutations in mcidas and ccno, genes 

regulating the initiation of centriole amplification, have been discovered in cohorts of PCD 

patients 170,171. The mutations result in complete absence of or a significant decrease in the 

number of motile cilia. This medical condition, named ciliary aplasia and included in PCD 

before, has been renamed “Reduced Generation of Multiple Motile Cilia” (RGMC). Patients 

with RGMC present the same symptoms as patient with PCD 170 and diagnosis is done 

through centriole and cilia detection by immuno-stainings or electron microscopy.  

Other genetic diseases can directly or indirectly affect the physiological function of MCC in a 

more tissue specific manner. Brain ventricles of patients with the neurodegenerative 

Huntington disease present disorganized layers and increased lengths of motile cilia as a result 

of the autosomal dominant genetic mutation. As a consequence of abnormal ciliary beating, 

altered cerebrospinal fluid flow and hydrocephalus are observed in mouse models of the 

Huntington disease. In addition, altered MCC in Huntington patients are thought to exacerbate 

the progression of the disease by disrupting brain homeostasis 172. In the case of patients with 

the pulmonary subclass of Cystic Fibrosis 173, excessive production of mucus compromises 

the respiratory epithelial microenvironment by misbalancing the proportion between the 

mucus and the periciliary fluid 149,174. The strong accumulation of viscous mucus eventually 

weighs in the periciliary fluid environment and surpasses the mucociliary clearance capacity 

of airway MCC. Defects in mucociliary clearance then cause chronic infections of the 

respiratory system that further aggravate the disease outcome.  
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Clinical interest in the complexity of multiciliated epithelia is on the rise as a result of 

advances in medically assisted reproduction, pulmonary drug metabolism research, and the 

therapeutic potential of CSF-mediated drug delivery to the CNS. Consistently, a relatively 

major progress in the understanding of the molecular network initiating multiciliated cell 

specification has been achieved in the last 5 years.  

MULTICILIATED CELL DEVELOPMENT AND MATURATION 

Although post mitotic MCC differentiate terminally, the populations of MCC in the 

reproductive and respiratory systems undergo renewal. In the fallopian tube, a sub-population 

of MCC are thought to renew with every proliferative phase of the menstrual cycle 117 

whereas airway MCC are, in majority, replaced after chemical or infection-mediated damage 

175. In contrast, brain lateral ventricle ependymal MCC transform at birth from a fixed non-

renewable stock of radial glial progenitors 116. For MCC to develop, a conserved signalling 

cascade induces multiciliated cell specification that is followed by a phase of cellular 

differentiation and maturation that prepares the cell for motile ciliation.  

Studies describing the developmental specification of vertebrate MCC were carried out in 

various organisms ranging from fish to amphibians and mammals. Although many actors of 

the MCC differentiation program are evolutionary conserved, differences between organisms 

as well as differences between ciliated tissues within an organism have been documented 

113,122,123. The data on the developmental programs regulating MCC differentiation should be 

interpreted with care and in consideration of potential divergences. Nevertheless, inhibition of 

the Notch pathway is proposed to induce the specification of MCC in all three mammalian 

systems containing ciliated epithelia 176–179. Downstream targets of Notch inhibition, Gemc1 

and Mcidas (a.k.a. Idas or Multicilin) act as differentiation triggers sufficient for the initiation 

of the multiciliated cell transcriptional program 179,180. Both Gemc1 and Mcidas are relatives 

of Geminin, a protein that positively coordinates cell cycle progression and that is silenced in 
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Figure 14 Centriolar and acentriolar/deuterosome pathways in mammals 

a-b, Transmission electron microscopy images showing the centriolar pathway (a; 5 
procentrioles growing from a central centriole) and deuterosome pathway (b) in a 
MCC progenitor of the human fallopian tube. c-d, Centriolar pathway (c; 4 
procentrioles growing from the wall a centriole) and deuterosome pathway (d) in a 
MCC progenitor of the rabbit trachea. e, Z-section of a single deuterosome in a 
MCC progenitor of the mouse brain lateral ventricle. Note that at least 9 
procentrioles are stemming from the large deuterosome that has a hollow 
appearance. Fuchsia arrows indicate centriole platforms; yellow arrows indicate 
spherical deuterosomes. Scale bars, 0.5µm; magnification X45340 (c) and X19600 
(d). Adapted from 116,276,277 . 

cells exiting the cell cycle 181. Interestingly, Geminin represses MCC differentiation by 

binding Mcidas. A subsequent interaction between Mcidas and the cell cycle repressor E2f4 is 

thought to upregulate the transcription factors necessary for the expression of centriole 

components and ciliogenic transcription factors 138,182,183. Downstream of the Mcidas/E2f4 

complex is C-myb 180,183,184, a promoter of S-phase entry, in addition to Ccno 171,185, a cyclin-

like protein with described functions in apoptosis and meiosis resumption 186,187. Although the 

mechanism of action of Ccno in MCC remains to be determined, C-myb is thought to be 

involved in the initiation of centriole amplification in MCC by regulating the transcription of 

basal body components. In parallel to the centriole amplification program, the RFX 

(Regulatory Factor X) family of proteins 188 in addition to FOXJ1 (Forkhead Box J1) 189,190 

transcriptionally activate the ciliogenic network required for basal body migration and 

docking as well as the expression of core motile ciliary components. 

The maturation phase is marked by the amplification of up to several hundred centrioles that 

dock to the apical membrane synchronously to serve as basal bodies for motile cilia 

nucleation 123,191.  From the earliest studies investigating centriole amplification in MCC 

dating back to the 1960’s, large scale centriole production in MCC was thought to occur 

through two independent pathways known as “centriolar” and “acentriolar”. In the 

“centriolar” pathway, a limited number of centrioles (less than 6) grow from the lateral 
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Figure 15 Predominant views of multiple centriole biogenesis in progenitors of MCC 

a, Illustration of the centriolar (left) and deuterosome (right) pathway summarizing the 20th century views of 
centriole biogenesis in mammalian multiciliated cells.  Note that deuterosomes were thought to arise from 
the cytoplasm before supporting “de novo” centriole biogenesis. b, Schematic view of large scale centriole 
biogenesis summarizing the findings of the 2013 paper 193 that described the first deuterosome-specific 
protein, Deup1. The centriolar pathway (CD; top) was still thought to be independent of the 
deuterosome/Deup1 pathway (DD; bottom). Note that this PhD project started in 2012. Unknown source for 
a;  b adapted from 278 . 

surface of the two centrosomal centrioles 192,193,  with resemblance to the phenotype of Plk4 

overexpression in cycling cells 52 (Fig. 14a and c). In the “acentriolar” or “deuterosome” 

pathway, electron-dense spheres or platforms called deuterosomes were assumed to support 

the nucleation of the remaining and large majority of centrioles 192,194 (Fig. 14b, d, and e). In 

this context, the centrioles were believed to form de novo because no pre-existing centrioles 

were shown to be involved 113,193 (Fig.15).   

At the start of this study in 2012, the origin of all centrioles, the mechanisms 

controlling centriole number, as well as the centriole dynamic that allows the subsequent 

coordinated formation of the ciliary tuft remained obscure. The goal of this PhD project was 

(i) to uncover the dynamics of centriole amplification occurring in differentiating progenitors 

of MCC and (ii) to provide mechanistic advances in the understanding of the centriole number 

control. 
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“Now, though I have with great diligence endeavoured 
to find whether there be any such thing in those 

Microscopical pores of Wood or Piths, as the Valves in 
the heart, veins, and other passages of Animals, that 

open and give passage to the contain'd fluid juices one 
way, and shut themselves, and impede the passage of 
such liquors back again, yet have I not hitherto been 

able to say any thing positive in it; though, me thinks, it 
seems very probable, that Nature has in these passages, 

as well as in those of Animal bodies, very many 
appropriated Instruments and contrivances, whereby to 

bring her designs and end to pass, which 'tis not 
improbable, but that some diligent Observer, if help'd 

with better Microscopes, may in time detect.” 

 
Robert Hooke 

Micrographia: or, Some physiological descriptions of minute 
bodies made by magnifying glasses. 

 Published by J. Martyn and J. Allestry, London, 1665. 
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Centriole amplification by mother and daughter
centrioles differs in multiciliated cells
Adel Al Jord1,2,3, Anne-Iris Lemaı̂tre1,2,3, Nathalie Delgehyr1,2,3, Marion Faucourt1,2,3, Nathalie Spassky1,2,3* & Alice Meunier1,2,3*

The semi-conservative centrosome duplication in cycling cells gives
rise toacentrosomecomposedof amother andanewly formeddaugh-
ter centriole1. Both centrioles are regardedas equivalent in their abil-
ity to formnew centrioles and their symmetric duplication is crucial
for cell division homeostasis2–4. Multiciliated cells do not use the ar-
chetypal duplicationprogramand instead formmore thanahundred
centrioles that are required for the growthofmotile cilia and the effi-
cient propelling of physiological fluids5. The majority of these new
centrioles are thought to appeardenovo, that is, independently from
the centrosome, around electron-dense structures called deutero-
somes6–8. Their origin remains unknown. Using live imaging com-
binedwith correlative super-resolution light andelectronmicroscopy,
we show that all new centrioles derive from the pre-existing progen-
itor cell centrosome throughmultiple roundsofprocentriole seeding.
Moreover,we establish that only thedaughter centrosomal centriole
contributes to deuterosome formation, and thus to over ninety per
centof the final centriolepopulation.Thisunexpectedcentriolar asym-
metry grants new perspectives when studying cilia-related diseases5,9

and pathological centriole amplification observed in cycling cells and
associated with microcephaly and cancer2–4,10.
Large-scale centriole production in multiciliated cells is thought to

occur through two independent pathways: a commonly described ‘de
novo’ pathway, also known as the acentriolar/deuterosomepathway; and
a centriolar pathway, where new centrioles are formed adjacent to pre-
existing ones in amanner akin to centriole duplication6,11,12. The signifi-
cance of having twopathways toproduce the sameorganelle is enigmatic
and nothing is known about their interplay or their exact contribution
to the final population of centrioles.We first established that both path-
ways occur in the brain ependyma as in other mammalian ciliated epi-
thelia7,11–13 (Fig. 1a, b and Extended Data Fig. 1a). Using live imaging,
we traced the dynamics of centriole formation in ependymal cells from
transgenic mice expressing a GFP-tagged version of the distal core cen-
triolarprotein centrin 2 (ref. 14),Cen2–GFP(Cen2alsoknownasCetn2).
At the onset of centriole amplification, a Cen2–GFP cloud accumulated
around the pre-existing centrosome (Fig. 1c, d), which spawned a grow-
ing number of Cen2–GFP rings, or ‘halos’, that accumulated in the cyto-
plasm (Fig. 1e, f). TheCen2–GFP fluorescence in every halo intensified
progressively and adopted a flower-like shape (a ring of fluorescence
resembling petals; Fig. 1g). The flowers finally dissociated into tens of
Cen2–GFPdots (Fig. 1h). TheCen2–GFP1 centrioles thenmigrated to
the apical membrane where they initiated the extension of the motile
ciliary tufts (ExtendedDataFig. 2a, b andSupplementaryVideos1 and2;
n5 12). Together with immunostainings of centriolarmarkers on fixed
developing ependymal cells (Extended Data Fig. 1b–h), these observa-
tions show that centriole amplification occurs in the vicinity of the cen-
trosome and that the ‘halo stage’, which corresponds to the accumulation
of centriolar precursors, is followed by a ‘flower stage’, during which
maturing centrioles appear in a synchronized manner.
To characterize the origin and composition of the halos further, we

monitored centrosomal centrioles at a higher resolution. Live imaging
showed that nascent halos budded from the wall of one centrosomal

centriole in the formofCen2–GFP1 rings that detached and accumulated
in the nearby cytoplasm (Fig. 2a, Extended Data Fig. 2c, d and Sup-
plementary Videos 3 and 4; n5 15 cells). Use of 3D-structured illumi-
nationmicroscopy (3D-SIM) showed that the halos were composed of
Sas-61 (also knownas Sass6)/Cen2–GFP1 subunits (Fig. 2b, c, Extended
Data Fig. 2e and SupplementaryVideo 5) indicating that they represent
spherical assemblies of procentrioles. A generational asymmetry exists
between centrosomal centrioles andhas been shown to confer different
functions to each member of the pair15–17. To determine the contribu-
tion of mother and daughter centrioles to procentriole formation, we
immunostained the structural protein Sas-6 (ref. 18) and the key reg-
ulatorsof centriolebiogenesisCep152andPlk4 (refs 19,20). Inependymal
cycling progenitors (positive for the cycling cell marker Ki67) duplic-
ating their centrosome, these proteins stained symmetrically on both
centrosomal centrioles.However, inpostmitotic differentiating cells (posi-
tive for themulticiliated cell transcription factor Foxj1) the immunos-
tains were significantly larger and more intense on the daughter than
on themother centriole (Fig. 2d, e and ExtendedData Fig. 2f, g). Addi-
tionally, conventional and 3D-SIM analyses revealed that 100% of the
Cen2–GFP1halos formed on thewall of the daughter centriole (n5 33)
andwere contiguous to the proximal portion of the centriole (Fig. 2f–h),
which is the canonical site of procentriole nucleation in cycling cells.
Although the onset of differentiation was characterized by the lengthen-
ing of the primary cilium (a cell antennae nucleated by themother cen-
triole21), no alteration of centrosomeasymmetrywas observed in ciliary
mutants throughout the amplification process (ExtendedData Fig. 9a–d).
The centrosome thus switches from symmetric canonical centriole dupli-
cation in cycling progenitors to asymmetric centriole amplification in

*These authors contributed equally to this work.

1Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, F-75005 Paris, France. 2Inserm, U1024, F-75005 Paris, France. 3CNRS, UMR 8197, F-75005 Paris, France.
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Figure 1 | Centriole amplification dynamics during ependymal cell
differentiation. a, Sagittal view of the mouse lateral ventricular wall. Square
indicates the region analysed in b. Cx, cortex; CC, corpus callosum; LV, lateral
ventricle; D/R, dorsal/rostral. b, Transmission electronmicroscopy (TEM) on a
differentiating P4 ependymal progenitor cell showing procentrioles (red
arrowheads) growing from a centriole (C, ‘centriolar’ pathway) or from a
deuterosome (D, ‘deuterosome’ pathway). c–h, Videomicroscopy during
Cen2–GFP1 ependymal progenitor differentiation. d–h, From Supplementary
Video 1. Arrow indicates the centrosome; dashed line delineates the Cen2–
GFP1 cloud; green arrowheads point to centrosomal centrioles; red arrowheads
point to halos; yellow arrowheads point to flowers. �tamplification5 29.36 6 h,
�thalos5 216 5 h and �tflowers5 9.76 2 h, where �t5 mean time. Time in hh:mm;
scale bars, 1mm.
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postmitotic ependymal progenitors. The amplification is a recurrent
process duringwhich procentrioles are nucleated from the centrosomal
daughter centriole to form halos that are released into the cytoplasm.
Deuterosomes are the source of the presumed ‘de novo’ pathway6,

and are composed of two newly identified proteins, Deup1 andCcdc78,
which recruit Cep152 andPlk4 to drive centriole amplification7,8. Deup1
and Ccdc78 were localized to the centrosome in ependymal cycling
progenitors (ExtendedData Fig. 3a). As the cells entered the halo stage,
substantial accumulationof both proteinswas observed at thedaughter
centriole (ExtendedData Fig. 3b, c). Since high concentrations ofDeup1
were shown to trigger deuterosome formation7, amplification from the
daughter centriolemaybe driven by the formation of deuterosomes. Con-
sistently, 3D-SIMand live imaginghighlighted thepresence of aDeup11

cluster in the centreof thehalo releasedby thedaughter centriole (Fig. 3a, b,
Extended Data Fig. 3d and Supplementary Video 6). To test this hypo-
thesis further, we correlated 3D-SIM observations with transmission
electronmicroscopy onCen2–GFP1 cells (3D-SIM/EM; ExtendedData
Fig. 3e). 3D-SIM/EM on halo-stage cells showed that the Cen2–GFP1

subunits of the haloswere actually procentrioles organized around spher-
ical deuterosomes (Fig. 3c). Serial sections of entire cells (n5 3 cells)

showed that all Cen2–GFP1procentrioleswere associatedwith deutero-
somes and, conversely, that all deuterosomeswere loadedwith procen-
trioles (23 out of 23) (Extended Data Figs 4 and 5). Developing halos
corresponded todeuterosomeswith incomplete spherical shapes attached
to the proximal segmentof the daughter centriole (Fig. 3d andExtended
Data Figs 4 and 5). One or two deuterosomeswere observed connected
to the daughter centriole (Fig. 3e, f andExtendedData Figs 4, 5 and 6b, c).
To visualize the first events of deuterosome formation, we screened
early ependymal progenitors, identified by the absence of deuterosomes
in the cytoplasm and a small accumulation of electron-dense aggregates6,
and found cells where the daughter centriole had a single attached deu-
terosome without detectable procentrioles (Fig. 3g and Extended Data
Fig. 6a; n5 3 cells). The procentriole-free deuterosomes were smaller
than centrosome-bound deuterosomes loaded with procentrioles and,
more generally, deuterosome sizewas correlatedwith the number of pro-
centrioles they support (Extended Data Fig. 6d, e). Deuterosomes are
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Figure 2 | Halos are a spherical assembly of procentrioles nucleated from
the centrosomal daughter centriole. a, From Supplementary Video 3.
Cen2–GFP dynamics during halo formation. Top: z-projections (4.2mm)
of centrosomal centrioles (C1 and C2) and six halos in the cytoplasm.
Bottom: single z-plane (0.7mm) of the centrosome. Arrowhead points to the
seventh halo forming from C2. b, Single 0.1mm z-plane of a Cen2–GFP1

centrosomal (C; top) and cytoplasmic halo (bottom) imaged by conventional
epifluorescence microscopy (left) and 3D-SIM (right). Arrowheads indicate
Cen2–GFP1 subunits observed only with 3D-SIM. c, 3D-SIM z-plane of
a Cen2–GFP1 centrosomal (C; top) or cytoplasmic (bottom) halo
immunostained with Sas-6 (red). Circles delineate Cen2–GFP1 subunits.
d, Sas-6, Cep152 and Plk4 stainings on Cen2–GFP1mother (growing GT3351

primary cilium) and daughter (dc) centrosomal centrioles at the halo stage.
‘Fire’ colour look-up table (LUT) and fluorescence intensity profiles are shown.
A.U., arbitrary units. e, Symmetric to asymmetric switch of centrosomal
markers. Daughter:mother centriole (dc:mc) signal ratios in cycling
Ki671/Foxj12 (left; Sas-6 (n5 42), Cep152 (n5 43), Plk4 (n5 18)) and
differentiating Foxj11 ependymal progenitors at the halo stage (right; Sas-6
(n5 33), Cep152 (n5 25), Plk4 (n5 32)). Error bars represent mean6 s.d.;
P values derived from two-tailed Mann–Whitney U-tests, ***P# 0.0003;
red line represents a ratio equal to 1. f, 3D-SIM z-projection (1.8mm) of
Cen2–GFP and GT335 immunoreactivity at the halo stage. Centrin aggregates
are occasionally observed in Cen2–GFP cells. g, Side view of the GT3351

daughter centriole from f showing a Cen2–GFP1 halo contiguous to the
proximal portion of the daughter centriole. h, z-projection (0.6mm)
magnifications of both centrosomal centrioles (top and centre) and the
cytoplasmic halo (bottom) from f. pc, primary cilium; time in hh:mm;
scale bars, 0.5mm.
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thus generated from the proximal segment of the daughter centriole
and do not appear de novo.
During thehalo stage/deuterosome formation, procentrioles displayed

a tube-like structure organized around a cartwheel containing micro-
tubule singlets (Fig. 3h). The absence of microtubule triplets indicated
that theprocentrioleswere immature.Consistently, the lengths andwidths
of procentrioles were significantly smaller than those of mature cen-
trioles. Procentrioles were similar in size both within and among halo-
stage cells (Fig. 4g, h, red and grey quantifications; Extended Data Figs
7 and 8e) and were comparable to early S-phase procentrioles in cyc-
ling cells22.
Together, these data show that during ependymal cell development

the centrosomal daughter centriole greatly amplifies procentrioles by
generating intermediate structures, the deuterosomes. Once nucleated
at the daughter centriole, procentrioles remain latent at an early stage
of their biogenesis on the deuterosomes.

