
HAL Id: tel-01875713
https://theses.hal.science/tel-01875713v1

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-dimensional silicon-germanium heterostructures for
quantum spintronics

Raisei Mizokuchi

To cite this version:
Raisei Mizokuchi. Low-dimensional silicon-germanium heterostructures for quantum spintron-
ics. Materials Science [cond-mat.mtrl-sci]. Université Grenoble Alpes, 2018. English. �NNT :
2018GREAY013�. �tel-01875713�

https://theses.hal.science/tel-01875713v1
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE LA 
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : NANOPHYSIQUE
Arrêté ministériel : 25 mai 2016

Présentée par

Raisei MIZOKUCHI

Thèse dirigée par Silvano DE FRANCESCHI, CEA

préparée au sein du Laboratoire PHotonique, ELectronique et 
Ingéniérie QuantiqueS
dans l'École Doctorale Physique

Hétérostructures de silicium-germanium à 
dimensionnalité réduite pour la spintronique 
quantique

Low-dimensional silicon-germanium 
heterostructures for quantum spintronics 

Thèse soutenue publiquement le 5 juin 2018,
devant le jury composé de :

Madame JULIA MEYER
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Examinateur
Monsieur MAKSYM MYRONOV
PROFESSEUR ASSOCIE, UNIVERSITE DE WARWICK - GRANDE 
BRETAGNE, Examinateur
Monsieur FERDINAND KUEMMETH
PROFESSEUR ASSOCIE, UNIVERSITE DE COPENHAGUE - 
DANEMARK, Rapporteur
Monsieur FLORIS ZWANENBURG
PROFESSEUR ASSOCIE, UNIVERSITE DE TWENTE - PAYS-BAS, 
Rapporteur
Monsieur CHRISTOPHER BÄUERLE
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES, Président





Acknowledgements

First of all, I would like to thank Silvano De Franceschi for supervising
my PhD thesis. He always guided me to the correct direction by providing
ideas for device fabrication, device structures and measurements. I am
grateful also for his patience and for his help to improve my communication
skills.

I would like to thank Romain Maurand as well. He taught me new things
on sample fabrication which I did not know from my previous experience
during my bachelor and master researches in Japan. The device fabrication
techniques I used could not be developed without his help. Moreover, he
taught me measurement methods, cryogenic techniques, file management,
and many useful tricks.

I would like to thank Maksym Myronov for providing Ge/SiGe het-
erostructures and for useful discussions.

Throughout my PhD I received valuable help from Jean-Luc Thomassin,
Frederic Gustavo, Thomas Charvolin, Marlene Terrier, Christophe Lemo-
nias and other technical staff at the PTA cleanroom, where I spent a con-
siderable part of my research efforts. I am especially grateful to Jean-Luc
who taught me how to use a lot of equipement in the cleanroom.

I want to thank some the theorists at INAC with whom I’ve had enlight-
ening discussions: Yann-Michel Niquet, Zaiping Zeng, and Julia Meyer.

I would like to thank Simon Deleonibus and Shunri Oda for their guid-
ance. Without their advice, I would have not considered doing a PhD in
France and I would have missed the opportunity to work on this valuable
project. And I thank Jérôme Planes for following my developments, pro-
viding constant support and advice.

I feel grateful to all the colleagues from the lab for creating an enjoyable
research environment and helping me whenever I needed (especially Juan-
Carlos Estrada Saldaña, Heorhii Bohuslavskyi, Patrick Torresani, Dante
Colao Zanuz, Florian Vigneau, Alessandro Crippa, Jean-Pierre Cleuziou,
Eduardo Lee, Marc Sanquer, Georg Knebel, Daniel Braithwaite, Iulian
Matei, Dai Aoki, Shingo Araki, Christophe Marcenat, François Lefloch,

I



Xavier Jehl, Jean-Pascal Brison, and Max Hofheinz)
Last but not least, I thank my family for supporting me during the

years.

II



Résumé

L’intégration à large échelles de bits quantiques (qubits) nécessite le
développpement de systèmes quantiques à deux niveaux à l’état solide
comme par example des spins électroniques confinés dans des boîtes quan-
tiques ou des fermions de Majorana dans des nanofils semiconducteurs. Les
trous confinés à une ou deux dimensions dans des hétérostructures à base
de germanium sont de bons candidats pour de tels qubits parce qu’ils of-
frent i) une forte interaction spin-orbite (SOI) conduisant à des facteurs
de Landé relativement grands, ii) un couplage hyperfin réduit laissant en-
trevoir un long de temps de cohérence de spin et iii) des masses efficaces
relativement faibles favorisant le confinement quantique. Au cours de cette
thèse, j’ai étudié le transport de trous dans des systèmes unidimensionnels
et bidimensionnels faits à partir d’hétérostructures Ge/Si0.2Ge0.8 à con-
trainte compressive. Une partie importante de mon travail de recherche
a été consacrée au développement de techniques de fabrication pour ces
dispositifs semi-conducteurs. J’ai débuté par la fabrication de dispositifs
de type "barre de Hall" à partir d’hétérostructures Ge/SiGe non dopées.
J’ai étudié deux types d’hétérostructures contenants un puits quantique
de Ge contraint: l’une où le puits de Ge est à la surface de la structure
donc facilement accessible aux contacts métalliques, et l’autre où le puits
est enterré à 70 nm sous la surface permettant d’avoir une mobilité élevée.
Les propriétés électroniques du gaz de trou bidimensionnel confiné dans le
puits de Ge ont été étudiées à travers des mesures de magnéto-transport
jusqu’à 0,3 K. Pour le puits enterré, mes mesures ont révélé un caractère
dominant de trou lourd, ce qui est attendu dans le cas d’une contrainte
compressive en combinaison avec un confinement bidimensionnel. Les dis-
positifs avec un puits de Ge superficiel ont montré un transport diffusif et
un effet d’anti-localisation faible, ce qui est dû à l’interférence quantique de
differents chemins de diffusion en présence du SOI. Le fait que le puits de
Ge soit situé à la surface permet des champs électriques perpendiculaires
relativement grands et, par conséquent, un plus fort SOI de type Rashba.
J’ai été en mesure d’estimer l’énergie caractéristique du SOI en obtenant
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une valeur d’environ 1 meV. Pour la réalisation de nano-dispositifs quan-
tiques, j’ai utilisé des hétérostructures avec un puits de Ge enterré où la
mobilité des trous se rapproche de 2× 105 cm2/Vs. En utilisant la lithogra-
phie par faisceau d’électrons, des grilles métalliques à l’échelle nanometrique
ont été définies sur la surface de l’échantillon afin de créer des constrictions
unidimensionnelles dans le gaz de trous bidimensionnel. J’ai ainsi réussi à
observer la quantification de la conductance dans des fils quantiques d’une
longueur allant jusqu’à ∼ 600 nm. Dans ces fils, j’ai étudié l’effet Zeeman
sur les sous-bandes unidimensionnelles. J’ai trouvé des grands facteurs g
pour le champ magnétique perpendiculaire, et des petits facteurs g dans le
plan. Cette forte anisotropie indique un caractère de trou lourd prédom-
inant, ce qui est attendu dans le cas d’un confinement dominant dans la
direction perpendiculaire. Les grands facteurs g et le caractère unidimen-
sionnel balistique sont des propriétés favorables à la réalisation de fermions
de Majorana. Enfin, j’ai commencé à explorer le potentiel des hétérostruc-
tures à base de Ge pour la réalisation de dispositifs à points quantiques, en
visant des applications en calcul quantique à base de spin. Au cours des
derniers mois, j’ai pu observer des signes évidents de transport à un seul
trou, posant ainsi les bases pour des études plus approfondies sur les points
quantiques des trous.
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Abstract

Aiming towards largely integrated quantum bits (qubits) requires the
development of solid-state, two-level quantum systems, such as spins in
quantum dots or Majorana fermions in one-dimensional wires. Holes con-
fined in low-dimensional, germanium-based heterostructures are good can-
didates for such qubits because they offer i) large spin-orbit interaction
(SOI), leading to conveniently large g factors, ii) reduced hyperfine cou-
pling, which is important for long spin coherence, and iii) relatively low
effective masses, favoring quantum confinement. In this thesis, I have in-
vestigated hole transport in one- and two-dimensional systems made from
compressively strained Ge/Si0.2Ge0.8 heterostructures. An important part
of my research work has been devoted to developing the recipes for de-
vice fabrication. I have started from the fabrication of gated Hall bar
devices from nominally undoped Ge/SiGe heterostructures. I have stud-
ied two types of the heterostructures embedding a strained Ge quantum
well: one where the Ge well is at the surface, hence easily accessible to
metal contacts, and one where it is buried 70 nm below the surface, a
configuration resulting in higher hole mobility. The electronic properties
of the two-dimensional hole gas confined to the Ge well were studied by
means of magneto-transport measurements down to 0.3 K. My measure-
ments revealed a dominant heavy-hole character, which is expected from
the presence of a compressive strain in combination with two-dimensional
confinement. The surface-Ge devices showed diffusive transport and a weak
anti-localization effect, which is due to SOI in combination with quantum
interference. The fact that the Ge quantum well is located at the surface
allows for relatively large perpendicular electric fields and hence enhanced
Rashba-type SOI. I was able to estimate a spin splitting of around 1 meV.
For the realization of quantum nano-devices, I used the heterostructure with
a buried Ge well where the hole mobility approaches 2×105 cm2/Vs. Using
e-beam lithography, sub-micron metal gates were defined on sample surface
in order to create one-dimensional constrictions in the two-dimensional hole
gas. I succeeded in observing conductance quantization in hole quantum
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wires with a length up to ∼ 600 nm. In these wires I investigated the Zee-
man splitting of the one-dimensional subbands, finding large perpendicular
g-factors as opposed to small in-plane g-factors. This strong anisotropy
indicates a prevailing heavy-hole character, which is expected in the case
of a dominant confinement in the perpendicular direction. The large g fac-
tors and the ballistic one-dimensional character are favorable properties for
the realization of Majorana fermions. Finally, I have begun to explore the
potential of Ge-based heterostructures for the realization of quantum-dot
devices, having in mind applications in spin-based quantum computing.
During the last months, I was able to observe clear evidence of single-hole
transport, laying the ground for more in-depth studies of hole quantum
dots.
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Chapter 1

Introduction

1.1 Quantum computation

It has been half a century since Moore’s law started stimulating the de-
velopment of transistor technology [1]. Even now, the law is still applicable
but apparently getting to the end because quantum mechanics become in-
fluential as the transistor size becomes close to several atoms. On the other
hand, researchers have been exploring alternative computing paradigms.
One candidate is the (universal) quantum computer (QC) exploiting the
quantum superposition and entanglement of two-level quantum systems [2],
usually referred to as quantum bits or qubits. Each qubit consists of two
states (|0〉 and |1〉), like a bit in ordinary computers, but quantum mechan-
ics allows for any arbitrary coherent superposition the two states, resulting
in a much larger and continuous set of possible states. This, together with
the possibility of creating correlated (i.e. entangled) multi-qubit states, en-
ables the QC to solve certain classes of problems exponentially faster than
a classical computer [3, 4]. In the last few decades, many quantum systems
have been proposed to make qubits: cold atoms, photons, superconducting
circuits, semiconductor quantum dots, etc. The "quantum processors" real-
ized so far contain at most a few tens of qubits and they have been used to
run rudimental quantum algorithms. In order to attain the computational
power necessary for solving non-trivial problems, a QC requires a much
larger number of integrated qubits (according to the most recent estimates
from Microsoft researchers, the factorization of numbers as large as those
employed in cryptography would require billions of qubits).
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1.2. SPIN QUBITS IN QUANTUM DOTS

1.2 Spin qubits in quantum dots
Among all qubit systems investigated so far, semiconductor spin qubits

based on silicon are considered among the most competitive candidates,
especially because of their scalability potential. A nano-size semiconductor
block (10 nm ∼ 100 nm), usually referred to as quantum dot (QD), can
confine one or more electrons or holes which can encode a qubit in their
spin degree of freedom. Together with the scalability proper to solid-state
systems, semiconductor QDs are small enough to allow billions of them to
be fabricated on the same chip. In the case of silicon-based QDs, the high
level of control and maturity of silicon technology can be leveraged in the
up-scaling challenge.

The spin state of a QD, while relatively decoupled from the environ-
ment, can still be manipulated with the aid of an AC magnetic or electric
field (Fig. 1.1, top left). Whereas the first spin qubit exploited the AC

Figure 1.1: Schematic and different mechanisms for spin resonance. (Left
top) Energy diagram of two spin states in a double QD as a function of
magnetic field. The singlet and triplet states with Sz = 0 are splitted into
the two antiparallel states by nuclear field, BN . When a RF signal, hfac,
matches the Zeeman splitting, gµBB, spin resonance occurs. (Right top)
Coplanar strip line, (Left bottom) micromagnet and (Right bottom) spin-
orbit interaction are used for the spin resonance. The figures are from Ref.
[5–7].
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CHAPTER 1. INTRODUCTION

magnetic field generated by on-chip coplanar stripline (Fig. 1.1, top right)
[5], the use of electric-field manipulation presents practical advantages in
terms of scalability and manipulation speed. It requires the presence of a
sizable spin-orbit coupling, which can be intrinsic to the material (Fig. 1.1,
bottom right) [6] or artificially engineered with the aid of locally fabricated
micromagnets generating a magnetic-field gradient (Fig. 1.1, bottom right)
[7]. The relatively small energy difference between the spin eigenstates of a
qubit (typically below 100 µeV) makes it possible to drive qubit rotations
with AC signals in the GHz range. Controlled spin rotations are achieved
by applying resonant microwave pulses. The pulse length τop required to
flip a spin qubit (i.e. to perform a π rotation on the Bloch sphere) depends
on the Rabi frequency, and hence on the underlying driving mechanism.
Typically, τop ranges between ∼1 and ∼100 MHz. This time scale, which
gives a measure of the average qubit operation time, should be compared
with the qubit coherence time T ∗2 .

Another aspect to be considered for quantum computing is gate oper-
ations between two qubits. For spin-based quantum computing, two-qubit
operation via exchange interaction had been proposed by Loss and DiVi-
cenzo [8] and was performed by Petta et al. [9]. The operation speed can
exceed that of a single qubit gate. Some qubit encodings utilize the fast
operation for single qubit gates: singlet-triplet qubit [9] and exchange-only
qubit [10, 11]. Each qubit requires a multiple QD structure more compli-
cated than that of a spin qubit.

To detect the parity of a spin qubit, a spin-to-charge conversion tech-
nique is needed owing to the weak coupling of spins with their environment.
There are two famous ways for the conversion [12, 13]. Ono et al. found
that the Pauli exclusion principle blocks current between two coupled QDs
when one electron stays at each QD and has the same spin, which is referred
to as Pauli spin blockade (Fig. 1.2, left) [12]. The blockade can be lifted
when one of the spins is rotated by spin resonance. On the other hand,
Elzerman et al. developed a spin detection technique by utilizing Zeeman
energy splitting (Fig. 1.2, right) [13]. Applying a fixed magnetic field to a
quantum dot with a reservoir, a voltage pulse can shift spin doublet lev-
els so that only the excited spin is above the Fermi level of the reservoir
and tunnels out. In both cases, a charge sensor based on a nanostructure
is useful because of its high sensitivity. Dispersive readout with RF sig-
nal applied to reservoir or gate [14, 15] is another way to sense the charge
transition, which does not require additional structures only for the detec-
tion. In common with quantum state detection, the detection should be
repeated to exactly acquire the state since the polarity of a spin is obtained
stochastically, depending on the spin superposition.

3



1.2. SPIN QUBITS IN QUANTUM DOTS

Figure 1.2: Spin-to-charge conversion techniques. (Left) Current blockade
effect depending on spin states in a double QD. When two charges, each in a
different QD, have the same spin direction, the charge transition from (1,1)
to (0,2) is prohibited because of the Pauli exclusion principle. Therefore, the
effect is referred to as Pauli spin blocade. (Right) Spin-dependent tunneling
to a reservoir. Only the excited spin can tunnel out when the Fermi level
of the reservoir is located between the two spin levels in a single QD. The
figures are from Ref. [12, 13].

Those pioneering researches utilized quantum dot devices based on n-
type GaAs/AlGaAs heterostructures which provide desirable environments
with low impurity concentration and low carrier effective mass. Both ad-
vantages have been supporting researches on charge and spin transport.
However, GaAs has a critical disadvantage such that nuclear spins of Ga
and As make a fast decoherence of spins in quantum dots via hyperfine in-
teractions (T ∗2 ∼ 10 ns for electrons in III-V semiconductor heterostructures
[9]). Spin refocusing techniques such as the Hahn echo method can sup-
press the effect of the interactions, revealing the potential of the coherence
time of spin qubits (> 1 µs) [9]. To solve this problem intrinsically, other
materials without nuclear spins are attracting. It is known that almost all
isotopes in group-IV semiconductors do not possess nuclear spins. It moti-
vates researches on QDs made from C [16], Si [17] and Ge [18]. Especially,
n-type silicon QDs have been intensively studied to demonstrate long-lived
spin coherence (T ∗2 ∼ 1 µs for electrons confined in natural Si [19, 20]). In
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CHAPTER 1. INTRODUCTION

Figure 1.3: Qubit integration scheme for quantum processor. (Left) Dense
qubit arrays are connected by long-range qubit couplers, which make space
for classical electronics at the same layer with qubits. (Right) 3-D gate
architecture for a dense qubit array. The figures are from Ref. [23, 24].

silicon, T ∗2 can be further extended by replacing natural Si with isotopically
purified Si containing almost solely the spinless 28Si isotope. The relevant
figure of merit of a qubit is the ratio between T ∗2 (or the Hann-echo T2)
and the characteristic operation time, i.e. Q = T ∗2 /τop. For the silicon spin
qubits, Q ∼ 1000 has been recently reported [21]. Obtaining even higher
Q values would be very useful in the prospect of implementing quantum
error correction codes which requires a high qubit fidelity (' 99%) [22].
Also in this respect, the group-IV semiconductors with a small amount of
nuclear spins are favored for qubits since nuclear field is one of the cause
that reduces the fidelity.

In addition to the large Q factor, the n-type Si QD devices have demon-
strated high fidelity [20, 25, 21], two-qubit gate [26–28] and coupling of
spin qubit with photons in a superconducting cavity for qubit connection
at distance [29, 30] which are major ingredients to construct quantum com-
puting systems in large scale [31, 23] (Fig. 1.3 (a)). Still, some obstacles
may prevent the realization of QC based on Si QD structure. For exam-
ple, micromagnet structure for electron spin resonance may not be suitable
for 3-D gate architecture such as one discussed in Ref. [24] (Fig. 1.3 (b)).
Large effective mass in silicon requires very narrow width of metal gates
(for example, 7-nm wire width at minimum is required in Ref. [24]).
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1.3. HOLES IN SIGE-BASED NANOSTRUCTURES

1.3 Holes in SiGe-based nanostructures
Because of their inherently strong spin-orbit coupling, holes could pro-

vide the way to further reduce τop while hopefully preserving a long coher-
ence time. Over the recent years, this idea has stimulated a considerable
experimental effort on the development of hole-confinement quantum dot
devices in Si- and Ge-based nanostructures.

Holes in p-type SiGe-based heterostructures are promising candidates
not only for qubits but also for quantum spintronic applications in gen-
eral, such as spin-valve, or spin- transistor devices [32, 33]. Natural Ge is
predominantly constituted of isotopes with zero nuclear spin and holes are
less coupled to nuclear spins due to the p-wave symmetry of their Bloch
states [34]. Simutaneously, a strong spin-orbit interaction (SOI) enabling
electrically-driven hole-spin manipulation has been demonstrated [18]. Un-
til now, most of the experimental work has been carried out on bottom-
up SiGe nanostructures: SiGe self-assembled nanocrystals [35, 36], Ge hut
wires [37], and Ge/Si core/shell nanowires (Ge/Si NWs) [38–41]. In the
prospect of quantum spintronics applications, encouraging spin dephasing
and spin coherence times were reported [42–44].

