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Prof. Stéphane Zaleski

Prof. Arnaud Malan

Prof. Pieter Rousseau

September 2017



Acknowledgements

D’Alembert, Paris

The work in Part I was funded by the French Atomic and Alternative Energies Commission
(CEA). Simulations were run on the Airain supercomputer at the TGCC (Très Grand Centre
de calcul) computing facility. I thank them for their kind co-operation. I also would like to
thank Antoine Llor for his support and enthusiastic participation as well as Laurianne Pillon
and Renaud Motte.

Thank you to the permanent staff members at D’Alembert for welcoming me to the lab.
Christophe Josserand, Pierre-Yves Lagrée, Stéphane Popinet and Maurice Rossi: thank you for
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Abstract

Direct Numerical Simulation of two-phase flow is used extensively for engineering research and
fundamental fluid physics studies [54, 81]. This study is based on the Volume-Of-Fluid (VOF)
method, originally created by Hirt and Nicols [30]. This method has gained increased popularity,
especially when geometric advection techniques are used coupled with a planar reconstruction of
the interface [14, 89].

The focus of the first part of this work is to investigate the hydrodynamics of isothermal
cavitation in large bubble clouds, which originated from a larger study of micro-spalling [61],
conducted by the French CEA. A method to deal with volume-changing vapour cavities, or
pores, was formulated and implemented in an existing code, PARIS . The flow is idealized
by assuming an inviscid liquid, negligible thermal effects and vanishing vapour pressure. A
novel investigation of bubble cloud interaction in an expanding liquid using Direct or Detailed
Numerical Simulation is presented. The simulation results reveal a pore competition, which is
characterised by the Weber number in the flow.

In the second part of the study the governing equations are extended to describe incompress-
ible flow with phase change [79]. The description of the work commences with the derivation
of the governing equations. Following this, a novel, geometric based, VOF solution method is
proposed. In this method a novel way of advecting the VOF function is invented, which treats
both mass and energy conservation in conservative form. New techniques include the advection
of the interface in a discontinuous velocity field. The proposed algorithms are consistent and ele-
gant, requiring minimal modifications to the existing code. Numerical experiments demonstrate
accuracy, robustness and generality. This is viewed as a significant fundamental development in
the use of VOF methods to model phase change.
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Chapter 1

Introduction

This chapter will provide the background to the topic of interest in this work. It includes a
general introduction to the topic and the analysis techniques that will be used throughout this
work as well as the origin of the choice of problems to be studied. The original contribution
to knowledge that is the aim of this project will be summarized followed by the outline of the
remainder of this document.

1.1 Problem Background

A notable observation to make about the tangible environment in which humans live, is that
much of it consist of fluids. The study of fluid flow has been a lasting human endeavour. It
is not only pursued to gain understanding of the natural world, it is also hugely important for
industrial processes. A quick example of this is the fact that the majority of electricity that
is generated in the world today, comes from power plants where the Rankine cycle is used to
convert heat energy to electrical energy in a turbo-generator.

In modern times, a significant achievement in the field of fluid mechanics was the mathemat-
ical description of fluid flow by the Navier-Stokes equations, credited to C.L.M.H. Navier and
Sir George G. Stokes. There is notable research activity in theoretical and applied mathematics
on modelling fluid flow. However, the complex nature of the mathematical description of indus-
trial flows leave them practically unsolvable by the analytical solution techniques at our disposal
today.

Numerical analysis is another approach that is well suited to study flows, since many of
the analytical difficulties can be overcome by using numerical approximations. With the ever
increasing improvement in computing capabilities, the field of computational fluid dynamics
(CFD) has grown immensely. Direct numerical simulation (DNS) is one approach that is applied
to multi-phase flow problems, [81, 54]. The main idea of DNS is to resolve the flow domain to
a sufficient level such that additional physical models to account for unresolved flow effects are
minimal or excluded all together.

In the case of multi-phase flow, a phase tracking method is required to distinguish between
phases. For this study the Volume-Of-Fluid (VOF) method will be used, of which the much
cited first publication belongs to Hirt and Nichols [30]. Major improvements since the invention
of VOF include the reconstruction of the interface using a piece-wise linear construction (PLIC),
introduced by De Bar [14] and Youngs [89], momentum-conserving schemes [49] and height
functions [42, 46] to calculate local geometrical quantities such as interface normal and curvature.
Interface advection to conserve mass to machine accuracy has also been achieved by Yue and
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Weymouth [87]. These advances as well as relative ease of implementation in codes has made
the VOF method popular for industrial and research applications.

In this work, different multi-phase flow problems will be studied with the VOF method in
order to gain better understanding of the behaviour of flows and to evaluate improvements on
methods in which they are studied. The next section will elaborate more on the background to
the project and the problems that will be studied.

1.2 Project background

This work is a collaboration between two institutions. The formal French term for the collabo-
ration is thèse en co-tutelle. A summary of the project and problem of interest at each of the
institutions will be given here.

The first part of the work was conducted at Institut Jean Le Rond ∂’Alembert – or D’Alembert
for short – in Paris, France. It is divided into five teams, with research focus on Mechanics,
Acoustics and Energetics. The D’Alembert institute is affiliated to the CNRS and the Pierre
and Marie Curie University (Université Pierre et Marie Curie, Paris VI Sorbonne), which is
part of the Paris Sorbonne group of universities. A research group within the French Alternative
Energies and Atomic Energy Commission or CEA (Commissariat à l’énergie atomique et aux
énergies alternatives) is interested in micro-spall failure of materials [61, 60] and wished to gain
more insights by performing numerical simulations. This work is the result of them defining a
model problem and collaborating with D‘Alembert to investigate it. The model problem will be
described in more detail in Part I . In summary, it is an idealized problem where the interactions
between bubbles are studied when hundreds of bubbles are present in a carrier liquid while it is
expanding. Thermal effects are neglected and a free surface approach is introduced to allow for
volume changing bubbles in an incompressible liquid.

The second part of the work was conducted in Cape Town, South Africa. The Industrial
CFD research group (InCFD) is affiliated to the Department of Mechanical Engineering in the
faculty of Engineering and the Built Environment of the University of Cape Town. This group
is also home to the South African Research Chair (SARChI) in Industrial Computational Fluid
Dynamics. This group has relations with a variety of industrial partners. A problem that is of
interest not only to this group, but also to researchers and industries worldwide is the direct
numerical simulation of phase change processes. Part II of the work focusses on this problem
and specifically investigates a novel technique to simulate phase change using a VOF method
and the geometric interface reconstruction method for a sharp interface representation.

1.3 Original contributions in this work

An existing computer code was used as a platform for this work. The code is called PARIS and
will be introduced in Chapter 3. New developments were made to the code in order to enable the
simulation of problems that include physics that has not previously been accounted for in the
code. Apart from software development contributions, there were novel scientific contributions.
The contribution made in each part of the work will be given separately.

For the bubble cloud simulations, a free surface approach is applied to an existing VOF frame-
work. The ability to apply a polytropic equation of state for the bubble phase was introduced
and an existing algorithm was applied to enable the tracking of individual bubbles. This made
the data of their movement and volume evolution available during simulations of hundreds of
bubbles. To the best knowledge of the author, this is the first time that the interaction of bubbles
was studied using DNS as an idealized model for micro-spall.
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In the phase change work, a thermal energy conservation equation was added to the existing
code. In this equation, an implicit discretisation of the heat conduction term (with special
treatment at the interface) was added. Another addition was a temperature dependent density
in the gravity term of the momentum equation according to the Boussinesq approximation. A
novel method is proposed to perform the advection of the VOF colour function when phase
change occurs and velocity jumps exist across the interface. The advection is based on geometric
reconstruction of the interface. This advection strategy is applied consistently to the advection
term in the energy equation to ensure an energy flux that is consistent around the interface with
the calculated movement of the fluid and the interface relative to it.

1.4 Thesis Outline

This chapter provided an introduction to the work that is represented in this thesis. The work will
be divided into two parts, each corresponding to the problem studied at each of the collaborating
institutions. Before the two parts are presented, a general mathematical formulation will be
provided that will serve as a reference to both parts.

After a mathematical reference for the work is established, another important element that is
common to both parts will be presented: the computer software that will be employed throughout
this work. PARIS will be used to solve each of the numerical problems presented later on. The
modifications made to it in order to do so will be introduced in the respective parts for each
individual problem.

The foundations are now laid to continue to the individual parts. Each part will be presented
with a similar structure: at first, the problem background will be given with an overview of
other work on the problem. Thereafter, the problem-specific mathematical formulation will be
given. The numerical method employed to discretize and solve the governing equations in the
mathematical formulation will then be presented, followed by a results chapter. Verification tests
will be provided as well larger simulations to study certain physical problems. The individual
parts will then conclude with a discussion and some perspectives on the results and further work.

Part I will study the behaviour of bubble clouds when it is subject to expansion of the carrier
liquid in which they exist. Different flow conditions will be tested to establish the effect that
bubble interactions exhibit on the expansion of the carrier fluid. Part II will study two-phase
flows with phase change.

3



Chapter 2

Mathematical formulation

2.1 Introduction

In this chapter a general mathematical formulation is presented that will serve as a reference for
the specific problems that will be introduced later in Parts I and II. Each problem will eventually
have its own governing equations. The specific formulation for each problem will be derived by
making certain simplifying assumptions and applying different physical models to the general
formulation that will be presented here.

The general mathematical formulation will be derived in a classical manner: by considering a
generic control volume. Throughout this chapter, the derivations are inspired by and reproduced
from the texts of Kundu and Cohen [12], White [88] and Tryggvason et al. [81]. There are
simplifying assumptions that apply to all problems that will be studied in this work. These
assumptions will be presented, followed by the derivations of the governing equations from first
principles.

2.2 Simplifying assumptions

It will be assumed throughout this work that all fluids can be treated as matter in which the
physics at molecular level has a representative average effect at a larger scale. This is called the
continuum hypothesis. Some perspective on its validity is given in the next section.

2.2.1 Continuum hypothesis

The continuum hypothesis is reasonable under certain conditions. One aspect to consider is
the length scale of the problem in question. White [88, p.6] provides a lower limit based on
the uncertainty in measurements of fluid density: when fluid density is calculated by measuring
the molecular mass δm in a volume δV , there is significant uncertainty in the result when
δV < 10−9 mm3 = 10−18 m3. This is a conservative case for all liquids and gases at atmospheric
conditions. For a spherical volume δV , the radius R will be R ≈ 6 × 10−7 m = 600 nm for a
volume of this size.

Kundu [12, p.5] uses the mean free path of fluid particles (atoms or molecules) as a reference
for the breakdown in modelling accuracy of continuum mechanics and where molecular dynamics
becomes important. The mean free path `mfp of air at atmospheric conditions is estimated
`mfp ≈ 5 × 10−8 m = 50 nm. For liquids at atmospheric conditions, [81] provides that `mfp ≈
10−9 m = 1 nm.
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For the problems considered in this work, the physical fluid parameters and length scales
were found to fall safely within the limits of the continuum approach.

2.2.2 Incompressible flow

In certain flow situations the effect of pressure on the density of the fluid is much less than its
effect on the flow velocity. Under these circumstances, one can apply the incompressible flow
assumption, which assumes that the density in a fluid (or phase) is invariant to pressure changes

∂ρ

∂p
= 0 , (2.1)

with p the static pressure in the fluid. Furthermore, the variation of density with temperature is
deemed negligible, except for the body force term in the momentum conservation equation. The
result is that for a specific fluid or phase, the density is considered a constant.

The validity of these assumptions can be shown [88, p.231][12, p.715] to be related to the
Mach number in the flow. The Mach number Ma is a non-dimensional number that gives the ratio
between the flow velocity magnitude, u and the sonic velocity, c, in the fluid under consideration
at the prevailing conditions

Ma =
u

c
. (2.2)

Both references — [88, p.231] and [12, p.715] — show that the incompressible assumption
is applicable when Ma < 0.3. It is important to note that the Mach number criteria here is a
guideline and not a general rule. It is possible to imagine flows where fluids are compressed at
a low velocity, for example in a cylinder with a moving piston. Some other considerations are
applicable in this case, as shown by Heyns et al. [29].

However, for the purpose of this work, the guideline of small flow velocities will be followed
and the incompressible assumption is applied without any special additional compressibility
considerations.

2.2.3 Boussinesq approximation

Throughout this work and unless stated otherwise, the Boussinesq approximation will be used.
A formal discussion on its validity is given by Spiegel and Veronis [67]. Similarly, Kundu provides
arguments for the application of the approximation [12, p.124-128]. The reader can consult these
works for more detail. The Boussinesq approximation is a simplification applied to the general
governing equations of fluid flow. It assumes that variations in density have a negligible effect on
all terms relating to momentum conservation, apart from the body force term. Additionally, it
is assumed that temperature variations are small, relative to the bulk average temperature. The
effects of these assumptions on the conservation of mass, momentum and thermal energy will be
shown.

2.3 Control volume analysis

In this section, a generic control volume for the problems under consideration in this work will
be defined. The rate of change of a generic fluid property will then be evaluated in this control
volume.
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2.3.1 Control volume definition

Following White [88], some fluid property B is considered in a closed system. The system is
defined as all fluid contained inside a control volume V which exists in three dimensional space,
R3. The control volume is completely enclosed by control surface S and is shown in Fig. 2.1. The
choice of a fixed control volume is made based on the numerical discretization of the equations
in a finite volume or calculating a finite difference at a fixed location in space, which will be
detailed in later chapters. The specific quantity — per unit mass — of B is β = dB/dm, with dm
the mass of a differential quantity, dB.

nΓ

xz

y

V1 V2

S2

S1

Γ
u(x, t)

Cp

Figure 2.1: A general, 3D control volume V in an arbitrary velocity field u (x, t) is shown. V is
enclosed by surface S, which is fixed in space. The red shaded surface, Γ is an arbitrary surface
that represents the interface and divides V into V1 and V2 and S into S1 and S2. The intersection
of Γ with S is the contour C, with normal p in the osculating plane.

Unless stated otherwise, a standard Cartesian coordinate system in three dimensions will be
used throughout this work. The total rate of change of fluid property B in the system is [88,
p. 144]

dB

dt

∣∣∣∣
sys

=

∫
V

∂ (ρβ)

∂t
dV +

∮
S

ρβ (u · n) dA , (2.3)

with t the time and ρ the density such that ρ = dm
dV . The surface unit normal on S is n with the

convention that it is positive in the direction pointing outward. Therefore the surface integral
represents the total efflux of B from V through control surface S. The interface Γ is a material
surface with unit normal nΓ, which moves with the fluid velocity u(x, t). The position vector x
is given by x = x i+ y j + z k with 〈i, j, k〉 the orthogonal Cartesian unit vectors.
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Two fluids are represented in control volume V , namely fluid 1 in V1 and fluid 2 in V2. The
naming convention used in this work is that the fluids represent different phases (phase 1 and
phase 2) in a two-phase flow. Note that this convention places no physical constraint on the
definition of problems, since the fluid properties can be chosen arbitrarily to represent any fluid.
It is merely a convention to avoid ambiguity.

2.3.2 Conservation of a fluid property

Conservation of a property in a system means that it cannot be created or destroyed, so that

dB

dt

∣∣∣∣
sys

= 0 . (2.4)

Conservation of B in V requires that

dB

dt

∣∣∣∣
sys

=

∫
V

∂ (ρβ)

∂t
dV +

∮
S

ρβ (u · n) dA = 0 . (2.5)

The physical interpretation of (2.5) when B is conserved is that the net change of B inside
V must be balanced by the net amount of B flowing across its bounding surface S.

Before the general conservation of mass, momentum and energy will be presented, some useful
comments and results on the mathematical formulation of two-phase flows will be presented.

2.4 Two-phase flows

As mentioned in the introduction, the flow problems in this work will be two-phase in nature, of
which each phase has its own fluid properties. A general method to represent the interface and
to include the physics related to it will be presented here. Note that the work in this section,
including 2.4.1 and 2.4.2 is credited to Tryggvason et al. [81]. Many of the mathematical tools
related to flows with interfaces in this reference are used in PARIS that will be used in this
work. For convenience of reading, the former tools are defined in the next section, while PARIS
will be detailed in Chapter 3.

2.4.1 Interface between fluids

Throughout this work, it will be assumed that the interface between fluids (or phases) is sharp,
or infinitely thin. The fluids will also be considered immiscible, meaning that there is no dilution
of the one fluid into the other and no diffusion of mass across the interface is possible. Transfer of
mass by phase change will be possible and will be detailed in Part II. The interface is represented
geometrically as a surface of arbitrary shape.

A full derivation of various interface properties are given in Appendix A of [81, p.270-278].
The main result that will be of use in this work is that the interface mean curvature κ is given
by the equation

κ = κ1 + κ2 = −∇Γ · nΓ , (2.6)

with κ1 and κ2 the principal curvatures and ∇Γ the surface gradient on surface Γ with outward
pointing normal nΓ.
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2.4.2 One-fluid formulation

The main idea of the one-fluid formulation is to distinguish between fluids or phases by using an
indicator function that is attributed to a specific phase. The Heaviside function seems a suitable
choice for this purpose, so a convention is made where

H(x) =

{
1, if x is inside V1

0, if x is inside V2 .
(2.7)

Note that in this case, phase 1 is the tracked phase and that the entire volume V is partitioned
into V1 and V2, with x the position vector. The definition of H can be constructed by using the
integral of consecutive products of one dimensional Dirac delta functions, which is extended to
three dimensions for V from the derivation in [81, p.279]

H(x) =

∫
V

δ(x− x′) δ(y − y′) δ(z − z′) dv′ , (2.8)

where dv′ = dx′ dy′ dz′ and x′ = 〈x′, y′, z′〉 is a vector function indicating the location of the
tracked phase. This construction is very useful, since it can be shown [81, p.280] that

∇H = −δΓnΓ , (2.9)

with δΓ a Dirac delta function distributed along the interface, with normal nΓ pointing from
phase 1 into phase 2. It can also be used to convert surface integrals — like those on the interface
— into volume integrals [81, p.280]∫

Γ

f(x) dA =

∫
V

f(x)δΓ(x) dV , (2.10)

with f(x) any arbitrary function.

2.5 Governing equations

In this section, the general conservation of mass, momentum and thermal energy will be derived
for the arbitrary control volume in Fig.2.1.