Wenext visualized the dynamics of centriole growthduring the halo-
to-flower stage transition. Immediately after the formation of the last
halo/deuterosome at the daughter centriole, all of theCen2–GFP1 halos
simultaneously transformed into intensely fluorescent flower-like struc-
tures. At this stage, up to five procentrioleswere also seen growingdirect-
ly fromthe proximal portions of both centrosomal centrioles (Fig. 4a–f,
Extended Data Figs 6, 8a, b, d and Supplementary Videos 3 and 4;
n5 30 cells). These ‘centriolar’ procentrioles were probably nucleated
during the halo stage, since they were already visible during the late
phases of deuterosome formation (Fig. 2h and ExtendedData Figs 4, 5
and 6b). Both centrosomal centrioles thus produce procentrioles with
a canonical orthogonal configuration, which defines the so-called
‘centriolar’ pathway. However, more than 90% of the centrioles were
generated via deuterosomes and less than 10% directly from centro-
somal centrioles (146 1 deuterosomes per cell, 4.26 0.4 procentrioles
per centrosomal centriole, 5.66 0.3 per deuterosome (mean6 s.e.m.);
n5 10 cells).
All procentrioles in a given cell grew synchronously during the flower

stage, since their sizes were similar in each cell and increased signifi-
cantly in comparison to the procentrioles in halo-stage cells (Fig. 4g, h
and Extended Data Figs 6f, 7 and 8d, e). At the molecular level, halo-
stage procentrioles were positive for the earlymarkers of centriole bio-
genesis (Cep152, Plk4, Sas-6, Stil, Cpap (also knownasCenpj), Cep120,
CP110), and flower procentrioles became positive for markers of the
late steps of centriole assembly (Poc5 (ref. 23) and GT335 (ref. 24) (an
antibody against glutamylated tubulin)) (Fig. 4i, j and Extended Data
Fig. 8f, g). Centriole biogenesis in multiciliated cells is therefore a two-
step process in which procentriole initiation (halo stage/deuterosome
formation) is clearly demarcated fromthe late phases of centriole assem-
bly (flower stage). Synchronized growth is followed by the simultaneous
detachment of procentrioles from both centrosome and deuterosome
platforms (�t5 2.56 0.85 h; n5 9 cells; Fig. 4k, Extended Data Fig. 8c
and Supplementary Videos 4 and 7). After migration and docking at
the apical membrane, Sas-6 disappears from centrioles as motile cilia
grow (ExtendedData Fig. 8h). Identical steps of centriole amplification
and similar centrosome asymmetry were observed in tracheal multici-
liated cells in vivo (Extended Data Fig. 9e–k), suggesting that all mam-
malian multiciliated cells might share this mechanism of large-scale
centriole biogenesis.
Our results revise the ‘de novo’ hypothesis; the so-called ‘centriolar’

and ‘deuterosome’ pathwaysare the outcomesof a single pathwayorche-
strated by the centrosome (Fig. 5). The ability of mother and daughter
centrioles to differentially control both the number of and theway they
generate new centrioles reveals a new centrosome asymmetry. A differ-
ential regulation ofDeup1 levels at centrosomal centrioles could under-
lie the ability of the daughter centriole to formdeuterosomes and amplify
centrioles7. The identificationofproteins that interactwithDeup1using
proximity-dependent biotinylation25 may help uncover the upstream
signals controlling centrosome asymmetry in these cells.
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Deuterosomes develop from the same proximal region of the cen-
triolar wall from which procentrioles grow during canonical centriole
duplication anduse known regulators of this process7,8 (ExtendedData
Fig. 10). They thus function as shuttles, displacing the late phases of
centriole assembly from the centrosome to the cytoplasm while procen-
triole maturation is arrested. This mechanism allows massive, albeit
centriole-mediated, production of centrioles. Emerging studies show-
ing the involvement of S-phase regulators during multiciliated cell
differentiation26–30, togetherwith the phase-like progressionof centriole
amplification (Fig. 5), suggest that the amplification process may be a
facet of the duplication cycle, in which, however, spatial and temporal
controls of centriole number are bypassed. It would therefore be inter-
esting to explore the roles of S, G2 and mitosis regulators throughout
the amplification stages delimited here.
In this study, we report that, under physiological conditions, the cen-

trosome supports either the duplication of centrioles or their massive
amplification. Our finding unifies themechanisms of centriole biogen-
esis in cycling andmulticiliated cells. Since the daughter centriole of the
centrosome is the primary nucleation point for amplification, it could
play amajor role in the controlof centrioleproduction.Thisnewly found
centrosome asymmetry thus provides a new paradigm for understand-
ing the regulation of centriole biogenesis and number.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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METHODS
Animals. All animal studies were performed in accordance with the guidelines of
the European Community and FrenchMinistry of Agriculture and were approved
by theDirection départementale de la protection des populations de Paris (Approval
number Ce5/2012/107). The mice used in this study have already been described
and include:OF1 (Oncins France 1, Charles RiverLaboratories); Cen2–GFP14 (CB6-
Tg(CAG-EGFP/CETN2)3-4Jgg/J, The Jackson Laboratory); Kif3afl, Kif3ako/131;
andnestin–Cre.Toproduce the conditionalmutantKif3a (Kif3A cKO), we crossed
Kif3afl/fl/Cen2–GFP mice with Kif3ako/1/nestin–Cre mice. Kif3afl/1/nestin–Cre
mice were used as controls andKif3ako/fl/nestin–Cremice asmutants. Videomicro-
scopy and 3D-SIM experiments were performed with heterozygous Cen2–GFP
mice. Other experiments were performed in parallel using OF1 and heterozygous
Cen2–GFPmice; nodifferences between these two strainswere observed regarding
ependymal differentiation, amplification stages, centrosome asymmetry or num-
ber of deuterosomes and centrioles.
Brain and trachea dissections. Whole mounts of developing ventricular walls
were prepared from P0–adult mice as previously described32. Developing tracheae
were separated surgically from the larynx (cranially) and the bronchi (caudally) of
anaesthetized E17–P0 mice. For whole-mount preparations, trachea-associated
muscles, vessels, nodes and glands were scraped off in cold L15 medium before
cutting the trachea in half cranio-caudally with micro scissors.
Primary ependymal cell cultures and transfections. Newborn mice (P0–P2)
were killed by decapitation. The brains were dissected in Hank’s solution (10%
HBSS, 5% HEPES, 5% sodium bicarbonate, 1% penicillin/streptomycin (P/S) in
purewater) and the extracted ventricularwallswere cutmanually into pieces, followed
by enzymatic digestion (DMEM glutamax, 33% papain (Worthington 3126), 17%
DNase at 10mgml21, 42%cysteine at 12mgml21) for 45min at 37 uC in a humidi-
fied 5%CO2 incubator. Digestion was stopped by addition of a solution of trypsin
inhibitors (Leibovitz Medium L15, 10% ovomucoid at 1mgml21, 2% DNase at
10mgml21). The cells were then washed in L15 and resuspended in DMEM gluta-
max supplemented with 10% fetal bovine serum (FBS) and 1% P/S in a Poly-L-
lysine (PLL)-coated flask. Ependymal progenitors proliferated for 5 days until
confluence followedby shaking (250rpm) overnight. Pure confluent astroglialmono-
layers were replated at a density of 73 104 cells per cm2 (corresponding to days
in vitro (DIV)21) in DMEM glutamax, 10% FBS, 1% P/S on PLL-coated cover-
slides for immunocytochemistry experiments, Lab-Tek chambered coverglasses
(Thermo Fisher Scientific) for time-lapse experiments or glass-bottomed dishes
with imprinted 50 mm relocation grids (Ibidi, catalogue no. 81148, Biovalley) for
correlative 3D-SIM/EMandmaintained overnight. Themediumwas then replaced
by serum-freeDMEMglutamax 1%P/S, to trigger ependymal differentiation gradu-
ally in vitro (DIV0). All primary cultured cells derived from Kif3ako/fl/nestin–Cre
were devoid of primary andmotile cilia. Transfections were performed in suspen-
sion at DIV21 using the Jetprime (Polyplus) system.
Plasmids. The full-length complementary DNA for Deup1 (GenBank accession
number KC211186) was amplified by PCR from DIV 5 ependymal cell cultures.
To express a GFP-tagged version of Deup1, the PCR fragments containing the
Deup1 cDNA were cloned into pEGFP-C1. To generate a Kusabira-Orange-
Deup1, the EGFP sequence of pEGFP-C1 was replaced by the Kusabira-Orange
sequence using the megaprimer technique.
Immunostaining.Lateral brain ventricles and cell cultures were fixed inmethanol
at220 uC for 5min. Tracheae were permeabilized in 0.5% Triton X-100 13 PBS
for 3min beforemethanol fixation at220 uC for 7min. Tissues and cells were pre-
blocked in 13 PBS with 0.2–0.5% Triton X-100 and 10% FBS before incubation
with primary and secondary antibodies. Tissues and cellswere counterstainedwith
DAPI (10mgml21, Sigma) andmounted in Fluoromount (Southern Biotech). The
following antibodies were used: rabbit anti-Ccdc78 (1:50; Sigma-Aldrich, AV53233
andHPA041186); rat anti-CD24 (1:100; BDPharmingen);mouse IgG2b anti-Centrin
20H5(1:2000;Millipore); rabbit anti-Cep120 (1:2000)33; rabbit anti-Cep152 (1:2000)7;
rabbit anti-Cep164 (1:750)34; rabbit anti-CP110 (1:1000, Bethyl laboratories); rab-
bit anti-Cpap (1:1000)35; rabbit anti-Deup1 (1:2000)7;mouse IgG1anti-FoxJ1 (1:700,
eBioscience);mouse IgG1anti-GT335(1:2000,Adipogen)36;mouse IgG1orrabbit anti-
Ki67 (1:10, BD Biosciences or 1:50, Spring Bioscience); human or rabbit anti-ninein
(1:100, 2g5 clone, Recombinant antibody platform, Curie Institute or 1:1000037);
rabbit anti-Plk4 (1:1000)38; rabbit anti-Poc5 (1:500)23; mouse IgG2b anti-Sas-6
(1:750, Santa Cruz); rabbit anti-Stil (1:1000, Bethyl Laboratories); and species-
specific Alexa Fluor secondary antibodies (1:400, Invitrogen).
Microscopy. Epifluorescence microscopy. Fixed cells and whole-mount ventricles
were examinedwith anupright epifluorescencemicroscope (ZeissAxioObserver.Z1)
equipped with an Apochromat363 (NA1.4) oil-immersion objective and a Zeiss
Apotome with an H/D grid. Images were acquired using Axiovision with 240-nm
z-steps.
Videomicroscopy. Cells were filmed in vitro using an inverted spinning disk Nikon
TiPFSmicroscope equippedwith oil-immersion363 (NA1.32) and3100 (NA1.4)

objectives, anEvolveEMCCDCamera (Photometrics), dpss lasers (491nm, 561nm),
appropriate filter sets for DAPI/FITC/TRITC, a motorized scanning deck and an
incubation chamber (37 uC; 5% CO2; 87% humidity). To decrease photo-toxicity,
laser intensities were decreased to 3% and the image capture time was increased to
1 s per frame. Imageswere acquiredwithMetamorphNx at different time intervals
(Dt5 20 to 40min). Image stacks were recorded with a z-distance of 0.3mm to
0.7mm and subjected to constrained iterative deconvolution (conservative ratio,
1–6 cycles, medium noise filtering, ImageJ software). After image acquisition, to
maintain the same cell coordinates for CD24 staining, the medium was removed
with a Pasteur pipette without moving the chambered coverglass, and CD24 prim-
ary and secondary antibodieswere added for 15min each, inmedium supplemented
with FBS (10%). The cells were then fixed for 5min with 0.5% paraformaldehyde
(PFA) before the final images were acquired (see Extended Data Fig. 2b). Four-
dimensional (x, y, z, t) time-lapse images were analysed with Imaris (Bitplane
Scientific Solutions) and Image J.
Transmission electronmicroscopy. Cultured cells or P4 ventricle slices were fixed in
2.5% glutaraldehyde and 4% PFA, treated with 1% OsO4, washed and progres-
sively dehydrated. The samples were then incubated in 1% uranyl acetate in 70%
methanol, before final dehydration, pre-impregnation with ethanol/epon (2/1,
1/1, 1/2) and impregnation with epon resin. After mounting in epon blocks for
48 h at 60 uC to ensure polymerization, ultra-thin sections (70 nm) were cut on an
ultramicrotome (Ultracut E, Leica) and analysed using a Philips Technai 12 trans-
mission electron microscope.
3D structured illumination microscopy. 3D-SIM images were obtained using a
Nikon N-SIM Eclipse Ti Inverted Microscope equipped with a MCL Piezo stage,
an Apochromat 3100 (NA1.49) oil-immersion objective and 488/561/647 nm
diode lasers. Image stacks were recorded with a z-distance of 100–120nm, and
3D reconstruction and alignment was performed on an NIS-Elements AR micro-
scope. Conventional images, when shown, were acquired after 3D-SIM acquisi-
tions (see Fig. 2b). Cen2–GFP measurements were made with Image J on single
100nm axial slices (details in Extended Data Fig. 7b).
Correlative 3D-SIM and electron microscopy. Primary Cen2–GFP ependymal pro-
genitors were grown in 0.17-mm thick glass dishes with imprinted 50mm relo-
cation grids (Ibidi). At 3 days in vitro (DIV 3), cells were fixed with 4% PFA for
10min and ependymal progenitors undergoing halo formation were imaged for
Cen2–GFP and DAPI, in PBS, with a 3D structured illumination microscope (N-
SIM - Eclipse Ti Inverted Microscope). Coordinates on the relocation grid of the
cells of interest were recorded. Cells were treated for transmission electronmicro-
scopywithin2handembedded inepon resin.After eponpolymerization, resinblocks
were detached fromthe glass dish by several baths in liquidnitrogen.Using the grid
pattern imprinted in the resin, 50 serial ultra-thin 70-nm sections of the squares of
interest were cut and transferred onto formvar-coated EMgrids (0.43 2mmslot).
The central positionof the square of interest andDAPI staining are used to relocate
the cell of interest (See Extended Data Fig. 3e).
Quantification and statistical analyses. Data were obtained from at least three
independent experiments and the results presented as themean6 s.d., unless other-
wise stated.Non-parametric two-tailedMann–WhitneyU-tests were used to com-
pare two distributions and two-tailed Kruskal–Wallis tests to compare groups of
data, unless otherwise stated. Variances were similar between compared distribu-
tions.Distributionswere tested fornormalitywhennecessary. Pearson’s correlation
coefficient was calculated to determine the strength of the relationship between the
volume of the deuterosomes and the number of procentrioles they hold (Extended
Data Fig. 6d, e). Fluorescence intensity ratios (ExtendedData Fig. 1g)were obtained
by dividing raw integrated densities (RID) of halos or flowers by the averageRIDof
centrosomal centrioles (internal fluorescence control) in the corresponding cell.
Daughter:mother centriole signal ratios (centrosomes in Fig. 2d, e; Extended Data
Figs 2g, 3b, c and9c, d, h, i) were calculated fromcentrosomes in halo-stage FoxJ11

cells containing at least two cytoplasmic halos. In 15–42% of the centrosomes ana-
lysed in cells at the halo stage, Sas-6, Cep152, Plk4, Ccdc78 and Deup1 immuno-
reactivitywas observed exclusively at the daughter centriole; these cells were excluded
from quantification of the daughter:mother centriole signal ratio. Fluorescence
signal intensity was quantified using Image J. All graphs and statistical analyses
were obtained using GraphPad Prism software. See corresponding figure legends
for P values and further details.
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Extended Data Figure 1 | Centriole amplification in ependymal progenitor
cells in vitro and in vivo. a, TEMshowing the apical surface of a differentiating
ependymal progenitor in vitro (DIV 3). Procentrioles (arrowheads) are seen
growing from deuterosomes (D; ‘deuterosome’ pathway) or from a centriolar
structure (C; ‘centriolar’ pathway). b, Ki67, Sas-6 andGT335 immunoreactivity
during centrosome duplication in Cen2–GFP1 cycling ependymal progenitors
in vitro (DIV22). c–e, FoxJ1, Sas-6, GT335 and Cep164 immunoreactivity
inCen2–GFP1 differentiating ependymal progenitors in vitro (DIV2 toDIV5)
in order of appearance (see h). f, In vivo immunostainings of Sas-6 and FoxJ1
in P3 to P5 Cen2–GFP1 ventricular walls showing that the same stages of
amplification exist in vivo as in vitro (see also h). Boxes in b–f indicate

