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Résumé 

Les structures de génie civil, en particulier les ponts en béton armé, doivent être conçues et 
gérées pour assurer les besoins de transport et de communication dans la société. Il est 
indispensable de garantir un fonctionnement convenable et sécuritaire de ces structures, puisque 
les défaillances peuvent conduire à des perturbations du transport, des pertes catastrophiques 
de concessions et des pertes de vies humaines, avec des impacts économiques, sociétaux et 
environnementaux graves, à court et à long termes. Les gestionnaires entreprennent diverses 
activités pour maintenir la performance et le fonctionnement adéquat à long terme, tout en 
satisfaisant les contraintes financières et sécuritaires. Idéalement, ils peuvent recourir à des 
techniques d'optimisation pour établir les compromis entre la réduction du coût du cycle de vie 
(LCC) et la maximisation de la durée de vie. Cela nécessite le développement de l’analyse du 
cycle de vie, de l’analyse de fiabilité et de l'optimisation structurale. 

Les approches actuelles pour la conception et la gestion des structures s’appuyant sur 
l’analyse du coût de cycle de vie, montrent les besoins suivants : (1) une approche intégrée et 
systématique pour modéliser de façon cohérente les processus de dégradation, les charges de 
trafic, le vieillissement et les conséquences directes et indirectes de la défaillance, (2) une 
considération complète des dépendances économiques, structurales et stochastiques entre les 
différents éléments de l’ouvrage, (3) une approche permettant de modéliser efficacement un 
système structural formé de plusieurs éléments interdépendants, (4) une évaluation des 
conséquences de la dégradation et de la redistribution des charges entre les éléments en tenant 
compte de la redondance du système et de la configuration de l’ouvrage, (5) une méthode 
d'optimisation de la conception et de la maintenance qui préserve l’exigence de fiabilité tout en 
considérant la robustesse de la décision. 

L'objectif global de cette thèse est de fournir des procédures améliorées qui peuvent être 
appliquées à la conception et à la gestion fiabilistes et robustes des ouvrages en béton armé, en 
réduisant les coûts supportés par les gestionnaires et les utilisateurs, tout en tenant compte des 
dépendances entre les éléments. 

Dans la première partie de cette thèse, une synthèse bibliographique concernant les 
procédures de la conception et de la maintenance basée sur des calculs fiabilistes est présentée, 
et les différents composants du LCC sont développés.  

Ensuite, une approche est proposée pour la conception des ouvrages en tenant compte du 
coût aux usagers et en intégrant dans la fonction du coût de cycle de vie. Le modèle couplé 
corrosion-fatigue est aussi considéré dans l’optimisation de la conception. 

La planification de la maintenance des ouvrages est ensuite développée, en considérant les 
différents types d'interaction entre les éléments, en particulier les dépendances économiques, 
structurales et stochastiques. Ce modèle utilise l'analyse de l'arbre de défaillance et les 
probabilités conditionnelles pour tenir compte des dépendances dans la planification de la 
maintenance. Les conséquences de la dégradation et de la redistribution des charges sont prises 
en compte dans l'approche proposée. Par ailleurs, une méthode pratique de calcul de la fiabilité 
d'un système formé de plusieurs composantes interdépendantes est proposée, à travers un 
facteur de redondance calculé par la modélisation mécanique.  



ii 
 

Enfin, une nouvelle procédure d'optimisation est proposée, permettant de tenir compte des 
incertitudes dans le système et la capacité structurale de s'adapter aux variabilités intrinsèques. 
La procédure proposée tient compte des incertitudes et de la variabilité dans une formulation 
cohérente, validée au moyen des applications numériques. 

Les approches proposées dans ce travail offrent des outils d’aide à la décision pour la 
conception et la gestion optimales et robustes des structures en béton armé, en tenant compte 
des incertitudes, de la variabilité et de l’interaction entre les éléments, ainsi que des différentes 
conséquences directes et indirectes de la défaillance. 

 

Mots-clés : analyse du coût du cycle de vie, coûts aux usagers, dégradation, dépendance 
économique, dépendance structurale, dépendance stochastique, probabilité de défaillance, 
conception fiabiliste, conception robuste, optimisation. 
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Abstract 

Civil engineering structures, particularly reinforced concrete bridges, should be designed and 
managed to ensure the society needs. It is crucial to assure that these structures function properly 
and safely as damage during the service life can lead to transport disturbance, catastrophic loss 
of property, causalities, as well as severe economic, social, and environmental impacts, in 
addition to long term consequences. Decision-makers adopt various activities to maintain 
adequate long-term performance and functionality while satisfying financial constraints. 
Ideally, they may employ optimization techniques to identify the trade-offs between minimizing 
the life-cycle cost (LCC) and maximizing the expected service life. This requires the 
development of three challenging chores: life cycle analysis, reliability analysis and structural 
optimization.  

The current approaches for the design and management of structures through a Life-cycle 
cost analysis (LCCA) highlight the following needs: (1) an integrated and systematic approach 
to model coherently the deterioration processes, the increasing traffic loads, the aging and the 
direct and indirect consequences of failure, (2) a mutual consideration of economic, structural 
and stochastic dependencies between the elements of a structural system, (3) an adequate 
approach for the deterioration dependencies and load redistribution between the elements, (4) 
an improvement of system reliability computation as a function of the structural redundancy 
and configuration that can take into account the dependencies between the elements, (5) a 
consideration of design and maintenance optimization procedures that focus coherently on the 
robustness of the management decision and on the satisfaction of reliability requirements. 

The overall objective of this study is to provide improved LCCA and procedures that can 
be applied to select optimal and robust design and maintenance decisions regarding new and 
existing reinforced concrete structures, by minimizing both manager and user costs, while 
providing the required safety along the structure lifetime, taking into account the most severe 
degradation processes and the dependencies between structural elements.  

In the first part of this thesis, a literature review concerning the current probabilistic design 
and maintenance procedures is presented, and the LCC components are discussed.  

Then, a new approach is developed to evaluate the user delay costs on a reinforced concrete 
bridge structure, based on direct and indirect costs related to degradation and failure, and to 
integrate it to the life cycle cost function, in order to allow for probabilistic design. In addition, 
the coupled corrosion-fatigue model is considered in the design optimization.  

Afterward, a structural maintenance planning approach is developed to consider the three 
types of interactions, namely economic, structural and stochastic dependencies. The proposed 
model uses fault tree analysis and conditional probabilities to reflect the dependencies in the 
maintenance planning. The consequences of degradation are evaluated and a method is 
proposed to account for the load redistribution. Moreover, a practical formulation for 
quantifying the reliability of a system formed of interrelated components is proposed, by the 
mean of a redundancy factor that can be computed by finite element analysis.  

Finally, a new optimization procedure is proposed, by taking into account the uncertainties 
in the analysis, and the structural ability to adapt to variability, unforeseen actions or 
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deterioration mechanisms. The proposed procedure takes account of uncertainties and 
variability in one consistent formulation, which is shown through numerical applications. 

The proposed approaches can provide helpful tools for decision-makers in selecting 
optimal and robust design and maintenance decisions for civil engineering structures by 
considering the uncertainty, the variability and the interaction between the elements, as well as 
the direct and indirect consequences of failure. 

Keywords: Life-cycle cost analysis, user cost, degradation, economic dependency, 
structural dependency, stochastic dependency, probability of failure, reliability-based design, 
robust design, optimization. 
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Synthèse des travaux 

1 Contexte 

Le développement de méthodes probabilistes pour la conception et la gestion des structures de 
génie civil implique plusieurs améliorations dans : (1) l'analyse du cycle de vie (LCCA), (2) la 
modélisation du système en tenant compte de la dépendance entre ses composants, (3) l'analyse 
de la fiabilité, et (4) l'optimisation structurale.  

L'estimation du coût du cycle de vie d'une structure en béton armé est une tâche difficile, à 
cause de la complexité d’évaluation de ses composants, en particulier le coût de défaillance qui 
dépend de la dégradation avec le temps. De plus, de nombreuses incertitudes sont liées à la 
nature stochastique des paramètres de charges et de matériaux. En outre, les conséquences de 
la défaillance sont considérablement amplifiées par les impacts économiques, sociétaux et 
environnementaux. Pour cela, il est nécessaire de disposer d’une approche intégrée et 
systématique pour modéliser de façon cohérente les processus de dégradation, les charges, le 
vieillissement et les conséquences directes et indirectes de la défaillance. 

Les approches actuelles pour la gestion des structures de génie civil s’appuyant sur 
l’analyse du coût de cycle de vie, ne permettent pas la considération complète et simultanée des 
dépendances économiques, structurales et stochastiques des éléments de l’ouvrage. La 
considération efficace de ces dépendances est une tâche très complexe qui dépend des différents 
chemins de charges possibles, de la configuration et la redondance de la structure. Pour cela, il 
est essentiel de développer une approche qui permet de modéliser un système formé de plusieurs 
éléments interdépendants, tout en évaluant les conséquences de la dégradation et de la 
redistribution des charges entre les éléments. Afin de pouvoir appliquer une optimisation 
fiabiliste, nous avons également besoin d’une méthode pour calculer la fiabilité d’un système 
en fonction de son degré de redondance. Par ailleurs, les dépendances doivent être considérées 
tout en garantissant la fiabilité requise au cours de la durée de vie de la structure dans un 
environnement de paramètres incertains. 

La prise en compte des incertitudes dans l’optimisation de la conception et de la gestion 
des structures est très importante, mais il faut aussi considérer la variabilité. Dans cette thèse, 
le terme « variabilité » fait référence à une variation naturelle ou intrinsèque d'une certaine 
quantité, alors que le terme « incertitude » fait référence au degré de précision avec lequel une 
certaine quantité est estimée. La conception robuste (RDO) vise à trouver les réglages optimaux 
pour minimiser les coûts totaux en minimisant la variabilité de la performance ; il s’agit d’une 
méthode déterministe qui ne peut pas garantir la fiabilité de la structure. A l’opposé, la méthode 
d’optimisation basée sur la fiabilité (RBDO)  ne contrôle pas la variabilité de la performance. 
Pour cela, une méthode d'optimisation de la conception et de la maintenance qui maintient le 
niveau de fiabilité tout en considérant la robustesse de la fonction objectif est indispensable. 

2 Objectifs de la thèse 

L'objectif global de cette thèse est de proposer des procédures cohérentes pour la conception et 
la gestion fiabilistes, optimales et robustes des structures en béton armé, en particulier les ponts, 
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en réduisant les coûts supportés par les gestionnaires et les utilisateurs, tout en tenant compte 
des dépendances entre les éléments.  

Le premier objectif de la thèse est de proposer une méthode pour considérer les 
conséquences directes et indirectes de la défaillance lors de la conception des éléments de pont 
en béton armé. L’approche proposée a pour but d’analyser et d’évaluer les coûts indirects 
supportés par les usagers. De plus, la fiabilité des structures en béton armé soumises à un modèle 
de dégradation couplé corrosion-fatigue est évaluée. L’optimisation basée sur la fiabilité 
(RBDO) est utilisée pour définir la conception optimale en tenant compte des incertitudes dans 
les différents paramètres du problème. 

Le second objectif est de proposer une évaluation du coût de maintenance des structures 
qui considère les différents types d'interaction entre les éléments, en particulier les dépendances 
économiques, structurales et stochastiques. Ce modèle utilise l'analyse de l'arbre de défaillance 
et les probabilités conditionnelles pour tenir compte des dépendances dans la planification de 
la maintenance. Les conséquences de la dégradation et de la redistribution des charges sont 
prises en compte dans l'approche proposée. Cette approche est appliquée à des exemples 
numériques pour montrer sa validité et sa fonctionnalité dans des cas pratiques. 

Le troisième objectif de cette thèse est de proposer une formulation fiabiliste de 
l’optimisation qui permet de tenir compte de l'incertitude et de la variabilité dans une 
formulation mathématique cohérente. Une comparaison entre la formulation proposée et les 
procédures d'optimisation fiabiliste de la conception est effectuée pour la conception de 
plusieurs problèmes structuraux. 

3 Conception probabiliste 

La conception optimale d’une structure doit permettre de minimiser le coût du cycle de vie sans 
compromettre la sécurité. Différents types de coût doivent ainsi être estimés lors de l'évaluation 
du coût du cycle de vie (LCC) d'une structure. De plus, le couplage des phénomènes de 
dégradation mécanique et physico-chimique est nécessaire pour l’évaluation de la fiabilité de 
la structure. Dans ce contexte, l'optimisation de la conception basée sur la fiabilité (RBDO) peut 
être réalisée pour le LCC de la structure, en considérant les principaux processus de dégradation. 
Par ailleurs, l’évaluation des coûts totaux peut être améliorée en intégrant le coût aux usagers 
et les coûts directs et indirects liés à la dégradation et à la défaillance.  

Le LCC vise à déterminer l’alternative d’investissement la plus efficace pour atteindre la 
conception optimale d'une structure. Un modèle général du LCC se compose des coûts 
suivants : 

�  = 	 " +  "� +  I +  < +  &       (1) 

où Cini est le coût initial, Cins est le coût d'inspection, CM est le coût de maintenance, CF est le 
coût de défaillance et  & est le coût de recyclage ou mise au rebut. Pour une certaine période 
d’analyse, le LCC peut être calculé par la somme de tous les coûts survenus au cours de t années, 
actualisées à la valeur du temps présent. Dans la première partie de la thèse qui se concentre sur 
l’optimisation de la conception des ouvrages, les coûts d’inspection et de maintenances sont 
négligés. Pour un temps t, le coût de défaillance peut être estimé en fonction des coûts 
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directs	 &.,, et indirects  %.,, associés à l'état limite i. Dans ce document, le coût aux usagers, 
qui est dû à la fermeture d'une partie ou de l'ensemble du pont lors d’une défaillance ou d’une 
maintenance, sera considéré comme un coût indirect. Ainsi,  %., peut être estimé comme suit : 

 %., =  /, × GY�,         (2) 

où  / est le coût aux usagers et GY� est la période de blocage de la circulation. Si �./, est la 
probabilité d'occurrence d'un scénario qui requiert un coût aux usagers, le coût total associé à 
l'état limite i durant une période t sera : 

 !�G� =  " +  &.,	��,�G� +  %., 	�./,      (3) 

Plusieurs scénarios peuvent augmenter le coût aux usagers. Dans ce travail, quatre 
scénarios sont considérés, à savoir : la dégradation CU-D, la réhabilitation mineure CU-MR, la 
limitation de tonnage CU-LR et l'effondrement CU-C. 

Les coûts aux usagers sont engagés par les utilisateurs publics du pont, dû à la congestion 
du trafic normal. Si le trafic augmente, le coût aux usagers peut être important, il est estimé 
comme suit : 

 / =  &! +  (T +  .�         (4) 

où  / est le coût aux usagers,  &! est le coût du temps de retard,  (T est le coût d'exploitation 
des véhicules et  .� est le coût des accidents. Le coût d'exploitation des véhicules  (T est 
associé aux arrêts multiples pendant la conduite dans la file d'attente. Le coût d'exploitation 
comprend le carburant, l'huile de moteur, l'entretien et l'amortissement du prix des véhicules. 
CVO peut être estimé comme suit : 

 (T =  $< +  $I          (5) 

où  $<  est le coût de la consommation de carburant supplémentaire et  $I est le coût de 
maintenance supplémentaire du véhicule.  

Deux applications numériques ont été considérées pour optimiser la conception des 
éléments d’un pont, en tenant compte du coût aux usagers et de l’effet couplé de la corrosion et 
de la fatigue. Cet effet couplé de dégradation est considéré au moyen du modèle développé par 
Bastidas et al (2009). La fonction objectif à minimiser est le coût total d’un élément de pont. 

L’approche de conception fiabiliste, explicité à la Figure 1, consiste en l’évaluation des 
coûts initiaux, des coûts aux usagers et des coûts de défaillance. Afin d'estimer le coût de 
défaillance, une évaluation de la durée de vie probabiliste est effectuée pour chaque application 
en utilisant la méthode fiabiliste du premier ordre (FORM) pour l’évaluation de la probabilité 
de défaillance. Après la formulation et l'évaluation du LCC, l'optimisation de la conception 
basée sur la fiabilité RBDO est appliquée pour obtenir la conception optimale d* des éléments 
de la structure, et le coût total optimal CT*. 
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Figure 1 : Conception probabiliste. 

Le coût aux usagers est analysé et évalué dans le cas actuel du Liban. Considérer les 
différents scénarios du coût aux usagers peut donner des résultats très différents. Parmi les 
résultats de l’exemple numérique, il s’est avéré que choisir de faire une réhabilitation mineure 
coûte 22% de moins en moyenne que de faire une politique de limitation de la charge autorisée 
sur le pont à l’ensemble agence-usager. Les résultats numériques ont également montré que la 
conception optimale d'un pont en béton armé est fortement affectée par les différents modèles 
de dégradation et par leur agressivité, par les propriétés des matériaux et leur contrôle de qualité, 
par les différents coûts pris en compte dans le calcul du cycle de vie de la structure, et par le 
niveau de fiabilité cible. Par conséquent, des améliorations continues apportées aux méthodes 
d'estimation des coûts et des données contribueront à accroître la précision des résultats dans le 
futur, où de nouveaux modèles de dégradation peuvent être considérés et des coûts indirects 
peuvent être mieux évalués. 

4 Coût de maintenance des systèmes avec composants dépendants  

L’optimisation du plan de maintenance des structures en béton armé est essentielle, puisque 
celles-ci vieillissent souvent plus rapidement que les fonds permettant leur remise en état. Une 
difficulté majeure survient du fait que la structure de génie civil est un système complexe 
composé de nombreux éléments interdépendants. Dans ce contexte, une méthode a été 
développée dans cette thèse pour la gestion des systèmes multi-composants en tenant compte 
de la dépendance stochastique, structurale et économique. La prise en compte de la dépendance 
entre les composants d’un système nécessite la considération simultanée des différents types de 
dépendance, et l’évaluation des coûts communs qui peuvent induire un groupement des 
interventions de maintenance. Dans la littérature, très peu de travaux traitent la dépendance 
structurale. Le système redondant peut être considéré sous la forme de « dépendance horizontale 
structurale ». Un autre inconvénient des modèles proposés dans la littérature réside dans la 
limitation aux systèmes en série ou en parallèle lors du calcul de la fiabilité du système, ce qui 
ne représente pas nécessairement la réalité.  

Le coût total de maintenance du système le long d'un cycle est constitué des coûts de 

maintenance corrective  I,!4  et préventive  I,!3 , des coûts de mise en place  @/,!4  et  @/,!3 , des 

coûts d'arrêt du système  @&,!4  et  @&,!3 , des conséquences monétaires des dégradations  >,! et 

du coût de défaillance directs et indirects  <,!. Dans ce qui suit, l’indice T est utilisé pour 
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désigner « total » et l’indice t est utilisé pour désigner le « temps ». Nous écrivons ce coût total 
sous la forme : 

�Z !�G�[ =  >,!�G� +	 I,!3 �G� +	 @/,!3 �G� +  @&,!3 �G� +  I,!4 �G� +  @/,!4 �G� +  @&,!4 �G�+  <,!�G� 
(6) 

Dans une structure de pont, la défaillance d’un élément peut conduire à la défaillance 
d’autres éléments. Pour cela, la probabilité de défaillance d’un élément s’écrit sous la forme 
suivante : 

��,>�G� = ���G� + ∑ �|��G�	����G��]        (7) 

où ���G� et ��,>�G� sont respectivement la probabilité de défaillance intrinsèque due à la 

dégradation de l’élément i, et la probabilité de défaillance de l’élément i incluant la dépendance 
aux défaillances des éléments j. Cette formule est issue de l'arbre de défaillance tronqué au 
deuxième niveau �|��G����G�. L’approximation définie par la relation ci-dessus est acceptable 

parce que les probabilités de défaillance sont très faibles en génie civil. De plus, les probabilités 
conditionnelles sont multipliées par la probabilité de défaillance du composant d'origine, ce qui 
diminue encore leurs valeurs. Cette probabilité vise à augmenter l'espérance des coûts de 
défaillance et de maintenance corrective liée aux éléments fortement dépendants. Pour illustrer 
cette probabilité, la Figure 2 représente un schéma de défaillance d'un système à deux 
composants b1 et b2 stochastiquement dépendants.  

 

Figure 2 : Diagramme de défaillance pour deux composants. 

Le coût total de maintenance corrective  I,!4  des composants du système qui ont subi une 

défaillance durant un cycle peut alors être formulé comme suit : 

 I,!4 �G� = 	^_ I,4 `���G� +^�|��G�	����G��] ab  

avec    ∑ cd���G� + ∑ �|��G�	����G��] ef ≤ 1      (8) 
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où  I,4  est le coût de maintenance corrective du composant i, ���G� est la probabilité de 

défaillance de i et �|��G� est la probabilité de défaillance de l’élément i sachant que l’élément j 

est défaillant. 

Par ailleurs, la dégradation de l'élément i du système peut être accélérée par celle des 
éléments influents j, dû à la redistribution des charges de j vers i. La charge supportée par i 
sachant que tous les éléments du système sont dégradés peut être estimée par : 

��G� = 	 �,7�G� +^i∝�, ��,7�G�jk
�l8 −^i∝,� �,7�G�jk

�l8  

avec  ∑ ��G�kl8 = �!         (9) 

où �,7 est la charge initialement supportée par l'élément i avant le début de la dégradation des 

éléments du système, ∑ i∝�, ��,7�G�jk�l8  est la charge supplémentaire supportée par l'élément i 

en raison de la dégradation des l'éléments j avec 1 ≤ � ≤ n		�� ≠ ��, ∑ i∝,� �,7�G�jk�l8  est la 

perte de charge transférée à tous les éléments j en raison de la dégradation de l'élément i et ∝�, 
(ou ∝,�) est une fonction qui indique la quantité de charge transférée de j vers i (ou de i ver j).  

La dépendance économique peut être considérée par la prise en compte du coût de mise en 
place, lié aux coûts communs du système, tels que la mobilisation de l'équipe de réparation, les 
dispositions de sécurité, le transport, les équipements et outils, etc. Ces coûts peuvent être 
financés une seule fois pour la maintenance de plusieurs éléments si leur maintenance est 
regroupée en même temps. Une réduction des fonds peut être calculée en fonction de la 
probabilité que le coût d’un équipement soit inclus dans le coût de mise en place total de 
l’élément réparé, sachant que ce même équipement peut être utilisé pour la maintenance d’un 
autre élément. Lors du groupement des actions de maintenance, la réduction des fonds est 
d’autant plus importante lorsque cette probabilité d’utiliser les mêmes équipements pour la 
maintenance de plusieurs éléments est importante. 

La dépendance structurale peut être horizontale ou modulaire. La dépendance horizontale 
peut être décrite comme le lien structural entre les différents éléments en série, en parallèle ou 
en configuration k-parmi-n. La dépendance modulaire signifie que certains composants doivent 
être démontés afin de réparer d’autres composants, et ils cessent donc de fonctionner pendant 
toute la durée de la réparation. La dépendance structurale ne peut être modélisée qu’en tenant 
compte des temps d'arrêt nécessaires pour la réparation ou pour démonter les composants liés 
entre eux. Les conséquences monétaires de ces arrêts peuvent être obtenues en multipliant le 
coût unitaire de fermeture de la structure (la suspension du pont ou d’une voie) par le temps 
d'arrêt nécessaire pour la réparation. 

 Par ailleurs, l'optimisation de la conception basée sur la fiabilité RBDO est appliquée pour 
définir la planification optimale de la maintenance tout en minimisant le coût total de 
maintenance du système le long d'un cycle. Dans le cas d'un système redondant, l’estimation de 
la probabilité de défaillance du système ��,������	 est régie entre autres par : (1) les dépendances 

complexes entre les différents composants et sous-systèmes, (2) les différents chemins de 
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charge possibles, et (3) le niveau de ductilité de chaque composant. Par conséquent, nous 
proposons d’introduire un facteur de redondance C��>D"> de telle sorte que : 

��,������	 = �1 − C��>D">�	��,�����	 + C��>D">	��,3E�E55�5	     (10) 

où C��>D"> est fonction de l'architecture du système et de la corrélation entre ses composantes. C��>D"> peut être exprimé en fonction d’un coefficient B,� qui indique la quantité de charge 

transférée entre les éléments i et j, en fonction de la configuration du système, de la ductilité et 
de la rigidité de chaque composant. Ce même facteur peut être utilisé dans l’estimation de ∝�, 
utilisé dans la  fonction de redistribution des charges.  Par conséquent, le coefficient B,� peut 

être estimé par analyse mécanique (e.g théorie des structures, méthode des éléments finis), à 
l’aide de la méthode d’estimation détaillée dans cette thèse. 

Le modèle proposé est validé sur quatre applications numériques, à savoir, deux poutres en 
parallèle, deux poutres en série, un système formé d’une dalle avec une couche bitumineuse et 
une superstructure de pont. Les applications numériques ont permis de formuler les 
observations suivantes :  

- la dépendance économique induit le groupement des actions de maintenance ; en 
conséquence, négliger la dépendance économique conduit à des planifications plus 
coûteuses allant jusqu’à 25% dans les applications traités ; cette observation a été 
constatée pour toutes les applications sauf celle du système dalle-bitume, car ces deux 
éléments ont des probabilités de défaillance intrinsèques très différentes ; 

- la dépendance stochastique conduit à des intervalles de maintenance plus petits lorsque 
la probabilité cible du système est faible ; ainsi, négliger la dépendance stochastique 
peut conduire à une planification non fiable (e.g. le temps de maintenance optimal est 
réduit de 4% pour les deux poutres en parallèle et de 2% pour le système dalle-bitume) ; 
pourtant, ce résultat n’est pas très prononcé lorsque la probabilité cible du système est 

élevée (e.g. lorsque ��! >10-3 pour deux poutres en série, la solution optimale ne change 

pas avec la dépendance stochastique) ; 
- pour des probabilités de défaillance élevées, la dépendance économique a le plus grand 

effet sur le coût de maintenance (e.g. pour deux poutres en série, la solution optimale 

coûte 40% de moins à cause du groupement lorsque ��! >10-3) ; 

-  pour les faibles probabilités de défaillance, la dépendance stochastique a le plus grand 
effet sur le coût de maintenance (e.g. la solution optimale coûte 6% plus cher dans le 
cas des deux poutres en série et 9% plus cher dans le cas du système dalle-bitume 

lorsque ��! <10-4 ) ; 

- la dépendance stochastique a le plus grand effet sur la planification de la maintenance 
lorsque la défaillance d’un élément induit automatiquement la défaillance des autres 
(dans le cas du système dalle-bitume, la défaillance de la dalle induit celle du bitume 
avec une probabilité conditionnelle �Y�D��|>E55� = 1);  

- pour une fiabilité cible très élevée, le temps optimal de maintenance devient égal au 
temps d’initiation de la dégradation pour l’exemple des deux poutres en parallèle.  
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- considérer simultanément les dépendances stochastiques, économiques et de 
dégradation dans l’exemple de la superstructure du pont induit au groupement des 
actions de maintenance, mais à des intervalles de temps plus petits ; 

- les conséquences de la dégradation et la dépendance stochastique ont un effet 
comparable sur les résultats, qui favorise la politique prévention vis-à-vis de la 
dégradation et de la défaillance en minimisant l’intervalle de maintenance. Pourtant, le 
coût de dégradation accentue la forme convexe du coût total au cours du temps, ce qui 
rend la solution indépendante de la contrainte cible lorsque cette contrainte est faible 

(e.g. pour les deux poutres en parallèle, la solution est indépendante de ��! lorsque ��! >1,71 × 10tu). 

5 Formulation robuste de l'optimisation fiabiliste du LCC 

Une formulation robuste de l'optimisation fiabiliste de la conception (RRBDO) est développée, 
dans le but de combiner les avantages de l'optimisation fiabiliste (RBDO) et de l’optimisation 
robuste (RDO). La RRBDO proposée tient compte de l'incertitude et de la variabilité 
simultanément. Dans cette formulation la variabilité fait référence à une variation naturelle ou 
intrinsèque d'une certaine quantité, et l’incertitude fait référence au degré de précision avec 
lequel une certaine quantité est évaluée ou mesurée. La formulation RRBDO proposée fournit 
un cadre général dans lequel le lien entre la RBDO et la RDO est clairement établi, à travers la 
définition du domaine d'application pour chacune des deux approches et la spécification adaptée 
des contraintes d'optimisation. L'avantage de la RRBDO par rapport à la formulation actuelle 
est démontré du point de vue conceptuel et numérique. 

En effet, la contrainte de fiabilité dans la formulation RBDO permet de prendre en compte 
les incertitudes liées aux paramètres structuraux. Cependant, une mauvaise spécification de la 
probabilité de défaillance admissible conduit à une solution qui satisfait les conditions 
d'optimalité et les contraintes de fiabilité, mais pas les exigences de robustesse. Cet 
inconvénient rend la solution très sensible au choix des paramètres probabilistes d'entrée ; elle 
est donc inappropriée pour une utilisation pratique en ingénierie. La RBDO ne permet pas de 
garantir une solution robuste, car une grande partie des incertitudes ne peut être prédite ou 
identifiée dans l'ingénierie pratique. Parmi ces incertitudes, nous pouvons mentionner les coûts 
de défaillance directs et indirects qui sont souvent très difficiles à estimer avec précision, la 
probabilité de défaillance admissible qui doit être spécifiée en fonction de la précision des 
données d'entrée, et les modèles physiques et probabilistes impliqués. Il est donc nécessaire de 
développer une méthodologie plus cohérente pour la prise de décision optimale en considérant 
les incertitudes et les variabilités.  

La variabilité traduit la variation incontrôlable de la fonction de performance qui peut 
entrainer la dégradation de la qualité du produit et peut compromettre la faisabilité de la 
conception. L’effet de ces variables incontrôlables sur la fonction de performance peut être 
réduit par le choix des variables de conception. Par conséquent, il est nécessaire d’identifier les 
valeurs des paramètres contrôlables (tels que les dimensions d'une section d’une poutre) qui 
minimisent les effets négatifs des phénomènes incontrôlables (tels que l'humidité ou la vitesse 
de corrosion). Dans ce contexte, l'optimisation de la conception robuste (RDO) vise à trouver 
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les paramètres optimaux pour minimiser les coûts totaux en minimisant la variation de la 
performance, afin de trouver une conception cohérente et de meilleure qualité.  

Bien que l'optimisation robuste permet de réduire la variance de la performance, elle 
présente de nombreux inconvénients : (1) elle ne permet pas de garantir le niveau de fiabilité 
souhaité, (2) elle peut présenter des difficultés dans le cas des fonctions objectifs non convexes, 
(3) la réduction de la variance de la performance structurale est souvent réalisée au détriment 
de sa valeur moyenne, (4) les résultats obtenus n’indiquent pas exactement quel paramètre a 
l’effet le plus élevé sur la valeur caractéristique de la performance, (5) la RDO est une méthode 
déterministe. En effet, les deux paramètres : moyenne et variance peuvent diverger, et le 
concepteur doit choisir une conception structurale réalisable sur l'ensemble des optima obtenus 
avec différents facteurs de pondération pour la fonction objectif. 

Dans ce contexte, une procédure d'optimisation fiable, qui peut surmonter les inconvénients 
des deux méthodes d’optimisation est développée dans ce travail. L'augmentation de la valeur 
moyenne qui est habituellement observée dans la conception robuste est limitée dans cette 
formulation. Les conditions d'optimalité de la formulation proposée visent à équilibrer, non 
seulement la moyenne et l’écart-type de la fonction objectif, mais aussi la dispersion de 
l'espérance du coût de défaillance. En conséquence, la solution obtenue est stable et moins 
sensible aux variations par rapport aux formulations classiques. Les avantages de la méthode 
d'optimisation proposée sont les suivants : (1) la sensibilité de la fonction objectif est réduite 
par rapport à la formulation RBDO classique, (2) l'effet des variables aléatoires incontrôlables 
sur la performance structurale est réduit, (3) la tolérance de se conformer aux actions imprévues 
ou à des mécanismes de dégradation est contrôlée, (4) le niveau de fiabilité prescrit est assurée. 

La formulation robuste de l’optimisation fiabiliste de la conception (RRBDO) est exprimée 
pour le coût total de la structure comme suit : 

Trouver   v, 

minimisant  	R = �8tw�x�.y�z,>��x{y∗ +	w|�.y�z,>��|{y∗ ,   �0 < } < 1� 
avec    !�~, :� =  P�P�~, :� + ∑  �� 	�c��	�~, :� ≤ 0f��l8  , 

soumis à   
x����z,>��|����z,>�� ≤ −��     � = 1,⋯ ,� 

   :
 ≤ : ≤ :/       (11) 

où 	R�. � est la fonction objectif du problème RRBDO,  ! est le coût total, X et d sont les vecteurs 
des variables aléatoires et de conception, respectivement, ��∙� et ��∙� sont respectivement la 
moyenne et l'écart-type de la fonction objectif, �.y∗  et �.y∗  sont des facteurs de normalisation 

pour la moyenne et l'écart-type de la fonction objectif, respectivement, m est le nombre d'états 

limites �1 ≤ � ≤ ��,  �� et �c��	�~, :� ≤ 0f sont respectivement le coût et la probabilité 

associés à la fonction d'état limite ��, :
  et :/ sont respectivement les bornes inférieures et 

supérieures des variables de conception, α est un facteur de pondération, et λj est un facteur de 
pénalité. La valeur du facteur de pondération α est définie pour spécifier les poids relatifs des 
différentes fonctions objectifs et permet donc à l'utilisateur d’établir le compromis entre les 
objectifs d'une manière simple, selon ses préférences. 
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Une procédure de résolution est proposée de telle sorte que les problèmes pratiques 
d'ingénierie puissent être traités dans un temps de calcul raisonnable. Cette procédure permet 
également de comparer la RDO et la RRBDO. Elle est illustrée sur la Figure 3, où MCS est la 
méthode de simulations de Monte Carlo, FORM est la méthode de fiabilité du premier ordre, 
d* est la solution optimale des variables de conception et CT* est le coût optimal. 

 
Figure 3: Formulation robuste pour l'optimisation fiabiliste de la conception. 

Quatre applications numériques sont considérées pour montrer la performance de la 
formulation proposée et la comparer aux autres formulations. Le premier exemple illustre en 
détail la procédure proposée et décrit le comportement des différentes méthodes. Dans la 
seconde application, le comportement du RRBDO vis-à-vis de la dégradation de la structure 
avec le temps est étudié. Le troisième exemple montre l'intérêt du cadre RRBDO pour l'analyse 
d’un système à plusieurs composants. La quatrième application étudie les effets de la RRBDO 
sur la topologie structurale, où plusieurs modes de défaillance sont considérés. Les résultats 
montrent que la topologie joue un rôle très important pour la préservation de la robustesse. De 
plus, la RRBDO a un meilleur comportement que la RBDO quel que soit l’objectif de fiabilité, 
parce qu’elle offre des solutions optimales plus robustes et moins coûteuses pour des niveaux 
de fiabilité élevée, et elle continue à fonctionner convenablement pour les niveaux de fiabilité 
plus faible. Par ailleurs, la RRBDO propose des solutions qui sont moins sensibles aux 
variations, tout en conservant le même niveau de fiabilité que la RBDO. De plus, la RRBDO 
proposée est capable de gérer correctement l'effet système dans le cadre de l'optimisation de la 
structure.  

6 Conclusion 

L'objectif de cette thèse est de proposer des procédures améliorées qui peuvent être appliquées 
pour la conception et la gestion fiabilistes, optimales et robustes des structures en béton armé, 
en réduisant les coûts supportés par les gestionnaires et les utilisateurs, tout en tenant compte 
des dépendances entre les éléments. 

Une méthode de conception probabiliste est proposée au Chapitre 2 pour la modélisation 
de manière cohérente des processus de dégradation, de l'augmentation des charges de trafic, du 
vieillissement, des conséquences directes et indirectes de la défaillance lors de la conception 
d'une nouvelle structure. Une discussion autour des différents composants du LCC est aussi 
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présentée au chapitre 2. L’originalité de cette méthode réside dans : (1) le développement d’une 
nouvelle approche pour évaluer le coût aux usagers et pour l'intégrer dans la fonction de coût 
du cycle de vie, (2) la considération du modèle de dégradation couplé corrosion-fatigue dans 
l’optimisation de la conception des structures en béton armé. Par ailleurs, plusieurs scénarios 
de perturbation de la circulation sont considérés. Une étude de cas au Liban est présentée, où le 
modèle est appliqué pour la conception des éléments situés dans divers environnements 
correspondant à différents degrés de contamination en chlorure et soumis à différentes 
fréquences de trafic. Les résultats ont montré l’effet considérable des modèles de dégradation, 
des coûts directs, indirects et des probabilités de défaillance sur les variables de conception. 

Les différents types de dépendance entre les éléments structuraux : économique, structurale 
et stochastique, sont considérés au chapitre 3 dans le but d’optimiser le plan de maintenance 
d'une structure de pont. L’originalité de cette partie réside dans l’étude simultanée de ces 
dépendances, ce qui nécessite la considération des différents chemins de charges possibles, en 
plus de la configuration et la redondance de la structure. Ces dépendances sont considérées tout 
en offrant la fiabilité requise au cours de la durée de vie de la structure dans un environnement 
de paramètres incertains. L'absence d'approches de modélisation des systèmes qui prennent en 
compte les dépendances entre les éléments nous a motivés pour développer une nouvelle 
approche de calcul de la fiabilité du système en fonction de la redondance. La dépendance 
stochastique est intégrée dans la fonction de coût au moyen des probabilités conditionnelles ; 
un processus visant à quantifier les conséquences de la dégradation est présenté. Ce processus 
requière le calcul de la redistribution des charges aux éléments non-défaillants, qui est 
également proposée et intégrée dans la formule des coûts totaux.  La dépendance structurale 
tient compte des temps d'arrêt nécessaires pour démonter les éléments modulairement liés, et 
de réparer les éléments dont la défaillance est associée (c’est-à-dire la défaillance d’un élément 
qui est induite par la défaillance d’un autre). La dépendance économique est intégrée au moyen 
des probabilités d’avoir des coûts de mise en place communs à plusieurs éléments. La 
méthodologie proposée est appliquée à quatre exemples numériques de validation.  

Une nouvelle procédure d'optimisation fiabiliste et robuste est proposée dans le chapitre 4. 

Cette méthode prend en compte les incertitudes dans l'analyse, la capacité de la structure à 

s’adapter à la variabilité et aux évènements imprévus. Les applications numériques montrent 

que la formulation proposée se comporte mieux que les méthodes actuelles quel que soit 
l’objectif  de fiabilité. Elle fournit des solutions optimales plus robustes pour les niveaux de 
fiabilité élevés, et continue à fonctionner convenablement pour les niveaux de fiabilité faible. 

7 Perspectives 

A l’issue de cette thèse, des améliorations peuvent être appliquées à l'approche de conception 
proposée pour représenter d'autres conséquences de défaillances indirectes, en particulier les 
conséquences sociales et environnementales. D'autres processus de dégradation devraient 
également être envisagés. 

De plus, les procédures proposées dans les chapitres 3 et 4 sont coûteuses en temps de 
calcul, et plusieurs approximations sont nécessaires pour obtenir des résultats dans des délais 
raisonnables. Des efforts devraient être réalisés pour améliorer les  procédures de solution pour 
les approches proposées. 
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Les approches et les formulations proposées offrent des outils d’aide à la décision pour la 
conception et la gestion optimale et robuste des structures en béton armé, en tenant compte des 
incertitudes, de la variabilité, de l’interaction entre les éléments et des différentes conséquences 
directes et indirectes de la dégradation, de la défaillance et de la maintenance. Il conviendrait 
donc de développer un outil intégré de gestion des structures en s’appuyant sur les 
développements effectués dans cette thèse. 
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General Introduction 

Overview 

The early design methods proposed by regulations are based on the principle of allowable 
stresses. Given the scattered nature of data, designers started using, since the 1960’s, semi-
probabilistic approaches based on safety factors that are supposed to deal with variability. This 
approach is nowadays used in most of the codes of practice, as it allows us to cover a large 
number of uncertainties. The probabilistic methods constitute an improvement of the semi-
probabilistic approaches and allow for optimization procedures. These methods have been 
successfully used in reliability-based code calibration procedures for design and assessment of 
buildings and bridges (Ellingwood et al. 1982; Nowak 1995) and also in life-cycle maintenance 
procedures for existing structures as indicated by Frangopol and Maute (2003). However, their 
application as a tool for day-to-day design is still under consideration. The development of 
probabilistic methods for the design and management structures requires several enhancements 
in life-cycle analysis, system modeling, reliability analysis and structural optimization.  

The Life-Cycle Cost Analysis (LCCA) is a methodology to evaluate the Life-Cycle Cost 
(LCC) over a specific period of time. The estimation of the life cycle cost of a structure is a 
challenging issue, due to its complex components, particularly failure cost which depends on 
degrading resistance with time. As many uncertainties are related to the stochastic nature of 
load and material parameters, the developments are still needed to accurately estimate the 
deteriorating structural performance and the life-cycle cost under uncertainties and to optimally 
plan maintenance actions along the service life of a structure. In addition, the consequences of 
failure are significantly amplified by environmental and social impacts.  

