
HAL Id: tel-01875711
https://theses.hal.science/tel-01875711v1

Submitted on 27 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Many-Core Timing Analysis of Real-Time Systems
Hamza Rihani

To cite this version:
Hamza Rihani. Many-Core Timing Analysis of Real-Time Systems. Performance [cs.PF]. Université
Grenoble Alpes, 2017. English. �NNT : 2017GREAM074�. �tel-01875711�

https://theses.hal.science/tel-01875711v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ
UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Hamza RIHANI

Thèse dirigée par Matthieu MOY
et co-encadrée par Claire MAÏZA

préparée au sein du Laboratoire VERIMAG
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Analyse temporelle des systèmes temps-
réels sur architectures pluri-cœurs

Many-Core Timing Analysis of Real-Time
Systems

Thèse soutenue publiquement le 1 décembre 2017,
devant le jury composé de :

Monsieur Robert I. DAVIS
Directeur de recherche, Université de York - Royaume-Unis, Président

Madame Christine ROCHANGE
Professeur, Université de Toulouse III Paul Sabatier - France, Rapporteur

Monsieur Jan REINEKE
Professeur, Université de la Sarre - Allemagne, Rapporteur

Monsieur Benoît DUPONT DE DINECHIN
Directeur de la Technologie, Kalray SA - France, Examinateur

Monsieur Matthieu MOY
Maître de conférences, Université Lyon 1 - France, Directeur de thèse

Madame Claire MAÏZA
Maître de conférences, Grenoble INP - France, Co-Encadrant de thèse

M A N Y- C O R E T I M I N G A N A LY S I S O F R E A L - T I M E
S Y S T E M S

and Its Application to an Industrial Processor

by

H A M Z A R I H A N I

To obtain the academic degree of:
Doctor of Philosophy in Computer Science

Verimag
Univ. Grenoble Alpes

Advisor: Dr. Matthieu Moy
Supervisor: Dr. Claire Maïza

December 2017

This document is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0)
license.

Hamza Rihani: Many-Core Timing Analysis of Real-Time Systems, © December 2017

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

To my teachers

A B S T R A C T

Predictability is of paramount importance in real-time and safety-critical systems, where
non-functional properties – such as the timing behavior – have high impact on the sys-
tem’s correctness. As many safety-critical systems have a growing performance demand,
classical architectures, such as single-cores, are not sufficient anymore. One increasingly
popular solution is the use of multi-core systems, even in the real-time domain. Recent
many-core architectures, such as the Kalray MPPA, were designed to take advantage of the
performance benefits of a multi-core architecture while offering certain predictability. It is
still hard, however, to predict the execution time due to interferences on shared resources
(e.g., bus, memory, etc.).

To tackle this challenge, Time Division Multiple Access (TDMA) buses are often advo-
cated. In the first part of this thesis, we are interested in the timing analysis of accesses to
shared resources in such environments. Our approach uses Satisfiability Modulo Theory
(SMT) to encode the semantics and the execution time of the analyzed program. To esti-
mate the delays of shared resource accesses, we propose an SMT model of a shared TDMA
bus. An SMT-solver is used to find a solution that corresponds to the execution path with
the maximal execution time. Using examples, we show how the worst-case execution time
estimation is enhanced by combining the semantics and the shared bus analysis in SMT.

In the second part, we introduce a response time analysis technique for Synchronous
Data Flow programs. These are mapped to multiple parallel dependent tasks running on
a compute cluster of the Kalray MPPA-256 many-core processor. The analysis we devise
computes a set of response times and release dates that respect the constraints in the task
dependency graph. We derive a mathematical model of the multi-level bus arbitration
policy used by the MPPA. Further, we refine the analysis to account for (i) release dates
and response times of co-runners, (ii) task execution models, (iii) use of memory banks,
(iv) memory accesses pipelining. Further improvements to the precision of the analysis
were achieved by considering only accesses that block the emitting core in the interference
analysis. Our experimental evaluation focuses on randomly generated benchmarks and an
avionics case study.
Keywords: shared resource interference, many-core processors, worst-case execution time,
response time, timing analysis, real-time systems.

iii

R É S U M É

La prédictibilité est un aspect important des systèmes temps-réel critiques. Garantir la
fonctionnalité de ces systèmes passe par la prise en compte des contraintes temporelles.
Les architectures mono-cœurs traditionnelles ne sont plus suffisantes pour répondre aux
besoins croissants en performance de ces systèmes. De nouvelles architectures multi-cœurs
sont conçues pour offrir plus de performance mais introduisent d’autres défis. Dans cette
thèse, nous nous intéressons au problème d’accès aux ressources partagées dans un envi-
ronnement multi-cœur.

La première partie de ce travail propose une approche qui considère la modélisation de
programme avec des formules de satisfiabilité modulo des théories (SMT). On utilise un
solveur SMT pour trouver un chemin d’exécution qui maximise le temps d’exécution. On
considère comme ressource partagée un bus utilisant une politique d’accès multiple à répar-
tition dans le temps (TDMA). On explique comment la sémantique du programme analysé
et le bus partagé peuvent être modélisés en SMT. Les résultats expérimentaux montrent une
meilleure précision en comparaison à des approches simples et pessimistes.

Dans la deuxième partie, nous proposons une analyse de temps de réponse de pro-
grammes à flot de données synchrones s’exécutant sur un processeur pluri-cœur. Notre
approche calcule l’ensemble des dates de début d’exécution et des temps de réponse en re-
spectant la contrainte de dépendance entre les tâches. Ce travail est appliqué au processeur
pluri-cœur industriel Kalray MPPA-256. Nous proposons un modèle mathématique de
l’arbitre de bus implémenté sur le processeur. De plus, l’analyse de l’interférence sur le bus
est raffinée en prenant en compte : (i) les temps de réponse et les dates de début des tâches
concurrentes, (ii) le modèle d’exécution, (iii) les bancs mémoires, (iv) le pipeline des accès à
la mémoire. L’évaluation expérimentale est réalisé sur des exemples générés aléatoirement
et sur un cas d’étude d’un contrôleur de vol.
Mots clés : interférences sur ressources partagées, processeurs pluri-cœurs, temps de
réponse, temps d’exécution pire-cas, analyse temporelle, système temps-réel.

iv

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following publications:

[RMM16] Hamza Rihani, Claire Maiza, and Matthieu Moy. “Efficient Execution of De-
pendent Tasks on Many-Core Processors.” In: RTSOPS 2016. 7th International
Real-Time Scheduling Open Problems Seminar. Toulouse, France, July 2016.

[Rih+15] Hamza Rihani, Matthieu Moy, Claire Maiza, and Sebastian Altmeyer. “WCET
analysis in shared resources real-time systems with TDMA buses.” In: RTNS
2015. 23rd International Conference on Real-Time Networks and Systems. Nov.
2015.

[Rih+16] Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I. Davis, and Sebastian
Altmeyer. “Response Time Analysis of Synchronous Data Flow Programs on
a Many-Core Processor.” In: Proceedings of the 24th International Conference on
Real-Time Networks and Systems (RTNS). 2016, pp. 67–76.

v

A C K N O W L E D G M E N T S

This thesis has been a journey of learning and self-improvement through hard work. The work
presented here would not be possible without the participation of many people.

To my advisors Matthieu Moy and Claire Maïza who remind of what Stephen Covey wrote in his
book: “Be a light, not a judge, be a model not a critic”. They were a guiding light and inspiring models
throughout my journey. I have an endless gratitude toward them for their trust and encouragement.
They have been my mentors whom I look up to. Thanks to Matthieu for showing me that working
with passion leads to higher quality results. He amazed me with his intelligence and brilliance in
facing hard challenges. Thanks to Claire who knew how to motivate and push me when I needed
it the most. Her vibrant energy and the synergy she brought in this work helped it to progress and
result in interesting collaborations.

My gratitude goes to the jury members who took the time to evaluate my PhD thesis and for
their decision to entitle me with the Doctor degree. I thank Christine Rochange, Jan Reineke, for
reviewing the manuscript. Thanks to Benoît Dupont de Dinechin and Robert I. Davis for being
examiners.

This PhD thesis is funded by the grant CAPACITES from the french Ministère de l’économie, des
finances et de l’industrie. I would like to thank all the partners and participants in this project; I
had fruitful collaborations with Isabelle Puaut and Damien Hardy from IRISA, as well as Christine
Rochange, Hugues Cassé, and Wei-Tsun Sun from IRIT. Many thanks to Benoît Dupont de Dinechin,
CTO of Kalray, who was always available for discussions despite his busy schedule. Without the
openness and transparency of Kalray, the work of this thesis would not have been possible. I would
like to salute all the employees of Kalray who are always ready to help and to answer any request.

Special thanks go to all the people of the Real-Time Systems community whom I met during
academic events. Thanks to my co-authors Sebastian Altmeyer and Robert I. Davis. The discussion
we had during RTNS 2015 was a starting point of what gave a large part of the work presented
in this thesis. Thanks to Sophie Quinton, Joël Goosens, Vincent Nélis, Jan Reineke, for the many
meetings and insightful discussions we had.

Many thanks to the members of Verimag lab for all the formal and informal discussions and
for simply being a part of this adventure. I was fortunate to be surrounded with wonderful and
inspiring people. In particular, thanks to Florence Maraninchi and Nicolas Halbwachs, successive
directors of Verimag, who warmly welcomed me in this family. Thanks to Oded Maler and Susanne
Graf for their collections of interesting books. Thanks to David Monniaux and Julien Henry for
their help with the tool PAGAI. Thanks to the administrative staff and the system administrators of
Verimag whose support provides a good environment for efficient work.

Furthermore, thanks to my colleagues and friends: Denis Becker, my office mate with whom I
shared the stress of writing, Amaury Graillat, Vera Shalaeva, Thomas Rubiano, Maxime Puys, Anaïs
Durand, Alexandre Maréchal, Valentin Touzeau, Alexandre Rocca, Irini Mens, Hang Yu, Mahieddine
Dellabani, Lotfi Mediouni, Laurent Lemke, and all the current and future doctors at Verimag with
whom I shared lunches and coffee breaks.

My life long friends: Ismail, Amine, Sami, and Farouk. To whom I say thanks for always being
there for me. It is rare to have such persons who can ignite enthusiasm and ambition back whenever
it is needed.

To Yuliia, who shared the bitter and the sweet of this thesis. She proofread my chapters and
motivated me throughout the writing process. I am endlessly grateful to her.

Finally, to my parents, my sister, and my brothers, for all their unconditional love and support.
Without them, I would not be who I am today.

vii

C O N T E N T S

1 introduction 1

1.1 Context and Motivation . 1

1.2 Summary of Contributions . 3

1.3 Thesis Outline . 4

i state-of-the-art 5

2 background 7

2.1 Real-Time Systems . 7

2.1.1 Requirements . 9

2.1.2 Challenges in the Verification of Real-Time Systems 10

2.2 Application Models . 12

2.2.1 Task Models . 12

2.2.2 Synchronous and Asynchronous Task Models 13

2.2.3 Synchronous Data-Flow Model . 14

2.2.4 Task Scheduling . 15

2.3 Hardware Architectures . 15

2.3.1 Multi-core and Many-core Architectures 16

2.3.2 Timing Compositionality . 17

2.3.3 Predictable Multi-core and Many-core Architectures 19

2.4 Execution Models . 21

2.5 Static Timing Analysis . 22

2.5.1 Micro-architectural Analysis . 23

2.5.2 Path Analysis . 24

2.5.3 Some WCET Tools . 25

2.6 Context of the Thesis . 26

2.6.1 Time Division Multiplexing . 26

2.6.2 Response Time Analysis . 26

3 related work 29

3.1 Overview on Many-core Platforms in Hard Real-Time Systems 29

3.1.1 Shared Resources Interference . 31

3.1.2 Application and Execution Models . 32

3.1.3 The Mapping and Scheduling Problem 33

3.1.4 Summary . 34

3.2 Temporal Isolation: a Way to Avoid Interference 34

3.2.1 Time Division Multiplexing . 34

3.2.2 Time Frame Isolation . 36

3.2.3 Summary . 37

3.3 Shared Resources Interference Analysis . 37

3.3.1 Formal Approaches . 37

3.3.2 Measurement-Based Approaches . 39

ix

x contents

3.3.3 Summary . 39

3.4 Conclusion and Positioning . 40

3.4.1 On TDMA-based Buses . 40

3.4.2 On Shared Resources Interference . 40

ii contributions 43

4 shared resources with a tdma bus 45

4.1 Motivation . 45

4.2 Foundations . 47

4.2.1 Time Division Multiple Accesses (TDMA) 47

4.2.2 WCET Analysis of TDMA Buses: an Example 48

4.2.3 Satisfiability Modulo Theory (SMT) . 49

4.2.4 WCET by SMT . 51

4.3 SMT-based Analysis for TDMA . 53

4.3.1 Naive Timing Encoding . 53

4.3.2 Optimized Timing Encoding . 54

4.3.3 Adding Cuts to the SMT Expression . 58

4.4 Implementation and Evaluation . 58

4.4.1 Performance of SMT Encodings for TDMA 60

4.4.2 Benchmarks . 62

4.5 Conclusions and Future Work . 65

4.5.1 Summary . 65

4.5.2 Future Work . 67

4.5.3 Discussion . 67

5 response time analysis on multi-core systems 69

5.1 Data-Flow Applications on Multi-core Platforms 69

5.1.1 Shared Multi-Bank Memory, Multi-core Architecture 70

5.1.2 Dependent Task Graph Model . 70

5.1.3 Phase-based Execution Model . 72

5.2 Response Time Analysis . 72

5.2.1 Multi-core Response Time Analysis . 72

5.2.2 Analysis of Dependent Task Graphs . 74

5.3 Termination and Correctness of the Response Time Analysis 76

5.3.1 Basic Properties of the Response Time Analysis 77

5.3.2 Convergence of the Fixed-Point . 80

5.3.3 Uniqueness of the Fixed-Point . 82

5.4 Conclusion . 83

6 shared resource interference analysis on a many-core processor 85

6.1 Presentation of the Kalray MPPA-256 Bostan 85

6.1.1 Compute Cluster . 86

6.1.2 Shared Memory . 86

6.1.3 Bus Arbitration . 87

6.2 Timing Analysis on the Kalray MPPA-256 . 88

6.3 Shared Bus Interference . 89

contents xi

6.3.1 Understanding Memory Accesses . 89

6.3.2 Illustrative Examples on Cached Load and Store Instructions 91

6.3.3 Variables in Bus Interference Model . 92

6.4 Simplified Model of the Multi-level Bus Arbiter 93

6.5 Full Model of the Interference on Shared Resources 95

6.5.1 Bursts of Memory Accesses . 95

6.5.2 Memory Access Pipeline . 96

6.5.3 Blocking and Non-blocking Memory Accesses 97

6.5.4 Arbitration Policy . 97

6.6 Timing Compositionality of Shared Resource Accesses 99

6.6.1 Left Side and Right Side Bus Masters 99

6.6.2 Write Buffer . 100

6.7 Conclusion . 103

iii evaluation 105

7 experimental evaluation 107

7.1 Experimental Setup . 107

7.1.1 Bus Model . 108

7.1.2 Execution Model . 108

7.1.3 Experiments . 109

7.2 Didactic Example . 110

7.3 Randomly Generated DAGs . 111

7.3.1 Effect of CPU Utilization . 112

7.3.2 Effect of Blocking Transactions . 113

7.3.3 Effect of the Network-on-Chip . 114

7.3.4 Performance Analysis . 115

7.4 ROSACE (Flight Management System) . 116

7.5 Conclusion . 118

8 from timing analysis to real-time implementation 121

8.1 Design Choices and Implementation . 121

8.1.1 Code Generation and Impact on WCRT 122

8.1.2 The WCRT–Mapping–Scheduling Relation 122

8.2 Integration within the CAPACITES Project . 123

8.3 Conclusion . 124

9 conclusions and prospects 127

9.1 Summary . 127

9.1.1 Context of the Thesis . 127

9.1.2 Contributions . 128

9.2 Future Work . 129

9.2.1 SMT-based approaches for WCET analysis 129

9.2.2 Modeling the Shared Resource Accesses 130

9.2.3 Timing Compositionality and Composability 130

9.2.4 Comparison with Real Execution . 131

9.2.5 Application Models . 131

xii contents

9.2.6 Future of Timing Analysis of Multi-Core Real-Time Systems 131

bibliography 133

L I S T O F F I G U R E S

Figure 1.1 Role of execution time in timing constrained systems 2

Figure 2.1 Example of a real-time system: Flight Management System 8

Figure 2.2 Worst-case execution time . 11

Figure 2.3 Task’s state transitions [Alt13] . 12

Figure 2.4 Illustration of a task/job execution . 13

Figure 2.5 Example of a Lustre node and its high-level graphical representation 14

Figure 2.6 Example of a data-flow program . 15

Figure 2.7 Memory hierarchy of a single-core processor [Rei08] 16

Figure 2.8 An example of a multi-core platform 16

Figure 2.9 Scheduling anomaly . 18

Figure 2.10 Branch speculation anomaly . 18

Figure 2.11 Overview of the Tilera TILE-Gx36 processor (taken from [Til12]) . . 20

Figure 2.12 Execution models, where: a, e, and r stand for acquisition, execution,
and replication respectively . 21

Figure 2.13 Components of a timing analysis framework [Cul+10] 23

Figure 2.14 Example of a simplified C code and its (simplified) CFG 24

Figure 3.1 Target architecture model of a many-core processor 30

Figure 3.2 Interference on shared memory. Delays occur due to the arbitration
of memory accesses which results in a longer execution time for each
task than when executing on a single-core 31

Figure 3.3 Global scheme of multi-core response time analysis 41

Figure 4.1 Example of a TDMA bus arbiter. Slots {A, B, C} are assigned to
cores {P0, P1, P2} respectively. This example illustrates access re-
quests from P0. 48

Figure 4.2 Example of execution paths with a shared TDMA bus 50

Figure 4.3 General DPLL(T) framework . 50

Figure 4.4 Example of a basic block (block (3)) with a join and a condition . . . 52

Figure 4.5 Split of basic blocks such that only a single bus access occurs at the
beginning of the block . 53

Figure 4.6 A minimal example of a CFG . 55

Figure 4.7 General workflow of the proof of concept to generate SMT expressions 59

Figure 4.8 Comparison of the naive implementation of tdma_access�, the offset-
based implementation of tdma_access N, and get_offset • 60

Figure 4.9 Performance comparison of diamond formulas encodings 61

Figure 4.10 Performance comparison of unrolled loops encodings 62

Figure 4.11 General workflow for realistic timing analysis 66

Figure 5.1 Multi-core, shared multi-bank memory architecture model 70

Figure 5.2 Example of a SDF graph and the result of the static analysis. 71

xiii

Figure 5.3 Interference from tasks on core Py on the task on core Px, where
Py, Px ∈ Π and Py 6= Px. Only overlapping tasks mutually interfere. . 74

Figure 5.4 Illustration of the coincidence . 77

Figure 5.5 Execution of Algorithm 8 on the example in Figure 5.2 with Θmin =

0. Arrows correspond to task dependencies. Tasks in green have
fixed release dates and response times. Tasks in orange have only
fixed release dates . 81

Figure 6.1 Overview of the Kalray MPPA-256 . 86

Figure 6.2 Compute cluster architecture for the Kalray MPPA-256 86

Figure 6.3 Blocked and interleaved address configuration modes of the shared
memory (SMEM) . 87

Figure 6.4 Request arbitration to a shared memory bank 88

Figure 6.5 Occurrence of accesses from data cache and write butter to shared
memory . 90

Figure 6.6 Cases of overlapping tasks . 92

Figure 6.7 Shared bus pipeline . 96

Figure 6.8 Interference delay considering the shared bus pipeline 96

Figure 6.9 Example of a domino effect with a FIFO write buffer: empty write
buffer does not lead to the worst-case execution time [DAR16] 100

Figure 6.10 There is no domino effect with an LRU write buffer 101

Figure 6.11 The same execution leads to different numbers of accesses in isola-
tion and in interference . 102

Figure 7.1 Pessimism in single-phase and two-phase execution models 109

Figure 7.2 Static scheduling of the example in Figure 5.2a considering 3 mem-
ory banks . 110

Figure 7.3 Comparison of the end-to-end response time obtained with different
analyses of the SDF example in Figure 5.2a 111

Figure 7.4 The layer-by-layer method in DAG generation. An example with L
layers and Nk vertices per layer (1 ≤ k ≤ L). Edges are generated
according to a given probability. 111

Figure 7.5 Number of schedulable DAGs vs. utilization with: M = 8 cores,
b = 1, ρ = 0.5 . 112

Figure 7.6 Number of schedulable DAGs vs. blocking access ratio with 8 cores,
u = 0.4, ρ = 0.5 . 114

Figure 7.7 Number of schedulable DAGs vs. NoC traffic with: 8 cores, ρ = 0.5,
b = 1 . 114

Figure 7.8 Run-time analysis in log-log scale with: 8 cores, ρ = 0.5. Graph lines
for O(n3) and O(n4) are shown as an indication. 115

Figure 7.9 Flight Management System controller 117

Figure 7.10 Task-to-core mapping and unfolding of tasks in the FMS controller . 118

Figure 7.11 The smallest schedulable period obtained with different analyses . 118

Figure 8.1 The proposed tool-chain within the CAPACITES project 124

xiv

L I S T O F TA B L E S

Table 2.1 Design assurance levels in DO-178B 9

Table 4.1 Benchmarks . 63

Table 4.2 Results with the TDMA bus configuration: π = 40, σ = 20, acc = 10 64

Table 4.3 Results with the TDMA bus configuration: π = 80, σ = 40, acc = 10 64

Table 4.4 Results with the TDMA bus configuration: π = 160, σ = 40, acc = 10 64

Table 4.5 Results with the TDMA bus configuration: π = 400, σ = 200, acc = 40 65

Table 4.6 Results with the TDMA bus configuration: π = 400, σ = 100, acc = 40 65

Table 4.7 Analysis time, in seconds, of the benchmarks with different configu-
rations of the TDMA bus . 65

Table 7.1 Task profiles of the SDF example in Figure 5.2a 110

Table 7.2 Task profiles of the FMS controller . 117

L I S T I N G S

Listing 2.1 Lustre programming language . 14

Listing 2.2 Example of C-like code with a loop with two conditions 24

A C R O N Y M S

CFG Control-Flow Graph

COTS Common-Off-The-Shelf

CRPD Cache Related Preemption Delay

DAG Directed Acyclic Graph

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSU Debug Support Unit

FIFO First-In-First-Out

xv

xvi acronyms

ILP Integer Linear Programming

IPET Implicit Path Enumeration Technique

LSU Load Store Unit

MBTA Measurement-Based Timing Analysis

MD Memory Demand

MPPA Massively Parallel Processor Array

MRTA Multi-core Response Time Analysis

NoC Network-on-Chip

RM Resource Manager

RR Round-Robin

RTOS Real-Time Operating System

SDF Synchronous Data-Flow

SDRAM Synchronous Dynamic Random Access Memory

SMEM Shared Memory

SMT Satisfiability Modulo Theory

SRAM Static Random Access Memory

TDMA Time Division Multiple Access

VLIW Very Long Instruction Word

WCET Worst-Case Execution Time

WCRT Worst-Case Response Time

Chapter 1
I N T R O D U C T I O N

1.1 Context and Motivation . 1

1.2 Summary of Contributions . 3

1.3 Thesis Outline . 4

1.1 context and motivation

Time matters in safety-critical real-time systems. The predictability of these systems is
needed in order to guarantee certain security and safety requirements. Determining Worst-
Case Execution Times (WCET) of a software (or a piece of code) has received a major focus
of research in the field of embedded systems.

Critical embedded systems (e.g., avionics, medical devices, automotive, etc.) have tra-
ditionally used simple hardware systems in order to control their predictability: not only
the computations done in these systems must yield the correct result, but they also must
deliver this result before a given deadline. Many critical embedded systems have an increas-
ing demand in computing speed. For example, self-driving cars require more performance
to process video streams, and make decisions in real-time according to the surrounding
environment.

Old and simple processors are not sufficient anymore. Unfortunately, common optimiza-
tions done in general-purpose electronic systems (e.g., complex cache policy, branch predic-
tion, etc.) are meant to optimize the average case, but not the worst case. As a consequence,
general-purpose processors are not suitable.

WCETs must be computable in order to ensure that a program has enough time to finish
before its deadline. The execution time depends on the inputs of the program, that may
determine the execution path, and the state of the hardware architecture. The following
example illustrates the problem:

Example 1. Function f in Figure 1.1 represents a simple toy task running on a single-core. Its
control-flow graph is annotated with timing information. The execution path in the function depends
on the input value of x. For instance, when x = 3, the execution time is b1 + b3 + b4 = 5 + 7 +

3 = 15 time units. On the other hand, for x = 41 the execution time is b1 + 10b2 + b4 =

5 + 9× 10 + 3 = 98 time units. To allocate a proper time budget for the function f , its worst-case
execution time needs to be known in advance. For this example, the worst-case execution time is
b1 + 39b2 + b4 = 5 + 39× 10 + 3 = 398 time units when x = 11.

1

2 introduction

3

10
(x<50)?

7

5

(x>10)?

1 int f(int x){

2 int y=get();

3 if(x>10)

4 while(x<50)

5 x=x+1;

6 y=y+x;

7 else

8 y=x;

9 write(y);

10 return y;

11 }

input: x

Control Flow Graph with
timing annotations (time units)

C-like code source

output: y

b1

b2

b3

b4

Figure 1.1: Role of execution time in timing constrained systems

Example 1 assumes known and deterministic worst-case execution times of each instruc-
tion. On a single-core processor this is done by analyzing the states of the processor pipeline
and the cache memory. The challenge here is to find the longest execution path that maxi-
mizes the execution time.

Multi-core and many-core processors are considered to be a fit solution to increasing
computing speed demand, energy consumption, and area efficiency in embedded systems.
Such processors typically consist of several cores sharing some hardware resources such
as cache memories, buses, shared global memory, etc. The execution time becomes less
predictable due to potential contention on shared resources. In Figure 1.1, reading and
writing of y (lines 2 and 9 respectively) may be subject to timing interference from co-
runner tasks on the platform, especially if y is in a shared memory and not in a private
cache memory.

Some architectures were designed with both performance and predictability in mind,
and would be good candidates to run critical, real-time and high-performance embedded
software. One of them is the industrial MPPA 1 many core architecture. It offers a very high
degree of parallelism (256 cores), and allows several computations to be done in parallel
with limited interference. The individual cores of the MPPA architecture have already been
studied and showed to behave well with respect to real-time.

Due to the shared resources, two additional problems remain in multi-core and many-
core systems: (i) how to control the interference between two computations running in
parallel and sharing the same memory (i.e., how much can one computation slow down
the other?), (ii) how to analyze the performances of the communications between cores.

1 Massively Parallel Processor Array, a many-core processor from Kalray http://www.kalrayinc.com

http://www.kalrayinc.com

1.2 summary of contributions 3

1.2 summary of contributions

This thesis addresses the problem of shared resources access delays. The main contributions
consist of two different approaches for shared resource timing analysis. We first propose
an accurate analysis based on Satisfiability Modulo Theory (SMT) to encode a program’s
semantics and accesses to shared resources with a Time Division Multiple Access (TDMA)
bus. This work is published in [Rih+15], in which we propose:

• SMT Encoding of Shared TDMA Bus: We propose an SMT expression that returns
a delay of a bus access taking into account TDMA bus.

• Evaluation of Several Encodings: We show that several encodings are possible. Al-
though they are equivalents and functionally give the same results, their solving time
may vary greatly. We determine the best encoding that optimizes the solving time.

In our second approach, we address other arbitration policies with an application to an
industrial many-core processor. Such architectures can execute larger applications where
the interference is greater. We propose a scalable analysis that accurately accounts for the
interference. Here, we focus on dependent task graphs with an application to periodic
Synchronous Data Flow applications. We consider static non-preemptive scheduling. To
accurately account for the interference, we use the dependency graph to exclude tasks that
cannot execute at the same time.

• Double Fixed-Point Algorithm: To statically schedule a task graph on a multi-core
(i.e., determine start and finish dates of each task), worst-case bounds on execution
times are required to ensure that dependencies are respected. The execution time of
a task depends on the interference on shared resources. This in turn depends on the
number of co-runner tasks that potentially access the shared resource. To determine
the co-runners, the start and finish dates of each task are required. We provide a
fixed-point algorithm that solves this cyclic dependency. Our algorithm starts with an
initial mapping and execution order, and produces a scheduling that tightly accounts
for the interference.

• Proof-of-Termination: We provide a proof of termination of the above algorithm.

To accurately account for the interference on shared resources, we target a specific archi-
tecture model. Particularly, we focus on the industrial many-core processor Kalray MPPA-
256 that fits this model.

• Model of an Industrial Multi-Level Arbiter: We present a mathematical model of an
industrial shared resource arbiter. The arbiter is implemented with several levels of
round-robin and fixed-priority policies.

• Hardware Features: Our model supports delays from access bursts and access pipelin-
ing. It also takes into account partitioned shared memory configuration.

Part of the contributions above appears in [Rih+16]. This work is used in the framework
of the CAPACITES project [Cap]. Our contribution on task graphs is used in a tool-chain
that transforms a synchronous data-flow program into a binary with a mapping and a
scheduling on a many-core processor.

4 introduction

1.3 thesis outline

The thesis is organized in three parts.
Part i presents the state-of-the-art of timing analysis of multi-core and many-core systems.

• We present basic notions and background in Chapter 2.

• Chapter 3 gives an overview of existing and related work.

The core content of the thesis is presented in Part ii.

• Our contribution on TDMA buses is in Chapter 4.

• Chapter 5 presents our response time analysis.

• Our model of shared bus arbitration policy applied to the Kalray-MPPA many-core
processor is given in Chapter 6.

Finally in Part iii, we evaluate the analysis of the Kalray-MPPA :

• Experimental evaluation and methodology is presented in Chapter 7.

• Chapter 8 gives a positioning of the work within the CAPACITES project.

The conclusion and future work are given in Chapter 9.

Part I

S TAT E - O F - T H E - A RT

Chapter 2
B A C K G R O U N D

2.1 Real-Time Systems . 7

2.1.1 Requirements . 9

2.1.2 Challenges in the Verification of Real-Time Systems 10

2.2 Application Models . 12

2.2.1 Task Models . 12

2.2.2 Synchronous and Asynchronous Task Models 13

2.2.3 Synchronous Data-Flow Model . 14

2.2.4 Task Scheduling . 15

2.3 Hardware Architectures . 15

2.3.1 Multi-core and Many-core Architectures . 16

2.3.2 Timing Compositionality . 17

2.3.3 Predictable Multi-core and Many-core Architectures 19

2.4 Execution Models . 21

2.5 Static Timing Analysis . 22

2.5.1 Micro-architectural Analysis . 23

2.5.2 Path Analysis . 24

2.5.3 Some WCET Tools . 25

2.6 Context of the Thesis . 26

2.6.1 Time Division Multiplexing . 26

2.6.2 Response Time Analysis . 26

In this chapter, we present the context and foundation of the thesis. We target hard real-
time systems on multi-core and many-core architectures. The organization of this chapter
is as follows: In Section 2.1, we globally define real-time systems and their requirements.
In Section 2.2, we present different application models and the hardware architectures in
Section 2.3. Section 2.4 demonstrates how the software can run on the hardware. Section 2.5
introduces static timing analysis of such systems with illustrations of a timing analysis
framework. Finally, Section 2.6 sets the context of this thesis.

2.1 real-time systems

A real-time system is a system where the timing behavior is as important as the functional
one. The main characteristic of a real-time system is the execution under timing constraints
or deadlines; not only the computed results must be correct, they also must be provided
within a defined time delay. Such systems are typically found in reactive environments,
where a computing system must interact with and control phenomena in the physical world.

7

8 background

A recurring example of such systems is a flight management system illustrated in Figure 2.1
and Example 2; it reads the position’s values from sensors alongside with the pilot’s inputs,
and control the aircraft accordingly. These reactive systems exist in many fields, from
automotive systems, to avionics, and through nuclear plants and medical equipment.

We distinguish real-time systems depending on their requirements into hard and soft real-
time systems. A system can be hard or soft depending on the damages of failures to respond
within the deadlines. A hard real-time system is a system where meeting the deadlines is
a strong requirement; missing the deadline may lead to a catastrophic loss. This is by
definition what is called a safety-critical system. A soft real-time system is a system where
meeting the deadline is a desirable requirement but not necessary; the system may not fail
if a deadline is missed and the consequences are not critical. In-between soft and hard,
a firm system is a system where the outputs expire when the deadline is missed but the
consequences are not critical and the system may not fail. The context of this thesis falls in
the hard real-time and safety-critical systems field.

A real-time system is able to react to external signals (usually from sensors) during its
evolution and within a time deadline. Timing constraints are imposed by the interactions
with the physical world. As an illustration, the flow of time is modeled with a directed
time line representing the system evolution. An instant is a point on this line. A duration
is an interval in time defined by a starting event and a termination event. We define here an
event as any occurrence at an instant of time. Some real-time systems have one or several
clocks that tick at equally distant instants [Kop11].

Controller

Engine Elevator

Altitude
sensor

Speed
sensor

Figure 2.1: Example of a real-time system: Flight Management System

Example 2 (Flight Management System). Figure 2.1 illustrates a real-time system with the ex-
ample of a flight management system. This is the system responsible for controlling and maintaining
the altitude of the airplane. Inputs are obtained from dedicated sensors: the speed/acceleration sensor
and the altitude sensor. Information in the physical world are continuous values which requires
a discretization through sampling. The controller then computes outputs and sends commands ac-
cordingly to the actuators. The controller also responds to inputs from the operator to adjust the
airplane’s position. The system is expected to react within time limits and maintain certain perfor-
mance properties. The controller must respond to all input commands from the operator and also
maintain a steady state throughout the evolution of the physical inputs from the sensors.

2.1 real-time systems 9

The example above, also illustrated in Figure 2.1, is called a reactive system. Outputs of
such systems must be produced within deadlines relative to the occurrence of inputs. In
contrast to this, a system can be time-aware. In these systems, there is an explicit reference to
time, for instance, a scheduling table that has explicit times of when each task/procedure
is executed.

2.1.1 Requirements

The design, development, and verification of safety-critical real-time embedded systems
are subject to specific requirements that follow from guideline and standards such as
DO-178B/C for avionics and ISO26262 for automotive systems. For example, Table 2.1
illustrates the assurance levels as defined by the DO-178B and according to their failure
consequences. Hard real-time systems are certified at Levels A and B. Both the functional
and the timing behavior of such systems is required to be correct. In order to ensure that
applications meet their deadlines, predictable upper bounds are required on the execution
times of software components. This enables the derivation of sound upper bounds on
the worst-case response times (WCRT), from input stimulus to output response, and the
verification of their compliance with timing constraints.

Assurance level Failure condition Details

Level A Catastrophic Crash of the system. Loss of human lives

Level B Hazardous/Severe Large performance degradation that may
leads to serious/fatal injuries

Level C Major Failure is noticeable but with a lesser impact
than Hazardous.

Level D Minor Failure is noticeable but the impact is lesser
than Major

Level E No effect Failure is not noticeable

Table 2.1: Design Assurance Levels in DO-178B1

2.1.1.1 Functional Requirements

Functional requirements consider the output result produced by a real-time system. Failure
of the system due to bugs might not be tolerated at certain assurance levels. Unfortunately
there have been real-world cases where this had occurred. In 1996, the satellite launcher
Ariane 5 exploded mid-air in less than 40 seconds after its launch [JM97]. Among other iden-
tified problems, a conversion from 64-bit floating-point to 16-bit signed integer resulted in a
register overflow. A most recent example from 2015, where failure of the generator control
unit in the Boeing 787 airplane occurred after a continuous powering for 248 days [Mou15].
This was caused by a counter overflow in software. Such failures cause financial costs and

1 RTCA/DO-178B "Software Considerations in Airborne Systems and Equipment Certification", December 1,
1992.

10 background

may endanger human life, although it could be detected at an early stage of the software
design process.

There exist several techniques to verify the correctness of software. Ranging from static
verification with formal methods, such as abstract interpretation [CC77] and model check-
ing [EC80], to more dynamic and on-line testing such as Assertion Based Verification
[Dah+05; Fos09]. While the latter technique is usually faster, it may exhibit coverage re-
lated problems. The former technique is sometimes tedious and more complex although it
can achieve a high confidence assurance of the system correctness.

2.1.1.2 Extra-Functional Requirements

The extra-functional requirements include for example, power consumption, temperature,
and execution time. In this work, we focus on the execution time in a real-time system.
System’s outputs must be produced within a bounded time frame otherwise the system
fails. These bounds are often imposed by the physical world. In hard real-time systems, the
computations must be finished and the output produced before the occurrence of the next
physical event. Thus, it is required that for any input values, the system can still produce
outputs before the deadline. To do so, one must prove that the Worst-Case Execution Time
(WCET) is always smaller than the deadline. In techniques relying only on on-line testing,
it is hard (and very unlikely) to reach the worst case. Figure 2.2 illustrates that testing
the system represents only a subset of all possible values of the execution time [Wil+08].
Probabilistic techniques [BCP02] can enhance the analysis by giving a probabilistic upper-
bound. This result, however, is not guaranteed but limited to a confidence interval.

Static timing verification relies on conservative analyses of software and hardware. By
making over-approximations and pessimistic assumptions, the estimated WCET is a guaran-
teed upper-bound on the worst-case execution time. In this thesis, we refer to the estimated
WCET simply as WCET. The context of this thesis does not cover on-line techniques and
falls only in the formal verification method. We also consider only the timing aspects of
the real-time systems. Functional correctness and other extra-functional aspects are out of
scope of this thesis.

2.1.2 Challenges in the Verification of Real-Time Systems

Many critical embedded systems have increasing demand in computing speed, and old,
simple processors are not sufficient anymore. Unfortunately, common optimizations done
in general-purpose electronic systems are meant to optimize the average-case, but not the
worst case. As a consequence, general-purpose processors are not suitable. Besides this,
the behavior of such processors is hardly, if at all, time-predictable; time predictability is
the ability to tell how much time a program will execute in the worst case. Features such as
complex cache policy, Out-of-Order (OoO) execution, branch predictions, or speculations
allow to speedup the average-case performance but not the worst case. A model of such
architectures must cover all the possible outcomes of the hardware features. This makes
the analysis very complex. New multi-core platforms were designed to offer high perfor-
mance in real-time systems while keeping the predictability in mind. Depending on abstract

2.1 real-time systems 11

Figure 2.2: Worst-case execution time

models of such architectures, their analysis can achieve a trade-off between precision and
scalability.

With the relatively simple hardware (single processor, no advanced hardware acceleration
features, etc.), it was possible to ensure predictability of execution times, to tightly bound
the WCET by static analysis. Due to an increasing demand for compute performance in
real-time systems, combined with Size, Weight, and Power consumption (SWaP) require-
ments, the emphasis has shifted from ever faster single-core processors, which had reached
physical limitations due to issues with heat dissipation, to more complex multi-core and
many-core architectures. The shift is also motivated by the ability to reduce the number
of hardware platforms in a real system; a single chip with several cores can run different
applications with a proper isolation between them.

Ensuring predictable and tightly bounded timing behavior in such systems is very chal-
lenging. This is due to the contention for multiple shared hardware resources between
co-running applications on the different processors. Examples include contention for cache,
network or memory bus, memory controllers, etc. For example, on the Freescale P4080,
the latency of a read operation varies from 40 to 600 cycles depending on the total num-
ber of cores running competing tasks [Now+14]. Similarly, a 14 times slowdown has been
reported [Rad+12] due to interference on L2-cache for tasks running on Intel Core 2 Quad
processors. Recent work [VYF16] shows that even with cache partitioning, contention for
registers accessed on both cache hits and misses can cause a 21 times slowdown due to
contention caused by co-runners on the ARM cortex A-15 multi-core architecture.

Despite the challenges described above, efforts were made to simplify the hardware ar-
chitecture used in real-time systems and improve its predictability. Along this direction
in hardware, static timing analysis with correct assumptions can give strong correctness
guarantees on the system behavior. The over-approximations, as shown in Figure 2.2 and
pessimistic assumptions ensure that the worst case is covered in the analysis. Nevertheless,

12 background

if the analysis is too pessimistic, the system may be considered unschedulable while in fact
it is. The main challenge here is to reduce the over-approximation. One way to do this is to
avoid considering generic hardware or software; for the best results, the analysis must be
tailored to take into account the software and the underlying architecture.