magnified structures. White arrowheads indicate the centrosomal centrioles at
the halo stage. g, Analysis in vitro (DIV3) and in vivo (P3–P5 lateral ventricular
walls) of Cen2–GFP fluorescence showing an increase in the intensity and area
of Cen2–GFP ‘flower’ fluorescence compared to Cen2–GFP ‘halos’ (in vitro:
n5 48 halos; n5 47 flowers; in vivo: n5 37 halos; n5 27 flowers); error bars
represent mean6 s.d.; P values derived from two-tailed Mann–Whitney
U-tests, ***P, 0.0001. h, Left: percentages of differentiating cells in vitro
according to DIV (n5 1,244 cells from 3 experiments per day). Right:
percentages of differentiating cells in vivo in the region of the lateral brain
ventricle indicated by the red square in Fig. 1a according to post-natal day
(P) (n5 4,025 cells from 2 to 3 animals per age). Scale bars: 1mm.
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Extended Data Figure 2 | Dynamics of centriole amplification analysed live
in vitro; centrosomes of cycling ependymal progenitors in vitro; centrosome
Sas-6 asymmetry in vivo. a, From Supplementary Video 2. Dynamics of
centriole amplification in a differentiating Cen2–GFP1 ependymal progenitor.
Note that the video begins when some halos have already accumulated in the
cytoplasm (00:00). Green arrowheads point to the centrosomal centrioles
when discernible. Halos (red arrowheads) first accumulate in the cytoplasm
(00:00–08:00) then transform into flowers (12:40; yellow arrowheads) before
simultaneous centriole release (14:40). All the centrioles then migrate to the
apical membrane where they grow cilia (87:00; (b)). b, Immunostaining, at the
end of the time-lapse experiment shown in a, of the ependymal-specific
membrane protein CD24 confirms that Cen2–GFP1 structures are docked
centrioles (basal bodies) growing motile cilia. c, From Supplementary Video 4.
Single z-plane images of a Cen2–GFP1 centrosomal centriole (white
arrowhead) during the formation of a halo (red arrowhead). Note that the
second centrosomal centriole is outside the field of observation. d, Single
z-plane of centrosomal centrioles (white arrowheads) during the concomitant
formation of two halos (red and green arrowheads) from one of the two
centrosomal centrioles. The halo on the right (green arrowhead) detached at
04:30 then disappeared from the field. Note that the second centrosomal

centriole appears in the field at 01:00 (second white arrowhead). e, From
Supplementary Video 5. Three 3D-SIM z-planes (0.1mm) showing a
cytoplasmic halo with 20 procentrioles organized in a raspberry-like structure
(18 Sas-61/Cen2–GFP1 procentrioles are numbered; circles show positions of
Cen2–GFP1 subunits relative to Sas-6 staining). f, Representative images of
the quantifications shown in Fig. 2e (Ki671; left). Sas-6, Cep152 and Plk4
immunoreactivity on Cen2–GFP1 mother (GT3351 primary cilium) and
daughter centrosomal centrioles in cycling Ki671 ependymal progenitors at
DIV22. ‘Fire’ LUT and fluorescence intensity profiles are shown.
g, Daughter:mother centriole Sas-6 signal ratios in FoxJ11 differentiating
ependymal progenitors in P4 Cen2–GFP ependymal walls. Left: Sas-6 staining
onmother (Cep1641) and daughter (Cep1642) centrosomal centrioles in halo-
stage cells, their corresponding ‘fire’ LUT’s, and their fluorescence intensity
profiles. Right: daughter:mother ratios of Sas-6 fluorescence intensity (error
bars represent mean6 s.d.; 2.36 0.9; n5 38 cells). The distribution differs
significantly from a theoretical mean ratio of 1 (one sample t-test, P, 0.0001);
distributions of Sas-6 ratios in differentiating progenitors in vitro (Fig. 2e)
and in vivo do not differ statistically. Time in hh:mm; scale bars, 5mm (a–b);
1mm (c–g).
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Extended Data Figure 3 | Deup1 and Ccdc78 in cycling and differentiating
ependymal progenitors; correlative 3D-SIM and transmission electron
microscopy (3D-SIM/EM) protocol. a, Representative images of Deup1 and
Ccdc78 immunoreactivity in cycling (Ki671) Cen2–GFP1 ependymal
progenitors. b, Deup1 (left panel) and Ccdc78 (right panel) immunoreactivity
on Cen2–GFP1 mother (GT3351 primary cilium) and daughter centrosomal
centrioles in halo-stage cells. ‘Fire’ LUT and fluorescence intensity profiles are
shown. c, Daughter:mother centriole Deup1 (5.76 4.6; n5 20 cells) and
Ccdc78 (3.46 2; n5 20 cells) signal ratios in differentiating (FoxJ11)
ependymal progenitors at the halo stage; error bars represent mean6 s.d..

Distributions differ statistically from a theoretical mean ratio of 1 (two-tailed
one sample t-test, P, 0.0001). d, Cen2–GFP/KusabiraOrange-Deup1
(K-O-Deup1)3 100 videomicroscopy image sequences showing concentric
Cen21/Deup11 halo formation (white arrowheads) and release fromone of the
two centrosomal centrioles (left panel; concomitant formation of 2 halos from
C2) or from the daughter centriole (right panel; Cen2–GFP occasionally enter
the primary cilium, distinguishing the mother from the daughter centriole).
e, Overview of the correlative 3D-SIM/EM protocol (see Methods). C1 and C2:
centrosomal centrioles (when mother and daughter centrioles cannot be
distinguished). Time in hh:mm; scale bars, 1 mm.
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Extended Data Figure 4 | Correlative 3D-SIM and transmission electron
microscopy of halo formation in a Cen2-GFP ependymal progenitor
(example 1). Consecutive apical-to-basal ultra-thin EM sections (70 nm) and
corresponding 3D-SIM z-projections (200 or 600nm as indicated) are shown
for both centrosomal centrioles and three cytoplasmic deuterosomes (D) in the
same cell. Procentriole positions are indicated by numbers. Rectangles show the
localization of the mother (green) and daughter (blue) centrioles on the

preceding or following EM section. In this cell, two deuterosomes are forming
from the daughter centriole. A procentriole is growing directly from the wall of
the mother centriole (9). Procentrioles cut in the sagittal plane through the
centre have the same appearance (2, 4, 10, 11, 13, 14, 16). In transverse sections,
the procentrioles have a tube-like structure (7, 8, 9, 18). Note that the spatial
resolution of 3D-SIM is not sufficient to distinguish some of the procentrioles
visible by EM (1–4, 3–7, 8). Ag, aggregate of Cen2–GFP; scale bar: 0.1mm.
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Extended Data Figure 5 | Correlative 3D-SIM and transmission electron
microscopy of halo formation in a Cen2-GFP ependymal progenitor
(example 2). Consecutive apical-to-basal ultra-thin EM sections (70 nm) and
corresponding 3D-SIM z-projections (200–700nm as indicated) are shown for
the centrosomal centrioles and 4 cytoplasmic deuterosomes (D) in the same
cell. Procentriole positions are indicated by numbers. Rectangles show the
localization of the mother (green) and daughter (blue) centrioles on the

preceding or following EM section. In this cell, two deuterosomes are forming
from the daughter centriole. A procentriole is growing directly from the wall of
the daughter centriole (8). Procentrioles cut in the sagittal plane through the
centre have the same appearance (2, 7, 15, 17, 19, 21). In transverse sections, the
procentrioles have a tube-like structure (8, 18, 24). Note that the spatial
resolution of 3D-SIM is not sufficient to distinguish some of the procentrioles
visible by EM (3–5, 6, 8, 13–17, 19, 20–23). Scale bar, 0.1mm.
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Extended Data Figure 6 | Formation of deuterosomes from the daughter
centrosomal centriole during the halo stage and growth of procentrioles
during the flower stage. a, Formation of the first deuterosome (D) in an early
differentiating ependymal progenitor (DIV 3 cell). Left: EM image showing the
daughter centrosomal centriole. In contrast to the cells presented in b and
c, note the low abundance of electron-dense aggregates
(red arrowheads) in the cytoplasm representative of an early step of
centriologenesis6. Right panels: serial EM sections spanning the centrosome of
the same cell (note that the pictures have been rotated to re-orient the daughter
centriole). A small deuterosome is attached to the proximal part of the
centrosomal daughter centriole. Serial sections covering 2mm of the apical
portion of this cell show the absence of procentrioles and other deuterosomes.
Prox., proximal. b, Serial EM sections spanning the centrosome of a
differentiating ependymal progenitor showing a procentriole-loaded
deuterosome attached to the proximal wall of the daughter centriole. Blue
arrowheads point to procentrioles extending from the deuterosome. Yellow
arrowheads point to procentrioles growing directly from the proximal part of
the mother and the daughter centrioles. A rectangle and a circle indicate the
position of the daughter and themother centriole, respectively, in the preceding
serial EM section. c, Left: centrosome of a cell during deuterosome formation.

Note the microtubule network converging on the mother centriole. Right
panels: serial EM sections spanning the centrosome. A deuterosome is attached
to the proximal part of the daughter centriole. An electron-dense patch
(magenta arrowhead), previously defined as centriolar precursor material in
cycling cells20, can be observed on the wall of the daughter centriole adjacent to
where the deuterosome contacts the centriolar wall. Blue arrowheads point to
procentrioles. d, Deuterosome volume calculation protocol. Deuterosomes
were outlined interactively (purple surfaces) on consecutive ultra-thin EM
slices spanning the entire structure. Areas were summed for each deuterosome
and multiplied by the thickness of the ultra-thin sections (0.07mm).
e, Deuterosome volume distribution relative to their localization and the
number of attached procentrioles; Pearson’s correlation coefficient r5 0.67
(P5 0.001) for 20 deuterosomes from 6 cells. f, Representative TEM images of
procentrioles at the halo stage (red), the flower stage (yellow), or mature
centriole docked at the plasma membrane nucleating motile cilia (grey).
g, Serial EM sections spanning 910nm of the apical part of a flower-stage cell
(DIV 3). Procentrioles are seen growing from both centrosomal centrioles
(C1 and C2) and from deuterosomes (D1 to D11). Note the raspberry-like
organization of the centrioles growing from the spherical deuterosomes.
Scale bars: 0.2mm (a); 0.1mm (b, d), 0.5mm (c, g).
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Extended Data Figure 7 | Protocols for measuring procentrioles from EM
and3D-SIM images. a, Protocol formeasuring procentrioles fromEM images.
Centrioles aligned parallel to the 70-nm z-slices were selected for quantification
of EM width. Centriole width was quantified using a pixel intensity
measurement tool placed at the distal extremities of the centrioles
perpendicular to the centriolar walls. The resulting distributions of normalized
pixel intensity were characterized by two minima on the y-coordinates
corresponding to the centre of each of the two centriolar walls. Final plotted
widths were obtained using the equationW~ DMinj j; whereW is the
absolute difference in nm between the x-coordinates of both y-axis minima.
b, Protocol for measuring procentriole lengths from 3D-SIM images.
Measurements were made of Cen2–GFP procentrioles, stained with Sas-6, that

were parallel to the x,y plane on single 100-nm z-slices. Sas-6 staining was used
to determine the longitudinal axis of the procentriole and was excluded from
measurements of fluorescence intensity. Distributions of normalized Cen2–
GFP fluorescence intensities were fitted using the robust nonlinear regression
method, aligned, and their widths were measured to obtain a plot of
procentriole lengths in nanometers. Each plotted dot corresponds to the
width of the distribution curve obtained using the equation

Y~amplitude|e {1
2

x{meanð Þ
SDð Þ2

� �
, where SD is the width of the distribution,

amplitude is the height of the centre of the distribution in Y units, and mean is
the x value at the centre of the distribution.
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Extended Data Figure 8 | Halo to flower stage transition in differentiating
ependymal progenitors. a–c, From Supplementary Video 4. Dynamics of the
transformation of Cen2–GFP halos (numbered at 03:30) into flower-like
structures (corresponding numbers at 08:30) after the formation of the
thirteenth and last halo (red arrowhead, same cell as in Extended Data Fig. 2c).
Note that procentrioles become visible on the walls of both centrosomal
centrioles at the flower stage (yellow arrowheads). Centrioles detach
simultaneously from both centrosome and deuterosome platforms at 10:30.
C1 and C2 are centrosomal centrioles. Ag, aggregate of Cen2–GFP. d, Sas-6
immunoreactivity on 3D-SIM z-projections (left panel) or single z-slices
(120 nm, right panels) ofCen2–GFP1 (green) cells at the halo and flower stages.
At the halo stage, halos have accumulated in the cytoplasm and a halo is seen
forming from the C1 centriole (same cell as in Fig. 2c). At the flower stage,

eleven flowers are visible in the cytoplasm and procentrioles are elongating
fromC1 and C2 centrosomal centrioles and deuterosomes. e, Quantification of
the length of Cen2–GFP1 procentrioles on 3D-SIM images of cells at the halo
(red) and flower (yellow) stage. There are no significant differences among cells.
The lengths of the procentrioles in flower stage-cells are statistically different
from the lengths of the procentrioles in halo-stage cells (error bars represent
mean6 s.d.; two-tailed unpaired t-test, ***P, 0.0001). See Extended Data
Fig. 7b for quantification protocol. f, g, 3D-SIM z-slices (120 nm) showing the
immunolocalization of Sas-6, Deup1, Cep152, Plk4, Stil, Cpap and CP110 in
Cen2GFP1 halo (f) and flower (g) procentrioles. h, Immunostaining of P4
ependymal walls showing that Sas-6 immunoreactivity disappears from
Cep-1641 centrioles when they begin to grow motile cilia (GT3351). Time in
hh:mm; scale bars, 1mm.
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Extended Data Figure 9 | Ciliary mutant analyses in vitro and centriole
amplification inmouse trachea in vivo. a–d, Ciliarymutant analyses in vitro.
a, GT335 and Sas-6 immunoreactivity in a Cen2–GFP1 cycling ependymal
progenitor (DIV22; Ki671) and a differentiating progenitor at the halo stage
(DIV3). Arrowheads point to halos. b, Quantification of primary cilium
length in cycling (16 0.4mm; n5 25 cells) and differentiating progenitors
(3.26 0.6mm; n5 32 cells) showing a significant elongation at the halo stage
(error bars represent mean6 s.d.; two-tailed Mann–Whitney U-test,
***P, 0.0001). c, d, The absence of a primary cilium in differentiating
ependymal progenitor cells from Kif3a cKO mutants does not affect Sas-6
asymmetry. c, Representative Sas-6 staining on Cen2–GFP1 mother
(Cep1641) and daughter centrosomal centrioles in control (left panel) and
Kif3a cKO (right panel) halo-stage cells. Second and third columns show,
respectively, the corresponding ‘fire’ LUT signal intensities and fluorescence
intensity profiles. d, Daughter:mother centriole Sas-6 signal ratios in
differentiating (FoxJ11) control (2.46 1.5; n5 30 cells) and Kif3a cKO
(2.36 1.3; n5 29 cells) ependymal progenitor cells at the halo stage. The
distributions are not statistically different, but both differ significantly from a
theoretical mean ratio of 1 (error bars represent mean6 s.d.; two-tailed one
sample t-test, P, 0.0001; ns, not significant). e–k, Centriole amplification in
mouse trachea in vivo. e, Bright-field image showing a typical cranio-dorsal
region of the E17-P0 trachea wholemounts analysed in (f–k). f, Merged images
of Sas-6-immunostainined Cen2–GFP1 tracheal multiciliated progenitors
showing that the steps of centriole amplification are the same as in brain
ependymal walls; the stainings in the white and yellow boxes are shown

respectively in the upper and lower panels of g. g, Single 0.24mm z-slices of the
boxed regions in f: the centrosome images show Sas-6 negative centrosomal
centrioles; the halo images show that halos arise from the wall of a centrosomal
centriole (upper panels) and accumulate in the cytoplasm (lower panels); the
flower images show procentrioles on a centrosomal centriole (centriolar
pathway; upper panels) and hollow Sas-61 flowers (deuterosome pathway;
lower panels); the basal body images showmature docked Sas-6-negative basal
bodies. White arrowheads point to centrosomal centrioles in f and g. h, Sas-6
staining on Cen2–GFP1 mother (ninein1) and daughter centrosomal
centrioles in halo-stage cells in trachea epithelium. Second and third columns
show, respectively, the corresponding ‘fire’ LUT signal intensities and
fluorescence intensity profiles of the same markers. i, Daughter:mother
centriole Sas-6 signal ratios (2.36 1.3; n5 36 cells) in halo-stage cells in
E17–P0 trachea. The distribution differs statistically from a theoretical mean
ratio of 1 (error bars represent mean6 s.d.; two-tailed one sample t-test,
P, 0.0001); Sas-6 halo-stage daughter/mother centriole ratios are similar in
ependymal walls (Extended Data Fig. 2g) and trachea epithelium. j, Upper
panels: 0.96mm z-stacked images of a typical Sas-6/ninein immunoreactivity on
E17–P0 Cen2–GFP trachea showing that halo structures form exclusively on
the daughter centriole (n5 12 cells). Lower panels: 0.96mm z-stacked images
of a typical Deup1/ninein immunoreactivity on E17–P0 Cen2–GFP trachea
showing accumulation of Deup1 on the daughter centriole. k, Immunostaining
of P0 trachea showing that Sas-6 immunoreactivity disappears from basal
bodies when they begin to grow GT3351 motile cilia. Scale bars, 1mm.
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Extended Data Figure 10 | Hypothetical model of centriole amplification
through deuterosome formation. a, An unknownmechanism leads to Deup1
and Ccdc78 accumulation at the daughter centriole. b, Binding of Cep152 and
recruitment of Plk4 (refs 7,8) activate nucleation of the first procentriole.
c, Accumulation continues from the same active site and displace the first
procentriole. d, The second procentriole arises from the new complex. e–g, The
process continues until the deuterosome detaches from the centriolar wall.
g, The process begins again to form another deuterosome and nucleate new

procentrioles. During deuterosome formation (halo stage), procentrioles
remain latent at an early stage of their biogenesis. Several deuterosomes can
form concomitantly from different active sites on the daughter centriole
proximal wall. h, The cycle continues until centriole growth is triggered and
procentrioles grow from the walls of both centrosomal centrioles and
deuterosomes (flower stage). See Fig. 4i, j and Extended Data Fig. 8f, g for
3D-SIM localization of structural and regulatory proteins depicted here.
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Supplementary Video Legends 

Supplementary Video 1 

Apical (upper panel) and side (lower panel) views of a time-lapse sequence showing Cen2-

GFP dynamics (63X magnification, ∆t= 40 minutes) during the maturation of an ependymal 

progenitor in vitro. Note that halos appear within the centrosome region (14:00-30:40) and 

transform into flower-like structures (31:20-34:00) before the simultaneous release and apical 

docking of all the centrioles (34:00-72:40). White arrowheads point to the centrosomal 

centrioles of the ependymal progenitor when discernible. See Fig. 1(i-n). Time is in hh:mm. 

