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Résumé

L'objectif de cette thèse est d’encapsuler l'indométacine et l’huile essentielle de Nigella Sativa L. dans 

des nanoparticules polymériques. Cette huile est extraite à partir de ses graines afin d’optimiser son 

utilisation par voie cutanée et potentialiser son activité anti-inflammatoire.

Pour ce faire, des nanoparticules à base de poly- -caprolactone ont été préparées par nanoprécipitation. 

Une étude systématique a été menée pour comprendre l'effet de la variation des paramètres de 

préparation sur les propriétés colloïdales des nanoparticules obtenues. Une fois les différents 

paramètres optimisés, l'indométacine et l'huile essentielle de Nigella Sativa L. ont été encapsulées 

séparément dans les nanoparticules polymériques. Puis, l’ensemble, indométacine et huile essentielle 

de Nigella Sativa L. a été encapsulé. Les nanoparticules préparées ont été caractérisées en termes de 

taille, potentiel zêta, stabilité et performance d’encapsulation. Ensuite, nous avons mené une étude ex-

vivo et in-vivo des nanoparticules obtenues afin d’évaluer le potentiel de pénétration cutanée d’une 

part, et le potentiel clinique dans la prise en charge de l’inflammation.



Summary

The objective of this PhD thesis was to extract the Nigella Sativa L. Seeds Essential Oil and its 

encapsulation together with indomethacin within polymeric nanoparticles in order to reduce taken 

amount and to enhance indomethacin cutaneous penetration, and anti-inflammatory activity. To this 

direction poly- -caprolactone based nanoparticles were designed using nanoprecipitation method. A 

systematic study was performed to figure out the effect of process and formulation parameters on the 

characteristics of obtained nanoparticles. Once the effects of all parameters were studied, then 

indomethacin and Nigella Sativa L. Seeds Essential Oil was encapsulated separately. Consequently, 

both together indomethacin and Nigella Sativa L. Seeds Essential Oil was encapsulated. Then 

prepared nanoparticles were characterized in terms of size, zeta potential, DSC, FTIR, stability, and 

encapsulation efficiency. In addition, ex vivo skin penetration and in vivo anti-inflammatory activity of 

designed nanoparticles was investigated.
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GENERAL INTRODUCTION 
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Introduction  

The word “Inflammation” is derived from the latin “inflammare” word that means to set on 

fire. Inflammation is implicated in diseases such as arthritis, cancer, stroke, neurodegenerative 

and cardiovascular disorders (Ricciotti and FitzGerald, 2011). Host can be protected from the 

aggressive agents like irritants, infection, or damaged cells and other injuries by a natural 

defense cascade that is named inflammation and comprises different interactions between 

cells and mediators, in other words inflammation is an immunity system reaction to an 

infection or injury. The raised blood flow, amplified cellular metabolism, cellular influx, 

soluble mediators release, vasodilation, fluids extravasation, on site heat, redness, swelling 

and pain are the signs of inflammation. Acute inflammation is the first reaction that is 

identified through the raised plasma movement and indigenous immune cells as neutrophils 

and macrophage from the blood into the damaged tissues (Ricciotti and FitzGerald, 2011)

(Ferrero-Miliani et al., 2007) (Medzhitov, 2008) (Scott et al., 2004). In fact, inflammatory 

agents application cause cell membranes phospholipase A2 activation that would trigger the 

release of arachidonic acid and inflammatory mediators (cytokines, serotonin, histamine, 

prostaglandin and leukotrienes) that make easy leukocytes migration to the inflamed site

(Sarkhel, 2016). Moreover, release of products such as histamine, bradykinin, serotonin, and 

cyclooxygenase (COX) is linked with the first phase of inflammation (0-1 h), while 

prostaglandins release, oxygen-derived free radicals production and polymorphonuclear 

leukocytes (PMN) infiltration is related to the late phase of edema (Sadeghi et al., 2014).

Non-Steroidal Anti-inflammatory Drugs (NSAIDs) are being used in a huge quantity all over 

the world. It is considered that above 90 % of patients aged higher than 65 years are using 

NSAIDs (Sostres et al., 2010). In NSAIDs class, heterogeneous drug molecules having 

different structures and various benefit/risk profiles without steroid core within their chemical 

formula are included. Indeed, NSAIDs are mostly prescribed in primary health care(Jones, 

2001).Indomethacin (IND) is a gold standard within NSAIDs drugs category which lessens 

fever, swelling, stiffness, and pain. Since indomethacin inhibits cyclooxygenase (COX) 

enzymes to exert its pharmacological activity therefore indomethacin action is associated with

the presence of gastrointestinal side effects (Sostres et al., 2010)(Cordero et al., 2001).

Indicated side effects can be reduced by the reduction of taking amount and target drug 

delivery design of indomethacin (Závišová et al., 2007). Therefore, to control indomethacin 

delivery ratio and to decline its dosage, skin can be used for the administration of 

indomethacin. Despite that indomethacin is a potent anti-inflammatory drug and shown an 
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acceptable efficiency for the external application, is a poorly water-soluble drug (~ 0.01 

mg/ml) and weak acid in nature like majority of NSAIDs (Prausnitz and Langer, 2008).

Consequently, indomethacin this aqueous insolubility in skin as a drawback leads to poor 

bioavailability. From the other hand, indomethacin is not stable under UV light (Lin et al., 

1994). These reasons together make indomethacin a good drug candidate for the 

encapsulation within polymeric nanoparticles. However, in spite of skin crucial function of 

body protection, permeability of digestive tube mucous membrane towards drugs is 

comparably higher than skin (stratum corneum). This fact can act as a barrier for the design of 

dosage forms administered via this route. Thus, to deal with such challenge a number of 

chemical and physical strategies have been known to improve skin penetration that can face 

skin to irritation, damage, etc. It is highly motivating to keep the skin barrier function normal 

and deliver drug. Hence, skin drug delivery using nanoparticles may grasp this objective

(Tomoda et al., 2012). Limitations attributed to number of drugs in term of low 

bioavailability, poor stability, and unpleasant organoleptic properties are possible to be solved 

by encapsulation (Iqbal et al., 2015). A special attention has focused on the encapsulation due 

to its ability of removing barriers that faced conventional dosage forms. The encapsulation 

method mostly selecting based on the hydrophobicity or hydrophilicity nature of drug 

molecules (Jelvehgari and Montazam, 2012). Nigella Sativa (Ranunculaceae family) is the 

native and annual herbaceous plant of Southwest Asia, North Africa, and Southern Europe.

Nigella Sativa as medicinal plant is considered to be safer than modern medicines for the 

treatment of different diseases. Since centuries Nigella Sativa Seeds Oil was used for 

treatment of diverse diseases. The biological activities of Nigella Sativa Seeds Essential Oil 

(NSSEO) such as: anti-inflammatory, analgesic, immunomodulatory, spasmolytic, anti-

oxidant and etc., has been well studied. Since NSSEO including thymoquinone prevent 

cytokines production, consequently different diseases as rheumatism, bronchitis, asthma and 

etc., are treated by the seeds of NSSEO (Ahmad et al., 2013). The principal constituents of 

NSSEO encompassing thymoquinone, p-cymene, α-pinene, thymohydroquinone, 

dithymoquinone, linoleic acid and nigellone (Al Juhaimi et al., 2013) (Aljabre et al., 2015).

As thymoquinone is the most abundant component of NSSEO therefore, it may boost 

indomethacin anti-inflammatory activity (Aljabre et al., 2015). In order to encapsulate drug 

molecules several techniques can be used. Nanoprecipitation is an encapsulation method also 

called solvent displacement or interfacial deposition. 
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Nanoprecipitation method has firstly developed by Fessi et al (Fessi et al., 1989), and this 

technique has been commonly used for the encapsulation of hydrophobic drug molecules 

(nanocapsule and nanosphere forms). The organic phase or solvent phase principally 

containing film-forming materials, drug molecule, lipophilic surfactant, oil and solvent of 

drug molecule or if required oil solvent. Indeed, in this method natural, synthetic or semi-

synthetic polymers can be employed; surfactants should be added as well in order to avoid the 

aggregation of nanoparticles (Miladi et al., 2016). Here in this method certain polymers 

particularly biodegradable polyesters like polylactide (PLA), polylactide-co-glycolide 

(PLGA) and polycaprolactone (PCL), have been used. To design nanoparticles by 

nanoprecipitation method, solvent and nonsolvent phases are necessary (Fessi et al., 1989). In 

addition, ethanol, acetone, hexane, methylene chloride and dioxane are from the frequently 

used solvents. Normally, solvent and nonsolvent phases are named respectively organic and 

aqueous phases (Miladi et al., 2016) (Mora-Huertas et al., 2010). Polycaprolactone (PCL) is a 

biocompatible and biodegradable polymer that is employed to encapsulate certain drugs for 

the purposes of bioavailability improvement, targeting and sustained delivery. For 

biodegradable polymers do not need to be removed from the body after application (Park et 

al., 2005). Furthermore, PCL has been commonly used for drug delivery purposes (Dash and 

Konkimalla, 2012). Quantum dots are defined as tiny particles or nanocrystals of a 

semiconducting material with diameters in the range of 2-10 nanometers (10-50 atoms)

(Ekimov and Onushchenko, 1981). Quantum dots have unique electronic properties, 

intermediate between those of bulk semiconductors and discrete molecules, which are partly 

the result of the unusually high surface-to-volume ratios for these particles (Marc, 1993)

(Ashoori, 1996) (Collier et al., 1998). The most noticeable result of this is fluorescence, 

wherein the nanocrystals can produce distinctive colours determined by the size of the 

particles. The discrete, quantized energy levels of quantum dots relate them more closely to 

atoms than bulk materials and have resulted in quantum dots being nicknamed 'artificial 

atoms'. Generally, as the size of the crystal decreases, the difference in energy between the 

highest valence band and the lowest conduction band increases. Indeed, more energy is then 

needed to excite the dot, and concurrently, more energy is released when the crystal returns to 

its ground state, resulting in a colour shift from red to blue in the emitted light. Quantum dots 

can emit any colour of light from the same material simply trough changing the size of dot 

accordingly. Furthermore, due to the high level of control possible over the size of the 

nanocrystals produced, quantum dots can be tuned during manufacturing to emit any colour of 

light (Yoffe, 2001). Quantum dots can be classified based on their composition and structure 
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into different types of Core-Type Quantum Dots, Core-Shell Quantum Dots, and Alloyed 

Quantum Dots. The unique size and composition tunable electronic property of these very 

small, semiconducting quantum dots make them very attractive for a variety of applications 

and new technologies (Vahala, 2003). Quantum dots are predominantly important for optical 

applications owing to their bright, pure colours along with their ability to emit rainbow of 

colours coupled with their high efficiencies, longer lifetimes and high extinction coefficient

(Yoffe, 2001) (Nirmal and Brus, 1999) (Sargent, 2012). Quantum dots small sizes allow them 

to go anywhere in the body making them suitable for different bio-medical applications like 

medical imaging, biosensors, etc. Currently, fluorescence based biosensors depend on organic 

dyes with a broad spectral width that limits their effectiveness to a small number of colours

and shorter lifetimes to tag the agents. In biomedical applications, the fact that made quantum 

dots superior to traditional organic dyes is that they can emit the whole spectrum, are brighter 

and have little degradation over time (Medintz et al., 2005). In fact, quantum dots 

nanocrystals are available in both aqueous and organic formulations suitable for use in 

different applications.
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Summary 

In this part of thesis, a profound analysis of state of art has been done that can provide us the 

deep knowledge and better understanding of previously performed studies by different 

researchers before our experimental study. It is also helpful to us for making a good decision 

to select the best approach to grasp our goal and to bring the novelty to our study. An 

important feature of this work is the introduction of employed techniques for the 

encapsulation of natural extracts in terms of importance and limitations. Therefore, to initiate 

the state of art, the maximum amount of available date regarding plant extracts encapsulation 

were collected.  

The most critical section of our literature review is the need of initial knowledge concerning 

Non-steroidal Anti-Inflammatory Drugs (NSAIDs) polymeric encapsulation. In the first part, 

Inflammation, NSAIDs mechanism of action, classification, side effects, and their 

physicochemical properties are explained. Moreover, the encapsulation objectives, used 

methods for the encapsulation, challenges and opportunities for the encapsulation of NSAIDs 

are described. Basic information relating to the structure, nature, properties, and medical 

usage of plant extracts are provided. The polymeric encapsulation of plant extracts, their 

characterization, and the goal of plant extracts encapsulation are the issue on which a special 

focus has been made. The methods such as: Emulsions solvent evaporation, nanoprecipitation, 

emulsion solvent diffusion, and ionic gelation (IG) were included. Encapsulation role of plant 

extracts for their stability and delivery have also brought to light. In addition, the results 

obtained from studies related to biological activities in vitro and in vivo models were 

highlighted. The next section is associated with the description of nanoprecipitation 

technique. It will explain the formation mechanism, in vitro release profile, marketed products 

containing nanoparticles prepared by nanoprecipitation method and application of this method 

in medicine, food and agriculture technologies. Furthermore, nanoprecipitation method 

advantages, limitations and industrial scale-up are also highlighted.  
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II.1. Encapsulation of NSAIDs for inflammation management: Overview, 

progress, challenges and prospects 
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Summary 

NSAIDs as the mostly prescribed drugs are a class of heterogeneous drugs having different 

structural groups and various profiles of benefit/risk that do not contain steroid core in their 

chemical formula. Approximately 30 million people are taking NSAIDs as over-the- counter 

(OTC) medication daily in the world. The design of nanocarriers can be a good approach for the 

target drug delivery in the treatment of cancer, cardiovascular and inflammatory diseases. 

Molecules arrangements that sizes range between 1 and 100 nm in at least one dimension called 

nanoparticles (NPs). NPs can possess nanospheres (NS) or nanocapsules (NC) forms, respectively 

represents metrical and vesicular organization. Inflammation is taken from the latin word of 

inflammare that depict set on fire and can be defined by its common signs of heat on site, redness, 

swelling and pain. In fact, infection and injury produce an inflammation as an answer by immunity 

system response. NSAIDs inhibit cyclooxygenase enzymes, which play roles in both physiologic 

and pathologic cases (COX-1 is constitutive and COX-2 is inducible by inflammation that found 

abundantly at the site of inflammation). Indeed, COX-1 plays a significant role in normal 

physiologic function of gastrointestinal (GI) system, platelets, kidneys and vascular endothelium. 

The therapeutic effect of NSAIDs is associated from their action on COX-2 whereas their side 

effects are because of the COX-1 inhibition. Selective NSAIDs have a higher affinity for COX-2

than COX-1. NSAIDs are classified into 8 groups of oxicams, phenylpropionic (arylpropionic) 

acid derivatives, phenylacetic derivatives, sulfo-nanilides (nimesulide), indoleacetic acid 

derivatives, pyrazolone derivatives, para-aminophenol derivatives and salicylates based on their 

chemical structure. Furthermore, plasma half-life can be another criterion for NSAIDs 

classification. Generally, NSAIDs are taken by oral route. Nevertheless, NSAIDs oral 

administration would not provide merely therapeutic properties (anti-inflammatory, analgesic and 

antipyretic activities) but also gastrointestinal side effects. Furthermore, NSAIDs can be 

administered topically or through intramuscular injection as well. The dermal delivery of NSAIDs 

is dealt with these limitations attributing to the oral administration by reduced systemic exposure 

of drug molecule. Generally, NSAIDs are weak acids with pKa values ranged between 3 and 5. 

Encapsulation can reduces systemic toxicity, protects unstable molecules from degradation in the 

gastrointestinal tract, provides controlled release properties and covers drug disagreeable taste. 

Furthermore, encapsulation of NSAIDs could decrease their mucosal contacts. Since NSAIDs are 

commonly weak acids, as a result encapsulation can decline their toxicity. Different polymers are 

used for the preparation of particulate carriers. The physicochemical properties of these polymers 

are possibly various while they are commonly biodegradable and biocompatible. Particulates can 

be prepared by different methods that are relied on the usage of preformed polymers and methods 

based on the polymerization of monomers. Techniques using the preformed polymers are 

including emulsion coacervation, nanoprecipitation, salting out, dialysis, spray drying, emulsion 
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solvent diffusion and solvent evaporation. Nanoprecipitation is the most used technique for the 

drugs encapsulation. The criteria for selection of encapsulation method are the drug 

physicochemical characteristics. Liposomes among lipid based carriers were firstly developed. 

The most in vivo investigated drug molecules were flurbiprofen, diclofenac, indomethacin and 

oxicams and it has been also found that conventional dosage forms are less efficient than 

encapsulated NSAIDs. Indeed, the used method for the preparation of drug vehicle could exert an 

effect on designed nanocapsules. Thus, it has to be taken into account that under the operating 

condition the selected method should not disrupt the active ingredient stability. In this review the 

efforts has been made to describe the theories and detailed researches about NSAIDs 

encapsulation in biodegradable polymers and lipid based structures. The inflammation, NSAIDs 

mechanism of action, side effects, classification, routes of administration, physicochemical 

properties are described in details. In addition, drugs encapsulation methods within biodegradable 

polymers and lipids with examples are discussed. The most relevant in vivo applications of 

encapsulated NSAIDs are also reviewed and analyzed. Furthermore, most of recently performed 

researches on the encapsulation of NSAIDs, especially indomethacin are compiled as well.  
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A B S T R A C T

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely prescribed drugs.
Debilitating diseases such as rheumatoid arthritis and osteoarthritis are commonly managed by
NSAIDs. However, NSAIDs pharmacological mechanism is often associated with the presence of
gastrointestinal side effects. NSAIDs encapsulation is performed in order to overcome some of the
drawbacks linked to their clinical use. To fulfill this purpose, various vectors like polymer-based
nanoparticles, liposomes and solid lipid nanoparticles have been proposed. Such vehicles could have
advantages but some limitations as well. This manuscript highlights current NSAIDs encapsulation
approaches based on either preformed polymers or lipids. Moreover, properties of the prepared carriers
and their applications are also discussed. Many factors are taken into account for selecting carrier type
and encapsulation method. It was concluded that different vehicles and preparation methods have been
employed for NSAIDs encapsulation. Mostly, vehicles sizes ranged within the nanoscale. Main advantages
that have been confirmed by in vitro and in vivo studies include promoted stability, sustained release and
bioavailability enhancement.
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1. Introduction

Globally, non-steroidal anti-inflammatory drugs (NSAIDs) are
among the most consumed drug substances. As rheumatic diseases
are increasing, the usage of NSAIDs is expected to be boosted as
well. The patients above 65 years of age are considered to account
for more than 90% of NSAIDs users (Sostres et al., 2010). NSAIDs are
a group of heterogeneous molecules with various structural classes
and variable benefit/risk profiles, which do not comprise steroid
core in their chemical structure. Diclofenac and ibuprofen are the
most widely used NSAIDs in the world (Araújo et al., 2009; Patrono
and Rocca, 2009). They are followed by naproxen (22%),
indomethacin (5%), piroxicam (3%), ketoprofen (2%), and benor-
ylate (1%). The majority of the NSAIDs are prescribed in primary
healthcare (Jones, 2001). It was reported that Alzheimer’s disease
would result in from brain low-grade inflammation. Therefore,
NSAIDs intake decreases the risk of Alzheimer’s disease (de Villiers
et al., 2011; McGeer and McGeer, 2007; Lehrer, 2014).

Advances in scientific technologies are currently being directed
towards evolution of new pharmaceutical products. By exploration
of these advanced and diversified technologies, conventional drug
delivery approaches are bit by bit replaced via more adaptable and
well-refined drug delivery systems. Indeed, special focus is paid on
tackling the constraints associated with conventional drug
delivery (Iqbal et al., 2015).

Nanocarriers are designed to deliver active molecules to the
right site of action, at the right time, and in accurate amount.
Nanoparticles appear to be a useful platform for treatment of
cancer, cardiovascular and inflammatory diseases (Barua and
Mitragotri, 2014). It is one of the most attractive sides of drug
delivery researches that have attracted considerable attention
(Ibrahim et al., 2013). Pharmaceutical and biotechnological
industries have been extremely influenced by nanotechnology
(Zhu et al., 2014). Nanoparticles (NPs) are arrangements of
molecules where sizes range between 1 and 100 nm in at least
one dimension. This increases surface area and consequently,
changes their biological activity with comparison to the original
bulk substances (Yildirimer et al., 2011). In the past two decades,
the use of nanoparticles (NPs) has risen exponentially in
experimental and clinical settings due to their wide range of
biomedical applications, for example in drug delivery, imaging and
cell tracking technologies. Different materials e.g. polymers, lipids
and metals can be used for nanoparticle fabrication and a large
number of active molecules can be hosted. The majority of
encompassed nanoscale particles in clinical experiments are
liposomes and polymer based nanoparticles (Chung et al., 2015).
NPs could be nanospheres (NS) or nanocapsules (NC), respectively
representing matricial and vesicular organization. Biodegradable
polymers could undergo large physicochemical modification in
order to improve biopharmaceutical activity after in vivo adminis-
tration. Therefore, biopolymeric nanoparticles are becoming a
promising approach in the treatment of several diseases. Moreover,
in the area of nanomedicine, nanoparticles can be combined with
smart components to permit their delivery through biological

barriers, such as, skin, mucus, blood, extracellular matrix, cellular
and subcellular organelles (Elsabahy and Wooleya, 2012). For
efficient encapsulation, chemical solubility in solvents must be
taken into account during nanoparticles preparation (Mora-
Huertas et al., 2010). In this review, we mainly focused on the
theories and detailed researches concerning encapsulation of
NSAIDs in biodegradable polymers and lipid structures. In
addition, the most relevant in vivo applications of encapsulated
NSAIDs are reviewed and discussed.

2. Inflammation

The word “Inflammation” is derived from the latin word
inflammare, which means to set on fire. On site heat, redness,
swelling and pain are the four basic signs of inflammation (Scott
et al., 2004). Obviously, inflammation is an answer of immunity
system to infection and injury. Arthritis, cancer, stroke, neurode-
generative and cardiovascular disorders are diseases in which,
inflammation is implicated (Ricciotti and FitzGerald, 2011) (Fig. 1).

3. NSAIDs mechanism of action and side effects development

NSAIDs belong to a group of extensively prescribed drugs,
which are also available as over-the- counter medication (Bate-
man, 2012). Each day about 30 million people take NSAIDs around
the world. Acute and chronic inflammation in particular pain
associated with inflammatory condition is effectively treated by
NSAIDs (Gerstein et al., 2014; Burian and Geisslinger, 2005). In
1971, the biochemical mechanism of action of NSAIDs was reported
to be due to inhibition of cyclooxygenase. In Fig. 1, the different
types of cyclooxygenase enzymes (COX) and their roles in both
physiologic and pathologic cases are figured out. COX-1 is
constitutive while COX-2 is inducible by inflammation and found

Fig.1. Biochemical pathways in the inflammation process and NSAIDs target points.
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abundantly at the site of inflammation, thereby playing a critical
role in inflammatory events. During inflammation, COX-2 is
responsible for production of prostaglandins (PGs), mediators of
inflammation. COX-1 synthesizes PGs, which regulate physiologic
processes of the gut including mucosal protection, gastrointestinal
secretion and motility (Dey et al., 2006). COX-1 plays an important
role in normal physiologic function of gastrointestinal (GI) system,
platelets, kidneys and vascular endothelium. The therapeutic
efficacy of NSAIDs is related to their action on COX-2 while their
side effects are due to the inhibition on COX-1 (de Villiers et al.,
2011). Selective NSAIDs have a higher affinity for COX-2 than COX-1
(e.g. Celecoxib, Nimesulide and Nabumetone) (McGeer and
McGeer, 2007; Kim et al., 2010). However, it has been reported
that selective COX-2 inhibitors increase the risk of heart disease
particularly myocardial infarction (Chen and Ashcroft, 2007).
NSAIDs are prescribed in different chronic diseases (rheumatoid
arthritis, osteoarthritis and ankylosing spondylitis) and often at
high dose triggering considerable number of side effects and poor
patient compliance (Ejaz et al., 2004). Moreover, these drugs need
a strict monitoring of patients with high risk of heart and kidney
diseases. In term of pharmacokinetics, the majority of NSAIDs do
not have considerable first-pass metabolism and enter the blood
circulation almost completely through oral administration (Ger-
stein et al., 2014). In Table 1, risks that could complicate
gastrointestinal side effects in patients treated by NSAIDs are
shown.

4. NSAIDs classification

NSAIDs classification is based on their chemical structure. They
include 8 groups such as, oxicams (meloxicam, piroxicam,
tenoxicam), phenylpropionic (arylpropionic) acid derivatives
(e.g. fenbufen, ibuprofen, naproxen, tiaprofenic acid, mefenamic
acid, indoprofen, ketoprofen, phenoprofen, zomepirac, dexibupro-
fen, dexketoprofen, dexibuprofen, oxaprozin, tiaprofenic acid,
suprofen), phenylacetic derivatives (diclofenac, aceclofenac,
fenclofenac, alclofenac, bufexamac, nabumeton, felbinac), sulfo-
nanilides (nimesulide), indoleacetic acid derivatives (indometacin,
acemetasin, tolmetin, ketorolac, sulindac), pyrazolone derivatives
(aminopyrine, metamizaol, phenybutazone, oxyphenbutazone,
propyphenbutazone, amidopyrine), para- aminophenol deriva-
tives (acetaminophen) and salicylates (acetylsalicylic acid,

diflunisal, sodium salicylate, salicylic acid, salicylamide) (Bateman,
2012; Okyar et al., 2012).

Moreover, NSAIDs could be also classified based on their plasma
half-life that is presented in Table 2.

5. NSAIDs administration routes

Mostly, NSAIDs are taken via oral route. However, via this route
of administration, they provide not only efficient anti-inflamma-
tory, analgesic and antipyretic properties but also gastrointestinal
side effects. Furthermore, NSAIDs can be administered topically or
through intramuscular injection as well. NSAIDs dermal delivery is
able to overcome drawbacks associated with oral administration
by reduced systemic exposure of the active substance (Beetge et al.,
2000; Ziltener et al., 2010). Table 3 shows the different delivery
routes of NSAIDs.

6. NSAIDs physicochemical properties

In general, NSAIDs are weak acids with pKa values ranging
between 3 and 5 but despite this general rule, as shown in Table 4,
there are large variations in regard to their physicochemical
properties (e.g., ionization constants (pK), solubility, partition
coefficients). These differences may cause variation in their
bioavailability and distribution in the body (Rainsford, 1999; Peter
et al., 1996), and consequently variation in both efficacy and
tolerability. The physicochemical and pharmacokinetic properties
of mostly used NSAIDs are comparatively described in Table 4.

Table 1
Gastrointestinal complications risk factors for NSAIDs takers, classified according to their risk (from Sostres et al., 2010 with modifications) (Sostres et al., 2010).

Table 2
NSAIDs classification according to plasma half-life (Ziltener et al., 2010).

Short half- life <6 h Long half- life >6 h

Aspirin 25–33 Diflunisal 8–12
Diclofenac 1–2 Naproxen 12–15
Ibuprofen 1–2.5 Salsalate 3.5–16
Ketoprofen 1.5–4 Sulindac 16–18
Fenoprofen 2–3 Piroxicam 24–38
Mefanamic acid 2–4 Nabumetone 24
Meclofenamate 3–4 Oxaprozin 25
Indomethacin 4–5 Phenylbutazone 77
Flurbiprofen 4–6
Ketorolac 4–6
Etodolac 6–7
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7. The promise of NSAIDs encapsulation

Poor aqueous solubility, low bioavailability, poor stability, bitter
taste and unpleasant odor of some active agents are among the
most encountered problems. Generally, encapsulation enables
overcoming such obstacles. Encapsulation is an ingenieus delivery
opportunity for various drugs. For instance, it decreases systemic
toxicity, protects unstable molecules from degradation in the
gastrointestinal tract, provides controlled release properties and
masks the disagreeable taste of drug. Controlled release, targeted
delivery enhances therapeutic efficacy compared to conventional
medicine. The particle size and surface charge are the factors that
can influence release kinetics of nanomedecines (Arida and Al-
Tabakha, 2007). Encapsulation of NSAIDs is an interesting
approach for their safe usage. Improvement of therapeutic efficacy
and reduction in the severity of gastrointestinal side effects
through modification of drug release can be considered in NSAIDs
development. From the other hand, encapsulation would decrease
the mucosal contact of NSAIDs, which are mostly weak acids
consequently reduce the toxicity (Reis et al., 2013). To promote the
patient compliance, these formulations are designed by a change in
their duration of action and plasma peak concentrations (Phillips
et al., 2010; Iqbal et al., 2015; Rwei et al., 2015). In addition to the

drug and materials physicochemical properties, the formulation of
nanomedicine is associated to the selection of appropriate
polymeric and lipidic systems giving highest encapsulation
efficiency, enhanced bioavailability and retention time.

8. Preformed polymer based carriers

In the last decades, colloidal carriers have gained remarkable
attention due to active ingredient protection from inactivation or
degradation and drugs toxicity diminution (Tammam et al., 2012;
Barratt, 2003; Khachane et al., 2011; Mazzaferro et al., 2012).

Encapsulation could improve the efficacy of active molecules
through modification of their physicochemical properties
(Gagliardi et al., 2012; Heneweer et al., 2012; Herrero et al.,
2012; Mora-Huertas et al., 2010). In comparison to drug
conventional delivery systems, particulate carriers may provide
an increase in drugs absorption and drug targeting (Mohanraj and
Chen, 2006). Furthermore, unpleasant taste and odour of several
drugs could be masked by encapsulation, and a prolonged release
of the active molecule could be obtained as well (Levchenko et al.,
2012; Poletto et al., 2012; Wang et al., 2012; Cenni et al., 2008;
Sahoo et al., 2007; Miladi et al., 2013; e Silva et al., 2012). To prepare
particulate carriers, various polymers are used. Despite

Table 3
NSAIDs administration routes (from Kim et al., 2010 with modifications) (Kim et al., 2010).

Name Administration route

Acetylsalicylic acid (aspirin) Oral, rectal
Choline Magnesium Trisalicylate Oral
Salsalte Oral
Diflunisal Oral
Diclofenac Oral, ocular, dermal, parenteral (intravenous and intramuscular)
Etodolac Oral
Indomethacin Oral, rectal, intravenous
Ketorolac Oral, topical, ocular, dermal, parenteral (intravenous and intramuscular)
Nabumetone Oral
Sulindac Oral
Tolmetin Oral
Bromfenac Dermal
Nepafenac Ocular
Flurbiprofen Oral, ocular
Ketoprofen Oral
Ibuprofen Oral, intravenous
Naproxen Oral
Fenoprofen Oral
Oxaprozin Oral
Piroxicam Oral
Meloxicam Oral
Meclofenamate Oral
Celecoxib Oral

Table 4
NSAIDs physicochemical and pharmacokinetic properties (from Beetge et al., 2000 with modifications).

Properties Ibuprofen Indomethacin Naproxen Ketoprofen Piroxicam Diclofenac
Physicochemical

Chemical formula C13H18O2 C19H16ClNO4 C14H14O3 C16H14O3 C15H13N3O4S C14H11Cl2NO2
Molecular mass 206.30 357.80 230.30 254.29 331.40 29n6.14
Solubility in water
Sweetman (2009)

practically insoluble practically insoluble practically insoluble practically insoluble practically insoluble sparingly soluble

LogP 3.60 3.8 3.22 0.97 1.8 4.51
pKa 5.3 4.5 4.2 4.45 5.3 4.15
Melting point 76.5 �C 160 �C 156 �C 94.5 �C 199 �C 156–158 �C

Pharmacokinetic
AUC (mg/ml per h) 88.09 243.22 258.65 269.45 527.00 82.6–103.4
Tmax (h) 2 24 2 24 30 0.5–1
t1/2 (h) 2.2 6.10 17.10 1.80 40.80 1.92
Cmax (mg/ml) 4.43 11.95 10.25 7.1 16.23 –
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biodegradable and biocompatible common properties of these
polymers, their physicochemical characteristics may be different.
The applications of the carriers in biomedical field are growing
(Ahmad et al., 2013; Soares, 2013; Miladi et al., 2014). The
physicochemical properties of the nanoparticles (e.g. hydropho-
bicity, zeta potential), drug release characteristics (e.g. delayed,
prolonged, triggered) and biological behavior (e.g. bioadhesion,
improved cellular uptake) are all polymer dependent. Drugs may
become non-toxic and stable in blood via encapsulation in
biodegradable polymers (Kumari et al., 2010; Galindo-Rodriguez
et al., 2005; des Rieux et al., 2006). In general, final application and
toxicity of the polymer are the main concerns in the selection of
the polymer. Generally, particles with modulated surface coated
with substances such as polyethylene glycol (PEG) will not be
uptaken by macrophages (Zafar et al., 2014). Drug release from the
polymer based carriers in a time or condition-dependent way
could take place either by (surface or bulk) erosion driven, or by
diffusion driven release mechanisms (Gu et al., 2007).

8.1. Encapsulation methods

The techniques used for the formulation of particulate carrier
systems are classified into two categories: techniques based on the
use of preformed polymers and methods depended on polymeri-
zation of monomers. Techniques based on the use of preformed
polymers comprise emulsion coacervation, nanoprecipitation,
salting out, dialysis, spray drying, emulsion solvent diffusion
and solvent evaporation. Methods relying on the use of monomer
polymerization include mainly emulsion polymerization and
interfacial polymerization. Each technique has to be developed
individually for every class of compounds, which is costly and
time-consuming. The nanoprecipitation, emulsion–diffusion, dou-
ble emulsification, emulsion-coacervation, polymer coating and
layer-by-layer are six classic methods, which are usually employed
for encapsulation of nanoparticles. Among these techniques,
Table 5 describes the most widely used techniques in NASIDs
encapsulation. As listed in Table 5, each of these methods has its
own advantages and limitations (Mora-Huertas et al., 2010;
Lattuada and Hatton, 2011).

As reported in Table 5, nanoprecipitation technique is the most
employed method for the encapsulation of drugs.

8.1.1. Nanoprecipitation
Fessi et al. developed nanoprecipitation method in 1986 for the

first time, which is also named solvent displacement, or interfacial
deposition method. As demonstrated in Fig. 2 this technique
includes two phases, the solvent phase consists of one or mixture
of solvents (acetone, ethanol, hexane, methylene chloride or
dioxane). Lipophilic active ingredients or lipophilic surface-active
agents are dissolved in solvent phase. The non-solvent phase could
be a mixture of non- solvents and may contain surfactants. The
non-solvent phase is mainly water.

In general, biodegradable polyesters, especially Poly(e- capro-
lactone) (PCL), poly(lactide) (PLA) and poly (lactide-co-glicolide)
(PLGA) are extensively employed polymers in this technique.
Eudragit1 (polymethacrylate-based copolymers) is another poly-
mer that can be used (Mora-Huertas et al., 2010). Synthetic
polymers are more preferred because of their higher purity and
better reproducibility as compared to natural polymers (Khoee and
Yaghoobian, 2009). It is worth mentioning that diverse types of
triglycerides are also often employed because of their wide range
of solubility for active substances. According Limayem Blouza et al.,
an enhancement of Spironolactone solubility as high as 30 mg/ml
would obtained by using the Labrafac1 Hydro (Caprylic/Capric
Triglyceride PEG-4 esters) as oil (Limayem Blouza et al., 2006). In
addition, skin penetration enhancement properties, were also
described for these ingredients. In fact, it was shown an
enhancement of Levodopa (antiparkinson drug) transdermal
delivery after using these ester types’ vehicles (Lee et al., 2013).
While other less frequently used oils, such as oleic acid,
ethyloleate, argan oil, sunflower seed oil, soybean oil and so on,
they can nevertheless give good outcomes. In w/o surfactants,
sorbitan esters and phospholipids are preferred. Concerning the
solvent for polymer, acetone is selected in all cases. Furthermore,
solvents such as ethanol are used for dissolution of active
substance or the oils. Water or buffer solutions can be used as
the non-solvent with the poloxamer 188 or polysorbate 80 as
stabilizing agent (Mora-Huertas et al., 2010). Particles formation is
a dynamic process, which comprises three stages, namely
nucleation, molecular growth, and aggregation (Lince et al.,
2008). As described in Fig. 2 in this technique, after slowly
addition of organic phase with moderate stirring to the aqueous
phase, the nanocapsules as a particulate suspension are formed.

Table 5
Advantages and drawbacks of polymer-based encapsulation methods.

Methods Approximately
usage
percentage (%)

Advantages Drawbacks References

Nanoprecipitation 50 Simple, fast, economic, achievement of reproducible
submicronial particle size with narrow distribution
without external energy source

Not efficient to water-soluble drugs, organic solvents
use

Chorny et al. (2002),
Legrand et al. (2007),
Mora-Huertas et al.
(2010)

Emulsion–
diffusion

25 The employed solvent is suitable in the
pharmaceutical field,
Suitable encapsulation technique for both lipophilic
and hydrophilic molecules

Three liquid phases are needed, organic solvents use Mora-Huertas et al.
(2010)

Double
emulsification

13 The method is relatively simple, appropriate in
controlling process parameters. The process can
efficiently encapsulate highly water soluble
compounds as proteins and peptides

Thermodynamically double emulsions are unstable
systems and they have a strong tendency for
coalescence, flocculation and creaming. The
majority of double emulsions contain relatively
large droplets, which cannot withstand storage
regimes and have a strong trend to release the
entrapped matter in an uncontrolled mode, organic
solvents use

Giri et al., (2013),
Garti (1997), Mora-
Huertas et al. (2010)

Layer-by-layer 3 The simplicity of the process and equipment,
Appropriate to coat most surfaces,
Availability of natural and synthetic colloids,
The flexible application to objects with irregular
shapes and sizes,

Poor encapsulation efficiency, sudden
and fast release of encapsulated drug

Giri et al. (2013),
Garti (1997), Mora-
Huertas et al., (2010)
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The organic phase injection rate, aqueous phase agitation rate, the
method of organic phase addition and the organic/aqueous phase
ratio are the important variables of encapsulation procedure,
determining the characteristics of the final product. Similarly, the
nature and concentration of the components have an effect on
nanocapsule features (Chorny et al., 2002; Legrand et al., 2007;
Lince et al., 2008; Plasari et al., 1997).

8.1.2. Emulsion diffusion
This technique was developed by Quintanar-Guerrero and Fessi

(Miladi et al., 2014) allowing the encapsulation of both lipophilic
and hydrophilic active ingredients. Fig. 3 describes the procedure
to gain the three phases of organic, aqueous and dilution. The
organic phase contains the active substance, polymer, oil and an
organic solvent. In order to encapsulate lipophilic active substance,
the organic phase should not be completely miscible with water.

The aqueous phase consists of the aqueous dispersion of a
stabilizer, which is prepared using solvent-saturated water
whereas the dilution phase is mostly water. Insoluble components
are dissolved in the organic-solvent. Biodegradable polyesters
(particularly PCL and PLA) and Polymethylmethacrylate (such as
Eudragit1) are the most frequently employed polymers in this
method. Hydroxybutyrate-co-hydroxyvalerate (PHBHV) is used to

a lesser extent. The size of the obtained particles could be affected
by operating conditions like external to internal phase ratio,
stirring rate at the emulsification step, temperature and volume of
water for the dilution, the stabilizing agent and polymer amounts.
The most used solvents include ethyl acetate, propylene carbonate,
benzyl alcohol and dichloromethane (Mora-Huertas et al., 2010).
Regarding external phase, water together with poly(vinyl alcohol)
(PVA) are frequently used. Stabilizing agents such as poloxamer
and specifically ionic emulsifiers have been used too. The diluent is
mostly water. However, in order to attain better nanodispersion
stability, stabilizer could be added to the diluent as well. Likewise,
the particles size was explained to amplify through an augmenta-
tion of primary drug quantity (Youm et al., 2012; Mora-Huertas
et al., 2010).

Nanocapsule size is correlated to applied shear rate in the
emulsification step, the chemical nature of the organic phase,
polymer concentration, the oil-to-polymer ratio and drop size of
the primary emulsion (Guinebretiere, 2001).

8.1.3. Simple emulsion evaporation
In the development of polymer-based carriers, emulsion

evaporation method is widely used. This encapsulation technique
was first developed by Vanderhoff in 1979 (Miladi et al., 2014).

Fig. 2. Schematic representation of nanoprecipitation method.

Fig. 3. Schematic representation of emulsion diffusion method.
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Nanoparticles preparation via this technique comprises prepara-
tion of a simple emulsion followed by organic solvent removal
through evaporation. Subsequently, polymer precipitation allows
nanoparticles formation (Fig. 4). This technique allows the use of
both oil in water (o/w) emulsions or water in oil (w/o) emulsions.
Selection of emulsion type depends on physicochemical properties
of formulation ingredients such as polymer, active ingredient,
surfactants, etc. For hydrophobic polymer and drug, o/w emulsion
is used. Polymer and drug could be dissolved in a volatile organic
phase that is not miscible with water, such as chloroform, ethyl
acetate or dichloromethane. The prepared organic phase, in which
polymer and drug are dissolved, would be consecutively dispersed
in an aqueous phase via high-speed homogenization or sonication.
Furthermore, to assure stability of the dispersed system aqueous
phase could also contain a surfactant. When a w/o emulsion is
obtained, organic solvent evaporation allows polymer precipita-
tion and subsequent nanoparticle formation. W/O type, emulsion
could be employed for hydrophilic drug and polymer. Nature of
surfactant and its concentration, stirring rate, ratio of organic to
aqueous phase, polymer concentration and evaporation rate are
the parameters, which should be managed to obtain particles with
suitable properties (Miladi et al., 2014). Increasing the surfactant

amount, aqueous phase volume and stirring rate can decrease the
particle size (Valot et al., 2009; Khaled et al., 2010; Su et al., 2009).
In contrary, raising the volume of organic solvent and polymer
concentration might increase the particle size (Budhian et al.,
2007; Yadav and Sawant, 2010; Avachat et al., 2011; Doan et al.,
2011; D’Aurizio et al., 2011).