In the remainder of this chapter, we present the different application models and hard-
ware architectures used in real-time systems. This is followed by the definition of the
context of this thesis.

2.2 application models

Due to the particularity and requirements of real-time systems, real-time software follows
a certain model which is different from desktop applications. In this section, we present
the real-time application models and the different notions used in this thesis.

2.2.1 Task Models

Real-time systems are characterized by a set of timing properties. Let’s assume a set of
tasks Γ = {τ0, τ1, . . . , τn} executing on a processor. We define the job Ji

k of task τi as the
kth instance of τi. In this thesis, we use the terms job and task interchangeably unless it is
explicitly specified in the context of speech.

Idle

Ready Running

dispatch

preemption

finish
release

Figure 2.3: Task’s state transitions [Alt13]

Figure 2.3 shows transition state in a task scheduling. When a task is ready for execution,
it waits for the scheduler to dispatch it. Depending on the scheduling policy, a task may
get preempted and return to the ready state. When the task finished it goes to an idle state
and awaits to get released in the next cycle.

2.2.1.1 Definitions

In the following, we define a set of notions common to real-time systems [But04]. Figure 2.4
illustrates these notions on a time line.

Definition 1 (Release date). Denoted by reli and also called arrival time, it is the time when τi is
eligible for execution.

In practice, the release date may not be exactly defined but occurs within a bounded time
interval. This variation in delay is called jitter. The time duration between the release and

2.2 application models 13

time

ci

Ri

Di

Ti

reli reli+1

Figure 2.4: Illustration of a task/job execution

the start of execution of τi may be fixed or bounded within an interval of a minimum delay
and a maximum delay.

Definition 2 (Execution time). Denoted by ci, it is the duration that takes τi to finish if executed
without any interference or preemption. Lower and upper bounds on the execution time are called
BCET and WCET (best-case and worst-case execution times) respectively.

Definition 3 (Response time). Denoted by Ri, the time duration between the release date of τi and
its completion time (finish time).

Definition 4 (Deadline). Denoted by Di, a timing constraint by which τi must complete its execu-
tion.

Definition 5 (Inter-arrival time). Denoted by Ti, the time duration between two successive release
dates of τi.

Regarding the inter-arrival time, a task τi is sporadic when its jobs arrive at variable times
with a guaranteed minimum interval. We find such configuration in event-triggered sys-
tems [BW16]. On the other hand, a task is periodic when its jobs arrive at a regular interval
of time. The inter-arrival time Ti, in this case, is also called a period. This configuration is
found in time-triggered systems [BW16]. The focus of this thesis is only on periodic tasks.

2.2.2 Synchronous and Asynchronous Task Models

In the current practices of real-time systems, there exist two programming paradigms: asyn-
chronous and synchronous paradigms. In the asynchronous task model, events occurs in an
undeterministic order. In most cases, they are queued upon reception and treated at some
point during the task execution. Parallel and concurrent programming can be asynchronous
relying on some asynchronous communication protocol.

Synchronous task models offer a more deterministic behavior, hence they are easier to ana-
lyze. In this model, the system’s execution is based on the notion of execution steps. Within
a step, the components (or tasks) in the system, which met their activation conditions, are
expected to progress in their execution. Inputs from the external environment are treated
at the next step. Any effect of computation is then propagated through the components in
the system. To implement this concept, the assumption is that the real-time system evolves
fast enough with regard to the external environment.

14 background

The definition above implies that all computations should terminate within the step,
i.e., an upper-bound on the execution time should fit within the step bounds. Nonethe-
less, sources of asynchronous behavior may occur and introduce unexpected delays. Such
sources may come from the operating systems’ interrupts, the interference on shared re-
sources, variations in the execution times,. . . etc. To ensure the assumption on the syn-
chronous behavior, it is important that the WCET analysis takes into account such delays.

2.2.3 Synchronous Data-Flow Model

The Synchronous Data-Flow (SDF) model is a paradigm based on Kahn Process Networks. It is
an application of data-flow programs combined to the synchrony assumption. As a result,
there is no notion of time at this level of abstraction; all operations and communications
within a step are considered instantaneous. Figure 2.6 illustrates a simple example of a
data-flow program; nodes represent the tasks whereas the directed edges represent the
communication channels from the producers to the consumers.

In terms of implementation, there exist several languages to write SDF programs. SIG-
NAL [BGJ91], SCADE [Ber07], and Lustre [Hal+91] are examples of languages specialized
in the synchronous programming paradigm. While SCADE is used in industry, SIGNAL
and Lustre are mostly used in academic research. Figure 2.5 shows a snippet of a Lustre
code. At each step (represented with clock ticks), the values in the input data in_data0,

in_data1,in_data2 are summed and returned in the output data out_data. This operation
is assumed to execute in a null time. The communications are implemented with memory
buffers (for example FIFOs) and are also assumed instantaneous.

� �
node SumNode (in_data0: int,

in_data1: int,

in_data2: int)

returns (out_data: int);

let

out_data=in_data0+in_data1+in_data2;

tel� �
Listing (2.1) Lustre programming language

SumNode
in_data0

in_data1

in_data2

out_data

(b) Dataflow node

Figure 2.5: Example of a Lustre node and its high-level graphical representation

In terms of scheduling, we consider that all tasks in a cycle must complete before the end
of the cycle. As a consequence, scheduling can be done on one period; the same schedule
is then repeated indefinitely. Therefore, the tasks in the data-flow program are seen as an
acyclic dependency graph. A task is released only when all its predecessors have finished
their execution, i.e., when they produce tokens for the next tasks. In the example given
in Figure 2.6, the output data of task τ1 must be available to task τ4 before it can execute.
Hence, the release date of task τ4 should be greater than the finish time of task τ1. The data

2.3 hardware architectures 15

τ1 τ2 τ3

τ4

τ5 τ6

input i1

input i2

output 0

Figure 2.6: Example of a data-flow program

produced is written into a memory location where the consumer task can read it. In the
example, tasks τ2, τ4, and τ6 write to the memory of task τ3.

2.2.4 Task Scheduling

Task scheduling is considered as a resource allocation problem. The goal is to allocate a suf-
ficient amount of resources to all the tasks in the system in order to meet their requirements.
This processes aims at optimizing objective function according to the system requirements.
In this context, task scheduling is the problem of allocating a sufficient amount of proces-
sor clock cycles within a scheduling period to each task according to their priorities. For
this purpose, there exist several policies among them: Earliest Deadline First (EDF), Deadline
Monotonic (DM), Rate Monotonic (RM). Each policy is applied dynamically or statically.

A dynamic scheduling policy is an online policy where the set of tasks might be unknown
at the start of the system. Tasks are assigned to an available core during run-time and when
they are released. The assignment follows a scheduling policy, for instance EDF. A static
scheduling policy is performed off-line. This implies that the set of tasks is known in
advance in order to compute a scheduling table.

The execution of tasks can be preemptive; a task is preempted whenever a higher priority
task needs to be executed. Preemption introduces a context-switch overhead and other
costs such as the Cache Related Preemption Delay (CRPD) [Alt13]. The analysis of such costs
often increases the pessimism in the WCET. In the non-preemptive scheduling, a dispatched
(running) task cannot be stopped until its completion.

A schedulability test checks whether a task set is schedulable on a processor. With explicit
deadlines, this is can be achieved by checking whether all tasks meet their deadlines. Par-
ticular tests exist such as in the case of EDF; a task set Γ is schedulable if its utilization UΓ

is smaller or equal to 1, where UΓ = ∑n
i ci/Ti (assuming Di = Ti). All potential interference

must be accounted for in the schedulability test and therefore added to ci when computing
the utilization.

2.3 hardware architectures

Execution times dependent on the hardware platform that executes the software. The
methodology for a tight analysis of real-time systems requires knowledge on the under-
lying micro-architecture at a certain abstraction level.

16 background

L2

Cache

L1

I-Cache

L1

D-Cache

Register
File

Main
memory

Hard
disk

I/O
bus

Memory
bus

Figure 2.7: Memory hierarchy of a single-core processor [Rei08]

2.3.1 Multi-core and Many-core Architectures

Core

Core

memory

memory

Core

Core

memory

memory

Core

Core

memory

memory

Core

Core

memory

memory

Global
memory

I/O
device

Figure 2.8: An example of a multi-core platform

Multi-core and many-core systems offer more opportunities and a new set of challenges.
These platforms have shown capabilities of energy efficiency with a higher computing
power in comparison to an equivalent single-core platform. Moreover, a single multi-core
chip is capable to run several applications which reduces the number of required platforms.
This is important in systems where the space and weight are constrained.

One of the challenges on multi-core and many-cores is the analysis of interference on
shared resource. To illustrate this, we take the example of the memory hierarchy as shown
in Figure 2.7. Access time varies whether the accessed resource is the cache memory or the
main memory. On a single-core, where only one task is running at a time, the access time to
the memory is deterministic and easily bounded. On a multi-core, where some levels of the
memory hierarchy are shared, the access time depends on the contention from co-runner
tasks.

Figure 2.8 illustrates a multi-core system where cores may share one or several resources
such as caches, main memory, I/O devices, buses, etc. The presence of shared resources
is a source of interference. The execution time does not only depend on the task under
analysis but also on other co-runners. Depending on the arbitration policy used at each
shared resource, the delay may vary from task to task; examples of arbitration policies are:

• fixed-priority arbitration policy assigns priorities to each core (or any other requester
of the shared resource) When there is a contention, a higher priority core always gets
the resource before lower priority cores. Therefore, the highest priority core suffers
less from the delay compared with the lowest priority processor.

2.3 hardware architectures 17

• round-robin arbitration policy is where all cores have the same priority. The delay
due to interference is distributed almost fairly between the cores. One of the main
challenges when analyzing such platforms is to tightly and efficiently find upper-
bounds of interference on shared resources.

• first-come-first-served arbitration policy grants access requests in the order of which
they are issued.

• time division multiple access arbitration policy assigns a periodic communication slot to
each core. Access requests are granted only during their corresponding slots, other-
wise, they are stalled.

The fixed-priority, round-robin, and first-come-first-served policies are said to be work-
conserving. A work-conserving bus arbiter will not idle the bus as long as there are pending
requests. In contrast, the time division multiple access policy is non-work-conserving, since
access requests are stalled until their corresponding slots even when there are no concurrent
accesses.

There are other functional challenges introduced in the multi and many-core platforms.
Since the code can be executed in parallel, the question is how to split and run parallel
segments. The presence of critical sections and concurrency management techniques (such
as locks, semaphores,. . .) introduces waiting times in the execution. Moreover, the parallel
tasks can be mapped to different cores where their execution time may depend on the core
they are assigned to. In the following, we define Π = {P0, P1, ...PN} as the set of cores in
the platform. The mapping function Map : Γ→ Π, maps a task in Γ to a core in Π.

Let’s assume a platform with 3 cores Π = {P0, P1, P2}. A possible mapping (among
others) of the example in Figure 2.6 is Map(τ0) = Map(τ1) = Map(τ2) = P0, Map(τ4) = P1,
Map(τ5) = Map(τ6) = P2. Notice that core P1 runs only task τ4 which depends on τ1.
Depending on the execution time of τ4, this may result in P1 being most of the time idle.
Several works were done in the area of task mappings [PNP13; Gia+14; WN15; Per+16a;
Ten14] in which the proposed approach finds an “optimal” mapping that leads to specific
objectives in terms of performance. In this work, we consider that the mapping is given
and fixed (i.e., no task migration).

The terms multi-core and many-core both refer to architectures with more than 2 cores.
Multi-core systems have typically between 2 to 32 cores whereas many-core systems have
more than 32 cores. At the architectural level, many-cores platforms have their cores dis-
posed in clusters (also called tiles). A common feature between many-cores is the use of
Networks-on-Chip (NoC) to ensure high bandwidth and low latency communication chan-
nels between clusters. Examples of many-core platforms are: Intel Xeon Phi [Chr12],
Tilera 64 [Til12], the STHorm platform [Mel+12], and Kalray MPPA-256 [Din+14b].

2.3.2 Timing Compositionality

Predictability of the hardware architecture is one important aspect in hard real-time system.
Many of the optimization techniques are used to improve the average case but not the
worst case. An architecture with many states may lead to a very pessimistic analysis which
increases the over-approximation on the WCET. For this reason, efforts were made to keep

18 background

the architecture as simple as possible while maintaining a certain level of performance. It
turns out that simple hardware may not be enough to make the platform predictable. While
one might think that assuming a local worst-case everywhere leads to the global worst-case,
this assumption is not always correct. This is known as a timing anomaly [LS99]. There are
many sources of timing anomalies. In the following we discuss some examples of timing
anomalies.

C ready

P0

P1

A D E

C B

P0

P1

A

B C

D E

Figure 2.9: Scheduling anomaly

Figure 2.9 illustrates a case of a timing anomaly due to resource scheduling. Assuming
a two-core platform executing depending tasks using a list scheduling2. The mapping is as
follows: Map(A, D, E) = P0 and Map(C, B) = P1. In the first scenario task C is ready during
the execution of A and is scheduled to execute on P1. This, in turns, delays the execution of
B which is scheduled after C. In the second scenario, A finishes earlier allowing B to start
executing before C is ready. C executes later which delays the execution of D that depends
on C. This scenario leads to a greater global execution time despite the fact that A is faster.

Cache Hit

Cache Miss

A Prefetch B - Miss C

A C

Branch condition
evaluated

Figure 2.10: Branch speculation anomaly

Branch prediction may also lead to timing anomalies. Figure 2.10 describes a case where a
cache miss lead to a faster execution due to branch prediction. A, B, and C are instructions
executing on the processor. Branch mispredictions results in unnecessary fetches which
may not happen when instruction A hits in the cache.

2 In a list scheduling, tasks are executing as soon as they are ready

2.3 hardware architectures 19

Another potential source of anomalies is the cache memory and its replacement pol-
icy. The work in [Rei08] focuses on the caches and discusses their predictability. It has
shown that some replacement policies such as pseudo Least Recently Used, First-In-First-Out,
pseudo round-robin show behavior anomalies where an eligible entry for eviction does not
get evicted. This fact affects the cache analysis that aims at determining whether cache
accesses result in a hit or miss. [Rei08] concludes that the Least Recently Used policy have a
sound behavior and does not exhibit this kind of anomalies. Interested readers may refer
to [Rei08] for a complete description of the mentioned policies and their timing anomalies.

The timing anomalies may also create new timing anomalies, which in turn creates more
anomalies. This effect is known as the domino effect [LS99]. By definition, the domino effect
leads to unbounded differences in execution times the same piece of code with different
hardware states. An example where this may happen is when the program executes a loop
with the same body but may lead to a non-convergent states of the pipeline (or caches, or
other hardware resource) at each iteration.

With the above definition and example, architectures can be classified as the follow-
ing [Cul+10; Axe+14]:

• Fully timing compositional architecture: There is no timing anomalies and the analysis
may follow the local worst-case.

• Compositional architectures with bounded effect: The architecture may exhibit some tim-
ing anomalies without domino effects. The analysis is done by compensating the
anomalies with a constant overhead.

• Non-compositional architectures: Such architectures exhibit timing anomalies with domino
effects. The analysis must takes into account all possible states of the architecture.

2.3.3 Predictable Multi-core and Many-core Architectures

Considering all the challenges described above, the design of multi-core and many-core
systems was influenced by the predictability considerations. The work in [Cul+10] propose
guidelines to follow when designing a predictable architecture.

To design a predictable multi-core, it is necessary that the cores, which are the base units,
are predictable. Efforts in academia and industry have been taken toward this direction.
For example, the time-predictable processor Patmos [Sch+14]. It is a RISC 3 processor with
a Very Long Instruction Word (VLIW) pipeline. This processor is designed along with the
timing analysis which makes it efficient. The core relies on separate caches for instructions,
stack data, and heap data. The processor can run in simulation or on an FPGA 4.

In the industry, the ARM7 core is designed as a simple architecture which exhibit pre-
dictable timing properties [ARM04]. In fact, it is claimed to be a fully timing compositional
architecture. The core is designed such that in the case of a timing accident, the pipeline
stalls until the issue is resolved. The analysis of this system becomes simple, and one
could analyze each component separately and add penalties when necessary. Similarly, the
newer ARM Cortex-R series, targeting for hard real-time applications, provides a higher
performing processor while limiting the complexity of the analysis [ARM11].

3 Reduced Instruction Set Computing
4 Field-Programmable Gate Array: a re-programmable integrated circuit

20 background

Designing predictable single-cores is not enough to make the multi-core that uses them
fully timing compositional. Shared resources, such as memory controllers, are accessed
concurrently which may complicate their predictibility. Designer of timing predictable
multi-cores already address such issues. For example, the T-CREST [Sch+15] project aims
at designing a time predictable multi-core architecture based on Patmos cores. The mem-
ory hierarchy and the core-to-core communications are particularly discussed in order to
ensure a time-predictable architecture.

In the area of many-core systems, the Tilera Tile processors have received some attention
from the real-time community. Such a platform however are not designed for real-time but
for high performance or networking. The authors in [Pag+14] describe how to configure
the processor in a predictable execution environment. Figure 2.11 gives a global overview
of the Tilera TILE-Gx36 processor. It has 36 clusters, each containing a single 1.2 GHz core.

Figure 2.11: Overview of the Tilera TILE-Gx36 processor (taken from [Til12])

The MPPA-256 is another many-core architecture implemented by Kalray [Din+14b]. This
processor is composed of 16 compute clusters with 16 cores and 2 I/O clusters with 4 cores.
The clusters are connected through a dual NoC (for data and control) in a 2-D torus topol-
ogy. Based on a VLIW architecture, the cores (named k1-core) are claimed fully timing com-
positional [Din+14b]. The k1-core is clocked at 800MHz, has an in-order, 5 stages pipeline
with no branch prediction. This is the processor considered in this thesis for the experimen-
tal evaluation. A detailed description of the Kalray MPPA-256 is given in Chapter 6.

2.4 execution models 21

2.4 execution models

P0 a/e/r a/e/r

(a) Mixed execution model

P0 a e r a e r

(b) Dedicated execution model

P0 a a/e/r r a a/e/r r

(c) Hybrid execution model

Figure 2.12: Execution models, where: a, e, and r stand for acquisition, execution, and replication
respectively

The hardware architecture offers many capabilities that affect the application and their
analysis. The interaction between software and the underlying hardware should be consid-
ered in the analysis. Some architectures, such as Common-Off-The-Shelf (COTS) processors,
can nonetheless be used by enforcing a certain configuration and execution model. This is
the case, for example, of the Tilera processor in [Pag+14].

A proposed execution model in [Pel+11] aims at enforcing the predictability in COTS-
based systems. The idea is to follow a set of programming guidelines in terms of accesses
to shared resources. A dedicated scheduler ensures a temporal isolation to reduce (or
eliminate) any unpredictable interference. Note that this might not be enough since some
hardware components are not designed for real-time requirements. In this case, extra com-
ponents might be added to the system to enforce a predictable behavior.

Execution phases can be used to improve the predictability of the system. Figure 2.12a
represents the traditional execution model where computations and accesses to the shared
resource are mixed. The computations are instructions that do not request any shared
resource but can access the cache or a local resource. The shared resource accesses can be
explicit, as in the case of communications, or implicit, as in the case of cache misses. In this
model, the analysis assumes the worst-case scenario; accesses from co-runner tasks always
interfere as long as the tasks are executing at the same time.

According to this behavior, tasks can be split into phases. Figure 2.12b illustrates the
different phases. A task starts with an acquisition phase where all shared data is copied in
a local memory. The execution phase accesses, computes, and stores the data locally. Finally,
a replication phase copies the data back to a shared global memory. The advantage of this
model is that some system, with powerful DMA engines5, can (i) emit bursts of accesses, (ii)

5 Direct Memory Access engine: a hardware feature allowing direct accesses to the main memory independently
from the CPU

22 background

offload memory transfers from the CPU to the DMA. Thus improving the performance and
reducing the overhead of single memory accesses. Moreover, any potential interference
from co-runner is limited to the acquisition and the replication phases. This also allows
more freedom in scheduling; each phase can be scheduled separately in such a way that
the interference on shared resources is avoided [Mel+15; Bec+16; Pel+08].

Figure 2.12c shows a hybrid execution model. Accesses to shared resources are allowed
outside of the acquisition and replication phases. This happens in the case where, for
example, data can be altered and needs to be reloaded during the execution phase. In this
model, the interference on shared resource may occur at any point during the execution of
the task. Unlike the general model, a (partial) distribution of accesses across the phases is
known and an adequate analysis can use this information to derive a tighter approximation
on the interference. The work done in [SCT10] shows how the execution models affect the
results of the timing analysis in a shared resource environment.

2.5 static timing analysis

Static timing analysis aims at finding upper-bounds on the WCET as it is illustrated above
in Figure 2.2. It is carried out in an input independent matter; the estimated WCET should
be absolute and valid for any input values. The analysis is performed on an abstract model
of the system. Depending on how much information is available in the model, the analysis
can achieve tight estimations but at the cost of complexity.

Figure 2.13 illustrates a common framework for static timing analysis [Wil+08]. As input,
the framework takes an executable binary and reconstructs a Control Flow Graph (CFG). A
CFG is representation (in the form of graph) of the execution paths in the program’s flow.
Figure 2.14 illustrates an example of a pseudo-C code and its CFG; each circle in the CFG,
called basic block, is a set of sequential instructions.

The second step in the timing analysis framework is to annotate the CFG with informa-
tion that helps to derive timing values. The value analysis [Sou+07; The+03] verifies the ac-
cessed memory addresses. The loop bound analysis extracts bounds on the execution of loops.
Note that unbounded loops are avoided in hard real-time systems. Finally, the Control-flow
Analysis finds infeasible paths in the CFG. These analyses rely on formal methods such as
abstract interpretation.

The described analyses rely on the reconstructed CFG from the binary. A dedicated
compiler may generate an annotated CFG with the necessary information. It happens,
however, that such information, such as variable types, is abstracted by the compiler and
optimized. This is usually resolved by performing the analysis on a CFG obtained from
an intermediate representation of the source code. The intermediate representation form
allows inferring more information on the execution paths, values types, loop bounds,. . . .
This CFG is then compared against the one from the executable binary using a block matching
technique to identify the relevant basic block.

2.5 static timing analysis 23

Input
Executable

CFG
reconstruction

Control-flow
graph

Loop bound
analysis

Value
analysis

Control-flow
analysis

Annotated
CFG

Basic block
timing info

Path
analysis

Micro-
architectural

analysis

Data

Phase

Legend

Figure 2.13: Components of a timing analysis framework [Cul+10]

2.5.1 Micro-architectural Analysis

The purpose of this analysis is to derive timing bounds on instructions’ execution by taking
into account the state of the hardware. In fact there are many factors that intervene and
affect the execution of an instruction. As a starter, the state of the pipeline and the pre-
viously executed instructions may delay (or speedup) the current instruction. This is also
correlated with the number of stages in the pipeline and whether there are dependencies
between instructions. The analysis of the pipeline derives upper-bounds on the execution
of a basic block in the analyzed CFG.

The caches greatly affect the execution time. The commonly used analysis techniques are
known as May, Must analyses [Fer+99]. The former over-approximates the cache content
whereas the latter under-approximates it. The combination of the cache analyses allows
the annotation of each store and load instruction with HIT, MISS, or UNKNOWN. The timing
information are derived depending whether the accessed data is in the cache or in the main
memory. The case of UNKNOWN is considered in the analysis as both MISS and HIT, since it is
hard to know which value leads to the worst-case scenario (for instance, due to potential
timing anomalies). This inconveniently increases the number of states that must be taken
into account. An effort in this area aims at reducing the number of UNKNOWNs obtained from
the analysis, allowing for tighter estimations and simplifying the analysis [Tou+17].

Another aspect of the micro-architectural analysis is the accesses to shared resources. The
time required to access a shared resource, such as the main memory, depends on accesses
from co-runners as well as the used arbitration policy. An accurate timing model of such
platforms might be costly since it has to take into account all tasks running in the system
and accessing the memory. A way to simplify the analysis is to always consider a constant
penalty, which might be too pessimistic and sometimes not feasible (for instance, in fixed-

24 background

#define N 10

int main(){

/*init*/

int A[N];

int cond=0;

for(int i=0;i<N;i++){ /* b0 */

if(A[i]) { /* b1 */

cond += A[i]; /* b2 */

}else {

cond =0; /* b3 */

}

if(!cond){

/* b5 */

}else{

/* b6 */

}

/* b7 */

}

/* exit */

}

Listing 2.2: Example of C-like code with a
loop with two conditions

init

Xinit

b0

Xb0

exit

Xexit

b1

Xb1

b2

Xb2

b3

Xb3

b4

Xb4

b5

Xb5

b6

Xb6

b7

Xb7

e0

e1

e2 e3

e4 e5

e6 e7

e8 e9

e12

e11

Figure 2.14: Example of a simplified C code and its (simplified) CFG

priority arbitration). Another option is to consider simpler arbitration policies that allow
separate analysis of each task. This, however, might not be the case in all systems. There
is always a trade-off between the precision and the effort/complexity of the analysis. The
interference analysis, which is the focus of this thesis, is discussed in Part ii.

2.5.2 Path Analysis

The path analysis strives at finding all execution paths in the CFG. An execution path is a
sequence of basic blocks. One of the existing approaches for path analysis is Implicit Path
Enumeration Technique (IPET) [LM95]. IPET is a method that considers a list of basic blocks
in an execution path and their execution counts. The execution time of a path is computed
by adding execution times of its basic blocks weighted by their execution count. The WCET
is the maximum of all execution times which can be efficiently found using Integer Linear
Programming (ILP).

ILP allows the encoding of problems in the form of linear constraints. Thus, the basic
blocks are annotated with timing information and modeled in the form of a linear program.
A solver is used to optimize an objective function. In this case, the objective function is to
maximize the global execution time. We illustrate this in the example given in Figure 2.14.
Let B = {init, b0, b1, . . . , exit} be the set of basic blocks in the CFG. Let {e1, e2, e3, . . .} be a
set of variables representing the number of times edges of the CFG are executed. Similarly,

2.5 static timing analysis 25

Let X = {Xb|b ∈ B} be the set of variable representing the number of times basic blocks
are executed. The linear program representing all the execution paths in the CFG is:

Xinit = e0 = 1, Xexit = e12 = 1

Xb0 = e0 + e11 = e12 + e1

Xb1 = e1 = e3 + e2

Xb2 = e2 = e4, Xb3 = e3 = e5

Xb4 = e4 + e5 = e6 + e7

Xb5 = e6 = e8, Xb6 = e7 = e9

Xb7 = e9 + e8 = e11

e11 ≤ 10

The formula above states that: (i) the program must be started and exited only once, (ii) each
basic block is exited the same number of times as it is executed, (iii) loop bounds analysis
adds constraints on the number of time the loop head is executed. Let wb be the local
WCET of basic block b obtained by, for instance, the techniques discussed in Section 2.5.1.
The objective function given to the ILP solver is:

wcet = max
(

∑
b∈B

wb × Xb
)

An infeasible path analysis can be used to add new constraints to the linear systems and
refine the WCET. These constraints can be inferred from the semantics; for instance, two
edges are incompatible or conflicting thus cannot exist on the same execution path [Ray14].

Other path analysis techniques are based on Model Checking with Timed Automata or Sat-
isfiability Modulo Theory (SMT). We discuss them as related work in Chapter 3.

2.5.3 Some WCET Tools

OTAWA [Bal+10] is an open source, academic tool for WCET analysis. It allows the use of
different techniques at each level of the analysis (value analysis, loop bound analysis, flow
analysis,. . .) and combines them to generate the integer linear program required in IPET. It
also provides the micro-architectural analysis that includes (among others) the instruction
caches, the pipeline, and dynamic branch predictors. OTAWA targets the analysis at the
level of a single-core. Thus, it does not include the interference on shared resource. It
can, however, be used to derive local WCETs on tasks (in isolation without interference)
and completed with an interference analysis. Another academic tool is Heptane [HRP17], a
research prototype for WCET analysis based on IPET. It supports several cache replacement
policies and cache hierarchies as well as shared caches on multi-core platforms.

The commercial tool aiT WCET Analyzer [Wil+08] from Absint offers a support for WCET
analysis for a broad range of platforms. The tool relies on abstract interpretation for the
value analysis and cache/pipeline analyses. It also uses ILP for the path analysis. Although
the used methods and techniques may differ, aiT and OTAWA show the same software
architecture and similar to the one in Figure 2.13.

26 background

2.6 context of the thesis

In this thesis, we address one challenging aspect of multi and many-core platforms; the
proposed techniques aims at finding tight upper-bounds on delays of accesses to shared
resource. As it was mentioned above, the presence of shared resources creates interference
on accesses from co-runner tasks. A conservative approach is to consider a (large enough)
constant delay on all accesses to shared resources. This is obviously very pessimistic. The
over-approximation increases considerably with the number of accesses, the size of the
considered task set, and the number of cores in the system.

2.6.1 Time Division Multiplexing

In the real world, two tasks may not interfere at all even if they run concurrently. Their
accesses may happen at different instances of time and a very few of them may interfere.
Determining which accesses interfere may require a cycle accurate analysis of all the system.
This is very costly. Still, in some arbitration policies, such as time multiplexing, tasks can
be analyzed separately which considerably reduces the size of the problem.

In this context, we first consider independent tasks running in parallel and accessing
a memory bus concurrently. We consider that the bus is arbitrated according to the time
division multiple access (TDMA) arbitration policy. We show that by combining the semantics
of the program under analysis with a model of the bus, we can achieve tighter results than
a pessimistic and straightforward approach. Our approach is based on Satisfiability Modulo
Theory (SMT) to model the shared resource accesses and the program’s semantics. More
details are given in Chapter 4.

2.6.2 Response Time Analysis

We consider a many-core platform with a different arbitration policy than TDMA. Our
proposed approach offers a higher scalability, more flexibility and extendability, with tight
upper-bounds on WCET. We abstract certain aspects of the task execution and consider
only smaller intervals of the accesses’ occurrences. The tightness is achieved by taking
advantage of a precise consideration of the task model as well as the architecture model.

In this part, we consider dependent task graphs represented as Directed Acyclic Graphs
(DAG). In particular, we discuss the case of SDF applications and exploit to their particular
properties. We take advantage of the dependencies between tasks to eliminate some inter-
ference; two dependent tasks cannot execute at the same time hence they do not interfere
on shared resources. Our approach provides a static time-triggered schedule that takes into
account the delays due to the interference on shared resources.

The analysis takes advantage of the architecture and the execution models. In this thesis
we consider a multi-core architectures with partitioned shared resources. In particular, we
consider a system with a partitioned shared memory where each partition (called memory
bank) is accessed through a dedicated bus arbiter. Such a system corresponds to the com-
mercial many-core Kalray MPPA-256 which is used as an experimentation platform. Our

2.6 context of the thesis 27

approach takes advantage of the architecture to deliver a tight estimation on the memory
access delays.

More details regarding the application and the hardware models are given in Chapter 5.
In Chapter 6, we apply the approach on a concrete platform which is the Kalray MPPA-256.

Chapter 3
R E L AT E D W O R K

3.1 Overview on Many-core Platforms in Hard Real-Time Systems 29

3.1.1 Shared Resources Interference . 31

3.1.2 Application and Execution Models . 32

3.1.3 The Mapping and Scheduling Problem . 33

3.1.4 Summary . 34

3.2 Temporal Isolation: a Way to Avoid Interference . 34

3.2.1 Time Division Multiplexing . 34

3.2.2 Time Frame Isolation . 36

3.2.3 Summary . 37

3.3 Shared Resources Interference Analysis . 37

3.3.1 Formal Approaches . 37

3.3.2 Measurement-Based Approaches . 39

3.3.3 Summary . 39

3.4 Conclusion and Positioning . 40

3.4.1 On TDMA-based Buses . 40

3.4.2 On Shared Resources Interference . 40

In this chapter, we introduce the related work to this thesis. First, we give an overview
on encountered challenges with multi-core platforms in hard real-time systems. We explain
how the presence of shared resources make traditional approaches used with single cores
obsolete with multi-cores. We present the different approaches that: (i) enforce architecture
and application models to avoid the interference between co-runners, (ii) compute upper-
bounds on delays due to shared resource interference, or (iii) combine points (i) and (ii) to
optimize the analysis and the execution of the system. Finally, We conclude this chapter by
positioning the contribution of this thesis within the state-of-the-art work.

3.1 overview on many-core platforms in hard real-time systems

Multi-core and many-core platforms become unavoidable in safety-critical and hard real-
time systems. This is due to more applications that require more performance but still are
subject to constraints such as energy consumption and weight. The shift to multi-cores
presents many challenges regarding timing determinism, predictability, or composabil-
ity [Sai+15]. In fact, the presence of shared resources creates functional interference (such
as critical sections) and non-functional interference (due to shared hardware resources) be-
tween co-runner tasks.

29

30 related work

router router

router routerrouter

N
etw

ork-on-C
hip

2
P0

DI

P1

DI

P2

DI

Pn

DI

. . . DMA

1
memory
bank 0

memory
bank 1

memory
bank 2

memory
bank n

. . .

C
lu

st
er

0

P0

DI

P1

DI

P2

DI

Pn

DI

. . . DMA

memory
bank 0

memory
bank 1

memory
bank 2

memory
bank n

. . .

C
lu

st
er

1

P0

DI

P1

DI

P2

DI

Pn

DI

. . . DMA

memory
bank 0

memory
bank 1

memory
bank 2

memory
bank n

. . .

C
lu

st
er

m I/O
C

luster

DMA

SDRAM controller

SDRAM
3

P0

DI

P1

DI

P2

DI

Pn

DI

. . .

..
.

Figure 3.1: Target architecture model of a many-core processor

Figure 3.1 illustrates our target architecture model. This is a typical architecture of a
many-core processor [Din+14b; Til12; Sch+15]. Clusters (also called tiles) of cores are con-
nected through a Network-on-Chip (NoC). In each cluster, cores have private caches for data
and instruction. A partitioned memory (memory banks) is shared and accessed by all cores.
A Direct Memory Access (DMA) engine accesses the shared memory as well as external
resources through the NoC. Furthermore, A special cluster (called I/O cluster) connects
to an external Synchronous Dynamic Random Access Memory (SDRAM). We identify several
sources of interference:

1 Intra-cluster interference on shared memory banks (and shared buses).

2 Inter-cluster interference through the NoC.

3 Interference on the SDRAM.

Considering the sources above, the main challenge is to bound the effects of interference.
We present here an overview of the different challenges due to interference on shared re-
sources, to improve the predictability and determinism of multi-cores. In the following we
address the problems on each source and present corresponding related work. We also
present how the modern architecture and application models are made interference-aware.

3.1 overview on many-core platforms in hard real-time systems 31

shared memory

bus arbiter

task1

task2

P0

P1

time

access requests

stall time
granted access

Figure 3.2: Interference on shared memory. Delays occur due to the arbitration of memory accesses
which results in a longer execution time for each task than when executing on a single-
core

3.1.1 Shared Resources Interference

We define timing interference as any delay in the execution time suffered by a task due to
concurrency on shared hardware resources (e.g., cache memories, shared buses, shared net-
works, etc.) [Sai+15; Weg17]. In the following we refer to it simply as interference. Figure 3.2
illustrates the interference on shared memory. In this example, two tasks running on two
different cores access the shared memory at the same time. These concurrent accesses are
serialized by an arbiter. The arbiter operates according to a certain policy which directly
impacts the execution time of each task by adding extra delays. We define this delay as
interference. Figure 3.2 shows a round-robin arbitration policy.

3.1.1.1 Intra-Cluster Interference

Clusters in Figure 3.1 are equivalent to traditional multi-cores and therefore exhibit the
same challenges. We identify the following sources of interference: (i) interference on
cores due to preemption, (ii) interference on private caches in the case of cache coherency
mechanisms, and (iii) interference on shared memories and shared buses. In this thesis,
we consider non-preemptive scheduling as well as architectures with private caches and no
cache coherency. Thus, we focus on the shared memory and shared buses.

3.1.1.2 Inter-Cluster Interference

Inter-cluster communication is performed by means of the NoC. The NoC itself represents a
source of interference. It is composed of a set of routers that deliver packets through defined
links in the network. The communication route is defined according to a certain packet
switching policy (e.g., wormhole switching). This may result in unbounded communication
times depending on the switching policy [FF98]. We present the approaches that address
the NoC in Section 3.2.

32 related work

3.1.1.3 SDRAM Interference

Finally, SDRAM controllers serialize concurrent accesses to an external memory device,
such as the commonly used Dynamic Random Access Memory (DRAM). It constitutes a source
of non-determinism which depends on the types of memory accesses (read or write access)
as well as the arbitration policy. Predictable memory controllers are out of the scope of this
thesis as we do not address interference on DRAM. Instead, we refer the interested readers
to related work addressing predictable hard real time capable memory controllers [Pao+13;
Rei+11; AGR07; Pao+09].

3.1.1.4 Summary

The interference on shared resources depends not only on co-runners but also on the im-
plemented arbitration policies which affect the timing determinism of multi-cores. A pre-
cise analysis of such systems requires a model of all co-running tasks as well as a model
of the shared resources, which can be very complex and costly. To solve this challenge,
some architectures were designed to provide temporal and spatial isolation between tasks.
Predictable bus arbitration schemes are also designed to upper-bound and optimize the
memory latency [BRS11; BRS13]. Examples of predictable architectural designs are studied
and implemented in the T-CREST project [Sch+15] and the MERASA project [Pao+13]. The
objective is to partition the shared resources (e.g., partitioned shared memories and sepa-
rate private cache memories). For instance, the use of time division multiplexing arbitration
policies allows bounding the inter-task interference. This way, the execution time of shared
resource accesses does not depend on co-runners, making it more predictable.

The effort made in predictable architectures improves considerably the scalability and
precision of timing analysis techniques. By taking into account the provided hardware ca-
pabilities, the timing analysis of multi-cores becomes simpler such that single-core analysis
can be easily adapted [Weg17]. Such platforms are designed to improve the worst-case
performance rather than the average-case performance by introducing extra delays that
guarantee predictable behavior and bounded worst-case delays. In the case where the pro-
cessor used does not provide mechanics to eliminate the interference, the timing analysis
must account for all the delays in the execution time. We present related work to this
challenge in Section 3.3.

3.1.2 Application and Execution Models

The software can be tailored to take advantage of hardware features in predictable multi-
core and many-core systems. For instance by using partitioned shared memory and/or
time division multiple access based arbitration policies, the application can follow an exe-
cution model that keeps a predictable behavior while optimizing the performance. These
functionalities allow deriving a set of guidelines and development rules to bound the effect
of interference [Per+16b; Per+16c]. Such guidelines take into account the properties of the
target processor to enforce determinism and predictability at the software design level of
the application.

3.1 overview on many-core platforms in hard real-time systems 33

The idea of adapting execution models to eliminate the interference was proposed in pre-
vious work; for example in [SCT10], tasks are separated into superblocks. A superblock is
composed of sequential execution phases (e.g, acquisition, execution, replication). The acqui-
sition and replication phases access a global shared memory and copy the data to a local
memory such as a private cache memory. This allows the execution phase to run without
interference from co-runners. The challenge in such an approach is that the number of su-
perblocks may increase considerably, for example, smaller cache memories limit the size of
acquisition and replication phases, and therefore may affect the scalability of the analysis.

The PRedictable Execution Model (PREM) [Pel+11] suggests to decouple memory accesses
and computations. This allows running concurrent computations in parallel whereas mem-
ory phases can be scheduled to run sequentially [Mel+15; Bec+16]. The goal here is to
eliminate the interference and therefore to improve the timing analysis of the system. This
relies on completely rethinking the programming model of the application. Moreover, for
memory intensive applications, this approach may result in a performance drop and/or
may result in core under-utilization.

3.1.3 The Mapping and Scheduling Problem

One of the main challenges in multi-core systems is the problem of mapping tasks to cores.
It consists in allocating tasks to cores and scheduling (ordering) the execution of tasks as-
signed to the same core. This is similar to the bin packing problem [Gar+76] which is known
to be NP-complete. Moreover, the mapping and scheduling of tasks must follow some con-
straints that can be functional (such as deadlines or precedence in a dependency graph) or
non-functional (such as resource availability, memory capacity or network bandwidth).

Off-line mapping and scheduling of tasks is widely preferred in safety-critical industrial
systems. In this approach, the tasks running on the system are known in advance. Many
recent approaches for the mapping problem focus on optimizing the end-to-end response
time considering a single conservative WCET that includes the interference delays [YYA16;
NHP17; WN15; Gia+17]. The common assumption in these approaches is that the interfer-
ence on shared resources is negligible. Otherwise, the WCETs can be potentially large and
pessimistic which may harm the schedulability test of the system.