Scale bar: 2µm.  

Supplementary Video 2 

Apical (upper panel) and side (lower panel) views of a time-lapse sequence showing Cen2-

GFP dynamics (63X magnification, ∆t= 40 minutes) during the maturation of an ependymal 

progenitor in vitro, starting from the halo formation stage (00:00-04:00). Halos transform into 

flower-like structures (04:40-12:40) prior to the simultaneous release and apical docking of all 

the centrioles (12:40-32:40). Cd24 staining at 87:20 shows that basal bodies have nucleated 

cilia. White arrowheads indicate the centrosomal centrioles of the ependymal progenitor when 

discernible. See Extended Data Fig. 2(a-b). Time in hh:mm. Scale bar: 2µm. 

Supplementary Video 3 

Apical view of a time-lapse sequence showing Cen2-GFP dynamics (100X magnification, ∆t= 

30 minutes) during the process of halo formation. Note that 6 halos have already formed and 

are numbered in the cytoplasm. White arrowheads indicate centrosomal centrioles. Red 

arrowhead indicates the 7th and last halo formed from a centrosomal centriole (01:00-04:30). 
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After the last halo is released, the 7 halos transform into flowers (numbered at 12:30). 

Centrioles become visible on the walls of both centrosomal centrioles (yellow arrowheads). 

See Fig. 2a for single 0.7 µm z-planes of halo formation. Time in hh:mm. Scale bar: 2µm. 

Supplementary Video 4 

Time-lapse sequence showing Cen2-GFP dynamics (100X magnification, ∆t= 30 minutes) 

during halo formation. Note that 12 numbered halos have already formed. White arrowheads 

indicate centrosomal centrioles. Red arrowhead indicates the 13th and last halo formed from a 

centrosomal centriole (01:00-08:30). All halos then transform simultaneously into flowers 

(numbered at 08:30). Centrioles become visible on the wall of both centrosomal centrioles 

(yellow arrowheads). Centrioles detach simultaneously from both centrosome and 

deuterosome platforms from 10:30. Centrin aggregates are occasionally observed in Cen2-

GFP cells. See Extended Data Fig. 2c for single z-planes of halo formation. Time in hh:mm. 

Scale bar: 2µm. 

Supplementary Video 5 

3D-SIM z-planes (0.1µm) spanning a halo and showing the raspberry-like organization of 20 

procentrioles (green: Cen2-GFP, red: SAS-6). Dashed circles (left) outline the Cen2+ subunits 

and dashed rectangles (right) outline the Cen2+/SAS-6+ procentrioles that are oriented parallel 

to z-plane. z labeling is in µm. 

Supplementary Video 6 

Time-lapse sequence of the Cen2-GFP/KusabiraOrange-Deup1 dynamics (100X 

magnification, ∆t= 30 minutes) during centriole amplification showing that halos and flowers 

display a Deup1+ core. Ten halos are already cytoplasmic, some of which are superimposed 

due to z-stacking. White arrowheads indicate centrosomal centrioles. Magenta arrowhead 

indicates the 11th and last halo formed from a centrosomal centriole (00:00-01:30). After the 
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last halo is formed, all the halos transform simultaneously into flower-like structures by 

05:00. Cyan arrowheads indicate procentrioles that become visible on the walls of both 

centrosomal centrioles. Centrin aggregates are occasionally observed in Cen2-GFP expressing 

cells. Time in hh:mm. Scale bar: 2µm. 

Supplementary Video 7 

Cen2-GFP time-lapse imaging (100X magnification, ∆t= 30 minutes) at the end of the flower 

stage showing the synchronized release of procentrioles (t=00:00-03:00) from both 

centrosomal centrioles and deuterosomes (𝑡=2.5±0.85h in 9 cells from 5 independent 

experiments). Released centrioles have migrated to the apical membrane by 20:30. White 

arrowheads point to the centrosomal centrioles when discernible. Halos appearing at -01:30 in 

the lower right corner and flowers appearing at 11:00 are from neighboring cells. Time in 

hh:mm. Scale bar: 2µm. 
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Youssef Nabil - One Lonely Star, Alexandria 1999  
Hand coloured gelatine silver print. Courtesy of the Artist and Nathalie Obadia Gallery, Paris/Brussels
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“Analogy points in this direction, and though analogy is 

often misleading, it is the least misleading thing we have.” 

 

Samuel Butler 

The Note-Books of Samuel Butler; Chapter VII; On the Making of Music, Pictures, 
and Books; Thought and Word ii.  

Published by Henry Festing Jones, 1912 
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Please note that the following article is a first version draft manuscript. 

Some experiments are still ongoing in order to finalize certain details of the study.  
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Abstract 

Mitosis and meiosis are driven by a common regulatory network centered on the activity of 

the Cdk1-CyclinB1 complex. The protein network coordinates M-phase entry and exit crucial 

for cell division and meiotic gamete production. Here we provide evidence of an activation of 

the Cdk1-CyclinB1 complex along with its mitotic regulatory network in a novel non-

proliferative cellular context. By coupling single cell live imaging with pharmacological 

modulation of mitosis regulators, we show that the mitotic machinery orchestrates the 

spatiotemporal progression of the centriole amplification dynamic in terminally differentiating 

multiciliated cell progenitors. The fine tuning of Cdk1 activity avoids mitotic entry while 

allowing the timely coordination of centriole number, growth, and disengagement through 

checkpoint-like phase transitions necessary for subsequent functional motile ciliation.  By 

defining the mechanism that regulates centriole number and allows the formation of motile 

cilia, these results establish new outlooks for studies treating cilia-related diseases and 

pathological centriole amplification associated with cancer and anomalous brain development. 
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Introduction 

The cell cycle is organized around a negative feedback loop involving Cdk1–CyclinB1 

protein kinase and the E3 ubiquitin ligase APC/CCdc20. During cell cycle progression, the 

gradual synthesis of CyclinB1 with mitotic kinase and phosphatase activity make the cell 

toggle from the interphase state with inactive Cdk1–CyclinB1 to a mitotic state with active 

Cdk1-CyclinB1 17,86,195,196. Cdk1-mediated phosphoactivations coordinate mitotic entry by 

inducing cytoskeletal reorganizations, chromosome condensation  and nuclear membrane 

disintegration 19,20,79,81,85,196 . Cdk1 activity eventually triggers the activation of the Anaphase 

Promoting Complex (APC/CCdc20) that tags, among others, mitotic Cyclins and Securin for 

degradation thus completing the loop by returning the cell to the interphase state 92,93,197,198. 

Anaphase is promoted by the activation of Separase and the activity of Plk1 199 that trigger 

sister chromatid separation in time for mitosis exit. The decline of Cdk1 activity finally 

promotes the unwinding of chromosomes and the reformation of the nuclear envelope.  

The centriole duplication cycle is mechanistically linked to cell cycle progression by a shared 

pool of master regulators 61,73,74,91,200. Centrioles are microtubule based structures that pair up 

to form the core of the centrosome, the major microtubule organizing center of animal cells 4. 

The duplication of centrioles during interphase forms two centrosomes that participate in 

bipolar spindle organization during mitosis to support symmetric separation of chromosomes 

at each cell division 24. In interphase and at the G1/S phase transition, a procentriole is formed 

next to each preexisting centriole of the centrosome. The orthogonal, a.k.a. engaged, 

configuration of each duplicated daughter centriole relative to its mother centriole and their 

proximity is maintained during interphase to prevent unscheduled biogenesis of additional 

centrioles 61. However, Plk1 and Cdk1 kinase activity at the G2/M phase transition induce the 

distancing of mother and daughter centrioles within each centrosome, as centrosomes separate 

along the nuclear envelope to opposite sides of the cell 77,89,200,201. To prevent additional 
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centriole formation as a result of mitotic entry, Cdk1 displaces the centriole cartwheel protein 

Stil 78 from the centrosome to the cytoplasm, and blocks its interaction with the centriole 

biogenesis initiator Plk4 96. At the metaphase-to-anaphase transition, APC/CCdc20 targets Stil 

for degradation in parallel to the decrease in Cdk1 activity 78. Plk1 activity followed by 

Separase activation after Securin degradation disengage the centrioles to license a new 

centriole duplication cycle in the newly formed daughter cells 73,202. 

Aberrant coordination of the centriole duplication cycle with the cell cycle may source 

supernumerary centrioles that are linked to tumorigenesis and tissue degeneration 43–46. In 

contrast to the strict centriole number control in the cycling cell context, post mitotic and 

terminally differentiating progenitors of multiciliated cells must amplify up to several hundred 

centrioles to nucleate an equal number of motile cilia 194. Mature mammalian multiciliated 

cells employ their motile cilia to transport vital fluids and particles along epithelia in the 

reproductive, respiratory, and central nervous systems 113. Defects in the centriole 

amplification dynamic lead to ciliopathies responsible for infertility, irreversible bronchial 

damages, and anomalous brain development 170,171,203.  

By investigating the centriole amplification dynamic in differentiating progenitors of 

multiciliated cells, our previous work has established that all amplified centrioles originate 

from the preexisting centrosome via multiple rounds of procentriole seeding 204. A paralogue 

of the core centriole duplication regulator Cep63 193, Deup1, supports the multiple rounds of 

procentriole seeding by materializing into deuterosomes, which are centrosome auxiliary 

spherical structures that carry the newly formed procentrioles. The centrosomal origin of all 

amplified centrioles 204 and the shared molecular cascade initiating centriole biogenesis 193,205 

suggest that multiciliated cells seize a differential control of the centriole duplication program 

to bypass the centriole number control for the purpose of multiple cilia formation. However, 

after several cycles of amplification the whole procentriole population goes through a 
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sequential and highly synchronized progression of events organized around two abrupt 

transitions 204. The first “amplification-to-growth phase” (A/G) transition is marked by a halt 

in deuterosome formation and centriole amplification coupled to a synchronous growth of the 

whole procentriole population from both centrosome and deuterosome platforms (Fig. 1a). 

During the growth phase, microtubules of the newly formed centrioles become 

polyglutamylated and centrioles acquire the distal marker Poc5. At the second “growth-to-

disengagement phase” (G/D) transition, the growing centrioles disengage synchronously from 

centrosome and deuterosome platforms before migrating toward the plasma membrane to 

drive motile ciliation (Fig. 1a). After this second transition, centrioles acquire distal 

appendages and lose procentriole proteins Sas-6 and Stil, markers of immaturity 204. 

Together with the progressive acquisition of centriole maturity markers, the two abrupt 

transitions marking the centriole amplification dynamic are reminiscent of centriole behavior 

in cycling cells at the G2/M and Metaphase/Anaphase transitions. We therefore sought to test 

the hypothesis that, as for centriole duplication, mitotic regulators coordinate the timely 

progression of centriole biogenesis in brain multiciliated cell progenitors. 

Results 

Mitotic network activation correlates to the progression of centriole phase transitions 

Multiciliated ependymal cells covering lateral ventricles are derived from radial glial cells 

during brain development. Their post-mitotic maturation, marked by a massive centriole 

production, starts at early postnatal stages 116,204. We first immunostained Centrin2-GFP 

(Cen2-GFP) lateral ventricles for the key mitosis initiating complex proteins Cdk1 and Cyclin 

B1. Maturing progenitors of multiciliated cells stain positive for both Cdk1 and Cyclin B1 

from the amplification phase up to the centriole disengagement phase before a gradual 

staining decrease in mature multiciliated cells (Fig. 1a-b and Extended Data Fig. 1a). A 
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parallel phosphorylation of cyclin B1 on the Cdk1-Cyclin B1 autophosphorylation site 17 is 

observed (Fig. 1c and Extended Data Fig. 1b and 2a-b) along with a decrease in the nuclear 

staining of the Cyclin-dependent kinase inhibitor 1B known as p27Kip1 (Extended Data Fig. 1c 

and 2c) 206,207. Nuclear histone H3 Ser10 (pH3) and lamin A-C Ser392 phosphorylation 

(pLamin), normally phosphorylated at the onset of mitosis, starts after the A/G transition. 

Vimentin Ser55 phosphorylation (pVim), normally phosphorylated in late mitosis, is observed 

from the G/D transition (Fig. 1d-e and Extended Data Fig. 1d and 2d).  These results suggest a 

temporary loss of quiescence and a cell cycle like entry of non-cycling ependymal progenitors 

timely correlated with the two transitions of centriole amplification. The immunostaining 

profiles and sequential mitosis-like phosphorylations together with the expression of mitotic 

cyclins known to bind to Cdk1 (Extended Data Fig. 2e) suggest that Cdk1 is activated during 

the centriole amplification process. 

To test whether Cdk1 activity is functionally responsible for the observed mitosis-like 

phosphorylations, we treated differentiating cultures with pharmacological modulators of the 

Cdk1 mitotic regulatory network. Direct inhibition of Cdk1 using RO-3306 208 abolished 

vimentin Ser55 phosphorylation in all differentiating cultures of multiciliated cell progenitors 

(Extended Data Fig. 3a-b). Inactivating the nuclear and cytoplasmic Cdk1 inhibitors Wee1 209 

and Myt1 210 using PD 166285 211 boosted pH3 and pVim stainings in cells during the growth 

and disengagement phases. Chromosome condensations could even be observed at these 

stages (Fig. 1f, PD 166285, second and third panels). We then focused on APC/C, the 

complex responsible for mitotic cyclin degradation and anaphase onset. Cells incubated with 

the partial inhibitor of APC/C activity, proTAME 212, showed pH3 and pVim 

hyperphosphorylations only at the disengagement phase. They were accompanied by 

prophase-like chromosome condensations as well as prometaphase-like and telophase-like 

figures (Fig. 1f, proTAME, third panel). The percentage of cells undergoing proTAME-
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mediated chromosome condensation was null when co-incubated with RO-3306 (2 

independent experiments) and decreased 2.7 fold in cells with siRNA depletion of CyclinB1 

(siScramble n=49 cells and siCyclinB1 n=18 cells at the disengagement phase with condensed 

chromosomes per differentiating culture at DIV4), suggesting that proTAME-induced 

chromosome condensation is dependent on Cdk1-CyclinB1 complex activity. Coupling 

proTAME-mediated APC/C disruption with MK 1775 213, an inhibitor of the nuclear Cdk1 

regulator Wee1, advanced the pH3 and pVim hyperphosphorylations as well as prophase-like 

chromosome condensation to the growth phase (Fig. 1f, proTAME+MK 1775, second and 

third panel). Similar to proTAME treatment alone, prometaphase as well as telophase-like 

figures were observed during the disengagement phase (Fig. 1f, proTAME+MK 1775, third 

panel). In total, an increase of 79% of cells with condensed chromosomes was observed in 

proTAME+MK 1775 treatment (n=23/30 cells) compared to proTAME treatment alone 

(n=3/7 cells). These collective results show that Cdk1 activity is responsible for the sequential 

mitosis-like phosphorylations observed during the centriole amplification dynamic. The 

development of pseudo-mitotic events after drug-induced hyperactivation of Cdk1 and 

inhibition of APC/C activity show that differentiating ependymal cells are soaked with all 

main mitosis actors. More precisely, we can conclude from the timing of drug-induced 

pseudo-mitosis events that Cdk1 activity is dampened by Myt1 and Wee1 at the A/G 

transition and by APC/C at the G/D transition. The delimitations of activity timings presented 

here further support our hypothesis concerning the parallel between the A/G and the G2/M 

transitions, as well as between the G/D and the metaphase/anaphase transitions. Altogether, 

the data suggest that the activity of Cdk1 and of its mitotic regulatory network correlates to 

the progression of the centriole amplification dynamic. 

Analogies between the centriole amplification dynamic and mitosis events 
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Along with Cdk1 activity during ependymal progenitor differentiation, the monitoring of 

centriole kinetics through spinning disk live cell imaging as differentiating cells passed across 

the two transitions highlighted additional features of mitosis. During the amplification phase, 

centrosomal centrioles remain in proximity and deuterosome platforms carrying newly 

formed procentrioles stay within a close centrosomal radius. At the A/G transition, both 

centrosomal centrioles and deuterosome platforms pull away (Fig. 2a-b) while migrating 

towards the nucleus to assume a three-dimensional perinuclear distribution (Fig. 2c-d and 

Extended Data 4a). At the onset of the disengagement phase, the primary cilium resorbs and 

centrioles collectively disengage from their growing platforms in an isotropic manner along 

the nuclear envelope (Fig. 2e-f, Extended Data Fig. 4b and Supplementary Video 1). During 

this phase, individualized centrioles colocalize with a drastically reorganizing tyrosinated 

microtubule network (Fig. 2g-h) 214. After the disengagement phase, all centrioles migrate 

towards the apical membrane to dock and nucleate motile cilia (Extended Data Fig.4b, 

Supplementary Video 1, and Article 1 Extended Data Figure 2). Separation of centrosomal 

centrioles and procentriole-bearing deuterosomes along the nuclear envelope recall 

centrosome separation during mitotic prophase thus reinforcing the analogies between A/G 

and G2/M transitions. Then, the subsequent disengagement of newly formed centrioles from 

their growing platforms further evokes the mother-daughter centriole disengagement 

occurring around mitotic anaphase thus reinforcing the analogies between the G/D and 

metaphase/anaphase transitions. Together with the activation of mitosis regulators, the results 

suggest that differentiating progenitors may employ the mitotic machinery to orchestrate the 

phase transitions observed during the centriole amplification dynamic. 

Cdk1 timely triggers centriole growth and disengagement in addition to regulating final 

centriole number  
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To test whether the activity of the mitotic network is responsible for the coordination of the 

centriole amplification dynamic, we coupled single cell live imaging of differentiating Cen2-GFP 

progenitors with pharmacological inhibition of mitosis regulators and monitored the centriole 

amplification phase transitions. Inhibition of Cdk1 by RO-3306 significantly delayed both A/G 

and G/D phase transitions (Fig. 3a-b and Supplementary Videos 2 and 3). This leads to a 

perturbation of centriole migration and subsequent motile cilia nucleation (Extended Data Fig. 5a 

and Supplementary Video 3). Interestingly, prolonging the amplification phase by displacing the 

A/G transition significantly increases the number of deuterosomes produced (Fig. 3c-d).  

Inversely, PD 166285-mediated inhibition of negative regulators of Cdk1 activity, Myt1 and 

Wee1, halts the amplification phase and significantly accelerates both phase transitions (Fig. 3e-f 

and Supplementary Video 4). Shortening the amplification phase decreases, dose dependently, 

deuterosome (Extended Data Fig. 5b-c) and final centriole number (Fig. 3g-h). Inhibition of Wee1 

alone by MK 1775 also leads to a reduction of final centriole number (Extended Data Fig. 5d-e). 