In addition, p-type Ge nanowires were recently proposed as a promising
platform for the realization of one-dimensional topological superconductors
hosting Majorana fermion (MF) edge modes [45, 46]. MFs are particles
(or, more in general, quasiparticles) equal to their own anti-particle. They
carry no energy, no charge, and no spin. They always come in pairs. A
pair of them is expected to exist at the two edges of a one-dimensional
wire in a superconducting topological state [47]. The realization of such
an exotic state of matter requires different key ingredients: strong SOI,
superconducting proximity effect, and a sufficiently strong magnetic field
[48, 45, 49]. Owing to their non-local character, MFs could be used for
the realization of topologically protected qubits. Most of the experimental
works in this direction have so-far relied on III-V nanowires [50]. The po-
tential of Ge nanostructures for MF devices has been explored by several
research groups following different approaches. One-dimensional transport
[38, 39], strong SOI [51] and superconducting proximity effect[40, 41] were
reported. Yet the way to MF devices remains long due to the challenging
requirement to combine these ingredients all together in the same device.
In the prospect of realizing scalable MF devices, top-down nanostructures,
as opposed to bottom-up ones, appear as a more promising option. Start-
ing from a Ge/SiGe quantum-well (QW) heterostructure confining a high-
mobility two-dimensional hole gas, networks of Majorana wires could be
defined by means of metal gates patterned on the surface. High quality
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CHAPTER 1. INTRODUCTION

p-type Ge/SiGe are today routinely grown showing very high mobilities
(1.3 × 106 cm2/Vs) [52], strong SOI (spin splitting energy ∆SO ∼ 1 meV)
[53, 54] and large out-of-plane g-factors (> 10) [55]. Moreover, the heavy
holes of a strained Ge quantum well show a rather small in-plane effective
mass [53], which should facilitate the realization of top-down confined de-
vices such as quantum point contacts (QPC), one-dimensional (1D) wires
or QDs [56–58].

1.4 This thesis
In my PhD work, I have investigated hole transport in two types of

heterostructures having an undoped strained Ge QW grown on relaxed
Si0.2Ge0.8: one where the Ge QW is located at the surface, and one where
it is buried 70 nm below the surface. Both heterostructures are grown by
the Maksym Myronov’s group at the Warwick university. At the beginning,
I devoted most of my research efforts to the development of device fabri-
cation recipes. I started with the realization of gated Hall bar devices in
order to study the basic transport properties of the two-dimensional hole
gas. Having the Ge QW at the surface is advantageous with respect to
the fabrication of metal contacts, and in terms of efficient gating. On the
other hand, the buried QW offers a much higher mobility. Eventually, I
concentrated my work on this second option. I was able to demonstrate
ballistic one-dimensional hole transport and to acquire some first data on
single-hole tunneling in QD-type structures.

This thesis consists of seven chapters. Following this chapter (Chapter 1
"Introduction"), I shall describe the band theory for hole systems based on
the Luttinger Hamiltonian, and shall introduce the notion of heavy and light
holes (Chapter 2 "Band structure in p-type semiconductor"). In par-
ticular, I will demonstrate that a dominant heavy-hole character is expected
in strained QWs such as those investigated in my thesis. The lowest-energy
hole subbands have a relatively small in-plane effective mass, k−cubic spin
orbit interaction, anisotropic g-factor. Next, hole transport through low-
dimensional structures is discussed (Chapter 3 "Charge transport in low-
dimensional systems"). The discussion encompasses charge transport in
two-, one-, and zero-dimensional systems, with and without spin effects.
In the three following chapters, measurement results for low-dimensional
hole systems made from Ge heterostructures are presented. The fabrica-
tion techniques I used are briefly explained in each experimental chapter
while the detailed processing recipes are given in Appendix A. Chapter
4 "Weak anti-localization in Ge-surface heterostructure" focuses

7
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on the weak anti-localization effect in two-dimensional magneto-transport,
which is brought about by spin-orbit interaction in combination with quan-
tum interference. It is shown that the SOI k-cubic terms have a domi-
nant role. Chapter 5 "One-dimensional wire in buried Ge/SiGe het-
erostructure" reports conductance quantization and g-factor spectroscopy
in one-dimensional wires define in a hole two-dimensional gas by means of
surface gates. Chapter 6 "Single quantum dot in buried Ge/SiGe het-
erostructure" is devoted to single-hole transport in hole quantum dots.
Several gate-defined quantum dot structures are presented and compared.
Finally, research perspectives towards Majorana fermions and spin qubits
are given in the last chapter (Chapter 7 "Conclusion").

8



Chapter 2

Band structure in p-type
semiconductor

2.1 Introduction

Holes and electrons have different electronic properties. Holes are gen-
erally characterized by a strong SOI, pronounced g-factor anisotropy, and
anisotropic effective masses. There properties can be related to the theory
of invariants, which makes the Hamiltonian depend on the crystal structure
and symmetry of the semiconductor and on the symmetry of the atomic
orbitals. The Luttinger Hamiltonian accouns for orbital and intrinsic an-
gular momenta of holes in the valence band; the p-like character of the
orbitals, combined with spin, results in a total angular momentum J=3/2.
This Hamiltonian is simple but useful to describe hole properties in cubic
semiconductors with large band gap and spin-orbit split-off energy like Ge.
In this chapter, at first, we derive the energy dispersion of a band from
one-electron Hamiltonian and then briefly explain how symmetry can help
in simplifying the Hamiltonian. Next, based on the Hamiltonian for valence
band called Luttinger Hamiltonian, energy dispersion, RSOI and g factor
for the first HH subband in a QW are deduced.

This chapter is mainly based on the books of Yu et al. [59] and Winkler
[60].

9



2.2. BULK SEMICONDUCTOR

2.2 Bulk semiconductor

2.2.1 k · p theory
Considering a semiconductor with periodic crystal structure, the poten-

tial induced at each atomic site is also periodic V0(r) = V0(r + R) and so is
the wave function ψ(r) = ψ(r+R). From Bloch theorem, the wave function
is described by ψ(r) = eik·runk(r) where k is the wave vector and unk(r) is
a function with the periodicity of the crystal. When spin is ignored, by use
of this wave function one obtains

H0e
ik·runk(r) =

[
p2

2m0
+ V0(r)

]
eik·runk(r) = Enke

ik·runk(r) (2.1)[
p2

2m0
+ V0 + ~2k2

2m0
+ ~k · p

m0

]
unk = Enkunk. (2.2)

Especially, at k = 0, [
p2

2m0
+ V0

]
un0 = En0un0. (2.3)

A complete and orthogonal set of basis un0 obtained by solving Eq. 2.3
allows one to expand unk and Enk by means of standard (non-degenerate)
perturbation theory, treating k = |k| as a perturbation,

unk = un0 + ~
m0

∑
n′ 6=n

〈un0|k · p|un′0〉
En0 − En′0

un′0 (2.4)

and, remaining that

Enk = En0 + ~2k2

2m0
+ ~2

m2
0

∑
n′ 6=n

|〈un0|k · p|un′0〉|2

En0 − En′0
= En0 + ~2k2

2m∗ (2.5)

where

m∗ = m0

1 + 1
m0k2

∑
n′ 6=n

|〈un0|k · p|un′0〉|2

En0 − En′0

−1

and m∗ is called effective mass. More general form of the perturbation
can be derived by use of canonical transform [61, 62]:

10



CHAPTER 2. BAND STRUCTURE IN P-TYPE SEMICONDUCTOR

〈un0|H̄|un′0〉 ≈ 〈un0|H|un′0〉+ 1
2〈un0| [Hkp, S] |un′0〉

= En0δnn′ + ~2k2

2m0

+ ~2

2m2
0

∑
n′′

[
k · pnn′′k · pn′′n′

En′0 − En′′0
+ k · pnn′′k · pn′′n′

En0 − En′′0

]
(2.6)

where H = H0 + ~2k2/2m0, Hkp = ~k · p/2m0, pnn′ = 〈un0|p|un′0〉 and
δnn′ is the Kronecker delta. H̄ is canonical transformation of H + Hkp,
H̄ = e−S [H +Hkp] eS. H̄ has the same eigenvalues as H + Hkp but with
canonical-transformed wave functions and therefore the diagonal terms have
the same value as Eq. 2.5 with pnn = 0. By choosing S to satisfy Hkp +
[H0, S] = 0, Eq. 2.6 is derived.

Spin degree is taken into the account by adding (bulk) spin-orbit inter-
action and Zeeman energy into Eq. 2.1:

H0 ⇒ H0 + ~
4m2

0c
2p · σ × (∇V0) + 1

2g0σ ·B
p ⇒ p+ eA

(2.7)

where g0 = 2 and e are the g factor and the charge of a free electron,
respectively, σ is the vector of Pauli matrices, B is magnetic field and A is
vector potential. From the definition of ~k = −i~∇+ eA and B = ∇×A,
one obtains that k × k = −ieB/~. Through this relation, a Zeeman-like
energy appears in off-diagonal terms and the g factor of a band can be
perturbatively modified by other bands.

Also, external fields can be treated by the k · p theory [60]. When the
external fields vary slowly compared to un0(r), the wave function in the
external field Ψ(r) is expanded on the basis of un0(r) with a non-periodic
amplitude depending on position and spin ψn,σ(r) (envelop function ap-
proximation):

Ψ(r) =
∑
n,σ

ψn,σ(r)un0(r)|σ〉 (2.8)

where |σ〉 is the spin eigenstate. Similarly to the derivation above, one
can obtain simultaneous infinite differential equations like Eq. 2.2 but for
ψn,σ [60]. Perturbation theory (Löwdin perturbation [60, 63]) can convert
the infinite differential equations into finite equations. As a result, for
example, a nondegenerate, isotropic parabolic band can have the effective
mass Hamiltonian:

11



2.2. BULK SEMICONDUCTOR

Heffψn,σ = En,σψn,σ

Heff = (−i~∇+ eA)2

2m∗n
+ V (r) + 1

2g
∗
nµBσ ·B (2.9)

where m∗n and g∗n are the effective mass and g factor of nth band, respec-
tively, V (r) is the external potential, and B is the external magnetic field.
Thanks to this envelop function approximation, in many cases one can solve
a eigenvalue problem without knowing the atomic-scale details of the wave-
function.

However, ignoring the microscopic details of the wavefunction is not
always allowed. For example, carrier spins can couple with nuclear spins
via hyperfine interactions depending on the overlap of the electronic wave-
function with the nuclei. Figure 2.1 shows the wavefunction of an electron
(hole) modulated by s- (p-) orbital atomic states and confined in an InGaAs
QD. In Ref. [64], it is demonstrated that the coherence time of hole spin
states is significantly longer than the one of electron spins. This follows
from a reduced hyperfine interaction, due to the vanishing overlap between
p-orbital states and the nuclei.

2.2.2 Theory of invariants
In the previous section, the k · p Hamiltonian was obtained in a general

form. The symmetry properties of the semiconductor crystal translate into
special symmetries in the Hamiltonian. In particular symmetry can intro-
duce important simplifications. For example, |〈un0|p|un′0〉| depends on the
symmetry of un0 and un′0. When both are even or odd functions, since p
inverts the even/odd parity of un′0, the value vanishes after the integral. In
the (extended) Kane Hamiltonian [60], the orbitals around the band gap
(bonding p-like orbitals for the valence band and anti-bonding s-like and
p-like orbitals for the conduction band) are considered together with spins.
As a result, the Hamiltonian is expressed by 14 × 14 matrix, where many
terms vanish owing to the symmetries of the bands.

Moreover, one can anticipate the structure of the Hamiltonian from sym-
metry considerations using the so-called theory of invariants. The idea is
that parts of the Hamiltonian are classified by invariants under transfor-
mations of a given symmetry group. In the following, we shall consider the
crystal structure of zincblende (e.g., ZnS and GaAs) and diamond (e.g.,

12
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2
3

2
3

(a) Electron spin (b) Heavy-hole spin

Jz = +

Jz = –

Ĥ

TOTA L = B + BNB BTOTA L = B + zBN

contact ≈ Ĥcontact ≈ 0ψi
2 Ii · S BN · SAi

i

Ĥdipole ≈ 0 Ĥdipole ≈ ψi
2 Iz Jz BN  JzAi

i

h h

h

∑
∑

Figure 2.1: The probability density of (a) electron spin and (b) HH spin
confined in a InGaAs quantum dot (black solid line). Electron spin is
constructed from s-orbital state at each atom while HH spin, from p orbitals
(dots indicate atoms). The probabilities are modulated by envelope function
due to mesoscopic confinement potential (blue dashed line). The contact
(dipole) term of hyperfine interaction Ĥcontact (Ĥdipole) couples the angular
momentum of electron S and hole J with the nuclear spin Ii (Ai is coupling
coefficient with ith atom and ψi is the electron wave function at site i).
Reflecting the difference in orbital, Ĥcontact (Ĥdipole) has different effects on
electron and HH spins, resulting in fictitious magnetic fields BN . In Ref.
[64], it is shown that |〈Ah,z〉/〈Ae〉| = 10% and even in a III-V semiconductor
quantum dot coherence time can be significantly long: T ∗2 > (460± 80)ns.
Figure is taken from Ref. [65].

Si and Ge), which have different symmetries. Since zinc-blende semicon-
ductors are composed of two atoms, the inversion symmetry is broken.
On the contrary the inversion symmetry exists in diamond semiconductors
[59]. From the view point of group theory, it is known that zincblende
and diamond crystal structures belong to the tetrahedral group Td and
the octahedral group Oh, respectively. This results in a differet form of
the corresponding Hamiltonians as shown below. Based on symmetry, the
Hamiltonian H of a generic bulk semiconductor can be separated into three
components [60]:

13



2.2. BULK SEMICONDUCTOR

H = Hspher +Hcube +Htetra (2.10)
where the Hspher, Hcube, and Htetra terms are invariant under transforma-
tions of the spherical rotation group R, Oh and Td, respectively. According
to hierarchical relation R ⊃ Oh ⊃ Td, Hspher represents the largest com-
ponent in the Hamiltonian. Therefore, to a first approximation one could
retain only this component (i.e. H ≈ Hspher) and ignore the other terms.
This is the so-called spherical approximation. In group-IV semiconduc-
tors, the cubic term cannot be ignored while it is not important for in
semiconductors of the III-V group. Including Hcube is known as the cubic
approximation.

2.2.3 Luttinger Hamiltonian
From the theory of invariants, Luttinger [66] deduced the Hamiltonian

for a valence band composed of HH band (|J, Jz〉 = |3/2,±3/2〉) and LH
band (|J, Jz〉 = |3/2,±1/2〉). This Hamiltonian is valid when the semicon-
ductor has a large band gap Eg and a large spin-orbit split-off energy ∆SO

such that conduction band and split-off band are treated as small pertur-
bations. Without magnetic field the Hamiltonian reads

HL = ~2

2m0

[
(γ1 + 5

2γ2)k2 − 2γ2(k2
xJ

2
x + c.p.)− 4γ3({kxky}{JxJy}+ c.p.)

]
(2.11)

where J and Ji are the total angular momentum operator for J = 3/2 and
its projection alone the i direction (i = x, y or z); γ1, γ2, γ3 are the Luttinger
parameters and {AB} = (AB +BA)/2.

As explained in the previous section, this Hamiltonian can be decom-
posed into terms corresponding to different symmetries. Baldereschi and
Lipari [67] demonstrated that (spherical approximation):

Hs
L = ~2

2m0

[
(γ1 + 5

2 γ̃2)k2 − 2γ̃2(k · J)2
]

+Hcube

where γ̃2 = (2γ2 + 3γ3)/5. Without Hcube, the energy dispersion is symmet-
ric:

ELH/HH(k) = ~2

2m0
(γ1 ± γ̃2)k2. (2.12)

Owing to the fact that Hcube ∝ (γ3 − γ2), a parameter η = (γ3 − γ2)/γ̃2
can measure the contribution of cubic symmetry. In semiconductors with
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large ∆SO, η is small and therefore Hcube is often ignored [68], see Table 2.1.
From the table, it is clear that Ge and III-V semiconductors have small η
(while in Si η is so large that Hcube cannot be ignored). Nevertheless, we
consider the effects of the cubic term in this thesis because they can affect
the Rashba SOI and the in-plane g factor of HH at high orders in the
perturbation theory.

In the Luttinger Hamiltonian, the effect of the conduction band and the
spin-orbit split-off band is taken into account as perturbation. When one
needs more accurate calculations, the Kane Hamiltonian, which can include
even higher conduction bands, can be used. However, this is not our case
because Ge has a large Eg and ∆SO (see Table 2.1). In the next section, we
shall employ the Luttinger Hamiltonian to derive the main properts of the
lowest energy hole subbands in a two-dimensional QW.

Table 2.1: List of band structure parameters for conventional semiconduc-
tors: band gap Eg ((i) denotes indirect band gap), spin-orbit split-off gap
∆SO and Luttinger parameters, γ1, γ2, γ3, κ and q. All of the parameters
are taken from Ref. [60] except for band gap for Ge and Si [69]

.

Ge Si GaAs InAs InSb
Eg (meV) 740(i) 1170(i) 1519 418 237

∆SO (meV) 296 44.1 341 380 810
γ1 13.38 4.285 6.85 20.40 37.10
γ2 4.24 0.339 2.10 8.30 16.50
γ3 5.69 1.446 2.90 9.10 17.70
κ 3.41 -0.42 1.20 7.60 15.60
q 0.06 0.01 0.01 0.39 0.39

2.3 Heavy holes in two dimensional system

2.3.1 Two-dimensional system

By applying Löwdin perturbation, the 2D Hamiltonian of first HH sub-
band HHH1 can be obtained. Following Marcellina et al. [70], we demon-
strate it in this section. We shall start from re-writing the Luttinger Hamil-
tonian (Eq. 2.11) in an explicit matrix notation:
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2.3. HEAVY HOLES IN TWO DIMENSIONAL SYSTEM

HL =
(
Hhh Hhl

H†hl Hll

)
= ~2

2m0


P +Q 0 L M

0 P +Q M∗ −L∗
L∗ M P −Q 0
M∗ −L 0 P −Q

 (2.13)

where

P = γ1(k2 + k2
z), Q = −γ2(2k2

z − k2),

L = −2
√

3γ3k−kz,M = −
√

3(γk2
− − ζk2

+),

γ̃ = γ3 + γ2

2 , ζ = γ3 − γ2

2
k2 = k2

x + k2
y, k± = kx ± iky

(2.14)

and the basis are {|3/2,+3/2〉, |3/2,−3/2〉, |3/2,+1/2〉, |3/2,−1/2〉}.
The off-diagonal terms Hhl, H†hl can be treated as perturbations. Before

starting the perturbation calculation, we focus on the diagonal terms Hhh

and Hll:

Hhh = ~2

2m0
(P +Q) = ~2

2m0

[
(γ1 + γ2)k2 + (γ1 − 2γ2)k2

z

]
(2.15)

Hll = ~2

2m0
(P −Q) = ~2

2m0

[
(γ1 − γ2)k2 + (γ1 + 2γ2)k2

z

]
. (2.16)

It is clearly seen that the out-of-plane effective mass (i.e., along z di-
rection) of heavy holes (mh

⊥ = m0/(γ1 − 2γ2)) is heavier than one of light
holes (ml

⊥ = m0/(γ1 + 2γ2)) while the relation is opposite for the in-plane
effective masses: mh

// = m0/(γ1 + γ2), ml
// = m0/(γ1− γ2). The difference in

m⊥ results in a HH-LH splitting in the 2DHG. In other words, as seen in the
z component of the Luttinger Hamiltonian under spherical approximation,

(HL)z = ~2

2m0

[
(γ1 + 5

2 γ̃2)k2
z − 2γ̃2(kz ·mj)2

]
, (2.17)

where mj = ±3/2 or ±1/2 is the z component of total angular momentum,
the HH-LH degeneracy at k = 0 can be lifted by [001] confinement and then
HH becomes the ground state. This applies to the case of heterostructures
grown along the [001] direction, such as those used for the experiments
in this PhD work. Therefore we shall consider here only the [001] QW
confinement .
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In a QW heterostructure of in the presence of out-of-plane electric fields
leading to hole confinement in the vertical direction, HH and LH bands are
quantized into HH and LH two-dimensional subbands, respectively: |Hnσh〉
and |Lmσl〉 where n and m are subband index for HH and LH subbands,
respectively, and σ =↑ (Jz = +3/2 or + 1/2) or ↓ (Jz = −3/2 or −
1/2). In order to obtain the energy dispersion of the first HH subband,
after quantization in z direction under the envelop function approximation,
Löwdin perturbation ignoring higher energy levels like the other HH or
LH subbands. Treating HH-LH coupling Hhl by Löwdin perturbation, the
leading-order (second-order) diagonal terms are

〈H1 ↑ |H(2)|H1 ↑〉

= 1
2
∑
m,σl

〈H1 ↑ |Hlh|Lmσl〉〈Lmσl|Hhl|H1 ↑〉
[

1
Eh

1 − El
m

+ 1
Eh

1 − El
m

]

= ~4

4m2
0

∑
m

|〈Lm ↑ |L|H1 ↑〉|2 + |〈H1 ↑ |M |Lm ↓〉|2

Eh
1 − El

m

= 〈H1 ↓ |H(2)|H1 ↓〉 (2.18)

where EA
i is the unperturbated energy of A (=h (HH) or l (LH)) with

subband index i. Without perturbation, here are no spin-dependent terms
in Hhh and Hll and hence the spin label for the energy is cut out.