8.1.4. Double emulsion evaporation
Double emulsion, or emulsions-of-emulsions, is a complex

heterodisperse system. The hydrophilic molecules are more
convenient to be encapsulated by this technique. There are two
types of double emulsions: water-oil-water (W/O/W) and oil-
water- oil emulsion (O/W/O) (Mora-Huertas et al., 2010; Charcos-
set and Fessi, 2005). This method consists of a two-step
emulsification process via the usage of two surfactants: a
hydrophobic one to stabilize the interface of the w/o internal
emulsion and a hydrophilic surfactant to stabilize the external
interface of the oil droplets for second emulsification step.

As pointed out in Fig. 5, this technique is commonly comprised
of the dispersion of an aqueous phase in a non-miscible organic
phase to form the first emulsion (W/O). This dispersion is carried
out under high shear homogenization or low power sonication for
a short time. This step is pursued through the dispersion of the
achieved emulsion in a second aqueous phase containing a
hydrophilic emulsifier. Again, homogenization could be carried
under high shear homogenization or with a sonication probe.
When sonication is used, it must be performed at low power and
briefly to not break the first emulsion. After formation of the
multiple emulsion, evaporation of the volatile organic solvent
under low pressure (by a rotary evaporator) or at ambient
temperature allows the obtaining of the particulate carriers. There
are other categories of multiple emulsions, such as w/o/o or o/w/w
(Giri et al., 2013). To gain complete solvent diffusion, water is
generally added to the double emulsion. Surfactants play a double
task in emulsions: being the steric stabilizing agent on the external
interface and as a film that is a barrier to drug release at the

Fig. 4. Schematic representation of simple emulsion evaporation method.

Fig. 5. Schematic representation of double emulsion evaporation.
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internal interface (Khoee and Yaghoobian, 2009). Through change
of type and concentration of both the w/o emulsion and stabilizer
the average particle size can be influenced. The organic phase can
consist of ethyl acetate, methylene chloride, dichloromethane,
with PCL, PLA and PLGA as biodegradable polyesters in this phase.
Concerning o/w surfactants, sorbitan esters are favored. PVA and
polysorbates are frequently used stabilizing agents in the external
aqueous phase. As mentioned previously, to ensure complete
solvent diffusion, an optional dilution step, before extraction under
vacuum nanocapsule may be helpful (Limayem Blouza et al., 2006).

8.1.5. Layer-by-layer method
Indeed, this technique through employing the biopolymers,

proteins, peptides, polysaccharides and DNA, permitted the
assembly of polyelectrolyte films (Powell et al., 2011). Polyelec-
trolytes are classified according to their origin. To name a few
synthetic polyelectrolytes, poly(styrene sulfonate) (PSS), poly
(dimethyldiallylammonium chloride) (PDDA), polyethylenimine
(PEI), poly(N-isopropyl acrylamide (PNIPAM), poly(acrylic acid)
(PAA), poly(methacrylic acid) (PMA), poly(vinyl sulfate) (PVS) and
poly(allylamine) (PAH). Natural polyelectrolytes like deoxyribo-
nucleic acid (DNA), proteins and polysaccharides of which alginic
acid, chondroitin sulfate, heparin, chitosan, cellulose sulfate,
dextran sulfate and carboxymethyl cellulose are most common
(de Villiers et al., 2011).

Moreover, polyelectrolytes with opposite charge could be
adsorbed on the surface of colloidal particles. The empty nano-
capsules are then loaded with the desired active substance (Mora-
Huertas et al., 2010). As shown in Fig. 6, nanocapsules are formed
because of the irreversible electrostatic attraction, which leads to
the adsorption of supersaturating bulk polyelectrolytes.

8.2. Characteristics of nanoparticles according to their preparation
method

Chemical nature of the active ingredient and especially its
polarity governs particles encapsulation efficiency. Additionally,
encapsulation efficiency of hydrophilic molecules can reach the
values of up to 10%, in contrast to lipophilic molecules where the
encapsulation efficiency can be as high as 70% (Stella et al., 2007;
Mora-Huertas et al., 2010). Generally, the mean sizes of nano-
particles loading molecules that are prepared through pre-formed
polymers are 250–500 nm. Exceptions arise in techniques where
the solid active substance is encapsulated directly (e.g. s/o/w
emulsification and layer-by-layer methods). Nevertheless, in these
cases it is still possible to achieve low mean particle sizes by
employing ultrasound in the initial stages of the preparation
procedure. The release of active ingredient from nanocapsules
designed by nanoprecipitation, emulsion-diffusion, emulsion-
coacervation and polymer- coating methods occurs in two phases;
a fast initial release stage pursued by slower second release stage.
The initial phase (burst release) is linked to the release of active,
which is on particle surface. The second phase is more prolonged,

which correspond to the release of, encapsulate drug. However, if
the drug were adsorbed on particle surface only one phase would
be observed. Usually, with the application of nanoprecipitation, the
pH values of the nanocapsule dispersion will be between 3.0 and
7.5. There is no information in literatures regarding the rate of drug
release when other encapsulation methods are applied. One
should be aware that pH determines the zeta-potential of the
colloidal dispersions, which itself can affect their stability (Mora-
Huertas et al., 2010).

8.3. Criteria for the selection of encapsulation method

Physicochemical characteristics of the drug are the most
important criteria for the selection of the specific method for
encapsulation. In addition, this includes, stability during drug
delivery system production, encapsulation efficiency, mixing,
method feasibility, generation of contaminants and the need for
successive purification steps, time consumption, the water volume
required, solvent nature, application of nanocapsule, like the
preferred route and drug release profile. Each method has its
advantages and restrictions so there is no ideal method of
encapsulation. Concerning the water consumption, emulsion
diffusion technique is definitely unfavorable (Charcosset and Fessi,
2005; Limayem Blouza et al., 2006). Nanoprecipitation as shown in
Fig. 2, is the most used method and this method is appreciated for
its low cost, simplicity of procedure, reproducible carrier size and
high encapsulation efficiency (Mora-Huertas et al., 2010). The
choice of encapsulation method depends on the desired applica-
tion, the nature of the active ingredient and that of the polymer and
their physicochemical properties. The nature of carriers plays a
crucial role in selection of appropriate method for drug encapsu-
lation (Beija et al., 2012). To provide a formulation bearing proper
properties for the in vitro and in vivo applications, right selection of
the encapsulation method is vital. Furthermore, in the selection of
materials for drug encapsulation it is crucial to take into account
the nature and interaction between these materials.

8.4. Recently encapsulated NSAIDs

Table 6 provides encapsulated NSAIDs with employed encap-
sulation techniques. Aim of encapsulation, obtained particles size,
zeta potential, polydispersity index and entrapment efficiency are
shown here as well. Table 6 figures out the encapsulated NSAIDs,
the employed encapsulation technique, polymer, NSAIDs mole-
cule, particle size, zeta potential, encapsulation objective, poly-
dispersity index and entrapment efficiency.

Table 6 pinpoints that mostly, utilized method, NSAIDs
molecules, polymer and delivery approach of NSAIDs are
respectively nanoprecipitation, ketoprofen, aceclofenac, poly(e-
caprolactone), chitosan, Eudragit1 and sustained release drug
delivery system design.

9. Lipid based carriers

Lipid based carriers include liposomes, solid lipid nanoparticles
(SLN) and nanostructured lipid carriers (NLC). Liposomes were the
first examples of developed lipid based carriers. They are vesicles
that contain lipid bilayers. Surfactants that could be used for
production of lipid based carriers include biological membrane
lipids such as lysophospholipids, bile salts (e.g., sodium taur-
ocholate), and biocompatible nonionic molecules (e.g., ethylene
oxide/propylene oxide copolymers, sorbitan esters, fatty acid
ethylates). Although, such carriers have numerous advantages in
comparison to other vehicles in general, they show some short-
comings such as: low drug loading capacity and drug expulsionFig. 6. Schematic representation of layer-by-layer method.
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Table 6
Encapsulated NSAIDs via polymer-based encapsulation techniques.

Method Polymer NSAIDs Particle
size (nm)

Zeta
potential
(mV)

Goal of encapsulation Poly
dispersity
Index

Entrapment
efficiency
(%)

Reference

Modified
Nanoprecipitation

Different Eudragit1

grades
Naproxen 100–500 77–67 Development of argan oil based

nanocapsules as vehicle of
naproxen

– 90 Rosset et al.
(2012)

Nanoprecipitation Eudragit1 RL 100 Aceclofenac 134.97 30.5 Prolongation of corneal contact
time with drug

0.186 95.73 Katara and
Majumdar (2013)

Nanoprecipitation Poly (d,l-lactide-
co�glycolide), (PLGA)

Etodolac 184 �7.6 Etodolac Loaded PLGA
Nanoparticles

0.03 17 Çırpanlı et al.
(2009)

Nanoprecipitation Polycaprolactone (PCL) Indomethacin 290–350 �40 up to
�50

Development of polymer based
nanocapsules containing Argan
oil and indomethacin

– 65–75 Badri et al.,
(2015)

Nanoprecipitation PCL Diclofenac 150 �50 Attaining of colloidal system with
good stability and good
encapsulated drug release
through the change of nature of
the oil

– – Mora-Huertas
et al. (2012)

Nanoprecipitation PCL Nimesulide 344.6 – Increasing of anti-inflammatory
activity of topical nimesulide

0.251 – Lenz et al. (2012)

Nanoprecipitation Dextran Ibuprofen, 223.1 �50 Drug release adjustment 0.152 55.76 Hornig et al.,
(2009)

Nanoprecipitation Dextran Naproxen 282 – Drug release adjustment 0.136 51.7 Hornig et al.
(2009)

Nanoprecipitation Magnetic biodegradable
poly(D,L- lactide)
polymer (PLA)

Indomethacin 250 – Indomethacin target drug
delivery in magnetic
biodegradable polymer
nanoparticles

– 80 Závišová et al.
(2007)

Nanoprecipitation Eudragit1 L100 and
Eudragit1 L100- PLGA

Diclofenac
sodium

196.35 1.13 Sustaining the diclofenac sodium
release profile

– 46.55 Cetin et al. (2010)

Nanoprecipitation Eudragit1 S100 Ibuprofen 345 �26. 9 Preparation of Ibuprofen loaded
Eudragit1 S100 small, stable and
high efficiency nanoparticles

– 96.47 Vineela and
Krishna Sailaja,
(2014)

Nanoprecipitation PCL Ibuprofen
and
indomethacin

345.25
and 285

�17.55
and
�25.67

Comparative study of Ibuprofen
and Indomethacin
loaded
nanoparticles

0.252 and
0.097

36.25 and
61.25

Suksiriworapong
et al. (2010)

Emulsification
solvent
diffusion

Chitosan et PLGA Celecoxib 113.3 and
154. 67

36.92 and
�36.5

Developing and optimizing
sustained release, mucoadhesive
and biodegradable nanoparticles
formulations of celecoxib for
topical ocular delivery.

0.971 and
0.724

89.88–75.38 Ibrahim et al.
(2013)

Emulsion-
diffusion

PCL Diclofenac 200 – Attaining of colloidal system with
good stability and good
encapsulated drug release
through the change of nature of
the oil

– – Mora-Huertas
et al. (2012)

Layer- by-layer Poly (dim imethyl-
dally ammonium
chloride)

Ketoprofen 41–111 �28 to
�15

Obtaining of prolonged release
delivery system

– – Arida and Al-
Tabakha (2007)

Layer- by-layer Sodium Alginate,
Chitosan

Ketoprofen 2.202 mm 7 Ketoprofen transdermal drug
delivery

0.151 – Gupta et al.
(2009)

Double- emulsion
solvent
evaporation

Chitosan Aceclofenac 39 and 55 – Achievement of controlled drug
release of Aceclofenac
microspheres and minimizing
the local side-effects in the
digestive tube

– 53–72 Nagda et al.
(2010)

Double-emulsion
solvent
evaporation

Polymethylmethacrylate
(PMMA)

Diclofenac
sodium (DFS)

215 mm – Drug release control – 98.71 Pal et al. (2011)

Double-emulsion
solvent
evaporation

Chitosan Ketoprofen 1.79–
58.96

– Study of microsphere
characteristics under the
influence of different process
condition and preparation

– >67 Pavanetto et al.
(1996)

Emulsion-solvent
evaporation

PLGA Nimesulide 0.7 mm –15 � 3 Contributory treatment of
prostate cancer

– >83 Huerta et al.
(2015)

Emulsion-solvent
evaporation

Ethyl cellulose Aceclofenac 912 mm – Preparation of microcapsules to
provide sustained release in
localized areas

– 32.85 Yadav and Sawant
(2010)

Emulsion-solvent
evaporation

Eudragit1 RS100 Naproxen 378–644 – To improve the physicochemical
characteristics of the drug

0.12–0.29 – Adibkia et al.
(2011)
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during storage due to transition of highly ordered lipid particles
(Araújo et al., 2009; Pardeike et al., 2009; Zhai and Zhai, 2014).

9.1. Liposomes

Liposomes are vesicles made of lipid bilayers, which surround
an aqueous core (Fig. 7). Main constituents of liposomes are
cholesterol and phospholipids. As demonstrated in Fig. 8, lipo-
somes could be classified in unilamellar, oligolamellar, multi-
lamellar and multivesicular liposomes (Zhai and Zhai, 2014).

Many techniques are used for preparation of liposomes. The
most used method is film hydration that was developed in 1965.
The first step in preparation of liposomes consists of drying a lipid
solution, which allows the formation of a thin film on the bottom of
a round-bottom container (See Fig. 9). Subsequent hydration of
this film with an aqueous buffer along with vortexing allows
liposomes formation. Sonication or extrusion could be applied to
reduce particle size and to obtain unilamellar vesicles. Other
methods are called reverse phase evaporation techniques and they
are based on mixing the organic phase containing the lipids
solution with the aqueous phase. Slow evaporation of the organic
solvent leads to the formation of liposomes. Other methods are
based on rapid injection of lipids dissolved in organic solvent into

an excess of aqueous solution (Batzri and Korn, 1973). Ethanol
injection method allows the obtaining of small liposomes with
narrow size distribution (below 100 nm). It is based on injecting an
ethanol-containing lipid solution in water, without the need of any
size reduction method (Laouini et al., 2012; Nogueira et al., 2015).
Table 7 shows properties and applications of liposomes containing
NSAIDs. It can be seen that thin film hydration is by far the most
used preparation technique. Most encountered applications are
bioavailability enhancement and topical delivery. In fact, lipo-
somes are well recognized to enhance the interactions with
biological membranes.

9.2. Lipid based particles

Lipid based particles could either be SLN or NLC.

9.2.1. Solid lipid nanoparticles
SLN are O/W emulsions in which the internal oil droplets are

replaced by one or more solid lipid particles (Fig. 10). SLN have
been developed at the beginning of 1990s. SLN average particle size
is ranged between 40 and 1000 nm. SLN composition includes 0.1%
(w/w) to 30% (w/w) solid lipid dispersed in an aqueous medium.
Furthermore, when needed 0.5% (w/w) to 5% (w/w) surfactant
could be employed for stabilization.

9.2.2. Nanostructured lipid carriers
NLC differ from SLN in the way that solid lipids are replaced by

solid and liquid lipids blend (Fig. 11). Such carriers have been
developed to overcome the SLN drawbacks (drug expulsion during
storage, loading capacity limitation and gelation risk) (Pardeike
et al., 2010). In fact, in case of highly pure lipids, the particles could
form relatively perfect lipid crystals and then tend to recrystallize.
Thus, SLNs have major drawbacks of low drug loading and
expulsion due to advancing lipid crystallization or transformation
during stored procedures (Chen et al., 2013; Schwarz et al., 2013;
Barua and Mitragotri, 2014). For a number of active compounds,
NLC showed higher loading capacity as compared to SLN. Like SLN,
NLC are well-tolerated carriers for dermal application (Pardeike
et al., 2009; Weber et al., 2014). NLCs are mixtures of solid and
liquid lipids. It is reported that the liquid lipid can embed into solid
lipid matrix or localize at the interface of solid matrix and the
surfactant layer (Štecová et al., 2007). In general, these spatially
different lipids lead to imperfectible crystal structure, which
provide more space for accommodating the encapsulated drugs.

Fig. 7. Liposome structure.

Fig. 8. Liposomes types.
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Hence, compared to SLNs, NLCs were characterized by higher drug
incorporation rate and better stabilization after preparation (Zhai
and Zhai, 2014).

9.2.3. Lipid based nanoparticles preparation
There are many systems for production of lipid based nano-

particles. Commonly used methods for preparation of SLNs are
high pressure homogenization at elevated or low temperatures
(including hot homogenization and cold homogenization), solvent
emulsification, evaporation or diffusion, supercritical fluid

methods, ultrasonication or high speed homogenization and spray
drying (Kohli et al., 2014; Drummond et al., 2008). High-pressure
homogenization technology has emerged as a potent technique for
production of lipid nanoparticles. Two processes of the homoge-
nization were developed, namely hot and cold processes. In both
processes, active substance is first dissolved or dispersed in a
melted lipid. High-pressure (100–2000 bar) moves the fluid in the
narrow gap in homogenizer. Average particle size is in sub-micron
region. This method has many advantages including large-scale
production, absence of organic solvent, enhanced product stability
and enhanced drug loading, but specifically high pressure and
temperature conditions are actual challenges (ALHaj et al., 2008;
Naseri et al., 2015). In this technique, SLN are prepared at
temperatures higher than lipid melting point. Drug loaded lipid

Fig. 9. Schematic representation of lipid film hydration method.

Table 7
NSAIDs encapsulated in liposomes.

Method Active
ingredient

Particle
size
(nm)

Encapsulation
efficiency (EE%)

Polydispersity
index (PDI)

Zeta
potential
(mV)

Goal of encapsulation References

Thin film
hydration

Piroxicam 1660–
66.76

12.5–36.6 0.28–1.00 �1.31 to
�2.06

Functionalization of gauzes with liposomes
entrapping an anti-inflammatory drug

Ferreira et al.
(2013)

Thin lipid film
hydration

Bromfenac
(BRF)

171.74 >90 0.22 �23.29 Appropriate liposomal formulations for ophthalmic
delivery

Tsukamoto
et al. (2013)

Thin lipid film
hydration

Celecoxib
(CLX)

5450–
6230

96.32 – – Design of celecoxib liposomal delivery system Deniz et al.
(2010)

Lipid hydration-
extrusion

Indomethacin 150–
200

93 0.069 – Prevent the transfer of indomethacin across the
placenta to the fetus

Refuerzo et al.
(2015)

Thin film
hydration

Diclofenac
sodium

135–
186

29–34 – �46 to
�34

Enhancement of bioavailability Jukanti et al.
(2011)

Fig. 10. Schematic representation of solid lipid nanoparticle (SLN). Fig. 11. Schematic representation of nanostructured lipid carrier (NLC).
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melt is dispersed in hot aqueous surfactants phase (isothermal) by
mixing device (Ultra-Turrax) and leads to the formation of pre-
emulsions. Generally, at higher temperatures, the viscosity of the
inner phases is reduced and consecutively, particles size is
decreased (e Silva et al., 2012). Nevertheless, drug and carrier
degradation speed could be increased. This technique is illustrated
in Fig. 12. Hot homogenization has three basic problems. The first
one is temperature-dependent degradation of the drug, the second
one is the drug penetration into the aqueous phase during
homogenization and third one is complexity of crystallization step
of nanoemulsion leading to several modifications and/or super-
cooled melts (Parhi and Suresh, 2012; Mehnert and Mäder, 2001).

In cold homogenization method, the drug is dissolved in the
lipid melt and then rapidly cooled by liquid nitrogen or dry ice.
Milling leads to formation of nanoparticles in the range of 50–
100 nm. Such particles are dispersed in a cold surfactant solution,
which forms a pre-suspension. High-pressure homogenization is
done at ambient temperature that leads to breaking of the
nanoparticles to SLNs. Cold homogenization technique has been
expanded to resolve the problems of hot homogenization
technique such as, thermolabile drug degradation (Parhi and
Suresh, 2012), Schematic diagram of this method is depicted in
Fig. 13 (Naseri et al., 2015).

Other methods for lipid nanoparticles preparation are ultra-
sonication and high-shear homogenization. These techniques are
simple (Manjunath et al., 2005). The lipid phase is dispersed in a
phase containing a large amount of surfactant. The high surfactant
amount is however a disadvantage. These methods produce
particles with large particle size distribution (Tables 8–10 ).

10. In vivo applications of encapsulated NSAIDs

Table 11 shows the different carriers loaded with NSAIDs that
were tested in vivo. Both nanoparticles and liposomes have been
tested. Studies were performed either in rats or in rabbits. The
most targeted ways of administration routes in in vivo inves-
tigations, were ocular and intravenous routes. Furthermore, skin,

oral and nasal delivery routes of administration were employed.
Several outcomes have been confirmed such as bioavailability
enhancement, improvement of drug accumulation in targeted site
and prolonged release. Tolerance has been also evaluated for all
studies and it was concluded that these carriers turned out to be
safe. Most common actives that were studied in vivo include
flurbiprofen, diclofenac, indomethacin and oxicams. It has been
also shown that encapsulated NSAIDs were more efficient than
conventional dosage forms. The most common studied formula-
tions are liposomes, polymeric nanoparticles and NLC. With these
encouraging results, it would be interesting to pay more attention
to test encapsulated NSAIDs in human.

11. Opportunities and challenges

NSAIDs are one of the most prescribed drugs around the world,
for the treatment of pain, fever and inflammation. NSAIDs side
effects are still less risky in comparison to the side effects of
corticosteroids, which can be used for treatments where NSAIDs
become ineffective. Even so, to overcome these obstacles; carriers
such as polymer based particles, liposomes, SLN and NLC could
play crucial role. The function of the aforementioned carriers has
been validated by several clinical researches in in vivo setting
(Table 11). The pharmaceutical development of drug-loaded
nanoparticles is based on three features: usage of less toxic
reagents, economic scale-up by simplification of the procedure and
optimization to progress yield and entrapment efficiency. There
are different options for nanocapsule synthesis by using polymers;
the selection of a specific method is generally determined by the
drug physicochemical properties, especially aqueous solubility of
the drug. Currently safe, simple and reproducible techniques exist
to prepare drug-loaded nanoparticles. The chosen method for drug
vehicle preparation could have an effect on produced nano-
capsules. It must be taken into account that under the operating
condition the selected method should not disturb the stability of
the active ingredient. All NSAIDs are chemically organic acids but
they have different physicochemical properties so single

Fig. 12. Schematic representation of hot homogenization.

Fig. 13. Schematic representation of cold homogenization.

768 W. Badri et al. / International Journal of Pharmaceutics 515 (2016) 757–773

24



encapsulation method may not be ideal for all. Nowadays, for
achievement of an efficient entrapment of the drug, it is possible to
select the best method of preparation and the best polymer. The
selected method must give minimal loss of the drug or its
pharmacological activity. However, certain problems need to be
solved. In fact, residual solvent analysis must be more extensively
investigated and the post preparative steps, such as purification
and preservation, particularly important for nanocapsules, are to
be optimized. Currently, most utilized methods for NSAIDs
encapsulation are nanoprecipitation, double- emulsion solvent
evaporation, and emulsion-solvent evaporation. Mainly used
polymers are poly(e- caprolactone), chitosan, Eudragit1 and
sustained release drug delivery system design. Mostly, prepared

vehicles were nanocarriers. Main applications compromise pro-
moted stability, sustained release and bioavailability enhance-
ment. According to our state of the art, ketoprofen has been among
the first encapsulated NSAIDs. More recently, molecules like
indomethacin, nimesulide, acceclofenac and celecoxib are encap-
sulated. According to our best of knowledge, lipid based carriers
nanostructured lipid carriers (NLC) could be the best carrier for
NSAIDs delivery in order to attain different objectives such as,
gastrointestinal side effects decrease, solubility and bioavailability
enhancement, stability increase, unpleasant taste cover, systemic
toxicity reduction and half-life control. Most encapsulated NSAIDs
are ketoprofen, aceclofenac and indomethacin. However, in vivo
efficiency has been mostly performed on molecules like

Table 9
Encapsulated NSAIDs in SLN.

Method Active
ingredient

Particle
size
(nm)

Encapsulation
efficiency (EE
%)

Polydispersity
index (PDI)

Zeta
potential
(mV)

Goal of encapsulation References

Hot homogenization Indomethacin 140 72 0.16 �21 Development and characterization of
Indomethacin-loaded solid lipid nanoparticles for
occular drug delivery

Hippalgaonkar
et al. (2013)

Hot homogenization Diclofenac
sodium

115.8 90 0.29 �34.7 Diclofenac sodium for ophthalmic delivery Attama et al.
(2008)

Hot homogenization Flurbiprofen 190 90 – – Flurbiprofen development of novel solid lipid
nanoparticle

Din et al. (2015)

Microemulsion Ketoprofen 75 � 4 97 0.2 �15 to
�17

Ketoprofen �loaded SLNs preparation by a
mixture of beeswax and carnauba

Kheradmandnia
et al. (2010)

Modified high shear
homogenization and
ultrasonication

Meloxicam 325–
1080

61.94 to 85.33 – �17.6 to
�38.6

Meloxicam solid lipid nanoparticles (MLX SLNs)
development for topical delivery

Khalil et al.
(2014)

Hot high pressure
homogenization

Lornoxicam 136.6 90.07 0.22 – Solid lipid nanoparticles as delivery system for
lornoxicam

Kumar et al.
(2014)

Microemulsion template Meloxicam 239 52 0.267 �24 Quick onset and prolonged action Khurana et al.
(2015)

Ultrasonication Indomethacin 102–
215

83 – – – Castelli et al.
(2005)

Hot
homogenization
followed by sonication

Flurbiprofen 250–
350

>90 0.3–0.5 �21–42 Enhance oral bioavailability Bhaskar et al.
(2009)

Table 8
List of excipients used in SLN preparation (from Yadav et al., 2013 with modifications) (Yadav et al., 2013).

Lipids Surfactants

Fatty Acids Alcohols
para-acyl-calix-arenes Ethanol
Hydrogenated coco-glycerides Butanol
Cyclic complexes Butyric acid
Acidan N12 Dioctyl sodium sulfosuccinate
Behenic acid Monooctylphosphoric acid sodium
Decanoic acid Bile salts
Palmitic acid Sodium cholate
Stearic acid Sodium glycocholate
Acyl glycerols Sodium taurocholate
Glyceryl monostearate Sodium taurodeoxycholate
Glyceryl distearate Phospholipids
Glyceryl monooleate Soy lecithin
Glyceryl behenate Egg lecithin
Glyceryl palmitostearate Phosphatidylcholine

Ethylene oxide/propylene oxide copolymers
Hard fat types Poloxamer 188
Triglycerides Poloxamer 182
Tricaprin Poloxamer 407
Trilaurin Poloxamine 908
Trimyristin Sorbitan ethylene oxide/propylene oxide copolymers
Tripalmitin Polysorbate 20
Tristearin Polysorbate 60

Polysorbate 80
Alkylaryl polyether alcohol polymers
Tyloxapol
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flurbiprofen and diclofenac that have been especially intended for
ocular delivery. Persisting safety and tolerability, scale-up and
quality of providing health services are the crucial issues to
overcome as prospective for a better tomorrow. However, in spite
of this interesting success on animals, encapsulated NSAIDs are not
yet commercialized. Till now researches have been carried out only
on animals in order to prove NSAIDs efficacy and safety. Therefore,
it is necessary to perform more studies in humans to attain
successful clinical application using carriers in the near future.
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Summary 

This work explains the research performed in the elaboration and use of polymeric nanoparticles for 

the encapsulation and application of plant extracts. The review describes in detail, the different 

encapsulation methods, key physicochemical characteristics of the nanoparticles, and toxicity tests. In 

addition, results acquired from in vivo or in vitro studies are highlighted as well here.  

Plants are a natural source of different products with various biological activities offering treatment for 

several diseases since long time. Plant extracts are a complex mixture of compounds that have 

antioxidant, antibiotic, antiviral, anticancer, antiparasitic, antifungal, hypoglycemic, anti-hypertensive 

and insecticide properties. Approximately three quarters of the world’s population trust on the use of 

plants extracts as remedies for different afflictions. The organic solvents (e.g. methanol, ethanol, 

hexane, dichloromethane, ethyl acetate, etc.) are involved in the extraction of these extracts that not 

only complicates the formulations but also makes it difficult to directly use the plant extracts for 

humans. In addition to this, plant extracts protection, conservation, and targeted delivery (into 

organism) is another barrier to overcome their potential use as a treatment for diseases. In order to 

tackle these challenges, recent study has been dedicated to the development of new methods for plant 

extracts formulation and their safe delivery to provide a high efficacy. Plant extracts complex 

composition; toxicity risks and instability are the major obstacles towards their clinical applications. 

However, encapsulation can be fruitfully employed to reduce plant extracts toxicity, to make available 

targeted drug delivery and to overcome stability associated problems. In fact, polymeric nanoparticle 

can be defined as a particle of polymer of any shape with the size range of 1 to 100 nm while polymer 

based microparticle is a particle of polymer of any shape with size range of about 0.1–100 μm. Natural 

polymers such as chitosan, albumin, gelatin, or synthetic polymers such as methacrylates can be used 

for the encapsulation of drugs. Generally these polymers are biodegradable and biocompatible;

Polymers selection is commonly based on the criteria of final application and toxicity of polymers.The 

physicochemical properties, drug release profile, and biological characteristics of nanoparticles are 

possible to be altered via using polymers. Encapsulation drugswithin biodegradable polymers make 

them nontoxic, stable in blood, and noninflammatory. Nanoparticles thanks to their size and distinctive 

physicochemical properties, can design formulations with several advantages.There are two classes of 

methods including preformed polymers dispersion (solvent evaporation, nanoprecipitation, solvent 

diffusion, and dialysis) and monomers polymerizations (miniemulsion, microemulsion, interfacial 

polymerization, and radical polymerization) are used for the nanoparticles preparation. Best of our 

knowledge all encapsulation techniques would not use for the natural plant extracts encapsulation. 

Therefore, in this review the preformed polymers-based methods, which are mostly used for the 

encapsulation of natural plant extracts, are described.A progressively growing inclination for the usage 

of polymer based nanoparticles encapsulating plant extracts will be perceived in future medicinal 

therapies. Recently, researchers are more and more focused on the elaboration of polymer based 
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nanoparticles containing plant extracts to associate plant extracts broad biological activities with the 

nanoparticles advantages. These formulations are designed for the potential application in the fields of 

medicine, food, and cosmetics. The last research on formulations loaded with natural extracts, 

commonly reports regarding standardizing methods for obtaining carriers, physicochemical 

characterization of the formulation, encapsulation of the drug molecule; extract release profiles from 

the nanoparticles, biological evaluations both free extract and encapsulated extract and stability studies 

of the formulation. 
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ABSTRACT
Introduction: Plants are a natural source of various products with diverse biological activities offering
treatment for several diseases. Plant extract is a complex mixture of compounds, which can have
antioxidant, antibiotic, antiviral, anticancer, antiparasitic, antifungal, hypoglycemic, anti-hypertensive
and insecticide properties. The extraction of these extracts requires the use of organic solvents, which
not only complicates the formulations but also makes it difficult to directly use the extracts for humans.
To overcome these problems, recent research has been focused on developing new ways to formulate
the plant extracts and delivering them safely with enhanced therapeutic efficacy.
Areas covered: This review focuses on the research done in the development and use of polymeric
nanoparticles for the encapsulation and administration of plant extracts. It describes in detail, the
different encapsulation techniques, main physicochemical characteristics of the nanoparticles, toxicity
tests and results obtained from in vivo or in vitro assays.
Expert opinion: Major obstacles associated with the use of plant extracts for clinical applications
include their complex composition, toxicity risks and extract instability. It is observed that encapsulation
can be successfully used to decrease plant extracts toxicity, to provide targeted drug delivery and to
solve stability related problems.
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1. Introduction

Since ancient times, it is known that plants are a natural
source of various products with diverse biological activities.
These products have been used for the treatment of different
diseases.[1] Actually, about three quarters of the world’s popu-
lation rely on the use of particular plant extracts as a remedy
for various afflictions.[2] Within the natural products, we can
find essential oils, plant extracts, tea, salves, etc.

Natural extracts are complex mixtures of chemicals with
biological properties derived mainly from the leaves, the
stems, the fruits, or roots of medicinal plants. Among the
biological activities presented by plant extracts, the most
prominent ones include the antioxidant, antibiotic, anticancer,
antifungal, antiparasitic, hypoglycemic, and antihypertensive
properties.[3–9]

Even though, the plant extracts are suitable for treatment
for various diseases, studies show that their therapeutic use is
still limited because of their complex composition and toxicity
when they are applied in organisms with more complex meta-
bolic systems. Furthermore, for obtaining these extracts, gen-
erally organic solvents (e.g. methanol, ethanol, hexane,
dichloromethane, ethyl acetate, etc.) are used. Hence, the
final vehicle in which the extracts are found prevents their
direct application in organisms. In addition to this, the protec-
tion, conservation, and targeted delivery (into organism) of

plant extracts are another challenge to overcome their poten-
tial use as a treatment for diseases.[10]

At present, research is more focused on the composition of
plant extracts, whereas, solutions that enable the efficient,
safe, and direct application of these natural products need to
be more focused on. One of the newest and most current
ways for the application of the natural extracts, which also
reduces the limitations outlined, is the use of polymeric nano-
particles (nanoparticles). Polymeric nanoparticle is a particle of
polymer of any shape and an equivalent diameter from 1 to
100 nm and polymeric microparticle is a particle of polymer of
any shape with an equivalent diameter from approximately
0.1–100 μm. Polymers can be of natural source, e.g. chitosan,
albumin, gelatin, etc. or synthetic, e.g. methacrylates. Due to
their size and unique physicochemical characteristics of nano-
particles, they generate formulations with several advantages,
such as: (i) encapsulation of compounds of different chemical
nature in the same formulation (mixture of compounds), (ii)
targeting of specific organs (low toxicity), (iii) easy removal of
organic solvent during the development of the nanoparticles
(effective purification procedures), (iv) protection and conser-
vation of the encapsulated active (enzymes damage, environ-
ment, etc.), and (v) controlled release of incorporated actives.
[11–13]

In order to combine the diversity of biological activities of
plant extracts and the advantages offered by the
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nanoparticles, recently, researchers are increasingly focused
on designing formulations consisting of nanoparticles consti-
tuted from different polymers and containing encapsulated
plant extracts. These formulations are developed for potential
application in the field of medicine, food, and cosmetics.

The latest research on formulations containing natural
extracts encapsulated in nanoparticles, generally reports
about standardizing techniques for obtaining carriers, physi-
cochemical characterization of the formulation (size, morphol-
ogy, zeta potential, etc.), encapsulation of the active
(percentages of encapsulation), the release profiles of the
extract from the nanoparticles, biological evaluations both
free extract and embedded extract (in vitro and in vivomodels)
and stability studies of the formulation. The aim of this review
is to present the most recent data on polymeric nanoparticles
encapsulating plant extracts, highlight their characterization,
and report the results obtained from studies related to biolo-
gical activities in vitro and in vivo models.

2. Elaboration of carriers using preformed polymers

The use of colloidal carriers has gained tremendous interest
during the past decades, which paved the way for further
advancements in biomedical and biotechnology field. These
particulate carriers find applications in both in vivo and in vitro
studies. Colloidal carriers have distinct advantages that make
them a preferable choice over a simple solution of active
molecules. These carriers protect active pharmaceutical ingre-
dients from degradation or inactivation (by light or enzymatic
attack), reduce toxicity of drugs.[14–17] Therapeutic efficacy of
active is enhanced, since after the encapsulation the drug’s
biodistribution depends no longer on its own physicochemical
properties but on carrier’s ones.[18–21] Encapsulation of the
actives in carriers also masks the unpleasant taste and odor
associated with some drugs. When compared to drug solu-
tions, carriers may give better membrane absorption and drug
targeting to the tissues where pharmacotherapeutic action
occurs. Reproducible and prolonged release of the active is
thus provided.[22–28] The biomedical applications of the

carriers are constantly increasing.[29–31] The different poly-
mers employed to construct these carriers may differ in phy-
sicochemical properties but mainly are biodegradable and
biocompatible. Drug’s encapsulation in biodegradable poly-
mers makes them nontoxic, stable in blood, and noninflam-
matory. By using polymers, the physicochemical properties
(e.g. hydrophobicity and zeta potential), drug release charac-
teristics (e.g. delayed, prolonged, and triggered), and biologi-
cal behavior (e.g. bioadhesion and improved cellular uptake)
of the nanoparticles can be modified.[32–34] The uptake of
the particles by the macrophages may also be prevented by
modulating the particle’s surface with coating of substances,
such as polyethylene glycol (PEG). The selection of the poly-
mer is generally made considering its final application as well
as its toxicity.[35] Various techniques are available to formu-
late the colloidal carriers. These techniques differ by their
principles or the nature of the active, which is to be encapsu-
lated. Correct selection of the technique is very important to
obtain a formulation bearing suitable properties for the in vitro
and in vivo applications. Broadly speaking, there are two tech-
niques namely: dispersion of preformed polymers and poly-
merization of monomers. Under preformed polymers
techniques, such as solvent evaporation, nanoprecipitation,
solvent diffusion, and dialysis are included. On the other
hand, polymerization of monomers includes processes, such
as miniemulsion, microemulsion, interfacial polymerization,
and radical polymerization. After careful search through litera-
ture, it is observed that not all encapsulation techniques have
been employed for the encapsulation of natural plant extracts.
So here, we will briefly describe the basic principles involved
in the preformed polymers-based techniques that are very
frequently used for formation of particles encapsulating nat-
ural plant extracts.

2.1. Emulsion solvent evaporation

The technique emulsion solvent evaporation was introduced
by Vanderhoff and colleagues.[36] This method consists of two
major steps: formation of single or double emulsion and
organic solvent evaporation. Evaporation results in polymer
precipitation and subsequent particles’ formation (Figure 1).
[35] Microencapsulation by solvent evaporation is mostly used
in pharmaceutical industries to get controlled release formula-
tions. Different methods are available to use microencapsula-
tion by solvent evaporation technique. The selection of a
method that will give adequate drug encapsulation usually
depends on the hydrophilic or hydrophobic character of the
active molecules.[37] In single emulsification (e.g. o/w), poly-
mer (selected according to desired properties) is dissolved in
volatile, water immiscible solvent, such as dichloromethane,
ethyl acetate, or chloroform. This organic phase is then emul-
sified in an aqueous phase already containing a dissolved
surfactant. High speed homogenization or sonication is the
key to good dispersion of the oil phase in aqueous phase.[35]
However, this technique fails when it comes to encapsulation
of highly hydrophilic agents. This is because the active agent
may diffuse into the continuous phase during the formulation
or it may not get dissolved in the organic solvent. Multiple
emulsions are more suitable in such cases. In this case, primary

Article highlights

● About three quarters of the world’s population rely on the use of
plants extracts as remedies for various afflictions.

● The use of plants extracts, as treatment is still limited due to their
complex composition and toxicity when they are used directly in
larger organisms.

● The polymeric nanoparticles are colloidal systems, which could act as
carriers of natural extracts.

● The polymeric nanoparticles encapsulating plants extracts find appli-
cations in the fields of foods industries, medicine, cosmetics and
health sector.

● Different formulations based on polymeric nanoparticles have
demonstrated enhanced biological activity (e.g. anticancer, antibac-
terial, antidiabetic, antihypertensive, cosmetology, etc.) of plant
extracts.

● A gradually increasing tendency for the usage of polymeric nanopar-
ticles encapsulating plant extracts will be observed in future medic-
inal therapies.
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emulsion formed via single emulsification (generally w/o) is
again dispersed in second aqueous phase.[38] Most hydrophi-
lic drugs have been encapsulated via (w/o/w) method.[39–41]
In both single and double emulsification, the organic solvent
is evaporated either by stirring at room temperature or under
low pressure and high temperature conditions. The formed
particles can be obtained by ultracentrifugation or filtration
and finally can be washed or lyophilized.[28] Stabilizers play
dual role in emulsions. They form films and provide barrier to
drug release at internal interface and act as steric stabilizer on
the external aqueous phase.[21,35,42]

2.2. Nanoprecipitation

Nanoprecipitation, also known as solvent displacement or inter-
facial deposition, is considered quite simple and reproducible
method, which allows the production of polymer-based sub-
micrometer particles (Figure 2). It is also thought to be one of
the first developed techniques employed for the encapsulation
of the active molecules. This method was introduced by Fessi

et al. [43] Since its development, this technique is mostly
limited to encapsulation of mainly hydrophobic actives
(because of the miscibility of the solvent with the aqueous
phase) in either nanocapsules or nanospheres.[44–50]
However, hydrophilic actives have also been encapsulated via
nanoprecipitation.[51–55] Many different polymers have been
used for this technique, especially biodegradable polyesters,
such as polylactide (PLA), polylactide-co-glycolide (PLGA), and
poly-ε-caprolactone (PCL).[56] Basically, this technique requires
two miscible phases: an organic solvent in which polymer is
dissolved and an aqueous phase (non-solvent of the polymer).
Commonly used organic solvents are ethanol and acetone.
Such solvents are miscible in water and can be removed by
evaporation. The addition of one phase to the other under
moderate magnetic stirring causes the interfacial deposition of
the polymer after displacement of the organic solvent from the
organic solution. This leads to the formation of nanoparticles.
The formation of particles involves three basic steps: particle
nucleation, molecular growth, and aggregation. The rate of
every step is quite important for the particles size distribution.