Both PD 166285 and MK 1775 treatments resulted in cultures with dose dependant increases in 

the percentage of multiciliated cells that are marked by a reduced generation of multiple motile 

cilia (Extended Data Fig. 5f-g). These results show that fine-tuning of Cdk1 activity by its mitotic 

modulators Myt1 and Wee1 timely triggers centriole amplification arrest and controls the number 

of centrioles. After centriole growth, Cdk1 triggers the subsequent synchronous disengagement of 

centrioles for correct migration and ciliation.  

APC/C-Cdc20 and Plk1 activity trigger centriole disengagement  

In cycling cells, the metaphase/anaphase transition is promoted by the activation of APC/CCdc20 

complex due to mitotic Cdk1-Cyclin B1 activity 198. Continuing the parallel with the cell cycle, 

we further tested whether Cdk1 triggers G/D transition through APC/C activation. To proceed, we 

screened the centriole amplification dynamic in presence of proTAME. Disrupting APC/C 

activity did not affect the A/G transition but significantly delayed the G/D transition, thus 
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perturbing centriole apical migration and ciliation (Fig. 4a-b, Supplementary Video 5). Consistent 

with the development of pseudo-mitosis observed by immunocytochemistry (Fig. 1d, proTAME, 

third panel), 60% of cells incubated with proTAME that passed the G/D transition condensed 

their chromosomes and underwent karyokinesis during the centriole disengagement phase (n=33 

cells entering pseudo-mitosis out of 55 cells initiating centriole disengagement; Fig. 4c, Extended 

Data Fig. 6a and Supplementary Videos 6,7, and 8; cells excluded from centriole amplification 

dynamic analysis in Fig. 4a-b). This pseudo-mitosis is characterized by mitotic chromosome 

condensation (Fig. 4c and Extended Data Fig. 6a-b), nuclear envelope breakdown (Extended Data 

Fig. 6b) and the formation of monopolar, bipolar, as well as multipolar spindles (Extended Data 

Fig. 6c). Although microtubule spindles are organized from patches of newly formed centrioles 

(Extended Data Fig. 6c), the direction of chromosome migration suggests that they are incapable 

of attaching chromosomes (Fig. 4c, Extended Data Fig. 6a, and Supplementary Videos 7 and 8). 

No EdU incorporation after 24-hour incubation time periods is observed in control or proTAME 

treated cells (data not shown). Consistently, centromere immunostainings confirmed the presence 

of single chromatids in pseudo-mitotic cells (n=40 centromeres per pseudo-mitotic cell; Extended 

Data Fig. 6d).  Condensed chromosomes separated after an average of 1.9±0.9 hours (Fig. 4d) 

before cells exited pseudo-mitosis and reformed one or more nuclei (Extended Data Fig. 6a and d) 

while the disengaged centrioles continued to migrate apically. Lagging chromosomes were 

occasionally observed and resulted in the formation of micronuclei (arrowheads in Fig. 4c and 

Extended Data Fig. 6c). The exit from the pseudo-mitosis state suggested that proTAME-

mediated APC/C inhibition is partial as in mitotic cells 212,215,216 , and that hyperactivation of Cdk1 

eventually leads to APC/C activation. To increase APC/CCdc20 inhibition efficiency, we incubated 

proTAME treated cells with Apcin, a synergistic APC/C inhibitor 216. Co-incubation with the two 

inhibitors resulted in a significant delay of the time spent in pseudo-mitosis (Fig. 4d), confirming 

partial inhibition of APC/C activity by proTAME and suggesting that Cdc20 is the activator of 
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APC/C in this context 215,216. Collectively, these results show that centriole disengagement is 

dependent on both Cdk1 and APC/C. Although further validation is required, one could 

hypothesize that, like in cycling cells at the metaphase/anaphase transition 198, Cdk1 maximizes 

APC/CCdc20 activity which in turn triggers centriole disengagement through the targeting of 

Securin and Cyclin B1 for proteasome degradation, thereby promoting Separase-mediated 

centriole disengagement and Cdk1 de-activation for terminal G0 state differentiation. These 

results also show that, in addition to Myt1 and Wee1, Cdk1 activity is fine-tuned by APC/C at the 

G/D transition to coordinate centriole amplification without entering mitosis.   

Since APC/CCdc20 activity along with Plk1 coordinate the disengagement of centrioles and 

chromosomes in cycling cells at the metaphase/anaphase transition 73,91, we also tested the 

implication of Plk1 in centriole disengagement during massive centriole production. Plk1 

inhibition by BI 2536 217 resulted in a blockade of the centriole G/D transition (Fig. 4e-f and 

Supplementary Video 9). Consistent with the  role of  Plk1 in mitosis initiation via Cdk1-

CyclinB1 complex activation through the  inhibition of Myt1/Wee1 and the activation of Cdc25 

as well as Cyclin B1 86,87,218, pharmacological inactivation of Plk1 also delayed the A/G transition 

(Fig. 4e-f and Supplementary Video 10). As with direct inhibition of Cdk1 by RO-3306, this 

amplification phase prolongation is accompanied by a significant increase in deuterosome number 

(Fig. 4g-h). The transition delays resulted in a dose dependant decrease of the number of 

multiciliated cells formed within a 24-hour incubation time period (Extended Data Fig. 6e). 

Longer incubation periods with both BI 2536 and RO-3306 would be of interest in order to 

evaluate to what extent the final centriole number is affected by these treatments. Comparable to 

the role of Plk1 in the control of the G2/M and metaphase/anaphase transitions, these results show 

that Plk1 is involved in the control of A/G and G/D transitions in ependymal cells. It further 

confirms the presence and functional implication of a mitosis regulatory network in the 

maturation of differentiating multiciliated progenitors. 
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Discussion 

In this report, we complete the spatiotemporal description of the centriole amplification 

dynamic and highlight that a minimal mitosis molecular network is coordinating this process 

in developing ependymal cells. We show that centriole growth and disengagement are timely 

regulated by a network involving Plk1, Cdk1 and APC/C in order to control centriole number 

and a synchronous release of centrioles for motile ciliation (Fig. 5). This study further 

completes the picture of the cellular and molecular mechanisms that bridge multiple centriole 

biogenesis to the establishment of multiciliated cell and tissue polarity 116,191,204 . 

Our drug experiments reveal that Cdk1 activation is the trigger for centriole amplification 

arrest and subsequent centriole growth. Studies of centriole duplication in cycling cells have 

shown that Cdk1-Cyclin B1 prevents supernumerary centriole biogenesis from the G2/M 

transition until mitosis exit by displacing Stil and preventing Stil-Plk4 interactions 78,96. One 

can hypothesize that the same Cdk1-mediated action on Stil stops the amplification in 

multiciliated cells. The causal link between the centriole amplification arrest and centriole 

growth still needs to be assessed. 

The same stages of centriole amplification are also observed in multiciliated cells covering the 

trachea 204 (Article 1; Extended Data Fig.9), suggesting that all mammalian multiciliated cells 

may share the same molecular mechanism to orchestrate the centriole amplification dynamic. 

However, the number of motile cilia significantly differs in between multiciliated tissues of a 

single organism122,123. In mice, ependymal cells usually generate less than 70 centrioles in 

vivo, whereas airway multiciliated cells produce up to 300 centrioles. Although a differential 

regulation of the Cdk1 network at the amplification-to-growth phase transition may explain 

final centriole number variability across mammalian multiciliated epithelia, several studies 

suggest that the number of centrioles correlates to multiciliated cell surface size 123,205. It 
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would thus be interesting to test whether Cdk1 also coordinates multiciliated cell surface 

growth as in cell cycle contexts 219. 

By designating components of the mitotic machinery as the master regulators of the two phase 

transitions, we further unify the mechanisms of centrosome duplication in cycling cells and 

large-scale centriole production in multiciliated cells. However, the centrosome duplication 

cycle in cycling cells is tightly coupled to the DNA cycle, whereas multiciliated cell 

progenitors uncouple centriole biogenesis from DNA synthesis. The network of regulators 

curbing Cdk1 activity along with immunostaining profiles of mitotic phosphorylations, 

microtubule reorganization, and mRNA levels suggest that basal activity levels of Cdk1 

during the centriole amplification dynamic are purposely kept low beneath a mitosis 

commitment threshold level. Developing ependymal cells may therefore implement an 

alleviated version of mitosis to manage centriole amplification using mitosis tools while 

uncoupling centriole from chromosome dynamics. This consequently suggests that centriolar 

events may require less Cdk1 activity than DNA events. 

We provide evidence of physiological and thresholded mitotic phosphorylations of vimentin, 

histones, and lamins during the centriole amplification dynamic of non-proliferative 

progenitors of multiciliated cells. Phosphorylation of Histone 3 (Ser10) suggests that Aurora 

B kinase is expressed and active during the centriole phase transitions 220. It remains to be 

determined whether these mitotic phosphorylations are simply downstream readouts of 

mitotic kinase activity for the coordination of the centriole dynamic, or if they have additional 

functional purposes. In cycling cells and from within the nucleus, both Cdk1 and Aurora B 

kinase phosphorylate histones and condensins to promote chromosome condensation at 

mitotic entry 81,85,221,222. Lamin phosphorylation by Cdk1 disassembles nuclear pore complex 

proteins before disintegrating the nuclear membrane, thus exposing condensed chromosomes 

to the cytoplasm 79,88,223. Since our results suggest that Cdk1 is active in both the cytoplasm 
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and the nucleus, it raises the question whether the curbed mitotic phosphorylations during the 

centriole amplification dynamic permebealize the nuclear membrane or initiate chromosome 

condensation by nuclear recruitment of condensins. Assessing the spatiotemporal distribution 

of condensins, the integrity of the nuclear membrane, and the potential activation of DNA 

damage pathway components during the centriole amplification dynamic may clarify this 

question as well as provide insights into how developing multiciliated cells maintain DNA 

integrity in presence of an active mitosis machinery. 

Radial glial cells, which are progenitors of ependymal multiciliated cells 116, seem to retain 

the capacity to reactivate cell cycle regulators, albeit specific to their cycling state, for the 

purpose of terminal differentiation. Hyperactivation of Cdk1 or APC/C disruption in 

differentiating ependymal progenitors leads to abrupt pseudo-mitosis entry and exit marked 

by aberrant chromosome segregation and fusion of decondensing chromosomes into one or 

more nuclei. Interestingly, radial glial cells are also the main source of deadly childhood 

ependymal tumors known as ependymomas 224. Since notable causes of ependymomas are 

rapid oncogenic gene fusions 225 or epigenetic modifications 226 in their radial glial 

progenitors, further assessment of pseudo-mitosis consequences on differentiating radial glial 

cells may prove to be of interest. 
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Supplementary Materials 

Methods 
Legends for Figures 1 to 5 
Legends for Extended Data Figures 1 to 6 
Legends for Supplementary Videos 1 to 10 
Figures 1 to 5 and Extended Data Figures 1 to 6 

 

Methods 

Animals 

See Article 1, Methods section. 

Brain dissections 

See corresponding figure legends and Article 1, Methods section. 

Electroporation of ventricular walls  

The electroporation protocol was adapted from Boutin et al. 227 for Arl13b-GFP/Centrin2-RFP 

experiments (see Figure 2e). New born (P0) Arl13b-GFP transgenic mice were anesthetized 

by 3 minutes of hypothermia A suture needle is pierced through the cranium and a glass 

capillary is introduced into the newly formed orifice (at a 1mm depth to reach the ventricle) 

that injects a solution of plasmid DNA Centrin1-RFP (gift of Xavier Morin) at 2 µg/µL and 

1/20 Fast Green dye into the right ventricle. Electrodes (CUY650P5) covered in conductive 

gel (Aquasonic 100, Parker, ref 01-08) are placed from both sides of the skull with the + 

bourne on the side of the injected hemisphere and 5 pulses (100V for 50ms every 850ms) are 

applied. The mice are heated up to 37°C and left overnight with their mother. The mice are 

then sacrificed and only parts of the ventricular walls positive for the Fast Green dye are 

scalped and cultured by using the same protocol described below. 

Primary ependymal cell cultures and transfections 
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See Article 1, Methods section. 

RT-PCR 

The RNeasy Qiagen kit (74004) was used to extract mRNA at corresponding days of in vitro 

differentiation. cDNA was obtained with the MasterMix 5 PRIME solution and protocol. The 

following oligonucleotide sequences were used for the PCR: Cdk1 

(F:ACAGAGAGGGTCCGTCGTAA,R:ATTGCAGTACTGGGCACTCC); Deup1 

(F:AGGAATTAAGCAAGGCTGTGGA,R:TGAACTCGGTGTGTGTCTCTGC); Cyclin O 

(F: CGCTGGATCTCCAGACCTTC,R:GATTCGGCAGTCAGTCACTTGTGG); Cyclin A1 

(F:CAGCAGGCTGTGGCTTACTA;R:CTGTGATCTCCTGGCCACA); Cyclin A2 

(F:TCGCTGCATCAGGAAGACCA;R:AAGAGGAGCAACCCGTC); Cyclin B1 

(F:CTCTCCAAGCCCGATGGAAA;R:TGACTGCTCTTCCTCCAGTTG); and Cyclin B2 

(F:GCTAGCTCCCAAGGATCGTC;R:CTGCAGAGCTGAGGGTTCTC). 

Immunostaining  

For Centrin, Foxj1, Sas-6 and GT335 protocol and references, see Article 1, Methods section. 

Lateral brain ventricles and cell cultures were fixed without permeabilization in PFA for 2 

hours and 10 minutes, respectively. Tissues and cells were pre-blocked in PBS 1X with 0.2% 

Triton X-100 and 10% FBS before incubation with primary then secondary antibodies before 

counterstaining with DAPI (10 μg/ml, Sigma) and mounting in Fluoromount (Southern 

Biotech). The following antibodies were used: mouse IgG1 Cdk1 (1:100; Santa Cruz), mouse 

IgG2a Cyclin B1 (1:50; GNS-11; BD Pharmingen), rabbit Cyclin B1 (pSer126; 1:100; 

Abcam), rabbit Histone 3 (pSer10; 1:100; Cell Signaling), mouse IgG2b Vimentin (pSer55; 

1:400; Abcam), rabbit p27kip1 (1:200; Santa Cruz), mouse igG1 p27kip1 (1:200; BD 

Biosciences), human centromere (1:100; Antibodies Inc.), rabbit Lamins A+C (pSer392; 

1:200; Abcam), rat tyrosinated tubulin (YL1/2; 1:200; Abcam),  mouse IgG1 Nuclear pore 
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complex proteins Mab414 (1:500; Eurogentech), and species-specific Alexa Fluor® 

secondary antibodies (1:400; Invitrogen). 

For confocal microtubule visualization, a fixation protocol was adapted from Mathieu Piel. 

Fixation and detergent solution [3% PFA,0.2% Nonidet P-40 “NP-40” in Brinkley Buffer 

1980 “BRB80” 1X (80mM PIPES,1mM MgCl2 hexahydrate, 1mM EGTA; pH 6.8)] was 

added for 1 minute at 37°C, then replaced by a detergent free fixation solution (without NP-

40) and incubated for 10 minutes at 37°C.  Cells were permeabilized for 10 minutes (NH4Cl 

0.1M in BRB80) and then washed twice with BRB80 1X for 5 minutes. Blocking buffer 

(0.2% NP-40, 3% FBS in BRB80 1X) was added for an hour, before incubating with the 

primary antibodies for one hour at room temperature. Cells were then washed twice with 

0.2% NP-40 in BRB80 1X for 5 minutes and incubated with the secondary antibodies for an 

hour at room temperature. Cells were washed twice with 0.2% NP-40 in BRB80 1X for 10 

minutes, and once with DAPI for 5 minutes.  

Chemical inhibitors 

See figure legends for final concentrations. The following inhibitors were used: RO-3306 

(Calbiochem), PD 166285 (Tocris Bioscience), MK 1775 (Axon Medchem), proTAME 

(Boston Biochem), Apcin (Boston Biochem), and BI 2536 (SelleckChem). 

Microscopy  

Epifluorescence microscopy.  

See Article 1, Methods section. 

Confocal microscopy  

A Confocal Leica TCS SP5 microscope equipped with a X63 objective was used for 

microtubule and nuclear pore complex visualization.  
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Videomicroscopy.  

See Article 1, Methods section. 

Videomicroscopy with inhibitors.  

Inhibitors were diluted in DMEM glutamax, 0% FBS, 1% P/S and added directly into cell 

chambers 5 to 7 minutes before the start of image acquisition. 

Transmission electron microscopy.  

See Article 1, Methods section. 

Quantification and statistical analyses 

Data were compiled from at least 2 independent experiments except for RT-PCR results in 

Extended Data Figure 2e. Fluorescence intensity was quantified with Image J and compared 

images were acquired with the exact same acquisition conditions. For centriole number 

quantifications, an in-house built ImageJ macro plugin customized for 40X magnification was 

used to automatically detect Cen2-GFP+ centrioles in 3D stacks. GFP signal detection in 3D 

stack uses sequential processing comprising of 3D Gaussian filtering for noise removal, 3D 

LoG filtering 228 for enhancing GFP signal size and 3D objects while suppressing the rest, and 

‘Fast Filter 3D maxima detector’ 229 for finding the location of GFP signal in 3D. All the 

parameters are tuned based on assumed size (0.25 µm diameter) of GFP signal in 3D with a 

40X magnification. Detected GFP signal per cell is then processed by the cell profiler 

software 230 using batch processing to obtain final plotted values. All graphs and statistical 

analyses were obtained using GraphPad Prism software. See corresponding figure legends for 

p-values (P) and further details. 
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Figure legends 

Figure 1   Mitotic network activation correlates to the progression of centriole phase 

transitions 

a, Illustration of the procentriole amplification phase (grey bar), the procentriole growth phase 

(orange bar), and the centriole disengagement phase (green bar). A/G represents the 

amplification-to-growth phase transition, and G/D represents the growth-to-disengagement 

phase transition. b-e, Cdk1, Cyclin B1, Cyclin B1 (pSer126), Histone H3 (pSer10), and 

Vimentin (pSer55) immunostainings on differentiating Cen2-GFP+ ependymal progenitors in 

vivo. Cen2-GFP+ mouse lateral ventricles from P3 to P6 were used. Cells under grey bars are 

at the centriole amplification phase; cells under orange bars are at the centriole growth phase; 

cells under green bars are at the centriole disengagement phase. Nuclear DAPI staining is 

outlined in c-d. a-c are crops from Supplementary Fig. 1a-b and d. f, Representative 

immunostainings of Histone H3 (pSer10) and Vimentin (pSer55) in differentiating Cen2-

GFP+ ependymal progenitors in vitro (DIV 4) at the amplification (grey bars, panel 1), growth 

(orange bars, panel 2), and disengagement (green bars, panel 3) phases. Nuclei are stained 

with DAPI. Cells were incubated for 3 hours with DMSO, PD 166285 0.5µM, proTAME 12 

µM, or proTAME 12µM with MK1775 1µM. Scale bars, 5µm. 

