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RÉSUMÉ

Nous étudions dans un premier temps l’intérêt de l’utilisation de la "multichannel singu-

lar spectrum analysis" (M-SSA) sur des séries temporelles de positionnements GPS. Cette

méthode permet de simultanément analyser un ensemble de séries temporelles et d’en

extraire des modes de variabilités communs sans utiliser d’information a priori sur les

structures spatiales et temporelles des champs géophysiques. Ces modes correspondent à

des tendances non linéaires, des oscillations ou du bruit.

Après avoir validé cette méthode sur des séries synthétiques imitant certaines caractéris-

tiques génériques des séries temporelles GPS nous l’appliquons à des données enregistrées

sur le volcan Akutan en Alaska. Nous y extrayons deux types de signaux. L’un périodique

de période annuel et semi-annuel correspondant à des déformations dites saisonnières.

L’autre représentant deux cycles d’inflations et de déflations successifs du volcan Akutan.

Les inflations sont rapides et courtes et suivies de déflations plus lentes et plus longues.

Dans une seconde partie nous tirons parti de la M-SSA pour analyser des séries tem-

porelles enregistrées sur plusieurs volcans. Les volcans Okmok et Shishaldin en Alaska et le

Piton de la Fournaise à la Réunion possèdent une partie de leurs histoires de déformations

qui est similaire à celle d’Akutan. Le caractère oscillatoire de ces cycles de déformations

mis en évidence par la reconstruction de portraits de phases nous mène à faire une analogie

entre le régime oscillatoire d’un simple oscillateur non linéaire et les cycles de déformations

observés à ces volcans.

Les données pétrologiques, géochimiques et géophysiques disponibles pour Okmok

et le Piton de la Fournaise combinées aux contraintes sur la dynamiques apportées par
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l’oscillateur non linéaire permet de proposer un modèle physique. Deux réservoirs su-

perficiels sont connectés par un conduit cylindrique dans lequel le magma possède une

viscosité qui dépend de la température. Un tel système se comporte de manière similaire

à l’oscillateur non linéaire étudié précédemment. Lorsque que le gradient de température

vertical présent dans le fluide est suffisamment important et que le flux de magma entrant

dans le système de réservoirs est compris entre deux valeurs déterminées analytiquement

un régime oscillatoire non linéaire se met en place. Ce régime se caractérise par des phases

de variations rapides et courtes de surpressions dans les réservoirs suivies de phases plus

calmes.
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CHAPTER 1

INTRODUCTION

Le contexte moderne des sciences de la Terre se caractérise par la grande quantité de don-

nées disponibles et accessibles. Cette abondance est causée en partie par le développement

de l’observation de la Terre de l’espace ainsi qu’à la mise en place de réseaux d’instrumentations

déployés à des échelles locales, régionales et globales. Ces moyens permettent la collecte

de données qui présente un grand intérêt pour l’étude des systèmes naturelles.

La géodésie spatiale représentée notamment par les techniques de positionnements GPS

et d’interférométrie radar (InSAR) permet en particulier l’acquisition de mesures de défor-

mations de la surface de la Terre. La nature de ces mesures est intéressante parce que

beaucoup de phénomènes géologiques provoquent de telles déformations.

Le déploiement de réseaux GPS proches de certaines zones de subductions par ex-

emple a révélé l’existence d’événements de glissements lents dont l’occurrence est quasi

périodique (e.g., Rogers and Dragert, 2003; Radiguet et al., 2012) ou encore l’existence de

déformations de longues périodes provoquées par des séismes de magnitudes élevés (dit

"megathrusts"). On peut notamment faire l’observation qu’une partie du Chili se déforme

toujours à cause de la relaxation visqueuse d’une partie du manteau depuis qu’il a été

perturbé par le séisme de Valdivia en 1960 (e.g. Klein et al., 2016).

Outre la découverte de nouveaux phénomènes naturels ces données permettent d’estimer
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les valeurs des paramètres qui leurs sont associés ou bien qui sont inhérents aux systèmes

géologiques qui sont à l’origine de leurs manifestations. Ce type de pratique nécessite en

général l’utilisation de modèles qui permettent de relier les phénomènes étudiés aux obser-

vations de déformations de la surface de la Terre. L’utilisation conjointe de données et de

modèles dans le but d’obtenir des informations sur un système indirectement observable

se fait par le biais de problèmes inverses et de l’assimilation de données (e.g., Tarantola,

2005; Ghil and Malanotte-Rizzoli, 1991).

Dans le cas de l’étude de zones de failles et des volcans les modèles utilisés pour ré-

soudre ces problèmes inverses sont en générales statiques. Ils ne fournissent pas d’information

sur les éléments qui contrôlent l’évolution du système dans le temps. En revanche ils per-

mettent de relier des observables — c-à-d. les mesures de déformations— à des grandeurs

qui nous renseignent, entre autres, sur la géométrie de l’objet géologique étudié ou sur

l’intensité du phénomène qui se manifeste (e.g. Segall, 2010).

Dans le cas des séismes ou des événements de glissement lents par exemple, nous

pouvons estimer la quantité de déplacement le long du plan de rupture dont la présence

est à l’origine de ces instabilités (e.g. Massonnet et al., 1993; Szeliga et al., 2008). Dans le

cas d’épisodes d’inflations ou déflations volcaniques, les variations de volume de chambres

magmatiques ainsi que leurs profondeurs sont des grandeurs fréquemment estimées (e.g.

Biggs et al., 2009; Lu et al., 2010).

Lorsque les techniques de mesure utilisées permettent d’avoir une résolution temporelle

suffisante, ces méthodes d’inversions peuvent être également exploitées pour déterminer

l’évolution dans le temps des paramètres estimés. On parle dans ce cas d’inversions ciné-

matiques qui sont des successions d’inversions statiques réalisées à des moments successifs

(e.g. Lu et al., 2005; Bletery et al., 2014).

Les problèmes inverses sous ces formes dominent la boîte à outils méthodologique

de la communauté des géodésiens qui s’intéressent aux volcans et systèmes de failles.

L’augmentation de la résolution spatiale des données —et a fortiori le développement de

l’InSAR— permet de réduire l’incertitude reliée aux paramètres inversées. En revanche

ils ne permettent pas d’exploiter pleinement l’information contenue dans les séries tem-
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porelles et dont la durée augmente quotidiennement.

Les séries temporelles offrent une information sur la dynamique qualitative des sys-

tèmes géologiques étudiés (e.g. Packard et al., 1980). Cette dynamique ne peut, par déf-

inition, être documenté à l’aide de modèles statiques. L’expression "dynamique quali-

tative" fait référence soit à la variabilité interne du système —c-à-d. l’évolution spon-

tanée du système dans le temps— soit à la réponse du système à un forçage extérieur.

L’utilisation quasi systématique des problèmes inverses statiques laisse supposer que da-

vantage d’informations de nature dynamique pourraient être obtenu.

Cette perspective peut être reliée aux méthodes de traitement du signal (e.g. Broom-

head and King, 1986a; Abarbanel et al., 1993; Ghil et al., 2002). Les motifs temporels dont

on pourrait extraire des informations sur la dynamique qualitative des systèmes naturels

sont souvent superposés à d’autres signaux ainsi qu’à du bruit qui peut avoir le désavan-

tage d’être coloré —i.e., possédant une structure temporelle qui s’apparente à un signal

géologique. Aussi, le grand nombre de données disponibles rend leur inspection sys-

tématique difficile et consommatrice de temps. Une représentation parcimonieuse d’un

ensemble de données contenant de l’information redondante peut donc s’avérer utile.

Une des stratégies mise en œuvre consiste à faire un a priori soit sur la structure spatiale

soit sur la structure temporelle du signal que l’on souhaite extraire. Dans ce cas on peut

ajuster ces structures a priori déterminées aux données et ainsi en extraire les signaux

correspondant (e.g. Ohtani et al., 2010; Riel et al., 2014a).

Bien que cette stratégie soit dans certains cas justifiée, on peut vouloir extraire des séries

temporelles sans utiliser de tels a priori. Certains motifs présents dans les séries temporelles

ne peuvent pas être représentés de manière parcimonieuse par des fonctions analytiques.

Ceci peut être relié au fait que certains motifs temporels ne correspondent tout simplement

pas à d’éventuelles solutions d’équations différentielles ordinaires pour lesquelles des solu-

tions analytiques existent. C’est pourquoi nous pouvons bénéficier de méthodes d’analyses

qui nécessitent aucun a priori sur les structures spatiales et/ou temporelles des champs

géophysiques.

Cette dernière constatation fournit le point de départ de la thèse présentée puisque nous
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commençons par étudier l’application de la "Multichannel Singular Spectrum Analysis"

(M-SSA) à des séries temporelles GPS. Elle constitue justement une méthode d’analyse de

séries temporelles dite "non paramétrique" qui nécessite l’utilisation d’aucune information

a priori sur la structure spatiale et/ou temporelle du champ géophysique que l’on souhaite

étudier.

Dans le second chapitre nous l’appliquons à des séries temporelles GPS enregistrées

à Akutan, une îles volcanique de l’arc des Aléoutiennes en Alaska. Elle permet efficace-

ment de discriminer entre deux types de signaux: un signal d’origine volcanique et un

signal saisonnier. Ces deux signaux sont également extrait du bruit contenu dans les séries

temporelles. Un test d’hypothèse statistique ,dit Monte-Carlos SSA (MC-SSA), permet

d’identifier les structures des séries temporelles associées à du bruit mais qui aurait pu

éventuellement être confondu avec un signal géophysique. Ce test nécessite de formuler

une hypothèse nulle qui constitue un a priori sur le type de bruit présent dans les données.

Le signal volcanique extrait à Akutan forme des événements successifs d’inflations et

déflations. Les périodes d’inflations sont rapides et courtes comparées aux périodes de

déflations relativement lentes et longues. Des signaux similaires possédant ces caractéris-

tiques sont extraits de trois autres volcans : Okmok et Shishaldin qui font aussi parti de

l’arc des Aléoutiennes ainsi qu’au Piton de la Fournaise situé sur l’île de la Réunion. Ces

signaux constituent justement un motif temporel qui n’aurait sans doute pas pu être extrait

de manière parcimonieuse par des fonctions analytiques. Cette constatation ainsi que la

nature oscillatoire de ces signaux suggèrent qu’ils puissent résulter d’une dynamique non

linéaire.

Un système d’équations très simple contenant deux variables permet de mimer la dy-

namique qualitative observée à ces quatre volcans. Un tel modèle mathématique est parfois

appelé une "métaphore" par la communauté des mathématiciens qui s’intéresse à la théorie

des systèmes dynamiques. Il s’agit d’un analogue mathématique contenant des éléments

qui permet de comprendre la dynamique des systèmes étudiés.

Dans le chapitre quatre nous utilisons cet oscillateur non linéaire comme une ligne

directrice qui permet de contraindre le modèle physique employé pour expliquer les cy-

4



cles de déformations observés. Nous exploitons les nombreuses données géochimiques,

pétrologiques et géophysiques provenant du Piton de la Fournaise et du volcan Okmok

pour contraindre un tel modèle. Ces deux volcans possèdent un système de "plomberie

magmatique" similaire caractérisé par la présence de plusieurs zones de stockages de

magma alimentées par une source de magma basaltique plus profonde. Nous montrons

que les séries temporelles géodésique de ces deux volcans peuvent être expliquées par

l’interaction de chambres magmatiques superficielles connectées par un conduit dans lequel

la viscosité du magma peut varier avec la température.
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CHAPTER 2

DATA-ADAPTIVE ANALYSIS OF GEODETIC TIME SERIES

Ce chapitre a fait directement l’objet d’un article publié dans JGR (Walwer et al., 2016).

2.1 Abstract

The recent development of dense and continuously operating Global Navigation Satellite

System (GNSS) networks worldwide has led to a significant increase in geodetic data sets

that sometimes capture transient-deformation signals. It is challenging, however, to extract

such transients of geophysical origin from the background noise inherent to GNSS time

series and, even more so, to separate them from other signals, such as seasonal redistri-

butions of geophysical fluid mass loads. In addition, because of the very large number of

continuously recording GNSS stations now available, it has become impossible to system-

atically inspect each time series and visually compare them at all neighboring sites. Here

we show that Multichannel Singular Spectrum Analysis (M-SSA), a method derived from

the analysis of dynamical systems, can be used to extract transient deformations, seasonal

oscillations, and background noise present in GNSS time series. M-SSA is a multivariate,

non-parametric statistical method that simultaneously exploits the spatial and temporal

correlations of geophysical fields. The method allows for the extraction of common modes

of variability, such as trends with non-constant slopes and oscillations shared across time
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series, without a priori hypotheses about their spatio-temporal structure or their noise

characteristics. We illustrate this method using synthetic examples and show applications

to actual GPS data from Alaska to detect seasonal signals and micro-deformation at the

Akutan active volcano. The geophysically coherent spatio-temporal patterns of uplift and

subsidence thus detected are compared to the results of an idealized model of such pro-

cesses in the presence of a magma-chamber source.

2.2 Introduction and motivation

The past decade has seen a rapid increase in the number and spatial density of contin-

uously operating Global Navigation Satellite System (GNSS) stations to monitor crustal

deformation in tectonically active regions or simply serve as reference stations for survey-

ing applications. The leading technique as of today is the Global Positioning System (GPS),

with two major deformation monitoring networks currently in operation, the Plate Bound-

ary Observatory (PBO) in the Western U.S. with roughly 2 000 stations and the GEONET

(http://www.gsi.go.jp/) network in Japan with ∼5 000 stations.

These networks record linear site displacements due to plate motions and interseis-

mic strain accumulation on active faults, as well as transient-deformation events of vari-

ous origins — volcanic, tectonic or hydrologic (e.g., Feng and Newman, 2009; King et al.,

2007; Miller et al., 2002) — whose spatio-temporal scales span several orders of magnitude.

Our ability to objectively and reliably detect these transients is of primary importance be-

cause they contain information on the rheological properties and stress state of near-surface

faults, as well as of the Earth’s crust and mantle. Detecting transients, however, is challeng-

ing for two reasons. First, the very large amount of data now available in large geodetic

networks make the visual inspection of time series at each site very time consuming and

well-nigh impossible. Second, the amplitude of these transients can be close to — or lie

even below — the background noise inherent to geodetic time series.

Several methods have recently been proposed to detect transient deformation in GPS

time series. Ohtani et al. (2010) model GPS time series as the sum of a spatially coherent sig-

nal described as a sum of spatial wavelets weighted by temporally varying coefficients plus
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errors from different sources, such as reference frame, site-specific noise and observation

error. Ji and Herring (2013) first smooth the time series using a Kalman filter to increase

signal-to-noise ratio, while explicitely estimating annual and semi-annual harmonic terms

to model the seasonal oscillations commonly observed in GPS time series. They analyze

the data in the temporal dimension first by estimating time-correlated signals, then, in a

separate step, use a principal component analysis (PCA) to exploit the spatial correlations

between the smoothed and filtered time series.

The approach of Riel et al. (2014a) is to parameterize position time series using a dic-

tionary of temporally varying non-orthogonal functions assumed to represent all possible

signal types present in the data. The dictionary contains functions to model known signals,

such as sinusoidal functions for seasonal oscillations or logarithmic functions for post-

seismic deformation. It also contains B-spline functions with various periods and starting

times to represent transient displacements. The method accounts for spatial correlations

using common B-spline functions to describe transient mode of variability shared accross

several time series.

These methods all aim at improving the signal-to-noise ratio, while using the spatial or

temporal correlation inherent to GPS position time series to search for transient events. All

three use a priori hypotheses on the spatial or temporal structure of the transients to build

basis functions — e.g., wavelets or B-splines — onto which the data can then be projected

to detect and extract those transients. In Ji and Herring (2013) the a priori hypothesis is the

stochastic process that gives rise to the noise and the transient signal.

All these methods also parameterize the seasonal signal as a sum of harmonic func-

tions with annual and semi-annual periods; this assumption prevents one, however, from

accounting for interannual variability. Moreover, the stochastic properties of GPS position

time series and the temporal and spatial shapes of transient events are not really known at

this time. Making educated guesses on the stochastic properties of GPS time series or on

the basis functions that best describe their temporal correlations is a valid approach, but

one would like in fact to extract this information from the GNSS data sets in a data-adaptive

way, i.e., purely based on information contained in the data, without a priori assumptions.
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The purpose of this paper is to show that some of these shortcomings can be overcome

using Multichannel Singular Spectrum Analysis (M-SSA). M-SSA is an advanced time series

analysis method that simultaneously takes advantage of the spatial and temporal correla-

tions in geophysical fields to extract empirical basis functions that represent the common

modes of spatio-temporal variability of the data set. The main benefit of this method is to

allow unraveling oscillations and trends with non-constant slopes embedded in time series

without using any a priori knowledge about their period and amplitude or their spatio-

temporal structures. M-SSA was first proposed, in the version used here, in the field of

climate studies by Keppenne and Ghil (1993) and Plaut and Vautard (1994) to extract low-

frequency oscillations of the atmospheric system from geopotential height field data. It

was also used to study surface winds (Jiang et al., 1995) and sea level data (Unal and Ghil,

1995). Ghil et al. (2002) provide a review of the methodology and of many applications; see

also http://web.atmos.ucla.edu/tcd/ssa/ for further details and references.

We show in the following that M-SSA is well-suited to extract geophysically relevant

information from GPS position time series. In the next section, we briefly review the

methodology and illustrate its application to a set of synthetic time series whose prop-

erties resemble those of GPS records. This methodology is then applied in Section 2.4 to

a set of recorded displacements at 8 GPS sites on the Akutan volcano in the Aleutian Is-

lands. In Section 2.5, we show that M-SSA can be successfully applied to larger data sets,

by using 80 stations from the network covering Alaska, as well as to the extraction of noise

characteristics from the Akutan signals.

2.3 Multichannel Singular Spectrum Analysis (M-SSA)

2.3.1 Formulation

Chen et al. (2013) have already proposed using single-channel SSA for the extraction of the

seasonal signal from a single GPS time series, and reviewed the univariate methodology.

The emphasis here is on the often more powerful multivariate case.
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2.3. MULTICHANNEL SINGULAR SPECTRUM ANALYSIS (M-SSA)

Let

{Xl(t) : l = 1, ..., L; t = 1, . . . , N} (2.1)

be an ensemble of GPS time series: L is the number of channels — each channel here being

a time series — and N the number of data points in each channel. The sampling time ∆t is

constant, hence (N − 1)∆t is the duration of the time series.

The key idea of M-SSA is to exploit the covariance information contained in a series of

lagged copies of all Xl(t) over a sliding M-point window (Broomhead and King, 1986a,b;

Ghil et al., 2002). In M-SSA one starts therefore by considering the matrix X̃l that includes

M time-delayed copies of the original time series Xl(t), written as:

X̃l =



Xl(1) Xl(2) · · · Xl(M)

Xl(2) Xl(3) · · · Xl(M + 1)

· · · · · ·

· · · · · ·

· · · · · ·

Xl(N′) Xl(N′ + 1) · · · Xl(N)


(2.2)

with N′ = N − M + 1. Here M is the length of the window used to embed the original

time series and it must be chosen to optimize the quantity of information extracted while

maintaining satisfactory statistical confidence in that information.