2.5.1 Mass conservation

Conservation of mass states that the total mass in a system is conserved and cannot be created
or destroyed

dm

dt

∣∣∣∣
sys

= 0 . (2.11)

For the case of mass, B = m and β =
dm

dm
= 1 so that (2.5) is rewritten

dm

dt

∣∣∣∣
sys

= 0

∴
∫
V

∂ρ

∂t
dV +

∮
S

ρ (u · n) dA = 0 (2.12)
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This equation is the integral form of the conservation of mass in control volume V . Note that
the first term is generally non-zero in V , despite the assumption of constant phase density. The
reason is that, in general, there may be more than one phase present in V . Mass conservation
can be written for each separate phase

d

dt

( ∫
V1

ρ1 dV

)
=

∫
V1

∂ρ1

∂t
dV +

∫
S1

ρ1 (u1 · n) dA+

∫
Γ

ρ1 (u1 · nΓ) dA = 0 (2.13)

d

dt

( ∫
V2

ρ2 dV

)
=

∫
V2

∂ρ2

∂t
dV +

∫
S2

ρ2 (u2 · n) dA−
∫

Γ

ρ2 (u2 · nΓ) dA = 0 . (2.14)

The reader is reminded of the convention that normal nΓ points from phase 1 outward into phase
2, which explains the sign of the surface integrals over Γ. The separate phase volumes can be
simplified by applying the constant density assumption∫

Si

ui · n dA+

∫
Γ

ui · n dA =

∫
Vi

∇ · u dV = 0 , (2.15)

where the subscript i = 1, 2 indicates the phase. Note that the outward pointing surface normal
n was used throughout for the surface integrals. The divergence theorem of Gauss was applied,
since the velocities are smooth everywhere within a phase.

2.5.2 Conservation of linear momentum

The conservation of linear momentum is based on Newton’s second law of motion. The law
states that the acceleration of a system is directly proportional to the resultant force applied to
it, with its inertia (or mass) the proportionality constant. Equivalently, the rate of change of the
momentum of a system is equal to the resultant force acting on it:

FR =
∑
sys

F = ma|sys = m
∂u

∂t

∣∣∣∣
sys

, (2.16)

with FR a resultant force vector, m the system mass and a the system acceleration vector.
For a fixed control volume, (2.3) is rewritten with the general fluid property B substituted

with the linear momentum vector P = mu so that β = u∑
sys

F = m
∂u

∂t

∣∣∣∣
sys

=

∫
V

∂ (ρu)

∂t
dV +

∮
S

ρu (u · n) dA . (2.17)

To evaluate (2.17), all forces acting on the system defined by V need to be determined. Fluid
forces can be divided into surface, body and line forces [12].∑

sys

F = Fs + Fb + Fσ , (2.18)

with Fs, Fb and Fσ respectively the surface, body and line forces. Each type of force will be
presented individually.
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Surface forces

The force on a surface is obtained by first considering the state of stress in a fluid. The stress
at a point in a fluid is represented by a second order tensor, τ . As demonstrated in Kundu [12],
this tensor is symmetric and can be written

τ = −pI + D (2.19)

where p is the pressure, I the unit tensor and D the deviatoric stress, or deformation tensor.
Throughout this work, a Newtonian fluid will be assumed, so that the deformation tensor is
given by [12, p.101]

D = 2µS + λ (∇ · u) I , (2.20)

with µ the dynamic viscosity, λ the second coefficient of viscosity and S the fluid strain rate
tensor [12, p.61]

S =
1

2

(
∇u+ (∇u)

T
)
. (2.21)

Stokes hypothesis is often applied [81, 88, 12], so that λ = −2/3 µ. The stress tensor for a
Newtonian fluid therefore is [12, p.103]

τ = −
(
p+

2

3
µ (∇ · u)

)
I + µ

(
∇u+ (∇u)

T
)
. (2.22)

The resultant surface force, δFs, on a segment S of some surface in a fluid can be shown [12,
p.35] to be

δFs =

∫
S

τ · n dA , (2.23)

with n the outward pointing surface normal on S and τ the stress tensor in (2.22).
The total surface force on control volume V can be obtained by integrating all along its

enclosing surface S

Fs =

∮
S

τ · n dA =

∮
S

(−pI + 2µS) · n dA . (2.24)

Note that the volumetric deformation stress is excluded here as a result of the incompressible
assumption and divergence free velocity field.

Body forces

Body forces are forces that originate from some external origin. The only body force that will be
considered in this work is that of gravity, which will be denoted by g. Unless stated otherwise,
the earth’s gravity field will be used

g = −gj , (2.25)

with g ≈ 9.81m.s−2 the gravity acceleration constant and j the unit vector pointing upwards in
the vertical direction.

The gravity body force Fb can be written [12, p.94]

Fb =

∫
V

ρg dV , (2.26)

for the fixed control volume V .
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Line forces

Throughout this work the only line force that will be considered is that of surface tension on the
interface between two immiscible fluids. Surface tension or capillarity is a result of intermolecular
forces between fluid particles. Different molecular properties on opposite sides of the interface,
result in a surface energy [81, p.38]

dEΓ = σdΓ , (2.27)

with dEΓ the surface energy of a differential interface segment dΓ and σ the fluid property known
as the surface tension coefficient. Since there is an energy on the interface, it requires work to
deform it. This idea can be used to explain the line force: one has to apply a force to an interface
element for it to change area. Therefore, surface tension is modelled at the continuum level as
a line force acting per unit length of interface. For a detailed derivation of the surface tension
force, refer to Tryggvason et al. [81, p.38-39]. The surface tension force Fσ on a segment of
interface Γ, with edge contour C is given by

Fσ =

∮
C

τσ · p d` =

∫
Γ

∇ · τσ dS , (2.28)

with τσ the surface stress tensor and p the vector normal to the edge C on the osculating plane.
The force per unit area fσ is obtained in the limit where the area of Γ goes to zero

fσ =∇ · τσ = σκnΓ +∇Γσ , (2.29)

with ∇Γ the surface gradient and κ = −∇Γ · nΓ the curvature of Γ, [81, p.276]. Throughout
this work a constant surface tension coefficient will be assumed, so that the last term in (2.29)
equals zero and the force per unit area is simply

fσ = σκnΓ . (2.30)

Applied to a control volume V , the line force for the research problem is

Fσ =

∫
Γ

σκnΓ dA =

∫
V

σκδΓnΓ dV , (2.31)

where the surface integral is converted to a volume integral using (2.10).

Summary

All the forces that will be considered in the research problem can now be substituted into (2.18),
so that (2.17) becomes

∫
V

∂ (ρu)

∂t
dV +

∮
S

ρu (u · n) dA =

∮
S

τ · n dA+

∫
V

ρg dV +

∫
V

σκδΓnΓ dV . (2.32)

This is the general differential form of the conservation of linear momentum. The Boussinesq
approximation and its effect on (2.32) will now be presented. If a fluid has a density ρ0 at some
reference temperature T0, it is shown in [12, p.127] that the effect of density variation on inertial
terms are small when the ratio of density variation, ρ′ = ρ− ρ0 to the actual density is small:

ρ′

ρ0
� 1 . (2.33)
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However, the effect of temperature variation is significant on the body force term, since the
ratio ρ′/ρ0

gets multiplied by the gravity. For small temperature variations a linear relationship
between the density and temperature can be assumed

ρ = ρ0 [1− β (T − T0)] , (2.34)

with β the thermal expansion coefficient given by [32, p.564]

β = −1

ρ

(
∂ρ

∂T

)
p

. (2.35)

Re-writing (2.32) with this approach yields

∫
V

∂ (ρ0u)

∂t
dV +

∮
S

ρ0u (u · n) dA =

∮
S

τ · n dA+

∫
V

ρg dV +

∫
V

σκδΓnΓ dV , (2.36)

with ρ0 the reference density defined earlier and ρ the temperature dependant density that is
used in the body force term.

2.5.3 Conservation of Energy

The conservation of energy from the first law of thermodynamics states that the rate of change
of energy inside a system must equal the total energy crossing the system control surface. The
general convention for the direction of external energy transfer across system boundaries is heat
transfer to the system or work performed by it on its surroundings. Internal heat generation
(for example by nuclear fission) will not be considered in this work. For a fixed control volume,
V , the first law of thermodynamics can be written with the fluid property B = E and β = e in
(2.3), [88, p.172]

dE

dt

∣∣∣∣
sys

= Q̇− Ẇ

∴ Q̇− Ẇ =

∫
V

∂ (ρe)

∂t
dV +

∮
S

ρe (u · n) dA , (2.37)

with Q̇ and Ẇ respectively the rate of heat transfer and the rate of work performed. The signs
of these terms are written according to the convention given above. The specific energy (per unit
mass) is denoted e and is regarded as the sum of the specific internal and kinetic energies:

e = ei + ek = ei + 1/2u · u , (2.38)

where ei and ek are respectively the specific internal and kinetic energies. Note that potential
energy is excluded from e, but it will be included as the work performed by the gravity body
force, as was also done in the derivations by [12] and [81]. If q is the heat transfer rate (or heat
flux) per unit area, (2.37) can be written

∫
V

∂ (ρe)

∂t
dV +

∮
S

ρe (u · n) dA =∫
V

ρg · u dV +

∫
V

∇ · (u · τ ) dV −
∮
S

q · n dA . (2.39)

The heat flux term has a negative sign, since surface normals are positive in the outward pointing
direction by convention and therefore indicates an efflux.
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Thermal energy conservation

The total energy conservation in V is given by (2.39) in integral form. For the numerical solution
of flow problems, it is often useful to also derive the conservation equation of thermal energy. The
conservation of thermal energy can be derived by first obtaining the conservation of mechanical
energy and then subtracting it from the energy equation, (2.39). This is also the approach used in
[12] and [81]. The mechanical energy equation can be obtained by taking the dot product of the
velocity, u, with the momentum conservation equation (2.32) and using the mass conservation
equation to perform some algebraic manipulation. The result is [12, p.111]

∫
V

∂ (ρek)

∂t
dV +

∮
S

ρek (u · n) dA =∫
V

ρg · u dV +

∫
V

u · (∇ · τ ) dV . (2.40)

The conservation of thermal energy is obtained [12, p.115] when mechanical energy (2.40) is
subtracted from the total energy (2.39)

∫
V

∂ρei
∂t

dV +

∮
S

ρei (u · n) dA = −
∫
V

p (∇ · u) dV −
∮
S

q · n dA+

∫
V

Φ dV , (2.41)

where Φ is the viscous dissipation function given by

Φ = 2µ S : S− 2

3
µ (∇ · u)

2
. (2.42)

The colon indicates tensor matrix multiplication S : S = SijSij . Kundu and Cohen [12,
p.127], demonstrates how the Boussinesq approximation can be applied to the thermal energy
equation (2.41). With the flow speeds low, it can be shown that viscous heating is negligible
[12, p.128] by comparing the orders of magnitude of the viscous heating term to the change in
thermal energy

Φ

ρcp DT/Dt
≈ 2µS : S

ρcp∇ · (uT )
≈ µ U2

/L2

ρ0cp U δT/L
=

νU

cp δT L
, (2.43)

where U , δT and L are respectively the characteristic velocity, temperature change and length
scale in the flow. ν is the kinematic viscosity. For many practical flows, the resulting ratio is
very small (10−7, [12, p.128]) such that the viscous heating can be neglected.

The heat flux is modelled using Fourier’s law

q = −k∇T , (2.44)

with k the thermal conductivity. As for other properties before, the variations of k due to
temperature is negligible and a constant value will be used for each phase.

The assumption of constant specific heats along with the assumption of ideal gas behaviour
allows to combine the internal energy with the pressure work term to obtain a simplified version
of (2.41). The derivation is shown in Appendix A and the result is∫

V

∂ (ρcpT )

∂t
dV +

∮
S

ρcpTu · n dA =

∮
S

k∇T · n dA . (2.45)

This is the final conservative, integral form of the conservation of thermal energy that will
be used in this work.
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2.6 Summary

In this section, the general conservation of mass, momentum and energy was derived for an
generic control volume. The integral form of each equation was presented, which forms the basis
for the numerical implementation.

For the flows in this work, the Boussinesq approximation is applicable. The summary of this
approach from Kundu and Cohen [12, p.128] was used to present the simplified versions of the
governing equations. The approximation is accurate, since the flow speed is small relative to
the sound speed in the fluid. Temperature changes are also relatively small and the effect of
variations in density is applied on the body force term, but is negligible elsewhere. Under these
assumptions, the viscosity, heat capacities and thermal conductivity in each phase are considered
constant. The resulting equations from mass, momentum and energy are

∫
V

∂ρ0

∂t
dV +

∮
S

ρ0 (u · n) dA = 0∫
V

∂ (ρ0u)

∂t
dV +

∮
S

ρ0u (u · n) dA =

∮
S

τ · n dA+

∫
V

ρg dV +

∫
V

σκδΓnΓ dV∫
V

∂ (ρ0cpT )

∂t
dV +

∮
S

ρ0cpT (u · n) dA =

∮
S

k∇T · n dA . (2.46)

Here ρ0 is the constant density in each phase at some reference temperature T0. The density ρ
in the gravity term is calculated using

ρ = ρ0 [1− β (T − T0)] , (2.47)

with β the thermal expansion coefficient as defined before.
Further problem specific simplifications will be applied once the individual problems are

introduced in Parts I and II.
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Chapter 3

The PARIS code

The numerical methods that will be used in this work are all added to an existing code called
PARIS . PARIS is an acronym for PArallel Robust Interface Simulator. It is an open-source
code distributed under the GNU general public license. It solves the incompressible Navier–
Stokes equations for multi-phase flow using one-fluid formulation, as described in [81] and men-
tioned in section 2.4.2. Interface capturing is handled with either a volume-of-fluid (VOF) [30]
or front tracking [82] approach. In this work the VOF approach will be used, of which the
numerical methods for the VOF advection and surface tension terms are largely based on the
SURFER [37] and Gerris [45, 46] codes. The code can be run in parallel by decomposing
the domain into smaller subdomains using the MPI libraries [22]. The code has a web page at
http://parissimulator.sf.net.

In this chapter the code will be presented. First, the numerical grid used to solve the governing
equations presented in the previous chapter will be introduced. This is important detail, as the
novel numerical techniques developed here are applied specifically in this existing framework.
Details of the time integration and calculation of several terms in the governing equations will
then be provided.

3.1 Computational grid

A numerical solution is obtained by solving the system of governing equations at discrete spatial
locations for a specific instant in time. The solution space in which the problem is solved, whether
it has two (2D) or three (3D) spatial dimensions, is referred to as the domain. The solution is
obtained at certain discrete locations throughout the domain. These locations are formed by
sub-dividing the domain into smaller volumes and then integrating the governing equations in
these volumes. This process is commonly referred to as the finite volume method [83].

In PARIS and for this work, orthogonal domains are used exclusively which are subdivided
into squares (2D) or cubes (3D). These squares or cubes are known as elements, computational
cells or finite volumes. Henceforth they will be referred to as cells. By sub-dividing the domain
into cells, one obtains what is commonly referred to as the computational mesh or grid. Fig. 3.1
shows a 3D domain with some of the nomenclature that will be used throughout this work. On
the right hand side a 2D cut shows a 3× 3 stencil with the location of variables in the cell.

For the purpose of discretizing the equations presented in the previous chapter the same type
of grid will be used, sometimes referred to as the marker-and-cell (MAC) grid from the method
developed by Harlow and Welch [26]. The grid is also known as a staggered grid, since discrete
velocity components are located on the cell faces, while other scalar variables — like pressure,
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Figure 3.1: Schematic representation of a 3D flow domain on the left of dimension Lx×Ly×Lz.
The domain is subdivided into Nx ×Ny ×Nz cells. A typical domain decomposition for parallel
processing is illustrated by the different shaded regions on the grid. Note that the amount of cells
here serves as an illustration and typically a single processor domain will contain 32×32 cells, or
more. On the right a 2D cut shows 3× 3 computational cells with normal velocity components
located on cell faces. Scalar components, like temperature T shown here, are located at cell
centres.

VOF and temperature — are located at cell centres. Computational cell edges have identical
lengths, which will be called h throughout this work.

3.2 Existing numerical method in PARIS

As a basis for the novel numerical methods that will be used later, a brief background on the
existing numerical method used in PARIS will be given. The modifications required for the
specific problems in this work will be presented as the respective problems are introduced in
Parts I and II.

3.2.1 Governing equations

The existing method solves the incompressible mass conservation equation as well as the con-
servation of linear momentum. It uses a one-fluid formulation and includes surface tension at
the interface between two-fluids that are immiscible. The resulting equations are exactly those
derived in the previous chapter, but without a temperature dependent density in the gravity
term of the momentum equation

∇ · u = 0 (3.1a)

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+∇ · (2µS) + ρg + σκδsns (3.1b)
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with u, ρ, p and µ respectively the fluid velocity, density, pressure and viscosity. The body
force vector is given by g and S is the deformation (or strain rate) tensor such that Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. The last term is used to include capillary effects with the continuum surface

force approach [6]. σ and κ are respectively the surface tension and interface curvature with δs
a dirac function for the interface position and ns the surface normal on the interface.

Immiscible phases are distinguished by using either the VOF method or front tracking. In this
work we use the VOF method. The VOF scalar c, as its name suggests, indicates the volume-
of-fluid of some reference fluid contained inside some control volume Vc. It can be defined
mathematically by using the Heaviside function to track the reference phase. The VOF scalar c
is then

c =
1

Vc

∫
Vc

H (x, t) dV . (3.2)

From the equation above, it can be deduced that 0 ≤ c ≤ 1. For Vc completely filled by the
reference, or tracked fluid c = 1 and c = 0 when there is no reference fluid inside Vc.

The VOF scalar adheres to an advection equation

∂c

∂t
+∇ · (cu) = 0 . (3.3)

The one-fluid density and dynamic viscosity inside a cell are determined as a volume weighted
average of c. The simple arithmetic average or the harmonic mean can also be used. The simple
arithmetic average for the density and viscosity is respectively given by

ρ(c) = ρ2c+ (1− c)ρ1 (3.4a)

µ(c) = µ2c+ (1− c)µ1 (3.4b)

with the subscripts indicating the fluid parameters for a specific phase. In this case the tracked
phase is phase 2. The choice of tracked phase If required, filtering is available to smooth the
VOF field. However, this will not be used in this work.

3.2.2 Numerical method

The above system of equations is solved numerically using a projection method [11]. Time
integration can be done using an explicit first order or a second order Crank–Nicolson type
scheme. The following equations will be given in discrete form for an explicit first order time
integration, to illustrate the numerical procedure.

It is assumed that the velocity field adheres to (3.1a). First, the VOF scalar is advected

cn+1 − cn

∆t
+∇h · (cnun) = 0 , (3.5)

with ∇h the discrete gradient operator and ∆t the time step size. This equation is solved in
two steps: reconstruction of the interface as a plane in each grid cell and then its advection
with the computation of the reference phase fluxes across the cell boundary. The use of planes
to reconstruct the interface is accredited to de Bar [14]. In the first part of the reconstruction
step, the interface normal ns is computed with the “mixed Youngs-centered” (MYC) method
[3]. Then the position of a plane, representing the interface in the cell, is determined using
elementary geometry [55]

ns · x = nsxx+ nsyy + nszz = α , (3.6)
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where the scalar α characterizes the position of the interface. For the computation of the reference
phase fluxes we can use the Lagrangian explicit CIAM scheme [39] or the strictly conservative
Eulerian scheme of Weymouth and Yue [87].