In fact, we can know the k dependence also from the theory of invariants.
Oh symmetry, the symmetry of the diamond structure, is lifted by quantum
confinement along growth direction (e.g., [001] direction), leading to a lower
symmetry, e.g., C4v in the QW [60]. One obtains the spin-independent
diagonal term (here, only the diagonal term in HH1 subspace is focused on.
The off-diagonal term is discussed below):

HHH1 = Ak2 −Bk4 − d(k2
+ − k2

−)2. (2.19)
By inserting the L and M into Eq. 2.14, one can obtain the prefactors

A,B and d:

A = ~2

2m0

{
γ1 + γ2 + 6~2γ2

3
m0

∑
m

|〈H1|kz|Lm〉|2

Eh
1 − El

m

}

B = −3
4
~4

m2
0
(γ̃ − ζ)2∑

m

|〈H1|Lm〉|2

Eh
1 − El

m

d = 3
4
~4

m2
0
γ̃ζ
∑
m

|〈H1|Lm〉|2

Eh
1 − El

m

.
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2.3. HEAVY HOLES IN TWO DIMENSIONAL SYSTEM

Here, we treated kz as an operator while kx and ky are kept as numbers.
The first term in Eq. 2.19 describes the parabolic term and when one ignores
the high-order terms in k, the effective mass is obtained:

m∗ =
(

1
~k

dE(k)
d(~k)

)−1

= m0

{
γ1 + γ2 + 6~2γ2

3
m0

∑
m

|〈H1|kz|Lm〉|2

Eh
1 − El

m

}−1

.

(2.20)
This equation indicates that HH-LH mixing reduces the effective mass.

If high-order terms are taken into account, the effective mass depends also
on the absolute value and the direction of k.

There is another effect to be considered: strain. Here, the strain is
based on the difference in the lattice parameters of Si and Ge. In our
heterostructures, the Ge QW is grown on a thick and relaxed Si0.2Ge0.8
layer, which causes a compressive biaxial strain in the QW. In this case, the
compressive strain contributes only to diagonal terms of the Hamiltonian
and it enhances the energy spacing between heavy holes, light holes and
split-off holes (see Fig. 2.2) [71, 62].

The explanation in this section is based on Ref. [35, 70, 60].

Figure 2.2: Schematic energy dispersion of valence band: HH, LH, and SO
(split-off hole). Without strain (left), HH and LH are degenerate at k = 0
and SO is separated by ∆SO. Strain lifts the degeneracy between HH and
LH bands, but the precise effect depends on the nature of the strain (tensile
vs compressive strain). This figure is taken from Ref. [72].

2.3.2 Rashba spin orbit interaction (RSOI)
RSOI is important from the point of view of applications in spintronics.

RSOI couples spin, momentum and electric field and thereby the direction
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of the spin can be controlled by an electric field. From the theory of invari-
ants, the SOI is supposed to be due to lacking of inversion symmetry. Here,
crystal electric fields destroy the macroscopic symmetry (Structure Inver-
sion Asymmetry, SIA). This happens in compound materials made from
two elements (such as GaAs), lacking bulk inversion asymmetry (BIA), re-
sulting in a SOI so-called Dresselhaus SOI. In a Ge QW, the bulk inversion
symmetry is preserved and, therefore, only the Rashba term is relevant (in
fact, the inversion symmetry may be broken at the interface of the QW
[73], but this scenario is difficult to model and quantitatively evaluate and
it will not be considered in this thesis).

For the lowest HH subband in a 2DHG, the same as Eq. 2.18, the off-
diagonal terms are obtained:

〈H1 ↑ |H(2)|H1 ↓〉

= 1
2
∑
m,σl

〈H1 ↑ |Hlh|Lmσl〉〈Lmσl|Hhl|H1 ↓〉
[

1
Eh

1 − El
m

+ 1
Eh

1 − El
m

]

= ~4

4m2
0

∑
m

[
〈H1 ↑ |L∗|Lm ↑〉〈Lm ↑ |M∗|H1 ↓〉

Eh
1 − El

m

+〈H1 ↑ |M∗|Lm ↓〉〈Lm ↓ |(−L∗)|H1 ↓〉
Eh

1 − El
m

]
= 〈H1 ↓ |H(2)|H1 ↑〉∗. (2.21)

The off-diagonal terms read

HHH1
RSOI = iαR2(k3

+σ− − k3
−σ+) + iαR3(k+σ+ − k−σ−)k2 (2.22)

where

αR2 = −3
2
~4

m2
0
γ3γ̃

∑
m

〈H1|Lm〉〈Lm|kz|H1〉 − 〈H1|kz|Lm〉〈Lm|H1〉
Eh

1 − El
m

αR3 = 3
2
~4

m2
0
γ3ζ

∑
m

〈H1|Lm〉〈Lm|kz|H1〉 − 〈H1|kz|Lm〉〈Lm|H1〉
Eh

1 − El
m

.

Eq. 2.22 is also predicted from the theory of invariants [70].
The electric field is included in the wave functions of HHs and LHs and

therefore the dependence is not obvious in the factors αR2 and αR3.
There is another approach to obtain RSOI for the first HH subband.

RSOI for the bulk valence band with J = 3/2 under electric fields E = Ez ẑ
can be derived from the Kane Hamiltonian [60]:
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Hbulk
RSOI = αEz


0 i

√
3

2 k− 0 0
− i
√

3
2 k+ 0 ik− 0
0 −ik+ 0 i

√
3

2 k−
0 0 − i

√
3

2 k+ 0

 (2.23)

where the basis are {|3/2,+3/2〉, |3/2,+1/2〉, |3/2,−1/2〉, |3/2,−3/2〉} and
weak RSOI terms are ignored. Obviously, HH spins do not mix up through
Hbulk
RSOI to the first order. However, RSOI derived from high-order perturba-

tion is still possible. By treating Ez and the off-diagonalHhl by perturbation
theory with the RSOI Hamiltonian of Eq. 2.23 [74], one obtains

HHH1
RSOI = iαc1Ez({k+, k

2
−}σ−−{k2

+, k−}σ+) + iαc2Ez(k3
+σ−−k3

−σ+) (2.24)

where

αc1 = 2e~4

m2
0
γ3ζD

h
1 , αc2 = 2e~4

m2
0
γ3γ̃D

h
1 ,

Dh
α = 3i

4
∑
β 6=α

[
〈Hα|z|Hβ〉〈Lβ|(−i∂z)|Hα〉 − 〈Hα|(−i∂z)|Lβ〉〈Hβ|z|Hα〉

∆hh
αβ∆hl

αβ

− 〈Hα|z|Hβ〉〈Hβ|(−i∂z)|Lα〉 − 〈Lα|(−i∂z)|Hβ〉〈Hβ|z|Hα〉
∆hh
αβ∆hl

αα

+ 〈Lα|z|Lβ〉〈Lβ|(−i∂z)|Hα〉 − 〈Hα|(−i∂z)|Lβ〉〈Lβ|z|Hα〉
∆hl
αα∆hl

αβ

]

and α and β are subband indexes.
Comparing the two approaches, we reach the conclusion that the most

appropriate approximation (i.e. the perturbation order) depends on the
difference symmetry of the QW. In triangular QWs, the first approach,
where RSOI is determined up to second-order perturbation (∝ ∆−1

hl ), is
adequate. In symmetric QWs, however, the second approach, where RSOI
is determined up to third-order perturbation (∝ ∆−2

hl ) [70], is more appro-
priate. Interestingly, in the case of HH states, RSOI is always dominated
by k-cubic terms rather than k-linear terms. This contrasts with the case
of electrons and LHs, for which k-linear terms provide the most important
contribution. The cubic nature of the RSOI can be seen also in the direction
of the associated effective magnetic field as shown in Fig. 2.3.
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kx

ky

kx

ky Ω3Ω1
(a) (b)

Figure 2.3: The direction of the effective magnetic field for (a) k-linear
RSOI and (b) k-cubic RSOI in reciprocal space (blue/red arrows). Moving
along a circle in k-space, the field direction reverses one time in (a) and
three times in (b). This Fig. is reproduced from Ref. [75].

2.3.3 g factor anisotropy
Zeeman energy can be deduced by Kane Hamiltonian under magnetic

field B:

Hz = 1
2µBg ·B = 1

2µB(4κJ + 4qJ ) ·B

= 1
2µB
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 (2.25)

where the basis are {|3/2,+3/2〉, |3/2,+1/2〉, |3/2,−1/2〉, |3/2,−3/2〉}, g
is g tensor, κ and q are the Luttinger parameters and J = (J3

x , J
3
y , J

3
z ).

The prefactor q is typically two orders of magnitude smaller than κ and
therefore we shall neglect it hereafter.

There are no off-diagonal terms in the HH subspace, {|H ↑〉, |H ↓〉 },
meaning that in-plane magnetic field cannot couple to HH spins directly, i.e.
g// ≈ 0. On the other hand, the spin response of HHs to an out-of-plane field
is determined by a g factor g⊥ = 6κ, which is much larger than the g factor
of a base electron g0 = 2 (see Table 2.1). This anisotropy comes from the
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fact that orbital and spin degrees cannot have different quantization axis.
Once the quantization axis is fixed by vertical confinement, the quantization
axis for the spin of the HH is also fixed to be parallel to the growth direction
and hence g⊥ of HH is large while g// is small [60, 76].

One can estimate the out-of-plane g factor of the first HH subband gHH1
⊥

following a procedure analogous to the one discussed in the previous section,
keeping in mind that k × k = −ieB/~. According to Ref. [77, 78], g⊥ of
the first HH subband is

gHH1
⊥ = 6κ+ 12~2γ2

3
m0

∑
m

|〈H1|kz|Lm〉|2

Eh
1 − El

m

. (2.26)

Just as for the effective mass, HH-LH mixing reduces g⊥.
The perturbation theory predicts that finite g// depends on higher order

of k or B. According to Ref. [76], one term of g// depends on k//:

gHH1
// ∝

k2
//

Eh
1 − El

1
. (2.27)

In the analogy with RSOI, cubic term (∝ B3
//) can also appear in Zeeman

term but, according to Ref. [60], it can be negligible because the term
is expected to have small influence in narrow QW. In addition, kinetic
terms can also originate the in-plane Zeeman effect through the relation
~k = −i~∇− eA [68].

2.4 Conclusion
In conclusion, we have shown how in Ge QW the low in-plane effective

mass, cubic nature of RSOI, and strong g factor anisotropy of the first HH
subband can be deduced from the Luttinger Hamiltonian. We have also
shown how in addition to quantum confinement, the presence of compres-
sive strain, as in the GeSi/Ge/SiGe heterostructures experimentally studied
here, enhances the HH-LH splitting, thereby reducing LH-HH mixing and
leading to a lowest subband with a dominant HH character.

Besides showing a relatively strong RSOI and large out-of-plane g fac-
tors, Ge has the additional property of containing a small natural abundance
of isotopes with finite nuclear spin (see Table 2.2). In view of spin-qubit ap-
plications, this represents a clear advantage over III-V semiconductors. In
addition, Ge/SiGe heterostructures can have 100 meV of HH-LH splitting
due to a large compressive strain [75], enabling almost pure HH states.
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Table 2.2: Natural isotopes, spin and natural abundance for most commonly
used elements in spintronic [79].

Element Isotope Nuclear spin Natural abundance (%)

Germanium

70Ge 0 20.84
72Ge 0 27.54
73Ge 9/2+ 7.73
74Ge 0 36.28
76Ge 0 7.61

Silicon

28Si 0 92.22
29Si 1/2+ 4.69
30Si 0 3.09

Gallium
69Ga 3/2- 60.108
71Ga 3/2- 39.892

Indium
113In 9/2+ 4.29
115In 9/2+ 95.71

Arsenic 75As 3/2- 100

Antimony
121Sb 5/2+ 57.21
123Sb 7/2+ 42.79
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Chapter 3

Charge transport in
low-dimensional systems

3.1 Introduction

Quantum confinement in semiconductor heterostructures leads to energy
quantization and the formation two-dimensional energy subbands. Sub-
band formation becomes prominent when the energy spacing among the
subbands is larger than thermal energy broadening. Electronic transport
at low temperature is a practical way to acquire information on the elec-
tronic properties of the subbands.

Heterostructures confining a two-dimensional (2D) electronic system can
be grown, for example, using chemical vapor deposition (CVD) techniques.
Homogeneous nanometer-thick layers of high quality can be grown this
way. When a nanometer-scale semiconductor layer (e.g., made of Ge) is
sandwiched between semiconductors (e.g. SiGe) with a larger energy gap,
confining quantum well is formed and its electronic states become quan-
tized along the growth direction. In this system, electronic motion is free
in the x-y plane, and, depending of the lateral length scale, it can be ballis-
tic or diffusive. By favoring the formation quantum-Hall edge states with
suppressed back scattering, a strong out-of-plane magnetic field can help
creating ballistic channels. In the absence of a magnetic field, lateral en-
ergy confinement (say along the y direction) can be achieved with the aid
external electric fields. This way, a one-dimensional (1D) ballistic channel
(along x) can be formed. One approach to apply confining electric fields
consists in using metal gate structures deposited on the surface of the het-
erostructure. This approach is highly versatile and it can also be used to to
create zero-dimensional (0D) systems, usually referred to as quantum dots.
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By properly designing the surface gate electrodes, the two-dimensional elec-
tronic system confined in the QW can be locally depleted in order to obtain
quantum circuits consisting of functional elements with different dimen-
sionality (2D, 1D, and 0D) integrated all together. The quantum circuits
thus formed can be addressed by means of transport measurements. To
this aim, source and drain contacts are connected to the low-dimensional
electronic gas (multi-terminal devices with complex geometries can as well
be realized). Typically, the source-drain current through the quantum sys-
tem is measured, e.g., as a function of source-drain bias voltage and gate
voltages. In addition, an external magnetic field can be applied to affect
orbital motion and/or induce spin polarization. In this chapter, we provide
an introduction to quantum transport in low-dimensional (2D, 1D and 0D)
systems.

3.1.1 Quantum confinement and energy
discretization

As an introduction to low-dimensional systems, let us start by deriving
the carrier density nd = Nd/(L)d, where Nd is the total number of states in
a d-dimensional system with a length L and d = 1, 2, 3 is the dimensional-
ity (for simplicity, the length for each dimension are defined to be same).
At zero temperature, all the states below Fermi energy EF = ~2k2

F/2m
are occupied and therefore nd can be derived by considering, in reciprocal
space, the length (d=1), area (d=2) or volume (d=3) and the approximated
density of states (π/L)−d,

nd = Nd

(L)d ∼
2

(L)d
∫

0≤|kd|≤|kF
d
|

dkd

2d( π
L

)d = |k
F
d |d

dπ
(3.1)

where kdF is Fermi wave number in the d dimension. The factor of 2 in front
of the integral is due to spin degeneracy and the one in the integral is due
to double-counting of states for ±k. The 2D density n2 = k2

F/2π is often
used to estimate kF (Ch. 4).

The detailed properties of low-dimensional structures reflect the sym-
metry of the confinement potential. The shape of the potential well is im-
portant in determining the energy level spacing and the spatial distribution
of the confined wavefunctions. For example, as discussed in the previous
chapter, Rashba SOI depends on the electric field, i.e. on the spatial deriva-
tive of the QW potential. The potential profile along z also determines the
HH-LH mixing. Often the QW confinement can be casted into one of the
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following three categories, depending on the shape of the confining poten-
tial along z: rectangular, parabolic, or triangular QWs. The corresponding
Hamiltonians read:

HQW = − ~2

2m
∂2

∂z2 + V (z) (3.2)

V (z) =


V0
[
u(z − W

2 )− u(−z − W
2 )
]

(Rectangular QW),
mω2z2

2 (Parabolic QW),

eEzu(z) ; x > 0 (Triangular QW)

wherem is the effective mass of the carrier,W is the width of the rectangular
QW, ω is an angular frequency given by the curvature of the parabolic
quantum well, e is the electron charge, E is the electric field, ~ is the
reduced Planck constant, u(x) is the Heaviside step function and V0 is the
height of the QW. Often V0 →∞ represents a good approximation for deep
QWs, provided one considers only the first few subbands. Therefore, the
nth subband energy En is

En =


~2

2m(πn
L

)2 (Infinite rectangular QW),

~ω(n+ 1
2) (Parabolic QW),

−( e2E2~2

2m ) 1
3an (Triangular QW)

(3.3)

where an ∼ −1/4 ∗ [3π(8n − 1)]2/3. Here, only triangular QW breaks the
inversion symmetry of the system, which results in Rashba SOI.

In order to observe low-dimensional transport, the thermal energy Eth ∼
kBT , where kB is Boltzmann constant and T is temperature, must be much
smaller than the subband energy spacings. That is the reason why low
effective mass favors quantum confinement (we note that in parabolic QW
ω =

√
κ/m, where κ is the force constant of the harmonic oscillator set by

the electrostatic parabolic potential).

3.2 Magneto-transport in 2D quantum well

3.2.1 Classical Drude model and Hall effect
Hereafter, we shall derive fundamental theory for hole transport in low-

dimensional systems (only hole transport is considered here since all our
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devices discussed in this thesis are p-type). We consider that the sample
temperature is low enough for holes to be regarded as a degenerate hole
gas, meaning that only hole states at Fermi energy contribute to transport
while hole states below the Fermi energy do not because they are always
occupied.

At first, classical diffusive transport in 2D is described. In diffusive
transport, holes are scattered during their motion due to different scattering
sources, e.g., impurities, phonons, other holes, etc. [80]. Hole diffusion
can be parameterized by the scattering time τtr, the average time between
scattering events. When electric field E and magnetic field B are applied
to the system, the equation of motion for holes can be described using the
Drude model:

F = e(E + vdr ×B)−mvdr/τtr (3.4)
where F is the (average) force that a hole feels, vdr is the drift velocity
of the holes. In equilibrium, F = 0, the holes will have constant vdr and
therefore, without B,

vdr = eτtr
m
E ≡ µE (3.5)

where µ = eτtr/m is called (carrier) mobility. Substituting sheet cur-
rent density j = ensvdr, mobility µ and out-of-plane magnetic field B =
(0, 0, Bz) yields

(
Ex
Ey

)
=
(
ρ0 − Bz

ens
Bz

ens
ρ0

)(
jx
jy

)
≡

(
ρxx ρxy
−ρxy ρyy

)(
jx
jy

)
= ρ

(
jx
jy

)
(3.6)

where ρ0 = (ensµ)−1 and ρ is sheet resistivity. Generally, the sheet conduc-
tivity is

σ =
(
σxx −σxy
σxy σyy

)
=
(

ρxx ρxy
−ρxy ρyy

)−1

(3.7)

σxx = ρxx
ρ2
xx + ρ2

xy

, σxy = − ρxy
ρ2
xx + ρ2

xy

. (3.8)

and therefore,

σxx = σ0

1 + µ2B2
z

, σxy = − σ0µBz

1 + µ2B2
z

. (3.9)
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where σ0 = ensµ.
The Eq. 3.6 is useful to estimate the 2D density. Hall-bar devices such as

the one shown in Fig. 3.1 (a) are often used to characterize two-dimensional
transport. When current through the Hall bar Ix ≡ Ids is applied, longitu-
dinal and transverse voltages Vx ≡ Vch and Vy ≡ VH yield the longitudinal
resistance Rxx and Hall resistance Rxy, respectively, i.e.:

Rxx = Vch
Ids

= ExL

jxW
= ρ0

L

W
, Rxy = VH

Ids
= EyW

jxW
= − Bz

ens
(3.10)

where L and W are the channel length (in x direction) and the channel
width (in y direction), respectively. By measuring VH as a function of a
relatively small Bz, one can obtain the sheet carrier density ns from the
slope of Rxy (Fig. 3.1 (c) at low Bz).