Instead of pessimistic upper-bounds on the interference, some mapping and schedul-
ing algorithms aim at completely eliminating the interference on shared resources. This
relies on: (i) application models, such as PREM, to schedule memory phase and compu-
tation phase separately [Mel+15]; (ii) hardware isolation that relies on partitioned shared
resources [PNP13; Bec+16].

An example with partitioned shared resources is the approach of [PNP13] for mapping
SDF applications on a many-core processor. The execution model used in this work relies on
a spatial isolation of tasks; the shared memory is partitioned and each partition is assigned
to a core. Communications are achieved using a message passing interface by means of a
dedicated buffer. The communications are then scheduled accordingly. This idea is similar
to the one in [Bec+16] which aims at completely eliminating the interference on shared
memory.

34 related work

3.1.4 Summary

We presented an overview of predictable many-core architectures and related work that
addresses them. The presence of shared resources at several layers in the architecture
affects the determinism and predictability of such platform due to timing interference. In
order to certify these systems, it is necessary to bound the interference delays (as imposed
by the DO-178B/C standards) and provide means for spatial and temporal isolation.

Spatial isolation can be achieved by means of partitioned shared and private memories.
Temporal isolation can be achieved at the hardware level by means of Time Division Multi-
ple Access (TDMA) arbitration policy of shared resources. This offers a convenient solution
to bound the effect of shared resource interference. At the software level, time triggered
scheduling policies help to improve the timing analysis of tasks and therefore simplify the
mapping algorithms. For other work-conserving policies, the solution seems to either (i)
restrict the application at design level to enforce the predictability, or (ii) model the shared
arbiters to obtain tight delays on the shared resource accesses. In the following we present
the related work to point (i) in Section 3.2 and point (ii) in Section 3.3.

3.2 temporal isolation : a way to avoid interference

As mentioned above, single core timing analysis can hardly be adapted in multi-core pro-
cessors. In single-core, the longest execution path exhibits the WCET. In multi-core systems,
several paths are potential candidates to exhibit the WCET depending on the interference
on shared resources. A pessimistic but safe solution is to assume that each shared resource
access receives the maximum delay. This greatly increases the WCET’s over-estimation.
Moreover, it is often not possible to obtain upper-bounds on the interference without tak-
ing into account concurrent requests to shared resources. For instance, in the case of fixed-
priority arbiters, it is not possible to bound the interference without taking into account all
accesses from higher priority tasks.

We discuss here several approaches to address the issue above. Temporal isolation pro-
vides a way to enforce upper-bounds on the delays due to interference. It can be imple-
mented in hardware (by means of TDMA buses) or in software (by means of scheduling
policies).

3.2.1 Time Division Multiplexing

Time Division Multiplexing (or Time Division Multiple Access) enforces a temporal isola-
tion at the hardware level. This is done by periodically allocating communications slots in
the shared bus to each requester (cores or DMA engines) of the shared resource. A bus
request is granted only during its allocated slot. Requests that are issued outside of their
slots are stalled until the next available slot. This effectively upper-bound the interference
delays since slots are fixed and any request is guaranteed to be granted.

The analysis of shared resources accesses with TDMA arbitration can be simplified by
considering a safe constant bound on the worst-case delay at each access [Ros+07]. Never-
theless, several approaches were proposed to accurately estimate the waiting time of an ac-

3.2 temporal isolation : a way to avoid interference 35

cess for its corresponding communication slot. As an example, Chattopadhyay et al. [CRM10]
improves the analysis cost of loops by aligning each loop head execution with the TDMA
period. A penalty term is added to the WCET of each loop. This allows a better scaling of
the analysis at the cost of the precision. The approach by Kelter et al. [Kel+14] offers a com-
promise for loop analysis by modeling the offsets in the TDMA bus with an ILP problem.
The proposed solution gives a tighter estimation of the WCET compared to the pessimistic
approach. Considering bounded loops, the authors give two methods to estimate the WCET
in presence of a TDMA bus with minimal unrolling. The first method unrolls the loop until
a fix point of offsets is reached. The second method uses dynamic flow graphs to model
loops.

According to the authors, any WCET technique for TDMA buses can be used in this
context. We particularly note that the technique from [Kel+14] can also be applied in this
case. It relies on abstract interpretation and fixed-point iterations to improve the precision
and the scalability of the WCET analysis of TDMA resource arbitration delays.

Schranzhofer et al. [SCT10] propose an efficient analysis of the worst case response time
(WCRT) of a shared TDMA bus. The proposed framework uses the access model in periodic
tasks to analyze the worst-case response time of the bus and schedulability of tasks. By
separating accesses to the bus and computations, this approach exhibits tighter bounds and
reduces the WCRT.

Other research works were done to improve the WCET estimation with a shared bus.
Gustavsson et al. [Gus+10] use timed automata to model the software and the hardware. An
upper bound on the clock of the timed automata is obtained with model checking tools such
as UPPAAL [BDL04]. This approach suffers from a potential explosion in the number of
automata’s states. Lv et al. [Lv+10] propose a better use of timed automata. With an abstract
interpretation of the cache, basic blocks in the CFG are annotated with cache miss and cache
hit. The annotated CFG is then modeled with a timed automaton. TDMA arbitration policy
of the shared bus is also modeled with an automaton. The results show a better estimation
on the WCET compared with the pessimistic approaches.

To address the scalability issue in timed automata, some approaches are based or inspired
from the Real-Time Calculus [SCT10; Sch+10; Sch+08]. Such approaches allow analyzing any
arbitration policy, including TDMA, given upper-bounds and lower-bounds on the number
of shared resource accesses during a time window, expressed in the form of arrival curves.
The work in [DNA15] follows the same idea. We will detail it in Section 3.3, since it also
targets non-TDMA buses.

3.2.1.1 TDMA Optimizations

TDMA based arbitration policy offers a predictable behavior of the shared resource inter-
ference. It also improves and simplifies the WCET analysis. This comes at the cost of
performance. In fact, TDMA policy is non-work conserving, meaning that the bus still stalls
even when there is no concurrent accesses. In some applications, this may harm the perfor-
mance, especially in very large systems. For this reason, some approaches were proposed
to optimize the TDMA arbitration to improve the worst-case behavior.

Rosèn et al. [Ros+07] propose a system-level scheduling with WCET analysis. The ap-
proach considers a task graph with a fixed mapping, and an initial TDMA bus scheduling.

36 related work

The result is a static periodic bus schedule, i.e., a schedule table of the slots in a bus’s peri-
odic cycle. First, tasks are assigned to cores according to a list scheduling policy that uses
initial WCETs; through this, one also obtains the critical path in the task graph. Then, the
bus schedule is modified to optimize the latest termination time in the critical path. Finally,
the new bus schedule is used to re-schedule tasks and re-compute the critical path that
includes the bus delays. Each WCET computation (except the first one) uses an ILP system
that encodes accesses and availabilities of the bus schedule as well. Since the WCET analy-
sis gives new timing information, the optimization must run again. The process terminates
when no shorter critical path is found.

Li et al. [LMS15] also proposes an application specific TDMA schedule of the shared
bus. As in [Ros+07], it assumes a programmable TDMA bus to optimize the WCET of
shared resource accesses. In contrast to these approaches, Oehlert et al. [OLF17] propose
an optimization of WCET in a multi-core with TDMA bus, without reprogramming the
bus. The target platform contains a shared flash memory and faster but smaller private
scratchpad memories1. The key idea is to statically allocate some instructions to the size-
limited scratchpad memory based on an ILP model to improve the overall WCET.

3.2.2 Time Frame Isolation

TDMA-based shared buses offer temporal isolation in the hardware. On processors that do
not implement such policy, it is possible to enforce the temporal isolation at the software
level, by relying on specific scheduling techniques and/or following specific guideline on
the execution models [Per+16b]. We present here the main ideas that follow this approach.

The paper [Gia+16] proposes: (i) a flexible time triggered scheduling, (ii) a response
time analysis for the proposed scheduling policy that accounts for the interference, (iii) an
optimization of the resource utilization. The analyzed application is a multi-periodic task
graph with mixed-criticality levels. The analysis is performed on a hyper-period (the least
common multiple of the tasks’ periods) obtained by unfolding the tasks’ execution. Each
hyper-period cycle is divided into fixed size frames. Each frame is divided into sub-frames
where tasks are assigned to. Sub-frames are synchronized through barriers, i.e., cores wait
at the barrier until all tasks in the current sub-frame finish. Therefore, the length of a
sub-frame is equal to the maximum worst-case response time of the tasks running in the
sub-frame. The interference on shared memory accesses is pessimistically estimated; all
tasks executing in the same time sub-frame and accessing the same memory bank interfere
with each other. This depends on the task-to-core and data-to-memory bank mappings.

The mapping design optimization phase updates the task and data mappings such that: (i)
the workload is balanced between the cores and the memory banks, (ii) dependencies and
deadlines are respected. The algorithm stops when it finds a solution (i.e., task and data
mappings) that minimizes the sum of the time frames’ lengths (i.e., barriers’ sizes).

Carle et al. [Car+15] describe the design and implementation of data-flow programs on
multiprocessors. The authors focus on the optimization of an off-line schedule taking into
account timing properties such as release dates and deadlines. In this work, time frames are
constructed to enforce temporal isolation between tasks allocated to different frames. The

1 A high-speed memory

3.3 shared resources interference analysis 37

tasks that are allocated to the same frame are, however, subject to interference. The authors
then assume a conservative upper-bound on WCET that accounts for all delays to access
shared resources by tasks in the same time frame. The interference becomes proportional
to the number of tasks per time frame.

3.2.3 Summary

The techniques discussed above approach the shared resource problem such that the inter-
ference is completely eliminated or easily bounded with a constant delay through temporal
isolation. This is done by means of the hardware (TDMA bus arbiters) or the software (time
frame based scheduling). In the latter, tasks are allocated to time frames (implemented
with synchronization barriers) taking into account different constraints such as deadlines,
dependencies, and accessed memory banks. The interference on shared resources can be
completely avoided [Man+17] or at most bounded by a pessimistic but safe delay either
constant [Car+15] or proportional to the number of tasks allocated to the same time frame
and accessing the same shared resources [Gia+16].

Other approaches tackle the problem without imposing a global synchronization mech-
anism to completely eliminate the interference. Instead, the shared resources and their
arbiters are modeled and taken into account in the timing analysis of the system. This re-
sults in more accurate bounds on shared resource access delay. We present such approaches
in the following section.

3.3 shared resources interference analysis

Temporal isolation is a solution to eliminate or bound the effect of timing interference.
Other approaches tackle this challenge by directly analyzing the shared resources to find
an upper-bound with tight over-estimation. We present here a set of related work that
target shared resource analysis in multi-core and many-core systems.

3.3.1 Formal Approaches

Model checking with abstract interpretation is popular in static timing analysis. Kelter
and Marwedel [KM17] rely on timed automata to model all the concurrent tasks in the
program. A parallel execution graph is constructed from the different execution paths
of each task’s CFG. This allows to precisely detect the interference at a cyclic level and
according to the arbitration policy. Despite the optimizations to reduce the size of the
analyzed graph, the analysis is vulnerable, in terms of run-time, to the size of the programs
as well as the number of cores in the system. Although model-checking based approaches
with abstract interpretation yield accurate results, it requires a lot of effort to model the
system under analysis. Furthermore, the computational complexity harms the scalability
of such approaches especially on architectures with tens or hundreds of cores.

Model-checking based approaches can be combined with Real-Time Calculus in a hybrid
approach to improve the scalability of the analysis [LPT09]. Based on this idea, Lampka et
al. [Lam+14] propose an approach that uses timed automata and abstract interpretation to

38 related work

model the programs. Several shared bus arbiters (first-come-first-served, round-robin, TDMA)
are modeled with timed automata. The analysis of shared resource interference uses Real-
Time Calculus to derive the arrival curves for access requests and the availability curves for
the shared resources (in this case the shared bus). This approach also exploits the idea of
phase-structured task models [Pel+10; SCT10] to deliver tight WCRT estimation. Although
modeling a more complex arbiter can be feasible in timed automata, it increases the com-
plexity of the model and may lead to an explosion of states during analysis. Architectures
such as the Kalray MPPA-256 have several shared resources. This adds to the complexity
of the analysis and may significantly affect its scalability.

Dasari et al. [DNA15] present an approach for response time analysis taking into account
interference on the bus. The number of accesses is obtained from measurements during
the task’s execution The bus itself is modeled by considering the earliest and latest avail-
able communication slots for the task under analysis. This representation depends on the
arbitration policy of the bus. The authors give mathematical models of the most widely
used bus arbiters; however, it is difficult to see how to represent with this approach less
conventional arbitration policies available in commercial platforms [Din+14b].

Giannopoulou et al. [Gia+16] propose a response time analysis in mixed-criticality schedul-
ing on a clustered many-core that fits the architecture model in Figure 3.1. This approach
considers a “flexible time-triggered scheduling” model which divides time into frames,
and forces a global synchronization barrier between frames. Optimizations were proposed
to maximize core utilization and to reduce the interference by mapping cores to memory
banks accordingly. Nevertheless, global synchronization potentially creates core under-
utilization while they wait for the barrier.

The authors in [CKH16] propose a conservative modelling technique of the shared re-
source contention based on the event streaming model. The approach targets dependent
tasks assuming a fixed task mapping. A tighter upper bound on shared resource requests is
computed by considering a cluster of tasks (constructed in the analysis) as a whole instead
of considering tasks individually. The task clusters are constructed based on each task’s
timing information as well as its dependency graph. Bounds on the shared resources’ re-
quests are used in the WCRT analysis (such as the one in [Kim+13]) which in turn updates
the timing information. The process stops when the task set is stable, i.e., the release and
finish dates are fixed. The authors claim that this process converges toward a fixed point,
however, no proof of convergence is discussed.

Altmeyer et al. [Alt+15] presents a multi-core response time analysis that accounts for
the interference on shared resources in a compositional manner. The idea is to consider
a worst-case response time in isolation and add up all the delays from potential sources
of interference. This approach is more flexible to extend to a large set of architecture
components given an accurate model of the arbitration policies. The genericity of such
approach comes at the cost of an over-approximation (pessimism) in the resulting response
times.

Note that the approaches in [CKH16; DNA15; Alt+15] rely on known task profiles; WCET
in isolation and upper bounds on shared resource accesses. Such profiles can be obtained
from a static timing analysis tool of tasks in isolation. There exist many tools targeting
different processors, such as: OTAWA [Bal+10], aiT [Ait], Heptane [HRP17], SWEET [Swe],

3.3 shared resources interference analysis 39

and Chronos [Chr]. Another way to obtain task profiles is from measurement-based tech-
niques, such as in [DNA15]. We discuss in the following an alternative approach for inter-
ference analysis based on probabilistic and full measurement approaches.

3.3.2 Measurement-Based Approaches

Measurement-based approaches are an alternative used in timing analysis. Measurement-
Based Timing Analysis (MBTA) does not require models of the underlying architecture or
the application. Instead, the real application and processor are directly used and the tim-
ing information is collected through different approaches, such as hardware performance
counters and/or code instrumentation. This makes the analysis much simpler and more
scalable when compared with formal approaches.

End-to-end measurements, however, do not guarantee that the worst-case execution
time is observed. The approaches rely on Extreme Value Theory2 to infer a probabilistic
WCET [CG+12; SGM17]. Another way is to measure portions of codes that can be per-
formed and combined to obtain a probabilistic WCET. It is easier to trigger a worst-case
behavior on a fine-grained region in the application, however, this requires a heavy code
instrumentation and other code tracing methods which can be too intrusive in software
execution.

Measurement-based approaches of shared resources is still a challenging problem. The
interference depends on co-runners and therefore it is hard to measure it. MBTA can benefit
from hardware partitioning and interference-aware mapping/scheduling policy to perform
without accounting for interference. In cases where these solutions are not possible, a
probabilistic worst-case interference can be added in a compositional way to each task.
This has been used, for instance in [Pan+15], to enable measurement-based analysis for
TDMA buses. The European project PROXIMA [Pro] aims at enabling MBTA for industrial
applications on multi-core and many-core processors.

3.3.3 Summary

Shared resources in multi-core and many-core systems create timing interference. For this
reason, traditional two-step approaches (first timing analysis, then schedulability analysis)
cannot perform as efficiently as on single-core. Several approaches aim at addressing the
shared resource interference challenge by considering different aspects, such as: shared
caches, shared buses, and shared memory banks.

We presented a set of formal methods that address this problem. Although, the result is
a tight WCET estimate, the analysis tend to be very complex and sometimes non-scalable.
MBTA on the other hand is an alternative to formal methods that relies on probabilitic
approaches to estimate the WCET. The extension of MBTA for shared resources is still very
challenging and may result in large over-estimation.

Hybrid methods that rely on formal methods and MBTA represent a good compromise
between tightness and scalability of the analysis. It is easier to trigger the worst-case be-

2 Statistical theory for extreme events of a stochastic process

40 related work

havior on a small portion of the analyzed program. MBTA is used on these portions to
infer metrics such as local WCETs or worst-case number of memory accesses [Bal+17]. The
results are then combined by a formal method to induce the whole system’s WCET. This
is the case, for example, of the approach in [DNA15] where task profiles (execution time
and number of accesses) are measured for code regions in the program under analysis. In
the context of the European project P-SOCRATES [Pso], Nélis et al. [NYP17] propose an
approach for mapping and scheduling tasks on a many-core processor. It relies on timing
information based on measurements in isolation and under heavy contention of each task,
where the mapping and scheduling is done by a dedicated formal tool.

3.4 conclusion and positioning

We described in this chapter the impact of the shared resources on multi-core timing anal-
ysis. We described the different directions and approaches that were taken to tackle this
challenge in real-time systems. Predictable architectures were designed with the idea of
reducing the analysis complexity. We discussed some noteworthy related work with solu-
tions that benefit from the hardware-level features (such as the use of TDMA arbiters) or
software-level features (such as interference-aware scheduling and mapping).

In the context of the highlighted related work, the contributions of this thesis turn around
two topics: (i) a formal method to analyze TDMA buses, (ii) a response time analysis with
non-TDMA shared arbiters. While the former topic can be applied to any multi-core with a
shared TDMA bus, the latter topic is particularly focused on a commercial many-core that
fits our target architecture model in Figure 3.1 (page 30). The following is the positioning
of the work presented in this thesis.

3.4.1 On TDMA-based Buses

TDMA buses show good characteristics to improve the worst-case behavior of accesses to
a shared resource. We discussed several related work that target such arbitration policy
and give a tight estimate of the WCET. Such approaches, however, consider already known
feasible paths obtained from the semantics [Kel+14; CRM10]. In Chapter 4, we present
an approach that combines the infeasible path analysis and the micro-architectural (shared
TDMA bus) analysis in the same step. Instead of the usual ILP-based methods, our ap-
proach is based on (a more flexible) Satisfiability Modulo Theory (SMT) model which allows
considering all feasible execution paths without having to enumerate them. We give an
overview on SMT in Chapter 4, Section 4.2.3.

3.4.2 On Shared Resources Interference

Methods and tools for the design and implementation of real-time systems on single-core
architectures are well established. On such architectures, the method used is a two-step
process: a timing analysis derives the WCET, which is then used in a scheduling analysis.
The only shared resource (and source of interference) here is the processing element. These
two steps are independent and hence can be achieved separately.

3.4 conclusion and positioning 41

Task model

Input

Timing
analysis

Interference
analysis

A schedule
(if found)

Output

stop
condition

Figure 3.3: Global scheme of multi-core response time analysis

The emergence of multi-core systems brings up new challenges; the boundaries between
the traditional two-step analysis are not well-defined. The timing analysis of tasks depends
on the interference between cores, which in turns depends on timing information of each
task. These cyclic dependencies create loops between the different phases of the design
and implementation of real-time systems. Figure 3.3 represents the general scheme of what
is observed in the state-of-the-art [Gia+16; Car+15; Ros+07; CKH16]. The timing analysis
box encompasses the WCET analysis, WCRT analysis, or scheduling analysis that takes
into account at least one source of interference. The interference analysis box is an iterative
process which leads to a more and more precise timing bound for one or more sources of
interference. The considered shared resources that lead to interference can be cores, shared
memories, or shared bus arbiters. Note that it is necessary to define a stop condition that
ensures the termination of the process.

The second contribution of this thesis in Chapter 5 follows a similar flow as in Figure 3.3
to analyze SDF applications on a many-core processor. We assume a given task mapping,
and an execution order. The considered shared resources are bus arbiters to a partitioned
shared memory. Our proposed algorithm reaches its fixed point (and therefore exits its
loop) when the release dates and response times of each task are stable. The result is a
static schedule of tasks (fixed release dates) that respects task dependencies and accounts
for delays on shared resource accesses.

We address intra-cluster interference on shared bus arbiters. This complements the work
in [Per+16a] that, based on ILP, addresses task and data mapping on a many-core taking
into account the inter-cluster NoC. Similarly, our approach also may work with [Ten+14]
that uses SMT.

Part II

C O N T R I B U T I O N S

Chapter 4
S H A R E D R E S O U R C E S W I T H A T D M A B U S

4.1 Motivation . 45

4.2 Foundations . 47

4.2.1 Time Division Multiple Accesses (TDMA) . 47

4.2.2 WCET Analysis of TDMA Buses: an Example 48

4.2.3 Satisfiability Modulo Theory (SMT) . 49

4.2.4 WCET by SMT . 51

4.3 SMT-based Analysis for TDMA . 53

4.3.1 Naive Timing Encoding . 53

4.3.2 Optimized Timing Encoding . 54

4.3.3 Adding Cuts to the SMT Expression . 58

4.4 Implementation and Evaluation . 58

4.4.1 Performance of SMT Encodings for TDMA . 60

4.4.2 Benchmarks . 62

4.5 Conclusions and Future Work . 65

4.5.1 Summary . 65

4.5.2 Future Work . 67

4.5.3 Discussion . 67

We propose in this chapter an approach for interference analysis of accesses to shared
resources based on Satisfiability Modulo Theory (SMT). Our proposed techniques is applied
to a shared bus with the Time Division Multiple Access (TDMA) arbitration policy.

This chapter is organized as follows: in Section 4.1, we give the motivation of this work
and summarize our contributions. In Section 4.2, we give a background on TDMA buses
and SMT which are core concepts of our approach. Our contribution is in Section 4.3 which
explains how a program with accesses to a shared bus with a TDMA arbiter is modeled
using SMT expressions. In Section 4.4, we evaluate our model using micro-benchmarks,
then we apply our approach to benchmarks taken from real-life applications. Finally, the
conclusion and future work are given in Section 4.5.

4.1 motivation

Determining Worst-Case Execution Times (WCET) has been the focus of research in the
field of embedded systems. Static analysis methods have been developed to provide safe
bounds on the WCET. The challenge remains in improving the pessimistic approaches that
over-estimate the execution time of the analyzed program as well as the scalability of the

45

46 shared resources with a tdma bus

analysis. An example of such an approach is the Implicit Path Enumeration Technique
(IPET). The initial version of this approach implicitly enumerates all paths including some
“obvious” infeasible paths in a program, leading to an over-estimation on the WCET. To
illustrate this, we use the following example:

Example of mutually exclusive paths

load . . . (1)
. . . /* 3 cycles */ (2)
if cond then

. . . /* 5 cycles */ (3)
end if
if ¬cond then

. . . /* 1 cycles */ (4)
end if
store . . . (5)

Example 3. Simple IPET without infeasible path analysis of the program above gives the longest
path {(1), (2), (3), (4), (5)}. However, (3) and (4) are mutually exclusive i.e., they cannot be part of
the same execution path. The longest path in this case is {(1), (2), (3), (5)}.

To avoid the problem above, existing work such as [Ray+15; Ray14; Gus+06] extend IPET
to exclude infeasible paths. In this chapter, we use another approach with SMT to encode
the program’s semantics and to perform the feasible path analysis.

In a multi-core environment, the longest path does not necessarily imply the worst-case
execution time. The access time to the shared resource can vary depending on the arbitra-
tion policy of the shared bus and the access patterns in the execution path of the program.

Example 4. In the example above, the instruction store at (5) can access the bus at different
instants depending on whether the code at (3) or at (4) is executed. This results in a variation of the
bus access delay depending on the arbitration policy of the shared bus; in this case, the worst-case
path {(1), (2), (3), (5)} does not necessarily lead to the worst-case execution time.

An analysis that does not consider the semantics together with the micro-architecture
analysis would have to analyze the WCET of the accesses to shared resources with reduced
information about the possible instants when they occur, and may therefore overestimate
their execution time. We address this aspect in our proposed approach.

We assume a Fully Timing Compositional system architecture [Rei+06] that does not exhibit
timing anomalies (see Section 2.3.2 on page 17). We do not support unbounded loops or
unbounded recursion: the analysis has to be able to unroll all loops and inline function
calls. Note that this is a common restriction for programs where a formal WCET analysis is
applied [Kim+14; DNA15; Gia+16; Kel+13; SCT10; Gia+14; Bec+16]. Our implementation
is currently a proof of concept that shows the feasibility of the approach. It makes sim-
plifying assumptions: (i) we assume the absence of cache memory which means that each
load or store instruction issues an access to the shared bus, and (ii) we consider that each
instruction takes 1 cycle. As future work, we intend to incorporate static cache and timing

4.2 foundations 47

analysis tools, such as OTAWA [Bal+10], to include realistic execution time bounds for the
instructions and to model the behavior of local caches.

To sum up, our contribution is a way to encode both the semantics of the program and
a TDMA arbitration policy in a single SMT expression, and to use it to compute a safe
bound on the WCET of the program. The encoding is carefully optimized to avoid the
performance issues of a naive encoding.

4.2 foundations

Multi-core platforms offer capabilities that respond to the growing performance demands
of embedded real-time systems. However, predictability of these architectures remains
a challenge. Shared resources represent the main hot topic in the predictability of such
systems. In this work we are interested in shared buses with Time Division Multiple Access
arbitration policy.

4.2.1 Time Division Multiple Accesses (TDMA)

Time Division Multiple Access (TDMA) is an arbitration policy for shared buses. It allows
cores to share a bus by dividing the accesses into periodic time slots. Cores may receive
different slot lengths or different number of slots in a period which gives more or less
priority to some cores over the others. For simplicity, we consider in our work a TDMA
policy where (i) all slots are of the same length, (ii) each core receives one slot per period.
The approach we propose below can be extended to any configuration of TDMA.

We introduce the following notation: The TDMA period is denoted with π. The period
is divided into slots of length σ. The access time, i.e., the time required to execute a granted
request, is denoted by acc. We denote the offset of a request with regard to the start of the
TDMA period as off . Given the absolute time treq when the request is issued, the offset off
is:

off = treq mod π (4.1)

Expressing the timing of the bus in terms of offsets simplifies the bus model since the only
possible values of the offsets are in [0, π[.

A request is granted immediately, only if the offset at the issue instant falls into the
communication slot, otherwise it is delayed until the next slot of the core. Once granted,
an access cannot be preempted. Therefore, (i) slots must be large enough to execute an
access, i.e., σ > acc, (ii) an access request is granted only if the remaining time in the slot is
sufficient, i.e., off ≤ σ− acc. Requests are stalled until the next period if they cannot finish
during the slot. According to this definition, the execution time T of a request is given by:

T =

{
acc if off ≤ σ− acc

π − off + acc otherwise
(4.2)

The best case delay is when the request is issued during the slot and granted directly. In
the worst-case, the request is issued when there is not enough remaining time to process it.
Hence, the execution delay of a bus access varies between [acc, π − (σ− acc)[.

48 shared resources with a tdma bus

off 1

off 2

acc

execution time T

π − off 2 acc

slot length σ

TDMA period π

reqA
1 reqA

2ack ack

slot A slot B slot C slot A slot B slot C time

0 2 4 6 8 10 12 14 16 18

Figure 4.1: Example of a TDMA bus arbiter. Slots {A, B, C} are assigned to cores {P0, P1, P2} respec-
tively. This example illustrates access requests from P0.

The following example explains the notions above.

Example 5. Figure 4.1 illustrates an example of a TDMA bus with a period π = 9 divided into
3 equal slots {A, B, C}. Each slot has a length σ = 3. Slots {A, B, C} are assigned to cores
{P0, P1, P2} respectively. The access time of a granted request is acc = 1. req1 is a bus request issued
by core P0 at instant t = 1. This corresponds to the offset off1 = 1 which falls into its associated
communication slot. This request is granted and executed with an execution time T = acc = 1. A
second request req2 from P0 is issued at off2 = 5 which falls outside the associated communication
slot. It is, thus, stalled until the next slot of core A. The execution time of req2 in this case is
T = 9− 5 + 1 = 5 (Equation 4.2).

The execution time T of a given request varies depending on whether the request’s offset
falls into the associated communication slot. One of the challenges in the WCET analysis
is to accurately estimate T. A program running on an architecture with a TDMA bus, can
start at any offset in the TDMA period. A precise WCET analysis considers exact values of
the offsets throughout the program under analysis. This is complex, costly, and sometimes
not achievable. As a solution, it is possible to abstract the offsets with sets or intervals of
possible values. This results in a less precise but more scalable analysis such as the work
presented in [Kel+14]. A pessimistic analysis considers offsets that just miss their slots for
all accesses; this corresponds to the constant worst-case delay π − (σ− acc).

4.2.2 WCET Analysis of TDMA Buses: an Example

To illustrate the timing behavior of a TDMA bus, consider Algorithm 1. It is a simple
example with two conditional statements. Reading and writing to the memory address
pointed by ∗x is done through load and store instructions that request the shared bus.

We consider each instruction to be executed in 1 processor cycle and assume that load
and store instructions access the shared bus. The shared bus has a TDMA period π = 6
processor cycles, and a slot length σ = 2 processor cycles. The slot associated to the core
where the analyzed program is running is [0, 2]. Once an access is granted, it is executed in
1 processor cycle.

Taking into account the parameters of the bus, a request emitted at offsets 0 or 1 is
granted directly. Otherwise, it is suspended until the next slot. The Control-Flow Graph

4.2 foundations 49

Algorithm 1 Example of a C-like code fragment with bus accesses.

1: function example(∗x, y, f lag)
2: if y < 0 then
3: ∗x ← ∗x + 1
4: else
5: f lag← f lag + 10
6: end if
7: if y ≥ 0 then
8: ∗x ← ∗x + 2
9: end if

10: return flag
11: end function

(CFG) in Figure 4.2b shows two feasible paths: the first path (y < 0) {b1, b2, b3, b5, b8} and
the second path (y ≥ 0) {b1, b4, b5, b6, b7, b8}. Figure 4.2a shows both feasible paths and
their execution times. We suppose that the program starts at instant t = 0 and offset off = 0.
In the case of the first execution path, block b2 emits an access request, (load instruction)
at offset off = 2. This request is delayed until the next slot. The execution time of this
path is 18 processor cycles. The second execution time has 15 processor cycles. Thus, the
worst-case execution time of Algorithm 1 is max(15, 18) = 18 processor cycles.

A micro-architectural analysis that does not account for the semantics of the program
would have to consider the infeasible path {b1, b2, b3, b5, b6, b7, b8} when considering the
load x instruction in block b6. In this path, the access request from the load instruction is
issued at offset off = 5, hence not in the TDMA slot. Considering this path results in a
WCET=27 cycles. As opposed to this, relying on a feasible path analysis helps to prove that
the access in block b6 is in the TDMA slot, and gives a tighter WCET.

As shown above, it is important to consider an approach that combines the offset analy-
sis and the feasible path analysis altogether to obtain a tight and correct WCET estimation.
Our contribution is based on Satisfiability Modulo Theory to perform the feasible paths anal-
ysis combined with the TDMA offsets analysis. In the following, we give an overview of
Satisfiability Modulo Theory and explain how it is applied in static timing analysis.

4.2.3 Satisfiability Modulo Theory (SMT)

Satisfiability Modulo Theory (SMT) is an extension to the satisfiability problem (SAT) in
Bounded Model Checking [Bie+03]. In the SAT approach, a problem is satisfiable if an
interpretation (a set of Boolean values), that satisfies the corresponding Boolean formula,
exists. SMT extends SAT with a background theory T . Examples are the theory of linear
integer arithmetic (LIA) and the theory of linear rational arithmetic (LRA).

SMT is expressed with first-order logic formulas. First Order Logic is a formalism that ex-
presses a system (or a problem) in terms of variables (e.g. x, y), predicates (e.g., (x < y)),
connectives (∧,∨,¬), and quantifiers (∀, ∃). In our case, the SMT formula is in the Con-
junctive Normal Form (or Clausal Normal Form, CNF), i.e., the formula is a conjunction

50 shared resources with a tdma bus

b1
2 cycles

b2
7 cycles

b3
5 cycles

b5
3 cycles

b5
3 cycles

b6
3 cycles

b8
1 cycle

b1
2 cycles
b4
2 cycles

b7
4 cycle

BUSExecution path 1 Execution path 2

load .. (req)

(ack)

(ack) (ack)

(acc)

(acc) (acc)

ret

ret

cmp ...

br ...

add ...
br ...

Φ ...
br ...

cmp ...

br ...

add ...
br ...

br ...

load..(req+acc)

store .. (req)

store .. (req)

cmp ...

br ...

associated slot

WCET = 15

WCET = 18

br ...

cmp ...

Φ ...

add..
br ...

b8
1 cycle

(a) WCET of Algorithm 1 with a shared TDMA bus with
period π = 6 and σ = 2

b7:
store j1, x
br b8

b8:
ret flag2

b6:
i1= load x
j1 = add i1, 2

br b7

b5:
flag2 = phi(flag, flag1)
cmp2=(y>=0)
br cmp2, b8, b6

b4:
flag1 = add flag 10

br b6b3:
store j, x
br b5

b2:
i = load x
j = add i, 1

br b3

b1:
cmp=y<0

br cmp, b2, b4
True

False

True

False

(b) Control-flow graph of Algorithm 1

Figure 4.2: Example of execution paths with a shared TDMA bus

of clauses; a clause is a disjunction of atoms; an atom is an indivisible expression of a
theory. Theory atoms are expressed in the form a0x0 + a1x1 + . . . + anxn ./ C, where:
(i) a0, a1, . . . an, C are integers, (ii) ./ is a relation operator in {=, 6=,<,>,≤,≥}, and (iii)
x0, x1, . . . , xn are variables. For LIA, x0, x1, . . . , xn can be, for instance, in Z.

T -solverSAT-solver

unsat clauses

theory atoms

SATUNSAT

Figure 4.3: General DPLL(T) framework

An SMT-solver is a tool that verifies the satisfiability of an SMT formula. Examples of
such tools are CVC4 [Bar+11], MathSAT [Bru+08], YICES [DDM06], and Z3 [DMB08]. Most

4.2 foundations 51

solvers are based on the DPLL(T)1 method. Figure 4.3 illustrates the general framework
used in the SMT-solvers based on DPPL(T). The framework is composed of a SAT-solver
and a T -solver. The SAT-solver operates on Boolean atoms, representing the theory atoms,
to find a satisfiable solution. The T -solver verifies the consistency of the solution with
regard to the theory T . In the case of inconsistency, complementary clauses are added
to the SAT-solver as a constraint that excludes the inconsistent solution. We illustrate this
execution in Example 6. Note that SMT is an NP-complete problem.

Example 6. SMT-solving steps of a simple SMT formula in Z

∀x, y ∈ Z︸ ︷︷ ︸
LIA theory

:

clause︷ ︸︸ ︷(
(x < −12)︸ ︷︷ ︸

atom

∨(y > x + 10)
)
∧

clause︷ ︸︸ ︷
(x > 0)

Theory: T = Z

1 Clauses:
(
(x < −12)︸ ︷︷ ︸

Boolean a

∨ (y > x + 10)︸ ︷︷ ︸
Boolean b

)
∧ (x > 0)︸ ︷︷ ︸

Boolean c

→ (a ∨ b) ∧ c

2 SAT-solver: a = true, b = true, c = true

3 T -solver: (x < −12) ∧ (x > 0) conflict

4 New clauses: (a ∨ b) ∧ c ∧ (¬a∨¬c)

5 SAT-solver: a = false, b = true, c = true

6 T -solver: x = 1, y = 12→ SAT

1 Theory atoms are represented with Booleans a, b, c. This results in the first order logic formula
(a ∨ b) ∧ c. 2 The SAT-solver finds a solution that satisfies the Boolean formula where all atoms
are true. 3 The T -solver interprets the atoms in the Z theory. 4 The proposed solution with
(a = true ∧ c = true) is inconsistent in Z because x < −12 AND x > 0 are conflicting.
Therefore, the clause(¬a ∨ ¬c) is added to remove the inconsistency. 5 With the new clause, the
SAT-solver suggests another solution. 6 The T -solver finds consistent values in Z and returns
SAT.

The examples with SMT expressions given in this chapter are expressed in pseudo-code.
In our experiments, we use SMT-LIBv2 [Dav13] which provides standard descriptions of
background theories used in SMT systems.

4.2.4 WCET by SMT

Henry et al. [Hen+14] demonstrate how to estimate the worst-case execution time using
Bounded Model Checking. SMT expressions are generated to encode the analyzed program

1 Davis–Putnam–Logemann–Loveland algorithm, used to decide the satisfiability of CNF propositional logic
formulas [DP60]

52 shared resources with a tdma bus

block(3):
y_cmp=(y<0)
br y_cmp, block(2), block(3)

block(1) block(2)

block(4) block(5)

t1,3
c1,3

t2,3
c2,3

t3,4
c3,4

True
t3,5
c3,5

False

Figure 4.4: Example of a basic block (block (3)) with a join and a condition

and its execution time. This way, the feasible path analysis is achieved at the same time as
the WCET analysis. The SMT expressions mean: “Is there a path that satisfies the semantics and
has an execution time greater than T?” where T is a user defined bound. The solution of this
statement represents an execution path in the program with a constraint on the execution
time. An SMT-solver is then used to resolve the SMT expressions to answer the aforemen-
tioned question. In [Hen+14], the authors use a binary search method with different values
of T to find an upper bound on the execution time and disprove the existence of a solution
with an execution time greater than the estimated WCET.

The semantics of the program can be used in determining feasible paths. Boolean vari-
ables are assigned to each basic block and each transition. A transition between basic blocks
i and j is encoded with a Boolean ti,j that is set to true if the transition is taken. A basic
block i, encoded with a Boolean bi, is executed if any of its entering transitions is taken,
i.e. bi =

∨
k tk,i. The execution time is encoded at each transition in the CFG. Thus, ci,j en-

codes the execution time between block i and block j. This way, the WCET analysis is
achieved at the same time as the feasible path analysis.

Example 7. To illustrate the SMT encoding, we use the example of block (3) from Figure 4.4. b3 is a
Boolean assigned to block (3). This basic block is executed when any entering transition is taken. Let
t1,3 and t2,3 be Booleans associated with the transitions from block (1) to block (3) and from block (2)
to block (3) respectively. The generated SMT expression is:

b3 = (t1,3 ∨ t2,3)

The outgoing transitions are obtained from the condition (y < 0). Transition t3,4 is taken when the
condition is true, t3,5 is taken otherwise. This gives the following expressions:

y_cmp = (y < 0)

t3,4 = (b3 ∧ y_cmp)

t3,5 = (b3 ∧ ¬y_cmp)

4.3 smt-based analysis for tdma 53

block(0):
x1 =load x
x2= add x1, 1

store x2, x

block(0.1):
x1 =load x
x2= add x1, 1

block(0.2):
store x2, x

Figure 4.5: Split of basic blocks such that only a single bus access occurs at the beginning of the
block

The execution time at each transition is encoded with c1,3, c2,3, c3,4, and c3,5. We explain how the
total WCET is computed from these variables in Section 4.3 while introducing our contributions.

Note that loops and recursive function calls are problematic cases. We require that the
compiler unrolls the loops and inlines function calls. In the remainder of this chapter, we
extend this approach to include architectural information of shared resource arbitration in
a multi-core processor with a TDMA bus arbiter. Our approach encodes shared TDMA bus
and the program semantics within the same SMT expression, allowing the SMT-solver to
prove WCET bounds that could not be deduced by analyzing both aspects independently.