The fluid density and viscosity field can now be updated

ρn+1 = ρ2c
n+1 + (1− cn+1)ρ1

µn+1 = µ2c
n+1 + (1− cn+1)µ1 (3.7)

The momentum equation is split into two steps. First, a temporary velocity u∗ is obtained
by taking into account the viscous and surface tension forces

ρn
(
u∗ − un

∆t
+ un ·∇hun

)
=∇h · (2µnS) + ρng + (σκδsn)

n+1
, (3.8)

The advection term u·∇u is discretised in a standard fashion for staggered grids using a choice of
schemes, including ENO [27], QUICK [38] and WENO [59]. The diffusion term can be calculated
explicitly (µnSn) or implicitly (µn+1Sn+1).

The second step of the momentum equation is written by including the contribution of the
pressure term:

un+1 − u∗

∆t
= − 1

ρn+1
∇hpn+1 . (3.9)

The continuity equation requires that

∇h · un+1 = 0 . (3.10)

By taking the divergence of (3.9) and using this equation, a Poisson equation is obtained relating
the pressure and predicted velocities:

∇h ·
[

∆t

ρn+1
∇hpn+1

]
=∇h · u∗ . (3.11)

The sequence for each time step will be to first solve (3.8) to obtain the temporary velocity field
u∗. The pressure is found by solving the Poisson equation (3.11). The temporary velocity field
is then corrected with the pressure in (3.9) to satisfy (3.10) for the velocity at the next time step
un+1.

The user has at his/her disposal a method based on the trapezoidal rule of integration to
increase the convergence order of time integration. This method computes two consecutive,
explicit time steps for each variable, after which the final value is halved. This is similar to
the technique presented in [81, p.53] and applied by [19, 71]. Let us consider for example the
velocity field, u:

u∗ =un + ∆tL(un)

u∗∗ =u∗ + ∆tL(u∗)

un+1 =
1

2
(u∗∗ + un) , (3.12)

where ∆t indicates a discrete time step and L is some linear operator that represents the spatial
discretization of the governing equations. The intermediate results produced by explicit time
marching is indicated by a ∗ superscript.
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Figure 3.2: Illustration of artificial gap that forms in the tracked phase when the higher order
time scheme is used. A uniform velocity advects the interface from left to right. The interface
position is indicated with the dashed red line at time steps n, ∗ and ∗∗. The resulting VOF
values in the respective cells are shown after the discrete values are halved.

It should be noted that when this method of time integration is applied in conjunction with
VOF, there are sometimes artificial gaps formed in the tracked phase. This can be illustrated
with a simple one dimensional test problem. In Fig. 3.2.

In this illustration, a uniform velocity advects the VOF function from left to right. The
resulting interface positions are shown as dashed lines after two consecutive explicit time steps.
The shaded regions indicate the resulting VOF values after the respective halving operation
cn+1
i = 1/2(c∗∗ + cn) is done. The result is the remainder of the opposite phase in the right of

the cell on the left, i. In general, this may disappear after a few time steps as the flow advects
it out, but will cause problems when the plane reconstruction is used to determine the location
of the phase interface and is used for calculations there.

3.3 Summary

This chapter provided an introduction to PARIS . More developments to the code will be
presented in the numerical method chapters in Parts I and II.
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Part I

Bubble clouds in cavitation
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Chapter 4

Introduction: Part I

This chapter will introduce the problem that will be studied in Part I of this work. The back-
ground on the process of micro-spall failure will be provided along with examples of some of the
research that has been undertaken to study it. This research includes theoretical modelling and
experimental studies.

Cavitation is the process when a liquid changes phase and becomes a vapour. It is similar to
boiling, but instead of a temperature increase causing phase change, it occurs due to a pressure
decrease sufficient for the system pressure to fall below the saturated vapour pressure, [7]. A
classical example of cavitation is the tip vortex in ship propellers [88, p.34] or the formation
and collapse of cavitating bubbles in pump rotors [7].

The process of cavitation plays an important role in the failure of materials during micro-spall
[61]. A brief introduction on cavitation and related numerical studies will be given. To better
understand the complex process of micro-spall, a model problem will be defined. This problem
aims to provide more insight into one of the aspects of micro-spall.

A hypothesis will be made and some research questions will be posed, which will form the
guideline for the study in Part I. The method to investigate the model problem will be introduced.

4.1 Background

4.1.1 Micro-spall

Micro-spall refers to a specific type of spallation fracture when fragmentation occurs in parts of
a material that has already been melted during shock loading [61]. Andriot [2] is cited by Signor
[60, 61] as the first to have used the term microspalling.

One way of studying micro-spall is by conducting experiments. Typically, some material sam-
ple is subjected to projectile impact [62, 66] or laser irradiation [13, 63]. The micro-spall process
is described by Signor [61]: Dynamic stress loading on material samples create a compression
wave that propagates through it. Upon reflection from the free surface of the sample, tensile
stresses are created in the material that cause the nucleation of cavities. These cavities may grow
up to coalescence and lead to fine droplets of melted material being formed as the material fails
catastrophically, [60]. A schematic representation of this process is taken from [62] and shown
in Fig. 4.1.

Micro-spall has also been the topic of diverse theoretical investigations. Stebnovskii have
conducted several investigations, including the formation conditions for vapour bubbles during
cavitation [68], a shear deformation model [70] and a rheological model of the media during
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Figure 4.1: A schematic representation of the micro-spall process, taken from [62]. A compression
wave is shown by the pressure plot at the top and moves from left to right through the material
sample. As the wave reaches the free surface on the right, it is reflected and vapour bubbles
are nucleated from the resulting tension in the material. If bubbles grow sufficiently large to
percolation, droplets are formed that get ejected by the residual momentum in the material post
shock.

cavitation [69]. Numerical simulations have also been conducted, like the study conducted by
Durand and Soulard [17] on the properties of ejecta using molecular dynamics.

In this work, the focus will be on the cavitation process inside the melted material. Cavitation
has been identified as a key aspect [61] that leads to the failure of a sample undergoing micro-
spall.

4.1.2 Cavitation and bubble interactions

In [61], Signor proposes a hollow sphere model to investigate the dynamics of cavities. Typical
liquid dilatation rates for typical shock loading times are applied to the hollow sphere model and
the evolution of the total porosity is studied. The main question he poses is whether the kinetic
energy transferred to the liquid from the loading is sufficient to lead to percolation. The kinetic
energy is dissipated by viscous forces and increasing surface energy in the vapour bubbles due to
surface tension. It is this competition that forms the basis for the problem that will be studied
here.

4.2 Problem definition

In this section the model problem will be introduced. A simplified model of the actual dilatation
process will be proposed with the underlying assumptions made to model the flow.

4.2.1 Model problem

The problem considered here will be the dynamics of vapour bubbles contained in a liquid that
is subjected to a tensile stress, resulting in expansion of the flow volume. A three dimensional
domain will be considered. The liquid will be assumed incompressible and, additionally, a perfect
fluid will be assumed so that viscous effects will not be accounted for. A physical argument for
this will be presented later in the text. Surface tension at the vapour-liquid boundary will be
accounted for, as this will be the main mechanism resisting expansion of vapour bubbles in the
expanding liquid. Thermal effects are not considered in this idealized problem and the carrier
fluid density and surface tension coefficient are treated as constants. The effect of gravity is
considered negligble.

22



The nucleation process will not be modelled. Instead, small spherical vapour bubbles will
be initialised in the carrier liquid. As a first step towards modelling the tensile loading on the
material, a constant rate of expansion in the liquid will be assumed.

4.2.2 Method of investigation

The method that will be used to investigate the problem is numerical simulation. Direct nu-
merical simulation (DNS) has been an increasingly popular method of studying two-phase flows
[54, 80]. For multi-phase DNS in general some interface tracking or capturing method is em-
ployed, which determines the fluid density and viscosity by a tracked indicator function.

In our problem we cannot apply the incompressible assumption to both phases, as the cav-
itation process causes gas bubbles to change in volume. One approach is to indeed solve an
additional energy equation and then use the temperature field to calculate the mass transfer at
the interface between the two otherwise incompressible, immiscible fluids [79]. The mass transfer
between the fluids results in a volume source at the interface. This will be the method that will
be applied in Part II of this work to study boiling. In this part, however, temperature effects are
neglected and a different approach will be applied to model the cavitation process.

The approach that will be used on the micro-spall model problem is to assume an incom-
pressible liquid, where mass and momentum conservation are enforced by the incompressible
Navier-Stokes equations. The gas phase, however, is left unsolved. Instead, a free-surface con-
dition is applied on the interface and the gas phase only effects the flow through its pressure.
This is an accurate approach when the density ratio is high and has been used extensively. More
details on this approach will be given in the next chapter.

An early example of a numerical simulation using a free surface approach is the marker code
of Harlow and Welch [26] and a modified version of this code to study water waves [10]. An
example of an industrial application of this approach is the study of the ink ejection process in
an inkjet printer head [75]. The next section will give an overview of previous work on numerical
simulations on bubble clouds or vapour bubble collapse during cavitation.

4.2.3 Previous work

Bubble clouds during cavitation or its interactions with shocks have been the topic of investigation
in several theoretical studies employing mathematical models. A prominent example is the study
of pressure wave propagation in liquids filled with bubbles in the dilute limit by Watanabe and
Prosperetti [84]. Another example is the study by Fuster et al. [21], where the interaction
between bubble clouds and a carrier liquid under tension is investigated from the perspective of
the potential energy in the system. There are several other theoretical investigations, but this
work will adopt a DNS approach. Examples of three dimensional DNS studies on bubbles are
relatively rare, compared to theoretical investigations.

Studies on single bubbles have been performed using different interface tracking techniques.
Popinet used marker particles to study the collapse of vapour bubbles [47] in an incompressible
liquid. He also used a free surface approach to model vapour bubbles and studied the effect
that viscosity has on the formation of jets during bubble collapse. A combined level set and
VOF method (CLSVOF) was developed by Sussman [71], which he showed to have second order
convergence in space and time. Can and Prosperetti [8] used a level set method and studied the
evolution of a vapour bubble in a microtube.

A DNS study of the propagation of shock waves in an incompressible liquid containing multiple
compressible gas bubbles was performed by Delale et al. [15] using front tracking to capture the
liquid-vapour interface. In terms of high performance computing, Rosinelli et al. [48] performed
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a very large simulation on the collapse of vapour bubbles. A numerical grid of 13 × 1012 grid
points was used to simulate the collapse of around 15000 bubbles. This was a study focussing
on high performance computing aspects of CFD and, however impressive it is, it presented very
limited results of the flow physics and the details of the boundary conditions were not mentioned.
Additionally, no capillary effects were included in the governing equations.

This study will similarly use a free surface approach to model multiple, compressible bubbles
in an incompressible carrier liquid. It will use a VOF method, coupled with the PLIC interface
representation to, for the first time, study the capillary effects on bubble clouds in a liquid under
tension.

4.2.4 Research hypothesis

When pre-nucleated bubbles in an incompressible and inviscid carrier liquid are exposed to a
constant volumetric expansion, a bubble competition will appear between the bubbles as a result
of capillary effects.

4.2.5 Research questions

The main research questions for this part of the work include:

1. How can the model problem be solved numerically?

2. Is there observable competition between bubbles in a bubble cloud under conditions de-
scribed in the model problem?

3. Can a correlation be drawn to characterise bubble competition?

The next section will provide the mathematical formulation for the problem.
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Chapter 5

Mathematical Formulation

5.1 Introduction

In this chapter, the mathematical formulation for the problem described in 4.2.1 will be pre-
sented. A free surface approach will be adopted, which will be detailed in the next section.
Thereafter a control volume analysis will be performed to derive the governing equations. Sim-
plifying assumptions will be introduced as the equations are derived. The general equations
for conservation of mass and momentum from chapter 2.5 will be used as a basis, with some
additional simplifications.

5.1.1 Free surface approach

As explained in the introduction, a free surface approach will be adopted to model the vapour
cavities in the problem. The free surface boundary condition is a typical boundary condition
applied to flows with interfaces, [88, p.246]. The idea is to allow the interface to move freely.
The flow in only one phase — the carrier phase — is solved according to the governing equations
that apply to it.

The flow in the opposite phase, however, is not considered. Instead, the pressure in the
unresolved phase is assumed to be constant in space and is applied as a Dirichlet boundary
condition at the interface to the carrier phase. This unresolved phase will henceforth be referred
to as the cavity. An example is the study of oceanic flows, where the interface between the
ocean and the atmosphere is regarded as a free surface. The atmospheric pressure is applied as
a boundary condition to the flow in the ocean.

An important consideration for the purpose of this work is that surface tension can still be
accounted for when using a free surface approach. The pressure jump caused by capillarity can
be added to the pressure in the cavity. This pressure jump is sometimes referred to as the Laplace
pressure jump. Let the pressure in the carrier fluid be p` and the pressure in the opposite phase
pc. The pressure jump at the interface due to surface tension can be shown to be [12, p.9]

p` − pc = σ

(
1

R1
+

1

R2

)
= σκ . (5.1)

Here the principle radii of curvature of the interface surface are denoted R1 and R2, σ is the
surface tension coefficient and κ is the mean curvature. Note that the curvature is calculated
here with the normal pointing from the liquid phase into the unsolved phase. A bubble in
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the neglected phase will have a higher pressure than the liquid, since the curvature will have a
negative sign in (5.1).

5.1.2 Control volume definition

A specific control volume for the free surface problem will be introduced here. Similar to the con-
trol volume analysis presented earlier, the governing equations can then be derived by considering
the rate of change of fluid properties inside this control volume.

The control volume for the problem is shown in Fig. 5.1. It shows a liquid volume V` ,
that is bounded by a free surface Γ and a control surface S`. The carrier fluid velocity field,
u = ui + vj + wk, is assumed continuous, with i, j, k the respective unit vectors in directions
x, y, z in a standard Cartesian coordinate system.

nΓ

xz

y

V`S`

Γ Γ

Figure 5.1: The control volume under consideration in Part I is shown on the left with the free
surface Γ in red shading. The liquid carrier phase is shown in grey on an arbitrary plane. A
normal projection on this plane is shown on the right to indicate the liquid control volume V`,
bounded by a fixed control surface S` and the free surface Γ.

The free surface, Γ is a material boundary moving with the carrier fluid. The control surface
S` has an outward pointing normal n. An important convention that will be used in the remainder
of Part I is that the control surface S` – which is a boundary to V` – is a surface parallel to
the interface on the liquid side of it at an infinitesimal distance. Practically this means that the
pressure on the boundary S` is the static pressure in the liquid with the Laplace pressure jump
across the interface already accounted for.

5.2 Governing equations

The governing equations for the liquid will be presented here, from the derivation in section 2.5
and including some simplifying assumptions.

5.2.1 Mass conservation

The incompressible mass conservation equation was derived in chapter 2. The difference here is
that the equation will only be applied in the liquid volume. The conservation of mass in V` can
be written
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d

dt

(∫
V`

ρ dV

)
+

∮
S

ρ (ur · n) dA = 0 (5.2)

In the last term ur = u−uS is the relative velocity between the fluid and the control surface S,
which consists of the control surface S` and the free surface Γ. With Γ a material surface and
S` fixed, the flux term can be written∮

S

ρ (ur · n) dA =

∫
S`

ρ (u · n) dA , (5.3)

since there is no flux across the free surface. The volume integral can be written as the sum of a
the rate of change of mass inside a volume frozen in time and the flux out of it as the material
boundary moves. This is similar to the rate of change of some property in a material volume,
derived in [12, p.84]

d

dt

(∫
V`

ρ dV

)
=

∫
V`

∂ρ

∂t
dV +

∫
Γ

ρ (u · nΓ) dA . (5.4)

Substituting (5.3) and (5.4) into (5.2) and applying the the incompressible assumption (with
thermal effects neglected), the same continuity equation is obtained as earlier, which is valid
everywhere in the carrier phase

∇ · u = 0 . (5.5)

5.2.2 Momentum conservation

The momentum conservation derived in Chapter 2, (2.32) will be used here as a starting point.
For the model problem no thermal effects will be considered and body forces are regarded as
negligible. Viscous effects will also be neglected here. This is motivated by the relatively small
Ohnesorge number encountered in micro-spall experiments with Tin samples. Typical Tin sam-
ples have a thickness of the order of 100µm. If the length scale of the small debris in Laser
irradiation and plate impact experiments were to be considered as a reference length, L ≈ 10µm
[62], the Ohnesorge number, Oh is

Oh =
µ√
ρσL

= 5.5× 10−3 (5.6)

with µ = 10−3 Pa.s, ρ = 6.5 × 103 kg.m−3 and σ = 0.5 N.m−1 the dynamic viscosity, density
and surface tension of liquid Tin.

The resulting momentum conservation equation in the liquid is then

∂u

∂t
+ u · ∇u = −∇p

ρ
, (5.7)

with ρ and u respectively the liquid density and velocity. p is the pressure in the liquid. Note
that the surface tension term is excluded here. The reason is that it is included in the boundary
condition on the free surface. The pressure of the unresolved phase can be determined from
an equation of state. In this case adiabatic conditions are assumed and a polytropic gas law is
applied [74] to define the pressure of the cavity phase

pc = p0

(
V0

Vc

)γ
, (5.8)
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where Vc is the total volume of the cavity at pressure pc. p0 and V0 are the respective reference
pressure and volume of the cavity phase and γ is the heat capacity ratio.

Surface tension is accounted for at the free surface through the pressure jump caused by it.
If ps is the pressure at the free surface on the liquid side, this is related to the cavity pressure
using (5.1)

ps = pc + σκ , (5.9)

where σ is the surface tension coefficient, assumed to be constant. The interface curvature is given
by κ. The interface is captured using a volume-of-fluid [30] approach, that considers a colour
function, c. This function c represents the volume fraction or volume-of-fluid of a reference phase
present in the spatial domain. For control volume V`, c is then given by

c =
1

V`

∫
V`

H (x, t) dV (5.10)

where H (x, t) is the Heaviside function, satisfying H = 1 inside the carrier phase and H = 0
outside.

The VOF scalar c is governed by the following advection equation

∂c

∂t
+∇ · (cu) = 0 . (5.11)
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Chapter 6

Numerical Method

The computational grid in PARIS was introduced in 3.1. The governing equations presented in
the previous chapter are discretized on this equi-spaced Cartesian mesh in the so-called MAC
arrangement [26]. Scalar values (p and c) are located in the center of computational cells, while
scalar components of velocity are located on cell faces.

The above system of equations is solved numerically using the same projection method [11]
introduced in 3.2.2. There are a few differences in how the method is applied and in the numerical
approximation of some of the terms. The first main difference is that only the liquid phase is
solved. Another difference is that the continuum surface force method to calculate the surface
tension term is not included in the first step of the projection method in (3.8). The pressure
gradient is instead modified in (3.11) to include the effect of surface tension at the interface.
This will be detailed in the following section.

6.1 Treatment at the free surface

At the interface to the cavity phase, a Dirichlet boundary condition for the pressure needs to be
applied to include the effects of the cavity pressure and surface tension on the liquid flow. The
method used in this work is inspired by the idea of Fedkiw and Kang [20, 34], often referred to as
the ghost fluid method. First, the cavity pressure is found from (5.8). In this equation, p0 and
V0 are known gas quantities. The volume V needs to be found in order to allow for the correct
application of (5.8) in each individual cavity.