The covariance matrix Tl,l′ between two time series Xl(t) and Xl′(t) is given by

(Tl,l′)j,j′ =
1
Ñ

min(N,N+j−j′)

∑
n=max(1,1+j−j′)

Xl(t)Xl′(t + j′j), (2.3)

where

Ñ = min(N, N + j− j′)−max(1, 1 + j− j′) + 1. (2.4)
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These matrices are the blocks of a grand covariance matrix T̃, given by

T̃ =



T1,1 T1,2 · · · T1,L

T2,1 T2,2 · · · T2,L

· · · · · ·

· · · Tl,l′ · ·

· · · · · ·

TL,1 TL,2 · · · TL,L


. (2.5)

The resolution of the eigenvalue problem

T̃Ek
= λkEk (2.6)

yields the L×M eigenvalues λk and eigenvectors Ek of T̃. Each Ek can be seen as a succes-

sion of L segments Ek
l of length M. We can thus associate a segment Ek

l to each time series

Xl(t). The eigenvectors Ek are called the spatio-temporal empirical orthogonal functions

(ST-EOFs). Each eigenvalue carries a given amount of variance from the overall data set.

2.3.2 Synthetic Example

To illustrate the method, we consider first, for the sake of simplicity, the ten-year long

univariate time series plotted in Figure 2.1, with N = 3652. This synthetic time series is the

sum of an arctangent function that simulates a transient displacement, harmonic functions

with annual and semi-annual periods that simulate seasonal oscillations, along with a white

noise and a colored noise. The latter is associated with the presence of correlations in the

time series and it is chosen to be a stochastic process characterized in the spectral domain

by the power law (e.g. Agnew, 1992)

S( f ) = S0

(
f
f0

)−α

. (2.7)

Here S( f ) is the spectral density, f is the frequency, P0 and f0 are constants and α is the

spectral index: the larger α, the faster the roll-off, i.e., the faster the decay of the spectral

12
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density with increasing frequency f . For this first synthetic example we choose α = 0.5.

The variance associated with the colored noise account for 50% of the total noise variance.

We apply M-SSA with M = 400 days in order to capture the annual signal contained

in the synthetic time series. The resulting singular spectrum in Figure 2.2 displays the

eigenvalues calculated by solving Eq. (2.6), sorted in decreasing order and normalized so

that they represent their corresponding portion of the total variance of the time series. Note

that the singular values µk are actually the square roots of the eigenvalues λk, i.e. µ2
k = λk.

We prefer, though, plotting the λk’s, since they sum to unity, but will still refer to the plots

as singular spectra, which is the more customary terminology in the M-SSA context.

One observes that most of the variance in the time series is contained in the first six

eigenvalues, with a drop and a plateau after the sixth eigenvalue (figure 2.2). These six

leading eigenvalues represent the signal contained in the time series, while the lower-order

ones correspond to noise. One also notices that eigenvalues 2-3 and 4-5 are forming pairs,

which indicate the presence of oscillatory modes (Vautard and Ghil, 1989; Ghil et al., 2002).

These results illustrate the capacity of M-SSA to extract periodic components, such as the

seasonal signals often present in GPS time series.

In studying a single time series one encounters only temporal EOFs (T-EOFs), while

using several time series would have given rise to ST-EOFs, cf. Eqs. (2.5) and (2.6). The

five leading T-EOFs are shown in Figure 2.3. Note that T-EOFs 2-3 and 4-5, associated

with the two pairs of eigenvalues mentioned above, are in phase quadrature. Such pairs

of T-EOFs can be seen as data-adaptive counterparts of the sine and cosine functions in

the usual Fourier analysis of time series. The advantage of these pairs over the Fourier

sine and cosine functions is to allow the represention of periodic signals with time-varying

amplitudes with a few EOFs only (Vautard and Ghil, 1989; Ghil et al., 2002).

The projection of the rows of matrix X̃ = (X̃1, X̃2, ..., X̃l) onto the eigenvectors Ek gives

the coefficients Ak(t):

Ak(t) =
M

∑
j=1

L

∑
l=1

Xl(t + j− 1)Ek
l (j). (2.8)

The L×M vectors Ak(t) are called the spatio-temporal principal components (ST-PCs) in

M-SSA or temporal PCs (T-PCs) in the case of univariate data. They are time series of

13
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weighting coefficients associated with their corresponding T-EOFs.

Figure 2.4 shows the five leading T-PCs recovered from the synthetic time series. As

for the T-EOFs, T-PCs 2-3 and 4-5 are in phase quadrature, with annual and semi-annual

periods, respectively. They capture the seasonal oscillations present in the synthetic time

series, while the first T-PC captures the transient displacement.

2.3.3 Signal Reconstruction

The ST-PCs and the ST-EOFs allow us to partially reconstruct the time series Xl(t) (Ghil

and Vautard, 1991; Vautard et al., 1992; Plaut and Vautard, 1994). The part of the signal

Rk
l (t) associated with the kth ST-EOF and ST-PC is given by:



Rk
l (t) =

1
M

M

∑
j=1

Ak(t− j + 1)Ek
l (j), M ≤ t ≤ N −M + 1

Rk
l (t) =

1
i

i

∑
j=1

Ak(t− j + 1)Ek
l (j), 1 ≤ t ≤ M− 1

Rk
l (t) =

1
N − i + 1

M

∑
j=1−N+M

Ak(t− j + 1)Ek
l (j), N −M + 2 ≤ t ≤ N.

(2.9)

These partial reconstructions are filtered versions of the original time series and capture

a given portion of their total variance. No information is lost in the process since one can

reconstruct the full time series by summing the L×M Rk
l (t).

Figure 2.5 shows the reconstructions of the transient displacement and the seasonal

oscillations of our example. They faithfully reproduce the transient and oscillatory signals

embedded in the synthetic data.

In summary, M-SSA allows one to decompose time series into statistically uncorrelated

components that can be classified into trends, oscillatory patterns, and noise. As shown

above with the synthetic example of a transient event, trends need not be linear, as em-

phasized already by Ghil and Vautard (1991). Moreover, oscillations can be amplitude and

phase modulated, as will be shown below.
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2.3.4 M-SSA versus SSA and PCA

At this stage, we have illustrated the method using a univariate synthetic time series, which

only gives rise to temporal EOFs and PCs. This particular case of the more generic M-

SSA corresponds to L = 1 in Eq. (2.1) and is simply called SSA, cf. Broomhead and King

(1986a) and Vautard and Ghil (1989). One can also note that the generic case reduces to the

classical Principal Component Analysis (PCA) (Preisendorfer et al., 1981), commonly used

in statistical analysis, when M = 1 in Eq. (2.2).

M-SSA extracts, however, relevant modes of variability in time series more efficiently

when using jointly several time series with correlated information. In this case, M-SSA

simultaneously exploits the spatial and the temporal correlations in the time series, which

allows for a more efficient separation of noise from trends and oscillatory modes.

We illustrate this point by simulating 15 time series in a manner similar to the one

described above, all sharing a common transient signal. We apply M-SSA to ensembles of

1 to 15 of those time series and compute the misfit between the synthetic and reconstructed

transient signal. As shown in Figure 2.6A, the misfit systematically decreases as the number

of time series that are jointly analyzed increases.

We also illustrate the benefit of using both spatial and temporal correlations jointly over

using spatial correlations only, as in the case of PCA, by varying M. Figure 2.6B shows that

the misfit is maximum for M = 1 (PCA case) and systematically decreases as M increases.

These two simple synthetic tests show that simultaneously exploiting spatial and temporal

correlations in time series, instead of using only one of them, significantly improves our

ability to extract the transient signals embedded in the data.

We varied the spectral index α of the noise introduced in the synthetic time series by

using the values of α = 0, 1 and 2. These values correspond to white noise, flicker noise and

random walk noise (sometimes called brownian or red noise), respectively, all of which are

commonly found in GPS time series (e.g. Williams, 2003). We observe in Figure 2.6 that the

transient is captured more easily when α is lower and that separating a transient requires

more information, i.e. a larger number L of time series, when α is higher. This type of

dependence on α is expected because a higher spectral index means that — for the same
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total spectral power, given by
∫ ∞

0 f S( f )d f — the spectral density, cf. Eq. (2.7), will be

higher at low frequencies f . This reflect the occurence of more time-correlated patterns

with long correlation times, i.e. more patterns that can be similar to the transient signal.

We also conducted a more realistic multivariate synthetic test that is reported in the

appendix. This test was formulated by the Southern California Center (SCEC) community

and was also performed by Riel et al. (2014a). It consists in a set of synthetic data simulat-

ing time series recorded at cGPS sites in California. These time series contains simulated

colored noise, seasonal signals, and transient signals related to a slip event on the Santa

Monica fault.

2.4 Application to Transient Deformation of the Akutan Volcano,

Alaska

We applied M-SSA to a set of GPS data recorded at the Akutan volcano, Alaska, in or-

der to test the method in the case of GPS position time series. Akutan is an active vol-

cano of the Aleutian arc equiped with 8 continuously operating GPS receivers since late

2006; see maps in Figure 2.7. The data are taken from the Plate Boundary Observatory,

http://pbo.unavco.org/.

We chose this case because Ji and Herring (2011) were able to identify a transient infla-

tion episode in early 2008 given only a few millimeters of horizontal and vertical displace-

ment, i.e. close to the noise level in the GPS time series. To do so, they first smoothed each

time series independently by modeling it as the sum of a constant rate, annual and semi-

annual harmonic functions, and a first-order Gauss-Markov (FOGM) process that accounts

for temporally correlated noise and transient signal. In a second step, they used a PCA

analysis to extract spatially correlated information from the FOGM state estimates. They

also removed some of the noise common to all Alaska continuous GPS (cGPS) stations —

hence not specific to Akutan’s deformation — by estimating a 7-parameter reference frame

transformation to the original time series in a first, pre-analysis, stage.

With this composite method, Ji and Herring (2011) were able to successfully identify
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an inflation event with 1–10 mm of radial horizontal displacement and 0–11 mm of uplift

centered on the active crater; this event started in February 2008 and ended 4 months later.

Their approach, however, makes a number of a priori assumptions, in particular on the

shape of the seasonal oscillations with constant amplitude and on the a priori probability

density function of the noise and the transient signal. The fact that they are able to identify

a transient likely to be of magmatic origin justifies their hypotheses in this specific case.

We would like to test whether one can also identify this transient inflation event by

jointly exploiting the spatial and temporal correlations contained in the data, using the M-

SSA on the raw, unfiltered time series, with no pre-processing whatsoever. Moreover, we

will show that M-SSA can detect additional inflation events in more recent data, as well as

being applicable to much larger data sets.

2.4.1 The GPS Data

We use position time series from cGPS stations of the PBO network, sampled on a daily

basis and expressed in the Stable North America Reference Frame (SNARF) (Blewitt et al.,

2005). Since the cGPS measure displacement in the northward, eastward, and upward

direction, and since there are eight such stations on the island (see Figure 2.7), the number

of channels in our M-SSA analysis is L = 8× 3 = 24.

M-SSA requires that all time series analyzed have the same length. Hence we filled

missing data in any of the channels over an interval of length at epoch tm by using the

following model:

x(tm) = atm + b + σr, (2.10)

where x(tm) is an estimation of the missing data, a and b are the slope and intercept of

the regression line, respectively, r is a Gaussian random variable with zero mean and unit

standard deviation, while σ is the standard deviation of the available data over an interval

of the same length.

Filling gaps in this way is justified by the fact that gaussian noise is not correlated in

time or space and is thus going to be seen by M-SSA as part of the noise, rather than of the

trends or oscillatory signals (Unal and Ghil, 1995).
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We also removed the linear trend in each time series before applying the M-SSA to the

dataset. The linear trend, associated with stationary deformation, captures in general the

largest proportion of variance in the dataset. Because of this, it is useful to remove it to

focus on transient-deformation that account often for much less variance.

2.4.2 Choice of window width M

Before we describe the modes of variability, based on the ST-EOFs and ST-PCs, we discuss

the choice of the window width M; it equals the number of lagged time series used to

construct the grand covariance matrix T̃ and it is a key parameter of M-SSA. M determines,

in particular, the length of the ST-EOFs and, therefore, it limits the maximum period of the

oscillations that can be extracted from the data, which equals approximately M∆t.

The optimal value of M is a trade-off between the statistical significance of the extracted

modes and the maximum period of the oscillations one aims to extract. The larger the

N/M ratio — i.e., the smaller the value of M — the larger the statistical significance of the

extracted modes (Ghil et al., 2002). This is so because the uncertainty associated with the

estimation of the covariances decreases as the number of points used in the estimation, i.e.

N−M + 1 — increases. On the other hand, extracting the annual signal present in the GPS

time series obviously requires that M be greater than 365 days.

We applied M-SSA to the 8 GPS time series recorded at Akutan volcano from late 2006

to early 2014, for a total of 3000 data points in the three displacements — N–S, E–W and

up–down — and obtained the singular spectra shown in Figure 2.8. The singular spectra

in the figure were obtained for 3 different values of M: 400, 500, and 600 days. The three

spectra show a similar shape, with a first eigenvalue well above the others and accounting

for a large portion of the data variance. It is followed by a first plateau formed by two

eigenvalues for M = 400 or three eigenvalues for M = 500 and M = 600. Vautard and Ghil

(1989) already noticed that, as M increases, the same feature in the spectrum will require a

larger number of modes to be described fully.

All three spectra show a second plateau, sloping down to a third one that ends at

eigenvalue 15. The ST-EOFs and ST-PCs for these value of M are plotted in Figures 2.10
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and 2.9, respectively. They also show similar shapes, for instance the letter-M–like trend

visible in the first ST-PC for all values of the window width M, cf. Figure 2.9.

The similarity of the spectra, together with the robustness of the shape of the ST-EOFs

and ST-PCs, suggests that they capture the same dynamic processes. This parametric ro-

bustness — in addition to standard statistical significance tests — gives us further confi-

dence in the extracted modes being physically meaningful (Ghil et al., 2002, Section 5.2). In

the following, we will discuss results obtained with M = 400.

2.4.3 Singular Spectrum, ST-EOFs and ST-PCs

The ST-PCs associated with the first eleven eigenvalues are plotted in Figure 2.9. We ob-

serve that the first ST-PC describes 6% of the total variance of the data set and corresponds

to an M-shaped trend and a relatively long-periodic temporal variability. ST-EOFs 2 and 3

carry 7% of the variance and, as shown in Figure 2.10, they are in phase quadrature. They

form a pair that captures an oscillatory component of annual period and represents 7% of

the total variance (Figure 2.9).

ST-PCs 4, 5 and 8, together with ST-PC 1, capture the trend with non-constant slope; this

triplet contains 4% of the variance, for a total of 12% in the data-adaptive trend. ST-PCs 6–7

and ST-PCs 9–11 form two pairs that together capture an oscillatory component of semi-

annual period; together, these four ST-PCs contain 6% of the data variance (Figure 2.9).

ST-PC 10 captures also an oscillatory component with mostly annual period and contains

1% of the data variance.

2.4.4 Testing the statistical significance of the extracted modes

As first pointed out by Allen and Smith (1994), colored noise in geophysical time series can

lead to the false detection of modes that resemble those of geophysical origin when ap-

plying the M-SSA. To make sure that the modes that we consider when reconstructing our

time series are not associated with colored noise, appropriate tests of statistical significance

have to be applied.

Monte Carlo SSA (MC-SSA) was first proposed by Allen and Smith (1994) as such a test
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for the univariate SSA and then extended by Allen and Robertson (1996) to the multivariate

case. This test helps discriminate between the modes associated with signals and those

associated with noise. MC-SSA relies on constructing sets of “surrogate data” (Theiler

et al., 1991) and it allows one to formulate several distinct null hypotheses.

The main idea of MC-SSA is to compare the partial variances in the dataset being ana-

lyzed, in the directions spanned by its ST-EOFs, with the corresponding variances resulting

from a particular null hypothesis. The null hypothesis here takes the form of an ensemble

of surrogate data XR of the same length N and dimension L as the dataset we wish to

analyze.

The partial variances of the null hypothesis in the directions defined by the ST-EOFs Ek

are estimated by the diagonal elements of

ΛR = E′T̃RE. (2.11)

Here E′ denotes the transpose of the matrix E whose L×M columns are the ST-EOFs Ek

deduced from the covariance matrix of the data via equation (2.6), and T̃R is the covariance

matrix of the null hypothesis, calculated using the ensemble of surrogate data XR and

equation (2.3).

By calculating ΛR for a sufficiently large ensemble of surrogate data, one can estimate

confidence intervals for the diagonal elements of ΛR. If the eigenvalues of the data covari-

ance matrix lie inside or below these confidence intervals, we conclude that the associated

modes are not significant with respect to the null hypothesis under consideration.

This test, however, turns out to be too lenient in the multivariate case; in particular when

the covariance matrix T̃ deduced from the data is rank deficient, i.e. when L × M � N

(Allen and Robertson, 1996). This limitation, however, can be overcome by an improvement

of the test proposed by Groth and Ghil (2015b). The M-SSA results reported in the following

use the improved MC-SSA algorithm of Groth and Ghil (2015b).

The difficulty in this kind of test is the choice of the null hypothesis against which the

data are tested. Here we choose to test only the statistical significance of the first eleven

modes described above and represented in Figure 2.9. It is indeed amongst these modes
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that we identified the different signals that are discussed in the next sections of the paper.

The surrogate data are therefore constructed in two steps. First, we reconstruct the GPS

time series using all ST-EOFs and ST-PCs except the first eleven ones. In other words, we

reconstruct the time series using equation (2.9), with k ranging from 12 to L× M. In the

second step, we add to these reconstructed time series a noise model against which we wish

to test the significance of the first eleven modes. Here, two canonical types of noise models

are considered : flicker noise with α = 1 and random walk noise with α = 2. These two

types of colored noise are often considered to be present in GPS time series (e.g. Williams,

2004).

Figure 2.11 shows the MC-SSA test results. Error bars represent the two-sided 95%

confidence intervals derived from 500 realizations of the surrogate data set, and we con-

centrate on the first eleven eigenvalues. For the null hypothesis that contains flicker noise

(Figure 2.11 A), only eigenvalues 5 and 8 lie within the error bars. They are, however, rela-

tively close to the upper ticks of their associated error bars, i.e. to the 97.5% quantile, and

especially so in the case of the eighth eigenvalue, which lies almost on the upper tick. In

this case, for eigenvalues 5 and 8, our test does not reject the null hypothesis. However, the

proximity of the eigenvalues to the upper tick may be indicative of a type II error, or false

negative.

For the MC-SSA test against random walk noise (Figure 2.11 B) eigenvalues 5 and 8

clearly lie within their associated error bars. Hence ST-EOFs 5 and 8 and the corresponding

ST-PCs (figure 2.9) may have been generated by the presence of random walk noise in the

data set and are consequently not used to reconstruct the signals considered in the next

setions.

2.4.5 Seasonal Signals

Seasonal signals with annual and semi-annual periods are ubiquitous in GPS position time

series, and are known to be caused in a large part by mass transport and redistribution in

the atmosphere, oceans, and continental water reservoirs, whose load triggers deformation

of the Earth surface that is measurable with space-geodetic techniques (e.g., van Dam and
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Wahr, 1998; Dickey, 2002; Bevis et al., 2005; Fu et al., 2012).

Seasonal signals contain important geophysical information on the rheological structure

of the Earth’s crust and mantle (Chanard et al., 2014) and on the spatio-temporal charac-

teristics of the load (e.g. Blewitt, 2001; Heki, 2004). They must, therefore, be extracted as

objectively as possible from the data.

However, our ability to extract transient deformations from GPS time series depends on

our capaticity to identify correctly the seasonal signal, since, the transients we are interested

in may share some of the characteristics of seasonal signals. In particular, the spectral

content of the seasonal and transient signals may overlap, which renders classic time series

analysis based on the Fourier transform unsuitable. Thus, for instance, Heki (2004) showed

that Fourier analysis of interannually modulated seasonal oscillations may yield transient-

like residuals.