4.3 smt-based analysis for tdma

In this section, we explain how the SMT model is extended to encode accesses to a shared
bus with a TDMA arbitration policy. In this work, we consider the first slot [0, σ] to be
associated to the core on which the analyzed program is executed. To simplify the analysis,
we transform the control-flow graph (CFG) so that the basic blocks access the shared bus
at most once and only at their first instruction. We will refer to the basic blocks in the
transformed CFG simply as blocks. Figure 4.5 illustrates this transformation: Considering
that load and store instructions access the shared bus, block (0) is split into block (0.1) and
block (0.2). Each block either starts with a load or a store instruction, or does not contain any
memory accesses. Note that these transformations simplify the analysis but do not change
the general properties of the CFG.

We extend the work of [Hen+14] to include the model of the shared bus accesses. This
model is given in Section 4.3.1. Introducing the access delays implies modifications in the
SMT encoding of the execution time from the previous work. We explain the timing encod-
ing in presence of bus delays in Section 4.3.2. This work has been published in [Rih+15].

4.3.1 Naive Timing Encoding

Here we explain the SMT model of a program that accesses a shared bus with a TDMA
arbiter. The encoding of blocks that do not access the shared bus comes straightforward
from the previous work by Henry et al. [Hen+14]. A variable ci,j is associated to each

54 shared resources with a tdma bus

transition between blocks i and j and represents the time spent in block i. The worst-
case execution time of each block is constant considering our assumption of a fully timing
compositional architecture:

ci,j = if ti,j then wceti else 0

The expression means: if the transition from block i to block j is taken, ci,j is equal to the
worst-case execution time, denoted by wceti, of block i; otherwise it is equal to 0. Note that
a block in the CFG may have different WCETs depending on the execution path it takes
part of. To simplify our notations, we use a single constant wceti for block i. The values
of wceti can be obtained from an external timing analysis tool and injected directly in the
SMT expression.

For blocks that access the shared resource, the SMT model takes into account the micro-
architectural configuration. A TDMA arbitration policy is determined by its period π and
slot length σ. The delay of a bus access at the exit of a block Texit is determined according to
the instant t of the request emission at the entry of the block Tentry. A naive implementation
of the bus access model first computes the offset from Tentry, i.e, (Tentry mod π). Then, it
checks whether the offset falls into the communication slot.

Algorithm 2 gives the pseudo code of the straightforward encoding in SMT of the bus
access delay. The function tdma_access takes as argument the time instant of a bus ac-
cess request and finds its offset relative to the start of the TDMA period. We then check
whether the current offset falls into the allowed communication slot. In this case, the ac-
cess request is directly granted and the function returns the time of the entry plus the
access delay and the execution time of the remaining instructions that do not access the
bus: Texit = (Tentry + acc + cost). Otherwise, the request is delayed until the next slot and
the function returns Texit = Tentry + (π − off entry) + acc + cost.

Algorithm 2 Naive version of tdma_access: returns the absolute time after a bus access

Require: time: Tentry , execution time of the block: cost
1: off entry ← Tentry mod π

2: if off entry < σ then
3: return Tentry + acc + cost
4: else
5: return Tentry + (π − off entry) + acc + cost
6: end if

This method raises performance issues for the SMT-solver, caused by the use of the non-
linear modulo operator “mod”. To address this, we present in the following another encod-
ing. In Section 4.4.1, we compare different encodings.

4.3.2 Optimized Timing Encoding

In this section, we explain how the timing is encoded with SMT. The assumption made
previously on the form of the CFG implies that blocks either access the shared bus or not.
Moreover, the blocks access the shared bus only at the first instruction. The timing encoding
should take into account such configuration.

4.3 smt-based analysis for tdma 55

Instead of modeling only the absolute time, we also model the offsets throughout the
program. We recall that the offset off is defined by off = (T mod π). These offsets are
computed at each exit point of a block in the CFG. Similarly to the execution time, offsets
are associated to each transition; off i,j encodes the offset at the transition from block i to
block j.

4.3.2.1 Blocks Without Bus Accesses

The encoding of the execution time of blocks without bus accesses is the same as in the
naive model above. The novelty here is to also encode the offsets at the entry and the exit
of the block. Function get_offset in Algorithm 3 is used to find the offset after a block that
does not access the shared bus. This function takes as parameters offset off entry at the entry
of the considered block and its execution time cost. The “mod” operator in line 1 is used to
find the offset after a time cost. This operator does not cause performance issues because
its operands cost and π are known constants, as opposed to the naive encoding, where the
one of the operands is an unknown variable (Tentry). new_off is the sum of two constants
smaller than π which means that new_off < 2π. The algorithm returns (new_off mod π)

which can be simply written with the if..then..else statement in lines 2 to 6.

Algorithm 3 get_offset: returns the offset at the exit of a block without bus accesses

Require: offset: offentry , execution time of the block: cost
1: new_off← off entry + (cost mod π)

2: if new_off> π then
3: return new_off−π

4: else
5: return new_off
6: end if

• • •block p1 block pN

block i

block j

off i,j ci,j

off p1,i
cp1,i

off pN,i
cp1,i

Figure 4.6: A minimal example of a CFG

Let i and j be the indices of two blocks such that block j is a direct successor of block i as
illustrated in Figure 4.6. Let {p1, p2, . . . , pN}(∀N ≥ 1) be the direct predecessors of block i.
A possible encoding of the offset between block i and block j is the SMT expression:

56 shared resources with a tdma bus

off i,j = get_offset
(
(if tp1,i then off p1,i

else if tp2,i then off p2,i

else if ...

else if tpN,i then off pN,i

else 0),

wceti

)
We refer to this encoding as “if..then..else” encoding below. This expression means that

the offset between block i and block j is computed using the offset of the corresponding
entering transition to block i in the case there are many predecessors of i.

Let off k,i(k ∈ {p1, p2, . . . , pN}) be the offsets associated to the entering transitions from
blocks k to block i. Only one entry transition is taken in a specific execution path. Let n
and i be two blocks in an execution path P such that n is a direct predecessor of i. On path
P we observe that:

if ∀k 6= n : tk,i = false, off k,i = 0

if k = n : tk,i = true, off k,i ∈ [0, π[

This means that at most one entering offset is not null which implies that the sum of all
entering offsets to block i gives directly the offset at the entry of the block i in an execution
path. Hence, it is possible to avoid using the nested if..then..else sequences in the SMT
expression by using a sum instead. We give such encoding as follows:

off i = get_offset(∑
k∈{p1,...,pN}

off k,i, wceti)

off i,j = if ti,j then off i else 0

Here off i is an intermediate variable to encode the offset at the exit of block i. We refer to
this encoding as “sum” encoding.

In Example 8, we apply this encoding to block (3) in Figure 4.4.

Example 8. Let wcet3 be an upper-bound on the execution time of block (3). Let off1,3, off2,3, off3,4,
and off3,5 be the offsets assigned on the transitions 1 → 3, 2 → 3, 3 → 4, and 3 → 5 respectively.
The offsets off3,4 and off3,5 at the exit of block (3) are encoded by:

off3 = get_offset((off1,3 + off2,3), wcet3)

off3,4 = if t3,4 then off3 else 0

off3,5 = if t3,5 then off3 else 0

4.3 smt-based analysis for tdma 57

4.3.2.2 Blocks With Bus Accesses

Blocks that access the shared bus should take into account the delay caused by the arbi-
tration policy. Function tdma_access in Algorithm 4 returns the execution time of a block
taking into account the offset at its entry (off entry) and the execution time of the remaining
instructions (cost). Line 1 checks whether the current offset off falls into the communication
slot. In this case, the request is granted and the returned time at the exit of the block is
given by Texit = acc + cost. In the other case, Texit = (π − off entry) + acc + cost.

Algorithm 4 tdma_access: returns the delay at the exit of a block with a bus access

Require: offset: off entry , execution time of the block: cost
1: if off entry ∈ [0, σ− acc] then
2: return cost + acc
3: else return cost + π − off entry + acc
4: end if

Function tdma_offset, in Algorithm 5, returns the offset at the exit of a block that accesses
the bus. This function takes as inputs the offset at the entry of the block off entry and the
execution time cost of the remaining instructions that do not access the bus. It computes the
new offset at the exit block which is off entry + acc + (cost mod π), if the offentry falls into
the communication slot [0, σ− acc], otherwise the new offset is acc + (cost mod π). Since
the offset values can only be in the interval [0, π[, the modulo operation is computed using
if..then..else instructions (see lines 6–9) to avoid the non-linear instruction mod.

Algorithm 5 tdma_offset: returns the offset after a bus access

Require: offset off entry , execution time of the block: cost
1: if off entry ∈ [0, σ− acc] then
2: new_off← off entry + acc + (cost mod π)

3: else
4: new_off← acc + (cost mod π)

5: end if
6: if new_off ≥ π then
7: return new_off - π

8: else return new_off
9: end if

The execution time and the offset at the exit of a block are encoded similarly to blocks
without accesses to shared bus. Let i and j be two blocks such that block i is a predecessor
of block j, as illustrated in Figure 4.6. Let {p1, p2, . . . , pN}(N ≥ 1) be the predecessor

58 shared resources with a tdma bus

blocks of block i. The functions defined in Algorithms 4 and 5 are used in the following
way:

ci = tdma_access(∑
k∈{p1,...,pN}

off k,i, wceti)

ci,j = if ti,j then ci else 0

off i = tdma_offset(∑
k∈{p1,...,pN}

off k,i, wceti)

off i,j = if ti,j then off i else 0

Here, wceti is the worst-case execution time of the remaining instructions after the instruc-
tion that accesses the shared bus. If block i has no predecessors, the offset at its entry is set
according to the considered hypotheses in the analysis.

4.3.3 Adding Cuts to the SMT Expression

Without further optimization, the SMT-solver shows poor performance while searching
for the WCET during the experiments. The same issues were observed and addressed in
[Hen+14]. The reason is that the DPLL(T) algorithm (see Section 4.2.3) works only on the
provided atoms in the formula (for instance x + y + z < 20) without deriving new ones that
may be useful (for instance x + y < 5). This leads to some “obvious” properties in the SMT
formula being undetected. To address this issue, we manually add cuts, which are clauses
that allow the SMT-solver to prune a very large number of partial traces from the decision
tree.

Knowing that the offsets can only have the values in [0, π[gives straightforward cuts in
the case of the “sum” encoding. Let N be the number of entering transition to block i. The
sum ∑N

k=0 off k,i is in the interval [0, π[since there is at most one non-zero off k,i. We add a
cut for each block with at least two entering transition, i.e., with N > 1.

4.4 implementation and evaluation

Our implementation relies on PAGAI [HMM12], a tool which allows modeling programs
by means of SMT expressions. It is used by Henry et al. [Hen+14] to estimate the worst-case
execution time through semantic encoding with SMT expressions. PAGAI uses an interme-
diate representation based on the CFG obtained from LLVM2. Due to this constraint, our
tests and proof of concept implementation use the intermediate representation instead of
the executable binary. We explain in Section 4.5 how a realistic analysis can be achieved.

Figure 4.7 shows the workflow of the proof of concept. The source code is compiled with
CLANG to generate LLVM bitcode. A number of optimization passes are then executed.
The interesting pass in our case is the one that transforms the CFG as discussed in Sec-
tion 4.3. PAGAI is then run on the transformed CFG, given in the form of an LLVM bitcode
file, to generate the SMT expressions of the program.

2 LLVM is a compilation framework that relies on a strongly typed intermediate representation (http://www.
llvm.org)

http://www.llvm.org
http://www.llvm.org

4.4 implementation and evaluation 59

Source
code

LLVM compiler +
optimization passes

Transformed
CFG

PAGAI

SMT
expression

Data

Phase

Legend

Figure 4.7: General workflow of the proof of concept to generate SMT expressions

We implement an LLVM optimization pass that transforms the CFG to fit our analysis.
It splits blocks such that (i) each obtained block contains at most one instruction accessing
the bus, (ii) such instruction is the first instruction of the obtained block. Figure 4.2b in
Section 4.2.2 illustrates a CFG obtained after this transformation.

We use the SMT-solver Z3. It offers a C API that is used in a binary search program. The
SMT-solver parses the SMT expressions and answers with SAT, UNSAT, or UNDEF. In the
case of SAT, the SMT-solver gives a model of a solution that satisfies the SMT expression.
We use this model to refine the binary search. For example, we look for an execution time
in the interval [X0, Y0]. The binary search algorithm checks whether the execution time is
greater than X0+Y0

2 . If UNSAT is returned, the new search interval is
[

X1 = X0, Y1 = X0+Y0
2

]
.

If SAT is returned, the SMT-solver gives a model with an execution time Z ∈
[

X0+Y0
2 , Y0

]
.

The new search interval in this case is [X1 = Z, Y1 = Y0]. The search continues until it
reaches an interval [Xn, Yn] where Xn = Yn.

This approach, when applied to Algorithm 1, gives the correct and optimal worst-case
execution time of 18 processor cycles after 6 iterations of the binary search. The output of
the binary search is:

60 shared resources with a tdma bus

Testing wcet >= 0... SAT (value found = 18).

New interval = [18, 73].

Testing wcet >= 46... UNSAT. New interval = [18, 45].

Testing wcet >= 32... UNSAT. New interval = [18, 31].

Testing wcet >= 25... UNSAT. New interval = [18, 24].

Testing wcet >= 21... UNSAT. New interval = [18, 20].

Testing wcet >= 19... UNSAT. New interval = [18, 18].

The wcet is 18 .

Computation time is 0.010000s

In the following, we evaluate our model of the shared TDMA bus. First, we propose a
micro-benchmark to compare the results of the naive implementation of tdma_access and the
offset-based implementation. Then, we show how the semantics encoding combined with
a TDMA bus model can enhance the WCET estimation using (i) a toy example to illustrate
the differences and (ii) real-world applications. For the simplicity of our proof of concept
implementation, we suppose that all programs start initially at offset off = 0. In a real
application we should consider all possible values of the offset.

4.4.1 Performance of SMT Encodings for TDMA

4.4.1.1 TDMA Functions

●

●

● ● ●

● ● ●●
●

●

●

● ●
●

●

●

●
●●

1e−01

1e+01

1e+03

10 100 1000
#basic blocks (log scale)

tim
e(

s)
 (

lo
g

sc
al

e)

●

100% access (naive)
100% access
0% access

Figure 4.8: Comparison of the naive implementation of tdma_access �, the offset-based implementa-
tion of tdma_access N, and get_offset •

4.4 implementation and evaluation 61

We now evaluate the analysis time of our model. A simple approach is to evaluate the
analysis time on a linear path, i.e. without branches. The blocks are simple and have only
one instruction each. Figure 4.8 shows a comparison of the different setups. We compare
the naive implementation and the offset-based implementation of tdma_access on a CFG
that contains only blocks with accesses to the shared bus. The naive implementation has an
exponential growth of the analysis time. At only 25 blocks, it takes 17 656 s for the binary
search with the SMT-solver to find the WCET, whereas, it takes only 0.44 s in the case of
the offset-based implementation. This is mainly due to the non-linear mod operator used
in the naive implementation. The line “0% access” represents a CFG composed with blocks
that do not access the shared bus. This shows the performance of function get_offset.

4.4.1.2 Offset Encoding

Entry

if cond

block A block B

stop

ye
s no

(a) Example of a diamond for-
mula

●

●

●

●

●

●

10

100

1000

10 11 12 13 14 15 16 17 18 19 20
#if..then..else

tim
e(

s)
 (

lo
g

sc
al

e)

●

sum
ite

(b) Comparison of nested if..then..else (ite) and sum encoding of sequences of
if..then..else (Figure 4.9a). TDMA bus: σ = 40, π = 160, acc = 10

Figure 4.9: Performance comparison of diamond formulas encodings

We now compare the two encodings explained in Sections 4.3.2.1 and 4.3.2.2. Figure 4.9a
shows an example with one if condition which will generate a “diamond formula” in SMT.
We compare the analysis time of the nested if..then..else encoding against the sum encoding
of an increasing number of sequences of “diamond formulas” in the analyzed program.
Figure 4.9b shows the results for execution time of the analysis when Block A and Block B
in Figure 4.9a access the shared TDMA bus. Both encodings have almost the same analysis
time with a slight advantage of the sum encoding.

To investigate further, we analyze the program represented in Figure 4.10a. The loop
bound is 100 iterations which will generate, when the loop is unrolled, a block with 100
entering transitions. We analyze programs with N sequences of the same loop. Figure 4.10b
shows the analysis time of the encodings with N in {1..10}. The sum encoding shows better

62 shared resources with a tdma bus

performance than the nested if..then..else encoding. For the rest of the experiments, we use
the sum encoding.

Entry

Block A

Block B

if cond

Stop

yes

no

(a) Example of a pro-
gram with a loop

●

●

●

●

●

●

●

●

●

●

100

1000

10000

1 2 3 4 5 6 7 8 9 10
N

tim
e(

s)
 (

lo
g

sc
al

e)

●

sum
ite

(b) Comparison of nested if..then..else (ite) and sum encoding of sequences of
loops with 100 iterations (Figure 4.10a). TDMA bus: σ = 40, π = 160,
acc = 10

Figure 4.10: Performance comparison of unrolled loops encodings

4.4.2 Benchmarks

4.4.2.1 Experimental Setup

We evaluate our approach with a subset of the TacleBench3 benchmarks. The benchmarks
are compiled with CLANG 3.6 to generate the LLVM bitcode. Loops are unrolled with an
optimization pass of LLVM. The SMT expression is generated following the workflow in
Figure 4.7. The examples are illustrated in Table 4.1. Here, “#LLVM instr.” refers to the
number of the instructions in the LLVM bitcode after inlining and unrolling functions and
loops; “#bus access” represents the total number of load and store instructions since we
consider an architecture without a cache memory. The LLVM bitcode has more instructions
compared to the binary executable. Some load and store instructions in the LLVM bitcode do
not exist in the executable binary. Thus, a direct comparison with other approaches, that
perform directly on the binary, is not applicable. Our proof of concept, however, allows
demonstrating the feasibility of the SMT-based approach.

The analysis is run under Linux Debian, on an Intel® Core® i5-3470 at 3.20 GHz with
8 GB of main memory. We consider each instruction to execute in 1 processor cycle and the
platform has no cache memory (see Section 4.1 for the assumptions).

3 http://tacle.knossosnet.gr/activities/taclebench

http://tacle.knossosnet.gr/activities/taclebench

4.4 implementation and evaluation 63

Name Description #LLVM instr. #bus access

bs Binary search 231 12

insertsort Insertion sort on a reversed
array

493 65

jfdctint Discrete Cosine Transformation 2334 448

fdct Fast Discrete Cosine Transform 2502 385

compressdata Data compression program
adopted from SPEC95

674 131

fly-by-wire UAV fly-by-wire software 2815 515

Table 4.1: Benchmarks

4.4.2.2 Results

The TDMA policy statically isolates programs in their respective slots which means that the
analysis for each program is independent from the other programs. We therefore run the
analysis for individual programs, but the results hold in a context where several programs
are executed in parallel.

We compare the WCET of the offset-based analysis with the pessimistic WCET where
all accesses to the shared bus are considered worst-case. This implies that each load and
store instructions have an execution time of π − σ + 2.acc − 1. Similarly to [Lv+10], the
improvement is defined as

S =
(pessimistic WCET)

WCET
− 1

We analyze different configurations of the TDMA bus. The results are illustrated in
Tables 4.2, 4.3, 4.4, 4.5, and 4.6. The improvements we obtain from the offset-based analysis
are proportional to the slot length and the period of the TDMA bus. The results also show
that the greater the slot length is, the greater the improvement. This is expected since more
accesses can be executed in the same slot. A greater TDMA period increases the pessimistic
WCET. The highest improvement is 217.95% of the bs benchmark (231 LLVM instructions)
in Table 4.5 with π = 400 and σ = 200.

Table 4.7 represents the lowest and highest observed analysis times. The offset encoding
increases the analysis time of programs. The pessimistic WCET of benchmark fly-by-wire,
from the PapaBench suite, is obtained in 4.02 seconds. The offset-based encoding has an
analysis time of 149.01 seconds (π = 400, σ = 100, acc = 40). Despite the effort to linearize
the SMT functions used to model the TDMA bus access, they are still very costly. The
analysis time depends on the number of accesses to the shared bus as well as the number
of “diamond formulas” which appears at the encoding of sequences of if..then..else.

64 shared resources with a tdma bus

Name WCETpess WCET Improvement

bs 328 261 25.67%

insertsort 1331 1313 1.37%

jfdctint 19544 17893 9.22%

fdct 17296 16012 8.01%

compressdata 2650 2275 16.48%

fly-by-wire 6201 5708 8.63%

Table 4.2: Results with the TDMA bus configuration: π = 40, σ = 20, acc = 10

Name WCETpess WCET Improvement

bs 448 261 71.64%

insertsort 1951 880 121.70%

jfdctint 28504 13213 115.72%

fdct 24996 11545 116.50%

compressdata 3790 1865 103.21%

fly-by-wire 9061 4312 110.13%

Table 4.3: Results with the TDMA bus configuration: π = 80, σ = 40, acc = 10

Name WCETpess WCET Improvement

bs 928 501 85.22%

insertsort 4431 1760 151.76%

jfdctint 64344 26413 143.60%

fdct 55796 23065 141.90%

compressdata 8350 3705 125.37%

fly-by-wire 20501 8682 136.13%

Table 4.4: Results with the TDMA bus configuration: π = 160, σ = 40, acc = 10

4.5 conclusions and future work 65

Name WCETpess WCET Improvement

bs 1768 556 217.95%

insertsort 8771 3263 168.80%

jfdctint 127064 44578 185.03%

fdct 109696 38442 185.35%

compressdata 16330 5799 181.60%

fly-by-wire 40521 14195 185.45%

Table 4.5: Results with the TDMA bus configuration: π = 400, σ = 200, acc = 40

Name WCETpess WCET Improvement

bs 2368 1251 89.28%

insertsort 11871 6463 83.67%

jfdctint 171864 89288 92.48%

fdct 148196 76842 92.85%

compressdata 22030 12455 76.87%

fly-by-wire 54821 29258 87.37%

Table 4.6: Results with the TDMA bus configuration: π = 400, σ = 100, acc = 40

Name (π = 40, σ = 20, acc = 10) (π = 400, σ = 100, acc = 40)

bs 0.45 0.98

insertsort 1.37 6.56

jfdctint 44.10 48.54

fdct 41.36 34.57

compressdata 4.66 3.23

fly-by-wire 28.78 149.01

Table 4.7: Analysis time, in seconds, of the benchmarks with different configurations of the TDMA
bus

4.5 conclusions and future work

4.5.1 Summary

We introduce a new approach for WCET analysis of shared TDMA buses using Satisfiabil-
ity Modulo Theory (SMT). This approach takes into account the semantics and the accesses
to a shared TDMA bus to give a tighter estimation of the execution time. In our proof of
concept, we consider a platform without cache memory which means that all load and store

66 shared resources with a tdma bus

Executable
CFG

Cache analysis

Executable CFG +
bus accesses

Otawa

Costs+
bus accesses

(executable CFG)

Traceability:
match blocks

Costs+
bus accesses

(LLVM IR CFG)

SMT encoding

LLVM IR
CFG

Final WCET

Data

Phase

Legend

Figure 4.11: General workflow for realistic timing analysis

instructions access the shared bus. We also analyze programs in the form of LLVM bitcode
due to the constraints imposed by the tool PAGAI. This is a limitation of our implementa-
tion, but not of the approach itself: the same approach can be applied to executable binaries
given a generated model in SMT and with the presence of cache memory. Accesses to the
bus can be obtained from an analysis of the cache’s state where a cache miss is considered
as an access to the shared memory through the shared bus.

The naive model of the TDMA bus shows poor performance. To overcome the issue,
we propose an offset based model. The micro-benchmarks show a better scalability but
remains exponential. The added cuts on the offsets improve the analysis time by indicating
to the SMT-solver “obvious” properties.

Finally, we show that the micro-architectural analysis of the shared TDMA bus, and the
semantic analysis can be combined in one approach using an SMT model. This approach
can achieve a more precise estimation of the WCET in the presence of a shared TDMA bus.
The naive encodings are very costly. We give alternative encodings that reduce considerably
the solving time of the SMT expression.

4.5 conclusions and future work 67

4.5.2 Future Work

The current implementation of our approach is a proof of concept, which checks the via-
bility and scalability of the approach. As such, taking into account a realistic model for
the timing of the program is left to future work. Considering that each LLVM instruction
takes exactly one cycle is clearly not realistic: the timing for each block should instead come
from a micro-architectural analysis of the actual binary with a tool like OTAWA [Bal+10].
Keeping the analysis itself on LLVM bitcode allows exploiting high-level properties of the
program that would be lost at the binary code level, and the SSA form of the bitcode greatly
simplifies the encoding into SMT. As a consequence, a complete tool for a realistic analysis
would need to work both on the binary code and the LLVM bitcode. The information ob-
tained on the binary must be mapped to the LLVM bitcode. One solution to achieve this
is through pattern matching of conditions [Bie+13] between the LLVM CFG and the exe-
cutable CFG. The overall approach for such an information flow is described in Figure 4.11.
It has already been applied to SMT-based WCET analysis in [Hen+14]. The idea of combin-
ing high-level semantic information with low-level binary analysis has also already been
applied, for instance, in [LPR14; Ray+15].

Similarly, considering LLVM load and store operations as bus accesses is an oversimplifica-
tion. Some LLVM load and store will actually be cache hits and will not access the bus, and
conversely, some operations on LLVM registers will actually need to access the memory
in the real program. The actual bus accesses must therefore be obtained by a prior cache
analysis on the binary code [Alt+96].

Our experiments show scalability issues which is expected in NP-complete problems.
We are considering optimizations and improvements in the scalability in future work. Our
approach already shows substantial improvements over a naive encoding, and the results
show that we do scale to reasonably-sized programs. In case of very large case-studies
globally with this approach, we would probably encounter performance issues in the SMT
solver to scale. We therefore need an approach that uses our analysis on reasonably-sized
pieces of code extracted from a possibly larger codebase. One option is to analyze the
program in portions and propagate the obtained results on a global analysis. For example,
considering only a small piece of code surrounding a bus access may be sufficient to prove
that this access is in the TDMA slot (or to prove a tight bound on its execution time), and
this information can be injected in a global cheaper analysis. The challenge here is how one
defines the analyzed portions and their sizes.

Loops with a large iteration count, which cannot be unrolled completely, could be han-
dled using partial unrolling with an unroll factor. Loop iterations are then analyzed sep-
arately with updated information on offsets between each iteration. Kelter et al. [Kel+14]
already address the loop analysis with minimum unrolling. The SMT-based approach can
be complementary to include the semantics in the loop body analysis.

4.5.3 Discussion

We demonstrate the approach described above on an application model with independent
tasks. The model of SDF applications, as presented in Chapter 2, considers tasks with

68 shared resources with a tdma bus

precedence/dependence relation; one execution instance of the SDF is represented with a
directed acyclic graph (DAG) representing the dependent tasks. In this chapter, we see that
the TDMA bus allows a time isolation of the parallel tasks; the timing interference depends
only on the TDMA slots and not on the co-runner tasks. Thus, the number of co-runners
does not affect the task under analysis. For an acyclic task graph in a shared resource
environment with a TDMA bus, the analysis can be performed as follows: the first tasks
in the DAG (the ones with no precedences) are analyzed while considering the set of all
possible offsets at the entry of each task. Then, the offsets at the worst-case finish time of
each task are propagated to the next tasks in the DAG. This results in a static schedule that
respects the dependency relation. If the hardware or software allow it, the tasks may also
be aligned on their corresponding TDMA slots which improves the analysis by reducing
the set of possible offsets at the entry of each task.

The TDMA arbitration policy is non-work conserving. It means that shared resource ac-
cesses are stalled when they occur outside of their slots even when there is no concurrent
accesses. In contrast, a work-conserving policy, such as Round Robin or Fixed Priority, does
not stall accesses if there is no concurrency on shared resources. Although these policies
are more efficient in terms of performance, the WCET is no longer independent from co-
runners. A pessimistic way to account for the interference is to consider the worst-case
delay at each access. Albeit this approach may scale well, it results in an unnecessarily
large over-approximation. For a precise analysis, the SMT-based approach needs to model
all tasks in the system as well as the bus in order to determine whether concurrent ac-
cesses are interfering. Considering platforms with tens or hundreds of cores, the number
of concurrent tasks increases the complexity of the approach exponentially.

Moreover, the result of this approach is not trivial in the case of dependent tasks. Each
task depends on the execution time of its precedence; it cannot start until the completion
of all the precedence. The execution times of the precedence depend in turn on the co-
runners. It requires a fixed-point to solve such system (see Chapter 5), which increases the
complexity of an SMT-based approach. Finally, the system may not be solvable at all with
the currently available tools and hardware.

In the remainder of this thesis, we approach the problem differently; instead of counting
the interference at a precision of cycles, or always considering the worst-case delay, we
take into account the number of shared resource accesses of each task. We consider that
accesses interfere whenever they occur in the same time frame. This is a trade-off that offers
a scalable analysis with a certain degree of precision.

Chapter 5
R E S P O N S E T I M E A N A LY S I S O N M U LT I - C O R E
S Y S T E M S

5.1 Data-Flow Applications on Multi-core Platforms . 69

5.1.1 Shared Multi-Bank Memory, Multi-core Architecture 70

5.1.2 Dependent Task Graph Model . 70

5.1.3 Phase-based Execution Model . 72

5.2 Response Time Analysis . 72

5.2.1 Multi-core Response Time Analysis . 72

5.2.2 Analysis of Dependent Task Graphs . 74

5.3 Termination and Correctness of the Response Time Analysis 76

5.3.1 Basic Properties of the Response Time Analysis 77

5.3.2 Convergence of the Fixed-Point . 80

5.3.3 Uniqueness of the Fixed-Point . 82

5.4 Conclusion . 83

In this chapter, we introduce a response time analysis technique for Synchronous Data
Flow (SDF) programs represented with multiple parallel dependent tasks running on a
multi-core/many-core processor. The analysis computes a set of response times and release
dates that respect the constraints in the task dependency graph. Our approach provides
tight response times by taking into account the release dates of co-runner tasks on a multi-
core with partitioned shared resources.

This chapter is organized as follows. Section 5.1 describes the target multi-core archi-
tecture and application models. Section 5.2 provides our response time analysis for syn-
chronous data-flow programs. The proof of correctness of our analysis is discussed in
Section 5.3. Section 5.4 concludes with a summary and a discussion of future work.

5.1 data-flow applications on multi-core platforms

We first define the target processor on which the application runs. Then, we present the
different notions used in our analysis of data-flow applications. Our approach considers an
execution instance of the data-flow which is represented with a mono-rate dependent task
graph.

69

70 response time analysis on multi-core systems

b0

b1

bM−1

arbiter

arbiter

arbiter

P0
I-cache

D-cache

P1
I-cache

D-cache

Pn
I-cache

D-cache

..
.

..
.

..
.

shared
memory

bank

Figure 5.1: Multi-core, shared multi-bank memory architecture model

5.1.1 Shared Multi-Bank Memory, Multi-core Architecture

We consider a multi-core system with N identical cores. As presented in Chapter 2,
we define the set of cores Π = {P0, P1, . . . , PN−1}. We also define the mapping function
Map : Γ→ Π that maps each task in Γ to a core in Π. We consider that cores have local
caches for data and instruction, and a shared memory. Moreover, we consider a partitioned
shared memory into M memory banks with a contiguous memory address space that spans
through the banks. We define the set of memory banks as B = {b0, b1, . . . , bM−1}. Figure 5.1
illustrates this architecture model. Each bank is accessed through dedicated bus arbiter
from any core. When M = 1, cores always interfere when accessing the shared memory at
the same time. When M > 1, cores do not interfere when accessing different memory banks.
This particular architecture already exists in industrial platforms such the many-core Kalray
MPPA-256 [Din+14b].

5.1.2 Dependent Task Graph Model

Our aim is to obtain accurate bounds on the worst-case response time for data-flow pro-
grams. An execution instance of a periodic data-flow is seen as a dependent task graph. In
a mono-rate program, each task is executed once according to its dependencies. In the case
of a multi-rate program, we assume an unfolded execution to the hyper-period (the least
common multiple of the tasks’ periods), effectively reducing the problem to a mono-rate
one1. Also, we consider that all tasks in a cycle must complete before the end of the cycle,
which is a common constraint when scheduling synchronous programs. As a consequence,
scheduling can be done on one period (or hyper-period); the same schedule is then repeated
indefinitely.

Our algorithm takes as input a fixed mapping of tasks to cores, and a fixed order for
tasks mapped to the same core. We purposely delegate the mapping and ordering to a

1 The unfolding preserves the required minimum separation between jobs, since our scheduling scheme includes
fixed release dates for each task. The unfolding process thus assigns proper release dates to multiple instances
of the same task. We note the potentially large size of the hyper-period which may introduce a complexity
issue.

5.1 data-flow applications on multi-core platforms 71

separate tool, such the one in [NHP15; NHP17], dedicated to optimization of the schedule
and mapping. Mapping and ordering of tasks can also be done manually. We produce a
completely static, time-driven schedule. There cannot be two tasks active on the same core
at the same time, hence we do not use preemption and a task starts immediately when
it is released. The schedule specifies the exact, fixed release date for each task. This is
pessimistic in the sense that each task waits for the worst-case response time of each of
the tasks it is dependent on (it cannot start even if all of them have completed well before
their deadline); however, our aim is to optimize the worst case, not the average case. The
scheduling scheme has good properties for a hard-real time system. First, it enables the
application to be executed without any operating system: we only require communication
primitives, and one primitive to wait for a specified instant; they can be provided as a
simple library. Also, it makes the whole execution highly predictable since the release date
of a task does not depend on the execution time of previous tasks: we avoid any potential
domino effects in timing.

Figure 5.2 illustrates an example of the considered application model. The task graph and
mapping is given in Figure 5.2a. Each core is assigned to a memory bank. Cache misses
and uncached operations go to the assigned memory bank whereas communications access
the target task’s memory bank. We define wceti the worst-case execution time of task τi in
isolation (i.e., when executing without interference). MDb

i (b ∈ B) represents the number
of accesses of task τi to memory bank b. A summary of the tasks’ profiles is given in
Table 5.2b.

P0

P1

P2

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

1 1

1

1

1

1

o

(a) Data-flow application under analysis. The num-
bers on edges represent the accesses due to com-
munication.

Tasks τ0 τ1 τ2 τ3 τ4 τ5

wcet (cycles) 5 5 5 5 5 5

MDb0 (accesses) 3 3 2 1 1

MDb1 (accesses) 1 2

MDb2 (accesses) 3 2

(b) Task profiles

Figure 5.2: Example of a SDF graph and the result of the static analysis.

We introduce the following additional notation used in our analysis: each task τi has
a release date reli (effectively an offset relative to the start of the period of the data-flow
program) Θ = {rel1, ..., reln} is the set of release dates and R = {R1, ..., Rn} is the set of
upper bound response times of tasks in Γ. Note that there is no order relation between
reli and reli+1 (resp. Ri and Ri+1) in the set Θ (resp. R). Recall that each task is statically
mapped to a core.

The approach we propose takes into account the interference on the bus as part of the
response time analysis. By considering the SDF model presented in Chapter 2, we know
which tasks could potentially execute at the same time and therefore be co-runners. We
make use of this information to derive tight bounds on the amount of interference. More-
over, there is an implicit dependency between two successive periodic instances which

72 response time analysis on multi-core systems

allows us to limit the analysis to only one instance of the task graph. Our analysis is based
on an existing framework for multi-core response time analysis (MRTA) [Alt+15] and is de-
tailed below in Section 5.2. In this work, we consider a static non-preemptive scheduling.

To summarize, in addition to setting a model for the shared memory architecture, our ap-
proach takes into account the task dependencies and the precise schedule including release
dates and response times. In contrast, the original MRTA framework considers sporadic
tasks, but does not exploit any knowledge of dependencies or sequentiality between them.

5.1.3 Phase-based Execution Model

We presented different execution models in Chapter 2. In this chapter, we first consider
a single-phase execution model where we make no assumptions about the distribution of
read and write accesses between the start and the end of a task. In some code generation
schemes [Gra+18] for the SDF model, tasks execute computations, then write the result to a
shared memory location where the next task can read it. Similar to [Mel+15], this execution
model allows each task to be split into a first execution phase limited to reading the input
and doing computations, and then a write phase where the output is sent to the next task.
In the execution phase, accesses are to the local memory bank of the task whereas in the
write phase, requests may access a remote memory bank2. We exploit this execution model
in our analysis. We consider the two phases of a task as separate sub-tasks with a direct
dependency relation. The sub-tasks have their own release dates. As a consequence, the
considered task graphs doubles in size. In Chapter 7, we compare the single-phase model
with the two-phase model using our analysis technique.

5.2 response time analysis

Our approach relies on the existing framework MRTA [Alt+15]. Taking into account the
application and architecture models presented above, we present in this section a refined
analysis. The proposed algorithm takes into account the release dates of tasks and their
dependencies, and extend the interference to accounts for the shared multi-bank memory.

5.2.1 Multi-core Response Time Analysis

Here, we outline the generic framework for Multi-core Response Time Analysis (MRTA)
introduced by Altmeyer et al. [Alt+15], which we subsequently build upon. The MRTA
framework represents a generic and compositional solution for response time analysis. It
allows modeling of a wide range of different arbitration policies (and a combination of
them), as well as different memory models (no cache, data and instruction cache, scratch-
pads, etc. and a combination of them). In this paper, we build upon the MRTA framework,
instantiating it for different hardware components, bus arbitration policies, and application
models.

2 A local memory bank, is a memory bank assigned to the core where the task of interest is executing. A remote
memory bank is a memory bank assigned to another core.

5.2 response time analysis 73

Given a set of n sporadic tasks Γ = {τ0, . . . , τn−1}, where each task τi has a period or a
minimum inter-arrival time Ti and a deadline Di, and is statically assigned to a core, the
MRTA framework computes the response time of each task taking into account the total
interference at different levels of the hardware that could occur during the task’s response
time. By convention, we use Px to mean the core that the task under analysis is mapped
to, and Py to indicate some other core. The subset of tasks mapped to a core Py is denoted
by Γy.

In the MRTA framework, tasks are represented by a set of traces, each of which consists
of an ordered list of instructions, where each instruction carries information about the
memory locations accessed (if any). A set of exhaustive traces (i.e. for different paths) can
be used to give a sound over-approximation of the memory demand and the processor
demand of a task by taking the maximum memory (processor) demand over all traces for
the task. As a result, the framework decouples response time analysis from a reliance on
context independent WCET values (in isolation). The analysis formulates response times
directly from the demands on different hardware resources. Such a separation of concerns
trades different sources of pessimism. These simplifications make the analysis tractable
but are unable to take advantage of overlaps between processing and memory demands of
co-runner tasks; however, this compromise is set against substantial gains in the scalability
of the analysis, acquired by considering the worst-case behavior of hardware resources,
such as the memory bus, over long durations equating to task response times, rather than
summing the worst case over short durations such as single accesses, as is the case with the
traditional approach using context-independent WCETs.

With the MRTA framework, the response time Ri of task τi executing on core Px is com-
puted using the following fixed-point relation:

Ri = wceti + IPROC(i, x, Ri) + IBUS(i, x, Ri) + IDRAM(i, x, Ri) (5.1)

Where wceti is the WCET in isolation time of task τi in isolation. IPROC is the interference
on the core due to higher priority tasks preempting or delaying task τi. Tasks running on
different cores and accessing a shared memory have to traverse a shared bus. According
to the used arbitration policy, concurrent tasks may experience different delays. IBUS is the
interference on the bus computed using a mathematical model of the bus arbiter. Finally,
IDRAM is the interference due to DRAM refreshes. Equation (5.1) is solved as part of a larger
fixed-point iteration which operates over the set of tasks. The sufficient condition for the
algorithm to converge toward a fixed-point is that IPROC, IBUS, and IDRAM are monotonic
and bounded functions.

In this thesis, we focus only on the shared bus interference. We assume a pre-processing
step where all the code is fetched from the DRAM. We also assume a local or shared
cache that is large enough to hold the application and tasks do not perform accesses to the
DRAM. This means that the interference on the DRAM is IDRAM = 0. We also consider a
non-preemptive scheduling, therefore the interference on the core is IPROC = 0.

