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General Introduction 
 

 
The post-translational modification of proteins by ubiquitination serves multiple cellular 

purposes. It modulates protein-protein interactions along diverse signaling pathways and 

targets proteins for degradation by the proteasome, thereby contributing to protein 

homeostasis and to the temporal dynamics of signaling networks. In 2002, our team 

demonstrated that small intracellular signaling proteins of the Rho GTPase family can be 

ubiquitinated and addressed to the ubiquitin proteasome system. The members of the Rho 

GTPase family are present in all eukaryotes and act as molecular switches best known to 

regulate cytoskeletal dynamics. In addition, they take part in the regulation of gene 

expression, cell cycle progression, as well as in the cellular response to pathogenic agents. 

Through the study of the regulation of Rho GTPase activity by ubiquitination, our team 

identified the first E3 ubiquitin ligase that directly ubiquitinates and promotes the 

proteasomal degradation of Rac1, the founding member of the Rho GTPase family. This 

E3 ligase is HACE1, a protein first found epigenetically silenced in sporadic Wilms’ tumor 

and then repeatedly found to be downregulated in numerous human diseases, including 

cancer, neurodegenerative diseases and developmental conditions. Despite the important 

role of HACE1 in the maintenance of cell homeostasis, nothing is known about the post-

translational regulation of its activity. In this work, we aim to contribute to this knowledge 

gap by studying how HACE1 is regulated by phosphorylation and, in parallel, explore the 

role of HACE1 in the regulation of intercellular adhesion, a cellular process that heavily 

depends on Rho GTPase signaling.  

The first three chapters of this thesis comprises the introduction to my work. Chapter 1.  

aims to give a general view of the Ubiquitin field with particular emphasis on the 

characteristics and regulatory mechanisms of the E3 ubiquitin ligase family; Chapter 2. is 

dedicated to the Rho GTPases, their mechanisms of action, cellular functions and 

implications in human disease; and Chapter 3. gives a more detailed description of the 

current knowledge of HACE1.
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Ubiquitination is a dynamic and complex type of post-translational modification implicated 

in nearly all aspects of eukaryotic biology. Ubiquitin is a 8.5kDa protein that was first 

isolated from bovine thymus and was associated with the induction of lymphocyte 

differentiation (Goldstein et al. 1975). This new small protein was believed to be 

ubiquitously expressed (hence its name) from bacteria and yeast to animals and higher 
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plants. Moreover, the 76 amino acid long sequence of ubiquitin was found to be remarkably 

conserved among eukaryotes (Goldstein et al. 1975), which suggested a fundamental role. 

A role so vital that it imposed incredibly tight evolutionary constraints on ubiquitin’s 

structure. The first observation of covalently attached ubiquitin was made by H. Busch 

and collaborators: they described a protein, which they called “A24”, that curiously had 

one C-terminus and two N-termini (Goldknopf and Busch 1977). This particular protein 

was later found to be the histone H2A bound to ubiquitin by an isopeptide bond, which 

made H2A the first substrate of the ubiquitin pathway to be found (Hunt and Dayhoff 

1977). However, it wasn’t until some years later, between 1978 and 1983 that the teams of 

A. Herschko and I. Rose discovered the central role of ubiquitin in non-lysosomal, ATP-

dependent intracellular protein degradation (Ciehanover et al. 1978; Wilkinson et al. 1980). 

They isolated and described the enzymatic cascade composed of three enzymes (E1, E2, 

and E3) necessary for the activation and covalent attachment of ubiquitin onto protein 

substrates (Ciechanover et al. 1981; Hershko et al. 1981; Hershko et al. 1983), a work that 

granted them the Nobel prize in chemistry in 2004. Since then, it has been shown that the 

ubiquitin system is not only involved in the degradation of proteins by the proteasome 

(Finley 2009) but also in non-proteolytic processes such as membrane trafficking (Hicke 

and Dunn 2003), DNA repair (Jentsch et al. 1987; Cohn et al. 2007; Stewart et al. 2009) 

and chromatin dynamics (Wright et al. 2012). In this chapter, I will briefly describe the 

properties and mechanisms of action of the proteins involved in ubiquitination, explore the 

variety of signals ubiquitination can transduce, and finally focus on one of the key 

components of the ubiquitin system: the E3 ubiquitin protein ligases. 

 

1.1. The Ubiquitin system.  

The parallel between cell signaling and language is one often drawn, and with good reason. 

Both are communication systems that encode and relay precise signals that elicit specific 

actions. Within this allegory, one can say that the ubiquitin system is composed of words 

based on a common root (ubiquitin). These words form sentences that are written down 
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by the ubiquitin conjugating system (E1, E2, E3), are read by ubiquitin binding proteins 

(UBPs), and are erased by deubiquitinating enzymes (DUBs).  

1.1.1. Ubiquitin 

Ubiquitin is the founding and best-studied member of a family of ubiquitin-like modifiers 

(Ubls) encompassing nearly 20 proteins in eukaryotes that share 9-58% homology with 

ubiquitin. Notable examples of Ubls are SUMO (small ubiquitin-related modifier) and 

Nedd8 (Neural precursor cell-expressed, developmentally downregulated 8) (van der Veen 

and Ploegh 2012). In humans, ubiquitin precursors are encoded by four genes: UbB and 

UbC, which encode poly-ubiquitin peptides of three and nine units, respectively; and 

UBA52 and RPS27A/UBA80, which encode ribosomal subunits fused to the C-terminus 

of a ubiquitin monomer. Following translation, free ubiquitin is generated by the cleavage 

of the gene products by DUB proteases (Monia et al. 1989).  

Much of the communication potential of the ubiquitin system is based on the unique 

properties of ubiquitin itself. Ubiquitin is a highly stable protein of 8.5kDa and 76 amino 

acids with a chain ball-like structure (Vijay-Kumar et al. 1987) whose surface presents 

several recognition patches that have been implicated in binding to E3 ubiquitin protein 

ligases, UBPs and DUBs (Dikic et al. 2009; Kamadurai et al. 2009; Cui et al. 2010; Ye et 

al. 2011) (Fig. 1.1.C). Ubiquitin is covalently conjugated onto substrate proteins by an 

isopeptide bond between the C-terminal glycine 76 of ubiquitin and usually the side chain 

amine of a lysine residue in the substrate protein (Fig. 1.1B). This reaction can lead to 

monoubiquitination or multi-monoubiquitination of a substrate protein. Moreover, 

ubiquitin itself disposes of seven lysines and its first methionine that can act as ubiquitin 

linking sites and enable the formation of ubiquitin chains of different topologies (Fig. 1.1A). 

The particular conformation of the chains is known to expose or restrict access to ubiquitin 

recognition patches, determining the type of ubiquitin-binding proteins that can be 

recruited and thus affecting the induced downstream signaling response (Komander and 

Rape 2012).  

 



Chapter 1. Ubiquitin signaling 
 

 12 

Figure 1.1. Ubiquitin structure characteristics. A. Structure of ubiquitin indicating that all its 
linking residues: seven lysine residues (red, with blue nitrogen atoms) and a methionine (with a 
green sulfur atom). The lysines are located on different surfaces of the molecule; M1 is the linkage 
point in linear chains, and is spatially close to K63. The C-terminal G75-G76 motif involved in 
isopeptide bond formation is indicated (red oxygen atoms, blue nitrogen atoms). B. Representation 
of the isopeptide bond between ubiquitin and a target protein. C. Representation of ubiquitin’s 
surface indicating four recognition patches in different colors. The name of each patch and the 
residues that form part of it are indicated in the same color as the patch’s surface. Adapted from 
(Komander 2009) and (Komander and Rape 2012) 

 

1.1.2. The writers: The enzymatic cascade of ubiquitin conjugation 

The writer system that leads to ubiquitin chain formation and conjugation onto substrates 

is composed of three types of enzymes that work in a hierarchical fashion (Hershko et al. 

1983): E1s (ubiquitin-activating enzymes), E2s (ubiquitin-conjugating enzymes), and E3s 

(ubiquitin protein ligase enzymes). E1 enzymes begin the cascade by using the hydrolysis 

of ATP to catalyze the formation of a phosphodiester bond between the C-terminus of 

ubiquitin and the phosphate group of AMP, producing ubiquitin adenylate (AMP-Ub). 

Next, the sulfhydryl group of the E2 active cysteine attacks the AMP-Ub, forming a high-

energy thioester bond with ubiquitin’s C-terminus and displacing AMP. The E1 then 

catalyzes for a second time the adenylation of a ubiquitin monomer and forms a non-

covalent complex with it in its adenylation domain. The double-ubiquitin-loaded E1 can 

then facilitate the transfer of the thioester-bound ubiquitin from E1 to an active cysteine 

in E2 (Haas et al. 1982; Haas et al. 1983; Schulman and Harper 2009; Schäfer et al. 2014). 

Subsequently, the ubiquitin-charged E2 can bind to E3 enzymes that lack an active 

cysteine (RING family) or that possess an active cysteine (HECT and RBR families); in 

the first case the E2 transfers the charged ubiquitin directly to a substrate bound to the 
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E3, and in the second case the E2 transfers the ubiquitin to the active cysteine of an E3, 

which then conjugates the ubiquitin onto a substrate (Deshaies and Joazeiro 2009; Stewart 

et al. 2016) (Fig. 1.2). 

 

 

Figure 1.2. Generalized enzymatic mechanisms of ubiquitin (Ub) transfer between enzymes and 
ultimately to a target. * refers to a noncovalent complex, ~ refers to a high-energy thioester bond, 
- refers to a covalent bond (phosphodiester in AMP-Ub or isopeptide in Target-Ub). A. Initial steps 
catalyzed by E1. (1) E1 binds Mg2+, ATP and a Ub, and catalyzes the acyl-adenylation of the Ub’s 
C-terminus. (2) E1 catalytic cysteine attacks the Ub~AMP intermediate, to form the covalent 
thioester-linked E1~Ub intermediate. (3) E1 then adenylates a 2nd Ub molecule, such that E1 binds 
2 Ub molecules: Ub(T) is thioester- linked to E1’s catalytic cysteine; Ub(A) is associated 
noncovalently at the adenylation site. (4) Doubly-Ub-loaded E1 binds an E2 and Ub(T) is 
transferred from the E1 to the E2 catalytic cysteine. B. RING E3s enhance Ub transfer from E2 to 
a target. C. HECT and RBR E3s (represented by the HECT family in this figure) contain a catalytic 
cysteine, and (1) form a covalent thioester intermediate with a Ub prior to Ub ligation to a target 
lysine (2). Adapted from (Schulman 2011)  

 

The human genome encodes 2 E1s, 37 E2s and more than 600 E3s (Li et al. 2008; 

Komander 2009), making the E3 enzymes the most diverse and evolutionarily refined 

actors of the cascade. E3 enzymes regulate target specificity and, together with E2 enzymes, 

direct bond formation. 

E3 enzymes are classified in three categories based on the structure of their E2-binding 

domain and on their ubiquitin transfer mechanism (Fig. 1.3): (i) The Really Interesting 
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New Gene (RING) family catalyzes the single-step transfer of ubiquitin from the E2 to the 

substrate, while (ii) the Homologous to E6AP C-Terminus (HECT) and (ii) the RING-

Between-RING (RBR) families ubiquitinate substrates in a two-step reaction where 

ubiquitin is first transferred from the E2 to an active cysteine within the E3 catalytic 

domain and then from the E3 to the substrate (Huibregtse et al. 1995; Deshaies and 

Joazeiro 2009; Smit and Sixma 2014). I will further expand on the mechanisms of action 

of these three E3 families in the section 1.2. 

 

 

Figure 1.3. Classes of E3 ubiquitin ligases. Simplified representation of domain structure and the 
reactions catalyzed by three classes of E3 ubiquitin ligases. A. Schematic of Really Interesting New 
Gene (RING) E3-mediated catalysis. The RING domain binds E2~ubiquitin (~ indicates a thioester 
bond) and a substrate-binding domain recruits the substrate. Ubiquitin is transferred directly from 
the catalytic cysteine of E2 to a substrate lysine. B. Homologous to E6AP Carboxyl Terminus 
(HECT) E3 catalysis. The N-lobe of the HECT domain binds E2~ubiquitin and a substrate-binding 
domain recruits the substrate. Ubiquitin is transferred from E2 to the catalytic cysteine of the C-
lobe of the HECT domain and subsequently to a substrate lysine. C. RING-between-RING (RBR) 
E3 catalysis. the RING1 domain binds E2~ubiquitin and ubiquitin is transferred from E2 to the 
catalytic cysteine of RING2 and then to a substrate lysine. Adapted from (Buetow and Huang 
2016). 

 

In addition to the previously described types of E3 ligases, which are present in eukaryotes; 

it has been shown that despite having no intrinsic ubiquitination machinery, pathogenic 

bacteria encode bacterial E3 ligases (BELs) that have the capacity to manipulate the host 

ubiquitin system during infection (reviewed in (Ashida and Sasakawa 2016) and (Ashida 

et al. 2014)). Some of these BELs structurally and functionally mimic host HECT-type 

and RING-type E3s (Maculins et al. 2016; Ashida and Sasakawa 2016). However, a third 

class of BELs called Novel E3 ligases (NELs) do not share any structural similarity with 
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any eukaryotic E3 ligases (Quezada et al. 2009). They are characterized by the presence 

of a C-terminus NEL catalytic domain and N-terminal Leucine-Rich Repeat (LRR) 

domains which are required for substrate binding and also inhibit the NEL domain in 

absence of a substrate (Chou et al. 2012). 

1.1.3. The ubiquitin code: Signaling implications of ubiquitination 

Ubiquitin can be singularly conjugated or attached to substrates as chains with different 

conformations determined by the residue that links one ubiquitin to the next. This can be 

seen as words (ubiquitin) that associate and form different sentences (ubiquitin chains), 

and constitutes the base of a system that D. Komander and M. Rape have called the 

“ubiquitin code” (Komander and Rape 2012). The panoply of ubiquitination chain types 

attached to substrates by ubiquitin conjugating enzymes can be recognized and 

disassembled by specific DUB enzymes, contributing to the dynamic regulation of the code 

(Mevissen and Komander 2017). To interpret the ubiquitin code, cells count on an array 

of UBPs with a variety of ubiquitin binding domains (UBDs) that specifically recognize 

specific types of ubiquitin chains and can then mediate particular cellular responses 

(Husnjak and Dikic 2012) (Fig. 1.4A). 

It has been estimated that the majority of ubiquitin in mammalian cell lines is conjugated 

as a single ubiquitin (>60%), most likely due to monoubiquitination of histone H2A, which 

is one of the most abundant cellular components (Clague et al. 2015). Monoubiquitination 

of substrates is typically associated with alterations of intra- or intermolecular interactions 

that in turn affect their localization, complex formation or activity. After 

monoubiquitination, ubiquitin chains with K48- and K63- linkages are the second most 

abundant types of chains. K48-chains are mainly involved in the targeting of proteins for 

proteasomal degradation. While K63-chains often act as secondary messengers and 

scaffolds, allowing the formation of rapid and reversible signaling complexes involved in 

processes such as the activation of the Nuclear Factor kappa B (NF-kB) transcription 

factor, DNA repair, innate immune responses, clearance of damaged mitochondria, and 

protein sorting (Komander and Rape 2012).  
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Figure 1.4 Physiological roles associated with individual chain types. A. Examples of E2 or E3 
enzymes that assemble and DUBs that disassemble ubiquitin chains with linkage preferences is 
indicated. Below, illustrations show some of the biological processes that determined ubiquitin 
linkage types have been associated with. B. APC/C is active during early mitosis and modifies cell 
cycle regulators such as Nek2A with Lys48/Lys11-linked branched polyubiquitin. In this process, 
UBE2C first assembles short chains on the substrates, and these are then elongated on each 
ubiquitin by Lys11-linked polymers. Lys48/Lys11 branched chains enhance proteasomal degradation. 
C. Mixed or branched Lys63/Met1-linked chains serve as protein scaffolds at immune receptors, 
such as IL-1 receptors, to promote NF-kB signaling. D. A viral E3 ligase initiates endocytic 
internalization of the MHC class I receptor through the attachment of mixed or branched 
Lys11/Lys63-linked ubiquitin chains. Taken from (Swatek and Komander 2016). 
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Proteomic studies have revealed that chains linked by the remaining 5 lysines (K6-, K11-, 

K27-, K-29-, K33-) and the first methionine (M1-) of ubiquitin also exist in cells but in 

much smaller proportions and are referred to as "atypical chains". In human cells, 

conjugated K11-linked chains increase in abundance during mitosis and early G1 phase 

and have, accordingly, been found to target cell cycle regulators for degradation by the 

proteasome, which is reminiscent of the function of K48-linked chains. K11 chains are 

produced by specific E3 enzymes like APC/C (anaphase promoted complex) in partnership 

with the E2 Ube2S. M1-linked chains are quickly synthetized following activation of 

inflammatory signaling cascades and are recognized by UBPs with linkage-specific UBDs, 

such as the ubiquitin binding in ABIN and NEMO (UBAN) domain (Yau and Rape 2016). 

Like K11 chains, M1-chains are assembled by particular E3 enzymes, like the Linear 

Ubiquitin Chain Assembly Complex (LUBAC), which play pivotal roles in immune 

signaling and NF-kB activation (Yau and Rape 2016). The four other types of lysine 

linkages of ubiquitin are much less characterized and seem to be assembled by E3 ligases 

that have mixed specificity. K6-linked chains are observed during the removal of damaged 

mitochondria from cells, K-27 chains seem to be involved in regulating DNA repair and 

autoimmunity, K29-chains are reported to have roles in proteasomal degradation, and K33-

linked chains appear to regulate trafficking through the trans-Golgi network (Swatek and 

Komander 2016; Yau and Rape 2016). 

So far, I have described homotypic chains, that is, chains where ubiquitin monomers are 

connected by a single type of linkage. However, heterotypic chains are also formed on 

substrates, and they can be either of mixed or branched nature. Mixed chains are composed 

of ubiquitin subunits connected to only one ubiquitin subunit at a time by various lysines 

(or M1), while branched chains have ubiquitin subunits conjugated to more than one lysine 

or the M1 residue at a time. These kinds of chains are proving to be functionally diverse, 

participating in numerous signaling cascades due to their ability to attract several UBPs 

in specific combinations and thus elicit unique reactions as exemplified in figure 1.4B-D 

(Swatek and Komander 2016).  

In addition to the abundance of linkage possibilities, the complexity of this code has 
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increased enormously by recent discoveries showing that ubiquitin can be subjected to 

phosphorylation, acetylation, and modification by Ubls (like SUMO and Nedd8), adding 

another layer of regulation and of interaction with other PTM systems (Cui et al. 2010; 

Herhaus and Dikic 2015; Swatek and Komander 2016; Yau and Rape 2016).  

Additionally, pathogenic bacteria strategically modify ubiquitin and Ubls to interfere with 

the host ubiquitination system and achieve successful infection. For example, the bacterial 

effector Cif (cycle inhibiting factor) family encoded by Burkholderia pseudomallei and by 

enteropathogenic Escherichia coli can deamidate glutamine 40 of ubiquitin and Nedd8, 

thereby inhibiting ubiquitin chain extension and hampering the Nedd8-dependent 

activation of CRLs (Cullin-RING Ligases) (Cui et al. 2010). Similarly, arginine 

phosphorybolisation of ubiquitin induced by SdeA produced by Legionella pneumophila 

has been shown to impair host ubiquitin-dependent processes (Bhogaraju and Dikic 2016). 

1.1.4. When ubiquitination goes awry: Implications in human diseases 

Considering the widespread implication of ubiquitination in cell signaling, it is not 

surprising that the deregulation of the ubiquitin system contributes to the development 

and progression of several pathologies including cancer, neurodegenerative diseases, 

autoimmunity, metabolic and inflammatory disorders, infection and muscle dystrophies 

(reviewed in (Popovic et al. 2014)).  

Disease-associated perturbations in the ubiquitin system may occur at multiple levels: i) 

at any point during the multi-step process of ubiquitin conjugation, commonly via 

mutation or deletion of E1, E2, E3 enzymes, or of the substrate itself, ii) during ubiquitin 

recognition (by de-regulation of UBPs), or iii) during de-ubiquitination (by de-regulation 

of DUBs) (Popovic et al. 2014; Groen and Gillingwater 2015). One of the best-known 

examples of an E3 ligase whose perturbation leads to a pathology is E6AP (also known as 

Ube3a). Genetic alterations on E6AP that result in loss of function are known to cause 

Angelman syndrome, a rare neurogenetic disorder characterized by severe mental 

retardation, speech impairment, ataxia, seizure and frequent busts of laughter (among 

other symptoms) (Buiting et al. 2016). Moreover, several types of cancer and immune 
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pathologies present alterations in the canonical NF-kB pathway, which heavily relies on 

the conjugation and recognition of different types of ubiquitin chains (as described in 

section 1.1.2). For instance, it has been shown that patients with inherited deficiency in 

HOIL-1 (an E3-ligase present in the LUBAC complex that regulates NF-kB activation) 

suffer from chronic autoinflammation, muscular amylopectinosis and susceptibility to 

bacterial infections (Boisson et al. 2012). Another example is the DUB A20/TNFAIP3, 

which is considered a tumor suppressor due to its role in restraining exacerbated 

inflammation via the NF-kB pathway. Concordantly, mutations in A20/TNFAIP3 that 

decrease its expression or compromise its activity are commonly found in patients with 

lymphomas as well as in patients suffering from inflammatory conditions including 

rheumatoid arthritis, psoriasis, systemic lupus erythematosus, celiac disease, Crohn’s 

disease and diabetes (Hymowitz and Wertz 2010; Ma and Malynn 2012). Also associated 

with the NF-kB pathway is the UBP and autophagy adaptor Sequestosome 1 (SQSTM1, 

also known as p62). A mutation near the UBD of SQSTM1/p62 has been shown to cause 

Paget disease of bone, a common and chronic skeletal disorder (Laurin et al. 2002). In 

addition to inflammation, one of the key ubiquitin-dependent processes deregulated in 

cancer is genomic instability. For instance, FANCL, an E3 ligase whose activity is 

necessary for the correct localization of DNA repair factors (Garcia-Higuera et al. 2001), 

has been found to be mutated in hereditary ovarian and breast cancer as well as in Fanconi 

anemia, a rare cancer-prone genetic disease characterized by chromosomal instability (Peng 

et al. 2007; Xie et al. 2010).  

Due to the increasingly recognized implication of the ubiquitin system in disease, great 

efforts have been made towards the development of inhibitors and agonists of the enzymes 

of the ubiquitin system (E1, E2, E3 and DUBs) for therapeutic applications (Huang and 

Dixit 2016). More about this topic, focusing on regulatory strategies of HECT E3 ligases, 

can be found in section 1.3. 
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1.2. E3 ubiquitin ligases: focus on the HECT family. 

As seen briefly in section 1.1.2, the E3 ubiquitin ligases (E3s) are the main contributors of 

specificity in the ubiquitin conjugation system. In accordance with this role there is a great 

variety of these enzymes (>600 in humans), which are classified in three types: RING, 

RBR, and HECT. In this section I will expand on the characteristics of each family of E3s 

and their mechanisms of action with a special emphasis, at the end of the section, on the 

HECT family. 

1.2.1. RING E3 ligases. 

The great majority of E3 ligases belong to the RING family. Bioinformatic analyses 

estimate that there are around 600 members in humans (Li et al. 2008). Example members 

of this family are c-Cbl, which is essential for ubiquitination and lysosomal degradation of 

the epidermal growth factor receptor (EGFR) (Levkowitz et al. 1999), and APC/C, which 

promotes ubiquitination and proteasomal degradation of anaphase inhibitors, ensuring 

timely chromatid separation and mitotic exit (Craney et al. 2016). 

RING E3s are characterized by a catalytic RING domain that requires the coordination of 

two zinc ions to fold correctly, or a U-box domain, which closely resembles RING domains 

in structure but does not coordinate zinc ions (Deshaies and Joazeiro 2009). RING E3 

ligases are very diverse and can be active as monomers, homodimers, heterodimers or as 

part of large multi-subunit complexes (as reviewed in (Buetow and Huang 2016)). 

Examples of these large complexes are APC/C (Anaphase promoting complex/cyclosome) 

(Chang and Barford 2014) and the E3 Cullin-RING ligases (CRL), a large family of mutli-

subunit RING E3s (Petroski and Deshaies 2005a; Lydeard et al. 2013). The prototypical 

CRL is the Skip/Cullin/F-box complex (SCF).  

RING ligases simultaneously bind the substrate protein and the ubiquitin-loaded E2, and 

mediate the direct transfer of ubiquitin from E3 to substrate. It has been observed that 

the RING-mediated approximation of E2~Ub and Substrate is not sufficient to reach 

optimal transfer rates (Seol et al. 1999; Petroski and Deshaies 2005b; Saha and Deshaies 



Chapter1. Ubiquitin signaling 
 

 21 

2008) and that the nature of the E2-RING interaction is important since not all E2-RING 

pairings lead to substrate ubiquitination (Brzovic et al. 2003; Ozkan et al. 2005). In 2012, 

the crystal structures of RNF4 and BIRC bound to E2~Ub were elucidated (Dou et al. 

2012; Plechanovová et al. 2012) and they revealed that RING E3s are more than scaffolds: 

they prime ubiquitin for transfer by stabilizing the highly dynamic E2~Ub into a closed 

conformation that renders it more reactive towards transfer (Page et al. 2012; Dou et al. 

2012; Pruneda et al. 2012; Soss et al. 2013). This mechanism has been recently expanded 

from homodimeric RINGs to monomeric RINGs (Dou et al. 2013; Buetow et al. 2015; 

Branigan et al. 2015), indicating that the mechanism might be universal to many other 

RING E3-E2 pairs. 

After the first ubiquitin is transferred to a substrate, the formation of polyubiquitin chains 

often ensues. RING-E3 ligases can catalyze chain elongation much faster than chain 

initiation and in cooperation with a single E2 enzyme. For example, the E2 Cdc34 (also 

known as UbcH3 or UBE2R1) is 5 to 30 times faster at chain elongation than at initiation 

and is specific of Lys48 (Petroski and Deshaies 2005b). In other cases, chain initiation and 

elongation can be carried out by separate E2s. An example of this is APC/C-mediated 

polyubiquitination: the E2 UbcX (also known as UbcH10 or UBE2C) has a preference for 

monoubiquitination or short ubiquitin chains, whereas the E2 Ubc4 (also known as UbcH5 

or UBE2D) usually assembles long polyubiquitin chains (Yu et al. 1996), the authors of 

this study proposed that they operate sequentially.  

In RING E3- catalyzed ubiquitination, chain linkage specificity (chain topology) is thought 

to be determined by the E2 enzyme cooperating with the RING E3 ligase (Chen and 

Pickart 1990; Haas et al. 1991; Hofmann and Pickart 1999). 

1.2.2. RBR E3 ligases. 

The RBR E3 ligases are viewed as hybrids between RINGs and HECTs and were only 

recently defined as a distinct type of E3 ubiquitin ligases (Wenzel et al. 2011). They are 

characterized by a catalytic domain composed of two RING fingers (RING1 and RING2) 

and a central in-between RING (IBR) zinc-binding domain. The RING1 domain binds to 
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the loaded E2 and the RING2 domain contains an active cysteine residue capable of 

forming a reversible thioester intermediate with ubiquitin. Besides the common RING1-

IBR-RING2 motif, RBR family members possess other domains, which gives diversity to 

the family (Wenzel et al. 2011; Stieglitz et al. 2012; Smit et al. 2012; Spratt et al. 2014). 

There are 14 RBRs encoded in the human genome, and the three best-characterized are 

PARKIN, commonly mutated in Parkinson disease; HOIP (HOIL-1L interacting protein), 

the central E3 subunit of LUBAC (linear ubiquitin chain assembly complex) in NF-kB 

signaling; and HHARI (human homologue of Ariadne) (Kitada et al. 1998; Kirisako et al. 

2006; Ikeda et al. 2011).  

RBR proteins are commonly found in auto-inhibited conformations that are not competent 

for ubiquitin transfer. Release from the auto-inhibited state occurs once RBRs bind to 

E2~Ub, as observed by Lechtenberg and colleagues in a study where they solved the 

structure of the fully active human HOIP in complex with an E2~Ub (Lechtenberg et al. 

2016). Moreover, they observed that contrary to RINGs, and similar to HECTs (see section 

below), HOIP stabilizes E2~Ub in an extended conformation where the E2~thioester bond 

is juxtaposed with the RING2 active site cysteine and is optimal for transfer. This is in 

agreement with the fact that RBR’s RING1 finger alone cannot promote ubiquitin transfer 

(Wenzel et al. 2011), as it does not activate E2~Ub like a canonical RING domain (in a 

closed conformation).  

Little is known about how chain type is determined by RBRs. So far, the only well studied 

case is HOIP, where M1-chain specificity has been shown to depend on the presence of a 

linear ubiquitin chain-determining domain in HOIP (Smit et al. 2012; Riley et al. 2013). 

1.2.3. HECT E3 ligases. 

Members of this family of E3 ligases were among the first E3 enzymes to be cloned, and 

are the best functionally characterized among the thioester-forming E3s. The ubiquitin 

ligase function of the HECT family of proteins was first observed through studies of the 

degradation of the p53 tumor suppressor in cells infected by oncogenic forms of human 
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papillomavirus (HPVs) (Scheffner et al. 1990). Biochemical studies revealed that p53 

degradation depended on the HPV E6 gene and a host protein named E6-AP (E6-

associated protein), and that the complex of these proteins functioned as a p53-specific E3 

{Scheffner:1993ur}. Further studies determined that E6-AP contained a conserved region 

of about 350 amino acids towards its C-terminus (Huibregtse et al. 1995) and that within 

this region, called the homologous to E6-AP C-terminus (HECT) domain, was a highly 

conserved cysteine located around 35 residues upstream of the C-terminus that is required 

for E6-AP activity (Scheffner et al. 1995).  

Most HECTs arose before the emergence of animals or very early in metazoan evolution 

(Marín 2010), and the human genome encodes 28 HECT E3 ligases (Rotin et al. 2009). All 

members of the HECT family are characterized by a HECT domain located at their C-

terminus and most also contain a variety of protein-protein or protein-lipid interaction 

domains towards their N-terminus (Rotin et al. 2009). Based on their N-terminal domain 

architecture, the 28 human HECT E3s are commonly divided into three sub-families (Fig. 

1.5): (i) the Nedd4 family has 9 members in humans and is characterized by C2 and WW 

domains that allow them to bind phospholipids and PY motifs in substrate proteins. This 

is the best-studied family, most of what is known about structure and enzymatic 

mechanisms of HECT E3s come from studies done with NEDD4 E3 ligases; (ii) the HERC 

family, with 6 human members, contain regulator of chromosome condensation 1 (RCC1)-

like domains (RLDs) that are not well described. This family can be divided in two groups, 

the large HERCs (>500 kDa) and the small HERCs (around 100kDa), which have a single 

RLD; (iii) the “other” family, with 13 human members, comprises HECTs which contain 

protein-protein interaction domains different from the previously mentioned 
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Figure 1.5. The mammalian HECT E3 ligases. The 28 human HECT E3 ligases are often grouped 
into three families. Two of these, the Nedd4 family and the HERC family, can be clearly 
distinguished by their domain architecture. The HERC family members, which contain one or more 
regulator of chromosome condensation 1 (RCC1)-like domains (RLDs), can be divided into two 
groups — the small HERCs that carry a single RLD and the large HERCs that contain more than 
one RLD and additional domains, such as SPRY and WD40. Nedd4 family members are 
characterized by a unique domain architecture, with all members containing an N-terminal C2 
domain and two to four WW domains. The remaining HECT proteins contain a myriad of domains 
(as shown). From (Rotin et al. 2009). 

 

The details of the enzymatic mechanism by which HECT E3s catalyze the transfer of 

ubiquitin onto a substrate have proven to be elusive for a long time. Currently, this 

knowledge gap is rapidly closing thanks to the increasing abundance of structural 

information that captures the different stages of the two step-ubiquitin transfer reaction 

that HECTs catalyze (Buetow and Huang 2016; Zheng and Shabek 2017). The catalytic 

HECT domain has a bi-lobed structure, where the two lobes are connected by a flexible 

hinge loop. The N-terminal lobe (N-lobe) binds to E2~Ub and the C-terminal lobe (C-
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lobe) contains the catalytic cysteine (Huang et al. 1999). The flexible hinge allows the two 

lobes to rotate, a characteristic that is necessary for ubiquitin transfer (Verdecia et al. 

2003; Ogunjimi et al. 2005). Thanks to the elucidation of the structure of Nedd4-2 bound 

to the E2 UBE2D2 (UbcH5b) loaded with ubiquitin (Kamadurai et al. 2009), the current 

model of transthiolation is the following: Nedd4-2's N-lobe binds to E2~ub and upon 

rotation of the hinge, the C-lobe binds ubiquitin. Interestingly, this interaction stabilizes 

E2~Ub in an open conformation, contrary to the closed conformation induced by RING 

E3s. This arrangement brings together the two catalytic cysteine residues of E2 and E3 

and promote the formation of the HECT E3~Ub intermediate. This mechanism is likely 

to be shared among other HECT E3s (Buetow and Huang 2016). Once the E2 leaves, the 

interaction between the Ub and the C-lobe remains the same, as evidenced in the crystal 

structure of Nedd4-1~Ub (Maspero et al. 2013). In the next step, however, Kamadurai and 

collaborators observed that the N-lobe of the HECT domain rotates almost 130º from its 

previous position (while bound to E2~ub or conjugated with Ub). This change juxtaposes 

the active cysteine bound to the Ub and the acceptor lysine of the substrate (in this case 

the yeast Nedd4 homolog Rsp5 and its target Sna3) (Kamadurai et al. 2013).  

Not much is known about how HECT E3s catalyze chain elongation and determine linkage 

specificity. Kim and colleagues demonstrated that the linkage specificity of several HECT 

E3s depends on the particular sequence identity of the C-lobe of the ligase’s HECT domain 

and is, contrary to RING E3s, independent of the identity of the cooperating E2 enzyme 

(Kim and Huibregtse 2009). Nedd4 E3s have a UBD (aka ubiquitin-binding exosite 

hereafter referred as UBEx) within the N-lobe of their HECT domain. It has been shown 

that the UBEx is critical for polyubiquitin chain formation (Ogunjimi et al. 2005; French 

et al. 2009; Kim et al. 2011; Maspero et al. 2011; Maspero et al. 2013). Indeed, it has been 

reported that inhibiting the binding of ubiquitin to the UBEx ,either by mutation or by 

small chemical inhibitors, impairs polyubiquitin chain elongation but not E2-/E3- 

transthiolation nor the conjugation of the first ubiquitin to a substrate (Kim et al. 2011; 

Maspero et al. 2011; Kathman et al. 2015). On the other hand, Zheng and colleagues 

recently showed that occupation of the UBEx by ubiquitin variants in different members 
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of the Nedd4 family can influence many properties of the reaction both positively and 

negatively (Zhang et al. 2016).  

 

Figure 1.6. Schematic showing the HECT E3 catalytic cycle. In the absence of any binding partner, 
the C-lobe can rotate relative to the N-lobe thanks to the hinge loop. Upon encountering 
E2~ubiquitin, the N-lobe binds E2 and the C-lobe rotates to bind ubiquitin, thereby juxtaposing 
the catalytic cysteine residues from E2 and E3. Upon ubiquitin transfer onto the catalytic cysteine 
of the C-lobe, E2 is released. E3 binds the substrate through its substrate-binding domain and the 
C-lobe undergoes rotation to juxtapose the catalytic cysteine of E3 and a substrate lysine for ligation. 
The actual order in which HECT E3 recruits E2~ubiquitin and substrate is not yet known. From 
(Buetow and Huang 2016) 

The number of HECT E3 ligases represent less than 5% of all the E3 ligases found in 

humans, yet they have been shown to have important physiological roles in many biological 

processes such as, fetal growth and development, regulation of DNA damage and 

replication, modulation of immune responses, among other processes. Consequently, their 

de-regulation leads to development of different pathologies (reviewed in (Scheffner and 

Kumar 2014) and (Rotin et al. 2009)). Therefore, it is important to understand how this 

family of E3 ligases is regulated. 

 

1.3. Regulation of HECT E3s.  

The activity of E3 ligases are tightly regulated on a variety of levels including cooperation 

with E2 enzyme(s), E3 processivity and substrate recognition. The regulation of these 

processes is usually mediated by structural rearrangements triggered by interaction with 

auxiliary factors or by post-translational modifications (PTMs) such as phosphorylation 

and ubiquitination (Ogunjimi et al. 2005; Wiesner et al. 2007; Rotin et al. 2009; Maspero 

et al. 2011). Currently, most of what is known about the regulation of HECT E3 ligase 
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activity comes from studies focusing on members of the Nedd4 subfamily. Therefore, this 

section will mainly discuss the literature involving the regulation of this subfamily of HECT 

ligases, then mention a couple of recent studies involving two HECT ligases outside of the 

Nedd4 subfamily, and finally go through some examples of regulation of HECT ligase 

activity by small chemical inhibitors. 