Figure 1. Emulsion solvent evaporation technique (w/o/w type).

Figure 2. Nanoprecipitation technique.
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Different formulation parameters that should be controlled
include organic-non-organic phase ratio, polymer concentra-
tion, stabilizer concentration, and the amount of active mole-
cules. Each of these parameters may influence the
characteristics of the obtained nanoparticles (size, uniformity,
and charge). This technique has many advantages over other
encapsulation methods, such as simplicity, ease of scalability,
good reproducibility, submicrometer particles with narrow size
distribution, avoidance of usage of large amounts of toxic
solvents, and no high energy input required.[57] Membrane
contactor and microfluidic technologies have been successfully
used to improve reproducibility and increase the convenience
of application of nanoprecipitation in industries.[58]

2.3. Emulsion solvent diffusion

This method was introduced by Leroux et al. in 1995.[59] This
technique basically requires the presence of three liquid
phases: an aqueous phase (stabilizer dissolved in water), an
organic phase (polymer in organic solvent and a hydrophobic
active), and a dilution phase. The organic solvent must be
partially soluble in water. The aqueous and organic phases are
mutually saturated and emulsified using high-speed homoge-
nization. Finally, addition of large volume of water allows the

diffusion of organic solvent from dispersed phase to external
aqueous phase. This causes the precipitation of the polymer
and, hence, the formation of particles (Figure 3).[35,60] The
solvent is removed depending on its boiling point either by
evaporation or filtration. Usually encapsulation efficiency is
approximately 70%. This method is mainly used for the entrap-
ment of hydrophobic actives. However, hydrophilic molecules
may also be encapsulated by a modified solvent diffusion
method using an aqueous inner phase.[61] The different oper-
ating conditions affecting the obtained particles include exter-
nal/internal phase ratio, emulsification stirring rate, volume,
and temperature of water for dilution, amount of polymer and
the concentration of the stabilizer.[21,62]

2.4. Ionic gelation (IG)

IG is considered as a mild process since the use of toxic
organic solvents and surfactants is avoided. It mainly involves
the usage of hydrophilic natural polymers for preparation of
particulate carriers. These polymers include chitosan, gelatin,
agarose, and alginate. The basic principle of this method is the
electrostatic interaction between the oppositely charged poly-
mer and a polyelectrolyte (Figure 4). A solution of the charged
polymer when added drop-wise under constant stirring to an

Figure 3. Emulsion solvent diffusion technique (adopted from Miladi et al. [28])

Figure 4. Ionic gelation technique (Adopted from Miladi et al. [28])
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oppositely charged polyelectrolyte causes the cross-linking of
the two entities and, hence, the particulate formation.[63,64]
Gelatin-based particles are obtained after hardening of the
droplets of emulsified gelatin solution. The gelatin emulsion
droplets are cooled below the gelation point in an ice bath to
obtain the particles. Alginate particles are obtained by drop-
by-drop extrusion of the sodium alginate solution into the
calcium chloride solution. Sodium alginate is a hydrophilic
polymer, which gels in the presence of multivalent cations
such as calcium. This technique was widely used to prepare
chitosan particles. Electrostatic interaction occurs between
positively charged chitosan (in an acidic medium) and nega-
tively charged tripolyphosphate or arabic gum.[65–67]

3. Applications of encapsulated plants extract

3.1. Cosmetic applications

The use of plant extracts for skin application is limited because
some of their active compounds exhibit high volatility, low
solubility in aqueous systems and/or a short residence time on
the skin. The use of controlled release systems, such as nano-
particles enables an increase in the amount of active incorpo-
rated in aqueous systems and increased bioactivity, protection
and stability of the actives. Due to their size, the nanoparticles
can penetrate intracellular or intercellular spaces and through
the hair follicles, which makes them a suitable pharmaceutical
carrier of the extracts for the skin application.

In recent years, several works support the feasibility of
using nanoparticles for the release of plant extracts in the
skin. Tachaprutinun et al.[68] developed formulations contain-
ing both free Garcinia mangostana Linn extract and encapsu-
lated Garcinia mangostana Linn extract in ethylcellulose or
methylcellulose. They evaluated the intracellular and follicular
penetration of the nanoparticles by tape stripping technique
and fluorescence microscopy, respectively. The nanoparticles
loaded with extract showed an average size of 625 ± 20 nm, a
zeta potential of 3.6 ± 0.2 mV. Both free extract and encapsu-
lated extract were incorporated into creams or aqueous sys-
tems, and it was determined that both formulations in cream
(free extract and encapsulated) penetrated deeper into the
hair follicles as compared to those applied in aqueous sys-
tems. Furthermore, G. mangostana Linn extract incorporated
into nanoparticles showed higher and more homogeneous
distribution in the layers of the stratum corneum compared
to the free extract. Hence, the results showed that the viability
and dermal penetration of plant extract was increased when it
was encapsulated in nanoparticles.[68]

The lavender extract is one of the most commonly used
extracts in cosmetics. However, its application is limited by its
physicochemical instability. Pereira et al. encapsulated metha-
nolic extracts of Lavandula stoechas and L. pedunculata in
nanoparticles of PLGA for increasing the chemical stability of
the extract. Before the encapsulation process, it was deter-
mined that the methanolic extracts of both plants contained a
high amount of flavonoids and, therefore, they possessed high
antioxidant properties and low toxicity to human keratino-
cytes (up to 15 μg/mL during 24 h), which favored their
dermal application. The physicochemical characterization of

the loaded nanoparticles showed a particle size of 300 nm
for formulations prepared with both extracts. The obtained
zeta potential was –15.74 ± 9.93 and –19.35 ± 8.42 mV for L.
stoechas and L. pendiculata, respectively. The scanning elec-
tron microscopy showed nanoparticles with spherical form
and smooth surface. The percentage of encapsulation was
95.8% for L. stoechas and 96.7% for L. pendiculata. The loaded
nanoparticles were not tested for skin penetration; therefore,
it was difficult to determine if the nanoparticles increased the
deposition of the lavender extracts in skin. However, this work
provides fundamentals for the elaboration of nano-objects
containing lavender extracts for application in cosmetics or
dermatological treatments.[69]

3.2. Food additives applications

In recent years, increasing interest in eating healthy and less
processed foods, has led to the reduction of synthetic com-
pounds and they are being replaced by natural sources such
as plant extracts products. However, the replacement of these
compounds is not easy due to the poor chemical stability
shown by plant extracts during the processing steps in food
industry. Thus, nanoparticles composed of different polymers
have been developed for this purpose.

In 2011, Anbinder et al. developed a formulation from
alginate, chitosan, and aqueous extract of Ilex paraguariensis
(yerba mate) in order to use it as a delivery system of anti-
oxidants and add them to functional foods. The extract was
incorporated in three different systems (composed of calcium
alginate, chitosan, and a mixture of both polymers) and their
physicochemical characteristics were compared by scanning
electron microscopy, thermal analysis, and infrared spectro-
scopy. The system based on the mixture of both polymers
showed an interaction between calcium alginate matrix and
the external layer of chitosan. The chitosan nanoparticles
showed enhanced release of polyphenols in the simulated
intestinal fluid. This suggested a greater interaction between
chitosan and the extract. The thermal analysis indicated that
the systems do not decompose at high temperatures, making
it feasible for the systems to be used in the production of
fortified foods.[70] Subsequently, in 2013, the same research
team, studied the release of polyphenols from loaded yerba
mate nanoparticles (hydrated or dried) elaborated with mix-
ture of calcium alginate/chitosan. The release of polyphenols
from the hydrated nanoparticles was immediate in acidic pH
due to the erosion of the system, while dried nanoparticles
enabled release of the compounds after a period of swelling
(hydration of the system). The results supported the imple-
mentation of these nanoparticles in instant soups, thereby
increasing the amount of natural antioxidants available from
foods.[71]

It is well known that plant extracts are a source of anti-
microbial agents, which can be used as preservatives in differ-
ent types of food. However, sometimes the addition of large
amounts of extract to foods may cause odor and taste dis-
turbances. Moreover, many of these extracts are hydrophobic,
limiting their potential application. To resolve this problem,
biodegradable nanoparticles have been developed. Hill et al.
encapsulated root extract of cinnamon using biodegradable
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PLGA in two different ratios (65:35 and 50:50) to promote the
antimicrobial activity of the extract. The size of nanoparticles
was 145–167 nm with a percentage encapsulation of 39% and
48% for PLGA 65:35 and PLGA 50:50, respectively. Release tests
showed an initial burst effect due to the extract present in the
surface of the nanoparticles, followed by a controlled release
of the extract from the polymeric matrix. The two types of
nanoparticles inhibited the growth of Salmonella Typhimurium
and Listeria monocytogenes after 24 and 72 h in a concentra-
tion range of 224–529 mg/mL. In conclusion, the PLGA-based
nanoparticles of cinnamon improved the release and antimi-
crobial activity of hydrophobic compounds in aqueous media,
commonly found in foods.[72]

Pereira and collaborators used nanoparticles of PLGA (ratio
65:35 and 50:50) for encapsulation of an extract rich in caro-
tenoids obtained from the fruit of guabiroba (Campomanesia
xanthocarpa O. Berg) to improve the antioxidant and antimi-
crobial activity. The size of nanoparticles obtained was in a
range of 145–162 nm. All nanoparticles showed a spherical
shape and smooth surfaces. Encapsulation efficiency of the
extract was 83.7% and 98.5% for nanoparticles of PLGA 50:50
and PLGA 65:35, respectively. Furthermore, release profile of
the extract (based on the measurement of carotenoids release)
from the nanoparticles showed an initial burst effect followed
by a decrease in cumulative release over time for both for-
mulations. The initial burst effect was more pronounced in
nanoparticles of PLGA 50:50 (92% in an hour) compared with
37% obtained from the nanoparticles of PLGA 65:35. The
antimicrobial activity was enhanced when the extract was
encapsulated in PLGA 50:50 nanoparticles. Assays for determi-
nation of antioxidant activity showed the highest activity for
the PLGA 50:50 based nanoparticles. Moreover, a lower con-
centration of encapsulated guabiroba extract was required to
reduce reactive oxygen species (oxidation) in human colon
adenocarcinoma HT-29. Overall, the results showed that
PLGA nanoparticles could be used to incorporate extracts
rich in carotenoids or other functional lipids as delivery sys-
tems with increased biological activity.[73]

In the food area, nanoparticles may also provide con-
trolled release formulations of nutraceutical compounds.
The root and rhizome of Pichorhiza kurroa has demonstrated
significant hepatoprotective activity that improves liver func-
tion. However, principal molecules in the extract (picroside I
and II) show poor gastrointestinal absorption and bioavail-
ability (low aqueous solubility). Recently, Jia et al. developed
biodegradables nanoparticles constituted using PLA and
pluronic F-68. The observed size was about 175 and
155 nm and encapsulation efficiency 60% and 67% for picro-
side I and II, respectively. The value of zeta potential for
both formulations was −27.87 and −31.5 for blank and
loaded nanoparticles, respectively. This confirmed good sta-
bility of nanoparticles for long periods of storage.
Meanwhile, in the release studies, an initial burst effect
followed by a sustained release up to 210 h was observed.
The formulation could be used as a nutraceutical with hepa-
toprotective effect. However, it is important to undertake
studies to demonstrate the biological activity of the extract
after the encapsulation process.[74]

3.3. Phytotheraphy applications

Despite the great potential of plant extracts as source of
treatments for various diseases, there are few investigations
that support their use in formulations, because, in general, the
extracts show lower in vitro biological activity when are com-
pared with pure chemical compounds. It has been demon-
strated that a strong synergy exists between the compounds
present in the extracts, which, in many occasions is lost if
these compounds are isolated. Moreover, the poor water solu-
bility, physicochemical instability, and complexity of such
extracts further limit their use. The application of nanoscale
release systems for extracts provides an increase in solubility
of the compounds, improved bioavailability, dose reduction,
steady plasma levels and enhanced stability.

3.3.1. Antidiabetic activity
In this context, Samadder et al. developed formulation, which
encapsulated the ethanolic extract of the seeds of Syzygium
jambolanum. The aim was to improve treatment of hypergly-
cemic stress induced by arsenic poisoning. The average size of
these nanoparticles was 122 nm, with spherical shape and
smooth surface. Constant release of Syzygium jambolanum
from its nano-encapsulated form was observed from 0 to
30 min in L6 cells. The studies showed that the application
of extract encapsulated in nano-objects allowed increased
consumption compared to the application of free extract.
This may be because the loaded nanoparticles enable better
functioning of the cellular glucose transporter GLUT4. In addi-
tion, the loaded nanoparticles showed a potential protection/
recovery of cells damaged by arsenic. In in vivo (mice) models,
it is determined that the free extract and encapsulated extract
decreased the glucose and glycated hemoglobin levels
induced by arsenic. Finally, by fluorescence techniques it was
observed that the nanoparticles could effectively cross the
blood brain barrier, whereby the formulation could provide
targeted treatment in this important area. Thus, formulation
showed a significant potential for use in the treatment of
hyperglycemia induced by arsenic poisoning.[75]

3.3.2. Anti-inflammatory activity
Because of the wide range of biological activities offered by
the extracts of the fruit of Emblica officinalis, Renuka et al.
encapsulated ethanolic and aqueous extracts of this plant in
polyvinylpyrrolidone (PVP)-based nanoparticles and evaluated
their antioxidant and anti-inflammatory activity. The encapsu-
lation efficiency of the nanoparticles with extracts was found
to be between 58% and 70%. The particle size was determined
to be in the range of 550–825 nm. The obtained zeta potential
was in a range of −7.49 to −13 mV, indicating a high stability
for the systems. The release profile of the nanoparticles was
better in 50 mg of ethanolic or aqueous extract. The formula-
tion prepared with 50 mg of ethanolic extract showed the
highest antioxidant activity, which could be attributed to the
greater amount of flavonoids present in this kind of extract. In
the anti-inflammatory activity test, the formulations prepared
with the aqueous extracts showed greater activity than those
containing ethanolic extracts. Generally, the results showed
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that the encapsulation of aqueous and ethanolic extracts of E.
officinal in nano-objects increased their antioxidant and anti-
inflammatory activities.[76]

In 2014, with the aim of increasing anti-inflammatory activ-
ity of Scutellaria baicalensis, Choi et al. developed lectin nano-
particles loaded with aqueous or ethanolic extract of the plant.
Nanoparticles loaded with ethanolic extract showed an aver-
age size of 94 nm and a percentage encapsulation of 62%. The
antioxidant activity of nanoparticles was established by a 60%
inhibition in the activity of DPPH radical. In addition, a con-
centration of 0.5 mg/mL of loaded nanoparticles inhibited the
production of nitric oxide and produced only a concentration
of 743.7 pg/mL PGE2 in macrophages RW264.7. Furthermore,
this study was the first to show that the penetration of nano-
particles in human fibroblasts using scanning confocal micro-
scopy.[77]

3.3.3. Anticholesterolemia activity
Considering the medicinal properties of Clerodendrum infortuna-
tum, Suman et al. encapsulated root ether extract in nanoparti-
cles of PLGA for treating hypercholesterolemia. The formulation
showed particle size of about 608 nm with a zeta potential, drug
efficiency and encapsulation efficiency of −30 mV, 32.8%, and
98.40%, respectively. Based on these characteristics, the nano-
particles-based preparation could be used for the treatment of
hypercholesterolemia by passive targeting to the liver. However,
there is no solid evidence about it.[78]

3.3.4. Antiulcerolitic activity
The crude extract (CE), the fraction obtained with ethyl acetate
(EAF), and the residual aqueous fraction obtained from leaf
Passiflora serratodigitata L. show a potential antiulcer activity
due to the presence of a high content of flavonoids. To increase
the aqueous solubility and provide increased stability of these
substances, Strasser et al. developed poly(ε-caprolactone)
(PCL)-based nanoparticles encapsulating P. serratodigitata
extract, which could be used for gastroprotective properties.
PCL–CE and PCL–EAF nanoparticles presented a size of 379 and
383 nm and a zeta potential of −20.2 and −27.3 mV, respec-
tively. The encapsulation efficiency (based on the total amount
of flavonoids) was 90.6% and 79.9% (w /v), respectively. In vivo
studies showed that the nanoparticles loaded with CE provided
four times more gastric protection than the free CE extract. The
nanoparticles-EAF required 10 times less extract for achieving
the same gastroprotective activity as that of EAF free extract.
Probably, the nanoparticles-EAF was more potent due to the
high purity of the extract. These results showed that both crude
extracts of P. serratodigitata L., and their nanoencapsulated
form had a high antiulcer activity and would be potential
candidates for treatment of gastric ulcers.[79]

3.3.5. Anticancer activity
A large number of plants show a significant cytotoxic activity
against various cancer cells. However, due to their toxicity
they could be potentially fatal if administered for long periods.
Nowadays, the use of nanoparticles for the delivery of plant
extracts against cancer is one of the major focused fields. The
studies related to nanoparticles for this purpose includes the

physicochemical characterization, in vitro or in vivo toxicology
analysis, cell internalization studies and the influence on apop-
tosis and genetic damage.

In this field, Bhattacharyya et al. developed PLGA-based
nanoparticles of ethanolic extract (tincture) of Gelsemium sem-
pervirens and studied the effect of the formulation on their
cellular internalization and in vitro bioactivity. Loaded nano-
particles had an average size of 122 nm. Their morphology
showed spherical particles with smooth surface. The zeta
potential was −14.8 mV, which suggested that the formulation
was physically stable. The extract loaded nanoparticles
showed to be more potent and active compared to non-
encapsulated extract. In comparison with the free extract,
the nanoparticles were better internalized. For the cellular
effect of formulation, the results showed that loaded nanopar-
ticles caused increased expression of p53 and caspase-3 (two
key proteins markers in apoptosis) and downregulation of
survivin, cyclin-D1, and PCNA; thus providing evidence about
the working mechanism of these carriers. Test results of
Annexin V-FITC and TUNEL FACS techniques confirmed that
encapsulated extract induced greater degree of apoptosis
with little necrotic potential as compared to free extract. In
vivo model studies are needed to use these formulations in
cancer treatment.[80]

The ethanolic extract of the root of Polygala senega cause
death and apoptosis in lung cancer cell line A549 but show no
toxicity in normal lung cells. Paul et al. encapsulated metha-
nolic extract of this plant in PLGA-based nanoparticles in order
to increase bioavailability and cellular internalization of the
active in the A549 cell line for use in cancer therapy. Neither
free extract nor the loaded nanoparticles showed cytotoxic
effects on normal lung cells. However, after 24 h, a dose of
200 μg/mL of free extract or encapsulated extract inhibited
68.65% and 77.46% of the growth of cancer cells A549, respec-
tively. Fluorescence techniques showed that loaded nanopar-
ticles were internalized faster than free extract (30 and 45 min,
respectively). Both formulations saturated cancer cells after
240 min. Furthermore, both free extract and encapsulated
extract induced apoptosis of A549 cells, which was associated
with decreased expression of survivin, PCNA, and increased
expression of caspase-3 and p53 in cell line A549. These
results showed the great therapeutic potential of ethanolic
extract loaded in PLGA nanoparticles.[81]

Another plant extract with potential anticancer activity in
cell line A549 was obtained from root of Phytolacca decandra.
Das et al. developed nanoparticles loaded with ethanolic
extract of this plant and studied their therapeutic effectiveness
in vitro and in vivo models. The nanoparticles showed a size
around 110 nm, a zeta potential of −17.5 mV, and a smooth
surface. The Fourier transform infrared spectroscopy, high
performance liquid chromatography, mass spectrometry, and
nuclear magnetic resonance analysis showed the incorpora-
tion of a tri-terpenoid (derivative of betulinic acid) in biode-
gradable nanoparticles. The encapsulation efficiency of the
loaded nanoparticles was 82.15%, from which, only 56% had
a constant release for 24 h. The loading of P. decandra in PLGA
nanoparticles provided more effective release of the extract
with higher antitumor efficacy. Extract loaded nanoparticles
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also showed a significant modulation of apoptosis and
increased bioactivity of the active probably due to their
small size, high cellular/tissue internalization and improved
bioavailability.[82]

Helicobacter pylori bacterium is one of the principal causes for
the development of gastric cancer and over the past years it has
shown resistance to antibiotics. The extract of Garcinia mangos-
tana L. shows anticancer and anti-H. pylori activity. However, its
therapeutic application in the stomach mucosa requires a deliv-
ery system that can withstand the acidic condition for a sufficient
period of time. Pan-In et al. formulated nanoparticles loadedwith
G. mangostana using ethyl cellulose (EC) and methylcellulose
(MC) as polymer to improve the residence time and increase
resistance to damage by the acidic conditions of the stomach.
EC:MC nanoparticles showed an encapsulation efficiency of
98.9% and loading capacity of 49.7%, with an average particle
size of 500 nm and a zeta potential of 1 mV. Loaded nanoparti-
cles presented a sustained release of the extract at pH 2 and pH
7.4. In addition, encapsulation of extract in the nanoparticles did
not reduce their anti-H. pylori activity. In vitro antiadhesion activ-
ity of the extract of G. mangostana was enhanced with their
nanoencapsulation, preventing the infection of H. pylori.
Moreover, in oral administration in vivo studies, the encapsulated
extract showed a greater ability to combat H. pylori in mice
stomach. The results showed that the extract of G. cambogia
encapsulated in nanoparticles had high potential as anti-H. pylori.
[83] In 2014, the same research team developed a similar for-
mulation and tested the internalization and cytotoxic activity of
nanoparticles in the HeLa cell line. The nanoparticles loadedwith
G. mangostana of EC:MC with a size of 250 nm showed twice as
much cytotoxic activity than the nanoparticles developed with
only EC. Based on the in vitro tests, it was established that the
loaded nanoparticles were internalized by endocytosis mechan-
ismmediated by clathrin andmobilized internally through endo-
lisosomal pathway.[84]

Due to chemical complexity posed by plant extracts, cur-
rent studies on nano-object-based formulations not only focus
on cytotoxic-bioactive behavior of nanoparticles both in vitro

and in vivo models, but also focus on establishing experimen-
tal designs that will produce more efficient formulations or
functionalization of the nanoparticles to achieve an increased
anticancer properties of the extracts. In this context, Ribeiro et
al. elaborated biodegradable PLGA-based nanoparticles
loaded with hydroalcoholic extract of Uncaria tomentosa,
which present a significant antitumor activity. Besides, obtain-
ing a formulation with potential therapeutic application in
cancer, the most novel aspect of this work was the develop-
ment of a fractional factorial design study based on behavior
variables during the formulation to facilitate selection of opti-
mal conditions and develop the best nano-objects with the
plant extract of U. tomentosa.[85] Another new study was
developed by Narayanan et al. They obtained PLGA-based
nanoparticles loaded with grape seed extract with a size of
approximately 100 nm and encapsulation efficiency of 60%.
Through a process of chemical conjugation, folic acid was
added to the surface of the nanoparticles, generating a speci-
fically functionalized preparation for the folate receptors,
which are overexpressed in cancer cells. Fluorescence and
flow cytometry made evident a high and specific internaliza-
tion of the functionalized nanoparticles. Moreover, it was pos-
sible to relate the functionalization of the nanoparticles with
an increase death of HeLa cells. The IC50 of the functionalized
nanoparticles-based preparation was about three times less
than free extract and showed a higher rate of apoptosis. This
in vitro study establishes bases for the use of functionalized
preparation to increase bioavailability and anticancer activity
of plant extracts.[86] Table 1 summarizes the most commonly
used techniques for the encapsulation of plant extracts.

4. Conclusion

Currently, the great potential of the plant extracts, as the
source of various chemical compounds with important biolo-
gical activities is very well known. Plant extracts might be used
in different areas, such as food, therapy, and cosmetics.
However, many of these plant extracts have shown poor

Table 1. Encapsulation methods and applications of plant extracts.

Extract name Encapsulation method Application
Encapsulation efficiency

(EE, %) Reference

Garcinia mangostana Nanoprecipitation Anticancer 87 [84]
Picrorhiza kurroa Nanoprecipitation Hepatoprotective 63.6 [74]
Polygala senega Nanoprecipitation Anticancer 80 [81]
Passiflora serrato-
digitata

Nanoprecipitation Antiulceritic 90.6 [79]

Syzygium jambolanum Nanoprecipitation Antidiabetic Not mentioned [75]
Gelsemium
sempervirens

Nanoprecipitation Anticancer 81.6 [80]

Garcinia mangostana Nanoprecipitation Skin penetration enhancement 98.94 [68]
Vitis vinifera Nanoprecipitation Nutraceuticals bioavailability enhancement

and effective targeting of cancer
Not mentioned [86]

Emblica officinalis Solvent evaporation Anti-oxidant and anti-inflammatory 58–70 [76]
Phytolacca decandra Nanoprecipitation Better chemo-preventive action against lung

cancer
82.15 [82]

Uncaria tomentosa Emulsion solvent evaporation Anticancer 64.6 [85]
Cinnamomum spp. Emulsion-solvent evaporation Antimicrobial 47.6 [72]
Lavandula ssp. Modified-spontaneous

Emulsification solvent diffusion method
(mSEDM)

Anti-aging and antioxidant agents >96% [69]
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solubility in aqueous systems, short residence time onto the
site of application, high chemical instability, and chemical
complexity, which affects the biological activity of their differ-
ent compounds. These challenges limit their direct and effi-
cient application. Controlled release systems such as
polymeric nanoparticles offer a solution to these problems.
Right selection of the encapsulation method is the key ele-
ment to obtain a formulation (nanoparticles) bearing suitable
characteristics for the in vitro and in vivo applications.
Generally, it is observed that nanoprecipitation technique pro-
vides most suitable nanoparticles in terms of size and encap-
sulation efficiency. Among the advantages provided by
nanoparticles as carriers of plant extracts are: (i) protection
against enzymatic degradation, (ii) protection in the applica-
tion environment, (iii) design of sustained release systems of
bioactive compounds, (iv) enhancement of solubility, (v) bioa-
vailability improvement, (vi) affected areas targeting, (vii)
boosting of cell or tissues internalization, (viii) reduction of
toxicity, and (ix) masking of unpleasant odor and taste.
Literature also shows that mostly dermal and oral routes are
employed for the delivery of formulations based on encapsu-
lated plant extracts.

5. Expert opinion

In recent years, one of the biggest challenges in the area of
pharmaceutical technology is the development and efficient
implementation of new therapies. The products obtained from
natural sources (e.g. extracts, essential oils, infusions, etc.)
represent a novel and efficient alternative to conventional
treatment. Many of these natural products, particularly plant
extracts, have important biological activities. However, both
the formulation and the implementation thereof represent an
even greater challenge due to the complex chemical nature of
these extracts. Other obstacle associated with using conven-
tional plant extracts-based formulations for humans is the risk
of toxicity. Instability of such plant extracts is another concern
to be dealt with.

To resolve these problems, recently, it has been proposed
to use nanoparticles as carriers of plant extracts. Today, there
are a considerable number of investigations are performed in
which the nanoparticles are evaluated not only for the admin-
istration of the extracts, but also to increase their biological
properties. Due to encapsulation of the plant extracts in the
nanoparticles (embedded, adsorbed, or bonded), these vehi-
cles represent an excellent approach for controlled release of
actives, thereby decreasing the number of doses and toxic
effects that occur with conventional delivery.

Among the most important features of nanoparticles in the
area of pharmaceutical technology, are: (1) nanometric size,
which allows greater interaction of actives with specific cells or
tissues, (2) nanoparticles formulations are generally more
stable as compare to simple plant extracts solutions, (3) nat-
urals extracts are protected by the polymeric wall from exter-
nal factors (e.g. light, temperature, humidity) and within
biological systems (e.g. enzymes, pH,) and (4) rough surface
of nanoparticles provides better interactions with biological
systems (e.g. cells, tissues, and organs). All these characteristics

can increase the therapeutic efficiency of nanoencapsulated
plant extracts.

In the investigations discussed above, formulations contain-
ing nanoparticles and encapsulated plant extracts, mainly, main-
tain and increase the biological activity of the extracts
incorporated. Important activities, such as, anti-cancer, anti-dia-
betic, antiulcerolitic, antioxidant, and antimicrobial are tested in
these formulations. The results obtained from the formulations
with encapsulated plant extracts show the great potential of
nanoparticles for use as carriers of this type of actives.

However, it is very important to carry out careful studies
regarding the toxicological aspects involved in the administra-
tion of the nanoparticles loaded with plant extracts in biolo-
gical systems. There is still no specific evidence to support the
use of nanoparticles without any risk. In addition, toxic effects,
accumulation in biological systems and removal mechanisms
must be established. Moreover, the methodologies that are
conventionally used for evaluation in vivo and in vitro of plant
products must be adapted to provide reliable results. Another
important aspect to consider is to scale-up these processes in
industries.

Because of all favorable physical and biological characteris-
tics presented by the nanoparticles, it is clear that their usage is
one of the newest routes for the delivery of actives with differ-
ent chemical properties. In coming years, nanotechnology
employment in plant extracts delivery for safe usage in the
areas, such as health, medicine, food, cosmetics, and environ-
ment, among others could be an interesting field for research.
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Summary 

In this part of the literature review the encapsulation of drugs by nanoprecipitation encapsulation 

method; encapsulation based marketed products, precipitation mechanism throughout 

nanoprecipitation technique described in details. Furthermore, in vitro release profile, of encapsulated 

drugs and their applications in medicine, food and agriculture are explained in this review. A part of 

this review is dedicated to the clinical trial of drug loaded nanoparticles prepared by nanoprecipitation, 

industrial scale-up, and advantages and disadvantages of nanoprecipitation description. Encapsulation

of drug molecules is a promising technique for the drug delivery. Nanospheres, nanocapsules, 

microspheres, microcapsules and liposomes are the main pharmaceutical forms that can be designed 

by the encapsulation methods. Since nanoprecipitation looks to be the most simple and reproducible 

encapsulation method among all encapsulation techniques, thus it is the most frequently used 

technique. In fact, 40 % of the available drug molecules on the market are poorly soluble and 90 % of 

drug in active molecules in development pipeline are categorized as poorly soluble.The 

biocompatible, safe, easily administered, comfortable and inert system of drug delivery can be 

designed by drug encapsulation within biodegradable polymers. The commercialization 

ofnanotherapeuticsencounter major barriers and challenges as: (a) quality control deficit; (b) 

separation from unwanted nanostructures; (c) scalability correlated issues; (d) production scale 

enhancement; (e) batch to batch reproducibility in terms of size distribution of particles, charge, 

porosity, and mass; (f) high manufacturing price; (g) information shortage concerning nanosystems 

and living cell interaction; (h) nanotherapeutics therapeutic capacity optimization; (i) investment doubt 

by pharmaceutical industries on nanotherapeutics. (j) nanomaterials negative features regular target by 

media, without a clear scientific proof. Nanoprecipitation encapsulation method is mainly used for the 

encapsulation of hydrophobic drug molecules. In nanoprecipitation method it is needed to prepare 

the solvent and nonsolvent phases followed by the addition of organic phase to aqueous phase 

under moderate magnetic stirring. Consecutively, organic solvent evaporation at ambient 

temperature or with a rotavapor allows the obtaining of nanoparticles (NPs) suspension in 

water.Mostly employed solvents in nanoprecipitation technique are ethanol, acetone, hexane, 

methylene chloride or dioxane. Typically, water is non-solvent (or aqueous phase). Principe of 

nanoparticles preparation by nanoprecipitation method is the reduction of the solvent quality in which 

the central composition of nanoparticles is dissolved. This solvent quality variation can be achieved by 

modifying the pH, salt concentration, solubility conditions, or the addition of a non-solvent phase. 

Non-solvent based precipitation process comprising four steps of supersaturation generation, 

nucleation, growth, and coagulation. Supersaturation preform when the solution encloses more 

dissolved solute than that given by the equilibrium saturation value. Indeed, the addition of non-

solvent decreases solvent potency to dissolve the solute, which put the system in a 
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supersaturationstate.The in vitro release of drug from nanoparticles prepared by nanoprecipitation 

method commonly involves of two phases: a first phase of “burst release” and second phase 

(prolonged release). The first phase is because of the drug substance release that is adsorbed on 

nanoparticles surface or that is dispersed near to the surface. The second phase is thanks to release of 

drug that is located in the central compartment. To approve clinically a formulation, its transition from 

laboratory to industrial grade is important. Nevertheless, this transition has to be controlled via a scale-

up strategy tocreate industrial scale parameters that lead to the mass production of laboratory-like 

formulations. Nanoparticles formulations scaling-up are frequently successful and have advantages 

over laboratory scale production. In comparison to pilot-scale smaller polymers amounts are needed to 

produce nanoparticles in pilot-scale. Furthermore, pilot-scale processes are further reproducible than 

laboratory-scale ones. In addition, polymer precipitation throughout nanoparticles production is more 

efficient in pilot-scale as formulation parameters are well controlled.Numerous researchworks were 

performed to use nanoprecipitation in a conventional way whereas other researches concentrated on

the enhancement of nanoprecipitation scalability, reproducibility and safety by scale-up. To this end, 

Tee mixer and flash nanoprecipitation are among the techniques that were introduced. Throughout 

several studies advantages of submicron carriers prepared by nanoprecipitation in the biomedical and 

agricultural fields has confirmed. Nanoprecipitation was extensively employed forthe preparation of 

nanoparticles. Even though several advances have been noted, extra invivo human studies are required.  
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A B S T R A C T

Drugs encapsulation is a suitable strategy in order to cope with the limitations of conventional dosage
forms such as unsuitable bioavailability, stability, taste, and odor. Nanoprecipitation technique has been
used in the pharmaceutical and agricultural research as clean alternative for other drug carrier
formulations. This technique is based on precipitation mechanism. Polymer precipitation occurs after the
addition of a non-solvent to a polymer solution in four steps mechanism: supersaturation, nucleation,
growth by condensation, and growth by coagulation that leads to the formation of polymer nanoparticles
or aggregates. The scale-up of laboratory-based nanoprecipitation method shows a good reproducibility.
In addition, flash nanoprecipitation is a good strategy for industrial scale production of nanoparticles.
Nanoprecipitation is usually used for encapsulation of hydrophobic or hydrophilic compounds.
Nanoprecipitation was also shown to be a good alternative for the encapsulation of natural compounds.
As a whole, process and formulation related parameters in nanoprecipitation technique have critical
effect on nanoparticles characteristics. Biodegradable or non-biodegradable polymers have been used for
the preparation of nanoparticles intended to in vivo studies. Literature studies have demonstrated the
biodistribution of the active loaded nanoparticles in different organs after administration via various
routes. In general, in vitro drug release from nanoparticles prepared by nanoprecipitation includes two
phases: a first phase of “burst release” which is followed by a second phase of prolonged release.
Moreover, many encapsulated active molecules have been commercialized in the pharmaceutical market.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Conventional drug delivery systems like tablets, capsules,
solutions etc. are still the most used ways for medicines
administration. Such formulations present many advantages such
as, full control of preparation processes, common availability of
manufacturing facilities and efficacy. Furthermore, major advances
have been made to enhance drugs solubility and sustained release.
Various excipients could be added to improve drugs properties and
biodistribution. These advances enabled widening of used arsenal
against diseases. However, in most cases, in vivo activity of
conventional dosage forms remains limited to drug physicochem-
ical properties. Consequently, stability, taste and absorption
concerns are still observed. In addition, targeting specific tissue
or cells could not be reached. For these reasons, encapsulation
appeared as an interesting approach for drug delivery. In fact,
major advances have been made, since the last decades, toward
preparation of drug delivery systems that are based on entrapment
of actives in various structures. Several techniques have also been
used for encapsulation such as, emulsion solvent evaporation,
nanoprecipitation, emulsion solvent diffusion, ethanol injection,
ionic gelation etc. Major pharmaceutical forms prepared via these
techniques are nanospheres, nanocapsules, microspheres, micro-
capsules and liposomes. Among these techniques, nanoprecipita-
tion seems to be the most simple and reproducible. This made it
one of the most commonly used approaches for the nanoparticles
preparation. Several polymers are used to encapsulate drugs with
nanoprecipitation. Among them, we could cite biodegradable
polyesters such as, polylactide (PLA), polylactide-co-glycolide
(PLGA) and poly-e-caprolactone (PCL). Obtained particles could
be either nanocapsules or nanospheres. Nanocapsules are vesicles
with core-shell structure in which the drug is confined within a
cavity surrounded by a polymeric membrane. Nanospheres are,
however, particles in which the drug is either dissolved or
dispersed within the polymer matrix (Mora-Huertas et al., 2010;
Letchford and Burt, 2007). Nanoprecipitation is based on the
interfacial deposition of a polymer following the displacement of a

semi-polar solvent miscible with water from a lipophilic solution
(Fessi et al., 1989). It is an easy and reproducible technique that has
been widely used in the preparation of nanoparticles. In this
review, the state of the art of this technique is performed.
Definition of the method is provided. Nanoprecipitation mecha-
nism and applications are also discussed.

2. Encapsulation of active pharmaceutical ingredients

Encapsulation has been broadly explored in the fields of
pharmaceuticals, agriculture, food, cosmetics, and textile indus-
tries over the past decade (Ghosh, 2006). Modern technologies
recently paved the way to the evolution of indigenous pharma-
ceuticals. Therefore, advanced drug deliveries are successively
taking the place of conventional dosage forms that were less
flexible and less sophisticated. The fact of overcoming these
conventional dosage forms constraints attracted a special atten-
tion. Bioavailability, stability, taste, and odor could be among the
aforementioned barriers. In this regard, encapsulation takes a
crucial part in order to overwhelm these challenges (Iqbal et al.,
2015). According to the biopharmaceutical classification system
(BCS), 40% of the currently commercialized drug molecules on the
market are poorly soluble while 90% of drug molecules in drug
development pipeline are also categorized as poorly soluble
(Loftsson and Brewster, 2010). In addition, drugs encapsulation
could play an important role in prevention of active ingredients
from degradation and obtaining of controlled or targeted drug
release systems. In fact, following active molecule encapsulation,
biodistribution would no longer be related to drug itself but to
carriers physicochemical properties (Armendáriz-Barragán et al.,
2016). Drug encapsulation as the best approach through the
employing of biodegradable polymers may provide the biocom-
patible, easily administered, safe, comfortable and inert drug
delivery system. Indeed, delivery system possessing such proper-
ties could be defined as an ideal drug delivery system (Kalani and
Yunus, 2011). The adequate encapsulation method should be
selected based on the hydrophobic or hydrophilic properties of

Fig. 1. Schematic representation of encapsulation forms.
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drugs (Jelvehgari and Montazam, 2012). Fig. 1 shows examples of
structures that could be obtained by encapsulation.

To resume, drugs encapsulation might be used for several
reasons such as:

� Drug release prolongation,
� Design of targeted drug delivery,
� Mask unfavorable organoleptic properties (taste, odor, color),
� Protection of sensitive drugs from digestive tube contents
degradation effect,

� Insurance of drug molecules stability toward environmental
destructive factors such as, oxygen, temperature, moisture and
light,

� Reducing the vaporization of volatile materials,
� Prevention of drugs incompatibility,
� Toxicity moderation,
� Hygroscopic characteristic decline of substances,
� Design of new dosage forms, (Singh et al., 2010)

3. Encapsulation based marketed products

The main aim of nanotherapeutics research and development in
the pharmaceutical industry is to provide new approaches for the
treatment of diseases. Some encapsulation based drug delivery
systems are already marketed (see Table 1). Nevertheless, nano-
therapeutics commercialization faces major challenges and
hurdles such as: (a) deficit of quality control; (b) separation from
unwanted nanostructures (e.g., products and starting materials);
(c) scalability related issues; (d) improvement of production scale;
(e) batch to batch reproducibility in terms of particles distribution
of size, charge, porosity, and mass; (f) high manufacturing price;
(g) information shortage concerning nanosystems and living cell
interaction (e.g., biocompatibility and toxicity); (h) therapeutic
capacity optimization of nanotherapeutics; (i) investment doubt
by pharmaceutical industries on nanotherapeutics. (j) regular
targeting of negative features of nanomaterials by media, in
absence of clear scientific proof (Hafner et al., 2014).