3.2.2 Shubnikov de Haas effect and Quantum Hall
effect

What if the magnetic field is strong enough that the path of a hole
makes a circle? According to quantum physics, quantized energy levels so-
called Landau levels (LLs) are formed at high magnetic fields. In a simple
description, the circular path without scattering (ltr = vF τtr � 2πvF/ωc,
where ltr is the mean free path, vF = ~kF/m is Fermi velocity, and ωc =
eBz/m is cyclotron frequency) requires the periodic boundary condition,
making energy discrete. In this case, the (spin-less) 2D Hamiltonian HLL
under out-of-plane field Bz is, by use of Landau gauge A = (−Bzy, 0, 0),

HLL =

[
(px + eBzy)2 + p2

y

]
2m =

p2
y

2m + mω2
c (y + y0)2

2 (3.11)

where y0 = ~kx/eBz = kxl
2
B. The HLL has the same form as the Hamilto-

nian of a harmonic oscillator, leading to ELL = ~ωc(n + 1
2) where n is LL

index. Here, we define the length scale of the channel in x direction to be L,
yielding kx = m∗2π/L for the periodic boundary condition (m is an integer
number.). Therefore, in the channel, the state with a kx in a LL (excluding
the spin degeneracy) occupies a surface ∆(kxl2B)∗L = (2π/L)∗l2B∗L = 2πl2B.
In other words, the density of each LL equals nB = (2πl2B)−1. LLs below
the Fermi energy EF are filled so that the carrier density ns is equal to the
integer multiple of nB: ns = ν ∗ nB. Hence, the number ν, so-called filling
factor, indicates how many LLs are filled.

Charge transport in the quantum Hall regime occurs through edge chan-
nels formed by LLs crossing the Fermi energy[81, 80] (Fig. 3.1 (a) white
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Figure 3.1: (a) Schematic of a Hall bar structure. This Hall bar structure
has six ohmic contacts. Current Ids flows from the source to the drain. In so-
called Hall measurement, Ids, transverse voltage VH and longitudinal voltage
Vch are measured as a function of magnetic field. White lines indicates
edge channels due to Landau levels (LLs). (b) The energies of the LLs in
the transversal cross-section of the channel (dashed line in (a)). Each LL,
with index ν, gives a peak in density of states (DOS) with extended states
(colorized in red) separated by localized states. The latter are formed by
potential fluctuations, e.g., due to impurities or inhomogeneities in the QW
thickness. Carriers can be captured there and move along close trajectories
as schematically depicted by black dashed lines in (a). (c) In the linear
regime (small applied bias voltage, i.e. µd ≈ µs) the longitudinal resistivity
ρxx exhibits oscillations as a function of an applied perpendicular magnetic
field (red trace): ρxx has minima whenever a LL crosses the Fermi energy,
and maxima when the Fermi energy lies in the region of localized states
between adjacent LLs (the energy spacing between LLs increases with Bz).
Quantized Hall resistance is observed in transverse resistivity (ρxy at high
magnetic field (blue line). Simultaneously, ρxx tends to vanish. These are
characteristic signatures of the Quantum Hall effect, and they denote the
formation of ballistic edge channels. The data is taken from measurements
of the Hall bar device described in Ch. 5.

lines). In fact, at the edges of the channel, the confinement potential raises
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causing an upward bending of the LLs as shown in Fig. 3.1 (b). Holes flow-
ing through an edge state cannot be back scattered since on the same side of
the Hall bar all edge states move in the same direction (chirality of the edge
states). In the absence of backscattering, transport is dissipationless. In
such as case, each edge mode behaves as a ballistic one-dimensional channel
with a conductance of the e2/h (see next section). The voltage drop associ-
ated with this finite quantized conductance occurs at the the contacts, such
that Vch ≈ 0 (hence ρxx ≈ 0). The quantized conductance of the edge states
emerges as a quantization of the transverse Hall resistance, which requires
taking into account the edge states on the other side of the Hall bar, which
flow in the reversed direction. In fact, the transverse voltage VH measures
the difference in the electrochemical potentials of the opposite edge modes,
which are defined by the source and drain contacts, respectively. Therefore
VH = Vds and Rxy = h/νe2. This effect is the characteristic manifestation
of the quantum Hall effect (QHE) (Fig. 3.1 (c) blue line at high magnetic
fields).

More generally, the carriers in LLs move perpendicularly to the gradient
of the potential including charge impurities. Holes are captured in energy
minima making closed loops (see closed dashed lines in Fig. 3.1 (a)) when
the Fermi energy lies well between adjacent LLs (Fig. 3.1 (b)). On the other
hand, at relatively small magnetic fields, the loops tend to be rather delo-
calized which facilitates hole scattering from one loop to another. When the
Fermi energy approaches a LL (red lines in Fig. 3.1 (b)), transport paths
going from one edge to the other become accessible owing to the enlarging
contour of the loops and a finite resistivity due to dissipative diffusive paths
can be observed. As a result, the longitudinal resistivity ρxx oscillates in
magnetic field, a phenomenon known as Shubnikov-de Haas (SdH) oscilla-
tions (see Fig. 3.1 (c) ρxx (red line)). The SdH peaks correspond to the
the Fermi energy crossing the LLs. Therefore one can estimate the carrier
density from the frequency of the SdH oscillations in reciprocal magnetic
field.

3.2.3 Weak anti-localization effect
SdH oscillations dominate transport at moderate magnetic fields. Close

to zero magnetic field, other quantum effects can become prominent. One
of them is a phenomenon known as weak anti-localization (WAL), which is
a quantum interference effect occurring in the diffusive transport regime.
When charge carriers diffusive from point a to b, they can follow many dif-
ferent paths, associated with different sequences of scattering events. Each
path has a complex amplitude A, whose squared modulus corresponds to
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the probability that the carrier takes that particular path. The number
and extension of all the possible paths is limited by the phase coherence re-
laxation time τφ, that is the average time between phase-relaxation events.
For simplicity, we assume that there are only two paths and therefore the
total probability Pab of going from a to b is

Pab = |A1 + A2|2 = |A1|2 + |A1|2 + 2|A1||A2|cos(φ1 − φ2) (3.12)

where Ai is the amplitude for path i (i = 1, 2), and φi is the phase of Ai.
On the right hand side of Eq. 3.12, the first two terms are the same as
the classical probability of going from a to b through path 1 or through
path 2. The last term accounts for the quantum interference between the
two paths. When the number of paths increases, the interference terms
cancel out because each path can have an arbitrary phase. However, in
a closed loop (where a and b coincide), two time-reversed paths can have
exactly the same phase. This case is exemplified In Fig. 3.2 (a), where
a possible diffusive path with the shape of a closed loop is shown. An
electron (or a hole) can go through the path clockwise or anti-clockwise (red
and blue lines). The two time-reversed paths have the same phase, which
maximizes their interference. This effect, called weak localization (WL),
translates into an increased probability of coming back to the starting point,
i.e. of remaining localized. WL provides a quantum correction to Drude
conductivity ∆σxx (Fig. 3.2 (b)). The WL effect is destroyed by an out-
of-plane magnetic field which breaks time reversal symmetry introducing a
trajectory-dependent dephasing. As a result, the WL effect manifests itself
as a zero-bias magnetoresistance peak.

RSOI can also break WL. RSOI is responsible for an effective magnetic
field which depends on the wavevector and the local electric fields all along
a given path. In the case of two self-interfering paths as in Fig. 3.2 (a),
the spin rotation induced by RSOI will be opposite for clockwise and anti-
clockwise trajectories, thereby resulting in a destructive interference and
hence a conductivity peak at zero magnetic field (like in the case of WL,
a finite magnetic field breaks WAL). Usually, the magnetic field required
to break WAL is smaller than the one causing the suppression of WL.
Therefore the quantum correction to conductivity displays a zero-field WAL
peak within a wider dip due to WL, also centered at zero magnetic field
(Fig. 3.2 (c)).

Iordanski et al. [82] derived the conductivity correction for the 2D sys-
tem with the k-linear and k-cubic SOI (without Zeeman effect), which en-
abled us to extract important parameters for spintronic devices: phase re-
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Bz

∆

Bz

∆
WL WAL

(b) (c)(a)

Figure 3.2: (a) Scattering centers (black dots) and two time-reversed paths
forming a closed loop (starting from the black arrow, passing through clock-
wise (red) or anticlockwise (blue) path and going out along the other black
arrow). (b) Two paths interfere with each other constructively because of
no phase difference, resulting in the reduction of longitudinal conductiv-
ity of the system (weak localization, WL). Out-of-plane magnetic field Bz

makes a phase difference between the time-reversed paths and destroys the
WL, recovering the conductivity. (c) A phase difference due to SOI can also
break the WL (weak anti-localization, WAL). The SOI effect can also be
broken by Bz when, simply speaking, the cyclotron motion becomes much
smaller than spin relaxation length due to the SOI. Usually, this SOI effect
is broken by smaller magnetic fields than the ones breaking WL. Therefore
a WAL conductivity peak appears around Bz = 0 inside a WL conductivity
minimum. .

laxation time, spin relaxation time due to SOI, and spin splitting energy at
zero field (Ch. 4).

3.3 Ballistic transport through a 1D wire

3.3.1 Conductance quantization
In a 2D electron (or hole) gas, 1D quantum confinement can be obtained

by applying voltages to two split gates on the surface of the heterostructure.
When the channel width is comparable to the Fermi wavelength λF =
2π/kF , the electronic states get quantized forming a 1D conduction channel.
In the case of ballistic 1D transport, the conductance is quantized in units
of e2/h, the so-called quantum of conductance. We explain this using a
simple model. We assume that drain and source contacts are connected to
the 1D channel, and we neglect interactions and spin effects, except for spin
degeneracy. We also assume that the channel has a single quadratic energy
dispersion. The current through the channel is obtained by integrating the
current density j = evn
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I1D =
∫ nF

d

nF
s

ev(nl)dnl (3.13)

where v is the velocity of holes and nFd/s is the hole density at Fermi energy
in the drain (source), µd/s. The states below the lower Fermi energy are
always occupied and therefore only the states between the Fermi levels of
the source and drain contacts contribute to I1D.

Remembering the relation that n1D = k/π (Eq. 3.1) and using the rela-
tion for the group velocity of a particle v = ~k/m, we obtain that

I1D =
∫ kF

d

kF
s

e
~k
m

dk

π
= 2e

2

h
(Vd − Vs) (3.14)

where we have used µd/s = ~2(kFd/s)2/2m = eVd/s and Vd/s is the voltage
applied to the drain/source. Therefore, the above equation yields the 1D
quantized conductance

G1D = 2e
2

h
. (3.15)

The factor of two indicates the spin degeneracy which is included in Eq.
3.1. Note that the conductance is independent of the specific parameters of
the 1D system.

Several subbands can participate in the transport (Fig. 3.3 (a)). For
a small eVds = µd − µs, the conductance is determined by the number of
channels that cross the Fermi levels µd and µs, the same for QHE. Therefore,
one can observe conductance steps as the energy levels are lowered by gate
voltage Vg and pass the Fermi level one by one, see Fig. 3.3 (b) blue solid
line. On the other hand, at higher Vds, the conductance plateaus with half
value between two adjacent plateaus appear [83].

The conductance steps between consecutive plateaus are broadened by
temperature [80] and, in the case of short channels, by tunneling (Fig. 3.3
(b) yellow dashed line).

3.3.2 Magnetic field effect
Magnetic fields lift the spin degeneracy, resulting in half conductance

plateaus at multiple of e2/h in a 1D channel. Additionally, if the field is
applied perpendicular to the QW plane (i.e. along z), it affects the lateral
confinement and hence have a strong orbital effect eventually leading to the
formation of quantum-Hall edge states. Starting from the 2D Hamiltonian,
we write a Hamiltonian for a 1D channel with a parabolic confinement under
out-of-plane magnetic fields Bz:
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Figure 3.3: (a) Energy subbands of a quasi 1D system, where several 1D
channel exist in a 1D constriction. In a simple model, each 1D subband
has a parabolic energy dispersion. The energy offset can be shifted by gate
voltage Vg. (b) 1D channel conductance G1D as a function of Vg. Step-like
conductance appears (blue solid line). Thermal energy and tunneling effect
across the 1D constriction broaden the plateaus (orange dashed line).
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where we have used the Landau gauge A = Bzyx̂, Landé g factor g∗ and
ω2 = ω2

0 + ω2
c . The terms enclosed by square brackets have the form of

the 1D Hamiltonian of a harmonic oscillator Eq. 3.2. Therefore the energy
dispersion of nth subband (more precisely of its edge at px = ~kx = 0) is

E1D
n (Bz) = ~ω(n+ 1

2) + 1
2g
∗µBBz. (3.17)

The resulting subband energies as a function of Bz are shown in Fig. 3.4.
They exhibit a hyperbolic dependence as opposed to the linear one expected
for in-plane magnetic fields, for which orbital effects are weak. This field
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Figure 3.4: Results of a numerical
simulation showing the subband en-
ergies of a 1D channel with a k-cubic
RSOI as a function of perpendicu-
lar magnetic field. In practice, each
blue line corresponds to the edge of
a conductance plateau. Therefore, in
the white areas between two adjacent
lines the conductance is a multiple of
e2/h. The magnetic field splits each
zero-field conductance plateau due to
the Zeeman effect. Red (black) ar-
rows emphasize anti-crossings (cross-
ings) of subbands. This figure is re-
produced from Ref. [84].

dependence of Fig. 3.4 can be experimentally probed by measuring G vs
Vg and Bz because E1D

n correspond to the edge of nth plateau and can be
controlled by gate voltage Vg. At high Bz such that ωc � ω0, H1D tends to
HLL. As seen in the first term in Eq. 3.16, magnetic fields seem to increase
the mass of the holes in the 1D channel, making the energy dispersion
flatter. In the limit that ωc →∞, ω ∼ ωc, meaning that LLs are formed in
the channel.

3.4 Single hole transport through a
quantum dot

3.4.1 Constant interaction model
Electrostatic confinement in all directions can result in a small area of a

2D electron (or hole) gas surrounded by potential barrier, thereby defining a
so-called quantum dot (QD). In the QD, energy is fully quantized in discrete
energy levels. In addition, Coulomb interactions reflecting the repulsion
among carriers with the same charge can become important. The Coulomb
interaction results in an energy cost for adding an extra charge to the QD.
As a result, the number of charges N confined to a QD becomes a well-
defined integer. The energy levels are described by the constant interaction
model in which three assumptions are made [85]. First, N can be controlled
by a gate voltage Vg with constant gate coupling capacitance Cg. Second,
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constant QD capacitance CΣ. Third, the single-particle energy spectrum
En is not affected by Coulomb interactions. Consequently, the energy levels
in a QD EQD(N, Vg) are

EQD(N, Vg) = (eN + CgVg)2

2CΣ
+
∑

En. (3.18)

The first term on the right-hand side is an electrostatic energy, where
|eN | is the total charge of the N holes confined in the QD, and CgVg is the
charge induced by Vg. Then, the energy required to add one hole to a QD
with (N − 1) holes, i.e. electrochemical potential µ(N, Vg), reads

µ(N, Vg) = EQD(N, Vg)−EQD(N−1, Vg) = (N−1
2) e

2

CΣ
+αVg+∆EN (3.19)

where α = eCg/CΣ is the so-called lever-arm parameter relating Vg vari-
ations to energy variations, and ∆EN = EN − EN−1 is the energy level
spacing. We shall define as addition energy, Eadd, the shift in electrochem-
ical potential, following the addition of an extra hole to the QD, i.e.

Eadd ≡ ∆µ = µ(N, Vg)− µ(N − 1, Vg) = e2

CΣ
+ ∆EN = Ec + ∆EN . (3.20)

In the above equation we have introduced the Coulomb charging energy
Ec ≡ e2

CΣ
. When ∆EN ≈ 0 (case of a metallic dot), ∆µ ≈ Ec for all

occupation numbers N .
Current transport through a QD can be measured by connecting to

carrier reservoirs via tunnel barriers. At low temperature (kBT � Ec)
and low bias voltage (eVds � Ec), charges can only flow one by one, a
phenomenon know as single-electron (or single-hole) tunneling. This one-
by-one occurs only when the electrochemical potential of the QD, µ(N, Vg),
lies in the source-drain bias window, in which case the occupation of the
QD will fluctuate between N − 1 and N . Otherwise, transport is blocked
by the Coulomb charging energy, a regime known as "Coulomb blockade".
In the linear regime, i.e. for eVds ∼ kBT � Ec, sweeping the gate voltage
will then result in a sequence of conductance peaks (one every time µd <
µ(N, Vg) < µs, where µs and µd are the Fermi energies of the source and
drain reservoir, respectively), separated by Coulomb-blockade regions of
suppressed conductance (Fig. 3.5 (a)). The line width of the Coulomb peaks
is dominated by largest energy scale between the thermal energy (∼ kBT )
and the life-time broadening due to tunnel coupling to the source and drain
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reservoirs (~Γ, where Γ is the sum of the tunnel rates to the source and
drain reservoirs).

At large source-drain bias voltage eVds > Ec the Coulomb blockade effect
is lifted, and current is allowed to flow for every value of the gate voltage. A
qualitative color map of the QD conductance, GQD, as a function of Vds and
Vg is shown in Fig. 3.5 (c). It shows that Coulomb blockade occurs within
diamond-shape regions in which the occupation of the QD is a constant
integer number.

3.5 Conclusion
This chapter was devoted to the discussion of low-dimensional transport

in a variety of different regimes, going from 2D magneto-transport to bal-
listic 1D conduction and 0D Coulomb blockade regime. Except for this last
case, interaction effects among carriers were ignored. In fact, interaction
effects are naturally expected to emerge in closed nano-scale systems such
as QDs, where small numbers of charges are forced to coexist within same
small volume. Charge interactions in QDs can be exploited in a variety of
applications, ranging from metrology (single-electron pumps, quantum-dot
thermometers) to spin qubits (here interactions not only favor the necessary
confinement of electrons, but also provide an opportunity for two-qubit op-
erations, e.g. mediated by the exchange coupling between adjacent QDs).
On the other hand, interactions generally tend to vanish in open systems
(2D and 1D). There exist regimes, however, where the presence of charge
interactions can be subtle and, in fact, more influential than expected. It
is the case of the so-called 0.7 anomaly observed in 1D quantum point con-
tacts. This ubiquitous phenomenon consists in the emergence of a small
conductance plateau at around 0.7 × (2e2/h). It can not be explained on
the basis of the simple model presented in section 3.3.1. While a conclusive
explanation of this phenomenon has not been reached yet, several theories
suggest it could arise from local electron-electron interactions, and, possi-
bly, Kondo physics. Finally, we have seen that the spin-orbit interaction
can have different manifestations depending on the system dimensionality
and transport regime. It can give rise to the WAL phenomenon in diffusive
2D transport (which is the focus of the experiment presented in Ch. 4), or
produce level anti-crossings in 1D and 0D systems, as shown in Fig. 3.4 (this
phenomenology was not clearly observed in this PhD thesis and it could be
the subject of follow-up studies).
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Figure 3.5: (a) Schematic energy diagram of a drain-QD-source system.
The valence band is flipped for visibility. Two reservoirs (Drain and Source)
are connected to a QD across tunnel barriers. Energy levels in QD is quan-
tized by quantum confinement and Coulomb interaction. Current through
the QD is allowed when a QD level (i.e. a QD electrochemical potential
µ(N, Vg)) lies in the bias window (yellow area) between the Fermi levels
µD and µS of the reservoirs. On the contrary, when no QD level is in the
bias window, no current flows (Coulomb blockade regime) and the number
of holes in the QD is fixed. (b) The energy levels in the QD can be varied by
a gate voltage Vg and a peak in the conductance GQD appears every time a
QD level passes through the bias window. (c) When the QD conductance is
measured as a function of Vds and Vg, a characteristic set of diamond-shape
regions (white color) is observed where GQD ≈ 0. Outside these regions,
Coulomb blockade is everywhere lifted leading to a finite GQD (blue color).
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Chapter 4

Weak anti-localization in
Ge-surface heterostructure

4.1 Introduction
In this chapter, we report a magneto-transport study of a two-dimensional

hole gas confined to a strained Ge quantum well grown on a relaxed Si0.2Ge0.8
virtual substrate. The conductivity of the hole gas measured as a function
of a perpendicular magnetic field exhibits a zero-field peak resulting from
weak anti-localization. The peak develops and becomes stronger upon in-
creasing the hole density by means of a top gate electrode. This behavior is
consistent with a Rashba-type spin-orbit coupling whose strength is propor-
tional to the perpendicular electric field, and hence to the carrier density. In
the low-density, single-subband regime, by fitting the weak anti-localization
peak to an analytic model, we extract the characteristic transport time
scales and a spin splitting energy ∆SO ∼1 meV. Tight-binding calculations
show that ∆SO is dominated by a cubic term in the in-plane wave vec-
tor. Finally, we observe a weak anti-localization peak also for magnetic
fields parallel to the quantum well and associate this finding to an effect of
intersubband scattering induced by interface defects.