Seasonal signals in GPS time series are commonly modeled using the sum of sinu-

soidal functions with annual and semi-annual periods fitted to the data, which provides

an estimate of their phase and amplitude. This procedure is efficient in the case of purely

harmonic signals but cannot account, for instance however, for interannual amplitude mod-

ulations or asymmetric oscillations, two characteristics that often are present in actual GPS

time series (Heki, 2004).

M-SSA has long been used in meteorology and climatology to extract such anharmonic

and amplitude-modulated oscillatory modes of variability for the atmosphere and oceans

(e.g., Keppenne and Ghil, 1993; Plaut and Vautard, 1994; Unal and Ghil, 1995; Jiang et al.,

1995). Here we take advantage of this capacity of M-SSA to extract and reconstruct the

seasonal signal present in GPS time series without constraining a priori their period, shape,

or time-dependent amplitude.

Figure 2.10 shows the pair of ST-EOFs 2-3 that captures the annual oscillations in the

Akutan GPS time series. The phase quadrature between the two members of the pair em-

phasizes their being data-adaptive counterparts of the fixed sine and cosine basis functions

of Fourier transforms. Their main advantage is that these two ST-EOFs alone describe the

annual oscillations in the L = 24 time series and their interannual amplitude variation (Ghil
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et al., 2002, and references therein). The three panels of the figure show very small differ-

ences in results for the window widths M = 400, 500 and 600 days, a finding that supports

the robustness of the M-SSA results. ST-EOFs 6-7 and 9–11 (not shown) jointly capture the

semi-annual variability.

The vertical component of the annual signal in Figure 2.9 is weaker than its horizontal

components. The weakness of the vertical component is consistent with Akutan being an

island of small size, where vertical deformation caused by atmospheric or hydrological

loading — the latter in the form of continental water or snow — is expected to be small

(van Dam and Herring, 1994). In such a setting, nontidal ocean mass loading, unaccounted

for in the cGPS analysis used here, should represent the largest contribution to seasonal

deformation (Munekane and Matsuzaba, 2004).

The reconstructed series using the combination of ST-EOFs 2-3, 6-7, and 9–11 and the

corresponding ST-PCs (Figure 2.9) together capture well the seasonal oscillations that are

readily apparent in the data, as shown in Figure 2.12. In spite of the small number of ST-

EOFs used, the reconstructed time series exhibits fairly complex waveforms; in particular, a

lower-amplitude episode in the vertical component of the seasonal signal rightmost column

in Figure 2.12 is shared in 2009 by all the stations. This lower-amplitude episode is also

visible in Figure 2.13 for the specific site AV10.

We find, in fact, that this modulation is present in the semi-annual oscillations associ-

ated with ST-PCs 6-7 but not in those associated with ST-PCs 2-3 and 9-11, an observation

that may indicate that the ST-PC pair 6-7 captures a specific dynamic process that is differ-

ent from the one captured by ST-PCs 2-3 and 9-11. Further investigation of these seasonal

signals and their multi-annual modulation is beyond the scope of the present paper but our

observations illustrate that M-SSA can extract information relevant to the dynamics and the

physics driving these signals.

We compare in Figure 2.13 the seasonal signals extracted using M-SSA from the three

components recorded at station AV10, on the one hand, with a curve fit to the data that

uses the classical four-term Fourier series

x(t) = A1 cos(2πt) + A2 sin(2πt) + B1 cos(πt) + B2 sin(πt), (2.12)
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on the other. Here A1, A2, B1, and B2 are the coefficients for the annual and semi-annual

terms estimated from the daily positions x(t), and the fits were done for each one of the

three components — north, east, and up — separately.

The difference between M-SSA reconstructions of the seasonal oscillations and the four-

term Fourier expansion is most pronounced for the vertical component, which shows in-

terannual modulations of larger amplitude. Furthermore, the M-SSA reconstruction and

four-term Fourier estimates for the seasonal oscillations in the vertical are not always ex-

actly in phase, since the coefficients A1,2 and B1,2 are constant, and thus the phase as well

as the amplitude is constant, while the M-SSA results have both phase and amplitude

modulation.

In addition, the reconstruction of the seasonal modes and their interannual modulations

owes to ST-PCs 2–3 and 6–7 for the vertical but ST-PCs 2–3 and 9–11 for the horizontal

components. This shows that M-SSA is able to extract annual, semi-annual, and interannual

oscillations with actually fewer parameters than a least-squares fit to a Fourier for which at

least six sinusoidal functions would have been necessary to account for such variability.

These observations show that the M-SSA reconstructions faithfully capture the inter-

annual variability of the seasonal oscillations, with respect to both amplitude and phase

modulation. This pluri-annual modulation of the seasonal signal identified by M-SSA may

be indicative of multi-annual oscilations in the regional hydro-climatic regime; see Ghil

and Robertson (2002) and references therein, including, in particular, Wallace and Gutzler

(1981).

2.4.6 Transient Signals

We now focus on ST-PCs 1 and 4 (Figure 2.9), which carry the data-adaptive trend shared

by all 24 GPS time series at Akutan volcano. These ST-PCs together capture 11% of the

total variance in the data set (Figure 2.8) and are associated with transient behavior, mostly

described by the shape of ST-PC 1. This transient is shown by the reconstructions in Fig-

ure 2.14.

The M-SSA–filtered time series (red curves in the figure) display a transient deformation
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event starting in early 2008 and lasting for about a half a year. This transient event is similar

in shape and duration to the one identified by Ji and Herring (2011), and it is visible in

Figure 2.14 at all 8 sites and in all 3 directions of motion; the amplitude of the motion and

its direction vary, though, from site to site.

The event is already visible in some of the raw time series, such as the northward

component at AV12, or the eastward component at AV07. But its shape and duration in

the raw data, where all the signals and the noise are mixed, sometimes ressemble part of a

seasonal cycle — e.g., in the eastward component at AV12 — or a sharp step function that

could be mistaken for an equipment problem — e.g., in the northward component at AV10.

In Figure 2.15, we consider four transient episodes dominated by vertical uplift. We

compare the associated ground motions (red arrows in the figure) with those given by

a calculation that uses the simple model of a point source volume change, simulating a

magma chamber, embedded in an elastic half-space (blue arrows in the figure). Such a

model — also used by Ji and Herring (2011) — was first proposed by Mogi (1958) as a

simple way of calculating surface deformation in active volcanic systems.

The spatial representation of the site displacements from 2008.0 to 2008.7 in Figure 2.15A

shows that this event is associated with a radial extension and uplift centered on the vol-

cano, with amplitudes decreasing outward. This is consistent with the observations re-

ported by Ji and Herring (2011) and validates the extraction of this transient by M-SSA.

Figures 2.15A–D also show other features shared amongst the filtered time series, across

the four episodes, although these features are more subtle than the one described above.

We observe that the first transient, from 2008.0 to 2008.7 (panel A), is followed at all sites

by another monotonic trend with an opposite slope, from 2010.5 to 2010.8 (panel B), then

by a shorter monotonic trend, from 2010.8 to 2011.5 (panel C), with the same slope as in

panel A. Finally, we observe fourth monotonic trend, from 2011.5 to the end of the data

used here (panel D), whose slope is again opposite to the previous one.

The amplitudes and slopes of these trends vary from site to site: they are subtle and

very difficult to see in the raw time series, in particular in the noisier vertical component,

where they are buried in the noise but still extracted by our M-SSA analysis. The match
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between the horizontal component of the raw series and the filtered reconstruction, though,

is readily visible at those sites and for those components for which the amplitude of these

trends is relatively large, such as the eastward component at AV07, the northward compo-

nent at AV12 or the eastward component at AV13.

The site displacements associated with the three following transients are plotted in pan-

els B, C and D of Figure 2.15. They also show a well-organized pattern of radial contraction

(episode 2), extension (episode 3), and compression (episode 4), associated with subsidence,

uplift, and subsidence, respectively. All three events have amplitudes of less than 4 mm,

i.e., they are much smaller than the first. Event 3 is the least pronounced one, with displace-

ments that do not exceed 2 mm. In spite of these very small displacements, their common

features — to wit, the radial pattern centered on the volcano, the good correlation between

horizontal and vertical components, and the decreasing amplitudes with distance from the

volcano summit reinforce our confidence that they represent a signal of geophysical origin

rather than noise.

We are, therefore, observing — over the roughly 8 years of data analyzed — two cycles

of uplift and radial extension, followed by subsidence and radial contraction, and both

cycles consistently display features that strongly suggest a magmatic origin. We test this

hypothesis by running a series of ‘Mogi models’, as described above, for each of the four

transient deformation episodes. For each episode we vary the depth and volume change

of the source, while its horizontal position is kept constant at the latitude and longitude

used by Ji and Herring (2011). Figure 2.16 shows that the minimum misfit between model

and data analysis results is obtained for a source located at a depth of close to 8 km for all

four sources. The fact that a single source location can describe all four transient events is

a strong indication that they are, indeed, of magmatic origin and, therefore, that the very

small transients extracted by M-SSA are indeed representative of a geophysical signal.
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2.5 Discussion

2.5.1 Implications for Transient Detection in Large GPS Networks

We have so far been using GPS stations located within roughly 25 km of each other and thus

strong spatial and temporal correlations are expected, making M-SSA particularly efficient

at extracting common modes of variability from the data. We now address the question

of whether the transient signal described above would have been detected across a larger

station footprint and with no a priori information on its location.

The latter situation is particularly relevant given the large number of GPS stations now

commonly deployed across wide areas. Visually combing through these large data sets

for transient events is becoming more and more difficult and it is necessary therefore to

develop automated approaches to identifying geophysical signals in a systematic and ob-

jective way.

We applied, therefore, M-SSA to GPS position time series from 80 sites distributed

across Alaska, including those on the Akutan volcano; Their geographical distribution is

plotted in Figure 2.17A. The computational burden increases rapidly because of the dimen-

sion of the spatio-temporal lag covariance matrix T̃, which is (L×M)2. We then resampled

the data weekly. It allows us to reduce the window width M without making the ST-EOFs

length smaller than 365 days which is necessary to extract the seasonal oscillations as ex-

plained in section section 2.4.2. The M-SSA analysis proceeds the same way as described

in Section 2.4 above and it produces six leading ST-PCs, shown in Figure 2.17B; this set of

ST-PCs describes 31% of the data variance.

We observe that over such a large spatial scale the first two ST-PCs correspond to an

oscillatory component with an annual period, while the remaining four ST-PCs represent

trends. The time series reconstructed using these trends, plotted in Figure 2.18, display the

same transients as described above using the 8-site M-SSA of Figure 2.9. The corresponding

site displacements, plotted in Figure 2.19, stand out as a local anomaly at the scale of

Alaska. The displacements over Akutan, as obtained by the Alaska-wide M-SSA analysis,

are plotted in Figure 2.20. They show a radial pattern of extension as seen by the M-SSA
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with the 8 sites on Figure 2.15 A.

Having applied M-SSA to 80 GPS stations covering a large footprint, we thus found

that the method is still able to identify common modes of variability at the specific location

of the Akutan volcano. As a consequence, applying M-SSA to the uncorrected raw data

of a regional network of stations — i.e., without removing a seasonal signal, modifying

the frame of reference, or assuming a given set of noise characteristics — should allow

one to detect statistically significant local anomalies. Such anomalies can then be further

investigated by zooming in on them and verifying that the corresponding spatial patterns

are consistent with a geophysical process (e.g. Ji and Herring, 2011). This result opens the

way for the automated detection of transient events in large GNSS networks.

2.5.2 Noise Extraction from GPS Time Series

Noise in GPS position time series is temporally correlated with more power at low fre-

quencies than at high frequencies (e.g. Zhang et al., 1997; Mao et al., 1999; Williams, 2003).

The power spectrum of GPS time series on the Akutan volcano (grey lines in Figure 2.21)

follows this characteristic behavior with a slope of roughly −1 of the spectral density at

high frequencies indicative of temporally correlated noise.

Such temporal correlations can lead to time-dependent patterns similar to geophysical

signals, in particular when the spectral index is greater than one (Agnew, 1992); see also

the discussion of the spectral index α in Section 2.3.2, cf. Equation (2.7) and Figure 2.6. It

is clear from the figure, furthermore, that the power spectrum of the raw time series at low

frequencies is not flat and includes the contributions from trends and oscillatory signals

described above.

We take advantage of the ability of M-SSA to extract common modes of variability

amongst time series jointly in space and time. In particular, we do expect it to discriminate

between the spectral content associated with time-dependent noise, on the one hand, and

signals such as transient deformation and seasonal motions, on the other hand.

This expectation is tested in Figure 2.21, where black lines show the power spectrum

of the noise, i.e., the raw time series minus the reconstruction of the transient plus the
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seasonal signals. We observe that the noise carries much less low-frequency variance than

the raw time series, and that its spectrum is quite flat at low frequencies. This finding

confirms our expectation that the low-frequency part of the raw-data spectrum (grey lines

in Figure 2.21) is mostly due to the sum of the seasonal and transient signals extracted by

M-SSA. The high-frequency content of the residual time series is, however, unaffected, with

a slope identical to that of the raw data. This shows that M-SSA act here as a low-pass filter.

The power spectra of the reconstructed seasonal oscillations in Figure 2.12 are plotted in

red in Figure 2.21. Two well-defined peaks are visible at annual and semi-annual periods.

The transient signal also contributes to the variance present at these periods but M-SSA is

able to unravel the spectral content associated with these transients from the one associated

with the seasonal oscillations.

This efficient extraction of trends, oscillatory modes, and noise by M-SSA is possible

because the method captures the different temporal and spatial scales of the physical pro-

cesses responsible for the generation of the time series.

2.5.3 M-SSA, GPS Time Series and Nonlinear Dynamical Systems

The idea that time series analysis could be applied to extract information about under-

lying nonlinear dynamical systems was proposed by Mañé (1981) and by Takens (1981a).

Broomhead and King (1986a,b) and subsequent authors (Vautard and Ghil, 1989; Ghil and

Vautard, 1991; Vautard et al., 1992) reformulated the early “method of delays” in the set-

ting of the classical Karhunen-Loéve representation of time series, as reviewed by Ghil et al.

(2002), which is at the basis of the M-SSA methodology.

Single-channel SSA and M-SSA have thus been linked to the framework of nonlinear

dynamical system theory. This connection helps explain the fact that M-SSA allows one to

extract physically relevant modes of variability common to several GPS time series because

these modes reflect the structure of the underlying attractor.

This make the M-SSA particularly suitable to analyse GPS time series generated by

geophysical nonlinear dynamical systems and a fortiori by volcanoes. Volcanoes are intrin-

sically chaotic nonlinear dynamical systems as highlighted by Sparks (2003). The processes
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often invoked to explain inflations and subsidences observe with geodetic data are cristalli-

sation, melting and gaz exsolutions along with the dynamic of the hydrothermal systems

(e.g., Caricchi et al., 2014). All these phenomenons can be coupled with each others and

account (among others) for the nonlinearity of volcanic systems (Sparks, 2003).

The deformation of the Akutan volcano that has been extracted with the M-SSA reflect

well this nonlinear dynamic. They are cyclic – we observe successions of inflations and

subsidences – but not periodic. This kind of chaotic behavior arise typically from nonlinear

dynamical systems that have at least three degrees of freedom as first shown by Lorenz

(1963a) in his famous paper.

GPS time series can obviously provide information not only on magmatic processes —

as shown here — but also on tectonic, hydrological, and seismological processes that affect

systems constituted of faults, volcanoes, crust, and mantle. Such systems are complex

and can be seen as well as nonlinear dynamical systems for which we often have limited

knowledge of the physics that precisely controls their evolution in time.

Regardless of this limitation, M-SSA allows us to efficiently and objectively separate

processes and to rank them as a function of their importance, i.e. of the fraction of variance

in the observed time series that they generate. Some of these processes correspond to

what is classically considered as the “signal,” i.e. as the deterministic part, while others

correspond to what is classicaly considered as “noise,” i.e. as the stochastic part.

2.6 Conclusion

We have shown that M-SSA allows us to extract signals of geophysical significance from

GPS position time series and to efficiently separate them from noise. The data-adaptive

nature of the method results in a simple and parsimonious representation, using only

a few spatio-temporal EOFs (ST-EOFs) to describe complex spatio-temporal fluctuations,

such as anharmonic oscillations and trends with non-constant slopes. This representation

is achieved without any a priori assumptions on the stochastic characteristics of the noise

or on the cause of the underlying physical processes.

Like other methods, M-SSA is sensitive to the quality of the data. In particular, the
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2.7. APPENDIX: SOUTHERN CALIFORNIA EARTHQUAKE CENTER (SCEC)
VALIDATION EXERCISE

presence of colored noise can lead to the occurence of modes that resemble those of geo-

physical origins. We have shown however that hypothesis tests, sush as the MC-SSA, help

us to discriminate between modes associated with correlated noise and modes associated

with signals. The presence of discrete offsets, due for example to equipment changes at

the GPS sites can also lead to bad reconstructions of the time series. Visual inspection

of the data may, therefore, be necessary, although new techniques are being proposed to

automatically detect and correct such shifts in time series (Montillet et al., 2015; Tran, 2013).

An other limitation of the M-SSA is that the size of the (M× L)2 lag-covariance matrix T̃

grows rapidly with the size of the GPS network considered. This can lead to computational

issues in solving the eigenvalue problem described in Eq. (2.6).

Dispite these limitations M-SSA presents an attractive alternative to existing methods

to objectively extract information embedded in geodetic time series. Its ability to filter and

compress the information containted in GPS time series through the calculation of robust

and parsimonious representations opens the perspective to use it as a tool to detect signals

hidden in the large amount of geodetic data now available worldwide.

2.7 Appendix: Southern California Earthquake Center (SCEC) val-

idation Exercise

We test the M-SSA on a realistic synthetic multivariate data set. This data set contains

synthetic GPS time series generated by the fakenet package (Agnew, 2013). This exercice

was created by the SCEC community and was also performed by Riel et al. (2014b). It

consists in a set of synthetic data simulating time series recorded at cGPS sites in California.

These time series contains colored noise of different types and amplitudes, seasonal signals

and transient displacements signals related to a thrust event on the Santa Monica fault.

Before applying the M-SSA to the data set we applied the procedure explained in section

3.1. Figure S1 shows the first 6 ST-PCs obtained from application of the M-SSA on the East

and North components recorded at 60 cGPS stations around the Santa Monica fault. Some

segments of the fault, on which the simulated thrust occured, are represented in figure
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S3. ST-PCs pair 1-2 capture the annual seasonal signal while ST-PC pair 5-6 capture the

semi-annual seasonal signal. Together these two pairs carry ∼ 50% of the dataset variance.

ST-PCs 4 and 5 describe the data-adaptive trend of the time series and contains ∼ 15% of

the total variance. It can readily be seen from ST-PCs 4 and 5 that a transient signal emerges

around 2002.

Figure S2 shows some of the reconstructed time series that uses ST-PCs 4-5 and their

corresponding ST-EOFs. These reconstructions are compared with their corresponding

time series (black dots) and the signal related to the thrust event (blue lines).

The spatial representation of the horizontal displacements at some cGPS sites are shown

in figure S3. The M-SSA derived transient displacements (red arrows) are consistent with

the synthetic displacements associated with the simulated thrust event (blue arrows).

2.8 Figures
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Figure 2.1: Univariate synthetic time series (black dots) composed of, from top to bottom
in gray, a transient displacement, annual and semi-annual harmonic functions, as well as
colored and white noise.
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Figure 2.2: Singular spectrum of the synthetic time series shown in Figure 2.1. Eigenvalues
are normalized to represent the appropriate fraction of the total variance of the time series,
and they sum to 1.
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Figure 2.3: The five leading temporal empirical orthogonal functions (T-EOFs) extracted
from the synthetic time series; they are associated with the first five eigenvalues in Fig-
ure 2.2.