4. Nanoprecipitation

Nanoprecipitation was patented by Fessi et al. in 1989 (Fessi
et al., 1989). After its development, it was mostly employed for

encapsulation of hydrophobic drug molecules (nanocapsule or
nanosphere forms). To this end, several polymers, notably,
biodegradable polyesters like polylactide (PLA), polylactide-co-
glycolide (PLGA) and poly-e-caprolactone (PCL), have been used
(see Table 2). As reported by Fessi et al. (1989), in this method
solvent and nonsolvent phases preparation is required which is
followed by the addition of one phase to another under moderate
magnetic stirring (See Fig. 2). Organic solvent evaporation at
ambient temperature or with a rotavapor allows the obtaining of
nanoparticles (NPs) suspension in water. Ultracentrifugation and
freeze drying are two methods that could be employed in next step
for aqueous phase removal. Basically, the solvent phase comprises
a film-forming material, one or more drug molecules, a lipophilic
surfactant, and one or more organic solvents. Solvent and
nonsolvent phases are usually named as organic and aqueous
phases, respectively. Film-forming materials could be natural,
synthetic or semi-synthetic polymers. To provide nanocapsules
instead of nanospheres, mineral oil or vegetable oil would be
added. The NPs aggregation could be avoided by adding surfactants
into the formulation (Miladi et al., 2016). Surfactants can affect NPs
characteristics as well. For instance, D-a-tocopheryl polyethylene
glycol 1000 succinate (TPGS) is broadly used in nanoprecipitation
technique. It is recognized as an excellent emulsifier due to its
bulky structure and large surface area (Zhu et al., 2016). This water-
soluble derivative of a natural vitamin is also suggested as
copolymer to form amphiphilic block biodegradable copolymers.
Its potential to form polymeric NPs by self-ensemble effects is due
to the hydrophobic-lipophilic interactions (Zeng et al., 2013). TPGS
has been successfully co-ensembled to PLA (Wang et al., 2015; Zhu
et al., 2016), PLGA (Tao et al., 2016, 2015) and PCL (Cao et al., 2015)
for cancer treatment applications. In nanoprecipitation technique,
parameters modification causes crucial change in physicochemical
characteristics of NPs such as, size, drug encapsulation efficiency
and so on. Process and formulation related parameters impacts are
figured out in Table 3.

The most used solvents in nanoprecipitation method are
ethanol, acetone, hexane, methylene chloride or dioxane. Mostly,
non-solvent (or aqueous phase) is water. However, hydrophilic
excipients could be also added to the nonsolvent phases.
Transmission Electron Microscopy (TEM), Scanning Electron
Microscopy (SEM) or dynamic light scattering (DLS) could be
used in order to characterize produced particles in terms of size
and surface morphology (Mora-Huertas et al., 2010; Miladi et al.,

Table 1
Examples of marketed drug delivery carriers with their composition and date of approval in EU and US (Bomgaars et al., 2004; Chang and Yeh, 2012; Mitchell, 2005; Schmidt
et al., 2011; “Vincristine Liposomal—INEX,” 2004; Wacker, 2013).

Encapsulated
drug

Trade name Drug carrier material Carrier system Administration
route

Application Approval

Leuprolide Lupron
Depot1

Poly lactic acid Microparticles Intramuscular Analog of gonadotropin-releasing hormone 1989, USA

Amphotericin B Ambisome1 Phospholipids Liposomes Intravenous Visceral leishmaniasis treatment 1990, Europe 1997,
USA

Doxorubicin Doxil1 Phospholipids Liposomes Intravenous Anticancer therapy 1995, USA 1996,
Europe

Daunorubicin DaunoXome1 Phospholipids Liposomes Intramuscular Anticancer therapy 1996, Europe 1996,
USA

Cytarabine Depocyt1 Phospholipids Liposomes Intrathecal Lymphomatous meningitis treatment 1999, USA
Doxorubicin Myocet1 Phospholipids Liposomes Intravenous Anticancer therapy 2000, Europe
Verteporfin Visudyne1 Phospholipids Liposomes Intravenous Photodynamic treatment of age-related macular

degeneration
2000, USA

Morphine DepoDUR1 Phospholipids Liposomes Epidural Analgesia 2004, USA
Vincristine Onco TCS1 Phospholipids Liposomes Intravenous Anticancer therapy 2004, USA
Doxorubicin Transdrug1 Poly-iso-hexyl-

cyanoacrylate
Nanoparticles Hepatic intra-

arterial
Hepatocellular carcinoma treatment 2005, USA

Paclitaxel Abraxane1 Human serum albumin Nanoparticles Intravenous Anticancer therapy 2005, USA 2008,
Europe
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Table 2
Mostly used polymers in nanoparticles preparation by nanoprecipitation method.

Type Group Polymer Name (Common
abbreviation)

References

Biodegradable Polysaccharide Starch Qin et al. (2016)
Chitosan Luque-Alcaraz et al. (2016)

Protein Gelatin Han et al. (2013)
Bovine serum albumin (BSA) Ge et al. (2012)

Polyester Polylactic acid (PLA) Bazyli�nska et al. (2014)
Poly e-caprolactone (PCL) Mazzarino et al. (2012)
Polylactic-co-glycolic acid (PLGA) Siqueira-Moura et al. (2013)

Polyether Polyethylene glycol (PEG) Şimşek et al. (2013)

Non-
Biodegradable

Polymethacrylate
Acrylate

Eudragit1 Averina and Allémann (2013), Katara and Majumdar (2013), and Kumar et al.
(2016)

Fig. 2. (a). Nanoprecipitation schematic representation, (b). Illustration of drug encapsulation into a preformed polymer.
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2016). In nanoprecipitation, many parameters modification cause
crucial changes in the physical characteristics of NPs in terms of
size, drug encapsulation efficiency and so on. Fig. 3 shows SEM
images of NPs prepared via nanoprecipitation.

Another crucial measured parameter is the surface charge of
NPs called zeta potential. It measures the magnitude of the
electrostatic interactions. This parameter is too crucial for the
stability of NPs and their behavior in a biological environment. The
positive or negative zeta potential values could be determined by
identifying towards which electrode particles are moving during
electrophoresis. In fact, an electric field is applied and the

electrophoretic mobility of the particles is measured by electro-
phoretic light scattering (Bhattacharjee, 2016). Loading and
encapsulation efficiency are variables that are related to the
quantification of the incorporated active ingredients within NPs.
These parameters could be established by analytical methods such
as UV–vis spectrophotometry, High Performance Liquid Chroma-
tography or Gas Chromatography (for volatile actives i.e. essential
oils). In addition, thermodynamic characterization of NPs could
provide information about their chemical properties and it is
carried out by the following methods:

i Thermal Gravimetric Analysis (TGA): determines endothermic
and exothermic weight loss upon heating or cooling of NPs. In
fact, TGA uses heat to force reactions and physical changes in
materials. Thermogravimetric curves characterize specific
compounds due to the unique sequence from physicochemical
reactions occurring over the specific temperature ranges.

ii Differential Thermal Analysis (DTA): based on the principle that
the substance upon heating undergoes reactions and phase
changes that involve absorption or emission of heat. Identifica-
tion of a substance is accomplished by comparing DTA curves
obtained from the unknown substance with the DTA curves that
are provided by known elements.

iii Differential Scanning Calorimetry (DSC): based on heat release
from a chemical process, either a chemical reaction or a
conformational alteration. The heat of reaction or DrH is defined
as the change in enthalpy associated with a chemical reaction
(Singh, 2016).

Fourier Transform Infrared Spectroscopy or FT-IR is also a useful
tool for the identification of drugs. It permits continuous
monitoring of the spectral baseline and simultaneous analysis of
different components of the same sample (Bansal et al., 2013).
Molecular structure and composition of nanoparticle-forming
polymers before and after nanoprecipitation could be analyzed via
this technique (Qin et al., 2016; Wang and Tan, 2016).

Table 3
Formulation and process dependent parameters effect on the characteristics of the nanoparticles (Miladi et al., 2016).

Affected
Variable

Outcome Parameter Modification Explanation Reference

Size Increases Stirring rate Increases Faster diffusion rate will facilitate solvent diffusion Asadi et al. (2011)
Organic
phase flow
rate

Increases High nucleation rates promotion that will reduce strongly the mean
particle size.

Lince et al. (2008)

Organic/
aqueous
phase ratio

Volume of the
aqueous phase
increases

Increased diffusion of the water-soluble solvent in the aqueous phase. At
a certain point, this diffusion of solvent to the aqueous phase becomes so
rapid that the polymer immediately precipitates before agglomerating
into particles.

Budhian et al. (2007)

Increases,
then
decreases

Surfactant
concentration

Increases Prevents coalescence with each other. Increased viscosity of the aqueous
phase reduces the net shear stress available for droplet breakdown

Budhian et al. (2007),
Contado et al. (2013), and
Zeng et al. (2013)

Decreases Polymer
concentration

Increases Favors particle growth with respect to particle nucleation. Higher
organic solution viscosity.

Badri et al. (2017), Dong and
Feng (2004), and Lince et al.
(2008)

Polymer
molecular
weight

Increases Higher organic solution viscosity Limayem Blouza et al.
(2006) and Martín-Banderas
et al. (2012)

Drug
Encapsulation Efficiency

Increases Polymer
concentration

Increases It is related to size, larger size higher drug entrapment Chorny et al. (2002) and
Dong and Feng (2004)

Decreases Organic/
aqueous
phase ratio

Volume of the
aqueous phases
increases

Amount of drug that can dissolve in the aqueous phase increases, which
increases the drug loss into the aqueous phase.

Budhian et al. (2007) and
Limayem Blouza et al.
(2006)

Drug
concentration

Increases The polymer itself may have a limited capacity to encapsulate the
specific amount of drug. Beyond its maximum capacity, more drug might
be wasted during the fabrication process.

Dong and Feng (2004)

Fig. 3. TEM micrograph of typical PCL spheres prepared by solvent displacement
process.
Reproduced with permission from Mora-Huertas et al. (2011).
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5. Precipitation mechanism

Nanoprecipitation is based on the reduction of the quality of the
solvent in which the main composition of NPs is dissolved. Such
variation in solvent quality can be achieved by altering the pH, salt
concentration, solubility conditions, or the addition of a non-
solvent phase (Miladi et al., 2014). The non-solvent based
precipitation process includes four steps: generation of supersat-
uration, nucleation, growth, and coagulation (see Fig. 4) (Joye and
McClements, 2013). Supersaturation occurs when the solution
contains more dissolved solute than that given by the equilibrium
saturation value. In fact, the addition of non-solvent decreases
solvent potency to dissolve the solute, which put the system in a
supersaturation state. The supersaturation ratio (Sr) is expressed as
follows:

Sr ¼ Cs

C1

Where Cs is the ratio of the particle solubility at the interface, and
C1 is the bulk solubility. The supersaturation rate can affect final
NPs properties where a higher supersaturation leads to a decrease
in particle size.

After supersaturation, nucleation step starts in order to gain
thermodynamic stability. It is induced when the supersaturation of
the system reaches the boundaries of a critical level that is solvent/
non-solvent specific. In other words, the energy barrier (DG) has to
be overcome to form nuclei.

DG ¼ 16ps3v3

3K2T2 lnSrð Þ2

Where c is a constant, s is the interfacial tension at the solid-liquid
interface, v is the molar volume of solute, K is the Boltzmann
constant, and T is the temperature (D’addio and Prud’homme,
2011).

The local fluctuations in the concentration caused by supersat-
uration lead to the formation of primary nuclei, which,by its turn,

increases in size by the association of solute molecules until it
reaches a critical size that is stable against dissolution (see Fig. 2).
The nucleation step will carry on until the growth of earlier nuclei
depletes the solution supersaturation. The nucleation rate (Nr)
could be expressed by the following mathematical equation
(D’addio and Prud’homme, 2011).

Nr ¼ c:exp � 16ps3v2

3K3T3 lnSrð Þ2
" #

Nucleation stops when the solute concentration is reduced
below the critical supersaturation concentration, and nuclei grow
by either condensation or coagulation. Condensation is the
addition of single molecules to the particle surface. It takes place
in two steps: a diffusional step in which the solute is transported
from the bulk fluid through the solution boundary layer adjacent to
the nuclei surface, and a deposition step in which the adsorbed
solute molecules are integrated into the nuclei matrix. When the
non-adsorbed solute concentration is reduced below the equilib-
rium saturation concentration, condensation stops. The rate of
condensation is decreased by coagulation (D’addio and Prud’-
homme, 2011).

On the other hand, coagulation is the adhesion of particles to
each other’s. It occurs when the attractive interactions (Van Der
Waals, hydrophobic interactions, etc.) are stronger than the
repulsive interactions (steric or electrostatic repulsion) (see
Fig. 4). The factor that rules the coagulation step is the collision
frequency, which depends on particle concentration, size, and
motion. The number of collisions that leads to coagulation is called
collision efficiency and depends on the attractive and repulsive
ratio of interaction between particles. To protect particles from
coagulation, stabilizing agents can be added during the prepara-
tion. Such agents could adsorb to NPs surface and introduce a
repulsive interaction (Joye and McClements, 2013).

In addition to the precipitation with a non-solvent, pH-
controlled precipitation is also an important approach to be
discussed. In this method, the polymer switches from dissolved to

Fig. 4. Schematic illustration of non-solvent precipitation process.
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non-dissolved phase by a simple pH variation in the medium. This
will lead to the precipitation and formation of NPs (Pereira et al.,
2006). Das et al. prepared Eudragit1 RL100 based NPs using this
method. Polymer was dissolved in organic phase of acetone and
methanol, and the pH was adjusted to 4. The solution was later
added to water where the precipitation occurs. Results showed
that NPs were successfully prepared via pH-nanoprecipitation. In
addition, due to unique particle size and positive zeta potential,
particles have a good ocular retention property and a storage
stability for 2 months (Das et al., 2010).

In another study, dexamethasone-loaded Eudragit1 L100 based
NPs were prepared by nanoprecipitation. Polymer was dissolved in
organic phase of acetone and ethanol. In this case, aqueous phase
pH was adjusted to 4. Obtained NPs showed no cytotoxic or
oxidative stress on normal human keratinocytes. These results
suggest that these particles are good candidates for the delivery of
poorly soluble drugs to the skin (Sahle et al., 2017).

6. In vitro release profile

In vitro drug release from NPs prepared by nanoprecipitation
generally consists of two phases: a first phase of “burst release”
which is followed by a second phase of prolonged release. The first
phase is due to the release of drug substance, which is adsorbed on
NPs surface or which is dispersed near to the surface. The second
phase is due to release of drug which is located in the core
compartment (Wang and Tan, 2016). Many mathematical models
have been also used to explain drug release mechanism. Most
commonly used mathematical modeling that fitted drug delivery
are the Higuchi model and Korsmeyer-Peppas model (Chourasiya
et al., 2016; Das et al., 2010). The Higuchi model expresses
cumulative percentage of released drug versus square root of time
and it is presented by the following equation:

Q ¼ k
ffiffi
t

p

Where Q is the absolute cumulative amount of released drug at
time t and k is the constant reflecting the design variables of the
system.

Higuchi model describes drug release as a diffusion process
based on Fick’s law. Therefore, when release kinetics fit this model,
active release from particles would be mainly controlled by
diffusion through polymer matrix (Sinha et al., 2004). However,
Korsmeyer-Peppas model is presented by the following equation:

Q = ktn

Where Q is the cumulative amount of released drug at time t and n
is the release exponent which is indicative of drug release
mechanism. In Korsmeyer-Peppas model, n values of 0.43 indicate
that the drug release is controlled by Fickian diffusion. Conversely,
n values between 0.43 and 0.85 imply a non-Fickian diffusion
process. The latter could be described as a combination of drug
diffusion and polymer chain relaxation as long as the solvent
diffuse into the polymeric matrix. However, if n � 0.85, this
indicates that drug release is only governed by polymer relaxation
(Puga et al., 2012). Fig. 5 shows an in vitro drug release profile of a
drug encapsulated by nanoprecipitation technique.

Chourasiya et al. studied atenolol, which is used for cardiovascu-
lar disorders (Chourasiya et al., 2016). Atenolol loaded PLGA NPs,
which are intended for the oral route, were prepared by nano-
precipitation. Different kinetics models were used to analyze in vitro
drug release profile. In the case of in vitro drug release study of
atenolol loaded PLGA NPs, dialysis bag diffusion method was used.
Dialysis bag was immersed in a receptor compartment containing
phosphate buffer (pH 7.4) stirred at 100 rpm and kept at a
temperature of 37 � 1 �C. To know the mechanism and kinetics of
NPs drug release, in-vitro drug release data were fitted to various
kinetic models such as first order, Higuchi, Hixson-Crowell and
Korsmeyer-Peppas. The optimized formulation showed biphasic
release profile comprising an initial burst release followed by
sustained release. The preliminary fast release was due to drug
molecules which are adsorbed on NPs surface. After a while, the
release rate decreased which reflected the release of drug entrapped
in the polymer. On the basis of best fit with the highest correlation
(r2) value, it is concluded that the formulation follows the
Korsmeyer-Peppas model. Correlation value r2 = 0.99133 and a
release exponent value n of 0.650 were obtained. The magnitude of
the release exponent n indicates that the release mechanism is an
anomalous transport or non Fickian diffusion, which is related to a
combination of both diffusion of the drug and dissolution of the
polymer (Chourasiya et al., 2016).

Cosco et al. used the same technique for the encapsulation of 9-
cis-retinoic acid (9-cis-RA) in poly (ethylene glycol)-coated PLGA.
Such NPs were indicatedforthetreatmentof undifferentiatedtumor.
Drug release of 9-cis-RA from PEG-PLGA NPs was evaluated by using
the dynamic Franz-type diffusion cells separated by a cellulose
acetate membrane. The receptor fluid was made up of a water/
ethanol mixture (70:30 v:v). The PEG-PLGA NPs showed a prolonged
release of the drug. An initial phase with a rapid drug release and a
secondphasewith a moregradual releasewere observed(40 and 90%
of released drug after 10 and 48 h, respectively).

Lie et al., investigated the encapsulation of green tea catechin
derivative, lycopene, in PLGA NPs coated with chitosan. Lycopene-
loaded NPs were prepared by nanoprecipitation followed by
coating within chitosan to form a shell. Chitosan was coated onto
the surface of lycopene NPs because chitosan exhibits pH-
dependent behavior which allows to overcome the harsh
environment. To understand the pH-dependent behavior effect
on the release kinetics of lycopene, time-dependent release of
lycopene in simulated gastric fluid and simulated intestinal fluid
was studied. A known amount of lyophilized NPs was dispersed in
simulated gastric juice or simulated intestinal fluid. In simulated
gastric fluid, NPs released 5% of the total lycopene compared to 12%
of total lycopene released in simulated intestinal fluid in 24 h. 7% of
total lycopene was released in the burst-release phase from NPs in
simulated gastric fluid compared to 16% of total lycopene released
in simulated intestinal fluid in 24 h, both formulations showed pH-
dependent release. Authors proposed that chitosan release is based
on lysozyme degradation and swelling (Li et al., 2017).

Fig. 5. In vitro drug-release profile of different nanoparticles formulations (D1, D2,
D3, E1, E3, F1, F2, F3) through artificial membrane.
Reproduced with permission from Das et al. (2010).
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7. Applications

7.1. Medicine

7.1.1. Synthetic compounds encapsulated in polymeric particles
Due to its easy manipulation, nanoprecipitation has become an

important strategy in pharmaceutical development. Thus, particles
for several drugs prepared by nanoprecipitation are in preclinical
development (Chen et al., 2004). Paclitaxel, an anti-tumor, was
loaded within poly (lactic-co-glycolic acid) (PLGA) NPs prepared by
nanoprecipitation (Fonseca et al., 2002). It was shown that the
200 nm sized NPs have high EE towards paclitaxel (almost 100%).
Moreover, by comparing paclitaxel loaded PLGA NPs to the already
existing formulations such as, Taxol1, it was shown that PLGA NPs
strongly enhanced the antitumor activity of paclitaxel. Such
formulations did not have the same composition compared to
marketed products. This could be important in cancer therapy by
paclitaxel since commercially available formulations are accom-
panied with sever hypersensitivity reactions which are caused by
the used excipients (Fonseca et al., 2002). Nanoprecipitation is
stated as an efficient and usual method for hydrophobic drugs
encapsulation (Miladi et al., 2015). However, hydrophilic drugs
were considered incompatible with this method due to rapid
migration and drug loss in the aqueous phase (Govender et al.,
1999). Thus, the encapsulation of water-soluble drugs into NPs
using nanoprecipitation method was investigated. Procaine
hydrochloride loaded PLGA NPs were prepared by nanoprecipita-
tion (Govender et al., 1999). The obtained NPs were spherical with
a size of 210 nm and a low drug entrapment. However, the study
showed that drug entrapment could be increased by changing
variables in the method such as, by increasing the aqueous phase
pH and replacing procaine hydrochloride with procaine dihydrate
(Govender et al., 1999). In another study, sodium cromoglycate
loaded PLA NPs were prepared by nanoprecipitation. Different
technique related parameters were modified in order to increase
entrapment efficiency of the hydrophilic drug into NPs. The pH also
affected EE. By lowering the pH, drug entrapment increased from
10% to approximately 70% (Peltonen et al., 2004). These results
show the ability of nanoprecipitation method to encapsulate
hydrophilic drugs through optimization of the method parameters.
Peltonen et al., studied several parameters to increase the loading
of the hydrophilic sodium cromoglycate in PLA NPs (See Table 5).
Specifically, salt addition (sodium chloride) to the inner or/and
outer phase affected the osmotic gradient between phases
(Peltonen et al., 2004). However, the best EE (70%) was achieved
by adding HCl. In fact, aqueous phase pH affects the ionization of
the drug substance and, hence, its solubility (Peltonen et al., 2004).
Yordanov et al., prepared poly(butyl cyanoacrylate) (PBCA) nano-
spheres loaded with epirubicin hydrochloride (EPI�HCl) (Yordanov
et al., 2012). Effect of aqueous phase pH and EPI�HCl concentration
on drug loading efficiency was evaluated (Table 5). In this study,
larger amount of EPI was loaded in PBCA at higher pH (7.4)
(Yordanov et al., 2012). In another study, Miladi et al., encapsulated
alendronate sodium in poly-e-caprolactone (PCL) NPs. The effects
of drug to polymer ratios, PCL molecular weights and organic to
water phase ratio were determined (Table 5). EE reached 18.8%
with PCL of 80,000 g/mol, 1:10 drug to polymer ratio and 1–2.5
organic: water phase (Miladi et al., 2015). Another key parameter
to enhance entrapment is electrostatic charges of actives and
polymers. In a comparative study, Zhou et al. encapsulated bovine
serum albumin (BSA) in lactosylated PLGA and used e-polylysine
(e-PL) used as an antiacidic agent (Zhou et al., 2015). All protein-
loaded NPs had small sizes (<100 nm) with relatively uniform size
distributions. The best EE of BSA was in Lac-PLGA/e-PL. This could
be explained by the fact that e-PL has abundant positive charges
indicating that the negatively charged proteins were easier to be

loaded into Lac-PLGA/e-PL NPs via electrical interaction. In
addition, electrical attraction between e-PL and BSA played an
important role in the sustained release of BSA. The in vitro releases
of BSA- and trypsin-loaded NPs were investigated in PBS solution
(pH 7.4). Release of BSA was observed after 8 days, and 15.8% of BSA
was released after 32 days. Moreover, BSA initial burst release was
effectively avoided. Conversely, trypsin exhibited a faster release
rate than trypsin-loaded Lac-PLGA NPs; more than 80% was
released after 32 days (Zhou et al., 2015). Hydrophobic nature of
the polymers can contribute to low entrapment efficiency (Arpicco
et al., 2016). To overcome it, hydrophilic polymers can be used. Lee
et al., prepared tizanidine hydrochloride, gatifloxacin and flucona-
zole-loaded gelatin NPs which were uncrosslinked or crosslinked
with glutaraldehyde. EE was around 14% except for fluconazole
which could not be loaded (Lee et al., 2012).

Modification of the method parameters can also affect the
physicochemical characteristics of NPs prepared by nanoprecipi-
tation. Polymer concentration, solvent and non-solvent nature, and
solvent/non-solvent volume ratio can influence size, surface
charge, size distribution. These variables were tested by Gonzalez
et al. using BSA NP (Galisteo-González and Molina-Bolívar, 2014). It
was shown that NPs characteristics could be modulated by altering
BSA concentration, pH, salt concentration, temperature, ethanol
volume, and ethanol addition rate. It was shown that these
parameters have a huge effect on size and surface charge of NPs
(Galisteo-González and Molina-Bolívar, 2014). In another study,
PLGA NPs characteristics were also modified by changing method
parameters (Bilati et al., 2005). Bian et al., encapsulated a synthetic
triazole antifungal agent called itraconazole (ITZ) (Bian et al.,
2013). They developed ITZ loaded poly (lactic-co-glycolic acid)
(PLGA) nanospheres. The modified parameters are shown in
Table 4. Optimal formulation were chosen considering particle size
(178 nm), PDI (homogeneous distribution) and EE (72%) (Bian et al.,
2013).

7.1.2. Natural compounds encapsulated in polymeric particles
Natural products are the source of most of the active

ingredients of medicines (Harvey, 2008). Since prehistoric times,
humans have used natural products, such as plants, in traditional
treatments of various diseases (Bharali et al., 2011; Palombo, 2011).
The focus on encapsulation of natural molecules is increased due to
the interest for additionally conferring them enhanced stability
and/or less volatility (Kayser et al., 2005; Asbahani et al., 2015).
Nanoprecipitation was shown to be a good alternative to load these
actives into NPs. Cucurbitacin I has a potent anticancer effect (Yuan
et al., 2014). Alshamsan et al., used this triterpene hydrocarbon
isolated from plants belonging to the species Cucurbitaceae and
Cruciferae (Alshamsan, 2014). They compared the efficiency to
encapsulate this polar water-insoluble drug by three emulsion
based NPs formulations and nanoprecipitation. The different
formulations were CI-NP1 (single emulsion o/w starting with
1000 mg of drug), CI-NP2 (double emulsion w/o/w starting with
250 mg of drug) and CI-NP3 (double emulsion w/o/w with 500 mg
of drug) and CI-NP4 prepared by nanoprecipitation with 1000 mg
of drug. EE was around 1%, 4%, 7% and 48%, respectively. These
results showed nanoprecipitation is more efficient than emulsion
solvent evaporation method to encapsulate cucurbitacin I
(Alshamsan, 2014). Quercetin is another active ingredient obtained
from fruits and vegetables. Sahu et al. proposed encapsulated
quercetin as potential anti-cancer topical agent. Ex vivo study
demonstrated drug release and retention in the skin (Sahu, 2013).
Moreover, a-tocopherol (a form of vitamin E) is a commonly found
compound in plants which has antioxidant effect (Ching and
Mohamed, 2001). Noronha et al., prepared PCL nanocapsules
containing a-tocopherol (Noronha et al., 2013). Table 4 shows the
conditions studied to optimize formulation. In general, PCL
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nanocapsules showed a negative charge and homogeneous size
distribution. The optimal formulation had an EE of 99.97%
(Noronha et al., 2013). Other studies focused on the encapsulation
of natural compounds obtained from extracts or essential oils. In
fact, do Nascimento et al., who investigated propolis which is
recollected by bees of the species Apis mellifera from plant exudates
(do Nascimento et al., 2016). Propolis has been widely used in

alternative and traditional medicine to treat several diseases. In
this study, leishmanicidal activity against Leishmania (V.) brazil-
iensis was proved. Red propolis raw material was collected and
extracted by maceration, then the extract was loaded into NPs. The
organic phase was composed by PCL and red propolis extract while
the aqueous phase contained pluronic F-108 copolymer. Five
formulations were prepared with values of particle size varying

Table 4
Hydrophobic and hydrophilic active molecules loaded in polymeric nanoparticles prepared by nanoprecipitation and studied parameters during the process.

Active molecule Nanoparticle-
forming
polymer

Parameter
studied

Effect reported Potential use Reference

Itraconazol PLGA Surfactant
concentration

Poloxamer 188 concentration increased,
size increased.

Antifungal Bian et al.
(2013)

Polymer:drug
ratio

PLGA amount increased, size and EE%
increased.

Cucurbitacin I PLGA N/S N/S Anticancer Alshamsan
(2014)

Quercetin Ethylcellulose Polymer amount Ethylcellulose amount increased, drug
loading decreased, EE% increased and
percentage in vitro release after 24 h
decreased

Anticancer Sahu (2013)

a-tocopherol PCL Drug amount a-tocopherol amount increased, particle
size increased and EE% decreased.

Antioxidant Noronha
et al. (2013)

Lecithin
concentration

Does not seem to exert any influence

Surfactant
concentration

Pluronic F68 concentration increased,
size increased

Brazilian red propolis
extract

PCL N/S N/S Leishmanicidal do
Nascimento
et al. (2016)

Zanthoxylum rhoifolium
essential oil

PCL Essential oil
mount

Zanthoxylum rhoifolium essential oil
increased, EE% decreased

Insecticidal Christofoli
et al. (2015)

Achyrocline satureioides
essential oil

PLC N/S N/S Hepatoprotective effect, antioxidant Ritter et al.
(2017)

Sodium cromoglycate PLA Drug percentage
(related to the
amount of
polymer)

Drug percentage increased, EE%
decreased

Preventive reducer of bronchoconstriction Peltonen
et al. (2004)

Solvent and co-
solvent selection

Combination of Dichloromethane and
methanol, EE% increased

salt addition Sodium chloride in the inner and outer
phases, EE% increased

pH effect Acid pH in the outer phase, EE%
increased

Epirubicin
hydrochloride
(EPI�HCl)

PBCA pH effect Higher pH, EE% increased Anticancer Yordanov
et al. (2012)Drug

concentration
EPI�HCl concentration increased, EE%
decreased

Alendronate sodium PCL Drug:polymer
ratio

PCL amount increased particle size and
EE% increased.

Osteoporosis treatment Miladi et al.
(2015)

Polymer
molecular
weights

PCL molecular weight increased, particle
size and EE% increased.

Organic:water
phase ratio

Water phase increased, particle size and
EE% decreased

Bovine serum albumin
(BSA)/Trypsin

Lactosylated
PLGA

Negative or
positive drug

Negative BSA with e-polylysine, EE% and
sustained release increased

Model proteins and cell culture Zhou et al.
(2015)

Tizanidine
hydrochloride (TZN),
gatifloxacin(GTX) and
fluconazole

Gelatin Uncrosslinked or
crosslinked with
glutaraldehyde

TZN crosslinked NPs, EE% increased. GTX
uncrosslinked, EE% increased. No
loading was observed for fluconazole

a2-adrenergic agonist and myotonic muscle
relaxant; antibacterial and antifungal,
respectively

Lee et al.
(2012)

Cocoa-derived
polyphenolic extract

Gelatin Polymer
concentration

Gelatin concentration increased, size
increased

Antioxidant Quiroz-
Reyes et al.
(2014)Surfactant

concentration
Tween 80 concentration increased, size
decreased

Protamine sulphate,
diclofenac sodium
and N6-
cyclopentyladenosine
(CPA)

PLGA/PLA Drug amount Drug amount increased, drug loading
increased and EE% decreased. The size of
the particles did not increase.

Anticoagulant activity inhibitor of heparin; anti-
inflammatory, analgesic and antipyretic effect;
selective agonist of adenosine A1 receptors,
respectively

Dalpiaz et al.
(2016)

PLGA
substituted by
PLA for CPA

PLGA substituted by PLA, EE% increased

PLGA: polylactic-co-glicolic acid; PCL: poly-e-caprolactone; PLA: polylactic acid; PBCA: poly(butyl cyanoacrylate).
N/S: not studied.
NPs: Nanoparticles.
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between 208 and 280 nm (do Nascimento et al., 2016). Ritter et al.,
developed Achyrocline satureioides essential oil loaded nano-
capsules (Ritter et al., 2017). When tested, nanocapsules showed
potency to protect hepatic tissue against cytotoxic damage caused
by Trypanosoma evansi (Ritter et al., 2017). Essential oils could also
have insecticidal activity. Their encapsulation into NPs can
potentially improve their activity, offer better protection against
degradation and oxidation processes by light and heat. Essential
oils could also be used against agricultural pests such as Bemisia
tabaci (Christofoli et al., 2015). Due to large number of compounds
that constitute an extract or an essential oil, some researchers
quantified the major component and used the obtained data to
determine EE or loading rate of the essential oil (do Nascimento
et al., 2016). Quiroz-Reyes et al. (2014) obtained cocoa-derived
polyphenolic extract in gelatin NPs. They dissolved the polyphe-
nolic extract in a water-methanol solution, adding a specific
quantity of gelatin. The mixture was then stirred and maintained at
45 �C for 30 min. The resulting solution was added dropwise to an
ethanolic solution of tween 80. Finally, glutaraldehyde was added
as a crosslinking agent. With 2% w/v of tween 80 and gelatin, it was
possible to obtain a formulation with a loading efficiency of 77%
(Quiroz-Reyes et al., 2014). Another strategy is used by Dalpiaz
et al., who dissolved protamine sulphate, diclofenac sodium and
N6-cyclopentyladenosine (CPA) and PLGA in acetone phase and
added them drop-wise to the cottonseed oil (oil phase) and tween
80 (Dalpiaz et al., 2016). For CPA, authors substituted PLGA with
PLA, which is characterized by a lower hydrophilicity. Using PLA
instead of PLGA increased CPA loading when 5 mg of drug were
used as the initial amount, doubling the EE value (from 7% to 15%)
(Dalpiaz et al., 2016).

7.1.3. Protein based particles
Proteins constitute an important class of biopolymers that

gained lately importance in drug delivery field. Proteins have
several advantages. They are biocompatible, biodegradable, and
their biodegradation products are often non-toxic. Moreover, since
they are derived from animals or plant sources, they are lacking of
monomers or initiators found in synthetic polymers (Pathak and
Thassu, 2009). Because of their importance, protein based
nanoparticle systems are already found in the market, such as
albumin bound paclitaxel NPs (AbraxaneTM) (Langer et al., 2008).
Protein based NPs prepared by nanoprecipitation method could be
often found in literature. Lee et al. prepared gelatin based NPs by
nanoprecipitation (Lee et al., 2012). Water and ethanol were used
as solvent and non-solvent, respectively. It was shown that the
non-crosslinked particles have an irregular shape due to particle
aggregation. However, the cross linked particles have a unimodal
size of 251 nm, low polydispersity index (0.096), and uniformly
round shape (Lee et al., 2012). This suggests that nanoprecipitation
is a suitable method for the preparation of gelatin NPs. In another
study, curcumin loaded zein NPs were prepared by nanoprecipi-
tation. Results showed that the average particle size can be
controlled through the solvent system and the zein/curcumin ratio.
This formulation enhanced the stability of curcumin at all
physiological pH and following UV irradiation. The formulation
was also found stable in the gastrointestinal tract. Furthermore,
due to the fact that zein is an edible protein, the ability to use such
formulation by including it in oral products was suggested (Patel
et al., 2010). Whey protein were also used to prepare NPs. Ethanol
was used as non-solvent and added at a speed rate of 1 ml/min in
order to achieve a solvent/non-solvent volume ratio of 1:5.
Obtained particles were spherical with a relatively small size (less
than 100 nm). These particle properties are obtainable at pH3, a
desirable pH for food applications. Moreover, it was found that
particle size can be controlled by a combination of heating and
homogenization (Gülseren et al., 2012). These results show that

nanoprecipitation is a successful and promising approach for the
preparation of NPs using the natural, biodegradable, non-toxic
proteins as starting materials.

7.2. Applications in agricultural and food industry

The success of nanoprecipitation method in the pharmaceutical
field shed the light on the application of this technique in the
agricultural industry. In fact, the growth of world population
requires food sources increase which leads to an augmentation of
fertilizers and pesticides use. However, this could result in soil
depletion and environmental pollution (Bareras-Urbina et al.,
2016). Thus, the need of a controlled release system is crucial to
reduce environmental problems associated with the use of
pesticides (Boehm et al., 2003). For this reason, nanoprecipitation
has been used to prepare polymeric NPs as an insecticide
formulation (Boehm et al., 2003). Eudragit1 S100 based NPs
showed small size and high EE, but they did not provide a
controlled release of the active ingredient. However, they
enhanced the penetration of the active in the plant due to their
small size (Boehm et al., 2003). Nanoprecipitation is also important
in the food industry since particles could be prepared by natural
food compound such as, starch or proteins (Castro-Enríquez et al.,
2012). Moreover, a-tocopherol loaded poly e-caprolactone NPs
were prepared. These particles showed high values of recovery and
EE. They could potentially be used as food antioxidants and
preservatives in food packaging (Noronha et al., 2013).

8. In vivo testing

In vivo studies give a closer idea about NPs action in the human
body (Popov et al., 2016). Biodegradable and biocompatible
polymers as PLA, PGA, PCL, poly(g-valerolactone) and copolymers
such as, PLGA (Nicolas et al., 2013) are used for preparation of NPs
by nanoprecipitation. In vivo studies could give relevant informa-
tion about drug transportation up to the targeted organs. For
example, Sharma et al. demonstrated that intranasal NPs can
potentially transport the encapsulated drug via nose-to-brain
(Sharma et al., 2015). They used diazepam (DZP), which is widely
used as sedative hypnotic, antianxiety, and antiepileptic drug. The
administration routes were intranasal and intravenous in Sprague-
Dawley rats. DZP was labeled using technetium-99m-labeled
(99mTc), loaded into PLGA NPs (DNP) and applied. Gamma
scintigraphy and biodistribution study were carried out to follow
DNP and DZP solution (DS) in rats. The scintigraphy images
indicated the high uptake of 99mTc-DNP into the brain. Presence of
high radioactivity was observed in rat brain after administration of
99mTc-DNP intranasally compared to intravenous 99mTc-DS and
intranasal 99mTc-DS. Biodistribution studies showed significantly
higher brain uptake of intranasal 99mTc-DNP as compared to
intranasal 99mTc-DS and intravenous 99mTc-DS (Sharma et al.,
2015). After intravenous administration, it has been demonstrated
that these particles provided sustained drug delivery. Bian et al.
(2013) showed that systemic bioavailability of itraconazol (ITZ)
loaded PLGA nanospheres was more important than Sporanox1

formulation. This is consistent with the observed sustained plasma
drug level for up to 24 h after administration by PLGA-ITZ-NS
formulation (Bian et al., 2013). NPs have been found in spleen, liver
and lungs (Zhou et al., 2015). Intratracheal instillation in male mice
has been used to evaluate pulmonary delivery by Popov et al.
(2016). Fluticasone propionate (FP) was loaded in poly(lactide)-
based particles of around 200 nm diameter prepared by nano-
precipitation. NPs pulmonary residence was assessed by measur-
ing FP levels in mouse lungs over 24 h. Higher FP levels were
observed with PLA-based NPs during 24 h while free FP was rapidly
eliminated from lungs following instillation (Popov et al., 2016).
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These studies demonstrated the presence of active loaded NPs in
different organs. Jeannot et al., administrated intravenously and
intrapulmonary NPs in healthy mice, H358-tumor bearing mice or
A549-tumor bearing mice (Jeannot et al., 2016). Two different sizes
of NPs, 30 and 300 nm (NP30 and NP300, respectively), were
prepared by nanoprecipitation. NP30 and NP300 were internalized
in H358 and A549 cells and cell labeling and internalization were
stronger with NP30 than NP300. In both lung tumor models,
intrapulmonary nebulized NPs were accumulated in lungs, but not
in the tumor nodules. This means that direct administration of
these NPs into the airways failed to increase their uptake by
tumors. Despite a significant liver capture, intravenous injection
led to a better accumulation of the NPs in the lung tumors
compared with the surrounding healthy lung tissues. The
pharmacokinetic constants were calculated, and the theoretical
distribution and elimination half-lives for NP30 were higher than
for NP300, which showed that NP30 had longer circulation times
than NP300 (Jeannot et al., 2016). The in vivo distribution and the
cellular uptake of NP depended on their size (Dufort et al., 2012).

Focusing on natural products, in vivo study has carried out for
Achyrocline satureioides essential oil loaded PCL nanocapsules (AS-
NC) proving their capacity to protect liver. Here, Ritter et al.,
infected female Wistar rats with Trypanosoma evansi, a widely
distributed protozoan that parasites the blood of wild and
domestic animals, and rarely humans (Ritter et al., 2017). Four
groups administrated by oral gavage were used: uninfected/saline,
uninfected/AS-NC, infected/saline and infected/AS-NC. Infected/
AS-NC group showed lower parasitemia than animals of the
infected/saline group. Moreover, T. evansi infection causes de-
creased cell viability on hepatic tissue after excessive production of
reactive oxygen species (ROS) and nitric oxide metabolites.
Treatment with AS-NC was able to protect the hepatic tissue
against cytotoxic effect caused by parasite due to the capacity of to
avoid exacerbated production of ROS. Thus, the protective effect of
AS-NC might be related to antioxidant properties of A. satureioides
essential oil (Ritter et al., 2017). Studies of Danhier et al., has proved
that NPs can be an effective anticancer drug delivery system for
cancer chemotherapy (Danhier et al., 2009). Paclitaxel (PTX) a
major anticancer drug isolated from the plant Taxus brevifolia was
loaded in PEGylated PLGA NPs. NPs inhibited tumor growth more
efficiently than Taxol1 (commercial product of PTX) (Danhier et al.,
2009). Oral administration of Eudragit1 E PO based NPs loaded
with meloxicam prepared by nanoprecipitation resulted in an
enhanced anti-inflammatory effect and in a decrease of the
adverse effects associated with the treatment (Khachane et al.,
2011). Singh and Pai prepared Eudragit1 RL 100 based NPs for
encapsulation of trans-resveratrol with mean particle size around
180 nm (Singh and Pai, 2014). These NPs showed higher plasma
levels than free resveratrol. Active accumulation in the brain, heart,
liver, lungs, kidneys and spleen after oral administration over a
period of 24 h was also higher than pure drug and marketed
formulation (Singh and Pai, 2014). Eudragit 1 RL 100 was used for
encapsulation of amphotericin-B (AmB), a polyene antifungal
antibiotic that has broad-spectrum activity (Das et al., 2010). NPs
sizes ranged from 134 to 290 nm. The selected formulation
administered via ocular route in male albino rabbits showed no
eye irritation. In vivo study suggests that AmB NPs could have
potent ocular antifungal effect with minimal eye-irritating effect
(Das et al., 2010). Fig. 6 depicts most common administration
routes and targeted organs for NPs prepared by nanoprecipitation.