1.3.1. Regulation of Nedd4 family ligases. 

Nedd4 family ligases share a common domain structure and, at steady state, most of them 

favor inhibitory conformations that protects them and their targets from untimely 

ubiquitination (Fig. 1.7). Smurf2, Nedd4-1 (aka Nedd4), Nedd4-2 (aka Nedd4-L), and 

WWP2 are negatively regulated under basal conditions through intramolecular 

interactions involving the C2 and HECT domains (Wiesner et al. 2007; Mund and Pelham 

2009; Wang et al. 2010a); (Bruce et al. 2008). In the case of Itch, auto-inhibitory 

conformation is mediated by its WW and HECT domains and is proposed to occur intra-

molecularly (Gallagher et al. 2006; Riling et al. 2015). Despite the high degree of homology 

between Smurf1 and Smurf2, the cis interaction between the C2 and the HECT domains 

that inactivates Smurf2 is not found in Smurf1 due to the shorter linker region between 

its HECT and C2 domains (Wiesner et al. 2007). Instead, it has been reported that the 

full-length Smurf1 forms homodimers through intermolecular contacts mapped to a 

fragment containing the C2 and the WW domains of one molecule and the HECT domain 

of the partner (Wan et al. 2011).  

The details of how these closed conformations block enzymatic activity is not yet clear for 

all the ligases mentioned above but, to date, the best characterized one is Smurf2. As 

previously mentioned, Smurf2 auto-inhibition is governed by the interaction between the 

C2 and HECT domains; specifically, the C2 domain binds the N-lobe of the HECT domain 

and restricts movement of the C-lobe, which makes the active cysteine inaccessible for an 

incoming E2~Ub and thereby precluding transthiolation (Wiesner et al. 2007; Mari et al. 

2014). Moreover, the C2 domain partially buries the UBEx, which is essential for E3 

processivity (Mari et al. 2014). Another enzymatic step affected by the auto-inhibitory 
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conformation of Smurf2 is the recruitment and binding of the its associated E2 (UbcH7); 

it has been shown that Smurf2 interacts very weakly with UbcH7, and that binding to the 

adaptor protein SMAD7 (disrupting its intra-inhibitory interactions) is necessary for a 

functional interaction between Smurf2 and UbcH7 (Ogunjimi et al. 2005). 

 

 
Figure 1.7. Domain structure of the nine members of the Nedd4 family and their auto-inhibitory 
conformations. Smurf2, WWP2, Nedd4-2 and Nedd4-1 form intra-molecular interactions between 
their C2 and HECT domains, as exemplified with Smurf2; Itch auto-inhibitory conformation is 
similar, but the HECT domain interacts with WW domains instead of the C2 domain. Smurf1 
presents inhibitory interactions between the C2 domain, a WW domain and the HECT domain in 
trans instead of cis, forming an inactive homo-dimer. 

Similar to Smurf2, nuclear magnetic resonance (NMR) and biochemical analysis have 

shown that in Nedd4-1 the C2 domain has the potential to regulate E3 activity by keeping 

the HECT domain in a low-activity state where its ability for transthiolation and non-

covalent ubiquitin binding is impaired (Mari et al. 2014). Contrary to Smurf2, recent 

studies have shown that Itch can bind to E2s while in its auto-inhibitory conformation. 

However, the transfer of ubiquitin from E2 to the active cysteine of Itch is thwarted (Riling 

et al. 2015). 
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Figure 1.8. Mechanisms of regulation of Nedd4-family ligases. An increasing number of studies have 
shown that adaptors (orange) and PTMs such as ubiquitination and phosphorylation (kinases shown 
in mauve) can promote (lighter orange or mauve, and pointed arrow), inhibit (darker orange or 
mauve, and blunt arrow) or modulate (circle-ending line) one or more aspects of Nedd4-ligases 
activity; such as the ligase localization and interaction with substrates, its binding to E2 enzymes, 
and its intrinsic E3 catalytic activity. Details about how each adaptor and PTM modulates the 
different E3 ligases are discussed in the main text. 

The last ten years have seen a boom in the number of studies exploring how the cell 

controls the activity of Nedd4 E3 ligases, and a multitude of adaptors and PTM events 

(mainly phosphorylation) have been shown to modulate one or more aspects of Nedd4-

ligases activity. This includes the disruption or promotion of (i) their auto-inhibitory 

conformations, which affects their intrinsic catalytic activity; (ii) their cooperation with 

E2 enzymes; (iii) their cellular localization; and (iv) their substrate-affinity (Fig. 1.8). As 

shown in figure 1.8, some adaptors bind and regulate one or more E3 ligases by several 

mechanisms. Despite this, for practical purposes I will classify the PTMs and Adaptors 

into two groups: those which modulate the catalytic activity of the E3 ligase by affecting 
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their conformation, and those who modify the E3 ligase interaction with substrates by 

affecting its cellular localization and/or its affinity for its targets. 

a. Release of auto-inhibition by adaptors 

The Nedd4 family-interacting proteins (NDFIP) 1 and 2 have been described as activating 

adaptors targeting several Nedd-4 E3 ligases. Indeed, they promote the auto-ubiquitination 

of Itch, Nedd4-1, Nedd4-2, Smurf1, WWP1 and WWP2, as well as the ubiquitination of 

JunB, c-Jun and endophilin by Itch and Nedd4-1 (Mund and Pelham 2009). 

Mechanistically, it was shown that NDFIP1 binds multiple WW domains of Nedd4 ligases 

through its PY motifs and disrupts Nedd4 auto-inhibition (Riling et al. 2015). In contrast 

with NDFIP 1 and 2, most other adaptors reported to date activate only one or two E3 

ligases. 

Smurf2 is activated upon binding the adaptor protein SMAD7, whose expression is 

regulated by extracellular stimuli like the transforming growth factor beta (TGFβ) (Kee 

and Huibregtse 2007). SMAD7 PY motifs interact with the WW domains of Smurf2 and 

the N-terminus of SMAD7 interacts with the HECT domain of Smurf2, causing the release 

of the C2 domain (Wiesner et al. 2007; Aragón et al. 2012) and enabling Smurf2-mediated 

transthiolation. In addition, Smad7 activates Smurf2 in two other ways: first, it facilitates 

the recruitment of the E2 (Ogunjimi et al. 2005) and second, it directs Smurf2 to the 

plasma membrane, where it mediates its interaction with several substrates (Kavsak et al. 

2000; Di Guglielmo et al. 2003; Izzi and Attisano 2004). 

Smurf1 has been shown to be regulated by two adaptor proteins: CKIP-1 (casein-kinase-2 

interacting protein -1) and with Cdh1 (Lu et al. 2008; Wan et al. 2011). Wan and colleagues 

showed that CKIP-1 and Cdh1 bind to Smurf1 and activate it by disrupting the formation 

of inhibitory Smurf1 dimers, thereby promoting Smurf1 autoubiquitination and 

ubiquitination of RhoA, one of Smurf1’s targets (Wan et al. 2011). 

There are several examples of auxiliary proteins that activate Itch, notably Spartin and 

Numb. Spartin binds to Itch via its PY motifs and recruits it to lipid droplets. This 
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interaction increases Itch enzymatic activity at a specific cellular location and enables the 

ubiquitination of proteins present on the lipid droplets, such as adipohilin (Hooper et al. 

2010). Di Marcotullio and colleagues showed that Numb activates Itch by disrupting 

inhibitory intramolecular interactions between its HECT and WW domains; moreover, 

Numb recruits Gil1 and mediates its interaction with Itch, leading to Gil1 ubiquitination 

and degradation (Di Marcotullio et al. 2011).   

 

 

Figure 1.9. Activation and cellular localization of Nedd4-2 by IP3 and Calcium. IP3-induced Ca2+ 

delivery into the cytoplasm triggers the transition from the closed an inactive conformation of the 
ligase (left panel) to the active one (right panel). Once active, different WW domains in Nedd4-2 
are able to recognize the ligase’s cytoplasmic targets including Smad2/3 and Smad7. The ligase is 
also able to relocate to the plasma membrane, where it possibly anchors to the IP3 head groups of 
the PIP2 lipids and targets the membrane receptors, such as TGFβRI and β- ENaC. From: 

(Escobedo et al. 2014). 

 

Small cellular messengers can also act as activating adaptors that release the auto-

inhibition of Nedd4 ligases. Wang and colleagues demonstrated that calcium ions release 

the C2 domain-mediated auto-inhibition in both Nedd4-1 and Nedd4-2 by disrupting the 

binding of the C2 domain to the HECT domain (Wang et al. 2010a). More recently, a 

study using NMR revealed that Ca2+ and inositol 1,4,5-triphosphate (IP3) bind to the C2 

domain of Nedd4-2 using the same region that mediates the interaction with the HECT 

domain (Escobedo et al. 2014). Thus, the balance between the closed and open 

conformation of Nedd4-2 results from the competition between Ca2+, IP3, and the HECT 
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domain to bind the C2 domain. Therefore, the activity of Nedd4-2 depends on the 

intracellular levels of Ca2+ and IP3. IP3 is generated by hydrolysis of the membrane 

phospholipid phosphatidylinositol 4,5-biphsphate (PIP2) and is found in the cytosol and 

the endoplasmatic reticulum, where it binds to its receptor. Both IP3 and PIP2 can bind 

to Nedd4-2 in the presence of Ca2+, which enables Nedd4-2 to act either at the cytosol or 

at the membrane; where it can target specific substrates, including the cytosolic Smad7 

(which makes Nedd4-2 an indirect regulator of Smurf2 activity) (Fig. 1.9) (Escobedo et al. 

2014). 

b. Modulation of auto-inhibition by PTM 

Release of auto-inhibition by post-translational modifications has been less reported than 

activation via adaptors. Here, I will mention three cases where phosphorylation activates 

Nedd4 ligases and a recent study that shows that ubiquitination of Nedd4 and Rsp5 

inhibits their activity in a proteasome-independent manner. 

JNK1 kinase phosphorylates Itch at S199, S232, and T222. These modifications disrupt 

the auto-inhibited conformation of Itch mediated by its WW and HECT domains and 

therefore induces its activation (Gao et al. 2004; Gallagher et al. 2006). A second kinase, 

ATM, phosphorylates Itch in response to DNA damage and induces its activation (Santini 

et al. 2014). The authors of this study identify that phosphorylation of S161 is critical for 

ATM mediated activation of Itch and they propose that this modification disrupts Itch’s 

intra-inhibitory interactions, as reported for JNK induced phosphorylation. Following the 

same trend, Persaud and colleagues have described that following activation of FGFR1 or 

EGFR, the effector tyrosine kinase c-Src is activated, which then phosphorylates Nedd4-1 

on Y43 (C2 domain) and Y585 (HECT domain). They demonstrate that phosphorylation 

of Nedd4-1 disrupts the C2-HECT interaction and thereby relieves inhibition of the E3 

ligase, which results in the ubiquitination and degradation of substrates such as FGFR1 

(Persaud et al. 2014). 

Earlier this year, Attali and colleagues have shown that ubiquitination also affects Nedd4 

ligases conformation and activity. Specifically, they demonstrated that ubiquitination of a 
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flexible alpha-helix in the HECT domain of Nedd4-1 and Rsp5 (Nedd4-1 homologue in 

Yeast) induces the formation of an inactive homo-trimer (Attali et al. 2017). The described 

mechanism relies on both ubiquitination of specific lysine residues located in the alpha-

helix and on the presence of a UBEx within the HECT domain. Upon ubiquitination, the 

alpha helix rotates to approach its linked ubiquitin to the UBEx. This structural change 

clears a region that is required for oligomerization (Fig. 1.10). How this change in 

conformation inactivates NEDD4-1 and RSP5 is still unclear. 

 

Figure 1.10. Schematic representation of how the Nedd4 family ubiquitin ligases self-regulate 
through auto-ubiquitination.�Ubiquitin (Ub) is transferred from a ubiquitin-conjugating enzyme 
(E2) to either the Rsp5/Nedd4-1 active-site cysteine and then to E3-bound substrate, or onto a 
flexible α-helix on the E3. Upon auto-ubiquitination of the α-helix, the position of the helix rotates 
to interact with a conserved UBEx (“UBD” in the figure) opening access to an oligomerization 
domain and trimerization of Nedd4-1. Self-association renders the E3 inactive. From (Hill and 
Kleiger 2017). 

 

Up to this point I have described adaptors and PTMs that directly influence E3 catalytic 

activity, and some that in addition modulate the localization of the E3 ligase, thereby 

dictating their interaction with a set of substrate proteins. In the next two sections I will 

show some examples of PTMs and auxiliary proteins that regulate substrate recognition, 

reportedly without affecting the E3 catalytic activity. 
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c. Regulation of substrate interaction by adaptors. 

The 14-3-3 family members bind targets that have been phosphorylated at specific serine 

or threonine residues and are key regulators of a wide variety of cell signaling pathways 

mediated by phosphorylation (Muslin et al. 1996). 14-3-3 proteins have been shown to 

associate to Nedd4-2 following its phosphorylation by SGK1 (Serum- and Glucocorticoid-

related Kinase 1) and PKA (Protein Kinase A). This association with 14-3-3 proteins 

inhibits the interaction between Nedd4-2 and its substrate ENaC (epithelial sodium 

channel) leading to reduced ENaC ubiquitination and subsequent degradation (Ichimura 

et al. 2005; Bhalla et al. 2005; Nagaki et al. 2006; Chandran et al. 2011). 

Similarly, Oberst and colleagues demonstrated that Nedd4-binding partner 1 (N4BP1) 

binds to the second WW domain of Itch and inhibits its interaction with several substrates 

(Jun, p73 and p63) by binding competition, thereby preventing their ubiquitination 

(Oberst et al. 2007). 

Auxiliary proteins can also promote enzyme-substrate interactions. Members of the α- and 

β-Arrestin families have been shown to bind to the WW domains of Itch, Nedd4-1 and 

Nedd4-2 and mediate their association with β2 adrenergic receptor, which leads to 

ubiquitination and recycling of the receptor (Shea et al. 2012; Han et al. 2013). 

d. Regulation of substrate interaction by PTM. 

Contrary to the activating effect of serine and threonine phosphorylation of Itch, tyrosine 

phosphorylation seems to negatively modulate the ability of Itch to selectively bind and 

ubiquitinate some of its targets, such as JunB and c-Jun. Gao and colleagues found that 

phosphorylation of a tyrosine within the PPXY motif of Itch by c-Abl inhibited its binding 

to c-Jun (Gao et al. 2006). Similarly, Fyn kinase phosphorylates Itch on Tyr-371, which 

inhibits its binding to JunB and therefore hampers JunB ubiquitination (Yang et al. 2006).  

Numerous studies have shown that hormone-induced phosphorylation of Nedd4-2 by PKA, 

SGK and IKKβ inhibits Nedd4-2 interaction with ENaC, inhibiting its ubiquitination 

(reviewed in (Snyder 2009)). For instance, SGK1 phosphorylates Nedd4-2 at S221, S327 
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and T245 and increases the surface abundance of all three ENaC subunits (α-, β- and γ-), 

while Nedd4-2 phosphorylation by PKA at S221 and S327 specifically increases the 

abundance of α-ENaC (Ismail et al. 2014). These studies suggest that the pattern of 

phosphorylation on Nedd4-2, modulated by different kinases, controls its association with 

the different subunits of ENaC. Similarly, it has been shown that Nedd4-2 phosphorylation 

by SGK1 downstream mTORC2 activation results in reduced Nedd4-2-JunB interaction 

and increased JunB stability (Heikamp et al. 2014). In another study, it has been 

demonstrated that following their TGFβ-induced phosphorylation, SMAD2/3 interact with 

Nedd4-2 via its second WW domain (WW2), which results in their ubiquitination and 

degradation; and that SGK1 inhibits this interaction by phosphorylating two serine 

residues flanking Nedd4-2 WW2 domain (Gao et al. 2009). 

Another remarkable case of modulation of substrate binding by phosphorylation was shown 

in a study by Cheng and colleagues. They find that PKA phosphorylates Smurf1 at Thr-

306 and shifts Smurf1’s affinity for its substrates. Namely, phosphorylation at Thr-306 on 

Smurf1 reduces its affinity for Par6 but increases it towards RhoA (Cheng et al. 2011). 

Finally, we have seen that ubiquitination of Nedd4 ligases can lead to inhibition of their 

catalytic activity by trimerization (Attali et al. 2017). Additionally, Woelk and 

collaborators reported an example of self-ubiquitination-dependent recruitment of 

substrates: they observed that self-catalyzed monoubiquitination of Nedd4-1 serves to 

recruit EPS15, which is subsequently monoubiquitinated by Nedd4-1 (Woelk et al. 2006). 

In summary, Nedd4 ligases are regulated by auto-inhibition, either by intra-molecular 

interactions or by inter-molecular interactions, forming steady state homodimers like 

Smurf1 or ubiquitination-triggered trimers like Nedd4-1 and Rsp5. With the exception of 

these trimers, the auto-inhibitory conformations are stable at basal levels and upon a 

stimulus (phosphorylation or binding of an adaptor protein) they can be disrupted. Each 

particular mechanism of activation disrupts the same interaction but in response to 

different upstream signals and, as seen before, they can additionally dictate the subcellular 

localization of E3s, thereby influencing their access to substrates. In other cases, the 
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adaptors or the modifications do not activate the ligase directly but solely modulate its 

affinity to different proteins, further fine-tuning the activity of Nedd4 E3 ligases. 

1.3.2. Regulation of HECT ligases outside the Nedd4 family. 

Very few studies about the regulation of HECT E3 ligases outside the Nedd4 family exist. 

The ones published pertain E6AP, the founding member of the HECT E3 ligases, and 

HUWE1, the giant of many names. 

a. E6AP/Ube3A 

As previously mentioned, E6AP was first described as the E3 ligase that worked in 

partnership with the E6 viral protein to induce p53 degradation in cells infected with HPV 

(Scheffner et al. 1990). A recent study elucidated the crystal structure of a E6/E6AP/p53 

ternary complex and determined that the viral protein E6 behaves as an adaptor of E6AP 

that enables it to bind to p53 by inducing the formation of a p53 binding site. Interestingly, 

it has been shown that phosphorylation of E6AP by c-Abl inhibits its capacity to 

ubiquitinate p53 (Chan et al. 2013). 

Besides regulating p53 during viral infection, E6AP also targets cellular proteins such as 

activity-regulated cytoskeleton-associated protein (Arc), RhoA-GEF Ephexin-5, and 

a human homologue of yeast Rad23 (HHR23A), a protein involved in DNA repair (Kumar 

et al. 1999; Kühnle et al. 2013). Incidentally, a recent study showed that phosphorylation 

of E6AP on Thr-485 by PKA downregulates E6AP activity by strengthening its affinity 

for itself and for HHR23A; and that disruption of this phosphorylation site (T485A) 

disables E6AP regulation by PKA and causes both excessive dendritic spine development 

in the brain and autism (Yi et al. 2015). 

b. HUWE1 

Huwe1, also known as Mule, ARF-BP1, UREB1, HectH9 and LASU1, is a 482kDa HECT 

E3 ligase implicated in numerous physiological processes (Scheffner and Kumar 2014) and 

one of its most prominent targets is the tumor suppressor p53. It has been shown that 
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HUWE1 activity towards p53 is inhibited when it binds p14ARF (Alternative Reading 

Frame in the CKN2A gene) (Chen et al. 2005). In a more recent study, it was determined 

that p14ARF also inhibits HUWE1’s ability to ubiquitinate Miz1, a transcription factor 

that suppresses TNF-induced cell death (Lee et al. 2015). Moreover, this study uncovered 

that TNF activates HUWE1 by inducing its Syk (Spleen Tyrosine Kinase)-mediated 

tyrosine phosphorylation, which in turn disrupts HUWE1 interaction with its inhibitor 

p14ARF. Together these studies show that HUWE1 activity can be inhibited by the 

adaptor protein p14ARF and that their interaction can be modulated by phosphorylation. 

However, the molecular mechanism by which p14ARF inhibits HUWE1 activity is not 

clear.  

Sander and colleagues published this year a structural study of an isolated C-terminal 

fragment of HUWE1 (3951-4374), which comprised the HECT domain plus a 42-residue 

extension. This work showed that HUWE1’s HECT domain can form an asymmetric dimer 

in which one subunit adopts a rigid auto-inhibited conformation; in addition, they 

identified an “activating region” located around 50 residues upstream the initially analyzed 

C-terminal fragment that could interact in cis with the dimerization region and thus 

disrupt the formation of the inhibitory dimer. The authors measured the strength of these 

inter- and intra-molecular interactions and found that they were quite weak and very 

similar, indicating that the dimeric and monomeric forms of HUWE1 are in a dynamic 

equilibrium. Interestingly, they found that the HUWE1 inhibitor p14ARF binds to the 

activating region of HUWE1 and shifts its conformational equilibrium towards the inactive 

dimer (Fig. 1.11) (Sander et al. 2017). This work provided an initial structural framework 

of HUWE1 activity, however more biochemical and structural studies are needed to 

identify which step of the catalytic cycle is hampered by the dimeric conformation of 

HUWE1 and which mechanisms mediate its activation. 
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Figure 1.11. Model of the conformational regulation of HUWE1 and the proposed mechanism of its 
inhibition by p14ARF. The catalytic activity of HUWE1 is regulated conformationally by the 
balance of inter- and intramolecular interactions. The “thumb” and “pointer” helices adjacent to the 
catalytic HECT domain can mediate the dimerization of HUWE1. The dimer locks the position of 
the C-lobe, buries the C-terminal tail (magenta), and occludes a putative ubiquitin binding site on 
the C-lobe of one subunit, hence representing an auto-inhibited state. Alternatively, the 
dimerization region of HUWE1 can associate with the activation segment in cis, which precludes 
dimer formation. The activation segment and the dimerization region are separated by a 55- residue 
flexible linker, which allows the re-positioning of the activation segment. In the monomeric state of 
HUWE1, the C-lobe is mobile with respect to the N-lobe (arrow), and the C-terminal tail may 
anchor the C-lobe on the N-lobe or interact with substrates, as required for catalytic activity. The 
activation segment of HUWE1 presents a major interaction site for a physiological inhibitor of 
HUWE1, p14ARF. It is possible that the binding of p14ARF to the activation segment releases the 
dimerization region from its intramolecular engagement, thus shifting the conformational 
equilibrium of HUWE1 toward the auto- inhibited, dimeric state.�From (Sander et al. 2017). 

 

1.3.3. Modulation of the activity of HECT E3s by small chemical compounds. 

The therapeutic potential of targeting proteasome-mediated degradation was successfully 

demonstrated in 2003 with the FDA approval of the reversible proteasome inhibitor 

Bortezomib (Velcade/PS-341) for the treatment of relapsed or refractory multiple myeloma 

(Adams 2002; Roccaro et al. 2006) and later by Carfilzomib (Krypolis), an irreversible 

second generation proteasome inhibitor (Khan and Stewart 2011). Despite their clinical 

success, these inhibitors have been associated with cutaneous and cardiac side effects in 

the case of Bortezomib (Nowis et al. 2010), and with hematological complications and 

minor side effects like fatigue, nausea and gastrointestinal upset in the case of Carfilzomib 

(Siegel et al. 2012; Kim and Crews 2013). 
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As components of the ubiquitin system, E3 ubiquitin ligases are involved in the regulation 

of virtually all physiological processes. Additionally, they are a diverse and highly specific 

group of enzymes whose activity is subjected to strict regulation. These characteristics 

make E3 ligases attractive targets for drug development with the potential to minimize 

the side effects observed in classical ubiquitin-proteasome inhibitors (Wilkie and Davies 

2012). This is reflected in the recent interest in considering E3 ligases as therapeutic targets 

against cancer (Liu et al. 2015) and inflammatory diseases such as asthma, atherosclerosis 

and obesity (Goru et al. 2016). 

In the particular case of HECT E3 ligases, the discovery of small molecule and peptide 

inhibitors has recently been reported. Mund and colleagues screened a library of bicyclic 

peptides for compounds that targeted the E2 binding site of the HECT domain and found 

candidates that inhibited Smurf2, Nedd4-1, HUWE1 and WWP1 activity in vitro. Among 

these peptide inhibitor candidates, one retains its inhibitory activity in vivo; however, they 

find that this compound does not impair E2 binding but instead it induces a conformational 

change that results in the oxidation of the E3 catalytic cysteine, impairing transthiolation 

(Mund et al. 2014). 

In other cases, the search for chemical inhibitors leads to the discovery of fundamental 

properties of HECT ligases. For instance, Kathman and collaborators were looking for 

covalent modifiers of two Nedd4-1 cysteine residues: the catalytic cysteine (C876) and a 

cysteine important for elongation (C627); they identified a small inhibitor that weakened 

the processivity of Nedd4-1 and made it efficiently antagonized by the DUB USP8. By 

studying the mechanism of action of this molecule they demonstrated that Nedd4-1 is a 

processive enzyme, meaning that it transfers several ubiquitin monomers to the substrate 

in one round of binding. Subsequently, once bound to their candidate molecule it turns 

into a distributive enzyme, i.e. it needs to release and bind its substrate every time it 

attaches an ubiquitin (Kathman et al. 2015). 

Recently, our team participated in the development of variants of ubiquitin (UbV) 

designed to strongly bind 20 HECT ubiquitin ligases with the purpose to inhibit them. 
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The approach was based on the fact that all HECT ligases bind to ubiquitin, either through 

a thioester bond with their active cysteine or, as seen in Nedd4-like ligases, through their 

UBEx. Interestingly, we observed that not all UbV inhibited all HECT ligases, some also 

increased their activity, or changed the type of ubiquitin chains that they generated. 

Therefore, this study generated a fantastic set of tools to study the regulatory mechanisms 

of HECT E3 ligases and to evaluate their roles on various cellular processes (Zhang et al. 

2016).
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2.1. The Rho GTPase family  

The family of Rho GTPases is part of the superfamily of Ras-related small GTPases, a 

group of small G proteins in which most members have an intrinsic Mg2+-dependent 
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GTPase activity involving the binding to GTP and the catalysis of its hydrolysis into GDP 

(Takai et al. 2001). Rho GTPases are distinguished from other Ras-like GTPases by the 

presence of an insert region, which is involved in the recognition of binding partners 

(effectors and regulators) (Freeman et al. 1996). The first Rho GTPase gene was described 

three decades ago (Madaule and Axel 1985) and since then, members of the family have 

been found in all eukaryotic cells, among which they share a high degree of conservation 

(Boureux et al. 2007). In humans, the Rho GTPase family consists of 20 members, 12 of 

which are considered “classical” and can catalyze the hydrolysis of GTP, and 8 of which 

are considered “atypical” and are predominantly bound to GTP either due to key amino 

acid substitutions that hamper their GTPase activity, or to an increased nucleotide 

exchange rate (like Wrch1) (Fig. 2.1) (Vega and Ridley 2008; Heasman and Ridley 2008). 

Among the classical Rho GTPases, the most studied and well understood members are 

RhoA, Rac1 and Cdc42 (Vega and Ridley 2008). 

 

Figure 2.1. Domain architecture of the Rho GTPases. RhoA, RhoB, RhoC, Rac1, Rac2, Rac3, RhoG, 
RhoD, RhoF, Cdc42, TCL and TC10 have a similar basic protein structure. Rnd1, Rnd2, 
Rnd3/RhoE and RhoH are considered atypical Rho GTPases that have modifications in the 
GTP/GDP binding region that make them lack GTPase activity. Wrch1 and Wrch2 are 
characterized by the presence of an N-terminal proline-rich region. RhoBTB1 and 2 have the most 
divergent protein organizations with two characteristic BTB domains NLS, nuclear localization 
sequence. From (Vega and Ridley 2008) 
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Like the majority of Ras-like GTPases, most Rho-family GTPases work as molecular 

switches that cycle between an inactive GDP-bound state and an active GTP-bound state 

that can interact with effector proteins to relay signals through different pathways. They 

are best known as master regulators of cytoskeletal dynamics. Therefore, they are critical 

regulators of cell adhesion, migration and vesicle trafficking. In addition, they take part in 

the regulation of gene expression, cell cycle progression, as well as in the cellular response 

to pathogenic agents (Jaffe and Hall 2005; Bustelo et al. 2007; Lemichez and Aktories 

2013; Hodge and Ridley 2016). 

 

2.2. Regulation of the activity of Rho GTPases.  

2.2.1. Structural basis of Rho GTPase activity.  

The signal transducer functionality of Rho GTPases comes from the fact that their GDP-

bound (inactive) and GTP-bound (active) states have different affinities for regulators and 

effectors. This change in affinity results from a nucleotide-dependent conformational 

rearrangement that occurs in two localized regions appropriately called switch I and II 

(Fig. 2.2A-B) (Vetter and Wittinghofer 2001; Hakoshima et al. 2003; Dvorsky and 

Ahmadian 2004). These two regions, together with the five conserved G-box regions, 

constitute the nucleotide binding pocket and also contain the Mg2+ binding site, which 

is essential for GTPase activity (Fig. 2.2A-B). In the active state, the γ-phosphate of 

the bound GTP forms two hydrogen bonds between the side-chain oxygen of a conserved 

threonine in the switch I region and the main-chain oxygen of a conserved glycine in 

the switch II region, forming a stable closed conformation. These interactions are 

unlatched upon loss of the γ-phosphate during GTP hydrolysis, which relaxes the switch 

I and II regions giving them great conformational variability. This rearrangement 

process is referred to as the “loaded-spring mechanism” and is the basic principle for the 

signal transducing capabilities of Rho GTPases (Fig. 2.2C) (Vetter and Wittinghofer 

2001).  
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Figure 2.2. RhoGTPase activity. A. Schematic representation of the general domain structure of 
Rho GTPases. The highly conserved G domain of Rho-GTPases is characterized by five G-box 
motifs responsible for nucleotide binding. The P-loop (phosphate-binding loop), also known as 
the�G1 domain, is a conserved motif that is responsible for binding to�the γ-phosphate of the 
guanine nucleotide. The hypervariable domain at the C-terminus gives Rho GTPases specificity 
since it shows the highest level of variability between Rho proteins, and is a key region for 
posttranslational modifications, notably lipidation, which mediates the membrane targeting of 
RhoGTPases. B. The Rac2-GDP (PDB ID: 2W2T) three-dimensional structure with G boxes, 
switch I and switch II regions indicated (using the same color scheme as in A) GDP is shown in red 
and Mg2+ as a black sphere. C. Rho GTPase’s conformational changes upon GTP hydrolysis. the 
switch I and II domains bind to the γ-phosphate via the main chain NH groups of the conserved 
Thr and Gly residues (T37 and G62 in RhoA). Release of the γ-phosphate after GTP hydrolysis 
allows the switch regions to relax into a different conformation. This switch is termed the “loaded-
spring mechanism”. Modified from (Weirich et al. 2008) and (Olson 2016). 

2.2.2. Regulation of the GDP-GTP cycle 

Due to the high binding affinity of GTPases for both GDP and GTP and the slow rate of 

intrinsic GTP hydrolysis, the GTPase cycle is controlled by GEFs (guanine nucleotide 
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exchange factors) and GAPs (GTPase-activating proteins). GEFs promote the activation 

of Rho GTPases by facilitating the exchange of GDP by GTP once the GEFs themselves 

are activated by upstream stimuli. GEFs preferentially interact with GDP-bound Rho 

GTPases through their switch I and II regions and insert residues close to or into the P-

loop and the Mg2+ binding area (Fig. 2.2A-B), which creates structural changes that impair 

the binding of phosphates and the metal ion and drastically decreases the affinity for 

nucleotides leading to GDP release. This results in a nucleotide-free GTPase that quickly 

associates with GTP more often than with GDP due to the 100-fold higher concentration 

of GTP in cells (Vetter and Wittinghofer 2001; Hakoshima et al. 2003). On the other hand, 

GAPs accelerate the inactivation of Rho GTPases by stimulating their intrinsic GTPase 

activity by up to 105 times; they do so by binding both the switch I and II regions and by 

inserting a highly-conserved arginine containing “finger” into the Rho GTPase active site, 

which stabilizes the catalytic glutamine residue into a position optimal for GTP hydrolysis 

(Moon and Zheng 2003; Hakoshima et al. 2003). Over 80 GEFs and more than 70 GAPs 

have been reported in mammals, greatly surpassing the number of Rho GTPase family 

members, which indicates that the regulation of Rho GTPase activity is highly complex 

and has the potential to be incredibly precise (Hall 2012). 

In addition to the regulation of the GTP/GDP cycle by GAPs and GEFs, the equilibrium 

of the cycle depends on (i) the intrinsic affinity of each Rho GTPase for GDP versus GTP, 

(ii) on the cellular levels of GTP, and (iii) on the availability of effectors, which bind to 

the GTP-bound form of Rho GTPases and thus shifts the equilibrium towards the GTP-

bound state (Vetter and Wittinghofer 2001). 

Another set of proteins that impact the equilibrium of the GTPase cycle and the cellular 

localization of Rho GTPases is the family of RhoGDIs (GDP dissociation inhibitors). As 

their name indicates, RhoGDIs bind preferentially the GDP-bound form of some GTPases 

and prevent their dissociation from GDP, thus keeping them in their inactive form. 

RhoGDIs also spatially regulate RhoGTPases by sequestering them in the cytosol, 

preventing them from localizing to membranes and being activated by GEFs. RhoGDIs 

maintain Rho GTPases as soluble cytosolic proteins by forming high-affinity complexes in 
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which the isoprenoid membrane-targeting moiety present at the C-terminus of the Rho 

GTPases is shielded from the aqueous cytosolic environment (DerMardirossian and Bokoch 

2005). In addition to the negative effect that RhoGDIs have on the re-activation of Rho 

GTPases, it has been reported that RhoGDI-bound GTPases are protected from 

proteasomal degradation, and thus RhoGDI proteins also have a positive effect on their 

stability and contribute to the regulation of Rho GTPases protein levels (Boulter et al. 

2010). Rho GTPases can escape or prevent binding with RhoGDIs through post-

translational modifications of the GTPase or of the GDI, such as phosphorylation and s-

palmitoylation (Hodge and Ridley 2016). 

2.2.3. Additional regulatory mechanisms 

Mechanisms other than cycling (termed “unconventional”) also regulate Rho GTPase 

signaling (summarized in Fig. 2.3). For example, Rho GTPases can be regulated at the 

level of gene expression or at the translational level by micro RNAs. Additionally, Rho 

GTPase activity can be modulated at the protein level by post-translational modifications 

such as lipidation, which occurs mainly at their C-terminus and is essential for membrane 

localization and necessary for activation. Some Rho GTPases can be phosphorylated, which 

modulates their interaction with regulators and effectors; and sumoylated, which regulates 

their activity. Moreover, Rho GTPases can be ubiquitinated and their protein levels can 

be regulated by the ubiquitin-proteasome system (Hodge and Ridley 2016). This last topic 

will be further developed in Chapter 3.  

Together, both classical (GEFs, GAPs and RhoGDIs) and unconventional regulatory 

mechanisms precisely regulate the spatiotemporal activation of Rho GTPases and their 

interaction with available downstream effectors, which determines the outcome of GTPase-

specific cellular responses (Pertz 2010; Hodge and Ridley 2016).  
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Figure 2.3. Overview of Rho GTPase regulation. The route from Rho GTPase protein expression 
to effector protein activation is tightly regulated. GEFs, GAPs and GDIs constitute the canonical 
regulators of the GTPase cycle. GEFs activate Rho GTPases by catalyzing the exchange of GDP 
for GTP, whereas GAPs stimulate the intrinsic GTPase activity of Rho GTPases and inactivate 
them. GDIs extract prenylated Rho GTPases from the membrane by binding�the isoprenoid moiety 
and sequester them away in the cytoplasmic compartment. Unconventional mechanisms and their 
importance in the regulation of Rho GTPases are becoming more apparent.�A. Rho GTPase 
expression can be controlled at the transcriptional level by epigenetics and at the translational level 
by the action of micro RNAs (miRNAs). B. Post-translational covalent modifications of Rho 
GTPases, including phosphorylation and sumoylation, can result in the activation or inactivation 
of Rho GTPases, depending on the cellular context. C. Protein levels of Rho GTPases can be 
efficiently regulated by the ubiquitin–proteasome system. D. The combination of classical and 
unconventional regulatory mechanisms ensures the appropriate spatiotemporal activation of the 
Rho GTPases during various cellular processes. From (Hodge and Ridley 2016) 

 

2.3. Molecular and cellular aspects of Rho GTPase signaling  

2.3.1. From extracellular stimuli to effector proteins: Focus on PAK 

There are many signaling pathways that lead to the activation of Rho GTPases, including 

those initiated by physical stimuli (mechanical stress or cell–cell and cell–substrate 
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adhesion) and chemical factors (phospholipids, growth factors and cytokines). These initial 

signals are transduced by cell–cell or cell–extracellular matrix adhesion receptors, like 

cadherins and integrins; and G-protein-coupled receptors; growth factor receptors and 

cytokine receptors. Upon activation, GTP-bound Rho GTPases interact with a wide 

spectrum of effector proteins to regulate various cellular pathways, such as actin 

cytoskeleton reorganization, cell motility, cell growth, membrane trafficking, apoptosis, 

and transcription (Fig. 2.4) (Buchsbaum 2007; Citi et al. 2011). 

 

 

Figure 2.4. Signaling of Rho GTPases. In mammalian cells, stimulation of a variety of cell surface 
receptors leads to the activation of specific GEFs, which in turn catalyze the exchange of bound 
GDP for GTP on specific Rho GTPases, resulting in their activation. The receptor-mediated signals 
might also affect the biochemical activity of two classes of negative regulators of Rho GTPases: 
RhoGAPs and RhoGDIs. Modulation of these two factors and of GEFs, regulate the dynamics of 
the Rho GTPase cycle. In the GTP-bound state, Rho proteins can then interact with multiple 
effector targets, leading to diverse cellular responses. Adapted from (Zheng 2001) 

 

More than 100 Rho GTPase effectors have been identified (Hall 2012), some of these are 

scaffold proteins and others are enzymes, such as kinases, phosphatases and phospholipases. 
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These effectors associate with GTP-bound Rho GTPases through interacting regions that 

commonly overlap with the switch I and II domains, which grants them specificity for the 

GTP-bound state. Despite the high amino acid sequence and structural homology between 

the members of the Rho GTPase family, they interact with and activate distinct targets 

and have few common effectors (Bishop and Hall 2000; Bustelo et al. 2007). Once activated, 

these effectors propagate signals through numerous signaling networks that culminate in 

the modulation of the cellular processes mentioned in the previous paragraph and also 

create feedback loops that in turn regulate the activity of Rho GTPases. Indeed, Kim and 

colleagues recently built a model of the signaling network around Rac1, RhoA and Cdc42 

triggered by the epidermal growth factor (EGF) and found that it was a highly connected 

web of proteins that comprised 121 feedback loops, which the authors proposed to be vital 

for the dynamic regulation of these three Rho GTPases during cell migration (Kim et al. 