Our analysis is tailored to the considered application model. We take advantage of the
dependencies between the tasks to improve the interference analysis. Concurrent tasks mu-
tually interfere whenever they overlap during execution. Figure 5.3 shows how the interfer-
ence is considered. Thus, the set of response times R = {Ri|∀i ∈ Γ} and the set of release

74 response time analysis on multi-core systems

t

Px

Py

00 40 80

ü task under analysis

E

interference

memory accesses computation

Figure 5.3: Interference from tasks on core Py on the task on core Px, where Py, Px ∈ Π and Py 6= Px.
Only overlapping tasks mutually interfere.

dates Θ = {reli|∀i ∈ Γ} are required to determine tasks’ overlapping. With this redefinition,
the interference on the bus is obtained with the modified function IBUS(i, x,R, Θ). Finally,
according to the assumptions above, Equation 5.1 is simplified to:

Ri = wceti + IBUS(i, x,R, Θ) (5.2)

The bus interference depends on the number of shared resource accesses from concurrent
tasks that may delay the task under analysis τi. Considering the architecture model in
Figure 5.1, tasks access memory banks through different arbiters where interference may
occur on each bank. This function is defined by the formula:

IBUS(i, x,R, Θ) = ∑
b∈Bi

BUSb(i, x,R, Θ)× d (5.3)

where, Bi is the set of memory banks accessed by τi. BUSb(i, x,R, Θ) returns the number
of accesses to memory bank b and which may delay the execution of task τi. This function
models the arbitration policy used in the architecture. d is the time required to perform a
memory access, also called bus latency or bus delay.

Equation 5.2 is a fixed-point formula that can be solved using Kleene iteration. Since
wceti is constant, a sufficient condition to converge towards a fixed-point is that ∀b ∈ Bi,
BUSb(i, x,R, Θ) is bounded and monotonic with regard to the arbitration policy being used;
for the same release dates, the interference on shared resources cannot decrease when the
response time increases. The definition of this function depends on the hardware platform.
In Chapter 6, we focus on a specific many-core architecture for which we model the shared
bus.

5.2.2 Analysis of Dependent Task Graphs

Our response time analysis algorithm (Algorithm 6) is based on the MRTA ap-
proach [Alt+15]. The original MRTA framework uses a model with sporadic independent
tasks with minimum inter-arrival times and, while we analyze a single period of a single-
rate application, with a static schedule and task dependencies. Using initial release dates,

5.2 response time analysis 75

Algorithm 6 Response Time Analysis Given a Set of Release Dates

1: function MultiCoreRTA(Θ)
2: l = 1
3: ∀i : Rl [i] = wceti
4: do
5: for all i do
6: Rl+1[i] = wceti + IBUS(i, x,Rl , Θ)

7: . IBUS is bounded and monotonic
8: end for
9: l = l + 1

10: while Rl 6= Rl−1

11: return Rl

12: end function

Algorithm 7 Update Release Times to Start After All Dependencies

1: function UpdateReleases(Θmin,Θ,R)
2: for all i do . traverse tasks in a topological order
3: Θ[i] = max(Θmin[i], {Θ[k] +R[k]|k ∈ deps(i)})
4: end for
5: return Θ
6: end function

Algorithm 6 computes response times that account for the interference. Since the poten-
tial interference depends on the release dates and response times, and the response times
depend on the interference, this requires a fixed-point iteration (Line 10).

Algorithm 6 solves Equation 5.2 using a fixed-point iteration, and computes the response
times R of all tasks given the release dates Θ. First, all response times are initialized with
the tasks’ WCETs in isolation. The response times are then computed to include the bus
interference that occurs during the tasks’ execution. Adding the interference increases the
response time consequently. As long as the response times change (Line 10), the interference
must be recomputed to account for the potential concurrent tasks. For a bounded and
monotonic IBUS, the process converges toward a fixed-point for the given set of release
dates Θ.

After computing the response times, the schedule we get may not respect the dependen-
cies and sequentiality constraints; it is possible that a task, suffering from interference, gets
delayed and overruns the tasks that depend on it. We modify the release dates so that each
task is released immediately after each of the tasks it depends on is guaranteed to have
completed (Algorithm 7). Modifying the release dates may change the interference, hence
we have to re-compute it using MultiCoreRTA (Algorithm 6), and so on, until a fixed point
is reached (Algorithm 8).

UpdateReleases in Algorithm 7 ensures the dependency constraints between tasks are
satisfied. It is parameterised by Θmin which gives the earliest release date for each task:
Θmin[i] = t means that task τi cannot start before t. deps(i) (Line 3) gives the set of tasks on
which task τi depends. A task τi is released only when all the tasks in deps(i) are guaranteed

76 response time analysis on multi-core systems

Algorithm 8 Adapt Release Dates to Meet Real-Time Constraints

1: function ComputeRT(Θmin)
2: l = 0
3: Θl =InitRelease(), Rl = ⊥
4: do
5: Rl+1 =MultiCoreRTA(Θl)
6: Θl+1 =UpdateReleases(Θmin,Θl ,Rl+1)
7: l = l + 1
8: while Θl 6= Θl−1

9: if ∀i : (Θl [i] +R[i]l) ≤ Di then
10: return "schedulable"

11: else return "NOT schedulable"

12: end if
13: end function

to have finished. We statically schedule every release date, hence we set the release date of
each task to the maximum of the worst-case finish time of each task it depends on.

ComputeRT in Algorithm 8 is the top level of our analysis; it uses MultiCoreRTA
(Algorithm 6) to compute the response times of tasks in Γ given a set of release dates
(Line 5). Then, UpdateReleases (Algorithm 7) is used to verify and update the depen-
dency constraints. Algorithm 8 starts from initial release dates (bounded by the SDF period)
(InitRelease, Line 3) and performs a fixed-point iteration.

ComputeRT terminates when UpdateReleases does not change the release dates. When
the release dates are stable, the response times Rl+1 computed before the call to UpdateRe-
leases remain valid afterwards, and hence are valid at the end of the loop. Termination of
Algorithm 6 is guaranteed: we limit the computation to one period of the task graph; the
number of bus accesses is bounded which implies that the amount of interference seen by a
task is also bounded. The response time computation of task τi is a monotonically increas-
ing and bounded function, thus Algorithm 6 converges for any values in Θ. Termination of
ComputeRT is non-trivial to show: the intuition is that a task cannot interfere with its past.
At each iteration, release dates of tasks released before some instant of time t become fixed
and remain the same for all subsequent iterations, with t advancing by at least one release
date at each iteration. Note that this means the number of iterations of ComputeRT is at
most (|Γ| − 1), where |Γ| is the task set’s size. The complete proof is given in Section 5.3.2.

Since ComputeRT is parameterized by a function InitRelease, one might think that the
choice of InitRelease could impact the precision of the result. However, we prove in Sec-
tion 5.3.3 that the fixed point of the composition of MultiCoreRTA and UpdateReleases

is unique, hence the algorithm will return the same schedule for any function InitRelease,
and there is no point trying to optimize it. In our implementation, we start with Θ0 = Θmin.

5.3 termination and correctness of the response time analysis

In this section we prove the convergence of ComputeRT in Algorithm 8. The algorithm uses
classical Kleene iterations to find the fixed point of the composition f of MultiCoreRTA
and UpdateReleases. In other words, function f is the body of the do/while loop of

5.3 termination and correctness of the response time analysis 77

Sc
he

du
le

A
P0

τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

Sc
he

du
le

B

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t

Figure 5.4: Illustration of the coincidence

ComputeRT. It takes and returns both response times and release dates, denoted by the
set σl = {(reli, Ri) | τi ∈ Γ} at the lth iteration (in practice, f only depends on release dates).
We also use the notations σa, σb, . . . to denote any different sets of release dates and response
times representing the same task set Γ. The algorithm terminates when f does not change
Θ: when this happens, R is not modified either, so the algorithm actually finds a fixed
point of f . The iteration is initialized with σ0 which has release dates given by Θmin, and
computes the sequence σn = f n(σ0).

The main idea of the proof is:

1. Once the prefix of a schedule does not change from one iteration to the next, it will
not change later in the iteration. In other words, when all the release dates earlier than
some date t are the same in σn and σn+1, they will remain the same in all σk, k > n.

2. When all the release dates earlier than some date t are the same in σn and σn+1, the
first task(s) released after t in σn+1 find their final release dates, i.e., they will not
change from σn+1 to σn+2.

In other words, the earliest release dates will not change after the first iteration, and the set
of release dates that find their final value propagates from t = 0 onwards, until all release
dates are final.

5.3.1 Basic Properties of the Response Time Analysis

To formalize the proof, we first need to define the notion of a “prefix of a schedule does
not change”. We define the coincidence operator '<t to illustrate this notion given in
Definition 6.

78 response time analysis on multi-core systems

Definition 6. Let σa, σb be two sets of pairs of release dates and response times repre-
senting the same task set Γ = {τ0, ..., τn} such that: σa = {(relσa

0 , Rσa
0), ..., (relσa

n , Rσa
n)},

σb = {(relσb
0 , Rσb

0), ..., (relσb
n , Rσb

n)}. Let t ≥ 0 be an instant in time. σa coincides with σb before
the instant t (denoted by σa'<tσb) iff:

∀i : relσa
i < t ∨ relσb

i < t⇒ relσa
i = relσb

i

Accordingly, σa 6'<tσb iff:

∃i : relσa
i < t ∨ relσb

i < t and relσa
i 6= relσb

i

Figure 5.4 illustrates the coincidence on two schedules of the data-flow in Figure 5.2a.
Schedule A (resp. B) is a schedule obtained from n iterations of function f and represented
by the set of pairs of release dates and response times σa (resp. σb). We first assume that A
and B are different and later prove that they converge to the same schedule after a certain
number of iterations of f . In Schedule A, tasks are executed such that the interference is
avoided. In Schedule B, tasks τ1 and τ3 mutually interfere.

All tasks released before the instant t (τ0, τ4, τ5) in both schedules have the same release
dates. In this case, we say that schedules A and B coincide before t.

To clarify the properties of our algorithms, we make the following observations.

Observation 1. Tasks that are executed in disjoint time intervals do not mutually interfere. The
response time is computed in Algorithm 6 using equation (5.2).

The term IBUS(i, x,R, Θ) used in equation (5.2) gives the bus interference of tasks τj on the task
of interest τi. ∀τj such that relj > reli + Ri, the interference of τj on τi is 0.

Observation 2. Let σa, σb be two sets of pairs of release dates and response times representing the
same task set Γ = {τ0, ..., τn}. Function MultiCoreRTA is deterministic and depends only on:

1. WCET in isolation of each task (wceti)

2. Memory Demand of each task (MDi), used internally in IBUS(i, x,R, Θ)

3. Release dates of each task (Θ)

Since wceti and MDi are constant parameters for each task in Γ, the only variables in σa and σb,
when applying MultiCoreRTA on them, are the release dates.

We observe that tasks that finish before the instant t in schedules A and B have the same
release dates (definition of coincidence) and also the same response times. This observation
is generalized below.

Observation 3. Let σa, σb be two sets of pairs of release dates and response times associated with
the same task set Γ = {τ0, ..., τn}. Let t be an instant of time such that σa'<tσb.

Tasks that are released after t in σa and σb are executed in a disjoint time interval with the tasks
that finish before t. For all tasks τi that verify ∀τi : relσa

i + Rσa
i < t we have:

1. relσa
i = relσb

i (Definition of σa'<tσb)

5.3 termination and correctness of the response time analysis 79

2. All tasks τj released after the instant t do not interfere with tasks τi (consequence of Observa-
tion 1)

According to Observation 2 on the determinism of the function MultiCoreRTA (in which the
interference computation IBUS is an increasing function with respect to the response time), we get
Rσa

i = Rσb
i . Similarly, for tasks τi that verify relσb

i + Rσb
i < t we also have Rσa

i = Rσb
i .

Let us consider again the schedules in Figure 5.4 where A and B coincide before t. When
applying the function f to both schedules, the new schedules A′ = f (A) and B′ = f (B) still
coincide before t. It means that the tasks released before t in both schedules do not change
their release dates when applying f . Lemma 1 below formalizes this property.

Lemma 1. Let σ0
a , σ0

b be two initial sets of release dates and response times representing the same
task set Γ = {τ0, ..., τn}.
Let n > 0, σa = f n(σ0

a), σb = f n(σ0
b) and ∃t > 0 such that σa'<tσb. We have:

σa'<tσb ⇒ f (σa)'<t f (σb)

Proof. We prove that ∀τi : rel f (σa)
i < t ∨ rel f (σb)

i < t⇒ rel f (σa)
i = rel f (σb)

i
σa and σb(such that σa'<tσb) are obtained after the nth iteration of f which implies that

we already have ∀τi ∈ Γ, ∀τk ∈ deps(τi) : ∀x ∈ {σa, σb}, relx
i > relx

k + Rx
k .

Let σIa be the intermediate set obtained during the application of f on σa such that ∀τi ∈ Γ
we have:

1. RσIa
i = MulticoreRTA(Θσa) and relσIa

i = relσa
i

2. rel f (σa)
i = UpdateReleases(ΘσIa ,RσIa) and R f (σa)

i = RσIa
i

σIb is the intermediate set obtained during the application of f on σb and defined similarly
to σIa .
We apply f on σa and σb:

• MultiCoreRTA computes the response times from the set of release dates. Since the
release dates are not modified from σa to σb, we have: (i) σIa'<tσIb (ii) for any task τk

such that: relσIa
k + RσIa

k < t or rel
σIb
k + R

σIb
k < t we have RσIa

k = R
σIb
k (Observation 3).

• UpdateReleases depends on release dates and response times obtained from Multi-
CoreRTA. From (i) and (ii) we obtain rel f (σa)

i = rel f (σb)
i for all tasks τi that are released

before t.

Therefore, we have f (σa)'<t f (σb).

The previous lemma shows that the coincidence property is stable with regard to f . More-
over, the first task(s) released after t are updated with the same release date when applying
f . This means that the resulting schedules will coincide before a new instant t′ > t, where
at least one task is released between t and t′ in both schedules. This is expressed in the
following lemma.

80 response time analysis on multi-core systems

Lemma 2. Let σ0
a , σ0

b be two initial sets of release dates and response times representing the same
task set Γ = {τ0, ..., τn}. Let ε be the smallest unit of time measurement.
Let n > 0 : σa = f n(σ0

a), σb = f n(σ0
b) such that ∃t > 0 : σb'<tσa.

Let t′ = min
relx

k>t,x∈{ f (σa), f (σb)}
(relx

k) + ε.

We have f (σa)'<t′ f (σb) with t′ > t and at least one task released between t and t′.

Proof. We define σ′a = f (σa) and σ′b = f (σb). We prove that for t′ = min
relx

k>t,x∈{σ′a,σ′b}
(relx

k) + ε

we have σ′a'<t′σ
′
b.

According to Lemma 1, since σa'<tσb we have σ′a'<tσ
′
b. We denote by Γj the set of tasks

whose release date equals to min
relx

j >t,x∈{σ′a,σ′b}
(relx

j). τj ∈ Γj denotes one of the first tasks

released after t in σ′a or σ′b.
The following scenario occurs during the application of f to compute σ′a and σ′b:

• All predecessors τi of tasks in Γj are released before t in σ′a and σ′b, hence relσ
′
a

i = relσ
′
b

i .
Moreover, since tasks in Γj are the first tasks released after t, no task is released in

the interval
[
t, relj

[
in σ′a nor σ′b. Hence, MultiCoreRTA sets Rσ′a

i = Rσ′b
i according to

Observation 3.

• Therefore, we have ∀τi ∈ deps(τj) : relσ
′
a

i = relσ
′
b

i and Rσ′a
i = Rσ′b

i , hence UpdateReleases

sets relσ
′
a

j and relσ
′
b

j to the same value (Algorithm 7, Line 3).

For all tasks τi such that relσ
′
a < t and relσ

′
b < t we have relσ

′
a = relσ

′
b . Furthermore, all tasks

τj that are released at t′ = min
relx

j >t,x∈{σ′a,σ′b}
(relx

j) + ε, have relσ
′
a

j = relσ
′
b

j . Therefore, we have

σ′a'<t′σ
′
b.

The above lemmas offer the necessary tools to conduct the actual proof of convergence
of Algorithm 8.

5.3.2 Convergence of the Fixed-Point

To conduct the proof of convergence, we need to prove that (i) when all the release dates
earlier than some date t are the same between two successive iterations of ComputeRT, they
will remain the same in the next iterations (Lemma 1), (ii) at each iteration at least one task
finds its final release date (Lemma 2). The actual proof then applies these two lemmas to
build the sequence tn such that the prefix of σn up to tn does not change after iteration n
(Theorem 1).

To illustrate our approach, we run Algorithm 8 on the program in Figure 5.2 (page 71)
with Θmin = {0, . . . , 0}. Figure 5.5 shows the result of each iteration. We define the set
of release dates and response times σl for each iteration l such that σl+1 = f (σl). In this
example, tasks τ0 and τ4 do not have any dependencies therefore their release dates are
fixed to the values from Θmin (0 in this case). We observe that σ1'<t0 σ2 for t0 = rel0 + ε

as illustrated in Figure 5.5 (in cycle-based measurements, we assume that ε = 1 cycle).

5.3 termination and correctness of the response time analysis 81

it
er

at
io

n
1

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t0
it

er
at

io
n

2

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t1

it
er

at
io

n
3

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t2

it
er

at
io

n
4

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t3

Figure 5.5: Execution of Algorithm 8 on the example in Figure 5.2 with Θmin = 0. Arrows corre-
spond to task dependencies. Tasks in green have fixed release dates and response times.
Tasks in orange have only fixed release dates

According to Lemma 1, we know that tasks τ0 and τ4 will not change their release dates in
the future iterations.

We have σ1'<t0 σ2. At the next iteration of f , Lemma 2 gives t1 > t0 such that σ2'<t1 σ3

and t1 = rel1 + ε. As shown in Figure 5.5, tasks τ1, τ3, and τ5 are released before t1 and

82 response time analysis on multi-core systems

therefore fix their release dates. On the other hand, τ0 and τ4 finish before t1 and according
to Lemma 1, their response times remain fixed for the next iterations.

Similarly, we have σ3'<t2 σ4 where τ1, τ3, and τ5 finish before t2 and hence fix their
response times. Applying another iteration of f on σ4 results in the same schedule which
means that a fixed-point solution is reached.

From the example above, we derive the generalization of the convergence demonstration
in Theorem 1 to any dependent task set Γ.

Theorem 1. (Convergence)
The response time computation in Algorithm 8 converges and the fixed-point is reached in at most
| Γ | −1 loop iterations:

∀σ0, ∃N ≤| Γ | −1, ∀n > N : f n+1(σ0) = f n(σ0)

Proof. Let σ0 be any initial set of pairs of response times and release dates. To prove the
convergence we prove the following: There exists a finite sequence of increasing instants
{tn|∃N > 0, ∀n < N, tn+1 > tn} such that:

∀n ≥ 1, f n+1(σ0)'<tn f n(σ0)

and there is at least one task released at tn − ε in f n(σ0).
Base case: n=1
∀σ0 we have, at least for t0 = 0, f (σ0)'<t0 σ0 that holds. By applying Lemma 2 we obtain
f 2(σ0)'<t1 f 1(σ0) for t1 = min(relx

i) + ε

relx
i >0,x∈{σ1,σ2}

meaning at least one task is released at t1 − ε.

Induction step:
Let us assume f n+1(σ0)'<tn f n(σ0) and prove

∃tn+1 > tn : f n+2(σ0)'<tn+1 f n+1(σ0)

and there is at least one task released at tn+1 − ε in f n+1(σ0).
By applying Lemma 2, f n+2(σ0)'<tn+1 f n+1(σ0) for tn+1 = min(relx

i) + ε

relx
i >tn,x∈{σ1,σ2}

with at least one

task is released at tn+1 − ε

Since the number of tasks | Γ | is bounded, the fixed-point loop is also bounded by
| Γ | −1. Therefore, given a set of tasks and a set Θmin, Algorithm 8 converges in at most
| Γ | −1 iterations.

5.3.3 Uniqueness of the Fixed-Point

For the same dependent task set, there may exist many valid scheduling that respect the
dependency relation between tasks. In fact, both schedules in Figure 5.4 are valid and both
correctly accounts for the interference. By applying f on schedule A, the release date of
task τ1 is updated to the same value of τ3. This results in a schedule f (A) = B, whereas
f (B) = B which means that schedule B is a fixed-point. Algorithm 8 converges to a unique
fixed-point which does not depend on initial release dates. This is expressed in Theorem 2.

5.4 conclusion 83

Theorem 2. (Uniqueness)
For any initial values of release dates (set at Algorithm 8, line 3) Algorithm 8 results in the same

release dates and response times for a given Θmin. Let Fa and Fb be two fixed points representing
the task set Γ:

Fa = f (Fa) and Fb = f (Fb)⇒ Fa = Fb

Proof. Let σ0
a and σ0

b be any initial sets of pairs of response times and release dates represent-
ing Γ. Let Fa = f N(σ0

a) and Fb = f N′(σ0
b) (N, N′ > 0) be two fixed points, i.e., f (Fa) = Fa

and f (Fb) = Fb. We prove that Fa = Fb.
By contradiction:
Fa and Fb are fixed-points. We assume: ∃σ0

a , ∃σ0
b : Fa 6= Fb. This implies either:

1. ∃i : RFa
i 6= RFb

i ∧ ∀k : relFa
k = relFb

k

2. ∃i : relFa
i 6= relFb

i

• Case 1 is impossible according to Observation 3.

• Case 2 implies that at the instant t of the earliest release that differs in Fa and Fb
(t = min {relx

i | relFa
i 6= relFb

i }
∀τi∈Γ,x∈{Fa,Fb}

) we have Fa'<tFb and ∀t′ > t : Fa 6'<t′Fb.

When applying f , UpdateReleases sets the first release date after t in Fa and Fb to
the same value and Fa'<t′′Fb (t′′ > t) (according to Lemma 2) which contradicts our
assumption.

According to Theorem 1 and Theorem 2, Algorithm 8 converges to a unique solution.

5.4 conclusion

We present in this chapter our approach for response time analysis of dependent task
graphs running on a multi-core, multi-resource architecture. Our approach accounts for
the interference on shared buses from co-runners and computes a static schedule such that
the dependencies are guaranteed. Our analysis is performed with a double fixed-point al-
gorithm. First, a response time analysis is performed using an initial schedule and a set
profiles (WCET and a worst-case number of accesses) of tasks when running in isolation,
i.e., without any interference from co-runners. The profiles can be obtained from a static
timing analysis tool on single-core platforms, or with measurement-based methods assum-
ing a certain confidence degree. The response time formula is a recursive function that
also requires a fixed-point algorithm. The fixed-point solution is reached if and only if the
interference is monotonic and bounded. The second step is to verify the task dependencies
and eventually update tasks’ release dates that overrun on each other according to their
dependency relation. The process of response time analysis and release date updates is
repeated until a stable set of response times and release dates is found.

84 response time analysis on multi-core systems

Our approach offers a more scalable way to analyze response times on multi-cores. The
result is precise in the sense that it accounts only for the interference from the concurrent
tasks running during the same time interval as the task under analysis. This method is
still pessimistic; two tasks running at the same time do not necessarily interfere. The
work in [DNA15] uses a notion of sampling regions to reduce this pessimism. The idea
is to carry out the analysis using profiles of temporal regions (intervals) in the execution
of tasks. The profiles indicate the distribution of shared resources accesses, and therefore
establish a more precise interference analysis. Although this method may (theoretically)
lead to a better analysis, it is too complex to implement, for hard real-time systems, in a
real evaluation using existing static tool analysis.

Our approach takes into account the execution model that decouples the computations
and communication phases. In fact, existing work [Mel+15; Bec+16] propose scheduling
policies to reduce or eliminate the interference in the communication phases. Our approach
is able to take into account the interference on the communications which may lead into a
better overall response time of the task under analysis.

The interference on shared resources relies on the arbitration policy used in the architec-
ture. In this chapter we considered a function that gives an upper-bound on the interference
that may occur during the execution of the task under analysis. The implementation of this
function depends on the considered platform. In the next chapter, we propose a model
of shared resource accesses taking into account the arbitration policy of a real industrial
platform.

Chapter 6
S H A R E D R E S O U R C E I N T E R F E R E N C E A N A LY S I S
O N A M A N Y- C O R E P R O C E S S O R

6.1 Presentation of the Kalray MPPA-256 Bostan . 85

6.1.1 Compute Cluster . 86

6.1.2 Shared Memory . 86

6.1.3 Bus Arbitration . 87

6.2 Timing Analysis on the Kalray MPPA-256 . 88

6.3 Shared Bus Interference . 89

6.3.1 Understanding Memory Accesses . 89

6.3.2 Illustrative Examples on Cached Load and Store Instructions 91

6.3.3 Variables in Bus Interference Model . 92

6.4 Simplified Model of the Multi-level Bus Arbiter . 93

6.5 Full Model of the Interference on Shared Resources 95

6.5.1 Bursts of Memory Accesses . 95

6.5.2 Memory Access Pipeline . 96

6.5.3 Blocking and Non-blocking Memory Accesses 97

6.5.4 Arbitration Policy . 97

6.6 Timing Compositionality of Shared Resource Accesses 99

6.6.1 Left Side and Right Side Bus Masters . 99

6.6.2 Write Buffer . 100

6.7 Conclusion . 103

In the previous chapter we presented our analysis framework assuming known upper
bounds on interference. In this chapter, we detail how this upper bound is computed with
regard to a specific platform. We apply our approach to the industrial many-core Kalray-
MPPA 256 which corresponds to our target architecture model. This chapter is organized
as follows: We present Kalray’s many-core in Section 6.1. In Section 6.2, we identify sources
of interference on shared resources. The upper-bound functions on interference are given
in 6.3. We present a timing model of the arbitration policy in Sections 6.4 and 6.5. We
discuss the timing compositionality of the platform in Section 6.6. Finally, the conclusion is
in Section 6.7.

6.1 presentation of the kalray mppa-256 bostan

The Kalray MPPA-256 is a many-core processor [Din+14b]. Figure 6.1 shows an overview
of this processor. It is composed of 16 tiles (called compute clusters) of 17 cores: 16 cores

85

86 shared resource interference analysis on a many-core processor

I/
O

Et
he

rn
et

0

I/O
Ethernet

1

I/O DDR 0

I/O DDR 1

Figure 6.1: Overview of the Kalray MPPA-256

P0 P1

P2 P3

P4 P5

P6 P7

RM

Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Figure 6.2: Compute cluster architecture for the
Kalray MPPA-256

for processing and 1 core for resource management. The processor is connected to the
external environment through two I/O quad-core clusters. Inter-cluster communication is
achieved via a 2D-torus dual Network-On-Chip (NoC) for data and control. In this paper,
we are interested in applications running on a compute cluster and the interference due to
intra-cluster communications.

6.1.1 Compute Cluster

Figure 6.2 illustrates the architecture of a single compute cluster. It has 16 cores plus 1

Resource Manager (RM). The compute cluster connects to the NoC via two DMA (Direct
Memory Access) interfaces; one for receiving (Rx) and one for transmitting (Tx). The cluster
also has a Debug Support Unit (DSU).

Cores have an in-order Very Long Instruction Word (VLIW) pipeline and separate 8 kB 2-
way set-associative private caches with 64 B lines for instructions and data. The data cache
has a write buffer (WB) with 8 fully associative 64 bit entries. There is no cache coherency
mechanism between the cores. Each core has its own real-time clock. Clocks in the same
cluster are synchronous.

6.1.2 Shared Memory

In order to provide spatial isolation, the shared memory (SMEM) is partitioned into 16

banks. Each memory bank is accessed via a separate bus arbiter which significantly reduces
the amount of interference compared to the alternative of a single arbiter. Figure 6.3 shows
two possible configurations for the memory banks: interleaved mode (Figure 6.3a) where
sequential memory addresses move from one bank to another, and blocked mode (Figure 6.3b)
where each block of 128 kB consecutive memory addresses are contained in a memory bank.
In this paper, we assume that blocked mode is selected, since it gives more control over the
bus interference. This is because with blocked mode, cores that access different memory
banks go through different arbiters hence they do not interfere with each other. We use

6.1 presentation of the kalray mppa-256 bostan 87

128 K
bytes

Bank 0

0x00_0040

0x00_0000

0x01_FFC0

128 K
bytes

Bank 1

0x02_0040

0x02_0000

0x03_FFC0

128 K
bytes

Bank 2

0x04_0040

0x04_0000

0x05_FFC0

128 K
bytes

Bank 15

0x1E_0040

0x1E_0000

0x1F_FFC0

. . .

@
++

(a) Blocked address mode

Bank 0

64 bytes
0x00_0000

64 bytes
0x00_0400

64 bytes
0x1F_FC00

64 bytes
0xXX_XXXX

Bank 1

64 bytes
0x00_0040

64 bytes
0x00_0440

64 bytes
0x1F_FC40

64 bytes
0xXX_XXXX

Bank 2

64 bytes
0x00_0080

64 bytes
0x00_0480

64 bytes
0x1F_FC80

64 bytes
0xXX_XXXX

Bank 15

64 bytes
0x00_03C0

64 bytes
0x00_07C0

64 bytes
0x1F_FFC0

64 bytes
0xXX_XXXX

. . .

@++
(b) Interleaved address mode

Figure 6.3: Blocked and interleaved address configuration modes of the shared memory (SMEM)

a fixed association between cores and memory banks. More precisely, in the application
model we consider, each task has a local memory buffer, and the buffers of all tasks running
on the same core are mapped to the same memory bank. Tasks read and write from the
local memory bank of their assigned core, while communications are achieved by writing
data to other remote memory banks. Note that, when tasks are assigned to the same core,
they use the same memory bank. Thus, the communication between these tasks happen on
the same memory bank.

6.1.3 Bus Arbitration

Figure 6.4 illustrates the specific multi-level policy used to arbitrate accesses to the shared
memory. We distinguish three groups which are arbitrated over three levels:

• G1 = {i ∈ [0, 15] : Pi}: access requests from the 16 cores are first subject to round-
robin arbitration.

• G2 = {Tx, DSU, Rm}: access requests from the Resource Manager (RM), Debug Sup-
port Unit (DSU) and Tx requests to the NoC are subject to round-robin arbitration.

• G3 = {Rx}: Rx requests from the NoC.

At level L1 1 , requests issued by data and instruction caches local to a core are processed
by a local round-robin arbiter. At level L2 2 , there is a round-robin arbitration within
each of the groups G1 and G2. This is followed by round-robin arbitration between these
two groups at level L3 3 . Finally, G3 is included in the last level of the arbitration L4 4 ,
which uses a non-preemptive fixed-priority arbiter and gives the highest priority to access
requests coming from G3. Note that G3 (where Rx requests arrive) has the highest priority
to offload the NoC and avoid its congestion.

To summarize, an access request from a task running on a core crosses three levels of
round-robin arbitration and a level of fixed-priority arbitration to reach the shared memory.

88 shared resource interference analysis on a many-core processor

multi-level arbiter

P0
D-cache

I-cache

round
robin

1
round

robin

2

round
robin round

robin

3

fixed
priority

4

memory bank
(b0)

memory bank
(b15)

multi-level
arbiter

..
.

P0

P15

..
.

DSU

RM

Tx

Rx

b0

b15

..
.

Figure 6.4: Request arbitration to a shared memory bank

6.2 timing analysis on the kalray mppa-256

In this section we list the different sources of interference that need to be considered in
analysing synchronous data-flow applications running on a compute cluster of the Kalray
MPPA-256. This helps to understand how bus interference can be computed using the task
dependency graph for a synchronous data-flow program, thus avoiding pessimism in the
analysis caused by lack of information about co-runners. Sources of interference have to be
identified as part of Equation 5.1 (page 73) when determining the response time Ri of task
τi, given the hardware and application models considered.

The interference on the core IPROC(i, x, Ri) typically comes from delays or preemptions
due to the execution of higher priority tasks on the same core. In our application model,
we assume a static non-preemptive scheduler. Task release dates are set such that only one
task is active per core at any given time. This effectively eliminates all interference from
higher priority tasks executing on the same core. It also simplifies the analysis by removing
any cache-related preemption delays [ADM12].

The interference due to the DRAM is mainly due to refresh cycles. The Kalray MPPA-256

supports a DDR memory accessed through the I/O clusters. An access from a core in a
compute cluster has to cross the NoC and the I/O cluster and finally the DDR controller.
All these layers add to the complexity of the analysis and the access delay. For a predictable
operation, such accesses are generally avoided by pre-loading all the code and data into
the shared memory of the compute cluster. The on-chip RAM of the MPPA is 32 MB,
2 MB per cluster, which is sufficient for many applications. We therefore assume that
∀t > 0, IDRAM(i, x, t) = 0.

6.3 shared bus interference 89

The interference on the bus depends on the specific arbitration policy used. Cache misses
in the private data and instruction caches issue requests to the shared memory that are
granted according to the multi-level arbiter. A detailed derivation of the IBUS(i, x,R, Θ)

function that depends on the set of release dates of all tasks is given in the following
section.

Taking the above considerations into account, the response time formula given in (5.1)
simplifies to:

Ri = PDi + IBUS(i, x,R, Θ) (6.1)

Note, here R is the set of response times and Θ is the set of release dates for all tasks.
According to the considered application model, each compute cluster executes an SDF

application at a time. Nevertheless, we assume that tasks can initiate inter-cluster commu-
nications through the NoC. In this case, a DMA transfer is set up asynchronously to remote
SMEMs. We assume that tasks do not wait for an acknowledgment signal from the remote
cluster (as in handshaking protocols), and therefore NoC delays do not add up to the task
execution (Equation 6.1).

6.3 shared bus interference

In our application model, we consider a task dependency graph mapped to a set of cores.
The hardware architecture allows the mapping of contiguous addresses to the same mem-
ory bank. Thus, concurrent accesses are independent as long as they are done to different
memory banks, which reduces the bus interference. We exploit this by allocating the mem-
ory of each task running on the same core to the same bank. Tasks run on their locally
reserved memory banks and access other locations only when writing data to the next
successive task(s) in the task graph. We denote by MDb

i the memory demand (number of
accesses) of task τi on memory bank b.

6.3.1 Understanding Memory Accesses

Here we describe how memory accesses are issued. Using illustrative examples of different
scenarios, we show how read and write accesses delays the execution. Finally, we determine
the parameters needed to model the bus arbiter.

Each core has separate private caches for data and instructions. Cache misses results in
accesses to the shared memory. On the other hand, other instructions bypasses the caches
such as uncached load and store instructions.

6.3.1.1 Cached Memory Accesses

Figure 6.5 describes memory access patterns generated from the data cache. Shared mem-
ory accesses latency depends on their type (read or write accesses) and the state of the
cache and the write buffer.

The data cache is 2-way set-associative and has 8 kB with 64 B lines. It implements a least-
recently-used (LRU) replacement policy. It is complemented with a write buffer containing

90 shared resource interference analysis on a many-core processor

8 KB 2-way
64B lines

D-Cache

8 entries
64 bits

Write Buffer

mem. operation

store load

0 SMEM access

write in D-Cache

write in WB

updatecheck size
of WB S

1/wait for a free
entry

2/store then evict

1/store
2/evict

store
(WB)

Hit
Miss

data in
WB

data not
in WB

S ≥ 8

S = 7

S < 7

load

check WB

1/ flush WB
2/ load data

load data
(SMEM)

Hit Miss

data in
WB

data not
in WB

1 SMEM write access
(non-blocking)

1 SMEM write access
(blocks until a free entry

in WB is available)

x SMEM write accesses
(x ∈ [1, 8]) +

burst of 8 SMEM
read accesses

(blocking)

burst of 8 SMEM
read accesses

(cache line refill)
(blocking)

Timing
analysis tool

Task profile

Figure 6.5: Occurrence of accesses from data cache and write butter to shared memory

8 fully associative 64 bit entries also implementing an LRU policy. The write buffer imple-
ments a write merge, i.e., if the written data already exists in the write buffer, it is simply
updated. If the data does not exist in the write buffer, it is written in a free entry. Upon
writing in the 8th entry in the write buffer, the LRU entry is then evicted such as there is
always an empty entry.

When a store instruction is executed: if it hits in the cache, the data is updated and
written to the write buffer. If it is a miss, the data is written to the write buffer only. An
access to the shared memory may be issued depending on the content of the write buffer.
store instructions are normally asynchronous, however, in some cases (such as when the
write buffer is already full), the core can be blocked and wait for a free entry in the write
buffer.

When a load instruction hits in the cache, no shared memory accesses are issued. If the
instruction misses in the cache, the write buffer is checked. If the requested data is not in
the write buffer, it is simply requested from the SMEM. This results in a cache line re-fill
which corresponds to a burst of 8 accesses. If the data is in the write buffer, it means that
it was updated at some point and is not available in the SMEM yet. In this case, the write
buffer needs to be flushed first then a cache line re-fill is performed. This corresponds to
issuing individual accesses from the write buffer to write the data in the SMEM, followed
by a burst of read accesses to refill the cache. The data cache implements a critical-word-first
policy: a load access blocks the core’s pipeline until the required data is present.

The core’s pipeline may continue executing next instructions. The cache remains blocked
until the end of the accesses burst. Any load/store is blocking all along this duration.

6.3 shared bus interference 91

6.3.1.2 Instruction Cache

The instruction cache is 2-way set-associative with 64 B lines and a size of 8 kB. The instruc-
tion cache receives fetches from the core to a buffer called pre-fetch buffer (PFB). The cache
returns a group of up to eight 64 bit words. When the requested instructions miss in the
instruction cache, a burst of accesses is issued to the shared memory. The core is stalled
during this time.

6.3.2 Illustrative Examples on Cached Load and Store Instructions

An instruction that hits in the cache takes 1 cycle to execute. On a cache miss, the amount
of time the core stalls depends on the instruction that is executed after. A miss provokes a
fetch of a full cache line from the shared memory issuing 8 memory accesses. The following
example shows a load miss followed by a memory instruction that uses the same data.

1 lw $r0 = 0[$r20] ## misses

2 sd 10[$r5] = $r6r7 ## stalls 17 cycles as L1D cache is busy

The accesses are pipelined which results in 10 cycles for the first access and the rest accesses
arriving at the rate of 1 access per cycle. During this time, the Load Store Unit (LSU) is not
available to execute another memory operation. The cache remains busy until the last data
is received. This results in a total stall time of 17 cycles of the following sd (store double)
operation.

Fetching cache lines operates in a critical-word-first way, i.e., the requested data will arrive
first to the cache followed by the remaining elements in the cache line. If the requested
data is used just after the load (which is the case in the example below), the stall time is
10 cycle for the first critical. The LSU remains unavailable for 7 more cycles but any other
instruction that does not access the cache can be executed meanwhile. Example:

1 lw $r0 = 0[$r20] ## misses

2 add $r5 = $r0, $r2 ## stalls 11 cycles

3 xor $r5 = $r5, $r30 ## any instructions but loads/stores

4 sub $r50 = $r40, 35 ## any instructions but loads/stores

5 mul $r24 = $r51, $r8 ## any instructions but loads/stores

6 add $r50 = $r50, 3 ## any instructions but loads/stores

7 nop ## any instructions but loads/stores

8 nop ## any instructions but loads/stores

9 nop ## any instructions but loads/stores

10 lw $r28 = 0[$r31] ## granted by the D-Cache with no stall

The instruction add at Line 2 stalls for 11 cycles since it depends on the data in register $r0
loaded at Line 1. Any instruction that does not request the cache can be executed without
stalling. The second load instruction at Line 10 is granted without stall since it arrives after
17 cycles when the cache is available.

92 shared resource interference analysis on a many-core processor

t

Px

Py

relk
reli reli + Ri

relk + Rk

00 40

E

(a) Case 1

t

Px

Py

reli
relk relk + Rk

reli + Ri

00 40

E

(b) Case 4

t

Px

Py

reli relk reli + Ri relk + Rk

00 40

E

(c) Case 2

t

Px

Py

relk
reli reli + Ri

relk + Rk

00 40

E

(d) Case 3

Figure 6.6: Cases of overlapping tasks

6.3.3 Variables in Bus Interference Model

We define the bus interference function introduced in Chapter 5 as the following:

IBUS(i, x,R, Θ) = ∑
b∈Bi

BUSb(i, x,R, Θ)× d (6.2)

where d is the latency of a bus access without interference, Bi is the set of memory banks
accessed by task τi, and BUSb(i, x,R, Θ) is a function that, accounting for the arbitration
policy, gives an upper bound on the number of accesses to bank b that can delay completion
of task τi (running on core Px) during a given time interval.

In order to derive BUSb(i, x,R, Θ), we need to compute an upper bound on all bus
accesses during the response time of task τi. We define Sx,b

i (R) as an upper bound on
the number of accesses to bank b by the task of interest τi running on core Px within its
response time. Note that since the scheduler is non-preemptive the bus accesses from core
Px come only from the memory demand of task τi on the memory bank b (MDb

i). Since we
analyze one instance of task τi, we have:

Sx,b
i (R) = MDb

i (6.3)

6.4 simplified model of the multi-level bus arbiter 93

We define ∆
i,k
(R, Θ) the overlap duration between tasks τi and τk. The computation of the

overlap is trivial given the release dates and response times of tasks τi and τk as shown in
Figure 6.6. Note that ∆

i,k
(R, Θ) is 0 when the tasks do not overlap.