-20

0

20

P
C

1

-20

0

20

P
C

s
2-

3

-20

0

20

P
C

4-
5

0 2 4 6 8 10
Time (years)

(A)

(B)

(C)

Figure 2.4: The five leading temporal principal components (T-PCs) associated with the
five T-EOFs of Figure 2.3. These T-PCs are time coefficients that weigh the corresponding
T-EOFs in reconstructing the original time series; they represent the different modes of
variability of the time series.
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Figure 2.5: Reconstruction of the transient displacement (top panel) and the seasonal os-
cillations (bottom panel) in our synthetic example. Black dots = synthetic time series, grey
lines = synthetic transient and oscillatory signals embedded in the synthetic time series, red
lines = reconstructed signals using M-SSA. Top: the reconstruction using the first T-PC and
corresponding T-EOF captures the transient displacement signal. Bottom: the reconstruc-
tion using the first five T-PCs and corresponding T-EOFs additionally captures the seasonal
signal.
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Figure 2.6: Evaluation of the improvement in M-SSA reconstruction as a function of (A)
the number L of time series and (B) of window width M. (A) Misfit between the synthetic
transient signal and its reconstruction versus the number L of synthetic time series used
in M-SSA. (B) Misfit between the synthetic transient signal and its reconstruction versus
M, the maximum lag used to compute the covariance matrix. All the synthetic time series
are similar to the one in Figure 2.1 and share the same transient displacement. Black dots
correspond to the results of an experiment that uses a white noise (α = 0), while gray dots
correspond to colored noise with a spectral index of α = 1 and black diamonds correspond
to a noise with a spectral index of α = 2. The separating power of M-SSA improves as the
number of the series sharing a transient signal increases as well as M increases.
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on the island (main map).
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Figure 2.8: Singular spectrum of the GPS position time series at 8 cGPS sites on Akutan
volcano from early 2006 to late 2014. The first 30 M-SSA eigenvalues are plotted for the
window widths M = 400, 500, and 600 days. Eigenvalues are normalized as in Figure 2.2,
so that their sum is unity.
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Figure 2.9: The eleven leading ST-PCs associated either with the trend with non-constant
slope or the seasonal oscillations. They are calculated using (A) M = 400, (B) M = 500,
and (C) M = 600 days. The persistence of the shape of the ST-PCs for the differents values
of M — ignoring the occasional change of sign, which is a numerical artefact of PCA in
general — is an indicator of the significance of the extracted modes. Regardless of the
value of M, ST-PCs 1, 4, 5 and 8 jointly capture the data-adaptive trend, while the ST-PC
pair 2-3 represents the annual oscillations. The four ST-PCs 6-7 and 9-11 capture the semi-
annual oscillations for M = 400, whereas this mode is captured by ST-PCs 6-7 and 9-10 for
M = 500 and ST-PCs 8-10 and ST-PCs 6-9 for M = 600.
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Figure 2.10: Spatio-temporal empirical orthogonal functions (ST-EOFs) associated with
eigenvalues 2 (black) and 3 (gray) (see Figure 2.8) calculated using (A) M = 400, (B)
M = 500, and (C) M = 600 days. The subpanels show the components of these EOFs
for each cGPS site and each direction of motion being measured. These two ST-EOFs cap-
ture the annual oscillatory mode of annual period present in the data. The differences
between estimates using different values of M are small.
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Figure 2.11: MC-MSSA test of statistical significance using surrogate data containing (A)
flicker noise, with spectral index α = 1; and (B) random walk noise noise, with α = 2.
Lower and upper ticks on the error bars correspond to the 2.5% and 97.5% quantiles of an
ensemble of 500 surrogate data that are different realizations of the null hypothesis under
consideration. These tests show that modes associated with eigenvalues 5 and 8 that lie
within the corresponding confidence intervals are possibly generated by the presence of
colored noise in the GPS time series recorded at Akutan volcano.
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Figure 2.12: Seasonal variability of the GPS data set for Akutan. Black dots: detrended
daily GPS position time series at 8 sites on Akutan volcano, Alaska, with their 1-σ error
bars. Red lines: reconstructed series after M-SSA using the combination of ST-PCs 2–3
(annual) and 6-7 plus 9–11 (semi-annual). The black vertical lines in the topmost panels
represent 10 milimeters. The subpanels correspond to the 8 cGPS sites and 3 directions of
motion as in Figure 2.10. Note the good visual fit to the data. The pluri-annual modulation
of the seasonal signal is clearly visible, for instance, in the lower-amplitude vertical signal
for 2009, which appears across all the stations. The light red areas represent the variability
of the reconstructions of the seasonal oscillations when the raw time series are perturbated
by colored noise with spectral index of 1.
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Figure 2.13: Comparison between the reconstruction of the seasonal signal obtained with
M-SSA (red solid curve) and a commonly used fit of the sum (black solid curve) of an
annual and a semi-annual harmonic function for each component recorded at site AV10: (A)
northward, (B) eastward, and (C) upward. We applied a 20-day moving average to the raw
data (black dots) to reduce the data scatter and be able to better distinguish the difference
between the M-SSA reconstrutions and the four-term Fourier series. The two models are,
to first order, very close, but M-SSA reconstructions show a pluri-annual modulation in
amplitude that is not present in the constant-amplitude harmonic functions. Note also that
these harmonic functions significantly underestimate the observed range of values in the
vertical component. The weighted root mean square (WRMS) are 3.29mm, 2.99mm and
8.44mm for the M-SSA reconstructions of the seasonal signal for the North, East and Up
components respectively. The harmonic functions fit have a WRMS of 3.32mm, 3.05mm and
9.14mm which is systematically higher.
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Figure 2.14: Transient motion at Akutan volcano, Alaska. The subpanels correspond to the
8 cGPS sites and 3 directions of motion as in Figure 2.10. Note the good visual fit to the
data. Black dots: detrended daily GPS position time series at the 8 cGPS sites; with their
1-σ error bars. Red lines: M-SSA reconstructions, using the trend ST-PCs 1 and 4, which
together carry 11% of the total data variance. The black vertical lines in the topmost panels
represent 10 milimeters. The light red areas represent the variability of the reconstruction
of the data-adaptive trends when the raw time series are perturbated by colored noise with
spectral index of 1.
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Figure 2.15: Maps of the horizontal and vertical displacements at Akutan volcano that are
associated with the four dominantly monotonic parts of the reconstructed trends derived
from ST-PCs 1 and 4. For each event, the two upper panels plot the vector displacements
at the 8 cGPS sites, while the lower panel plots the time series of northward displacements
at site AV12. In this latter panel, black dots show the raw data and the red solid curves
show the M-SSA–reconstructed trend signals, while the blue solid curves show the best-fit
prediction from a simple, idealized model of magma chamber expansion (Mogi, 1958). In
the upper panels, the red arrows are based on the M-SSA reconstructions and the blue ones
are based on the Mogi (1958) model. Note the spatial consistency of the displacements for
each of the four succesive episodes with a radial pattern centered on the volcano that is
consistent with a magmatic origin.
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Figure 2.16: Misfit plots between the deformation predicted by a Mogi source and the
observed displacements for each of the four transient events shown in Figure 2.15. The four
events are well explained by inflation (uplift and radial extension at the surface) or deflation
(subsidence and radial contraction at the surface) of the same point source at 8± 1 km.
These results strongly support the hypothesis that the small but coherent deformations
extracted by M-SSA are of magmatic origin.

45



CHAPTER 2. DATA-ADAPTIVE ANALYSIS OF GEODETIC TIME SERIES

-60
0

60

P
C

s
1-

2

-60
0

60

P
C

3

-60
0

60

P
C

4

-60
0

60

P
C

5

-60
0

60

P
C

6

2006 2008 2010 2012 2014
Time (years)

(A)

(B)

0 500
km

170˚W

55˚N

Figure 2.17: M-SSA analysis of the PBO network of 80 GPS stations from Alaska: (A) geo-
graphic distribution of the stations; and (B) the six leading ST-PCs calculated by applying
M-SSA to the position time series from this network. ST-PCs 1,2 are in phase quadrature
and represent a seasonal oscillation with an annual period. The next 4 ST-PCs represent
data-adaptive trends.
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Figure 2.18: Reconstructed time series (solid red lines) using ST-PCs 3–6 of Figure 2.17B,
which represent data-adaptive trends. The black vertical lines in the topmost panels rep-
resent 10 milimeters. The reconstructions here are for the same 8 cGPS sites on Akutan
volcano as plotted in Figure 2.14, and are presented in the same format. Here, however,
the recontructions are calculated from the 80×3 time series from the PBO network cover-
ing Alaska and shown in Figure 2.17A. Note the similarity with the reconstructed series
derived solely from the 8×3 Akutan GPS time series, plotted in Figure 2.14. For 15 (∼60%)
of them the correlation coefficients between the reconstructed time series from 8 stations
and 80 stations are larger than 0.7. For 7 of them (∼30%) the correlation coefficients are
less than 0.5. However, these 7 time series are those for which the signal is very weak such
as in the three components recorded at AV15.
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Figure 2.19: Map of the horizontal displacements associated with the first transient defor-
mation event identified above for the Alaskan PBO network; this event corresponds to the
time interval 2008.0–2008.7, cf. Figure 2.18. The red arrow over the Gulf of Alaska indicates
a horizontal displacement of more than 1 mm. To make them visible we indicate GPS sites
with displacements less than 1 mm with red dots indicate. Note that displacements at
Akutan stand out as anomalously large, with a radial pattern. Figure 2.20 below shows a
close-up on Akutan.

48



2.8. FIGURES

0 10

km

Horizontal

166˚00'W 165˚45'W
54˚00'N

54˚15'N

AV06 
AV07

AV08

AV10

AV12

AV13

AV14
AV15


 2 mm



 

 

 

 

 

 
 



 

 

 

 

 

 
 

0 10

km

Vertical

166˚00'W 165˚45'W
54˚00'N

54˚15'N

AV06 
AV07

AV08

AV10

AV12

AV13

AV14
AV15


 2 mm



 

 

 

 

 

 
 



 

 

 

 

 

 
 

Figure 2.20: Comparison of the horizontal and vertical displacements associated with the
first transient-deformation event identified above (2008.0 to 2008.7), as extracted from the
8-site M-SSA (black arrows vs. the 80-site, Alaska-wide M-SSA (white arrows). Note the
agreement between the local and the regional-scale M-SSA estimates: both show a radial
pattern of extension and uplift centered on the volcano. This pattern is consistent with a
magmatic origin, as seen in Figure 2.15 above.
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Figure 2.21: Power Spectral density plots of the raw time series (grey lines) and M-SSA–
based seasonal signal (red); the residual component, i.e. raw minus the M-SSA recon-
struction of the transient displacements plus the seasonal signals is plotted as black lines.
Note the flattening of the spectrum of the residuals at low frequency, indicating that the
trend and the oscillatory components are extracted by M-SSA, while preserving the high-
frequency noise content.
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Figure 2.22: The four leading ST-PCs obtained from the M-SSA on the synthetic time series
of the SCEC transient detection exercice. ST-PC pair 1-2 capture the annual oscillations.
ST-PC pair 5-6 capture the semi-annual oscillations. Together these two ST-PCs pairs that
represent the seasonal oscillations carry ∼ 50% of the variance. ST-PCs 3 and 4 capture the
data-adaptive trend and describe ∼ 15% of the total variance of the data set.
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Figure 2.23: Reconstructed Transient motion at some GPS sites near the Santa-Monica fault.
The subpanels correspond to 8 selected cGPS sites and the horizontal directions of motion.
Black dots: detrended daily GPS position time series at the 8 cGPS sites. Red lines: M-SSA
reconstructions using the trend ST-PCs 3 and 4 which together carry 15% of the total data
variance. Blue lines: synthetic transient displacement generated by a simulated thrust event
on the Santa Monica fault. The M-SSA filtered time series are consistent with the transient
displacements except in the east component recorded at site "dshs" which contains large-
amplitude colored noise.
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Figure 2.24: Maps of the horizontal displacement at some cGPS sites near the Santa-Monica
fault. Red arrows: transient horizontal displacements derived from the M-SSA reconstruc-
tions of the data-adaptive trends of the time series. Blue arrows: simulated horizontal
displacements associated to a thrust event on the Santa Monica fault. The segment of the
Santa Monica fault on which the slip occured is represented by the rectangular patches.
The M-SSA reconstructions are consistent with the simulated thrust event. The large dis-
crepancy at site DHSH is caused by colored noise of large amplitude on the east component
(see Figure 2).
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CHAPTER 3

NONLINEAR DYNAMICS OF VOLCANIC

INFLATION/DEFLATION CYCLES

3.1 Abstract

Ground motion from space geodetic techniques — such as the Global Positioning System

(GPS) and radar interferometry (InSAR) — is typically used in areas of volcanic unrest to

constrain static or kinematic models that relate change of pressure in a chamber with sur-

face deformation. The rapidly increasing amount of geodetic data opens up the additional

possibility to mine for information on the qualitative dynamics of volcanic systems directly

from the continuous deformation data, without using any prior assumptions on the un-

derlying processes. Here we study four volcanoes that have been continuously monitored

by GPS and identify common sawtooth–shaped inflation–deflation cycles. Application of

data-adaptive, nonparametric time series analysis methods permits the reliable detection of

such oscillations when they lie close to, or even below, the data scatter. We show that these

cycles bear similarities with the relaxation oscillations of a simple oscillator that involves a

nonlinear dissipative mechanism.
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3.2 Introduction

The numerous – and rapidly increasing – continuous space geodetic observations now

available from InSAR and GPS in areas of active volcanic unrest show nonlinear surface

deformations that reflect the dynamics of the underlying magmatic processes. These pro-

cesses include magma flux within the volcanic plumbing system (Dvorak and Okamura,

1987; Mériaux and Jaupart, 1995; Parks et al., 2012), crystallization and degasing in melt

reservoirs (Biggs et al., 2009; Larsen et al., 2013; Caricchi et al., 2014) and hydrothermal

circulation driven by the magmatic thermal anomaly (Hutchison et al., 2015, 2016). The

resulting surface deformation is sometimes readily visible from the data time series (New-

man et al., 2006; Feng and Newman, 2009), but it is often hidden in the measurement noise.

Recent advances in time series analysis have shown, however, that nonlinear deformation

caused by magmatic processes can be present during seemingly quiet time intervals in

which little to no deformation is apparent in the data (Ji and Herring, 2011; Walwer et al.,

2016).

Although the temporarily varying observations can be explain by an ad hoc time depen-

dent forcing process — be it magma flux, degasing, heat flux — our goal here is differ-

ent. We seek instead to extract temporal variability patterns from continuous deformation

measurements and determine their level of similarity in order to find common types of

behavior that contain qualitative information on the underlying dynamics. To do so, we

objectively extract repeating transient deformation signals at four volcanoes using contin-

uous GPS time series. We illustrate the resemblance of their deformation patterns using

phase portrait reconstructions, which suggest dynamical similarity between them (Guck-

enheimer and Holmes, 1983; Ghil and Childress, 1987; Jordan and Smith, 2007). We show

that a simple nonlinear oscillator shares the qualitative behavior of the inflation–deflation

cycles observed at these volcanoes.
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3.3 Methods

3.3.1 Data and preprocessing

We used position time series provided by the Plate Boundary Observatory (pbo.unavco.org)

and the Nevada Geodetic Laboratory (geodesy.unr.edu). They are derived from continuous

GPS data at stations located on four volcanoes: Akutan (8 stations), Shishaldin (8 stations),

Okmok (5 stations), and Piton de la Fournaise (5 stations); see Figure 3.1. Because we are

interested in the dynamics of the volcanic systems, we first removed from each time series a

linear trend that represents the sum of tectonic plate motion and long-term elastic loading

on neighboring faults, and focus the analysis on the nonlinear deformation signals.

In order to isolate the displacements associated with the activity of the volcanic systems

from other geophysical signals, such as seasonal oscillations of hydrological origin, and

from the GPS measurement noise, we filtered the detrended position time series using Mul-

tichannel Singular Spectrum Analysis (M-SSA). M-SSA is a data-adaptive, nonparametric

method that simultaneously exploits the spatial and temporal correlations in geophysical

fields in order to extract their common modes of variability (Walwer et al., 2016; Ghil et al.,

2002; Alessio, 2016); see the Supplementary Materials for details. This distinguishes M-SSA

from filters that rely on prior hypotheses and search for signals using a library of functions

whose shape is determined from a priori models (Alessio, 2016; Ohtani et al., 2010; Riel

et al., 2014a).

3.3.2 Volcanic signal reconstructions

M-SSA decomposes a set of L time series into common modes of spatio-temporal variability

that correspond to nonlinear trends, oscillations, or noise. These modes are the eigenvectors

of the covariance matrix computes from the ensemble of M lagged copies of the L time

series composing the dataset we wish to analyse. The eigenvectors are ordered according

to the amount of data variance each of them account for which is given by the associated

eigenvalues. The maximum period of the modes that are extracted with M-SSA is ∼ Mτs

where τs is the sampling interval of the time series. For the four dataset analyzed τs = 1 day.
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Signals that are common to all time series are accounted by the modes describing the

largest part of the total variance. In the context of this study, we expect therefore that

signals of volcanic origin will be accounted by modes describing a significant part of the

total variance of the dataset.

Two others criteria are exploited to select the modes used to reconstruct the volcanic

signals. First we are looking for temporal patterns that is similar for the four volcanoes

under study and consist in inflations followed by slower and longer deflations. Second, the

reconstructed signals must have the shape of radial deformation patterns in map view that

are consistent with magmatic inflation or deflation.

A key point of the approach that is presented here is that the number of modes used to

reconstruct the signals, S, is an output of our analysis. For Akutan, we find that the first

and the second modes capture the nonlinear trend associated with the volcanic signal. We

computed therefore the volcanic signal time series using these two modes meaning that

S = 2. This result is consistent with a similar analysis done already for Akutan volcano

(Walwer et al., 2016). For Shishaldin, we need to use only the second mode (S = 1), while

for Okmok and the Piton de la Fournaise, we used respectively first two modes (S = 3) and

the first three modes (S = 4). Table 3.7 gives a summary of the M-SSA analysis for each

volcano (see also the supplementary materials for further details about the methodology.)

3.4 Deformation trends at four volcanoes

Time series at selected GPS sites (raw data as black dots) and the M-SSA–based reconstruc-

tion (red lines) are displayed in Figure 3.2. The corresponding horizontal displacements

for a selected time interval, displayed in map view as arrows in the appropriate panel of

the same figure, are radial and centrifugal, and they are accompanied by vertical uplift

(Supplementary Figures S1–S4). Such a pattern is typical of an inflation episode caused,

for instance, by the pressurization of a magma reservoir at depth, as already shown for

Akutan (Ji and Herring, 2011). Map views of sites displacements for other time intervals

with monotonic position variations show similar radial patterns, alternating inflation and

deflation episodes (Supplementary Figures S1–S4).
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Inflation–deflation episodes are readily visible in some position time series with no need

for pre-filtering, as seen at Okmok or Piton de la Fournaise, (Figure 3.2), others are close to

— or even below — the data scatter, such as Akutan in 2011 (see Supplementary Figure S1).

These episodes, too, can be extracted effectively and reliably by M-SSA because they induce

spatial and temporal correlations in the ensemble of time series analyzed (Walwer et al.,

2016) (see Supplementary Information). As a result, time intervals that would otherwise

appear as devoid of deformation now show repeating inflation–deflation episodes that

resemble their larger-amplitude counterparts.

The combined information in Figure 3.2 (see also Supplementry Figures S1–S4) shows

that all the reconstructed time series — for the three components, north–south, east–west,

and vertical — on each volcano exhibits a behavior similar to that in Figure 3.2 for Akutan.