This is done by identifying continuous volumes of gas inside the domain using the colour
function, c and a numerical algorithm based on the work by Herrmann [28]. A viral tagging
procedure is used to mark computational cells containing the desired phase, after which con-
nected cells are agglomerated into a single volume. The procedure is compatible with domain
decomposition in parallel processing.

With the value of pc calculated for each cavity, special care is required in the discretization
of (3.11) for liquid cells near the interface. Cells that contain mostly gas are simply excluded
from the solution, so that only cells where c < 0.5 are solved, with c = 0 in the liquid.

Fig. 6.1 shows a representation of a 2D grid with a section of an interface. The grey area
represent a vapour-filled cavity. Cells that contain a filled circle are included in the pressure
solution, while cells without a marker are excluded. The finite volume discretisation of the left
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Figure 6.1: A 2D section of the numerical grid, showing part of a gas bubble in grey. Circles
represent computational cell nodes, where pressure is calculated. Triangles indicate scalar veloc-
ity components on the computational cell faces. Filled triangles indicate values which are found
by solving the governing equations, while unfilled triangles represent boundary values found by
extrapolation.

hand side of (3.11) for a bulk liquid cell in 2D, shown in Fig. 6.2a is written

∆t

Vi,j

∫
Vi,j

∇ ·
[
∇h pn+1

ρ

]
dV

≈∆t

ρ

(
∇hy pi,j+1/2

−∇hy pi,j−1/2

∆y
+
∇hx pi+1/2,j −∇hx pi−1/2,j

∆x

)

=
∆t

ρ

pi,j+1 + pi,j−1 + pi+1,j + pi−1,j − 4pi,j
h2

, (6.1)

where the i and j subscripts are integer indices for the discrete computational cell with volume
Vi,j . Since the equation above is only applied in the liquid phase and by neglecting thermal
effects, the liquid density is assumed constant. Furthermore, for cubic cells ∆x = ∆y = ∆z = h,
where h is the constant grid spacing.

The stencil for the pressure gradient components has to be changed near the interface when
a neighbouring pressure in expression (6.1) falls inside the gas phase. This point must be disre-
garded and its pressure substituted by a surface pressure. We apply the same approach as Chan
[10]. As an example, the approximation for the pressure gradient components for the cell with
indices i and j in Fig. 6.2b is written

∇h
x pi+1/2,j =

ps,i+1,j − pi,j
δi+1/2,j

; ∇h
y pi,j−1/2

=
pi,j − ps,i,j−1

δi,j−1/2

, (6.2)

where δ is the distance between the pressure node under consideration and the intersection with
the interface. The pressure ps on the liquid side of the interface is found by adding to pc the
Laplace pressure jump. The pressure pc inside each cavity is known from (5.8). The interface
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pi,j−1
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(a) Standard discretisation of the pressure equa-
tion in the liquid bulk

pi,jpi−1,j

ps,i,j−1

pi,j+1

δi,j−1/2

δi+1/2,j

ps,i+1,j

(b) Discretisation of the pressure equation near
the interface

Figure 6.2: Schematic representation of the Poisson equation discretisation.

pressure in the x-direction will then be

ps,i+1,j = pc,i+1,j + σ
κi,j + κi+1,j

2
. (6.3)

From (6.3) and (6.2) it is clear that accurate interface curvature as well as an accurate prediction
of the interface location are important parameters to ensure the accuracy of the pressure solution.

The interface curvature is computed with the height function method in a way similar to
that implemented in the Gerris code [46]. The height function is an approximate distance to
the interface from a reference cell node and is calculated by summing the cell VOF values in
a column aligned with one of the principal coordinate directions, called a height stack. The
principal curvature can then be obtained by using finite difference approximations for the first
and second derivatives of the height function. This method has been shown to produce second
order accuracy for the curvature [46].

It is not always possible to find all the required heights to calculate a curvature. In this
case a parabolic fit is made through the plane centroids of interface cells, which is then used to
estimate the curvature.

Since the height function is the approximate interface distance from some reference cell in a
given direction, it is used for δ. When the interface configuration is such that a height cannot be
obtained in the required direction, the distance is approximated by using a plane reconstruction
of the interface in the staggered volume. This is shown in Fig. 6.3.

First, the staggered VOF fractions are obtained by considering the plane reconstruction in
centered cells. A similar procedure is then used in the staggered cells than in the centered cells
to reconstruct the interface as a plane. With the plane constant known, the interface distance is
then calculated.

The finite difference discretization of the left hand side of (3.11) for cell i, j in Fig. 6.2b will
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i, j

δi+1/2,j

Figure 6.3: Cell i, j will typically not have a height available due to the interface configuration.
A plane reconstruction (thick black line) is made in the staggered volume indicated with dashed
lines and this reconstruction is used to obtain δi+1/2,j .

then be

∆t

ρ
∇ ·

[
∇h pn+1

]
≈ ∆t

ρ

(
∇hy pi,j+1/2

−∇hy pi,j−1/2

1/2

(
∆yj+1/2

+ ∆yj−1/2

) +
∇hx pi+1/2,j −∇hx pi−1/2,j

1/2

(
∆xi+1/2

+ ∆xi−1/2

) )

=
∆t

ρ

(
2

h+ δi,j−1/2

(
pi,j+1 − pi,j

h
− pi,j − ps,i,j−1

δi,j−1/2

)
+

2

δi+1/2,j + h

(
ps,i+1,j − pi,j

δi+1/2,j
− pi,j − pi−1,j

h

) )
. (6.4)

The implementation in 3D is included in PARIS .

6.2 Extrapolation of the velocity field

The previous section dealt with the treatment of the pressure at the interface. The solution of
the pressure Poisson equation, (3.11) is used in (3.9) to correct the predicted velocities obtained
in (3.8). This section will deal with the velocity field required for the momentum contribution on
the right hand side of (3.8). The term u ·∇u is discretized using a choice of schemes, including
QUICK [38], ENO [27] and WENO [59].

For all these schemes, the discretization of u ·∇u may require a velocity stencil including
neighbours up to two grid spacings away, depending on the upwind direction. The discrete
pressures included in the solution have been explained previously, but since we are on a staggered
grid, we need to do the same for velocity components. The velocities included are all those which
are on a face that has a resolved pressure directly neighbouring it in any direction. Otherwise
stated, all velocities which have a pressure gradient associated with it will be resolved. These
are all velocity components that are marked with filled markers in Fig. 6.1.

32



As mentioned earlier, the resolved velocity components right next to the interface will require
neighbours in the gas phase to discretize the momentum advection term. These values in the
gas phase can be seen as boundary values to the resolved velocities. In order to find neighbours
in the gas phase, we extrapolate the resolved velocities similarly to Popinet [47].

After calculating un+1 in (3.9), we have a field of resolved velocities. To find the boundary
velocities for the next time step, the closest two velocity neighbours inside the gas are extrapo-
lated from the field of resolved liquid velocities using a linear least square fit. Let’s assume the
velocity field can be described as a linear combination

u (x) = A · (x− x0) + u0 (6.5)

where the components of the tensor A = ∇u and of the vector u0 are the unknowns.
If we now take a 5× 5 stencil around the unknown gas velocity at location x0, we can find the
extrapolated velocity u0 by minimizing the functional

L =

N∑
k=1

∣∣A · (xk − x0) + u0 − uk

∣∣2 (6.6)

This is done first for all locations closest to the resolved velocities uk (“first neighbours”),
whereafter it is repeated for the “second neighbours”. Note that only resolved velocity compo-
nents are included in the cost function, therefore the number N can vary depending on the shape
of the interface. Furthermore, because of the staggered grid, only one velocity component of u0

is computed at location x0.

6.3 Ensuring volume conservation

The extrapolation of liquid velocities into the gas phase was explained in the previous section.
An additional step is required to ensure that the extrapolated velocities are divergence free. This
is required to ensure that the advection of the colour function (5.11) is conservative.

Liquid

Gas

Figure 6.4: 2D example of the problem to correct the extrapolated velocities (unfilled triangles).
A Poisson problem is solved in the cells marked with an unfilled circle.
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A similar approach to Sussman [71] is used. Only the first two layers of cells inside the gas
phase are considered and all other cells are disregarded. A 2D example is presented in Fig. 6.4.

Similar to the projection step explained earlier, a “phantom” pressure is obtained in these
cells by solving a Poisson equation

∇h ·
(
∇hP̂

)
= ∇h · ũ , (6.7)

where P̂ is the “phantom” pressure and ũ is the velocity on the faces of the first two gas
neighbours. P̂ is only calculated in the cells represented by unfilled nodes in Fig. 6.4. On the
liquid side of these cells, the solved velocities (filled triangles) are used as a velocity boundary
condition with the pressure gradient on this face set to zero. On the gas side outside the calculated
cells (red filled circles), a fixed pressure is prescribed. Only the extrapolated velocities (unfilled
triangles) are then corrected by the pressure gradient ∇P̂ , which was found by solving (6.7)

ũn+1 = ũ−∇hP̂ (6.8)

to ensure non-divergence of velocity in the first two layers of cells just inside the gas.
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Chapter 7

Results

This chapter will present a validation test for the implemented numerical method presented in
the previous chapter. The results from several multiple bubble tests will then be presented.

7.1 Single bubble validation with Rayleigh-Plesset

A widely-used [8, 47, 71] validation test for volume changing bubbles in an incompressible liquid,
is to compare a numerical simulation of a single gas bubble with a fixed liquid pressure at infinity
to the solution of the Rayleigh-Plesset equation [44]. This equation describes the evolution of
a bubble of radius R in an incompressible liquid, assuming spherical symmetry with some fixed
pressure at infinity. A derivation for this equation is given in Appendix B.1. Neglecting viscous
effects, the Rayleigh-Plesset equation is written for the evolution of the radius R of a gas bubble,
exposed to a pressure p∞ at infinity

R̈R+
3

2
Ṙ2 =

ps − p∞
ρl

=
pc − 2σ

R − p∞
ρl

(7.1)

where R is the bubble radius, ps the pressure on the liquid side of the interface, p∞ the pressure
at infinity, σ the surface tension coefficient and ρl the liquid density. The bubble pressure, pc, is
obtained from a polytropic gas law

pc(t) = p0

(
V0

V (t)

)γ
(7.2)

where γ = 1.4 is the isentropic gas coefficient, V0 is the bubble volume at some reference pressure
p0 and V (t) is the bubble volume.

7.1.1 Simulation setup

A bubble of radius R is placed in the center of a cubic domain. The initial bubble radius is
chosen such that the bubble is not in equilibrium with p∞ and will expand or shrink as a result.

The application of boundary conditions to the problem is not trivial, since some finite flow
domain must be created, but the Rayleigh-Plesset is derived with a pressure at an infinite dis-
tance. This problem is addressed by using the solution of (7.1) to obtain an expression for the
pressure
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Cell size, h Vol., t=0.075 Vol. Rel. Error t at Vmin t Rel. Error
[×10−3] [×10−3] [%] [%]
15.63 7.004 7.16 0.1187 4.27
7.813 7.065 6.35 0.1191 3.95
3.906 7.141 5.35 0.1195 3.63

Table 7.1: The cavity volume at t=0.075 is compared to the theoretical value (7.5446 × 10−3)
for three different grid resolutions. The time at which the volume reaches a minimum is also
compared to the theoretical value (0.124).

p(r, t) = ps − ρl

(
Ṙ2R4

2r4
− R̈R2 + 2RṘ2

r
+ R̈R+

3

2
Ṙ2

)
. (7.3)

The derivation is shown in Appendix B.2. The solution for the Rayleigh-Plesset equation (7.1) is
obtained numerically with a fifth order Runge-Kutta integration method. The time step size for
the numerical solution of (7.1) is deliberately chosen to coincide with that of the PARIS simu-
lation, to ensure that the pressure calculated from (7.3) is applied consistently at the boundary.
A zero normal gradient is applied for the velocity on the boundary.

A test case is set up with the following parameters: A bubble with radius R(t0) = 0.15 is
placed in the center of a cubic domain, containing liquid with density ρl = 1.0 and a surface
tension coefficient σ = 0.05. The bubble is assumed to be at rest at t0: Ṙ(t0) = 0. The bubble
has a radius R0 at reference pressure p0 = 1.0 and the pressure at infinity is p∞ = 1.5.

First, a time convergence study was performed to determine a fixed time step size. The
solution was deemed converged in time for a time step of ∆t = 10−5 on a grid with Nx×Ny×Nz =
643 grid points.

Three simulations were completed for one oscillation cycle with 643, 1283 and 2563 grid points
and time step sizes ∆t = 10−5, ∆t = 5× 10−6 and ∆t = 2.5× 10−6 respectively.

Fig. 7.1 shows a comparison between the results in PARIS and a numerical solution of the
Rayleigh-Plesset equation. In Table 7.1, some quantitative results are given. More specifically,
the cavity volume at time t=0.075 is compared to the theoretical volume and the relative error
is calculated. The time at which the cavity reaches its minimum volume is also compared to the
theoretical value.

A relatively good agreement was achieved, but the rate of convergence in space is slow,
which may suggest that the solution is close to being converged in space. Another important
factor to consider in this test case, is the boundary effect which is caused by applying a zero
normal gradient on the velocity. The actual velocity field is spherically symmetric. One way to
compensate for this effect is to increase the ratio of the domain length to mean bubble radius, L/R,
where R is the mean radius. To study this effect, the same test case was used, but with varying
domain sizes L. Three cases were tested, with L = 0.5, L = 1.0 and L = 2.0 respectively. The
same grid size is used (h = 7.813× 10−3) and the time step size is kept constant, ∆t = 5× 10−6.
The result is shown in Fig. 7.2 and the relative errors for the same criteria as in 7.1 are presented
in Table 7.2.

It can be seen from this result that the solution in Fig. 7.1 likely suffered from the boundary
effect. To further illustrate this point, a second test was created where the initial radius of the
bubble, R(t0) = 0.10, is chosen 50% smaller than the previous test. The remaining parameters
are selected such that the bubble radius decreases significantly more than in the previous test,
thereby ensuring that the ratio L/R is much higher. The surface tension is σ = 0.10, p∞ = 0.5
and the reference pressure p0 = 1.0 at a radius R0 = 0.9 This test case was run on a domain
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Figure 7.1: Comparison of results of a single oscillating gas bubble simulated by PARIS and the
Rayleigh-Plesset equation.

L/R ratio Volume, t=0.075 Volume Rel. Error time at Vmin time Rel. Error
[×10−3] [%] [%]

4.29 6.032 20.05 0.1105 10.89
8.59 7.065 6.35 0.1191 3.95
17.18 7.411 1.77 0.1225 1.21

Table 7.2: The relative errors are calculated using the same criteria as in 7.1, but for three
different ratios of L/R.

with L = 1.0 with 1283 grid points. The result for two complete bubble oscillations is shown in
Fig. 7.3.

An improved agreement is obtained. Note that the grid resolution in this problem was ∆x =
1/128, which is double the resolution of the finest grid in the previous case. This gives confidence
that a large portion of the error is attributable to the boundary effect. Further convergence
studies become prohibitively expensive without the use of adaptive meshing. However, the
agreement achieved is considered sufficient to proceed with the study of the model problem.

7.2 Multiple bubble tests

In this section the results of model problem simulations containing multiple pre-nucleated bub-
bles are presented. The setup of the numerical simulations will be described and some non-
dimensional numbers will be defined by which the flow can be characterized. A parametric study
will then be performed.
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Figure 7.2: Results of the same test case for three L/R ratios.

7.2.1 Simulation setup

As mentioned in Section 4.2.1, the shock wave effect in the liquid will be modelled with a constant
rate of expansion, ω. This is imposed by applying a constant outflow velocity, Un, normal to all
faces of the cubic domain, so that

ω =
6Un
L

, (7.4)

with L the length of the cube.
All simulations are started with bubbles pre-nucleated at some finite size. Bubbles are seeded

in a face centered cubic (FCC) lattice. The bubble positions can correspond to the exact lattice
nodes, or with some random displacement around this position. Fig. 7.4 shows a 2D slice of a
typical simulation setup. Bubbles are placed in a central zone, referred to as the bubble zone.
An all-liquid zone along the domain boundaries form a liquid layer between the bubbles and
the outflow faces. The size of this zone is chosen conservatively such that only liquid exits the
domain up to a void fraction of approximately 30%. The inter-bubble distance, `D, is given by

`D =

(
L3

N0

) 1
3

, (7.5)

with N0 the number pre-nucleated bubbles. Bubbles are initialized with a radius R0 and the
parameter ∆R0/R0 describes the variance in the initial bubble diameter R0 so that Rmin <
R0 < Rmin+ ∆R0. Once the center position and radius of each bubble have been generated, the
colour function field can be easily and accurately initialized with the Vofi library [4].

To a characterize the problem, a Weber number is introduced based on the fluid density, ρ,
surface tension σ and the inter-bubble distance given above

We =
ρ`3Dω

2

σ
. (7.6)
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Figure 7.3: Results of the second test case.

Considering the Weber number, two extremes in the type of flows exist: In the We → 0
limit, surface tension dominates (is infinite) over expansion. In the opposite case, the expansion
dominates or surface tension and We → ∞. First, the We = 0 limit is studied and then some
cases with increasing We will be presented.

7.2.2 Zero Weber

A test case will be presented for the case when We → 0. This case is created by defining a
simulation where periodic boundary conditions are used on a unit cube, instead of using an
outflow velocity. There are 172 bubbles pre nucleated with R0 = 0.025 and ∆R0/R0 = 0.5. The
bubble zone is an inner cube with length 0.75.

A volume evolution plot is shown in Fig. 7.5. A time scale based on the bubble radius can
be defined as

τR =

(
ρR3

σ

) 1
2

, (7.7)

with ρ = 1000 and σ = 0.01 in this case. It is clear from the plot on the right that this time
scale is the time scale of bubble collapse.

A plot of the pressure in Fig. 7.6 shows how the average pressure decreases in the domain as
the bubble competition tends to minimize the surface energy.
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Un

Un

UnUn

Figure 7.4: 2D slice through domain showing typical simulation setup. A uniform velocity
outflow rate is specified on the domain faces. Bubbles are initialised in an internal bubble zone,
surrounded by a layer of pure liquid.

7.2.3 Multiple bubbles

Table 7.3 gives the simulation parameters used for a series of tests.
In this section the results of three test cases with N0 = 365 initial bubbles in an expanding

domain will be given. By varying the normal outflow velocity Un, different expansion rates, ω are
obtained. Three velocities are considered, 5.5×10−3, 2.75×10−2 and 1.75×10−1, corresponding
to the three Weber numbers, 5× 10−4, 1.3× 10−2 and 0.54, of Table 7.3.

The effect of We on the simulation results can be appreciated in Fig. 7.8, where individual
bubble volumes are plotted against the total void fraction. Since constant outflow rates are used,
the void fraction is directly proportional to time.

It is observed that the higher the Weber number, the later bubble collapse occurs. The
number of bubble collapses at a given total void fraction decreases with increasing We. Fig.
7.9 shows screen shots at progressive time steps. A bubble competition is therefore observed:
some larger bubbles tend to grow at the demise of smaller ones. The two-dimensional slices on
the right show bubbles with a pressure heat map. With the vanishing vapour pressure model, a
pressure gradient is formed in the liquid from large to small bubbles. This is the effect of surface
tension. The average pressure also decreases with time, similar to the effect observed in the zero
We case. An average pressure evolution plot is presented in Fig. 7.7 for the average pressure in
the three cases.