2015). 

The PAK family of effectors 

The family of p21-activated kinases (PAKs) were the first Rho GTPase targets to be 

identified back in 1994 by Edward Manser and colleagues while searching for new GAPs 

for Rac1 and Cdc42 (Manser et al. 1994). PAKs are a group of serine/threonine kinases 

that share an N-terminal Cdc42/Rac interaction/binding (CRIB) motif that allows them 

to bind to active Rac1 and/or Cdc42. The CRIB domain overlaps with an autoinhibitory 

domain (AID) that, in the absence of Rac1 or Cdc42, mediates interactions that keep 

PAKs in an inactive conformation (Fig. 2.5A-B). In humans, the PAK family consists of 

six members classified in two groups according to their structural differences: Pak1-3 are 

in group I, while Pak4-6 are in group II. The two groups have different mechanisms of 

activation. Notably Group I PAKs can be activated by Rac1 and Cdc42 and require auto-

phosphorylation of a conserved residue within the kinase domain (Fig. 2.5B); while Group 

II PAKs have higher basal activities, do not require auto-phosphorylation, and are 

activated only by Cdc42 (Zhao and Manser 2012). 



Chapter 2. Rho GTPases 
 

 50 

Group I members are the most studied among the PAKs. They share between 92 to 95% 

homology in the kinase domain, which accounts for similarities in phosphorylation targets 

found in vitro. However, isoform-specific responses in vivo are evident and are believed to 

be due to differential tissue or cellular localization since PAK2 is thought to be ubiquitously 

expressed, whereas PAK1 and PAK3 expression is more restricted. PAK1 is prominently 

expressed in mammary gland, muscle, spleen, liver and brain; while PAK3 has only been 

detected in the brain (King et al. 2014). 

Group I PAKs are implicated in the regulation of numerous cellular functions via their 

great number of targets (Bokoch 2003; Arias-Romero and Chernoff 2008; Chan and Manser 

2012). Figure 2.5C illustrates this for PAK1, the best-studied member of group I PAKs. 

Through its targets, PAK1 is able to exert pro-survival and anti-apoptotic functions, 

regulate cytoskeletal dynamics, cell cycle progression, gene expression, immune functions 

and host-pathogen responses (Chiang and Jin 2014).  

Considering that PAKs promote cell cycle progression, protect cells from apoptosis and 

promote migration and invasion; it is no wonder that PAK genes are found to be frequently 

amplified (PAK1 and PAK4) or mutated (PAK5) in human cancers, and have been linked 

to cancer progression (Kelly and Chernoff 2012; Kumar and Li 2016). Moreover, PAK 

genes seem to play an important role during tissue development; and deregulation of PAK 

expression is associated with brain disorders like non-syndromic X-linked mental 

retardations and Alzheimer’s disease (Chan and Manser 2012; Kelly and Chernoff 2012). 

Many (but not all) of these processes are dependent on Rho GTPase mediated activation 

of PAKs. In the next three sections, the cellular roles of Rho GTPases mediated by 

different effectors will be discussed, focusing on cytoskeleton remodeling and on 

intercellular adhesion. 
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Figure 2.5. Overview of PAK structure, activation and targets. A. Simplified domain organization 
of group I and Group II PAKs. B. Mechanism of group I PAK activation. The N-terminal auto-
inhibitory domain (AID) keeps PAK1 as a dimer in an auto-inhibited state. The AID partially 
overlaps with the GTPase binding domain. GTP-bound Rho GTPases (Cdc42/Rac1) release PAK1 
from its auto-inhibitory conformation, allowing its auto-phosphorylation (Thr-423). 
Phosphorylation at Thr-423 is critical for PAK1 activity. Subsequently, additional residues are 
phosphorylated at N-terminus, blocking auto-inhibition. C. Non-exhaustive list of PAK1 targets, 
linking PAK signaling to (1) cell survival and apoptosis, (2) cytoskeleton remodeling, (3) cell cycle 
progression, (4) immunity and infection, and (5) gene transcription and mRNA splicing. Adapted 
from (Dammann et al. 2014) and (Chiang and Jin 2014). 
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2.3.2. General view of the cellular roles of Rho GTPases 

Via their panoply of effectors, Rho GTPases are involved in three critical processes: (i) 

actin cytoskeleton reorganization, (ii) the regulation of gene expression and (iii) the 

generation of ROS (reactive oxygen species). This, in turn, implicates Rho GTPases in the 

regulation of cell morphology and motility, cell growth, membrane trafficking, apoptosis, 

and inflammation (Jaffe and Hall 2005; Hall 2012).  

Back in 1991, the first reported activity of a Rho GTPase family member was for Rac 

acting as an allosteric regulator of the phagocytic NOX (NADPH oxidase) enzyme complex, 

which transports electrons across membranes and generates superoxide anions from 

molecular oxygen (Abo et al. 1991). Later studies found that the subunits of the NADPH 

oxidase complexes p67phox (Segal and Hallt 1994), and its homolog NOXA1 (Ueyama et 

al. 2006; Cheng et al. 2006) directly interact with Rac1 and require this interaction to 

localize to the membrane and integrate in the functional NADPH oxidase complex. This, 

along with other mechanisms, involves Rho GTPases in the regulation of redox balance 

with implications in DNA damage and inflammation, the latter via the activation of NF-

kB (Hobbs et al. 2014). 

Rac1, RhoA and Cdc42 can promote the activation of the NF-kB transcription factor 

(Perona et al. 1997; Cammarano and Minden 2001). Crosstalk with the NF-kB pathway is 

involved in cytokine production, inflammation, cell cycle progression, cell adhesion, ROS 

production, and metabolism (Tong and Tergaonkar 2014). Moreover, other pathways 

associated with the regulation of gene transcription are controlled by Rho GTPases. For 

instance, Rho indirectly activates the transcription factor SRF (serum-response factor) 

through its effects on actin, while Rac and Cdc42 activate the JNK (c-Jun N-terminal 

kinase) and p38 MAPK (mitogen-activated protein kinase) pathways through targets such 

as the mixed lineage kinases (Gallo and Johnson 2002; Miralles et al. 2003). 

In addition to their ability to control gene expression and ROS generation, the Rho 

GTPases are central regulators of cytoskeletal dynamics, an aspect that will be discussed 

in the next section in more detail. Indeed, most of the cellular functions of the Rho 
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GTPases stem from their ability to remodel the cystoskeleton. By doing so, they are 

involved in the control of cell shape, cell migration and chemotactic responses, axonal 

guidance and dendrite outgrowth in neurons, endocytosis and vesicle trafficking (Hall 2012). 

One of the cellular aspects that is affected by all the three central processes controlled by 

Rho GTPases (Redox balance, gene expression, cytoskeleton remodeling) is cell 

proliferation (Vega and Ridley 2008). The dynamics of the actin cytoskeleton regulated by 

Rho GTPases are critical during cell cycle progression and mitosis: Rho GTPases and their 

effectors are involved in cell rounding at mitosis onset (Bakal et al. 2005), in chromosome 

alignment (Yasuda et al. 2004) and are required for contraction of the actomyosin ring 

that separates daughter cells at the end of mitosis (Madaule et al. 1998; Kamijo et al. 

2006; Miller and Bement 2009). Rho GTPases have also been shown to regulate cell cycle 

entry and cell cycle progression, in particular by regulating the expression of a number of 

genes involved in G1/S transition, notably, CyclinD1 and p21waf1 (Villalonga and Ridley 

2006). 

2.3.3. Role of Rho GTPases in cytoskeleton reorganization 

a. A historical perspective on the roles of Rho GTPases in cytoskeletal dynamics. 

The first direct evidence of the involvement of Rho GTPases in the regulation of 

cytoskeletal dynamics came from two papers in 1992 (Ridley and Hall 1992; Ridley et al. 

1992).  These seminal works reported that microinjection of recombinant constitutively 

active mutants of Rac induced the dramatic formation of lamellipodia (large, flattened and 

ruffling protrusions) by regulating actin polymerization, while active mutants of Rho 

induced the formation of stress fibers and adhesion structures. Shortly after, it was found 

that activation of Cdc42 induced the formation of protrusive actin-rich filopodia (Fig 2.6A). 

Thus, for a long time the consensus in the field was that Rho, Rac and Cdc42 regulated 

three separate signal transduction pathways that linked plasma membrane receptors to 

the assembly of distinct structures of actin filaments (Etienne-Manneville and Hall 2002), 

which led to the following general view: In polarized cells, Rac1 and Cdc42 would only be 

active at the migration front where they would promote the formation of cell protrusions, 
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whereas RhoA would only be active at the back where it would control cell contraction. 

However, recent studies taking advantage of imaging techniques that allow the 

visualization of the time and location of Rho GTPase activation have shown that this 

model is too simple (reviewed in (Pertz 2010; Spiering and Hodgson 2011)). For instance, 

all three GTPases have been shown to be activated at the front of migrating cells, where 

RhoA has a role in the initial events of protrusion, whereas Rac1 and Cdc42 are involved 

in reinforcement and stabilization of newly expanded protrusions in randomly migrating 

fibroblasts (Nalbant et al. 2004; Shen et al. 2006; Machacek et al. 2009; Martin et al. 2016). 

Moreover, the nature of the spatiotemporal activation pattern seems to depend on the 

cellular context and the triggering factors, like the platelet-derived growth factor (PDGF) 

and the epidermal growth factor (EGF) (Bravo-Cordero et al. 2013).  

Although the spatiotemporal coordination of the activity of Rho GTPases in morphogenic 

events like cell migration, axonal guidance, endocytosis and vesicle trafficking is still poorly 

characterized due to technical difficulties (Fritz and Pertz 2016); the various upstream and 

downstream pathways around Rho, Rac and Cdc42 and the biochemical processes that 

lead to actin fiber remodeling are better understood. 

b. Rho GTPases effectors involved cytoskeleton reorganization. 

Among the plethora of effectors of Rho, Rac and Cdc42 there are kinases and nucleation-

promoting factors that are involved in the regulation of the cytoskeleton (Fig. 2.6B). For 

instance, different mDia isoforms can be activated upon binding active Rho, Rac or Cdc42 

(Lammers et al. 2008). mDias are part of the Formin family of proteins and promote the 

formation of unbranched actin filaments. Cdc42 and Rac can also promote actin 

polymerization by activating WASP (Wiskott-Aldrich syndrome protein) and WAVE 

(Wiskott-Aldrich syndrome protein-family verprolin homologous protein), respectively. 

Active WASP and WAVE then promote the branching of actin filaments through the 

activation of the Arp2/3 complex (Symons et al. 1996; Kolluri et al. 1996; Miki et al. 2000; 

Millard et al. 2004). Furthermore, PAKs activated downstream of Rac and Cdc42, mediate 

the phosphorylation of LIM-motif containing kinase (LIMK), which in turn phosphorylates 



Chapter 2. Rho GTPases 
 

 55 

and inhibits the actin filament-severing protein cofilin (Edwards et al. 1999). By severing 

actin filaments, cofilin creates free barbed and pointed ends which become available for 

polymerization or de-polymerization, thereby promoting actin-filament turnover (Maciver 

et al. 1998). 

 

Figure 2.6. Rho, Rac and Cdc42 in cytoskeleton dynamics. A. Control of cell protrusion during 
migration; Rho mainly activates the formation of stress fibers and focal adhesions, Rac activates 
the formation of lamellipodia and membrane ruffles, and Cdc42 activates the formation of filopodia. 
B. Downstream effectors of Rho, Rac and Cdc42 involved in the generation of actin cytoskeletal 
structures. Adapted from (Mayor and Carmona-Fontaine 2010) and (Dráber et al. 2012). 
 

Besides modulating the growth of actin filaments, Rho can promote myosin-actin 

interactions through ROCK, a kinase that phosphorylates a number of actin cytoskeleton 

regulators. Primarily it phosphorylates and inactivates myosin light chain (MLC) 

phosphatase (MLCP), thus increasing the levels of phosphorylated MLC (Swärd et al. 

2000); although, other studies indicate that ROCK may also phosphorylate MLC directly 
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(Amano et al. 1996; Totsukawa et al. 2000). This increase of phosphorylated MLC 

contributes to actin filament contractility (Zaidel-Bar et al. 2015). Like PAK, ROCK has 

also been described to phosphorylate LIMK, thus promoting actin polymerization (Ohashi 

et al. 2000; Sumi et al. 2001; Katoh et al. 2001). 

2.3.4. Role of Rho GTPases in adherens junctions 

Intercellular adhesion is one of the cellular processes that heavily depends on the actin 

remodeling activity of Rho GTPases. It provides tissues with mechanical and functional 

integrity and constitutes barriers between distinct body compartments. In vertebrates, cell-

cell adhesion is carried out by three specialized complexes: tight junctions (TJ), adherens 

junctions (AJ), and desmosomes (Gumbiner 1996). Although it is known that Rho GTPase 

signaling cross talks with all three adhesion complexes (Spindler and Waschke 2011; Citi 

et al. 2014; Komarova et al. 2017; Arnold et al. 2017), here I will focus on their role in AJ 

regulation. 

a. The dynamic structure of adherens junctions 

AJs are present in epithelial, endothelial and non-epithelial cells, such as cardiac myocytes, 

fibroblasts, and neurons. This type of junction is characterized by the presence of a 

transmembranal protein, which can be a member of the nectin family or of the classical 

cadherin family, which includes E-cadherin (expressed in epithelial cells), VE-cadherin 

(expressed in endothelial cells), and N-cadherin (expressed in neural and mesenchymal 

tissues). The extracellular domain (ectodomain) of cadherins can form calcium-dependent 

homotypic adhesive contacts with neighboring cells; while the intracellular domain of 

cadherins behaves like a scaffold for cytoplasmic proteins, such as β-catenin, α-catenin, 

p120-catenin, among many others (Fig. 2.7) (Ratheesh and Yap 2012; Mège and Ishiyama 

2017). 

AJs are connected to the actin cytoskeleton and their functionality depends on actin 

cytoskeleton dynamics (Ratheesh and Yap 2012; Mège and Ishiyama 2017). Cadherins are 

indirectly linked to F-actin via catenin proteins in a tension-dependent manner. Specifically, 

cadherins cytoplasmic tail binds to β-catenin, which in turn binds to α-catenin, a protein 
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that can bind simultaneously to the cadherin/catenin complex and to F-actin only under 

actomyosin-generated force. Indeed, recent studies have shown that α-catenin undergoes 

conformational changes upon being subjected to mechanical tension, thereby facilitating 

its binding to F-actin and the recruitment of Vinculin, an actin-binding protein, which 

further reinforces cell-cell adhesion and the linkage to F-actin under mechanical force 

(Yonemura et al. 2010; le Duc et al. 2010; Yao et al. 2014; Buckley et al. 2014). 

 

 

Figure 2.7. Structural model of the core E-cadherin/catenin cell adhesion complex. Ectodomains of 
E-cadherin cell adhesion receptors (orange and pink) from adjoining cells engage in Ca2+-dependent 
extracellular strand-swap trans interaction. The cytoplasmic region of E-cadherin binds directly to 
β- and p120-catenins, and indirectly to α-catenin through β-catenin. α-catenin binds directly to F-
actin or indirectly by associating with other F-actin-binding proteins, such as vinculin (not shown 
here). 

The association of the cadherin/catenin complex to the actin cystoskeleton and actomyosin 

generated force are essential for the transition from nascent adhesions to the more stable 

mature junctions (Hansen et al. 2013; Buckley et al. 2014; Chen et al. 2015). While force 

on cadherin-based cell-cell junctions is necessary for their stabilization and proper function, 

excessive actomyosin-generated pulling force can lead to junction disassembly (reviewed in 

(Gomez et al. 2011)).  

The modulation of intercellular junction integrity occurs physiologically during cell division, 

cell extrusion, and wound healing, which take place both during tissue development and 
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in adult tissues (Baum and Georgiou 2011). Notably, loss of adherens junctions occurs 

during epithelial-to-mesenchymal transition (EMT), a key feature of embryogenesis and 

also one of the stepping stones to tumor metastasis. During EMT, epithelial cells lose their 

polarity as well as their cellular junctions, commonly due to the transcriptional repression 

of E-cadherin expression (Lamouille et al. 2014). 

The dynamic nature of cell-cell junctions is evident during their assembly, maturation, and 

maintenance, and is linked to the remodeling of the cytoskeleton, which is substantially 

orchestrated by the careful control of Rho GTPases (Menke and Giehl 2012; Citi et al. 

2014; van Buul and Timmerman 2016). In the context of AJ regulation, RhoA, Rac1 and 

Cdc42 are, so far, the best-characterized Rho GTPases. 

b. Rho GTPases in epithelial AJ Assembly and Maturation 

In epithelial cells, de-novo cell-cell junction formation occurs after migrating cells make 

contact with one another by waves of protruding and retracting lamellipodia (Yonemura 

et al. 1995). Yamada and colleagues performed a study on the localization of active RhoA 

and Rac1 during junction formation using high resolution live-cell imaging with a FRET-

based biosensor; they demonstrated that Rac1 activity is high at the periphery of 

contacting membranes and triggers the initiation of cell-cell adhesion, while active RhoA 

was observed at the contact edges at later time points, and was required to drive the 

expansion and completion of the epithelial cell-cell junction (Yamada and Nelson 2007). 

Indeed, it has been shown that following engagement of E-cadherin at primordial junctions, 

Rac1 and Cdc42 promote the polymerization of branched actin filaments in lamellipodia 

and filopodia (in the case of Rac1, through activation of the Arp2/3 complex by WAVE2), 

which extends the interface between the two adjacent cells and stimulates cadherin ligation 

(Vasioukhin et al. 2000; Verma et al. 2004; Yamazaki et al. 2007; Samarin and Nusrat 

2009). As junctions mature, RhoA plays a fundamental role through mDia and ROCK to 

convert the branched actin network into contractile actin filaments (Citi et al. 2014; Arnold 

et al. 2017). 
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c. Rho GTPases in epithelial AJ integrity and maintenance  

In addition to their role in epithelial junction assembly and maturation, the activity of 

Rho GTPases is required once junctions are mature, and play a role in the maintenance of 

homeostatic junction architecture and tension (Citi et al. 2014). Most studies report a 

positive effect of Rac1 and Cdc42 activity in the stability of mature AJs (reviewed in 

(Mack and Georgiou 2014)). For instance, it has been reported that Rac1- and Cdc42-

dependent Arp2/3 activity is required to maintain mature AJs (Brieher and Yap 2013). 

Also, it has been shown that active Cdc42 and Rac1 bind to their effector IQGAP, which 

impedes IQGAP inhibitory interaction with β-catenin, thereby stabilizing AJs (Kuroda et 

al. 1998; Fukata et al. 1999). Moreover, Tiam1-Rac1 activity seems to restore AJs and an 

epithelial morphology in several cell types (Hordijk et al. 1997; Malliri et al. 2004), and it 

has been shown that Tiam1 degradation at AJs is required for Src- induced AJ disassembly 

(Woodcock et al. 2009). On the other hand, several studies have shown that increased Rac 

signaling can disrupt AJs under particular physiological situations (Mack and Georgiou 

2014). For instance, during HGF (Hepatocyte growth factor)-induced cell scattering 

(Potempa and Ridley 1998; Shintani et al. 2006) and during tumorigenesis (Menke and 

Giehl 2012). Interestingly, the loss of cell-cell junctions following an increase of Rac1 

activity is often related to the development of EMT (Yagi et al. 2007; Zhou et al. 2016). 

Concerning RhoA, limitation of its activity at AJs has been suggested to be important for 

their stabilization since excessive RhoA activation leads to the strong generation of 

actomyosin pulling force and the consequential disruption of AJs (Sahai and Marshall 2002; 

Chang et al. 2006; Holeiter et al. 2012; Lee et al. 2016). Therefore, RhoA activity must be 

tightly controlled and is downregulated partly by the p120-dependent recruitment of 

p190RhoGAP to AJ, and by the antagonism between RhoA and Rac1 (Wildenberg et al. 

2006; Ratheesh et al. 2012). Conversely, RhoA signaling can also help stabilize AJs; it has 

been shown that RhoA helps to maintain AJs via Dia1 (Sahai and Marshall 2002) and 

non-muscle myosin II (Shewan et al. 2005; Smutny et al. 2010). Moreover, the Rho GEF 

TEM4 has been found to regulate AJ integrity by associating with the cadherin-catenin 

complex (Ngok et al. 2013). 
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2.4. Rho GTPases and pathology. 

The essential role of Rho GTPases is evidenced by the fatal fate of mice whose Rac1 or 

Cdc42 genes have been deleted (they die in the early stages of embryonal development) 

(Sugihara et al. 1998). Given the central role of Rho GTPases in cellular homeostasis, it is 

not surprising that their dysregulation has been found related to the development of an 

array of pathological phenotypes, such as immunodeficiency syndromes, neurological 

diseases, cancer, and bacterial infections (Boettner and Van Aelst 2002; DeGeer and 

Lamarche-Vane 2013; Lemichez and Aktories 2013; Orgaz et al. 2014; Bai et al. 2015). 

2.4.1. Rho GTPases in neurological diseases 

Given the dynamic nature of the neuronal cytoskeleton, precise spatial and temporal 

regulation of Rho family GTPases has been shown to be indispensable in nerve cell function, 

from neuronal specification and polarization to axon guidance, survival and nerve growth 

(Govek et al. 2005; Stankiewicz and Linseman 2014). Accordingly, an increasing number 

of studies suggest that de-regulation of Rho GTPase signaling is associated with a number 

of neuropsychiatric and neurodegenerative diseases like Amyotropic lateral sclerosis (ALS), 

Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, glaucoma, and Charcot-

Marie-tooth disease (reviewed in (DeGeer and Lamarche-Vane 2013)); and efforts are being 

made to understand the role of Rho GEFs and GAPs in such diseases in order to identify 

new specific therapeutic targets (Bai et al. 2015). 

2.4.2. Rho GTPases and cancer 

a. Aberrant regulation of Rho-GTPase activity in cancer 

Rho GTPase signaling is deregulated in cancer by a wide range of mechanisms, some of 

which target their regulators. For instance, GEFs are commonly overexpressed in various 

cancer types, and negative regulators of Rho GTPases such as Rho GAPs and Rho GDIs 

have been shown to act as tumor suppressors and are frequently lost in human cancers 

(Vigil et al. 2010; Barrio-Real and Kazanietz 2012). In contrast, other mechanisms target 

the Rho GTPases directly. For example, Rho GTPases can be overexpressed in human 
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cancers and are associated with aggressiveness and poor patient survival (with the curious 

exception of RhoB, which seems to act as a tumor suppressor) (Orgaz et al. 2014; Ji et al. 

2015); additionally, Rac1b, a constitutively active splice variant of Rac1, has been reported 

in colorectal (Jordan et al. 1999), breast (Schnelzer et al. 2000), lung (Liu et al. 2012), 

thyroid (Silva et al. 2013), and pancreatic (Mehner et al. 2014) cancers. 

While early studies identified recurrent chromosomic alterations involving the RhoH-

encoding gene in patients with hematopoietic malignancies (Preudhomme et al. 2000; 

Pasqualucci et al. 2001), missense mutations within Rho GTPases were thought to be rare 

in cancer. It was only with the advent of large scale sequencing that sporadic mutations 

in all 20 Rho GTPases were identified in a large variety of cancers (Olson 2016). Most 

mutations have been reported in Rac1 and RhoA. Indeed, a whole-exome sequencing study 

performed in melanoma samples revealed that 5% of them were found to harbor missense 

mutations in the Rac1 gene, making Rac1 the third most highly mutated gene in melanoma 

after BRaf and NRas (Hodis et al. 2012). 

One of the most common mutations of Rac1 in sun-exposed melanomas is the P29S 

substitution. P29S is a gain-of-function mutation that still allows Rac1 to hydrolyze GTP 

(contrary to the GTPase-dead constitutively active Q61L mutation). Structural analysis 

of this mutant indicates that the P29S substitution alters switch 1 conformation, 

destabilizes the GDP-bound state, and stabilizes the GTP-bound form of Rac1, which 

agrees with biochemical assays showing that Rac1(P29S) binds to a greater extent to its 

effectors compared to Rac1(WT) (Hodis et al. 2012; Krauthammer et al. 2012). P29 seems 

to be a hotspot for Rac1 mutations and, in addition to melanoma, it has been detected in 

cases of head and neck squamous cell carcinoma (Stransky et al. 2011), as well as in breast 

cancer cell lines (Kawazu et al. 2013). Additional activating Rac1 mutations have been 

identified in various cancer cell lines (N92I and C157Y), each of which were found to 

increase spontaneous GDP release to allow rapid GDP/GTP cycling that increases signal 

output (Kawazu et al. 2013).  
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b. Rho GTPases in cancer cell biology 

In accordance to their central role in cell signaling, deregulation of Rho GTPases has been 

shown to be involved in all stages of cancer progression and is linked to many of the 

“hallmarks of cancer”, including oncogenic transformation, cell survival, tumor metabolism 

as well as metastasis (reviewed in (Orgaz et al. 2014) and (Vega and Ridley 2008)). 

The deregulation of Rho GTPases is required for Ras GTPase-mediated oncogenesis and 

also for aberrant growth induced by other oncoproteins. Additionally, Rho GTPases have 

been associated with either promotion or inhibition of tumor suppressors, which seems to 

depend on cell type, and stage of tumor progression (Orgaz et al. 2014). For instance, 

overexpression of the tumor suppressor Merlin blocks Rac1-induced transformation, since 

Merlin deficiency enhances Rac1 activity and aberrant cell growth. Conversely, Rac1 has 

been shown to promote Merlin inactivation by inducing its phosphorylation (Shaw et al. 

2001; Sherman and Gutmann 2001). 

In addition to their capacity to modulate oncogenes and tumor suppressors, it has been 

shown that Cdc42, Rac1 and RhoC contribute to cell transformation by altering and 

enhancing the glutamine metabolism used by cancer cells to sustain their exacerbated 

proliferation rates (Wang et al. 2010b). Moreover, Rho GTPases have been reported to 

promote the formation of new blood vessels by promoting the production and secretion of 

angiogenic factors (Bryan and D'Amore 2007). Finally, Rho GTPase activity has been 

shown to contribute to the production of proinflammatory cytokines and the development 

of chronic inflammation, which is involved in cancer initiation and progression. (Vega and 

Ridley 2008). 

2.4.3. Rho GTPases and bacterial infection. 

Rho GTPases are involved in the host immune defenses in response to bacterial pathogens 

(Stuart et al. 2013) and, in accordance, many pathogens produce virulence factors, which 

exploit and/or impair diverse aspects of Rho protein activity and signaling. The molecular 

mechanisms of action of these effectors are diverse (Aktories 2011); some mimic the activity 

of Rho GTPase regulators (GEFs, GAPs, GDI) while others directly target the GTPase. 
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The effectors that directly targets Rho GTPases possesses enzymatic activities, which 

allows them to modify key functional residues of Rho GTPases by catalyzing chemical 

modifications, such as glucosylation, adenylation and deamidation (Visvikis et al. 2010; 

Lemichez and Aktories 2013). An example of this type of effector that has been studied 

and used extensively by our research group is the Cytotoxic necrotizing factor 1 (CNF1) 

toxin, a virulence factor produced by some pathogenic strains of Escherichia coli that has 

the capacity to translocate its catalytic domain into the host cell cytosol (Lemichez et al. 

1997; Knust et al. 2009), where it binds members of the Rho GTPase family and 

deamidates a glutamine residue that is essential for GTPase activity into a glutamate 

residue (Q63 in RhoA or Q61 in Rac1 and Cdc42), thereby locking the Rho-family protein 

in the active GTP-bound state (Flatau et al. 1997; Schmidt et al. 1997). Further examples 

of these factors and their effect on the Rho GTPase cycle are shown in figure 2.8. 

The modulation of Rho GTPase signaling by pathogens has been reported to disrupt host 

epithelial/endothelial barriers, hinder immune cell phagocytic functions, facilitate the 

invasion of epithelial cells by pathogenic bacteria and enable them to replicate, form 

intracellular reservoirs and disseminate through different tissues (Lemichez and Aktories 

2013). 

Moreover, toxins that modulate Rho GTPase activity have been remarkably useful to 

understand the diverse cellular roles of Rho GTPases and to reveal novel cellular regulatory 

mechanisms of these GTPases. It was, after all, through the study of the effect of the 

CNF1 toxin in Rho GTPases that their regulation by the ubiquitin and proteasome system 

was first demonstrated (Lerm et al. 2002; Doye et al. 2002). 

In addition to their usefulness in basic research, several studies have indicated that toxins 

targeting Rho proteins have a great potential for medical applications applied to 

pathologies where the function of Rho GTPases is known to play a key role, such as 

neurological diseases (Lemichez and Aktories 2013). For instance, studies from our team 

have indicated that the CNF1 toxin is a potential mucosal immunoadjuvant for 
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prophylactic or therapeutic vaccines against intracellular pathogens (Munro et al. 2005; 

Michel et al. 2016). 

 

 

Figure 2.8. Selected examples of bacterial virulence factors targeting various stages of Rho protein 
regulation. Bacterial factors target all of the key steps of GTPase regulation for activation (green) 
or inactivation (orange). Modulation of Rho activity can occur by mimicry of cellular GEF, GAP 
or GDI factors (e.g., SopE, YopE, YpkA, respectively). Other strategies consist of catalyzing direct 
post-translational modifications (PTM) on Rho. These PTMs include activating the key glutamine 
residue of the switch I domain (Q63 for RhoA) by ADP-ribosylation (TccC5), transglutamination 
(DNT) or deamidation (CNF1, converting Q63 into E63 in RhoA). Key residues of the switch II 
domain are also subjected to inactivating PTMs, e.g., ADP-ribosylation (C3bot, N41 of RhoA, B, 
C members), AMPylation (LbpA, Y34 for RhoA) or the addition of sugar groups (TcdA/B, T37 
for RhoA). Taken from (Lemichez and Aktories 2013) 
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3.1. Regulation of Rho GTPases by ubiquitination 

The first demonstration that Rho GTPases were ubiquitinated and addressed to the 

ubiquitin proteasome system (UPS) came from our lab in 2002, from the study of the Rho 

GTPase-activating effect of the CNF1 toxin (Doye et al. 2002). In this work, we showed 

that despite the constitutive activation of Rac1, Cdc42 and RhoA by CNF1, the active 

level of these GTPases did not remain constant but reached a peak at 4 to 6 hours after 

CNF1 intoxication and then rapidly diminished. This compensatory cellular response was 

found to be mediated by ubiquitination and proteasomal degradation. Since then, it has 

been reported that the ubiquitination of Rho GTPases can be modulated by its regulatory 

proteins. For instance, increased activity of Rho GEFs have been shown to promote the 
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ubiquitination of members of the Rho family (Doye et al. 2002), and it has been found 

that RhoGDI-bound GTPases are protected from proteasomal degradation (Boulter et al. 

2010). These findings show that regulation of Rho GTPases by ubiquitination is closely 

interweaved with the classical cellular mechanisms that regulate Rho GTPase signaling. 

Currently, 15 of the 20 Rho family members existing in humans are reported to be 

ubiquitinated in the PhosphoSitePlus resource (Hornbeck et al. 2015), indicating that 

ubiquitination is a common mechanism of regulation. However, only the ubiquitination of 

RhoA and Rac1 are currently characterized in detail. In this section I will briefly describe 

what is known about RhoA ubiquitination and then focus on Rac1 ubiquitination. 

3.1.1. Ubiquitination of RhoA 
 
The ubiquitination of RhoA is the best described among the Rho family. Several 

laboratories (ours included) have shown that RhoA is ubiquitinated by the HECT-type E3 

ligase Smurf1. Moreover, recent studies have suggested that some E3 Cullin-RING ligases 

(CRL) are also able to induce RhoA ubiquitination, namely, CUL3BACURD, SCFFBXL19, and 

SCFFwb7 (Hodge and Ridley 2016). 

SMURF1 (SMAD-specific E3 ubiquitin protein ligase 1) was the first E3 ubiquitin ligase 

identified to target a member of the RhoGTPases (Wang et al. 2003). SMURF1 is a Nedd4-

like E3 ubiquitin ligase involved in the regulation of TGF-β signaling. This E3 ubiquitin 

ligase is able to bind RhoA in a guanine nucleotide-independent manner (Ozdamar et al. 

2005). However, whether Smurf1 ubiquitinates all forms of RhoA or whether it is specific 

to the GDP- or GTP- bound state is still a controversial issue (Wang et al. 2003; Ozdamar 

et al. 2005; Boyer et al. 2006). The Rac1 and Cdc42 effector complex PAR6/ PKCζ recruits 

SMURF1 to the leading edge of migrating cells, where it ubiquitinates RhoA at lysines 6 

and 7, which suggests a mechanism for the site-specific degradation of RhoA (Wang et al. 

2003; Ozdamar et al. 2005). This degradation inhibits the RhoA-mediated formation of 

stress fibers at the leading edge, giving way to Rac-driven protrusion of lamellipodia. Also, 

it has been shown that upregulation of SMURF1 expression reduces the levels of RhoA 

and stimulates cancer cell migration, invasion and metastasis (Yu et al. 2015), but whether 
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this reduction occurs at a specific location or is general is still unclear. Interestingly, 

phosphorylation of RhoA has been shown to modulate its SMURF1-dependent 

ubiquitination. During axon extension, RhoA phosphorylation promotes its ubiquitination 

by SMURF1 (Cheng et al. 2011; Deglincerti et al. 2015), while our team has shown that 

phosphorylation of RhoA on Ser-188 promotes its binding to RhoGDI and protects RhoA 

from proteasomal degradation in vascular smooth muscle cells (Rolli-Derkinderen et al. 

2005). 

Out of the three CRL ligases that have been reported to ubiquitinate RhoA, the BTB/ 

POZ domain-containing adaptor for CUL3-mediated RhoA degradation (BACURD)-

CUL3-RING ubiquitin ligase complex (CUL3BACURD ) is the best-supported. This CRL 

from the C3RL subfamily is composed of the BACURD adaptor protein, the Cullin3 

scaffold and the Rbx E2-binding protein. BACURD binds Cullin3 through its BTB and 

interacts with RhoA through its POZ domain to selectively ubiquitinate RhoA (Chen et 

al. 2009). Depletion of CUL3 or BACURD has been shown to stimulate formation of actin 

stress fibers by increasing RhoA levels (Chen et al. 2009; Ibeawuchi et al. 2015). The two 

other CRL ligases that have been reported to mediate RhoA ubiquitination are: (i) The 

SCF ligase coupled with the F-box protein FBXL19 (SCFFBXL19), which has been shown 

to induce the ubiquitination of RhoA on Lys-135 in lung cells following ERK2-mediated 

phosphorylation of RhoA (Wei et al. 2013); and (ii) the SCF ligase coupled with the F-

box protein FBW7 (SCFFBW7), which has been shown to�regulate the ubiquitination and 

proteasomal degradation of RhoA in gastric cancer cells (Li et al. 2016). 

3.1.2. Ubiquitination of Rac1. 
 
The degradation of Rac1 by the UPS has been consistently reported to occur after Rac1 

sustained activation. It can be mediated either by bacterial effectors, such as the CNF1 

toxin from E. coli and the dermonecrotic toxin (DNT) from Bordetella (Doye et al. 2002; 

Munro et al. 2005); by physiological factors, such as hepatocyte growth factor (HGF) 

(Lynch et al. 2006); by the sustained presence of Dbl-exchange factors; or by Rac1 point 

mutations (Q61L, G12V) (Doye et al. 2002). We have shown that the ubiquitination of 
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Rac1 activated by the Q61L point mutation mainly involves its Lys-147 (Visvikis et al. 

2008). In 2011, our team identified the fist-E3-ubiquitin ligase that directly targets Rac1 

for degradation: the HECT domain E3 ubiquitin ligase HACE1 (Torrino et al. 2011). In 

addition to HACE1, three ligases of the RING family have been reported to mediate Rac1 

ubiquitination: XIAP, cIAP1 and the SCFFBXL19 complex. 

In a seminal study, our team found that the HECT-domain and Ankyrin-repeat containing 

E3 ubiquitin protein ligase 1 (HACE1) binds to and ubiquitinates specifically GTP-loaded 

Rac1. This binding and subsequent targeting is induced by CNF1-intoxication, activation 

of the GTPase by point mutations or by expression of the GEF-domain of Dbl (Torrino et 

al. 2011). Since then, other groups have confirmed and expanded these observations and 

identified lys-147 as the residue of Rac1 that is ubiquitinated by HACE1 (Castillo-Lluva 

et al. 2012; Daugaard et al. 2013; Goka and Lippman 2015). The details and implications 

of HACE1-mediated regulation of Rac1, as well as other properties of this E3 ubiquitin 

ligase will be developed in section 3.2. 