Moreover, system modeling approaches have not been successfully applied for structural 
deterioration modeling (Wang, 2012). Approaches better than the currently used series and/or 
parallel logical relationships for modeling of a structural system components are to be founded, 
as a civil engineering structure is a complex system composed of many inter-related elements. 
A model has to be developed to consider the multiple deterioration dependencies among the 
elements. Although the deterioration of the structure is largely dependent on the deterioration 
of each element, the deterioration of one element can accelerate that of the others. For example, 
if a bridge bearing freezes due to corrosion, the bridge deck will be subjected to expansion and 
contraction stresses that cause cracking (Sianipar and Adams 1997).   

Decision-makers can employ optimization tools to specify the most efficient LCC 
alternative. For this purpose, probabilistic optimization tools involving appropriate modeling of 
uncertainties can be used. These tools should reflect the ability of the structure to comply with 
data variations, unforeseen actions or deterioration mechanisms. 

  



14 
 

Contribution 

This work provides several contributions to overcome the above explained limitations: 

An integrated and systematic approach to model coherently the deterioration processes, the 
increasing traffic loads, the aging, and the direct and indirect consequences of failure is 
proposed. The design optimization of reinforced concrete structural elements is performed with 
coupled corrosion and fatigue degradation models. Moreover, a new approach to evaluate the 
user delay costs on a bridge structure is developed, based on direct and indirect costs related to 
degradation and failure.   

For the moment, there is no research consideration of economic, structural and stochastic 
dependencies among structural elements. A procedure to model all types of failure interactions 
is suggested herein, using failure tree analysis and conditional probabilities. Economic 
dependency is taken into account through several interdependent common costs. Horizontal 
structural dependency is considered by the mean of a proposed redundancy factor, for which a 
sensitivity analysis is performed. Modular or vertical structural dependency is modeled through 
the consideration of downtimes needed to dismantle modularly dependent units, and/or to repair 
associated failed units. Moreover, the load redistribution to non-failed elements in case of 
failure of an adjacent structural element is considered in the formulated model. Also, for 
evaluating the system reliability, a new approach different than the currently used series and/or 
parallel logical relationship is suggested. A solution procedure is also proposed for the life-
cycle maintenance planning of interrelated multi-component structural system. Several 
numerical examples are treated to verify the validity of the proposed approach.  

Design and maintenance optimization procedures focus either on the robustness of the 
objective function or on the satisfaction of a prescribed reliability level. A new formulation is 
proposed to combine the benefits of robust and reliability design by considering both; the 
objective function robustness and the reliability level. Moreover, it takes account for uncertainty 
and variability in one mathematical formulation. A numerical procedure to solve the proposed 
optimization formulation is developed. A comparison between the proposed formulation and 
the reliability based design optimization procedures is held for the design of several structural 
concrete and steel problems, proving the applicability of the proposed methodologies on a large 
range of civil engineering problems. 

Thesis Outline 

This thesis is divided into four chapters. Each chapter aims at meeting one of the objectives 
listed above.  

Chapter 1 presents a literature review on the procurement and the maintenance planning of 
civil engineering structures based on reliability concepts. The formulations of direct and indirect 
failure costs are summarized. Probabilistic and reliability concepts for performance evaluation 
of components and systems are presented. The existing maintenance models and management 
systems are then described by considering the above costs and reliability. Furthermore, the 
different types of dependencies between the components of a system and the main advances 
concerning each type are discussed. Finally, each component of the life-cycle cost formulation 
is detailed. 
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In chapter 2, a consistent approach is proposed for a probabilistic design that can account 
for the indirect consequences of failure within the life cycle cost formulation. An approach to 
evaluate the user costs on a bridge structure is developed. The proposed user costs takes into 
account the vehicle operating costs and the user delay costs. Various scenarios that may lead to 
user costs are considered, namely the degradation of a bridge element, the rehabilitation, the 
traffic congestion and the bridge collapse. The developed model is applied to bridge elements 
subjected to chloride-contaminated environments and various traffic frequencies. The different 
components of the life cycle cost are estimated, and their effect on the design variables is studied 
and analyzed through numerical applications.  

Chapter 3 aims at developing a procedure for the maintenance planning of a multi-
component structural system by jointly taking into account stochastic, structural and economic 
dependencies. These dependencies can be only modeled by the consideration of structural 
redundancy and possible load paths. Therefore, a procedure to calculate the load redistribution 
to non-failed elements is proposed and integrated in the cost function. Also, stochastic 
dependency for all the elements is integrated in the cost function by the mean of conditional 
failure probabilities. The approach also accounts for downtimes needed to dismantle modularly 
dependent elements, and/or to repair associated failed elements. The proposed methodology is 
applied to four numerical examples to show its validity and functionality.  

In chapter 4, the behavior of two utilized optimization procedures is assessed, namely the 
reliability-based design optimization (RBDO) and the robust design optimization (RDO). In 
this framework, a robust formulation for reliability-based design optimization (RRBDO) is 
proposed, in order to combine the advantages of RBDO and RDO procedures. The results of 
the proposed formulation are analyzed and compared with usual RBDO for several examples 
of reinforced concrete and steel structures. 

The conclusions highlight the improvements that can be achieved by the proposed 
approaches to help the decision-makers in selecting the best design and maintenance solutions.  
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Chapter 1: Literature Review: Probabilistic design and maintenance 

1.1 Introduction 

The aim of this chapter is to provide an overview of the state-of-the-art concerning the life cycle 
analysis of structural reliability in design and maintenance. These analyses are necessary for 
improving and rationalizing the design, the evaluation, the repair and the management of civil 
engineering structures in order to balance lifetime cost and life cycle reliability. This chapter 
starts by summarizing the benefits of considering reliability approaches for structural design 
and evaluation. Then, it discusses how to model the applied loads and deteriorating capacity in 
order to account for uncertainties within the safety assessment. The management of existing 
structures is also explained, and the applicability of reliability methods to safety assessment of 
structural systems and components is discussed. The recent developments on modeling the 
capacity of a structural system based on redundancy of interrelated component are presented. 
The former assessment is crucial for the evaluation and the maintenance decision. Finally, the 
methods for cost-effective management incorporating lifetime reliability and life cycle cost are 
detailed.  

1.2 Structural reliability concepts 

Structural failure and damage involves, among other catastrophic consequences, loss of human 
lives and user delays, leading to massive economic and social losses. Therefore, a lot of 
investments in inspection, maintenance and inadequate strength reserves are anticipated. 

Historically, high degree of structural performance reliability against failure was observed. 
This situation is caused by the conservative models that were used due to limited capabilities 
back in time. Moreover, system performance was generally neglected, and the design checks 
were mostly done on components. This conservative situation has changed, mainly because of 
available computer software and optimization methods that push the design closer to their 
failure limits. In addition, transport agencies are exerting economic pressure to increase truck 
weight and volume.  

Research efforts in structural reliability have led to new design methods and specifications, 
considering explicitly the system uncertainties. 

The first step in developing a reliability-based structural specification is to identify the basic 
random variables; i.e. resistance � and load �. Then, a limit state expression � can be written 
as function of these random variables as follows: 

� = � − �                     (1.1) 

The next step in the reliability assessment is to identify the appropriate distribution for each 
random variable by considering available database and expert analyses. This step involves 
expressing the bias (i.e. mean over nominal value), the coefficient of variation (i.e. COV, equal 
to the ratio of the standard deviation to the mean value), and the distribution function (e.g. 
normal, lognormal, exponential, etc ...) of each random variable. For example, the main 
uncertainty governing the reliability analysis of short and medium span bridges is live load due 



17 
 

to traffic. The maximum traffic load is a function of the highway class, the truck volume, the 
legal weight laws and the exposure life. 

The probability of failure may then be expressed as: 

�� = �Z� < 0[ = � �����	
���:���t�                  (1.2) 

where ����� is the cumulative distribution function of the resistance, 	
��� is the probability 
density function of the load and � is the vector of random variables. 

Determining the failure probability is usually a difficult task, requiring the evaluation of 
multiple integrals whose dimension increases with the number of random variables. Numerical 
integrations can be used when the failure function � is not highly nonlinear and the tail 
distributions of the functions do not deviate too far from the normal one. For normal and 
lognormal load and resistance distributions, exact expressions are formulated for the calculation 
of the probability of failure (Ditlevsen and Madsen 1996). Otherwise, numerical models can be 
employed for all kinds of distributions, such as Monte Carlo simulation methods (MCS). The 
MCS is statistical trial method that makes realizations based on randomly generated sampling 
sets for uncertain variables. However, it requires a very large number of samples to give 
acceptable approximations, especially in case of engineering structures where the probability 
of failure is usually very low. To improve the rate of convergence, several improvements can 
be introduced to MCS using approaches in variance reduction methods; e.g. Importance 
sampling (IS), Latin Hypercube Sampling (LHS) and subset simulations. 

The most used approximation methods are First Order Reliability Method (FORM) and 
Second Order Reliability Method (SORM). Considering a quasi-linearity approximation around 
the design point, the failure probability �� is estimated as a function of the mean and the 

standard deviation of  � as follow: 

�� ≈ Ф�− x�|��                     (1.3) 

where �� and �� are respectively the mean and the standard deviation of � and Ф�∙� denotes 

the cumulative normal distribution function. The reliability, also called probability of survival, 
is the complement of the probability of failure; R = 1 − ��. The associated reliability index � 

can be determined in approximate form as: 

� = x�|�                     (1.4) 

In the case of normal random variables, the mean and standard deviation of the limit-state, ��∙�, 
can be determined as follows: 

�� = �� − �@                    (1.5) 

�� = ���� + �@� + 2	��@	��	�@ 	                  (1.6) 
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where ��@	 is the correlation coefficient between � and �, and ��  and 	�@ are the standard 
deviations of � and �, respectively. 

The reliability index gives the number of standard deviations that the mean safety margin 
falls on the safe side, as shown in Figure 1.1. The shaded area identifies the probability of 
failure. 

 

Figure 1.1: Probability density function for limit state ��∙�  

 

Figure 1.2: Transformation and MPP. 

Finding � comes down to find the distance between the mean point and the surface that 
divides the limit into safe and unsafe regions. Different types of response surfaces correspond 
to different approximation methods for failure probability calculations. If the mechanical 
response is approximated by a first-order approximation at the MPP, the method is called the 
first-order reliability method (FORM); if the mechanical response is approximated by a second 
order approximation at the MPP, the method is called the second-order reliability method 



19 
 

(SORM). Furthermore, if the mechanical response is approximated by a higher order 
approximation at the MPP, the method is called the higher-order reliability Method (HORM). 
FORM gives inaccurate results when the failure surface is highly nonlinear. Thus, FORM 
sometimes oscillates and converges on unreasonable values for probability of failure. 

The Taylor series can be used to linearize the limit state ��∙� = 0 in FORM and SORM. 
The reliability analysis is considered as a mathematical optimization problem for finding the 
point on the structural surface that has the shortest distance from the origin to the failure surface 
in the standard normal space. Hasofer and Lind (1974) provided a geometric interpretation of 
the reliability index and improved the method by introducing the Hasofer and Lind (HL) 
transformation, where ��∙� is transformed into a set of normal variables with zero mean and 
unit standard deviation. In the transformation procedure, the design vector X is transformed into 
a vector of standardized, independent Gaussian variables, U. Because of rotational symmetry 
of the HL transformation, the design point in U-space represents the point of greatest probability 
density or maximum likelihood as shown in Figure 1.2.  

Typical values of engineering structural reliability index � are in the range of 2 to 5. Note 
that a � of 3.5 corresponds to a probability of failure of 2.33 × 10tu . � is used by many code 
groups nowadays to calibrate the safety factors. A value equal to 3.5 has been used to calibrate 
the AASHTO LRFD.  The implicit design goal is to achieve a uniform � for all structures 
constructed by the code. The value of the safety index targeted by design codes is based on 
existing designs that were found to be satisfactory. This commonly used calibration with past 
performance helps minimizing any inadequacies in the database (Moses and Ghosn 1985). 
However, higher � are imposed for gravity load cases than for environmental limit states. This 
need arises because of the greater psychological impact of failure in the absence of a 
corresponding act of nature. Also, higher � are imposed in design than used in evaluation. It 
costs more to strengthen an existing structure than to provide strength initially in a construction. 
It is worth noting that the values of  � are notional rather than actuarial values since only 
specified limit sate functions are examined (Moses 1999).  Moreover, further accidents, human 
errors and construction failures are not included in the safety index approximation.  

Other commonly used lifetime performance evaluation functions are the survivor, the 
hazard and the risk functions. Several time-variant performances can be related to the possible 
occurrence of local and global failures, including system redundancy, elapsed time between 
failures, and robustness. Redundancy is defined by Frangopol et al. (1987, 1992) as the ability 
of the system to redistribute among its members the load which can no longer be sustained by 
some other damaged members after the occurrence of local failures. An effective indicator of 
the damage tolerance of the system and its ability to be repaired after local failures is the elapsed 
time between local and structural collapse (Biondini and Frangopol 2008). Robustness is the 
ability of the system to suffer an amount of damage without presenting a disproportionate 
response with respect to the causes of damage itself. Thus it is very important to measure the 
impact of a localized damage on the structural global damage. Robustness is related to the 
capacity of the system to operate when there is a localized damage. Many authors proposed 
measures for the quantification of the structural robustness, which can be globally divided into 
two approaches (Kagho-Gouadjio et al. 2015). The first approach compares the system 
probability of failure of the intact structure to the damaged structure. The second approach 
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compares the consequences of a local failure to the consequences of global failure. Kagho-
Gouadjio et al. (2015) proposed a probabilistic approach for quantifying structural robustness 
as the impact of local failure on global failure. Their approach requires the computation of local 
and global failure probabilities; a low impact characterizes a robust structure. 

 Barone and Frangopol (2014) investigated the effect of four different performance 
indicators (PI) related to the optimization of maintenance schedules of deteriorating structures. 
The use of two annual performance indicators (reliability index and annual risk), and two 
lifetime performance indicators (availability and hazard functions) were compared. The 
solutions provided by annual PI in their study required more computational effort, but were 
considered more reliable by the authors. Usually, annual basis approaches are appropriate for 
life risk, and lifetime basis approaches are appropriate for economic loses. 

 

Figure 1.3: Different ways to achieve higher reliability with load and capacity distributions 
(Moses 1999). 

 

Figure 1.4: Reliability evolution as a function of time. 
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The probability of failure depends on the degree of overlap between the load distribution 	
�∙� and the resistance distribution 	��∙� (Figure 1.3). Higher reliability may be achieved by 
increasing the resistance, or by reducing the uncertainty in either load or capacity (Moses 1999), 
as shown in Figure 1.3. The inspections and observations can be performed to reduce the levels 
of uncertainty. In fact, truck loads increase with time due to new regulations and increases in 
truck volume and weight. Meanwhile member capacity is decreasing due, besides aging, to 
inadequate maintenance and environmental effects. Therefore reliability is assumed to be 
constant with time until the initiation of degradation, and/or the increase in traffic volume, 
afterward β is reduced with time as shown in Figure 1.4.  

1.3 Definition of uncertainties 

Uncertainties can belong to different categories. Ang and Tang (1984) sorted the 
uncertainties into two groups, namely: inherent variability and epistemic uncertainties. 

 Inherent variability is irreducible, like the wind, the material properties after casting, the 
loads, the geometry and the degradation. They result from variations in the physical properties 
of components and interfaces, and correspond to the parameters entering into mechanical 
modeling that are intrinsically random. It is referred as “non-cognitive” by Pendola et al. (2000) 
, “inherent uncertainties” by Tovo (2001), aleatory by Guedri et al. (2012), or simply as 
variability by Van Belle (2011). These are the only uncertainties covered by structural design 
approaches. 

Epistemic uncertainties are related to the fabrication measures, the errors of the numerical 
model as well as in the estimation of the parameters. They are due to a lack of accurate 
knowledge concerning the physical laws governing the behavior of a component or interface 
and can generally be reduced with a combination of more detailed modeling and experimental 
investigations. Epistemic uncertainties can be difficult to characterize due to simplifications in 
geometric and material field properties, and as such are rarely taken into account explicitly in 
reliability analysis.  

 It is important to note that Van Belle (2011) terminologies will be used in this study, 

where ‘variability’ refers to natural or intrinsic variation in some quantity and ‘uncertainty’ 

refers to the degree of precision with which a quantity is measured. 

Statistical distributions are used to model variability and uncertainty. In terms of design, 
partial safety factors attempts to cover the variability in deterministic approaches. The main 
drawback in this approach is that the safety factors often lead to over or under-design since they 
do not account for uncertainty and for site to site variation. 

Probabilistic design approaches studied in chapter 2 inquire the estimation of failure 
probabilities that are extremely sensitive to the assumptions made on the distribution of random 
variables. In practice, only limited data is available to build the probabilistic representations of 
these variables. Pendola (2000) proposed a methodology to characterize the statistical 
uncertainties due to the limited number of data in order to take them into account in the 
reliability analysis. He also proposed partial safety factors that are evolving as a function of the 
number of statistical data available and as a function of the sophistication level of the 
mechanical modeling. Echard (2012) proposed a general probabilistic approach that can 
overcome the design dependency on variability.   His approach is an alternative to calculate an 
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accurate estimate of the failure probability as well as the influent parameters on structural 
reliability. 

Variability can be controllable when the geometrical and material parameters can be set by 
engineers, or uncontrollable as for environmental parameters related to the deterioration 
mechanisms. The transmitted variation from uncontrollable variability to the objective function 
can result in the deterioration of product quality and can compromise the design feasibility. The 
effect of variability on the objective function can be properly reduced by adjusting the design 
values. Therefore, the need to find values for controllable settings (such as concrete dimensions 
of a structural element cross-section) that minimize the negative effects of the uncontrollable 
settings (such as humidity or corrosion rate) has submerged.  

1.4 Structural loading 

Structural loading is a complex phenomenon that requires many assumptions in order to obtain 
fine numerical estimates. In case of bridges, most of the loads are time-varying quantities in 
magnitude, position, and type of structural response (static or dynamic) (Thoft-Christensen 
1998). Even permanent values that do not change with time are random variables, because their 
magnitudes are not precisely known. For example, there are a lot of uncertainties in predicting 
the magnitude of the dead load due to the weight of reinforced concrete. Variations can subsist 
in the material density, the component dimensions, the steel reinforcement area, and in the 
distribution of aggregates in concrete. However, the effect of these factors on the bridge 
reliability estimate is low compared to the effect of vehicle live load.  

Transient loads include all moving loads such as traffic load, temperature effect and wind. 
Though, the most important loads in typical short to medium span bridges are vehicle traffic 
loads (Ghosn and Frangopol 1999). Expected load models are based on data gathered on site 
for the Average Daily Truck Traffic (ADTT). Truck weight data is either taken from highly 
static scales, or from moving vehicles using weight in motion (WIM). Unfortunately, static 
weighting may be avoided by heavy truck drivers to avoid penalties imposed by the government 
on overweighed trucks. Also, pavement embedded scales can be detected and intentionally 
missed by drivers. Such factors can reduce the accuracy of the gathered data. These data can 
then be adjusted, and may be used to fit a distribution so that the tail can be extended with 
normal or lognormal assumptions. 

Some reduction is observed in the influence of the extreme truck weight distribution results, 
because the critical load event for many spans is usually a multiple presence event. Failure of a 
bridge member can be due to the occurrence of one set of load that causes stresses in the bridge 
component to exceed its capacity. Failure can also be due to repeated crossings of a large 
number of trucks that produce fatigue fracture of the component.   

As a matter of fact, the traffic loading effect on a bridge is a multidimensional stochastic 
process and has been studied as a Markov Renewal process and also by filtered Poisson models. 
There are several methods to study these problems, including simulation and convolution 
approaches. Ghosn and Frangopol (1999) described how these methods can be used to study 
the extreme load event problem. These reliability methods were used to develop empirical live 
load models for design codes that can be applied by civil engineers. The maximum load is the 
maximum expected event based on a 50-75 years exposure for design, and two year exposure 
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for evaluation. Code calibration procedure was developed by Nowak (1989). It basically 
includes the following steps:  

- Selection of representative structures 
- Establishment of the statistical database for load and resistance parameters 
- Development of load and resistance models 
- Development of reliability analysis procedures 
- Selection of the target reliability index 
- Calculation of the load and resistance factors 

The calculated load and resistance factors may provide rational basis for the design of civil 
engineering structures. However, further researches are needed in different areas. A whole life 
cycle approach to structural design and evaluation needs to be developed, including various 
forms of deterioration (corrosion, fatigue, cracking), and considering the entire system with all 
the interactions between different components. 

1.5 Structural capacity and deterioration 

The capacity of a structure depends on the resistance of its components and connections. The 
component resistance is a random variable depending on material, fabrication and analysis 
uncertainties. Typical coefficients of variation for structural engineering applications range 
from 5 to 15% for material strength, 5 to 10% for deal load, and 15 to 30% for live load, and 
even higher for seismic and wind loads (Ghosn and Frangopol 1999).  

Moreover, structural capacity is degrading with time. The deterioration is usually caused 
by a combination of (Das 2000): (1) traffic related effects, e.g. surface/joint damage, fatigue 
effects, deformation; (2) environmental factors both natural and man-made, e.g. de-icing effect, 
freeze thaw cycles; (3) material degradation, e.g. loss of ductility, corrosion, cracking.  

In addition to the reliability index, other performance indicators, as explained in section 
2.2, can be used to properly specify the structural performance of deteriorating structures; e.g. 
structural ductility, redundancy, robustness, resilience and elapsed times between failure. 
Discussions of these indicators can be found in (Biondini et al. 2014; Frangopol and Soliman 
2016).The performance indicator for the structural system is schematically shown in Figure 1.5 
(Das 2000). The unacceptable elements such as those with severe deterioration are likely to be 
located towards the left. Without any maintenance, the overall distribution will tend to move 
leftwards.  

 

Figure 1.5: Structural deterioration (Das 2000). 
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The degradation process leading to failure is a complex process. Figure 1.6 shows examples 
of three general degradation curves in arbitrary units of degradation and time: linear, convex 
and concave (Meeker et al. 1998).  

 

Figure 1.6: Possible shapes for univariate degradation curves (Meeker et al. 1998). 

Dasgupta and Pecht (1991) divided the failure mechanisms into two broad categories: 
overstress failure and wear-out failure. Overstress failures are those due to brittle fracture, 
ductile fracture, yield, buckling, large elastic deformation, and interfacial de-adhesion. Wear-
out failures are those due to wear, corrosion, inter-diffusion, fatigue crack propagation, 
diffusion, radiation, fatigue crack initiation, and creep. Variation in the degradation process can 
be due to operating conditions, variability in environmental conditions, manufacturing 
variability, and material variability. Modeling degradation with time provides necessary 
information to assess reliability and to estimate the time to failure. 

Time-dependent structural deterioration processes such as corrosion and fatigue impose 
continuous aging effects on structures. Corrosion is the main cause of damage in reinforced 
concrete structures (Deby et al. 2009). Severe cracking of the concrete cover may be caused by 
corrosion in aggressive environment. Also, fatigue damage may occur in a bridge member due 
to the accumulation of damage following the application of a large number of stress cycles. A 
reinforced concrete bridge may experience up to 7×108 stress cycles during the course of its 
lifespan (Rocha and Brühwiler 2012). It is thus important to be able to assess the corrosion and 
fatigue performance of such structures.  

Several published studies are related to modeling the probabilistic corrosion initiation and 
propagation (Vidal et al. 2004; Vu et al. 2005; Chen and Mahadevan 2008) and to assessing the 
influence of reinforcement corrosion on reliability (Stewart 2004; Vu et al. 2005; Bastidas-
Arteaga et al. 2008; Bastidas-Arteaga et al. 2009; Bastidas-Arteaga et al. 2011; Liberati et al. 
2014; Soliman 2015), Methods for reliability assessment of reinforced concrete (RC) slab with 
corroded reinforcement have also been developed (Coronelli and Gambarova 2004; Stewart and 
Al-Harthy 2008). The procedure proposed by Val et al. (1998) for time-dependent reliability 
analysis had important repercussions for the optimal allocation of resources for structural design 
and maintenance. Improved corrosion models were later developed by Vu and Stewart (2000) 
in the aim of calculating the failure probabilities. Stewart (2004) developed a stochastic process 
for assessing the effect of spatial variability of pitting corrosion on structural reliability and 
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fragility for reinforced concrete (RC) beams in flexure. Deby et al. (2009) presented a complete 
methodology for the durability design of cover depth for a concrete immersed in sea water by 
quantifying the service life of concrete through the reliability index. El Hassan et al. (2010) 
proposed a reliability model to determine the probability distributions of the time to corrosion 
initiation and the time to failure of RC members subjected to chloride ingress. Bastidas-Arteaga 
et al. (2008; 2009; 2011) presented a model of RC deterioration by coupling deterioration due 
to corrosion and cracking. Bastidas’ model computes the reduction of the concrete section and 
the area of steel reinforcement in order to assess the change of structural capacity with time. 
Their coupled corrosion-fatigue deterioration process is detailed in Appendix 2. 

Damage mechanisms, including uniform corrosion in steel structures, as well as 
crushing, cracking, abrasion and erosion in concrete structures, can be effectively represented 
at the member level by a progressive reduction of the cross-section resistance and used to 
evaluate the corresponding performance at the global level (Biondini et al. 2014). Available 
empirical deterioration models are used for this purpose. Two corrosion and fatigue models are 
explained in Appendixes 1 and 2, and they will be used in the numerical applications in the 
following chapters. 

1.6 Structural reliability: components and systems 

Civil engineering systems are complex structures formed by several individual components. 
The reliability analysis of such systems is only possible when all failure modes are identified.  
This analysis has to include the interaction between potential failure modes. The effects of 
structural deterioration due to mechanical loadings and environmental stressors on system 
reliability should also be accounted for.  

The reliability indexes of individual members assuming linear elastic behavior differ from 
the system reliability accounting for load redistribution. Material nonlinearity has large 
influence on the redistribution of forces in a structural system. When there is adequate 
redundancy, the overall system safety will be higher for systems with passive components.  
System reliability is affected by the way in which the components are joined together: in series, 
in parallel, or in a combination of series and parallel sub-systems. Component ductility and the 
correlations between member capacities also affect significantly the system reliability. The 
system probability of failure may be obtained for both statistically independent and perfectly 
correlated components, by considering the system configuration (series, parallel or series-
parallel).  

The failure of any member in a series system will produce the failure of the complete 
system. If the members of a series system are independent, then the system probability of failure 
is: 

��,������ = 1 −∏ �1 − ���                   (1.7) 

The failure of a parallel system requires the failure of all the components. If the members 
of a parallel system are independent, then the system probability of failure is:   

��,������ = ∏ ��                    (1.8) 
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In reality, the members of a structure are usually correlated. In fact, the performance 
functions of different members have common variables, while the other variables have various 
degrees of correlation. For correlated systems, many authors proposed upper and lower bounds.  

Bounds on system failure probability have been proposed by Ang and Tang (1984) for 
series and parallel systems, as follows: 

Series systems:  max �� ≤ ��,������ ≤ 1 −∏ d1 − ��e               (1.9) 

Parallel systems:  ∏ �� ≤ ��,������ ≤	min ��             (1.10) 

Ditlevsen (1979) proposed bounds for the system probability of failure of series system, 
based on individual failure modes and their correlation, as follows: 

��Z�8[ +^�6� �_����� −^��d��⋂�et8
�l8 b ; 0� ≤ ��,������"
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(1.11) 

where Q is the total number of failure modes, ����� is the probability of occurrence of failure 

mode �, and  ��d��⋂�e is the probability of occurrence of the intersections of failure modes � 
and �.  The probability of occurrence of the intersection of two events can also be expressed by 
its lower and upper bounds as follows: 

max	Zф�−�� × ф�−��; ф�−6� × фd−��e[ ≤ ��d��⋂�e≤ ф�−�� × ф�−�� + ф�−6� × фd−��e 
with  6 = ��t���×��

�8t���     and  � = ��t���×��
�8t���                (1.12) 

where �� is the correlation coefficient between modes � and �. 
The above bounds are compatible with the fact that for series systems, if all components 

are fully correlated, the system probability of failure is that of the less safe component (i.e. 
higher ��). The upper bound corresponds to the failure of uncorrelated series system. For 

parallel systems, if all components are fully correlated, the probability of failure is that of the 
safer component (i.e. lower ��). The lower bound corresponds to the failure of uncorrelated 

parallel system. 

Such calculations show that for series systems, the reliability of the system decreases when 
the correlation decreases, and when the number of elements decreases. Inversely, the reliability 
of parallel systems decreases when the correlation increases and the number of elements 
increases. 

The level of member ductility does not influence the series system reliability. A series 
system will totally fail whether a member fails in a brittle or a ductile mode. However, the 
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member ductility affects the parallel system reliability. A parallel system formed of two 
perfectly ductile members will only fail if the two members fail. However, if a parallel system 
is formed of brittle members, the system reliability will depend on the level of reserve strength 
in each member. When a ductile member reaches its limit capacity, it continues to carry its limit 
load and redistribute all other additional loads. Otherwise, if a brittle member reaches its limit 
capacity, it will shed its limit load plus any additional load. This behavior is explained in Ghosn 
and Frangopol (1999). 

Yang et al. (2004) proposed a model to evaluate the overall system reliability for 
independent or correlated components of existing bridges modeled as series and parallel 
systems. They demonstrated that correlation has a significant influence on the system reliability; 
an increase in the positive correlation between the safety margins of components increases the 
safety of the system for series systems and decreases it for parallel systems.  

The system reliability is required to be accounted for in life-cycle optimization as the 
overall performance indicator for new and existing structures.  Recently, Sabatino et al. (2015a) 
shared the importance of the effect of system modeling (series or parallel) and of the way the 
system reliability is calculated (annual or cumulative) on optimum structural maintenance 
planning. 

1.7 Management Practice 

Civil engineering structures, particularly bridge infrastructures, are often aging faster than funds 
allowing reconditioning to meet current loading requirements. In management practice, a 
structure that does not meet satisfactory ratings must be posted or replaced. Posting causes 
travel inconveniences and costs to the economy. Ideally for heavily trafficked roads, life cycle 
costs of a bridge repair and damage are balanced by increased productivity with higher vehicle 
weights by the mean of fees assigned to heavy vehicles by some agencies. In order to be 
consistent in applying user fees, a concept of uniform risk must be maintained. Therefore, any 
reduction in reliability created by heavier truck weights can be translated to cost factors. 

Rising highway productivity causes more problems to existing bridges, compared to new 
ones. In fact, the costs for increasing the capacity of a new structure are low compared to 
existing ones. When designing, the structural capacity can be increased by simply enlarging a 
cross-section size. However, if an existing structure is deteriorating, expensive maintenance is 
necessary to allow the bridge to continue carrying legal traffic, otherwise, the bridge must be 
load posted by weight restrictions or replaced. 

1.7.1 Management system 

The Bridge Management System (BMS) provides data, models and analyses that support 
decisions in design, in maintenance, in hazard mitigation, and in anticipated obsolescence of 
structures (Hearn 1998). The decision supports in design aims at finding a balance between a 
greater durability that offers an increased service life under normal service, and a lower initial 
cost of material and components. In maintenance, it balances between longevity and the costs 
of repairs and replacements. Facing natural hazards, the BMS considers the return period of the 
extreme event, the probability that the bridge will withstand the event, the cost options for 
design and reconstruction required to strengthen bridges for the events, and the cost of loss of 
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service if the bridge fails. The BMS for obsolescence compares the expected increase in traffic 
volume and requirements to the costs of providing superior bridges. The management is needed 
because resources for improvement are limited. The economic analysis considering user costs 
of deficient service becomes the basis for management of deficient bridges. 

The first step in bridge management is to separate the elements into groups of similar 
characteristics, for example by construction type. For each group, it is necessary to establish an 
optimum maintenance regime, which is based on whole life cost considerations. The next step 
is to consider the maintenance planning from the project and network point of views. At the 
project level, the condition measurements and evaluations are used to carry out the assessments 
that form the basis for any bid for funding. Then, the project level programs are adjusted to 
reflect the network strategic plan. User delay cost must be considered as a consequence of not 
funding part of the bids. Traffic disruptions are likely to take place due to weight restrictions or 
load posting, which would be necessary for maintaining safety if the full bid is not funded. 

The evaluation of bridge structures is needed periodically because of increasing loading 
and decreasing capacity. The final computation of a bridge evaluation is often the rating factor 
which leads to active decisions (e.g. load posting, repair, replacement or permit).   

The life-cycle management framework is shown in Figure 1.7 (Frangopol and Soliman 
2016). Different modules of the life cycle framework have to be combined to obtain the 
optimum life cycle decisions. 

 

Figure 1.7: General life-cycle management procedure (Frangopol and Soliman 2016). 

1.7.2 Reliability versus Condition based models 

Currently, two methods are used to evaluate existing structures: reliability-based rating (Mori 
and Ellingwood 1993) and condition-based rating (Hudson et al. 1987).  
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Condition rating models are extensively used in structural management systems. Condition 
ratings are numerical codes estimated from visual inspection, which have been commonly used 
as an indicator of structural deterioration describing the extent and severity of damage. The 
dominant BMS that uses condition-based models in the US are BrM (formerly Pontis BMS 
(Thompson and Shepard 1994) for the Federal Highway Administration (FHWA) and 
BRIDGIT (Hawk and Small 1998) for the National corporative highway research program 
(NCHRP). Similar BMS have also been developed in other countries, as for example Denmark 
(Lauridsen et al. 1998), Finland (Söderqvist and Veijola 1998) and the UK. They all include the 
use of condition ratings as indicators of repair needs and use Markovian deterioration predictors 
for elements (Hearn 1998). Explicit evaluation and updating of structural safety are not parts of 
BMS.   

Reliability-based rating models are more recent and its current application to the codes of 
practice is either shy or implicit. The structural reliability of bridge systems is estimated from 
bridge elements to the entire bridge. The structural reliability of each structural element is 
evaluated from their limit state functions, considering the probability distributions of resistance 
and loading. The interaction between rating and reliability of a group of 14 bridges in an existing 
network was investigated by Frangopol and Maute (2003). The bridge rating factor and the 
reliability index are evaluated for various limit states belonging to different member types 
within the bridge network.  

Reliability-based evaluation model contributed to further developments of the structural 
maintenance methodology that has been set up by the UK Highways Agency, whereas 
condition-based model has been applied in the Netherlands. A comparison between the two 
maintenance models was held by Van Noortwijk and Frangopol (2004). While the reliability-
based models treat the multicomponent, multi-failure mode and multi-uncertainty case, the 
condition-based model treats only one component, one failure mode and one uncertainty. 
Another difference is that reliability-based model uses Monte Carlo simulations, whereas 
condition-based model is analytical and deterministic. Furthermore, the maintenance models 
differ in the way the uncertainty in the deterioration is modeled; that is, uncertain parameter as 
opposed to stochastic processes, respectively. Due to the difference between the condition-
based and reliability-based concepts, the management decisions associated with each of these 
concepts will in general be different. 

 Reliability and condition based models were also compared by Wang et al. (2012). One of 
the main disadvantages of reliability-based models when predicting structural health is the low 
ability to address the interactions between the elements. Redundancy and load redistributions 
are not adequately considered in reliability-based rating models. Therefore, condition rating 
may exceed reliability rating for spans with redundant load paths. However, if data is 
unavailable, then load rating based on AASHTO specifications yields conservative 
assumptions. 

Reliability applications for structural evaluation differ from design because there is more 
information available from inspection, observation and field testing. Moreover, site-specific 
information on loading may be incorporated, and therefore, more accurate predictive models 
can be developed. Site-specific information incorporated in the reliability-based criteria 
provides useful benefits to the evaluation and the economy of bridge expenditures. This 



30 
 

methodology is used in the Canadian S-6 code (CSA), where the site specific risks are computed 
and compared to allowable risk values. In the United Kingdom, a bridge assessment standard 
(BD21/01 volume 3 section 4, The Assessment of Highway bridges and Structures) 
recommends the minimum acceptable safety levels in terms of load carrying capacity. 
Nevertheless, bridge engineers are unfamiliar with risk analysis methods. Therefore, the LRDF 
format of the AASHTO specification can be more familiar to bridge engineers because it works 
with terminology that makes the risk analysis transparent to the user (AASHTO 2014). The 
basic methodology is to relate the required safety margins to the level of uncertainty and the 
target reliability. However, the target safety in the evaluation does not need to be as stringent 
as in new designs, mainly because of economic factors.  AASHTO uses a � value of 3.5 for the 
design and 2.3 for the evaluation of redundant spans. Moreover, uncertainties for existing 
structures are often smaller than for new designs when field tests can be performed and 
additional information can be gathered. Any reduction in uncertainty raises the value of �, and 
therefore the associated bridge rating. The rating engineer must use judgment to adjust the input 
uncertainties according to the quantity and quality of available information.   

Although probability theory has been successfully applied to deal with uncertainties, 
practical engineers, inspectors and maintenance workers are not familiar with probability and 
statistic concepts. Some authors proposed maintenance models that consider uncertainties 
and/or life cycle user and environmental costs, without having to deal with probabilistic 
methods. Tamaki et al. (1998) provided some approximate solutions for the uncertain situations 
without using direct probability methods, by introducing the concept of age into the 
evolutionary process of a Genetic Algortithm (GA). 

Recently, the increase in computational capabilities have made it possible to conduct 
complex, large-scale simulations, and paved the road for sophisticated probabilistic techniques 
to be applied to infrastructure management problems (Frangopol and Soliman 2016). 

1.8 Reliability-based Maintenance Planning  

The evaluation of strength and safety, the modeling of deterioration and the explicit 
consideration of uncertainties are the main advantages of reliability models over condition 
rating models. A measure of the time-variant structural performance is realistically possible 
only in probabilistic terms (Ang and Tang 2007). In order to establish a rational maintenance 
program, it is necessary to evaluate the structural performance of existing structures. Life cycle 
cost (LCC) is a useful measure for evaluating structural performance from economic and social 
points of view. LCC involves the costs of design, construction, maintenance and failure, which 
are explained in section 1.9. The optimal maintenance strategy obtained by LCC optimization 
can be different according to the prescribed level of structural performance and required service 
life.  

The basic replacement and maintenance models are “Control limit rule”, “Minimal repair 
rule” and “Shock models”. Derman and Veinott Jr (1972)  were the first to show that a “control 
limit rule” is an optimal rule when the probability of deterioration is increasing with time. The 
idea is: if the probability of deterioration increases in the next period with respect to the present 
state i, then a “control limit” rule is optimal, so that one should repair or replace when the 
observed state i is greater than some limit i*.  “Minimal repair variant models” are fixed time 
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repair models (Barlow and Hunter 1960). The repair of a failed unit restores it to a working 
state but without changing its failure rate from what it was just before it failed. “Shock models”, 
firstly introduced by Taylor (1975), suggest that the unit is subject to external random shocks, 
each of which damage the unit to some degree. The probability that the unit will fail is a function 
of the accumulated shock damage it has received, but again the optimal policy for preventive 
repair or replacement is to replace when the amount of damage exceeds a control limit. 

Optimizing the maintenance planning schedules of deteriorating concrete structures is 
crucial for maximizing the service life. Nevertheless, engineers have to decide between 
alternatives that concern different levels of expenditure and different probabilities of success. 
It is very difficult to decide an appropriate order for repairing some structures among many 
deteriorating ones within an annual budget, because there are many combinations of repairing 
times and repairing methods. Moreover, the traffic characteristics of road network and the 
concept of life cycle cost must be considered. 

Several authors applied Genetic algorithms (GA) for the establishment of optimal 
maintenance planning of existing structures. GA is inspired by the biological evolution. 
Solution candidates are initially randomly generated. Then crossover, mutation, natural 
selection and reproduction are repeatedly implemented until a termination condition is fulfilled. 
Each individual has a fitness value to the environment. The environment corresponds to the 
problem space and the fitness value corresponds to the evaluation of the objective function. GA 
can provide useful solutions for large and complex combinatorial scheduling problems with 
discontinuous objective functions. The concept of Pareto optimum is important to balance the 
trade-off relations, where an optimal solution cannot improve an objective function without 
sacrificing other functions. A decision supporting system for the maintenance program of 
reinforced concrete bridges is developed by Dogaki et al. (2000) using GA. The optimization 
problem is formulated with two objective functions: maximize the fitness of repair method and 
minimize user, environmental and maintenance costs. GA was also used by Furuta et al. (2006) 
to develop a maintenance program of infrastructure systems, considering uncertainties 
regarding future environmental and deterioration predictions.   

There are mainly two types of maintenance interventions: corrective and preventive (Das 
1998). Corrective maintenance is required in order to bring the element to the safe condition. 
Preventive maintenance is carried out before the critical level is reached, in order to postpone 
the beginning of the critical condition. In general, a performance indicator is used to specify 
when any work or investigation is deemed necessary. Maintenance interventions can be planned 
to achieve a prescribed value of the structural lifetime. 