∆
i,k
(R, Θ) =

min(Rk, relk + Rk − reli) if (reli ≤ relk + Rk ≤ reli + Ri) (Figures 6.6a,6.6b)

min(Ri, reli + Ri − relk) if (relk ≤ reli + Ri ≤ relk + Rk) (Figures 6.6c,6.6d)

0 otherwise
(6.4)

We use W
i,k

b(R, Θ) to denote an upper bound on the number of accesses by task τk that may

interfere with task τi at the memory bank b during its response time. In the absence of
detailed information on the pattern of access requests within a task, we consider that any
two tasks that overlap in time can interfere on each of their accesses. Moreover, we consider
that the maximum number of accesses occur during this overlap. Let dmin be the minimum
duration between successive non-blocking accesses. W

i,k
b(R, Θ) is given by:

W
i,k

b(R, Θ) = min(MDb
k,

∆
i,k
(R, Θ)

dmin

) (6.5)

We use Ay,b
i (R, Θ) to denote an upper bound on the number of accesses by all tasks

running on core Py 6= Px during the response time of task τi. The number of accesses is
bounded by the memory demand of each task on memory bank b. Ay,b

i (R, Θ) is therefore
given by:

Ay,b
i (R, Θ) = ∑

k∈Γy

W
i,k

b(R, Θ) (6.6)

The terms Sx,b
i (R) and Ay,b

i (R, Θ) are used to derive an upper bound on the number of
accesses that contribute to the interference during the response time of task τi, which also
depends on the bus arbitration policy. The multi-level arbiter of the Kalray MPPA-256

requires a combination of several policies (see Figure 6.4). In the following, we give a
mathematical model of the multi-level bus using the terms Sx,b

i (R) and Ay,b
i (R, Θ).

6.4 simplified model of the multi-level bus arbiter

In this section, we study the multi-level arbitration policy used in the Kalray MPPA-256 ar-
chitecture. For simplicity, the model constructed here focuses on the multi-level arbitration
policy without detailing other aspects of the shared bus (such as memory pipelining). This
results in a safe but over-approximated upper bound on the shared bus interference. More
details regarding hardware aspects are added later to complete this model.

We consider a bus arbiter to a memory bank b as shown in Figure 6.4 (page 88). The
policy operates over 4 levels which we label L1 to L4 where L1 is the first (left-most) level,

94 shared resource interference analysis on a many-core processor

and L4 the final level which is based on fixed-priority arbitration. Our analysis is built up
following the hierarchy from level L1 to level L4.

Level L1: As input to the first level, we assume that the maximum number of accesses
generated by each source in the response time of a task can be determined. These values
are as follows:

• First group (G1): this is a core and may be treated in the same way as the analysis
given for a round-robin arbiter in [Alt+15]. Note that we do not need to distinguish
between accesses that come via the Instruction Cache (IC) and those that come via
the Data Cache (DC), since all must be processed before the task of interest τi can
complete. Hence, we may represent the output from this group as either Sx,b

i (R) or
Ay,b

i (R, Θ) depending on whether we are computing the accesses from the core that
τi executes on, or from another core.

• Second group (G2): here we only need to compute the overall output from the group:
AG2,b

i (R, Θ) = ATx,b
i (R, Θ) + ADSU,b

i (R, Θ) + ARM,b
i (R, Θ), since we are only inter-

ested in the interference it generates.

• Third group (G3): there is only one item, hence the output is the same as the input:
AG3,b

i (R, Θ) = ARx,b
i (R, Θ).

Level L2: At level L2 the outputs (accesses) from all 16 processors are combined via a
16 to 1 round-robin arbiter. Note that each core has only one slot in the round-robin cycle.
The number of accesses to bank b that can delay the execution of a task on core Px at the
output of L2 is given by:

BUSL2
b (i, x,R, Θ) = ∑

y∈G1∧y 6=x
min

(
Ay,b

i (R, Θ), Sx,b
i (R)

)
(6.7)

where x is the index of the core Px that task τi executes on, and similarly y ranges over the
other 15 cores.

The worst-case situation occurs when each access in Sx,b
i is delayed by each core Py 6= Px

for 1 slot. Given the round-robin arbiter, interference by core Py is limited to the minimum

of the number of accesses from Py and from Px, i.e. min
(

Ay,b
i (R, Θ), Sx,b

i (R)
)

.
Level L3: At level L3, the output from the level L2 arbiter, i.e. Equation 6.7, is combined

with that from the second group, i.e. AG2,b(R, Θ), again via a round-robin arbiter. Here,
interfering accesses from co-runners with the task of interest can also be interfered by
accesses from G2. We illustrate this with the following example:

Example 9. We consider a task running on core P0 and executing 5 accesses to the shared memory.
We also consider that co-runner tasks on P1 and P2 execute simultaneously 7 accesses each. Finally,
we consider that the Tx executes 30 accesses. The worst case happens when the accesses from cores
P1 and P2 are granted before P0. The number of interfering accesses is min(7, 5) = 5 accesses
from each core according to Equation 6.7. Each of these accesses can also be delayed at level L3 by
one access from Tx (10 accesses from Tx). The remaining accesses from Tx can delay P0, in this
case, min(30, 5) = 5 accesses. Thus, the number of interfering accesses with the task of interest at
L3 is: min

(
30,
(
5 + min(5, 7) + min(5, 7)

))
= 15 accesses in addition to the 10 accesses from

co-runners at L2.

6.5 full model of the interference on shared resources 95

To formalize the scenario in Example 9, we define λ(i, x,R, Θ) as the number of accesses
of task τi and all accesses that may interfere with it at L2. This is given by:

λ(i, x,R, Θ) = Sx,b
i (R) + ∑

y∈G1∧y 6=x
min

(
Ay,b

i (R, Θ), Sx,b
i (R)

)
(6.8)

The worst-case situation occurs when each access in λ(i, x,R, Θ) is delayed by the output
of G2 for 1 slot. Interference by the output of G2 is limited to AG2,b

i (R, Θ). Hence, the
interference at L3 is:

BUSL3
b (i, x,R, Θ) = BUSL2

b (i, x,R, Θ) + min
(

AG2,b
i (R, Θ), λ(i, x,R, Θ)

)
(6.9)

Level L4: Finally, at level L4, the output from the level L3 arbiter, i.e. (6.9), is combined
with the output from G3, i.e. ARx,b

i (R, Θ). As this is done via a fixed-priority arbiter with
higher priority given to ARx

i (R, Θ), we have:

BUSL4
b (i, x,R, Θ) = BUSL3

b (i, x,R, Θ) + AG3,b
i (R, Θ) (6.10)

Finally, considering d as a worst-case delay from one interfering access, the bus interference
is given by:

IBUS(i, x,R, Θ) = ∑
b∈Bi

BUSL4
b (i, x,R, Θ)× d (6.11)

Equation 6.11 is injected in Equation 5.2 (page 74). The latter is solved with fixed-point
iterations. We observe that the final solution to Equation 5.2 always accounts for the worst-
case interference for overlapping tasks.

6.5 full model of the interference on shared resources

Equation 6.11 gives an upper bound on the shared bus interference. This model is simple
and abstracts many complicated features in the hardware. Although the obtained upper
bound is more precise than simply adding a fixed pessimistic delay to all tasks, it remains
very pessimistic with regard to the real task execution. In this section, we give the complete
model of the shared resource accesses by exploiting the architecture’s properties such as
accesses’ pipelining and bursts.

6.5.1 Bursts of Memory Accesses

As shown in Figure 6.5, some instructions, such as load misses, generate bursts of accesses.
The bus arbiter grants accesses at the granularity of a burst. This means that once the burst
is granted, all the accesses within the burst are executed without interruption. So far, we
counted accesses individually which results in bursts executing in a time n × α, where n
is the number of accesses in the burst and α is the time to execute one access. In reality,
accesses in a burst are issued at each cycle thanks to the pipelining of shared memory
accesses. A burst of n accesses is executed in a time α + (n− 1) cycles.

96 shared resource interference analysis on a many-core processor

P0

P1

S0
1

. . .
S0

m

S 1
1 . . .

S 1
m

multi-level
arbiter

Sm+1 Sm+1 . . . Sn
memory bank

(b0)

acc0

stalled until next
stage is free

acc1

granted

Figure 6.7: Shared bus pipeline

t t + 1 t + 2 . . .

S0
1

. . .

S0
m stall

Sm+1

Sm+2

. . .

(a) Viewpoint of core P0: progress of access acc0
in the bus pipeline

t t + 1 t + 2 . . .

S1
1

. . .

S1
m

Sm+1

Sm+2

. . .

(b) Viewpoint of core P1: progress of access acc1
in the bus pipeline

Figure 6.8: Interference delay considering the shared bus pipeline

If a core requests the bus for a burst of accesses, the arbiter grants the request for all
the burst at once. As a consequence, the interference depend on whether the task under
analysis is delayed by an access or a burst. Bursts have different sizes (number of accesses)
leading to a varying penalties on the task of interest.

The model presented in Section 6.4 abstracts the aspects described above and leads to
pessimistic but conservative upper bound on concurrent accesses, providing that the bus
latency used in the model considers the delay from bursts of access. To improve this model,
we need to consider: (i) a notion of a burst of accesses (ii) blocking and non-blocking
accesses.

6.5.2 Memory Access Pipeline

Existing work [Alt+15; Gia+16; SS16] assumes that bus arbiters stall concurrent accesses
during the whole execution time of a granted access. This assumption is conservative but
introduces more pessimism. In fact, accesses to the shared memory are pipelined through
FIFOs and different stages on the bus. The pipeline reduces the critical path1 between the
core and the shared memory. At each clock cycle, an access moves by one stage across the
pipeline.

Figure 6.7 illustrates the stages in the bus pipeline with the arbiter. Part of the pipeline
is private to the core (Sx

0 , Sx
1 , . . . , Sx

m for core Px), i.e., only the core’s accesses traverse it. The

1 The longest path between two gates on the chip

6.5 full model of the interference on shared resources 97

other part (Sm+1, . . . , Sn) is shared and subject to the bus arbiter. We aim at demonstrating
how much delay a concurrent access adds up to the execution time. Let req0 and req1 be
two access requests issued concurrently from P0 and P1 respectively. In Figure 6.8, req1 is
granted access first and progresses to the next stage in the pipeline whereas req0 is stalled.
At the next cycle req1 progresses to the following stage and req0 is granted by the arbiter to
progress in the empty stage left by req1. If we consider single accesses, this results in a stall
time of 1 cycle.

As a conclusion, a concurrent access may stall the task of interest for at most 1 cycle. A
burst of n accesses granted at once may stall the task of interest for at most n cycles. In the
general case, we define ds as the delay suffered from a single access and dt as the delay suffered
from a burst of accesses.

6.5.3 Blocking and Non-blocking Memory Accesses

There are two types of accesses: blocking memory accesses and non-blocking memory
accesses. For instance, load instructions block the core until the requested data is ready.
Some store instructions on the other hand can be non-blocking, thanks to the write buffer,
and the fact that the core does not block while waiting for the data to reach the SMEM. In
some cases, when the write buffer is full for example, a store instruction blocks the core
until a free entry is available.

A conservative approach is to consider all accesses blocking; however, if the analysis can
prove that a certain number of accesses do not block the core, the estimated upper bound on
the interference can be improved. Non-blocking accesses do not delay the task of interest,
though they still interfere on concurrent tasks. Therefore, the analysis needs to know the
total number of accesses and (if possible) the number blocking accesses of each task in the
system. Otherwise, all accesses are considered blocking.

6.5.4 Arbitration Policy

From the above we determine that shared memory accesses can be granted individually or
as bursts of accesses. The delay on shared resource accesses then varies depending on the
types of interfering accesses. We introduce the notion of transaction to abstract this behavior.

Definition 7. A transaction is a non-preemptive set of memory accesses granted at once by the
shared bus arbiter. A transaction may have a single access or a burst of x accesses.

Consequently to the properties of shared memory accesses, a transaction can be blocking
or non-blocking.

Given the types of memory accesses above, we complete our model of the multi-level
arbiter. In addition to the memory demand MDb

i , this new model assumes a known upper
bound on the number of blocking transactions WCBTb

i of task τi to memory bank b. MDb
i

counts all blocking and non-blocking accesses individually not taking into account the
bursts. By definition, we have WCBTb

i ≤ MDb
i .

98 shared resource interference analysis on a many-core processor

Let S′x,b
i be an upper bound on the number of blocking transactions issued by task τi

running on core Px to memory bank b.

S′x,b
i = WCBTb

i (6.12)

Ay,b
i (R, Θ) is (as defined in Section 6.4) an upper bound on the number of accesses issued

from co-runner tasks on core Py (y 6= x) that may interfere with the task of interest τi.
We construct the model of the multi-level arbiter in the same way as in Section 6.4. As

previously, we consider all accesses at the output of level L1 coming from the data cache,
the write buffer, and the instruction cache.

A task can at most be delayed by concurrent accesses at each issued blocking transaction.
Further, we consider the worst case of interference where a burst of accesses delays each
blocking transaction issued by τi for dt cycles. The interference suffered by the task of
interest from a core (or bus requester) is upper bounded by S′x,b

i × dt.
On the other hand, all accesses (blocking and non-blocking) from concurrent tasks may

interfere with the task of interest with a delay ds each. Therefore, the interference suffered
by the task of interest from a core (or bus requester) is upper bounded by Ay,b

i (R, Θ)× ds.
Let itf X

b (i, x,R, Θ) (X ∈ {L2, L3, L4}) be an upper bound on the delay suffered by task
τi when accessing memory bank b at bus arbiter level X. The upper-bound function of the
interference from all cores at level L2 is:

itf L2
b (i, x,R, Θ) = ∑

y∈G1∧y 6=x
min

(
S′x,b

i × dt , Ay,b
i (R, Θ)× ds

)
(6.13)

The number of times task τi can be delayed at L3 is defined similarly to Equation 6.8 by:

λ′(i, x,R, Θ) = S′x,b
i + ∑

y∈G1∧y 6=x
min

(
S′x,b

i , Ay,b
i (R, Θ)

)
(6.14)

Note that λ′(i, x,R, Θ) depends on S′x,b
i instead of Sx,b

i . In the worst case, each access in
λ′(i, x,R, Θ) is delayed by a burst of accesses. Similarly to Equation 6.9, the upper bound
on the delay suffered by task τi at L3 is:

itf L3
b (i, x,R, Θ) = itf L2

b (i, x,R, Θ) + min
(

λ′(i, x,R, Θ)× dt , AG2,b
i (R, Θ)× ds

)
(6.15)

Finally at level L4 and similarly to Equation 6.10, we add a penalty from the fixed-priority
arbiter:

itf L4
b (i, x,R, Θ) = itf L3

b (i, x,R, Θ) + AG3,b
i (R, Θ)× ds (6.16)

The upper-bound function on bus interference is:

IBUS(i, x,R, Θ) = ∑
b∈B

itf L4
b (i, x,R, Θ) (6.17)

Equations 6.13, 6.15, 6.16, and 6.17 give a more precise upper bound on the interference by
taking into account different delays corresponding to whether the task is delayed by bursts
or individual accesses. These equations also accounts for memory accesses pipelining by

6.6 timing compositionality of shared resource accesses 99

setting ds and dt accordingly which greatly reduces the over-approximation. There is an
assumption that the number of blocking and non blocking accesses as well as the number
of transactions is known or can be obtained from an external tool. This might not be
always possible. In this case, all accesses are assumed blocking (until proven otherwise)
and individual. In this case we have S′x,b

i = MDb
i and ds = dt. Equation 6.17 becomes

equivalent to 6.11.

6.6 timing compositionality of shared resource accesses

The model we propose remains conservative assuming a timing composable and compo-
sitional architecture. As introduced in Chapter 2, compositionality means that the local
worst-case scenario lead to a global worst-case scenario or when there is no timing anoma-
lies. Composability means that different components (for example, cores, bus, shared mem-
ory) can be analyzed separately. The global analysis is then composed of local analyses.

The Kalray cores are simple enough to prove the absence of timing anomalies, thanks to
the VLIW, in-order pipeline and the LRU replacement policies. Kalray MPPA-256 has been
studied in the project CERTAINTY FP7

2 and preliminary work shows that it has fully timing
compositional cores. This study however does not consider the behavior of shared resource
accesses with interference. We discuss here potential issues and hypothetical scenarios that
may exhibit anomalies.

6.6.1 Left Side and Right Side Bus Masters

The SMEM banks in the compute clusters are partitioned into 8 banks on the left side and 8

banks on the right side of cores (see Figure 6.2, page 86). Each core has one bus master per
side. Cores issuing requests to both sides must read the accesses in the same issuing order.

Misaligned accesses are accesses to data which address is not a multiple of its memory
block size. This results in an extra latency penalty. Also, data may be requested from
different memory banks. One must investigate that an access from a core to the right side
of the shared memory does not affect the accesses to the left side. Moreover, the interference
on a bank on one side should not affect the access delays to the other side of the SMEM
that could result in a domino effect. The following is an illustration of this scenario:

Example 10. Consider a core performing misaligned accesses which result in two bursts.

1. Two bursts are issued to two banks on different sides b0 and b8 respectively.

2. The first burst encounter interference on b0 and takes longer to come back.

3. The second burst has no interference on b8.

4. Since ordering is enforced, the second burst is blocked until the first burst comes back.

In the scenario above bank b8 is blocked due to the interference on b0. If b8 remains
blocked, potential concurrent accesses from other cores to this bank might be blocked. This

2 http:///www.certainty-project.eu/

http:///www.certainty-project.eu/

100 shared resource interference analysis on a many-core processor

in turn might block other banks, potentially resulting in unbounded delays (domino effect).
We consider an execution model where one bank is mapped to one core. A task accesses
(either remotely or locally) only one bank at a time. Thus, access misalignment on two
banks does not occur in our case.

6.6.2 Write Buffer

6.6.2.1 Anomalies Due to Used Policies

Timing compositionality in write buffers has been well studied in [DAR16] (Appendix C).
The authors show the effects of different policies, such as retirement policies (determining
when entries are retired from the write buffer) and write policies (determining for example
whether data should be merged upon writes).

A potential source of timing anomalies is the replacement policy. In fact, some policies
such as FIFO and pseudo-LRU have been proven to exhibit timing anomalies [Alt13; Rei08].
Anomalies may also occur at the combination of some implementations such as data re-
placement and data retirement policies. Davis et al. discuss timing anomalies of write
buffers in [DAR16].

For example, there is a potential domino effect with the write merge and lazy retirement
policies combined with FIFO replacement policy. The following example illustrates this
situation.

First

Last

a b
a

b
a

b
a

b
a

b
a

a

c

a

c

c

b

c

b

a∗ a∗ā∗ ā∗b∗ b∗b̄∗ b̄∗c∗ c̄∗

(a) Empty write buffer

First

Last

b a

b

a

b

a

b

a

b

a

b

a

b

c

a

c

a
b
c

b
c

a∗ a∗ a∗ā∗ b∗ b∗b̄∗ b̄∗ c∗ c∗

(b) Non-empty write buffer

Figure 6.9: Example of a domino effect with a FIFO write buffer: empty write buffer does not lead
to the worst-case execution time [DAR16]

Example 11. For the sake of simplicity, let us consider a write buffer of two entries with FIFO
replacement policy. Figure 6.9 illustrates this effect as described in [DAR16]. Let a,b,c be data
addresses. A write to a is noted by a∗, and a write merge is denoted by ā∗ (similarly for b and c). We
consider the following write sequence: a∗, b∗, b∗, a∗, c∗, b∗, a∗, c∗, b∗, a∗, . . ., with the sub-sequence
c∗, b∗, a∗ repeating. The first scenario in Figure 6.9a describes a situation with an initially empty
buffer. When writing the sequence c∗, b∗, a∗, it results in a write merge at each second write. In
Figure 6.9b, however, the write buffer is considered initially non-empty. This affects its content by
switching a and b at the third step and making each write in the repeating sub-sequence stalling (no
write merge is possible).

6.6 timing compositionality of shared resource accesses 101

The example above shows that considering an empty buffer initially as a worst case does
not necessarily lead to the worst-case execution time for a FIFO write buffer.

Kalray MPPA-256’s write buffers are write-only and use the LRU policy for data replace-
ment combined with a lazy retirement policy. In the lazy retirement policy, data writes to the
shared memory occur only when the content of the write buffer reaches a certain threshold.
In this case, the oldest entry is evicted from the write buffer and written to the SMEM.

MRU

LRU

a b
a

b
a

b
a

a

b

a

b

c

a

c

a
b
c

b
c

a∗ a∗ a∗ā∗b∗ b∗ b∗b̄∗ c∗ c∗

(a) Empty write buffer

MRU

LRU

b a

b

a

b

a

b
b
a

b
a

b
a

c

a

c

a
b
c

b
c

a∗ a∗ a∗ā∗ b∗ b∗b̄∗ b̄∗ c∗ c∗

(b) Non-empty write buffer

Figure 6.10: There is no domino effect with an LRU write buffer

The result of Example 11 with the LRU replacement policy is shown in Figure 6.10. The
scenarios with empty (Figures 6.10a) and non-empty (Figure 6.10b) write buffers exhibit
the same behavior. As a conclusion, it is safe to consider an empty buffer as a worst case to
achieve the worst case execution time.

6.6.2.2 Anomalies Due to Bus Interference

The bus model we propose relies on known upper bounds on the number of shared re-
source accesses. These upper bounds can be obtained through different methods; using a
dedicated static analysis tool, or through measurement-based approaches of tasks in isola-
tion. There is an implicit assumption that these upper bounds in isolation are independent
from concurrent accesses and therefore can be used safely when estimating shared resource
interference. We show here that this is not always the case.

Example 12. Figure 6.11 describes scenario that leads to different numbers of accesses depending
on the bus interference. Assuming an initial state of the data cache and the write buffer as shown
in figure. The first instruction results in writing h to the 8th entry of the write buffer, therefore
triggering the eviction of the LRU entry containing a. In isolation, the eviction issues an access to
the shared memory. The total number of issued accesses to the shared memory is 16 in isolation. In
the scenario with interference, evicting a may take longer due to the unavailability of the bus. By
trying to read a while it is still in the buffer, the policy is to flush the entire buffer and reload a cache
line from the shared memory. This produces 8 more accesses than the execution in isolation. The
accesses to {x1, x2, . . . , x7} results in the same final state of the write buffer in both scenarios. It
shows that the scenario with interference will not recover from the extra number of accesses.

This example shows that simple single-core analyses, when used to obtain task informa-
tion in isolation, are not compositional with regard to multi-core execution. This is because
the number of SMEM accesses is dependent on concurrent accesses. Any analysis, though

102 shared resource interference analysis on a many-core processor

x1 x2 x3 x4

x5 x6 x7 x8

b c d e

f g h i

.

initial state of D-cache

g f e d c b a

initial state of WB

sw h

write in WB

evict a (LRU)

--> 1 access

Scenario in isolation

h g f e d c b

lw a

miss in D-cache and WB

load from SMEM

--> 8 accesses

sw b,c,e,f,g,h,e

WB write merge: no accesses

sw x1, x2, x3, x4, x5, x6, x7

evict 7 LRU WB entries

--> 7 accesses

x7 x6 x5 x4 x3 x2 x1

Total accesses 15 (8 WB evictions)

sw h

write in WB

start evict a (LRU)

eviction takes longer time

Scenario with interference

h g f e d c b a

lw a

miss in D-cache

a still in WB: flush WB

--> 8 accesses

load a from SMEM:

--> 8 accesses

sw b,c,e,f,g,h,e

WB refill: no accesses

sw x1, x2, x3, x4, x5, x6, x7

evict 7 LRU WB entries

--> 7 accesses

x7 x6 x5 x4 x3 x2 x1

Total accesses 23

MRU LRU

Figure 6.11: The same execution leads to different numbers of accesses in isolation and in interfer-
ence

performed on tasks in isolation, must take into account potential interference from concur-
rent cores.

As a conclusion, the considered upper bound on shared resource accesses must take
into account the aspects discussed above. Measured number of accesses, for example using
hardware performance monitoring counters, obtained from measurement-based techniques
might not be safe in this case, since it is harder to trigger the worst-case behavior under con-
tention than in isolation. Static analysis tools, such as OTAWA, can conservatively compute
this upper bound by modeling the write buffer pessimistically.

6.7 conclusion 103

6.7 conclusion

In this section we describe our approach that computes upper bounds on the shared bus
interference. We target the Kalray MPPA-256 many-core processor and provide an accurate
model of its shared memory accesses and the arbitration policy. We first present the multi-
level arbiter and present a simple model that abstracts away low level details but gives
conservative bounds. This model is then amended with more aspects of memory accesses.
Here we take advantage of access bursts, access pipelining, and blocking/non-blocking
accesses.

We focused on local interference between cores in a compute cluster when accessing the
shared memory. We will later work on a model of the NoC traffic, i.e. ARx,b

i and ATx,b
i .

Any formula returning a number of accesses for a given time interval can be plugged into
their computation: we can use the hardware configuration of the packet shaper (at the
exit of each cluster), which limits the allowed bandwidth for each compute cluster on the
NoC. Computations based on Network Calculus can also provide the worst-case number
of accesses for a time window [Din+14a]. We can also use knowledge of the application’s
architecture (e.g., compute the amount of data that is written to and from the cluster during
each clock cycle of the application).

The resource manager will also require consideration, as in general it can access the
shared memory and is itself a shared resource to consider in response time computations.
The RM is responsible of task deployments and interrupt handling. Therefore, context
switches are performed by the RM. It is necessary to account for any delay affecting the
execution of interrupts and context switches especially in hard real time systems. In our
model we assume a conservative and constant penalty added to all tasks to account for
such delays. We can also combine the results from existing work [Pha+13] to account for
overheads when scheduling the analyzed application.

A full study of timing compositionality is required in order to provide a sound and cor-
rect timing analysis. Timing anomalies when discovered can be avoided by (i) hardware
design (for example, adding stalls) which can be costly, in silicon and performance, and not
always possible. (ii) Adding penalties in the analysis to account for any potential anomaly.
This may result in very imprecise bounds. A work proposed in [HJR16] allows account-
ing for timing anomalies by adding corresponding bounded and sound timing penalties
without greatly decreasing the analysis precision.

Although timing compositionality of the Kalray MPPA-256 may not be proved (or dis-
proved), this platform is still a good processor designed with predictability in mind as it
eliminates many sources of anomalies as shown in Section 6.6. This results in a theoreti-
cally smaller penalty to make up for any anomaly. A full study of these aspects must be
conducted to achieve a correct and conservative analysis. This remains as a future work.
In this work, we assume that timing anomalies do not occur or their analysis is taken into
account by combining the results with those in [HJR16].

Part III

E VA L U AT I O N

Chapter 7
E X P E R I M E N TA L E VA L U AT I O N

7.1 Experimental Setup . 107

7.1.1 Bus Model . 108

7.1.2 Execution Model . 108

7.1.3 Experiments . 109

7.2 Didactic Example . 110

7.3 Randomly Generated DAGs . 111

7.3.1 Effect of CPU Utilization . 112

7.3.2 Effect of Blocking Transactions . 113

7.3.3 Effect of the Network-on-Chip . 114

7.3.4 Performance Analysis . 115

7.4 ROSACE (Flight Management System) . 116

7.5 Conclusion . 118

In this chapter we evaluate our approach using different configurations. We show how
the application model as well as the architecture configuration may affect the estimation
of the WCRT. First, we compare the effect of multi-memory bank configuration on the
schedulability of the application. Then, we investigate the effect of the number of blocking
and non-blocking accesses/transactions, as well as the traffic of the NoC on the execution.
Finally, we analyse a case study of a flight management system controller to validate our
approach.

7.1 experimental setup

Static analysis tools such as, OTAWA [Bal+10] and aiT [Wil+08]1, do not yet support (or
only partially support) the Kalray MPPA-256 Bostan. For this reason, we establish the task
profiles from measurement-based techniques such that: (i) the profiles are realistic although
the resulted estimation is not guaranteed, (ii) the framework is compatible with inputs
from formal methods or measurement-based methods. Each task is executed in isolation
while profiling processor cycles and the number of cache misses. Several measurements are
performed for each task and the results show a variance approaching zero. This reflects the
efforts made in the design of the Kalray MPPA-256 targeting real-time applications. Note
that the measurement-based approach may suffer from the situation where the number of
accesses depends on the interference (see Example 11 on page 100).

1 To the best of our knowledge, aiT supports the first generation Kalray MPPA-256 Andey only.

107

108 experimental evaluation

In our experiments, we consider a bus delay from an interfering single access ds = 1 and
from an interfering burst of accesses dt = 8 cycles obtained from internal specifications. We
also consider that the context-switch delay is included in the task execution. In our analysis,
we focus only on the steady state of the application, i.e., the first iterations are excluded
and all data and code is already loaded. Therefore, we assume that the Resource Manager
(RM), which loads the application onto the cores before operation starts, does not interfere
with running tasks (ARM,b

i = 0, ∀i, b). Finally, the Debug Support Unit (DSU) is disabled
during operation (ADSU,b

i = 0, ∀i, b).

7.1.1 Bus Model

We introduced our bus model in Chapter 6, more specifically in Equations 6.13 to 6.17 on
page 98. It assumes known upper-bounds on shared resource access demand from cores
as well as the access demand from the NoC. The shared resource access demand can be
obtained by analyzing tasks individually and in isolation. Static analysis can be used to
obtain precise upper-bounds on number of shared resource accesses and prove whether
accesses are blocking or non-blocking. In the case where an access cannot be proven non-
blocking, we simply assume it is blocking. Measurement-based techniques can also be
used to generate the task timing information using the provided hardware counters. It is
however challenging to know which accesses are non-blocking. We study the effect of the
types of shared resource accesses in Section 7.3.2.

The NoC traffic affects the interference on shared resources. Our bus model can be used
to provide an upper-bound on the interference considering the upper-bound on the number
of accesses from the DMA during a time frame. This can be modeled as “tasks” that do not
perform any computation and only access the shared memory. Our model is flexible and
can be adapted to considering arrival curves instead. We present the effect of the NoC on
the timing analysis in Section 7.3.3.

Applications that run in isolation on a compute cluster to do not suffer from NoC in-
terference. Therefore, accesses from the NoC do not occur during the execution of the
application of interest. As a consequence, by setting ARx,b = ATx,b = 0 in Equations 6.15

and 6.16 on page 98, the interference is simplified to one level of round-robin arbitration.

7.1.2 Execution Model

We first consider a single-phase execution model where we make no assumptions about the
distribution of read and write accesses between the start and the end of a task. In our code
generation scheme for the SDF model, tasks execute computations, then write the result to a
shared memory location where the next task can read it. Similar to [Mel+15], this execution
model allows each task to be split into a first execution phase, limited to reading the input
and doing computations, and a write phase where the output is sent to the next task. In
the execution phase, the accesses are to the local memory bank of the task, whereas in the
write phase requests may access a remote memory bank. We exploit this execution model
in our analysis. We consider the two phases of a task as separate subtasks with a direct

7.1 experimental setup 109

PEy

PEx

15

20

(a) single-phase execution mode

PEy

PEx

15 15

1010

(b) two-phase execution mode

n n memory accesses

Legend

Figure 7.1: Pessimism in single-phase and two-phase execution models

dependency relation. Using our analysis technique we compare the single-phase model
with the two-phase model.

Note that the effect of the execution model depends on the application itself. There exist
cases where it is better to consider a single-phase execution model. Figure 7.1 illustrates
this situation in a simplified way, where all accesses are blocking and dt = 8, ds = 1. In
Figure 7.1a (single-phase model), the number of accesses that may delay the task running
on Px is min(20× 8, 15× 1) = 15 cycles. In Figure 7.1b, the two phases are represented with
two sub-tasks, each of them seeing min(10× 8, 15× 1) = 15 cycles interfering accesses (as
a worst-case interference). This results in a total of 30 cycles counting both phases. Due to
this effect, one would perform the analysis on both execution models and would consider
the one with the smallest estimation.

7.1.3 Experiments

We explore and compare a number of setups for the experimental evaluation to determine
the effectiveness of various techniques that form part of the schedulability analysis. In the
first experiment E1, we use our approach taking into account a two-phase execution model.
Experiment E2 also applies our approach, but using a single-phase execution model. In
experiment E3, we use a simplified approach that discards the release dates of tasks, mean-
ing that all tasks potentially overlap, and considers the tasks using the two-phase execution
model. The same approach as E3 is used in E4, but using the single-phase execution model.
Finally, we consider in experiment E5 that co-runners continuously interfere with the task
of interest by issuing bursts of accesses to the shared memory. This is a pessimistic analysis
that assumes the worst-case interference on each memory access. Note that this may result
in unbounded interference due to the fixed-priority level of the MPPA bus. In this case,
we consider the upper bound on the number of accesses by all higher priority components
during the analysed execution instance. Then, we assume that each task access is delayed
by all the higher priority accesses. In the following, we compare the different analyses with
different arbitration policies for each benchmark.

In summary:

• E1 analysis of two-phase task model

• E2 analysis of single-phase task model

110 experimental evaluation

Task WCET MD Dependencies
Accesses to the bank of

(cycles) (accesses) τ1 τ2 τ3 τ4 τ5 τ6

τ1 5 2 ∅ 30 10

τ2 8 10 {τ1} 20

τ3 20 18 {τ2, τ4, τ6}

τ4 5 2 {τ1} 50

τ5 8 10 ∅ 20

τ6 20 8 {τ5} 50

Table 7.1: Task profiles of the SDF example in Figure 5.2a

P2

P1

P0 R=27
rel1 = 0

τ1

R=63

τ2

rel2 = 27

R=20

τ3

rel3 = 113

R=62
τ4

rel4 = 27

R=38

τ5

rel5 = 0

R=75

τ6

rel6 = 38

Figure 7.2: Static scheduling of the example in Figure 5.2a considering 3 memory banks

• E3 analysis of two-phase task model without accounting for the release dates

• E4 analysis of single-phase task model without accounting for the release dates

• E5 pessimistic analysis without consideration of co-runner tasks

7.2 didactic example

We first present the result of analyzing a simple didactic example similar to Figure 5.2a (on
page 71). For this example, we use the profiles in Table 7.1. Figure 7.2 gives a static schedule
computed by our approach which accounts for the bus interference and the dependencies
between tasks. Figure 7.3 compares the end-to-end estimated response time obtained with
different analyses.

We note that taking into account the memory banks always yields a better estimation of
the overall response time. Further, taking into account the two-phase execution model (E1),
the estimation is 10.27 times smaller than the pessimistic approach (E5) while the analysis
with the single-phase execution model (E2) is 8.49 times smaller. The approache E3 (resp.
E4) that discards the release dates is 5.62 (resp. 6.24) times smaller than E5 when taking
into account the memory banks.

The micro-benchmark discussed above shows the functioning of our framework on a
simple program. It does not fully expose how the estimated WCRT behaves in different

7.3 randomly generated dags 111

0

400

800

1200

1600

1 bank 3 banks
Memory banks

P
ro

ce
ss

or
 c

yc
le

s
E5: pess
E4: 1−P (w/o release)
E3: 2−P (w/o release)
E2: 1−P
E1: 2−P

Figure 7.3: Comparison of the end-to-end response time obtained with different analyses of the SDF
example in Figure 5.2a

V(1,1)

V(2,1)

V(3,1)

V(N1,1)

..
.

Layer 1

V(1,2)

V(2,2)

V(3,2)

V(N2,2)

..
.

Layer 2

V(1,3)

V(2,3)

V(3,3)

V(N3,3)

..
.

Layer 3

V(1,L)

V(2,L)

V(3,L)

V(NL,L)

..
.

Layer L

. . .

Figure 7.4: The layer-by-layer method in DAG generation. An example with L layers and Nk vertices
per layer (1 ≤ k ≤ L). Edges are generated according to a given probability.

situations. The following section goes into further analyses of our framework with varying
workload parameters.

7.3 randomly generated dags

To better understand several aspects of our analysis, we simulate randomly generated
graphs with varying parameters including utilization, blocking and non-blocking access-
es/transactions, and traffic of the NoC. The graphs are generated using the layer-by-layer
method proposed by Tobita and Kasahara [TK02] as shown in Figure 7.4. Each layer rep-
resents a set of independent vertices. Edges are generated between layers with a certain
probability. To avoid cycles, edges are directed from the lower index vertex to the higher
index vertex (both vertices are in different layers). We denote the probability of creating an
edge by ρ.

112 experimental evaluation

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

S
ch

ed
ul

ab
le

 T
as

ks

Multi−bank
Multi−bank (w/o release)
Pessimistic
Single−bank
Single−bank (w/o release)

(a) fat graphs 25 ≤ N ≤ 50

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

S
ch

ed
ul

ab
le

 T
as

ks

Multi−bank
Multi−bank (w/o release)
Pessimistic
Single−bank
Single−bank (w/o release)

(b) long graphs 15 ≤ N ≤ 35

Figure 7.5: Number of schedulable DAGs vs. utilization with: M = 8 cores, b = 1, ρ = 0.5

Each vertex represents a task with the following parameters: wceti, MDi, WCBTi, initial
release dates reli = 0, and an assigned core. wceti is the worst-case execution time in iso-
lation. MDi is an upper-bound on the number of accesses due to cache misses and other
accesses related to the execution of the task (uncached accesses, atomic operations,. . . etc).
In our experiments, wceti and MDi are generated randomly and uniformly in [550, 650]
and [250, 550] respectively. WCBTi is determined by WCBTi = b×MDi, where b denotes
the ratio of blocking transactions. Edges in the DAG represent dependencies due to com-
munications. Each edge has a parameter that gives the number of accesses required in the
communication, also generated randomly in [0, 100].

Cores are assigned to tasks sequentially. The first generated task is mapped to the first
core, the second task to the second the core, and so on. We go back to the first core when
all cores are assigned.

The schedulability of the generated DAGs depends also on their shape. In the layer-by-
layer generation method, DAGs can be long (more layers and fewer vertices per layers) or
fat (fewer layers and more vertices per layer). Fat DAGs increase the parallelism and there-
fore the interference between co-runner tasks. In the following, we generate random long
and fat DAGs. Our experiments show how the interference affects the analysis differently
depending on the shape of DAGs.

7.3.1 Effect of CPU Utilization

We study the effect of shared resource interference on the schedulability of the application
considering different utilization. Utilization here is defined as the ratio of a base execu-
tion time with regard to the period. We then run the analysis that takes into account the
interference and determines how it affects the application.

Our target application model is periodic DAGs with implicit deadlines, where all tasks
in the DAG have the same period and deadline. We define the following characteristics for
each DAG: (i) the end-to-end response time with no interference, Rmin, and (ii) the end-to-
end response time on a single-core, Rsingle. Rmin is obtained from our framework (given a

mapping and an execution order) considering a perfect bus, i.e, IBUS(i, x,R, Θ) = 0, ∀i, x.

7.3 randomly generated dags 113

Rsingle is obtained by summing all wceti, which is equivalent to a single-core execution also
with no interference (we do not consider interference from the NoC).

To compute the deadlines, we use a formula that is a function of Rmin, Rsingle, and the
number of cores M assigned to the DAG:

D = (Rmin + 2×
Rsingle

M
)× 1

u
(7.1)

where u is a utilization factor in [0, 1]. This formula is similar to the one used by Saifullah et
al. [Sai+14] with the difference, in their case, that several DAGs are scheduled on the same
processor and their utilization follow a Gamma distribution. In our case, we want to show
the effect of intra-DAG interference on shared resources and how it affects its schedulability
considering the formula in Equation 7.1. Note that for the same task set, long DAGs result
in larger Rmin whereas fat DAGs result in a smaller Rmin. Equation 7.1 produces a larger
deadline in the former case.

Figure 7.5 shows the number of schedulable tasks against the utilization parameter u.
For each value of u, 1000 tasks are generated and analyzed. u is varies between 0.025 to 1
with a step of 0.005. Here, we compare the effect of considering the shared memory bus
and/or the release dates. We consider tasks where all accesses are blocking (b=1), edges
(and therefore communications) are generated with the probability ρ = 0.5. The generated
DAGs contain 25 to 50 tasks mapped to 8 cores for fat DAGs and 15 to 35 tasks for long
DAGs.