Oberoi and colleagues have reported that the inhibitor of apoptosis (IAP) proteins X-

linked IAP (XIAP) and cellular IAP1 (cIAP1) bind to GTP- and GDP-bound Rac1 and 

promote its polyubiquitination at Lys-147, leading to Rac1 proteasomal degradation 

(Oberoi et al. 2012; Oberoi-Khanuja and Rajalingam 2012). They observed that depletion 

of cIAP1 and XIAP resulted in hyper-activation of Rac1, leading to an elongated 

morphology and enhanced cell migration in both normal and tumor cells (Oberoi et al. 

2012). However, other groups have described instead a reduction of cancer cell migration 

following IAPs downregulation (reviewed by (Orme et al. 2012)) questioning the results 

found by Oberoi et al. More recently, it has been suggested that SCFFBXL19 targets Rac1 

and Rac3 for ubiquitination, in addition to the previously reported RhoA, on Lys-66 (Zhao 

et al. 2013; Dong et al. 2014). SCFFBXL19 targets Rac1 in a guanine nucleotide-independent 

manner and requires phosphorylation of Rac1 on Ser-71 by AKT (Zhao et al. 2013). 
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3.2. HACE1 E3 ubiquitin ligase 

3.2.1 Brief historical context and association with human diseases 
 
The Hace1 gene was first identified in 2004 by the group of Dr. Sorensen just ~50kb 

downstream of a translocation breakpoint in the chromosome 6q21 present in a patient 

with Wilms’ tumor, a pediatric renal tumor (Anglesio et al. 2004). In this seminal paper, 

HACE1 was shown to be a functionally active E3 protein ligase with a catalytic HECT 

domain at its C-terminus and a series of Ankyrin repeats at its N-terminus (initially 

thought to be six but more recently described to be seven (Andrio et al. 2017)), that 

mediate protein-protein interactions (Li et al. 2006). 

 

 

Figure 3.1. Representation of HACE1 domain organization. HACE1 is a 909 residue-E3 ubiquitin 
ligase with 7 N-terminal Ankyrin repeats, thought to mediate protein-protein interactions, and a 
C-terminal HECT catalytic domain. The position of the catalytic cysteine (*Cys876) within the 
HECT domain is indicated. 

 

HACE1 is widely expressed in human tissues, including mature and fetal kidney, skeletal 

muscle, liver and ovaries. It is relatively highly expressed in the brain, placenta, thymus, 

prostate and peripheral blood leukocytes (Anglesio et al. 2004; Zhang et al. 2007). 

HACE1 was initially classified as a tumor suppressor gene by the team of Dr. Sorensen. 

They pointed out that the hace1 gene locus is within a region previously described as a 

hotspot of deletions or loss of heterozygosity in multiple human tumors. In accordance 

with this, they observed that HACE1 mRNA expression was very often repressed in 

primary Wilms’ tumors (Anglesio et al. 2004). This work was later expanded in 

collaboration with the team of Dr. Penninger, where they show that HACE1 is not only 

repressed in Wilms’ tumors but also in several other human cancers, including  mammary, 

hepatic, gastric, ovarian and prostate cancers (Zhang et al. 2007). Independent studies 
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have genetically linked reduced hace1 expression to various types of cancer, including 

neuroblastoma, lung, stomach, mammary and liver cancer (Hibi et al. 2008; Sakata et al. 

2009; Diskin et al. 2012; Liu et al. 2014; Goka and Lippman 2015) 

In agreement with the genetic association studies in humans, hace1-KO mice generated by 

the team of Dr. Sorensen show a tendency to spontaneously form late-onset tumors 

originated from all of the three germ layers, resulting in the development of different 

carcinomas, lymphomas and sarcomas (Zhang et al. 2007). Their work has also shown that 

loss of HACE1 makes mice highly susceptible to environmental stress (like exposure to 

DNA alkylating agents and gamma irradiation) and secondary genetic insults, such as loss 

of another tumor suppressor like p53. Under this kind of environmental and genetic stress, 

hace1-KO mice present a significantly worse phenotype compared to control mice: they 

develop more aggressive tumors and also present more types of malignancies than the ones 

that normally arise in HACE1-expressing mice (Zhang et al. 2007). 

In addition to generating and characterizing their murine model, Zhang and colleagues 

showed that HACE1 expression in human cancer cells suppresses cellular proliferation and 

hinders their ability to form tumors in vivo. These authors showed that HACE1 controls 

cellular proliferation by reducing CyclinD1 protein stability in an E3 ligase-dependent 

manner. However, they did not find any evidence that HACE1 targets CyclinD1. It was 

not until 2011, when our group identified GTP-bound Rac1 as the first target of HACE1 

(Torrino et al. 2011), that the signaling mechanisms of HACE1 tumor suppressor activity 

were further elucidated and a connection between Rac1, HACE1 and the control of cyclin-

D1 stability was drawn. As shown in Chapter 2, Rac1 is an essential protein whose de-

regulation is known to play a role in the development of cancer. Accordingly, subsequent 

studies have found that HACE1’s role in repressing cell migration in response to HGF 

depends on Rac1 ubiquitination (Castillo-Lluva et al. 2012). Moreover, HACE1 has been 

shown to repress cellular migration, invasion and proliferation in human mammary 

epithelial cells and hinders breast cancer progression in HER2/Neu expressing cells by 

regulating cellular levels of GTP-Rac1 (Goka and Lippman 2015). 
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hace1-KO mice generated by Zhang and colleagues were born at the expected time and 

were fertile. They looked normal, showed no signs of developmental problems and were 

able to reach old age (2 years) despite their propensity to develop late-onset tumors (Zhang 

et al. 2007). However, in the last couple of years, there have been studies associating the 

genetic alterations in hace1 with developmental diseases, both in the animal model 

Xenopus laevis (Iimura et al. 2016) and in humans (Akawi et al. 2015; Hollstein et al. 

2015). These last two studies in humans identified putative loss-of-function variants in 

HACE1, including biallelic missense mutations, and frameshift mutations that were 

predicted to result in the truncation of HACE1 before or within its HECT domain, or to 

perturb the HECT domain folding. These mutations were associated with developmental 

autosomal recessive disorders in individuals from different countries. The affected 

individuals presented a series of common symptoms: intellectual disability, brain atrophy, 

abnormal gait and ocular abnormalities. The authors of these studies hypothesized that 

HACE1’s role during development might be mediated by the deregulation of Rac1 activity, 

since it is known that Rac1 plays a role in developmental processes, such as photoreceptor 

morphogenesis and cerebellar development. This hypothesis is congruent with the fact that 

knockdown of Rac1 partially rescues the defects in early embryonic development observed 

in Xenopus laevis lacking HACE1, suggesting that indeed, HACE1’s role in development 

might be mediated by modulation of Rac1 activity (Iimura et al. 2016). 

Collectively, these studies indicate that HACE1 plays an important role in maintaining 

cell and organism homeostasis, as evidenced by its tumor suppressor activity and role in 

early development. Whether HACE1’s ability to regulate Rac1 activity is the only 

molecular mechanism mediating such diverse effects, or whether there is a contributing 

role of other known or yet uncharacterized targets and partners of HACE1 is currently a 

subject of much interest. 

3.2.2. Targets of HACE1: Rac1 and beyond 
 
Our team identified the GTP-bound form of Rac1 as the first target of the catalytic activity 

of HACE1, and since then seven other targets have been proposed, expanding HACE1’s 
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role in cell signaling and shedding light on its remarkable capability to conjugate different 

kinds of ubiquitin chains in a substrate-specific manner. In this section I will go briefly 

through these targets starting with the most recently identified, so that the end of the 

section will be dedicated to the earliest and most-studied target of HACE1: Rac1. 

A recent study has suggested that HACE1 directly mediates K63-linked ubiquitination of 

TRAF2 in vivo and in vitro. Since TRAF2 is a RING E3 ubiquitin ligase that plays a role 

in the induction of NF-kB activation and in the inhibition of necroptosis downstream the 

tumor necrosis factor receptor 1 (TNFR1), the authors suggested that HACE1 is a critical 

regulator of TNFR1-mediated cell fate (Tortola et al. 2016a). The same year, Huang and 

colleagues demonstrated that HACE1 monoubiquitinates Syntaxin5 (Syn5), a SNARE 

protein involved in Golgi reassembly, at Lys-270. The authors showed that ubiquitinated 

Syn5 has a lower affinity for HACE1 than non-modified Syn5, which gives a clue as to 

why HACE1 transfers a single ubiquitin molecule to Syn5. Interestingly, the 

monoubiquitination of Syn5 by HACE1 occurs early during mitosis, and is reversed by the 

action of the DUB VCIP135 during the late stages of mitosis. This gives an insight into a 

temporal and/or spatial modulation of HACE1 activity (Huang et al. 2016). 

Another recently described target of HACE1 is the Y-box-binding protein 1 (YB-1). YB-1 

is a DNA- and RNA-binding protein involved in the regulation of gene transcription, 

mRNA stability, protein translation, splicing and DNA repair. Moreover, there is evidence 

that YB-1 is secreted, but it is unclear through which mechanisms and for what purpose 

this happens. Studying this aspect, Palicharla and Maddika have found that HACE1 

modifies YB-1 with K27-linked polyubiquitin, giving YB-1 a new surface of interaction 

that is necessary for its association with the ESCRT-1 complex and its secretion through 

the multivesicular bodies pathway (Palicharla and Maddika 2015). 

In 2014, four more targets for HACE1 were proposed. Three of them are members of the 

Rab GTPase family and were identified in the same study published by Lachance and 

colleagues. This study suggested that the β2-Adrenergic receptor (β2AR) mediates HACE1 

interaction with Rab11a, Rab6a, and Rab8a and facilitates their ubiquitination (Lachance 
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et al. 2014). The fourth target has been reported by Liu and colleagues in a study that 

showed that HACE1 binds and targets the autophagy receptor Optineurin (OPTN), a 

protein genetically implicated in glaucoma, amyotrophic lateral sclerosis (ALS) and Paget 

disease. In this study, the authors showed that HACE1 binds to OPTN through its N-

terminal Ankyrin repeats and conjugates K27- and K48-linked ubiquitin chains on OPTN’s 

Lys-193 in cells (and on 12 other lysines in vitro). This ubiquitination promotes the 

interaction between OPTN and p62 leading to an accelerated autophagic flux, which in 

turn lowers cellular ROS levels and mitigates oxidative DNA damage (Liu et al. 2014). A 

study currently under review from our team confirmed that HACE1 and OPTN interact. 

However, though this interaction seems to be important for HACE1 function towards Rac1, 

we did not observe that OPTN ubiquitination was dependent on HACE1 activity 

(Hamaoui et al, under review). 

As discussed in the previous section, Rac1 in its GTP-bound form is to date the best 

described target of HACE1 (Torrino et al. 2011; Castillo-Lluva et al. 2012; Daugaard et 

al. 2013; Goka and Lippman 2015). HACE1 targets Rac1 after it is activated in response 

to several stimuli such as CNF1-intoxication, Rac1 point mutations (Q61L, Q61E or G12V), 

the expression of the GEF-domain of Dbl (Torrino et al. 2011), or by stimulation with 

growth factors that are known to activate Rac1 like: HGF (Hepatocyte growth factor) 

(Castillo-Lluva et al. 2012), EGF (Epidermal growth factor) or HRG (Heregulin) (Goka 

and Lippman 2015). Altogether, these findings demonstrate that the regulation of Rac1 by 

HACE1 is a general and constitutive mechanism to modulate the levels of active Rac1 in 

the cell. 

HACE1 has been shown to ubiquitinate Rac1 at the Lys-147 in vitro and in cells in response 

to HGF (Castillo-Lluva et al. 2012) and EGF (Goka and Lippman 2015). 

We have seen before that HACE1 is able to conjugate on its substrates a single ubiquitin 

peptide or different types of ubiquitin chains (K63-, K48-, and K27-linked chains). However, 

the type of ubiquitin chains that HACE1 attaches to Rac1 has not been completely 

elucidated. It is known that the expression of a K48R-ubiquitin mutant partially dampens 
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the polyubiquitination profile of active Rac1 (Q61L mutant) above the size of 72kDa in 

control and HACE1 expressing cells (Torrino et al. 2011). This indicates that HACE1 does 

transfer K48-linked ubiquitin chains (with 6 or more ubiquitin moieties) to Rac1. However, 

it seems it is not the only type of chain that HACE1 can catalyze on Rac1 and further 

studies are necessary to dissect which other types of ubiquitin chains can be crosslinked 

on Rac1 and what their impact is on Rac1-dependent signaling. 

A characteristic that sets apart HACE1 from other E3 ubiquitin ligases that target Rac1 

is that it preferentially binds and targets GTP-bound Rac1. A recent study from our group 

showed structural aspects of HACE1 that regulate this specificity (Andrio et al. 2017). 

This work established that a specific surface encompassing amino acids located in Ankyrin 

repeats 5 to 7 of HACE1 is critical for its binding to Rac1 (Fig. 3.2). Moreover, it 

demonstrated that the MID region cooperates with the Ankyrin domain in HACE1 to 

confer specificity of association to the active form of Rac1. Finally, through the study of 

the effect of mutants of these critical residues in HACE1 on Rac1 ubiquitination (some of 

which are listed in the Catalogue of Somatic Mutations in Cancer), we also demonstrated 

that the efficiency of association of HACE1 with Rac1 correlates with the efficiency of 

Rac1 ubiquitination. All of which suggests that HACE1’s capacity to target specific 

substrates can be modulated at the protein level and that it is a mechanism, apart from 

genetic inactivation, by which cancer cells can modulate HACE1 function. 

 

Figure 3.2. 3D model of HACE1 Ankyrin repeats important for its interaction with Rac1. A. Ribbon 
diagram of HACE1 Ankyrin repeats 5, 6 and 7 depicting surface-located amino acids V140, Q173, 
N174, G175. The alanine in position 204 is located on the internal part of the helix. B. Surface 
representation of the same Ankyrin repeats in HACE1, depicting the cluster of residues controlling 
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Rac1 binding and ubiquitination (yellow) at the surface of the repeats 5, 6 and 7. Taken from 
(Andrio et al. 2017) 

As seen in the previous section, HACE1 targets proteins that are located at different 

subcellular sites, suggesting that HACE1 activity is spatially regulated. However, evidence 

of HACE1 intra-cellular localization is rather sparse. Endogenous HACE1 has been shown 

to co-localize with Grasp65 and other Golgi markers by immunofluorescence and cellular 

fractionation (Tang et al. 2011). These authors found that exogenously expressed HACE1 

wild type, but not the catalytic inactive mutant C876S, still co-localizes with Golgi markers 

but it is also found (in big quantities) spread in the cytosol. This observation is in 

accordance with other studies that have detected exogenously expressed HACE1 mainly 

in the cytosol and in the perinuclear region (Anglesio et al. 2004; Torrino et al. 2011). In 

conditions where HACE1 is over-expressed and Rac1 activation is induced by point 

mutations or stimulation with HGF, HACE1 is still mainly cytosolic but a small part co-

localizes with Rac1 at the cell periphery and in membrane ruffles (Torrino et al. 2011; 

Castillo-Lluva et al. 2012). Contrary to HACE1 localization in the Golgi, co-localization 

of active Rac1 with HACE1 at the cell membrane does not require HACE1 catalytic 

activity. Nevertheless, cellular fractionation assays have shown that overexpression of 

HACE1 exclusively promotes the degradation of the fraction of Rac1 located at membranes 

(Castillo-Lluva et al. 2012), and it has been shown that endogenous Rac1 ubiquitination 

by exogenously expressed HACE1 requires the presence of NOXA1, a component of the 

transmembranal holoenzyme NADPH oxidase (Daugaard et al. 2013). 

Altogether, these observations indicate that HACE1 exerts some of its function as an E3 

ubiquitin ligase at cellular membranes: either at the cell periphery, where it ubiquitinates 

Rac1 and targets it for degradation; or at the Golgi, where it targets Syn5. How exactly 

HACE1 is recruited to its sites of action, and which cellular contexts determine its 

localization and target recognition remain aspects of great interest. 

3.2.3. HACE1: a dual function protein involved in numerous cellular processes 
It has been shown that HACE1 targets Rac1 and at least seven other proteins that are 

involved in a wide array of cellular mechanisms. Consequently, most of the cellular 
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processes in which HACE1 has been implicated require its catalytic activity. However, 

HACE1 has also been shown to play a role in the regulation of autophagy, anti-oxidative 

stress and anti-viral response in a way that is independent of its catalytic activity. The 

precise mechanisms by which HACE1 mediates these functions are still largely unknown 

(Zhang et al. 2014; Rotblat et al. 2014; Mao et al. 2016). This dichotomy makes HACE1 

a dual function protein that is capable of modulating signaling events by two independent 

mechanisms that differ in their requirement for E3 ligase activity (summarized in Table 

3.1). In this section, I will expand on some of the better studied cellular events where 

HACE1 plays a regulatory role. 

a. Membrane organization and protein trafficking 

In 2011, the teams of Dr. Wang and Dr. Zerial published an elegant study where they 

demonstrate that HACE1 catalytic activity is necessary for Golgi membrane fusion after 

mitosis (Tang and Wang 2013). They identify HACE1 as a binding partner of Rab-

GTPases, which are important membrane organizers (Zerial and McBride 2001). 

Specifically, they show that HACE1 binds to the GTP-bound form Rab1, Rab4 and Rab11 

(but not Rab2, 5, or 6); and through its interaction with GTP-Rab1, HACE1 is recruited 

to the Golgi and promotes Golgi stability. Mechanistically, they found that the presence 

of catalytically active HACE1 plays a role during mitotic disassembly of the Golgi 

membrane that is essential for Golgi reassembly after mitosis. In a follow up study, Dr. 

Wang’s group demonstrated that HACE1 regulates this process by monoubiquitinating 

Syntaxin5 at Lys-270 specifically during early mitosis, as illustrated in figure 3.3 (Huang 

et al. 2016). 

The authors of this study have suggested that HACE1’s role as a tumor suppressor and 

regulator of cell proliferation might be connected to the role of HACE1 in Golgi biogenesis 

during the cell cycle. In the absence of HACE1, Golgi structure and therefore function is 

disrupted, which may directly affect cell growth and proliferation and impair accuracy of 

protein glycosylation and sorting, including cell adhesion molecules on the cell surface that 

are known to contribute to metastasis. 
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Figure 3.3. Representation of the model for the role of Syn5 ubiquitination in p97/p47-mediated 
post-mitotic Golgi membrane fusion. (1) In early mitosis, Syn5 is monoubiquitinated by HACE1 on 
the Golgi membranes, while the DUB VCIP135 is inactivated by mitotic phosphorylation. Syn5 
recruits the p97/p47 complex and VCIP135 to the Golgi membranes through the interaction 
between the ubiquitin moiety on Syn5 and the UBA domain of p47. (2) In late mitosis, ubiquitin 
on Syn5 is removed by VCIP135 that is reactivated by dephosphorylation, (3) enabling Syn5-Bet1 
SNARE complex formation and thus membrane fusion by p97 at mitotic exit.�Taken from (Huang 
et al. 2016) 

HACE1 association to Rab1, 4, and 11 indicates that HACE1 might have functions in 

protein trafficking. Indeed, HACE1 has been implicated in protein transport: HACE1 

promotes secretion of YB-1 by conjugating K27-linked ubiquitin chains onto it (Palicharla 

and Maddika 2015), and regulates the recycling of the β2-adrenergic Receptor (β2AR) 

through a Rab11a-dependent mechanism (Lachance et al. 2014). This study from Lachance 

and colleagues showed that β2AR mediates HACE1 interaction with Rab11a, Rab6a and 

Rab8a and facilitates their ubiquitination. They propose that HACE1 mediates Rab11a 

ubiquitination at Lys-145 in a way that does not affect its stability but rather leads to its 

activation (necessary for β2AR recycling), and thus they introduce the idea that a cargo 

protein (like β2AR) can regulate its own trafficking by inducing ubiquitination and 

activation of Rab GTPases. 

b. Cell migration 

Several studies support a repressive role of HACE1 on cell migration. Castillo-Lluva and 

collaborators have shown that HACE1 depletion in MEFs enhances cell migration 

independently of growth factor stimulation, and increases the accumulation of actin and 

Rac1 at the leading edge of cells (Castillo-Lluva et al. 2012). In this study, the authors 
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show that this highly motile phenotype depends on the absence of HACE1-mediated Rac1 

ubiquitination, since this phenotype can be reversed by knocking down Rac1; and in cells 

expressing HACE1, the turnover of Rac1 at the leading edge of cells seems to be regulated 

by its ubiquitination. In agreement with these findings, another study has shown that 

HACE1 represses cellular migration and invasion in human mammary epithelial cells 

(MCF12A) in a Rac1 dependent manner (Goka and Lippman 2015). Moreover, a recent 

study focusing on the development and characterization of ubiquitin variant probes (UbV) 

that modulate HECT E3 ligase activity reported that among 13 HECT-ligases, the 

modulation of HACE1 activity had the most impact on cell migration. In line with the 

first two studies, this paper showed that inhibition of HACE1 greatly promoted cell 

migration (Zhang et al. 2016). 

c. Cell growth and redox balance 

As mentioned previously, lack of expression of active HACE1 is correlated with the 

aberrant stabilization of CyclinD1 protein levels and with increased cell proliferation due 

to the bypass of the G0/G1 arrest (Zhang et al. 2007; Goka and Lippman 2015). In a later 

study, the group of Dr. Sorensen in collaboration with our team found that HACE1 control 

of CyclinD1 levels is mediated by the inhibition of Rac1-dependent NADPH oxidase 

activity, which is required by the AP-1 transcription factor to induce CyclinD1 gene 

expression (Daugaard et al. 2013). 

The mechanism proposed by this last study is illustrated in figure 3.4. Loss of HACE1 

leads to chronic high ROS (Reactive Oxygen Species) levels in mammalian cells and in 

zebrafish, this imbalance is due to an overproduction of ROS at the Rac1-dependant 

NADPH oxidase complexes and not at the mitochondria. This study demonstrated that 

HACE1 targets Rac1 for degradation when it is localized to the NADPH oxidase 

holoenzyme, thus limiting de novo generation of ROS. In this way, HACE1 protects the 

cells against ROS induced DNA damage and increases cell proliferation. In accordance 

with this, another study reported that re-expression of HACE1 and Optineurin (an 
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autophagy receptor and HACE1 target) in a human lung cancer cell line synergistically 

reduced ROS production and DNA damage (Liu et al. 2014). 

 

 

Figure 3.4. HACE1 controls Rac1-dependent NADPH oxidases. A. Simple arrow scheme showing 
the way that HACE1 controls cell proliferation by indirectly inhibiting CyclinD1 levels, through its 
control of Rac1 activity. B. HACE1 targets NADPH oxidase-bound Rac1 to regulate ROS 
production, cyclin D1 expression and DNA damage susceptibility. C. Loss of HACE1 hyperactivates 
NADPH oxidase activity, this increases ROS generation, cyclin D1 expression and ROS-induced 
DNA damage. Adapted from (Daugaard et al. 2013) 

 

In addition to repressing ROS production, HACE1 has been found to indirectly promote 

the activity of the nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator 

of the anti-oxidative stress response. HACE1 is essential for optimal activation of the 

NRF2 response under oxidative stress conditions by promoting NRF2 protein synthesis, 

stabilization, and nuclear localization. This function is independent of HACE1’s catalytic 

activity but it requires the presence of its Ankyrin repeats and HECT domain. Interestingly, 
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it also seems that hace1 itself is an oxidative stress response gene, since mRNA levels of 

HACE1 increase when cells are under acute oxidative stress (treated with H2O2 or arsenate) 

(Rotblat et al. 2014). This latter observation is in line with a previous study that identifies 

HACE1 as a target gene of the NRF2 transcription factor (Malhotra et al. 2010). 

Collectively, these studies demonstrate the central role of HACE1 in the control of cellular 

redox balance, where it inhibits ROS generation in an E3 ligase-dependent way and 

promotes the anti-oxidative stress response in an E3 ligase-independent way (Fig. 3.5). 

 

 

 

Figure 3.5. HACE1 is a central player in the control of cellular redox balance. Simplified scheme 
indicating the two complementary pathways that involve HACE1 in the control of oxidative 
stress. (lower branch) HACE1 targets Rac1 for degradation when located at the NADPH 
oxidase holoenzyme, thus inhibiting its activity and stopping ROS generation. (Upper branch) 
HACE1 indirectly promotes the activity of the NRF2 transcription factor, a master regulator 
of the anti-oxitadive stress response, which in turn promotes HACE1 expression in response to 
severe oxidative stress. 

 

d. Autophagy 

HACE1 is involved in maintaining protein homeostasis (proteostasis) in response to stress 

by two mechanisms: 1) HACE1 can ubiquitinate and address its targets to UPS, and 2) 

HACE1 can increase protein degradation by promoting autophagic flux.  

There are two studies that link HACE1 to autophagy.  The first one starts from the 

observation that HACE1 expression is upregulated in human heart failure, and studies the 
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role of HACE1 in mice hearts under hemodynamic stress. They find that hace1-KO mice 

have frailer hearts and their cardiomyocytes display an accumulation of LC3, p62 and 

ubiquitinated proteins, which indicates impaired autophagy. Indeed, they find that HACE1 

is required for efficient clearance of protein aggregates in an E3 ligase-independent manner. 

Interestingly, loss of HACE1 only impairs autophagy in cardiomyocytes under 

hemodynamic stress, not at basal conditions. The authors suggest that in absence of stress, 

redundant pathways can control proteostasis without requiring HACE1. However, during 

stress, the cell cannot cope without HACE1, perhaps because the redundant systems are 

either impaired or inadequate (Zhang et al. 2014). 

In the second study, HACE1 is shown to ubiquitinate the autophagy receptor Optineurin 

at Lys-193, promoting its interaction with p62/SQSTM1 to form an autophagy receptor 

complex, accelerating autophagic flux in HEK293, MEFs and lung cancer cells. Different 

from the previous study, they show that HACE1 E3 ubiquitin ligase activity is essential 

for protein degradation by autophagy (Liu et al. 2014). 

e. Cell death (apoptosis and necroptosis) 

Recently, HACE1 has been shown to control tumor necrosis factor (TNF)-elicited cell fate 

decisions and to exert tumor suppressor and anti-inflammatory activities downstream of 

the TNF receptor 1 (TNFR1) (Tortola et al. 2016a). Tortola and colleagues observed that 

hace1-KO mice present dampened TNF-stimulated NF-kB activation, reduced TNFR1-

NF-kB-dependent pathogen clearance, and impaired TNF-induced apoptosis. However, loss 

of HACE1 did not hamper TNFR1-mediated necroptosis via RIP1 and RIP3 kinases. This 

indicated that HACE1 acts as a gatekeeper of apoptotic vs necroptotic cell fate. The 

authors suggest that this new role of HACE1 is mediated by its ability to conjugate K63-

linked ubiquitin chains on TRAF2 (Fig. 3.6.). Moreover, it was shown in that same study 

that loss of HACE1 predisposed mice to colonic inflammation and carcinogenesis in vivo, 

which is in line with a previous genetic study that draws a link between HACE1 deficiency 

and celiac disease (Einarsdottir et al. 2011; Tortola et al. 2016a). Tortola and colleagues 

observed that this phenotype was alleviated by the knock-out of RIP3 kinase or of TNFR1. 
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Figure 3.6. HACE1 controls cell fate after TNFR1 activation. Upon stimulation with TNF, HACE1 
mediates the induction of NF-kB activation and apoptosis, which keeps a balance between the 
possible cell fates downstream of TNFR1 (left panel). In the absence of HACE1, NF-kB activation 
and apoptosis induction downstream of TNFR1 are impaired and cells are predisposed to necroptotic 
death, which promotes intestinal inflammation and carcinogenesis (right panel). Taken from 
(Tortola et al. 2016b) 
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Process Notes on Mechanism Reference 

E3-ubiquitin ligase- Dependent 

Post-mitotic Golgi reassembly Mono Ub of Syn5 
(Tang et al. 2011) 
(Huang et al. 2016) 

β2AR recycling 
Ub of Rab11a (mono- or poly- Ub that 
does not lead to protein degradation) 

(Lachance et al. 2014) 

Yb-1 secretion K27 polyub of YB-1 
(Palicharla and 
Maddika 2015) 

Inhibition of 

cell migration 
Ub of Rac1àdegradation 

(Castillo-Lluva et al. 
2012; Goka and 
Lippman 2015) 

Inhibition of 

ROS generation 

Ub of Rac1àdegradation 

K27 and K48 Ub of OPTN 

(Castillo-Lluva et al. 
2012) (Liu et al. 
2014) 

Induction of autophagy K27 and K48 Ub of OPTN (Liu et al. 2014) 

Control of cell shape Ub of Rac1àdegradation (Torrino et al. 2011) 

Control of cell death K63 Ub of TRAF2 (Tortola et al. 2016a) 

Cell cycle: 

Induction of G0/G1 arrest 
Ub of Rac1àdegradation 

(Zhang et al. 2007; 
Daugaard et al. 2013) 

E3-ubiquitin ligase- Independent 

Anti-oxidative stress response: 
promotion of NRF2 activity 

Via protein-protein interactions requiring 
HACE1 ANK repeats and HECT domain 

(Rotblat et al. 2014) 

Autophagy in the heart - (Zhang et al. 2014) 

Inhibition of virus triggered 
type I IFN signaling 

Via interaction with TRAF3 (Mao et al. 2016) 

Regulation of RARβ 
transcriptional activity 

Via interaction with RARβ1, 2, and 3 (Zhao et al. 2009) 

Table 3.1. Cellular processes regulated by HACE1. The processes are classified according to their 
requirement of HACE1’s E3 ubiquitin ligase activity. (Ub) stands in short for “ubiquitination” and 
(à) stands for “leading to”.  
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Thesis objectives 
 

 
Since its discovery, the downregulation of HACE1 expression has been associated with 

numerous human diseases, including cancer, neurodegenerative diseases and developmental 

conditions (Anglesio et al. 2004; Zhang et al. 2007; Goka and Lippman 2015; Akawi et al. 

2015; Hollstein et al. 2015). Several mechanisms responsible for this inhibition are reported 

in the literature: there are examples of methylation of the hace1 gene or its upstream 

regulatory regions (Anglesio et al. 2004; Zhang et al. 2007; Hibi et al. 2008; Sakata et al. 

2009; Küçük et al. 2013; Gao et al. 2016a), chromatine modifications (Bouzelfen et al. 

2016), deletion of the gene (Stewénius et al. 2008), and chromosomal translocations that 

truncate hace1 (Slade et al. 2010). 

In contrast to the large amount of data concerning the regulation of HACE1 gene 

expression, little is known about the mechanisms that modulate its catalytic activity 

and/or substrate recognition at the protein level. Considering the number of cellular 

mechanisms that require the normal activity of HACE1, it is of great importance to 

understand how HACE1 E3 ubiquitin ligase activity is modulated. Not only to better 

understand the processes it controls but also to eventually manipulate its activity for 

therapeutic purposes. As I have described in Chapter 1.4, other HECT domain ubiquitin 

ligases are regulated by structural rearrangements triggered by PTM. Therefore, this work 

aims to study how HACE1 is regulated by PTMs, and more specifically by phosphorylation. 

In parallel to this work, our team screened for new HACE1 interactors using the yeast two 

hybrid system in order to identify potential new targets or regulatory adaptors of HACE1. 

Interestingly, two of the novel binding proteins candidates identified, α-catenin and E-

cadherin, are core components of epithelial adherens junctions.  Hence, another aim of this 

study is to investigate whether and how HACE1 is involved in the regulation of epithelial 

adherens junctions. 
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Abstract 

The regulation of Rac1 by HACE1-mediated ubiquitination and proteasomal degradation 

is emerging as an essential element in the maintenance of cell homeostasis. However, how 

the E3 ubiquitin ligase activity of HACE1 is regulated remains undetermined. Here, we 

have addressed this question by using a proteomics approach to identify dynamically 

regulated phospho-residues of HACE1 in response to Rho GTPase activation. We report 

that serine 385, which is located in the middle region of HACE1, is phosphorylated in 

response to Rac1/Cdc42 activation and that group-I PAK kinases phosphorylate serine 

385 in vitro and in vivo. Mechanistically, we define that the phospho-mimetic mutant 

HACE1(S385E), as opposed to HACE1(S385A), displays a lower capacity to ubiquitinate 

Rac1 in cells while maintaining its activity toward Rac1 in vitro. We also found that 

phosphorylation of serine 385 plays a pivotal role in controlling the HACE1 oligomerization 

state. Together, our work identifies, for the first time, a phospho-mediated regulation of 

HACE1 activity that is under the control of group-I PAKs. 
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Introduction 

E3 ubiquitin ligases (E3s) are critical gatekeepers of cell homeostasis 1. While we have 

begun to appreciate their structure and the diversity of their targets, we fall short on 

knowledge about their general integration in cell signaling. One essential question in 

particular is to better understand the cross-talk between kinases and ubiquitin ligases 2. 

This is particularly true for HACE1, which is a critical regulator of active Rac1 flux for 

which we still lack identified regulators 3. 

Rac1, together with Cdc42 and RhoA, are the most extensively studied members of the 

Rho GTPase family, which are intracellular signaling proteins that control a variety of 

cellular processes, such as actin remodeling and transcription 4. Rho GTPases act as 

molecular switches that cycle between an inactive form bound to GDP and an active form 

bound to GTP. In response to various environmental stimuli, inactive Rho proteins are 

charged with GTP, which induces conformational changes allowing Rho proteins to bind 

to effector proteins. These effectors, in turn, either relay or directly execute cellular 

responses driven by the Rho-activating environmental stimuli. More than 100 effector 

proteins of Rho GTPases have been described; some correspond to scaffold proteins, while 

others harbor enzymatic activities, notably kinases 4. The first identified and best 

characterized effectors activated by Rac1 are the family of P-21 Activated serine/threonine 

Kinases (PAKs) 5. In mammals, the PAK family consists of six members classified into 

two groups. Rac1 and Cdc42 activate group-I, which comprises PAK1, PAK2 and PAK3. 

Group-II, which comprises PAK4, PAK5 and PAK6, are only regulated by Cdc42 6. Group-

I PAKs are highly homologous but show different profiles of tissue expression. While PAK2 

is found in virtually all tissues, PAK1 and PAK3 display a more restricted expression 

patterns; PAK1 is expressed in the mammary gland, muscle, spleen and brain tissues, while 

PAK3 expression is restricted to the brain 7. Genetics studies have established that PAKs 

play a significant role in tissue development and that PAK expression deregulation is linked 

to cancer progression 8,9. 
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The regulated activity of Rac1 allows the integration of the many signals involved in the 

maintenance of cell homeostasis and cellular dynamics. The GDP/GTP cycle is controlled 

by the following regulatory proteins: (i) Guanine nucleotide Exchange Factors (GEFs), 

which facilitate the exchange of GDP and GTP; (ii) GTPase activating Proteins (GAPs), 

which increase the intrinsic rate of GTP hydrolysis; and (iii) RhoGDIs, which sequester 

Rho proteins in the cytosol. Additionally, the control of active Rac1 flux by the E3 

ubiquitin ligase HACE1 is emerging as an important aspect of Rac1 signaling 3. We and 

others have shown that HACE1 ubiquitinates Rac1 once it is activated, either by using 

point mutants (Q61L, Q61E, and G12V), by over-expressing the GEF domain of Dbl, or 

in response to growth factors such as Hepatocyte Growth Factor (HGF), Epidermal 

Growth Factor (EGF) and Heregulin (HRG) 3,10,11. The regulation of Rac1 by 

ubiquitination was first revealed in cells intoxicated by Cytotoxic Necrotizing Factor 1 

(CNF1) 12, which is produced by pathogenic strains of E. coli from phylogenetic group B2. 

After endocytosis into the host cells, the toxin CNF1 translocates its catalytic domain into 

the cytosol, where it deamidates RhoA glutamine residue Q63 (Q61 in Rac1 and Cdc42) 

into a glutamic acid 13,14. Because this residue is essential for the GTP hydrolysis, its 

deamidation by CNF1 impairs the GTPase activity of Rho proteins and locks them in a 

GTP-bound state. As a consequence of its permanent activation, Rac1 gets ubiquitinated 

by HACE1 and is subsequently targeted by the 26S proteasome degradation machinery 
3,12. 

HACE1 is an important tumor suppressor whose expression is lost in a variety of human 

cancers, including Wilm’s tumor, B-cell lymphoma, and colorectal, gastric and breast 

cancers 11,15-19. The repression of HACE1 expression has been shown to be a consequence 

of epigenetic silencing or chromosomal alterations 6,15-19 A major demonstration of HACE1 

tumor suppressor activity came a decade ago from the observation that hace1 KO mice 

develop spontaneous late-onset cancers from the three germ-layers 16. Since then, several 

studies have converged to the idea that HACE1 is a guardian of cell homeostasis by 

controlling ROS levels and the autophagy of protein aggregates 20-22. Moreover, HACE1 

also controls cell growth, migration and invasion, which are key features of cancer 
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progression 10,11. Interestingly, the deregulation of Rac1 ubiquitination due to the loss of 

HACE1 contributes to higher NADPH-dependent ROS production, which leads to DNA 

damage and cell hyper-proliferation 20. Additionally, a recent study has revealed that 

HACE1-induced ubiquitination of Rac1 in mammary gland epithelial cells (MCF12A) plays 

a major protective role against HER2/Neu-mediated breast tumorigenesis 11. More recently, 

several cancer-associated missense mutations in the hace1 gene that inhibit Rac1 

ubiquitination and impair cell growth have been identified, indicating that HACE1 activity 

can be altered in cancer 23. 