The effect of deterioration on the performance level (e.g. reliability index, structural 
capacity) is schematically shown in Figure 1.8 (Frangopol et al. 2001). The performance level 
decreases with time due to deterioration. If the calculated performance level is below a target 
level, the structure has to be strengthened by corrective maintenance. If the performance is 
above the target level, and yet some work is deemed to be justified, such a work is considered 
as preventive maintenance.  The propagation of uncertainties during the whole life of a bridge 
is also indicated in this Figure. The probability density functions in Figure 1.8 remind the fact 
that similar bridges under similar environments have different performance levels at the same 
point in time.  
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Figure 1.8: Uncertainty propagation during the whole life of a bridge (Frangopol 2001). 

The time of application of inspection and maintenance depends on several parameters and 
randomness. Kong and Frangopol (2003) proposed a method to evaluate the expected 
probability of maintenance at a certain time of a deteriorating structure and the expected 
maintenance cost due to the application of subsequent maintenances. Associated costs are 
predicted by the mean of conditional joint distributions. Decision tree model (Ang and Tang 
1984) is used for the evaluation of the expected annual probability of maintenance, where 
independent reliability cycles are assumed. Maintenance cost estimation is discussed in section 
1.9. 

Many authors represented the maintenance decisions and related outcomes during a 
structure lifetime by a decision tree model (Nielsen and Sørensen 2015; Sahraoui et al. 2013), 
such as in Figure 1.9. To rank a set of design alternatives, the potential risk associated with a 
given alternative should be considered, as well as the capital cost of the alternative. The 
procedure identifies first the available alternatives of action and the possible outcomes, or 
sequence events, associated with each alternative. Then, the respective consequences for each 
scenario or path can be assessed. The probability of each branch of outcome can be determined 
either from probabilistic models or by the engineer's judgment based on the available 
information. The probability of a path is simply the product of the respective probabilities. The 
expected cost of each alternative is the summation of the path probability multiplied by the path 
consequence over all outcome scenarios for that alternative. The alternative with the least 
expected cost is considered optimal if the commonly used “expected value criteria” are adopted 
for the decision.  
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Figure 1.9: Idealized decision tree example for reliability-based maintenance models 
(Sahraoui et al. 2013). 

In addition, structural failure probabilities are calculated based on several limit state 
functions. Orcesi et al. (2010) presented a global approach to determine the optimal 
maintenance strategies associated with several limit states.  They showed that optimal solutions 
cannot be seen as a juxtaposition of optimal results for different limit states taken individually. 
Moreover, some limit states contribute more than the others when considered simultaneously. 
This contribution can change when different or additional constraints are applied. A series 
system is considered in Orcesi’s approach, and structural health monitoring (SHM) is included 
to determine the optimal maintenance strategies (Orcesi and Frangopol 2011). 

 Recently, many algorithms were used to provide solutions for the maintenance 
scheduling with reasonable time; e.g.  Genetic Algorithm (Sabatino et al. 2015a), Simulated 
Annealing Algorithm (Doostparast et al. 2014). The results of recent works showed that the cost 
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reduction yielded by the maintenance optimization is very dependent on the system 
configuration, the number of components, the planning horizon and the reliability threshold.   

It is however observed that many studies proposed approaches to optimize the maintenance 
planning of systems with independent components, but few considered dependencies. In the 
following section, the different types of dependencies and the main advances concerning each 
type are discussed. 

1.9 Correlation of the components of a structural system 

The interactions between the components in a system should be taken into account in 
maintenance and replacement policy. Many of the multi-unit systems are designed so that their 
structural dependency improves the system reliability through redundancy. However, the 
structural dependency may also decrease the system reliability (as discussed in section 1.5).  
This dependency between the elements means, however, that the net optimal operating policies 
for the single element rarely remain optimal for multi-unit systems. Thomas (1986) defined 
three types of interactions in a multi-unit system: economic, structural and stochastic. Each of 
these interactions was studied to some extent by several authors, but very rarely several types 
were considered in a single study. Though, we will review the main works in this field in the 
following subsections. 

1.9.1 Economic dependency 

The cost of replacement and maintenance has interdependencies between the elements. The 
simplest of such case is when the replacement or repair cost of several components is less than 
the sum of their individual replacement or repair costs. 

Opportunistic replacement introduced by Radner and Jorgenson (1962) is one of the first 
examples of economic dependency. When the cost or time of replacing two or more units in the 
system is less than the sum of their individual replacement costs or times, it may be worthwhile 
to replace a working unit when one is replacing other failed units. Many opportunistic models 
were introduced, e.g. the (n, N) strategies (Sasieni 1956), and preparedness problem (Radner 
and Jorgenson 1962), where the costs of inspection and repair when emergency occurs costs 
more than when the same inspection and repair occurs under non-emergency condition. 
Laggoune et al. (2009) developed a preventive/ corrective/ opportunistic maintenance plan for 
a multi-component system subject to high production loss and economic dependency. Grouping 
maintenance is considered in many studies by the means of a penalty cost caused by shifting 
from the component optimal cost.   Laggoune considered a series system, given by the 
arrangement of components, and described all the possible “operation” or “failure” scenarios. 
When a component fails, it is replaced by a new one and the whole system is down during the 
replacement operation. A non-failed component can also be replaced during preventive 
maintenance. The economic dependency is due to the production loss when the system is down 
for corrective or preventive replacement of components. The cost model is divided into a first 
part related to common costs and a second part related to the specific component. However, in 
Laggoune’s study, there was no consideration of structural failure interaction. Among the very 
rare studies considering at the same time several dependencies, economic and structural 
dependencies are considered simultaneously by Van Horenbeek and Pintelon (2013) by the 
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mean of a partial dependent parameter αd multiplied by the set-up cost. The set-up cost 
illustrates economic dependency, and the non-zero times illustrate structural dependency. 
However, the structural dependency is defined by the fact that the downtime affects all failed 
and non-failed components. Other aspects of structural dependency may have stronger effect 
on the optimal planning, namely; horizontal dependency due to the system structure, and 
vertical dependency due to the system modular subunits (Thomas 1986).   

Many authors considered series systems (Laggoune et al. 2009; Van Horenbeek and 
Pintelon 2013), which may not be adequately applicable in the case of redundant structures 
formed by interrelated components with many possible load paths. Several combinations of 
basic structures were investigated by Vu et al. (2014) (series, parallel, k-out-of-n structures) via 
the criticality of components, where the system fails if a critical component fails, but can still 
be functioning if a non-critical component fails. 

1.9.2 Socio-economic dependency 

As infrastructures also involve risk to human life and limb, a socio-economic acceptability 
criterion is to be added as a constraint to the cost-benefit analyses. Civil engineering structures 
should be optimal not only from a technological point of view but also from a sustainability 
point of view. The cost as well as the benefits may differ for the different involved parties; e.g. 
the owner, the builder, the user and the society, which may also have different economic 
objectives. In view of sustainability, one has to distinguish between at least four replacement 
strategies: 

• the facility is given up after service or failure 

• the facility is systematically replaced after failure 

• the facility is repaired after deterioration 

• the facility is renewed due to obsolescence 

Rackwitz et al. (2005) proposed renewal models that considers the monetary loss in case 
of failure including direct failure cost, demolition cost, cost of removal of debris, loss of 
business and other indirect costs and, of course, the cost to reduce the risk to human life and 
limb. He further decomposed the losses into physical losses and losses associated with human 
life and limb. Social dependencies can only be modeled by the quantification of indirect failure 
cost such as loss of use by the public, loss of business, and the assessment of the benefit derived 
from a civil engineering infrastructure, which are very difficult tasks.  

A modular framework for assessing the economic, environmental and social impacts of 
structural durability has been proposed by Flint et al. (2014) and applied to concrete structures 
expected to undergo climate changes accelerated chloride induced reinforcement corrosion. The 
analysis has been divided into three stages: exposure, deterioration/repair, and impact. At each 
stage, the distribution of the probability of exceeding a specified threshold is computed. These 
distributions are conditioned by the output value of the previous state. Convolving a series of 
conditional distributions yields a final distribution for lifetime decision information. However, 
in Flint’s study, the frequent repairs were responsible of high costs and downtimes, therefore, 
concurrent maintenance may have been considered.  
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1.9.3 Structural dependency 

Whereas with economic dependencies it may be useful to replace the working units at the same 
time as the failed ones, structural dependencies mean that one has to replace or at least dismantle 
some working units in order to replace or repair the failed ones (Thomas 1986). There are two 
types of dependency: horizontal and vertical. Horizontal dependency is the connection between 
the units of the system that affects the system reliability. The vertical dependency is the system 
modular structure that affects the maintenance and replacement policies of the system. Many 
models consider the items in a multi-item system as being on different levels or echelons.  If 
the system is built in modular form then when replacing any module, it is necessary to question 
whether to replace all the sub-modules attached to it or not. Many suboptimal policies have 
been suggested for this problem, such as the minimum replacement, the replacement of the 
whole system when a unit fails, or by linking the replacement policy to a defined limit age for 
every unit.  

Another type of structural dependency that has been studied recently is the bridge-vehicle 
interaction (VBI). The fundamental problem in VBI modeling is that the contact points move 
with time and for each point in time, the displacements of the vehicle are influenced by the 
displacements of the bridge, which affect the vehicle forces applied to the bridge which in turn 
again alter the bridge displacements and interaction forces. Vehicle-Bridge Interaction (VBI) 
problems were initially addressed by railway engineers. VBI modeling offers a mean to extend 
the analysis to a wide range of scenarios, namely the effect of road roughness or expansion 
joints, the effect of vehicle characteristics such as suspension, tyres, speed, axle spacing, 
weights, breaking, or the effect of bridge structural form, dimensions and dynamic properties 
(González 2010). 

A framework to determine optimum maintenance strategies by considering the risk attitude, 
structural correlation among components and the number of maintenance interventions on the 
optimum maintenance strategies was presented by Sabatino et al. (2015a), where lifetime 
functions and correlation effects are directly incorporated within risk calculations. However, 
only perfect or nil correlations were considered. 

1.9.4 Stochastic dependency  

In practice, civil engineering structures consist of multiple components and the failure of one 
component affects the other components. This means that failures in multi-component systems 
are stochastically correlated. Failure interaction occurs either due to system mechanism or 
design problem, which decreases the system reliability. Therefore, the failure dependency 
among component should be taken into account in the design and maintenance of a multi-
component system.  

Thomas (1986) defined the following failure interactions: 

-  The sudden failure of an item potentially produces failure to the subsequent 
downstream items; which may be the modular components attached to the failed item. 

- The failure of some items causes an increased load to be carried by the working items; 
this may be the case of the load redistribution that occurs in case of a bearing component 
failure. 
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- There is a common cause of failure effect produced by external sources, such as 
earthquakes or hurricanes, etc... 

Failure interactions are divided into three types by Lai and Chen (2008): 

-  Type I failure interaction: when a unit fails, other units will immediately fail at a certain 
probability. 

-  Type II failure interaction: a failure of a unit is regarded as an internal shock that 
increases failure rates of other units. 

-  Type III failure interaction: a failure of one unit causes a random amount of damage to 
the other units. 

Such interdependencies occur commonly in practice, but they are difficult to model because 
the probabilistic dependencies are hard to estimate. 

Murthy and Nguyen (1985) were the first to derive expressions for the expected cost of 
operating two-component system with failure interactions. In their study, the failure of a 
component induces the failure of the other component with probability ¡, and has no effect on 
the other component with probability	1 − ¡.  

Some authors proposed inspection and/or maintenance optimization models for a two-unit 
system subject to failure interactions (Golmakani and Moakedi 2012). Nevertheless, their 
models are limited to two components and to a specific type of failure interactions. 

Few researches extended the modeling of failure interaction to more than two-unit systems. 
“Common cause” failure interaction for several-units system is considered in Khodakarami and 
Abdi (2014). They proposed a Bayesian network approach to model dependencies between cost 
items. However, the authors only consider project cost from permit to construction. Moreover, 
their model needs the knowledge of the probabilities of common causes which are obtained by 
expert questionnaires and thus may be subjective. Only “common cause” correlation is 
modeled, which is a failure effect produced by external sources like organizational issues, 
technologies, material, etc…Though, there is other failure correlation types that may occur like 
“cascade” or “compound” consequence correlation. 

1.9.5 Interaction between deterioration models 

In general, the deterioration caused by the combined mechanisms is more harmful than the 
ageing induced by a single mechanism. Kari (2011) developed a model to combine different 
damage models to one service life model. Kari’s model was used to determine the interactive 
effects between the penetrating chlorides and the carbonation of the concrete and freezing of 
concrete (Kari 2011). A challenge in the modeling is to combine the mechanisms of varying 
humidity and temperature, taking into account the concrete freezing. In addition, the external 
concentrations of the chlorides are not constant during the exposure period. The mechanisms 
identified and included in the mathematical model are: the carbonation of concrete, moisture 
ingress, chloride penetration and internal and external frost damage. The deterioration caused 
by the combined mechanisms is significantly more damaging than the ageing induced by a 
single mechanism. The mathematical methods based on a group of differential equations can be 
used to simulate the interaction of different deterioration mechanisms. The obtained results 
emphasize the importance of considering the interaction between different deterioration 
mechanisms of reinforced concrete. 
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Even in case where only one deterioration mechanism is considered, the performance 
functions of the different members in a system have common variables, and the other variables 
have various degrees of correlation. 

Nicolai and Dekker (2008) published a review report on the literature works on multi-
component maintenance optimization, focusing on the dependency between components. The 
articles were classified on the basis of dependency (stochastic, structural and economic). 
Planning is also discussed (Finite and infinite horizon). The type of optimization is apprehended 
(exact, heuristic or policies). Their conclusion is that more researches are needed to model the 
combinations of dependencies, the multiple set-up activities, and more case studies are to be 
intended. In addition to Nicolai and Dekker’s conclusions, in our opinion, many weaknesses 
must be addressed, particularly the fact that most works dealing with stochastic dependency 
only considers two components. Moreover, very few articles deal with structural dependency.  

1.10 Life cycle cost analysis 

Structural design and management must ensure adequate level of reliability at the lowest 
possible life-cycle cost. Many authors proposed methods to evaluate the life-cycle cost of 
concrete structures. A life-cycle cost analysis (LCCA) can lead to a more economic long term 
decision making, like the use of costly materials and systems or the adoption of a structural 
conception that has a higher initial cost but requires less maintenance or is less susceptible to 
fail. For example, Val and Stewart (2003) justified the use of stainless steel reinforcing bars in 
RC structures in marine environment, even though they are six to nine times more expensive 
than carbon steel. For this purpose, they proposed a time-variant probabilistic model to predict 
the LCC under different exposure to corrosion conditions.  A brief review of the life-cycle 
reliability-based optimization field was presented by Frangopol and Maute (2003). One of the 
paper broad conclusions is that the life-cycle optimization criterion in the design of new 
structures is the minimum expected total cost. Alternatively, for planning maintenance 
interventions on existing structures, the expected total intervention cost has to be used as the 
optimization criterion.  

A general LCC model consists of initial costs and direct and indirect rehabilitation costs, 
including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, 
and indirect socio-economic losses (Lee et al. 2004). Many formulas for the expected life-cycle 
cost can be found in the literature, sharing the same basic components (Frangopol and Maute 
2003; Val and Stewart 2003; Yang et al. 2004): 

�  �G� = 	 " +  #$ +  %"��G� +  I�G� +  &.�G� +  %.�G� +  &�G�           (1.13) 

where Cini is the initial cost,  #$ is the cost of quality assurance,	 %"��G� is the cost of 
inspections, CM is the maintenance cost,  &.�G� and  %.�G�  are respectively the direct and 
indirect failure costs,  &�G� is the cost of disposal, and t is the analysis period. Each future cost  �G� is then converted to the present value   '(�G� via the discount rate ν at time t as follows; 

 '(�G� = .�8�¢�£                  (1.14) 
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 The current value of the discount rate used in different countries varies from 2% to 10% 
(Frangopol 1999). These values have significant implications on structural management and 
maintenance planning. This is due to the fact that including the discount rate gives the 
opportunity of performing the same maintenance option at different times in the future where 
each one has different calculated present cost (Soliman 2015). Choosing a higher discount rate 
may promote management strategies with low initial costs but high future costs (Orcesi 2015). 
Therefore, including a realistic discount rate allows the manager to select the best maintenance 
planning which fits the management constraints.  

1.10.1 Initial Costs  

Woodward (1997) defined the initial cost as “the capital cost category that includes all the 
costs of buying the physical asset and bringing it into operation”. The importance of minimizing 
the initial cost has been recognized long time ago. For example, in case of RC structures, an 
owner may prefer the use of more volumetric concrete in the aim of decreasing the weight of 
steel (if the decrease in steel volume is more cost-effective than a decrease in concrete volume). 
The initial cost is related to the material and the labor cost for the construction of the structure 
which includes, in the case of reinforced concrete structures: concrete, steel reinforcement, 
labor cost for construction and material transportation, as well as the non-structural cost 
components such as project management, overhead, tool locations, etc…(Mitropoulou et al. 
2011). 

1.10.2 Inspection and Maintenance costs 

Effective cost evaluation methods are needed to assess reasonable expenditures for managing 
structures during their service lives, where structures can experience various types of inspection 
and maintenance actions at different times. The associated costs of these actions can only be 
predicted by the mean of conditional joint distribution. The method of evaluating the probability 
distributions of associated maintenance actions is described in  Frangopol et al. (2001) and 
Kong et al. (2000, 2001). Let us assume the case where n rehabilitations occur at relative time 
scales t1, … , tn. The origin of the relative time scale is the time of occurrence of the previous 
rehabilitation. The absolute application time of the Q�9 rehabilitation is:  

¤ = G8 + G� +⋯+ G"                 (1.15) 

 The total expected rehabilitation cost at time ¤ associated with all possible rehabilitation cycles 
is: 

 I�G� = ∑ ∑ '����×	.¥,��8�¢����l7"l8 	                (1.16) 

where 	 I, is the undiscounted cost of the ��9 rehabilitation, ���� is the probability mass 

function at time j associated with the ��9 rehabilitation cycle, and  ν is the discount rate.  

It is difficult to obtain the probability mass functions associated with all rehabilitation 
cycles. The correlations between various rehabilitations may be obtained if the time-dependent 
behavior of a deteriorating system is known. Therefore, statistically independent rehabilitations 
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are usually considered. Using this assumption, the expected probability of rehabilitation at time 
j can be obtained from the product of all probability mass functions of rehabilitations at this 
time.  

Joint probability calculation requires expensive multiple integrals.  To reduce the 
computational time, decision tree method applicable to all rehabilitation scenarios can be 
applied for discrete probability mass functions. A decision tree example showing all possible 
paths after applying two rehabilitations is drawn from Frangopol and Kong (2001) and shown 
in Figure 1.10. Subscripts A and R are used to indicate that the rehabilitation is based on the 
absolute and relative times respectively.  Pi,A represents the probability of the ith rehabilitation 
with respect to the absolute time scale. The probability that rehabilitation will occur at a specific 
time can be obtained from the decision tree by selecting all paths ending at the same time and 
adding all probabilities associated with these paths. 

 
Figure 1.10: Example of a decision tree after applying two rehabilitations (Frangopol and 

Kong 2001). 

1.10.3 Direct and Indirect Failure costs  

The failure cost corresponds to the monetary consequences associated with system or 
component failure. It is referred as “risk” in many papers (Sabatino et al. 2015b; Barone and 
Frangopol 2014) and defined as the product of the failure probability by the consequences due 
to failure in monetary equivalence (Ang and Tang 1984).   

Failure cost is a result of violating a critical limit state of failure or serviceability. The 
complexity of evaluating the failure cost is mainly due to: (1) the decrease of structural 
resistance with time; (2) the uncertainties related to the stochastic nature of load and material 
parameters; and (3) the indirect consequences of failure. It is very important to wisely evaluate 
the probabilistic lifetime of concrete structures subject to degradation with time. The present 
value of the expected life-cycle failure cost at time t can be estimated as follows: 

 <�G� = ∑ ∑ '¦����×	.¦��8�¢����l7Il8                  (1.17) 

where M is the number of limit states (i.e., flexure, shear, crack width),  ����� is the annual 

probability of failure for limit state i at the jth year, ν is the discount rate and 	 �  is the failure 

cost associated with limit state i.  
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These monetary consequences cover the direct costs related to failure, which can be the 
cost of rebuilding (material and labor, etc...). The direct costs are usually suffered by the owner, 
but other indirect costs related to failure may be suffered by the users, the society or by the 
environment. Therefore, the failure cost can be estimated as the sum of direct and indirect costs 
for the limit state i (Lee et al. 2004): 

 � =  &. +  %.                  (1.18) 

where CDCi is the direct cost and CICi  is the indirect cost. Several models have been proposed 
to estimate the effect of indirect economic, social and environmental costs arising from 
structural failure or from maintenance activities on the life-cycle cost. In the aim of quantifying 
the user delay costs suffered by motorists in case of bridge failure or maintenance, a model to 
estimate the vehicle operating cost was proposed by Berthelot et al. (1996).   

Ehlen (1999) divided the total project cost into agency, user, and third-party costs; where 
examples of third-party costs are lost business revenues for establishments whose customers are 
blocked by project activity and environmental damage and costs that result from toxic runoff. 
Ehlen did not quantify the third party costs; however he proposed equations for different 
components of user delay cost to examine the life-cycle cost-effectiveness of three fiber 
reinforced polymer bridge decks. 

Equations were also developed for calculating traffic disruptions based on typical traffic 
control plans by Tighe et al. (1999). User and environmental costs were also evaluated by 
Dogaki et al. (2001) in the aim of developing a decision support system for maintenance 
planning of bridge decks. User costs are usually dependent on the traffic volume and speed, the 
number of lanes, the number of days the road is closed and the unit requirements for driving 
cost and time.  Later, the computation of road user delay costs was established by the New 
Jersey department of transportation who issued a road user delay manual (DOT 2001).  

Lee et al. (2004) proposed a newer road user cost model and regional socio-economic losses 
model for steel bridges. The costs resulting from the traffic, environmental, and commercial 
impacts of construction are defined as social costs by Yu and Lo (2005) who estimated them as 
5.52 times the total construction cost.  

Kendall et al. (2008) compared the life cycle costs of two bridge deck systems, including 
agency, user and environmental costs. As in Kendall’s study, user costs dominate other costs, 
and comprise more than 90% of the total life cycle costs for both systems, while environmental 
costs did not exceed 0.5% of the total costs. 

Orcesi and Cremona (2010) evaluated the user delay cost based on a method provided by 
QUADRO (Queues and delays at road works) for the aim of proposing an advanced bridge 
management system. 

The Federal Highway administration (FHWA) issued a final report on work zone road user 
cost concepts and applications (Sadasivam and Mallela 2015), where the user delay cost is 
defined as the additional costs carried by motorists and the community as a result of work zone 
activity.  

Many authors used the bridge user cost formulations to compare new materials/systems 
(Kendall et al. 2008), or to propose new bridge maintenance planning (Sabatino et al. 2015a). 
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The direct loss is measured by Sabatino et al. (2015a)  in terms of the risk associated with the 
rebuilding cost during a certain year, while the indirect consequences of bridge failure include 
the extra travel time and distance experienced by vehicle operators, in addition to any fatalities 
that may occur. The environmental impacts were quantified by accounting for the carbon 
dioxide emissions and the energy consumption associated with detour and bridge repair.  

In general, indirect risks integrate the effects of both social and environmental 
consequences of structural failure. Recently, more sustainable decision making are urged by 
combining the life cycle assessment (LCA) with life cycle costs. Islam et al. (2015)  suggested 
a life cycle management perspective by integrating life cycle environmental impacts (LCEI) 
and life cycle costs (LCC) components to identify optimal trade-off between different roofing 
and floor designs for typical Australian houses. However, risk attitude via failure costs were not 
considered in their study. 

1.11 Conclusion 

This literature review focuses on reliability techniques and formulations used to optimally 
design and maintain a structure during its lifetime.  

Structural reliability models are the basis of many design codes including load and 
resistance factor design (LRFD) which deals with load-carrying capacity and safety. The 
reliability-based design and maintenance implies the assessment of the life-cycle and the 
evaluation of the structural failure probabilities, which are calculated objectively based on 
several explicit limit state functions. Life-cycle assessment requires the knowledge of the 
general methods for the computation of direct and indirect cost components, which are 
discussed in this chapter. The structural safety assessment entails the understanding of 
methodologies for predicting the degradation processes, taking into account uncertainty and 
variability through time-variant probabilistic assessment. 

The general concepts of maintenance scheduling are also discussed with emphasis on the 
condition-based and the reliability-based maintenance planning. In this framework, we review 
the state-of-art that shows low consideration of various types of interaction between 
components of a system.  

From this literature review, it comes that existing procedures concerning the reliability-
based design and maintenance procedures undergo many limitations: (1) indirect consequences 
of failure are poorly exhibited, (2) the interactions between structural elements are not explicitly 
addressed, (3) the system is not properly approached to consider interdependent elements, (4) 
the representation of a system as a parallel and/or series structural elements does not account 
for the real structural redundancy and configuration, (5) the reliability and robustness of 
optimization procedures are not simultaneously addressed . 

The procedures to overcome the above cited disadvantages are proposed in the following 
chapters. 
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Chapter 2 : Cost-effective Probabilistic Design  

2.1 Overview 

The traditional structural design methods focused on minimizing the structural weight while 
ensuring that the loading effect is less than the resistance. Afterwards, the structural weight is 
replaced by the initial construction cost, which can better reflect the contractor’s objective of 
favoring the use of less costly materials. Minimizing the construction cost may seem appealing 
to designers; however, this method does necessarily not ensure structural durability. For this 
reason, recent researches aimed at designing structures that minimize the total expected cost of 
the structure during its service lifetime, by including the monetary expectation of the 
consequences of failure. However, these failure consequences are significantly amplified by 
social and environmental impacts, which should be included in the total cost when designing 
structures.  

Conservative empirical partial safety factors were used to cover the lack of knowledge 
concerning the uncertainties related to material parameters and loads. This traditional procedure 
produced conservative and safe designs. The situation has changed mainly due to economic 
pressure and increased traffic weight, combined with the availability of computer analysis 
methods that are pushing the designs closer to their failure limits (Moses 1999). Lately, research 
efforts have led to new probabilistic design methods based on structural reliability which 
explicitly deals with criteria based on uncertainty effects. The probabilistic methods require the 
performance prediction of the structure, which deteriorates due to the effect of excessive loading 
and harsh environment. Degradation models may be often successfully adopted for an overall 
evaluation of the life-cycle structural performance (Biondini et al. 2006). Therefore, 
deterioration models have been developed to describe the time-variant behavior of the structure 
and its environment. In aggressive environments where concrete bridge structures support high 
traffic frequencies, the two main degradation models are corrosion and fatigue. A coupled 
deterioration model of fatigue and corrosion has been developed by Bastidas-Arteaga et al. 
(2009)  and is used herein to assess the structural performance of the RC elements. 

The aim of this chapter is to optimize the design parameters of the structural elements, and 
not the maintenance planning of the structural system, which will be studied in the next chapter. 
In the following sections, a LCC model for structural design is detailed and improved, and a 
method to estimate more precisely the indirect consequences of failure is proposed. Then, the 
degradation processes of fatigue and corrosion are considered. Finally, a procedure that allows 
integrating indirect failure consequences and considering the coupled deterioration mechanism 
is proposed and verified through the optimization of the design of structural elements. 

2.2 Life-cycle costing 

A general life-cycle cost (LCC) model for new structures consists of initial costs and direct and 
indirect rehabilitation costs, including repair and replacement costs, loss of contents or fatality 
and injury losses, road user costs, and indirect socio-economic losses (Lee et al. 2004). Most 
phenomena involved in the total cost are time-variant, because loading fluctuates over the 
lifetime of a structure, and resistance degrades with time. When designing a new structure, the 
ideal scheme consists of considering the whole lifetime of the structure in a time-variant 
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reliability-based design optimization framework. Considering that all parameters related to 
design are uncertain and need to be modeled by random variables, the corresponding life-cycle 
cost is itself a random variable. Therefore, designers should use the expectation of the life-cycle 
cost function in order to take into account the probabilistic events. Many formulas for the time-
dependent expected life-cycle cost can be found in the literature, sharing the same basic 
components (Val and Stewart 2003): 

�  = 	 " +  %"� +  I +  <                    (2.1) 

where Cini is the initial cost, CIns is the cost of inspections, CM is the maintenance cost, and CF 
is the failure cost. Each future cost C is converted to its present value  '( using the discount 
rate § at time G as follows: 

 '( = .�8�¢�£                    (2.2) 

The current value of the discount rate used in different countries varies from 2% to 10% 
(Frangopol 1999). These values have significant implications on management and maintenance 
planning. This is due to the fact that including the discount rate gives the opportunity of 
performing the same maintenance option at different times in the future where each one has 
different calculated present cost (Soliman 2015). Choosing a higher discount rate may promote 
management strategies with low initial costs but high future costs (Orcesi 2015). Therefore, 
including a realistic discount rate allows the manager to select the best maintenance planning 
which fits the management constraints. 

The different cost items in the expected life-cycle cost function have been described in 
chapter 1. 

2.2.1 Why neglecting maintenance costs during design optimization? 

Dealing with maintenance and design uncertainties simultaneously is a very difficult task due 
to the high complexity of engineering structures.  

Many researchers such as Kang and Wen (2000) and Lee et al. (2004) stated that although 
the maintenance costs over a lifetime may be high, their dependence on the design variables 
under consideration were generally weak. Moreover, Gomes et al. (2013) showed that optimum 
expected total costs are not highly sensitive to the assumed costs of inspection.  The above 
statements may be debatable; therefore, the following example is developed in order to observe 
the influence of maintenance planning on design variables.  

In this example, the steel cross-section of a deteriorating reinforced concrete (RC) beam is 
optimized considering the number of inspections and maintenance actions during the lifetime 
of the structure. The beam is located in an extreme corrosive environment. The corrosion model 
detailed in Appendix 2 is used in this example to predict the service life of the structure. The 
model considers that the steel reinforcement cross-section is reducing with time due to uniform 
corrosion. With no loss of generality, the bending limit state function is considered in this 
example. The random variables are defined by statistical distributions. Classically, the 
parameters of the density functions are adjusted by maximum likelihood estimations and 
goodness-of-fit tests are conducted to determine the validity of the assumed distributions. In 
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this example, the statistical descriptions are shown in Table 2.1, where data are taken from 
literature (El Hassan et al. 2010; Bastidas-Arteaga et al. 2011). The initial value of the design 
variable *�∗ is 8 cm2. 

__________________________________________________________________________ 

Variable    Symbol Average COV          Distribution 
__________________________________________________________________________ 
Random Variables 
Concrete Compression   fc  30 MPa 0.15  Lognormal 
Steel strength   fy  500 MPa 0.07  Lognormal 
Concrete cover   c  0.05 m  0.2  Lognormal 
Chloride concentration   Cth  0.9 kg/m3 0.19  Lognormal 
Chloride concentration  Cs  7.35 kg/m3 0.7  Lognormal 
Coefficient of diffusion  Dc  6.10-12 m2/s 0.2  Lognormal 
Dead Load    G  26 kN/m 0.15  Normal 
Punctual design Load  Q  90 kN  0.25  Normal 
Deterministic Variables 
Beam length    l  10 m 
Beam width    b  0.4 m 
Beam height    h  0.7 m 
Water/cement ratio   wc  55 mm 
Elastic modulus of steel  Es  210000 MPa 
__________________________________________________________________________ 

Table 2.1. Statistical Description of variables. 
The probability of failure is approximated by the first order reliability method (FORM) at every 
inspection interval. The number of inspections is considered as known a priori. The number of 
maintenance actions depends on a repair criteria linked to the reliability index of the structure 
at the time of inspection. Maintenance is considered to take place when the failure probability 

at the time of inspections exceeds a predefined threshold ���.  

Let δtinsp be the interval of inspections fixed a priori. The number of inspections Ninsp 

during the lifetime LT is ,"�3 = 
y¨��©ª«. Let δRepair be the maintenance interval, which is 

calculated such that the failure probability at the time of inspections exceeds the repair 
threshold. Perfect repair is considered, therefore the number of maintenance during the 

structural lifetime LT  is 

y¨�¬«®�¯. 

A reliability-based optimization formulation is used as follows: 
Find :  

Minimizing   !��, :, G� =  " +  %"��G� 	 �¨��©ª«+ I�G� 	 �¨�¬«®�¯ + 	 ��G�	�Z���, :, G� ≤ 0[ 
Such that 

 �Z���, :, G� ≤ 0[ ≤ ��!  

 :
 ≤ : ≤ :/      

 °G��3E� = Q	°G"�3	    if    �c�d�, :, �Q	°G"�3�e ≤ 0f ≥ ���        Q = 1,⋯ ,,"�3  (2.3) 
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where x and d are random and design variables respectively, LT is the studied timespan of the 

structure, CT(x,d,t) is the total cost, ��! is the admissible probability of failure,	��� denotes the 

repair criterion which is a threshold failure probability for repair. 

The associated costs of inspection, maintenance and failure are defined as functions of the 
initial cost Cini such that : 

 ²	¢ =	 �³×.�©��8�¢�£                     (2.4) 

where § is a discount rate taken equal to 0.05, η is an event of inspection, repair or failure 
occurring at time t. 	² is taken equal to 0.0177 for inspection, 0.4 for maintenance and 25 for 

failure (Gomes et al. 2013).  

The design value *�∗ is optimized for different values of ��! and ���  using the optimization 

module in Matlab software (Figure 2.1). 

 

Figure 2.1. Optimization results for different values of repair criterion and admissible 
probability of failure. 

As explained above, ��! is the admissible probability of failure and	��� denotes the repair 

criterion which is an admissible probability of failure before repair.  

Let ��)� be a repair criterion below which repair has to take place at every inspection, i.e. °G"�3 ≥ °G��3E�. Since the probability of failure is only estimated at time of inspections, then °G"�3 = °G��3E�. Thus the maintenance cost is constant for all repair criterion below the value 

of ��)�. This is caused either by very stringent repair criterion, or by very large inspection 

intervals. Hence at every inspection the structural probability of failure is higher than ��)�.  For 

this example the value of  ��)� is equal to 2 × 10t´.  From Figure 2.1, three failure domains can 

be distinguished: 
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Domain 1: µ¶· 	≤ µ¶·̧  

As shown in Figure 2.1, a repair criterion below the value of ��)� = 2 × 10t´ has no influence 

on the design value for all admissible probability of failures ��! = Z10t´, 10t�[. This may be 

caused by the stringent value of the repair criterion which requires maintenance at every 
inspection time, and thus the maintenance cost becomes constant and irreducible. In this case, 
the probabilistic constraint is the dominant design factor, and the inclusion of the maintenance 
planning in the optimization has no influence. The design value can be obtained by minimizing 
only the initial and failure costs, since in this case the inspection and maintenance costs have 
no influence on the optimal solution:  

:∗ = 6¹���Q	d " +  <�G�e										∀	��� ≤ ��)� 		                (2.5) 

Domain 2: µ¶·̧ <	µ¶· 	< µ¶» 

In this case, the repair criterion requires a design value higher than the value imposed by the 
admissible failure probability in order to reduce the maintenance cost. The design value in this 

case is independent of ��!, i.e. the same design value is imposed by ��� for all values of the 

admissible failure probability. For example, as shown in Figure 2.1, for a repair criterion of ��� = 2 × 10tu, the same design value *�∗ = 10.3	B�� is obtained for ��! equal to 10t� or  10t¼ because ��! is higher than ��� . However, if d��! = 10tue < d��� = 2 × 10tue, then a 

different design value is obtained *�∗ = 10.51	B��. Also, for a repair criterion of ��� = 5 ×10t´, the same design value *�∗ = 10.58	B�� is obtained for ��! equal to 10t� or  10t¼ or  10tu, but another design value is obtained for ��! equal to 10t´ < ���. Nevertheless, domain 2 

is very improbable practically because it is not likely to set a repair criterion ��� more stringent 

than the admissible failure probability��!. 

Domain 3: µ¶» 	≤ µ¶· 

In reality, managers will set a repair criterion ��� smaller than the admissible probability of 

failure. It is irrelevant to repair the beam for any failure probability higher than the admissible 
target during the service life of the structural element, because the element is considered as 
failed when its probability of failure reaches ��!. Figure 2.1 shows that the repair criterion does 

not have an impact on the design value beyond the target reliability. For example, when the 
admissible probability of failure is 10-3, only a repair criterion between 5×10-5 and 2×10-4 can 
modify the design value, which is a more severe value than the targeted admissible probability 
of failure itself. Also, when the admissible failure probability is 10-5, even a repair threshold of 
10-7 cannot modify the design value.  

As shown above, including the maintenance planning when designing a structure may 
influence in some cases the optimum design values. However, a common approach which is 
widely accepted in engineering practice consists in separating the design into two steps 
(Chateauneuf 2008). In the first step, the structure is designed to avoid failure, hence the total 
cost minimization is carried out for initial and failure costs. In the second step, the maintenance 
planning is optimized for the structure designed in the first step; therefore the total cost 
corresponds to the maintenance cost. This approach has the practical advantage of designing 
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structures that are independent of the maintenance policy which may vary over the lifespan due 
to environmental or political considerations. However, it presents the drawbacks of neglecting 
any conflicting influence of the variation of some design variables on failure and maintenance 
costs. In the remaining of the present chapter, only initial and failure costs are considered. 
Therefore, the total expected cost to minimize when designing a new structure  !�G� is 
simplified to (Ditlevsen and Madsen 1996) : 

 !�G� = 		  " +  <�G�                   (2.6) 

Note that a more rigorous mathematical notation consists in writing �Z !�G�[	instead of  !�G� because what is optimized is the expectation, not the cost itself which is a random 
function (Chateauneuf 2008). However, we will proceed with the notation in equation (2.6) for 
simplicity. 

In the following subsection, a discussion is held concerning failure costs purposes and 
developments. 

2.2.2 Direct and indirect failure costs 

Several models have been proposed to estimate the effect of direct and indirect economic, social 
and environmental costs arising from structural failure or from maintenance activities on the 
life-cycle cost. The cost formulations and an overview of the related researches are provided in 
Chapter 1 section 10. The contribution of this chapter is focused on assessing the road user 
costs, which is believed to dominate other indirect costs in case of bridge structures (Kendall et 
al. 2008). The Road User Costs are incurred by the public users of the bridge due to the blocking 
of normal traffic flow. When traffic level increases, the road user costs can be significant. For 
example, the New Jersey department of transportation has constructed a 1 million dollars full 
width shoulder to reduce road user costs by 2 million dollars. Therefore, designers should 
consider road user costs when determining the most appropriate construction design.  

User costs include those caused by traffic control and detours, in the form of vehicle 
operating costs and costs from delays and accidents. The indirect user costs from delay and 
detours may be due to inadequate load capacity, environmental damage, traffic congestion, or 
work zone impacts during construction. The amount of delay is related to the traffic flow on the 
road, the closure time, the detour length, the vehicles speed and the type of used traffic 
management (Gould et al. 2013)   

The road user cost is estimated as follows (Ehlen 1999): 

 / =  &! +  (T +  .�                   (2.7) 

where CU is the user cost, CDT is the cost of delay time, CVO is the vehicle operating cost, and 
CCR is the accident costs. 

Driver delay costs and vehicle operating costs are based on the additional time that drivers 
and vehicles spend in traffic when there is road construction or maintenance. They are 
formulated by Ehlen (1999) as follows: 

 &! = i 
@® − 
@©j*¿¤	,�- 	H                  (2.8) 
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 (T = i 
@® − 
@©j 	*¿¤	,�- 	¹                  (2.9) 

where L is the length of affected roadway, Sa is the traffic speed during bridge work activity, Sn 
is the normal traffic speed, ADT is the average daily traffic measured in number of cars per day, ,�- is the number of days of road work, w is the hourly time value of drivers, r is the hourly 
vehicle operating cost. Ehlen’s Formulas were extensively used in the literature (Huang and 
Huang 2012). However, the drawback of these formulations is that the user costs are calculated 
based on the traffic delay caused by slowing the average speed, but detour and other scenarios 
that have negative impacts on bridge users are not considered. For this reason, several scenarios 
that may adversely affect bridge users are investigated herein. All user cost assessments below 
are applied to Lebanon’s traffic criteria and roads. 

Accident costs are related to damage for drivers caused by higher probability of highway 
accidents during bridge construction. In Lebanon, road accidents cause on average one death 
per day and over 3,000 injuries per year (Hmaidan 2002).  These numbers are very high for a 
country like Lebanon where traveled distances are relatively short. Accident cost is expressed 
as follows: 

 .� = �*E − *"� × *¿¤ × ,�- × � × BE              (2.10) 

where ca is the cost per accident, and Aa and An are during-construction and normal accident 
rates per vehicle-kilometer, respectively.  

Liu and Frangopol (2006) assumed that user delay cost is proportional to the total increase 
in travel time and distance. The value of time was based on data reported by Schrank and Lomax 
(2003) from the perspective of the individual’s value of their time, rather than being based on 
the wage rate. However, the computation of user delay cost based on some percentage of their 
wages has been outlined in the FHWA report in 2011 (FHWA 2011), and has been extensively 
used by several authors (Hansen 2001; Yu and Lo 2005; Kendall et al. 2008; Wang et al. 2012; 
Huang and Huang 2012). In this study, the hourly time value of drivers is estimated based on 
the average salary AvSali of travelers using each type of vehicle (Singh and Tiong 2005).  