In all cases, the first inflation episode is followed by a slower and longer deflation, marked

by subsidence and radial contraction of the volcanoes.

At Akutan and Okmok this pattern repeats with an amplitude that decreases with time,

reminiscent of damped oscillations. At Akutan the last deflation is followed by an inflation

that ends in 2016. At Shishaldin, the deflation phase is also followed by an inflation that

ends around 2015. At Okmok and Piton de la Fournaise, a rapid inflation occurs again

after the last deflation episode, directly followed by a rapid and large deflation associated

with an eruption.

The characteristic time and displacement scales of the four systems are different. At

Akutan and Okmok the oscillations last roughly 2 years, with a maximum horizontal dis-

placement at Akutan that is much smaller, of barely 1 cm, than at Okmok, where it is of

up to about 60 cm. Shishaldin has the longest deformation cycle, of about 4 years, with

a maximum horizontal amplitude less than 1 cm. Piton de la Fournaise has the shortest

deformation cycle, of about 0.5 year, with a maximum displacement larger than 10 cm.

3.5 Similarities in behavior

To learn more about the dynamics reflected by the filtered time series, let us consider here

the four volcanoes as nonlinear oscillators. Such a simple analogy does not capture the
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detailed physics of the natural processes at play, but it will allow us to identify some of the

features that lead to the qualitative behavior observed in the data. To identify the proper

design features for our oscillators, we compute phase portraits for the four volcanoes by

differentiating the reconstructed time series with respect to time and embedding them in

the plane of displacement versus rate-of-displacement (Packard et al., 1980; Roux et al.,

1980; Takens, 1981b).

Phase portraits show the evolution of dynamical systems as trajectories that depict, as

time increases, geometrical structures characterizing their dynamics. In this phase space,

stationary solutions appear as points and periodic ones as closed trajectories. These rep-

resentations highlight in particular how an out-of-equilibrium system is organized around

stationary solutions (Ghil and Childress, 1987; Deremble et al., 2009). Since the position

time series in all the components of deformation show the same pattern, we use the least

noisy ones for each volcano to compute the phase portraits shown in Figure 3.3. Also, since

our goal is to extract qualitative features of the system dynamics, we normalized both the

displacements and the displacement rates to their maximum absolute values.

A first-order feature common to the four phase portraits is the spiraling in and out of

their trajectories. This geometry is reminiscent of nonlinear dynamical systems that are

in an oscillatory regime with modulated amplitude around an equilibrium point (Gucken-

heimer and Holmes, 1983; Jordan and Smith, 2007). Note that the two damped oscillation

cycles described above at Akutan and Okmok, based on their filtered time series in Fig-

ure 3.2, are quite obvious in their phase portraits here. Also common to the four phase

portraits is the fact that the trajectories are highly asymmetric about the horizontal line of

null displacement rate, since they ony reach the +1 value above this line, but not the −1

value below it. This asymmetry reflects inflation rates that are larger than the deflation

rates.

Another feature shared by the four phase portraits is that each deflation phase shows

variations in the deflation rate, which alternates between increases and decreases. This

feature is associated with small ripples in the orbits as they evolve through negative val-

ues of the displacement rate in the phase plane. In other words, the deflation episodes
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systematically slow down before accelerating again at the end. At Okmok and Piton de

la Fournaise, where the inflation and deflation displacements are large — measuring tens

of centimeters — this feature is visually clear upon careful examination of the time series

itself. At Akutan and Shilshaldin, where displacements measure a mere few milimeters,

visual examination is no longer sufficient for detecting this rippling in deflation episodes.

But the subtle variations in the deflation rates are still detected by the M-SSA filter.

3.6 A simple nonlinear oscillator

The phase portraits in Figure 3.3 and their discussion above suggest that further insight

into the nature of the observed oscillations will be provided by formulating and analyz-

ing a simple, nonlinear oscillatory model. Such a model does, as we shall see herewith,

reproduce key qualitative features of the phase portraits above.

Our model is governed by a set of two coupled ordinary differential equations:


ẋ = y ,

ẏ = −µ[(x + x0)
2 + (y + y0)

2 − 1]y− x ;
(3.1)

here x and its time derivative y are the two coupled variables of the system, while x0, y0,

and µ are independent parameters. The nonlinearity in Eq. (3.2) results from the form

of the damping coefficient κ = κ(x0, y0, µ) ≡ −µ[(x + x0)2 + (y + y0)2 − 1]. Our model is

similar to the classic Van der Pol oscillator (Van der Pol, 1926), except for the supplementary

quadratic dependence on y in the damping term. Moreover, the parameters x0 6= 0 6= y0

added herein make the damping asymmetric with respect to both the displacements x and

the rates y.

For κ = µ = 0, all the solutions of Eq. (3.2) are circles centered on the origin (x, y) =

(0, 0), which is neutrally stable. For κ < 0, all the circles that are sufficiently close to the

origin become spirals that end up in the origin, which is then said to be a stable fixed point.

For κ > 0, the situation is a bit more complicated, and will be analyzed forthwith. The two

situations, of κ < 0 and of κ > 0, are also referred to as positive and negative damping,
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respectively.

For simplicity, let us assume at first that x2
0 + y2

0 < 1. In this case, the regime into

which the system evolves is controlled by the value of µ. For µ < 0 — and hence κ < 0 as

long as x2 + y2 is small enough — this regime has exactly one fixed point, i.e. one steady-

state solution, at the origin; this fixed point is linearly stable for the dissipative situation

characterized by µ < 0. Linear stability means that, for any initial state sufficiently close

to the origin, the system will spontaneously evolve towards the latter. As long as the

parameters (x0, y0) lie within the unit circle, the origin undergoes a loss of linear stability

when µ, and hence κ, become positive.

Further details of this simple case appear in the Supplementary Materials, where we

also analyze the more complicated cases in which the quadratic nonlinearity in the damp-

ing term becomes crucial. The upshot of this analysis is the phase portrait displayed in

Figure 3.4.

The change in the dynamics of a nonlinear deterministic system from a unique stable

fixed point to a stable closed orbit — like the one seen in Figure 3.4 — is called a Hopf bi-

furcation and the closed orbit is itself a limit cycle (Ghil and Childress, 1987; Guckenheimer

and Holmes, 1983; Jordan and Smith, 2007). The particular type of nonlinear oscillations

that involve sawtooth-type behavior, with rapid escape from a no-longer stable fixed point

followed by slow relaxation back to it, are called relaxation oscillations (Ghil and Childress,

1987; Van der Pol, 1926; Grasman, 2011).

A first-order feature noticeable in Figure 3.4 that is common to the GPS observations

at our four volcanoes and to the simple system governed by Eq. (3.2) is the presence of

asymmetric oscillations, with inflations that are faster and shorter than the deflations. These

episodes are marked in the two panels of Figure 3.4 by the letters M and m at the end of

the inflation and deflation episodes, respectively. In our dynamical model, higher inflation

rates are caused by the asymmetry of the damping with respect to y = 0. The closer y0 is

to −1, the larger this asymmetry becomes.

A second-order feature common to the obserations and to our simple model is the

variation in the deflation rates. In the model, this is caused by the quadratic dependence
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of the damping term on x and it is emphasized by this term’s asymmetry with respect to

x = 0. The break in the slope of the time series for x(t) during deflation is marked by the

letter d in Figure 3.4.

3.7 Discussion and conclusions

An important aspect of our results is that the number of leading modes S retained for study

at each of the four volcanoes in Figure 3.1 is small, 1 ≤ S ≤ 4, but different among the four.

Vautard and Ghil (1989) showed that, in general, the value of S used to reconstruct a given

signal is not unique and depends on the data quality, as well as on M-SSA parameters such

as M, τs and D. Thus, a simple experiment of theirs demonstrated that increasing M or the

signal-to-noise ratio tends to increase S.

Because of the different characteristics of the data sets used here, M, D and the signal-

to-noise ratio are different for each volcano; see Table 3.7. Still, a common feature of the

four M-SSA analyses is that the signal reconstructions using the small resulting S all exhibit

inflation–deflation cycles with certain common characteristics, cf. Figures 3.2 and 3.3. These

characteristics were discussed and summarized in Sec. 3.5.

We also showed that a highly idealized dynamical analog as formulated in Eqs. (3.2) —

is able to explain the qualitative dynamics reflected in the surface deformation data. This

finding implies that the amount of information needed to describe the state of a volcanic

system in terms of surface deformation may be fairly small.

Together, the smallness of the number S of leading modes needed to describe the de-

formation signal, with 1 ≤ S ≤ 4, and that of our model’s number of degrees of freedom,

namely 2, suggest that the number of variables needed to specify the state of the volcanic

system within the accuracy of the data is quite small (Farmer et al., 1983; Broomhead and

King, 1986a; Vautard and Ghil, 1989). Two interpretations can be proposed to explain this.

First, the observables themselves, i.e., the deformation data — provide only limited in-

formation on the mechanism leading to the observed signal. Second, although volcanic

systems possess a priori a large number of degrees of freedom, the qualitative nature of

the oscillatory phenomenon oberved here requires only the interaction of a few variables
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to generate the observed dynamics, which “lives” on the system’s center manifold (Carr,

2012). In any case, a reduced dynamical system provides a useful framework to model the

observations presented here.

That the relaxation oscillations observed here can be explained with a simple nonlin-

ear oscillator provides an interesting guideline for understanding and modeling volcanic

inflation–deflation cycles. To wit, physical models capable of explaining such observations

should possess a Hopf bifurcation from a fixed point to a limit cycle that gives rise to

asymmetric, sawtooth-shaped oscillations.

Note also that equally simple nonlinear dynamical systems can reproduce the same

phenomenon of relaxation oscillations. But the one we presented was quite straitforward

in terms of helping explain this type of behavior to interested readers who might not be

familiar with dynamical system theory in general, and with concepts like positive and

negative damping, in partic- ular. Our choice was mainly pedagogically motivated, given

that the emphasize is on the connection between the M-SSA analysis and the modeling

using dynamical system theory, rather than the physics that gives rise to the observations.

The present work could thus stimulate new research to establish such a physical model

and determine to which extent a given volcano’s inflation–deflation cycles may lie — for a

given set of parameter values — in a stable oscillatory regime or, to the contrary, be subject

to an instability that, in turn, may lead to irregular behavior, as observed at Piton de la

Fournaise and Okmok (Larsen et al., 2013; Rivet et al., 2014). Being able to distinguish

between regimes with amplifying vs. damped spirals in the phase plane of Figure 3.3 also

hints at the possibility of predicting a volcano’s eruptive potential on short-to-intermediate

times, compared to the typical cyclicity.
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Volcano øs(day) N L M S Signal/noise ratio
Akutan 1 3900 24 400 2 ∼ 10%
Shishaldin 1 3331 21 400 1 ∼ 4%
Okmok 1 1951 12 150 3 ∼ 30%
Piton de la Fournaise 1 449 12 60 4 ∼ 65%

Table 3.1: Summary of the parameters and results of the M-SSA analysis. Here τs is the
sampling time; N number of data points; D the number of channels, i.e. of stations ×
(displacements = 3); M is the window length; and S the number of leading modes retained
for further study.

3.8 Appendix A: Reconstruction of the volcanic signal

In this section, we provide details on how the leading modes were chosen in order to re-

construct the deformation signal for each volcano. The volcanic signals that we are looking

for correspond to the aperiodic or long-periodic, nonlinear trend present in each deforma-

tion time series. We expect, therefore, that they account for a significant amount of the

total variance of the dataset. The singular spectrum — i.e., the eigenvalues ranked in de-

creasing order — allows one to estimate the relative variance captured by each mode, and

the leading RCs provide the appropriate visualization of the signal after filtering out the

lower-variance noise (Ghil et al., 2002; Alessio, 2016, and references therein).

The final check on the number S of modes to retain at each volcano relies on the con-

sistency of the spatial pattern of the reconstructed displacements. The spatial patterns that

we retained all correspond to the radial patterns that are usually associated with episodes

of inflation and deflation.

In the absence of this type of spatial information, there is always a part of arbitrary

decision when choosing the modes to reconstruct a given signal. This part of educated

guesswork can be minimized by applying one or more significativity tests to specifically

determine which modes are likely to be associated with colored noise, as opposed to the

signal; see for instance, Groth and Ghil (2015a) and Walwer et al. (2016). Doing so was not

found to be necessary here, since each reconstructed signal gives fairly consistent spatial

patterns.
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Akutan

Walwer et al. (2016) already applied M-SSA to the Akutan GPS time series and provided

details on the choice of M-SSA parameters. We invite the interested reader to consult this

reference for further details.

Figure S3.9 shows the first 30 eigenvalues given by applying M-SSA to the time series

recorded at Akutan, as well as the first 8 PCs. We can clearly distinguish two groups of

PCs: PCs 5–8 display oscillations with either an annual or a semi-annual period, while

PCs 1–4 correspond to a long-periodic nonlinear trend. It follows that, to reconstruct the

volcanic signal, we have to choose among the first four modes.

The best combination that allows one to reconstruct a spatially consistent signal corre-

sponding to both inflation and deflation is the combination of PCs 1 and 3. Adding PCs

2 and 4 would not change much the reconstruction of the signal in time, nor its spatial

pattern; hence we select only the minimum mumber of S = 2 modes. These two modes,

PC1 and PC3, together account for ' 10% of the total variance. The spatial patterns of

selected episodes of inflation and deflation, as well as an example of a reconstructed time

series are displayed in Figure S3.5. This result is consistent with the more detailed analysis

of Walwer et al. (2016).

Shishaldin

For Shishaldin, the first three PCs in Figure S3.10(b) capture the overall nonlinear trend

that may be associated with volcanic deformations. By testing signal reconstruction using

all the possible combinations of the first three modes, we found that the radial shape of

the inflation and deflation episodes is better reconstructed when using only the second

mode. Spatial patterns of selected episodes of inflation and deflation, and an example of a

reconstructed time series are displayed in Figure S3.6.

The first and third modes may correspond to another type of signal or to colored noise.

Investigating this additional component of the time series is, however, beyond the scope of

the present study. The second mode accounts for ' 3% of the total variance of the dataset.
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Okmok

The singular spectrum resulting from the M-SSA analysis of Okmok time series is displayed

in Figure S3.11, along with the first four PCs. The singular spectrum shows that the two first

eigenvalues stand clearly above the rest of the spectrum, meaning that the first two modes,

which capture ∼ 30% of the total variance, are very serious candidates for representing the

volcanic signal. Hence, we used these first two modes to reconstruct the signal, and found

indeed that the spatial patterns are characterized by the radial displacement consistent with

inflation and deflation; see Figure S3.7.

Piton de la Fournaise

For Piton de la Fournaise, the singular spectrum in Figure S4.2(a) shows that the first three

modes account for ∼ 65% of the total variance. Afterwards there is a substantial drop

in variance, by almost a full order of magnitude, implying that the remaining modes are

quite likely to be associated with colored noise. We simply chose these first three modes to

reconstruct the volcanic signal at Piton de la Fournaise, and found once more that spatial

patterns are consistent with inflation and deflation; see Figure S4.2.

3.9 Appendix B : Linear Stability Analysis

Linear stability analysis allows one to study the effect of infinitesimal perturbations Ξ(t) on

a system at equilibrium. Our highly idealized model of relaxation oscillations — analogous,

cf. Figs. 3 and 4 in the main text, to those found in our geodetic observations at four

volcanoes — is governed by the following set of two coupled ordinary differential equations

(ODEs): 
ẋ = y ≡ f (x, y) ,

ẏ = −µ((x + x0)
2 + (y + y0)

2 − 1)y− x ≡ g(x, y) .
(3.2)

The evolution of small perturbations Ξ(t) = (ξ(t), η(t)) about the fixed point (x, y) =
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(0, 0) is governed by the following set of linear ODEs:


ξ̇ =

∂ f
∂x

∣∣∣∣
(0,0)

ξ +
∂ f
∂y

∣∣∣∣
(0,0)

η ,

η̇ =
∂g
∂x

∣∣∣∣
(0,0)

ξ +
∂g
∂y

∣∣∣∣
(0,0)

η ,
(3.3)

which is simply the linearized version of system (3.2).

Expanding system (3.3) gives


ẋ = y ,

ẏ = −µ(x2
0 + y2

0 − 1)y− x .
(3.4)

The evolution of ξ and η around the origin (0, 0) is controlled by the eigenvalues λ± of

the coefficient matrix of the linear system (3.4):


λ+ =

−µ(x2
0 + y2

0 − 1) +
√

µ2(x2
0 + y2

0 − 1)2 − 4

2
,

λ− =
−µ(x2

0 + y2
0 − 1)−

√
µ2(x2

0 + y2
0 − 1)2 − 4

2
.

(3.5)

When the real parts R(λ±) of both eigenvalues are negative, small perturbations decay and

the origin is stable, while it is unstable if one of the eigenvalues has a positive real part.

In the simpler case in which x2
0 + y2

0 < 1, one has R(λ±) < 0 as long as µ < 0, and

the origin is linearly stable. As µ crosses zero and becomes positive, the origin loses its

stability, small perturbations can amplify, and one needs to consider nonlinear stability. In

Figure 4 of the main text, the direction that corresponds to the eigenvalue λ+, along which

trajectories are ejected from the origin, is indicated by the two-sided light arrow labeled

T u.

3.10 Appendix C : Nonlinear stability and Hopf bifurcation

When x2
0 + y2

0 < 1, there always exists a neighborhood of the origin within which (x +

x0)2 + (y + y0)2 < 1 as well, so that — as previously stated — the linear stability of the
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origin is governed by the values of µ alone. When x2
0 + y2

0 > 1, however, there is — at least

a small — neighborhood of the origin within which (x + x0)2 + (y + y0)2 > 1; hence, even

when µ < 0, the damping is negative in this neighborhood, and trajectories escape from it.

Such is the situation illustrated in Figure 4 of the main text.

This negative damping causes the origin to become unstable, with the system’s trajec-

tories spiraling out, until they enter a region within which κ changes sign and thus limits

further increase of the distance x2 + y2 away from the origin. As a result, the situation

changes from an infinite number of circular trajectories, for µ = κ = 0, to one in which a

single closed trajectory exists, and this trajectory is typically not circular.

In fact, the limit cycle in Figure 4 is precisely of the relaxation-oscillation type: not only

is its shape not circular, but the velocities along it are non-uniform. This non-uniformity is

highlighted by the changes in the slope of the x(t) curve in the lower panel, with the three

types of velocity, high, intermediate and low, separated by the points marked as M, d and

m in both panels.