Despite its importance in cell homeostasis, nothing is known about HACE1 regulation at 

the post-translational level. HACE1 possesses an N-terminal ankyrin-repeat domain (ANK) 

and a C-terminal catalytic HECT domain. The ANK and HECT domains are separated 

by a Middle region (MID) that does not harbor any structural homology with other known 

domains. Several phospho-proteomics studies have identified residues in HACE1 that are 

phosphorylated 24. Nevertheless, the context of these post-translational modifications and 

their consequences on the activity of this essential regulator remain to be defined. Here, 

we show the essential roles of group-I PAK kinases on the phospho-regulation of HACE1 

E3 ubiquitin ligase activity and its oligomerization state. 

 

Results 

CNF1 increases HACE1 Ser-385 phosphorylation  

To explore the possible cross-talk between Rho GTPases and HACE1, we conducted a 

study aimed at characterizing the phosphorylation status of HACE1 upon activation of 

Rho GTPases. We undertook an unbiased proteomics approach to identify HACE1 amino 

acid residues that were differentially phosphorylated in cells treated with the Rho-

activating toxin CNF1. This was performed by tandem mass spectrometry (MS/MS) 

comparative analysis of trypsin-digested immuno-purified HA-HACE1 wild-type (WT) 

from primary Human Umbilical Vein Endothelial Cells (HUVECs) that were either 
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untreated or treated with CNF1 for 24 hours. Following MS/MS analysis, we performed a 

database search using phosphorylation as a variable modification. This allowed for the 

identification of, among others, one peptide with a single phosphorylated residue 

corresponding to serine 385 (Ser-385) located in the MID region (Fig. 1a). Quantification 

of the corresponding phosphorylated peptide ion signal from the extracted ion 

chromatograms indicated that CNF1 treatment induces a strong increase in Ser-385 

phosphorylation (Fig. 1b and Supplementary Figure S1a). The same results were observed 

with two other Ser-385-containing peptides resulting from incomplete trypsin digestion 

(Supplementary Figure S1b-c). We thus conclude that CNF1 induces an increase in 

HACE1 phosphorylation at Ser-385. 

To validate these results and to study the phospho-modulation of HACE1 on Ser-385, we 

generated a Ser-385 phospho-specific polyclonal antibody (referred to as pS385) and 

measured the levels of phosphorylated HACE1 by immunoblot assay. In agreement with 

the proteomics analysis, we found that CNF1 treatment of HUVECs expressing HACE1 

leads to a significant increase in Ser-385 phosphorylation levels compared to control cells 

(Fig. 1c-d). To ascertain the specificity of the pS385 antibody towards phosphorylated 

HACE1, protein extracts were incubated with !-phosphatase. As shown in Figure 1c, 

signals detected using the pS385 antibody disappeared after !-phosphatase treatment, 

indicating that the pS385 antibody specifically recognizes the phosphorylated form of 

HACE1. Additionally, we found that the pS385 antibody detects HACE1(WT) but not 

the phospho-resistant mutant HACE1(S385A), indicating that the pS385 antibody 

specifically recognizes the phosphorylated Ser-385 in this context (Fig. 1e). The kinetics of 

HACE1 Ser-385 phosphorylation in CNF1-treated cells showed an increase in 

phosphorylation of up to 24 hours (Fig. 1f). Even though endogenous HACE1 is expressed 

at very low levels in HUVECs, we detected the increase in endogenous HACE1 

phosphorylation on Ser-385 in CNF1-treated cells (Fig. 1g). Collectively, our data establish 

that HACE1 phosphorylation at Ser-385 is more abundant in cells treated with CNF1 than 

in control cells.  
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Figure 1: CNF1 increases phosphorylation of HACE1 on Ser-385. a. Fragmentation spectra of the 
DS(p)TEITSILLK(+2) peptide showing that Ser-385 is phosphorylated. b. Extracted signal 
(precursor monoisotopic peak at +1 and +2) for the DS(p)TEITSILLK(+2) peptide obtained with 
Skyline. c. Protein lysates from HUVECs transfected with HA-HACE1(WT) and treated with CNF1 
at 10-9 M for 24 hours were treated or not with !-phosphatase (!-PPase) and analyzed by 
immunoblot (IB) using the indicated antibodies. IB: actin is used as a loading control. d. Graph 
showing levels of P-HACE1 relative to HACE1 total protein levels quantified by densitometry from 
the IB analysis. Data correspond to the mean ± SD of > 3 biological replicates. p value was 
determined by one-sample t-test. e. Protein lysates from HUVECs transfected with HA-
HACE1(WT) or HA-HACE1(S385A), treated with CNF1 at 10-9 M for 24 hours and analyzed by 
IB. f. Protein lysates from HUVECs transfected with HA-HACE1(WT), treated with CNF1 at 10-

9 M for the indicated times, and analyzed by IB. g. Protein lysates from HUVECs treated with 
CNF1 at 10-9 M for 24 hours. 
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Rac1/Cdc42 controls HACE1 Ser-385 phosphorylation  

Because CNF1 triggers the constitutive activation of several Rho GTPases 13,14, we assessed 

whether HACE1 phosphorylation in CNF1-treated cells is mediated by Rho GTPase 

activation. Using the pS385 antibody, we first analyzed the levels of HACE1 

phosphorylation on Ser-385 in HUVECs co-expressing active forms of Rac1, Cdc42 and 

RhoA. The expression of both Rac1(Q61L) and Cdc42(Q61L) induced higher levels of Ser-

385 phosphorylation compared to control conditions (Fig. 2a-b). Conversely, the expression 

of RhoA(Q63L) had no effect (Fig. 2a-b). The expression of Rac1(Q61L) also induced a 

clear increase in endogenous HACE1 phosphorylation on Ser-385 (Fig. 2c). In good 

agreement with previous results, over-expression of the dominant negative forms 

Rac1(T17N) or Cdc42(T17N) hindered the phosphorylation of Ser-385 triggered by CNF1 

(Fig. 2d-e). Altogether, these results show that CNF1 treatment promotes the 

phosphorylation of HACE1 on Ser-385 in a Rac1- or Cdc42-dependent manner in HUVECs.  

We then sought to determine whether this phosphorylation of HACE1 is specific to 

endothelial cells or whether it can be observed in other cell types. We analyzed the 

phosphorylation of HACE1 in mammary gland epithelial MCF12A cells, a cell type in 

which the HACE1/Rac1 signaling axis is functional 11. Interestingly, we found that CNF1 

treatment or the expression of Rac1(Q61L) also greatly increased the phosphorylation of 

Ser-385 in MCF12A cells (Supplementary Figure S1d-e). This result shows that the 

induction of HACE1 phosphorylation on Ser-385 is not restricted to endothelial cells and 

might be a broader mechanism of HACE1 regulation. Altogether, these results show that 

CNF1 and Rac1 induce HACE1 phosphorylation on Ser-385 in various cell types.  
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Figure 2: Activation of Rac1 or Cdc42 mediates the phosphorylation of HACE1 at Ser-385.  

a. Protein lysates from HUVECs transfected with myc-HACE1(WT) together with HA-tagged 
active mutant of Rho-GTPases were analyzed by immunoblot (IB) using the indicated antibodies. 
IB: actin is used as a loading control. b. Graph showing levels of P-HACE1 relative to HACE1 total 
protein levels quantified by densitometry from the IB analysis described in A. Data correspond to 
the mean ± SD of 3 biological replicates. p values were determined by unpaired two-sample t-test. 
c. Protein lysates from HUVECs transfected with HA-Rac1(Q61L) and analyzed as in (a). d. Protein 
lysates from HUVECs transfected with HA-HACE1(WT) alone or together with dominant negative 
myc-Rac1(T17N) or myc-Cdc42(T17N), treated with CNF1 at 10-9 M for 24 hours and analyzed as 
in (a). e. Graphs showing levels of P-HACE1 relative to HACE1 total protein levels quantified by 
densitometry from the IB analyses described in (d). Data correspond to the mean ± SD of 3 
biological replicates. p values were determined by unpaired two-sample t-test. 

 

Group-I p-21 activated kinases phosphorylate HACE1 on Ser-385 

We then sought to determine the kinases responsible for the phosphorylation of HACE1 

on Ser-385. Two independent phospho-proteomics screens performed in HEK293 cells have 

previously identified the phosphorylation of Ser-385 in HACE1 but found that it is 

independent of Protein Kinase D1 (PKD1) or mammalian Target of Rapamycin (mTOR) 
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activity 25,26. Accordingly, inhibition of mTOR using rapamycin or Torin1 had no impact 

on the level of Ser-385 phosphorylation in CNF1-treated cells (Supplementary Figure S2). 

Moreover, we found equal levels of Ser-385 phosphorylation in PKD1-depleted cells (data 

not shown). To narrow down the potential kinases responsible for Ser-385 phosphorylation, 

we screened consensus kinase recognition motifs in the sequence encompassing Ser-385 

using the prediction tool NetPhorest 27. As depicted in Supplementary Figure S3a, our 

analysis identified a site of recognition by PAKs. Together with our finding that both Rac1 

and Cdc42, but not RhoA, induce the phosphorylation of HACE1 on Ser-385, this in silico 

prediction strongly suggested a role for group-I PAKs in HACE1 phosphorylation.  

To assess whether group-I PAKs directly target HACE1, we performed in vitro kinase 

assays with recombinant PAK1 and HACE1. As shown in Figure 3a, we found that 

HACE1(WT) gets phosphorylated in the presence of PAK1. This revealed that HACE1 is 

a direct substrate of PAK1. We then analyzed the role of group-I PAK kinases in HUVECs 

and MCF12A cells. Because PAK3 expression is restricted to the brain 5, we focused on 

PAK1, which is notably expressed in mammary glands, and on PAK2, which is 

ubiquitously expressed. We first verified PAK1 and PAK2 expression in HUVECs and 

MCF12A cells using specific anti-PAK1 and anti-PAK2 antibodies. This established that 

PAK2 is expressed both in HUVECs and MCF12A cells, while PAK1 is only expressed in 

MCF12A cells (Fig. 3b). Using three independent siRNAs specifically targeting PAK2, we 

found that depletion of PAK2 markedly reduced Rac1(Q61L)-induced phosphorylation of 

Ser-385 in HUVECs and MCF12A cells (Fig. 3c-d). This result strongly indicates that 

PAK2 acts downstream of Rac1 to induce HACE1 phosphorylation. Additionally, depletion 

of PAK2 also reduced the CNF1- and Cdc42(Q61L)-mediated phosphorylation of Ser-385 

(Supplementary Figure S3b-c). Because PAK1 is expressed in MCF12A cells, we assessed 

its role on HACE1 phosphorylation in these cells and found that silencing of PAK1 reduced 

Rac1(Q61L)-induced phosphorylation of HACE1 (Fig. 3e). Together, these data establish 

that the PAK1 and PAK2 kinases both regulate the phosphorylation levels of HACE1 on 

Ser-385. Consistently, we found that treatment of MCF12A cells with the group-I PAK 

inhibitor FRAX597 suppresses HACE1 phosphorylation induced by Rac1(Q61L) and  
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Figure 3: Group-I PAKs induce direct phosphorylation of HACE1.  

a. In vitro [" 32P]-ATP kinase assay using recombinant 6His-HACE1 and recombinant 6His-PAK1 
analyzed by autoradiography and Coomassie Brilliant Blue (CBB) staining. b. MCF12A and 
HUVEC protein lysates analyzed by immunoblot (IB) using anti-PAK1 and anti-PAK2 antibodies. 
IB: actin is used as a loading control. c-e. Protein lysates from (c) HUVECs and (d-e) MCF12A 
cells transfected with siRNAs targeting (c-d) PAK2 or (e) PAK1 and plasmid expressing HA-
HACE1 and myc-Rac1(Q61L) and analyzed by IB using the indicated antibodies. f-g. Protein lysates 
from MCF12A cells transfected with HA-HACE1, either (g) intoxicated with CNF1 for 16 hours or 
(f) co-transfected with myc-Rac1(Q61L), and treated with FRAX597 at the indicated concentration 
for 16 hours before IB analysis. h-i. Protein lysates from MCF12A cells transfected with HA-HACE1, 
myc-Rac1(Q61L) and GST-KID2 or Flag-PAK1K141A and analyzed by IB. 
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CNF1 (Fig.3f-g). Similarly, expression of the dominant negative Kinase Inhibitory Domain 

of PAK2 (KID2) reduces the levels of Ser-385 phosphorylation induced by Rac1(Q61L) 

(Fig. 3h). Finally, we found that expression of a constitutively active PAK1(K141A), which 

is mutated in the auto-inhibited domain, could promote HACE1 phosphorylation on Ser-

385. Thus, PAK1 activation is sufficient to induce HACE1 phosphorylation of Ser-385 in 

MCF12A cells (Fig. 3i). Altogether, these results indicate an essential role for group-I PAK 

kinases in regulating HACE1 phosphorylation at Ser-385 downstream of Rac1 in a variety 

of cell types. 

Phospho-mimetic mutation S385E hampers HACE1 ability to ubiquitinate Rac1 in cells 

To determine whether Ser-385 phosphorylation could modulate the capacity of HACE1 to 

ubiquitinate Rac1, we used an assay based on the purification of cellular proteins cross-

linked to 6His-tagged ubiquitin 28. We found that the phospho-resistant mutant 

HACE1(S385A) induces Rac1(Q61L) ubiquitination as efficiently as HACE1(WT) (Fig. 

4a). This indicates that phosphorylation of Ser-385 is not required for the activity of 

HACE1 on Rac1. Conversely, we found that the phospho-mimetic mutant HACE1(S385E) 

displays a reduced capacity to ubiquitinate Rac1(Q61L). This strongly suggests that the 

phosphorylation of Ser-385 down-regulates HACE1 activity on Rac1 (Fig. 4a). 

To decipher how phosphorylation of Ser-385 interferes with Rac1 ubiquitination, we 

analyzed the properties of the association between HACE1(S385E) and Rac1, as well as 

the intrinsic catalytic activity of HACE1(S385E). Using a co-immunoprecipitation (co-IP) 

assay, we found that HACE1(S385A) and HACE1(S385E) interact with Rac1(Q61L) to 

the same extent as HACE1(WT) (Fig. 4b). This suggests that the HACE1-Rac1 association 

occurs regardless of the phosphorylation status of HACE1 on Ser-385. We next sought to 

determine whether phosphorylation on Ser-385 down-regulates the intrinsic catalytic 

activity of HACE1. A classical way to assess the catalytic activity of an E3 ligase is to 

measure its auto-ubiquitination levels. However, we could not detect the specific auto-

ubiquitination of HACE1 (Supplementary Figure S4), indicating that HACE1 does not 

 



Chapter 4. Research article 
 

 100 

 

Figure 4: HACE1(S385E) phospho-mimetic blocks Rac1 ubiquitination in cells. 

a. Protein lysates from MCF12A cells transfected with the indicated plasmids were subjected to His 
pull-down (His-PD) prior to immunoblot analysis (IB). Whole cell lysate (WCL) IB analysis showing 
total protein expression. b. Protein lysates from MCF12A cells transfected with the indicated 
plasmids were subjected to immunoprecipitation (IP) using Ctrl or HA antibodies prior to 
immunoblot analysis (IB). Whole cell lysate (WCL) IB analysis shows total protein expression. c. 
In vitro ubiquitination assay using recombinant 6His-tagged HACE1(WT), catalytic inactive 
mutant C876S (CS) and HACE1(S385E) (SE) analyzed 30 min post-reaction by immunoblot using 
the indicated antibodies. IB at t=0 min shows the input protein levels. d-e. In vitro ubiquitination 
assay using HACE1(WT) and HACE1(S385E) (SE) analyzed by IB at the indicated time points. f. 
In vitro ubiquitination assay using recombinant 6His-tagged HACE1(WT), catalytic inactive 
mutant HACE1(C876S) (CS), HACE1(S385A) (SA), HACE1(S385E) (SE) and Rac1 loaded with 
GTP"S and analyzed 30 min post-reaction by immunoblot using the indicated antibodies.  
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induce its own ubiquitination in MCF12A cells, which prevented us from using this 

approach. To overcome this technical obstacle, we performed in vitro ubiquitination 

experiments using purified recombinant 6His-tagged HACE1(WT) and mutants. With this 

assay, we could detect auto-ubiquitination of HACE1, as evidenced by the ubiquitination 

of HACE1(WT) and the absence of ubiquitination of the catalytic inactive mutant 

HACE1(C876S) (Fig. 4c). This indicated that the in vitro ubiquitination assay is a reliable 

method to examine HACE1 catalytic activity. Measuring HACE1 auto-ubiquitination 

using this assay showed no drastic decrease in HACE1(S385E) activity compared to 

HACE1(WT). Indeed, we measured a proportional increase in self-ubiquitination with both 

forms of HACE1 by using increasing amounts of HACE1(WT) and HACE1(S385E) (Fig. 

4c). We also found that HACE1(WT) and HACE1(S385E) display similar auto-

ubiquitination kinetics (Fig. 4d-e). Taken collectively, these results indicate that the 

phospho-mimetic mutation S385E does not alter the intrinsic catalytic activity of HACE1 

in vitro. In good agreement with our findings that HACE1(S385E) retains its catalytic 

activity, we also determined that HACE1(S385E) induces the ubiquitination of 

recombinant Rac1 loaded with GTP"S in vitro (Fig. 4f). Altogether, these results 

established the paradoxical impact of the S385E mutation on HACE1 activity measured 

in vitro versus in vivo. Indeed, we found that HACE1(S385E) is catalytically active on 

Rac1 in vitro (Fig. 4f), though it displays low activity in cells (Fig. 4a), suggesting the 

combined involvement of Ser-385 phosphorylation and an inhibitory cellular factor that 

has yet to be identified to down-modulate HACE1 activity. 

 

Phosphorylation of Ser-385 modulates HACE1 homo-oligomerization 

It has previously been shown that several HECT-E3 ligases are regulated by phospho-

dependent intra- or inter-molecular interactions 29,30. To determine whether HACE1 

undergoes such regulation in cells, we first performed co-IP experiments using a 

combination of epitope-tagged HACE1 constructs. We found that HA-HACE1(WT) binds 

to myc-HACE1(WT) (Fig. 5a), which demonstrates that HACE1 is capable of forming 
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homophilic intermolecular interactions. This result indicates that HACE1 can form 

oligomers. We next performed size exclusion chromatography (SEC) using the recombinant 

6His-HACE1. By comparing the elution profiles of 6His-HACE1 with molecular weight 

markers, we found that 6His-HACE1 is efficiently eluted at an apparent molecular weight 

of ³ 200 KDa (Fig. 5b). With a theoretical molecular weight of monomeric 6His-HACE1 

of 106 KDa, this SEC result indicates that HACE1 can directly form homo-oligomers of at 

least two proteins and that the homophilic interactions observed by co-IP are likely direct. 

To narrow down the HACE1 domains that are engaged in the homophilic interactions, we 

performed co-IP experiments using different tagged versions of full length (FL) HACE1 or 

deletion mutants as depicted in Supplementary Figure S5a. As shown in Supplementary 

Figure S5b, we confirmed that HACE1 FL binds to HACE1 FL. We also detected an 

efficient interaction between HACE1 FL and HACE1 ANK+MID (Supplementary Figure 

S5b). A weaker binding of HACE1 FL with the HECT domain alone was also detected. 

Additionally, another series of co-IPs showed that HACE1 ANK+MID binds most 

efficiently to the HECT domain alone (Supplementary Figure S5c-d). Altogether, these 

results indicate that HACE1 can form homo-oligomers that most likely involve interactions 

between the ANK + MID region and the HECT domain. 

We next sought to determine whether phosphorylation of Ser-385 can interfere with 

HACE1 homo-oligomerization. We found that HA-HACE1 binds to myc-HACE1 to the 

same extent as HA-HACE1(S385A) with myc-HACE1(S385A) (Fig. 5d). This suggests 

that HACE1 homo-oligomerization occurs in the absence of Ser-385 phosphorylation. 

Interestingly, we found that HACE1(S385E) displays higher homophilic interaction levels 

than HACE1(WT) or HACE1(S385A), suggesting that phosphorylation modifies the state 

of HACE1 homo-oligomerization (Fig. 5d). In accordance with this result, we found that 

overexpression of active PAK1(K141A) greatly increases HACE1 homophilic interaction 

levels (Fig. 5e). This is specific to Ser-385 phosphorylation as PAK1(K141A) 

overexpression did not modify the extent of HACE1(S385A) homophilic interactions (Fig. 

5e). Altogether, these results indicate that the phosphorylation at Ser-385 modulates 

HACE1 homo-oligomerization properties. 
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Figure 5: Ser-385 phosphorylation modulates HACE1 oligomerization. 

a, d-e. Protein lysates from MCF12A cells transfected with the indicated plasmids were subjected 
to immunoprecipitation (IP) using HA or Flag antibodies prior to immunoblot analysis (IB). Whole 
cell lysate (WCL) IB analysis shows the total protein expression. SA is S385A and SE is S385E. b. 
Superposition of the size exclusion chromatograms from recombinant 6His-HACE1(WT) and the 
molecular weight markers suggests that HACE1 oligomerizes as a dimer or a trimer. Absorbance at 
280 nm is expressed in arbitrary units (A.U.). *: non-specific picks. c. Elution fractions from 6His-
HACE1 SEC analyzed by SDS-PAGE and Coomassie Brilliant Blue staining (CBB). *: non-specific 
contaminants of 6His-HACE1 purification fractions corresponding to the non-specific picks seen in 
(a). 
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Discussion 

Using an unbiased proteomics approach, we have identified HACE1 Ser-385 as a pivotal 

amino acid residue that is phosphorylated in response to Rho GTPase activation by the 

CNF1 toxin. The GTPases Rac1 and Cdc42 are not only required for Ser-385 

phosphorylation downstream of CNF1, but either Rac1 or Cdc42 activation is sufficient to 

induce the phosphorylation of Ser-385. Our data points to group-I PAKs as being 

responsible for the phosphorylation of HACE1 downstream of Rac1. Finally, we have 

shown that the phosphorylation of Ser-385 is critical for the modulation of HACE1’s 

capacity to ubiquitinate Rac1 and its oligomerization properties. This establishes the 

phospho-regulation of HACE1 as a critical modulator of Rac1 signaling.  

Interestingly, the phospho-mimetic mutant HACE1(S385E) has a reduced capacity to 

ubiquitinate GTP-bound Rac1 in cells. This is, to our knowledge, the first description of a 

post-translational regulation of HACE1. Our data support a model where Rac1 down-

regulates the activity of its own E3 ubiquitin ligase. Considering the essential role of Rac1, 

such a physiological regulation of HACE1 would ensure the adequate control of the levels 

of Rac1 activation to maintain proper cell homeostasis. Conversely, one could hypothesize 

that excessive phospho-inhibition of HACE1 would lead to a pathological level of Rac1 

signaling activation. Consistently, it has already been established that enhanced Rac1 

signaling, due to loss of hace1 expression, promotes (i) excessive ROS production which 

leads to DNA damage and cell hyper-proliferation and (ii) breast cancer progression 11,20. 

In line with this, we have found that over-expression of an active form of PAK1 induces 

high levels of HACE1 Ser-385 phosphorylation. Interestingly, group-I PAKs are over-

expressed or hyper-activated in a wide variety of cancers, including breast, lung, kidney, 

colorectal or gastric cancers, which could lead to excessive HACE1 phospho-inhibition 9,31. 

Therefore, in future studies, measurements of the phosphorylation levels of HACE1 Ser-

385 in cancer samples might be a good readout of the deregulation of Rac1 signaling 

mediated by PAK. Interestingly, PAK also promotes Rac1 activation by binding to the 

Rac1 exchange factor PAK-interacting exchange factor (PIX) and by mediating the 
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phospho-inhibition of RhoGDI 32,33. Therefore, our results position PAK at the center of a 

coordinated pathway between the canonical system of Rac1 activation via a GDP/GTP 

switch and the system that controls Rac1 activation by proteasome-mediated degradation. 

How can phosphorylation of Ser-385 reduce the capacity of HACE1 to ubiquitinate Rac1? 

Phosphorylation sites can serve as recognition sites for adaptor proteins such as the 14-3-

3 family of proteins 34. Interestingly, phosphorylation of the E3-HECT Nedd4-2 has been 

shown to trigger its association with 14-3-3 proteins, which prevents Nedd4-2 from binding 

to its target — the epithelial Na+ channel (ENaC) 35. Here, we failed to detect a specific 

association between the Ser-385-phosphorylated form of HACE1 with 14-3-3 proteins 

(Supplementary Figure S6). Accordingly, although we have found that the HACE1(S385E) 

mutant is less able to ubiquitinate active Rac1, it is known that glutamic acid phospho-

mimetic residues do not bind 14-3-3 adaptor proteins because they do not fit into their 

binding pockets 36. Thus, the hypothesis of HACE1 phospho-inhibition by 14-3-3 proteins 

seems unlikely. An alternative hypothesis is that the phosphorylation of HACE1 might 

directly affect its binding to Rac1. Indeed, this is the case for the HECT E3 ligase Smurf1 

whose phosphorylation modulates its own affinity for its substrates Par6 and RhoA 37. 

However, we found that the HACE1(S385E) phospho-mimetic mutant binds to Rac1 as 

efficiently as HACE1(WT). Therefore, we hypothesized that the phosphorylation of Ser-

385 might regulate HACE1 catalytic activity. Indeed, such a regulation has been previously 

reported for Itch/AIP4 and Nedd4-1, whose activities are regulated upon JNK- and Src-

dependent phosphorylation, respectively 29,30. However, the absence of HACE1 auto-

ubiquitination activity in our cellular model precluded us from testing this possibility. 

Nevertheless, in vitro ubiquitination experiments indicate that HACE1(S385E) is 

functional, as it can ubiquitinate itself and Rac1. This important result allowed us to 

discard the possibility that the lowered HACE1(S385E) activity measured in cells is due 

to intrinsic alterations in the protein. The paradoxical differences between HACE1(S385E) 

activities in vitro and in vivo suggest that, in addition to Ser-385 phosphorylation, a 

cellular adaptor mediates HACE1 inhibition. Such regulation requiring both the 

phosphorylation of the HECT E3 ligase and an adaptor protein has been recently described 
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for HUWE1 (aka MULE, ARF-BP1) 38. Indeed, although it works in the opposite direction, 

it was shown that phosphorylation of HUWE1 disrupts the interaction with its inhibitory 

co-factor p14-ARF and ultimately activates the E3 ligase 38. A similar scenario involving 

the phospho-dependent binding of a regulatory adaptor to HACE1 is likely to occur here. 

One could hypothesize that an activator can bind the non-phosphorylated form of HACE1 

to trigger its activity or, conversely, that an inhibitor binds the phospho-form of HACE1 

to abrogate its activity. Therefore, our work opens the way for the search for regulatory 

adaptors whose binding is modulated by HACE1 phosphorylation at Ser-385. 

In most cases, the regulation of HECT E3 ligases involving phosphorylation and/or 

adaptors is the consequence of structural modifications. This has been particularly well-

described in the Nedd4 family, which undergoes inhibitory intra- or intermolecular 

interactions between their C-terminal HECT domain and C2 or WW N-terminal domains 
39,40. These interactions, whether they induce a closed monomeric conformation or the 

formation of an inactive homodimer, are relieved by phosphorylation or binding to an 

adaptor protein 29,30,41-45. Similarly, it has recently been proposed that the HUWE1 E3 

ligase can adopt an inhibitory asymmetric homodimeric conformation that leads to its 

inhibition and that binding of p14-ARF shifts the dynamic conformational equilibrium of 

HUWE1 toward the inhibitory dimer 46. Our co-IP data indicate that HACE1 forms 

homophilic interactions that involve the binding of the HECT domain to the ANK+MID 

region. Interestingly, the HECT domain does not bind to either the ANK domain or the 

MID region alone. This suggests that either the HECT domain binds a motif intersecting 

the ANK and MID regions or that the ANK+MID region adopts a particular conformation 

that enables its binding to the HECT domain. In line with this second hypothesis, we have 

recently demonstrated that the cooperation of ANK and MID regions are important for 

the efficient binding to the active form of Rac1 23. Here, we found that recombinant HACE1 

can form a homo-oligomer in vitro by SEC analysis. This indicates that homophilic HACE1 

interactions found in cells are likely direct. Moreover, our SEC data also indicates that 

HACE1 homo-oligomers correspond to dimers or trimers. The formation of trimers of 

HECT E3 ligases has been reported for Ube3A/E6AP, which promotes full activity of the 
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ligase 47. Interestingly, an independent study has shown that phosphorylation of threonine 

485 inhibits Ube3A/E6AP catalytic activity 48. Whether this phosphorylation alters 

Ube3A/E6AP trimerization has not been explored. However, mutation of this specific 

threonine is associated with autism, demonstrating the importance of this phospho-

regulation in physiology. A recent study has shed light on the importance of post-

translational modifications in the trimerization of several Nedd4 proteins 49. It was shown 

that the formation of Nedd4 trimers is promoted by ubiquitination of their HECT domains, 

which leads to their inactivation 49. Our data indicates that homodimerization or 

homotrimerization of HACE1 occurs in the absence of Ser-385 phosphorylation as the 

phospho-null mutant HACE1(S385A) and HACE1(WT) display similar levels of 

homophilic interactions. Interestingly, our results suggest that phosphorylation of Ser-385 

modifies HACE1 oligomerization properties. Indeed, we found higher levels of homophilic 

HACE1(S385E) interactions compared with HACE1(WT). Similarly, specific 

phosphorylation of Ser-385 induced by PAK1(K141A) increases homophilic HACE1(WT) 

interactions. This increase in homophilic phospho-HACE1 interactions may thus reflect an 

increase in the stability of the oligomer or an increase in the extent of oligomerization, i.e., 

number of units per oligomer. Moreover, our data indicate that an adaptor is likely required 

to account for the decrease in HACE1(S385E) activity in cells. Thus, one could hypothesize 

that an adaptor binds to the phospho-oligomer to mediate HACE1 inhibition. An 

alternative hypothesis would be that an adaptor binds to HACE1 once it is phosphorylated 

on Ser-385, which in turn modifies the properties of HACE1 to oligomerize into an inactive 

complex. Interestingly, we found that Ser-385 is located within an intrinsically disordered 

region (IDR) 50 (Supplementary Figure S7). These IDRs, which lack stable tertiary 

structures, are phosphorylation hotspots 51; thanks to their flexibility, IDRs allow easy 

access and recognition of their phosphorylated residue to binding surfaces 52. Further work 

remains to be completed to determine how phosphorylation of Ser-385 modifies HACE1 

oligomerization properties. In conclusion, we have uncovered a pivotal role for Ser-385 in 

the regulation of HACE1 that sets the basis for deciphering the relationship between the 

structure and activity of HACE1. 
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Methods 

Plasmid constructs, primers, siRNAs, antibodies and reagents 

All plasmids used in this study are listed in Supplementary table S1. Site-directed 

mutagenesis was performed using the primers listed in Supplementary table S2 and the 

QuickChange Lighting (Agilent) and QuickChange II (Agilent) kits for HACE1 and 

PAK1 plasmids, respectively. The pSY5M-6His-PAK1 plasmid was obtained by 

subcloning the rat PAK1 sequence 53 into the pET21d+ vector. pXJ-GST-KID2 was 

obtained by subcloning the rat PAK2 kinase inhibitory domain (85-144 aa) into the 

pXJ40-GST vector using the XhoI/KpnI restriction sites. All the plasmid sequences 

were verified by sequencing. SMART-pool siRNA mixes against PAK1 (#5058) and 

PAK2 (#5062) were acquired from GE Dharmacon. The silencer select siRNAs against 

PAK2 were labeled as siPAK2#1 (s10022), siPAK2#2 (s10023), and siPAK2#3 (s10024) 

and were purchased from Ambion® ThermoFisher Scientific. All the antibodies used in 

this study are listed in Supplementary Table 3. The rabbit anti-HACE1pS385 (pS385) 

antibody was raised against the phospho-peptide sequence KNKRD[pS]TEITS and purified 

by positive and negative affinity purification using the phosphorylated and 

unphosphorylated peptide sequences, respectively (Perbio Science France SAS). The CNF1 

toxin was purified as described in Doye et al., 2006. The PAK1 kinase inhibitor FRAX597 

(Selleckchem) was used at 2 or 5 µM for 16 hours and the mTOR inhibitors Torin1 (Tocris) 

and Rapamycin (Sigma-Aldrich) were used at 0.1 µM and 0.1 nM respectively, for 4 hours.  

 

Cell culture, transfection and lysis 

 HUVECs were obtained from PromoCell and maintained in human endothelial SFM 

medium (GibcoTM) supplemented with 20% fetal bovine serum (GibcoTM), 20 ng/ml FGF-

2, 10 ng/ml EGF (Peprotech), 1 µg/ml heparin (Sigma-Aldrich), and 1% penicillin-

streptomycin (GibcoTM). MCF-12A mammary gland epithelial cells (CRL-10782, 

ATCC) were maintained in DMEM/F12 (GibcoTM) supplemented with 7.5% horse 
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serum (Biowest), 20 ng/ml recombinant human EGF (Peprotech), 10 µg/ml human 

recombinant insulin (GibcoTM), 0.5 μg/ml hydrocortisone (Sigma-Aldrich), 100 ng/ml 

cholera toxin (Sigma-Aldrich), and 1% penicillin-streptomycin (GibcoTM). Human 

embryonic kidney (HEK293) cells were maintained in DMEM (GibcoTM) supplemented 

with 10% fetal bovine serum and 50 µg/ml gentamicin (GibcoTM). 

Plasmid DNAs and siRNAs were transfected into MCF12A cells using Lipofectamine LTX 

and Lipofectamine RNAiMAX, respectively, according to manufacturer’s procedures 

(Invitrogen). For DNA transfection, cells were seeded at 70% confluence 16-24 hours before 

DNA transfection. For DNA and siRNA co-transfection, 1.3x106 cells were directly reverse 

transfected with a 150 nM final concentration of siRNA in a 12-well plate, incubated for 

48 hours, transfected with plasmid DNA and incubated an additional 24 hours before lysis. 

HUVECs were transfected with plasmid DNA by electroporation or using the PolyMag 

reagent (OZ Biosciences) as described previously (Doye et al., 2006) 24 hours before lysis 

unless otherwise stated. HUVECs were transfected with siRNAs using the PolyMag reagent 

at a final concentration of 50 mM and incubated for 72 hours before lysis. For DNA and 

siRNA co-transfection, cells were first transfected with siRNA using PolyMag, incubated 

for 48 hours, transfected with plasmid DNA using PolyMag and incubated an additional 

24 hours before lysis. HEK293 cells were transfected with Lipofectamine 2000 according 

to manufacturer’s procedure (Invitrogen).  

For the analysis of the total protein levels analyzed by immunonoblot, cells were lysed 

in 1X RIPA buffer (Bio Basic) supplemented with protease and phosphatase inhibitors 

(Pierce) and analyzed by SDS-PAGE and immunonoblot. 

 

Immunoblot analysis 

Protein lysates were resolved using NuPAGE 3-8% Tris Acetate, 4-12% Bis-Tris pre-cast 

gels (Invitrogen) or 8%, 10% or 12% Tris Glycine SDS-PAGE gels. Separated proteins 

were transferred onto Immobilon-PVDF membranes (Millipore) using a semi-dry method 
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(Trans-blot® Turbo™ transfer, Biorad) or by overnight transfer in carbonate buffer (1.25 

mM NaHCO3, 0.37 mM Na2CO3, and 20% v/v ethanol, pH 9.9). Membranes were probed 

with the indicated primary and secondary antibodies (Supplementary table S3), and then 

incubated with the Immobilon Western Chemiluminescent HRP substrate (Millipore). The 

emitted chemiluminescent signals were detected with a Syngene Pxi4 imaging system. 

When appropriate, immunoblot signals were quantified by densitometry using the Image 

Studio 3.1.4 software.  

 

Tandem mass spectrometry analysis 

HUVECs transfected with HA-HACE1 expressing plasmid were left untreated or were 

treated with CNF1 at 10-9 M for 24 hours. Following lysis and an immunoprecipitation 

assay, immuno-purified HA-HACE1 from both conditions were separated on an SDS–

PAGE gel, and trypsin-digested samples obtained from the HA-HACE1 cut gel slices were 

analyzed as described previously 54. Briefly, proteins were digested in-gel using trypsin 

(Gold, Promega). The generated peptides were analyzed online using an LTQ Orbitrap 

Elite mass spectrometer (Thermo Fisher Scientific) coupled to an Ultimate 3000 HPLC 

(Dionex, Thermo Fisher Scientific). Desalting and pre-concentration of the samples was 

performed online on a Pepmap® pre-column (0.3 mm×10 mm, Dionex). A gradient 

consisting of 0–40% B in A for 60 min, followed by 80% B and 20% A for 15 min (A was 

0.1% formic acid with 2% acetonitrile in water and B was 0.1% formic acid in acetonitrile) 

at 300 nl/min was used to elute peptides from the capillary reverse-phase column (0.075 

mm×150 mm, Pepmap®, Dionex). Eluted peptides were electrosprayed online at a voltage 

of 1.9 kV into an LTQ Orbitrap Elite mass spectrometer. A single full-scan mass spectrum 

cycle (400–2000 m/z) at a resolution of 120,000 (at 400 m/z) in the orbitrap, followed by 

twenty data-dependent MS/MS spectra were repeated continuously throughout the 

nanoLC separation. All the MS/MS spectra (acquired using the linear trap quadrupole) 

were recorded using a normalized collision energy (33%, activation Q of 0.25 and activation 

time of 10 ms). 
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Spectral data were analyzed using the MaxQuant software 55 with standard settings and 

the following variable modifications: (1) Acetyl (Protein N-term), (2) Oxidation (M), and 

(3) Phosphorylation (STY). For quantification, signal extraction of the identified peptides 

was performed using Skyline 56. 