*À�6Á = 	∑ 3��Â�IÃÄ�� ∑ 3��Â��                    (2.11) 

where Ej is the distribution of the actual labor force by employment category, pij represents the 
proportion of travelers with profession j in vehicle i and MGWj represents the mean gross wage 
of profession j. MGWj  is calculated based on the median annual income for each profession j of 
all Lebanese household (Byblos bank economic research 2014).  The labor forces Ej are quoted 
from IDAL (2015). The jobs and professions are categorized according to the international 
categorization of jobs and professions adopted and applied by the ILO (International Labor 
Office, 1996). The cost of delay time CDT is obtained by multiplying the average salary per unit 
time by the occupancy rate. The occupancy rates are quoted from (FHWA 2011). 

The vehicle operating cost CVO is associated with “stop and go” driving in the queue. The 
operating cost includes fuel, engine oil, maintenance and depreciation. It can be estimated as 
follows: 
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 (T =  $< +  $I                  (2.12) 

where CAF is the cost of additional fuel consumption and CAM is the cost of additional 
maintenance of the vehicle. 

The authority may apply several bridge management solutions during the lifetime of a 
bridge to maintain its functionality; each of the solutions may cause a different user delay cost 
scenario (loss of average speed, lane closure, detour for large vehicles, rehabilitation, 
replacement, etc...). The occurrence of a scenario is dependent on the bridge condition. Each of 
these scenarios can be associated with a probability of occurrence that depends on the severity 
of the scenario and the likelihood of its occurrence. Let �./� be the probability of occurrence 

of a scenario j. The user cost scenarios corresponding to the different decisions taken during the 
bridge lifetime may thus be added to the total cost formula. For a limit state i, the total cost 
become: 

 !�G� =		=  %" +  &.,���G� + ∑ Z0��  %.,,��./,�[             (2.13) 

where 0� is a Boolean variable with the value of 1 if scenario j occurs during the bridge lifetime, ���G� is the cumulative probability of failure, CDC,i is the direct cost of failure, and CIC,i,j is the 

indirect user cost related to the occurrence of the scenario j. Four specific scenarios will be 
herein considered and explained below, namely: degradation CU-D, minor rehabilitation CU-MR, 
load rating CU-LR and collapse CU-C. 

2.2.2.1- CU-D due to Degradation 

Degradation user delay cost is caused by the loss of the average speed of vehicles due to the 
degradation of some bridge elements. As degradation does not necessarily imply congestion or 
blocking the traffic flow, the probability of occurrence PCU-D of 10-2 can be accepted for a 50 
years timespan. This may be the case of a deflection that induces some discomfort, leading to 
slowing the traffic. Considering that CU in equation (2.9) is calculated  per vehicle per unit time, 
CU-D is estimated by multiplying CU by the time loss tloss due to slowing the traffic flow 
multiplied by the number of vehicles N affected by this loss.  

 /t& =  / 	G5Å�� 	,                 (2.14) 

2.2.2.2- CU-MR due to Minor Rehabilitation 

This user delay cost is caused by detours of vehicles due to the bridge or a lane suspension over 
the period of minor rehabilitations. CU-MR is estimated by multiplying CU by the additional 
distance Dadd of traveling at the average speed Vaverage by the number of vehicles N making the 
detours.  

 /tI� =  / 	 &®ÆÆ(®Ç¯®� 	,                 (2.15) 

where CU-MR is sustained during the period of rehabilitation.   
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2.2.2.3- CU-LR due to Load rating 

The cost of load rating CU-LR (or traffic distribution) is the user delay cost induced by the detours 
of trucks only due to the necessity of limiting the loading on the bridge. One implication of CU-

LR   may be when the steel reinforcement cross-section of a bridge element is corroded, and no 
rehabilitation is planned for a given timespan.  

 /t
� =  / 	 &®ÆÆÈ£¯ÉÊË(®Ç¯®�È£¯ÉÊË 	,��D4;               (2.16) 

where Dadd-truck is the additional distance traveled by trucks during a detour, Vaverage-truck is the 
average speed and Ntruck is the number of trucks making the detours. 

2.2.2.4- CU-C due to Collapse 

In case of collapse of the bridge, detours of all vehicles are lasting until bridge replacement. 
This is the most severe user delay cost; the admissible probability associated with CU-C is very 
low. The cost CU-C is estimated by multiplying the road user cost by the time needed for bridge 
replacement tbr, by the number of vehicles N.  

 /t. =  / 	GY�	,                  (2.17) 

Figure 2.2 shows the costs involved in the user cost computation, as explained in this section.  

 

Figure 2.2: User cost computation. 

 

The above developed methodology for the computation of user delay costs in Lebanon is 
illustrated in the example below. The proposed methodology is applied to Lebanon’s traffic 
criteria in the following section.  

 

2.2.3 Application: the indirect user cost computation in Lebanon 

The user costs currently applicable in Lebanon with the mean gross wage (MGW) and the 
proportion of travelers with profession j in vehicle i are given in Table 2.2. 
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Vehicle Type 
(MGW) $/month Type of professions, j 

 

Number 1* 2* 3* 4* 5* 6* 7* 8* 
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Car (2500) 0.9 0.8 0.7 0.5 0.4 0.3 0.2 0.1 
Truck (1000) 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 

Table 2.2. Estimated proportion professions. 

Road user cost analysis based on various vehicle classifications requires extensive traffic data. 
They include commercial and non-commercial vehicles ranging from motorcycles and 
passenger cars through the heaviest trucks. For simplification of vehicle classifications and 
consistency with available traffic data, it is recommended to use Car and Truck classifications 
only. The value of time lost is obtained by multiplying the average salary per unit time by the 
occupancy rate for different types of vehicles (Table 2.3). Prices have been converted from the 
local currency to U.S. dollars.  

__________________________________________________________________ 
Vehicle Type  Occupancy  AvSal  AvSal  CDT 
    Rate   $/month $/mn  $/mn 
__________________________________________________________________ 
Car   1.51   1868.4  0.1769  0.2672 
Truck   1.4   974.46  0.0923  0.1292 
__________________________________________________________________ 

Table 2.3. Cost of delay time CDT. 

To calculate the cost of additional fuel consumption CAF, the following factors are required:  

• The cost per liter of fuel is $1.85 in Lebanon.  

• The efficiency factor of fuel consumption is 10km/l for cars and 4 km/l for trucks.  

• The cost of travel per km is $0.185 for cars and $0.46 for trucks, which is the cost of 
additional fuel consumption CAF.  

• The additional cost of maintenance CAM is calculated in Table 2.5. It covers the costs of 
spare parts, oil and tires.  

• The vehicle-kilometers per year are quoted from the workshop on transport policies in 
Lebanon  (Darwish and Timberlake 1999). 

_______________________________________________________ 
Vehicle Type Maintenance    Mileage   CAM  
   $/year   km/year  $/km 
_______________________________________________________ 
Car   1525.13  12000   0.127 
Truck  3474.85  187000  0.018 
________________________________________________________ 

Table 2.4. Maintenance Cost CAM. 
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_____________________________________________________ 

 Vehicle Type CAF  CAM   CVO  
   $/km(a) $/km(b) $/mn (a+b)*0.917 
______________________________________________________ 
Car  0.185  0.127   0.286 
Truck  0.46  0.018   0.438 
______________________________________________________ 

Table 2.5. Vehicle Operating Cost CVO. 

The vehicle operating cost CVO per unit time for different types of vehicles is presented in Table 
2.6. The distance travelled by each vehicle in one minute is approximated by 0.917 km, 
considering an average speed of 55 km/h. Due to the limited availability of work zone accident 
cost data, the inclusion of accident costs as part of the road user costs will not be considered in 
this work. The user costs for different types of vehicles are given in Table 2.7. 

________________________________________________ 

Vehicle Type CDT  CVO  CU   
   $/mn (a) $/mn (b)  $/mn (a+b) 
________________________________________________ 
Car  0.267  0.286  0.553 
Truck  0.129  0.438  0.567 
________________________________________________ 

Table 2.6. User Cost for CU. 
Based on Kaysi and Salvucci (1993), 88% of the Lebanese fleet consists of passenger cars while 
the remaining 12% consists of buses, heavy trucks and pickups. The user cost per vehicle per 
hour per km for the car category can be taken as 33$ (which equals 0.553×60 min), and the 
truck category as 35$ (which equals 0.567×60min).  

The four user delay costs corresponding to the scenarios explained in section 2.3 are 
estimated and applied to the bridge. The assumptions in Table 2.7 will be considered.  

___________________________________________________ 

Variable     value  Units 

_____________________________________________________ 
Bridge length (Lb)   1  km 
Number of travelers (N)   1000  vehicle/hour 
Detour length (Lbnew)   3  km 
Average speed (Vaverage)   55  km/hour 
_____________________________________________________ 

Table 2.7. Assumptions for estimating CU. 

2.2.3.1- CU-D due to Degradation 

A 10 km/h loss of the average speed of vehicles is considered. The new average speed due to 
the degradation is 45 km/h. The time loss tloss is 14.5 seconds per vehicle. After 2 years of user 
delay costs uphold, CU-D is estimated by $2 320 756. 
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2.2.3.2- CU-MR due to Minor Rehabilitation 

Considering the assumptions in Table 2.6, each vehicle loses 2.2 minutes to make a detour. 
Considering a minor rehabilitation of 2 months, CU-MR is estimated by $5 221 702. 

2.2.3.3- CU-LR due to Load rating 

For the load rating user delay cost, the 2.2 minutes loss per vehicle concerns the truck category 
only. After 2 years of user delay costs uphold, CU-LR is estimated by $11 762 967. 

2.2.3.4- CU-C due to Collapse 

 When the bridge collapses, all vehicles must make detours until the replacement of the bridge. 
Considering a bridge replacement period of 2 years,  CU-C is estimated by $20 886 807. 

The four scenarios of user delay costs estimated above will be used in section 2.4 for the 
design optimization of a bridge deck example. A detailed comparison between the scenarios 
will be also held.  

The design of new structures must fulfill the total cost criteria studied in section 2.2. 
However, another criterion must also be satisfied, which is a target safety level. The two 
conflicting criteria can only be met by the mean of an optimization procedure that can minimize 
the cost without affecting the reliability level, such as the reliability-based design optimization 
(RBDO). This necessitates the estimation of the probability of failure of a degrading structure 
in a time dependent stochastic manner. The targeted task is made possible by the existence of 
explicit degradation models for the most influential deterioration processes like corrosion and 
fatigue, and also by the development of numerical procedures that can evaluate the probability 
of failure of complex nonlinear problems. A design method that can target all these difficulties 
is explored in section 2.3 below. 

2.3 Design Methodology 

In order to design a structure considering all related uncertainties, the reliability-based design 
optimization is widely used to balance the lifetime reliability and life-cycle cost. In the present 
work, the design parameters are the dimensions of structural members. The objective function 
is the total cost of the elements which is subject to deterioration processes. The design constraint 
is represented by an admissible probability of failure.  

2.3.1 Reliability-based design optimization 

The RBDO is formulated as follows (Ditlevsen and Madsen 1996)  

Find   d 

Minimizing  �Z !�:, ~, Ì, G�[          

Such that  1 − ��Z��:, ~, Ì, G�[ ≥ ℛ    ,  i=1,…,m, 

   :
 ≤ : ≤ :/    , i=1,…,n,           (2.18) 



55 
 

where d, X and y are the vectors of design, random and deterministic variables respectively, t is 
the time, �� is the probability of failure for the limit state function gi, ℛ is the reliability level 

specified by the designer, di
L and di

U are respectively the lower and upper bounds of the design 
variables, m is the number of limit states and n is the number of design variables.  

The vector of random variables X represents geometrical, material or loading uncertainties. 
Each random variable is defined by a statistical distribution. The probability density functions 
(PDF), such as normal, lognormal and Weibull distributions, can be used to stochastically model 
the uncertainties. The PDFs are inferred from data sets that may be acquired by quality controls 
for geometrical and material parameters, experience feedback and field measurements for the 
load uncertainties. Classically, the parameters of PDF are adjusted by maximum likelihood 
estimations and goodness-of-fit tests are conducted to determine whether the assumed 
distribution is valid or not (Echard 2012). Nevertheless, if no data are available, distributions 
can be assumed based on empirical knowledge and expert judgment. 

The design variables are deterministic parameters that should be optimized; however they 
can be the mean values of the probabilistic variable distributions. For a given random vector X, 
the RBDO yields a realization of a design variable d. 

The RBDO aims at minimizing the objective function  !�:, ~, Ì, G� which refers to the 
time-variant stochastic total cost explained in section 2.2: 

 !�:, ~, Ì, G� =  " +  &. × ��Z��:, �, Ì, G� ≤ 0[ + ∑ Z0��  %.,�	�./,�[          (2.19) 

 
Figure 2.3: Evolution of the costs in function of the failure probability. 

It is worth noting from Figure 2.3 that the optimal solution that can be found by considering the 
total cost in equation (2.2) may be different from the optimal one found by the consideration of 
direct costs only (i.e.  " +  &. × ���. This is mainly due to: 

(1) the high values of user costs; in some applications, these costs have been estimated by 
some authors as 5.52 times the construction costs (Yu and Lo 2005), or 90% of the total 
life-cycle costs (Kendall et al. 2008);  
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(2) the direct failure costs take place only at time of failure, which is usually at the end of the 
structural service life. Even though the direct costs may be higher than the indirect costs 
at the end of the service life, their present value at time of conception is a severely 
discounted value. However, the indirect costs are adept at every management decision that 
causes the closure or the suspension of some lanes. The user costs are paid during the 
whole lifespan of the structure. 

2.3.2 Performance function 

The limit state of bending is considered herein without loss of generality, its performance 
function can be written as:  

��:, ~, Ì, G� = M��:, ~, Ì, G� − ME�:, ~, Ì�              (2.20) 

where MR is the bending capacity and Ma is the applied moment. The resisting bending moment 
decreases with time due to the deterioration of the concrete member. The time dependent 
moment M� can be estimated by introducing appropriate degradation models. Damage 
mechanisms of reinforced concrete structures can be effectively represented by a progressive 
reduction of the cross-sectional resistance and used to evaluate the corresponding performance 
function. Many degradation models were successfully adopted for this purpose; two of them are 
detailed in Appendixes 1 and 2.  As explained in chapter 1, the performance function decreases 
with time due to the combination load increase and capacity decrease. However, in the 
remaining of this chapter, the applied loading is considered time invariant.  

2.3.3 Probability of failure 

The failure probability increases with time which is generally a result of the decrease of the 
safety margin. It can be estimated by integrating the joint probability density 	��:, ~, Ì� over 

the failure domain: 

���:, ~, Ì, G� = ���0� = � 	��:, ~, Ì�:���>,Í,�,��Î7              (2.21) 

where ���0� is the cumulative distribution function (CDF) at � = 0. For normal and log-normal 

distributions, exact expressions are formulated for the calculation of the probability of failure 
(Ditlevsen and Madsen 1996). For example, if M� and ME follow independent normal 
distributions, then: 

�� = ���0� = ф �7tx�|� � = ф` x¥¬tx¥®�|¥¬ �|¥® 
a              (2.22) 

where �� is the mean safety margin, �� is the standard deviation of the safety margin, ф�∙	� is 

the normal cumulated probability function that gives the probability that the normalized random 
variable � is below a given value (here the value is 0). 

In this chapter, the First order reliability method (FORM) is used to estimate the probability 
of failure. FORM employs a linear approximation of the limit state function at the most probable 
failure point (MPP or P*) in the standard normal space. The MPP is the nearest failure point to 
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the origin O in the normalized space, and it is found by applying an optimization algorithm.  
The distance between the origin O and the MPP is the Hasofer-Lind reliability index noted β 
(Hasofer and Lind 1974). 

 

Figure 2.4: FORM liner approximation of the limit state function at the MPP (P*). 

One of the main advantages of FORM in the RBDO context is that it allows the 
computation of the importance factors. The knowledge of the most influencing variables 
represents valuable information for the optimization process. However, this gradient-based 
advantage can be mischievous in high dimensional problems for highly non-linear limit states. 
Nevertheless, FORM requires less computational time than the other procedures such as MCS 
while providing high efficiency even for small probabilities.  

Many uncertainties are associated with the degradation processes, the resistance and the 
loads. To properly address the capacity of deteriorating structural elements, a time-dependent 
structural reliability study has to be performed under various sources of uncertainty associated 
with environmental aggressiveness and increasing traffic loads. These uncertainties can be 
integrated through the performance assessment of concrete structures. 

2.3.4 Analysis Procedure 

The steps of the design methodology are as following: 

Step 1: Initial costs are estimated by the mean of a priced bill of quantity. 

Step 2: The bridge user delay cost is evaluated as illustrated in section 2.2. 

Step 3: Suitable distributions are assessed for different material, geometric and loading random 
variables of the structure. 

Step 4: Time-variant stochastic resistance of the structure is calculated based on appropriate 
degradation model. 

Step 5: FORM is applied to the limit state function to evaluate the probability of failure. 

Step 6: the RBDO is applied to find the optimal design of the bridge member. 
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Figure 2.5 shows a diagram that explains the above procedure, where d* refers to the 
optimal solutions of the problem and CT* refers to the optimal total life-cycle cost of the 
structure formed by the initial costs, the user costs and the failure costs. 

 

Figure 2.5. Sequence of analysis diagram. 

2.4 Numerical application 

The numerical application in this section aims at optimizing the design of bridge elements, 
considering mechanical degradation and user delay costs. The objective function corresponds 
to the total cost of the bridge member composed of the initial cost and the failure direct and 
indirect costs, as explained in section 2.2.  

In the first application, a deck slab supported on four bridge girders is optimally designed, 
considering deterioration due to only steel corrosion. In the second application, the coupled 
effect of corrosion and fatigue detailed in Appendix 1 will be considered on a simply supported 
bridge girder. 

2.4.1 Bridge Deck  

The aim of this application is to optimize the dimensions of a reinforced concrete bridge deck, 
by minimizing the life-cycle cost in corrosive environment, considering the direct and indirect 
failure costs. The bridge deck is made of reinforced concrete with 100 m2 area, simply supported 
on its four sides by girders. The deck has been designed according to the EC2 (EuroCode 2005). 
The user delay cost is computed as explained in section 2.2. The moment MG due to a permanent 
surface load G, is given for a=b=10m, where a and b are the deck dimensions, by: 

MÏ = Ð	F	6�  with Ð=0.0479               (2.23) 

First, the evolution of the reliability index with time under environmental aggressiveness 
is computed, and a sensitivity analysis is held. Then, the effect of concrete parameters and 
environmental aggressiveness on the optimization variables is analyzed. Finally, the impact of 
different scenarios that may lead to user delay costs on the LCC optimization is studied. 

The effect of environmental aggressiveness on structural reliability is considered by 
accounting for three levels of aggressiveness: moderate, high and extreme. They differ by the 
distance between the structure site and the coast, and by the degree of exposure to seawater. 



59 
 

The random variables in this example are the steel strength fy and the uniform permanent load 
G. Table 2.8 presents the loads and the material properties used in design and analysis. 

__________________________________________________________________ 
Variable        Symbol Average Units COV Distribution 
__________________________________________________________________ 
Random Variables 
Steel strength   fy 500  MPa 0.07 Lognormal 
Dead Load   G 12  kN/m2 0.15 Normal 
Design Variable 
Deck height   h*   m    
Deterministic Variables 
Concrete Compression  fc 30  MPa    
Concrete cover   c 0.05  m    
Chloride concentration  Cth 0.9  kg/m3    
Chloride concentration  Cs 
  Moderate   1.15  kg/m3    
  High    2.95  kg/m3    
  Extreme   7.35  kg/m3    
Coefficient of diffusion  Dc 6.10-12  m2/s    
Steel bas diameter  d0 12  mm    
Number of bars   n 7  bars /m    
Elastic modulus of steel  Es 210000 MPa    
Dimensions of the deck  a,b 10  m    
_________________________________________________________________ 

Table 2.8. Bridge deck example - Input data. 

2.4.1.1- Probabilistic lifetime analysis 

Figure 2.6 shows the importance of considering environmental aggressiveness when assessing 
the reliability index of a structure in a corrosive environment. We note that for high or extreme 
levels of aggressiveness, the reliability index of the concrete structure subject to corrosion 
decreases within 30 years by 17%. However, the structural reliability in a moderate environment 
does not change with time. This is expected because the concrete cover is taken as 50 mm, 
which is the value recommended in an aggressive environment by the code. Consequently the 
time to corrosion initiation is not reached in a moderate environment. The time to corrosion 
initiation is calculated as per equation A.2 in Appendix 1. Also, the reliability index decreases 
by 2.2% when going from highly to extremely corrosive environment. When going from a 
moderate to extremely corrosive environment, the reliability index decreases by 20% at the first 
30 years, by 30% at 50 years, and by 40% at 80 years. 

The importance factors allow us to assess the relative weights of random variables. These 
factors are computed by the direction cosines at the most probable failure point (MPP). The 
results of FORM  at 50 years are shown in Table 2.9. The reliability is affected by the applied 
load with 66%, and by the yield strength with 34%. Moreover, the evolution of the importance 
factors with time in terms of environmental aggressiveness is shown in Figure 2.7. Similar to 
the reliability index, the importance factors are time-invariant in a moderate environment. In 
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highly and extremely aggressive environments, the effect of the applied load on the reliability 
index increases with time, and the effect of the yield strength decreases with time. 

 

Figure 2.6. Evolution of the reliability index, in terms of environmental aggressiveness. 

______________________________________________________________________ 

Environment Reliability  Failure  Importance  MPP Units 
   index β probability factor   P* 
_______________________________________________________________________ 
Moderate  5.08  1.92×10-7 fy 36.7%  402.2 MPa 
       G 63.2%  19.2 kN/m2 
High  3.68  1.18×10-4 fy 32.5%  430.8 MPa 
       G 67.5%  17.4 kN/m2 
Extreme  3.59  1.60×10-4 fy 32.2%  432.4 MPa 
       G 67.7%  17.3  kN/m2 
_____________________________________________________________________ 

Table 2.9. Reliability results for a lifetime of 50 years in different environmental 
aggressiveness.  

 

 

Figure 2.7. Evolution of the importance factors with time, in terms of environmental 
aggressiveness. 
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2.4.1.2- Optimization 

In this example, the design variable is the thickness of the concrete deck h. The objective 
function is the life-cycle cost, and the constraint is the admissible failure probability. The 
optimal dimensions are found for different target reliabilities, different environmental 
aggressiveness, and at different timespan. The initial value of the design variable h is 0.4 m. 
The upper and lower bounds are 0.3 m and 0.6 m respectively. 

As shown in Figures 2.8 and 2.9, the optimal deck thickness and cost increase by 11% and 
5% respectively, if the studied timespan goes from 50 to 100 years. This is expected because 
the reinforcement cross-section is reduced with time due to corrosion. Furthermore, the optimal 
deck thickness and cost increase by 16% and 6% respectively, when the admissible probability 
of failure goes from 10-7 to 10-4. It is thus very important to wisely define the lifetime of the 
structure and the admissible probability of failure.  

For a 100-years timespan, Figures 2.8 and 2.9 show an increase of 25% and 11% in the 
optimal thickness and cost respectively, between moderate and extreme environments. As 
explained before, the structure in this example is not subjected to a moderate environment. 
Therefore this increase in the optimal thickness and cost is due to the effect of degradation on 
the structure. Consequently, all degradation processes must be wisely modeled when designing 
a concrete structure. 

It is also interesting to study the influence of the average value of concrete cover on the 
optimization variable and cost. It is noted that when the average value of concrete cover is low, 
the corrosion reaches the steel bar quickly. Thus, to fit the target reliability, we need a larger 
depth, because the loss of steel area by corrosion is balanced by more concrete thickness to 
increase the internal moment capacity. In this application, a decrease of the average value of 
the concrete cover by 2 cm leads to 12% increase of the optimal concrete thickness and 5% 
increase of the optimal cost. Contrariwise, an increase of the average value of the concrete cover 
by 2 cm leads to 7% decrease of the optimal concrete thickness and 3% decrease of the optimal 
cost. 

 

Figure 2.8. Variation of the optimal thickness as function of threshold probability of failure 
under various environmental aggressiveness. 
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Figure 2.9. Variation of the optimal cost as a function of threshold probability of failure under 
various environmental aggressiveness. 

2.4.1.3- User cost 

Finally, the optimization of the bridge deck is performed for the four scenarios of the user 
delay costs explained in section 2.2. In order to investigate the sensitivity of design parameters 
and optimal costs on each scenario, only one scenario is considered in each run. The threshold 
reliability for each user delay cost scenario is given in Table 2.10. 

______________________________________________________ 
  PCU-D  PCU-MR  PCU-LR  PCU-C  
______________________________________________________ 
PCU  10-2  10-3  10-3  10-6 
______________________________________________________ 

Table 2.10. Admissible probability PCU. 

 

Figure 2.10. Optimal thickness considering different scenarios of CU. 

Figure 2.10 shows the optimal thickness of the bridge deck for each user delay cost scenario. If 
the considered user delay cost is caused by the loss of the average speed due to degradation, an 
optimal deck thickness of 36 cm is sufficient. However, if the user delay cost is caused by the 
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bridge collapse, then the optimal deck thickness is 46 cm. The optimal design of the deck can 
vary by 25% depending on the reasons that lie behind the user delay cost acquirement.  

As shown in Table 2.10, the minor rehabilitation and the load rating user delay costs have 
the same admissible probability of failure of 10-3. The two scenarios may have the same optimal 
thickness of 39 cm (Figure 2.10), therefore the same initial cost, although total cost varies 
between the two scenarios. It is noted that a minor rehabilitation costs 22% less than a traffic 
disruption in this example. Therefore the computation of different scenarios of user delay costs 
is crucial to make the best remedial decisions in case of bridge degradation. 

2.4.2  Simply supported bridge Girder  

The purpose of this application is to optimize the design of a reinforced concrete simply 
supported bridge girder under corrosion and fatigue according to the degradation model 
developed by Bastidas-Arteaga et al. (2008; 2009; 2011). Bastidas model computes the 
reduction of the concrete section and the area of steel reinforcement in order to assess the change 
of structural capacity with time, this model is detailed in Appendix 1.  In addition to dead load, 
a truck wheel load is applied and located at the middle of the span. The initial design is made 
according to the EC2. Table 2.11 presents the load and material properties used in the analysis. 
All the values are based on data taken from literature (El Hassan et al. 2010; Bastidas-Arteaga 
et al. 2011). 

By considering the mean values in Table 2.11, and for a 1 m beam height, the prediction of 
the bending capacity in a highly aggressive environment, subject to 	 = 2000 cycles per day, is 
shown in Figure 2.11, with the parameters related to coupled corrosion-fatigue deterioration 
model in Table 2.12. The definitions and equations of these parameters are explained in 
Appendix 1. From the curves in Figures 2.11 and 2.12, we can distinguish four stages: 

1- The first stage corresponds to corrosion initiation G ∈ Z0, 2"[. The bending moment 
remains constant because the steel cross-section does not change. 

2- When the girder goes into the propagation stage, the moment resistance decreases. In 
the first year after the time of corrosion initiation, the corrosion rate is constant, which explains 
the fact that just after 2", the resistant moment M�	drops suddenly. 

3- In the stage of propagation, we can see clearly that after 2" + 1, the resisting moment 
decreases monotonically until the transformation from pit to crack at 23�. 

4- Afterward, the moment continues to decrease during the crack growth time 24�, for G ∈c23�, 25f. The last point corresponds to the collapse time 25. 
In a moderate environment, the time to corrosion initiation is greater than G�EÍ. So the steel 

cross-section remains intact throughout the life of the structure and the bending moment 
remains constant. The bridge girder probabilistic study shows that for a given level of 
aggressiveness and traffic frequency, the reliability index of the concrete structure subject to 
coupled corrosion-fatigue deterioration process decreases within 10 years by nearly 10%. 
Furthermore, at a given time and for a certain level of aggressiveness, the reliability index 
decreases by nearly 50% when the traffic frequency increases from 500 to 2000 cycles per day. 
In addition, the reliability index decreases between high and extreme corrosive environments 
by 6.7% in early years (t=10 years), and by 33.8% in later years (t=20years). 
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__________________________________________________________________________ 
Variable   Symbol Average Units    COV           Distribution 
__________________________________________________________________________ 
Random Variables 
Concrete Compression  	Ò  30 MPa    0.15  Lognormal 
Steel strength   	Ó  500 MPa    0.07  Lognormal 
Concrete cover   B  0.05 m    0.2  Lognormal 
Chloride concentration   �9  0.9 kg/m3    0.19  Lognormal 
Chloride concentration   � 
  Moderate    1.15 kg/m3    0.5  Lognormal 
  High     2.95 kg/m3    0.5  Lognormal 
  Extreme    7.35 kg/m3    0.7  Lognormal 
Coefficient of diffusion  ¿4  6.10-12 m2/s    0.2  Lognormal 
Dead Load    F  26 kN/m    0.15  Normal 
Punctual design Load  Ô  115 kN    0.25  Normal 
Design variables 
Beam height    ℎ∗   m   
Reinforcement Area   *Ö∗   cm2 
Deterministic Variables  
Beam length    Á  10 m     
Beam width    �  0.8 m   
Steel bar diameter   d0  25 mm     
Elastic modulus of steel  ��  210000 MPa    
Water/cement ratio    HB  
   Moderate   45 mm     
   High    50 mm     
   Extreme   55 mm     
Threshold corrosion rate   ��9 
   Moderate   2 µA/cm2    
   High    5 µA/cm2    
   Extreme   10 µA/cm2    
Traffic frequency    	  500 cycles/day    
       1000 cycles/day   
       2000 cycles/day   

_________________________________________________________________________ 
Table 2.11. Input data for the bridge girder. 

_________________________________________________________________ 
Environment   Symbol High  Extreme Units 

_________________________________________________________________ 
Time to corrosion initiation  2"  6.280  2.770  years 
Time to pit nucleation   23"  0.037  0.036   days 
Time of pit to crack transition  23�  38.00  20.00  years 
Time to crack growth   24�  6.680  3.200  years  
Collapse time    25  51.00  26.00  years 
Pit depth at 23�  67  12.46  13.20  cm 
Crack size at critical stress  68  6.200  6.200  cm 
Critical crack size at failure 64   15.00  15.00  cm 
________________________________________________________________ 

Table 2.12. Coupled deterioration model results.  



65 
 

 
Figure 2.11. Evolution of the bending capacity in a highly aggressive environment (	=2000 

cycles/day). 

 
Figure 2.12. Evolution of the bending capacity in an extremely aggressive environment  

(	=2000 cycles/day). 
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Figure 2.13. Bridge girder example – Importance Factors. 

As shown in Figure 2.13, the importance factors show that the parameters that mostly affect 
the reliability are dead and live loads (G and Q), the compressive concrete strength fc, the steel 
yield strength fy and the concrete cover c. It is also noted that c, fy and fc lead to an increase in 
reliability, while the influence of G and Q is to decrease the reliability. The results of FORM 
are shown in Tables 2.13 and 2.14. The MPP for c, fy and fc are below the mean values, and the 
MPP for G and Q are above the mean values.  

The results given in Table 2.13 indicate that the reliability of the structure in a moderate 
and high environment is respected for 25 years in contrast with the extreme environment which 
fails even before 20 years (Table 2.14). Furthermore, the reliability index decreases by 15% 
between moderate and high corrosive environments at 25 years.  

_________________________________________________________________________ 
Environment Reliability Failure   Importance MPP  Units 

  β  probability  factor  P* 
_________________________________________________________________________ 
Moderate 4.93  3.91×10-7  � 1.38%  1.028  kg/m3 
      B 3.22%  0.047  m 
      	Ò 1.69%  26.82  MPa 
      	Ó 25.7%  412.3  MPa 
      F 14.4%  0.033  kN/m 
      Ô 53.4%  0.285  kN 
High  4.28  9.26×10-6  � 1.54%  1.028  kg/m3 
      B 2.13%  0.039  m 
      	Ò 1.74%  27.27  MPa 
      	Ó 27.0%  426.9  MPa 
      F 14.3%  0.032  kN/m 
      Ô 53.0%  0.266  kN 
__________________________________________________________________________ 

Table 2.13. Reliability of bridge girder at 25 years age in moderate and high environmental 
aggressiveness, with 	 = 2000 cycles/day. 
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_________________________________________________________________________ 
Environment Reliability Failure  Importance MPP  Units 
  β  probability  factor  P* 
__________________________________________________________________________ 
Extreme  3.22  6.36×10-4  � 0.16%  6.991  kg/m3 
      B 0.57%   0.044  m 
      	Ò 1.56%  27.94  MPa 
      	Ó 22.9%  447.9  MPa 
      F 17.1%  0.031  kN/m 
      Ô 57.7%  0.241  kN 
__________________________________________________________________________ 

Table 2.14. Reliability of bridge girder at 20 years age in extreme environmental 
aggressiveness, with 	 = 2000 cycles/day. 

_________________________________________________________________________ 
Environment  Higher frequency  Higher environmental aggressiveness 

_________________________________________________________________________ 2"   Independent     (55%) 23�    (15%)     (49%) 24�     (50%)     (52%) 67     (15%)     (5%) 64   Independent    Independent  25     (2%)     (49%) 
________________________________________________________________________ 

Table 2.15. Behavior of time lengths and pit depths. 

Furthermore, the timespan and the pit depths of each stage are examined for different levels 
of aggressiveness (moderate, high and extreme), and different frequencies (500, 1000 and 2000 
cycles/day). The behavior is summarized in Table 2.15. 

The time to corrosion initiation decreases by 55% when the environmental aggressiveness 
increases. However, 2" is independent of the traffic frequency. In fact, 2" depends on the 
chloride concentration, the concrete cover and the coefficient of diffusion, as shown in equation 
(A.1). 

The time for transition from pit-to-crack decreases by 15% for higher values of traffic 
frequency and it decreases by 49% in corrosive environments. 

The time to failure 25 decreases by 2% for higher values of traffic frequency and  decreases 
by 49% in corrosive environments. This is expected because the failure occurs in a shorter 
period when the frequency is high or the environment is more corrosive. 

______________________________________________ 

µd   ×v̧  ×vØÙ  ×vÚÙ 

_______________________________________________ 
µAs (cm2)   39.25  19.6  73.6 
µh (m2)   1  0.6  3 
_______________________________________________ 

Table 2.16. Description of optimization variables for the bridge girder example. 



68 
 

In this application, the optimization parameters are the initial cross-section of steel 

reinforcement *� and the height of the concrete section ℎ. The initial values �>7  and the upper 

and lower bounds respectively �>/S and �>
S of the optimization variables are summarized in 
Table 2.16.  

Figure 2.14 shows the influence of the mean value of concrete cover on the optimization 
variables, in high environmental aggressiveness for 50 years of timespan. It appears that when 
the average value of the concrete cover is low, the corrosion reaches the steel bar quickly. Thus, 
to fit the target reliability, we need a larger steel cross-section or a larger concrete depth, 
therefore a higher optimal cost, as can be shown in Figure 2.14.  In fact, the optimal cost 
increases by 2.5% when the concrete cover decreases from 7 cm to 5 cm. Also, the optimal cost 
increases by 8% when the concrete cover decreases from 5 cm to 3 cm. As a result, choosing 
the design values of concrete parameters has a big influence on the optimum dimensions.  

 

Figure 2.14. Effect of the concrete cover on the optimal cost of the bridge girder example. 

 

Figure 2.15. Effect of the coefficient of variation of 	� on the optimal cost. 
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Figure 2.16. Variation of the optimal cost for the bridge girder example.  

In addition, the coefficient of variation contributes largely to the optimal life-cycle 
dimensions. Figure 2.15 shows the effect of the coefficient of variation of steel yield strength 	� on the optimal life-cycle cost. The study is made for coefficient of variation of 	� equals 

0.05, 0.07 and 0.12. It appears that when the target reliability is high (��!=10-7), the optimal cost 

decreases by nearly 15% when the coefficient of variation of 	� goes from 0.12 to 0.05. 

However, it decreases by 7.5% only when the target reliability is low (��!=10-3). Therefore, the 

coefficient of variation has a bigger impact on the life-cycle design when the target reliability 
is high.  

Figure 2.16 shows the influence of the environment and the studied timespan on the optimal 
cost. In fact, the optimal cost increases by 10% when the timespan goes from 50 to 100 years. 
Also, the optimal cost increases by 30% when going from high to extreme corrosive 
environment. Furthermore, the optimal cost is increased by 25% in high environments, and by 
6.5% in extreme environments, when the target probability of failure goes from 10-2 to 10-7. 

Another comparison is held between the optimal results for the bridge girder subject to 
corrosion only, or to the coupled corrosion-fatigue deterioration process. In fact, applying the 
same dead and live load, concrete characteristics, target reliability and corrosion aggressiveness, 
to the same girder, shows an increase of 8.3% in the optimal height, when the coupled effect of 
fatigue and corrosion is considered with a traffic frequency of 2000 cycles/day. Thus, the 
degradation models considered in the lifetime assessment influences significantly the optimal 
design of a concrete bridge structures. 

2.5 Conclusion 

This chapter has two main purposes. First, it aims at improving the life-cycle cost evaluation in 
order to better design civil engineering structures. Second, it aims at studying the effect of each 
component of the life-cycle cost formulation on the optimum design of structural elements. 

We have discussed the various cost components that come into the calculation of the LCC 
of a degrading structural component when designing new structures, considering direct and 
indirect costs related to failure. A probabilistic approach has been used to assess the reliability 
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of reinforced concrete structures subject to corrosion and fatigue. A new approach is also 
proposed for the evaluation and analysis of user delay costs, and is applied to the current state 
of Lebanon. As shown, the optimal design of a reinforced concrete bridge elemtn is strongly 
affected by the two degradation models considered herein (corrosion and fatigue), by the 
different scenarios of user delay costs, by the concrete cover and parameters, by the failure costs 
considered in the LCC, and by the admissible probability of failure. Therefore, continuous 
refinements to the cost estimation methods and data used in the life-cycle cost assessment will 
contribute to increase the accuracy of results in the future, where more degradation models can 
be considered, and more indirect costs can be evaluated. Moreover, the improved life-cycle cost 
formulation may be applied in the future to the whole structural system instead of components. 
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Chapter 3: Maintenance cost of systems with dependent components 

3.1 Overview 

Optimizing the maintenance planning of deteriorating civil engineering structures is crucial for 
maximizing their service life. The major difficulties come from the fact that a structure is a 
complex system composed of many inter-related elements. Nicolai and Dekker (2008) 
published a review-report on multi-component maintenance optimization, focusing on the 
dependency between components. The articles were classified on the basis of different types of 
dependency: stochastic, structural and economic. Planning is also discussed for finite and 
infinite horizons. The type of optimization can be apprehended according to exact or heuristic 
policies. Their conclusion was that more researches are needed to model the combination of 
dependencies and the multiple setup activities, in addition to more case studies to be intended. 
A review for the most recent work on component dependencies of a system is held in chapter 
1. Many weaknesses must be addressed, particularly the fact that most of the researches, even 
recent ones, dealing with stochastic dependency only consider two-component systems and a 
specific type of failure interaction. Also, only “common cause” correlation is modeled, which 
is a failure effect produced by external sources. However, there are other failure scenarios that 
may occur like “cascade” or “compound” consequence correlations. Moreover, very few works 
deal with structural dependency. However, the redundant system can be considered as 
“structural horizontal dependency” as defined by Thomas (1986). Another drawback of the 
proposed models in the literature lies in the consideration of series system, which does not 
necessarily represent reality and leads to very conservative computation of system reliability. 
System modeling approaches have not been successfully applied to structural deterioration 
modeling (Wang et al. 2012), although simpler approaches for modeling the structural system 
are to be founded. In addition, the maintenance model has to consider the multiple deterioration 
dependencies among elements.  

In this chapter, a procedure is developed for the maintenance planning of multi-component 
structural systems taking into account stochastic, structural and economic dependency. An 
approach for grouping the dependent components is presented, where the redundancy of the 
structural elements is accounted for. A procedure to calculate the load redistribution for non-
failed elements is also proposed and integrated in the cost formulation. Stochastic dependency 
of elements is integrated in the cost function by the mean of conditional probabilities of failure. 
The approach also accounts for downtimes needed to dismantle modularly dependent elements 
and/or to repair associated failed elements. A new method to compute structural system 
reliability is also suggested in this chapter. The proposed methodology is applied to numerical 
examples to show its validity and functionality in practical cases. 

3.2 Degradation and failure conditions 

The first step in evaluating a reliability-based maintenance cost is the prediction of the 
components degradation and failure. Some empirical degradation models in literature can fairly 
predict the intrinsic degradation of an element under a certain deterioration mechanism. 
However, the task becomes significantly more complex when the failure dependency and the 
interaction between deterioration mechanisms are to be considered.  
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3.2.1 Component degradation 

The degradation of a component i at time t, :�G�, depends on the following: 

• The intrinsic (or proper) degradation of the ith component, :3,;�G�, which is a consequence 

of the own degradation of the element with time due to deterioration mechanisms like 
corrosion and fatigue of reinforced concrete components. The subscript k denotes a 
particular degradation mechanism. 