The results show that, as expected, the memory banks reduces the interference consid-
erably: at u = 0.265 (resp. u = 0.85) the single-bank analysis has 0% of schedulable tasks
where the multi-bank analysis schedules 31.8% (resp. 6.4%) for the case of fat DAGs (resp.
long DAGs). Moreover, when the release dates of tasks are not taken into account, all tasks
are unschedulable at u = 0.155 (resp. u = 0.08) for the multi-bank analysis (resp. the
single-bank analysis) in the case of fat DAGs. The analysis that does not take into account
memory banks and release dates schedules only 83.7% of tasks at u = 0.025 for fat DAGs.
The pessimistic analysis schedules 0.5% of tasks at u = 0.025 for fat DAGs and 0.01% of
tasks at u = 0.035 for long DAGs. Then, it falls to 0% afterward.

7.3.2 Effect of Blocking Transactions

To evaluate the accuracy of our bus mode, we propose the experiment with a varying
number of blocking accesses. Here we choose WCBTi values such as WCBTi = MDi × b,
where b is a ratio in [0, 1]. b = 0 means that all accesses are asynchronously executed
without stalling the task. b = 1 means that the task blocks at each access and suffers from
potential interference.

Figure 7.6 shows how the number of blocking accesses affects the end-to-end response
time DAG and therefore its schedulability. Here again, we compare the single-bank analysis
and the multi-bank analysis. We fix the utilization at u = 0.4. For fat graphs (Figure 7.6a),
when b = 1, 14% and 0% of tasks are schedulable in the multi-bank and the single-bank
analyses respectively. This is also shown in Figure 7.5a. When b = 0, 100% of the tasks
become schedulable in both analyses. The number of blocking accesses has more effect in

114 experimental evaluation

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of blocking accesses

S
ch

ed
ul

ab
le

 T
as

ks

Multi−bank
Single−bank

(a) fat graphs 25 ≤ N ≤ 50

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of blocking accesses

S
ch

ed
ul

ab
le

 T
as

ks

Multi−bank
Single−bank

(b) long graphs 15 ≤ N ≤ 35

Figure 7.6: Number of schedulable DAGs vs. blocking access ratio with 8 cores, u = 0.4, ρ = 0.5

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of accesses within the period

S
ch

ed
ul

ab
le

 T
as

ks

Rx (u=0.1)
Rx (u=0.2)
Tx (u=0.1)
Tx (u=0.2)

(a) fat graphs 25 ≤ N ≤ 50

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of accesses within the period

S
ch

ed
ul

ab
le

 T
as

ks

Rx (u=0.1)
Rx (u=0.2)
Tx (u=0.1)
Tx (u=0.2)

(b) long graphs 15 ≤ N ≤ 35

Figure 7.7: Number of schedulable DAGs vs. NoC traffic with: 8 cores, ρ = 0.5, b = 1

the single-bank analysis. 100% of the tasks become non schedulable when u = 1 against
86% in the case of the multi-bank analysis.

In the case of long graphs (Figure 7.6b), when b = 1, the multi-bank analysis schedules
67.2% of tasks against 13% for the single-bank analysis. It shows how the blocking accesses’
interference affect the schedulability of fat graphs more than long graphs.

7.3.3 Effect of the Network-on-Chip

The Network-on-Chip is a source of interference that we include in our model of the bus
arbiter. The NoC is implemented with Real-Time Calculus and therefore its traffic follows
arrival curves. We can use these curves to extract upper-bounds on the number of accesses
during a time window. In this thesis, we delegate the analysis and extraction of arrival
curves to an external tool. Nevertheless, we show how a varying workload of the NoC
affects the schedulability of the application.

In this experiment, the number of accesses from Rx (resp. Tx) varies with a factor of the
DAGs period. We assume that the accesses start at release date 0. Figure 7.7 represents
the number of schedulable tasks in presence of different NoC workloads, according to our

7.3 randomly generated dags 115

O(n3)

O(n4)2

20

200

2000

20000

50

100

150

200

250

300

350

400

500

600

700

800

number of nodes n

tim
e

(s
ec

on
d)

Figure 7.8: Run-time analysis in log-log scale with: 8 cores, ρ = 0.5. Graph lines for O(n3) and
O(n4) are shown as an indication.

analysis that takes into account the memory banks. Note that Tx is arbitrated with a round-
robin at L3 of the multi-level arbiter while Rx has a fixed high priority at level L4. Although
Tx can execute more times than the cores, its effect on the schedulability is less harmful than
Rx. On the other hand, the Rx directly affects the schedulability if it executes more than
0.09 (resp. 0.065) of the period when u = 0.1 (resp. u = 0.2) in the case of fat graphs
(Figure 7.7a). In the case of long graphs (Figure 7.7b), the tasks become unschedulable if
Rx executes more than 0.115 (resp. 0.105) of the period when u = 0.1 (resp. u = 0.2).

The above experiments are artificial scenarios that do not impose any restriction on the
amount of accesses from the NoC. Note that on the real platform, the number of packets
sent on the NoC (through Tx) follows a packet shaper at the routers. The packet shaper
ensures that the NoC is not congested so that each packet sent is guaranteed to reach
destination. For this reason, the Rx has the highest priority in the multi-level arbiter. The
number of accesses from the Rx is also subject to the packet shaper at the Tx of the distant
cluster emitting the accesses.

7.3.4 Performance Analysis

Here we study the time complexity of Algorithm 8 (ComputeRT). Let n and e be the number
of tasks and edges (dependencies) respectively in the analyzed application. MultiCoreRTA
(Algorithm 6) takes up to n iteration to converge. Each iteration the response time of all
tasks, which takes n iterations. The response time formula depends on the interference
function IBUS(i, x,R, Θ) which takes up to n− 1 iterations to compute the interference from
concurrent tasks. Thus, MultiCoreRTA has a time complexity of O(n3). UpdateReleases

(Algorithm 7) iterate over all tasks. For each task, the algorithm checks iterate over its
dependencies (edges) to check and potentially update the release date. Thus, the time
complexity of this algorithm is O(ne).

Finally, ComputeRT takes n− 1 to converge, therefore, the total time complexity is:

O(n4 + n2e)

116 experimental evaluation

Since, e < n2, case where there are edges between all tasks in the graph, the time complexity
is simply:

O(n4)

To get an idea on our analysis’ scalability, we run an experiment with an increasing
number of tasks while measuring the time it takes our algorithm to terminate. For each
number of tasks, 10 benchmarks are generated and measured. This experiment run on an
Intel® Core™ i5-4590 at 3.30 GHz with 16 GB of RAM. The results are shown in a log-log
scale in Figure 7.8. At n = 800, the analysis’ run-time is around 6 hours. At n = 500, the
analysis takes around 1 hour. The run-time also depends on the number of edges. With the
probability to generate an edge ρ = 0.5, the number of edges of the generated benchmarks
with n = 500 is around 62000 edges. The slop of the line in Figure 7.8 is 3.87, therefore, the
asymptotic running time obtained by the experiment is O(n3.87).

7.4 rosace (flight management system)

Pagetti et al. [Pag+14] provide a case study of a Flight Management System (FMS) called
ROSACE2. The case study consists of a multi-rate controller and an environment simulator.
In this kind of application, the input (sampled from physical sensors) is transmitted to a
controller which, after computation, sends commands to the actuators. Figure 7.9 illustrates
the set of tasks in the SDF application, their inputs, outputs, dependencies, and their rates.
We assume that it takes 8 accesses to write a token. We established task profiles by executing
each task in isolation and measuring a trace of its execution. Since we cannot establish
which access or transaction is blocking, we consider all the measured SMEM accesses to be
blocking. The profiles are given in Table 7.2.

The inputs from sensors and the commands to the actuators are sent through the NoC
via the Rx and Tx components. Since there are multiple rates, we unfold the SDF program
over a hyper-period in order to make the model compatible with our approach. In this
case, tasks with a frequency of 100 Hz execute twice within the hyper-period, while tasks
with a frequency of 50 Hz execute only once. Further, the Rx component writes the inputs
(h, az, vz, q, va) to the shared memory four times (200 Hz) within the hyper-period, while
the Tx component reads and transmits the outputs (δec, δthe) once (50 Hz). Our experiments
consider a time window with the length of the hyper-period that starts with the Tx accesses
from the previous execution of the program.

There are several possible mappings for the multi-rate application. We choose the map-
ping described in Figure 7.10 and evaluate its schedulability with the previously defined
analyses. We also consider a single-level round-robin bus (RR) as well as the multi-level
arbiter (MPPA). This allows us to compare the performance of the MPPA against the con-
ventional RR arbitration policy using our approach. Figure 7.11 gives the smallest period,
in processor cycles, for which the mapping in Figure 7.10 is schedulable. This is equivalent
to finding the slowest processor clock frequency that satisfies the scheduling requirements.

The results in Figure 7.11 show that accounting for the memory banks improves the es-
timation with a factor of 1.28 to 1.92 in E1, E2, E3, E4 (5 banks vs. 1 bank). Our refined

2 Open source implementation available on the svn repository https://svn.onera.fr/schedmcore/branches/

schedmcore-RTAS2014/Case_Study_RTAS

https://svn.onera.fr/schedmcore/branches/schedmcore-RTAS2014/Case_Study_RTAS
https://svn.onera.fr/schedmcore/branches/schedmcore-RTAS2014/Case_Study_RTAS

7.4 rosace (flight management system) 117

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)

1

1

1

1

1

1

1 1

va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Figure 7.9: Flight Management System controller

Function WCET (cycles) MD(accesses)

altitude 275 22

az_filter 274 22

h_filter 326 24

q_filter 338 24

va_control 303 24

va_filter 301 23

vz_control 320 25

vz_filter 334 25

Table 7.2: Task profiles of the FMS controller

approach that takes into account the number of memory banks and the release dates can
verify schedulability with a hyper-period of 1376 cycles (E1) and 1388 cycles (E2) assum-
ing the MPPA bus. This represents an improvement by a factor of 7.34 (E1) and 7.27 (E2)
compared to the pessimistic approach in E5 with 10104 cycles. The gain achieved by consid-
ering release dates is a factor of 1.40 in E1 (respectively 1.14 in E2) when compared against
E3 (resp. E4) which ignores release dates. Our analysis with the RR bus gives an estimation
of 1352 cycles in E1 (resp. 1376 cycles in E2) which corresponds to a gain of a factor 5.28
(resp. 5.19) when compared to the pessimistic approach in E5 that has 7152 cycles. Note
that the two-phase model is more pessimistic than the single-phase model when comparing
E3 and E4. This is due to accumulated pessimistic considerations on the write phase and
the execution phase which may lead in some cases to a higher estimation than when the
execution is considered as a single phase, as described in Section 7.1.2. The analysis of the
RR arbiter provides slightly better performance than that for the multi-level arbiter. Any
pessimistic assumption in the analysis have a higher effect on the multi-level arbiter than

118 experimental evaluation

P4

P3

P2

P1

P0 va_filter

100 Hz

va_control

50 Hz

va_filter

100 Hz

q_filter

100 Hz

q_filter

100 Hz

vz_filter

100 Hz

vz_filter

100 Hz

az_filter

100 Hz

az_filter

100 Hz

h_filter

100 Hz

altitude
50 Hz

vz_control

50 Hz

h_filter

100 Hz

Figure 7.10: Task-to-core mapping and unfolding of tasks in the FMS controller

1 bank 5 banks

0

5000

10000

15000

MPPA RR MPPA RR
Bus policy

P
ro

ce
ss

or
 c

yc
le

s

E5: pess
E4: 1−P (w/o release)
E3: 2−P (w/o release)
E2: 1−P
E1: 2−P

Figure 7.11: The smallest schedulable period obtained with different analyses

the RR arbiter. This is due to the fixed-priority level that pessimistically counts all highest
priority accesses at each bus access.

Finally, we comment on the run-time of our approach. The analysis of the FMS controller
takes 0.15 seconds (Intel 2.4 GHz CPU). The analysed hyper-period has 18 tasks. The
analysis in E2 (single-phase execution model) takes 3 iterations in Algorithm 8 and at most
20 iterations at each execution of Algorithm 6. In E1, the analysed hyper-period has 31
subtasks/tasks and takes 4 iterations in Algorithm 8 and at most 26 iterations at each
execution of Algorithm 6.

7.5 conclusion

We evaluate our analysis that computes a valid static schedule of a synchronous data-flow
application on the Kalray MPPA-256 multi-core architecture with shared memory and a

7.5 conclusion 119

multi-level arbiter. We start the analysis with a given mapping, set of dependencies between
tasks and precedence constraints: the choice of the mapping and the order of tasks on a
given core can either be defined manually or delegated to a separate allocation algorithm.

The analysis we derive is based on the Multi-core Response Time Analysis (MRTA) frame-
work [Alt+15]. We extend this framework by deriving a mathematical model of the multi-
level bus arbitration policy used by the Kalray MPPA-256. Further, we refine the analysis
to account for the release dates and response times of co-runners, and the use of memory
banks. Improvements to the precision of the analysis may be achieved by splitting each
task into two sequential phases, with the majority of the memory accesses in the first phase,
and few writes in the second phase. Our experimental evaluation addresses the ROSACE
avionics case study. Using measurements from the Kalray MPPA-256 as a basis, we show
that the new analysis introduced in this paper leads to response times that are a factor of
7.35 smaller compared to the default approach of assuming that each access is subject to
the worst-case interference.

We also study the effect of different parameters on the estimated WCRT. Here we focus on
(i) the effect of memory banks and release dates, (ii) the effect of blocking transactions, and
(iii) the effect of accesses from NoC. We rely on randomly generated DAGs using the layer-
by-layer method. With some tweaks, the method can generate Fast Fourier Transform graphs,
Laplace graphs, or Stencil graphs. In future work, other DAG generation methods [DRW98;
ER59] can also be investigated with regard to the above parameters.

Through the randomly generated benchmarks, our analysis shows that it can take ad-
vantage of precise information when available on the application model. For example, our
analysis with non-blocking accesses yields a better estimation compared with pessimistic
analyses with the same ratio of non-blocking accesses.

Chapter 8
F R O M T I M I N G A N A LY S I S T O R E A L - T I M E
I M P L E M E N TAT I O N

8.1 Design Choices and Implementation . 121

8.1.1 Code Generation and Impact on WCRT . 122

8.1.2 The WCRT–Mapping–Scheduling Relation . 122

8.2 Integration within the CAPACITES Project . 123

8.3 Conclusion . 124

In this chapter we discuss the result presented in this thesis and how it can be used in
state-of-the-art work. Scheduling techniques must rely on tight estimations of the WCRT
which in turn depends on co-runner tasks. However, in order to obtain a tight upper-
bound on the response time, a mapping and scheduling should be known in advance.
Indeed, the response time is highly influenced by the co-runner tasks. Concurrent accesses
to the same shared resource may introduce interference that should be accounted for in the
response time analysis. The search for an optimal scheduling with a tight WCRT analysis
that includes the shared resource interference is a challenging open problem.

8.1 design choices and implementation

SDF languages such as Lustre [Hal+91] offer an efficient programming paradigm that, us-
ing a certified compiler, can produce deterministic sequential code. An execution instance
of an SDF application is represented with a task dependency graph, where the amount
of exchanged data among the tasks is deterministic and known in advance. We consider
the application to be running on a multi/many core architecture with a partitioned shared
memory. Among the challenges while parallelizing such applications, we need to (i) specify
a task mapping that optimizes a certain cost function; (ii) specify a scheduling per process-
ing element that respects dependencies; (iii) find a tight estimate of the response time that
takes into account the interference from co-runners. There exists several solutions for the
mentioned points when taken individually. However, the connection and the interaction
among them remains an open problem.

121

122 from timing analysis to real-time implementation

8.1.1 Code Generation and Impact on WCRT

A code generator transforms a high-level language into a low-level language (such as the C
language) which in turn is compiled to run on a target architecture. Here synchronization
and communication routines are added to ensure functional correctness of the program.
Execution models can be applied: (i) A single-phase execution model where the output is
"sent" to the next node as soon as it is ready. (ii) A two-phase execution model with an
execution phase and a replication phase. The execution phase uses only the local memory bank
to compute and store the output data. Then, a replication phase is added to copy the output
data into their memory destinations. The number of shared resource accesses may be
significantly increased, but with a good scheduling of the execution and replication phases
the interference may be reduced. The choice of the execution model affects the results in
the next steps.

The WCRT analysis must be able to derive tight upper-bounds on the interference due
to concurrent accesses to shared resources, and therefore to estimate the response times
and release dates for all tasks. This requires a task mapping and scheduling as well as the
constraints on the task dependencies. The execution model given by the code generation
step can highly influence the analysis. As seen in Chapter 7, in the case of a two-phase
execution model, the upper bounds on the shared resource interference in the execution
and replication phases might be too pessimistic compared with the single execution model.
One may run the analysis on both execution models and retain the one with the best overall.

8.1.2 The WCRT–Mapping–Scheduling Relation

The work in this thesis sheds the light on the current state of timing analysis on multi-core
systems. The traditional analysis (as inherited from single-core systems) is done in two
steps: (i) get the timing information of each task, (ii) perform the scheduling and mapping
according to the provided information. Due to the potential large interference on shared
resources, it is hard to reach a satisfying result with such approach.

The response times must be re-estimated to precisely account for the interference on
shared resources and potentially reduce idle times. Since the timing information changes,
a new mapping and schedule might need to be recomputed. A possible solution relies
on constraint programming languages. A solver finds a satisfiable task mapping that opti-
mizes a cost function (for example, the end-to-end response time). The WCRT Analysis can
then compute a tighter estimation of the response times by taking into account potential
interference. New timing constraints are added to the model and the search stops when no
better solution can be found.

Since the mapping problem is NP-hard, it is hard to prove that the iterations between
WCRT analysis and scheduling/mapping analysis converges toward an absolute optimal
solution (assuming its existence). In the absence of such guarantee, one can iterate for a
certain number of times and choose the best solution. This interaction remains as an open
problem.

Holistic approaches that perform both steps at the same time seem a good starting point
toward efficient execution on multi-core systems. So far, our timing analysis is used in

8.2 integration within the capacites project 123

state-of-the-art work [Gra+18; MHP17] only to tightly estimate the interference on shared
resources in precomputed schedule and task mapping.

8.2 integration within the capacites project

This work takes place within the CAPACITES project [Cap]. This project aims at investi-
gating and efficiently exploiting integrated many-core architectures in safety-critical hard
real-time systems. The contributions target Kalray MPPA-256 many-core processor with a
strong focus on industrial applications. Among other goals, the project aims at: provid-
ing timing analysis tools, investigating the predictability of the hardware, adapting safety-
critical software, etc.

Our contribution is integrated in the workflow of the tool-chain shown in Figure 8.1. It
aims at producing an executable binary and static schedule and mapping from an SDF
program written in a high-level language such as SCADE or Lustre. The process goes
through source-to-source compilation from a high-level language to a low-level language
(typically C). The steps taken are:

1 A code generator performs source-to-source compilation from a Lustre code to a C
code. Execution models can be implemented here. Note that, we analyze here the
tasks and not the wrapping code that call them. In this phase, any initial simple
mapping and scheduling can be used to create a binary.

2 By analyzing the binary, this phase establishes tasks’ WCETs in isolation, either by
measurement-based techniques or using an adapted version of OTAWA. Since the
binary does not have the final mapping and scheduling of tasks, the WCETs obtained
here are an approximation to the final WCETs of tasks with their final mapping and
schedule.

3 The WCETs are used to generate a task mapping and a schedule. Any mapping and
scheduling technique (for instance, [NHP17]) can be used as long as it takes into
account the task dependencies.

4 The schedule and task mapping are added to the C code. This includes synchroniza-
tion routines to ensure functional properties and dependencies between tasks. This
step generates a new binary.

5 New profiles (WCETs and shared resource access requests) are generated from the
new binary. The introduced synchronization routines must be included in the in-
terference analysis. The task mapping and the schedule change the code and data
memory addresses, thus the number of accesses per memory banks.

6 The contribution of this thesis comes in this phase. Here, a new refined schedule is
generated to accurately account for the interference on shared resources.

7 In this last step, the new release dates are injected in the synchronization routines.
The final binary is produced here. Note that adding/updating release dates must not

124 from timing analysis to real-time implementation

SCADE/Lustre
application

Input

Code generation 1

1

WCET analysis

2

Task mapping
and scheduling

3
Code generation 2:
Add the task map-
ping in the binaries

4

WCET analysis and
Shared Resource
analysis

5

Response times and
release dates
computation

6
Code generation 3:
Add the response
time and release
dates in the binaries

7

Executable
binary for the
Kalray MPPA-

256 Bostan

Output

binary +
task graph

initialW
C

ETs

task mapping +
execution order

binary with
mappings

Ta
sk

pr
ofi

le
s

Response times,
Release dates

m
ap

pin
gs

an
d

ex
ec

. or
der

Figure 8.1: The proposed tool-chain within the CAPACITES project

change the memory layout 1 of the binary. Changing the memory layout may result
in a different number of accesses which may invalidate the analysis.

The above tool-chain is used by Graillat et al. [Gra+18] that focuses mainly on code gen-
eration. The experimental evaluation is performed on a Lustre version of the ROSACE
case study. Primary results show that tasks execute 26.1% to 49.6% of the budget time allo-
cated to them – this budget is obtained using our approach. Our approach is also used by
Martinez et al. [MHP17] who focus on the scheduling and mapping part of the tool-chain.

8.3 conclusion

Multi-core and many-core systems are a reality in embedded systems. This is a game
changer in terms of design, analysis, and validation tools. We highlight in this thesis the
importance of the interference on shared resources. We do not address the scheduling and
mapping problems. Our proposed approach can be integrated with other tools to refine
and improve the execution on multi-core and many-core systems.

The preliminary results of comparison with the real execution show that our approach
gives safe and conservative estimation on the execution time. The ROSACE case study
(used in [Gra+18]) is a small application with little memory accesses. It would be more
interesting to compare the estimated execution times with real execution times of a memory-
intensive industrial case study.

1 Location of data and code in the memory

8.3 conclusion 125

A static mapping/scheduling can be defined with: a task-to-core mapping, an execution
order per core, and release dates. In our approach, we consider a list scheduling where only
the release dates are updated to account for the interference. A future work is to investigate
how changing the execution order and task mappings affects the end-to-end response time.
This becomes more interesting in the two-phase execution model, when co-scheduling com-
munications and computations such that the interference is reduced [Mel+15; Bec+16]. The
tool-chain in Figure 8.1 can be extended by adding an iteration from 6 to 3 . The task
mapping and/or scheduling are updated with new timing information on the interference.

Chapter 9
C O N C L U S I O N S A N D P R O S P E C T S

9.1 Summary . 127

9.1.1 Context of the Thesis . 127

9.1.2 Contributions . 128

9.2 Future Work . 129

9.2.1 SMT-based approaches for WCET analysis . 129

9.2.2 Modeling the Shared Resource Accesses . 130

9.2.3 Timing Compositionality and Composability 130

9.2.4 Comparison with Real Execution . 131

9.2.5 Application Models . 131

9.2.6 Future of Timing Analysis of Multi-Core Real-Time Systems 131

9.1 summary

Multi-core and many-core architectures are emerging in embedded real time systems. This
thesis addresses the issue of taking into account the interference between cores, with shared
buses, in the Worst-Case Execution Time (WCET) analysis.

Our analysis computes hard bounds on the execution time: any approximation done in
the analysis should be conservative; the worst-case may be overestimated, but not underes-
timated. Previous works showed that formal methods like model-checking, abstract inter-
pretation, SMT-solving (logical formula resolution) and real-time calculus could be used for
worst-case timing analysis. Still, existing timing analyses of shared-memory systems with
these techniques reach a general issue of complexity and precision.

Analyzing an arbitrary system would not be feasible. Our proposed analysis takes into
account the application and the hardware architecture to deduce the possible interference;
if one can prove that one piece of code will be executed at a time where no other parts
of the application use the memory, then the analysis can safely assume that the memory
accesses it performs are not penalized by other concurrent accesses.

9.1.1 Context of the Thesis

In this thesis, we focus on the timing aspects of an application (such as the WCET and the
WCRT) in the presence of timing interference on shared resources. We propose techniques

127

128 conclusions and prospects

to find tight upper-bounds on delays of shared resources accesses in multi-core and many-
core systems.

The contributions of this thesis apply on two levels: at the source code level, the accesses
to shared resources are analyzed to obtain accurate upper-bounds on access delays. The
second contribution is on the level of binary. Using profiles obtained from external tools,
an overall upper-bounds is added to the WCET to account for potential delays.

We focus on the Synchronous Data-Flow programming paradigm. This paradigm is used
in avionics and automotive systems. It offers flexibility on the execution model that can
easily enforce the predictability of the system. In general, our method can be applied to
any dependent task graphs.

To provide accurate upper-bounds on shared resources, it is necessary that the underlying
architecture is simple and predictable. Complex architectures tend to have many states
which increases the over-approximation and/or harm the scalability of the analysis. In this
context, we focus on the industrial platform Kalray MPPA-256. This processor is designed
to offer more performance with a predictable behavior which makes it a good candidate for
hard-real time systems.

To address the problem of shared resource interference, we start with a TDMA-based arbi-
tration policy of shared resources. This work relies on the modeling of shared resources and
the program semantics with Satisfiability Modulo Theory expressions. Therefore, without
running the program, our method gives a tight upper-bound on the WCET. The analysis it-
self yields good results but have an exponential complexity. This can have some limitations
on large systems. Our second contribution focuses on a more scalable approach to tightly
account for the interference on shared resources. Detailed summary of our contributions is
presented in the following section.

9.1.2 Contributions

This thesis presents two major contributions. The first one proposes an approach with Sat-
isfiability Modulo Theory (SMT) to analyze programs running in a real-time environment
with shared resources under a TDMA arbitration policy. The second contribution proposes
an algorithm (with the proof of its correctness) of response time analysis of dependent
tasks (particularly synchronous data-flow programs) taking into account the interference
on shared resources.

9.1.2.1 WCET Analysis of TDMA Buses

Time Division Multiple Access arbitration policy enforces a bounded delay on shared re-
source accesses. This non-work conserving policy has the advantage of predictable behav-
ior compared with other work-conserving policies, such as fixed-priority or round-robin. It
offers a timing isolation which implies that cores can be analyzed separately.

We propose an alternative approach to the widely used ILP-based modeling to encode the
program semantics and the arbitration policy with SMT expression. The SMT expression
means: “Is there a feasible path with an execution time longer than X?”, where X is a
candidate upper-bound on WCET. This way, the feasible path analysis can be performed
at the same time as the WCET analysis with shared resource accesses. We evaluate our

9.2 future work 129

approach with the TACLeBench benchmark suite where the results show a considerable
improvement compared with simple pessimistic approaches.

9.1.2.2 Timing Analysis of Dependent Task Graphs

Our main contribution is an algorithm to compute a static, time-driven, periodic schedule,
as commonly used in hard real time systems for maximum predictability. We assume that
the mapping of tasks to cores and the execution order is given (either manually or provided
by a separate tool), and compute a set of release dates (offsets) and response times for each
task. This is an iterative process, with release dates dependent on the response times of
preceding tasks, and response times dependent on the set of co-runners, which are in turn
dependent on task release dates. The process either converges on a valid, all dependence
relations respected, and schedulable configuration or deems the system unschedulable with
that task mapping. In the latter case a different mapping could be tried. We also give
a proof of convergence of the algorithm. It is non-trivial since the usual monotonicity
argument does not apply; the sequence of release dates computed at each iteration may not
be monotonic.

This work aims at providing tools dedicated to the use of many-core systems in hard real-
time systems. Our methods were used in the framework of the CAPACITES project. Timing
analysis is required to partition and schedule tasks such that the resources are optimally
used. Our contributions are directly applied on the industrial many-core Kalray MPPA-256.
The results of our experimental evaluation provide a safe and predictable execution of tasks
with a tight over-approximation.

9.1.2.3 Model of an Industrial Shared Bus Arbiter

We target applications running on the Kalray MPPA-256 many-core processor. We identify
the sources of interference for an application running on a compute cluster, and provide a
mathematical model for them. The model builds upon the Multi-core Response Time Anal-
ysis (MRTA) framework [Alt+15]; a generic approach to response time analysis for multi-
core and many-core systems. Unlike MRTA, we consider a static, time-driven schedule, and
hence cannot use the same fixed-point algorithm. Instead, we provide a novel algorithm
that uses not only the mapping but also the information about when each task is executed;
this allows us to model the interference precisely. Finally, we evaluate our approach with
different benchmarks and apply it to the case study ROSACE, a realistic avionics applica-
tion. The experimental results show that the new analysis leads to tighter response times
than the default approach of assuming worst-case interference on each memory access.

9.2 future work

9.2.1 SMT-based approaches for WCET analysis

Our initial work on SMT encodings of shared TDMA buses opens many doors for research
and improvements. SMT shows good potential as an alternative to the classic ILP-based
approaches. There remain future work to be done on this topic which we explained in

130 conclusions and prospects

Section 4.5.2. In summary: (i) Our proof-of-concept implementation needs to be adapted for
realistic timing model in order to provide realistic WCET estimates that can be compared
with measured execution times. (ii) To counter the scalability issue, the analysis can be
made modular, operating on portions of the code to compute a global WCET estimate. (iii)
Another source of non-scalability is the analysis of loops as we only considered unrolled
loops. It is interesting to investigate how loops can be analyzed in SMT with minimum
enrolling.

Finally, this contribution of the thesis can serve as basis to other research works in order
to address the points mentioned above.

9.2.2 Modeling the Shared Resource Accesses

We focus in this work on the interference on the shared SRAM in compute clusters. We
assume that the code and data can fit in the memory without accessing the external DRAM.
MRTA [Dav+17], on which our framework is built upon, already supports an extension for
interference from DRAM. As a future work, a more accurate model of Kalray’s DRAM con-
troller will be added for a more accurate and tight timing delays. Accesses to the external
DRAM go through the Network-on-Chip which also needs to be accurately analyzed.

The Network-on-Chip needs to be modeled and analyzed in the context of a realistic
behavior. This takes into account the constraints by the packet shaper at the NoC routers.
The NoC is implemented following arrival curves from the Real-Time Calculus framework.
Existing tools [DG17; BMF11] are used to compute upper-bounds on communication delays
and/or arrival curves of packets on the NoC.

On the one hand, our framework can be extended to get inputs from arrival curves. The
interference from the NoC can be computed using upper-bounds on the memory accesses
that may occur within a time window. On the other hand, our framework can determine
when the data is ready to be sent through the NoC. This information is injected back to the
external NoC analysis tool.

9.2.3 Timing Compositionality and Composability

We assume throughout this thesis predictable architectures without timing anomalies. In
our experiments and evaluation, the Kalray MPPA-256 shows deterministic and predictable
behavior. Still, a formal proof of the timing compositionality of the processor is required.
The inputs to our framework must be composable. For instance, the upper-bound on the
number of memory accesses must be conservative and independent from co-runners.

We discuss an example with the write buffer in the data cache 6.6.2 (see Section 6.6.2). We
do not address the instruction cache in this work. The instruction pre-fetch buffer requires
a closer look at its behavior. A simulation-based model of the instruction cache is studied
in [MP17]. This model can be adapted to interact with our tool by providing upper-bounds
on accesses from the instruction cache. The challenge here is to ensure that the obtained
upper-bound is safe and covers all the timing aspects regarding the caches.

Hahn et al. [HJR16] propose a method to enable compositionality for shared resource
interference in multi-core systems. This work offers a different approach to timing analysis

9.2 future work 131

than the traditional ones that assume timing compositionality. Our framework can be used
to complement this approach and provide tight and guaranteed upper-bounds on shared
resource access delays.

9.2.4 Comparison with Real Execution

In the short term, it is important to evaluate the precision of the analysis by comparing its
results with real measurements on the platform. This requires the implementation of the
full tool-chain that generates an executable binary from the high-level source code of the
SDF application, including the mapping and scheduling of tasks. Synchronization routines
must be lightweight and predictable. Any delay induced from such routines must also be
added to the timing interference analysis. This is an on-going work by Amaury Graillat at
Verimag. Preliminary results seem promising on the ROSACE case study.

9.2.5 Application Models

We applied our approach on Synchronous Data-Flow programs, mainly used in avionics
(for example, SCADE used by Airbus). Our analysis can be extended to include other
programming models used in industrial applications. It would be interesting to ana-
lyze real-time programs written in the OpenMP [DM98] and OpenCL [SGS10] standards.
Model-based software design, such as Matlab/Simulink, can also benefit from our ap-
proach. This design approach is used in automotive, for example in the AUTOSAR stan-
dard [Hei+04], which is also a potential market for the Kalray MPPA-256.

We focused mainly on applications running on bare machines. Our approaches can
be extended to include a Real-Time Operating System (RTOS). The MRTA framework, on
which we built upon, has been extended to include interference from RTOS and interrupt
handlers [Dav+17]. In our case, Kalray uses its own hypervisor, acting as an RTOS, to
orchestrate the cores on a compute cluster. The RTOS is run on the Resource Manager
which we already model from the perspective of the multi-level bus arbiter. The challenge
is: (i) to derive tight bounds on the number of accesses from the RTOS that contribute in
the interference on the shared memory, (ii) model the interference on the Resource Manager
when tasks run system calls and other interrupt handlers.

9.2.6 Future of Timing Analysis of Multi-Core Real-Time Systems

This thesis focuses on multi-core and many-core systems. Such architectures promise more
performance but come with more challenges than single-cores. Existing approaches from
single-core processors reach their limits resulting in sub-optimal exploitation of the pro-
cessor. The traditional separation between WCET community and scheduling/mapping
community is not well established anymore. New approaches must operate over the tim-
ing analysis and the scheduling and mapping of tasks in a holistic way.

The work presented in this thesis provides a first step toward an efficient execution on
multi-core and many-core systems. It can be extended, for instance, by adding a third fixed-

132 conclusions and prospects

point iteration, to operate through several task mappings. The result should be an optimal
mapping and scheduling that accounts for the interference on shared resources.

B I B L I O G R A P H Y

[Ait] aiT. url: https://www.absint.com/ait/ (cit. on p. 38).

[AGR07] Benny Akesson, Kees Goossens, and Markus Ringhofer. “Predator: A Pre-
dictable SDRAM Memory Controller.” In: Proceedings of the 5th IEEE/ACM
International Conference on Hardware/Software Codesign and System Synthesis.
CODES+ISSS ’07. Salzburg, Austria, 2007, pp. 251–256 (cit. on p. 32).

[Alt+96] Martin Alt, Christian Ferdin, Florian Martin, and Reinhard Wilhelm. “Cache
Behavior Prediction by Abstract Interpretation.” In: Science of Computer Program-
ming. Springer, 1996, pp. 52–66 (cit. on p. 67).

[ADM12] S. Altmeyer, R. I. Davis, and C. Maiza. “Improved cache related pre-emption
delay aware response time analysis for fixed priority pre-emptive systems.” In:
Real-Time Systems 48.5 (2012), pp. 499–526 (cit. on p. 88).

[Alt13] Sebastian Altmeyer. “Analysis of preemptively scheduled hard real-time sys-
tems.” PhD thesis. Saarland University, 2013 (cit. on pp. 12, 15, 100).

[Alt+15] Sebastian Altmeyer, Robert I. Davis, Leandro Indrusiak, Claire Maiza, Vincent
Nelis, and Jan Reineke. “A Generic and Compositional Framework for Multi-
core Response Time Analysis.” In: Proceedings of the 23rd International Conference
on Real Time and Networks Systems (RTNS). 2015, pp. 129–138 (cit. on pp. 38, 72,
74, 94, 96, 119, 129).

[ARM04] ARM Limited, ed. ARM7TDMI r4p1 Technical Reference Manual. ARM Limited.
2004 (cit. on p. 19).

[ARM11] ARM Limited, ed. Cortex-R4 and Cortex-R4F Technical Reference Manual. ARM
Limited. 2011 (cit. on p. 19).

[Axe+14] Philip Axer et al. “Building Timing Predictable Embedded Systems.” In: ACM
Trans. Embed. Comput. Syst. 13.4 (Mar. 2014), 82:1–82:37 (cit. on p. 19).

[Bal+10] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat.
“OTAWA: An Open Toolbox for Adaptive WCET Analysis.” English. In: SEUS
2010. 2010, pp. 35–46 (cit. on pp. 25, 38, 47, 67, 107).

[Bal+17] Thomas Ballenthin, Boris Dreyer, Christian Hochberger, and Simon Wegener.
“Hardware Support for Histogram-Based Performance Analysis of Embedded
Systems.” In: 2017 IEEE 20th International Symposium on Real-Time Distributed
Computing (ISORC). May 2017, pp. 1–10 (cit. on p. 40).

[Bar+11] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. “Cvc4.” In: Inter-
national Conference on Computer Aided Verification. Springer. 2011, pp. 171–177

(cit. on p. 50).

133

https://www.absint.com/ait/

134 Bibliography

[Bec+16] Mathias Becker, Dakshina Dasari, Borislav Nicolic, Benny Åkesson, Vincent
Nélis, and Thomas Nolte. “Contention-Free Execution of Automotive Applica-
tions on a Clustered Many-Core Platform.” In: 2016 28th Euromicro Conference
on Real-Time Systems (ECRTS). 2016, pp. 14–24 (cit. on pp. 22, 33, 46, 84, 125).

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. “A Tutorial on Up-
paal.” In: Formal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004. LNCS 3185. 2004, pp. 200–236 (cit. on p. 35).

[BGJ91] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. “Synchronous
programming with events and relations: the SIGNAL language and its seman-
tics.” In: Science of Computer Programming 16.2 (1991), pp. 103 –149 (cit. on p. 14).

[BCP02] G. Bernat, A. Colin, and S. M. Petters. “WCET analysis of probabilistic hard
real-time systems.” In: 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002.
2002, pp. 279–288 (cit. on p. 10).

[Ber07] Gérard Berry. “Next Generation Design and Verification Methodologies for Dis-
tributed Embedded Control Systems: Proceedings of the GM R&D Workshop.”
In: 2007. Chap. SCADE: Synchronous Design and Validation of Embedded Con-
trol Software, pp. 19–33 (cit. on p. 14).

[Bie+03] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and
Yunshan Zhu. “Bounded model checking.” In: Advances in computers 58 (2003),
pp. 117–148 (cit. on p. 49).

[Bie+13] Armin Biere, Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. “The Auspi-
cious Couple: Symbolic Execution and WCET Analysis.” In: WCET 30 (2013),
pp. 53–63 (cit. on p. 67).

[BRS11] Roman Bourgade, Christine Rochange, and Pascal Sainrat. “Predictable bus
arbitration schemes for heterogeneous time-critical workloads running on mul-
ticore processors.” In: ETFA2011. Sept. 2011, pp. 1–4 (cit. on p. 32).

[BRS13] Roman Bourgade, Christine Rochange, and Pascal Sainrat. “Predictable Two-
level Bus Arbitration for Heterogeneous Task Sets.” In: Proceedings of the 26th
International Conference on Architecture of Computing Systems. ARCS’13. Prague,
Czech Republic, 2013, pp. 341–351 (cit. on p. 32).

[BMF11] Marc Boyer, Jorn Migge, and Marc Fumey. “PEGASE - A Robust and Efficient
Tool for Worst-Case Network Traversal Time Evaluation on AFDX.” In: SAE
Technical Paper. SAE International, Oct. 2011 (cit. on p. 130).

[Bru+08] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,
and Roberto Sebastiani. “The mathsat 4 smt solver.” In: International Conference
on Computer Aided Verification. Springer. 2008, pp. 299–303 (cit. on p. 50).

[BW16] Alan Burns and Andy Wellings. Analysable Real-time Systems: Programmed in
Ada. CreateSpace Independent Publishing Platform, 2016 (cit. on p. 13).

Bibliography 135

[But04] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling
Algorithms And Applications (Real-Time Systems Series). Santa Clara, CA, USA:
Springer-Verlag TELOS, 2004 (cit. on p. 12).

[Cap] CAPACITES. url: http://capacites.minalogic.net/en/ (cit. on pp. 3, 123).

[Car+15] Thomas Carle, Dumitru Potop-Butucaru, Yves Sorel, and David Lesens. “From
Dataflow Specification to Multiprocessor Partitioned Time-triggered Real-time
Implementation.” In: LITES 2.2 (2015), 01:1–01:30 (cit. on pp. 36, 37, 41).

[CRM10] Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. “Modeling
Shared Cache and Bus in Multi-cores for Timing Analysis.” In: Proceedings of
the 13th International Workshop on Software and Compilers for Embedded Systems.
SCOPES ’10. St. Goar, Germany: ACM, 2010, 6:1–6:10 (cit. on pp. 35, 40).