Figure 2   Progression of the centriole amplification dynamic is analogous to early 

mitosis events 

a, Evolution of the distance between centrosomal centrioles (left panel) or the occupied 

surface area of deuterosomes (right panel) in 28 Cen2-GFP+ filmed cells transitioning from 

the amplification phase to the growth phase; P values derived from two-tailed Wilcoxon 

matched-pairs signed rank test, ****P<0.0001. b, Filmed Cen2-GFP+ cell #15 from a 

transitioning from the amplification phase (grey box) to the growth phase (orange box). 
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Yellow arrowheads indicate deuterosomes and blue arrowheads indicate centrosomal 

centrioles. c, From Article 1 Supplementary Video 1. Profile view of Cen2-GFP dynamics in 

a cell transitioning from the amplification (grey bar) to the growth (orange bar) phase. Note 

the perinuclear distribution of deuterosomes in the cell at the growth phase. Right panel is an 

apical view single z-plane (0.7µm) at the growth phase. d, Single confocal z-plane (0.25µm) 

showing immunostainings of Centrin and nuclear pore complex proteins in vitro in a cell at 

the growth-to-disengagement phase transition. e, Primary cilium (Arl13b-GFP+) and centriole 

(Cen2-RFP+) dynamics from the growth phase through the disengagement phase until the 

multiple basal body stage. White arrowheads indicate the Arl13b-GFP+ primary cilium when 

present. f, Apical and profile view of Cen2-GFP dynamics showing the perinuclear 

disengagement of 136 centrioles. Apical view of the nucleus region is shaded in blue. g, 

Tyrosinated tubulin and Centrin immunostainings in vitro showing the evolution of 

tyrosinated tubulin networks and centriole localization in cells at the centrosome stage (left 

panel), the growth-to-disengagement phase transition (central panel), and the mature multiple 

basal body stage (right panel). Note the loss of microtubule polarization in the cell at the 

growth-to-disengagement phase transition. DNA is stained with DAPI. h, Single confocal 

basal z-plane (0.25µm) from the z-stack (5.8 µm) in e (central panel) showing colocalization 

of disengaged centrioles with tyrosinated tubulin at the growth-to-disengagement (G/D) phase 

transition. White boxes in d, f, and h correspond to the magnified regions in lower panels; 

time in hh:mm; scale bars, 1 µm (d and h) and 5µm (b-c and e-g). 

Figure 3 Cdk1 timely triggers centriole growth and disengagement and regulates final 

centriole number  

a, Centriole amplification phase transition analysis of filmed differentiating Cen2-GFP+ 

ependymal cells in presence of DMSO (n=71 cells, left panel) and RO-3306 9µM (n=74 cells, 

right panel). b, Tukey box plot comparing the time cells from a spent in the centriole 
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amplification, growth, and disengagement phases; ***P=0.0008, ****P<0.0001. c, 

Quantification of the number of Sas-6+ deuterosomes in DIV4 Cen2-GFP+ cells at the 

amplification phase (GT335-) after 24-hour incubation with DMSO (n=20 cells) or RO-3306 

(n=22 cells). *P=0.0172. To avoid bias of cells in early stages of the amplification phase, cells 

with less than 4 deuterosomes were excluded from the quantification. d, Sas6 immunostaining 

showing deuterosomes of DIV4 Cen2-GFP+ cells at the amplification phase (GT335-) after 24 

hours of incubation with DMSO (left panel) or RO-3306 (right panel). e, Centriole 

amplification phase transition analysis of filmed differentiating Cen2-GFP+ ependymal cells 

in presence of DMSO (n=54 cells, left panel) and PD 166285 0.5µM (n=53 cells, right panel). 

f, Tukey box plot comparing the time cells from e spent in the centriole amplification, growth, 

and disengagement phases; *P=0.0301, ****P<0.0001. g, Quantification of the number of 

centrioles in DIV4 Cen2-GFP+ cells at the disengagement phase (Sas-6+) after 24-hour 

incubation with DMSO (n=49 cells), PD 166285 0.25µM (n=21 cells) and PD 166285 0.5µM 

(n=21 cells). *P=0.0198, ****P<0.0001. h, Immunostainings showing disengaging Sas6+ 

centrioles in Cen2-GFP+ cells after 24 hours of incubation with DMSO (left panel), PD 

166285 0.25µM (central panel), and 0.5µM (right panel). Plus signs in b and f indicate the 

means; error bars in c and g represent mean ± s.d.; all P values derived from two-tailed Mann-

Whitney U-tests; scale bars, 5 µm. 

Figure 4 APC/C-Cdc20 activity triggers centriole disengagement and Plk1 activity 

regulates both centriole amplification phase transitions 

a, Centriole amplification phase transition analysis of filmed differentiating Cen2-GFP+ 

ependymal cells in presence of DMSO (n=98 cells, left panel) and proTAME 12µM (n=63 

cells, right panel). b, Tukey box plot comparing the time cells from a spent in the centriole 

amplification, growth, and disengagement phases; ***P=0.0005, ****P<0.0001. c, Centriole 

(Cen2-GFP+) and nucleus (H2B-RFP+) dynamics starting from the growth phase until the 
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multiple basal body stage in DMSO and proTAME 12µM treated cells. Pseudo-mitosis 

initiates during the disengagement phase at 10:40. White arrowheads indicate micronuclei 

formation after exit from proTAME-mediated pseudo-mitosis. d, Tukey box plot comparing 

the time cells spent in pseudo-mitosis in presence of proTAME 12µM (n=33 cells) or 

proTAME 12µM coupled to Apcin 25µM (n=6 cells); ***P=0.0014. e, Centriole 

amplification phase transition analysis of filmed differentiating Cen2-GFP+ ependymal cells 

in presence of DMSO (n=61 cells, left panel) and BI 2536 200nM (n=66 cells, right panel). f, 

Tukey box plot comparing the time cells from e spent in the centriole amplification, growth, 

and disengagement phases; **P=0.0054, ****P<0.0001. g, Quantification of the number of 

Sas-6+ deuterosomes in DIV4 Cen2-GFP+ cells at the amplification phase (GT335-) after 24-

hour incubation with DMSO (n=27 cells), BI 2536 50nM (n=49 cells), and BI 2536 200nM 

(n=67 cells). *P=0.0198, **P=0.004. Cells with less than 4 deuterosomes were excluded from 

the quantification. h, Sas6 immunostaining showing deuterosomes of DIV4 Cen2-GFP+ cells 

at the amplification phase (GT335-) after 24 hours of incubation with DMSO (left panel), BI 

2536 50nM (central panel), and BI 2536 200nM (right panel). Plus signs in b, d, and f 

indicate the means; error bars in g represent mean ± s.d.; all P values derived from two-tailed 

Mann-Whitney U-tests; time in hh:mm; scale bars, 5 µm. 

Figure 5 Model of the mechanism regulating the centriole amplification dynamics in 

maturing multiciliated cells 

The centriole amplification-to-growth transition is triggered by Plk1 and Cdk1 activity (green 

arrows). Wee1/Myt1 regulate activity levels of Cdk1 that seems to associate with Cyclin B1 

but probably includes other M-Phase cyclins. Plk1 may potentially participate in Cdk1-Cyclin 

B1 activation indirectly via Wee1/Myt1 inhibition or directly via Cyclin B1 phosphorylation 

(dotted grey line and arrow) as in cycling cells at the G2/M transition 86,218. The centriole 

growth-to-disengagement transition is triggered by the Cdk1-APC/C activity axis and Plk1 
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activity (green arrows). Plk1 may hypothetically promote indirect APC/C activation (grey 

dotted arrow) as in cycling cells 231,232. 

Extended Data Figure 1   Immunostaining profiles of mitosis regulators in 

differentiating ependymal lateral ventricles in vivo 

a-d, P3 to P6 differentiating Cen2-GFP+ lateral ventricles immunostained for Cdk1, Cyclin 

B1, Cyclin B1 (pSer126), p27kip1, Histone H3 (pSer10), and Vimentin (pSer55). Grey boxes 

(amplification phase), orange boxes (growth phase), green boxes (disengagement) phase 

indicate magnified cells in Fig.1a-c. a and c, Fuchsia arrows indicate FoxJ1+ cells at the 

centrosome stage and fuchsia arrowheads indicate mature ependymal cells at the multiple 

basal body stage. c, Grey arrows indicate cells at the amplification phase; orange arrows 

indicate cells at the growth phase; green arrow indicates cell at the disengagement phase. d, 

yellow arrowhead indicates a cycling progenitor in mitosis. Scale bars, 5µm. 

Extended Data Figure 2 Immunostainings of mitosis regulators in differentiating 

ependymal cells in vitro; Semi quantitative RT-PCR of Cdk1 and mitotic cyclins 

a,c-d, Representative immunostainings of Cyclin B1 (pSer126), p27kip1, and Lamins A+C 

(pSer392) on differentiating Cen2-GFP+ ependymal progenitors in vitro (DIV 3-5) at the 

amplification (grey bars), growth (orange bars), and disengagement (green bars) phases. 

Nuclei are stained with DAPI. b, Quantification of nuclear Cyclin B1 (pSer126) 

immunostainings in vitro; left panel, representative stacked image (4.6µm) of Cen2-GFP+ 

ependymal culture with outlined nuclei used for mean fluorescence intensity quantifications 

of Cyclin B1 (pSer126); right panel, mean fluorescence intensity of nuclear Cyclin B1 

(pSer126) signal in cells at the amplification phase (n=6 cells), growth phase (n=6 cells), 

disengagement phase (n=5 cells), and multiple basal body stage (n=10 cells) relative to 

nuclear mean signal intensity in cells at the centrosome stage (n=48 cells). Error bars 
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represent mean ± s.d.. e, Graphs showing cDNA levels of Cdk1 and mitotic cyclins (Cyclin 

A1, A2, B1, and B2) relative to Cyclophylin cDNA (internal sample loading control). mRNA 

was extracted from cultures with cycling ependymal progenitors (DIV-2), differentiating 

ependymal progenitors (DIV1 until DIV10, shaded in grey), and differentiated cultures 

(DIV15). Deup1 193 and Cyclin O 185 were used as controls of culture differentiation. Scale 

bars, 5µm. 

Extended Data Figure 3 Immunostainings of mitosis regulators in differentiating 

ependymal cells in vitro; Relative cDNA levels of Cdk1 and mitotic cyclins 

a, Representative Vimentin (pSer55) immunostainings and corresponding signal surface plots 

of DIV4 ependymal cultures after 24-hour incubations with DMSO (left panels) or RO-3306 

(right panels). b, Control and RO-3306 treated Cen2-GFP+ ependymal progenitors at the 

disengagement phase immunostained for Vimentin (pSer55). Nuclei are stained with DAPI. 

Scale bars, 5µm. 

Extended Data Figure 4 Transmission electron microscopy (TEM) of centrioles at the 

growth phase; Cen2-GFP dynamics from the growth phase up to the multiple basal 

body stage 

a, TEM section (70 nm) of a differentiating ependymal progenitor (DIV4) at the growth phase 

showing centrioles on deuterosomes in nuclear contact; C, Cytoplasm; N, Nucleus.  b, Apical 

and profile view of Cen2-GFP dynamics from the growth phase showing the perinuclear 

disengagement of centrioles followed by the apical migration of all centrioles; nucleus is 

shaded in blue and white arrowheads indicate centrosomal centrioles. Time in hh:mm; scale 

bars, 1µm (a) and 5µm (b). 

Extended Data Figure 5 Analysis of centriole amplification phases post-treatment with 

RO-3306, PD 166285, and MK 1775 
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a, Proportion of centriole amplification phases in DIV4 Cen2-GFP+ ependymal cultures 

stained for Sas6 and GT335 after 24 hours of incubation with DMSO (n=143 cells) or RO-

3306 9µM (n=112 cells). b, Quantification of deuterosome number in DIV4 Cen2-GFP+ 

ependymal progenitors at the amplification phase and the growth phase treated for 24 hours 

with PD 166285. Cultures were immunostained for Sas-6 and GT335. Amplification phase: 

DMSO n=66 cells, PD166285 0.25µM n=16 cells, PD 166285 0.5µM n=8 cells; Growth 

phase: DMSO n=33 cells, PD166285 0.25µM n=10 cells, PD 166285 0.5µM n=3 cells; 

*P=0.0385, ***P=0.0009. c, Example of differentiating Cen2-GFP+ ependymal progenitors 

(DIV4) immunostained at the growth phase (Sas-6+, GT335+) after 24 hours of incubation 

with PD 166285 0.25µM. White boxes indicate magnified deuterosomes in the lower panel. d, 

Quantification of deuterosome number in DIV4 Cen2-GFP+ ependymal progenitors at the 

amplification phase and the growth phase treated for 24 hours with MK 1775. Cultures were 

immunostained for Sas-6 and GT335. Amplification phase: DMSO n=66 cells (same cells as 

in b), MK 1775 0.5µM n=18 cells, MK 1775 1µM n=20 cells; Growth phase: DMSO n=33 

cells (same cells as in b), MK 1775 0.5µM n=18 cells, MK 1775 1µM n=6 cells. *P=0.0468. 

e, Quantification of the number of centrioles in DIV4 Cen2-GFP+ cells at the disengagement 

phase (Sas-6+) after 24-hour incubation with DMSO (n=49 cells; same cells as in Fig.3g), MK 

1775 0.5µM (n=16 cells), and MK 1775 1µM (n=20 cells); ****P<0.0001. f, Proportion of 

centriole amplification phases in DIV4 Cen2-GFP+ ependymal progenitors stained for Sas6 

and GT335 after 24 hours of incubation with DMSO (n=337 cells) MK 1775 0.5µM (n=172 

cells), MK 1775 1µM (n=188 cells), PD166285 0.25µM (n=164 cells), PD 166285 0.5µM 

(n=180 cells). g, Representative example of differentiated Cen2-GFP+ ependymal cells 

(DIV4) immunostained for motile cilia (GT335+) after 24 hours of incubation with MK 1775 

1µM (central panel) or PD 166285 0.5µM (right panel). Error bars represent mean ± s.d.; P 
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values derived from two-tailed Mann-Whitney U-tests (b and e) or from Kruskal-Wallis tests 

(b and d); scale bars, 2µm (c) and 5µm (g). 

Extended Data Figure 6 proTAME-mediated pseudo-mitosis and analysis of centriole 

amplification phases after BI 2536 treatment 

a, Centriole (Cen2-GFP+) and nucleus (H2B-RFP+) dynamics starting from the centriole 

growth phase until the multiple basal body stage in control (DMSO) and proTAME 12µM 

treated cells. Pseudo-mitosis with proTAME can be observed as of 14:00. b, proTAME-

mediated chromosome condensation and nuclear membrane disintegration in pseudo-mitotic 

differentiating ependymal progenitors immunostained for Centrin, Histone H3 (pSer10) and 

nuclear pore complex proteins. White arrowheads indicate micronuclei. c, proTAME-

mediated chromosome condensation and the different spindles observed in pseudo-mitotic 

differentiating ependymal progenitors immunostained for Centrin and tyrosinated tubulin. d, 

Representative centromere immunostainings of proTAME mediated pseudo-mitosis in 

differentiating Cen2-GFP+ ependymal progenitors and showing 40 centromeres. c-d DNA is 

counterstained with DAPI. e, Proportion of centriole amplification phases in differentiating 

Cen2-GFP+ ependymal cultures (DIV4) stained for Sas6 and GT335 after 24 hours of 

incubation with DMSO (n=150 cells), BI 2536 50nM (n=146 cells), and BI 2536 200nM 

(n=145 cells). Scale bars, 5µm. 

Supplementary Video 1 Cen2-GFP live imaging in an ependymal progenitor from the 

centriole growth phase  

Apical (upper panel) and profile (lower panel) views of the centriole amplification dynamic in 

a Cen2-GFP+ ependymal progenitor starting from the growth phase (100X magnification, 

∆t=30 minutes). Nucleus is shaded in blue in the upper panel. Sequence shows the perinuclear 

distribution of centrioles at the growth phase (00:00-01:30), their isotropic and synchronized 
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This study provides the first dynamical description of physiological centriole 

amplification that leads to multiple motile cilia nucleation in ependymal cells. The descriptive 

work uncovered the cellular origin of all the amplified centrioles and highlighted their highly 

coordinated progression through two abrupt transitions that precede apical membrane docking 

(Article 1) 204. First, massive amplification of procentrioles in this subtype of epithelial cells 

originates from the centrosome, and surprisingly, it is the immature daughter centriole of the 

centrosome that serves as the nucleation point of more than 95% of the newly formed 

procentrioles. Then, when the final procentriole number is reached, centriole amplification 

stops, the whole procentriole population synchronously grows (amplification-to-growth 

transition) and subsequently, all centrioles simultaneously disengage from their growing 

platforms (growth-to-disengagement transition). Functional approaches point out the 

regulatory machinery of mitosis to be mechanistically responsible for the coordination of both 

transitions and for the consequent tuning of centriole number, control of centriole growth and 

individualization (Article 2). Although some experiments are still lacking to confirm certain 

interactions, our model suggests that Cdk1 triggers centriole amplification arrest/procentriole 

growth and eventually bring about APC/C activation thus triggering a timely disengagement 

of nearly mature centrioles for subsequent motile ciliation. The dampening of Cdk1 activity 

by its mitotic regulators Myt1, Wee1 and APC/C allows centriole amplification orchestration 

while avoiding mitotic commitment of multiciliated progenitors. 

CENTRIOLE AMPLIFICATION AND CENTROSOMAL CENTRIOLES 

Centrosome mediated centriole amplification refutes the long withstanding hypothesis 

that multiciliated progenitors are the only centriole-bearing cells assumed to generate 

centrioles de novo 193,194. Inducing de novo centriole biogenesis in cycling cells is thought to 

lead to the formation of structurally aberrant centrioles 233,234. It is therefore proposed that 

preexisting centrosomal centrioles template the formation of procentrioles during the centriole 
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Figure 1 Proposed templating 
model for centriole biogenesis 

a, During centriole duplication in 
cycling cells, SAS-6 dimers (red) are 
proposed to be recruited to the lumen 
of parental centrioles. This 
interaction is thought to give rise to 
the correct 9-fold cartwheel 
configuration. After assembly, the 
cartwheel relocates to the proximal 
portion of the centriole where it 
serves as a template for the 
biogenesis of the procentriole 234,279. 
b, Model for daughter centriole-
mediated centriole amplification in 
multiciliated progenitors 204. A 
similar mechanism to the one 
depicted in a may be responsible for 
the formation of up to several 
hundred procentrioles from one 
centrosomal centriole. Adapted from 
280. 