• The degradation of component i can be accelerated by the degradation of components j. 
For example, let us consider the two elements shown in Figure 3.1 (column and slab). The 
expansion of corroding steel in the slab creates tensile stresses in the concrete, which can 
cause cracking, delamination and spalling of the slab itself. The degradation of the column 
is accelerated by the degradation of the slab.  

 

Figure 3.1: Corrosion of reinforcing steel. 

The geometric position of the two components has a big influence on the degradation 
dependencies. Adjacent components may accelerate the degradations of each other more than 
distant components. Figure 3.2 shows three superstructure beams in parallel; i, j and v. The 
intrinsic degradation of each element is accelerated by the degradations of the other elements; 
e.i. :3�G� is accelerated by :�3�G� and :=3�G� and vice-versa. 

 

Figure 3.2: Illustration of an accelerated degradation. 

In fact, the degradation of a component i due to a certain mechanism k is accelerated by 
other components due to all other mechanisms. To take into account this acceleration effect, let 
us consider two elements i and j, and two degradation mechanisms k and r. As shown in Figure 
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3.3, the own degradation :3,;�G� of element i for the N�9 degradation mechanism is accelerated 

by the degradation of elements j for the N�9 and ¹�9 degradation mechanisms, :�,;�G� and :�,��G� 
respectively. 

 

Figure 3.3: Degradation acceleration with time due to dependencies. 

Therefore, the degradation of the component i can be expressed as following: 

:,;�G� = :3,;�G� Û1 + ∑ ∑ B8,�,�	Ü4 ,�,¯Ý ÞÆª¯Ç,�,¯t ÞÆ�,¯�£�ß�]� à	             (3.1) 

where :3,;�G� is the intrinsic degradation of the element i for the N�9 degradation mechanism, :���=,�,� is the service limit degradation of component j for the ¹�9 degradation mechanism, B8,�,� is a coefficient related to the geometrical position of i and j, and B�,�,� is a coefficient 

related to the speed of the influential degradation between the two components.  

3.2.2 Component Failure 

As discussed in chapter 1, the component capacity is degrading with time (section 1.5 Figures 
1.4 and 1.6). Let ���G� be the cumulative failure probability of the component i du to its 

intrinsic degradation: ���G� = �¹c�:3�G� ≥ :<�	|:7f                 (3.2) 

where :7 is the degradation of component i at the beginning of a maintenance cycle, or after 
the last intervention (i.e. inspection, preventive or corrective), and :<  is the degradation limit 
before failing. 

The intrinsic failure probability may be increased when the system’s components are 
stochastically dependent. To clarify this idea, let us consider two elements b1 and b2 

stochastically dependent by associated failure (AF); i.e. the failure of b1 may induce the failure 
of b2 with a probability of ��|8 and vice-versa. Figure 3.4 shows the failure diagram for this 

system of two components. 
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Figure 3.4: Failure diagram – two components. 

Therefore, the probability of failure of a component i, which failure can be associated to other 
elements j in the system with a probability�|� 	, can be expressed as follows: 

��,>�G� = ���G� + ∑ �|��G�	���G��]                  (3.3) 

where ��,> is the probability of failure of component i due to the degradation of the component 

itself and to all dependent components j. Formula 3.3 is based on the failure tree truncated at 
the 2nd branching level of the tree (which contains a multiple of two probabilities �|��G����G�). 
To clarify, Figure 3.5 shows a failure diagram for a system of three components (three levels).  

A more precise calculation will include the remaining levels of the tree, which are neglected 
in the current study for the following reasons: 

• They will not significantly improve the evaluation of the probability of failure because 
the Q�9 level of the tree corresponds to Q probability products which would be 
negligible compared to the first two levels. 

• They will increase substantially the computation time due to all the conditional 
probabilities. 

The above probability is not likely to have a value greater than 1 because in civil 
engineering the probabilities of failure are very low. Also, all conditional probabilities are 
multiplied by the probability of failure of the original component, which decreases further the 
values.  Moreover, the probability of failure in equation 3.3 aims at increasing the cost 
expectancy related to items which have lots of dependencies. It is a notional probability and not 
an actuarial one and it is aimed to help decision makers to find suitable maintenance planning. 
Similarly, the probability of survival �@,: becomes:  

 �@, = 1 − c���G� + ∑ �|��G�	���G��] f             (3.4) 
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Figure 3.5: Failure diagram – three components. 
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3.2.3 Load redistribution 

As shown in section 3.2.1, the degradation of element i is accelerated by the degradation 
of any dependent element j. Moreover, the degradation can be given as a function of the load ��G� and the environment: :�G� = 			���G�; �QÀ�¹áQ�ÜQG�. When an element i is part of a 
system formed by interrelated degraded components, a load is transferred as follows: 

��G� = 	 �,7�G� +^i∝�, ��,7�G�jk
�l8 −^i∝,� �,7�G�jk

�l8  

with ∑ ��G�kl8 = �!                  (3.5) 

where �,7�G� is the load initially supported by the element i before the occurrence of any 

degradation of other elements, ��G� is the load supported by the element i after the load 
redistribution and �! is the total load supported by all the elements in the system, ∑ i∝�,× ��,7�G�jk�l8  is the additional load supported by element i due to the degradation of 

element j, with 1 ≤ � ≤ n		�� ≠ ��, ∑ i∝,�× �,7�G�jk�l8  is the loss of load distributed to element 

j due to the degradation of element i, ∝�, is a function of the degradation of element j and a 

geometric coefficient that indicates the amount of the transferred load between elements i and 
j. In this work, ∝�, will be approximated as follows: 

∝�,= B,� â>����>ã,� ä"                    (3.6) 

where B,� and Q can be calibrated by mechanical analysis (theory of structures, finite element, 

etc).  

3.3 System probability of failure 

The failure probability of the system ��,������	 is estimated in literature by the use of 

combinations of series and parallel subsystems to model the whole system. However, in case of 
a redundant system such as civil engineering structures, its estimation is governed among others 
by: (1) the complex dependencies between the different components and subsystems, (2) the 
different possible load paths, (3) the geometrical configuration of components, (3) the level of 
ductility of each component. Therefore, we propose a method to estimate the system failure 
probability, by the use of a redundancy factor C��>D">, such that: 

��,������	 = �1 − C��>D">�	��,�����	 + C��>D">	��,3E�E55�5	              (3.7) 

��,������G� = 1 − ∏ �1 − �	,> �G��                  (3.8) 

��,3E�E55�5	�G� = ∏ �	,> �G�                   (3.9) 

with  ��,>�G� = ���G� + ∑ �|��G�	���G��]               (3.10) 

where ���G� is the intrinsic failure probability of component i, ∑ �|��G�	���G��]  is the 

probability of failure of component i due to the failure of other components of the system, 
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C��>D"> is a function of the system architecture and the correlation between the system 
components.  

In case of civil engineering structures, C��>D"> can be given as a function of the geometric 
coefficient B,� defined in equation (3.6). The coefficient B,� indicates the amount of the 

transferred load between elements i and j, depending on the geometrical configuration of the 
system, the ductility and the stiffness of each component. Therefore the coefficient B,� can be 

estimated by the theory of structures or by finite element analysis. Let us observe this geometric 
coefficient for two elements i and j in case of degradation of element j: 

• 0 ≤ B,� ≤ 1  

• If B,� = 0, then the load supported by j is not redistributed on i, which is similar to a series 

system configuration. 

• If B,� = 1, then the load supported by j is totally redistributed on i, which is similar to a 

parallel system configuration. 

• If B,� increases then the redistribution of the load initially carried by j on the element i 

increases. 

The procedure for evaluating C��>D"> consists first of computing B,� for all the n 

components of the system. This will result in n� geometric coefficients (in a matrix q×q). Then C��>D">. can be calculated as follows: 

C��>D"> = ∑ ∑ 4�,��� k                    (3.11) 

3.4 Maintenance cost items 

The maintenance cost of a system with dependent components is formed of many cost items. 
For the purpose of clarifying the function of every item, Figure 3.6 shows a diagram of all PC 
and CM costs applied to a single component i. The costs of preventive maintenance (PM) in an 
interdependent multi-component system are mainly formed by: 

•  >3: the degradation consequence which spans from the time of initiation of degradation 

till the preventive repair time. 

•  @&3  : the preventive shutdown cost, which covers the direct and indirect costs suffered 
during the maintenance. For example, in case of bridge structures, this cost can be equal 
to the user costs specified according to the traffic strategy adopted. This cost is incurred 
during the whole duration of the maintenance action. 

•  @/3  : the preventive setup cost related to the common system costs, such as mobilizing 
repair crew, safety provisions, transportation, tools, etc. 

•  I3  : The preventive repair cost 

The costs of corrective maintenance (CM) in an interdependent multi-component system are 
mainly formed by: 

•  >4: the degradation consequence which spans from the time of initiation of degradation 
until failure. 
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•  @&4  : the corrective shutdown cost which spans from the time of failure until the end of 

corrective repair. It is usually larger than the preventive shutdown cost because H3 < H4  

as explained in section 3.3. 

•  @/4  : the corrective setup cost which can be larger than the preventive one due to the fact 
that the sudden need for setup items costs more than a planned previously reserved one. 

•  @/4  : The corrective repair cost 

•  < : The direct and indirect failure consequences studied in chapter 2. 

• The associated failure cost, which is the consequence of the failure of stochastically 
dependent components 

 

Figure 3.6: PM and CM costs of component i.  

3.5 Cost Expectancy for individual components 

The procedure to evaluate the costs explained above is detailed in this section for an individual 
component i, dependent on several components j of the system. 

The consequence of preventive maintenance for component i,  'I,, can be formulated in 

terms of the degradation cost  >,3 , the setup cost  @/,3 , the preventive repair cost  I,3  and the 

downtime cost  @&,3  as follows: 

 'I, =  >,3 +  @/,3 +  @&,3 	H3 +  I,3                (3.12) 

The probability of occurrence of the preventive maintenance consequence in a time cycle 
between two planned interventions is related to the probability that the component i will not fail 
before the time scheduled for the preventive maintenance. It is equal to the probability of 
survival of i; 1 − ��,>�G�, as per equation (3.4). 
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The cost of downtimes can be obtained by multiplying the cost of shutting down the 
structure (e.g. suspending a bridge structure or a corresponding lane), by the downtime needed 
for repair, as follows; 

Downtime consequence of preventive repair:  @&,3 	H3              (3.13) 

Downtime consequence of corrective repair:  @&,4 	H4               (3.14) 

where  @&,3  and  @&,4  are respectively preventive and corrective cost per unit time incurred by 

the shutdown of component, and H3	and	H4 are respectively the preventive and corrective non-

zero maintenance downtimes. This cost is related to the time lost in the maintenance tasks. 

The consequence of a corrective maintenance is more complex to evaluate, since its 
occurrence is related to failure, which may induce direct and indirect failure consequences,  <,, 
in addition to the shutdown, setup and repair costs. Moreover, some components are 
stochastically dependent on i, and therefore, the failure of i will necessitate not only the repair 
of i itself, but also the repair of all associated failures (AF). Let �$< be a group of elements j 
stochastically dependent on i. When element i fails, the repair of element j occurs only when 
element j fails knowing that element i has already failed. Thus, the probability of occurrence of 
this event is: �|��G� × ���G�. The downtime needed to repair element j when i fails is accounted 

for in H4, which is formulated in section 3.6.3. 

The consequence of corrective maintenance can then be formulated as: 

 .I, =  >,4 +  @/,4 +  @&,4 	H4 +  I,4 +  <, +∑  I,�4 	��|�G�	�∈Âåã	            (3.15) 

The probability of occurrence of the corrective maintenance consequence in a time cycle 
between two planned interventions is related to the probability that the component i will fail 
before the time scheduled for the preventive maintenance; ��,>�G� as per equation (3.3). 

Thus, the expected cost for the maintenance of component i for a cycle between two 
replacement times can be formulated as; �Z �G�[ = d >,3 +  @/,3 +  @&,3 	H3 +  I,3 ed1 − ��,>�G�e

+ ` >,4 +  @/,4 +  @&,4 	H4 +  I,4 +  <, +^ I,�4 	��|�G��,$< a��,>�G� 
(3.16) 

The expected cost per unit time is given as the expected cost on one cycle over the expected 
length of a cycle (Barlow and Hunter 1960).  

3.6 Cost Expectancy for the maintenance of multi-components  

The objective of this section is to formulate the cost function for the maintenance planning of a 
multi-component system taking into account stochastic, structural and economic dependency. 

Due to the dependencies between the system components, the maintenance cost expectancy 
for multiple components is not equal to the sum of the expected maintenance costs of the 
individual components. 
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Considering simply the sum of the cost expectancies for individual elements in equation 
(3.16) to compute the cost expectancy of a multi-component will lead to many complications. 
To clarify the latter idea, let us consider a system with two dependent components b1 and b2  

• the same setup cost may be used for the maintenance of b1 and b2 at the same time, and 
thus there is no need to consider it twice. 

• the same time may be needed to repair both elements, thus the shutdown cost can be 
considered only one time. 

To avoid considering some of the common costs several times, an approach to formulate the 
total cost expectancy would be to associate to each cost a probability of occurrence. Let F3D be 

a group of components to be preventively repaired at an optimal scheduled time G;D = NDτ.  

The expression of the total cost per unit time requires the consideration of the involved 
costs along a cycle. The representative cycle is given by the expected time for replacing all the 
components simultaneously æτ (Gertsbakh 2000), with æ = ÁB��2, N8, N�, ⋯ , Nk�, where τ is 

continuous and N are integer variables (Laggoune et al. 2009), ÁB��∙� being the least common 
multiplier. 

The total expected cost for the system maintenance along a cycle can be formulated as 
follows, where the subscript T refers to the cost corresponding to the total system. 

�Z !�G�[ =  >,!4 �G� +	 >,!3 �G� +  I,!4 �G� +	 I,!3 �G� +	 @/,!3 �G� +  @/,!4 �G� +  @&,!3 �G�+  @&,!3 �G� +  <,!�G� 
(3.17) 

3.6.1  Maintenance Cost  

In order to evaluate the costs in equation 3.17, every cost component must be associated to a 
probability of occurrence. The probability of occurrence of the corrective maintenance cost  I,4  

of the component i during a cycle is equal to its probability of failure formulated in equation 
3.3.The total corrective maintenance cost for the system components that has failed along a 
cycle can then be formulated as follows: 

 I,!4 �G� = 	^_ I,4 `���G� +^�|��G�	���G��] ab  

with ∑ cd���G� + ∑ �|��G�	���G��] ef ≤ 1              (3.18) 

The total preventive maintenance cost for all components of a group F3D scheduled for 

maintenance at time G = NDτ can be expressed as: 

 I,!3 �G� = ^ _ I,3 `1 − ���G� −^�|��G�	���G��] ab∈Ï«É
 

(3.19) 
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3.6.2  Setup Cost  

In the following section, a method is proposed for the evaluation of the total preventive and 

corrective setup cost,  @/,!3  and  @/,!4   respectively. 

The setup cost covers the costs of the required operations to set the maintenance 
procedures, such as tower cranes, mobile cranes, construction machines, loaders, handlers, 
etc… Let 	 @%,54 be the cost of a setup item l, thus it can be a part 	of the total setup cost  @/,!4 , and 

let �c.çè,éÊ ⊂.çë,�Ê f be the probability that a setup cost item  @%,54  be included in the setup cost of 

component i,  @/,4 . The corrective setup cost is evaluated below for a system which components 

may fail at any time between two scheduled replacements time. The corrective setup cost of 
component i is a consequence of the failure of component i, thus it should be multiplied by �� 
in the first row below of equation (3.20). The matrix in the (3.20) allows us to compute the set 
up cost for component i as shown in equation (3.21).  @/,!4  1 (��8�     …       i (���            … 

ìí
íí
î @%,84⋮ @%,54⋮⋮ ðñ

ññ
ò
ìí
íí
î�c.çè,ÞÊ ⊂.çë,ÞÊ f⋮�c.çè,éÊ ⊂.çë,ÞÊ f

⋱ �c.çè,ÞÊ ⊂.çë,�Ê f⋮�c.çè,éÊ ⊂.çë,�Ê f⋮ ⋱ ⋮⋮ ⋱ ⋮

								⋱										⋱⋱⋱⋱ ðñ
ññ
ò
             (3.20) 

 @/,4 = ∑ �ô54	�c@/éÊ⊂.çë,�Ê f5                 (3.21) 

The probability of occurrence of a setup cost item  @%,54  depends on the union of probabilistic 

eventsc @%,54 ⊂  @/,4 f, which is equal to their sum minus their intersections, as follows: 

�d⋃ c @%,54 ⊂  @/,4 fkl8 e = 	∑ �c.çè,éÊ ⊂.çë,�Ê f − 	�d⋂ c @%,54 ⊂  @/,4 fkl8 e           (3.22) 

�d⋂ c @%,54 ⊂  @/,4 fkl8 e = ∑ ∑ ��ic @%,54 ⊂  @/,4 f	ö	c @%,54 ⊂  @/,�4 fj	�÷.çè,éÊ ⊂.çë,�Ê ø�t8�l8kl� 	          
(3.23) 

In fact, the principle of inclusion and exclusion for probability states that the probability of the 
union of q events in a sample space is given by: 

�d⋃ �kl8 e = ∑ �−1�;�8 ∑ ���8 ∩ �� ∩⋯∩ �;�Þ, ,⋯,Ëk;l8             (3.24) 

All the terms subsequent to the first two terms of the Union equation (3.16) are chosen to 
be nil in this study; which is equivalent to applying equation 3.19 for k=1 and k=2, and 

neglecting all k between 2 and q. In fact the second term �d⋂ c @%,54 ⊂  @/,4 fkl8 e contains the 

product of two probabilities (as shown in eq 3.17), and all subsequent terms would contain the 
product of three to q probabilities, and will therefore be neglected compared to the first two 
terms. 

When the number of elements in the system increases, the probability that  @%,54  is included 

in many setup costs of the system increases, thus this function is an increasing function of the 
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number of elements. The probability of occurrence of a particular setup cost �ô54 when 
maintaining several components depends on the inclusion of  @%,54  in the setup costs of the 

maintained elements.  

�`úc @%,54 ⊂  @/,4 fk
l8 a

=	^�c.çè,éÊ ⊂.çë,�Ê f
k
l8 −^^��ic @%,54 ⊂  @/,4 f	ö	c @%,54 ⊂  @/,�4 fj	�÷.çè,éÊ ⊂.çë,�Ê ø�

t8
�l8

k
l�  

(3.25) 

Therefore, the total setup cost becomes equal to the sum of each setup component 
multiplied by its probability of occurrence: 

 @/,!4 =^ @%,54 	_^�� 	�c.çè,éÊ 	⊂.çë,�Ê f
k
l85

−^^��/�	��� 	��ic @%,54 	⊂  @/,4 f	ö	c @%,54 	⊂  @/,�4 fj	�÷.çè,éÊ 	⊂.çë,�Ê ø�
t8
�l8

k
l� b 

(3.26) 

Similarly, the evaluation of the preventive setup cost  @/,!3  can be formulated for a group 

of components F3D scheduled for maintenance at time G = NDτ. Let nÏ3D be the number of 

components belonging to F3D. By following the same procedure as the corrective setup cost,  @/,!3  can be expressed as following:  

 @/,!3 =^ @%,53 _^ d1 − ��e	�÷.çè,é« ⊂.çë,�« ø
kÃ«É	
l85

− ^ ^d1 − ��ed1 − ���e	��÷.çè,é« ⊂.çë,�« ø|÷.çè,é« ⊂.çë,�« ø × �÷.çè,é« ⊂.çë,�« ø�
t8
�l8

kÃ«É
l� b 

(3.27) 
3.6.3  Shutdown Costs  

According to Thomas (1986), the structural dependency can be horizontal or modular. 
Horizontal dependency can be described as the structural connection between different items in 
series, in parallel, or in k-out-of-n configurations. Modular dependency means that some 
components have to be dismantled in order to repair another component, and thus they stop 
functioning for the whole time of repair.  

Structural dependency can only be modeled by taking into account the downtimes needed 

to repair or dismantle inter-related components. Let GI,3  and GI,4  be respectively the downtimes 

needed to preventively and correctively repair component i, and ∆GI&,D| be the downtime 

needed to dismantle an item u which is modularly dependent (MD) on i.  
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Stochastic dependency may induce the failure of a component j, in case of failure of a 
component i. There is an Associated Failure (AF) between j and i due to stochastic dependency. 
Therefore, in case of corrective maintenance, in addition to the downtimes needed to repair 
failed elements and dismantle modularly dependent element, it is required to repair failed 

elements by AF. Let	GI,�|4.$<  be the time needed to repair an element j which has failed as a 

consequence of the failure of i due to stochastic dependency between elements. 

The preventive and corrective non-zero maintenance downtimes, H3	 and 	H4 , of 

component i can be expressed as functions of the above explained times as follows ;  

H3 = 	dGI,3 ; ∆GI&,D|e                  (3.28) 

H4 = 	dGI,4 ; GI,�|4.$< ; ∆GI&,D|e                  (3.29) 

The downtimes would be higher if the action is corrective because the same maintenance 

action will need less time if everything is planned a priori; i.e. H3 < H4. Figure 3.7 illustrates 

the downtimes needed for PM and CM activities, where �$< is a group of elements j 
stochastically dependent on i, and �I& is a group of elements u modularly dependent on i and 

j. In case of preventive grouping, the duration H3 is function of the maintenance times of all 

components in the group and the time needed to dismantle modularly dependent items. In case 
of failure, the duration H4  is function of the time to maintain all failed items j by AF and to 
dismantle modularly dependent items u. 

The total preventive and corrective shut down costs can then be expressed as follows: 

 @&,!3 =  @&,���E����3 	d⋃ H3kl8 e                (3.30) 

 @&,!4 =  @&,���E����4 	d⋃ H4kl8 e               (3.31) 

where  @&,!3   and  @&,!4  are respectively the preventive and corrective shutdown costs for all 

components of the system that have failed at any time between two successive scheduled 
maintenance times.  

 

Figure 3.7: PM and CM downtimes. 
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3.7 Numerical applications 

The above proposed model is applied to four types of structure for illustration purposes; namely, 
two beams in parallel, two beams in series, slab and bituminous system, and finally a bridge 
superstructure. 

3.7.1 Two beams in parallel 

The proposed model is applied on a structure formed by two beams in parallel in order to 
optimize the maintenance planning of the two beams by considering the dependencies between 
the two elements. In this example, two reinforced concrete beams (b1 and b2) are simply 
supported as shown in Figure 3.5. The beams have identical spans of 15 m. The cross-section 
is 40 cm wide and 90 cm deep. A 25 cm concrete slab spans between the two beams. A 
uniformly distributed load (UL) of 2.5 kN/m2 is applied on the slab. The beam b1 carries a 
facade load equivalent to a distributed line load of 0.05MN/m. 

 

Figure 3.8: Two identical concrete beams with connecting slab. 

3.7.1.1- Failure Interaction 

In order to evaluate the effect of degraded or failed beam on the adjacent one, a 2D Finite 
Element (FE) model using SAFE V2014 (CSI 2014) is set to analyze the two structures. 
According to the FE model, b1 carries 68% of the total load and b2 carries 32% (Figure 3.5). 
Therefore, if M! is the total moment carried by the two beams, the initial moments carried by 
each beam before any degradation are: 

M8,7 = 0.68 ×M!  and     M�,7 = 0.32 × M!           (3.32) 

 

Figure 3.9: Bending moments. 
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The failure probability is calculated by considering the reinforcement areas: 8HA25 for b1 
and 8HA16 for b2, which are computed according to EC2 (Code 2005). Let us consider that 
MR,1 and MR,2 are respectively the resisting moments of b1 and b2. Due to corrosion, the resisting 
moments are degraded with time. The random and deterministic variables of the problem are 
given in Table 3.1. 

Random variables Symbol distribution mean COV units 

Yield strength  fy Lognormal 500 0.07 MPa 
Deterministic parameters      
Concentration Ccr  0.9   
Concentration Cs  2.95   
Coefficient of diffusion Dc  6.00E-12   
Cover c  0.04  m 
Concrete strength fc  28  MPa 
Module d Young E  25.3  GPa 
Length L  15  m 
Width B  0.4  m 
Height h  0.9  m 
Load on slab UL  2.5  kN/m2 

Load on �8 q  50  kN/m 

Table 3.1: Random and deterministic variables for the two parallel beams structure. 

The probabilities of failure are calculated at discrete points of time by the first order reliability 
method (FORM) for each beam. FORM provides estimations of the failure probability for time 
increments of 0.5 years. Then, a continuous closed form of the failure probability in function of 
time can be approximated by a second order polynomial regression. The above approximation 
is intended to loosen the computational burden when applying the proposed methodology as 
explained in section 3.2. Other methods may also be applied to estimate a closed form of the 
failure probability as function of time. When applying the above, the failure probability of each 
beam in function of time can be estimated as follows:  

��>8�G� = ��dM�,8�G� − 0.68	M! < 0e = 1.59 × 10t´    �		G ≤ G 
��>8�G� = 10itu.ý�þ×87È�	��t����tý×87È�	��t��� �7.7´u�	��t���j    �		G > G 
��>��G� = ��dM�,��G� − 0.32 × M! < 0e = 3.045 × 10tþ    �		G ≤ G 
��>��G� = 10it�.´��×87È�	��t����t�×87È�	��t��� �7.7�´�	��t���j     �		G > G 

(3.33) 

where G is the time of initiation of corrosion. For  G ≤ G , the resistant moment is constant. In 
this application, this time is found to be  G = 8.25	 years. 

In order to find the maintenance costs, the next step is to compute �|��G�, which is the 

probability of failure of the element bi knowing that element bj has failed. The following 
procedure is suggested for the computation of �|��G� in this example.  
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• Assigning nil stiffness to b2 in the FE model to characterize the failure of b2. The increase d�QB8|�e  in the moment of b1 due to the failure b2 is 47% (obtained by the FE model). 

Therefore  M8|� = �1 + 0.47� × 0.68	M! =	M! .   

• Assigning nil stiffness to b1 in the FE model to characterize the failure of b1. The increase d�QB�|8e  in the moment of b2 due to the failure of b1 is 210% (obtained by the FE model). 

Therefore   M�|8 = �1 + 2.1� × 0.32M! =	M! . 

The above results are predicted: when b1 fails, the entire load is carried by b2 until the failure of 
b2 and vice-versa, therefore, M8|� = M�|8 = M! . However �8|��G� ≠ ��|8�G�  because b1 is 

more reinforced than b2, therefore MR,1 ˃ MR2. The conditional probabilities are calculated by 
FORM, and then they are approximated by polynomial regressions as follows: 

��8|��G� = ��dM�,8�G� − M! < 0e = 8.9 × 10tu    �		G ≤ G ��8|��G� = 10it¼.7´��×87È�×��t����t�×87È�×��t��� �7.7u�×��t���j   �		G > G 
���|8�G� = ��dM�,��G� − M! < 0e = 2.06 × 10t�   �		G ≤ G  ���|8�G� = 10it8.���u×87È�×��t����t´×87È�×��t��� �7.7��×��t���j  �		G > G 

(3.34) 
As explained in section 3.2.2 (eq 3.3 and Figure 3.4), the probabilities of failure of each beam 
due to intrinsic degradation and due to the failure of the other beam are given by:  

��8�G� = ��>8�G� + �8|��G�	��>��G� ����G� = ��>��G� + ��|8�G�	��>8�G�               (3.35) 

3.7.1.2- Degradation interaction 

In case of degradation of beam i, the moment initially supported by this beam is transferred to 
the other beam. The degradation diagram is shown in Figure 3.7, where :8 and :� are the 
degradation of beams �8 and �� respectively, and :<8 and :<�  are the degradation limits that 
causes the beam failure, which can be equal to the beam ultimate degradation.  

 

Figure 3.10: Degradation diagram. 
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When b1 and/or  b2  are degraded, the moments are redistributed as follows: 

M8�G� = M8,7 −∝�,8 �G� × M8,7 	+	∝8,� �G� × M�,7 M��G� = M�,7 −∝8,� �G� × M�,7 +	∝�,8 �G� × M8,7            (3.36) 

where ∝�,8 �G�  and ∝8,� �G� are the moment distribution factors that are related to the degree 
of degradation of respectively b1 and b2 at time t as follows: 

∝�,8 �G� = B�,8 	i>Þ���><Þ j" ,Þ    and        ∝8,� �G� = B8,� 	i> ���><  j"Þ,            (3.37) 

where B8,�, B�,8, Q8,� and Q�,8 can be obtained by computing the moment redistributed to b1 
and/or b2 for each stiffness value of b2 and/or b1 varying from 0 to 1.  

In this example,  ∝�,8 �G� = 2.1 × i>Þ���><Þ j� and ∝8,� �G� = 0.47 × i> ���><  j�          (3.38) 

 :8�G� = 0.02 × G  and  :��G� = 0.01 × G            (3.39) 

The degradation monetary consequence can be given as a function of the degrading capacities. 
Many factors accelerate the degradation of a system components, e.g. heavy load, corrosive 
environment, etc… To consider the above accelerators, the following form is considered to 
compute the degradation costs in this application: 

 >��,8�G� =  >8,�Í� × Ü4� Þ¥¬,Þt Þ¥Þ�£��     and      >��,��G� =  >�,�Í� × Ü4� Þ¥¬, t Þ¥ �£�� 
(3.40) 

where M�,8	and M�,� are the capacity limits, B is an accelerator factor taken equal to 20 and  >8,�Í� = 0.02. 
3.7.1.3- Maintenance Planning 

The maintenance policy used in this application is as following:  

• After a preventive maintenance action, the maintained component becomes “as good as 
new”. 

• Between two preventive maintenance actions, if a component fails, a minimal repair is 
immediately performed to restore the component to the “as bad as old” state. 

• �8 is maintained every N8	2 with N8 = 1. 

• �� is maintained every N�	2 with N�	positive integer. 

The total cost is calculated during a life-cycle of æ	2 with æ = ÁB��N8, N�� = N�	. 
3.7.1.4- Economic dependency 

In many previous works (Laggoune et al. 2009; Van Horenbeek and Pintelon 2013; Vu et al. 
2014), the setup common cost  @/ was accounted for in the following way: Grouping activities 
yields a cost reduction such that the total setup cost is �Q − 1� @/, where Q is the number of 
groups of preventive maintenance activities. In our application, this means that Q = 2  if  N8 ≠N�, and Q = 1 if N8 = N� . 
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In the following, the new formulation, which we proposed for considering economic 
dependency, is applied to the two beams. 

Let us consider two setup cost items: cost of allocating cranes  @%,8 and cost of delivering 

special equipment  @%,� . The philosophy of the proposed methodology yields in assigning to 
every possible cost a probability of occurrence. The probability of using a setup cost component 

when maintaining � i�c.çè,é	⊂Ifj are shown in 3.2. 

Name 
 @%,5 µc.çè,é⊂.çë,�f cost/unit time 

  �8 �� 
Cranes  (�C, 1) 0.01 0.933 0.895 
special equipment (�C, 2) 0.02 0.870 0.802 

Table 3.2: Setup cost components.  

If the maintenance activities of �8 and �� are grouped (i.e.N8 ≠ N�), then the probability that a 
setup cost component be used in the maintenance activity of �8 (or ��) knowing that it is used 
in the maintenance activity of �� (or �8) is equal to 1 ; �c.çè,é⊂.çë,Þf|c.çè,é⊂.çë, f = 1. The latter 

means that if a crane or a special equipment was brought for use in the maintenance of b1, it 
will be definitely used in the maintenance of b2 in case of grouping the two maintenance 
activities, and vice-versa. 

• At time æ2, the preventive setup cost is: 

If N8 ≠ N� (i.e. there is no grouping of maintenance activities), then the preventive setup cost 
will be: 

* = Ý.çè,Þ« 	'÷{çè,Þ« ⊂{çë,Þ« ø�.çè, « 	'÷{çè, « ⊂{çë,Þ« ø	ß�ËÞ�Ý.çè,Þ« 	'÷{çè,Þ« ⊂{çë, « ø�.çè, « 	'÷{çè, « ⊂{çë, « ø	ß�Ë 
�        (3.41) 

If N8 = N� = 1 (i.e. the maintenance activities are grouped), then the preventive setup cost will 
be ; 	 = * − ∆ , where ∆  is the cost reduction 

∆ = 	 @%,83 	�÷.çè, « ⊂.çë,Þ« ø|÷.çè,Þ« ⊂.çë, « ø	�÷.çè,Þ« ⊂.çë,Þ« ø +  @%,�3 	�÷.çè, « ⊂.çë, « ø|÷.çè, « ⊂.çë,Þ« ø	�÷.çè, « ⊂.çë, « ø 
(3.42) 

The latter means that grouping activities yields a cost reduction proportional to the intersection 
of the two events: �÷i.çè,é« ⊂.çë,Þ« j∩i.çè,é« ⊂.çë, « jø. 

• At the time of failure, the corrective setup cost becomes:   = � @%,84 	�÷.çè,ÞÊ Þ⊂.çë,ÞÊ ø+	 @%,�4 	�c.çè, Ê ⊂.çë,ÞÊ f���8�G� + i @%,84 	�c.çè,ÞÊ ⊂.çë, Ê f +
 @%,�4 	�c.çè, Ê ⊂.çë, Ê f	j ����G� − i @%,84 	�c.çè,ÞÊ ⊂.çë, Ê f|c.çè,ÞÊ ⊂.çë,ÞÊ f	�c.çè,ÞÊ ⊂.çë,ÞÊ f + @%,�4 	�c@/ ⊂.çë, Ê f|c.çè, Ê ⊂.çë,ÞÊ f	�c.çè, Ê ⊂.çë,ÞÊ fj���/8�G�	��8�G�            (3.43) 
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3.7.1.5- System probability of failure 

When two elements are independent, the system probability of failure is: 

��,�������G� = C��>D">	��,3E�E55�5�G� + �1 − C��>D">�	��,������G� 
where C��>D"> = ∑ ∑ 4����"�5��  = 7.uþ��.8�  = 0.65   

��,3E�E55�5�G� = ��8�G�	����G� 
��,������G� = i1 − ��8�G�j	i1 − ����G�j 

��8�G� = ��>8�G� + �8|��G�	��>��G� 
����G� = ��>��G� + ��|8�G�	��>8�G�               (3.44) 

3.7.1.6- Effect of cost components on maintenance planning 

The maintenance optimization problem is given as: 

Find    N� and 2 

minimizing   �N8, N�, 2� 
with   N8 = 1 and 2 ≥ 0    

subject to:    ��,������	 < ��!              (3.45) 

where ��! is the system threshold failure probability,  �N8, N�, 2� is the total maintenance cost 

and N8, 	N� and 2 are as defined in section 3.7.1.3. In the following, we will optimize the 
maintenance planning of the two beams by considering several formulations for the total cost, 
in order to study the effect of each dependency form on the maintenance scheduling. The 
formulations are as follows: 

• Case 1: None (No dependency) 
In this basic formulation, degradation cost, stochastic and economical dependencies are not 

considered. The Total expected cost is: 

 �N8, N�, 2� = ÷i I83 +  I84 	�>8�N82�j	 �;Þ + i I�3 +  I�4 	�>��N�2�j �; ø �æ2�
           (3.46) 

The system probability of failure does not take into account the dependencies between 
components when computing ��,3E�E55�5  and ��,�����. 

• Case 2: Degradation (D) 

In this formulation, degradation cost is considered, although stochastic and economic 
dependencies are not. The expected total cost is: 

 �N8, N�, 2� = ÷i.¥Þ« �.¥ÞÊ 	'ÆÞ�;Þ��j	 �ËÞ�i.¥ « �.¥ Ê 	'Æ �; ��j�Ë ø�×� +  >��,8 +  >��,�               (3.47) 

• Case 3: Stochastic (S) 
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In this formulation, stochastic dependency is considered, although degradation cost and 
economic dependency are not. The expected total cost is:  �N8, N�, 2� = d I,!4 � +	 I,!3 e/�æ2�               (3.48) 

where  I,!4 �G� and  I,!3 �G� are given by:  

 I,!4 �æ	2� = 	 d I,84 c��>8�N82� + �8|��N82���>��N82�fe �;Þ + d I,�4 c��>��N�2� +
��|8�N�2���>8�N82�fe �;   
 I,!3 �æ	2� =  I,83 	 �;Þ +  I,�3 	 �;                 (3.49) 

The system probability of failure takes into account the dependencies between components 
when computing ��,3E�E55�5 and ��,����� as explained in section 3.7.1.5. 

• Case 4: Economic (E) 
In this formulation, economical dependency is considered, although degradation cost and 

stochastic dependency are not. The expected total cost is: 

 �N8, N�, 2� = ic I83 +  I84 ��8�N82�f �;Þ + c I�3 +  I�4 × ����N�2�f �; j æ2⁄ + �ô  (3.50) 

The reliability-based optimization of equation 3.45 is performed for the four cases explained 

above and for a threshold system probability of failure��! varying from 10-5 to 10-3. As explained 

in section 3.7.1.3, �8 is maintained every N8	2 and �� is maintained every N�	2 . The optimum 
maintenance times N8	2  and N�	2 for the two elements �8 and �� are shown in Figure 3.11 for 
the four cases distinguished by different marker types and colors, and for a system threshold 

failure probability of ��! = 5 × 10tu. The values of the design variables N�	and 2  are also 

shown in Table 3.3 for all values of ��!, along with the value of the probabilities of failure of 

the elements ��8 and ��� with the corresponding system failure probability �������� which can 

equal or higher than ��!. 

From the above results, the following observations can be drawn: 

• The economic dependency induces the grouping of maintenance actions; N8 = N� = 1 for 

all values of ��! varying from 5×10-5 to 10-3, even though �8 is more loaded than ��. 

• Stochastic dependency leads to smaller maintenance time intervals, and thus neglecting 
stochastic dependency may lead to unsafe maintenance planning; the average decrease in 
maintenance times is 4%. 

• The degradation cost increases with time, therefore it accentuates the convex shape of the 

total cost formula. For all ��! higher than the value of �	������ corresponding to the 

optimal unconstrained response equivalent to the lower value of the convex total cost 
shape, the optimization results are equal to the unconstrained results and the reliability 

threshold ��! has no effect; in this example, the unconstrained optimum correspond to a 

system failure probability of 1.71 × 10tu.  
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• The optimum maintenance time for very low probability thresholds correspond to the time 
of initiation of degradation; for a threshold probability of failure of 10-5, all formulations 
yield the same maintenance planning corresponding to a maintenance activity for �8 every 
8.24 years, which is equal to the time of initiation of corrosion. 

 

Figure 3.11: Maintenance planning for different formulations with ��! = 5 × 10tu. 

NONE µ¶» τ � � P1 P2 µ¶,������ 

 1.00×10-3 40.48 1 2 5.28×10-4 2.33×10-3 1.00×10-3 
 5.00×10-4 37.86 1 2 4.53×10-4 9.75×10-4 5.00×10-4 
 1.00×10-4 26.65 1 2 2.15×10-4 7.03×10-5 1.00×10-4 
 5.00×10-5 19.70 1 2 1.22×10-4 2.18×10-5 5.00×10-5 
 1.00×10-5 8.24 1 4 1.59×10-5 1.27×10-5 1.00×10-5 
        

Stochastic µ¶» τ � � P1 P2 µ¶,������ 

 1.00×10-3 40.25 1 2 5.51×10-4 2.30×10-3 1.00×10-3 
 5.00×10-4 37.47 1 2 4.53×10-1 9.75E-01 5.00×10-4 
 1.00×10-4 25.67 1 2 2.00×10-4 8.65×10-5 1×10-4 
 5.00×10-5 18.83 1 2 1.12E-04 3.06×10-5 5.00×10-5 
 1.00×10-5 8.24 1 4 1.59E-04 1.42×10-4 1.00×10-5 
        

Degradation µ¶» τ � � P1 P2 µ¶,������ 

 1.00×10-3 31.53 1 2 3.04×10-4 1.86×10-4 1.71×10-4 
 5.00×10-4 31.53 1 2 3.04×10-4 1.86×10-4 1.71×10-4 
 1.00×10-4 26.65 1 2 2.15×10-4 7.03×10-5 1.00×10-4 
 5.00×10-5 19.70 1 2 1.22×10-4 2.18×10-5 5.00×10-5 
 1.00×10-5 8.24 1 4 1.59E-05 1.27E-05 1.00E-05 
        

Economic µ¶» τ � � p1 p2 µ¶,������ 

 1.00×10-3 66.35 1 1 2.58×10-3 2.72×10-4 1.00×10-3 
 5.00×10-4 56.57 1 1 1.33×10-3 9.53×10-5 5.00×10-4 
 1.00×10-4 30.09 1 1 2.76×10-4 9.83×10-6 1.00×10-4 
 5.00×10-5 21.20 1 1 1.39×10-4 4.11×10-6 5.00×10-5 
 1.00×10-5 8.24 1 4 1.59×10-5 1.27×10-5 1.00×10-5 

Table 3.3: Optimization results with respect to dependency type. 
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3.7.2 Two-span continuous beam  

The proposed model is applied on a two-span continuous beam in order to optimize the 
maintenance planning of the two beams by considering the dependencies between the two 
elements. In this application, a continuous RC beam with two spans (�8 and ��), is simply 
supported as shown in Figure 3.12. The beams have identical spans of 6m. The beams cross-
section is 30cm wide and 60cm depth. A uniform load (UL) of 20 kN/m (including the dead 
load of the beams) is applied to the beams. 