The bubble radius distribution is presented in Fig. 7.10. Initially all bubbles expand for the
high We case.
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Figure 7.5: The volume evolution of individual bubbles are shown for the We = 0 case. On the
right, the τR time scale is used with a logarithmic scale.

Parameter Value
Buffer to domain length ratio 0.12
Expansion rate ω 0.033, 0.165, 1.05
Initial bubbles N0 365
Grid points 5123

We 5 · 10−4, 0.013, 0.54

∆R0/R0 0.5

∆`D/`D 0, 0.2

Table 7.3: Simulation parameters for multiple bubble tests.

7.2.4 Bubble interaction

In this section a proportionality between the time scale of pore competition and the Weber
number is formulated. Since the liquid is incompressible, the fluid outflow with a constant
velocity is balanced by an overall volume expansion of the bubbles in the computational domain.
If we assume that bubbles are of the same radius, we can write

ωL3 =

N∑
i=1

4πR2
i Ṙi (7.8)

The sum of the volume expansion of each bubble is written in terms of the volume expansion of

an average bubble of radius R with an average rate of change of its radius Ṙ

N∑
i=1

4πR2
i Ṙi = N4πR

2
Ṙ . (7.9)
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Figure 7.6: The average pressure in the domain for the We = 0 case. Note that the negative
pressures are not of concern, as the actual value does not have a meaning in incompressible flow.
The reason for the negative values is the zero vapour pressure in cavities.

Using these averaged bubbles, (7.8) is integrated to obtain an average radius evolution equation

R
3
(t) =

3ωL3t

4πN
(7.10)

Here it is inherently assumed that R0 � 1, which is true since bubbles are initialised to be as
small as possible.

Let t1/2
be the time at which half of the bubbles have collapsed. Using dimensional analysis

and assuming that bubble collapse happens on a time scale dictated by the bubble radius length
scale, we write

t1/2
=

(
ρR(t1/2

)3

σ

)1/2

. (7.11)

If (7.10) is substituted in and rearranged, this becomes

t1/2
ω =

3ω2ρ `3D
4πσ

=
3

4π
We`D . (7.12)

This was tested for three cases of different We and the results are given in Fig. 7.11. The time
t1/2

was measured by either considering all the bubbles inside the domain, or by excluding the
outermost ones. It is interesting to note that the measured times differ, especially for the higher
We case. This indicates a buffering effect exerted by the outermost bubbles leading to different
evolution rates for the bubbles towards the interior. The relationship is at least qualitatively
linear, but should be confirmed with tests at a wide range of Weber numbers.
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Figure 7.7: The average pressure in the domain for the three cases of different We.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

 0.001  0.01

 V
i 

 void fraction 

We 0.5
We 0.01

We 0.0005

Figure 7.8: Comparison of individual bubble volumes for varying We. Bubble collapse is delayed
with increasing We as the domain expansion counters capillary effects. Individual bubble volumes
are plotted as function of total void fraction.
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Figure 7.9: VisIt screenshots of a simulation with 365 initial bubbles at We = 0.1. The left
shows a 3D view of bubbles at progressive time steps. The images on the right show the pressure
distribution at the same instances for a section at z = 0.5.
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We = 5× 10−4 We = 1.3× 10−2 We = 0.54

Figure 7.10: Distribution of bubble radii, with growing bubbles shown in green. The first row
shows the initial distribution and the second after 3000 time steps.
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Chapter 8

Conclusion: Part I

This chapter presented a numerical method to study compressible bubble clouds in an incom-
pressible liquid under tension. This was a pre-defined model problem for the percolation of
cavities in liquid metals under shock loading, also known as micro-spall failure.

A free surface approach was used to allow for volume variations in pre-nucleated cavities.
The cavity pressure was assumed constant in space and was determined using a polytropic gas
law. The VOF method was used to locate the interface to track its movement and to calculate
surface tension effects. Surface tension was accounted for in the pressure, of which the gradient
calculation at the interface received special care to apply a pressure on the free surface that
accounts for surface tension and the cavity phase pressure. Additionally, the velocity field was
extrapolated across the interface and ensured to be divergence-free to serve as boundary values
for the numerical schemes that calculate momentum change and VOF advection.

The numerical implementation was validated against the result of the Rayleigh-Plesset equa-
tion, which describes the evolution of the radius of a single bubble in response to a distant,
non-equilibrium pressure. It was found that the effect of a boundary condition that is not spher-
ically symmetric contributes significantly to the error. Otherwise, a reasonable agreement with
the theoretical solution was obtained.

Multiple bubble tests were undertaken as a model for the large micro-spall problem. A
parametric study was conducted in which the carrier liquid expansion rate was varied along with
the surface tension between simulations. The hypothesis of bubble competition was observed:
Larger bubbles were expanding faster than the average fluid expansion rate, at the expense of
smaller bubbles.
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Part II

Phase change
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Chapter 9

Introduction: Part II

In this chapter the phase change problem that will be studied in Part II will be presented. The
background to the problem will lead to a problem statement. The method of investigation will be
presented, with a review of previous work. Next, the original contribution that is made by this
work will be stated followed by a hypothesis and some research questions that will be addressed
throughout Part II.

9.1 Background

In this part of the work, the focus will specifically be on two-phase flows where phase change
occurs. Flows with phase change are particularly important to mankind with application in a
multitude of industrial processes. A good example is the generation of electricity. For a large
portion of the global production of energy, a Rankine cycle is used where steam is generated
with some heat source, including coal, gas, nuclear or concentrated solar rays. The steam is then
passed through a turbo-generator, after which it is condensed back to a liquid. The understanding
of these phase change processes is of great importance for the efficient and safe operation of
these type of plants. The power generation example is only one of many in a host of industrial
applications. Another example is the process of distillation, which is used from petro-chemical
refineries to breweries.

It is probably due to a combination of the usefulness of flows with phase change and the
complexity of the physics thereof that it is a popular research topic. Research methods are
just as vast as the physical processes they are studying. There are analytical studies using
mathematical modelling, experimental methods and numerical studies. The latter may be system
level solutions, where empirical or mathematical flow models (or some combination of the two)
are used to set up a model of the system. These equations are then solved with the aid of different
kind of computer solvers. Another approach may be direct numerical simulation (DNS), where
the governing equations are derived from first principles and solved without any additional models
to account for unresolved physics.

In this work, a DNS method to study flows with phase change is developed. The problem
statement will be given in the next section, followed by details of the research methodology.

9.1.1 Method of investigation

The governing equations for this problem will be described in the following chapter. Novel aspects
of the mathematical formulation will be added to PARIS . There are several test cases available
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with analytical solutions, which are often used to validate numerical simulations of boiling. In
this work, the same approach will be used and the validation results will be presented in 12.
Note that when the term “phase change” is used throughout Part II, it refers specifically to
phase change of pure substances.

Before a problem statement is formulated, a review of previous numerical methods for the
simulation of flows with phase change will be given. This follows next

9.2 Previous work

There have been a significant amount of methods developed to study flows with phase change.
An overview of some of the most cited work will be given here. The different methods will be
grouped according to the method used to track the interface.

Level-Set methods

The Level-Set (LS) method is attributed to Osher and Sethian [43], with a prominent publication
by Sussman et al. [73] following a few years later.

Son and Dhir used a Level-Set method in various numerical studies on flows with phase
change. In [64] a numerical study on the bubble release pattern during film boiling is presented.
A study on the heat transfer during nucleate boiling was also performed by these authors along
with Ramanujapu [65]. Here a single bubble nucleation site was used along with a micro-layer
model for heat transfer beneath the growing bubble.

Gibou et al. developed a method to simulate flows with phase change based on a LS method
developed earlier [23] and a Ghost-Fluid method [41]. A similar method was used by Tanguy
[76] to simulate an evaporating droplet in air and Sagan [50] to study nucleate boiling for the
application of cryogenic fuel tanks. Huber et al. recently performed a study on nucleate boiling
with large microscopic contact angle [31].

Level-Set methods are often combined with VOF methods to create a hybrid calculation
method, referred to as Couple Level-Set and Volume-Of-Fluid (CLSVOF). Different calculations
(like the interface curvature or mass advection) are calculated with different methods. An early
publication on this method was by Bourlioux [5]. Later, Sussman et al. demonstrated the
capability of the method for flows with topological changes and surface tension [72]. To simulate
flows with phase change, Tomar et al. proposed a method [77], which was later used to study
film boiling [78].

Front tracking methods

Tryggvason et al. have published several studies using a Front Tracking (FT) method [82]. With
Juric, [33] a FT method is developed that uses a one-fluid formulation to simulate flows with
phase change. The paper also includes a detailed discussion on the interface temperature. Two
dimensional film boiling is studied after validation with a one dimensional test case. Esmaeeli
and Tryggvason studied explosive boiling in micro-gravity [18] and three dimensional film boiling
[19] using similar numerical methods.

Constrained interpolation profile methods

Sato and Ničeno developed a Constrained Interpolation Profile method (CIP) that uses an in-
terface sharpening technique to deal with diffusion of the interface [52]. This framework was
used for phase change problems, including nucleate boiling of a single bubble [53] and multiple
bubbles using an empirical model for nucleation site density [51].
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VOF methods

Volume-Of-Fluid methods for phase change can be classified using several calculation techniques.
One of the distinguishing factors is how interface properties are calculated. These properties
include the interface location, its curvature and mass transfer rate. Another aspect to consider
in VOF methods which is non-trivial is the advection of the VOF function. The advection is
typically done in two ways: Either a geometric reconstruction of the interface is performed, which
is used to calculate surface fluxes for advection purposes, or an algebraic advection method is
used. Welch and Wilson developed a VOF method for phase change [86]. They solve conservation
of mass, momentum and energy on a staggered (MAC) grid. The interface is reconstructed using
piecewise linear segments, based on the method of Youngs [89]. A split time geometric advection
technique from the same author [89] is used to advect the interface. The technical details of this
advection is described very briefly in the paper. Welch and Rachidi [85] expanded this method
to study film boiling with conjugate heat transfer with the heated wall. Agarwal et al. [1] used
the Welch method in [86] with the addition of temperature dependence on fluid properties.

Schlottke and Weigand used a geometric based method to study evaporating droplets [57].
They developed an intricate iterative method to deal with the calculation of a volume source
due to mass transfer in which they make the assumption that the interface moves at the same
velocity as the liquid phase.

There have also been some methods where an algebraic method is used for advection of the
VOF function. Kunkelmann [36] used the OpenFOAM framework and implemented a micro-
layer and contact angle model to simulate nucleate boiling on arbitrary meshes. The interface
mass transfer was modelled by a smearing technique, where source terms are redistributed some
distance from the interface. Guedon [24] attempted to apply a sharp interface approach, using
a similar VOF advection method and interface mass transfer term calculation as Kunkelmann,
also in the OpenFOAM environment. A ghost-fluid approach was used at the interface to treat
discontinuities. He reported difficulties from spurious currents due to unbalanced surface tension
models.

9.2.1 Discussion

The VOF method is a well-established method for the DNS of multi-phase flows. For flows with
phase change there have been some methods proposed, but there are non-trivial aspects that are
not well described in literature. One aspect is the VOF advection method. Algebraic methods
have improved, but often suffer from diffusion of the VOF function. For phase change problems
this may require additional effort to simulate interface physics. For geometric advection methods,
the details of how the method functions in a discontinuous velocity field is largely unanswered.
Welch and Wilson applied a technique to solve for mass conservation and then to use the updated
mass to calculate the VOF function. However, the details of how the mass flux was calculated
is unclear.

Additionally, the advection of the VOF function also directly influences mass and energy
conservation. In the thermal energy conservation equation, the ratio of total specific heats
between phases is more than 3000 for water at atmospheric conditions. If a simple volume
weighted approach is used to calculate the heat capacity, coupled with a naive algebraic advection
discretisation of the energy and momentum fluxes, there can be very large numerical diffusion
around the interface.

The above aspects are pertinent to VOF methods for phase change using an incompressible
assumption, but they often also apply to other interface capturing methods.
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9.3 Problem statement

The goal in this Part of this work is to develop a novel numerical method to solve flows with
phase change. More specifically, a DNS approach will be used in a VOF framework with planar
interface reconstruction (PLIC) and a one-fluid description of the governing equations, assuming
incompressible flow. The method will also assume small temperature variations and low flow
speeds, such that the Boussinesq approximation can be applied, as explained in section 2.2.3.
The interface will be treated as sharp (infinitely thin), separating immiscible fluids.

9.4 Contribution in this work

A novel geometric VOF advection method will be proposed to deal with discontinuities that
arise from mass transfer at a sharp interface. The VOF advection technique will be applied
consistently to the calculation of the energy advection term.

The mathematical formulation of the problem described in the previous section requires
several interface properties. These properties include the interface location, the area of interface
segments and gradients of fluid variables on either side of the interface. The method proposed
in this work will use the geometric (PLIC) representation to calculate these interface properties.

9.4.1 Research Hypothesis

The VOF method for two-phase flows with phase change at a sharp interface can be used for
DNS purposes by using local geometric reconstructions of the interface for consistent, conservative
advection and to calculate interface properties by only using the VOF function.

9.4.2 Research questions

• How can the VOF funcion be advected using a geometric representation when there are
discontinuities in the velocity field?

• Can the other advection terms be treated similarly, ensuring consistency?

• What is the accuracy on benchmark test cases?
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Chapter 10

Mathematical Formulation

A general mathematical formulation for the governing equations of fluid flow was presented in
Chapter 2, along with some general simplifying assumptions that were made in the process
of deriving them. The mathematical formulation for the phase change problem will now be
presented, using the general formulation presented earlier as a starting point. First, a problem
specific control volume will be defined, which introduces an important difference to the control
volume presented in Fig. 2.1.

10.1 Control volume definition

Similar to the previously defined control volume, Fig. 10.1 shows a problem specific control
volume, V , which is completely enclosed by surface S, can be of arbitrary shape and is fixed in
space. An important new feature is that Γ is no longer a material surface, but can move at its
own velocity uΓ, which in general will differ from the velocity of neighbouring fluids. Volume
V is divided into volumes V` and Vg by interface Γ, where the subscripts ` and g indicate the
liquid and gas phases, respectively. Similarly, S is divided into S` and Sg. The convention used
throughout for the interface normal, nΓ, is that it points outward from the liquid into the gas.

10.1.1 Interface mass transfer

With mass transfer possible at the interface, a difference in velocity between the fluids and the
interface Γ is present and it is no longer assumed that the velocity field across Γ is smooth.
This difference in velocity can be explained by considering a certain finite sized fluid packet of
one phase that neighbours a packet of the opposite phase, Fig. 10.2. If this specific packet
changes phase, the interface shifts the size of that packet, since the interface is per definition
the boundary in between phases. The interface velocity relative to the fluid packet is the rate at
which the resulting shift occurs.

10.1.2 Control volume analysis

The general control volume analysis for a fluid property B in a fixed volume (2.3) still applies to
V , since surface S is fixed in space. It is repeated here for later reference

dB

dt

∣∣∣∣
sys

=

∫
V

∂ (ρβ)

dt
dV +

∮
S

ρβ (u · n) dA , (10.1)
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Figure 10.1: The control volume under consideration in this part contains a sharp interface Γ
(red shading) that moves at its own velocity uΓ, other than the control volume used in Chapter
2. The outer surfaces S` and Sg are fixed in space.

where the nomenclature is the same as introduced earlier.

10.2 Governing equations

The governing equations that apply to this problem will be given here, along with jump conditions
that may be present due to the evolution of the interface and phase change.

10.2.1 Mass conservation

The general integral form for mass conservation derived in Chapter 2 is still valid, since it was
also derived for a fixed control volume
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uΓ
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Figure 10.2: A zoom of the interface is presented on the left at time t, followed by time t+∆t on
the right. On the right, the previous positions of some fluid packets are shown in a faded shade,
with the previous interface position indicated by the dotted line.

∫
V

∂ρ

∂t
dV +

∮
S

ρ (u · n) dA = 0 . (10.2)

However, care should be taken at the interface since there may now be a discontinuity in
velocity, as introduced in section 10.1.1. The interface jump conditions will be derived next,
followed by the general one-fluid formulation for mass conservation when the incompressible
assumption is applied.

Interface jump condition

In 10.1.1 the existence of an interface velocity, uΓ, which differs from the liquid and gas velocities
on either side, was introduced. The effect of this relative velocity at the interface will now be
evaluated using the principle of mass conservation in the separate phase volumes V` and Vg. Due
to the potential presence of a discontinuity in velocity across the interface, the velocity fields in
the respective phases will be denoted as u` and ug respectively. The same applies to the density
ρ. Mass conservation for each phase can be written using (10.2)

d

dt

( ∫
V`

ρ` dV

)
+

∫
S`

ρ` (u` · n) dA+

∫
Γ

ρ` (u` − uΓ) · nΓ dA = 0 (10.3)

d

dt

( ∫
Vg

ρg dV

)
+

∫
Sg

ρg (ug · n) dA−
∫

Γ

ρg (ug − uΓ) · nΓ dA = 0 (10.4)

Note that the surface integral for the interface Γ still calculates the efflux based on the relative
velocity ur = u− uΓ, which can be non-zero. The negative sign for the surface integral over Γ
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in phase 2 comes from the convention that the interface normal nΓ points outward from phase
1 into phase 2.

By recognizing that

d

dt

( ∫
V`

ρ` dV

)
+
d

dt

( ∫
Vg

ρg dV

)
=

∫
V

∂ρ

∂t
dV (10.5)

and ∫
S`

ρ`u` · n dA+

∫
Sg

ρgug · n dA =

∮
S

ρ (u · n) dA , (10.6)

equations (10.3) and (10.4) can be added and then mass conservation (10.2) can be applied. The
result is a mass balance at the interface∫

Γ

ρ` (u` − uΓ) · nΓ dA =

∫
Γ

ρg (ug − uΓ) · nΓ dA . (10.7)

The physical interpretation is that the total amount of mass traversing the interface from one
phase equals the mass gained by the other. The mass transfer per unit area of interface is defined
as

ṁ′′ = ρ` (u` − uΓ) · nΓ = ρg (ug − uΓ) · nΓ (10.8)

From the simultaneous equations in (10.8) one can eliminate uΓ. The result is the velocity
jump condition across the interface due to mass transfer:

(u` − ug) · nΓ = ṁ′′
(

1

ρ`
− 1

ρg

)
. (10.9)

Note that the inverse density is the specific volume, v = 1/ρ, which implies that different
specific volumes in neighbouring phases cause a difference in velocity across the interface when
phase change occurs. As a finite amount of one phase changes into another phase, it contracts
or expands and therefore a relative velocity to the remainder of its original phase is created.