 

 

duplication cycle 234,235 (Fig. 1a). This templating mechanism may be the reason behind the 

nucleation of a hundred centrioles from a single centrosomal centriole in multiciliated cell 

progenitors (Fig. 1b). Laser ablation 236–238 or pharmacologically-mediated depletion 239 of the 

centrosomal centrioles in differentiating progenitors could clarify whether the physical 

presence of the daughter centriole is required for the amplification of procentrioles or their 

structural integrity. 

 

During the amplification phase, deuterosomes form exclusively from the daughter 

centrosomal centriole suggesting that the mother centriole has reached a maturity state which 

inhibits deuterosome formation. The mother centriole is distinguished by two sets of 

appendages allowing the nucleation of a primary cilium and the anchoring of cytoplasmic 

microtubules (Article 1, Extended Data Fig. 6a-c) 26,37,240. In addition, the pericentriolar 

material (PCM) can be asymmetrically distributed on centrosomal centrioles 238. The 

differential micro-environment provided by the two centrosomal centrioles may account for a 
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disparate activity of the regulatory kinases or a contrasting recruitment of the structural 

precursors, both necessary for centriole biogenesis. The Cep63 paralogue Deup1, which is 

able to trigger both “centriolar” and “deuterosome” pathways, is necessary for deuterosome 

formation and its capacity to form deuterosome structures depends on its concentration 193. A 

differential control of Deup1 quantity at the mother and daughter centrioles could explain why 

deuterosomes form only from the daughter centriole whereas both centrosomal centrioles 

undergo the “centriolar” pathway. Perturbing the asymmetric accumulation of Deup1 by 

fusing it with PACT 241, a centrosome localization sequence, may clarify whether the mother 

centriole mature vicinity is restrictive to deuterosome formation. 

Consistent with the existence of a permissive micro-environment provided by the daughter 

centriole, we observed that Cep164 41 , Odf2 40 , and Ninein 242 invariably localize to the 

daughter centriole after the formation of the last deuterosome (data not shown). At this 

amplification-to-growth phase transition, mother and daughter centrioles are not 

distinguishable anymore by classic molecular markers thus suggesting that the daughter 

centriole has reached a state of maturity similar to that of the mother centriole. One might 

hypothesize that the immaturity of the daughter centriole renders it permissive to centriole 

amplification and that loss of generational mother/daughter appendage asymmetry may 

contribute to the halt in centriole amplification. Impeding daughter centriole maturation using 

a siRNA approach or forcing the maturation of the daughter centriole by overexpressing Tau 

tubulin kinase 2 (TTBK2) , a Cep164 recruiter 42, may elucidate whether the maturity state of 

the daughter centriole determines its competency to drive massive centriole amplification. 

In Article 2, we show that premature activation of Cdk1 halts the amplification process and 

triggers procentriole growth. In parallel, we show that inhibition of Cdk1 or Plk1 prolongs 

amplification and delays growth. Furthermore, our preliminary results suggest that with 

pharmacological modulations of Cdk1 or Plk1 activities, daughter centriole maturation is still 
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temporally correlated with procentriole amplification arrest and procentriole growth (data not 

shown). It therefore seems that the three events, i.e. daughter centriole maturation, 

procentriole amplification arrest and procentriole growth, are always concurrent. During 

centriole duplication in cycling cells, Plk1 notably acts on two generations of centrioles: Plk1 

triggers both pre-existing daughter centriole maturation and newly formed procentriole 

growth 200 . Continuing our cell cycle analogy, it may be that Plk1 in multiciliated cell 

progenitors also triggers both daughter centriole maturation and procentriole growth 

explaining why the two events are synchronous. Our results with RO-3306, PD 166285, and 

MK 1775 suggest that Plk1 functions through Cdk1 activation to proceed.  

Cdk1 in cycling cells is also known to prevent centriole overduplication by displacing Stil and 

preventing Stil-Plk4 interactions 78,96. Hypothetically, the same Cdk1-mediated action on Stil 

could stop the amplification phase in multiciliated cells. In this case, procentriole 

amplification arrest could be independent from daughter centriole maturation and procentriole 

growth. The three events may be synchronous due to common upstream regulators that 

include Plk1 and Cdk1. In addition, procentriole growth trigger from the daughter centriole 

(centriolar pathway) may participate in the amplification arrest by engaging the daughter 

centriole, a process known to inhibit further centriole nucleation 61. 

Substantial work still needs to be accomplished to highlight the molecular cascade 

downstream of Plk1 and Cdk1 that drives the tight coordination between procentriole number 

control and subsequent centriole growth.  

CENTRIOLE AMPLIFICATION DYNAMIC AND POLARITY 

Mature multiciliated ependymal cells generate directional cerebrospinal fluid flow in 

mammalian brain ventricles. Amplified centrioles in ependymal progenitors become basal 

bodies by acquiring appendages and by docking at the apical membrane to nucleate “9+2” 

motile cilia 191. Previous work from our laboratory has shown that this docking is followed by 
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the accurate alignment of basal bodies in response to a coupling between the Wnt/PCP 

pathway and hydrodynamic forces created by neighbouring ciliary beating 191. The precise 

orientation is attained within a limited developmental time frame and thus requires 

synchronized basal body docking and ciliary growth. The resulting basal body alignment, 

known as the rotational polarity, is necessary for an efficient cerebrospinal fluid outflow 191 

and for the creation of local currents suggested to control signalling molecule dispersion 134. 

Ependymal multiciliated cells have an additional unique “translational” polarity that is due to 

the anterior migration of docked centriole patches with respect to cerebrospinal fluid flow 

(CSF). Mature ependymal ciliary tufts are therefore anteriorly positioned in bundles 122,159,243 

(see illustration of cilia patches in Introduction Fig. 12b). Even though the role of this 

translational polarity remains speculative with proposed roles in neurogenesis 159 , it was 

clearly shown to depend on the primary cilium of ependymal progenitors 122, and therefore 

suggests a role for the centrosome in the migration of the future basal body patch.  

At the centriole growth-to-disengagement phase transition, a potential contribution of 

the microtubules and the nucleus is highlighted (Article 2, Fig. 2). The microtubule network 

reshaping may contribute to centrosomal centriole and deuterosome dispersion around the 

nucleus after Cdk1 and Plk1 activation, similarly to described mechanisms for centrosomes in 

cycling cells 49,77. As for the nucleus,  nuclear pore complex proteins in cycling cells are 

involved in nuclear tethering of the centrosomes at mitosis onset 249, a process coordinated by 

Cdk1-mediated phosphorylations 250 and important for optimal centrosome positioning during 

spindle pole formation 76. Our additional videomicroscopy data show that all deuterosomes 

come in nuclear contact prior to centriole disengagement (n=50/50 deuterosomes from 3 cells; 

graph not shown). In addition, once disengaged from their platforms, centrioles migrate 

isotropically along the nuclear membrane before distancing away from the nucleus into the 

cytoplasm and migrating to the apical membrane (data not shown but visible in Article 2, Fig. 
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2f). Centrioles could therefore be attached to the nuclear membrane before their 

individualization. Tight proximity of centrioles with nuclear pore complex (NPC) proteins at 

the growth-to-disengagement phase transition is indeed observed by immunostainings (Article 

2, Figure 2c-d and i). Altering centriole tethering to the nuclear envelope by depleting 

Nup133, a protein critical for centrosome positioning in nuclear contact at mitotic entry 76,  or 

Nesprins, mediators of centrosome-nucleus coupling during mitosis 90, may enable to test 

whether positioning deuterosome/procentriole around the nuclear membrane before centriole 

disengagement is a pre-requisite for the disengagement itself or for the positioning of 

centrioles for a subsequent optimal polarized migration. 

Before the migration phase, centrioles indeed do colocalize with tyrosinated microtubules 

suggesting that microtubules may contribute to, or be the driving force of, migration of 

centrioles towards the apical membrane (Article 2, Fig. 2g-h). Consistently, electron 

microscopy studies of developing quail oviduct multiciliated cells in presence of cytoskeletal 

modulators show that both actin and microtubules are required for late stages of centriole 

migration as well as ciliation 244. In addition, we observe that pre-existing centrosomal 

centrioles are always apically localized until the end of centriole migration (Article 2; 

Extended Data Fig.4b, white arrowheads), and that the whole population of newly disengaged 

centrioles seems to migrate in their direction. To test the putative convergence of newly 

formed centrioles towards the pre-existing centrosome, we analysed the directionality of 

multi-centriole migration from the late disengagement phase to the end of apical migration. 

Automated global centriole segmentation presents a distribution shift of centrioles towards the 

centrosome vicinity (Fig. 2a-b, 235 centrioles from 3 cells). In addition, manual single 

centriole 3D tracking shows a time-correlated decrease of centriole-centrosome distance, 

suggesting that newly formed centrioles collectively converge towards the centrosome region 

during their apical migration (Fig.2 c-d, 12 tracked centrioles in one cell). Together with the 



    108 
 

documented role of microtubules in centriole migration 244,245 and the primary cilium 

resorption at the growth-to-disengagement phase transition (Article 2, Fig.2e), the 

convergence of newly formed centrioles towards the centrosome suggests a role for the 

centrosome as a microtubule organizing center (MTOC) during apical centriole migration. 

Analyzing centriole disengagement and migration in cells depleted for Ninein, a component 

of centrosomal sub-distal appendages linked to microtubule anchoring and nucleation 242, or 

Figure 2 Disengaged centrioles migrate apically and converge towards the preexisting-centrosome 
region 

a, Images illustrating 3D Imaris software automated segmentation of Cen2-GFP+ centrioles (yellow spheres) 
at the end of the disengagement phase and at the end of their apical migration. Green arrow indicates a 
centrosomal centriole (green sphere). Signal threshold filter was set at a particle diameter of 0.25µm.  b, 
Histogram of centriole proportions comparing 3D centriole distance relative to the centrosome at the 
disengagement phase (green bars) and at the end of their apical migration (black bars); Note the 
heterogeneous distribution of centrioles relative to the centrosome at the end of the disengagement phase, 
and that 65% of centrioles after apical migration are located < 3µm away from the centrosome; n=235 
segmented centrioles from 3 cells, error bars represent percentages ± sd, P-value <0.0001 derived from a 
one-tailed Chi-square test. c, Apical and profile view of 3D Cen2-GFP+ Centriole time-stacked trajectories 
(left panel) and mean vector directionalities (right panel) from the disengagement phase (t=0 hours) to the 
end of apical migration (t=16 hours); n=12 centrioles tracked manually during194 time points with a Δt of 5 
minutes; 5 centriole trajectories are represented on snapshots from t=0 hours, green spheres mark the 
centrosomal centrioles. d, Time-correlated 3D displacements of 5 tracked centrioles from c relative to the 
centrosomal centrioles during the centriole migration phase. Scale bars, 2 µm. 
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in cells differentiating on micropatterns that control cellular geometry and centrosome 

position 246,247 may clarify if newly formed centrioles, as chromosomes in the context of 

cycling cells at the anaphase-to-telophase transition, are pulled towards the pre-existing 

centrosome. Moreover, tyrosinated microtubules are the dynamic subtype which are recruited 

to the spindle for correct positioning 214,248. Since microtubule plus-end tracking proteins such 

as Clip170 bind specifically to tyrosinated tubulin 248, filming double transfected Centrin2-

GFP/Clip170-RFP maturing ependymal cells could further uncover microtubule implications 

in the final stages of the centriole amplification dynamic. 

Collectively, these descriptive and functional approaches would further complete the 

picture of the cellular and molecular mechanisms that bridge initial centrosome/primary 

cilium position in the ependymal progenitor to the establishment of multiciliated cell and 

tissue polarity 122,136. 

CENTRIOLE AMPLIFICATION COORDINATION BY MITOSIS ENZYMES 

The implication of mitosis promoters, Cdk1 and Plk1, or inhibitors, Wee1 and Myt1, 

in the regulation of the two transitions observed during the centriole amplification dynamic 

raises the question whether all essential kinases and phosphatases of the mitosis regulatory 

network are active. In the cycling cell context, the mitosis network of regulators is complex 

and includes numerous components in the likes of the Aurora family of kinases or the Cdc25 

family of phosphatases. For instance, Aurora A contributes to mitosis progression by 

phosphoactivating Plk1 251,252 and Cdc25b 22, a positive regulator of Cdk1-Cyclin B1 

complex, in addition to promoting centrosome separation 34. Aurora B kinase also promotes 

M-phase entry by condensing chromosomes via Histone 3 Serine 10 phosphorylation 220,222,253  

as well as M-Phase exit in a Plk1 dependent-manner before proceeding with anaphase 254,255. 

Consistently, treating differentiating cultures of ependymal progenitors with an Aurora B 

inhibitor 256 abolishes Histone 3 Serine 10 phosphorylation (Fig. 3a). As for the centriole 
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amplification dynamic, both Aurora A 257 and Aurora B inhibition results in diminished 

proportions of multiciliated cells in favor of cells at the amplification and growth phases (Fig. 

3b), suggesting that they are required for the initiation of both centriole amplification phase 

transitions. Our preliminary results covering Aurora A and Aurora B kinases further 

strengthen the hypothesis that all mitotic kinases and phosphatases may be activated for the 

progression of the centriole amplification dynamic.  

The growth-to-disengagement phase transition is made possible by the activity of the Cdk1-

APC/C axis. The delay between Cdk1 activation at the amplification-to-growth phase 

Figure 3   Pharmacological inhibition of Aurora A and Aurora B kinases  

a, Representative Histone 3 (pSer10) immunostainings of DIV4 ependymal cultures after 24-hour 
incubations with DMSO (left panel) or Aurora B inhibitor Barasertib (1µM, right panel). Grey arrows 
indicate cells at the amplification phase; orange arrows indicate cells at the growth phase; green arrows 
indicate cells at the disengagement phase. b, Proportion of centriole amplification phases in DIV4 Cen2-
GFP+ ependymal cultures stained for Sas6 and GT335 after 24 hours of incubation with DMSO (n=140 
cells), Aurora A Inhibitor I 1µM (n=142 cells), or Aurora B inhibitor Barasertib 1µM (n=127 cells); 
quantification from a single experiment.  Scale bar, 5 µm. 
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transition and maximal APC/C activity seems to correspond to the centriole growth phase 

(3±1.5 hours; n=49 cells), a duration significantly longer than what is proposed to occur in 

cycling cells 258. The increased delay can be explained by the continuous moderation of Cdk1 

activity that avoids mitotic commitment and consequently stretches the duration of the 

centriole growth phase. Our results, however, are not conclusive concerning APC/C’s 

coactivators or centriolar substrates 92 during the centriole amplification phase transitions. 

Although Cyclin B1 stabilization in cycling cells in presence of the APC/C modulator, 

proTAME, is dependent on APC/CCdc20  215 and is consistent with our pseudo-mitosis rescue 

results (Article 2, text associated with Fig. 1d), proTAME was initially shown to affect 

APC/C coactivation by both Cdh1 and Cdc20 212.  The dynamism of p27kip1 staining profiles 

in differentiating ependymal progenitors (Article 2, Extended Data Fig.1c) suggests that both 

APC/C coactivators, Cdh1 and Cdc20, are present 198,259,260. APC/C-Cdh1 may be the 

predominant complex in early stages of differentiation when progenitors, positive for both 

p27kip1 and Foxj1 nuclear stainings, have not begun to amplify procentrioles. During the 

amplification-to-growth and growth-to-disengagement phase transitions, the decrease in 

p27kip1 levels, mitotic kinase activity 198, primary cilium resorption 68, and the synergistic 

effect of Apcin+proTAME on pseudo-mitosis exit 216 suggest that Cdc20 is the cofactor of 

APC/C allowing the regulation of centriole disengagement. After the disengagement and 

migration of centrioles, p27kip1 nuclear staining reappears and parallels the loss of Sas6 from 

the docking centrioles (Article 1, Extended Data Fig. 8h and 9k; Article 2, Extended Data 

Fig.1c). Cdh1-mediated APC/C activity, as during mitosis exit of cycling cells 99,261, may be 

responsible for these events occurring in the final steps of the dynamic that  precede motile 

ciliation and marks the beginning of a "true" G0 state of multiciliated cells.  In addition to 

Plk1 activity, Separase degrades Cohesin to induce centriole disengagement in mitosis of 

cycling cells 73,91, Securin may therefore be the candidate substrate that APC/C targets for the 
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initiation of a potentially Separase-dependent centriole disengagement phase in ependymal 

progenitors. Together with the assessment of Securin’s localization coupled to its potential 

accumulation in presence of proTAME , the expression of a non-degradable form of Securin 

262,263 and Separase depletion may provide insights into the mechanisms of how APC/C 

triggers the growth-to-disengagement phase transition in differentiating ependymal cells. 

 

To conclude, the results stemming from this PhD project provide a new paradigm for 

future molecular dissection of terminal multiciliated cell differentiation or other, somehow 

analogous, physiological or pathological developmental contexts. Differentiating ependymal 

progenitors seem to employ a variant of mitosis that is continuously alleviated in order to 

handle amplified centrioles with all the mitosis tools normally available in their cycling 

progenitors. This suggests that a conserved network of mitosis coordinators is shared by 

cycling and differentiating progenitors, yet seemingly differentially regulated both at 

transcriptional and post-translational levels. The use of elements of the mitosis regulatory 

network has been reported in developmental contexts such as neuronal apoptosis in the 

developing brain 264,265, or in other terminal non-proliferative differentiation contexts that 

include monociliated cochlear hair cells 266  and lens fiber cells 267. In lens fiber cells for 

instance, progenitors degrade the nucleus and its DNA content for the creation of an organelle 

free zone. The degradation requires the activity of the tissue-specific DLAD (lysosomal 

nuclease DNase IIβ) and is dependent on transient Cdk1-CyclinA/B activity 267–270 that 

renders the DNA accessible via nuclear membrane disintegration. Consistently, studies report 

destabilization of nuclear p27kip1 for Cdk1 activation along with Cdk1-mediated Histone 1 and 

Lamins A/C phosphorylation in this specific context 267,269,270. However, it remains unclear if 

other components of the minimal mitosis regulatory network are expressed and activated in 

differentiating lens fiber cells. In the case of differentiating ependymal progenitors, they do 
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seem to conserve the whole mitotic network, yet dampen it, to mimic, all along their 

differentiation, the step-wise regulation of centriole biogenesis in cycling cells in order to tune 

centriole number and to timely trigger centriole growth and disengagement. Hence, in spite of 

the large number of centrioles produced in multiciliated cells, the events outlining centriole 

biogenesis on the scale of a single centriole are comparable to the ones that define the 

centriole duplication cycle in cycling cells. The redeployment of such a robust network of cell 

cycle controllers for multiciliated cell differentiation may present an immense economy for 

the cell given the complexity of centriole biogenesis regulation. 
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Abstract in French 

 

Chez les mammifères, les cellules multiciliées jouent un rôle essentiel dans la propulsion des fluides 

physiologiques. Leur dysfonctionnement peut être létale et provoque des maladies chroniques. 