9. Clinical trials of drug loaded nanoparticles prepared by
nanoprecipitation

In general, FDA drug approval process can be separated into
preclinical, clinical, and post-marketing phases. The gathered data

during the preclinical phase is used to support an Investigational
New Drug (IND). If during the clinical phase, the drug is considered
safe and efficacious, the manufacturer files a New Drug Application
(NDA) (see Fig. 7) (Eifler and Thaxton, 2011). Despite the potential
advantages of these new drug delivery systems, few NPs
formulations are approved for clinical use and face challenges
and hurdles at different stages of development (Desai, 2012).

The following features are studied during formulation devel-
opment process and have to be well known before clinical trials:

- Adequate particle size
- Stability of the nanosystem
- Drug release from the complex matrix
- Targeting
- Efficacy of biological activity
- Toxicology in cell lines and animals
- Pharmacology
- Scale up (manufacturing process)
- Production of sterile forms at laboratory and scale up

Mostly clinical studies are focused on cancer therapy (see
Table 5).

The in vivo findings, showed that loaded NPs prepared by
nanoprecipitation gave satisfactory results. Due to the versatility of
nanoprecipitation technique, a broad range of polymeric materials
which have already been approved by FDA could be used. Dong and
Feng elaborated paclitaxel-loaded NPs of poly(D,L-lactide)/
methoxy poly(ethylene glycol)-polylactide (PLA/MPEG-PLA)
blends of various blend ratio from 100/0 to 0/100 by the
nanoprecipitation method to control the release of paclitaxel.
NPs with hydrodynamic diameter of 230 to 74 nm, encapsulation
efficiency of 69–55% and zeta potential of 19.6–0.3 mV were
obtained. DSC analysis suggested the miscibility of PLA and MPEG-
PLA. The pure PLA NPs (100/0) exhibited the slowest drug release
rate with 37.3% of encapsulated drug released from the NPs for 14
days. MPEG-PLA NPs (0/100) provided the fastest drug release with
95.9% drug release in the same period (Dong and Feng, 2004).
Genexol-PM1 Cremophor EL-free based on paclitaxel loaded
methoxy-PEG-polylactide NPs is marketed in Europe and Korea
for breast cancer and small cell lung cancer (Lohcharoenkal et al.,
2014; Pillai, 2014). Based on its simplicity and versatility, nano-
precipitation is chosen as encapsulation method for the develop-
ment of new nanoparticle-forming polymers with potential used
in biomedical field. An example is poly(N-(2-hydroxypropyl)
methacrylamide) (PHPMA), which is in clinical phase. This
polymer is water-soluble, synthetic, vinyl-based polymer with

Fig. 6. Most common administration routes and targeted organs for nanoparticles
prepared by nanoprecipitation.
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singular nonimmunogenic and nontoxic characteristics (Yan et al.,
2017).

In the pharmaceutical industry, the production of nanoparticles
by nanoprecipitation has not been applied due to the organic
solvent usage issue. Nevertheless, the production equipment for
large-scale has been marketed (Tran et al., 2016). Despite the
employment of organic solvent within the process, pre-clinical and
clinical studies have suggested to this technique as a potential
preparation technique of nanoparticles in order to be applied in
organism. Thus, nanoprecipitation could be a recommended
technique for the nanoparticles preparation.

10. Industrial scale-up of nanoprecipitation method

The transition from laboratory to industrial grade is crucial for
any clinically approved formulation. However, this transition
should be controlled by a scale-up strategy in order to create
industrial scale parameters that lead to the mass production of
laboratory-like formulations (Galindo-Rodríguez et al., 2005).
Scaling-up of NPs formulations is often successful and have
advantages over laboratory scale production. Smaller polymers
amounts are needed to produce NPs in pilot-scale than in

Fig. 7. Phases of drug development and approval by the US Food and Drug Administration.
Reproduced with permission from Eifler and Thaxton (2011).

Table 5
Polymeric nanosystems in clinical use for anticancer therapy.

Product name Polymer-forming nanoparticle Active
molecule

Reported Clinical
Phase

Cancer type Reference

NK105 PEG–poly(aspartic acid) block
copolymer

Paclitaxel I Pancreatic, bile duct, gastric and colonic
cancer

Hamaguchi et al.
(2007)

II Gastric Cancer Kato et al. (2012)
NK911 PEG–poly(aspartic acid) block

copolymer
Doxorubicin I Metastatic pancreatic cancer Matsumura et al.

(2004)
CRLX101 PEG–Cyclodextrin copolymer Camptothecin II Various types (non-small cell lung) Svenson et al. (2011)
NC-6004 PEG-poly(glutamic acid) block co-

polymer
Cisplatin I Various types (i.e. colon and lung) Plummer et al. (2011)

Fig. 8. Experimental set-up for pilot-scale nanoprecipitation.
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laboratory-scale. In addition, pilot-scale processes are more
reproducible than laboratory-scale ones. Moreover, polymer
precipitation during NPs production is more efficient in pilot-
scale since formulation parameters are well controlled (Marchisio
et al., 2006).

The success of nanoprecipitation depends on the way the
aqueous and organic phases are mixed together to lead to polymer
precipitation and create NPs. It is known that the mixing time must
be faster than the time required to induce nanoparticle formation
(Johnson and Prud’homme, 2003). In lab scale, the mixing
conditions are ideal since the amount of solutions is relatively
small (in ml), and the initial conditions are maintained stable
during the whole process. However, in industrial scale, the
production of large amount of NPs needs large amounts of both
phases. This is where the keeping of the ideal conditions during the
whole process becomes difficult.

Galindo-Rodriguez et al., assessed a scaling-up procedure for
ibuprofen loaded poly(vinyl alcohol) NPs prepared by nano-
precipitation (Galindo-Rodríguez et al., 2005). Particles were
prepared at laboratory scale and at pilot scale by increasing the
volume 20 fold from 60 ml to 1.5 l. The scale-up of nano-
precipitation was performed using the experimental set up
showed in Fig. 8. This set-up consists of two reservoirs, one for
the aqueous phase and another for the organic one. Each reservoir
is connected to an independent pump that continuously supplies
the two phases. The two phases meet at the “Tee mixer” where the
precipitation occurs instantaneously. Finally, the set up includes a
reactor where particles are maintained under agitation (see Fig. 7).

Laboratory and pilot-scale NPs were compared. It was found
that the particles prepared by laboratory scale have a bigger size
(141 nm) than the ones prepared by pilot scale (105 nm). However,
the polydispersity index at pilot scale (0.130) is higher than the
laboratory scale (0.082). This could be caused by the higher
turbulence generated in the pilot scale which improves the
diffusion of solvent and, by its turn, leads to smaller NPs. In
addition, drug loading and entrapment efficiency at lab scale (4.5%
and 50% respectively) were higher than pilot scale (3.2% and 39%
respectively). Moreover, the pilot batches show reproducibility and
each batch requires 120 min to be produced. These results show

that the pilot scale production of polymer NPs by nanoprecipi-
tation method was successful. However, the major drawback of
this method is related to the low concentration of polymer, which
leads to a difficult NPs recovery in the final dispersion (Galindo-
Rodríguez et al., 2005).

Another approach of precipitation optimization is flash nano-
precipitation (FNP) method. This modified version of nano-
precipitation is based on stimulating the supersaturation
conditions required for the precipitation using a jet mixer to
mix the two phases (See Fig. 9) (Pustulka et al., 2013). In this
method, the characteristic mixing time of the two phases is in the
order of milliseconds. Such rapid mixing induces a high
supersaturation that initiates precipitation (Johnson and Prud’-
homme, 2003). Zhang et al. prepared polystyrene NPs using FNP
method (Zhang et al., 2012). It was found that formulations have a
comparative size distribution when the diameter of particles was
less than 150 nm. In addition, NPs size was tunable by modifying
the polymer concentration. An increase in polymer concentration
leads to an increase in particle size (Zhang et al., 2012). FNP as an
enhanced version of nanoprecipitation could lead to more accurate
and reproductive results. In addition, an advantage of this method
is that it could be run at laboratory scale with small amounts of
solutions, and the process performance could be easily duplicated
at a pilot-scale (Johnson and Prud’homme, 2003).

11. Advantages and disadvantages of nanoprecipitation

Nanoprecipitation technique is based on the interfacial
deposition of polymers following the displacement of a semi-
polar solvent miscible with water from a lipophilic solution.
Generally, actives loaded into nanoparticles show stability,
controlled release or targeting potential. Different parameters
during nanoprecipitation process can be modified to obtain a
formulation with the desirable characteristics in terms of size,
storage stability, active encapsulation and electrostatic charges.
Advantages of nanoprecipitation over other encapsulation techni-
ques are: (1) simplicity (2) ease of scalability (3) good reproduc-
ibility (4) safety (large amounts of toxic solvents are avoided) (5)
obtaining of submicron particle sizes with narrow size distribution

Fig. 9. Flash nanoprecipitation method.
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and (6) Low energy input (7) (Miladi et al., 2016). Table 6. depicts
major advantages and drawbacks of this method.

Nanoprecipitation has become an important strategy in
pharmaceutical, agricultural, food and cosmetic industry. In
agricultural industry, the need of a controlled release system is
crucial to reduce the environmental and health problems
associated with the use of pesticides. Possibly the most investi-
gated field is medicine and encapsulated actives for application in
pharmaceutical industry attract a special attention. Based on
nanoprecipitation simplicity and versatility, it is a potential
preparation method of polymeric nanosystems for pre-clinical
and clinical studies.

12. Conclusion

Several drugs could present bioavailability, stability or taste
limitations. Encapsulation of such molecules in NPs could be a
relevant alternative to circumvent such problems. This contributes
to the enhancement of the efficacy of actives and promotes patient
compliance. Nanoprecipitation is a simple and reproducible
technique that has been widely used for the preparation of
polymeric NPs intended for several biomedical applications.
Operating conditions management is a key point to obtain NPs
with suitable properties. Several research works have been carried
out to use nanoprecipitation in a conventional way while other
works focused on the enhancement of its scalability, reproducibil-
ity and safety via scale-up. Tee mixer and flash nanoprecipitation
are among the techniques that were introduced to achieve such
purposes. Advantages of submicron carriers prepared by nano-
precipitation in the biomedical and agricultural fields have been
confirmed by numerous studies. These achievements include
enhanced bioavailability, better targeting and tolerance, sustained
release and enhanced absorption of the drug through biological
barriers. Nanoprecipitation has been widely used to prepare NPs.
Although several advances have been recorded, more in vivo
testing in human is needed. Such investigations along with scale-
up approach would be highly relevant to promote the clinical
applications of nanoprecipitation technique.
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Summary 

In the experimental part of this PhD thesis, PCL based nanoparticles loaded with indomethacin and 

Nigella Sativa L. Seeds Essential Oil (NSSEO) were prepared by nanoprecipitation method. A set of 

experiments were performed: (1) for studying formulation and process related parameters effect on the 

properties of the provided particles. (2) to encapsulate alone indomethacin within PCL based 

nanoparticles and consecutively its characterization in terms of size, surface charge, morphology, 

stability, and ex vivo skin penetration. (3) for encapsulation of indomethacin and NSSEO within PCL, 

characterization in terms of particle size, zeta potential, morphology, stability, and ex vivo skin 

penetration, (4) To assess in vivo anti-inflammatory activity of prepared nanoparticles containing 

indomethacin and NSSEO. In the first step, a systematic study has been done in order to adjust the 

formulation and process related parameters for obtaining nanoparticles with good properties such as 

size, surface charge and so on. Throughout this part of experiment it was figured out that in 

formulation related parameters polymer concentration, and aqueous phase volume had a paramount 

impact on colloidal particles properties. In operating conditions agitation speed organic phase and 

injection rate are the key factors to be taken into consideration. The results of this study proved that 

systematic study is essential before investigation of any drug encapsulation in order to design the 

nanoparticles with proper characteristics for in vivo and in vitro applications. In the second step, the 

finalized formulation was employed to encapsulate indomethacin alone to see the indomethacin 

presence effect and to prepare nanoparticles for comparison in terms of skin penetration and in vivo 

anti-inflammatory activity with the nanoparticles loaded with indomethacin and NSSEO together, 

which have prepared in the consecutive experiment. Along this study PCL based particles loading IND 

have been successfully prepared and characterized. The results obtained from DSC and FTIR studies 

of NPs indicated that no chemical interaction between drug and polymer in the formulation was 

occurred. The designed nanoparticles were pointed out stable for one month under storage 

temperatures of 4°C, RT, and 40°C. The pH of prepared colloidal dispersion was ranged between 4 

and 6. This study supports indomethacin loaded nanoparticles penetration potential as a modern 

topical formulation that would decline frequency of administration, side effects and consecutively 

patients’ compliance. In the third step, the essential oil of Nigella Sativa was extracted and analyzed. 

Indomethacin and NSSEO were successfully encapsulated within poly (ε-caprolactone) polymer by 

nanoprecipitation method. Designed nanoparticles were characterized by size and zeta potential 

measurement and stability study. In addition, designed nanoparticles were also characterized by 

fluorescent microscopy, TEM, FTIR, DSC techniques that all together confirm the encapsulation of 

indomethacin and NSSEO. The size and zeta potential of prepared particles were respectively (230 nm 

- 260 nm) and (-20 mV and -30 mV). Images obtained from TEM analysis shown that prepared 

nanoparticles have a spherical and regular form. Encapsulation efficiency of nanoparticles for 

indomethacin and NSSEO were correspondingly 70 % and 84 %. In conclusion, poly (ε-caprolactone) 
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based nanoparticles were elaborated, which could be loaded with indomethacin and NSSEO in the 

next experimental part of this thesis. In the fourth step,skin penetration of obtained nanoparticles was 

investigated.In vivo anti-inflammatory activity of poly(ε-caprolactone) based nanoparticles loaded 

with indomethacin and NSSEO that were already prepared, has assessed as well. In fact, these 

prepared nanoparticles were also characterized in our last experiment in terms of fluorescent 

microscopy, TEM, FTIR, DSC studies. Consequently, four formulations with different compositions 

were prepared and their anti-inflammatory activity was assessed on the xylene induced mice ear 

edema. The inflammation inhibition was evaluated based on the thickness (μm), and weight (mg) 

measurement of mice ear after and before formulations application. Furthermore, the quantification of 

anti-inflammatory activity was also taken place by histology microscopic analysis and 

immunohistochemistry study. This study firstly reports that PCL based nanoparticles loaded with 

NSSEO can significantly improve cutaneous penetration of indomethacin as a noninvasive approach. 

Furthermore, this study reinforces the anti-inflammatory activity enhancement of indomethacin by 

NSSEO within the polymeric nanoparticles.Nanoparticles loaded with indomethacin and NSSEO had 

skin better penetration than nanoparticles loaded with indomethacin alone that was confirmed with 

CLSM. Consequently, for providing the same efficacy taken dose of indomethacin can be decreased in 

order to reduce its side effects throughout the digestive system. Indeed NSSEO anti-inflammatory is 

mainly associated with presence of thymoquinone in its composition. Prepared particles as 

noninvasive penetration enhancement technique have upgraded the skin penetration of indomethacin, 

and can reduce its systemic concentration and side effects. 
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Summary 

Recently nanotechnology in pharmaceutics attracted a hug attention in order to deal with the 

conventional dosage forms drawbacks. Indeed, encapsulation opened the avenue to encapsulate active 

molecules, to target the interested area by drugs, to provide the appropriate drug release rate and to 

cover the unpleasant organoleptic properties of drugs. For the encapsulation of drugs, mostly 

biodegradable and biocompatible polymers are employed. These polymers can modify the 

physicochemical characteristics, biological properties, and release profile of drugs by encapsulation. 

Polymer selection for the encapsulation of drug molecules is based on the polymers toxicity and 

intended particles application. In fact, natural and synthetic polymers can be used for the drug

molecules encapsulation. However, thanks to the purity and reproducibility properties synthetic 

polymers are better than natural polymers. Poly- -caprolactone is a biocompatible, biodegradable, 

semicrystalline and hydrophobic polymer. There are six methods that can be used for the preparation 

of particles from the already prepared polymers. These methods are including: nano-precipitation, 

emulsion-diffusion, emulsion-coacervation, double emulsification, polymer-coating and layer-by-

layer. For elaboration of suitable nanoparticles for in vitro and in vivo applications, a proper 

encapsulation technique should be selected. In nanoprecipitation method that called solvent 

displacement or interfacial deposition, for preparation of particles two solvent (organic) and non-

solvent (aqueous) phases are required. Nanoprecipitation method possesses advantages as particles 

production with high reproducibility in nano-scale range employing of low toxic ingredients, water, 

time and energy lower consumption, procedure and set-up simplicity. Thus, it is a good technique to 

prepare polymer based particles. For efficient encapsulation of drug in this technique active molecule 

solubility properties is needed that is a drawback of this method. In this work, different formulation 

and process related parameters such as evaporation technique, organic phase injection method and 

rate, stabilizers nature and concentration, polymer concentration, stirring speed, organic phase and 

aqueous phase volume, effect on the particle size and zeta potential and morphology were 

investigated. The uniqueness of this work is the complete studying of all process and formulation 

associated parameters from the beginning up to the end of nanoparticles preparation process which is 

of paramount importance for the prepared nanoparticles characteristics. Nanoprecipitation was used as 

the method of particles preparation and Poly- -caprolactone was used as polymer in this study. It was 

found that in formulation related parameters polymer concentration, and aqueous phase volume had a 

paramount impact on colloidal particles properties. In operating conditions agitation speed organic 

phase and injection rate are the key factors to be taken into consideration. The results of this study 

confirmed that systematic study is essential before investigation of any drug encapsulation in order to 

design the nanoparticles with proper characteristics for in vivo and in vitro applications.   
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Solvent displacement  in  comparison  with  other polymeric  particles preparation  technique  provides

certain  crucial advantages  such as water, time  and energy lower  consumption,  procedure  and  set-up

simplicity  in nanoparticles preparation.  The  objective of this study  was optimization  of formulation  in

terms  of  the  particle size, size distribution,  zeta  potential  and  morphology.  In  this  study  polycapro-

lactone  based  nanoparticles were  prepared  by  solvent  displacement  or nanoprecipitation  method.  To

prepare  nanoparticles firstly,  polycaprolactone  was dissolved  in acetone  that  form  organic phase,  sec-

ondly,  for  aqueous phase  preparation, Tween
®
80 and  polyvinyl  alcohol  as  stabilizer  of the system,  were

dissolved  in the water. Consecutively,  under  magnetic  agitation  organic  phase was injected through  a

syringe  to the aqueous phase.  Acetone  was removed  under  reduced  pressure  by  rotavapor. Further-

more,  different  formulation  and  process  related variables  such  as  evaporation  technique,  organic  phase

injection  method  and  rate, stabilizer  nature,  polymer  concentration,  Tween
®
80  and  polyvinyl alcohol
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concentration,  stirring  speed, organic and  aqueous phases  volume, were studied. To  conclude, systematic

study is  indispensable  before  investigation  of any drug  encapsulation.

© 2016 Elsevier  B.V.  All rights  reserved.

1. Introduction

Researchers make special focus on tackling limitations asso-

ciated with conventional drug delivery system. Biomedicine and

biotechnology are the areas in  which colloidal carriers are broadly

applied. Medically used carriers comprise dendrimers, block

ionomer complexes, polymeric biodegradable nanoparticles (NPs),

polymeric micelles, liposomes, nanotubes, nanorods and quan-

tum rods [1]. Encapsulation techniques are divided into two  major

groups; preformed polymer based and polymerization based pro-

cesses. Both techniques provide us solid colloidal particles [2].

One of nanoparticles basic characteristics is their size, which usu-

ally reported to be around 5–10 nm with a superior size limit of

∼1000 nm,  even though the range generally obtained and used

is 100–500 nm [3]. For the aim of active substances efficacy

enhancement, their physicochemical properties could be changed

via encapsulation [2,4,5]. For better membrane absorption and

target drug delivery, particulate carriers could be employed. More-

over, encapsulation can mask unpleasant organoleptic properties

of certain drugs and control release of  active ingredients [6–12].

Encapsulation has emerged during the last decades as a promising

and attractive option for miscellaneous biomedical applications.

With the development of many biological drugs as nanomedicines,

biotechnology has become one of the most interesting perspec-

tives [13,14]. Encapsulation interest has been also proven for

many other biomedical fields such as, cancer therapy [15], autoim-

mune diseases [16], infectious diseases [17] and theranostics

[18]. To obtain these carriers various polymers with different

physicochemical properties are used. However, mainly these poly-

mers are biodegradable and biocompatible. Indeed, to make

active substances stable, non-toxic and noninflammatory, they

should be encapsulated in biodegradable polymers. Nanoparticle

physicochemical properties (e.g. colloidal stability, hydrophobic-

ity), biological behavior (e.g. cellular uptake, bioadhesion) and drug

release characteristics (e.g. prolonged, delayed, triggered) could be

modified through using these polymers [19–21]. Particles appli-

cation and polymer toxicity are the issues that must be taken

into account in polymer selection for polymer based particles

preparation [22]. Poly-�-caprolactone (PCL), poly (lactide) (PLA)

and poly (lactide-co-glicolide) (PLGA) are the frequently utilized

biodegradable polyesters polymers. Synthetic polymers are better

than natural polymers in term of  purity and reproducibility. PCL,

which is generally used, is among the semicrystalline, hydrophobic

polymers that are biocompatible and biodegradable [23]. High drug

permeability and slow in vivo degradation properties of PCL make it

a suitable polymer for the design of implant delivery device and so

on. Furthermore, PCL micro and nano-scale carriers have attracted

significant attention of  pharmaceutical researchers. In addition,

polymers such as poly (lactic-co-glycolic acid) (PLGA) and poly-

d,l-lactic acid (PDLLA) can be mixed or copolymerized with PCL.

Other fields of PCL applications include tissue engineering, scaf-

folds for bone, ligament, cartilage, skin, nerve and vascular tissues

regeneration and interfacial tissue engineering as recently reported

[24].

From the synthetic point of view, particles in general could

be prepared through six classical techniques such as  nano-

precipitation, emulsion-diffusion, emulsion-coacervation, double

emulsification, polymer-coating and layer-by-layer [2]. Encapsu-

lation  methods differ via their principles or  the active substance

nature to be encapsulated. To provide a formulation bearing appro-

priate properties of in vitro and in vivo applications, right selection

of the encapsulation method is crucial. Nanoparticles preparation

method should be  selected according to concerned polymer and

active ingredient physical and chemical properties. Nanoparticles

should be prepared by a technique that does not destroy the active

ingredient because most of encapsulation methods are employ-

ing various organic solvents, ultra-sonication, temperature and

agitation [25]. Nanoprecipitation method called solvent displace-

ment or interfacial deposition has been developed for first time

by Fessi et  al. in  1998 [26]. In the case of solvent displacement

method, for particle preparation two  solvent (organic) and non-

solvent (aqueous) phases are necessary. Basically, organic phase

is composed of drug and polymer while, aqueous phase includes

water and stabilizing agents (synthetic or natural). After addition

of the organic phase to the aqueous phase, submicron particles

could be formed spontaneously upon organic solvent evapora-

tion under reduced pressure. Through nanoprecipitation technique,

nucleation, growth and aggregation are the  stages by  which poly-

mer based particles are formed [2]. Nanoprecipitation method

has several advantages such as production of  particles with high

reproducibility in nano-scale range using of low toxic ingredients

(surfactants or organic solvents). Therefore, it represents a good

approach to design polymer based particles. In spite of these advan-

tages, nanoprecipitation technique has a few drawbacks which are

attributed to the active molecule solubility properties needed for

efficient encapsulation [27].

In the present work, it  was focused on the study of different

formulation and process related parameters such as evaporation

technique, organic phase injection method and rate, stabilizer

(Tween
®
80  and polyvinyl alcohol) nature and concentration, poly-

mer concentration, stirring speed, organic phase and aqueous phase

volume, effect on the particle size and zeta potential and mor-

phology. The complete studying of all process and formulation

associated parameters from the beginning up to the end of  nanopar-

ticles preparation process which is of paramount importance for

the obtained nanoparticles characteristics, add to the novelty of

the current research.

2.  Materials and methods

2.1.  Materials

Acetone that is employed as solvent was provided by

Laurylab, France. Poly-�-caprolactone (PCL) which is used

like wall material (Mw  = 14,000 g/mol), polysorbate 80

(Tween
®
80) (Mw  = 1310 g/mol) and polyvinyl alcohol (PVA)

(Mw = 31,000 g/mol) that are utilized such as stabilizer were

purchased from Sigma-Aldrich, Germany.

2.2. Methods

2.2.1. Nanoparticles preparation

Polycaprolactone (PCL) based particles were formulated using

the solvent displacement technique, which is described by Fessi

et al. in 1989 [26]. Aqueous and organic phases were provided

respectively. Firstly, for aqueous phase preparation PVA was dis-
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solved in Milli-Q water and then mixed with Tween
®
80. Secondly,

with dissolution of PCL in acetone, organic phase was  obtained. Sub-

sequently, organic phase was injected dropwise to aqueous phase

under continuous agitation.

2.2.2.  Reference nanoparticles: composition –  preparation

The amounts of formulation ingredients that have been used and

the operating condition under which reference PCL based nanopar-

ticles were prepared, shown in Table 1. In fact, for optimization of

formulation, a series of experiments on process and formulation

related variables were carried out in order to find out each param-

eter relation with obtained particles hydrodynamic particle size,

zeta potential and morphology.

2.2.3. Nanoparticles characterization

The  mean size (Z-average) and zeta potential of PCL based

particles were determined employing Malvern particle size ana-

lyzer (Model–Nano ZS,  Malvern instruments limited, UK). The

prepared particles dispersion was diluted before measurement in

1 mM NaCl solution. All measurements were carried out in tripli-

cate at 25 ◦C temperature. The morphology and appearance of the

obtained nanoparticles were also assessed by transmission elec-

tron microscopy (TEM) apparatus Philips CM-120 at an  accelerating

voltage of 100 kV. To  provide TEM photos, through micropipette

a drop of suspension containing nanoparticles was put on the

carbon-coated copper grid. Then the deposit droplet was left to dry

before analysis. The extra volume of  suspension was discarded from

carbon-coated copper grid via blotting. In this study, at each set of

investigation, just one operating condition or formulation related

variable was altered and assessed while other variables were kept

stable (see Table 1).

2.2.4.  Statistical analysis

In  tables and figures all data were shown like mean ±  standard

deviation. Statistical analysis was performed employing the one-

way analysis of variance (ANOVA) and Student’s tests. For statistical

significance p < 0.05 was selected such as criterion.

3. Results and discussion

In  this work, most critical parameters were investigated and

special attention was devoted to the effect of each parameter on the

physical and colloidal properties of the obtained particles such as

size, zeta potential and morphology. Generally, the average size of

obtained particles from preformed polymers is in between 250 and

500 nm.  From the other hand, chemical structure of  used polymer

and stabilizing agent are the governing parameters of  the poly-

meric particles zeta potential [2]. Furthermore, medium pH is also

a critical factor in nanoparticles zeta potential.

3.1. Acetone evaporation technique effect

To investigate the evaporation method effect on particle size and

zeta potential, employed volume of organic solvent was  removed

through two different approaches of rotavaporation: (i)  as usual,

used acetone was  removed from the product by rotavapor under

decreased pressure and (ii) the employed acetone was removed

under horizontal laminar flow with continuous magnet stirring

and ambient temperature during 5  h (Büchi Rotavapor R-124)

(25–30 ◦C). Consecutively, particles size was measured. The parti-

cles size was significantly enlarged from 175 to 297 nm by  altering

the acetone evaporation method from rotavporation to ambient

temperature (p < 0.05). From one hand, the size of obtained par-

ticles through ambient temperature evaporation was larger. From

the other hand, this method of organic phase or acetone evapora-

tion  took more time. It was pointed out that because of these two

reasons rotavapor is a suitable method to remove acetone in order

to obtain particles with smaller size. Furthermore, for acetone evap-

oration in ambient temperature with comparison to the rotavapor

more time is needed.

The  zeta potential of prepared particles was  also determined

and examined after acetone evaporation through rotavapor and

ambient temperature with magnetic stirring as explained. Particles

zeta potential when rotavapor was used was found −6.86 mV and

while ambient temperature was employed was  −7.07 mV  (p < 0.05).

Therefore, it  could be  concluded that acetone evaporation tech-

nique in opposite to the particle size, has no significant effect on

particles zeta potential.

3.2.  Organic phase addition behavior effect

To study addition method of  organic phase influence on par-

ticle size, three methods were employed for the preparation of

particles. Once, the organic phase was added directly at once on

aqueous phase. Then, instead of  disposable syringe for organic

phase injection burette was also used. It should bear in mind that

before starting of the experiment, debit of burette was adjusted

with syringe, number of drops flow per minute was counted and

that was the  same with used syringe for injection (50 drops per

minute or 2.5 ml/min). Here, 4  samples were prepared respectively

with each method; at  the end size of the obtained particles was

examined and evaluated. Then, the particle size and zeta potential

of the obtained particles via all three methods was measured. It

was observed that the size of particles obtained through the direct

addition of organic phase technic was  significantly larger than the

particles which were obtained by  the organic addition via syringe.

Particles prepared through direct addition of organic phase had a

size of 280 nm.  While the particle size was 175 nm when syringe

process was used, while particles size was  253 nm  when burette

was used organic phase addition, which shows a  significant parti-

cle size increase (p <  0.05). In comparison with syringe, burette use

for addition has its own drawbacks such as complicate adjustment

of precise addition debit and possibly air bubble existence in the

burette which leads to select preferably syringe for organic phase

injection than burette. In addition, through syringe the prepared

particles size was smaller. According to our best of  knowledge when

organic phase add at once or by burette the speed of  organic phase

diffusion toward aqueous phase would be slowly than adding of

organic phase addition by syringe. It should point out that there

was not considerable change in  provided particles zeta potential.

3.3.  Stabilizers nature effect

To assess stabilizer nature influence on prepared particle size, 3

types of formulations were employed in  order to obtain PCL based

nanoparticles. PVA and Tween
®
80 each one separately and PVA

and Tween
®
80  together were used in order to  stabilize optimally

the dispersion system and consecutively size of  the obtained par-

ticles was evaluated to point out the best type of  stabilizer. To see

their synergistic effect and to find the proper stabilizer type, 4  sam-

ples firstly, just with PVA secondly with Tween
®
80  and at the end

with both of these stabilizer particles were prepared. The small-

est particles were obtained by  usage of  stabilizers mixture. In the

case of  PVA alone, particles with 248 nm diameter, with Tween
®
80

alone particles size around 191 nm diameter but with both PVA and

Tween
®
80 particles with 175 nm diameter, were obtained. Particle

size reduction by employing both stabilizers PVA and Tween
®
80

in this study, was significant (p <  0.05).

As  PVA and Tween
®
80  each one  separately and PVA and Tween

®

80 together were employed to stabilize the dispersion during the

formation. It is interesting to notice that without any stabilizer
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Table 1
Reference PCL based nanoparticles composition and operating condition.

Organic Phase Aqueous phase Stirrer

speed  (rpm)

Organic phase

injection rate

(ml/min)PCL

concentration

(mg/ml)

Acetone volume

(ml)

Tween
®
80

concentration

(mg/ml)

Milli-Q  water

volume (ml)

PVA

concentration

(mg/ml)

8 25  10.6 50 5  500 2.5
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Fig. 1. PCL concentration relation with particle size.

agent, the used PCL polymer is not able to form precipitated poly-

mer under spherical form. This is necessary to use stabilizer with

well-defined ratio in  order to obtain sterically stabilized particles

or particles stabilized via  depletion. Regarding the zeta potential of

the prepared particles, it  was found to be in between −2  and −8  mV

irrespective of used non charged stabilizer agent.

3.4. The influence of polymer concentration

The influence of PCL amount in the used formulation on the

final particle size, size distribution and zeta potential was  inves-

tigated. Obviously, without taking into account the other operating

parameters such as polymer nature and other used ingredients of

formulation, solvent displacement technique is extremely sensi-

tive to changes in  polymer concentration. Furthermore, polymer

concentration has a critical effect on the encapsulation efficiency

as well. However, in the present research, blank particles were

assessed so just particle size was studied. To this end, various

concentrations of  PCL such as 4  mg/ml, 8 mg/ml, 16 mg/ml  and

24 mg/ml  were employed to prepare PCL based nanoparticles.

Polymer concentration effect is shown in Table 2. In this study

particle size was respectively increased from 152 nm to 258 nm

as reported in Fig. 1. Obtained data showed that increase of PCL

amount increased significantly particle size (p <  0.05).

The findings of this investigation are in accordance with what

reported by Chorny et  al. in 2002 [27] and PCL concentra-

tion increase in particles preparation could enlarge particles size

through boosting the organic phase viscosity [27]. Moreover, with

modification in PCL concentration particles size standard deviation

values did not enlarge significantly that shows the less polydisper-

sity among particles.

In  this part, for the study of polymer concentration influence

on particles zeta potential, all parameters were fixed and only the

amount of polymer used in the formulation was  varied. The zeta

potential of the obtained particles was investigated after follow-

ing the same process such as for PCL concentration influence study

on the particle size. Particles zeta potential of prepared particles

with changes of PCL concentration from 4 mg/ml  to 24 mg/ml  was

altered as well from −7.0 mV  to −6.51 mV  which was  insignificantly

changed (p < 0.05). Thus zeta potential change by PCL concentration
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Fig. 2. PVA concentration effect on particle size.

alteration could be negligible in polymer based particles prepara-

tion.

3.5. Stabilizer (Tween
®

80) concentration effect

In  this work, in order to have stable particles dispersion, two

stabilizers which include PVA and Tween
®
80 were used. In fact,

used stabilizers concentration influence on particles size was exam-

ined for each one separately. For the study of this parameter 4

samples with different concentrations of Tween
®
80 (2.65 mg/ml,

5.3 mg/ml, 10.6 mg/ml and 21.2 mg/ml) were prepared. It was

found that  as Tween
®
80 concentrations increased from 2.65 mg/ml

up to 10.6 mg/ml  the particle size gradually decreased from 224 nm

to 185 nm.  Prepared particles size could decrease because of  aque-

ous phase viscosity augmentation by Tween
®
80 and also due to

the fast  stabilization of the particles during the  nucleation step. It

should bear in mind that this particles size decreasing was  going up

to the 10.6 mg/ml  concentration of  Tween
®
80. Contrary, if Tween

®

80 concentrations cross this limit particles size could also increase.

So, obtained results allow us to declare that Tween
®
80 high con-

centrations improving particles size decrease to the certain limits

while Tween
®
80 higher concentrations than this limit, would have

the opposite effect on the particle size.

To figure out Tween
®
80 concentration and zeta potential rela-

tion, the same procedure such as for particle size study was

followed. An increase of  Tween
®
80 amounts led insignificant zeta

potential changes means from − 7.95 mV  to − 6.73 mV  (p <  0.05).

3.6. Stabilizer (PVA) concentration effect

The effect of  PVA concentration ranging from 2.5 mg/ml,

5 mg/ml, 10  mg/ml and 20 mg/ml  was  investigated while other for-

mulation ingredients concentration was  stable in all experiments

(see Table. 1). The obtained results are reported in Fig. 2. Size of

prepared particles was assessed. It was found that increasing PVA

amount in  the formulation increased significantly particle size from

169 nm to 283 nm  (p <  0.05). The findings of  this investigation are

in agreement with the results tendency reported recently by Con-

tado et al. in 2013 [28] which could be attributed to the deposition

of PVA on the surface of nanoparticles.
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Table  2
Process and formulation parameters effect on particles size. Changes in  formulation or process are shown in bold values.

Investigated

parameters

Organic phase Aqueous phase Stirrer  speed

(rpm)

Organic  phase

injection rate

(ml/min)

Mean  particle

size  (nm)

Standard

Deviation

(SD)PCL

concentration

(mg/ml)

Acetone

volume  (ml)

Tween
®
80

concentration

(mg/ml)

Milli-Q  water

volume (ml)

PVA

concentration

(mg/ml)

Stirring speed

8  25 10.6 50 5 75 2.5 211 1.27

8  25 10.6 50 5 150 2.5 198 2.32

8  25 10.6 50 5 300 2.5 194 1.49

8  25 10.6 50 5 600 2.5 172 2.25

Organic phase

injection rate

8  25 10.6 50 5 500 1  195 1.34

8  25 10.6 50 5 500 5  194 1.05

8  25 10.6 50 5 500 9  189 1.37

8  25 10.6 50 5 500 13 197 3.62

PCL  concentration

4  25 10.6 50 5 500 2.5 152 1.15

8  25 10.6 50 5 500 2.5 175 1.15

16  25 10.6 50 5 500 2.5 210 1.97

24  25 10.6 50 5 500 2.5 258 2.50

PVA  concentration

8  25 10.6 50 2.5 500 2.5 169 1.72

8  25 10.6 50 5 500 2.5 193 3.08

8  25 10.6 50 10 500 2.5 280 2.12

8  25 10.6 50 20 500 2.5 283 4.75

Tween
®
80

concentration

8  25 2.65 50 5 500 2.5 224 1.96

8  25 5.3 50 5 500 2.5 210 2.80

8  25 10.6 50 5 500 2.5 185 1.58

8  25 21.2 50 5 500 2.5 210 3.79

Acetone volume

8  12.5 10 50 5 500 2.5 199 3.21

8  25 10 50 5 500 2.5 198 1.50

8  50  10 50 5 500 2.5 216 1.87

8  75 10 50 5 500 2.5 2377 8.91

Milli-Q water

volume

8  25 10 25 5 500 2.5 345 3.95

8  25 10 50 5 500 2.5 194 2.98

8  25 10 75 5 500 2.5 189 2.75

8  25 10 100 5 500 2.5 181 ± 2 1.11

Table 3
Effect  of PVA concentration on particles Zeta potential.

PVA concentration (mg/ml) 2. 5  5  10 20

Zeta potential (mV) −7.38 −6.75 −5.92 −4. 45

To point out the PVA concentration effect, as Tween
®
80 effect

study on particles zeta potential, different quantities of PVA was

employed for the preparation of 4  samples PCL based particles

(see Table 3). According to the found results, while PVA concentra-

tion gradually increased from 2.5 mg/ml  to 20.0 mg/ml prepared

particles zeta potential was also insignificantly decreased from

−7.38 mV to −4.45 mV  (p < 0.05). This change is related to the PVA

adsorption on PCL based nanoparticles surface that reduce nega-

tive charge numbers. The same observations have been reported

by Lankveld and Lyklema in 1972 [29], which are important to take

into account. The reason of  the fact that obtained nanoparticles had

a negative charge is the presence of Tween
®
80 as surfactant in the

formulation.

3.7. The influence of organic phase injection rate

To assess the organic phase injection rate, 4 samples with

organic phase injection rate of 1  ml/h, 5  ml/h, 9 ml/h and 13  ml/h

were prepared. The size of  all obtained particles was  measured in

order, to find out the effect of this parameter. It was found that with

increase of organic phase injection rate from 1  ml/h to 9 ml/h par-

ticle size was respectively decreased from 195 nm to the 189 nm.

It should point out that the decreasing of particle size was going to

the 9 ml/h organic phase injection rate after this limit, for 13 ml/h

particle size was increased as well which is not interesting in the

present study. Moreover, 13 ml/h organic phase injection rate could
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Fig. 3. Effect of stirring speed on particle size.

throw water outside of beaker in which there was aqueous phase

while in normal preparation process organic phase was flowing by

syringe directly to the aqueous phase.

The obtained particles zeta potential with organic phase injec-

tion rate of  1  ml/h, 5 ml/h, 9  ml/h, 13  ml/h in 4 samples were

determined. Zeta potential of the prepared particles was changed

from −8.03 to 1 ml/h flow  to −7.77 with 13 ml/h debit. It could

be concluded, that organic phase injection rate variation cannot

change significantly particles zeta potential (p < 0.05).