[CKH16] J. Choi, D. Kang, and S. Ha. “Conservative modeling of shared resource con-
tention for dependent tasks in partitioned multi-core systems.” In: DATE. 2016,
pp. 181–186 (cit. on pp. 38, 41).

[Chr] Chronos. url: http://www.comp.nus.edu.sg/~rpembed/chronos/ (cit. on p. 39).

[Chr12] George Chrysos. “Intel® xeon phi coprocessor (codename knights corner).” In:
Hot Chips 24 Symposium (HCS), 2012 IEEE. IEEE. 2012, pp. 1–31 (cit. on p. 17).

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints.” In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages. POPL ’77. 1977, pp. 238–252 (cit. on p. 10).

[CG+12] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis,
J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla. “Measurement-Based
Probabilistic Timing Analysis for Multi-path Programs.” In: 2012 24th Euromicro
Conference on Real-Time Systems. July 2012, pp. 91–101 (cit. on p. 39).

[Cul+10] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel Grund,
Claire Maiza (Burguière), Jan Reineke, Benoît Triquet, and Reinhard Wilhelm.
“Predictability Considerations in the Design of Multi-Core Embedded Sys-
tems.” In: Embedded Real Time Software and Systems (ERTSS). 2010 (cit. on pp. 19,
23).

[DM98] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry standard API for
shared-memory programming.” In: IEEE computational science and engineering
5.1 (1998), pp. 46–55 (cit. on p. 131).

[Dah+05] Anat Dahan, Daniel Geist, Leonid Gluhovsky, Dmitry Pidan, Gil Shapir, Yaron
Wolfsthal, Lyes Benalycherif, Romain Kamdem, and Younes Lahbib. “Combin-
ing System Level Modeling with Assertion Based Verification.” In: 6th Interna-
tional Symposium on Quality of Electronic Design (ISQED 2005), 21-23 March 2005,
San Jose, CA, USA. 2005, pp. 310–315 (cit. on p. 10).

[DNA15] Dakshina Dasari, Vincent Nelis, and Benny Akesson. “A framework for mem-
ory contention analysis in multi-core platforms.” In: Real-Time Systems (2015),
pp. 1–51. issn: 1573-1383 (cit. on pp. 35, 38–40, 46, 84).

http://capacites.minalogic.net/en/
http://www.comp.nus.edu.sg/~rpembed/chronos/

136 Bibliography

[Dav13] R. Cok David. The SMT-LIBv2 Language and Tools: A Tutorial. Mar. 2013 (cit. on
p. 51).

[DP60] Martin Davis and Hilary Putnam. “A Computing Procedure for Quantification
Theory.” In: J. ACM 7.3 (June 1960), pp. 201–215 (cit. on p. 51).

[DAR16] Robert I. Davis, Sebastian Altmeyer, and Jan Reineke. Analysis of Write-back
Caches under Fixed-priority Preemptive and Non-preemptive Scheduling. Technical
Report. Tech. rep. https://www.cs.york.ac.uk/ftpdir/reports/2016/YCS/
502/YCS-2016-502.pdf. University of York, 2016 (cit. on p. 100).

[Dav+17] Robert I. Davis, Sebastian Altmeyer, Leandro S. Indrusiak, Claire Maiza, Vin-
cent Nelis, and Jan Reineke. “An extensible framework for multicore response
time analysis.” In: Real-Time Systems (July 2017) (cit. on pp. 130, 131).

[DMB08] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver.” In: Pro-
ceedings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. TACAS’08/ETAPS’08.
2008, pp. 337–340 (cit. on p. 50).

[DRW98] Roberet P. Dick, David L. Rhodes, and Wayne Wolf. “TGFF: task graphs for
free.” In: Hardware/Software Codesign, 1998. (CODES/CASHE ’98) Proceedings of
the Sixth International Workshop on. Mar. 1998, pp. 97–101 (cit. on p. 119).

[DG17] Benoît Dupont de Dinechin and Amaury Graillat. “Network-on-chip service
guarantees on the kalray MPPA-256 bostan processor.” In: Proceedings of the
2nd International Workshop on Advanced Interconnect Solutions and Technologies for
Emerging Computing Systems. ACM. 2017, pp. 35–40 (cit. on p. 130).

[Din+14a] Benoît Dupont de Dinechin, Yves Durand, Duco van Amstel, and Alexandre
Ghiti. “Guaranteed Services of the NoC of a Manycore Processor.” In: NoCArc
2014. Cambridge, United Kingdom, 2014, pp. 11–16 (cit. on p. 103).

[Din+14b] Benoît Dupont de Dinechin, Duco van Amstel, Marc Poulhiès, and Guillaume
Lager. “Time-critical Computing on a Single-chip Massively Parallel Proces-
sor.” In: DATE 2014. Dresden, Germany, 2014, 97:1–97:6 (cit. on pp. 17, 20, 30,
38, 70, 85).

[DDM06] Bruno Dutertre and Leonardo De Moura. “The yices smt solver.” In: Tool paper
at http://yices. csl. sri. com/tool-paper. pdf 2.2 (2006), pp. 1–2 (cit. on p. 50).

[EC80] E. Allen Emerson and Edmund M. Clarke. “Characterizing correctness proper-
ties of parallel programs using fixpoints.” In: Automata, Languages and Program-
ming: Seventh Colloquium Noordwijkerhout, the Netherlands July 14–18, 1980. 1980,
pp. 169–181 (cit. on p. 10).

[ER59] P. Erdös and A. Rényi. “On random graphs, I.” In: Publicationes Mathematicae
(Debrecen) 6 (1959), pp. 290–297 (cit. on p. 119).

[Fer+99] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt.
“Cache behavior prediction by abstract interpretation.” In: Science of Computer
Programming 35.2 (1999), pp. 163 –189 (cit. on p. 23).

https://www.cs.york.ac.uk/ftpdir/reports/2016/YCS/502/YCS-2016-502.pdf
https://www.cs.york.ac.uk/ftpdir/reports/2016/YCS/502/YCS-2016-502.pdf

Bibliography 137

[FF98] Eric Fleury and Pierre Fraigniaud. “A general theory for deadlock avoidance
in wormhole-routed networks.” In: IEEE Transactions on Parallel and Distributed
Systems 9.7 (July 1998), pp. 626–638 (cit. on p. 31).

[Fos09] Harry Foster. “Applied Assertion-Based Verification: An Industry Perspective.”
In: Found. Trends Electron. Des. Autom. 3.1 (2009), pp. 1–95 (cit. on p. 10).

[Gar+76] M.R Garey, R.L Graham, D.S Johnson, and Andrew Chi-Chih Yao. “Resource
constrained scheduling as generalized bin packing.” In: Journal of Combinatorial
Theory, Series A 21.3 (1976), pp. 257 –298 (cit. on p. 33).

[Gia+14] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar
Thiele. “Mapping Mixed-criticality Applications on Multi-core Architectures.”
In: Proceedings of the Conference on Design, Automation & Test in Europe. DATE
’14. 2014, 98:1–98:6 (cit. on pp. 17, 46).

[Gia+16] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, Lothar Thiele,
and Benoît Dupont de Dinechin. “Mixed-criticality scheduling on cluster-based
manycores with shared communication and storage resources.” In: Real-Time
Systems 52.4 (2016), pp. 399–449 (cit. on pp. 36–38, 41, 46, 96).

[Gia+17] Georgia Giannopoulou, Pengcheng Huang, Rehan Ahmed, Davide B. Bartolini,
and Lothar Thiele. “Isolation Scheduling on Multicores: Model and Scheduling
Approaches.” In: Real-Time Systems 53.4 (July 2017), 614–667 (cit. on p. 33).

[Gra+18] Amaury Graillat, Matthieu Moy, Pascal Raymond, and Benoît Dupont de
Dinechin. “Parallel Code Generation of Synchronous Programs for a Many-
core Architecture.” In: DATE. 2018, to appear (cit. on pp. 72, 123, 124).

[Gus+06] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn Lisper. “Au-
tomatic Derivation of Loop Bounds and Infeasible Paths for WCET Analysis
Using Abstract Execution.” In: 2006 27th IEEE International Real-Time Systems
Symposium (RTSS’06). Dec. 2006, pp. 57–66 (cit. on p. 46).

[Gus+10] Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson.
“Towards WCET Analysis of Multicore Architectures Using UPPAAL.” In:
WCET 2010. Vol. 15. OpenAccess Series in Informatics (OASIcs). 2010, pp. 101–
112 (cit. on p. 35).

[HJR16] Sebastian Hahn, Michael Jacobs, and Jan Reineke. “Enabling Compositionality
for Multicore Timing Analysis.” In: Proceedings of the 24th International Confer-
ence on Real Time and Networks Systems (RTNS). 2016, pp. 299–308 (cit. on pp. 103,
130).

[Hal+91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. “The synchronous data
flow programming language LUSTRE.” In: Proceedings of the IEEE 79.9 (1991),
pp. 1305–1320 (cit. on pp. 14, 121).

[HRP17] Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. “The Heptane Static
Worst-Case Execution Time Estimation Tool.” In: 17th International Workshop
on Worst-Case Execution Time Analysis (WCET 2017). Vol. 57. OpenAccess Series
in Informatics (OASIcs). 2017, pp. 1–12 (cit. on pp. 25, 38).

138 Bibliography

[Hei+04] Harald Heinecke, Klaus-Peter Schnelle, Helmut Fennel, Jürgen Bortolazzi,
Lennart Lundh, Jean Leflour, Jean-Luc Maté, Kenji Nishikawa, and Thomas
Scharnhorst. “Automotive open system architecture-an industry-wide initiative
to manage the complexity of emerging automotive e/e-architectures.” In: Con-
vergence (2004), pp. 325–332 (cit. on p. 131).

[HMM12] Julien Henry, David Monniaux, and Matthieu Moy. “PAGAI: A Path Sensitive
Static Analyser.” In: Electron. Notes Theor. Comput. Sci. 289 (Dec. 2012), pp. 15–
25 (cit. on p. 58).

[Hen+14] Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maïza. “How to
Compute Worst-case Execution Time by Optimization Modulo Theory and
a Clever Encoding of Program Semantics.” In: Proceedings of the 2014 SIG-
PLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems
(LCTES). 2014, pp. 43–52 (cit. on pp. 51–53, 58, 67).

[JM97] Jean Marc Jézéquel and Bertrand Meyer. “Design by contract: the lessons of
Ariane.” In: Computer 30.1 (1997), pp. 129–130 (cit. on p. 9).

[KM17] Timon Kelter and Peter Marwedel. “Parallelism analysis: Precise WCET values
for complex multi-core systems.” In: Science of Computer Programming 133 (2017).
Formal Techniques for Safety-Critical Systems (FTSCS 2014), pp. 175 –193 (cit.
on p. 37).

[Kel+13] Timon Kelter, Tim Harde, Peter Marwedel, and Heiko Falk. “Evaluation of re-
source arbitration methods for multi-core real-time systems.” In: 13th Interna-
tional Workshop on Worst-Case Execution Time Analysis. Vol. 30. OpenAccess Se-
ries in Informatics (OASIcs). 2013, pp. 1–10 (cit. on p. 46).

[Kel+14] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Ab-
hik Roychoudhury. “Static Analysis of Multi-core TDMA Resource Arbitration
Delays.” In: Real-Time Syst. 50.2 (Mar. 2014), pp. 185–229 (cit. on pp. 35, 40, 48,
67).

[Kim+14] Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu,
and Ragunathan Rajkumar. “Bounding memory interference delay in COTS-
based multi-core systems.” In: Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), 2014 IEEE 20th. IEEE. 2014, pp. 145–154 (cit. on p. 46).

[Kim+13] Jinwoo Kim, Hyunok Oh, Junchul Choi, Hyojin Ha, and Soonhoi Ha. “A novel
analytical method for worst case response time estimation of distributed em-
bedded systems.” In: 2013 50th ACM/EDAC/IEEE Design Automation Conference
(DAC). May 2013, pp. 1–10 (cit. on p. 38).

[Kop11] Hermann Kopetz. Real-Time Systems - Design Principles for Distributed Embedded
Applications. Real-Time Systems Series. Springer, 2011 (cit. on p. 8).

[LPT09] Kai Lampka, Simon Perathoner, and Lothar Thiele. “Analytic Real-time Anal-
ysis and Timed Automata: A Hybrid Method for Analyzing Embedded Real-
time Systems.” In: Proceedings of the Seventh ACM International Conference on
Embedded Software. EMSOFT ’09. Grenoble, France, 2009, pp. 107–116 (cit. on
p. 37).

Bibliography 139

[Lam+14] Kai Lampka, Georgia Giannopoulou, Rodolfo Pellizzoni, Zheng Wu, and Niko-
lay Stoimenov. “A formal approach to the WCRT analysis of multicore systems
with memory contention under phase-structured task sets.” In: Real-Time Sys-
tems 50.5-6 (2014), pp. 736–773 (cit. on p. 37).

[LPR14] Hanbing Li, Isabelle Puaut, and Erven Rohou. “Traceability of Flow Informa-
tion: Reconciling Compiler Optimizations and WCET Estimation.” In: Proceed-
ings of the 22nd International Conference on Real-Time Networks and Systems. 2014,
p. 97 (cit. on p. 67).

[LM95] Yau-Tsun Steven Li and Sharad Malik. “Performance Analysis of Embedded
Software Using Implicit Path Enumeration.” In: Proceedings of the 32nd Annual
ACM/IEEE Design Automation Conference. DAC ’95. San Francisco, California,
USA, 1995, pp. 456–461 (cit. on p. 24).

[LMS15] Zhenmin Li, Avinash Malik, and Zoran Salcic. “Reducing Worst Case Reac-
tion Time of Synchronous Programs on Chip-multiprocessors with Application-
Specific TDMA Scheduling.” In: Proceedings of the 13th International Workshop on
Java Technologies for Real-time and Embedded Systems. JTRES ’15. Paris, France:
ACM, 2015, 11:1–11:9 (cit. on p. 36).

[LS99] Thomas Lundqvist and Per Stenström. “Timing Anomalies in Dynamically
Scheduled Microprocessors.” In: Proceedings of the 20th IEEE Real-Time Systems
Symposium. RTSS ’99. 1999, pp. 12– (cit. on pp. 18, 19).

[Lv+10] Mingsong Lv, Wang Yi, Nan Guan, and Ge Yu. “Combining Abstract Interpre-
tation with Model Checking for Timing Analysis of Multicore Software.” In:
Proceedings of the 2010 31st IEEE Real-Time Systems Symposium. RTSS ’10. IEEE
Computer Society, 2010, pp. 339–349 (cit. on pp. 35, 63).

[Man+17] Renato Mancuso, Rodolfo Pellizzoni, Neriman Tokcan, and Marco Caccamo.
“WCET Derivation under Single Core Equivalence with Explicit Memory Bud-
get Assignment.” In: 29th Euromicro Conference on Real-Time Systems (ECRTS
2017). Vol. 76. Leibniz International Proceedings in Informatics (LIPIcs). 2017,
3:1–3:23 (cit. on p. 37).

[MHP17] Sébastien Martinez, Damien Hardy, and Isabelle Puaut. “Quantifying WCET
reduction of parallel applications by introducing slack time to limit resource
contention.” In: Proceedings of the 25rd International Conference on Real Time and
Networks Systems (RTNS). 2017, to appear (cit. on pp. 123, 124).

[MP17] Omayma Matoussi and Frédéric Pétrot. “Modeling instruction cache and in-
struction buffer for performance estimation of VLIW architectures using native
simulation.” In: Design, Automation Test in Europe Conference Exhibition (DATE),
2017. Mar. 2017, pp. 266–269 (cit. on p. 130).

[Mel+15] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-
Spaccamela, and Giorgio Buttazzo. “Memory-Processor Co-Scheduling in
Fixed Priority Systems.” In: Proceedings of the 23rd International Conference on
Real Time and Networks Systems (RTNS). 2015, pp. 87–96 (cit. on pp. 22, 33, 72,
84, 108, 125).

140 Bibliography

[Mel+12] Diego Melpignano, Luca Benini, Eric Flamand, Bruno Jego, Thierry Lepley, Ger-
main Haugou, Fabien Clermidy, and Denis Dutoit. “Platform 2012, a Many-
core Computing Accelerator for Embedded SoCs: Performance Evaluation of
Visual Analytics Applications.” In: Proceedings of the 49th Annual Design Automa-
tion Conference. DAC. 2012, pp. 1137–1142 (cit. on p. 17).

[Mou15] Jad Mouawad. “F.A.A Orders Fix for Possible Power Loss in Boeing 787.” In:
The New York Times (May 1, 2015). Available: https://www.nytimes.com/2015/
05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-

787.html [Last accessed: September 8, 2017] (cit. on p. 9).

[NHP15] Viet Anh Nguyen, Damien Hardy, and Isabelle Puaut. “Scheduling of parallel
applications on many-core architectures with caches: bridging the gap between
WCET analysis and schedulability analysis.” In: 9th Junior Researcher Workshop
on Real-Time Computing (JRWRTC 2015). 2015 (cit. on p. 71).

[NHP17] Viet Anh Nguyen, Damien Hardy, and Isabelle Puaut. “Cache-Conscious Of-
fline Real-Time Task Scheduling for Multi-Core Processors.” In: 29th Euromicro
Conference on Real-Time Systems (ECRTS 2017). Vol. 76. Leibniz International Pro-
ceedings in Informatics (LIPIcs). 2017, 14:1–14:22 (cit. on pp. 33, 71, 123).

[Now+14] Jan Nowotsch, Michael Paulitsch, Daniel Buhler, Henrik Theiling, Simon We-
gener, and Michael Schmidt. “Multi-core Interference-Sensitive WCET Anal-
ysis Leveraging Runtime Resource Capacity Enforcement.” In: ECRTS. 2014,
pp. 109–118 (cit. on p. 11).

[NYP17] Vincent Nélis, Patrick Meumeu Yomsi, and Luís Miguel Pinho. “The P-
SOCRATES Timing Analysis Methodology for Parallel Real-Time Applications
Deployed on Many-Core Platforms.” In: 17th International Workshop on Worst-
Case Execution Time Analysis (WCET 2017). Vol. 57. OpenAccess Series in Infor-
matics (OASIcs). 2017, pp. 1–9 (cit. on p. 40).

[OLF17] Dominic Oehlert, Arno Luppold, and Heiko Falk. “Bus-Aware Static Instruc-
tion SPM Allocation for Multicore Hard Real-Time Systems.” In: 29th Euromi-
cro Conference on Real-Time Systems (ECRTS 2017). Vol. 76. Leibniz International
Proceedings in Informatics (LIPIcs). 2017, 1:1–1:22 (cit. on p. 36).

[Pso] P-SOCRATES. url: http://www.p-socrates.eu (cit. on p. 40).

[Pag+14] C. Pagetti, D. Saussie, R. Gratia, E. Noulard, and P. Siron. “The ROSACE case
study: From Simulink specification to multi/many-core execution.” In: RTAS
2014. 2014, pp. 309–318 (cit. on pp. 20, 21, 116).

[Pan+15] M. Panic, J. Abella, C. Hernandez, E. Quiñones, T. Ungerer, and F. J. Cazorla.
“Enabling TDMA Arbitration in the Context of MBPTA.” In: 2015 Euromicro
Conference on Digital System Design. Aug. 2015, pp. 462–469 (cit. on p. 39).

[Pao+09] Marco Paolieri, Eduardo Quinones, Francisco J. Cazorla, and Mateo Valero.
“An Analyzable Memory Controller for Hard Real-Time CMPs.” In: IEEE Em-
bedded Systems Letters 1.4 (Dec. 2009), pp. 86–90 (cit. on p. 32).

https://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html
https://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html
https://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html
http://www.p-socrates.eu

Bibliography 141

[Pao+13] Marco Paolieri, Jörg Mische, Stefan Metzlaff, Mike Gerdes, Eduardo Quiñones,
Sascha Uhrig, Theo Ungerer, and Francisco J. Cazorla. “A Hard Real-time Capa-
ble Multi-core SMT Processor.” In: ACM Trans. Embed. Comput. Syst. 12.3 (Apr.
2013), 79:1–79:26 (cit. on p. 32).

[Pel+11] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley.
“A Predictable Execution Model for COTS-Based Embedded Systems.” In: 2011
17th IEEE Real-Time and Embedded Technology and Applications Symposium. Apr.
2011, pp. 269–279 (cit. on pp. 21, 33).

[Pel+08] Rodolfo Pellizzoni, Bach D. Bui, Marco Caccamo, and Lui Sha. “Coscheduling
of CPU and I/O Transactions in COTS-Based Embedded Systems.” In: Proceed-
ings of the 2008 Real-Time Systems Symposium. 2008, pp. 221–231 (cit. on p. 22).

[Pel+10] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and
Lothar Thiele. “Worst Case Delay Analysis for Memory Interference in Multi-
core Systems.” In: DATE. Dresden, Germany, 2010, pp. 741–746 (cit. on p. 38).

[Per+16a] Quentin Perret, Pascal Maurère, Éric Noulard, Claire Pagetti, Pascal Sainrat,
and Benoît Triquet. “Mapping Hard Real-time Applications on Many-core Pro-
cessors.” In: Proceedings of the 24th International Conference on Real-Time Networks
and Systems. 2016, pp. 235–244 (cit. on pp. 17, 41).

[Per+16b] Quentin Perret, Pascal Maurere, Eric Noulard, Claire Pagetti, Pascal Sainrat,
and Benoît Triquet. “Predictable composition of memory accesses on many-
core processors.” In: 8th European Congress on Embedded Real Time Software and
Systems (ERTS 2016). 2016 (cit. on pp. 32, 36).

[Per+16c] Quentin. Perret, Pascal Maurere, Eric Noulard, Claire Pagetti, Pascal Sainrat,
and Benoît Triquet. “Temporal Isolation of Hard Real-Time Applications on
Many-Core Processors.” In: 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). Apr. 2016, pp. 1–11 (cit. on p. 32).

[Pha+13] Linh T. X. Phan, Meng Xu, Jaewoo Lee, Insup Lee, and Oleg Sokolsky.
“Overhead-aware compositional analysis of real-time systems.” In: 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS). Apr.
2013, pp. 237–246 (cit. on p. 103).

[Pro] PROXIMA. url: http://www.proxima-project.eu (cit. on p. 39).

[PNP13] W. Puffitsch, E. Noulard, and C. Pagetti. “Mapping a multi-rate synchronous
language to a many-core processor.” In: RTAS 2013. 2013, pp. 293–302 (cit. on
pp. 17, 33).

[Rad+12] Petar Radojković, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami
Yehia, and Francisco J. Cazorla. “On the evaluation of the impact of shared
resources in multithreaded COTS processors in time-critical environments.” In:
ACM Trans. Archit. Code Optim. 8.4 (Jan. 2012), 34:1–34:25 (cit. on p. 11).

[Ray14] Pascal Raymond. “A general approach for expressing infeasibility in Implicit
Path Enumeration Technique.” In: 2014 International Conference on Embedded Soft-
ware (EMSOFT). Oct. 2014, pp. 1–9 (cit. on pp. 25, 46).

http://www.proxima-project.eu

142 Bibliography

[Ray+15] Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Fabienne Car-
rier, and Mihail Asavoae. “Timing analysis enhancement for synchronous pro-
gram.” English. In: Real-Time Systems (2015), pp. 1–29 (cit. on pp. 46, 67).

[Rei08] J. Reineke. Caches in WCET Analysis: Predictability, Competitiveness, Sensitivity.
epubli, 2008 (cit. on pp. 16, 19, 100).

[Rei+06] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian,
Jochen Eisinger, and Bernd Becker. “A Definition and Classification of Timing
Anomalies.” In: WCET 4 (2006) (cit. on p. 46).

[Rei+11] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, and Edward A. Lee.
“PRET DRAM Controller: Bank Privatization for Predictability and Temporal
Isolation.” In: Proceedings of the Seventh IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis. CODES+ISSS ’11. Taipei,
Taiwan, 2011, pp. 99–108 (cit. on p. 32).

[Rih+15] Hamza Rihani, Matthieu Moy, Claire Maiza, and Sebastian Altmeyer. “WCET
analysis in shared resources real-time systems with TDMA buses.” In: RTNS
2015. 23rd International Conference on Real-Time Networks and Systems. Nov.
2015 (cit. on pp. 3, 53).

[Rih+16] Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I. Davis, and Sebastian
Altmeyer. “Response Time Analysis of Synchronous Data Flow Programs on
a Many-Core Processor.” In: Proceedings of the 24th International Conference on
Real-Time Networks and Systems (RTNS). 2016, pp. 67–76 (cit. on p. 3).

[Ros+07] Jacob Rosèn, Alexandru Andrei, Petru Eles, and Zebo Peng. “Bus Access Op-
timization for Predictable Implementation of Real-Time Applications on Multi-
processor Systems-on-Chip.” In: RTSS 2007. 2007 (cit. on pp. 34–36, 41).

[Sai+15] Selma Saidi, Rolf Ernst, Sascha Uhrig, Henrik Theiling, and Benoît Dupont de
Dinechin. “The shift to multicores in real-time and safety-critical systems.” In:
2015 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). Oct. 2015, pp. 220–229 (cit. on pp. 29, 31).

[Sai+14] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and
Christopher D Gill. “Parallel real-time scheduling of DAGs.” In: IEEE Trans-
actions on Parallel and Distributed Systems 25.12 (2014), pp. 3242–3252 (cit. on
p. 113).

[SGM17] Luca Santinelli, Fabrice Guet, and Jerome Morio. “Revising Measurement-
Based Probabilistic Timing Analysis.” In: 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). Apr. 2017, pp. 199–208 (cit. on
p. 39).

[Sch+08] Simon Schliecker, Mircea Negrean, Gabriela Nicolescu, Pierre Paulin, and Rolf
Ernst. “Reliable Performance Analysis of a Multicore Multithreaded System-
on-chip.” In: Proceedings of the 6th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. CODES+ISSS ’08. Atlanta, GA,
USA, 2008, pp. 161–166 (cit. on p. 35).

Bibliography 143

[Sch+14] Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang Puffitsch, and
Daniel Prokesch. Patmos Reference Handbook. 2014 (cit. on p. 19).

[Sch+15] Martin Schoeberl et al. “T-CREST: Time-predictable multi-core architecture for
embedded systems.” In: Journal of Systems Architecture 61.9 (2015), pp. 449 –471

(cit. on pp. 20, 30, 32).

[SCT10] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. “Timing Analysis for
TDMA Arbitration in Resource Sharing Systems.” In: Proceedings of the 2010
16th IEEE Real-Time and Embedded Technology and Applications Symposium. 2010,
pp. 215–224 (cit. on pp. 22, 33, 35, 38, 46).

[Sch+10] Andreas Schranzhofer, Rodolfo Pellizzoni, Jian-Jia Chen, Lothar Thiele, and
Marco Caccamo. “Worst-case Response Time Analysis of Resource Access Mod-
els in Multi-core Systems.” In: Proceedings of the 47th Design Automation Confer-
ence. DAC ’10. Anaheim, California, 2010, pp. 332–337 (cit. on p. 35).

[SS16] Stefanos Skalistis and Alena Simalatsar. “Worst-Case Execution Time Analy-
sis for Many-Core Architectures with NoC.” In: Proceedings of the 14th Interna-
tional Conference on Formal Modeling and Analysis of Timed Systems, FORMATS.
Springer International Publishing, 2016, pp. 211–227 (cit. on p. 96).

[Sou+07] Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Guillaume Borios, Victor
Jégu, and Reinhold Heckmann. “Computing the Worst Case Execution Time of
an Avionics Program by Abstract Interpretation.” In: 5th International Workshop
on Worst-Case Execution Time Analysis (WCET’05). Vol. 1. OpenAccess Series in
Informatics (OASIcs). 2007 (cit. on p. 22).

[SGS10] John E Stone, David Gohara, and Guochun Shi. “OpenCL: A parallel program-
ming standard for heterogeneous computing systems.” In: Computing in science
& engineering 12.3 (2010), pp. 66–73 (cit. on p. 131).

[Swe] SWEET. url: http://www.mrtc.mdh.se/projects/wcet/sweet/ (cit. on p. 38).

[Ten14] Pranav Tendulkar. “Mapping and Scheduling on Multi-core Processors using
SMT Solvers. (placement et ordonnancement sur les processeurs multi-core en
utilisant un solveur SMT).” PhD thesis. Joseph Fourier University, Grenoble,
France, 2014 (cit. on p. 17).

[Ten+14] Pranav Tendulkar, Peter Poplavko, Ioannis Galanommatis, and Oded Maler.
“Many-Core Scheduling of Data Parallel Applications Using SMT Solvers.” In:
2014 17th Euromicro Conference on Digital System Design. Aug. 2014, pp. 615–622

(cit. on p. 41).

[The+03] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R.
Wilhelm, and C. Ferdinand. “An abstract interpretation-based timing valida-
tion of hard real-time avionics software.” In: 2003 International Conference on
Dependable Systems and Networks, 2003. Proceedings. June 2003, pp. 625–632 (cit.
on p. 22).

[Til12] Tilera Corporation, ed. Tile Processor Architecture Overview for the TILE-Gx Series.
Tilera Corporation. 2012 (cit. on pp. 17, 20, 30).

http://www.mrtc.mdh.se/projects/wcet/sweet/

144 Bibliography

[TK02] Takao Tobita and Hironori Kasahara. “A standard task graph set for fair eval-
uation of multiprocessor scheduling algorithms.” In: Journal of Scheduling 5.5
(2002), pp. 379–394 (cit. on p. 111).

[Tou+17] Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. “Ascertain-
ing Uncertainty for Efficient Exact Cache Analysis.” In: Computer Aided Verifi-
cation - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part II. 2017, pp. 22–40 (cit. on p. 23).

[VYF16] P. K. Valsan, H. Yun, and F. Farshchi. “Taming Non-blocking Caches to Improve
Isolation in Multicore Real-Time Systems.” In: RTAS. Apr. 2016, pp. 161–172 (cit.
on p. 11).

[WN15] Jörg Walter and Wolfgang Nebel. “Energy–Aware Mapping and Scheduling of
Large–Scale Macro Data–Flow Applications.” In: 1st International Workshop on
Investigating Dataflow in Embedded Computing Architecture. 2015 (cit. on pp. 17,
33).

[Weg17] Simon Wegener. “Towards Multicore WCET Analysis.” In: 17th International
Workshop on Worst-Case Execution Time Analysis (WCET 2017). Vol. 57. OpenAc-
cess Series in Informatics (OASIcs). 2017, pp. 1–12 (cit. on pp. 31, 32).

[Wil+08] Reinhard Wilhelm et al. “The Worst-case Execution-time Problem – Overview
of Methods and Survey of Tools.” In: ACM Trans. Embed. Comput. Syst. 7.3
(2008), 36:1–36:53 (cit. on pp. 10, 22, 25, 107).

[YYA16] Kecheng Yang, Ming Yang, and James H. Anderson. “Reducing Response-Time
Bounds for DAG-Based Task Systems on Heterogeneous Multicore Platforms.”
In: Proceedings of the 24th International Conference on Real-Time Networks and Sys-
tems. RTNS ’16. Brest, France: ACM, 2016, pp. 349–358 (cit. on p. 33).

A B S T R A C T

Predictability is of paramount importance in real-time and safety-critical systems, where non-functional prop-
erties – such as the timing behavior – have high impact on the system’s correctness. As many safety-critical
systems have a growing performance demand, classical architectures, such as single-cores, are not sufficient
anymore. One increasingly popular solution is the use of multi-core systems, even in the real-time domain. Re-
cent many-core architectures, such as the Kalray MPPA, were designed to take advantage of the performance
benefits of a multi-core architecture while offering certain predictability. It is still hard, however, to predict the
execution time due to interferences on shared resources (e.g., bus, memory, etc.).
To tackle this challenge, Time Division Multiple Access (TDMA) buses are often advocated. In the first part
of this thesis, we are interested in the timing analysis of accesses to shared resources in such environments.
Our approach uses Satisfiability Modulo Theory (SMT) to encode the semantics and the execution time of
the analyzed program. To estimate the delays of shared resource accesses, we propose an SMT model of a
shared TDMA bus. An SMT-solver is used to find a solution that corresponds to the execution path with the
maximal execution time. Using examples, we show how the worst-case execution time estimation is enhanced
by combining the semantics and the shared bus analysis in SMT.
In the second part, we introduce a response time analysis technique for Synchronous Data Flow programs.
These are mapped to multiple parallel dependent tasks running on a compute cluster of the Kalray MPPA-
256 many-core processor. The analysis we devise computes a set of response times and release dates that
respect the constraints in the task dependency graph. We derive a mathematical model of the multi-level
bus arbitration policy used by the MPPA. Further, we refine the analysis to account for (i) release dates and
response times of co-runners, (ii) task execution models, (iii) use of memory banks, (iv) memory accesses
pipelining. Further improvements to the precision of the analysis were achieved by considering only accesses
that block the emitting core in the interference analysis. Our experimental evaluation focuses on randomly
generated benchmarks and an avionics case study.
Keywords: shared resource interference, many-core processors, worst-case execution time, response time, tim-
ing analysis, real-time systems.

R É S U M É

La prédictibilité est un aspect important des systèmes temps-réel critiques. Garantir la fonctionnalité de ces sys-
tèmes passe par la prise en compte des contraintes temporelles. Les architectures mono-cœurs traditionnelles
ne sont plus suffisantes pour répondre aux besoins croissants en performance de ces systèmes. De nouvelles
architectures multi-cœurs sont conçues pour offrir plus de performance mais introduisent d’autres défis. Dans
cette thèse, nous nous intéressons au problème d’accès aux ressources partagées dans un environnement multi-
cœur.
La première partie de ce travail propose une approche qui considère la modélisation de programme avec
des formules de satisfiabilité modulo des théories (SMT). On utilise un solveur SMT pour trouver un chemin
d’exécution qui maximise le temps d’exécution. On considère comme ressource partagée un bus utilisant
une politique d’accès multiple à répartition dans le temps (TDMA). On explique comment la sémantique du
programme analysé et le bus partagé peuvent être modélisés en SMT. Les résultats expérimentaux montrent
une meilleure précision en comparaison à des approches simples et pessimistes.
Dans la deuxième partie, nous proposons une analyse de temps de réponse de programmes à flot de données
synchrones s’exécutant sur un processeur pluri-cœur. Notre approche calcule l’ensemble des dates de début
d’exécution et des temps de réponse en respectant la contrainte de dépendance entre les tâches. Ce travail est
appliqué au processeur pluri-cœur industriel Kalray MPPA-256. Nous proposons un modèle mathématique
de l’arbitre de bus implémenté sur le processeur. De plus, l’analyse de l’interférence sur le bus est raffinée
en prenant en compte : (i) les temps de réponse et les dates de début des tâches concurrentes, (ii) le modèle
d’exécution, (iii) les bancs mémoires, (iv) le pipeline des accès à la mémoire. L’évaluation expérimentale est
réalisé sur des exemples générés aléatoirement et sur un cas d’étude d’un contrôleur de vol.
Mots clés : interférences sur ressources partagées, processeurs pluri-cœurs, temps de réponse, temps
d’exécution pire-cas, analyse temporelle, système temps-réel.

	Dedication
	Abstract
	Résumé
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Context and Motivation
	1.2 Summary of Contributions
	1.3 Thesis Outline

	State-of-the-Art
	2 Background
	2.1 Real-Time Systems
	2.1.1 Requirements
	2.1.2 Challenges in the Verification of Real-Time Systems

	2.2 Application Models
	2.2.1 Task Models
	2.2.2 Synchronous and Asynchronous Task Models
	2.2.3 Synchronous Data-Flow Model
	2.2.4 Task Scheduling

	2.3 Hardware Architectures
	2.3.1 Multi-core and Many-core Architectures
	2.3.2 Timing Compositionality
	2.3.3 Predictable Multi-core and Many-core Architectures

	2.4 Execution Models
	2.5 Static Timing Analysis
	2.5.1 Micro-architectural Analysis
	2.5.2 Path Analysis
	2.5.3 Some WCET Tools

	2.6 Context of the Thesis
	2.6.1 Time Division Multiplexing
	2.6.2 Response Time Analysis

	3 Related Work
	3.1 Overview on Many-core Platforms in Hard Real-Time Systems
	3.1.1 Shared Resources Interference
	3.1.2 Application and Execution Models
	3.1.3 The Mapping and Scheduling Problem
	3.1.4 Summary

	3.2 Temporal Isolation: a Way to Avoid Interference
	3.2.1 Time Division Multiplexing
	3.2.2 Time Frame Isolation
	3.2.3 Summary

	3.3 Shared Resources Interference Analysis
	3.3.1 Formal Approaches
	3.3.2 Measurement-Based Approaches
	3.3.3 Summary

	3.4 Conclusion and Positioning
	3.4.1 On TDMA-based Buses
	3.4.2 On Shared Resources Interference

	Contributions
	4 Shared Resources with a TDMA Bus
	4.1 Motivation
	4.2 Foundations
	4.2.1 Time Division Multiple Accesses (TDMA)
	4.2.2 WCET Analysis of TDMA Buses: an Example
	4.2.3 Satisfiability Modulo Theory (SMT)
	4.2.4 WCET by SMT

	4.3 SMT-based Analysis for TDMA
	4.3.1 Naive Timing Encoding
	4.3.2 Optimized Timing Encoding
	4.3.3 Adding Cuts to the SMT Expression

	4.4 Implementation and Evaluation
	4.4.1 Performance of SMT Encodings for TDMA
	4.4.2 Benchmarks

	4.5 Conclusions and Future Work
	4.5.1 Summary
	4.5.2 Future Work
	4.5.3 Discussion

	5 Response Time Analysis on Multi-core Systems
	5.1 Data-Flow Applications on Multi-core Platforms
	5.1.1 Shared Multi-Bank Memory, Multi-core Architecture
	5.1.2 Dependent Task Graph Model
	5.1.3 Phase-based Execution Model

	5.2 Response Time Analysis
	5.2.1 Multi-core Response Time Analysis
	5.2.2 Analysis of Dependent Task Graphs

	5.3 Termination and Correctness of the Response Time Analysis
	5.3.1 Basic Properties of the Response Time Analysis
	5.3.2 Convergence of the Fixed-Point
	5.3.3 Uniqueness of the Fixed-Point

	5.4 Conclusion

	6 Shared Resource Interference Analysis on a Many-core Processor
	6.1 Presentation of the Kalray MPPA-256 Bostan
	6.1.1 Compute Cluster
	6.1.2 Shared Memory
	6.1.3 Bus Arbitration

	6.2 Timing Analysis on the Kalray MPPA-256
	6.3 Shared Bus Interference
	6.3.1 Understanding Memory Accesses
	6.3.2 Illustrative Examples on Cached Load and Store Instructions
	6.3.3 Variables in Bus Interference Model

	6.4 Simplified Model of the Multi-level Bus Arbiter
	6.5 Full Model of the Interference on Shared Resources
	6.5.1 Bursts of Memory Accesses
	6.5.2 Memory Access Pipeline
	6.5.3 Blocking and Non-blocking Memory Accesses
	6.5.4 Arbitration Policy

	6.6 Timing Compositionality of Shared Resource Accesses
	6.6.1 Left Side and Right Side Bus Masters
	6.6.2 Write Buffer

	6.7 Conclusion

	Evaluation
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.1.1 Bus Model
	7.1.2 Execution Model
	7.1.3 Experiments

	7.2 Didactic Example
	7.3 Randomly Generated DAGs
	7.3.1 Effect of CPU Utilization
	7.3.2 Effect of Blocking Transactions
	7.3.3 Effect of the Network-on-Chip
	7.3.4 Performance Analysis

	7.4 ROSACE (Flight Management System)
	7.5 Conclusion

	8 From Timing Analysis to Real-Time Implementation
	8.1 Design Choices and Implementation
	8.1.1 Code Generation and Impact on WCRT
	8.1.2 The WCRT–Mapping–Scheduling Relation

	8.2 Integration within the CAPACITES Project
	8.3 Conclusion

	9 Conclusions and Prospects
	9.1 Summary
	9.1.1 Context of the Thesis
	9.1.2 Contributions

	9.2 Future Work
	9.2.1 SMT-based approaches for WCET analysis
	9.2.2 Modeling the Shared Resource Accesses
	9.2.3 Timing Compositionality and Composability
	9.2.4 Comparison with Real Execution
	9.2.5 Application Models
	9.2.6 Future of Timing Analysis of Multi-Core Real-Time Systems

	Bibliography
	Abstract
	Résumé