3.11 Figures
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Figure 3.1: Location map of the four volcanoes used in this study, showing the GPS sciteps
(grey triangles) from which the displacement time series used here have been extracted.
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Figure 3.2: Spatial and temporal pattern of horizontal displacements at the four volcanoes.
The top sub-panels for each volcano show the total horizontal displacements (black and
grey arrows) during a selected episode of inflation; these episodes are indicated by the two
vertical black lines on the time series in the sub-panels displayed below. Note the differ-
ence in scale between the greyand black arrows. The bottom sub-panels show a selected
GPS time series: the black dots are the raw GPS time series, while the red line shows the
corresponding M-SSA reconstruction. The corresponding GPS receivers are labeled on the
maps.
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plane and the corresponding displacement time series. The least noisy MSSA–
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Figure 3.4: Nonlinear oscillation of the idealized model governed by Eq. (3.2): (a) phase
portrait in the (x, y)-plane, with y = ẋ; (b) and (c) the associated time series representing,
respectively, x and y. All plots are computed using µ = 10, x0 = 0.8 and y0 = −0.5 in the
equations. In panel (a), the closed trajectory (heavy solid line) is the limit cycle. The light
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that converge onto it. The light straight line through the origin, denoted by T u, indicates
the unstable direction along which trajectories are ejected from the origin. Letters M, m
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minimum amplitude of x, and the slope break during the deflation phase. See text and
Supplementary Materials for details.
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Figure 3.5: Same as Fig. 3.1 in the main text, but only for Akutan. In this case, successive
episodes of inflation and deflation are included, as well as a separate map view of the
vertical displacements for each episode of monotonic deformation.
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Figure 3.6: Same as Fig. 3.5, but for Shishaldin.
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Figure 3.7: Same as Fig. 3.5, but for Okmok.
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Figure 3.8: Same as Fig. 3.5, but for Piton de la Fournaise.
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Figure 3.9: M-SSA analysis applied to the time series recorded at Akutan: (a) the 30 leading
eigenvalues; and (b) the 8 leading PCs. The first and third PCs allow one to describe
the temporal evolution of the volcanic system and produce the expected radial pattern of
inflation and deflation episodes plotted in Figure 3.5.
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Figure 3.10: Same as Figure 3.9, but for Shishaldin. The number of leading PCs plotted in
panel (b) is 9. Here, the second PC suffices to describe the temporal evolution of the vol-
canic system and reproduce the radial inflation and deflation patterns plotted in Figure 3.6.
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Figure 3.11: Same as Figure 3.9, but for Okmok: (a) the 20 leading eigenvalues; and (b)
the 7 leading PCs. The first three PCs allow one to describe the temporal evolution of the
volcanic system, along with the radial inflation and deflation patterns plotted in Figure 3.7.
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Figure 3.12: Same as Figure 3.11, but for Piton de la Fournaise. The first four PCs allow one
to describe the temporal evolution of the volcanic system, along with the radial inflation
and deflation patterns in Figure 4.2.
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CHAPTER 4

A FLUID-DYNAMICS–BASED MODEL OF RESERVOIR

OVERPRESSURE OSCILLATIONS AS INFERRED FROM

GEODETIC TIME SERIES

4.1 Abstract

Geodetic time series recorded at Okmok and Piton de la Fournaise reveal a pattern of

fast and short inflations (that may be referred to as "pulses") followed by a longer time

interval with no deformation or slower deflations. Such events are superimposed onto a

longer period inflation. For both volcanoes a rapid inflation occurred just before a large

eruption (in 2007 for Piton de la Fournaise and 2008 for Okmok), which suggests that the

phenomenon underlying this kind of event may eventually trigger eruptions. Because geo-

chemical, petrological, and geophysical data for both volcanoes suggest that their plumb-

ing systems are composed of multiple reservoirs, we model such phenomenon as resulting

from the hydraulic interaction between two shallow magma chambers connected by a verti-

cal pipe and fed by a deeper source region. Episodes of periodic fast inflations occur when

(1) a viscosity gradient is present in the vertical pipe, for instance as a result of a temper-

ature gradient and (2) the flux supplying the shallow chambers is bounded by values that

we derive analytically.
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4.2 Introduction

Eruptions are often considered to occur when the overpressure inside a shallow magma

chamber is large enough such that the tensile stress acting on the chamber’s walls reach the

tensile strength of the surrounding rock. The induced fracture can lead to the propagation

of a dyke filled with magma from the reservoir that may reach the surface (e.g. Blake, 1981).

Other scenarios involve for instance the failure of pre-existing magma-filled crack (McLeod

and Tait, 1999). Monitoring the evolution of overpressure in a magmatic reservoir is key to

understand the mechanism behind the onset of eruption. Deformation observations offer

the opportunity to accomplish this task because the deformation of volcanic edifices is often

directly related to magma chamber overpressure (e.g. Mogi, 1958; Segall, 2010).

The most common temporal pattern of deformation observed at volcanoes is that of

exponential inflations and deflations (e.g. Dvorak and Okamura, 1987; Reverso et al., 2014).

They can be explained by the linear dynamics of magma influx or outflux driven by a

pressure gradient between a storage reservoir embedded in an elastic medium and either a

deeper source region or the surface (e.g. Lenglin et al., 2008; Pinel et al., 2010; Jaupart and

Tait, 1990). In this case, the characteristic time of deflation is smaller than the character-

istic time of inflation, as observed for example at Kilauea volcano in Hawai (Dvorak and

Okamura, 1987).

Other deformation patterns, such as the one presented in the previous chapter, are

more difficult to relate to physical processes and are thereby sometimes interpreted as the

manifestation of ad hoc time-dependent forcing mechanisms — be it “pulses” of magma

flux, degassing or heat flux — (e.g. Biggs et al., 2010, 2009; Peltier et al., 2009). Here we

seek instead to understand these pulses as a manifestation of the internal variability of the

magmatic system. As we shall see such an approach allows us to understand the conditions

for which the occurrence of such "pulses" is possible.
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4.3 Multiple reservoirs at Okmok and Piton de la Fournaise

4.3.1 Okmok

Okmok is a tholeiitic basaltic shield volcano located in the Aleutians island arc (figure 4.1).

Larsen et al. (2013) have analyzed samples coming from cones and vents created during

various eruptions in the last 1000-2000 yr. Their trace element compositions plotted against

the SiO2 weight fraction clearly show two distinct poles: (1) one for which the SiO2 weight

fraction of the lavas represent less than 53wt.% and (2) another corresponding to a slightly

more evolved melt with a weight fraction of SiO2 superior to 53wt.%. The two poles are

clearly separated by ' 1wt.% of SiO2 (see figure 4 in Larsen et al. (2013)).

At first order, the magma evolved from 2000 years ago to present to become more

enriched in silica. But recent materials from eruptions that occurred between 1900 and

1997 were more mafic than the preceding ones and correspond to pole (1), significantly

breaking the long term evolution trend. The materials from the 2008 eruption shifted back

to a more evolved magma, corresponding to pole (2). Melt inclusions in the crystals from

some ejectas of the 2008 eruption are less evolved than the bulk magma of that eruption

with a composition similar to the lavas from the 1997 eruption. According to Larsen et al.

(2013) these observations suggest that a chamber containing an evolved magma was filled

with a more mafic magma coming from a deeper reservoir before the 2008 eruption.

Seismic noise tomography reveals the presence of two distinct low velocity zones in

Okmok subsurface (Masterlark et al., 2010). The deepest one is located ∼ 5km below the

surface and is interpreted as a large reservoir connected to a more shallow low velocity

zone. It is unclear however if the shallow low velocity zone corresponds to a single storage

zone or is composed of several smaller reservoirs. Magnetotelluric tomography at Utu-

runcu volcano in Bolivia suggest a similar configuration with one large reservoir connected

to several smaller shallow chambers (Comeau et al., 2015).

All the observations reported above suggest that the plumbing system of Okmok is

composed of several shallow reservoirs containing magma of different compositions. The

model proposed by Larsen et al. (2013) consist in one large reservoir around 5km depth that
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supplies multiple smaller reservoirs around 2km depth. The presence of multiple reservoirs

with magma of different compositions explains the rapid shift in lava composition between

the 1997 eruption and the 2008 eruptions.

4.3.2 Piton de la Fournaise

Geochemical and petrological data obtained on samples from Piton de la Fournaise are

reviewed in Peltier et al. (2009). All the erupted lavas are transitional basalts between the

alkalic and the tholeiitic domain. The lavas from the recent activity can be separated in

three types. The most abundant one is the so called "Steady State basalts" (SSB) character-

ized by a small range of variability of MgO content [5− 8wt.%MgO]. The second one is an

olivine-rich basalt that results from the crystallization and accumulation of forsterite, mak-

ing it more concentrated in MgO than the "SSB" [8− 28wt.%MgO]. Some authors suggest

that crystals contained in this type of lava crystallized in a shallow storage zone located

at ' 2km depth (Famin et al., 2009). The third one is the "abnormal" group character-

ized among others things by a concentration of MgO that ranges between the SSB and the

oceanite basalts [7.5− 10wt.%MgO]. In the recent period, this last type of lava erupted in

1998.

The study of melt inclusions in Piton de la Fournaise lavas that erupted during the 2005

eruptions suggests that the crystallization depth of the olivine was shallow between 0km

and 2.5km depth (Famin et al., 2009). The maximum estimated depth for the entrapment

of melt inclusions is consistent with the depth of the source as determined from geodetic

measurements of deformation and with the source of most of the seismicity that is between

200m and 2.5km (Peltier et al., 2009).

Some seismic events were also located at 7.5km depth in 2005 and 2007. Before the

March 1998 eruption a seismic swarm migrated from 7.5km to the surface (Battaglia et al.,

2005). The geochemistry of the "abnormal" type of lava (erupted in 1998) shows that it has

undergone a fractionation process suggesting an origin that is consistent with the depth of

this type of seismicity (Boivin and Bachèlery, 2009).

These observations all together led some authors to propose that the shallow plumbing
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system of Piton de la Fournaise is composed of at least two storage zones. The first one

corresponds to the source of surface deformation and is located around 2km below the

surface. It is probably connected to a shallower network of dikes and sills. The second one

corresponds to the source of the deepest seismicity located around 7.5km below the surface.

The presence of several storage zones also explains the differences in the chemistry of the

recently erupted lavas. A schematic representation of the plumbing system described here

is proposed in figure 8 of Famin et al. (2009).

4.4 Okmok and Piton de la Fournaise geodetic time series

4.4.1 Okmok (1997-2008)

The history of the surface deformations at Okmok from the end of the 1997 eruption to

the beginning of 2008 eruption (figure 4.3a and 4.3b) derived from InSAR and GPS data

shows that the 1997 co-eruptive deflation was followed by an inflation. The rate of inflation

exponentially decreases until becoming almost null in mid-2002 (see also e.g., Lu et al.

(2010) for the corresponding InSAR images).

Then Okmok starts to inflate again with a progressively decreasing rate until the erup-

tion of 2008. Two time scales associated with these two episodes of inflation have been

estimated by fitting exponential functions to the InSAR time series and are respectively

τ1 ' 2.2year and τ2 ' 1.1year (figure 4.3a). The rate of inflation of the second phase of

deformation is decreasing faster than the first one.

An interesting observation revealed by the higher temporal resolution and accuracy

of GPS data is a change in the temporal deformation pattern before the 2008 eruption.

From 2004 to 2008, oscillations characterized by two cycles of fast and relatively short

inflation followed by longer, almost flat, subsidence are superimposed to the second phase

of inflation mentioned above (figure 4.3b and see also Biggs et al. (2010)). The amplitude of

the second cycle is smaller than the first one so the whole pattern is reminiscent of damped

oscillations. The last deflation of the second cycle is followed by a fast inflation that is

directly followed by the co-eruptive subsidence caused by the 2008 eruption.
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4.4.2 Piton de la Fournaise (2003-2007)

An example of GPS position time series recorded at the summit of Piton de la Fournaise

is displayed in figure 4.4a and 4.4b. Before the large 2007 eruption, the time series shows

a roughly linear inflation of the summit, punctuated by phases of sharp inflations. The

discrete phases of rapid inflations are sometimes directly followed by eruptive or intrusive

activities that are indicated by the grey areas in figure 4.4a. Some of the eruptions caused

small amplitude deflations.

Similarly to Okmok volcano, a large eruption in 2007 is preceded by successive episodes

of fast inflations that started around 2006.5 (figure 4.4b). We may also notice that the co-

eruptive subsidence of April 2007 is directly preceded by a fast inflation.

4.5 Theoretical model of magma reservoirs interaction

4.5.1 Fluid flow in a cylindrical pipe with temperature dependent viscosity

Classical linear hydraulic interactions between reservoirs cannot spontaneously give rise to

oscillations or to alternating fast and slow dynamics as observed at Piton de la Fournaise

and Okmok (appendix 4.9). Here we introduce a model of fluid flow in a vertical cylindrical

pipe along which a vertical, temperature-driven viscosity gradient exists. As the magma

rises through the pipe, part of the advected heat is lost by heat diffusion through the pipe

wall in the surrounding medium. The resulting change of temperature of the magma

induces a change of viscosity as described quantitatively below. The pipe connect two

magma chambers, the bottom one continuously fed from below and feeding the upper one

through the vertical pipe. We build on the theory developed by Whitehead and Helfrich

(1991) which is supported by experimental observations. These authors were interested in

both the spatial and temporal behavior of such flow and developed their theory in Cartesian

coordinates. Here, as we are interested mostly in the time dependent characteristics of the

flow we use instead a cylindrical system of coordinates.

We assume that the flow is in a laminar regime and that the vertical velocity is the

only non null component of the velocity field. We consider the horizontally averaged
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momentum equation in the vertical direction

dw
dt

= −1
ρ

dP
dz
− ρg− 8ν(T)w

a2 (4.1)

where w is the horizontally averaged vertical velocity, P is the fluid pressure, ρ and g are the

bulk density of the magma and the gravity acceleration, ν(T) is the temperature dependent

kinematic viscosity and a is the radius of the pipe (e.g., Jaupart and Tait, 1990).

It may seem paradoxical to consider a laminar flow for which the Reynolds number is

a priori small and at a the same time add a time dependent inertial term ρdw/dt in the

momentum equation. As we shall see, because the viscosity varies with temperature, we

cannot neglect a priori dw/dt based on dimensional analysis. This is due to the fact that

as Re tends toward 0, expression 4.1 does not necessarily tends toward a constant value

(see Barenblatt (1996) p.10). Contrary to the case where the viscosity is kept constant and

for which a priori neglecting dw/dt is valid, here the inertial term has to be present in the

equation and, as we will see, plays an important role in the dynamics of the phenomenon

we are studying.

The viscosity is assumed to depend linearly on the temperature as described by

ν(T) = νH + α(TH − T). (4.2)

We assume a steady state regime for the temperature inside the cylindrical pipe, i.e.,

w
∂T
∂z

= κ
1
r

∂

∂r

(
r

∂T
∂r

)
. (4.3)

The vertical temperature advection is equilibrated by the radial temperature diffusion.

The boundary condition on the wall, i.e., at r = a is linearly dependent of depth

T = TH −
∆T
L

z. (4.4)

This allows us to consider simply —together with the steady-state temperature equation—

that a vertical temperature gradient develops in the pipe and its surrounding as the magma
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is rising (see e.g., Jaupart and Mareschal (2010) page 325, Delaney and Pollard (1982) and

Bruce and Huppert (1989)).

One can verify that

T = TH −
∆T
L

z +
w∆T
4κLa2 (a2 − r2) (4.5)

is a particular solution of equation 4.3. The homogeneous solution that have to be added to

the particular one must have T equal to TH when z = 0. But here —as done by Whitehead

and Helfrich (1991)— for analytical convenience we approximate the temperature r = 0

and use the following approximate solution

T = Th z <
wa2

4κ

T = TH −
∆T
L

z +
w∆T
4κLa2

wa2

4κ
< z < L

(4.6)

which is consistent with the boundary conditions and in particular with T = TH at z = 0.

The length defined by L∗ = wa2/4κ is equivalent to the thermal entrance discussed in

Delaney and Pollard (1982). It defines the depth below which most of the heat that entered

the pipe still resides in the fluid.

Let’s inject solution 4.6 into the momentum equation (4.1) and integrate it from the

bottom to the top of the pipe. The integration gives

−1
ρ
(∆P + ρgL) =


8w
a2 [νH L + α

∆T
2L

(L− wa2

4κ
)2] + L

dw
dt

w ≤ 4κL
a2

8νHwL
a2 + L

dw
dt

w >
4κL
a2

(4.7)

Where ∆P is the difference of pressure between the bottom and the top of the pipe that

drives the flow. Equation 4.7 couples the difference of pressure driving the flow with the

vertical flow velocity and the rate of variation of the flow velocity.

Posing L∗ = L allows us to define a velocity scale w∗ = (4κL)/a2, which in turn allows

us to define a Reynold number

Re ≡ w∗ρa
µ

=
4κLρ

aµ
=

1
Pr
× 4L

a
(4.8)
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where Pr ≡ ν/κ is the Prandt number (Delaney and Pollard, 1982). If we consider a basaltic

magma with a viscosity µ ' 102Pa.s, a density ρ ' 3.103kg.m−3 and make the assumption

that both the magma and the surrounding rock have the same thermal diffusivity κ =

10−6m2.s−1 and L ' 103m and a ' 1m, then the corresponding Reynold number is ' 10−1

which is small compared to 1. Such a reasoning based on dimensional analysis is generally

used to neglect the inertial term ρdw/dt in the momentum equation 4.1. But as already

stressed out, because of the nonlinearity of the relationship relating the vertical velocity

and the pressure driving the flow, equation 4.7 may not tend toward a fixed limit when Re

tends toward 0 (Barenblatt (1996) p. 10). Whether or not equation 4.7 tends toward a fixed

value as Re tends toward 0 depends on the parameter values.

4.5.2 Two shallow magma reservoirs fed by a deeper source

Geochemistry, petrology and geophysics provide evidences that both volcanoes, Okmok

and Piton de la Fournaise, have plumbing systems composed of multiple storage zones fed

by basaltic magmas coming from a deeper source region (see section 4.3). Relying on such

information, let’s consider that flow in the cylinder presented above connects two shallow

magma chambers.

As the magma is either flowing in or out one of the chamber, its volume changes. The

change of volume ∆V can easily be related to a change of pressure ∆P inside the chambers

by assuming that they are embedded in an elastic medium. In this case, the change of

pressure is given by:

∆P = E
∆V
V

. (4.9)

For an incompressible magma, the coefficient E depends on both the intrinsic elastic prop-

erties of the surrounding rocks and the geometry of the chambers. For example E = 4
3 G for

a spherical magma chamber, where G is the shear modulus of the surrounding rocks (Tait

et al., 1989; Delaney and McTigue, 1994). We may refer to E as the effective bulk modulus

of the magma chambers (Huppert and Woods, 2002).

The volumetric flux associated with the pipe that has a radius ar is simply wπa2
r . The

two shallow chambers have pressure PB and PT respectively (subscripts B an T refer to bot-
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tom and top). The deepest chamber is connected to a source region inside which the pres-

sure PS is constant and supplies the shallow reservoirs with a magma that has a constant

viscosity through a cylindrical pipe of radius aS and length LS. The associated volumetric

flow is QS =
a4

Sπ
8µLS

[PS − PB − ρgLS] (e.g., Lenglin et al., 2008; Pinel et al., 2010). A schematic

representation of the system is displayed in figure 4.5.

Such a system is governed by the following three coupled differential equations

dPB

dt
=

a4
SEπ

VB8µLS
[PS − PB − ρgLS]− w

Eπa2
R

VB
,

dPT

dt
= w

πa2
RE

VT
,

dw
dt

= − 8w
a2

RLR
[νH LR +

α∆T
2LR

(LR −
wa2

R
4κ

)2] +
1

ρLR
[PB − PT − ρgLR].

(4.10)

The first equation relates the change of pressure in the deepest shallow chamber with

the influx coming from the underlying source region and the outflux leaving toward the

shallower reservoir. The second equation relates the change of pressure in the shallower

chamber with the flux of magma arising from the chamber below. The third equation

couples the variations of the vertical velocity of the magma with the difference of pressure

between the two shallow reservoirs. If we consider that the pressures that drive the flows

are the sum of the lithostatic pressures at the outlets of the pipes and the overpressure of

the magma reservoirs then the former equations become:

dPB

dt
=

a4
SEπ

VB8µLS
[∆PS − ∆PB + ∆ρgLS]− w

Eπa2
R

VB
,

dPT

dt
= w

πa2
RE

VT
,

dw
dt

= − 8w
a2

RLR
[νH LR +

α∆T
2LR

(LR −
wa2

R
4κ

)2] +
1

ρLR
[∆PB − ∆PT + ∆ρgLR].