 

Co-Immunoprecipitation and His-Ub pull-down 

For co-immunoprecipitation, MCF12A cells were scraped 20 hours post-transfection in 1 ml 

of immunoprecipitation buffer (SLB) (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% (v/v) 

Triton-X100, and 0.27 M sucrose) supplemented with protease and phosphatase inhibitors 

(Pierce) and lysed by a freeze-thaw cycle in liquid nitrogen. Cleared lysates were incubated 

with 30 μl of Ezview Red Anti-HA or anti-Flag Affinity gel (Sigma-Aldrich) for 2 hours at 

4 °C. Beads were washed at least twice with 1 ml of SLB and resuspended in 30 μl of 1X 

LDS buffer with 50 mM DTT. For the His-Ub pull-down experiments, MCF12A cells were 

lysed 7 hours post-transfection in ULB (8 M Urea, 20 mM Tris-HCl [pH 7.5], 200 mM 

NaCl, 10 mM imidazole, and 0.1% Triton X-100). The proteins that covalently bound to 

6His-tagged ubiquitin were pulled-down by incubating 95% of the cleared lysate with 30 

µl cobalt-chelated resin (Clontech), which was previously blocked in ULB+5% bovine 

serum albumin (RIA grade, Sigma) for 1 hour. After lysate incubation, the beads were 

washed four times in ULB and resuspended in one volume of Laemmli’s buffer.  

 

In vitro kinase assays 

Purified PAK1 (2 ng/µl) was incubated with recombinant purified HACE1 (40 ng/µl) and 

30 µM ATP (10 μCi of ["32P]-ATP) in kinase buffer (25 mM HEPES pH 7.3, 0.02% Triton 

X-100, 25 mM NaCl, 5 mM ß-glycerophosphate, 2.5 mM NaF, 5 mM MgCl2, and 0.1 mM 

MnCl2) at 30 °C for 30 min in a final volume of 50 µl. Samples were analyzed by 

immunoblot followed by autoradiography and Coomassie blue staining.  
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Purification of recombinant proteins by IMAC  

E. coli BL21 strains transformed with pET-28a plasmids encoding 6His-HACE1 (WT) 

and mutants were grown for 24 hours at 37°C in 1 L of Luria-Bertani (LB) Broth with 

kanamycin 50 µg/ml. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added at a 

final concentration of 100 µM and the culture was grown for another 8 hours at 30°C. 

Bacteria were harvested by centrifugation and lysed using a French Press in 20 ml of 

Buffer A (Tris-HCl pH 7.5 and 200 mM NaCl) with 1 mM phenylmethylsulfonyl fluoride 

(PMSF). Cleared lysate was subjected to Immobilized Metal Affinity Chromatography 

(IMAC) using a Chelating Sepharose Fast Flow column (GE healthcare) charged with 

NiSO4 in an AKTA system with the UNICORN software (GE healthcare). Elution was 

performed with Buffer A containing increasing concentrations of imidazole. The 

approximately 15 ml fraction eluted with 250 mM imidazole that contained most of the 

6His-HACE1 was dialyzed overnight in 25 mM Tris-HCl with 125 mM NaCl and 

concentrated the next morning to 1 µg/µl using an Amicon Ultra-15 50K (Millipore). 

E. coli BL21 strains transformed with pSY5M plasmids encoding 6His-PAK1 were grown 

overnight at 30°C in 50 ml of LB with 50 µg/ml chloramphenicol and 50 µg/ml ampicillin 

and incubated overnight (ON) at 30°C. The next morning, 200 ml of LB with antibiotics 

was inoculated with 20 ml of the overnight culture. When 0.6<OD600< 1, IPTG was 

added to a final concentration of 500 µM and the culture was grown another 4 hours at 

room temperature with shaking. The bacteria were harvested by centrifugation and 

lysed by sonication in 10 ml of cold bacterial lysis buffer (50 mM Tris [pH 8.0], 0.5% 

Triton-X100, 5 mM MgCl2, 20 mM imidazole, 1 mg/ml lysozyme, 5 mM DTT, 0.5 mM 

PMSF and 1X Protease Inhibitors Cocktail (Roche)). The cleared lysate was incubated 

with 250 µl of Ni-NTA-agarose slurry and roll at 4°C for 2 hours. The 6His-Pak1 bound 

to the Ni-NTA-agarose beads was transferred into a 10-ml disposable column, washed 

and eluted in 5x1 ml of elution buffer (50 mM Tris [pH 8.0], 0.5% Triton-X100, 5 mM 

MgCl2, 250 mM imidazole and 5% glycerol). Fractions with >1 mg/ml of 6His-PAK1 

were pooled, aliquoted and snap-frozen in liquid nitrogen. 
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Size-exclusion chromatography 

Size Exclusion Chromatography (SEC) was performed using 500 µl of IMAC-purified 

6His-HACE1 (WT) at 1 µg/µl using a Superdex 200 Increase 10/300 GL with an AKTA 

system and the UNICORN software program. A mix of gel filtration marker kit for 

protein molecular weights 12,000- 200,000 Da (Sigma-Aldrich) with apoferritin from 

equine spleen (Sigma-Aldrich) was used as the control. 

 

In vitro ubiquitination assay 

HACE1 auto-ubiquitination and HACE1-induced ubiquitination of Rac1 was performed 

in a 40 µl final volume containing 20 mM Tris-HCl [pH 7.5], 10 mM MgCl2, 5 mM ATP, 

and 1 mM DTT using 250 ng of recombinant human 6His-Ube1 (RD system), 500 ng of 

recombinant human UbcH7 (RD system), 1 µg of ubiquitin (RD system), 100 ng to 1 

µg of 6His-HACE1 and 1 µg of Rac1-6His that was previously loaded with GTP-"S. 

Reactions were incubated at 37ºC for 30 min unless otherwise indicated and were 

stopped by the addition of 1X LDS and 1X reducing agent (Invitrogen). 

 

Lambda phosphatase treatment 

One thousand units of !-Protein Phosphatase (Sigma-Aldrich) was used to 

dephosphorylate 50 µg of proteins from whole cell lysates. Samples were incubated for 40 

min at 30°C, and the reactions were stopped by the addition of 1X LDS and 1X Reducing 

Agent (ThermoFisher Scientific). 

 

Bioinformatics analysis 

Prediction of IDRs was perform using the online tool PONDR predictor with the VL-

XL, XL1-XT and CaN-XT algorithms http://www.pondr.com/ 50. The PAK consensus 
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kinase sequence was obtained using the online tool NetPhorest 

http://www.netphorest.info/index.shtml 27. 

 

Statistical analysis  

The data were analyzed with the statistical software Graphpad Prism 6.0f. Statistical 

significance was evaluated by one- or two-sample unpaired t-tests. 
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Supplementary Figure S1: CNF1 and Rac1 induce phosphorylation of Ser-385. 
a. Extracted signal (precursor monoisotopic peak at +1 and +2) for the DS(p)TEITSILLK(+2) 
peptide in CNF1 and control conditions from a second biological replicate. b-c. Extracted signal 
(precursor monoisotopic peak at +1 and +2) for the (b) RDS(p)TEITSILLK(+2) and (c) 
NKRDS(p)TEITSILLK(+3) peptides in CNF1 and control conditions from two biological replicates. 
d-e. Protein lysates from MCF12A cells transfected with HA-HACE1(WT) and (d) treated with 
CNF1 for 24 hours or (e) co-transfected with myc-Rac1(Q61L) and analyzed by immunoblot (IB) 
using the indicated antibodies. IB: actin is used as a loading control. 
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Supplementary Figure S2: Phosphorylation of HACE1 S385 is independent of mTOR signaling. 
HUVECs transfected with the indicated plasmids were treated with rapamycin (0.1 µM) or Torin1 
(0.1 M) for 4 hours prior to lysis and analysis by immunoblot (IB) using the indicated antibodies. 
IB: actin is used as a loading control and pS6 is used as a control for mTOR activation.  
 
 
 

 
 
Supplementary Figure S3: Group I PAKs induce the direct phosphorylation of HACE1.  
a. NetPhorest software analysis of the sequence surrounding Ser-385 identified a conserved PAK 
consensus motif. b-c. Protein lysates from MCF12A cells transfected with siRNA mix targeting 
PAK2 (c) with plasmids expressing HA-HACE1 and Cdc42(Q61L) or (b) intoxicated with CNF1 
for 24 hours were analyzed by immunoblot (IB) using the indicated antibodies.  
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Supplementary Figure S4: HACE1 does not induce its own ubiquitination in MCF12A cells. 
Protein lysates from MCF12A cells transfected with the indicated plasmids were subjected to His 
pull-down (His-PD) prior to immunoblot analysis (IB). Whole cell lysate (WCL) IB analysis 
showing total protein expression. CS is C876S, SA is S385A, and SE is S385E. 
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Supplementary Figure S5: In vivo homophilic interactions between HACE1 requires HECT binding 
to the ANK+MID region. 
a. Schematic representation of the HACE1 protein indicating the position and size of the ANK and 
HECT domains as well as the MID region. The structures of the deletion mutants are also 
represented. b-d. Protein lysates from (b) HEK293 or (c-d) MCF12A cells transfected with the 
indicated plasmids were subjected to immunoprecipitation (IP) using myc or Flag antibodies prior 
to immunoblot analysis (IB). Whole cell lysate (WCL) IB analysis shows the total protein expression. 
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Supplementary Figure S6: Phosphorylation of Ser-385 does not promote a specific association 
between HACE1 and 14-3-3 proteins.  
Protein lysates from MCF12A cells transfected with the indicated plasmids were subjected to 
immunoprecipitation (IP) using HA antibodies prior to immunoblot analysis (IB). Whole cell lysate 
(WCL) IB analysis shows the total protein expression. 
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Supplementary Figure S7: Ser-385 is located within an intrinsically disordered region. 
a. Schematic representation of the HACE1 protein that shows Ser-385 within the MID region. b-g. 
HACE IDR prediction using the PONDR® predictor with the (b-c) VT-XL, (d-e) XL1-XT and (f-
g) CaN-XT algorithms. (b, d, and f) Graphs represent the PONDR score relative to the residue 
position. Scores under and above 0.5 correspond to ordered and disordered regions, respectively. (c, 
e, and g) Tables listing the IDR domains found by the 3 algorithms. 
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Supplementary table S1: Plasmid List 
 
# Plasmid Reference Design 

1 PKH3-HA3-HACE1(WT) Andrio et al. 2017  

2 PKH3-HA3-HACE1(S385A) This study mutagenesis of plasmid #1 using 
primers #1-2 

3 PKH3-HA3-HACE1(S385E) This study mutagenesis of plasmid #1 using 
primers #3-4  

4 PKH3-HA3-HACE1(C876S) Torrino et al., 2017  

5 pXJ40-HA-Rac1(Q61L) Doye et al., 2002  

6 pKH3-HA3-HA-Cdc42(Q61L) Doye et la., 2006  

7 pKH3-HA3-HA-RhoA(L63) Doye et la., 2006  

8 pRK5-myc-HACE1(WT) Andrio et al., 2017  

9 pRK5-myc-HACE1(S385A) This study mutagenesis of plasmid #8 using 
primers #1-2  

10 pRK5-myc-HACE1(S385E) This study mutagenesis of plasmid #8 using 
primers #3-4  

11 pXJ40-HA -Rac1(T17N) Doye et el., 2002  

12 pKH3-HA3-Cdc42(T17N) This study mutagenesis of pKH3-HA3-Cdc42WT 
(Doye et al., 2006) using primers #7-
6  

13 pRK5-myc-Rac1(Q61L) Visvikis et al., 2008  

14 6His-HACE1(WT) Torrino et al., 2011  

15 6His-HACE1(C876S) This study mutagenesis of plasmid #14 using 
primers #5-6  

16 6His-HACE1(S385A) This study mutagenesis of plasmid #14 using 
primers #1-2  

17 6His-HACE1(S385E) This study mutagenesis of plasmid #14 using 
primers #3-4  

18 pSY5M-6His-PAK1 This study See methods 

19 pXJ-Flag-PAK1(K141A) This study Mutagenesis of plasmid pXJ-Flag-
PAK1 (Ng et al., 2010) using primers 
#7-8 

20 pXJ40-GST-KID2 (85-144) This study See methods 

21 pRGB4-6His-Ub Doye et al., 2006  

22 pKH3-HA3-ANK (1-257aa) Andrio et al, 2017  

23 pKH3-HA3-MID (258-571aa) Andrio et al, 2017  
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25 pKH3-HA3-HECT (574-
909aa) 

Andrio et al, 2017  

26 pKH3-HA3-ANK+MID (1-
571) 

Andrio et al, 2017  

24 pKH3-HA3-MID+HECT (258-
909aa) 

Andrio et al, 2017  

25 pCMV-Tag2B-Flag-
ANK+MID (1-574a) 

Andrio et al, 2017  

 
Andrio, E. et al. Identification of cancer-associated missense mutations in hace1 that impair cell 
growth control and Rac1 ubiquitylation. Sci. Rep. 1–11 (2017). doi:10.1038/srep44779 
 
Doye, A., Boyer, L., Mettouchi, A. & Lemichez, E. Ubiquitin-mediated proteasomal degradation 
of Rho proteins by the CNF1 toxin. Meth. Enzymol. 406, 447–456 (2006). 
 
Torrino, S. et al. The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. Dev 
Cell 21, 959–965 (2011). 
 
Visvikis, O. et al. Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys 
147 through a JNK-regulated process. FEBS J. 275, 386–396 (2008). 
 
Ng, Y. W. et al. Why an A-loop phospho-mimetic fails to activate PAK1: understanding an 
inaccessible kinase state by molecular dynamics simulations. Structure 18, 879–890 (2010). 
 
  



Chapter 4. Research article 
 

 

 127 

Supplementary table S2: Primer List 
 
# Primer name Sequence 

1 HACE1(S385A)-Fw 5’- GAA TTG ATG AAA AAC AAA AGA GAC GCA ACA GAG 
ATC ACT TCT ATT TTA C 

2 HACE1(S385A)-Rev 5’- GTA AAA TAG AAG TGA TCT CTG TTG CGT CTC TTT 
TGT TTT TCA TCA ATT C  

3 HACE1(S385E)-Fw 5’- CAC AGA ATT GAT GAA AAA CAA AAG AGA CGA AAC 
AGA GAT CAC TTC TAT TTT ACT GAA A 

4 HACE1(S385E)-Rev 5’- TTT CAG TAA AAT AGA AGT GAT CTC TGT TTC GTC 
TCT TTT GTT TTT CAT CAA TTC TGT G 

5 HACE1(C876S)-Fw 5’- CTT TTA CCA ACT TCA AGC ACA TCC ATC AAC ATG 
CTC AAG 

6 HACE1(C876S)-Rev 5’- CTT GAG CAT GTT GAT GGA TGT GCT TGA AGT TGG 
TAA AAG 

7 Cdc42(T17N)-Fw 5’- GGT GCT GTT GGT AAA AAC TGT CTC CTG ATA TCC 
TAC 

8 Cdc42(T17N)-Rev 5’- GTA GGA TAT CAG GAG ACA GTT TTT ACC AAC AGC 
ACC 

9 PAK1(K141A)-Fw 5’- GTC AGG CGT ACA TGA GTT TTA C 

10 PAK1(K141A)-Rev 5’- GTA CGC CTG ACT ATT GGA G 

 
 
Supplementary table S3: Antibody List 
 
Antibody Clone Number Supplier 
Rabbit monoclonal anti-HACE1 EPR7962 Abcam 

Mouse monoclonal anti-HA.11 16B12 Biolegend 

Rat monoclonal anti-HA 3F10 Roche 

Mouse monoclonal anti β-Actin AC-74 Sigma-Aldrich 

Mouse monoclonal anti-c-Myc 9E10 Biolegend 

Rabbit polyclonal anti-PAK1 N/A CST 

Rabbit polyclonal anti-PAK2 N/A CST 

Mouse monoclonal anti-GST 26H1 CST 

Mouse monoclonal anti-Flag M2 Sigma-Aldrich 

Rabbit polyclonal anti-pS6(S235/236) N/A CST 

Rabbit polyclonal anti-pS385 N/A This study* 

Polyclonal Swine anti-mouse immunoglobulin HRP N/A DAKO 

Polyclonal Rabbit anti-rat immunoglobulin HRP N/A DAKO 

Polyclonal Goat anti-rabbit immunoglobulin HRP N/A DAKO 

 
*See: methods 
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4.2. Implication of HACE1 in epithelial cell-cell adhesion 
 
Taking into account HACE1’s important role in pathophysiology and the poor 

understanding of the regulation of HACE1’s activity, our team performed a yeast two 

hybrid screen seeking to identify novel HACE1 interactors that might be targets or 

regulatory adaptors. We successfully identified partners of HACE1 like OPTN, an 

autophagy adaptor that we recently demonstrated to be a regulatory adaptor of HACE1 

activity towards Rac1, with important implications in mechanotransduction (Hamaoui et 

al, under review). Interestingly, several proteins implicated in cell-cell adhesion, including 

E-cadherin and a-catenin, were also identified as possible partners of HACE1; which made 

us wonder whether HACE1 has a role in the control of cell-cell junctions and in particular 

of adherens junctions. 

 

HACE1 interacts with a-catenin 
 
In order to validate the interaction of a-catenin and E-cadherin with HACE1 detected by 

the yeast two hybrid screen, we performed co-immunoprecipitation (Co-IP) experiments, 

pulling down HA-tagged HACE1 and probing the Co-IP fraction with antibodies against 

a-catenin or E-cadherin. These experiments were done in the human mammary epithelial 

cell line MCF12A, a commonly used epithelial model in which HACE1 activity towards 

Rac1 is regulated by phosphorylation (section 4.1) and in which Rac1 ubiquitination by 

HACE1 is crucial for controlling cell migration and proliferation (Goka and Lippman 2015), 

both of which involve cell-cell junctions remodeling. As shown in figure 4.1, we succeeded 

to detect an interaction between HACE1 and a-catenin in MCF12A cells. However, we 

could not detect an interaction with E-cadherin in all the experimental conditions tested 

(different detergents and salt concentrations in lysis and washing buffers, different order 

of pull-down). This negative result suggests that either the interaction found in the yeast 

two hybrid screen is a false-positive, or that the interaction is very faint and/or transient, 

and we did not find the optimal experimental conditions to detect it. 
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Figure 4.1. HACE1 interacts with α-catenin. Immunoprecipitation (IP) of HA-HACE1 in MCF12A 
cells showing that HACE1 interacts with endogenous a-catenin; correct expression of proteins of 
interest was verified by immunoblot (IB). 
 
Despite the fact that we only confirmed the interaction of HACE1 with a-catenin and not 

with E-cadherin, this result still suggests that HACE1 might have a role in a-catenin 

signaling; notably in the regulation of cell-cell junctions. 

 

HACE1 is required for epithelial integrity 
 

To explore the possibility that HACE1 is involved in the regulation of intercellular 

adhesion, we generated cell lines that stably repressed the expression of HACE1 by 

transducing MCF12A cells with a lentiviral vector encoding shRNA targeting HACE1 

(shHACE1), or control shRNA for control cell lines (shCtr). We validated the silencing of 

HACE1 in this cell line by western blot (Fig. 4.2A), which is reflected in the disrupted 

control of active Rac1 levels after CNF1 intoxication in shHACE1 cells (Fig. 4.2B). 

Remarkably, we observed that the cells expressing shHACE1 no longer had a conventional 

epithelial morphology but instead tended to be elongated, and they never formed 

homogenous “cobble stone-like” monolayers (Fig. 4.3A). To functionally evaluate the 

cohesion of the shHACE1 cell monolayer, we performed a monolayer permeability assay 

based on the measurement of the amount of Dextran-FITC that diffused through a cell 

monolayer seeded on a porous membrane sitting between two compartments. This assay 

allowed us to determine that cells lacking HACE1 formed significantly looser, more 

permeable monolayers compared to control cells (Fig. 4.3B), which is in agreement with 

our first observation of perturbed monolayer morphology in shHACE1 cells. 
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Figure 4.2. Generation of MCF12A shHACE1 cell lines. A. Immunoblot (IB) showing the successful 
knock down of HACE1 in shHACE1 cells. B. IB showing that in shHACE1 cells, CNF1 intoxication 
leads to increased Rac1 activation compared to shCtr cells. Active levels of Rac1 were isolated from 
cell lysates by co-precipitation with GST-PAK bound beads (PD). PD and total protein levels of 
Rac1 in the cell lysates were analyzed by IB. 

 
HACE1 is required for AJ integrity 
 
Considering that intercellular adhesion is vital to maintain epithelial polarity, morphology 

and tissue cohesion, we wondered whether loss of HACE1 disrupts epithelial adherens 

junctions (AJ). Figures 4.3C and 4.3D show the great difference in morphology between 

the shCtr and the shHACE1 cells, the first readily forms organized and tightly packed 

monolayers while the second grows into a disorganized mesh of elongated cells. Specifically, 

figure 4.3C shows that shHACE1 cells do not form strong cell-cell cadherin-based junctions 

and, in general, shows very low signal levels for E-cadherin compared to control cells; while 

figure 4.3D shows that β-catenin, a direct cytosolic interactor of E-cadherin at AJ, is still 

expressed in shHACE1 cells but is not as strictly localized at the membrane as in control 

cells. In accordance with these results, the protein levels of E-cadherin and its associated 

catenins (a-, β-, and p120-catenin) are all downregulated in cells that repress HACE1 

expression (Fig. 4.3E). 
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Figure 4.3. Loss of HACE1 disrupts the epithelial monolayer integrity. A. Bright field images of 
two MCF12A cell lines stably expressing either control shRNA (shCtr), or shRNA against HACE1 
(shHACE1). B. Monolayer permeability to Dextran-FITC of shCtr and shHACE1 cells. Data 
correspond to mean ± SD of 3 biological replicates. *p < 0.05 (one-sample t-test). C-D. IF of 
monolayers of shCtr and shHACE1 cells showing F-actin (phalloidin-TRITC: red), the nuclei 
(DAPI: Blue), and E-cadherin (C) or β-catenin (green) and the nuclei (DAPI: Blue) (D). E. IB 
showing that MCF12A shHACE1 cells present very low protein levels of E-cadherin and its 
associated catenins (a-catenin, β-catenin, and p120-catenin) compared with shCtr cells. 
 
HACE1 prevents epithelial-mesenchymal transition of MCF12A cells 
 
The down-regulation of epithelial cell-cell junction proteins along with the acquisition of a 

mesenchymal-like morphology are both characteristic events during epithelial-
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mesenchymal transition (EMT), a differentiation program which epithelial cells undergo 

to transform into motile mesenchymal cells during physiological processes such as 

development and tissue repair, but also during cancer progression, where it contributes to 

metastasis (Kalluri and Weinberg 2009). Since HACE1 is widely reported as a tumor 

suppressor, and has been shown to be involved in the control of cell migration, proliferation 

and ROS production (Zhang et al. 2007; Castillo-Lluva et al. 2012; Daugaard et al. 2013; 

Goka and Lippman 2015), we hypothesized that HACE1 depletion may promote EMT.  

 

To assess this hypothesis, we compared the expression levels of a set of conventional 

epithelial and mesenchymal markers and EMT-involved proteins (transcription factors and 

kinases) in control and shHACE1 cells (Fig. 4.4A). We observed once again that cell-cell 

junction proteins, which are epithelial markers, are expressed at very low levels in 

shHACE1 cells; whereas the mesenchymal markers Fibronectin, Cd44 and N-cadherin were 

up-regulated. However, not all the mesenchymal markers tested were expressed at higher 

levels in shHACE1 cells. For instance, SPARC and MMP14, which are both matrix 

remodeling and organizing proteins, were curiously downregulated. On the other hand, it 

is worth pointing out that shHACE1 cells have unequivocally undergone the cadherin 

switch, one of the hallmarks of EMT in which E-cadherin gets replaced by N-cadherin at 

junctions. This switch is known to lead to loss of cell polarity, weakened connections 

between epithelial cells and increased cell migration (Lamouille et al. 2014). We have also 

observed this event in an independent shHACE1 cell line expressing a different shRNA 

sequence (Fig. 4.4B). All together, these data indicate that the loss of HACE1 leads to the 

acquisition of an EMT-like phenotype. 

 

HACE1 loss induces an EMT-promoting transcriptional program 
 
EMT is a multifaceted and flexible program defined by known hallmarks. At the same 

time, EMT can be initiated and progress by different mechanisms depending on cell type 

and tissue context (Lamouille et al. 2014). One of the earliest hallmarks of EMT is the loss  
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Figure 4.4. HACE1 loss results in the acquisition of an EMT-like signature. A. Immunoblot (IB) 
showing the expression profile of epithelial and mesenchymal markers, as well as EMT-promoting 
transcription factors in MCF12A cells shCtr and shHACE1. B. The E-cadherin to N-cadherin switch 
occurs in two independent cell lines expressing different shRNA sequences against HACE1 (IB). C. 
mRNA levels of HACE1, E-cadherin (CDH1), β-catenin (CTNNB1), N-cadherin (CDH2) and 
Vimentin (VIM) in shCtr and shHACE1 cells. Data correspond to mean ± SD of 3 biological 
replicates. *p < 0.05, ***p < 0.001, blank: not significant (one-sample t-test). 
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of cadherin-based junctions, which can be disrupted at the protein level and/or at the 

transcriptional level by the induction of master transcription factors that promote the 

repression of epithelial genes like E-cadherin and the expression of mesenchymal genes. 

Among these EMT-promoting transcription factors are Snail, Slug, Twist and ZEB 

(Peinado et al. 2007). We tested whether the expression of some of these transcription 

factors was upregulated in shHACE1 cells, and found that Twist in particular was clearly 

more expressed in shHACE1 cells than in control cells (Fig. 4.4A). In agreement with this, 

we found that the mRNA levels of E-cadherin and β-catenin were downregulated, while 

the levels of N-cadherin were upregulated (Fig. 4.4C). All of which indicated that the 

EMT-like phenotype observed in shHACE1 cells was regulated at the transcriptional level. 

 
The Mesenchymal-like phenotype of HACE1 depleted cells is not an 
immediate consequence of HACE1 loss. 
 
Next, we wondered whether this phenotype was the direct result of the loss of HACE1 

catalytic activity. Therefore, we attempted to evaluate the effect of the re-expression of 

HACE1 WT and of its catalytically deficient mutant HACE1(C876S) in shHACE1 cells. 

However, technical difficulties precluded us from using this approach. Namely, transient 

methods of transfection were very inefficient and stable transfection using retroviruses 

proved lethal to the shHACE1 cells. Due to this, we instead tested whether some of the 

EMT markers whose expression is modulated in shHACE1 cells were also regulated when 

HACE1 was silenced using siRNA for 72h in MCF12A cells, or when HACE1(WT) or its 

catalytically inactive mutant HACE1(C876S) was over-expressed for 24h. The results show 

that none of these short-term manipulations of HACE1 protein levels resulted in a change 

of expression of the EMT markers tested (Fig. 4.5A, 4.5B), with the exception of a-catenin, 

whose protein levels present a small decrease upon HACE1 silencing. These results show 

that the phenotype of shHACE1 cells in not an immediate consequence of the loss of 

HACE1, which led us to think that the loss of HACE1 is not directly affecting the stability 

or the expression of the analyzed EMT markers, but probably is contributing to other 

signaling pathways that in turn trigger the EMT program. 
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The EMT-promoting signaling network activated by HACE1 loss partially 
depends on extracellular signals and might be connected to a-catenin 
degradation. 
 
We next addressed the question of which signaling pathways initially trigger the EMT 

program once HACE1 is lost? A multitude of signaling pathways are involved in the 

initiation and regulation of EMT. Among the more prominent ones are those triggered by 

TGF-β, and by growth factors through receptor tyrosine kinases (RTK), such as the EGF, 

HGF, FGF (fibroblast growth factor), and IGF1(Insulin-like growth factor 1) pathways 

(Lamouille et al. 2014). Moreover, these pathways have been shown to crosstalk and 

cooperate extensively during EMT (Lindsey and Langhans 2015). All of this makes it 

challenging to determine which of these pathways might be modulated by the loss of 

HACE1. As a first general approach, we tested whether the EMT-like signature present in 

shHACE1 cells was mediated by extracellular factors by stimulating cell monolayers of 

shCtr and shHACE1 cells with either fully complemented media, or with media without 

serum and growth factors after 16h of starvation (Fig. 4.5C). We observed that the 

cadherin switch in shHACE1 cells is independent of extracellular factors. Interestingly, it 

has been shown that the engagement of transcriptional repressors at the E-cadherin gene 

promoter eventually leads to a more stable epigenetic silencing of the gene by histone 

modifications and subsequently by DNA hypermethylation (Yilmaz and Christofori 2009). 

Since we have shown that the transcription factor Twist is upregulated in shHACE1 cells 

and that E-cadherin and N-cadherin are regulated at the transcriptional levels, it is 

tempting to think that such an epigenetic silencing of the E-cadherin promoter may occur 

in shHACE1 cells. 

On the other hand, the protein levels of Fibronectin and Twist, and the phosphorylation 

levels of ERK and Src seem to be sensitive to extracellular factors. Indeed, the kinases 

ERK and Src are known to be activated downstream of several RTKs and are involved in 

the regulation of EMT. Src is known to induce AJ disassembly (Woodcock et al. 2009) and 

EMT-related transcriptional changes through STAT3 and ERK activation (Gonzalez and 

Medici 2014); while ERK has been reported to phosphorylate and stabilize several EMT-
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transcription factors, including Twist (Hong et al. 2011; Zhu et al. 2016), which might 

explain why Twist levels decrease partially upon growth factor starvation in shHACE1 

cells. Regarding the dramatic decrease in Fibronectin expression upon growth factor 

deprivation, it might be a consequence of reduced Twist activity alone or in addition to 

other signaling pathways that are known to promote its expression like the Wnt/β-catenin 

pathway (Gonzalez and Medici 2014). Altogether, these results indicate that the EMT 

signature characteristic of shHACE1 cells is in part dependent on exogenous stimuli. 

 

 

Figure 4.5. The EMT-like signature is not an immediate effect of HACE1 loss and is partially 
dependent on exogenous signals. A. Immunoblots (IBs) showing that downregulation of HACE1 
using two different siRNA sequences, or B. over-expression of HACE1 WT or CS in MCF12A cells, 
does not change the expression of epithelial and mesenchymal markers. C. IB showing the levels of 
shHACE1-related EMT signature proteins in cells cultured in fully complemented medium 
(complete) or serum- and growth factors-free medium (Ø) for 6h after O/N starvation. 
 

We have observed that a-catenin levels faintly, but consistently, decrease when HACE1 is 

silenced by siRNA for 72h in MCF12A cells (Fig. 4.5A) and they are almost completely 

lost in shHACE1 cells (Figs. 4.3E, 4.4A). Moreover, we have determined by yeast two 

hybrid screen and co-IP that a-catenin interacts with HACE1 (Fig. 4.1). This made us 
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wonder whether HACE1 could modulate a-catenin by catalyzing its ubiquitination. To 

test this, we performed ubiquitination assays in Chinese Hamster Ovary (CHO) cells over-

expressing HA-tagged HACE1 and a-catenin (Fig. 4.6). Using this approach, we found no 

evidence that HACE1 induces a-catenin ubiquitination. Intriguingly, it has been suggested 

that a-catenin can be degraded by a proteasome-dependent and ubiquitin-independent 

mechanism that depends on a-catenin interaction with ARMc8 (armadillo-repeat-

containing protein 8) (Hwang et al. 2005; Suzuki et al. 2008). This would be in agreement 

with our inability to detect ubiquitinated a-catenin, and opens the possibility that HACE1 

might be involved in this ARMc8-dependent proteasomal degradation of a-catenin which 

should be evaluated in the future. Whichever the mechanism is that is reducing the levels 

of a-catenin could be involved in the EMT-like phenotype induced upon HACE loss. Indeed, 

a-catenin is considered a tumor suppressor whose loss leads to dysfunctional intercellular 

junctions that are not anchored to the actin cytoskeleton (Morton et al. 1993; Sun et al. 

2014). Additionally, a-catenin has been shown to inhibit signaling pathways involved in 

EMT progression, such as the NF-kB signaling in E-cadherin negative basal like breast 

cancer cells, and the Wnt/β-catenin signaling in glioma and colon cancer cells (Sun et al. 

2014) . Interestingly, it has been shown that a-catenin proteasomal degradation is closely 

associated with the canonical Wnt/β-catenin signaling (Hwang et al. 2005). More work is 

necessary to determine whether the downregulation of a-catenin is the trigger that leads 

to EMT in HACE1 depleted cells. 

 

 
Figure 4.6.  HACE1 does not ubiquitinate α-catenin. Purification of His-Ub conjugated proteins by 
histidine pull down in CHO cells over-expressing the indicated proteins shows that HACE1 over-
expression does not induce detectable levels of α-catenin ubiquitination; correct expression of 
proteins of interest was verified by IB. 
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Conclusion 
 
Collectively, our results draw a novel link between HACE1 and EMT. We have shown 

that loss of HACE1 results in the transcriptional regulation of adherens junctions through 

a mechanism that activates the Erk and Src kinases in response to exogenous factors and 

leads to the up-regulation of Twist protein levels, which is consistent with the repression 

of E-cadherin expression, and the upregulation of N-cadherin, Fibronectin and CD44. This 

study generates interesting questions about what molecular events drive this mechanism 

and how HACE1 is connected to them. 

 

Discussion 
 
a. HACE1, a-catenin and EMT. 

We have shown here that HACE1 expression is required for a-catenin stability. However, 

although we showed that HACE1 binds to a-catenin, we could not demonstrate that 

HACE1 mediates its ubiquitination. Nonetheless, as discussed before, it is possible that 

the loss of a-catenin upon HACE1 depletion contributes to the development of the EMT-

like phenotype. It would, therefore, be interesting to explore how HACE1 stabilizes a-

catenin by studying the nature of their interaction, if there are any partners or scaffolds 

involved in it (such as ARMc8), and if they are regulated by HACE1 catalytic activity. 

More work remains to be done in order to assess this interesting aspect.  

 

b. HACE1, YB-1 and EMT. 

Considering the central role of HACE1 in cell homeostasis and the literature about the 

signaling pathways involved in EMT one can see various links that could direct further 

investigations on this subject. For example, it has been reported that HACE1 ubiquitinates 

the Y-box-binding protein 1 (YB-1), a DNA- and RNA-binding protein involved in the 

regulation of gene transcription, mRNA stability, protein translation, splicing and DNA 

repair (Palicharla and Maddika 2015). HACE1-mediated YB-1 ubiquitination is required 

for its secretion, which has been shown to protect cells from TGF-β triggered EMT in lung 

epithelial cells and in the breast cancer cell line MDA-MB 231 (Palicharla and Maddika 
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2015). Whether YB-1 is implicated in MCF12A EMT upon HACE1 depletion is an 

interesting possibility that should be addressed. 

c. HACE1, Twist and EMT. 

The Twist transcription factor is known to be regulated by ubiquitination, which has been 

reported to result in its lysosomal and proteasomal degradation. A recent study has shown 

that macro-autophagy deficiency, through p62 accumulation, stabilizes Twist by 

promoting the binding of p63 to Twist’s polyubiquitinated form, which inhibits its 

degradation (Qiang et al. 2014). Interestingly, it has been shown that loss of HACE1 leads 

to impaired p62-mediated autophagy and therefore results in the accumulation of p62 

(Zhang et al. 2014; Liu et al. 2014). It is therefore tempting to think that HACE1 might 

control Twist activity by moderating the levels of p62 and promoting Twist degradation. 

Additionally, it has been shown that the stability of Twist is regulated by phosphorylation; 

JNK, ERK, and p38 MAPKs phosphorylate Twist at Ser68, which inhibits its 

ubiquitination and protects Twist from ubiquitin-mediated degradation and increases its 

activity (Hong et al. 2011). MAPKs are activated by several RTKs, notably by the EGFR 

family, which has been shown to promote Twist1 activity (Gonzalez and Medici 2014; Zhu 

et al. 2016). Considering that shHACE1 cells show elevated levels of phosphorylated Erk 

and Src, it would be interesting to test whether the inhibition of these kinases can 

destabilize Twist in shHACE1 cells. Further work would also be necessary to determine 

the particular signaling pathways leading to Erk and Src activation upon HACE1 depletion. 

d. HACE1, Rac1 dependent signaling and EMT 

Alternatively, it is possible that over-activation of Rac1 due to loss of HACE1 might play 

a role in the development of the EMT-phenotype. It has been demonstrated that HACE1, 

through its capacity to bridle Rac1 activity, represses cell migration, proliferation, and 

ROS production (Zhang et al. 2007; Castillo-Lluva et al. 2012; Daugaard et al. 2013; Goka 

and Lippman 2015). All of these three processes are correlated with AJ remodeling, so it 

is worth assessing whether Rac1 activity in shHACE1 cells is necessary for the development 
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of EMT. Furthermore, increased Rac1 activity and abnormally high ROS levels have been 

correlated with genomic instability and the induction of EMT via the activation of EMT-

promoting transcription factors Snail (Radisky et al. 2005) and Zeb1 (Lam et al. 2013). 

Hence, it would be particularly interesting to evaluate whether the MCF12A shHACE1 

cells present higher ROS levels than shCtr cells and whether normalizing cellular redox 

balance would counteract the effects of HACE1 depletion. 