4.2 Ge-surface heterostructure
The strained SiGe heterostructure was grown on a 200 mm Si(001)

substrate by means of reduced pressure chemical vapor deposition (RP-
CVD). Growth was realized using an industrial-type, mass-production sys-
tem (ASM Epsilon 2000 RP-CVD), which is a horizontal, cold-wall, single
wafer, load-lock reactor with a lamp-heated graphite susceptor in a quartz

39



4.2. GE-SURFACE HETEROSTRUCTURE
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RserialVds

VH
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(a) (b) B⊥ B//

100 µm

Figure 4.1: (a) Schematic of the heterostructure. (b) Optical image of the
Hall bar devices. The blue line highlights the mesa and the white dotted
lines the Pt contacts. We measure the transverse Hall voltage (VH) and the
longitudinal channel voltage (Vch) from which we extract Hall resistivity
and channel resistivity respectively. The directions of the applied fields B⊥
and B// are also indicated.

tube. RP-CVD offers the major advantage of unprecedented wafer scala-
bility and is nowadays routinely used by leading companies in the semi-
conductor industry to grow epitaxial layers on Si wafers of up to 300 mm
diameter. The heterostructures, shown schematically in Fig. 4.1.a, consists
of a 3 µm thick reverse linearly graded, fully relaxed Si0.2Ge0.8/Ge/Si(001)
virtual substrate with a 32-nm-thick strained Ge QW surface layer. This is
a typical design for surface channel structures employed in modern MOS-
FET devices. The full structure was grown in a single process without any
external treatment. The surface of the Si wafers was cleaned by an in situ
thermal bake in H2 ambient at high temperature, above 1000◦C. The Ge
epilayer was grown from a commercially available and widely used germane
(GeH4) gas precursor at a relatively low substrate temperature (<450◦C),
as it is known that the growth temperature of the compressively strained Ge
epilayers has to be sufficiently low to suppress surface roughening and re-
tain compressive strain in the epilayers. Further details of materials growth
and characterization are described elsewhere [86].
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4.3 Device fabrication
The studied devices have a Hall-bar geometry defined by a top-gate

electrode operated in accumulation mode (Fig. 4.1.b). Due to the absence
of intentional doping, the Ge QW contains no carrier at low temperature.
Only by applying a sufficiently negative top-gate voltage, Vtg, can the accu-
mulation of a 2DHG be induced in the Ge QW. Device fabrication involves
several steps that we discuss here briefly (more details on the fabrication
steps highlighted in bold font are given in Appendix A). After receiving the
heterostructure wafers from Warwick Univ., a sample cleaning procedure
is initially performed. Then, each wafer is cut in 2cm-by-2cm chips after
coating it with photo-resist for protection. Later, the obtained chips are
processed one by one. As a first step, alignment marks are defined by pho-
tolithography and electron beam evaporation of Ti/Au = 10 nm/50
nm. A relatively large (tens of microns wide), 55-nm-thick mesa struc-
ture is defined by optical lithography and reactive ion etching in Cl2
plasma. Ohmic contacts are successively fabricated using optical lithogra-
phy, followed by Ar etching (to remove the residual oxide and photo-resist
residues) and Pt deposition in an e-beam evaporator system. Next, 30 nm
of Al2O3 are deposited all over the chip surface using ALD at 250◦C. At
this stage, the chips are cut in 5mm-by-5mm squares to be processed later
one by one. This split was done in order to enable the realization of gate
structures with different geometries. For the sake of the experiments dis-
cussed in this chapter, a Hall-bar-shape top gate electrode was defined by
EBL and deposition of Ti/Au (10nm/50nm). This thickness exceeds the
height of the mesa structures.

4.4 WAL under out-of-plane magnetic field

4.4.1 Carrier density and mobility
Magneto-transport measurements were performed in a 3He cryostat with

a base temperature of 300 mK. In a first set of experimental runs, longi-
tudinal (ρXX) and Hall (ρXY ) resistivities were measured as a function of
magnetic field, B⊥, perpendicular to the 2DHG, and Vtg. The onset of hole
accumulation was found to occur at Vtg ≈ −4 V, slightly varying from one
run to the other. Examples of ρXX(B⊥) and ρXY (B⊥) traces are given in
Fig. 4.2.a. From Hall resistivity we extracted the hole mobility (µ) and
carrier density (nhole) ranging from 800 to 4100 cm2/Vs and from 1.3 to
2.8 ×1011 cm−2, respectively (data points from two experimental runs are
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Figure 4.2: (a) Channel resistivity ρXX (red) and Hall resistivity ρXY
(blue) as a function of out of plane magnetic field at Vtg = -4.8 V. Chan-
nel resistivity shows a dip at low field which is a signature of weak anti-
localization. (b) Mobility µ (red) and carrier density nhole (blue) as a
function of accumulation gate voltage Vtg. Data points above and below
Vtg = −4.5V refer to two distinct experimental runs.

shown in Fig. 4.2.b). The mobility is much lower than the one reported in
other strained Ge heterostructures [87]. This difference is likely due to the
presence of charge traps at the Ge/Al2O3 interface.

Following basic Hall-effect characterization we now turn to a more in-
depth investigation of the magneto-transport properties. In Fig. 4.2.a, the
longitudinal resistivity (red trace) exhibits a pronounced dip at zero mag-
netic field. Such a dip is a characteristic signature of weak anti-localization
(WAL), a mesoscopic phenomenon associated with spin-orbit coupling [88].
At zero magnetic field the latter leads to a suppressed enhancement of
backscattering resulting in a resistivity minimum. This quantum interfer-
ence effect is suppressed by a magnetic field perpendicular to the 2DHG,
accounting for the observed resistivity dip at B⊥ = 0.

This phenomenon is further investigated in Fig. 4.3.a, where the longitu-
dinal conductivity is now plotted as a function of B⊥ and for a range of Vtg
values, after having removed the feature-less back-ground contribution from
classical Drude conductivity. As a matter of fact, ∆σWAL represents the
quantum correction resulting from WAL. Interestingly, this data set shows
that the WAL peak develops and broadens upon increasing Vtg and, corre-
spondingly, the perpendicular electric field and the hole density nhole in the
QW. All over the nhole range spanned, the 2DHG occupies the first subband
only, as confirmed below by self-consistent tight-binding (TB) calculations
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Figure 4.3: (a) Traces of the weak anti-localization contribution to the
channel conductivity ∆σWAL as a function of B⊥ for different accumula-
tion gate voltages and carrier densities from 1.3 × 1011 cm−2 (top trace)
to 1.7 × 1011 cm−2 (bottom trace, traces are offset for better visibility).
The weak anti-localization peaks emerges as carrier density is increased.
(b) Evolution of scattering time τtr (red crosses), phase relaxation time τϕ
(green circles) and spin relaxation time τSO (blue triangles) as a function of
carrier density. (c) Evolution of the spin splitting energy ∆SO as a function
of carrier density.

[89].
The evolution of the WAL peak in Fig. 4.3.a suggests that the underlying

spin-orbit coupling is gate tunable. We expect it to be of a Rashba-type
since Dresselhaus spin-orbit coupling terms should be negligible due to the
existence of bulk inversion symmetry in the Ge QW and surface roughness
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[90]. The WAL peak can be fitted to the formula [82]:

∆σWAL(B⊥) = e2

2π2~
{Ψ(1

2 + Bϕ

B⊥
+ BSO

B⊥
)

+ 1
2Ψ(1

2 + Bϕ

B⊥
+ 2BSO

B⊥
)− 1

2Ψ(1
2 + Bϕ

B⊥
)

− ln (Bϕ

B⊥
+ BSO

B⊥
)− 1

2 ln (Bϕ

B⊥
+ 2BSO

B⊥
) + 1

2 ln (Bϕ

B⊥
)} (4.1)

where Ψ(X) is the digamma function, Bϕ is the phase coherence field
andBSO is the characteristic field associated with the Rashba spin orbit cou-
pling. From the fitting parameters Bϕ and BSO we can extract the phase co-
herence time τϕ and the spin relaxation time τso with τi = m∗/4π~µnholeBi,
i being either ϕ or SO. We note that the large width of the observed WAL
peak is consistent with the relatively small values obtained for the scattering
time (τtr = m∗µ/e).

4.4.2 Spin relaxation mechanisms
These values, as well as those for τϕ, τSO are displayed as a function

of carrier density in Fig. 4.3.b. The evolution of these characteristic time
scales with respect to nhole provides a hint on the underlying mechanism for
spin relaxation. If spin relaxation was due to impurity scattering (Elliot-
Yafet mechanism [91, 92]), then τSO should increase with τtr and decrease
with the carrier density (τso ∝ τtr/n

2
hole). This does not correspond to the

observed trend. On the other hand, if spin relaxation occurred in between
scattering events, due to spin-orbit-induced rotation (Dyakonov-Perel mech-
anism [93]), the spin relaxation time should decrease with τtr and with the
spin splitting energy ∆SO (τso ∝ 1/(τtr ×∆2

SO)). Our experimental finding
is consistent with this second scenario, which allows us to deduce the spin
splitting energy, ∆SO ∼ ~(2τsoτtr)−1/2, and its dependence on nhole (see
Fig. 4.3.c). The obtained values of ∆SO are around 1 meV, i.e. a few times
larger but still comparable to those reported for similar heterostructures
and different experimental methods [94, 75, 95].

4.4.3 Self-consistent tight binding calculation
Fig. 4.4.a shows the valence-band profile calculated for nhole = 1.5 ×

1011 cm−2, as well as a representation of the first two hole subbands. From
the in-plane dispersion of the first subband (not shown), we obtain an in-
plane effective mass m∗ = 0.07m0, where m0 is the bare electron mass. This
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Figure 4.4: (a) Valence band diagram and squared wave functions of
the first two hole subbands calculated for nhole = 1.5 × 1011 cm−2. The
Fermi energy is EF = 0. (b) Spin splitting energy calculated with a TB
model, with and without interface roughness (squares and circles) and fits to
∆SO = α3E⊥k

3
// (solid and dotted lines, respectively). To simulate interface

roughness we used a Gaussian auto-correlation function model, with root-
mean-square fluctuation ∆ = 0.2 nm and correlation length Λ = 1.0 nm. In
this case, the fit reproduces well the TB calculation with α3E⊥ ≈ 73 eVÅ3

and α3 ≈ 5× 105 eÅ4.

value is slightly smaller, yet close, to those reported in earlier studies on
buried Ge QWs [95, 94, 96, 97].

In our strained-Ge QW system, where the 2DHG has a predominantly
heavy-hole character, we expect the Rashba spin-orbit coupling to be dom-
inated by a cubic term in the in-plane momentum, k//, as also reported in
earlier studies [94, 75, 95]. Fig. 4.4.b shows a self-consistent TB calcu-
lation of ∆SO(k//) in a 32-nm thick Ge film saturated by hydrogen atoms
[89]. We note that the linear ∝ k// dependence at small k// is quickly over-
come by a ∝ k3

// dependence. Interestingly, our calculation shows that for
a rough, lower symmetry film, the linear component is almost suppressed
(it oscillates rapidly with film thickness and is averaged down to ∼ 0 by
surface roughness). The calculated values of ∆SO appear to be an order of
magnitude lower than the experimental values reported in Fig. 4.3.c. This
discrepancy may be ascribed to the simplified description of the surface in
the TB calculation, the magnitude of ∆SO being very sensitive to boundary
conditions.

These TB calculations were done by Zaiping ZENG who belonged to
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University Grenoble Alpes and INAC-MEM, CEA.

4.5 WAL under in-plane magnetic field

4.5.1 Fitting of in-plane-field WAL
To further investigate the nature of the zero-field conductivity enhance-

ment, magneto-transport measurements were performed also with the mag-
netic field applied in the plane of the 2DHG, as indicated in Fig. 4.5. To
first order, an in-plane magnetic field is not expected to break the WAL ef-
fect because it produces no flux through the time-reversed back-scattering
trajectories. Contrary to this expectation, the longitudinal conductivity
measured as a function of the in-plane magnetic field, B//, does exhibit a
clear zero-field peak with a characteristic half width at half maximum of
∼ 0.7 T, i.e. several times larger than in the case of perpendicular field.

B// (T)
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∆σ
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Figure 4.5: Black trace: Hall resistivity ρXY as a function of in plane
magnetic field at Vtg = -5.8 V. The small dependence on field results from
a small perpendicular field component. We estimate an angle of only 2◦
between B// and the chip plane. Black circles: measured quantum correction
to channel conductivity ∆σWAL revealing a weak anti-localization peak.
The blue dashed line and the red solid line are fits to the model from
Minkov et al. [98] without and with the addition of a B6

// term respectively.
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We can rule out the possibility of a misalignment of the magnetic field
with respect to the plane of the 2DHG. In fact, from a simultaneous mea-
surement of the Hall resistivity, also shown in Fig. 4.5, we estimate a mis-
alignment of 2◦. Therefore, the out-of-plane component of the applied field
is far too small to explain the observed WAL peak.

Instead, following Minkov et al. [98], the effect can be ascribed to an
effective finite thickness of the 2DHG, and the WAL peak in magneto-
conductivity can be expressed as:

∆σWAL(B//) = e2

4π2~

[
2 ln

(
Bϕ +BSO + ∆r

Bϕ +BSO

)

+ ln
(
Bϕ + 2BSO + ∆r

Bϕ + 2BSO

)
− ln

(
Bϕ + ∆r + ∆s

Bϕ

)

+S
(
Bϕ + ∆r

BSO

)
− S

(
Bϕ

BSO

)]
(4.2)

where ∆r and ∆s are B//-dependent corrections to Bϕ taking into ac-
count the effect of surface roughness and Zeeman splitting, respectively.
Following Ref. [98], we assume ∆r = rB2

// and ∆s = sB2
//. The S(x) func-

tion in Eq. (4.2 ) can be explicitly written as:

S(x) = 8√
7 + 16x

[
arctan

(√
7 + 16x
1− 2x

)
− πΘ(1− 2x)

]
(4.3)

where Θ is the Heaviside step function. For the effective fields BSO and
Bϕ we take the values extracted from the previously discussed magneto-
transport measurements in perpendicular magnetic field, for the same car-
rier density, i.e. BSO = 170 mT and Bϕ= 19 mT.

The dotted blue line in Fig. 4.5 is a fit to Eq. (4.2) using the propor-
tionality factors r and s as fitting parameters. The fit shows only moderate
agreement with the data. An improved fit can be obtained by introduc-
ing in the expression of ∆r a second orbital term proportional to B6

//, i.e.
∆r = r×B2

// + q×B6
//, with the additional fitting parameter q. This second

term describes B//-induced time-reversal symmetry breaking via the virtual
occupation of higher energy subbands [99–101]. The new fit, shown by a
solid red line in Fig. 4.5, is in remarkably good agreement with the experi-
mental data set over the entire B// range. Following Ref. [100], the value of
the fit parameter q can be related to the effective thickness d of the 2DHG,
i.e. d ∼ (qΦ5

0/4π2n2
hole)

1/14. We find a realistic d ∼ 14 nm, which can be
regarded as a sanity check for the model used.
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In principle, other pieces of information and physical quantities could
be deduced from the fitting. However, the adopted analytic model is not
sufficiently sophisticated to allow for quantitatively accurate conclusions.
According to Minkov et al. [98], the fit parameter r is proportional to the
product of Lrh2

r, where hr and Lr are the root-mean-square amplitude and
the in-plane correlation length of the interface roughness, respectively. It
may be tempting to extract some information about the surface roughness
from the value of r resulting from the fit (r = 5 × 10−3 T−1 ), yielding
Lrh

2
r = 1.3×10−25 m3. Assuming hr ∼ 0.5 nm (which is a reasonable guess),

Lr ∼ 500 nm. This value seems much larger than typical correlation lengths
for an oxide/semiconductor interface roughness. The origin of this doubtful
outcome is not so surprising if we consider that intersubband scattering
is most likely dominated by charged interface defects rather than surface
roughness as in the experiment of Minkov et al. [98]. In conclusion, while
the model used to fit our in-plane magneto-conductivity data can capture
the underlying physical picture, its use should not be stretched to obtain
unreliable quantitative information.

4.6 Conclusion
Magneto-transport measurements of a 2DHG confined to a compres-

sively strained Ge QW on the surface of a relaxed Si0.2Ge0.8 virtual sub-
strate were discussed in this chapter. The 2DHG is formed by gate-induced
hole accumulation up to carrier densities of the order of 1011 cm−2. The
hole mobility is highly reduced as compared to similar heterostructures
where the QW is buried well below the surface. This can be explained by
a high density of charge traps at the Ge/Al2O3 interface, as expected from
the known poor quality of Ge native oxide. There exist possible solutions
to increase interface quality [102], which could be explored in forthcoming
studies.

A WAL peak is observed in the longitudinal magneto-conductivity at
different Vtg and the characteristic times τso and τϕ are estimated from the
peak fitting assuming cubic Rashba SOI. The dependence of the τtr and τso
on the carrier density implies a Dyakonov-Perel spin relaxation mechanism,
owing to which the spin-splitting energy at zero field ∆SO is calculated to
be ∼1 meV. These characteristic times and the spin-splitting energy are
consistent with values measured in buried Ge QWs [94, 95, 75]. Finally, it
is found that WAL can as well be suppressed by an in-plane magnetic field,
reflecting the finite thickness of the 2DHG and a contribution from Zeeman
effect, surface roughness, and virtual inter-subband scattering processes.
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This work was published in Applied Physics Letters [54].
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Chapter 5

One-dimensional wire in buried
Ge/SiGe heterostructure

5.1 Introduction
In this chapter, we report experimental evidence of ballistic hole trans-

port in one-dimensional quantum wires (1d wires) gate-defined in a strained
SiGe/Ge/SiGe quantum well. At zero magnetic field, we observe conduc-
tance plateaus at integer multiples of 2e2/h. At finite magnetic field, the
splitting of these plateaus by Zeeman effect reveals largely anisotropic g-
factors, with absolute values below 1 in the quantum-well plane, and exceed-
ing 10 out of plane. This g-factor anisotropy is consistent with a heavy-hole
character of the propagating valence-band states, in line with a predomi-
nant confinement in the growth direction. Remarkably, we observe quan-
tized ballistic conductance in device channels up to 600 nm long. These
findings mark an important step towards the realization of novel devices
for applications in quantum spintronics.