 

Figure 3.12: Mechanical model of the two RC beams with identical spans. 

3.7.2.1- Maintenance costs  

In order to evaluate the effect of a degraded or failed beam on the adjacent one, a 2D finite 
element model using SAP V2014 (CSI 2014) is considered to model the two beam structure. 
The probability of failure is the probability of violating the following bending limit state:  

FI,Y��~� = M� −M                   (3.51) 

where MR is the resisting moment calculated by EC2 (Code 2005), Mi is the total moment 
applied to beam i. In this example, the resisting moment is degrading with time due to corrosion. 
The random and deterministic variables of the problem are given in Table 3.4. 

 
 

Random variables 
Symbol distribution mean COV units 

Yield strength  	� Lognormal 500 0.07 Mpa 
Deterministic parameters      

Concentration  Ccr  0.9   
Concentration  Cs  2.95   
Coefficient of diffusion  Dc  6.00×10-12   
Cover c  0.04  m 
Concrete strength 	4  28  MPa 
Module d Young E  25.3  GPa 
Length L  6  m 
Width b  0.3  m 
Height ℎ  0.6  m 
Load  ô�  0.15  MN/m 

Table 3.4: Random Variables and deterministic parameters of the continuous beam. 

The failure probability is calculated for the positive and negative moments by considering as a 
reinforcement area 3HA20 for top reinforcement and 3HA16 for bottom reinforcement.  
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Figure 3.13 : Bending moment and studied cross-sections. 

The three cross-sections shown in Figure 3.13 are to be considered: Cross-section 1 (S1) 
corresponding to the maximum positive moment at mid-span of beam b1, cross-section 2 (S2) 
corresponding to the maximum negative moment at the support, and cross-section 3 (S3) 
corresponding to the maximum positive moment at mid-span of beam b2. The computation steps 
are as following: 

• The probability of failure is obtained for the three cross-sections, which degrade with time 
due to corrosion.  

• In the maintenance model, �|��G� is computed as the probability of failure of Si knowing 

that Sj has failed. The following procedure is suggested for the computation of �|��G� in 

this example: 
� Assign a nil stiffness to beam � that is supposed to model the failure of cross-sections 

1 or 3. 
� Create a hinge at the support between the two beams to model the failure of cross-

section 2.  
� Compute the increase �QB|�  in the moments in the beam � ≠ � due to the failure of  

beam	�, such that M|� = �QB|� 	MY   

� Calculate	�|��G� = ��cM� −M|� ≤ 0f	 using FORM algorithm. 

����|� 1 failed 2 failed 3 failed 

1 ∞ 1.8 1.8 
2 ∞ ∞ ∞ 
3 1.8 1.8 ∞ 

Table 3.5: Moment increases in element i due to failure of element j d�QB|�e.  
i|j Equations of µ�|� failed Equations of µ�|� failed 

1 1 10d−1.29	+2×10−6	t3−	6×10−4		t2+	4.59×10−2	te 
2 1 1 

3 10d−1.29	+2×10−6	t3−	6×10−4		t2+	4.59×10−2	te 10d−1.29	+2×10−6	t3−	6×10−4		t2+	4.59×10−2	te 
 

 

 Equations of µ� 
P1 10�−4.86	+10−5	t3−1.2×10−3	t2+8.70×10−2	t� 
P2 10d−3.38	+10−5	t3−1.7×10−3	t2+1.26×10−1	te 
P3 10�−6.037	+10−5	t3−1.2×10−3	t2+8.70×10−2	t� 

Table 3.6: Polynomial regression of � and �|�. 
The increase of the moment in section � when the cross-section �	has failed is shown in Table 
3.5. As the computation of �|��G� by FORM is very costly inside the optimization formula, a 

polynomial approximation is used for the computation of �|��G� . The closed form estimations 
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of the failure probabilities as function of time are given in Table 3.6 where for each column i 
the approximations of ��G� and �|��G� are given in each row j. The failure of a beam increases 

the failure rate of the adjacent beam, and leads to the failure of the common support section. 

3.7.2.2- Effect of cost components on maintenance planning 

The optimization problem is given by: 

Find    N� , N¼ and  2 

minimizing   �N8, N�, N¼, 2� 
with   N8 = 1 and 2 ≥ 0 

subject to    ��,������	 < ��!              (3.52) 

Let us compare the following formulations in Table 3.7. 

Type 
Formulation 

Description 
None �Z !�G�[ =^c I,4 ���G�f + + ^ ÷ I,3 i1 − ���G�jø∈Ï«É  

 

Degradation cost, 
stochastic and economical 

dependencies are not 
considered 

E �Z !�G�[ =^c I,4 ���G�f + ^ ÷ I,3 i1 − ���G�jø∈Ï«É +  @/,!3 �G� +  @/,!4 �G� 
 

Economical dependency is 
considered, although 

degradation cost and stochastic 
dependency are not 

S �Z !�G�[ =^_ I,4 `���G� +^�|��G�	���G��] ab
+ ^ _ I,3 `1 − ���G� −^�|��G�	���G��] ab∈Ï«É

 

 

Stochastic dependency is 
considered, although 

degradation cost and economic 
dependency are not. 

Table 3.7: Dependency formulations. 

The comparison is carried out using a threshold system probability of failure varying from   10-

4 to 10-3. The results are shown in Figures 3.14 and 3.15 and in Table 3.8. 

The reliability-based optimization in equation 3.52 is performed for the three cases 

explained in Table 3.7 and for a threshold system probability of failure ��! varying from 10-4 to 

10-3. The same maintenance planning used in section 3.7.1.3 is used herein, where �8 is 
maintained every N8	2, �� is maintained every N�	2 , and �¼ is maintained every N¼2. The 
optimum maintenance times N8	2, N�	2  and N¼2 for the three elements corresponding to the 
three cross-sections are shown in Figure 3.14 and 3.15 for the three cases distinguished by 
different marker types and colors, and for ��! equal to 10tu and 10t¼ respectively. The values 

of the design variables N�	, N¼	and 2 are also shown in Table 3.8 for the three formulations, 
along with the value of the  �N8, N�, N¼, , 2� in cost unit. 
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Figure 3.14: Effect of cost component on maintenance planning- ��!=10-4. 

 

Figure 3.15: Effect of cost component on maintenance planning- ��!=10-3. 

Formulatio
n µ¶» τ k1 k2 k3 ���,�,�, , �� 
E 1.00×10-3 23.13 1 1 1 0.18 

 1.00×10-4 6.71 1 1 1 0.50 

       
S 1.00×10-3 13.43 1 2 2 0.30 

 1.00×10-4 5.30 1 2 1 0.62 

       
None 1.00×10-3 13.43 1 2 2 0.30 

 1.00×10-4 5.86 1 2 1 0.58 

Table 3.8: Optimization results in terms of dependency type. 

The following observations can be drawn from the results: 

• The economic dependency induces the grouping of the maintenance actions �N8 = N� =N¼�, therefore neglecting the economic dependency leads to more costly maintenance 
planning. 

• The stochastic dependency leads to smaller maintenance time intervals for low 
probabilities (≤10-4), but it does not have significant effect for higher probabilities   (≥10-

3), therefore neglecting the stochastic dependency may lead to unsafe maintenance 
planning. 

• For high failure probabilities, the economic dependency has the biggest effect on the 

maintenance cost; for ��!=10-3, the economic dependency decreases the maintenance cost 

by 40% compared to the cost using stochastic and non-dependent formulations. 

• For low failure probabilities, the stochastic dependency has the biggest effect on the 

maintenance cost; for ��!=10-4, the stochastic dependency increases the cost by 6% 
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compared to the cost using the non-dependent formulation, and by 20% compared to the 
cost using economic dependency formulation. 

3.7.3  Slab and Bituminous interdependence 

In this application, a slab and a bituminous coating covering the slab are considered. The 
objective is to optimize the maintenance planning of the slab and the bituminous coating by 
considering the dependencies between the two elements, in order to study the behavior of the 
proposed model for different types of structures. 

3.7.3.1- Maintenance costs  

Let us consider the following failure probabilities: 

For the slab: ��� = 1 − exp	�10tu		G� 
For the bituminous: ��Y = 1 − exp	�10t�	G�              (3.53) 

The failure of the slab induces the failure of the bituminous. However, the failure of the 
bituminous does not affect the slab performance but can increase the rate of its degradation. �|� 
are shown in Table 3.9.  

Pi/j Slab fails Bitume fails 

slab 1 0 
Bitume 1 1 

Table 3.9: Conditional probabilities. 

3.7.3.2- Effect of cost components on maintenance planning 

The same optimization formulations applied for the example in section 3.7.2 (i.e. the continuous 
beam) will be applied to the slab-bituminous, using data in Table 3.7; namely, E (economic), S 
(stochastic) and N (none) formulations. 

The comparison is applied for a threshold system probability of failure varying from 10-4 
to 10-3. The results are shown in Figures 3.16 and 3.17 and in Table 3.10, where  N8	2 is the 
maintenance time for the slab and N�	2 is the maintenance time for the bituminous coating.  

 

Formulation µ¶» τ k1 k2 ���,�, �� 
E 1.00×10-3 18.89 1 6 0.092 

 1.00×10-4 1.87 1 6 0.653 

      
S 1.00×10-3 18.53 1 6 0.100 

 1.00×10-4 1.83 1 6 0.679 

      
N 1.00×10-3 18.89 1 6 0.092 

 1.00×10-4 1.87 1 6 0.653 

Table 3.10: Optimization results.  
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From the results, the following observations can be drawn: 

• The economic dependency did not induce the grouping of maintenance actions �N8	 ≠ N�	� 
because the probability of failure of the slab is by far higher than the probability of failure 
of the bituminous. Therefore, the “N” and the “E” formulations both yield the same 
results. 

• The stochastic dependency leads to smaller maintenance time intervals by 2% for all the 
studied probabilities compared to “E” and “N” formulations, therefore neglecting this 
dependency may lead to unsafe maintenance planning. 

• The stochastic dependency has the biggest effect on the maintenance planning and cost in 

this example; it increases the maintenance cost by 9% for ��! equal to 10t¼ and by 4% for ��! equal to 10tu compared to “E” and “N” formulations. This may be due to the fact that 

the slab failure induces automatically the bituminous failure d�Y|� = 1e. 

 

Figure 3.16: Effect of cost component on maintenance planning- ��!=10-4. 

 

Figure 3.17: Effect of cost component on maintenance planning- ��!=10-3. 

3.7.4 Bridge Superstructure 

The proposed procedure is applied herein to a RC bridge superstructure. This application 
is drawn from Bezih et al. (2015). The length of the bridge is 407 m and its transversal width is 
9 m as shown in Figure 3.18. The objective is to optimize the maintenance planning of the 
bridge superstructure by considering the economic, stochastic, structural, and degradation 
dependencies between the structural elements, the load redistribution and the system 
redundancy. 
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Figure 3.18: Section of the superstructure (Bezih et al. 2015). 

 

Figure 3.19: Mechanical model (Bezih et al. 2015). 

A slab of 25 cm thickness is carried by 6 beams (35 cm × 90 cm). The distance between the 
beams is 1.5 m, and their span is 15.1 m.  

Bezih et al. (2015) designed this bridge, as shown in Figure 3.18, where there is an 
expansion joint every 3 spans. The traffic load is represented by the load case LM1 of EC1 
(CEN2003 1991), which considers simultaneously a uniformly distributed load UDL, a tandem 
TS on each lane, QT on sidewalks, in addition to the permanent load G. The deck is divided 
into 2 conventional lanes of 3 m each, and a residual area of 1m. 

The aim of this application is to optimize the maintenance planning of the 6 beams (b1…b6) 
shown in Figure 3.18, taking into account the dependencies, as well as failure and degradation 
costs. 

3.7.4.1- Maintenance costs  

The moments on each beam, shown in Figure 3.18, are calculated using a 2D finite element 
model as following: 
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• The moment obtained by the summed load in the mechanical model is distributed on the 
6 beams of the superstructure. 

• The effect of degraded or failed beam on the adjacent beams is evaluated. 

The load case LM1 (CEN2003 1991) gives the load values and coefficients shown in Table 
3.11. 

Lane TS Qk Coefficient TS UDL qik Coefficient UDL 

  (kN) αQ (kN) (kN/m2) αq (kN/m2) 
Lane 1 300 1 300 9 1 9 
Lane 2 200 1 200 2.5 1.2 3 

Residual area 0 0 0 2.5 1.2 3 

Table 3.11: Load case LM1 (CEN2003 1991). 

As shown in Figure 3.18, the beams b1, b2, and b3 form the lane nᵒ1, and b3, b4, and b5 form the 
lane nᵒ2.  

By considering that the TS point loads are applied to the first span as shown in Figure 3.18, 
the first span maximum positive and negative moments in kNm are as shown in Table 3.12. The 
3rd row shows the proportion of the moment Mi to the total positive moment. 

 

Moment M1 M2 M3 M4 M5 M6 Units 

Positive 10880 1062.6 912.3 827.9 792.2 683.4 kNm 
Negative -1696.1 -838.3 -1055.7 -973.7 -626.8 -1074.1 kNm 
αi 0.2 0.2 0.17 0.15 0.15 0.13  

Table 3.12: Positive and negative beam moments (SAFE). 

The probability of failure is the probability of violating the following bending limit state:  FI,Y�~� = M� −M ≤ 0    with   M = } 	M@            (3.54) 

where MR is the resisting moment calculated by EC2 (Code 2005), M� is the total moment 
calculated by the mechanical model, and αi is the ratio of the positive moment in the first span 
of bi to the total moment.  

We consider in this study that the two lanes are separated by a concrete barrier in the 
residual area. Moreover, lane 2 is dedicated to cars only, and so the bridge is not accessible for 
trucks in the direction of lane 2. Therefore, the load case LM1which considers that the load on 
lane 2 is much lighter than on lane 1 (Table 3.11), is the only load case considered in this study, 
which means that not all the beams bi carry the same load. In addition, a line load qL is applied 
on the first and last beams (b1 and b6) to take into account the massive parapet shown in Figure 
3.18. With the above assumptions we can achieve the following: 

• �8 and �� correspond to lane 1; they are more loaded than �´ and �� corresponding to lane 
2. 

• �¼ and �u are less loaded than the other beams because they correspond to the residual 
area. 

• �8 is more loaded than �� because it carries a massive parapet. 

• b6 is more loaded than �´ because it carries a massive parapet. 

• �¼ is more loaded than �u because it is closer to lane 1. 
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The above assumptions are crucial to contrive the differences between the 6 beams, and 
thus the example will provide richer results because the beams are not be identically loaded. 
The random and deterministic variables of the problem are shown in Table 3.13. 

 

Random variables Symbol distribution mean c.o.v. units 

Yield strength  fy Lognormal 500 0.07 Mpa 
Load  TS P1 normal 400 0.15 kN 
Load  TS P2 normal 400 0.15 kN 
Deterministic Parameters      
Concentration  Ccr  0.9  kg/m3 
Concentration  Cs  2.95  kg/m3 
Coef of diffusion  Dc  6.00×10-12  m2/s 
 cover  c  0.05  m 
 Concrete strength fc  30  Mpa 
 Load  Q  234  kN/m 
 Module d Young  E  30  Gpa 
 Length  L  15.1  m 
 width  b  0.35  m 
 height h  0.9  m 
 position  P1  6.95  m 
 Position  P2  8.15  m 
 diameter of bar  d0  0.025  m 

Table 3.13: Random and deterministic Variables. 

The probability of failure �� for the beam bi is then calculated by FORM using MATLAB. 

Despite that all the beams b1,…,b6 have the same dimensions, they do not bear the same 
load, and thus they won’t have the same reinforcement areas. Therefore, the failure probability 
is calculated for the 6 beams by considering different reinforcement areas. The results of the 
probabilities obtained by FORM are given in Appendix 3.  

The probability of failure is obtained for each beam, which degrades with time due to 

corrosion. In order to find the expected maintenance costs  I,!4  and  I,!3 �G�, we have to compute �|��G�, which is the probability of failure of the beam bi knowing that bj has failed. The above 

procedure is applied for the computation of �|��G� :  
• Assign a nil stiffness to the beam j that is supposed to be failed in the FE model. 

• Compute the increase factor �QB/� of the moments in beams � ≠ � due to the failure of 

beam j; such that M|� = �QB|�	MY  with  M = } 	M@   

• Calculate �|��G� = ��cM� −M|� ≤ 0f	 using FORM. 

The increases in the moment of beam i knowing that beam j has failed is given in Tables 
3.14, where for every beam i at each row of the Table, �QB|� is given for every beam j at each 

column. Table 3.15 gives the proportion of the total moment carried by each beam i at each row 
given that the beam j at each column has failed, such that M|� = �QB|� × } ×M@. 
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As the computation of �|��G� by FORM is repeatedly required inside the optimization 

loops, a polynomial regression is proposed for the computation of �|��G� . The equations are 

shown in Table 3.16. The computation of the following equations is detailed in Appendix 3. 

����|� 1 2 3 4 5 6 

1 1 1.3 1.1 1.0 1.0 1.0 
2 1.6 1 1.2 1.1 1.0 1.0 
3 1.3 1.3 1 1.2 1.1 1.0 
4 1.1 1.1 1.2 1 1.2 1.2 
5 1.0 1.1 1.1 1.2 1 1.5 
6 0.9 1.0 1.1 1.2 1.4 1 

Table 3.14: Moment increases in element i due to failure of element j d�QB/�e. 
����|� × �� 1 2 3 4 5 6 nbar 

1 0.19 0.247 0.209 0 0 0 8 
2 0.304 0.19 0.228 0.209 0 0 8 
3 0.208 0.208 0.16 0.192 0.176 0 7 
4 0.176 0.176 0.192 0.16 0.192 0.192 7 
5 0 0.165 0.165 0.18 0.15 0.225 7 
6 0 0 0.165 0.18 0.21 0.15 7 

Table 3.15: Moments proportion of the total moment.  

i|j Equations of Pi|1 Equations of Pi|2 

1 1 10d−0.65+3×10−6	t3−3×10−4	t2+1.66×10−2	te 
2 1 1 
3 10d−1.12	+3×10−6		t3−4×10−4		t2+2.32×10−2	te 10d−1.12	+3×10−6		t3−4×10−4		t2+2.32×10−2	te 
4 10d−4.06	+3×10−6	t3−7×10−4	t2+0.05te 10d−4.06	+3×10−6	t3−7×10−4	t2+0.05te 
5 0 10d−5.78	+8×10−6	t3−8×10−4	t2+0.061te 
6 0 0 

 

 

i|j Equations of Pi|3 Equations of Pi|4 

1 10d−3.02+5×10−7	t3−7×10−4	t2+0.043	te 0 

2 10d−1.53+5×10−6	t3−5×10−4	t2+0.029	te 10d−3.02+5×10−7	t3−7×10−4	t2+0.043	te 
3 1 10d−2.27	+5×10−6	t3−5×10−4	t2+0.0356	te 
4 10d−2.27	+5×10−6	t3−5×10−4	t2+0.0356	te 1 

5 10d−5.78	+8×10−6	t3−8×10−4	t2+0.061te 10d−3.54	+6×10−6	t3−7×10−4	t2+0.0462	te 
6 10d−5.78	+8×10−6	t3−8×10−4	t2+0.061te 10d−3.54	+6×10−6	t3−7×10−4	t2+0.0462	te 

 

 

i|j Equations of Pi|5 Equations of Pi|6 

1 0 0 
2 0 0 
3 10d−4.06	+3×10−6	t3−7×10−4	t2+0.05te 0 

4 10d−2.27	+5×10−6	t3−5×10−4	t2+0.0356	te 10d−2.27	+5×10−6	t3−5×10−4	t2+0.0356	te 
5 10d−8.91	+9×10−6	t3−10−3	t2+0.077	te 1 

6 10d−1.02	+3×10−6	t3−3×10−3	t2+0.0218	te 1 
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 Equations of Pi 

P1 10d−5.33	+9×10−6	t3−9×10−4	t2+0.0594	te 
P2 10d−5.33	+9×10−6	t3−9×10−4	t2+0.0594	te 
P3 10d−6.71	+8×10−6	t3−9×10−4	t2+0.0662	te 
P4 10d−6.71	+8×10−6	t3−9×10−4	t2+0.0662	te 
P5 10d−8.91	+9×10−6	t3−10−3	t2+0.077	te 
P6 10d−8.91	+9×10−6	t3−10−3	t2+0.077	te 

  

Table 3.16: Polynomial regression of Pi and Pi|j.  

3.7.4.2- Maintenance Policy 

Let q be the number of components in the system, i being the component number: 
i=1,…..,q. Let τ8, τ�,⋯ , τ  be the time intervals between preventive replacements of 

components respectively (Figure 3.20). The basic maintenance time is defined as the minimum 
replacement time τ = minl8,…..,k τP . The maintenance times for different components are defined 

by τP = Nτ , where N are integer multipliers and τ is continuous (Figure 3.20).  

 
Figure 3.20: Scheduled preventive maintenance plan (Laggoune et al. 2009). 

The optimization problem is given by: 

Find    N� , N¼, Nu, N´ , N�, 2 

minimizing   �N8, N�, N¼, Nu, N´ , N�, 2� 
with   N8 = 1 and 2 ≥ 0 

subject to       ��,������	 < ��!              (3.55) 

where ��,������	is the system probability of failure and	��! is the admissible probability of 

failure.  

The preventive intervention brings the component to the “as good as new” state. Between 
two preventive maintenance actions, the failed components are subject to immediate minimal 
repair to restore them to the “as bad as old” state. The ith component is identified such as its 
lifetime is the lowest among all the components. In this context, the decision variables are (τ, 
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k2, k3…. kq), with τ=min ki = k1=1 . The representative cycle is given by the expected time for 
replacing all the components simultaneously Kτ, with K=lcm(k1,k2,k3, k4,k5,k6). 

3.7.4.3- Stochastic dependency 

The stochastic dependency means that the failure of a component may increase the failure 
rate of other components. Two optimization formulas for the maintenance planning of the 6 
beams are proposed, according to the consideration or not of the stochastic dependency. In other 
words, the Stochastic Non Dependent (SND) and Stochastic Dependent (SD) cases are 
considered. The aim of this subsection is to analyze the effect of stochastic dependency on the 
maintenance planning. Let us consider the following grouping: 

• Beams b1 and b2 are to be preventively maintained every N82  

• Beams b3 and b4 are to be preventively maintained every N�2  

• Beams b5 and b6 are to be preventively maintained every N¼2  

The maintenance cycle is given by the expected time for replacing all the components 
simultaneously Kτ, with K=lcm(k1,k2,k3). 

The cost  I,4  corresponds to the cost of the minimal repair added to the preventive repair 

in case of failure before the intended maintenance time. The system probability of failure is 
calculated as follows: 

��,������	 = �1 − C��>D">�	��,�����	 + C��>D">	��,3E�E55�5	            (3.56) 

When  C��>D"> = 1 ; the system is considered equivalent to a parallel system. 

When  C��>D"> = 0 ; the system is considered equivalent to a series system. 

In the Non Dependent case (SND), the maintenance cost is: 

 I,!4 �G� = 	∑ ÷ I,4 i���G�jø    and     I,!3 �G� = ∑ ÷ I,3 i1 − ���G�jø∈Ï«É           (3.57) 

In the Dependent case (SD), the maintenance costs are computed as per section 3.2.2 (equations 
3.3 and 3.14). 

Due to the complexity of the optimization problem, a genetic algorithm is used. The initial 
population is evaluated by performing an element-based optimization by considering equation 
3.16 as objective function and by using the nearest multiple of 2 as an initial population for each 
element. The function and the constraint tolerances are set to 10-6. 

The optimization is performed for the SD and SND cases, with a redundancy factor equal 
0.5, a corrective cost varying from 10 to 1000 times the preventive cost, and for an admissible 
probability of failure varying from 10-5 to 10-3 (e.g. 100C0-SD means that the corrective cost is 
taken equal to 100 times the preventive cost and the stochastically dependent formula is used). 
For each run, the following is computed: N8, N� , N¼, 2 ,  �Å� =  �N8, N�, N¼, Nu, N´ , N�, 2�, ��	�…�� and ��������	. We present in Table 3.17 the obtained values for  N�, N¼, 2 and Ctot for 

different runs. Figure 3.21 shows the optimal cost for the all the runs distinguished by different 
mark types and colors, and for all the threshold probabilities. 

The most influencing factors on the maintenance planning are: 
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• The high corrective cost  I,4  compared to the preventive cost 

• The admissible probability of failure  of the system 	��!. 

• The stochastic dependency SD between different components of the system 

• The redundancy factor C��>D"> 
To better understand the influence of each factor, the following analysis is presented: 

• When the reliability constraint is not active, the value of the total cost Ctot is equal to the 
unconstrained optimization value. Otherwise, Ctot increases when the reliability constraint 

is more stringent. In the range of our study 	��! = Z10t´; 10t¼[, the following runs may 

not always  be constrained: 

� When 	��! 	< 2.00 × 10tu the reliability constraint is not active for 1000C0-SND 

(corresponding to a simulation with the corrective cost equal to 1000 times the 
preventive cost and in stochastically not dependent case). 

� When 	��! 	< 6.45 × 10t´ the reliability constraint is not active for 1000C0-SD 

� When 	��! 	< 1.25 × 10tu the reliability constraint is not active for 100C0-SD 

� When 	��! 	< 4.22 × 10tu the reliability constraint is not active for 10C0-SD 

These values can also be deduced from the Figure 3.21 and Table 3.17, since the 

maintenance planning does not change for 	��! 	< active value. 

• When the corrective cost is equal to 10 times the preventive cost (i.e. cases 10C0-SD and 
10C0-SND), the non-dependent formula SND may yield the same maintenance planning 
than the dependent formula SD if the reliability constraint is active (both cases yield 0.0268 

unit costs when 	��! = 5 × 10t´) .  However, the dependency formula SD requires a higher 

maintenance cost when the constraint is not active (0.0228 unit costs for SD compared to 

0.0175 unit costs for SND when 	��! = 10t¼ is not active). This means that not considering 

the stochastic dependency may lead to non-conservative maintenance planning. This 
danger is less seen when the constraint is active because the reliability constraint forbids 
the under-estimation of maintenance planning, 

• When the corrective cost is equal to 100 times the preventive cost (i.e. 100C0-SD and 
100C0-SND), the dependent formula SD requires a higher maintenance cost when the 
constraint is not active and when the SND does not reach the unconstrained minimum 
maintenance cost (0.0247 unit costs). When both formulas are properly constrained, they 
yield the same maintenance cost. The reliability constraint is not always sufficient to 
maintain a safe maintenance planning. Considering the dependency ensures safe results. 

• When the corrective cost is equal to 100 and 1000 times the preventive cost (i.e. 100C0-
SD, 100C0-SND, 1000C0-SD and 1000C0-SND), the SD cases lead always to higher costs 
than the SND cases. This is due to the fact that the SND formula yields maintenance cost 
lower than the unconstrained cost of the SD formula (0.0247 and 0.0246 unit costs 
respectively), even in the higher range of the constraint (10-5). 

• For the dependent cases SD, using 1000C0 as corrective cost yields more conservative 
maintenance planning than using 100C0 which yields a more conservative planning than 
using 10C0. 

For the non-dependent cases SND, using 1000C0 yields more conservative planning 
than using 100C0 or 10 C0. However, using 100C0 and 10C0 yields the same planning 
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(0.0268 unit cost when 	��! = 5 × 10t´). This is due to the fact that the resulting planning 

is prescribed by the stringent threshold probability rather than by high corrective costs as 
in the case of 1000C0. 

 

 	µ¶» � � � 10-4×Ctot 
1000C0-SD 1.00×10-3 15.63 3 5 277 

 5.00×10-4 15.63 3 5 277 

 1.00×10-4 15.63 3 5 277 

 5.00×10-5 14.93 3 5 282 

      
100C0-SD 1.00×10-3 16.80 3 5 247 

 5.00×10-4 16.81 3 5 247 

 1.00×10-4 16.47 3 5 248 

 5.00×10-5 14.93 3 5 269 

      
10C0-SD 1.00×10-3 12.83 5 7 228 

 5.00×10-4 12.83 5 7 228 

 1.00×10-4 16.47 3 5 243 

 5.00×10-5 14.93 3 5 268 
1000C0-SND 1.00×10-3 17.35 3 5 246 

 5.00×10-4 17.35 3 5 246 

 1.00×10-4 16.47 3 5 251 

 5.00×10-5 14.93 3 5 272 

      
100C0-SND 1.00×10-3 15.28 5 6 179 

 5.00×10-4 18.21 3 5 220 

 1.00×10-4 16.47 3 5 244 

 5.00×10-5 14.93 3 5 268 

      
10C0-SND 1.00×10-3 15.28 5 6 175 

 5.00×10-4 18.21 3 5 220 

 1.00×10-4 11.55 5 7 247 

 5.00×10-5 14.93 3 5 268 
Table 3.17: Planning results for SD and SND cases. 



106 
 

 

Figure 3.21: Results for stochastically dependent and non-dependent formulations. 

3.7.4.4- Redundancy Factor 

In this section, the influence of the system redundancy on the maintenance planning is 
investigated. The factor C��>D"> can be calculated as performed in the previous examples (see 
equation 3.11), and as explained in section 3.3. However, in order to observe the influence of 
this factor on the maintenance planning, the optimization is performed for different values of C��>D"> = Z0, 0.25, 0.5, 0.75, 1[, and different values of 	��! = Z10t´, 10t¼[.  
The results are shown in Figure 3.22, where the following can be observed: 

• When the system is fully redundant (i.e. C��>D"> = 1), the probability of failure of the 

system is very low d∏�� = 4.07 × 10t��e and consequently the optimal maintenance is 

independent of the constraints, leading to the same value of 0.0167 unit costs for 	��! =Z10t´, 10t¼[. 
• A more redundant system leads to a less costly optimal planning, whatever the reliability 

levels. 

 

Figure 3.22: Influence of the system redundancy on maintenance planning. 
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3.7.4.5- Economic Dependency 

Two Formulations for finding the optimal maintenance planning are investigated in this section. 
The first is denoted “EC” (for economic dependency), and considers the setup costs explained 
in section 3.6.4.  The second is denoted “NO-EC” and will not consider economic dependencies. 
Figure 3.23a to 3.23f show a comparison between an optimal maintenance planning which 
considers economic dependency (EC), and another that does not (NO-EC), for different values 
of admissible probability of failure, varying from 10-3 to 10-5.  

 

 

Figure 3.23a : Comparison between (EC) and (NO-EC) for a ��! =10-3. 

 

 

 

Figure 3.23b : Comparison between (EC) and (NO EC) for ��! =5×10-4. 
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Figure 3.23c : Comparison between (EC) and (NO EC) for ��! =10-4. 

 

Figure 3.23d : Comparison between (EC) and (NO EC) for ��! =5×10-5. 

 

Figure 3.23e : Comparison between (ec) and (NO ec) for ��! =10-5 
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Figure 3.23f: Comparison between maintenance cost of (EC) and (NO EC) formulations. 

The following observations can be drawn from the results: 

• Considering the economic dependency by maintenance grouping leads to significant cost 
savings around 25%. 

• The optimization algorithm allows rearranging the optimal individual replacement times 
in such a way that all component times become multiple of the smallest one, to allow for 
joint replacements. 

• The genetic algorithm can solve the problem with reasonable computing time. 

3.7.4.6- Degradation Costs 

The beam degradation by corrosion of the steel reinforcement is enhanced by significant crack 
width. The moment of inertia of concrete is reduced when the concrete is cracked. Thus the load 
initially supported by the uncracked element will be distributed to adjacent elements when 
cracking occurs.  

The load redistribution explained in section 3.2.3 is applied to this example, where ∝�,  is 

computed as in equation 3.24. The factors B,� and Q are estimated by the FE model. To obtain 

these factors, the stiffness of each beam is incrementally reduced by steps of 25% to model the 
degradation of the beam in the FE model. After each increment of stiffness reduction, a part of 
the load initially carried by the beam is redistributed to other beams. Then, the moments carried 
by the beams after redistributions are noted.  The new moments corresponding to a redistributed 
load are compared to the initial moments corresponding to full stiffness. Afterward, ∝,� is 

computed for each beam i due to each stiffness reduction assigned to j. Finally, ∝,�  is 

approximated according to equation 3.6 by the mean of B,� and n based on the obtained data. 

Table 3.18 shows the values of B,� and n for all beams combinations (i, j), and the approximated 

equations are shown in Table 3.19. Figure 3.24 shows a comparison between the exact values 
of ∝8,� and the values approximated by the proposed formula, which proves the goodness of 
the fit of the proposed formula.  
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Load 
distributed 

to "�  

Stiffness reduction assigned to "� 
αi,j  1 2 3 4 5 6 

1 c1,j 0 0.3 0.12 0 0 0 

 n 0 1.27 1.3 0 0 0 
2 c2,j 0.59 0 0.19 0.09 0 0 

 n 1.6 0 1.29 1.26 0 0 
3 c3,j 0.33 0.28 0 0.18 0.09 0.09 

 n 1.9 1.35 0 1.21 1.28 2.1 
4 c4,j 0.15 0.13 0.22 0 0.22 0.23 

 n 2 1.45 1.23 0 1.29 1.9 
5 c5,j 0 0.05 0.13 0.22 0 0.49 

 n 0 1.16 1.25 1.23 0 1.75 
6 c6,j 0 0 0.07 0.17 0.36 0 

 n 0 0 1.23 1.27 1.3 0 

Table 3.18: values of values of B,� and Q for all beams (i,j). 

 

Figure 3.24: comparison between the exact and the formula values of ∝8,�. 

 

Load 

distributed 

to "� 

Stiffness reduction assigned to "� 
αi,j 1 2 3 4 5 6 

1 0 0.3×d1.27 0.12×d1.3 0 0 0 
2 0.59×d1.6 0 0.19×d1.29 0.09×d1.26 0 0 
3 0.33×d1.9 0.28×d1.35 0 0.18×d1.21 0.09×d1.28 0.09×d2.1 
4 0.15×d2 0.13×d1.45 0.22×d1.23 0 0.22×d1.29 0.23×d1.9 
5 0 0.05×d1.16 0.13×d1.25 0.22×d1.23 0 0.49×d1.75 
6 0 0 0.07×d1.23 0.17×d1.27 0.36×d1.3 0 

Table 3.19: Proposed formulas for αi,j. 
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The monetary consequences of degradation are estimated as: 

	 >,!�G� = ∑  >,�G�  with  >,�G� =  >,�Í� × Ü4i Þ¥çt Þ¥�j            (3.58) 

where  >,�Í� is a fixed cost of degradation, Ms is the total moment calculated by the mechanical 

model, Mi is the degraded moment calculated as the equation (3.54).  >,!�G�	is calculated at 
each scheduled replacement time  ki× τ. In order to estimate the redistribution factor at each 

replacement schedule, the degradation ratio 
>����>ã,� = 2	6� 	G is computed first. 

3.7.4.7- Effect of cost components on maintenance planning 

It is interesting to study the effect of each cost component on the maintenance planning using 
the proposed model. Let us compare the six formulations shown in Table 3.20. The comparison 
is applied for a threshold failure probability of the system varying from 10-5 to  10-3. The results 
are shown in Figures 3.25a to 3.25e. 

From the results, the following observations can be drawn: 

• The economic dependency has the biggest effect on the maintenance schedule and induces 
the grouping of maintenance actions. 

• SED is more stringent than ED and E cases. It induces the grouping of the maintenance 
actions, but at smaller time intervals due to the inclusion of stochastic dependency.  

• ED and E yield the same results; this may be due to the fact that the effect of grouping is 
more pronounced than the effect of degradation. 

• Stochastic dependency and degradation costs lead to smaller maintenance time intervals. 

• SD and D lead to the same maintenance planning; this may be due to the fact that they 
have similar effects on degradation and failure. 

• Neglecting stochastic dependency and degradation costs lead to unsafe maintenance 
planning. 

• Neglecting economic dependency lead to costlier maintenance planning. 

Figure 3.26 shows the cost per unit time versus the system probability of failure for each of the 
six formulations. The following observations can be concluded: 

• For high failure probabilities, the economic dependency has the biggest effect on the 
maintenance cost. 

• For low failure probabilities, the stochastic dependency has the biggest effect on the 
maintenance cost. 

• Degradation cost and stochastic dependency behave in a similar manner.  
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Type 
Formulation 

Description 
None �Z !�G�[ =^c I,4 ���G�f + ^ ÷ I,3 i1 − ���G�jø∈Ï«É  

 

Degradation cost, 
stochastic and economical 

dependencies are not 
considered 

E �Z !�G�[ =^c I,4 ���G�f + ^ ÷ I,3 i1 − ���G�jø∈Ï«É +  @/,!3 �G�
+  @/,!4 �G� 

 

Economical dependency is 
considered, although 

degradation cost and stochastic 
dependency are not 

ED �Z !�G�[ =  >,!�G� +^c I,4 ���G�f + ^ ÷ I,3 i1 − ���G�jø∈Ï«É+  @/,!3 �G� +  @/,!4 �G� 
 

Economical dependency 
and degradation cost are 

considered, although stochastic 
dependency is not 

SD �Z !�G�[ =  >,!�G� +^_ I,4 `���G� +^�|��G�	���G��] ab
+ ^ _ I,3 `1 − ���G� −^�|��G�	���G��] ab∈Ï«É

 

 

Stochastic dependency and 
degradation cost are 
considered, although  

economic dependency is not. 

SED �Z !�G�[ =  >,!�G� +^_ I,4 `���G� +^�|��G�	���G��] ab
+ ^ _ I,3 `1 − ���G� −^�|��G�	���G��] ab∈Ï«É+  @/,!3 �G� +  @/,!4 �G� 

 

Stochastic, economic 
dependencies and degradation 

cost are considered. 

Table 3.20: Proposed formulations. 

 

Figure 3.25a: Effect of cost component on maintenance planning- 	��!=10-3. 
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Figure 3.25b: Effect of cost component on maintenance planning-	��!=5×10-4. 

 

Figure 3.25c: Effect of cost component on maintenance planning- 	��!=10-4. 

 

Figure 3.25d: Effect of cost component on maintenance planning- 	��!=5×10-5. 

 

Figure 3.25e: Effect of cost component on maintenance planning- 	��!=10-5. 
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Figure 3.26: Cost per unit time versus system probability of failure for the six formulations. 

3.8 Conclusion 

In this chapter, a life-cycle maintenance planning for a multi-component bridge system is 
proposed. A procedure to model all types of failure interactions is suggested, using fault tree 
analysis and conditional probabilities. The economic dependency is taken into account via 
several interdependent common costs. Horizontal structural dependency is considered by the 
mean of a redundancy factor proposed, and to which a parametric analysis is performed. 
Modular/vertical structural dependency is modeled through the consideration of downtimes 
needed to dismantle modularly dependent units, and/or to repair associated failed units. 
Degradation dependencies between different items are modeled, and corresponding 
consequences are quantified by the mean of degradation costs. The load redistribution to non-
failed elements in case of failure of an adjacent bridge element is also considered in the 
formulated model. An approach that outperforms the currently used series and/or parallel 
logical relationship for evaluating bridge system reliability is suggested. A solution procedure 
for the maintenance scheduling of a bridge system by considering all the above dependencies 
is detailed.  

The model is validated through four numerical applications, namely two beams in parallel, 
two beams in series, a slab with a bituminous coating and a bridge superstructure. The 
applications demonstrated an important role for the dependencies between the elements of a 
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system when scheduling their maintenance times. The economical dependency effect is the 
most pronounced, because in most cases the components of a structural system have comparable 
failure probabilities with time, and therefore their maintenance scheduling can be grouped. The 
latter can save a substantial amount of funds to the managers. Stochastic dependency may lead 
to smaller time intervals when high system reliability is needed, and its effect can surpass the 
grouping effect of the economical dependency for very stringent failure thresholds or when the 
failure of some items leads automatically to the failure of others. However, considering both 
dependencies will usually result in grouping the activities at smaller time intervals, which may 
outcome a less costly yet safer maintenance planning. Moreover, the degradation dependency 
behaves similarly to the stochastic dependency by favoring a preventive policy regarding 
degradation and failure. However, the degradation monetary consequence directs the total cost 
function versus time to a more convex shape. The latter can possibly result in an optimal 
planning independent of the threshold reliability. 
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Chapter 4: Robust formulation for Reliability-based LCC optimization 

4.1 Overview 

Deterministic Design Optimization (DDO) is traditionally applied in structural design. Its 
drawback is that uncertainties are not constantly taken into account. As the uncertainties related 
to design variables, material properties and loads can have large impacts on the structural 
performance, probabilistic constraint formulations have been developed since the 1980th 
(Madsen et al. 1986). 