3.8. The stirring speed effect

To study influence of stirring speed on the size of obtained par-

ticles, 4  samples under different stirring speed (75 rpm, 150 rpm,

300 rpm and 600 rpm) were made (see Fig. 3).  At 75  rpm, the aver-

73



W.  Badri et al. / Colloids and  Surfaces A: Physicochem. Eng. Aspects 516 (2017) 238–244 243

345

194 189 181

0

50

100

150

200

250

300

350

400

25 50 75 100

M
ea

n 
pa

r�
cl

e 
si

ze
 (n

m
)

Aqu ous phase volume (ml)

Fig. 4.  Effect of aqueous phase volume on particle size.

age particle size was 211 nm while at  600 rpm stirring rate, they

were significantly reduced to 172 nm (p <  0.05). It seemed, that

mass transfer and diffusion degree, which persuade too homo-

geneous supersaturation and fast  nucleation for smaller particles

production, improved via high stirring speed as reported by Ali et  al.

in 2009 [30]. According to Ali et al. [30], up to a specific limit par-

ticle size could increase with increasing stirring speed and above

that stirring rate won’t be able to increase prepared particle size.

Nerveless, in our case there was more foam formation because of

further stirring speed which could disturb the evaporation process

of acetone.

Furthermore, as for the particle size study, zeta potential of all 4

samples under different stirring speed (75  rpm, 150 rpm, 300 rpm

and 600 rpm) were determined. The zeta potential of particles

in stirring rate of  75  rpm to 600 rpm was almost constant from

−6.83 mV  to −6.18 mV.  In brief, zeta potential of  prepared particles

was insignificantly increased with higher stirring rates (p <  0.05).

3.9. The organic phase volume effect

For investigation of  organic phase volume influence on the  par-

ticle size, the volume of acetone (containing constant PCL polymer

amount) was changed from 12.5 ml  to 75 ml  into the preparation

of 4 samples. Particle size of  all four samples has been examined.

According to the obtained results particles size was also signifi-

cantly increased from 199 nm to 2377 nm  (p < 0.05). Particle size

augmentation reason could be large drop formation which changes

subsequently to the particle. Furthermore, in  the study of acetone

volume effect, particles size had a high standard deviation values

in comparison with all other parameters that were studied in this

work. This could figure out the polydispersity significance of  parti-

cles.

For study of organic phase volume effect on zeta potential, as for

particle size study volume of acetone was changed from 12.5 ml

to 75 ml  into the preparation of  4  samples. Subsequently, parti-

cles zeta potential was  determined and it was  found that with

mentioned volume changes respectively particles zeta potential

changed insignificantly from −5.81 to −6.46 mV  (p <  0.05).

3.10. The aqueous phase volume effect

To assess the impact of aqueous phase volume on the particles

size, 4  preparations with various volumes of  25 ml, 50  ml, 75 ml  and

100 ml Milli-Q water were provided (see Fig. 4). In this  study, it  was

found that particle size was, decreased significantly from 345 nm to

181 nm (p <  0.05). The reasons of obtaining smaller particles with

high aqueous volume are the water-miscible solvent rapid diffu-

sion and nucleation. The found results of  this parameter study is in

accord with was obtained by Miladi et al. in 2015 [31].

To assess aqueous phase volume effect on the particles zeta

potential, 4 preparations with various volumes of 25  ml, 50 ml,

75 ml  and 100 ml  Milli-Q water, were provided. In this study, it

was found that with increasing of aqueous phase from 25  ml  to

100 ml particles zeta potential was insignificantly decreased from

−5.46 mV  to −7.05 mV  (p <  0.05). Thus, aqueous phase volume has

not an important effect on the zeta potential of PCL based particles

through solvent displacement method. According to the findings

of this research through transmission electron microscopy (TEM)

images, obtained nanoparticles by the optimized formulation have

spherical and regular form (See Fig.  5).

4. Conclusion and perspectives

Solvent  displacement method is an efficient approach for parti-

cles preparation, thanks to several critical advantages: production

of particles with high reproducibility in nano-scale range using of

low toxic ingredients (surfactants or organic solvents). Prepared

particles properties such as size and zeta potential could play

important role in the particles stability and biological activity that

is the reason why  nanoparticles formulation should be  optimized.

In the present study, authors focused on the study of  the vari-

ables attributed to the formulation and the process of nanoparticles

preparation. The investigated parameters are evaporation tech-

nique, organic phase addition method, stabilizer nature, polymer

concentration, Tween
®
80 and PVA concentration, organic phase

injection rate, stirring speed, organic and aqueous phases volume.

In brief the principal results of this investigation are: (a) acetone

evaporation is better by  rotavapor than through ambient tempera-

ture under magnetic stirring, (b) organic phase injection via syringe

could provide particles with better properties than organic phase

addition by  burette and syringe technique is more simple than

burette, (c)  it was  found to use both PVA and Tween
®
80 together

as stabilizers but with lower quantities in order to obtain more

stable particles, particles size could increase significantly through

Fig. 5. TEM images of PCL particles.
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PCL concentration increasing, (d) augmentation of  PVA concentra-

tion also significantly increase the size of the particles. In addition,

PVA increase has opposite influence on particles zeta potential, (e)

with higher rate of organic phase injection obtained particles was

decreased. The stirring higher speed also significantly decreased

the particles diameter but could not have any effect on particles

zeta potential. Moreover, large aqueous phase volumes could sig-

nificantly decrease prepared particles size. Further studies could

complete this work, with adding active molecule into the blank

nanoparticles which have prepared here and to investigate the rela-

tion of studied parameters here with active ingredient existence in

blank optimized formulation.
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Summary 

Non-Steroidal Anti-inflammatory Drugs (NSAIDs) as a mostly used drugs category bring together all 

the drugs that reduce fever, pain and inflammation. Indeed, indomethacin (IND) is a poorly water-

soluble NSAID that is a weak acid. In addition, IND is a potent anti-inflammatory drug that has been 

shown a satisfied efficiency for an external application. Nevertheless, IND because of its mechanism 

of action (Cox enzymes inhibition) induces certain gastro-intestinal side effects such as 

gastrointestinal ulcers or bleeding. To overcome the side effects associated with indomethacin usage, 

its taken amount can be reduced target drug delivery to the interest area can be designed. For the 

protection of drug molecules from the liver first pass effect and control of drug delivery ratio, skin can 

be employed for the drug administration. However, skin permeability towards drug molecules is lower 

than digestive system mucous membrane. Therefore, skin despite of its important role in the protection 

of body from the outside can play a role of a barrier for the delivery of drug. A number of chemical 

and physical cutaneous penetration enhancement strategies are studied for the tackling of this hurdle. 

Though mentioned techniques irritate, damage, and disorder the function of skin. Hence, to keep skin 

status and functions normal nanoparticles based drug delivery to and through the skin would be the 

most appropriate option. In nanoprecipitation method that was described in earlier experiment part 

certain polymers especially biodegradable polyesters such as polylactide (PLA), polylactide-co-

glycolide (PLGA) and polycaprolactone (PCL) are used. As in the previously carried out experiment 

part formulation and process related parameters have been studied. Therefore, this research is targeted 

for the preparation of polycaprolactone based nanoparticles containing indomethacin to offer the 

topical effective anti-inflammatory therapy of inflammatory diseases. Nanoparticles were prepared 

under the same condition as optimized in early carried out experiment, for formulation here just 

indomethacin has added else it is the same formulation as finalized formulation. The similar 

formulation is employed, this work can be explained in three points: (a) preparation of nanoparticles 

loaded with indomethacin, (b) characterization of prepared nanoparticles in terms of size, surface 

charge, morphology, encapsulation efficiency, stability and physical state, (c) evaluation and to 

confirmation of skin penetration ability of prepared nanoparticles, an ex-vivo study was performed on 

fresh human skins. Oppositely to the already works, in this research non-invasive method has been 

used for the enhancement of indomethacin dermal drug penetration. Ex-vivo skin penetration study 

was carried out on fresh human skin and Core Shell Evidots (CSE) was used as fluorescent agent. In 

fact, this fluorescent agent in biomedical applications are superior to traditional organic dyes since 

CSE can emit the whole spectrum, are brighter and have little degradation over time. In brief, PCL 

based particles loading IND have been successfully prepared and characterized. The results provided 

by DSC and FTIR studies of NPs show that no chemical interaction between drug and polymer in the 

formulation was occurred. The designed nanoparticles were pointed out stable for one month under 

storage temperatures of 4°C, RT, and 40°C. The pH of prepared colloidal dispersion was ranged 
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between 4 and 6. This study reinforces indomethacin loaded nanoparticles penetration potential as a

modern topical formulation that would decline frequency of administration, side effects and 

consecutively patients compliance. 
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ABSTRACT
Purpose This work focused on the preparation of
polycaprolactone based nanoparticles containing indometha-
cin to provide topical analgesic and anti-inflammatory effect
for symptomatic treatment of inflammatory diseases.
Indomethacin loaded nanoparticles are prepared for topical
application to decrease indomethacin side effects and admin-
istration frequency. Oppositely to already reported works, in
this research non-invasive method has been used for the en-
hancement of indomethacin dermal drug penetration. Ex-vivo
skin penetration study was carried out on fresh human skin.
Methods Nanoprecipitation was used to prepare nanoparti-
cles. Nanoparticles were characterized using numerous tech-
niques; dynamic light scattering, SEM, TEM, DSC and
FTIR. Regarding ex-vivo skin penetration of nanoparticles,
confocal laser scanning microscopy has been used.
Results The results showed that NPs hydrodynamic size was
between 220 to 245 nm and the zeta potential value ranges
from −19 to −13 mV at pH 5 and 1 mM NaCl. The encap-
sulation efficiency was around 70% and the drug loading was
about 14 to 17%. SEM and TEM images confirmed that the
obtained nanoparticles were spherical with smooth surface.
The prepared nanoparticles dispersions were stable for a pe-
riod of 30 days under three temperatures of 4°C, 25°C and
40°C. In addition, CLSM images proved that obtained NPs
can penetrate the skin as well.

Conclusion The prepared nanoparticles are submicron in na-
ture, with good colloidal stability and penetrate the stratum
corneum layer of the skin. This formulation potentiates IND
skin penetration and as a promising strategy would be able to
decline the side effects of IND.

KEY WORDS anti-inflammatory . indomethacin .
nanoparticles . polycaprolactone . skin penetration

ABBREVIATIONS
COX enzyme Cyclooxygenase enzyme
CLSM Confocal laser scanning microscopy
DSC Differential scanning calorimeter
EE Encapsulation efficiency
FTIR Fourier transform infrared spectroscopy
IND Indomethacin
NPs Nanoparticles
NSAIDs Non-Steroidal Anti-inflammatory Drugs
PCL Polycaprolactone
PVA Polyvinyl alcohol
RT Room temperature (25°C)
SEM Scanning Electron Microscopy
TEM Transmission Electron Microscopy

INTRODUCTION

Non-Steroidal Anti-inflammatory Drugs (NSAIDs) are from
the most used drugs category in the world. Indomethacin
(IND) as a NSAID decreases fever, pain and inflammation.
IND is a poorly water-soluble drug which is a weak acid like
the majority of NSAIDs (Fig. 1). Moreover, IND is a potent
anti-inflammatory drug which has been shown an acceptable
efficiency for an external application (1,2). However, IND
mechanism of action is associated with the presence of
gastro-intestinal side effects (2). Indeed, these adverse effects
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are due to COX-I enzymes inhibition (3,4). IND such as most
of NSAIDs either causes or intensifies gastrointestinal ulcers or
bleeding. Furthermore, IND has a short half-life (4–5 h) (5). In
fact, to decrease the side effects of Indomethacin (e.g. stomach
or intestinal bleeding, ulcers or renal function impairment), it
is possible to reduce the amount to be taken and to provide
target drug delivery to the interest area (6). Skin as a route of
drugs administration could be used to control the delivery
ratio of active agents for a long period and decline the dosage
of drugs thanks to the safety of drugs from liver first pass effect
(7). Nevertheless, drugs dermal permeability in comparison with
mucousmembrane of digestive tube is low therefore; skin plays a
role of biologic protector against foreign substance entrance to
the body. Stratum Corneum, due to its drug molecules low
permeability, could be an obstacle for the development of trans-
dermal drug delivery systems. In order to overcome this hurdle,
several chemical and physical cutaneous penetration enhance-
ment approaches were known; which is associated with the skin
irritation, damage and consecutively dermal barrier function
disorders. Therefore, it would be more interesting to deliver a
drug and meanwhile maintain the skin barrier function normal.
For this reason skin drug delivery with aid of NPs could pave the
way for obtaining this objective (8). Since long time before nano-
technology has attracted a considerable attention towards drug
delivery application (9). Encapsulation plays an important role
in overcoming the obstacles such as low bioavailability, poor
stability, and unpleasant organoleptic properties of several drugs
(10). This reality of tackling the constraints that faced conven-
tional dosage forms attracted a special attention. The hydropho-
bicity or hydrophilicity properties of drugs are the important
criteria for the selection of a suitable encapsulation technique
(11). Nanoprecipitation is an encapsulation technique named
also solvent displacement or interfacial deposition.
Nanoprecipitation method, which was first developed by Fessi
et al. (12), has been widely used for the encapsulation of hydro-
phobic drug molecules (nanocapsule or nanosphere forms). The
solvent phase mainly involve film-forming substances, drug, li-
pophilic surfactant, oil and a drugmolecule solvent or oil solvent
(if it is needed). Moreover, it is possible to use natural, synthetic
or semi-synthetic polymers as film-forming materials. To pre-
vent prepared nanoparticles aggregation, surfactants have to be
added to the formulation (13). In this technique certain polymers
especially biodegradable polyesters such as polylactide (PLA),

polylactide-co-glycolide (PLGA) and polycaprolactone (PCL),
have been used. To obtain nanoparticles by nanoprecipitation
method, solvent and nonsolvent phases are needed (12).
Furthermore, in this technique ethanol, acetone, hexane, meth-
ylene chloride and dioxane are from the mostly employed sol-
vents. Generally, solvent and nonsolvent phases are called re-
spectively organic and aqueous phases (13,14). Polycaprolactone
(PCL) is a biocompatible and biodegradable polymer which has
been employed to encapsulate certain drugs for the purposes of
bioavailability improvement, targeting and sustained delivery.
Biodegradable polymers do not require to be removed from
the body after application (15). Moreover, PCL has been widely
used for drug delivery purposes (16).

Thus, in this study efforts were made to design a new drug
delivery system in order to afford an effective local anti-
inflammatory therapy by the aid of nanotechnology possessing
the already mentioned advantages. The aim of the preformed
work could be explained from three different points of views.
To optimize formulation and operating procedure for PCL
based blank nanoparticles preparation a systematic study has
already been done by Badri et al. (17). Firstly, PCL based NPs
loaded with IND for topical application, have been prepared.
Secondly, obtained nanoparticles were characterized in terms
of size, surface charge, encapsulation efficiency, morphology,
physical state and stability. Finally, to assess and to prove the
skin penetration capacity of prepared nanoparticles, an ex vivo
study was performed on fresh human skins.

MATERIALS AND METHODS

Materials

Polycaprolactone (Mw = 14, 000 g/mol) that was used as wall
material, polyvinyl alcohol (PVA) (Mw = 31, 000 g/mol) and
polysorbate 80 (Tween® 80) (Mw= 1, 310 g/mol) which were
employed as stabilizing agent were purchased from Sigma-
Aldrich, Germany. IND such as core materials was supplied
by VWR. Acetone that was used as solvent for PCL and IND
was provided by Laurylab, France.

Methods

Nanoparticles Preparation

Indomethacin loaded NPs were obtained via nanoprecipitation
method as described by Fessi et al. (12). The encapsulation was
performed in two separate steps. In fact, for organic phase
preparation, 200 mg PCL with the aid of mild heat and mag-
netic agitation were dissolved in 25ml acetone then 40mg IND
was also added. From the other hand, 5 mg PVA was dissolved
with the aid of mild heat in 50 ml Milli – Q water and then
mixed by magnetic agitation with 135 mg Tween - 80® (see

PolycaprolactoneIndomethacin

Fig. 1 Chemical structures of Indomethacin and Polycaprolactone.
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Table I). Consecutively, the organic phase containing IND,
PCL and acetone was added dropwise to the aqueous phase
that was comprises PVA, Tween – 80® and Milli-Q water.
The evaporation of acetone was carried out subsequently via
Buchi Rotavapor R-124® (under high temperature and re-
duced pressure conditions).

Characterization of Nanoparticles

Nanoparticles size, zeta potential, morphology; physical status
and interaction of drug and polymer with FTIR, DCS, and
stability and encapsulation efficiency were assessed.

Particle Size and Zeta Potential Measurement

To measure colloidal dispersions size and zeta potential,
Malvern particle size analyzer using dynamic light scattering
(Zetasizer –Nano ZS, Malvern instruments limited, UK) was

used. The NPs were dispersed in a 1 mM NaCl solution pre-
vious to each measure. All measurements were performed in
triplicate at room temperature (25°C).

Encapsulation Efficiency and Drug Loading

In order to determine the encapsulation efficiency, encapsu-
lated IND (within carrier) and free IND should be separated.
Thus, obtained dispersion was subjected to centrifugation at
15, 000 rpm for 30 min. The quantity of IND loaded in NPs
was determined by ultraviolet spectrophotometer UV-1800
(Shimadzu, Japan) via direct method. IND amount was mea-
sured at λ= 318 nm wavelength following of analytical meth-
od validation. The quantity of encapsulated drug was deter-
mined by dissolution of precipitated NPs in acetone. Drug
loading was indicated as the encapsulated drug amount to
the polymer quantity ratio. The following equations were used
to calculate the encapsulation efficiency and drug loading:

Encapsulation ef f iciency% ¼ Amount of encapsulated drug
Initial amount of drug used in formula

� 100

Drug loading% ¼ Added drug −Free Unentrapped drugð Þ
Polymer amount

x 100

Particles Morphology and Surface Characteristics

To examine nanoparticles surface morphology, shape and
appearance, Scanning Electron Microscopy (SEM) and
Transmission Electron Microscopy (TEM) have been used.
Scanning Electron Microscopy study of NPs morphology as-
sessment was performed with a FEI Quanta 250 FEG micro-
scope at the BCentre Technologique des Microstructures^
(CT μ) under a 10 kV accelerating voltage (Claude Bernard
University Lyon 1, France). For the preparation of SEM sam-
ples NPs suspension was diluted in 1:1, 1:2, and 1:4 propor-
tions withMilli-Q water. Subsequently, diluted suspension con-
taining NPs was dropped by a micropipette on a flat metallic
holder and left to dry in ambient temperature for 12 h. The
coating of samples has been carried out under vacuum via
cathodic sputtering in the presence of platinum (10 nm).
However, for NPs shape evaluation TEMhas been performed

via Philips CM-120 Transmission electron microscope
(CMEABG, Claude Bernard University Lyon 1, France) by
120 kV accelerating voltage. By micropipette a drop of NPs
suspension was diluted in 2 ml of Milli-Q water and then one
drop of it placed on carbon-coated copper grid. The over
needed NPs suspension has been thrown out via blotting the
grid with filter paper and posed NPs suspension on the grid
dried before TEM study at room temperature.

Fourier Transform Infrared Spectroscopy (FTIR)

For the chemical description of drug molecule structure, poly-
mer and NPs FTIR analysis was done. Attenuated total reflec-
tion (ATR) FT-IR (IS50, Thermofisher) was used to study
pure powder of IND, PCL and loaded NPs in a comparative
manner.

Table I Nanoparticles Preparation Ingredients and Operating Condition

Organic phase Aqueous phase Operating condition

PCL
concentration
(mg/ml)

Acetone
volume (ml)

Indomethacin
concentration
(mg/ml)

Tween – 80
concentration
(mg/ml)

Milli – Q water
volume (ml)

PVA
concentration
(mg/ml)

Stirrer speed
(rpm)

Organic phase
injection speed
(ml/min)

4 25 0,8 2,7 50 0,1 300 9

Drug Loaded Polymeric Nanoparticles
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Differential Scanning Calorimeter (DSC) Analysis

To evaluate the physical status and interaction of drug and
polymer in formulation DSC study was performed. For this
end, colloidal dispersion was centrifuged to obtain two phases
of supernatant and precipitation. Then supernatant part has
been removed and NPs (precipitation) were dried in hold and
consecutively subjected to thermal analysis. Drug loaded NPs,
blank NPs and drug alone were taken as analytical samples for
the DSC study. Indeed, IND DSC scan was employed as a
control. Differential scanning calorimeter Q200 (TA instru-
ments, USA) was utilized as instrument for test. A nitrogen
purge of 50mL/min was employed for all measurements. The
heating rate was 10°C/min and the temperature range was
20–300°C. Hermetic aluminium alloy pans were used.

Nanoparticles Skin Penetration Study

The confocal laser scanning microscopy (CLSM) is a non-
invasive imaging approach that could be employed to provide
images based on the fluorescence excitation. In addition,
CLSM would be used to visualize the distribution of NPs
containing drug molecules in different biological tissues
(18,19). To obtain CLSM images, a light with a precise wave-
length should excite fluorophore (fluorescent agent), endure its
excited state only for a few nanoseconds and soon via emitting
of longer wavelength drops back to the ground state.
Fluorescent agent value of quantum efficiency value (QE)
could explain the intensity of emitted energy via fluorescent
agent at its optimum wavelength of excitation (18,20).

Quantum efficiency value QEð Þ ¼ Emited energy
Absorbed energy

To assess nanoparticles skin penetration, freshly excised
abdominal human skins were used. The skin surface was
cleaned with water, and 100 μl of obtained NPs dispersion
that contained 10 μl of Core shell Evidots in Toluen, were
topically applied. After 24 h of application at room tempera-
ture, biopsies of skin (3 mm in diameter) were realized, frozen
and embedded in Tissue-Tek O.C.T. Cryostat sections
(10 μm) perpendicular to the skin surface were prepared and
mounted on poly-lysine coated slides. Skin sections were
stained with Dapi to visualize cell nuclei. The tissue was ob-
served by confocal laser scanning microscopy (FV1000
Olympus). Laser at 525 nm (green) was used to observe the
localization of Core shell Evidots labeled NPs in the skin. Dapi
stained slides were examined with a 405 nm diode laser.
Green fluorescence intensity and localization of CLSM im-
ages were the two indicators of NPs penetration assessment
through the skin in a comparative manner between fresh hu-
man skins treated with NPs and control fresh human skins
(untreated with NPs).

Stability Study of Nanoparticles

The colloidal stability of dispersions has been studied from
physicochemical and physical aspects. For this end, obtained
NPs were stored for a period of one month in 4°C, RT and
40°C temperature degrees. For the evaluation of physicochem-
ical stability, nanoparticles EE % and pH under already men-
tioned storage condition was measured while NPs physical sta-
bility was assessed via size, size distribution and zeta potential
measurement. In fact, EE% and colloids dispersion of NPs was
determined once just after NPs preparation and secondly after
30 days of storage in 3 different already mentioned storage
conditions in order to observe the stability of encapsulated
IND beside the colloidal stability of NPs in the dispersion.
The measurements were carried out after each 10 days.
Indeed, chemical structure of polymer, used surfactant and
the pH of the medium play a crucial role in NPs surface charge
or NPs zeta potential (14).

STATISTICAL ANALYSIS

The study data are expressed as mean ± standard deviation
(SD) and analyzed statistically. The values have been analyzed
by ANOVA Analysis of variance. For statistical significance
p < 0.0001 (***), p < 0.001 (**) and p < 0.01 (*) were selected
such as criteria. P-value less than p < 0.01 considered
significant.

RESULTS

Particle Size and Zeta Potential Measurement

Nanoparticles size and zeta potential have been measured in
diluted samples and all measurements were carried out in
triplicate at room temperature (25°C). The size of NPs was
ranged in between 220–245 nm (± 79, 75) and NPs zeta
potential at pH 5 and 1 mMNaCl was found to be in between
−13 and - 19 mV (± 4, 61) (Figs. 2 and 8). Formulated

Fig. 2 Colloidal size dispersions, RT = room temperature (25°C).
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dispersions stability is mainly due to the presence of stabilizer
PVA which induces good depletion stabilization. Negative
zeta potential of NPs could be originated from the carboxylic
end group of PCL which is used as a polymer in the
formulation.

Encapsulation Efficiency and Drug Loading

In this study, nanoparticles encapsulation efficiency was
measured by direct method. Thus, firstly encapsulated
IND (within carrier) and free IND were separated.
Therefore, prepared dispersion was centrifuged at 15,
000 rpm for 30 min. The quantity of IND loaded in
NPs was determined by ultraviolet spectrophotometer
UV-1800 (Shimadzu, Japan). The quantity of encapsu-
lated drug was determined by dissolution of precipitated
NP in acetone. The encapsulation efficiency of IND
loaded nanoparticles was ranged between 70–76% while
its drug loading was limited between 14–17%. It means

that 14 to 17% of nanoparticles weight is composed of
Indomethacin.

Particles Morphology and Surface Characteristics

Indomethacin loaded nanoparticles morphology was visu-
alized by Scanning Electron Microscopy (SEM) and pre-
pared NPs were assessed in terms of surface texture,
shape, inter-particulate bridging presence and smooth-
ness. In addition, to evaluate obtained nanoparticles
shape and appearance TEM analysis was carried out.
It was confirmed by TEM images that prepared NPs
were spherical, properly isolated and had not inorganic
impurities (see Figs. 3 and 4).

Fourier Transform Infrared Spectroscopy (FTIR)

The Fourier transform infrared spectroscopy analysis was also
employed for the characterization of NPs. Usually; the interac-
tion of drug with polymers could lead to identifiable changes in
FTIR spectra (21). Indomethacin, PCL and loaded NPs FTIR
patterns have been shown in Fig. 5. The FTIR spectrum of
pure IND could be seen in Fig. 5(a). In fact, the characteristic
bands of IND revealed free acid carbonyl groups (C = O)
stretching band at 1711 cm−1, C = O amide at 1688 cm−1,
phenolic carbon stretching vibration (C = C stretch vibration)
at 1587 cm−1, O-H stretch vibration at 3380 cm−1 and C–Cl
stretch at 839 cm−1. On the other hand, the characteristic
bands of PCL appeared at 2865 and 2942 cm−1 which is re-
lated to the symmetric and asymmetric aliphatic stretching,
respectively (Fig. 5(b). In addition, the strong characteristic car-
bonyl (C = O) stretching band raised at 1721 cm−1. The C–O
and C–C stretching vibration bands of PCL appeared at
1292.9 cm−1. Also, the symmetric and asymmetric C-O-C vi-
bration bands appeared at 1162 and 1238 cm−1, respectively.

Fig. 3 Transmission Electron Microscopy image of PCL based nanoparticles
loaded with IND, The scale bar represents 1 μm.

(a) 10 μm scale bar (b) 4 μm scale bar (c) 2 μm scale bar

Fig. 4 Scanning Electron Microscopy images of PCL based nanoparticles loaded with IND.
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(a) Fourier transform infrared spectroscopy spectrum of IND powder

(b) Fourier transform infrared spectroscopy spectrum of PCL powder.

(c) Fourier transform infrared spectroscopy spectrum of loaded NPs.

Fig. 5 The fourier transform infrared spectroscopy spectra representation. (a) IND powder; (b) PCL powder; and (c) loaded nanoparticles.
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Differential Scanning Calorimeter (DSC) Analysis

In the present research, DSC study was took place in order to
define the physical state of the formulation (drug and poly-
mer). The obtained DSC curves of loaded NPs, drug-free NPs
and IND powder are represented in Fig. 6. Indeed, IND and
PCL are both hydrophobic substances therefore, it seems
more feasible that IND is either encapsulated inside NPs or
adsorbed on to the surface of NPs.

Nanoparticles Skin Penetration Study

Nanoparticles penetration ability through the skin has
been proved by numerous studies (19,22) and found to
be size, surface charge nature and density and softness
dependent. The cutaneous penetration and localization
assessment of PCL based NPs containing IND were per-
formed by CLSM. From the other hand, encapsulation of
IND has already confirmed by the evaluations of DSC,
FTIR analyses and EE % determination. Furthermore,
PCL based NPs skin penetration could be observed by
comparison of the green fluorescence intensity of treated
skins with NPs and control skins CLSM images (see
Fig. 7). Confocal images revealed higher green fluores-
cence intensity in the various epidermal and dermal layers
after application of PCL based NPs. Nevertheless, they
shown a low background autofluorescence linked to kera-
tin and collagen.

Stability Study of Nanoparticles Dispersion

The colloidal stability of prepared nanoparticles suspension
was evaluated bymeasurementNPs size, size distribution, zeta
potential, pH and EE% as a function of storage period
(30 days) and temperature (4°C, RT and 40°C) (see Fig. 8).

The results in terms of obtained NPs size and zeta potential
were shown that no significant changes have been seen in pre-
pared NPs size, Zeta potential, pH and EE%. Prepared NPs
EE % and drug loading % which have been measured after
preparation were respectively 75% and 15%. Obtained NPs
EE% and drug loading% after 30 days, were respectively (72–
74%) and (14– 15%). Additionally, pH of colloidal dispersions
was observed during 30 days within each 10 days measurement
in all three different conditions of 4°C, RT and 40°C (Fig. 9).

DISCUSSION

NSAIDs are among themainly prescribed drugs classes for the
treatment of different inflammatory diseases. In fact, NSAIDs
consist of 8 groups of drugs. IND is a potent anti-
inflammatory drug molecule which has an adequate efficiency
by the external route. However, IND, via its mechanism of
action and chemical nature, could provoke several side effects
like gastrointestinal ulcers, bleeding and impairment of kidney
function (1–8). This fact underlines the demand for design of
new dermal formulations to tackle such drawbacks and

Fig. 6 DSC thermograms of IND
powder, blank and loaded
nanoparticles.
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(a) Control or untreated skin with nanoparticle 
(60 μm scale bars).  

(b) Treated skin with labeled nanoparticles 
(60 μm scale bars).

(c) Treated skin with labeled nanoparticles
 (60 μm scale bars).  

(d) Treated skin with labeled nanoparticles 
(10 μm scale bars).

(e) Control or untreated skin with nanoparticles
 (50 μm scale bars).

(f) Treated skin with labeled nanoparticles
 (50 μm scale bars).

Fig. 7 Polycaprolactone based IND loaded nanoparticles CLSM depictive images of control and treated fresh human skins with fluorescent labeled nanoparticles.
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decrease administration frequency. Therefore, to provide top-
ical analgesic and anti-inflammatory effect for the symptom-
atic treatment of inflammatory diseases, polycaprolactone
based NPs loaded with IND were prepared. Indomethacin

loaded NPs are expected to be used for topical application.
The zeta potential values of nanoparticles in this study were
not in agreement with what was reported by Tomoda et al. (8)
which could be attributed to the carboxylic end group of PCL.
Moreover, the obtained nanoparticles size was larger than the
nanoparticles size which was prepared by Tomoda et al. (8).
However, this study pointed out that nanoparticles with a size
range of 100 nm - 400 nm had the same potential of dermal
penetration. In addition, Indomethacin suspension as a con-
ventional dosage from particles had considerably larger size
than the prepared nanoparticles in this study (23). However,
Indomethacin suspension was intended for the ocular
application. The results showed that prepared NPs were
suitable in terms of size, size distribution and zeta potential.
Hydrophobic nature of Indomethacin and PCL could in-
crease the encapsulation efficiency due to affinity between
these materials which is not the case in already performed
research regarding Indomethacin encapsulation (8).
Therefore, prepared NPs encapsulation efficiency and drug
loading were considerable. The prepared NPs based on
SEM evaluation, possess submicron size and smooth surfaces
(see Fig. 3). According to the SEM images, some NPs had light
bridges with each other which could be attributed to the PVA
presence in the formulation. In fact, PVA has a sticky nature
and it is crucial to completely remove it from formulation in
order to have NPs clear SEM images. SEM and TEM images
together shows that obtained NPs are spherical, completely
separated and had smooth surfaces. After encapsulation, the
common characteristic FTIR bands of both IND and PCL
were appeared in Fig. 5(c) which confirms the successful en-
capsulation of IND in PCL based NPs. From the matching of
the IND, PCL and loaded PCL based NPs spectra, it can be
pointed out that the IND spectrum is present in loaded NPs
spectrum in the wavelength of 1587 cm−1 and 839 cm−1. All
these results together bring us to the conclusion of the success-
ful encapsulation of IND in PCL (24–26). Indomethacin DSC
curve revealed only one endothermic peak, which is corre-
sponding to the melting point of IND (159.90°C), the same
results was found by Lin et al. (27). In addition, thermal behav-
ior of blank and loaded NPs was characterized by an endo-
thermic peak at respectively 56.65°C and 54.15°C that figure
out the PCL melting point. In this work according to the
thermal studies IND powder, blank and loaded NPs show a
simple eutectic phase diagram. In fact, as shown in Fig. 6,
upon putting IND inside of NPs its endothermic melting peak
was reduced. The melting peak endothermic reduction of
loaded NPs by IND presence could be thanks to either IND
solubilization within carrier and/or heat induced solid state
interaction as well as polymer dilution effect. DSC study
allowed concluding that IND and PCL did not interact with
each other which is demonstrated via FTIR analysis as well.
The pH of the colloidal dispersions was stable during 30 days
and it was found to be in between 4 and 6. The observed

Fig. 8 Stability of PCL based nanoparticles containing IND in terms of size (a)
and zeta potential (b) during one month (30 days) under three different
temperatures of 4°C (black bars), RT (light gray bars) and 40°C (dark gray
bars). The taken results are the average of three measurements, (ns = non-
significant). Statistical analysis: p< 0.0001 noted ***, p< 0.001 noted ** and
p < 0.01 noted *.

Fig. 9 Indomethacin loaded NPs pH during one month (30 days) storage
under three different temperatures of 4°C (black bars), RT (light gray bars) and
40°C (dark gray bars). The represented data are the average of three mea-
surements, (ns = non-significant).
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changes in pH value during 30 days were not significant. The
results showed that there was not significant change in encap-
sulated IND quantity during 30 days of storage. The skin
penetration study of NPs has been done by CLSM on
fresh excised human skins. It is indicated that NPs pen-
etrate through skin when they are directly deposited on
the surface of the stratum corneum. In opposite to the
majori ty of previously performed studies on the
Indomethacin cutaneous formulation, here in this work,
non-invasive dermal penetration enhancement technique
was employed and fresh human skin was used for ex vivo skin
penetration capacity assessment. This mimics better physio-
logical conditions. Consequently, neither physical nor chemi-
cal enhancement approaches was used in this study in order to
prevent disruption of skin normal function. It is revealed that
prepared NPs are capable of penetrating skin barrier; since
dermally applied drugs are safe from the first pass effect so
plasma peak concentration would be increased. Thus, needed
dose of indomethacin to be taken by patient could be de-
creased (1–7) (28). In addition, gastric side effects due to the
direct contact of Indomethacin (weak acid) with gastric
mucus beside their mechanism of action can be
prevented by dermal application of Indomethacin. The
dermal application of such type of formulation is one of
the promising options towards Indomethacin usage in
therapy.

CONCLUSIONS

To conclude, PCL based particles loading IND have been
prepared by nanoprecipitation technique with EE 70–76%
and drug loading 14–17%. In addition, prepared NPs have a
size of 220 nm – 245 nm, and Zeta potential of −13 mV up to
−19mVwhich could increase the permeability of IND into the
skin. Furthermore, DSC and FTIR studies of NPs show that no
chemical interaction between drug and polymer in the formu-
lation has been occurred. The prepared NPs were found stable
for one month under storage temperatures of 4°C, RT, and
40°C. From the other hand the pH of the obtained colloidal
dispersion was at the interval of 4 and 6. This study revealed
Indomethacin NPs penetration potential as a modern topical
formulation which would reduce administration frequency,
side effects and consecutively compliance of patients.
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Summary 

The annual herbaceous plant of Nigella Sativa (black seed or black cumin) that belong to the 

Ranunculaceae family is native to Southwest Asia, North Africa, and Southern Europe. Nigella Sativa 

L. as medicinal plants is considered to be safer for treatment of various diseases. Nigella Sativa L. 

Seeds Oil was used since long time for treatment of diseases in the world. The biological properties of

Nigella Sativa L. Seeds Essential Oil (NSSEO) have well known. Thymoquinone is the most abundant 

element of Nigella Sativa that is typically responsible of NSSEO therapeutic effects. Indomethacin as 

non-steroidal anti-inflammatory drug (NSAID) externally shown a satisfactory efficiency; is a highly 

anti-inflammatory potent drug. However, indomethacin has numerous drawbacks. To deal with these 

drawbacks it is important to decrease the employed indomethacin dosage and accordingly its side 

effects. On the other hand, indomethacin has a poor bioavailability because of its hydrophobic nature 

and water insolubility at skin pH. All above described reasons turned indomethacin a good applicant 

molecule for the encapsulation. In this research nanoprecipitation was used as the encapsulation 

method to design the nanoparticles and poly (ε-caprolactone) was chose as a polymer. Indomethacin 

has previously encapsulated in our already performed experiment. The presence of NSSEO in the 

nanoparticles formulation made this work unique. This research was targeted to extract NSSEO and 

elaborate nanoparticles loaded with indomethacin and NSSEO in order to boost indomethacin 

bioavailability and anti-inflammatory activity and to decline indomethacin taken dosage and its side 

effects. Firstly, Essential Oil of Nigella Sativa has extracted that was then encapsulated with 

indomethacin. Studies such as TEM, DSC and FTIR were performed to find out and confirm the 

structures changes and successful encapsulation of indomethacin and NSSEO accordingly. TEM 

analysis of obtained nanoparticles showed the spherical and regular form of designed nanoparticles, 

these particles revealed a good size distribution. Nanoparticles DSC and FTIR results proved the 

presence of indomethacin and NSSEO within nanoparticles. The size of prepared nanoparticles was 

found to be between (230 nm) and (260 nm) while their zeta potential was ranged from (-20 mV) up to 

(-30 mV). Encapsulation efficiency of designed nanoparticle for indomethacin and NSSEO were 

respectively 70 % and 84 %.  
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A B S T R A C T

Indomethacin has a high anti-inflammatory potential and an acceptable efficiency for external application.
However, indomethacin can cause several side effects. It is crucial to reduce the employed indomethacin dosage
and accordingly associated side effects. Therefore, topical delivery of indomethacin is as an interesting strategy.
Thus, we designed poly (ε-caprolactone) based nanoparticles loaded with the Nigella Sativa L. Seeds Essential Oil
(NSSEO) and indomethacin to enhance analgesic and anti-inflammatory effects of indomethacin. Nanoparticles
were prepared by nanoprecipitation method. Prepared nanoparticles pre-stability study was also carried out.
Nanoparticles size was ranged between 230 nm and 260 nm and zeta potential of nanoparticles was between –
20mV and – 30mV at pH around 6. Encapsulation efficiency of indomethacin and NSSEO within nanoparticles
was respectively 70% and 84% while drug loading of indomethacin and NSSEO were 14% and 5.63% respec-
tively. The size and zeta potential of nanoparticles was not changed significantly within 30 days of pre-stability
investigation. Nanoparticles had a size in nano scale with round shape and a proper stability. Indomethacin and
NSSEO were successfully encapsulated that would boost the anti-inflammatory and analgesic effects of in-
domethacin.

1. Introduction

Nigella sativa L. (black seed or black cumin) belong to the
Ranunculaceae family. Nigella Sativa L. as an annual herbaceous plant is
native to Southwest Asia, North Africa, and Southern Europe. In com-
parison with modern medicines, Nigella Sativa L. as other medicinal
plants is considered to be safe for treatment of various diseases.
Globally, Nigella Sativa L. seeds essential oil was used since the cen-
turies for treatment of different diseases. Nigella Sativa L. Seeds
Essential Oil (NSSEO) biological properties such as: anti-inflammatory,
analgesic, immunomodulatory, spasmolytic, and anti-oxidant has been
well studied. Therefore, the treatment of different diseases such as
rheumatism, bronchitis, asthma etc., are being taken place by the
NSSEO [1]. The main phytochemicals of NSSEO are thymoquinone, p-
cymene, α-pinene, thymohydroquinone, dithymoquinone, linoleic acid
and nigellone [2] [3]. Thymoquinone is the most abundant component
of Nigella Sativa L., which is mostly the responsible of NSSEO ther-
apeutic properties [4]. Based on a research, NSSEO and thymoquinone

strongly inhibited nitric oxide (NO) production and repressed NO
synthase (iNOS), tumor necrosis factor (TNF)-α, cyclooxygenase
(COX)−2, interleukin (IL)−6, and IL-1β expression in lipopoly-
saccharide (LPS)-activated RAW264.7 cells [5]. A gold standard non-
steroidal anti-inflammatory drug (NSAID) molecule named in-
domethacin is used to lessen fever, pain, swelling, and stiffness. In fact,
indomethacin with a satisfactory efficiency for usage into the exterior
part of the body; has a high anti-inflammatory potential [6] [7]. In a
research it was found that Aspirin, indomethacin, and ibuprofen were
more potent inhibitors of COX-1 than COX-2 [8]. Nevertheless, in-
domethacin could raise several side effects such as gastric ulcer,
bleeding at the digestive system. Therefore, it is crucial to avoid in-
domethacin (weak acid) stomach mucosal contact, to reduce employed
indomethacin dosage and consequently its side effects [9]. For instance
it was figured out by a study that gastrointestinal (GI) tract and central
nerveous system (CNS) complaints were prominent after systemic ad-
ministration (oral) than topical application of indomethacin. In addi-
tion, indomethacin topical administration has higher efficacy for

https://doi.org/10.1016/j.jddst.2018.05.022
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athletes in superficial injuries treatment of athletes [10]. For this end,
indomethacin topical delivery could be taken into account as an ap-
proach [11]. Indomethacin is unstable under UV light. Furthermore,
indomethacin is poorly water soluble (∼0.01mg/ml) and is only so-
luble at basic pH (12) at which drug significantly hydrolysis take place.
Therefore, indomethacin poor bioavailability can be attributed to in-
domethacin solubility in the skin pH [12]. These reasons together made
indomethacin a good candidate for the encapsulation. Skin has been
studied as an administration site of drug for its systemic effects, since
systemic therapeutic agents can be delivered for long time with a
controlled ratio. In addition, administered drug on the skin is escaping
and safe from the liver first pass effect, which can decrease the dosage
of intended drug molecule [13]. The low permeability of drug mole-
cules through the stratum corneum has been the limiting factor toward
the development of transdermal delivery system of therapeutic agents.
To tackle this challenge many studies have been reported and certain
cutaneous penetration improvement approaches were found out that
can trigger irritation, damage and successively barrier function com-
plaints in the skin. However, nanotechnology can improve drug skin
penetration without facing skin to the above mentioned problems
[14,15]. Thanks to a study it was found that PCL polymer is a bio-
compatible, and safe plymer for in vivo application [16]. In this study, in
contrary to the majority of previously performed researches, firstly to
figure out the effect of formulation and operating condition related
parameters, a systematic study has been done [17]. Afterwards, within
a separate study indomethacin has encapsulated alone into the poly-
meric carriers [18] in order to compare its characterisitics with the
formulation that contained both indomethacin and NSSEO. On the
other hand, in contrary to the most of previously performed studies,
here noninvasive approaches such as nanotechnology was employed.
These two factors together made this study more valuable in which it
was hypothesized. Nigella Sativa L. Seeds Oil encapsulation together
with indomethacin within the polymeric nanoparticles would enhance
anti-inflammatory activity of indomethacin and decrease indomethacin
side effects. Therefore, here this work is focused on the design and
characterization of PCL based nanoparticle loaded with indomethacin
and NSSEO, for the cutaneous application.