(4.11)

where ∆ρ = ρr − ρ is the density contrast between the surrounding rocks and the magma,

∆PS, ∆PB and ∆PT are the overpressure of the corresponding reservoirs. The system of

equations 4.11 shows that the fluid flow is driven by both the chamber overpressure and the

buoyancy of the magma (Jaupart and Tait, 1990). If ∆ρ is kept as a constant, the buoyancy

term acts as a constant flux and constitutes a constant forcing term.
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4.5.3 Dimensions

The dimensionless variables —denoted with primes— are defined by

w = w′w∗, wr =
4κLR

a2
R

,

t = t′
8µLSVB

Eπa4
S

,

P = P′[
LRρ8νHw∗

a2
R

].

(4.12)

The velocity scale w∗ is the one mentioned in the section 4.5.1 and corresponds to the

velocity above which most of the heat still resides in the magma (Delaney and Pollard,

1982). The time scale is the characteristic time scale associated with the balance of pressure

between one shallow reservoir of volume VB and a deep source region (e.g. Pinel et al.,

2010). Finally the pressure scale is a viscous pressure scale that can be extracted from the

steady state version of the momentum equation (equation 4.1).

By injecting the above expressions of the variables in equations 4.11, dropping the

primes, and considering that ∆ρ = 0 we end up with the following dimensionless sys-

tem of equations
d∆PB

dt
= ∆PS − ∆PB − w

LSa4
R

LRa4
S

,

d∆PT

dt
= w

VB

VT

a4
RLS

a4
SLR

,

dw
dt

= γ[ f (w) + ∆PB − ∆PT].

(4.13)

where

f (w) =


− w(1 +

A
2
(1− w)2) w ≤ 1

− w w > 1.
(4.14)

Four dimensionless parameters appear in equation 4.13:

γ = (
8νH

a2
S

2
)

ρLSVB

Eπa2
R

, A =
α∆T
νH

, B =
a4

RLS

a4
SLR

, C =
VB

VT
. (4.15)

As detailed in the following section, the values of these four dimensionless parameters have

a direct influence on the qualitative dynamics of the system.
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4.5.4 Linear stability analysis and Hopf bifurcation

In order to understand the behavior of such a system and its relevance with respect to the

geodetic observations presented in section 4.4, we consider first that the dimensionless flux

entering the deepest reservoir is kept constant such that its value Q ≡ [∆PS − ∆PB] = cst.

The number of variables of the resulting system can be reduced by posing X = ∆PT − ∆PB,

which leads to:

dX
dt

= −Q + (1 + C)Bw, (4.16a)

dw
dt

= γ[ f (w)− X]. (4.16b)

Since B and C and γ are positive, it is clear from Eqs. 4.16a and 4.16b that this model

contains the possibility of oscillatory solutions, as is the case for the linear system

ẋ = y, ẏ = −x. (4.17)

Whether this capacity to oscillate is realized for system 4.16 depends on parameter values,

as we shall see below.

The system of differential equations 4.16 differs from the much simpler system 4.17

in two essential ways: (i) it is nonlinear, and (ii) it is not conservative. The nonlinearity

appears in the damping, as in the classical Van der Pol oscillator, which is characterized

by seesaw-shaped relaxation oscillations, as opposed to the sinusoidal oscillations of 4.17

(Guckenheimer and Holmes, 1983).

Like 4.17, 4.16 has a unique fixed point, i.e., a single stationary solution that corresponds

to dX
dt = dw

dt = 0, given by:

w0((1 +
VB

VT
)

LSa4
R

LRa4
S
) = Q, (4.18a)

X0 = f (w0). (4.18b)

The first step to understand the dynamics governed by such a nonlinear system is to lin-
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earize it around the fixed point 4.18. The linearization yields

dX
dt

= w((1 +
VB

VT
)

LSa4
R

LRa4
S
)

dw
dt

= γ[
d f
dw

∣∣∣∣
w0

w− X].
(4.19)

The eigenvalues of the linear system 4.19 are

λ± =
γ

2
[

d f
dw

∣∣∣∣
w0

±

√√√√ d f
dw

∣∣∣∣2
w0

− 4(C + 1)B
γ

]. (4.20)

A nonlinear dynamical system is said to be linearly unstable when at least one of its eigen-

value have a positive real part. The fixed point loses its stability when d f
dw

∣∣∣∣
w0

becomes

positive —γ being always positive. In this case, any trajectory of the system starting near

the fixed point will necessarily spiral away from it.

One can show that this transition is possible only for values of the fixed point defined

by the inequality
2
3
− 1

3

√
1− 6

A
< w0 <

2
3
+

1
3

√
1− 6

A
(4.21)

which enables us to extract two criteria for the fixed point to be unstable. First A needs to

be larger than 6, otherwise d f
dw

∣∣∣∣
w0

cannot positive. Also from equation 4.18a and from the

inequality 4.20 one can show that the flux Q of the magma feeding the shallow reservoirs

needs to verify the following inequality

(
2
3
− 1

3

√
1− 6

A
)(C + 1)B < Q < (

2
3
+

1
3

√
1− 6

A
)(C + 1)B. (4.22)

Far enough from the fixed point, ( d f
dw ) can change sign, thus giving rise to a limit cycle,

i.e a nonlinear oscillatory regime can take place when the fixed point becomes unstable

(figure 4.16) (Grasman, 2011). Such oscillations have been coined "relaxation oscillations"

and are characterized by the fact that their shapes are not necessarily sinusoidal as for

the oscillations of the classical example of the Van der Pol oscillator (Van der Pol, 1926;

Guckenheimer and Holmes, 1983). Their shapes vary from a system to an other, here for

example there is an asymmetry between the phase of increasing X and decreasing X which

95



CHAPTER 4. A FLUID-DYNAMICS–BASED MODEL OF RESERVOIR
OVERPRESSURE OSCILLATIONS AS INFERRED FROM GEODETIC TIME SERIES

leads to a sawtooth shaped oscillatory time series (figure 4.7b). Also their amplitudes do

not depend on the initial conditions from which they arise but on the parameters of the

system only contrary to classical harmonic oscillations of linear system (eq. 4.17).

Another way to understand the temporal behavior of the system 4.16 is to rewrite it as

dX
dw

( f (w)− X) =
1
γ
(−Q + w(C + 1)B). (4.23)

If we consider that 1
γ is a small parameter then

dX
dw

( f (w)− X) ' 0 (4.24)

which means that the trajectories of the system roughly follow the curves defined by

f (w) = X or dX
dw = 0, i.e., vertical lines in the plane phase space w versus X. The com-

position of these two curves forms the so called limit cycle in the phase space X versus w

shown in figure 4.7a.

The change in the dynamics of a nonlinear deterministic system from a unique stable

fixed point to a stable closed orbit — like the one seen in Figure 4.7 — is called a Hopf

bifurcation (Ghil and Childress, 1987; Guckenheimer and Holmes, 1983; Jordan and Smith,

2007).

4.6 Okmok: two successive exponential inflations followed by

damped oscillations

4.6.1 Two successive exponential inflations

The first aspect of Okmok dynamics that needs to be understood is the occurrence of

two consecutive episodes of exponential inflations that have different characteristic time

scales called here τ1 and τ2 (see figure 4.3). A common way of explaining the presence of

exponential inflations is to consider a shallow reservoir fed by a source region inside which

the pressure is constant (e.g., Pinel et al., 2010). If we consider that the deepest shallow

chamber is fed by a source and is not connected to any other reservoir then the evolution
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of ∆PB can be expressed analytically and

∆PB = ∆PB(0)exp(
−t
τ1

) + ∆PS(1− exp(
−t
τ1

)) (4.25)

where τ1 = VB8µLS
Eπa4

S
. Here, the characteristic time scale τ1 can be linked to the hydraulic

connection between the source region and the shallow reservoir. This is also the time scale

used to adimensionalized the system (eq. 4.11).

As shown in figure 4.3, the second exponential inflation phase occurred when the first

started to become almost flat (figure 4.3a). This observation suggests that the second in-

flation phase is related to the transfer of magma from the shallow chamber considered

above to another one because when the overpressure ∆PB reaches a value large enough

a new pathway —or already existing pathway— for magma may open —resp. re-open—

allowing the transfer of magma to a shallower reservoir. If this scenario is correct, then the

second exponential inflation phase can be related to the dynamics of pressure balance be-

tween two shallow chambers. If we neglect that the bottom shallow reservoir is connected

to a source region then ∆PB and ∆PT evolve according to

∆PB =
VT

VB + VT
(∆PB(0)− ∆PT(0))(1− exp(

−t
τ2

)) + ∆PB(0),

∆PT =
VB

VB + VT
(∆PT(0)− ∆PT(0))(1− exp(

−t
τ2

)) + ∆PT(0)
(4.26)

where in this case τ2 = 8µDR
Eπa4

R
( VTVB

VT+VB
) (Reverso et al., 2014).

If we suppose that E and µ are the same for both pipes then

τ1

τ2
=

LSa4
R

a4
SLR

(
VT + VB

VT
) (4.27)

which means that τ1 may be bigger than τ2 —as it is the case for Okmok time series (figure

4.3)— if VT is smaller than VB.

Even though, at first order, the above reasoning may be acceptable, in all rigor the entire

system —i.e., the two reservoirs fed by the source region— should be treated as a whole

because the transfer of magma between the two shallow reservoirs affects the pressure of
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the bottom shallow reservoir that in turn affects the flux of magma from the source region.

The dynamics of this system is governed by equation 4.13 with A = 0. Its resolution shows

that in fact it possesses two characteristic time scales. One of them is larger than τ1 and the

other one larger than τ2 but smaller than τ1 (see appendix A).

4.6.2 The transition between the exponential inflations and the oscillations

The last phase of Okmok deformation before the 2008 eruption starts in 2004 when a

damped oscillatory signal emerged from the second inflation phase (figure 4.3). This sig-

nal and the transition from the exponential trend can be explained using the system of

differential equations 4.13.

As we saw above, the reduced system governed by equations 4.16a and 4.16b evolves in

an nonlinear oscillatory regime only if the flux entering the system is bounded by values

that depend on the dimensionless parameters A, B and C (inequality 4.22).

This is also valid for the system 4.13 even though in that case the flux is not a constant

and depends on the value of the overpressure ∆PB. From the inequality 4.22 we can derived

thresholds for ∆PB required for the emergence of an oscillatory regime. Such inequality is

given by

∆PS − (
2
3
+

1
3

√
1− 6

A
)(C + 1)B < ∆PB < ∆PS − (

2
3
− 1

3

√
1− 6

A
)(C + 1)B. (4.28)

The figure 4.8 shows time series of evolving overpressure governed by equations 4.8.

As the pressure equilibrates between the shallow reservoirs and the source region, ∆PB

and ∆PT increase. When PB reaches the lower threshold defined in inequality 4.28, the

overpressure starts to oscillate in a sawtooth manner like in figure 4.7b. These oscillations

are superimposed onto the overall trend of exponential pressure increase and are slightly

damped as the flux entering the shallow system decreases. When the pressure ∆PB reaches

the upper threshold of inequality 4.28 the oscillations cannot be sustained anymore.

This qualitative dynamics can be directly compared to observations at Okmok. The

fact that at Okmok the oscillations start when the rate of inflation decrease and is damped

suggests that the transition from the exponential inflation regime to the oscillatory one is
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controlled by the evolution of the flux entering the shallow system. Note also that, because

the time in figure 4.8 is scaled by the characteristic time scale τ1 associated to the pressure

balance between a source region and a shallow reservoir, the period of the oscillations are

also quantitatively consistent with observations at Okmok.

4.7 Piton de la Fournaise: an irregular behavior

4.7.1 On irregular temporal patterns

Although geodetic time series at Piton de la Fournaise show much more irregularity than

Okmok, one can also observed a succession of fast inflation followed by intervals of rest or

small subsidence superimposed onto a longer period inflation that, in this case, is roughly

linear. Such observation suggests that the relaxation oscillations presented above may also

play a role in the Piton de la Fournaise dynamics.

The irregularity is characterized by variations of the amplitudes and periods of the

successive fast inflations and relatively quiet periods. Unlike Okmok volcano, the presence

of an overall linear trend suggests that the variations of the amplitude and period of the

events are not mainly controlled by the flux supplying the shallow system. The linear trend

suggests a constant flux from the source region meaning that the reduced system 4.16 may

be more adapted to Piton de la Fournaise time series than system 4.13.

An irregular temporal behavior may be understood by adding only one degree of free-

dom to the nonlinear system 4.16. In this case the irregularity is called "deterministic chaos"

(see the seminal work of Lorenz (1963b) and e.g., Ghil and Childress (1987) for examples in

geophysics). Van der Pol (1940) gave a beautiful explanation — with no equations whatso-

ever — of how a relaxation oscillator can, in the presence of periodic forcing, lead to what

is called nowadays "sensitive dependence on initial states", and hence irregular, chaotic be-

havior. Relying on this guideline, we can explore the processes that may induce changes in

the parameter values that control both the period and amplitude of the relaxation oscilla-

tions.

The estimated difference of overpressure in the shallow reservoir necessary to explain
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the differences of amplitude of the inflations events observed lie around ' 1MPa (Peltier

et al., 2008). The information exposed in section 4.3 allows us to consider that the length of

the pipe connecting the two shallow reservoirs at Piton de la Fournaise is LR ' 5km. If we

consider that aR ' 1m, µ ' 100Pa.s and κ ' 10−6m2.s−1 then the pressure scale defined

above takes the value [P] ' 10−1MPa.

4.7.2 Effect of volatiles on the oscillations

If volatiles are present in the magma and are exsolved, the effective bulk modulus of the

magma chamber —E— can change significantly. The work of Famin et al. (2009) based on

lavas coming from the February and December 2005 eruptions shows that H2O and CO2

are present in melt inclusions that have been entrapped from ' 2km depth and above.

The concentration of H2O present in the melt inclusions of the studied samples ranges

from ' 0.1wt.% to ' 0.6wt.% (Famin et al., 2009). The concentration of CO2 is much more

smaller because its solubility is much lower. A significant fraction of CO2 probably exsolved

in the deepest part of the plumbing system and left it before the magma reaches the 2km

depth storage zone (Boudoire et al., 2017).

The melt inclusions are thought to represent the parental magma that is then differ-

entiated through crystallization processes in the chamber. Because the parental magma

contains a significant amount of water, the differentiated melt that results from it can reach

saturation and water can then exsolve. Although the estimation of the entrapment depth

of the melt inclusions shows that H2O exsolves probably mainly during the decompression

associated to the ascension of the magma toward the surface, some may also exsolve in the

chamber while crystallization occurs (see Tait et al. (1989) and the references theirein).

Let’s therefore make the assumption that only one volatile species (H2O) is present

when the melt arrives in the 2km depth shallow reservoir. We follow the formalism of

Huppert and Woods (2002) to study how the presence of the volatile affect the bulk mod-

ulus of the magma chamber (see the appendix B for further details on the model). The

computation of the variations of the effective bulk modulus as a function of the weight

fraction of crystals are shown in figure 4.9. We choose two values for total H2O content
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of the melt, N = 2.5wt.% and N = 3wt.%, that are within the range measured in the melt

inclusions. In both cases, as the crystal content increases, the resulting melt can reach H2O

saturation. At this point a huge drop of almost 2 orders of magnitude of the value of the

effective bulk modulus occurs.

A drop of E of two orders of magnitude leads to an increase of γ of two order of

magnitude. The pressure evolution of PT in the case of a constant flux coming from the

source region to the shallow system for γ = 0.1 and γ = 10 are shown in figure 4.10. As

shown, such change of amplitude in γ leads to both amplitude and period variations of

the oscillations of pressure inside the reservoir. The order of magnitude of the difference

of pressure associated with the amplitude of the oscillations is ' 10 × [P]. Because as

estimated [P] ' 10−1MPa, the amplitude difference is ' 1MPa which is consistent with

the amplitude variation of overpressure from one event to the other (Peltier et al., 2009).

4.8 Concluding remarks

4.8.1 Summary

Okmok and Piton de la Fournaise have similar plumbing systems composed of several

storage zones. The dynamics of both systems reflected the GPS derived deformation time

series can be understood by the study of the interaction of two reservoirs connected by

a pipe in which the magma has a viscosity that depends on temperature. For a certain

range of parameter values, the pressure inside the shallow reservoirs can oscillates between

phases of fast variations of pressure and opposite phases of slow variations of pressure.

At Okmok the oscillations are damped and superimposed onto an exponential infla-

tion. Because the oscillations can only be sustained when the flux of magma feeding the

magma chambers is bounded by specific values, the onset of the oscillations appears to be

controlled only by the evolution of the flux of magma coming from the source region.

GPS time series at Piton de la Fournaise show much more irregularity. The successive

fast inflations and quiet periods are superimposed onto a quasi linear trend. The period

and amplitude of the cycles of inflation can be the result of the variations of several param-
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eters of the model presented above. In particular, because the melt entering the shallowest

reservoir contains a significant portion of water, the exsolution of volatile species can lead

to a significant change of the effective bulk modulus of the magma chambers that leads,

in turn, to the modification of the amplitude and period of the successive fast inflations

observed.

4.8.2 Relaxation oscillations as a mechanism for triggering eruptions?

At Piton de la Fournaise, within the studied period (2003-2007), almost all fast inflations are

followed either by eruptions or intrusive events. In particular the largest eruption of April

2007 is also preceded by such "pulses" (figure 4.4 a and b). At Okmok the two damped

oscillations presented above are followed by a fast inflation that is itself followed by the

2008 eruption. These observations prompt the question of a link between the phase of fast

inflations associated with the oscillations and the triggering of eruptions.

From a purely mechanical standpoint, a classical way to see how eruptions are triggered

is to consider that the overpressure can be large enough for the wall tensile stress of the

magma chamber to reach the tensile strength. In this case the induced tensile fracture can

eventually reach the surface and generate an eruption (Blake, 1981). At Okmok this mecha-

nism may explain the onset of the eruption; the last fast inflation allowing the overpressure

to reach the critical value faster than it would without the oscillations.

But GPS time series at Piton de la Fournaise shows that eruptions —although often

small— can occur at different level of overpressure inside the chamber because they occur at

different moment along the linear trend reflecting the pressurization of the shallow magma

chambers. In this case both the value of the overpressure and the rate of variation of the

overpressure seem to play a role in the mechanism of eruption triggering. The purely

mechanical standpoint exposed above that depends only on the value of the overpressure

may not be appropriate.

A way to understand the effect that could have the rate of variation of overpressure

is to consider for example the solidification of magma during dyke propagation (Taisne

and Tait, 2011). Higher rate of overpressure would allow higher flux of magma inside an
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opening dyke and therefore a larger amount of advected heat inside the dyke. This would

prevent the magma to solidify, allowing for the intrusion to reach the surface and give rise

to an eruption.

4.8.3 Conclusion

We conclude that episodes of fast inflations followed by more longer quiet periods can be

explained for by a model of hydraulic reservoir interaction that takes into account viscosity

variations of the magma. This behavior indicates the presence of a nonlinear oscillatory

regime that arise when : (i) the flux supplying the shallow system is bounded between

specific values and (ii) the viscosity variations are sufficiently high. Such a regime explains

the "pulses" as a manifestation of the internal variability of the magmatic system instead of

the result of time "ad hoc" dependent external forcing.

4.9 Appendix A: Linear hydraulic interaction of two shallow reser-

voirs fed by a source region

Let’s consider system 4.13 without any viscosity variations —i.e., A = 0. In this case the

system 4.13 reduces to


d∆PB

dt
= ∆PS − ∆PB − B(∆PB − ∆PT)

d∆PT

dt
= BC(∆PB − ∆PT)

(4.29)

where B and C are two dimensionless parameters introduced in the main text (see table

4.11).