In order to point out the difference between the existing optimization methods, a distinction 
is to be highlighted between the terms ‘variability’ and ‘uncertainty’. In this thesis, the Van 
Belle’s terminology (Van Belle 2011) is considered, where ‘variability’ refers to natural or 
intrinsic variation in some quantity, whereas ‘uncertainty’ refers to the degree of precision with 
which a quantity is measured. Usually, uncertainty can be probabilistically modeled, whereas 
variability cannot without specific assumptions; other methodologies, such as fuzzy sets and 
interval algebra could be appropriate for modeling variability. A more elaborated discussion 
over the definition of uncertainties has been given in chapter 1 (section 1.3). 

Although the Reliability-Based Design Optimization (RBDO) takes into account the 
uncertainty in the analysis, it does not reflect the ability of the structure to adapt to variability, 
unforeseen actions or deterioration mechanisms. A design that is less sensitive to changes in the 
variable parameters can sustain greater excursions from the assumed design conditions before 
failing (Sandgren and Cameron 2002). 

The Robust Design Optimization (RDO) implies that the objective function becomes less 
sensitive to random variations by reducing the variability of the structural performance while 
improving its mean level. Structural robust design differs from RBDO for it aims at controlling 
the everyday variation of the structural performance, rather than the probability of system 
failure under catastrophic extreme events. The conventional method of engineering robust 
design was proposed by Taguchi and Rafanelli (1994) with the aim of improving the quality of 
a product or process not only by achieving performance target, but also by minimizing the 
performance variation without eliminating the cause of these variations. Later on, the limitations 
of Taguchi methods are clarified by Parks (2001)  

It has been proven in many studies that reliability-based and robust design has advantages 
over deterministic design (Lee and Park 2001; Sandgren and Cameron 2002; Doltsinis et al. 
2005; Saydam and Frangopol 2011). However, there are still ambiguities regarding the links 
between the two approaches, and the domain of application in which RBDO or RDO can be 
recommended.  Although the former uses the reliability theory and the latter uses deterministic 
models (Beck and de Santana Gomes, Wellison José 2012), the engineer is seeking for a 
consistent and adapted decision-making methodology whatever the applied procedure. 

In order to combine the advantages of both optimization methods, we have developed a 
robust formulation for reliability-based design optimization (RRBDO). The proposed RRBDO 
takes account for uncertainty and variability in one mathematical formulation, which is 
demonstrated through applications to design of concrete and steel structures. The RRBDO 
formulation provides a general framework in which the link between RBDO and RDO is well 
established, through the definition of the application domain for each method and the 
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appropriate setting of the optimization constraints. The advantage of the proposed RRBDO over 
the existing formulation is demonstrated from both conceptual and numerical points of view. 

4.2 Total Cost 

The total design cost of structures has been widely studied in the literature; e.g. (Aoues and 
Chateauneuf 2008; Aoues and Chateauneuf 2010; Saad et al. 2015). As explained in chapter 2, 
the common approach in engineering practice is the design of structures which avoid failure. 
Hence, the total cost minimization is carried out for initial and failure costs.  It can be formulated 
as follows:   ! =  7 +  <                     (4.1) 

where  7 is the initial cost and  <  is the expected failure cost. The initial cost covers the costs 
of design, material and workmanship. It includes all the costs of buying the physical asset and 
bringing it to operation. Let the limit state function �� represents the structural condition that 

preserves the operation, away from the certain critical performance level; the subscript j makes 
reference to a given failure scenario.  The probability of failure ���  is the probability of having 

a negative limit state function (i.e. failed condition):   

��� = �c�� ≤ 0f                    (4.2) 

The expected failure cost can be estimated as: 

 < = ∑  �� 	����G�I�l8                    (4.3) 

where ����G� is the cumulative failure probability for the ��9 limit state (i.e., probability that 

failure occurs anytime between the construction and the time t), M is the number of independent 
limit states j, and  �� is the failure cost associated with the occurrence of the ��9 limit state. 

When all attributes and consequences of a decision concerning a structure can be expressed 
in monetary terms, an optimal decision will be met by minimizing the life-cycle cost of the 
structure (Val and Stewart 2003). 

4.3 Deterministic design optimization 

The deterministic design optimization (DDO) is described as follows (Arora 1989): 

Find  :, 

minimizing  	�:�    

subject to  ���:� ≤ 0               � = 1,⋯ ,�  

   :
 ≤ : ≤ :/                  (4.4) 

where :, :
 and :/ are vectors of design variables, lower bounds and upper bounds 

respectively, 	�:� is the objective function and ���:�  is the ��9 constraint function among the 

m constraints. 
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4.4 Reliability-based design optimization 

As the uncertainties in the design variables can give rise to large changes in performance, a 
probabilistic model should be considered. The probabilistic constraint formulation, described 
by Madsen and Krenk (1986) defines the design optimization under probabilistic constraints as 
a standard nonlinear programming problem:  

Find  :, 

minimizing  	�~, :� 
subject to  ��� = 	�c���~, :� ≤ 0f ≤ ��!  � = 1,⋯ ,� 

   :
 ≤ : ≤ :/                  (4.5) 

where X and d are the vectors of random and design variables respectively, ��� is the probability 

of failure for the limit state function gj , dL and dU are respectively the lower and upper bounds 

of the design variables, m is the number of independent limit states j, and ��! is the admissible 

failure probability (assumed, in this case, to be the same for all limit states). The optimality 
conditions for the RBDO problem are as following: 

#�Z	�~, :�[#: +^ $� #	�c���~, :� ≤ 0f#:
�
�l8 = 0 

$�d�c���~, :� ≤ 0f − ��!e = 0                  (4.6) 

where $� is the Lagrange multiplier for the ��9 constraint. Each one of the second system of 

equations means that either the multiplier is nil (i.e. inactive constraint) or the constraint is nil 
(i.e. active constraint). These optimality conditions indicate that the rate of decrease of the 
expected cost is balanced by the increase rate of the weighted probability sum for active 
constraints. 

The intricate part in RBDO applications is the assessment of the probability of failure. 
Standard Monte-Carlo simulations and classical reliability methods have been widely used, but 
suffer from high computation costs.  

The reliability constraint in RBDO formulation allows us to take into account the 
uncertainties related to structural parameters. The transmitted variation from uncontrollable 
variability to the objective function can result in the deterioration of product quality and can 
compromise the design feasibility. The effect of noise variables on the objective function can 
be reduced by adjusting the design values. Therefore, there are strong needs to define the values 
of controllable settings (such as concrete dimensions of a bridge cross-section) which minimize 
the negative effects of the uncontrollable phenomena (such as humidity or corrosion rate). In 
this context, the Robust design optimization (RDO) aims at finding the optimal settings to 
minimize cost by minimizing the response variation, where consistent design meets better 
quality. 
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4.5 Robust Design Optimization Formulation 

Robust design is an engineering methodology for optimal design of products and process 
conditions, in order to make them less sensitive to system variations (Kang 2005).  Robustness 
is also defined as the ability of a structure to sustain damage without disproportionate 
consequences. Robust design is achieved by the reduction of variation of a product without 
eliminating the causes of variations.  

There is no consensus on a simple measure to quantify the robustness of structures. (De et 
al. 1989)  defined robustness as the ability of the system to still carry some load after the brittle 
fracture of one or more critical components. An approach to robustness has been proposed by 
Saydam and Frangopol (2011) by the ratio of the failure probability of the intact structure to the 
failure probability of the damaged structure, for each damage case. Casas and Chambi (2014) 
defined a robustness coefficient which modifies a typical condition rating obtained with 
standard inspection procedures, to take into account structural type and configuration, based on 
redundancy measures. A robustness index is also proposed to measure the influence of 
deterioration propagation on the loss of performance. The above mentioned robustness insight 
is generally accompanied by redundancy insight. Frangopol and Curley (1987) defined the 
system redundancy as the ability of a structural system to redistribute the applied load after 
reaching the ultimate capacity of its main load-carrying members. In our study, robust design 
refers to a design that is less sensitive to changes in the variable parameters and that can sustain 
greater excursions from the assumed design conditions before failing (Sandgren and Cameron 
2002). 

The first key points in the application of robust design are as follows: 

• Define the objective function, which is a performance measure of the design process.  

• Identify the design parameters that affect the performance measure and that can be easily 
controlled. 

• Identify the uncertain parameters that cause the variation of the performance function. 
Compute the mean and variance of the performance function. 

The above key points are indicated in Figure 4.1 

 

Figure 4.1: Design and uncertain parameters in robust design. 

Robust design identifies the optimal combination of design parameters that makes the 
performance function less sensitive to the effect variability, which tends to reduce the variance 
and/or deviate the mean value of the performance function. 

Lee and Park (2001) proposed a mathematical formulation for robust design by defining 
the robustness of the objective and the constraint functions as follows: 

Find   d, 
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minimizing  	R�:, }� = �8tw�xd��>�ex¦∗ +	w|���>��|¦∗     0 ≤ } ≤ 1  

subject to   �%&�:, ��� = 	���:� +	�� 	∑ '(��'|(>�| ∆:"l8 ≤ 0             � = 1,⋯ ,�  

   :
 ≤ : ≤ :/                  (4.7) 

where 	�. � is the original objective function, 	R�. � is the desirability robustness objective, d is 
the design variable, μf and σf are respectively the mean and the standard deviation of the 
objective function, μf* and σf* are normalization factors denoting the mean value and the 
standard deviation of the objective function, respectively, m is the number of limit states j, α is 
the weighting factor and λj is the penalty factor. The value of the weighting factor α can be set 
to specify the relative weights to put on the different objective functions and therefore enables 
the user to investigate the trade-off between the objectives in an easy manner. To include the 
variations of the constraint, the revised constraint �%&�. � is defined by Sundaresan et al. (1995). 

The penalty factors λj are determined by the designer. The low sensitivity of the objective 
function to system variations is enhanced by decreasing the weighting factor α, while the low 
sensitivity of constraint to system variations is enhanced by increasing the penalty factor λj. 
Most of the researches, e.g. Lee and Park (2001), take into account only the variations of the 
design variables, while the variability of other parameters including loads are not accounted for 
in the formulation. They have considered robust design as a revised deterministic optimization 
problem, in which the weighting factor is introduced to define a compound multi-objective 
function and the penalty factor is introduced to account for the variation in the constraints 
observing the tolerance bands of design variables. Random fluctuation of structural parameters 
other than the design variables is not considered in their study. Doltsinis et al. (2005) used the 
same objective function as in equation 4.7, but developed a different constraint formulation 
which is able to deal with variations in both design and uncertain parameters: 

Find   d, 

minimizing  	R = �8tw�x¦�Æ�x¦∗ +	w|¦�Æ�|¦∗  ,    0 < } < 1 

subject to  
x���Æ�|���Æ� ≤ −��     � = 1,⋯ ,�  

   :
 ≤ : ≤ :/                  (4.8) 

In this formulation, the designer is left with a choice of weights that will ultimately define how 
far from the failure surface should the mean optimum lie. The optimality conditions for the 
above RDO problem are as following: �1 − }���∗ #���>�#: +	 }��∗ 	#���>�#: +^$� Ý#	����>�#: + �� #	����>�#: ß�

�l8 = 0 

$� i����>� + ������>�j = 0		 (4.9)	
In these optimality conditions, the weighted mean and standard deviation are balanced at the 
optimal solution. In addition to the Lagrange multiplier $�, the penalty factor ��	 plays a 
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significant role in the optimal design solution, as it controls the coefficient of variation of the 
constraint function ���:�.  
Although the RDO optimization allows us to minimize the performance variance, it presents 
many disadvantages, among them are the following: 

• RDO cannot guarantee the desired reliability level.  

• The linear combination that forms the desirability function performed well in many 
studies (Doltsinis et al. 2005), but it may present some difficulties in cases of non-convex 
objective functions.   

• The reduction of the variance of the structural performance in robust design is frequently 
achieved at the penalty of worsening its expected value. The two aspects: mean and 
variance can diverge, and the designer has to select a feasible structural design out of the 
set of optima obtained with different weighting factors for the desirability function. 

• The obtained results do not exactly indicate which parameter has the highest effect on the 
performance characteristic value.  

• RDO is a deterministic method and is not appropriate for a dynamically changing process 
such as simulation study or for time-variant processes (Rizzuti et al. 2009).  

• The mean and variance modeling approach of robust design does not take direct advantage 
of the interactions between controllable and uncontrollable variables 

Therefore, a reliable optimization procedure that can overcome the above disadvantages is 
sought, and this will be developed in section 4.7. For this purpose, we should first of all 
understand the behavior of reliability-based design optimization.  

4.6 Behavior of RBDO formulation  

Let us consider the following RBDO formulation applied to the total cost of the structure: 

Find  : 

minimizing   !�:� =  7�:� +  ����:� 
subject to  ���:� ≤ ��! 

   :
 ≤ : ≤ :/                 (4.10) 

where d, Pf , g, dL, dU  and ��! are defined in section 4.4.  

In this formulation, the reliability constraint is not always active, as the optimal solutions 

may be found with failure probabilities lower than the admissible one; i.e. ���:∗� < ��!. 

Depending on the considered problem, there may be conflicting requirements between the 
objective function minimization and the failure probability constraint. When the admissible 
failure probability increases, the initial cost  7�:� decreases but the expected failure cost  ����:� increases, and vice-versa, leading to the convex shape of the cost function, as shown 

in Figure 4.2 Let CT,RBDO be the optimal cost found by the application of the above RBDO 
formulation, and  !�"∗  be the optimal cost corresponding to the unconstrained formulation. In 

fact, the constraint on the failure probability is not active beyond a certain value ���:∗� 
corresponding to the unconstrained minimum cost  !�"∗ , as shown in Figure 4.2. 
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with    !�"∗ =	 !�:∗� =  7�:∗� +  ����:∗� 
such that  ��! = ���:∗�                 (4.11) 

 

Figure 4.2. Active Reliability limit. 

The constraint ��! is not active when:   ���:∗� < ��! < 1 

The constraint ��! is active when:   0 < ��! < ���:∗� 
If the RBDO constraint ��! is between 0 and ���:∗�, the optimal cost CT,RBDO will be greater 

than the unconstrained minimum  !�"∗ , and in this case, ��! is active. However, when the limit ��! is greater than ���:∗�, the optimal cost will be  !�"∗ , and in that case the reliability 

constraint is not active.  

When the expected value of performance exceeds the level corresponding to the target (i.e. ���:∗� < ��!), the RBDO becomes insensitive to the reliability constraint. The drawback in this 

situation is that the wrong or large setting of the admissible failure probability, will lead to 
unrobust solution as it mostly corresponds to large variability. In other words, the obtained 
solution will satisfy the optimality conditions and the reliability constraints, but not the 
robustness requirements. This drawback makes the solution very sensitive to the choice of the 
reliability target and the probabilistic input parameters, and therefore inappropriate for practical 
engineering use. 

Another drawback of RBDO appears when the expected total cost function is narrow, as 
shown in Figure 4.3; this situation is frequently observed when the failure cost is high.  A narrow 
cost function is very sensitive to the failure probability; i.e. larger cost data points are clustered 
closely around the optimum  !�"∗ . In this case, inquiring optimal solutions may be skipped 

when applying the RBDO, since a less costly solution can be found without compromising 

neither the structural performance nor the safety level, if a small variation is allowed for ��!. 

Therefore, considering a target failure probability as a constraint without tolerating small 
amount of variation may lead to highly conservative solutions. By using ��!	as a constraint, the 
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RBDO finds a solution that costs much more than the unconstrained one  !�"∗ . Knowing the 

various levels of uncertainties in engineering systems, this over-cost cannot be properly justified 

when the admissible failure probability ��! 	 is close to the one corresponding to the 

unconstrained minimum cost ���:∗�. In this case, a better solution can be found with much less 

cost than for the crude RBDO solution, without compromising significantly the structural 
reliability.  

 

Figure 4.3. Inquiring optimal solution skipped by the use of RBDO. 

The above two situations, either inappropriate setting of reliability target or narrow 
expected cost function, show clearly that the crude RBDO is not sufficient to provide robust 
solution; especially that large amount of uncertainties cannot be predicted and identified in 
engineering practice. Among these uncertainties, we can mention the direct and indirect failure 
costs which are often very difficult to estimate precisely, and the admissible failure probability 
which is a conventional measure depending on the precision of input data and the involved 
physical and probabilistic models. It is therefore necessary to develop a more consistent 
methodology for optimal decision-making under uncertainties. 

Some authors proposed reliability-based formulations for robust optimization by keeping 
the robust objective function in equation 4.7, and adding a reliability constraint instead of the 
constraint on the performance variation (Youn et al. 2005; Lee et al. 2008; Rathod et al. 2013; 
Shahraki and Noorossana 2014) . This formulation can be expressed as following: 

Find   d, 

minimizing  	R = �8tw�x¦�Æ�x¦∗ +	w|¦�Æ�|¦∗  ,    0 < } < 1 

subject to  ���:� ≤ ��!     � = 1,⋯ ,�  

   :
 ≤ : ≤ :/                (4.12) 
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where 	R, ��∗ , ��∗, α , ��!, dL and dU are as defined in section 4.4. The drawback of this 

formulation is that it cannot take account for variations in system parameters. Moreover, it 
suffers from the same limitations explained herein mainly caused by the fixed value of the 
reliability target. 

It is worth to note that unconstraint formulations of robust and reliability optimization 
procedures were compared by (Beck et al. 2015). The following unconstraint formulations were 
used: 

Risk formulation:   :∗ = 6¹���Qc	�:� +  ����:�; 		: ∈ Z:
 , :/[	f          (4.13) 

Robust formulation: :∗ = 6¹���Q â�8tw�x¦�Æ�x¦∗ +	w|¦�Æ�|¦∗ ; 		: ∈ Z:
 , :/[	ä          (4.14) 

The unconstraint risk formulation was found in their study to outperform robust formulation, 
mainly due to the non-convex shape of the robust objective function which leads to optimal 
designs determined by the variable bounds.  

The available methods in the literature still need to be improved, in order to properly handle 
both variability and uncertainty, affecting structural performance and parameters. The main 
difficulties are related to the consistency of reliability and robustness objective function and 
constraints, on one hand, and to the arbitrary choice of the constraint bounds, on the other hand.  
According to the above discussion, the inconsistency of setting the reliability target in 
accordance with the problem context is believed to be the key feature for combining effectively 
the reliability and robustness considerations. In this framework, the optimization model 
proposed in the next section overcomes the above limitations without compromising the 
reliability level, by considering a robust convex objective function and a performance variation 
constraint. 

4.7 Proposed Robust Reliability-based design optimization 

As mentioned in the above sections, the RBDO solution leads to reliable design, but does 
not consider the performance variation. On the opposite, the RDO optimization can minimize 
performance variation, but cannot guarantee the desired reliability. A formulation that combines 
the benefits of robust and reliability design is proposed herein, by considering both: the 
objective function robustness and the reliability level. This method can overcome the previously 
discussed weaknesses of both optimization procedures. The proposed Robust Reliability-Based 
Design Optimization RRBDO applied to the total cost of the structure is formulated as 
following: 

Find   :, 

minimizing  	R = �8tw�x�.y�z,>��x{y∗ +	w|�.y�z,>��|{y∗ ,   0 < } < 1 

with    !�~, :� =  7�~, :� + ∑  �� 	�c��	�~, :� ≤ 0f��l8  , 

subject to   
x����z,>��|����z,>�� ≤ −��     � = 1,⋯ ,� 

    :
 ≤ : ≤ :/               (4.15) 
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As can be seen, the mean value of the limit state function gj appears in the objective 
function as well as in the constraint function. Consequently, the increase in the mean value that 
is usually observed in robust design is limited in this formulation. The advantages of the 
proposed optimization method are as follows: 

• The sensitivity of the objective function is lowered with respect to usual RBDO 
formulation, 

• The effect of uncontrollable random variables on the structural performance is minimized, 

• The tolerance to comply with unforeseen actions or to deterioration mechanisms is 
quantified and controlled, 

• The prescribed reliability level is ensured. 

The optimality conditions for the above RRBDO problem are as following: 

�1 − }��.y∗
#�d 7�~, :� + ∑  �� 	����~, :���l8 e

#: +	 }�.y∗ 	#�d 7�~, :� + ∑  �� 	����~, :���l8 e
#:

+^ $� Ý#	�����~, :��#: + �� #	�����~, :��#: ß�
�l8 = 0 

$�d�����~, :�� + �������~, :��e = 0               (4.16) 

These optimality conditions aim at balancing, not only the cost function mean and standard 
deviation, but also the dispersion of the failure cost expectance, including failure cost and failure 
probability. In addition to random variable considerations, the obtained solution takes into 
account the possible variations in the design variables :, through their effects on both the limit 
state functions and the failure probabilities. As a consequence, it is expected to get more stable 
solution with less sensitivity to variations than in the classical formulations. This can be seen 
from the optimality conditions where the derivatives of the standard deviations are to be 
lowered. Beside the failure costs  ��, the final solution is governed by two types of control 

parameters: the weighting factor α and the penalty factor �� 	 specified for each constraint.  

Let z* refers to the optimal solution of the problem, CT* is the optimal total cost of the 
structure, �'� and �'� are respectively the mean and standard deviation of the failure 

probability, and �� and �� are respectively the mean and standard deviations of the limit state 

function g(X,d).  

For each failure scenario (i.e. limit state function), the mean and standard deviation of the 
failure probability are given by: 

�'�� = � ����~, :�		'���z,>�:>>ë>) 	 (4.17)	
�'�� = �� Z����~, :� − �'��[�		'���z,>�	:>>ë>) 	 (4.18)	
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where 		'���z,>� is the probability density function of ����~, :�. The mean and standard 

deviation of the limit state function are given by: 

��� = � ���~, :�		���z,>�	:>>ë>) 	 (4.19)	
��� = �� Z���~, :� − ���[�		���z,>�	:>>ë>) 	 (4.20)	

where 	���z,>� is the probability density function of ���~, :�. These parameters can be estimated 

by either Monte-Carlo simulations or by first order approximations. 

The above formulation can be extended to time-variant problems if the limit state can be 
expressed as a function of time ��	�~, :, ¤�.  This is particularly useful for structures subjected 

to performance degradation due to aging. A discount rate can thus be attributed to the future 
failure cost to convert it to its equivalent present value. By adopting annual discretization of the 
structure lifetime, the total cost is then expressed as follows: 

 !�~, :, ¤� =  7�~, :� + ∑ ∑ .çã�	'c��	�z,>,��Î7f�8�¢��!�l7��l8                (4.21) 

where �c��	�~, :, 2� ≤ 0f is the annual probability of failure for the limit state j at the 2 th year 

(i.e., probability that failure will occur anytime during the year 2), and ν is the discount rate. 
The above time-variant extension is made possible by the existence of physical degradation 
models for the most influential deterioration processes, and also by the development of 
numerical procedures that can evaluate the failure probability of complex nonlinear problems.  

4.8 Solution procedure 

When robustness is considered, the solution procedure should be defined such that practical 
engineering problems can be handled in a reasonable computation time. This procedure can also 
be used for comparison between RRBDO and RBDO. The proposed procedure, illustrated in 
Figure 4.4, can be divided into the following steps: 

• Step 1: The limit state functions �� are evaluated.  

• Step 2: The failure probability ���  associated with the limit state function �� is evaluated. 

For this purpose, the First Order Reliability Method (FORM), or any other numerical 
procedure, can be applied to give an approximation of ��� . The uncertainties in the 

problem-related parameters are accounted for through their corresponding probability 
distributions. 

• Step 3: Monte-Carlo simulations (MCS) are performed on the reliability analysis results 
(e.g. FORM results) in order to evaluate the mean and standard deviation of the failure 
probability (�'�� and �'��).  

• Step 4: The same Monte-Carlo simulations can be used to evaluate the mean and the 
standard deviation of the limit state functions �� (��� and ���); in this way, no additional 

computation cost is considered to compute these quantities. 
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• Step 5: Having the mean values and standard deviations of the limit state and failure 
probability functions, the RRBDO can be solved using classical optimization procedures 
by solving problem 4.14. 

• Step 6: When comparison between RBDO and RDO is required, the RBDO is performed 
by considering the solution of RRBDO as initial values for the design variables. In 
addition, the admissible failure probability used in the RBDO constraint is taken equal to 
the failure probability when the design variables take the values given by RRBDO 
solution. This procedure allows us to obtain the results of RRBDO and RBDO for the 
same reliability level, and thus allowing for comparison between the two optimization 
procedures. 

The different executions of the RRBDO correspond to different values of the constraint λ, such 
as µgj/σgj≤-λj. In fact, λj is a constraint on the coefficient of variation of the limit state function. 
For simplification, the subscript j is eliminated from the notations in Figure 4.4. 

 

Figure 4.4. Solution procedure for RBDO problem. 

The above procedure allows us to ensure the reliability level while minimizing the effect of 
variability on the design objectives. However, several computational challenges have to be 
faced: 

(1) FORM has to be applied herein to evaluate the reliability index in the space of random 
variables, leading to two nested optimization problems (Aoues and Chateauneuf 2010). The 
outer problem searches for design variables to minimize the cost function, while the inner one 
searches for the most probable failure point in the space of random variables; when the limit 
state function is highly non-linear, the convergence of FORM cannot be guaranteed. 

 (2) MCS are applied for the limit state function and the failure probability (obtained herein 
by FORM analysis), in order to determine their mean values and coefficients of variation. MCS 
requires a large number of samples to give stable results, which is very time consuming, and 
cannot be always feasible, especially with FORM results.  

It is important to note that, although the FORM algorithm is used in our applications, any 
other reliability procedure (e.g. Monte-Carlo simulations, response surfaces, stochastic 
expansions, etc.) can be applied to compute the failure probability. The main criteria to consider 
when choosing a method are the precision and the computation cost.  
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In order to cater for the above problems, a polynomial approximation is adopted herein to 
compute �'�, �'�	, �� and ��   as functions of the design variables, using least square regression 

on a reduced number of MCS samples. Beck et al. (2015) proposed a design space root finding 
method for efficient risk based optimization (corresponding to the herein RBDO formulation 
(4.10)).  Their method can be extended to the above described sequence in order to overcome 
the computational burden of the nested optimization and reliability loops. Other authors also 
proposed approached based on decoupling the reliability loop from the optimization loop 
(Spence et al. 2015). This formulation is still in need of more accurate and performing numerical 
estimation methods; however, the solution procedures are beyond the scope of the present 
document, although the reader can refer to the work of Aoues and Chateauneuf (2010) 
comprehensive discussion about this issue. 

4.9  Numerical Applications 

Four applications are considered hereafter in order to investigate the performance of the 
proposed RRBDO formulation and to compare it with Reliability-Based Design Optimization. 
The first example aims at illustrating in details the proposed procedure and at describing the 
behavior of reliability-based design.  In the second application, the role of time in the RRBDO 
formulation of a time-variant process is investigated. The third example shows the interest of 
RRBDO framework for system analysis, through the design of overhanged beam with variable 
cantilever depth. The fourth application investigates the effect of robustness objective regarding 
the structural topology, where several failure modes are considered. The structural applications 
are chosen to have different structural properties and modes of failure, in order to show the 
applicability of the proposed methodology on a large range of engineering problems (i.e. 
structural topology, number of failure modes, time-invariant and time-variant, component and 
system reliability, etc.) 

4.9.1 Plane truss example 

This application, drawn from Beck and Gomes (2012) aims at finding the optimal height and 
thickness of a plane truss structure, considering the yielding of steel cross-section as shown in 
Figure 4.5. 

 

Figure 4.5. Plane truss example. 

The span is fixed to 2B = 6 m. Table 4.1 summarizes the values and distributions of the 
system variable.  The considered limit state function accounts for yielding, and takes the form:  

� = 	� − �	 = 	� − '	√S �+ 
,�	+>                 (4.22) 
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where σ is the compressive stress in the tubes, 	 and - are respectively the truss half-span and 
height, : and G are respectively the cross-section diameter and thickness, � is the applied load, 
and 	� is the yield stress. The initial cost is composed of a fixed cost of labor (taken equal to 10 

unit costs), plus a term proportional to cost of materials: 

 7 =  � × Z1.2	�	2.	:	G	√	� + -� + 10[               (4.23) 

where Cs is the cost of steel per unit weight and ρ is the material density. The total cost  ! is 
written as:  ! =  7 +  ���   with �� = �Z� ≤ 0[               (4.24) 

In Table 4.1, the design variables are represented by the vector d= [t, H]. The uncertainties 
are characterized by their probability distributions, mean values, coefficients of variation, and 
they are represented by the vector X = [P, fy]. 

 

Design 
variables 

Deterministic 
parameters 

Uncertainties (X) 

Random variables µ Distribution COV 
t (thickness) d (diameter) 0.15 m P (load) 337 kN Normal 0.10 
H (height) B (span) 3 m fy (material strength) 105 MPa Lognormal 0.07 

Table 4.1. Input variables for the plane truss. 

The RBDO problem of the plane truss is: 

Find  : = 	 Z-, G[  
minimizing   !�~, :� =  7 +  � × ���:� 
subject to  ���:� = �Z��~, :� ≤ 0[ ≤ ��!  

   :
 ≤ : ≤ :/                 (4.25)	
where the admissible failure probability ��! is taken equal to 10-4. ���:� is approximated using 

the first order reliability method FORM . The RBDO is applied with different values of Cf 
leading to the results in Table 4.2. The amplification of the failure cost Cf does not lead to 
significant variations in the optimal design.  A rise of Cf from 10C0 to 106C0 induces an increase 
of 16% in the optimal thickness, and 31% in the optimal cost.  
 

Cf /C0 H* t* CT,RBDO µ¶ (dRBDO) 

10 3 0.0169 620 1.00×10-4 

100 3 0.0169 620 1.00×10-4 

1000 3 0.0169 621 1.00×10-4 

10000 3 0.0169 630 1.00×10-4 

100000 3 0.0178 712 6.26×10-5 

1000000 3 0.02 897 1.67×10-6 

% 0 16 31  

Table 4.2. RBDO solutions in terms of Cf for the plane truss. 
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Figure 4.6. Total cost of plane truss for different values of Cf. 

As a matter of fact, for all failure costs below 104C0 , the reliability constraint of 10-4 is active, 
as shown in Figure 4.6. Therefore the optimal results correspond to a failure probability equal 

to ��! and an optimal cost higher than for the unconstrained case. For Cf higher than 104C0, the 

reliability limit of 10-4 is not active, and the minimum cost is equal to  !�"∗  . 

The robust formulation for reliability-based design optimization (RRBDO) applied to the 
plane truss example is written as follows: 

 

Find   : = 	 Z-, G[  
minimizing 	R = �8tw�x{y�/,Æ�x{y∗ +	w|{y�/,Æ�|{y∗  ,     with 0 < } < 1 

with   !�~, :� =  7 +  � 	���:� 
subject to  

x���/,Æ��|���/,Æ�� ≤ −� 

   :
 ≤ : ≤ :/                (4.26) 

where �.y∗ , �.y∗ , α , λ, dL and dU are defined in section 4.5. The normalization factors  �.y∗  and �.y∗  are taken equal to the mean and the standard deviation of  !�~, :� when the design 

variables take the initial values :7 =	 Z2.4�	; 	0.018�[. The lower and upper limits are 
respectively :
 =	 Z1	; 	0.01[ and  :/ =	 Z3; 	0.03[. Figure 4.7 shows the mean values of the 
initial cost, the failure cost and the total cost, for decreasing values of the penalty factors λ from 
5 to 0.5, with α taken equal to 0.5 and Cf equal to 104C0. A  larger value of λ generally requires 
the corresponding performance to be more robust regarding the system variability. A decrease 
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of the penalty factor corresponds to an increase in �'�, leading to an increase in the mean failure 

cost and a decrease in the mean initial cost. This behavior is foreseen because the penalty factor 
is a measure of the inverse of the coefficient of variation of the limit state function, and the 
failure probability (thus the failure cost) increases when �� increases. This is a result of the fact 

that an increase of the optimal design values leads to an increase in the mean of the performance 
measure and a decrease in the coefficient of variation, as seen in Figure 4.8. In this RRBDO 
formulation, the objective function is directly related to the constraint function by the mean of �Z� < 0[. Therefore, the increase of the objective function expectation that is usually seen in 
RDO studies is limited in the suggested RRBDO formulation. 

 

Figure 4.7. Optimal cost obtained by RRBDO - Plane truss. 

 

Figure 4.8. Mean and coefficient of variation of the performance function - Plane truss. 

As explained above, the reliability constraint in RBDO is not active when ��! exceeds ���:∗� corresponding to the unconstrained minimum cost  !�"∗ . Therefore, the optimal cost 

obtained by the use of RBDO is independent of the reliability constraint when ��! exceeds ���:∗�. Figure 4.9 shows the optimal costs found by the RBDO and the RRBDO for increasing 

values of ��!. For ��! < ���:∗�, the RRBDO solution costs 7% less than the RBDO for the same 
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reliability level. On the opposite, when ��! > ���:∗�, the reliability constraint in the RBDO is 

not active, although the RRBDO continues to perform properly when ��! is greater than ���:∗� 
because the optimal cost increases with the failure probability. 

The optimal design parameters are shown in Figure 4.10, in terms of the target failure 

probability ��!. For low target probability (i.e. ��! < ���:∗�), both procedures tend to decrease 

the optimal thickness and maintain a constant optimal height. For higher target probability 

(��! > ���:∗�), the RRBDO tends to increase the optimal thickness by 10% and decrease the 

optimal height by 20% in order to maintain a certain level of reliability while minimizing the 
total cost. However, the optimal design of RBDO becomes independent of the failure 
probability beyond ���:∗�. 

As a result, the proposed RRBDO has better behavior than the RBDO for all reliability 
targets, since it provides more robust and less costly optimal solutions for high reliability levels, 
and it continues to perform properly for low reliability levels. 

 

Figure 4.9. Optimal costs CT* - the plane truss. 

 

Figure 4.10. Optimal solution z* -the plane truss. 

 



133 
 

4.9.2  Bridge girder example 

 This application aims at finding the optimal longitudinal steel area and concrete depth of 
a reinforced concrete girder, considering degradation with time due to corrosion and fatigue. 
The coupled corrosion and fatigue deterioration process is formulated by Bastidas-Arteaga et 
al. (2009), and was divided into three stages. The first stage is corrosion initiation and pit 
nucleation. The time to corrosion initiation τini is given by Thoft-Christensen (1998) and the 
time to pit nucleation τpn is given by (Stewart 2004). The second stage is pit-to-crack transition 
τpt obtained by equating the pit growth rate to the equivalent crack growth rate, as defined by 
Val et al. (1997; 1998). The third stage is the crack growth, τcg , which is reached when the crack 
size induces cross-section failure. The reduction of the steel reinforcement cross-section which 
is caused by the coupled effect of corrosion and fatigue starts after the time-to-corrosion 
initiation τini. This reduction is estimated by considering pitting corrosion from τini till τpt. After 
the pit-to-crack transition, the new crack size is calculated by integrating the fatigue crack 
growth rate. A full description of this degradation model is given in Appendix 1. The limit state 
considered herein is related to the bending capacity of a bridge girder: 

 ��:, ~, G� = M��:, ~, G� − ME�:, ~�               (4.27) 

 

where Mr is the resisting moment and Ma is the applied bending moment, d and X are the vectors 
of design and random variables, respectively, and t is the time. The initial cost is: 

 7 =  4 	�4 	�	ℎ	Á +  ��"�	���"� 	*�	Á +  �Å��	��Å��	2�� + ℎ�	Á	Ü�Å��           (4.28) 

where Cc, Creinf and Cform  are respectively the costs of concrete, reinforcement and formwork 
per unit weight, ρ is the material density and Ü�Å�� is the formwork width. The cost of failure 

is considered as  @< = 10 7 . 

Table 4.3 summarizes the values and distributions of different variables in this problem 
(Bastidas-Arteaga et al. 2009; El Hassan et al. 2010). 

 

Design variables  Deterministic parameters 

  Variable Description value unit 

  � Width 4 m 

  Á Length 10 m 

  *� (Steel Area) 
  

ℎ Depth 0.8 m �� elastic modulus of steel 210000 MPa HB water cement ratio 50 mm 

  ��9 threshold corrosion 5 µA/cm2 

  	 traffic frequency 2000 cycles/day 
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Uncertainties (X) 

Variable Description 
Mean 

value µ 
Unit Distribution 

Cefficient of 
variation 

COV F dead load 26  kN/m Normal 0.15 Ô live load 115  kN Normal 0.25 	� steel strength 500  MPa Lognormal 0.07 

 �9  
threshold chloride 
concentration 

0.9  kg/m3 Lognormal 0.19  � chloride concentration 2.95  kg/m3 Lognormal 0.5 ¿4  coefficient of diffusion 6×10-12  m2/s Lognormal 0.2 B	 concrete cover 0.05  m Lognormal 0.3 	4  concrete strength 30  MPa Lognormal 0.15 

Table 4.3. Input data for the bridge girder. 

The RBDO problem is given by: 

Find  : = 	 Z*Ö, ℎ[  
minimizing   !�~, :� =  7 +  ����:� 
subject to  ���:� = �Z��~, :� ≤ 0[ ≤ 	��!  

   30B�� ≤ *� ≤ 50	B��   

   0.5m ≤ h  ≤ 1.2 m               (4.29) 

and the corresponding RRBDO formulation is: 

Find   : = 	 Z*Ö, ℎ[  
minimizing 	R = �8t∝�x{y�/,Æ�x{y∗ +	w|{y�/,Æ�|{y∗  ,     with 0 < } < 1 

with   !�~, :� =  7 +  ����:� 

subject to  
x���z,>��|���z,>�� ≤ −� 

   30B�� ≤ *� ≤ 50	B��        

   0.5m ≤ h  ≤ 1.2 m               (4.30) 

The weighting factor α is taken equal to 0.5, and the normalization factors �.y∗  and �.y∗  

correspond to the steel area of 44 cm2 and a beam depth of 0.9 m.  Different values are 

assigned to the penalty factor λ (from 0.5 to 5) in order to parametrically study the 

problem.  

Figures 4.11 and 4.12 shows the optimal costs and steel area respectively found by RBDO 

and RRBDO as functions of ��!. The optimal height is constant for a fixed point in time in both 

optimization formulations and for all reliability levels. The procedure explained in section 4.7 
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is applied here for a reference period of 10 years. In this example, the value of ���:∗� is 10-4 as 

shown in Figure 4.11 and Table 4.4. The reliability constraint of RBDO is not active when ���:∗� < ��! corresponding to the unconstrained minimum cost  !�"∗  of 585 cost units. The 

optimal solution and cost obtained by RBDO are constant when ��! exceeds	���:∗�, with 

optimum reinforcement area of 48 cm2 for all reliability constraints higher than 10-4, as shown 

in Figure 4.11. Nevertheless, the RRBDO continues to perform properly when ��! is greater 

than ���:∗�, i.e. although the optimal costs increases by 17%, the optimal reinforcement area 

(and therefore the initial cost) decreases by 18% when the admissible failure probability 

increases from 10-5 to 10-3. In fact, an increase of the admissible probability of failure ��!   leads 

to a decrease in the penalty factor λ which increases the coefficient of variation of the limit state 
function. It is thus normal to have a larger optimal cost with more variation in the limit state 
function. Therefore, a more robust design with a constraint on the coefficient of variation leads 
to a structure that can better adapt to unforeseen variations. 

Moreover, the procedure is executed for different points in time in order to observe the 
influence of time on the optimum solution. A reference performance coefficient of variation of 
0.16 is adopted. As predicted, the optimal RRBDO cost increases by 4.5% when the timespan 
increases by 10 years (Figure 4.13). In addition, a very interesting RRBDO behavior is deducted 
from the results shown in Table 4.4. When time increases, the RRBDO increases the beam depth ℎ∗ in the aim of reducing the steel area *�∗. This behavior is not present in the RBDO runs for 
different times. In fact, most of the degradation uncertainties are related to the steel area that 
becomes more corroded with time. Therefore, the RRBDO provides solutions that are less 
sensitive to variations, while keeping the same reliability level as the RBDO. This is achieved 
by the performance variation constraint in the RRBDO formulation. 

 
Figure 4.11. Optimal total costs  !∗  versus ��!for the bridge girder. 
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Figure 4.12. Optimal solution *�∗ for the bridge girder. 

1/ λ RRBDO RBDO �012 µ¶ 

(RRBDO) 

3�∗ 
(RRBDO) 

�»∗  
(RRBDO) 

µ¶ (RBDO) 3�∗ (RBDO) �»∗  (RBDO) 

0.08 2.07×10-9 65.77 632.91 2.07×10-9 65.77 632.91 

0.09 2.07×10-9 65.77 632.90 2.07×10-9 65.77 632.90 

0.10 1.89×10-8 62.63 623.30 1.89×10-8 62.63 623.30 

0.11 6.90×10-7 57.08 606.41 6.90×10-7 57.08 606.41 

0.12 7.11×10-6 53.13 594.70 7.11×10-6 53.13 594.70 

0.13 3.70×10-5 50.10 587.21 3.70×10-5 50.10 587.21 

0.14 1.27×10-4 47.69 585.01 1.00×10-4 48.04 584.91 

0.16 7.00×10-4 44.04 606.93 1.00×10-4 48.04 584.91 

0.18 2.30×10-3 41.38 684.29 1.00×10-4 48.04 584.91 

0.2 5.10×10-3 39.35 835.25 1.00×10-4 48.04 584.91 

0.22 9.50×10-3 37.73 1066.20 1.00×10-4 48.04 584.91 

0.23 1.22×10-2 37.04 1210.70 1.00×10--4 48.04 584.91 

0.24 1.53×10-2 36.42 1373.30 1.00×10-4 48.04 584.91 

0.25 1.87×10-2 35.85 1552.50 1.00×10-4 48.04 584.91 

0.26 2.24×10-2 35.32 1746.80 1.00×10-4 48.04 584.91 

Table 4.4. Output data for the bridge girder. 