5.2 Device fabrication
The devices were fabricated from a nominally undoped heterostructure

consisting of a pseudomorphically strained, 22-nm thick Ge QW confined
by Si0.2Ge0.8 barriers, i.e. a relaxed Si0.2Ge0.8 buffer layer below, and a 72-
nm-thick Si0.2Ge0.8 layer above, capped by 2 nm of low-temperature-grown
Si. The heterostructure was grown by reduced pressure chemical vapor
deposition on a Si(001) wafer (See Ref. [103] and details therein). With an
expected Ge/SiGe valence-band offset of 150 meV, a quantum well thickness
of 22 nm results in a prominent size quantization leading to the formation
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of two-dimensional subbands with well-separated energies (energy spacing
of 10 - 20 meV). At the same time, a thickness of 22 nm is large enough to
ensure a strong confinement of the heavy-hole ground-state subband, which
remains close to the valence band edge.

At low temperature, the Ge QW is carrier free, and hence insulating,
due to the intentional absence of doping. A two-dimensional hole gas with
a mobility of 1.7 × 105 cm2/V s and a hole density of ∼ 1011 cm−2 can be
electrostatically induced by means of a negatively biased top gate electrode.

The device layout consists of a large (tens of microns wide) mesa struc-
ture defined by photolithography and reactive ion etching with Cl2
gas. The dry etching process is calibrated to remove both the SiGe over-
layer and the Ge quantum well. This is done to prevent gate leakage caused
by threading dislocations produced during the wedge bonding of the gate
pads (which are positioned around the mesa structure). Two platinum
contact pads, to be used as source and drain electrodes, are fabricated on
opposite sides of the mesa. Platinum deposition is carried out after dry-etch
removal of the SiGe overlayer followed by a two-step surface cleaning pro-
cess to eliminate the native oxide (wet HF etching followed by Ar plasma
bombardment in the e-beam evaporator). We obtain contact resistances of
the order of few kΩ. An Al2O3 30-nm thick gate oxide layer is deposited by
ALD at 250 C◦. Ti/Au top-gate electrodes are finally defined using elec-
tron beam lithography and electron beam evaporation: a central
gate extending over the mesa is designed to induce the accumulation of a
conducting hole channel between the source to the drain contact; two side
gates, to be operated in depletion mode, create a tunable 1D constriction
in the channel oriented along the [100] direction. We have varied the geom-
etry of the side gates in order to explore gate-defined 1D hole wires with
different lengths. Here we present experimental data for two devices, one
with a short (∼ 100 nm) and one with a long (∼ 600 nm) constriction (see
Figs. 5.2 (a) and (b), respectively).

5.3 Heterostructure characterization
The details of the heterostructure used in this chapter are given in Fig.

5.1 (a) [104, 105]. To characterize the basic electronic properties of this
heterostructure, gated Hall-bar devices (Fig. 5.1 (b)) were fabricated and
measured at 0.3 K. Representative measurements of longitudinal resistivity,
ρxx, and Hall resistivity, ρxy, are shown in Fig. 5.1 (c). Shubnikov-de Haas
(SdH) oscillations and quantum Hall plateaus are observed in ρxx and ρxy,
, respectively. The two-dimensional hole density, ns, and the hole mobility,

51



5.3. HETEROSTRUCTURE CHARACTERIZATION

8

6

4

2

0

86420-2-4
B (T)

40

20

0

-20

Si cap layer 2 nm
Al2O3 oxide 30 nm

Strained Ge QW 22 nm

Ti/Au gate 30 nm

Si0.2Ge0.8 spacer 
           72 nm

Si0.2Ge0.8/Ge bu�er
           ~2 µm
Si(001) substrate

(a)

Vch

VH

Vtg
Ich

Vds Rserial

Vtg (V)

μ 
(1

05  c
m

2 /V
s)

n s
 (1

011
 c

m
-2
)

ρ x
x (

kΩ
/s

q)

1.76

1.72

1.68

1.64

-4 -3

0.80

0.70

0.60

0.50

ρ x
y (

kΩ
)

(b)

(c) (d)

μ
ns

W

L

Figure 5.1: (a) Schematic diagram of Ge/Si0.2Ge0.8 heterostructure with
top gate. (b) Optical image of a gated Hall bar structure. White broken
lines indicate six ohmic contacts. A top gate (yellow) overlaps each ohmic
contacts and mesa structure. The mesa structure with a channel (L =
80 µm andW = 20 µm) is seen through the top gate. The channel direction
is [1̄10]. A serial resistance Rserial = 1 MΩ is connected to the channel.
Constant bias voltage is applied and when the channel resistance is much
lower than the Rserial a constant current flows. The current through the
channel Ids, longitudinal voltage Vch and Hall voltage VH are measured at
300 mK as a function of gate voltage Vtg or out-of-plane magnetic field B
and converted to longitudinal sheet resistivity ρxx = Vch/Ids ∗ W/L and
Hall resistivity ρxy = VH/Ids. (c) Typical results of ρxx and ρxy vs B for
Vds = 100 mV and Vtg = -4 V. Clear longitudinal resistivity oscillation
(Shubnikov–de Haas effect) and Hall resistivity plateaus (quantum Hall
effect) are observed (red and blue lines, respectively). At B = 3 T, the
filling factor ν = 1. Around B = 5 T, ν = 2/3. (d) Hall density ns and
hole mobility µ vs Vtg. ns is estimated from (classical) Hall effect in small
magnetic fields and mobility µ is calculated for the relation µ = (ensρxx)−1

at B = 0, where e is the electron charge.
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µ, are plotted as a function of Vtg in Fig. 5.1 (d). In the shown Vtg range,
ns depends linearly on Vtg, reaching the largest value of 0.8 × 1011 cm−2

at the most negative Vtg. This is close to maximal hole density that could
be achieved. In fact, by going to more negative Vtg, i.e. Vtg < −4 V, we
encountered two types of problems: the accumulation of a parasite hole gas
at the interface with the gate oxide [106, 107], and gate leakage.

5.4 Linear transport and non-linear
transport

All magnetotransport measurements were done at 270mK in a 3He cryo-
stat equipped with a superconducting magnet. Figure 5.2 (c) shows a data
set for a device, labelled D1, nominally identical to the one shown in Fig. 5.2
(a). The differential conductance, G, measured at dc source-drain bias volt-
age Vds = 0, is plotted as a function of Vsg for magnetic fields, ~B, perpen-
dicular to the QW plane and varying from 0 to 0.5 T. In our experiment, G
was directly measured using standard lock-in detection with a bias-voltage
modulation δVsd = 10µV at 36.666Hz. In addition, G was numerically cor-
rected to remove the contribution from all series resistances (∼ 20 kΩ), i.e.
the resistances of the measurement circuit, the source and drain contacts,
and the two-dimensional hole gas.

G exhibits clear quantized plateaus in steps of 2e2/h, where e is the
electron charge and h is the Plank constant. This finding is consistent
with the results of a recently published independent work carried out on
a similar SiGe heterostructure [56]. Applying an out-of-plane magnetic
field lifts the spin degeneracy of the 1D subbands, resulting in plateaus at
multiples of e2/h. These plateaus underpin the formation of spin-polarized
subbands. They emerge at relatively small magnetic fields, of the order of a
few hundred mT, denoting a large out-of-plane g-factor as expected in the
case of a predominant HH character.

We measured several devices with side-gate lengths, Lg, ranging from
100 nm (as in Fig. 5.2 (a)) to 900 nm. The G(Vsg) measurements shown
in Fig. 5.2(d) were taken on a device with Lg ≈ 600 nm, labelled as D2
and nominally identical to the one shown in Fig. 5.2(b). Remarkably,
these measurements demonstrate that clear conductance quantization can
be observed also in relatively long channels largely exceeding 100 nm. In-
creasing the channel length should result in an appreciable sharpening of
the conductance steps, reflecting a reduced probability of tunneling across
the electrostatically induced potential barrier [108]. In our experiment,
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however, this effect is barely visible because the conductance step width is
dominated by the thermal broadening of the Fermi distribution function in
the leads.

We note that a shoulder at G ∼ 0.7 × 2e2/h is visible in the B = 0
traces of both Fig. 5.2 (c) and (d). This feature, which is highlighted in
the respective insets, corresponds to the so-called 0.7 anomaly. Discovered
and widely studied in quantum point contacts defined in high-mobility two-
dimensional electron systems [109–114], and more recently observed also in
semiconductor nanowires [115, 116], the interpretation of this phenomenon
remains somewhat debated [117–121].

To further confirm the 1D nature of the observed conductance quan-
tization, we present in Figs. 5.3 (a)-(c) waterfall plots of the non-linear
G(Vds) at three different perpendicular magnetic fields (B = 0, 0.3, and 0.5
T, respectively) for device D1. Clear bunching of the G(Vds) is observed
around Vds = 0 for gate voltages corresponding to the quantized conduc-
tance plateaus of Fig. 5.2(c). With magnetic field applied, the first plateau
at G = e2/h begins to appear at B = 0.3 T and is fully formed at B = 0.5 T.
At B = 0, a zero-bias dI/dV peak can seen in correspondence of the 0.7
structure, in line with previous observations [112].

5.5 Magnetic field dependence
The well-resolved spin splitting of the 1D subbands enables a quantita-

tive study of the hole g-factors. To investigate the g-factor anisotropy, we
applied ~B not only along the z axis, perpendicular to the substrate plane,
but also along the in-plane directions x and y, indicated in Figure 5.2 (a).
To change the ~B direction, the sample had to be warmed up, rotated, and
cooled down multiple times. Thermal cycling did not modify significantly
the device behavior, except for the value of threshold voltage on the chan-
nel gate for the activation of hole conduction in the Ge QW (this voltage
is sensitive to variations in the static charges on the sample surface).

Figures 5.4 (a), (b) and (c) show theB-evolution of the trans-conductance
dG/dVsg as a function of Vsg, with ~B applied along x, y and z, respectively.
The data refer to device D1. In these color maps, the blue regions, where
dG/dVsg is largely suppressed, correspond to the plateaus of quantized con-
ductance. On the other hand, the red ridges of enhanced dG/dVsg corre-
spond to the conductance steps between consecutive plateaus, which occur
every time the edge of a 1D subband crosses the Fermi energy of the leads.
At finite B, the red ridges split, following the emergence of new conductance
plateaus at odd-integer multiples of e2/h. Upon increasing B, the splitting
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Figure 5.2: (a) and (b) False color scanning electron micro-graphs of rep-
resentative devices. Scale bars: 100 nm (a) and 200 nm (b). Gate voltages
Vtg < 0 and Vsg > 0 are applied to the channel gate (colorized in red) and
the two side gates (colorized in green), respectively. Current Ids flows in
Ge QW under the channel gate along the x direction. To enable that, the
channel gate extends all the way to the source/drain contact pads, which
are located about 15 µm away from nanowire constriction, i.e. outside of
the view field in (a) and (b). (c) and (d) Measurements of zero-bias con-
ductance G as a function of Vsg at different perpendicular magnetic fields,
Bz, from 0 to 0.5 T (step: 0.1 T). Data in (c) ((d)) refer to device D1 (D2),
which is nominally identical to the one shown in (a) ((b)). In both cases we
observe clear conductance quantization and the lifting of spin degeneracy
at finite field. Conductance has been rescaled to remove the contribution
of a series resistance RS slightly varying with Bz between 22 and 24 kΩ.
The different traces are laterally offset for clarity. Insets: Zoom-in of the
0.7 anomaly (indicated by an arrow) at zero magnetic field.
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Figure 5.3: Waterfall plots of differential conductance, G, as a function
of source-drain bias, Vds, at different values of side-gate voltage Vsg (gate
step: 5mV). The three plots were taken on device D1 at different out-of-
plane magnetic fields: (a) 0T, (b) 0.3T and (c) 0.5T. The spanned Vds
range varies with Vsg, and hence with G. This follows from the procedure
used to take into account the effect of the series resistance, RS. In this
procedure, we assumed RS to be monotonically increasing with the current
Isd flowing across the device. This assumption was motivated by the need
to account for non-linearities in the series resistance coming primarily from
the source/drain contacts to the two-dimensional hole gas. At Vsd = 0, RS

is a constant all over the spanned Vsg range. At finite Vsd, RS varies with
Vsg due to the Vsg dependence of G. As a result, the corrected Vds range
tends to decrease when lowering Vsg, and hence increasing G.

in Vsg increases proportionally to the Zeeman energy EZ,n = |En,↑ − En,↓|,
where En,σ is the energy of the 1D subband with spin polarization σ and
orbital index n.

For an in-plane B, either along x or y, the splitting becomes clearly
visible only above approximately 2 T. As a result, the explored B range
extends up to 6 T. For a perpendicular field, the Zeeman splitting is clearly
more pronounced being visible already around 0.2 T. This apparent dis-
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crepancy reveals a pronounced g-factor anisotropy, with a g-factor along
the z-axis, gz, much larger than the in-plane g-factors, gx and gy. Such
a strong anisotropy is expected in the case of two-dimensional hole states
with dominant HH character, corroborating the hypothesis of a dominant
confinement in the z direction, which is imposed by the QW heterostruc-
ture.

Besides causing the Zeeman splitting of the 1D subbands, the applied
~B has an effect on the orbital degree freedom of the hole states. The effect
is relatively weak in the case of an in-plane B because the magnetic length,
inversely proportional to

√
B, gets as small as the QW thickness only for

the highest B values spanned in Figs. 5.4(a) and 5.4(b). On the contrary,
the relatively weak lateral confinement imposed by the side gates leaves
room for a pronounced B-induced orbital shift. This manifests in Fig. 5.4
(c) as an apparent bending of the dG/dVsg ridges towards more negative
gate voltages.

5.5.1 Estimation of Zeeman splitting
In this section we illustrate the procedure to measure Zeeman energy

splittings. The color plot in Fig. 5.5 is a representative example of a
dG/dVsg as a function of Vds and Vsg at Bz = 0.4 T. The magnetic field
is large enough to lift spin degeneracy. The diamond-shape blue regions
centered around Vds = 0 V correspond to conductance plateaus at integer
multiples of e2/h. White/red lines bordering the diamonds define the edges
of the plateaus. These lines are not always clearly visible. Dashed lines
have been drawn to highlight their position. These lines correspond to
aligning the energy of a subband edge with the Fermi energy of either
the source or the drain lead. As a result, the apexes of the diamonds,
defined by the crossings of consecutive dashed lines, are located at a source-
drain bias voltage equal to the energy spacing between consecutive subband
edges. The horizontal half-widths of the odd diamonds provide a direct
quantitative measurement of the Zeeman energies EZ,n, as illustrated in
Fig. 5.5. The measurement accuracy can be conservatively estimated by
varying the slope of the dashed lines until it becomes apparent that they
no longer follow the dG/dVsg ridges. Because the dG/dVsg ridges happen
to be generally broad and sometimes even hard to identify, we end up with
rather large measurement uncertainties.

Besides providing access to the Zeeman splitting energies, the stability
diagram of Fig. 5.5 can be used to extract the gate lever-arm parameter,
α, which is the proportionality factor relating a gate voltage variation to
the corresponding shift in the electrochemical potential in the 1D wire. In
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Figure 5.4: (a)-(c) Numerical derivative of G with respect to Vsg as a func-
tion of Vsg and magnetic field applied along the x (a), y (b) and z (c) direc-
tions (data from device D1). (d)-(f) Zeeman splittings EZ,n = |En,↑ − En,↓|
as a function of magnetic field along the x (d), y (e) and z (f) directions.
Red, blue, and green open symbols correspond to the first, second, and
third spin-split subbands, respectively. The g factors for each subband are
obtained from the slope of the linear fits to the Zeeman relation EZ,n(B)
(solid lines). The results are given in Table 5.1.

practice, for the n-th orbital subband α is obtained from the ratio between
EZ,n and the height (measured along the Vsg axis) of the 2n−1 diamond.
We find that α decreases noticeably with n and, to a lower extent, it varies
with ~B. For the case of Fig. 5.5 we find α ≈ 5 × 10−3eV/V for n = 1,
α ≈ 3.3× 10−3eV/V for n=2, and α ≈ 2.3× 10−3eV/V for n = 3.

In the limit of vanishing ~B, the odd diamonds shrink and disappear while
the even diamonds grow. At B = 0, the 2n diamond has a horizontal half-
width set by the energy spacing ∆n,n+1 between the n-th and the (n+1)-th
orbital subband. We measure ∆1,2 ≈ 0.65 meV and ∆2,3 ≈ 0.5 meV.
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Figure 5.5: Color plot of dG/dVsg of as a function of Vsg and Vds at Bz = 0.4
T. Energy separations between two spin-resolved subbands are estimated
from a half the distance of two points where two conductance edges cross
(red solid arrow).
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5.5.2 Anisotropic g factor of Ge 1D-wire

In order to quantitatively estimate the observed Zeeman splittings, and
the corresponding g-factors, we performed bias-spectroscopy measurements
of dG/dVsg as a function of Vds and Vsg at different magnetic fields.

Figures 5.4 (d), (e), and (f) present the estimated EZ,n values as a func-
tion of B, for the first few subbands, and for the three B directions. Linear
fitting to EZ,n = gnµBB yields the Landé g-factors, gx,n, gy,n, and gz,n for
the three perpendicular directions. The extracted g-factors for the device
D1 are listed in Table 5.1. We have included also the gz,n values obtained
from another device (D3) with Lg = 100 nm.

For device D1 (D3), the perpendicular g-factor ranges between 12.0
(10.4) and 15.0 (12.7), while the in-plane one is much smaller, varying
between 0.76 and 1.00, with no significant difference between x and y direc-
tions. A large in-plane/out-of-plane anisotropy in the g-factors is consistent
with the hypothesis of a dominant HH character. In fact, in the limit of
vanishing thickness, the lowest subbands of a Ge QW should approach pure
HHs with gx ≈ gy ≈ 0 and gz = 6κ+ 27q/2 = 21.27, where κ and q are the
Luttinger parameters (κ = 3.41 and q = 0.06 for Ge).

In the investigated SiGe QW heterostructure, the HH nature of the
first 2D subbands is enhanced by the presence of a biaxial compressive
strain in the Ge QW, increasing by ∼ 40 meV the energy splitting with the
first light-hole (LH) subbands [95]. The creation of a 1D constriction does
not introduce a significant HH-LH mixing because confinement remains
dominated by the QW along the growth axis (z). From a measured energy
spacing of around 0.65 meV between the first and the second 1D subband,
we estimate that the hole wavefunctions of the first subband have a lateral
width (along y) of approximately 80 nm, which is an order of magnitude
larger than the wavefunction extension along z.

The results summarized in Table 5.1 suggest a slight tendency of the
g-factors to decrease with the subband index. This trend is consistent with
the results of earlier experiments with both electron [122, 115] and hole
[123–125] quantum point contacts. A possible explanation is that the ex-
change interaction increases the g-factor in the low-density limit [110, 126].
Yet hole g-factors in quantum point contacts depend also on a complex in-
terplay of spin-orbit coupling, applied magnetic field, and electrostatic po-
tential landscape [127, 68]. Acquiring a deep understanding of the g-factors
reported here would require more extensive and sophisticated experiments
together with a nontrivial theoretical analysis, which goes well beyond the
scope of the present work.
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Table 5.1: This table summarizes the results of g-factor measurements on
device D1 and D3. These g-factors are obtained from the slope of the linear
fits in Fig. 5.4 (d)-(f)) and Fig. 5.7 (c).

g1 g2 g3

D1
Bx 1.00 ± 0.15 0.82 ± 0.12 -
By 1.00 ± 0.15 0.91 ± 0.19 0.76 ± 0.16
Bz 15.0 ± 2.3 12.0 ± 1.8 13.0 ± 2.8

D3 Bz 12.7 ± 2.2 11.8 ± 1.8 10.4 ± 1.6

5.5.3 Carrier density in the 1D-wire device

The carrier density in the 2DHG can be approximately deduced from the
resistance of the two-terminal 1D-wire device R. Under high out-of-plane
magnetic fields Bz, the magnetic confinement becomes dominant over the
electric confinement (ω0 � ωc) and the edge channels are formed even in
1D-wire. These edge channels are 1D by nature and the conductance is
quantized in units of e2/h for the edge channels as well as in electrically
confined narrow channel. As in the case of the quantum-Hall resistance
R = h/(e2ν) = B/(ens), hence the barycenters of the plateaus in R are
expected to fall on a straight line going through the origin whose slope is
1/ens.