General integral form

To obtain the integral form of the mass conservation governing equation for the problem here,
the mass conservation for each phase is reconsidered, (10.3) and (10.4). However, instead of
considering the full phase volume up to the interface Γ, a fixed boundary is introduced parallel
to the interface at an infinitesimal distance on each side of the interface. These interfaces will be
called Γ̂` and Γ̂g for the fixed boundaries introduced on the sides of phases 1 and 2 respectively.

Since the velocity fields u` and ug are continuous everywhere in the new volumes V̂` and

V̂g and all boundaries are fixed, we can apply Gauss’s divergence theorem without needing
consideration for relative velocities at any control surface.

∫
V̂`

∂ρ`
∂t

+∇ · (ρ`u`) dV = 0 (10.10)∫
V̂g

∂ρg
∂t

+∇ · (ρgug) dV = 0 . (10.11)
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Applying the assumption of incompressible flow, these equations become

∫
V̂`

∇ · u` dV = 0 (10.12)∫
V̂g

∇ · ug dV = 0 . (10.13)

The differential form of the mass conservation equation can now be compiled by considering
the control volume V as the sum of three volumes

V = V̂` + V̂g + δV (10.14)

with δV the infinitesimal control volume around the interface, sandwiched between V̂` and V̂g.

With the mass conservation for each phase volume V̂` and V̂g known, volume δV still needs to

be calculated. This is done by taking the limit when δV tends to zero, or when Γ̂` and Γ̂g tend to
Γ from both sides of the interface. When writing mass conservation in δV for an incompressible
flow, only the surface fluxes through Γ̂` and Γ̂g remain:

∫
Γ̂g→Γ

ug · nΓ dA−
∫

Γ̂`→Γ

u` · nΓ dA =

∫
Γ

ṁ′′
(

1

ρg
− 1

ρ`

)
dA =

∫
δV

∇ · u dV , (10.15)

The mass conservation in V is now evaluated as the sum of individual volumes (10.14), using
(10.12), (10.13) and (10.15)∫

V

∇ · u dV =

∫
Γ

ṁ′′
(

1

ρg
− 1

ρ`

)
dA =

∫
V

ṁ′′
(

1

ρg
− 1

ρ`

)
δΓ dV , (10.16)

Here equation (2.10) was again used to convert the surface integral over Γ to a volume integral.
This is the integral form of mass conservation for incompressible fluids with mass transfer at the
interface. The delta function indicates that the divergence of velocity is zero everywhere, except
on the interface where there is a divergence caused by the difference in specific volume of phases
as mass is transferred. Note that the velocity divergence will be zero in V for the trivial case
when ṁ′′ = 0 or when ρ` = ρg.

10.2.2 Momentum conservation

Conservation of linear momentum was derived in Chapter 2, including the effect of surface tension
as a line force on the interface and a temperature dependant density in the gravity force

∫
V

∂ (ρ0u)

∂t
dV +

∮
S

ρ0u (u · n) dA =

∮
S

τ · n dA+

∫
V

ρg dV +

∫
V

σκδΓnΓ dV , (10.17)

Interface jump condition

Since the rate of change of linear momentum in a system equals the resultant force acting on it,
a force balance on the interface can be made to derive the interface jump condition. This is done
by integrating (10.17) in a δV , defined in the previous section and the resulting force balance at
the interface is
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ρ`u` (ur · n`) + ρgug (ur · ng) = τ` · n` + τg · ng + σκnΓ , (10.18)

with the relation between the outward pointing normals relative to each phase subject to the
convention nΓ = n` = −ng. The resulting surface gradient term is equal to zero here, due to the
assumption of a constant surface tension coefficient. Using this convention and the mass transfer
jump condition, the general interface jump condition can be written

ṁ′′ (u` − ug) = (pgI−Dg − p`I + D`) · nΓ + σκnΓ . (10.19)

It is useful to take the normal and tangential components of this equation. The jump condition
in the normal direction is obtained by projecting (10.19) in the direction of nΓ

pg − p` = nΓ ·Dg · nΓ − nΓ ·D` · nΓ + (ṁ′′)
2
(

1

ρ`
− 1

ρg

)
− σκ . (10.20)

In the tangential direction, the jump condition is obtained by projecting (10.19) in the direc-
tion of tΓ,d, [81, p.40]. Here tΓ,d are d unit tangent vectors to Γ. In three dimensional geometry,
two vectors are required to define the jump condition, therefore d = 1, 2.

tΓ,d ·Dg · nΓ − tΓ,d ·D` · nΓ = ṁ′′ (ug − u`) · tΓ,k , (10.21)

Here it is noted again that the surface gradient term is zero due to the assumption of constant
surface tension. With the kinematic condition of no slip between phases, the terms on the right
hand side in (10.21) are zero and only the shear stress terms remain

tΓ,d ·Dg · nΓ = tΓ,d ·D` · nΓ . (10.22)

This is the kinematic condition on the interface that stipulates continuity of shear stress.

10.2.3 Energy conservation

The conservation of thermal energy derived previously with the Boussinesq approximation will
be applied to the present problem∫

V

∂ (ρcpT )

∂t
dV +

∮
S

ρcpTu · n dA =

∮
S

k∇T · n dA . (10.23)

The interface jump condition will be derived and presented in the following section.

Interface jump condition

The jump condition of the thermal energy conservation is derived here by integrating (10.23)
in the control volume δ. For a more detailed derivation, refer to the works of Delhaye [16] and
Kataoka [35].

∫
Γ̂`→Γ

ρ`cp,` TΓ (u` − uΓ) · nΓ dA−
∫

Γ̂g→Γ

ρgcp,g TΓ (ug − uΓ) · nΓ dA =∫
Γ

(kg∇T · nΓ − k`∇T · nΓ) dA

58



∫
Γ

ṁ′′ (cp,` − cp,g)TΓ dA =

∫
Γ

(
kg∇nΓ

T |g − k`∇nΓ
T |`
)
dA∫

Γ

ṁ′′hfg dA =

∫
Γ

(
kg∇nΓT |g − k`∇nΓT |`

)
dA . (10.24)

Note that in the equation above, the assumption of thermal equilibrium was made. By this
assumption the interface temperature is assumed to equal the saturated temperature at prevailing
system conditions. This assumption is accurate when the characteristic length scale of the flow
is much larger than that of the thermodynamic conditions [81, p.250]. This is the case for the
flows considered in this work, therefore, in (10.24) we have that TΓ = Tsat.

The latent heat of vaporization, hfg was introduced and is the difference of enthalpies at the

interface hfg = ĥ` − ĥg. Note that the signs for the heat flux terms are written according to the
convention of nΓ pointing outward from the liquid into the gas.

The last line in (10.24) is a thermal energy balance between the heat conduction to the
interface and the enthalpy change due to the latent heat of vaporization. Let q̇Γ be the the heat
source due to latent energy release during phase change, so that∫

Γ

ṁ′′hfg dA =

∫
V

q̇ΓδΓ dV , (10.25)

where we have used (2.10).
It should be noted that the resulting thermal energy jump condition neglects the jump in

kinetic energy across the interface. To evaluate this assumption, let us assume that ug � u`.
The interfacial jump in kinetic energy can then be approximated with

[ek] ≈ ṁ′′u2
g ≈ (ṁ′′)

3
(

1

ρg
− 1

ρ`

)2

, (10.26)

where (10.9) was used along with the previous assumption that ug � u`. The relative importance
of the kinetic energy jump can be evaluated by considering the ratio

(ṁ′′)
3
(

1
ρg
− 1

ρ`

)2

ṁ′′hfg
=

(ṁ′′)
2
(

1
ρg
− 1

ρ`

)2

hfg
. (10.27)

For the problems under consideration in this work, this ratio is < 10−6 and it is therefore
reasonable to neglect the kinetic energy contribution.

10.3 Conclusion and summary

This section will present a summary of all the assumptions and models applied during the
derivation of the governing equations that will be used in the research problem.

10.3.1 Summary of flow hypotheses used in this work

A continuum approach is used in three dimensional space to describe the motion of incompressible
fluids. Up to two separate phases can be modelled with a phase indicator function allowing for
a one-fluid approach and describing the interface location using consecutive multiplication of
one-dimensional delta functions distributed along the interface. Separate phases are immiscible
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and are separated by a sharp interface across which there may be mass transfer during a phase
change process. No slip is allowed between phases at the interface.

All fluids are considered to be Newtonian. Gravity will be included as a body force and
surface tension effects on the interface are accounted for with the assumption that the surface
tension coefficient is constant all along the interface.

No internal heat generation sources are considered and heating by viscous dissipation is
considered negligible. Heat conduction is modelled using Fourier’s law and no radiative heat
transfer is taken into account. A Boussinesq approach is adopted, based on small temperature
variations. By this approximation, all fluid properties (density, viscosity, specific heat capacity,
thermal conductivity) are assumed constant, with the exception of the density in the gravity
force term of the momentum equation. In this case, a linear density variation with temperature
is adopted. Thermal equilibrium is assumed, such that the temperature is continuous across the
interface and the interface temperature is the saturated temperature at prevailing conditions.

10.3.2 System of governing equations

The integral forms of the governing equations for the problem are:

Mass conservation ∫
V

∇ · u dV =

∫
V

ṁ′′
(

1

ρg
− 1

ρ`

)
δΓ dV (10.28)

Momentum conservation∫
V

∂ (ρ0u)

∂t
dV +

∮
S

ρ0u (u · n) dA =

∮
S

τ · n dA+

∫
V

ρg dV +

∫
V

σκδΓnΓ dV (10.29)

Thermal energy conservation∫
V

∂ (ρcpT )

∂t
dV +

∮
S

ρcpTu · n dA =

∮
S

k∇T · n dA+

∫
V

q̇ΓδΓ dV (10.30)

These equations will be discretized on a specific numerical grid to be solved with the aid of
a computer. The next chapter will describe the numerical method that will be implemented for
this purpose.
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Chapter 11

Numerical Method

This chapter details the numerical method that is employed to solve the system of governing
equations provided in the previous chapter. Importantly, several novel numerical techniques
that are used to simulate phase change flows are introduced. These techniques, implemented
into PARIS as part of this work, include:

• a geometric (PLIC) based mass transfer rate calculation

• a simple yet elegant geometric VOF advection method that is expanded to deal with a
velocity discontinuity at the interface

• and the addition of a thermal energy conservation equation with a consistently calculated
advection term.

The numerics of each contribution will be detailed, followed by the complete time integration
technique of the set of governing equations for the phase change problem.

11.1 Calculating the mass transfer rate

In the previous section the mass conservation for the present problem was derived and is repeated
here for readability ∫

V

∇ · u dV =

∫
V

ṁ′′
(

1

ρg
− 1

ρ`

)
δΓ dV . (11.1)

To implement this equation in the numerical scheme, the mass transfer rate needs to be calculated
in all cells containing the interface, known as mixed cells. The equation used to do so comes
from the jump condition at the interface (10.24) and is written in discrete form for cell i, j, k

ṁ′′i,j,k =
kg
hfg
∇hnΓ

T |gi,j,k −
k`
hfg
∇hnΓ

T |`i,j,k , (11.2)

where ∇hnΓ
indicates a discrete gradient either side of the interface. To find ṁ′′ , we therefore

need to determine the temperature gradients at the interface for each phase. To calculate these
in a mixed cell, the temperature in that same cell cannot be used, since it is some average of the
two phase temperatures in the computational cell. A method to address this is presented in the
next section.

61



11.1.1 Interface heat flux calculation

The heat flux from each phase required in (11.2) inside a mixed cell is calculated as the weighted
average of the heat fluxes from pure cells (containing only one phase) neighbouring the mixed
cell. This is similar to the approach of Kunkelmann [36], which was also applied by Guedon [24].
The heat flux in a pure cell is calculated using a finite difference

kp∇hnp
T = kp

Ti,j,k − TΓ

dΓ
, (11.3)

with dΓ the normal distance from the temperature node (at the cell center) to the interface and
p = `, g a phase indicator. Recall that it is assumed that TΓ = Tsat(psys). The temperature Ti,j,k
is known from the solution of thermal energy conservation, so that the only remaining unknown
in (11.3) is the interface normal distance dΓ.

To calculate the interface normal distance, the PLIC plane reconstruction in each interface
cell is used. The interface is defined locally in a cell as a plane given by the implicit equation

α = m · x , (11.4)

with α a constant and m = 〈m1,m2,m3〉 the interface normal vector, which is scaled locally for
the purposes of interface reconstruction such that

|m1|+ |m2|+ |m3| = 1 . (11.5)

The normal m is calculated using the VOF function with the Mixed Youngs-centered method
(MYC), [3] and α is obtained by using geometrical volume calculations [55]. In the local cell coor-
dinate system, the distance to the interface from the local cell origin can be found by normalizing
(11.4)

di,j,k =
m

||m||
· x = nhΓ · x , (11.6)

with di,j,k the local interface normal distance in a mixed cell and nhΓ the reconstructed planar
interface normal vector. Note that for the interface normal gradient we adopt a convention here
to always calculate the finite difference in the outward direction from the interface to the cell, so
that ng = nΓ = −n`.

To obtain the distance to any neighbouring cell, this local distance equation is used and a
coordinate transformation is applied. Let ∆x be the translation vector from the mixed cell under
consideration to the desired location. The normal distance at x+∆x to the planar reconstruction
of the interface is then

dΓ = di,j,k − nhΓ ·∆x . (11.7)

Inside a pure cell, one can imagine that through the transformation in (11.7), the distance
can be obtained to the interface representation in various mixed cells, depending on the interface
geometry, see Fig. . In this case the collinearity of the plane normal in the mixed cell and the
translation vector is used

ξ = |nhΓ|i,j,k ·∆x| . (11.8)

The neighbour with the maximum value of ξ is used to determine dΓ.
The interface heat flux can now be calculated in the pure cell using (11.3). This is done for

all pure cells that are first or second neighbours to mixed cells.
Finally, the fluxes required to compute phase change in (11.2) are now computed by using a

weighted average of pure cell heat fluxes. This is done by considering all the first and second,
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pure cell neighbours in the desired phase. The example of liquid is given here, but the same
applies for the gas phase:

∇hn`
T |`i,j,k =

∑
î,ĵ,k̂

χî,ĵ,k̂

T `
î,ĵ,k̂
− TΓ

dΓ,̂i,ĵ,k̂

, (11.9)

where the hat indices indicate the stencil with two neighbours, taking the i-direction as an
example i− 2 ≤ î ≤ i+ 2. The normalized weighting factor χ is given by

χî,ĵ,k̂ =
γî,ĵ,k̂∑

î,ĵ,k̂

γî,ĵ,k̂
, (11.10)

with γ in its turn determined by the collinearity of the neighbour and the square of its distance
from the mixed cell

γî,ĵ,k̂ =
ξî,ĵ,k̂

||∆xî,ĵ,k̂||2
(11.11)

This is calculated for each phase, which then allows us to calculate ṁ′′ using (11.2) individ-
ually for all mixed cells.

11.2 Geometric VOF advection for phase change

The Volume-Of-Fluid was defined in Chapter 3 and is denoted c in this work. By definition, it is
confined to the range 0 ≤ c ≤ 1. Geometric VOF advection methods solve an advection equation
for c using interface reconstructions and calculating the flux terms based on these reconstructions.

For phase change problems, the VOF advection equation is written

∂c

∂t
+∇ · (uc) = −ṁ

′′

ρ`
δΓ . (11.12)

The source term on the right hand side accounts for the volume change generated during phase
change at the interface, which is caused by a difference in specific volumes between phases. When
ṁ′′ = 0, the standard VOF advection equation in an incompressible flow is obtained. Note that
the tracked phase here is the liquid, as per convention. The equation above is symmetrical for
the opposite phase. To illustrate this, assume c′ = 1− c. It can then be shown that

∂c′

∂t
+∇ · (uc′) =

ṁ′′

ρg
δΓ . (11.13)

The geometric VOF advection methods available to the user in PARIS are the Lagrangian
Explicit method of Li [39], sometimes referred to as CIAM or LE and the conservative method
of Weymouth and Yue [87]. A consideration to note with standard geometric advection schemes,
is that they rely fundamentally on a velocity field that is divergence free (∇ · u = 0) in order
to ensure conservation. This poses a problem for phase change problems that clearly have a
divergence in the velocity field around the interface, which is evident in the equation for mass
conservation (11.1). For more details on the geometric methods to advect VOF functions in
divergence free velocity fields, the reader can also refer to [56],[81, p.95].
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A novel method is proposed in this work to deal with geometric VOF advection in a discon-
tinuous velocity field. It uses two steps: First, an advection equation is solved for the liquid VOF
using a divergence free velocity field, u`.

c̃− cn

∆t
+∇ · (un` cn) = 0 . (11.14)

This equation can be solved using the geometric advection methods mentioned above.
In the second step, the interface shift due to phase change is then included

cn+1 − c̃
∆t

+
ṁ′′|n

ρ`
= 0 . (11.15)

This equation essentially accounts for phase change by applying a shift of the interface in the
normal direction. Each of the two steps will be detailed individually, starting with the first step.

11.2.1 Advecting with a divergence-free liquid velocity

The first step of the procedure is to advect c with the liquid phase velocity, as required by
(11.14). The main problem now becomes finding u` in mixed cells. In this work, a novel, yet
elegant and robust method was developed for this purpose. Elegance stems from the fact that it
is easily implementable into an existing pressure projection solver by adding an additional solve
step. The new technique is outlined next and the process is shown schematically in Fig. 11.1.

First, a predicted velocity is obtained by calculating an explicit time step of the momentum
terms at time step n in the usual manner, excluding the pressure term

u∗ − un

∆t
=

1

ρn0

(
un ·∇hun +∇h · 2µS + σκn+1δn+1

Γ nn+1
Γ

)
+ ρ/ρ0

g . (11.16)

A pressure Poisson equation is now solved to obtain the pressure

∇h ·
[

∆t

ρn+1
∇hpn+1

]
=∇h · u∗ − ṁ′′|n+1

(
1

ρg
− 1

ρ`

)
δΓ . (11.17)

The predicted velocity is corrected to ensure mass conservation

un+1 − u∗

∆t
= − 1

ρn+1
∇hpn+1 . (11.18)

This will result in

∇h · un+1 = ṁ′′|n+1

(
1

ρg
− 1

ρ`

)
δΓ , (11.19)

since the system solved in (11.17) was obtained by taking the divergence of (11.18) and using
mass conservation (11.1).

The velocity u in the equations above is the one-fluid velocity, which can be seen as some
combination of a gas and liquid velocity on mixed cell faces. To obtain u`, a simple, yet robust
and elegant technique is used. Key to this is the isolation of the phase change contribution to the
velocity field, denoted ũn+1 in a simple, yet conservative and robust manner. We commence by
constructing a sub-domain around the interface, with all values taken at time n. A 2D example
of this sub-domain construction is showed in Fig 11.2. The sub-domain is delimited on the
liquid side of the interface by defining all the cell faces between mixed and liquid cells as domain
boundaries on which a no-slip boundary condition is applied. On the other side of the interface,
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Figure 11.1: Schematic illustration of the VOF advection procedure for phase change. The
geometric VOF fluxes are calculated in a split fashion, similar to existing geometric advection
techniques, using the liquid velocity u`. The flux in one direction is accounted for (cell row at
the top), after which the interface is reconstructed (middle left). The process is then repeated
in the next sweep direction (middle right) and fluxes are calculated based on the newly recon-
structed interface after the previous sweep. This process is repeated until all directions have
been completed and field c̃ is the result (bottom right). The relative movement of the interface
to the liquid is accounted for in the last step by shifting the interface along its normal, resulting
in the new VOF field cn+1 (bottom left).
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Figure 11.2: A 2D example of the sub-domain construction used to compute u`. The colours
represent the VOF function: The red is liquid and blue gas. A wall boundary is imposed on the
black lines and a free-flow boundary on the bright green lines. A Poisson problem is solved in
between these boundaries.

all the cell faces between first and second pure gas cell neighbours are considered as free-flow
faces where a fixed pressure is applied with a zero velocity gradient as boundary conditions.