So far, I have discussed molecular actors that might contribute to the EMT-like phenotype 

acquired by cells after long-term (>72h) HACE1 depletion. It is important to consider that 

the proposed mechanisms might be the product of the genomic instability characteristic of 

HACE1 depleted cells (Zhang et al. 2007; Daugaard et al. 2013), and (considering the time-

scale) that they likely accumulate through successive generations of cells. Such a situation 

would cloud the untangling of the particular HACE1-dependent signaling pathways 

responsible for the observed phenotype. Therefore, a cautious approach to continue the 

study of HACE1’s role in EMT would entail the development of a cellular model that 

enables a more refined control of HACE1 expression; such as the tet-on or tet-off inducible 

expression system. Having a better temporal control of HACE1 expression (and an easy 

way to silence and re-express HACE1) would simplify future work on this subject. 

e. HACE1, EMT and pathology 

This work has identified a novel role of HACE1 in the regulation of epithelial AJ and 

drawn a link between HACE1 loss and the development of EMT-like phenotype. 

Intriguingly, several studies have associated HACE1 with diseases where a disruption of 

the cell-cell junctions of the intestinal epithelium is implicated, including Crohn’s disease 

(Kenny et al. 2012), Celiac disease (Einarsdottir et al. 2011), colitis and colorectal cancer 

(Hibi et al. 2008; Tortola et al. 2016a). Furthermore, a recent study has suggested that 

EMT might play an important role in the development of Crohn’s disease (Scharl et al. 

2015). Together, these observations point towards a potential protective role of HACE1 in 

inflammatory intestinal diseases that would be interesting to explore. 
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EMT was first described as a developmental cellular process taking place during early 

embryonic development. Notably, during gastrulation, neural crest migration and heart 

morphogenesis (Thiery et al. 2009; Savagner 2015). Interestingly, HACE1 expression been 

proposed to be required for proper embryonic development (Iimura et al. 2016) and genetic 

alterations in hace1 have been correlated to neurodevelopmental conditions in humans 

(Akawi et al. 2015; Hollstein et al. 2015). Since our results involve HACE1 in the regulation 

of EMT in mammary epithelial cells, it would be interesting to evaluate whether the 

regulation of HACE1 expression or activity is important for the rapid EMT and MET 

(mesenchymal-epithelial transition) cycles that occur during early embryonic development. 

Lastly, EMT is heavily studied in the cancer field and is generally correlated with the 

malignancy and the metastatic capacity of a tumor (Gurzu et al. 2015). Incidentally, Hibi 

and colleagues reported that colorectal carcinomas with aberrant methylation of HACE1 

tend to develop lymph node metastasis (Hibi et al. 2008), and a different study suggested 

that in hepatocellular carcinoma, low levels of HACE1 expression are correlated with tumor 

differentiation and vascular invasion (Gao et al. 2016b). Therefore, it would be interesting 

to study the role of HACE1 in the regulation of AJ and in EMT in the context of tumor 

metastasis.  
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5.1. Phospho-regulation of HACE1 by Rac1/Cdc42 and group I 
PAKs. 
 

5.1.1. Regulation of HACE1 by phosphorylation of Ser-385 in vivo: Is an adaptor 
at play? 

The first part of the results of this thesis demonstrated that HACE1 phosphorylation at 

Ser-385 is induced by active Rac1 and Cdc42 through the activation of group I PAKs. 

Puzzlingly, we observed that the phosphomimetic mutant HACE1(S385E) reduced the 

levels of ubiquitination of Rac1 in vivo but not in vitro. As discussed in section 4.1, these 

results suggest that the phosphorylation at Ser-385 does not change the intrinsic catalytic 

activity of HACE1 and that the reaction of Rac1 ubiquitination by HACE1 might be 

modulated by a cellular factor. In accordance with this last hypothesis, we have observed 

that the degree of inhibition of Rac1 ubiquitination upon HACE1 Ser-385 phosphorylation 
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was cell dependent. Indeed, the clear inhibitory effect observed in MCF12A was also 

observed in Chinese Hamster Ovary (CHO) epithelial cells. However, the inhibitory effect 

of phosphorylation of HACE1 on Ser-385 was not as strong and less consistent in HUVEC 

cells (not shown). These observations reinforce our hypothesis of an adaptor modulating 

HACE1’s ability to ubiquitinate Rac1, which would be cell-specific. It is worth noting that 

such an adaptor could be an activator that positively modulates the activity of the non-

phosphorylated form of HACE1 or an inhibitor that negatively modulates the activity of 

the phosphorylated-form of HACE1. However, since we detect strong auto-ubiquitination 

of HACE1 in vitro, we think it is more likely that phosphorylation of HACE1 triggers its 

binding to an inhibitory adaptor. 

To identify regulatory adaptors of HACE1, our first approach consisted in evaluating 

whether known HACE1-binding proteins interact differently with phosphorylated HACE1 

by co-immunoprecipitation followed by western-blot analysis. We attempted to do this 

with α-catenin and E-cadherin, two novel interacting candidates identified by our yeast 

two hybrid screen that could potentially connect HACE1 phosphorylation to AJ regulation. 

By this approach, we could not identify an interaction between E-cadherin and HACE1 

and, although we validated the interaction of HACE1 with α-catenin, we did not detect 

any difference in their interaction with phosphorylated HACE1. Even though these 

preliminary results are negative, it does not exhaust the possibilities of the approach since 

HACE1 has been reported to interact with other proteins as discussed in section 3.2.2. An 

alternative, more unbiased approach consists in analyzing by mass spectrometry the 

proteins co-immunoprecipitated either with HACE1(S385A) or HACE1(S385E). This 

proteomic approach is currently at the technical optimization stage in the laboratory. It 

would also be interesting to compare the identity of the proteins that co-immunoprecipitate 

with HACE1 in cells that have high and low levels of PAK-mediated phosphorylated Ser-

385 (by over-expression of active Rac1(Q61L) or PAK1(K161A), or by CNF1 treatment). 

Since our results indicate that this adaptor might be present in MCF12A cells but not (or 

in lower quantities) in HUVEC cells, it would be useful to do this comparative analysis in 

both cell lines, to narrow down the prospective candidates. 
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To validate the functionality of the identified adaptors, their expression could be knocked-

down (KD) by RNA interference (RNAi) and ubiquitination of Rac1(Q61L) levels in 

presence of HACE1(WT) and HACE1(S385E) will be measured in MCF12A cells. If the 

adaptor is an activator of non-phosphorylated HACE1, we expect that its KD reduces 

HACE1(WT) activity to the level of HACE1(S385E). Conversely, if the adaptor inhibits 

the phosphorylated form of HACE1, we expect that its KD restores HACE1(S385E)’s 

ability to ubiquitinate Rac1 up to HACE1(WT) level. The identification of adaptor 

proteins of HACE1 whose interaction is modulated by HACE1 phosphorylation would cast 

light on the cellular relevance of this new regulatory mechanism. It could place HACE1 

within a signaling network and indicate its probable intracellular localization. 

As discussed in section 1.3, there are about a dozen examples in the literature of adaptors/ 

auxiliary proteins that modulate the function of HECT E3 ligases. While most of them 

pertain members of the Nedd4 family and only two regulate ligases outside of this family, 

all of them modulate the function of the HECT E3 ligase(s) by affecting one or more the 

following aspects: (i) interaction with E2 enzymes, (ii) E3 localization and/or substrate 

binding, and (iii) intrinsic catalytic activity. Therefore, it would be interesting to determine 

if HACE1’s hypothetical adaptor affects some of these three aspects. 

(i) Interaction with E2. HACE1’s ability to interact with E2 enzymes in vivo after it is 

phosphorylated could be tested by evaluating whether the UbcH7 E2 enzyme (reported to 

work well with HACE1 (Anglesio et al. 2004; Torrino et al. 2011)) immunoprecipates with 

HACE1(S385E) at a different rate than with HACE1(S385A). Alternatively, the answer 

to this question could be given by the previously proposed mass spectrometry (MS) analysis 

of HACE1-interacting proteins that depend on phosphorylation of Ser-385 if the change in 

interaction with the E2 is dramatic. 

(ii) Substrate binding and localization. We have defined that HACE1(S385E) binds to 

activated Rac1 as well as with the non-phosphorylated HACE1(WT) and HACE1(S385A). 

However, this does not exclude that the phospho-regulation of Ser-385 could affect 

HACE1’s binding to other targets. Thus, the MS analysis could reveal targets whose 
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interaction with HACE1 is modified by HACE1 phosphorylation. To more directly 

evaluate whether the target candidates, derived from the MS analysis or from the literature, 

are ubiquitinated more or less once HACE1 is phosphorylated, we could perform in vivo 

ubiquitination assays with them and with either HACE1(WT), HACE1(S385A) or 

HACE1(S385E). Regarding the possibility that HACE1 phosphorylation might affect its 

cellular localization, and consequently, its proximal targets, we did some preliminary 

immunofluorescence and cytosol-membrane fractionation experiments to compare the 

localization of HACE1(WT) against the S385A and S385E mutants. These experiments 

did not yield an obvious change in localization, which might be true but could also be a 

technical artifact caused by saturation of the system due to HACE1 over-expression. 

Further work would be necessary to develop techniques to determine the localization of 

endogenous HACE1 before and after it has been phosphorylated. 

(iii) E3 catalytic activity. Subtle changes in the intrinsic catalytic activity of an E3 ligase 

are difficult to examine in vivo. Therefore, to evaluate the possible influence of a cellular 

adaptor on the enzymatic steps catalyzed by HACE1, in vitro assays need to be performed. 

This requires the prior identification of the adaptor, in order to include it in in vitro 

HACE1 auto-ubiquitination or Rac1 ubiquitination assays and evaluate whether the 

kinetics of the reaction changes. We would specifically evaluate the level of ubiquitin 

transfer from E2 to E3 (thioester bond formation) and the level of ubiquitin transfer from 

the catalytic cysteine to a target lysine residue in HACE1 (isopeptide bond formation).  

Alternatively, we could consider that HACE1 phosphorylation on Ser-385 in vivo inhibits 

HACE1 activity towards Rac1 through a cellular factor that does not bind to HACE1 (and 

thus would not be detectable by a co-IP approach). For instance, it has been shown that 

the activity of a DUB towards a specific substrate may be promoted by a change in the 

type of ubiquitin chain conjugated upon it or by a change in the mechanism of ubiquitin 

transfer from E3 to substrate. Indeed, it has been shown that upon binding to a chemical 

inhibitor Nedd4-1 changes its conjugating mechanism from processive (it transfers several 

ubiquitin monomers to the substrate in one round of binding) to distributive (it needs to 

release and bind its substrate every time it attaches a ubiquitin), and this makes the 
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substrate ubiquitination more efficiently reversed by the DUB USP8 (Kathman et al. 2015). 

This possibility can be evaluated by inhibiting DUB activity in cells using commercial 

chemical inhibitors or RNAi and testing whether the decreased ubiquitination of Rac1 by 

HACE1(S385E) is restored to HACE1(WT) levels. 

5.1.2. How can the conformational change upon Ser-385 phosphorylation affect 
HACE1 function? 

In addition to the lower activity towards Rac1 of the HACE1(S385E) mutant, another 

interesting result of the study is that phosphorylation of Ser-385 is correlated with an 

increased capacity to homo-oligomerize, suggesting that structural rearrangements occur 

upon HACE1 phosphorylation. As discussed before, many HECT E3 ligases (mostly of the 

Nedd4 family) activities are regulated by intra- or inter-molecular interactions. In light of 

this, one can wonder what the relationship is between the modulation of HACE1’s function 

and oligomerization state upon its phosphorylation in vivo. 

In order to assess this question, we would need to determine how the HACE1(S385E) 

oligomers are formed (what are the interaction regions) and be able to disrupt them in 

vivo. By blocking the formation of the HACE1(S385E) oligomers and subsequently 

assessing whether this disruption affects the activity of HACE1(S385E) towards Rac1, we 

could determine if this change in oligomerization state due to phosphorylation of Ser-385 

affects HACE1 activity in cells. A first strategy to characterize the oligomers formed by 

HACE1(S385E) would be to map the region(s) of interaction in HACE1(S385E) oligomers 

by inter-domain co-immunoprecipitation assays in cells. One could propose, based on our 

inter-domain interaction assays for HACE1 (WT), that the oligomerization of HACE1 

occurs between its HECT domain and a region overlapping the ANK domain and the MID 

region. We are currently collaborating with the laboratory of Jaqueline Cherfils in Paris 

to elucidate the crystal structure of HACE1, this might help to model and understand how 

phosphorylation of Ser-385 might affect its conformation. 

In section 5.1.1, we have discussed how a cellular factor is most likely required for the 

phospho-regulation of HACE1 activity. Considering this, and if we find that the change in 
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oligomerization state upon Ser-385 phosphorylation is required for the modulation of 

HACE1 activity, we might then ask what the relationship is between the change in 

oligomerization and the cellular adaptor. Reducing our analysis to the possibility that the 

adaptor is an inhibitor, two scenarios come to mind: i) the phosphorylation of HACE1 at 

Ser-385 induces the binding to an adaptor, which then elicits the oligomerization change 

(Fig. 5.1a); or ii) the phosphorylation is inducing a change in the oligomerization state, 

that leads to the recruitment of an adaptor (Fig. 5.1b). An approach to discriminate 

between the two possibilities would be to compare the oligomerization states of 

HACE1(WT) and HACE1(S385E) in vitro using size exclusion chromatography (SEC). If 

their elution profile is the same, it would suggest that the higher order oligomerization of 

HACE1(S385E) observed in cells depends on a cellular factor. In that case, purification of 

the recombinant adaptor would be helpful to determine if, indeed, this adaptor shifts the 

SEC elution spectra of HACE1(S385E). Conversely, if HACE1(S385E) is eluted faster than 

the WT, it suggests that oligomerization of HACE1(S385E) occurs in absence of an adaptor. 

Additionally, the SEC analysis could be supported by crosslinking assays of recombinant 

purified HACE1(WT) and HACE1(S385E) followed by western-blot analysis to determine 

the proportion of HACE1(WT) and HACE1(S385E) that forms oligomers in vitro and the 

size of these oligomers in the absence or presence of the adaptor. Cellular assays could also 

be performed once the adaptor is known. For instance, we could evaluate the level of homo-

oligomerization of HACE1(WT) and HACE1(S385E) by co-IP in cells where the expression 

of the adaptor has been KD by RNAi. If we find that HACE1(S385E) (or HACE1 in the 

presence of active PAK1) still homo-oligomerizes in a much stronger manner than the non-

phosphorylated HACE1(WT) or HACE1(S385A), this would mean that the adaptor is not 

required for phospho-oligomer formation. Conversely, if the KD of the adaptor reduces the 

level of HACE1(S385E) oligomerization to the level of HACE1(WT), it indicates that this 

adaptor is necessary for HACE1(S385E) oligomerization. 

Altogether, these analyses could shed light on the functional impact of HACE1’s altered 

oligomerization upon Ser-385 phosphorylation and on the nature of this structural 

rearrangement. Specifically, the study of HACE1(S385E) would identify the interaction 
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regions, and determine whether the strong homophilic interaction of phosphorylated 

HACE1 is due to a gain in affinity (either interacting through the same or different regions 

than HACE1(WT)), or due to the formation of higher-order oligomers (trimers, quatrimers, 

etc). In addition, we would have a better understanding of the mechanism by which the 

cellular adaptor influences HACE1’s function and conformation upon Ser-385 

phosphorylation. 

 

 

Figure 5.1. Representation of the possible relationships between p-HACE1S385, the binding to a 
cellular adaptor, the change in HACE1 oligomerization state and the modulation of HACE1’s 
function. 

 

5.1.3. PAK controls Rac1 ubiquitination by HACE1: signaling implications 

The interplay between Rho GTPases, specially the antagonism between Rac1 and RhoA 

signaling, has been shown to occur in multiple contexts and by several mechanisms 

(Guilluy et al. 2011). Less known, however, is the crosstalk between Cdc42 and Rac1. To 

date, and to our knowledge, two mechanisms of Rac1 regulation by Cdc42 have been 

reported. The first one showed that Cdc42 limits Rac1 activity at the front of migrating 

cells through PAK-mediated recruitment and activation of the Rac-specific GEF β-Pix 

(Cau and Hall 2005), and the second study showed that in murine stem cells, loss of Cdc42 

down regulated the levels of GTP-bound Rac1 without altering the total levels of Rac1 

(Wu et al. 2007). In both cases, Cdc42 regulates Rac1 activation. Our study indicates that 
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there might be another mechanism of crosstalk between Cdc42 and Rac1 by demonstrating 

that group I PAKs (activated by both active Rac1 and Cdc42) control HACE1-mediated 

Rac1 ubiquitination. Therefore, our findings suggest that Cdc42, through PAK, could 

promote Rac1 activity by inhibiting its ubiquitin-mediated Rac1 degradation in addition 

to stimulating GEF-mediated Rac1 activation (schematized in figure Fig. 5.2). In the 

future, it would be interesting to determine where this regulation occurs; for instance, if it 

takes place in ruffles to allow sustained extension of Rac1-dependent lamellipodia. 

We have shown that silencing PAK1 or PAK2 in MCF12A cells by siRNA inhibits the 

phosphorylation of HACE1 at S385 induced by Rac1, indicating that both kinases are 

required for Rac1-induced phosphorylation of HACE1 and that the presence of only one 

PAK isoform is not enough to reach full levels of phosphorylation. Interestingly, these 

results suggest that PAK1 and PAK2 might form active homo-dimers in MCF12A cells. 

To date, the formation of such a heterodimer has only been described for PAK1 and PAK3 

in the brain, and has been shown to inhibit PAK activity (Combeau et al. 2012). Further 

studies on the relationship between PAK1 and PAK2 in mammary epithelial cells would 

be required to test this hypothesis. 

 

Figure 5.2. Crosstalk between Rho, Rac1 and Cdc42. The Cdc42-Rac1/PAK/HACE1 axis 
constitutes a novel crosstalk pathway between Cdc42 and Rac1 as well as a positive feedback 
loop for Rac1. Adapted from {Samuel2011} 
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5.2. HACE1 and epithelial cell-cell adhesion: keeping EMT at bay. 
 

5.2.1. Does HACE1 have a role in the establishment and maintenance of AJ? 

We have shown that long term HACE1 depletion in MCF12A starkly reduces the mRNA 

and protein levels of AJ core complex components (E-cadherin, p120-, α-, and β-catenin). 

This, coupled with the interaction between HACE1 and α -catenin and the small 

downregulation of α-catenin protein levels when HACE1 was depleted for 72h with siRNA, 

makes us wonder if HACE1 has a role in the short-timed regulation of epithelial AJs 

(establishment and maintenance). Furthermore, CNF1 has been shown to greatly induce 

uroepithelial cell motility (Doye et al. 2002) and our own preliminary results show that 

this is also the case in MCF12 cells (not shown). Additionally, PAK1 has been shown to 

disrupt E-cadherin based adhesions in keratinocytes (Lozano et al. 2008), and during 

embryonic development in drosophila (Pirraglia et al. 2010). We thus wonder whether the 

phosphorylation of HACE1 on Ser-385 induced by CNF1/Rac1-mediated PAK activation 

is involved in AJ regulation. 

In order to determine the potential role of HACE1 in the establishment and maintenance 

of AJ, one interesting approach would be to generate a stable MCF12A cell line with an 

inducible (like the tet-on or tet-off system) shRNA that represses HACE1 expression in a 

controlled manner. With these cells, we could allow the formation of a mature epithelial 

monolayer before inducing HACE1 depletion. Assessing AJ integrity by evaluating 

monolayer permeability, E-cadherin protein levels, and E-cadherin localization in HACE1 

depleted monolayers would indicate whether HACE1 is necessary for AJ maintenance. 

In order to assess whether HACE1 is required during de novo AJ formation, we could 

repeat the setting described in the previous paragraph and disrupt E-cadherin cell-cell 

contacts in the mature monolayer by Ca2+ depletion and measure if junctions are re-

established upon addition of Ca2+ in HACE1 depleted cells. 

To evaluate whether phosphorylation on Ser-385 has a role in AJ formation and 

maintenance, we could attempt to repeat the previously suggested experiments using 
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transgenic MCF12A stable cells that bear an inducible shRNA against HACE1 as well as 

shRNA-resistant HACE1(WT), HACE1(S385E) or HACE1(S385A). This would allow us 

to induce the silencing of endogenous HACE1 and the simultaneous expression of shRNA 

insensitive mutants of HACE1, which would allow us to evaluate the capacity of HACE1 

mutants to maintain (or not) AJ when endogenous HACE1 is depleted. 

5.2.2. A parallel between HACE1 and PAK during EMT in cancer 

At the time of its discovery, HACE1 was described as a tumor suppressor gene (Anglesio 

et al. 2004). Over time, this first designation has proven to be true for multiple types of 

human cancers, where loss of HACE1 is associated with tumorigenesis and cancer 

progression (Zhang et al. 2007; Hibi et al. 2008; Sakata et al. 2009; Diskin et al. 2012; Liu 

et al. 2014; Goka and Lippman 2015). HACE1 tumor suppressor activity has been 

correlated with its ability to control Rac1 hyper-activation (Castillo-Lluva et al. 2012; 

Daugaard et al. 2013; Goka and Lippman 2015) and in this work, we have defined that 

phosphorylation of HACE1 at Ser-385 by group I PAK leads to reduced ubiquitination of 

Rac1. Therefore, one could hypothesize that excessive PAK-mediated phospho-inhibition 

of HACE1 would lead to a pathological level of activation of Rac1 signaling. 

In agreement with this hypothesis, PAK kinases are known to be at the center of signaling 

pathways required for oncogenesis and they are frequently over-expressed or hyper-

activated in a wide variety of cancers, with PAK1 and PAK4 being the most commonly 

reported isoforms (Kumar and Li 2016). Interestingly, both the pak genes and hace1 are 

located in chromosomal regions (11q13 and 6q21, respectively) that are hotspots of genomic 

alterations in human cancers (Bekri et al. 1997; Anglesio et al. 2004; Brown et al. 2008). 

Moreover, the cellular effects of PAKs hyper-activation and the consequences of HACE1 

depletion are in some cases very similar, as listed in table 5.1. Interestingly, both HACE1 

loss and PAK1 activation cooperates with HER2 overexpression in breast cancer cells to 

drive transformation and the acquisition of an invasive and migratory phenotype (Adam 

et al. 1998; Goka and Lippman 2015), indicating that HER2 over-activation signals 

through pathways repressed by HACE1 and promoted by PAK1 to favor cancer 

progression. However, not all HER2 positive breast carcinomas present HACE1 loss (Goka 
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and Lippman 2015), so it is possible that another mechanism of HACE1 inhibition might 

be involved. Taking this into account, it would be interesting to explore the expression 

and activity levels of PAK in HER2- and HACE1-positive breast carcinomas and whether 

PAK1 inhibits HACE1 by phosphorylating Ser-385 in this context. 

Moreover, it has been shown that PAK1 contributes to the development of EMT during 

tumor metastasis by activating the master transcription factor Snail in breast cancer cells 

(Yang et al. 2005). Snail is then able to promote the expression of other transcription 

factors like Twist1 and Zeb1, and of mesenchymal markers such as Fibronectin and N-

cadherin, while repressing the expression of various epithelial markers (Lamouille et al. 

2014). Our findings implicate HACE1 loss in the development of EMT and, interestingly, 

Palicharla and colleagues proposed that ubiquitination of YB-1 by HACE1 protects cells 

from TNF-α induced EMT (Palicharla and Maddika 2015). Considering this, it would be 

interesting to explore whether the mesenchymal phenotype we observe after long-term 

HACE1 loss in MCF12A depends on PAK or Rac1/Cdc42 activity, and also, whether over-

expression or hyper-activation of PAK promotes EMT in a HACE1-dependent manner. To 

assess this last question, an approach would be to generate cell lines stably expressing 

HACE1WT, HACE1(S385A), HACE1(S385E) or HACE1(C876S) mutant using CRISPR-

cas9 knock-in on MCF12A cells and a HACE1 knock out cell line by CRISPR-cas9 (as a 

control). Then, we would compare if, over time, these cell lines lose their epithelial 

characteristics and acquire mesenchymal features by monitoring morphological changes, 

gain in motility and differential expression of EMT markers. We would expect that the 

knock out cell-line behaves like our previously studied shHACE1 cell lines. Comparison 

with the catalytic inactive HACE1(C876S) mutant would tell us if HACE1 E3 ligase 

activity is important for restraining EMT development, while the phospho-mimetic 

(HACE1(S385E)) and phospho-null (HACE1(S385A)) mutant would indicate whether 

phosphorylation of HACE1 on Ser-385, and probably PAK, play a role in EMT. Of course, 

the most robust way to assess the implication of HACE1 phosphorylation or catalytic 

activity in EMT development would be to attempt to reverse the mesenchymal phenotype 

of HACE1 depleted cells into an epithelial phenotype by over-expressing the 
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HACE1(S385A), HACE1(S385E) or HACE1(C876S) mutants. While we could take 

advantage of an inducible system (described in 5.2.1) to control the loss and re-expression 

of endogenous HACE1 and evaluate the impact on EMT, it seems that re-expressing a 

mutant of HACE1 in a previously HACE1 depleted cell could be challenging based on our 

experience. However, we cannot discard that our issues with this approach were unique of 

our lentiviral shRNA strategy and re-expression on a CRISPR-cas9 knock-out background 

would work better. 

Table 5.1. Examples of common phenotypic effects of HACE1 depletion and PAK hyper-activity in 
cancer cells. à stands for “stimulation of”, and —I stands for “inhibition of”. Mechanisms presented 
in the case of HACE1 loss are all downstream of HACE1 since there are no known upstream 
regulators of HACE1. While for PAK, upstream activation pathways are sometimes indicated

Phenotype 
HACE1 depletion PAK hyper-activity 

Mechanism Reference Mechanism Reference 

àmigration —I Ub and 
degradation of Rac1 

(Castillo-Lluva et 
al. 2012; Goka and 
Lippman 2015) 

TGF-
βàAKTàPAK2 

HER2, HRG 
àPI3KàPAK1 

(Sato et al. 2013) 

(Adam et al. 1998) 
breast cancer 

àinvasion —I Ub and 
degradation of Rac1 

(Goka and Lippman 
2015) breast cancer 

àMMP9 

àFibronectin 
expression 

(Adam et al. 1998) 
breast cancer (Zhou 
et al. 2009; 
Jagadeeshan et al. 
2015) 

à 
Proliferation 

—I G0/G1 arrest.         
(Rac1 à ROS à 
CyclinD1) 

àanchorage-
independent growth 
(clonogenicity) 

(Zhang et al. 2007; 
Daugaard et al. 
2013; Liu et al. 
2014; Goka and 
Lippman 2015) 

àMAPK and MET 
signaling 
àanchorage 
independent growth 
(clonogenicity) 

àCyclinD1 
expression 

àβ-catenin 

(Balasenthil et al. 
2004; Tao et al. 
2011; Shrestha et 
al. 2012) breast 
cancer 

(Zhu et al. 2012) 

à EMT- 
genetic 
program 

—I YB-1 secretion 
—I TNF-α induced 
EMT 

(Palicharla and 
Maddika 2015) 

(this thesis) 

àSnail (Yang et al. 2005) 
breast cancer 
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Conclusions 
 

 
 
It has been repeatedly shown that HACE1 plays an important role in the maintenance of 

cell homeostasis and that the downregulation of HACE1 expression by genetic and 

epigenetic mechanisms has been associated with numerous human diseases. However, the 

regulatory mechanisms of HACE1 activity at the post-translational level have not been 

studied. 

 

My thesis work has established that HACE1 is subjected to regulation by PTM. We have 

demonstrated that HACE1 gets phosphorylated downstream of the Rac1-Cdc42/PAK 

signaling pathway, which results in the modulation of HACE1 ubiquitin ligase activity and 

induces changes in its oligomerization properties. Our results suggest that PAKs are not 

only effectors of active Rac1, but are also involved in a positive feedback loop that 

promotes Rac1 activity by restraining its HACE1-dependent and ubiquitin-mediated 

degradation. 

 

In parallel, this work has identified a novel role of HACE1 in the regulation of epithelial 

adherens junctions and has drawn a link between HACE1 depletion and EMT in mammary 

epithelial cells. We have shown that the loss of HACE1 indirectly promotes the disruption 

of epithelial monolayer integrity and the acquisition of an EMT-like signature characterized 

by a strong E-cadherin to N-cadherin switch that is transcriptionally regulated. This is in 

line with the increased expression of Twist and the upregulation of the phosphorylation 

levels of the EMT-promoting kinases Erk and Src. 

 

In the future, it would be interesting to define the cellular processes that are influenced by 

the phospho-regulation of HACE1, and to determine by which pathways HACE1 stabilizes 

adherens junctions and inhibits EMT. 
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Annex 1.  
Collaborative work 

 

During my PhD, I had the opportunity to participate in one of the on-going projects of 

the team which resulted in the publication of a research paper in the journal Cytoskeleton 

(included in the next page). In this study, we characterized the mechanical properties of 

the stress fibers induced by the Bacillus anthracis lethal toxin (LT) in HUVEC cells and 

determined their role in the disruption of adherens junctions observed in LT-treated cells. 

Additionally, we determined that the formation of LT-induced stress fibers is dependent 

on histone acetylation and on Rnd3/RhoE expression. Moreover, our results indicate that, 

in general, the HDAC/HAT histone acetylation machinery controls the organization of the 

actin cytoskeleton. 

Working in this project allowed me to optimize experimental protocols to study the 

cohesion of cell monolayers (permeability assays) and visualize cell-cell junctions. Which 

was very useful to develop the second aim of my thesis that consisted in exploring the role 

of HACE1 in epithelial adherens junctions. 
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It remains a challenge to decode the molecular basis of
the long-term actin cytoskeleton rearrangements that
are governed by the reprogramming of gene expression.
Bacillus anthracis lethal toxin (LT) inhibits mitogen-
activated protein kinase (MAPK) signaling, thereby
modulating gene expression, with major consequences
for actin cytoskeleton organization and the loss of
endothelial barrier function. Using a laser ablation
approach, we characterized the contractile and tensile
mechanical properties of LT-induced stress fibers. These
actin cables resist pulling forces that are transmitted at
cell–matrix interfaces and at cell–cell discontinuous
adherens junctions. We report that treating the cells
with trichostatin A (TSA), a broad range inhibitor of
histone deacetylases (HDACs), or with MS-275, which
targets HDAC1, 2 and 3, induces stress fibers. LT
decreased the cellular levels of HDAC1, 2 and 3 and
reduced the global HDAC activity in the nucleus. Both
the LT and TSA treatments induced Rnd3 expression,
which is required for the LT-mediated induction of
actin stress fibers. Furthermore, we reveal that treating
the LT-intoxicated cells with garcinol, an inhibitor of

histone acetyl-transferases (HATs), disrupts the stress
fibers and limits the monolayer barrier dysfunctions.
These data demonstrate the importance of modulating
the flux of protein acetylation in order to control actin
cytoskeleton organization and the endothelial cell
monolayer barrier. VC 2015 Wiley Periodicals, Inc.

Key Words: Bacillus anthracis toxin; HAT; HDAC; gene
expression; actin cytoskeleton; vascular permeability

Introduction

Treatment with Bacillus anthracis lethal toxin (LT) pro-
vides a model system for monitoring the relationship

between delayed actin cytoskeleton remodeling and gene
expression [Raymond et al., 2009; Rolando et al., 2010;
Trescos and Tournier, 2012]. Here, we first characterized
the mechanical properties of actin cables in LT-treated cells,
and we explored the relationship between the organization
of the actin cytoskeleton and the enzymatic activity of both
histone acetyl-transferases (HATs) and histone deacetylases
(HDACs).

Numerous pathogens disrupt the endothelial barrier
function of the host via targeting the organization of the
actin cytoskeleton [Lemichez et al., 2010; Aktories et al.,
2011]. For example, vascular leakage, edema, and hemor-
rhages are hallmarks of toxemia during systemic infection
by the Gram-positive bacterium Bacillus anthracis [Abra-
mova et al., 1993; Cui et al., 2004; Moayeri and Leppla,
2009]. B. anthracis synthesizes a three-component toxin;
heptamers/octamers of the protective-antigen (PA63) bind
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to receptors on the host cell and associate with lethal factor
(LF) to generate lethal toxin (LT for PA631LF) and/or
with edema factor (EF) to form edema toxin (ET for
PA631EF). The toxin complexes traffic through the endo-
cytic pathway and are subsequently translocated across the
endosomal membranes [Abrami et al., 2006]. Lethal factor
is an endoprotease that cleaves the amino-terminal region
of MAP kinases/extracellular signal-regulated kinase kinases
(MEKs) and NLRP1, a key component of the inflamma-
some system [Duesbery et al., 1998; Moayeri et al., 2012;
Chavarr!ıa-Smith and Vance, 2013]. Previous studies dem-
onstrated that inhibition of MEKs by LT provokes a pro-
gressive and delayed induction of stress fibers during the
first 24 h of endothelial cell intoxication, a phenomenon
that is associated with the loss of the cortical network of
actin filaments [Warfel et al., 2005; Rolando et al., 2010].
Moreover, the intercellular linear adherens junction (AJs)
reorganize into discontinuous adherens junctions (DAJs) in
LT-treated endothelial cells [Warfel et al., 2005; Rolando
et al., 2010]. DAJs are composed of short actin cables
orthogonal to cell–cell boundaries and are interconnected
by VE-cadherin cell–cell adhesion molecules [Vestweber
et al., 2009; Millan et al., 2010]. This reorganization of AJs
results from a combination of a reduction of the cortical F-
actin network and a reduction of the Rab11/Sec15 exocyst-
regulated delivery of VE-cadherin [Guichard et al., 2010;
Rolando et al., 2010].

The rapid reorganization of the actin cytoskeleton into
stress fibers is primarily controlled by inducing the activity
of the small GTPase RhoA, together with the interplay of
actin-binding proteins [Heasman and Ridley, 2008;
Tojkander et al., 2012]. RhoA, via its effector Rho kinase
(ROCK), controls the ability of non-muscle myosin II
(NMII) to bundle actin filaments into contractile cables by
the phosphorylation-mediated activation of the NMII regu-
latory subunit (MLC). Other signaling pathways, which
remain to be further elucidated, control the formation of
actin cables and their mechanical properties in parallel to
the RhoA/ROCK or MLCK pathways [Tojkander et al.,
2012]. For example, in endothelial cells, the expression of
the atypical GTPase Rnd3/RhoE promotes the formation
of stress fibers [Chardin, 2006; Gottesbuhren et al., 2013].

Since its development, laser ablation nanosurgery has
proven to be a powerful method for analyzing the mechani-
cal properties of stress fibers [Strahs and Berns, 1979;
Colombelli et al., 2005, 2009], thereby improving our
knowledge on the mechanical interplay between actin struc-
tures and cell–cell or cell–extracellular matrix (ECM) con-
tacts, as well as characterizing the diverse types of actin
cables [Kumar et al., 2006; Chang et al., 2009; Tanner
et al., 2010; le Duc et al., 2010]. For instance, the stress
fibers regulated by ROCK or MLCK exhibit differences in
their mechanical properties, indicating the existence of
physical and functional heterogeneities in actin cables

[Kumar et al., 2006; Russell et al., 2009; Tanner et al.,
2010].

In response to LT, endothelial cells progressively produce
actin stress fibers [Warfel et al., 2005; Rolando et al., 2010,
2009]. Remarkably, this process occurs in the absence of
detectable activation of the small GTPase RhoA and MLC
phosphorylation, although inhibition of RhoA/ROCK dis-
rupts the actin stress fibers that form in LT-treated cells
[Rolando et al., 2010, 2009]. LT-treated cells experience
massive transcriptional changes, indicating the importance
of post-translational histone modifications in actin cytoskel-
eton reorganization [Raymond et al., 2009; Rolando et al.,
2010]. Here, we sought to define the mechanical properties
of the stress fibers that form in LT-treated cells and to char-
acterize the interactions between the histone acetylation
machinery, the formation of stress fibers and the integrity
of the endothelial cell monolayer barrier.