The magnetic-field dependence of a 1D-wire resistance R is shown in
Fig. 5.6 after correction for the series resistance. The data is taken from a
line cut of Fig. 5.4 (c) at Vsg = 0.

The resulting carrier density is ns = (0.93 ± 0.1) × 1011 cm−2. This
density is basically the same as the sheet density measured in a Hall-bar
device.

5.6 Data from device D3

Figure 5.7 shows a set of data from a third device (D3) made from the
same heterostructure. This device has the same gate layout as D1 as shown
in Fig. 5.2 (a). It was measured with only one orientation of the applied
magnetic field, perpendicular to the device plane (z-axis). The procedure
to correct for the series resistances, and the data analysis was the same as
for the previous devices. The results are qualitatively and quantitatively
similar to those from device D1.
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5.7 Conclusion

In conclusion, we have demonstrated ballistic hole transports in 1D
quantum wires gate-defined in a Ge/Si0.2Ge0.8 heterostructure. Conduc-
tance quantization is observed in channels up to 600 nm long. By inves-
tigating the Zeeman splitting of the quantized conductance steps we find
that out-of-plane g-factors are an order of magnitude larger than the in-
plane ones, denoting a pronounced HH character. This can be ascribed to
the dominant confinement along the growth axis and to the compressive
biaxial strain in the Ge QW. The observation of ballistic 1D hole trans-
port in remarkably long channels and large out-of-plane g-factors holds
special promise for the development of devices with spin-related function-
ality. In principle, the fabrication of these devices could be implemented in

0.5

0.4

0.3

0.2

0.1

0.0

R
 (h

/e
2 )

2.01.51.00.50.0
Bz (T)

ns = 0.93*1011 cm-2 
at Vsg = 0 V

ν = 2

ν = 3

Figure 5.6: 1D-wire resistant R as a function of perpendicular magnetic
field. The data set is taken from Fig. 5.4 for Vsg = 0 and it includes
correction for the series resistances. (a four-point smoothing is also applied).
The visible resistance plateaus and the Landau-level filling factors ν are
indicated by horizontal dashed lines. From the slope of the line crossing
the mid point of the resistance plateaus we deduce a 2D carrier density
ns = (0.93± 0.1)× 1011 cm−2.
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an industry-standard fab line with the possibility of monolithic integration
with conventional silicon electronics.

This work was submitted for publication. A preprint is available on
arXiv (arXiv:1804.04674) [128].
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Figure 5.7: Experimental data for device D3. (a) Differential conductance
G as a function of Vds at different Vsg and Bz = 0, (b) Linear transcon-
ductance dG/dVsg as a function of Vsg and Bz, and (c) Ez vs Bz. Large
out-of-plane g factors are observed as in device D1 (see Table 5.1).
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Chapter 6

Single quantum dot in buried
Ge/SiGe heterostructure

6.1 Introduction

Spins in quantum dots are good candidates for the realization of quan-
tum computers. Recently, it has been observed that the coherence of an
electron spin bound to a phosphorus atom in isotopically-purified silicon
lasts for a remarkably long time (T ∗2 = 2.4 ms [129]). Shorter, yet still con-
veniently long, coherence times were reported for electron spins in quantum
dots based on isotopically-purified Si [25]. A recent work by the Tarucha
group obtained T ∗2 = 20 µs [21] in a Si/SiGe heterostructure grown using a
28Si source. In this case, the long spin coherence, enhanced by isotopic pu-
rification, was combined with fast electrically-driven spin control, thanks to
the artificial SOI arising from a local micromagnet. This results in a large
quality factor Q = T ∗2 /τop ≈ 103 (τop is the π-rotation time), which exceeds
the threshold for quantum error correction. A heavy-hole spin in a Ge QD
is also supposed to be a good candidate for qubit implementation. Heavy
holes combine long spin coherence time (enhanced by the p-like orbitals of
HHs) and strong SOI enabling fast spin manipulation with electric fields.

In the literature, a HH spin manipulation in a III-V-group self-assembled
QD has been reported [130, 65, 64, 131]. In particular, utilizing in-plane
fields to suppress the HH-LH mixing which enhances the hyperfine coupling
and reduces coherence time [64], it is demonstrated that a strained InGaAs
QD has T ∗2 = 70 ns, which is an order of magnitude longer than that of
electrons in the same QDs [131].

In this chapter, we realized QD structures in the same buried Ge QW
heterostructure as the one used for the 1D wire of the previous chapter.
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Two types of gate structures were implemented to form single QD devices.
The first one is a single-layer gate (SLG) layout, in which all of the surface
gates are simultaneously fabricated in a single metal deposition step. This
approach is the same as the one used for the realization of the 1D-wire
devices discussed in the previous chapter. In the second approach, the QD
devices are realized with a double-layer gate (DLG) layout consisting of two
layers of overlapping gates If the first approach is less demanding in terms
of fabrication, the second one should offer better tunability.

6.2 Single-layer single quantum dot
First, we realized and tested SLG devices by modifying the 1D-wire

design of the previous chapter as shown in Fig. 6.1 (a) and Fig. 6.2 (a).
The fabrication procedure is basically the same as the described in Ch. 5.
The SLG devices have a top gate (colorized in red) to accumulate holes in
a wire oriented along x. Three side gates (colorized in green) are defined
next to the top-gate. Voltages VL and VR applied to the side gates form and
control two tunnel barriers leading to confinement of holes also along the x
axis. The voltage VC on the central plunger gate tunes the electrochemical
potential of the QD. The transport properties two devices where measured
at 0.3 K in a 3He cryostat. The drain-source current, Ids, was measured as
a function of the gate voltages and DC bias voltage Vds. The differential
conductance was measured by standard lock-in technique using a voltage
modulation of 10µV at 36.666Hz. Contrary to the case of the 1D wires,
the series resistance, of the order of 1 ∼ 10 kΩ, was typically negligible as
compared to the QD resistance (> 1MΩ).

The first SLG device (SLG1) has a simple wire structure (Fig. 6.1 (a)).
Note that the width ∼ 100 nm is narrower than the one of the 1D wires
presented in Ch. 5 (∼ 300 nm). As a consequence, larger top-gate voltages
are required to accumulate holes. On the other hand, the narrower profile
should result in a smaller QD with larger charging energy and larger level
spacing. The differential conductance G at zero DC bias voltage (linear
regime) shows peaks as a function of VC at Vtg = −2.1 V, VR = 0.4 V, and
VL = 1.87 V (Fig. 6.1 (b)). These peaks correspond to Coulomb-blockade
oscillations. This Coulomb-blockade regime is confirmed by measurements
of G as a function of Vg and Vds (Fig. 6.1 (c)). As expected, the Coulomb-
blockade regions have the characteristic diamond shape. In fact, only one
Coulomb diamond with strongly suppressed G can be clearly identified.
This can be explained by the fact that the plunger gate has a strong effect
on the tunnel barriers. The corresponding tunnel couplings appear to in-
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Figure 6.1: (a) False-color SEM image of device SLG1. Scale bar: 200 nm.
Holes are accumulated below the top gate (red) following the application
of a negative voltage Vtg < 0. Voltages VL, VC , and VR are applied to the
finger gates (green) in order to create and control the tunnel barriers and to
tune the electrochemical potential in the QD. The green solid line depicts
the expected qualitative energy diagram. The white dashed line highlights
the expected location of the QD. (b) Zero-bias differential conductance G
vs VC . (c) G vs VC and Vds for Vtg = −2.1 V, VR = 0.4 V, and VL = 1.87 V.
The horizontal arrow measures the addition energy. The vertical arrow
measures e/CG. (d) Zoom-in of the date plot in (c); the yellow arrows
denote conductance ridges associated with the onset of tunneling via an
excited state of the quantum dot with excitation energy ∆EN ≈ 0.6 meV.
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crease rapidly as VC varies from -100 mV to -250 mV, becoming comparable
to the charging energy and, therefore, washing out the Coulomb blockade
effect. By analyzing the clearly visible Coulomb diamond, we can extract
important information on the QD. The half width of the diamond, ∆Vsd,
measured along the Vds axis (white horizontal arrow in Fig. 6.1 (c)) gives
the addition energy, i.e. Eadd = e∆Vds = 1.35 meV. This coincides with
the charging Ec possibly augmented by the energy level spacing in the QD.
The width ∆VC of the Coulomb diamond along the VC axis, i.e. the gate
distance between the two Coulomb peaks of Fig. 6.1 (b), gives the plunger-
gate capacitance CG = e/∆VC . Finally, we can estimate the gate lever-arm
parameter α = Eadd/∆VC = 0.04 eV/V, which converts the gate voltage
into energy.

A zoom-in of Fig. 6.1 (c) is shown in Fig. 6.1 (d). The color scale has
been adjusted to highlight the presence of additional lines parallel to the
diamond edges. These lines, indicated by yellow arrows, correspond to the
onset of tunneling through excited levels of the QD. Their position gives an
energy level spacing ∆EN ≈ 0.6 meV, as illustrated in Fig. 6.1 (d). With
an expected in-plane hole effective mass of 0.07, the obtained level spacing
would correspond to a QD size of roughly 100 nm.

The application of a magnetic field would induce the Zeeman splitting
of the QD states, giving access to the hole g-factors, and possibly revealing
SOI effects on the QD energy levels. However, this possibility could not
be investigated due to the poor charge stability of the device. A clear
charge switching event can be seen in Fig. 6.1 (c) at VC = −225 mV.
Repeated charge switching events prevented the possibility to perform more
systematic studies.

In the second SLG device (SLG2) (Fig. 6.2 (a)), the top gate has a
wider middle region which is intended to enhance confinement in the central
portion of the wire and reduce the effect of the plunger gate on the tunnel
barriers. This seems indeed confirmed by the observation of a larger number
of Coulomb diamonds, as shown in Fig. 6.2 (b). From this measurement,
we estimate Eadd ∼ Ec ∼ 1.0 meV and α = 0.074 eV/V. The fact that
α is larger than in device SLG1 is due to the stronger capacitive coupling
of the QD to the plunger gate electrode. Unfortunately, as in the case of
SLG1, the charge stability of this second device turned out to be rather
poor preventing any further study. Following these results, we decided to
explore an alternative fabrication approach as discussed below.
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Figure 6.3: (a) False-color SEM image of a DLG device. Scale bar: 100 nm.
The device has two barrier gates and a plunger gate (all colorized in green),
as well as an accumulation top gate (red). The latter overlaps with the
barrier gates. The oxide layer covering the barrier gates prevents inter-gate
leakage. The QD position is schematically represented by a white dashed
line. Several devices with different gate widths d and W were measured.
(b) G vs Vds and VC at Vtg = −315 mV and VL = VR = 370 mV. This data
refers to a device with W = 150 nm and d = 80 nm (see image in (a)).
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6.3 Double-layer single quantum dot
In this section we present transport measurements on a DLG device.

The DLG fabrication scheme was developed with the purpose to further
reduce cross-coupling effects and obtain a more efficient and independent
tunability of the characteristic QD parameters. Figure 6.3 (a) shows the
scanning electron micrograph of a DLG QD device. The plunger and the
barrier gate (colorized in green) were fabricated first. To this aim, e-beam
lithography was used, followed by Al deposition. Then, following Angus
et al. [132], the barrier gates were oxidized by annealing on a hot plate at
180 ◦C for 10 min. (This Al oxidation technique creates an Al2O3 layer over
the metal gates making the deposition of an insulating layer unnecessary.)
The following step consisted in the definition of the top gate (colorized
in red), again by e-beam lithography and Al deposition. We verified the
absence of leakage between the barrier gates and the top gate.

We fabricated DLG devices such as the one shown in Fig. 6.3 (a), vary-
ing the barrier-gate width, d, and the top-gate width, W . The distance
between the barrier gates was set equal to W . Figure 6.3 (b) shows a
G(Vds,VC) measurement taken on a DLG device with (d, W) = (80 nm,
150 nm) at 300 mK. The barrier gate voltages VL and VR are much smaller
than those used in the previous devices, which is a consequence of the much
stronger capacitive coupling. The observed Coulomb diamonds are irregu-
lar, denoting the formation of unintentional QDs, and the charge noise is
high. From the upper diamond in Fig. 6.3 (b), the charging energy and the
α factor are estimated to be Ec ∼ 650 µV and α = 0.0134 eV/V. Contrary
to our expectation, VC has a significant effect on the tunnel barriers.

Before depositing the gate oxide , the samples were cleaned with HF.
We used HF 1% for SLQDs and HF 2% for the DLQDs. We did that
with the idea that we could obtain a cleaner surface before gate deposition,
and hence an eventually lower charge noise level. Unfortunately, charge
switching did not improve and all devices turned out to be noisy. On the
other hand, we measured different threshold voltages: Vtg = −2.1 V for
SLG1, Vtg = −0.68 V for SLG2, and Vtg = −0.315 V for the DLG device.
In fact, all DLG devices showed a low threshold voltage, which may be an
indirect evidence of a cleaner dielectric/heterostructure interface.

6.4 Conclusion
In conclusion, we succeeded in the realization of the first QD devices

based on Ge/SiGe heterostructure. This is a first step towards the real-
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ization of largely integrated qubit systems with HH spins in Ge QDs. To
make these QD devices, we followed two approaches: single-layer gates and
double-layer gates (simple fabrication and higher tunability, respectively).
However, significant charge switching was found in both types of devices
preventing in-depth investigation of the QD electronic properties. In the
prospect of developing quantum dots for spin qubits, the priority is now to
reduce charge noise. Switching could be suppressed by improving the in-
terface quality. This could be achieved by reducing the time delay between
HF cleaning and ALD deposition of the dielectric. So far the HF cleaning
and the ALD process could not be carried out in the same cleanroom, and
the transfer from one cleanroom to the other took about 15 minutes. In
principle, this delay may not be critical since our heterostructure is capped
by a Si layer, and HF should passivate the surface with Si-H terminations
that could survive for more than 15 min. Additional studies are necessary
to clarify this issue.
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Chapter 7

Conclusion

7.1 Summary

In this PhD thesis, I have presented experimental research on hole trans-
port in low-dimensional systems fabricated from Ge/Si0.2Ge0.8 heterostruc-
tures. This so-far barely explored material was investigated in view of
its potential applications in quantum spintronics and quantum comput-
ing hardware. Key properties of SiGe heterostructures are large spin-orbit
interaction associated with valence band states, a small in-plane effective
mass, anisotropic g-factors, reduced hyperfine interaction resulting from the
p-wave symmetry of hole Bloch functions, and the ability for forming low-
resistive contacts with superconducting metals, which should open the way
to the realization of hybrid superconductor-semiconductor structures and,
eventually, Majorana fermion devices for topological quantum computing.

An important part of my PhD work was devoted to developing the fab-
rication recipes for the realization of Ge-based nanoelectronic devices. At
first, I focused on relatively large devices, which I used to test basic elec-
tronic properties and to test and benchmark the fabrication processes (mesa
etching, contact definition, deposition of dielectric layers, metal gates, etc.).
I started by designing optical masks for photolithography. Next, I developed
the dry etching protocols, which I then applied to the definition of mesa
structures and ohmic contacts. Contact resistances were also measured be-
fore and after ALD, which clarified that during the ALD the contacts were
annealed, resulting in improved contact resistances. Finally, we optimized
conditions for electron-beam lithography depending on the metals to be
deposited. These fabrication tests enables us to perform unprecedented
studies of low-dimensional structures based on Ge.

The basic electronic properties of the Ge heterostructures were initially

71



7.1. SUMMARY

characterized by Hall measurements. I explored and evaluated two types of
heterostructures: one where the Ge QW is on the surface and one where it
is buried in the heterostructure, 70 nm below the surface. In spite of their
reduced mobility due to surface scattering, surface-Ge heterostructures have
the advantage of being more easily accessible to superconducting contacts.
In addition, they enable the the realization of MOS-type structures where
large vertical electric fields can be applied resulting in strong Rashba spin-
orbit coupling. From the measurements of the Hall-bar devices made from
surface-Ge heterostructures, I observed a magneto-conductivity peak at zero
magnetic field, which is due to the weak anti-localization (WAL) effect. I
analyzed the peak with Iordanskii-Lyanda Geller-Pikus theory for the k-
cubic Rashba spin orbit interaction (which is expected for HHs) [82] and,
thereby, obtained spin relaxation time, phase relaxation time and spin split-
ting energy at zero magnetic field. The spin splitting energy is estimated to
be ∼ 1 meV and such a large spin splitting is an order of magnitude greater
than the one calculated from tight-binding simulations, an effect that can
be ascribed to the atomic structure of the Ge/Al2O3 interface. The simu-
lations also demonstrate that the interface roughness between the Ge QW
and the gate oxide kills k-linear Rashba spin-orbit interaction owing to the
induced symmetry breaking in the QW.

Following this instructive study, I redirected my interest from surface-Ge
heterostructures to buried-Ge ones. This was motivated by the massive gain
in mobility, which is a key parameter in the prospect of realizing quantum
electronic devices in which the motion of holes is not affected by disorder.
In fact, the studied surface-Ge heterostructure exhibited a mobility of at
most ∼ 4000 cm2/Vs at 300 mK and for densities of about 2×1011 cm2/Vs.
In undoped buried Ge-QW heterostructures, mobility as high as 1.8 × 105

cm2/Vs could be achieved at the same temperature 300 mK and three times
lower carrier density.

I introduced some steps of e-beam lithography in order to fabricate the
fine metal gate structures necessary to electrostatically define quantum-wire
and quantum-dot devices. The quantum-wire devices were designed with
varying channel lengths in order to explore the characteristic length scale
for ballistic conduction. I was able to measure ballistic one-dimensional
transport in Ge channels as long as ∼ 600 nm. This result is encouraging
in the prospect of realizing one-dimensional devices such as those needed for
the emergence of Majorana fermions. I also investigated the hole g-factor
anisotropy in Ge one-dimensional wires. Magneto-transport measurements
gave out-of-plane g-factors up to 15 and in-plane g-factors below 1. This
anisotropy is expected for HHs in the two-dimensional limit, therefore in-
dicating that first hole subbands have a dominant HH character.
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Finally, I began to explore the possibility to realize also zero-dimensional
structures, namely hole quantum dots, in view of their possible use as
spin qubits. To this aim, I modified the gate design used to define one-
dimensional nanowires. I was able to observe clear Coulomb blockade os-
cillations, which are characteristic signatures of single-hole tunneling.

7.2 Perspectives
To conclude, I would like to discuss the possible prospects of my research

work. The experiments carried out on the surface-Ge QW heterostructure
have demonstrated the existence of a strong Rashba spin-orbit interac-
tion. This conclusion may apply also to the buried-Ge QW heterostruc-
tures where remarkable one-dimensional ballistic transport could be ob-
served. This question does not have an answer at the moment. In principle,
weak anti-localization measurements similar to those presented in Chapter
4 could be carried out on buried-Ge heterostructures. However, this did not
seem so straightforward. I performed a few attempts in this direction but
no weak-antilocalization features could be clearly observed, most likely due
to an excessive noise level. I believe there could be room for improvement
though, and it may be worth pursuing further experimental efforts. My
experiments in buried Ge quantum wires revealed a pronounced heavy-hole
character of the one-dimensional subbands. In the prospect of realizing
helical one-dimensional systems, a significant mixing between heavy- and
light-hole components would be necessary. This may be engineered in dif-
ferent ways, e.g. by laterally squeezing the one-dimensional wire, or by in-
troducing a tensile strain in the Ge well. Ge-based nanowire structures (in
particular, Ge/Si core/shell nanowires) where proposed as a promising plat-
form for the realization of Majorana devices. To this aim, electrostatically
defined Ge wires hosting one-dimensional helical states should be coupled
to superconducting metals providing a sufficiently strong superconducting
proximity effect. Aluminium-based Josephson field-effect transistors made
from a SiGe heterostructure with a buried Ge QW were very recently re-
ported by Hendrickx et al. [58], a research team at the Delft University
of Technology. In that work, Al was deposited on the surface of the het-
erostructure and contact to the Ge QW, located 22 nm below the surface,
was achieved as a result of the Al diffusion during the ALD process for the
deposition of the gate oxide. These results represent an encouraging demon-
stration of principle towards hybrid semiconductor-superconductor devices
based on high-mobility SiGe heterostructures (e.g. gatemons [133, 134] or,
eventually, topological superconducting qubits [49, 45]). Towards the end
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of my PhD I was able to test a few device designs for the realization of
Ge-based quantum-dot devices. The results are encouraging and pave the
way to further developments in the direction of more complex device struc-
tures. Spin qubits are the main target application. In this perspective, the
Rashba spin-orbit interaction existing in Ge QWs could be exploited for
electric-field-driven spin manipulation [6, 135].