A Poisson problem is set up using the same matrix as in (11.17)

∇h ·
[

∆t

ρn+1
∇hp̃

]
= ṁ′′|n+1

(
1

ρg
− 1

ρ`

)
δΓ , (11.20)

with the same phase change source term, but of opposite sign. This equation is solved with the
same convergence tolerance as for the previous problem and a velocity field is now obtained on
the cell faces of the newly defined sub-domain by using the pressure p̃ from the solution and a
similar velocity correction to the one in (11.18)

ũn+1 = − ∆t

ρn+1
∇hp̃n+1 . (11.21)

with ũ a newly obtained velocity field that represents the phase change component in the one-
fluid velocity. It is obtained everywhere on the cell faces inside the sub-domain. Note that the
value of ũ before the correction was set to zero, which is also valid everywhere else in the original
domain. The divergence free liquid velocity field is now simply obtained by

un+1
` = un+1 + ũ . (11.22)

By the construction of the sub-domain, the velocity of the tracked phase is extended across the
interface for a couple of cells. It also ensures that the velocity field in mixed cells is divergence
free. This can easily be shown, since

∇ · u` =∇ · un+1 +∇ · ũ = ṁ′′′
(

1

ρg
− 1

ρ`

)
δΓ − ṁ′′

(
1

ρg
− 1

ρ`

)
δΓ = 0 . (11.23)
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The first step of the advection procedure (11.14) can now be calculated.

11.2.2 Accounting for phase change

The second step is to account for the change in VOF as a result of phase change. This is
illustrated by the last step in 11.1. Another way to think of this is to account for the movement
of the interface relative to the liquid phase, bearing in mind that the liquid is the tracked phase.
The relative velocity (uΓ − u`) · nΓ comes from the mass conservation interface jump condition

ρ` (u` − uΓ) · nΓ = ṁ′′

∴ (uΓ − u`) · nΓ = −ṁ
′′

ρ`
, (11.24)

which explains the origin of the equation for the second step

cn+1 − c̃
∆t

+
ṁ′′

ρ`
δΓ = 0 . (11.25)

It can now be seen that the equation above can be satisfied by shifting the interface in the
normal direction, since the relative velocity at the interface is in the normal direction. Let ∆d
be the shift of the interface

∆d = (uΓ − u`) · nΓ =
ṁ′′

ρ`

∆t

h
, (11.26)

with h the cell length, which is used here to re-scale the velocity to the local cell coordinate
system in which the plane constant is defined.

The new VOF cn+1 can now be obtained by rescaling ∆d to the local cell coordinate system
and using the geometric VOF library in PARIS based on [55]

αn+1 = α̃− ||m||∆d . . . 0 ≤ αn+1 ≤ 1

cn+1 = f(αn+1,m) . (11.27)

It is noted here that the movement is capped to avoid over- and undershoots and respect 0 ≤
cn+1 ≤ 1. When they do occur, the clipped amount is accounted for in the neighbour that is
located in the direction of interface movement and mass conservation is still respected.

When this step is completed, (11.12) is now satisfied. In the context of phase change modelling
of a pure substance, the energy equation is to be solved in a consistent manner with the above.
The discretization and solution of the thermal energy conservation equation is detailed next.

11.3 Energy conservation

A thermal energy conservation equation was added to PARIS to facilitate the simulation of
phase change flows. The thermal energy equation was derived in the previous chapter∫

V

∂ (ρcpT )

∂t
dV +

∮
S

ρcpTu · n dA =

∮
S

k∇T · n dA+

∫
V

q̇ΓδΓ dV (11.28)

The numerical treatment of the advection and diffusion terms will next be presented sepa-
rately. The advection term will be discussed first, since it is strongly related to the two step
VOF advection method presented in the previous section.
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Phase Density Specific heat capacity Vol. heat capacity
ρ
[
kg.m3

]
cp
[
kJ.kg−1.K−1

]
Cp
[
kJ.m−3.K−1

]
Gas (vapour) 0.6 2.080 1.248
Liquid 958 4.216 4.039 ×103

Table 11.1: Properties for saturated water at atmospheric conditions

11.3.1 Calculating the energy advection term

A discrete version of (11.28) is written with an explicit time step to illustrate the procedure used
in this work to calculate the advection term

Cn+1
p Tn+1 − Cnp Tn|adv = −∆t

∑
f

Cnp |f Tnf unfAf , (11.29)

where subscript adv indicates that the advection component is considered. The product of
density and specific heat capacity was lumped together into a heat capacity per unit volume
Cp = ρcp. The last term represents the thermal energy flux calculated at all f faces, with the
area Af = h2 and face velocity uf = u · nf already known in the MAC grid.

The unknowns in (11.29) are therefore Cnp |f Tnf , the heat capacity and face temperature.
It is important to note at this point that care needs to be taken when these face values are
calculated. The reason is that the volumetric heat capacity ratio can become very high. Consider
the properties of water at atmospheric conditions in Table 11.1. In this case Cp,`/Cp,g

≈ 3200.
The energy change in V due to advection (11.29) will therefore be greatly affected by the value
used for Cp|f .

A flux-consistent, geometric advection technique is proposed here to deal with this issue.
The term flux-consistent is used, since the flux terms in (11.29) are calculated using the same
geometric advection procedure as for the VOF function. This process will now be described
and is shown schematically in Fig. 11.3. Note that the flux-consistent implementation here is
inspired by a similar method already present in PARIS , but applied to the momentum term.

Exactly like the VOF advection, three consecutive sweeps are performed, one for each coor-
dinate direction. Let s be the intermediate sweep counter, so that s = 1 corresponds to time
step n, s = 1, 4 and s = 4 corresponds to time step n + 1. Before the sweeps start, a thermal
energy et is calculated for every cell

e
(s=1)
t = ent = Cnp T

n , (11.30)

where the cell temperature is known from the solution at time step n and the volumetric heat
capacity in a cell is obtained by using a volume average of the phase heat capacities

C(s=1)
p = Cnp = Cp,` c+ Cp,g (1− c) . (11.31)

The direction sweeping process can now commence with the first direction sweep. The starting
direction is alternated every time step, just like the VOF advection:

1. The face temperatures, shown as blue dots in Fig. 11.3, are obtained by using a fifth
order WENO reconstruction scheme [59], which was freshly implemented in PARIS for the
purposes in this work.

2. With the face temperatures known, the geometric process kicks off. Note that the face
temperature at the −1/2 staggered index is denoted T−f and + for the opposite face. The
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Figure 11.3: Schematic illustration of the consistent VOF and thermal energy advection proce-
dure for phase change. Temperatures are calculated on faces and are indicated with a blue dot.
When the interface shift is performed, the interface temperature TΓ = Tsat is used to calculate
∆et.

new cell thermal energy e
(s+1)
t is calculated for every sweep and is the sum of three contri-

butions:

69



e
(s+1)
t = e1

t + e2
t + e3

t = T−f Cp,1 + T
(s)
2 Cp,2 + T+

f Cp,3 (11.32)

with the volumetric heat capacities in each volume given by

Cp,b = Cp,`cb + Cp,g (1− cb) , (11.33)

where b = 1, 3 indicates the three volumes. The temperature in the central volume is
calculated by using the thermal energy and heat capacity from the previous sweep step

T
(s)
2 =

e
(s)
t

C
(s)
p

, (11.34)

3. An important remark is that the thermal energy and VOF sweeps are done in tandem for
every sweep direction, in the interest of consistency. Before the next direction is swept, the
interface is reconstructed from the newly calculated intermediate VOF c(s+1), along with

the thermal energy at the same sweep e
(s+1)
t . This ensures that the heat capacity that is

used at each fluxing step is exactly the same as the VOF function. The face temperatures
are calculated by using the updated temperature field after each sweep.

After the three coordinate directions have been swept using u`, the energy change due to
phase change is calculated by

∆et = ∆c (Cp,` − Cp,g)TΓ (11.35)

Note that in the schematic, a two-dimensional example is given so that two sweeps will be
performed. The procedure for the third dimension is identical to the aforementioned two.

11.3.2 Calculating the energy diffusion term

The heat diffusion term needs to be evaluated to integrate (11.28) in time. This is calculated
implicitly using a similar approach to Sato and Ničeno [53]. The saturation temperature at
the interface is applied directly by solving the diffusion term separately for each phase. By
using this technique, the latent heat term does not have to be calculated. The reason is simply
that the interface jump condition is satisfied inherently, as the heat flux at the interface is
calculated by using the interface temperature, TΓ. The interface is treated as a boundary, where
a Dirichlet boundary condition is specified for the temperature. This is equivalent to solving two
heat diffusion equations with constant fluid properties, with the interface an arbitrary boundary
separating the two phases in which each respective problem is solved.

First, the phase of a specific node is determined by simply evaluating the VOF function: A
cell node is determined to be inside the liquid whenever c ≥ 0.5, otherwise it is in the gas. Fig.
11.4 shows two 2D stencils used to compute the diffusion term for a liquid (left hand side) and
gas (right hand side) node.

Consider the liquid node on the left as an example. The finite volume discretiation of the
diffusion term for the 2D cell at position i, j is approximated using the irregular stencil as shown
on the left in Fig. 11.4

∫
Vi,j

∇ · (k∇T ) dV ≈ k`

∇hy Ti,j+1/2
−∇hy Ti,j−1/2

1/2

(
h+ θ`i,j−1/2

) +
∇hx Ti+1/2,j −∇hx Ti−1/2,j

1/2

(
θ`i+1/2,j

+ h
)

 , (11.36)
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Figure 11.4: Discretisation for temperature neighbouring the interface. On the left the compu-
tational stencil for a liquid cell is shown, with the stencil for its neighbour in the gas on the
right.

noting that ∆x = ∆y = h and k = k` since we are only considering the liquid.
The temperature gradient is approximated using a finite difference. Consider again the liquid

node:

∇h
x Ti+1/2,j =

TΓ − Ti,j
θ`i+1/2,j

; ∇h
x Ti−1/2,j =

Ti,j − Ti−1,j

h
. (11.37)

For the temperature gradient to the right of the node in question, the interface distance θ` is
used to calculate the finite difference. A standard finite difference is used when the temperature
gradient is approximated between two nodes in the same phase.

The distance to the interface from a node is simply taken as the height function in that
direction. When the interface configuration is such that a height cannot be obtained in the
required direction, the distance is approximated by using a plane reconstruction of the interface
in the staggered volume. This is shown in Fig. 11.5. First, the staggered VOF fractions are
obtained by considering the plane reconstruction in centered cells. An interface reconstruction
is then performed in the staggered cells. With the plane constant known, the interface distance
is then calculated with a simple algebraic equation for the intercept of the line connecting the
neighbouring nodes and the plane. The distance is capped so that εh ≤ θ ≤ h, with a value of
ε = 10−3 typically used.

11.4 Momentum conservation

Before proceeding to present the solution process, a word is due on the numerical treatment of
the momentum conservation equation.

As mentioned before, the idea of calculating the face fluxes in the energy advection equation
consistently with the VOF function comes from a similar scheme in PARIS , but applied to
the momentum advection term. For the purpose of this work, the two-step advection process
was not applied to this momentum conserving scheme due to additional numerical challenges it
poses. One challenge is the fact that the momentum control volume is staggered to the pressure
and thermal energy control volumes in the MAC grid.

The error introduced with the use of a non-conservative discretization of the momentum
equation is only present around the interface, since the phase densities are constant. The effect
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i, j

θi+1/2,j

Figure 11.5: Cell i, j will typically not have a height available due to the interface configuration.
A plane reconstruction (thick black line) is made in the staggered volume indicated with dashed
lines and this reconstruction is used to obtain θi+1/2,j .

of the error can be seen in the force balance on the interface, (10.18). Without digressing too
much from the flow in this chapter, the short summary when this is analyzed is that an incorrect
vapour recoil pressure is obtained. However, it is noted that the vapour recoil pressure for water
at atmospheric conditions is very small compared to the surface tension pressure jump for typical
length scales in phase change flows. The standard non-conservative discretization for momentum
in PARIS is therefore used in this work.

The solution procedure for phase change is presented next.

11.5 Phase change solution process

This section provides the time integration procedure and serves to illustrate the order in which
the various steps (described above) are taken. Assume that all variables are known at some time
step n. When n = 0, initial values are provided for the problem.

The time integration scheme used for phase change problems is an explicit, first order time
integration scheme. The reason that the second order scheme was not used, was detailed in
Chapter 3. The explicit order time integration scheme simply marches in discrete time steps by
using variables at time step n to obtain the solution at n+ 1. There are exceptions here, eg. the
implicit solution of pressure as well as the energy diffusion term. The viscous diffusion term in
the momentum equation can also be solved implicitly.

The time integration order used to solve the governing equations is as follow:

1. The mass transfer rate at the interface, ṁ′′|n+1 is calculated, as explained in Section 11.1.

2. The Energy advection term is calculated with the flux-consistent geometric method pre-
sented in 11.3.1. The VOF advection is done simultaneously, so that cn+1 is known. All
material properties that depend on c can now be calculated (ρn+1, µn+1, Cn+1

p , κn+1, δn+1
Γ ,

nn+1
Γ ).
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3. The contribution of the energy diffusion term is added to the thermal energy equation by
solving an implicit form of it. This concludes the thermal energy calculation and Tn+1 is
obtained.

4. The predicted velocity u∗ in the momentum equation is calculated, as described in Chapter
3:

u∗ − un

∆t
=

1

ρn0

(
un ·∇hun +∇h · 2µS + σκn+1δn+1

Γ nn+1
Γ

)
+ ρ/ρ0g . (11.38)

Note that the viscous term can be calculated explicitly∇h·2µS|n or implicitly∇h·2µS|n+1.

5. A pressure Poisson equation is then solved for the pressure at n+ 1

∇h ·
[

∆t

ρn+1
∇hpn+1

]
=∇h · u∗ − ṁ′′|n+1

(
1

ρg
− 1

ρ`

)
δΓ (11.39)

6. The same matrix is used as in the previous step, with an opposite velocity source term
coefficient, to obtain p̃

∇h ·
[

∆t

ρn+1
∇hp̃n+1

]
= ṁ′′|n+1

(
1

ρg
− 1

ρ`

)
δΓ , (11.40)

7. The one fluid velocity u is obtained with a correction step using pn+1

un+1 − u∗

∆t
= − 1

ρn+1
∇hpn+1 (11.41)

8. In a similar way ũn+1 is obtained from a correction step using p̃

ũn+1 = − ∆t

ρn+1
∇hp̃n+1 . (11.42)

9. The divergence free liquid velocity that is used for the flux-consistent VOF and energy
advection can then be obtained from

un+1
` = un+1 + ũ . (11.43)

All variables have now been solved at time step n + 1 and the cycle can repeat for the next
time step. The numerical method presented here has been implemented in PARIS with full
parallel processing capability for three dimensional flow.
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Chapter 12

Results

In this chapter the results will be presented of validation tests performed with the novel numerical
method for phase change modelling. The test cases will involve 2D and 3D cases. Both accuracy
and robustness will be demonstrated. The numerical method was implemented in PARIS with
full parallel processing capability in three spatial dimensions using the MPI libraries [22].

12.1 Buoyancy driven flow

The conservation of thermal energy is a novel addition to PARIS , which allows the simulation
of buoyancy driven flows using the Boussinesq approximation. Before proceeding to quantitative
benchmark tests, a case is set up to demonstrate the ability of PARIS to simulate buoyancy
driven flows as well as to verify the robust operation of the numerical implementation. The case
models a so-called lava lamp: A container, filled with two fluids is heated from the bottom.
The one wax-like fluid has a larger density than the other at room temperature, but also has a
larger thermal expansion coefficient. This causes a buoyancy force when the fluid temperature
surpasses some critical point and causes the wax-like fluid to rise. As it moves away from the
bottom, it cools again due to thermal conduction through the container walls to the environment.
Eventually is will cool enough so that it is no longer buoyant and will descend back down to the
bottom of the domain. The process then repeats.

Gyüre and Jánosi studied such a process experimentally [25], to evaluate its validity as a
model for convection in the Earth’s mantle. They used a Silicone fluid in NaCl solution. The
fluid parameters from their study is used and is presented in Table 12.1.

Property Units NaCl solution Silicone fluid

Density ρ
[
kg.m3

]
1074 1080

Specific heat cp
[
kJ.kg−1.K−1

]
3993 1591

Viscosity µ [Pa.s] 1.08× 10−3 0.50
Thermal conductivity k [W.m−1.K−1] 0.596 0.146
Surface tension∗ σ [N.m−1] 0.001 0.001
Gravitational constant, g [m.s−2] (0i, −9.81j, 0k) (0i, −9.81j, 0k)

Table 12.1: Fluid properties from Gyüre and Jánosi for the buoyancy driven flow problem. ∗Note
that the surface tension coefficient was not mentioned in their paper and this value was randomly
selected.
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Figure 12.1: A time sequence presentation of a buoyancy driven flow. The purple surface indicates
the c = 0.5 iso-surface, which is a representation of the interface between a wax-like fluid and a
salt solution. The colour scale on the walls represent temperature in a range between 42◦C and
48◦C.

A three dimensional domain of Lx × Ly × Lz = 100mm × 400mm × 100mm is filled with
these two fluids. The origin of the coordinate system used for the domain is in one of its bottom
corners. The silicone fluid is initialized at a temperature of 55◦C. The shape of initialisation is a
spherical cap, which is formed by the intersection of the domain and a sphere of radius 258mm
with its origin at x = 46mm, y = −200mm and z = 48mm. Note that a slight asymmetry
is introduced in the initialisation. The simulation was run using 64 × 256 × 64 grid points in
parallel on 2× 16× 2 processors.

A Dirichlet boundary condition for the temperature is used on all of the domain boundaries,
with no-slip wall conditions for the flow. The temperatures on the side walls are T = 40◦C,
with the bottom at T = 90◦C and the top at T = 15◦C. The simulated time was more than
600 s, including several cycles of the wax fluid, or part thereof, floating up, cooling down and
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descending back down. A time sequence is shown in Fig. 12.1. Fig. 12.2 shows two plots from
the simulation: The thermal energy in each phase, which is normalized by its initial value and
the y-momentum in each phase. It can be seen that the initial energy was above the equilibrium
value in the domain and that heat left the domain through the walls. The momentum in the
y-direction is constantly exchanged between phases, as a result of the buoyancy force.
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Figure 12.2: The plot on the left shows the time evolution of thermal energy in the two phases.
The energies are normalized with their respective initial values. The plot on the right shows the
time evolution of the y-momentum in each phase. In both plots the VOF 1 and VOF 0 phases
are respectively the wax-like fluid and the salt solution.