2. Materials and methods

2.1. Materials

Poly(ε-caprolactone) (PCL) (Mw=14, 000 g/mol), polyvinyl al-
cohol (PVA) (Mw=31, 000 g/mol) and polysorbate 80 (Tween® 80)
(Mw=1, 310 g/mol) were purchased from Sigma-Aldrich, Germany.
Indomethacin was provided by George Van Waters and Nat Rogers la-
boratory products distributor (VWR), acetone was purchased from
Laurylab, France. In this work, deionized water was used.

2.2. Methods

2.2.1. Plant material selection
Seeds of Moroccan Nigella Sativa L. (black seed) were obtained from

the local market of Agadir City (Southwest of Morocco). Seeds and
plants were provided following the germination of an aliquot of seeds
that were taxonomically identified and authenticated and a voucher
specimen was deposited at the herbarium of Faculty of Sciences, of Ibn
Zohr University, Agadir, Morocco. Consecutively, seeds were carefully
selected and screened manually, cleaned and washed with water to
remove dust and impurities and then were immediately dried in a
ventilated oven at a temperature not exceeding 40 °C. After drying,
seeds were stored in a sealed jar away from light and moisture.

2.2.2. Extraction of Nigella Sativa L. Seeds essential oil
Dried seeds of Nigella Sativa L. were grounded into fine powder and

immediately subjected to extraction by conventional steam diffusion

(hydrodiffusion and gravity technique) without use of microwave en-
ergy [19] [20] [21]. Briefly, 1 L Pyrex extractor (tank) was loaded with
Nigella sativa L. seeds powder. It was then simply traversed by a con-
tinuous flow of water vapors, coming from a steam generator, at top to
bottom direction. At the bottom of the extractor, a serpentine re-
frigerant allows the condensation of the exiting vapors of water. Finally,
after passing through the serpentine refrigerant, condensed vapors were
collected in a decanter, allowing the accumulation of NSSEO (see
Fig. 1). The extraction was continued up to providing of a constant
volume of NSSEO. Extracted essential oil was immediately dried over
the anhydrous disodium sulfates and kept in an amber flask at 4 °C
temperature until used.

2.2.3. Gas chromatography analysis of Nigella Sativa L. Seeds essential oil
Analysis of NSSEO was carried out by successive use of two kinds of

gas chromatography (GC) apparatus, equipped with two types of ca-
pillary columns:

a Gaz chromatography – flame ionization detector (GC-FID)

The analysis was conducted on an Agilent 7890 GC apparatus
equipped with a split/splitless injection and a FID detector. Injector and
detector temperatures were both maintained at 250 °C. NSSEO 1 μL
volume was injected in split mode (1/120) firstly to the HP-1 GC
column (50m×0.320mm×0.50 μm) under a constant pressure (3
psi) of helium as carrier gas; applied oven temperature program was as
follows: 8 min at 80 °C, increasing to 220 °C at 2 °C/min, from 220 °C to
310 °C at 10 °C/min and finally held isothermally 10min at 310 °C. A

Fig. 1. Schematic diagram of steam diffusion and gravity extraction process of
Nigella sativa L. seeds essential oil (NSSEO).
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second injection was performed on a HP-Innowax GC column
(60m×0.320mm×0.50 μm) under a constant flow of helium
(1.3 mL/min rate) and the temperature program was 2min at 60 °C
temperature, and then increased to 245 °C at 2 °C/min and then held
isothermally for 30min.

b Gaz Chromatography-Mass Spectroscopy (GC-MS)

This analysis was performed on an Agilent 5975C inert XL MSD
equipped with triple axis detector and an autosystem sampler operated
by MSD Chemstation G1701EA software. NSSEO 0.2 μL volume was
injected (in the split-ratio 1/120) and on the previous HP-1 and HP-
Innowax capillary columns, under the same conditions for the GC–FID.
Mass Spectroscopy (MS) energy ionization was set at 70 eV; electron
ionization mass spectra were acquired in scan mode over the mass
ranged 35–450 uma. Injector, interface and ion-source temperatures
were kept at 250 °C degree.

c Identification of NSSEO components

Percentages of NSSEO components were determined based on their
GC–FID peak areas obtained from two capillary columns, without use of
FID response factor correction. Chemical identification of NSSEO
components was firstly started by comparing their GC retention indices
(RI) on non-polar and polar columns (determined by linear interpola-
tion relatively to the retention time of a series of n-alkanes (C5–C30)
injected in the same conditions on the two capillary columns with that
of literature data and those of the add-in-house database of the Institut
des Sciences analytiques (ISA), CNRS, at Villeurbanne, of France.
Secondly, chemical identification was completed and finally confirmed
by computer matching with three commercial mass spectral libraries
(NIST data gateway database 2005; Arômes CNRS version 2012; Wiley)
and with the SCA add-in-house library.

2.3. Nanoparticles preparation

Nanoprecipitation that has developed by Fessi et al. [22], was used
as a method for nanoparticles preparation in this research. A protocol,
which was already provided and studied systematically throughout the
blank nanoparticles preparation [17] has been employed.

2.4. Experimental protocol

The encapsulation of indomethacin and Nigella sativa L. seeds oil
was performed in two separate phases. Indeed, to prepare organic
phase, 200mg PCL under the mild heat and magnetic stirring were
dissolved in 25ml acetone then 40mg indomethacin and 300mg
NSSEO was also added into the solution. To provide the aqueous phase,
5 mg PVA was dissolved in 50ml Milli-Q water with the aid of mild heat
and mixed consecutively under magnetic agitation after PVA complete
dissolution 135mg Tween-80® was also added. Successively, organic
phase containing NSSEO, indomethacin, PCL and acetone was added
dropwise to the aqueous phase (see Fig. 2). Acetone evaporation was
carried out afterwards by Buchi Rotavapor R-124® (under reduced
pressure and high temperature conditions).

2.5. Nanoparticles characterization

The size, zeta potential, morphology, physical status and interaction
of drug and polymer via DSC, FTIR, and pre-stability of nanoparticles
were studied. Furthermore, nanoparticles, fluorescence microscopy,
and encapsulation efficiency were also carried out.

2.5.1. Particle size and zeta potential
For the measurement of nanoparticles size and zeta potential,

Malvern particle size analyzer using dynamic light scattering (Zetasizer

- Nano ZS, Malvern instruments limited, UK) was employed.
Nanoparticles were dispersed in 1mM NaCl solution previous to each
zeta potential measurement in order to provide a conducting medium
for electrophoresis mobility. However, nanoparticles size measurement
was taken place after colloidal dispersion dilution within a 1mL of
distilled water. All measurements were carried out in triplicate at room
temperature (25 °C) and their average was taken as the result.

2.5.2. Fluorescence microscopy study
Fluorescent images were taken using a fluorescence microscope

(Zeiss Axioplan 2 Imaging apparatus, equipped with 10× and
40× lenses and a monochrome camera). To qualitatively assess NSSEO
encapsulation in PCL based nanoparticles, fluorescence microscopy was
utilized. Thus, prior to the encapsulation, fluorescent agent named
quantum dots (QDs-PPs) was added into the organic phase of both
formulations in order to visualize the encapsulated NSSEO in nano-
particles during observation. Then, a droplet of 5 μL from each samples
(nanoparticles with and without NESSO) was deposited onto glass slide,
dried at room temperature and observed by fluorescence light. Prepared
samples were excited firstly with a 550 (± 25) nm band-pass filter
(green light) and fluorescence from the sample (red color) was observed
with a 605 (± 70) nm band-pass filter. The fluorescence of obtained
images using the same focus was compared.

2.5.3. Encapsulation efficiency (EE)
To measure the encapsulation efficiency % and drug loading %,

encapsulated indomethacin and NSSEEO into the carriers should be
separated within the colloidal dispersion. Therefore, provided disper-
sion was centrifuged at 14, 000 round per minute (rpm) for 40min. As
obtained nanoparticles containing NSSEO and indomethacin, thus for
determination of nanoparticles EE %, both encapsulated NSSEO and
indomethacin were quantified separately. The loaded indomethacin
and NSSEO quantity in nanoparticles was respectively determined by
high performance liquid chromatography (HPLC) and gas chromato-
graphy (GC).

2.5.3.1. a). Indomethacin determination. In first time, indomethacin
amount was determined by High Performance Liquid chromatography
(Agilent 1200 series) following the validation of method, which was
proposed by Kwong et al., in 1981. However, proposed method was
modified in terms of mobile phase composition and UV- wavelength. A
Kinetex C 18 column (4, 6×100mm, 2.6 μ particle size) was used and
the mobile phase composed from methanol and water (55:45% v/v).
The conditions were such as flow of mobile phase (1ml/min), volume
of injected sample (5 μl), fixed UV wavelength for indomethacin
detection (230 nm). Indomethacin stock solution (2000 μg/ml) was
prepared in a mixture of methanol and acetonitrile (75:25). To
determine the EE %, direct method was employed and colloids
dispersion was centrifuged at a speed of 14000 rpm for 40min.
Supernatant was removed by micropipette and the quantity of
encapsulated indomethacin was measured following total
nanoparticles dissolution in methanol and acetonitrile. Then, it was
filtered and transferred to the vial of HPLC. As shown in the following
equation obtained nanoparticle EE %, was determined based on the
ratio of initial drug quantity and drug encapsulated into the
nanoparticles.

2.5.3.2. b). Nigella sativa L. Seeds essential oil determination. Since
thymoquinone play a principal role to exercise anti-inflammatory
activity within NSSEO. Therefore, for NSSEO EE % determination,
quantification of thymoquinone was carried out by GC equipped with
flame ionization detector (GC-FID). Shimadzu GC 2010 plus equipped
with split/splitless injector and capillary column Equity-5™
(30m×0.25mm, 0.25 μm) that was already conditioned at 280 °C
for 30min, was used for the analysis. The carrier gas was helium (He) at
a constant flow rate of 1mL/min with a pressure of 65.3 kPa while H2
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Flow was 30/30ml/min and the air flow was 300/300ml/min. The FID
detector temperature was maintained at 300 °C and injected sample
volume was 2 μL. For analysis, the oven temperature was increased
from 100 °C to 190 °C at 2.5 °C/min, the total program time was 35min.

To determine the EE % and drug loading % the following equations
were employed:

= ×Encapsulation efficiency % Amount of encapsulated drug
Initial amount of drug used in formula

100 (1)

=
−

×Drug loading % Added drug Free (Unetrapped drug)
Polymer amount

100
(2)

In order to measure the EE % and drug loading % of NSSEO in
nanoparticles, precipitated nanoparticles suite to the centrifugation was
dissolved in acetone. Drug loading has defined as the ratio of en-
capsulated drug quantity vice-versa to the used polymer amount. Prior
to determination of nanoparticles EE %, both analytical methods were
validated in terms of linearity, precision, specificity and accuracy.

2.5.4. Nanoparticles morphology
To study nanoparticles shape and appearance, Transmission

Electron Microscopy (TEM) was employed. Nanoparticles TEM has been
carried out by Philips CM-120 Transmission electron microscope
(CMEABG, Claude Bernard University Lyon 1, France) by 120 kV ac-
celerating voltage. For this aim a drop of nanoparticles suspension was
diluted in 2ml of Milli-Q water and consecutively one drop of this di-
lution was placed on the carbon-coated copper grid. Supplementary
amount of nanoparticles suspension was removed by blotting the grid
through filter paper and instilled nanoparticles (NPs) suspension on the
grid dried prior to TEM analysis at room temperature.

2.5.5. Fourier transform infrared spectroscopy (FTIR) study
To evaluate the encapsulation and distribution of indomethacin and

NSSEO in nanoparticles, FTIR analysis was done on Thermo Scientific
Technologies FTIR spectrometer with IR MONIC Solution software. For
samples preparation a volume of colloidal dispersion was taken and
centrifuged under the speed of 14000 rpm for 40min. Consecutively,
supernatant was removed and the precipitated part was dried at room
temperature after 72 h. In this study, to prepare samples no initial
preparation was taken place and samples FTIR spectrum was reported
between 650 cm−1 and 4000 cm−1. Prior to each acquisition blank
background had been adjusted. Samples for this study were: pure

Nigella Sativa L. Seeds Essential Oil, pure indomethacin, Blank NPs and
NPs loaded with indomethacin and NSSEO.

2.5.6. Differential scanning calorimeter (DSC) study
In order to study the physical status and interaction of drug and

polymer within the formulation, DSC analysis was carried out.
Therefore, centrifugation was taken place on the colloidal dispersion.
Following of supernatant phase removal, precipitated nanoparticles
have dried in a hold and subsequently exposed to the thermal study.
Samples for this study were including drug loaded NPs, blank NPs,
indomethacin and NSSEO. To have a control, indomethacin, NSSEO,
and polycaprolactone DSC scans were used. Differential scanning ca-
lorimeter Q200 (TA instruments, USA) has employed for the study. For
all measurements, a nitrogen purge of 50mL/min was utilized. The
temperature range was 20–300 °C and the heating rate was 10 °C/min.
The thermal analysis was done by heating of approximately 10mg
samples in a covered hermetic aluminum alloy sample pan under dry
nitrogen atmosphere.

2.5.7. Pre-stability study of nanoparticles
The pre-stability of nanoparticles from physicochemical points of

view was studied via colloidal dispersion EE % and pH measurement. In
addition, for pre-stability study of nanoparticles from physical points of
view the size, and zeta potential of prepared nanoparticles was mea-
sured as well. In fact, to evaluate the pre-stability of encapsulated in-
domethacin beside dispersed nanoparticles, the EE % of nanoparticles
was determined once upon nanoparticles preparation and once after
one month of preparation in four different temperatures. All measure-
ments were carried out after each 10 days within one month under
three different conditions (4 °C, 25 °C and 40 °C temperature degrees).
However, EE % was just determined after preparation of nanoparticles
and at the end of the study period (after one month).

2.5.8. Statistical analysis
The data are expressed as mean ± standard deviation and analysis

was carried out statistically by GraphPad Prism 7.0 software. The
analysis of data was taken place via one-way analysis of variance
(ANOVA). The criteria for statistical significance were p < 0.0001
(***), p < 0.001 (**) and p < 0.01 (*) and P-value less than
p < 0.01 considered significant.

Fig. 2. Illustration of nanoparticles preparation methodology.
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3. Results and discussion

In this study efforts were made to extract NSSEO and to encapsulate
the extracted NSSEO within the polymeric nanoparticles together with
indomethacin.

3.1. Extraction of Nigella Sativa L. Seeds essential oil (NSSEO)

The hydro-diffusion method was chosen for the extraction [19,20]
due to its performances compared to classic methods such as hydro-
distillation. This technique is based on the same principles of steam
distillation except that plant material (the ground seeds) is crossed from
top to bottom by a continuous flow of water vapors coming from a
steam generator. Under the effect of this descending flow of vapors,
there is an instantaneous and rapid release of the volatile substances,
which remain trapped initially in the plant, resulting in an acceleration
of the extraction process that is also facilitated by the effect of gravity
[19]. Grinding of Nigella Sativa L. seeds will facilitate release and ex-
traction of volatile compounds that may be imprisoned inside plant.

3.2. Gas chromatography analysis

Gas chromatography is the technique of choice for the analysis and
chemical identification of essential oils. In this work, two com-
plementary techniques for the chemical characterization of Nigella
Sativa L. essential oil components, namely gas chromatography coupled
to the flame ionization detector (GC-FID) and gas chromatography
coupled to the mass spectrum detector (GC-MSD) were used. Two dif-
ferent types of capillary columns were used as well: HP-1 of apolar
nature and the polar HP-Innowax one in order to facilitate the se-
paration of different constituents and to resolve the problem of co-
elution of some compounds for a better and exact identification of the
chemical composition. We have already investigated on these two
complementary techniques of gas chromatography to study the che-
mical composition of several essential oils [23,24]. By combining the
results obtained by GC-FID and GC-MSD and based on the reference
data relating to the retention indexes of the various volatile compounds
[25–27] and respectively Nist Data Gateway Libraries, the add-in-house
database of the CNRS, ISA- Villeurbanne related to Retention indexes
and data from data bank mass spectrum (respectively Nist 2005; Ar-
ômes CNRS version 2012 and Wiley libraries). The following results
related to the constituents of NSSEO were achieved (Table 1).

NB: Percentages of individual compounds were calculated based on
the GC–FID peak area obtained after separations on apolar and polar
columns. LRIa/p show retention indices on apolar and polar columns,
respectively, RIa and RIp, indicate the retention indices obtained ex-
perimentally on the HP-1 apolar and HP-Innowax polar column, de-
termined relatively to the retention times of C5–C30 n-alkanes injected
in the same conditions.

This investigation that was carried out by GC-FID and GC-SM has
enabled us to determine the contents of more than 25 different terpenic
compounds, which are hydrocarbons (monoterpenes and sesqui-
terpenes) or oxygenated hydrocarbons and have different functional
groups (alcohol, esters, ketones, ethers or phenols). The essential oil
contains various potentially active terpenic compounds that exhibit
important biological activities. Moreover, the content of monoterpene
hydrocarbons is the highest (84.70%) with para-cymene as the major
compound (56.67%) followed by alpha-thujene (16.35%) and alpha and
beta-pinene with a content of (3.58%) and a quantity of phenolic
compounds (about 9.15%). Previously carried out studies confirm that
gamma terpinene is the biochemical precursor of para-cymene, which is
the precursor of thymol [28] while, thymol itself is the precursor of
thymoquinone. In fact, thymoquinone and thymohydroquinone are
among the main compounds in the essential oil of Nigella Sativa L. that
has shown too crucial biological and pharmacological activities. Clin-
ical studies proved that NSSEO and its components exhibit anti-

inflammatory, antioxidant, antibacterial, antiproliferative, apopototic,
antitumor, antiepileptic and antidiabetic properties [29].

3.3. Nanoparticles characterization

3.3.1. Particle size and zeta potential
The size and zeta potential of prepared nanoparticles were mea-

sured by Malvern particle size analyzer using dynamic light scattering
(Zetasizer –Nano ZS, Malvern instruments limited, UK). Pre-stability
study of colloidal dispersion was carried out via prepared nanoparticles
size and zeta potential evaluation. In fact, previous to each zeta po-
tential measurement, nanoparticles were dispersed in 1mM NaCl so-
lution, pH was 5. However, to measure the size of prepared nano-
particles, colloidal dispersion was diluted in 1mL of distilled water
before to each measurement. As can be seen in Fig. 3 and Fig. 8, na-
noparticles size was 230–260 ± 12.47 nm and zeta potential of nano-
particles was between (– 20mV) and (– 30mV) ± 4.082. All afore-
mentioned measurements were performed in triplicate at room
temperature (25 °C). The stability within this formulation is due to the
PVA (stabilizer) presence that provides depletion stabilization for the
obtained colloidal dispersion. Indeed, nanoparticles negative zeta po-
tential can be attributed to the used polymer (PCL) carboxylic group. In
addition, colloidal dispersion pH was about 6 ± 0.82 (see Fig. 9).

3.3.2. Fluorescence microscopy study
To qualitatively observe the encapsulation of NSSEO, fluorescence

microscopy was used. Therefore, prior to encapsulation fluorescent
agent was added into the NSSEO in order to visualize encapsulated
NSSEO within nanoparticles during observation by fluorescence mi-
croscopy (see Fig. 4).

Table 1
Nigella sativa L. essential oil chemical composition as determined by gas chro-
matography - flame ionization detector (GC - FID) and gas chromatography -
mass spectrometry (GC-MS).

N° Compound RRI ap/p RI ap RI p Content (%)

1 α-Thujene 932/1023 925 1021 16.35
2 α- Pinene 936/1022 934 1025 3.58
3 Camphene 950/1066 949 1070 0.054
4 Sabinene 974/1120 970 1125 1.49
5 β- Pinene 978/1110 976 1113 3.58
6 Myrcene 987/1159 986 1166 0.02
7 p- cymene 1015/1268 1020 1275 56.67
8 Limonene 1025/1199 1024 1205 2.41
9 1,8-Cineole 1025/1224 1028 1214 0.05
10 γ- Terpinene 1051/1243 1049 1247 0.46
11 trans- Thujanol-4 1068/1465 1065 1469 0.03
12 para- cymenene 1079/1452 1075 1447 0.05
13 Fenchone 1080/1402 1078 1410 0.02
14 Terpinolène 1082/1285 1081 1289 0.03

Uidentified _ _ _ 0.82
15 β- Thujone 1108/1451 1103 1457 0.02

Unidentified _ _ _ 4.71
16 Camphor 1122/1521 1123 1517 0.045
17 Terpinene-4-ol 1160/1600 1178 1610 0.31

Unidentified _ _ _ 0.37
18 Thymoquinone 1244/nf 1240 1249 4.47
19 E- Anethole 1279/1845 1275 1847 0.056
20 Bornyl acetate 1283/1575 1281 1578 0.12
21 Carvacrol 1288/2219 1287 2227 1.68
22 Eugenol 1344/2155 1341 2165 0.6
23 α- Longipinene 1350/1482 1351 1476 0.16
24 Longifolene 1400/1574 1398 1583 0.79
25 (E) β- Caryophyllene 1415/1587 1422 1606 0.085
26 2-Tridecanone 1478/1806 1487 1810 0.034
27 Eugenyl acetate 1486/2263 1485 2273 0.029
28 Thymohydroquinone 1554/2178 1553 2193 0.31
30 Total 99.40%

Monoterpene hydrocarbons: 84.694%, Sesquiterpene hydrocarbons: 1.035%,
Total Oxygenated compound compounds: 7.729% and unknowns: 5.9%.
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Fig. 3. Nanoparticles size and size distribution by intensity.

Fig. 4. Fluorescence microscope images of fluorescent loaded nanoparticles (A). Nigella sativa L. Seeds essential oil and indomethacin loaded nanoparticles with white
light (B). Nigella sativa seeds essential oil and indomethacin loaded nanoparticles with green light (C). Indomethacin loaded nanoparticles with white light (D).
Indomethacin loaded nanoparticles with green light.
NB: The fluorescent agent was added in the organic phase to visualize loaded NSSEO within the nanoparticles under light during study with fluoresce microscopy.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. Transmission Electron Microscopy images of PCL based nanoparticles loaded with indomethacin and NSSEO, (a). 0.5 μm scale bar, (b). 1 μm scale bar, and (c).
2 μm scale bar.
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Fig. 4A shows NSSEO encapsulation inside of particles under white
light. Then, band-pass filter was changed to 550 (± 25) nm filters
while keeping the same focus. The designed particles were observed
with high intensity indicating the encapsulation of NSSEO within na-
noparticles. The same optical characterization was made for using only
nanoparticles without NSSEO (see Fig. 4C). Here nanoparticles were
well presented and were observed under white light. When the filter
was changed to 550 nm, there was no fluorescence observed (see
Fig. 4D) which confirm NSSEO successful encapsulation.

3.3.3. Encapsulation efficiency
Encapsulation efficiency of indomethacin and NSSEO were

respectively 70% and 84%. Encapsulation efficiency of NSSEO of our
work was higher than the study that was done by Rushmi et al. [30].
The drug loading of indomethacin and NSSEO were 14% and 5.63%
respectively.

3.3.4. Nanoparticles morphology
In order to study the morphology of provided nanoparticles,

Transmission Electron Microscopy (TEM) analysis was carried out. TEM
images showed that nanoparticles have a spherical and regular form
(See Fig. 5).

Fig. 6. Fourier transformed infrared spectroscopy (FTIR) spectrum noted between 650 cm−1 and 4000 cm−1. NSO: Nigella Seeds Essential Oil, IND: Indomethacin,
PCL: Poly (ε-caprolactone), Blank NPs: Unloaded nanoparticles, Loaded NPs with IND and NSSEO: nanoparticles containing Indomethacin and Nigella Sativa L. Seeds
Essential Oil.

Fig. 7. Blank nanoparticles, nanoparticles loaded with indomethacin and NSSEO, indomethacin, and NSSEO DSC thermograms.
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3.3.5. Fourier transform infrared spectroscopy (FTIR) study
To chemically define the prepared nanoparticles, indomethacin,

NSSEO and polymer, Fourier transform infrared spectroscopy analysis
was performed. Generally, drug-polymer interaction leads to identifi-
able changes in FTIR spectra [31]. The FTIR patterns of NSSEO, in-
domethacin, PCL, blank and loaded NPs were shown in Fig. 6. Indeed,
indomethacin characteristic bands presented free acid carbonyl groups
(C=O) stretching band at 1711 cm−1, C–Cl stretch at 839 cm−1, C=O
amide at 1688 cm−1, and phenolic carbon stretching vibration (C=C

stretch vibration) at 1587 cm−1. Additionally, PCL characteristics
bands revealed at 2865 and 2942 cm−1 that is respectively attributed to
symmetric and asymmetric aliphatic stretching (Fig. 6). Moreover,
carbonyl (C=O) strong characteristic stretching band presented at
1721 cm−1 and PCL C-O and C-C stretching vibration bands revealed at
1292.9 cm−1. Furthermore, vibration bands of symmetric and asym-
metric C-O-C seemed at 1162 cm−1. The C–O stretching vibration band
of NSSEO revealed at the intervals of 1749–1659 cm−1 and 1128 -
1084 cm−1 that is in accordance with what was reported by Abdul
Rohman and Rizka Ariani [32,33]. In addition, the aliphatic stretching
vibration band of NSSEO appeared at 2929 - 2863 cm−1. As can be seen
in Fig. 6, FTIR bands of indomethacin, NSSEO and PCL all together
were appeared in the same spectra following encapsulation. Based on
matching of indomethacin, PCL, and loaded PCL based nanoparticles
spectra, it could be draw a conclusion that NSSEO and indomethacin
were successfully encapsulated within polymeric nanoparticles
[34–37].

3.3.6. Differential scanning calorimeter (DSC) study
To describe the physical status of encapsulated compounds and

polymer DSC analysis was performed. Thermograms of blank nano-
particles, nanoparticles loaded with indomethacin and NSSEO, in-
domethacin, and NSSEO alone are presented in Fig. 7. The thermo-
grams of blank nanoparticles and loaded nanoparticles are matching
with the endothermic peaks at 56.69 °C and 51.42 °C respectively that
correspond to the used polymer (PCL) melting point. Indomethacin
endothermic peak at 161.98 °C that relate to the loss of crystalline
water was not appear neither in blank nanoparticles thermogram nor in
loaded nanoparticles thermogram. In this case, indomethacin is dis-
persed homogenously throughout the polymeric matrix [38]. As in-
domethacin and NSSEO are both hydrophobic, thus indomethacin and
NSSEO could disperse along polymeric matrix. Therefore, the drawn
conclusion by Yadav and Sawant looks more feasible in this research
[38]. However, the endothermic peak of NSSEO at 253.23 °C was
slightly appeared within loaded nanoparticles thermogram that figures
out the encapsulation of NSSEO as well (See Fig. 7).

From the comparison of DSC curves obtained from blank nano-
particles, NSSEO, indomethacin, nanoparticles containing in-
domethacin and NSSEO, it can be easily figured out that NSSEO is
successfully encapsulated within polymeric nanoparticles.

3.3.7. Pre-stability study of nanoparticles
Nanoparticles pre-stability study was performed by physical and

physicochemical points of view through the measurement of the pre-
pared nanoparticles size, zeta potential, pH, and encapsulated in-
domethacin and NSSEO stability within one month. In fact, measure-
ment of these criteria was performing after each 10 days for a period of
30 days of storage under 3 different temperatures (4 °C, 25 °C and 40 °C)
condition. The surface charge of nanoparticles can be influenced by
factors such as: used polymer, and surfactant chemical structure and pH
of medium [39].

As depicted in Fig. 8 (a), the size of prepared nanoparticles was not
changed significantly within 30 days of stability investigation (change
interval was 250–270 ± 12.47 nm). Furthermore, zeta potential of
prepared nanoparticles throughout the period of stability study was
changed from (−22mV) up to (−28mV) ± 4.082 at pH around
6 ± 0.82 that was non-significant as well.

Throughout 30 days of the stability study, pH of colloidal dispersion
was stable, which was ranged between 5 and 6. The changes in pH
values during this study were non-significant. In addition, for pre-sta-
bility study of encapsulated indomethacin and NSSEO within nano-
particles, encapsulation efficiency of prepared nanoparticles was de-
termined at the end of study priod (one month) and it was the same
(69.5% and 83.3% respectively).

Fig. 8. Indomethacin and Nigella Sativa L. Seeds essential oil loaded NPs sta-
bility during one month (30 days) storage in three different temperatures of
4 °C, 25 °C and 40 °C. P-value less than 0.01 was considered significant noted *,
P < 0.001 noted *** and P < 0.001 noted ****. The shown data are the
average of three measurements, (ns = non-significant).

Fig. 9. Indomethacin and Nigella Sativa L. seeds essential oil loaded NPs pH
through one month (30 days) storage in three different temperatures of 4 °C
(black bars), 25 °C (checked bars) and 40 °C (light gray bars). The shown data
are the average of three measurements, (ns = non-significant). P-value less
than 0.01 was considered significant noted *, P < 0.001 and noted *.
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4. Conclusion

The essential oil of Nigella Sativa L. was effectively extracted and
analyzed. Indomethacin and NSSEO were successfully encapsulated
within poly (ε-caprolactone) polymer by nanoprecipitation method.
Designed nanoparticles were characterized by size and zeta potential
measurement and pre-stability study. Furthermore, prepared nano-
particles were also characterized by fluorescent microscopy, TEM,
FTIR, DSC techniques that all together confirm the encapsulation of
indomethacin and NSSEO. The size and zeta potential of prepared
particles were respectively (230–260 ± 12.47 nm) and (−20mV) up
to (−30mV) ± 4.082. Prepared nanoparticles TEM images shown that
designed nanoparticles have a spherical and regular form.
Encapsulation efficiency of nanoparticles for indomethacin and NSSEO
were correspondingly 70% and 84%. In addition, drug loading of de-
signed nanoparticles for indomethacin and NSSEO was 14% and 5.63%
respectively. In brief, poly (ε-caprolactone) based nanoparticles were
elaborated that could be loaded successfully with indomethacin and
NSSEO. Such prepared particles as noninvasive penetration enhance-
ment approach can improve skin penetration, reduce systemic con-
centration and side effects of indomethacin accordingly. To confirm
this, further studies are required to perform.
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III.4. Topical co-delivery of indomethacin and Nigella Sativa L. Essential oil in poly- -

caprolactone nanoparticles: In Vivo study of anti-inflammatory activity 
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Summary 

Inflammation protects the body from the aggressive agents and other injuries via a natural defense 

cascade that include different interactions between cells and mediators. The signs of inflammation are: 

elevated blood flow, increased cellular metabolism, cellular influx, soluble mediators release, 

vasodilation and fluids extravasation. Acute inflammation is the first reaction which can be described 

through the raised plasma movement and indigenous immune cells as neutrophils and macrophage 

from the blood into the damaged tissues. In fact, inflammatory agents application cause cell 

membranes phospholipase A2 activation that would trigger the release of arachidonic acid and 

inflammatory mediators that make easy the immigration of leukocytes to the inflammation site. 

Inflammation first phase differentiates itself by the release of products such as histamine, bradykinin, 

serotonin, and cyclooxygenase (COX) (0-1 h); whereas the late phase of edema can be known by 

prostaglandins release, oxygen-derived free radicals production andpolymorphonuclear 

leukocytes (PMN) infiltration. Indomethacin as a potent Non-Steroidal Anti-inflammatory Drugs 

(NSAIDs) revealed adequate efficiency for the external application to decrease the fever, pain and 

inflammation. Indomethacin induces side effects within digestive tube that are related to its 

mechanism of action. The gastrointestinal ulcers or bleeding can be triggered or intensified by 

indomethacin usage. Indeed, indomethacin side effects can be reduced by decreasing of taken amount 

of drug and targeting drug delivery to the interest area. Skin could be used as an administration rout to 

control the drug delivery and to decrease the dosage of indomethacin. Nanoparticles in comparison 

with the other skin drug delivery approaches can deliver drugs without any skin function disturbance. 

Thus, it is possible to grasp this goal by nanoparticles application on the skin. Nanotechnology based 

drug delivery has attracted the attention since long time. Certain drugs drawbacks related to the 

bioavailability, stability, and organoleptic can be handled with the encapsulation. From the other hand, 

since long time Nigella Sativa Seeds Essential Oil (NSSEO) was used for the treatment of different 

diseases. Due to the biological properties of NSSEO, it is well known. The main phytochemicals of 

NSSEO are including thymoquinone, p-cymene, α-pinene, thymohydroquinone, dithymoquinone and 

nigellone. In fact, thymoquinone formed the main part of NSSEO to which mostly attributed NSSEO 

therapeutic usages. In addition, percutaneous absorption can be enhanced by NSSEO. In our previous 

experiment, poly(ε-caprolactone) based nanoparticles loaded with indomethacin and NSSEO were 

prepared by nanoprecipitation method and then characterized in terms of TEM, encapsulation 

efficiency, size, zeta potential, DSC, FTIR and skin penetration by Confocal Laser Scanning 

Microscopy (CLSM). Here in this study the in vivo anti-inflammatory activity of those nanoparticles 

was investigated. In fact, four formulations such as: indomethacin (1 %) gel, blank nanoparticles, 

nanoparticles load with indomethacin alone, and nanoparticles loaded with indomethacin and NSSEO 

were prepared. To this end, edema was induced in mice ears by xylene; consequently, the anti-

inflammatory activity was studied in terms of mice ears thickness (μm) and weight (mg) measurement 
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that were compared to the positive control and pre-injection values. In addition, to assess and quantify 

the inflammatory inhibition, histology microscopic analysis and immunohistochemistry study were 

performed. Based on the found date, up to one hour prepared formulations application no significant 

differences were observed in mice ears thickness at the start of experiment. However, in 1est hour, mice 

ear thickness was decreased significantly via indomethacin gel whereas the thickness was stable for 

three other formulations. Moreover, in 2end hour the thickness reduction by nanoparticles containing 

indomethacin and NSSEO in comparison with the blank nanoparticles was significant that was less 

than indomethacin gel. From the other hand in 3ed hour, thickness depression by nanoparticles loaded 

with indomethacin and NSSEO was highly significant in comparison with indomethacin gel. 

Furthermore, in 6th and 8th hours the declined thickness by nanoparticles loaded with indomethacin and 

NSSEO together, nanoparticles loaded with indomethacin alone and indomethacin gel was 

respectively significant. This inflammatory inhibition of nanoparticles containing indomethacin and 

NSSEO has reached its peak 8 h after xylene application. According to the found results the anti-

inflammatory activity was time dependent. The left ear of mice within all four groups was considered 

as negative control. Prepared nanoparticles loaded with indomethacin and NSSEO had better skin 

penetration then nanoparticles loaded with indomethacin alone.These results proved that NSSEO 

possesses a significant anti-inflammatory activity and can be used as an enhancer for indomethacin 

anti-inflammatory activity in a topical application within the nanoparticles. 
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Indomethacin is a potent, nonselective Non-steroidal Anti-
inflammatory Drug (NSAID) but its low water-solubility precludes its 
use as topical dosage form. As with other NSAIDs, the systemic 
delivery is associated with high risk of serious gastrointestinal adverse 
events including bleeding, ulceration and perforation of stomach and 
intestines. Here we demonstrate a safer way of administration i.e via 
topical demonstrating synergistic effects when co-delivered with 
Nigella sativa L. seeds essential oil (NSSEO) in the form of co-
encapsulated particles (~200 nm) of poly- -caprolactone. The particles 
showed penetrability across stratum corneum to dermis layer in ex-vivo
human skin. Further study in the xyline-induced ear edema in mice was 
performed, and co-encapsulated particles demonstrated highest anti-
inflammatory effect compared to indomethacin particles and 
indomethacin gels. Despite slower onset compared to indomethacin 
gels, the inflamed ear continued to show reduction in thickness over 8 
hours of observation demonstrating synergistic and pro-longed effect 
contributed by NSSEO. In immunohistochemistry study of CD45+, the 
mice ears treated with co-encapsulated particles showed considerable 
reduction in lesions, epidermal-dermal separation and inflammatory 
cells (lymphocytes and neutrophils) infiltration as compared to other 
formulation. Based on microscopic evaluation, the anti-inflammatory 
inhibition effect of co-encapsulated particles is the highest (90%) 
followed by indomethacin particles (79%) and indomethacin gel (49%). 
The findings suggest not only skin permeability of indomethacin 
significantly improved but also the therapeutic effects, all provided by 
the presence of NSSEO in the particles. This study paves the way to  
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more co-encapsulation of any other contemporary medicines in 
combination with this wholesome natural oil, NSSEO.   

Copy Right, IJAR, 2018,. All rights reserved. 
……………………………………………………………………………………………………....
Introduction:- 
Acute inflammation is the first reaction that is identified through the increase in plasma movement and 
indigenous immune cells such as neutrophils and macrophages, from the blood into the damaged tissues 
(Ferrero-Miliani et al., 2007) (Medzhitov, 2008). Indeed, inflammation inducers cause cell membranes 
phospholipase A2 activation that would trigger the release of arachidonic acid and inflammatory 
mediators (cytokines, serotonin, histamine, prostaglandin and leukotrienes), which facilitate leukocytes 
migration to the inflammation site (Sarkhel, 2016). The release of products such as histamine, bradykinin, 
serotonin, and cyclooxygenase (COX) is linked with the first phase of inflammation (0-1 h), whereas 
prostaglandins release, oxygen-derived free radicals production and polymorphonuclear 
leukocytes (PMN) infiltration is related to the late phase of oedema (Sadeghi et al., 2014). Globally, non-
steroidal anti-inflammatory drugs (NSAIDs) are one of the mostly prescribed drugs classes. 
Indomethacin, being one of the NSAIDs first line non-opioid drugs prescribed for cancer pain. In 
addition, indomethacin is poorly water soluble (~ 0.01 mg/ml) and is only soluble at basic pH of 12 at 
which the drug significantly hydrolysis takes place (Lin et al., 1994). The intrinsic solubility of 
indomethacin was determined to be 8.8 μg/mL at pH of 9 (Comer et al., 2014). Thus, indomethacin poor 
skin bioavailability can be attributed to its insolubility in water for the skin pH. Various novel dosage 
forms (liposomes, nanospheres, nanoparticles etc.) have been formulated using indomethacin as the 
model drug to tackle its skin permeability problem but none of the studies use essential oil as means to 
increase permeability or penetrability via topical delivery. Here, we demonstrated the functional use of 
our selected essential oil, namely Nigella sativa L. seeds essential oil (NSSEO). We have observed at 
least two main functions this most studied oil provided in our study, namely as permeation enhancer and 
as efficacy modulator, both gave rise to synergistic effects. The Stratum Corneum (SC) acts as an obstacle 
towards efficient use of transdermal drug delivery systems development because of its low drug 
permeability. Therefore, numerous physical (sonophoresis, microneedles, and iontophoresis) and 
chemical [dimethyl sulphoxide (DMSO), ethanol, and Laurocapram (Azone®)] skin penetration 
enhancement methods had been studied in order to mitigate this challenge (Benson, 2005) (Li et al., 
2005). However, most of these methods cause skin irritation and damage, and ultimately disturbance of 
skin barrier function. Additionally, previous studies formulated indomethacin in various dosage forms 
like gels, cream, microparticles, nanospheres and nanoparticles. All these formulations utilized certain 
types of additives, either as co-solvent [propylene glycol (PG)] (Pinheiro et al., 2015), co-polymer [e.g. 
methoxy poly(ethylene glycol) in poly(ε-caprolactone)] (Kim et al., 2001), co-solubiliser (e.g. 
hydroxypropyl-β-cyclodextrin, methylcellulose) or as agent to improve encapsulation efficiency (Nagai et 
al., 2015). However all of the additives are lacking of evidence that can recognize them as agents that 
contribute to therapeutic efficacy unlike natural oil, NSSEO.