Contrairement à la plupart des cellules de mammifères qui possèdent un centrosome composé de deux 

centrioles, les cellules multiciliées possèdent une centaine de structures centriolaires qui servent de 

base à la nucléation des cils motiles. Les mécanismes d’amplification de centrioles ou de régulation du 

nombre de centrioles dans ce type cellulaire étaient jusque-là inconnus. Les centrioles nouvellement 

formés étaient considérés comme apparaissant « de novo », indépendamment des centrioles 

préexistants. En première partie de ce projet de thèse, une approche de vidéomicroscopie et de 

microscopie de super-résolution corrélative nous a permis de déterminer que tous les procentrioles 

sont générés à partir du centrosome préexistant. Nous démontrons que le centriole fils du centrosome 

est le site principal de nucléation de 95% de centrioles nouvellement formés dans les cellules 

multiciliées. Ces résultats réfutent par conséquent l’origine « de novo » des centrioles dans ce type 

cellulaire. Puis, nos résultats révèlent l’activation du complexe Cdk1-CyclinB1 avec son réseau de 

régulateurs mitotiques pendant la dynamique d’amplification de centrioles. En couplant la 

vidéomicroscopie avec l’inhibition pharmacologique des régulateurs mitotiques, nous montrons que la 

machinerie mitotique orchestre la progression spatio-temporelle de la dynamique centriolaire dans ces 

cellules post-mitotiques et en phase terminale de différentiation. L’amortissement de l’activité de 

Cdk1 empêche la rentrée en mitose tout en permettant la coordination du nombre de centrioles, leur 

croissance, et leur désengagement par des transitions phasiques nécessaires à la nucléation de cils 

motiles. Ces résultats fournissent un nouveau paradigme pour mieux comprendre la différentiation des 

cellules multiciliées, les ciliopathies, ainsi que l’amplification centriolaire pathologique associée avec 

le cancer et la microcéphalie. 
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> Chez les mammifères, les épithéliums 
multiciliés sont essentiels à la propulsion 
de certains fluides physiologiques. Dans le 
cerveau, les cils motiles des cellules épen-
dymaires qui bordent les ventricules per-
mettent l’écoulement du liquide céphalo-
rachidien ; un dysfonctionnement de leur 
battement provoque des hydrocépha-
lies létales. Le battement orienté d’as-
semblées de cils motiles est également 
nécessaire dans d’autres organes comme 
l’épithélium respiratoire et l’oviducte, 
où il permet l’évacuation de mucus et le 
transport de l’œuf vers l’utérus, respec-
tivement. Dans ces organes, des défauts 
de motilité ciliaire peuvent mener au 
développement de bronchiectasies, de 
grossesses extra-utérines et/ou à des 
problèmes d’infertilité [1, 2].  
Contrairement à la plupart des cellules 
de mammifères qui possèdent un cen-
trosome composé de deux centrioles, 
les cellules multiciliées possèdent une 
centaine de structures centriolaires, 
appelées corps basaux, qui sont ancrés 
à la membrane plasmique et servent de 
base à la nucléation des cils motiles1. 
Un des événements majeurs de la diffé-
renciation d’une cellule progénitrice en 
cellule multiciliée est donc la biogenèse 
massive de centrioles (Figure 1A). Deux 
voies parallèles d’amplification cen-
triolaire ont été décrites. Dans la voie 
« acentriolaire », qui est majoritaire, les 
centrioles se forment sur des structures 
sphériques denses aux électrons, appe-
lées deutérosomes. Dans cette voie, les 

1 Voir le numéro thématique « Cils primaires et ciliopathies » 
publié par médecine/sciences, m/s n°11, vol. 30, novembre 
2014. 

centrioles sont considérés comme appa-
raissant « de novo », indépendamment 
des centrioles préexistants. Dans la voie 
« centriolaire », qui est minoritaire, les 
centrioles se forment directement à par-
tir des centrioles du centrosome. Depuis 
la description de ces deux voies dans 
des études de microscopie électronique 
datant des années 1970 [3], l’origine 
des deuterosomes ainsi que l’interaction 
entre ces deux voies étaient restées 
inconnues. 

L’amplification centriolaire débute 
dans la région centrosomale
Afin de mettre au jour la dynamique 
d’amplification centriolaire, notre 
équipe a mis au point un système de 
culture permettant de visualiser en 
temps réel et en trois dimensions la 
différenciation de cellules souches neu-
rales en cellules épendymaires multi-
ciliées. L’observation de progéniteurs 
provenant de souris transgéniques 
exprimant la protéine centriolaire 
centrine 2 fusionnée à la GFP (Cen2-
GFP, GFP : green fluorescent protein) 
a révélé un processus débutant dans 
la région centrosomale et marqué par 
deux étapes (Figure 1B). Au cours de la 
première étape, une dizaine de foyers 
de précurseurs Cen2-GFP, ou « halos », 
apparaissent séquentiellement dans la 
région centrosomale avant de s’accu-
muler plus profondément dans le cyto-
plasme. Au cours de la seconde étape, 
on observe une intensification progres-
sive et collective du signal Cen2-GFP. 
L’ensemble des halos se transforment 
en structures organisées ressemblant 
à des fleurs. Ces « fleurs » se disso-

cient ensuite de façon synchronisée 
pour laisser apparaître de multiples 
centrioles qui migrent à la membrane 
apicale et nucléent des cils motiles.
Afin de préciser la provenance des pré-
curseurs centriolaires, nous nous sommes 
focalisés sur la région centrosomale en 
augmentant la résolution spatiotemporelle 
de nos expériences de vidéomicroscopie. 
De manière inattendue, nous avons observé 
que les halos bourgeonnent séquentiel-
lement à partir d’un des centrioles du 
centrosome avant de se détacher pour 
s’accumuler dans le cytoplasme. L’utilisa-
tion d’un microscope à super-résolution 
(3D-structured illumination microscope, 
3D-SIM) nous a permis de révéler qu’un 
halo est composé d’un assemblage sphé-
rique de plusieurs procentrioles disposés 
d’une manière tridimensionnelle, à la façon 
d’une morula (Figure 1C). 

Le centriole fils du centrosome 
amplifie les procentrioles 
par l’intermédiaire de deuterosomes
Pour évaluer la contribution de chaque 
centriole du centrosome à la formation 
des halos, nous avons distingué les 
centrioles père et fils en marquant le 
cil primaire (nucléé par le centriole 
père), et nous les avons observés par 
super-résolution. De façon inattendue, 
nous avons constaté que 100 % des 
halos se forment sur la partie proxi-
male du centriole fils, mettant ainsi 
en évidence une asymétrie jusque-là 
inconnue des centrioles centrosomaux 
dans la biogenèse des centrioles. Afin 
de comprendre par quel processus le 
centriole fils du centrosome produit 
de nouveaux centrioles, nous avons 

Amplification des centrioles 
Quand le centriole fils du centrosome 
prend le contrôle
Adel Al Jord, Nathalie Spassky, Alice Meunier
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Les deux voies d’amplification 
centriolaire sont orchestrées 
par le centrosome
Nous avons ensuite analysé la transi-
tion entre l’étape « halos » et l’étape 
« fleurs » par microscopie super-réso-
lutive et microscopie électronique. Nous 
avons remarqué que pendant l’étape 
de « halos », tous les procentrioles 
ont une taille identique et sont imma-
tures, indiquant la présence d’une phase 
de latence au cours de cette étape 
d’amplification par les deuterosomes. 
Toutefois, après la formation du der-
nier halo/ deuterosome, la microscopie 
électronique nous a permis de voir que 
tous les procentrioles s’allongent et 
maturent  simultanément sur l’ensemble 

les centrioles en formant des deute-
rosomes, nous avons mis au point une 
technique permettant d’observer les 
mêmes cellules en super-résolution et 
en microscopie électronique à trans-
mission (EM). Cette approche, qui per-
met d’accéder à l’ultrastructure des 
cellules, a permis de révéler que les 
halos en formation sur le centriole fils 
correspondent bien à des procentrioles 
émanant de deuterosomes en bour-
geonnement (Figure 2B). Ces expé-
riences ont ainsi révélé que le cen-
triole fils du centrosome est le centre 
amplificateur des centrioles dans les 
cellules multiciliées. Elles réfutent par 
conséquent l’origine « de novo » des 
centrioles dans ces cellules.

marqué Deup1, une protéine impliquée 
dans la formation des deuterosomes 
[4] et connue pour recruter Cep152 
et Plk4, protéines contrôlant les pre-
mières étapes de la nucléation des 
centrioles au cours de la duplication 
du centrosome dans les cellules en 
cycle.  Alors qu’au cours de la dupli-
cation du centrosome dans les cellules 
progénitrices des cellules multiciliées 
Deup1, Cep152 et Plk4 sont distribuées 
symétriquement sur les deux centrioles 
centrosomaux, dans les cellules en 
cours de différenciation, ces protéines 
se distribuent de façon asymétrique en 
s’accumulant fortement au centriole 
fils (Figure 2A). Ces expériences sug-
gérant que le centriole fils amplifie 

Centriole père

Centrosome

Formation d’un halo

Centrosome FleursHalos Multiples centrioles
1 2 3 4

Cellule progénitrice Cellule multiciliée 

Deux voies d’amplification de centrioles

Ce
n2

-G
FP

 S
as

-6

Ce
n2

-G
FP

Chronologie des étapes d’amplification centriolaire

3D-SIM

1-Centriolaire

2-Acentriolaire
de novo

Centriole fils

Cil primaire

Corps basal

Cil motile

A

B C

Figure 1. Voies et dynamique d’amplification de centrioles dans les cellules multiciliées. A. À gauche, schéma d’un progéniteur d’une cellule 
multiciliée possédant un centrosome composé d’un centriole père, qui nuclée un cil primaire, et d’un centriole fils. Panneau central, images en 
microscopie électronique à transmission qui montrent les deux voies d’amplification de centrioles présentes dans le progéniteur d’une cellule 
épendymaire multiciliée en cours de différenciation. Des procentrioles, indiqués par des têtes de flèches rouges, poussent sur un centriole du 
centrosome préexistant (C ; voie centriolaire), ou sur un deuterosome (D ; voie acentriolaire ou « de novo »). À droite, schéma d’une cellule dotée 
de multiples centrioles matures, ou corps basaux, servant à la nucléation des cils motiles. B. Images de vidéomicroscopie illustrant la chronologie 
des étapes d’amplification centriolaire au cours de la différenciation d’une cellule épendymaire multiciliée Cen2-GFP. Les 2 centrioles du centro-
some sont indiqués par des têtes de flèches vertes. La flèche rouge indique un halo en cours de formation. C. Image de super-résolution 3D-SIM du 
bourgeonnement d’un halo Cen2-GFP composé de 5 procentrioles (têtes de flèches blanches), à partir d’un centriole du centrosome (rectangle en 
pointillé). Le marquage immunofluorescent Sas-6 (rouge) est spécifique des centrioles immatures. Barres d’échelle : 1 μm.
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de mieux appréhender l’amplification 
pathologique des centrioles associée 
aux microcéphalies [6] et aux tumeurs 
invasives [7-9]. Nous avons par ail-
leurs décrit une dynamique globale de 
différenciation dont la progression est 
phasique. L’amplification centriolaire 
est en effet marquée par des étapes dis-
tinctes et des transitions synchronisées 
(Figure 2C). De façon intéressante, des 
études émergentes soulignent l’impli-
cation des régulateurs de la phase S  
du cycle cellulaire dans l’amplification 
centriolaire des cellules multiciliées 

Conclusion et perspectives
Cette étude [5] montre que dans un 
contexte physiologique, le centrosome 
peut se dupliquer lorsqu’il est dans une 
cellule en division, mais également 
orchestrer une amplification massive de 
centrioles lorsqu’il est dans une cellule 
en cours de différenciation multiciliée. 
Le centriole fils du centrosome s’avère 
jouer un rôle clef dans la biogenèse des 
centrioles, en tout cas lorsque ceux-ci 
sont massivement amplifiés (Figure 2C). 
La mise en lumière de cette asymé-
trie du centrosome pourrait permettre 

des deuterosomes. Nous avons égale-
ment constaté qu’au même moment, 
une dizaine de procentrioles s’allongent 
de façon orthogonale, directement à 
partir des portions proximales des cen-
trioles centrosomaux, constituant ainsi 
la voie « centriolaire » décrite dans la 
bibliographie. Ainsi, nos expériences 
montrent qu’au cours de la différencia-
tion des cellules multiciliées, les deux 
voies d’amplification « centriolaire » 
et « de novo » sont en fait une seule et 
même voie orchestrée par le centrosome 
(Figure 2C).
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Ce
nt

ro
so

m
e

pè
re

fil
s

Transition d’une biogenèse
de centrioles 

symétrique vers asymétrique

Division Différenciation multiciliée : amplification de centrioles 

Duplication symétrique 
du centrosome dans 

les progéniteurs en cycle

1-Le centriole fils
amplifie les

procentrioles en
formant les

deutérosomes

4-Individualisation des
centrioles, ancrage, et

nucléation des cils
motiles

1er

2e

3e, etc.

Production de
procentrioles/latence

(étape « halos ») Étape « fleurs »
Multiples centrioles

matures 

Cen2-GFP 3D-SIM
Microscopie
électronique

DD

Fils

Cil primaire

Père
Fils

Père

Cil primaire

Coupe sériée de 70 nmProfondeur z = 100 nm

2-Accumulation des 
deutérosomes dans

le cytoplasme 

3-Élongation des 
procentrioles sur 
les  deutérosomes
et le centrosome

Centriole
père 

Centriole
fils 

Deutérosome Procentriole
en latence

Procentriole
en élongation

Centrine
Sas-6

Cil primaire Cen2-GFP Deup1 

fils
fils

Fo
rm

at
io

n 
de

 h
al

o

père

A B

C

Figure 2. Le centriole fils du centrosome amplifie les procentrioles par l’intermédiaire de deutérosomes. A. À gauche, image en super-résolu-
tion 3D-SIM d’un centrosome Cen2-GFP marqué avec Deup1 (rouge), pendant la formation d’un halo indiqué par une tête de flèche blanche. Le 
centriole père est reconnu par la présence d’un cil primaire (bleu ; tubuline glutamylée). Panneau de droite : agrandissement du centriole fils. 
B. Images de microscopie corrélative 3D-SIM/microscopie électronique à transmission, qui montrent un halo en formation à partir du centriole 
fils. Le halo (gauche) correspond à des procentrioles émanant d’un deutérosome (D) en bourgeonnement (droite). Les têtes de flèches rouges 
indiquent les procentrioles. C. Modèle de biogenèse de centrioles dans les cellules multiciliées. Barres d’échelle : 0,5 μm.
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[10-12]. Le processus d’amplification 
centriolaire pourrait donc être vu, non 
plus comme un processus particulier aux 
cellules multiciliées, mais plus comme 
une facette de la duplication centrio-
laire dans laquelle la régulation spa-
tiotemporelle du nombre de centrioles a 
été contournée. L’exploration des rôles 
potentiels d’autres régulateurs du cycle 
cellulaire pourrait contribuer à mieux 
comprendre les anomalies de la diffé-
renciation multiciliée observées dans 
certaines ciliopathies. ‡
Centriole amplification ? 
#DaughterCentriole
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Un nouvel outil pour 
le traitement de la myopathie 
de Duchenne : les tricyclo-ADN 
Aurélie Goyenvalle, Graziella Griffith, Aurélie Avril, Helge Amthor, 
Luis Garcia

> Les maladies neuromusculaires 
regroupent un ensemble de plusieurs 
centaines de maladies, principalement 
d’origine génétique, définies par une 
perte de force par défaut de commande 
du muscle ou par destruction du tissu 
musculaire lui-même. Ces maladies 
diffèrent dans leurs causes, leur âge 
d’apparition, leur sévérité et leur évo-
lution. Chacune de ces maladies est 
peu fréquente (maladies rares), mais 
conjointement, elles affectent plusieurs 
dizaines de milliers de personnes en 
France, constituant un enjeu majeur 
de santé publique et sociétal. La plus 
emblématique d’entre elles, la dystro-
phie musculaire de Duchenne (DMD), 
concerne un garçon sur 3 500 à la nais-
sance ; ses spécificités génétiques et 
physiopathologiques en font un véritable 
cas d’école et un défi pour la conception 

et la mise au point de traitements pour 
des maladies où il faut traiter simulta-
nément l’ensemble de la musculature 
squelettique, le cœur et, incidemment, 
le système nerveux central.

Approche thérapeutique 
par saut d’exon 
Caractérisée depuis le milieu du 
XIXe siècle par un médecin français, Guil-
laume Benjamin Duchenne de Boulogne, 
cette myopathie très invalidante ne 
bénéficie encore d’aucun traitement 
satisfaisant. Un quart de siècle après 
l’identification du locus morbide DMD 
(gène codant la protéine dystrophine) 
par les équipes de L. Kunkel [1] et 
K. Davies [2], l’essor des recherches en 
biotechnologies laisse enfin entrevoir 
un espoir tangible de corriger certaines 
des anomalies du gène DMD par des 

approches de  chirurgie de l’ARN (modu-
lation sélective de l’épissage de l’ARNm 
de la dystrophine – saut d’exon)  à l’aide 
d’oligonucléotides antisens (AON). Le 
principe de cette thérapie issue de la 
connaissance des gènes est fondée sur 
l’utilisation de petites séquences oli-
gonucléotidiques antisens, capables de 
s’hybrider spécifiquement avec leurs 
ARN messagers cibles afin de moduler 
leur maturation et permettre la synthèse 
de la protéine manquante. Plusieurs 
études sont en cours avec différents 
AON modifiés, telles que les 2’O-méthyl 
phosphorothiate (2’OMe), ou encore les 
morpholinos (PMO) pour la synthèse des 
AON destinés à agir sur la production de 
dystrophine. Malgré les résultats encou-
rageants de certains essais cliniques [3, 
4], le bénéfice thérapeutique demeure 
difficile à démontrer du fait des limites 
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et LIA BAHN Centre scientifique de Monaco, 
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