This offers a qualitative proof of the robustness and mass conservation of the parallel imple-
mentation in PARIS .

12.2 Two-dimensional droplet evaporating test

One crucial aspect of the novel numerical method is the proposed two-step VOF advection pro-
cedure. This includes the correct calculation of a divergence free liquid velocity and subsequent
phase change adjustment to ensure mass conservation. A two-dimensional evaporating droplet
is modelled to validate this part of the implementation. Therefore, the discretization errors that
may be present from the mass transfer rate calculations are removed by specifying a constant
mass transfer rate of ṁ′′ = 0.05.

A two-dimensional, circular liquid droplet with initial radius R = 0.23 is initialized in the
center of a square domain of unit length. The units in this problem are irrelevant and we can
consider the problem dimensionless. The boundaries are given an outflow boundary condition.
The constant mass transfer rate causes the droplet to evaporate. The radius evolution over time
is simply

R (t) = R0 − ṁ′′t . (12.1)

Three grid resolutions were used: Nx = 32, 64 and 128 with respective time step sizes of
t = 0.002 s, t = 0.001 s and t = 0.0005 s. The time evolution of the droplet volume is shown in
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Fig. 12.3 and compared to the analytical solution. As shown, an accurate solution is achieved
on all meshes. Fig. 12.4 shows a time sequence of the droplet evolution for the finest resolution.
The velocity magnitude is shown, revealing resulting radial flow patterns. The velocity field is
symmetric throughout.
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Figure 12.3: The volume evolution an evaporating cylinder in 2D with constant rate of evapora-
tion.

In Fig. 12.5, the velocity fields for the flux-consistent VOF and energy advection method are
shown.

12.3 Stefan problem

The Stefan problem was used by Welch and Wilson [86] to validate their VOF base method and
has since then often been used to validate incompressible phase change methods [24, 53]. In this
problem, a liquid at saturation temperature is initially at rest. A thin vapour layer is present
between the liquid and a wall, which is at a fixed, elevated temperature of Tsup degrees above
the saturation temperature, Twall = Tsat + Tsup. Gravity is neglected and an outflow boundary
condition is used opposite the heated wall.

The temperature gradient between the wall and the interface, which is at saturated tempera-
ture, causes phase change and the vapour layer to grow in time. The liquid is pushed out of the
domain by the growing vapour layer. Let the thickness of the vapour layer be δ. An analytical
solution is available for the evolution of the interface thickness and temperature profile [86]. The
interface thickness is given by
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Figure 12.4: A time series showing the velocity magnitude for the finest resolution simulation.

δ(t) = 2λ
√
αt , (12.2)

with t the time and α = kg/ρgcp,g the thermal diffusivity of the vapour phase. λ is found by
solving the transcendental equation

λ exp(λ2)erf(λ) =
cp,gTsup
hfg
√
π
. (12.3)

A two-dimensional test case was defined with a domain size of 10mm, a Tsup = 10K su-
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Figure 12.5: The three images show the interface with the velocity vectors. The color scale
represents the velocity magnitude. From left to right, the one-fluid velocity u, the velocity from
the inverse problem in the sub-domain ũ and liquid velocity u` are shown.

Property Units Liquid Vapour

Density ρ
[
kg.m3

]
958 0.6

Specific heat cp
[
kJ.kg−1.K−1

]
4216 2080

Viscosity µ [Pa.s] 2.82× 10−4 1.23× 10−5

Thermal conductivity k [W.m−1.K−1] 0.68 0.025
Surface tension σ [N.m−1] 0.059 -

Table 12.2: Properties for saturated water at atmospheric conditions

perheat and fluid properties for water at atmospheric conditions. These properties are given in
Table 12.2

The problem was set up with these fluid properties in PARIS . The initial temperature field
was Tsat in the liquid and a linear profile from the interface to the wall temperature. Three
grid spacings were used on the 10mm domain: Nx = 64, 128, 256 with respective time step sizes
of t = 0.002 s, t = 0.001 s and t = 0.0005 s. The initial vapour layer thickness was taken as
322.5µm, which corresponds to a time t = 0.282435 s, if the vapour layer would have grown from
zero thickness at time t = 0 s. The simulated time was 10s.

The theoretical solution of the evolution of the interface thickness was obtained by solving
(12.3) numerically with a relative convergence error of 10−6 for λ. The results from PARIS for
the three grid resolutions are plotted in Fig. 12.6. An excellent agreement was obtained. The
relative error of the interface position at t = 10 s for the three grid resolutions are presented in
Table 12.3. The theoretical solution for t = 10 s is δ(10) = 1.919× 10−3m.

The results show an error of less that 1% for the coarsest grid. Since the errors are so small,
the rate of convergence will be determined with a more demanding test case.

Grid points δ PARIS Relative error %
Nx = 64 1.93088× 10−3 0.62
Nx = 128 1.92650× 10−3 0.39
Nx = 256 1.92349× 10−3 0.23

Table 12.3: Relative errors for Stefan problem interface location at t = 10 s.
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Figure 12.6: The interface time evolution results for the Stefan problem.

12.4 Bubble in superheated liquid

A more demanding test case, is that of a gas bubble at saturated temperature in a superheated
liquid. The superheated temperature is denoted T∞ and no gravity force is applied. There is an
analytical solution to the problem assuming spherical symmetry, obtained by Scriven [58]. The
solution gives the bubble radius R as

Property Units Liquid Vapour

Density ρ
[
kg.m3

]
2.5 0.25

Specific heat cp
[
J.kg−1.K−1

]
2.5 1.0

Viscosity µ [Pa.s] 7.0× 10−3 7.0× 10−4

Thermal conductivity k [W.m−1.K−1] 0.07 0.007
Surface tension σ [N.m−1] 0.001 0.001

Latent heat hfg
[
J.kg−1

]
100.0 100.0

Table 12.4: Properties for the bubble in superheated liquid case.

R = 2βg

√
k`

cp,`ρ`
t (12.4)

with t the time and the fluid properties as defined before. The value of βg, sometimes referred
to as the “growth constant” is obtained by solving

ρ`cp,` (T∞ − Tsat)
ρg (hfg + (cp,` − cp,g) (T∞ − Tsat))

=

2β2
g

∫ 1

0

exp

(
−β2

g

(
(1− ζ)

−2 − 2

(
1− ρg

ρ`

)
ζ − 1

))
dζ (12.5)
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The solution is obtained numerically using the native numerical tools in the GNU package
Octave . The temperature field is then given by

T (r < R) = Tsat

T (r > R) = T∞ − 2β2
g

(
ρg (hfg + (cp,` − cp,g) (T∞ − Tsat))

ρ`cp,`

)
∫ 1

1−R/r

exp

(
−β2

g

(
(1− ζ)

−2 − 2

(
1− ρg

ρ`

)
ζ − 1

))
dζ (12.6)

The problem can be characterized by the Jacob number, given by

Ja =
ρ`cp,` (T∞ − Tsat)

ρghfg
. (12.7)

A test case is defined with fluid properties given in Table 12.4. Note that these properties do
not correspond to a specific fluid, but was chosen for the purposes of a test with ρ`/ρg = µ`/µg

=
k`/kg = 10. The heat capacity ratio is cp,`/cp,g = 2.5.

The saturated temperature is Tsat = 1K with the temperature at infinity in the liquid
T∞ = 3K. This results in Ja = 0.5. A bubble of initial radius R(t0) = 0.12 is placed in the
center of a unit cube. The initial temperature is taken from the analytical solution and the
simulation is run for a time tf ≈ 4 × t0, with tf the final time. The time t0 corresponds to
the time when a bubble of zero initial radius reached the value of the initial value used in the
simulation, R(t0) = 0.12.

Grid points Radius R PARIS Relative error %
N = 643 2.228× 10−1 7.85
N = 1283 2.315× 10−1 4.07
N = 2563 2.366× 10−1 1.95

Table 12.5: Relative errors for the bubble radius R at t = 4 t0.

Three test cases were run: N = 643, 1283, 2563 with respective time step sizes of t = 0.01 s,
t = 0.005 s and t = 0.0025 s. The time evolution of the bubble radius in the simulations is
compared to the theoretical value in Fig. 12.7. The theoretical value of the bubble radius at
the final time was determined by the analytical solution: R(tf = 2.2156 s) = 0.2413. The values
from the simulations are given in Table 12.5, along with the relative error to the theoretical
value.

The rate of convergence on the bubble radius error is of order 1.
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Figure 12.7: The time evolution of the bubble radius for a bubble at saturated temperature in a
superheated liquid.
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Chapter 13

Conclusion: Part II

13.1 Summary

The Direct Numerical Simulation of flows with phase change was studied. The governing equa-
tions were derived, with specific attention given to the effects of phase change at the interface.
The velocity jump condition due to phase change was obtained by employing a control volume
analysis around the interface.

This velocity jump condition poses a challenge in terms of the numerical implementation of
some conventional geometric VOF advection techniques that rely on a smooth, divergence–free
velocity field. From a detailed literature review, it was found that geometric VOF advection
techniques for flows with phase change are rare and not well described. A novel method was
proposed. This method relies only on the VOF function to calculate all required values to simulate
phase change problems. The planar interface reconstruction (PLIC), based on the MYC scheme
[3] and geometric volume calculations in mixed cells [55], is used extensively in this method.

To deal with the velocity jump at the interface, a novel two-step VOF advection method is
employed. In the first step, the interface is advected with a divergence free liquid velocity, which
is obtained from the solution of a Poisson problem that decomposes the one-fluid velocity into a
liquid velocity and a phase-change component. In the second step, the phase change component
is accounted for with an explicit interface shift in the local normal direction.

The geometric treatment of VOF advection is applied consistently to the thermal energy
advection term. The thermal energy diffusion term is solved implicitly, using a similar technique
to Sato and Ničeno [53], where an asymmetric stencil is used to apply the interface temperature
directly.

The method was implemented in PARIS , with full parallel computation capability and was
tested using several benchmark test cases. The two-step VOF advection method was tested on a
two-dimensional evaporating droplet. The results on three different grids were indistinguishable
and showed excellent agreement to the 1/t2 evolution of the volume. The one-dimensional Stefan
problem was solved to excellent accuracy. A three dimensional bubble at saturated temperature
in a superheated liquid with Ja = 0.5 was simulated at three different grid resolutions. A first
order spatial convergence rate was observed on the numerical method.

An outlook on the numerical method as well as recommendations for future work will be
provided in the next section.
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13.2 Outlook and recommendations for future work

The numerical method presented is suitable for implementation in codes which use uniform,
Cartesian grids. It can be used for a variety of problems in its present implementation in
PARIS, but the method may benefit if the following work is performed:

• Assessing the accuracy of the interface normal temperature gradient calculation. This may
provide some insight on the first order spatial convergence rate.

• Improving the time convergence accuracy: The present, explicit time integration scheme is
first order in time. A suitable second order scheme, which does not suffer from the problem
presented in Chapter 3, can be implemented.

It may be useful to create some benchmark three-dimensional test case to compare the method
to previous work. One-dimensional problems, like the Stefan problem, have become a standard
when evaluating methods, but for several aspects of general methods it is required to have more
stringent test cases where complex, three-dimensional effects can be evaluated. The bubble in
superheated liquid in a three–dimensional domain can be used for this purpose. It will also be
interesting to test more complex physical problems. A candidate case can be three–dimensional
film boiling at industrial conditions.

Industrial problems often include modeling complex geometries and may require special con-
tact line dynamics. Contact line models that rely on a modification of the VOF boundary
condition should be implementable to the present method with relative ease, since the VOF field
is used as a basis for all calculations.

One method to introduce arbitrary boundaries in uniform, Cartesian grids is the embedded
or immersed boundary method, of which a review is given by Mittal [40]. This approach may be
feasible with the method presented here, but special care will have to be given to the consistent
VOF and energy-advection in cut boundary cells. Another approach for complex geometries is
to use unstructured grids. Even though some of the conceptual ideas in this method may be
applied, this will be a significant task. One reason is that geometric VOF advection techniques
on unstructured grids introduce a remarkable amount of computational complexity to ensure
conservation.
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[52] Y. Sato and B. Ničeno, A conservative local interface sharpening scheme for the con-
strained interpolation profile method, International Journal for Numerical Methods in Fluids,
70 (2012), pp. 441–467.

[53] , A sharp-interface phase change model for a mass-conservative interface tracking
method, Journal of Computational Physics, 249 (2013), pp. 127–161.

[54] R. Scardovelli and S. Zaleski, Direct Numerical Simulation of Free-Surface and Inter-
facial Flow, Annual Review of Fluid Mechanics, vol. 31, pp. 567-603, 31 (1999), pp. 567–603.

[55] R. Scardovelli and S. Zaleski, Analytical Relations Connecting Linear Interfaces and
Volume Fractions in Rectangular Grids, Journal of Computational Physics, 164 (2000),
pp. 228–237.

[56] R. Scardovelli and S. Zaleski, Interface reconstruction with least-square fit and split
Eulerian-Lagrangian advection, International Journal For Numerical Methods In Fluids, 41
(2003), pp. 251–274.

88



[57] J. Schlottke and B. Weigand, Direct numerical simulation of evaporating droplets,
Journal of Computational Physics, 227 (2008), pp. 5215–5237.

[58] L. E. Scriven, On the dynamics of phase growth, Chemical engineering science, 10 (1959),
pp. 1–13.

[59] C.-W. Shu, High Order Weighted Essentially Nonoscillatory Schemes for Convection Dom-
inated Problems, Siam Review, 51 (2009), pp. 82–126.
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Appendix A

Boussinesq thermal energy
conservation

In this chapter, the thermal energy conservation equation is simplified by applying the Boussinesq
approximation. The derivation will be done by writing the equations in differential form. Parts
of the derivation are taken from [12].

A.1 Boussinesq approximation

The general form of the conservation of thermal energy is given in integral form in (2.41). In
differential form, it is written

∂(ρei)

∂t
+∇ · (ρeiu) = −p (∇ · u) + S , (A.1)

where the nomenclature is the same as in Chapter 2 and S is the heat transfer, viscous dissipation
and other source terms. This equation can be rewritten as

ρ

(
∂ei
∂t

+ u ·∇ei
)

= −p (∇ · u) + S , (A.2)

by using mass conservation

∂ρ

∂t
+∇ · (ρu) = 0 . (A.3)

Since the temperature variations are small, the specific heat capacity of a phase is assumed
constant and it is assumed that fluid properties adhere to the ideal gas law [9, p.180]

p = ρRT , (A.4)

with R the gas constant. The internal energy is now approximated as ei = cvT , with cv the
constant volume specific heat. This can be substituted into (A.2)

ρcv

(
∂T

∂t
+ u ·∇T

)
= −p (∇ · u) + S , (A.5)
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where the specific heat is removed from partial derivatives, since it is constant. Even though the
flow is incompressible, the term for the volumetric pressure work is not neglected, but is rather
expanded. To do this, (A.3) is rewritten as

∂ρ

∂t
+ u ·∇ρ = ρ (∇ · u) , (A.6)

so that the volumetric pressure work term is written

p (∇ · u) =
p

ρ

(
∂ρ

∂t
+ u ·∇ρ

)
(A.7)

The flow is assumed incompressible and by the Boussinesq approximation, it is assumed that
temperature variations are relatively small. This means that pressure changes in the flow have
a negligible impact on the pressure, but would rather effect the velocity. Using this assumption,
the pressure derivative can be written(

∂ρ

∂t
+ u ·∇ρ

)
≈
(
∂ρ

∂T

)
p

(
∂T

∂t
+ u ·∇T

)
. (A.8)

The volumetric thermal expansion coefficient is given by [32, p.564]

β = −1

ρ

(
∂ρ

∂T

)
p

(A.9)

Substituting the ideal gas law into (A.9), it is found that β = 1/T . Using this and (A.8), it is
now possible to write

p (∇ · u) =
p

ρ

(
∂ρ

∂T

)
p

(
∂T

∂t
+ u ·∇T

)
= ρ (cv − cp)

(
∂T

∂t
+ u ·∇T

)
. (A.10)

The ideal gas law was used to here to substitute p = ρ(cp − cv)T , with R = cp − cv for ideal
gases. Substituting this into (A.5), the thermal energy conservation can now be written, after
applying the Boussinesq approximation as

ρcp

(
∂T

∂t
+ u ·∇T

)
=∇ · k∇T + Φ , (A.11)

where S was replaced with the Fourier law for heat transfer and viscous dissipation.
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Appendix B

Rayleigh-Plesset Note

In this chapter, the derivation of the Rayleigh-Plesset equation will be given for one-dimensional,
spherically symmetric inviscid flow, as applied in Part I of this work. The pressure at a finite
distance will also be derived. This is useful for simulation purposes when a pressure boundary
condition is applied at a boundary that is some finite distance from the bubble.

B.1 Rayleigh-Plesset equations

As mentioned in the introduction, the governing equation for a bubble with radius R in an inviscid
fluid will be derived. The flow is assumed to be spherically symmetric and incompressible. First,
the velocity u is written as a function of the general radial coordinate r and the bubble radius
R. The continuity equation for incompressible flow is

∇ · u = 0 . (B.1)

For a spherically symmetric flow, the velocity u is only a function of the radial coordinate r
and time t

u = u(r, t) , (B.2)

so the velocity will simply be denoted u = u(r, t).
In general, the velocity at position r can be written as some function of time

u =
f (t)

r2
. (B.3)

At the interface of the bubble r = R, so that u = f(t)/R2 = dR/dt = Ṙ. Rewriting this
equation gives

f (t) = ṘR2 (B.4)

and substituting this back into (B.3) gives

u =
ṘR2

r2
(B.5)

The one-dimensional Euler equation is given by

Du

Dt
= −∇p

ρ
(B.6)
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Substituting (B.5) into the above equation gives

R̈R2 + 2RṘ2

r2
− 2Ṙ2R4

r5
= − 1

ρ`

dp

dr
, (B.7)

with ρ` the liquid density.
This equation can now be integrated from the bubble interface at R, where the pressure is

pR to infinity at pressure p∞:

R̈R+
3

2
Ṙ2 =

pR − p∞
ρl

=
pc − 2σ

R − p∞
ρl

, (B.8)

with σ the surface tension coefficient and the pressure jump from surface tension accounted for.

B.2 Pressure at a finite distance

We are interested in knowing the spatial pressure distribution in order to set the pressure on
the boundary of a numerical simulation. From equation B.7, we now integrate from R to r in
space, at respective pressures pR and p(r). An expression is then obtained for p as a function of
r which can be used to set the pressure at some finite distance:

p(r, t) = pR − ρl

(
Ṙ2R4

2r4
− R̈R2 + 2RṘ2

r
− Ṙ2

2
+ R̈R+ 2Ṙ2

)
, (B.9)

with pR = pc −
2σ

R
.
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