Measuring the spin-orbit interaction strength in QDs should be easier
than in 1D channels [6, 136]. Electric-dipole spin resonance can be casted
into a g-matrix formalism and measuring Rabi and Larmor frequencies for a
set magnetic field directions can provide important insight on the underlying
spin-orbit mechanism [135]. Spin rotation frequencies of several hundred
MHz can be expected in Ge nanostructures[36, 137]. In a recent experiment
performed on quantum dots confined in self-assembled Ge hut nanowires,
Rabi frequencies as high as 40 MHz were obtained [18]. Similar types of
experiments could be envisioned in double quantum dots fabricated from
buried-Ge heterostructures. To enable this, however, a critical step is to
improve the charge stability of the devices, well beyond the level achieved
so far. Based on the tests I could perform in a limited amount of available
time, and on the encouraging results reported by Hendrickx et al. [58], I
am quite confident that a sufficiently high charge stability can be achieved,
by optimizing the gate dielectric and the heterostructure (composition and
thickness of the different layers, including the capping layer). This would
open ample possibilities of development towards spin qubit devices and
quantum spintronic devices in general.
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Appendix A

Device fabrication

We presented in previous chapters the basic fabrication procedures for
many Ge devices presented in this thesis. The details of the techniques are
developed in this appendix. General information about each fabrication
step is given at first, followed by specific fabrication recipe for each device.
All the processes are performed at lower than 400◦C in order not to relax
the strain in the Ge QW.

A.1 Fabrication techniques

Sample cleaning/Lift-off/HF cleaning
To ensure the cleanness of the sample surface is crucial in the fabrication

of semiconductor device. Impurities at the surface trap charges which screen
electric field from gate and cause noises and hysteresis in conductance-gate
voltage characteristics. The way how we clean our samples is explained as
follows.

A sample is put in a beaker filled with acetone and cleaned by ultrason-
ication for 5 min. Afterwards, it is repeated with new beakers filled with
acetone and IPA in this order respectively. After drying sample with N2
gun, the sample is baked on a hot plate set to be at a temperature higher
than 100 ◦C for 5 min. The last step is important because residual IPA
prevents photo-resist from stacking on sample.

Lift-off, removing metal on patterned resist, is also done in the same
way except that, instead of ultra sound, pipette is sometimes used to avoid
breaking nanostructures on the sample. That is indicated by "(pipette)" in
the recipes below. In addition, before starting the lift-off, the sample is left
in acetone overnight, which makes it easier to peel metal to be removed.
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Moreover, putting the sample into hot acetone at 40◦C for one hour helps
lift-off of nano-size structure.

HF cleaning is done to remove native oxide on the surface before ohmic
contact and gate oxide deposition. A sample is dipped into a beaker filled
with HF and de-ionized water (DIW) for several minutes, in this order
respectively, which is repeated twice. This HF cleaning must improve the
interface quality but unfortunately it is necessary to transfer a cleaned sam-
ple to another clean room to deposit gate oxide. To keep it clean, we use
a bottle with DIW to bring samples. This point must be considered to
improve our device.

Photolithography
Photolithography is one of most-frequently used techniques in semicon-

ductor device fabrication. By use of this technique, one can pattern designs
(usually) to be etched or metalized on a chip. The idea for the patterning
is based on the nature of the materials called photo-resist, which change its
own resistance against acid after applying ultraviolet (UV). One can cover
sample with the photo-resist and put a glass board with patterned metal
(photo-mask) over the sample. When UV is applied to it, UV can pass
through the no-metal part of the glass while the other part block the UV,
which turns out that the resist masked by the pattern is exposed. By dip-
ping the sample into the acid suitable for the photo-resist after the exposure,
the photo-resist patterned defined by the mask is obtained. The polarity
of the resist is determined by the type of the resist (the exposed part of
a "positive" resist can be removed while non-exposed part of a "negative"
resist is).

The procedures for our photolithography are as follows. The sample is
coated with photo-resist by means of spin-coater. A positive photo-resist
AZ1512HS is normally used. The sample is fixed with vacuum and rotated
at 4000 rpm for 60 s as soon as possible after covering it with resist droplets.
After baking it at 100 ◦C for 90 s (prebake), UV exposure is done with a
mask aligner MJB4 (SUSS MicroTec). Exposure time is 25 s normally
but it depends on the size of pattern. AZ developer diluted with DIW
(1:1) is used for the development. The development is stopped by dipping
sample in DIW, followed by rinsing with running DIW for 5 min. Normally,
development time is 30 s but, when a lot of resist is developed (for example,
mesa pattern needs to cover small area compared with the chip surface),
the time is extended up to ∼15 s.
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Other photo-resists are sometimes used. A negative resist AZ2070 used
(only) for mesa of Ge-surface Hall bar device. In addition, a positive
photo-resist UV5, which has a better resolution and thinner thickness than
AZ1512HS, is also used to make fine structures (< 10 µm). In this case,
deep UC (DUV) is used instead. The exposure time, the baking time and
development time for both resist are different than the ones of AZ1512HS.
UV5 requires baking after exposure (postbake) as well. The details are
written in the recipes below.

Electron beam evaporation
Electron beam evaporation was used to metalize our sample. Electron

beam is applied to a target metal and the surface temperature at the in-
cident point increases. When the temperature reaches the boiling point,
the metal begins to be evaporated. In the combination with photolithogra-
phy, one can obtain a patterned metal by evaporating metal on the sample
with patterned resist. This is because the photo-resist can be removed by
acetone and therefore only the metal directly on the sample surface remain.

Ar etching, or ion milling, sometimes proceeds the evaporation to re-
move the resist residue on the sample surface where photo-resist has been
removed. We did the Ar etching and used neutralized Ar to avoid charging
the oxide before fine gate deposition.

Reactive ion etching
Etching of the sample surface is possible using reactive ion etching

(RIE), a common dry etching technique. In this PhD work, an induc-
tively coupled plasma (ICP) RIE setup was used in all dry etching pro-
cesses (Oxford Instruments Plasma System 100 ICP-RIE). In this machine,
a DC bias voltage is applied to the stage underneath the sample forcing
the plasma to move perpendicular to the sample surface, and hence leading
to an anisotropic (quasi-vertical) etching. This contrasts with wet-etching
processes, which offer limited control on the directionality of the etching.

For the etching of SiGe, we used Cl2, N2 and O2 gases. The etching
rate for Si0.2Ge0.8 was initially measured and optimized. We developed
recipes for the etching of the mesa structures as well as for the etching of
Ohmic-contact regions prior to metal (Pt) deposition. The latter etching
process was necessary in order to have the metal deposited directly on the
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Ge quantum-well layer. In this case, O2 was not employed to avoid the
oxidation of Ge, which is supposed to prevent good ohmic contacts.

- Mesa etching: Etching rate for Si0.2Ge0.8 is 42 nm/min. The flow
rate of Cl2/N2/O2 is 50/25/10 sccm. Pressure in chamber is 25 mTorr.
Stage temperature is 20 ◦C. RF/ICP power is 20/50 W.

- Ohmic etching: Etching rate for Si0.2Ge0.8 is 19 nm/min. The flow
rate of Cl2/N2/O2 is 25/12/0 sccm. Pressure in chamber is 25 mTorr. Stage
temperature is 20 ◦C. RF/ICP power is 10/25 W.

ALD
Atomic layer deposition (ALD) technique is, as obvious from its name,

used to deposit materials (in our case dielectrics) with atomically precise
control, i.e. one atomic layer after the other. The deposition mechanism can
be explained as follows: first, a precursor (e.g., H2O) is filled into a sample
chamber and absorbed on the surface of the sample; then, after purging
the water vapor, a second precursor (e.g., trimethylaluminium (TMA)) is
supplied; reaction with the H2O molecules adsorbed on the sample surface
results in the formation of a monoloayer of Al2O3. This cycle is repeated
until the desired dielectric thickness is reached. During this process, the
sample is heated by a hot plate (at 250◦C , in our case). This leads to
an unintentional, yet helpful, annealing of the ohmic contacts. ALD was
performed in a Cambridge Nanotech Fiji F200 system.

Before ALD, HF cleaning has been done to remove native oxide on the
sample surface. However, since the HF cleaning is not allowed for us in the
clean room where ALD machine is located, we have done it in another clean
room and transferred the sample from one to the other, keeping it in DIW.
DIW cleaning is done just before the gate oxide deposition to remove the
particles since the sample is supposed to be contaminated.

EBL
Electron beams can be used for lithography with higher resolution than

UV because of its smaller wavelength and thereby the sub-100 nm structure
is easily achievable. In our research, Poly(methyl methacrylate) (PMMA)
is chosen as the EB resist because of its cleanness compared with ZEP520A
(Nippon Zeon Co.). PMMA with the various concentrations have different
thickness: PMMA4%950K 200nm, PMMA2%950K 80nm and PMMA4%200K
80nm. The choice of resist is decided from the point of view of resolution and
thickness. When one makes a difficult lift-off, e.g., lift-off for aluminium, a
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thick resist or a double layer resist is helpful. PMMA with MMA (thick-
ness: 500nm) is also used for lift-off of very thick metal (∼ 200nm). We
have utilized JEOL JBX 6300 FS for all the devices with fine gates.

A.2 Gated Hall bar device made from
Ge-surface hetetrostructure

Alignment mark deposition

Chip cleaning:
Acetone 5min twice, IPA 5min, Baking 120◦C 5min

Resist coating:
AZ1512HS 4000rpm 60s, Prebake 100◦C 90s

Photolithography:
25s

Development:
AZ developer 1:1 45s, DIW 15s, Running DIW 5min

EB evaporation:
Ti/Au 10/50nm

Lift off:
Acetone 5min twice, IPA 5min, Baking 120◦C 5min

Mesa formation

Chip cleaning:
Acetone 5min twice, IPA 5min, Baking 120◦C 5min

Resist coating:
AZ2070 3500rpm 60s, Prebake 100◦C 90s

Photolithography:
35s, Postbake 110◦C 60s

Development:
MF26 120s, DIW 15s, Running DIW 5min

Dry etching:
Recipe for mesa

Chip cleaning:
Acetone 5min twice, IPA 5min, Baking 120◦C 5min
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Ohmic contact deposition

Chip cleaning:
Acetone 5min twice, IPA 5min, Baking 120◦C 5min

Resist coating:
AZ1512HS 4000rpm 60s, Prebake 100◦C 90s

Photolithography:
35s

Development:
AZ developer 1:1 45s, DIW 15s, Running DIW 5min

EB evaporation:
Ar etching 250V 30s, Pt 60nm

Lift off:
Acetone 5min twice, IPA 5min, Baking 120◦C 5min

Gate oxide deposition

HF cleaning:
(HF 1% 1min, DIW 1min) twice (Transfer the chip to another
clean room.)

ALD:
Al2O3 (TMA) 250◦C 30nm (Thermal deposition)

Top gate deposition

Chip cleaning:
Acetone 5min twice, IPA 5min, Baking 120◦C 5min

Resist coating:
PMMA 950K 4% 4000rpm 60s, Prebake 180◦C 5min

EB lithography:
100keV 1nA 1000µC/cm2

Development:
MIBK:IPA 1:3 45s, IPA 30s

EB evaporation:
Ar etching 250V 30s, Ti/Au 10/50nm

Lift off:
Acetone 5min twice, IPA 5min
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A.3 Gated Hall bar device made from
buried Ge/SiGe hetetrostructure

Alignment mark deposition
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min
Resist coating:

AZ1512HS 4000rpm 60s, Prebake 100◦C 90s
Photolithography:

25s
Development:

AZ developer 1:1 30s, DIW 15s, Running DIW 5min
EB evaporation:

Ti/Au 10/50nm
Lift off:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min

Mesa formation
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min
Resist coating:

AZ1512HS 4000rpm 60s, Prebake 100◦C 90s
Photolithography:

25s
Development:

AZ developer 1:1 45s, DIW 15s, Running DIW 5min
Dry etching:

Recipe for mesa 150s
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 180◦C 5min

Ohmic contact deposition
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min
Resist coating:

AZ1512HS 4000rpm 60s, Prebake 100◦C 90s
Photolithography:

25s
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Development:
AZ developer 1:1 30s, DIW 15s, Running DIW 5min

Dry etching:
Recipe for contact 77s, DIW cleaning 30s

EB evaporation:
Ar etching 250V 24s, Pt 77nm

Lift off:
Acetone 5min twice, IPA 5min, Baking 120◦C 5min

Gate oxide deposition
HF cleaning:

(HF 1% 1min, DIW 1min) twice (Transfer the chip to another
clean room.)

ALD:
Al2O3 (TMA) 250◦C 30nm (Thermal deposition)

Top gate deposition
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min
Resist coating:

AZ1512HS 4000rpm 60s, Prebake 100◦C 90s
Photolithography:

35s
Development:

AZ developer 1:1 30s, DIW 15s, Running DIW 5min
EB evaporation:

Ar etching 250V 24s, Ti/Au 10/50nm
Lift off:

Acetone 5min twice, IPA 5min

A.4 QPC device made from buried
Ge/SiGe hetetrostructure

Alignment mark deposition
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min
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Resist coating:
AZ1512HS 4000rpm 60s, Prebake 100◦C 90s

Photolithography:
25s

Development:
AZ developer 1:1 35s, DIW 15s, Running DIW 5min

EB evaporation:
Cr/Au 10/50nm

Lift off:
Acetone overnight, Acetone 5min twice, IPA 5min, Baking 120◦C
5min

Mesa formation
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min
Resist coating:

AZ1512HS 4000rpm 60s, Prebake 100◦C 90s
Photolithography:

25s
Development:

AZ developer 1:1 45s, DIW 15s, Running DIW 5min
Dry etching:

Recipe for mesa 5min
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 180◦C 5min

Ohmic contact deposition
Resist coating:

AZ1512HS 4000rpm 60s, Prebake 100◦C 90s
Photolithography:

25s
Development:

AZ developer 1:1 30s, DIW 15s, Running DIW 5min
Dry etching:

Recipe for contact 77s/77s DIW cleaning 30s
HF cleaning:

(HF 1% 1min, DIW 1min) twice
EB evaporation:

Ar etching 250V 30s, Pt 77nm
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Lift off:
Acetone 5min twice, IPA 5min, Baking 120◦C 5min

Gate oxide deposition
HF cleaning:

(HF 1% 1min, DIW 1min) twice (Transfer the chip in water to
another clean room.)

ALD:
Al2O3 (TMA) 250◦C 30nm (Plasma deposition)

Deposition of fine gates in first layer
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 180◦C 5min
Resist coating:

PMMA4%950K 4000rpm 60s, Prebake 180◦C 5min
EB lithography:

100keV, 500pA, 1350µC/cm2

Development:
MIBK:IPA=1:3 30s, IPA 60s

EB evaporation:
Ar etching 240V 1min (0◦), Ti/Au 10/25nm

Lift off:
Acetone overnight and 40 ◦C 1hour, Acetone 5min(pipette) twice,
IPA 5min(pipette), Baking 180◦C 5min

Deposition of fine gates in second layer
Resist coating:

PMMA/MMA617-8 4000rpm 60s, Prebake 200◦C 5min, Cooling
down RT 5min, PMMA4%950K 4000rpm 60s, Prebake 180◦C 5min

EB lithography:
100keV, 500pA, 1500µC/cm2

Development:
MIBK:IPA=1:3 60s, IPA 30s

EB evaporation:
Ar etching 250V 1min, Pt 200nm

Lift off:
Acetone overnight and 40 ◦C 1hour, Acetone 5min(pipette), Ace-
tone 5min, IPA 5min, Baking 120◦C 2min
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A.5 QD device made from buried Ge/SiGe
hetetrostructure

Alignment mark deposition
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min
Resist coating:

AZ1512HS 4000rpm 60s, Prebake 100◦C 90s
Photolithography:

25s
Development:

AZ developer 1:1 30s, DIW 15s, Running DIW 5min
EB evaporation:

Cr/Au 10/50nm
Lift off:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min

Mesa formation
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min
Resist coating:

AZ1512HS 4000rpm 60s, Prebake 100◦C 90s
Photolithography:

45s
Development:

AZ developer 1:1 45s, DIW 15s, Running DIW 5min
Dry etching:

Recipe for mesa 5min
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 180◦C 5min

Ohmic contact deposition
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 120◦C 5min
Resist coating:

AZ1512HS 4000rpm 60s, Prebake 100◦C 90s
Photolithography:

25s
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Development:
AZ developer 1:1 30s, DIW 15s, Running DIW 5min

Dry etching:
Recipe for contact 77s/77s

HF cleaning:
(HF 2% 2min, DIW 2min) twice

EB evaporation:
Ar etching 250V 30s, Pt 50nm

Lift off:
Acetone overnight and 40 ◦C 1hour, Acetone 5min, IPA 5min,
Baking 120◦C 5min

Gate oxide deposition

HF cleaning:
(HF 2% 2min, DIW 2min) twice (Transfer the chip in water to
another clean room.)

Chip cleaning:
DIW 5min

ALD:
Al2O3 (TMA) 250◦C 30nm (Plasma deposition)

Metal patch deposition

Chip cleaning:
Acetone 5min twice, IPA 5min, Baking 180◦C 5min

Resist coating:
UV5 4000rpm 60s, Prebake 130◦C 90s

Photolithography:
1.3s (DUV), Postbake 130◦C 60s

Development:
AZ326MF 37s, DIW 15s, Running DIW 5min

EB evaporation:
Ar etching 240V 30s (0◦), Ti/Au 5/10nm

Lift off:
Acetone overnight and 40 ◦C 1hour, Acetone 5min(pipette) twice,
IPA 5min, Baking 120◦C 5min
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Gate pad deposition
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 180◦C 5min
Resist coating:

AZ1512HS 4000rpm 60s, Prebake 100◦C 90s
Photolithography:

30s (vacuum contact)
Development:

AZ developer 1:1 30s, DIW 15s, Running DIW 5min
EB evaporation:

Ti/Au 10/200nm
Lift off:

Acetone overnight and 40 ◦C 1hour, Acetone 5min(pipette) twice,
IPA 5min(pipette), Baking 120◦C 5min

Deposition of fine gates in first layer
Chip cleaning:

Acetone 5min twice, IPA 5min, Baking 180◦C 5min
Resist coating:

PMMA4%200K 4000rpm 60s, Prebake 180◦C 5min, Cooling down
RT 5min, PMMA2%950K 4000rpm 60s, Prebake 180◦C 5min

EB lithography:
100keV, 500pA, 1600µC/cm2

Development:
MIBK:IPA=1:3 30s, IPA 60s

EB evaporation:
Ar etching 240V 30s (0◦), Al 50nm

Lift off:
Acetone overnight and 40 ◦C 1hour, Acetone 5min(pipette) twice,
IPA 5min(pipette), Baking 180◦C 10min

Deposition of fine gates in second layer
Resist coating:

PMMA4%200K 4000rpm 60s, Prebake 180◦C 5min, Cooling down
RT 5min, PMMA2%950K 4000rpm 60s, Prebake 180◦C 5min

EB lithography:
100keV, 500pA, 1600µC/cm2
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Development:
MIBK:IPA=1:3 30s, IPA 60s

EB evaporation:
Ar etching 240V 30s (0◦), Al 60nm

Lift off:
Acetone overnight and 40 ◦C 1hour, Acetone 5min(pipette) twice,
IPA 5min(pipette)
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List of matrix products of total
angular momentum operators
(J = 3/2)
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