There are other studies that have also incorporated an ingredient to enhance therapeutic effect of 
indomethacin notably copper (Yassin et al., 2015). However, the enhanced inflammatory effects as 
observed in the copper-indomethacin topical delivery were thought to be attributed to the activation of 
copper-dependent opioid receptor. Any activation of opioid receptor will concomitantly increase risk of 
opioid-associated adverse effects such as sedation, dizziness, tolerance and respiratory depression.  

Therefore, our main approach here was to select an agent that can confer modulation on skin permeability 
and penetrability of indomethacin while carrying other beneficial therapeutic efficacy. In our case, we had 
selected the ancient herb, most widely and thoroughly researched folklore and prophetic medicine i.e 
Nigella Sativa L. Seeds Essential Oil (NSSEO) as the co-therapeutic agent to be co-encapsulated with 
indomethacin in biodegradable poly- -caprolactone. Therapeutic efficacy of this ancient oil had been 
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stated in old medicinal manuscripts and its fame transgresses any nation, religion and borders. NSSEO 
has been used for the treatment of different diseases namely rheumatism, bronchitis, asthma and others 
for centuries. NSSEO efficacy may be due to its biological activities such as anti-inflammatory, analgesic, 
immunomodulatory, spasmolytic, and anti-oxidative properties (Ahmad et al., 2013). The principal 
phytochemicals of NSSEO are thymoquinone, p-cymene, α-pinene, thymohydroquinone, dithymoquinone 
and nigellone (Al Juhaimi et al., 2013). In fact, thymoquinone formed the main part of NSSEO to which 
mostly NSSEO therapeutic usages are attributed to it (Ravindran et al., 2010). It is reported that the 
production of inflammatory cytokines can be inhibited by thymoquinone in NSSEO (Ahmad et al., 2013). 
The uniqueness of this study in comparison to previous researches are: (a) the usage of xylene (topical 
application) instead of carrageenan (injection administration route), (b) anti-inflammatory activity study 
via evaluation and assessment of several parameters together such as mice ears thickness, weight, 
histology and immunohistochemistry (IHC), (c) obtaining of information from the combination of 
microscopy and IHC data that help to indicate overall tissue condition, (d) employing of nanoparticles as 
skin penetration non-invasive enhancement approach lead to maintenance of the skin’s normal function as 
opposed to  other physical and chemical techniques. Furthermore, in this research, the mouse was used as 
model, which is a well-known and well described model in the literatures. Moreover, male mouse was 
used that can avoid eventually the interference with hormonal cycle of female mice. Here in this work, 
edema was shown as the increase in mice ears thickness and weight that are consecutively compared with 
corresponding values pre-application. 

The focus of this study is in the comparative evaluation of in-vivo anti-inflammatory activity of 
nanoparticles co-encapsulated with indomethacin and NSSEO and nanoparticles containing indomethacin 
alone using acute cutaneous mice inflammation model. Substantially, our data found that the co-
encapsulation of indomethacin with NSSEO enhanced anti-inflammatory effect via topical treatment and 
suggest a possible decrease in indomethacin systemic concentration that can consequently reduce the 
indomethacin side effects.   

Materials and methods:- 
Materials:- 
Nigella Sativa L. Seeds Essential Oil (NSSEO) was kindly provided by the Faculty of Sciences, Ibn Zohr 
University, Agadir, Morocco. Poly(ε-caprolactone) (PCL), polyvinyl alcohol (PVA) and polysorbate 80 
(Tween® 80) were supplied by Sigma-Aldrich, Germany. Indomethacin was provided by George Van 
Waters and Nat Rogers laboratory products distributor (VWR) and acetone was purchased from Laurylab, 
France. Electronic balance, digital micrometer (model J15, BLET), isoflurane, triethanolamine (TEA), 
polyethylene glycol (PEG 300), polyvinyl pyrrolidone (PVP), Carbopol ETD 2001 (C2001), and 
Hexylene glycol (HG) were provided by one of the common chemical products suppliers in Europe. 

Preparation of nanoparticles:-
Nanoparticles containing indomethacin and NSSEO were prepared in two separate phases by 
nanoprecipitation technique that was firstly designed by Fessi et al, (Fessi et al., 1989). To prepare the 
organic phase, 200 mg PCL was dissolved in 25 ml acetone under mild heat and magnetic stirring. Then 
40 mg indomethacin and 300 mg NSSEO were added into the solution of PCL in acetone for co-
encapsulation of indomethacin and NSSEO. For the aqueous phase preparation, 50 mg PVA was 
dissolved in 50 ml Milli-Q water at mild heat and mixed with 135 mg Tween-80® using magnetic 
agitation. Subsequently, the organic phase containing NSSEO, indomethacin, PCL and acetone was added 
dropwise by KDS 100 Legacy Single Syringe Infusion Pump operating at 220 volts alternating current 
(VAC) to the aqueous phase (Figure 1). Acetone evaporation was performed afterwards (Buchi Rotavapor 
R-124®) (under reduced pressure and high temperature conditions). Mostly the parameters of 
nanoparticles preparation process and formulation were inspired by a systematic study which was done 
under the same condition by Badri et al, (Badri et al., 2017). The composition and operating condition of 
blank and indomethacin nanoparticles are further shown in Table 1. 
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Figure1:-Schematic diagram of nanoparticles preparation by nanoprecipitation method. 

Indomethacin gel preparation:- 
To prepare 1% w/w indomethacin gel, 1% w/w of gel forming agent, C2001, was slowly added in small 
increments into a vortex of 57 % w/w sterile water under continuous magnetic agitation. Then, resin was 
added to prevent the entrapment of air, and stirring was continued at a reduced speed. The resulting 
dispersion was stored at rest mode in the dark for 24 h to obtain a homogenous solution. HG (30 % w/w) 
and PEG 300(10 % w/w) as solvents, were first mixed together and then added into the 1 % w/w 
indomethacin to dissolve indomethacin. The solution was then poured into the mixture in small portions 
with constant stirring until homogeneity was achieved. Afterwards, 1 % w/w of TEA as neutralizer was 
added to the mixture in order to increase the pH and trigger the formation of gel. The obtained gel 
packaging was carried out in amber glass containers and stored for 24 h in a dark place at room 
temperature (20 ± 2 ºC) (Shawesh et al., 2003). 

Table 1:-Nanoparticles composition and operating condition 
(a). PCL based blank nanoparticles     

Organic Phase Aqueous phase Operating condition
PCL 

concentration 
(mg/ml)

Acetone 
volume (ml)

Tween® 80 
concentration 

(mg/ml)

Milli-Q water 
volume (ml)

PVA 
concentration 

(mg/ml)

Stirrer speed
(rpm)

Organic 
phase 

injection rate 
(ml/min)

8 25 2.7 50 1 300 9

(b). PCL based nanoparticles loaded with indomethacin  
Organic Phase Aqueous phase Operating condition

PCL 
concentration 

(mg/ml)

Acetone 
volume 

(ml)

Indomethacin
concentration 

(mg/ml)

Tween® 80 
concentration 

(mg/ml)

Milli-Q
water 

volume 
(ml)

PVA 
concentration 

(mg/ml)

Stirrer 
speed
(rpm)

Organic 
phase 

injection 
rate 

(ml/min)
8 25 1.6 2.7 50 1 300 9
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(c). PCL based nanoparticles containing indomethacin and Nigella Sativa L. Seeds Essential Oil  
Organic Phase Aqueous phase Operating 

condition
PCL 

concentratio
n (mg/ml)

Aceton
e

volume 
(ml)

Indomethacin
concentration 

(mg/ml)

NSSEO 
concentrati
on (mg/ml)

Tween® 80 
concentratio
n (mg/ml)

Milli-
Q

water 
volum
e (ml)

PVA 
concentratio
n (mg/ml)

Stirre
r

speed
(rpm)

Organic 
phase 

injectio
n rate 

(ml/min
)

8 25 1.6 6 2.7 50 1 300 9

Nanoparticles characterization:- 
To characterize the prepared nanoparticles, their size, zeta potential, morphology, and encapsulation 
efficiency studies were carried out. 

Particle size and zeta potential:- 
To measure nanoparticles size and zeta potential, Malvern particle size analyzer using dynamic light 
scattering (Zetasizer - Nano ZS, Malvern instruments limited, UK) was used. Prepared nanoparticles were 
dispersed in 1mM NaCl solution previous to each zeta potential measurement whereas nanoparticles size 
measurement was carried out after colloidal dispersion dilution within a 1 mL of distilled water. All 
measurements were taken place in triplicate at room temperature (25 °C) and their average was taken as 
the result. 

Nanoparticles morphology:- 
For nanoparticles shape and appearance assessment, Transmission Electron Microscopy (TEM) was 
employed. Nanoparticles TEM has been taken place by Philips CM-120 Transmission electron 
microscope (CMEABG, Claude Bernard University Lyon 1, France) by 120 kV accelerating voltage. To 
this end, a drop of nanoparticles suspension was diluted in 2 ml of Milli-Q water by micropipette and 
consecutively one drop of this dilution was placed on the carbon-coated copper grid. Supplementary 
amount of nanoparticles suspension was removed via blotting the grid through filter paper and instilled 
nanoparticles suspension on the grid dried prior to TEM analysis at room temperature.  

Ex vivo skin penetration:- 
Skin penetration study was carried out on the ex vivo human skin model by confocal laser scanning 
microscopy (CLSM). Indeed, CLSM is a non-invasive optical imaging technique. The distribution of 
applied nanoparticles that contain active ingredient and fluorescent agent (Core Shell Evidots) in skin can 
be visualized and inspected by CLSM (Pygall et al., 2007) (Alvarez-Román et al., 2004). Fresh excised 
human abdominal skin was obtained from plastic surgery. Samples for this study comprised of: (a) 
mixture of 25 μl Core Shell Evidots (CSE) and 50 ml distilled water liquids, (b) poly(ε-caprolactone) 
based NPs loaded with indomethacin and CSE, (c) poly(ε-caprolactone) based NPs loaded with 
indomethacin, CSE and NSSEO (preparation of samples b, and c described in Table 1, except that for ex 
vivo study, 50 μl CSE were added into the organic phase). Afterwards prepared formulations were 
topically applied at room temperature on a defined area of skin (100 μL/cm2) following a gentle massage 
for 30 seconds. A skin area remained untreated and served as control. After 1 h of CSE and NPs 
application, a 3 mm punch biopsy specimen was taken from each area. Skin biopsies were placed at - 80 
°C until use for the study. The frozen skin samples were embedded in Tissue-Tek® and cut in 7 μm 
vertical cryostat sections. Sections were mounted using VECTASHIELD® mounting media and were 
imaged under a CLSM (Leica SP2 AOBS microscope with blue laser excitation at 405 nm, 63x oil 
immersion objective). Blue fluorescence intensity was the indicator of NPs penetration assessment 
through the skin in a comparative manner between treated and untreated (control) human skins.  
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In vivo anti-inflammatory activity study:- 
Animals:- 
Adult male Swiss mice (6 - 8 weeks age) were housed and given diet at libitum under standard laboratory 
conditions of temperature, and relative humidity. On the day of the experiment, mice were individually 
weighed and tagged with a temporary tail marking. For each step of experiment, mice were anesthetized 
using isoflurane 2.5 %, with 1 L/min flow for induction, then isoflurane 1.5%, with 0.5 L/min flow for 
maintaining anesthesia. In this study, four groups of animals were used (n = 7 each) in accordance to the 
minimum number for a proper statistical analysis. Regular observation of the animals during the 
habituation period was performed. Experiments were in compliance with guidelines for study in animals’ 
laboratory and were approved by the Ethics Committee of Animal Experimentation of French National 
Center for Scientific Research (CNRS).  

Acute ear edema induction:- 
In order to induce an acute edema in mice ears, xylene as a phlogistic agent was topically applied on the 
inner and outer surface of the right ear of mice (30 μL/ear). The left ear was considered as negative 
control and received only distilled water (20 μL/ear).

Application of designed formulations:- 
To apply formulations separately and to study the anti-inflammatory effect of applied formulations 
comparatively, animals were randomly assigned into four groups (Figure2). Group I animals have 
employed to evaluate the absence of anti-inflammatory activity of the blank nanoparticles (20 μl/ear).
Group II animals were used to assess the anti-inflammatory activity of the nanoparticles containing 
indomethacin (20 μl/ear). Group III animals have used to evaluate the anti-inflammatory activity of 
nanoparticles containing indomethacin and NSSEO (20μl/ear). Group VI animals were used as a positive 
control, and 1% indomethacin gel (100 mg/ear) was applied. The quantity of indomethacin in all 
indomethacin-containing formulations is constant (1 mg/ear), following Garrido et al, (Garrido et al., 
2004). In addition, NSSEO quantity in the formulation that contained NSSEO was 2 mg/ear. The left ear 
of mice within all four groups was considered as negative control on which the distilled water (20μl/ear) 
was applied. Furthermore, formulations have topically applied after application of xylene on the inner and 
outer surface of the right ear of all four groups of mice. 

Anti-inflammatory activity assessment:- 
Experiments were carried out based on Oliveira et al, method (Liduína Maia de Oliveira et al., 2013). The 
thickness (μm) of each ear was measured using a precise digital micrometer (model J15, BLET) that was 
put close the ear tip, just distal to the cartilaginous ridges. Measurement was performed prior to the 
application of xylene (0h) and then at 1h, 2h, 3h, 6h, and 8h time intervals after induction of an 
inflammatory response. The edema is evaluated based on the alteration of the thickness of mice right ear 
versus mice left ear. Anti-inflammatory activity of prepared formulations was assessed by comparing 
weight (mg) and thickness (μm) reduction with respect to the positive control and pre-injection values 
(Figure 7).  

109



ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 6(4), 801-816 

807

Figure 2:-In vivo study experimental design scheme, Four Groups (n = 7 each) of mice were employed, (Group 1 
for anti-inflammatory activity assessment of the blank nanoparticles, Group 2 for evaluation of anti-inflammatory 

activity of nanoparticles containing indomethacin, Group 3 for the study of anti-inflammatory activity of 
nanoparticles containing indomethacin and NSSEO and Group 4 were used as a positive control, to investigate the 

anti-inflammatory activity of 1% indomethacin gel).

Histology analysis:- 
Mice removed ears was studied from two aspects of simple histology and immunohistochemistry 
analysis. The induction of skin inflammation can take place in 1 – 2 h of exposure, which is described via 
increased blood circulation, vascular permeability, infiltration of leukocyte into the skin, degeneration of 
epidermis, boosted oxidative species levels, and DNA damage.

Mice were first euthanized and ears were cut and fixed (10 % formaldehyde for 24 h- 48 h) and processed 
by standard methods of histology. Afterwards, fixed mice ears were embedded in paraffin for 3 h, sliced 
into 3 μm sections and stained by Hematoxylin-Phloxine. Mice ears process was performed in Leica 
ASP300 S. The samples preparation for simple histology microscopy observation and 
immunohistochemistry (IHC) followed the same procedure up to cutting of mice ears (1 single piece). 
Subsequently, samples were mounted on the Superfrost®gelatin-coated slides (SIGMA – ALDRICH). On 
the other hand, IHC Tissue prepared samples were mounted on the Superfrost® slides that was then coated 
with water, to remove background noise gelatin wasn’t used in IHC. Tissues were observed by Axio Scan 
Z1 de Zeiss slide scanner at a magnification of 20X.  

Immunohistochemistry (IHC) study:- 
Primary monoclonal mouse antibodies (streptavidin peroxidase conjugates) raised against CD45 (clone 
PD7/26) was used to analyse leucocytes. Embedded tissues was first treated with Cell Conditioning 
Solution (CC2) before paraffin was removed using the absolute ethanol. Inflammation was detected using 
a biotinylated anti-mouse rabbit IgG secondary antibody, followed by colorimetric recognition using 
Streptavidin-biotin peroxydase detection system (DISCOVERY DAB Map Detection Kit (RUO). The 
counterstaining of sections was performed with hematoxylin (4 min) and bluing reagent (4 min), and 
sections were then mounted under coverslips (Figure 3) to be viewed under a slide scanner (Axio Scan Z1 
de Zeiss) at 20X magnification. Obtained images were processed with Fiji software (image processing 
package) and analysis was performed for epidermis integrity, dermis thickness, infiltration of leukocytes 
and edema. 
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Figure 3:-Indirect enzyme linked immunohistochemistry (streptavidin peroxidase conjugated method) illustration. 

Statistical analysis:-
Data were analyzed by GraphPadPrism7.0 software and shown as mean ± standard deviation. Multiple 
comparisons were carried out by one-way analysis of variance (ANOVA) at P<0.01significance. 

Results And Discussion:- 
Nanoparticles characteristics:- 
Nanoparticles size and zeta potential were ranged between 230 –260 ± 12.47 nm and (-20 mV) up to (-30 
mV) ± 4.082, respectively. The pH of the colloidal dispersion was around 6 ± 0.82, whereas the 
encapsulation efficiency of indomethacin and NSSEO within the designed nanoparticles was 70, 84 ± 
5.73 % respectively. Prepared nanoparticles size distribution was about 0.166 ± 0.007. Transmission 
Electron Microscopy (TEM) analysis showed that nanoparticles have a spherical and regular form (Figure 
4).  

(a) 0, 5 μm scale bar (b) 2 μm scale bar
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Figure4:-Transmission Electron Microscopy images of PCL based nanoparticles loaded with indomethacin and 
NSSEO, (a). 0.5 μm scale bar, and (b). 2 μm scale bar showing nanoparticles smooth surface and regular form. 

Nanoparticles loaded indomethacin and NSSEO: are able to penetrate ex vivo fresh human skin:- 
The skin plays principal functions such as barrier role, temperature control role and repair role that 
contribute to homeostasis process of human body (Sala et al., 2018). Skin has a potential application in 
drug delivery thanks to its large surface area. Prevention of first pass metabolism, minimization of pain 
and possible controlled release of drugs are from the advantages of the Topical or transdermal delivery 
over the conventional oral and intravenous dosage forms (Desai et al., 2010). Skin drug delivery (SDD) 
that is a smart method to the treatment of many diseases, cover in general dermal and transdermal drug 
delivery (Sala et al., 2018). Active molecules after topical application of nanoparticles can be absorbed 
via pathways such as transcellular, intercellular or transappendageal (Figure 5). It is possible that either 
topically applied nanoparticles place into the skin without degradation or with degradation nearby to the 
skin surface, consecutively loaded active molecule would penetrate into the layers of skin. Nanoparticles 
physicochemical properties including size, surface charge, used nanomaterials properties, and so on are 
governing the interaction of nanoparticles with skin (Desai et al., 2010). 

Figure 5:-Sketch of the three penetration pathways: transcellular, intercellular and follicular. The upper right inset is 
a close-up of the SC showing the transcellular pathway and the tortuous intercellular pathway (Bolzinger et al., 

2012). 

CLSM images of skin histological sections are shown in Figure 6 and Figure 7. The images taken from 
the control skin section demonstrated, in which an autofluorescence in the dermis can be observed coming 
from collagen and elastin fibrous structures. The image obtained from sample B (Fig. 6) showed the total 
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fluorescence comprised of the autofluorescence and the fluorescence of the CSE. For samples Fig. 6B and 
Fig. 6C, fluorescence was distributed throughout the Stratum Corneum (SC) and the dermis. For sample 
Fig. 6D, fluorescence was observed in the epidermis and dermis, fluorescence signal of the dermis 
appeared to be highest compared to control. The Figure C illustrated skin location of NPs, which are 
visible only through the epidermis. The fluorescence labeling by CSE confirmed that NPs could be 
observed using CLSM. Fluorescence emission provided semi-quantitative information on the skin
penetration of NPs. CLSM images proved that NPs would penetrate the skin, reaching the dermis. As no 
fluorescence was observed in the SC after application of NPs with Nigella Sativa L Seeds Oil (Figure 
7D), the relative accumulation of fluorescence in the stratum corneum after application of NPs without 
NSO as can be seen in Figure 6B indicate that NSO facilitates the penetration of NPs throughout the 
outermost layer of the epidermis. Nanoparticles were visualized across the epidermis but were hardly 
detectable in the dermis because of the autofluorescence of collagen and elastin fibers. These findings 
draw a conclusion that nanoparticles loaded with indomethacin and NSSEO can penetrate the SC barrier 
to improve the anti-inflammatory activity of indomethacin. 

Figure 6:- CLSM images of NPs deposited on human skin, Scale bars are 20 μm. The CSE used in this study have 
an emission peak at 516 nm. Scale bars are 20μm, (A): control or untreated skin with nanoparticles, (B): mixture of 
25 CSE and distilled water, (C): nanoparticles loaded with indomethacin and CSE, and (D): nanoparticles loaded 

with indomethacin, NSSEO and CSE. 
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Figure7:-CLSM images of NPs (arrow) through the epidermis, Scale bars are 5μm. (A): control or untreated skin 
with colloidal dispersion, (B): mixture of 25 CSE and distilled water, (C): nanoparticles loaded with indomethacin 

and CSE, and (D): nanoparticles loaded with indomethacin, NSSEO and CSE. 

Since ex-vivo investigation results of this research were promising therefore it let us to go further and 
perform the in-vivo anti-inflammatory study as well.

Nanoparticles containing indomethacin and NSSEO: has higher anti-inflammatory efficacy:- 
As can be seen in Figure 8, upon the application of all four formulations at the beginning of experiment (0 
h), no significant differences were observed in mice ears thickness. This can be explained by the SC 
permeability barrier property towards xylene, which was applied for the creation of edema (thickness). 
However, in 1st hour the thickness decreased significantly by indomethacin gel treatment while the 
thickness was stable for three other formulations. Since polymer based nanoparticles and gel are two 
different forms therefore this can be indicated to the imprisoning of indomethacin and NSSEO within the 
polymeric nanoparticles that is not the case for indomethacin gel (P < 0.01) in other words release of 
indomethacin from nanoparticles take time to exert its anti-inflammatory activity. In addition, in 2end hour 
the thickness of mice ears by nanoparticles containing indomethacin and NSSEO in comparison with the 
blank nanoparticles was significantly reduced as compared to the indomethacin gel (P < 0.001). On the 
other hand, in the 3rd hour, thickness depression by nanoparticles loaded with indomethacin and NSSEO 
was highly significant in comparison to indomethacin gel (P < 0.0001). Furthermore, in 6th and 8th hours 
the thickness reduction by nanoparticles loaded with indomethacin and NSSEO together, nanoparticles 
loaded with indomethacin alone and indomethacin gel was respectively significant (P < 0.00001). This 
inflammatory inhibition of nanoparticles containing indomethacin and NSSEO reached its peak 8 h after 
xylene application and showed the highest superiority in reducing mice ear thickness. 
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Figure 8:-Anti-inflammatory activity assessment is based on mice ear thickness measurement in 0h, 1h, 2h, 3h, 6h, 
and 8h time intervals. Mice ears thickness reduction by all four formulations is indicated by bars. Data described in 
Figure 8 shows that nanoparticle loaded with indomethacin and NSSEO has the highest anti-inflammatory activity 
among these formulations except 0h due to NSSEO enhancing effect. P < 0.01 is noted *, P <0.001 is noted **, P 
<0.0001 noted *** and P < 0.00001 noted ****. Multiple comparisons were carried out by one-way analysis of 

variance (ANOVA) at P < 0.01 significance. 

Xylene as phlogistic agent endorses neurogenic inflammation by acting on immune cells, mast cells, and 
vascular smooth muscle (Liduína Maia de Oliveira et al., 2013). The left ear of mice within all four 
groups was considered as negative control on which the distilled water (20 μl/ear) was applied. The 
experiments performing intervals were limited to the 8 h.   

Tissue inflammation histopathological changes can be dealt with easier via nanoparticles loaded 
with indomethacin and NSSEO:-
Histology and immunohistochemistry studies have shown that subsequent to the xylene contact, rat skin 
histopathological changes consist of epidermal-dermal layers separation and infiltration of granulocyte 
into the skin at 4 h and 6 h time points (Figure 9; Figure10). 

(a). Xylene induced mice ear edema treated 
with blank nanoparticles denoting more lesions, 
epidermal-dermal separation.

(b). Xylene induced mice ear edema treated with 
distilled water (negative control) showing normal cell 
histology structure.

(c). Xylene induced mice ear edema treated 
with nanoparticles loaded with indoemthacin.

(d). Xylene induced mice ear edema treated with 
nanoparticles loaded with indomethacin and Nigella 
Sativa L. Essential oil, showing remarkable 
amelioration of the lesions, epidermal-dermal 
separation, and inflammatory cells.
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(e). Mice ear treated with indomethacin gel (positive control).
Figure 9:-Histology images of mice ear with a magnification of 20X, Scale bars represent for (a), (c), (d) 100 μm 

and for, (b) and, (e) 50 μm. It shows that epidermal-dermal layers separation and infiltration of granulocyte into the 
skin reduced by nanoparticles loaded with NSSEO and indomethacin (d) in comparison with other formulations (a), 

(b), (c) and (d) is prominent thanks to NSSEO presence. 

The homogeneous eosinophilic substance accumulation was observed at the epidermal-dermal separation 
areas implying skin damage and/or inflammation associated with xylene application. Our findings in this 
research are in accordance with Gunasekar et al, in 2003 (Gunasekar et al., 2003). In addition, 
inflammatory lesions were more evident than was previously reported (Sadeghi et al., 2014). The topical 
application of designed formulations including indomethacin gel (1 %), nanoparticles loaded with 
indomethacin alone and nanoparticles loaded with indomethacin and NSSEO, could turned down the 
previously histological changes in different ratio. However, mice ears treated with distilled water 
(negative control) and mice ears treated with blank nanoparticles (indomethacin free) did not show any 
changes in the above mentioned histological changes. Treated mice ears nanoparticles loaded with 
indomethacin and NSSEO shown extravagant lesions, epidermal-dermal separation, and inflammatory 
cells (lymphocytes and neutrophils) infiltration reduction effect as showed in Figure 9(d).  

(a).Xylene induced mice ear edema treated with distilled 
water (negative control).

(b). Xylene induced mice edema ear treated with 
blank nanoparticles.

(c). Xylene induced mice ear edema treated with nanoparticle 
loaded with indomethacin.

(d). Xylene induced mice ear edema treated with
nanoparticles loaded with indomethacin and 
Nigella Sativa L. essential oil.
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(e). Xylene induced mice ear edema treated with indomethacin (1 %) gel (positive control).
Figure 10:-Microscopic evaluation of inflammatory cell infiltration differential profile, epidermis integrity, dermis 

thickness, and edema in mice ears, all samples were assessed in representative areas with increased 20x. 
Immunohistochemical evaluation of CD45+, cells in the inflamed and non-inflamed ears tissues of mice. Samples 

were taken after 9 h xylene application. The mice ear sections were stained with Hematoxylin-Phloxine and all 
representative tissue section slides were observed with increased. The images show the thickness of the dermis, 

sebaceous glands, blood vessels and leukocyte infiltration as the criteria for evaluation of anti-inflammatory activity. 
These criteria are most strongly decreased in (d). 

As can be seen in images (Figure 10), the blue color shows the normal cells while the brown color 
indicates the CD45 that is directly correlated with the inflammation. The number of normal and inflamed 
cell nucleus were counted and provided the percentage of inflammatory inhibition. Tissue inflammation 
quantity was determined by the division of CD45 number on the normal cell nucleus number. The anti-
inflammatory inhibition percentage of designed formulations such as blank nanoparticles, indomethacin 
gel (1 %), nanoparticles loaded with indomethacin, and nanoparticles loaded with indomethacin and 
Nigella Sativa L. seeds essential oil were respectively 9 %, 47 %, 79 % and 90 %. 

The obtained data from this research support the concept that NSSEO would exert its anti-inflammatory 
activity and boost the efficacy of indomethacin, and decrease its dosage and consequent side effects.  

Conclusions:- 
This study firstly reports that PCL based nanoparticles loaded with NSSEO can significantly improve 
cutaneous penetration of indomethacin as a noninvasive approach. In another words there would not be 
required to irritate, or disturb skin functions for enhancing drug delivery to skin and overcoming SC 
barrier properties. Furthermore, this study reinforces the anti-inflammatory activity enhancement of 
indomethacin by NSSEO within the polymeric nanoparticles. Consequently, for providing the same 
efficacy by taken dose of indomethacin can be decreased due to NSSEO existence with indomethacin in 
the formulation in order to reduce its side effects throughout the digestive system. Indeed NSSEO anti-
inflammatory is associated with presence of thymoquinone. Further researches are necessary to 
investigate NSSEO different amounts effects on its anti-inflammatory activity and to support NSSEO 
clinical applications.  
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General discussion and conclusion 

The goal of our project was to extract the Nigella Sativa L. Seeds Essential Oil and its encapsulation 

together with indomethacin within polymer based nanoparticles to decrease taken amount and to 

enhance indomethacin cutaneous penetration, and anti-inflammatory activity. Inflammation is taken 

from latin inflammare word that indicates to set on fire. Inflammation could be indicated in health 

problems such as arthritis, cancer, stroke, neurodegenerative to name a few in a response of harmful 

agents including irritants, infection, or damaged cells and other injuries. The common signs of an 

inflammation areraised blood flow, amplified cellular metabolism, cellular influx, soluble 

mediators release, vasodilation, fluids extravasation, on site heat, redness, swelling and pain.

Non-steroidal Anti-Inflammatory Drugs (NSAIDs) are broadly employed heterogeneous group of 

drugs that have not the steroids structure within their chemical. The benefit/risk profiles of NSAIDs 

are different from each other such as their chemical formula. On the daily basis NSAIDs by 

approximately 30 million people take NSAIDs around the world. Generally NSAIDs are exerting anti-

inflammatory activity by inhibition of cyclooxygenase (COX) enzymes. Indeed, COX-1 is a 

constitutive enzyme whereas COX-2 is an inducible enzyme. Indomethacin has selected as active to be 

encapsulated because it is a gold standard NSAID that has a sufficient anti-inflammatory activity for 

the external application, indomethacin is a potent NSAID. Since indomethacin as other NSAIDs to 

provide its pharmacological activity would inhibit COX enzymes and consequently could cause or 

intensify gastro-intestinal side effects (ulcers or bleeding). In addition, direct contact of indomethacin 

as an acid can boost the pharmacological mechanism based side effect. Therefore, to avoid 

indomethacin direct contact with digestive mucus and its first pass effect consequently to reduce 

indomethacin side effects, skin may use as indomethacin route of administration. However, skin 

because of its drug low permeability (Stratum Corneum) play the role of a barrier towards drugs 

development for skin application. Nigella Sativa L. Seeds Essential Oil (NSSEO) biological properties 

(anti-inflammatory, analgesic, immunomodulatory, spasmolytic, and anti-oxidant) have been well 

studied. Thymoquinone is the most abundant part of Nigella Sativa L. that is mostly responsible for 

NSSEO therapeutic properties. There is a direct proportion between indomethacin taken dose and its 

side effects severity at the digestive system. Thus, it is important to decrease the employed 

indomethacin dosage and consequently its side effects for providing the indomethacin anti-

inflammatory activity. To overcome this challenge NSSEO could be used together with indomethacin 

in order to decrease indomethacin taken dosage while for handling with skin barrier properties 

nanotechnology would be the best approach among the skin penetration enhancement approaches. All 

these reasons and facts are motivating to encapsulate indomethacin with NSSEO within poly (ε-

caprolactone) polymer for the skin application. According to the made literature review, we have 

decided to orient our works to polymer-based nanoparticlesand use nanoprecipitation for the 

preparation of nanoparticles. The first challenge in our research to handle with was the using of 
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nanoprecipitation as a method of nanoparticles preparation for design of nanoparticles with suitable 

properties for skin penetration. In fact, safety, simplicity, ease of scalability, low energy input, 

obtaining of submicron particle sizes with narrow size distribution and good reproducibility 

are from the advantages of nanoprecipitation method. Acetone has selected as solvent due to its 

low boiling point (56.3 °C), immiscibility with water and its ability to dissolve polycaprolactone 

properly. To have a suitable colloidal dispersion stability polyvinyl alcohol (PVA) and polysorbate 80 

(Tween® 80) were used as stabilizers. The objective of this work was to prepare the PCL based 

nanoparticles loaded with indomethacin and Nigella Sativa Seeds Essential Oil (NSSEO). 

Accordingly, a series of experiments were carried out:

In first part, a systematic study has done to optimize the condition (formulation and process related 

parameters) for obtaining nanoparticles with optimal wanted properties (size, surface charge etc.) to 

the skin administration, namely a monodisperse population of nanoparticles with diameter near to 100 

nm and negative zeta potential. Our findings were divided into two parts of formulation related 

parameters and operating conditions related parameters. The usage of PCL as biodegradable polymer 

and acetone as solvent with low boiling point made this part original. In this part of study, it was found 

out that in formulation related parameters polymer concentration, and aqueous phase volume had a 

paramount impact on colloidal particles properties. Indeed, we have observed that when 4 mg/ml PCL 

concentration was used, nanoparticles with size of 152 ± 1.15 nm were obtained while 24 mg/ml PCL 

concentration has used as highest concentration, nanoparticles with size of 258 ± 2.50 nm were 

obtained. In addition, aqueous phase volume increasing from 25 ml to 100 ml lead nanoparticles size 

from 345 ±3.95nm to 181 ± 1.11 nm. In operating conditions, agitation speed organic phase and 

injection rate are the key factors to be taken into consideration. Stirring speed alteration from 75 rpm 

to 600 rpm decreased nanoparticles size from 211 ± 1.27 nm to 172 ± 2.25 nm. The change of organic 

phase injection rate from 1 ml/min to 9 ml/min caused nanoparticles size enlargement from 195 ± 1.34 

nm to 189 ± 1.37 nm. However, upon organic phase injection speed, increasing to 13 ml/min this rule 

was not applicable anymore and the nanoparticles size was 197 ± 3.62 nm. Simplicity and low 

variability of nanoparticles preparation process are the other two important factors that should take 

into account beside the characteristics of produced nanoparticles within a systematic study. Prepared 

nanoparticles zeta potential were stable for all parameters except PVA concentration, while PVA 

concentration was getting increased nanoparticles zeta potential was decreased. The findings of this 

study proved that systematic study is essential before investigation of any drug encapsulation in order 

to design the nanoparticles with proper characteristics for in-vivo and in-vitro applications.  

After optimization of nanoparticles preparation condition that was too crucial for figuring out the 

effective parameters, in second part, PCL based nanoparticles containing alone indomethacin were 

prepared. This part of study carried out to see the indomethacin presence effect and to prepare 

nanoparticles for comparison in terms of skin penetration and in-vivo anti-inflammatory activity with 
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the nanoparticles loaded with indomethacin and NSSEO together, which have prepared in the 

following experiment. Consecutively these nanoparticles were characterized in terms of size, surface 

charge, morphology, and pre-stability study. Along this study PCL based particles containing IND 

have been successfully prepared and characterized. The results obtained from DSC and FTIR studies 

of NPs indicated that no chemical interaction between drug and polymer in the formulation was 

occurred. The designed nanoparticles were pointed out stable for one month under storage 

temperatures of 4 °C, RT, and 40 °C. The pH of prepared colloidal dispersion was ranged between 4 

and 6. The results showed that NPs hydrodynamic size was between 220 to 245 ± 79.75 nm and the 

zeta potential value ranges from −19 to −13 ± 4.61 mV at pH 5 and 1 mM NaCl. The encapsulation 

efficiency of designed nanoparticles upon preparation and after one-month storage in three above-

mentioned temperatures was around 70 % and the drug loading was about 14 to 17 %. SEM and TEM 

images confirmed that the obtained nanoparticles were spherical and properly isolatedwith smooth 

surface. In addition, CLSM images proved that obtained NPs can penetrate the skin as well. The 

prepared nanoparticles are submicron in nature, with good colloidal stability and penetrate the stratum 

corneum layer of the skin. This formulation potentiates IND skin penetration and as a promising 

strategy would be able todecline the side effects of IND. This study supports indomethacin loaded 

nanoparticles penetration potential as a modern topical formulation that would decline indomethacin 

frequency of administration, side effects and consecutively patients’ compliance. 

In third part, indomethacin and NSSEO together were encapsulated within PCL by nanoprecipitation 

method. Successively, the characterization of prepared nanoparticle in terms of size, zeta potential, 

morphology, fluorescent microscopy, TEM, FTIR, DSC and stability was performed. These 

techniques all together confirm the encapsulation of indomethacin and NSSEO. Furthermore, skin 

penetration of designed nanoparticles was studied as well. The size and zeta potential of obtained 

nanoparticles were respectively (230 nm - 260 nm) and (-20 mV and -30 mV). Images provided by 

TEM analysis shown that prepared nanoparticles have a spherical and regular form. Encapsulation 

efficiency of nanoparticles for indomethacin and NSSEO were correspondingly 70 % and 84 %. The 

size of nanoparticles was not changed significantly within 30 days of pre-stability 

investigation. The zeta potential of nanoparticles throughout the period of pre-stability study 

was altered from -22 mV up to -28 mV that was non-significant as well. Nanoparticles had a 

size in nano scale with round shape and a proper stability. Indomethacin and NSSEO were 

successfully encapsulated that would boost the anti-inflammatory and analgesic effects of 

indomethacin.

In fourth part, ex vivo skin penetration and in vivo anti-inflammatory activity of Poly (ε-caprolactone) 

based nanoparticles loaded with indomethacin and NSSEO that were previously prepared, has been 

assessed. Our findings shown that since the application of designed formulations up to one hour no 
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significant differences were observed in mice ears thickness. Nevertheless, in 1est hour, mice ear 

thickness was reduced significantly by indomethacin gel whereas the thickness was stable for three 

other formulations. Furthermore, in 2end hour the thickness reduction by nanoparticles containing 

indomethacin and NSSEO in comparison with the blank nanoparticles was significant that was less 

than indomethacin gel. From the other hand in 3ed hour, thickness depression by nanoparticles loaded 

with indomethacin and NSSEO was highly significant incomparison with indomethacin gel. 

Furthermore, in 6th and 8th hours the declined thickness by nanoparticles loaded with indomethacin and 

NSSEO together, nanoparticlesloaded with indomethacin alone and indomethacin gel was gradually 

significant. This inflammatory inhibition of nanoparticles containing indomethacin and Nigella Sativa 

L. Seeds Essential Oil has reached its peak 8 h after xylene application. According to the found results 

the anti-inflammatory activity was time dependent. Histology and immunohistochemistry analysis 

figured out that the anti-inflammatory inhibition percentage of blank nanoparticles, indomethacin (1 

%) gel, nanoparticles loaded with indomethacin alone and nanoparticles loaded with indomethacin and 

NSSEO are respectively 9 %, 47 %, 79 %, and 90 %. The ex vivo and in vivo results of this work 

confirmed that NSSEO possesses a significant anti-inflammatory activity and can be used as an 

enhancer for indomethacin topical application within the nanoparticles. Nanoparticles containing 

indomethacin and NSSEO had skin better penetration than nanoparticles loaded with indomethacin 

alone that was confirmed with CLSM. Based on our hypothesis, designed nanoparticles having 

negative charge can penetrate into the skin by appendage route (hair follicle) that can be time and size 

dependent. However, it is difficult to draw a conclusion regarding nanoparticles penetration precise 

mechanism because of skin heterogeneous structure and composition. Hair follicle can play a role as a 

reservoir for topically applied nanoparticles. In conclusion, poly (ε-caprolactone) based nanoparticles 

were elaborated that could be loaded with indomethacin and NSSEO. Prepared particles as 

noninvasive penetration enhancement technique have upgraded the skin penetration of indomethacin, 

and reduce its systemic concentration and side effects. 
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Part V 

PERSPECTIVES
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Perspectives 

The highly encouraging results of this PhD thesis open new ingenious avenue to enhance 

inflammation inhibitory properties of indomethacin. It could be hoped that the encapsulation of 

indomethacin together with Nigella Sativa L. Seeds Essential Oil within poly- -caprolactone enhance 

the anti-inflammatory activity, the efficacy of indomethacin treatment and decline its side effects. 

Furthermore, another way, which is opened by this PhD thesis, is to search the possibility of using 

anti-inflammatory and penetration enhancer from natural source. In the light of this research, different 

drugs will be encapsulated together with Nigella Sativa L. Seeds Oil for the treatment of various 

diseases such as cancer, tuberculosis and so on.     

For better confirmation concerning encapsulation of indomethacin and Nigella Sativa L. Essential 

Oils, it is required to performed several other investigations. In addition, nanoparticles penetration and 

drug release in each layer of the skin, long-term stability study, indomethacin release kinetic and 

clinical application of nanoparticles loading indomethacin and Nigella Sativa L. Essential Oil would 

be other steps towards previously carried research.     
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