The solutions of the corresponding homogeneous system have necessarily the form

∆PB

∆PT

 = α

eλ1t

eλ2t

 (4.30)

where α is a matrix containing coefficients that depend on the initial conditions. The
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coefficients λ1 and λ2 are the eigenvalues of the matrix

−(B + 1) B

BC −BC

 (4.31)

and are defined by:


λ1 =

−(B(C + 1) + 1) +
√
(B(C− 1)− 1)2 + 4CB2

2

λ2 =
−(B(C + 1) + 1)−

√
(B(C− 1)− 1)2 + 4CB2

2

(4.32)

Because λ1 and lambda2 are real values, system 4.29 cannot oscillate. It shows that the

dynamics of the system 4.29 is associated with two time scales λ1× 8µLSVB
Eπa4

S
and λ2× 8µLSVB

Eπa4
S

.

4.10 Appendix B: The link between the effective bulk modulus of

a magma chamber and the volatile content of magmas

We follow Huppert and Woods (2002) to show how the presence of volatile can affect the

effective bulk modulus of the magma chambers E. In the case where the bulk density of

the magma varies the conservation of mass indicates that

d
dt
(ρV) = ρ

dV
dt

+ V
dρ

dt
= Q. (4.33)

where Q is the total mass flux of magma either leaving or entering a chamber. The density

ρ is a function of temperature, pressure, mass fraction of crystals and total mass fraction

of volatile (dissolved plus exsolved). Differentiating expression 4.33 with respect to the

density gives the following relationship

dV
dt

+
V
ρ

∂ρ

∂p
dp
dt

=
Q
ρ
− V

ρ

∂ρ

∂T
dT
dt

. (4.34)
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As we already saw the change of volume inside a chamber can be related to the change of

pressure by
dV
dt

=
V
E

dP
dt

(4.35)

Injection 4.35 into equation 4.34 gives

V[
1
E
+

1
ρ

∂ρ

∂P
]
dP
dt

=
Q
ρ
− V

ρ

∂ρ

∂T
dT
dt

(4.36)

We can identify the left hand side of equation 4.36 with the right hand side of equation 4.35

to define an effective bulk modulus for magma chamber with compressible magma which

is defined according to
1
E
=

1
E
+

1
ρ

∂ρ

∂P
. (4.37)

The effective modulus for magma chamber that contains volatile E can be calculated with

an expression of the bulk density as a function of the pressure P. We use the following

expression for the bulk density:

ρ = [
n
ρg

+ (1− n)(
x
ρc

+
1− x

ρm
)]−1, (4.38)

where ρg and ρc are respectively the gas density and the crystals density, x is the weight

fraction of crystals and n is the weight fraction of exsolved volatile.

The gas density follows an ideal gas law

ρg =
P

RT
(4.39)

where R is the universal gas constant. The exsolved volatile content n is assumed to follow

the Henry’s law. For water the law expresses n = N − sP1/2(1 − x) when the magma

reaches saturation, i.e., n ≥ 0, otherwise n = 0. N is the total volatile content and s =

4× 10−6Pa−1/2.
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4.11 Table

Description Symbols
Variables
Pressure in the top magma chamber PT
Pressure in the bottom magma chamber PB
Overpressure in the top magma chamber ∆PT
Overpressure in the bottom magma chamber ∆PB
Horizontaly average vertical velocity w
Difference of overpressures X = ∆PT − ∆PB
Geometrical parameters
Feeding pipe length LS
Shallow pipe length LR
Feeding pipe radius aS
Shallow pipe radius aR
Magma properties
Dynamic viscosity µ
Kinematic viscosity ν
Density ρ
Thermal diffusivity κ
Density contrast ∆ρ

Country rock properties
Density ρr
Shear modulus G
Magma chambers properties
Volume of the top magma chamber VT
Volume of the bottom magma chamber VB
Effective bulk modulus E
Effective bulk modulus for compressible magma E
Important dimensionless parameters

γ = ( 8νH
a2

R
)2 ρDRVT

Eπa2
R

A = α∆T
νH

B =
a4

R LS

a4
S LR

C = VB
VT

Table 4.1: List of main variables and parameters described in the main text.

4.12 Figures
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Figure 4.1: Location map of Okmok showing the GPS sites (grey triangles) from which the
displacement time series used here have been extracted
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Figure 4.2: Location map of Piton de la Fournaise showing the GPS sites (grey triangles)
from which the displacement time series used here have been extracted.

108



4.12. FIGURES

−50

−40

−30

−20

−10

S
o

u
rc

e
 v

o
lu

m
e
 c

h
a
n

g
e
 (

x
1
0

6
m

3
) 

2000 2005

τ1 = 2.2 year

τ2 = 1.1 year

−40

−20

0

20

40

O
K

C
E

 W
e
s
t 

(m
m

)

2004 2005 2006 2007 2008
Time (year)

(b)

(a)

Figure 4.3: Geodetic time series products from Okmok volcano. The top sub-panel shows
the cumulative volume change estimated from InSAR time series (Biggs et al., 2010). The
bottom sub-panels shows a selected GPS time series reflecting the deformation regime
before the 2008 eruption.
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Figure 4.4: A selected GPS time series recorded at the summit of Piton de la Fournaise.
The top sub-panel shows the time series between 2003 and 2007.5 (black dot) as well as the
different intrusive and eruptive events (grey areas). The bottom sub-panel zooms in the
pre-eruptive period of the large 2007 eruption.
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Figure 4.5: Schematic representation of the various elements composing the model de-
scribed in the main text. Two shallow reservoirs, that have volume VB and VT and inside
which the pressure are denoted PB and PT, are supplied by a deeper source region of
constant pressure PS.
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Figure 4.6: Changes in the shape of f (w) as the dimensionless parameter A varies. When
A is above 6 there is a range of w for which f (w) increases. This is the critical characteristic
of f that allows for the emergence of the relaxation oscillations.
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Figure 4.7: Nonlinear oscillations of the reduced model governed by Eq. (4.16): (a) phase
portrait in the (∆X, w)-plane ; (b) and (c) the associated time series representing, respec-
tively, X and w. All plots are computed using [γ, A, B, C, Q] = [10, 150, 1, 3, 4] in the equa-
tions. In panel (a), the closed trajectory (heavy solid line) is the limit cycle. The dashed
curve represents the function f (w) that is responsible for the shape of the limit cycle. As
it can be understand from equation 4.24, the trajectory of the limit cycle either follow f (w)
or vertical lines.
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Figure 4.8: Time series reflecting the dynamics of the reservoir overpressure that is gov-
erned by equations 4.8 :(a) time series of both PB and PT; (b) time series of PT − PB. Plots
are computed using [γ, A, B, C] = [2.5, 350, 10, 20].
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Figure 4.10: Effect of volatile exsolution on the overpressure oscillations in the top shallow
reservoir. Two time series have been computed using two values of γ separated by two or-
ders of magnitude which is approximately the effect that would have volatile exsolution on
γ. Exsolution of volatile causes an increase of the value of γ that in turn causes a decrease
of the amplitude and period of the oscillations. Both time series have been computed using
A = 150, Q = 4, B = 1, C = 3.
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CHAPTER 5

CONCLUSIONS AND PERSPECTIVES

Les séries temporelles géodésiques fournissent des informations sur la dynamique qualita-

tive des systèmes géologiques. Cela signifie que si l’on souhaite modéliser la dynamique

d’un système naturel par une équation du type

dy
dt

= F(y) (5.1)

les séries temporelles peuvent permettre de contraindre l’opérateur F.

Avec cette perspective comme ligne directrice nous avons analysé des séries temporelles

GPS acquises sur quatre volcans actifs: Akutan, Okmok, Shishaldin de l’arc des Aléouti-

ennes et le Piton de la Fournaise à la Réunion. La M-SSA, une méthode d’analyse non

paramétrique, permet de décomposer ces séries temporelles en modes de variabilité cor-

respondant soit à des tendances non linéaires, à des modes oscillants ou à du bruit (Ghil

et al., 2002). Ces quatre volcans possèdent une dynamique cyclique similaire représentée

par seulement quelques uns des modes extraits par la M-SSA. Cette dynamique est en

partie expliquée par un simple oscillateur non linéaire.

La relative simplicité de cet oscillateur —qui possède seulement deux variables— est co-

hérente avec la quantité d’information contenue dans les séries temporelles (Discussion du

chapitre 3). Dans l’idée de concevoir un modèle physique pour comprendre l’émergence de
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ce type de signature dans les séries temporelles de déformation volcanique, cette analogie

permet de formuler des contraintes sur la dynamique qualitative de ces quatre volcans: par

exemple un tel modèle physique doit posséder une dynamique oscillatoire non linéaire.

Le chapitre 4 montre qu’un modèle avec deux réservoirs connectés par un conduit dans

lequel la viscosité du magma varie avec la température possède un tel régime oscillatoire

non linéaire (Whitehead and Helfrich, 1991). Lorsque le magma ne subit aucune variation

de viscosité à l’intérieur du conduit le modèle proposé est équivalent à ceux de connections

hydrauliques couramment utilisés pour expliquer les séries temporelles géodésiques (e.g.

Reverso et al., 2014). Il est donc facilement intégrable au cadre théorique déjà existant

pour exploiter les séries temporelles géodésiques en vue de comprendre la dynamique

volcanique.

Le régime oscillatoire peut se mettre en place uniquement lorsque (1) les variations

de température du magma à l’intérieur du conduit sont suffisamment importantes et (2)

lorsque le flux de magma qui entre dans le système est compris entre deux valeurs qui

sont déterminées analytiquement à partir de l’analyse de stabilité linéaire du système. A

Okmok on peut justement observer une transition vers ce régime oscillatoire lorsque le flux

de magma entrant dans le système diminue et atteint une valeur seuil.

Les séries temporelles du Piton de la Fournaise présentent certaines irrégularités. Un

tel comportement peut éventuellement être modélisé en ajoutant une variable au modèle

réduit du chapitre 4. C’est le principe du chaos déterministe (e.g., Lorenz, 1963a; Guck-

enheimer and Holmes, 1983). Cette approche peut s’appuyer sur la littérature de la dy-

namique des fluides appliquée aux systèmes volcaniques afin d’identifier les processus

physiques et/ou chimiques qui peuvent être couplés aux interactions hydrauliques et ren-

dre la dynamique du système plus compliqué. Les études pétrologiques et géochimiques

sur les laves des éruptions du Piton de la Fournaise qui ont eu lieu pendant la période

étudiée permettent également d’identifier ces processus.

Nous avons brièvement étudié l’effet des volatiles sur l’amplitude et la période des os-

cillations de surpressions dans les chambres magmatiques. Un modèle prenant en compte

les variations de la fraction de magma cristallisé et de volatiles dissous dans le magma mon-
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tre qu’une exsolution des volatiles entraîne une baisse d’environ deux ordres de grandeur

du module d’incompressibilité des chambres magmatiques. Ceci modifie la capacité de la

chambre magmatique à se déformer élastiquement et provoque à la fois une augmentation

de la période des oscillations et une augmentation de leurs amplitudes.

D’autres effets qu’il serait intéressant de considérer sont ceux liés à l’impact du régime

thermique qui se met en place à l’intérieur du conduit qui sépare les deux zones de stock-

ages du magma. Par exemple, le gradient de température à l’intérieur du conduit peut

varier dans le temps ce qui aura également pour effet de modifier les amplitudes et péri-

odes des oscillations de surpression. Le magma pourrait également cristalliser dans le

conduit ce qui ferait varier à la fois la viscosité du magma et le rayon du conduit (e.g. Tay-

lor, 1932; Bruce and Huppert, 1990). Les variations de ces deux paramètres ont des effets

significatifs puisqu’ils sont respectivement élevés aux puissances 2 et −2 dans le paramètre

sans dimension γ qui contrôle la manière dont les chambres magmatiques se déforment en

réponse aux oscillations de surpressions (chapitre 4, equation 4.15).

Une suite naturelle à cette étude serait de coupler au modèle proposé des équations

gouvernant l’évolution des paramètres mentionnés ci-dessus. Comme la dynamique ré-

sultante peut être compliquée une telle approche nécessiterait de définir des observables

calculables à la fois à partir des séries temporelles géodésiques et des résultats d’un tel

modèle. Ces observables permettraient de caractériser davantage la dynamique des sys-

tèmes volcaniques telle que vu par les séries temporelles géodésiques et de la comparer au

modèle.

Le contenu fréquentiel pourrait constituer une telle observable puisque certaines solu-

tions —même chaotiques— des systèmes d’équations différentielles présentent des fréquences

dominantes (e.g. Ghil and Childress, 1987; Jordan and Smith, 2007). Cependant l’application

brute de la transformée de Fourier sur les séries temporelles du Piton de la Fournaise ne

révèlent aucune fréquence dominante.

Dans la littérature de la théorie des systèmes dynamiques certaines observables calcula-

bles directement à partir des séries temporelles sont régulièrement utilisés pour caractériser

la dynamique sous-jacente (e.g., Bennetin et al., 1980; Abarbanel et al., 1992). Cependant,
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les séries temporelles du Piton de la Fournaise présentent les épisodes d’inflations rapides

comme des processus quasi-discrets du fait probablement du manque de résolution tem-

porelle. Des outils statistiques adaptés devront sûrement être mis en œuvre pour définir

de telles observables (Cowpertwait, 2006).

Des portraits de phases construits directement à partir des séries temporelles de défor-

mations, dont des exemples simples sont présentés dans le chapitre 3, peuvent également

fournir des informations intéressantes. Les portraits de phases du chapitre 3 sont con-

tenus dans les plans déplacements en fonction du taux de déplacement et ont été utilisés

pour mettre en évidence le caractère oscillatoire de la dynamique reflétée par les séries

temporelles de déformation. Cependant on peut également exploiter les différents modes

extrait par la M-SSA pour reconstruire des portraits de phase à 3 dimensions qui permet-

traient de contraindre des modèles dynamiques possédant davantage de degrés de liberté

(e.g. Broomhead and King, 1986a).

A Okmok nous pouvons exploiter le fait qu’en plus des modes associés aux oscillations

du volcan et discutés au chapitre 3, un mode associé à l’éruption de 2008 est extrait par la

M-SSA. A partir de ces modes un portrait de phase a été construit et est représenté en figure

5.1. Ce portrait de phase est une représentation géométrique de la dynamique associée à

la transition des oscillations vers l’éruption de 2008. La trajectoire suit une spirale dans le

plan horizontal puis est expulsée dans une direction perpendiculaire. Ce type de géométrie

est comparable à une transition dynamique appelée bifurcation de Shilnikov et qui apparaît

par exemple dans la dynamique des courants océaniques forcés par le vent (e.g. Ghil and

Childress, 1987; Nadiga and Luce, 2001).

Enfin, l’idée qui consiste à exploiter les séries temporelles géodésiques pour obtenir

des informations sur la dynamique qualitative des systèmes géologiques ne s’applique pas

seulement aux volcans. Par exemple, les glissements lents des zones de subductions des

Cascades et de Mexico forment également un régime oscillatoire non linéaire (Radiguet

et al., 2012; Rogers and Dragert, 2003). Bien que ces phénomènes peuvent être expliqués,

par exemple, par des interactions entres failles (Romanet et al., 2017), il pourrait être utile

de formuler un modèle réduit —avec deux degrés de liberté— reposant à un niveau hiérar-
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chique inférieur mais qui pourrait permettre d’identifier au premier ordre les conditions

d’occurrences de tels comportements oscillatoires non linéaires.
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An Okmok volcano phase portrait

dRC2/dt

RC 2

dR
C

1/d
t

Figure 5.1: Phase portrait reconstructions in the displacement vs. rate-of-displacement
vs. rate-of-displacement of the co-eruptive subsidence space. The geometric shape draw
by the trajectory is reminiscent of a Shilnikov birfurcation (To be compared with figure 6.12
in (e.g. Ghil and Childress, 1987)).
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Résumé 
Nous étudions dans un premier temps l'intérêt de 
l'utilisation de la "multichannel singular spectrum 
analysis" (M-SSA) sur des séries temporelles de 
positionnements GPS. Cette méthode permet de 
simultanément analyser un ensemble de séries 
temporelles et d'en extraire des modes de 
variabilités communs sans utiliser d'information a 
priori sur les structures spatiales et temporelles 
des champs géophysiques. Ces modes 
correspondent à des tendances non linéaires, 
des oscillations ou du bruit. Nous l'appliquons à 
des données enregistrées sur le volcan Akutan 
en Alaska. Nous y extrayons deux types de 
signaux. L'un correspondant à des déformations 
dites saisonnières, l'autre représentant deux 
cycles d'inflations et de déflations successifs du 
volcan Akutan. Les inflations sont rapides et 
courtes et suivies de déflations plus lentes et 
plus longues. 
Dans une seconde partie nous tirons parti de la 
M-SSA pour analyser des séries temporelles 
enregistrées sur plusieurs volcans. Les volcans 
Okmok et Shishaldin en Alaska et le Piton de la 
Fournaise à la Réunion possèdent une partie de 
leurs histoires de déformations qui est similaire à 
celle d'Akutan. Le caractère oscillatoire de ces 
cycles de déformations est comparé au régime 
oscillatoire d'un simple oscillateur non linéaire. 
Les données pétrologiques, géochimiques et 
géophysiques disponibles pour Okmok et le 
Piton de la Fournaise combinées aux contraintes 
sur la dynamique apportées par l'oscillateur non 
linéaire permet de proposer un modèle physique. 
Deux réservoirs superficiels sont connectés par 
un conduit cylindrique dans lequel le magma 
possède une viscosité qui dépend de la 
température. Un tel système se comporte de 
manière similaire à l'oscillateur non linéaire 
étudié précédemment. Lorsque que le gradient 
de température vertical présent dans le fluide est 
suffisamment important et que le flux de magma 
entrant dans le système de réservoirs est 
compris entre deux valeurs déterminées 
analytiquement un régime oscillatoire se met en 
place. 
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Abstract 
We study the use of the "multichannel singular 
spectrum analysis" on GPS time series. This 
method allows to simultaneously analyze a set of 
time series in order to extract from it common 
modes of variability without using any a priori on 
the temporal or the spatial structure of 
geophysical fields. The extracted modes 
correspond either to nonlinear trends, 
oscillations or noise. The method is applied on a 
set of GPS time series recorded at Akutan, a 
volcano located in Aleutian arc in Alaska. Two 
types of signals are extracted from it. The first 
one corresponds to seasonal deformations and 
the other represents two successive cycles of 
inflation and subsidence of Akutan volcano. The 
inflations are fast and short and are followed by 
deflations that are slower and longer. 
In the second part we take benefit of the M-SSA 
to analyze GPS time series recorded at several 
volcanoes. Okmok and Shishaldin in Alaska and 
Piton de la Fournaise in La Réunion possess a 
part of their deformation history that is similar to 
Akutan volcano. The cyclic nature of the 
observed deformations leads us to make an 
analogy between the oscillatory regime of a 
simple nonlinear oscillator and the deformation 
cycles of these volcanoes. 
Geochemical, petrological and geophysical data 
available for Okmok and Piton de la Fournaise 
combined with the constraint on the qualitative 
dynamics bring by the nonlinear oscillator allow 
to propose a physical model. Two shallow 
reservoirs are connected by a cylindrical conduit 
in which the magma have a viscosity that 
depends on the temperature. Such system 
behaves like  the nonlinear oscillator mentioned 
above. When the temperature gradient inside the 
conduit is large enough and the flux of magma 
entering the shallow system is bounded by 
values that are determined analytically a 
nonlinear oscillatory regime arises.  
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