 

Figure 4.13. Optimal total Costs Ct* versus time for the bridge girder. 
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Time RRBDO RBDO 

years 4∗ (m) 3�∗ (cm2) 4∗ (m) 3�∗ (cm2) 

0 0.800 8.556 0.800 9.729 
2 0.831 8.155 0.800 9.785 
4 0.893 7.446 0.800 9.819 
6 0.895 7.515 0.800 10.275 
8 0.909 8.806 0.800 10.492 

10 0.968 8.056 0.800 10.640 

Table 4.5. RRBDO and RBDO solutions versus time- bridge girder example. 

4.9.3  Overhanged beam example 

This application aims at finding the optimal thicknesses of a reinforced concrete overhanged 
beam structure with variable depths (fig 4.14), considering the bending due to uniformly 
distributed load and concentrated end loads. This problem is drawn from Aoues and 
Chateauneuf (2008).  

 
Figure 4.14. Overhanged beam with variable cantilever depth. 

Design variables  
Deterministic parameters 

Beam depth Variable Description Value Unit 

  	4  concrete compressive strength 25 MPa 

  	� steel strength 200 MPa :8 n  distributed load 40  kN/m :� �  tensile force 30  kN/m 

  �4 cantilever length 3  m 

  �	 beam width 0.2  m 
  �  beam span 8  m 
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Uncertainties (X) 

Moment Mean Value µ Unit Distribution cov M8 90  kNm Normal 0.2 M� 11.2  kNm Normal 0.2 

Table 4.6. Input data for the beam. 

The beam is defined by the mid-span depth d1 and the cantilever end depth d2. In this example, 
the mid-span and the cantilever are considered as two perfectly correlated components of a 
system. The span is L = 8 m and the cantilever length is Lc = 3 m. The beam is subjected to the 
distributed loads q and q/8, as illustrated in Figure 4.13. In order to reduce the negative 
moments, two tension rods are acting at the cantilever ends, with tensile force P. Table 4.6 
summarizes the parameters and distributions of the problem variables. Under nominal 
conditions, the maximum moments are M1 = 90 kNm and M2 = -11.25 kNm.  

For a given cross-section, the limit state function is written as: 

� = 	5	*� 	i:	 −	 �6	$ª���7.ý´�ÊÉY�j −	M               (4.31) 

The reinforcement area is chosen as As1 = 12 cm2 and As2 = 6 cm2, leading to the following 
nominal values of the limit state functions: 

g1 = 0.24(d1 -0.02824) - M1                (4.32) 

g2 = 0.12 (d2 -0.01412) – M2                 (4.33) 

The initial costs C0 and the failure costs Cf  are computed as in the previous example, and the 
design variables are d1 and d2. 

As shown in Table 4.7, when applying the RBDO, the constraint �Z�8 ≤ 0[ ≤ ��8!  is not 

active when it is greater than 6×10-3, which is the value of ��8�:8∗� for the limit state g1. 

Therefore the RBDO optimal solutions for d1 are constant beyond ��8�:8∗� as shown in Figure 

4.15. The optimal solution found for d2 through the use of RRBDO and RBDO are the same, 

because ����:�∗� for the limit state g2 is not reached by the RBDO constraint ���!  (which is equal 

to the RRBDO solution µ(Pf2) as explained in section 4.6). Therefore, the initial cost is similar 
for both optimization procedures until ��8�:8∗�, after which the use of RBDO does not affect d1 

and the use of RRBDO provides solutions that reduce the initial cost by continuously reducing 
d1 (Figure 4.16). Since the RBDO does not allow the probability of failure to exceed ��8�:8∗� =6 × 10t¼,  the failure costs using RBDO are also irreducible even when a greater probability of 
failure is allowed.  The proposed formulation is therefore able to decrease the depth where cost 
is involved (mid-span) without compromising the structural safety of the components, as long 
as the performance variability limit is respected; d1 is reduced by 3.7% for an admissible 
probability of failure of 10t�.  
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It is interesting to note that (Aoues and Chateauneuf 2008) proposed a scheme for 
consistent RBDO of structural systems, where the component target safety is adapted in order 
to fulfill the overall system target. They considered the overhanged beam example to investigate 
the adaptive target approach. The adaptive target approach reduced d1 by 4.7% for a reliability 
index of 1.645. The comparison with this result shows that the proposed RRBDO is able to 
handle properly the system effect in the structural optimization framework. 

  
RRBDO RBDO 

1/λ ×µ¶� ×µ¶� d1* d2* d1* d2* µ¶� µ¶� 

0.1 5.10×10-6 4.45×10-5 0.821 0.201 0.821 0.201 5.10×10-6 4.45×10-5 
0.12 8.32×10-5 3.55×10-4 0.759 0.188 0.759 0.188 8.32×10-5 3.55×10-4 
0.15 9.00×10-4 2.40×10-3 0.698 0.175 0.697 0.175 9.00×10-4 2.40×10-3 
0.17 2.50×10-3 5.80×10-3 0.667 0.168 0.667 0.168 2.50×10-3 5.80×10-3 
0.18 3.80×10-3 8.20×10-3 0.654 0.165 0.654 0.165 3.80×10-3 8.20×10-3 

0.185 4.50×10-3 9.60×10-3 0.648 0.163 0.649 0.163 4.50×10-3 9.60×10-3 
0.2 7.50×10-3 1.48×10-2 0.632 0.159 0.640 0.159 6.00×10-3 1.48×10-2 

0.205 8.70×10-3 1.68×10-2 0.626 0.158 0.640 0.158 6.00×10-3 1.68×10-2 
0.21 1.00×10-2 1.89×10-2 0.621 0.157 0.640 0.157 6.30×10-3 1.89×10-2 

0.215 1.14×10-2 2.12×10-2 0.617 0.156 0.640 0.156 6.30×10-3 2.12×10-2 

Table 4.7. Comparison of RBDO and RRBDO results for the beam. 

 

Figure 4.15. Optimal solution z* for the beam. 

 
Figure 4.16. Optimal costs for the beam. 
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4.9.4 Built-up column example 

This application aims at finding the optimum width and topology of a steel column formed of 
U and L cross-sections, subjected to local and global buckling due to axial load. The impact of 
robust design on the topology of the structure is also observed. This problem is drawn from 
Beck and Gomes (2012) and is illustrated in Figure 4.17.  

 

Figure 4.17. Built-up column example. 

Design variables Deterministic parameters 

Symbol Description Variable Description Value Unit 

b  (width) L length 7 m 

N  (number) λL Local buckling Factor 1.875  

   λG Global buckling factor 1.676  

 
 

Uncertainties (X) 

Variable Description Mean value µ Unit Distribution cov 

P load 300 kN Normal 0.15 

E Elastic modulus 210 GPa Normal 0.03 

fy Yield stress 250 MPa MPa LogNormal 0.1 

Table 4.8. Input data for the built-up column. 

The column is made of U-section struts (U200×75×2.65 mm), with L-section braces and battens 
(L30×2.25mm). The total length is L and the column is subject to a load P. The Optimization 
variables are the width b and the number of braces and battens (N = L/d). The input data are 



141 
 

summarized in Table 4.8. The limit state functions are related to local and global buckling. 
Local buckling of the U-shaped struts is given by: 

�
 = , ×Â×%ë>  − �
 × '�                 (4.34) 

where IU is the moment of inertia of the U-section. The global column buckling is given by: 

�Ï = , ×Â×%Ã
  − �Ï × �                 (4.35) 

where IG is the moment of inertia of the column cross-section, given by: 

CÏ = 2	�C/ + */ 	iY�j�)                  (4.36) 

One unit of braces and battens is considered as one horizontal and one diagonal L-shape. The 
total length of a brace-batten unit is: 

�YY = ��� + i
7j� + �                  (4.37) 

The material cost Cmat is:  �E� =  @	�	�,	�YY	*
 + 2	�	*/�               (4.38) 

where CS is the cost of steel material per unit weight and ρ is the material density. Considering 
a fixed reference cost of  Cref = 150 CS, the construction cost Cconst contains a set up cost, a 
material cost, and a cost due to the number of brace-batten units:  4Å"�� =  ��� + 0.2	 �E� +  ��� 	0.025	�, − 1�             (4.39) 

The initial cost is:  7 = 1.2	 �E� +  ���	Z1 + 0.025	�, − 1�[              (4.40) 

The probabilities of local and global failures are respectively: ��Ï�~, :� = ��Z�Ï�~, :� ≤ 0[                (4.41) 

��
�~, :� = ��Z�
�~, :� ≤ 0[                (4.42) 

The cost of global failure is considered as CSFG=100Cref, and the cost of local failure is 
considered as CSFL=10Cref. The total cost takes the form:  ! =  7 +  @<Ï 	��Ï�~, :� +  @<
	��
�~, :�               (4.43) 

The weighting factor α is taken equal to 0.5 in this example, and the same values of the penalty 
factor λ is used for both limit states.. As shown in Table 4.9, the optimal number of braces and 
battens increases when the optimization robustness increases (i.e. λ increases), which means 
that additional members help in improving the structural robustness. The robust design 
increases the initial cost by increasing the number of members N and the width b, but decreases 
the failure cost by decreasing the failure probability. The optimum configuration found by the 

RRBDO has 5 brace-batten units (N=5), b=13.5 cm, a system failure probability of 1.45×10-4, 
and an optimal cost of 28580 cost units. In addition, it is interesting to note that the RRBDO 
favors the increase of the number of members over the amplification of the width. Between the 
two extents of the penalty constraint values, the RRBDO solution increases the number of 
members by 72% and the member widths by 31% to meet the most stringent penalty function. 
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It can be concluded from this example that the topology plays a higher role in robustness than 
the member widths. 

 

1/λ 8∗ "∗ (cm) ×9:  ×;< �=>;<  
0.2 5.5 14.4 28842 1.60×10-6 2.93 

0.25 5.2 13.9 28683 2.09×10-5 2.59 

0.3 5 13.5 28580 1.45×10-4 2.32 

0.5 4.6 13 28711 2.20×10-3 1.91 

1 4.1 12.6 31869 2.43×10-2 1.6 

Table 4.9. Results of the RRBDO for the column example. 

In this example, the RBDO constraint Pf
T is not active beyond ���:∗� = 2.09 × 10t´. 

Therefore, the RBDO optimal solutions for N and for the optimal cost are constant after ���:∗�. 
Whereas by the use of RRBDO, the parameters b and N as well the optimal cost continue on 
decreasing when the constraint λ is loosen, as shown in Table 4.9. Therefore, the RRBDO 
formulation delivers less costly results while satisfying the performance variability limit and 
without compromising the targeted safety level. Moreover, it can give solutions that are 
consistent with all reliability targets. The RRBDO formulation clearly outperforms the RBDO 
formulation for this example. 

4.10 Conclusion 

The proposed formulation for robust reliability-based design optimization (RRBDO) 
considers the total cost of structure and controls the variations in the structural parameters. The 
reliability-based design optimization (RBDO) is known to be sensitive to the input data and 
their possible variation, regarding the assumed or initial conditions. Meanwhile, a more robust 
structure is less likely to fail, which is particularly important for optimized systems, as no 
additional margin is available. A robust design may increase the mean initial cost by increasing 
the design variables in order to reduce the variability, leading to decrease the probability of 
failure. In this scope, the proposed RRBDO is able to find an optimal solution that reduces the 
variability of the structure.  

A comparison between the RBDO and the RRBDO procedures is carried out for the design 
of two structural concrete and two structural steel problems. It is shown in this study that the 
proposed RRBDO behaves better than the RBDO for all reliability values, since it provides 
more robust optimal solutions for high reliability levels, and it continues to perform properly 
for low reliability levels. The scope of work of the RRBDO is wider than the RBDO and the 
DDO because more information and better assumptions can be handled by the application of 
RRBDO.  
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General conclusion 

The objective of this work is to provide comprehensive LCCA and procedures that can be 
applied to select optimal and robust design and maintenance decisions regarding new and 
existing structures. The main outputs of the present study are the optimum design and consistent 
maintenance planning allowing fulfilling the management needs. The proposed methodologies 
enhance the life-cycle decision-making process and enable the effective budget allocation. 

The study employed uncertainty-based optimization techniques to obtain design and 
maintenance decisions that can minimize the life-cycle cost and maximize the structural 
performance. Although multiple probabilistic performance indicators exist, the focus has been 
placed on estimating the structural performance in terms of reliability index. When considering 
the life-cycle cost components, the state-of-the-art shows large limitations in the stochastic, 
economic and structural dependencies between structural elements. 

A probabilistic design method is considered to meet the need for an integrated and 
systematic approach to model coherently the deterioration processes, the increasing traffic 
loads, the aging, and the direct and indirect consequences of failure. An approach to evaluate 
the user cost and integrate it in the life cycle cost function is proposed. Several traffic disruption 
scenarios are considered, namely bridge degradation, rehabilitation, load suspension and, in the 
most extreme case, collapse. A case study in Lebanon is presented, where the model is applied 
to bridge elements located in various chloride-contaminated environments and subjected to 
different traffic frequencies. The results show that the optimal design of a reinforced concrete 
bridge is strongly affected by the degradation models, the different scenarios of user delay costs, 
the concrete cover and parameters, the failure costs considered in the LCC, and the admissible 
probability of failure. 

The methodology is then extended to the scheduling of the maintenance actions along the 
life-cycle of structures under time-dependent deteriorating actions by considering economic, 
structural and stochastic dependencies between structural elements. The approach aims at 
finding the maintenance schedule of dependent elements which minimizes the total 
maintenance cost and keeps a targeted reliability level. Stochastic dependency is integrated in 
the cost function by the mean of conditional probabilities, and a process to quantify the 
consequences of degradation is proposed. A procedure to calculate the load redistribution to 
non-failed elements is also proposed and integrated in the cost formulation. The lack of system 
modeling approaches that take into account the interdependent structural elements motivated us 
to develop a new system reliability computation as a function of the structure redundancy. The 
approach also accounts for downtimes needed to dismantle modularly dependent elements, and 
to repair associated failed elements. The proposed methodology is applied to several numerical 
examples to prove its validity and functionality. The results show that the economic dependency 
leads to the grouping of maintenance actions. Moreover, considering the degradation 
consequences and the stochastic dependencies leads to smaller maintenance time intervals. 
Also, a mutual consideration of all dependencies leads to the grouping of the maintenance 
actions, but at smaller time intervals. Hence, neglecting stochastic dependency and degradation 
costs may lead to unsafe maintenance planning, and neglecting economic dependency may lead 
to more costly maintenance planning. Furthermore, for high failure probabilities, the economic 
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dependency has the biggest effect on the maintenance cost, and for low failure probabilities, the 
stochastic dependency has the biggest effect on the maintenance cost. 

The optimization techniques are used in this study to find the optimal design and 
maintenance decisions. It has been observed that the existing optimization procedures focus 
either on the robustness of the objective function, or on maintaining a certain level of reliability. 
In order to address this inconsistency, a new optimization procedure is developed, taking into 
account the uncertainties in the analysis, and the ability of the structure to adapt to variability 
and unforeseen actions. It is shown in this work that the proposed formulation behaves better 
than the existing ones for all required reliability values, since it provides more robust optimal 
solutions for high reliability levels, and it continues to perform properly for low reliability 
levels.  

The proposed approaches and formulations provide helpful assistance for decision-makers 
in selecting optimal and robust design and maintenance decisions for civil engineering 
structures, taking into account uncertainty, variability, interaction between the elements and 
different direct and indirect consequences of degradation, failure and maintenance.  

Perspectives 

The developed work has opened several research axes that can be considered for improving the 
structural design and management system. Many enhancements can be achieved in the future, 
as follows:  

• The proposed design approach considers user costs as an indirect consequence arising from 
a bridge failure, degradation or maintenance. However, other indirect failure consequences 
should be included as they may affect the cost estimation, particularly social and 
environmental aspects. 

• In this study, the reliabilities of structural elements are computed with respect to corrosion 
and fatigue damage. Although they are the major deterioration processes affecting 
reinforced concrete elements, other degradation processes should be considered, like 
delamination, spalling, creep, shrinkage etc.... The interaction between degradation 
scenarios is also an important topic. 

• The performance prediction process depends to a great extent on the accuracy of the 
performance prediction model and the descriptors of its probabilistic parameters. However, 
in some cases, the accurate information on some model parameters does not exist. 
Therefore, future efforts to quantify these parameters are crucial. The accurate estimation 
of the characteristics of these parameters can be achieved by making use of the available 
structural inspection and monitoring results and will help improve the reliability assessment 
process of structures. 

• The effect of maintenance on the structural performance is generally difficult to quantify, 
especially when using probabilistic performance indicators. In the maintenance 
optimization approach presented in this study, the maintenance restores the structural 
performance to the initial level. However, in real world situations, maintenance can yield 
other levels of performance restoration. Therefore, further research is needed to establish 
the relationship between various maintenance types and the associated performance 



145 
 

restoration, on one hand, and to incorporate these maintenance types into the maintenance 
optimization approaches, on the other hand. 

• The solution procedures that were suggested and applied herein in design and maintenance 
optimization are very computationally expensive, and several approximations were needed 
to obtain results in reasonable time. The latter was mainly done to overcome the 
computational burden of several nested optimization loops. Efforts should be made to find 
more numerically performing solution procedures for the proposed approaches. 
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Appendixes 

Appendix 1: Uniform corrosion degradation model  

Uniform corrosion consists of approximately uniform loss of metal over the whole exposed 
surface of a reinforcing bar, as shown in Figure A.1. 

 

Figure A.1: Uniform Corrosion. 

In this case, Faraday’s law indicates that a corrosion current density of �4Å�� = 1	�*B�t� 
corresponds to a uniform corrosion penetration of 11.6 ��ÌÜ6¹t8 . Thus, the reduction of the 
diameter of a corroding bar, ∆:, at time T, can be estimated directly (in mm) from �4Å�� as: 

∆:�¤� = 0.0232 � �4Å���G�!@�©� 	:G                 (A.1) 

where τ" is the time to corrosion initiation estimated by using the classical solution of Fick’s 
law:  

τ" =	 A²u	CD 	 ÷erft8 i1 −	GHIGJ jøt�                  (A.2) 

where c is the concrete cover, Dc is the coefficient of diffusion, and Cth and Cs are respectively 
the threshold and surface chloride concentrations. The corrosion ratio is calculated using the 
following empirical expression: 

�4Å�� = ¼þ.ý�8t-4�ÈÞ.��4                     (A.3) 

where wc is the water/cement ratio and c is the concrete cover. The net cross-sectional area of 
a reinforcing bar, *3�, at time G, is then equal to: 

*3��G� = � ,>) u , 	á¹	G ≤ 2" 	
,Z>)t∆>�!�[ u , 	á¹	G > 2"                (A.4) 

where :7 is the initial diameter of the reinforcing bar (in mm). 

Appendix 2: Coupled corrosion fatigue degradation model  

Time-dependent structural deterioration processes, such as corrosion and fatigue lead to 
continuous aging of bridge structures. Corrosion is the main cause of damage in reinforced 
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concrete structures (Deby et al. 2009). Severe cracking of concrete cover may be caused by 
corrosion in aggressive environment. Also, a reinforced concrete bridge may experience up to 
7×108 stress cycles during the course of its lifespan (Rocha and Brühwiler 2012). It is thus 
important to be able to assess the corrosion and fatigue performance of such structures.  

A.2.1 Rate Competition criteria 

Improved corrosion models were developed by (Vu and Stewart 2000; Val and Stewart 2003) 
in the aim of calculating the failure probabilities, based on which (Bastidas-Arteaga et al. 2008) 
presented a model of RC deterioration due to corrosion and fatigue. Bastidas’ model computes 
the reduction of the area of steel reinforcement in order to assess the change of structural 
capacity with time. A coupled corrosion-fatigue deterioration process is basically divided into 
three stages (Bastidas-Arteaga et al. 2009): the first stage is the corrosion initiation and pit 
nucleation τcp, the second is the pit-to-crack transition τpt, and the third is the fatigue crack 
growth τcg. 

Timespan and depths  

Figure A.2: Rate Competition criteria - (Bastidas-Arteaga et al. 2009; Val and Stewart 2003). 

A.2.2 Reduction of steel cross-section 

The reduction of the reinforcement steel cross-section which is caused by the coupled effect of 
corrosion and fatigue starts after the time to corrosion initiation τini estimated by using the 
classical solution of Fick’s law as in equation A.2. Fick’s law considers that the penetration of 
chlorides in concrete is only controlled by the diffusion process, and that concrete is a 
homogeneous, isotropic and inert material. Moreover, equation 3.24 assumes that the 
coefficient of diffusion is independent of time, the chloride concentration and the location. In 
fact, Fick’s law is not fully appropriate because concrete is not homogeneous and not saturated 
media, the coefficient of diffusion changes with time and chloride ions penetrate in concrete 
not only by diffusion. However, Fick’s law is often used because of its simplicity. Moreover, 
in many cases the diffusion equation provides good approximation to laboratory or field data 
(Nogeuira and Leonel 2013).  

The time-to-pit nucleation is given by Stewart (2004) as: 

τ3" =	 �.�ý8	ÒK7L 	�1 −wc�8.�u                 (A.5) 
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The reduction of the steel cross-section is estimated by considering pitting corrosion from τini 
to τpt. The pit depth can be computed as follows (Melchers 1997, Stewart 2004): 

¡�G� = 0.0116	} � �4Å���G�:G���©�                  (A.6) 

where α is the ratio between pitting and uniform corrosion depths, and icorr(t) is the time-variant 
corrosion rate. For simplicity, a spherical form of pits is assumed. The pit configuration shown 
in Figure A.3 is used to predict the cross-sectional area of the pit Apit, as follows: 

AKPP�t� =
QR
S
RT A8 +	A�, for	p�t� ≤ V)√�WV) u − A8 +	A�, for	 V)√� 	< ¡�t� < d7

WV)²u , for	p�t� > d7
  

with A8 = 0.5	Zθ8 iV)� j� − bK öV)� − K�P�²
V) ö[  

  	A� = 0.5	Zθ�p�t�� − bK K�P�²V) [  
  θ8 = 2	 arcsin i\]V)j  

  	θ� 	= 2	 arcsin i \]�K�P�j  

  bK = 2p�t��1 − iK�P�V) j ²                (A.7) 

where d0 is the diameter of the intact reinforcement bar. 

 

Figure A.3 : Pit configuration (Stewart 2004). 

The remaining area of the steel cross-section becomes: 

AK̂P�t� = n	π		 V)²u − AKPP�t�                 (A.8) 

where n is the number of steel bars. 
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During the period corresponding to the initial corrosion age, the corrosion rate iini is 
estimated on the basis of empirical results as (Vu & Stewart 2000): 

iP�P�τ� =
QS
T ¼þ.ýi8tàjÈÞ.��A ,								for		τP�P + 1 ≥ τ > τP�P
¼�.8¼i8tàjÈÞ.��A �τ − τP�P�t7.¼,			for	τ > τP�P + 1	              (A.9) 

where τ is the time in years and wc is the water/cement ratio. During the period corresponding 
to the active corrosion age, the time-variant corrosion rate considering concrete cracking and 
environmental aggressiveness takes the following form (Bastidas et. al 2008)): 

�4Å���2� = 	 b�©����	�©�����b®Ê���	£c���	b�©�����	b®Ê���               (A.10) 

and 

μefA�τ, a, b� = 	 8	8�AgKÈh�iÈj�	               (A.11) 

where ��9 is the threshold corrosion rate, μ" and μE4 are the initial and active membership 
functions respectively, a and b are constants that define the function shape, drawn from Bastidas 
et al. (2008). After the pit-to-crack transition, the new crack size is calculated by integrating the 
fatigue crack growth rate using Paris law (1961): 

Ve
Vk = �3.83 × 10t���∆K��7.ý�¼,			if		∆K	 ≤ 9MPa√m

3.16 × 10t8��∆K�¼.8u¼,																				otherwise            (A.12) 

where ∆K is the stress intensity factor range. The time of pit-to-crack transition τpt is reached 

when equating the pit growth rate with the equivalent crack growth rate:  
>3>� = >E>� .  

After the pit-to-crack transition, the new crack size is calculated by integrating the fatigue 
crack growth rate with the initial condition a(τpt) = p(τpt). The fatigue life corresponding to the 
crack growth, τcg is reached when the crack size induces the RC cross-section failure. 

τÒf =
QS
T8p i� Ve¼.ý¼×87È q�∆r� ).s��e8e7 + � Ve¼.8�×87ÈÞ �∆r��.Þ��eÒe8 j ,			for	a0	 < 	61

� Ve¼.8�×87ÈÞ �∆r��.Þ��eÒe7 ,																																																							otherwise           (A.13) 

where a0 is the pit depth at the time of transition from pit to crack τpt, a1 is the crack size at the 

critical stress intensity factor estimated by 9M�6√� (Salah el Din and Lovegrove 1982), m is 
a material constant and ac is the critical crack or pit size corresponding to structural failure.  

In the above model, it is assumed that the mechanical properties of reinforcing steel such 
as the modulus of elasticity, the yield stress and ultimate tensile strength, are unaffected by 
corrosion; this assumption corresponds to available experimental data (Val et. al 1998). 
Moreover, perfect bond is assumed between concrete and steel. 

The resisting bending moment is calculated by: 

 M� = *�7�1 − 0.4	}�	:		�         
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with  A^7 = n	π		 V)²u    for t ≤ τini 

A^7 = n	π	 V)²u − AKPP�t�   for t > τini           (A.14) 

where AKPP�t� is calculated using the pit depth at time G for G ∈ c2", 23�f. 
After the pit-to-crack transition time 23�, the crack size is calculated by integrating the fatigue 

crack growth rate. 
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Appendix 3: Polynomial regression of the failure probabilities obtained by FORM 

The following Table shows the results of the first order reliability method applied to the 
elements of the bridge superstructure example treated in chapter 3. The failure probability is 
calculated for the 6 beams by considering different reinforcement areas. The probability of 
failure is obtained for each beam, which degrades with time due to corrosion. Also, the 
conditional probability �|��G� is computed for each beam, which is the probability of failure of 

the beam bi knowing that bj has failed. 

 
n 8 8 8 8 8 

αi*inci/j 0.304 0.247 0.228 0.209 0.19 

t/i P2/1 P1/2 P2/3 P2/4 P1 & P2 

1 1.000 1.644×10-1 1.785×10-2 4.524×10-4 1.667×10-6 

2 1.000 1.644×10-1 1.785×10-2 4.524×10-4 1.667×10-6 

3 1.000 1.644×10-1 1.785×10-2 4.524×10-4 1.667×10-6 

4 1.000 1.644×10-1 1.785×10-2 4.524×10-4 1.667×10-6 

5 1.000 1.644×10-1 1.785×10-2 4.524×10-4 1.667×10-6 

6 1.000 1.644×10-1 1.785×10-2 4.524×10-4 1.667×10-6 

7 1.000 1.644×10-1 1.785×10-2 4.524×10-4 1.667×10-6 

8 1.000 1.644×10-1 1.785×10-2 4.524×10-4 1.667×10-6 

9 1.000 2.210×10-1 2.922×10-2 9.347×10-4 4.489×10-6 

10 1.000 2.311×10-1 3.154×10-2 1.048×10-3 5.258×10-6 

11 1.000 2.407×10-1 3.383×10-2 1.164×10-3 6.077×10-6 

12 1.000 2.498×10-1 3.609×10-2 1.283×10-3 6.956×10-6 

13 1.000 2.587×10-1 3.835×10-2 1.407×10-3 7.903×10-6 

14 1.000 2.674×10-1 4.062×10-2 1.535×10-3 8.922×10-6 

15 1.000 2.759×10-1 4.291×10-2 1.668×10-3 1.002×10-5 

16 1.000 2.842×10-1 4.523×10-2 1.807×10-3 1.121×10-5 

17 1.000 2.924×10-1 4.756×10-2 1.952×10-3 1.248×10-5 

18 1.000 3.005×10-1 4.993×10-2 2.103×10-3 1.386×10-5 

19 1.000 3.084×10-1 5.233×10-2 2.260×10-3 1.533×10-5 

20 1.000 3.163×10-1 5.477×10-2 2.424×10-3 1.692×10-5 

21 1.000 3.241×10-1 5.723×10-2 2.595×10-3 1.863×10-5 

22 1.000 3.318×10-1 5.974×10-2 2.774×10-3 2.046×10-5 

23 1.000 3.395×10-1 6.228×10-2 2.959×10-3 2.242×10-5 

24 1.000 3.470×10-1 6.486×10-2 3.153×10-3 2.453×10-5 

25 1.000 3.546×10-1 6.748×10-2 3.354×10-3 2.678×10-5 

26 1.000 3.620×10-1 7.014×10-2 3.564×10-3 2.918×10-5 

27 1.000 3.694×10-1 7.284×10-2 3.782×10-3 3.175×10-5 

28 1.000 3.768×10-1 7.558×10-2 4.008×10-3 3.450×10-5 

29 1.000 3.841×10-1 7.836×10-2 4.244×10-3 3.743×10-5 

30 1.000 3.913×10-1 8.118×10-2 4.488×10-3 4.055×10-5 

31 1.000 3.985×10-1 8.404×10-2 4.742×10-3 4.388×10-5 

32 1.000 4.057×10-1 8.694×10-2 5.006×10-3 4.742×10-5 

33 1.000 4.128×10-1 8.989×10-2 5.279×10-3 5.118×10-5 

34 1.000 4.199×10-1 9.287×10-2 5.563×10-3 5.518×10-5 
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35 1.000 4.269×10-1 9.590×10-2 5.857×10-3 5.944×10-5 

36 1.000 4.339×10-1 9.897×10-2 6.161×10-3 6.395×10-5 

37 1.000 4.408×10-1 1.021×10-1 6.477×10-3 6.874×10-5 

38 1.000 4.477×10-1 1.052×10-1 6.804×10-3 7.381×10-5 

39 1.000 4.545×10-1 1.084×10-1 7.142×10-3 7.919×10-5 

40 1.000 4.613×10-1 1.117×10-1 7.491×10-3 8.488×10-5 

41 1.000 4.680×10-1 1.149×10-1 7.853×10-3 9.091×10-5 

42 1.000 4.748×10-1 1.182×10-1 8.227×10-3 9.728×10-5 

43 1.000 4.814×10-1 1.216×10-1 8.613×10-3 1.040×10-4 

44 1.000 4.880×10-1 1.250×10-1 9.013×10-3 1.111×10-4 

45 1.000 4.946×10-1 1.284×10-1 9.425×10-3 1.187×10-4 

46 1.000 4.989×10-1 1.319×10-1 9.850×10-3 1.266×10-4 

47 1.000 4.924×10-1 1.354×10-1 1.029×10-2 1.350×10-4 

48 1.000 4.860×10-1 1.390×10-1 1.074×10-2 1.438×10-4 

49 1.000 4.796×10-1 1.426×10-1 1.121×10-2 1.531×10-4 

50 1.000 4.733×10-1 1.462×10-1 1.169×10-2 1.629×10-4 

Table A.1: Conditional probability data obtained by FORM for 50 years, for for P1/2, P2/3, P2/4, 
P1 and P2. 

n 7 7 7 7 
αi*inci/j 0.208 0.192 0.176 0.16 

t/i P3/1 P3/4 P3/5 P3 

1 4.876×10-2 2.815×10-3 3.526×10-5 6.021×10-8 

2 4.876×10-2 2.815×10-3 3.526×10-5 6.021×10-8 

3 4.876×10-2 2.815×10-3 3.526×10-5 6.021×10-8 

4 4.876×10-2 2.815×10-3 3.526×10-5 6.021×10-8 

5 4.876×10-2 2.815×10-3 3.526×10-5 6.021×10-8 

6 4.876×10-2 2.815×10-3 3.526×10-5 6.021×10-8 

7 4.876×10-2 2.815×10-3 3.526×10-5 6.021×10-8 

8 4.876×10-2 2.815×10-3 3.526×10-5 6.021×10-8 

9 7.359×10-2 5.222×10-3 8.282×10-5 1.845×10-7 

10 7.843×10-2 5.756×10-3 9.489×10-5 2.208×10-7 

11 8.311×10-2 6.291×10-3 1.075×10-4 2.604×10-7 

12 8.770×10-2 6.833×10-3 1.207×10-4 3.037×10-7 

13 9.222×10-2 7.385×10-3 1.347×10-4 3.513×10-7 

14 9.671×10-2 7.950×10-3 1.494×10-4 4.034×10-7 

15 1.010×10
-1

 8.529×10-3 1.651×10-4 4.607×10-7 

16 1.060×10
-1

 9.125×10-3 1.817×10-4 5.234×10-7 

17 1.100×10
-1

 9.737×10-3 1.992×10-4 5.920×10-7 

18 1.150×10
-1

 1.037×10-2 2.178×10-4 6.671×10-7 

19 1.190×10
-1

 1.102×10-2 2.375×10-4 7.492×10-7 

20 1.240×10
-1

 1.168×10-2 2.584×10-4 8.387×10-7 

21 1.280×10
-1

 1.237×10-2 2.804×10-4 9.363×10-7 

22 1.330×10
-1

 1.308×10-2 3.037×10-4 1.042×10-6 

23 1.370×10
-1

 1.381×10-2 3.284×10-4 1.158×10-6 

24 1.420×10
-1

 1.456×10-2 3.544×10-4 1.283×10-6 
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25 1.460×10
-1

 1.533×10-2 3.819×10-4 1.419×10-6 

26 1.510×10
-1

 1.612×10-2 4.109×10-4 1.567×10-6 

27 1.560×10
-1

 1.694×10-2 4.414×10-4 1.727×10-6 

28 1.610×10
-1

 1.778×10-2 4.736×10-4 1.899×10-6 

29 1.650×10
-1

 1.865×10-2 5.074×10-4 2.086×10-6 

30 1.700×10
-1

 1.954×10-2 5.431×10-4 2.288×10-6 

31 1.750×10
-1

 2.045×10-2 5.806×10-4 2.505×10-6 

32 1.800×10
-1

 2.139×10-2 6.200×10-4 2.739×10-6 

33 1.850×10
-1

 2.235×10-2 6.613×10-4 2.991×10-6 

34 1.890×10
-1

 2.334×10-2 7.048×10-4 3.263×10-6 

35 1.940×10
-1

 2.436×10-2 7.503×10-4 3.555×10-6 

36 1.990×10
-1

 2.540×10-2 7.981×10-4 3.868×10-6 

37 2.040×10
-1

 2.647×10-2 8.482×10-4 4.204×10-6 

38 2.090×10
-1

 2.756×10-2 9.007×10-4 4.565×10-6 

39 2.140×10
-1

 2.868×10-2 9.556×10-4 4.952×10-6 

40 2.190×10
-1

 2.984×10-2 1.013×10-3 5.366×10-6 

41 2.240×10
-1

 3.101×10-2 1.073×10-3 5.809×10-6 

42 2.300×10
-1

 3.222×10-2 1.136×10-3 6.284×10-6 

43 2.350×10
-1

 3.346×10-2 1.202×10-3 6.791×10-6 

44 2.400×10
-1

 3.472×10-2 1.271×10-3 7.332×10-6 

45 2.450×10
-1

 3.602×10-2 1.342×10-3 7.910×10-6 

46 2.500×10
-1

 3.734×10-2 1.417×10-3 8.527×10-6 

47 2.550×10
-1

 3.869×10-2 1.495×10-3 9.185×10-6 

48 2.610×10
-1

 4.008×10-2 1.577×10-3 9.886×10-6 

49 2.660×10
-1

 4.149×10-2 1.661×10-3 1.063×10-5 

50 2.710×10
-1

 4.294×10-2 1.750×10-3 1.143×10-5 

Table A.2: Conditional probability data obtained by FORM for 50 years, for P3/1, P3/4, P3/5 and 
P3. 

n 7 7 7 7 

αi*inci/j 0.21 0.18 0.165 0.15 

t/i P6/5 P5/4 P5/3 P5 

1 6.376×10-2 1.245×10-4 5.650×10-7 3.122×10-10 

2 6.376×10-2 1.245×10-4 5.650×10-7 3.122×10-10 

3 6.376×10-2 1.245×10-4 5.650×10-7 3.122×10-10 

4 6.376×10-2 1.245×10-4 5.650×10-7 3.122×10-10 

5 6.376×10-2 1.245×10-4 5.650×10-7 3.122×10-10 

6 6.376×10-2 1.245×10-4 5.650×10-7 3.122×10-10 

7 6.376×10-2 1.245×10-4 5.650×10-7 3.122×10-10 

8 6.376×10-2 1.245×10-4 5.650×10-7 3.122×10-10 

9 9.399×10-2 2.749×10-4 1.588×10-6 1.148×10-9 

10 9.980×10-2 3.118×10-4 1.874×10-6 1.416×10-9 

11 1.054×10-1 3.499×10-4 2.181×10-6 1.717×10-9 

12 1.108×10-1 3.895×10-4 2.513×10-6 2.056×10-9 

13 1.162×10-1 4.310×10-4 2.873×10-6 2.437×10-9 

14 1.215×10-1 4.745×10-4 3.262×10-6 2.866×10-9 
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15 1.267×10-1 5.201×10-4 3.685×10-6 3.348×10-9 

16 1.320×10-1 5.681×10-4 4.144×10-6 3.888×10-9 

17 1.372×10-1 6.186×10-4 4.640×10-6 4.493×10-9 

18 1.424×10-1 6.716×10-4 5.178×10-6 5.170×10-9 

19 1.476×10-1 7.274×10-4 5.759×10-6 5.925×10-9 

20 1.528×10-1 7.860×10-4 6.387×10-6 6.765×10-9 

21 1.580×10-1 8.476×10-4 7.065×10-6 7.700×10-9 

22 1.633×10-1 9.123×10-4 7.796×10-6 8.738×10-9 

23 1.685×10-1 9.801×10-4 8.584×10-6 9.889×10-9 

24 1.738×10-1 1.051×10-3 9.432×10-6 1.116×10-8 

25 1.791×10-1 1.126×10-3 1.034×10-5 1.257×10-8 

26 1.844×10-1 1.204×10-3 1.132×10-5 1.413×10-8 

27 1.897×10-1 1.286×10-3 1.237×10-5 1.584×10-8 

28 1.950×10-1 1.372×10-3 1.350×10-5 1.773×10-8 

29 2.004×10-1 1.462×10-3 1.471×10-5 1.981×10-8 

30 2.058×10-1 1.556×10-3 1.600×10-5 2.209×10-8 

31 2.111×10-1 1.654×10-3 1.739×10-5 2.459×10-8 

32 2.166×10-1 1.757×10-3 1.887×10-5 2.734×10-8 

33 2.220×10-1 1.864×10-3 2.045×10-5 3.034×10-8 

34 2.274×10-1 1.975×10-3 2.213×10-5 3.363×10-8 

35 2.329×10-1 2.092×10-3 2.393×10-5 3.722×10-8 

36 2.384×10-1 2.214×10-3 2.585×10-5 4.115×10-8 

37 2.439×10-1 2.340×10-3 2.789×10-5 4.543×10-8 

38 2.494×10-1 2.473×10-3 3.007×10-5 5.009×10-8 

39 2.550×10-1 2.610×10-3 3.238×10-5 5.517×10-8 

40 2.605×10-1 2.753×10-3 3.484×10-5 6.070×10-8 

41 2.661×10-1 2.902×10-3 3.745×10-5 6.671×10-8 

42 2.717×10-1 3.057×10-3 4.022×10-5 7.324×10-8 

43 2.772×10-1 3.218×10-3 4.316×10-5 8.033×10-8 

44 2.829×10-1 3.385×10-3 4.629×10-5 8.802×10-8 

45 2.885×10-1 3.559×10-3 4.959×10-5 9.635×10-8 

46 2.941×10-1 3.739×10-3 5.310×10-5 1.054×10-7 

47 2.998×10-1 3.927×10-3 5.681×10-5 1.151×10-7 

48 3.054×10-1 4.121×10-3 6.074×10-5 1.257×10-7 

49 3.111×10-1 4.322×10-3 6.489×10-5 1.371×10-7 

50 3.167×10-1 4.531×10-3 6.928×10-5 1.495×10-7 

Table A.3: Conditional probability data obtained by FORM for 50 years, for P6/5, P5/4, P5/3 and 
P5. 
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Figure A.4: Regression formula for P1/2, P2/3, P2/4, P1 and P2. 

 
Figure A.5: Regression formula for  P3/1, P3/4, P3/5 and P3. 

 

Figure A.6 : Regression formula for P6/5, P5/4, P5/3 and P5. 
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