Results

LT Promotes the Formation of Tensile and
Stretched Stress Fibers

As previously reported, the cleavage of MAPK kinases
(MEKs) by LT has profound consequences on the organiza-
tion of the actin cytoskeleton in endothelial cells (Figs. 1A–
1C) [Warfel et al., 2005; Rolando et al., 2010]. These
effects can be visualized over time in Fig. 1A, in which all
images of actin staining were acquired using control cell set-
tings of signal acquisition (Fig. 1A). LT treatment induced
a typical dense network of thick, parallel stress fibers, which
filled the cells and was associated with the loss of the corti-
cal F-actin network (Fig. 1A, LT 24 h). The evaluation of
the percentage of cells displaying this typical dense network
of thick stress fibers and loss of cortical actin, as defined in
the inset image of Fig. 1B, established that the actin cyto-
skeleton reorganization progressively affected the entire cell
population after 24 h of intoxication (Fig. 1B). Immunoflu-
orescence analyses of the phospho-active form of MLC (p-
MLC) revealed its association with thick stress fibers (Fig.
1D). Paxillin immunostaining showed that the majority of
the actin cables displayed features of ventral stress fibers
anchored at the extracellular matrix at both ends by focal
adhesions (FAs) (Fig. 1E). Together, these findings indi-
cated the contractile characteristics of the stress fibers in the
LT-treated cells. We then determined the mechanical prop-
erties of this type of stress fiber. We performed our analyses
on HUVECs expressing LifeAct-GFP to monitor the actin
cytoskeleton dynamics after laser ablation. In untreated and
LT-treated cells, we observed that both ends of the cables
undergo a marked recoil along the axis of the cable in both
directions immediately after cutting (Fig. 2A and Support-
ing Information Movies S1 and S2). Figure 2A also shows
that the neighboring cables that were not targeted by the
ablation remained stable. Note that the LifeAct-GFP signal
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Fig. 1. Formation of stress fibers anchored to focal adhesions in endothelial cells treated with the lethal toxin (LT) of B. anthracis.
(A–C) HUVECs were treated with LT (PA1LF, 3 1 1 mg ml21) for the indicated periods of time (h). (A) F-actin was labeled with
phalloidin-TRITC (red), and the nuclei were labeled with DAPI (cyan). Scale bar, 50 mm. The images were taken using equivalent
parameters for image acquisition to evaluate the differences in the stress fiber signal intensities. (B) Percentage of cells displaying
an accumulation of thick stress fibers using the inset image as a model. The data represent the means 6 SEM, n 5 100 cells per
experiment from three independent experiments (ANOVA compared to the untreated condition: *P< 0.05, **P< 0.01,
***P< 0.001). (C) Immunoblot for the cleaved amino terminus of MEK2 (MEK2N20). Actin was used as a loading control. (D
and E) Immunofluorescence analyses of the phalloidin-TRITC-labeled actin stress fibers (red) in untreated or LT-treated (PA1LF,
3 1 1 mg ml21) HUVECs after 24 h. Scale bars, 10 mm. Insets: details of the single channels are shown in gray. The active form
of MLC was labeled with an anti-pMLC antibody (D, green), and the focal adhesions were labeled with an anti-paxillin antibody
(E, green).
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increased at the stress fiber extremities concomitant with
their retraction (Fig. 2A, arrows). In parallel, we measured
the distance of retraction between the split ends and the
instantaneous velocity of retraction (Figs. 2B and 2C). This
analysis revealed that at short time points (<4 s), the

retraction distance and the velocity of recoil of the extrem-
ities were higher in the LT-treated cells than in the controls
(Figs. 2B and 2C). These data suggested the existence of
higher tension in the stress fibers that form in the LT-
treated cells. Subsequently, the retraction of the actin stress

Fig. 2.
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fibers exhibited similar kinetics in both cases. Next, we per-
formed a series of ablations at the extremities of the stress
fibers. We found that the stress fibers retracted away from
the site of ablation (Fig. 2D and Supporting Information
Movie S3 and S4). We also observed that the LifeAct-GFP
signal increased at the ends of stress fibers concomitant
with their retraction (Fig. 2D arrows).

We concluded that cells react to the LT treatment by
inducing the formation of contractile stress fibers that are
stretched by the traction forces originating from focal
adhesions.

Mechanical Properties of the Stress Fibers at
Discontinuous Adherens Junctions

We then characterized the mechanical properties of the
actin cables connecting cells in monolayers treated with LT.
In control monolayers, the major adherens junction mole-
cule VE-cadherin is linearly arranged (Fig. 3A). However,
after 24 h of LT treatment, we demonstrated that
95.8% 6 1.3% of cells displayed discontinuous adherens
junctions (DAJs) that were interspersed with intercellular
gaps (Fig. 3A). We went on to determine whether the actin
cables at the DAJs were pushing or pulling on each other.
To answer this question, we selected adjacent endothelial
cells expressing both LifeAct-mCherry and VE-cadherin-
GFP and performed a series of local laser ablations (Figs.
3B and 3C, yellow circles). We first severed the actin cables
connecting the cells at the level of the VE-cadherin-GFP
signal (Fig. 3B and Supporting Information Movie S5).
This type of ablation produced a retraction of both extrem-
ities toward each cell center and was also associated with a
retraction of the edges of the adjacent cells. This observa-
tion suggested that the cells were pulling on each other. To
further investigate this phenomenon, we performed sequen-
tial ablations at the rear of the DAJs in two neighboring
cells (Fig. 3C and Supporting Information Movie S6). The
first laser ablation at the rear of the actin cable produced a
translocation of the VE-cadherin signal in the direction of
the neighboring cell along the axis defined by the actin
cable connecting the two cells. Ablation at the rear of the
actin cable of the cell located on the right resulted in the
movement of VE-cadherin signal in the opposite direction
(Fig. 3C, yellow arrows).

Thus, the actin cables at DAJs equilibrate the tension
forces emanating from neighboring cells to maintain the
intercellular connections.

Treatment of Cells With TSA Promotes the
Formation of Stress Fibers

Inhibition of MEKs with LT selectively prevents the phos-
phorylation of histone H3 at serine-10 and reprograms the
cell transcriptome [Raymond et al., 2009; Rolando et al.,
2010]. With the aim of counteracting the LT-induced actin
reorganization and restoring the endothelial barrier func-
tion, we searched for chemical inhibitors known to interfere
with gene expression and post-translational histone modifi-
cations and we examined their impact on the formation of
stress fibers. Treating the human endothelial cells with
Actinomycin-D (ActD), a polypeptide from Streptomyces
that binds to DNA and prevents the elongation of tran-
scripts, promoted the formation of a dense network of thin
actin cables, which were less bundled than those induced by
LT (Figs. 4A and 4B). We concluded that interfering with
transcription changes the organization of the actin cytoskel-
eton. Histone acetyl-transferases (HATs) and deacetylases
(HDACs) control the flux of histone acetylation, thereby
modulating gene expression [Cheung et al., 2000]. This
prompted us to test the effect of broad HAT and HDAC
inhibitors on actin organization. HAT inhibitors (anacardic
acid and garcinol) had no marked effect on the actin cyto-
skeleton in control cells, whereas trichostatin-A (TSA), a
broad inhibitor of HDACs, produced ventral stress fibers
similar to those induced by LT (Figs. 4A and 4B). More-
over, we observed paxillin accumulation at the ends of the
stress fibers in the TSA-treated cells, indicating that these
stress fibers are anchored to the FAs (Fig. 4C). Stress fibers
result from the combined polymerization of actin filaments
and their bundling into highly ordered cables. We next
thoroughly compared the effects of the LT and TSA treat-
ments on F-actin polymerization and bundling. To this
end, we developed a semi-automated method of analysis,
which is described in the Supporting Information. Briefly,
we graphed the values of the phalloidin signal intensities
(F-actin signal) along a line perpendicular to the actin fibers
(Fig. 4D). From this graph, we obtained the integral of the
signal intensity above the background. We then calculated a

Fig. 2. Mechanical characteristics of the stress fibers that form in the LT-treated cells. (A) Representative example of actin cable recoil
after laser ablation in LifeAct-GFP-expressing untreated or LT-treated (PA1LF, 3 1 1 mg.ml21) HUVECs after 24 h. The laser abla-
tion areas are depicted by a yellow circle on the zoomed images. The images at 0, 2, 8, and 16’’ were taken from Supporting Infor-
mation Movies S1 and S2. The false colors reflect the intensity of the LifeAct-GFP signal (arbitrary units from 0 to 255). The yellow
arrows indicate the LifeAct-GFP signal accumulation at the edge of actin cables after recoil. The yellow stars indicate the non-severed
stress fibers. Scale bars, 10 mm. (B and C). The graphs show the values for the distance of retraction (B) and velocities (C) between
both extremities after different periods of retractions. The data are presented as the means 6 SEM, n 5 10 fibers, and 1 fiber/cell
from three independent experiments (unpaired Student’s t test compared to the untreated condition: *P< 0.05, **P< 0.01,
***P< 0.001). (D) Laser ablations performed at the end of the stress fibers in untreated or LT-treated (PA1LF, 3 1 1 mg ml21)
LifeAct-GFP-expressing HUVECs after 24 h. The images at 0, 2, 8, and 16’’ were taken from Supporting Information Movies S3
and S4. The false colors reflect the LifeAct-GFP signal intensity (arbitrary units from 0 to 255). The yellow arrows show the accumu-
lation of the LifeAct-GFP signal at the edge of actin cables after recoil. Scale bars, 10 mm.
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Fig. 3. Mechanical characteristics of the actin cables at DAJs in LT-treated endothelial cell monolayers. (A) Immunofluorescence anal-
yses showing the reorganization of the actin cytoskeleton and the cell–cell junctions in endothelial cell monolayers treated with LT
(PA1LF, 3 1 1 mg ml21) for 24 h. F-actin was labeled with phalloidin-FITC (green), and the junctions were labeled with an anti-
Cadherin-5 antibody (VE-Cadherin, red). The insets show the details for each individual channel in gray. Scale bars, 10 mm. (B and
C) Zone of laser ablation at the discontinuous adherens junctions (DAJs) in LT-treated HUVECs expressing LifeAct-mCherry (red)
and VE-Cadherin-GFP (green) at time 0” are indicated by the yellow circles. The vertical bar serves as a reference location. The yel-
low arrows indicate the direction of movement of the VE-cadherin signal after ablation. The images were taken from the original
Supporting Information Movies S5 and S6 at the indicated time points after cutting. Scale bar, 10 mm. (B) Example of an ablation
performed at the level of VE-cadherin in a DAJ. (C) Two examples of ablations performed at the rear of the DAJ, first on the left
(upper circle), followed by ablation on the right of the DAJs (lower circle). The yellow arrows indicate the direction of movement of
the VE-cadherin-GFP (green) signal after ablation (C). Insets: the details of the single channels for LifeAct-mCherry (Actin) or VE-
cadherin-GFP (Cadh) are shown in gray.
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Fig. 4. Formation of stress fibers in TSA-treated cells. (A) Representative examples of HUVECs treated for 24 h with LT (PA1LF,
3 1 1 mg ml21) or the following different inhibitors, as well as the untreated controls: Anacardic acid (20 mM), Garcinol (25 mM),
Trichostatin-A (TSA, 50 mM), or Actinomycin D (ActD, 1 mg ml Supporting Information). F-actin was labeled with phalloidin-
FITC (gray). Scale bar, 10 mm. (B) The graph shows the percentage of cells displaying reorganization of actin cytoskeleton, as exem-
plified in (A). The data represent the mean values 6 SEM, n 5 100 cells per experiment from three independent experiments
(ANOVA compared to the Untreated condition: ns: non-significant, ***P< 0.001). (C) Immunofluorescence analyses of the TSA-
triggered actin stress fibers. Scale bar, 10 mm. Insets: the details of the single channels are shown in gray. F-actin was labeled with
phalloidin-TRITC (actin), and the focal adhesions were labeled with an anti-paxillin antibody (paxillin). Scale bar, 10 mm. (D)
Schema of the experimental methodology used in the text to determine the bundling and polymerization indexes. The dotted line
corresponds to the mean value (n 5 3 measurements per cell) of the background signal intensity measured between two cables. (E
and F) Measures of F-actin polymerization and bundling in untreated cells or treated with LT, ActD (1 mg ml21) or TSA (50 mM)
for 24 h. The data are represented as the mean values 6 SEM, n 5 15 cells analyzed per experiment from three independent experi-
ments (ANOVA compared to the untreated condition: ns: non-significant, *P< 0.05, ***P< 0.01).



bundling index that corresponds to the sum of integrals
divided by the number of cables in a cell and a polymeriza-
tion index that corresponds to the sum of integrals divided
by the total distance analyzed. The quantifications revealed
that F-actin polymerization increased to a similar extent in
both the TSA- and LT-treated cells (Figs. 4E and 4F),

whereas the F-actin bundling index was slightly higher in
the LT-treated cells compared to the TSA-treated cells (Fig.
4E). We then screened chemical compounds targeting dif-
ferent HDAC members for their ability to induce stress
fiber polymerization [Bolden et al., 2006]. Tubacin, a spe-
cific HDAC6 inhibitor, did not induce detectable changes

Fig. 5.
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in the stress fibers (Figs. 5A and 5B) [Zhang et al., 2007].
However, both butyrate, which inhibits class I and IIa
HDACs, and MS-275, which targets HDAC1, 2, and 3,
produced a massive induction of stress fibers (Fig. 5A).
Using the examples of actin reorganization shown in Fig.
5A as references, we estimated that the butyrate and MS-
275 treatments affected a majority of the cells (Fig. 5B).
Consistent with the above findings, we observed decreases
in the protein levels of HDAC1, 2, and 3 in cells treated
with LT for 24 h (Figs. 5C and 5D). Complementary to
this approach, we evaluated the global HDAC activity in
the cellular fractions using a colorimetric assay that reports
the quantity of a deacetylated lysine substrate. No variation
of the global HDAC activity was recorded in the cytosolic
fractions of the LT-treated cells. In contrast, we measured a
decrease of 12.5% 6 2.5% in the global HDAC activity in
the nuclear fractions of cells treated with LT for 24 h (Fig.
5E). Here, we link the LT-triggered cytotoxicity to actin
cytoskeleton organization and to the activity of a subset of
HDAC enzymes.

Induction of Rnd3 Expression in the LT- and
TSA-treated Cells

We then assessed the level of RhoA activity in both the LT-
and TSA-treated cells to better understand the molecular
mechanisms leading to stress fiber induction in these condi-
tions. Despite the formation of thick actin cables, we did
not measure an increase in the level of active RhoA in either
treatment conditions (Figs. 6A and 6B). Cells treated with
the CNF1 toxin were included as a positive control for
RhoA activation [Doye et al., 2002; Rolando et al., 2010].
We concluded that the massive increase in stress fiber for-
mation observed in the LT- and TSA-treated cells occurs
without a detectable increase in the level of active RhoA.
Given that the expression of Rnd3 also promotes the for-
mation of stress fibers, we hypothesized that the induction
of this GTPase might favor the formation of stress fibers in
these conditions. Figure 6C shows that both the LT and
TSA treatments increased the Rnd3 mRNA levels (8.6-fold
and 3.3-fold, respectively). Immunoblotting confirmed that
the cells treated with LT or TSA displayed higher cellular
levels of Rnd3 (Fig. 6D). Furthermore, we observed that a
reduction of the Rnd3 level by RNAi impaired the

formation of actin stress fibers in the LT-treated cells (Fig.
6E). The quantification of the phenotypes shown in Fig. 6E
established that the Rnd3 RNAi treatment inhibited the
LT-induced effects on actin reorganization by twofold (Fig.
6F). The RNAi and toxin effects were verified and sup-
ported the idea that Rnd3 knockdown did not block LT
proteolytic activity on MEKs (Fig. 6G). Additionally, we
did not observe major changes in the cellular RhoB levels
(Fig. 6G). Collectively, our results show that the accumula-
tion of stress fibers in LT-treated cells requires the expres-
sion of the small GTPase Rnd3.

Garcinol Treatment Partially Reverses the
LT-induced Actin Cytoskeleton Remodeling

The data described above prompted us to test the effect of
inhibiting the flux of histone acetylation as a strategy for
reducing the effects of LT on the actin cytoskeleton.
HUVECs treated with the HAT inhibitor garcinol showed
no significant changes in the organization of the actin cyto-
skeleton (Fig. 7A). Figure 7B shows the quantification of the
inhibitory effect of garcinol on the LT-induced reorganization
of the actin cytoskeleton using the phenotype of actin reor-
ganization shown in Fig. 7A as examples. In contrast, we
observed that treating HUVECs with both LT and garcinol
partially reversed the toxin-induced actin cytoskeleton
remodeling (Figs. 7A and 7B). In addition, we observed that
treating the cells with garcinol limits the LT-triggered induc-
tion of Rnd3 (Fig. 7C). This result prompted us to evaluate
the protective effect of garcinol on the toxin-induced reor-
ganization of the intercellular junctions triggered. Figure 7D
shows examples of the F-actin and VE-cadherin distributions
at the intercellular junctions of endothelial cell monolayers
treated with LT. In the LT-treated monolayers, we found that
95.75% 6 1.25% of the cells displayed discontinuous adhe-
rens junctions (Fig. 7E). Cotreatment of the intoxicated cell
monolayers with garcinol markedly reduced the formation of
DAJs to 50% 6 13% of the cell population (Figs. 7D and
7E). We next evaluated the effect of garcinol on the endothe-
lial cell monolayer barrier function by measuring the diffu-
sion of FITC-dextran across the monolayers. We found that
LT reduced the monolayer barrier, an effect that was scaled
down twofold upon treating monolayers with garcinol (Fig.
7F). Thus, we report here that the garcinol treatment reduced

Fig. 5. Relationship between the inhibition of HDAC isoforms and the formation of stress fibers. (A) Analyses of the actin cytoskele-
ton organization in HUVECs treated with Tubacin (10 mM), Sodium butyrate (3 mM) or MS-275 (3 mM) for 24 h and the
untreated controls. F-actin was labeled with Phalloidin-FITC (gray). Scale bar, 10 mm. (B) The graph shows the percentage of cells
displaying reorganization of the actin cytoskeleton, as exemplified in (A). The data are presented as the means 6 SEM, n 5 100 cells
per experiment from three independent experiments. (C) Immunoblotting showing the level of HDAC1, 2 and 3 in response to LT
(PA1LF, 3 1 1 mg ml21) or LF alone (1 mg ml21) after 24 h of treatment. Actin was used as a loading control, and the amino ter-
minus of MEK2 (MEK2N20) was used as a control for toxin activity. (D) The graph shows the quantification of the HDAC protein
levels normalized to the actin signal. The values are expressed as the fold changes relative to the untreated condition (means 6 SEM;
n 5 4, unpaired, one-sided Student’s t test: *P< 0.5 and **P< 0.001). (E) The graph shows the values of the total HDAC activities
examined in the cytosolic and nuclear protein fractions, as described in the Materials and Methods section. The HUVECs were
untreated or intoxicated with LT for the indicated periods of time (h) (means 6 SEM; n 5 3, ANOVA compared to the untreated
condition: *P< 0.05; **P< 0.01).
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the LT-induced cytoskeleton remodeling and partially
restored the barrier function of the endothelial monolayers.

Discussion

It is important to delineate how the reprogramming of gene
expression governs actin cytoskeleton reorganization. We

previously demonstrated that the lethal toxin (LT) of B.
anthracis reprograms the cell transcriptome with major con-
sequences for the organization of the actin cytoskeleton.
Here, we report that the stress fibers that form in response
to cellular intoxication with LT are tensile and under ten-
sion. Furthermore, we show that the actin cables at DAJs
compensate for the disruptive tension generated between

Fig. 6.
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neighboring cells, thereby maintaining some cell–cell cohe-
sion. LT treatment induces the formation of contractile
actomyosin cables that are stretched by the traction forces
originating from focal adhesions or cell–cell junctions.
Importantly, we show that the flux of histone acetylation
balanced by HAT/HDAC enzyme activities regulates the
formation of stress fibers, and we implicate this regulation
in the induction of actin stress fibers by LT. We also pin-
point the importance of Rnd3 expression in the induction
of stress fibers by LT. Finally, we report that garcinol, an
inhibitor of histone acetyl-transferases (HATs), reduces the
cytotoxic effects of LT on the actin cytoskeleton and on
endothelial cell monolayer barrier function.

The LT-treated cells display a dense network of thick
actin cables. Severing the actin cables by means of laser
ablation allowed us to characterize the mechanical proper-
ties of the stress fibers that form in the LT-intoxicated cells.
This approach establishes their contractile and tensile char-
acteristics. We unambiguously show that the stress fibers
produced in the LT-intoxicated cells resist the contractile
forces generated at the cell-matrix interface. A previous
study reported different mechanical properties of thick
stress fibers, specifically higher friction with the surround-
ing cytoskeleton [Kumar et al., 2006]. Here, our quantita-
tive measurements show that the thick stress fibers display a
faster retraction velocity in the LT-treated cells at a short
time point that corresponds to the elastic regime. This find-
ing suggests that these fibers are more tense, stiffer, or both,
which is in good agreement with our observation that LT
induced a thickening of the stress fibers. However, their vis-
cous behavior after 4 s of recoil appears to be equivalent in
the control cables. In accord with these findings, we found
that the cables that form in the LT-treated cells exhibit a
strong phospho-MLC signal, which suggested a high
capacity of actomyosin contraction driven by myosin II. In
the LT-treated monolayers, linear adherens junctions
undergo a conversion into discontinuous adherens junc-
tions. We also used laser ablation to characterize the actin
cables at the DAJs. Here, we establish that the actin cables
at DAJs resist the disruptive forces that tend to compromise

cell–cell cohesion in the monolayer. Based on these find-
ings, a likely scenario is that actin cables form in response
to treatment with LT to compensate for the disruptive
forces induced by the toxin’s actions.

The hijacking of post-translational histone modifications
by microbial factors is emerging as an important aspect of
host-pathogen interactions during infection [Hamon and
Cossart, 2008]. Interestingly, we report here the importance
of components of the histone acetylation machinery in the
control of actin cytoskeleton organization. We also impli-
cate the inhibition of HDACs in LT-induced actin cytoskel-
eton reorganization into actin cables. Note that contrary to
LT, treatment with TSA does not trigger a decrease in the
cellular phospho-ERK levels (data not shown). This result
indicates that there are common features and differences
between the modes of action of LT and TSA. As previously
reported, we did not observe the activation of the RhoA/
ROCK pathway in the LT-treated cells, although this sig-
naling is required to the maintain actin cables [Rolando
et al., 2010]. Additional pathways involved in gene expres-
sion likely contribute to the promotion of actin cable bun-
dling and contraction. Our previous data regarding LT
indicated that the induction of stress fibers by the toxin
involved the combined modulation of the expression of sev-
eral genes, notably cortactin (CTTN), calponin-1 (CNN1),
desmuslin (DMN), and rhophilin-2 (RHPN2) [Rolando
et al., 2010]. Here, we found that TSA modulates the
expression of a majority of these genes (CTTN, DMN and
RHPN2) in the same way as LT (data not shown). More-
over, we report here the induction of Rnd3, an atypical
small Rho GTPase known to produce stress fibers in endo-
thelial cells [Gottesbuhren et al., 2013], as a common con-
sequence of treating the cells with LT or TSA. Together, our
data indicate a sharp overlap between the effects of LT and
TSA on actin cytoskeleton organization and the regulation
of a set of actin regulators. The precise HDAC isoform(s)
responsible for modulating the organization of the actin
cytoskeleton remain to be identified; however, using
MS-275, we pinpointed the role of HDAC 1, 2, and 3.
Consistent with these findings, we also measured a decrease

Fig. 6. LT and TSA induce stress fiber formation via Rnd3 accumulation. (A and B) Measurement of active RhoA in cells treated
with LT (PA1LF, 3 1 1 mg ml21), TSA (50 mM) or the RhoA activating toxin CNF1 (positive control, 1029 M, 4 h) for 24 h and
the untreated controls. Immunoblotting for RhoA shows the levels of active RhoA (RhoAGTP) and total RhoA (RhoA). (B) The
graph shows the values for active RhoAGTP normalized to the total amount of RhoA. The values are expressed as the fold change
relative to the control (means 6 SEM; n 5 3, ANOVA compared to the untreated condition: *P< 0.05). (C) Quantification of the
Rnd3 mRNA level in untreated, LT-treated or TSA-treated cells after 24 h, as indicated. The values are expressed as the fold change
relative to the control condition (means 6 SEM; n 5 3. ANOVA compared to the untreated condition: *P< 0.05; **P< 0.01). (D)
Immunoblotting showing the increase in the protein level of Rnd3 in the LT- or TSA-treated cells. Actin was used as the loading
control, and the Rnd3 protein levels are expressed as the fold change relative to the control condition. One representative experiment
of n 5 3 experiments. (E–G) The cells were transfected with a control or Rnd3 siRNA and treated for 24 h with or without LT. (E)
F-actin was labeled with Phalloidin-FITC (green). Scale bar, 10 mm. (F) Percentage of cells displaying thick actin cables. As exempli-
fied in (E) in the LT-treated condition. The data are represented as the means 6 SEM and compared to the untreated condition using
an ANOVA: ***P< 0.001, n 5 30 to 50 cells analyzed per experiment from three independent experiments. (G) Immunoblots show-
ing the Rnd3 RNAi-mediated knockdown as a control for the data presented in E, as well as the cellular levels of RhoB. The proteo-
lytic activity of LT was analyzed by anti-MEK2N20 immunoblotting (MEK2N20). Actin was used as the loading control.
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in the protein levels of HDAC1, 2, and 3 in the LT-
intoxicated cells. Finally, we report that treating the endo-
thelial cells with LT provokes a decrease in the global
HDAC activity in the nuclear fractions. This result sup-
ports the hypothesis that histone deacetylases act at the level
of specific gene promoters to control actin organization,

rather than a direct action of HDACs on cytosolic actin
regulators. Our data reject the hypothesis that the effect of
the toxin depends on HDAC6 activity; recent findings sug-
gested a role of the cytoplasmic HDAC6 in controlling the
association of cortactin with the actin filaments [Zhang
et al., 2007; Kaluza et al., 2011]. Given that cortactin

Fig. 7.
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controls the assembly of the F-actin at the plasma mem-
brane, its reduction by freeing a pool of actin molecules
likely favors stress fiber assembly [Selbach and Backert,
2005]. The observation that the acetylation of cortactin by
the cytoplasmic HDAC6 is likely not implicated in the LT-
induced formation of stress fibers is also supported by the
finding that tubacin had no detectable effect on actin poly-
merization. The effect of LT on nuclear HDACs does not
correlate with a broad increase in histone acetylation, as
observed using pan-acetyl histone H3 and H4 antibodies
(not shown). These observations point to a possible action
of the toxin on histone acetylation at the level of specific
promoters. Clarifying this type of regulation is of interest,
considering that little is known about the unconventional
regulation of the actin cytoskeleton, notably by HDACs
and HATs [Cheung et al., 2000].

Modulating the organization of the actin cytoskeleton is
one strategy for controlling endothelial barrier function.
The complete inhibition of RhoA or ROCK was previously
assessed as a strategy for rescuing the alterations to the
endothelial barrier following LT treatment. Unexpectedly,
this strategy failed due to an increase in transcellular perme-
ability driven by the opening of large transcellular tunnels
[Rolando et al., 2009]. This prompted us to search for
another strategy linked to the effects of LT on the cellular
transcriptome. Histone acetylation is tightly controlled by
the antagonistic activities of HDACs and HATs [Andrew
and Bannister, 2011]. HDAC inhibition with TSA pro-
motes the formation of DAJs and increases endothelial cell
monolayer permeability (data not shown). Garcinol is a
polyisoprenylated benzophenone derivative from the plant
Garcinia indica that possess a potent inhibitory effect on
the HATs p300 and PCAF and is a promising anti-cancer
molecule in vivo [Liu et al., 2015]. Here, we report that
garcinol treatment rescues the cytotoxicity of LT on
HUVEC monolayers. We attributed this effect of garcinol
to its ability to block the LT-induced actin cytoskeleton
reorganization and to rescue the cohesion of cell–cell junc-
tions. Note that the other HAT inhibitor, curcumin, also
disrupted the actin cables produced by LT (data not
shown). We report that treatment with garcinol partially

reversed the induction of Rnd3 by LT. These findings fur-
ther point to the importance of Rnd3 in the LT-induced
control of the actin cytoskeleton.

Collectively, our data reveal that the histone acetylation
HDAC/HAT machinery controls the organization of the
actin cytoskeleton.

Materials and Methods

Cell Culture Permeabilization Assays and
Chemical Reagents

Endothelial HUVEC cell cultures (PromoCell, Heidelberg,
Germany) and permeability assays were performed as previ-
ously described [Boyer et al., 2006]. Briefly, HUVEC
monolayers were grown on gelatin-coated polyester filters
(3-lm pore size; Greiner Bio-One) for 3 days and treated
with 3 lg ml21 of PA and 1 lg ml21 of LF in supple-
mented SFM. The variations in the permeability of each
monolayer were quantified after 24 h by measuring the
amount of FITC-dextran 70 kDa (Invitrogen, Cergy Pon-
toise, France) that diffused across the monolayer (starting
concentration: 0.5 mg ml21). The samples were collected
from the lower chamber after 10 min. The levels of FITC-
dextran were determined with a Fluoroscan Ascent (excita-
tion: 485 nm; emission: 538 nm; Thermolab System). The
HAT and HDAC inhibitors were purchased from ENZO
Life Sciences and used at the indicated concentrations: gar-
cinol (25 mM), Trichostatin A (TSA) (50 lM), tubacin (10
mM), MS-275 (3 mM), sodium butyrate (3 mM), anacardic
acid (20 mM). Other biochemical reagents were purchased
from Sigma Aldrich. The RNAi (Dharmacon) transfections
were performed as previously described [Torrino et al.,
2011].

Recombinant Toxin Production and Biochemical
Measurements

The protective antigen (PA), lethal factor (LF) and CNF1
were purified as previously described [Doye et al., 2006;
Rolando et al., 2010]. All proteins were applied onto an
EndoTrap Red column, and the absence of endotoxin was
assessed using the Limulus Amebocyte Lysate QCL-1000

Fig. 7. Protective effect of garcinol against LT-induced actin reorganization and endothelial cell monolayer permeability. (A–F) Endo-
thelial cells were untreated (Untr) or treated with LT (PA1LF, 3 1 1 mg ml21), garcinol 25 mM (Gar) or a combination of LT and
Garcinol (LT1Gar) for 24 h. (A) Representative images of the actin cytoskeleton organization. (B) The graph shows percentage of
cells displaying thick actin cables, as exemplified in (A), due to the LT treatment (mean values 6 SEM; n 5 3. ANOVA compared to
the untreated condition: ns: non-significant, and ***P< 0.01.) (C) Immunoblot showing the Rnd3 protein levels in the LT-treated
cells or LT- and garcinol-treated (25 mM) cells after different periods of time (hours). Protein loading was verified by anti-actin
immunoblotting (Actin). The LT activity was monitored by anti-MEK2N20 immunoblotting. (D) Representative images of the actin
cytoskeleton in endothelial cell monolayers. F-actin was labeled with Phalloidin-FITC (Actin: green) and VE-Cadherin was labeled
with an anti-Cadherin-5 antibody (VE-Cadh: red). The insets show the details for each single channel (gray). Scale bar, 10 mm. (E)
The graph shows the quantification of the percentage of cells displaying DAJs with neighboring cells (mean values 6 SEM; n 5 3.
ANOVA compared to the untreated condition: ns for nonsignificant, **P< 0.01, ***P< 0.001). (F) Measures of endothelial perme-
ability: the values for the diffusion of FITC-dextran across the Transwell chamber are expressed in arbitrary units (A.U.). Each point
corresponds to the mean values 6 SEM, n 5 3 independent experiments; ANOVA compared to the untreated condition: ns for non-
significant, *P< 0.05, ***P< 0.001).
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(Cambrex). The activity of the PA and LF proteins was rou-
tinely tested and resulted in 100% MEK2 cleavage after 2 h
of HUVECs intoxication (PA1LF, 3 1 1 mg ml21) (see
Fig. 1C as an example). The presence of active RhoA
(RhoAGTP) in the cell lysates was determined by affinity
chromatography, as previously described [Doye et al.,
2006]. Cell fractionation was performed using the NE-PER
TM Nuclear and Cytoplasmic Extraction Reagents accord-
ing to the manufacturer’s procedures (Life Technologies).
The global HDAC activity was determined using the
HDAC Colorimetric Assay Kit (BioVision). Fifty micro-
grams of the cytoplasmic and nuclear fractions were incu-
bated with the acetylated-lysine substrate for 1 h at 378C,
followed by a 30-min incubation with the lysine developer.
The absorbance of the deacetylated substrate reacting with
the lysine developer was measured at 405 nm. For the
immunoblots, the proteins were resolved on 12% SDS-
PAGE gels using standard conditions and transferred to
Immobilon-P PVDF membranes (Millipore). The antibod-
ies used were as follows: an antibody directed toward the
amino-terminal part of MEK2 (MEK2N20, Santa Cruz),
anti-RhoA [clone 26C4] (BD Biosciences), anti-RhoE/
Rnd3 [clone4] (Millipore), anti-RhoB (Santa Cruz), anti-
HDAC1 [clone 2E10] (Millipore), anti-HDAC2 [clone
3F3] (Upstate), anti-HDAC3 [clone H99] (Santa Cruz),
anti-beta-actin [clone AC74] (Sigma), anti-Histone H4ac
(pan-acetyl), and anti-Histone H3ac (pan-acetyl) (Active-
Motif ). The primary antibodies were revealed using horse-
radish peroxidase-conjugated goat anti-mouse or anti-rabbit
secondary antibodies (DAKO) followed by chemilumines-
cence using Immobilon Western (Millipore). The chemilu-
minescent signals were recorded on a FUJIFILM LAS-
3000, and the data were quantified using the MultiGauge
V3.0 software.

Immunofluorescence and Photoablation
Experiments

Immunofluorescence studies were performed on cells fixed
in 4% paraformaldehyde (Sigma). The actin cytoskeleton
was labeled using 1 lg ml21 FITC- or TRITC-conjugated
phalloidin (Sigma). The anti-pT18-pS19-MLC (Cell Sig-
naling), anti-cadherin-5 (BD transduction), and anti-
paxillin (BD transduction) antibodies were detected using
Texas RED- or FITC-conjugated secondary antibodies
(Invitrogen). The fluorescent signals were analyzed with an
LSM510-Meta confocal microscope using a 633 or 253
magnification lens (Carl Zeiss). Each picture represents the
projection of four serial confocal sections. We routinely set
the conditions for signal acquisition based on the control
cells prior to imaging the cells treated with LT or the differ-
ent HDAC or HAT inhibitors to compare the stress fiber
content and intensity. The laser ablation experiments were
performed in HUVECs expressing LifeAct-mCherry (gift
from P. Chavrier, Institut Curie, Paris) and LifeAct-GFP

(Ibidi) or VE-Cadherin-GFP [Boyer et al., 2006]. These
experiments were performed with an Inverted Laser Scan-
ning Confocal LSM710NLO microscope (Zeiss). The laser
ablations were performed with a 2-photon-type laser scaled
to 805 nm with a pulse width <100 fs (30 iterations 3
acquisition every 2 s). The images were processed with
ImageJ and QuickTime pro 7 software (Apple). The bun-
dling and polymerization indexes were calculated using the
ImageJ plugin described in the Supporting Information.

Statistical Analysis

The data were analyzed with the statistical software Prism
5.0b. Unless specified in the figure legend, the significance of
the data was evaluated with a one-way ANOVA and Bonfer-
roni’s post hoc test (*P< 0.05, **P< 0.01, ***P< 0.001).
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Résumé 
La protéine HACE1 est une enzyme de la famille des E3 ubiquitine ligase de type HECT qui joue 
un rôle clé dans la régulation de l’homéostasie cellulaire. Elle contrôle notamment l’activité de la 
petite GTPase Rac1 en catalysant l’ubiquitination de sa forme activée pour un ciblage au 
protéasome 26S. Rac1 est un gène essentiel qui contrôle de nombreux processus cellulaires tels que 
l’adhérence, la migration et la prolifération. Aussi, la perte d’expression d’HACE1 dues à des 
altérations génétiques ou épigénétiques est associée à de nombreuses pathologies humaines tels que 
le cancer, des syndromes neurodégénératifs et des maladies développementales. Pourtant, malgré 
l’importance de HACE1 en physiopathologie, rien n’est connu à ce jour sur la régulation post-
traductionnelle de son activité. Au cours de ce travail, nous avons montré que la serine 385 de 
HACE1 est phosphorylée par les kinase PAKs de groupe I, en réponse à l’activation de Rac1 et de 
Cdc42. Nous montrons que le mutant HACE1(S385E), qui mime la forme phosphorylée de HACE1, 
présente une activité réduite d’ubiquitination de Rac1. De plus, nous mettons en évidence un rôle 
centrale de la régulation de la Ser-385 par phosphorylation dans l’oligomérisation de HACE1, 
définissant ainsi les bases moléculaires de la relation entre structure et fonction de HACE1. En 
parallèle, nous avons déterminé que la perte d’expression d’HACE1 altère la cohésion des jonctions 
entre cellules épithéliales. Cet effet de dissociation s’apparente à une transition épithelio-
mésenchymateuse (EMT) caractérisée par un échange d’expression de la E-cadhérine par la N-
cadhérine régulé au niveau transcriptionnel. L’ensemble de ce travail a donc permis de mettre en 
évidence un mode inédit de régulation par phosphorylation de l’activité de HACE1 contrôlée par 
les kinases PAK du groupe I, ainsi qu’un rôle majeur de HACE1 dans la régulation de la cohésion 
cellulaire et l’EMT. 
 
 
Abstract 
The E3 ubiquitin ligase HACE1 is a key regulator of cellular homeostasis best-characterized for its 
ability to control the activity of the Rho GTPase Rac1. This GTPase is encoded by an essential 
gene whose product controls a wide array of cellular processes such as cell adhesion, migration and 
proliferation. Accordingly, the repression of HACE1 expression due to genetic and epigenetic 
alterations has been associated with numerous pathologies, including cancer, neurodegenerative 
and developmental diseases. However, nothing is known about the posttranslational regulation of 
HACE1 activity. Here, we unveiled that HACE1 gets phosphorylated at serine Ser-385 by Group-
I Pak kinases in response to Rac1/Cdc42 activation. Mechanistically, we define that the phospho-
mimetic mutant HACE1(S385E) displays a lower capacity to ubiquitinate Rac1 in cells. In addition, 
our work attributes to the phosphorylation of Ser-385 a pivotal role in the state of HACE1 
oligomerization, which sets the basis for deciphering the relationship between HACE1 structure 
and activity. In parallel, we have found that the loss of HACE1 expression leads to the disruption 
of epithelial monolayer cohesion characterized by disrupted of cell-cell junctions. Accordingly, we 
determined that loss of HACE1 results in the acquisition of epithelial-mesenchymal transition 
(EMT) features, including a transcriptionally regulated switch of expression between E-cadherin 
and N-cadherin. Altogether, this work reveals a phospho-mediated regulation of HACE1 activity 
that is under the control of Group I PAKs and implicates HACE1 in the balance between 
epithelium integrity versus EMT. 
 


